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Vectors and matrices are shown in boldface, scalar magnitudes in lightface.

A—l
A-B
A X B

S

Y

<

=

Sz QTS ma3E

Inverse of matrix A

Dot (scalar) product of vectors A and B
Cross (vector) product of vectors A and B
Gear tooth addendum

Acceleration

Coriolis acceleration

Normal acceleration

Tangential acceleration

Velocity of C relative to B (velocity
difference)

Cylinder pair; planet carrier
Force couple

Inertia couple or inertia torque
Center distance
Computer-aided design
Determinant

Diameter of pitch circle
Diameter of base circle
Degrees of freedom

Instantaneous efficiency; cam-follower
offset; piston offset; eccentricity

Polar form of a complexnumber

Force

Axial or thrust gear tooth force component
External force

Inertia force

Force exerted by a member i on member j
Normal gear tooth force

Radial gear tooth force component
Shaking force

Tangential gear tooth force component
frequency

Joint connectivity

Center of mass

Helix pair

Cam follower lift
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Horsepower
Mass moment of inertia
Cartesian unit vectors

Cam follower jerk; vV —1, the imaginary
unit used to represent quantities on the
complex plane

Link length, sound level

Length of diagonal (of linkage polygon)
Lead of worm

Length of link i

Shaking moment

Mass; module; slope; meters

Normal module

Number of gear teeth; newtons

Normal force

Rotational speed (revolutions per minute)
Number of constraints

Number of joints

Number of links

Fixed bearing on link 1

Absolute velocity of point B

Prism pair; planet gear; power; diametral
pitch

Piston force

Normal diametral pitch

Position vector in frame i

Transverse circular pitch, pressure

Base pitch

Normal circular pitch

Axial pitch of worm

Revolute pair; ring gear; length of crank
Position vector

Rotational transformation matrix
Radius of pitch circle

Position vector; vector representing a link
Derivative of r with respect to time
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Train value (speed ratio) for a planetary
train relative to the carrier

Length of cam-follower arm; radius of
addendum circle

Base circle radius; radius of back cone
element

Center distance between cam and fol-
lower pivots

Radius of cam-follower roller; radius of
friction circle

Mean pitch radius
Velocity ratio

Unit vector

x component of vector r
Sphere pair; sun gear
Displacement

Seconds

Axial spacing of engine cranks and cylin-
ders; joint offset along axis n

Torque
External torque

Transformation matrix from frame j to
frame i

Time; gear tooth thickness
Universal joint

Velocity

Pitch line velocity

Work; watts

Gear tooth width; weight
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Cartesian coordinates

Cross product

Angular acceleration

Cam rotation angle; angle of approach
Angle of recess

Pitch angle

Cam follower rotation; pitch angle; mass
density

Virtual displacements

Angular position of link; cam angle;
angle of action; connecting rod angle

Angular position of link i

Angular spacing of engine cylinders;
joint angle about axis n

Lead angle of worm

Coefficient of sliding friction

Radius of curvature

Radius of curvature of pitch curve
Angle between shafts

Link twist of member i

Heaviside step function

Transmission angle; pressure angle;
transverse pressure angle; friction angle

Angular position of link i
Normal pressure angle

Involute angle; helix angle
Angular spacing of engine cranks
Angular velocity

What You Will Learn and Apply in the Study of the Kinematics and
Dynamics of Machinery

The following is a partial list of the knowledge and skills you will acquire or enhance. In many
cases, you will be applying mathematics and scientific principles that you learned previously.

Effective computer use an software selection

Application of animation software to linkage design

Application of mathematics software to mechanism design

Computer-aided solutions to engineering problems using vector and matrix equations

Mobility of planar and spatial linkages

Determination of motion characteristics of linkages

Design to avoid binding and interference

Design and selection of mechanisms for specific applications
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Analytical vector methods applied to linkage design

Complex number methods applied to linkage design

Analytical and graphical methods for finding linkage velocities
Analytical and graphical methods for finding linkage accelerations
Design and analysis of cams

Design and analysis of spur gears

Design and analysis of helical, worm, and bevel gears
Arrangement of gears to produce desired input—output speed ratios
Design of planetary speed changers

Analysis of static forces in linkages and gear and cam mechanisms
Analysis of dynamic forces in linkages

Balancing of rotors and reciprocating machines

Synthesis of linkages to produce predetermined motion

Design and analysis of simple robotic manipulators

Critical thinking applied to mechanism design. Critical thinking involves identification
of a problem, gathering of data, objective analysis, and an attempt at solving the prob-
lem by a scientific process. This skill should be honed throughout an engineer’s educa-
tion and practice.

Engineering creativity. The text and problems are designed to foster creativity, but this
goal depends almost entirely on the student (with encouragement from an instructor).






1.1

CHAPTER 1

Mechanisms and Machines:
Basic Concepts

In this chapter, you will learn

¢ The terms we use to describe mechanisms

e The degrees of freedom of mechanisms

¢ How to design crank-rocker, double-rocker, drag link, and other mechanisms
e How to design linkages to prevent jamming and interference

¢ How to optimize a mechanism design

e Computer animation of linkages to check the validity of a design

¢ The design of quick-return mechanisms

¢ The design and selection of mechanisms for special applications

¢ Numerical solutions

e Other basic concepts.

Kinematics and dynamics are vital components of machine design. An understanding
of the kinematics and dynamics of machinery is important to the design of

¢ Production machinery, including robots and other programmable machines
¢ Consumer goods and office machines

e Aircraft and surface transportation vehicles

e Agricultural and construction machinery

e Many other items considered essential to modern living

INTRODUCTION

Kinematics and dynamics of machinery involve the design of machines on the basis of
their motion requirements. A combination of interrelated parts having definite
motions and capable of performing useful work may be called a machine. A mecha-
nism is a component of a machine consisting of two or more bodies arranged so that
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the motion of one compels the motion of the others. The design of an automotive
power train (a type of machine) is concerned with several mechanisms, including
slider-crank linkages, cam and follower linkages, and gear trains. Many mechanisms
undergo planar motion, motion in a single plane or in a set of parallel planes. The more
general case, spatial motion, applies to mechanisms in which the motion must be
described in three dimensions.

Kinematics is the study of motion in mechanisms without reference to the forces
that act on the mechanism. Dynamics is the study of the motion of individual bodies
and mechanisms under the influence of forces and torques. The study of forces and
torques in stationary systems (and systems with negligible inertial effects) is called
statics.

Synthesis is a procedure by which a product (a mechanism, for example) is devel-
oped to satisfy a set of performance requirements. If a product configuration is tenta-
tively specified and then examined to determine whether the performance
requirements are met, the process is called analysis. The design of mechanisms involves
both synthesis and analysis.

The design process begins with the recognition of a need. A set of requirements is
then listed. Creativity and inventiveness are key to selecting the connectivity and form
of a mechanism or machine to satisfy the need. The designer may use formal synthesis
procedures in which specifications and corresponding decision sets and design vari-
ables must be identified. The designer then prepares an adequacy assessment proce-
dure, formulating a figure of merit and an optimization strategy.

Detailed analyses of displacements, velocities, and accelerations are usually
required. This part of the design process is followed by an analysis of forces and
torques. The design process may continue long after the first models have been pro-
duced and may include redesigns of components that affect velocities, accelerations,
forces, and torques. To compete successfully from year to year, most manufacturers
must continuously modify their products and their methods of production. Increases in
the production rate, upgrading of product performance, redesign for cost and weight
reduction, and motion analysis of new product lines are frequently required. Success
may hinge on the accuracy of the kinematic and dynamic analysis.

1.2 TOOLS AVAILABLE TO THE DESIGNER OF LINKAGES AND OTHER

MECHANISMS

A designer will ordinarily begin the design process by making various design decisions
based on his or her experience and creative ability. These decisions may be verified and
modified through analytical, graphical, numerical, and empirical methods. If a linkage
is to be analyzed in only one position, graphical vector methods may provide the
quickest solution. Complex-number methods are convenient for analyzing planar link-
ages. Analytical vector methods are used for solving planar and spatial linkages. While
a calculator is adequate for solving a linkage problem for a single position, it is worth-
while to write a computer program when a solution is required over a range of values.
Computer solutions are also effective for analysis and synthesis when it is necessary to
evaluate several alternatives.
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HINTS FOR EFFECTIVE COMPUTER USE
Software Selection

Every year, personal computers get faster and can store more information. New and
more powerful versions of software appear as well. In selecting new software for
designing and analyzing linkages and other mechanisms, some of the following consid-
erations may be relevant:

e Animation. Motion simulation software (e.g., Working Model™) allows the
designer to “build” and analyze linkage simulations. The linkages can be ani-
mated to verify design criteria and compute velocities, accelerations, and forces.

¢ Plotting routines. Clearly labeled plots showing the position, velocity, and accel-
eration of linkages help the designer gain an insight into the motion of a mecha-
nism and give clues leading to an improved design.

 Egquation form. Mathematics software (e.g., Mathcad™) shows subscripts, super-
scripts, upper- and lowercase Greek and Roman symbols, and built-up equations.
In this form, equations are readable and easier to debug. Equations embedded in
typical programming languages are somewhat less readable. In spreadsheets,
equations are usually hidden, but tabular data are clearly displayed. An impor-
tant spreadsheet feature is that when one cell is changed, all related cells are
updated to reflect the change.

¢ Computational features. Mathematics software that includes equation solvers,
numerical differentiation routines, and routines to manipulate complex num-
bers, vectors, and matrices can be a significant time-saver in working with
mechanisms.

¢ Trigonometric functions. Linkage solutions require direct and inverse trigono-
metric functions. Software that offers a two-argument arctangent function
(ANGLE or ARCTAN,) is preferable.

¢ Symbolic capabilities. Symbolic equation solvers, symbolic integration and differ-
entiation, and symbolic matrix operations are useful software features.

e User experience. Familiarity with a particular type of spreadsheet, programming
language, or mathematics package may govern one’s selection of software. For
example, a person skilled in using a particular programming language (BASIC,
FORTRAN, C++, etc.) may find it inefficient to switch to an unfamiliar type of
mathematics software.

¢ Educational considerations. Educational goals sometimes override other con-
siderations. Kinematics problems can be solved by means of spreadsheets
(Lotus 1-2-3™ Excel™, etc.) if the course goals include learning to deal with
spreadsheets.

e Hardware limitations. Software packages indicate minimum hardware require-
ments. The performance of a given package will be unsatisfactory with inade-
quate random-access memory or inadequate hard-disk space.

¢ Presentation form. Engineers must be prepared to present their work to others.
Desirable software features include a word-processor-like text capability, a
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cut-and-paste capability, and the ability to mix calculations, graphs, tables, and
comments. Such features allow the engineer to “work smart” by completing the
report while performing design and analysis calculations.

Identifying a Need or a Problem

Most academic problems are clearly defined. By contrast, typical real-world problems
are ill-defined and require many assumptions. A computer cannot identify a real need
or problem for you. Try to ask the right questions; identify the right problem before
beginning detailed work. A correct solution to the wrong problem is of little value.

Programming

Some of the following suggestions may apply, whether a programming language, math-
ematics software, or a spreadsheet is selected to aid in kinematics design:

e Begin with a simple program. Test it with known data if possible. Then build on
the program to solve the required problem.

¢ Be generous with titles and comments in your program. Identify variables. Note
the limitations of the program.

e Output intermediate results so that you can check and debug the program. Do
these results look reasonable? For example, has the length of a rigid link
changed? Spot-check computer results by using independent calculations. Try to
write a self-verifying program.

e Let the computer serve you; avoid wasting time making unnecessary improve-
ments in your programs (unless improving programming skills is an educational
goal).

e Make personal quick-reference cards. Include notes on the best utilization of
software for your most common tasks.

e Interpret your results. Do “what if”” analysis. What if the link length is changed?
What if the angular velocity is increased? Computer software cannot replace cre-
ativity and interpretation of results. It reduces the time spent on repetitive tasks,
leaving more time for important tasks related to the design of linkages.

Using Motion Simulation Software to Produce Coupler Curves

We sometimes need a mechanism with an output link that rotates through a limited
range (oscillates) as the input crank rotates at constant speed. Or we may want more
complicated output motion. Figure 1.1 illustrates the use of Working Model™ motion
simulation software to describe a four-bar linkage. The moving links are the drive
crank OB, the coupler BFGCDE, and the driven crank COj3. A motor is located at the
fixed bearing Oq, and a fixed bearing at O; supports the driven crank. The drive crank
and the driven crank are joined to the coupler at bearings B and C.

As the drive crank rotates continuously, bearing B, which joins it to the coupler,
traces a circle. The driven crank oscillates, and bearing C traces a circular arc. Near the
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FIGURE 1.1 Coupler curves.

corners of the coupler, points D, E, F, and G trace various figures called coupler curves.
Point G, for example, produces a figure eight. We might join another link at that point
to produce some needed motion.

It is difficult to design a linkage to produce a specified motion pattern. However,
we may be successful if we use ingenuity and test our designs with motion simulation
software. If we cannot produce the desired motion with coupler curves, then we will try
cams, numerically controlled systems, or computer-controlled robots for the task.

1.3 SYSTEMS OF UNITS

Any appropriate set of units may be used in the study of kinematics and dynamics of
machinery, as long as consistency is maintained. We invite errors when we fail to check
the consistency of units. Preferred systems are the International System of Units, or
Systame International (SI), a modernized version of the meter—kilogram-second
(mks) system; and the customary U.S. inch—pound-second system. The following basic
and derived units are suggested:

SI (m -kg-s) SYSTEM

Quantity Unit Symbol Relationship
Acceleration m/s?

Energy and work joule J N-m

Force newton N kg - m/s

Length meter m

Mass kilogram kg N-s¥m

Mass moment of inertia kg - m?

Power watt W J/sor N-m/s
Pressure and stress pascal Pa N/m?

Torque and moment N-m (N - m/rad)

Velocity m/s
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CUSTOMARY US. (in - Ib; - s) SYSTEM

Quantity Unit Symbol Relationship
Acceleration in/s’
Energy and work Ib-in

Force pound Ib or 1b;

Length inch in

Mass 1b - s%/in
Mass moment of inertia Ib-s2-in
Power horsepower hp

Pressure and stress psi 1b/in?
Torque and moment Ib-in (Ib - in/rad)
Velocity in/s

COMMON TO BOTH SI AND CUSTOMARY U.S. SYSTEMS

Quantity Unit Symbol Relationship
Angular acceleration rad/s’
Angular velocity rad/s
Frequency hertz Hz (cycles)/s
Plane angle radian rad

Time second s

SI prefixes may be used to eliminate nonsignificant digits and leading zeros. The
following are in most common use:

Multiplication Factor Prefix Symbol
1,000,000 = 10° mega- M
1000 = 10° kilo- k
0.01 = 1072 centi- c
0.001 = 1073 milli- m
0.000001 = 107 micro- "

Although prefixes representing powers of 1000 are preferred, the centi- prefix is also
used (e.g., centimeters, cubic centimeters).

It is generally most convenient to perform calculations by using scientific nota-
tion (powers of 10) or engineering notation (107, 1073, 103, 10°, etc.). A suitable unit
and prefix should be chosen to express the results of calculations so that the numerical
value falls between 0.1 and 1000, where convenient. An exception to this suggestion is
engineering drawings, in which, for consistency, linear dimensions are expressed in mil-
limeters (mm). When a number of values are tabulated or discussed, consistent units
and prefixes are preferred (e.g., a velocity range given as 0.09 m/s to 1100 m/s would be
preferred over the same range expressed as 90 mm/s to 1.1 km/s).

The advantage of SI as a coherent system may be lost if it is used together with
units from other systems. However, convenience and common usage suggest the use of
the degree (and decimal parts of the degree) for the measurement of plane angles. But
one should always be careful when using degrees. An angle that stands alone in an equa-
tion will be in radians, and the argument of the tangent, sine, and cosine functions must
be in radians for use in most software and programming languages. Obviously, time
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expressed in minutes, hours, and days will often be more practical than the use of seconds
in some applications (e.g., the velocity of a vehicle is commonly expressed in kilometers
per hour, (km/h), and the kilowatt-hour (kW - h) is used as a measure of energy).

Like the pound (Ib), the kilogram (kg) is sometimes used as a unit of force as well
as a unit of mass. The accepted SI force unit, however, is the newton (N). Torque may
be expressed in newton-meters (N - m). Although 1 N-m equals 1 joule (J), the term
joule should be reserved for work and energy.

Conversion Factors

The following are few of the conversion factors that are useful in the kinematics and
dynamics of machinery (an extensive list of conversion factors is given inside the front
and back covers):

1 g (gravitational constant) = 386.09 in/s> = 9.80665 m/s’

1 horsepower (hp) = 66001b-in/s = 7457 W

lin = 254 mm; 1m = 39.37in

11b = 4.4482 N (force)

11b = 0.45359 kg (mass)

1mi/h = 0.44704 m/s

1 psi = 6894.8 Pa; 1 MPa = 145.04 psi

1rad = 180°/ 7 = 57.2958°

1 revolution per minute (rev/min) = 7 rad /30s = 0.10472 rad/s

1.4 TERMINOLOGY AND DEFINITIONS

Many of the basic linkage configurations have been incorporated into machines
designed centuries ago, and the terms we use to describe them have changed over the
years. Thus, definitions and terminology are not consistent throughout the technical lit-
erature. In most cases, however, the meanings will be clear from the context of the
descriptive matter. A few terms of particular interest to the study of kinematics and
dynamics of machines are defined next.

Link

A link is one of the rigid bodies or members joined together to form a kinematic chain.
The term rigid link, or sometimes simply /ink, is an idealization used in the study of
mechanisms that does not take into account small deflections due to strains in machine
members. A perfectly rigid or inextensible link can exist only as a model of a real
machine member. For typical machine parts, the maximum changes in dimension are
on the order of only one-thousandth of the part length.

Frame

The fixed or stationary link in a mechanism is called the frame. When there is no link
that is actually fixed, we may consider one as being fixed and determine the motion of
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the other links relative to it. In an automotive engine, for example, the engine block is
considered the frame, even though the automobile may be moving.

Joint or Kinematic Pair

The connections between links that permit constrained relative motion are called
joints. The joint between a crank and connecting rod, for instance, may be called a
revolute joint or a pin joint. The revolute joint has one degree of freedom, in that, if
one element is fixed, the revolute joint allows the other only to rotate in a plane.
(Degrees of freedom are discussed in more detail in a section that follows.) A sphere
joint (ball joint) has three degrees of freedom, thus allowing relative motion in three
angular directions. A number of common joint types are idealized in Figure 1.2.
Some of the practical joints that they represent are made up of several elements.
Examples include the universal joint, ball and roller bearings that are represented by
the revolute joint, ball slides represented by the spline joint, and ball screws repre-
sented by the helix.

Lower and Higher Pairs

Connections between rigid bodies consist of lower and higher pairs of elements.
Theoretically, the two elements of a lower pair are in surface contact with one another,
while the two elements of a higher pair are in point or line contact (if we disregard
deflections). Lower pairs include revolutes or pin connections—for example, a shaft in
a bearing or the wrist pin joining a piston and connecting rod. Both elements joined
by the pin may be considered to have the same motion at the pin center if clearance
is neglected. Other basic lower pairs include the sphere, cylinder, prism, helix, and
plane (Figure 1.2). Waldron (1972) shows that these six are the only basic lower pairs
possible.

Examples of higher pairs include a pair of gears or a disk cam and follower. The
Hook-type universal joint is a combination of two lower pairs. A Bendix—Weiss type of
constant-velocity universal joint includes higher pairs. (See illustrations later in the
chapter.)

From a design standpoint, lower pairs are desirable, since the load at the joint
and the resultant wear are spread over the contact surface. Thus, geometric changes or
failure due to high contact stresses or excessive wear may be prevented. In practice, we
may utilize a ball or roller bearing as a revolute pair to reduce friction; However, the
advantages of contact over a large surface are sacrificed.

Closed-Loop Kinematic Chains

A kinematic chain is an assembly of links and pairs (joints). Each link in a closed-
loop kinematic chain is connected to two or more other links. Consider, for exam-
ple, the slider-crank mechanism, a component of the vertical compressor shown in
Figure 1.3. Bearings (represented by a revolute joint) connect the casing (frame) and
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rotation only
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Sphere permitting rotation in
three angular directions
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Gear pair H G (rolling _GO_
and
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and
sliding)

FIGURE 1.2 Common linkage joints (pairs).

crank; the crankpin (another revolute joint) connects the crank and connecting rod;
the connecting rod and crosshead are joined at the wrist pin (a third revolute joint);
finally, the piston and cylinder (frame) constitute a sliding pair (cylinder pair), closing
the loop.
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FIGURE 1.3 A vertical compressor. The crank (bottom) drives the con-
necting rod, which moves the crosshead within a guide. The compressor is
designed with a crosshead and piston rod so that the piston may be dou-
ble acting; air is compressed as the piston moves upward and as it moves
downward. (Source: Joy Manufacturing Company.)
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FIGURE 1.4 Industrial robot. (Source: Cincinnati Milacron.)

Open-Loop Kinematic Chains

A linkage failing to meet the closed-loop criterion is an open-loop kinematic chain. In
this case, one (or more) of the links is connected to only one other link. The industrial
robot shown in Figure 1.4 is an open-loop kinematic chain.

Manipulators

Manipulators designed to simulate human arm and hand motion are an example of
open kinematic chains. A typical manipulator consists of a supporting base with rigid
links connected in series, the final link containing a tool or “hand.” Ordinarily, the rigid
links are joined by revolute joints or prismatic pairs, although the hand may include a
screw pair. Early systems of this type included master—slave-type manipulators for
handling radioactive materials. The slave manipulator duplicates the hand—arm motion
of a human operator controlling the master manipulator.

Robots

Programmable manipulators, called robots, can follow a sequence of steps directed by
a computer program. Unlike machines dedicated to a single task, robots can be
retooled and reprogrammed for a variety of tasks. Typical robot tasks include spray
painting, assembling parts and welding. The open-chain configuration of robots results
in a problem with positional accuracy. This problem is sometimes overcome by using
jigs and compliant tooling systems.
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It is also possible to achieve accurate positioning by incorporating a sensing sys-
tem and a feedback system into the robot control system. Internal-state sensors can
detect variables such as joint positions. External-state sensors may measure proximity,
touch, force, and torque. Machine vision and hearing are external-state sensory capa-
bilities that are available in some robot systems. Sensory-function feedback systems
permit adaptive behavior of the robot. A force transducer incorporated into a robot
hand may feed back a signal to the control system, which then alters the hand’s grasp-
ing pattern. Tasks requiring high precision are more often accomplished by numeri-
cally controlled machinery designed for specific operations.

Figure 1.4 shows an industrial robot with six revolute joints. This robot has a
jointed-arm form, a common robot configuration. Other configurations are shown in
Figure 1.5. Part a of the figure is a schematic representing a robot with four revolute
joints and one prismatic pair. Part b represents a robot with two revolute joints, a pris-
matic joint, and a cylinder pair. Note that the cylinder can be replaced by a prismatic
joint and a revolute joint. The robot schematic of part c shows three prism joints and
one revolute joint. The end effectors may consist of additional links and joints. The
work envelope, or workspace, is defined by all of the points that the end effector can
reach. It can be seen that the type of joints in each of these robot configurations affects
the shape of the work envelope. Robots are discussed extensively in Chapter 12.

Linkage

Although some references define linkages as kinematic chains joined by only lower
pairs, the term is commonly used to identify any assemblage of rigid bodies connected

M

FIGURE 1.5 Schematic diagrams representing various robot configurations. (a) Spherical
configuration.
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by kinematic joints. The same linkage configuration may serve as a component of a
mechanism, a machine, or an engine. Thus, the terms linkage, mechanism, machine, and
engine are often used interchangeably.

Planar Motion and Planar Linkages

If all points in a linkage move in parallel planes, the system undergoes planar motion
and the linkage may be described as a planar linkage. The portable drafting instrument
shown in Figure 1.6 is a planar linkage. A skeleton diagram of a planar linkage is
formed by projecting all of the link centerlines on one of the planes of motion. The
plane of motion of parallelogram linkage ABCD, the plane of motion of parallelogram
linkage EFGH, and the plane of motion of the straightedges are all parallel. In this
linkage, planar motion is assured because the axes of revolute joints A, B, C, D, E, F, G,
and H are all parallel (i.e., all perpendicular to the plane of the drawing board).

Spatial Motion and Spatial Linkages

The more general case in which motion cannot be described as taking place in parallel
planes is called spatial motion, and the linkage may be described as a spatial or three-
dimensional (3D) linkage. The industrial robot of Figure 1.4 is a spatial linkage. To
achieve the desired range of motion, the axes of the revolute pairs in the manipulator
are arranged to be not all parallel.

Inversion

The absolute motion of a linkage depends on which link is fixed—that is, which link is
selected as the frame. If two otherwise equivalent linkages have different fixed links,
then each is an inversion of the other.

Cycle and Period

A cycle is the complete sequence of positions of the links in a mechanism (from some
initial position back to that initial position). In a four-stroke-cycle engine, one thermo-
dynamic cycle corresponds to two revolutions or cycles of the crankshaft, but to one
revolution of the camshaft and, thus, one cycle of motion of the cam followers and
valves. The time required to complete a cycle of motion is called the period.

FIGURE 1.6 A portable drafting instrument. The link-
age consists of two parallelograms, which permit transla-
tion of the straightedge in any direction without
rotation.
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1.5 DEGREES OF FREEDOM (MOBILITY)

The number of degrees of freedom of a linkage is the number of independent parame-
ters we must specify to determine the position of every link relative to the frame or
fixed link. The number of degrees of freedom of a linkage may also be called the
mobility of the linkage. If the instantaneous configuration of a system may be com-
pletely defined by specifying one independent variable, that system has one degree of
freedom. Most practical mechanisms have one degree of freedom.

An unconstrained rigid body has six degrees of freedom: translation in three
coordinate directions and rotation about three coordinate axes. A body that is
restricted to motion in a plane has three degrees of freedom: translation in two coordi-
nate directions and rotation within the plane.

Constraints Due to Joints

Each joint reduces the mobility of a system. A fixed, one-degree-of-freedom joint (e.g.,
a revolute joint) reduces a link to one degree of freedom. In general, each one-degree-
of-freedom joint reduces a system’s mobility by providing five constraints; each two-
degree-of-freedom joint provides four constraints, and so on. That is, in general, each
joint reduces system mobility by (6 — f;) where f; is the number of degrees of freedom
(connectivity) of the joint. The actual number of degrees of freedom of a mechanism
depends on the orientation of the joint. For example, if two or more revolute joints in a
mechanism have parallel axes, then the effective number of constraints is reduced.

For a spatial mechanism with n; links (including one fixed link with zero degrees
of freedom), the number of degrees of freedom of the linkage is given by

DFspatial = 6(”L - 1) - N (11)

where 7, is the total number of constraints. For #; joints with individual connectivity
fi» we note that

n, = 6n; — Ef,, (1.2)
i=1

from which it follows that

DFspatial = 6(nL —ny - 1) + Zlft (13)

Linkages are often named according to their joint configurations, using the sym-
bols given in Figure 1.2 (R for revolute, S for sphere, etc). For example, Figure 1.7a shows
a closed-loop RSSR mechanism, and the robot in Figure 1.4 is called an RRRRRR, or
6-R, open linkage.

Examining the industrial robot of Figure 1.4, we see that there are seven links
and six revolute joints, each joint having one degree of freedom and introducing five
constraints. Using Eq. (1.1), we obtain

DFpaia=6(7 — 1) =5 —5 -5 — 5 — 5 — 5=6 (the equals sign applies in this case).
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FIGURE 1.7 (a) An RSSR mechanism (two degrees of freedom). (b) An RRRR link-
age. (c) An RRRC linkage. In the general case, no relative motion is possible in closed-
loop RRRR and RRRC linkages.

FIGURE 1.7 (d) A manipulator arm on a prototype unmanned rover
vehicle. (Source: NASA).
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Alternatively, Eq. (1.3) may be used to obtain the same result:
DFgpait = 6(7 -6 -1)+1+1+1+1+1+1=6.

Next, consider the closed-loop kinematic chain of Figure 1.7a, a general closed-
loop RSSR mechanism. The mechanism has four links, two revolute joints, and two
spherical joints, as shown in Figure 1.7a. Each revolute joint has one degree of freedom
and introduces five constraints, while each spherical joint has three degrees of freedom
and introduces three constraints. Thus, from Eq. (1.1), the RSSR mechanism has
6(4 — 1) — 5 -3 — 3 — 5 = 2degrees of freedom. This particular linkage acts, for all
practical purposes, as a one-degree-of-freedom linkage if we ignore the degree of free-
dom that represents the rotation of link 2 about its own axis. If the angular position of
link 1 is given, the entire linkage configuration may be determined. Note, however, that
this statement assumes that applied forces or inertial effects are present to ensure a
prescribed pattern of motion as the linkage passes through limiting positions.

Let one of the spherical joints in the preceding RSSR mechanism be replaced by
a universal joint with two degrees of freedom (four constraints). We then form an
RSUR mechanism, and the number of degrees of freedom is given by

DF=6(4-1)-5-3—-4-5=1.

In a general RRRR linkage, as shown in Figure 1.7b, each joint provides five con-
straints, and the number of degrees of freedom is given by DF =
6(4—-1)—5—-5-5-5= -2 In a general RRRC linkage, the cylinder joint has
two degrees of freedom, providing four constraints. The number of degrees of
freedom for the RRRC linkage shown in Figure 1.7c is given by DF =
6(4 —1)—5-5-5—4=—1. The manipulator arm on the prototype vehicle
(Figure 1.7d) is a multi-degree-of-freedom open-loop linkage.

There is no relative motion in the general case for RRRR and RRRC linkages,
because they are equivalent to statically indeterminate structures. However, there are
important special cases. If all four revolute joints in an RRRR linkage are parallel,
then the linkage becomes planar. If the axes of all four revolute joints in an RRRR
linkage meet at one point, then the linkage becomes spherical. Both of these special
cases are mechanisms with one degree of freedom.

Planar Linkages

Planar linkages, of course, represent a special case. Consider, for example, a mechanism
made up of rigid links joined by three revolute joints and a cylinder joint. If the links
and joints are oriented so that the links move in parallel planes, this RRRC linkage
becomes a slider-crank linkage, the planar linkage that represents a major component
of piston engines, pumps, compressors, and other common machines. Figure 1.3 shows
a vertical compressor, the major components of which may be represented by an
RRRC linkage. All points on the crank, connecting rod, and crosshead of the compres-
sor move in parallel planes, and the axes of the revolute joints are also parallel. Thus,
we have a slider-crank linkage.
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A planar RRRR linkage may be called a four-bar linkage, which, together with
other planar link systems, is shown in Figure 1.8.
The joints or pairs that apply to planar linkages are as follows:

Connectivity
(Degrees of freedom of pair
Lower or higher pair in plane motion)
Revolute or pin joint Lower pair 1
Prism or sliding pair Lower pair 1
Cam pair Higher pair 2
Gear pair Higher pair 2

Actual joints may sometimes be different. For example, the slider-crank linkage may
be made up of three revolute joints (crankshaft bearings, crankpin, and wrist pin) and a
cylinder pair. The spline-type constraint of a prism pair is unnecessary, since the revo-
lute joints prevent rotation of the piston. If the actual number of degrees of freedom is
greater than would be determined by using the equation for spatial linkages, the link-
age is overconstrained. Overconstraint tends to strengthen a linkage; however, over-
constraint can be a disadvantage if manufacturing tolerances are poor.

Determination of Degrees of Freedom for a Planar Linkage

Each unconstrained rigid link has three degrees of freedom in plane motion. A fixed
link has zero degrees of freedom. A pin joint connecting two links produces two con-
straints, since the motion of both links must be equal at the joint (in two coordinate
directions). Thus, the number of degrees of freedom for a planar linkage made up of n;,
links and #; one-degree-of-freedom pairs is given by

DFplanar = 3(”L - 1) - Zn/] (14)

or, for n; joints with individual connectivity f;,
ny
DFplanar = 3(nL —ny - 1) + Zlfl (15)

We see that, for the four-bar linkage in Figure 1.8a, n; = 4, nj = 4, and DF = 1. For
the five-bar linkage in Figure 1.8b,n; = 5, n), = 5, and DF = 2. The linkage of Figure
1.8d has a double pin at B.Thus,n; = 6, n; = 7, and DF = 1.

Figure 1.8e shows a slider-crank mechanism illustrating a piston engine or a piston
pump, where O; denotes the crankshaft, link 1 represents the crank, link 2 designates
the connecting rod, point C denotes the wrist pin, and link 3 represents the slider or
piston that is constrained by the cylinder. The figure illustrates the common special
case, an in-line slider crank, where the extended path of wrist pin C goes through
crankshaft axis O. There are four links, including the slider and frame, and four
lower pairs, including the sliding pair. An alternative analysis uses an equivalent link-
age. Figure 1.8f shows a four-bar linkage in which point C moves through an arc of
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FIGURE 1.8 Skeleton diagrams of planar linkages. (a) Four-bar linkage. (b) Five-bar linkage.
(c) Structure. (d) A six-bar linkage with one degree of freedom. (e) A slider-crank mechanism.
(f) A four-bar linkage with motion approximating that of a slider-crank mechanism.
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radius O;C. If link 3 is made very long, the motion of the four-bar linkage will approxi-
mate that of a slider-crank linkage. If we could construct a linkage by replacing the
slider of the slider-crank mechanism with a link of infinite length and perpendicular to
the path of C, then that linkage would be equivalent to the slider-crank linkage.
Applying Eq. (1.4) to our equivalent linkage, with n; = 4 and n; = 4 we find that
DF = 3(4 — 1) — 2(4) = 1. The equivalent four-bar linkage (and, thus, the slider-
crank linkage) has one degree of freedom.

Analyzing the structure in Figure 1.8c in a similar manner and noting the double
pins at Oy, B, C, and E and the triple pin at D, we find that n}; = 12, n; = 9, and
DF = 0.

If a planar linkage is made up of n; one-degree-of-freedom pairs and n; two-
degree-of-freedom pairs, the number of degrees of freedom of the linkage is given by

DFpanar = 3(ng, — 1) — 2n) — nj. (1.6)

A single gear mesh or the contact point of a cam and follower represents a two-degree-
of-freedom higher pair (if the two bodies do not separate). Consider the spur gear dif-
ferential shown schematically in Figure 1.9. This differential has six links: the frame;
gears Sy and S, called sun gears; gears P and P,, called planet gears; and link C, the
planet carrier. There are five independent revolute joints and three gear pairs
(81P1, P1P,, andP,S,). It can be seen that the bearing axes are all parallel and that the
spur gear differential is a planar linkage. Using Eq. (1.6), we find that

DFyjanar = 3(6 — 1) — 2 X 5 — 3 = 2 degrees of freedom.

Thus there are two independent variables. For example, if we specified the motion of
both sun gear shafts, that of the planet carrier shaft could be determined.

To achieve balance and reduce gear tooth loading, practical spur gear differen-
tials ordinarily include two to four equally spaced pairs of planet gears. The additional

E B

FIGURE 1.9 Schematic of spur gear differential.
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pairs of planets do not change the number of degrees-of-freedom. If the gear sizes
were arbitrarily chosen, the number of degrees of freedom would be reduced.

One-Degree-of-Freedom Configurations

Planar mechanisms with one degree of freedom are of considerable practical impor-
tance. One-degree-of-freedom planar mechanisms made up of lower pairs satisfy
Griibler’s criterion:

2n—=3n; + 4 = 0. (1.7)

Noting that the number of links 7; and one-degree-of-freedom pairs n; must be positive
integers, we see that n; must be an even number. For n; = 2, we obtain n; = 1, the triv-
ial solution that could represent two bars joined by a pin joint. Next, trying four links, we
see that the number of joints must be nj = 4. This solution could represent the four-bar
linkage or slider-crank linkage of Figures 1.8a and e. Inversions of the slider-crank link-
age are also possible. If there are six links, then seven one-degree-of-freedom lower
pairs are required to produce one degree of freedom. For pin joints only, two distinct
configurations are possible, as shown in Figures 1.10a and b. Any one of the links may be
designated as the frame in each solution. It can be seen that the six-bar linkage of Figure
1.8d may be considered a special case of either of the linkages of Figure 1.10.
Determining eight-bar linkage configurations is left to the reader as an exercise.

Spatial linkages are analyzed further in a later section. However, since planar
linkages are used most frequently, the word planar will be used in the pages that follow
only when it is necessary to compare planar and spatial linkages.

5

(@) (b)

FIGURE 1.10 One-degree-of-freedom six-bar planar linkages. (a) Watt linkage. (b) Stephenson
linkage.
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Adjustable-Parameter Linkages

We can control input-output relationships by adjusting the length of one or more links
in a mechanism. Ingenious designs even enable “on-the-fly”” adjustments; that is, we can
change a mechanism’s characteristics of motion even when the mechanism is operating.

Suppose, for example, we need to vary the output of a pump without changing the
rotation speed of the crank. Suppose also that we would like the output to respond to
some other variable while the pump is running. A variable-stroke pump with a stroke
transformer is one way to satisfy this requirement. Figure 1.11a shows a variable-position
pump control cylinder that positions the curved-track stroke transformer. One end of the
coupler link slides in the track of the stroke transformer. The wrist pin at the top of the
coupler connects to the pump plunger. If the center of curvature of the stroke trans-
former is close to the wrist pin, then the plunger stroke will be small and the output (fluid

Pump plunger
N /' /Packing
7./

@)

FIGURE 1.11 (a) A variable-stroke pump. A curved-track stroke transformer allows a plunger stroke varia-
tion of 0 to 2 in on some models and of 0 to 6 in on other models. (Source: Ingersoll-Rand Company.)
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FIGURE 1.11 (b) In this linkage diagram, link 4 replaces the curved track of the
stroke transformer. As O, is brought closer to E, the movement of the plunger
decreases. When O coincides with E, the plunger will become stationary.

flow rate) will be low. If the stroke transformer is adjusted so that its center of curvature
falls on the wrist pin, then the plunger will not move and the output will be zero.

When stating the number of degrees of freedom of adjustable-parameter link-
ages, be sure to state whether the control feature is assumed to be in a fixed position.
Figure 1.11b uses an equivalent linkage to represent the variable-stroke pump when
the transformer is set for an intermediate stroke.

Although linkages of this type are often hydraulically controlled. One should not
neglect other possibilities in designing linkages. Consider, for example, pneumatic or
electrical control or combinations of control schemes. If your design requires precise,
but infrequent adjustment, consider a manually turned screw.

SAMPLE PROBLEM 1.1
Degrees of Freedom of a Variable-Stroke Pump

a. Determine the number of degrees of freedom for the variable-stroke pump shown in
Figure 1.11. Let the adjustment cylinder be fixed in a position that results in an interme-
diate stroke length.

b. Suppose the adjustment cylinder position is not fixed. Find the number of degrees of
freedom.

Solution. (a) It can be seen from the figure that motion takes place in a set of parallel planes.
Therefore, we have a planar linkage. The number of degrees of freedom can be determined by
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examining the actual linkage or a schematic diagram of an equivalent linkage. Selecting the latter,
we replace the curved stroke transformer by rigid link 4 with a fixed revolute joint (O,) located
at the center of curvature of the stroke transformer. (See part b of the figure). We then have six
links, counting the slider and the frame. There are six revolute pairs and a sliding pair, making a
total of seven (one-degree-of-freedom) lower pairs. Thus,

DFyanar = 3(n, — 1) = 20, = 3(6 — 1) — 2(7) = 1.

(b) In this case, we refer to the actual pump configuration. A careful examination shows nine
links, including three sliders and the frame. There are eight revolute pairs and three sliding pairs,
a total of 11 one-degree-of-freedom pairs. The number of degrees of freedom is given by

DFjanar = 3(np — 1) — 2np = 3(9 — 1) — 2(11) = 2.

The implication is that we must specify two variables to define the instantaneous position of the
entire linkage. Ordinarily, these variables would be the position of the piston in the pump con-
trol cylinder and the instantaneous angular position of link 1, the drive crank.

As noted earlier, the slider-crank linkage used in a piston engine or pump can be
an RRRC linkage. This linkage includes three revolute joints with parallel axes, the
crankshaft bearings (treated as a single pair), the crankpin, and the wrist pin (joining
the connecting rod and piston). The piston and cylinder correspond to a cylinder pair,
but the other joints prevent rotation of the piston. A common alternative is an RRCC
linkage, in which the piston is free to move a short distance along the wrist pin axis,
accommodating misalignment. The RRSC linkage, sometimes used in small pumps, can
also operate as a slider-crank. A ball joint (spherical pair) replaces the wrist pin. Note
that there is a second degree of freedom: rotation of the piston about the cylinder axis.
This motion is trivial and does not affect the operation of the pump as a planar linkage.

1.6 CLASSIFICATION OF CLOSED PLANAR FOUR-BAR LINKAGES:

THE GRASHOF CRITERION

Closed planar linkages consisting of four pin-connected rigid links are usually identi-
fied simply as four-bar linkages. If one of the links can perform a full rotation relative
to another link, the linkage is called a Grashof mechanism.

Let the length of each link be defined as the distance between the axes of its rev-
olute joints (the centers of its pin joints). Links are characterized by their lengths,
where L, is the longest link, L, is the shortest link, and L, and L, are links of inter-
mediate length. We may immediately eliminate combinations for which

Lmax = Lmin + La + Lb’

since it is obvious that these links could not be assembled to form a closed four-bar
linkage.

Suppose we wish to design a crank-rocker mechanism—a linkage with a drive
crank that rotates continuously, causing a driven crank (rocker) to oscillate through a
limited range. Referring to Figure 1.12, we note that limiting positions of link 3, the
rocker, occur when the crank (link 1) and the coupler (link 2, the link opposite the
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Locus of C

FIGURE 1.12 (a) Crank-rocker mechanism. For this class of mechanism, continuous rotation
of the driver results in oscillation of the follower. (b) A limiting position of the crank-rocker
mechanism (flexed). (c) A limiting position of the crank-rocker mechanism (extended).

fixed link) are collinear. From geometry, the length of one side of a triangle must be
less than the sum of the lengths of the other two sides. Applying this notion to parts b
and c of the figure, we obtain

Lo<L,—- L+ L,

Ly < Ly+ L, — Ly,
and

L+ L, <Ly+ L. (1.8)
Those familiar with basic mathematics will recall the special rules that govern inequal-
ities. Adding the first two inequalities and simplifying, we obtain L; < L,; that is, the
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crank must be shorter than the coupler. Using other combinations of the foregoing
inequalities, we see that L; = L,;,; in other words, the crank is the shortest link in a
crank-rocker mechanism. The fixed link, the coupler, or the driven crank may be
longest. In every case, the inequalities require that

Liyax + Lin < L, + Ly, (1.9)

where L., and L, are the longest and shortest links, respectively, L, and L, are each
links of intermediate length.

SAMPLE PROBLEM 1.2

Crank-rocker mechanism
Design a mechanism that converts continuous rotation into oscillating motion.
Design decisions. We will try a linkage design with the following link lengths:

fixed link Ly = 40 mm; drive crank ; = 10 mm;
coupler L, = 30 mm; driven crank L; = 32 mm.

Solution. The drive crank is shortest, and 40 + 10 < 30 + 32, satisfying the crank-rocker crite-
rion. We then test the proposed design by animating the linkage with motion simulation software.
(See Figure 1.13.) A motor is placed at the fixed end of the drive crank. The approximate range of
link 3 (the rocker, in dark shading) can be seen in the figure.

FIGURE 1.13 Crank-rocker mechanism sample problem.
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We now consider inversions of the crank-rocker mechanism. Inequality 1.9 is sat-
isfied in each case and the shortest link can rotate continuously relative to the other
links. If the fixed link is shortest, the other links can rotate about it. This configuration
is called a drag link mechanism (or double-crank mechanism).

We can attempt a drag link design with the following link lengths:

fixed link L, = 20 mm; drive crank L; = 30 mm;

coupler L, = 30 mm; driven crank L; = 32 mm.
We see that the fixed link is shortest, and Inequality 1.9 is satisfied; that is,
32 + 20 < 30 + 30.

The proposed design is tested by animating the linkage with motion simulation soft-
ware. (See Figure 1.14.) A motor running at constant speed is placed at the fixed end of
link 1, the drive crank (not shaded). Link 3, the driven crank (dark shading) rotates
continuously, but at variable speed.

If the coupler is shortest, this inversion of the crank-rocker mechanism is called a
double-rocker mechanism. The coupler of a double rocker can rotate continuously
while the adjacent links oscillate through a limited range.

FIGURE 1.14  Animation of a drag link mechanism.
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We attempt a double-rocker design, selecting the following link lengths:

fixed link L, = 20 mm; drive crank L; = 27 mm;

coupler L, = 7mm; driven crank L; = 32 mm.

We see that the criteria for a double-rocker mechanism are satisfied; the coupler is
shortest, and substitution in Inequality 1.9 yields

32 + 7 <27+ 20.

Figure 1.15a shows a test of the design using motion simulation software. In this case, a
motor mounted on link 1 at point B drives the coupler. Limiting positions of link 3 are
shown in parts b and c of the figure.

Parts of the preceding linkages appear to interfere with one another in the ani-
mation figures. Computer simulations are usually instructed to ignore collisions when
analyzing planar linkages. In designing the actual linkage, we must arrange the bear-
ings so that collisions do not occur. Ingenious designs may be required when complex
linkages are based on double-rocker and drag link mechanisms.

A change-point or crossover-position mechanism results when

Lmax + Lmin = La + Lb- (110)

\/

¢ Bearing 01

Bearing 03

FIGURE 1.15 (a) A double-rocker mechanism with the coupler driven by a motor
mounted on link 1.
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Bearing 01 Bearing 03
FIGURE 1.15 (b) One limiting
position of link 3.
Bearing 01 Bearing 03
B
C FIGURE 1.15 (c) The other limiting

position of link 3.
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FIGURE 1.16 A crossover-position or change-point linkage.

Figure 1.16 shows a change-point mechanism in which Ly = L., Li = Ly, and
Eq. (1.10) is satisfied. Relative motion of a change-point mechanism may depend on
inertia, spring forces, or other forces when the links (in the skeleton diagram) become
collinear. Of course, the links in an actual machine operate in parallel planes, not in a
single plane. In this example of a change-point mechanism, all of the links become
collinear in position b. If links 1 and 3 are rotating counterclockwise at this instant, link
3 may continue rotating counterclockwise through the change point because of inertia
effects. Alternatively, other forces may cause link 3 to reverse direction, resulting in a
“bow-tie” configuration. A parallelogram linkage that has opposite links of equal
length is another example of a change-point mechanism.

Crank-rocker, drag link, double-rocker, and change-point mechanisms satisfy the
following relationship:

Lmax + Lmin = La + Lb (111)

These mechanisms are called Grashof mechanisms, after the investigator who pub-
lished this criterion in 1883.

Any of the preceding classes of linkages may be driven by rotation of the coupler
(the link opposite the fixed link), although the range of coupler rotation may be very
limited in some classes. The coupler effectively provides a hinge with a moving center.
Coupler-driven linkages may be called polycentric. Examples are polycentric door
hinges and prosthetic knee joints.

Four-bar linkages that do not satisfy the Grashof criterion are called double-
rocker mechanisms of the second kind or triple-rocker mechanisms. If Ly, + Lypin >
L, + L,, no link can rotate through 360°. A computer program based on the
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ENTER LINK LENGTHS :

L, : FIXED LINK
L, : SHORTER SIDE LINK
L, : COUPLER

L;: LONGER SIDE LINK

!

SORT FOR Ly x. Lyn: ETC.

"NOT A
MECHANISM"

"TRIPLE ROCKER
(NON-GRASHOF)"

"GRASHOF
MECHANISM"
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ROCKER"

"DOUBLE
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FIGURE 1.17 Flowchart for clas-
sifying four-bar linkages accord-
ing to the characteristics of their
motion.

flowchart of Figure 1.17 may be used to classify four-bar linkages by the characteristics
of their motion.

SAMPLE PROBLEM 1.3

The Grashof Criterion
This problem concerns the classification of four-bar linkages. Link lengths: L, fixed link; L, dri-
ver crank; L,, coupler; Ls, follower crank; L; = 100 mm, L, = 200 mm, L; = 300 mm. Find the
ranges of values for L if the linkage can be classified as follows:

a. Grashof mechanism
b. Crank-rocker mechanism
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Drag link mechanism
Double-rocker mechanism
Change-point mechanism

- e 8

Triple-rocker mechanism

Solution. Using the Grashof inequality, and noting that the crank-rocker, drag link, double-
rocker, and change-point mechanisms, are all Grashof mechanisms we begin with the test for the
crank-rocker mechanism (b). The condition that the driver crank L; be shortest is satisfied by
Ly > 100 mm. The inequality L. + Lnn < L, + L, yields Ly + 100 < 200 + 300, from
which it follows that L, < 400 if link O is longest. If link O is of intermediate length, then
300 + 100 < Lg + 200, from which we obtain 200 < L. Thus,200 mm < L; < 400 mm for the
crank rocker (answer b).

The drag link criterion (c) requires that link 0 be shortest; that is, Ly < 100. Also,
300 + Ly < 100 + 200 is required by the Grashof inequality, from which we get Ly < 0. Thus,
no drag link can be formed (answer c).

The double-rocker test (d) requires that the coupler, L,, be shortest. Thus a double-rocker
cannot be formed (answer d).

A change-point mechanism (e) exists if

Lmax + Lmin = La + Lb
If L is largest, then

Ly + 100 = 200 + 300,

or Ly = 400.

If Ly is smallest, then 300 + Ly = 100 + 200, from which it follows that L, = 0. (The
linkage is not a four-bar mechanism.) If L, is of intermediate length, then 300 + 100=
Ly + 200, so that Ly = 200. Thus, we have a change-point mechanism if L, = 200 or 400 mm
(answer e).

As noted, any mechanism that meets the criteria b, ¢, d, and e is a Grashof mechanism.
Combining the preceding results, we have 200 mm = L, = 400 mm (answer a).

A triple-rocker mechanism (f) exists when

Lypax + Ligin > L, + L.

If the fixed link L is largest, we have L, + 100 > 200 + 300, or Ly > 400. If the fixed link L is
shortest, we have 300 + L, > 200 + 100, or Ly > 0. If L, is of intermediate length, then
300 + 100 > Ly + 200, or 200 > L,. Noting that no link length may exceed the sum of the
lengths of the other three, we have L, < 100 + 200 + 300, or Ly < 600. Combining these
results, we obtain either 0 < Ly < 200 mm or 400 mm < Ly < 600 mm (answer f).

Cutting devices sometimes incorporate crank-rocker mechanisms. An electric
motor drives the shortest link; the longer crank (the rocker) drives an oscillating cutter.
Dead points must be considered when one is designing a rocker-driven crank-
rocker mechanism. If the rocker drives, the limiting positions of Figures 1.12b and c are
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dead-points. Inertia may carry the shorter crank through a dead-point configuration. If
the mechanism is stopped at a dead point, we cannot restart it by turning the rocker.

1.7 TRANSMISSION ANGLE

The inequalities that classify four-bar linkages give the extreme theoretical limits of
each class of mechanism. Additional limitations apply to the design of practical mecha-
nisms. One important consideration is the transmission angle, the angle between the
coupler centerline and the driven crank centerline.

Referring to Figure 1.18, suppose the crank (link 1) drives the linkage. The cou-
pler (link 2) transmits a force along its centerline to the driven crank (link 3). If we
want to maximize output torque and minimize friction torque, we try to keep transmis-
sion angle ¢ near 90°. A transmission angle no less than 40° or 45° and no greater than
135° or 140° is usually satisfactory. Depending on the type of bearing and lubrication,
values outside this range may result in binding of the linkage.

Figure 1.18 shows a linkage that satisfies the crank-rocker criteria. However, if
link 1 drives, the transmission angle ¢ reaches extreme values, which may prevent the
rocker from operating satisfactorily. As link 1 tends to rotate through the position
shown in the figure, the direction of force transmitted along link 2 to link 3, results in
very little torque on link 3 but a high bearing force at O;. Wear would probably be
excessive. If friction torque exceeded driving torque, the mechanism would jam and
could cause the driven crank to buckle. Dimensional tolerances, including looseness at
pins and bearings, often tend to worsen the situation. In most cases, then, it is advisable
to provide a reasonable “margin of safety” in satisfying the inequalities that determine
the motion of a linkage.

Consider the four-bar linkage whose links form a quadrilateral, as in Figure 1.19.
For crank angle 64, the length L, of the diagonal of the quadrilateral can be determined
by using the law of cosines. For the triangle formed by links 0 and 1 and the diagonal,

L3 = L3+ L} — 2LyL, cos ;. (1.12)

Using the law of cosines for the triangle formed by the diagonal and links 2 and 3, we
have

L3 =15+ L} — 2L,L;cos . (1.13)

FIGURE 1.18 A mechanism that may fail to operate because of an
unsatisfactory transmission angle.
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FIGURE 1.19 Determination of
transmission angle.

Rearranging the cosine law equation:

L3+ L3 — Lj
= 1.14
cos ¢ TN (1.14)

Thus, we may obtain transmission angle ¢ at any instant.

We are most interested in extreme values of transmission angle ¢. For the crank-
rocker mechanism, maximum and minimum transmission angles occur when the driver
crank and fixed link are collinear. Transmission angle ¢y, corresponds to L gmax) =
Ly + Ly, and ¢y, corresponds to Lyminy = Lo — L.

SAMPLE PROBLEM 1.4

Transmission Angle

Given the driver crank length L; = 100 mm, coupler length L, = 200 mm, and follower length
L; = 300 mm, and considering the transmission angle, find the range of values for the fixed link
L, if the linkage is to be a crank rocker. In a previous example, we determined that the mecha-
nism theoretically acts as a crank rocker for 200 mm < L, < 400 if we put no limit on the trans-
mission angle. Let us make the design decision to limit the transmission angle to
45° = ¢ = 135°.

Solution. Setting ¢,;, = 45° and using the law of cosines, we have
(Lo = Ly)* = L3 + L3 — 2L,L; cOS ¢yips
or
(Lo — 100)? = 2002 + 3002 — 2 X 200 X 300 cos 45°,

so that
Ly = 312.48 mm.
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(d)

FIGURE 1.20 (a) Minimum value of transmission angle. (b) Maximum value of trans-
mission angle.

Using this value, we obtain

L3+ L3 — (Lo + Ly 200% + 300° — (312.48 + 100)
20,1, B 2 X 200 X 300 ’

cos d)max =

Or ¢ax = 109.54°, which is within the accepted range.

The results (which could have been determined graphically) are sketched in Figures 1.20a
and b. Note that if we had set ¢, = 135° to obtain L, = 363.52, the value of ¢,,;, would have
been 59.69°. Thus, 312.48 = L, < 363.52 is the acceptable range.

Both the follower crank (rocker) and the coupler in a crank-rocker mechanism have a lim-
ited range of motion (considerably less than 180° if we require reasonable values of transmission
angle).

When links 1 and 2 are collinear, rocker link 3 is at a limiting position. Consider the crank-
rocker mechanism designed in the previous example, with Ly = 312.48 mm. Refer to Figure 1.19,
except note that links 1 and 2 are collinear and extended. The maximum value of 6’3 is found
as follows:

Li+ L3 — (L + Ly 31248 + 300 — (100 + 200)
2LoL, B 2 X 312.48 X 300 ’

cosf's =

from which 0’3y = 58.61°.
For the other limiting position, with links 1 and 2 collinear and flexed.
Lg+ L3 — (L, — Ly)’

cos '3 = Lol ,

from which we obtain 0’3y = 18.65°, for a range of only 39.96°. Of course, the range of the
follower crank can be changed by changing the ratios of the link lengths.
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Typical linkage specifications include the range of motion of the output link (the
follower crank). We may wish to investigate various options which will lead to a linkage
that satisfies our needs. If the transmission angle and range of motion are plotted, we
are more likely to approach an optimum design than by using hit-or-miss methods. The
sample problem that follows illustrates a method of improving linkage design.

SAMPLE PROBLEM 1.5

Design of crank-rocker linkages.
Design a linkage with a 30° range of output crank motion.

Design decisions. A crank rocker linkage will be used. The fixed link length will be six times
the crank length. The transmission angle will be limited to the range 40° < ¢ = 140°.

Solution. We will determine the proportions of the required design, specifying link lengths R
in terms of crank length L. Thus, Ry = Lo/L; = 6, etc.
Using the Grashof criterion for a crank rocker, we find that

R, <5+ R;,
R; <5+ R,, and
7 < R, + Rs.

The Grashof limits are plotted against the linkage proportions in Figure 1.21a. Values of the min-
imum transmission angle are shown in degrees on the same figure.

Part b of the figure shows both the maximum and the minimum transmission angle plot-
ted against the linkage proportions. The acceptable transmission angle envelope is marked in
Figures 1.21b and 1.21c. The range of motion of the follower crank is shown in degrees in
Figure 1.21c. Acceptable linkage proportions are given by the part of the 30° range-of-motion
curve that falls within the 40° to 140° transmission angle envelope.

Detailed calculations. Note: Mathcad™ mathematics software is utilized in this and some
other examples. When defining variables and constants, lightface roman type is used and the
symbol := is used in place of an equals sign.

Fixed link: Ry:=6 N:=140
i:=0.N j:=0.N
j

Driven crank: R;:=1 + 20

i

ler: R,:=1 +
Coupler 2 20

Diagonal at minimum transmission angle: Ry:=R, — 1
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/Minimum transmission angle

¢ 2 4 6 8

FIGURE 1.21 (a) Design of crank-rocker linkages, sample problem 1.5. Minimum transmission
angle and limits based on the Grashof criterion plotted against linkage proportions. (Note: Grashof
criterion limitations for a crank-rocker mechanism shown with long dashes.)

Diagonal at maximum transmission angle Rp:=R, + 1

Cosine of minimum transmission angle: Cosine of maximum transmission angle:
R} + R} — R} R} + R} - Rp
Ry Ry)i=——F—"—— CRy Ry)yi=—"F———
¢(Ry, R3) 2R,R, (Ra, R3) 2R, R,
Some values of R, and Rj are not valid (e.g., ¢ (2,2) = —2.125 represents a mechanism that can-

not be assembled).
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FIGURE 1.21 (b) Maximum and minimum transmission angle plotted against linkage

proportions.
Minimum transmission angle: Maximum transmission angle:
acos (¢(R,, R3j)) acos (C(R,, R3l))
W deg WU deg

Limiting positions, interior angle at follower link:

R} + R%— (R, — 1)?
2:Rg*R3

Flexed: 0:{(R,, R3):=acos [

R3+ R} - (R, +1)?
2'R0'R3

Extended: 0.(Ro, R3):=acos|:

0e(R, R3) — 0:(R,, R3)
ij-=

R :
ange deg
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Note: This curve shows an envelope of acceptable linkages
based on 40°minimum transmission angle
and 140°maximum transmission angle.

R Range of follower crank

“’7/ 77l
)2 24

/14

/16 2]

0 2 4 6 8

FIGURE 1.21 (c) Range of follower crank motion plotted against linkage proportions.

Instead of selecting just any set of acceptable proportions for a mechanism, we
may want to optimize the design. For higher output torque and lower friction, we
should attempt to keep the transmission angle close to 90°.

SAMPLE PROBLEM 1.6

Attempting to optimize a crank-rocker design

Optimize the design of a crank-rocker linkage on the basis of the transmission angle.
Specifications call for a crank motion with a 30° range of output.
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Design decisions. We will use a 50-mm drive crank length and a 300-mm fixed link, (the same
ratio as in the previous sample problem).

Solution. Let us look more closely at the transmission angle plots. The narrow region between
a minimum transmission angle of 70° and a maximum of 110° may represent a better design. If
we plot the range curves on the same sheet, or if we hold both sets of curves up to a light, we see
that the 70° to 110° transmission angle region is crossed by the 30° range-of-motion curve at
R, = L,/L{ = 4.7. The value of R; may be read from the plot, or we may calculate the root of

O(R3) — [0.(R3) — 0/(R3)] = 0,

where ©(R;) = 30° = the range of the output crank, 6,(R3), and 64(R3;) = extended and flexed
limiting positions, respectively.

The result is Ry = L3/L; = 3.864 for a driven crank length L; = 193.2 mm. The coupler
length is L, = 235 mm. These dimensions correspond to minimum and maximum transmission
angles of 70.7 and 109.3°, respectively.

Recall that a transmission angle near 0° or 180° may cause a linkage to bind. A transmis-
sion angle near 90° will usually result in good output torque characteristics and no tendency to
bind. We have produced the required output crank motion, and the transmission angle is always
close to 90°.

Detailed calculations (using Mathcad™).
Crank-rocker optimization:
Crank length (mm)L:=50 Fixed link Ly:=300

Ro= Ry=6
0 Ll 0
Coupler: Ry:=4.7 Ly=R,-L; L, =235

Limiting positions: interior angle at follower link

Rf + R} — (R, — 1)’
Flexed: Gf(R3):—acos|: 0 3 - (R, )

2‘R0‘R3

R} + R} — (R, + 1)?
Extended: 06(R3):_3COS|: 0 5~ (R, ) :|

2 * R() * R3
Range (degrees): O(R5):=30

0.(R3) — 04(R3)
Estimate: Ry:=4 R3:=root<®(R3) ey R R,

deg

R; =3864 L;=R;'L; L;=193.185
Diagonal at minimum transmission angle: Rg=Ry — 1

Diagonal at maximum transmission angle: Rp:=R;y +1
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Cosine of minimum transmission angle: Cosine of maximum transmission angle:
R3 + R; — R} Rj + R; — R},
Ry, Ry)i=—F———— C(R, Ry)i=—"——"——
¢(Ry, R3) 2R,-R, (Ra, R3) 2-R,-R,
Minimum transmission angle (degrees): Maximum transmission angle:
acos (c(Ry, R3)) acos (C(Ry, R3))
R, Ry)i=——"—"—= PRy Ry)i=———7—
$(Ry, Rj) deg (Ra, R3) deg
d(R,, R3) = 70.676 ®(R,, R3) = 109.263

We may think of the slider-crank linkage as a four-bar linkage if the slider is
replaced by an infinitely long link perpendicular to the sliding path. Then, the transmis-
sion angle is defined as the angle between the connecting rod and a perpendicular to
the slider path. If the crank can rotate through 360°, the extreme values of transmis-
sion angle occur when the crank is perpendicular to the slider path. (The proof of this
statement is left as an exercise.)

Spatial linkages may also have transmission angle problems. Consider the RSSR
linkage shown in Figure 1.7a. If link 1 drives, then the angle between coupler link 2 and
driven crank 3 is of interest. We could compute transmission angle

ryer
b = arccos|: EM }
|"2||"3|

where ¢ is the transmission angle.

The numerator of the fraction is the dot product of the vectors representing the
coupler and the driven crank, and the denominator is the product of the link lengths.
(The dot product and other vector algebra concepts are reviewed briefly in Chapter 2.)

Values of the transmission angle that do not fall in the range

40° = ¢ = 140°

may indicate that the linkage will jam. The design of linkages with spherical and uni-
versal joints is difficult, because the construction of these joints limits their range of
motion.

1.8 LIMITING POSITIONS OF SLIDER-CRANK LINKAGES

Limiting positions are of interest for several reasons. The limiting positions of a slider-
crank mechanism define the stroke of the piston (slider). The piston has zero velocity
at the instant it reaches one of the limiting positions. However, the acceleration of the
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piston, and consequently the inertial force, is high at that instant. When at a limiting
position, a slider-crank mechanism cannot be driven by applying a force to the pis-
ton. If a single piston serves as a driver, the linkage may be driven through the limit-
ing position by inertia of the crank. Likewise, the limiting positions define the range
of the oscillating crank of a crank-rocker mechanism. The oscillating crank has zero
angular velocity and a high value of angular acceleration at the limiting positions.

In-line Slider-Crank Mechanisms

A slider-crank mechanism with the usual proportions (such that the connecting rod is
longer than the crank) has two limiting positions, both occuring when the crank and the
connecting rod are collinear (in the skeleton diagram); see Figure 1.22a. When reciprocat-
ing steam engines were in common use, these positions were called dead-center posi-
tions, crank (bottom) dead center, referring to the position with the piston nearest the
crankshaft (Figure 1.22a, left), and head (top) dead center, referring to the position with

(©)

FIGURE 1.22 (a) The two limiting positions of an in-line slider-crank mechanism.

(b) The two limiting positions of an offset slider-crank mechanism. (c) The limiting posi-
tions of an offset slider-crank mechanism superimposed to find the ratio of the time
taken for the forward stroke to the time taken for the return stroke.
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the piston farthest from the crankshaft (Figure 1.22a, right). The piston’s direction
reverses at these two points.

When the extended path of the wrist pin C goes through the center of the crank-
shaft O; (as in Figure 1.22a), the linkage is called an in-line slider-crank mechanism.
The stroke, referred to as piston travel, equals 2R, twice the crank length. The crank
turns through 180° as the piston moves from left to right and through another and 180°
as it returns to the left. If the crank turns at a constant angular velocity w, the piston
takes the same time to move from left to right as it takes to return to the left.

Offset Slider-Crank Mechanisms

The wrist-pin path of the offset slider-crank mechanism (see Figure 1.22b) does not
extend through the center of the crankshaft. The limiting positions shown represent
positions of zero piston velocity, but the angles through which the crank turns between
the limiting positions are not equal. If the crank turns counterclockwise, it turns
through an angle greater than 180° as the piston moves from left to right and through
less than 180° as the piston moves back to the left. If the crank turns counterclockwise
at constant angular velocity, the piston takes longer in its stroke to the right than it
takes to return to the left. From its limiting position in Figure 1.22a /left to its limiting
position in Figure 1.22b right, the crank turns through the angle

a = 180° + (l’)] - (l’)z,
as shown in Figure 1.22c. During the return stroke, the crank turns through the angle

B =180° — ¢1 + ¢,

where
E
= 1 71
¢ = sin I —R
and
E
= 1 _1
G2 = sin R

for crank length R, connecting rod length L, and offset distance E less than L — R.
When the crank turns at a constant angular velocity w, the ratio of the forward to
return stroke times is given by a/f. The length of the stroke is

S= VLt R~ B~ (L - RP ~ E~

The limiting positions of the linkage may be superimposed to form a triangle, as in
Figure 1.22c¢. Using the geometrical fact that the sum of the lengths of any two sides of
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a triangle exceeds the length of the remaining side, we obtain
L—-—R+S>L+R,

from which we see that the stroke length will always exceed 2R when the wrist-pin
path is offset from the crankshaft. The preceding relationships are valid when both of
the following conditions are met: The offset E is less than L — R, and R is less than L.
Of course, angles « and 3 and stroke S can be found simply by superimposing the lim-
iting positions of the linkage, as in Figure 1.22c.

1.9 QUICK-RETURN MECHANISMS

Quick-return mechanisms include an oscillating link or reciprocating slider that moves
forward slowly and returns quickly (with an input of constant speed). The forward and
return directions are arbitrarily assigned as before, to correspond with machine tool
usage, in which a forward (working) stroke would have high force capability at low
speed and the return stroke could be rapid with no load.

The designation quick return has as much to do with the function of a mechanism
as with its mode of operation. If there is an intentional difference between the time
required for the forward and return strokes, the linkage may be called a quick-return
mechanism. Most crank-rocker mechanisms exhibit unequal forward and return times
for the rocker. If we take advantage of the unequal strokes in designing a piece of
machinery, we call the linkage a quick-return mechanism.

The forward and return strokes for the in-line slider-crank mechanism take an
equal amount of time, but the offset slider crank acts as a quick-return mechanism.

Other linkage combinations offer considerably more flexibility for quick-return
design than does the offset slider crank. The drag link, for example, may form part of a
mechanism designed for large forward-to-return-time ratios. Figure 1.23 shows four-
bar linkage O;BCO;, which appears to satisfy the criteria for a drag link mechanism.
Slider D represents a machine element that is to have different average velocities for
its forward and return strokes, while driving crank 1 turns at constant angular velocity.
The two extreme positions of the slider occur when follower link 3 lies along the line of

Linkage during working stroke

/

FIGURE 1.23 A drag link mechanism is combined with a slider to form a quick-return
mechanism.
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centers 0,0;. Since link 4 is also collinear with the line of centers at both of the
extreme positions, we see that the slider stroke is twice the length of link 3:

S =2L;. (1.15)
The time for the slider to travel between limiting positions is proportional to the angle

between corresponding positions of the driving crank, as long as the angular velocity of
the driving crank is constant.

SAMPLE PROBLEM 1.7

Quick-return mechanism based on a drag link
Design a quick-return mechanism with a three-to-one forward-to-return-time ratio.

a. Determine linkage proportions.
b. Specify link lengths for a 180-mm stroke.
c. Are there any special concerns with this design?

Design decisions. The design will be based on a drag link combined with a slider. (See Figure
1.23). We try linkage proportions Ry = Ly/L; = 0.8 and R; = Ls/L; = 1.4, with R, = L,/L,
unspecified, where the link lengths are identified as follows: Ly = fixed link, L; = drive crank,
L, = coupler, and L; = driven crank.

Solution.

a. The Grashof criterion for a drag link requires that the
fixed link be shortest and that L, + Ly < L, + L,
If the coupler is longest, this equation becomes L, + Ly < L + L.
Dividing by the drive crank length produces R, + Ry < 1 + Rs.
Substituting the foregoing values, we obtain R, < 1.6.
A similar calculation based on a coupler of intermediate length yields 1.2 < R,.

Thus, 1.2 < R, < 1.6, based on the Grashof criterion.

A 3:1 forward-to-return-time ratio requires a return stroke angle g = @/2 rad = 90°.
During the return stroke, the crank (O;B) goes from the position shown in Figure 1.24a to the
position shown in Figure 1.24b. We seek the value of R, that satisfies the equation

m— Ba+ Bp— B =0 (allinradians),

g ; 5
Motor 01 B»  Bearing 03 {o}
B

FIGURE 1.24 Quick-return mechanism based on drag link, sample problem 1.7. (a) Limiting position
with slider to extreme right.
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B

Bearing 03
¥ Ba IMotor 01 /
X
1

{o]
C o D

FIGURE 1.24  (b) Limiting position with slider to left.

FIGURE 1.24  (c) Animation of mechanism.

where B, and By, are internal angles of the triangle formed by the linkage for extreme positions
of point C. We use the cosine law to find 8, and By. A numerical solution is started with an esti-
mate of R, in the middle of the Grashof criterion range. The solution converges on R, = 1.374.

b. The stroke is twice the driven crank length. Thus, L; = 90 mm. Then L; = L3/R;,
and we find the remaining link lengths. The link joining the driven crank and the
slider must be somewhat longer than the driven crank, say, L, = 120 mm.

c. Figure 1.24c shows a computer animation of the linkage. Bearings and supports
must be arranged so that the links can pass by one another without interference.
Figure 1.24d shows the linkage when the transmission angle—the angle between the
coupler and the follower crank—is minimal (only 8.2°). This situation occurs during
the return stroke. If frictional forces are small, then inertial forces may carry the
linkage through this position.
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Motor 01 0;
l £ %

0, B
Bearing 03

o)

FIGURE 1.24 (d) Minimum transmission angle.

Detailed calculations (using Mathcad™). Select fixed link and driven crank length ratios:
R0::.8 R3:14
Grashof criterion for drag link (fixed link is shortest):

R2min::R3 + RO -1 R2min =12 R2max::1 + R3 - RQ R2max =16
Working-stroke-to-return-time ratio: T,,;:=3

Range of link 1 during return stroke (rad):

2w
Ty + 1

+ B = 1571 B = 90 deg

B deg

Applying the cosine law to find the coupler length ratio: R,

— Ry)? —R2 2 _p.2
Ba(Rz):=acos[1 * (Rs ~ Ro) R2:| ,’3b(Rz):=acos[1 T (Rs T Ry) ~ Ry }

2+-(R3 — Ry) 2-(R3 + Ry)

Romin + R
Estimate R2:=M

2

Ry:=root(7m — B.(Ry) + Bu(Ry) — B,Ry) R, = 1.374

Ba(R;) = 2.026 %ﬁ‘;&) = 63.92 deg
Bu(R,) = 0.455 %I;) = 26.067
B:=m — Ba(Ry) + By(Ry) B = 1.571 B _ 59087 (check)

deg
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Required stroke (mm): S:=180
. S
Driven crank length (mm): L3::§ L; =90
. L;
Drive crank length (mm): Ll::Ri L, = 64.286
3
Fixed link length (mm): Ly=Ry-L; Ly = 51.429
Coupler length (mm): L,;=R,-L; L, = 88.321
Li+ 13— (L, — Ly’ ;
Minimum transmission angle  ¢;,:=acos [ 2 23 - Lz(' ]13 ) %g = 8.199 deg
L5+ L3 — (L + Ly
Maximum transmission angle: ¢,,,:=acos [ 2 23 ; Lz( I; ) (Zzagx = 80.913 deg

The preceding problem can also be solved by a trial-and-error graphical method,
as illustrated in Figure 1.25. The coupler length is varied in the three trials. The third
trial (length B3C) results in a forward-to-return-time ratio of about three to one.

Sliding contact linkages also form a basis for quick-return mechanisms. Figure 1.26
shows a quick-return mechanism that can be used to drive the cutting tool in a
mechanical shaper. Crank 1 is the driver, turning at essentially constant angular veloc-
ity, and slider D represents the toolholder. Limiting positions occur when links 1 and 2
are perpendicular. The ratio of the times of the working stroke to the return stroke is
equal to the ratio of the angles between corresponding positions of link 1.

Locus of C
Locus of B

FIGURE 1.25 A sketch of a drag link
quick-return mechanism to determine the
length of link 2 needed for a three-to-one
time ratio. The mechanism is drawn with
link 3 in its critical positions.
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0,
(©

FIGURE 1.26 (a) Quick-return mechanism utilizing a sliding contact linkage. (b) The link-
age is shown in its limiting positions (link 1 perpendicular to link 2). The stroke S of the slider
is adjusted by changing the length of link 1. (c) Link 1 is shown adjusted to provide a mini-
mum slider stroke.

SAMPLE PROBLEM 1.8

Variable-Stroke Quick-Return Mechanism

Design a mechanism with a stroke that may be varied from 3 to 8 in, having a working-stroke-to-
return-stroke time ratio of two to one at maximum stroke length.

Solution. The two-to-one ratio is obtained if the angle 6 between limiting positions is given by

360 — 0

=2,0r6 = 120°,
0 or

as in Figure 1.26b. Often, the key to determining link lengths is to assign a reasonable value to
one or more of the unknown links. The geometric relationships in the linkage are next observed
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when the linkage is drawn in its limiting positions. The lengths of the remaining unknown links
are then obtained. A satisfactory design may be obtained in the first trial. If not, this trial is used
as a basis for improving the design.

If distance O;0, is taken to be 4 in, then the maximum length of the drive crank is

0
Li(max) = 4sin<90° - 2> = 2in.

Since link 3 lies at the same angle at both limiting positions (the path of D is perpendicular to
0,0,), the maximum stroke length is

Smax = D'D = C'C = 8in,
from which we obtain the length of link 2:

Smax/2 .
0, =——————— = 8in.
T Sin0° —e2) oM
The length of link 3 is arbitrarily taken to be 3 in, and the distance from O, to the path of D is
assumed to be 3.5 in. For the minimum stroke S.;, = 3 in, the crank must be adjusted to a
length of

. Smin/2
L](min) = 0,0;sing = 0,0, 0,C

= 0.751n,

as shown in Figure 1.26c The actual mechanism may differ considerably from the schematic, as
long as the motion characteristics are unchanged. Link 1 may be part of a large gear driven by a
pinion, in which case the crankpin (B on link 1) will be moved in or out along an adjusting screw.
Link 2 may be slotted, so that the crankpin rides within it.

1.10 LINKAGE INTERFERENCE

For convenience in illustrating the motion of plane mechanisms, the mechanisms are
shown as if they move within a single plane. Consider a crank-rocker linkage as
sketched in Figure 1.12. To avoid interference, the drive crank (link 1) and the coupler
(link 2) must operate in two parallel planes. The plane of the drive crank should lie
between the plane of the coupler and the plane of the fixed link.

The interference problem encountered in drag link mechanism design is more
severe since drive crank, coupler, and follower rotate through 360°. To avoid link inter-
ference, the plane of the coupler should be between the planes of the cranks. The fixed
bearings of the cranks must be placed on opposite sides of the linkage, with clear space
for the linkage to pass between the bearings. Figure 1.27 illustrates one possible config-
uration schematically. It can be seen that if the plane of the coupler (link 2) is not clear,
the linkage would not be able to operate through a complete rotation.

Sometimes, a four-bar linkage forms part of a more complicated linkage.
Motion may be transferred from the coupler of a crank-rocker mechanism without
much difficulty. Due to the problem of interference associated with the drag link
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FIGURE 1.27 Configuration for drag link
mechanism to avoid interference.

mechanism, and because of the requirement that the coupler plane lie between the
cranks, a transfer of motion from the coupler of a drag link mechanism may require
complicated arrangements.

The lamination-type impulse drive (described in the section that follows) illus-
trates motion transfer from one four-bar linkage to another. Considering the equiva-
lent linkage, the rocker of a crank-rocker mechanism acts as the driving link of a
second four-bar linkage (which oscillates due to the limited range of the input motion).
The drive is made up of several such combinations of mechanisms. Because of space
limitations, eccentrics or cams are used instead of conventional cranks.

1.11 MECHANISMS FOR SPECIFIC APPLICATIONS

Before we begin detailed analysis and synthesis of mechanisms, it is worthwhile to con-
sider the basic motion characteristics of some of the commonly available linkages. In
the design of a machine, it may be practical to combine simple linkages and other com-
ponents to obtain the required output-to-input motion relationship. The designer may
wish to become familiar with many of the linkage configurations that are in the public
domain and should become aware of the proprietary packaged drive trains and other
machine components that are available. Then, skill and ingenuity can combine these
components for optimum results without a need to “reinvent the wheel.” Some famil-
iarity with various classes of available mechanisms will be obtained by leafing through
this and other design-oriented books and by using manufacturers’ catalogs and engi-
neering periodicals.

Of course, the probable cost advantages of using commercially available compo-
nents should not prevent the designer from exploring entirely new solutions, even
though they may represent significant departures from traditional designs.
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FIGURE 1.28 The belts arranged as shown permit transla-
tion of the straightedge, but prevent it from rotating.

Drafting Instruments

The drafting instrument using rigid links and pins shown in Figure 1.6 is proportioned
so that distances AB = CD and AD = BC form a parallelogram. If the line between
fixed centers A and B is horizontal, then DC is also horizontal at all times. Since a
straightedge attached at DC would not allow sufficient freedom of movement, another
parallelogram linkage is added. A parallelogram linkage can also be used to confine
independently suspended automobile wheels to a vertical plane, reducing “tucking
under” during turns.

Another drafting system, shown in Figure 1.28, uses tight steel bands (belts) on
two pairs of disks with equal diameters. Disk 1 is not permitted to rotate, and as the
arm between disks 1 and 2 is moved, disks 2 and 3 translate without rotating. The
bands between disks 3 and 4 prevent rotation of disk 4 and the attached straight-
edges. Applications of this type were more common before the general availability of
computer-aided drafting systems.

Pantograph Linkages

The parallelogram also forms the basis for pantograph linkages. At one time, panto-
graph linkages were used to reproduce and change the scale of drawings and patterns.
The pantographs of Figure 1.29 are made up of rigid links AC, CD, DE, and EB with
pin connections. Lengths BC = DE and BE = CD form a parallelogram. Link BE is
parallel to CD at all times for both linkages, and F is located on a line between A and
D, making triangles ABF and ACD similar. Thus, in Figure 1.29a the ratio DA/DF'is a
constant for all positions of the linkage, and if a point located at F'is used to trace a pat-
tern, a drawing tool at A will reproduce the pattern, enlarged by the factor DA/DF. If
the actual part is to be smaller than the pattern, then the tracing point can be located at
A and the drawing tool at F. The result will be a reduction in size of the ratio DF/DA.
The pantograph may be made adjustable to produce various enlargement or reduction
ratios, provided that the key features are maintained: The linkage must form a parallel-
ogram, and points A, F, and D must lie on a straight line.

If the pattern is to be reproduced full size or nearly full size, point F will serve as
the pivot, with D the tracer point and A the toolholder, as in Figure 1.29b. The pattern
will be faithfully reproduced with a part-to-pattern size ratio AF/DF, but the orienta-
tion will be changed in this case.
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D, Fixed pivot

(b)

FIGURE 1.29 (a) A pantograph with fixed point D. The pattern can be traced-enlarged by the
ratio DA/DF if the tracing point is located at F. Interchanging the tracing point and drawing tool
produces a reduced tracing. (b) The pantograph with point F used as the fixed point will produce
a tracing approximately the same size as the pattern.

The operation may be automated by using a sensing device to drive the tracing
point over the pattern. A number of other linkages are used for similar purposes,
including engine indicators, which reproduce a pressure signal. Engine or compressor
pressure is measured by a small piston operating against a spring in the indicator. The
indicator linkage, which resembles a pantograph, magnifies and records the motion of
the indicator piston, producing approximately straight-line motion.
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SAMPLE PROBLEM 1.9

Pantograph Design

Proportion a linkage to guide an oxyacetylene torch in rough-cutting parts from steel plate. Part
dimensions are to be approximately 6 in by 6 in; patterns will be 1.5 times full size.

Solution. A pantograph of the type sketched in Figure 1.29b will be used, so that the pattern
will not be too near the cutting torch. The pattern dimensions will be approximately 9 in by 9 in,
and the linkage must be designed so that tracing point D moves freely over at least the 9-in-by-9-
in area. It can be seen that, by dimensioning the links so that CB = DE = 12in and
CD = BE = 10in, the tracing point will cover the required area without nearing its limiting
(extreme) positions. So that the size reduction factor of 1/1.5 is obtained, AB/CB = 1/1.5, or
AB = 8in. Points A, F, and D must form a straight line, from which it follows that
BF/CD = AB/AC, or BF = 4in, locating the fixed pivot.

For a practical design, it may be necessary to allow the tracing point position A to be adjusted
to various positions along the link so that several ratios of pattern to part size can be accommo-
dated. For each position of A, a new point F, the fixed point on link BE, would have to be estab-
lished to maintain the straight-line relationship between D, F,and A.

Slider-Crank Mechanism

The slider-crank mechanism is probably the most common of all mechanisms because
of its simplicity and versatility. We are familiar with it in the reciprocating pump and
compressor, in which the input rotation is changed to reciprocating motion of the pis-
ton. Figure 1.30 shows an air-conditioning and heat pump compressor. In the piston
engine, the situation is reversed and the piston is the driver. Of course, if there are sev-
eral cylinders, the various pistons alternate as driver, and if the engine is a single-cylin-
der engine, the energy stored in the flywheel and other components actually drives the
piston between power strokes. A single slider-crank mechanism and the associated
cam and valve train typical of a multicylinder internal-combustion engine are shown in
Figure 1.31. Figure 1.32 shows the piston and connecting rod of a small one-cylinder
gasoline-powered engine.

Rotating Combustion Engine

The rotating combustion (Wankel) engine in Figure 1.33 is another solution to the same
problem with little kinematic resemblance to the conventional piston engine. The
three-sided rotor moves eccentrically within a two-lobed engine block. These two parts
(the rotor and the shaped block) are equivalent to the pistons, cylinders, combustion
chambers, and valve train of an ordinary reciprocating engine. An internal gear, part of
the three-lobed rotor, actually acts as a planet gear as it meshes with a smaller, fixed
sun gear. Many other configurations of the rotating combustion engine with various
numbers of rotor sides and engine block lobes were examined before this design was
chosen.
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FIGURE 1.30 An air-conditioning and heat pump compressor with a capacity of 46,000 to
68,000 Btu/h. (Source: Tecumseh Products Company.)
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FIGURE 1.31 One cylinder of a reciprocating engine is illustrated,
showing the basic slider-crank mechanism, camshaft, and valve
train. (Source: Curtiss-Wright Corporation.)

The combustion cycle of a rotating combustion engine is illustrated in Figure
1.33b. At intake, an intake port is uncovered by the rotor. A mixture of air and fuel is
drawn into the increasing space between the rotor and the block. The eccentric rotor
then seals the intake port and compresses the mixture in the now-decreasing space
between rotor and block. The mixture is ignited when the space is very small, increas-
ing the pressure and driving the rotor around (the expansion phase). Finally, an
exhaust port is uncovered and the products of combustion are discharged. The cycle is
then repeated.
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FIGURE 1.32 The piston and connecting rod
for a one-cylinder engine.

FIGURE 1.33 (a) The rotating combustion engine, showing the three-
sided eccentric rotor and internal gear. A major advantage of this
engine is its basic simplicity. The rotor and eccentric shaft are the only
rotating parts; cams and valves are not required.



58 Chapter 1 Mechanisms and Machines: Basic Concepts

//IIIIIIII, v

” Uapsy

L

Ignition Expansion Exhaust

FIGURE 1.33 (b) A complete combustion cycle of the rotating combustion engine.
The rotor speed is one-third the eccentric crankshaft speed, maintaining one power
impulse for each crankshaft revolution. (Source: Curtiss-Wright Corporation.)

In the preceding discussion, we traced only one charge of air and fuel through a
complete cycle. The three-sided eccentric rotor and two-lobed engine block, however,
correspond to three sets of pistons and cylinders. At the time of ignition of the first
charge of air and fuel, the intake process is occurring in another chamber. When the
first chamber is in the exhaust position, a third chamber is in the intake position. The
figure shows the combustion cycle for only one chamber, but at any time, a different
phase of the process is occurring in each of the other chambers.

The fixed sun gear and the larger ring gear are shown as circles in Figure 1.33b.
Rotation of the crankshaft and eccentric rotor carrier is seen by observing the point of
contact between the fixed sun gear and the planetlike internal gear. In observing one
thermodynamic cycle of this engine, represented by one rotation of the rotor, we see
that the crankshaft (represented by the eccentric carrying the rotor) is given more than
one rotation. Actually, the crankshaft is given three rotations, where the ratio of inter-
nal gear teeth on the rotor to teeth on the fixed gear meshing with it is 1.5 to 1. This
result may be determined (with difficulty) by making successive sketches or may be
calculated by using principles to be discussed in Chapter 8. The solution is left as an
exercise in that chapter.

Fluid Links

Mechanical systems frequently include fluid links utilizing hydraulic or pneumatic
cylinders or fluid drive transmissions. The backhoe shown in Figure 1.34 uses hydraulic
cylinders arranged to give it a wide range of operating positions. Hydraulic feeds are
also used for machine tools. By means of a variable delivery pump or a relief valve for
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FIGURE 1.34 The motion of this backhoe is determined by several independently controlled mechanisms.
(Source: Caterpillar.)

control, the operator may regulate speed and thrust precisely. In the case of machine
tools, the fluid system may be programmed to go through a complete cycle of opera-
tions automatically. For kinematic analysis, a hydraulic cylinder linkage of the type
shown in Figure 1.35a is usually represented as shown in Figures 1.35b and c.

Swash Plate

Converting rotational motion to reciprocating rectilinear motion is a common prob-
lem, and many mechanisms have been devised for this purpose. In the swash plate type
of mechanism, shown in Figure 1.36, a camlike swash plate is rotated about an axis that
is not perpendicular to its face. The plate drives plungers in a cylinder block. Plunger
stroke is equal to d tan ¢, where the several parallel cylinders are arranged in a circle
of diameter d, as shown in the figure. The angle ¢ is measured between the swash plate
face and a plane perpendicular to the cylinder axes. For 100-percent volumetric effi-
ciency, the volume of liquid pumped per revolution of the swash plate is
Q = ANd tan ¢, where A is the cross-sectional area of one cylinder and N is the num-
ber of cylinders.

When the swash plate is operated as a hydraulic motor, fluid pressure is applied
to the plungers that drive the plate. Each cylinder is alternately connected to the fluid
supply and the exhaust by a distribution system operated by the swash plate shaft.

As noted earlier, an inversion of a mechanism exhibits the same relative motion as
the mechanism, but the links do not have the same absolute motion. The link that is fixed
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B on Link 1
B, on Link 2

(a) (®) (©

FIGURE 1.35 (a) A linkage that includes a hydraulic cylinder. (b) A kinematic representation
of the linkage shown in part a; link 2 slides within a sleeve pinned to the frame. (c) Alternative
representation of the linkage shown in part a; link 2 slides within a sleeve pinned to link 1 at
point Bj. Point B, is taken to be the identical point on link 2 at this instant.

in the original mechanism is not fixed in the inversion. The cylinder block is fixed in the
swash plate mechanism of Figure 1.36. If, instead, the cylinder block is rotated and the
swash plate fixed, the motion of the plungers relative to the cylinders will not change, and
hydraulic fluid will be pumped at the same rate. Figure 1.37 shows an inversion of the
basic swash plate mechanism. In this case, the link that acts as swash plate actually
rotates, but its rotation is in a plane and is of no significance to the relative motion. This
arrangement is kinematically equivalent to the plunger ends riding on a fixed disk.
Volume control is effected by designing the pump so that the angle between the
cylinder axes and the plane of the swash plate may be varied. Volume control may be
actuated manually, or automatically by a mechanical, electrical, or fluid control device.
When the mechanism is used as a motor, a similar control of the offset angle may be

Plunger axes parallel
to rotation axis of
swash plate

777777

T <P Rotation axis of
1 - y / swash plate

777777777

Cylinder block

FIGURE 1.36 The swash plate mechanism is but one of a large number of mecha-
nisms designed to convert rotational motion to rectilinear motion.
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FIGURE 1.37 This inversion of a swash plate mechanism has been designed as a fixed-displace-
ment, piston-type hydraulic pump.The cylinder block, the driveshaft, and the nine pistons all
rotate as a unit. The pump is available with the cylinder block axis offset relative to the driveshaft
by 15° to 30°. This offset determines the stroke of the pistons and therefore the flow rate. (Source:
Sperry Rand Corporation.)

used to change displacement for speed control. An adjustable-speed transmission may
be assembled from two variable swash plates, one used as a variable-offset pump and
the other used as a variable-offset hydraulic motor (Figure 1.38). Speed is continuously
variable over a wide range, with fine-control and high-torque capabilities. The fluid
link between the two components allows considerable flexibility in positioning input
and output.

Gear Trains

Gear trains are particularly suitable for use at high speeds and in drives with high
power ratings. Since gears offer precise speed ratios, they are also used in machine
tools and other applications in which precision is required. Differential gears are used
to distribute power in automobiles, but may also be used to add or subtract inputs for
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FIGURE 1.38 Two variable-offset swash plate mechanisms—one used as a pump and the other used as
a motor—are combined to create an adjustable-speed transmission. In the pump, the piston stroke can
be varied by changing the angle of offset. Fluid is pumped to the hydraulic motor, operating the pistons
that drive the output shaft. (Source: Sperry Rand Corporation.)

FIGURE 1.39 A differential transmission. (Source: Fairchild Industrial Products Division.)

control of certain processes. If two machines are to perform a production-line function
in a certain sequence, one machine may drive the other through a differential so that
phase adjustment is possible between the operations. Figure 1.39 shows a differential
transmission. The differential itself is made up of four bevel gears; the other gears in
the transmission are helical gears.
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FIGURE 1.40 A ball-screw actuator. Rotation is efficiently transformed into translation through the use of
a worm and worm wheel directly driving the nut of the ball screw. (Source: Duff-Norton Company.)

Gearing is often combined with other mechanical components. A worm and
worm wheel drive a power screw in the linear actuator of Figure 1.40. For reduction of
friction, a ball screw is used. Because the translational motion of the screw is propor-
tional to rotation of the worm, the actuator may be used as a precision jack or a locat-
ing device. Gears will be discussed in detail in later chapters.

Lamination-Type Impulse Drive

Figure 1.41 shows a lamination-type impulse drive made up of several linkages. Power
is transmitted from an eccentric through an adjustable linkage directly to a one-way
clutch on the output shaft. There are several linkage and clutch assemblies, and each
assembly operates on its own eccentric. The eccentrics operate in sequence throughout
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One-way clutch
on output shaft

Cam

Adjustable
linkage

FIGURE 1.41 (a) Top: Assembled view of a lamination-type impulse drive with cover plate removed. Center: The
heart of the unit, which is a set of laminations phased to provide continuous driving. Bottom: A single lamination is
shown with the important features identified. (Source: Zero-Max Ind., Inc., a unit of Barry Wright.)

the entire input cycle to ensure continuous output motion, each linkage driving during
its fraction of the input cycle.

Figure 1.41Db illustrates the function of the control link. The location of O;, the
control link axis, is adjustable. If it is moved toward O3, then link 5 oscillates through a
smaller angle for each input rotation. When the control link axis is adjusted to fall on
03, the output shaft is stationary.

Reversing input speed direction does not change the output direction. However,
output rotation may be reversed if the transmission is equipped with a reversible one-
way clutch. When the clutch mechanism is reversed, the magnitude of the output-to-
input speed ratio also changes.

The average speed of link 5 of a given linkage assembly during the time that it is
driving the output shaft clockwise is not the same as when it drives counterclockwise. If
the clutch mechanism and the direction of input rotation are reversed simultaneously
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FIGURE 1.41 (b) A single lamination of the lamination type of impulse drive, shown in
detail. The location of control axis O; governs the output rotation. When the control link
axis is adjusted to position O3, the output shaft becomes stationary. (c) The equivalent link-
age. The linkage is shown in one of its limiting positions. (d) The other limiting position.

the speed ratio does not change. This transmission is designed for input speeds up to
2000 rev/min, and the output-to-input speed ratio may be adjusted from zero to 1/4.

The impulse drive just considered allows for stepless variation of the speed ratio,
but pulsations (fluctuations in the output torque or speed) do occur. If the inertial load
is relatively high, the one-way clutches permit the load to overrun the driving links,
smoothing out pulsations. Linkage flexibility also aids in absorbing transmission pulsa-
tions, so that their full effect is not transmitted to the driven machinery.

Figures 1.41c and d show the equivalent mechanism representing the lamination-
type of impulse drive in two extreme positions. Links 1,2, and 3 and the frame (0,05)
constitute a four-bar linkage driven by crank 1. Oscillating link 3 also forms part of a
second four-bar linkage, along with links 4 and 5 and the frame (O305).

Oscillating Lawn Sprinkler with Speed Reducer and Variable
Stroke Linkage

In order to be competitive in the marketplace, consumer products must be designed
for mass-production at low cost. The manufacturer of the lawn sprinkler mechanism
shown if Figure 1.42 reduced costs in several ways, including the use of plastic parts,
many of which served more than one function.
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Water entering the sprinkler is diverted to drive the water turbine shown in Figure
1.42a. A speed reducer is needed because the turbine operates at high speed and does
not produce enough torque to drive the sprinkler mechanism. A worm, an integral part
of the turbine wheel, drives a worm gear that is an integral part of a second worm. The
second worm drives a second worm gear that is directly connected to crank OB of a
four-bar linkage (see Figure 1.42b). The coupler, link BC, drives oscillating follower
crank COj3, which is directly connected to the sprinkler bar.

A manual adjustment changes the position of link DC, allowing for four sprin-
kler settings. One position of link DC results in a wide range of motion for the follower
crank so that water is distributed over a large area of lawn on both sides of the sprin-
kler. A second position increases the distance between points C and O; (the length of
the follower crank), decreasing sprinkler coverage. The other settings limit coverage to
only one side of the sprinkler. The designer had to limit the possible positions of adjust-
ment link CD, the link that determines the effective length of oscillating link CO;. The
proportions of linkage O; BCO; must always satisfy the crank-rocker mechanism crite-
ria. In addition, the transmission angle must always lie in an acceptable range.

There are other methods of adjusting output characteristics (speed, stroke
length, stroke time ratios, etc.). Some linkages are designed so that mechanical adjust-
ments within the driving linkage itself can be made while the system is operating, often
automatically in response to some demand on the system. The variable-stroke pump
(Figure 1.11) is a mechanism of this type.

Power Screws

There are many ways to convert rotational motion into rectilinear motion. Cams, link-
ages, rack-and-pinion combinations, and a number of other devices are used. Power
screws, one of the most common and precise methods, are frequently employed as
machine tool drives in conjunction with gear trains. If a screw with a single thread

B  Manual
; adjustment

ﬁ _“* First worm gearset

(®)

FIGURE 1.42 Oscillating lawn sprinkler linkage with adjustable stoke. (a) Water turbine and speed reducer. (b) Crank
rocker mechanism with adjustable output crank length.
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engages a nut that is not permitted to rotate, the nut will move relative to the screw a
distance equal to the pitch for each screw rotation. (The pitch is the axial distance
between adjacent corresponding thread elements.) With a double-thread screw, the
nut motion is two pitches, and, in general, the motion of the nut per screw rotation will
be the lead (the pitch times the number of threads). When a right-hand screw turns
clockwise, the relative motion of the nut is toward the observer; for a left-hand screw
turning clockwise, the relative motion of the nut is away from the observer. The nut
may be split through an axial plane if it is to be engaged and disengaged from the
screw as in a lathe. A split nut also permits adjustment to compensate for wear and
eliminate backlash.

Differential Screws

When high-thrust, low-speed linear motion is required, a differential screw may be
used. Figure 1.43 shows a power screw with leads L, for the left half and L, for the
right half, both right-hand threads. The motion of the slider equals the axial motion of
the screw plus the axial motion of the slider with respect to the screw; that is,

n

=%

(L, — Ly),

where v = slider velocity,

n = number of clockwise revolutions per minute of the screw,

L
!

= screw lead at the frame, and

L, = screw lead in the slider.

n(RPM)

FIGURE 1.43 Differential screw.
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For example, a single-thread screw may be cut with 11 threads per inch at the left end
and 10 threads per inch at the right end. At 10 rev/min, the slider velocity is
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It is more common for power jacks, linear actuators, and other machinery controls
to employ a worm drive for low-speed operation. In some cases, the outside of the
nut has enveloping worm-wheel teeth cut into it, and the nut is restrained from axial
motion by thrust bearings while the screw moves axially. (See Figure 1.44.)
Hundreds of jacks of this type were used in a single installation, a linear electron
accelerator with a 4-in-diameter by 2-mi-long waveguide that must be kept straight
to within 1 mm.

Ball Screws

Ball screws are used when friction must be reduced. The thrust load is carried by balls
circulating in helical races, reducing typical friction losses to about 10 percent of the
power transmitted. Ball screws must include a ball return to provide a continuous sup-
ply of balls between the screw and the nut. Preloading of the nut to eliminate backlash

FIGURE 1.44 Machine screw actuator—a worm-gear-driven screw, which may act as an actuator, a preci-
sion jack, or a leveling device. Compare this actuator with the ball-screw actuator shown in Figure 1.40.
(Source: Duff-Norton Company.)
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is possible if the ball race in the nut is divided into two sections. A cutaway view of a
ball-screw actuator is shown in Figure 1.40.

Special-Use Clutches

Special-use clutches that are self-actuating include centrifugal, torque-limiting, and
one-way or overrunning types. Centrifugal clutches are actuated by a mass that locks
the clutch parts together at a predetermined speed. Torque-limiting clutches, as the
name implies, are released at a predetermined torque. The ball-detent type has a set of
steel balls that are held in detents by means of a spring force that determines the limit-
ing torque. Any friction clutch may act as a torque limiter if the contact force is main-
tained by springs so that slipping occurs at torques above the limiting value.

Sprag-Type Reverse-Locking Clutches

Certain applications require that an input shaft drive the load in either direction, but
that the output shaft be prevented from driving the input shaft. This function is per-
formed by the reverse-locking clutch (see Figure 1.45) through specially formed lock-
ing members called sprags.

Referring to the sectional view in Figure 1.45, assume that the input shaft (which
drives the control member) turns counterclockwise. The control member contacts
sprag A near the top, pivots it slightly counterclockwise, and thereby frees it from the
outer race. The inner race is then driven by sprag A. (Sprag B performs no function
during counterclockwise rotation.) Suppose, now, that the output tends to drive coun-
terclockwise with no power applied to the input side. Then, the inner race slightly
rotates sprag A, forcing it clockwise and jamming it against the fixed outer race, thus
locking the system. The identical function is performed by sprag B for clockwise rota-
tion of the clutch.

One-Way Clutches

One-way clutches drive in one direction only, but permit freewheeling if the driven
side overspeeds the driver. The clutch operation depends on balls or sprags that roll or
slide when relative motion is in one direction, but jam if the direction of relative
motion tends to reverse.

Ratchet-and-pawl! drives perform a similar function, except that the pawl may
engage the ratchet between teeth only. Either a one-way clutch or a ratchet—pawl drive
may be used to change oscillation into intermittent one-way rotation. Some machin-
ery-feed mechanisms operate in this manner.

Figure 1.46 illustrates, in principle, the table-feed mechanisms of a mechanical
shaper. The lengths of the links are such that link 3 oscillates as link 1; the driver
rotates (i.e., the linkage is a crank-rocker mechanism). A spring-held pawl drives the
ratchet only during the clockwise motion of link 3 (approximately, but not exactly, half
of each cycle). The workpiece table is intermittently fed to the left by the power screw
driven by the ratchet. The cutting tool (not shown) moves perpendicular to the direc-
tion of motion of the table, but only during the part of the cycle when the table is sta-
tionary, to ensure straight cuts.
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FIGURE 1.45 (a) Sprag-type reverse-locking clutch. The input (left shaft) drives the load
(right shaft) in either direction. When the output shaft tends to drive, the sprags lock it to
the outer race. Other sprag configurations are available that permit operation with free-
wheeling. (Source: Dana Corporation, Formsprag Division.) (b) Sectional view of the
sprag-type clutch. As the input begins to rotate counterclockwise, it contacts sprag A. The
sprag pivots slightly counterclockwise in its detent, separating from the outer race. The
input pushes against the sprag, forcing the inner race (output shaft) to rotate. If the output
begins to rotate faster than the input, the sprag is thereby given a slight clockwise motion,
jamming the sprag against the fixed outer race and, in turn, locking the output shaft.
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FIGURE 1.46 Ratchet—pawl mechanism (applied to an intermittent drive). As link 1
rotates at constant angular velocity, link 3 oscillates. A pawl (link 4) on link 3 drives the
ratchet (5) during the clockwise motion of link 3. The right-hand screw drives the work-
table intermittently to the left.

By an increase of the driving crank radius rq, the angle through which link 3 oscil-
lates is increased. Feed is increased in discrete steps; that is, the rotation of the ratchet
per cycle will be an integer multiple of the pitch angle, which is 360°/N for N ratchet
teeth. Feed is reversed by turning the pawl so that the counterclockwise motion of link
3 rotates the ratchet. Although this action results in a change in instantaneous veloci-
ties, the feed per cycle is unchanged.

SAMPLE PROBLEM 1.10

Intermittent Feed Mechanism Design

Design an intermittent feed mechanism to provide rates of feed from 0.010 to 0.024 inch per
cycle in increments of 0.002 inch per cycle.

Solution. (There are several solutions to this design problem, each involving many hours of
work. We will take the first steps toward a practical design.)

1. A ratchet—pawl mechanism driving a power screw will be selected for our design. The
required steps between minimum and maximum feed correspond to ratchet rotations of
one pitch angle. For screw lead L inches, the feed per pitch angle is L/N inches. If we use
a single-thread power screw with five threads per inch and a 100-tooth ratchet, the
required 0.002-in/cycle feed increments are obtained.

2. A linkage with rotating driver crank and oscillating driven crank (similar to that in Figure
1.46) will be used to drive the pawl. The dimensions shown in Figure 1.47 will be provi-
sionally selected, where link 1, the driving crank, is of variable length. Since the feed is
0.200 in per rotation of the screw, the screw must turn through 1/20 rotation (18°) for the
0.010-in/cycle feed. The 0.024-in/cycle feed is obtained by a 43.2° rotation of the screw.

3. For the required range of feeds, the oscillation of link 3 must be at least 43.2° when link 1
is adjusted to maximum length and about 18° when link 1 is adjusted to minimum length.
As a trial solution, we might design link 1 so that its length can be adjusted between 0.4
and 1.2 in. The mechanism is shown with link 1 adjusted to 1.2 in, at which setting link 3
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Dimensions:
Link 1 1.2in
Link 2 6
Link 3 3

Link 3

Scale (in)

FIGURE 1.47 Sample problem 1.10 for a feed mechanism. Link 3 oscillates through angle
B1 with link 1 adjusted to 1.2 in and through angle 3, with link adjusted to 0.4 in.

oscillates through angle ;. Angle 3,, the oscillation corresponding to a 0.4-in length of
link 1, is also shown. The trial design has a wider range of feeds than required and is
therefore acceptable from that standpoint.

If we were to actually manufacture the mechanism, the next steps in the design
process would be to find velocities and accelerations in the mechanism and to specify
the members’ cross sections. An investigation of tolerances and of stresses and deflec-
tions would then be required.

Universal Joints

When the angular relationship between the axes of two drive train elements is vari-
able, the elements may be joined by a flexible coupling, a flexible shaft, or a universal
joint. Most flexible couplings are intended only for small amounts of misalignment,
and flexible shafts have very limited torque capacity. Where high torque and large mis-
alignments occur, a universal joint, shown in Figure 1.48, is the typical solution. The
Hooke-type universal joint has a variable output speed w, for misalignment ¢ unequal
to zero when the input w; is constant. For the position shown in Figure 1.49, the veloc-
ity of point A is v, = w;r where w is in radians per second.
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FIGURE 1.48 Universal joint. Shown is a preloaded universal joint designed for use in a steering-
column-tilting mechanism and similar applications in which backlash is undesirable. The recom-
mended maximum operating angle for this type of universal joint is 18° (Source: Bendix
Corporation.)

(b)

FIGURE 1.49 (a) The Hooke-type universal joint. The misalignment is indicated
by the angle ¢. Velocity ratio w,/w; varies instantaneously as the joint rotates.
(b) The cross-link of the universal joint is shown as it rotates through 90°.
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FIGURE 1.50 (a) A universal joint for high-torque applications. (Source: Dana Corporation.)
(b) When two universal joints are used, input and output speeds are equal if each of the universal
joints takes half of the misalignment, as shown.

The angular velocity of shaft 2 is maximum at this time and is equal to
Va
rcos¢ cos¢

Wy =

In Figure 1.49b, the cross-link of the universal joint is shown as it rotates through 90°,
the last position representing the minimum velocity of shaft 2: w, = w; cos ¢.

At high shaft velocities, speed variations may be objectionable, since acceleration
and deceleration of the load can cause serious vibration and fatigue. Figure 1.50 shows
two Hooke-type universal joints used to join shafts with a total misalignment of ¢. If
the shafts are in the same plane and each joint has a misalignment of ¢/2, as in the fig-
ure, the input shaft, 1, and the output shaft, 3, travel at the same speed. The intermedi-
ate shaft, 2, turns at variable velocity, but if it has a low mass moment of inertia, serious
vibration will not result.

An alternative method of avoiding acceleration and deceleration is through the
use of a constant-velocity universal joint. A constant-velocity ball joint, seen disas-
sembled in Figure 1.51, is shown in the plane of the misaligned shafts in part b of the
figure. Each half of the joint has ball grooves, with pairs of ball grooves intersecting in
a plane that bisects the obtuse angle formed by the shafts. Thus, if all ball-groove center
radii equal r, the velocity of the center of ball A is given by

Vg = w1rCOS
2
and

VA

wy = = wW1q.

rcos —
2

This constant-velocity relationship holds at all times, even as misalignment ¢ changes.
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Ball groove centers

7

(b)

FIGURE 1.51 (a) A constant-velocity universal joint (Bendix—Weiss type) shown disassembled.
(Source: Dana Corporation.) (b) Balls designated by A are held in intersecting ball grooves. The
grooves in the input half of the joint intersect with the grooves in the output half so that the balls trav-
elin a plane at angle ¢/2 to perpendiculars to either shaft. The pinned center ball is designated by B.

Automotive Steering Linkage

The Ackerman-type steering linkage, sketched in Figure 1.52, incorporates a parallelo-
gram linkage made up of the Pitman arm O, B, the relay rod BE, the idler arm EO,,
and the frame. Tie rods CF and DG are connected to the relay rod and to the steering
arms FO; and GO,. The steering arms turn the front wheels about pivoted knuckles O;
and O, when the Pitman arm is rotated by a gear at O;.



76

Chapter 1 Mechanisms and Machines: Basic Concepts

€ of vehicle

T
Center of rotation of vehicle Rear wheels

FIGURE 1.52 Automotive steering linkage oriented for a turn. Link nomenclature: O, B is the
Pitman arm (driven by a gear at O,); BE is the relay rod; EO, is the idler arm; CF and DG are tie
rods; and FO; and GO, are steering arms.

To avoid unnecessary tire wear when the vehicle turns, the centerlines of the four
wheels should meet as closely as possible at a single point—the center of rotation of
the vehicle.

Thus, the Ackerman system is designed so that the wheels do not turn equal
amounts. The wheel on the inside of the turn must be rotated through a greater angle
about its steering knuckle than the wheel at the outside of the turn in order that the
condition on the center of rotation be met.

This problem of the wheels not turning equal amounts accounts, in part, for the
complicated linkage design. Another problem is that the steering linkage is not strictly a
planar linkage, in that the wheels must follow road contours. Ball studs (ball-and-socket
joints) are used at points C, D, F, and G to permit multiaxis rotation. In an alternative
design, the steering linkage may be mounted forward of the centerline of the front
wheels.

Computer-Controlled Industrial Robots

Demands for increased productivity have led to the development of computer-con-
trolled robots. Figure 1.4 shows an industrial robot with a highly maneuverable six-axis
jointed arm. The robot is controlled by a flexible minicomputer program and may be
interfaced to peripheral equipment or to an external computer. Although robots of this
type have a fixed base, they may be employed in manufacturing operations involving a
continuously moving production line. In one such application, the robot arm tracks
moving automobile bodies and automatically spot welds them without stopping the
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production line. The arm works on the front, middle, and rear of the auto body as the
body moves through the robot’s baseline station. Abort and utility sequences are
included in the robot’s computer control. The abort sequence directs the robot to exit
from the moving part along a pretaught safe path relative to the part. The utility
sequence is initiated by an external signal from malfunctioning peripheral equipment
so that the robot can take corrective action. For example, the tip of a welding gun may
stick to the part, requiring a twisting motion to break it free.

Figure 1.53 shows an application of robotics to drilling and perimeter routing of
aircraft panels. A combination of positive-location part fixtures and compliant tooling
systems was used to overcome the problem of positional inaccuracy due to joint toler-
ances and elastic deflection of the multi-degree-of-freedom robot manipulator.

FIGURE 1.53 An application of robotics. (Source: General Dynamics.)
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1.12 COMPUTER-AIDED LINKAGE DESIGN

The design of linkages for specific applications has always relied heavily on human
judgment and ingenuity. This design process may be illustrated by the flowchart given
by Sheth and Uicker (1972). (See Figure 1.54.) “Human interaction” includes creativ-
ity and possibly lengthy periods of mathematical analysis and computation. While it is
unlikely that human creativity can ever be completely replaced, computer-aided
design (CAD) can be employed to relieve the designer of many of the routine
processes that would otherwise be necessary. Since three-dimensional information can
be stored and retrieved in various views by using CAD programs, the construction of
tentative physical models can often be eliminated in the design-and-development
stage.

Currently, many organizations are integrating engineering design and drafting
processes with manufacturing, administration, and other functions. This approach,
called concurrent engineering, relies heavily on computers and is intended to reduce
the interval between the formulation of a design concept and the appearance of the
final product.

@ Need that is

to be satisfied

Reexamine design
situation

@ Select performance
specifications (P.S.)

@ Select design

configuration

@| Set dim;nsions | @

@ Analyze proposed
design

Can P.S. be met
by dimensional
changes?

Acceptable
design

FIGURE 1.54 A portion of the design process.
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FIGURE 1.55 Suspension system. (Source: Chevrolet Motor Division, General Motors
Corporation.)

The suspension system shown in Figure 1.55 is an example of the type of problem
that may be treated by CAD methods. Most CAD systems can handle open-loop sys-
tems, such as robots, as well as closed-loop systems, like four-bar and slider-crank link-
ages. Features of interest available in one or more CAD programs include kinematic
analysis and synthesis of planar and spatial linkages, static and dynamic analysis, and
an interactive graphics capability. Additional features of some software include a
check for redundant constraints, the capability to handle nonlinear equations, and a
zero- and multi-degree-of-freedom capability, as well as a capability to model one-
degree-of-freedom systems.

Systems in which the motion is completely specified as a function of time are
called kinematically determinate systems for purposes of analysis. Examples of kine-
matically determinate models are a robot with all joint motions specified and a slider-
crank mechanism with the position of the crank specified.

In modeling a mechanism design, links are usually considered to be rigid. In some
systems, however, link flexibility influences performance. In satellite design, for exam-
ple, stringent weight requirements may result in a system that undergoes significant
structural distortion. Figure 1.56 shows a satellite deploying a flexible antenna
extended with a screw jack. In this system, feedback control is employed on the
momentum wheels for attitude control. Failure to consider the interaction between the
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FIGURE 1.56 A satellite system deploying a flexible antenna (modeled by
ADAMS™ software). (Source: Mechanical Dynamics, Inc.)

flexible antenna and the feedback control system could have resulted in a satellite sys-
tem that was unstable to the point where it would self-destruct.

Figure 1.57 shows a flowchart for processing kinematics and dynamics informa-
tion in the IMP (integrated mechanisms program), one of the software packages used
for analyzing motion and forces in mechanical systems. Figure 1.58 shows a simulation
of a spring-reset plow that was designed to relieve shock loading when an embedded
rock is struck. The operation was analyzed and refined with the DRAM program.
Another CAD example, a front-end loader, is shown in Figure 1.59.
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FIGURE 1.57 Flowchart for IMP processing; IC = initial conditions; DF = degrees-of-
freedom; FGC = free generalized coordinates. (Source: Structural Dynamics Research
Corporation.)

Research in Engineering Design Theory and Methodology

Like most engineering design, the design of kinematic systems is a blend of art and sci-
ence. Some investigators are studying design theory and methodology, attempting to
obtain a deeper and more fundamental understanding of the design process. Finger and
Dixon (1989) reviewed research in descriptive, prescriptive, and computer-based models
of design processes. They summarized studies of how humans create mechanical designs,
processes, strategies, and problem-solving methods and reviewed (1) computer-based
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FIGURE 1.58 Analysis of a spring-reset plow, designed with the help of the DRAM program.
(Source: Mechanical Dynamics, Inc.)

§ Time = 1.0000 Time = 2.0000

Time = 3.0000 Time = 5.0000

i a

FIGURE 1.59 Computer-aided design applied to construction machinery. (Source: Mechanical
Dynamics, Inc.)
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models that emulate human problem solving, (2) morphological analysis, a methodol-
ogy to generate and select alternatives, and (3) configuration design, in which a physi-
cal concept is transformed into a configuration with a set of attributes.

1.13 COMPUTER-IMPLEMENTED NUMERICAL METHODS

Some engineering problems do not have a simple closed-form solution. Or a closed-
form solution may exist for a particular problem, but is not immediately obvious. We are
then likely to try a numerical method of solution. Numerical methods differ from trial
and error in that each successive approximation in a numerical method is guided by the
previous result. Many numerical methods in current use were developed long before
computers became available. With computers, however, we may make many iterations
to obtain a high degree of accuracy while avoiding hours of tedious calculation. You
may choose to skip this section if you use software capable of numerical solutions.

The Newton-Raphson Method

Newton’s method, also called the Newton—Raphson method, can be introduced by
considering the root of a nonlinear equation in a single variable:

F(x) = 0.

Figure 1.60 shows a curve that could resemble a plot of F(x) vs. x. [We do not actually
plot F(x) vs. x]. Let the first approximation of the root be x = X. Unless we were lucky
enough to make a perfect guess, F(X) # 0. It can be seen from the figure that the first
approximation can be improved by considering the error F(X) and the slope of the
curve G(X). The second approximation of the root is given by

Xoew = X — F(X)IG(X), (1.16)

where G(X) = dF/dx evaluated at x = X. The next approximation can be obtained
by using the Eq. (1.16), except that the value of X is replaced by the value of X ..,
obtained in the previous step. The process is repeated until F(X.,) = 0 + a predeter-
mined tolerance.

Fx)

FX) p——==mmmm >

F(x) Actual root of F (x) =0 FIGURE 1.60 The Newton—Raphson method.
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Success in finding a root depends on the behavior of F(x) in the region of inter-
est. It can be seen that the Newton-Raphson method fails if G(X) = 0 at any step. If
F(x) = 0 has multiple roots, a poor first approximation may result in convergence
at a root other than the desired one. Figure 1.61 shows a flowchart outlining the

Specity
maximum error,
maximum number
of iterations,
and first
approximation
of X

Compute F(X)

Compute G(X)

Xpew =X—F(X)IG(X)

new

ABS(F(X)) Yes
< max error? >

iterations?

Print " No root found
after specified
number of iterations"

\Prmt }ilso;) t=0f Ii(x) N (/ FIGURE 1.61 Flowchart of Newton-Raphson
— method.
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Newton—-Raphson method. When a computer is used for iterative processes, a limit
may be placed on the number of iterations.

SAMPLE PROBLEM 1.11

An Iterative Solution

Consider an offset slider-crank linkage for which the ratio of connecting rod to crank length is to
be 3. Find the eccentricity for which the ratio of stroke to crank length will be 2.7.

Solution. If we superpose sketches of the linkage in its two limiting positions, the resulting tri-
angle can be measured or solved by the law of cosines, leading directly to the answer. Instead, to
illustrate a numerical method, it will be assumed that we fail to notice a closed-form solution and
resort to the Newton—Raphson method. The problem is described by

S =[(L+R}—E}”?-[(L - R? - EJ™"
Dividing by R, inserting the given values, and rearranging terms yields
F(x) = [16 — x*]'> = [4 — ¥*]'* = 27 = 0,
where x = E/R. Differentiating, we obtain
G(x) = dF(x)ldx = —x/(16 — x)'? + x/(4 — x*)"2
A computer program was written, based on the flowchar of the Newton-Raphson method. Using a
tolerance of 107° and an initial approximation of x = 1.9, the program produced the following

successive values: x = 1.821906, 1.800705, 1.799787, and 1.799786, the final value being the root
of f(x) = 0(£107°). The root is then checked by substituting it into the initial equation.

In using numerical methods, the physical problem should be considered before
making a first approximation of a root. In the preceding problem, an initial guess of
x > 2 will result in one term that is the square root of a negative number. An initial
guess of x = 2 produces an infinite value of G(x) and a message that “no root is found
after the specified maximum number of iterations.” In this problem, 20 iterations were
allowed before the program “gave up” trying to find a root. On observing a sketch of
the linkage, one readily sees that values of x = 2 are not valid.

Other Numerical Methods

Numerical methods are commonly used for solving complicated nonlinear equations.
One disadvantage of the Newton—Raphson method is the necessity of obtaining the
derivative dF(x)/dx.

The secant method uses a difference quotient instead of a derivative. However,
we are required to supply two initial approximations of the root. We begin by making
two approximations, X; and X, for the root of F(x) = 0. Then, a new (hopefully
improved) approximation of the root is given by

Xnew = X2 - F(XZ)/G(XZ)’
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where the difference quotient is given by
G(Xy) = [F(Xy) — F(X)V[X, — X4].

The procedure continues with X assuming the old value of X, and X, assuming the
value of X .. The iteration continues until the root X, is found, satisfying the equa-
tion F(x) = 0 within an acceptable tolerance. Otherwise the calculation is stopped
after, say, 20 or 30 iterations, with the observation that the process does not converge.

The secant method is available in some mathematical software packages. One
such package, Mathcad™, requires the user to input only one estimate of the root after
F(x) is defined. The second estimate is taken to be the tolerance if the first estimate is
zero. Otherwise the second estimate is given by X, = X + tolerance.

Other sections of this text include kinematics problems involving more than one
variable. Some of these are sample problems and are solved by numerical methods,
with the aid of mathematical software packages.

1.14 MECHANISM DESIGN CONSIDERATIONS

The material in this chapter is intended to form a basis for the analytical work to fol-
low and to introduce some of the analytical tools and approaches used in designing
mechanisms. In addition, the more common terminology is brought to the reader’s
attention to form a common ground for communication.

The design and manufacture of a product by one person working alone is seldom
possible and rarely practical. Consider, for example, the complexity of the fully auto-
mated machine tool or the case of a relatively simple mechanism to be mass-produced.
In either case, many people are involved, due to the interaction of one linkage with the
machine as a whole and the relationship between design and manufacture. The
designer must transmit ideas to others through mathematical equations and graphical
representations, as well as through clear written and oral descriptions.

Past and even present practice relies heavily on ingenious designers taking
advantage of their own inventiveness and years of practical experience. But the trend
is toward more kinematic analysis and synthesis, including computer-aided optimiza-
tion. One automobile manufacturer investigated about 8000 linkage combinations in a
computer-aided study of four-bar window regulator mechanisms. From those satisfying
all of the design requirements (fewer than 500 did), the computer proceeded to select
the one “best” linkage, based on a set of predetermined criteria. Computer-aided
design cannot replace inventiveness and human judgment, but it can extend the capa-
bilities of an engineer and reduce the tedium of repetitive tasks.

Practical considerations often make it necessary to “freeze” a product design at
some stage, thus preventing significant changes. However, a designer should investi-
gate many possible design configurations early in the design process. Suppose, for
example, a quick-return mechanism is required for a particular application. Earlier, we
noted that offset slider-crank linkages, drag-link—slider-crank combinations, and slid-
ing-contact-slider-crank combinations may be utilized as quick-return mechanisms.
There are many other possibilities. For example, we could examine cam-controlled and
numerically controlled mechanisms and other combinations that include two or more
sliders, in both planar and spatial configurations.



Section 1.14 Mechanism Design Considerations 87

SAMPLE PROBLEM 1.12

Linkage Design

Design a quick-return mechanism with maximum stroke of 170 mm, 40 working strokes per
minute, and a forward-to-return ratio of four to one. Use a configuration not previously illus-
trated in this chapter.

Solution. Many possible configurations can be used as quick-return mechanisms. A one-
degree-of-freedom linkage is desired. Applying Griibler’s criterion to mechanisms made up of
lower pairs, we obtain

2ny —3n;, +4=0
or

ny = 3n;/2 — 2.

The following combinations produce an integer number of lower pairs:

np ny np ny
2 1 8 10
4 4 10 13
6 7 12 16

One possible combination that includes four revolute pairs, three sliding pairs, and six links
is shown in Figure 1.62. The designer may investigate various link lengths and locations
for fixed pivot O, relative to the slider paths in order to produce a given stroke length and

FIGURE 1.62 Three-slider quick-return mechanism.



88

Chapter 1 Mechanisms and Machines: Basic Concepts

forward-to-return ratio. Slider link 4 or 5 may be used as a toolholder. For some link-length
ratios, one slider will undergo two oscillations per rotation of link 1, while the other slider
undergoes one oscillation.

If the intended application of the quick-return mechanism calls for a variable stroke or a
variable forward-to-return ratio, the design must include a means to adjust effective link lengths.
A screw adjustment of distance O,C is one possibility. Movement of point O, perpendicular to
the plane of motion of link 3 provides an alternative means of adjustment. This second option
would require a redesign, possibly including spherical pairs. A clever design would allow motion
characteristics to be adjusted while the mechanism was operating. Designs of this type require
careful placement of links and bearings to avoid interference between moving parts. Design soft-
ware such as -DEAS™ with solid modeling and assembly modeling capabilities may be used to
aid the task of interference checking.

SUMMARY

The number of degrees of freedom of a mechanism depends on the types of joints or
pairs and the number and arrangement of the links. Most practical closed-loop kine-
matic chains have one degree of freedom, while robots usually have six or more
degrees of freedom. The Grashof criterion tells us the theoretical motion characteris-
tics of a four-bar linkage. The actual motion of the linkage may depend on the trans-
mission angle as well. Practical design and analysis of mechanisms is heavily dependent
on computers. Animation software permits us to model a proposed design and “put it
through its paces.” We can then make changes in an attempt to optimize the design.

A Few Review Items

¢ Identify several planar one-degree-of-freedom linkages.

e How many degrees of freedom does a cylinder pair have? Does the answer
depend on whether we are considering a planar or a spatial linkage?

¢ What is the length of the stroke of a piston engine (in terms of the crank length)?

¢ Identify the Grashof linkages.

e Write the inequality applicable to a crank-rocker mechanism with a 100-mm
drive crank.

¢ Identify a generally acceptable range for a transmission angle. Explain the possi-
ble consequences if the transmission angle falls outside of this range.

* You are asked to design a machine with a “powerful” (large force) working stroke
and a quick return. Identify two linkages that could be considered for this design.

e Construct a computer animation of a crank-rocker mechanism. Rotate the drive
crank so that the rocker is in one limiting position. Repeat for the other limiting
position. What is the range of motion of the rocker? Now show the linkage when
the transmission angle is minimal and maximal. Is the transmission angle a
potential problem? If so, identify factors that can mitigate the problem.
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PROBLEMS

Figures that accompany the problems are indicated with the prefix P. Otherwise, references apply
to figures in the text proper.

1.1 (a) Find the number of degrees of freedom for the spatial linkage of Figure P1.1 . This
open-loop kinematic chain includes cylindrical, prismatic, and spherical pairs.

U

<o

FIGURE P1.1

(b) Figure P1.2 is a schematic representation of a piece of construction machinery. It has
two hydraulic cylinders (links 1 and 2, and links 6 and 7), which may be considered

FIGURE P1.2
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cylindrical pairs. The other pairs are revolute joints, including a double revolute joint
where links 2, 3, and 8 meet. Find the number of degrees of freedom if this linkage is
treated as a spatial linkage.

(¢) Find the number of degrees of freedom if the linkage of Figure P1.2 is treated as a
planar linkage.

(d) Referring to Figure P1.2, indicate the conditions that must be met for the planar
linkage assumption to be valid.

(a) Change the structure shown in Figure 1.8c into a one-degree-of-freedom mechanism
by removing one link. (There are several solutions to this problem.)

(b) Change the two-degrees-of-freedom linkage in Figure 1.8b into a one-degree-of-
freedom mechanism by adding a link.

Find the average piston velocity (between limiting positions) for an in-line slider-crank
mechanism. The crank length is 2 in, and the crank rotates at 3000 rev/min.

Find the average piston velocity in each direction (between limiting positions) for an off-
set slider-crank mechanism. The crank length is 2 in, the connecting rod length is 4 in, and
the offset is 1 in. The crank speed is 3000 rev/min clockwise.

Repeat Problem 1.4 for an offset of 1.5 in.

Repeat Problem 1.4 for a 100-mm crank length, a 200-mm connecting rod length, and a
50-mm offset.

Consider a slider-crank linkage wherein R = crank length, L = connecting rod length,
and E = offset. Let L/R = 1.5 and E/R = 0.2. Show the linkage position for crank angle
T1 = 0,20° 40°, and so on. If computer graphics facilities are used, show 18 positions.
Otherwise, show only 4.

In Problem 1.7, let the crank length be 100 mm and the crank speed be 5000 rev/min
counterclockwise (ccw). Find the average piston velocity during the 0.002-s interval
beginning with a zero crank angle.

Repeat Problem 1.7 for L/R = 1.8 and E/R = 0.4.

In Problem 1.9,let R = 50 mm and w = 500 rad/s. Find the average piston velocity as the
crank angle goes from (a) 0 to 40°, (b) 0 to 180°, and (c) 0 to 360°.

Given an in-line slider-crank linkage with R = 2 and L = 4, (a) plot displacement x ver-
sus crank angle 6 for § = 30, 60, and 90°. If the crank rotates counterclockwise at 100
rev/min, find (b) the average piston velocity for § between 30° and 60° and (c) the aver-
age piston velocity for 6 between 60° and 90°.

Problems 1.12 through 1.22 Refer to Figure 1.12a.

For each of the following problems, (a) determine whether the links can actually form a mecha-
nism with the dimensions given; (b) if a mechanism exists, identify the motion relationship (crank

rocker,

drag link, double rocker, triple rocker, or change point); (c) show the limiting positions if

the mechanism is a crank-rocker, double-rocker, or triple-rocker mechanism:

112
1.13
1.14
115
116

Ly=51L,=2L,=151;=2.
Ly=1,L,=2,L,=15L; = 35.
Lo=1,L, =325 1L, =15L; = 35.
Lo=15L, =4,L, =2, L; = 35.
Lo=1,L,=4,L, =15 L; = 45.
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Lyo=2,L,=1251,=2,L; = 3.

Lo=4,L,=1,1,=2,15=125.

Lo=3,L=2,1,=3,153=2.

Lo=25L,=1,L,=25,15=2.

Ly=5L, =10,L, = 15,L; = 15.

Ly=16,L, =7,L, =10, L; = 15.

In Figure 1.12a, let Ly = 300 mm, L; = 100 mm, and L; = 280 mm. Find the range of
coupler length (L,) for which the mechanism will theoretically act as a crank rocker.

In Problems 1.24 through 1.30, Refer to Figure 1.12a.

For each of these problems, find the range of values of the unknown link if the linkage will theoret-
ically act as (a) a crank-rocker mechanism (where link 1 rotates through 360°); (b) a drag link
mechanism; (c) a double-rocker mechanism; (d) a change-point mechanism, (e) a Grashof mecha-
nism; and (f) a triple-rocker mechanism.

1.24
1.25
1.26
1.27
1.28
1.29
1.30
1.31

1.32
1.33

1.34

Find L, for L; = 100 mm, L, = 280 mm, and L; = 360 mm.

Find L, for L, = 40, L, = 60, and L3 = 40.

Find L, for Ly = 50, L; = 200, and L; = 250.

Find L; for Ly = 120, L; = 220, and L, = 80.

Find Ly/L, for L,/L; = 1.5and Lsy/L; = 1.2.

Find L,/L, for Ly/L; = 2.2 and Ls/L; = 1.7.

Find L, for L; = 400, L, = 600, and L; = 750.

In Figure 1.12a,let Ly/L,; = 2. Plot the range of permissible values of Ls/L versus L,/L4
if the linkage is to be a crank-rocker mechanism.

Repeat Problem 1.31 for Ly/L; = 1.5.

Consider a four-bar planar linkage in which the sum of the lengths of the intermediate
links exceeds the sum of the lengths of the shortest and longest link by about 1%. The
drive crank is the shortest link, and the driven crank operates against a load. Describe
the motion of the linkage.

Write a computer or calculator program to classify four-bar linkages according to
motion. Test the program with values corresponding to a crank-rocker linkage, and so on.

Problems 1.35 through 1.41

Find the length of the unknown link so that the linkage forms a crank rocker mechanism and the
transmission angle falls between 45° and 135°.

1.35
1.36
1.37
1.38
1.39
1.40
1.41

Ly = 100 mm, L, = 140 mm, and L, = 120 mm; find L.

Ly = 50mm, L, = 200 mm, and Ly, = 210 mm; find L;.

L; = 110mm, L, = 150 mm, and L, = 150 mm; find L.

Ly/L; = 1.5and Ls/Ly = 1.2; find Ly/L.

Ly/Ly = 32and Ls/L; = 1.7;find L,/L;.

Plot the range of permissible values, if any, of L3/L; versus L,/L, for Ly/L; = 2.
Repeat Problem 1.40 for Ly/L, = 4.
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Problems 1.42 through 1.47 Refer to a Slider-Crank Mechanism

The transmission angle is limited to the range between 45° and 135° (i.e., the angle between the
connecting rod and the slider path must fall between —45° and +45°).

1.42
1.43

1.44

1.45

1.46

1.47
1.48

1.49
1.50

1.51

1.52

1.53
1.54

1.55
1.56

1.57
1.58

1.59
1.60

1.61

1.62

1.63

The crank length is 100 mm; find the minimum connecting rod length for zero offset.
The crank length is 500 mm, and the offset is 100 mm; find the minimum connecting rod
length.

The crank length is 400 mm, and the offset is 200 mm; find the minimum connecting rod
length.

The crank length is 300 mm, and the offset is 50 mm; find the minimum connecting rod
length.

The ratio of the crank length to the connecting rod length is R/L = 0.5; find the maxi-
mum possible offset.

Repeat Problem 1.46 for R/L = 0.25.

Sketch the flowchart for a program that designs a crank-rocker mechanism with maxi-
mum follower crank range if the transmission angle is limited.

Write and test a calculator or computer program as designed in Problem 1.48.

Prove that extreme values of the transmission angle occur when the crank is collinear
with the fixed link in a four-bar linkage.

Prove that the extreme values of the transmission angle occur when the crank is perpen-
dicular to the slider path in a slider-crank linkage.

In Figures 1.19 and 1.20,1et Ly = 18, Ly = 7, L, = 9,and L3 = 17.

(a) Classify the linkage according to its theoretical motion.
(b) Find extreme values of the transmission angle.
(c¢) Will the linkage operate as determined in part a?

Sketch a double-rocker mechanism, showing bearing locations to avoid interference.
Will a drafting machine of the type shown in Figure 1.28 operate properly if the pulleys
are arbitrarily selected to be of different diameters? Show the motion of the straight-
edges if pulley diameters and d; = 50 mm, d, = d3 = dy = 100 mm.

Design and dimension a pantograph that may be used to double the size of the pattern.
Design and dimension a pantograph that may be used to increase pattern dimensions by
10 percent. Let the fixed pivot lie between the tracing point and the marking point or
toolholder.

Design and dimension a pantograph that will decrease pattern dimensions by 40 percent.
Referring to the swash plate pump shown in Figure 1.36, (a) determine the dimensions of
a pump with a capacity of 120 ft*/h at 600 rev/min (assume 100 percent volumetric effi-
ciency), and (b) find the average velocity of the plunger. (There are many possible solu-
tions to this problem.)

Repeat Problem 1.58 for a capacity of 0.01 m%/s at 300 rad/s.

Design a differential power screw for a linear velocity of approximately 0.1 mm/s when
the angular velocity is 65 rad/s.

Design a differential power screw for a linear velocity of approximately 0.0005 in/s when
the screw rotates at 60 rev/min.

Design a ratchet-pawl mechanism to provide feed rates of 0.005 to 0.012 in/cycle in
increments of 0.001 in/cycle.

Repeat Problem 1.62 for feed rates of 1 to 3 mm/cycle in increments of 100 microns per
cycle (um/c).
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1.64 A Hooke-type universal joint has a 20° misalignment. Find the output shaft speed range
if the input shaft rotates at a constant 1,000 rev/min.

1.65 Repeat Problem 1.64 for a 15° misalignment.

1.66 Find a permissible misalignment of a Hooke-type universal joint if the variation in speed
is limited to £2%.

1.67 Repeat Problem 1.66 for +£3% variation.

Problems 1.68 through 1.75 Are Based on a Constant-Speed Crank
1t is suggested that a drag link mechanism be incorporated in the design.

1.68 Design a mechanism with a 10-in stroke and a forward-to-return stroke time ratio of
(approximately) two to one.

1.69 Repeat Problem 1.68 for a time ratio of (approximately) 2.5 to 1.

1.70 Design a mechanism with a 150-mm stroke and a forward-to-return stroke time ratio of
approximately two to one.

1.71 Design a mechanism with a 100-mm stroke and a forward-to-return time ratio of approx-
imately two to one.

1.72 Design a mechanism with a stroke length that may be varied between 5 and 10 in. The
forward-to-return stroke time ratio will be 1.5 to 1 at maximum stroke. Utilize a sliding
contact linkage.

1.73 Repeat Problem 1.72 for a time ratio of 2.5 to 1.
1.74 Repeat Problem 1.72 for a stroke of 100 to 200 mm.
1.75 Repeat Problem 1.72 for a stroke of 180 to 280 mm.

1.76 Describe the motion of each link in Figure P1.3. Show the linkage in its limiting positions
(corresponding to extreme positions of the slider). Determine the angle through which
link 1 turns as the slider moves from the extreme left to the extreme right. Compare your
result with the corresponding angle as the slider moves to the left. Find the stroke of the
slider (the distance between limiting positions).

0,0,=2in
0,B=125in
0,C=4in
CD=3in
Pin B is part
of link 1

FIGURE P1.3

1.77 Repeat Problem 1.76 for Figure P1.4.
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FIGURE P1.4

Repeat Problem 1.77 for O;B = 60 mm, BC = 120 mm, and offset (O; to slider path)
=20 mm.

Problems 1.79 through 1.83 Refer to Figure 1.22.

1.79

1.80
1.81
1.82
1.83

1.84

R=2,L=5and E = 04.

(a) Find the forward-to-return stroke ratio.
(b) Find the stroke length S.

Repeat Problem 1.79 for offset E = 0.8.
Repeat Problem 1.79 for offset £ = 0.65.
R =1,L = 3,and E = 1. Plot the path of the midpoint of the connecting rod.

R = 150 mm, L = 450 mm, and £ = 150 mm. Plot the path of the midpoint of the con-
necting rod.

Find the number of degrees of freedom of the lamination drive in Figure 1.41 when the
control linkage position is given.

Problems 1.85 through 1.92 refer to a linkage that is to act as a
crank-rocker mechanism

Link lengths are fixed link Ly, drive crank Ly, coupler L,, and driven crank L;.

1.85
1.86
1.87
1.88
1.89
1.90
191
1.92

1.93

1.94

Ly = 200 mm, L; = 50 mm, and L3 = 150 mm; find the theoretical range of L,.

Ly = 210mm, L; = 50 mm, and L; = 150 mm; find the theoretical range of L,.

Ly =200 mm, L; = 45mm, and L; = 150 mm; find the theoretical range of L,.

Ly =200 mm, L; = 50 mm, and L; = 160 mm; find the theoretical range of L,.

(a) Find L, so that minimum transmission angle ¢,;, = 45° for the data of Problem 1.85.
(b) Find the maximum transmission angle for this linkage.

(a) Find L, so that minimum transmission angle ¢,,;, = 45° for the data of Problem 1.86.
(b) Find the maximum transmission angle for this linkage.

(a) Find L, so that minimum transmission angle ¢,,;, = 45° for the data of Problem 1.87.
(b) Find the maximum transmission angle for this linkage.

(a) Find L, so that minimum transmission angle ¢,;, = 45° for the data of Problem 1.88.
(b) Find the maximum transmission angle for this linkage.

Find the average piston velocity in each direction between limiting positions for a slider-
crank linkage with a 150-mm crank length, a 350-mm connecting rod length, and a 100-mm
offset. The crank rotates at 240 rad/s clockwise (cw).

In Figure 1.7a, let spherical pair S; be replaced by a cylindrical pair. Find the number of
degrees of freedom of the mechanism.
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1.99

1.100

1.101

1.102

1.103

1.104

1.105
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In Figure 1.7a, let revolute joint R, be replaced by a spherical (ball) joint. Find the
number of degrees of freedom of the mechanism.

How many degrees of freedom will a four-bar spatial CCCC linkage have?

How many degrees of freedom will a four-bar spatial SSSS linkage have?

Identify five or more spatial four-bar linkages having one degree of freedom. Select link-
ages that include revolute, prism, helix, cylinder, and sphere joints.

Show as many one-degree-of-freedom, planar, pin-connected linkage configurations as
you can. Use up to eight links.

Consider an offset slider-crank linkage for which the ratio of connecting rod to crank
length is to be 3.

(a) Write a computer program utilizing the Newton-Raphson method or another
numerical method to determine the offset for a given value of stroke length.

(b) Find the offset for which the ratio of stroke to crank length will be 2.5.

Consider an offset slider-crank linkage for which the ratio of connecting rod to crank
length is to be 3.

(a) Write a computer program utilizing the Newton—Raphson method or another
numerical method to determine the offset for a given value of stroke length.

(b) Find the eccentricity for which the ratio of stroke to crank length will be 2.2.

Consider an offset slider-crank linkage for which the ratio of connecting rod to crank
length is to be 3. Use the Newton—Raphson method or another numerical method to
determine the offset for which the ratio of stroke to crank length will be 3.

Consider the design of four-bar planar crank-rocker linkages. Investigate which linkage
proportions are acceptable and which are not. Let the fixed link length L be three times
the crank length L;. Plot the minimum transmission angle vs. R, and Rj;, where
R, = L,/Ly, Ry = L;/Lq, L, = coupler length, and L; = follower crank length. Plot the
maximum transmission angle vs. R, and Rs;. Plot the range of motion of the follower
crank vs. R, and R;.

Consider the design of four-bar planar crank-rocker linkages. Investigate which linkage
proportions are acceptable and which are not. Assume that transmission angles between
40° and 140° are acceptable for the proposed design. Let the fixed link length L, be four
times the crank length L;. Plot the minimum transmission angle vs. R, and R;, where
R, = L,/Ly, Ry = L;/Lq, L, = coupler length, and Lj; = follower crank length. Show
the maximum transmission angle on the same plot. Identify the envelope of acceptable
linkage proportions based on the transmission angle. Plot the range of motion of the fol-
lower crank vs. R, and R;.

Consider the design of four-bar planar crank-rocker linkages. Investigate which linkage
proportions are acceptable and which are not. Assume that transmission angles between
40° and 140° are acceptable for the proposed design. Let the fixed link length L, be five
times the crank length L;. Plot the maximum transmission angle vs. R, and R;, where
R, = L,L{, Ry = Ls/Lq, L, = coupler length, and Lj; = follower crank length. Show
the minimum transmission angle on the same plot. Identify the envelope of acceptable
linkage proportions, based on the transmission angle. Plot the range of motion of the fol-
lower crank vs. R, and R;.

Design a quick-return mechanism with a five-to-two forward-to-return-time ratio.
Determine the linkage proportions of the mechanism. Specify link lengths for a 100-mm
stroke. Find the minimum and maximum transmission angles. Design decisions. Base the
design on a drag link combined with a slider. Try linkage proportions Ry = Ly/L; = 0.7
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and Ry = L3/L = 1.35 with R, = L,/L, unspecified, where the link lengths are identified
as follows: L = fixed link, L; = drive crank, L, = coupler, and L3 = driven crank.

Design a quick-return mechanism with an eight-to-three forward-to-return time-ratio.
Determine the linkage proportions of the mechanism. Specify link lengths for a 400-mm
stroke. Find the minimum and maximum transmission angles. Design decisions. Base the
design on a drag link combined with a slider. Try linkage proportions Ry = L¢/L; = 0.85
and R; = Ls/L, = 1.15 with R, = L,/L; unspecified, where the link lengths are identi-
fied as follows: L, = fixed link, L; = drive crank, L, = coupler, and L; = driven crank.
Design a quick-return mechanism with a 16:5 forward-to-return-time ratio. Determine
the linkage proportions of the mechanism. Specify link lengths for a 400-mm stroke. Find
the minimum and maximum transmission angles. Design decisions. Base the design on a
drag link combined with a slider. Try linkage proportions Ry, = Ly/L; = 0.85 and
Ry = Ls/L{ = 1.25 with R, = L,/L, unspecified, where the link lengths are identified as
follows: Ly = fixed link, L, = drive crank, L, = coupler, and L; = driven crank.

Project topics will often be suggested by the instructor’s research interests and by current publica-
tions. The following topics may also be used as projects.

11

1.2

1.3

14

1.5

1.6

Aircraft landing gears sometimes fail to lower into position.

(a) Consider a system that will remedy this problem.

(b) Investigate the feasibility of a redundant landing-gear system that can be deployed if
the primary system fails to operate.

Investigate the possibility of an innovative system to transport skiers to the top of a
slope. Try to avoid conventional chairlifts, T-bars, rope tows, gondolas, etc.

Operators of power tools are sometimes injured because of inadequate guarding or the
removal of guards that prevent efficient use of the tool. Design a system to feed wood
into a circular saw in such a way that the operator’s hands cannot contact the blade.
Backcountry skiing and Telemark skiing combine aspects of both alpine and Nordic ski-
ing. Backcountry skiers utilize free-heel bindings on skis with metal edges. Some users of
this equipment ski on steep slopes.

(a) Consider the design of an innovative release binding for free-heel skiing.
(b) Design a ski brake to stop a released ski.

Aircraft accidents have been attributed to an improperly latched cargo-hold door. In one
or more instances, this problem resulted in loss of pressure in the cargo hold. The then-
greater cabin pressure caused the floor between the cabin and the cargo hold to com-
press. This, in turn, pinched cables needed to steer and control the aircraft. Investigate a
new cargo-hold door and latch design.

Environmental concerns make recycling a necessity. Investigate the design of a system to
sort glass and plastic bottles, as well as steel and aluminum cans.

Suggestion: Projects may be assigned to an individual or a group, depending on the instructor’s
goals. Most mechanical devices in current use are the result of many person-years of effort by
experienced engineers. However, student creativity may be stimulated by the demands of the

task. It

is expected that the mechanical engineering aspects of the design will be given priority.

Detailed analysis may be limited to one aspect of the design project if the scope of the project is
too large for the time available. The degree of success can be measured by the quality of innovative
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thinking, analysis, and interpretation, rather than by comparing a proposed design with a com-
mercially available product. As the project progresses, it is expected that it will be necessary to
consult several sections in this text as well as other sources of information.
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INTERNET RESOURCES

The Internet can be helpful to those interested in applications that are not covered in this text
and as a resource for projects in kinematics and dynamics of machinery. The list that follows
includes a small sample of relevant websites and typical products or services. When searching
the Internet, try to limit the search to your area of interest by adding modifiers to the key words.
For example, a search for robots yielded over two million sites, but prneumatic robot grippers for
automotive manufacturing returned 180 sites.
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AUTOMOTIVE DRIVE COMPONENTS

www.ingersoll.com

www.spicerdriveshaft.com

CAMS AND PART HANDLERS

www.camcoindex.com

Ingersoll CM Systems (machinery and systems for crankshaft
and camshaft manufacturing)
Spicer (vehicle driveshafts—constant velocity and Cardan joints)

Commercial Cam (cams, index drives, conveyors)

Construction and earth-moving equipment, cranes and lift tables

www.airtechnical.com
www.bobcat.com
www.caterpillar.com

www.coastalcranes.com

Gears

www.geartechnology.com

www.hdsystems.com

Air Technical Industries (floor cranes, lift trucks, lift tables)
Ingersoll-Rand (excavators, skid-steer loaders, track loaders)
Caterpillar Products (earth-moving equipment, engines and
power systems)

Coastal Hydraulic Cranes (telescoping and fixed-boom cranes)

Gear industry buyers guide (gear machines, gear materials, gear
drives, software).
HD Systems (harmonic planetary gearheads)

Professional societies and journals

WwWWw.asme.org

www.elsevier.com

WwWw.Sme.org

American Society of Mechanical Engineers (Journal of
Mechanical Design includes kinematics and dynamics of
mechanisms)

Elsevier Science (Mechanism and Machine Theory, a journal
devoted to mechanisms and dynamics of machines)

Society of Manufacturing Engineers

ROBOTS, GRIPPERS, SENSORS, GUIDED VEHICLE SYSTEMS AND ACCESSORIES

www.abb.com

WWWw.agvp.com
www.keyence.com
www.parket.com
www.robotics.org
www.robotics-technology.com
www.sankyo.com

ABB Group (automated welding equipment)

AGYV Products (automated guided vehicle systems)

Keyence Corp. (machine vision)

Parker Automation (accessories)

Robotic Industries Association (industrial robots, robot safety).
European site for robotics information.

Sankyo Robotics (Cartesian coordinate robots, track-mounted
robots, and selective compliance assembly robot arms)

SOFTWARE FOR CALCULATION, DESIGN, MANUFACTURING, MOTION SIMULATION AND

TESTING

www.eds.com
www.lmsintl.com

www.mathcad.com
www.workingmodel.com

Structural Dynamics Research Corp. (I-deas software for
machine simulation, NC machining)

LMS International (kinematic and dynamic simulation, data
acquisition, virtual testing)

Mathsoft (Mathcad™ calculation software and sample files)
MSC (Working Model™ simulation software)



CHAPTER 2

Motion in Machinery:

Positional Analysis of Planar
and Spatial Mechanisms

The piston in a pump or engine is constrained to rectilinear motion. The motion of the
crank and connecting rod in the same engine or pump is planar. Robots and automo-
tive steering linkages include links with spatial motion.

Complex-number methods are important analytical tools for analyzing and

designing planar linkages. But complex-number methods cannot be used to analyze
spatial linkages. Analytical vector methods are used to analyze and design both planar
and spatial linkages. Graphical methods are a useful tool for independent verification
of analytical work.

Concepts and Methods You Will Learn and Apply while
Studying This Chapter

Motion produced by an eccentric cam and a Scotch yoke

Vector manipulation required to solve problems in the kinematics of machinery:
unit vectors, addition of vectors, cross and dot product, and vector differentiation

Solution of vector equations

Analytical vector methods for displacement analysis of planar mechanisms
Complex numbers in rectangular and polar form

Complex arithmetic: addition, multiplication, and differentiation

Complex numbers applied to linkage design and analysis

Analytical methods for solving closed spatial linkages

The Newton—Raphson method for two or more variables applied to single- and
multiloop linkages (an advanced topic)

Design of linkages with the aid of animation software: building a simulation of a
mechanism, running the simulation, and interpreting results of a design study
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2.1 MOTION

When the motion of the elements of a linkage is not restricted to a single plane or to a
set of parallel planes, the linkage undergoes spatial motion. Three independent coordi-
nates are required to specify the location of a point in spatial motion. A rigid body in
spatial motion has six degrees of freedom subject to restrictions imposed by joints.
Spatial or three-dimensional linkages often include joints with two or three degrees of
freedom, such as cylinder pairs and sphere pairs. A spatial linkage would be required if
we were to attempt to duplicate the motion of the human arm.

If the motion of all points in a linkage system is restricted to a plane or to a set of
parallel planes, then the motion is planar. A point in planar motion is located by two
independent coordinates. An unconstrained rigid link has three degrees of freedom in
planar motion. We may, for example, identify the x and y coordinates of a point on the
link and the angular position of the link centerline. Planar motion may be character-
ized by two-dimensional vectors. Plane mechanisms, a special case of the more general
spatial mechanisms, are of particular interest, because they include major components
of the internal-combustion engine, spur gear trains, and most cams, as well as a variety
of other mechanisms.

The plane motion of a rigid link may be pure translation (also called rectilinear
motion), in which case all points on the link move in the same direction at the same
speed. For example, the cam follower in Figure 2.1 undergoes rectilinear motion (i.e.,
translation along a straight line). Translation of a rigid body in general implies motion
in space such that any line connecting two points on the body remains parallel to its
original position.

In another special case, the plane motion of a body is described by pure rotation,
in which case a point on the link is fixed (as, for example, on a cam). Oscillation refers
either to a back-and-forth rotation (e.g., the motion of a pendulum) or a back-and-
forth translation (the motion of a piston). In the study of mechanisms, oscillation is
commonly used in the first sense, and the motion of a piston is described instead as rec-
iprocating motion. In every case, the meaning should be clear in context. Rectilinear
motion and rotation of a rigid body about a point may be described by one independent
variable (e.g., x and 0, respectively).

Examples of Rectilinear Motion: The Eccentric Cam
and the Scotch Yoke

The eccentric cam with flat-face follower and the Scotch yoke are examples of mecha-
nisms having simple mathematical representations. The eccentric cam of Figure 2.1a is
circular in form, but the center of the circle, C, is offset a distance R from the center of
the camshaft O;. For radius r, the distance from the camshaft center to the follower
face is ¥ — R when the follower is at its lowest position. After the cam turns through an
angle 0 (see Figure 2.1b), the distance becomes r — R cos 6. Therefore, the displacement
of the follower during the interval is

x=r— Rcosf—(r — R) = R(1 — cos0)

for any value of 6, where x is measured from the lowest position.
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(a) (b)
x = R(1—cosb)
2R
0 T
0° 180° 360° 0

v = Rwsin 0

180°
0° 90° 270°f 360° 0

©

FIGURE 2.1 (a) The cam, link 1,is formed by a circular disk of radius r and eccentricity R.

(b) The follower, link 2, undergoes displacement x as the cam rotates through an angle 6.
(c) The displacement and velocity of the follower are plotted against cam rotation.

101
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If this expression is differentiated with respect to time, we obtain the follower
velocity

v = Rwsin 6,

where cam angular velocity @ = df/dt (rad/s). If the cam rotates at constant speed, the
follower acceleration is

a = Rw?cosb.

Displacement and velocity are plotted in Figure 2.1c for constant w. Note that the
velocity is proportional to the eccentricity R, but independent of the cam circle radius r.

In the two-cylinder piston pump of Figure 2.2, the cam raises and lowers a shaft
with a piston at each end by acting alternately on two separate follower faces. The
cam pushes against the upper follower face, lifting the piston assembly during 180° of

FIGURE 2.2 A two-cylinder cam-type piston pump. An eccentric cam (in the form of a sealed-roller-type bear-
ing) transmits power from crankshaft to follower (the piston drive). The location and velocity of the piston are
the same as given for the eccentric cam, except that the roller bearing eliminates sliding. (Source: Hypro, a
division of Lear Siegler, Inc.)
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FIGURE 2.3 A Scotch yoke is kinematically
equivalent to an eccentric cam.

the cam’s rotation. Through the remaining 180° of the rotation, the cam acts against
the lower follower face, forcing the piston assembly downward.

The Scotch yoke (see Figure 2.3) is kinematically equivalent to the eccentric cam
just considered. In this case, link 1, the driver, has a pin on which the slotted follower,
link 2, rides. The pin is a distance R from Oy, the axis of the driver. Measuring from the
lowest position of the follower, we see that displacement, velocity, and acceleration are
given by the equations that were used to describe the eccentric cam.

2.2 VECTORS

Vectors are an important part of the language of mechanism and the other branches of
mechanics. They provide us with a graphical and analytical means of representing
motion and force. A quantity described by its magnitude, direction, and sense can be
considered a vector and can be represented by an arrow. Now, suppose a vector repre-
sents a point on a piston that is constrained to move vertically. Then the vector direc-
tion is vertical, and with further information, we may determine the vector sense
(upward or downward) and vector magnitude.

Graphical and analytical vector methods may be applied to linear displace-
ments, velocities, accelerations, and forces, and to torques and angular velocities and
accelerations. Although finite angular displacements possess magnitude and direc-
tion, they are not generally considered vectors, because they do not follow the rules of
vector addition.

Vectors are usually identified by boldface type to distinguish them from scalar
quantities. A line above or below the letter symbol may be used as an alternative



104

Chapter 2 Motion in Machinery

identification for a vector. A different designation is suggested for computer use—for
example, “L” for scalar link length and “r” for the corresponding vector.

Right-Hand Coordinates and a Sign Convention for Angles

A right-hand coordinate system is used for vectors. The thumb, index finger, and mid-
dle finger of the right hand represent, respectively, the mutually perpendicular x-, y-,
and z-axes. A vector in an xy-plane can be described by its magnitude (length) and its
direction, an angle measured counterclockwise from the x-axis. If the vector represents
a link rotating in an xy-plane, an increasing angle corresponds to a positive (counter-
clockwise) angular velocity. Then, the angular-velocity vector is in the z-direction.

Angles in Radians

Most software and programming languages expect angles to be measured in radians.
Some software packages will accept either degrees or radians, but be sure that you and
the software understand each other.

The Commutative, Associative, and Distributive Laws for
Adding Vectors and Multiplying a Vector by a Scalar

In the following laws governing the addition of vectors and the multiplication of a vector
by a scalar, A, B, and C are vectors and m is a scalar quantity:

A + B = B + A (commutative law for addition);

A+ (B + C)= (A + B) + C(associative law for addition);

mA = Am (commutative law for multiplication by a scalar);

m(A + B) = mA + mB (distributive law for multiplication by a scalar). (2.1)

As noted earlier, finite angular displacements are not generally treated as vectors (or
scalars). To see why, consider the motion of an aircraft, with yaw denoted by the angle
0 and pitch by the angle ¢, where both 6 and ¢ are moving coordinates referred to the
axes of the aircraft. Let the aircraft make a 90° right turn (6 = 90° cw) and then pitch
downward by 90° (¢ = 90°) Using any rigid body to represent the aircraft, we see that
if the order of these two maneuvers is reversed, then the result is different.

We may run into a similar situation when analyzing the motion of a robot arm. If
the order of the commands is changed, the final position may be different. Thus,

0+¢d#*d+0,

showing that finite rotations about nonparallel axes do not follow the commutative
law for addition.

Unit Vectors

In general, a vector of unit magnitude can be called a unit vector. Thus, A = A/A is a
unit vector, where A = |A| is the magnitude of vector A. Unit vectors i, j, and k (or I,
J, and K) parallel to the x, y, and z (or X, Y, and Z) coordinate axes, respectively, are



Section 2.2 Vectors 105
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FIGURE 2.4 Vector R locates the position of the
point P in the xyz coordinate system.

particularly useful. These unit vectors are also called rectangular unit vectors. A right-
hand system of mutually perpendicular coordinates is shown in Figure 2.4. A vector
may be described in terms of its components along each coordinate axis.

Vector Components

Let the location of a point in space be described by a vector extending from the origin
of a coordinate system to the point. For example, point P in Figure 2.4 is located by the
vector R.The x, y, and z coordinate axes in the figure are mutually perpendicular. Any
motion of P will result in a change in the vector R, either in its magnitude, its direction,
or both.

A plane through P perpendicular to the x-axis intersects that axis at a distance R,
from the origin O. (See Figure 2.5.) The distance R, is called the projection of the vec-
tor R on the x-axis, or the x component of R. The projections of R on the y-axis and
z-axis are labeled R, and R, respectively. Vectors i, j, and k are unit vectors in the x, y,

/ FIGURE 2.5 The vector R can be resolved into com-
ponents along the x-, y-, and z-axes.
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x FIGURE 2.6 Each component vector can be
considered the product of a unit vector and the
scalar magnitude of the component.

and z directions, respectively, as shown in Figure 2.6. That is, each has unit length and is
used only to assign a direction. The scalar length R, multiplied by the unit vector i
gives us the vector iR, of length R, and parallel to the x-axis. The original vector is
given by the vector sum of its components:

R = iR, + jR, + kR, (22)

Vector Equations

If two vectors are equal, then each component of the first is equal to the corresponding
component of the second. Thus, let

A =iA, +jA, + kA,
and
B = iB, + jB, + kB..

Then

A = Bimplies that
A,=B,, A,=B, and A, = B,

Vector Addition and Subtraction

The addition of vectors simply involves adding the vector components in the x-, y-, and
z-directions (i.e., the #,j, and k components) individually. For example, let

C=A+8B
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where vectors A, B, and C are represented in terms of their scalar components and
rectangular unit vectors. Then

C=i(A, + By) +j(A, + B)) + k(A, + B,)).

Vector subtraction is similar. If

then

D =i(A, — B, +j(A, — B)) + k(A; — B,).

Graphical Addition and Subtraction of Planar Vectors

Vectors may be added graphically by joining them head to tail. Although graphical
procedures may be used to treat both planar and spatial linkages, graphical solutions
are most commonly used with planar problems. Consider the vector equation

A+B+D+E=F

where all of the vectors lie in the same plane, as shown in Figure 2.7a. Beginning at an
arbitrary point o, we draw vector A and then successively add vectors B, D, and E, with
the tail of each added vector beginning at the head of the vector last drawn.

The vector sum is given by the vector F, with tail at 0 and head drawn to the head
of the last vector of the series to be added. The reader can verify that the addition of
vectors is commutative; that is, the vectors may be added in any order to obtain the
same result: A + B = B + A, and so on.

Vector subtraction is sometimes required when we consider relative motion.
Thus, if vector G is given by vector A minus vector B, we write

G=A-B or G=A+ (—B),

where vector (—B) is identical to vector B, except that the sense is reversed, as shown
in Figure 2.7b. The second form of the expression for the difference between two vectors
is preferred, particularly when many vectors are to be combined.

Determinants

Determinants can be used in vector operations and to solve equations. Determinants are
square arrays of elements enclosed in vertical bars, like this second-order determinant:

a ¢C

det A =
© b d
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— \\

o
F=A+B+D+E

(@)

(-B)

FIGURE 2.7 (a) The graphic addition of
several vectors. (b) Vector subtraction.
Simply reverse the sense of the vector being
(0 subtracted, and add it like any other vector.

G=A-B=A+(-B)

We evaluate a second order determinant by multiplying terms along the diagonals. The
product of the terms on the diagonal running from the lower left to the upper right of
the determinant is subtracted from the product of the terms on the diagonal running
from the upper left to the lower right of the determinant. This is how it works:

a C

b d = ad — bc.

det A = ’
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A third-order determinant looks like this:

detB =

o O ®

d g
e hj.
f i

We can evaluate a third order determinant by repeating the first two columns and mul-
tiplying terms along each diagonal. The products of the terms on the diagonals running
from the upper left to the lower right are added, and the products of the terms on the

diagonals running from the upper right to the lower left are subtracted. This is how a
we evaluate a third-order determinant:

g
h
i

det B =

o o ®

d d
e e = aei + dhc + gbf — gec — ahf — dbi.
t f

o O ®

A word of caution: The diagonal method will not work for determinants of fourth or
higher order.

The vector cross product is expressed as a determinant in the section that follows.
Before the general availability of computers, determinants were also a popular method
for solving sets of simultaneous equations. (See, for example, the velocity analysis of a
four-bar linkage in the next chapter.) Now we are now more likely to use software that
is capable of performing vector and matrix operations directly, particularly for prob-
lems that result in sets of three or more equations. Another alternative is to use animation
software that utilizes powerful built-in numerical methods.

The Vector Cross Product

In addition to the product of a scalar and a vector, two types of products involving vec-
tors alone are defined: the vector or cross product and the scalar or dot product. The
vector cross product, or simply the cross product of two vectors is a vector perpendicular
to the plane in which the two vectors lie. The cross product of vectors A and B separated
by angle 6 is A X B = C, where the magnitude of Cis C = ABsin 6 and the direction
of C is given by the right-hand rule, as follows: The thumb and index finger of the right
hand are extended in the direction of vectors A and B, respectively. If the middle finger
is then bent perpendicular to A and B, it points in the direction of vector C. A X B is
read “A cross B.” The cross product of two parallel vectors is zero (the null vector) since
angle # = 0. Thus, A X A = 0. Some references identify the null vector as 0, using bold
type to remind the reader that the null vector can be written as 0i + 0j + Ok.

Observe that the cross product does not follow the commutative law. Interchanging
the order of the vectors changes the sign of the vector product (i.e, B X A = —A X B).
It can be seen that the vector products of unit vectors i, j, and k are as follows:

iXj=k jXi=-k jxk=1i kXj=—i
kxi=j ixk=—j ixXi=jxj=kxk=0 (2.3)
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If vectors A and B are expressed in terms of their scalar components and unit vectors
as

A =iA, + JA, + kA,
and
B = iB, + jB, + kB,,
respectively, then
A X B =i(AB, — A.B)) + j(A.B, — AB;) + k(A,B, — A,B,),
which may be written more concisely in determinant form as

1
A X B = |A, . (2.4)
B,

2~

y

oo N

A
B

[}

y
The vector cross product will be used extensively in later chapters. One application of
the cross product is determining the velocity of a point on a link rotating about a fixed
center at angular velocity
® = i, + jo, + ko,
If the vector from the fixed center to the point in question is given by
r=ir, +jr, + kr,,

then the velocity of the point is given by

v=0Xr= o, o, ol (2.5)

SAMPLE PROBLEM 2.1

Rotating Link

Suppose a link that is held in a ball joint (spherical pair) at one end rotates with an instantaneous
angular velocity

o = i2 + j(—=1) + kd(rad/s)
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Find the instantaneous velocity of P, a point on the link defined by the radius vector
r=i(-1) +j10 + k2(mm),

measured from the ball joint. (See Figure 2.8a.)

Solution. The velocity of the point is given by

ik i j k
v=wxr=|A, A, Al=|2 -1 4
B, B, B, -1 10 2

i(=2 — 40) +j(—4 — 4) + k(20 — 1)
i(—42) + j(—=8) + k(19) (mm/s)

The velocity is perpendicular to the plane of w and r; its magnitude is given by the sum of the
squares of the velocity components:

v=VV+ 2+ k= V(=422 + (=8)* + 19> = 46.79 mmys.

P

Rigid link

Ball joint

F

(b) ©

FIGURE 2.8 (a) Velocity of a point on a link, in terms of the cross product. (b) The
torque of force F about point O is T' = r X F. (c) A link in equilibrium.
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Another application of the vector cross product involves torque. For example, in
Figure 2.8b, let force F be applied to a rigid link. The resultant torque of F about point
O may be represented by the vector product

i j k
T=rxF=|r, r, r (2.6)
F, F, F,

The magnitude of T'is rF sin 0, and the direction of T is perpendicular to the plane of r
and F, as shown in the figure. Note that applying the right-hand rule to T = r X F
gives the direction of the resultant torque. If both r and F lie in the xy-plane, then T is
represented by a vector in the +z direction. The link could be in static equilibrium if a
force and torque were applied, as in Figure 2.8c.

Later, you will use the torque cross product for static and dynamic analysis of
linkages. The required driving torque can be determined from forces on the driving
link.

The Dot or Scalar Product

The dot product of two vectors is a scalar equal to the product of the magnitudes of the
vectors and the cosine of the angle between them. Thus, the dot product of vectors A
and B, separated by angle 6, is given by

A-B = ABcosé. 2.7)
Hence,
iri=jj=k-k=1
and
ij=j-k=k-i=0. (2.8)

Let A and B be expressed in terms of their scalar components and unit vectors as

A =iA, +jA, + kA,

and
B = iB, + jB, + kB..
Then
AA=A+ AL+ AZ=A (2.9)
and

AB=AB, + AB, + A.B.. (2.10)



Section 2.2 Vectors 113

The dot product of two perpendicular vectors is zero. Thus, since the cross product of
two vectors is perpendicular to the plane of the two vectors, we have

A (AXB)=B-(AXB)=0

This relationship may be used as a partial check on the calculation of the velocity of a
point on a rigid link.

SAMPLE PROBLEM 2.2

The Dot Product
Use the dot product to check the results of a previous example in which

o =2 +j(—1) + k4,
r=i(—1) + j10 + k2,

and

v=ow Xr=i—42) + j(-8) + k19.

Solution.

w-v=2)(—42) + (-1)(=8) + (4)(19) = 0;
r-v=(—1)(—42) + (10)(=8) + 2(19) = 0.

Thus, v is shown to be perpendicular to the plane of @ and r.

As another example of an application of the dot product, consider a spatial linkage
where we require that the rotation of a certain link about its own axis be zero.
Designating the link by the vector

r=ir. + jr, + kr,
and its angular velocity by
o =iv, + jo, + ko,

we see that the requirement will be satisfied if w - r = 0, or
(o, + jo, + koy) - (ir, + jr, + kr)) = o0 + oy, + 0, = 0.

Some additional laws relating to the dot product and vector cross product are as follows:
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A-B = B- A (the commutative law holds for the dot product, but not the cross
product);

A-B+C)=AB+A-C

and
AX(B+C)=AXB+AXC (distributive law); (2.11)
A, A, A
A-(BXC)=B-(CXA)=C-(AXB)=|B, B, B.;
¢, ¢, C,
and
AXBXC)=(A-CO)B—- (A-B)C
and

(AXB)XC=(A-C)B - (B-C)A

In solving kinematics and dynamics problems, it is often convenient to use mathemat-
ics software with built-in vector functions. Some types of software (e.g., Mathcad™)
express vectors in column form:

instead of the form iA, + jA, + kA..

We then identify the quantity as a matrix with three rows and one column. The
software is capable of adding, subtracting vectors, as well as computing their magni-
tudes and the dot and cross product. Solutions of equations in matrix form will be con-
sidered in a later section. If you have programming skills, you might try writing a
program to perform vector manipulation.

SAMPLE PROBLEM 2.3

Vector Operations
Consider the following vectors (in column format):

4 2 16 -9
A= |3 B=|-1|C= -8 ;D=|-51|
1 -5 -10 7
16
E=| -8
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Find A+ B+C+ D+ E, A-B+C—-D+E, A‘B, A-C,

lAl, |Bl, (lAl)>, A-A, AXA, CXE, AXB,
A X B|, |A|-|Bl, AXC, CXA, A-(A XC),

and

C-(A X C).

Solution. Software with vector capabilities was used to obtain the following results:

29 43
A+B+C+D+E=|-19|; A-B+C-D+E=| -7
-17 -21

AB=0; A-C=230; |A|=5099 |B]=5477; (|A]?=26;

0 0 ~14
AA=26 AXA=|0|, CXE=|0]; AxB=| 22|,
0 0 -10
-2
|A x Bl =27.928; |A|-|B| =27928; AxC=| 56|
—80
2
CxXA=|-51] A-(AXC)=0; C-(AXC)=0.
80

The result A - B = 0 may be unexpected. Since

A+*B = ABcos®,

115

where 0 is the angle separating the vectors and neither A nor B is zero, then cos § = 0. This
indicates that vectors A and B are perpendicular to one another. The magnitude of the cross

product is given by

|A X B| = ABsin6

For this special case, with A and B perpendicular, the cross product equals the product of the

magnitudes. The calculations show this.

We note that A-C = C-A and that A X C = —C X A. These relationships are true in
general. Of course, A + A, the dot product of a vector with itself, is the square of the magnitude of
A,and A X A, the cross product of a vector with itself, is always zero. Since vectors C and E are
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identical, C X E is zero as well. The cross product A X C is perpendicular to both vector A and
vector C.Thus, the scalar triple products A - (A X C) and C- (A X C) are zero.

Differentiation of a Vector

If vector A varies in magnitude and direction with time, then the derivative of A with
respect to time is given by

= 1
dt At—0 At

dA lim At + Ar) — A(t)’ (212)

where At represents an increment in time. Note that dA/dt is a vector and that the
numerator of the fraction on the right involves changes in both the magnitude and
direction of A.

If A, B, and C are vector functions of time and m is a scalar function of time, then
the following rules hold:

Larp =B
Dy mymax B 0,
d dB dA
AB) =A-—S B (2.13)
%(mA)zm%—i-%A
Z[AX(BXC)]=A><<B><CZ(;>+A><<CZI:><C>+CZ?X(BXC)

Recall that A X B = —B X A. Thus, the order of the vectors in the vector cross prod-
ucts should be retained when we apply the chain rule of differentiation.

The time differential of a unit vector fixed within a fixed coordinate system is, of
course, zero, since neither the magnitude nor the direction of the vector changes. The
time differential of a unit vector in a moving coordinate system is not zero. In applica-
tions of vectors to velocity and acceleration, we will consider both fixed and moving
coordinate systems.

Solution of Vector Equations
Let a vector equation in the form
r0+rl+r2+r3=0 (214)

represent a spatial linkage.
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Each vector may be expressed in terms of its x, y, and z components and the unit vec-
tors i,, and k, such as

r = rlxi + rlyj + rlzk

and so on. Since the sum of the components in each coordinate direction must equal
zero, we have three independent scalar equations:

Fox + Fix + "y + F3y = 0,

and so on. Thus, in general, the vector equation r, + r; + r, + r; = 0 may be solved
for three unknown components. For example, we may solve for r3,, r3,, and r3, if the
other components are known. Alternatively, each vector could be expressed in terms of
its magnitude and two independent angular coordinates. Equation (2.14) could then be
solved for any combination of three magnitudes and directions. Planar linkages can be
represented by two independent scalar equations. Only two unknown components are
permitted if Eq. (2.14) is applied to planar linkages.

If you prefer to solve the nonlinear position equations of a linkage using an itera-
tive process, you will need an initial or trial guess at the solution. A sketch will help.
Later, when you determine velocities, you will use linear equations. Then, matrices will
be useful. A number of other methods for solving the nonlinear position equations of a
linkage include

e graphical methods,
e motion simulation software,
¢ the dot-product method, and

e the cross-product method. This is a vector elimination method suggested by
Chace (1963). Although it seems difficult at first, you can use it to write an efficient
noniterative program for solving four-bar linkages.

Solution of Planar Vector Equations
Consider the planar vector equation
A+B+C=0, (2.15)
or, in terms of unit vectors (A", etc.) and magnitudes (A4, etc.),
A"A + B“B + C*C = 0. (2.16)

If the magnitude and direction of the same vector are unknown, then the solution is
easily obtained. For example, C is unknown; we use

C=—(A,+ B)i — (A, + B))j (2.17)
or

C=—(A-i+ B-i)i— (A-j + B-j)j. (2.18)
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If the magnitudes of two different vectors are unknown, the vector cross product method
may be used. Suppose, for example, magnitudes A = |A| and B = |B| are unknown in
the vector equation A“A + B“B + C"C = 0. We take the dot product of each term with
B" X k, noting that B“-(B" X k) = 0, since vector B is perpendicular to vector
B" X k. Thus, we obtain
A“A-(B* X k) + C-(B* X k) =0,

from which the magnitude of vector A is given by

_—C-(B" X k)

AT A B R 219

Similarly, the magnitude of B is given by
_ —C- (A" X k) 590
_Bu.(AuXk)' ( )

If the vector directions A* and B* are unknown, but all vector magnitudes are known,
the solution of the equation A + B + C = 0 is more complicated. In this case, the
results are

5 5 221/2
C’+B - A
A= F| B>~ e (C* X k)

g g (2.21)

Tl O

and
C2+BZ—A221/2 C’+ B - A

B= +|B—-|—F7F+— (C*" X k) — | ———— |C*. (2.22)

2C 2C
(The significance of the signs before the radical are illustrated in the section that follows.)

When the magnitude of A and the direction of B are unknown, A and B may be
found by the equations

A = —C-A”:F\/B2 - [C-(A” X k)}2 A" (2.23)

and

B = —[C- (A" X k)]|(A X k) + VB? — [C- (A" X k)]’A". (2.24)

This approach uses vector notation throughout, unlike alternative methods that use
vector analysis to derive scalar equations. If the method is to be used for computer-
aided analysis and design of mechanisms, it is essential to use software with vector
capabilities or to write subroutines for that purpose.
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FIGURE 2.9 (a) Slider-crank linkage. (b) Vector representation.

2.3 ANALYTICAL VECTOR METHODS APPLIED TO DISPLACEMENT
ANALYSIS OF PLANAR LINKAGES

An in-line slider-crank mechanism has two assembly configurations. The wrist pin can
be located by drawing an arc the length of the connecting rod. The two possible wrist
pin locations are shown in Figure 2.9a. We usually want an analytical solution. Suppose
we have already decided crank and connecting rod lengths. If we are given the position
of the crank for the linkage of Figure 2.9b, then the unknowns will be the connecting
rod orientation and slider position. These may be found by using the equations of the
previous section to solve the vector equation

) + r + r = 0. (225)

SAMPLE PROBLEM 2.4

Slider-Crank Linkage

Suppose an in-line slider-crank linkage (see Figure 2.9a) has a crank described by the vector
r = i + j2 (at the instant shown) and a connecting rod length », = 4. Find the connecting rod
orientation r4 and the slider position r. (See Figures 2.9a and b.)

Solution. The slider position is given by the vector

2
= rl-rSJF\/r%|:r1-<rS><k>:| ry
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=| =@ +j2)- (i) F \/42 - [(i +j2) - (=i X k)T (i),

where the sign of the root depends on the initial assembly configuration. The positive root
applies to the configuration in the figure, yielding r, = —i4.464. The alternative wrist-pin location,
determined by taking the negative root,is ry = +i2.464.

The vector representing the connecting rod is

r=—[(i +j2) (=i X k)](—i X k)
£ V42— [(i + 2)- (=i + k)]A(—i)
—2j + V12(~i).

The negative root applies to the configuration shown, yielding
r, = i3.464 — j2

and

(3464 — j2)

ry = 1 = i0.866 — jO.5.

For the alternative wrist-pin location, the positive root applies, yielding
r= =2 + V12(-i) = —i3.464 — j2
and

ré = —i0.866 — jO.5.

The Four-Bar Linkage

A graphical layout of a four-bar linkage is easily constructed. We require only that
the position of one link be given relative to the frame and that the link lengths be
known. Then, the linkage may be drawn with the aid of a compass. It can be quite
time-consuming, however, to develop the analytical formulas for link positions that
are to be used to write a computer program.

Position Analysis Using the Vector Cross Product

Equations 2.21 and 2.22 may be used to find linkage displacements. These equations
apply when the directions of vectors A and B are unknown. The four-bar planar link-
age of Figure 2.10a is described by the vector equation

ry + r + r + r; = 0. (226)

Suppose we have already decided the length of each of the links in a tentative design,
where link 1 is to be the driver. For a given angular position of link 1, the diagonal vector
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(b)

FIGURE 2.10 Four-bar planar linkage. (a) Use the lower set of signs in the position analy-
sis equations for this assembly configuration. This configuration is also called the open
position. (b) Alternative assembly. Use the upper set of signs. This configuration is also
called the closed position.

(also called the prime diagonal) is given by
rg=rn+trn,
and the triangle formed by links 2 and 3 and the diagonal is described by
r; = —(r, + n). (2.27)

Because the lengths of the links are specified and the orientation of link 1 is given, the
following substitution

A =n,

B = r;,
and

C=rd=r0+r1
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may be made in Egs. 2.21 and 2.22; yielding

2 2 2 2 2 2
ry—ris+r ry—ry +r
rn = + r32_ > 2 d rﬁxk + 2 2 4 —Iq rﬁ (228)
Ta Tq
and
2
, (ri—ritrg ri—r;+rg
d d

If the linkage is assembled so that the vector loop ryrsry is clockwise, then we use
the lower set of signs in the preceding equations. (See Figure 2.10a.) If the loop is
counterclockwise, we use the upper set of signs (Figure 2.10b).

SAMPLE PROBLEM 2.5

Position Analysis Using the Vector Cross Product

A planar mechanism (see Figure 2.10a) has the following link lengths:
Link 0, fixed: 120 mm;

Link 1, crank: 60 mm;

Link 2, coupler: 140 mm;

Link 3, follower: 80 mm.

Find the orientation of links 2 and 3 at the instant the internal angle between the crank and fixed
link is 116.56°.

Solution. 1If the links are drawn to scale, the joint between links 2 and 3 can be located by using
a compass. Alternatively, an analytical vector solution may be obtained as follows. Select the
coordinate system so that the fixed link lies in the —x direction (as in Figure 2.10a.) Then the
known values are

rn = _i120,
r = 60(icos 116.56° + jsin116.56°) = —i26.83 + j53.67,
ry = 140,

and
r; = 80.
The diagonal is given by the vector

rg = (rp + 1) = —il46.83 + j53.67.
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which has a magnitude r;, = 156.33 and unit vector
ri = —i0.9392 + j0.3433.
The direction of the cross product rij X k is given by the right-hand rule. The cross-product vec-

tor lies in the xy-plane and is perpendicular to r}j. Expressing the cross product in determinant
form, we have

i ik
réx k= [-09392 03433 0| = i0.3433 + j0.9392
0 0o 1

Using Eqgs. 2.28 and 2.29, we define

P ri+rd 807 — 1407 + 156337
g= /3772t ra 80T 1407+ 16357 o5 o5
2r, 2 X 156.34

When the vector loop r,rsry is clockwise, the lower set of signs in Eqgs. 2.28 and 2.29 applies. The
vector representing the coupler is given by

=+ Vr32 — az(r('ﬁ X k) + rij(a —ry)
= V/80% — 35.95%(i0.3433 + j0.9392)
+ (35.95 — 156.34) (—i0.9392 + j0.3433)
= i137.60 + j25.79 = 140/10.6°.

The vector representing the follower is given by
ry=—\r} — a(rl x k) — ar}
= —\/80% — 35.95%(i0.3433 + j0.9392)

~39.95(—i0.9392 + j0.3433)
i9.24 — j79.46 = 80/ —83.4°.

(Note that the magnitudes of vectors r, and r; agree with the given data.)

In some linkage configurations, it is impossible to go from one mode to another without
disassembling the links. Applying Grashof-type criteria to check this linkage (see Chapter 1), we
find that

Lmax + Lmin = Lu + Lb
(140 + 60 = 120 + 80)
This is a crossover-position or change-point mechanism. The mechanism may go from one mode
to another, depending on inertial forces, spring forces, or other forces. Using Eqgs. 2.28 and 2.29

with the upper set of signs for the position where r,, r;, and r, form a counterclockwise loop, we
obtain the vector representing the coupler:

r, = i88.54 — j108.44 = 140/ —50.8°.
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The vector representing the follower is
r; = i58.30 + j54.68 = 80,/43°.
The transmission angle ¢ = 0 at 6; = 0. If this linkage is stopped in the 6; = 0 position, it can-

not be restarted by driving link 1. Special consideration has to be given to problems associated
with driving change-point linkages.

Ordinarily, we would want to check the entire range of travel of the linkage. The above
example shows how much work is required to find only one linkage position. In next
example we will try “working smarter” by using mathematics software to show the
performance of the linkage through a full cycle of motion.

SAMPLE PROBLEM 2.6

Checking the performance of a linkage design

In Chapter 1, we attempted to optimize a crank-rocker linkage with a 30° range of output crank
motion. The resulting linkage had the following dimensions (mm):

L, = 300,L; = 50,L, = 235,and L; = 193.2.

Plot the coupler and output crank positions and the transmission angle against the input crank
position.

Solution summary. The solution is similar to that for the previous sample problem, except that
we let the computer do the tedious work. Vectors in column form represent links, and variables
are a function of input angle 6, which varies from zero to 27. Extreme values of the transmission
angle, ¢(0) and ¢(7), agree with the values in Chapter 1. The results, plotted in degrees and
shown in figure 2.11, also show the range of output crank motion.

Detailed solution. 1t is customary to show vectors in boldface type to distinguish them from
scalar quantities shown in lightface type. The sample problem detailed solutions that utilize
mathematics software use a different convention. Both vectors and scalars are shown in lightface
type. In the calculations that follow, link lengths are L, L, etc. and the corresponding vectors are
1y, 11, etc. The rectangular unit vectors are i, j, and k.

Ly:=300 L;:=50 L,:=235 L3:=193.2 mm

=0,——...2
:=0.750 7
7L0 -300 Ll * COS (91)
rp .= 0 ry = 0 r1(6’1) = Ll ° sin(@l)

0 0 0
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61
deg
o FIGURE 2.11 Checking the performance of
Crank position a linkage design.
Diagonal vector:
Rectangular 1 0 0
a):=ro 0y i=|0] j==]1] k:=|0
Ty 0
rg.(61) == (6,) vectors 0 0 1
Ir4(61)]
. L3 — L3 + (Irg(00)1)
Define a(6,) := 211 (0|
a(b1

q = 1 for the assembly configuration wit
tor loop traversed counterclockwise.

q:=1
Coupler vector:

5(01) == q- VL3 — a(6;)*"

h vector loop r,r314 clockwise and —1 for the same vec-

(rau(61) X k) + 14,(01) - (a(61) — |ra(61)])

0,(6,) := angle(r2(01)o, r2(61)1)
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Follower crank vector:

r3(01) := q- VL3 — a(61)*« (14, (61) X k) — 14,(6;) - a(6;)
03(6,) := angle(r3(61)o,13(01)1) — 2+ 7

Transmission angle: Check transmission angle limits:
L + L3 — (I8 | ¢(0) ¢(m)
= = 70.674 ——— = 109.258d
(61) := acos 2:L,-Ls deg deg 0 °8

Position Analysis Using the Dot Product

As an alternative to using the vector cross product, we may analyze linkage displace-
ment by using the dot product. In Figure 2.12, a vector representation of a planar four-bar
linkage, the diagonal vector is given by:

r;=ry+r. (2.30)

Suppose we are to determine the linkage position for a given angle 6, if all of the link
lengths are known. Taking the dot product of each side of this equation with itself, we
have

rgtrg = (rg +r)- (o + 1), (2.31)
or
ri=ri+ 2ry cosp, + ri, (2.32)

where the angle between vectors ry and ry is ¢, = 180° — 6,. Thus, Eq. (2.32) is
equivalent to the law of cosines:

rﬁ = r% — 2rgr; cos 67 + r12.
The direction of the diagonal is given in terms of the x and y components of ry and ry:

Iy + r
tanfy; = ———— (2.33)
T0x + Ix

where ry, = 0 if the x-axis is selected to be parallel to the fixed link. For some four-bar
linkage proportions, 8, can be in any of the four quadrants. If Eq. (2.33) is programmed
for machine calculations, it is important that 6, be located in its proper quadrant. This
may be possible if a two-argument arctangent function is available wherein both
numerator and denominator become inputs and the quadrant of the angle is determined
by the signs of the numerator and denominator. As an alternative, we note that

foy T 11y

sinf,; = — (2.34)
d
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(b)

FIGURE 2.12 (a) Four-bar planar link-
age; position analysis by dot-product
method. (b) Position analysis sample
problem. (c) Alternative assembly mode.

and

(2.35)

It can be shown that

6, 1 - cos
tan <2‘1> - - %% (2.36)
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Using the last three expressions instead of Eq. (2.33), we are able to determine the correct

quadrant of 6.
We continue the analysis with the loop closure equation

rg+nrn+r=0,
or
—r=1r;+tn
Taking the dot product of each side of this equation with itself, we have

ryery=(rg+n)(rg+n),

or
r% = rlzl + 2r 1y cos ¢y + r%,
so that
o )
cosp,=————"—, for 0= ¢, = 180°.
2]’(1}’2
Then,
02 = Od + (bb'

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

The sign before ¢, depends on the mode of assembly of the linkage. If the vector loop
nrsry is clockwise, as in Figure 2.12a, the negative sign applies; if counterclockwise, the
positive sign applies. In most cases, once the linkage is assembled, the mode will not

change.

The position of link 3 may now be found by using the dot product in a similar
manner or by using the law of sines. So that errors of angle quadrant are avoided, how-
ever, the x and y components of r; will be determined from the loop equation for the

entire linkage, written as

ry=—(n+n+n)
Then,

r3

. y
sinf; = —,

r3

Y3y
cosf; = —,

r3

and 65 is found from the equation

03 1 — cos 65
tan| = | = ——.
2 sin 65

(2.42)

(2.43a)

(2.43b)

(2.44)
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SAMPLE PROBLEM 2.7

Position Analysis Using the Dot Product
A four-bar linkage has the following link lengths:

Fixed link: 7o = 30 mm;
Drive Crank: 71 = 10mm;
Coupler: r, = 35mm;
Follower: r3; = 20 mm.

Find the position of links 2 and 3 when 6; = 45°, as shown in Figure 2.12b.

Solution. We will utilize the equations developed from the position analysis using the dot prod-
uct, which could easily be programmed if required. From Eq. (2.32), we have

rz =307 + 2 X 30 X 10 cos(180° — 45°) + 107,
or

rg = 23.99 mm.

From Egs. (2.34) through (2.36),
0+ 10sin45°

Sinfg =~z o0 = 0.2947,
~30 + 10 cos 45°
cos 0, = T;OS = —0.9588,

and

[0 _ (LF 0958)
M )T T 02047

so that
0, = 162.86°.

Note that Eq. (2.33) yields

0 + 10sin 45°

m = arctan( *03084),

6, = arctan

which will usually be evaluated as —17.14°. The error would be obvious if we used a sketch, but it
might go undetected in machine calculations. From Eq. (2.40), we obtain
20% — 35% — 2399

2 X 2399 x 35’

cos ¢y, =
so that
¢, = 146.51°.

For the assembly mode shown in Figure 2.12b (the clockwise vector loop),

0, = 0, — ¢y = 162.86 — 146.51 = 16.35°,
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and for the alternative mode in Figure 2.12c,

0, = 0, + b, = 162.86 + 146.51 = 309.37°.

Using the loop closure equation, Eq. (2.42), for the x and y components of r;, we have, for the
assembly mode of Figure 2.12b,

r3x = —(=30 + 10 cos 45° + 35cos 16.35°) = —10.66° mm

and

rsy = —(0 + 10sin45° + 355in16.35°) = —16.92° mm.

Then, the position of link 3 is found by using an xy : rf conversion, from which it follows that
ry = 20/—122.21°. If this conversion is not available, then we may use Eqgs. (2.43a) through
(2.44), whereupon we obtain

an(%2) _ L+ 106620
M2 )T 169200

or
05 = —122.2°(237.8°).

For the alternative mode, from Figure 2.12c,

r3, = —(=30 + 10cos45° + 35c0s309.37°) = 0.73 mm,
r3y = —(0 + 105sin 45° + 355sin 309.37°) = 19.99 mm,

so that

r; = 20mm at 03 = 87.91°.

For a given value of 6, the diagonal vector r, is the same for both assembly modes. Thus, the tri-
angle formed by the diagonal and links 2 and 3 for one mode is congruent to the corresponding
triangle for the other mode (but reflected about r,).

For the dimensions given in this example, link 1, the drive crank, is shortest, and
Lyax + Ligin < L, + Ly (35 + 10 < 30 + 20). Thus, we have a crank-rocker linkage as defined
in Chapter 1. If this linkage is assembled in one mode (Figure 2.12b), it cannot assume the other
mode without reassembly.

The vector methods of position analysis using the dot product and cross product are not
limited to one type of linkage. The four-bar linkage was used only as an illustration; other
configurations can be solved by using the same principles and a bit of ingenuity.

2.4 COMPLEX NUMBERS

Complex numbers, each made up of a real and an imaginary part, provide an alternative
representation for vectors that lie in a plane. Once the rules for handling complex num-
bers have been mastered, it is fairly easy to apply complex numbers to the analysis of
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planar linkages. Note that the imaginary quantity is a mathematical artifice. When used
together in the analysis of mechanisms, however, the real and imaginary parts of complex
numbers represent components of actual dimensions, velocities, and accelerations.

Rectangular Form

A complex number may be written in the rectangular form
z=x+jy,

where j = \V/—1is the imaginary unit. The term x represents a real number called the
real part of the complex number z. The term y represents a real number called the
imaginary part of z.

The complex plane shown in Figure 2.13 permits the graphical representation of
vectors as complex numbers. Consider a vector R of magnitude R with components R,
and R, along the real and imaginary axes, respectively. Using angle 6 = arctan(R/R,)

in the complex plane and magnitude R = VR? + R 3 , vector R may be identified by
its real part R, = Rcos 6 and its imaginary part R, = Rsin 6 and may be written in the
form

R =R, + jR,. (2.45)

Polar Form
It can be shown that

e = cosf + jsin@ (2.46)

Imaginary axis

2Lk

Real axis

FIGURE 2.13 A vector in the complex plane.
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(an identity called the Euler formula). Using this identity and Eq. (2.45), we can
express a vector in polar form in terms of its magnitude and the complex exponential as
R = R(cos® + jsinf) = Re, (2.47)

where 6 is in radians.

Complex Arithmetic—Addition

The rectangular form of a complex number is convenient for addition and subtraction.
For example, if

R, = Ry, + jRy,
and

R, = Ry, + Ry,
then

Rl + R2 = (Rlx + sz) + j(Rly + Rzy). (248)

Two complex numbers are equal if and only if the real and imaginary parts of the first
are respectively equal to the real and imaginary parts of the second.
Multiplication, Division, and Differentiation

The polar form of a complex number may be more convenient than the rectangular
form for multiplication, division, and differentiation. Following the rules of algebra
and calculus, if

R = Re”,
then
Rel? = Rel®*9), (2.49)
R/ = Re/O9), (2.50)
and
dR A LdR do
? = ije’e + ejeg, where w = E (251)
For a rigid link of fixed length R, then
dR
= =0
dt
and
dR .
— = joRe” = jwR. (2.52)

dt
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Using the last expression for constant R and noting that j can be expressed in polar
form as j = /™2, we obtain

dR ,
D wRe!0F™2) (2.53)

This result is useful in the velocity analysis of linkages.

When using a calculator, one may employ the rectangular—polar (xy : R6) con-
version feature to put a complex number in a form convenient for addition, differentia-
tion, and so on.

In solving problems involving planar linkages, vector analysis and complex-num-
ber methods, as well as other methods, are at our disposal. In some ways, the imaginary
unit j resembles a unit vector in the y direction, similar to the unit vector j. However,
operations with the imaginary unit are different. For example, multiplication of a vec-
tor by the unit vector j is defined only by the dot and cross products, neither of which
has the same meaning as multiplication by the imaginary unit j.

Multiplication of a complex number by the imaginary unit j represents a counter-
clockwise rotation of 7/2 rad (90°) in the complex plane. Recalling that j = ¢/™2, we
have the following results:

jejO — ej(6+7r/2),
]'2 — ejw — _1’
j3 — ej377'/2 — _]', (254)

jt=etm =41,

and so on.

2.5 COMPLEX-NUMBER METHODS APPLIED TO THE DISPLACEMENT
ANALYSIS OF LINKAGES

The displacement, velocity, and acceleration of planar linkages may be analyzed by
using complex-number methods. Consider, for example, the sliding contact linkage
shown in Figure 2.14a, where link 1 rotates and the slider moves relative to link 2,
causing link 2 to oscillate. The linkage can be described at any instant by the vector
equation

R2 = RO + Rl (255)

(see Figure 2.14b), where R, represents the fixed link 0,0, R, represents the crank
OB, and R, represents the portion of link 2 between O, and pin B.

If link lengths R, and R, are given, Eq. (2.55) may be solved for any given crank
angle 0. For convenience, we select the real axis in the direction of the fixed link.
Then, expressing Eq. (2.55) in complex form, we have

RZ = sz + ijy = RQ + Rlx + ley, (256)
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B (B, on link 1,

B, on link 2)
02 01
(a)
B
Imaginary axis
R,
N
Real axis L
0, 0, FIGURE 2.14 (a) Sliding con-
tact linkage. (b) Complex plane
(b) representation.

where

Ry, = Ry{cos 8,
and

Ry, = Rysin6;.
Equating the real parts of Eq. (2.56), we obtain

Ry, = Ry + R, = Ry + Ry cosb;.
Equating the imaginary parts, we have
Ry, = Ry, = Rysinfy,

and the magnitude of R, is

R, = VRS, + Rj,

= \/R(ZJ + 2RyR; cos 0, + R7cos’0; + R}sin’6,

= V/R2 + 2RyR, cos b, + R3. (2.57)
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The last equation is identical to the law of cosines, which is generally written in terms
of the internal angle 180° — 6,. Angle 6, may be found from
Ry, Ry sin 6,

tanfy = — = —— . 2.58

an oz RZX RO + Rl COS 01 ( )
Although the arctangent is actually multivalued, most calculators and computers will
give values of 6, between 0° and +90° (0 to /2 rad) for positive arguments of the
function and between 0° and —90° (0 to —/2 rad) for negative arguments.

It may be necessary to correct 6, for the proper quadrant. It is safer to use a rec-

tangular—polar conversion routine or a two-argument arctangent function such as
ARCTAN;(x,y) or ANGLE(x,y).

SAMPLE PROBLEM 2.8

Sliding Contact Linkage Solved by the Complex-Number Method
In Figures 2.14a and 2.14b, given link lengths O,0; = 320 mm and O;B = 170 mm, locate slider
pin B when 6; = 50°.
Solution. Pin B is located by Eq. (2.56), from which
RZ = R2x + jRZy = RU + Rlx + ley
= 320 + 170 cos 50° + j170sin 50° = 429.3 + j130.2.

The magnitude and direction of R, are given immediately by using a rectangular—polar (xy:r6)
conversion routine available on many calculators. The routine may be programmed to produce
the correct angle quadrant:

R, = 448.6 mm at 6, = 16.9°.

Or, in complex exponential form, we obtain

R, = 448.6¢/0%4,

These values can be checked with Eqgs. (2.57) and (2.58), which were avoided by using the xy:r6
conversion. The dimensions of this particular linkage (R; < R,) permit values of 6, in only the
first and fourth quadrants. In a similar linkage, but with R; > Ry, 6, can fall in any quadrant.

Employing the principles illustrated, complex-number methods may be used to analyze
many other types of linkages. However, since the complex plane is two dimensional, these methods
are not applied to spatial linkages.

Limiting Positions

Limiting positions for some linkages were discussed in Chapter 1. For the sliding con-
tact linkage of Figure 2.14, link 2 oscillates as link 1 rotates continuously. The locus of
By (point B on link 1) is a circle of radius R; We may find the limiting positions of link



136

Chapter 2 Motion in Machinery

2 graphically by drawing link 2 tangent to that circle. The tangent (representing link 2)
will be perpendicular to the radius (representing link 1).

As an alternative, we may use the calculus. Noting that extreme values of 6, cor-
respond to extreme values of tan 6, for this linkage, we differentiate Eq. (2.58) with
respect to 6; and set the result equal to zero:

dtan 0,
do,

=0 = Rycos6;(Ry + R;cosf;)!
—R;sin 6;(Ry + R, cos 6;) 2(—R;sin ).

Multiply the above equations by (R, + R;cos6;)? and note that cos’6; + sin’6; = 1.
It follows that the limiting positions correspond to

R

0

cos 0y =

Thus, the three links form a right triangle with hypotenuse Ry, and, as just determined
graphically, links 1 and 2 are perpendicular when link 2 is at a limiting position.

The Geneva Mechanism

The Geneva mechanism (Figure 2.15) provides intermittent motion of the driven link
while the driver rotates continuously. It is equivalent to the sliding contact mechanism
(Figure 2.14a) during part of its cycle. For the position shown, pin B on the driver is
entering the slot on the driven member. Thus, O,B is equivalent to link 1 in Figure
2.14a, while the slot is equivalent to link 2 for the next quarter rotation of the driven
member. Then, the driven member remains stationary until pin B enters the next slot.

0,
Driven

FIGURE 2.15 Geneva mechanism,
equivalent to the sliding contact link-
age during part of its cycle.
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2.6 SPATIAL (THREE-DIMENSIONAL) LINKAGES

The motion of all points in a planar linkage is restricted to a single plane or a set of
parallel planes. The motion of points in a spatial linkage is more general. For example,
the motion of a given point in a spatial linkage may describe a curve that does not lie in
a plane, or the motion of two points in the same spatial linkage may lie in two nonparallel
planes.

Kinematic Pairs (Joints)

Spatial linkages employ single-degree-of-freedom joints (e.g., pin joints) and multiple-
degree-of-freedom joints (e.g., ball joints). Some common joints were identified in
Chapter 1. Many others are possible.

Types of Spatial Mechanisms

Spatial linkages are identified by their joint configuration symbols. For example, a
PRCR mechanism consists of a prism (spline), revolute, cylinder, and revolute. A vari-
ety of spatial mechanism configurations are shown in Figure 2.16a through i. Limiting
positions occur when motion about or along a joint stops and then changes direction. A
joint’s limiting position defines its range of motion. The absence of a limiting position
indicates that continuous motion is possible with respect to that joint. In general, limiting
positions in spatial linkages are not as obvious as in simple planar mechanisms.

Analysis of Four-Link Spatial Linkages

Vector methods may be used in the analysis of spatial linkages. For example, if four
links (including the frame) form a closed loop as in Figure 2.15i, then the vector
equation

ry + r + r + r; = 0 (259)

may be used to analyze the displacement of the linkage. If each vector is written in
terms of its components and the unit vectors i,j,and k (i.e.,ry = ro,d + 1, j + rok, and
so on, then the x, y, and z components of the vectors in the closed loop must each sum
to zero. Thus, we have three scalar equations:

r0x+ Ix t et I3y = 0,

}’Oy + rly + rzy + r3y = 0,
and

roz + I + Iz + r3; = 0. (260)
Considering the restraints imposed by the joints and the link lengths, it may be possible

to determine the position of the links analytically. One input link position variable is
required to solve for displacements in a one-degree-of-freedom spatial linkage. For a
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FIGURE 2.16 Four-bar spatial linkages. (a) PRCR mechanism. (b) PHPH mecha-
nism. (¢) CCCR mechanism. (d) HCCH mechanism. (¢) PCSR mechanism. (f)
PCCC mechanism. (g) RSCR mechanism. (h) RSSR mechanism. (i) Typical vector
representation of a four-bar closed-loop spatial linkage.

spatial linkage with more than one degree of freedom, more than one input position
variable would be required to solve for displacements.

Methods of descriptive geometry may be used as an alternative to an analytical
solution for linkage displacements. Consider, for example, an RSSR linkage, as repre-
sented in Figure 2.16h. Let the position of the left-hand crank, R;S;, be given. Then the
locus of possible positions of point S, lies on a sphere of radius S5, and with center at
S1. However, revolute R, restricts point S, to circular motion. The actual position of S,
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may be determined graphically by constructing the intersection of the sphere and
plane loci of S, and using the radius of the circle, R,S,.

For given input values of velocity and acceleration, it may be possible to deter-
mine the velocity and acceleration of every point and the angular velocity and acceler-
ation of every link in a spatial linkage. Vector methods may be used as with planar
linkages, but all three coordinate directions must be considered. Straightforward solu-
tions can be obtained for some spatial linkages. Others require ingenuity, as well as
considerable time and effort. An example of the latter type, the displacement analysis
of a spatial mechanism with seven revolute joints, is given by Duffy and Derby (1979).
In analyzing this special case of a 7R (RRRRRRR) mechanism, the authors derived an
input—-output equation of degree 24, making a major step toward the solution of the
general 7R mechanism.

Analysis of a Spatial Linkage Made Up of Two Revolute Pairs
and Two Spherical Pairs (an RSSR Linkage)

An RSSR linkage is shown in Figure 2.16h. The number of degrees of freedom for an
RSSR linkage is given by

DFspatial = 6(nL —hy— 1) + Eﬁ

=6(4—-4-1)+1+3+3+1
= 2.

Inspecting the linkage configuration shown in the figure, we see that one of the
degrees of freedom corresponds to rotation of link 2 (link §15,) about its own axis. If
this motion is not relevant to the intended application of the mechanism, the RSSR
linkage acts essentially as a one-degree-of-freedom linkage.

Linkage Displacements

Referring to Figure 2.16h, we may describe the RSSR linkage the vector equation
rp+r+nrn+rn=0, (2.59 repeated)

where the vectors form a closed loop as in part i of the repeated figure. Let the position
of links 0 and 1 be specified. Then the positions of links 2 and 3 may be identified by
three components each, resulting in six unknowns. There are six equations: three from
Eq. (2.60) taking into account the x, y, and z directions; two equations based on the
lengths of links 2 and 3; and one equation based on the plane of rotation of link 3.

The solution is “easier said than done,” because the set of equations is nonlinear.
In designing and analyzing spatial linkages, try to select a set of coordinate axes that
reduces the number of unknowns.
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SAMPLE PROBLEM 2.9

Symbolic Solution for Displacements of an RSSR Spatial Linkage

The planes of rotation of the drive crank and driven crank of an RSSR linkage are perpendicu-
lar to one another. The fixed bearing of the driven crank lies in the plane of rotation of the drive
crank. Find the position of all links in terms of the drive crank position.

Design decisions. We could specify the length of each link and the relative position of the revo-
lute joints. Then a numerical solution is possible for any crank position. However, the numerical
solution may be inefficient if we need to plot positions throughout the entire range of motion of
the RSSR linkage. Therefore, we will attempt a symbolic solution.

First try at a solution. We select coordinates as in Figure 2.17. The drive crank (link 1) rotates
in the xy-plane, the coupler (link 2) has general spatial motion, and the follower crank (link 3)
rotates in the yz-plane. Revolute joint R, is in the plane of motion of the drive crank.

There are three equations based on the vector loop closure equation and two based on
link lengths, for a total of five equations:

r0x+r1x+r2x:0;

Foy T riy + ray + 13, = 0;

I, + r3, = 0,

\

[ link 1
R —)

y.J (out)

(a) Top view

Ry R,

(b) Side view 2,k (out)

r

ry

(c) Vector representation

FIGURE 2.17 RSSR spatial linkage (not to scale).



Section 2.6 Spatial (Three-Dimensional) Linkages 141

2 2 2 _ 2.
Fox + rzy + ry, = rj;
r3, +r3, = ri. (2.61)
There are five unknowns: the x, y, and z components of link vector r, and the y and z compo-

nents of link vector r;. Known values are the x and y components of r, the vector from revolute
R, to Ry, and the x and y components of link vector ry, given by

rix = F1COS 04
and

ryy = rysinf.

The five equations are fed into a program for solving systems of equations, and the five
unknowns are calculated. But the results are disappointing: The symbolic expressions for the
unknowns span nine pages, and one solution of r3, is 28 inches long in 10-point type.

Second try at a solution. To shorten the solution, the known vectors are combined into a single
vector defined by

c=1ryt+r,
and the set of equations now looks like this:

e + 1y =0;

Cy 1y 13, =0;

Iy, + 13, = 0;

2 2 2 _ 2.
Fox + rzy + ry, = 1r3;

r§y + 13, =ri. (2.62)

The symbolic equation solver results include

Fyy = —Cy» (2.63)
Ty = (c)zc - cf - r3+ r%)/(ch), (2.64)
3y, = (c2+ cg —r3+ r%)/(ch), (2.65)

and rather long solutions for the other two unknowns. However, the last simultaneous equation
tells us that

re= (3 = B (2.66)
Finally, the third simultaneous equation yields the remaining unknown:

Vr, = — I3 (267)

It takes a little longer to analyze the linkage just described if we do not have a symbolic
equation solver. We eliminate unknowns and make substitutions in Egs. (2.62), finally
obtaining results equivalent to Eqgs. (2.63) through (2.66). Note that we may use the
positive or negative square root in the equation for r3; it depends on how the links are
assembled. Our choice affects r,, as well. The motion of some RSSR linkages may
resemble that of a planar crank-rocker mechanism. A change in link proportions may
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cause the linkage to act like a change-point, drag link, or other planar mechanism. If
the spatial linkage resembles a planar double or triple rocker, then some crank posi-
tions will result in solutions that are not real numbers. Such solutions are not valid;
they represent forbidden positions of the crank. (Caution: Do not use the Grashof criteria
for spatial linkages, as they apply only to planar mechanisms.)

Transmission angle. Recall that we determined the minimum and maximum
transmission angles of planar linkages. Transmission angles ranging from about 40° to
140° are generally acceptable. We are concerned if the transmission angle falls outside
of that range. Will the output torque be adequate? Will the linkage bind because fric-
tion torque on the driven crank exceeds torque due to the force applied by the cou-
pler? The answers depend on how the linkage is used, on the quality and type of
bearings and lubrication, and on the effects of inertia.

Transmission metric. Similar concerns apply to machines employing spatial link-
ages. Consider the vectors representing the coupler and driven crank. Divide the dot
product of the two vectors by the product of the absolute values, resulting in what we
will call the transmission metric T. The transmission metric range,

=0.766 = T = 0.766,
is equivalent to the generally acceptable transmission angle range,
40° = ¢ = 140°.

Alternatively, we can easily convert the transmission metric into an angle.
Suppose the transmission metric falls outside the generally acceptable range?
The linkage may still be acceptable: The criterion just warns us of possible problems.

SAMPLE PROBLEM 2.10

Design of a spatial linkage
Design a device with a 50-mm output link that oscillates through about 50°. The centerline of the
continuously rotating input shaft must be parallel to the plane of motion of the driven link.

Design decisions. There are many possible solutions to this design problem. A pair of bevel
gears or a worm and worm gear driving a planar crank-rocker mechanism could be chosen for
such an application. An RSSR spatial linkage will be used instead. The driveshaft will lie in the z
direction, and the driven crank will oscillate in a yz-plane as in Figure 2.17. However, the linkage
in that figure would have very limited motion, so the proportions must be changed. After a number
of unsatisfactory tries, we will investigate a linkage with the following proportions:

Drive crank length r; = 25 mm;
Coupler length r, = 75 mm;
Driven crank length r; = 50 mm;

revolute joints R, and R, are located at (0,0,0) and (10, 70, 0), respectively.
Thus, the components of the fixed link vector are

roy = —10mm and ry, = =70 mm.
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Solution summary. The equations developed in the previous sample problem using a symbolic
solution are employed. The drive crank angular position is identified as 6 (without a subscript).
The positive root is selected for the z component of the driven crank vector. The negative root
represents a different assembly configuration. The coupler and follower crank link vectors are
defined in terms of their components. Their vector magnitudes are checked for an arbitrary drive
crank position. The good news is that they agree with the specified lengths.

Driven crank position 6, (in degrees) is plotted against the drive crank position (also in
degrees). See Figure 2.18. The approximate range-of-motion requirement appears to be met. The
transmission metric is multiplied by 100 for convenience in plotting. The not-so-good news is
that the metric extends somewhat beyond generally accepted limits. If the linkage is heavily
loaded in this position, we should consider a redesign to improve the transmission metric.
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Solution details (The software used in this solution does not identify vectors with boldface type).
Analysis of an RSSR spatial linkage
The drive crank and driven crank rotate in perpendicular planes.

Vector loop: g+ 1 +15 +13 =0,
Dimensions of links:

Fixed link: ro, := —10 roy:= =70

Drive crank: r:=25

Coupler: 1:=75

Driven crank: r3:= 50

Position Analysis

Drive crank position (subscript omitted): 6 := 0,%. .2

r1,(0) 1= r; - cos (6) 11,(6) := 11 - sin(6)
Define ¢ = sum of fixed link and drive crank vectors

Cx(e) ‘= Ty + rlx(e) cy(o) = rOy + 1'1y(9)
CX(O)Z -G (0)2 - r22 + I‘32
2c,(6)

BU0) = —c () 1y(0) 1=

_(Cx(0)2 + Cy(0)2 - I'% + 1‘32)
2¢,(0)

l>‘<
13,(6) : r3,(0) 1= (13— 13,(0)°)"
rZZ(H) = —r3z(0)
* We will select the assembly configuration given by the positive root.

Driven crank position: 05, (6) := angle(r3,(6),r3,(0)) 03,(2) = 1.671

r2x(0) 0
Link vectors: rv,(6) := | 15,(0) v3(0) 1= | 13,(6)
r2z(9) r3z(0)

Check results for coupler and driven crank length: |rv,(2)| = 75 [rv4(2)] = 50
1v5(6) - rv3(6)
|rv2(0)] - [rv3(6)]

Compare cos(140-deg) = —0.766

Transmission metric: T(6) := T(80-deg) = —0.804 T(m) = —0.267

Spherical pairs (ball joints) have a limited range of motion. The actual links in a spatial
linkage must be carefully designed to ensure free motion at the joints. The linkage
position equations are dependent on the actual linkage configuration and the selection
of coordinate axes.
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SAMPLE PROBLEM 2.11

Position equations for a different linkage configuration.

Suppose you are considering an RSUR linkage (revolute-spherical-universal-revolute joints).
Link 0, the fixed link, lies in the negative x-direction; link 1 rotates in an xy-plane, and link 3
rotates in an xz-plane. Write the position equations in terms of vector coordinates.

Solution. Define a vector
c=r+nr,
where c is known for any given value of 6. Then
ct+r+r=0,

and, considering the plane of rotation of link 3, there are five unknowns: r,,, 13y, 2, 13, and r3,.
Equating the vector components in each coordinate direction and noting the link lengths, we
have the following five equations:

CX+I’2X+I’3X:O;
¢y + 1y =0
ry, + r3, = 0;
r%x+r22y+r%z:r2;

2 2 _ .2
r3e +r3, = r;.

The five equations can be reduced to a single equation for 7,, in terms of known values.

Analysis of a Spatial Linkage Made Up of a Revolute Pair, Two
Spherical Pairs, and a Cylinder Pair

Figure 2.19 shows an RSSC spatial linkage in which link RS, acts as a crank. The path
of the sliding link intersects the plane of the crank at point A, making an angle y with
that plane. Joints C, S,, and R of this linkage will be in the xy-plane, and link 1 will
move within the yz-plane. The link lengths are r; (crank RS;), r, (coupler §:5,), r3
(instantaneous distance S, A on the sliding link), and r, (fixed distance AR).

Analytical Solution for Displacements
The links could be identified as vectors and the vector equation
r0+r1+r2+r3=()

could be used along with constraint equations to solve for displacements. For this con-
figuration, however, it is convenient to express the length of the coupler link, r, = §,5,
in terms of its components in three mutually perpendicular directions:

2 _ 2 2 2
r2—r2x+r2y+r21

= (r3siny)* + (ry — r,cos 0 + r3cosy)* + (r;sin 0)>. (2.68)



146

Chapter 2 Motion in Machinery

o

I
;

Top view

Side view Y Projection of link 3 on yz-plane
Revolute pair: R

Sphere pair: S
Cylinder pair: C

FIGURE 2.19 RSSC spatial linkage.

If crank angle 6 is given along with link lengths r,, 1, and r, and path angle vy, the result
is a quadratic equation in r3:

r? + 2cosy(ry — rycosO)rs + r¢ + ri —r3 — 2ryrcos@ = 0. (2.69)

The solution gives the sliding-link position, locating spherical pair (ball joint) S,. The
two roots of the quadratic equation are given by

_ —b + Vb* — dac

2a

3

wherea = 1,
b = 2cosy(ry — r cosb),
and

c = r% + r12 — r% — 2ryry cos 6.

SAMPLE PROBLEM 2.12

RSSC Spatial Linkage

Let dimensions 7y, r;, and r, be given for the RSSC linkage just described. Sketch a flowchart
that you can use to find the displacement of the sliding link for every 15° of crank angle 6 at vari-
ous path angles vy.
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Solution. See flowchart (Figure 2.20). The mechanism is equivalent to a planar slider-crank
linkage when the path angle is zero. For nonzero values of the path angle, we have a spatial link-
age. For values of y = 90° or near that value, if the crank RS, drives, the linkage is likely to jam.

Enter link lenghts
Fos 1,12

Printy

Print 6

i

| Calculate b and ¢ |

¥

Calculate roots r3
of quadratic

¥

Test values of ry;
print ryroot in
region of interest

Ye

es
Y=v+15°

FIGURE 2.20 Flowchart: Displacement of an
RSSC spatial linkage.
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More complicated spatial linkages are discussed in the technical literature. Lee and Liang
(1988a) describe a vector theory for the analysis of spatial linkages that includes displacement,
velocity, and acceleration equations for open-chain and closed-loop mechanisms. The same
authors (1988b) also analyze displacements of a general spatial seven-link 7R mechanism. Their
analysis involves a 16th-degree polynomial input—output equation for displacement in the form
of an eight-by-eight determinant. Fanghella (1988) describes the kinematics of spatial linkages
by group algebra.

Alternative Analysis of a Spatial Linkage Using Graphical
Methods

Spatial linkages may also be solved by methods of descriptive geometry. However,
since such graphical methods require so much labor, they are recommended only as a
check of computer analysis.

SAMPLE PROBLEM 2.13

Graphical position analysis of a spatial linkage

Find the position of the sliding link of the RSSC spatial mechanism described earlier for path
angle y = 30° and crank angle 6 = 45°. Let crank length r; = 100 mm, coupler length
r, = 300 mm, and let point A lie a distance r, = 200 mm away from the revolute point R, as in
Figure 2.21.

ry y

Intersection of
sphere and
horizontal
,. plane containing |
I~ path of S, /

CA>x

Top view

L Intersection of N
C
Side view sphere and /
‘ ‘ ‘ horizontal

0 50 100 plane containing
Scale (mm) path of S,

Outline of sphere
of radius ry with
center at Sy in
yz-plane

FIGURE 2.21 Alternative analysis of RSSC spatial linkage by graphical methods.
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Solution. A side view (yz-plane) and top view (xy-plane) are used. Link 1, the crank, which lies
in the yz-plane, is drawn to scale in that plane and projected to the xy-plane. The path of S, is
located in the xy-plane. Link 2 will not, in general, lie in either the xy- or yz-plane. If link 2 were
constrained only at Sy, the locus of all possible points S, would lie on a sphere of radius r, with
center at S. A circle with radius 300 mm and center at S; is drawn in the yz-plane to represent
the outline of the sphere. The intersection of the sphere and the horizontal plane containing the
sliding link is a circle whose projection on the yz-plane is a line segment ending at point B, as
marked in the figure. Point B is projected upward to the xy-plane, and a circular arc with its cen-
ter at Sy is drawn tangent to the projection line. The intersection of the circle and the path of S,
in the xy-plane locates S, and determines the value of 3.

2.7 COMPUTER-IMPLEMENTED NUMERICAL METHODS
OF POSITION ANALYSIS

Linkage displacement relationships tend to be nonlinear. The angular position of the
driven crank of a four-bar linkage, for example, is not proportional to the input posi-
tion. Simple closed-form solutions are available for some mechanisms, while other
mechanisms—particularly multiloop linkages—are best solved using iterative numerical
methods.

The Newton-Raphson Method for Two or More Variables

In Chapter 1, we utilized the Newton—Raphson method to solve a problem in a single
variable. Using the same concept, we may solve linkage problems involving two or
more variables. Unfortunately, the Newton—Raphson method for » variables involves
an n-by-n matrix of partial derivatives. Those preferring less mathematical complexity
may seek closed-form solutions or use preprogrammed numerical routines such as
those found in Mathcad™ or other mathematical software.

Suppose a problem is represented by the set of simultaneous equations

Fl(xl’ x2’~--’xn) = 07
F2(xl’x2v"'7xn) = 09

Fu(x1, X%3,..5x) = 0, (2.70)
or, in vector form,
F(x,,xy, ...x,) = [F1,F,,...F,] = 0. (2.71)
To find the unknown variables, the (state) vector

X = [x19x2’ st 5xn]
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we begin by making a first approximation of each of the variables:
X = [Xl7 Xz, cen ,Xn].

Then we compute the vector F at x = X. Unless we are very fortunate, the first
approximations will not be correct (i.e., F(X) is not equal to zero). As with the
Newton—Raphson method applied to one variable, we make a linear adjustment to
arrive at what we hope to be a better approximation of x.

The second approximation is computed from

Xoew = X — G'F(X), (2.72)
where
6F1/8x1 6F1/6x2 e 8F1/axn
6F2/ax1 6F2/8x2 e an/aXn
G = | i et e e . (2.73)
aFn/axl ...... 8Fn/8xn

The process is repeated with X replaced by X, for as many iterations as necessary
(i.e., until each component of F(X) = 0 + the tolerance). Otherwise the process is
stopped after a set number of iterations (say, 20) with a message saying “the process
does not converge in 20 iterations.”

One’s success may depend on the initial guesses of the values. If there is more
than one set of roots, a poor first approximation of X may lead to a solution other than
the desired one. The determinant of the matrix G,J = |G/, is called the Jacobian of the
system of simultaneous equations. The Jacobian must not vanish during any of the iter-
ations.

(Note: The foregoing discussion is based on an extension of the single-variable
Newton—Raphson method. Those desiring a more rigorous approach may refer to
Taylor (1955) or Stark (1970).)

SAMPLE PROBLEM 2.14

A Numerical Method Applied to the Four-Bar Linkage

Consider the four-bar linkage of Figure 2.10, where link lengths ry, rq, r,, and r; are given and
angular positions 6, = 7 rad and 6, = /3 rad. Find 6, and 6.

Solution. 1In this case, both a graphical solution and a closed-form mathematical solution are
possible. However, let us solve the problem by the Newton—-Raphson method in order to illus-
trate the numerical procedures involved. Referring to the figure, we see that the x and y compo-
nents of diagonal vector r; are determined, respectively, by

Fae = rocos @y + rycos 6, (2.74)
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and
Yqy = 7psin 6y + rysin 6;. (2.75)

The problem of locating links 2 and 3 can be expressed as two simultaneous equations describing
the horizontal and vertical projections of the triangle formed by vectors ry, r,, and r3:

1, cosf, + r;cosb; = —ry, (2.76)
and
r,8in 0, + r3sin 03 = —ryy,. (2.77)
We will utilize Egs. (2.70) through (2.73), where x; becomes 6, and x, becomes 6. Thus, we have
F| = rycos6, + r;cosf3 + ry = 0
and
F, = rysin 6, + r3sin 63 + ryy, = 0,
or, in vector form,

| ncost, + rzcosf; + 1y
rysind, + rysinf; +ry, |

In order to form the matrix G, we find 9F/90, = —r, sin 6,, etc., from which it follows that

G = ) Sil’loz - Sil’l03
rp COS 02 r3 COS 03 ’

Suppose we are interested in the linkage configuration for which r,, r,, and r; form a clockwise
loop. Then a guess (first approximation) of

seems reasonable. The result is
F— F _ | —93.56
F |x=x) 181.06
(instead of the desired value, F = 0), indicating that the first approximation was not very

accurate.
A second approximation of the roots is found by computing

0.072
= —_ -1 =
Xoew =X = G F [4.400]
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Successively replacing X by X, the third through sixth approximations are, respectively:

0.116 0.077 0.077 0.077
4.077 4.043 4.044 4.044
where, for the final value, F = 0 + asmall tolerance. Note that there is no change (to three dec-

imal places) between the fifth and sixth approximations. Thus 6, = 0.077 rad and 6; = 4.044 rad
for the desired linkage configuration.

Multiloop Linkages

The link positions of a planar single-loop linkage can be described by a single vector
equation or two scalar equations describing a skeleton diagram that forms a single
closed polygon. The slider-crank linkage and four-bar linkage are examples of single-
loop linkages. Planar multiloop linkages require one vector equation or two scalar
equations for each internal loop. Quick-return mechanisms including the drag-
link-slider-crank linkage and the sliding-contact-slider-crank linkage described in
Chapter 1 are two-loop linkages.

The degree of difficulty of an analytical solution for displacements of a multiloop
linkage depends on the linkage configuration and the given data. Consider the drag-
link-slider-crank linkage shown in Figure 2.22. The skeleton diagram forms two inde-
pendent loops, O;BCO;0; and O;DEQ;. If the angular position of link 1 is given, the
orientation of links 2 and 3 in four-bar linkage O;BCO; can be determined without
considering links 4 and 5. Then, using the orientation of link 3, we can easily solve the
slider-crank linkage. Closed-form solutions for both the four-bar linkage and slider-crank
linkage were given earlier in the chapter.

If the angular position of link 1 is given for the double-slider two-loop linkage of
Figure 2.23, the solution cannot be uncoupled. The two kinematic loops are repre-
sented by four simultaneous equations. Numerical solutions are suggested for the
determination of displacements in linkages of this type.

A2

FIGURE 2.22 Drag-link-slider-crank linkage.
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FIGURE 2.23 A double-slider two-loop linkage.

SAMPLE PROBLEM 2.15

Displacement Analysis of a Multiloop Linkage

Consider the double-slider two-loop linkage of Figure 2.23, where r; = 1, r, = 5.2, rp =5,
rpe = 4,17cp = 1.5,and 0, = /3 rad. (Distance DE is identified as rpg, etc.) Find 65, 63, rp, and rg.

Solution. The equations describing the horizontal and vertical components of loop O;BCEO;
are, respectively,

ricosf; + r,cos @, + recpcos; — rg =0
and
r sin01 + rzsinﬂz + rCEsin03 = 0,

and the equations describing the horizontal and vertical components of loop FDEF are,
respectively,

rppcosfs — rg +rp =0

and

rp + rDESin93 =0.
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After substituting the given values, we can solve the preceding four equations by the
Newton—Raphson method, as in the previous section. However, in this case, the method requires
a four-by-four Jacobian matrix. Let us choose another alternative, the Levenberg—Marquart
method, which is a quasi-Newtonian method (a variation of the gradient method). The
Levenberg-Marquart method is in the public domain (see More, et al., 1980) and is available on
mathematics software.

We begin by approximating the unknowns. A trial-and-error graphical solution may be
used to generate these approximations for one position. In this case, the approximations are

92 = 03, 03 = 5, rp = 38, and rg = 6.3
(where angles are given in radians). After a few iterations, the program yields
0, = 0293, 6;=15.037, rp=3792, and rg = 6274

The graphical solution was more accurate than necessary; a less accurate set of approximations
would have yielded the same results. If the linkage must be solved for a number of successive
positions, it may not be necessary to make additional graphical approximations. Instead, the
results of one solution are likely to be satisfactory as a first approximation of the unknowns after
0, is incremented.

SUMMARY

Vectors and complex numbers are a great help in analyzing and designing mechanisms.
If vectors A and B are equal, then the x components of A equal the x components of B
and so forth. Thus, one vector equation yields three scalar equations for solving spatial
linkages and two scalar equations for planar linkages. When dealing with planar link-
ages, it is convenient to use complex numbers. If two complex numbers are equal, the
real part of the first equals the real part of the second, and the imaginary part of the first
equals the imaginary part of the second.

Position analysis of four-bar linkages is a difficult problem; the vector cross-product
method is recommended. In general, four-bar linkages have two assembly configurations.
Change-point mechanisms may shift from one configuration to another.

Motion simulation software saves much of the drudgery of calculating linkage
positions. Mathematics software is also used for linkage design and analysis. Although
graphical methods are inefficient for detailed design studies of mechanisms, graphical
spot-checking is a good way to find errors in computer calculations.

A Few Review Items

e What is a unit vector?
° ... a rectangular unit vector?

Describe the dot product.
° .. the cross product.

Does the order of the vectors matter?
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Problems 155

State the Euler formula for complex numbers.

...... Of what use is it?

Why do we use vectors to describe spatial linkages?

Identify a mechanism for producing intermittent rotation. The input is continuous
rotation.

Sketch a multiloop linkage.

Can the equations for link position be uncoupled?

List three to five machine components whose motion is described by (a) pure translation,
(b) pure rotation, and (c) combined rotation and translation.

The stroke of a Scotch yoke is 60 mm. The driver rotates at 1740 rev/min (constant). Find
the following:

(a) Maximum velocity
(b) Maximum acceleration
(¢) Maximum jerk (rate of change of acceleration with respect to time)

Repeat Problem 2.2, except that the driver is to rotate at 3000 rev/min.
Repeat Problem 2.2, except that the stroke is to be 45 mm.

Design a two-cylinder, cam-type piston pump to deliver a flow rate of 0.5 m*/s at 90 rad/s.
Let the stroke equal the piston diameter. Assume 80-percent volumetric efficiency.

Repeat Problem 2.5, except that the flow rate is to be 0.25 m*/s at 880 rev/min.
Repeat Problem 2.5, except that the flow rate is to be 120 gal/min at 1760 rev/min.
Repeat Problem 2.5, except that the flow rate is to be 12 ft*/min at 700 rev/min.

A circular cam with 20-mm eccentricity drives a flat-face follower. Plot the displacement,
velocity, and acceleration of the follower versus time for w = 200 rad/s.

Repeat Problem 2.9 for 28-mm eccentricity and a cam speed of 1500 rev/min.

Problems 2.11 through 2.14 Refer to a Circular Cam with a Flat-

Face

Follower. The eccentricity of the cam is R, and the angular

velocity of the follower is w.

211

2.12

2.13

2.14

Find the maximum angular velocity if R = 5 mm and the acceleration of the follower
cannot exceed g (the acceleration due to gravity).

Find the maximum eccentricity in millimeters if the acceleration of the follower cannot
exceed g (the acceleration due to gravity). The cam rotates at 4000 rev/min.

Find follower velocity and acceleration amplitude for R = 0.25 in at a cam speed of
1200 rev/min.

Find follower velocity and acceleration amplitude for @ = 300 and R = 0.5 in.

Problems 2.15 through 2.27 Refer to Vector Angles Measured
Counterclockwise from the Horizontal Axis. In these problems,

A =1at30°, B =2at60°, C = 1.5at180° and D = 3 at 225°. All vectors lie
in a plane.
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2.15

2.16
217
2.18

2.19
2.20
221

2.22
2.23
2.24
2.25
2.26
2.27

Find A + B.

(a) Add the vectors by using trigonometric functions.
(b) Solve graphically.

Find A + B + D. Solve graphically and analytically.
Find A + B + C + D. Solve graphically.

Find A + B + C-D; that is, find A + B+ C + (—=D). Solve graphically and
analytically.

Find the vector product A X B.
Find the vector product C X D.

Find the vector product C X (D X E), where E = 2.5, pointing inward in a direction
perpendicular to the plane of C and D.

Repeat Problem 2.21, but find D X (C X E).
Find A - B.

Find A - (B + C).

Find A- (B X C).

Find B+ (C X A).

Find C- (A X B).

In Problems 2.28 through 2.30, Let w = (5 + 3t)k and
r = ir(t) + jr,t), where i, j, and k are unit vectors in a fixed
coordinate system.

2.28
2.29

2.30
231

Find o X r.

d
Find E(w X r).

Find E(w X r) if i and j are vectors in a moving coordinate system.

The Immelman turn was a World War I aircraft maneuver used to gain altitude while
turning to fly in the opposite direction. The turn consists of a half loop followed by a half
roll to resume a normal level position. Describe the maneuver in terms of pitch and roll
coordinates referred to the aircraft. Consider reversing the order of the rotations. Does
the commutative law of vector addition apply?

In Problems 2.32 through 2.34,

2.32
2.33

r1+r2+r3=0.

ry = 10i + 25j, and r, = 40i — 20j + 10k; find r;.
Vectors ry, r,, and r; represent a planar linkage, with

n r
=2, Z=05,and r; =i50 + j75.
Iy Iy

Find r; and r, by using the vector cross product method suggested by Chace (see section
2.2 and 2.3).



2.34
2.35

2.36
2.37

2.38
2.39

2.40

241
242
243
2.4
245
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Repeat Problem 2.33, except that r; = i5 — j8.

A force F = 22 N acts on a bar of length » = 180 mm (see Figure 2.8b), where 6 = 68°.
Find the torque about point O.

Repeat Problem 2.35 for 6 = 2 rad.

An in-line slider-crank linkage has a crank length r; and connecting rod length r, = 1.5r.
(See Figure 2.9.) Find the connecting rod and slider position when 6 = 40° by using
analytical vector methods.

Repeat Problem 2.37 for 6 = 140°.

Plot the slider position versus 6 for an in-line slider-crank linkage for which the ratio of
connecting rod to crank length is 1.5.Let = 0, #/9, 27/9, 7/3 rad, and so on.

The link lengths of a planar four-bar mechanism are ry = 120, r; = 60, r, = 140, and
r; = 80. Find the orientation of links 2 and 3 when the internal angle between the crank
and the fixed link is 30° and the linkage is in the open phase (i.e., the coupler does not
cross the fixed link). Use the vector cross-product method.

Repeat Problem 2.40 for a 60° internal angle.

Repeat Problem 2.40 by using the dot-product method.

Repeat Problem 2.41 by using the dot product method.

Repeat Problem 2.40 for the crossed phase.

Repeat Problem 2.40 for the crossed phase, using the dot-product method.

In Problems 2.46 and 2.47,

and

2.46

247
2.48
2.49
2.50
2.51
2.52

253
2.54
2.55

R; = 200 mm at 6; = %rad

5
R, = 150 mm at 6, = ?Trrad.

(a) Express R; and R, in complex rectangular form.
(b) Find R,, where Ry + R, = R,.
(c) Express R, in polar form.

Find dR,/dt if Ry is constant in magnitude and d6y/dt = 120 rad/s.
Repeat Sample Problem 2.8 for 6; = 80°.

Repeat Problem 2.48 for 6; = 110°.

Repeat Problem 2.37, using complex-number methods.

Repeat Problem 2.37 with 6 = 140°, using complex-number methods.

Consider the RSSC linkage described in Sample Problem 2.13. Use an analytical method.
Let path angle y = 40°. Find the displacement of the sliding link for crank angle § = 60°.

Repeat Problem 2.52 for § = 0°, 15°, 30°, and so on. Use a computer.

Solve Problem 2.52, using methods of descriptive geometry.

Use vectors A, B, C, D, and E given in Sample Problem 2.3, and determine
A+B+C+D,A-C—-D-E,

B-C, C-B, |B|, |C|, (IB])>, B-B, BXB, C XD, DXC, andC- (C X D).
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2.56

2.57

2.58

2.59

2.60

2.61

2.62

2.63

2.64

2.65

2.66

2.67

2.68

Use vectors A, B, C, D, and E given in Sample Problem 2.3, and determine
A+B+C+E A+B-C-D-E, D-E, E-D, |D|, |E|, (ID|)?>, D-D,
D XD, EXD, DXE, and E-(E X D).

Use vectors A, B, C, D, and E given in Sample Problem 2.3, and determine
D+B+C+E, B+B-C-D-E-A, B-D, D-B |D|, |B|, (IE|?
E-E, EXE, D-D, E-(EXB), and B X D.

Consider an RSSR linkage similar to that in Figure 1.7a, where the link lengths are
ro = 32,r = 10, r, = 28, and r; = 20. Link 0 lies on the x-axis, link 1 rotates in the xy-
plane, and link 3 rotates in the xz-plane. Plot the vector components representing the
positions of links 2 and 3 against angular position 6 of link 1.

Consider an RSSR linkage similar to that in Figure 1.7a, where the link lengths are
ry = 62,r = 20,r, = 55, and r; = 45. Link 0 lies on the x-axis, link 1 rotates in the xy-
plane, and link 3 rotates in the xz-plane. Plot the vector components representing the
positions of links 2 and 3 against angular position 6 of link 1.

Consider a four-bar linkage for an assembly configuration with r;, r,, and r; forming a
counterclockwise loop. The link lengths are ry = 120, r; = 60, r, = 140, and r; = 80. Let
0y =  rad. Find 6, and 65 at the instant that §; = #/3 rad. Use the Newton—Raphson
method. A first approximation may be obtained by sketching the linkage.

Consider a four-bar linkage for the assembly configuration with r,;, r,, and r; forming a
clockwise loop. The link lengths are to be ry = 3,7, = 1,r, = 3.6, and r; = 2.1. Let
0y = 7 rad. Find 6, and 05 at the instant that §; = 7/4 rad. Use the Newton—Raphson
method. A first approximation may be obtained by sketching the linkage.

Consider the double-slider two-loop linkage illustrated in Figure 2.23, where
rn=1,rn=52,rr=5rpg = 4,rcp = 1.5,and 6, = 7/6 rad. (Distance DE is identified
as rpg, etc.) Find 6,, 65, rp, and rz. Use a numerical method.

Consider the double-slider two-loop linkage illustrated in Figure 2.23, where
rn=1,rn=52,rr=5rpg=4,rcp = 1.5,and 6, = 7/2 rad. (Distance DE is identified
as rpg, etc.) Find 0,, 63, rp, and rg. Use a numerical method.

Consider the double-slider two-loop linkage illustrated in Figure 2.23, where
rn=1,rn=52,rr=5rpg = 4,rcp = 1.5, and 0; = 27/3 rad. (Distance DE is identi-
fied as rpg, etc.) Find 6,, 63, rp, and rg. Use a numerical method.

Consider the double-slider two-loop linkage illustrated in Figure 2.23, where
r = 20,r, = 115,rg = 100, rpg = 85,rcp = 40, and 6; = w/4 rad. (Distance DE is
identified as rpg, etc.) Find 60,, 03, rp, and rg. Use a numerical method.

Consider the double-slider two-loop linkage illustrated in Figure 2.23, where
r =20,r, = 115, rp = 100, rpp = 85, rcp = 35, and 6; = 27/3 rad. (Distance DE is
identified as rpg, etc.) Find 6,, 03, rp, and rr. Use a numerical method.

A four-bar linkage has the following dimensions (mm):

Ly = 180,L; = 30,L, = 174,and L; = 81.

The linkage is assembled so that the vector loop r, r; 1y is clockwise. Check extreme val-
ues of the transmission angle. Plot the coupler and output crank positions and the transmis-
sion angle against the input crank position.

A four-bar linkage has the following dimensions (mm):

L, =120, L; = 20, L, = 114, and L3 = 40. The linkage is assembled so that the vector
loop r, r3 1 is counterclockwise. Check extreme values of the transmission angle. Plot the
coupler and output crank positions and the transmission angle against the input crank
position.
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2.69 A four-bar linkage has the following dimensions (mm):

Ly = 210,L; = 35, L, = 196, and L; = 84. The linkage is assembled so that the vector
loop rrsry is counterclockwise. Check extreme values of the transmission angle. Plot the
coupler and output crank positions and the transmission angle against the input crank
position.

2.70 Design a mechanism with a 60-mm output link that rotates through an angle of about
55°. The centerline of the continuously rotating input shaft must be 10 mm away from,
and parallel to, the plane of motion of the driven link. As a design decision, try an RSSR
spatial linkage similar to Figure 2.17, except that r; = 33, r, = 88, r; = 60, ry, = 10, and
oy = —95 (all dimensions in mm).

Plot and tabulate the output link (driven crank) position and the transmission metric
against the drive crank position. Compare your results with the desired output link
motion and generally accepted limits of the transmission metric.

2.71 Design a mechanism with a 115-mm output link that rotates through an angle of about
50°. The centerline of the continuously rotating input shaft must be 20 mm away from,
and parallel to, the plane of motion of the driven link.

As a design decision, try an RSSR spatial linkage similar to Figure 2.17, except that the
assembly configuration will be described by the negative root of r;,. Let
ri = 55,1, = 190, 3 = 115, ry, = 20, and ry, = —180 (all dimensions in mm).

Plot and tabulate the output link (driven crank) position and the transmission metric
against the drive crank position. Compare the results with desired output link motion
and generally accepted limits of the transmission metric.

PROJECTS

See Projects 1.1 to 1.6 and suggestions in Chapter 1. Select a project at this time, or con-
tinue with the previously selected project. Establish a set of performance requirements
for the project. Examine the linkages involved in the chosen project. Describe and plot
motion characteristics of the linkages. Make use of computer software wherever practical.
Evaluate the linkages in terms of performance requirements.
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CHAPTER 3

Velocity Analysis of
Mechanisms

Velocity is a vector quantity, having both magnitude and direction. We need to know
the velocity of points on a mechanism and the angular velocity of links. Both average
and instantaneous velocity are important design criteria. Velocity analysis precedes
acceleration and dynamic analyses, necessary steps in the design of high-speed
machinery.

Concepts You Will Learn and Apply while Studying This Chapter

¢ Instantaneous and average velocity of a point on a mechanism

¢ Angular velocity of a link

¢ Relative velocity

¢ Analytical vector methods for design and analysis of planar and spatial mechanisms
e Matrix methods applied to spatial mechanisms

¢ Complex-number methods for design and analysis of planar mechanisms

¢ Graphical methods for design and analysis of mechanisms

e Velocity analysis of slider-crank linkages, planar and spatial four-bar linkages,
sliding contact linkages, and combinations of these.

¢ Practical applications of the basic linkages

3.1 BASIC CONCEPTS

Velocity is a vector representing the change in position of a moving point, divided by
the time interval during which the point changes its position. If the time interval is
finite, the result is the average velocity

_As
Vaverage = It P
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where As is the change in position and At = change in time. If the time interval is
infinitesimal, we have the instantaneous velocity

. As ds
v = llmltAHOE =

Since we are concerned largely with instantaneous values, the term velocity will refer
to instantaneous velocity unless otherwise noted.

Average speed is a scalar quantity equal to the total distance traveled divided by
the time interval. Consider an automotive piston as it travels between limiting posi-
tions during one-half crankshaft rotation. Average speed and average velocity of the
piston are both given by the stroke divided by the time for one-half crankshaft rota-
tion. Velocity will also indicate the direction of travel. For a full crankshaft rotation,
average speed is twice the stroke divided by the time for a full rotation. But the piston
has returned to its original position, and the average velocity is zero.

A vector representing the change in angular position of a body divided by the time
interval during which the body changes its angular position is called the angular velocity

limit Ao do
o = limity,_,o— = —.

M=0Ar T dr
Angular velocity is sometimes treated as a scalar in dealing with planar linkages.
Analytical and graphical vector methods, including representing of vectors in complex
form, are useful in velocity studies related to linkage design.

Velocity of a Point

Let the location of a point be described by a vector R. In Figure 3.1, consider point P,
which moves along curve C through a displacement dR during a time interval dt. The
new position vector is then R + dR, representing a change in the direction of R, a
change in the magnitude of R, or both. If we allow the time interval df to become infin-
itesimal, the corresponding infinitesimal displacement of dR lies on the curve C. Then,
the instantaneous velocity of point P is given by

dR

v=—o

dt

where the direction of v is given by a tangent to curve C at P. A dot above a vector or

scalar quantity is sometimes used to indicate differentiation with respect to time; thus,
dR/dt becomes R.

(3.1)

»i

FIGURE 3.1 Velocity of a point.
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In general, the vector dR represents a change in the x, y, and z components of R.
The velocity of point P may be expressed in terms of the components Ry, R, and R,
and the unit vectors i, j, and k, parallel to the coordinate axes, as noted in Chapter 2.
Then,

v =R = iR, + jR, + kR, (32)
if the x, y, z coordinate system is stationary.

Angular Velocity

Angular velocity may be treated as a vector quantity. Consider a link whose angular
position changes at a rate of

® = w,d + w,j + o kradians per second

(where @ = 27n/60, for a rotation speed of n revolutions per minute). The direction of
vector w is perpendicular to the plane of rotation, and its sense is found by curving the
fingers of the right hand in the direction of rotation. The thumb then points in the
direction of vector w. Alternatively, consider a right-hand screw rotating clockwise.
The direction of the vector w is the direction of advance along the screw axis. For a
body that rotates in the xy-plane, @ will be in the +z direction. In Figure 3.2 for exam-
ple, w = wk.

Motion of a Rigid Body about a Fixed Axis (Without
Translation)

Consider a rigid body rotating about an axis that is fixed in a stationary coordinate sys-
tem. (See Figure 3.3.) Then, angular velocity e has a fixed direction (along that axis). If
a point P that is fixed in the body is identified by vector R, then P moves in a curved

2k

X, i FIGURE 3.2 Rotation in the xy-plane.
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FIGURE 3.3 Motion of a rigid body motion
about a fixed axis.

path of radius R sin 6 about that axis, where 6 is the angle between the axis of rotation
and R.The speed (i.e., magnitude of the velocity) of P is given by

v = w Rsin 6. (3.3)

Compare this result with the vector cross product identified in Chapter 2. Thus, we may
write

R=v=wXR, (3.4)

since the direction of the velocity is perpendicular to the plane of @ and R and is given
by the right-hand rule. The thumb of the right hand is pointed in the w direction, and
the index finger in the R direction. (See Figure 3.4.) Velocity is then in the direction of
the third finger.

If w varies (with time) in magnitude or direction, the velocity is still given by the
preceding equations, provided that dew/dt is finite. Thus, the instantaneous velocity of a
point P in a rigid body that rotates about a fixed point (e.g., a ball joint) with instanta-
neous angular velocity w is given by

v=w X R,

where R is measured from any point on the instantaneous axis of rotation. Thus, for a
link that moves in a plane about a stationary revolute joint, @ and R are perpendicular,

FIGURE 3.4 Using the right-hand rule to find
the direction of the vector cross product.

€
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and the speed of a point in the link is given by the product wR. If we consider sliding
along a rotating link, or if we consider links that are not fixed at a point, additional
terms enter into our analysis.

SAMPLE PROBLEM 3.1

Surface Speed

Surface speeds of from 800 to 2,000 ft/min (4,064 to 10,150 mm/s) are recommended for milling
aluminum. Find the corresponding speeds (i.e., the angular velocities), in revolutions per minute,
for a 4-in- (101.5-mm-) diameter milling cutter.

Solution. Let the radius of the cutter be R = 2in. The lowest surface speed is

v = 800 ft/min X 12in/ft X 1 min/60s = 160 in/s.

The angular velocity vector and the radius vector are perpendicular to each other. Thus,
v = w X R = wR tangent to the surface, and

) 160 in/s
0= — =

R 2in

= 80rad/s.

Next, divide 80 rad/s by 0.1047 (rad/s) / (1 rev/min) to obtain 764 rev/min, which is the minimum
value of the angular speed. Similarly, 2,000 ft/min gives us a maximum value of 1,910 rev/min.

SAMPLE PROBLEM 3.2
An In-Line Slider-Crank Mechanism

a. Determine the velocity of the piston in a pump modeled as an in-line slider-crank
linkage.

b. LetR =2in, L = 3.761in,0 = 70°, and w = 10 rad/s. Find the slider velocity analytically.

An in-line slider-crank mechanism has a crank length of 200 mm and a connecting-rod
length of 560 mm. The crank rotates at a constant angular velocity of 50 rad/s counter-
clockwise. Find the average slider velocity during one stroke.

Solution. (a) An analytical examination of the in-line slider-crank mechanism shows that the
mechanism has some resemblance to the Scotch yoke considered in Chapter 2. In fact, the
Scotch yoke can be considered a special case of the slider crank: a slider-crank linkage with an
infinite connecting rod. It is the connecting rod and the angle ¢ that it forms with the slider path
that complicate our analytical solution. Figure 3.5 shows the in-line slider crank first in its
extreme extended position (top dead center) and then in a general position with angular dis-
placement 6 of the crank.
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FIGURE 3.5 In-line slider-crank mechanism, shown first in its extended position (top)
and then an instant later, when the crank has moved through an angle 6 (bottom).

Measuring piston displacement x from the original position, we have

x=R+ L — (Rcosf + Lcos¢)
= R(1 — cos) + L(1 — cos¢).

We may express ¢ in terms of 6 by dropping a perpendicular from B to line O;C, forming two
right triangles. The length of the perpendicular is
a = Rsin6 = Lsin ¢.

Using this equation and the identity sin?$ + cos? = 1, we obtain the exact slider displacement
in terms of 6 only:

R2
x=R(1 —cosb) + L| 1 —4/1~— 52 sin’@ |.

The slider velocity is obtained by differentiating x with respect to time.
The exact slider velocity is given by the following equation where angular speed w is the
rate of change of 6 with respect to time:

5\ cos O

L)\ — (RILY sin?0 |

v = Rwsin 6 1+<

(Positive velocity is to the left in this example.)

If the slider-crank mechanism is a piston engine or piston pump for which the ratio of L to
R is fairly large (say, 3 or more), a simplification is in order. We expand the displacement equa-
tion by the binomial theorem, retaining only the terms

i () 2]
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Using this equation or simplifying the velocity equation directly, we obtain the approximate

slider velocity
. R
v = Rwsin 9|:1 + <L>cos 6:|.

From the trigonometric identity sin 6 - cos 6 = % sin(20), we may write the approximate velocity
equation in the form

v = Rw|:sin0 + ;(R/L)sin(ZO)}

(b) Using the exact equation, we have

L\ cos 70°
3.76 ) \/1 — (2/3.76)2 (sin 70°)2

v = 2(10)sin 70°| 1 + <

= 22.81in/s to the left.

From the approximate velocity equation, we obtain v = 22.2 in/s, which is a fairly good approx-
imation, given that the ratio L/R is not within the recommended range for the approximate
equation.

(c¢) We might be tempted to integrate an expression for velocity or to average values over an
entire plot. The exact solution, however, is simply the stroke, 2R, divided by the time taken to
complete half of one cycle. For any in-line slider-crank mechanism with a constant crank speed,
the slider speed becomes

2R
Voy = —— .
Tlw
Thus, the average slider speed is given by
2 X 200 X 50
Vayy = . - 6366 mm/s.

In the past, approximate solutions to kinematics problems were used to save time
calculating. Today, with the general availability of computers, you might wonder why
we used an approximate equation at all in the preceding example. The answer is that
the approximate velocity equation is easy to differentiate; we can then find accelera-
tion and inertial forces in a useful form for designing vibration isolation.

Parameter Studies

Parameter studies are an aid in selecting optimum linkage dimensions and speeds. We
might examine velocities in a particular class of linkages (the slider crank, for exam-
ple), without specifying actual dimensions or speeds. To be as general as possible, a
family of curves of velocity versus crank angle can be plotted, each curve for a differ-
ent ratio of connecting-rod length L to crank length R. (See Figure 3.6a.) To normalize
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FIGURE 3.6 (a) The family of curves shown here represents those obtained from an in-line slider-
crank mechanism parameter study. The ratio of slider velocity to crankpin velocity is plotted
against the crank angle for various L/R ratios. The slider velocity at any position of the mechanism
is found by multiplying the ordinate (slider velocity/crankpin velocity) by the actual value of Rw.

the results, the product of crank angular velocity and crank length may be assigned a
value of unity. Later, all velocities will be multiplied by the actual value of wR to obtain
slider velocity.

Figure 3.6a is a family of curves of slider velocity versus crank angle for an in-
line slider-crank mechanism. The L/R = oo curve is a sine wave, representing the
actual velocity of a Scotch yoke mechanism or the limiting velocity relationship for a
connecting-rod length many times greater than the crank length. Note how closely
the curve L/R = 7 resembles the sine curve. To obtain curves for which the ratio of
connecting rod length to crank length is near unity, the exact analytical solution is
preferred.

Figure 3.6b shows the normalized piston velocity v/(wR) versus the crank angle
for an in-line slider-crank mechanism over a full cycle of motion. In this plot, L/R ratios
range from 1.2 to 2, and piston velocity toward the crank is shown below the axis. It can
be seen that all the plots for the in-line slider-crank mechanism are antisymmetric
about a crank angle of 7 radians.
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FIGURE 3.6 (b) Normalized piston velocity vs. crank position for various ratios L/R (in-line slider-
crank mechanism).

SAMPLE PROBLEM 3.3

Specification of a Linkage to Satisfy Velocity Conditions

Let us specify the dimensions of a linkage to meet a simple set of requirements. Suppose a cer-
tain process requires rectilinear motion with a velocity between 75 and 100 in/s in one direction
during at least 15 percent of each cycle. The linkage is to be driven by a shaft that turns at 600
rev/min.

Solution. The requirements are not very rigid, and therefore, several mechanisms would be sat-
isfactory, but we will consider the in-line crank mechanism that has already been examined in
detail. Checking the curve representing L/R = 3 in Figure 3.6a, we see that this connecting-rod-
to-crank-length ratio may be satisfactory. For that curve, v/(Rw) ranges from about 0.8 to 1.05
during the interval from 6 = 40° to # = 110° (which is greater than 15 percent of one cycle). If
we let v/(Rw) = 0.8 correspond to v = 75 in/s when

21 .

w = 0 X 600 rev/min = 62.8 rad/s,

then

v 75

R= 080 08 x 628 _ 1M

At maximum velocity, v/(Rw) = 1.05, or v ~ 99 in/s, which is within the required range. The ten-
tative solution, then, is an in-line slider-crank mechanism with crank length R = 1.5 in and



170

Chapter 3 Velocity Analysis of Mechanisms

connecting-rod length L = 3R = 4.5 in, and the conditions are satisfied between crank angles of
6 = 40° and 110° (approximately). Since the curves are only approximate, the next step is to
determine the velocity accurately during the chosen interval.

In almost every practical design situation, the first step involves sketching as many link-
ages as possible that might be suitable. The only limits are the designer’s creativity and experi-
ence. Then, the motion characteristics of the linkages are analyzed, first to ascertain whether the
displacement pattern meets all requirements and then to check the velocity and acceleration of
the mechanism.

3.2 MOVING COORDINATE SYSTEMS AND RELATIVE VELOCITY

It is sometimes convenient to establish a coordinate system that translates or rotates
along with a moving link. In most cases, we then refer velocities and accelerations back
to a fixed coordinate system.

Consider the two coordinate systems of Figure 3.7. Coordinate axes X, Y, and Z
and the corresponding unit vectors I, J, and K are fixed. (For most work with mecha-
nisms, this would mean that the XYZ coordinate system is an inertial reference frame;
that is, it does not move with respect to the earth.) The origin o of coordinate system
xyz is defined by the position vector R,,. Unit vectors i, j, and k for this set of moving
axes lie along, and move with, the x-, y-, and z-axes, respectively. The xyz—ijk system
may translate and/or rotate in any direction. A point P in a linkage is described by the
vector r (the position vector oP) in the moving coordinate system xyz. The total posi-
tion vector of P is

R=R,+r, (3.5)

measured from the origin of the fixed coordinates.
Expressing vectors R, and r in terms of their components and corresponding unit
vectors, the radius vector to point P is given by

R = RO)(I+ RoyJ+ R02K+ rxi+ ryj-l— rzk. (36)
Z.K 2k
P
r
o .
»J
x, i
Ry
FIGURE 3.7 A moving coordinate system. System
O, Y,J  xyz moves within fixed system XYZ. Point P moves

within xyz. The absolute position of point P is given

by the vector sum R, + r, where ris the position of

P with respect to the moving system and R, locates
X1 the origin of the moving system.
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Note that in Eq. 3.6, R, is written in terms of the fixed coordinate system, while r is
written in terms of the moving coordinate system. The velocity of point P is given by
the rate of change of R with respect to time:

R = RoxI + RoyJ + RozK + ii + Fyj+ ik + rd +rj + rk. (37

The first vector on the right side of the equation is the rate of change of R, in the X
direction—the X component of the velocity of o. Since the X, Y, and Z coordinate
frame is fixed, unit vectors I,J, and K do not change, and the velocity of o is given com-
pletely by the first three vectors on the right of the equation. The sum of these vectors
will be identified by the symbol R,,. The next three vectors, 7, and so on, represent the
rate of change in the r vector with respect to the moving coordinates, or the velocity of P
relative to the moving coordinate system xyz. The sum of these vectors will be identi-
fied by the symbol r.. (The velocity of P relative to the xyz system will be denoted by
the use of the subscript r.)

The last three vectors of Eq. 3.7 represent the effect of the rotating coordinate
system (xyz) in any expression for the absolute velocity of P. Unit vectors i,j,and k are
fixed relative to the moving xyz system (i.e., i, j, k move with the xyz system). Relative
to the fixed XYZ system, however, unit vectors i, j, and k rotate; thus, their positions
relative to fixed system XYZ are functions of time.

The first derivative of a vector of constant magnitude is the cross product of the
angular velocity of the vector (i.e., the angular velocity of the moving coordinate sys-
tem) and the vector itself. Thus, for the last three vectors in Eq. 3.7,

rxt; = rdw X i),
rd = rdo X j),
and

rk = r(o X k), (3.8)
so that

ri + ryj +rk = r(ew X i)+ r(@ X j) + r(o X k),

® X (rd + ryj + rk)

=w Xr (3.9)
Therefore, the last three vectors of Eq. 3.7 can be replaced by the vector product
o X r,where o is the angular velocity of the xyz coordinate system and r is the posi-
tion vector of P in the xyz system. Recall, from the previous section, that the cross
product

w XF

represents the velocity of a point on a rigid body rotating about a fixed axis.
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The velocity of R may be expressed more concisely as
R=R,+i +oXr, (3.10)

where R = absolute velocity of point relative to P (XYZ),
R, = velocity of the origin o of the xyz system,
r, = velocity of point P relative to the xyz system,
and
w X r = cross product of the angular velocity of the moving system xyz in
the XYZ system and the position vector r.

Relative Velocity from Another Viewpoint

In the preceding section, we referred to absolute velocity—that is, a velocity measured
in a fixed coordinate system (an inertial reference frame). In addition, a relative veloc-
ity was identified—the velocity of a point with respect to a moving coordinate system.
In the study of mechanisms, it is sometimes useful to describe the velocity of a point by
referring to another moving point. In this regard, consider nonstationary points B and
C.The term vcp is defined as the absolute vector velocity of C minus the absolute vector
velocity of B;that is,

Vegp = Vo — Vg (3.11)

Frequently, v is referred to as the velocity of C relative to B or the velocity of C with
respect to B. Other terms include velocity difference and the velocity of C about B.
Some works use a different notation, such as v, instead of v-g. When the terms “rel-
ative to,” “with respect to,” and “about” are used, it is understood that motion is viewed
from an inertial, or nonrotating, reference frame. An observer in a rotating reference
frame would not, in general, detect the correct relative velocity as just defined. In the
study of mechanisms, the earth is most often selected as a “stationary reference frame.”
However, problems of spaceflight and even problems of long-range ballistics on the
earth require that the earth’s motion be considered.
Equation 3.11 may be written in the equivalent form

Ve = vg + vep, (3.12)

where the plus sign indicates the vector sum. For a simple example of relative velocity,
let an aircraft carrier B move northward with a velocity vg = 15 knots (7.72 m/s).
Suppose an aircraft C on the flight deck has a velocity of vcp = 25 kn (12.86 m/s) rela-
tive to the carrier. The direction of the path of the aircraft across the flight deck differs
from the direction of the velocity of the aircraft carrier by 20°, as shown in Figure 3.8.
The vector vg, which represents the velocity of the carrier, is drawn to a convenient
scale, starting at an arbitrary point o. Then the vector v, which represents the veloc-
ity of the aircraft relative to the carrier,is drawn, beginning at the head of vector vg. The
vector sum

VB+ YeB = Ve

is the vector beginning at o, with its head at the head of v¢p.
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vep= 15 knots
(7.72 m/s)

veg = 25 knots
(12.86 m/s)

B: Aircraft carrier
veg = 39.4 knots C: Aircraft

(20.28 m/s)

FIGURE 3.8 Relative velocity.

The concept of relative motion also applies to machine operations, as in the case
of the motion of a robot manipulator on a fixed base, where the manipulator is to inter-
act with an assembly on a moving production line, or a lathe tool that moves axially to
cut a helical thread in a rotating workpiece.

3.3 MATRIX AND DETERMINANT CONCEPTS USEFUL IN THE STUDY
OF KINEMATICS AND DYNAMICS OF MACHINERY

Many kinematics and dynamics problems can be reduced to a set of linear equations.
Matrix notation may make these problems easier to solve. If there are more than two
equations in the set, we can “work smart” by using software with matrix capability. This
section provides only a brief introduction to the matrix methods we need for kinemat-
ics and dynamics. If you are convinced that matrices provide a convenient and power-
ful approach to engineering problems, look for books with matrices, linear algebra, or
linear analysis in the title.

A Few Definitions

A matrix is an array of elements in rows and columns. The form of a matrix with m
rows and 7 columns is

aq aip . aiy,
A an aj) e ar,
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A matrix with one column is called a vector or a column matrix. In ordinary three-
dimensional space such a matrix could look like

Note that vectors are not limited to describing links and velocities in a plane or in
three dimensional space. You may prefer to call the preceding vector a state vector.

An identity matrix (usually labeled I) has ones as the diagonal elements and
zeros elsewhere. The identity matrix of order four is thus

S O O -
S O =k O
S = O O
- o O O

The inverse of matrix A is labeled A~'. Multiplying a matrix by its inverse results in the
identity matrix; that is,

AA =L

Matrix Multiplication

Matrix A may be multiplied by matrix X (in the order AX) if the number of columns in
A equals the number of rows in X. Suppose A has r4 rows and c4 columns, and X has
ry rows and cy columns. Then the product AX = B is defined if ¢4 equals ry. Note
that B has r4 rows and cy columns.

Now consider an n-by-n square matrix

aq apn e ai,
A = an an) e ar,
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and an n-row column matrix

X1
X2

Xn

We can form the product AX = B, where B is a column matrix with n elements. The ith
element of B is

n

bi = E aij.x je
j=1
For example, if A is a four-by-four matrix and X is a column matrix with four terms,

then the second term in B is

b2 = ar1Xq + ayXy + aj3Xs3 + Ay Xy.

Using Matrices to Solve a Set of Linear Equations

Problems in kinematics and dynamics sometimes result in a set of linear equations. The
matrix method works like this:

a. Arrange the equations in the form

apxy + apxy + azxs + ayxy = by,
ayxy + apx, + a)xs + ayx, = by,
azxy + apxy + ax; + ayxy = b,
ag Xy + apxy + apx; + agx, = by,

where x;...x, are unknown, but we know the values of ay;....ay and b;...bs. Of

course, although four simultaneous equations are shown, we may have any number of
equations.

b. Express the simultaneous equations as the matrix equation
AX =B

where the known matrices A and B and the unknown matrix X are defined as follows:

app aip a1z 44 X1 b,

az;  dxp  dzz  dp4 X2 b,
A = X = B =

azy A4z A4z 4z X3 bs

ag1 Qg d43  Oyq X4 by
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Note that this product conforms to the foregoing rules for matrix multiplication.
c¢. Multiply the matrix equation AX = B by the inverse matrix A™! to get

A'AX = A7'B.

Recall that A™'A = 1, the identity matrix. Multiplying by the identity matrix does not
change X, and the result is

X = A7'B.

d. Calculate the set of unknowns, given in column matrix X, by means of the pre-
ceding equation.

Working Efficiently with Matrices

e Arrange the equations so that the coefficients of the unknowns line up; insert
zeros if necessary.

¢ Form matrices A and B.
¢ Identify the terms in the unknown matrix X (as a comment).

e If available, use software that can compute X = A™'B directly. Calculating the
inverse of a large matrix is a long and boring task without such help.

You might wonder why we did not use matrices for position analysis of spatial
linkages. The matrix methods we have presented are useful for describing linear rela-
tionships. The spatial linkage position equations contained unknown terms like »,, and
r3,, so that the set of equations is not linear. Sometimes nonlinear problems are
attacked with a combination of matrix methods and iterative numerical procedures.
See, for example, the section on the Newton—Raphson method for two or more vari-
ables in Chapter 2.

Determinants: Cramer’s Rule, an Alternative Method for Solving
Simultaneous Equations
Besides being used to express the vector cross product, determinants can be employed
to solve a set of simultaneous equations. However, employing determinant methods
for large sets of equations is an inefficient use of time when software with matrix capa-
bility is available.

Consider a set of nonhomogeneous linear equations arranged as follows:

axq + appx) + ... + a,X, = b1
ayi Xy + ayXy + ... + ar,X, = b2
a,x, + .. tauux, = b,

These equations can be written in matrix form as

AX = B,
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where the terms are defined as in the preceding paragraph.
The unknowns are given by

where D

X1 = Dl/D,
Xy = Dz/D,
x, = D,/D,

= det A, the determinant of the A matrix,

the determinant of the matrix formed by the A matrix with the first
column replaced by the B matrix (i.e., the elements of the B vector),

= the determinant of the matrix formed by the A matrix with the sec-

ond column replaced by the B matrix,
the determinant of the matrix formed by the A matrix with the
nth column replaced by the B matrix.

This method, called Cramer’s rule, will be illustrated in a sample problem and used
later to find angular velocities in a four-bar linkage.

SAMPLE PROBLEM 3.4

Using determinants to solve a set of linear equations

Solve the following set of simultaneous equations:

3u + 4v = 25.5;
u+ 50+ w =415
10u + 2v + 2w = 39.

Solution. The equations are linear in u, v, and w. We will write them in the form

where

AX = B,
3 4 0 25.5 u
A=l1 5 1 B:=| 415 and X:=| v
100 2 2 39 w

We then calculate the determinants to find the unknowns u, v, and w:

D:=|A|l D=56
255 4 0
D,
Di:=1| 415 5 1 D, =28 u=-—p u=05
39 2 2
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3 255 0] D
D=1 1 415 1]|| D, =336 1)::62 v =6
110 39 2|
3 4 255]
D;
Dy:=1|| 1 5 415 D; =616 w:= D w =11
110 2 39 |

SAMPLE PROBLEM 3.5

Using matrix methods
Is there a quicker way to solve the previous set of equations?
Solution. Yes,use the form X:= A™'B.
0.5
The answer is immediate: X=|6
11
The elements of the X vector may be numbered beginning with zero. That is,

u:=Xy u=05 v=X; v=6 w:=X, w=11

3.4 APPLICATION OF ANALYTICAL VECTOR AND MATRIX
METHODS TO LINKAGES

Analytical vector methods may be used to find velocities in planar and spatial linkages.
Basically, it is necessary to determine the link orientations by first solving the position
equation and then differentiating the position equation with respect to time. If the
linkage may be described by the vector polygon

rptrn+rn+rn=0,
then differentiation with respect to time yields the velocity equation
fy+mn+m+i=0. (3.13)
The form of the solution depends on the given data and the type of linkage. The solu-

tion for a linkage with sliding pairs is somewhat different from the solution for a link-
age with revolute joints only.

Four-Bar Linkage

Consider a four-bar planar linkage represented by vectors, as shown in Figure 3.9. All
the links are rigid and there is no sliding contact. For the frame, 7y = 0.
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FIGURE 3.9 Analytical study of a four-bar linkage.

For the four-bar linkage, the remaining velocity terms are given by the cross
products, and the last equation becomes

(u1><r1+w2><r2+w3><r3=0. (314)
For this planar linkage, the coordinate axes are selected so that vectors ry, r,, and r3
have components in the x and y directions and angular velocities w in the z direction.
Thus, examining the first term in Eq. (3.14) as typical, we have
W = kwl
and

ry = iry t Jryy.

Using determinant form for the cross product, as described in Chapter 2, we obtain
i j k
w1 X r = 0 0 w1 = —ia)lr1y -I-jwlr]x. (315)
F1x l’ly 0

Since the remaining terms in Eq. 3.14 are similar in form, that equation may be written as
—i(a)lrly + (1)2r2y + a)3r3y) + j(wlrlx + WoFoy + (1)37’3x) = 0. (316)

The i component and the j component of Eq. (3.16) must each separately equal zero,
yielding the two simultaneous equations

wlrly + (x)zl’zy + (u3r3y =0
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and
W1F + Woly + W3l3, = 0. (317)

A number of methods are commonly used for solving simultaneous equations. For
example, if w; is known and we wish to determine the other angular velocities, we may
write the preceding equations in matrix form as follows:

R Rech R (3.18)
ox  13x || W3 _rlx

The angular velocity of link 2, the coupler, is given by the determinant expression

—w1 | rs
— y y
wy = D 5
Fix  Tax
where
r I
D = y 3y ,
x I3y
and the angular velocity of link 3 is given by
“Wilry N
w3 = Y Y .
D |ryy 1y

Expanding these expressions, we have

_wl(rlyer - V3y”1x) (3.19)
wy = .
Iyl3x — I3ylax

and

_wl("Zyrlx - "1y”2x)

(3.20)

w3 =
Iayl3xy = I3ylax

Since link 1 in Figure 3.9 rotates about fixed point Oy, the velocity of any point on link
1is given by w; X r, where r is the vector measured from O; to the point in question.
Link 2, the coupler, has no fixed point. The velocity of an arbitrary point D on link 2
may be found by using Eq. 3.10, where link 2 is fixed in a rotating coordinate system
with origin at B.Then,

ROZ wq ><r1,
i'r:O>

w Xr wZXrBD,

and the velocity of point D is given by

Vp = w; X1 + wy, X rgp, (321)
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where the first term on the right represents the velocity of point B and the last term the
velocity of D with respect to B. The same result could be obtained by noting that the
position of point D could be described by the equation

rp=r + rgp,

where vectors r; and rgp have fixed magnitude. Note that point D does not move rela-
tive to link 2.

Point C in Figure 3.9 represents the revolute (pin) joint between links 2 and 3.
The velocity of C can be found by the equation

Ve = W X r + [0)) X r, (322)

where the first term on the right represents the velocity of B and the last term the
velocity of C with respect to B. (Compare vp in Eq.3.21.) An alternative expression is

Ve = ws3 X (—13), (3.23)

since link 3 rotates about fixed center O; and —r; represents the radius vector O;C. If
we subtract Eq. 3.23 from Eq. 3.22, the result is Eq. 3.14.

Equations 3.22 and 3.23 form the basis of the graphical relative velocity and
velocity polygon methods for plane linkages of this type. For example, if the velocity of
point B (Figure 3.9) is known, we use the fact that the cross products are perpendicular
to the link vectors to find the velocity of point C.

Although the equations we have developed in this section are general for the
four-bar planar linkage, the solutions are actually instantaneous velocities and instanta-
neous angular velocities. Even if w1 is constant in magnitude, only the magnitude of vg
will be constant. Due to the changing position, w, and w3 will, in general, vary, as will
the velocities of points on links 2 and 3.

SAMPLE PROBLEM 3.6

Linkage Velocities by Analytical Vector Methods

Referring to Figure 3.9, let w; = 100 rad/s ccw, 6; = 45°, 6-pp = 20° (constant), ry = 30 mm,
ri = 10mm, r, = 35mm, r; = 20 mm, and rgp = 15 mm. Find w,, w3, vc, and vp,.

Solution. In chapter 2, for the assembly configuration shown, we determined from the position
analysis that §, = 16.35° and 6; = 237.81°. The components of the link vectors are

ry =rcosfandr, = rsin .

Programming a polar-rectangular and rectangular—polar conversion subroutine or using a pre-
programmed one saves time. For this linkage at the instant considered,

ry = 70711, r, = 7.0711,
Fye = 33590, ry, = 9.853,
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and
r3 = —10.660, r;, = —16.922.

Using these values in Egs. 3.19 and 3.20, we find that

—100(—7.0711 X 10.660 + 16.922 X 7.0711)

“27 729,853 X 10.660 + 16.992 X 33.590
= —9.567rad/s (9.567 rad/s cw)
and
~100(9.853 X 7.0711 — 7.0711 X 33.590)
w3 =

—9.853 X 10.660 + 16.992 X 33.590
36.208 rad/s ccw.

The velocity of point C is given by the vector sum of the velocity of B and the velocity of C with
respect to B (Eq. 3.22). Noting that w; = 100k and w, = —9.567k, we have

i j k i j k
ve=| 0 0 100] +| O 0 9567
70711 70711 0 33590 9853 0

= —i612.83 + j385.80 = 724.16 mm/s /147.8°.

Note that the velocity vector is perpendicular to the link vector.
Using, instead, the angular velocity and length of link 3 (Eq. 3.23), we obtain

i j k
ve=1| 0 0 63208,
10660 16922 0

which differs from the previous solution only because of round-off error. This alternative

method provides a partial check of our arithmetic operations or of our coding of the program.
In finding the velocity of point D, which lies in link 2, we note that the components of the

vector location are defined by the angle 6, + 0cgp = 16.35 + 20°, from which it follows that

¥Bpx = 12.081 and rBDy = 8.891.

Adding the vector velocity of B and the vector velocity of D with respect to B, (Eq. 3.21), we

obtain
i J k i J k
vp = 0 0 100| + 0 0 —-9.567
7.0711  7.0711 0 12.081 8.891 0

—i622.04 + j591.53 = 858.4mm/s /136.4°.
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Inverse Matrix Solution Using Mathematics Software

Equation 3.18 may be written in the form
AX = B. (3.24)

Let the numerical values of the elements of matrix A and state vector B be specified.
Then state vector X, representing the angular velocities of links 2 and 3, is the only
unknown. Hence,

X = A'B. (3.25)

A direct solution of Eq. 3.25 is easily obtained with the use of mathematics software.

3.5 USING A SPREADSHEET TO SOLVE PROBLEMS IN KINEMATICS

An electronic spreadsheet program is a convenient tool for analyzing a linkage in a
series of positions. Spreadsheets allow for rapid evaluation of potential design changes,
and include built-in plotting routines. One disadvantage is that spreadsheet formulas
are written in terms of cell references, while we are accustomed to writing equations in
terms of physical parameters.

Spreadsheets allow copying of formulas in a given range of cells to an additional
range of cells. If the cell reference is not to change when a formula is copied to another
cell, then an absolute cell reference is used. A relative cell reference is the default form.
The column letter or row number of a relative cell reference changes according to the
cell into which a formula is copied. Sample Problem 3.7 is intended to illustrate an
application of spreadsheets to kinematics. Complete instructions for manipulating
spreadsheets are found in the manuals that accompany the software.

SAMPLE PROBLEM 3.7

Utilizing a Spreadsheet to Plot Velocities in a Four-Bar Linkage

Let crank angle 0, vary from 0° to 360° in 5° increments in the four-bar linkage described in
Sample Problem 3.6. Plot the angular velocities of the coupler and follower crank and the veloc-
ity of point D vs. 6;.

Solution. 'We begin by listing the given data in cells that are identified by their column letter
and row number.

The initial value of crank angle 6, is zero, and it is incremented 5° in each succeeding row.
Equations are entered in cell format according to the spreadsheet manual. Angle functions usu-
ally require arguments in radians. The job is not finished until we title the graphs, label the axes,
and label the curves or include a key.

Figure 3.10 shows the coupler and follower angular velocity plotted against the crank posi-
tion. Figure 3.11 shows the velocity of point D on the coupler of the linkage. The x and y compo-
nents are shown, as well as the resultant velocity.
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FIGURE 3.11 Velocity of a point on the coupler of a four-bar linkage.
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3.6 MATHEMATICS SOFTWARE APPLIED TO VECTOR SOLUTIONS
OF KINEMATICS PROBLEMS

If we choose to solve kinematics problems in vector form, we may write vector-
manipulation routines or use commercially available mathematics software. Consider
the offset slider-crank linkage sketched in Figure 3.12.This linkage can be described by
the vector equation

e+r+r+r=0, (3.26)

where the magnitude of e is the offset—that is, the distance from the centerline of the
slider path to crank bearing O;.
Position Analysis

If the offset crank length, connecting-rod length, and crank position are given, then it is
convenient to rewrite Eq. (3.26) as

r + r + rp = 0, (327)

where r; = e + ri. Noting that the magnitude of ry is unknown and the direction of r,
is unknown, we see that the solution is given by Egs. (2.23) and (2.24), where
rn=A,n=B,andrs=e +r = C.

Velocity Analysis

We note that the magnitudes of r; and r, are constant, that r, has a fixed direction, and
that e is constant in both magnitude and direction. Differentiating Eq. (3.26), we obtain

w1 X ry + W) X rn—v.= 0, (328)

where dry/dt = —wv,, the slider velocity, which is in the x direction. The angular velocity
vectors are in the z direction. To eliminate v, in Eq. (3.28), we take the dot product of
each term with j, from which we get

(I)l(k X r1) 'j + (1)2(k X r2) 'j = 0. (329)

Using vector manipulation rules from Chapter 2, we have

(kXr)j=r-Gxk)

yJ

92 FIGURE 3.12 Offset slider crank
linkage.
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and
J X k=i
Equation (3.29) is equivalent to
i+ wryi =0,
from which it follows that
wy, = —wqry - i/(r - 0). (3.30)

Equation (3.28) may now be solved for v,.

SAMPLE PROBLEM 3.8
Velocity Analysis of an Offset Slider-Crank Linkage Using Vector Methods

a. Referring to Figure 3.12,let R,/R; = 1.8 and ¢/R; = —0.5j, where R; = crank length and
R, = connecting-rod length. The angular velocity of the crank is constant. Plot the slider
position, slider velocity, and angular velocity of the connecting rod vs. crank angle 6;.

b. Examine the effect of varying the offset. Let Ry/R; = 2.
Solution Summary. (a) Commercially available mathematics software was used to obtain the

solution shown in Figure 3.13. In this solution, we set R; = 1 and w; = 1. Then the results apply
to other slider-crank linkages with the same proportions if ry is multiplied by the actual R;, w, by

3 —
[rol6:]|
0 |
0 P 180 360
1° 77
1.6 —

1.0

V[01],0,[0,]

-1.0

0 180 360
01 =7

FIGURE 3.13 Solution to sample problem obtained by using mathematics
software.
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the actual wy, and v, by the actual w;R;. Crank angle 0, is to range from 0 to 2 rad in steps of 7/9.
Known vectors e, r§ , ry, and r; are expressed in column form. Rectangular unit vectors i,j, and k
are also defined in column form. Equations (2.23) and (2.24) are then used to determine ry and
r,. The magnitude of ry is tabulated and plotted against 6; (which is converted to degrees).
Connecting rod angular velocity w, and slider velocity v, are then calculated by Egs. (3.30) and
(3.28) and plotted. Even though v, lies only in the +x direction, it has been stored as a vector. In
order to tabulate and plot its magnitude and sense, we compute

V.=wv.i.

(b) Figure 3.14 shows the effect of varying offset e. In this plot, slider velocity V, is plotted against
crank angle 64 for a slider-crank linkage for which Ry/R; = 2.

Detailed calculations. Slider-crank linkage. ¢y = 1 (clockwise configuration positive)

0.4

0 -1
0, = o%nz-w Ri=1 R,=18 e=|-05| r,=]| 0
0 0
Rl . Cos [01] 1 0
r1[01] = Rl ° Sin[@l] i= 0 j = 1 k=10
0 0 1
r3[61] = n[61] + e
VC
a)]Rl 2 T
< f
Sl
5 |
Sif
&
e[
2
ST
& I
o N \ \ \ \ |
i e/R; =08 2w
[ 0.6 Crank angle (radians)

Le/R, =02

Piston velocity toward crank
—

27

FIGURE 3.14 Normalized piston velocity versus crank position for various values of e¢/R;. (Ry/R; = 2).
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12

2
6] = —"3{91} Ty, + ot | RS — ["3{91}' {’bu X kH * Tou

al6,] = —[r3[64] - [ro X K]] - [ro, X k]

12

2
nl6i] = a[6,] — co+| R3 - [@[91] . {r(]u X kH T

n[6y]-i
rl0]-i

Vv[01] = w1k X 1[01] + wy[0i] -k X no[01] V[61] = w.[01] i

o =1 w)0] = —wy

3.7 COMPLEX-NUMBER METHODS APPLIED TO VELOCITY ANALYSIS

Complex numbers are a convenient form for representing vectors. They may be used
to develop analytical solutions to linkage velocity problems. With complex-number
methods, we are limited, of course, to planar linkages. First, the loop closure (displace-
ment) equation is solved for unknown directions and magnitudes. Then, the displace-
ment equation is differentiated with respect to time to obtain the velocity equation.

Consider the sliding contact linkage shown in Figures 3.15a and b, where the
slider moves along link 2. The linkage is described by the equation

R2 = RO + Rl’ (331)

where R, representing the frame, is fixed in magnitude and direction. Vector Ry, rep-
resenting the rotating crank, has constant magnitude, but the magnitude of R, changes
with time. If the real axis is selected to be parallel to the fixed link, we may write

Ry + R/t = Ryel®. (3.32)

Differentiating with respect to time, we have the complex velocity equation

jorRie® = jw,Rpe!® + vp pe®, (3.33)
where
_do
R
is the angular velocity,
_dR
v =g

is the relative (sliding) velocity of B; with respect to B, (which is positive if R, is
increasing),

o1R; = VUp,
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(Byonlink 1,
B, on link 2)

(a)

Imaginary axis

R, Real axis

FIGURE 3.15 (a) Schematic of sliding contact linkage. (b) Vector representation.

and
R, = vp,.
Thus, we have the vector equation
v, = Vg, + Vg5, (3.34)

with the complex exponentials indicating the directions. Note that the order of the sub-
scripts is critical (vg,5 = —vg,3,)-

Referring to Eq. (3.33), suppose link lengths R, and R; are given along with the
orientation and angular velocity of link 1. Then R, and 6, may be found by solving the
displacement equation. (See Chapter 2.) Two unknowns remain—the angular velocity
of link 2 and the sliding velocity—both of them part of complex expressions.

We could now find the unknowns as follows:

e Use the Euler formula (given in Chapter 2) to convert the equation to rectangu-
lar form.

e Separate the real and imaginary parts. Note that we now have two simultaneous
equations; that is, both unknowns appear in both equations.

¢ Use Software like Mathcad™ to solve the simultaneous equations for the sliding
velocity and the angular velocity of link 2.
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Instead of employing the foregoing procedure, we can “work smart” by examin-
ing the complex velocity equation. How can we take full advantage of the complex-
number method and change the equation to make one of the unknowns appear only in
areal term? Try this:

e Multiply the complex velocity equation by a quantity that will separate the
unknowns.

¢ Use the Euler formula to convert the equation to rectangular form.

e Separate the real and imaginary parts. Note that the unknowns appear in sepa-
rate equations. Thus, we have the solution without solving simultaneous equations.

Here are the details: We begin by multiplying both sides of Eq. (3.33) by ¢ /%2, This step
is equivalent to rotating the coordinate system through an angle 6,.
The result is
jorR 7% = jw,Ry + vpp,. (3.35)
Expressing the exponential in rectangular form (via the Euler formula), we obtain
JoiRy cos (0; — 6,) — o1 Ry sin(0; — 0;) = jorRy + vp .. (3.36)
The imaginary parts of Eq. (3.36) yield
w1R; cos (0 — 6,) = ;rRy,
from which we obtain the angular velocity of link 2:
Wy = wRicos (6; — 6,)/R,. (3.37)

Equating the real parts, we obtain the sliding velocity—the relative velocity of B; with
respect to By:

UBlBZ = _Cl)lRlSiIl(Ol - 02) (338)

For R; < Ry, link 2 oscillates while link 1 rotates. We see that w, = 0 when
cos(0; — 6,) = 0,0r6; — 0, = w/2,37/2, 5m/2, and so on. Alternatively, these limiting
positions (link 1 perpendicular to link 2) may be obtained by sketching the linkage.
The magnitude of sliding velocity vg p, is maximum at the limiting positions.

SAMPLE PROBLEM 3.9

Analysis of a Sliding Contact Linkage by means of Complex Numbers

We will examine velocities in a sliding contact linkage, utilizing the results of complex number
analysis. Referring to Figure 3.15, let w; = 20 rad/s counterclockwise (constant), Ry = 40 mm,
and Ry = 20 mm. Find R;, 6, ,, and v, p, for the instant when 6; = 75°.
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Solution. Using the displacement equations from Chapter 2, we proceed as follows. The slider
position is

R2 = \/R(z) + Rlz + 2R[)R1 COS 91
= V40? + 202 + 2 X 40 X 20 X cos75° = 49.13 mm,

and the position of link 2 is

. [ Ry sin 6; . [ 20sin75°
= L) = =2 ) = 23150,
0, arcsm( R, ) arcsm( 1913 ) 3.15

For this linkage, the proportions are such that 6, is limited to the first and fourth quadrants, and
the preceding result is correct. A safer procedure utilizes the function arctan,. Alternatively,

compute
_ Rycost; + Ry
cos 0, = T s
. R sin 0
sin 6, = Tz s
and

0, 1 — cosf,
tan| = | = ——F—-7"",
2 sin 6,

which yields the same value of 6,. The angular velocity is

wy =

w Ry cos (0 — 0,) 20 X 20 cos (75° — 23.15°)
R, - 49.13
+5.03 rad/s (ccw),

and the sliding velocity (the motion of the slider relative to link 2) is

dR, ,
UB,B, = ? = —w1R1 Sln(01 - 02)

= —20 X 20sin(75° — 23.15°) = —314.6 mm/s

(i.e.,314.6 mm/s along link 2 toward O,).

3.8 SPATIAL LINKAGES: VECTOR AND MATRIX METHODS

Consider a spatial linkage with n = 3 links that form a closed loop. If links are repre-
sented by vectors ry, ry, and so on, the three-dimensional loop closure equation

r0+r1+r2+"'+t‘n=0 (339)
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may be used to describe the linkage. Differentiating with respect to time yields the
velocity equation

Fo+ I+ iyt by = 0. (3.40)

For a vector of fixed magnitude, an r term may be replaced by @ X r. When sliding
occurs, the relative velocity of coincident points must be considered.

The velocity vector equation for a spatial linkage is, in general, three dimensional
rather than two dimensional, as for a planar linkage. Carrying out a comprehensive
analysis of a full cycle of motion of a spatial linkage is a formidable task. Software with
matrix capabilities or three-dimensional motion simulation software can eliminate
hours of repetitive calculations.

Analysis of an RSSC Spatial Linkage

For a given value of 6, the positions of all links in the RSSC linkage of Figure 3.16 may
be found. Both graphical and analytical solutions are described in Chapter 2. If the
angular velocity of link 1 is known, the velocity of spherical pair S, is given by

Vg, = v51 + vszsl = W X r + w-H X r. (341)

1
For the configuration shown, v, lies in the xy-plane and

Vs, x

= tanv,
S2y

a constant. The spherical joints permit link 2 to rotate about its own axis. This motion
may be set equal to zero without affecting other kinematic aspects of the problem.
Thus, we may write w,+r, = 0. These relationships result in a set of simultaneous
equations from which the unknown velocities are determined.

Side view y.J Link 3 Sy

FIGURE 3.16 RSSC spatial linkage.
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SAMPLE PROBLEM 3.10

RSSC Spatial Linkage

Here, a spatial linkage is analyzed with the use of vector methods. Find link orientations and
velocities for the RSSC spatial linkage of Figure 3.16 for y = 30°, 6 = 45°, and crank angular
velocity w; = 50rad/s counterclockwise; let r, = 200 mm, r; = 100 mm, and r, = 300 mm. Use
vector notation.

Solution. The links may be described in terms of unit vectors as follows:

ry = 0i —2005 + 0k;

r = 0i +100(cos 0)j  +100(sinH)k;
n=rd tnj + rk;
r3=rd o, j + Ok.

The equation ry + r; + r, + r; = 0 applies to each vector direction. Thus, summing the i com-
ponents, we have r3, = —r,,. Since r3, = r3,tany, we also have r, = —r3,tany. From the j
components, we obtain r,, = 200 — 100 cos 6—r3, and from the k components, r,, = —100sin 6.
The length of link 2 is 300 mm, so

r3. + 3y + 23, = 300%

Substituting the given values of § and vy, we have a quadratic equation in r3,. The root of the
equation that corresponds to the assembly configuration in the figure is

rsy = —149.23.

Using the aforementioned equations, we may then write
ro = 0i — 200j + Ok;
r, = 0i + 70.71j + 70.71k;
r, = 86.26i + 278.52j — 70.71k;
r; = —86.16i — 149.23j + Ok.

The velocity of link 3, the sliding link, is given by

sz = vSl + vszsl
where
v‘“l =w; X1,
Vs = W2 X 1y,
Vs, = Vs d + vy, j + Ok,
w1 = 50i + Oj + Ok,
and

Wy = wzxi + (l)zyj+ a)zzk.

We ignore the rotation of link 2 about its own axis; this motion does not affect that of the rest of
the linkage. Thus, we may set the component of @, in the r, direction equal to zero, which is
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equivalent to stating that w, - r, = 0, from which it follows that

W) rn = 8616(1)2X + 27852w2y - 7071(,02Z = 0.

The motion of link 3 is limited by the cylindrical joint, so that
Vs,x = Vg, tany.

This last equation may be used to reduce the problem to a system of four unknowns and four
equations.
The velocities are given by

i J k
Vs, = 0 X r = |wiy w1y W
x Ty Tz

i J k
= |50 0 0
0 70.71 70.71

= 0i — 3535.5j + 3535.5k,

i j  k

551 — @2 Xry = |wyy wyy W3

Tox r 2y Iz
i j k
- W)y wa W),

86.16 278.52 —70.71

= (=70.71w,, — 278.52w,,)i

+(86.160y, + 70.71ws,)j
+(27852a)2x - 8616w2y)k,

and

vy, = 0.5774v i + vy

2 $2)' $2)

Jj + Ok.

The velocity equation

applies in each vector direction.
From the i components, we have

0.5774v,,, = 0 — 70.71w,, — 278.52w,,,

from the j components,

v,y = —3535.5 + 86.16w,, + 70.71w,,,
and from the k components,

0 = 3535.5 + 278.52wy, — 86.16w,,.
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Combining these equations with the result of w, X r, = 0, we get

0 70.71 27852 0.5774 || wyy 0
70.71 0 86.16 -1 wy, | | 35355
278.52 —86.16 0 0 Wy, —35355 |
86.16 27852 —70.71 0 v 0

52y

It is most convenient to use a calculator or computer program to solve this set of linear simulta-
neous equations. The results are

Wy, = —11.190,
w,, = 5.091,
wy, = 6.505,
and
vy, = —3761.
Noting the direction of vy,, we have v,,, = —2,172. The angular velocity of link 2 is given by

w; = —11.190i + 5.091j + 6.505k.
The velocity of the sliding link is given by
v, = —2172i — 3761;.
The relative velocity is
Vo, = @y X 1y = —2,172i — 231j — 3,535k.

‘We may now check to ensure that the vector velocity equation v, = v, + v, is satisfied.

For the special case in which path angle y = 0, we have, of course, an in-line pla-
nar slider-crank linkage. The displacement equation reduces to

r3 = (ro — rycos + ;’3)2 + (rq sin 0)2,

where point A is undefined but r; + r; is the distance between revolute R and ball
joint S,. For v = 0, the two ball joints could be replaced by revolute joints, since the
motion is restricted to a plane. For this special case, the velocity equation reduces to

drs . do ricos 6
— = —rsinf—| 1+ .
dt dt 4] + r3 — VICOSO

It can be shown that the preceding equation is identical (except for the sign conven-
tion) to the planar slider-crank velocity equation derived earlier for crank length R
and connecting rod length L:

v = Rw sin 0|:1 + <R\ cos 6 :|
L)\A - (R/L)%sin* @
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Matrix Methods Applied to Velocity Analysis of an RSSR
Spatial Linkage

An RSSR spatial linkage is described by the vector position equation
r0+r1+r2+r3=0,

where the links are identified as in Figure 3.17. In solving spatial linkages, position
analysis is a difficult task. Methods are described in Chapter 2, but specific solutions
given in that chapter apply only to certain linkage configurations.

Noting that all links have a fixed length and that link O is stationary, we differenti-
ate the position equation to get the velocity equation

w1><1‘1+w2><1‘2+w3><1'3=0. (342)

Now, suppose the link lengths and configuration are specified, and we have
already solved the position equation. Let drive crank position and the angular velocity
be given. Then there are four unknowns in the velocity equation: the three components
of the angular velocity of link 2 (the coupler) and the angular velocity of link 3 (the fol-
lower crank). But that vector equation is only worth the three scalar equations we get
by expanding it and separately equating its i, j, and k components.

We need a fourth equation. Recall that an RSSR spatial linkage has two degrees
of freedom, but we do not usually care about rotation of the coupler about its own axis.

—I'LLLI— R2 R2

. +o
¥sJ 3 y.j
V\ + wq,
z2,k
z,k (out) x, i (out)

(@ (b)

FIGURE 3.17 Spatial linkage velocity analysis (not to scale). (a) xy-plane. (b) yz-plane.



Section 3.8 Spatial Linkages: Vector and Matrix Methods 197

If we say that link 2 does not rotate about its own axis, then the dot product of the
angular velocity and the link vector is zero:

wyr*'rn = 0. (343)

The right side of this equation could be any number. The coupler has a ball joint at
both ends; its rotation about its own axis is irrelevant if we care only about the motion
of the output crank vs. the drive crank.

SAMPLE PROBLEM 3.11

Velocity analysis : expanding the vector equations

The drive crank and the driven crank of an RSSR linkage rotate in perpendicular planes, and the
fixed bearing of the driven crank is in the plane of the driver. Write a set of scalar equations from
which you can find the follower crank velocity in terms of the driver velocity.

Decisions. We will set up the coordinate axes as in Figure 3.17. Then, the drive crank vector has
components in the x and y directions and rotates about the z-axis. The driven crank has compo-
nents in the y and z directions, and its angular velocity vector is in the +x direction.

Solution. We first compute the cross products of the angular velocity and link vectors:

i j k
w; Xr =10 0 | = joi r, — oy,
ry rny O
i j k i(warZZ - w21r2y)+
Wy X Iy = Wy wWyy Wy = j(w2zr2x - w2xr2z)+
Fax Ty T K(waray — woynay);

i j k
w3 X I3 = [W3y 0 0= —jw3x 13z + kw3x r3y.
0 r3y 3z

Adding the cross products, we have
w1 X I + w) X 1 v) + w3 X I3 = i(—wlzrly + a)zyrzz - a)zzrzy)

+ .](wlzrlx + W oy — Wyl — w3xr3z)

+ k(warZy — Wyyhx T w3xr3y) =0.
The i, j, and k components of this equation each equal zero.
The terms preceded by i give us one scalar equation:
— w11y T oy, — wyhy, =0,
the j terms another,

W1y T Wy T Wl T W33, = 0,
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and the k terms a third,
Wy — Wyl + w3yr3y, = 0.
We need four equations, however, because there are four unknowns. The fourth equation is
W) 1y = Wy T Wy, + wry, = 0.

We are now prepared to find the four unknowns: the x, y, and z components of the coupler angu-
lar velocity and wj3,, the angular velocity of the driven crank.

The good news is that we now have the correct number of equations and
unknowns, and the equations are linear. We can thus use matrix methods to solve the
set of equations. The bad news is that analyzing a full cycle of motion of the RSSR spa-
tial linkage requires hundreds of calculations, and we would not attempt the task with-
out a computer. Also, different linkage types may require different sets of position and
velocity equations.

SAMPLE PROBLEM 3.12

Spatial linkage velocity equations in matrix form

Suppose that link lengths and other data are given for the RSSR spatial linkage considered in
Sample Problem 3.11. Suppose also that you have already solved the position equations in terms
of the angular position of the drive crank. Write a matrix equation for the angular velocities of
the coupler and driven crank in terms of the angular velocity of the drive crank.

Solution. First, we rearrange the four equations obtained in the previous sample problem. The
unknown quantities go to the left of the equals sign and the knowns to the right. The equations
are arranged so that like w terms line up as follows:

Woyla, T Wyl = W1z71y;
W, twyryy  Twi T = TwW1p
WrxF2y Ty oy +w3xr3y = 05
WoxTy +w2yr2y +w21r22 =0.

(It helps to put zeros in the empty spaces of these equations.)
The matrix equation is

AX =B,

where the column matrix of unknown angular velocities is
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The A matrix is constructed so that it represents the coefficients of the left side of the four afore-
said equations:

0 ry, Ty 0
A I 0 T2x T3

ryy  ~rax 0 I3y

F2x T2y T2 0

The known quantities on the right of the four equations form the column matrix:

W1z Ty
Wiz Ty
0
0

You can see why the equations in the forgoing sample problem are lined up on
the wy, terms, etc. If you are not comfortable with this configuration, be sure to review
sections of this chapter on matrices, or review applicable sections in one of your math-
ematics books. Your time will be well spent. “Working smart” involves using matrices
to solve problems in the kinematics and dynamics of machinery; you may have oppor-
tunities to use matrices throughout your engineering career.

Checking for errors. Unless you are very lucky or talented, the results of com-
plicated calculations are likely to be wrong the first time around. Errors in entering
data and equations are the source of most “computer mistakes.” Occasionally, software
and hardware introduce errors. Insert simple tests into your programs. Is the magni-
tude of a link vector equal to the actual link length? Is the velocity zero when the slope
of the position curve is horizontal? Compare velocity with change in position divided
by change time: (over a short interval).

The chain rule. Do you remember the chain rule for differentiation? Suppose
driven crank position 05 is known as a function of drive crank position 6;. Using a spe-
cial case of the chain rule, the follower crank velocity is found by calculating

w3 = d03/dt = (d03/d01) (d@l/dt) = wl(d03/d01).

Numerical differentiation. Take an arbitrary drive crank position. If the driven
crank velocity calculated by the matrix method and by numerical differentiation do
not produce comparable results, something must be wrong. For a small time interval At,
the angular velocity of the driven crank is approximated by

w3 =~ A03/At ~ (A93/A01) . (AOl/At) ~ wq ‘(A93/A01),
where A65/A0; is calculated from a 65 vs. 6; plot or table, using a small interval A6,.

Compare this approximation of w; with the calculated value (matrix method) in the
middle of the interval.
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Numerical differentiation is illustrated in the next example. Be sure to check
units. If measuring the slope of a curve, check the horizontal and vertical scales.

SAMPLE PROBLEM 3.13

Calculating spatial linkage velocity

A mechanism is needed with a 115-mm output link that oscillates through a range of about 50°.
The input shaft rotation speed is 150/7 rpm (5 rad/s). The input shaft is parallel to the plane of
the output link at a distance of 20 mm. Design the mechanism and find the angular velocity of
the output link. Check the transmission metric and check the angular velocity by numerical
differentiation.

Design decisions. We will select an RSSR spatial linkage similar to that in Figure 3.17. After a
number of tries, the following dimensions are chosen:

drive crank length r; = 55 mm;
coupler length r, = 190 mm;
driven crank r; = 115 mm (required);

revolute joints: R; located at (0,0, 0) and R, at (=20, 180, 0), from which fixed link components
are ro, = 20 and ry, = —180

Solution summary. The first part of the solution is based on the analysis of an RSSR linkage in
Chapter 2. The range of motion of the output link approximates the desired value, and transmis-
sion metric 7 is acceptable, as shown on the graph (Figure 3.17c). Drive crank position 6, is
identified simply as 6. The four unknown angular velocities are computed for each value of 6,
using the equation

X =A'B

where matrices X, A, and B are defined in Sample Problem 3.12.

Although we must consider the motion of coupler link 2 to solve the problem, we are inter-
ested only in the results for driven crank link 3. The angular velocity of the driven crank is the last
element of the X matrix. If the elements are numbered 0, 1,2, and 3, then

W3y = X3.

The graph shows ws, divided by the drive crank angular velocity w;,. We see that a zero slope of
the curve of the driven crank position corresponds to zero angular velocity.

Let us obtain the average angular velocity of the driven crank for the interval between 90°
and 110° drive crank positions. This velocity is given by the change in 65, divided by the change
in time. The value is —0.311 rad/s, a rough approximation of the matrix-generated value at 100°,
w3, = —0.32rad/s. The accuracy should improve if the interval is decreased. Results are also
checked using a derivative algorithm to obtain

w3y = w1 db,/db,.

The graph shows no significant difference between the value computed by using the derivative
algorithm and that obtained with the matrix solution. Note that the horizontal axis of the graph
is the drive crank angle in degrees. The driven crank angle is in radians, and the other two curves
are dimensionless. (Caution: The mixed units are for presentation only; be sure to use consistent
units in your calculations.)
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Solution details (The software used to solve this problem does not identify vectors with bold-
face type).

The drive crank and driven crank rotate in perpendicular planes.

Vector loop: 1y + 11 + 1, + 13 = 0, wherery = R, — Ry
Dimensions of links:

Fixed link rg,:= 20 roy:= —180

Drive crank r;:= 55

Coupler 1,:= 190

Driven crank ry:= 115

Position Analysis

Drive crank position (subscript omitted) 0:=0, % -2

rix(0) :=ricos (0) r11y(0) := r; - sin(f)
Define ¢ = sum of fixed link and drive crank vectors. Then

Cx(o) =rx T rlx(g) Cy(e) *= Toy + rly(g)
CX(0)2 - Cy(0)2 - I'22 + 1‘32
2¢(0)

I(0) 1= —cy(0)  Ty(0) =

_(Cx(0)2 + Cy(e)2 - r22 + r32)
2¢(0)

13,(0) : 13,(0) := (13> — r3y(0)2)%*
12,(0) := —13,(0)

* We will select the assembly configuration given by the positive root.

Driven crank position 63,(6) := angle(rsy(6), 13,(6)) 03x(2) = 1.772

12x(6) 0
Link vectors 11,(0) := | 15, (6) rr3(0) := | 13,(0)
15, (6) 13, (0)s
Check results for coupler and driven crank length: [rr, (2)| = 190 [rr3(2)| = 115
115 (6) - 115(6)

Transmission metric T(9) :=
lrry (0)1 - [rr3(6)]
cos (40 - deg) = 0.766

C
OMPATE s (140 - deg) = —0.766

There may be a problem if T falls outside this range.

Velocity Analysis

150
Drive crank speed (rpm) n := —

. . T n
Drive crank angular velocity rad/s wy,:= —— ;, =5

30
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Matrix equation AX = B, where

Wox 0 I-22(9) _r2y(9) 0 Wiz * rly(e)
_ | W2y — _rZZ(a) 0 r2x(0) _r32(0) _ | 791" rlx(e)
lou| M7 ne e 0 e | P? 0
W3y r2x(6) r2y(0) r2z(0) 0 0

Solve for angular velocities X(8) := A(6) ' - B(9)
Select element 3 of X matrix to find angular velocity of driven crank: w3, (6) := X(6)3
(Elements are numbered 0, 1,2, 3.)

Find the angular velocity of the driven crank by differentiating the angular position. Use the

d
chain rule: w34(0) := wy, <d(9 03X(0)>.

Approximate the angular velocity of the driven crank (rad/s) when the drive crank is at 100°.
Divide the change in position (rad) by the time interval (s):

(03x(110 - deg) — 65¢(90 - deg)) - wy,

@3x(100) = 110~ deg — 90~ deg
Rough approximation: wzyog) = —0.311
d
Value calculated from matrix solution: w;,(100 - deg) = —0.32 <

Software packages that treat mechanical systems are useful in solving compli-
cated spatial linkages. Figure 3.18 is a composite drawing of a satellite deploying panels
mounted on flexible arms. It was necessary to find the speed of deployment of the
arms, which were driven by highly nonlinear rotary springs. The solution to this prob-
lem involves the response of the flexible system to forces that, in turn, depend on the

V\/\/\;

\/ e 's
L

X

FIGURE 3.18 A satellite deploying flexible arms (modeled by ADAMS™software). (Source:
Mechanical Dynamics, Inc.)
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instantaneous position of the arms. The superimposed display of the deployment his-
tory shown in the figure was obtained with ADAMS™ software after entering the
results of tests of the springs and other system data.

3.9 GRAPHICAL ANALYSIS OF LINKAGE MOTION UTILIZING
RELATIVE VELOCITY

It is desirable to have an independent method of solving equations of motion that may
be used to test and debug computer programs and programmable calculator proce-
dures. Graphical solutions are ideal for this purpose. In addition, they provide insight
into kinematic problems in a way that analytical solutions cannot.

Earlier in the chapter, we defined relative velocity as a difference between veloc-
ities. For example, for points B and C on the same rigid link, the relative velocity vcp
must be perpendicular to line BC between the points. This is demonstrated by the cross
product relationship

r=wXr,

where w is the angular velocity of the link and vector r (of constant magnitude) repre-
sents line BC. If the relative velocity were not perpendicular to line BC, there would
be a component of v¢p along line BC, representing a change in length. Obviously, real
links deflect due to load, but these small strains are ordinarily negligible compared to
the rigid-body motion.

When sliding occurs, we consider the motion of instantaneously coincident
points. Then, for coincident points By on link 1 and B, on link 2, relative velocity vg p is
tangent to the relative path of the motion. That is, the relative velocity of two points is
tangent to the path that one point traces on the link on which the second point is
defined. Both of these relationships are utilized to find velocities in linkages by graphi-
cal means.

Before a velocity analysis is performed, a position analysis must be made to
determine the direction of all links. As observed in the previous sections, an analytical
position analysis may be the most difficult part of the entire analysis. Graphical posi-
tion analysis of a planar linkage is simple, since it is necessary only to draw the linkage
to scale, generally using a compass, scale, protractor, and straightedge.

Analyzing Motion of the In-Line Slider-Crank Mechanism

The slider-crank mechanism is a basic part of reciprocating engines, pumps, compres-
sors, and other machines. (See Figure 3.19.) Figure 3.20a is a representation of an in-
line slider crank. The sketch is further simplified in Figure 3.20b by showing only the
centerlines, sizes, and angular positions of the links. Link O represents the frame, link 1
the crank, link 2 the connecting rod, and link 3 the piston. The crankshaft center is
point Oy, the crankpin point B and the wrist pin point C.

Suppose that point B has a velocity of 20 in/s as link 1 turns counterclockwise. A
velocity scale is selected that will result in vectors large enough for accurate results.
Velocities vy and vcp are drawn perpendicular to lines OB and BC, respectively, as
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FIGURE 3.19 This sectional view of a V-8 engine shows two pistons and connecting rods (slider-
crank mechanisms) at their extreme positions. The crankshaft represents the crank of the mecha-
nisms. (Source: General Motors Corporation.)

FIGURE 3.20 (a) Simplified sketch of an in-line slider-crank mechanism.
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Link 3
\_C
3.94" FIGURE 3.20 (b) Skeleton diagram
| of the mechanism.

shown in Figure 3.20c, an exploded view of the mechanism. The direction of the veloc-
ity of C is horizontal, because the piston is constrained to move within the cylinder.

The single arrowhead of vy in Figure 3.20c indicates that vc has been drawn to
scale to represent a known magnitude and direction. Vectors vcp and v are given dou-
ble arrowheads, indicating that, while their directions are known, their magnitudes
are not. When we draw a vector of unknown magnitude, we will call it a trial vector. The
term magnitude will be interpreted to mean both vector length and vector sense.
Thus, trial vector v, may be to the left, as shown, or to the right, while vc5 may be ori-
ented as shown, or it may be in exactly the opposite direction.

0,

FIGURE 3.20 (c) Velocity vector vy is perpendicular to link O; B, v¢p is perpendicular to
link BC, and v is constrained to a straight line as shown.
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FIGURE 3.20 (d) The vectors can be added together to
form a velocity diagram. Absolute velocity vectors (veloci-
ties relative to the fixed frame) are drawn from a common
reference point o. The relative velocity vector is drawn
starting at the head of the known absolute velocity vector
and with the correct direction, (LBC). The points of inter-
section determine the magnitudes of the unknown vectors.

The solution to the problem of finding v, the velocity of the piston, is again
based on the vector equation vo = vg + vcp. Beginning at an arbitrary point o in
Figure 3.20d, the vector vy is drawn to scale. Then, trial vector v¢p is added to v, start-
ing at the head of vz. Next, trial vector vc is drawn beginning at the point o. Since
vc = v + vcp, we have the equivalent of two simultaneous equations, one represent-
ing the line v¢ and the other the line v-p added to vg. The solution is represented by
the intersection of the two lines. In Figure 3.20e, the double arrowheads have been
replaced by single arrowheads, since the magnitudes of the relative velocity vcp and
the piston velocity v¢ are determined by the construction. The vector lengths are mea-
sured, and, with the use of the velocity scale, the velocities represented are written
directly on the figure. We note that the piston velocity is 22.8 in/s to the left.

Figure 3.20d has been redrawn in Figure 3.20e only to illustrate the steps in
obtaining a solution; in practice, the construction would simply be “cleaned up” and
darkened for clarity. It can be seen that the solution does not depend on our ability to
guess the correct sense of vy and ve. If, for example, vo were assumed to be to the
right, there would be no intersection, and we would then try drawing that vector in the
opposite direction and obtain the correct solution.

Sometimes the required accuracy is greater than can be obtained by a simple
graphical solution. Or we may wish to make a velocity analysis based on freehand
sketches without using drafting tools. In the previous sample problem, let crank angle
BO,C be 70°.

The law of sines states that the ratio of the length of a side to the sine of the
opposite angle is the same for all three sides in a triangle. Thus,

FIGURE 3.20 (e) The completed velocity
diagram.

ve =228 (in/s)
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for the triangle formed by the linkage,

BC OB
sin(BO,C)  sin(O,CB)’

or

376 2
sin70  sin(O,CB)’

from which angle O;,CB = 30°.

In the velocity diagram, v is horizontal. Vector vz, which is perpendicular to crank
O, B, makes a 20° angle with v.. Vector v.p, perpendicular to link BC, makes a 60° angle
with v, Since the sum of the internal angles of any triangle is 180°, we obtain the
remaining angle in the velocity polygon: 100°. Using the law of sines once more, we have

Vp UcB Ve

sin 60° - sin 20°  sin 100° "

Crankpin velocity vz was given as 20 in/s. Substituting this value in to the preceding
equation, we obtain relative velocity vep = 7.9in/s and piston velocity ve = 22.8 in/s
to the left.

3.10 THE VELOCITY POLYGON

If the relative-velocity vector v is replaced by the vector be with ¢ at the head of v,
we have the basis for an alternative form of notation for the method of relative veloc-
ity: the velocity polygon. (See Figure 3.21.) Absolute velocity vz might as well have
been called vpp, the velocity of point B with respect to the frame O. Thus, vy is
replaced by ob and, likewise, v (or v¢p) by oc. The velocity equation ve = vp + vep
now becomes

oc = 0ob + bc. (3.44)

Note that we identify ob with the actual velocity in millimeters per second or inches
per second, rather than letting 0b mean a length in inches on a sketch.

The velocity polygon constructed in Figure 3.22 is based on the linkage of Figures
3.20a and b. In addition to oc, the piston velocity, we have determined bc, the velocity

FIGURE 3.21 Alternative form of notation
o forvelocity vectors. The notation vy is
replaced by ob; both indicate the velocity of
point B with respect to point O. Thus, v¢
becomes oc. Note, however, that vcp, the
velocity of point C relative to point B,
¢ 0 becomes bc. (The letters are reversed.)
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Link 3
0, Link 0 (Frame)
TS
(a)
b
o
(®)
c
b
¢ < o
(©

08 in
S

(d

FIGURE 3.22 (a) Slider-crank linkage redrawn from Figure 3.20. (b) Velocity of point B
(given) is drawn to scale as vector ob perpendicular to crank O;B. From the head of 0b,
vector bc, the velocity of point C relative to point B, is drawn perpendicular to link BC. We
do not know the magnitude of vector be. (c) Point C is constrained to move horizontally.
Thus, vector oc is drawn horizontally to intersect vector be. The intersection determines the
lengths (magnitudes) of the unknown vectors. (d) The completed velocity polygon.

209
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of the wrist pin C relative to the crankpin B. If bc is not zero, the motion of the con-
necting rod BC includes rotation. The value of w,, the angular velocity of rod BC, is
determined just as it is with links having a fixed center of rotation and is equal to the
relative velocity divided by the distance BC. Thus,

bc
=— 3.45
wy BC’ ( )
where bc is the magnitude of the velocity of C relative to B and BC is the distance
between pins B and C on the actual linkage, not a distance on the sketch. Substituting
in to Eq. (3.45), we find that

_7.9in/s
3.76in

Wy = 2.1rad/s.

The direction of the angular velocity of rod BC is found by locating of C relative to B at
point C on the linkage sketch. The direction of the relative velocity given by the order
of the letters bc is downward and to the left, as shown by the velocity diagram in Figure
3.22d. Therefore, w, is clockwise, as shown in Figure 3.23a. Note that while the piston
velocity oc must be horizontal, relative velocity bc must be perpendicular to BC.

(b)

FIGURE 3.23 (a) Determining the angular velocity of link BC from bc, the velocity of
point C relative to point B. (b) An alternative method.
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Alternatively, the velocity of B relative to C may be located at point B to find the
direction of w,. Since ¢b = —bc (Figure 3.23b), the magnitude of w, has the same value
as that found earlier.

Noting the order of the letters c¢b and inspecting Figure 3.22d, we see that cb is
upward and to the right; therefore, w, is clockwise. The result is the same whether we
consider bc at C or ¢b at B. In fact, the angular velocity of a link can be determined
from the relative velocity of any two points on the link.

Layout Techniques

A few words about layout may be helpful at this point. In many linkage problems, the
velocity polygon can be drawn with sufficient accuracy that measurements may be
taken directly from it. But the care used in drawing the velocity polygon bears heavily
on the results.

The mechanism that is to be analyzed should be sketched in skeleton form. Only
link centerlines, pins, fixed centers, and sliders are shown. If a sketch must be copied,
the use of tracing paper or dividers is preferred. The scale of the drawing is indicated,
and the length of each link (from pin to pin) is shown directly on the link.

When one is working at a desk and using letter-size paper, lines can be drawn par-
allel and perpendicular to one another by using two triangles, as shown in Figure 3.24.
The paper should be taped in place to keep it from slipping, since accuracy in both the
directions and lengths of vectors is critical. A ruler with decimal graduations is prefer-
able to one graduated in sixteenths and thirty-seconds. The velocity polygon (and, later,
the acceleration and force polygons) should be on the same sheet as the sketch of the

FIGURE 3.24 Vectors are drawn perpendicular to the respective links of the linkage
diagram by using two triangles.
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mechanism, in order to avoid vector orientation errors. A graphical solution for one
link position may be used to check a computer solution.

Velocity Image

The utility of the velocity polygon notation is illustrated by problems in which several
points lie on the same link. Consider a rigid link in plane motion, such as BCD of
Figure 3.25. On any rigid link, each relative velocity is perpendicular to the line
between the points considered. Thus,

bc L BC,
bd | BD,

and
cd L CD

satisfy the conditions for similar triangles.
Triangle bed of the velocity polygon is similar to triangle BCD, the rigid link, and
we call bed the velocity image of rigid link BCD. As a result,

be _bd _ cd (3.46)
BC BD CD
since corresponding sides of similar triangles are proportional. In order to draw bed to
the correct scale, however, we must know one of the relative velocities—for example,
relative velocity be. For any configuration of points on a rigid link, the velocity polygon
contains the exact image, except for its size and orientation.

bc 1 BC

c

cdl CDYq

FIGURE 3.25 The velocity image of a link. The vectors are drawn perpendicular to the
lines connecting the points on the link.
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c o

FIGURE 3.26 The velocity image of the connecting rod of a slider-crank mechanism.

Figure 3.26 shows a mechanism containing link BCD. Let distances O, B, BC, and
O,C and the velocity of B be the same as in the example illustrated in Figure 3.22. Then
we can take the velocity polygon obc directly from that figure. Drawing bd perpendic-
ular to BD and cd perpendicular to CD, as in Figure 3.25, we obtain bed, the image of
BCD directly on the velocity polygon. The absolute velocity of D is found by measur-
ing od, a vector of about 20 in/s in magnitude, to the left and slightly upward. (The
reader is again reminded that the velocity image principle applies only to points that
lie on the same rigid link.)

The path of point D is neither circular (like that of B) nor a straight line (like that
of (), as can be shown by drawing the mechanism at several different crank positions.
A point such as D on a mechanism may provide just the right motion required to per-
form a given task. In the design of machinery, it is often necessary to investigate a large
number of mechanisms before the desired input—output relationship is obtained.

Let us now consider the velocity image of three points, B, C, and E, lying on a
straight line, all on the same rigid link, as in Figure 3.27. Let the link have planar
motion, which includes, in general, both rotation at an angular velocity w and transla-
tion. The rotation gives us the following relative velocities:

bc = BCw, 1. BC,
be = BEw, | BE,

and

ec = ECw, 1 EC. (3.47)
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FIGURE 3.27 The velocity image of three
¢ points lying on a line in a rigid link is itself a
line.

Dividing the second of Egs. (3.47) by the first and the third by the first, we obtain

be BE

— = — 3.48

bc BC ( )
and

ec EC

— = 4

bc BC (3.49)

In practice, the velocity image of points B, E, and C on one rigid link is obtained by
using either Eq. (3.48) or Eq. (3.49) and the fact that the order of b, e, and ¢ in the
velocity polygon is the same as that of B, E, and C on the link. Now, recall the preced-
ing discussion in which it was mentioned that the velocity image and the link were sim-
ilar triangles. If the points under consideration lie on a straight line, then we have the
special case of triangles with angles 0°, 0°, and 180°.

Let us examine the velocity of a point E lying on connecting rod BC, as in
Figure 3.28a. The linkage is identical to that of Figure 3.22 (except for the addition of
point E), and B will again be given a velocity of 20 in/s. The velocity polygon in Figure
3.28b may be taken directly from Figure 3.22, leaving only point e to be found. From
Eq. 3.48, note that

be _BE _ be _ 1lin
be BC’' %" 79in/s  376in’

from which be = 2.1 in/s.

Point e is located a distance from b corresponding to 2.1 in/s. Since E falls
between B and C, e falls between b and c. Scaling the vector oe, we find the velocity of
E to be approximately 20.6 in/s upward and to the left. (See Figure 3.28c.)
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FIGURE 3.28 (a) The problem is to find the velocity of point £ (which could be the
center of gravity) at the instant when the linkage is in the position shown. (b) Velocity
polygon obc (c) With the velocity image principle, point e is located on vector bc, the
velocity image of link BC. The velocity of point E is found by drawing line oe on the
velocity polygon and measuring the length of the line.
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FIGURE 3.29 The connecting rod is shown at the instant when its angular velocity is
zero. At this instant, there is no relative velocity (bc = 0). The velocity image of the con-
necting rod therefore shrinks to a single point. While ob and oc are shown parallel, they
are actually collinear.

While the velocity image relationships hold in every case, the velocity image of a
link undergoing translation shrinks to a single point. This is true both in the case of a
slider that always translates and in the case of a connecting rod at the instant when its
angular velocity is zero. The latter case is illustrated by the in-line slider-crank mecha-
nism of Figure 3.29. When the crank angle is 90°, ob, the velocity of point B, is horizon-
tal. The slider velocity oc is horizontal also, and thus, ob and oc are collinear for an
instant.

3.11 GRAPHICAL ANALYSIS OF BASIC LINKAGES

The Four-Bar Linkage

Graphical velocity analysis of a four-bar linkage differs little from the analysis of a
slider-crank mechanism. For the mechanism of Figure 3.30a, the velocity of B is given
as 300 mm/s at the instant shown as the crank rotates counterclockwise.

In order to find all of the velocities, we select a velocity scale, and the vector ob is
drawn perpendicular to O; B to represent the velocity of B. Relative velocity vector bc
of unknown length is drawn perpendicular to BC, starting at b. The velocity polygon is
completed by drawing oc beginning at o and perpendicular to O;C. The last two steps
locate ¢ on the velocity polygon. Figure 3.30c shows the velocity polygon with all con-
struction lines removed and the values of the vectors shown directly on the polygon.
We see that

bc = vcp = 101l mm/s L BC (downward and to the right)
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C

(b) o (© o

FIGURE 3.30 (a) A four-bar linkage. The velocity of point B is given. (b) While we know the mag-
nitude of only one of the vectors, we know the directions (perpendicular to the links) of all the vec-
tors. (c) The completed velocity polygon. The points of intersection determine the unknown vector

quantities.

and

oc = vc = 216 mm/s L O3C (upward and to the left).

From these results, the angular velocities of coupler 2 and follower 3 can be deter-
mined as

W, be _ 101 = 2.89rad/s cw

~ BC 35
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and

oc 216
== 2" _ 1.
w3 0:C 20 0.8 rad/s ccw,

respectively.

The preceding values can also be found by drawing line BO; on the mechanism
to form two triangles and solving the triangles by the law of cosines and the law of
sines. We obtain

?=x*+y>—2xycosZ

and

sinX sinY  sinZ
X y Z

, (3.50)

where X, Y, and Z represent the internal angles opposite sides x, y, and z, respectively.
In addition, we use the relation X + Y + Z = 180° for any triangle and note that
velocity directions differ from link directions by 90° to draw velocity polygon obc.

Up to this point, the velocity polygon was used to analyze the motion of mecha-
nisms without sliding contact (four-bar linkages) and mechanisms in which there is
sliding along a fixed path (the piston engine and other slider-crank mechanisms). We
will now solve mechanisms in which one link slides along a rotating link.

Analyzing Sliding Contact Linkages

Sliding contact exists between slider and frame in the slider-crank mechanism. In cams,
gears, and certain other mechanisms, moving links slide on one another. If a point on
one link slides in a curved path on a second link, the relative velocity of the common
points is tangent to the path described on the second link. In the example that follows,
the relative path is straight.

The mechanism of Figure 3.31a has a slider pinned to link 1. The slider is con-
strained to slide along link 2. This mechanism is basic to the mechanically driven
shaper and is utilized in combination with other linkages, like the backhoe shown in
Figure 3.32. The key to solving problems of this type is the designation of a double
point B. (See Figure 3.31a.) By is a point on the slider and on link 1, and B, is a com-
mon point on link 2. While, at this instant, B; and B, are the same point, B; moves rela-
tive to B, by sliding along link 2. Thus, the direction of relative velocity b,b; (the
velocity of B; with respect to B,) is along link 2. Relative velocity b;b, (equal and
opposite to b,b,) is therefore also along link 2.

Now, contrast the relative velocity of two coincident points on different links
with the relative velocity of two points on the same link. In cases where the two points
lie on the same rigid link (considered in earlier sections), the relative velocity is per-
pendicular to the line between the two points.
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B on link 1
B, on link 2

b,

(©)

FIGURE 3.31 (a) A sliding contact linkage. The slider is pinned to link 1 and slides along link 2.
(b) The velocity polygon for a sliding contact linkage. Note that the relative velocity vector b,b, is
drawn parallel to link 2, since the motion of B relative to B, must be along link 2 at any given
instant. (c) The completed polygon.

Suppose link 1 of Figure 3.31a rotates counterclockwise at 15 rad/s, making the
velocity of By equal to 3.6 m/s, perpendicular to O, By, upward and to the left. To solve
the mechanism, we use the relationship

Vgy = Vg1 + Vgopy, OF 0b2 = Obl + b]bz. (351)

Vector ob, (representing the velocity of B;) is drawn to scale in Figure 3.31b,
beginning at an arbitrary pole point o. Sliding velocity vector b.b, is added to 0b,
beginning at b;. The direction of vector bb, is parallel to link 2, but the length and
sense of this vector are unknown. Thus, we draw trial vector b;b, with a double arrow-
head at b, (not caring about the sense of the vector, because, if our original guess of the
sense is wrong, we later reverse the vector to obtain the velocity polygon). Trial vector
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FIGURE 3.32 Backhoe. (Source:
Caterpillar Products.)

ob, (also of unknown sense and magnitude) is drawn starting at pole point o and per-
pendicular to O,B,. The length (and, if necessary, the sense) of both vectors b;b, and
ob, is corrected, completing the velocity polygon ob,b, in Figure 3.31c.

Scaling vector b,b,, we find the sliding velocity to be 3.4 m/s; thus, link 2 moves at
a speed of 3.4 m/s downward and to the right relative to the slider. The order of the
subscripts is important. Vector b,b; refers to the velocity of point B on link 1 relative to
the coincident point on link 2. Thus, the slider moves upward and to the left at 3.4 m/s
relative to link 2. The velocity of B, on link 2 scales to 1.18 m/s downward and to the
left, from which we obtain the relationship

ob,  1.18m/s

- - = 429 rad/
0,8,  0275m rads

25}

counterclockwise. The method for determining the velocities of the sliding contact
linkage is essentially the same, even if links 1 and 2 are curved. Velocity vector 0b; is
perpendicular to O; By, and ob, is perpendicular to O,B,. Sliding velocity b,b, is in the
direction of the relative path; that is, b,b, is tangent to the instantaneous path of B; on
link 2 (at By). If greater accuracy is desired, the velocity polygon may be solved analyt-
ically by using the law of sines, as was done in an earlier example.

Sliding velocity is of particular interest because of friction and wear considera-
tions. (Some references state the coefficient of friction in terms of sliding velocity.) In
addition, we must find the sliding velocity in order to compute the Coriolis accelera-
tion. This phase of the problem is treated in the next chapter.
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Comparison of Results with an Analytical Solution

A sliding contact linkage was analyzed previously (Section 3.7) by using complex-num-
ber methods. With the notation of that section (see Figure 3.15), we have 6; = 240°,
Ry = 300 mm, R; = 240 mm, and w; = 15 rad/s, from which we obtain

R, = VR? + R — 2R,R, cos 6, = 275.0 mm,
. Rl sin 01
0, = arcsin| ———— | = —49.1°,
R,

Riycos(6, — 0

Wy = e ©, ) = 4.28 rad/s (ccw),
R,

vg, = Ry = 1,178 mm/s  (1.178 m/s),

and

vp,p, = —@ Ry sin(0; — 6,) = 3,402 mm/s

(3.402 m/s along link 2, away from point ;). All of these values correspond closely to
the graphical (velocity polygon) solution.

The reader should be alert for mechanisms that are kinematically equivalent to
the sliding contact linkage of Figure 3.31. Two examples are a variable-displacement
pump in which the plungers move within a rotating cylinder block and the Geneva
mechanism, in which a pin on a rotating wheel (the driver) enters radial slots in the dri-
ven member, giving it intermittent rotation as the driver rotates at constant velocity.

Cams and Cam Followers

Almost any motion—time relationship may be generated by using one or more cams.
Usually, the cam rotates at constant angular velocity, giving the follower reciprocating
or oscillating motion having some predetermined sequence. The design of practical
high-speed cams is discussed in Chapter 5. You can use the velocity polygon method to
analyze cam follower motion as a partial check of your design.

When sliding occurs between cam and follower, the key to solving for velocities is
again a double point where the two make contact, and the solution proceeds as with
other sliding contact mechanisms. The velocity of the point of contact of the follower is
equal to the vector sum of the velocity of the point of contact on the cam plus the slid-
ing velocity. If B is the point of tangency, the latter statement may be expressed sym-
bolically as

0b2 = 0b1 + b]bQ,

where subscripts 1 and 2 refer, respectively, to the cam and the follower.
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In the case of a cam with an oscillating follower (Figure 3.33), 0b, is perpendicular
to a line between the center of rotation of the follower and the contact point and 0b, is
perpendicular to a line between the center of rotation of the cam and the contact point.
Sliding velocity b, b, is parallel to the common tangent to the cam and the follower.

Link 2
(Follower)

Common tangent

B, on Link 1
B, on Link 2

b,

FIGURE 3.33 A cam with an oscillating follower. To obtain the velocity polygon, 0b, is
drawn perpendicular to O,B,, and 0b, is drawn perpendicular to O; B;. Sliding velocity
b1 b, is drawn parallel to the common tangent at B;B,.
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Figure 3.33 shows a cam formed by an eccentric circle. Let the angular velocity of
the cam be 20 rad/s, and at the instant shown, let the distance from the center of rotation
of the cam to the point where it makes contact with the follower be 1.9 in. Thus, velocity
ob; = 38in/s is drawn to scale (to the right and downward, beginning at an arbitrary
pole point o). Trial vector b, b, is added to 0b,, and trial vector 0b, is drawn beginning at
point o. The two trial vectors are made to intersect, and the intersection is labeled b,.

The sliding velocity, scaled from the velocity polygon, is 39 in/s, with B, on the fol-
lower sliding upward and to the left with respect to B; on the cam (or B; on the cam
sliding downward and to the right with respect to B, on the follower). The velocity of
B,, found by scaling vector ob,, is 8 in/s upward and to the right, so that follower angu-
lar velocity

ob, 81in/s
= = = 5.3 rad/
0,B, 15in radss

12}

clockwise. At this instant, then, the ratio of the follower angular velocity to the cam
angular velocity is

w, S53rad/s
2 - 22T 1027
w;  20rad/s ’

where a positive sign is used when both turn in the same direction.

An Equivalent Linkage for a Cam Mechanism

If, at the point of contact, the cam and follower both have finite radii, then a four-bar
linkage may be used to analyze the motion. Referring to Figure 3.33, for example, we
see that the equivalent links would form a crank-rocker mechanism as sketched in
Figure 3.34. The driver crank would consist of a link from Oy to the center of curvature
of the cam at the point of contact (C, the center of the circular cam in this case). The
driven crank (the rocker) would consist of a link from O, to D, the center of curvature
of the follower at the point of contact. Coupler CD extends from one center of curva-
ture to the other.

We have constructed an equivalent linkage wherein the driver crank of the four-
bar linkage has the same motion as the cam and the driven crank of the four-bar link-
age has the same motion as the rotating cam follower. The coupler has no counterpart
on the cam—follower system. If the cam is circular and the follower has the form of a
circular arc, then the equivalent linkage dimensions are constant. The radius of curva-
ture varies in most practical cams, however, so the equivalent linkage is of limited
value because its dimensions change as the radius of the cam follower change at the
point of contact.

Friction Drives

Motion may be transmitted between two shafts by disks that roll on one another.
Consider the friction drive of Figure 3.35, where P is a point common to both disks.
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| Link 1 (cam
\\ 0, () or driver
\ crank) /
AN /
N /
N s
~—_ - FIGURE 3.34 A four-bar linkage, equivalent to

a cam and follower.

P; (on Disk 1)
P, (on Disk 2)

;

op; = opy = 010,P;
o P1p2
® O.P ! FIGURE 3.35 A friction drive. There is no rela-
CER 01 Pl tive velocity (p;p, = 0) if the disks roll without
“1 202 slipping.
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If the two disks roll together without slipping, the relative velocity p\p, is zero, and Eq.
(3.51) becomes

op, = 0Oopy = w101P1- (352)
Since w, = op,/O, P, but in a direction opposite that of w;, we have the angular veloc-
ity ratio
Wy o.P

= . 3.53

A drive of this type is satisfactory for low-power applications. However, when large
torques are involved, the designer might turn to a gear drive, sacrificing the simplicity
of a friction drive to ensure that power will be transmitted under all conditions.

Straight-Toothed Spur Gears

Spur gear velocities may be found by examining a pair of teeth at their point of contact.
The velocity of that point on the driven gear is the vector sum of the velocity of the
same point on the driver and the relative velocity. The equation used earlier for cams
and mechanisms that include sliding also applies to gears: ob, = 0b; + bb,. In this
case, the common point, or point of contact, is B, with subscripts 1 and 2 referring to
the driver and driven gear, respectively.

Figure 3.36a shows a pair of involute spur gears with contact occurring at point B.
Velocity vector ob; = w0 By is drawn perpendicular to O;B; in Figure 3.36b. Then,
trial vector ob, is drawn, beginning at o and perpendicular to O,B,. Trial vector b;b,
(the sliding velocity) is drawn from b; (parallel to the common tangent to the teeth,
where the two vectors make contact) until it intersects trial vector ob,. The true loca-
tion of b, is thus found, and the angular velocity of gear 2 is given by w, = 0b,/O,B,.
Figure 3.36¢ shows the velocity polygon for contact on the line of centers (the pitch point).

The foregoing construction would not be used to find angular velocities, since the
ratio of the angular velocities of a pair of gears is given simply by the inverse ratio of
the numbers of teeth, N; and N,, on the gears:

|w2| N
T = 3.54
logl N 354
This relationship, which holds for any pair of gears except those in planetary trains, will
be derived in Chapters 6 and 7.

Helical Gears

While the tooth elements of straight spur gears are parallel to the gear shaft, helical
gear tooth elements are not. When a pair of helical gears are mounted on parallel
shafts, the sliding velocity vector for any contact point will lie in a plane perpendicular
to the shafts (as with straight spur gears). This is not the case with crossed helical gears.
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Gear 1 (Driver)

/ B: Beginning of contact .
, P: Pitch point \\
/ E: End of contact N

, | \

|
/ 2 Gear?2

(@ \
b,
0 Relative velocity parallel to
common tangent at B

®) 105

b,

10,PO,
0 p1p2

© P1P> = 0 (zero relative velocity)

FIGURE 3.36 (a) A pair of spur gears. For clarity, only two teeth are shown.
Point B is the point of initial contact (B; on gear 1 and B, on gear 2). (b) The
velocity polygon. Vectors ob; and 0b, are drawn perpendicular, respectively, to
O,B; and O,B,. Relative velocity vector b b, is drawn from b, parallel to the
common tangent to the teeth at the point of contact, B. (c) The velocity poly-
gon when contact occurs at the pitch point P.



Section 3.11 Graphical Analysis of Basic Linkages 227

Crossed Helical Gears

In the case of crossed helical gears (helical gears on nonparallel shafts), the sliding
velocity at a general point of contact has a component across the face of the gears. (See
Figure 3.37a.) Let a pair of crossed helical gears make contact at a point B, the pitch
point (B; on gear 1, B, on gear 2), which lies on a perpendicular common to the two
shafts. The velocity of Bj, represented by oby, is wd/2, perpendicular to shaft 1. The
velocity of B,, unknown at this time, is represented by ob,, perpendicular to shaft 2,
using a double arrowhead. Velocity 0b, = ob, + bb,, where the relative velocity b;b,
must be the sliding velocity parallel to the gear tooth in a plane through B that is paral-
lel to both shafts. (See Figure 3.37b.) The point b, is therefore located by drawing b b,
parallel to the gear tooth until it meets the line 0b,. (See Figure 3.37c.) The pitch-line

/N
N
s N
. d >
Helix angle vl ,
/l; -z
— -
//\ 1
7
7
/// N 2\\
wq < e N /_,7 w1
N o
N
Ny

(a)

L Shaft 1

(© b, (d

FIGURE 3.37 (a) Crossed helical gears. Pitch diameters of gears 1 and 2 are d; and d,,
respectively. (b) Sectional view of the crossed helical gears. Gear 2 is shown in dashed lines.
(c) Velocity polygon showing pitch line velocities 0b; and 0b, and the sliding velocity b;b,.
(d) Line od is perpendicular to sliding velocity b, b,.
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velocity of gear 2, 0b,, may then be scaled to find angular velocity

_ oby
A2

w7

We see from the direction of ob, that gear 2 turns clockwise when viewed from the
right.

Greater accuracy may be obtained analytically. In Figure 3.37d, a perpendicular
od from o to line b b, forms angles ¢; and s,. It can be seen that od = ob; cos ¢, =
ob, cos ir,. Substituting 0b; = w;dy/2 and 0b, = w,d,/2, the velocity ratio

n_wy _ dicosyy (3.55)
ny o dycosi, '

is obtained. Alternatively, the tooth numbers, if known, may be used to find the same
ratio:
np| N

- N (3.56)

ny

A sectional view through the point of contact will aid in establishing the direction of
rotation.

When we consider contact at a point other than the pitch point, additional sliding
velocity components must be considered. The ratio of the angular velocities, however,
is constant and may be found by one of the methods just described.

Gears and cams are among the most commonly used and most versatile mecha-
nisms. The preceding material on velocities only touches on the problem of the analysis
and design of gears and cams, which is covered in considerably more detail in other
sections.

3.12 ANALYZING COMBINATIONS OF BASIC LINKAGES

Toggle Linkage

Many practical multilink mechanisms are made up of basic linkage combinations such as
the slider-crank and the four-bar mechanism. The toggle linkage shown in Figure 3.38a is
an example of a mechanism of this type; the toggle principle is applied in ore crushers
and in essentially static linkages that act as clamps. The linkage analysis is made by con-
sidering the basic linkages separately. To solve for the velocities of the mechanism, we
may begin by ignoring the slider and its connecting rod while solving the four-bar linkage
separately. Then, the velocity polygon may be completed by finding the slider velocity.

In this example, link 1 will be 100 mm long and w; will be 100 rad/s clockwise.
Examining links 1,2, and 3 alone (Figure 3.38b), we draw the following vectors to some
convenient scale:

Vector o0b = 010;B = 10m/s L O;B (downward and to the left)
Trial vector oc 1 O;C
Trial vector be | BC (Figure 3.38¢)
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(d

d 4 o 4 o
cd =99 ob =10
9.9 9.7
9.7
b
c 3.3 c
© ®

FIGURE 3.38 (a) This toggle mechanism is a combination of two basic linkages, the four-
bar mechanism and the slider-crank mechanism. (b) The velocities for the entire toggle
mechanism are found by solving for the velocities of the component mechanisms. Thus, the
four-bar linkage component is considered first (link 4 is not shown). (c) After a suitable
velocity scale is selected, the velocity polygon for the four-bar mechanism is drawn. (d) The
remainder of the toggle mechanism, the slider crank, is considered next. (e) The velocity
polygon for the slider crank is drawn. Note that link O;C is common to both mechanisms.
The velocity of point C, oc, was already determined in the four-bar polygon. (f) The veloc-
ity polygon for the entire mechanism.

Velocity point ¢ is located at the intersection of trial vectors oc and bc, completing the
velocity polygon for links 1,2, and 3.

In order to illustrate the mental process involved in solving multilink mechanisms,
we will now consider links 3 and 4 and the slider separately (Figure 3.38d). Beginning at
a new pole point (o in Figure 3.38¢), vector oc is redrawn, its direction and magnitude
taken from the four-bar polygon. Then, trial vectors are drawn, cd L CD and od in the
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direction of the path of the slider, from which velocity point d is located. Slider velocity
at this instant is given by od, 4 m/s to the left.

The preceding solution, in two parts, is given for demonstration purposes only.
After velocity polygon obc is completed, it is faster and slightly more accurate to con-
tinue by finding point d on the same polygon. Figure 3.38f shows velocity polygon obcd
found in this manner, a compact velocity representation for the entire mechanism. An
additional advantage of using the complete polygon is that it is only necessary to join
points b and d to find the velocity of D with respect to B if this velocity is important in
a particular machine.

An important feature of the toggle mechanism is its ability to produce high val-
ues of force at the slider with relatively low torque input. While the study of mecha-
nisms is concerned primarily with motion, forces are of great importance to the
designer and are intimately related to motion analysis. If a rigid mechanism has a sin-
gle input and a single output with negligible losses, the rate of energy input equals the
rate of energy output. Force ratios are the inverse of velocity ratios when inertia effects
are negligible. Specifically, in the toggle linkage at the instant shown, the horizontal
force at D divided by the tangential force at B equals ob/od , or 10/4 (the mechanical
advantage of the mechanism at that instant). Clockwise rotation of link 1 from the
position shown toward the limiting position of the mechanism produces very high
ratios of output force to input torque.

If we sketch the mechanism at the instant that links 3 and 4 are collinear, we see
that slider velocity od = 0. Thus, the ratio ob/od, the theoretical mechanical advantage
of the toggle mechanism, becomes infinite. Clamps and ore crushers using the principle
of the toggle linkage are designed to operate near this limiting position. Actual forces
at the slider are, of course, finite, due to bearing clearances and elasticity of the linkage.
In this exceptional case, the small amount of motion due to elastic deformation of the
linkage and deformation of the workpiece is of the same order of magnitude as the
slider motion. Therefore, any analysis of the problem (which assumes perfectly rigid
links) must serve only as a first approximation.

Shaper Mechanisms

The mechanical-shaper mechanism in Figure 3.39 is another example of a combination
of simple linkages. It is made up of a slider-crank mechanism (links 2 and 3 and the
slider at D) and a sliding contact mechanism (links 1 and 2 and a slider at B moving
along link 2). When the mechanism is operating, the angular velocity of link 1 is essen-
tially constant.

Beginning with the velocity of point B at the end of the crank, we find the velocity
of a common point on link 2. The velocity of point C at the end of link 2 is found by
forming the velocity image of link 2. The solution is completed by examining the mecha-
nism formed by links 2 and 3 and the slider at D (a slider crank of unusual proportions).

A detailed solution follows for the instant shown, with the angular velocity of
link 1 equal to 10 rad/s clockwise.
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By on Link 1
B, on Link 2

0,

FIGURE 3.39 A mechanical-shaper mechanism is another combination of two simple mecha-
nisms. The velocity diagram is constructed as usual. To find the magnitude of oc, however, we must
use velocity ob, and the proportionality of link 2 (O,C to O,B;).

STEP 1. Select a reasonable velocity scale and draw velocity vector ob; = w0, B,
= 20 in/s perpendicular to link 1 (downward and to the right), as shown
in Figure 3.39.

STEP 2. Draw trial vector ob, perpendicular to link 2 and trial vector b;b, paral-
lel to link 2, locating b,.

STEP 3. Use the proportionality equation oc/eb, = O,C/O,B, to locate point ¢ on
the velocity polygon.

STEP 4. Draw trial vector od from o parallel to the path of the slider D and trial
vector cd from ¢ perpendicular to link CD, locating velocity point d. The
velocity of D (i.e., the velocity of the shaper tool) is 19.6 in/s to the right
at the instant shown, as given by the scaled vector od. When angular
velocity w is constant and clockwise, the average velocity of point D is
greater when D moves to the left than when it moves to the right. This
feature of the shaper ensures a slow, powerful cutting stroke and a quick
return. The stroke length (the distance between extreme positions of D)
is varied by adjusting the length of link 1.
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FIGURE 3.40 The beam pump. This mechanism may be analyzed by first solving the four-
bar linkage (links 1, 2, 3, and the frame) and then drawing the velocity image of link 3. The
slider-crank part of the mechanism (links 3 and 4 and the slider and frame) is then solved.
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Beam Pump

The combination four-bar and slider-crank mechanism of Figure 3.40 forms a beam
pump. The connecting rod (4) moves practically along its own axis and may be made
very long. If we know the angular velocity of crank 1, it is a simple matter to construct
velocity polygon obc. Then velocity image cod is drawn similar to CO;D on link 3. The
velocity polygon is completed by locating point e, corresponding to the slider. The
slider velocity is then given by vector oe.

Multiple Slider-Crank Mechanisms

Single-cylinder internal-combustion engines provide adequate power for lawn mow-
ers, portable tools, and similar applications. The power output, however, is limited by
the size of the cylinder. If we were to design a single-cylinder engine with a capacity of
several hundred horsepower, the piston, connecting rod, and crank might be unrea-
sonably large. At full speed, inertial forces could be a serious problem. Furthermore,
the single power stroke per revolution in the case of a two-stroke-cycle engine (or one
power stroke for each two revolutions in the case of a four-stroke-cycle engine) might
cause unacceptable fluctuations in speed, even when a flywheel is used. A pump or an
air compressor poses the same problems, particularly when high capacity or uniform
output is called for. One solution is a design with several separate cylinders, which
might be in-line (with parallel axes) or in a V arrangement (two separate banks of
cylinders at an angle to one another).

The multicylinder high-pressure pump shown in front and end-section views in
Figure 3.41 is an example of a mechanism combination, and Figure 3.42 is a sketch rep-
resenting two cylinders of a V-block engine or pump. Ordinarily, all of the slider-crank
linkages in a multicylinder engine are identical, except for their instantaneous link ori-
entation. For example, we might examine piston velocity as a function of crank position
for a single piston of an eight-cylinder engine. If the crankshaft speed is maintained, the
results would apply equally to the other pistons, the only difference being the individual
cylinder orientation and the phasing of the motion.

In Figures 3.41 and 3.42, each connecting rod is attached to a separate crankpin.
There are, however, several variations of the crank—-connecting-rod arrangement.
Figure 3.43a shows an alternative configuration with both connecting rods (BC and
BD) attached to a single crankpin, B. A practical example of this alternative arrange-
ment is shown in the cutaway view of the two-stage, V-type compressor in Figure
3.43b. A similar arrangement is seen in the cutaway view of the four-cylinder semira-
dial compressor shown in Figure 3.43c, where the four connecting rods are again
attached to a common crankpin.



FIGURE 3.41 A high-pressure pump. The in-line slider-crank mechanism is basic to several types of machines. In this case, five slider-
crank mechanisms are used to produce a continuous flow at up to several thousand pounds per square inch. At any instant, each link-
age is at a different point in its stroke. As seen in the end view (right), the crank drives the connecting rod, which moves the
crosshead. “Trombone” side rods connect the crossheads to the plungers, which enter the top of the cylinder. (Source: Cooper Energy
Services.)
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FIGURE 3.42 A typical multicylinder engine or compressor configuration. This V design shows
two slider-crank linkages on a common crankshaft, but with separate crankpins at different axial
locations along the shaft.

()

FIGURE 3.43 (a) Note that in this variation of the crank—connecting-rod arrangement,
both connecting rods are attached to a single crankpin (at different axial locations).
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FIGURE 3.43 (b) This V type of compressor is a commercial application of the single crankpin
arrangement. Both linkages are similar kinematically, except as regards their instantaneous position.
This unit compresses air in two stages. In the first stage, the large-diameter piston compresses the air,
which is then cooled and brought to a still higher pressure by the small (upper) piston in the second
stage. (Source: Joy Manufacturing Company.)

Articulated Connecting Rods

When several cylinders are to be arranged radially in an engine or compressor, still
another arrangement, the articulated connecting rod, may be used. The articulated
connecting-rod linkage, sketched in Figure 3.44a, consists of a single crank pinned to a
master connecting rod. The connecting rods of the remaining cylinders are in turn
pinned (at different points) to the master connecting rod. A practical example is
shown in Figure 3.44b.

The use of an articulated connecting rod permits the design of a multicylinder
engine with all the cylinder centerlines in a single plane.

Graphical methods were used to analyze several multiloop mechanisms illus-
trated in this section. Analytical vector methods and complex-number methods may be
used as well, particularly if many positions are to be considered. The key to solving
these linkages is similar in each case. We begin by considering a single basic linkage,
which is a component of the more complex system, and then proceed through a com-
mon point to solve the next component of the system.
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FIGURE 3.43 (c) This semiradial compressor also employs a single crankpin. (Source: Joy
Manufacturing Company.)

FIGURE 3.44 (a) The articulated connecting rod. In this crank—connecting-rod arrange-
ment, the crank is pinned to a master connecting rod. The rest of the connecting rods are, in
turn, pinned to the master rod.
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FIGURE 3.44 (b) Commercial application of an articulated connecting rod. The centerlines of the
cylinder compressor are arranged radially in a single plane perpendicular to the crankshaft axis for
better balance. (Source: Worthington Group, McGraw-Edison Company.)

3.13 ANALYZING LINKAGES THROUGH TRIAL SOLUTIONS
AND INVERSE METHODS

This section treats mechanisms that cannot be easily solved by straightforward graphi-
cal methods. If you are using the velocity polygon method to verify an analytical solu-
tion, you may find trial solutions and inverse methods unnecessary.

A variable-stroke pump, shown in Figure 3.45a, is difficult to analyze by straight-
forward graphical methods. Referring to Figure 3.45b, link 4 is an equivalent link; in
the actual pump, point D represents the pin in the guide block riding in a curved track
(of radius O4D). The stroke length (the length of the path of E) may be varied from
zero to a maximum value by tilting the curved track, which is equivalent to changing
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(@ (b)

FIGURE 3.45 (a) A variable-stroke pump. This pump is identical to the pump shown in
Chapter 1. Here, the adjustment cylinder is set so that the stroke transformer provides a maxi-
mum plunger stroke. (Source: Ingersoll-Rand Company.) (b) The equivalent linkage for the
variable-stroke pump.

the location of point O,. The control mechanism may be manually operated or may
incorporate an air-operated plunger to rotate the track automatically in response to a
remote signal.

When the position of the curved track is set, the mechanism has one degree of
freedom. If the motion of one link is specified, it should be possible to describe the
motion of the entire linkage.

Trial Solution Method

Suppose it is necessary to find the velocity of the piston of the mechanism in Figures
3.45a and b when the velocity of crankpin B is 100 in/s with crank O, B rotating clock-
wise. A trial solution procedure follows.

STEP 1. Select a convenient velocity scale, and draw ob = 100 in/s perpendicular
to O, B, as in Figure 3.45c.

STEP 2. It is usually best to indicate all known vectors and vector directions on
the sketch. Accordingly, draw the following trial vectors:

od perpendicular to O,D
oe in the direction of sliding (vertical)
bc perpendicular to BC (bc is added to ob)
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FIGURE 3.45 (c) After a velocity scale is selected, the velocity polygon is begun. However, the
location of the velocity image dce is not immediately obvious. (d) Trial solution method.
(e) Inverse method.

STEP 3. In a straightforward problem, we would continue the polygon by finding
another velocity point, say, point ¢. The following vector equations might
be used:

oc =0b + bc and oc = oe + ec.

But the magnitudes of bc, oe, and ec are unknown, and the magnitude
and direction of oc are unknown; there are too many unknowns to uti-
lize the equations. A similar problem exists with the vector equation
oc = od + dc, since the magnitudes of od and dc are also unknown.
STEP 4. The velocity image relationship is the missing tool; with it, a solution is
possible. On the velocity polygon, dce is the (straight-line) image of
DCE, three points on rigid link 3. The relationship is used by noting that
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d, c,and e lie on a line perpendicular to line DCE with ¢ between d and
e, proportioning the line by the equation dc/de = DC/DE. Now that we
have the direction and relative proportions of line dce, we may satisfy
the velocity image condition by trial and error. Line x in Figure 3.45d is
the first approximation. This line intercepts trial vectors od, bc, and oe in
such a way that the ratio dc/de would be too large. We can see that the
ratio is decreased as the trial line is moved downward. Line y, the second
approximation, is somewhat better, and line z, the third approximation,
closely satisfies the required relationship, dc/de = DC/DE. Line z thus
completes the polygon, and velocity points d, ¢, and e are located where
trial vectors od, bc, and oe intercept the line. The piston velocity is given
by vector oe.

Trial solutions are required more frequently in engineering practice than is indi-
cated by typical academic assignments. In the academic situation, a shortage of time
favors the use of problems in which the answer is obtained directly. The reader should,
however, be prepared for both types of problem.

Inverse Method

The piston velocity of the variable-speed pump may also be found by a method that
avoids the inconvenience and potential error involved in making several approxima-
tions. The reader may have observed in Figure 3.45¢ that, had the piston velocity been
given instead of the crankpin velocity, we could draw the velocity polygon directly. The
solution would proceed from the slider-crank mechanism, to the velocities of £ and D,
to the velocity of C by proportion, and thence to the velocity of B. Let us, then, solve
the problem by an inverse method (i.e., we assume the answer at the beginning). The
following steps constitute an entirely new solution to the problem without making use
of the trial solution:

STEP 1. Represent piston velocity oe by a vertical vector of arbitrary length
(Figure 3.45¢). Of course, we cannot give oe an actual velocity or select a
scale since we would undoubtedly guess wrong unless we had already
solved the problem by another method.

STEP 2. Draw trial vectors od perpendicular to O,D and de perpendicular to DE,
to locate velocity point d. Velocity point c is located between d and e on
line de by using the proportion dc/de = DC/DE. Trial vectors ¢b perpen-
dicular to CB and ob perpendicular to O, B locate velocity point b, com-
pleting the polygon.

STEP 3. Finally, the scale of the velocity polygon must be determined from the
given data. In this problem, the velocity of the crankpin ob = 100 in/s.
The length representing ob on the velocity polygon becomes 100 in/s,
and all other vectors are scaled accordingly and labeled with their cor-
rect velocities. Measurements taken directly from the velocity polygon
give oe/ob = (.58, from which piston velocity oe = 0.58 X 100 = 58 in/s
upward at the instant depicted.



242

Chapter 3 Velocity Analysis of Mechanisms

3.14 CENTROS

Traditionally, the centro method has been of considerable interest. The method con-
sists of locating a point, the centro, that has the same (vector) velocity in two links. The
centro is then used to relate unknown velocities to known velocities.

The centro method does not lead directly to acceleration analysis. Thus, while the
centro method can provide some useful insight into mechanism velocities, it is gener-
ally not the best method of analysis. However, the centro method can add to our
understanding of mechanisms.

The pin connecting two links in a mechanism is obviously the centro of the two,
since it has the same velocity in both. (See Figure 3.46a.) If two bodies (two disks, for
instance) roll on one another without sliding, then the instantaneous point of contact is
the centro. The centros just mentioned are observed centros and are to be located and
labeled before any others are found by construction. The centro label will consist of
the two link numbers, with the smaller number written first. The point having the same
velocity in both link 0 and link 1, for example, will be labeled centro 01. The label 10
would apply to the same centro, but we will avoid duplication by always labeling this
centro 01.

Since each pair of links has a centro, three links, which can form three different
pairs, will have three centros. In general, given sufficient information, we should be able
to find n(n — 1)/2 centros for a linkage with # links. In the three-link case, links 0, 1, and
2 form three centros, which we will label 01, 02, and 12. Figure 3.46b shows three links,
including 0, the frame. Thus, we have centros 01 (where link 1 is pinned to the frame), 02
(where link 2 is pinned to the frame), and 12 (which we will attempt to locate).

An arbitrary point B that does not lie on (line) 01 02 is selected as a possible

location for centro 12. The bar on 01 02 will be used to represent a line in the mathe-
matical sense (extending infinitely on both sides of the line segment between 01 and 02).

(2) (b)

FIGURE 3.46 (a) A centro is a point common to two links that has the same vector
velocity in each link. The pins joining links 1 and 2 to the frame (link 0) are, respectively,
centros 01 and 02 (with zero velocity). (b) Three links have three centros, all of which lie
on a straight line. To prove this theorem, let us assume that B, which is common to
extended links 1 and 2, is the third centro. Vectors v and v, violate the requirement for
a centro that the velocity vector must be identical for both links. To meet this basic
requirement, centro 12 cannot occur anywhere except on 01  02.
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Let us imagine an extension of links 1 and 2 so that B may lie in both. Then the velocity
of Bin link 1, Vg, is perpendicular to 01 B. Likewise, the velocity of B in link 2, Vg, is

perpendicular to 02 B. (The magnitudes of these velocities are unknown.) Since 01 B

and 02 B are neither parallel nor collinear, vz and vg, cannot be the same; the direc-
tions of vz and vp, are different. Certainly, then, B is not the centro 12.

Kennedy’s Theorem

We can see from the preceding discussion that centro 12 cannot be any point that does
notlie on 01 02. A similar examination of the direction of the velocity of points lying
on 01 02 shows that centro 12 may lie somewhere on 01 02. Considering the infinite
extent of 01 02, some point on it must have the same velocity (both magnitude and
direction) in both link 1 and link 2. Thus, we have Kennedy’s theorem (the three-link
theorem) in a nutshell: Three links have three centros that lie on a line.

Kennedy’s theorem applies except in trivial cases (e.g., a linkage without any rel-
ative motion), but it does not assure us of finding all the centros that exist in a theoret-
ical sense. As for the original problem of actually locating centro 12, we have failed
because there is a need for additional data.

Centros of a Four-Bar Linkage

The mechanism of Figure 3.47a has four links, including the frame. There are six possi-
ble pairs formed by four numbers and, hence, six centros: the observed centros 01, 12,
23, and 03 and the two remaining centros, 02 and 13, which must be located by con-
struction. A procedure for finding the unobserved centros is as follows:

STEP 1. The three-link theorem will be used to draw a line on which centro 02
must lie. For the necessary three links, we must include links 0 and 2,
since we are looking for centro 02; then, either of the remaining links will
do. Using links 0, 2, and 1, we have centros 01 and 12 (both already
labeled) and 02 (the unknown), all three on a line. Line 01 12 (of arbi-
trary length) is drawn and labeled 02 for our unknown centro.

STEP 2. The three-link theorem is used again to draw another line to locate cen-
tro 02. Links 0 and 2 must again be included, this time along with the
other remaining link, link 3. Links 0, 2, and 3 have three centros, 03 and
23 (already labeled) and the still unknown centro 02. Line 03 23 is
drawn until it reaches the extension of 01 12, at which point centro 02 is
located.

STEP 3. Centro 02 is a point in link 0, the frame, and in link 2, the coupler. By
the definition of a centro, centro 02 has the same velocity in both links.
While it is not actually a part of either, it is considered to be in the links
for velocity analysis. Link 0 is fixed, and thus, the point common to link
0 and link 2, centro 02, is a point in link 2, which is (instantaneously)
stationary.

STEP 4. Since link 2 rotates about centro 02, as in Figure 3.47a, the velocities of
points on link 2 are proportional to their distances from 02. We may then
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02 e

Vi2

Link O (Frame)

(a)

FIGURE 3.47 (a) Locating unknown centro 02
using the three-link (Kennedy’s) theorem.
Centro 02 is determined by the intersection of
the extensions of 01 12 and 03 23.

(b) Unknown centro 13 is determined by the
() intersection of 01 03 and 12 23.

state the ratio of the magnitudes of the velocities of points 23 and 12 as

U3 . 02-23

v, 02-12°

(3.57)

where 02-23 and 02-12 are distances scaled from the linkage drawing.

The magnitude of velocity vy, is given by the length of link 1 times w;.
Using this, we find the magnitude of velocity v,3 by Eq. (3.57). If w; is
clockwise, then vy, is to the right and downward. Observing the location
of 02, the instantaneous center of link 2, we see that the link must rotate
counterclockwise at the instant in equation (since vy, is to the right and
downward). Velocity vy, then, is to the right and upward (perpendicular
to 03 23.)

STEP 5. The magnitude of the angular velocity of link 2 is given by

__ Y2
02 —12°

w7
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where 02-12 is the actual distance from point 12 to centro 02 of link 2 for
the full-size mechanism. The velocity of an arbitrary point B on link 2 of

Figure 3.47a is given by
VB 02-B
— = 3.58
V12 02-12° ( )

where lengths 02—B and 02-12 are scaled from the diagram.

Velocity vg is perpendicular to 02-B and is to the right and upward, with
its sense determined in the same manner as that of v,3.

STEP 6. The angular velocity of link 3 follows immediately from the foregoing
calculations, but we will use centro 13 to complete the problem in order
to complete our illustration of the centro method. Centro 13 is located in
a manner similar to the procedure for locating centro 02. In this case,
lines 03 23 and 12 23 both contain centro 13. Now, 13 is a centro in the
general sense, having the same nonzero velocity in links 1 and 3. Using
that property, we have

Viz = Wy 01-13 and Vi3 = W3 03-13.

Equating these two expressions, we obtain

w —

03(03-13) = w;(01-13) or w—z = %, (3.59)
which might be expressed in words as follows: For two links with fixed
pivots, the angular velocities of the two links are inversely proportional to
distances from the respective fixed pivots to the common centro. In Figure
3.47b, we see that v3 is upward when o is clockwise. But then ws is seen
to be clockwise also. In general, when the common centro falls between
the fixed centers of a pair of links, one link turns clockwise and the other
counterclockwise; otherwise, both turn clockwise or both turn counter-
clockwise. The reader will observe that the pitch point for a pair of gears
and the tangent point for a pair of friction disks represent the common
centro. In these examples, the previous expression boils down to this:
Angular velocities are inversely proportional to radii.

Referring to the skeleton diagram of a planar four-bar linkage, if links 0 and 1 are
collinear, then centros 02 and 03 are coincident. Note that links 2 and 3 are joined at
centro 23. As a result, the angular velocities of links 2 and 3 are equal at the instant that
links 0 and 1 are collinear. This condition serves as a partial check of the angular veloc-
ity plots shown earlier in the chapter.

Analyzing a Slider-Crank Mechanism

The slider-crank mechanism in Figure 3.48 is solved by first examining the equivalent
linkage shown in the figure. One readily sees that the slider may be replaced by a link of
infinite length perpendicular to the slider path. The slider moves in a horizontal path.
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Link 3
(Slider)

T——o

" Link 0 (Frame)

02

13

)

0 o) Slider path 23
Infinite length | ®
To 03 <)
03

FIGURE 3.48 For the use of centros to find velocities in a slider-crank mechanism, an
equivalent linkage must be used, in which the slider is replaced by a link of infinite
length. The solution then proceeds as for a four-bar linkage.

Its motion can be duplicated by an equivalent link, link 3, which is vertical. Centro 03, the
“fixed center” of the equivalent link, is shown an infinite distance below the slider path.

SUMMARY

Animation software, analytical vector methods, and complex-number methods are
important tools in the velocity analysis of planar linkages. The velocity polygon is a
useful graphical check of analytical work. Analytical vector methods and matrix meth-
ods are used to solve spatial linkages. Complex-number methods are not applicable to
spatial linkages, and graphical methods are impractical for the detailed analysis of spa-
tial linkages. Designing mechanisms often requires analysis through a full range of
motion, a task that calls for animation software or mathematics software.
Computer-generated plots and tables are very convincing. But our work is not fin-
ished until we check and interpret those plots and tables. Try to include simple validity
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checks within computer programs. Add comments to help identify valid solutions.
Include checks to identify design parameters outside of generally accepted ranges and
designs that do not meet motion requirements. And, finally, be sure to indicate units
and test for consistency.

A Few Review Items

PROBLEMS

31

3.2
33

What is the direction of the angular velocity vectors in a planar mechanism?
Must we express angular velocity in radians per second?

Write the basic vector velocity equation for a planar four-bar linkage.
....aslider-crank linkage.

....asliding contact linkage.

Explain the differences in the three equations you have written down.

Write the basic velocity equation, in complex polar form, for a planar four-bar
linkage.

Repeat the preceding for a slider-crank linkage.

....asliding contact linkage.

Why not use this form for spatial linkages?

Write the basic vector velocity equation for an RSSR spatial linkage.

Identify the unknown angular-velocity components if the drive crank angular
velocity is given.

Do we need an additional equation to solve for these unknowns?

Give the form of the matrix equation needed to solve for the unknown angular
velocity components.

Write the velocity polygon equation for a slider-crank linkage. The crankpin is
identified by B and the wrist pin by C.

Describe the velocity image principle for three points that do not lie on a line.
..... for three points that lie on a line.

Can you combine these two cases in a single principle?

Some of the problems in this chapter require calculating and plotting results for many
linkage positions. It is suggested that animation software, mathematics software, or a
spreadsheet be used. If the problems are solved only with the aid of a calculator, one or
two linkage positions may be selected to avoid repetitious calculations.

Find the velocity of a point P in a rigid body with angular velocity @ = i10 + j15 + k20.
The body rotates about fixed point O;, and the radius vector O;P is given by
r = —il00 + j50 + k60.

Repeat Problem 3.1, except that @ = 200 + jO — k150.

Find the velocity of a point on the circumference of a 30-in-diameter flywheel rotating at
800 rev/min.
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34

3.5

3.6

3.7
38

39
3.10
311

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20
3.21
3.22
3.23

3.24

Low-carbon steel is turned on a lathe at typical surface speeds of 100 to 400 ft/min. Find
the corresponding lathe spindle speeds in revolutions per minute for (a) a 2-in-diameter
bar and (b) a 3-in-diameter bar.
Write an equation to determine lathe spindle speed 7 (in revolutions per minute) when
bar diameter d (in inches) and surface speed s (in feet per minute) are given. Is the same
equation valid if n represents the speed of a milling cutter of diameter d?
A point P is described in terms of a fixed coordinate system XYZ with unit vectors I, J,
and K and a moving coordinate system xyz with unit vectors i, j, and k. At a given
instant, the location of the origin of the moving system is 121 + 5J, and the velocity of
the origin of the moving system is 80I- 90J. The velocity of P relative to the moving sys-
tem is 50 + 45j; the radius of point P is 3i + 4j in the moving system, which rotates at
angular velocity @ = 100k. Find the velocity of point P in the fixed system if the x-axis
is rotated 30° counterclockwise from the X-axis.
Repeat Problem 3.6, except that @ = —95k.
A 500-mm-diameter wheel rolls in a straight path, rotating at 800 rev/min. Find relative
velocity veg, where C is the center of the wheel and B is at the top.
Repeat Problem 3.8 for a 16-in-diameter wheel.
Velocity vz = 15 in/s at 45°. Velocity vcg = 20 in/s at 0°. Find vc. (Use ve = vg + vep.)
Velocity ve = 30 in/s at 0°. Relative velocity vcp = 10 in/s at 135°. Find vg. [Use
vg = ve + (=vep)]
Velocity vz = 20 in/s at 45°. Relative velocity v¢p is an unknown vector at 315°. Velocity
vc is an unknown vector at 0°. Find vcp and ve. (Use ve = vg + vep.)
Referring to Figure 3.9, let ry = 30 mm, r; = 10 mm, r, = 35 mm, ;3 = 20 mm, and
0, = 45°. Calculate 6,, 03, v¢, wp, and w3 for w; = 30rad/s ccw. Use analytical vector
methods.
Repeat Problem 3.13 for 6; = 60°.
Plot ws/w; versus 6, for the linkage of Figure 3.9 if ry/r; = 3, ro/ry = 3.5, and r3/r; = 2.
Use a computer or a programmable calculator.
Referring to Figure 3.9, let ry, =30mm, r; = 10mm, r, = 35mm, r; = 20mm,
rgp = 15mm, 6c3p = 20°, and 0; = 30°. Determine vp/(w;r;). Use analytical vector
methods.
Repeat Example Problem 3.7, but use analytical vector methods.
Refer to Figure 3.15. Find w,/w, by using analytical vector methods. Write a computer or
calculator program to determine w,/w; for a series of values of 6;, where w, is constant
and counterclockwise.
Refer to Figure 3.15. Let Ry = 30 mm, 0,0, = 50 mm, w; = 10rad/s ccw, and 6; = 15°.
Find (a) O,B, (b) 6,, and (¢) w,. Use complex-number methods.
Repeat Problem 3.19 for 6; = 30°.
Repeat Problem 3.19 for 6; = 45°.
Repeat Problem 3.13, but use complex-number methods.
Refer to Figure 3.15. Calculate w,/w; for #; = 0 to 180° in 15° steps if Ry/R; = 3. Use a
computer or a programmable calculator.
Refer to Figure P3.1, which shows an RSSR spatial linkage. With R, as the origin, the x-,
y-,and z-coordinates of the joints are given, respectively, as follows:

R:0,0,0 S1:—25,0,35

Ry: —20,95,0 S,: — 20, 80,40
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s, S, Link 3 '
Link 2 I >
Link 1
R, Top view X, i
S5
W
Link 2
z,k
Link 1 Link 3
R !'77777I Side view Ry y.J

FIGURE P3.1 RSSR spatial linkage.

(all in millimeters). Link 1 rotates at @w; = 25 rad/s (constant) in the xz-plane. Sphere
joint Sy is moving away from the observer at this instant. Link 3 rotates in the yz-plane.
Find velocities v, and vy, and angular velocity 3. Set the angular velocity of link 2
about its own axis to 0.

3.25 Repeat Problem 3.24, except that w3 = 10rad/s cw (constant). Find v, , v,, and ;.

3.26 (a) Find the crank position corresponding to the maximum piston velocity for an in-line
slider-crank mechanism. Crank speed w is constant, and the ratio of the connecting
rod to the crank length is L/R = 2.

(b) Find the maximum piston velocity in terms of R and w.

3.27 Repeat Problem 3.26 for L/R = 1.5.

In Problems 3.28 through 3.61,

(a) write the appropriate vector equation,

(b) solve the equation graphically unless directed otherwise, using velocity polygon notation,
(¢) dimension all vectors of the velocity polygon, and

(d) express angular velocities in radians per second, and indicate their directions.

3.28 In Figure P3.2, 6 = 45° and w; = 10 rad/s. Draw and dimension the velocity polygon.
Find ).

FIGURE P3.2
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3.29 Repeat Problem 3.28 for 6 = 120°.

3.30 Repeat Problem 3.28 for the mechanism in the limiting position (with C to the extreme
right).

3.31 InFigure P3.3,w; = 100 rad/s. Draw and dimension the velocity polygon. Find vp and w;,.
Use the scale 1in = 100in/s.

BC=3in B
BD =2in @ @
o, 5 D
6=3° _  _  _  <cC
0,

FIGURE P3.3

3.32 In Figure P3.4, w; = 50rad/s. Draw and dimension the velocity polygon. Find vp, w,, and
w3. Use the scale 1in = 50 in/s.

FIGURE P3.4

3.33 In Figure P3.5, w; = 20rad/s.

(a) Draw and dimension the velocity polygon for the limiting position shown. Find rela-
tive velocity vcpg. Use the scale 1in = 10in/s.

(b) Repeat the problem for the other limiting position.

FIGURE P3.5

3.34 In Figure P3.6, 6 = 105° and w, = 20rad/s. Draw and dimension the velocity polygon.
Identify the sliding velocity. Find ;. Use the scale 1in = 20 in/s.
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B, on link 1
B, on link 2

FIGURE P3.6

3.35 Repeat Problem 3.34 for 6§ = 30°.
3.36 In Figure P3.3, w; = 100 rad/s.

(a) Find v¢ analytically for the position shown.
(b) Find v analytically at both limiting positions.

3.37 In Figure P3.7,let the angular velocity of the crank be w.

(a) Draw the velocity polygon for the position shown. Identify relative velocity vcp.
(b) Repeat for the other limiting position.

@ Crank Connecting
é\ length R B rod length L

o C

FIGURE P3.7

3.38 In Figure P3.8, w; = 100rad/s. Draw and dimension the velocity polygon. Use the scale
1in = 100in/s.

FIGURE P3.8
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3.39 In Figure P3.9, 0 = 135° and w; = 10rad/s. Draw and dimension the velocity polygon.
Identify the follower velocity and the sliding velocity. Use the scale 1in = Sin/s.

751_ Follower E_g: )

Bionl
Byon2

FIGURE P3.9

3.40 Repeat Problem 3.39 for 6§ = 30°.

3.41 In Figure P3.10, w; = 35rad/s. Draw the velocity polygon. Use the scale 1in = 10in/s.
Find w, and wj3. Find the velocity of the midpoint of each link.

FIGURE P3.10

FIGURE P3.11
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(a) Draw and dimension the velocity polygon. Find w, and identify the sliding velocity.

(b) Note that CD is a fixed distance. Thus, we can use the equivalent linkage O;CDO:.
Draw the velocity polygon, and again, find the angular velocity of the follower (rep-
resented by DO,).

3.43 Consider a pair of involute spur gears with a 20° pressure angle. Let the driver speed be
300 rev/min clockwise and the driven gear speed 1,000 rev/min counterclockwise. Find
the sliding velocity when contact occurs 1.2 in from the pitch point.

3.44 In Figure P3.12,6 = 105° and w, = 20rad/s. Draw and dimension the velocity polygon,
using the scale 1in = 20in/s.

4in

4in

)
O, FIGURE P3.12

3.45 Repeat Problem 3.44 for 6 = 30°.

3.46 In Figure P3.9, w; = 10rad/s. Find the follower velocity analytically when (a) 6§ = 135°
and (b) 6 = 30°.

3.47 In Figure P3.13, w;(the angular velocity of O;B;) = 30rad/s. Draw and dimension the
velocity polygon, using the scale 1in = 20 in/s. Identify the sliding velocity and find w,,
the angular velocity of O,B,.

Center O, is
fixed in space
(not in the block). FIGURE P3.13
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3.48 For Figure P3.14, draw and dimension the velocity polygon, using the scale 1in = 100 in/s.
Find w, and vp. Points B, C, and D lie on the same rigid link.

FIGURE P3.14

3.49 Locate all of the centros in Figure P3.14. Using centro 13, write an expression for the
slider velocity in terms of w;. Calculate vc.

3.50 In Figure P3.14, use centro 02 in order to write an expression for (a) w, in terms of vg;
(b) wy/wy; (€) v in terms of w,; and (d) vp in terms of w,. (e) Calculate w,, vc, and vp,.

3.51 In Figure P3.15, ws = 15rad/s. Use a vector 3 in long to represent the velocity of B.

Complete the velocity polygon and determine the velocity scale. Dimension the polygon
and find the angular velocity of each link.

BC=225in
BD =325in
3in

FIGURE P3.15

3.52 Refer to Figure P3.16. Solve graphically for §; = 15°.

(a) Draw the linkage to a 1:1 scale.

(b) Let 1 mm = 5mm/s; draw velocity polygon 0b;b,. Add point ¢, where O,C = 100 m.
(¢) Find vg,.

(d) Find v..

(e) Find w,.
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C

OB =30mm 0,0, =50 mm o =10 rad/s ccw

FIGURE P3.16

3.53 Repeat Problem 3.52 for 6, = 30°.

3.54 Repeat Problem 3.52 for 8, = 45°.

3.55 Refer to Figure P3.16. Find 6; when w, = 0.
3.56 Refer to Figure P3.17.

(a) Draw velocity polygon obc.
(b) Find w,.
(¢) Locate d on the velocity polygon. Find vp.

(d) Identity angles 6 and ¢ in your solution. Find velocity v, and relative velocity bc in
terms of wy, O;B, 6, and ¢.

OB =120 mm

BC =200 mm

6 =15°

o, =500 rad/s ccw

BD =40 mm B

FIGURE P3.17

3.57 A four-bar planar linkage has the following dimensions:

ro (frame) = 4;
ry (driver) = 1.25;
r, (coupler) = 5.25;
r3 (driven link) = 2.5.
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If o; = 5.75rad/s cw (constant), plot w; and w3 versus 0. Use a computer or program-
mable calculator. Check values at 6 = 120° by using a velocity polygon.

3.58 In Figure P3.18, 6, = 135°, w, = 500rad/s ccw (constant), O;0, = 300 mm, O;C =
400 mm, O,B = 150 mm, and CD = 160 mm.

(a) Draw velocity polygon 0b,b,.
(b) Find oc.

(¢) Find w;.

(d) Add c to the polygon.

(e) Addd to the polygon.

FIGURE P3.18

3.59 In Problem 3.58,1let 6, = 120°.

(a) Find vg, vp, and w; at 6, = 120°.
(b) For the interval 120° < 6, < 135°, find the average angular acceleration of link 1
and the average acceleration of point D.

3.60 Refer to Figure 3.15. Let Ry = 30 and 0,0, = 50. Find 6; when w, = 0.
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(a) Derive equations for position angles and angular velocities of a four-bar planar link-
age. Use complex-number methods. Refer to Figure 3.9.

(b) Given 6, = 60°, ry = 4,1, =2, 1, =45, r; =3, and w; = 50rad/s cw, find w, and
w3, using the equations derived above.

(¢) Check your results, using graphical methods.

Solve Problem 3.28 by analytical vector methods.
Solve Problem 3.29 by analytical vector methods.
Solve Problem 3.28 by complex-number methods.
Solve Problem 3.29 by complex-number methods.

A four-bar linkage has dimensions ry = 312.48, r; = 100, r, = 200, and r; = 300. The
assembly is such that the vector loop ryrsr, is clockwise. Let the angular velocity of the
crank be unity, and let the angular acceleration of the crank be zero.

(a) Tabulate the link positions, transmission angle, and coupler and follower crank angu-
lar velocities for values of §; from 0 to 360°.

(b) Plot the coupler and follower crank angular velocities for values of 6, from 0 to 360°.

A four-bar linkage has dimensions ry = 312.48, r; = 100, r, = 200, and r; = 300. The
assembly is such that the vector loop r,r3r, is counterclockwise. Let the angular velocity
of the crank be unity, and let the angular acceleration of the crank be zero.

(a) Tabulate the link positions, transmission angle, and coupler and follower crank angu-
lar velocities for values of §; from 0 to 360°.

(b) Plot the coupler and follower crank angular velocities for values of 6, from 0 to 360°.

A four-bar linkage has dimensions: ry = 37, = 10, r, = 25, and r; = 40. Point D lies on
the coupler at a distance of 15 from the crankpin, at an angle of 20°. The assembly is such
that the vector loop r,rsr, is clockwise. Let the angular velocity of the crank be 100 rad/s,
and let the angular acceleration of the crank be zero.

(a) Tabulate the link positions, transmission angle, coupler and follower crank angular
velocities, and velocity of point D for values of §; from 0 to 360°.

(b) Plot the coupler and follower crank angular velocities for values of 6, from 0 to 360°.
(¢) Plot the velocity of D and its x and y components.

A four-bar linkage has dimensions ry = 38, = 13, r, = 27, and r; = 41. Point D lies on
the coupler at a distance of 12 from the crankpin, at an angle of 20°. The assembly is such
that the vector loop r,r;r, is clockwise. Let the angular velocity of the crank be 50 rad/s,
and let the angular acceleration of the crank be zero.

(a) Tabulate the link positions, transmission angle, coupler and follower crank angular
velocities, and velocity of point D for values of 6; from 0 to 360°.

(b) Plot the coupler and follower crank angular velocities for values of 6, from 0 to 360°.
(¢) Plot the velocity of D and its x and y components.

Consider an offset slider-crank linkage for which the connecting-rod-to-crank-length
ratio is Ry/R; = 2.5 and the offset ratio e/R; = —j0.4. Tabulate and plot normalized
slider position ry/R;, normalized slider velocity v./(wR;), and angular velocity ratio
w,/wy, all against the crank position. Assume that the angular velocity of the crank is con-
stant. (Suggestion: Write a vector manipulation routine or use commercially available
mathematics software.)
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371

3.72

3.73

3.74

3.75

3.76

Consider an offset slider-crank linkage for which the connecting-rod-to-crank-length
ratio is R,/R; = 2 and the offset ratio e/R; = —j0.5. Tabulate and plot normalized slider
position 7y/R;, normalized slider velocity v./(w{R;), and angular-velocity ratio w,/w, all
against the crank position. Assume that the angular velocity of the crank is constant.
(Suggestion: Write a vector manipulation routine or use commercially available mathe-
matics software.)

Consider an offset slider-crank linkage for which the connecting-rod-to-crank-length
ratio is R,/R; = 3 and the offset ratio e/R; = —j0.7. Tabulate and plot the normalized
slider position ry/R;, normalized slider velocity v./(wR;), and angular-velocity ratio
w,/wy, all against the crank position. Assume that the angular velocity of the crank is con-
stant. (Suggestion: Write a vector manipulation routine or use commercially available
mathematics software.)

Consider an RSSR linkage similar to that in Figure 1.6a, where the link lengths are
ro=4,rn=1,rn =35, and r; = 2.5. Link 0 lies on the x-axis. Link 1 rotates in the
xy-plane with an angular velocity of 1 rad/s (constant), and link 3 rotates in the xz-plane.
Plot the vector components representing the angular velocity of link 2 and the angular
position and angular velocity of link 3 against angular position 6 of link 1. Tabulate the
resultant angular velocity of link 2, the angular position of link 3, and the angular velocity
of link 3 against the angular position of link 1.

Consider an RSSR linkage similar to that in Figure 1.6a, where link the lengths are
ro=32,rn=1,r =28, and r; = 2. Link 0 lies on the x-axis. Link 1 rotates in the xy-
plane with an angular velocity of 1 rad/s (constant), and link 3 rotates in the xz-plane.
Plot the vector components representing the angular velocity of link 2 and the angular
position and angular velocity of link 3 against angular position 6 of link 1. Tabulate the
resultant angular velocity of link 2, the angular position of link 3, and the angular velocity
of link 3 against the angular position of link 1.

We would like to design a mechanism with a 2-in output link that oscillates through a
range of about 105°. The input shaft rotation speed is 20 rad/s. The input shaft is parallel
to the plane of the output link, at a distance of 0.2 in. Design the mechanism and find the
angular velocity of the output link. Check the transmission metric and check the angular
velocity by numerical differentiation. Design decisions. Try an RSSR spatial linkage with
the following dimensions:

drive crank length r; = 1.5in;

coupler length r, = 3.4in;

driven crank r; = 2 in (required);

revolute joints: R; located at (0,0,0) and R, at (=0.2, =3, 0).

(Note: The desired range of motion and the decisions you make may result in a transmis-
sion metric that is outside of generally accepted limits.)

A mechanism is needed with a 110-mm output link that oscillates through a range of
about 48°. The input shaft rotation speed is 10 rad/s. The input shaft is parallel to the
plane of the output link, at a distance of 15 mm. Design the mechanism and find the
angular velocity of the output link. Check the transmission metric and check the angular
velocity by numerical differentiation.

Design decisions. Select an RSSR spatial linkage with the following dimensions:

drive crank length r; = 50 mm;

coupler length r, = 180 mm;

driven crank r; = 110 mm (required);

fixed link components are ro, = —15 and rpy, = —175.
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3.77 A mechanism is needed with a 55-mm output link that oscillates through a range of
about 45°. The input shaft rotation speed is 300 rpm. The input shaft is parallel to the
plane of the output link, at a distance of 30 mm. Design the mechanism and find the
angular velocity of the output link. Check the transmission metric and check the angular
velocity by numerical differentiation.

Design decisions. Select an RSSR spatial linkage with the following dimensions:
drive crank length r; = 20 mm;

coupler length r, = 155 mm;

driven crank r3 = 55 mm (required);

fixed link components are ry, = 30 and 1o, = 140.

PROJECTS

See Projects 1.1 through 1.6 and the suggestions in Chapter 1. Examine linkages involved
in the chosen project. Describe and plot the velocity and angular velocity characteristics
of the linkages. Make use of computer software wherever practical. Check your results
by a graphical method for at least one linkage position. Evaluate the linkage in terms of
the performance requirements.
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CHAPTER 4

Acceleration Analysis
of Mechanisms

The acceleration of a point is a vector representing the change in velocity per unit
time. Velocity is a vector, so changes in its magnitude and direction both contribute to
acceleration. In general, angular velocity and angular acceleration are also vectors.
However, they may be treated as scalars in planar mechanisms.

Concepts You Will Learn and Apply When Studying This Chapter

e Acceleration of a point on a rotating link

e Acceleration in a moving coordinate system

¢ Normal, tangential, and Coriolis acceleration

¢ Analytical vector methods for finding accelerations in linkages
¢ Complex-number methods for finding accelerations in linkages
e The acceleration polygon, a graphical vector method

e Acceleration image

e Equivalent linkages

¢ Linkage combinations

¢ Matrix methods for determining accelerations in spatial linkages
e Practical applications

¢ Computational techniques for “working smart”

¢ Interpretation and assessment of results

4.1 BASIC CONCEPTS

Acceleration in linkages is of particular importance because inertial forces are propor-
tional to rectilinear acceleration and inertial torques are proportional to angular accel-
erations. Graphical and analytical vector techniques, including representing vectors in
complex form, are useful in determining linkage accelerations.
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Acceleration of a Point

Consider a point moving along a curve in three-dimensional space and located by a

vector R. The acceleration a of the point is given by the rate of change in velocity with
respect to time:

L_dv _ &R

dr  dr*’

Acceleration may be expressed in terms of its x, y, and z components and their respective
unit vectors i, j, and k in a fixed coordinate system:

a = iR, + jR, + kR., (4.2)

(4.1)

where two dots above the variable represent the second derivative with respect to time.

Angular Acceleration

Angular acceleration a represents the rate of change in angular velocity w with
respect to time. In general,

dw . .
a=-—"=ad + ayj + ak. (4.3)
For the special case of planar motion, the vector direction of e is perpendicular to the
plane of rotation. For motion in the xy-plane, vector e is in the +z direction; that is,
a = ak.

SAMPLE PROBLEM 4.1

Average Angular Acceleration

An automobile accelerates from 0 to 60 mi/h (0 to 96.56 km/h) in 15 s. Find the average angular
acceleration of the rear axle. The tires have a 13-in. (330.2-mm) outer radius.

Solution. This problem is equivalent to a dynamometer test, where the 60-mi/h speed is the lin-
ear velocity of a point on the tread of the tire. Let us convert this speed to more manageable
dimensions:

. 5,280 ft 1h 12 in .
X X X = .
60 mi/h Tmi 36005 it 1,056 in/s

Using the velocity equation v = @ X R, we obtain the angular velocity magnitude

_1;_1,056in/s_812 d
©=r= "13m 2 rad/s.

Average angular acceleration is defined as the rate of change of the angular velocity with respect
to time. Therefore,

o(final) — w(initial)
time interval

_ 812 — Orad/s

B 15s

Qay =

= 5.41 rad/s>.
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Motion of a Rigid Body about a Fixed Point

This important special case occurs frequently in linkage analysis. As noted in Chapter
3, the velocity of a point in a rigid body rotating about a fixed point is given by

R=v=w XR, (4.4)

where R is the vector from the fixed point to the point in question. Differentiating v
with respect to time, we obtain the acceleration of the moving point:

V=& XR+ o XR. (4.5)
Using Egs. (4.3) and (4.4), we may write Eq. (4.5) as follows:
a=aXR+ o X (wXR). (4.6)

Planar motion. Suppose a rigid link is connected to a frame by a revolute pair with
an axis perpendicular to the link (one or more journal bearings or ball bearings).
Then that link moves in a plane, and its angular-velocity vector is perpendicular to its
plane of motion. The first vector on the right in Eq. (4.6), @ X R, is the tangential
acceleration for planar motion. This vector is tangent to the path of the point on the
body (perpendicular to radius vector R), as shown in Figure 4.1. The magnitude of
the tangential acceleration is

a' = aR.

The second vector on the right in Eq. (4.6), @ X (@ X R), is the normal acceleration.
This vector is normal to the path of the point for planar motion. Its direction is parallel
to, but opposite, the radius vector. The magnitude of the normal acceleration is

v2

FIGURE 4.1 Acceleration of a point.
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Spatial motion. The preceding equations for planar motion do not apply to spatial
motion. For example, if a rigid body is connected to a frame by a spherical pair (ball
joint) then the angular-velocity vector and the radius vector are not necessary perpen-
dicular. We would then use the vector cross-product form (Eq. 4.6).

SAMPLE PROBLEM 4.2

Acceleration of a point in planar motion

Point B on a rigid body is 2 in (50.8 mm) from center of rotation, O, as shown in Figure 4.1. Point
O represents a revolute pair; the body has planar motion. At the instant shown, the angular
acceleration is 750,000 rad/s® counterclockwise, and the angular velocity is 1,000 rad/s clockwise.
Find the acceleration of point B at this instant.

Solution. The normal acceleration of point B is
al = o X (0 X R) = (—1000 rad/s)*(2 in)
= 2,000,000 in/s> 26 + r (along BO toward O)
The tangential acceleration is given by
al = ® X R = (750,000 rad/s?) (2 in)
= 1,500,000 in/s*£6 + /2,

perpendicular to OB to the left, since « is counterclockwise.
Adding the vectors, we obtain the total acceleration of point B:

ag = ap + a} = V(ap)* + (ap)’
= V/(1,500,000)% + (2,000,000)>
= 2,500,000 in/s?,

to the left and downward.

Moving Coordinate Systems

A more general case of linkage motion may be described by first considering a point
within a moving coordinate system (Figure 4.2). A coordinate system xyz with respec-
tive unit vectors , j, and k moves within a fixed system XYZ with respective unit vec-
tors I,J, and K. The velocity of a point P may be described by

R=R,+irh+wXr (4.7)
(repeated from Chapter 3), where
R = absolute velocity of point P relative to XYZ,
R, = velocity of the origin o of the xyz system,

velocity of point P relative to the xyz system, and

\ﬂ.
Il

w X r = cross product of the angular velocity of the rotating system xyz in the
XYZ system and the position vector r
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Z, K z k
r B Py
o .
y).]
X i
R,
o) Y, J
FIGURE 4.2 A moving coordinate system: System xyz
X1 moves within fixed system XYZ.

Differentiating the first term on the right with respect to time, we have

%RO =R, (4.8)
The next term could be written
I, =ind + i j+ ik (4.9)
Differentiating, we get
dr, .. . .. i i, e
- Fod + Vo j + Fook + Fod + 1oy j+ 7,0k (4.10)

The differential of a unit vector with respect to time is the cross product of the angular
velocity of the moving coordinate system and the unit vector; for example,i = w X i.
Then 7,,i = fr(w X i) = @ X F.,i, and so on. Consequently,

dr,
d—t’ = Foud T Pk + 0 X Fpd + 0 X Fj + o Xk, (4.11)
which, from Eq. (4.9), may be written
dr, _ + w Xi 412
T e X (4.12)

The last term on the right side of Eq. (4.7) may be written
o Xr=wX(d+rjt+rk). (4.13)
Differentiating, we have
d . . .
E(w Xr)= X (rj+ rJj+ r.k)+ o X (7,0 + Fr + 7 k)

+ o X (rd + 1 j+ k).
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Noting that i = @ X i and so on, as in the previous case, and combining terms, we
obtain

d
E(er)=ob><r+w><i’,+w><(w><r). (4.14)

Then, from Egs. (4.8), (4.12), and (4.14), the total acceleration of point P in fixed coordi-
nate system XYZ is

R=Ry+ o Xr+oxX(®wXr)+7F + 2w X#. (4.15)

The first term on the right of Eq. (4.15) is the total acceleration of the origin o of the
moving coordinates; the next two terms give the acceleration of P, relative to o, where
P, is a point instantaneously coincident with P and having no motion relative to the
moving coordinates xyz. The last two terms in Eq. (4.15) represent the motion of P rel-
ative to Py. It is important to remember that w and w refer, respectively, to the angular
velocity and the angular acceleration of the moving coordinate system.

Problems involving spatial linkages (mechanisms involving motion that does not
lie in a plane or in a set of parallel planes) require that Eq. (4.15) be applied in its gen-
eral form. In plane mechanisms, the vector products take the following forms: @ X r
becomes ar, the tangential acceleration; @ X (@ X r) becomes w’r, the normal accel-
eration; and 2w X r, becomes 2wv, the Coriolis acceleration. The Coriolis acceleration
term appears when sliding occurs along a rotating link. From Figure 4.2, the term v = r,
is the velocity of point P relative to a point P; that is instantaneously coincident with P,
but that has no motion relative to the moving coordinates. Normal acceleration, tan-
gential acceleration, and Coriolis acceleration will appear later, as we use graphical
and analytical methods to investigate the motion of linkages.

Relative Acceleration

Relative acceleration is a useful concept for graphical solutions to planar linkages. In
Eq. (4.15), the acceleration of point P is described in terms of the acceleration of the
origin o of a set of moving coordinates and four terms representing the difference
between the acceleration of P and the acceleration of the origin o of a set of moving
coordinates. Consistent with the terminology used for velocities, the acceleration dif-
ference is called the acceleration of P relative to o or the acceleration of P with
respect to o.

The special case involving two points on the same rigid link is frequently encoun-
tered. Consider link BC of Figure 4.3; this link is not fixed at any point. If the accelera-
tion of point B is known, we may find the acceleration of any point C on the link by
adding the acceleration of point C with respect to B to the acceleration of B.
Symbolically, then, the acceleration of point C is given by the expression

ac = apg + acpg, (416)
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dcp
(Perpendicular to BC)

A

FIGURE 4.3 The acceleration of point C relative
to point B, acp, is shown broken into its normal

C and tangential components. The vector represent-
w v2cp ing the normal component, a¢, lies along BC and
¥cB= “go is directed toward B; the vector representing the
(Along BC toward B)

tangential component, agp, is perpendicular to BC.

where acp, the acceleration of point C with respect to point B, may be broken into its
normal and tangential components as follows:

acg = aty + acp. (4.17)
The normal acceleration of C with respect to B is given by
atp = wpc X (wpe X BO), (4.18)
and the tangential acceleration is given by
arp = age X BC. (4.19)
Using Egs. (4.18) and (4.19), we have
ac = ag + wpc X (wpc X BC) + apc X BC. (4.20)
If link BC moves in a plane, the magnitude of the angular velocity of link BC is given by

Ucp

wpc = CB’

The magnitude of the normal acceleration is
altp = wheBC = 32
and that of the tangential acceleration is

a’CB = achC.

4.2 ANALYSIS OF A FOUR-BAR LINKAGE BY ANALYTICAL
VECTOR METHODS

The vector equations developed in the preceding section may be applied to the analy-
sis of linkages. Consider the four-bar planar linkage of Figure 4.4. The loop equation
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FIGURE 4.4 Analytical study of a four-bar linkage.

for the linkage,
r0+r1+r2+r3=0,

was solved in Chapter 2 to determine relative link positions. Differentiating the loop
equation and making the substitutions indicated in Chapter 3, we obtain the velocity
equation [Eq. (3.14), repeated]. This equation was solved in Chapter 3.

w1><r1+w2><r2+w3><r3=()

Differentiating the velocity equation, while noting that the links are fixed in length, we
obtain the acceleration equation

a1><r1+w1><((u1><r1)+(12><r2+w2><((u2><r2)
+a3><r3+w3><(w3><r3)=0. (421)

The a X r terms in this equation account for the change in angular velocity of each

link (causing a change in magnitude of the velocity vector).

The w X (@ X r) terms account for the change in direction of the velocity vector.
The sense of vector r is such that the last two terms of Eq. (4.21) represent —ac.

Thus, the equation is equivalent to

ay + a} + arp + alp = a- + at. (4.22)

We may orient the coordinate axes so that the linkage lies in the xy-plane, with angular
velocity and angular accelerations given in the form @ = wk and @ = ak. Then, typi-
cal terms in Eq. (4.21) have the form
i
aXr=|0 0

r, r

k
al = a(jr, — ir),
y 0
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i j k
o Xr=10 0 o|=o(r-—ir),
re r, 0
and
i J k
oX(wXr=|0 0 o| = —w(ir, +Jjry).
—or, —or, 0

Making the indicated substitutions in Eq. (4.21) results in

ay(—iryy, + jriy) — 0’(ir, + jry) + a(—iny, + jry) = o3(in, + jr,) (4.23)
+ as(—irsy + jry,) — wi(in, + jr;,) = 0. ‘

This equation must be satisfied separately for the coefficients of unit vectors i and j.
Now, suppose that the position, angular velocity, and angular acceleration of the dri-
ving crank, link 1, are given. If we have already solved the displacement and velocity
equations (Chapters 2 and 3), the remaining unknowns are «, and «3. Separating the
components of vector #, we have

— 2 2 2
azrzy + a3r3y = —alrly — W1y T Wi, — W3l3,. (424)
Separating the components of vector j yields
— 2 2 2
)y + aszl3, = —0F + w1 rly + wzrzy + a)3r3y. (425)

These two simultaneous equations may be solved by elimination or another conve-
nient method. For example, we may use the matrix form AX = B; that is,

rzy r3y (%) _ a 426
sz V3x““3} {b} (4.26)
where a represents the right side of Eq. (4.24) and b the right side of Eq. (4.25). Then
the solution is given by

X = {“2} = A1B.
as

Alternatively, using determinants, we have, for the angular acceleration of the coupler,

1
D

ars, — b}’3y
= 7D ,

a rs
— y
oy =
b 3y

and for the angular acceleration of the follower crank,

1
a3 = ——

D

fy aj _ bry, — ary,

D >

Fox b
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where

y 13
y — _

= rzyr3x rle’3y. (427)
x I3y

SAMPLE PROBLEM 4.3

Accelerations in a Four-Bar Linkage

Referring to Figure 4.4, let w; = 100rad/s (constant), 6; = 45°, Ocpp = 20° (constant),
ro = 30mm, r; = 10 mm, r, = 35 mm, r; = 20 mm, and rgp = 15 mm. Find «a,, a3, ag, ac, and
ap for the assembly mode shown.

Solution. As determined in Chapters 2 and 3 and using the same data, we have
rie =7.0711, = 7.0711,

Fox = 33590, ry
F3y = 710660, r3

= 9.853,
—16.929,

y

y

and

@y = —9.567, and w; = 36.208.

Using these values, we obtain

a = —aqlry — w12r1x - w%’z;( - w%’ax
=0 — 100%(7.0711) — 9.567%(33.590) — 36.208%(—10.660)
= —59,810 mm/s?,
b= —ayr, + wlzrly + w%rzy + w%r3y
=0 + 100%(7.0711) + 9.5677(9.853) + 36.208%(—16.929)
= 49,381 mm/s?,
D = ryyrs, — ryrsy = 9.853(—10.660) — 33.590(—16.929)
= 463.80,
ars, — bry,  (—59,810) (—10.660) — (49,381) (—16.929)
“=""p 463.80

= 3,180 rad/s?,
and

bry —ary,  (49381)(9.853) — (~38,600) (33.590)
“CTTp T 463.80

= 5,386 rad/s’.
Once the angular accelerations are determined, we may find the acceleration of any point
on the linkage. The acceleration of point B is given by
ap=a; Xr+ o X (o Xn)= —wlz(irlx +jr1y)
—100%(i7.0711 + j7.0711) = i70,711 — j70,711
100,000 mm/s?/ —135°.
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The acceleration of point C, as determined directly from its position on link 3, is
ac = a3 X (=r;) + w3 X (w3 X (=13))

as(—jrs, + irsy) — @3(—irs, — jrs)

5,386(j10.660 — i16.929) — 36.208%(i10.660 + j16.929)

= —i105,100 + j35,200 = 110,900 mm/s*/161.5°.

As an alternative, we may calculate both the acceleration of point C in terms of the acceleration
of B and the acceleration of C with respect to B. We have

ac = ag + acp,
where
acg = ay X 1 + 0y X (03 X 1) = ap(jra, — i) — w3(iry, + Jjray)-
Substituting the values obtained earlier, we get
ac = —i70,711 — j70,711 + 3,180(j33.590 — i9.835)
— 9.567%(i33.590 + j9.835),

which differs from the previous result due to rounding errors alone.
The acceleration of point D in the coupler is given by

aD:aqu]-i-w]X(m]><r1)+a2XrBD+w2X(w2><rBD),
where the radius vector extending from B to D is

rgp = rgpl6, + 6cpp = 15mm /1635 + 20° = i12.081 + j8.891,

so that
ap = —100%(i7.0711 + j7.0711) + 3,180(j12.081 — i8.891)
— 9.567%(i12.081 + j8.891)
= —i100,100 — j33,100 = 105,400 mm/s*/—161.7°.

4.3 ACCELERATION ANALYSIS WITH A SPREADSHEET

If the displacement and velocity formulas for a given type of linkage are already pro-
grammed on a spreadsheet, then the acceleration formulas can be added with little dif-
ficulty. To analyze a four-bar linkage, we may use the equations in the previous section,
converting them to spreadsheet form. The results of the analysis may be plotted with
the spreadsheet plotting routines. The graphical results aid in checking for program-
ming errors, since inconsistencies are more easily detected in plotted results than in
tabulated results.

SAMPLE PROBLEM 4.4

Utilizing a Spreadsheet to Determine Angular Accelerations in a Four-Bar Linkage

For the four-bar linkage described in Sample Problem 4.3, let the angular velocity of the crank
be 100 rad/s (constant and counterclockwise). Tabulate and plot the angular velocities and angu-
lar accelerations of links 2 and 3 against the crank angle.
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Crank-rocker linkage
ro =30, ry =10, r, =35, r; =20

Normalized angular velocity and acceleration

0 60 120 180 240 300 360
Crank position: 0, (degrees)

FIGURE 4.5 Velocities and accelerations in a crank-rocker linkage.

Solution. The equations used in Sample Problem 4.3 were converted into spreadsheet formu-
las. The crank position was changed in 5° increments, and the formulas were copied throughout
the spreadsheet.

For plotting purposes, angular velocities are normalized by dividing by the crank angular
velocity, and angular accelerations are normalized by dividing by the square of the crank angu-
lar velocity. The plotted results are shown in Figure 4.5. Note that the angular velocities of links
2 and 3 are equal at #; = 0° and also at §; = 180°. We observed that this was the case when we
examined the centros of a four-bar linkage. Note also that zero angular acceleration of a given
link corresponds to an angular velocity extremum (a maximum or minimum).

4.4 VECTOR MANIPULATION WITH MATHEMATICS SOFTWARE

If we choose to work directly with vectors to solve linkage acceleration problems, we
may write programs for vector manipulation or use commercially available mathemat-
ics software. In most cases, the vector solution will require less calculation on our part,
but will require more computer time than solutions in scalar form.

Consider the offset slider-crank linkage of Figure 4.6a. The linkage may be
described by the following position and velocity equations, as given in Chapters 2 and 3:

e+r1+r2+r0=()
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FIGURE 4.6
crank linkage.

(a) Offset slider

Offset slider crank mechanism
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FIGURE 4.6 (b) Slider motion.
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Offset slider crank mechanism

Con rod position, normalized vel, acc

\ \ \ \ \ \ \ \ \ \ \
.5
0 30 60 90 120 150 180 210 240 270 300 330 360
T
deg
Crank position degrees

FIGURE 4.6 (c) Connecting-rod motion.

and
w; Xr+w, Xr—v,=0.
Differentiating the latter equation with respect to time, we obtain
o X (@ Xr)+ o X (@ X)) +aXrn—a =0 (4.28)

if the angular velocity of the crank is constant.

Noting that the acceleration of the slider lies along the x-axis, we may eliminate
the last term in the Eq. (4.28) by taking the dot product of each term with the unit vec-
tor j. The result is

@ X (01 X 1) j+ oy X (0 X 1) j+a,Xr:j=0,
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from which it follows that
a = [~o; X (0 X 11)j = @0y X (@, X 1) jl/(k X 1)), (4.29)

where w = wk and @ = ak. The slider acceleration may now be obtained by rearrang-
ing Eq. (4.28) as follows:

a. = mw X ((ﬂ)l X rl) + w) X ((x)z X r2) + a) X r. (430)

Displaying the results graphically. To display our results, we want scalars. If we used the
absolute values of vectors ry, v, and ac in plots and tables, the directions would be
lost. If the slider moves horizontally, we can use dot products to define position, veloc-
ity, and acceleration scalars:

Ry = —1y-1i;
VC = Vc’i;
AC = ac'i.

The velocity and acceleration vectors are already defined as positive to the right (the i,
or +x, direction). The sign change makes R, consistent with that definition. When sev-
eral curves are displayed on the same graph, we usually need to scale the numbers.
One suggestion is that we plot normalized values, using the dimensionless quantities

Ro/Ri, Vc/(wiRy), Ac/(of Ry), /oy, and /i .

Then, all the curves will usually be of the same order of magnitude. Note that the sec-
ond and third terms are equivalent to dividing the wrist-pin velocity and acceleration
by the crankpin velocity and acceleration.

Sign convention for angles. Remember the sign convention: Counterclockwise is
positive for angular position, velocity, and acceleration. That is, angular velocity or
acceleration in the +z (k) direction is positive. For spatial linkages, angular velocity
and acceleration vector components in the +x, +y, and +z directions (the i, j, and k
directions) are positive.

Verifying results. Murphy’s law, “If anything can go wrong, it will,” is not entirely
a joke. One antidote is to check results frequently. Computers make checking easy. For
example, we can check the value of ry and the vector position equation at some crank
angle. Does ry agree with its representation in a freehand sketch? Does the position
equation represent a closed vector loop, giving us a zero vector? And do the units
check?

Numerical differentiation and the chain rule. Numerical differentiation provides
additional verification. In Chapter 3, we used the chain rule with numerical differentia-
tion to check the angular velocity of one link in a spatial linkage. Using the chain rule
and numerical differentiation for the offset slider crank, we have

VC = W dRo/dal
Ac = ot d’Ry/db?
Wy = W1 d02/d01,
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and
oy = (1)12 d262/d612 .

Do these values corroborate with the results from vector velocity and acceleration
methods?

SAMPLE PROBLEM 4.5

Acceleration analysis of an offset slider-crank linkage: direct vector manipulation using mathe-
matics software

An offset slider crank linkage similar to that in Figure 4.6a is described by the vector equation
rptetr,+rp=0.
Crank length = 15, connecting rod length = 42, and offset vector

0
e=| -5 (allmm).
0

The crank rotates counterclockwise at a constant speed of 500 rpm. Find link position, velocity,
and acceleration vectors. Plot the slider position, velocity, and acceleration and the angular posi-
tion, velocity, and acceleration of the connecting rod (all against the crank position). Check your
results.

Solution summary. We will use lowercase letters for vectors and uppercase for scalars in most
cases. The computer knows the difference because vectors are identified as matrices with three
rows and one column. For convenience, crank position ; (radians) is replaced by T.

The crank angle goes from zero to 27, and the vector crank position is easily calculated.
We add it to the given offset vector and call the resulting vector r;. Position vectors are calcu-
lated from the equations in Chapter 2, with one magnitude (R;) and one direction (6,) unknown.
We are lucky here; the four vectors add to zero for an arbitrary value of 6, (1 rad). Sometimes,
the sum is a small value, say 107", which just represents rounding error. The connecting-rod
angle is calculated with the two-argument Mathcad function angle (), 21)), Where the x, y,
and z components of vector r, are numbered 0, 1, 2, and respectively. This function gives arctan-
gent values 0 < 0§ = 27 rad. If 6, jumps around from O to 27 rad, the appearance of the graph
can be improved by an [F statement in the form

1f(02 = ’77',92,02 - 2’77)

If the inequality is true, the value after the first comma holds; if not, the value after the second
comma does. That is, if the calculated value is less than or equal to 7, it is used as is; if not, we
subtract 27r. Programming languages and other software may use a different two-argument arc-
tangent function (ARCTAN,, for example), which may yield angle values between — and 7. If
you are unfamiliar with the software, be sure to read the instructions and use the help screens.
Velocity and acceleration vectors are calculated using cross products. The magnitudes of
the slider velocity and the slider acceleration are given by the dot product of the vector and the
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unit vector i. Both velocity and acceleration values at an arbitrary crank angle agree with results
of numerical differentiation (subscripted ») using the chain rule.

The results are plotted in dimensionless form. It is encouraging to note that zero slope of
the velocity curve corresponds to zero acceleration, etc. It is easy to convert back to actual val-
ues. For example, a value taken from the acceleration curve is multiplied by w?R;, where
w; = 5007/30 and R; = 15, to obtain A, (mm/s?).

Solution details (The software used to solve this problem does not identify vectors with bold-
face type).

Units: mm, sec, rad.

Vector equationrz + 1, + 1y = 0, wherer; =1 + ¢
ko

72...277

Let T = 6; = crank position (radians): T := 0,

Given:
Crank length R, := 15 Connecting-rod length R, := 42

0 -1
Offsete:=| —5 | ryunitvectorry,:=| 0
0 0

Crank speed-rpm: n; := 500

. e
Angular velocity, rad/s: wy:= —— oy = 52.36

1 0 0
Rectangular unit vectors:i:= | 0 j==11| k:=|0
0 0 1

Angular acceleration: oy := 0

Position analysis

The magnitude of ry and the direction of r, are unknown.

R; - cos (T)
. Add offset,
: = . = +
Crank vector r1(T) R, s(;n(T) define vector: r3(T):=1r(T) + e
!
Slider position vector: ro(T) := | —13(T) - 1o, + [R% — [r3(T) * (rg, X k)]z}2 “Toy

Scalar for plotting: Ry(T) := —ro(T)+i (positive to right)
For convenience, define A(T) := r3(T) - (rg, X k)
Connecting-rod vector: r,(T) := —A(T) - (rgy, X k) — (RZ — A(T)z)%-r()u
Angular position: q(T) := angle(r,(T), r2(T);)
For plotting: 6,(T) := if(q(T) = , q(T), q(T) — 2m)
0

Check vector closure: e + 1o(1) + (1) + (1) = | 0
0

—ow;* (r(T) 1)
rp(T) i

Velocity analysis

Connecting-rod angular velocity: wy(T) :=
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Slider velocity vector (positive to right): Vc(T) := w; - (k X 11(T)) + @,(T) - (k X 1,(T))
Scalar: V(T) := V(T) - 1

dT
V(1) = =739201 V(1) = —739.201 mm/s
w,(1)= —10.274 wy(1) = —10.274 rad/s
Acceleration analysis

d d
Numerical differentiation: Vo, (T) := w; + < RO(T)> w(T) := oy + <dT 02(T)>

Check:

Connecting rod angular
—o1°k X (01 k X 11(T)) "] = 0(T) -k X (0p(T) -k X 1(T)) "]
k X 1y(T) -]

acceleration: ay(T) :=

Slider acceleration vector: ac(T) = (w;+k) X [(wy-k) X ry(T)]---
H(@o(T) * k) X (0(T) -k X 15(T)) + ax(T) -k X 15(T)
Scalar: Aq(T) := ac(T) - i

Numerical differentiation:

Ac(T) = of (;“T RO(T)> trn(T)i=w? ;fr(ddT Gz(T)>

Check: Ac(1) = —2.034-10* a(1) = 818.339

d
Acy(1) = —2.034-10‘”:—?rl (1) = 818.339 %

Engineering Significance. Slider crank linkages, which include piston engines and
pumps, are an important class of machine components. In most cases, they are in-line;
that is, the piston (slider path) centerline intersects the center of the crankshaft.

The equations in the detailed solution just presented apply to the in-line case if
we set offset equal to zero. With a zero offset, the slider position, velocity, and accelera-
tion are symmetric or antisymmetric about crank position #; = 7 rad (180°). The same
applies to the connecting-rod position, angular velocity, and angular acceleration.
None of the curves showed symmetry or antisymmetry in the foregoing offset slider-
crank example.

Inertial forces and torques are critical in the design of high-speed machinery.
These inertial effects often exceed applied forces and torques. We need accelerations
and angular accelerations to determine inertial effects. (Methods of analysis and
design are discussed in a later chapter.)

4.5 COMPLEX-NUMBER METHODS APPLIED
TO ACCELERATION ANALYSIS

As illustrated in Chapters 2 and 3, complex numbers are a convenient form for represent-
ing the vectors that model planar linkage elements and velocities. It follows, therefore,
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Ro (B; on link 1,

B, on link 2)

+(1)2

92 Tand Qy

\ \
| Ro \

(a)

Imaginary axis

Ry Real axis

FIGURE 4.7 (a) Schematic for sliding contact linkage. (b) Vector representation.

that complex number methods can be applied to acceleration analysis of planar link-
ages. Consider the sliding contact linkage described in Section 3.7 and shown in Figures
4.7a and b. The displacement equation is given by

RO + Rleﬂ" = Rz@jez
and the velocity equation by

: 0, — - 1 1
]wlRlef = ](1)2R2€] 2+ vBlee’ 2

as in Chapter 3.
Differentiating with respect to time, we obtain the acceleration equation:

. dw .
— w 2Ry + jﬂl—thleﬂ’1

(4.31)

. . d(l)2 . vBle 3
= —wiRy ™ + j2wyvp g + ]?Rzeﬂ’2 + ——el%,

Thus, we have the vector equation

n t _ gn t c t
aBl + aB1 = aBZ + a32 + aBle + angZ, (432)
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where the vector magnitudes are the normal accelerations
ap, = R, and agp, = w3R,,
the angular acceleration

dw

ar - ©
the tangential accelerations
a;R; = a3 and R, = ajp,
the Coriolis acceleration
26021)313Z = a%le’
and the relative (tangential) acceleration of B; with respect to B,

dUBle oy
dr 4B,

which is positive if dR,/dt is increasing (note again that the order of the subscripts is
critical).

Solving the Complex Acceleration Equation

In a problem of this type, it is likely that link lengths R, and R; would be specified, as
would the angular velocity and acceleration of link 1. Then R, and 6, can be found for
given values of 0, by using the displacement equations as in Chapter 2. Similarly, angu-
lar velocity w, and relative velocity v g, can be found as in Chapter 3. The remaining
unknowns in Eq. 4.31 are dw, /dt and dvg, g, /dt. All of the terms in Eq. 4.31 are, in gen-

eral, complex. If each term is multiplied by e /%, the equation then takes the form
(o + joa)Ri /™% = —wiR, + J2wy0p 5, + jauRy + dfp p,, (4.33)
where @, = dw,/dt and atBle = dvg,p,/dt. The two unknowns can now be separated,

since the term containing a 5, is real and the term containing «; is imaginary. Using
the Euler formula

/179 = cos (0; — 6,) + jsin(6; — 6,) (4.34)
and noting that j> = —1, we equate the real parts of the resulting equation to obtain
a%le = —w% Rl COS (01 - 02) + alRl Sin(92 - 01) + w%Rz (435)

Equating the imaginary parts yields

1
oy = R2|:(1)% Rl Sil’l(@z - 01) + 0(1R1 COS (02 - 01) - 2(1)2’03132i|. (436)
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You may find complex numbers an unpleasant dose of mathematics. Our solution to a
linkage problem included the differentiation of complex quantities, multiplication by a
complex quantity, applying the Euler formula, and separating real and imaginary parts.
In return, we get separate equations for the unknowns. The complex-number method
eliminated the need for vector manipulation and solutions of simultaneous equations
by matrix or determinant methods.

We had to multiply the sliding contact linkage equations by a certain complex
quantity to get the needed results. But look before you leap: The object is to get at least
one unknown term in a purely real or purely imaginary expression. A different linkage
may call for multiplication by a different complex quantity. Or the variables may
already be separated; if so, then skip a step.

If you can manipulate complex quantities, you have a powerful tool for solving
problems in many engineering fields. Look for new applications, but remember that
you are limited to two-dimensional problems. Complex-number methods work well
with planar linkages, for example, but not spatial linkages.

SAMPLE PROBLEM 4.6

Accelerations in a Sliding Contact Linkage
Referring to Figure 4.7a and b, let w; = 20 rad/s (constant and counterclockwise), Ry = 40 mm,
and R, = 20 mm. Find a 5, and o, at 6; = 75°.

Solution. Using the equations of Chapters 2 and 3, we obtain R, = 49.13 mm, 6, = 23.15,
w, = 5.03 rad/s ccw, and vg g, = —314.6 mm/s.

The relative acceleration is found by noting that w, is constant (a; = 0):

atBlB2 = —w% Rl CcOS (01 - 02) + alRl Sin(@z - 61) + w%Rz
= —20% X 20 cos(75° — 23.15°) + 5.03% X 49.13 = —3,698.7 mm/s’

(i.e., 3698.7 mm/s? along link 2 toward 0,). The angular acceleration is

0)12 Rl sin(@z - 01) + alRl Ccos (02 - 91) - 2(021)3132
Ry

207 X 20sin(23.15° — 75°) — 2 X 5.03(—314.6) )
= 913 = —63.63 rad /s

ay =

(i.e., ap = 63.63 rad /s? clockwise).

Engineering Applications. Let the input link of the sliding contact linkage in sam-
ple problem 4.6 rotate at constant speed. The output link oscillates between limiting posi-
tions, but the average speed in the clockwise direction will not equal the average speed in
the counterclockwise direction. The oscillating link can be joined to other links to form a
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quick-return mechanism. If the linkage is used as a shaper, our objective would be a
high-force stroke for cutting metal and a quick return. We need to know cutting speeds,
and we need accelerations to find forces and torques, particularly at high speeds.

Some designs call for lightweight materials to reduce inertial forces and torques.
Other applications include a flywheel or other high mass-moment-of-inertia parts to
store energy and reduce fluctuations in speed. Shapers, punch presses, and engines are
a few of the many machines utilizing flywheels.

4.6 THE ACCELERATION POLYGON

Planar linkage acceleration problems may be solved with the aid of motion simulation
software (e.g., Working Model), by analytical vector methods, by complex-number
methods, or by numerical differentiation of the position and velocity values. The accel-
eration polygon, a graphical vector method, is another alternative; you may find it use-
ful for spot-checking the results of a different method. If you want to find the
accelerations of a linkage through a full range of motion, total reliance on graphical
methods is not “working smart.”

Analysis of Slider-Crank Mechanisms

The acceleration polygon is analogous to the velocity polygon discussed in Chapter 3.
The vector polygon provides us with a convenient method of finding unknown vectors
through their relationship to known (easily calculated) vectors. In the current situa-
tion, the vectors being considered are accelerations. The acceleration polygon is simply
the graphical expression of the acceleration vector equation, Eq. (4.22), where
ac = ap. Vector al = 0, since the slider moves in a straight path.

SAMPLE PROBLEM 4.7

Acceleration Polygon for a Slider-Crank Linkage

Figure 4.8 shows a slider-crank linkage that was examined in the preceding chapter. We want to
find the acceleration of point C on the slider.

Solution. The velocity polygon in Figure 4.8b is taken from Chapter 3. Since the crank has a
constant angular velocity,

a = a; X OB = 0.
Thus, the total acceleration of B is
ag = ap = w; X (w; X O\B),
with the magnitude given by
v _ (ob)? _ (20in /s)?

n _— 2 —
- B - T
ap w1 01 ) lE i

200 in /s
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(a)

X
ag=a'"p=200 70°
(|| 04B toward O
b ! ) a. (along path of C)
—
a’CB (J_ BC)
60° 30°
(®) a’cp =16.6
(|l BC toward B)
©
¢
a'cp 208
B 2 d'cp
41}2
w) 4‘2

/

a'cp =166

(d) (e)

FIGURE 4.8 (a) Slider-crank mechanism drawn to scale. (b) The velocity polygon. (c) The directions
of the acceleration components are identified by inspecting the orientation of the linkage. If vector
magnitudes can be determined (with the aid of the velocity polygon and link lengths), the vectors are
drawn to scale. If the vector magnitudes are unknown, they are drawn with double arrowheads. (d)
The acceleration polygon is begun. (¢) Accelerations ac and agp are scaled directly from the acceler-
ation polygon. (f) Knowing tangential acceleration af, and knowing the length of link BC, we can
find the angular acceleration of the link.
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TABLE 4.1 Tabulation for the Vector Acceleration Polygon of a Slider-Crank Mechanism with Uniform
Crank Velocity

Vector ac = al}; +a +altg +alp
. (ob)? (be)®
Vector magnitude ? 0.8 0B BC ?
Vector direction | path |0 B 1 OB |BC L BC
of C toward O, toward B
Vectors used to ? 200 in /s’ 0 16.6 in /s* ?

construct polygon - / \ /

in a direction parallel to O; B toward O,. (See Figure 4.8c and the values of acceleration listed in
Table 4.1.)

Before constructing the actual acceleration polygon, it will prove helpful to note the direc-
tions of the acceleration vector, which are apparent from the linkage drawn in Figure 4.8a. After
noting the linkage orientation, the restraints on the mechanism, and the given data, we can iden-
tify the following acceleration vectors (Figure 4.8c):

ac, along the horizontal path to which the slider is constrained;
a’, parallel to O; B and toward fixed point Oy;

as = 0, since crank O, B rotates with constant angular velocity;
a¢-p, parallel to link BC and directed toward B; and

alp, perpendicular to link BC.

The procedure for constructing the acceleration polygon is similar in some ways to that for con-
structing the velocity polygon. The first step, shown in Figure 4.8d, includes the selection of an
acceleration scale that will result in an acceleration polygon of reasonable size. Of course, the
accelerations are not all known at this time, but it may be assumed that they are of the same
order of magnitude as ag, the acceleration of the crankpin.

In Figure 4.8d, the vector af has already been drawn. The tangential acceleration of the
crankpin is zero in the special case under consideration, eliminating the term a% from Eq. (4.22).
(Note: Tt does not necessarily follow that the tangential acceleration of C with respect to B is
likewise zero; in fact, it will be shown that alp is quite large in this example.) Since a% = 0, we
must next evaluate ag-g, the normal acceleration of C with respect to B, which is given by

agB = W) X ((1)2 X BC)
The magnitude is

2 2 2
veg  (be)”  7.9° . g
BC = BC 376 100M/S,

atp = w3BC =

and the direction is opposite that the vector BC.That is, a¢ g will lie along the connecting rod BC,
directed toward B. Vector a( is then drawn to scale and added to the head of vector a (Figure
4.8d), parallel to BC and directed toward point B. The final vector, aig, is added at the head of,
and perpendicular to, alp to complete the vector sum of Eq. (4.22). A double arrowhead is used
in Figure 4.8d to indicate that the length of a5 is not yet known. The sum a}} + al + acprep-
resents the total acceleration of C;the true direction of the acceleration of C is horizontal. (The
direction of C was obvious at the outset and was drawn as a horizontal vector in Figure 4.8c. We



284

Chapter 4 Acceleration Analysis of Mechanisms

therefore draw ac horizontally (to the right to close the polygon) from pole point o’ in the accel-
eration polygon of Figure 4.8d, again using a double arrowhead, since the magnitude of ac is
unknown. Both vectors ac and a5 end where they intersect, a point we label ¢’. Measuring the
lengths of each on the acceleration scale, we find that

a. = 208 in /s (upward and to the right)
and
ac = 13 in/s? (to the right),

as shown in Figure 4.8e. If greater accuracy is required, we may compute the exact angles and
use trigonometric functions or employ analytical or computer methods from the start.

Knowing the length BC and the tangential acceleration of C with respect to B, we can find
the angular acceleration of the connecting rod, link 2. From the formula for tangential accelera-
tion, a’ = ra, we obtain

a d-p 208in/s? rad

=T BC T 376in @

The method for finding the direction of «, is similar to that for finding the direction of .
Tangential acceleration vector afp is placed at C on link BC, as in Figure 4.8f. We see immedi-
ately that «; is counterclockwise (opposite the direction of w, found in the preceding chapter).
Thus, at this instant, the angular acceleration «; is opposing the angular velocity w,, which means
that w, is decreasing. (The reader will recall that w;, the angular velocity of the crank, is constant
in this example.)

Let us now review the preceding steps for finding accelerations of the slider-crank mecha-
nism in Figure 4.8a.

STEP 1. Draw the linkage to scale. Draw the velocity polygon obc representing the solu-
tion of the vector equation

ve =vg + vcp, or oc = ob + bc.

STEP 2. Solve the general acceleration vector equation for the slider-crank mechanism
graphically, as demonstrated in Table 4.1.

STEP 3. The acceleration of B is labeled 0'b’. The prime indicates that the vector is an
acceleration and not a velocity. In this case, aﬁ; = 0, since a; = 0, from which it
follows that ag = a; only. To ap, we add vectors a¢p (the magnitude is found
with the aid of the velocity polygon) and af-z (drawn perpendicular to BC and
of unknown magnitude). The intersection of @ and a5 completes the polygon
and determines the magnitude of each of those vectors.

STEP 4. The acceleration vectors have been identified by their components (e.g., @ and
a’s) and by an acceleration polygon notation patterned after the velocity poly-
gon notation. For the linkage under consideration,

ag = o0'b’
and

acg = b'c.
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Although not shown in the acceleration polygon, the normal and tangential components of acp
could be replaced by a single vector representing their sum and extending from b’ to ¢’ (b'c’).
Also,

ac =o'c.
Note the reversal of letters in acceleration polygon notation: Acceleration acp becomes b'c’,

just as velocity vcp becomes be in velocity polygon notation. The acceleration polygon will be
used to advantage later, when we consider the acceleration image.

Comparison with an Analytical Solution

In Chapter 3, the velocity of the slider of an in-line slider-crank linkage was approxi-

mated by
) R
v = Rw sin 0[1 + (L) cos 0}.

Differentiating the approximate equation for the velocity of the slider of a slider-crank
mechanism, we obtain the approximate slider acceleration

R
a= Rw{cos@ + <L> cos 20} (4.37)

if angular acceleration of the crank is zero. The preceding two equations give a positive
value for velocity and acceleration directed toward the crankshaft and a negative value
for velocity and acceleration directed away from the crankshaft. Both equations are
valid for the in-line slider crank when the crank speed is constant and the ratio L/R
does not approach a value of unity, say, L/R is greater than or equal to 3. For the data
given in the foregoing example, the approximate slider acceleration is
ac = —13.1(13.1 in /s? to the right), which corresponds closely to the result obtained
using the acceleration polygon.

SAMPLE PROBLEM 4.8

Linkage with Angular Acceleration of the Crank

In this problem, we consider an acceleration analysis of the slider-crank linkage with angular
acceleration of the crank. Find the accelerations for the linkage of Figure 4.9a. The data given
are the same as those for the preceding problem, except that link 1 does not have a constant
angular velocity, but instead accelerates at a rate a; = 40 rad /s> counterclockwise.

Solution. The addition of an angular acceleration has no effect on the instantaneous velocity, so
the velocity polygon remains unchanged. (See Figure 4.9b.) We will again use Eq. (4.22). In this
case, however, the tangential acceleration of point B does not equal zero:

a = a; X OB = (40rad/s%)(2in) = 80in/s> L OB.

Part c of the figure shows how angular acceleration affects the acceleration polygon.
Scaling the vectors in Figure 4.9c, we obtain the slider acceleration

ac = 70in/s> (to the left)
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(©

FIGURE 4.9 (a) The mechanism of Figure 4.8 is redrawn. This time, the crank
is given an angular acceleration instead of a constant angular velocity. (b) The
addition of an angular acceleration does not affect the velocity polygon for
the instant considered. (c) The acceleration polygon with angular acceleration
of the crank. The expression for a. is now equal to the vector sum

a} + ay + alp + agp.

and the tangential component of relative acceleration
alp = 173in/s*> (upward and to the right).
From the latter acceleration, we can also obtain the angular acceleration of the connecting rod:

atCB 2 .
%= 46 rad /s> (counterclockwise).

Acceleration Image

In Sample Problem 4.8, we determined the accelerations of the crankpin B and the
slider C. We may also wish to find the acceleration of another point on the crank or
connecting rod. The acceleration of the center of gravity, for example, would be used to
perform a dynamic analysis of a link, or, in a more complicated linkage, an intermedi-
ate point on a link that serves as a connecting point would be investigated. We may
resort to the acceleration image method (similar to the velocity image method) in
order to find the acceleration of any point.
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Consider any three points B, C, and D that lie on the same rigid link, as shown in
Figure 4.10a. Let the link have an angular velocity w, and an angular acceleration «.
Then, the magnitudes of accelerations are

alp = w3BC and alp = a,BC.

The total acceleration of C with respect to B, acp, is the vector sum of its normal and
tangential components. The magnitude of this vector is given by the expression

acg = b'c’ = \V(alp) + (abp)® = V(03BC) + (,BC)?,

b
d
¢ o
()
B
w=10 de
ay=40 "4
O, @ - SN -

©

FIGURE 4.10 Acceleration image. The slider-crank mechanism of Figure 4.9a is
repeated here. The dimensions of the linkage and the motion of the crank remain
unchanged. We are interested in finding the acceleration of an arbitrary point D on
the connecting rod. (b) The velocity polygon for the slider-crank mechanism, show-
ing the velocity image of the connecting rod. (c) The acceleration image of BCD is
constructed.
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from which it follows that
b'c’ = BCV i + ab.
Similarly, the magnitudes of the other relative accelerations for the connecting rod are
b'd = BDV o} + &3
and
c'd’ = CDVwi + o3,
from which we obtain the following convenient acceleration image relationships:
bd' _BD ¢'d’_CD b'd' _ BD
b'¢’ BC’b'¢’ BC’ c¢'d CD
Equation (4.38) may be summarized by stating that triangle b'c’d’ (the acceleration
image of BCD) is similar to triangle BCD for any points B, C, and D on the same rigid
link. The angle relationship between a line connecting two points on a rigid link and the
relative acceleration of those points depends on the angular acceleration « and the angu-

lar velocity w and is the same for any pair of points on the same rigid link. In the sample
problems that follow, we will utilize this relationship without having to calculate « and w.

(4.38)

SAMPLE PROBLEM 4.9

Acceleration Image

Three points, B, C, and D, lie on the rigid link shown in Figure 4.10a, but do not lie on a straight
line. Using the acceleration image method and the data given in the illustration, find the acceler-
ation of point D of the mechanism.

Solution. This problem and the problem of Figure 4.9a are identical, except for the addition of
an arbitrary point D. The velocity polygon, including the velocity image, is constructed (Figure
4.10b) as described in Chapter 3. The acceleration polygon o'b’¢’ (Figure 4.10c) is taken directly
from Figure 4.9c, but the normal and tangential components of ap and ac-p have been omitted
here to clarify the construction.

We observe in Figure 4.10c that the relative acceleration vector b'c’ (forming one leg of the
required acceleration image) lies in the direction of line BC, rotated approximately 95° counter-
clockwise. Since the acceleration image b'c’d’ and link BCD are similar triangles, each leg of the
acceleration image will make a 95° angle with its respective side in the linkage drawing. Beginning
at b’, we construct the acceleration image by first drawing trial vector b'd’, determining its direction
by rotating line BD 95° counterclockwise. Then, we draw trial vector ¢'d’ from point ¢'; its direction
is also found by rotating line CD 95° counterclockwise. Point d' is thus determined by the intersec-
tion of trial vectors b'd’ and c¢'d’, as in Figure 4.10c, completing triangle b'c’d’, the acceleration
image of link BCD on the acceleration polygon. The acceleration of D is thus given by vector o'd’.
Using the acceleration scale, we find that ap = o’d’ = 113 in /s, slightly downward to the left.

SAMPLE PROBLEM 4.10

Acceleration Image of Three Points on a Line

In this problem, we are required to find the acceleration of point E, which lies on the line BC in
Figure 4.11a.
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(b)

(©)

FIGURE 4.11 (a) Figure 4.9 is repeated again. We want to find the acceleration of a point E lying
on line BC. (b) The velocity polygon for the linkage at the instant shown. (c) The acceleration
polygon for the linkage at the instant shown. (d) Once the acceleration polygon is constructed,
the position of e’ (which must lie along b'c") is determined by the proportionality equation
b'e'/b’c' = BE/BC. Drawing vector o'e’ then gives us the magnitude and direction of the accel-

eration of E.



290

Chapter 4 Acceleration Analysis of Mechanisms

Solution. Again, this problem and the problem of Figure 4.9a are identical except for the addi-
tion of a point E along line (link) BC. We are again spared the necessity of constructing the
velocity and acceleration polygons for the mechanism. See Figures 4.11b and c. Acceleration
polygon o'b’c’ is again taken directly from Figure 4.9c. This problem is simpler than the preced-
ing problem because no additional construction is necessary after the acceleration polygon is
constructed. Since point E lies on line BC, we know that e’ must lie somewhere on vector b'c’. A
proportion similar to one of Eq. 4.38 gives us the desired acceleration image relationship:

be' _ BE
b'c" BC

from which we find that the acceleration of E relative to B is

Pl — Al E _ : 2 lin _ : 2
b'e —bc<BC> = (174mls><3.76in> = 46.3in/s".

This locates point e’ on line b'c’. (Note that e’ lies between b’ and ¢’, just as E lies between B
and C.) Vector o’e’ is then drawn to obtain the acceleration of E, as shown in Figure 4.11d.
Measuring o’e’ against the acceleration scale, we obtain

a;p = o'¢ =170in/s> (to the left and downward).

The image principle illustrates the analogy between velocity polygons and acceleration poly-
gons. The acceleration image principle (as well as the velocity image examined in Chapter 3)
applies to a set of points on any rigid link, whether the link acts as a crank rotating about a fixed
point or as a connecting rod. The only restriction is that the points considered must all lie on the
same rigid link.

Graphical Analysis of the Four-Bar Linkage

The acceleration analysis of a four-bar linkage requires no new concepts. Referring to
Figure 4.12a, for example, we may again relate accelerations by the vector equation

ac = ag + acp,

just as for the slider-crank mechanism, but with one additional complication: Each of
the acceleration vectors will have, in general, both a normal and a tangential compo-
nent, and the equation will take the form

ac = a} + a- = a}y + a5 + alp + ap (4.22 repeated)

The first step of the acceleration analysis of a four-bar linkage is to construct the
skeleton drawing and the velocity polygon. The dimensions of the linkage, together
with the velocities taken from the velocity polygon allow us to calculate the normal
components of acceleration of the links. As we have seen, those components are usu-
ally the starting point for the acceleration polygon.
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FIGURE 4.12 (a) The skeleton drawing of a four-bar linkage. We are again required to
find the acceleration of point C, using the relationship ac = ag + acp. (b) Velocity poly-
gon for the four-bar mechanism. (c) Acceleration polygon for the four-bar mechanism.
The presence of the many vectors makes a method of tabulation of the various vectors
desirable to ensure correct vector addition and orientation.
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SAMPLE PROBLEM 4.11

Four-Bar Linkage

Figure 4.12a shows a four-bar linkage. The lengths of all the links are indicated on the skeleton
drawing. The crank has an angular velocity w; = 30rad/s and an angular acceleration
a; = 200 rad /s>. We seck an acceleration analysis of the linkage.

Solution. The velocity polygon is constructed in Figure 4.12b after a suitable scale is selected.
The velocities are then indicated directly on the polygon. The skeleton drawing and the velocity
polygon give us the information needed to determine the normal components of acceleration.
Given the angular acceleration of link 1, we can calculate the tangential component of accelera-
tion for point B, after which we can put together an acceleration vector table (Table 4.2) and
begin the construction of the acceleration polygon. Velocities 0b, oc, and bc are taken from the
velocity polygon in Figure 4.12b.

We now construct the acceleration polygon (see Figure 4.12¢), adding the vectors in the
order indicated in Table 4.2. Beginning at the pole point o', we draw ag¢ to the scale selected. To
at, we add trial vector ag. The head of a;- may be labeled ¢’, but we do not as yet know the true
magnitude of that vector. Again, beginning at o', we add the vectors on the right side of Eq.
(4.22) in the order indicated. The sum a% + a3 = ap (or 0'b’); thus, the head of a% is labeled b’.
Adding the last two of the four vectors on the right side of the equation, which includes trial vec-
tor ap, we again obtain ac (or o’c’). Point ¢’ is located at the intersection of the trial vectors af
and ag, completing the polygon and determining in turn the magnitude of each tangential com-
ponent. Thus, @ = 1,110 in /s? and al-5 = 930 in /s>. Using the acceleration scale, we can obtain
the acceleration of point C, viz.,

ac = a} + a- = o'c’ = 1,134 in/s?,
to the left and upward.

Using the tangential acceleration of point C, we can find the angular acceleration of link 3
(O5C). We obtain

_ac  L110in/s?
0,  2in

a; = 555 rad/s? (counterclockwise).

Similarly, the angular acceleration of link 2 (BC) is given by

c _ 930in/s®
des _ ZOUMS 266 rad/s? (counterclockwise).

2T CB” 35

TABLE 4.2 Vector Tabulation for the Acceleration Analysis of a Four-Bar Mechanism, Figure 4.12

Vector al +al = al}; +ay +aty +alp
Vector magnitude (0c) ? (0b)” a10:B (bo)? ?
O;C OB BC
Vector direction |OsC 1 OC l0\B 1 OB |BC 1 BC
toward O3 toward O, toward B
Vectors used to 233 in/s? ? 900 in/s? 200 in/s? 29 in/s? ?

construct / "\ / v\ / ’5\

polygon
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An Analytical Solution Based on the Acceleration Polygon

It is possible to increase the precision of the analysis while still using the acceleration
polygon concept. Sample Problem 4.12 shows an acceleration-polygon-based analyti-
cal solution for one position of a four-bar linkage. If you use the polygon method for
checking the analytical vector method, the complex-number method, or results from
animation software, you may decide that the increased precision is not worth the com-
putational difficulty of the method illustrated next.

SAMPLE PROBLEM 4.12

Acceleration-Polygon-Based Analytical Solution

Refer to Figure 4.4 and Sample Problem 4.3. Solve for accelerations analytically, but use an
acceleration polygon approach.

Solution. Since a; = 0, the acceleration of point B is given by
o'b = ap = w’r, = 100> X 10 = —100,000/6;.

Also, after determining velocities, we find

bc?
n = — = —
ats = po 3193/6,
n 06‘2
@ =0oc " 26,260/ 65,

An arbitrary pole point o' is selected, with coordinates x = 0, y = 0. Vector a¢- is drawn. The
coordinates of its head are identified as

X1 = —a¢ cos 03 = 26,260 cos (—122.21°) = —13,997
and
y1 = —a¢sinf; = 26,260 sin (—122.21°) = —-22,219

as shown in Figure 4.13. Vector o'b’ is drawn, and a¢p is added to it. The coordinates of the head
of atp are identified as
X, = —0'b'cos 0, — a¢p cos b,
= —100,000 cos 45° — 3193 cos 16.35° = —73,775
and
y, = —0'b'sinf; — atgsinb,
= —100,000 sin 45° — 3193 sin 16.35° = —71,610.

At xq, y1, we add vector af with unknown magnitude but with slope

m = tan(f; — 90°) = tan(237.79 — 90°) = —0.62997
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b

D (on link 2)

0, To 0;

FIGURE 4.13 Analytical solution of a four-bar linkage based on the acceleration
polygon.
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a lies on a line described by
y =y +m(x — x) = —22,219 — 0.62997(x + 13,997).
At x,, y,, we add vector ap with unknown magnitude, but with slope
n = tan(f, + 90°) = tan(16.5 + 90°) = —3.4087.
agp lies on a line described by
y =y +nlx — x) = -71,610 — 3.4087(x + 73,775).

The intersection of vectors ai and ag g locates point ¢’ on the acceleration polygon. Equating the
right sides of the two equations of the lines describing af- and a5, we find the x-coordinate of a:

x = ac, = —105,100.
Substituting the value of x into one of the preceding equations, we have
y=ac, = 35,174,
from which we find that
ac = o'c’ = 110,800 mm/s>/161.5°.
The relative acceleration is given by
b¢ =acp=ac — ap,

from which we obtain

—105,102 — 100,000 cos 225°,
= 35,174 — 100,000 sin 225°,

)

Q

%
I

and
acp = 111,330 mm/s>/108°.

Using the image principle, we find the relative acceleration of two points on the coupler:

b'¢’BD _ (111330)(15)
BC 35

agp = b'd =

= 47,712 mm/s*/108° + 20°.
The acceleration of point D on the coupler is given by

ap =o0'd =0'b' +bd
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