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What You Will Learn and Apply in the Study of the Kinematics and
Dynamics of Machinery

The following is a partial list of the knowledge and skills you will acquire or enhance. In many
cases, you will be applying mathematics and scientific principles that you learned previously.

• Effective computer use an software selection
• Application of animation software to linkage design
• Application of mathematics software to mechanism design
• Computer-aided solutions to engineering problems using vector and matrix equations
• Mobility of planar and spatial linkages
• Determination of motion characteristics of linkages
• Design to avoid binding and interference
• Design and selection of mechanisms for specific applications
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• Analytical vector methods applied to linkage design
• Complex number methods applied to linkage design
• Analytical and graphical methods for finding linkage velocities
• Analytical and graphical methods for finding linkage accelerations
• Design and analysis of cams
• Design and analysis of spur gears
• Design and analysis of helical, worm, and bevel gears
• Arrangement of gears to produce desired input–output speed ratios
• Design of planetary speed changers
• Analysis of static forces in linkages and gear and cam mechanisms
• Analysis of dynamic forces in linkages
• Balancing of rotors and reciprocating machines
• Synthesis of linkages to produce predetermined motion
• Design and analysis of simple robotic manipulators
• Critical thinking applied to mechanism design. Critical thinking involves identification

of a problem, gathering of data, objective analysis, and an attempt at solving the prob-
lem by a scientific process. This skill should be honed throughout an engineer’s educa-
tion and practice.

• Engineering creativity. The text and problems are designed to foster creativity, but this
goal depends almost entirely on the student (with encouragement from an instructor).

xxviii Symbols
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C H A P T E R  1

Mechanisms and Machines:
Basic Concepts

In this chapter, you will learn

• The terms we use to describe mechanisms
• The degrees of freedom of mechanisms
• How to design crank-rocker, double-rocker, drag link, and other mechanisms
• How to design linkages to prevent jamming and interference
• How to optimize a mechanism design
• Computer animation of linkages to check the validity of a design
• The design of quick-return mechanisms
• The design and selection of mechanisms for special applications
• Numerical solutions
• Other basic concepts.

Kinematics and dynamics are vital components of machine design. An understanding
of the kinematics and dynamics of machinery is important to the design of

• Production machinery, including robots and other programmable machines
• Consumer goods and office machines
• Aircraft and surface transportation vehicles
• Agricultural and construction machinery
• Many other items considered essential to modern living

1.1 INTRODUCTION

Kinematics and dynamics of machinery involve the design of machines on the basis of
their motion requirements. A combination of interrelated parts having definite
motions and capable of performing useful work may be called a machine. A mecha-
nism is a component of a machine consisting of two or more bodies arranged so that

 



2 Chapter 1 Mechanisms and Machines: Basic Concepts

the motion of one compels the motion of the others. The design of an automotive
power train (a type of machine) is concerned with several mechanisms, including
slider-crank linkages, cam and follower linkages, and gear trains. Many mechanisms
undergo planar motion, motion in a single plane or in a set of parallel planes.The more
general case, spatial motion, applies to mechanisms in which the motion must be
described in three dimensions.

Kinematics is the study of motion in mechanisms without reference to the forces
that act on the mechanism. Dynamics is the study of the motion of individual bodies
and mechanisms under the influence of forces and torques. The study of forces and
torques in stationary systems (and systems with negligible inertial effects) is called
statics.

Synthesis is a procedure by which a product (a mechanism, for example) is devel-
oped to satisfy a set of performance requirements. If a product configuration is tenta-
tively specified and then examined to determine whether the performance
requirements are met, the process is called analysis.The design of mechanisms involves
both synthesis and analysis.

The design process begins with the recognition of a need.A set of requirements is
then listed. Creativity and inventiveness are key to selecting the connectivity and form
of a mechanism or machine to satisfy the need. The designer may use formal synthesis
procedures in which specifications and corresponding decision sets and design vari-
ables must be identified. The designer then prepares an adequacy assessment proce-
dure, formulating a figure of merit and an optimization strategy.

Detailed analyses of displacements, velocities, and accelerations are usually
required. This part of the design process is followed by an analysis of forces and
torques. The design process may continue long after the first models have been pro-
duced and may include redesigns of components that affect velocities, accelerations,
forces, and torques. To compete successfully from year to year, most manufacturers
must continuously modify their products and their methods of production. Increases in
the production rate, upgrading of product performance, redesign for cost and weight
reduction, and motion analysis of new product lines are frequently required. Success
may hinge on the accuracy of the kinematic and dynamic analysis.

1.2 TOOLS AVAILABLE TO THE DESIGNER OF LINKAGES AND OTHER
MECHANISMS

A designer will ordinarily begin the design process by making various design decisions
based on his or her experience and creative ability.These decisions may be verified and
modified through analytical, graphical, numerical, and empirical methods. If a linkage
is to be analyzed in only one position, graphical vector methods may provide the
quickest solution. Complex-number methods are convenient for analyzing planar link-
ages. Analytical vector methods are used for solving planar and spatial linkages. While
a calculator is adequate for solving a linkage problem for a single position, it is worth-
while to write a computer program when a solution is required over a range of values.
Computer solutions are also effective for analysis and synthesis when it is necessary to
evaluate several alternatives.

6



Section 1.2 Tools Available to the Designer of Linkages and Other Mechanisms 3

HINTS FOR EFFECTIVE COMPUTER USE

Software Selection

Every year, personal computers get faster and can store more information. New and
more powerful versions of software appear as well. In selecting new software for
designing and analyzing linkages and other mechanisms, some of the following consid-
erations may be relevant:

• Animation. Motion simulation software (e.g., Working ModelTM) allows the
designer to “build’’ and analyze linkage simulations. The linkages can be ani-
mated to verify design criteria and compute velocities, accelerations, and forces.

• Plotting routines. Clearly labeled plots showing the position, velocity, and accel-
eration of linkages help the designer gain an insight into the motion of a mecha-
nism and give clues leading to an improved design.

• Equation form. Mathematics software (e.g., MathcadTM) shows subscripts, super-
scripts, upper- and lowercase Greek and Roman symbols, and built-up equations.
In this form, equations are readable and easier to debug. Equations embedded in
typical programming languages are somewhat less readable. In spreadsheets,
equations are usually hidden, but tabular data are clearly displayed. An impor-
tant spreadsheet feature is that when one cell is changed, all related cells are
updated to reflect the change.

• Computational features. Mathematics software that includes equation solvers,
numerical differentiation routines, and routines to manipulate complex num-
bers, vectors, and matrices can be a significant time-saver in working with
mechanisms.

• Trigonometric functions. Linkage solutions require direct and inverse trigono-
metric functions. Software that offers a two-argument arctangent function
(ANGLE or ) is preferable.

• Symbolic capabilities. Symbolic equation solvers, symbolic integration and differ-
entiation, and symbolic matrix operations are useful software features.

• User experience. Familiarity with a particular type of spreadsheet, programming
language, or mathematics package may govern one’s selection of software. For
example, a person skilled in using a particular programming language (BASIC,
FORTRAN, etc.) may find it inefficient to switch to an unfamiliar type of
mathematics software.

• Educational considerations. Educational goals sometimes override other con-
siderations. Kinematics problems can be solved by means of spreadsheets
(Lotus 1–2–3TM, ExcelTM, etc.) if the course goals include learning to deal with
spreadsheets.

• Hardware limitations. Software packages indicate minimum hardware require-
ments. The performance of a given package will be unsatisfactory with inade-
quate random-access memory or inadequate hard-disk space.

• Presentation form. Engineers must be prepared to present their work to others.
Desirable software features include a word-processor-like text capability, a

C+ + ,

ARCTAN2
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4 Chapter 1 Mechanisms and Machines: Basic Concepts

cut-and-paste capability, and the ability to mix calculations, graphs, tables, and
comments. Such features allow the engineer to “work smart’’ by completing the
report while performing design and analysis calculations.

Identifying a Need or a Problem

Most academic problems are clearly defined. By contrast, typical real-world problems
are ill-defined and require many assumptions. A computer cannot identify a real need
or problem for you. Try to ask the right questions; identify the right problem before
beginning detailed work. A correct solution to the wrong problem is of little value.

Programming

Some of the following suggestions may apply, whether a programming language, math-
ematics software, or a spreadsheet is selected to aid in kinematics design:

• Begin with a simple program. Test it with known data if possible. Then build on
the program to solve the required problem.

• Be generous with titles and comments in your program. Identify variables. Note
the limitations of the program.

• Output intermediate results so that you can check and debug the program. Do
these results look reasonable? For example, has the length of a rigid link
changed? Spot-check computer results by using independent calculations. Try to
write a self-verifying program.

• Let the computer serve you; avoid wasting time making unnecessary improve-
ments in your programs (unless improving programming skills is an educational
goal).

• Make personal quick-reference cards. Include notes on the best utilization of
software for your most common tasks.

• Interpret your results. Do “what if’’ analysis. What if the link length is changed?
What if the angular velocity is increased? Computer software cannot replace cre-
ativity and interpretation of results. It reduces the time spent on repetitive tasks,
leaving more time for important tasks related to the design of linkages.

Using Motion Simulation Software to Produce Coupler Curves

We sometimes need a mechanism with an output link that rotates through a limited
range (oscillates) as the input crank rotates at constant speed. Or we may want more
complicated output motion. Figure 1.1 illustrates the use of Working ModelTM motion
simulation software to describe a four-bar linkage. The moving links are the drive
crank the coupler BFGCDE, and the driven crank A motor is located at the
fixed bearing and a fixed bearing at supports the driven crank. The drive crank
and the driven crank are joined to the coupler at bearings B and C.

As the drive crank rotates continuously, bearing B, which joins it to the coupler,
traces a circle. The driven crank oscillates, and bearing C traces a circular arc. Near the

O3O1,
CO3.O1B,
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Section 1.3 Systems of Units 5

O1 O3
B

E

D

C

F

G

FIGURE 1.1 Coupler curves.

corners of the coupler, points D, E, F, and G trace various figures called coupler curves.
Point G, for example, produces a figure eight. We might join another link at that point
to produce some needed motion.

It is difficult to design a linkage to produce a specified motion pattern. However,
we may be successful if we use ingenuity and test our designs with motion simulation
software. If we cannot produce the desired motion with coupler curves, then we will try
cams, numerically controlled systems, or computer-controlled robots for the task.

1.3 SYSTEMS OF UNITS

Any appropriate set of units may be used in the study of kinematics and dynamics of
machinery, as long as consistency is maintained. We invite errors when we fail to check
the consistency of units. Preferred systems are the International System of Units, or
Systàme International (SI), a modernized version of the meter–kilogram–second
(mks) system; and the customary U.S. inch–pound–second system. The following basic
and derived units are suggested:

SI (m – kg – s) SYSTEM

Quantity Unit Symbol Relationship

Acceleration
Energy and work joule J
Force newton N
Length meter m
Mass kilogram kg
Mass moment of inertia
Power watt W J/s or 
Pressure and stress pascal Pa
Torque and moment
Velocity m/s

N # m (N # m/rad)
N/m2

N # m/s
kg # m2
N # s2/m

kg # m/s2
N # m
m/s2

9



6 Chapter 1 Mechanisms and Machines: Basic Concepts

CUSTOMARY U.S. (in – – s) SYSTEM

Quantity Unit Symbol Relationship

Acceleration
Energy and work
Force pound lb or 
Length inch in
Mass
Mass moment of inertia
Power horsepower hp
Pressure and stress psi
Torque and moment
Velocity in/s

COMMON TO BOTH SI AND CUSTOMARY U.S. SYSTEMS

Quantity Unit Symbol Relationship

Angular acceleration
Angular velocity rad/s
Frequency hertz Hz (cycles)/s
Plane angle radian rad
Time second s

SI prefixes may be used to eliminate nonsignificant digits and leading zeros. The
following are in most common use:

Multiplication Factor Prefix Symbol

mega- M
kilo- k
centi- c
milli- m
micro-

Although prefixes representing powers of 1000 are preferred, the centi- prefix is also
used (e.g., centimeters, cubic centimeters).

It is generally most convenient to perform calculations by using scientific nota-
tion (powers of 10) or engineering notation ( etc.). A suitable unit
and prefix should be chosen to express the results of calculations so that the numerical
value falls between 0.1 and 1000, where convenient. An exception to this suggestion is
engineering drawings, in which, for consistency, linear dimensions are expressed in mil-
limeters (mm). When a number of values are tabulated or discussed, consistent units
and prefixes are preferred (e.g., a velocity range given as 0.09 m/s to 1100 m/s would be
preferred over the same range expressed as 90 mm/s to 1.1 km/s).

The advantage of SI as a coherent system may be lost if it is used together with
units from other systems. However, convenience and common usage suggest the use of
the degree (and decimal parts of the degree) for the measurement of plane angles. But
one should always be careful when using degrees.An angle that stands alone in an equa-
tion will be in radians, and the argument of the tangent, sine, and cosine functions must
be in radians for use in most software and programming languages. Obviously, time

10-6, 10-3, 103, 106,

m0.000001 = 10-6
0.001 = 10-3
0.01 = 10-2
1000 = 103
1,000,000 = 106

rad/s2

lb # in (lb # in/rad)
lb/in2

lb # s2 # in
lb # s2/in

lbf

lb # in
in/s2

lbf

10



Section 1.4 Terminology and Definitions 7

expressed in minutes, hours, and days will often be more practical than the use of seconds
in some applications (e.g., the velocity of a vehicle is commonly expressed in kilometers
per hour, (km/h), and the kilowatt-hour ( ) is used as a measure of energy).

Like the pound (lb), the kilogram (kg) is sometimes used as a unit of force as well
as a unit of mass. The accepted SI force unit, however, is the newton (N). Torque may
be expressed in newton-meters Although 1 equals 1 joule (J), the term
joule should be reserved for work and energy.

Conversion Factors

The following are few of the conversion factors that are useful in the kinematics and
dynamics of machinery (an extensive list of conversion factors is given inside the front
and back covers):

1.4 TERMINOLOGY AND DEFINITIONS 

Many of the basic linkage configurations have been incorporated into machines
designed centuries ago, and the terms we use to describe them have changed over the
years.Thus, definitions and terminology are not consistent throughout the technical lit-
erature. In most cases, however, the meanings will be clear from the context of the
descriptive matter. A few terms of particular interest to the study of kinematics and
dynamics of machines are defined next.

Link

A link is one of the rigid bodies or members joined together to form a kinematic chain.
The term rigid link, or sometimes simply link, is an idealization used in the study of
mechanisms that does not take into account small deflections due to strains in machine
members. A perfectly rigid or inextensible link can exist only as a model of a real
machine member. For typical machine parts, the maximum changes in dimension are
on the order of only one-thousandth of the part length.

Frame

The fixed or stationary link in a mechanism is called the frame. When there is no link
that is actually fixed, we may consider one as being fixed and determine the motion of

1 revolution per minute (rev/min) = p rad / 30 s = 0.10472 rad/s
1 rad = 180° / p = 57.2958°
1 psi = 6894.8 Pa;  1 MPa = 145.04 psi
1 mi/h = 0.44704 m/s
1 lb = 0.45359 kg (mass)
1 lb = 4.4482 N (force)
1 in = 25.4 mm;  1 m = 39.37 in
1 horsepower (hp) = 6600 lb # in / s = 745.7 W
1 g (gravitational constant) = 386.09 in/s2 = 9.80665 m/s2

N # m(N # m).

kW # h

11



8 Chapter 1 Mechanisms and Machines: Basic Concepts

the other links relative to it. In an automotive engine, for example, the engine block is
considered the frame, even though the automobile may be moving.

Joint or Kinematic Pair

The connections between links that permit constrained relative motion are called
joints. The joint between a crank and connecting rod, for instance, may be called a
revolute joint or a pin joint. The revolute joint has one degree of freedom, in that, if
one element is fixed, the revolute joint allows the other only to rotate in a plane.
(Degrees of freedom are discussed in more detail in a section that follows.) A sphere
joint (ball joint) has three degrees of freedom, thus allowing relative motion in three
angular directions. A number of common joint types are idealized in Figure 1.2.
Some of the practical joints that they represent are made up of several elements.
Examples include the universal joint, ball and roller bearings that are represented by
the revolute joint, ball slides represented by the spline joint, and ball screws repre-
sented by the helix.

Lower and Higher Pairs

Connections between rigid bodies consist of lower and higher pairs of elements.
Theoretically, the two elements of a lower pair are in surface contact with one another,
while the two elements of a higher pair are in point or line contact (if we disregard
deflections). Lower pairs include revolutes or pin connections—for example, a shaft in
a bearing or the wrist pin joining a piston and connecting rod. Both elements joined
by the pin may be considered to have the same motion at the pin center if clearance
is neglected. Other basic lower pairs include the sphere, cylinder, prism, helix, and
plane (Figure 1.2). Waldron (1972) shows that these six are the only basic lower pairs
possible.

Examples of higher pairs include a pair of gears or a disk cam and follower. The
Hook-type universal joint is a combination of two lower pairs. A Bendix–Weiss type of
constant-velocity universal joint includes higher pairs. (See illustrations later in the
chapter.)

From a design standpoint, lower pairs are desirable, since the load at the joint
and the resultant wear are spread over the contact surface. Thus, geometric changes or
failure due to high contact stresses or excessive wear may be prevented. In practice, we
may utilize a ball or roller bearing as a revolute pair to reduce friction; However, the
advantages of contact over a large surface are sacrificed.

Closed-Loop Kinematic Chains

A kinematic chain is an assembly of links and pairs (joints). Each link in a closed-
loop kinematic chain is connected to two or more other links. Consider, for exam-
ple, the slider-crank mechanism, a component of the vertical compressor shown in
Figure 1.3. Bearings (represented by a revolute joint) connect the casing (frame) and

12



Section 1.4 Terminology and Definitions 9
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FIGURE 1.2 Common linkage joints (pairs).

crank; the crankpin (another revolute joint) connects the crank and connecting rod;
the connecting rod and crosshead are joined at the wrist pin (a third revolute joint);
finally, the piston and cylinder (frame) constitute a sliding pair (cylinder pair), closing
the loop.

13



10 Chapter 1 Mechanisms and Machines: Basic Concepts

FIGURE 1.3 A vertical compressor. The crank (bottom) drives the con-
necting rod, which moves the crosshead within a guide. The compressor is
designed with a crosshead and piston rod so that the piston may be dou-
ble acting; air is compressed as the piston moves upward and as it moves
downward. (Source: Joy Manufacturing Company.)

14



Section 1.4 Terminology and Definitions 11

Open-Loop Kinematic Chains

A linkage failing to meet the closed-loop criterion is an open-loop kinematic chain. In
this case, one (or more) of the links is connected to only one other link. The industrial
robot shown in Figure 1.4 is an open-loop kinematic chain.

Manipulators

Manipulators designed to simulate human arm and hand motion are an example of
open kinematic chains. A typical manipulator consists of a supporting base with rigid
links connected in series, the final link containing a tool or “hand.’’ Ordinarily, the rigid
links are joined by revolute joints or prismatic pairs, although the hand may include a
screw pair. Early systems of this type included master–slave-type manipulators for
handling radioactive materials.The slave manipulator duplicates the hand–arm motion
of a human operator controlling the master manipulator.

Robots

Programmable manipulators, called robots, can follow a sequence of steps directed by
a computer program. Unlike machines dedicated to a single task, robots can be
retooled and reprogrammed for a variety of tasks. Typical robot tasks include spray
painting, assembling parts and welding. The open-chain configuration of robots results
in a problem with positional accuracy. This problem is sometimes overcome by using
jigs and compliant tooling systems.

1. Jointed-arm robot—can be
    remotely controlled and
    located at any attitude.

2. Computer-control

3. Hydraulic power unit 4. Electrical  power unit

YAW

SHOULDER
SWIVEL

ELBOW
EXTENSION

ARM SWEEP
PITCH

ROLL

FIGURE 1.4 Industrial robot. (Source: Cincinnati Milacron.)
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R
R

R

R

P

FIGURE 1.5 Schematic diagrams representing various robot configurations. (a) Spherical
configuration.

It is also possible to achieve accurate positioning by incorporating a sensing sys-
tem and a feedback system into the robot control system. Internal-state sensors can
detect variables such as joint positions. External-state sensors may measure proximity,
touch, force, and torque. Machine vision and hearing are external-state sensory capa-
bilities that are available in some robot systems. Sensory-function feedback systems
permit adaptive behavior of the robot. A force transducer incorporated into a robot
hand may feed back a signal to the control system, which then alters the hand’s grasp-
ing pattern. Tasks requiring high precision are more often accomplished by numeri-
cally controlled machinery designed for specific operations.

Figure 1.4 shows an industrial robot with six revolute joints. This robot has a
jointed-arm form, a common robot configuration. Other configurations are shown in
Figure 1.5. Part a of the figure is a schematic representing a robot with four revolute
joints and one prismatic pair. Part b represents a robot with two revolute joints, a pris-
matic joint, and a cylinder pair. Note that the cylinder can be replaced by a prismatic
joint and a revolute joint. The robot schematic of part c shows three prism joints and
one revolute joint. The end effectors may consist of additional links and joints. The
work envelope, or workspace, is defined by all of the points that the end effector can
reach. It can be seen that the type of joints in each of these robot configurations affects
the shape of the work envelope. Robots are discussed extensively in Chapter 12.

Linkage

Although some references define linkages as kinematic chains joined by only lower
pairs, the term is commonly used to identify any assemblage of rigid bodies connected

16
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R

R

P

C

FIGURE 1.5 (b) Cylindrical configuration.

P P

P

R

FIGURE 1.5 (c) Rectangular configuration.
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D

F

E

A B

C H

G

FIGURE 1.6 A portable drafting instrument. The link-
age consists of two parallelograms, which permit transla-
tion of the straightedge in any direction without
rotation.

by kinematic joints. The same linkage configuration may serve as a component of a
mechanism, a machine, or an engine. Thus, the terms linkage, mechanism, machine, and
engine are often used interchangeably.

Planar Motion and Planar Linkages

If all points in a linkage move in parallel planes, the system undergoes planar motion
and the linkage may be described as a planar linkage.The portable drafting instrument
shown in Figure 1.6 is a planar linkage. A skeleton diagram of a planar linkage is
formed by projecting all of the link centerlines on one of the planes of motion. The
plane of motion of parallelogram linkage ABCD, the plane of motion of parallelogram
linkage EFGH, and the plane of motion of the straightedges are all parallel. In this
linkage, planar motion is assured because the axes of revolute joints A, B, C, D, E, F, G,
and H are all parallel (i.e., all perpendicular to the plane of the drawing board).

Spatial Motion and Spatial Linkages

The more general case in which motion cannot be described as taking place in parallel
planes is called spatial motion, and the linkage may be described as a spatial or three-
dimensional (3D) linkage. The industrial robot of Figure 1.4 is a spatial linkage. To
achieve the desired range of motion, the axes of the revolute pairs in the manipulator
are arranged to be not all parallel.

Inversion

The absolute motion of a linkage depends on which link is fixed—that is, which link is
selected as the frame. If two otherwise equivalent linkages have different fixed links,
then each is an inversion of the other.

Cycle and Period

A cycle is the complete sequence of positions of the links in a mechanism (from some
initial position back to that initial position). In a four-stroke-cycle engine, one thermo-
dynamic cycle corresponds to two revolutions or cycles of the crankshaft, but to one
revolution of the camshaft and, thus, one cycle of motion of the cam followers and
valves. The time required to complete a cycle of motion is called the period.

18



Section 1.5 Degrees of Freedom (Mobility) 15

1.5 DEGREES OF FREEDOM (MOBILITY)

The number of degrees of freedom of a linkage is the number of independent parame-
ters we must specify to determine the position of every link relative to the frame or
fixed link. The number of degrees of freedom of a linkage may also be called the
mobility of the linkage. If the instantaneous configuration of a system may be com-
pletely defined by specifying one independent variable, that system has one degree of
freedom. Most practical mechanisms have one degree of freedom.

An unconstrained rigid body has six degrees of freedom: translation in three
coordinate directions and rotation about three coordinate axes. A body that is
restricted to motion in a plane has three degrees of freedom: translation in two coordi-
nate directions and rotation within the plane.

Constraints Due to Joints

Each joint reduces the mobility of a system. A fixed, one-degree-of-freedom joint (e.g.,
a revolute joint) reduces a link to one degree of freedom. In general, each one-degree-
of-freedom joint reduces a system’s mobility by providing five constraints; each two-
degree-of-freedom joint provides four constraints, and so on. That is, in general, each
joint reduces system mobility by where is the number of degrees of freedom
(connectivity) of the joint. The actual number of degrees of freedom of a mechanism
depends on the orientation of the joint. For example, if two or more revolute joints in a
mechanism have parallel axes, then the effective number of constraints is reduced.

For a spatial mechanism with links (including one fixed link with zero degrees
of freedom), the number of degrees of freedom of the linkage is given by

(1.1)

where is the total number of constraints. For joints with individual connectivity
we note that

(1.2)

from which it follows that

(1.3)

Linkages are often named according to their joint configurations, using the sym-
bols given in Figure 1.2 (R for revolute, S for sphere, etc). For example, Figure 1.7a shows
a closed-loop RSSR mechanism, and the robot in Figure 1.4 is called an RRRRRR, or
6-R, open linkage.

Examining the industrial robot of Figure 1.4, we see that there are seven links
and six revolute joints, each joint having one degree of freedom and introducing five
constraints. Using Eq. (1.1), we obtain 

(the equals sign applies in this case).DFspatial Ú  6(7 - 1) - 5 - 5 - 5 - 5 - 5 - 5 =  6

DFspatial Ú 6(nL - nJ - 1) + a
nJ

i = 1
fi.

nc … 6nJ - a
nJ

i = 1
fi,

fi,
nJnc

DFspatial Ú 6(nL - 1) - nc

nL

fi(6 - fi)
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(a)
R1

R2

R2

R2
R3 c

R1

R1

R3

R4

S1

S2

Link 1

Link 3Link 2

Fixed link

(b)

(c)

FIGURE 1.7 (a) An RSSR mechanism (two degrees of freedom). (b) An RRRR link-
age. (c) An RRRC linkage. In the general case, no relative motion is possible in closed-
loop RRRR and RRRC linkages.

FIGURE 1.7   (d) A manipulator arm on a prototype unmanned rover
vehicle. (Source: NASA).
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Section 1.5 Degrees of Freedom (Mobility) 17

Alternatively, Eq. (1.3) may be used to obtain the same result:

Next, consider the closed-loop kinematic chain of Figure 1.7a, a general closed-
loop RSSR mechanism. The mechanism has four links, two revolute joints, and two
spherical joints, as shown in Figure 1.7a. Each revolute joint has one degree of freedom
and introduces five constraints, while each spherical joint has three degrees of freedom
and introduces three constraints. Thus, from Eq. (1.1), the RSSR mechanism has

degrees of freedom.This particular linkage acts, for all
practical purposes, as a one-degree-of-freedom linkage if we ignore the degree of free-
dom that represents the rotation of link 2 about its own axis. If the angular position of
link 1 is given, the entire linkage configuration may be determined. Note, however, that
this statement assumes that applied forces or inertial effects are present to ensure a
prescribed pattern of motion as the linkage passes through limiting positions.

Let one of the spherical joints in the preceding RSSR mechanism be replaced by
a universal joint with two degrees of freedom (four constraints). We then form an
RSUR mechanism, and the number of degrees of freedom is given by

In a general RRRR linkage, as shown in Figure 1.7b, each joint provides five con-
straints, and the number of degrees of freedom is given by 

In a general RRRC linkage, the cylinder joint has
two degrees of freedom, providing four constraints. The number of degrees of 
freedom for the RRRC linkage shown in Figure 1.7c is given by 

The manipulator arm on the prototype vehicle
(Figure 1.7d) is a multi-degree-of-freedom open-loop linkage.

There is no relative motion in the general case for RRRR and RRRC linkages,
because they are equivalent to statically indeterminate structures. However, there are
important special cases. If all four revolute joints in an RRRR linkage are parallel,
then the linkage becomes planar. If the axes of all four revolute joints in an RRRR
linkage meet at one point, then the linkage becomes spherical. Both of these special
cases are mechanisms with one degree of freedom.

Planar Linkages

Planar linkages, of course, represent a special case. Consider, for example, a mechanism
made up of rigid links joined by three revolute joints and a cylinder joint. If the links
and joints are oriented so that the links move in parallel planes, this RRRC linkage
becomes a slider-crank linkage, the planar linkage that represents a major component
of piston engines, pumps, compressors, and other common machines. Figure 1.3 shows
a vertical compressor, the major components of which may be represented by an
RRRC linkage. All points on the crank, connecting rod, and crosshead of the compres-
sor move in parallel planes, and the axes of the revolute joints are also parallel. Thus,
we have a slider-crank linkage.

6(4 - 1) - 5 - 5 - 5 - 4 = -1.
DF Ú

6(4 - 1) - 5 - 5 - 5 - 5 = -2.
DF Ú

DF Ú 6(4 - 1) - 5 - 3 - 4 - 5 = 1.

6(4 - 1) - 5 - 3 - 3 - 5 = 2

DFspatial Ú 6(7 - 6 - 1) + 1 + 1 + 1 + 1 + 1 + 1 = 6.
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18 Chapter 1 Mechanisms and Machines: Basic Concepts

A planar RRRR linkage may be called a four-bar linkage, which, together with
other planar link systems, is shown in Figure 1.8.

The joints or pairs that apply to planar linkages are as follows:

Connectivity
(Degrees of freedom of pair

Lower or higher pair in plane motion)

Revolute or pin joint Lower pair 1
Prism or sliding pair Lower pair 1
Cam pair Higher pair 2
Gear pair Higher pair 2

Actual joints may sometimes be different. For example, the slider-crank linkage may
be made up of three revolute joints (crankshaft bearings, crankpin, and wrist pin) and a
cylinder pair. The spline-type constraint of a prism pair is unnecessary, since the revo-
lute joints prevent rotation of the piston. If the actual number of degrees of freedom is
greater than would be determined by using the equation for spatial linkages, the link-
age is overconstrained. Overconstraint tends to strengthen a linkage; however, over-
constraint can be a disadvantage if manufacturing tolerances are poor.

Determination of Degrees of Freedom for a Planar Linkage

Each unconstrained rigid link has three degrees of freedom in plane motion. A fixed
link has zero degrees of freedom. A pin joint connecting two links produces two con-
straints, since the motion of both links must be equal at the joint (in two coordinate
directions).Thus, the number of degrees of freedom for a planar linkage made up of 
links and one-degree-of-freedom pairs is given by

(1.4)

or, for joints with individual connectivity 

(1.5)

We see that, for the four-bar linkage in Figure 1.8a, and For
the five-bar linkage in Figure 1.8b, and The linkage of Figure
1.8d has a double pin at B. Thus, and 

Figure 1.8e shows a slider-crank mechanism illustrating a piston engine or a piston
pump, where denotes the crankshaft, link 1 represents the crank, link 2 designates
the connecting rod, point C denotes the wrist pin, and link 3 represents the slider or
piston that is constrained by the cylinder. The figure illustrates the common special
case, an in-line slider crank, where the extended path of wrist pin C goes through
crankshaft axis There are four links, including the slider and frame, and four
lower pairs, including the sliding pair. An alternative analysis uses an equivalent link-
age. Figure 1.8f shows a four-bar linkage in which point C moves through an arc of

O1.

O1

DF = 1.nJ
œ = 7,nL = 6,

DF = 2.nJ
œ = 5,nL = 5,

DF = 1.nJ
œ = 4,nL = 4,

DFplanar = 3(nL - nJ - 1) + a
nJ

i = 1
fi.

fi,nJ

DFplanar = 3(nL - 1) - 2nJ
œ

nJ
œ

nL
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FIGURE 1.8 Skeleton diagrams of planar linkages. (a) Four-bar linkage. (b) Five-bar linkage.
(c) Structure. (d) A six-bar linkage with one degree of freedom. (e) A slider-crank mechanism.
(f) A four-bar linkage with motion approximating that of a slider-crank mechanism.
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20 Chapter 1 Mechanisms and Machines: Basic Concepts

radius If link 3 is made very long, the motion of the four-bar linkage will approxi-
mate that of a slider-crank linkage. If we could construct a linkage by replacing the
slider of the slider-crank mechanism with a link of infinite length and perpendicular to
the path of C, then that linkage would be equivalent to the slider-crank linkage.
Applying Eq. (1.4) to our equivalent linkage, with and we find that

The equivalent four-bar linkage (and, thus, the slider-
crank linkage) has one degree of freedom.

Analyzing the structure in Figure 1.8c in a similar manner and noting the double
pins at B, C, and E and the triple pin at D, we find that and

If a planar linkage is made up of one-degree-of-freedom pairs and two-
degree-of-freedom pairs, the number of degrees of freedom of the linkage is given by

(1.6)

A single gear mesh or the contact point of a cam and follower represents a two-degree-
of-freedom higher pair (if the two bodies do not separate). Consider the spur gear dif-
ferential shown schematically in Figure 1.9. This differential has six links: the frame;
gears and called sun gears; gears and called planet gears; and link C, the
planet carrier. There are five independent revolute joints and three gear pairs

It can be seen that the bearing axes are all parallel and that the
spur gear differential is a planar linkage. Using Eq. (1.6), we find that

Thus there are two independent variables. For example, if we specified the motion of
both sun gear shafts, that of the planet carrier shaft could be determined.

To achieve balance and reduce gear tooth loading, practical spur gear differen-
tials ordinarily include two to four equally spaced pairs of planet gears. The additional

DFplanar = 3(6 - 1) - 2 * 5 - 3 = 2 degrees of freedom.

(S1P1, P1P2, andP2S2).

P2,P1S2,S1

DFplanar = 3(nL - 1) - 2nJ
œ - nJ

fl.

nJ
flnJ

œ
DF = 0.

nL = 9,nJ
œ = 12,O1,

DF = 3(4 - 1) - 2(4) = 1.
nJ

œ = 4nL = 4

O3C.

C

P2
P1

S1 S2

y
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x

FIGURE 1.9 Schematic of spur gear differential.
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Section 1.5 Degrees of Freedom (Mobility) 21

pairs of planets do not change the number of degrees-of-freedom. If the gear sizes
were arbitrarily chosen, the number of degrees of freedom would be reduced.

One-Degree-of-Freedom Configurations

Planar mechanisms with one degree of freedom are of considerable practical impor-
tance. One-degree-of-freedom planar mechanisms made up of lower pairs satisfy
Grübler’s criterion:

(1.7)

Noting that the number of links and one-degree-of-freedom pairs must be positive
integers, we see that must be an even number. For we obtain the triv-
ial solution that could represent two bars joined by a pin joint. Next, trying four links, we
see that the number of joints must be This solution could represent the four-bar
linkage or slider-crank linkage of Figures 1.8a and e. Inversions of the slider-crank link-
age are also possible. If there are six links, then seven one-degree-of-freedom lower
pairs are required to produce one degree of freedom. For pin joints only, two distinct
configurations are possible, as shown in Figures 1.10a and b.Any one of the links may be
designated as the frame in each solution. It can be seen that the six-bar linkage of Figure
1.8d may be considered a special case of either of the linkages of Figure 1.10.
Determining eight-bar linkage configurations is left to the reader as an exercise.

Spatial linkages are analyzed further in a later section. However, since planar
linkages are used most frequently, the word planar will be used in the pages that follow
only when it is necessary to compare planar and spatial linkages.

nJ
œ = 4.

nJ
œ = 1,nL = 2,nL

nJ
œnL

2nJ
œ -3nL + 4 = 0.

1

2 3

2 3

4 1 4

6

5
56

(a) (b)

FIGURE 1.10 One-degree-of-freedom six-bar planar linkages. (a) Watt linkage. (b) Stephenson
linkage.

25



22 Chapter 1 Mechanisms and Machines: Basic Concepts

Adjustable-Parameter Linkages

We can control input–output relationships by adjusting the length of one or more links
in a mechanism. Ingenious designs even enable “on-the-fly’’ adjustments; that is, we can
change a mechanism’s characteristics of motion even when the mechanism is operating.

Suppose, for example, we need to vary the output of a pump without changing the
rotation speed of the crank. Suppose also that we would like the output to respond to
some other variable while the pump is running. A variable-stroke pump with a stroke
transformer is one way to satisfy this requirement. Figure 1.11a shows a variable-position
pump control cylinder that positions the curved-track stroke transformer. One end of the
coupler link slides in the track of the stroke transformer. The wrist pin at the top of the
coupler connects to the pump plunger. If the center of curvature of the stroke trans-
former is close to the wrist pin, then the plunger stroke will be small and the output (fluid

FIGURE 1.11 (a) A variable-stroke pump.A curved-track stroke transformer allows a plunger stroke varia-
tion of 0 to 2 in on some models and of 0 to 6 in on other models. (Source: Ingersoll-Rand Company.)
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Section 1.5 Degrees of Freedom (Mobility) 23

flow rate) will be low. If the stroke transformer is adjusted so that its center of curvature
falls on the wrist pin, then the plunger will not move and the output will be zero.

When stating the number of degrees of freedom of adjustable-parameter link-
ages, be sure to state whether the control feature is assumed to be in a fixed position.
Figure 1.11b uses an equivalent linkage to represent the variable-stroke pump when
the transformer is set for an intermediate stroke.

Although linkages of this type are often hydraulically controlled. One should not
neglect other possibilities in designing linkages. Consider, for example, pneumatic or
electrical control or combinations of control schemes. If your design requires precise,
but infrequent adjustment, consider a manually turned screw.

SAMPLE PROBLEM 1.1

Degrees of Freedom of a Variable-Stroke Pump

a. Determine the number of degrees of freedom for the variable-stroke pump shown in
Figure 1.11. Let the adjustment cylinder be fixed in a position that results in an interme-
diate stroke length.

b. Suppose the adjustment cylinder position is not fixed. Find the number of degrees of
freedom.

Solution. (a) It can be seen from the figure that motion takes place in a set of parallel planes.
Therefore, we have a planar linkage. The number of degrees of freedom can be determined by

O4 O1

E

4

3

2

1

C

D

B

�1

FIGURE 1.11 (b) In this linkage diagram, link 4 replaces the curved track of the
stroke transformer. As is brought closer to E, the movement of the plunger
decreases. When coincides with E, the plunger will become stationary.O4

O4
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24 Chapter 1 Mechanisms and Machines: Basic Concepts

examining the actual linkage or a schematic diagram of an equivalent linkage. Selecting the latter,
we replace the curved stroke transformer by rigid link 4 with a fixed revolute joint located
at the center of curvature of the stroke transformer. (See part b of the figure). We then have six
links, counting the slider and the frame. There are six revolute pairs and a sliding pair, making a
total of seven (one-degree-of-freedom) lower pairs. Thus,

(b) In this case, we refer to the actual pump configuration. A careful examination shows nine
links, including three sliders and the frame. There are eight revolute pairs and three sliding pairs,
a total of 11 one-degree-of-freedom pairs. The number of degrees of freedom is given by

The implication is that we must specify two variables to define the instantaneous position of the
entire linkage. Ordinarily, these variables would be the position of the piston in the pump con-
trol cylinder and the instantaneous angular position of link 1, the drive crank.

As noted earlier, the slider-crank linkage used in a piston engine or pump can be
an RRRC linkage. This linkage includes three revolute joints with parallel axes, the
crankshaft bearings (treated as a single pair), the crankpin, and the wrist pin (joining
the connecting rod and piston). The piston and cylinder correspond to a cylinder pair,
but the other joints prevent rotation of the piston. A common alternative is an RRCC
linkage, in which the piston is free to move a short distance along the wrist pin axis,
accommodating misalignment.The RRSC linkage, sometimes used in small pumps, can
also operate as a slider-crank. A ball joint (spherical pair) replaces the wrist pin. Note
that there is a second degree of freedom: rotation of the piston about the cylinder axis.
This motion is trivial and does not affect the operation of the pump as a planar linkage.

1.6 CLASSIFICATION OF CLOSED PLANAR FOUR-BAR LINKAGES: 
THE GRASHOF CRITERION

Closed planar linkages consisting of four pin-connected rigid links are usually identi-
fied simply as four-bar linkages. If one of the links can perform a full rotation relative
to another link, the linkage is called a Grashof mechanism.

Let the length of each link be defined as the distance between the axes of its rev-
olute joints (the centers of its pin joints). Links are characterized by their lengths,
where is the longest link, is the shortest link, and and are links of inter-
mediate length. We may immediately eliminate combinations for which

since it is obvious that these links could not be assembled to form a closed four-bar
linkage.

Suppose we wish to design a crank-rocker mechanism—a linkage with a drive
crank that rotates continuously, causing a driven crank (rocker) to oscillate through a
limited range. Referring to Figure 1.12, we note that limiting positions of link 3, the
rocker, occur when the crank (link 1) and the coupler (link 2, the link opposite the

Lmax Ú Lmin + La + Lb,

LbLaLminLmax

DFplanar = 3(nL - 1) - 2nJ¿ = 3(9 - 1) - 2(11) = 2.

DFplanar = 3(nL - 1) - 2nJ¿ = 3(6 - 1) - 2(7) = 1.

(O4)
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Section 1.6 Classification of Closed Planar Four-Bar Linkages 25

fixed link) are collinear. From geometry, the length of one side of a triangle must be
less than the sum of the lengths of the other two sides. Applying this notion to parts b
and c of the figure, we obtain 

and

(1.8)

Those familiar with basic mathematics will recall the special rules that govern inequal-
ities. Adding the first two inequalities and simplifying, we obtain that is, theL1 6 L2;

L1 + L2 6 L0 + L3.

L3 6 L0 + L2 - L1,
L0 6 L2 - L1 + L3,

O1

O1

O1

O3

O3

O3
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Link 3Link 1

Link 0

Link 0

Link 0

Link 3

Link 1

Link 2

Link 1

Link 2
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Locus of B

(a)
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(c)

B
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FIGURE 1.12 (a) Crank-rocker mechanism. For this class of mechanism, continuous rotation
of the driver results in oscillation of the follower. (b) A limiting position of the crank-rocker
mechanism (flexed). (c) A limiting position of the crank-rocker mechanism (extended).
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26 Chapter 1 Mechanisms and Machines: Basic Concepts

crank must be shorter than the coupler. Using other combinations of the foregoing
inequalities, we see that in other words, the crank is the shortest link in a
crank-rocker mechanism. The fixed link, the coupler, or the driven crank may be
longest. In every case, the inequalities require that

(1.9)

where and are the longest and shortest links, respectively, and are each
links of intermediate length.

SAMPLE PROBLEM 1.2

Crank-rocker mechanism

Design a mechanism that converts continuous rotation into oscillating motion.
Design decisions. We will try a linkage design with the following link lengths:

Solution. The drive crank is shortest, and satisfying the crank-rocker crite-
rion. We then test the proposed design by animating the linkage with motion simulation software.
(See Figure 1.13.) A motor is placed at the fixed end of the drive crank. The approximate range of
link 3 (the rocker, in dark shading) can be seen in the figure.

40 + 10 6 30 + 32,

driven crank L3 = 32 mm.coupler L2 = 30 mm;
drive crank L1 = 10 mm;fixed link L0 = 40 mm;

LbLaLminLmax

Lmax + Lmin 6 La + Lb,

L1 = Lmin;

03
01

C

B

FIGURE 1.13 Crank-rocker mechanism sample problem.
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Section 1.6 Classification of Closed Planar Four-Bar Linkages 27

We now consider inversions of the crank-rocker mechanism. Inequality 1.9 is sat-
isfied in each case and the shortest link can rotate continuously relative to the other
links. If the fixed link is shortest, the other links can rotate about it. This configuration
is called a drag link mechanism (or double-crank mechanism).
We can attempt a drag link design with the following link lengths:

We see that the fixed link is shortest, and Inequality 1.9 is satisfied; that is,

The proposed design is tested by animating the linkage with motion simulation soft-
ware. (See Figure 1.14.) A motor running at constant speed is placed at the fixed end of
link 1, the drive crank (not shaded). Link 3, the driven crank (dark shading) rotates
continuously, but at variable speed.

If the coupler is shortest, this inversion of the crank-rocker mechanism is called a
double-rocker mechanism. The coupler of a double rocker can rotate continuously
while the adjacent links oscillate through a limited range.

32 + 20 6 30 + 30.

driven crank L3 = 32 mm.coupler L2 = 30 mm;

drive crank L1 = 30 mm;fixed link L0 = 20 mm;

Bearing 03
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B

B

B

B

B

B

B

B

BC

C

C

C

C

C

C

C

C
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FIGURE 1.14 Animation of a drag link mechanism.
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28 Chapter 1 Mechanisms and Machines: Basic Concepts

We attempt a double-rocker design, selecting the following link lengths:

We see that the criteria for a double-rocker mechanism are satisfied; the coupler is
shortest, and substitution in Inequality 1.9 yields

Figure 1.15a shows a test of the design using motion simulation software. In this case, a
motor mounted on link 1 at point B drives the coupler. Limiting positions of link 3 are
shown in parts b and c of the figure.

Parts of the preceding linkages appear to interfere with one another in the ani-
mation figures. Computer simulations are usually instructed to ignore collisions when
analyzing planar linkages. In designing the actual linkage, we must arrange the bear-
ings so that collisions do not occur. Ingenious designs may be required when complex
linkages are based on double-rocker and drag link mechanisms.
A change-point or crossover-position mechanism results when

(1.10)Lmax + Lmin = La + Lb.

32 + 7 6 27 + 20.

driven crank L3 = 32 mm.coupler L2 = 7 mm;

drive crank L1 = 27 mm;fixed link L0 = 20 mm;

Bearing 01 Bearing 03

B
B

B

B

C

C

C

C

FIGURE 1.15 (a) A double-rocker mechanism with the coupler driven by a motor
mounted on link 1.
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Bearing 01 Bearing 03

C

B FIGURE 1.15 (b) One limiting
position of link 3.

Bearing 01 Bearing 03

B

C FIGURE 1.15 (c) The other limiting
position of link 3.
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1c

    1�

1a

1b 2b

2a

2c

3c

3a

3b O3
O1

FIGURE 1.16 A crossover-position or change-point linkage.

Figure 1.16 shows a change-point mechanism in which and 
Eq. (1.10) is satisfied. Relative motion of a change-point mechanism may depend on
inertia, spring forces, or other forces when the links (in the skeleton diagram) become
collinear. Of course, the links in an actual machine operate in parallel planes, not in a
single plane. In this example of a change-point mechanism, all of the links become
collinear in position b. If links 1 and 3 are rotating counterclockwise at this instant, link
3 may continue rotating counterclockwise through the change point because of inertia
effects. Alternatively, other forces may cause link 3 to reverse direction, resulting in a
“bow-tie’’ configuration. A parallelogram linkage that has opposite links of equal
length is another example of a change-point mechanism.

Crank-rocker, drag link, double-rocker, and change-point mechanisms satisfy the
following relationship:

(1.11)

These mechanisms are called Grashof mechanisms, after the investigator who pub-
lished this criterion in 1883.

Any of the preceding classes of linkages may be driven by rotation of the coupler
(the link opposite the fixed link), although the range of coupler rotation may be very
limited in some classes. The coupler effectively provides a hinge with a moving center.
Coupler-driven linkages may be called polycentric. Examples are polycentric door
hinges and prosthetic knee joints.

Four-bar linkages that do not satisfy the Grashof criterion are called double-
rocker mechanisms of the second kind or triple-rocker mechanisms. If 

no link can rotate through A computer program based on the360°.La + Lb,
Lmax + Lmin 7

Lmax + Lmin … La + Lb

L1 = Lmin,L0 = Lmax,
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flowchart of Figure 1.17 may be used to classify four-bar linkages by the characteristics
of their motion.

SAMPLE PROBLEM 1.3

The Grashof Criterion

This problem concerns the classification of four-bar linkages. Link lengths: fixed link; dri-
ver crank; coupler; follower crank; Find the
ranges of values for if the linkage can be classified as follows:

a. Grashof mechanism
b. Crank-rocker mechanism

L0

L3 = 300 mm.L2 = 200 mm,L1 = 100 mm,L3,L2,
L1,L0,

ENTER LINK LENGTHS :

L0 : FIXED LINK
L1 : SHORTER SIDE LINK
L2 : COUPLER
L3 : LONGER SIDE LINK

SORT FOR LMAX, LMIN, ETC.

LMAX � LMIN � La � Lb
YES

NO

NO

"NOT A
MECHANISM"

LMAX � LMIN � La � Lb
YES

YES
NO

NO

"CHANGE
POINT"

"CRANK
ROCKER"

"GRASHOF
MECHANISM"

LMAX � LMIN  	 La � Lb
YES "TRIPLE ROCKER

(NON–GRASHOF)"

L1 � LMIN

YES

NO

"DOUBLE
ROCKER"

"DRAG
LINK"

L2 � LMIN

FIGURE 1.17 Flowchart for clas-
sifying four-bar linkages accord-
ing to the characteristics of their
motion.
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c. Drag link mechanism
d. Double-rocker mechanism
e. Change-point mechanism
f. Triple-rocker mechanism

Solution. Using the Grashof inequality, and noting that the crank-rocker, drag link, double-
rocker, and change-point mechanisms, are all Grashof mechanisms we begin with the test for the
crank-rocker mechanism (b). The condition that the driver crank be shortest is satisfied by

The inequality yields from
which it follows that if link 0 is longest. If link 0 is of intermediate length, then

from which we obtain Thus, for the
crank rocker (answer b).

The drag link criterion (c) requires that link 0 be shortest; that is, Also,
is required by the Grashof inequality, from which we get Thus,

no drag link can be formed (answer c).
The double-rocker test (d) requires that the coupler, be shortest.Thus a double-rocker

cannot be formed (answer d).
A change-point mechanism (e) exists if

If is largest, then

or 
If is smallest, then from which it follows that (The

linkage is not a four-bar mechanism.) If is of intermediate length, then 
so that Thus, we have a change-point mechanism if 

(answer e).
As noted, any mechanism that meets the criteria b, c, d, and e is a Grashof mechanism.

Combining the preceding results, we have (answer a).
A triple-rocker mechanism (f) exists when

If the fixed link is largest, we have or If the fixed link is
shortest, we have or If is of intermediate length, then

or Noting that no link length may exceed the sum of the
lengths of the other three, we have or Combining these
results, we obtain either or (answer f).

Cutting devices sometimes incorporate crank-rocker mechanisms. An electric
motor drives the shortest link; the longer crank (the rocker) drives an oscillating cutter.

Dead points must be considered when one is designing a rocker-driven crank-
rocker mechanism. If the rocker drives, the limiting positions of Figures 1.12b and c are

400 mm 6 L0 6 600 mm0 6 L0 6 200 mm
L0 6 600.L0 6 100 + 200 + 300,

200 7 L0.300 + 100 7 L0 + 200,
L0L0 7 0.300 + L0 7 200 + 100,

L0L0 7 400.L0 + 100 7 200 + 300,L0

Lmax + Lmin 7 La + Lb .

200 mm … L0 … 400 mm

L0 = 200 or 400 mmL0 = 200.L0 + 200,
300 + 100=L0

L0 = 0.300 + L0 = 100 + 200,L0

L0 = 400.

L0 + 100 = 200 + 300,

L0

Lmax + Lmin = La + Lb

L2,

L0 6 0.300 + L0 6 100 + 200
L0 6 100.

200 mm 6 L0 6 400 mm200 6 L0.300 + 100 6 L0 + 200,
L0 6 400

L0 + 100 6 200 + 300,Lmax + Lmin 6 La + LbL0 7 100 mm.
L1
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Section 1.7 Transmission Angle 33

dead-points. Inertia may carry the shorter crank through a dead-point configuration. If
the mechanism is stopped at a dead point, we cannot restart it by turning the rocker.

1.7 TRANSMISSION ANGLE

The inequalities that classify four-bar linkages give the extreme theoretical limits of
each class of mechanism.Additional limitations apply to the design of practical mecha-
nisms. One important consideration is the transmission angle, the angle between the
coupler centerline and the driven crank centerline.

Referring to Figure 1.18, suppose the crank (link 1) drives the linkage. The cou-
pler (link 2) transmits a force along its centerline to the driven crank (link 3). If we
want to maximize output torque and minimize friction torque, we try to keep transmis-
sion angle near A transmission angle no less than or and no greater than

or is usually satisfactory. Depending on the type of bearing and lubrication,
values outside this range may result in binding of the linkage.

Figure 1.18 shows a linkage that satisfies the crank-rocker criteria. However, if
link 1 drives, the transmission angle reaches extreme values, which may prevent the
rocker from operating satisfactorily. As link 1 tends to rotate through the position
shown in the figure, the direction of force transmitted along link 2 to link 3, results in
very little torque on link 3 but a high bearing force at Wear would probably be
excessive. If friction torque exceeded driving torque, the mechanism would jam and
could cause the driven crank to buckle. Dimensional tolerances, including looseness at
pins and bearings, often tend to worsen the situation. In most cases, then, it is advisable
to provide a reasonable “margin of safety’’ in satisfying the inequalities that determine
the motion of a linkage.

Consider the four-bar linkage whose links form a quadrilateral, as in Figure 1.19.
For crank angle the length of the diagonal of the quadrilateral can be determined
by using the law of cosines. For the triangle formed by links 0 and 1 and the diagonal,

(1.12)

Using the law of cosines for the triangle formed by the diagonal and links 2 and 3, we
have 

(1.13)Ld
2 = L2

2 + L3
2 - 2L2L3 cos f.

Ld
2 = L0

2 + L1
2 - 2L0L1 cos u1.

Ldu1,

O3.

f

140°135°
45°40°90°.f

Link 1
O1 O3

    1�

�Link 2

Link 3

FIGURE 1.18 A mechanism that may fail to operate because of an
unsatisfactory transmission angle.
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Rearranging the cosine law equation:

(1.14)

Thus, we may obtain transmission angle at any instant.
We are most interested in extreme values of transmission angle For the crank-

rocker mechanism, maximum and minimum transmission angles occur when the driver
crank and fixed link are collinear. Transmission angle corresponds to 

and corresponds to 

SAMPLE PROBLEM 1.4

Transmission Angle

Given the driver crank length coupler length and follower length
and considering the transmission angle, find the range of values for the fixed link

if the linkage is to be a crank rocker. In a previous example, we determined that the mecha-
nism theoretically acts as a crank rocker for if we put no limit on the trans-
mission angle. Let us make the design decision to limit the transmission angle to

Solution. Setting and using the law of cosines, we have

or

so that

L0 = 312.48 mm.

(L0 - 100)2 = 200 
2 + 300 

2 - 2 * 200 * 300 cos 45°,

(L0 - L1)
2 = L2

2 + L3
2 - 2L2L3 cos fmin,

fmin = 45°

45° … f … 135°.

200 mm 6 L0 6 400
L0

L3 = 300 mm,
L2 = 200 mm,L1 = 100 mm,

Ld(min) = L0 - L1.fminL1 + L0,
Ld(max) =fmax

f.
f

cos f =
L2

2 + L3
2 - Ld

2

2L2L3
 .

L2

L1

L0

Ld

L3

    3�

   
3�

    2�

    1�

�

FIGURE 1.19 Determination of
transmission angle.
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Section 1.7 Transmission Angle 35

Using this value, we obtain

or which is within the accepted range.
The results (which could have been determined graphically) are sketched in Figures 1.20a

and b. Note that if we had set to obtain the value of would have
been Thus, is the acceptable range.

Both the follower crank (rocker) and the coupler in a crank-rocker mechanism have a lim-
ited range of motion (considerably less than if we require reasonable values of transmission
angle).

When links 1 and 2 are collinear, rocker link 3 is at a limiting position. Consider the crank-
rocker mechanism designed in the previous example, with Refer to Figure 1.19,
except note that links 1 and 2 are collinear and extended. The maximum value of is found
as follows:

from which 

For the other limiting position, with links 1 and 2 collinear and flexed.

from which we obtain for a range of only Of course, the range of the
follower crank can be changed by changing the ratios of the link lengths.

39.96°.u¿3(min) = 18.65°,

cos u¿3 =
L0

2 + L3
2 - (L2 - L1)

2

2L0L3
 ,

u¿3(max) = 58.61°.

cos u¿3 =
L0

2 + L3
2 - (L1 + L2)

2

2L0L3
=

312.482 + 3002 - (100 + 200)2

2 * 312.48 * 300
 ,

u¿3

L0 = 312.48 mm.

180°

312.48 … L0 … 363.5259.69°.
fminL0 = 363.52,fmax = 135°

fmax = 109.54°,

cos fmax =
L2

2 + L3
2 - (L0 + L1)

2

2L2L3
=

2002 + 3002 - (312.48 + 100)2

2 * 200 * 300
 ,

L1 L1

L2
L2

L3
L3

O1 O3 O1 O3

    min�

    max�

(a) (b)

FIGURE 1.20 (a) Minimum value of transmission angle. (b) Maximum value of trans-
mission angle.
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Typical linkage specifications include the range of motion of the output link (the
follower crank).We may wish to investigate various options which will lead to a linkage
that satisfies our needs. If the transmission angle and range of motion are plotted, we
are more likely to approach an optimum design than by using hit-or-miss methods.The
sample problem that follows illustrates a method of improving linkage design.

SAMPLE PROBLEM 1.5

Design of crank-rocker linkages.
Design a linkage with a range of output crank motion.

Design decisions. A crank rocker linkage will be used. The fixed link length will be six times
the crank length. The transmission angle will be limited to the range 

Solution. We will determine the proportions of the required design, specifying link lengths R
in terms of crank length Thus, etc.

Using the Grashof criterion for a crank rocker, we find that

and

The Grashof limits are plotted against the linkage proportions in Figure 1.21a.Values of the min-
imum transmission angle are shown in degrees on the same figure.

Part b of the figure shows both the maximum and the minimum transmission angle plot-
ted against the linkage proportions. The acceptable transmission angle envelope is marked in
Figures 1.21b and 1.21c. The range of motion of the follower crank is shown in degrees in
Figure 1.21c. Acceptable linkage proportions are given by the part of the range-of-motion
curve that falls within the to transmission angle envelope.

Detailed calculations. Note: MathcadTM mathematics software is utilized in this and some
other examples. When defining variables and constants, lightface roman type is used and the
symbol is used in place of an equals sign.

Fixed link:

Coupler:

Diagonal at minimum transmission angle: Rd :=R0 - 1

Driven crank:  R3j 
:=1 +

j

20
 R2i 

:=1 +
i

20

j :=0..N i :=0..N
N :=140 R0 :=6

:=

140°40°
30°

 7 6 R2 + R3.

 R3 6 5 + R2,

 R2 6 5 + R3,

R0 = L0/L1 = 6,L1.

40° … f … 140°.

30°
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Diagonal at maximum transmission angle 
Cosine of minimum transmission angle: Cosine of maximum transmission angle:

Some values of and are not valid (e.g., represents a mechanism that can-
not be assembled).

c (2,2) = -2.125R3R2

C(R2, R3) :=
R2

2 + R3
2 - RD

2

2 # R2
# R3

c(R2, R3) :=
R2

2 + R3
2 - Rd

2

2 # R2
# R3

RD :=R0 + 1

2

4

6

8

2� 4

Minimum transmission angle

6 8

R2

R3

30
10 20 40

60

70

60

50

30
40

40

4050

403010
20

50

3040
5060708090

FIGURE 1.21 (a) Design of crank-rocker linkages, sample problem 1.5. Minimum transmission
angle and limits based on the Grashof criterion plotted against linkage proportions. (Note: Grashof
criterion limitations for a crank-rocker mechanism shown with long dashes.)
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2

4

6

8
R3

R2

2�

Trans angle vs. R2, R3

4 6 8

      min

curves

   �

      max

curves

   �

   min � 40�

   m
ax �

 140

�

170140
130

160

150

120110

170

160

170
150

140130120 110 100
170

90

160 130
120

110 100
150
140170

100

160150
140 130 120 110 100

160
100 90 80 70 60 50 40 90

80

90

70
80

60

40

80

50

80
50 70 40

60

60
90

70
40

60 40
30

70
60
50

50

50

20
10

70 60 90 50 80 40
70

30

80 70 60 5030 10

20140130150 120
110

100

FIGURE 1.21 (b) Maximum and minimum transmission angle plotted against linkage 
proportions.

Minimum transmission angle: Maximum transmission angle:

Limiting positions, interior angle at follower link:

Flexed:

Extended:

Range:  ®i,j :=
ue(R2i

, R3j
) - uf(R2i

, R3j
)

deg

 ue(R2, R3):=acosBR0
2 + R3

2 - (R2 + 1)2

2 # R0
# R3

R

uf(R2, R3):=acos BR0
2 + R3

2 - (R2 - 1)2

2 # R0
# R3

R

£i,j :=
acos (C(R2i

, R3j
))

deg
fi,j :=

acos (c(R2i
, R3j

))

deg
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Instead of selecting just any set of acceptable proportions for a mechanism, we
may want to optimize the design. For higher output torque and lower friction, we
should attempt to keep the transmission angle close to 

SAMPLE PROBLEM 1.6

Attempting to optimize a crank-rocker design

Optimize the design of a crank-rocker linkage on the basis of the transmission angle.
Specifications call for a crank motion with a range of output.30°

90°.

2�

Range of follower crank

Note: This curve shows an envelope of acceptable linkages

           based on 40  minimum transmission angle

           and 140  maximum transmission angle.

4

2
4

6
8

2

4
6

8

10

12

14
16

20
22

24

20

20

20 22 24 2426

18

16

14

12

22

22

26

30
28

26
24

18

32

34
36

38
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12

1832 42 50 58 66 74
76

70
72

78

80
8288

84
86

94
9690

92
98 98

80 72
74
76
78 70

68
66

64 54
5882

84
82

80
787672

747068
6466

62
60

56
58

54

52 42
40

44
46 4850 52 54 58

56 60

62

44
40

32

28
26

24

22

20

42

383634

66

86

88
86

32

50
48

46
46

44

40
30

24

22

20

26

28

30

32

2836

42

34

36

38
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84
96

94
92

90

100
104 102 106

112
110

10824
26

28
30

34
36

38

44
46
48

40

54
56

60
62
64

68

14
16

20
22

6 8

2

4

6

8
R3

R2

52

FIGURE 1.21 (c) Range of follower crank motion plotted against linkage proportions.
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Design decisions. We will use a 50-mm drive crank length and a 300-mm fixed link, (the same
ratio as in the previous sample problem).

Solution. Let us look more closely at the transmission angle plots. The narrow region between
a minimum transmission angle of and a maximum of may represent a better design. If
we plot the range curves on the same sheet, or if we hold both sets of curves up to a light, we see
that the to transmission angle region is crossed by the range-of-motion curve at

The value of may be read from the plot, or we may calculate the root of

where and extended and flexed
limiting positions, respectively.

The result is for a driven crank length The coupler
length is These dimensions correspond to minimum and maximum transmission
angles of 70.7 and respectively.

Recall that a transmission angle near or may cause a linkage to bind. A transmis-
sion angle near will usually result in good output torque characteristics and no tendency to
bind. We have produced the required output crank motion, and the transmission angle is always
close to 

Detailed calculations (using MathcadTM).
Crank-rocker optimization:
Crank length (mm) Fixed link 

Coupler:
Limiting positions: interior angle at follower link

Flexed:

Extended:

Range (degrees):

Estimate:

Diagonal at minimum transmission angle:

Diagonal at maximum transmission angle: RD:=R0 + 1

Rd:=R0 - 1

R3 = 3.864 L3 = R3
# L1 L3 = 193.185

R3:=4 R3:=root¢®(R3) -
ue(R3) - uf(R3)

deg
, R3≤

®(R3):=30

ue(R3):=acos BR0
2 + R3

2 - (R2 + 1)2

2 # R0
# R3

R

uf(R3):=acos BR0
2 + R3

2 - (R2 - 1)2

2 # R0
# R3

R

L2:=R2
# L1 L2 = 235R2:=4.7

R0 =
L0

L1
  R0 = 6

L0:=300L1:=50

90°.

90°
180°0°

109.3°,
L2 = 235 mm.

L3 = 193.2 mm.R3 = L3/L1 = 3.864

uf(R3) =ue(R3),®(R3) = 30° = the range of the output crank,

®(R3) - [ue(R3) - uf(R3)] = 0,

R3R2 = L2/L1 L 4.7.
30°110°70°

110°70°
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Section 1.8 Limiting Positions of Slider-Crank Linkages 41

Cosine of minimum transmission angle: Cosine of maximum transmission angle:

Minimum transmission angle (degrees): Maximum transmission angle:

We may think of the slider-crank linkage as a four-bar linkage if the slider is
replaced by an infinitely long link perpendicular to the sliding path.Then, the transmis-
sion angle is defined as the angle between the connecting rod and a perpendicular to
the slider path. If the crank can rotate through the extreme values of transmis-
sion angle occur when the crank is perpendicular to the slider path. (The proof of this
statement is left as an exercise.)

Spatial linkages may also have transmission angle problems. Consider the RSSR
linkage shown in Figure 1.7a. If link 1 drives, then the angle between coupler link 2 and
driven crank 3 is of interest. We could compute transmission angle

where is the transmission angle.
The numerator of the fraction is the dot product of the vectors representing the

coupler and the driven crank, and the denominator is the product of the link lengths.
(The dot product and other vector algebra concepts are reviewed briefly in Chapter 2.)

Values of the transmission angle that do not fall in the range

may indicate that the linkage will jam. The design of linkages with spherical and uni-
versal joints is difficult, because the construction of these joints limits their range of
motion.

1.8 LIMITING POSITIONS OF SLIDER-CRANK LINKAGES

Limiting positions are of interest for several reasons. The limiting positions of a slider-
crank mechanism define the stroke of the piston (slider). The piston has zero velocity
at the instant it reaches one of the limiting positions. However, the acceleration of the

40° … f … 140°

f

f = arccosB r2
# r3

ƒ r2 ƒ ƒ r3 ƒ
R ,

360°,

£(R2, R3) = 109.263 f(R2, R3) = 70.676

£(R2, R3):=
acos (C(R2, R3))

deg
 f(R2, R3):=

acos (c(R2, R3))

deg

C(R2, R3):=
R2

2 + R3
2 - RD

2

2 # R2
# R3

c(R2, R3):=
R2

2 + R3
2 - Rd

2

2 # R2
# R3

45



42 Chapter 1 Mechanisms and Machines: Basic Concepts

piston, and consequently the inertial force, is high at that instant. When at a limiting
position, a slider-crank mechanism cannot be driven by applying a force to the pis-
ton. If a single piston serves as a driver, the linkage may be driven through the limit-
ing position by inertia of the crank. Likewise, the limiting positions define the range
of the oscillating crank of a crank-rocker mechanism. The oscillating crank has zero
angular velocity and a high value of angular acceleration at the limiting positions.

In-line Slider-Crank Mechanisms

A slider-crank mechanism with the usual proportions (such that the connecting rod is
longer than the crank) has two limiting positions, both occuring when the crank and the
connecting rod are collinear (in the skeleton diagram); see Figure 1.22a.When reciprocat-
ing steam engines were in common use, these positions were called dead-center posi-
tions, crank (bottom) dead center, referring to the position with the piston nearest the
crankshaft (Figure 1.22a, left), and head (top) dead center, referring to the position with

B

B

B
E

R

R

L

B

C

B

BO1

O1 O1

(a)

(b)

(c)

C C

�




�

� �

�

C

C

O1 O1
�2

�1

R L

S

C

R

L
R

L

L�R

L

FIGURE 1.22 (a) The two limiting positions of an in-line slider-crank mechanism.
(b) The two limiting positions of an offset slider-crank mechanism. (c) The limiting posi-
tions of an offset slider-crank mechanism superimposed to find the ratio of the time
taken for the forward stroke to the time taken for the return stroke.
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Section 1.8 Limiting Positions of Slider-Crank Linkages 43

the piston farthest from the crankshaft (Figure 1.22a, right). The piston’s direction
reverses at these two points.

When the extended path of the wrist pin C goes through the center of the crank-
shaft (as in Figure 1.22a), the linkage is called an in-line slider-crank mechanism.
The stroke, referred to as piston travel, equals 2R, twice the crank length. The crank
turns through as the piston moves from left to right and through another and 
as it returns to the left. If the crank turns at a constant angular velocity the piston
takes the same time to move from left to right as it takes to return to the left.

Offset Slider-Crank Mechanisms

The wrist-pin path of the offset slider-crank mechanism (see Figure 1.22b) does not
extend through the center of the crankshaft. The limiting positions shown represent
positions of zero piston velocity, but the angles through which the crank turns between
the limiting positions are not equal. If the crank turns counterclockwise, it turns
through an angle greater than as the piston moves from left to right and through
less than as the piston moves back to the left. If the crank turns counterclockwise
at constant angular velocity, the piston takes longer in its stroke to the right than it
takes to return to the left. From its limiting position in Figure 1.22a left to its limiting
position in Figure 1.22b right, the crank turns through the angle

as shown in Figure 1.22c. During the return stroke, the crank turns through the angle

where

and

for crank length R, connecting rod length L, and offset distance E less than 
When the crank turns at a constant angular velocity the ratio of the forward to

return stroke times is given by The length of the stroke is

The limiting positions of the linkage may be superimposed to form a triangle, as in
Figure 1.22c. Using the geometrical fact that the sum of the lengths of any two sides of

S = 2(L + R)2 - E2 - 2(L - R)2 - E2.

a/b.
v,

L - R.

f2 = sin-1 
E

L + R

f1 = sin-1 
E

L - R

b = 180° - f1 + f2,

a = 180° + f1 - f2,

180°
180°

v,
180°180°

O1
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a triangle exceeds the length of the remaining side, we obtain

from which we see that the stroke length will always exceed 2R when the wrist-pin
path is offset from the crankshaft. The preceding relationships are valid when both of
the following conditions are met: The offset E is less than and R is less than L.
Of course, angles and and stroke S can be found simply by superimposing the lim-
iting positions of the linkage, as in Figure 1.22c.

1.9 QUICK-RETURN MECHANISMS

Quick-return mechanisms include an oscillating link or reciprocating slider that moves
forward slowly and returns quickly (with an input of constant speed). The forward and
return directions are arbitrarily assigned as before, to correspond with machine tool
usage, in which a forward (working) stroke would have high force capability at low
speed and the return stroke could be rapid with no load.

The designation quick return has as much to do with the function of a mechanism
as with its mode of operation. If there is an intentional difference between the time
required for the forward and return strokes, the linkage may be called a quick-return
mechanism. Most crank-rocker mechanisms exhibit unequal forward and return times
for the rocker. If we take advantage of the unequal strokes in designing a piece of
machinery, we call the linkage a quick-return mechanism.

The forward and return strokes for the in-line slider-crank mechanism take an
equal amount of time, but the offset slider crank acts as a quick-return mechanism.

Other linkage combinations offer considerably more flexibility for quick-return
design than does the offset slider crank. The drag link, for example, may form part of a
mechanism designed for large forward-to-return-time ratios. Figure 1.23 shows four-
bar linkage which appears to satisfy the criteria for a drag link mechanism.
Slider D represents a machine element that is to have different average velocities for
its forward and return strokes, while driving crank 1 turns at constant angular velocity.
The two extreme positions of the slider occur when follower link 3 lies along the line of

O1BCO3,

ba

L - R,

L - R + S 7 L + R,

2

1
3

4

D

C

B

O1 O3

�1

Linkage during working stroke

FIGURE 1.23 A drag link mechanism is combined with a slider to form a quick-return
mechanism.
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centers Since link 4 is also collinear with the line of centers at both of the
extreme positions, we see that the slider stroke is twice the length of link 3:

(1.15)

The time for the slider to travel between limiting positions is proportional to the angle
between corresponding positions of the driving crank, as long as the angular velocity of
the driving crank is constant.

SAMPLE PROBLEM 1.7

Quick-return mechanism based on a drag link

Design a quick-return mechanism with a three-to-one forward-to-return-time ratio.

a. Determine linkage proportions.
b. Specify link lengths for a 180-mm stroke.
c. Are there any special concerns with this design?

Design decisions. The design will be based on a drag link combined with a slider. (See Figure
1.23). We try linkage proportions and with 
unspecified, where the link lengths are identified as follows:

and 

Solution.

a. The Grashof criterion for a drag link requires that the
fixed link be shortest and that 
If the coupler is longest, this equation becomes 
Dividing by the drive crank length produces 
Substituting the foregoing values, we obtain 
A similar calculation based on a coupler of intermediate length yields 

Thus, based on the Grashof criterion.
A 3:1 forward-to-return-time ratio requires a return stroke angle 

During the return stroke, the crank goes from the position shown in Figure 1.24a to the
position shown in Figure 1.24b. We seek the value of  that satisfies the equation

p - ba + bb - b = 0  (all in radians),

R2

(O1B)
b = p/2  rad = 90°.

1.2 6 R2 6 1.6,

1.2 6 R2.
R2 6 1.6.
R2 + R0 6 1 + R3.

L2 + L0 6 L1 + L3.
Lmax + L0 6 La + Lb.

L3 = driven crank.L2 = coupler,
L1 = drive crank,L0 = fixed link,

R2 = L2/L1R3 = L3/L1 = 1.4,R0 = L0/L1 = 0.8

S = 2L3.

O1O3.

O1

Motor 01 Bearing 03

O3 C D

   b

B

�

FIGURE 1.24 Quick-return mechanism based on drag link, sample problem 1.7. (a) Limiting position
with slider to extreme right.
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where and are internal angles of the triangle formed by the linkage for extreme positions
of point C. We use the cosine law to find and A numerical solution is started with an esti-
mate of in the middle of the Grashof criterion range. The solution converges on 

b. The stroke is twice the driven crank length. Thus, Then 
and we find the remaining link lengths. The link joining the driven crank and the
slider must be somewhat longer than the driven crank, say,

c. Figure 1.24c shows a computer animation of the linkage. Bearings and supports 
must be arranged so that the links can pass by one another without interference.
Figure 1.24d shows the linkage when the transmission angle—the angle between the
coupler and the follower crank—is minimal (only ). This situation occurs during
the return stroke. If frictional forces are small, then inertial forces may carry the
linkage through this position.

8.2°

L4 = 120 mm.

L1 = L3/R3,L3 = 90 mm.

R2 = 1.374.R2

bb.ba

bbba

O1

Motor 01
Bearing 03

B

DC

a�

FIGURE 1.24 (b) Limiting position with slider to left.

Motor 01

B

B

C

C

C

C

C
B

B

B

D
D D D D

C

FIGURE 1.24 (c) Animation of mechanism.
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O1

O3Motor 01

Bearing 03

C

B D

FIGURE 1.24 (d) Minimum transmission angle.

Detailed calculations (using MathcadTM). Select fixed link and driven crank length ratios:

Grashof criterion for drag link (fixed link is shortest):

Working-stroke-to-return-time ratio:

Range of link 1 during return stroke (rad):

Applying the cosine law to find the coupler length ratio:

Estimate 

b

deg
= 89.987 (check) b:=p - ba(R2) + bb(R2) b = 1.571

bb(R2)

deg
= 26.067 bb(R2) = 0.455

p-ba(R2)

deg
= 63.92 deg ba(R2) = 2.026

R2 = 1.374 R2:=root(p - ba(R2) + bb(R2) - b, R2)

R2:=
R2 min + R2 max

2

ba(R2):=acosB1 + (R3 - R0)
2 - R2

2

2 # (R3 - R0)
R  bb(R2):=acosB1 + (R3 + R0)

2 - R2
2

2 # (R3 + R0)
R

R2

b:=
2 # p

Twr + 1
+   b = 1.571  

b

deg
= 90 deg

Twr:=3

R2 min:=R3 + R0 - 1  R2 min = 1.2  R2 max:=1 + R3 - R0 R2 max = 1.6

R0:= .8  R3:=1.4
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Required stroke (mm):

Driven crank length (mm):

Drive crank length (mm):

Fixed link length (mm):

Coupler length (mm):

Minimum transmission angle 

Maximum transmission angle:

The preceding problem can also be solved by a trial-and-error graphical method,
as illustrated in Figure 1.25. The coupler length is varied in the three trials. The third
trial (length ) results in a forward-to-return-time ratio of about three to one.

Sliding contact linkages also form a basis for quick-return mechanisms. Figure 1.26
shows a quick-return mechanism that can be used to drive the cutting tool in a
mechanical shaper. Crank 1 is the driver, turning at essentially constant angular veloc-
ity, and slider D represents the toolholder. Limiting positions occur when links 1 and 2
are perpendicular. The ratio of the times of the working stroke to the return stroke is
equal to the ratio of the angles between corresponding positions of link 1.

B3C

 fmax:=acos BL2
2 + L3

2 - (L1 + L0)
2

2 # L2
# L3

R   
fmax

deg
= 80.913 deg

 fmin:=acos BL2
2 + L3

2 - (L1 - L0)
2

2 # L2
# L3

R   
fmin

deg
= 8.199 deg

L2 = 88.321L2:=R2
# L1

L0 = 51.429L0:=R0
# L1

L1 = 64.286L1:=
L3

R3

L3 = 90L3:=
S
2

S:=180

�1
�2

�3

O1

O3

B1


B1

B3

B2

B3

B2


C


Link 2 trials

Locus of B

Link 2 trials

Locus of C

C

FIGURE 1.25 A sketch of a drag link
quick-return mechanism to determine the
length of link 2 needed for a three-to-one
time ratio. The mechanism is drawn with
link 3 in its critical positions.
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SAMPLE PROBLEM 1.8

Variable-Stroke Quick-Return Mechanism

Design a mechanism with a stroke that may be varied from 3 to 8 in, having a working-stroke-to-
return-stroke time ratio of two to one at maximum stroke length.

Solution. The two-to-one ratio is obtained if the angle between limiting positions is given by

as in Figure 1.26b. Often, the key to determining link lengths is to assign a reasonable value to
one or more of the unknown links. The geometric relationships in the linkage are next observed

360 - u
u

= 2, or u = 120°,

u

2

(b)

(a)

(c)

2

3

1

1

3

1

2

O2

O2

B

B

B

C

B'

C'

C' C

DD'

C

O1

O2

O1

O1

240

 � 120�

1�

�

Smin

Smax

Smax

FIGURE 1.26 (a) Quick-return mechanism utilizing a sliding contact linkage. (b) The link-
age is shown in its limiting positions (link 1 perpendicular to link 2). The stroke S of the slider
is adjusted by changing the length of link 1. (c) Link 1 is shown adjusted to provide a mini-
mum slider stroke.
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when the linkage is drawn in its limiting positions. The lengths of the remaining unknown links
are then obtained. A satisfactory design may be obtained in the first trial. If not, this trial is used
as a basis for improving the design.

If distance is taken to be 4 in, then the maximum length of the drive crank is

Since link 3 lies at the same angle at both limiting positions (the path of D is perpendicular to
), the maximum stroke length is

from which we obtain the length of link 2:

The length of link 3 is arbitrarily taken to be 3 in, and the distance from to the path of D is
assumed to be 3.5 in. For the minimum stroke in, the crank must be adjusted to a
length of

as shown in Figure 1.26c The actual mechanism may differ considerably from the schematic, as
long as the motion characteristics are unchanged. Link 1 may be part of a large gear driven by a
pinion, in which case the crankpin (B on link 1) will be moved in or out along an adjusting screw.
Link 2 may be slotted, so that the crankpin rides within it.

1.10 LINKAGE INTERFERENCE

For convenience in illustrating the motion of plane mechanisms, the mechanisms are
shown as if they move within a single plane. Consider a crank-rocker linkage as
sketched in Figure 1.12. To avoid interference, the drive crank (link 1) and the coupler
(link 2) must operate in two parallel planes. The plane of the drive crank should lie
between the plane of the coupler and the plane of the fixed link.

The interference problem encountered in drag link mechanism design is more
severe since drive crank, coupler, and follower rotate through To avoid link inter-
ference, the plane of the coupler should be between the planes of the cranks. The fixed
bearings of the cranks must be placed on opposite sides of the linkage, with clear space
for the linkage to pass between the bearings. Figure 1.27 illustrates one possible config-
uration schematically. It can be seen that if the plane of the coupler (link 2) is not clear,
the linkage would not be able to operate through a complete rotation.

Sometimes, a four-bar linkage forms part of a more complicated linkage.
Motion may be transferred from the coupler of a crank-rocker mechanism without
much difficulty. Due to the problem of interference associated with the drag link

360°.

L1(min) = O1O2 sinf = O1O2 
Smin/2

O2C
= 0.75 in,

Smin = 3
O1

O2C =
Smax/2

sin(90° - u/2)
= 8 in.

Smax = D¿D = C¿C = 8 in,

O2O1

L1(max) = 4 sin¢90° -
u

2
≤ = 2 in.

O1O2
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Section 1.11 Mechanisms for Specific Applications 51

mechanism, and because of the requirement that the coupler plane lie between the
cranks, a transfer of motion from the coupler of a drag link mechanism may require
complicated arrangements.

The lamination-type impulse drive (described in the section that follows) illus-
trates motion transfer from one four-bar linkage to another. Considering the equiva-
lent linkage, the rocker of a crank-rocker mechanism acts as the driving link of a
second four-bar linkage (which oscillates due to the limited range of the input motion).
The drive is made up of several such combinations of mechanisms. Because of space
limitations, eccentrics or cams are used instead of conventional cranks.

1.11 MECHANISMS FOR SPECIFIC APPLICATIONS

Before we begin detailed analysis and synthesis of mechanisms, it is worthwhile to con-
sider the basic motion characteristics of some of the commonly available linkages. In
the design of a machine, it may be practical to combine simple linkages and other com-
ponents to obtain the required output-to-input motion relationship. The designer may
wish to become familiar with many of the linkage configurations that are in the public
domain and should become aware of the proprietary packaged drive trains and other
machine components that are available. Then, skill and ingenuity can combine these
components for optimum results without a need to “reinvent the wheel.’’ Some famil-
iarity with various classes of available mechanisms will be obtained by leafing through
this and other design-oriented books and by using manufacturers’ catalogs and engi-
neering periodicals.

Of course, the probable cost advantages of using commercially available compo-
nents should not prevent the designer from exploring entirely new solutions, even
though they may represent significant departures from traditional designs.

2

1

3

O1

O3
FIGURE 1.27 Configuration for drag link
mechanism to avoid interference.
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3

2

4

3

FIGURE 1.28 The belts arranged as shown permit transla-
tion of the straightedge, but prevent it from rotating.

Drafting Instruments

The drafting instrument using rigid links and pins shown in Figure 1.6 is proportioned
so that distances and form a parallelogram. If the line between
fixed centers A and B is horizontal, then DC is also horizontal at all times. Since a
straightedge attached at DC would not allow sufficient freedom of movement, another
parallelogram linkage is added. A parallelogram linkage can also be used to confine
independently suspended automobile wheels to a vertical plane, reducing “tucking
under’’ during turns.

Another drafting system, shown in Figure 1.28, uses tight steel bands (belts) on
two pairs of disks with equal diameters. Disk 1 is not permitted to rotate, and as the
arm between disks 1 and 2 is moved, disks 2 and 3 translate without rotating. The
bands between disks 3 and 4 prevent rotation of disk 4 and the attached straight-
edges. Applications of this type were more common before the general availability of
computer-aided drafting systems.

Pantograph Linkages

The parallelogram also forms the basis for pantograph linkages. At one time, panto-
graph linkages were used to reproduce and change the scale of drawings and patterns.
The pantographs of Figure 1.29 are made up of rigid links AC, CD, DE, and EB with
pin connections. Lengths and form a parallelogram. Link BE is
parallel to CD at all times for both linkages, and F is located on a line between A and
D, making triangles ABF and ACD similar. Thus, in Figure 1.29a the ratio DA/DF is a
constant for all positions of the linkage, and if a point located at F is used to trace a pat-
tern, a drawing tool at A will reproduce the pattern, enlarged by the factor DA/DF. If
the actual part is to be smaller than the pattern, then the tracing point can be located at
A and the drawing tool at F. The result will be a reduction in size of the ratio DF/DA.
The pantograph may be made adjustable to produce various enlargement or reduction
ratios, provided that the key features are maintained:The linkage must form a parallel-
ogram, and points A, F, and D must lie on a straight line.

If the pattern is to be reproduced full size or nearly full size, point F will serve as
the pivot, with D the tracer point and A the toolholder, as in Figure 1.29b. The pattern
will be faithfully reproduced with a part-to-pattern size ratio AF/DF, but the orienta-
tion will be changed in this case.

BE = CDBC = DE

AD = BCAB = CD
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C

D A

E

(a)

(b)

F

B

Fixed pivot

C

D

A

E

F

B

Fixed pivot

FIGURE 1.29 (a) A pantograph with fixed point D. The pattern can be traced-enlarged by the
ratio DA/DF if the tracing point is located at F. Interchanging the tracing point and drawing tool
produces a reduced tracing. (b) The pantograph with point F used as the fixed point will produce
a tracing approximately the same size as the pattern.

The operation may be automated by using a sensing device to drive the tracing
point over the pattern. A number of other linkages are used for similar purposes,
including engine indicators, which reproduce a pressure signal. Engine or compressor
pressure is measured by a small piston operating against a spring in the indicator. The
indicator linkage, which resembles a pantograph, magnifies and records the motion of
the indicator piston, producing approximately straight-line motion.
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SAMPLE PROBLEM 1.9

Pantograph Design

Proportion a linkage to guide an oxyacetylene torch in rough-cutting parts from steel plate. Part
dimensions are to be approximately 6 in by 6 in; patterns will be 1.5 times full size.

Solution. A pantograph of the type sketched in Figure 1.29b will be used, so that the pattern
will not be too near the cutting torch. The pattern dimensions will be approximately 9 in by 9 in,
and the linkage must be designed so that tracing point D moves freely over at least the 9-in-by-9-
in area. It can be seen that, by dimensioning the links so that and

the tracing point will cover the required area without nearing its limiting
(extreme) positions. So that the size reduction factor of 1/1.5 is obtained, or

Points A, F, and D must form a straight line, from which it follows that
or locating the fixed pivot.

For a practical design, it may be necessary to allow the tracing point position A to be adjusted
to various positions along the link so that several ratios of pattern to part size can be accommo-
dated. For each position of A, a new point F, the fixed point on link BE, would have to be estab-
lished to maintain the straight-line relationship between D, F, and A.

Slider-Crank Mechanism

The slider-crank mechanism is probably the most common of all mechanisms because
of its simplicity and versatility. We are familiar with it in the reciprocating pump and
compressor, in which the input rotation is changed to reciprocating motion of the pis-
ton. Figure 1.30 shows an air-conditioning and heat pump compressor. In the piston
engine, the situation is reversed and the piston is the driver. Of course, if there are sev-
eral cylinders, the various pistons alternate as driver, and if the engine is a single-cylin-
der engine, the energy stored in the flywheel and other components actually drives the
piston between power strokes. A single slider-crank mechanism and the associated
cam and valve train typical of a multicylinder internal-combustion engine are shown in
Figure 1.31. Figure 1.32 shows the piston and connecting rod of a small one-cylinder
gasoline-powered engine.

Rotating Combustion Engine

The rotating combustion (Wankel) engine in Figure 1.33 is another solution to the same
problem with little kinematic resemblance to the conventional piston engine. The
three-sided rotor moves eccentrically within a two-lobed engine block.These two parts
(the rotor and the shaped block) are equivalent to the pistons, cylinders, combustion
chambers, and valve train of an ordinary reciprocating engine.An internal gear, part of
the three-lobed rotor, actually acts as a planet gear as it meshes with a smaller, fixed
sun gear. Many other configurations of the rotating combustion engine with various
numbers of rotor sides and engine block lobes were examined before this design was
chosen.

BF = 4 in,BF/CD = AB/AC,
AB = 8 in.

AB/CB = 1/1.5,
CD = BE = 10 in,

CB = DE = 12 in
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FIGURE 1.30 An air-conditioning and heat pump compressor with a capacity of 46,000 to
68,000 Btu/h. (Source: Tecumseh Products Company.)

59
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The combustion cycle of a rotating combustion engine is illustrated in Figure
1.33b. At intake, an intake port is uncovered by the rotor. A mixture of air and fuel is
drawn into the increasing space between the rotor and the block. The eccentric rotor
then seals the intake port and compresses the mixture in the now-decreasing space
between rotor and block. The mixture is ignited when the space is very small, increas-
ing the pressure and driving the rotor around (the expansion phase). Finally, an
exhaust port is uncovered and the products of combustion are discharged. The cycle is
then repeated.

FIGURE 1.31 One cylinder of a reciprocating engine is illustrated,
showing the basic slider-crank mechanism, camshaft, and valve
train. (Source: Curtiss-Wright Corporation.)
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FIGURE 1.32 The piston and connecting rod
for a one-cylinder engine.

FIGURE 1.33 (a) The rotating combustion engine, showing the three-
sided eccentric rotor and internal gear. A major advantage of this
engine is its basic simplicity. The rotor and eccentric shaft are the only
rotating parts; cams and valves are not required.
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In the preceding discussion, we traced only one charge of air and fuel through a
complete cycle. The three-sided eccentric rotor and two-lobed engine block, however,
correspond to three sets of pistons and cylinders. At the time of ignition of the first
charge of air and fuel, the intake process is occurring in another chamber. When the
first chamber is in the exhaust position, a third chamber is in the intake position. The
figure shows the combustion cycle for only one chamber, but at any time, a different
phase of the process is occurring in each of the other chambers.

The fixed sun gear and the larger ring gear are shown as circles in Figure 1.33b.
Rotation of the crankshaft and eccentric rotor carrier is seen by observing the point of
contact between the fixed sun gear and the planetlike internal gear. In observing one
thermodynamic cycle of this engine, represented by one rotation of the rotor, we see
that the crankshaft (represented by the eccentric carrying the rotor) is given more than
one rotation. Actually, the crankshaft is given three rotations, where the ratio of inter-
nal gear teeth on the rotor to teeth on the fixed gear meshing with it is 1.5 to 1. This
result may be determined (with difficulty) by making successive sketches or may be
calculated by using principles to be discussed in Chapter 8. The solution is left as an
exercise in that chapter.

Fluid Links

Mechanical systems frequently include fluid links utilizing hydraulic or pneumatic
cylinders or fluid drive transmissions. The backhoe shown in Figure 1.34 uses hydraulic
cylinders arranged to give it a wide range of operating positions. Hydraulic feeds are
also used for machine tools. By means of a variable delivery pump or a relief valve for

Intake Compression

Ignition Expansion Exhaust

FIGURE 1.33 (b) A complete combustion cycle of the rotating combustion engine.
The rotor speed is one-third the eccentric crankshaft speed, maintaining one power
impulse for each crankshaft revolution. (Source: Curtiss-Wright Corporation.)
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control, the operator may regulate speed and thrust precisely. In the case of machine
tools, the fluid system may be programmed to go through a complete cycle of opera-
tions automatically. For kinematic analysis, a hydraulic cylinder linkage of the type
shown in Figure 1.35a is usually represented as shown in Figures 1.35b and c.

Swash Plate

Converting rotational motion to reciprocating rectilinear motion is a common prob-
lem, and many mechanisms have been devised for this purpose. In the swash plate type
of mechanism, shown in Figure 1.36, a camlike swash plate is rotated about an axis that
is not perpendicular to its face. The plate drives plungers in a cylinder block. Plunger
stroke is equal to d where the several parallel cylinders are arranged in a circle
of diameter d, as shown in the figure. The angle is measured between the swash plate
face and a plane perpendicular to the cylinder axes. For 100-percent volumetric effi-
ciency, the volume of liquid pumped per revolution of the swash plate is

where A is the cross-sectional area of one cylinder and N is the num-
ber of cylinders.

When the swash plate is operated as a hydraulic motor, fluid pressure is applied
to the plungers that drive the plate. Each cylinder is alternately connected to the fluid
supply and the exhaust by a distribution system operated by the swash plate shaft.

As noted earlier, an inversion of a mechanism exhibits the same relative motion as
the mechanism, but the links do not have the same absolute motion.The link that is fixed

Q = ANd tan f,

f

tan f,

FIGURE 1.34 The motion of this backhoe is determined by several independently controlled mechanisms.
(Source: Caterpillar.)
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in the original mechanism is not fixed in the inversion. The cylinder block is fixed in the
swash plate mechanism of Figure 1.36. If, instead, the cylinder block is rotated and the
swash plate fixed, the motion of the plungers relative to the cylinders will not change, and
hydraulic fluid will be pumped at the same rate. Figure 1.37 shows an inversion of the
basic swash plate mechanism. In this case, the link that acts as swash plate actually
rotates, but its rotation is in a plane and is of no significance to the relative motion. This
arrangement is kinematically equivalent to the plunger ends riding on a fixed disk.

Volume control is effected by designing the pump so that the angle between the
cylinder axes and the plane of the swash plate may be varied. Volume control may be
actuated manually, or automatically by a mechanical, electrical, or fluid control device.
When the mechanism is used as a motor, a similar control of the offset angle may be

(a)

1 2 1 2

(b) (c)

B1 on Link 1
B2 on Link 2

FIGURE 1.35 (a) A linkage that includes a hydraulic cylinder. (b) A kinematic representation
of the linkage shown in part a; link 2 slides within a sleeve pinned to the frame. (c) Alternative
representation of the linkage shown in part a; link 2 slides within a sleeve pinned to link 1 at
point Point is taken to be the identical point on link 2 at this instant.B2B1.

d

Plunger axes parallel
to rotation axis of
swash plate

Rotation axis of
swash plate

Swash plate

Cylinder block

�

FIGURE 1.36 The swash plate mechanism is but one of a large number of mecha-
nisms designed to convert rotational motion to rectilinear motion.
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Drive pinion
Swash plate

Cylinder block

Plunger

FIGURE 1.37 This inversion of a swash plate mechanism has been designed as a fixed-displace-
ment, piston-type hydraulic pump.The cylinder block, the driveshaft, and the nine pistons all
rotate as a unit.The pump is available with the cylinder block axis offset relative to the driveshaft
by to This offset determines the stroke of the pistons and therefore the flow rate. (Source:
Sperry Rand Corporation.)

30°.15°

used to change displacement for speed control. An adjustable-speed transmission may
be assembled from two variable swash plates, one used as a variable-offset pump and
the other used as a variable-offset hydraulic motor (Figure 1.38). Speed is continuously
variable over a wide range, with fine-control and high-torque capabilities. The fluid
link between the two components allows considerable flexibility in positioning input
and output.

Gear Trains

Gear trains are particularly suitable for use at high speeds and in drives with high
power ratings. Since gears offer precise speed ratios, they are also used in machine
tools and other applications in which precision is required. Differential gears are used
to distribute power in automobiles, but may also be used to add or subtract inputs for

65



62 Chapter 1 Mechanisms and Machines: Basic Concepts

INPUT DRIVE SHAFT
VARIABLE VOLUME

PUMP

FLUID LINES PERMIT
FLEXIBLE POSITIONING OF

PUMP AND MOTOR

OUTPUT DRIVE
SHAFT

VARIABLE
DISPLACEMENT

MOTOR

PUMP
VOLUME

CONTROL

MOTOR
DISPLACEMENT

CONTROL

CONTROL:

MECHANICAL
HYDRAULIC
ELECTRICAL

ELECTRO-HYDRAULIC
PNEUMATIC

FIGURE 1.38 Two variable-offset swash plate mechanisms—one used as a pump and the other used as
a motor—are combined to create an adjustable-speed transmission. In the pump, the piston stroke can
be varied by changing the angle of offset. Fluid is pumped to the hydraulic motor, operating the pistons
that drive the output shaft. (Source: Sperry Rand Corporation.)

control of certain processes. If two machines are to perform a production-line function
in a certain sequence, one machine may drive the other through a differential so that
phase adjustment is possible between the operations. Figure 1.39 shows a differential
transmission. The differential itself is made up of four bevel gears; the other gears in
the transmission are helical gears.

Rotating block

FIGURE 1.39 A differential transmission. (Source: Fairchild Industrial Products Division.)
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Gearing is often combined with other mechanical components. A worm and
worm wheel drive a power screw in the linear actuator of Figure 1.40. For reduction of
friction, a ball screw is used. Because the translational motion of the screw is propor-
tional to rotation of the worm, the actuator may be used as a precision jack or a locat-
ing device. Gears will be discussed in detail in later chapters.

Lamination-Type Impulse Drive

Figure 1.41 shows a lamination-type impulse drive made up of several linkages. Power
is transmitted from an eccentric through an adjustable linkage directly to a one-way
clutch on the output shaft. There are several linkage and clutch assemblies, and each
assembly operates on its own eccentric.The eccentrics operate in sequence throughout

FIGURE 1.40 A ball-screw actuator. Rotation is efficiently transformed into translation through the use of
a worm and worm wheel directly driving the nut of the ball screw. (Source: Duff-Norton Company.)
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the entire input cycle to ensure continuous output motion, each linkage driving during
its fraction of the input cycle.

Figure 1.41b illustrates the function of the control link. The location of the
control link axis, is adjustable. If it is moved toward then link 5 oscillates through a
smaller angle for each input rotation. When the control link axis is adjusted to fall on

the output shaft is stationary.
Reversing input speed direction does not change the output direction. However,

output rotation may be reversed if the transmission is equipped with a reversible one-
way clutch. When the clutch mechanism is reversed, the magnitude of the output-to-
input speed ratio also changes.

The average speed of link 5 of a given linkage assembly during the time that it is
driving the output shaft clockwise is not the same as when it drives counterclockwise. If
the clutch mechanism and the direction of input rotation are reversed simultaneously

O3
œ ,

O3
œ ,

O3,

One-way clutch
on output shaft

Adjustable
linkage

Cam

FIGURE 1.41 (a) Top: Assembled view of a lamination-type impulse drive with cover plate removed. Center: The
heart of the unit, which is a set of laminations phased to provide continuous driving. Bottom: A single lamination is
shown with the important features identified. (Source: Zero-Max Ind., Inc., a unit of Barry Wright.)
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the speed ratio does not change. This transmission is designed for input speeds up to
2000 rev/min, and the output-to-input speed ratio may be adjusted from zero to 1/4.

The impulse drive just considered allows for stepless variation of the speed ratio,
but pulsations (fluctuations in the output torque or speed) do occur. If the inertial load
is relatively high, the one-way clutches permit the load to overrun the driving links,
smoothing out pulsations. Linkage flexibility also aids in absorbing transmission pulsa-
tions, so that their full effect is not transmitted to the driven machinery.

Figures 1.41c and d show the equivalent mechanism representing the lamination-
type of impulse drive in two extreme positions. Links 1, 2, and 3 and the frame 
constitute a four-bar linkage driven by crank 1. Oscillating link 3 also forms part of a
second four-bar linkage, along with links 4 and 5 and the frame 

Oscillating Lawn Sprinkler with Speed Reducer and Variable
Stroke Linkage

In order to be competitive in the marketplace, consumer products must be designed
for mass-production at low cost. The manufacturer of the lawn sprinkler mechanism
shown if Figure 1.42 reduced costs in several ways, including the use of plastic parts,
many of which served more than one function.

(O3O5).

(O1O3)
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One-way clutch
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FIGURE 1.41 (b) A single lamination of the lamination type of impulse drive, shown in
detail. The location of control axis governs the output rotation. When the control link
axis is adjusted to position the output shaft becomes stationary. (c) The equivalent link-
age.The linkage is shown in one of its limiting positions. (d) The other limiting position.
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Water entering the sprinkler is diverted to drive the water turbine shown in Figure
1.42a. A speed reducer is needed because the turbine operates at high speed and does
not produce enough torque to drive the sprinkler mechanism. A worm, an integral part
of the turbine wheel, drives a worm gear that is an integral part of a second worm. The
second worm drives a second worm gear that is directly connected to crank of a
four-bar linkage (see Figure 1.42b). The coupler, link BC, drives oscillating follower
crank which is directly connected to the sprinkler bar.

A manual adjustment changes the position of link DC, allowing for four sprin-
kler settings. One position of link DC results in a wide range of motion for the follower
crank so that water is distributed over a large area of lawn on both sides of the sprin-
kler. A second position increases the distance between points C and (the length of
the follower crank), decreasing sprinkler coverage. The other settings limit coverage to
only one side of the sprinkler.The designer had to limit the possible positions of adjust-
ment link CD, the link that determines the effective length of oscillating link The
proportions of linkage must always satisfy the crank-rocker mechanism crite-
ria. In addition, the transmission angle must always lie in an acceptable range.

There are other methods of adjusting output characteristics (speed, stroke
length, stroke time ratios, etc.). Some linkages are designed so that mechanical adjust-
ments within the driving linkage itself can be made while the system is operating, often
automatically in response to some demand on the system. The variable-stroke pump
(Figure 1.11) is a mechanism of this type.

Power Screws

There are many ways to convert rotational motion into rectilinear motion. Cams, link-
ages, rack-and-pinion combinations, and a number of other devices are used. Power
screws, one of the most common and precise methods, are frequently employed as
machine tool drives in conjunction with gear trains. If a screw with a single thread

O1BCO3

CO3.

O3

CO3,

O1B

(a) (b)

First worm gearset
Water turbine Second worm gearset

Manual
adjustment

Water
turbine

Sprinkler bar

01

03

D
C

B

FIGURE 1.42 Oscillating lawn sprinkler linkage with adjustable stoke. (a) Water turbine and speed reducer. (b) Crank
rocker mechanism with adjustable output crank length.

70



Section 1.11 Mechanisms for Specific Applications 67

engages a nut that is not permitted to rotate, the nut will move relative to the screw a
distance equal to the pitch for each screw rotation. (The pitch is the axial distance
between adjacent corresponding thread elements.) With a double-thread screw, the
nut motion is two pitches, and, in general, the motion of the nut per screw rotation will
be the lead (the pitch times the number of threads). When a right-hand screw turns
clockwise, the relative motion of the nut is toward the observer; for a left-hand screw
turning clockwise, the relative motion of the nut is away from the observer. The nut
may be split through an axial plane if it is to be engaged and disengaged from the
screw as in a lathe. A split nut also permits adjustment to compensate for wear and
eliminate backlash.

Differential Screws

When high-thrust, low-speed linear motion is required, a differential screw may be
used. Figure 1.43 shows a power screw with leads for the left half and for the
right half, both right-hand threads. The motion of the slider equals the axial motion of
the screw plus the axial motion of the slider with respect to the screw; that is,

where

 L2 = screw lead in the slider.

 L1 = screw lead at the frame, and

 n = number of clockwise revolutions per minute of the screw,

 v = slider velocity,

v =
n

60
 (L2 - L1),

L2L1

L1

L2

v

n(RPM)

FIGURE 1.43 Differential screw.
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For example, a single-thread screw may be cut with 11 threads per inch at the left end
and 10 threads per inch at the right end. At 10 rev/min, the slider velocity is

It is more common for power jacks, linear actuators, and other machinery controls
to employ a worm drive for low-speed operation. In some cases, the outside of the
nut has enveloping worm-wheel teeth cut into it, and the nut is restrained from axial
motion by thrust bearings while the screw moves axially. (See Figure 1.44.)
Hundreds of jacks of this type were used in a single installation, a linear electron
accelerator with a 4-in-diameter by 2-mi-long waveguide that must be kept straight
to within 1 mm.

Ball Screws

Ball screws are used when friction must be reduced. The thrust load is carried by balls
circulating in helical races, reducing typical friction losses to about 10 percent of the
power transmitted. Ball screws must include a ball return to provide a continuous sup-
ply of balls between the screw and the nut. Preloading of the nut to eliminate backlash

v =
10
60

 ¢ 1
10

-
1
11
≤ =

1
660

 in/s.

FIGURE 1.44 Machine screw actuator—a worm-gear-driven screw, which may act as an actuator, a preci-
sion jack, or a leveling device. Compare this actuator with the ball-screw actuator shown in Figure 1.40.
(Source: Duff-Norton Company.)
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is possible if the ball race in the nut is divided into two sections. A cutaway view of a
ball-screw actuator is shown in Figure 1.40.

Special-Use Clutches

Special-use clutches that are self-actuating include centrifugal, torque-limiting, and
one-way or overrunning types. Centrifugal clutches are actuated by a mass that locks
the clutch parts together at a predetermined speed. Torque-limiting clutches, as the
name implies, are released at a predetermined torque. The ball-detent type has a set of
steel balls that are held in detents by means of a spring force that determines the limit-
ing torque. Any friction clutch may act as a torque limiter if the contact force is main-
tained by springs so that slipping occurs at torques above the limiting value.

Sprag-Type Reverse-Locking Clutches

Certain applications require that an input shaft drive the load in either direction, but
that the output shaft be prevented from driving the input shaft. This function is per-
formed by the reverse-locking clutch (see Figure 1.45) through specially formed lock-
ing members called sprags.

Referring to the sectional view in Figure 1.45, assume that the input shaft (which
drives the control member) turns counterclockwise. The control member contacts
sprag A near the top, pivots it slightly counterclockwise, and thereby frees it from the
outer race. The inner race is then driven by sprag A. (Sprag B performs no function
during counterclockwise rotation.) Suppose, now, that the output tends to drive coun-
terclockwise with no power applied to the input side. Then, the inner race slightly
rotates sprag A, forcing it clockwise and jamming it against the fixed outer race, thus
locking the system. The identical function is performed by sprag B for clockwise rota-
tion of the clutch.

One-Way Clutches

One-way clutches drive in one direction only, but permit freewheeling if the driven
side overspeeds the driver. The clutch operation depends on balls or sprags that roll or
slide when relative motion is in one direction, but jam if the direction of relative
motion tends to reverse.

Ratchet-and-pawl drives perform a similar function, except that the pawl may
engage the ratchet between teeth only. Either a one-way clutch or a ratchet–pawl drive
may be used to change oscillation into intermittent one-way rotation. Some machin-
ery-feed mechanisms operate in this manner.

Figure 1.46 illustrates, in principle, the table-feed mechanisms of a mechanical
shaper. The lengths of the links are such that link 3 oscillates as link 1; the driver
rotates (i.e., the linkage is a crank-rocker mechanism). A spring-held pawl drives the
ratchet only during the clockwise motion of link 3 (approximately, but not exactly, half
of each cycle). The workpiece table is intermittently fed to the left by the power screw
driven by the ratchet. The cutting tool (not shown) moves perpendicular to the direc-
tion of motion of the table, but only during the part of the cycle when the table is sta-
tionary, to ensure straight cuts.
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Control member
(input)

Inner race
(output)

(b)

(a)

Outer race (fixed)

A B

De-energizing spring

Control member

Sprags

Outer race

Inner race

FIGURE 1.45 (a) Sprag-type reverse-locking clutch. The input (left shaft) drives the load
(right shaft) in either direction. When the output shaft tends to drive, the sprags lock it to
the outer race. Other sprag configurations are available that permit operation with free-
wheeling. (Source: Dana Corporation, Formsprag Division.) (b) Sectional view of the
sprag-type clutch. As the input begins to rotate counterclockwise, it contacts sprag A. The
sprag pivots slightly counterclockwise in its detent, separating from the outer race. The
input pushes against the sprag, forcing the inner race (output shaft) to rotate. If the output
begins to rotate faster than the input, the sprag is thereby given a slight clockwise motion,
jamming the sprag against the fixed outer race and, in turn, locking the output shaft.
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FIGURE 1.46 Ratchet–pawl mechanism (applied to an intermittent drive). As link 1
rotates at constant angular velocity, link 3 oscillates. A pawl (link 4) on link 3 drives the
ratchet (5) during the clockwise motion of link 3. The right-hand screw drives the work-
table intermittently to the left.

By an increase of the driving crank radius the angle through which link 3 oscil-
lates is increased. Feed is increased in discrete steps; that is, the rotation of the ratchet
per cycle will be an integer multiple of the pitch angle, which is for N ratchet
teeth. Feed is reversed by turning the pawl so that the counterclockwise motion of link
3 rotates the ratchet. Although this action results in a change in instantaneous veloci-
ties, the feed per cycle is unchanged.

SAMPLE PROBLEM 1.10

Intermittent Feed Mechanism Design

Design an intermittent feed mechanism to provide rates of feed from 0.010 to 0.024 inch per
cycle in increments of 0.002 inch per cycle.

Solution. (There are several solutions to this design problem, each involving many hours of
work. We will take the first steps toward a practical design.)

1. A ratchet–pawl mechanism driving a power screw will be selected for our design. The
required steps between minimum and maximum feed correspond to ratchet rotations of
one pitch angle. For screw lead L inches, the feed per pitch angle is L/N inches. If we use
a single-thread power screw with five threads per inch and a 100-tooth ratchet, the
required 0.002-in/cycle feed increments are obtained.

2. A linkage with rotating driver crank and oscillating driven crank (similar to that in Figure
1.46) will be used to drive the pawl. The dimensions shown in Figure 1.47 will be provi-
sionally selected, where link 1, the driving crank, is of variable length. Since the feed is
0.200 in per rotation of the screw, the screw must turn through 1/20 rotation for the
0.010-in/cycle feed.The 0.024-in/cycle feed is obtained by a rotation of the screw.

3. For the required range of feeds, the oscillation of link 3 must be at least when link 1
is adjusted to maximum length and about when link 1 is adjusted to minimum length.
As a trial solution, we might design link 1 so that its length can be adjusted between 0.4
and 1.2 in. The mechanism is shown with link 1 adjusted to 1.2 in, at which setting link 3

18°
43.2°

43.2°
(18°)

360°/N

r1,
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Dimensions:
Link 1
Link  2
Link  3

Link 1

Link 1

Link 2

Link 2

1.2 in
6
3

Link 3

Scale (in)
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2�

6�

0 2 4 6

FIGURE 1.47 Sample problem 1.10 for a feed mechanism. Link 3 oscillates through angle
with link 1 adjusted to 1.2 in and through angle with link adjusted to 0.4 in.b2b1

oscillates through angle Angle the oscillation corresponding to a 0.4-in length of
link 1, is also shown. The trial design has a wider range of feeds than required and is
therefore acceptable from that standpoint.

If we were to actually manufacture the mechanism, the next steps in the design
process would be to find velocities and accelerations in the mechanism and to specify
the members’ cross sections. An investigation of tolerances and of stresses and deflec-
tions would then be required.

Universal Joints

When the angular relationship between the axes of two drive train elements is vari-
able, the elements may be joined by a flexible coupling, a flexible shaft, or a universal
joint. Most flexible couplings are intended only for small amounts of misalignment,
and flexible shafts have very limited torque capacity. Where high torque and large mis-
alignments occur, a universal joint, shown in Figure 1.48, is the typical solution. The
Hooke-type universal joint has a variable output speed for misalignment unequal
to zero when the input is constant. For the position shown in Figure 1.49, the veloc-
ity of point A is where is in radians per second.vvA = v1r

v1

fv2

b2,b1.
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FIGURE 1.48 Universal joint. Shown is a preloaded universal joint designed for use in a steering-
column-tilting mechanism and similar applications in which backlash is undesirable. The recom-
mended maximum operating angle for this type of universal joint is (Source: Bendix
Corporation.)
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A

FIGURE 1.49 (a) The Hooke-type universal joint. The misalignment is indicated
by the angle Velocity ratio varies instantaneously as the joint rotates.
(b) The cross-link of the universal joint is shown as it rotates through 90°.

v2/v1f.
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The angular velocity of shaft 2 is maximum at this time and is equal to

In Figure 1.49b, the cross-link of the universal joint is shown as it rotates through 
the last position representing the minimum velocity of shaft 2:

At high shaft velocities, speed variations may be objectionable, since acceleration
and deceleration of the load can cause serious vibration and fatigue. Figure 1.50 shows
two Hooke-type universal joints used to join shafts with a total misalignment of If
the shafts are in the same plane and each joint has a misalignment of as in the fig-
ure, the input shaft, 1, and the output shaft, 3, travel at the same speed. The intermedi-
ate shaft, 2, turns at variable velocity, but if it has a low mass moment of inertia, serious
vibration will not result.

An alternative method of avoiding acceleration and deceleration is through the
use of a constant-velocity universal joint. A constant-velocity ball joint, seen disas-
sembled in Figure 1.51, is shown in the plane of the misaligned shafts in part b of the
figure. Each half of the joint has ball grooves, with pairs of ball grooves intersecting in
a plane that bisects the obtuse angle formed by the shafts.Thus, if all ball-groove center
radii equal r, the velocity of the center of ball A is given by

and

This constant-velocity relationship holds at all times, even as misalignment changes.f

v2 =
vA

rcos 
f

2

= v1.

vA = v1rcos 
f

2

f/2,
f.

v2 = v1 cos f.
90°,

v2 =
vA

rcos f
=
v1

cos f
 .

�
2

�
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(a)

FIGURE 1.50 (a) A universal joint for high-torque applications. (Source: Dana Corporation.) 
(b) When two universal joints are used, input and output speeds are equal if each of the universal
joints takes half of the misalignment, as shown.
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Automotive Steering Linkage

The Ackerman-type steering linkage, sketched in Figure 1.52, incorporates a parallelo-
gram linkage made up of the Pitman arm the relay rod BE, the idler arm 
and the frame. Tie rods CF and DG are connected to the relay rod and to the steering
arms and The steering arms turn the front wheels about pivoted knuckles 
and when the Pitman arm is rotated by a gear at O1.O4

O3GO4.FO3

EO2,O1B,

FIGURE 1.51 (a) A constant-velocity universal joint (Bendix–Weiss type) shown disassembled.
(Source: Dana Corporation.) (b) Balls designated by A are held in intersecting ball grooves.The
grooves in the input half of the joint intersect with the grooves in the output half so that the balls trav-
elin a plane at angle to perpendiculars to either shaft.The pinned center ball is designated by B.f/2

(b)
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To avoid unnecessary tire wear when the vehicle turns, the centerlines of the four
wheels should meet as closely as possible at a single point—the center of rotation of
the vehicle.

Thus, the Ackerman system is designed so that the wheels do not turn equal
amounts. The wheel on the inside of the turn must be rotated through a greater angle
about its steering knuckle than the wheel at the outside of the turn in order that the
condition on the center of rotation be met.

This problem of the wheels not turning equal amounts accounts, in part, for the
complicated linkage design.Another problem is that the steering linkage is not strictly a
planar linkage, in that the wheels must follow road contours. Ball studs (ball-and-socket
joints) are used at points C, D, F, and G to permit multiaxis rotation. In an alternative
design, the steering linkage may be mounted forward of the centerline of the front
wheels.

Computer-Controlled Industrial Robots

Demands for increased productivity have led to the development of computer-con-
trolled robots. Figure 1.4 shows an industrial robot with a highly maneuverable six-axis
jointed arm. The robot is controlled by a flexible minicomputer program and may be
interfaced to peripheral equipment or to an external computer.Although robots of this
type have a fixed base, they may be employed in manufacturing operations involving a
continuously moving production line. In one such application, the robot arm tracks
moving automobile bodies and automatically spot welds them without stopping the
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FIGURE 1.52 Automotive steering linkage oriented for a turn. Link nomenclature: is the
Pitman arm (driven by a gear at ); BE is the relay rod; is the idler arm; CF and DG are tie
rods; and and are steering arms.GO4FO3

EO2O1

O1B
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production line. The arm works on the front, middle, and rear of the auto body as the
body moves through the robot’s baseline station. Abort and utility sequences are
included in the robot’s computer control. The abort sequence directs the robot to exit
from the moving part along a pretaught safe path relative to the part. The utility
sequence is initiated by an external signal from malfunctioning peripheral equipment
so that the robot can take corrective action. For example, the tip of a welding gun may
stick to the part, requiring a twisting motion to break it free.

Figure 1.53 shows an application of robotics to drilling and perimeter routing of
aircraft panels. A combination of positive-location part fixtures and compliant tooling
systems was used to overcome the problem of positional inaccuracy due to joint toler-
ances and elastic deflection of the multi-degree-of-freedom robot manipulator.

FIGURE 1.53 An application of robotics. (Source: General Dynamics.)

81



78 Chapter 1 Mechanisms and Machines: Basic Concepts

1.12 COMPUTER-AIDED LINKAGE DESIGN

The design of linkages for specific applications has always relied heavily on human
judgment and ingenuity. This design process may be illustrated by the flowchart given
by Sheth and Uicker (1972). (See Figure 1.54.) “Human interaction’’ includes creativ-
ity and possibly lengthy periods of mathematical analysis and computation. While it is
unlikely that human creativity can ever be completely replaced, computer-aided
design (CAD) can be employed to relieve the designer of many of the routine
processes that would otherwise be necessary. Since three-dimensional information can
be stored and retrieved in various views by using CAD programs, the construction of
tentative physical models can often be eliminated in the design-and-development
stage.

Currently, many organizations are integrating engineering design and drafting
processes with manufacturing, administration, and other functions. This approach,
called concurrent engineering, relies heavily on computers and is intended to reduce
the interval between the formulation of a design concept and the appearance of the
final product.
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FIGURE 1.54 A portion of the design process.
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The suspension system shown in Figure 1.55 is an example of the type of problem
that may be treated by CAD methods. Most CAD systems can handle open-loop sys-
tems, such as robots, as well as closed-loop systems, like four-bar and slider-crank link-
ages. Features of interest available in one or more CAD programs include kinematic
analysis and synthesis of planar and spatial linkages, static and dynamic analysis, and
an interactive graphics capability. Additional features of some software include a
check for redundant constraints, the capability to handle nonlinear equations, and a
zero- and multi-degree-of-freedom capability, as well as a capability to model one-
degree-of-freedom systems.

Systems in which the motion is completely specified as a function of time are
called kinematically determinate systems for purposes of analysis. Examples of kine-
matically determinate models are a robot with all joint motions specified and a slider-
crank mechanism with the position of the crank specified.

In modeling a mechanism design, links are usually considered to be rigid. In some
systems, however, link flexibility influences performance. In satellite design, for exam-
ple, stringent weight requirements may result in a system that undergoes significant
structural distortion. Figure 1.56 shows a satellite deploying a flexible antenna
extended with a screw jack. In this system, feedback control is employed on the
momentum wheels for attitude control. Failure to consider the interaction between the
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FIGURE 1.55 Suspension system. (Source: Chevrolet Motor Division, General Motors
Corporation.)
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flexible antenna and the feedback control system could have resulted in a satellite sys-
tem that was unstable to the point where it would self-destruct.

Figure 1.57 shows a flowchart for processing kinematics and dynamics informa-
tion in the IMP (integrated mechanisms program), one of the software packages used
for analyzing motion and forces in mechanical systems. Figure 1.58 shows a simulation
of a spring-reset plow that was designed to relieve shock loading when an embedded
rock is struck. The operation was analyzed and refined with the DRAM program.
Another CAD example, a front-end loader, is shown in Figure 1.59.
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FIGURE 1.56 A satellite system deploying a flexible antenna (modeled by
ADAMSTM software). (Source: Mechanical Dynamics, Inc.)
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Research in Engineering Design Theory and Methodology

Like most engineering design, the design of kinematic systems is a blend of art and sci-
ence. Some investigators are studying design theory and methodology, attempting to
obtain a deeper and more fundamental understanding of the design process. Finger and
Dixon (1989) reviewed research in descriptive, prescriptive, and computer-based models
of design processes.They summarized studies of how humans create mechanical designs,
processes, strategies, and problem-solving methods and reviewed (1) computer-based
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FIGURE 1.57 Flowchart for IMP processing; DF = degrees-of-
freedom; FGC = free generalized coordinates. (Source: Structural Dynamics Research
Corporation.)

IC = initial conditions;
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FIGURE 1.58 Analysis of a spring-reset plow, designed with the help of the DRAM program.
(Source: Mechanical Dynamics, Inc.)

Time � 1.0000 Time � 2.0000

Time � 3.0000 Time � 5.0000

FIGURE 1.59 Computer-aided design applied to construction machinery. (Source: Mechanical
Dynamics, Inc.)

82 Chapter 1 Mechanisms and Machines: Basic Concepts

86



models that emulate human problem solving, (2) morphological analysis, a methodol-
ogy to generate and select alternatives, and (3) configuration design, in which a physi-
cal concept is transformed into a configuration with a set of attributes.

1.13 COMPUTER-IMPLEMENTED NUMERICAL METHODS

Some engineering problems do not have a simple closed-form solution. Or a closed-
form solution may exist for a particular problem, but is not immediately obvious.We are
then likely to try a numerical method of solution. Numerical methods differ from trial
and error in that each successive approximation in a numerical method is guided by the
previous result. Many numerical methods in current use were developed long before
computers became available. With computers, however, we may make many iterations
to obtain a high degree of accuracy while avoiding hours of tedious calculation. You
may choose to skip this section if you use software capable of numerical solutions.

The Newton–Raphson Method

Newton’s method, also called the Newton–Raphson method, can be introduced by
considering the root of a nonlinear equation in a single variable:

Figure 1.60 shows a curve that could resemble a plot of F(x) vs. x. [We do not actually
plot F(x) vs. x]. Let the first approximation of the root be Unless we were lucky
enough to make a perfect guess, It can be seen from the figure that the first
approximation can be improved by considering the error F(X) and the slope of the
curve G(X). The second approximation of the root is given by

(1.16)

where evaluated at The next approximation can be obtained
by using the Eq. (1.16), except that the value of X is replaced by the value of 
obtained in the previous step.The process is repeated until predeter-
mined tolerance.

F(Xnew) = 0 ; a
Xnew

x = X.G(X) = dF/dx

Xnew = X - F(X)/G(X),

F(X) Z 0.
x = X.

F(x) = 0.
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Actual root of F (x) � 0
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FIGURE 1.60 The Newton–Raphson method.
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Success in finding a root depends on the behavior of F(x) in the region of inter-
est. It can be seen that the Newton–Raphson method fails if at any step. If

has multiple roots, a poor first approximation may result in convergence 
at a root other than the desired one. Figure 1.61 shows a flowchart outlining the
F(x) = 0

G(X) = 0

Specify
maximum error,

maximum number
of iterations,

and first
approximation

of X

Compute F(X)

Compute G(X)

Xnew �X�F(X)/G(X)

X �Xnew

ABS(F(X))
< max error?

No

No

Yes

Yes

Reached
maximum number of

iterations?

Print " No root found
after specified

number of iterations"

Print"Root of F(x) � 0
is x � __" FIGURE 1.61 Flowchart of Newton–Raphson

method.
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Newton–Raphson method. When a computer is used for iterative processes, a limit
may be placed on the number of iterations.

SAMPLE PROBLEM 1.11

An Iterative Solution

Consider an offset slider-crank linkage for which the ratio of connecting rod to crank length is to
be 3. Find the eccentricity for which the ratio of stroke to crank length will be 2.7.

Solution. If we superpose sketches of the linkage in its two limiting positions, the resulting tri-
angle can be measured or solved by the law of cosines, leading directly to the answer. Instead, to
illustrate a numerical method, it will be assumed that we fail to notice a closed-form solution and
resort to the Newton–Raphson method. The problem is described by

Dividing by R, inserting the given values, and rearranging terms yields

where Differentiating, we obtain

A computer program was written, based on the flowchar of the Newton–Raphson method. Using a
tolerance of and an initial approximation of the program produced the following
successive values: the final value being the root
of The root is then checked by substituting it into the initial equation.

In using numerical methods, the physical problem should be considered before
making a first approximation of a root. In the preceding problem, an initial guess of

will result in one term that is the square root of a negative number. An initial
guess of produces an infinite value of G(x) and a message that “no root is found
after the specified maximum number of iterations.’’ In this problem, 20 iterations were
allowed before the program “gave up’’ trying to find a root. On observing a sketch of
the linkage, one readily sees that values of are not valid.

Other Numerical Methods

Numerical methods are commonly used for solving complicated nonlinear equations.
One disadvantage of the Newton–Raphson method is the necessity of obtaining the
derivative 

The secant method uses a difference quotient instead of a derivative. However,
we are required to supply two initial approximations of the root. We begin by making
two approximations, and for the root of Then, a new (hopefully
improved) approximation of the root is given by

Xnew = X2 - F(X2)/G(X2),

F(x) = 0.X2,X1

dF(x)/dx.

x Ú 2

x = 2
x 7 2

f(x) = 0(;10-6).
x = 1.821906, 1.800705, 1.799787, and 1.799786,

x = 1.9,10-6

G(x) = dF(x)/dx = -x/(16 - x2)1/2 + x/(4 - x2)1/2.

x = E/R.

F(x) = [16 - x2]1/2 - [4 - x2]1/2 - 2.7 = 0,

S = [(L + R)2 - E2]1/2 - [(L - R)2 - E2]1/2.
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where the difference quotient is given by

The procedure continues with assuming the old value of and assuming the
value of The iteration continues until the root is found, satisfying the equa-
tion within an acceptable tolerance. Otherwise the calculation is stopped
after, say, 20 or 30 iterations, with the observation that the process does not converge.

The secant method is available in some mathematical software packages. One
such package, MathcadTM, requires the user to input only one estimate of the root after
F(x) is defined. The second estimate is taken to be the tolerance if the first estimate is
zero. Otherwise the second estimate is given by 

Other sections of this text include kinematics problems involving more than one
variable. Some of these are sample problems and are solved by numerical methods,
with the aid of mathematical software packages.

1.14 MECHANISM DESIGN CONSIDERATIONS

The material in this chapter is intended to form a basis for the analytical work to fol-
low and to introduce some of the analytical tools and approaches used in designing
mechanisms. In addition, the more common terminology is brought to the reader’s
attention to form a common ground for communication.

The design and manufacture of a product by one person working alone is seldom
possible and rarely practical. Consider, for example, the complexity of the fully auto-
mated machine tool or the case of a relatively simple mechanism to be mass-produced.
In either case, many people are involved, due to the interaction of one linkage with the
machine as a whole and the relationship between design and manufacture. The
designer must transmit ideas to others through mathematical equations and graphical
representations, as well as through clear written and oral descriptions.

Past and even present practice relies heavily on ingenious designers taking
advantage of their own inventiveness and years of practical experience. But the trend
is toward more kinematic analysis and synthesis, including computer-aided optimiza-
tion. One automobile manufacturer investigated about 8000 linkage combinations in a
computer-aided study of four-bar window regulator mechanisms. From those satisfying
all of the design requirements (fewer than 500 did), the computer proceeded to select
the one “best’’ linkage, based on a set of predetermined criteria. Computer-aided
design cannot replace inventiveness and human judgment, but it can extend the capa-
bilities of an engineer and reduce the tedium of repetitive tasks.

Practical considerations often make it necessary to “freeze’’ a product design at
some stage, thus preventing significant changes. However, a designer should investi-
gate many possible design configurations early in the design process. Suppose, for
example, a quick-return mechanism is required for a particular application. Earlier, we
noted that offset slider-crank linkages, drag-link–slider-crank combinations, and slid-
ing-contact–slider-crank combinations may be utilized as quick-return mechanisms.
There are many other possibilities. For example, we could examine cam-controlled and
numerically controlled mechanisms and other combinations that include two or more
sliders, in both planar and spatial configurations.

X2 = X1 + tolerance.

F(x) = 0
XnewXnew.

X2X2X1

G(X2) = [F(X2) - F(X1)]/[X2 - X1].
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SAMPLE PROBLEM 1.12

Linkage Design

Design a quick-return mechanism with maximum stroke of 170 mm, 40 working strokes per
minute, and a forward-to-return ratio of four to one. Use a configuration not previously illus-
trated in this chapter.

Solution. Many possible configurations can be used as quick-return mechanisms. A one-
degree-of-freedom linkage is desired. Applying Grübler’s criterion to mechanisms made up of
lower pairs, we obtain

or

The following combinations produce an integer number of lower pairs:

2 1 8 10
4 4 10 13
6 7 12 16

One possible combination that includes four revolute pairs, three sliding pairs, and six links 
is shown in Figure 1.62. The designer may investigate various link lengths and locations 
for fixed pivot relative to the slider paths in order to produce a given stroke length and O1

nJ
œnLnJ

œnL

nJ
œ = 3nL/2 - 2.

2nJ
œ - 3nL + 4 = 0

O1

C

E

B

D
1

3

r1

5

2

4

�1

FIGURE 1.62 Three-slider quick-return mechanism.
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forward-to-return ratio. Slider link 4 or 5 may be used as a toolholder. For some link-length
ratios, one slider will undergo two oscillations per rotation of link 1, while the other slider
undergoes one oscillation.

If the intended application of the quick-return mechanism calls for a variable stroke or a
variable forward-to-return ratio, the design must include a means to adjust effective link lengths.
A screw adjustment of distance is one possibility. Movement of point perpendicular to
the plane of motion of link 3 provides an alternative means of adjustment. This second option
would require a redesign, possibly including spherical pairs. A clever design would allow motion
characteristics to be adjusted while the mechanism was operating. Designs of this type require
careful placement of links and bearings to avoid interference between moving parts. Design soft-
ware such as I-DEASTM with solid modeling and assembly modeling capabilities may be used to
aid the task of interference checking.

SUMMARY

The number of degrees of freedom of a mechanism depends on the types of joints or
pairs and the number and arrangement of the links. Most practical closed-loop kine-
matic chains have one degree of freedom, while robots usually have six or more
degrees of freedom. The Grashof criterion tells us the theoretical motion characteris-
tics of a four-bar linkage. The actual motion of the linkage may depend on the trans-
mission angle as well. Practical design and analysis of mechanisms is heavily dependent
on computers. Animation software permits us to model a proposed design and “put it
through its paces.’’ We can then make changes in an attempt to optimize the design.

A Few Review Items

• Identify several planar one-degree-of-freedom linkages.
• How many degrees of freedom does a cylinder pair have? Does the answer

depend on whether we are considering a planar or a spatial linkage?
• What is the length of the stroke of a piston engine (in terms of the crank length)?
• Identify the Grashof linkages.
• Write the inequality applicable to a crank-rocker mechanism with a 100-mm

drive crank.
• Identify a generally acceptable range for a transmission angle. Explain the possi-

ble consequences if the transmission angle falls outside of this range.
• You are asked to design a machine with a “powerful’’ (large force) working stroke

and a quick return. Identify two linkages that could be considered for this design.
• Construct a computer animation of a crank-rocker mechanism. Rotate the drive

crank so that the rocker is in one limiting position. Repeat for the other limiting
position. What is the range of motion of the rocker? Now show the linkage when
the transmission angle is minimal and maximal. Is the transmission angle a
potential problem? If so, identify factors that can mitigate the problem.

O1O1C
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Problems 89

PROBLEMS

Figures that accompany the problems are indicated with the prefix P. Otherwise, references apply
to figures in the text proper.

1.1 (a) Find the number of degrees of freedom for the spatial linkage of Figure P1.1 . This
open-loop kinematic chain includes cylindrical, prismatic, and spherical pairs.

C

P
S

12

3

0

FIGURE P1.1

(b) Figure P1.2 is a schematic representation of a piece of construction machinery. It has
two hydraulic cylinders (links 1 and 2, and links 6 and 7), which may be considered

0
7

8

2

1

3

4

5

6

FIGURE P1.2
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cylindrical pairs.The other pairs are revolute joints, including a double revolute joint
where links 2, 3, and 8 meet. Find the number of degrees of freedom if this linkage is
treated as a spatial linkage.

(c) Find the number of degrees of freedom if the linkage of Figure P1.2 is treated as a
planar linkage.

(d) Referring to Figure P1.2, indicate the conditions that must be met for the planar
linkage assumption to be valid.

1.2 (a) Change the structure shown in Figure 1.8c into a one-degree-of-freedom mechanism
by removing one link. (There are several solutions to this problem.)

(b) Change the two-degrees-of-freedom linkage in Figure 1.8b into a one-degree-of-
freedom mechanism by adding a link.

1.3 Find the average piston velocity (between limiting positions) for an in-line slider-crank
mechanism. The crank length is 2 in, and the crank rotates at 3000 rev/min.

1.4 Find the average piston velocity in each direction (between limiting positions) for an off-
set slider-crank mechanism.The crank length is 2 in, the connecting rod length is 4 in, and
the offset is 1 in. The crank speed is 3000 rev/min clockwise.

1.5 Repeat Problem 1.4 for an offset of 1.5 in.
1.6 Repeat Problem 1.4 for a 100-mm crank length, a 200-mm connecting rod length, and a

50-mm offset.
1.7 Consider a slider-crank linkage wherein 

and Let and Show the linkage position for crank angle
and so on. If computer graphics facilities are used, show 18 positions.

Otherwise, show only 4.
1.8 In Problem 1.7, let the crank length be 100 mm and the crank speed be 5000 rev/min

counterclockwise (ccw). Find the average piston velocity during the 0.002-s interval
beginning with a zero crank angle.

1.9 Repeat Problem 1.7 for and 
1.10 In Problem 1.9, let and Find the average piston velocity as the

crank angle goes from (a) 0 to (b) 0 to and (c) 0 to 
1.11 Given an in-line slider-crank linkage with and (a) plot displacement x ver-

sus crank angle for If the crank rotates counterclockwise at 100
rev/min, find (b) the average piston velocity for between and and (c) the aver-
age piston velocity for between and 

Problems 1.12 through 1.22 Refer to Figure 1.12a.

For each of the following problems, (a) determine whether the links can actually form a mecha-
nism with the dimensions given; (b) if a mechanism exists, identify the motion relationship (crank
rocker, drag link, double rocker, triple rocker, or change point); (c) show the limiting positions if
the mechanism is a crank-rocker, double-rocker, or triple-rocker mechanism:

1.12 .
1.13 .
1.14 .
1.15 .
1.16 .L0 = 1, L1 = 4, L2 = 1.5, L3 = 4.5

L0 = 1.5, L1 = 4, L2 = 2, L3 = 3.5
L0 = 1, L1 = 3.25, L2 = 1.5, L3 = 3.5
L0 = 1, L1 = 2, L2 = 1.5, L3 = 3.5
L0 = 5, L1 = 2, L2 = 1.5, L3 = 2

90°.60°u

60°30°u

u = 30, 60, and 90°.u

L = 4,R = 2
360°.180°,40°,

v = 500 rad/s.R = 50 mm
E/R = 0.4.L/R = 1.8

T1 = 0, 20°, 40°,
E/R = 0.2.L/R = 1.5E = offset.

L = connecting rod length,R = crank length,
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1.17 .
1.18 .
1.19 .
1.20 .
1.21 .
1.22 .
1.23 In Figure 1.12a, let and Find the range of

coupler length for which the mechanism will theoretically act as a crank rocker.

In Problems 1.24 through 1.30, Refer to Figure 1.12a.

For each of these problems, find the range of values of the unknown link if the linkage will theoret-
ically act as  (a) a crank-rocker mechanism (where link 1 rotates through ); (b) a drag link
mechanism; (c) a double-rocker mechanism; (d) a change-point mechanism; (e) a Grashof mecha-
nism; and (f) a triple-rocker mechanism.

1.24 Find for and 
1.25 Find for and 
1.26 Find for and 
1.27 Find for and 
1.28 Find for and 
1.29 Find for and 
1.30 Find for and 
1.31 In Figure 1.12a, let Plot the range of permissible values of versus 

if the linkage is to be a crank-rocker mechanism.
1.32 Repeat Problem 1.31 for 
1.33 Consider a four-bar planar linkage in which the sum of the lengths of the intermediate

links exceeds the sum of the lengths of the shortest and longest link by about 1%. The
drive crank is the shortest link, and the driven crank operates against a load. Describe
the motion of the linkage.

1.34 Write a computer or calculator program to classify four-bar linkages according to
motion.Test the program with values corresponding to a crank-rocker linkage, and so on.

Problems 1.35 through 1.41

Find the length of the unknown link so that the linkage forms a crank rocker mechanism and the
transmission angle falls between and 

1.35 find 
1.36 find 
1.37 find 
1.38 find 
1.39 find 
1.40 Plot the range of permissible values, if any, of versus for 
1.41 Repeat Problem 1.40 for L0/L1 = 4.

L0/L1 = 2.L2/L1L3/L1

L2/L1.L0/L1 = 3.2 and L3/L1 = 1.7;
L0/L1.L2/L1 = 1.5 and L3/L1 = 1.2;

L3.L1 = 110 mm, L2 = 150 mm, and L0 = 150 mm;
L3.L1 = 50 mm, L2 = 200 mm, and L0 = 210 mm;
L3.L1 = 100 mm, L2 = 140 mm, and L0 = 120 mm;

135°.45°

L0/L1 = 1.5.

L2/L1L3/L1L0/L1 = 2.
L3 = 750.L1 = 400, L2 = 600,L0

L3/L1 = 1.7.L0/L1 = 2.2L2/L1

L3/L1 = 1.2.L2/L1 = 1.5L0/L1

L2 = 80.L0 = 120, L1 = 220,L3

L3 = 250.L0 = 50, L1 = 200,L2

L3 = 40.L0 = 40, L2 = 60,L1

L3 = 360 mm.L1 = 100 mm, L2 = 280 mm,L0

360°

(L2)
L3 = 280 mm.L0 = 300 mm, L1 = 100 mm,

L0 = 16, L1 = 7, L2 = 10, L3 = 15
L0 = 5, L1 = 10, L2 = 15, L3 = 15
L0 = 2.5, L1 = 1, L2 = 2.5, L3 = 2
L0 = 3, L1 = 2, L2 = 3, L3 = 2
L0 = 4, L1 = 1, L2 = 2, L3 = 1.5
L0 = 2, L1 = 1.25, L2 = 2, L3 = 3
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Problems 1.42 through 1.47 Refer to a Slider-Crank Mechanism

The transmission angle is limited to the range between and (i.e., the angle between the
connecting rod and the slider path must fall between and ).

1.42 The crank length is 100 mm; find the minimum connecting rod length for zero offset.
1.43 The crank length is 500 mm, and the offset is 100 mm; find the minimum connecting rod

length.
1.44 The crank length is 400 mm, and the offset is 200 mm; find the minimum connecting rod

length.
1.45 The crank length is 300 mm, and the offset is 50 mm; find the minimum connecting rod

length.
1.46 The ratio of the crank length to the connecting rod length is find the maxi-

mum possible offset.
1.47 Repeat Problem 1.46 for 
1.48 Sketch the flowchart for a program that designs a crank-rocker mechanism with maxi-

mum follower crank range if the transmission angle is limited.
1.49 Write and test a calculator or computer program as designed in Problem 1.48.
1.50 Prove that extreme values of the transmission angle occur when the crank is collinear

with the fixed link in a four-bar linkage.
1.51 Prove that the extreme values of the transmission angle occur when the crank is perpen-

dicular to the slider path in a slider-crank linkage.
1.52 In Figures 1.19 and 1.20, let and 

(a) Classify the linkage according to its theoretical motion.
(b) Find extreme values of the transmission angle.
(c) Will the linkage operate as determined in part a?

1.53 Sketch a double-rocker mechanism, showing bearing locations to avoid interference.
1.54 Will a drafting machine of the type shown in Figure 1.28 operate properly if the pulleys

are arbitrarily selected to be of different diameters? Show the motion of the straight-
edges if pulley diameters and 

1.55 Design and dimension a pantograph that may be used to double the size of the pattern.
1.56 Design and dimension a pantograph that may be used to increase pattern dimensions by

10 percent. Let the fixed pivot lie between the tracing point and the marking point or
toolholder.

1.57 Design and dimension a pantograph that will decrease pattern dimensions by 40 percent.
1.58 Referring to the swash plate pump shown in Figure 1.36, (a) determine the dimensions of

a pump with a capacity of at 600 rev/min (assume 100 percent volumetric effi-
ciency), and (b) find the average velocity of the plunger. (There are many possible solu-
tions to this problem.)

1.59 Repeat Problem 1.58 for a capacity of at 300 rad/s.
1.60 Design a differential power screw for a linear velocity of approximately 0.1 mm/s when

the angular velocity is 65 rad/s.
1.61 Design a differential power screw for a linear velocity of approximately 0.0005 in/s when

the screw rotates at 60 rev/min.
1.62 Design a ratchet–pawl mechanism to provide feed rates of 0.005 to 0.012 in/cycle in

increments of 0.001 in/cycle.
1.63 Repeat Problem 1.62 for feed rates of 1 to 3 mm/cycle in increments of 100 microns per

cycle (mm/c).

0.01 m3/s

120 ft3/h

d1 = 50 mm, d2 = d3 = d4 = 100 mm.

L3 = 17.L0 = 18, L1 = 7, L2 = 9,

R/L = 0.25.

R/L = 0.5;

+45°-45°
135°45°
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1.64 A Hooke-type universal joint has a misalignment. Find the output shaft speed range
if the input shaft rotates at a constant 1,000 rev/min.

1.65 Repeat Problem 1.64 for a misalignment.
1.66 Find a permissible misalignment of a Hooke-type universal joint if the variation in speed

is limited to 
1.67 Repeat Problem 1.66 for variation.

Problems 1.68 through 1.75 Are Based on a Constant-Speed Crank

It is suggested that a drag link mechanism be incorporated in the design.

1.68 Design a mechanism with a 10-in stroke and a forward-to-return stroke time ratio of
(approximately) two to one.

1.69 Repeat Problem 1.68 for a time ratio of (approximately) 2.5 to 1.
1.70 Design a mechanism with a 150-mm stroke and a forward-to-return stroke time ratio of

approximately two to one.
1.71 Design a mechanism with a 100-mm stroke and a forward-to-return time ratio of approx-

imately two to one.
1.72 Design a mechanism with a stroke length that may be varied between 5 and 10 in. The

forward-to-return stroke time ratio will be 1.5 to 1 at maximum stroke. Utilize a sliding
contact linkage.

1.73 Repeat Problem 1.72 for a time ratio of 2.5 to 1.
1.74 Repeat Problem 1.72 for a stroke of 100 to 200 mm.
1.75 Repeat Problem 1.72 for a stroke of 180 to 280 mm.
1.76 Describe the motion of each link in Figure P1.3. Show the linkage in its limiting positions

(corresponding to extreme positions of the slider). Determine the angle through which
link 1 turns as the slider moves from the extreme left to the extreme right. Compare your
result with the corresponding angle as the slider moves to the left. Find the stroke of the
slider (the distance between limiting positions).

;3%
;2%.

15°

20°

O1O2 � 2 in
O1B � 1.25 in
O2C � 4 in
CD � 3 in
Pin B is part
of link 1

3
2

1

D

B

C

O2

O1

1.5 in

�1

4

FIGURE P1.3 

1.77 Repeat Problem 1.76 for Figure P1.4.
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1.78 Repeat Problem 1.77 for and offset 

Problems 1.79 through 1.83 Refer to Figure 1.22.

1.79 and 

(a) Find the forward-to-return stroke ratio.
(b) Find the stroke length S.

1.80 Repeat Problem 1.79 for offset 
1.81 Repeat Problem 1.79 for offset 
1.82 and Plot the path of the midpoint of the connecting rod.
1.83 Plot the path of the midpoint of the con-

necting rod.
1.84 Find the number of degrees of freedom of the lamination drive in Figure 1.41 when the

control linkage position is given.

Problems 1.85 through 1.92 refer to a linkage that is to act as a
crank-rocker mechanism

Link lengths are fixed link drive crank coupler and driven crank 

1.85 find the theoretical range of 
1.86 find the theoretical range of 
1.87 find the theoretical range of 
1.88 find the theoretical range of 
1.89 (a) Find so that minimum transmission angle for the data of Problem 1.85.

(b) Find the maximum transmission angle for this linkage.
1.90 (a) Find so that minimum transmission angle for the data of Problem 1.86.

(b) Find the maximum transmission angle for this linkage.
1.91 (a) Find so that minimum transmission angle for the data of Problem 1.87.

(b) Find the maximum transmission angle for this linkage.
1.92 (a) Find so that minimum transmission angle for the data of Problem 1.88.

(b) Find the maximum transmission angle for this linkage.
1.93 Find the average piston velocity in each direction between limiting positions for a slider-

crank linkage with a 150-mm crank length, a 350-mm connecting rod length, and a 100-mm
offset. The crank rotates at 240 rad/s clockwise (cw).

1.94 In Figure 1.7a, let spherical pair be replaced by a cylindrical pair. Find the number of
degrees of freedom of the mechanism.

S1

fmin = 45°L2

fmin = 45°L2

fmin = 45°L2

fmin = 45°L2

L2.L0 = 200 mm, L1 = 50 mm, and L3 = 160 mm;
L2.L0 = 200 mm, L1 = 45 mm, and L3 = 150 mm;
L2.L0 = 210 mm, L1 = 50 mm, and L3 = 150 mm;
L2.L0 = 200 mm, L1 = 50 mm, and L3 = 150 mm;

L3.L2,L1,L0,

R = 150 mm, L = 450 mm, and E = 150 mm.
E = 1.R = 1, L = 3,

E = 0.65.
E = 0.8.

E = 0.4.R = 2, L = 5,

=20 mm.
(O1 to slider path)BC = 120 mm,O1B = 60 mm,

1
2

3

B

C

1.5
 in

3 in

0.75 in

�

O1

1

FIGURE P1.4 
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1.95 In Figure 1.7a, let revolute joint be replaced by a spherical (ball) joint. Find the
number of degrees of freedom of the mechanism.

1.96 How many degrees of freedom will a four-bar spatial CCCC linkage have?
1.97 How many degrees of freedom will a four-bar spatial SSSS linkage have?
1.98 Identify five or more spatial four-bar linkages having one degree of freedom. Select link-

ages that include revolute, prism, helix, cylinder, and sphere joints.
1.99 Show as many one-degree-of-freedom, planar, pin-connected linkage configurations as

you can. Use up to eight links.
1.100 Consider an offset slider-crank linkage for which the ratio of connecting rod to crank

length is to be 3.

(a) Write a computer program utilizing the Newton–Raphson method or another
numerical method to determine the offset for a given value of stroke length.

(b) Find the offset for which the ratio of stroke to crank length will be 2.5.

1.101 Consider an offset slider-crank linkage for which the ratio of connecting rod to crank
length is to be 3.

(a) Write a computer program utilizing the Newton–Raphson method or another
numerical method to determine the offset for a given value of stroke length.

(b) Find the eccentricity for which the ratio of stroke to crank length will be 2.2.

1.102 Consider an offset slider-crank linkage for which the ratio of connecting rod to crank
length is to be 3. Use the Newton–Raphson method or another numerical method to
determine the offset for which the ratio of stroke to crank length will be 3.

1.103 Consider the design of four-bar planar crank-rocker linkages. Investigate which linkage
proportions are acceptable and which are not. Let the fixed link length be three times
the crank length Plot the minimum transmission angle vs. and where

and Plot the
maximum transmission angle vs. and Plot the range of motion of the follower
crank vs. and 

1.104 Consider the design of four-bar planar crank-rocker linkages. Investigate which linkage
proportions are acceptable and which are not. Assume that transmission angles between

and are acceptable for the proposed design. Let the fixed link length be four
times the crank length Plot the minimum transmission angle vs. and where

and Show
the maximum transmission angle on the same plot. Identify the envelope of acceptable
linkage proportions based on the transmission angle. Plot the range of motion of the fol-
lower crank vs. and 

1.105 Consider the design of four-bar planar crank-rocker linkages. Investigate which linkage
proportions are acceptable and which are not. Assume that transmission angles between

and are acceptable for the proposed design. Let the fixed link length be five
times the crank length Plot the maximum transmission angle vs. and where

and Show
the minimum transmission angle on the same plot. Identify the envelope of acceptable
linkage proportions, based on the transmission angle. Plot the range of motion of the fol-
lower crank vs. and 

1.106 Design a quick-return mechanism with a five-to-two forward-to-return-time ratio.
Determine the linkage proportions of the mechanism. Specify link lengths for a 100-mm
stroke. Find the minimum and maximum transmission angles. Design decisions. Base the
design on a drag link combined with a slider. Try linkage proportions R0 = L0/L1 = 0.7

R3.R2

L3 = follower crank length.R2 = L2L1, R3 = L3/L1, L2 = coupler length,
R3,R2L1.
L0140°40°

R3.R2

L3 = follower crank length.R2 = L2/L1, R3 = L3/L1, L2 = coupler length,
R3,R2L1.
L0140°40°

R3.R2

R3.R2

L3 = follower crank length.R2 = L2/L1, R3 = L3/L1, L2 = coupler length,
R3,R2L1.

L0

R1
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and with unspecified, where the link lengths are identified
as follows: and 

1.107 Design a quick-return mechanism with an eight-to-three forward-to-return time-ratio.
Determine the linkage proportions of the mechanism. Specify link lengths for a 400-mm
stroke. Find the minimum and maximum transmission angles. Design decisions. Base the
design on a drag link combined with a slider. Try linkage proportions 
and with unspecified, where the link lengths are identi-
fied as follows: and 

1.108 Design a quick-return mechanism with a 16:5 forward-to-return-time ratio. Determine
the linkage proportions of the mechanism. Specify link lengths for a 400-mm stroke. Find
the minimum and maximum transmission angles. Design decisions. Base the design on a
drag link combined with a slider. Try linkage proportions and

with unspecified, where the link lengths are identified as
follows: and  

PROJECTS

Project topics will often be suggested by the instructor’s research interests and by current publica-
tions. The following topics may also be used as projects.

1.1 Aircraft landing gears sometimes fail to lower into position.

(a) Consider a system that will remedy this problem.
(b) Investigate the feasibility of a redundant landing-gear system that can be deployed if

the primary system fails to operate.

1.2 Investigate the possibility of an innovative system to transport skiers to the top of a
slope. Try to avoid conventional chairlifts, T-bars, rope tows, gondolas, etc.

1.3 Operators of power tools are sometimes injured because of inadequate guarding or the
removal of guards that prevent efficient use of the tool. Design a system to feed wood
into a circular saw in such a way that the operator’s hands cannot contact the blade.

1.4 Backcountry skiing and Telemark skiing combine aspects of both alpine and Nordic ski-
ing. Backcountry skiers utilize free-heel bindings on skis with metal edges. Some users of
this equipment ski on steep slopes.

(a) Consider the design of an innovative release binding for free-heel skiing.
(b) Design a ski brake to stop a released ski.

1.5 Aircraft accidents have been attributed to an improperly latched cargo-hold door. In one
or more instances, this problem resulted in loss of pressure in the cargo hold. The then-
greater cabin pressure caused the floor between the cabin and the cargo hold to com-
press. This, in turn, pinched cables needed to steer and control the aircraft. Investigate a
new cargo-hold door and latch design.

1.6 Environmental concerns make recycling a necessity. Investigate the design of a system to
sort glass and plastic bottles, as well as steel and aluminum cans.

Suggestion: Projects may be assigned to an individual or a group, depending on the instructor’s
goals. Most mechanical devices in current use are the result of many person-years of effort by
experienced engineers. However, student creativity may be stimulated by the demands of the
task. It is expected that the mechanical engineering aspects of the design will be given priority.
Detailed analysis may be limited to one aspect of the design project if the scope of the project is
too large for the time available.The degree of success can be measured by the quality of innovative

L3 = driven crank.L2 = coupler,L1 = drive crank,L0 = fixed link,
R2 = L2/L1R3 = L3/L1 = 1.25

R0 = L0/L1 = 0.85

L3 = driven crank.L2 = coupler,L1 = drive crank,L0 = fixed link,
R2 = L2/L1R3 = L3/L1 = 1.15

R0 = L0/L1 = 0.85

L3 = driven crank.L2 = coupler,L1 = drive crank,L0 = fixed link,
R2 = L2/L1R3 = L3/L1 = 1.35
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thinking, analysis, and interpretation, rather than by comparing a proposed design with a com-
mercially available product. As the project progresses, it is expected that it will be necessary to
consult several sections in this text as well as other sources of information.
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INTERNET RESOURCES

The Internet can be helpful to those interested in applications that are not covered in this text
and as a resource for projects in kinematics and dynamics of machinery. The list that follows
includes a small sample of relevant websites and typical products or services. When searching
the Internet, try to limit the search to your area of interest by adding modifiers to the key words.
For example, a search for robots yielded over two million sites, but pneumatic robot grippers for
automotive manufacturing returned 180 sites.
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98 Chapter 1 Mechanisms and Machines: Basic Concepts

AUTOMOTIVE DRIVE COMPONENTS

www.ingersoll.com Ingersoll CM Systems (machinery and systems for crankshaft
and camshaft manufacturing)

www.spicerdriveshaft.com Spicer (vehicle driveshafts–constant velocity and Cardan joints)

CAMS AND PART HANDLERS

www.camcoindex.com Commercial Cam (cams, index drives, conveyors)

Construction and earth-moving equipment, cranes and lift tables

www.airtechnical.com Air Technical Industries (floor cranes, lift trucks, lift tables)
www.bobcat.com Ingersoll-Rand (excavators, skid-steer loaders, track loaders)
www.caterpillar.com Caterpillar Products (earth-moving equipment, engines and

power systems)
www.coastalcranes.com Coastal Hydraulic Cranes (telescoping and fixed-boom cranes)

Gears

www.geartechnology.com Gear industry buyers guide (gear machines, gear materials, gear
drives, software).

www.hdsystems.com HD Systems (harmonic planetary gearheads)

Professional societies and journals

www.asme.org American Society of Mechanical Engineers (Journal of
Mechanical Design includes kinematics and dynamics of 
mechanisms)

www.elsevier.com Elsevier Science (Mechanism and Machine Theory, a journal
devoted to mechanisms and dynamics of machines)

www.sme.org Society of Manufacturing Engineers

ROBOTS, GRIPPERS, SENSORS, GUIDED VEHICLE SYSTEMS AND ACCESSORIES

www.abb.com ABB Group (automated welding equipment)
www.agvp.com AGV Products (automated guided vehicle systems)
www.keyence.com Keyence Corp. (machine vision)
www.parket.com Parker Automation (accessories)
www.robotics.org Robotic Industries Association (industrial robots, robot safety).
www.robotics-technology.com European site for robotics information.
www.sankyo.com Sankyo Robotics (Cartesian coordinate robots, track-mounted

robots, and selective compliance assembly robot arms)

SOFTWARE FOR CALCULATION, DESIGN, MANUFACTURING, MOTION SIMULATION AND
TESTING

www.eds.com Structural Dynamics Research Corp. (I-deas software for
machine simulation, NC machining)

www.lmsintl.com LMS International (kinematic and dynamic simulation, data
acquisition, virtual testing)

www.mathcad.com Mathsoft (MathcadTM calculation software and sample files)
www.workingmodel.com MSC (Working ModelTM simulation software)
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C H A P T E R  2

Motion in Machinery:

Positional Analysis of Planar
and Spatial Mechanisms

The piston in a pump or engine is constrained to rectilinear motion. The motion of the
crank and connecting rod in the same engine or pump is planar. Robots and automo-
tive steering linkages include links with spatial motion.

Complex-number methods are important analytical tools for analyzing and
designing planar linkages. But complex-number methods cannot be used to analyze
spatial linkages. Analytical vector methods are used to analyze and design both planar
and spatial linkages. Graphical methods are a useful tool for independent verification
of analytical work.

Concepts and Methods You Will Learn and Apply while
Studying This Chapter

• Motion produced by an eccentric cam and a Scotch yoke
• Vector manipulation required to solve problems in the kinematics of machinery:

unit vectors, addition of vectors, cross and dot product, and vector differentiation
• Solution of vector equations
• Analytical vector methods for displacement analysis of planar mechanisms
• Complex numbers in rectangular and polar form
• Complex arithmetic: addition, multiplication, and differentiation
• Complex numbers applied to linkage design and analysis
• Analytical methods for solving closed spatial linkages
• The Newton–Raphson method for two or more variables applied to single- and

multiloop linkages (an advanced topic)
• Design of linkages with the aid of animation software: building a simulation of a

mechanism, running the simulation, and interpreting results of a design study

 



100 Chapter 2 Motion in Machinery

2.1 MOTION

When the motion of the elements of a linkage is not restricted to a single plane or to a
set of parallel planes, the linkage undergoes spatial motion. Three independent coordi-
nates are required to specify the location of a point in spatial motion. A rigid body in
spatial motion has six degrees of freedom subject to restrictions imposed by joints.
Spatial or three-dimensional linkages often include joints with two or three degrees of
freedom, such as cylinder pairs and sphere pairs. A spatial linkage would be required if
we were to attempt to duplicate the motion of the human arm.

If the motion of all points in a linkage system is restricted to a plane or to a set of
parallel planes, then the motion is planar. A point in planar motion is located by two
independent coordinates. An unconstrained rigid link has three degrees of freedom in
planar motion. We may, for example, identify the x and y coordinates of a point on the
link and the angular position of the link centerline. Planar motion may be character-
ized by two-dimensional vectors. Plane mechanisms, a special case of the more general
spatial mechanisms, are of particular interest, because they include major components
of the internal-combustion engine, spur gear trains, and most cams, as well as a variety
of other mechanisms.

The plane motion of a rigid link may be pure translation (also called rectilinear
motion), in which case all points on the link move in the same direction at the same
speed. For example, the cam follower in Figure 2.1 undergoes rectilinear motion (i.e.,
translation along a straight line). Translation of a rigid body in general implies motion
in space such that any line connecting two points on the body remains parallel to its
original position.

In another special case, the plane motion of a body is described by pure rotation,
in which case a point on the link is fixed (as, for example, on a cam). Oscillation refers
either to a back-and-forth rotation (e.g., the motion of a pendulum) or a back-and-
forth translation (the motion of a piston). In the study of mechanisms, oscillation is
commonly used in the first sense, and the motion of a piston is described instead as rec-
iprocating motion. In every case, the meaning should be clear in context. Rectilinear
motion and rotation of a rigid body about a point may be described by one independent
variable (e.g., x and respectively).

Examples of Rectilinear Motion: The Eccentric Cam 
and the Scotch Yoke

The eccentric cam with flat-face follower and the Scotch yoke are examples of mecha-
nisms having simple mathematical representations. The eccentric cam of Figure 2.1a is
circular in form, but the center of the circle, C, is offset a distance R from the center of
the camshaft For radius r, the distance from the camshaft center to the follower
face is when the follower is at its lowest position.After the cam turns through an
angle (see Figure 2.1b), the distance becomes Therefore, the displacement
of the follower during the interval is

for any value of where x is measured from the lowest position.u,

x = r - R cos u-(r - R) = R(1 - cos u)

r - R cos u.u

r - R
O1.

u,
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FIGURE 2.1 (a) The cam, link 1, is formed by a circular disk of radius r and eccentricity R.
(b) The follower, link 2, undergoes displacement x as the cam rotates through an angle 
(c) The displacement and velocity of the follower are plotted against cam rotation.

u.
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If this expression is differentiated with respect to time, we obtain the follower
velocity

where cam angular velocity (rad/s). If the cam rotates at constant speed, the
follower acceleration is

Displacement and velocity are plotted in Figure 2.1c for constant Note that the
velocity is proportional to the eccentricity R, but independent of the cam circle radius r.

In the two-cylinder piston pump of Figure 2.2, the cam raises and lowers a shaft
with a piston at each end by acting alternately on two separate follower faces. The
cam pushes against the upper follower face, lifting the piston assembly during of180°

v.

a = Rv2 cos u.

v = du/dt

y = Rvsin u,

FIGURE 2.2 A two-cylinder cam-type piston pump.An eccentric cam (in the form of a sealed-roller-type bear-
ing) transmits power from crankshaft to follower (the piston drive).The location and velocity of the piston are
the same as given for the eccentric cam, except that the roller bearing eliminates sliding. (Source: Hypro, a
division of Lear Siegler, Inc.)
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1

2�

O1

R �

x

FIGURE 2.3 A Scotch yoke is kinematically
equivalent to an eccentric cam.

the cam’s rotation. Through the remaining of the rotation, the cam acts against
the lower follower face, forcing the piston assembly downward.

The Scotch yoke (see Figure 2.3) is kinematically equivalent to the eccentric cam
just considered. In this case, link 1, the driver, has a pin on which the slotted follower,
link 2, rides. The pin is a distance R from the axis of the driver. Measuring from the
lowest position of the follower, we see that displacement, velocity, and acceleration are
given by the equations that were used to describe the eccentric cam.

2.2 VECTORS

Vectors are an important part of the language of mechanism and the other branches of
mechanics. They provide us with a graphical and analytical means of representing
motion and force. A quantity described by its magnitude, direction, and sense can be
considered a vector and can be represented by an arrow. Now, suppose a vector repre-
sents a point on a piston that is constrained to move vertically. Then the vector direc-
tion is vertical, and with further information, we may determine the vector sense
(upward or downward) and vector magnitude.

Graphical and analytical vector methods may be applied to linear displace-
ments, velocities, accelerations, and forces, and to torques and angular velocities and
accelerations. Although finite angular displacements possess magnitude and direc-
tion, they are not generally considered vectors, because they do not follow the rules of
vector addition.

Vectors are usually identified by boldface type to distinguish them from scalar
quantities. A line above or below the letter symbol may be used as an alternative

O1,

180°
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104 Chapter 2 Motion in Machinery

identification for a vector. A different designation is suggested for computer use–for
example, “L” for scalar link length and “r” for the corresponding vector.

Right-Hand Coordinates and a Sign Convention for Angles

A right-hand coordinate system is used for vectors. The thumb, index finger, and mid-
dle finger of the right hand represent, respectively, the mutually perpendicular x-, y-,
and z-axes. A vector in an xy-plane can be described by its magnitude (length) and its
direction, an angle measured counterclockwise from the x-axis. If the vector represents
a link rotating in an xy-plane, an increasing angle corresponds to a positive (counter-
clockwise) angular velocity. Then, the angular-velocity vector is in the z-direction.

Angles in Radians

Most software and programming languages expect angles to be measured in radians.
Some software packages will accept either degrees or radians, but be sure that you and
the software understand each other.

The Commutative, Associative, and Distributive Laws for
Adding Vectors and Multiplying a Vector by a Scalar

In the following laws governing the addition of vectors and the multiplication of a vector
by a scalar, A, B, and C are vectors and m is a scalar quantity:

(2.1)

As noted earlier, finite angular displacements are not generally treated as vectors (or
scalars). To see why, consider the motion of an aircraft, with yaw denoted by the angle

and pitch by the angle where both and are moving coordinates referred to the
axes of the aircraft. Let the aircraft make a right turn and then pitch
downward by Using any rigid body to represent the aircraft, we see that
if the order of these two maneuvers is reversed, then the result is different.

We may run into a similar situation when analyzing the motion of a robot arm. If
the order of the commands is changed, the final position may be different. Thus,

showing that finite rotations about nonparallel axes do not follow the commutative
law for addition.

Unit Vectors

In general, a vector of unit magnitude can be called a unit vector. Thus, is a
unit vector, where is the magnitude of vector A. Unit vectors i, j, and k (or I,
J, and K) parallel to the x, y, and z (or X, Y, and Z) coordinate axes, respectively, are

A = ƒ A ƒ
Au = A/A

u + f Z f + u,

90° (f = 90°)
(u = 90° cw)90°

fuf,u

m(A + B) = mA + mB (distributive law for multiplication by a scalar).
mA = Am (commutative law for multiplication by a scalar);
A + (B + C) = (A + B) + C (associative law for addition);
A + B = B + A (commutative law for addition);
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R

P

y

x

O

z

FIGURE 2.4 Vector R locates the position of the
point P in the xyz coordinate system.

particularly useful. These unit vectors are also called rectangular unit vectors. A right-
hand system of mutually perpendicular coordinates is shown in Figure 2.4. A vector
may be described in terms of its components along each coordinate axis.

Vector Components

Let the location of a point in space be described by a vector extending from the origin
of a coordinate system to the point. For example, point P in Figure 2.4 is located by the
vector R. The x, y, and z coordinate axes in the figure are mutually perpendicular. Any
motion of P will result in a change in the vector R, either in its magnitude, its direction,
or both.

A plane through P perpendicular to the x-axis intersects that axis at a distance 
from the origin O. (See Figure 2.5.) The distance is called the projection of the vec-
tor R on the x-axis, or the x component of R. The projections of R on the y-axis and 
z-axis are labeled and respectively. Vectors i, j, and k are unit vectors in the x, y,Rz,Ry

Rx

Rx

P

y

x

O

Rz

Rx

Ry

z

R

FIGURE 2.5 The vector R can be resolved into com-
ponents along the x-, y-, and z-axes.
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k
R

jRy

iRx

kRz

P

y

x

i

z

j

FIGURE 2.6 Each component vector can be
considered the product of a unit vector and the
scalar magnitude of the component.

and z directions, respectively, as shown in Figure 2.6.That is, each has unit length and is
used only to assign a direction. The scalar length multiplied by the unit vector i
gives us the vector of length and parallel to the x-axis. The original vector is
given by the vector sum of its components:

(2.2)

Vector Equations

If two vectors are equal, then each component of the first is equal to the corresponding
component of the second. Thus, let

and

Then

Vector Addition and Subtraction

The addition of vectors simply involves adding the vector components in the x-, y-, and
z-directions (i.e., the i, j, and k components) individually. For example, let

C = A + B

 Ax = Bx, Ay = By, and Az = Bz.
 A = B implies that

B = iBx + jBy + kBz.

A = iAx + jAy + kAz

R = iRx + jRy + kRz.

RxiRx

Rx

110



Section 2.2 Vectors 107

where vectors A, B, and C are represented in terms of their scalar components and
rectangular unit vectors. Then

Vector subtraction is similar. If

then

Graphical Addition and Subtraction of Planar Vectors

Vectors may be added graphically by joining them head to tail. Although graphical
procedures may be used to treat both planar and spatial linkages, graphical solutions
are most commonly used with planar problems. Consider the vector equation

where all of the vectors lie in the same plane, as shown in Figure 2.7a. Beginning at an
arbitrary point o, we draw vector A and then successively add vectors B, D, and E, with
the tail of each added vector beginning at the head of the vector last drawn.

The vector sum is given by the vector F, with tail at o and head drawn to the head
of the last vector of the series to be added. The reader can verify that the addition of
vectors is commutative; that is, the vectors may be added in any order to obtain the
same result: and so on.

Vector subtraction is sometimes required when we consider relative motion.
Thus, if vector G is given by vector A minus vector B, we write

where vector is identical to vector B, except that the sense is reversed, as shown
in Figure 2.7b.The second form of the expression for the difference between two vectors
is preferred, particularly when many vectors are to be combined.

Determinants

Determinants can be used in vector operations and to solve equations. Determinants are
square arrays of elements enclosed in vertical bars, like this second-order determinant:

det A = `
a c
b d

` .

(-B)

G = A - B or G = A + (-B),

A + B = B + A,

A + B + D + E = F

D = i(Ax - Bx) + j(Ay - By) + k(Az - Bz).

D = A - B,

C = i(Ax + Bx) + j(Ay + By) + k(Az + Bz).
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A

B

A

o

o

A

A

B

B

D

D E

E

F

F� A � B � D � E

( �B)

( �B)

G � A � B � A � ( � B)

(a)

(b)

FIGURE 2.7 (a) The graphic addition of
several vectors. (b) Vector subtraction.
Simply reverse the sense of the vector being
subtracted, and add it like any other vector.

We evaluate a second order determinant by multiplying terms along the diagonals.The
product of the terms on the diagonal running from the lower left to the upper right of
the determinant is subtracted from the product of the terms on the diagonal running
from the upper left to the lower right of the determinant. This is how it works:

det A = `
a c
b d

` = ad - bc.
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A third-order determinant looks like this:

We can evaluate a third order determinant by repeating the first two columns and mul-
tiplying terms along each diagonal.The products of the terms on the diagonals running
from the upper left to the lower right are added, and the products of the terms on the
diagonals running from the upper right to the lower left are subtracted. This is how a
we evaluate a third-order determinant:

A word of caution: The diagonal method will not work for determinants of fourth or
higher order.

The vector cross product is expressed as a determinant in the section that follows.
Before the general availability of computers, determinants were also a popular method
for solving sets of simultaneous equations. (See, for example, the velocity analysis of a
four-bar linkage in the next chapter.) Now we are now more likely to use software that
is capable of performing vector and matrix operations directly, particularly for prob-
lems that result in sets of three or more equations.Another alternative is to use animation
software that utilizes powerful built-in numerical methods.

The Vector Cross Product

In addition to the product of a scalar and a vector, two types of products involving vec-
tors alone are defined: the vector or cross product and the scalar or dot product. The
vector cross product, or simply the cross product of two vectors is a vector perpendicular
to the plane in which the two vectors lie.The cross product of vectors A and B separated
by angle is where the magnitude of C is and the direction
of C is given by the right-hand rule, as follows: The thumb and index finger of the right
hand are extended in the direction of vectors A and B, respectively. If the middle finger
is then bent perpendicular to A and B, it points in the direction of vector C. is
read “A cross B.”The cross product of two parallel vectors is zero (the null vector) since
angle Thus, Some references identify the null vector as 0, using bold
type to remind the reader that the null vector can be written as 

Observe that the cross product does not follow the commutative law. Interchanging
the order of the vectors changes the sign of the vector product (i.e., ).
It can be seen that the vector products of unit vectors i, j, and k are as follows:

(2.3)i * i = j * j = k * k = 0 i * k = -j k * i = j
 k * j = -i j * k = i j * i = -k i * j = k

B * A  = -A * B

0i + 0j + 0k.
A * A = 0.u = 0.

A * B

C = AB sin uA * B = C,u

det B = 3
a d g
b e h
c f i

3 a d
b e
c f

= aei + dhc + gbf - gec - ahf - dbi.

det B = 3
a d g
b e h
c f i

3 .
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110 Chapter 2 Motion in Machinery

If vectors A and B are expressed in terms of their scalar components and unit vectors
as

and

respectively, then

which may be written more concisely in determinant form as

(2.4)

The vector cross product will be used extensively in later chapters. One application of
the cross product is determining the velocity of a point on a link rotating about a fixed
center at angular velocity

If the vector from the fixed center to the point in question is given by

then the velocity of the point is given by

(2.5)

SAMPLE PROBLEM 2.1

Rotating Link

Suppose a link that is held in a ball joint (spherical pair) at one end rotates with an instantaneous
angular velocity

V = i2 + j(-1) + k4(rad /s)

Y = V * r = 3
i j k
vx vy vz

rx ry rz

3 .

r = irx + jry + krz,

V = ivx + jvy + kvz.

A * B = 3
i j k

Ax Ay Az

Bx By Bz

3 .

A * B = i(AyBz - AzBy) + j(AzBx - AxBz) + k(AxBy - AyBx),

B = iBx + jBy + kBz,

A = iAx + jAy + kAz
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Section 2.2 Vectors 111

Find the instantaneous velocity of P, a point on the link defined by the radius vector

measured from the ball joint. (See Figure 2.8a.)

Solution. The velocity of the point is given by

The velocity is perpendicular to the plane of and r; its magnitude is given by the sum of the
squares of the velocity components:

y = 2yx
2 + yy

2 + yz
2 = 2(-42)2 + (-8)2 + 192 = 46.79 mm/s.

V

 = i(-42) + j(-8) + k(19) (mm   /   s)

 = i(-2 - 40) + j(-4 - 4) + k(20 - 1)

 Y = V * r = 3
i j k

Ax Ay Az

Bx By Bz

3 = 3
i j k
2 -1 4

-1 10 2

3

r = i(-1) + j10 + k2 (mm),

P

Rigid link

Ball joint

r

r

F
F

F

(b)

O Revolute joint

Rigid link
r

�
F

z, k
x, i

y, j

v � �  � r

�

T

T

(c)

(a)

FIGURE 2.8 (a) Velocity of a point on a link, in terms of the cross product. (b) The
torque of force F about point O is (c) A link in equilibrium.T = r * F.
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112 Chapter 2 Motion in Machinery

Another application of the vector cross product involves torque. For example, in
Figure 2.8b, let force F be applied to a rigid link. The resultant torque of F about point
O may be represented by the vector product

(2.6)

The magnitude of T is and the direction of T is perpendicular to the plane of r
and F, as shown in the figure. Note that applying the right-hand rule to 
gives the direction of the resultant torque. If both r and F lie in the xy-plane, then T is
represented by a vector in the direction. The link could be in static equilibrium if a
force and torque were applied, as in Figure 2.8c.

Later, you will use the torque cross product for static and dynamic analysis of
linkages. The required driving torque can be determined from forces on the driving
link.

The Dot or Scalar Product

The dot product of two vectors is a scalar equal to the product of the magnitudes of the
vectors and the cosine of the angle between them. Thus, the dot product of vectors A
and B, separated by angle is given by

(2.7)

Hence,

and

(2.8)

Let A and B be expressed in terms of their scalar components and unit vectors as

and

Then

(2.9)

and

(2.10)A # B = AxBx + AyBy + AzBz.

A # A = Ax
2 + Ay

2 + Az
2 = A2

B = iBx + jBy + kBz.

A = iAx + jAy + kAz

i # j = j # k = k # i = 0.

i # i = j # j = k # k = 1

A # B = AB cos u.

u,

;z

T = r * F
rF sin u,

T = r * F = 3
i j k
rx ry rz

Fx Fy Fz

3
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The dot product of two perpendicular vectors is zero. Thus, since the cross product of
two vectors is perpendicular to the plane of the two vectors, we have

This relationship may be used as a partial check on the calculation of the velocity of a
point on a rigid link.

SAMPLE PROBLEM 2.2

The Dot Product

Use the dot product to check the results of a previous example in which

and

Solution.

Thus, is shown to be perpendicular to the plane of and r.

As another example of an application of the dot product, consider a spatial linkage
where we require that the rotation of a certain link about its own axis be zero.
Designating the link by the vector

and its angular velocity by

we see that the requirement will be satisfied if or

Some additional laws relating to the dot product and vector cross product are as follows:

(ivx + jvy + kvz) # (irx + jry + krz) = vxrx + vyry + vzrz = 0.

V # r = 0,

V = ivx + jvy + kvz,

r = irx + jry + krz

VY

 r # Y = (-1)(-42) + (10)(-8) + 2(19) = 0.
 V # Y = (2)(-42) + (-1)(-8) + (4)(19) = 0;

Y = V * r = i(-42) + j(-8) + k19.

 r = i(-1) + j10 + k2,
 V = i2 + j(-1) + k4,

A # (A * B) = B # (A * B) = 0
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114 Chapter 2 Motion in Machinery

(the commutative law holds for the dot product, but not the cross
product);

and

(2.11)

and

and

In solving kinematics and dynamics problems, it is often convenient to use mathemat-
ics software with built-in vector functions. Some types of software (e.g., MathcadTM)
express vectors in column form:

instead of the form 
We then identify the quantity as a matrix with three rows and one column. The

software is capable of adding, subtracting vectors, as well as computing their magni-
tudes and the dot and cross product. Solutions of equations in matrix form will be con-
sidered in a later section. If you have programming skills, you might try writing a
program to perform vector manipulation.

SAMPLE PROBLEM 2.3

Vector Operations

Consider the following vectors (in column format):

 E = C
16
-8

-10
S .

D = C
-9
-5

7
S ;C = C

16
-8

-10
S ;B = C

2
-1
-5
S ; A = C

4
3
1
S ;

iAx + jAy + kAz.

A = C
Ax

Ay

Az

S

(A * B) * C = (A # C)B - (B # C)A

A * (B * C) = (A # C)B - (A # B)C

A # (B * C) = B # (C * A) = C # (A * B) = 3
Ax Ay Az

Bx By Bz

Cx Cy Cz

3 ;
A * (B + C) = A * B + A * C (distributive law);

A # (B + C) = A # B + A # C

A # B = B # A
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Section 2.2 Vectors 115

Find 

and

Solution. Software with vector capabilities was used to obtain the following results:

The result may be unexpected. Since

where is the angle separating the vectors and neither A nor B is zero, then This
indicates that vectors A and B are perpendicular to one another. The magnitude of the cross
product is given by

For this special case, with A and B perpendicular, the cross product equals the product of the
magnitudes. The calculations show this.

We note that and that These relationships are true in
general. Of course, the dot product of a vector with itself, is the square of the magnitude of

the cross product of a vector with itself, is always zero. Since vectors C and E areA, and A * A,
A # A,

A * C = -C * A.A # C = C # A

ƒ A * B ƒ = AB sin u

cos u = 0.u

A # B = AB cos u,

A # B = 0

A # (A * C) = 0; C # (A * C) = 0.C * A = C
22

-56
80
S ;

ƒ A * B ƒ = 27.928; ƒ A ƒ # ƒ B ƒ = 27.928; A * C = C
-22

56
-80
S ;

A * B = C
-14

22
-10
S ;C * E = C

0
0
0
S ;A # A = 26; A * A = C

0
0
0
S ;

( ƒ A ƒ )2 = 26;A # B = 0; A # C = 30; ƒ A ƒ = 5.099; ƒ B ƒ = 5.477;

A - B + C - D + E = C
43
-7

-21
S ;A + B + C + D + E = C

29
-19
-17
S ;

 C # (A * C).

 ƒ A * B ƒ , ƒ A ƒ # ƒ B ƒ ,  A * C, C * A,   A # (A * C),
 ƒ A ƒ , ƒ B ƒ , ( ƒ A ƒ )2,  A # A, A * A,  C * E, A * B,

 A + B + C + D + E,  A - B + C - D + E,  A # B, A # C,
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116 Chapter 2 Motion in Machinery

identical, is zero as well. The cross product is perpendicular to both vector A and
vector C. Thus, the scalar triple products and are zero.

Differentiation of a Vector

If vector A varies in magnitude and direction with time, then the derivative of A with
respect to time is given by

(2.12)

where represents an increment in time. Note that dA/dt is a vector and that the
numerator of the fraction on the right involves changes in both the magnitude and
direction of A.

If A, B, and C are vector functions of time and m is a scalar function of time, then
the following rules hold:

(2.13)

Recall that Thus, the order of the vectors in the vector cross prod-
ucts should be retained when we apply the chain rule of differentiation.

The time differential of a unit vector fixed within a fixed coordinate system is, of
course, zero, since neither the magnitude nor the direction of the vector changes. The
time differential of a unit vector in a moving coordinate system is not zero. In applica-
tions of vectors to velocity and acceleration, we will consider both fixed and moving
coordinate systems.

Solution of Vector Equations

Let a vector equation in the form

(2.14)

represent a spatial linkage.

r0 + r1 + r2 + r3 = 0

A * B = -B * A.

d

dt
 [A * (B * C)] = A * ¢B *

dC
dt
≤ + A * ¢dB

dt
* C≤ +

dA
dt

* (B * C)

 
d

dt
 (mA) = m

dA
dt

+
dm

dt
A

 
d

dt
 (A # B) = A # dB

dt
+

dA
dt

# B

 
d

dt
 (A * B) = A *

dB
dt

+
dA
dt

* B

 
d

dt
 (A + B) =

dA
dt

+
dB
dt

¢t

dA
dt

= lim
¢t:0

A(t + ¢t) - A(t)

¢t
,

C # (A * C)A # (A * C)
A * CC * E
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Section 2.2 Vectors 117

Each vector may be expressed in terms of its x, y, and z components and the unit vec-
tors i, j, and k, such as

and so on. Since the sum of the components in each coordinate direction must equal
zero, we have three independent scalar equations:

and so on. Thus, in general, the vector equation may be solved
for three unknown components. For example, we may solve for and if the
other components are known.Alternatively, each vector could be expressed in terms of
its magnitude and two independent angular coordinates. Equation (2.14) could then be
solved for any combination of three magnitudes and directions. Planar linkages can be
represented by two independent scalar equations. Only two unknown components are
permitted if Eq. (2.14) is applied to planar linkages.

If you prefer to solve the nonlinear position equations of a linkage using an itera-
tive process, you will need an initial or trial guess at the solution. A sketch will help.
Later, when you determine velocities, you will use linear equations. Then, matrices will
be useful.A number of other methods for solving the nonlinear position equations of a
linkage include

• graphical methods,
• motion simulation software,
• the dot-product method, and
• the cross-product method. This is a vector elimination method suggested by

Chace (1963).Although it seems difficult at first, you can use it to write an efficient
noniterative program for solving four-bar linkages.

Solution of Planar Vector Equations

Consider the planar vector equation

(2.15)

or, in terms of unit vectors and magnitudes (A, etc.),

(2.16)

If the magnitude and direction of the same vector are unknown, then the solution is
easily obtained. For example, C is unknown; we use

(2.17)

or

(2.18)C = -(A # i + B # i)i - (A # j + B # j)j.

C = -(Ax + Bx)i - (Ay + By)j

AuA + BuB + CuC = 0.

(Au, etc.)

A + B + C = 0,

r3zr3x, r3y,
r0 + r1 + r2 + r3 = 0

r0x + r1x + r2x + r3x = 0,

r1 = r1xi + r1y  j + r1zk
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118 Chapter 2 Motion in Machinery

If the magnitudes of two different vectors are unknown, the vector cross product method
may be used. Suppose, for example, magnitudes and are unknown in
the vector equation We take the dot product of each term with

noting that since vector is perpendicular to vector
Thus, we obtain

from which the magnitude of vector A is given by

(2.19)

Similarly, the magnitude of B is given by

(2.20)

If the vector directions and are unknown, but all vector magnitudes are known,
the solution of the equation is more complicated. In this case, the
results are

(2.21)

and

(2.22)

(The significance of the signs before the radical are illustrated in the section that follows.)
When the magnitude of A and the direction of B are unknown, A and B may be

found by the equations

(2.23)

and

(2.24)

This approach uses vector notation throughout, unlike alternative methods that use
vector analysis to derive scalar equations. If the method is to be used for computer-
aided analysis and design of mechanisms, it is essential to use software with vector
capabilities or to write subroutines for that purpose.

B = - [C # (Au * k)](Au * k) ; 2B2 - [C # (Au * k)]2Au.

A = C -C # Au<AB2 - BC # (Au * k)R2SAu

B = ; CB2 - £C2 + B2 - A2

2C
≥

2

S
1/2

(Cu * k) - CC2 + B2 - A2

2C
SCu.

+ CC2 + B2 - A2

2C
- CSCu

A = < CB2 - £C2 + B2 - A2

2C
≥

2

S
1/2

(Cu * k)

A + B + C = 0
BuAu

B =
-C # (Au * k)

Bu # (Au * k)
.

A =
-C # (Bu * k)

Au # (Bu * k)
.

AuA # (Bu * k) + C # (Bu * k) = 0,

Bu * k.
BuBu # (Bu * k) = 0,Bu * k,

AuA + BuB + CuC = 0.
B = ƒ B ƒA = ƒ A ƒ
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Section 2.3 Analytical Vector Methods 119

2.3 ANALYTICAL VECTOR METHODS APPLIED TO DISPLACEMENT
ANALYSIS OF PLANAR LINKAGES

An in-line slider-crank mechanism has two assembly configurations. The wrist pin can
be located by drawing an arc the length of the connecting rod. The two possible wrist
pin locations are shown in Figure 2.9a. We usually want an analytical solution. Suppose
we have already decided crank and connecting rod lengths. If we are given the position
of the crank for the linkage of Figure 2.9b, then the unknowns will be the connecting
rod orientation and slider position. These may be found by using the equations of the
previous section to solve the vector equation

(2.25)

SAMPLE PROBLEM 2.4

Slider-Crank Linkage

Suppose an in-line slider-crank linkage (see Figure 2.9a) has a crank described by the vector
(at the instant shown) and a connecting rod length Find the connecting rod

orientation and the slider position (See Figures 2.9a and b.)

Solution. The slider position is given by the vector

 r0 = C -r1
# r0

u < Ar2
2 - Br1

# ¢r0
u * k≤ R2Sr0

u

r0.r2
u

r2 = 4.r1 = i + j2

r0 + r1 + r2 = 0.

Alternative wrist
pin location

(a)

Crankshaft

Crank

Crank pin

Connecting rod

Arc locating wrist pin

Wrist pin

Slider

y, j

x, i

z, k

�

r1

r2

r0

(b)

FIGURE 2.9 (a) Slider-crank linkage. (b) Vector representation.
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120 Chapter 2 Motion in Machinery

where the sign of the root depends on the initial assembly configuration. The positive root
applies to the configuration in the figure, yielding The alternative wrist-pin location,
determined by taking the negative root, is 

The vector representing the connecting rod is

The negative root applies to the configuration shown, yielding

and

For the alternative wrist-pin location, the positive root applies, yielding

and

The Four-Bar Linkage

A graphical layout of a four-bar linkage is easily constructed. We require only that
the position of one link be given relative to the frame and that the link lengths be
known. Then, the linkage may be drawn with the aid of a compass. It can be quite
time-consuming, however, to develop the analytical formulas for link positions that
are to be used to write a computer program.

Position Analysis Using the Vector Cross Product

Equations 2.21 and 2.22 may be used to find linkage displacements. These equations
apply when the directions of vectors A and B are unknown. The four-bar planar link-
age of Figure 2.10a is described by the vector equation

(2.26)

Suppose we have already decided the length of each of the links in a tentative design,
where link 1 is to be the driver. For a given angular position of link 1, the diagonal vector

r0 + r1 + r2 + r3 = 0.

r2
u = -i0.866 - j0.5.

r2 = -2j + 212(-i) = -i3.464 - j2

r2
u =

(i3.464 - j2)

4
= i0.866 - j0.5.

r2 = i3.464 - j2

= -2j ; 212(-i).
; 242 - [(i + j2) # (-i + k)]2(-i)

r2 = -[(i + j2) # (-i * k)](-i * k)

r0 = +i2.464.
r0 = -i4.464.

 = C -(i + j2) # (-i) < A42 - B(i + j2) # (-i * k)R2S(-i),
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r1

r1

rd

rd

r2

r2

r0

r0

r3

r3

(a)

(b)

�
1

�
2

�
3

Diagonal (prime diagonal)
120

60

140

80

�

x, i

y,  j

z, k

FIGURE 2.10 Four-bar planar linkage. (a) Use the lower set of signs in the position analy-
sis equations for this assembly configuration. This configuration is also called the open
position. (b) Alternative assembly. Use the upper set of signs. This configuration is also
called the closed position.

(also called the prime diagonal) is given by

and the triangle formed by links 2 and 3 and the diagonal is described by

(2.27)

Because the lengths of the links are specified and the orientation of link 1 is given, the
following substitution

and

C = rd = r0 + r1

 B = r3,
 A = r2,

rd = -(r2 + r3).

rd = r0 + r1,
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122 Chapter 2 Motion in Machinery

may be made in Eqs. 2.21 and 2.22; yielding

(2.28)

and

(2.29)

If the linkage is assembled so that the vector loop is clockwise, then we use
the lower set of signs in the preceding equations. (See Figure 2.10a.) If the loop is
counterclockwise, we use the upper set of signs (Figure 2.10b).

SAMPLE PROBLEM 2.5

Position Analysis Using the Vector Cross Product

A planar mechanism (see Figure 2.10a) has the following link lengths:
Link 0, fixed: 120 mm;
Link 1, crank: 60 mm;
Link 2, coupler: 140 mm;
Link 3, follower: 80 mm.
Find the orientation of links 2 and 3 at the instant the internal angle between the crank and fixed
link is 

Solution. If the links are drawn to scale, the joint between links 2 and 3 can be located by using
a compass. Alternatively, an analytical vector solution may be obtained as follows. Select the
coordinate system so that the fixed link lies in the -x direction (as in Figure 2.10a.) Then the
known values are

and

The diagonal is given by the vector

rd = (r0 + r1) = -i146.83 + j53.67.

r3 = 80.

 r2 = 140,
 r1 = 60(i cos 116.56° + j sin116.56°) = -i26.83 + j53.67,
 r0 = - i120,

116.56°.

r2r3rd

r3 = ; Qr3
2 - £ r3

2 - r2
2 + rd

2

2rd
≥

2

£rd
u * k≥ + £ r3

2 - r2
2 + rd

2

2rd
≥rd

u.

r2 = < Qr3
2 - £ r3

2 - r2
2 + rd

2

2rd
≥

2

¢rd
u * k≤ + £ r3

2 - r2
2 + rd

2

2rd
- rd≥rd

u
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which has a magnitude and unit vector

The direction of the cross product is given by the right-hand rule. The cross-product vec-
tor lies in the xy-plane and is perpendicular to Expressing the cross product in determinant
form, we have

Using Eqs. 2.28 and 2.29, we define

When the vector loop is clockwise, the lower set of signs in Eqs. 2.28 and 2.29 applies. The
vector representing the coupler is given by

The vector representing the follower is given by

(Note that the magnitudes of vectors and agree with the given data.)
In some linkage configurations, it is impossible to go from one mode to another without

disassembling the links. Applying Grashof-type criteria to check this linkage (see Chapter 1), we
find that

This is a crossover-position or change-point mechanism. The mechanism may go from one mode
to another, depending on inertial forces, spring forces, or other forces. Using Eqs. 2.28 and 2.29
with the upper set of signs for the position where and form a counterclockwise loop, we
obtain the vector representing the coupler:

r2 = i88.54 - j108.44 = 140l -50.8°.

rdr3,r2,

 (140 + 60 = 120 + 80)
 Lmax + Lmin = La + Lb

r3r2

 = i9.24 - j79.46 = 80l -83.4°.

   -39.95(-i0.9392 + j0.3433)

 = -2802 - 35.952(i0.3433 + j0.9392)

 r3 = -2r3
2 - a2(rd

u * k) - ard
u

 = i137.60 + j25.79 = 140l10.6°.

    + (35.95 - 156.34) (-i0.9392 + j0.3433)

= 2802 - 35.952(i0.3433 + j0.9392)

 r2 = +2r3
 2 - a2

 (rd
u * k) + rd

u
 (a - rd)

r2r3rd

a =
r3

 2 - r 2
2 + r d

2

2rd
=

802 - 1402 + 156.332

2 * 156.34
= 35.95.

rd
u * k = 3

i j k
-0.9392 0.3433 0

0 0 1

3 = i0.3433 + j0.9392

rd
u.

rd
u * k

rd
u = -i0.9392 + j0.3433.

rd = 156.33
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The vector representing the follower is

The transmission angle at If this linkage is stopped in the position, it can-
not be restarted by driving link 1. Special consideration has to be given to problems associated
with driving change-point linkages.

Ordinarily, we would want to check the entire range of travel of the linkage. The above
example shows how much work is required to find only one linkage position. In next
example we will try “working smarter” by using mathematics software to show the
performance of the linkage through a full cycle of motion.

SAMPLE PROBLEM 2.6

Checking the performance of a linkage design

In Chapter 1, we attempted to optimize a crank-rocker linkage with a range of output crank
motion. The resulting linkage had the following dimensions (mm):

Plot the coupler and output crank positions and the transmission angle against the input crank
position.

Solution summary. The solution is similar to that for the previous sample problem, except that
we let the computer do the tedious work. Vectors in column form represent links, and variables
are a function of input angle which varies from zero to Extreme values of the transmission
angle, and agree with the values in Chapter 1. The results, plotted in degrees and
shown in figure 2.11, also show the range of output crank motion.

Detailed solution. It is customary to show vectors in boldface type to distinguish them from
scalar quantities shown in lightface type. The sample problem detailed solutions that utilize
mathematics software use a different convention. Both vectors and scalars are shown in lightface
type. In the calculations that follow, link lengths are etc. and the corresponding vectors are

etc.The rectangular unit vectors are i, j, and k.

r1(u1) := C
L1

# cos (u1)
L1

# sin(u1)
0

Sr0 = C
-300

0
0
Sr0 :=  C

-L0

0
0
S

 u1 :=  0, 
p

180
Á 2 # p

 L0 :=  300 L1 :=  50 L2 :=  235 L3 :=  193.2 mm

r1,r0,
L1,L0,

f(p),f(0)
2p.u1

L0 = 300, L1 = 50, L2 = 235, and L3 = 193.2.

30°

u1 = 0u1 = 0.f = 0

r3 = i58.30 + j54.68 = 80l43°.
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FIGURE 2.11 Checking the performance of
a linkage design.

Diagonal vector:

Define

for the assembly configuration with vector loop clockwise and for the same vec-
tor loop traversed counterclockwise.

Coupler vector:

 u2(u1) :=  angle(r2(u1)0, r2(u1)1)

 r2(u1) :=  q # 2L3
2 - a(u1)

2 # (rdu(u1) * k) + rdu(u1) # (a(u1) - ƒ rd(u1) ƒ )

q :=  1

-1r2r3rdq = 1

a(u1) :=  
L3

2 - L2
2 + ( ƒ rd(u1) ƒ )2

2 ƒ rd(u1) ƒ

rd(u1) :=  r0 + r1(u1)

rdu(u1) :=  
rd(u1)

ƒ rd(u1) ƒ

  
Rectangular
unit
vectors

 i :=  C
1
0
0
S j :=  C

0
1
0
S k :=  C

0
0
1
S
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126 Chapter 2 Motion in Machinery

Follower crank vector:

Transmission angle: Check transmission angle limits:

Position Analysis Using the Dot Product

As an alternative to using the vector cross product, we may analyze linkage displace-
ment by using the dot product. In Figure 2.12, a vector representation of a planar four-bar
linkage, the diagonal vector is given by:

(2.30)

Suppose we are to determine the linkage position for a given angle if all of the link
lengths are known. Taking the dot product of each side of this equation with itself, we
have

(2.31)

or

(2.32)

where the angle between vectors and is Thus, Eq. (2.32) is
equivalent to the law of cosines:

The direction of the diagonal is given in terms of the x and y components of and :

(2.33)

where if the x-axis is selected to be parallel to the fixed link. For some four-bar
linkage proportions, can be in any of the four quadrants. If Eq. (2.33) is programmed
for machine calculations, it is important that be located in its proper quadrant. This
may be possible if a two-argument arctangent function is available wherein both
numerator and denominator become inputs and the quadrant of the angle is determined
by the signs of the numerator and denominator. As an alternative, we note that

(2.34)sin ud =
r0y + r1y

rd

ud

ud

r0y = 0

tan ud =
r0y + r1y

r0x + r1x

r1r0

rd
 2 = r 0

2 - 2r0r1 cos u1 + r1
 2.

fa = 180° - u1.r1r0

rd
 2 = r0

 2 + 2r0r1 cos fa + r1
2,

rd
# rd = (r0 + r1) # (r0 + r1),

u1

rd = r0 + r1.

f(u1) :=  acos CL2
 2 + L3

 2 - ( ƒ rd(u1) ƒ )2

2 # L2
# L3

S f(0)

deg
= 70.674 

f(p)

deg
= 109.258 deg

 u3(u1) :=  angle(r3(u1)0,r3(u1)1) - 2 # p
 r3(u1) :=  q # 2L3

 2 - a(u1)
2 # (rdu (u1) * k) - rdu(u1) # a(u1)
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FIGURE 2.12 (a) Four-bar planar link-
age; position analysis by dot-product
method. (b) Position analysis sample
problem. (c) Alternative assembly mode.

and

(2.35)

It can be shown that

(2.36)tan ¢ ud

2
≤ =

1 - cos ud

sin ud
.

cos ud =
r0x + r1x

rd
.
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128 Chapter 2 Motion in Machinery

Using the last three expressions instead of Eq. (2.33), we are able to determine the correct
quadrant of 

We continue the analysis with the loop closure equation

(2.37)

or

Taking the dot product of each side of this equation with itself, we have

(2.38)

or

(2.39)

so that

(2.40)

Then,

(2.41)

The sign before depends on the mode of assembly of the linkage. If the vector loop
is clockwise, as in Figure 2.12a, the negative sign applies; if counterclockwise, the

positive sign applies. In most cases, once the linkage is assembled, the mode will not
change.

The position of link 3 may now be found by using the dot product in a similar
manner or by using the law of sines. So that errors of angle quadrant are avoided, how-
ever, the x and y components of will be determined from the loop equation for the
entire linkage, written as

(2.42)

Then,

(2.43a)

(2.43b)

and is found from the equation

(2.44)tan¢ u3

2
≤ =

1 - cos u3

sin u3
.

u3

cos u3 =
r3x

r3
,

sin u3 =
r3y

r3
,

r3 = -(r0 + r1 + r2)

r3

r2r3rd

fb

u2 = ud < fb.

cos fb =
r3

2 - r2
2 - rd

2

2rdr2
, for 0 … fb … 180°.

r 3
2 = r d

2 + 2rdr2 cos fb + r2
2,

r3
# r3 = (rd + r2) # (rd + r2),

-r3 = rd + r2.

rd + r2 + r3 = 0,

ud.
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Section 2.3 Analytical Vector Methods 129

SAMPLE PROBLEM 2.7

Position Analysis Using the Dot Product

A four-bar linkage has the following link lengths:

Fixed link:
Drive Crank:
Coupler:
Follower:

Find the position of links 2 and 3 when as shown in Figure 2.12b.

Solution. We will utilize the equations developed from the position analysis using the dot prod-
uct, which could easily be programmed if required. From Eq. (2.32), we have

or

From Eqs. (2.34) through (2.36),

and

so that

Note that Eq. (2.33) yields

which will usually be evaluated as The error would be obvious if we used a sketch, but it
might go undetected in machine calculations. From Eq. (2.40), we obtain

so that

For the assembly mode shown in Figure 2.12b (the clockwise vector loop),

u2 = ud - fb = 162.86 - 146.51 = 16.35°,

 fb = 146.51°.

 cos fb =
202 - 352 - 23.992

2 * 23.99 * 35
,

-17.14°.

ud = arctan 
0 + 10 sin 45°

-30 + 10 cos 45°
= arctan(-0.3084),

ud = 162.86°.

tan ¢ ud

2
≤ =

(1 + 0.9558)

0.2947
,

 cos ud =
-30 + 10 cos 45°

23.99
= -0.9588,

 sin ud =
0 + 10 sin 45°

23.99
= 0.2947,

rd = 23.99 mm.

rd
2 = 302 + 2 * 30 * 10 cos (180° - 45°) + 102.

u1 = 45°,

r3 = 20 mm.
r2 = 35 mm;
r1 = 10 mm;
r0 = 30 mm;
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130 Chapter 2 Motion in Machinery

and for the alternative mode in Figure 2.12c,

Using the loop closure equation, Eq. (2.42), for the x and y components of we have, for the
assembly mode of Figure 2.12b,

and

Then, the position of link 3 is found by using an conversion, from which it follows that
If this conversion is not available, then we may use Eqs. (2.43a) through

(2.44), whereupon we obtain

or

For the alternative mode, from Figure 2.12c,

so that

For a given value of the diagonal vector is the same for both assembly modes. Thus, the tri-
angle formed by the diagonal and links 2 and 3 for one mode is congruent to the corresponding
triangle for the other mode (but reflected about ).

For the dimensions given in this example, link 1, the drive crank, is shortest, and
Thus, we have a crank-rocker linkage as defined

in Chapter 1. If this linkage is assembled in one mode (Figure 2.12b), it cannot assume the other
mode without reassembly.

The vector methods of position analysis using the dot product and cross product are not
limited to one type of linkage. The four-bar linkage was used only as an illustration; other
configurations can be solved by using the same principles and a bit of ingenuity.

2.4 COMPLEX NUMBERS

Complex numbers, each made up of a real and an imaginary part, provide an alternative
representation for vectors that lie in a plane. Once the rules for handling complex num-
bers have been mastered, it is fairly easy to apply complex numbers to the analysis of

Lmax + Lmin 6 La + Lb (35 + 10 6 30 + 20).

rd

rdu1,

 r3 = 20 mm at u3 = 87.91°.

 r3y = -(0 + 10 sin 45° + 35 sin 309.37°) = 19.99 mm,

 r3x = -(-30 + 10 cos 45° + 35 cos 309.37°) = 0.73 mm,

u3 = -122.2°(237.8°).

tan ¢ u3

2
≤ =

1 + 10.66/20
-16.92/20

,

r3 = 20l -122.21°.
xy : ru

r3y = -(0 + 10 sin 45° + 35 sin16.35°) = -16.92° mm.

r3x = -(-30 + 10 cos 45° + 35 cos 16.35°) = -10.66° mm

r3,

u2 = ud + fb = 162.86 + 146.51 = 309.37°.
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Section 2.4 Complex Numbers 131

planar linkages. Note that the imaginary quantity is a mathematical artifice. When used
together in the analysis of mechanisms, however, the real and imaginary parts of complex
numbers represent components of actual dimensions, velocities, and accelerations.

Rectangular Form

A complex number may be written in the rectangular form

where is the imaginary unit. The term x represents a real number called the
real part of the complex number z. The term y represents a real number called the
imaginary part of z.

The complex plane shown in Figure 2.13 permits the graphical representation of
vectors as complex numbers. Consider a vector R of magnitude R with components 
and along the real and imaginary axes, respectively. Using angle 

in the complex plane and magnitude vector R may be identified by
its real part and its imaginary part and may be written in the
form

(2.45)

Polar Form

It can be shown that

(2.46)eju = cos u + j sin u

R = Rx + jRy.

Ry = R sin uRx = R cos u

R = 2Rx
 2 + Ry

 2 ,

u = arctan(Ry/Rx)Ry

Rx

j = 2-1

z = x + jy,

Imaginary axis

j2

j

Ry

R

Rx�

�1

�j

1 2 3
Real axis

0

FIGURE 2.13 A vector in the complex plane.
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132 Chapter 2 Motion in Machinery

(an identity called the Euler formula). Using this identity and Eq. (2.45), we can
express a vector in polar form in terms of its magnitude and the complex exponential as

(2.47)

where is in radians.

Complex Arithmetic—Addition

The rectangular form of a complex number is convenient for addition and subtraction.
For example, if

and

then

(2.48)

Two complex numbers are equal if and only if the real and imaginary parts of the first
are respectively equal to the real and imaginary parts of the second.

Multiplication, Division, and Differentiation

The polar form of a complex number may be more convenient than the rectangular
form for multiplication, division, and differentiation. Following the rules of algebra
and calculus, if

then

(2.49)

(2.50)

and

(2.51)

For a rigid link of fixed length R, then

and

(2.52)
dR
dt

= jvReju = jvR.

dR

dt
= 0

dR
dt

= jvReju + ejudR

dt
,  where v =

du

dt
.

 R   /   ejf = Rej(u-f),

 Rejf = Rej(u+f),

R = Reju,

R1 + R2 = (R1x + R2x) + j(R1y + R2y).

 R2 = R2x + R2y,

 R1 = R1x + jR1y

u

R = R(cos u + j sin u) = Reju,
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Section 2.5 Complex-Number Methods 133

Using the last expression for constant R and noting that j can be expressed in polar
form as we obtain

(2.53)

This result is useful in the velocity analysis of linkages.
When using a calculator, one may employ the rectangular–polar con-

version feature to put a complex number in a form convenient for addition, differentia-
tion, and so on.

In solving problems involving planar linkages, vector analysis and complex-num-
ber methods, as well as other methods, are at our disposal. In some ways, the imaginary
unit j resembles a unit vector in the y direction, similar to the unit vector j. However,
operations with the imaginary unit are different. For example, multiplication of a vec-
tor by the unit vector j is defined only by the dot and cross products, neither of which
has the same meaning as multiplication by the imaginary unit j.

Multiplication of a complex number by the imaginary unit j represents a counter-
clockwise rotation of rad in the complex plane. Recalling that we
have the following results:

(2.54)

and so on.

2.5  COMPLEX-NUMBER METHODS APPLIED TO THE DISPLACEMENT
ANALYSIS OF LINKAGES

The displacement, velocity, and acceleration of planar linkages may be analyzed by
using complex-number methods. Consider, for example, the sliding contact linkage
shown in Figure 2.14a, where link 1 rotates and the slider moves relative to link 2,
causing link 2 to oscillate. The linkage can be described at any instant by the vector
equation

(2.55)

(see Figure 2.14b), where represents the fixed link represents the crank
and represents the portion of link 2 between and pin B.
If link lengths and are given, Eq. (2.55) may be solved for any given crank

angle For convenience, we select the real axis in the direction of the fixed link.
Then, expressing Eq. (2.55) in complex form, we have

(2.56)R2 = R2x + jR2y = R0 + R1x + jR1y,

u1.
R1R0

O2R2O1B,
R1O2O1,R0

R2 = R0 + R1

 j4 = ej2p = +1,
 j3 = ej3p/2 = -j,
 j2 = ejp = -1,

 jeju = ej(u+p/2),

j = ejp/2,(90°)p/2

(xy : Ru)

dR
dt

= vRej(u+p/2) .

j = ejp/2,
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Imaginary axis
R2

R1

R0

O2

O2

O1

O1

(a)

(b)

�2

�2

�1

�1

Link 2

Lin
k 

1

B (B1 on link 1,
B2 on link 2)

Real axis

B

FIGURE 2.14 (a) Sliding con-
tact linkage. (b) Complex plane
representation.

where

and

Equating the real parts of Eq. (2.56), we obtain

Equating the imaginary parts, we have

and the magnitude of is

(2.57) = 2R0
2 + 2R0R1 cos u1 + R1

2.

 = 2R0
2 + 2R0R1 cos u1 + R1

2 cos 2u1 + R1
2 sin2 u1

 R2 = 2R2x
2 + R2y

2

R2

R2y = R1y = R1 sin u1,

R2x = R0 + R1x = R0 + R1 cos u1.

R1y = R1 sin u1.

R1x = R1 cos u1
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Section 2.5 Complex-Number Methods 135

The last equation is identical to the law of cosines, which is generally written in terms
of the internal angle Angle may be found from

(2.58)

Although the arctangent is actually multivalued, most calculators and computers will
give values of between and (0 to rad) for positive arguments of the
function and between and (0 to rad) for negative arguments.

It may be necessary to correct for the proper quadrant. It is safer to use a rec-
tangular–polar conversion routine or a two-argument arctangent function such as

or ANGLE(x,y).

SAMPLE PROBLEM 2.8

Sliding Contact Linkage Solved by the Complex-Number Method

In Figures 2.14a and 2.14b, given link lengths and locate slider
pin B when

Solution. Pin B is located by Eq. (2.56), from which

The magnitude and direction of are given immediately by using a rectangular–polar 
conversion routine available on many calculators. The routine may be programmed to produce
the correct angle quadrant:

Or, in complex exponential form, we obtain

These values can be checked with Eqs. (2.57) and (2.58), which were avoided by using the 
conversion. The dimensions of this particular linkage permit values of in only the
first and fourth quadrants. In a similar linkage, but with can fall in any quadrant.

Employing the principles illustrated, complex-number methods may be used to analyze
many other types of linkages. However, since the complex plane is two dimensional, these methods
are not applied to spatial linkages.

Limiting Positions

Limiting positions for some linkages were discussed in Chapter 1. For the sliding con-
tact linkage of Figure 2.14, link 2 oscillates as link 1 rotates continuously. The locus of

(point B on link 1) is a circle of radius We may find the limiting positions of linkR1B1

u2R1 7 R0,
u2(R1 6 R0)

xy:ru

R2 = 448.6ej0.294.

R2 = 448.6 mm at u2 = 16.9°.

(xy:ru)R2

 = 320 + 170 cos 50° + j170 sin 50° = 429.3 + j130.2.

 R2 = R2x + jR2y = R0 + R1x + jR1y

u1 = 50°.
O1B = 170 mm,O2O1 = 320 mm

ARCTAN2(x,y)

u2

-p/2-90°0°
p/2+90°0°u2

tan u2 =
R2y

R2x
=

R1 sin u1

R0 + R1 cos u1
.

u2180° - u1.

139



136 Chapter 2 Motion in Machinery

2 graphically by drawing link 2 tangent to that circle. The tangent (representing link 2)
will be perpendicular to the radius (representing link 1).

As an alternative, we may use the calculus. Noting that extreme values of cor-
respond to extreme values of tan for this linkage, we differentiate Eq. (2.58) with
respect to and set the result equal to zero:

Multiply the above equations by and note that 
It follows that the limiting positions correspond to

Thus, the three links form a right triangle with hypotenuse and, as just determined
graphically, links 1 and 2 are perpendicular when link 2 is at a limiting position.

The Geneva Mechanism

The Geneva mechanism (Figure 2.15) provides intermittent motion of the driven link
while the driver rotates continuously. It is equivalent to the sliding contact mechanism
(Figure 2.14a) during part of its cycle. For the position shown, pin B on the driver is
entering the slot on the driven member. Thus, is equivalent to link 1 in Figure
2.14a, while the slot is equivalent to link 2 for the next quarter rotation of the driven
member. Then, the driven member remains stationary until pin B enters the next slot.

O1B

R0,

cos u1 =
-R1

R0
.

cos2 u1 + sin2 u1 = 1.(R0 + R1 cos u1)
2

  -R1 sin u1(R0 + R1 cos u1)
-2(-R1 sin u1).

 
d tan u2

du1
= 0 = R1 cos u1(R0 + R1 cos u1)

-1

u1

u2

u2

Driver
Point B

Driven
O1O2

�   2 �    1

�   1

FIGURE 2.15 Geneva mechanism,
equivalent to the sliding contact link-
age during part of its cycle.
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Section 2.6 Spatial (Three-Dimensional) Linkages 137

2.6 SPATIAL (THREE-DIMENSIONAL) LINKAGES

The motion of all points in a planar linkage is restricted to a single plane or a set of
parallel planes. The motion of points in a spatial linkage is more general. For example,
the motion of a given point in a spatial linkage may describe a curve that does not lie in
a plane, or the motion of two points in the same spatial linkage may lie in two nonparallel
planes.

Kinematic Pairs (Joints)

Spatial linkages employ single-degree-of-freedom joints (e.g., pin joints) and multiple-
degree-of-freedom joints (e.g., ball joints). Some common joints were identified in
Chapter 1. Many others are possible.

Types of Spatial Mechanisms

Spatial linkages are identified by their joint configuration symbols. For example, a
PRCR mechanism consists of a prism (spline), revolute, cylinder, and revolute. A vari-
ety of spatial mechanism configurations are shown in Figure 2.16a through i. Limiting
positions occur when motion about or along a joint stops and then changes direction.A
joint’s limiting position defines its range of motion. The absence of a limiting position
indicates that continuous motion is possible with respect to that joint. In general, limiting
positions in spatial linkages are not as obvious as in simple planar mechanisms.

Analysis of Four-Link Spatial Linkages

Vector methods may be used in the analysis of spatial linkages. For example, if four
links (including the frame) form a closed loop as in Figure 2.15i, then the vector
equation

(2.59)

may be used to analyze the displacement of the linkage. If each vector is written in
terms of its components and the unit vectors i, j, and k (i.e., and
so on, then the x, y, and z components of the vectors in the closed loop must each sum
to zero. Thus, we have three scalar equations:

and

(2.60)

Considering the restraints imposed by the joints and the link lengths, it may be possible
to determine the position of the links analytically. One input link position variable is
required to solve for displacements in a one-degree-of-freedom spatial linkage. For a

 r0z + r1z + r2z + r3z = 0.

 r0y + r1y + r2y + r3y = 0,

 r0x + r1x + r2x + r3x = 0,

r0 = r0xi + r0y j + r0zk,

r0 + r1 + r2 + r3 = 0
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138 Chapter 2 Motion in Machinery

spatial linkage with more than one degree of freedom, more than one input position
variable would be required to solve for displacements.

Methods of descriptive geometry may be used as an alternative to an analytical
solution for linkage displacements. Consider, for example, an RSSR linkage, as repre-
sented in Figure 2.16h. Let the position of the left-hand crank, be given. Then the
locus of possible positions of point lies on a sphere of radius and with center at

However, revolute restricts point to circular motion. The actual position of S2S2R2S1.
S1S2S2

R1S1,

(i)

Fixed link

(h)

(f)

(d)

(b)(a)

(c)

(e)

(g)

r0

r1
r3

r2

R1

R1
R2

C3

C2

C2

C1

H1

P1

P2

H2

H2

H1

R2

C3

C1

C2

R1 C

R

P

C S

R

S C

P

C1

P

R2

S2

S1

FIGURE 2.16 Four-bar spatial linkages. (a) PRCR mechanism. (b) PHPH mecha-
nism. (c) CCCR mechanism. (d) HCCH mechanism. (e) PCSR mechanism. (f)
PCCC mechanism. (g) RSCR mechanism. (h) RSSR mechanism. (i) Typical vector
representation of a four-bar closed-loop spatial linkage.
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may be determined graphically by constructing the intersection of the sphere and
plane loci of and using the radius of the circle,

For given input values of velocity and acceleration, it may be possible to deter-
mine the velocity and acceleration of every point and the angular velocity and acceler-
ation of every link in a spatial linkage. Vector methods may be used as with planar
linkages, but all three coordinate directions must be considered. Straightforward solu-
tions can be obtained for some spatial linkages. Others require ingenuity, as well as
considerable time and effort. An example of the latter type, the displacement analysis
of a spatial mechanism with seven revolute joints, is given by Duffy and Derby (1979).
In analyzing this special case of a 7R (RRRRRRR) mechanism, the authors derived an
input–output equation of degree 24, making a major step toward the solution of the
general 7R mechanism.

Analysis of a Spatial Linkage Made Up of Two Revolute Pairs
and Two Spherical Pairs (an RSSR Linkage)

An RSSR linkage is shown in Figure 2.16h. The number of degrees of freedom for an
RSSR linkage is given by

Inspecting the linkage configuration shown in the figure, we see that one of the
degrees of freedom corresponds to rotation of link 2 (link ) about its own axis. If
this motion is not relevant to the intended application of the mechanism, the RSSR
linkage acts essentially as a one-degree-of-freedom linkage.

Linkage Displacements

Referring to Figure 2.16h, we may describe the RSSR linkage the vector equation

(2.59 repeated)

where the vectors form a closed loop as in part i of the repeated figure. Let the position
of links 0 and 1 be specified. Then the positions of links 2 and 3 may be identified by
three components each, resulting in six unknowns. There are six equations: three from
Eq. (2.60) taking into account the x, y, and z directions; two equations based on the
lengths of links 2 and 3; and one equation based on the plane of rotation of link 3.

The solution is “easier said than done,” because the set of equations is nonlinear.
In designing and analyzing spatial linkages, try to select a set of coordinate axes that
reduces the number of unknowns.

r0 + r1 + r2 + r3 = 0,

S1S2

 = 2.

 = 6(4 - 4 - 1) + 1 + 3 + 3 + 1

 DFspatial Ú 6(nL - nJ - 1) + a fi

R2S2.S2
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140 Chapter 2 Motion in Machinery

SAMPLE PROBLEM 2.9

Symbolic Solution for Displacements of an RSSR Spatial Linkage

The planes of rotation of the drive crank and driven crank of an RSSR linkage are perpendicu-
lar to one another. The fixed bearing of the driven crank lies in the plane of rotation of the drive
crank. Find the position of all links in terms of the drive crank position.

Design decisions. We could specify the length of each link and the relative position of the revo-
lute joints. Then a numerical solution is possible for any crank position. However, the numerical
solution may be inefficient if we need to plot positions throughout the entire range of motion of
the RSSR linkage. Therefore, we will attempt a symbolic solution.

First try at a solution. We select coordinates as in Figure 2.17. The drive crank (link 1) rotates
in the xy-plane, the coupler (link 2) has general spatial motion, and the follower crank (link 3)
rotates in the yz-plane. Revolute joint is in the plane of motion of the drive crank.

There are three equations based on the vector loop closure equation and two based on
link lengths, for a total of five equations:

 r2z + r3z = 0;

 r0y + r1y + r2y + r3y = 0;

 r0x + r1x + r2x = 0;

R2

(a) Top view

(b) Side view

(c) Vector representation

R1

S1

R1

S1

R2

r1

r2

r0

r3

S2

R2link 1

link 3
y, j (out)

x, i

z, k

y, j

z, k (out)

x, i

S2

link 2

FIGURE 2.17 RSSR spatial linkage (not to scale).
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(2.61)

There are five unknowns: the x, y, and z components of link vector and the y and z compo-
nents of link vector Known values are the x and y components of the vector from revolute

to and the x and y components of link vector given by

and

The five equations are fed into a program for solving systems of equations, and the five
unknowns are calculated. But the results are disappointing: The symbolic expressions for the
unknowns span nine pages, and one solution of is 28 inches long in 10-point type.
Second try at a solution. To shorten the solution, the known vectors are combined into a single
vector defined by

and the set of equations now looks like this:

(2.62)

The symbolic equation solver results include

(2.63)

(2.64)

(2.65)

and rather long solutions for the other two unknowns. However, the last simultaneous equation
tells us that

(2.66)

Finally, the third simultaneous equation yields the remaining unknown:

(2.67)

It takes a little longer to analyze the linkage just described if we do not have a symbolic
equation solver. We eliminate unknowns and make substitutions in Eqs. (2.62), finally
obtaining results equivalent to Eqs. (2.63) through (2.66). Note that we may use the
positive or negative square root in the equation for it depends on how the links are
assembled. Our choice affects as well. The motion of some RSSR linkages may
resemble that of a planar crank-rocker mechanism. A change in link proportions may

r2z

r3z;

r2z = -r3z.

r3z = (r3
2 - r3y

2 )1/2.

 r3y = (cx
2 + cy

2 - r2
2 + r3

2) / (2cy),

 r2y = (cx
2 - cy

2 - r2
2 + r3

2) / (2cy),

 r2x = -cx,

 r3y
2 + r3z

2 = r3
2.

 r2x
2 + r2y

2 + r2z
2 = r2

2;

 r2z + r3z = 0;
 cy + r2y + r3y = 0;
 cx + r2x = 0;

c = r0 + r1,

r3x

 r1y = r1 sin u1.

 r1x = r1 cos u1

r1,R1,R2

r0,r3.
r2

 r3y
2 + r3z

2 = r3
2.

 r2x
2 + r2y

2 + r2z
2 = r2

2;
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142 Chapter 2 Motion in Machinery

cause the linkage to act like a change-point, drag link, or other planar mechanism. If
the spatial linkage resembles a planar double or triple rocker, then some crank posi-
tions will result in solutions that are not real numbers. Such solutions are not valid;
they represent forbidden positions of the crank. (Caution: Do not use the Grashof criteria
for spatial linkages, as they apply only to planar mechanisms.)

Transmission angle. Recall that we determined the minimum and maximum
transmission angles of planar linkages. Transmission angles ranging from about to

are generally acceptable. We are concerned if the transmission angle falls outside
of that range. Will the output torque be adequate? Will the linkage bind because fric-
tion torque on the driven crank exceeds torque due to the force applied by the cou-
pler? The answers depend on how the linkage is used, on the quality and type of
bearings and lubrication, and on the effects of inertia.

Transmission metric. Similar concerns apply to machines employing spatial link-
ages. Consider the vectors representing the coupler and driven crank. Divide the dot
product of the two vectors by the product of the absolute values, resulting in what we
will call the transmission metric T. The transmission metric range,

is equivalent to the generally acceptable transmission angle range,

Alternatively, we can easily convert the transmission metric into an angle.
Suppose the transmission metric falls outside the generally acceptable range?

The linkage may still be acceptable: The criterion just warns us of possible problems.

SAMPLE PROBLEM 2.10

Design of a spatial linkage

Design a device with a 50-mm output link that oscillates through about The centerline of the
continuously rotating input shaft must be parallel to the plane of motion of the driven link.
Design decisions. There are many possible solutions to this design problem. A pair of bevel
gears or a worm and worm gear driving a planar crank-rocker mechanism could be chosen for
such an application. An RSSR spatial linkage will be used instead. The driveshaft will lie in the z
direction, and the driven crank will oscillate in a yz-plane as in Figure 2.17. However, the linkage
in that figure would have very limited motion, so the proportions must be changed.After a number
of unsatisfactory tries, we will investigate a linkage with the following proportions:

Drive crank length
Coupler length
Driven crank length

revolute joints and are located at (0,0,0) and (10, 70, 0), respectively.
Thus, the components of the fixed link vector are

r0x = -10 mm and r0y = -70 mm.

R2R1

r3 = 50 mm;
r2 = 75 mm;

r1 = 25 mm;

50°.

40° … f … 140°.

-0.766 … T … 0.766,

140°
40°
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Section 2.6 Spatial (Three-Dimensional) Linkages 143

Solution summary. The equations developed in the previous sample problem using a symbolic
solution are employed. The drive crank angular position is identified as (without a subscript).
The positive root is selected for the z component of the driven crank vector. The negative root
represents a different assembly configuration. The coupler and follower crank link vectors are
defined in terms of their components.Their vector magnitudes are checked for an arbitrary drive
crank position. The good news is that they agree with the specified lengths.

Driven crank position (in degrees) is plotted against the drive crank position (also in
degrees). See Figure 2.18. The approximate range-of-motion requirement appears to be met.The
transmission metric is multiplied by 100 for convenience in plotting. The not-so-good news is
that the metric extends somewhat beyond generally accepted limits. If the linkage is heavily
loaded in this position, we should consider a redesign to improve the transmission metric.
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FIGURE 2.18 Driven crank position and transmission metric of spatial linkage.
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Solution details (The software used in this solution does not identify vectors with boldface type).
Analysis of an RSSR spatial linkage
The drive crank and driven crank rotate in perpendicular planes.
Vector loop:
Dimensions of links:
Fixed link:
Drive crank:
Coupler:
Driven crank:

Position Analysis 

Drive crank position (subscript omitted):

Define of fixed link and drive crank vectors

* We will select the assembly configuration given by the positive root.

Driven crank position:

Link vectors:

Check results for coupler and driven crank length:

Transmission metric:

Spherical pairs (ball joints) have a limited range of motion. The actual links in a spatial
linkage must be carefully designed to ensure free motion at the joints. The linkage
position equations are dependent on the actual linkage configuration and the selection
of coordinate axes.

Compare cos (140 # deg) = -0.766

T(u) :=  
rv2(u) # rv3(u)

ƒ rv2(u) ƒ # ƒ rv3(u) ƒ
  T(80 # deg) = -0.804 T(p) = -0.267

ƒ rv2(2) ƒ = 75  ƒ rv3(2) ƒ = 50

rv2(u) :=  C
r2x(u)
r2y(u)
r2z(u)

S  rv3(u) :=  C
0

r3y(u)
r3z(u)

S

u3x (u) :=  angle(r3y(u),r3z (u))  u3x(2) = 1.671

 r2z(u) :=  -r3z(u)

 r3y(u) :=  
-(cx(u)

2 + cy(u)
2 - r2

 2 + r3
 2 )

2cy(u)
 r3z(u) :=  (r3

 2 - r3y(u)2)
1
2*

 r2x(u) :=  -cx(u)  r2y(u) :=   

cx(u)
2 - cy (u)2 - r2

 2 + r3
 2

2cy (u)

 cx(u) :=  r0x + r1x(u)  cy(u) :=  r0y + r1y(u)

c =  sum

r1x(u) :=  r1
# cos (u)  r1y(u) :=  r1

# sin(u)

u :=  0, 
p

18
Á 2p

r3 :=  50
r2 :=  75
r1 :=  25
r0x  :=  -10  r0y :=  -70

r0 + r1 + r2 + r3 = 0,
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SAMPLE PROBLEM 2.11

Position equations for a different linkage configuration.
Suppose you are considering an RSUR linkage (revolute–spherical–universal–revolute joints).
Link 0, the fixed link, lies in the negative x-direction; link 1 rotates in an xy-plane, and link 3
rotates in an xz-plane. Write the position equations in terms of vector coordinates.

Solution. Define a vector

where c is known for any given value of Then

and, considering the plane of rotation of link 3, there are five unknowns: and 
Equating the vector components in each coordinate direction and noting the link lengths, we
have the following five equations:

The five equations can be reduced to a single equation for in terms of known values.

Analysis of a Spatial Linkage Made Up of a Revolute Pair, Two
Spherical Pairs, and a Cylinder Pair

Figure 2.19 shows an RSSC spatial linkage in which link acts as a crank. The path
of the sliding link intersects the plane of the crank at point A, making an angle with
that plane. Joints C, and R of this linkage will be in the xy-plane, and link 1 will
move within the yz-plane. The link lengths are (crank ), (coupler ),
(instantaneous distance on the sliding link), and (fixed distance AR).

Analytical Solution for Displacements

The links could be identified as vectors and the vector equation

could be used along with constraint equations to solve for displacements. For this con-
figuration, however, it is convenient to express the length of the coupler link,
in terms of its components in three mutually perpendicular directions:

(2.68) = (r3 sin g)2 + (r0 - r1 cos u + r3 cos g)2 + (r1 sin u)2.

 r2
2 = r2x

2 + r2y
2 + r2z

2

r2 = S1S2

r0 + r1 + r2 + r3 = 0

r0S2A
r3S1S2r2RS1r1

S2,
g

RS1

r2x

 r3x
2 + r3z

2 = r3
2.

 r2x
2 + r2y

2 + r2z
2 = r2

2;
 r2z + r3z = 0;
 cy + r2y = 0;

 cx + r2x + r3x = 0;

r3z.r3x,r2z,r2y,r2x,

c + r2 + r3 = 0,

u.

c = r0 + r1,
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FIGURE 2.19 RSSC spatial linkage.

If crank angle is given along with link lengths and and path angle the result
is a quadratic equation in 

(2.69)

The solution gives the sliding-link position, locating spherical pair (ball joint) The
two roots of the quadratic equation are given by

where 

and

SAMPLE PROBLEM 2.12

RSSC Spatial Linkage

Let dimensions and be given for the RSSC linkage just described. Sketch a flowchart
that you can use to find the displacement of the sliding link for every of crank angle at vari-
ous path angles g.

u15°
r2r1,r0,

c = r0
 2 + r1

 2 - r2
 2 - 2r0r1 cos u.

b = 2 cos g(r0 - r1 cos u),

a = 1,

r3 =
-b ; 2b2 - 4ac

2a
,

S2.

r3
 2 + 2 cos g(r0 - r1 cos u)r3 + r0

 2 + r1
 2 - r2

 2 - 2r0r1 cos u = 0.

r3:
g,r2r1,r0,u
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Solution. See flowchart (Figure 2.20). The mechanism is equivalent to a planar slider-crank
linkage when the path angle is zero. For nonzero values of the path angle, we have a spatial link-
age. For values of or near that value, if the crank drives, the linkage is likely to jam.RS1g = 90°

No

Yes

No

Stop
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 105  ?

   
 180  ?�

       ��   �    � 15
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print r3 root in

region of interest

Calculate roots r3
of quadratic

Enter link lenghts
r0 , r1 , r2

Calculate b and c

          �Print

   � 0� 

Print 

	

 �   � 15		

	

 � 0	

FIGURE 2.20 Flowchart: Displacement of an
RSSC spatial linkage.
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More complicated spatial linkages are discussed in the technical literature. Lee and Liang
(1988a) describe a vector theory for the analysis of spatial linkages that includes displacement,
velocity, and acceleration equations for open-chain and closed-loop mechanisms. The same
authors (1988b) also analyze displacements of a general spatial seven-link 7R mechanism. Their
analysis involves a 16th-degree polynomial input–output equation for displacement in the form
of an eight-by-eight determinant. Fanghella (1988) describes the kinematics of spatial linkages
by group algebra.

Alternative Analysis of a Spatial Linkage Using Graphical
Methods

Spatial linkages may also be solved by methods of descriptive geometry. However,
since such graphical methods require so much labor, they are recommended only as a
check of computer analysis.

SAMPLE PROBLEM 2.13

Graphical position analysis of a spatial linkage

Find the position of the sliding link of the RSSC spatial mechanism described earlier for path
angle and crank angle Let crank length coupler length

and let point A lie a distance away from the revolute point R, as in
Figure 2.21.

r0 = 200 mmr2 = 300 mm,
r1 = 100 mm,u = 45°.g = 30°

R

R

C
BIntersection of

sphere and
horizontal
plane containing
path of S2

Outline of sphere
of radius r2 with
center at S1 in
yz-plane
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FIGURE 2.21 Alternative analysis of RSSC spatial linkage by graphical methods.
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Solution. A side view (yz-plane) and top view (xy-plane) are used. Link 1, the crank, which lies
in the yz-plane, is drawn to scale in that plane and projected to the xy-plane. The path of is
located in the xy-plane. Link 2 will not, in general, lie in either the xy- or yz-plane. If link 2 were
constrained only at the locus of all possible points would lie on a sphere of radius with
center at A circle with radius 300 mm and center at is drawn in the yz-plane to represent
the outline of the sphere. The intersection of the sphere and the horizontal plane containing the
sliding link is a circle whose projection on the yz-plane is a line segment ending at point B, as
marked in the figure. Point B is projected upward to the xy-plane, and a circular arc with its cen-
ter at is drawn tangent to the projection line. The intersection of the circle and the path of 
in the xy-plane locates and determines the value of 

2.7 COMPUTER-IMPLEMENTED NUMERICAL METHODS 
OF POSITION ANALYSIS

Linkage displacement relationships tend to be nonlinear. The angular position of the
driven crank of a four-bar linkage, for example, is not proportional to the input posi-
tion. Simple closed-form solutions are available for some mechanisms, while other
mechanisms—particularly multiloop linkages—are best solved using iterative numerical
methods.

The Newton–Raphson Method for Two or More Variables

In Chapter 1, we utilized the Newton–Raphson method to solve a problem in a single
variable. Using the same concept, we may solve linkage problems involving two or
more variables. Unfortunately, the Newton–Raphson method for n variables involves
an n-by-n matrix of partial derivatives. Those preferring less mathematical complexity
may seek closed-form solutions or use preprogrammed numerical routines such as
those found in MathcadTM or other mathematical software.

Suppose a problem is represented by the set of simultaneous equations

(2.70)

or, in vector form,

(2.71)

To find the unknown variables, the (state) vector

x = [x1, x2, Á ,xn]

F(x1,x2, Á xn) = [F1,F2, Á Fn] = 0.

Fn(x1, x2, Á ,xn) = 0,

o

F2(x1, x2, Á ,xn) = 0,
F1(x1, x2, Á ,xn) = 0,

r3.S2

S2S1

S1S1.
r2S2S1,

S2
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150 Chapter 2 Motion in Machinery

we begin by making a first approximation of each of the variables:

Then we compute the vector F at Unless we are very fortunate, the first
approximations will not be correct (i.e., F(X) is not equal to zero). As with the
Newton–Raphson method applied to one variable, we make a linear adjustment to
arrive at what we hope to be a better approximation of x.

The second approximation is computed from

(2.72)

where

(2.73)

The process is repeated with X replaced by for as many iterations as necessary
(i.e., until each component of the tolerance). Otherwise the process is
stopped after a set number of iterations (say, 20) with a message saying “the process
does not converge in 20 iterations.”

One’s success may depend on the initial guesses of the values. If there is more
than one set of roots, a poor first approximation of X may lead to a solution other than
the desired one.The determinant of the matrix G, is called the Jacobian of the
system of simultaneous equations. The Jacobian must not vanish during any of the iter-
ations.

(Note: The foregoing discussion is based on an extension of the single-variable
Newton–Raphson method. Those desiring a more rigorous approach may refer to
Taylor (1955) or Stark (1970).)

SAMPLE PROBLEM 2.14

A Numerical Method Applied to the Four-Bar Linkage

Consider the four-bar linkage of Figure 2.10, where link lengths and are given and
angular positions rad and rad. Find and 

Solution. In this case, both a graphical solution and a closed-form mathematical solution are
possible. However, let us solve the problem by the Newton–Raphson method in order to illus-
trate the numerical procedures involved. Referring to the figure, we see that the x and y compo-
nents of diagonal vector are determined, respectively, by

(2.74)rdx = r0 cos u0 + r1 cos u1

rd

u3.u2u1 = p/3u0 = p
r3r2,r1,r0,

J = ƒ G ƒ ,

F(X) = 0 ;
Xnew

G = E
0F1/0x1 0F1/0x2 Á 0F1/0xn

0F2/0x1 0F2/0x2 Á 0F2/0xn

........ ........ ........ ........

........ ........ ........ ........
0Fn/0x1 Á Á Á 0Fn/0xn

U .

Xnew = X - G -1F(X),

x = X.

X = [X1, X2, Á ,Xn].
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and

(2.75)

The problem of locating links 2 and 3 can be expressed as two simultaneous equations describing
the horizontal and vertical projections of the triangle formed by vectors and :

(2.76)

and

(2.77)

We will utilize Eqs. (2.70) through (2.73), where becomes and becomes Thus, we have

and

or, in vector form,

In order to form the matrix G, we find etc., from which it follows that

Suppose we are interested in the linkage configuration for which and form a clockwise
loop. Then a guess (first approximation) of

seems reasonable. The result is

(instead of the desired value, ), indicating that the first approximation was not very
accurate.

A second approximation of the roots is found by computing

Xnew = X - G -1F = B0.072
4.400

R

F = 0

F = BF1

F2
R

(x = X)
= B -93.56

181.06
R

x = X = Bu2

u3
R = B1

3
R

r3r2,rd,

G = B -r2 sin u2 -r3 sin u3

r2 cos u2 r3 cos u3
R .

0F/0u2 = -r2 sin u2,

F = Br2 cos u2 + r3 cos u3 + rdx

r2 sin u2 + r3 sin u3 + rdy
R .

F2 = r2 sin u2 + r3 sin u3 + rdy = 0,

F1 = r2 cos u2 + r3 cos u3 + rdx = 0

u3.x2u2x1

r2 sin u2 + r3 sin u3 = -rdy.

r2 cos u2 + r3 cos u3 = -rdx

r3r2,rd,

rdy = r0 sin u0 + r1 sin u1.
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152 Chapter 2 Motion in Machinery

Successively replacing X by the third through sixth approximations are, respectively:

where, for the final value, a small tolerance. Note that there is no change (to three dec-
imal places) between the fifth and sixth approximations. Thus rad and rad
for the desired linkage configuration.

Multiloop Linkages

The link positions of a planar single-loop linkage can be described by a single vector
equation or two scalar equations describing a skeleton diagram that forms a single
closed polygon. The slider-crank linkage and four-bar linkage are examples of single-
loop linkages. Planar multiloop linkages require one vector equation or two scalar
equations for each internal loop. Quick-return mechanisms including the drag-
link–slider-crank linkage and the sliding-contact–slider-crank linkage described in
Chapter 1 are two-loop linkages.

The degree of difficulty of an analytical solution for displacements of a multiloop
linkage depends on the linkage configuration and the given data. Consider the drag-
link–slider-crank linkage shown in Figure 2.22. The skeleton diagram forms two inde-
pendent loops, and If the angular position of link 1 is given, the
orientation of links 2 and 3 in four-bar linkage can be determined without
considering links 4 and 5. Then, using the orientation of link 3, we can easily solve the
slider-crank linkage. Closed-form solutions for both the four-bar linkage and slider-crank
linkage were given earlier in the chapter.

If the angular position of link 1 is given for the double-slider two-loop linkage of
Figure 2.23, the solution cannot be uncoupled. The two kinematic loops are repre-
sented by four simultaneous equations. Numerical solutions are suggested for the
determination of displacements in linkages of this type.

O1BCO3

O3DEO3.O1BCO3O1

u3 = 4.044u2 = 0.077
F = 0 ;

B0.116
4.077

R B0.077
4.043

R B0.077
4.044

R and B0.077
4.044

R

Xnew,

B

C

D

4
3

2

1

5

O1 O3

�   1
E

FIGURE 2.22 Drag-link–slider-crank linkage.
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FIGURE 2.23 A double-slider two-loop linkage.

SAMPLE PROBLEM 2.15

Displacement Analysis of a Multiloop Linkage

Consider the double-slider two-loop linkage of Figure 2.23, where 
and rad. (Distance DE is identified as etc.) Find and 

Solution. The equations describing the horizontal and vertical components of loop 
are, respectively,

and

and the equations describing the horizontal and vertical components of loop FDEF are,
respectively,

and

rD + rDE sin u3 = 0.

rDE cos u3 - rE + rF = 0

r1 sin u1 + r2 sin u2 + rCE sin u3 = 0,

r1 cos u1 + r2 cos u2 + rCE cos u3 - rE = 0

O1BCEO1

rE.rD,u3,u2,rDE,u1 = p/3rCD = 1.5,rDE = 4,
rF = 5,r2 = 5.2,r1 = 1,
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After substituting the given values, we can solve the preceding four equations by the
Newton–Raphson method, as in the previous section. However, in this case, the method requires
a four-by-four Jacobian matrix. Let us choose another alternative, the Levenberg–Marquart
method, which is a quasi-Newtonian method (a variation of the gradient method). The
Levenberg–Marquart method is in the public domain (see More, et al., 1980) and is available on
mathematics software.

We begin by approximating the unknowns. A trial-and-error graphical solution may be
used to generate these approximations for one position. In this case, the approximations are

(where angles are given in radians). After a few iterations, the program yields

The graphical solution was more accurate than necessary; a less accurate set of approximations
would have yielded the same results. If the linkage must be solved for a number of successive
positions, it may not be necessary to make additional graphical approximations. Instead, the
results of one solution are likely to be satisfactory as a first approximation of the unknowns after

is incremented.

SUMMARY

Vectors and complex numbers are a great help in analyzing and designing mechanisms.
If vectors A and B are equal, then the x components of A equal the x components of B
and so forth. Thus, one vector equation yields three scalar equations for solving spatial
linkages and two scalar equations for planar linkages. When dealing with planar link-
ages, it is convenient to use complex numbers. If two complex numbers are equal, the
real part of the first equals the real part of the second, and the imaginary part of the first
equals the imaginary part of the second.

Position analysis of four-bar linkages is a difficult problem; the vector cross-product
method is recommended. In general, four-bar linkages have two assembly configurations.
Change-point mechanisms may shift from one configuration to another.

Motion simulation software saves much of the drudgery of calculating linkage
positions. Mathematics software is also used for linkage design and analysis. Although
graphical methods are inefficient for detailed design studies of mechanisms, graphical
spot-checking is a good way to find errors in computer calculations.

A Few Review Items

• What is a unit vector?
• ...... a rectangular unit vector?
• Describe the dot product.
• ..... the cross product.
• Does the order of the vectors matter?

u1

u2 = 0.293, u3 = 5.037, rD = 3.792, and rE = 6.274.

u2 = 0.3, u3 = 5, rD = 3.8, and rE = 6.3
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• State the Euler formula for complex numbers.
• ...... Of what use is it?
• Why do we use vectors to describe spatial linkages?
• Identify a mechanism for producing intermittent rotation.The input is continuous

rotation.
• Sketch a multiloop linkage.
• Can the equations for link position be uncoupled?

PROBLEMS

2.1 List three to five machine components whose motion is described by (a) pure translation,
(b) pure rotation, and (c) combined rotation and translation.

2.2 The stroke of a Scotch yoke is 60 mm. The driver rotates at 1740 rev/min (constant). Find
the following:

(a) Maximum velocity
(b) Maximum acceleration
(c) Maximum jerk (rate of change of acceleration with respect to time)

2.3 Repeat Problem 2.2, except that the driver is to rotate at 3000 rev/min.
2.4 Repeat Problem 2.2, except that the stroke is to be 45 mm.
2.5 Design a two-cylinder, cam-type piston pump to deliver a flow rate of at 90 rad/s.

Let the stroke equal the piston diameter. Assume 80-percent volumetric efficiency.
2.6 Repeat Problem 2.5, except that the flow rate is to be at 880 rev/min.
2.7 Repeat Problem 2.5, except that the flow rate is to be 120 gal/min at 1760 rev/min.
2.8 Repeat Problem 2.5, except that the flow rate is to be at 700 rev/min.
2.9 A circular cam with 20-mm eccentricity drives a flat-face follower. Plot the displacement,

velocity, and acceleration of the follower versus time for rad/s.
2.10 Repeat Problem 2.9 for 28-mm eccentricity and a cam speed of 1500 rev/min.

Problems 2.11 through 2.14 Refer to a Circular Cam with a Flat-
Face Follower. The eccentricity of the cam is R, and the angular
velocity of the follower is .

2.11 Find the maximum angular velocity if mm and the acceleration of the follower
cannot exceed g (the acceleration due to gravity).

2.12 Find the maximum eccentricity in millimeters if the acceleration of the follower cannot
exceed g (the acceleration due to gravity). The cam rotates at 4000 rev/min.

2.13 Find follower velocity and acceleration amplitude for in at a cam speed of 
1200 rev/min.

2.14 Find follower velocity and acceleration amplitude for and in.

Problems 2.15 through 2.27 Refer to Vector Angles Measured
Counterclockwise from the Horizontal Axis. In these problems,

at at at and at All vectors lie
in a plane.

225°.D = 3180°,C = 1.560°,B = 230°,A = 1

R = 0.5v = 300

R = 0.25

R = 5

v

v = 200

12 ft3/min

0.25 m3/s

0.5 m3/s
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156 Chapter 2 Motion in Machinery

2.15 Find 

(a) Add the vectors by using trigonometric functions.
(b) Solve graphically.

2.16 Find Solve graphically and analytically.
2.17 Find Solve graphically.
2.18 Find that is, find Solve graphically and 

analytically.
2.19 Find the vector product 
2.20 Find the vector product 
2.21 Find the vector product where pointing inward in a direction

perpendicular to the plane of C and D.
2.22 Repeat Problem 2.21, but find 
2.23 Find 
2.24 Find 
2.25 Find 
2.26 Find 
2.27 Find 

In Problems 2.28 through 2.30, and
, where i, j, and k are unit vectors in a fixed

coordinate system.

2.28 Find 

2.29 Find 

2.30 Find if i and j are vectors in a moving coordinate system.

2.31 The Immelman turn was a World War I aircraft maneuver used to gain altitude while
turning to fly in the opposite direction. The turn consists of a half loop followed by a half
roll to resume a normal level position. Describe the maneuver in terms of pitch and roll
coordinates referred to the aircraft. Consider reversing the order of the rotations. Does
the commutative law of vector addition apply?

In Problems 2.32 through 2.34,

2.32 and find 
2.33 Vectors and represent a planar linkage, with

Find and by using the vector cross product method suggested by Chace (see section
2.2 and 2.3).

r2r1

r1y

r1x
= 2, 

r2y

r2x
= 0.5, and r3 = i50 + j75.

r3r2,r1,
r3.r2 = 40i - 20j + 10k;r1 = 10i + 25j,

r1 + r2 + r3 = 0.

d

dt
 (V * r)

d

dt
 (V * r).

V * r.

r = irx(t) + jry(t)
Let V = (5 + 3t)k

C # (A * B).
B # (C * A).
A # (B * C).
A # (B + C).
A # B.

D * (C * E).

E = 2.5,C * (D * E),
C * D.
A * B.

A + B + C + (-D).A + B + C-D;
A + B + C + D.
A + B + D.

A + B.
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2.34 Repeat Problem 2.33, except that 
2.35 A force N acts on a bar of length mm (see Figure 2.8b), where 

Find the torque about point O.
2.36 Repeat Problem 2.35 for rad.
2.37 An in-line slider-crank linkage has a crank length and connecting rod length 

(See Figure 2.9.) Find the connecting rod and slider position when by using
analytical vector methods.

2.38 Repeat Problem 2.37 for 
2.39 Plot the slider position versus for an in-line slider-crank linkage for which the ratio of

connecting rod to crank length is 1.5. Let rad, and so on.
2.40 The link lengths of a planar four-bar mechanism are and

Find the orientation of links 2 and 3 when the internal angle between the crank
and the fixed link is and the linkage is in the open phase (i.e., the coupler does not
cross the fixed link). Use the vector cross-product method.

2.41 Repeat Problem 2.40 for a internal angle.
2.42 Repeat Problem 2.40 by using the dot-product method.
2.43 Repeat Problem 2.41 by using the dot product method.
2.44 Repeat Problem 2.40 for the crossed phase.
2.45 Repeat Problem 2.40 for the crossed phase, using the dot-product method.

In Problems 2.46 and 2.47,

and

2.46 (a) Express and in complex rectangular form.
(b) Find where 
(c) Express in polar form.

2.47 Find if is constant in magnitude and rad/s.
2.48 Repeat Sample Problem 2.8 for 
2.49 Repeat Problem 2.48 for 
2.50 Repeat Problem 2.37, using complex-number methods.
2.51 Repeat Problem 2.37 with using complex-number methods.
2.52 Consider the RSSC linkage described in Sample Problem 2.13. Use an analytical method.

Let path angle Find the displacement of the sliding link for crank angle 
2.53 Repeat Problem 2.52 for and so on. Use a computer.
2.54 Solve Problem 2.52, using methods of descriptive geometry.
2.55 Use vectors A, B, C, D, and E given in Sample Problem 2.3, and determine

and C # (C * D).D * C,C * D,B * B,B # B,ƒ B ƒ ,   ƒ C ƒ ,   ( ƒ B ƒ )2,B # C,   C # B,
A + B + C + D,  A - C - D - E,

u = 0°, 15°, 30°   ,
u = 60°.g = 40°.

u = 140°,

u1 = 110°.
u1 = 80°.

du1/dt = 120R1dR1/dt

R0

R0 + R1 = R2.R0,
R2R1

 R2 = 150 mm at u2 =
5p
3

 rad.

 R1 = 200 mm at u1 =
p

3
 rad

60°

30°
r3 = 80.

r2 = 140,r1 = 60,r0 = 120,
u = 0, p/9, 2p/9, p/3

u

u = 140°.

u = 40°
r2 = 1.5r1.r1

u = 2

u = 68°.r = 180F = 22
r3 = i5 - j8.
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2.56 Use vectors A, B, C, D, and E given in Sample Problem 2.3, and determine

and  
2.57 Use vectors A, B, C, D, and E given in Sample Problem 2.3, and determine

and  
2.58 Consider an RSSR linkage similar to that in Figure 1.7a, where the link lengths are

and Link 0 lies on the x-axis, link 1 rotates in the xy-
plane, and link 3 rotates in the xz-plane. Plot the vector components representing the
positions of links 2 and 3 against angular position of link 1.

2.59 Consider an RSSR linkage similar to that in Figure 1.7a, where the link lengths are
and Link 0 lies on the x-axis, link 1 rotates in the xy-

plane, and link 3 rotates in the xz-plane. Plot the vector components representing the
positions of links 2 and 3 against angular position of link 1.

2.60 Consider a four-bar linkage for an assembly configuration with and forming a
counterclockwise loop. The link lengths are and Let

rad. Find and at the instant that rad. Use the Newton–Raphson
method. A first approximation may be obtained by sketching the linkage.

2.61 Consider a four-bar linkage for the assembly configuration with and forming a
clockwise loop. The link lengths are to be and Let

rad. Find and at the instant that rad. Use the Newton–Raphson
method. A first approximation may be obtained by sketching the linkage.

2.62 Consider the double-slider two-loop linkage illustrated in Figure 2.23, where
and rad. (Distance DE is identified

as etc.) Find and Use a numerical method.
2.63 Consider the double-slider two-loop linkage illustrated in Figure 2.23, where

and rad. (Distance DE is identified
as etc.) Find and Use a numerical method.

2.64 Consider the double-slider two-loop linkage illustrated in Figure 2.23, where
and rad. (Distance DE is identi-

fied as etc.) Find and Use a numerical method.
2.65 Consider the double-slider two-loop linkage illustrated in Figure 2.23, where

and rad. (Distance DE is
identified as etc.) Find and Use a numerical method.

2.66 Consider the double-slider two-loop linkage illustrated in Figure 2.23, where
and rad. (Distance DE is

identified as etc.) Find and Use a numerical method.
2.67 A four-bar linkage has the following dimensions (mm):

and 

The linkage is assembled so that the vector loop is clockwise. Check extreme val-
ues of the transmission angle. Plot the coupler and output crank positions and the transmis-
sion angle against the input crank position.

2.68 A four-bar linkage has the following dimensions (mm):
and The linkage is assembled so that the vector

loop is counterclockwise. Check extreme values of the transmission angle. Plot the
coupler and output crank positions and the transmission angle against the input crank
position.

r2 r3 rd

L3 = 40.L2 = 114,L1 = 20,L0 = 120,

r2 r3 rd

L3 = 81.L2 = 174,L1 = 30,L0 = 180,

rE.u2, u3, rD,rDE,
u1 = 2p/3r1 = 20, r2 = 115, rF = 100, rDE = 85, rCD = 35,

rE.u2, u3, rD,rDE,
u1 = p/4r1 = 20, r2 = 115, rF = 100, rDE = 85, rCD = 40,

rE.u2, u3, rD,rDE,
u1 = 2p/3r1 = 1, r2 = 5.2, rF = 5, rDE = 4, rCD = 1.5,

rE.u2, u3, rD,rDE,
u1 = p/2r1 = 1, r2 = 5.2, rF = 5, rDE = 4, rCD = 1.5,

rE.u2, u3, rD,rDE,
u1 = p/6r1 = 1, r2 = 5.2, rF = 5, rDE = 4, rCD = 1.5,

u1 = p/4u3u2u0 = p
r3 = 2.1.r0 = 3, r1 = 1, r2 = 3.6,
r3r2,rd,

u1 = p/3u3u2u0 = p
r3 = 80.r0 = 120, r1 = 60, r2 = 140,
r3r2,rd,

u

r3 = 45.r0 = 62, r1 = 20, r2 = 55,

u

r3 = 20.r0 = 32, r1 = 10, r2 = 28,

B * D. E * E,  D # D,  E # (E * B),E # E,
ƒ D ƒ ,    ƒ B ƒ ,    ( ƒ E ƒ )2,B # D,    D # B,D + B + C + E,  B + B - C - D - E - A,

E # (E * D).D * E, E * D,D * D,
D # D,ƒ D ƒ ,    ƒ E ƒ ,    ( ƒ D ƒ )2,D # E,   E # D,A + B + C + E,    A + B - C - D - E,
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2.69 A four-bar linkage has the following dimensions (mm):
and The linkage is assembled so that the vector

loop is counterclockwise. Check extreme values of the transmission angle. Plot the
coupler and output crank positions and the transmission angle against the input crank
position.

2.70 Design a mechanism with a 60-mm output link that rotates through an angle of about
The centerline of the continuously rotating input shaft must be 10 mm away from,

and parallel to, the plane of motion of the driven link. As a design decision, try an RSSR
spatial linkage similar to Figure 2.17, except that and

(all dimensions in mm).
Plot and tabulate the output link (driven crank) position and the transmission metric
against the drive crank position. Compare your results with the desired output link
motion and generally accepted limits of the transmission metric.

2.71 Design a mechanism with a 115-mm output link that rotates through an angle of about
The centerline of the continuously rotating input shaft must be 20 mm away from,

and parallel to, the plane of motion of the driven link.
As a design decision, try an RSSR spatial linkage similar to Figure 2.17, except that the
assembly configuration will be described by the negative root of Let

and (all dimensions in mm).
Plot and tabulate the output link (driven crank) position and the transmission metric
against the drive crank position. Compare the results with desired output link motion
and generally accepted limits of the transmission metric.

PROJECTS

See Projects 1.1 to 1.6 and suggestions in Chapter 1. Select a project at this time, or con-
tinue with the previously selected project. Establish a set of performance requirements
for the project. Examine the linkages involved in the chosen project. Describe and plot
motion characteristics of the linkages. Make use of computer software wherever practical.
Evaluate the linkages in terms of performance requirements.
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C H A P T E R  3

Velocity Analysis of
Mechanisms

Velocity is a vector quantity, having both magnitude and direction. We need to know
the velocity of points on a mechanism and the angular velocity of links. Both average
and instantaneous velocity are important design criteria. Velocity analysis precedes
acceleration and dynamic analyses, necessary steps in the design of high-speed
machinery.

Concepts You Will Learn and Apply while Studying This Chapter

• Instantaneous and average velocity of a point on a mechanism
• Angular velocity of a link
• Relative velocity
• Analytical vector methods for design and analysis of planar and spatial mechanisms
• Matrix methods applied to spatial mechanisms
• Complex-number methods for design and analysis of planar mechanisms
• Graphical methods for design and analysis of mechanisms
• Velocity analysis of slider-crank linkages, planar and spatial four-bar linkages,

sliding contact linkages, and combinations of these.
• Practical applications of the basic linkages

3.1 BASIC CONCEPTS

Velocity is a vector representing the change in position of a moving point, divided by
the time interval during which the point changes its position. If the time interval is
finite, the result is the average velocity

vaverage =
¢s
¢t

 ,
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162 Chapter 3 Velocity Analysis of Mechanisms

where is the change in position and in time. If the time interval is
infinitesimal, we have the instantaneous velocity

Since we are concerned largely with instantaneous values, the term velocity will refer
to instantaneous velocity unless otherwise noted.

Average speed is a scalar quantity equal to the total distance traveled divided by
the time interval. Consider an automotive piston as it travels between limiting posi-
tions during one-half crankshaft rotation. Average speed and average velocity of the
piston are both given by the stroke divided by the time for one-half crankshaft rota-
tion. Velocity will also indicate the direction of travel. For a full crankshaft rotation,
average speed is twice the stroke divided by the time for a full rotation. But the piston
has returned to its original position, and the average velocity is zero.

A vector representing the change in angular position of a body divided by the time
interval during which the body changes its angular position is called the angular velocity

Angular velocity is sometimes treated as a scalar in dealing with planar linkages.
Analytical and graphical vector methods, including representing of vectors in complex
form, are useful in velocity studies related to linkage design.

Velocity of a Point

Let the location of a point be described by a vector R. In Figure 3.1, consider point P,
which moves along curve C through a displacement dR during a time interval dt. The
new position vector is then representing a change in the direction of R, a
change in the magnitude of R, or both. If we allow the time interval dt to become infin-
itesimal, the corresponding infinitesimal displacement of dR lies on the curve C. Then,
the instantaneous velocity of point P is given by

(3.1)

where the direction of v is given by a tangent to curve C at P. A dot above a vector or
scalar quantity is sometimes used to indicate differentiation with respect to time; thus,

becomes R
#
.dR/dt

v =
dR
dt

R + dR,

V = limit¢t:0 
¢u
¢t

=
du

dt
 .

v = limit¢t:0 
¢s
¢t

=
ds
dt

 .

¢t = change¢s

z, k

R

R � dR

P

O

dR

C

x, i

y, j

FIGURE 3.1 Velocity of a point.
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Section 3.1 Basic Concepts 163

In general, the vector dR represents a change in the x, y, and z components of R.
The velocity of point P may be expressed in terms of the components and 
and the unit vectors i, j, and k, parallel to the coordinate axes, as noted in Chapter 2.
Then,

(3.2)

if the x, y, z coordinate system is stationary.

Angular Velocity

Angular velocity may be treated as a vector quantity. Consider a link whose angular
position changes at a rate of

(where for a rotation speed of n revolutions per minute).The direction of
vector is perpendicular to the plane of rotation, and its sense is found by curving the
fingers of the right hand in the direction of rotation. The thumb then points in the
direction of vector Alternatively, consider a right-hand screw rotating clockwise.
The direction of the vector is the direction of advance along the screw axis. For a
body that rotates in the xy-plane, will be in the direction. In Figure 3.2 for exam-
ple,

Motion of a Rigid Body about a Fixed Axis (Without
Translation)

Consider a rigid body rotating about an axis that is fixed in a stationary coordinate sys-
tem. (See Figure 3.3.) Then, angular velocity has a fixed direction (along that axis). If
a point P that is fixed in the body is identified by vector R, then P moves in a curved

V

V = vk.
;zV

V

V.

V

V = 2pn/60,

V = vx i + vy j + vz k radians per second

v = R
#

= iR
#

x + jR
#

y + kR
#

z

RzRx, Ry,

z, k

�

�    k�� 

x, i

y, j

FIGURE 3.2 Rotation in the xy-plane.
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�

�

P

R

O

� � Rv �

�

FIGURE 3.3 Motion of a rigid body motion
about a fixed axis.

path of radius about that axis, where is the angle between the axis of rotation
and R. The speed (i.e., magnitude of the velocity) of P is given by

(3.3)

Compare this result with the vector cross product identified in Chapter 2.Thus, we may
write

(3.4)

since the direction of the velocity is perpendicular to the plane of and R and is given
by the right-hand rule. The thumb of the right hand is pointed in the direction, and
the index finger in the R direction. (See Figure 3.4.) Velocity is then in the direction of
the third finger.

If varies (with time) in magnitude or direction, the velocity is still given by the
preceding equations, provided that is finite.Thus, the instantaneous velocity of a
point P in a rigid body that rotates about a fixed point (e.g., a ball joint) with instanta-
neous angular velocity is given by

where R is measured from any point on the instantaneous axis of rotation. Thus, for a
link that moves in a plane about a stationary revolute joint, and R are perpendicular,V

v = V * R,

V

dV/dt
V

V

V

R
#

= v = V * R,

v = v R sin u.

uR sin u

�

� � R
Thirdfinger

T
hu

m
b

In
dex

 fi
nge

r

R

FIGURE 3.4 Using the right-hand rule to find
the direction of the vector cross product.
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and the speed of a point in the link is given by the product If we consider sliding
along a rotating link, or if we consider links that are not fixed at a point, additional
terms enter into our analysis.

SAMPLE PROBLEM 3.1

Surface Speed

Surface speeds of from 800 to 2,000 ft/min (4,064 to 10,150 mm/s) are recommended for milling
aluminum. Find the corresponding speeds (i.e., the angular velocities), in revolutions per minute,
for a 4-in- (101.5-mm-) diameter milling cutter.

Solution. Let the radius of the cutter be The lowest surface speed is

The angular velocity vector and the radius vector are perpendicular to each other. Thus,
tangent to the surface, and

Next, divide 80 rad/s by 0.1047 (rad/s) / (1 rev/min) to obtain 764 rev/min, which is the minimum
value of the angular speed. Similarly, 2,000 ft/min gives us a maximum value of 1,910 rev/min.

SAMPLE PROBLEM 3.2

An In-Line Slider-Crank Mechanism

a. Determine the velocity of the piston in a pump modeled as an in-line slider-crank
linkage.

b. Let and Find the slider velocity analytically.
c. An in-line slider-crank mechanism has a crank length of 200 mm and a connecting-rod

length of 560 mm. The crank rotates at a constant angular velocity of 50 rad/s counter-
clockwise. Find the average slider velocity during one stroke.

Solution. (a) An analytical examination of the in-line slider-crank mechanism shows that the
mechanism has some resemblance to the Scotch yoke considered in Chapter 2. In fact, the
Scotch yoke can be considered a special case of the slider crank: a slider-crank linkage with an
infinite connecting rod. It is the connecting rod and the angle that it forms with the slider path
that complicate our analytical solution. Figure 3.5 shows the in-line slider crank first in its
extreme extended position (top dead center) and then in a general position with angular dis-
placement of the crank.u

f

v = 10 rad/s.u = 70°,L = 3.76 in,R = 2 in,

v =
v

R
=

160 in/s
2 in

= 80 rad/s.

v = V * R = vR

v = 800 ft/min * 12 in/ft * 1 min/60 s = 160 in/s.

R = 2 in.

vR.
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O1

O1

R

B

a x

B

C

C

L

L
R

� �

x � R (1 � cos   ) � L (1 � cos   )� �

FIGURE 3.5 In-line slider-crank mechanism, shown first in its extended position (top)
and then an instant later, when the crank has moved through an angle (bottom).u

Measuring piston displacement x from the original position, we have

We may express in terms of by dropping a perpendicular from B to line forming two
right triangles. The length of the perpendicular is

Using this equation and the identity we obtain the exact slider displacement
in terms of only:

The slider velocity is obtained by differentiating x with respect to time.
The exact slider velocity is given by the following equation where angular speed is the

rate of change of with respect to time:

(Positive velocity is to the left in this example.)
If the slider-crank mechanism is a piston engine or piston pump for which the ratio of L to

R is fairly large (say, 3 or more), a simplification is in order. We expand the displacement equa-
tion by the binomial theorem, retaining only the terms

x = RB1 - cos u + ¢1
2
≤  ¢R

L
≤sin2 uR .

v = Rv sin uC1 + ¢R

L
≤ cos u21 - (R/L)2 sin2 u

S .

u

v

x = R(1 - cos u) + LC1 - C1 - BR

L
R2

 sin2 uS .

u

sin2f + cos2f = 1,

a = R sin u = L sin f.

O1C,uf

 = R(1 - cos u) + L(1 - cos f) .
x = R + L - (R cos u + L cos f)
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Using this equation or simplifying the velocity equation directly, we obtain the approximate
slider velocity

From the trigonometric identity we may write the approximate velocity
equation in the form

(b) Using the exact equation, we have

From the approximate velocity equation, we obtain in/s, which is a fairly good approx-
imation, given that the ratio L/R is not within the recommended range for the approximate
equation.
(c) We might be tempted to integrate an expression for velocity or to average values over an
entire plot. The exact solution, however, is simply the stroke, 2R, divided by the time taken to
complete half of one cycle. For any in-line slider-crank mechanism with a constant crank speed,
the slider speed becomes

Thus, the average slider speed is given by

In the past, approximate solutions to kinematics problems were used to save time
calculating. Today, with the general availability of computers, you might wonder why
we used an approximate equation at all in the preceding example. The answer is that
the approximate velocity equation is easy to differentiate; we can then find accelera-
tion and inertial forces in a useful form for designing vibration isolation.

Parameter Studies

Parameter studies are an aid in selecting optimum linkage dimensions and speeds. We
might examine velocities in a particular class of linkages (the slider crank, for exam-
ple), without specifying actual dimensions or speeds. To be as general as possible, a
family of curves of velocity versus crank angle can be plotted, each curve for a differ-
ent ratio of connecting-rod length L to crank length R. (See Figure 3.6a.) To normalize

vav =
2 * 200 * 50

p
= 6366 mm/s.

vav =
2R

p/v
 .

v = 22.2

 = 22.8 in/s to the left.

 v = 2(10)sin 70°C1 + ¢ 2
3.76
≤ cos 70°21 - (2/3.76)2

 (sin 70°)2
S

v = RvBsin u +
1
2

 (R/L)sin(2u)R .

sin u # cos u = 1
2 sin(2u),

v = Rv sin uB1 + ¢R

L
≤cos uR .
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FIGURE 3.6 (a) The family of curves shown here represents those obtained from an in-line slider-
crank mechanism parameter study. The ratio of slider velocity to crankpin velocity is plotted
against the crank angle for various L/R ratios. The slider velocity at any position of the mechanism
is found by multiplying the ordinate (slider velocity/crankpin velocity) by the actual value of Rv.

the results, the product of crank angular velocity and crank length may be assigned a
value of unity. Later, all velocities will be multiplied by the actual value of to obtain
slider velocity.

Figure 3.6a is a family of curves of slider velocity versus crank angle for an in-
line slider-crank mechanism. The curve is a sine wave, representing the
actual velocity of a Scotch yoke mechanism or the limiting velocity relationship for a
connecting-rod length many times greater than the crank length. Note how closely
the curve resembles the sine curve. To obtain curves for which the ratio of
connecting rod length to crank length is near unity, the exact analytical solution is
preferred.

Figure 3.6b shows the normalized piston velocity versus the crank angle
for an in-line slider-crank mechanism over a full cycle of motion. In this plot, L/R ratios
range from 1.2 to 2, and piston velocity toward the crank is shown below the axis. It can
be seen that all the plots for the in-line slider-crank mechanism are antisymmetric
about a crank angle of radians.p

v/(vR)

L/R = 7

L/R = q

vR
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FIGURE 3.6 (b) Normalized piston velocity vs. crank position for various ratios L/R (in-line slider-
crank mechanism).

SAMPLE PROBLEM 3.3

Specification of a Linkage to Satisfy Velocity Conditions

Let us specify the dimensions of a linkage to meet a simple set of requirements. Suppose a cer-
tain process requires rectilinear motion with a velocity between 75 and 100 in/s in one direction
during at least 15 percent of each cycle. The linkage is to be driven by a shaft that turns at 600
rev/min.

Solution. The requirements are not very rigid, and therefore, several mechanisms would be sat-
isfactory, but we will consider the in-line crank mechanism that has already been examined in
detail. Checking the curve representing in Figure 3.6a, we see that this connecting-rod-
to-crank-length ratio may be satisfactory. For that curve, ranges from about 0.8 to 1.05
during the interval from to (which is greater than 15 percent of one cycle). If
we let correspond to in/s when

then

At maximum velocity, or which is within the required range.The ten-
tative solution, then, is an in-line slider-crank mechanism with crank length in and R = 1.5

v L 99 in/s,v/(Rv) = 1.05,

R =
v

0.8v
=

75
0.8 * 62.8

= 1.5 in.

v =
2p
60

* 600 rev/min = 62.8 rad/s,

v = 75v/(Rv) = 0.8
u = 110°u = 40°

v/(Rv)
L/R = 3
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Z, K z, k

r P

x, i
y, j

Y, JO

o

X,I

R0

FIGURE 3.7 A moving coordinate system. System
xyz moves within fixed system XYZ. Point P moves
within xyz. The absolute position of point P is given
by the vector sum where r is the position of
P with respect to the moving system and locates
the origin of the moving system.

Ro

Ro + r,

connecting-rod length in, and the conditions are satisfied between crank angles of
and (approximately). Since the curves are only approximate, the next step is to

determine the velocity accurately during the chosen interval.
In almost every practical design situation, the first step involves sketching as many link-

ages as possible that might be suitable. The only limits are the designer’s creativity and experi-
ence. Then, the motion characteristics of the linkages are analyzed, first to ascertain whether the
displacement pattern meets all requirements and then to check the velocity and acceleration of
the mechanism.

3.2 MOVING COORDINATE SYSTEMS AND RELATIVE VELOCITY

It is sometimes convenient to establish a coordinate system that translates or rotates
along with a moving link. In most cases, we then refer velocities and accelerations back
to a fixed coordinate system.

Consider the two coordinate systems of Figure 3.7. Coordinate axes X, Y, and Z
and the corresponding unit vectors I, J, and K are fixed. (For most work with mecha-
nisms, this would mean that the XYZ coordinate system is an inertial reference frame;
that is, it does not move with respect to the earth.) The origin o of coordinate system
xyz is defined by the position vector Unit vectors i, j, and k for this set of moving
axes lie along, and move with, the x-, y-, and z-axes, respectively. The xyz–ijk system
may translate and/or rotate in any direction. A point P in a linkage is described by the
vector r (the position vector oP) in the moving coordinate system xyz. The total posi-
tion vector of P is

(3.5)

measured from the origin of the fixed coordinates.
Expressing vectors and r in terms of their components and corresponding unit

vectors, the radius vector to point P is given by

(3.6)R = R0XI + R0YJ + R0ZK + rxi + ry  

j + rzk.

Ro

R = Ro + r,

Ro.

110°u = 40°
L = 3R = 4.5
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Section 3.2 Moving Coordinate Systems and Relative Velocity 171

Note that in Eq. 3.6, is written in terms of the fixed coordinate system, while r is
written in terms of the moving coordinate system. The velocity of point P is given by
the rate of change of R with respect to time:

(3.7)

The first vector on the right side of the equation is the rate of change of in the X
direction—the X component of the velocity of o. Since the X, Y, and Z coordinate
frame is fixed, unit vectors I, J, and K do not change, and the velocity of o is given com-
pletely by the first three vectors on the right of the equation. The sum of these vectors
will be identified by the symbol The next three vectors, and so on, represent the
rate of change in the r vector with respect to the moving coordinates, or the velocity of P
relative to the moving coordinate system xyz. The sum of these vectors will be identi-
fied by the symbol (The velocity of P relative to the xyz system will be denoted by
the use of the subscript r.)

The last three vectors of Eq. 3.7 represent the effect of the rotating coordinate
system (xyz) in any expression for the absolute velocity of P. Unit vectors i, j, and k are
fixed relative to the moving xyz system (i.e., i, j, k move with the xyz system). Relative
to the fixed XYZ system, however, unit vectors i, j, and k rotate; thus, their positions
relative to fixed system XYZ are functions of time.

The first derivative of a vector of constant magnitude is the cross product of the
angular velocity of the vector (i.e., the angular velocity of the moving coordinate sys-
tem) and the vector itself. Thus, for the last three vectors in Eq. 3.7,

and

(3.8)

so that

(3.9)

Therefore, the last three vectors of Eq. 3.7 can be replaced by the vector product
where is the angular velocity of the xyz coordinate system and r is the posi-

tion vector of P in the xyz system. Recall, from the previous section, that the cross
product

represents the velocity of a point on a rigid body rotating about a fixed axis.

V * r

VV * r,

 = V * r.

 = V * (rxi + ry  j + rzk)

 rx i
#

+ ry j
#

+ rzk
#

= rx(V * i) + ry(V * j) + rz(V * k),

rxk
#
 = rx(V * k),

rx j
#
 = rx(V * j),

rxi
#
 = rx(V * i),

r
#
r.

r
#
xiR

#
o.

Ro

R
#

= R
#

0XI + R
#

0YJ + R
#

0ZK + r 
#
x i + r 

#
y  j + r 

#
z k + rx i

#
+ ry j

#
+ rzk

#
.

Ro
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The velocity of R may be expressed more concisely as

(3.10)

where velocity of point relative to P (XYZ),
of the origin o of the xyz system,

of point P relative to the xyz system,
and

cross product of the angular velocity of the moving system xyz in 
the XYZ system and the position vector r.

Relative Velocity from Another Viewpoint

In the preceding section, we referred to absolute velocity—that is, a velocity measured
in a fixed coordinate system (an inertial reference frame). In addition, a relative veloc-
ity was identified—the velocity of a point with respect to a moving coordinate system.
In the study of mechanisms, it is sometimes useful to describe the velocity of a point by
referring to another moving point. In this regard, consider nonstationary points B and
C. The term is defined as the absolute vector velocity of C minus the absolute vector
velocity of B; that is,

(3.11)

Frequently, is referred to as the velocity of C relative to B or the velocity of C with
respect to B. Other terms include velocity difference and the velocity of C about B.
Some works use a different notation, such as instead of When the terms “rel-
ative to,”“with respect to,” and “about” are used, it is understood that motion is viewed
from an inertial, or nonrotating, reference frame. An observer in a rotating reference
frame would not, in general, detect the correct relative velocity as just defined. In the
study of mechanisms, the earth is most often selected as a “stationary reference frame.”
However, problems of spaceflight and even problems of long-range ballistics on the
earth require that the earth’s motion be considered.

Equation 3.11 may be written in the equivalent form

(3.12)

where the plus sign indicates the vector sum. For a simple example of relative velocity,
let an aircraft carrier B move northward with a velocity knots (7.72 m/s).
Suppose an aircraft C on the flight deck has a velocity of kn (12.86 m/s) rela-
tive to the carrier. The direction of the path of the aircraft across the flight deck differs
from the direction of the velocity of the aircraft carrier by as shown in Figure 3.8.
The vector which represents the velocity of the carrier, is drawn to a convenient
scale, starting at an arbitrary point o. Then the vector which represents the veloc-
ity of the aircraft relative to the carrier, is drawn, beginning at the head of vector The
vector sum

is the vector beginning at o, with its head at the head of vCB.

vB + vCB = vC

vB.
vCB,

vB,
20°,

vCB = 25
vB = 15

vC = vB + vCB,

vCB.vC/B,

vCB

vCB = vC - vB.

vCB

V * r =

r
#
r = velocity

R
#

o = velocity
R
#

= absolute

R
#

= R
#

o + r
#
r + V * r,
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FIGURE 3.8 Relative velocity.

The concept of relative motion also applies to machine operations, as in the case
of the motion of a robot manipulator on a fixed base, where the manipulator is to inter-
act with an assembly on a moving production line, or a lathe tool that moves axially to
cut a helical thread in a rotating workpiece.

3.3 MATRIX AND DETERMINANT CONCEPTS USEFUL IN THE STUDY 
OF KINEMATICS AND DYNAMICS OF MACHINERY

Many kinematics and dynamics problems can be reduced to a set of linear equations.
Matrix notation may make these problems easier to solve. If there are more than two
equations in the set, we can “work smart” by using software with matrix capability.This
section provides only a brief introduction to the matrix methods we need for kinemat-
ics and dynamics. If you are convinced that matrices provide a convenient and power-
ful approach to engineering problems, look for books with matrices, linear algebra, or
linear analysis in the title.

A Few Definitions

A matrix is an array of elements in rows and columns. The form of a matrix with m
rows and n columns is

A = D
a11 a12 Á a1n

a21 a22 Á a2n

Á Á Á Á
am1 am2 Á amn

T .
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174 Chapter 3 Velocity Analysis of Mechanisms

A matrix with one column is called a vector or a column matrix. In ordinary three-
dimensional space such a matrix could look like

Or, a set of angular velocities could form the vector:

Note that vectors are not limited to describing links and velocities in a plane or in
three dimensional space. You may prefer to call the preceding vector a state vector.

An identity matrix (usually labeled I) has ones as the diagonal elements and
zeros elsewhere. The identity matrix of order four is thus

The inverse of matrix A is labeled Multiplying a matrix by its inverse results in the
identity matrix; that is,

Matrix Multiplication

Matrix A may be multiplied by matrix X (in the order AX) if the number of columns in
A equals the number of rows in X. Suppose A has rows and columns, and X has

rows and columns. Then the product is defined if equals Note
that B has rows and columns.

Now consider an n-by-n square matrix

A = D
a11 a12 Á a1n

a21 a22 Á a2n

Á Á Á Á
an1 an2 Á ann

T

cXrA

rX.cAAX = BcXrX

cArA

A-1A = I.

A-1.

I = D
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

T .

X = D
v2x

v2y

v2z

v3

T .

r2 = C
r2x

r2y

r2z

S .
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and an n-row column matrix

We can form the product where B is a column matrix with n elements.The ith
element of B is

For example, if A is a four-by-four matrix and X is a column matrix with four terms,
then the second term in B is

Using Matrices to Solve a Set of Linear Equations

Problems in kinematics and dynamics sometimes result in a set of linear equations.The
matrix method works like this:

a. Arrange the equations in the form

where are unknown, but we know the values of and Of
course, although four simultaneous equations are shown, we may have any number of
equations.

b. Express the simultaneous equations as the matrix equation

where the known matrices A and B and the unknown matrix X are defined as follows:

A = D
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

T X = D
x1

x2

x3

x4

T B = D
b1

b2

b3

b4

T .

AX = B

b1 Á b4.a11 Á .a44x1 Á x4

 a41x1 + a42x2 + a43x3 + a44x4 = b4,

 a31x1 + a32x2 + a33x3 + a34x4 = b3,
 a21x1 + a22x2 + a23x3 + a24x4 = b2,
 a11x1 + a12x2 + a13x3 + a14x4 = b1,

b2 = a21x1 + a22x2 + a23x3 + a24x4.

bi = a
n

j = 1
 aij 

#xj.

AX = B,

X = D
x1

x2

Á
xn

T .
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176 Chapter 3 Velocity Analysis of Mechanisms

Note that this product conforms to the foregoing rules for matrix multiplication.
c. Multiply the matrix equation by the inverse matrix to get

Recall that the identity matrix. Multiplying by the identity matrix does not
change X, and the result is

d. Calculate the set of unknowns, given in column matrix  X, by means of the pre-
ceding equation.

Working Efficiently with Matrices

• Arrange the equations so that the coefficients of the unknowns line up; insert
zeros if necessary.

• Form matrices A and B.
• Identify the terms in the unknown matrix X (as a comment).
• If available, use software that can compute directly. Calculating the

inverse of a large matrix is a long and boring task without such help.

You might wonder why we did not use matrices for position analysis of spatial
linkages. The matrix methods we have presented are useful for describing linear rela-
tionships. The spatial linkage position equations contained unknown terms like and

so that the set of equations is not linear. Sometimes nonlinear problems are
attacked with a combination of matrix methods and iterative numerical procedures.
See, for example, the section on the Newton–Raphson method for two or more vari-
ables in Chapter 2.

Determinants: Cramer’s Rule, an Alternative Method for Solving
Simultaneous Equations
Besides being used to express the vector cross product, determinants can be employed
to solve a set of simultaneous equations. However, employing determinant methods
for large sets of equations is an inefficient use of time when software with matrix capa-
bility is available.

Consider a set of nonhomogeneous linear equations arranged as follows:

These equations can be written in matrix form as

AX = B,

 an1x1 +                 Á + annxn = bn

 o  

 a21x1 + a22x2 + Á + a2nx2 = b2

 a11x1 + a12x2 + Á + a1nxn = b1

r2x
2 ,

r2x

X = A-1B

X = A-1B.

A-1A = I,

A-1AX = A-1B.

A-1AX = B
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where the terms are defined as in the preceding paragraph.
The unknowns are given by

where det A, the determinant of the A matrix,
the determinant of the matrix formed by the A matrix with the first
column replaced by the B matrix (i.e., the elements of the B vector),
the determinant of the matrix formed by the A matrix with the sec-
ond column replaced by the B matrix,
the determinant of the matrix formed by the A matrix with the 
nth column replaced by the B matrix.

This method, called Cramer’s rule, will be illustrated in a sample problem and used
later to find angular velocities in a four-bar linkage.

SAMPLE PROBLEM 3.4

Using determinants to solve a set of linear equations

Solve the following set of simultaneous equations:

Solution. The equations are linear in u, v, and w. We will write them in the form

where

We then calculate the determinants to find the unknowns u, v, and w:

D1 :=  3 C
25.5 4 0
41.5 5 1
39 2 2

S 3  D1 = 28 u :=  
D1

 D
  u = 0.5

D :=  ƒ A ƒ D = 56

A :=  C
3 4 0
1 5 1
10 2 2

S B :=  C
25.5
41.5
39
S and X :=  C

u

v

w

S .

AX = B,

 10u + 2v + 2w = 39.
 u + 5v + w = 41.5;

 3u + 4v = 25.5;

 Dn =

 D2 =

 D1 =
 D =

xn = Dn/D,

  o

x2 = D2/D,
x1 = D1/D,
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178 Chapter 3 Velocity Analysis of Mechanisms

SAMPLE PROBLEM 3.5

Using matrix methods

Is there a quicker way to solve the previous set of equations?

Solution. Yes, use the form

The answer is immediate:

The elements of the X vector may be numbered beginning with zero. That is,

3.4 APPLICATION OF ANALYTICAL VECTOR AND MATRIX 
METHODS TO LINKAGES

Analytical vector methods may be used to find velocities in planar and spatial linkages.
Basically, it is necessary to determine the link orientations by first solving the position
equation and then differentiating the position equation with respect to time. If the
linkage may be described by the vector polygon

then differentiation with respect to time yields the velocity equation

(3.13)

The form of the solution depends on the given data and the type of linkage. The solu-
tion for a linkage with sliding pairs is somewhat different from the solution for a link-
age with revolute joints only.

Four-Bar Linkage

Consider a four-bar planar linkage represented by vectors, as shown in Figure 3.9. All
the links are rigid and there is no sliding contact. For the frame, r

#
0 = 0.

r
#
0 + r

#
1 + r

#
2 + r

#
3 = 0.

r0 + r1 + r2 + r3 = 0,

u :=  X0 u = 0.5 v :=  X1 v = 6 w :=  X2 w = 11

X = C
0.5
6
11
S .

X :=  A-1B.

D3 :=  3 C
3 4 25.5
1 5 41.5
10 2 39

S 3  D3 = 616 w :=  
D3

D
  w = 11

D2 :=  3 C
3 25.5 0
1 41.5 1
10 39 2

S 3  D2 = 336 v :=  
D2

D
 v = 6
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FIGURE 3.9 Analytical study of a four-bar linkage.

For the four-bar linkage, the remaining velocity terms are given by the cross
products, and the last equation becomes

(3.14)

For this planar linkage, the coordinate axes are selected so that vectors and 
have components in the x and y directions and angular velocities in the z direction.
Thus, examining the first term in Eq. (3.14) as typical, we have

and

Using determinant form for the cross product, as described in Chapter 2, we obtain

(3.15)

Since the remaining terms in Eq. 3.14 are similar in form, that equation may be written as

(3.16)

The i component and the j component of Eq. (3.16) must each separately equal zero,
yielding the two simultaneous equations

v1r1y + v2r2y + v3r3y = 0

-i(v1r1y + v2r2y + v3r3y) + j(v1r1x + v2r2x + v3r3x) = 0.

V1 * r1 = 3
i j k
0 0 v1

r1x r1y 0

3 = -iv1r1y + jv1r1x.

r1 = ir1x + jr1y.

V1 = kv1

V

r3r1, r2,

V1 * r1 + V2 * r2 + V3 * r3 = 0.
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and

(3.17)

A number of methods are commonly used for solving simultaneous equations. For
example, if is known and we wish to determine the other angular velocities, we may
write the preceding equations in matrix form as follows:

(3.18)

The angular velocity of link 2, the coupler, is given by the determinant expression

where

and the angular velocity of link 3 is given by

Expanding these expressions, we have

(3.19)

and

(3.20)

Since link 1 in Figure 3.9 rotates about fixed point the velocity of any point on link
1 is given by where r is the vector measured from to the point in question.
Link 2, the coupler, has no fixed point. The velocity of an arbitrary point D on link 2
may be found by using Eq. 3.10, where link 2 is fixed in a rotating coordinate system
with origin at B. Then,

and the velocity of point D is given by

(3.21)vD = V1 * r1 + V2 * rBD,

 V * r = V2 * rBD,
 r
#
r = 0,

 R
#

0 = V1 * r1,

O1V1 * r,
O1,

v3 =
-v1(r2yr1x - r1yr2x)

r2yr3x - r3yr2x
.

v2 =
-v1(r1yr3x - r3yr1x)

r2yr3x - r3yr2x

v3 =
-v1

D
`
r2y r1y

r2x r1x
` .

D = `
r2y r3y

r2x r3x
` ,

v2 =
-v1

D
`
r1y r3y

r1x r3x
` ,

Br2y r3y

r2x r3x
R Bv2

v3
R = -v1Br1y

r1x
R .

v1

v1r1x + v2r2x + v3r3x = 0.
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where the first term on the right represents the velocity of point B and the last term the
velocity of D with respect to B. The same result could be obtained by noting that the
position of point D could be described by the equation

where vectors and have fixed magnitude. Note that point D does not move rela-
tive to link 2.

Point C in Figure 3.9 represents the revolute (pin) joint between links 2 and 3.
The velocity of C can be found by the equation

(3.22)

where the first term on the right represents the velocity of B and the last term the
velocity of C with respect to B. (Compare in Eq. 3.21.) An alternative expression is

(3.23)

since link 3 rotates about fixed center and represents the radius vector If
we subtract Eq. 3.23 from Eq. 3.22, the result is Eq. 3.14.

Equations 3.22 and 3.23 form the basis of the graphical relative velocity and
velocity polygon methods for plane linkages of this type. For example, if the velocity of
point B (Figure 3.9) is known, we use the fact that the cross products are perpendicular
to the link vectors to find the velocity of point C.

Although the equations we have developed in this section are general for the
four-bar planar linkage, the solutions are actually instantaneous velocities and instanta-
neous angular velocities. Even if is constant in magnitude, only the magnitude of 
will be constant. Due to the changing position, and will, in general, vary, as will
the velocities of points on links 2 and 3.

SAMPLE PROBLEM 3.6

Linkage Velocities by Analytical Vector Methods

Referring to Figure 3.9, let (constant),
and Find and 

Solution. In chapter 2, for the assembly configuration shown, we determined from the position
analysis that and The components of the link vectors are

Programming a polar–rectangular and rectangular–polar conversion subroutine or using a pre-
programmed one saves time. For this linkage at the instant considered,

 r2x = 33.590, r2y = 9.853,
 r1x = 7.0711, r1y = 7.0711,

rx = r cos u and ry = r sin u.

u3 = 237.81°.u2 = 16.35°

vD.vC,V3,V2,rBD = 15 mm. r2 = 35 mm, r3 = 20 mm,r1 = 10 mm,
r0 = 30 mm,uCBD = 20°v1 = 100 rad/s ccw, u1 = 45°,

V3V2

vBV1

O3C.-r3O3

vC = V3 * (-r3),

vD

vC = V1 * r1 + V2 * r2,

rBDr1

rD = r1 + rBD,
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and

Using these values in Eqs. 3.19 and 3.20, we find that

and

The velocity of point C is given by the vector sum of the velocity of B and the velocity of C with
respect to B (Eq. 3.22). Noting that and we have

Note that the velocity vector is perpendicular to the link vector.
Using, instead, the angular velocity and length of link 3 (Eq. 3.23), we obtain

which differs from the previous solution only because of round-off error. This alternative
method provides a partial check of our arithmetic operations or of our coding of the program.

In finding the velocity of point D, which lies in link 2, we note that the components of the
vector location are defined by the angle from which it follows that

Adding the vector velocity of B and the vector velocity of D with respect to B, (Eq. 3.21), we
obtain

 = -i622.04 + j591.53 = 858.4 mm>s l136.4°.

 vD = 3
i j k
0 0 100

7.0711 7.0711 0

3 + 3
i j k
0 0 -9.567

12.081 8.891 0

3

rBDx = 12.081 and rBDy = 8.891.

u2 + uCBD = 16.35 + 20°,

vC = 3
i j k
0 0 63.208

10.660 16.922 0

3 ,

 = - i612.83 + j385.80 = 724.16 mm/s l147.8°.

 vC = 3
i j k
0 0 100

7.0711 7.0711 0

3 + 3
i j k
0 0 -9.567

33.590 9.853 0

3

V2 = -9.567k,V1 = 100k

 = 36.208 rad/s ccw.

 v3 =
-100(9.853 * 7.0711 - 7.0711 * 33.590)

-9.853 * 10.660 + 16.992 * 33.590

 = -9.567 rad/s  (9.567 rad/s cw)

 v2 =
-100(-7.0711 * 10.660 + 16.922 * 7.0711)

-9.853 * 10.660 + 16.992 * 33.590

r3x = -10.660,  r3y = -16.922.
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Inverse Matrix Solution Using Mathematics Software

Equation 3.18 may be written in the form

(3.24)

Let the numerical values of the elements of matrix A and state vector B be specified.
Then state vector X, representing the angular velocities of links 2 and 3, is the only
unknown. Hence,

(3.25)

A direct solution of Eq. 3.25 is easily obtained with the use of mathematics software.

3.5 USING A SPREADSHEET TO SOLVE PROBLEMS IN KINEMATICS

An electronic spreadsheet program is a convenient tool for analyzing a linkage in a
series of positions. Spreadsheets allow for rapid evaluation of potential design changes,
and include built-in plotting routines. One disadvantage is that spreadsheet formulas
are written in terms of cell references, while we are accustomed to writing equations in
terms of physical parameters.

Spreadsheets allow copying of formulas in a given range of cells to an additional
range of cells. If the cell reference is not to change when a formula is copied to another
cell, then an absolute cell reference is used.A relative cell reference is the default form.
The column letter or row number of a relative cell reference changes according to the
cell into which a formula is copied. Sample Problem 3.7 is intended to illustrate an
application of spreadsheets to kinematics. Complete instructions for manipulating
spreadsheets are found in the manuals that accompany the software.

SAMPLE PROBLEM 3.7

Utilizing a Spreadsheet to Plot Velocities in a Four-Bar Linkage

Let crank angle vary from to in increments in the four-bar linkage described in
Sample Problem 3.6. Plot the angular velocities of the coupler and follower crank and the veloc-
ity of point D vs.

Solution. We begin by listing the given data in cells that are identified by their column letter
and row number.

The initial value of crank angle is zero, and it is incremented in each succeeding row.
Equations are entered in cell format according to the spreadsheet manual. Angle functions usu-
ally require arguments in radians. The job is not finished until we title the graphs, label the axes,
and label the curves or include a key.

Figure 3.10 shows the coupler and follower angular velocity plotted against the crank posi-
tion. Figure 3.11 shows the velocity of point D on the coupler of the linkage. The x and y compo-
nents are shown, as well as the resultant velocity.

5°u1

u1.

5°360°0°u1

X = A-1B.

AX = B.
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FIGURE 3.12 Offset slider crank
linkage.

3.6 MATHEMATICS SOFTWARE APPLIED TO VECTOR SOLUTIONS 
OF KINEMATICS PROBLEMS

If we choose to solve kinematics problems in vector form, we may write vector-
manipulation routines or use commercially available mathematics software. Consider
the offset slider-crank linkage sketched in Figure 3.12.This linkage can be described by
the vector equation

(3.26)

where the magnitude of e is the offset—that is, the distance from the centerline of the
slider path to crank bearing 

Position Analysis

If the offset crank length, connecting-rod length, and crank position are given, then it is
convenient to rewrite Eq. (3.26) as

(3.27)

where Noting that the magnitude of is unknown and the direction of 
is unknown, we see that the solution is given by Eqs. (2.23) and (2.24), where

and 

Velocity Analysis

We note that the magnitudes of and are constant, that has a fixed direction, and
that e is constant in both magnitude and direction. Differentiating Eq. (3.26), we obtain

(3.28)

where the slider velocity, which is in the x direction. The angular velocity
vectors are in the z direction. To eliminate in Eq. (3.28), we take the dot product of
each term with j, from which we get

(3.29)

Using vector manipulation rules from Chapter 2, we have

(k * r) # j = r # (j * k)

v1(k * r1) # j + v2(k * r2) # j = 0.

vc

dr0/dt = -vc,

V1 * r1 + V2 * r2 - vc = 0,

r0r2r1

r3 = e + r1 = C.r0 = A, r2 = B,

r2r0r3 = e + r1.

r3 + r2 + r0 = 0,

O1.

e + r1 + r2 + r0 = 0,
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and

Equation (3.29) is equivalent to

from which it follows that

(3.30)

Equation (3.28) may now be solved for 

SAMPLE PROBLEM 3.8

Velocity Analysis of an Offset Slider-Crank Linkage Using Vector Methods

a. Referring to Figure 3.12, let and where and
The angular velocity of the crank is constant. Plot the slider

position, slider velocity, and angular velocity of the connecting rod vs. crank angle 
b. Examine the effect of varying the offset. Let 

Solution Summary. (a) Commercially available mathematics software was used to obtain the
solution shown in Figure 3.13. In this solution, we set and Then the results apply
to other slider-crank linkages with the same proportions if is multiplied by the actual byv2R1,r0

v1 = 1.R1 = 1

R2/R1 = 2.
u1.

R2 = connecting-rod length.
R1 = crank lengthe/R1 = -0.5j,R2/R1 = 1.8

vc.

v2 = -v1r1
# i>(r2

# i).

v1r1
# i + v2r2

# i = 0,

j * k = i.

0 360

0 360
�1 •

180
	

�1 •
180
	

�1.6

�1.0

1.0

1.6

�1 �1�2Vc[    ],     [    ]

Vc

�2

3

0

�1r0 [    ]

FIGURE 3.13 Solution to sample problem obtained by using mathematics 
software.
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FIGURE 3.14 Normalized piston velocity versus crank position for various values of e>R1. (R2>R1 = 2).

the actual and by the actual Crank angle is to range from 0 to 2 rad in steps of /9.
Known vectors e, and are expressed in column form. Rectangular unit vectors i, j, and k
are also defined in column form. Equations (2.23) and (2.24) are then used to determine and

The magnitude of is tabulated and plotted against (which is converted to degrees).
Connecting rod angular velocity and slider velocity are then calculated by Eqs. (3.30) and
(3.28) and plotted. Even though lies only in the direction, it has been stored as a vector. In
order to tabulate and plot its magnitude and sense, we compute

(b) Figure 3.14 shows the effect of varying offset e. In this plot, slider velocity is plotted against
crank angle for a slider-crank linkage for which 

Detailed calculations. Slider-crank linkage. (clockwise configuration positive)

 r3[u1] = r1[u1] + e

 r1[u1] = C
R1

# cos [u1]
R1

# sin[u1]
0

S i = C
1
0
0
S j = C

0
1
0
S k = C

0
0
1
S

 u1 = 0 . 
p

9
 .. 2 # p R1 = 1 R2 = 1.8 e = C

0
-0.5

0
S r0u = C

-1
0
0
S

c0 = 1

R2/R1 = 2.u1

Vc

Vc = vc
# i .

;xvc

vcV2

u1r0r2.
r0

r3r1,r 0
 u ,

ppu1v1R1.vcv1,
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3.7 COMPLEX-NUMBER METHODS APPLIED TO VELOCITY ANALYSIS

Complex numbers are a convenient form for representing vectors. They may be used
to develop analytical solutions to linkage velocity problems. With complex-number
methods, we are limited, of course, to planar linkages. First, the loop closure (displace-
ment) equation is solved for unknown directions and magnitudes. Then, the displace-
ment equation is differentiated with respect to time to obtain the velocity equation.

Consider the sliding contact linkage shown in Figures 3.15a and b, where the
slider moves along link 2. The linkage is described by the equation

(3.31)

where representing the frame, is fixed in magnitude and direction. Vector rep-
resenting the rotating crank, has constant magnitude, but the magnitude of changes
with time. If the real axis is selected to be parallel to the fixed link, we may write

(3.32)

Differentiating with respect to time, we have the complex velocity equation

(3.33)

where

is the angular velocity,

is the relative (sliding) velocity of with respect to (which is positive if is
increasing),

 v1R1 = vB1

R2B2B1

vB1B2
=

dR2

dt

v =
du

dt

jv1R1e
ju1 = jv2R2e

ju2 + vB1B2
eju2,

R0 + R1e
ju1 = R2e

ju2.

R2

R1,R0,

R2 = R0 + R1,

 vc[u1] = v1
# k * r1[u1] + v2[u1] # k * r2[u1] Vc[u1] = vc[u1] # i

 v1 = 1  v2[u1] = -v1
# r1[u1] # i
r2[u1] # i

 r2[u1] = a[u1] - c0
# CR2

2 - Br3[u1] # cr0u * k d R2S
1/2

# r0u

 a[u1] = - [r3[u1] # [r0u * k]] # [r0u * k]

 r0[u1] = C -r3 cu1 d # r0u + c0
# CR2

2 - Br3 cu1 d # cr0u * k d R2S
1/2

S # r0u
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FIGURE 3.15 (a) Schematic of sliding contact linkage. (b) Vector representation.

and

Thus, we have the vector equation

(3.34)

with the complex exponentials indicating the directions. Note that the order of the sub-
scripts is critical 

Referring to Eq. (3.33), suppose link lengths and are given along with the
orientation and angular velocity of link 1. Then and may be found by solving the
displacement equation. (See Chapter 2.) Two unknowns remain—the angular velocity
of link 2 and the sliding velocity—both of them part of complex expressions.

We could now find the unknowns as follows:

• Use the Euler formula (given in Chapter 2) to convert the equation to rectangu-
lar form.

• Separate the real and imaginary parts. Note that we now have two simultaneous
equations; that is, both unknowns appear in both equations.

• Use Software like MathcadTM to solve the simultaneous equations for the sliding
velocity and the angular velocity of link 2.

u2R2

R1R0

(vB2B1
= -vB1B2

).

vB1
= vB2

+ vB1B2
,

 v2R2 = vB2
.
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Instead of employing the foregoing procedure, we can “work smart” by examin-
ing the complex velocity equation. How can we take full advantage of the complex-
number method and change the equation to make one of the unknowns appear only in
a real term? Try this:

• Multiply the complex velocity equation by a quantity that will separate the
unknowns.

• Use the Euler formula to convert the equation to rectangular form.
• Separate the real and imaginary parts. Note that the unknowns appear in sepa-

rate equations.Thus, we have the solution without solving simultaneous equations.

Here are the details:We begin by multiplying both sides of Eq. (3.33) by This step
is equivalent to rotating the coordinate system through an angle 

The result is

(3.35)

Expressing the exponential in rectangular form (via the Euler formula), we obtain

(3.36)

The imaginary parts of Eq. (3.36) yield

from which we obtain the angular velocity of link 2:

(3.37)

Equating the real parts, we obtain the sliding velocity—the relative velocity of with
respect to 

(3.38)

For link 2 oscillates while link 1 rotates. We see that when
or and so on.Alternatively, these limiting

positions (link 1 perpendicular to link 2) may be obtained by sketching the linkage.
The magnitude of sliding velocity is maximum at the limiting positions.

SAMPLE PROBLEM 3.9

Analysis of a Sliding Contact Linkage by means of Complex Numbers

We will examine velocities in a sliding contact linkage, utilizing the results of complex number
analysis. Referring to Figure 3.15, let rad/s counterclockwise (constant), mm,
and mm. Find and for the instant when u1 = 75°.yB1B2

R2, u2, v2,R1 = 20
R0 = 40v1 = 20

yB1B2

5p/2,3p/2,u1 - u2 = p/2,cos (u1 - u2) = 0,
v2 = 0R1 6 R0,

yB1B2
= -v1R1sin(u1 - u2).

B2:
B1

v2 = v1R1cos (u1 - u2)>R2.

v1R1 cos (u1 - u2) = v2R2,

jv1R1 cos (u1 - u2) - v1R1 sin(u1 - u2) = jv2R2 + yB1B2
.

jv1R1e
j(u1 -u2) = jv2R2 + vB1B2

.

u2.
e-ju2.
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Solution. Using the displacement equations from Chapter 2, we proceed as follows. The slider
position is

and the position of link 2 is

For this linkage, the proportions are such that is limited to the first and fourth quadrants, and
the preceding result is correct. A safer procedure utilizes the function Alternatively,
compute

and

which yields the same value of The angular velocity is

and the sliding velocity (the motion of the slider relative to link 2) is

(i.e., 314.6 mm/s along link 2 toward ).

3.8 SPATIAL LINKAGES: VECTOR AND MATRIX METHODS

Consider a spatial linkage with links that form a closed loop. If links are repre-
sented by vectors and so on, the three-dimensional loop closure equation

(3.39)r0 + r1 + r2  + Á + rn = 0

r0, r1,
n Ú 3

O2

 = -20 * 20 sin(75° - 23.15°) = -314.6 mm/s

 yB1B2
=

dR2

dt
= -v1R1 sin(u1 - u2)

 = +5.03 rad/s (ccw),

 v2 =
v1R1 cos (u1 - u2)

R2
=

20 * 20 cos (75° - 23.15°)

49.13

u2.

tan¢ u2

2
≤ =

1 - cos u2

sin u2
 ,

 sin u2 =
R1 sin u1

R2
 ,

 cos u2 =
R1 cos u1 + R0

R2
 ,

arctan2.
u2

u2 = arcsin¢R1 sin u1

R2
≤ = arcsin¢20 sin75°

49.13
≤ = 23.15°.

 = 2402 + 202 + 2 * 40 * 20 * cos 75° = 49.13 mm,

 R2 = 2R0
 2 + R1

 2 + 2R0R1 cos u1
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may be used to describe the linkage. Differentiating with respect to time yields the
velocity equation

(3.40)

For a vector of fixed magnitude, an term may be replaced by When sliding
occurs, the relative velocity of coincident points must be considered.

The velocity vector equation for a spatial linkage is, in general, three dimensional
rather than two dimensional, as for a planar linkage. Carrying out a comprehensive
analysis of a full cycle of motion of a spatial linkage is a formidable task. Software with
matrix capabilities or three-dimensional motion simulation software can eliminate
hours of repetitive calculations.

Analysis of an RSSC Spatial Linkage

For a given value of the positions of all links in the RSSC linkage of Figure 3.16 may
be found. Both graphical and analytical solutions are described in Chapter 2. If the
angular velocity of link 1 is known, the velocity of spherical pair is given by

(3.41)

For the configuration shown, lies in the xy-plane and

a constant. The spherical joints permit link 2 to rotate about its own axis. This motion
may be set equal to zero without affecting other kinematic aspects of the problem.
Thus, we may write These relationships result in a set of simultaneous
equations from which the unknown velocities are determined.

V2
# r2 = 0.

vs2x

vs2y
= tan g,

vs2

vs1
= vs1

+ vs2s1
= V1 * r1 + V2 * r2.

S2

u,

V * r.r
#

r
#
0 + r

#
1 + r

#
2 + Á + r# n = 0.

R

R

Link 1

Link 1

Link 3

Top view

Side view

S1

S1

r0

y, j

z, k

x, i

y, j



C

C

A

Link 2

Link 2

Link 3

S2

S2

r3

�

r 1

Projection of r2 on yz plane

FIGURE 3.16 RSSC spatial linkage.
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SAMPLE PROBLEM 3.10

RSSC Spatial Linkage

Here, a spatial linkage is analyzed with the use of vector methods. Find link orientations and
velocities for the RSSC spatial linkage of Figure 3.16 for and crank angular
velocity counterclockwise; let and Use
vector notation.

Solution. The links may be described in terms of unit vectors as follows:

The equation applies to each vector direction. Thus, summing the i com-
ponents, we have Since we also have From the j
components, we obtain and from the k components,
The length of link 2 is 300 mm, so

Substituting the given values of and we have a quadratic equation in The root of the
equation that corresponds to the assembly configuration in the figure is

Using the aforementioned equations, we may then write

The velocity of link 3, the sliding link, is given by

where

and

We ignore the rotation of link 2 about its own axis; this motion does not affect that of the rest of
the linkage. Thus, we may set the component of in the direction equal to zero, which isr2V2

V2 = v2xi + v2y j + v2zk.

 V1 = 50i + 0j + 0k,

 vs2
= vs2xi + vs2y j + 0k,

v s2s1
= V2 * r2,

 vs1
= V1 * r1,

vs2
= vs1

+ vs2s1

 r3 = -86.16i - 149.23j + 0k.

 r2 = 86.26i + 278.52j - 70.71k;

 r1 = 0i + 70.71j + 70.71k;

 r0 = 0i - 200j + 0k;

r3y = -149.23.

r3y.g,u

r2x
2 + r2y

2 + 22z
2 = 3002.

r2z = -100 sin u.r2y = 200 - 100 cos u-r3y,
r2x = -r3y tan g.r3x = r3y tan g,r3x = -r2x.

r0 + r1 + r2 + r3 = 0

r0 = 0i  -200j + 0k;
r1 = 0i  +100(cos u)j  +100(sinu)k;
r2 = r2x i + r2y j + r2zk;
r3 = r3x i + r3y j + 0k.

r2 = 300 mm.r0 = 200 mm, r1 = 100 mm,v1 = 50 rad/s
g = 30°, u = 45°,
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equivalent to stating that from which it follows that

The motion of link 3 is limited by the cylindrical joint, so that

This last equation may be used to reduce the problem to a system of four unknowns and four
equations.

The velocities are given by

and

The velocity equation

applies in each vector direction.
From the i components, we have

from the j components,

and from the k components,

0 = 3535.5 + 278.52v2x - 86.16v2y .

vs2y = -3535.5 + 86.16v2z + 70.71v2x ,

0.5774vs2y = 0 - 70.71v2y - 278.52v2z ,

vs2
= vs1

+ vs2s1

vs2
= 0.5774vs2yi + vs2y j + 0k.

 +(278.52v2x - 86.16v2y)k,
 +(86.16v2z + 70.71v2x)j

 = (-70.71v2y - 278.52v2z)i

 = 3
i j k
v2x v2y v2z

86.16 278.52 -70.71

3

 vs2s1
= V2 * r2 = 3

i j k
v2x v2y v2z

r2x r2y r2z

3

 = 0i - 3535.5j + 3535.5k, 

 = 3
i j k

50 0 0
0 70.71 70.71

3

 vs1
= V1 * r1 = 3

i j k
v1x v1y v1z

r1x r1y r1z

3

vs2x = vs2y  tan g.

V2
# r2 = 86.16v2x + 278.52v2y - 70.71v2z = 0.

V2
# r2 = 0,
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Combining these equations with the result of we get

It is most convenient to use a calculator or computer program to solve this set of linear simulta-
neous equations. The results are

and

Noting the direction of we have The angular velocity of link 2 is given by

The velocity of the sliding link is given by

The relative velocity is

We may now check to ensure that the vector velocity equation is satisfied.

For the special case in which path angle we have, of course, an in-line pla-
nar slider-crank linkage. The displacement equation reduces to

where point A is undefined but is the distance between revolute R and ball
joint For the two ball joints could be replaced by revolute joints, since the
motion is restricted to a plane. For this special case, the velocity equation reduces to

It can be shown that the preceding equation is identical (except for the sign conven-
tion) to the planar slider-crank velocity equation derived earlier for crank length R
and connecting rod length L:

y = Rv sin uB1 + ¢R

L
≤ cos u21 - (R/L)2sin2 u

R .

dr3

dt
= -r1 sinu 

du

dt
 B1 +

r1cos u

r0 + r3 - r1cos u
R .

g = 0,S2.
r1 + r3

r2
 2 = (r0 - r1 cos u + r3)

2 + (r1 sin u)2,

g = 0,

vs2
= vs1

+ vs2s1

vs2s1
= V2 * r2 = -2,172i - 231j - 3,535k.

vs2
= -2172i - 3761j.

V2 = -11.190i + 5.091j + 6.505k.

vs2x = -2,172.vs2
,

vs2y = -3761.

 v2z = 6.505,
 v2y = 5.091,
 v2x = -11.190,

D
0 70.71 278.52 0.5774

70.71 0 86.16 -1
278.52 -86.16 0 0
86.16 278.52 -70.71 0

T D
v2x

v2y

v2z

vs2y

T = D
0

3535.5
-3535.5

0

T .

V2 * r2 = 0,
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FIGURE 3.17 Spatial linkage velocity analysis (not to scale). (a) xy-plane. (b) yz-plane.

Matrix Methods Applied to Velocity Analysis of an RSSR
Spatial Linkage

An RSSR spatial linkage is described by the vector position equation

where the links are identified as in Figure 3.17. In solving spatial linkages, position
analysis is a difficult task. Methods are described in Chapter 2, but specific solutions
given in that chapter apply only to certain linkage configurations.

Noting that all links have a fixed length and that link 0 is stationary, we differenti-
ate the position equation to get the velocity equation

(3.42)

Now, suppose the link lengths and configuration are specified, and we have
already solved the position equation. Let drive crank position and the angular velocity
be given.Then there are four unknowns in the velocity equation: the three components
of the angular velocity of link 2 (the coupler) and the angular velocity of link 3 (the fol-
lower crank). But that vector equation is only worth the three scalar equations we get
by expanding it and separately equating its i, j, and k components.

We need a fourth equation. Recall that an RSSR spatial linkage has two degrees
of freedom, but we do not usually care about rotation of the coupler about its own axis.

V1 * r1 + V2 * r2 + V3 * r3 = 0.

r0 + r1 + r2 + r3 = 0,
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If we say that link 2 does not rotate about its own axis, then the dot product of the
angular velocity and the link vector is zero:

(3.43)

The right side of this equation could be any number. The coupler has a ball joint at
both ends; its rotation about its own axis is irrelevant if we care only about the motion
of the output crank vs. the drive crank.

SAMPLE PROBLEM 3.11

Velocity analysis : expanding the vector equations

The drive crank and the driven crank of an RSSR linkage rotate in perpendicular planes, and the
fixed bearing of the driven crank is in the plane of the driver.Write a set of scalar equations from
which you can find the follower crank velocity in terms of the driver velocity.

Decisions. We will set up the coordinate axes as in Figure 3.17.Then, the drive crank vector has
components in the x and y directions and rotates about the z-axis. The driven crank has compo-
nents in the y and z directions, and its angular velocity vector is in the direction.

Solution. We first compute the cross products of the angular velocity and link vectors:

Adding the cross products, we have

The i, j, and k components of this equation each equal zero.
The terms preceded by i give us one scalar equation:

the j terms another,

v1zr1x + v2zr2x - v2xr2z - v3xr3z = 0,

- v1zr1y + v2yr2z - v2zr2y = 0,

 + k(v2xr2y - v2yr2x - v3xr3y) = 0.

 + j(v1zr1x + v2zr2x - v2xr2z - v3xr3z)

 V1 * r1 + V2 * r2 + V3 * r3 = i(-v1zr1y + v2yr2z - v2zr2y)

 V3 * r3 = 3
i j k
v3x 0 0
0 r3y r3z

3 = -jv3x r3z + kv3x r3y.

 V2 * r2 = 3
i j k
v2x v2y v2z

r2x r2y r2z

3 =
i(v2y r2z - v2z r2y)+
j(v2z r2x - v2x r2z)+
k(v2x r2y - v2y r2x);

 V1 * r1 = 3
i j k
0 0 v1z

r1x r1y 0

3 = j v1z r1x - iv1z r1y;

;x

V2
# r2 = 0.
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198 Chapter 3 Velocity Analysis of Mechanisms

and the k terms a third,

We need four equations, however, because there are four unknowns.The fourth equation is

We are now prepared to find the four unknowns: the x, y, and z components of the coupler angu-
lar velocity and the angular velocity of the driven crank.

The good news is that we now have the correct number of equations and
unknowns, and the equations are linear. We can thus use matrix methods to solve the
set of equations. The bad news is that analyzing a full cycle of motion of the RSSR spa-
tial linkage requires hundreds of calculations, and we would not attempt the task with-
out a computer. Also, different linkage types may require different sets of position and
velocity equations.

SAMPLE PROBLEM 3.12

Spatial linkage velocity equations in matrix form

Suppose that link lengths and other data are given for the RSSR spatial linkage considered in
Sample Problem 3.11. Suppose also that you have already solved the position equations in terms
of the angular position of the drive crank. Write a matrix equation for the angular velocities of
the coupler and driven crank in terms of the angular velocity of the drive crank.

Solution. First, we rearrange the four equations obtained in the previous sample problem. The
unknown quantities go to the left of the equals sign and the knowns to the right. The equations
are arranged so that like terms line up as follows:

(It helps to put zeros in the empty spaces of these equations.)
The matrix equation is

where the column matrix of unknown angular velocities is

X = D
v2x

v2y

v2z

v3x

T .

A X = B,

  v2yr2z -v2z r2y = v1z r1y;
-v2xr2z +v2z r2x -v3x r3z = -v1z r1x;
 v2x r2y -v2y r2x +v3x r3y = 0;
 v2x r2x +v2y r2y +v2z r2z = 0.

v

v3x,

V2
# r2 = v2xr2x + v2yr2y + v2zr2z = 0.

v2xr2y - v2yr2x + v3xr3y = 0.
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Section 3.8 Spatial Linkages: Vector and Matrix Methods 199

The A matrix is constructed so that it represents the coefficients of the left side of the four afore-
said equations:

The known quantities on the right of the four equations form the column matrix:

You can see why the equations in the forgoing sample problem are lined up on
the terms, etc. If you are not comfortable with this configuration, be sure to review
sections of this chapter on matrices, or review applicable sections in one of your math-
ematics books. Your time will be well spent. “Working smart” involves using matrices
to solve problems in the kinematics and dynamics of machinery; you may have oppor-
tunities to use matrices throughout your engineering career.

Checking for errors. Unless you are very lucky or talented, the results of com-
plicated calculations are likely to be wrong the first time around. Errors in entering
data and equations are the source of most “computer mistakes.” Occasionally, software
and hardware introduce errors. Insert simple tests into your programs. Is the magni-
tude of a link vector equal to the actual link length? Is the velocity zero when the slope
of the position curve is horizontal? Compare velocity with change in position divided
by change time: (over a short interval).

The chain rule. Do you remember the chain rule for differentiation? Suppose
driven crank position is known as a function of drive crank position Using a spe-
cial case of the chain rule, the follower crank velocity is found by calculating

Numerical differentiation. Take an arbitrary drive crank position. If the driven
crank velocity calculated by the matrix method and by numerical differentiation do
not produce comparable results, something must be wrong. For a small time interval 
the angular velocity of the driven crank is approximated by

where is calculated from a vs. plot or table, using a small interval 
Compare this approximation of with the calculated value (matrix method) in the
middle of the interval.

v3

¢u1.u1u3¢u3/¢u1

v3 L ¢u3/¢t L (¢u3/¢u1) # (¢u1/¢t) L v1
# (¢u3/¢u1),

¢t,

v3 = du3/dt = (du3/du1) (du1/dt) = v1(du3/du1).

u1.u3

v2x

B = D
v1z

# r1y

-v1z
# r1x

0
0

T .

A = D
0 r2z -r2y 0

-r2z 0 r2x -r3z

r2y -r2x 0 r3y

r2x r2y r2z 0

T .
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200 Chapter 3 Velocity Analysis of Mechanisms

Numerical differentiation is illustrated in the next example. Be sure to check
units. If measuring the slope of a curve, check the horizontal and vertical scales.

SAMPLE PROBLEM 3.13

Calculating spatial linkage velocity

A mechanism is needed with a 115-mm output link that oscillates through a range of about 
The input shaft rotation speed is rpm (5 rad/s). The input shaft is parallel to the plane of
the output link at a distance of 20 mm. Design the mechanism and find the angular velocity of
the output link. Check the transmission metric and check the angular velocity by numerical 
differentiation.

Design decisions. We will select an RSSR spatial linkage similar to that in Figure 3.17. After a
number of tries, the following dimensions are chosen:

drive crank length 
coupler length 
driven crank (required);

revolute joints: located at (0, 0, 0) and at from which fixed link components
are and 

Solution summary. The first part of the solution is based on the analysis of an RSSR linkage in
Chapter 2. The range of motion of the output link approximates the desired value, and transmis-
sion metric T is acceptable, as shown on the graph (Figure 3.17c). Drive crank position is
identified simply as The four unknown angular velocities are computed for each value of 
using the equation

where matrices X, A, and B are defined in Sample Problem 3.12.
Although we must consider the motion of coupler link 2 to solve the problem, we are inter-

ested only in the results for driven crank link 3.The angular velocity of the driven crank is the last
element of the X matrix. If the elements are numbered 0, 1, 2, and 3, then

The graph shows divided by the drive crank angular velocity We see that a zero slope of
the curve of the driven crank position corresponds to zero angular velocity.

Let us obtain the average angular velocity of the driven crank for the interval between 
and drive crank positions. This velocity is given by the change in divided by the change
in time. The value is a rough approximation of the matrix-generated value at 

The accuracy should improve if the interval is decreased. Results are also
checked using a derivative algorithm to obtain

The graph shows no significant difference between the value computed by using the derivative
algorithm and that obtained with the matrix solution. Note that the horizontal axis of the graph
is the drive crank angle in degrees. The driven crank angle is in radians, and the other two curves
are dimensionless. (Caution: The mixed units are for presentation only; be sure to use consistent
units in your calculations.)

v3x = v1z
# du3x/du1z.

v3x = -0.32 rad/s.
100°,-0.311 rad/s,

u3x110°
90°

v1z.v3x

v3x = X3.

X = A- 1B

u,u.
u1z

r0y = -180r0x = 20
(-20, 180, 0),R2R1

r3 = 115 mm
r2 = 190 mm;

r1 = 55 mm;

150/p
50°.
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FIGURE 3.17 (c) Spatial linkage motion.
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Solution details (The software used to solve this problem does not identify vectors with bold-
face type).
The drive crank and driven crank rotate in perpendicular planes.

Vector loop: where 
Dimensions of links:
Fixed link 
Drive crank 
Coupler 
Driven crank 

Position Analysis

Drive crank position (subscript omitted)

Define of fixed link and drive crank vectors. Then

* We will select the assembly configuration given by the positive root.

Driven crank position  

Link vectors 

Check results for coupler and driven crank length:

Transmission metric 

Compare There may be a problem if T falls outside this range.

Velocity Analysis

Drive crank speed (rpm) 

Drive crank angular velocity rad/s v1z :=  
p # n
30

 v1z = 5

n :=  
150
p

cos (40 # deg) = 0.766
cos (140 # deg) = -0.766

T(u) :=  
rr2 (u) # rr3 (u)

ƒ rr2 (u) ƒ # ƒ rr3 (u) ƒ

ƒ rr2 (2) ƒ = 190  ƒ rr3 (2) ƒ = 115

rr2(u) :=  C
r2x (u)
r2y (u)
r2z (u)

S  rr3 (u) :=  C
0

r3y (u)
r3z (u)s

S

u3x(u) :=  angle(r3y(u), r3z(u))  u3x(2) = 1.772

 r2z(u) :=  -r3z(u)

 r3y(u) :=  
-(cx(u)

2 + cy(u)
2 - r2

 2 + r3
 2)

2cy(u)
   r3z(u) :=  (r3

 2 - r3y(u)
2)

1
2*

 r2x(u) :=  -cx(u)  r2y(u) :=  
cx(u)

2 - cy(u)
2 - r2

 2 + r3
 2

2cy(u)

 cx(u) :=  r0x + r1x(u) cy(u) :=  r0y + r1y(u)

c = sum

r1x(u) :=  r1cos (u) r1y(u) :=  r1
# sin(u)

u :=  0, 
p

18
 .. 2p

r3 :=  115
r2 :=  190

r1 :=  55
r0x :=  20  r0y :=  -180

r0 = R2 - R1r0 + r1 + r2 + r3 = 0,
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Matrix equation , where

Solve for angular velocities 
Select element 3 of X matrix to find angular velocity of driven crank:
(Elements are numbered 0, 1, 2, 3.)

Find the angular velocity of the driven crank by differentiating the angular position. Use the

chain rule:

Approximate the angular velocity of the driven crank (rad/s) when the drive crank is at 
Divide the change in position (rad) by the time interval (s):

Rough approximation:

Value calculated from matrix solution:

Software packages that treat mechanical systems are useful in solving compli-
cated spatial linkages. Figure 3.18 is a composite drawing of a satellite deploying panels
mounted on flexible arms. It was necessary to find the speed of deployment of the
arms, which were driven by highly nonlinear rotary springs. The solution to this prob-
lem involves the response of the flexible system to forces that, in turn, depend on the

v3x(100 # deg) = -0.32  
rad

s

v3x(100) = -0.311

v3x(100) :=  
(u3x(110 # deg) - u3x(90 # deg)) # v1z

110 # deg - 90 # deg

100°.

v3d(u) :=  v1z
# ¢ d

du
 u3x(u)≤ .

v3x(u) :=  X(u)3

X(u) :=  A(u)-1 # B(u)

X = D
v2x

v2y

v2z

v3x

T A(u) :=  D
0 r2z(u) -r2y(u) 0

-r2z(u) 0 r2x(u) -r3z(u)
r2y(u) -r2x(u) 0 r3y(u)
r2x(u) r2y(u) r2z(u) 0

T B(u) = D
v1z

# r1y(u)
-v1z

# r1x(u)
0
0

T

AX = B

z

y

x

FIGURE 3.18 A satellite deploying flexible arms (modeled by ADAMSTMsoftware). (Source:
Mechanical Dynamics, Inc.)
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204 Chapter 3 Velocity Analysis of Mechanisms

instantaneous position of the arms. The superimposed display of the deployment his-
tory shown in the figure was obtained with ADAMSTM software after entering the
results of tests of the springs and other system data.

3.9 GRAPHICAL ANALYSIS OF LINKAGE MOTION UTILIZING 
RELATIVE VELOCITY

It is desirable to have an independent method of solving equations of motion that may
be used to test and debug computer programs and programmable calculator proce-
dures. Graphical solutions are ideal for this purpose. In addition, they provide insight
into kinematic problems in a way that analytical solutions cannot.

Earlier in the chapter, we defined relative velocity as a difference between veloc-
ities. For example, for points B and C on the same rigid link, the relative velocity 
must be perpendicular to line BC between the points.This is demonstrated by the cross
product relationship

where is the angular velocity of the link and vector r (of constant magnitude) repre-
sents line BC. If the relative velocity were not perpendicular to line BC, there would
be a component of along line BC, representing a change in length. Obviously, real
links deflect due to load, but these small strains are ordinarily negligible compared to
the rigid-body motion.

When sliding occurs, we consider the motion of instantaneously coincident
points.Then, for coincident points on link 1 and on link 2, relative velocity is
tangent to the relative path of the motion. That is, the relative velocity of two points is
tangent to the path that one point traces on the link on which the second point is
defined. Both of these relationships are utilized to find velocities in linkages by graphi-
cal means.

Before a velocity analysis is performed, a position analysis must be made to
determine the direction of all links. As observed in the previous sections, an analytical
position analysis may be the most difficult part of the entire analysis. Graphical posi-
tion analysis of a planar linkage is simple, since it is necessary only to draw the linkage
to scale, generally using a compass, scale, protractor, and straightedge.

Analyzing Motion of the In-Line Slider-Crank Mechanism

The slider-crank mechanism is a basic part of reciprocating engines, pumps, compres-
sors, and other machines. (See Figure 3.19.) Figure 3.20a is a representation of an in-
line slider crank. The sketch is further simplified in Figure 3.20b by showing only the
centerlines, sizes, and angular positions of the links. Link O represents the frame, link 1
the crank, link 2 the connecting rod, and link 3 the piston. The crankshaft center is
point the crankpin point B and the wrist pin point C.

Suppose that point B has a velocity of 20 in/s as link 1 turns counterclockwise. A
velocity scale is selected that will result in vectors large enough for accurate results.
Velocities and are drawn perpendicular to lines and BC, respectively, asO1BvCBvB

O1,

vB2B1
B2B1

vCB

V

r
# = V : r,

vCB
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Section 3.9 Graphical Analysis of Linkage Motion Utilizing Relative Velocity 205

FIGURE 3.19 This sectional view of a V-8 engine shows two pistons and connecting rods (slider-
crank mechanisms) at their extreme positions. The crankshaft represents the crank of the mecha-
nisms. (Source: General Motors Corporation.)

vB � 20
in
sec

B

C

FIGURE 3.20 (a) Simplified sketch of an in-line slider-crank mechanism.
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C
Link 3

Link 23.76�2�

B

L
in

k 
1

Link 0 (Frame)O1

3.94�

70

80

30

FIGURE 3.20 (b) Skeleton diagram
of the mechanism.

shown in Figure 3.20c, an exploded view of the mechanism. The direction of the veloc-
ity of C is horizontal, because the piston is constrained to move within the cylinder.

The single arrowhead of in Figure 3.20c indicates that has been drawn to
scale to represent a known magnitude and direction.Vectors and are given dou-
ble arrowheads, indicating that, while their directions are known, their magnitudes 
are not.When we draw a vector of unknown magnitude, we will call it a trial vector.The
term magnitude will be interpreted to mean both vector length and vector sense.
Thus, trial vector may be to the left, as shown, or to the right, while may be ori-
ented as shown, or it may be in exactly the opposite direction.

vCBvc

vCvCB

vCvB

vB � 20

vc

vCB

in
s

B

C

B

O1

C

FIGURE 3.20 (c) Velocity vector is perpendicular to link is perpendicular to
link BC, and is constrained to a straight line as shown.vC

vCBO1B,vB
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o

in
s

vB � 20

vC

vCB

FIGURE 3.20 (d) The vectors can be added together to
form a velocity diagram. Absolute velocity vectors (veloci-
ties relative to the fixed frame) are drawn from a common
reference point o. The relative velocity vector is drawn
starting at the head of the known absolute velocity vector
and with the correct direction, The points of inter-
section determine the magnitudes of the unknown vectors.

( �  BC).

The solution to the problem of finding the velocity of the piston, is again
based on the vector equation Beginning at an arbitrary point o in
Figure 3.20d, the vector is drawn to scale. Then, trial vector is added to start-
ing at the head of Next, trial vector is drawn beginning at the point o. Since

we have the equivalent of two simultaneous equations, one represent-
ing the line and the other the line added to The solution is represented by
the intersection of the two lines. In Figure 3.20e, the double arrowheads have been
replaced by single arrowheads, since the magnitudes of the relative velocity and
the piston velocity are determined by the construction. The vector lengths are mea-
sured, and, with the use of the velocity scale, the velocities represented are written
directly on the figure. We note that the piston velocity is 22.8 in/s to the left.

Figure 3.20d has been redrawn in Figure 3.20e only to illustrate the steps in
obtaining a solution; in practice, the construction would simply be “cleaned up” and
darkened for clarity. It can be seen that the solution does not depend on our ability to
guess the correct sense of and If, for example, were assumed to be to the
right, there would be no intersection, and we would then try drawing that vector in the
opposite direction and obtain the correct solution.

Sometimes the required accuracy is greater than can be obtained by a simple
graphical solution. Or we may wish to make a velocity analysis based on freehand
sketches without using drafting tools. In the previous sample problem, let crank angle

be 
The law of sines states that the ratio of the length of a side to the sine of the

opposite angle is the same for all three sides in a triangle. Thus,

70°.BO1C

vCvC.vCB

vC

vCB

vB.vCBvC

vC = vB + vCB,
vCvB.

vC,vCBvB

vC = vB + vCB.
vC,

vC � 22.8 (in/s)

vB � 20 (in/s)

o20
60

100

in s

v C
B

 �
7.

9

FIGURE 3.20 (e) The completed velocity
diagram.
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for the triangle formed by the linkage,

or

from which angle 
In the velocity diagram, is horizontal.Vector which is perpendicular to crank
makes a angle with Vector perpendicular to link BC, makes a angle

with Since the sum of the internal angles of any triangle is we obtain the
remaining angle in the velocity polygon: Using the law of sines once more, we have

Crankpin velocity was given as 20 in/s. Substituting this value in to the preceding
equation, we obtain relative velocity and piston velocity 
to the left.

3.10 THE VELOCITY POLYGON

If the relative-velocity vector is replaced by the vector bc with c at the head of 
we have the basis for an alternative form of notation for the method of relative veloc-
ity: the velocity polygon. (See Figure 3.21.) Absolute velocity might as well have
been called the velocity of point B with respect to the frame O. Thus, is
replaced by ob and, likewise, (or ) by oc. The velocity equation 
now becomes

(3.44)

Note that we identify ob with the actual velocity in millimeters per second or inches
per second, rather than letting ob mean a length in inches on a sketch.

The velocity polygon constructed in Figure 3.22 is based on the linkage of Figures
3.20a and b. In addition to oc, the piston velocity, we have determined bc, the velocity

oc = ob + bc.

vC = vB + vCBvCOvC

vBvBO,
vB

vCB,vCB

vC = 22.8 in/svCB = 7.9 in/s
vB

vB

sin 60°
=

vCB

sin 20°
=

vC

sin 100°
 .

100°.
180°,vC.

60°vCB,vC.20°O1B,
vB,vC

O1CB = 30°.

3.76
sin 70

=
2

sin(O1CB)
 ,

BC

sin(BO1C)
=

O1B

sin(O1CB)
 ,

oc

b

b

c

o

vCB

vC

vB

FIGURE 3.21 Alternative form of notation
for velocity vectors. The notation is
replaced by ob; both indicate the velocity of
point B with respect to point O. Thus,
becomes oc. Note, however, that the
velocity of point C relative to point B,
becomes bc. (The letters are reversed.)

vCB,
vC

vB
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FIGURE 3.22 (a) Slider-crank linkage redrawn from Figure 3.20. (b) Velocity of point B
(given) is drawn to scale as vector ob perpendicular to crank From the head of ob,
vector bc, the velocity of point C relative to point B, is drawn perpendicular to link BC. We
do not know the magnitude of vector bc. (c) Point C is constrained to move horizontally.
Thus, vector oc is drawn horizontally to intersect vector bc. The intersection determines the
lengths (magnitudes) of the unknown vectors. (d) The completed velocity polygon.

O1B.
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of the wrist pin C relative to the crankpin B. If bc is not zero, the motion of the con-
necting rod BC includes rotation. The value of the angular velocity of rod BC, is
determined just as it is with links having a fixed center of rotation and is equal to the
relative velocity divided by the distance BC. Thus,

(3.45)

where bc is the magnitude of the velocity of C relative to B and BC is the distance
between pins B and C on the actual linkage, not a distance on the sketch. Substituting
in to Eq. (3.45), we find that

The direction of the angular velocity of rod BC is found by locating of C relative to B at
point C on the linkage sketch. The direction of the relative velocity given by the order
of the letters bc is downward and to the left, as shown by the velocity diagram in Figure
3.22d. Therefore, is clockwise, as shown in Figure 3.23a. Note that while the piston
velocity oc must be horizontal, relative velocity bc must be perpendicular to BC.

v2

v2 =
7.9 in/s
3.76 in

= 2.1 rad/s.

v2 =
bc

BC
 ,

v2,

B

B

C

C

�2

�2

Link 2

Link 2

vBC (relative velocity cb)

vCB(relative velocity bc)

(a)

(b)

FIGURE 3.23 (a) Determining the angular velocity of link BC from bc, the velocity of
point C relative to point B. (b) An alternative method.
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Alternatively, the velocity of B relative to C may be located at point B to find the
direction of Since (Figure 3.23b), the magnitude of has the same value
as that found earlier.

Noting the order of the letters cb and inspecting Figure 3.22d, we see that cb is
upward and to the right; therefore, is clockwise. The result is the same whether we
consider bc at C or cb at B. In fact, the angular velocity of a link can be determined
from the relative velocity of any two points on the link.

Layout Techniques

A few words about layout may be helpful at this point. In many linkage problems, the
velocity polygon can be drawn with sufficient accuracy that measurements may be
taken directly from it. But the care used in drawing the velocity polygon bears heavily
on the results.

The mechanism that is to be analyzed should be sketched in skeleton form. Only
link centerlines, pins, fixed centers, and sliders are shown. If a sketch must be copied,
the use of tracing paper or dividers is preferred. The scale of the drawing is indicated,
and the length of each link (from pin to pin) is shown directly on the link.

When one is working at a desk and using letter-size paper, lines can be drawn par-
allel and perpendicular to one another by using two triangles, as shown in Figure 3.24.
The paper should be taped in place to keep it from slipping, since accuracy in both the
directions and lengths of vectors is critical. A ruler with decimal graduations is prefer-
able to one graduated in sixteenths and thirty-seconds. The velocity polygon (and, later,
the acceleration and force polygons) should be on the same sheet as the sketch of the

v2

v2cb = -bcv2.

B

b
O1

o
ob � O1B

FIGURE 3.24 Vectors are drawn perpendicular to the respective links of the linkage
diagram by using two triangles.
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mechanism, in order to avoid vector orientation errors. A graphical solution for one
link position may be used to check a computer solution.

Velocity Image

The utility of the velocity polygon notation is illustrated by problems in which several
points lie on the same link. Consider a rigid link in plane motion, such as BCD of
Figure 3.25. On any rigid link, each relative velocity is perpendicular to the line
between the points considered. Thus,

and

satisfy the conditions for similar triangles.
Triangle bcd of the velocity polygon is similar to triangle BCD, the rigid link, and

we call bcd the velocity image of rigid link BCD. As a result,

(3.46)

since corresponding sides of similar triangles are proportional. In order to draw bcd to
the correct scale, however, we must know one of the relative velocities—for example,
relative velocity bc. For any configuration of points on a rigid link, the velocity polygon
contains the exact image, except for its size and orientation.

bc

BC
=

bd

BD
=

cd

CD
 ,

cd � CD

bd � BD,

bc � BC,

B

D

C

b b

bc � BC bd � BD

cd � CD d

d

dc c

FIGURE 3.25 The velocity image of a link. The vectors are drawn perpendicular to the
lines connecting the points on the link.
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o

d

FIGURE 3.26 The velocity image of the connecting rod of a slider-crank mechanism.

Figure 3.26 shows a mechanism containing link BCD. Let distances and
and the velocity of B be the same as in the example illustrated in Figure 3.22.Then

we can take the velocity polygon obc directly from that figure. Drawing bd perpendic-
ular to BD and cd perpendicular to CD, as in Figure 3.25, we obtain bcd, the image of
BCD directly on the velocity polygon. The absolute velocity of D is found by measur-
ing od, a vector of about 20 in/s in magnitude, to the left and slightly upward. (The
reader is again reminded that the velocity image principle applies only to points that
lie on the same rigid link.)

The path of point D is neither circular (like that of B) nor a straight line (like that
of C), as can be shown by drawing the mechanism at several different crank positions.
A point such as D on a mechanism may provide just the right motion required to per-
form a given task. In the design of machinery, it is often necessary to investigate a large
number of mechanisms before the desired input–output relationship is obtained.

Let us now consider the velocity image of three points, B, C, and E, lying on a
straight line, all on the same rigid link, as in Figure 3.27. Let the link have planar
motion, which includes, in general, both rotation at an angular velocity and transla-
tion. The rotation gives us the following relative velocities:

and

(3.47)ec = ECv, � EC.

be = BEv, � BE,

bc = BCv, � BC,

v

O1C
O1B, BC,

217



214 Chapter 3 Velocity Analysis of Mechanisms

B

E

C
c

b

e

FIGURE 3.27 The velocity image of three
points lying on a line in a rigid link is itself a
line.

Dividing the second of Eqs. (3.47) by the first and the third by the first, we obtain

(3.48)

and

(3.49)

In practice, the velocity image of points B, E, and C on one rigid link is obtained by
using either Eq. (3.48) or Eq. (3.49) and the fact that the order of b, e, and c in the
velocity polygon is the same as that of B, E, and C on the link. Now, recall the preced-
ing discussion in which it was mentioned that the velocity image and the link were sim-
ilar triangles. If the points under consideration lie on a straight line, then we have the
special case of triangles with angles and 

Let us examine the velocity of a point E lying on connecting rod BC, as in 
Figure 3.28a. The linkage is identical to that of Figure 3.22 (except for the addition of
point E), and B will again be given a velocity of 20 in/s. The velocity polygon in Figure
3.28b may be taken directly from Figure 3.22, leaving only point e to be found. From
Eq. 3.48, note that

from which 
Point e is located a distance from b corresponding to 2.1 in/s. Since E falls

between B and C, e falls between b and c. Scaling the vector oe, we find the velocity of
E to be approximately 20.6 in/s upward and to the left. (See Figure 3.28c.)

be = 2.1 in/s.

be

bc
=

BE

BC
 , or 

be

7.9 in/s
=

1 in
3.76 in

 ,

180°.0°, 0°,

ec

bc
=

EC

BC
 .

be

bc
=

BE

BC
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(c)

(b)

(a)

be � 2.1 
in
s

c

c

e

b

b

20.6

22.8

in
s

20   

in� s

7.
9

o

o

B

E

BE � 1�

BC � 3.76�

vB � 20
in
s

C
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s
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s

FIGURE 3.28 (a) The problem is to find the velocity of point E (which could be the
center of gravity) at the instant when the linkage is in the position shown. (b) Velocity
polygon obc (c) With the velocity image principle, point e is located on vector bc, the
velocity image of link BC. The velocity of point E is found by drawing line oe on the
velocity polygon and measuring the length of the line.
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C

B

E

O1

b
o

o

o

c

c b, c, e

vB � 20 in
s

90

FIGURE 3.29 The connecting rod is shown at the instant when its angular velocity is
zero. At this instant, there is no relative velocity The velocity image of the con-
necting rod therefore shrinks to a single point. While ob and oc are shown parallel, they
are actually collinear.

(bc = 0).

While the velocity image relationships hold in every case, the velocity image of a
link undergoing translation shrinks to a single point. This is true both in the case of a
slider that always translates and in the case of a connecting rod at the instant when its
angular velocity is zero. The latter case is illustrated by the in-line slider-crank mecha-
nism of Figure 3.29.When the crank angle is ob, the velocity of point B, is horizon-
tal. The slider velocity oc is horizontal also, and thus, ob and oc are collinear for an
instant.

3.11 GRAPHICAL ANALYSIS OF BASIC LINKAGES

The Four-Bar Linkage

Graphical velocity analysis of a four-bar linkage differs little from the analysis of a
slider-crank mechanism. For the mechanism of Figure 3.30a, the velocity of B is given
as 300 mm/s at the instant shown as the crank rotates counterclockwise.

In order to find all of the velocities, we select a velocity scale, and the vector ob is
drawn perpendicular to to represent the velocity of B. Relative velocity vector bc
of unknown length is drawn perpendicular to BC, starting at b. The velocity polygon is
completed by drawing oc beginning at o and perpendicular to The last two steps
locate c on the velocity polygon. Figure 3.30c shows the velocity polygon with all con-
struction lines removed and the values of the vectors shown directly on the polygon.
We see that

bc = vCB = 101 mm>s � BC (downward and to the right)

O3C.

O1B

90°,
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vB

c

c

c

oo

300 m
m

/s

101 m
m

/s 300 m
m

/s

216 mm/s

b b

B

O1 O3

C

45

138.6

135

10
 m

m

35 mm

30 mm

20
 m

m

� BC

� O
3 C

28.5

12.9

(a)

(b) (c)

FIGURE 3.30 (a) A four-bar linkage. The velocity of point B is given. (b) While we know the mag-
nitude of only one of the vectors, we know the directions (perpendicular to the links) of all the vec-
tors. (c) The completed velocity polygon. The points of intersection determine the unknown vector
quantities.

and

From these results, the angular velocities of coupler 2 and follower 3 can be deter-
mined as

v2 =
bc

BC
=

101
35

= 2.89 rad/s cw

oc = vC = 216 mm>s � O3C (upward and to the left).
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and

respectively.
The preceding values can also be found by drawing line on the mechanism

to form two triangles and solving the triangles by the law of cosines and the law of
sines. We obtain

and

(3.50)

where X, Y, and Z represent the internal angles opposite sides x, y, and z, respectively.
In addition, we use the relation for any triangle and note that
velocity directions differ from link directions by to draw velocity polygon obc.

Up to this point, the velocity polygon was used to analyze the motion of mecha-
nisms without sliding contact (four-bar linkages) and mechanisms in which there is
sliding along a fixed path (the piston engine and other slider-crank mechanisms). We
will now solve mechanisms in which one link slides along a rotating link.

Analyzing Sliding Contact Linkages

Sliding contact exists between slider and frame in the slider-crank mechanism. In cams,
gears, and certain other mechanisms, moving links slide on one another. If a point on
one link slides in a curved path on a second link, the relative velocity of the common
points is tangent to the path described on the second link. In the example that follows,
the relative path is straight.

The mechanism of Figure 3.31a has a slider pinned to link 1. The slider is con-
strained to slide along link 2. This mechanism is basic to the mechanically driven
shaper and is utilized in combination with other linkages, like the backhoe shown in
Figure 3.32. The key to solving problems of this type is the designation of a double
point B. (See Figure 3.31a.) is a point on the slider and on link 1, and is a com-
mon point on link 2. While, at this instant, and are the same point, moves rela-
tive to by sliding along link 2. Thus, the direction of relative velocity (the
velocity of with respect to ) is along link 2. Relative velocity (equal and
opposite to ) is therefore also along link 2.

Now, contrast the relative velocity of two coincident points on different links
with the relative velocity of two points on the same link. In cases where the two points
lie on the same rigid link (considered in earlier sections), the relative velocity is per-
pendicular to the line between the two points.

b2b1

b1b2B2B1

b2b1B2

B1B2B1

B2B1

90°
X + Y + Z = 180°

sinX
x

=
sinY

y
=

sinZ
z

 ,

z2 = x2 + y2 - 2xy cos Z

BO3

v3 =
oc

O3C
=

216
20

= 10.8 rad/s ccw,
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O1O2 � 300 mm

B1 on link 1
b1

b1
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o

b2

b2

b2

B2 on link 2

m/s

1.18

m/s

(a)
(b)

(c)

    1 � 15 rad/s�

60

FIGURE 3.31 (a) A sliding contact linkage. The slider is pinned to link 1 and slides along link 2.
(b) The velocity polygon for a sliding contact linkage. Note that the relative velocity vector is
drawn parallel to link 2, since the motion of relative to must be along link 2 at any given
instant. (c) The completed polygon.

B2B1

b2b1

Suppose link 1 of Figure 3.31a rotates counterclockwise at 15 rad/s, making the
velocity of equal to 3.6 m/s, perpendicular to upward and to the left. To solve
the mechanism, we use the relationship

(3.51)

Vector (representing the velocity of ) is drawn to scale in Figure 3.31b,
beginning at an arbitrary pole point o. Sliding velocity vector is added to 
beginning at The direction of vector is parallel to link 2, but the length and
sense of this vector are unknown. Thus, we draw trial vector with a double arrow-
head at (not caring about the sense of the vector, because, if our original guess of the
sense is wrong, we later reverse the vector to obtain the velocity polygon). Trial vector

b2

b1b2

b1b2b1.
ob1b1b2

B1ob1

vB2 = vB1 + vB2B1, or ob2 = ob1 + b1b2.

O1B1,B1
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220 Chapter 3 Velocity Analysis of Mechanisms

FIGURE 3.32 Backhoe. (Source:
Caterpillar Products.)

(also of unknown sense and magnitude) is drawn starting at pole point o and per-
pendicular to The length (and, if necessary, the sense) of both vectors and

is corrected, completing the velocity polygon in Figure 3.31c.
Scaling vector we find the sliding velocity to be 3.4 m/s; thus, link 2 moves at

a speed of 3.4 m/s downward and to the right relative to the slider. The order of the
subscripts is important.Vector refers to the velocity of point B on link 1 relative to
the coincident point on link 2. Thus, the slider moves upward and to the left at 3.4 m/s
relative to link 2. The velocity of on link 2 scales to 1.18 m/s downward and to the
left, from which we obtain the relationship

counterclockwise. The method for determining the velocities of the sliding contact
linkage is essentially the same, even if links 1 and 2 are curved. Velocity vector is
perpendicular to and is perpendicular to Sliding velocity is in the
direction of the relative path; that is, is tangent to the instantaneous path of on
link 2 (at ). If greater accuracy is desired, the velocity polygon may be solved analyt-
ically by using the law of sines, as was done in an earlier example.

Sliding velocity is of particular interest because of friction and wear considera-
tions. (Some references state the coefficient of friction in terms of sliding velocity.) In
addition, we must find the sliding velocity in order to compute the Coriolis accelera-
tion. This phase of the problem is treated in the next chapter.

B1

B1b1b2

b1b2O2B2.ob2O1B1,
ob1

v2 =
ob2

O2B2
=

1.18 m/s
0.275m

= 4.29 rad/s

B2

b2b1

b1b2,
ob1b2ob2

b1b2O2B2.
ob2
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Comparison of Results with an Analytical Solution

A sliding contact linkage was analyzed previously (Section 3.7) by using complex-num-
ber methods. With the notation of that section (see Figure 3.15), we have 

and from which we obtain

and

(3.402 m/s along link 2, away from point ). All of these values correspond closely to
the graphical (velocity polygon) solution.

The reader should be alert for mechanisms that are kinematically equivalent to
the sliding contact linkage of Figure 3.31. Two examples are a variable-displacement
pump in which the plungers move within a rotating cylinder block and the Geneva
mechanism, in which a pin on a rotating wheel (the driver) enters radial slots in the dri-
ven member, giving it intermittent rotation as the driver rotates at constant velocity.

Cams and Cam Followers

Almost any motion–time relationship may be generated by using one or more cams.
Usually, the cam rotates at constant angular velocity, giving the follower reciprocating
or oscillating motion having some predetermined sequence. The design of practical
high-speed cams is discussed in Chapter 5. You can use the velocity polygon method to
analyze cam follower motion as a partial check of your design.

When sliding occurs between cam and follower, the key to solving for velocities is
again a double point where the two make contact, and the solution proceeds as with
other sliding contact mechanisms.The velocity of the point of contact of the follower is
equal to the vector sum of the velocity of the point of contact on the cam plus the slid-
ing velocity. If B is the point of tangency, the latter statement may be expressed sym-
bolically as

where subscripts 1 and 2 refer, respectively, to the cam and the follower.

ob2 = ob1 + b1b2,

O2

vB1B2
= -v1R1 sin(u1 - u2) = 3,402 mm/s

 vB2
= v2R2 = 1,178 mm/s (1.178 m/s),

 v2 =
v1R1 cos (u1 - u2)

R2
= 4.28 rad/s (ccw),

 u2 = arcsin¢R1 sin u1

R2
≤ = -49.1°,

 R2 = 2R0
 2 + R1

 2 - 2R0R1 cos u1 = 275.0 mm,

v1 = 15 rad/s,R1 = 240 mm,R0 = 300 mm,
u1 = 240°,
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222 Chapter 3 Velocity Analysis of Mechanisms

In the case of a cam with an oscillating follower (Figure 3.33), is perpendicular
to a line between the center of rotation of the follower and the contact point and is
perpendicular to a line between the center of rotation of the cam and the contact point.
Sliding velocity is parallel to the common tangent to the cam and the follower.b1b2

ob1

ob2

Link 1
(Cam)

Common tangent Link 2
(Follower)

O1

o

8

39

Sliding velocity is along

direction of com
m

on tangent38

b2

b1

O2B2 � 1.5�

O2
O 1

B 1 
�

 1
.9

�

rad
sec

B1  on Link 1
B2  on Link 2

�
 O

2
B 2

� O
1 B

1

    1 � 20�

FIGURE 3.33 A cam with an oscillating follower. To obtain the velocity polygon, is
drawn perpendicular to and is drawn perpendicular to Sliding velocity

is drawn parallel to the common tangent at B1B2.b1b2

O1B1.ob1O2B2,
ob2
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Figure 3.33 shows a cam formed by an eccentric circle. Let the angular velocity of
the cam be 20 rad/s, and at the instant shown, let the distance from the center of rotation
of the cam to the point where it makes contact with the follower be 1.9 in.Thus, velocity

is drawn to scale (to the right and downward, beginning at an arbitrary
pole point o).Trial vector is added to and trial vector is drawn beginning at
point o.The two trial vectors are made to intersect, and the intersection is labeled 

The sliding velocity, scaled from the velocity polygon, is 39 in/s, with on the fol-
lower sliding upward and to the left with respect to on the cam (or on the cam
sliding downward and to the right with respect to on the follower). The velocity of

found by scaling vector is 8 in/s upward and to the right, so that follower angu-
lar velocity

clockwise. At this instant, then, the ratio of the follower angular velocity to the cam
angular velocity is

where a positive sign is used when both turn in the same direction.

An Equivalent Linkage for a Cam Mechanism

If, at the point of contact, the cam and follower both have finite radii, then a four-bar
linkage may be used to analyze the motion. Referring to Figure 3.33, for example, we
see that the equivalent links would form a crank-rocker mechanism as sketched in
Figure 3.34. The driver crank would consist of a link from to the center of curvature
of the cam at the point of contact (C, the center of the circular cam in this case). The
driven crank (the rocker) would consist of a link from to D, the center of curvature
of the follower at the point of contact. Coupler CD extends from one center of curva-
ture to the other.

We have constructed an equivalent linkage wherein the driver crank of the four-
bar linkage has the same motion as the cam and the driven crank of the four-bar link-
age has the same motion as the rotating cam follower. The coupler has no counterpart
on the cam–follower system. If the cam is circular and the follower has the form of a
circular arc, then the equivalent linkage dimensions are constant. The radius of curva-
ture varies in most practical cams, however, so the equivalent linkage is of limited
value because its dimensions change as the radius of the cam follower change at the
point of contact.

Friction Drives

Motion may be transmitted between two shafts by disks that roll on one another.
Consider the friction drive of Figure 3.35, where P is a point common to both disks.

O2

O1

v2

v1
=

5.3 rad/s
20 rad/s

= +0.27,

v2 =
ob2

O2B2
=

8 in/s
1.5 in

= 5.3 rad/s

ob2,B2,
B2

B1B1

B2

b2.
ob2ob1,b1b2

ob1 = 38 in/s
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FIGURE 3.34 A four-bar linkage, equivalent to
a cam and follower.
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FIGURE 3.35 A friction drive. There is no rela-
tive velocity if the disks roll without
slipping.

(p1p2 = 0)
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If the two disks roll together without slipping, the relative velocity is zero, and Eq.
(3.51) becomes

(3.52)

Since but in a direction opposite that of we have the angular veloc-
ity ratio

(3.53)

A drive of this type is satisfactory for low-power applications. However, when large
torques are involved, the designer might turn to a gear drive, sacrificing the simplicity
of a friction drive to ensure that power will be transmitted under all conditions.

Straight-Toothed Spur Gears

Spur gear velocities may be found by examining a pair of teeth at their point of contact.
The velocity of that point on the driven gear is the vector sum of the velocity of the
same point on the driver and the relative velocity. The equation used earlier for cams
and mechanisms that include sliding also applies to gears: In this
case, the common point, or point of contact, is B, with subscripts 1 and 2 referring to
the driver and driven gear, respectively.

Figure 3.36a shows a pair of involute spur gears with contact occurring at point B.
Velocity vector is drawn perpendicular to in Figure 3.36b. Then,
trial vector is drawn, beginning at o and perpendicular to Trial vector 
(the sliding velocity) is drawn from (parallel to the common tangent to the teeth,
where the two vectors make contact) until it intersects trial vector The true loca-
tion of is thus found, and the angular velocity of gear 2 is given by 
Figure 3.36c shows the velocity polygon for contact on the line of centers (the pitch point).

The foregoing construction would not be used to find angular velocities, since the
ratio of the angular velocities of a pair of gears is given simply by the inverse ratio of
the numbers of teeth, and on the gears:

(3.54)

This relationship, which holds for any pair of gears except those in planetary trains, will
be derived in Chapters 6 and 7.

Helical Gears

While the tooth elements of straight spur gears are parallel to the gear shaft, helical
gear tooth elements are not. When a pair of helical gears are mounted on parallel
shafts, the sliding velocity vector for any contact point will lie in a plane perpendicular
to the shafts (as with straight spur gears).This is not the case with crossed helical gears.

ƒv2 ƒ
ƒv1 ƒ

=
N1

N2
 .

N2,N1

v2 = ob2/O2B2.b2

ob2.
b1

b1b2O2B2.ob2

O1B1ob1 = v1O1B1

ob2 = ob1 + b1b2.

v2

v1
= -

O1P1

O2P2
.

v1,v2 = op2/O2P2,

op2 = op1 = v1O1P1.

p1p2
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Gear 1 (Driver)

Gear 2

(a)

(b)

(c)

O1

O2

B

B:  Beginning of contact
P:  Pitch point
E:  End of contact

P
E

o

o

b1

p1 p2

b2

�O2B

�O1B

Relative velocity parallel to
common tangent at B

�O1PO2

p1 p2 � 0 (zero relative velocity)

    1�

   2�  

FIGURE 3.36 (a) A pair of spur gears. For clarity, only two teeth are shown.
Point B is the point of initial contact ( on gear 1 and on gear 2). (b) The
velocity polygon. Vectors and are drawn perpendicular, respectively, to

and Relative velocity vector is drawn from parallel to the
common tangent to the teeth at the point of contact, B. (c) The velocity poly-
gon when contact occurs at the pitch point P.

b1b1b2O2B2.O1B1

ob2ob1

B2B1
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    1�     1�

FIGURE 3.37 (a) Crossed helical gears. Pitch diameters of gears 1 and 2 are and 
respectively. (b) Sectional view of the crossed helical gears. Gear 2 is shown in dashed lines.
(c) Velocity polygon showing pitch line velocities and and the sliding velocity 
(d) Line od is perpendicular to sliding velocity b1b2.

b1b2.ob2ob1

d2,d1

Crossed Helical Gears

In the case of crossed helical gears (helical gears on nonparallel shafts), the sliding
velocity at a general point of contact has a component across the face of the gears. (See
Figure 3.37a.) Let a pair of crossed helical gears make contact at a point B, the pitch
point ( on gear 1, on gear 2), which lies on a perpendicular common to the two
shafts. The velocity of represented by is perpendicular to shaft 1. The
velocity of unknown at this time, is represented by perpendicular to shaft 2,
using a double arrowhead. Velocity where the relative velocity 
must be the sliding velocity parallel to the gear tooth in a plane through B that is paral-
lel to both shafts. (See Figure 3.37b.) The point is therefore located by drawing 
parallel to the gear tooth until it meets the line (See Figure 3.37c.) The pitch-lineob2.

b1b2b2

b1b2ob2 = ob1 + b1b2,
ob2,B2,

v1d1/2,ob1,B1,
B2B1
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228 Chapter 3 Velocity Analysis of Mechanisms

velocity of gear 2, may then be scaled to find angular velocity

We see from the direction of that gear 2 turns clockwise when viewed from the
right.

Greater accuracy may be obtained analytically. In Figure 3.37d, a perpendicular
od from o to line forms angles and It can be seen that 

Substituting and the velocity ratio

(3.55)

is obtained. Alternatively, the tooth numbers, if known, may be used to find the same
ratio:

(3.56)

A sectional view through the point of contact will aid in establishing the direction of
rotation.

When we consider contact at a point other than the pitch point, additional sliding
velocity components must be considered. The ratio of the angular velocities, however,
is constant and may be found by one of the methods just described.

Gears and cams are among the most commonly used and most versatile mecha-
nisms.The preceding material on velocities only touches on the problem of the analysis
and design of gears and cams, which is covered in considerably more detail in other
sections.

3.12 ANALYZING COMBINATIONS OF BASIC LINKAGES

Toggle Linkage

Many practical multilink mechanisms are made up of basic linkage combinations such as
the slider-crank and the four-bar mechanism.The toggle linkage shown in Figure 3.38a is
an example of a mechanism of this type; the toggle principle is applied in ore crushers
and in essentially static linkages that act as clamps. The linkage analysis is made by con-
sidering the basic linkages separately. To solve for the velocities of the mechanism, we
may begin by ignoring the slider and its connecting rod while solving the four-bar linkage
separately.Then, the velocity polygon may be completed by finding the slider velocity.

In this example, link 1 will be 100 mm long and will be 100 rad/s clockwise.
Examining links 1, 2, and 3 alone (Figure 3.38b), we draw the following vectors to some
convenient scale:

Vector (downward and to the left)
Trial vector 
Trial vector (Figure 3.38c)bc � BC

oc � O3C
ob = v1O1B = 10 m>s    �     O1B

v1

`
n2

n1
` =

N1

N2
 .

n2

n1
=
v2

v1
=

d1 cos c1

d2 cos c2

ob2 = v2d2/2,ob1 = v1d1/2ob2 cos c2.
od � ob1 cos  c1 �c2.c1b1b2

ob2

v2 =
ob2

d2/2
 .

ob2,
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Velocity point c is located at the intersection of trial vectors oc and bc, completing the
velocity polygon for links 1, 2, and 3.

In order to illustrate the mental process involved in solving multilink mechanisms,
we will now consider links 3 and 4 and the slider separately (Figure 3.38d). Beginning at
a new pole point (o in Figure 3.38e), vector oc is redrawn, its direction and magnitude
taken from the four-bar polygon. Then, trial vectors are drawn, and od in thecd    �    CD
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FIGURE 3.38 (a) This toggle mechanism is a combination of two basic linkages, the four-
bar mechanism and the slider-crank mechanism. (b) The velocities for the entire toggle
mechanism are found by solving for the velocities of the component mechanisms. Thus, the
four-bar linkage component is considered first (link 4 is not shown). (c) After a suitable
velocity scale is selected, the velocity polygon for the four-bar mechanism is drawn. (d) The
remainder of the toggle mechanism, the slider crank, is considered next. (e) The velocity
polygon for the slider crank is drawn. Note that link is common to both mechanisms.
The velocity of point C, oc, was already determined in the four-bar polygon. (f) The veloc-
ity polygon for the entire mechanism.

O3C
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230 Chapter 3 Velocity Analysis of Mechanisms

direction of the path of the slider, from which velocity point d is located. Slider velocity
at this instant is given by od, 4 m/s to the left.

The preceding solution, in two parts, is given for demonstration purposes only.
After velocity polygon obc is completed, it is faster and slightly more accurate to con-
tinue by finding point d on the same polygon. Figure 3.38f shows velocity polygon obcd
found in this manner, a compact velocity representation for the entire mechanism. An
additional advantage of using the complete polygon is that it is only necessary to join
points b and d to find the velocity of D with respect to B if this velocity is important in
a particular machine.

An important feature of the toggle mechanism is its ability to produce high val-
ues of force at the slider with relatively low torque input. While the study of mecha-
nisms is concerned primarily with motion, forces are of great importance to the
designer and are intimately related to motion analysis. If a rigid mechanism has a sin-
gle input and a single output with negligible losses, the rate of energy input equals the
rate of energy output. Force ratios are the inverse of velocity ratios when inertia effects
are negligible. Specifically, in the toggle linkage at the instant shown, the horizontal
force at D divided by the tangential force at B equals ob/od , or 10/4 (the mechanical
advantage of the mechanism at that instant). Clockwise rotation of link 1 from the
position shown toward the limiting position of the mechanism produces very high
ratios of output force to input torque.

If we sketch the mechanism at the instant that links 3 and 4 are collinear, we see
that slider velocity Thus, the ratio ob/od, the theoretical mechanical advantage
of the toggle mechanism, becomes infinite. Clamps and ore crushers using the principle
of the toggle linkage are designed to operate near this limiting position. Actual forces
at the slider are, of course, finite, due to bearing clearances and elasticity of the linkage.
In this exceptional case, the small amount of motion due to elastic deformation of the
linkage and deformation of the workpiece is of the same order of magnitude as the
slider motion. Therefore, any analysis of the problem (which assumes perfectly rigid
links) must serve only as a first approximation.

Shaper Mechanisms

The mechanical-shaper mechanism in Figure 3.39 is another example of a combination
of simple linkages. It is made up of a slider-crank mechanism (links 2 and 3 and the
slider at D) and a sliding contact mechanism (links 1 and 2 and a slider at B moving
along link 2). When the mechanism is operating, the angular velocity of link 1 is essen-
tially constant.

Beginning with the velocity of point B at the end of the crank, we find the velocity
of a common point on link 2. The velocity of point C at the end of link 2 is found by
forming the velocity image of link 2.The solution is completed by examining the mecha-
nism formed by links 2 and 3 and the slider at D (a slider crank of unusual proportions).

A detailed solution follows for the instant shown, with the angular velocity of
link 1 equal to 10 rad/s clockwise.

od = 0.
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FIGURE 3.39 A mechanical-shaper mechanism is another combination of two simple mecha-
nisms. The velocity diagram is constructed as usual. To find the magnitude of oc, however, we must
use velocity and the proportionality of link 2 ( to ).O2B2O2Cob2

STEP 1. Select a reasonable velocity scale and draw velocity vector 
in/s perpendicular to link 1 (downward and to the right), as shown

in Figure 3.39.
STEP 2. Draw trial vector perpendicular to link 2 and trial vector paral-

lel to link 2, locating 
STEP 3. Use the proportionality equation to locate point c on

the velocity polygon.
STEP 4. Draw trial vector od from o parallel to the path of the slider D and trial

vector cd from c perpendicular to link CD, locating velocity point d. The
velocity of D (i.e., the velocity of the shaper tool) is 19.6 in/s to the right
at the instant shown, as given by the scaled vector od. When angular
velocity is constant and clockwise, the average velocity of point D is
greater when D moves to the left than when it moves to the right. This
feature of the shaper ensures a slow, powerful cutting stroke and a quick
return. The stroke length (the distance between extreme positions of D)
is varied by adjusting the length of link 1.

v1

oc/ob2 = O2C/O2B2

b2.
b1b2ob2

=   20
ob1 = v1O1B1
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FIGURE 3.40 The beam pump. This mechanism may be analyzed by first solving the four-
bar linkage (links 1, 2, 3, and the frame) and then drawing the velocity image of link 3. The
slider-crank part of the mechanism (links 3 and 4 and the slider and frame) is then solved.
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Beam Pump

The combination four-bar and slider-crank mechanism of Figure 3.40 forms a beam
pump. The connecting rod (4) moves practically along its own axis and may be made
very long. If we know the angular velocity of crank 1, it is a simple matter to construct
velocity polygon obc. Then velocity image cod is drawn similar to on link 3. The
velocity polygon is completed by locating point e, corresponding to the slider. The
slider velocity is then given by vector oe.

Multiple Slider-Crank Mechanisms

Single-cylinder internal-combustion engines provide adequate power for lawn mow-
ers, portable tools, and similar applications. The power output, however, is limited by
the size of the cylinder. If we were to design a single-cylinder engine with a capacity of
several hundred horsepower, the piston, connecting rod, and crank might be unrea-
sonably large. At full speed, inertial forces could be a serious problem. Furthermore,
the single power stroke per revolution in the case of a two-stroke-cycle engine (or one
power stroke for each two revolutions in the case of a four-stroke-cycle engine) might
cause unacceptable fluctuations in speed, even when a flywheel is used. A pump or an
air compressor poses the same problems, particularly when high capacity or uniform
output is called for. One solution is a design with several separate cylinders, which
might be in-line (with parallel axes) or in a V arrangement (two separate banks of
cylinders at an angle to one another).

The multicylinder high-pressure pump shown in front and end-section views in
Figure 3.41 is an example of a mechanism combination, and Figure 3.42 is a sketch rep-
resenting two cylinders of a V-block engine or pump. Ordinarily, all of the slider-crank
linkages in a multicylinder engine are identical, except for their instantaneous link ori-
entation. For example, we might examine piston velocity as a function of crank position
for a single piston of an eight-cylinder engine. If the crankshaft speed is maintained, the
results would apply equally to the other pistons, the only difference being the individual
cylinder orientation and the phasing of the motion.

In Figures 3.41 and 3.42, each connecting rod is attached to a separate crankpin.
There are, however, several variations of the crank–connecting-rod arrangement.
Figure 3.43a shows an alternative configuration with both connecting rods (BC and
BD) attached to a single crankpin, B. A practical example of this alternative arrange-
ment is shown in the cutaway view of the two-stage, V-type compressor in Figure
3.43b. A similar arrangement is seen in the cutaway view of the four-cylinder semira-
dial compressor shown in Figure 3.43c, where the four connecting rods are again
attached to a common crankpin.

CO3D
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FIGURE 3.41 A high-pressure pump. The in-line slider-crank mechanism is basic to several types of machines. In this case, five slider-
crank mechanisms are used to produce a continuous flow at up to several thousand pounds per square inch. At any instant, each link-
age is at a different point in its stroke. As seen in the end view (right), the crank drives the connecting rod, which moves the
crosshead. “Trombone” side rods connect the crossheads to the plungers, which enter the top of the cylinder. (Source: Cooper Energy
Services.)
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FIGURE 3.42 A typical multicylinder engine or compressor configuration. This V design shows
two slider-crank linkages on a common crankshaft, but with separate crankpins at different axial
locations along the shaft.
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FIGURE 3.43 (a) Note that in this variation of the crank–connecting-rod arrangement,
both connecting rods are attached to a single crankpin (at different axial locations).

239



236 Chapter 3 Velocity Analysis of Mechanisms

FIGURE 3.43 (b) This V type of compressor is a commercial application of the single crankpin
arrangement. Both linkages are similar kinematically, except as regards their instantaneous position.
This unit compresses air in two stages. In the first stage, the large-diameter piston compresses the air,
which is then cooled and brought to a still higher pressure by the small (upper) piston in the second
stage. (Source: Joy Manufacturing Company.)

Articulated Connecting Rods

When several cylinders are to be arranged radially in an engine or compressor, still
another arrangement, the articulated connecting rod, may be used. The articulated
connecting-rod linkage, sketched in Figure 3.44a, consists of a single crank pinned to a
master connecting rod. The connecting rods of the remaining cylinders are in turn
pinned (at different points) to the master connecting rod. A practical example is
shown in Figure 3.44b.

The use of an articulated connecting rod permits the design of a multicylinder
engine with all the cylinder centerlines in a single plane.

Graphical methods were used to analyze several multiloop mechanisms illus-
trated in this section.Analytical vector methods and complex-number methods may be
used as well, particularly if many positions are to be considered. The key to solving
these linkages is similar in each case. We begin by considering a single basic linkage,
which is a component of the more complex system, and then proceed through a com-
mon point to solve the next component of the system.
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FIGURE 3.43 (c) This semiradial compressor also employs a single crankpin. (Source: Joy
Manufacturing Company.)

4 3
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1

FIGURE 3.44 (a) The articulated connecting rod. In this crank–connecting-rod arrange-
ment, the crank is pinned to a master connecting rod. The rest of the connecting rods are, in
turn, pinned to the master rod.
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238 Chapter 3 Velocity Analysis of Mechanisms

3.13 ANALYZING LINKAGES THROUGH TRIAL SOLUTIONS 
AND INVERSE METHODS

This section treats mechanisms that cannot be easily solved by straightforward graphi-
cal methods. If you are using the velocity polygon method to verify an analytical solu-
tion, you may find trial solutions and inverse methods unnecessary.

A variable-stroke pump, shown in Figure 3.45a, is difficult to analyze by straight-
forward graphical methods. Referring to Figure 3.45b, link 4 is an equivalent link; in
the actual pump, point D represents the pin in the guide block riding in a curved track
(of radius ). The stroke length (the length of the path of E) may be varied from
zero to a maximum value by tilting the curved track, which is equivalent to changing

O4D

FIGURE 3.44 (b) Commercial application of an articulated connecting rod. The centerlines of the
cylinder compressor are arranged radially in a single plane perpendicular to the crankshaft axis for
better balance. (Source: Worthington Group, McGraw-Edison Company.)

242



Section 3.13 Analyzing Linkages Through Trial Solutions 239

the location of point The control mechanism may be manually operated or may
incorporate an air-operated plunger to rotate the track automatically in response to a
remote signal.

When the position of the curved track is set, the mechanism has one degree of
freedom. If the motion of one link is specified, it should be possible to describe the
motion of the entire linkage.

Trial Solution Method

Suppose it is necessary to find the velocity of the piston of the mechanism in Figures
3.45a and b when the velocity of crankpin B is 100 in/s with crank B rotating clock-
wise. A trial solution procedure follows.

STEP 1. Select a convenient velocity scale, and draw in/s perpendicular
to as in Figure 3.45c.

STEP 2. It is usually best to indicate all known vectors and vector directions on
the sketch. Accordingly, draw the following trial vectors:

od perpendicular to 
oe in the direction of sliding (vertical)
bc perpendicular to BC (bc is added to ob)

O4D

O1B,
ob = 100

O1

O4.

4
3

2

C

D

B

E
�   1

(a) (b)

O4

FIGURE 3.45 (a) A variable-stroke pump. This pump is identical to the pump shown in
Chapter 1. Here, the adjustment cylinder is set so that the stroke transformer provides a maxi-
mum plunger stroke. (Source: Ingersoll-Rand Company.) (b) The equivalent linkage for the
variable-stroke pump.
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240 Chapter 3 Velocity Analysis of Mechanisms

STEP 3. In a straightforward problem, we would continue the polygon by finding
another velocity point, say, point c. The following vector equations might
be used:

But the magnitudes of bc, oe, and ec are unknown, and the magnitude
and direction of oc are unknown; there are too many unknowns to uti-
lize the equations. A similar problem exists with the vector equation

since the magnitudes of od and dc are also unknown.
STEP 4. The velocity image relationship is the missing tool; with it, a solution is

possible. On the velocity polygon, dce is the (straight-line) image of
DCE, three points on rigid link 3. The relationship is used by noting that

oc = od + dc,

oc = ob + bc and oc = oe + ec.
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FIGURE 3.45 (c) After a velocity scale is selected, the velocity polygon is begun. However, the
location of the velocity image dce is not immediately obvious. (d) Trial solution method.
(e) Inverse method.
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Section 3.13 Analyzing Linkages Through Trial Solutions 241

d, c, and e lie on a line perpendicular to line DCE with c between d and
e, proportioning the line by the equation Now that we
have the direction and relative proportions of line dce, we may satisfy
the velocity image condition by trial and error. Line x in Figure 3.45d is
the first approximation.This line intercepts trial vectors od, bc, and oe in
such a way that the ratio dc/de would be too large. We can see that the
ratio is decreased as the trial line is moved downward. Line y, the second
approximation, is somewhat better, and line z, the third approximation,
closely satisfies the required relationship, Line z thus
completes the polygon, and velocity points d, c, and e are located where
trial vectors od, bc, and oe intercept the line. The piston velocity is given
by vector oe.

Trial solutions are required more frequently in engineering practice than is indi-
cated by typical academic assignments. In the academic situation, a shortage of time
favors the use of problems in which the answer is obtained directly. The reader should,
however, be prepared for both types of problem.

Inverse Method

The piston velocity of the variable-speed pump may also be found by a method that
avoids the inconvenience and potential error involved in making several approxima-
tions. The reader may have observed in Figure 3.45c that, had the piston velocity been
given instead of the crankpin velocity, we could draw the velocity polygon directly. The
solution would proceed from the slider-crank mechanism, to the velocities of E and D,
to the velocity of C by proportion, and thence to the velocity of B. Let us, then, solve
the problem by an inverse method (i.e., we assume the answer at the beginning). The
following steps constitute an entirely new solution to the problem without making use
of the trial solution:

STEP 1. Represent piston velocity oe by a vertical vector of arbitrary length
(Figure 3.45e). Of course, we cannot give oe an actual velocity or select a
scale since we would undoubtedly guess wrong unless we had already
solved the problem by another method.

STEP 2. Draw trial vectors od perpendicular to and de perpendicular to DE,
to locate velocity point d. Velocity point c is located between d and e on
line de by using the proportion Trial vectors cb perpen-
dicular to CB and ob perpendicular to locate velocity point b, com-
pleting the polygon.

STEP 3. Finally, the scale of the velocity polygon must be determined from the
given data. In this problem, the velocity of the crankpin in/s.
The length representing ob on the velocity polygon becomes 100 in/s,
and all other vectors are scaled accordingly and labeled with their cor-
rect velocities. Measurements taken directly from the velocity polygon
give from which piston velocity in/s
upward at the instant depicted.

oe = 0.58 * 100 = 58oe/ob = 0.58,

ob = 100

O1B
dc/de = DC/DE.

O4D

dc/de = DC/DE.

dc/de = DC/DE.
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(a) (b)

01 02 01 02Link 0 (Frame)

Link 1 Link 2 1 2B

vB2
vB1

FIGURE 3.46 (a) A centro is a point common to two links that has the same vector
velocity in each link. The pins joining links 1 and 2 to the frame (link 0) are, respectively,
centros 01 and 02 (with zero velocity). (b) Three links have three centros, all of which lie
on a straight line. To prove this theorem, let us assume that B, which is common to
extended links 1 and 2, is the third centro. Vectors and violate the requirement for
a centro that the velocity vector must be identical for both links. To meet this basic
requirement, centro 12 cannot occur anywhere except on 01 02.

vB2
vB1

3.14 CENTROS

Traditionally, the centro method has been of considerable interest. The method con-
sists of locating a point, the centro, that has the same (vector) velocity in two links. The
centro is then used to relate unknown velocities to known velocities.

The centro method does not lead directly to acceleration analysis. Thus, while the
centro method can provide some useful insight into mechanism velocities, it is gener-
ally not the best method of analysis. However, the centro method can add to our
understanding of mechanisms.

The pin connecting two links in a mechanism is obviously the centro of the two,
since it has the same velocity in both. (See Figure 3.46a.) If two bodies (two disks, for
instance) roll on one another without sliding, then the instantaneous point of contact is
the centro. The centros just mentioned are observed centros and are to be located and
labeled before any others are found by construction. The centro label will consist of
the two link numbers, with the smaller number written first. The point having the same
velocity in both link 0 and link 1, for example, will be labeled centro 01. The label 10
would apply to the same centro, but we will avoid duplication by always labeling this
centro 01.

Since each pair of links has a centro, three links, which can form three different
pairs, will have three centros. In general, given sufficient information, we should be able
to find centros for a linkage with n links. In the three-link case, links 0, 1, and
2 form three centros, which we will label 01, 02, and 12. Figure 3.46b shows three links,
including 0, the frame.Thus, we have centros 01 (where link 1 is pinned to the frame), 02
(where link 2 is pinned to the frame), and 12 (which we will attempt to locate).

An arbitrary point B that does not lie on (line) is selected as a possible
location for centro 12. The bar on will be used to represent a line in the mathe-
matical sense (extending infinitely on both sides of the line segment between 01 and 02).

01 02
01 02

n(n - 1)/2
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Section 3.14 Centros 243

Let us imagine an extension of links 1 and 2 so that B may lie in both.Then the velocity
of B in link 1, is perpendicular to Likewise, the velocity of B in link 2, is
perpendicular to (The magnitudes of these velocities are unknown.) Since 
and are neither parallel nor collinear, and cannot be the same; the direc-
tions of and are different. Certainly, then, B is not the centro 12.

Kennedy’s Theorem

We can see from the preceding discussion that centro 12 cannot be any point that does
not lie on A similar examination of the direction of the velocity of points lying
on shows that centro 12 may lie somewhere on Considering the infinite
extent of some point on it must have the same velocity (both magnitude and
direction) in both link 1 and link 2. Thus, we have Kennedy’s theorem (the three-link
theorem) in a nutshell: Three links have three centros that lie on a line.

Kennedy’s theorem applies except in trivial cases (e.g., a linkage without any rel-
ative motion), but it does not assure us of finding all the centros that exist in a theoret-
ical sense. As for the original problem of actually locating centro 12, we have failed
because there is a need for additional data.

Centros of a Four-Bar Linkage

The mechanism of Figure 3.47a has four links, including the frame. There are six possi-
ble pairs formed by four numbers and, hence, six centros: the observed centros 01, 12,
23, and 03 and the two remaining centros, 02 and 13, which must be located by con-
struction. A procedure for finding the unobserved centros is as follows:

STEP 1. The three-link theorem will be used to draw a line on which centro 02
must lie. For the necessary three links, we must include links 0 and 2,
since we are looking for centro 02; then, either of the remaining links will
do. Using links 0, 2, and 1, we have centros 01 and 12 (both already
labeled) and 02 (the unknown), all three on a line. Line (of arbi-
trary length) is drawn and labeled 02 for our unknown centro.

STEP 2. The three-link theorem is used again to draw another line to locate cen-
tro 02. Links 0 and 2 must again be included, this time along with the
other remaining link, link 3. Links 0, 2, and 3 have three centros, 03 and
23 (already labeled) and the still unknown centro 02. Line is
drawn until it reaches the extension of at which point centro 02 is
located.

STEP 3. Centro 02 is a point in link 0, the frame, and in link 2, the coupler. By
the definition of a centro, centro 02 has the same velocity in both links.
While it is not actually a part of either, it is considered to be in the links
for velocity analysis. Link 0 is fixed, and thus, the point common to link
0 and link 2, centro 02, is a point in link 2, which is (instantaneously)
stationary.

STEP 4. Since link 2 rotates about centro 02, as in Figure 3.47a, the velocities of
points on link 2 are proportional to their distances from 02. We may then

01 12,
03 23

01 12

01 02,
01 02.01 02

01 02.

vB2
vB1

vB2
vB1

02 B

01 B02 B.
vB2

,01 B.vB1
,
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244 Chapter 3 Velocity Analysis of Mechanisms

state the ratio of the magnitudes of the velocities of points 23 and 12 as

(3.57)

where 02–23 and 02–12 are distances scaled from the linkage drawing.

The magnitude of velocity is given by the length of link 1 times 
Using this, we find the magnitude of velocity by Eq. (3.57). If is
clockwise, then is to the right and downward. Observing the location
of 02, the instantaneous center of link 2, we see that the link must rotate
counterclockwise at the instant in equation (since is to the right and
downward). Velocity then, is to the right and upward (perpendicular
to )

STEP 5. The magnitude of the angular velocity of link 2 is given by

v2 =
v12

02 - 12
 ,

03 23.
v23,

v12

v12

v1v23

v1.v12

y23
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FIGURE 3.47 (a) Locating unknown centro 02
using the three-link (Kennedy’s) theorem.
Centro 02 is determined by the intersection of
the extensions of and 
(b) Unknown centro 13 is determined by the
intersection of and 12 23.01 03

03 23.01 12
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Section 3.14 Centros 245

where 02–12 is the actual distance from point 12 to centro 02 of link 2 for
the full-size mechanism. The velocity of an arbitrary point B on link 2 of
Figure 3.47a is given by

(3.58)

where lengths 02—B and 02–12 are scaled from the diagram.

Velocity is perpendicular to 02–B and is to the right and upward, with
its sense determined in the same manner as that of 

STEP 6. The angular velocity of link 3 follows immediately from the foregoing
calculations, but we will use centro 13 to complete the problem in order
to complete our illustration of the centro method. Centro 13 is located in
a manner similar to the procedure for locating centro 02. In this case,
lines and both contain centro 13. Now, 13 is a centro in the
general sense, having the same nonzero velocity in links 1 and 3. Using
that property, we have

Equating these two expressions, we obtain

(3.59)

which might be expressed in words as follows: For two links with fixed
pivots, the angular velocities of the two links are inversely proportional to
distances from the respective fixed pivots to the common centro. In Figure
3.47b, we see that is upward when is clockwise. But then is seen
to be clockwise also. In general, when the common centro falls between
the fixed centers of a pair of links, one link turns clockwise and the other
counterclockwise; otherwise, both turn clockwise or both turn counter-
clockwise. The reader will observe that the pitch point for a pair of gears
and the tangent point for a pair of friction disks represent the common
centro. In these examples, the previous expression boils down to this:
Angular velocities are inversely proportional to radii.

Referring to the skeleton diagram of a planar four-bar linkage, if links 0 and 1 are
collinear, then centros 02 and 03 are coincident. Note that links 2 and 3 are joined at
centro 23.As a result, the angular velocities of links 2 and 3 are equal at the instant that
links 0 and 1 are collinear.This condition serves as a partial check of the angular veloc-
ity plots shown earlier in the chapter.

Analyzing a Slider-Crank Mechanism

The slider-crank mechanism in Figure 3.48 is solved by first examining the equivalent
linkage shown in the figure. One readily sees that the slider may be replaced by a link of
infinite length perpendicular to the slider path. The slider moves in a horizontal path.

v3v1v13

v3(03–13) = v1(01–13) or 
v3

v1
=

01–13
03–13

 ,

v13 = v1 01–13 and v13 = v3 03–13.

12 2303 23

v23.
vB

vB

v12
=

02–B

02–12
 ,
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FIGURE 3.48 For the use of centros to find velocities in a slider-crank mechanism, an
equivalent linkage must be used, in which the slider is replaced by a link of infinite
length. The solution then proceeds as for a four-bar linkage.

Its motion can be duplicated by an equivalent link, link 3, which is vertical. Centro 03, the
“fixed center” of the equivalent link, is shown an infinite distance below the slider path.

SUMMARY

Animation software, analytical vector methods, and complex-number methods are
important tools in the velocity analysis of planar linkages. The velocity polygon is a
useful graphical check of analytical work. Analytical vector methods and matrix meth-
ods are used to solve spatial linkages. Complex-number methods are not applicable to
spatial linkages, and graphical methods are impractical for the detailed analysis of spa-
tial linkages. Designing mechanisms often requires analysis through a full range of
motion, a task that calls for animation software or mathematics software.

Computer-generated plots and tables are very convincing. But our work is not fin-
ished until we check and interpret those plots and tables. Try to include simple validity
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checks within computer programs. Add comments to help identify valid solutions.
Include checks to identify design parameters outside of generally accepted ranges and
designs that do not meet motion requirements. And, finally, be sure to indicate units
and test for consistency.

A Few Review Items

• What is the direction of the angular velocity vectors in a planar mechanism?
Must we express angular velocity in radians per second?

• Write the basic vector velocity equation for a planar four-bar linkage.
• a slider-crank linkage.
• a sliding contact linkage.
• Explain the differences in the three equations you have written down.
• Write the basic velocity equation, in complex polar form, for a planar four-bar

linkage.
• Repeat the preceding for a slider-crank linkage.
• a sliding contact linkage.
• Why not use this form for spatial linkages?
• Write the basic vector velocity equation for an RSSR spatial linkage.
• Identify the unknown angular-velocity components if the drive crank angular

velocity is given.
• Do we need an additional equation to solve for these unknowns?
• Give the form of the matrix equation needed to solve for the unknown angular

velocity components.
• Write the velocity polygon equation for a slider-crank linkage. The crankpin is

identified by B and the wrist pin by C.
• Describe the velocity image principle for three points that do not lie on a line.
• ..... for three points that lie on a line.
• Can you combine these two cases in a single principle?

PROBLEMS

Some of the problems in this chapter require calculating and plotting results for many
linkage positions. It is suggested that animation software, mathematics software, or a
spreadsheet be used. If the problems are solved only with the aid of a calculator, one or
two linkage positions may be selected to avoid repetitious calculations.

3.1 Find the velocity of a point P in a rigid body with angular velocity 
The body rotates about fixed point and the radius vector is given by

3.2 Repeat Problem 3.1, except that 
3.3 Find the velocity of a point on the circumference of a 30-in-diameter flywheel rotating at

800 rev/min.

V = i200 + j0 - k150.
r = -i100 + j50 + k60.

O1PO1,
V = i10 + j15 + k20.

Á .

Á .
Á .
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248 Chapter 3 Velocity Analysis of Mechanisms

3.4 Low-carbon steel is turned on a lathe at typical surface speeds of 100 to 400 ft/min. Find
the corresponding lathe spindle speeds in revolutions per minute for (a) a 2-in-diameter
bar and (b) a 3-in-diameter bar.

3.5 Write an equation to determine lathe spindle speed n (in revolutions per minute) when
bar diameter d (in inches) and surface speed s (in feet per minute) are given. Is the same
equation valid if n represents the speed of a milling cutter of diameter d?

3.6 A point P is described in terms of a fixed coordinate system XYZ with unit vectors I, J,
and K and a moving coordinate system xyz with unit vectors i, j, and k. At a given
instant, the location of the origin of the moving system is and the velocity of
the origin of the moving system is 80I– 90J. The velocity of P relative to the moving sys-
tem is the radius of point P is in the moving system, which rotates at
angular velocity Find the velocity of point P in the fixed system if the x-axis
is rotated counterclockwise from the X-axis.

3.7 Repeat Problem 3.6, except that 
3.8 A 500-mm-diameter wheel rolls in a straight path, rotating at 800 rev/min. Find relative

velocity where C is the center of the wheel and B is at the top.
3.9 Repeat Problem 3.8 for a 16-in-diameter wheel.

3.10 Velocity in/s at Velocity in/s at Find (Use )
3.11 Velocity in/s at Relative velocity in/s at Find [Use

]
3.12 Velocity in/s at Relative velocity is an unknown vector at Velocity

is an unknown vector at Find and (Use 
3.13 Referring to Figure 3.9, let mm, mm, mm, mm, and

Calculate and for ccw. Use analytical vector
methods.

3.14 Repeat Problem 3.13 for 
3.15 Plot versus for the linkage of Figure 3.9 if and 

Use a computer or a programmable calculator.
3.16 Referring to Figure 3.9, let 

and Determine Use analytical vector
methods.

3.17 Repeat Example Problem 3.7, but use analytical vector methods.
3.18 Refer to Figure 3.15. Find by using analytical vector methods. Write a computer or

calculator program to determine for a series of values of where is constant
and counterclockwise.

3.19 Refer to Figure 3.15. Let and 
Find (a) (b) and (c) Use complex-number methods.

3.20 Repeat Problem 3.19 for 
3.21 Repeat Problem 3.19 for 
3.22 Repeat Problem 3.13, but use complex-number methods.
3.23 Refer to Figure 3.15. Calculate for to in steps if Use a

computer or a programmable calculator.
3.24 Refer to Figure P3.1, which shows an RSSR spatial linkage. With as the origin, the x-,

y-, and z-coordinates of the joints are given, respectively, as follows:

R2: - 20, 95, 0 S2: - 20, 80, 40
R1: 0, 0, 0       S1: - 25, 0, 35

R1

R0/R1 = 3.15°180°u1 = 0v2/v1

u1 = 45°.
u1 = 30°.
v2.u2,O2B,

u1 = 15°.R1 = 30 mm, O1O2 = 50 mm, v1 = 10 rad/s ccw,

v1u1,v2/v1

v2/v1

yD/(v1r1).u1 = 30°.uCBD = 20°,rBD = 15 mm,
r3 = 20 mm,r2 = 35 mm,r1 = 10 mm,r0 = 30 mm,

r3/r1 = 2.r2/r1 = 3.5,r0/r1 = 3,u1v3/v1

u1 = 60°.

v1 = 30 rad/sv3vC, v2,u3,u2,u1 = 45°.
r3 = 20r2 = 35r1 = 10r0 = 30

vC = vB + vCB.)vC.vCB0°.vC

315°.vCB45°.vB = 20
vB = vC + (-vCB).

vB.135°.vCB = 100°.vC = 30
vC = vB + vCB.vC.0°.vCB = 2045°.vB = 15

vCB  

,

V = -95k.
30°

V = 100k.
3i + 4j50i + 45j;

12I + 5J,
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z, k

x, i

y, j

y, j

S1

S1

Link 2

Link 2

Side view

Top view

Link 1

Link 1

Link 3

Link 3

S2

S2

R1

R1

R2

R2

FIGURE P3.1 RSSR spatial linkage.

(all in millimeters). Link 1 rotates at rad/s (constant) in the xz-plane. Sphere
joint is moving away from the observer at this instant. Link 3 rotates in the yz-plane.
Find velocities and angular velocity Set the angular velocity of link 2
about its own axis to 0.

3.25 Repeat Problem 3.24, except that cw (constant). Find and 
3.26 (a) Find the crank position corresponding to the maximum piston velocity for an in-line

slider-crank mechanism. Crank speed is constant, and the ratio of the connecting
rod to the crank length is 

(b) Find the maximum piston velocity in terms of R and 

3.27 Repeat Problem 3.26 for 

In Problems 3.28 through 3.61,

(a) write the appropriate vector equation,
(b) solve the equation graphically unless directed otherwise, using velocity polygon notation,
(c) dimension all vectors of the velocity polygon, and
(d) express angular velocities in radians per second, and indicate their directions.

3.28 In Figure P3.2, and rad/s. Draw and dimension the velocity polygon.
Find v2.

v1 = 10u = 45°

L/R = 1.5.

v.
L/R = 2.

v

v1.vs1
, vs2

,v3 = 10 rad/s

v3.vs1
 and vs2

S1

v1 = 25

E � 0.5 in

B

C

1.5
 in 3 in

1

2�
�1

O1

FIGURE P3.2
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250 Chapter 3 Velocity Analysis of Mechanisms

3.29 Repeat Problem 3.28 for 
3.30 Repeat Problem 3.28 for the mechanism in the limiting position (with C to the extreme

right).
3.31 In Figure P3.3, rad/s. Draw and dimension the velocity polygon. Find and 

Use the scale 1 in = 100 in/s.
v2.vDv1 = 100

u = 120°.

3.32 In Figure P3.4, Draw and dimension the velocity polygon. Find and
Use the scale 1 in = 50 in/s.v3.

v2,vD,v1 = 50 rad/s.

3.33 In Figure P3.5,

(a) Draw and dimension the velocity polygon for the limiting position shown. Find rela-
tive velocity Use the scale 

(b) Repeat the problem for the other limiting position.
1 in = 10 in/s.vCB.

v1 = 20 rad/s.

3.34 In Figure P3.6, and Draw and dimension the velocity polygon.
Identify the sliding velocity. Find Use the scale 1 in = 20 in/s.v1.

v2 = 20 rad/s.u = 105°

BC � 3 in
BD � 2 in

B

C

D2 in
1 2

� 30�

�1

O1 FIGURE P3.3

2

1�1

O1 O3

4 in

O1O3 � 5 in

B
C

D

2 in 3 in

3 in

6 in

� � 60
3

FIGURE P3.4

2

1

3

�1

O1 O3
O1O3 � 4 in

1 in

4.5 in

B

C

2 in

FIGURE P3.5
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3.35 Repeat Problem 3.34 for 
3.36 In Figure P3.3,

(a) Find analytically for the position shown.
(b) Find analytically at both limiting positions.

3.37 In Figure P3.7, let the angular velocity of the crank be 

(a) Draw the velocity polygon for the position shown. Identify relative velocity 
(b) Repeat for the other limiting position.

yCB.

v.

vC

vC

v1 = 100 rad/s.
u = 30°.

3.38 In Figure P3.8, Draw and dimension the velocity polygon. Use the scale
1 in = 100 in/s.

v1 = 100 rad/s.

1

2�

�2

O2

O1

4 in

2 in

B1 on link 1
B2 on link 2

FIGURE P3.6

Crank
length R

Connecting
rod length L

C
B

�

FIGURE P3.7

4

2

1�1

O1 O3

O3C � 4 in
O3D � 6 in

O1O3 � 6 in

7 in

B

D

E

C

2 in 2 in

6 in

� � 45

3

FIGURE P3.8
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252 Chapter 3 Velocity Analysis of Mechanisms

3.39 In Figure P3.9, and Draw and dimension the velocity polygon.
Identify the follower velocity and the sliding velocity. Use the scale 1 in = 5 in/s.

v1 = 10 rad/s.u = 135°

3.40 Repeat Problem 3.39 for 
3.41 In Figure P3.10, Draw the velocity polygon. Use the scale 

Find and Find the velocity of the midpoint of each link.v3.v2

1 in = 10 in/s.v1 = 35 rad/s.
u = 30°.

3.42 In Figure P3.11,v1 = 20 rad/s.

Cam

r � 2 in

B1 on 1
B2 on 21

�1

O1

O1C � 1 in
C

�
Follower 2

FIGURE P3.9

2

2
1

1

�1

O1 O3
O1O3 � 2.8 in

B

C

E

F

D

� � 45

� 1 in
� 3.25 in
� 2 in3

3

FIGURE P3.10

2

1

�1

O1

O2

B1,B2

C

D

1.25 in

r1 � 1.5 in

r 2 
�

 3
.5

 in
 (

co
ns

t.)

3 in

Cam

0.75 in

Follower

FIGURE P3.11
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(a) Draw and dimension the velocity polygon. Find and identify the sliding velocity.
(b) Note that CD is a fixed distance. Thus, we can use the equivalent linkage 

Draw the velocity polygon, and again, find the angular velocity of the follower (rep-
resented by ).

3.43 Consider a pair of involute spur gears with a pressure angle. Let the driver speed be
300 rev/min clockwise and the driven gear speed 1,000 rev/min counterclockwise. Find
the sliding velocity when contact occurs 1.2 in from the pitch point.

3.44 In Figure P3.12, and Draw and dimension the velocity polygon,
using the scale 1 in = 20 in/s.

v2 = 20 rad/s.u = 105°

20°

DO2

O1CDO2.
v2

2

3

1

�2

O1

O2

B1 on 1
B2 on 2

4 in

4 in

2 in

3 in
C

O1C � 8 in

D

�

FIGURE P3.12

2

1

�1

O1

O2

B1 on 1
B2 on 2

3 in
1 in

Center O2 is
fixed in space
(not in the block).

45

Cyli
nder

FIGURE P3.13

3.45 Repeat Problem 3.44 for 
3.46 In Figure P3.9, Find the follower velocity analytically when (a)

and (b)
3.47 In Figure P3.13, Draw and dimension the

velocity polygon, using the scale Identify the sliding velocity and find 
the angular velocity of O2B2.

v2,1 in = 20 in/s.
v1(the angular velocity of O1B1) = 30 rad/s.

u = 30°.
u = 135°v1 = 10 rad/s.

u = 30°.
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254 Chapter 3 Velocity Analysis of Mechanisms

3.48 For Figure P3.14, draw and dimension the velocity polygon, using the scale 
Find and Points B, C, and D lie on the same rigid link.vD  

.v2

1 in = 100 in/s.

3.49 Locate all of the centros in Figure P3.14. Using centro 13, write an expression for the
slider velocity in terms of Calculate 

3.50 In Figure P3.14, use centro 02 in order to write an expression for (a) in terms of 
(b) (c) in terms of and (d) in terms of (e) Calculate and 

3.51 In Figure P3.15, Use a vector 3 in long to represent the velocity of B.
Complete the velocity polygon and determine the velocity scale. Dimension the polygon
and find the angular velocity of each link.

v5 = 15 rad/s.
vD.vC,v2,v2.vDv2;yCv2/v1;

vB;v2

vC.v1.

3.52 Refer to Figure P3.16. Solve graphically for 

(a) Draw the linkage to a 1:1 scale.
(b) Let draw velocity polygon Add point c, where 
(c) Find 
(d) Find 
(e) Find v2.

vc.
vB2.

O2C = 100 m.ob1b2.1 mm = 5 mm/s;

u1 = 15°.

3

21

O1

B

C

D

60

BC � 5 in
BD � 8 in

2 in

�1 � 100 rad/s

FIGURE P3.14

3

2

1

�5

O1O5 O3

1 in4 in

B

C

E

D

75

� 3 in

BC � 2.25 in
BD � 3.25 in

� 2 in

� 2.75 in4
� 1 in5

FIGURE P3.15
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3.53 Repeat Problem 3.52 for 
3.54 Repeat Problem 3.52 for 
3.55 Refer to Figure P3.16. Find when 
3.56 Refer to Figure P3.17.

(a) Draw velocity polygon obc.
(b) Find 
(c) Locate d on the velocity polygon. Find 
(d) Identify angles and in your solution. Find velocity and relative velocity bc in

terms of and f.u,O1B,v1,
vcfu

vD.
v2.

v2 = 0.u1

u1 = 45°.
u1 = 30°.

3.57 A four-bar planar linkage has the following dimensions:

 r3 (driven link) = 2.5.

 r2 (coupler) = 5.25;

 r1 (driver) = 1.25;

 r0 (frame) = 4;

O1
O2

B

C

� 1O1O2  � 50 mmO1B  � 30 mm � 10 rad/s ccw

� �and��1
�2

Link 2
Link 1

FIGURE P3.16

21
�1

�1

BC     � 200 mm

BD   � 40 mm

O1B  � 120 mm

B

C

D

�

� �

� 15
� 500 rad/s ccw

FIGURE P3.17
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256 Chapter 3 Velocity Analysis of Mechanisms

If cw (constant), plot and versus Use a computer or program-
mable calculator. Check values at by using a velocity polygon.

3.58 In Figure P3.18, ccw (constant),
and 

(a) Draw velocity polygon 
(b) Find oc.
(c) Find 
(d) Add c to the polygon.
(e) Add d to the polygon.

v1.

ob1b2.

CD = 160 mm.O2B = 150 mm,400 mm,
O1C =O1O2 = 300 mm,v2 = 500 rad/su2 = 135°,

u = 120°
u.v3v2v1 = 5.75 rad/s

3.59 In Problem 3.58, let 

(a) Find and at 
(b) For the interval find the average angular acceleration of link 1

and the average acceleration of point D.

3.60 Refer to Figure 3.15. Let and Find when v2 = 0.u1O1O2 = 50.R1 = 30

120° 6 u2 6 135°,
u2 = 120°.v1yD,yB1

,

u2 = 120°.

D

C

� 2

O2

O1

B1,  B2

O
1 C

 �
 400

3

2

1

�2

15
0

160

30
0

FIGURE P3.18
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3.61 (a) Derive equations for position angles and angular velocities of a four-bar planar link-
age. Use complex-number methods. Refer to Figure 3.9.

(b) Given and find and
using the equations derived above.

(c) Check your results, using graphical methods.

3.62 Solve Problem 3.28 by analytical vector methods.
3.63 Solve Problem 3.29 by analytical vector methods.
3.64 Solve Problem 3.28 by complex-number methods.
3.65 Solve Problem 3.29 by complex-number methods.
3.66 A four-bar linkage has dimensions and The

assembly is such that the vector loop is clockwise. Let the angular velocity of the
crank be unity, and let the angular acceleration of the crank be zero.

(a) Tabulate the link positions, transmission angle, and coupler and follower crank angu-
lar velocities for values of from 0 to 

(b) Plot the coupler and follower crank angular velocities for values of from 0 to 

3.67 A four-bar linkage has dimensions and The
assembly is such that the vector loop is counterclockwise. Let the angular velocity
of the crank be unity, and let the angular acceleration of the crank be zero.

(a) Tabulate the link positions, transmission angle, and coupler and follower crank angu-
lar velocities for values of from 0 to 

(b) Plot the coupler and follower crank angular velocities for values of from 0 to 

3.68 A four-bar linkage has dimensions: and Point D lies on
the coupler at a distance of 15 from the crankpin, at an angle of The assembly is such
that the vector loop is clockwise. Let the angular velocity of the crank be 100 rad/s,
and let the angular acceleration of the crank be zero.

(a) Tabulate the link positions, transmission angle, coupler and follower crank angular
velocities, and velocity of point D for values of from 0 to 

(b) Plot the coupler and follower crank angular velocities for values of from 0 to 
(c) Plot the velocity of D and its x and y components.

3.69 A four-bar linkage has dimensions and Point D lies on
the coupler at a distance of 12 from the crankpin, at an angle of The assembly is such
that the vector loop is clockwise. Let the angular velocity of the crank be 50 rad/s,
and let the angular acceleration of the crank be zero.

(a) Tabulate the link positions, transmission angle, coupler and follower crank angular
velocities, and velocity of point D for values of from 0 to 

(b) Plot the coupler and follower crank angular velocities for values of from 0 to 
(c) Plot the velocity of D and its x and y components.

3.70 Consider an offset slider-crank linkage for which the connecting-rod-to-crank-length
ratio is and the offset ratio Tabulate and plot normalized
slider position normalized slider velocity and angular velocity ratio

all against the crank position.Assume that the angular velocity of the crank is con-
stant. (Suggestion: Write a vector manipulation routine or use commercially available
mathematics software.)

v2/v1,
yc/(v1R1),r0/R1,

e/R1 = -j0.4.R2/R1 = 2.5

360°.u1

360°.u1

r2r3rd

20°.
r3 = 41.r2 = 27,r1 = 13,r0 = 38,

360°.u1

360°.u1

r2r3rd

20°.
r3 = 40.r2 = 25,r1 = 10,r0 = 37,

360°.u1

360°.u1

r2r3rd

r3 = 300.r2 = 200,r1 = 100,r0 = 312.48,

360°.u1

360°.u1

r2r3rd

r3 = 300.r2 = 200,r1 = 100,r0 = 312.48,

v3,
v2v1 = 50 rad/s cw,r3 = 3,r2 = 4.5,r1 = 2,r0 = 4,u1 = 60°,
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258 Chapter 3 Velocity Analysis of Mechanisms

3.71 Consider an offset slider-crank linkage for which the connecting-rod-to-crank-length
ratio is and the offset ratio Tabulate and plot normalized slider
position normalized slider velocity and angular-velocity ratio all
against the crank position. Assume that the angular velocity of the crank is constant.
(Suggestion: Write a vector manipulation routine or use commercially available mathe-
matics software.)

3.72 Consider an offset slider-crank linkage for which the connecting-rod-to-crank-length
ratio is and the offset ratio Tabulate and plot the normalized
slider position normalized slider velocity and angular-velocity ratio

all against the crank position.Assume that the angular velocity of the crank is con-
stant. (Suggestion: Write a vector manipulation routine or use commercially available
mathematics software.)

3.73 Consider an RSSR linkage similar to that in Figure 1.6a, where the link lengths are
and Link 0 lies on the x-axis. Link 1 rotates in the 

xy-plane with an angular velocity of 1 rad/s (constant), and link 3 rotates in the xz-plane.
Plot the vector components representing the angular velocity of link 2 and the angular
position and angular velocity of link 3 against angular position of link 1. Tabulate the
resultant angular velocity of link 2, the angular position of link 3, and the angular velocity
of link 3 against the angular position of link 1.

3.74 Consider an RSSR linkage similar to that in Figure 1.6a, where link the lengths are
and Link 0 lies on the x-axis. Link 1 rotates in the xy-

plane with an angular velocity of 1 rad/s (constant), and link 3 rotates in the xz-plane.
Plot the vector components representing the angular velocity of link 2 and the angular
position and angular velocity of link 3 against angular position of link 1. Tabulate the
resultant angular velocity of link 2, the angular position of link 3, and the angular velocity
of link 3 against the angular position of link 1.

3.75 We would like to design a mechanism with a 2-in output link that oscillates through a
range of about The input shaft rotation speed is 20 rad/s. The input shaft is parallel
to the plane of the output link, at a distance of 0.2 in. Design the mechanism and find the
angular velocity of the output link. Check the transmission metric and check the angular
velocity by numerical differentiation. Design decisions. Try an RSSR spatial linkage with
the following dimensions:
drive crank length 
coupler length 
driven crank (required);
revolute joints: located at (0, 0, 0) and at 
(Note: The desired range of motion and the decisions you make may result in a transmis-
sion metric that is outside of generally accepted limits.)

3.76 A mechanism is needed with a 110-mm output link that oscillates through a range of
about The input shaft rotation speed is 10 rad/s. The input shaft is parallel to the
plane of the output link, at a distance of 15 mm. Design the mechanism and find the
angular velocity of the output link. Check the transmission metric and check the angular
velocity by numerical differentiation.
Design decisions. Select an RSSR spatial linkage with the following dimensions:
drive crank length 
coupler length 
driven crank (required);
fixed link components are and r0y = -175.r0x = -15

r3 = 110 mm
r2 = 180 mm;

r1 = 50 mm;

48°.

(-0.2, -3, 0).R2R1

r3 = 2 in
r2 = 3.4 in;

r1 = 1.5 in;

105°.

u

r3 = 2.r2 = 2.8,r1 = 1,r0 = 3.2,

u

r3 = 2.5.r2 = 3.5,r1 = 1,r0 = 4,

v2/v1,
vc/(v1R1),r0/R1,

e/R1 = -j0.7.R2/R1 = 3

v2/v1,vc/(v1R1),r0/R1,
e/R1 = -j0.5.R2/R1 = 2
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3.77 A mechanism is needed with a 55-mm output link that oscillates through a range of
about The input shaft rotation speed is 300 rpm. The input shaft is parallel to the
plane of the output link, at a distance of 30 mm. Design the mechanism and find the
angular velocity of the output link. Check the transmission metric and check the angular
velocity by numerical differentiation.
Design decisions. Select an RSSR spatial linkage with the following dimensions:
drive crank length 
coupler length 
driven crank (required);
fixed link components are and 

PROJECTS

See Projects 1.1 through 1.6 and the suggestions in Chapter 1. Examine linkages involved
in the chosen project. Describe and plot the velocity and angular velocity characteristics
of the linkages. Make use of computer software wherever practical. Check your results
by a graphical method for at least one linkage position. Evaluate the linkage in terms of
the performance requirements.

BIBLIOGRAPHY AND REFERENCES

Angeles, J., Spatial Kinematic Chains: Analysis–Synthesis–Optimization, Springer, New York,
1982.

Hirschhorn, J., “A Graphical Investigation of the Velocity Pattern of a Rigid Body in Three-
Dimensional Motion,” Mechanism and Machine Theory, Penton, Cambridge, vol. 23, no. 3,
1988, pp. 185–189.

JML Research, Inc., Integrated Mechanisms Program, JML Research, Inc., Madison, WI, 1988.
Knowledge Revolution, Working ModelTM2D User’s Manual, Knowledge Revolution, San

Mateo, CA, 1996.
Knowledge Revolution, Working ModelTM3D User’s Manual, Knowledge Revolution, San

Mateo, CA, 1998.
Lee, H.-Y., and C.-G. Liang, “A New Vector Theory for the Analysis of Spatial Mechanisms,”

Mechanism and Machine Theory, vol. 23, no. 3, 1988, pp. 209–218.
MathSoft, Mathcad 2000TMUser’s Guide, MathSoft, Inc., Cambridge, MA, 1999.
Mechanical Dynamics, Inc., ADAMS Applications Manual, Mechanical Dynamics, Inc., Ann

Arbor, MI, 1987.
Mechanical Dynamics, Inc., ADAMS User’s Manual, Mechanical Dynamics, Inc.,Ann Arbor, MI,

1987.
Mischke, C. R., Elements of Mechanical Analysis, Addison-Wesley, Reading, MA, 1963.

r0y = 140.r0x = 30
r3 = 55 mm

r2 = 155 mm;
r1 = 20 mm;

45°.
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C H A P T E R  4

Acceleration Analysis 
of Mechanisms

The acceleration of a point is a vector representing the change in velocity per unit
time. Velocity is a vector, so changes in its magnitude and direction both contribute to
acceleration. In general, angular velocity and angular acceleration are also vectors.
However, they may be treated as scalars in planar mechanisms.

Concepts You Will Learn and Apply When Studying This Chapter

• Acceleration of a point on a rotating link
• Acceleration in a moving coordinate system
• Normal, tangential, and Coriolis acceleration
• Analytical vector methods for finding accelerations in linkages
• Complex-number methods for finding accelerations in linkages
• The acceleration polygon, a graphical vector method
• Acceleration image
• Equivalent linkages
• Linkage combinations
• Matrix methods for determining accelerations in spatial linkages
• Practical applications
• Computational techniques for “working smart”
• Interpretation and assessment of results

4.1 BASIC CONCEPTS

Acceleration in linkages is of particular importance because inertial forces are propor-
tional to rectilinear acceleration and inertial torques are proportional to angular accel-
erations. Graphical and analytical vector techniques, including representing vectors in
complex form, are useful in determining linkage accelerations.
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Section 4.1 Basic Concepts 261

Acceleration of a Point

Consider a point moving along a curve in three-dimensional space and located by a
vector R. The acceleration a of the point is given by the rate of change in velocity with
respect to time:

(4.1)

Acceleration may be expressed in terms of its x, y, and z components and their respective
unit vectors i, j, and k in a fixed coordinate system:

(4.2)

where two dots above the variable represent the second derivative with respect to time.

Angular Acceleration

Angular acceleration represents the rate of change in angular velocity with
respect to time. In general,

(4.3)

For the special case of planar motion, the vector direction of is perpendicular to the
plane of rotation. For motion in the xy-plane, vector is in the direction; that is,

SAMPLE PROBLEM 4.1

Average Angular Acceleration

An automobile accelerates from 0 to 60 mi/h (0 to 96.56 km/h) in 15 s. Find the average angular
acceleration of the rear axle. The tires have a 13-in. (330.2-mm) outer radius.

Solution. This problem is equivalent to a dynamometer test, where the 60-mi/h speed is the lin-
ear velocity of a point on the tread of the tire. Let us convert this speed to more manageable
dimensions:

Using the velocity equation we obtain the angular velocity magnitude

Average angular acceleration is defined as the rate of change of the angular velocity with respect
to time. Therefore,

 =
81.2 - 0 rad/s

15 s
= 5.41 rad/s2.

 aav =
v(final) - v(initial)

time interval

v =
v

R
=

1,056 in>s

13 in
= 81.2 rad>s.

v = V * R,

60 mi>h *
5,280 ft

1 mi
*

1 h
3,600 s

*
12 in
1 ft

= 1,056 in/s.

A = ak.
;zA

A

A =
dV

dt
= axi + ay j + azk.

VA

a = iR
$

x + jR
$

y + kR
$

z,

a =
dv
dt

=
d2R

dt2 .
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Motion of a Rigid Body about a Fixed Point

This important special case occurs frequently in linkage analysis. As noted in Chapter
3, the velocity of a point in a rigid body rotating about a fixed point is given by

(4.4)

where R is the vector from the fixed point to the point in question. Differentiating v
with respect to time, we obtain the acceleration of the moving point:

(4.5)

Using Eqs. (4.3) and (4.4), we may write Eq. (4.5) as follows:

(4.6)

Planar motion. Suppose a rigid link is connected to a frame by a revolute pair with
an axis perpendicular to the link (one or more journal bearings or ball bearings).
Then that link moves in a plane, and its angular-velocity vector is perpendicular to its
plane of motion. The first vector on the right in Eq. (4.6), is the tangential
acceleration for planar motion. This vector is tangent to the path of the point on the
body (perpendicular to radius vector R), as shown in Figure 4.1. The magnitude of
the tangential acceleration is

The second vector on the right in Eq. (4.6), is the normal acceleration.
This vector is normal to the path of the point for planar motion. Its direction is parallel
to, but opposite, the radius vector. The magnitude of the normal acceleration is

an = v2R =
V2

R
 .

V * (V * R),

at = aR.

A * R,

a = A * R + V * (V * R).

v
# = V# * R + V * R

#
.

R
#

= v = V * R,

O

OB � 2 in
�

�

�

B

aB
t

aB

aB
n

FIGURE 4.1 Acceleration of a point.
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Spatial motion. The preceding equations for planar motion do not apply to spatial
motion. For example, if a rigid body is connected to a frame by a spherical pair (ball
joint) then the angular-velocity vector and the radius vector are not necessary perpen-
dicular. We would then use the vector cross-product form (Eq. 4.6).

SAMPLE PROBLEM 4.2

Acceleration of a point in planar motion

Point B on a rigid body is 2 in (50.8 mm) from center of rotation, O, as shown in Figure 4.1. Point
O represents a revolute pair; the body has planar motion. At the instant shown, the angular
acceleration is counterclockwise, and the angular velocity is 1,000 rad/s clockwise.
Find the acceleration of point B at this instant.

Solution. The normal acceleration of point B is

The tangential acceleration is given by

perpendicular to OB to the left, since is counterclockwise.
Adding the vectors, we obtain the total acceleration of point B:

to the left and downward.

Moving Coordinate Systems

A more general case of linkage motion may be described by first considering a point
within a moving coordinate system (Figure 4.2). A coordinate system xyz with respec-
tive unit vectors i, j, and k moves within a fixed system XYZ with respective unit vec-
tors I, J, and K. The velocity of a point P may be described by

(4.7)

(repeated from Chapter 3), where

absolute velocity of point P relative to XYZ,
velocity of the origin o of the xyz system,
velocity of point P relative to the xyz system, and
cross product of the angular velocity of the rotating system xyz in the
XYZ system and the position vector r

 V * r =
 r
#
r     =

 R
#

0         =
 R

#     =

R
#

= R
#

0 + r
#
r + V * r

 = 2,500,000 in/s2,
 = 2(1,500,000)2 + (2,000,000)2

 aB = aB
t + aB

n = 2(aB
t )2 + (aB

n)2

a

 = 1,500,000 in/s2∠u + p/2,
 aB

t = V# * R = (750,000 rad/s2) (2 in)

 = 2,000,000 in/s2∠u + p (along BO toward O)
 aB

n = V * (V * R) = (-1000 rad/s)2(2 in)

750,000 rad/s2
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Z, K

Y, J

X, I

z, k

P, P1

y, j
x, i

O

R0

o
r

FIGURE 4.2 A moving coordinate system: System xyz
moves within fixed system XYZ.

Differentiating the first term on the right with respect to time, we have

(4.8)

The next term could be written

(4.9)

Differentiating, we get

(4.10)

The differential of a unit vector with respect to time is the cross product of the angular
velocity of the moving coordinate system and the unit vector; for example,
Then and so on. Consequently,

(4.11)

which, from Eq. (4.9), may be written

(4.12)

The last term on the right side of Eq. (4.7) may be written

(4.13)

Differentiating, we have

 + V * (rxi 
#

+ ry j 
#
+ rz k 

#
).

 
d

dt
(V * r) = V# * (rxi + ry j + rz k) + V * (r

#
rxi + r

#
ryj + r

#
rzk)

V * r = V * (rxi + ry j + rz k).

dr
#
r

dt
= r

$
r + V * r

#
r.

dr
#
r

dt
= r

$
rxi + r

$
ry j + r

$
rzk + v * r

#
rxi + v * r

#
ryj + v * r

#
rzk,

r
#
rxi 

#
= r

#
rx(V * i) = V * r

#
rxi,

i 
#

= V * i.

dr
#
r

dt
= r

$
rxi + r

$
ry j + r

$
rzk + r

#
rxi

#
+ r

#
ry j

#
+ r

#
rzk

#
.

#

r
#
r = r

#
rxi + r

#
ry j + r

#
rzk.

d

dt
 R

#
0 = R

$
0.
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Noting that and so on, as in the previous case, and combining terms, we
obtain

(4.14)

Then, from Eqs. (4.8), (4.12), and (4.14), the total acceleration of point P in fixed coordi-
nate system XYZ is

(4.15)

The first term on the right of Eq. (4.15) is the total acceleration of the origin o of the
moving coordinates; the next two terms give the acceleration of relative to o, where

is a point instantaneously coincident with P and having no motion relative to the
moving coordinates xyz. The last two terms in Eq. (4.15) represent the motion of P rel-
ative to It is important to remember that and refer, respectively, to the angular
velocity and the angular acceleration of the moving coordinate system.

Problems involving spatial linkages (mechanisms involving motion that does not
lie in a plane or in a set of parallel planes) require that Eq. (4.15) be applied in its gen-
eral form. In plane mechanisms, the vector products take the following forms:
becomes the tangential acceleration; becomes the normal accel-
eration; and becomes the Coriolis acceleration.The Coriolis acceleration
term appears when sliding occurs along a rotating link. From Figure 4.2, the term 
is the velocity of point P relative to a point that is instantaneously coincident with P,
but that has no motion relative to the moving coordinates. Normal acceleration, tan-
gential acceleration, and Coriolis acceleration will appear later, as we use graphical
and analytical methods to investigate the motion of linkages.

Relative Acceleration

Relative acceleration is a useful concept for graphical solutions to planar linkages. In
Eq. (4.15), the acceleration of point P is described in terms of the acceleration of the
origin o of a set of moving coordinates and four terms representing the difference
between the acceleration of P and the acceleration of the origin o of a set of moving
coordinates. Consistent with the terminology used for velocities, the acceleration dif-
ference is called the acceleration of P relative to o or the acceleration of P with
respect to o.

The special case involving two points on the same rigid link is frequently encoun-
tered. Consider link BC of Figure 4.3; this link is not fixed at any point. If the accelera-
tion of point B is known, we may find the acceleration of any point C on the link by
adding the acceleration of point C with respect to B to the acceleration of B.
Symbolically, then, the acceleration of point C is given by the expression

(4.16)aC = aB + aCB,

P1

v = r
#
r

2vv,2V * r
#
r

v2r,V * (V * r)ar,
V
# * r

v
#

vP1.

P1

P1

R
$

= R
$

0 + V# * r + V * (V * r) + r
$

r + 2V * r
#
r.

d

dt
 (V * r) = V# * r + V * r

#
r + V * (V * r).

i
#

= V * i
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at
CB

(Perpendicular to BC)

B

C

an
CB

 � v 2
CB

BC
(Along BC toward B)

FIGURE 4.3 The acceleration of point C relative
to point B, is shown broken into its normal
and tangential components. The vector represent-
ing the normal component, lies along BC and
is directed toward B; the vector representing the
tangential component, is perpendicular to BC.aCB

t ,

aCB
n ,

aCB,

where the acceleration of point C with respect to point B, may be broken into its
normal and tangential components as follows:

(4.17)

The normal acceleration of C with respect to B is given by

(4.18)

and the tangential acceleration is given by

(4.19)

Using Eqs. (4.18) and (4.19), we have

(4.20)

If link BC moves in a plane, the magnitude of the angular velocity of link BC is given by

The magnitude of the normal acceleration is

and that of the tangential acceleration is

4.2 ANALYSIS OF A FOUR-BAR LINKAGE BY ANALYTICAL 
VECTOR METHODS

The vector equations developed in the preceding section may be applied to the analy-
sis of linkages. Consider the four-bar planar linkage of Figure 4.4. The loop equation

aCB
t = aBCBC.

aCB
n = vBC

2 BC =
vCB

2

BC
,

vBC =
vCB

CB
.

aC = aB + VBC * (VBC * BC) + ABC * BC.

aCB
t = ABC * BC.

aCB
n = VBC * (VBC * BC),

aCB = aCB
n + aCB

t .

aCB,
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Section 4.2 Analysis of a Four-Bar Linkage by Analytical Vector Methods 267

for the linkage,

was solved in Chapter 2 to determine relative link positions. Differentiating the loop
equation and making the substitutions indicated in Chapter 3, we obtain the velocity
equation [Eq. (3.14), repeated]. This equation was solved in Chapter 3.

Differentiating the velocity equation, while noting that the links are fixed in length, we
obtain the acceleration equation

(4.21)

The terms in this equation account for the change in angular velocity of each
link (causing a change in magnitude of the velocity vector).
The terms account for the change in direction of the velocity vector.

The sense of vector is such that the last two terms of Eq. (4.21) represent 
Thus, the equation is equivalent to

(4.22)

We may orient the coordinate axes so that the linkage lies in the xy-plane, with angular
velocity and angular accelerations given in the form and Then, typi-
cal terms in Eq. (4.21) have the form

A * r = 3
i j k
0 0 a

rx ry 0

3 = a(jrx - iry),

A = ak.V = vk

aB
t + aB

n + aCB
t + aCB

n = aC
t + aC

n .

-aC.r3

V * (V * r)

A * r

 + A3 * r3 + V3 * (V3 * r3) = 0.
 A1 * r1 + V1 * (V1 * r1) + A2 * r2 + V2 * (V2 * r2)

V1 * r1 + V2 * r2 + V3 * r3 = 0

r0 + r1 + r2 + r3 = 0,

Link 1

L
in

k 
3

r1

r2

rBD

r3

O1 O3r0

B

D C

Frame� 1
�,� �, �

�
2

�3

�CBD

Link 2

y, j

z, k

x, i

FIGURE 4.4 Analytical study of a four-bar linkage.
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and

Making the indicated substitutions in Eq. (4.21) results in

(4.23)

This equation must be satisfied separately for the coefficients of unit vectors i and j.
Now, suppose that the position, angular velocity, and angular acceleration of the dri-
ving crank, link 1, are given. If we have already solved the displacement and velocity
equations (Chapters 2 and 3), the remaining unknowns are and Separating the
components of vector i, we have

(4.24)

Separating the components of vector j yields

(4.25)

These two simultaneous equations may be solved by elimination or another conve-
nient method. For example, we may use the matrix form that is,

(4.26)

where a represents the right side of Eq. (4.24) and b the right side of Eq. (4.25). Then
the solution is given by

Alternatively, using determinants, we have, for the angular acceleration of the coupler,

and for the angular acceleration of the follower crank,

a3 =
1
D
`
r2y a

r2x b
` =

br2y - ar2x

D
,

a2 =
1
D
`
a r3y

b r3x
` =

ar3x - br3y

D
,

X = c
a2

a3
d = A�1B.

c
r2y r3y

r2x r3x
d c
a2

a3
d = c

a

b d
,

AX = B;

a2r2x + a3r3x = -a1r1x + v1
 2r1y + v2

2r2y + v3
2r3y.

a2r2y + a3r3y = -a1r1y - v1
 2r1x - v2

2r2x - v3
2r3x.

a3.a2

 + a3(-ir3y + jr3x) - v3
2(ir3x + jr3y) = 0.

 a1(-ir1y + jr1x) - v1
 2(ir1x + jr1y) + a2(-ir2y + jr2x) - v2

2(ir2x + jr2y)

V * (V * r) = 3
i j k
0 0 v

-vry -vrx 0

3 = -v2(irx + jry).

V * r = 3
i j k
0 0 v

rx ry 0

3 = v(jrx - iry),
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where

(4.27)

SAMPLE PROBLEM 4.3

Accelerations in a Four-Bar Linkage

Referring to Figure 4.4, let (constant), (constant),
and Find and

for the assembly mode shown.

Solution. As determined in Chapters 2 and 3 and using the same data, we have

and

Using these values, we obtain

and

Once the angular accelerations are determined, we may find the acceleration of any point
on the linkage. The acceleration of point B is given by

 = 100,000 mm   /   s2l -135°.

 = -1002(i7.0711 + j7.0711) = i70,711 - j70,711

 aB = A1 * r1 + V1 * (V1 * r1) = -v1
 2(ir1x + jr1y)

= 5,386 rad   /   s2.

 a3 =
br2y - ar2x

D
=

(49,381) (9.853) - (-58,600) (33.590)

463.80

 = 3,180 rad   /   s2,

 a2 =
ar3x - br3y

D
=

(-59,810) (-10.660) - (49,381) (-16.929)

463.80

 = 463.80,
 D = r2yr3x - r2xr3y = 9.853(-10.660) - 33.590(-16.929)

 = 49,381 mm   /   s2,
 = 0 + 1002

 (7.0711) + 9.5672
 (9.853) + 36.2082

 (-16.929)
 b = -a1r1x + v1

 2r1y + v2
2r2y + v3

2r3y

 = -59,810 mm/s2,
 = 0 - 1002

 (7.0711) - 9.5672
 (33.590) - 36.2082

 (-10.660)
 a = -a1r1y - v1

 2r1x - v2
2r2x - v3

2r3x

v2 = -9.567, and v3 = 36.208.

 r3x = -10.660, r3y = -16.929,
 r2x = 33.590,    r2y = 9.853,

r1x = 7.0711,    r1y = 7.0711,

aD

a2, a3, aB, aC,rBD = 15 mm.r3 = 20 mm,r2 = 35 mm,r1 = 10 mm,r0 = 30 mm,
uCBD = 20°u1 = 45°,v1 = 100 rad/s

D = `
r2y r3y

r2x r3x
` = r2yr3x - r2xr3y.
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The acceleration of point C, as determined directly from its position on link 3, is

As an alternative, we may calculate both the acceleration of point C in terms of the acceleration
of B and the acceleration of C with respect to B. We have

where

Substituting the values obtained earlier, we get

which differs from the previous result due to rounding errors alone.
The acceleration of point D in the coupler is given by

where the radius vector extending from B to D is

so that

4.3 ACCELERATION ANALYSIS WITH A SPREADSHEET

If the displacement and velocity formulas for a given type of linkage are already pro-
grammed on a spreadsheet, then the acceleration formulas can be added with little dif-
ficulty.To analyze a four-bar linkage, we may use the equations in the previous section,
converting them to spreadsheet form. The results of the analysis may be plotted with
the spreadsheet plotting routines. The graphical results aid in checking for program-
ming errors, since inconsistencies are more easily detected in plotted results than in
tabulated results.

SAMPLE PROBLEM 4.4

Utilizing a Spreadsheet to Determine Angular Accelerations in a Four-Bar Linkage

For the four-bar linkage described in Sample Problem 4.3, let the angular velocity of the crank
be 100 rad/s (constant and counterclockwise). Tabulate and plot the angular velocities and angu-
lar accelerations of links 2 and 3 against the crank angle.

 = - i100,100 - j33,100 = 105,400 mm   /   s2l -161.7°.
 - 9.5672(i12.081 + j8.891)

 aD = -1002(i7.0711 + j7.0711) + 3,180(j12.081 - i8.891)

rBD = rBD 
lu2 + uCBD = 15 mm l16.35 + 20° = i12.081 + j8.891,

aD = A1 * r1 + V1 * (V1 * r1) + A2 * rBD + V2 * (V2 * rBD),

 - 9.5672(i33.590 + j9.835),
aC = -i70,711 - j70,711 + 3,180(j33.590 - i9.835)

aCB = A2 * r2 + V2 * (V2 * r2) = a2(jr2x - ir2y) - v2
2(ir2x + jr2y).

aC = aB + aCB,

 = -i105,100 + j35,200 = 110,900 mm   /   s2l161.5°.
 = 5,386(j10.660 - i16.929) - 36.2082(i10.660 + j16.929)

 = a3(-jr3x + ir3y) - V3
2(-ir3x - jr3y)

 aC = A3 * (-r3) + V3 * (V3 * (-r3))
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Section 4.4 Vector Manipulation with Mathematics Software 271

Solution. The equations used in Sample Problem 4.3 were converted into spreadsheet formu-
las. The crank position was changed in increments, and the formulas were copied throughout
the spreadsheet.

For plotting purposes, angular velocities are normalized by dividing by the crank angular
velocity, and angular accelerations are normalized by dividing by the square of the crank angu-
lar velocity. The plotted results are shown in Figure 4.5. Note that the angular velocities of links
2 and 3 are equal at and also at We observed that this was the case when we
examined the centros of a four-bar linkage. Note also that zero angular acceleration of a given
link corresponds to an angular velocity extremum (a maximum or minimum).

4.4 VECTOR MANIPULATION WITH MATHEMATICS SOFTWARE

If we choose to work directly with vectors to solve linkage acceleration problems, we
may write programs for vector manipulation or use commercially available mathemat-
ics software. In most cases, the vector solution will require less calculation on our part,
but will require more computer time than solutions in scalar form.

Consider the offset slider-crank linkage of Figure 4.6a. The linkage may be
described by the following position and velocity equations, as given in Chapters 2 and 3:

e + r1 + r2 + r0 = 0

u1 = 180°.u1 = 0°

5°
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FIGURE 4.5 Velocities and accelerations in a crank-rocker linkage.
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FIGURE 4.6 (a) Offset slider
crank linkage.
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FIGURE 4.6 (b) Slider motion.
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and

Differentiating the latter equation with respect to time, we obtain

(4.28)

if the angular velocity of the crank is constant.
Noting that the acceleration of the slider lies along the x-axis, we may eliminate

the last term in the Eq. (4.28) by taking the dot product of each term with the unit vec-
tor j. The result is

V1 * (V1 * r1) # j + V2 * (V2 * r2) # j + A2 * r2
# j = 0,

V1 * (V1 * r1) + V2 * (V2 * r2) + A2 * r2 - ac = 0

V1 * r1 + V2 * r2 - vc = 0.
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FIGURE 4.6 (c) Connecting-rod motion.

277



274 Chapter 4 Acceleration Analysis of Mechanisms

from which it follows that

(4.29)

where and The slider acceleration may now be obtained by rearrang-
ing Eq. (4.28) as follows:

(4.30)

Displaying the results graphically.To display our results, we want scalars. If we used the
absolute values of vectors and in plots and tables, the directions would be
lost. If the slider moves horizontally, we can use dot products to define position, veloc-
ity, and acceleration scalars:

The velocity and acceleration vectors are already defined as positive to the right (the i,
or direction). The sign change makes consistent with that definition. When sev-
eral curves are displayed on the same graph, we usually need to scale the numbers.
One suggestion is that we plot normalized values, using the dimensionless quantities

Then, all the curves will usually be of the same order of magnitude. Note that the sec-
ond and third terms are equivalent to dividing the wrist-pin velocity and acceleration
by the crankpin velocity and acceleration.

Sign convention for angles. Remember the sign convention: Counterclockwise is
positive for angular position, velocity, and acceleration. That is, angular velocity or
acceleration in the (k) direction is positive. For spatial linkages, angular velocity
and acceleration vector components in the and directions (the i, j, and k
directions) are positive.

Verifying results. Murphy’s law, “If anything can go wrong, it will,” is not entirely
a joke. One antidote is to check results frequently. Computers make checking easy. For
example, we can check the value of and the vector position equation at some crank
angle. Does agree with its representation in a freehand sketch? Does the position
equation represent a closed vector loop, giving us a zero vector? And do the units
check?

Numerical differentiation and the chain rule. Numerical differentiation provides
additional verification. In Chapter 3, we used the chain rule with numerical differentia-
tion to check the angular velocity of one link in a spatial linkage. Using the chain rule
and numerical differentiation for the offset slider crank, we have

 v2 = v1 du2>du1,
 AC = v1

 2  d2R0>du1
 2 ,

 VC = v1 dR0>du1

r0

r0

+z+x, +y,
+z

R0>R1, VC>(v1R1), AC>(v1
 2 R1), v2>v1, and a2>v1

 2 .

R0+x,

 AC = aC
# i.

 VC = vC
# i;

 R0 = -r0
# i;

aCvC,r0,

ac = V1 * (V1 * r1) + V2 * (V2 * r2) + A2 * r2.

A = ak.V = vk

a2 = [-V1 * (V1 * r1) # j - V2 * (V2 * r2) # j]>(k * r2
# j),
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and

Do these values corroborate with the results from vector velocity and acceleration
methods?

SAMPLE PROBLEM 4.5

Acceleration analysis of an offset slider-crank linkage: direct vector manipulation using mathe-
matics software

An offset slider crank linkage similar to that in Figure 4.6a is described by the vector equation

Crank length = 15, connecting rod length = 42, and offset vector

The crank rotates counterclockwise at a constant speed of 500 rpm. Find link position, velocity,
and acceleration vectors. Plot the slider position, velocity, and acceleration and the angular posi-
tion, velocity, and acceleration of the connecting rod (all against the crank position). Check your
results.

Solution summary. We will use lowercase letters for vectors and uppercase for scalars in most
cases. The computer knows the difference because vectors are identified as matrices with three
rows and one column. For convenience, crank position (radians) is replaced by T.

The crank angle goes from zero to and the vector crank position is easily calculated.
We add it to the given offset vector and call the resulting vector Position vectors are calcu-
lated from the equations in Chapter 2, with one magnitude and one direction unknown.
We are lucky here; the four vectors add to zero for an arbitrary value of (1 rad). Sometimes,
the sum is a small value, say which just represents rounding error. The connecting-rod
angle is calculated with the two-argument Mathcad function angle where the x, y,
and z components of vector are numbered 0, 1, 2, and respectively. This function gives arctan-
gent values If jumps around from 0 to rad, the appearance of the graph
can be improved by an  IF statement in the form

If the inequality is true, the value after the first comma holds; if not, the value after the second
comma does. That is, if the calculated value is less than or equal to it is used as is; if not, we
subtract Programming languages and other software may use a different two-argument arc-
tangent function ( for example), which may yield angle values between and If
you are unfamiliar with the software, be sure to read the instructions and use the help screens.

Velocity and acceleration vectors are calculated using cross products. The magnitudes of
the slider velocity and the slider acceleration are given by the dot product of the vector and the

p.-pARCTAN2,
2p.

p,

if (u2 … p, u2, u2 - 2p).

2pu20 … u … 2p rad.
r2

(r2(0), r2(1)),
10-15,

u1

(u2)(R0)
r3.

2p,
u1

e = C
0

-5
0
S (all mm).

r1 + e + r2 + r0 = 0.

a2 = v1
 2  d2u2>du1

 2 .
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276 Chapter 4 Acceleration Analysis of Mechanisms

unit vector i. Both velocity and acceleration values at an arbitrary crank angle agree with results
of numerical differentiation (subscripted n) using the chain rule.

The results are plotted in dimensionless form. It is encouraging to note that zero slope of
the velocity curve corresponds to zero acceleration, etc. It is easy to convert back to actual val-
ues. For example, a value taken from the acceleration curve is multiplied by where

and to obtain 
Solution details (The software used to solve this problem does not identify vectors with bold-
face type).
Units: mm, sec, rad.
Vector equation where 

Let 

Given:
Crank length Connecting-rod length 

Offset unit vector 

Crank speed-rpm:

Angular velocity, rad/s:

Rectangular unit vectors:

Angular acceleration:

Position analysis

The magnitude of and the direction of are unknown.

Crank vector:

Slider position vector:

Scalar for plotting:

For convenience, define 

Connecting-rod vector:

Angular position:

For plotting:

Check vector closure:

Velocity analysis

Connecting-rod angular velocity:v2(T) :=  
-v1

# (r1(T) # i)

r2(T) # i

e + r0(1) + r1(1) + r2(1) = C
0
0
0
S

u2(T) :=  if(q(T) … p, q(T), q(T) - 2p)

q(T) :=  angle(r2(T)0, r2(T)1)

r2(T) :=  -A(T) # (r0 u * k) - (R2
 2 - A(T)2)

1

2 # r0u

A(T) :=  r3(T) # (r0 u * k)

R0 (T) :=  -r0 (T) # i (positive to right)

r0(T) :=  C -r3(T) # r0u + BR2
 2 - [r3(T) # (r0u * k)]2R

1

2 S # r0u

Add offset,
define vector:

  r3(T) :=  r1(T) + er1(T) :=  C
R1

# cos (T)
R1

# sin(T)
0

S
r2r0

a1 :=  0

k :=  C
0
0
1
Sj :=  C

0
1
0
Si :=  C

1
0
0
S

v1 :=  
p # n1

30
 v1 = 52.36

n1 :=  500

r0u :=  C
-1
0
0
Sr0e :=  C

0
-5

0
S

R2 :=   42R1 :=  15

T = u1 = crank position (radians): T :=   0, 
p

72
  Á 2p

r3 = r1 + er3 + r2 + r0 = 0,

Ac (mm/s2).R1 = 15,v1 = 500 p   >   30
v1

 2R1,
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Slider velocity vector (positive to right):
Scalar:

Numerical differentiation:

Check:

Acceleration analysis
Connecting rod angular

acceleration:

Slider acceleration vector:

Scalar:

Numerical differentiation:

Check:

Engineering Significance. Slider crank linkages, which include piston engines and
pumps, are an important class of machine components. In most cases, they are in-line;
that is, the piston (slider path) centerline intersects the center of the crankshaft.

The equations in the detailed solution just presented apply to the in-line case if
we set offset equal to zero.With a zero offset, the slider position, velocity, and accelera-
tion are symmetric or antisymmetric about crank position The same
applies to the connecting-rod position, angular velocity, and angular acceleration.
None of the curves showed symmetry or antisymmetry in the foregoing offset slider-
crank example.

Inertial forces and torques are critical in the design of high-speed machinery.
These inertial effects often exceed applied forces and torques. We need accelerations
and angular accelerations to determine inertial effects. (Methods of analysis and
design are discussed in a later chapter.)

4.5 COMPLEX-NUMBER METHODS APPLIED 
TO ACCELERATION ANALYSIS

As illustrated in Chapters 2 and 3, complex numbers are a convenient form for represent-
ing the vectors that model planar linkage elements and velocities. It follows, therefore,

u1 = p rad (180°).

ACn(1) = -2.034 # 104 
mm

s2  a2n(1) = 818.339  

rad

s2

a2(1) = 818.339AC(1) = -2.034 # 104

ACn(T) :=  v1
 2  

d
dT

 ¢ d
dT

 R0(T)≤ a2n(T):=v1
 2  

d
dT
¢ d

dT
 u2(T)≤

AC(T) :=  aC(T) # i
+(v2(T) #  k) * (v2(T) # k * r2(T)) + a2(T) # k * r2(T)

aC(T)  :=   (v1
# k) * [(v1

# k) * r1(T)] Á

a2(T) :=  
-v1

# k * (v1
# k * r1(T)) # j - v2(T) # k * (v2(T) # k * r2(T)) # j

k * r2(T) # j

VC(1) = -739.201 VCn(1) = -739.201      mm/s
v2(1)  = -10.274 v2n(1)  = -10.274    rad/s

VCn(T) :=  v1
# ¢ d

dT
 R0(T)≤ v2n(T) :=  v1

# ¢ d
dT

 u2(T)≤
VC(T) :=  VC(T) # i

VC(T) :=  v1
# (k * r1(T)) + v2(T) # (k * r2(T))
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278 Chapter 4 Acceleration Analysis of Mechanisms

that complex number methods can be applied to acceleration analysis of planar link-
ages. Consider the sliding contact linkage described in Section 3.7 and shown in Figures
4.7a and b. The displacement equation is given by

and the velocity equation by

as in Chapter 3.
Differentiating with respect to time, we obtain the acceleration equation:

(4.31)

Thus, we have the vector equation

(4.32)aB1

n + aB1

t = aB2

n + aB2

t + aB1B2

c + aB1B2

t ,

 = -v2
2R2e

ju2 + j2v2vB1B2
eju2 + j

dv2

dt
R2e

ju2 +
dvB1B2

dt
eju2.

 - v1
 2R1e

ju1 + j 
dv1

dt
 R1e

ju1

jv1R1e
ju1 = jv2R2e

ju2 + vB1B2
eju2,

R0 + R1e
ju1 = R2e

ju2

Frame R0

R1

R 1

B

R 2

Link 2

Link 2

Lin
k 1

Lin
k 1

� 2

� 2

� 1

� 1

Real axis

Im
ag

in
ar

y 
ax

is

(b)

(a)

R2

R0

� �1 and �1� �2
and �2

Point B
(B1 on link 1,
B2 on link 2)

O1
O2

FIGURE 4.7 (a) Schematic for sliding contact linkage. (b)Vector representation.
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Section 4.5 Complex-Number Methods Applied to Acceleration Analysis 279

where the vector magnitudes are the normal accelerations

the angular acceleration

the tangential accelerations

the Coriolis acceleration

and the relative (tangential) acceleration of with respect to 

which is positive if is increasing (note again that the order of the subscripts is
critical).

Solving the Complex Acceleration Equation

In a problem of this type, it is likely that link lengths and would be specified, as
would the angular velocity and acceleration of link 1. Then and can be found for
given values of by using the displacement equations as in Chapter 2. Similarly, angu-
lar velocity and relative velocity can be found as in Chapter 3. The remaining
unknowns in Eq. 4.31 are and All of the terms in Eq. 4.31 are, in gen-
eral, complex. If each term is multiplied by the equation then takes the form

(4.33)

where and The two unknowns can now be separated,
since the term containing is real and the term containing is imaginary. Using
the Euler formula

(4.34)

and noting that we equate the real parts of the resulting equation to obtain

(4.35)

Equating the imaginary parts yields

(4.36)a2 =
1

R2
Bv1

 2 R1 sin(u2 - u1) + a1R1 cos (u2 - u1) - 2v2vB1B2
R .

aB1B2

t = -v1
 2 R1 cos (u1 - u2) + a1R1 sin(u2 - u1) + v2

2R2.

j2 = -1,

ej(u1 -u2) = cos (u1 - u2) + j sin(u1 - u2)

a2aB1B2

t
aB1B2

t = dvB1B2
 >dt.a2 = dv2 >dt

(-v1
 2 + ja1)R1e

j(u1 -u2) = -v2
2R2 + j2v2vB1B2

+ ja2R2 + aB1B2

t ,

e-ju2,
dvB1B2

 >dt.dv2 >dt
vB1B2

v2

u1

u2R2

R1R0

dR2/dt

dvB1B2

dt
= aB1B2

t

B2B1

2v2vB1B2
= aB1B2

c ,

a1R1 = aB1

t  and a2R2 = aB2

t ,

dv

dt
= a,

aB1

n = v1
 2    R1 and aB2

n = v2
2R2,
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280 Chapter 4 Acceleration Analysis of Mechanisms

You may find complex numbers an unpleasant dose of mathematics. Our solution to a
linkage problem included the differentiation of complex quantities, multiplication by a
complex quantity, applying the Euler formula, and separating real and imaginary parts.
In return, we get separate equations for the unknowns. The complex-number method
eliminated the need for vector manipulation and solutions of simultaneous equations
by matrix or determinant methods.

We had to multiply the sliding contact linkage equations by a certain complex
quantity to get the needed results. But look before you leap:The object is to get at least
one unknown term in a purely real or purely imaginary expression. A different linkage
may call for multiplication by a different complex quantity. Or the variables may
already be separated; if so, then skip a step.

If you can manipulate complex quantities, you have a powerful tool for solving
problems in many engineering fields. Look for new applications, but remember that
you are limited to two-dimensional problems. Complex-number methods work well
with planar linkages, for example, but not spatial linkages.

SAMPLE PROBLEM 4.6

Accelerations in a Sliding Contact Linkage

Referring to Figure 4.7a and b, let (constant and counterclockwise),
and Find and at 

Solution. Using the equations of Chapters 2 and 3, we obtain 
and 

The relative acceleration is found by noting that is constant :

( along link 2 toward ). The angular acceleration is

Engineering Applications. Let the input link of the sliding contact linkage in sam-
ple problem 4.6 rotate at constant speed.The output link oscillates between limiting posi-
tions, but the average speed in the clockwise direction will not equal the average speed in
the counterclockwise direction. The oscillating link can be joined to other links to form a

 (i.e., a2 = 63.63 rad >s2 clockwise).

 =
202 * 20 sin(23.15° - 75°) - 2 * 5.03(-314.6)

49.13
= -63.63 rad >s2

 a2 =
v1

 2 R1 sin(u2 - u1) + a1R1 cos (u2 - u1) - 2v2vB1B2

R2

O2i.e., 3698.7 mm/s2

 = -202 * 20 cos (75° - 23.15°) + 5.032 * 49.13 = -3,698.7 mm>s2

 aB1B2

t = -v1
 2 R1 cos (u1 - u2) + a1R1 sin(u2 - u1) + v2

2R2

(a1 = 0)v1

vB1B2
= -314.6 mm/s.v2 = 5.03 rad/s ccw,

u2 = 23.15,R2 = 49.13 mm,

u1 = 75°.a2aB1B2

tR1 = 20 mm.
R0 = 40 mm,v1 = 20 rad/s
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Section 4.6 The Acceleration Polygon 281

quick-return mechanism. If the linkage is used as a shaper, our objective would be a
high-force stroke for cutting metal and a quick return.We need to know cutting speeds,
and we need accelerations to find forces and torques, particularly at high speeds.

Some designs call for lightweight materials to reduce inertial forces and torques.
Other applications include a flywheel or other high mass-moment-of-inertia parts to
store energy and reduce fluctuations in speed. Shapers, punch presses, and engines are
a few of the many machines utilizing flywheels.

4.6 THE ACCELERATION POLYGON

Planar linkage acceleration problems may be solved with the aid of motion simulation
software (e.g., Working Model), by analytical vector methods, by complex-number
methods, or by numerical differentiation of the position and velocity values. The accel-
eration polygon, a graphical vector method, is another alternative; you may find it use-
ful for spot-checking the results of a different method. If you want to find the
accelerations of a linkage through a full range of motion, total reliance on graphical
methods is not “working smart.”

Analysis of Slider-Crank Mechanisms

The acceleration polygon is analogous to the velocity polygon discussed in Chapter 3.
The vector polygon provides us with a convenient method of finding unknown vectors
through their relationship to known (easily calculated) vectors. In the current situa-
tion, the vectors being considered are accelerations.The acceleration polygon is simply
the graphical expression of the acceleration vector equation, Eq. (4.22), where

Vector since the slider moves in a straight path.

SAMPLE PROBLEM 4.7

Acceleration Polygon for a Slider-Crank Linkage

Figure 4.8 shows a slider-crank linkage that was examined in the preceding chapter. We want to
find the acceleration of point C on the slider.

Solution. The velocity polygon in Figure 4.8b is taken from Chapter 3. Since the crank has a
constant angular velocity,

Thus, the total acceleration of B is

with the magnitude given by

 = 200 in >s2

 aB
n = v1

 2 O1B =
vB

2

O1B
=

(ob)2

O1B
=

(20 in >s)2

2 in

aB = aB
n = V1 * (V1 * O1B),

aB
t = A1 * O1B = 0.

aC
n = 0,aC = aC

t .
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FIGURE 4.8 (a) Slider-crank mechanism drawn to scale. (b) The velocity polygon. (c) The directions
of the acceleration components are identified by inspecting the orientation of the linkage. If vector
magnitudes can be determined (with the aid of the velocity polygon and link lengths), the vectors are
drawn to scale. If the vector magnitudes are unknown, they are drawn with double arrowheads. (d)
The acceleration polygon is begun. (e) Accelerations and are scaled directly from the acceler-
ation polygon. (f) Knowing tangential acceleration and knowing the length of link BC, we can
find the angular acceleration of the link.

aCB
t ,

aCB
taC
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Section 4.6 The Acceleration Polygon 283

in a direction parallel to toward (See Figure 4.8c and the values of acceleration listed in
Table 4.1.)

Before constructing the actual acceleration polygon, it will prove helpful to note the direc-
tions of the acceleration vector, which are apparent from the linkage drawn in Figure 4.8a. After
noting the linkage orientation, the restraints on the mechanism, and the given data, we can iden-
tify the following acceleration vectors (Figure 4.8c):

along the horizontal path to which the slider is constrained;
parallel to and toward fixed point

since crank rotates with constant angular velocity;
parallel to link BC and directed toward B; and
perpendicular to link BC.

The procedure for constructing the acceleration polygon is similar in some ways to that for con-
structing the velocity polygon. The first step, shown in Figure 4.8d, includes the selection of an
acceleration scale that will result in an acceleration polygon of reasonable size. Of course, the
accelerations are not all known at this time, but it may be assumed that they are of the same
order of magnitude as the acceleration of the crankpin.

In Figure 4.8d, the vector has already been drawn. The tangential acceleration of the
crankpin is zero in the special case under consideration, eliminating the term from Eq. (4.22).
(Note: It does not necessarily follow that the tangential acceleration of C with respect to B is
likewise zero; in fact, it will be shown that is quite large in this example.) Since we
must next evaluate the normal acceleration of C with respect to B, which is given by

The magnitude is

and the direction is opposite that the vector BC.That is, will lie along the connecting rod BC,
directed toward B. Vector is then drawn to scale and added to the head of vector (Figure
4.8d), parallel to BC and directed toward point B. The final vector, is added at the head of,
and perpendicular to, to complete the vector sum of Eq. (4.22). A double arrowhead is used
in Figure 4.8d to indicate that the length of is not yet known. The sum rep-
resents the total acceleration of C; the true direction of the acceleration of C is horizontal. (The
direction of C was obvious at the outset and was drawn as a horizontal vector in Figure 4.8c. We

aB
n + aCB

n + aCB
taCB

t
aCB

n
aCB

t ,
aB

naCB
n

aCB
n

aCB
n = v2

2BC =
vCB

2

BC
=

(bc)2

BC
=

7.92

3.76
= 16.6 in >s2,

aCB
n = V2 * (V2 * BC).

aCB
n ,

aB
t = 0,aCB

t

aB
t

aB
n

aB,

aCB
t ,

aCB
n ,

O1BaB
t = 0,

O1;O1BaB
n ,

aC,

O1.O1B

TABLE 4.1  Tabulation for the Vector Acceleration Polygon of a Slider-Crank Mechanism with Uniform
Crank Velocity

Vector

Vector magnitude ? ?

Vector direction path B 
of C toward toward B

Vectors used to ? 0 ?
construct polygon

16.6 in >s2200 in >s2

O1

� BC7BC� O1B7O17

(bc)2

BC
a1O1B

(ob)2

O1B

+aCB
t+aCB

n+aB
taB

naC =
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therefore draw horizontally (to the right to close the polygon) from pole point in the accel-
eration polygon of Figure 4.8d, again using a double arrowhead, since the magnitude of is
unknown. Both vectors and end where they intersect, a point we label Measuring the
lengths of each on the acceleration scale, we find that

and

as shown in Figure 4.8e. If greater accuracy is required, we may compute the exact angles and
use trigonometric functions or employ analytical or computer methods from the start.

Knowing the length BC and the tangential acceleration of C with respect to B, we can find
the angular acceleration of the connecting rod, link 2. From the formula for tangential accelera-
tion, we obtain

The method for finding the direction of is similar to that for finding the direction of 
Tangential acceleration vector is placed at C on link BC, as in Figure 4.8f. We see immedi-
ately that is counterclockwise (opposite the direction of found in the preceding chapter).
Thus, at this instant, the angular acceleration is opposing the angular velocity which means
that is decreasing. (The reader will recall that the angular velocity of the crank, is constant
in this example.)

Let us now review the preceding steps for finding accelerations of the slider-crank mecha-
nism in Figure 4.8a.

STEP 1. Draw the linkage to scale. Draw the velocity polygon obc representing the solu-
tion of the vector equation

STEP 2. Solve the general acceleration vector equation for the slider-crank mechanism
graphically, as demonstrated in Table 4.1.

STEP 3. The acceleration of B is labeled The prime indicates that the vector is an
acceleration and not a velocity. In this case, since from which it
follows that only. To we add vectors (the magnitude is found
with the aid of the velocity polygon) and (drawn perpendicular to BC and
of unknown magnitude). The intersection of and completes the polygon
and determines the magnitude of each of those vectors.

STEP 4. The acceleration vectors have been identified by their components (e.g., and
) and by an acceleration polygon notation patterned after the velocity poly-

gon notation. For the linkage under consideration,

and

aCB = b¿c¿.

aB = o¿b¿

aB
t

aB
n

aCB
taC

aCB
t

aCB
naB,aB = aB

n
a1 = 0,aB

t = 0,
o¿b¿.

vC = vB + vCB, or oc = ob + bc.

v1,v2

v2,a2

v2a2

aCB
t

v.a2

a2 =
at

r
=

aCB
t

BC
=

208 in >s2

3.76 in
= 55 
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s2 .
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aC = 13 in >s2 (to the right),
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t = 208 in >s2 (upward and to the right)
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Section 4.6 The Acceleration Polygon 285

Although not shown in the acceleration polygon, the normal and tangential components of 
could be replaced by a single vector representing their sum and extending from to 
Also,

Note the reversal of letters in acceleration polygon notation: Acceleration becomes 
just as velocity becomes bc in velocity polygon notation. The acceleration polygon will be
used to advantage later, when we consider the acceleration image.

Comparison with an Analytical Solution

In Chapter 3, the velocity of the slider of an in-line slider-crank linkage was approxi-
mated by

Differentiating the approximate equation for the velocity of the slider of a slider-crank
mechanism, we obtain the approximate slider acceleration

(4.37)

if angular acceleration of the crank is zero.The preceding two equations give a positive
value for velocity and acceleration directed toward the crankshaft and a negative value
for velocity and acceleration directed away from the crankshaft. Both equations are
valid for the in-line slider crank when the crank speed is constant and the ratio L/R
does not approach a value of unity, say, L/R is greater than or equal to 3. For the data
given in the foregoing example, the approximate slider acceleration is

which corresponds closely to the result obtained
using the acceleration polygon.

SAMPLE PROBLEM 4.8

Linkage with Angular Acceleration of the Crank

In this problem, we consider an acceleration analysis of the slider-crank linkage with angular
acceleration of the crank. Find the accelerations for the linkage of Figure 4.9a. The data given
are the same as those for the preceding problem, except that link 1 does not have a constant
angular velocity, but instead accelerates at a rate counterclockwise.

Solution. The addition of an angular acceleration has no effect on the instantaneous velocity, so
the velocity polygon remains unchanged. (See Figure 4.9b.) We will again use Eq. (4.22). In this
case, however, the tangential acceleration of point B does not equal zero:

Part c of the figure shows how angular acceleration affects the acceleration polygon.
Scaling the vectors in Figure 4.9c, we obtain the slider acceleration

aC = 70 in >s2 (to the left)

aB
t = A1 * O1B = (40 rad >s2) (2 in) = 80 in >s2 � O1B.

a1 = 40 rad >s2

aC = -13.1(13.1 in >s2 to the right),

a = Rv2Bcos u + ¢R

L
≤  cos 2uR

v = Rv sin uB1 + ¢R

L
≤  cos  uR .

vCB

b¿c¿,aCB

aC = o¿c¿.

c¿ (b¿c¿).b¿
aCB
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and the tangential component of relative acceleration

From the latter acceleration, we can also obtain the angular acceleration of the connecting rod:

Acceleration Image

In Sample Problem 4.8, we determined the accelerations of the crankpin B and the
slider C. We may also wish to find the acceleration of another point on the crank or
connecting rod.The acceleration of the center of gravity, for example, would be used to
perform a dynamic analysis of a link, or, in a more complicated linkage, an intermedi-
ate point on a link that serves as a connecting point would be investigated. We may
resort to the acceleration image method (similar to the velocity image method) in
order to find the acceleration of any point.

a2 =
aCB

t

CB
= 46 rad >s2 (counterclockwise).

aCB
t = 173 in >s2 (upward and to the right).
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FIGURE 4.9 (a) The mechanism of Figure 4.8 is redrawn. This time, the crank
is given an angular acceleration instead of a constant angular velocity. (b) The
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Consider any three points B, C, and D that lie on the same rigid link, as shown in
Figure 4.10a. Let the link have an angular velocity and an angular acceleration 
Then, the magnitudes of accelerations are

The total acceleration of C with respect to is the vector sum of its normal and
tangential components. The magnitude of this vector is given by the expression

 = 2(v2
2BC)2 + (a2BC)2,aCB = b¿c¿ = 2(aCB

n )2 + (aCB
t )2

B, aCB,

aCB
n = v2

2BC and aCB
t = a2BC.

a2.v2

(a)

(b)

B

b

c
d o

D

O1
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C
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FIGURE 4.10 Acceleration image. The slider-crank mechanism of Figure 4.9a is
repeated here. The dimensions of the linkage and the motion of the crank remain
unchanged. We are interested in finding the acceleration of an arbitrary point D on
the connecting rod. (b) The velocity polygon for the slider-crank mechanism, show-
ing the velocity image of the connecting rod. (c) The acceleration image of BCD is
constructed.
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from which it follows that

Similarly, the magnitudes of the other relative accelerations for the connecting rod are

and

from which we obtain the following convenient acceleration image relationships:

(4.38)

Equation (4.38) may be summarized by stating that triangle (the acceleration
image of BCD) is similar to triangle BCD for any points B, C, and D on the same rigid
link. The angle relationship between a line connecting two points on a rigid link and the
relative acceleration of those points depends on the angular acceleration and the angu-
lar velocity and is the same for any pair of points on the same rigid link. In the sample
problems that follow, we will utilize this relationship without having to calculate and 

SAMPLE PROBLEM 4.9

Acceleration Image

Three points, B, C, and D, lie on the rigid link shown in Figure 4.10a, but do not lie on a straight
line. Using the acceleration image method and the data given in the illustration, find the acceler-
ation of point D of the mechanism.

Solution. This problem and the problem of Figure 4.9a are identical, except for the addition of
an arbitrary point D. The velocity polygon, including the velocity image, is constructed (Figure
4.10b) as described in Chapter 3. The acceleration polygon (Figure 4.10c) is taken directly
from Figure 4.9c, but the normal and tangential components of and have been omitted
here to clarify the construction.

We observe in Figure 4.10c that the relative acceleration vector (forming one leg of the
required acceleration image) lies in the direction of line BC, rotated approximately counter-
clockwise. Since the acceleration image and link BCD are similar triangles, each leg of the
acceleration image will make a angle with its respective side in the linkage drawing. Beginning
at we construct the acceleration image by first drawing trial vector determining its direction
by rotating line BD counterclockwise.Then, we draw trial vector from point its direction
is also found by rotating line CD counterclockwise. Point is thus determined by the intersec-
tion of trial vectors and as in Figure 4.10c, completing triangle the acceleration
image of link BCD on the acceleration polygon. The acceleration of D is thus given by vector 
Using the acceleration scale, we find that slightly downward to the left.

SAMPLE PROBLEM 4.10

Acceleration Image of Three Points on a Line

In this problem, we are required to find the acceleration of point E, which lies on the line BC in
Figure 4.11a.

aD = o¿d¿ = 113 in >s2,
o¿d¿.

b¿c¿d¿,c¿d¿,b¿d¿
d¿95°

c¿;c¿d¿95°
b¿d¿,b¿,

95°
b¿c¿d¿

95°
b¿c¿

aCBaB

o¿b¿c¿

v.a

v

a

b¿c¿d¿

b¿d¿
b¿c¿

=
BD

BC
, c¿d¿

b¿c¿
=

CD

BC
, b¿d¿

c¿d¿
=

BD

CD
.

c¿d¿ = CD2v2
4 + a2

2,

b¿d¿ = BD2v2
4 + a2

2

b¿c¿ = BC2v2
4 + a2

2.
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FIGURE 4.11 (a) Figure 4.9 is repeated again. We want to find the acceleration of a point E lying
on line BC. (b) The velocity polygon for the linkage at the instant shown. (c) The acceleration
polygon for the linkage at the instant shown. (d) Once the acceleration polygon is constructed,
the position of (which must lie along ) is determined by the proportionality equation

Drawing vector then gives us the magnitude and direction of the accel-
eration of E.

o¿e¿b¿e¿/b¿c¿ = BE/BC.
b¿c¿e¿
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290 Chapter 4 Acceleration Analysis of Mechanisms

Solution. Again, this problem and the problem of Figure 4.9a are identical except for the addi-
tion of a point E along line (link) BC. We are again spared the necessity of constructing the
velocity and acceleration polygons for the mechanism. See Figures 4.11b and c. Acceleration
polygon is again taken directly from Figure 4.9c. This problem is simpler than the preced-
ing problem because no additional construction is necessary after the acceleration polygon is
constructed. Since point E lies on line BC, we know that must lie somewhere on vector A
proportion similar to one of Eq. 4.38 gives us the desired acceleration image relationship:

from which we find that the acceleration of E relative to B is

This locates point on line (Note that lies between and just as E lies between B
and C.) Vector is then drawn to obtain the acceleration of E, as shown in Figure 4.11d.
Measuring against the acceleration scale, we obtain

The image principle illustrates the analogy between velocity polygons and acceleration poly-
gons. The acceleration image principle (as well as the velocity image examined in Chapter 3)
applies to a set of points on any rigid link, whether the link acts as a crank rotating about a fixed
point or as a connecting rod. The only restriction is that the points considered must all lie on the
same rigid link.

Graphical Analysis of the Four-Bar Linkage

The acceleration analysis of a four-bar linkage requires no new concepts. Referring to
Figure 4.12a, for example, we may again relate accelerations by the vector equation

just as for the slider-crank mechanism, but with one additional complication: Each of
the acceleration vectors will have, in general, both a normal and a tangential compo-
nent, and the equation will take the form

(4.22 repeated)

The first step of the acceleration analysis of a four-bar linkage is to construct the
skeleton drawing and the velocity polygon. The dimensions of the linkage, together
with the velocities taken from the velocity polygon allow us to calculate the normal
components of acceleration of the links. As we have seen, those components are usu-
ally the starting point for the acceleration polygon.

aC = aC
n + aC

t = aB
n + aB

t + aCB
n + aCB

t

aC = aB + aCB,

aE = o¿e¿ = 170 in/s2 (to the left and downward).

o¿e¿
o¿e¿

c¿,b¿e¿b¿c¿.e¿

b¿e¿ = b¿c¿ ¢BE

BC
≤ = ¢174 in/s2≤  ¢ 1 in

3.76 in
≤ = 46.3 in>s2.

b¿e¿
b¿c¿

=
BE

BC

b¿c¿.e¿

o¿b¿c¿
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FIGURE 4.12 (a) The skeleton drawing of a four-bar linkage. We are again required to
find the acceleration of point C, using the relationship (b) Velocity poly-
gon for the four-bar mechanism. (c) Acceleration polygon for the four-bar mechanism.
The presence of the many vectors makes a method of tabulation of the various vectors
desirable to ensure correct vector addition and orientation.

aC = aB + aCB.
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SAMPLE PROBLEM 4.11

Four-Bar Linkage

Figure 4.12a shows a four-bar linkage. The lengths of all the links are indicated on the skeleton
drawing. The crank has an angular velocity and an angular acceleration

We seek an acceleration analysis of the linkage.

Solution. The velocity polygon is constructed in Figure 4.12b after a suitable scale is selected.
The velocities are then indicated directly on the polygon. The skeleton drawing and the velocity
polygon give us the information needed to determine the normal components of acceleration.
Given the angular acceleration of link 1, we can calculate the tangential component of accelera-
tion for point B, after which we can put together an acceleration vector table (Table 4.2) and
begin the construction of the acceleration polygon. Velocities ob, oc, and bc are taken from the
velocity polygon in Figure 4.12b.

We now construct the acceleration polygon (see Figure 4.12c), adding the vectors in the
order indicated in Table 4.2. Beginning at the pole point we draw to the scale selected. To

we add trial vector The head of may be labeled but we do not as yet know the true
magnitude of that vector. Again, beginning at we add the vectors on the right side of Eq.
(4.22) in the order indicated. The sum (or ); thus, the head of is labeled 
Adding the last two of the four vectors on the right side of the equation, which includes trial vec-
tor we again obtain (or ). Point is located at the intersection of the trial vectors 
and completing the polygon and determining in turn the magnitude of each tangential com-
ponent. Thus, and Using the acceleration scale, we can obtain
the acceleration of point C, viz.,

to the left and upward.
Using the tangential acceleration of point C, we can find the angular acceleration of link 3
We obtain

Similarly, the angular acceleration of link 2 (BC) is given by

a2 =
aCB

t

CB
=

930 in/s2

3.5 in
= 266 rad/s2 (counterclockwise).

a3 =
aC

t

O3C
=

1,110 in/s2

2 in
= 555 rad/s2 (counterclockwise).

(O3C).

aC = aC
n + aC

t = o¿c¿ = 1,134 in/s2,

aCB
t = 930 in >s2.aC

t = 1,110 in >s2
aCB

t ,
aC

tc¿o¿c¿aCaCB
t ,

b¿.aB
to¿b¿aB

n + aB
t = aB

o¿,
c¿,aC

taC
t .aC

n ,
aC

no¿,

a1 = 200 rad >s2.
v1 = 30 rad >s

TABLE 4.2  Vector Tabulation for the Acceleration Analysis of a Four-Bar Mechanism, Figure 4.12

Vector

Vector magnitude ? ?

Vector direction
toward toward toward 

Vectors used to ?
construct 
polygon

?29 in/s2200 in/s2900 in/s2233 in/s2

BO1O3

� BC7BC� O1B7O1B� O3C7O3C

(bc)2

BC
a1O1B

(ob)2

O1B

(oc)2

O3C

+aCB
t+aCB

n+aB
t= aB

n+aC
taC

n
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Section 4.6 The Acceleration Polygon 293

An Analytical Solution Based on the Acceleration Polygon

It is possible to increase the precision of the analysis while still using the acceleration
polygon concept. Sample Problem 4.12 shows an acceleration-polygon-based analyti-
cal solution for one position of a four-bar linkage. If you use the polygon method for
checking the analytical vector method, the complex-number method, or results from
animation software, you may decide that the increased precision is not worth the com-
putational difficulty of the method illustrated next.

SAMPLE PROBLEM 4.12

Acceleration-Polygon-Based Analytical Solution

Refer to Figure 4.4 and Sample Problem 4.3. Solve for accelerations analytically, but use an
acceleration polygon approach.

Solution. Since the acceleration of point B is given by

Also, after determining velocities, we find

An arbitrary pole point is selected, with coordinates Vector is drawn. The
coordinates of its head are identified as

and

as shown in Figure 4.13. Vector is drawn, and is added to it. The coordinates of the head
of are identified as

and

At we add vector with unknown magnitude but with slope

m = tan(u3 - 90°) = tan(237.79 - 90°) = -0.62997

aC
tx1, y1,

 = -100,000  sin  45° - 3193 sin 16.35° = -71,610.
 y2 = -o¿b¿  sin u1 - aCB

n
 sin u2

 = -100,000 cos 45° - 3193 cos 16.35° = -73,775
 x2 = -o¿b¿cos u1 - aCB

n  cos u2

aCB
n

aCB
no¿b¿

y1 = -aC
n  sin u3 = 26,260 sin (-122.21°) = -22,219

x1 = -aC
n  cos u3 = 26,260 cos (-122.21°) = -13,997

aC
nx = 0, y = 0.o¿

 aC
n =

oc2

O3C
= 26,260lu3.

 aCB
n =

bc2

BC
= -3193lu2

o¿b¿ = aB = v1
 2r1 = 1002 * 10 = -100,000lu1.

A1 = 0,
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FIGURE 4.13 Analytical solution of a four-bar linkage based on the acceleration 
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lies on a line described by

At we add vector with unknown magnitude, but with slope

lies on a line described by

The intersection of vectors and locates point on the acceleration polygon. Equating the
right sides of the two equations of the lines describing and we find the x-coordinate of :

Substituting the value of  x into one of the preceding equations, we have

from which we find that

The relative acceleration is given by

from which we obtain

and

Using the image principle, we find the relative acceleration of two points on the coupler:

The acceleration of point D on the coupler is given by

aD = o¿d¿ = o¿b¿ + b¿d¿

 = 47,712 mm/s2l108° + 20°.

 aBD = b¿d¿ =
b¿c¿BD

BC
=

(111,330) (15)

35

aCB = 111,330 mm/s2l108°.

 aCBy
= 35,174 - 100,000 sin 225°,

 aCBx
= -105,102 - 100,000 cos 225°,

b¿c¿ = aCB = aC - aB,

aC = o¿c¿ = 110,800 mm/s2l161.5°.

y = aCy
= 35,174,

x = aCx
= -105,100.

aCaCB
t ,aC

t
c¿aCB

taC
t

y = y2 + n(x - x2) = -71,610 - 3.4087(x + 73,775).

aCB
t

n = tan(u2 + 90°) = tan(16.5 + 90°) = -3.4087.

aCB
tx2, y2,

y = y1 + m(x - x1) = -22,219 - 0.62997(x + 13,997).

aC
t
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from which it follows that

and

4.7 EQUIVALENT LINKAGES

Equivalent linkages (which duplicate the motion of an actual mechanism) are some-
times useful in velocity and acceleration analysis. Figure 4.14 illustrates a curved-wing
air pump, a mechanism that is obviously not a four-bar linkage. The pump has four
evenly spaced wings, but for purposes of analysis, we need only consider the motion of
one of these wings.The key to arriving at an equivalent linkage is to examine the forces

aD = 105,400 mm/s2l -162°.

 aDy
= 100,000 sin 225° + 47,712 sin 128° = -33,100,

 aDx
= 100,000 cos 225° + 47,712 cos 128° = -100,100,

FIGURE 4.14 A curved-wing air pump. Air is carried from inlet to outlet by
the curved wings, which are held against the housing by acceleration forces.
(Source: ITT Pneumotive.)
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Section 4.7 Equivalent Linkages 297

acting on the mechanism and the restraints that restrict the mechanism to its specific
path. These forces and restraints are replaced by links that are arranged so that the
linkage duplicates the motion of the actual mechanism.

Figure 4.15a shows only one of the four wings (dashed lines) and its equivalent
linkage (solid lines). Link 1 represents the driver crank, link 2 the wing. Point is the
geometric center of the housing, and link 3 represents the distance from the center of
the housing to the point of contact between wing and housing. (Actually, the wing is
restrained by inertial forces to follow the curvature of the housing.At the instant being
considered, this restraint can be considered a rigid link that forces point C to rotate
about a circle of radius ) Link 3 does not exist on the actual pump, but it is essen-
tial to the equivalent linkage that we have devised, which is the familiar four-bar link-
age. In sample Problem 4.13, we will assign dimensions to the pump, assume a
reasonable rotating speed, and analyze the acceleration of this mechanism.

O3C.

O3

(a)

(b)

(c)
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FIGURE 4.15 (a) The equivalent linkage for the curved-wing air pump is
shown superimposed on the outline of one of the wings. The length of equiva-
lent link 2 depends on the point of contact of the wing with the housing. (b) The
velocity polygon for the four-bar (equivalent) linkage. (c) The acceleration
polygon for the four-bar (equivalent) linkage.
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SAMPLE PROBLEM 4.13

Equivalent Linkages

The pump shown in Figure 4.14 rotates at a constant 400 rev/min. The wing pins rotate about a
circle of radius 2.5 in. The pump is drawn to scale. Find the angular acceleration of the wing and
the acceleration of its center of gravity.

Solution. The equivalent linkage is drawn as shown in Figure 4.15a. The lengths of links 2 and 3
are obtained from skeleton drawing.

The velocity polygon in Figure 4.15b is based on the given speed of 400 rev/min and a
given length of 2.5 in for link 1.The velocity polygon represents the solution of the vector equation

Point D of our equivalent linkage represents the center of gravity of the curved wing. Equivalent
link 2 (BCD) forms the velocity image bcd on the velocity polygon. (This example is intended
only to illustrate principles of acceleration analysis; the dimensions used may not correspond to
those of an actual pump.) The velocities of B and C and the relative velocity bc shown on the
velocity polygon are obtained in the usual manner and are used to construct the basic accelera-
tion polygon in the order given in Table 4.3.

The magnitudes of the normal accelerations, as calculated in the table, indicate the need
for an acceleration scale on the order of Since link 1 rotates at constant angu-
lar velocity (there is no angular acceleration), represents the total acceleration of point B,

Beginning with this acceleration, we draw parallel to (See Figure 4.15c.) To 
we add known relative acceleration parallel to BC, and trial vector perpendicular to
BC, as shown in Figure 4.15c. This completes the addition of the vectors on the right side of the
equation.

Starting again at pole point we draw the known acceleration parallel to To 
we add trial vector perpendicular to The basic acceleration equation is satisfied when
we locate at the intersection of the trial vectors and The angular acceleration of the
wing is then given by

where we have used values for and BC scaled from the illustration.aCB

a2 =
aCB

t

CB
= 265 rad/s2 (counterclockwise),

aCB
t .aC

tc¿
O3C.aC

t ,
aC

n ,O3C.aC
no¿,

aCB
t ,aCB

n ,
o¿b¿,O1B.o¿b¿o¿b¿.

aB
n

1 in = 2,000 in/s2.

o¿b¿c¿,

vC = vB + vCB, or oc = ob + bc.

TABLE 4.3  Tabulation for the Vector Acceleration Analysis of the Air Pump Equivalent Linkage

Vector

Vector magnitude ? ?

Vector direction
toward toward when toward 

Vectors used to ?
construct 
polygon

3560 in/s20 for a1 = 04400 in/s2?6080 in/s2

Ba1 Z 0O1O3

�   BC7BC�   O1B7O1B�   O3C7O3C

(bc)2

BC
a1O1B

(ob)2

O1B

(oc)2

O3C

+aCB
t+aCB

n+aB
t=    aB

n+aC
taC

n
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Section 4.8 Graphical Analysis of Sliding Contact Linkages 299

To find the acceleration of the center of gravity, D, we construct the acceleration image of
link 2. Points B, C, and D all lie on the same rigid link, permitting us to use the acceleration image
principle to find Points and on the acceleration polygon are joined to form the image of
BC. Using a protractor, we see that the orientation of on the acceleration polygon is given
by rotating BC on the skeleton linkage counterclockwise. Similarly, BD and CD are rotated

counterclockwise to obtain the directions of and respectively. The acceleration
image is thereby completed, locating at the intersection of and Vector repre-
sents the total acceleration of the center of gravity of the wing, point D. Measuring on the
acceleration scale, we obtain

to the right and slightly upward.
The construction used in the preceding problem (rotating the links to determine the posi-

tion of the acceleration image) is equivalent to simply transferring angles BCD and CBD to the
acceleration polygon (as angles and respectively). The acceleration image triangle

is similar to triangle BCD. Since we read BCD going around the link clockwise,
must appear in that same order, reading clockwise around the acceleration image.

The equivalent linkage that we have used to analyze the air pump is valid for any instant,
so long as point C on the wing contacts the housing. The equivalent linkage may not be used,
however, for the portion of the cycle during which point C leaves the housing. (See the wing at
the top of the mechanism.)

4.8 GRAPHICAL ANALYSIS OF SLIDING CONTACT LINKAGES

Coriolis Acceleration

In the preceding graphical studies, we considered the acceleration of a slider moving
along a fixed path (e.g., a piston in a cylinder), and we also considered the acceleration of
a point on a rotating link (e.g., either of the moving pin joints in a four-bar linkage). We
will now look into the case of a link that slides along a rotating member.When these two
conditions are met (i.e., a rotating path and a point that has a velocity relative to that
path), there exists an additional acceleration component, the Coriolis acceleration.Thus,
the total acceleration of a point on the slider in Figure 4.16a consists of the following:

1. Normal and tangential accelerations of a coincident point on the rotating link
2. Relative acceleration of the slider along the rotating link
3. Coriolis acceleration

The analytical vector method gave us Coriolis acceleration in the form

and the complex number method yielded the form

Terms must be identified by subscripts as illustrated in the sample problems that fol-
low. For planar linkages, the direction of the Coriolis acceleration is found by rotating

v = relative velocity.
 where v = angular velocity of the rotating path and
aC = j2v v eju

aC = 2V * v,

b¿c¿d¿b¿c¿d¿
c¿b¿d¿,b¿c¿d¿

aD = 5,400 in/s2,

o¿d¿
o¿d¿c¿d¿.b¿d¿d¿

c¿d¿,b¿d¿166°
166°

b¿c¿
c¿b¿aD.
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300 Chapter 4 Acceleration Analysis of Mechanisms

the relative velocity vector in the direction of the rotating path. (Check this result
with the analytical vector and complex-number forms used in previous sections.)

SAMPLE PROBLEM 4.14

Coriolis Acceleration

Link 1 in Figure 4.16b has an angular velocity clockwise. The velocity of point 
on link 2 with respect to a coincident point on link 1 is in/s in the direction shown.
Find the Coriolis acceleration.

Solution. The Coriolis component of the slider acceleration is given by

The direction of is found by rotating relative velocity vector in the direction of 
(clockwise) by In this example, is to the left and upward as shown. Note that the sub-
scripts of and v must correspond. We use angular velocity and relative velocity since
link 1 guides the slider (i.e., we know the relative path of link 2 along link 1).

vB2B1
,v1ac

aB2B1

c90°.
V1vB2B1

aB2B1

c

aB2B1

c = 2V1 * vB2B1
= 2(20 rad/s) (30 in/s) = 1,200 in/s2.

vB2B1
= 30

B2v1 = 20 rad/s

90°

(a)

(b)

    1�

    1�
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Link 1
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B2B1
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B2B1

O2

O1

B1 on link 1
B2 on link 2

OP 

90
rP 

B2B1

B2B1

FIGURE 4.16 Coriolis acceleration due
to sliding contact along a rotating path.
(a) Straight path. (b) Curved path (note
direction of relative velocity).
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Note, however, that we may replace the linkage in the figure with an equivalent four-bar
linkage . Acceleration analysis of the equivalent linkage would not involve determin-
ing Coriolis acceleration.

SAMPLE PROBLEM 4.15

Coriolis Acceleration in a Sliding Contact Linkage

The slider in the mechanism of Figure 4.17a travels along link 1, which rotates. Thus, Coriolis
acceleration is involved in an analysis of this linkage. To find the angular acceleration of link 1,
we will find the tangential acceleration of by using the acceleration polygon method.B1
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FIGURE 4.17 (a) A sliding contact linkage. (b) The velocity polygon for the sliding
contact linkage. When the direction of the relative velocity is determined, the direc-
tion of the Coriolis acceleration is found by rotating the relative velocity vector 
in the direction of the angular velocity of the link on which the slider rides. (c) The
acceleration polygon. (d) The “cleaned-up” acceleration polygon.

90°
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302 Chapter 4 Acceleration Analysis of Mechanisms

Solution. Velocities were computed for the linkage in Chapter 3, but the link numbers have
been changed here. In this problem, the continuously rotating crank is identified as link 2. Point

represents the pin (revolute pair) joining link 2 to the slider. We have, from the velocity poly-
gon (Figure 4.17b),

and

In solving for accelerations, we will express the acceleration of a point on the slider as the vector
sum of the acceleration of a coincident point on link 1 and the relative acceleration of the slider
on the link, which includes Coriolis acceleration.

We may apply Eq. (4.15), where point is taken as the origin of a coordinate system that
rotates with link 1. Note that we have selected a coordinate system rotating with link 1 because
sliding occurs along that link. Then

and

The remaining terms in Eq. 4.15 are zero, since the relative path is straight (along link 1). Thus,
we have 

(4.39)

It can be seen that when we refer to coincident points on two different links ( and in this
problem), the solution differs from that obtained from an analysis of linkages using two different
points on the same rigid link (e.g., B and C in Eq. (4.22)).

For this problem, the condition eliminates the term We will now set up the vec-
tor table (Table 4.4) and proceed to solve for the remaining terms in the acceleration equation.

aB2

t .a2 = 0

B2B1

aB2

n + aB2

t = aB1

n + aB1

t + aB2B1

t + aB2B1

c .

2V * r
#
r = aB2B1

c

 r
$

r = aB2B1

t ,
 R
$

0 = aB1

n + aB1

t ,
 R
$

= aB2

n + aB2

t ,

B1

vB2B1
= b1b2 = 3.4 m/s (upward to the left).

 vB2
= ob2 = 3.6 m/s (upward to the left),

 vB1
= ob1 = 1.18 m/s (downward to the left),

B2

TABLE 4.4  Tabulation for the Vector Acceleration Analysis of a Sliding Contact Linkage, Figure 4.17

Vector

Vector ? ?
magnitude

Vector link 1 direction of 
direction toward toward (the b1b2 rotated 

relative coun-
slider terclockwise
path)

Vectors used to ? ?
construct 
polygon

29 m/s25 m/s2?54 m/s2

90°
O1O2

7� O1B7O1B7O2B

2(b1b2)v1

(ob1)
2

O1B

(ob2)
2

O2B

+aB2B1

c+aB2B1

t+aB1

t=    aB1

naB2

n
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Section 4.8 Graphical Analysis of Sliding Contact Linkages 303

Since all vector directions are known and we require only two magnitudes, and we are
prepared to construct the acceleration polygon. Beginning at an arbitrary point in Figure
4.17c, we draw to a convenient scale. Vector represents the total acceleration of in this
problem; the head of is labeled Then, working with the right side of the Eq. (4.39) and
again beginning at we draw and add trial vector

It would be convenient to continue by adding the next term in the equation, to the
head of but we do not know where to begin because the head of has not been located.
Instead, we observe that both sides of the equation represent the acceleration of Then,
the last term, may be put in its logical place, with its head  at point Working backwards,
we place the next-to-last term, trial vector so that its head is at the tail of The inter-
section of the trial vectors locates the tail of and the head of and we label that point 
Figure 4.17d shows the “cleaned-up” acceleration polygon with scaled values of and 
Having obtained the tangential acceleration of we find that the solution to the problem, the
angular acceleration of link 1, is given by

Transferring tangential acceleration to point on link 1, we see that the direction of is
counterclockwise.

Comparison of Results with an Analytical Solution

Sample Problem 4.15 may be solved analytically, using equations derived by complex-
number methods in Section 4.5. Changing the equations so that link numbers and data
correspond to those of Figures 4.17a–d, with and we find the rela-
tive acceleration of the coincident points (using results obtained in Section 3.11):

The slider acceleration relative to link 1 is toward that is, the outward relative
velocity is decreasing. The angular acceleration of link 1 is

from which it follows that the tangential acceleration of on link 1,
downward and to the left.The results compare closely with those obtained

in the graphical solution.
= 21.9 m >s2,

aB1

t = a1R1B1

 = 79.53 rad/s2 (counterclockwise),

 a1 =
v2

2R2 sin(u1 - u2) + a2R2 cos (u1 - u2) - 2v1vB2B1

R1

O1;

 = -12.62 m/s2.

 aB2B1

t = -v2
2R2 cos (u2 - u1) + a2R2 sin(u1 - u2) + v1

 2 R1

R2 = O2B,R1 = O1B

a1B1aB1

t

a1 =
aB1

t

O1B
= 22/0.275 = 80 rad/s2.

B1,
aB2B1

t .aB1

t
b¿

 1.aB1

t ,aB2B1

t
aB2B1

c .aB2B1

t ,
b¿

 2.aB2B1

c ,
B2.o¿b¿

 2,
aB1

taB1

t ,
aB2B1

t ,
aB1

t .aB1

no¿,
b¿2.aB2

n
B2aB2

naB2

n
o¿
aB2B1

t ,aB1

t
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304 Chapter 4 Acceleration Analysis of Mechanisms

The significance of the order of the subscripts will be noted once more. In Sample
Problem 4.15, the solution takes the form

The Coriolis component is therefore where is the angular
velocity of the link along which the slider slides.The subscripts of and must correspond.

If link 1 were curved, or if the end of link 2 were sliding in a curved slot in link 1,
then a normal relative acceleration term would be added in Eq. 4.39, resulting in the
equation

(4.40)

In Figure 4.16b, the relative path radius is Acceleration is given by 
which is directed from toward A similar situation occurs with an oscillating
roller follower and a disk cam. In cases such as these, an equivalent linkage may be
used as an alternative form of solution.

SAMPLE PROBLEM 4.16

Vane Pump

The straight-wing air pump (Figure 4.18a) has four sliding vanes that are held against the hous-
ing by inertial forces. Let us examine a single vane (Figure 4.18b) and find the acceleration of a
point B on that vane.

Solution. The housing is circular, and as long as the vane makes contact with the housing, the
point of contact will describe a circle.Thus, we may introduce an artificial link 2 with its center at

the center of the housing, and its length equal to The equivalent mechanism is shown in
Figure 4.18c, in which link 1 represents the vane guide with center of rotation Let the angular
velocity of the vane guide be a constant value (given).V1

O1.
O2B.O2,

Op.B1

vB2B1

2
 >rp,aB2B1

nrp.

aB2

n + aB2

t = aB1

n + aB1

t + aB2B1

n + aB2B1

t + aB2B1

c .

vaC
n

V1aB2B1

c = 2V1 * vB2B1
,

aB2
= aB1

+ aB2B1
.

FIGURE 4.18 (a) This straight-wing air pump can be considered
a sliding contact mechanism. The machine is used as a compressor
or a vacuum pump and is operated at 500 to 1,500 revolutions per
minute. Acceleration forces hold the four sliding vanes against
the housing. (Source: ITT Pneumotive.) 
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Section 4.8 Graphical Analysis of Sliding Contact Linkages 305

Equation (4.39) applies to sliding contact problems of the type

The data for this problem differ only slightly from data given in the previous problem. In this
case, angular velocity is constant for the vane guide (link 1); angular acceleration is therefore
zero, and we can eliminate the term for the tangential acceleration, The angular acceleration

of equivalent link 2 is unknown, and the tangential component of acceleration for will
not, in general, equal zero.

Equation (4.39) can now be rewritten as in Table 4.5. The components making up the
acceleration polygon are handled most easily when they are added in the order indicated in the
table. After we specify and construct a velocity polygon, we construct the acceleration poly-
gon for the straight-wing air pump.

V1

aB2

t ,B2,a2

aB1

t .
a1v1

aB2

n + aB2

t = aB1

n + aB1

t + aB2B1

t + aB2B1

c .

B1, B2

O2

O1

(c)

�   1

1

2

3

(b)

O1
O2

Vane G
uide

Housing

2

Vane

3

1

B

FIGURE 4.18 (b) A single vane of the pump is examined. (c) The equivalent linkage for the
mechanism.

TABLE 4.5  Tabulation for the Vector Acceleration Analysis of the Air Pump Equivalent Linkage of
Figure 4.17c

Vector

Vector ? ?
magnitude

Vector path of slider path of 
direction toward toward on link 1 (found slider on 

by rotating link 1
in di-

rection of )v1

b1b2 90°

O1O2

7�7O1B� O2B7O2B

2(b1b2)v1

(ob1)
2

O1B

(ob2)
2

O2B

+aB2B1

t+aB2B1

c=    aB1

naB2

taB2

n
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306 Chapter 4 Acceleration Analysis of Mechanisms

4.9 CAMS AND CAM FOLLOWERS

Cam design is ordinarily a process of synthesis in which we determine the cam shape
required to meet a predetermined set of conditions on displacement, velocity, and
acceleration. The process is examined for a number of follower-displacement-versus-
cam-angle relationships in Chapter 5.

In some cases, an equivalent linkage may be used to analyze a cam and follower
by graphical methods. As noted in Chapter 3, if a cam and follower both have finite
radii at the point of contact, then a four-bar linkage may be used as an equivalent link-
age for velocity analysis. Acceleration analysis of the equivalent linkage then follows.
Angular velocity and angular acceleration of the follower are represented by angular
velocity and angular acceleration of the equivalent link. Figure 4.19a shows a cam and
a roller follower rotating on an oscillating arm.The device may be analyzed by examin-
ing an equivalent four-bar linkage, depicted in Figure 4.19b. If the cam surface consists
of a series of circular arcs, then a different four-bar linkage is needed to represent each
segment of the surface. In that case, there may be jumps (instantaneous changes) in the
angular acceleration of the follower arm. A cam that  produces follower acceleration
jumps is unacceptable for high-speed operation.

(a)

(b)

L
in

k 
3

Link 2

Link 1

O1

O1

O2

O2

Cam (link 1)

Cam follower (link 2)

C

C

D

D

FIGURE 4.19 (a) Cam and roller
follower on oscillating arm.
(b) Equivalent linkage.
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Section 4.10 Analyzing Combinations of Basic Linkages 307

4.10 ANALYZING COMBINATIONS OF BASIC LINKAGES

In most cases, mechanisms made up of more than four links may be broken down into sim-
ple basic linkages and solved in a straightforward manner for velocities and accelerations.

If we need to know accelerations for a full range of motion, we can choose motion
simulation software, analytical vector methods, or complex-number methods.An acceler-
ation polygon may be used to check analytical results and lend insight into the problem.

Consider a toggle mechanism, a linkage that may be used to apply large forces when
it is near the end of its stroke. Figure 4.20a shows a skeleton diagram of such a mechanism.

D C

(a)

(c)

(d)

4

2

B
1

3

O3

O1

d

b

c

o

(b)33
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cd�99
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�
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Link Length (in)
1
2
3
4

1
3
3
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s
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CB � 360
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C
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an
DC

aD
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�

FIGURE 4.20 (a) The toggle mechanism is analyzed by considering it to be made up of two sim-
pler mechanisms: a four-bar linkage (1, 2, 3, and frame): and a slider-crank mechanism (3, 4, and
frame). (b) The velocity polygon for the entire mechanism, easily constructed as a single polygon.
(We know the length and angular velocity of link 1.) (c) The acceleration polygon for the four-bar
linkage portion of the toggle mechanism. (d) The acceleration polygon for the entire toggle mech-
anism is completed by adding the acceleration vectors for the slider crank to the acceleration poly-
gon for the four-bar mechanism.
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308 Chapter 4 Acceleration Analysis of Mechanisms

The velocity polygon in Figure 4.20b is constructed according to the methods given
in Chapter 3. Using values from the velocity polygon, we will proceed to construct the
acceleration polygon for part of the toggle mechanism—the four-bar linkage made up of
links 1, 2, and 3 and the frame. If link 1 rotates at constant angular velocity, then 
and the acceleration equation for a four-bar mechanism reduces to the equation shown
in Table 4.6. Noting the magnitudes of the accelerations as indicated in the table, we
select a convenient scale. An acceleration polygon is drawn for the four-bar linkage
made up of links 1, 2, and 3 and the frame. (See Figure 4.20c.) The two unknown tangen-
tial components, and may then be scaled from the completed polygon.

To complete the acceleration analysis, we must now consider the rest of the
mechanism—the slider crank made up of links 3 and 4 and the frame.We can set up the
general equation for the slider acceleration as equal to the acceleration of point C
plus the acceleration of D with respect to C. The formula is given in Table 4.7.

The first vector of the slider-crank acceleration polygon, has already been
constructed in the four-bar linkage polygon. Adding the remaining slider-crank accel-
eration vectors to the acceleration polygon in Figure 4.20c, we find slider acceleration

to the right (measured on the completed acceleration polygon in
Figure 4.20d). The direction of the slider acceleration ( on the acceleration poly-
gon) is opposite that of the slider velocity (od from the velocity polygon); that is, the
slider is slowing down.

o¿  d¿
aD = 7,500 in >s2

aC,

aD

aCB
t ,aC

t

aB
t = 0,

TABLE 4.6  Tabulation for the Vector Acceleration Polygon for the Toggle Mechanism, Part I

Vector

Vector ? ?
magnitude

Vector 
direction toward toward toward 

Vectors used to ? ?
construct 
polygon

360 in/s210,000 in/s23130 in/s2

BO1O3

� BC7BC7O1B� O3C7O3C

(bc)2

BC

(ob)2

O1B

(oc)2

O3C

+aCB
t+aCB

n= aB
n+aC

taC
n

TABLE 4.7  Tabulation for the Vector Acceleration Polygon for the Toggle
Mechanism, Part II

Vector

Vector ? ?

magnitude (already found)

Vector Along See figure
direction slider toward C

Vectors used to ? ?
construct 
polygon

3270 in/s24300 in/s2

� CD7CD

(cd)2

CD
Vector o¿c¿

+aDC
t+aDC

naCaD =
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4.11 TRIAL SOLUTION METHOD APPLIED TO LINKAGE 
ACCELERATION ANALYSIS

A straightforward solution may not be apparent in the analysis of some mechanisms.
As with problems in velocity analysis, inverse and trial solutions can be attempted.
Since we must deal with both tangential and normal acceleration components, a
detailed analysis is often very time-consuming, suggesting the use of computer-aided
procedures. The problem that follows illustrates a graphical procedure that will apply
to certain types of problems.

Figure 4.21a shows a mechanism with six links and seven revolute joints. Using
Gr bler’s criterion (see Chapter 1), we find that there is one degree of freedom. Thus,
if the motion of one link is specified, we should be able to describe the motion of the
entire mechanism.

Let the velocity of point B be given, and let link 1 rotate clockwise at the instant
shown. Although a direct method would be used if or were given, since is
given in this example, we will use the inverse method to complete the velocity polygon.
(See Chapter 3.) Using the relationship we ascribe an arbitrary length
to vector od (Figure 4.21b). Then, velocity point e is located by noting that oe is hori-
zontal and de is perpendicular to DE. Velocity point c is found from the image princi-
ple The vector equation where allows us
to complete the velocity polygon. The scale is obtained by comparing vector ob on the
polygon with the given velocity Thus, the velocity scale is (given)/ob (measured),
and it follows that 

and so on.

Trial Solution Method

The given data in a problem may be such that neither straightforward nor inverse
graphical solutions are practical. This would be the case if the velocity of point B and
the angular acceleration of link 1 were specified in Figure 4.21a. We may then proceed
by a set of approximations of one of the vector magnitudes, attempting to satisfy the
vector equations.

For example, let the velocity of point B in Figure 4.21a be 4 m/s at the instant
shown, with constant and clockwise. Then the acceleration of point D may be
expressed as in Table 4.8. In addition, we see that is horizontal and that 
is the image of DCE, that is, and lie on a line and 

Using Table 4.8, we draw to a convenient scale, add and then add a
first approximation of Vector is then added, along with trial vector 
which intersects the vertical trial vector at Line is extended to intersect
horizontal trial vector at We then check the acceleration image proportion

If it is not satisfied, we make a second approximation of 
attempting to obtain the correct proportion. Several approximations may be required
for each of the mechanism positions we wish to examine.

Figure 4.21c shows an acceleration polygon that satisfies the equations with rea-
sonable accuracy. For the data given in this problem, we obtain to the left
and upward.aD = 97 m >s2

aE = 132 m >s2

aCB
t ,d¿c¿>d¿e¿ = DC>DE.

e¿.o¿e¿
d¿c¿d¿.o¿d¿

aCD
t ,aDC

naCB
t .

aCB
n ,aB

n = o¿b¿
d¿c¿>d¿e¿ = DC>DE.e¿c¿,d¿,

d¿c¿e¿aE(o¿e¿)
v1

* (velocity scale),
vCB = bc (measured)vE = oe (measured) * (velocity scale),

vBvB.

cb � CB,ob = oc + cb,dc>de = DC>DE.

oe = od + de,

vBvEvD

u
$
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FIGURE 4.21 (a) A six-bar linkage. (b) Velocity polygon; velocities in meters per second.
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Section 4.12 Limiting Positions 311

4.12 LIMITING POSITIONS

Limiting positions of the slider-crank mechanism and the crank-rocker mechanism
were discussed in previous sections. As the driver crank rotates continuously, the fol-
lower link (the slider or driven crank) stops and changes direction at the limiting posi-
tion. At that position, the follower velocity is zero, but the follower acceleration, in
general, is not equal to zero.

Consider, for example, the in-line slider-crank mechanism of Figure 4.22, with the
crank rotating at a constant angular velocity In the limiting position in (Figure
4.23a), the crankpin velocity is given by perpendicular to (downward).O1Bob = vR,

v.

FIGURE 4.21 (c) Acceleration
polygon for constant accelera-
tions in meters per second squared.

v1,

e


c


d


c
d
 �
 82

b'

o


c
e

 �

 82

132

aCB
n � 38.7

aCB
t � 76

a
DC n� 34

a D
C

t �
 7

4

aB
n � 91.4

74

97

TABLE 4.8  Acceleration by a Trial Solution Method

Vector

Vector ?
magnitude

Vector Along 
direction slider toward B toward C

path

Vectors used to ? 0 ? ?
construct 
polygon 
(m/s2)

3438.791.4

toward O1

�   CD7CD�   BC7BC�   O1B7O1B

a3CDcd2

CD
a2BC

bc2

BC
a1O1B1

ob2

O1B

+aDC
t+aDC

n+aCB
t+aCB

n+aB
t=    aB

naD

c¿d¿+b¿c¿+o¿b¿=o¿d¿
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In forming the velocity polygon for the linkage at its limiting position in Figure 4.23b,
we note that relative velocity bc is collinear with velocity ob, since the crank and
connecting rod (BC) form a straight line. Point C travels only in a horizontal path;
therefore, velocity point C must lie at pole point o to correctly position bc perpendicu-
lar to BC.The velocity polygon tells us what we already knew:The velocity of the slider
is zero. In addition, it gives us the relative velocity:

If the crank has a constant angular velocity, the acceleration equation for the slider
may be written as shown in Table 4.9. But a nonzero value of is clearly inconsis-
tent with the acceleration equation, since there are no vertical acceleration compo-
nents.Therefore, and our vector equation becomes the simple scalar equation

(4.41)

for the limiting position with the mechanism extended. (See Figure 4.23c.) When the
slider is at or near the extreme right position, its acceleration is to the left, as shown in

aC = aB
n + aCB

n = v2R¢1 +
R

L
≤ ,

aCB
t = 0,

aCB
t ,

bc = vR (upward).

(O1B)

(Constant)

R
B

L

CO1

�

FIGURE 4.22 The in-line slider-crank mechanism. The crank R rotates at constant
angular velocity v.
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ac �     R (1 �      )
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FIGURE 4.23 (a) The mechanism is shown in its extended limiting position. (b) Velocity
polygon at the instant the mechanism is in its limiting position. (c) Accelerating polygon for
the mechanism in its limiting position.
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Section 4.13 Spatial Linkages 313

the acceleration polygon. For crank angular acceleration we must include the
tangential acceleration which is balanced by the equal and opposite vector

Therefore, Eq. (4.41) holds for the limiting position in Figure 4.23a for constant or
variable crank angular velocity.

The other limiting position, with B andC at opposite sides of results in a slider
acceleration

(4.42)

When the slider is at or near its extreme left position, its acceleration is to the right.
The results of the acceleration polygon method are exact. If we substitute 

and in the approximate acceleration equation [Eq. 4.37], the results are iden-
tical to Eqs. (4.41) and (4.42).Thus, the approximate analytical expressions are exact at

and (The reader is reminded that Eqs. (4.41) and (4.42) were derived
for the in-line slider-crank mechanism in its limiting positions; the offset slider-crank
mechanism and other linkages will require separate analyses.)

4.13 SPATIAL LINKAGES

Many of the principles used to analyze planar linkages apply to spatial linkages as well.
Although both graphical and analytical methods of spatial linkage displacement analy-
sis were illustrated in Chapter 2, analytical methods of velocity and acceleration analy-
sis are generally found most practical. For analytical vector methods, velocity and
acceleration terms in the form and so on, must, of course, be
applied in their general, three-dimensional form

and so on.

A * r = 3
i j k
ax ay az

rx ry rz

3 ,

V * (V * r),A * r,

u = 180°.u = 0

u = 180°
u = 0

aC = v2R¢1 -
R

L
≤ .

O1,

aCB
t .

aB
t = aR,

a Z 0,

TABLE 4.9  Tabulation for the Vector Acceleration Analysis of an In-Line Slider Crank in a
Limiting Position (Figure 4.23a)

Vector

Vector magnitude ? ?

Vector direction Along 
slider toward toward 
path

Vectors used to ? ?

construct polygon

v2
 
R2

Lv2R

BO1

�   BC7BC7O1B

(bc)2

BC

(ob)2

R
 or v2R

+aCB
t+aCB

naB
naC   

=
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314 Chapter 4 Acceleration Analysis of Mechanisms

Analysis of an RSSC Spatial Linkage

An RSSC spatial linkage was described previously. (See Chapter 2 and Figure 4.24.) In
our description, we avoided vector methods, writing a quadratic equation in terms of
link lengths and positions:

In this displacement equation, note that link lengths and and path angle are
constants. Differentiating with respect to time, we have

(4.43)

from which we obtain the velocity of the sliding link, viz.,

(4.44)

where the angular velocity of the crank. Differentiating Equation (4.43)
or (4.44) with respect to time and simplifying the result, we obtain the acceleration of
the sliding link, viz.,

(4.45)

where the angular acceleration of the crank.

SAMPLE PROBLEM 4.17

RSSC Spatial Linkage

For the velocity and acceleration analysis of an RSSC spatial linkage, let the RSSC linkage of
Figure 4.24 have the proportions

r0

r1
= 2 and 

r2

r1
= 3,

a1 = d2u>dt2,

d2r3

dt2 = - C
(dr3>dt)[(dr3>dt) + 2v1r1 cos g sin u]

+r1(r0 + r3 cos g) (v1
 2 cos u + a1 sin u)

r3 + (r0 - r1cos u)cos g

S ,

v1 = du>dt,

dr3

dt
=

-v1r1 sin u (r0 + r3 cos g)

(r0 - r1 cos u) cos g + r3
,

 + 2 cos g (r0 - r1 cos u) 
dr3

dt
+ 2r0r1 sin u 

du

dt
= 0,

 2r3 
dr3

dt
+ 2 cos g r1r3 sin u 

du

dt

gr2r1,r0,

r3
2 + 2  cos g(r0 - r1 cos u)r3 + r0

2 + r1
2 - r2

2 - 2r0r1 cos u = 0.
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Section 4.13 Spatial Linkages 315

where crank angular velocity is constant and the sliding link (3) and revolute joint R lie in the
xy-plane. Plot values of the sliding link velocity and acceleration for various values of crank
angle where path angle 

Solution. The results will be plotted in dimensionless form. Substituting

and the given values of and we may solve the quadratic position equation. The root of inter-
est represents the ratio of the slider displacement to the crank length.

Using this root and in Eq. (4.44), the result represents the
dimensionless ratio of the slider velocity to the velocity of joint 
We use this value of and the preceding substitutions in Eq. (4.45), noting that crank angu-
lar acceleration The result, represents the dimensionless ratio
of the slider acceleration to the normal acceleration of joint The results are plotted in Figure 4.25
for path angle 

For the linkage of this example, when path angle and crank angle veloc-
ity (indeterminate), and is infinite. In that case, the velocity of the sliding link can-
not be determined by further examination of the limit (e.g., by l’H pital’s rule), because the
defect exists in the configuration of the mechanism. Since an infinite slider acceleration would
require an infinite force, this linkage cannot be operated near crank angle when path
angle g = 90°.

u = 180°

oN
A3V3 = 0>0

u = 180°,g = 90°
g = 30°.

S1.
(d2r3/dt2)/(v1

 2r1),d2r3/dt2,a1 = 0.
dr3/dt

S1.
(dr3 >dt) >  (v1r1),dr3 >dtv1 = 1

r3 >r1,
g,u

r0 =
r0

r1
= 2,  r1 = 1, and r2 =

r2

r1
= 3

g = 30°.u,

v1

R

R

Link 1

Projection of link 3 on yz plane

Revolute pair:  R
Spherical pair:  S
Cylindrical pair: C

Top view

Side view

S1

S1

r0

y

z

x

y

�
C

C

A

Link 3

S2

S2

r3

�

r 1 Projection of link 2 on yz plane

Projection of link 2 on xy plane

FIGURE 4.24 RSSC spatial linkage.
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Vector Methods Applied to an RSSC Linkage

As an alternative to the analytical scalar method, an analytical vector solution could
have been used to solve the RSSC linkage. The method uses displacements we have
already determined. (See Chapters 2 and 3.)

Accelerations may be determined by using the vector equation

(4.46)

where

(4.47)

as1

n = V1 * (V1 * r1),
as1

t = A1 * r1,
as2s1

n = V2 * (V2 * r2),

as2s1

t = A2 * r2.

 u

as2

n + as2

t = as1

n + as1

t + as2s1

n + as2s1

t ,

�1

�2

0
0 60 120 180

� rad 2   rad

r 3
/r

1
240 300 360

�

�

1

�1

�1

(d
r 3

 /d
t)

/(
  1

r 1
)

0

�1

�1

(d
2 r 3

 /d
t2 )/

( 
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)
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FIGURE 4.25 Displacement, velocity, and acceleration of an RSSC linkage.
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In the previous example of an RSSC spatial linkage, since travels in a
straight path and the direction of is along that path. Taking the angular accelera-
tion of link 2 about its own axis to be zero, we have the dot product If 
and are given, we may solve for the unknown vectors and 

Matrix and Vector Methods Applied to Acceleration Analysis of
an RSSR Spatial Linkage

In previous chapters, we determined the vector position equation

and the vector velocity equation

for an RSSR spatial linkage.
We differentiate the velocity equation to get the acceleration equation. (Recall

the chain rule for differentiation.) Since all of the r vectors have constant magnitude,
differentiation of a typical velocity term looks like this:

and the full acceleration equation is

(4.48)

Suppose the link lengths, configuration, and crank speed are specified and we have
already solved the position and velocity equations. Let the drive crank angular velocity
and acceleration be given. Then there are four unknowns in the acceleration equation:
the three components of the angular acceleration of link 2, the coupler, and the angular
acceleration of link 3, the driven crank. By expanding the vector acceleration equation,
and separating i, j, and k components, we get three scalar equations. We need a fourth
equation, however: An RSSR spatial linkage has two degrees of freedom, but we do
not usually care about rotation of the coupler about its own axis. If we arbitrarily say
that the component of coupler angular velocity along the coupler axis is always zero,
then the dot product of the angular acceleration with the link vector is also zero, giving
us the fourth equation:

(4.49)

SAMPLE PROBLEM 4.18

Acceleration Analysis: Expanding the Vector Equations

The drive crank of an RSSR linkage rotates at constant speed.The planes of rotation of the drive
crank and the driven crank are perpendicular, and the fixed bearing of the driven crank is in the
plane of the driver. Write a set of scalar equations from which you can find the angular accelera-
tion of the driven crank.

A1
# r2 = 0.

+ A3 * r3 + V3 * (V3 * r3) = 0.
A1 * r1 + V1 * (V1 * r1) + A2 * r2 + V2 * (V2 * r2)

d>dt[V * r] = A * r + V * (V * r),

V1 * r1 + V2 * r2 + V3 * r3 = 0

r0 + r1 + r2 + r3 = 0

As2

t .A2A1

V1a2
# r2 = 0.

as2

t
S2as2

n = 0,
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318 Chapter 4 Acceleration Analysis of Mechanisms

Decisions  We will set up the coordinate axes as in Figure 4.26. Then, the drive crank vector has
components in the x and y directions and rotates about the z-axis. The driven crank has compo-
nents in the y and z directions, and its angular velocity vector is in the x direction. The
unknowns are the angular acceleration of link 3 and the three components of angular accelera-
tion of link 2. Suppose that all other quantities are given or have already been calculated using
methods given in Chapters 2 and 3.

Solution. We first compute the cross products of the angular acceleration and link vectors:

In Chapter 2, we noted that

from which it follows that

(4.50)V * (V * r) = (V # r)V -  (V # V)r.

A * (B * C) = (A # C)B - (A # B)C,

A3 * r3 = 3
i j k
a3x 0 0
0 r3y r3z

3 = -j a3x r3z + k a3x a3y

A2 * r2 = 3
i j k
a2x a2y a2z

r2x r2y r2z

3 =
i(a2y r2z - a2z r2y)

+ j(a2z r2x - a2x r2z)
+k(a2x r2y - a2y r2x);

A1 * r1 = 3
i j k
0 0 a1z

r1x r1y 0

3 = j a1 z r1x - i a1z r1y = 0  if crank speed is constant;

;

S1

R1

z, k (out)

y, j

x, i
z, k

S2 S2

S1

��1z

x, i (out)

y,  j
��3x

��3x

R2R2

R1

(a) (b)

link 2

link 1

link 3

FIGURE 4.26 Acceleration analysis of an RSSR spatial linkage.
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For the drive crank, the angular velocity vector is perpendicular to the radius vector, so

Likewise, for the driven crank;

and we have arbitrarily set

for the coupler.
Thus, for all three moving links, the form of the part of the equation reduces

to

contributing

where 

Adding the terms in the acceleration equation,

(4.51)

Now, we separate the i, j, and k components, setting each equal to zero to get three scalar equations:

The fourth equation is

The analysis of a full cycle of motion for the spatial linkage requires a computer solu-
tion. We will “work smart” and put the equations in matrix form.

SAMPLE PROBLEM 4.19

Spatial Linkage Acceleration Equations in Matrix Form

Assume that the angular accelerations are the only unknowns in the preceding four equations.
Write the equations in matrix form.

A2
# r2 = a2x r2x + a2y r2y + a2z r2z = 0.

a2x r2y - a2y r2x + a3x r3y - v2
 2 r2z - v3x

 2 r3z = 0    (the k terms).

a2z r2x - a2x r2z - a3x r3z - v1z
 2 r1y - v2

 2 r2y - v3x
 2 r3y = 0    (the j terms);

a2y r2z - a2z r2y - v1z
 2 r1x - v2

 2 r2x = 0    (from the i terms);

 -v3x
 2

 (j r3y + k r3z) = 0.

 -ja3x r3z + k a3x r3y - v1z
 2

 (i r1x + j r1y) - v2
 2 (i r2x + j r2y + k r2z)

 = i(a2y r2z - a2z r2y) + j(a2z r2x - a2x r2z) + k(a2x r2y - a2y r2x)

 A1 * r1 + V1 * (V1 * r1) + A2 * r2 + V2 * (V2 * r2) + A3 * r3 + V3 * (V3 * r3)

v2
 2 = v2x

 2 + v2y
 2 + v2z

 2 .

-v1z
 2

 (i r1x + j r1y) - v2
 2

 (i r2x + j r2y + k r2z) - v3x
 2 (j r3y + k r3z)

V * (V * r) = (V # r)V -  (V # V)r = -(V # V)r = -v2
 r,

V * (V * r)

V2
# r2 = 0,

V3
# r3 = 0,

V1
# r1 = 0,
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320 Chapter 4 Acceleration Analysis of Mechanisms

Solution. The four equations are rearranged so that like ’s are aligned and the known values
are at the right:

The matrix equation is

(4.52)

where the column matrix of unknown angular accelerations is

The matrix of coefficients of the unknown quantities is

Does this matrix look familiar? Check the velocity analysis of the RSSR linkage in Chapter 3.
Finally, the column matrix of known values is

To find the unknown angular accelerations, we compute

(4.53)

Checking for errors. Spatial linkage analysis is complicated, requiring hundreds of key-
strokes, with many chances of error. Simple tests may help in detecting errors. Is the
acceleration zero when the slope of the velocity curve is horizontal? Be sure to check
units. If you are measuring slope on a plot, check the horizontal and vertical scales.

Numerical Differentiation

The angular acceleration of the driven crank is given by

(4.54)

Take an arbitrary drive crank position. If calculations of the driven crank acceleration
by the matrix method and by numerical differentiation do not produce comparable
results, something must be wrong.

a3 = dv3>dt = (dv3>du1) # (du1>dt) = v1
 2 # (d2u3>du1

 2).

Y = A-1 C.

C = D
v1z

 2 r1x + v2
 2  r2x

v1z
 2 r1y + v2

 2  r2y + v3x
 2 r3y

v2
 2  r2z + v3x

 2 r3z

0

T .

A = D
0 r2z -r2y 0

-r2z 0 r2x -r3z

r2y -r2x 0 r3y

r2x r2y r2z 0

T .

Y = D
a2x

a2y

a2z

a3x

T .

A Y = C,

  a2y r2z - a2z  r2y   = v1z
 2 r1x + v2

 2 r2x;
-a2x r2z    + a2z r2x - a3x r3z = v1z

 2 r1y + v2
 2 r2y + v3x

 2 r3y;
 a2x r2y - a2y r2x + a3x r3y   = v2

 2 r2z + v3x
 2 r3z;

 a2x r2x + a2y r2y        + a2z    r2z   = 0.

a
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SAMPLE PROBLEM 4.20

Calculating Spatial Linkage Accelerations

Consider an RSSR spatial linkage with a 60-mm drive crank, 215-mm coupler, and 130-mm dri-
ven crank.The drive crank and driven crank rotate in perpendicular planes. Revolute joints is
a ball bearing located at (0, 0, 0); is another ball bearing located at (15, 210, 0) (mm), from
which fixed link components are and The drive crank rotates coun-
terclockwise at a constant speed of 1,000 rpm.

Find the link positions in terms of the drive crank position. Use matrix methods to find
angular velocities and accelerations. Plot the driven crank position, angular velocity, and angular
acceleration against the drive crank position. Express links, angular velocities, and angular accel-
erations as vectors. Is the vector link closure equation satisfied? It is convenient to evaluate this
and other tests for one arbitrary position, say, Have you set the coupler angular
velocity about the coupler axis equal to zero? Does the dot product of the two vectors satisfy
this condition? Have you set the coupler angular acceleration about the coupler axis equal to
zero? Does the dot product of the two vectors satisfy this condition as well? Form the basic vec-
tor acceleration equation in cross-product form. Is the equation satisfied? Find the angular
velocity and angular acceleration of the driven crank by numerical differentiation. Plot the
results along with the results from matrix analysis.
Design decisions. We will select an RSSR spatial linkage similar to Figure 4.26. The drive crank
will rotate in the xy-plane and the driven crank in the yz-plane.

Solution. The first part of the solution is based on the analysis of an RSSR linkage in Chapters 2
and 3. Drive crank position is identified simply as The four unknown angular accelerations
are computed for each value of using the equation

where matrices Y, A, and C are defined in sample Problem 4.19.
Although we must consider the acceleration of coupler link 2 to solve the problem, we are

interested only in the results for driven crank link 3. If the Y matrix elements are numbered 0, 1,
2, 3, then

The graph in Figure 4.27 shows divided by the square of the drive crank angular velocity, so
that the plots have the same order of magnitude. A value taken from the curve is multiplied by

to obtain the angular acceleration. We see that a zero slope of the driven crank
angular-velocity curve corresponds to zero angular acceleration. The results are also checked
using a derivative algorithm. The curves based on numerical results cannot be distinguished
from the matrix-generated results. Note that the horizontal axis of the graph is the drive crank
angle in degrees. The driven crank angle is in radians, and the other curves are dimensionless.
The mixed units are for presentation only; be sure to use consistent units in your calculations.
Finally, the acceleration equation in terms of vector cross products is satisfied (except for a small
rounding error).

Solution details
Acceleration analysis of an RSSR spatial linkage
The drive crank and the driven crank rotate in perpendicular planes.
Units: mm, rad, seconds

(v1z rad >s)2

a3x

a3x = Y3.

Y = A-1C,

u,
u.u1z

u1 = one radian.

r0y = -210 mm.r0x = -15
R2

R1
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Vector loop: where 
Dimensions of links: Fixed link 
Drive crank Coupler Driven crank 

Position Analysis

Drive crank position (subscript omitted) 

Define of fixed link and drive crank vectors

 cx(u) :=  r0x + r1x(u)  cy(u) :=  roy + r1y(u)

c = sum

r1x(u) :=  r1
# cos (u)  r1y(u) :=  r1

# sin(u)

u :=  0, 
p

18
 .. 2p

r3 :=  130r2 :=  215r1 :=  60
r0x :=  -15  r0y :=  -210

r0 = R2 - R1r0 + r1 + r2 + r3 = 0,
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FIGURE 4.27 Spatial linkage driven crank angular position, velocity, and 
acceleration.
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* We will select an assembly configuration given by the positive root.

Driven crank position 

Link vectors 

Check closure of vector loop 

Transmission metric 

Velocity Analysis

Drive crank speed rpm:

Matrix equation 

Solve matrix equation for angular velocities (Elements are numbered 0, 1,
2, 3)
Coupler angular velocity 
Driven crank 

Coupler angular velocity magnitude 
Angular velocity vectors

Driven crank v3(u) :=  C
v3x(u)

0
0
SCoupler Æ2(u) :=  C

v2x(u)
v2y(u)
v2z(u)

SDrive crank v1 :=  C
0
0
v1z

S

v2(u) :=  av2x(u)
2 + v2y(u)

2 + v2z(u)
2b

1
2

v3x(u) :=  X(u)3

v2x(u) :=  X(u)0 v2y(u) :=  X(u)1 v2z(u) :=  X(u)2

X(u) :=  A(u)-1 # B(u)

B(u) :=  D
v1z

# r1y(u)
-v1z

# r1x(u)
0
0

T

where 
X =

D
v2x

v2y

v2z

v3x

T  A(u) :=  D
0 r2z(u) -r2y(u) 0

-r2z(u) 0 r2x(u) -r3z(u)
r2y(u) -r2x(u) 0 r3y(u)
r2x(u) r2y(u) r2z(u) 0

T  

A X = B

n :=  1000  v1z :=  
p # n
30

  v1z = 104.72 rad>s

T(u) :=  
rr2(u) # rr3(u)

ƒ rr2(u) ƒ # ƒ rr3(u) ƒ

rr0 + rr1(1) + rr2(1) + rr3(1) = C
0

4.263 # 10-14

0
S

rr0 :=  C
r0x

r0y

0
S rr1(u) :=  C

r1x(u)
r1y(u)

0
S rr2(u) :=  C

r2x(u)
r2y(u)
r2z(u)

S rr3(u) :=  C
0

r3y(u)
r3z(u)

S

u3x(u) :=  angle1r3y(u), r3z(u)2

 r3y(u) :=  
-(cx(u)

2 + cy(u)
2 - r2

 2 + r3
 2)

2cy(u)
   r3z(u) :=  ar3

 2 - r3y(u)
2b

1
2 *

 r2z(u) = -r3z(u)

 r2x(u) :=  -cx(u)  r2y(u) :=  
cx(u)

2 - cy(u)
2 - r2

 2 + r3
 2

2cy(u)
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We set coupler rotation about its own Check this.

Acceleration Analysis

Drive crank angular acceleration 
Matrix equation 

Solve matrix equation for angular accelerations (Elements are numbered
0, 1, 2, 3)
Coupler 
Driven crank 
Angular acceleration of the coupler and driven crank (in vector form)

Find the angular velocity and angular acceleration of the driven crank by differentiating the angular

position. Use the chain rule.

Check:
We set the angular acceleration of the coupler about the coupler Check this.

Check the vector acceleration equation

Mechanical Systems Software Packages

Some design studies involve acceleration analysis, mechanism dynamics, and closed-
loop feedback control. Software packages may be used to aid in reducing the massive
programming effort that would be required to model the mechanisms involved.
Figure 4.28a illustrates a design study involving human–machine interaction, combining

 b(u) :=  a2(u) * rr2(u) + a3(u) * rr3(u)  a(1) + b(1) = C
0
0

4.366 # 10-11
S

 a(u) :=  v1 * (v1 * rr1(u)) + Æ2(u) * (Æ2(u) * rr2(u)) + v3(u) * (v3(u) * rr3(u))

a2(1) # rr2(1) = 2.184 # 10-11
axis = 0.

a3d(1) = -4.711 # 103a3x(1) = -4.711 # 103

a3d(u) :=  v1z
# B d

du
 v3d(u)Rv3d(u) :=  v1z

# B d
du

 u3x(u)R

a3(u) :=  C
a3x(u)

0
0
Sa2(u) :=  C

a2x(u)
a2y(u)
a2z(u)

S

a3x(u) :=  Y(u)3

a2x(u) :=  Y(u)0 a2y(u) :=  Y(u)1 a2z(u) :=  Y(u)2

X(u) :=  A(u)-1 # B(u)

C(u) :=  D
v1z

 2 # r1x(u) + v2(u)
2 # r2x(u)

v1z
 2 # r1y(u) + v2(u)

2 # r2y(u) + v3x(u)
2 # r3y(u)

v2(u)
2 # r2z(u) + v3x(u)

2 # r3z(u)
0

T

where
Y =

D
a2x

a2y

a2z

a3x

T  A(u) :=  D
0 r2z(u) -r2y(u) 0

-r2z(u) 0 r2x(u) -r3z(u)
r2y(u) -r2x(u) 0 r3y(u)
r2x(u) r2y(u) r2z(u) 0

T

AY = C
a1 :=  0

= 2.063 # 10-13Æ2(1) # rr2(1)axis = 0.
Check at theta = 1 v2(1) = 24.94 ƒ Æ2(1) ƒ = 24.94
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FIGURE 4.28 (a) Human–machine interaction. (Source: Mechanical Dynamics, Inc., modeled by
ADAMSTM software.) (b) Acceleration at the driver mass center. (Source: Mechanical Dynamics,
Inc., modeled by ADAMSTM software.)
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vehicular analysis and anthropomorphic characteristics. The study utilized
ADAMS/ANDROIDTM and ADAMS/TIRETM to model a driver and vehicle, respec-
tively. Using closed-loop feedback control, the upper musculature of the driver was
programmed to move on the basis of an a obstacle sensed on the road. Figure 4.28b shows
computed accelerations at the driver center of mass during a maneuver to avoid a tree.

SUMMARY

Velocity is a vector quantity; a change in the magnitude or direction of velocity results
in acceleration. Acceleration analysis is the foundation of dynamic analysis and is an
essential step in the design of high-speed mechanisms, including piston engines and
pumps, quick-return mechanisms, and production machinery.

Animation software shows linkage positions and includes “meters” that plot
position, velocity, and acceleration. Complex-number methods are efficient for the
acceleration analysis of planar mechanisms. The acceleration polygon (constructed for
one linkage position) provides an independent check. Analytical vector methods can
be used to solve both planar and spatial linkages. Matrix methods combined with vec-
tor methods make it possible to “work smart” when we need to examine a spatial link-
age through its full range of motion.

Try to interpret and check results at every step. Does the acceleration plot agree
with the velocity and position plots? Do the results of vector and matrix methods
check with the results of numerical differentiation? Did you check the units? Is the
linkage suitable for its intended purpose? Can you suggest a redesign?

A Few Review Items

• Sketch a planar four-bar linkage, identifying links and revolute joints.
• Write the basic acceleration equation for the four-bar linkage in terms of vector

cross products.
• Identify the terms in the acceleration equation as normal and tangential acceler-

ation components.
• What conditions give rise to Coriolis acceleration?
• Sketch an example of Coriolis acceleration.
• Write the Coriolis acceleration component in analytical vector form.
• Write the Coriolis acceleration component in complex-number form.
• Do the two forms give the same vector (both magnitude and direction)?
• Sketch a slider-crank linkage.
• Write the basic acceleration equation for the slider crank linkage in terms of vec-

tor cross products.
• Write the basic acceleration equation for the slider-crank linkage in terms of

complex numbers in polar form.
• State the acceleration image principle.
• Write the acceleration equation for an RSSR spatial linkage in cross-product

form.
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• What do we need to know to solve the preceding equation?
• List the steps in the solution.

Some of the problems in this chapter require calculations and the plotting of results for
many linkage positions. It is suggested that animation software, mathematics software,
or a spreadsheet be used. If the problems are solved only with the aid of a calculator,
one or two linkage positions may be selected to avoid repetitious calculations.

PROBLEMS

4.1 Point P lies in a rigid body that rotates at angular velocity

and angular acceleration

The body rotates about fixed point and the radius vector is given by

Find the acceleration of P. Unit vectors i, j, and k lie in a fixed coordinate system.
4.2 Repeat Problem 4.1 for

4.3 Find the average acceleration as a piston increases its speed from 120 in/s to 140 in/s dur-
ing a 0.01-s interval.

4.4 A body moving at 1,000 mi/h is brought to a stop in 0.05 s. Find the average acceleration
in inches per second squared.

4.5 Find the average angular acceleration (in radians per second squared) as a flywheel goes
(a) from zero to 1,000 rev/min in 20 s and (b) from 1,000 to 990 rev/min in 0.5 s.

4.6 A vehicle traveling at 50 km/h makes a turn with a 12-meter radius. Find the normal
acceleration of the vehicle.

4.7 Repeat Problem 4.6 for a 10-meter radius.
4.8 In Figure 4.1, let and ccw. Find the veloc-

ity and acceleration of point B.

4.9 Repeat Problem 4.8 for cw.
4.10 Referring to Figure 4.2, let the I-, J-, and K-axes be initially coincident with the i-, j-, and

k- axes (respectively). Let 
and where millimeter, radian, and second units are

used. Find the location, velocity, and acceleration of point P.
4.11 Repeat Problem 4.10 with the same data,except that and 
4.12 Refer to Figure 4.4 and Sample Problem 4.3. Find the acceleration of point D for

and Solve for by analytical vector methods.
4.13 Refer to Figure 4.4 and Sample Problem 4.3. Find the acceleration of C by using relative

acceleration—that is, for Compare your result with the value
obtained by using and Solve by analytical vector methods.v3.a3

u1 = 120°.aC = aB + aCB,

u1 = 120°rBD = 15 mm.uCBD = 20°

R
$

0 = 20k.R
#

0 = 10k,R0 = 0,

V
# = 80k,r

$
r = 10i + 30j, V = 150 k,

r
#
r = 5i + 15j,r = 20i + 60j,R

$
0 = -20i,R

#
0 = 10i,R0 = 40i,

a = 100 rad/s2

a = 30 rad/s2v = 24 rad/s cw,OB = 125 mm,

r = -i40 - j80 + k100.

r = -i50 + j100 - k30.

O1PO1,

A = -i20 - j40 + k80.

V = i10 - j20 + k30
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4.14 Refer to Figure 4.4 and Sample Problem 4.3. Using the linkage proportions given, deter-
mine the ratios and for a range of values of if is constant. Use a com-
puter or programmable calculator if one is available.

4.15 Repeat Problem 4.14, except that and 
4.16 Plot the slider acceleration versus the crank angle for an in-line slider-crank linkage with

connecting-rod-to-crank-length ratio Assume that the crank speed is constant.
Use analytical vector methods and a computer or programmable calculator.

4.17 Repeat Problem 4.16 for and offset 
4.18 In Figure P3.2, and (constant). Draw the acceleration polygon,

using the scale Find 
4.19 Repeat Problem 4.18 for 
4.20 Repeat Problem 4.18 for the mechanism in the limiting position (with point C to the

extreme right).
4.21 In Figure P3.3, and (constant). Draw the acceleration polygon,

using the scale Find and 
4.22 Repeat Problem 4.21 for counterclockwise.
4.23 In Figure P3.4, clockwise, and counterclockwise.

Draw the acceleration polygon, using the scale Find and 
4.24 Repeat Problem 4.23 for 
4.25 In Figure P3.5, rad/s counterclockwise and counterclockwise.

Draw the acceleration polygon, using the scale Find and 
4.26 Repeat Problem 4.25 for the mechanism in the other limiting position, using the scale

4.27 In Figure P3.6, and (constant). Draw the acceleration polygon,
using the scale Find 

4.28 Repeat Problem 4.27 for using the scale 
4.29 In Figure P3.3, (constant). Solve for analytically (a) for and

(b) for both limiting positions. (Note that the approximate analytical expression is not
intended for a linkage with the dimensions of the linkage of Figure P3.3.) Compare your
results with a graphical analysis.

4.30 In Figure P3.7, the crank is given an angular velocity and an angular acceleration 
(both counterclockwise).

(a) Draw the acceleration polygon for the position shown. Write an expression for in
terms of R, and L.

(b) Draw the acceleration polygon for the other limiting position.
(c) Examine the effect of on the value of when the mechanism is in a limiting position.

4.31 In Figure P3.8, (constant). Draw the acceleration polygon, using the scale

4.32 Repeat Problem 4.31 for 
4.33 In Figure P3.9, and (constant). Note that distance on the

cam is constant. Thus, we may take C as a double point: on the cam and on the fol-
lower. Draw the acceleration polygon, according to the scale 

4.34 Repeat Problem 4.33 for 
4.35 In Figure P3.10, (constant). Draw the acceleration polygon, using the scale

Find the acceleration of the midpoint of each link (D, E, and F).1 in = 200 in/s2.
v1 = 35 rad/s

u = 30°.
1 in = 50 in/s2.

C2C1

B1Cv1 = 10 rad/su = 135°
a1 = 2000 rad/s2.

1 in = 10,000 in/s2.
v1 = 100 rad/s

aCa

v,
aC

av

u = 30°aCv1 = 100 rad/s
1 in = 500 in/s2.u2 = 30°,

a1.1 in = 200 in/s2.
v2 = 20 rad/su2 = 105°

1 in = 100 in/s2.

a3.a21 in = 200 in/s2.
a1 = 100 rad/s2v1 = 20

a1 = 0.
a3.a2,aD,1 in = 2,000 in/s2.

a1 = 500 rad/s2v1 = 50 rad/su = 60°,
a1 = 2,000 rad/s2

a2.aD1 in = 10,000 in/s2.
v1 = 100 rad/su = 30°

u = 120°.
a2.1 in = 100 in/s2.

v1 = 10 rad/su = 45°
E/R = 0.5.L/R = 2

L/R = 3.

r3 = 30 mm.r2 = 20 mm,r1 = 35 mm,r0 = 10 mm,

v1u1a3 >v1
 2v3 >v1
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4.36 In Figure P3.11, rad/s counterclockwise (constant). Note that CD is a fixed dis-
tance. Thus, the cam and follower can be replaced by an equivalent four-bar linkage.

Draw the velocity and acceleration polygons for the equivalent linkage. Find
the angular acceleration of the follower (represented by ).

4.37 In Figure P3.12, and rad/s (constant). Draw the acceleration polygon,
using the scale Find 

4.38 Repeat Problem 4.37 for Use the scale 
4.39 In Figure P3.13, rad/s (constant). Draw the velocity and acceleration polygons,

using the scales in/s and Find 
4.40 In Figure P3.14, rad/s and (both clockwise). Draw the veloc-

ity and acceleration polygons, using the scales in/s and 
Identify and find 

4.41 An in-line slider-crank linkage has a crank length of 4 in and a connecting rod length of
10 in.The maximum slider acceleration occurs at the limiting position, with the slider far-
thest from the crankshaft. At what crank velocity will the slider acceleration reach

4.42 In Figure P3.15, rad/s and Draw the acceleration polygon, using the
scale Explain the difficulty encountered in solving this problem where 
is specified instead of 

4.43 In Figure P4.1, draw the acceleration polygon for the limiting position shown. Let 
rad/s (constant). Use the scales in/s and Find and 

4.44 In Figure P4.2, rad/s cw and cw. Find the acceleration of
points B, C, and D and the angular acceleration of link 2.

a1 = 4,000 rad/s2v1 = 200
a3.a11 in = 10,000 in/s2.1 in = 100
v2 = 100

a1.
a51 in = 50 in/s2.

a1 = 0.v5 = 15
50,000 in/s2?

a2.aD

1 in = 10,000 in/s2.1 in = 100
v1 = 2,000 rad/s2v1 = 100

a2.1 in = 1,000 in/s2.1 in = 20
v1 = 30

1 in = 500 in/s2.u = 30°.
a3.1 in = 200 in/s2.

v2 = 20u = 105°
O2Da2,

O1CDO2.

v1 = 20

O1C � 7 in

D

B1 on link 1
B2 on link 2

� 2 in
O2

O1

C

4 in

3 in

60

1

2

� 4 in
3

    2�

FIGURE P4.1

O1

O1B � 40 mm
BC � 99 mm
BD � 130 mm

e � 21 mm

B

e C

D

�1

�
� 45�

1

2
    1�

FIGURE P4.2
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330 Chapter 4 Acceleration Analysis of Mechanisms

4.45 Write an expression for the slider acceleration in a slider-crank mechanism if the angular
velocity of the crank is not constant.

4.46 (a) Find the crank position corresponding to maximum piston acceleration for an in-line
slider-crank mechanism. Assume that the crank speed is constant and the ratio

of the length to the connecting rod crank length.
(b) Find the maximum piston acceleration in terms of R and 

4.47 Repeat Problem 4.46 for 
4.48 Refer to Figure P3.3, and let cm, cm, and rad/s

(constant). Draw and dimension the velocity and acceleration polygons.
4.49 Determine positions, velocities, and accelerations for the offset sliding contact linkage of

Figure P4.3. Assume that e, and are given. Use complex-number methods.a1v1,u1,r1,r0,

v1 = 150u = 210°,BC = 15O1B = 6
L/R = 1.5.

v.
L/R = 2

B1 , B2

�

r0

r2

r1

1

Link 1 Link 2

� 2

e
FIGURE P4.3

4.50 Refer to Figure P4.4, the Oldham coupling. Find and in terms of 
and fixed angle Use complex-number methods.f.a1,v1,

u1,r0,r
$

2r
$

1,r
#
2,r

#
1,r2,r1,

B1 , B2

r1 r2

r0

� 1

� 2




FIGURE P4.4

4.51 Repeat Problem 4.50 by analytical vector methods.
4.52 In Figure P3.18, ccw (constant),

and 

(a) Draw acceleration polygon 
(b) Locate 
(c) Complete polygon 
(d) Find and aD.a1

o¿b¿1b¿2c¿d¿.
c¿.

o¿b¿1b¿2.

CD = 160 mm.O2B = 150 mm,O1C = 400 mm,
O1O2 = 300 mm,v2 = 500 rad/su2 = 135°,
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4.53 In Figure P3.2, let mm, mm, mm, rad/s cw,
and Draw the velocity and acceleration polygons. Show all accelerations. Find 

4.54 Repeat Problem 4.53 for rad/s ccw.
4.55 Refer to Figure P3.16. Let 

and Draw the velocity and acceleration polygons. Show all
velocities and accelerations.

4.56 Repeat Problem 4.55. Use complex-number methods.
4.57 A slider-crank linkage is similar to Fig. 4.9, except that 

and (constant). Draw the velocity and acceleration polygons.
Show all values.

4.58 Repeat Problem 4.57 for 
4.59 Repeat Problem 4.57 by analytical vector methods.
4.60 Refer to Figure P4.5. Let and

Draw the velocity and acceleration polygons. Show all values. Find a2.O1O2 = 80  mm.
O2C = 83  mm,O2B2 = 58  mm,O1B1 = 28  mm,

u = 180°.

v1 = 150  rad/su1 = 120°,
BC = 150  mm,O1B = 60  mm,

a1 = 0.v1 = 10  rad/s cc,
O2C = 150  mm,O1B1 = 40  mm,O1O2 = 100  mm,u1 = 45°,

v1 = 100
a2.a1 = 0.

v1 = 100E = 40BC = 300O1B = 80u = 45°,

O1 rad/s
constant

O2

C

B1 on 1,
B2 on 2

2

1

    1 � 420�

FIGURE P4.5

4.61 Refer to Figure 4.7. Let (constant), and
Find and Use complex-number methods.

4.62 Repeat Problem 4.61 for 
4.63 Refer to Figure 4.7. Compute for to in steps if Use a

computer or a programmable calculator.
4.64 Using complex-number methods, develop the equations required for an acceleration

analysis of a four-bar linkage.
4.65 Consider a four-bar linkage in which drive crank length coupler length

driven crank length and fixed link length Find
accelerations when and (constant) and the linkage is in the
open position.

4.66 Repeat Problem 4.65 for 
4.67 Refer to Figure 4.24, which depicts a spatial linkage. Let 

and Find the acceleration of link 3 when u = 60°.g = 45°.v1 = 100  ccw,
r2 = 2.5,r1 = 1,r0 = 2.5,

r1 = 15  mm.

v1 = 30  rad/s ccwu = 45°
r0 = 30  mm.r3 = 40  mm,r2 = 35  mm,

r1 = 10  mm,

R0/R1 = 3.15°180°u1 = 0a2>v1
 2

u1 = 30°.
aB1B2

t .a2u1 = 15°.
v1 = 10  rad/s ccwO1O2 = 50  mm,R1 = 30  mm,
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332 Chapter 4 Acceleration Analysis of Mechanisms

4.68 In Problem 4.67, find for one complete cycle of motion (in steps). Use a
computer or a programmable calculator.

4.69 Refer to Figure 4.24. Let and Find for one
complete cycle of motion (in steps). Use a computer or a programmable calculator.

4.70 Consider a four-bar linkage for which and The
angular velocity of the crank is 400 rad/s (constant and counterclockwise). Tabulate and
plot angular velocities and angular accelerations of links 2 and 3 against the crank angle.
(Suggestion: Use a spreadsheet program.)

4.71 Consider a four-bar linkage for which and The angular
velocity of the crank is 50 rad/s (constant and counterclockwise).Tabulate and plot angu-
lar velocities and angular accelerations of links 2 and 3 against the crank angle.
(Suggestion: Use a spreadsheet program.)

4.72 Consider a four-bar linkage for which and The
angular velocity of the crank is 250 rad/s (constant and counterclockwise). Tabulate and
plot angular velocities and angular accelerations of links 2 and 3 against the crank angle.
(Suggestion: Use a spreadsheet program.)

4.73 Consider a four-bar linkage for which and The angular
velocity of the crank is 100 rad/s (constant and counterclockwise). Tabulate and plot
angular velocities and angular accelerations of links 2 and 3 against the crank angle.
(Suggestion: Use a spreadsheet program.)

4.74 A slider-crank linkage has a connecting-rod-to-crank-length ratio of 2 and an offset-to-
crank-length ratio of 0.5. Tabulate and plot the connecting-rod angular velocity and
angular acceleration and the slider velocity and acceleration, all against the crank angle.
Assume that the crank angular velocity is constant. (Suggestion: Let 
and and normalize the results on these parameters.)
Consider the effect of other values of the crank length and angular velocity. Solve the
problem by computer, using vector methods.

4.75 A slider-crank linkage has a connecting-rod-to-crank-length ratio of 3 and an offset-to-
crank-length ratio of 0.5. Tabulate and plot the connecting-rod angular velocity and
angular acceleration, and the slider velocity and acceleration, all against the crank angle.
Assume that the crank angular velocity is constant. (Suggestion: Let 
and and normalize the results on these parameters.)
Consider the effect of other values of the crank length and angular velocity. Solve the
problem by computer, using vector methods.

4.76 A slider-crank linkage has a connecting-rod-to-crank-length ratio of 2.5 and an offset-to-
crank-length ratio of 0.6. Tabulate and plot the connecting-rod angular velocity and
angular acceleration, and the slider velocity and acceleration, all against the crank angle.
Assume that the crank angular velocity is constant. (Suggestion: Let 
and crank and normalize the results on these parameters.)
Consider the effect of other values of the crank length and angular velocity. Solve the
problem by computer, using vector methods.

4.77 An offset slider-crank linkage is described by the vector equation 
The connecting- and offset vector (all in
mm).The crank rotates counterclockwise at a constant angular velocity of 100 rad/s. Find
the link position, velocity, and acceleration vectors. Plot the slider position, velocity, and
acceleration and angular position, velocity, and acceleration of the connecting rod (all
against the crank position). Check the vector closure for one position. Using numerical
differentiation, check the slider velocity and acceleration for one position. Using numerical
differentiation, check the connecting-rod angular velocity and acceleration for one position.

e = -10jrod length = 45,crank length = 25,
r1 + e + r2 + r0 = 0.

angular velocity = 1,
crank length = 1

crank angular velocity = 1,
crank length = 1

crank angular velocity = 1,
crank length = 1

r3 = 40.r2 = 25,r1 = 10,r0 = 37,

r3 = 300.r2 = 200,r1 = 100,r0 = 312.48,

r3 = 41.r2 = 27,r1 = 13,r0 = 38,

r3 = 3.1.r2 = 2.2,r1 = 1.2,r0 = 3.5,
30°

a3>(v1
 2r1)g = 90°.r2 = 9,r1 = 1,r0 = 6,

30°a3>(v1
 2r1)
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4.78 An offset slider-crank linkage is described by the vector equation 
and offset vector (all in

mm). The crank rotates counterclockwise at a constant speed of 1,760 rpm. Find the link
position, velocity, and acceleration vectors. Plot the slider position, velocity, and accelera-
tion and angular position, velocity, and acceleration of the connecting rod (all against the
crank position). Check the vector closure for one position. Using numerical differentia-
tion, check the slider velocity and acceleration for one position. Using numerical differ-
entiation, check the connecting-rod angular velocity and acceleration for one position.

4.79 An offset slider-crank linkage is described by the vector equation 
and offset vector (all in

mm). The crank rotates counterclockwise at a constant speed of 1,000 rpm. Find the link
position, velocity, and acceleration vectors. Plot the slider position, velocity, and accelera-
tion and angular position, velocity, and acceleration of the connecting rod (all against the
crank position). Check the vector closure for one position. Using numerical differentia-
tion, check the slider velocity and acceleration for one position. Using numerical differ-
entiation, check the connecting-rod angular velocity and acceleration for one position.

4.80 Suppose you are investigating an RSSR spatial linkage for a particular application. The
tentative design consists of a 50-mm drive crank, a 180-mm coupler, and a 110-mm driven
crank. The drive crank and driven crank rotate in perpendicular planes. Revolute joint

is a ball bearing located at (0, 0, 0), revolute joint is another ball bearing located at
(15, 175, 0) (mm), from which the fixed link components are and

The drive crank rotates counterclockwise at a constant angular velocity
of 10 rad/s. Find the link positions in terms of the drive crank position. Use matrix meth-
ods to find the angular velocities and accelerations. Plot the driven crank position, angu-
lar velocity, and angular acceleration against the drive crank position. Express links,
angular velocities, and angular accelerations as vectors. Is the vector link closure equa-
tion satisfied? You may evaluate this and other tests for one arbitrary position, say,

Have you set the coupler angular velocity about the coupler axis equal to
zero? Does the dot product of the two vectors satisfy this condition? Have you set the
coupler angular acceleration about the coupler axis equal to zero? Does the dot product
of the two vectors satisfy this condition as well? Form the basic vector acceleration equa-
tion in cross-product form. Is the equation satisfied? Find the angular velocity and angu-
lar acceleration of the driven crank by numerical differentiation. If your software has a
numerical differentiation capability, plot the results along with the results from matrix
analysis. Otherwise, check for one position.Among your design decisions, select an RSSR
spatial linkage similar to the one in this chapter.The drive crank will rotate in the xy-plane
and the driven crank in the yz-plane.

4.81 Suppose you are considering an RSSR spatial linkage for a particular application. The
tentative design consists of a 24-mm drive crank, a 230-mm coupler, and a 140-mm driven
crank. The drive crank and driven crank rotate in perpendicular planes. Fixed link com-
ponents are and The drive crank rotates counterclock-
wise at a constant speed of 880 rpm. Find the link positions in terms of the drive crank
position. Use matrix methods to find the angular velocities and accelerations. Plot the
driven crank position, angular velocity, and angular acceleration against the drive crank
position. Express links, angular velocities, and angular accelerations as vectors. Is the vec-
tor link closure equation satisfied? You may evaluate this and other tests for one arbi-
trary position, say Have you set the coupler angular velocity about the
coupler axis equal to zero? Does the dot product of the two vectors satisfy this condi-
tion? Have you set the coupler angular acceleration about the coupler axis equal to zero?
Does the dot product of the two vectors satisfy this condition as well? Form the basic

u1 = 1 radian.

roy = -215  mm.rox = -18  mm

u1 = 1 radian.

roy = -175  mm.
rox = -15  mm

R2R1

e = -20jconnecting-rod length = 110,The crank length = 50,
r1 + e + r2 + r0 = 0.

e = 6jconnecting-rod length = 32,The crank length = 20,
r1 + e + r2 + r0 = 0.
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334 Chapter 4 Acceleration Analysis of Mechanisms

vector acceleration equation in cross-product form. Is the equation satisfied? Find the
angular velocity and angular acceleration of the driven crank by numerical differentia-
tion. If your software has a numerical differentiation capability, plot the results along
with the results from matrix analysis. Otherwise, check for one position. Among your
design decisions, select an RSSR spatial linkage similar to the one in this chapter. The
drive crank will rotate in the xy-plane and the driven crank in the yz-plane.

4.82 Suppose you are designing an RSSR spatial linkage. The tentative design consists of a
90-mm drive crank, a 340-mm coupler, and a 200-mm driven crank. The drive crank and
driven crank rotate in perpendicular planes. Fixed link components are and

The drive crank rotates counterclockwise at a constant speed of 200
rpm. Find the link positions in terms of the drive crank position. Use matrix methods to
find the angular velocities and accelerations. Plot the driven crank position, angular
velocity, and angular acceleration against the drive crank position. Express links, angular
velocities, and angular accelerations as vectors. Is the vector link closure equation satis-
fied? You may evaluate this and other tests for one arbitrary position, say,
Have you set the coupler angular velocity about the coupler axis equal to zero? Does the
dot product of the two vectors satisfy this condition? Have you set the coupler angular
acceleration about the coupler axis equal to zero? Does the dot product of the two vec-
tors satisfy this condition as well? Form the basic vector acceleration equation in cross-
product form. Is the equation satisfied? Find the angular velocity and angular
acceleration of the driven crank by numerical differentiation. If your software has a
numerical differentiation capability, plot the results along with the results from matrix
analysis. Otherwise, check for one position.Among your design decisions, select an RSSR
spatial linkage similar to the one in this chapter.The drive crank will rotate in the xy-plane
and the driven crank in the yz-plane.

PROJECTS

See Projects 1.1 through 1.6 and the suggestions in Chapter 1.
Describe and plot acceleration and angular acceleration characteristics of linkages in
your design. Make use of computer software wherever practical. Check the results by a
graphical method for at least one linkage position. Evaluate the linkage in terms of its
performance requirements.
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u1 = 1 radian.

roy = -305  mm.
rox = 20  mm
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C H A P T E R  5

Design and Analysis 
of Cam-and-Follower Systems

In its most common form, a cam mechanism consists of a rotating disk that drives an oscil-
lating follower.The required follower motion determines the shape of the cam. A few cam
and follower configurations are shown in Figure 5.1a-d. An engine with dual camshafts
is shown in Figure 5.1e. These and hundreds of other cam-and-follower designs are
used in transportation, industry, and consumer products.A few of the many applications

(a) (b) (e)

(c) (d)

FIGURE 5.1 Disk cams with dif-
ferent types of follower.
(a) Translating roller follower.
(b) Translating flat-faced follower.
(c) Rotating roller follower.
(d) Rotating flat-faced follower.
(e) Cutaway of an engine with dual
camshafts and four valves per
cylinder. (Source: Ford Motor Co.)
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336 Chapter 5 Design and Analysis of Cam-and-Follower Systems

of cam-and-follower systems include the precise control of intake and exhaust valves,
the operation of home appliances, and the control of manufacturing processes.

Concepts You Will Learn and Apply When Studying This Chapter

• Follower selection criteria for various applications
• Motion characteristics that define a good high-speed cam-and-follower system
• Developing cam profiles to satisfy critical criteria
• Pressure angle
• Practical considerations in the design of cam and follower systems
• Special-purpose cam-and-follower systems
• The theory of envelopes

5.1 INTRODUCTION

Since the cam mechanism has its motion prescribed, it is a good example of kinematic
synthesis. That is, rather than requiring the engineer to analyze a mechanism to deter-
mine its motion, the cam follower has a predetermined motion, and the engineering
process consists of designing the cam so that it gives the desired motion. It is theoreti-
cally possible to obtain almost any type of follower motion by properly designing the
cam. However, practical design considerations often necessitate modifications of
desired follower motions.

Some Important Applications of Cam-and-Follower Systems

A two-cylinder eccentric-cam-type piston pump was shown in Chapter 2. Cams are
also used to drive fuel injector pumps, particularly in diesel (compression-ignition)
engines. The high pressures required for diesel fuel injection cause high contact
stresses on the cam. A roller follower is used to reduce wear. Most cam-and-follower
systems are designed to control a process, not to transmit significant power.

Valve-Operating Systems in Internal Combustion Engines

The thermodynamic cycle of a four-stroke-cycle engine (commonly called a four-
stroke engine) involves two revolutions of the crankshaft. For a cylinder oriented as in
Figure 1.31, the cycle progresses as follows:

• Intake stroke (induction). A cam system opens the inlet valve to draw in a charge
of air as the piston moves downward in the cylinder. Fuel may be mixed with air
in a spark-ignition (S-I) engine at an air–fuel ratio of, say, 15:1.

• Compression stroke. The intake and exhaust valves are closed. The piston moves
upward toward top dead center (tdc). In diesel engines, fuel is injected before tdc.
Ignition occurs before tdc in diesel and S-I engines. Typical compression ratios
range from 7.5:1 to 10:1 for S-I engines and from 12:1 to 24:1 in turbocharged
diesels.
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Section 5.1 Introduction 337

• Power stroke (expansion). Combustion raises temperature and pressure, forcing
the piston down. A cam system opens the exhaust valve at the end of the power
stroke. In a single-cylinder engine, energy is stored in a flywheel (and other
masses) during the power stroke. Some of that energy is dissipated during the
other three strokes. Designers of multicylinder engines attempt to select a
sequence of power strokes (i.e., a firing order) that provides smooth operation
and minimum vibration.

• Exhaust stroke. The exhaust valve is held open while the piston rises and expels
exhaust gases.

Large volumes of gases are involved, and timing is critical. Reliability, smooth opera-
tion, clean operation, and efficiency all depend on a well-designed cam-and-follower
system to control gas flow through the intake and exhaust valves.

Each cylinder in a four-stroke-cycle engine will have one or two intake valves and
one or two exhaust valves. The valves are controlled by cams arranged along one or two
camshafts.The camshaft speed must be half the crankshaft speed.The camshaft is driven
by a chain, by a pair of gears, or by a toothed belt. Figure 5.2a illustrates an engine in
cross section, showing a cam, a cam follower, and a valve.The cam follower is held against
the cam profile by a spring. Figure 5.2b shows the camshaft of an eight-cylinder engine.

A two-stroke-cycle engine can be designed with a spring-loaded intake valve, and
exhaust and transfer ports, eliminating the need for cam-operated valves. A two-
stroke-cycle engine has one power stroke every revolution, giving it roughly twice the

(a)

(b)

FIGURE 5.2 (a) Engine cross section showing cam and follower. (Source: General Motors Corp.) (b) Camshaft.
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338 Chapter 5 Design and Analysis of Cam-and-Follower Systems

power-to-weight ratio of a four-stroke-cycle engine. But the disadvantages of a two-
stroke-cycle engine—increased air pollution, higher noise levels, and poorer effi-
ciency—outweigh the advantages for most applications.

Other Cam System Applications

Cams are also used to operate switches and for other light-duty service. One-, two-,
three-, and four-lobe cams are commonly stocked. Adjustable cams are also available
and consist of two thin steel cams that may be adjusted relative to one another to vary
the “open” and “close” interval.

Figure 5.3a shows an early design of an apple peeler with one cam to guide the
cutter blade and another cam to eject the apple. In the close-up photo, Figure 5.3b,
the follower is about to contact the stationary blade guide cam. The three dimen-
sional cam, Figure 5.3c, is designed so that follower position is a function of two
input variables, axial position of the cam relative to the follower and cam rotation
angle. Several custom cams designed for special motion requirements are shown in
Figure 5.3d.

Cams appear in many other forms. Look in Chapter 8 for the figure showing a
limited-slip automotive differential. This differential is designed to apply the greatest
torque to the wheel with the best traction. To accomplish that objective, cross pins
move up cam surfaces to engage disk clutches. A variable-pitch pulley is also shown in
Chapter 8. The pulley incorporates a cam to increase pressure on the side of the pulley
to compensate for increases in torque.

Terminology

The following are a few commonly used terms that relate to disk cam design:

• Stroke (or travel or throw): The distance or angle of maximum follower travel.
• Rise: The interval during which the follower is moving away from the center of

the cam. If the follower is below the cam, motion away from the cam center is still
called rise even though such motion is downward.

• Dwell: An interval during which the follower is stationary. A dwell following a
rise is called a top dwell.

• Return: The interval during which the follower moves toward the center of the
cam.

• Intervals are measured in terms of the cam rotation angle rather than actual time
in seconds, because we must maintain the same cam-and-follower relationships
regardless of the cam speed. It is safest to measure angles in radians; when
degrees are used, one must be sure that the computer can handle them. And one
must check units in determining the follower velocity and acceleration.

• Base circle: The smallest circle that can be drawn tangent to the cam profile with
center at the camshaft axis.
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FIGURE 5.3 (a) An apple peeler (patented in 1898) utilizes two cams. (b) The apple peeler blade guide fol-
lower rotates with the crown gear. It is about to contact the stationary cam. (c) A three-dimensional cam.
(d) Custom cams designed for special motion requirements. (Source: Commercial Cam Co.)

Disk Cam Design and Manufacture

The design and manufacture of a disk cam may involve the following steps:

• Select the type of follower: a translating roller follower, rotating flat follower, etc.
• Determine the motion requirements of the follower: stroke, rise, top dwell,

return, dwell, etc.

(b)

Stationary cam
Cam follower

(a)

(c)

(d)
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340 Chapter 5 Design and Analysis of Cam-and-Follower Systems

• Select a disk with reasonable dimensions.
• Select the form of motion during the rise and return: cycloidal, 3–4–5 polynomial,

etc. (We will compare forms of motion later.)
• Program the chosen motion for one rotation of the cam.
• Select a grinder or milling cutter with a shape similar to that of the follower (e.g.,

a grinder with the same diameter as that of a roller follower).
• Use a computer numerically controlled (CNC) process to position the cutter to

each desired follower position. Rotate the cam a fraction of a degree, and reposi-
tion the cutter until the entire cam is generated. Smooth any projections on the
working surface. The result is a prototype cam.

• Select or develop a process to duplicate the prototype cam curve if more cams
are required.

The foregoing steps are greatly oversimplified; manufacturing details are beyond the
scope of this book.

5.2 GRAPHICAL CAM DESIGN

The design and manufacture of precision cams is not dependent on graphical methods.
The key is knowing where we want the cam follower for each angular position of the
cam. Nevertheless, graphical methods give us insight into practical cam design.

Graphical Design of a Cam with a Radial Translating Roller Follower. It is dif-
ficult to visualize generation of a cam profile while rotating the cam-to-be. Instead, we
invert the situation, generating the cam as if it were stationary, while the follower
translates and assumes various positions about the cam. The relative motion is the
same. The process is illustrated by Figure 5.4.

Suppose we need to design a cam for a control system. Our design requires a
translating follower with a given stroke. Let the follower position vs. the cam position
be specified through an entire cam rotation. Here is one possible graphical solution:

• Select a radial translating roller follower. The axis of a radial follower intersects
the center of the camshaft. The roller is intended to reduce wear on the cam.

• Draw radial lines at intervals of equal angles, as in the figure. These lines repre-
sent positions of the follower relative to the cam.

• Select the diameter of the roller.
• Locate the roller center a reasonable distance from the camshaft center. Call this

point 0, the follower location before the rise.
• Locate the roller at position 1, position 2, etc., according to specified values of

the follower position vs. the cam angle (governed by the requirements of the
application).

• Draw a smooth curve tangent to all of the roller circles. This is a rough approxi-
mation of the cam profile.

• Check for unacceptable cam characteristics (e.g., a cusp).
• Check the maximum pressure angle (the angle between the follower axis and a

normal to the cam profile, as shown in Figures 5.4 and 5.5). If the pressure angle is
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FIGURE 5.4 Cam layout for a roller follower. The important terms illustrated
in the figure are as follows: stroke—maximum follower rise; trace point—refer-
ence point for follower displacement, located at roller center; base circle—
smallest circle having its center at the cam center of rotation and that can be
drawn tangent to the cam profile; pitch curve—curve drawn through the center
of the roller at various positions around the circumference of the cam; cam
profile—actual shape of the disk cam surface; pressure angle—angle between
the line of travel of the follower and a normal drawn to the pitch curve; pitch
point—that point on the pitch curve having the largest pressure angle; pitch cir-
cle— circle drawn through the pitch point and having its center at the cam cen-
ter C; prime circle—smallest circle having its center at the cam center and that
can be drawn tangent to the pitch curve.

Cam profile

Tangent to follower 
and cam profile

Component of normal 
force along line of 
travel of followerFn

�

N

Line of action of 
normal force between
cam and follower

Component of force 
perpendicular to follower 
line of travel FIGURE 5.5 The relationship between

the contact force and the pressure angle
for a roller follower constrained to move
vertically.
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large, then the lateral force on the follower may prevent smooth motion, or the fol-
lower may even jam. Some designers try to limit the pressure angle to or less.

• Consider changing the diameter of the roller or the diameter of the base circle if
necessary. An increase in the base circle diameter decreases the maximum pres-
sure angle. The trade-off, however, is a larger cam, which may result in other
design complications.

You may want to use more radial lines, particularly to improve the accuracy of the
pressure angle measurement. But do not get carried away with a quest for graphical
accuracy:The purpose of the graphical presentation is to make predesign decisions and
to gain an understanding of cam design. Precision cams are not generated from graphi-
cal presentations.

Graphical Design of a Cam with an Offset Roller Follower. Cam systems are
sometimes designed with offset followers.The intent is to reduce the lateral forces on a
cam follower during the rise portion of the cycle. If spring forces govern the return, the
transmission angle may not be critical during that interval. Finding the optimum offset
requires careful analysis; careless design could worsen the situation.You might want to
check the effect of offsetting the follower if the camshaft can reverse direction.Will the
offset result in an unacceptable transmission angle if the camshaft is reversed?

Figure 5.6 illustrates the procedure for designing a cam with an offset follower.
Note cam rotation direction and direction of the offset. The points 0 to 4 on the fol-
lower are the follower displacements for a given type of motion. The total displace-
ment of the follower is to occur in of cam rotation.

A circle, called the offset circle, is drawn with its center at C and with a radius
equal to the distance between the cam centerline and the follower centerline. One

120°

30°

Offset circle

Offset

Cam profile

0�

1�

3�

4�

2�

1�

0
2
4

2�
3� 4�

r

r 0�

C

FIGURE 5.6 The offset, translating roller fol-
lower may have less side thrust than an in-line
or radial roller follower.
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hundred twenty degrees of this circle, during which the follower motion is to occur, is
divided into four equal parts of each. Then, points , and are located,
beginning on the horizontal axis of the offset circle.

Next, lines tangent to the offset circle (such lines are also perpendicular to the
radial lines of the circle) are drawn through the primed points. When the measured dis-
tance is laid off along the tangent line from , point is located.The distance from

to 2 is then laid off from to locate point , and so on. The double-primed points,
thus obtained, are used as the centers of circles having the same radius as the follower.
A smooth curve tangent to these circles approximates the required cam profile.

5.3 THE HEAVISIDE STEP FUNCTION AND RELATED FUNCTIONS:
IF-FUNCTION, AND-GATE, OR-GATE, AND INTERVAL FUNCTION

Cams are designed to do what we want when we want it. The follower motion during
one cam revolution may include a rise, a dwell, a return, and another dwell. There are
four intervals, so the follower position is represented by four equations. If the top dwell
(between rise and return) is eliminated, there are three intervals and three equations.
If rise and return are symmetric, we can simplify the problem to two equations. We can
reduce the problem to one equation by eliminating the dwell. A cam without a dwell
has only a few applications (e.g., the cam-type pump).

We can combine two or more equations by using the Heaviside step function and
related functions. The IF-function, the AND-gate, the OR-gate, and an interval func-
tion may be useful in analyzing cams and plotting results. These functions can help you
solve other engineering problems, too. (You may want to check other references to
learn more about Boolean functions and logical functions.)

The Heaviside step function. The Heaviside function is a unit step defined as

and

(5.1)

The function

and

(5.2)

turns on (initiates) a unit step at We use this function to turn on other functions;
for example, turns on a sine wave, beginning at 

Interval Function. We can construct an interval function from two Heaviside
step functions by defining

(5.3)H(u, a, b) = £(u - a) - £(u - b).

u = a.£(u - a) sin (u - a)
u = a.

£(u - a) = 1  for u Ú a

£(u - a) = 0  for u 6 a

£(x) = 1  for x Ú 0.

£(x) = 0  for x 6 0

2–2¿0¿
1–1¿0¿1

4¿0¿, 1¿, 2¿, 3¿30°
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Then,

and

(5.4)

The interval function can be used to turn on another function at and
turn it off at 

The IF-Function. An IF-function, or IF-statement, tests a condition and returns
one answer if the condition is satisfied and another if not. For example, we may write

(5.5)

If the condition is true, then the value after the first comma applies; if is
false, the value after the second comma applies. (Note that Eq. (5.5) is in MathcadTM

format. For other computer software or programming languages, consult the manual
for the correct IF-function format.) Comparing the results of the preceding IF-func-
tion to the Heaviside step function, we see that they are equivalent; that is,

The AND-Gate. An AND-gate is formed by multiplying two conditions together.
For example, let us define an interval function

(5.6)

If the first and second condition are true, then the value after the first comma applies;
otherwise the value after the second comma applies. The interval function of Eq. (5.6),
written in terms of an IF-function and an AND-gate, produces the same results as the
interval function written in terms of Heaviside step functions.

The OR-Gate. We form an OR-gate by adding two conditions together. Suppose
we want a function turned on for the interval Then an alternative definition
of the interval function is given by

(5.7)

If either the first or the second condition is true, the value after the first comma applies;
if neither condition is true, the value after the second comma applies.

H2(u, a, b) = if [(u 6 a) + (u 7 b), 0, 1].

a … u … b.

H1(u, a, b) = if [(u Ú a) # (u … b), 1, 0].

£1(u, a) = £(u - a).

u Ú au Ú a

£1(u, a) = if (u Ú a, 1, 0).

u = b.
u = aH(u, a, b)

H(u, a, b) = 0 elsewhere.

H(u, a, b) = 1  for a … u … b
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Because of the importance of logical decisions to engineering and other fields,
programming languages and software often have literal AND- and OR-functions. For
example, a statement could take a form like

IF [first condition] AND [second condition]
THEN [result A or subroutine A]
ELSE [result B or subroutine B].

We are not limited to only two conditions; sometimes we need to combine three or
more conditions and both AND- and OR-functions.

SAMPLE PROBLEM 5.1

Applying the Heaviside Step Function and Construction of an Interval Function

Write statements to describe step and interval functions. Plot the following functions for the
range 

• A Heaviside (unit) step function beginning at 
• An interval function (based on the Heaviside function) that can be used to turn another

function on at and off at 
• A unit step function (formed from an IF-statement), beginning at 
• An interval function (based on an IF-statement and an AND gate) to turn another func-

tion on at and off at 
• An interval function (based on an IF-statement and an OR gate) to turn on another func-

tion at and off at 

Solution summary. Consult the manual or help screen for the forms of IF-, AND-, and OR-
statements in the programming language or software you prefer. The statements that follow are
written in MathcadTM format. Each step and interval function has unit magnitude. Eight is added
to the first, six to the second, and so on, so that the plots (Figure 5.7) appear in order from top to
bottom.

Solution details.

Let 

The Heaviside step function turns on a unit step at 
We can define an interval function to turn a unit step function on at a and off at b:

An IF statement can be used to construct the Heaviside step function

The first value after the comma applies if otherwise the second value applies.
An AND-gate is formed by multiplying two conditions together.
The INTERVAL function can be constructed with an IF-statement and an AND-gate:

H1(u, a, b) :=  if [(u Ú a) # (u … b), 1, 0]

u Ú a;

£1(u, a) :=  if (u Ú a, 1, 0)

H(u, a, b) :=  £(u - a) - £(u - b)

u = a.£(u - a)

u :=  0, 
p

180
 ..2p

u = 5.5.u = 4

u = 5.u = 3

u = 2.
u = 3.u = 1

u = 0.5.

0 … u … 2p:
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FIGURE 5.7 Heaviside and related functions.

An OR-gate is formed by adding two conditions together.
The INTERVAL function can also be constructed with an IF-statement and an OR-gate:

5.4 CAM DESIGN IN TERMS OF FOLLOWER MOTION

It is easy to design cams for low-speed operation. When accelerations and inertial
forces are low, we can use any reasonable cam profile. But when we design high-speed

H2(u, a, b) :=  if[(u 6 a) + (u 7 b), 0, 1]
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cams, the follower velocity and acceleration become more important. Jerk, the differ-
ential of the follower acceleration with respect to time, is also considered in designing
cams, and some designers even consider the differential of jerk with respect to time.

Possible Forms of Follower Displacement

Consider these follower-motion vs. cam-position relationships:

• Uniform motion (resulting in constant velocity)
• Parabolic motion (resulting in constant acceleration)
• Harmonic motion
• Cycloidal motion
• 3–4–5 polynomial motion
• Higher order polynomial motion

Suppose we define the following terms:

The term rise refers to motion away from the cam center; the actual motion in not nec-
essarily upward.

Uniform Motion

Uniform motion results in constant velocity; that is, the follower displacement during
the rise has the form

(5.8)

Parabolic Motion

Parabolic motion results in constant acceleration; that is, the follower displacement
during the rise has the form

(5.9)

Harmonic Motion

In harmonic motion, the follower displacement during the rise interval for parabolic
motion has the form

(5.10)

Follower Return

We can look at the return as a reflection of the rise; that is, we can replace

x = u>a

s = (h>2) (1 - cospx)

s = hx2.

s = hx.

 x = u/a during the rise
 u = cam position (rad)
 a = cam rotation during rise (rad)
 h = total rise = maximum follower displacement (mm or in)
 s = follower displacement (mm or in)
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in the preceding equations with

where

and

Problems with Harmonic and Parabolic Motion

Harmonic motion works well if the motion is continuous. The cam-type pump,
described previously, is one application of harmonic (sinusoidal) motion. We might be
tempted to incorporate harmonic motion into the design of a cam for intermittent
motion. Figure 5.8 shows harmonic follower motion with dwells. We see that there are
jumps in the acceleration plot, resulting in infinite jerk. The acceleration jumps result
in abrupt changes in inertial force, generally considered unsatisfactory for high-speed
cam applications. Figure 5.9 shows a similar problem if we use intervals of constant
acceleration (parabolic motion).

It is obvious that uniform (constant-velocity) motion has even more severe
problems.

uf = cam position at end of return (rad).

a = cam rotation during return (rad)

x = (uf - u)>a,

�
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	 	 FIGURE 5.8 The follower displacement, velocity,
acceleration, and jerk diagrams for simple harmonic
motion are shown. The follower dwells from 0 to ,
rises with simple harmonic motion from to ,
dwells from to , returns with simple harmonic
motion from to , and dwells from to

. Note the effect on acceleration and jerk.360°
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FIGURE 5.9 The follower displacement, velocity, acceler-
ation, and jerk diagrams for parabolic motion are shown.
The follower dwells from 0 to , rises with constant posi-
tive acceleration from to , continues to rise with
constant negative acceleration from to , dwells
from to , returns with constant negative accelera-
tion from to , completes the return with constant
positive acceleration from to , and then dwells
from to .360°330°

330°270°
270°210°

210°150°
150°90°

90°30°
30°

Follower Motion for High-Speed Cams

“Good” High-Speed Cams

Design criteria for a cam and follower depend on the application. The following is one
set of criteria we can use to define a “good” high-speed cam:

• zero velocity at the beginning and end of the follower rise
• zero acceleration at the beginning and end of the rise
• zero velocity at the beginning and end of the return
• zero acceleration at the beginning and end of the return

Suppose we want a total rise h (mm or in) as the cam turns through the interval 
to (rad). Then, the conditions on the follower motion during the rise are

(5.11)

where and are, respectively, the follower position, velocity, and
acceleration.

a(u)v(u),s(u),

 s(a) = h, and v(a) = a(a) = 0,

 s(0) = v(0) = a(0) = 0,

u = a
u = 0
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5.5 CYCLOIDAL CAMS

Designers found that a ramp function combined with a sinusoid was the basis for a
good high-speed cam. This combination is called cycloidal motion. The follower dis-
placement, as the cam position changes from to (rad) is given by

(5.12)

where is the angle the cam turns through while the follower receives its total lift and
is the cam angle during which the displacement s occurs.

Differentiating the displacement equation gives the expression for velocity:

But therefore,

(5.13)

The acceleration is obtained by differentiating the velocity equation:

(5.14)

Finally, the jerk is obtained by differentiating the acceleration equation:

(5.15)

Suppose we need a good high-speed cam-and-follower system to provide a
rise–dwell–return–dwell (RDRD) motion. Let us select cycloidal motion and examine
the follower position, velocity, acceleration, and jerk during the rise. It is convenient to
write the follower position equation in the form

(5.16)

If the total rise h occurs while the cam rotates from to then

Differentiating with respect to time, we obtain the velocity, acceleration, and jerk. Be
sure to use the chain rule, etc., to get the following motion
characteristics:

Velocity (5.17)vc(x) =  
v

a
 
d

dx
 sc(x) =  

h # v
a

# (1 - cos(2px))

ds/dt = (ds/dx) # (dx/dt),

x = u/a

u = a,u = 0

sc(x) = h[x - sin(2px)/(2p)].

j =
da

dt
= ¢h4p2v3

a3 ≤cos¢2p 
u

a
≤ .

a =
dv

dt
= h¢2pv2

a2 ≤sin¢2p  
u

a
≤ .

v =
hv
a

- ¢hv
a
≤cos¢2p 

u

a
≤ .

du/dt = v;

v =
ds

dt
=

h du
a dt

- ¢ h

2p
≤cos¢2p 

u

a
≤ ¢2p du
a dt

≤ .

u

a

s = h¢ u
a
≤ - ¢ h

2p
≤sin¢2p 

u

a
≤ 0 … u … a,

u = au = 0
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Acceleration (5.18)

Jerk (5.19)

We now want to check out our cam for the full RDRD cycle. First, we define an inter-
val function based on the Heaviside step function, as discussed in an earlier section:

Our interval function turns another function on at and off at Let the
intervals be as follows:
rise: top dwell:

return: dwell:

We usually set at the beginning of the cycle.Then, at the end of the
cycle. The following equations describe the follower motion for the whole RDRD
cycle—that is, a full rotation of the cam:

Position

(5.20)

Velocity (5.21)

Acceleration (5.22)

Jerk (5.23)

Do the equations make sense? Check the position equation first. The first term on the
right multiplies the interval function by the rise equation. We must cut off the rise
equation at because the equation does not apply in the intervals that follow.
The next term gives the follower a constant displacement h during the top dwell. The
third term on the right describes the return. If the rise and return intervals are equal,
the return displacement is a mirror image of the rise. We use the same displacement
equation, except that the argument is now

where

There is no fourth term; the follower position is zero for the final dwell.

a = u1 - u0 = u3 - u2.

x = (u3 - u)>a,

u = u1,

Jc(u) =  H(u, u0, u1) # jc¢ u

u1 - u0
≤ - H(u, u2, u3) # jc¢ u3 - u

u3 - u2
≤

Ac(u) =  H(u, u0, u1) # ac¢ u

u1 - u0
≤ + H(u, u2, u3) # ac¢ u3 - u

u3 - u2
≤

Vc(u) =  H(u, u0, u1) # vc¢ u

u1 - u0
≤ - H(u, u2, u3) # vc¢ u3 - u

u3 - u2
≤

Sc(u) =  H(u, u0, u1) # sc¢ u

u1 - u0
≤   +    h # H(u, u1, u2) +    H(u, u2, u3) # sc¢ u3 - u

u3 - u2
≤

u = 2 pu = u0 = 0

u3 … u … end of cycle.u2 … u … u3;

u1 … u … u2;u0 … u … u1;

u = b.u = a

H(u, a, b) = £(u - a) - £(u - b)

jc(x) =  
v

a
 
d

dx
 ac(x) =  4p2h # ¢v

a
≤3 # cos(2px)

ac(x) =  
v

a
 
d

dx
 vc(x) =  2 # p # h # ¢v

a
≤2 # sin(2px)
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Next, we check the velocity equation.The first term on the right is patterned after
the displacement equation.Terms representing the dwells are unnecessary, because the
velocity is zero. The last term is the return. Remember the chain rule?

If 

then ,

not as in the rise.

The sign change appears before the interval function H.
The plus sign before the H in the return part of the acceleration equation reflects

two sign changes. Three sign changes apply to the return part of the jerk equation.
A good engineer works “smart.”Try to copy and “recycle” equations to save time.

Use find and replace functions to edit equations if those functions are available. Let
the computer do the work; you do the thinking.These forms of equation can be used to
describe the motion of other cams and may help in other engineering problems. You
may think of a way to make them more efficient.

SAMPLE PROBLEM 5.2

Design of a Cycloidal Cam

We need a cam with a 12-mm rise. The rise and return intervals are both , and the top dwell
is . The cam rotation speed will be 880 rpm. Design the cam. Plot the follower position, veloc-
ity, acceleration, and jerk. Check your results.

Design decisions. Cycloidal motion will be selected, because we want smooth, quiet operation.
If we can describe the displacement for the full range of motion, the cam can be generated.

Solution summary. Figure 5.10 shows the follower position, velocity, acceleration, and jerk
plotted against the cam position in degrees. The units used in the detailed calculations are mil-
limeters, radians, and seconds.

,
,

.

The position equation is written with argument x, where for the rise. Position 
(at the beginning of the rise) and (at the end of the rise), as required.
The velocity and acceleration boundary conditions are (These
should be checked as well.)

The calculated value of the jerk at compares with an approximation obtained from
a change in acceleration over a short time interval.

Detailed solution.

Units: mm, sec, rad

Rise Cam speed v :=  880 # p
30

 rad/sh :=  12

x = 0

v(0) = v(1) = a(0) = a(1) = 0.
sc(1) = 12

sc(0) = 0x = u/a

n = cam speed (rpm)
v = angular velocity of the cam (rad/s) = np/30
a = interval of the rise (radians)

35°
110°

+v>a,

dx>dt = -v>a

x = (u3 - u)>a,
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FIGURE 5.10 Follower position, velocity, acceleration, and jerk for a cycloidal cam.

Rise and return interval 

Dwell interval Cam position 

Begin rise End rise, begin dwell 
Begin return End return 

Rise time 

Follower position 

Check boundary conditions (BC’s) 

Velocity 

Check BC’s

Compare vc (.5) = 1.152 # 103   vavg :=  
sc (1) - sc (0)

t1
  vavg = 576

vc (0) = 0   vc (1) = 0

vc (x) :=  
v

a
# d
dx

 sc (x)   vc (x) :=  
h # v
a

# a1 - cos (2px)b

sc (0) = 0   sc (1) = 12

sc (x) :=  h # ¢x -
1

2p
# sin(2px)≤

t1 :=  
a

v
  t1 = 0.021

u3 :=  u2+a    u3 = 4.451u2 :=  u1+b
u1 :=  u0 + a    u1 = 1.92u0 :=  0

u :=  0, 
p

180
 . .2pb =

35p
180

a =
110p
180

 rad
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Acceleration 

Check BC’s 

Jerk 

Set Estimate 

Max acceleration:

Compare with j at 0 avg for .001 rad

Define an interval function in terms of Heaviside step functions 
Then, describe follower motion for a full cam rotation in terms of the interval func-

tion as in Eqs. (5.20–5.23).

Polynomial Motion

As was pointed out earlier, operation at high cam speeds can be improved by eliminat-
ing discontinuities in the derivatives of the follower motion with respect to time. An
example of this principle, as applied to the rise–dwell—return–dwell motion that we
have been discussing, is cycloidal motion. In that case, there are no discontinuities in
either velocity or acceleration, and therefore, both acceleration and jerk remain finite.
Hence, cycloidal motion is suitable for high-speed operation.

Polynomial motion is another option. The displacement equation for general
polynomial motion can be written as

where s is the follower displacement, is the angular position of the cam, and is the
initial cam angle at the beginning of the polynomial motion. In other words, the dif-
ference is the cam rotation occurring during displacement s. N is referred to
as the degree of the polynomial, and is the number of terms in the polyno-
mial expression. The velocity and acceleration equations are obtained by successive
differentiation.

(N + 1)
(u - ui)

uiu

 = a
N

k = 0
 Ck (u-ui)

k,

s = C0 + C1 (u-ui) + C2 (u-ui)
2 + C3 (u-ui)

3 + C4 (u-ui)
4 + Á + CN (u-ui)

N

- £(u - b).
H(u, a, b) :=  £(u - a)

j0 :=  
ac (.001) - ac (0)

.001
# v
a
 j0 = 5.239 # 107

ac (X) = 1.737 # 105X :=  root (jc (x), x) X = 0.25

x :=  2Jerk = 0

jc (0) = 5.239 # 107 jc (0.5) = -5.239 # 107
  jc (1) = 5.239 # 107

jc (x) :=  
v

a
# d
dx

  ac (x)  jc (x) :=  4p2h # ¢v
a
≤3 # cos(2px)

ac (0) = 0   ac (1) = -4.255 # 10-11

ac (x) :=  
v

a
# d
dx

 vc (x)   ac (x) :=  2 # p # h¢v
a
≤2 # sin(2px)
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Section 5.6 Design of Good High-Speed Polynomial Cams 355

5.6 DESIGN OF GOOD HIGH-SPEED POLYNOMIAL CAMS

Suppose we need a cam to produce RDRD motion.A good high-speed cam must oper-
ate smoothly. For RDRD motion of the follower, the rise and return intervals should
begin and end with zero velocity and acceleration. We found earlier that a cycloidal
cam can meet these criteria. If the follower rises a total distance h while the cam posi-
tion changes from to (rad), then there are six boundary conditions:

At follower position, velocity, and 

at and velocity and 

We need six arbitrary constants to satisfy the six boundary conditions.

A fifth-order polynomial should do the job. To simplify typing, the polynomial can be
written in terms of x. For the rise interval,

and the follower position equation is

(5.24)

SAMPLE PROBLEM 5.3

Design of a Good High-Speed Polynomial Cam

We cannot use Eq. (5.24) as is;. we need the six arbitrary constants.

Design decisions. We will apply the boundary conditions that are likely to result in a good
high-speed RDRD cam.

Solution summary. The first step is to differentiate the follower position equation with respect
to time to obtain the velocity. Remember the chain rule; we used it when we examined the
cycloidal cam.We differentiate the velocity equation to get the acceleration.We differentiate the
acceleration equation to get the jerk, for good measure. We do not need jerk now, but it might
come in handy later.
Next, we apply the six boundary conditions, where at the beginning of the rise and 
at the end:

Noting that we get six simultaneous linear equations, represented in matrix form by

We premultiply by the inverse of A to put the equation in solvable form:

(5.25)A-1AX = X = A-1B.

AX = B.

v>a Z 0,

 v (1) = a (1) = 0
 s (1) = h;
 s (0) = v (0) = a (0) = 0

x = 1x = 0

s = C0 + C1x + C2x
2 + C3x

3 + C4x
4 + C5x

5.

x = u>a,

acceleration = 0.u = a, follower position = h

acceleration = 0;u = 0,

u = au = 0
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356 Chapter 5 Design and Analysis of Cam-and-Follower Systems

After filling in the six-by-six matrix A and column matrix B, we solve for X, a column matrix of
the six arbitrary constants. The nonzero constants are

(5.26)

Detailed solution. For the fifth order polynomial cam, s is the follower position and 
position/interval.We then have the following results:

Position 

Velocity 

Acceleration 

Jerk 

Boundary conditions at :

at :

Position 

Since is not equal to zero, we can apply the velocity and acceleration boundary conditions to
the first and second derivatives of s with respect to x. We obtain the following equations:

First derivative:

Second derivative:

Applying the six boundary conditions yields these equations:

 C1 + 2 # C2 + 3 # C3 + 4 # C4 + 5 # C5 :=  0
 C1 :=  0
 C0 + C1 + C2 + C3 + C4 + C5 :=  h
 C0 :=  0

sxx(1) : 2 # C2 + 6 # C3 + 12 # C4 + 20 # C5

sxx(0) : 2 # C2

sxx(x) :=  2 # C2 + 6 # C3
# x + 12 # C4

# x2 + 20 # C5
# x3

sx(1) : C1 + 2 # C2 + 3 # C3 + 4 # C4 + 5 # C5

sx(0) : C1

sx(x) :=  C1 + 2 # C2
# x + 3 # C3

# x2 + 4 # C4
# x3 + 5 # C5

# x4

v/a

s(0) : C0  s(1) : C0 + C1 + C2 + C3 + C4 + C5

a = 0v = 0;s = h;x = 1

a = 0;v = 0;s = 0;x = 0

 j(x) : v
3

a3
# (6 # C3 + 24 # C4

# x + 60 # C5
# x2)

 j(x) :=  
v

a
# d
dx

# v2

a2
# (2 # C2 + 6 # C3

# x + 12 # C4
# x2 + 20 # C5

# x3)

 a(x) : v
2

a2
# (2 # C2 + 6 # C3

# x + 12 # C4
# x2 + 20 # C5

# x3)

 a(x) :=  
v

a
# d
dx

# v
a

# (C1 + 2 # C2
# x + 3 # C3

# x2 + 4 # C4
# x3 + 5 # C5

# x4)

v (x) : v
a

# (C1 + 2 # C2
# x + 3 # C3

# x2 + 4 # C4
# x3 + 5 # C5

# x4)

v(x) :=  
v

a
# d
dx

  s (x)

v(x) :=  
v

a
# d
dx

 s(x)

s (x) :=  (C0 + C1
# x + C2

# x2 + C3
# x3 + C4

# x4 + C5
# x5)

x = u/a = cam

C4 = 10h, C5 = -15h,  and  C6 = 6h.
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Section 5.6 Design of Good High-Speed Polynomial Cams 357

In matrix form, where

Substituting the constants we have just found into the displacement equation results in

Cams based on this equation are called 3–4–5 cams because of the third-, fourth-, and
fifth-order terms. Such cams have been cut on numerically controlled machines and
used in high-speed machinery for many years. Is the solution an example of working
smart? Let us look at other options.

Software with symbolic capability was used to solve for the 3–4–5 cam coeffi-
cients. But any engineer can easily differentiate a polynomial, and with the h factored
out, the matrix equation could have been solved numerically.

We could even do the job by hand if the computer crashed. The three boundary
conditions at lead to The problem then reduces to three
simultaneous linear equations that can be solved with the use of determinants. (See
your mathematics text or Chapter 3 of this book)

Completing and Checking the 3–4–5 Polynomial Cam Design. We need to spec-
ify the rise, top dwell, return, and dwell intervals. Then, the position equation can be
expressed in terms of interval functions as was done for a cycloidal cam. After we spec-
ify the follower shape and base circle, it may be possible to cut a master cam directly
from the position equation.

The design is not complete without checking the follower velocity, acceleration,
and jerk for an entire cam rotation. The underlying equations are different, but the
form for the 3–4–5 cam is similar to that for the cycloidal cam. Do you remember why
there are minus signs before the return terms in the velocity and jerk equations (for
the cycloidal cam)? Will the 3–4–5 cam follower equations have minus signs?

SAMPLE PROBLEM 5.4

The 3–4–5 Cam for a Full Cycle of Motion

Design a cam to produce a 10-mm rise in of cam rotation, dwell and return in The
cam speed is 400 rpm. Verify the boundary conditions and plot the follower motion.

Design decision. We will use a 3–4–5 polynomial cam.

120°.45°,120°

C0 = C1 = C2 = 0.x = 0

s(x) :=  h(10 # x3 - 15x4 + 6x5).

A :=  F

1 0 0 0 0 0
1 1 1 1 1 1
0 1 0 0 0 0
0 1 2 3 4 5
0 0 2 0 0 0
0 0 2 6 12 20

V B :=  F

0
h
0
0
0
0

V X :=  F

C0

C1

C2

C3

C4

C5

V = A-1  B : F

0
0
0

10 # h
-15 # h

6 # h

V .

A X = B,

 2 # C2 + 6 # C3 + 12 # C4 + 20 # C5 :=  0
 2 # C2 :=  0
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FIGURE 5.11 Follower position, velocity, acceleration and jerk for a 3–4–5 polynomial cam.

Solution summary. Except for the basic polynomial equations, this cam closely resembles a
cycloidal cam. If we have already designed a cycloidal cam, we can copy many of the equations
from that file with only a few changes.

The results are shown in Figure 5.11.

Detailed solution.

3–4–5 Polynomial cam

Units: mm, sec, rad

Rise Cam speed 

Rise and return interval rad

Dwell interval Cam position 

Begin rise End rise, begin dwell 

Begin return End return 

Rise time 

Follower position s (x) :=  h(10 #x3 - 15x4 + 6x5)

t1 :=  
a

v
   t1 = 0.05

u3 :=  u2+a  
u3

deg
= 285u2 :=  u1+b

u1 :=  u0+a   u1 = 2.094u0 :=  0

u :=  0, 
p

180
 . . 2pb :  = 45 

p

180

a :=   120 
p

180
 a = 2.094

v :=   
400p

30
 rad>sh :=  10
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Check BC’s 

Velocity 

Check BC’s 

Compare 

Acceleration:

Check BC’s 

Jerk:

Compare approximation 

Set to find maximum acceleration Estimate 
Max acceleration:

Compare approximation 

Define an interval function in terms of Heaviside step functions 
Then describe follower motion for a full rotation of the cam. Use an equation form

similar to Eqs. (5.20–5.23).

For a given set of motion requirements, we could select either a 3–4–5 polynomial cam
or a cycloidal cam. If we used the same follower system and equal base circles, it would
be nearly impossible to tell the cams apart. Some differences are apparent in the fol-
lower acceleration and jerk. Maximum acceleration occurs in the cycloidal cam fol-
lower at the quarter point of the rise—that is, at Other acceleration
extrema occur at the three-quarters point of the rise at and the one-quarter and three-
quarter points of the return. By setting in Sample Problem 5.4, we found the
first acceleration extremum at for the 3–4–5 cam. To compare the two types
of cam, we normalize the motion curves, an operation that is equivalent to setting

The result is shown in Figure 5.12. Note that the maximum accelera-
tion is higher for the cycloidal cam, but the maximum jerk is higher for the 3–4–5 cam.

Rise–Return–Dwell (RRD) Cams

Sometimes a top dwell is unnecessary because we want the cam follower to begin the
return as soon as it reaches its maximum position. One possible set of boundary condi-
tions for the rise is then

 s(0) = v(0) = a(0) = 0,

h = v = a = 1.

x = 0.211
jerk = 0

x = u>a = 1
4.

-  £(u - b).
H(u, a, b) :=  £(u - a)

amax :=  
v(.212) - v(.210)

.002
# v
a

   amax = 2.309 # 104

a(X) = 2.309 # 104X :=  root(j(x), x) X = 0.211
x :=  .25jerk = 0

j0 :=  
a(.001) - a(0)

.001
# v
a

  j0 = 4.786 # 106

j(0) = 4.8 # 106 j(.5) = -2.4 # 106 j(1) = 4.8 # 106

jerk :=  
v

a
# d
dx

 Bv2

a2
# h # (60 # x - 180 #  x2 + 120 #  x3)   R   j (x) :=  h     

#
     ¢v
a
≤3 #   (60 - 360x + 360x2)

a(0) = 0   a(1) = 0

acc :=  
v

a
# d
dx

 v (x)   a (x) :=  h # ¢v
a
≤2 # (60 # x - 180x2 + 120x3)

v(.5) = 375 vavg :=  
s(1) - s(0)

t1
   vavg = 200

v(1)=0v(0)=0

vel :=  
v

a
# d
dx

 s (x)   v (x) :=  h # v
a

# (30 # x2 - 60x3 + 30x4)

s (0) = 0   s (1) = 10

363



360 Chapter 5 Design and Analysis of Cam-and-Follower Systems

0.2

0
0 15 30 45 60 75 90 105 120 135 150 165 180

0.4

0.6

0.8

1
3-4-5 CYCLOIDAL CAMS

Cam angle (deg)

Fo
llo

w
er

 p
os

it
io

n

S(�)
S

C
(�)

�

deg

Cam angle (deg)

�

deg

Cam angle (deg)

�

deg

Cam angle (deg)

�

deg

�2
0 15 30 45 60 75 90 105 120 135 150 165 180

�1

0

1

2

Fo
llo

w
er

 v
el

oc
it

y

Fo
llo

w
er

 a
cc

el
er

at
io

n

V(�)

V
C
(�)

0

A(�)

A
C
(�)

0

J(�)

J
C
(�)

0

3-4-5
Cycloidal

�100
0 15 30 45 60 75 90 105 120 135 150 165 180

�50

0

50

100

Fo
llo

w
er

 je
rk

�10
0 15 30 45 60 75 90 105 120 135 150 165 180

�2.5

�5

�7.5

2.5

0

5

7.5

10

FIGURE 5.12 Follower position, velocity, acceleration and jerk. A 3–4–5 polynomial cam (solid line) is
compared with a cycloidal cam (short dashes).

and

A fourth-order polynomial in will satisfy the five boundary conditions. You
may want to determine the five arbitrary constants for the fourth-order RRD cam and
compare the follower motion with that for a 3–4–5 polynomial cam or a cycloidal cam.

Higher order polynomials for improved motion characteristics

Is it possible to make the cam follower motion smoother by using higher order poly-
nomials? Certainly, we can try. If we want an RRD cam, we can “design smart” by set-
ting at the top of the rise. Then, for equal rise and return intervals, we have a
single rise–return position equation that is symmetrical about Symmetry sug-
gests an even function—that is, we need only the even powers of the
rise–return position polynomial. The other motion curves have symmetry or antisym-
metry about . Next, we decide what the boundary conditions should be.
Remember that the number of arbitrary constants must equal the number of nontrivial

x = 0

s(-x) = s(x);
x = 0.

x = 0

x = u/a

 s(1) = h, v(1) = 0.
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boundary conditions. Some boundary conditions are redundant—already satisfied
because we constructed the position equation out of even powers only.

SAMPLE PROBLEM 5.5

Specifications for an Eighth-Order Rise–Return–Dwell Cam

We need a cam that meets the following follower-motion requirements:

• At the beginning of the rise and the end of the return,
• At the end of the rise, (There is no top dwell, and the acceleration is

unspecified.)

Suggest the form of a position equation that can satisfy these requirements. Find the arbitrary
constants, and plot the follower motion for a 15-mm rise.The cam speed is 1200 rpm, and the rise
and return intervals are each . The follower is to dwell for the remainder of the cycle.

Design decision. We will base the cam design on an eighth-order polynomial.

Solution summary. Let us take advantage of the rise–return symmetry by setting at the
end of the rise. Note that odd powers of the position polynomial are antisymmetric, so we will
leave them out. Then, the eighth-order polynomial has the form

where for the rise; for the return;
;

;
for the rise; for the return; and

for the dwell following the return.

The follower position equation is differentiated to obtain the velocity; again, remember the
chain rule:

Similar equations apply to the acceleration and the jerk. Two boundary conditions:

should be identically satisfied, but when you see a statement like this, it is best to check for your-
self, because books are not error-free. The remaining five boundary conditions give us the five
simultaneous equations we need to find the arbitrary constants. In matrix form, we have

where the X-matrix is a column vector of arbitrary constants as defined in the
detailed solution.

Solving for X, we find the five constants and substitute back into the position equation 
to get 

(5.27)s = h(1 - 4x2 + 6x4 - 4x6 + x8).

C0, C2 Á  C8,

AX = B,  or  X = A-1B,

v(0) = 0  and  j(0) = 0

v = ds/dt = (ds/dx) (dx/dt) = (v/a) (ds/dx).

2a … u … 2p

a … u … 2 a0 … u … a
u = cam position, 0 … u … 2p
a = rise interval = return interval

0 … x … 1x = (u - a)/a - 1 … x … 0

s = C0 + C2x
2 + C4x

4 + C6x
6 + C8x

8,

x = 0

105°

s = h and v = j = 0.
s = v = a = j = 0.
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362 Chapter 5 Design and Analysis of Cam-and-Follower Systems

After specifying the rise h, rise and return intervals type of follower, radius of the base circle,
etc., the manufacture of our eighth-order cam can be based on the equation

where the Heaviside step function turns off the rise–return equation at the
end of the return and start of the dwell.

Similar equations are used to plot the follower velocity, acceleration, and jerk for the spec-
ified cam speed. Note that there are no discontinuities in jerk at the transition points from dwell
to rise and return to dwell; at those points, Figure 5.13 shows the follower position,
velocity, acceleration, and jerk for the eighth-order polynomial cam.

Detailed solution. For the eighth-order polynomial cam, s is the follower position, is the cam
position, and is both the rise interval and the return interval.
We use even powers (an even function) for symmetry about 

Position

Velocity

Acceleration    a(x) :=  
v

a
# d
dx

# v
a

# ¢2 # C2
# x + 4 # C4

# x3 + 6 # C6
# x5 + 8 # C8

# x7≤

v(x) : v
a

# ¢2 # C2
# x + 4 # C4

# x3 + 6 # C6
# x5 + 8 # C8

# x7≤
v(x) :=   

v

a
# d
dx

  s(x)

s(x) :=  C0 + C2
# x2 + C4

# x4 + C6
# x6 + C8

# x8

x = 0:
a

u

jerk = 0.

u = 2a,£(u - 2a)

S = [1 - £(u-2a)] # s[(u-a)>a],

a,
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FIGURE 5.13 Follower position, velocity, acceleration, and jerk for an eighth-order polynomial cam.
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Jerk

Since is not equal to zero, we can apply the velocity, acceleration, and jerk boundary condi-
tions to the derivatives of s with respect to x (the terms in parentheses).
Boundary conditions at *; a unspecified; *
Boundary conditions at ;

Applying the five nontrivial boundary conditions yields the following equations:

These five equations can be expressed in matrix form as where

For h :=  15, the constants are

C0 :=X0 C0 = 15 C2 :=  X1 C2 = -60 C4 :=  X2 C4 = 90
C6 :=  X3 C6 = -60 C8 :=  X4 C8 = 15

X :=  E
h

-4 # h
6 # h

-4 # h
h

U

 X :=  A-1B X : E
h

-4 # h
6 # h

-4 # h
h

U  where X is defined as E
C0

C2

C4

C6

C8

U

B :=  E
h
0
0
0
0

UA :=  E
1 0 0 0 0
1 1 1 1 1
0 2 4 6 8
0 2 12 30 56
0 0 24 120 336

U

A X = B,

 24 # C4 + 120 # C6 + 336 # C8 :=  0

 2 # C2 + 12 # C4 + 30 # C6 + 56 # C8 :=  0

 2 # C2 + 4 # C4 + 6 # C6 + 8 # C8 :=  0

 C0 + C2 + C4 + C6 + C8 :=  0

 C0 :=  h

x = 1: s = 0; v = 0; a = 0; j = 0
j = 0x = 0: s = h; v = 0 

v/a

j(x) : v
3

a3
# ¢24 # C4

# x + 120 # C6
# x3 + 336 # C8

# x5≤

j(x) :=  
v

a
# d
dx

# v2

a2
# ¢2 # C2 + 12 # C4

# x2 + 30 # C6
# x4 + 56 # C8

# x6≤

a(x) : v
2

a2
# ¢2 # C2 + 12 # C4

# x3 + 30 # C6
# x4 + 56 # C8

# x6≤

* Satisfied identically due to form of s.
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The constants we have just found are substituted into the displacement equation:

Displacement for rise and return is 
where x ranges from to 1 as ranges from 0 to 

There is a dwell between and 

We can turn off the equation with a Heaviside step function. Let

Displacement 

Velocity

Acceleration

Jerk

5.7 ANALYTICAL CAM DESIGN BASED ON THE THEORY OF ENVELOPES

Suppose we know where we want the follower for each cam position. Suppose also
that, for a cam operating at high speeds, we have satisfied the boundary conditions nec-
essary to avoid shock loading. Is this information sufficient to generate a cam (or a
prototype cam) using numerically controlled (NC) or computer numerically controlled
(CNC) machinery? The answer is no: We need to make some design decisions, includ-
ing the following:

• type of follower we want
• follower offset (if any)
• cam base circle
• other decisions based on forces on the cam-and-follower system, including iner-

tial loading

j(x) :=  
v3

a3
# (24 # C4

# x + 120 # C6
# x3 + 336 # C8

# x5) J(u) :=  (1 - £(u-2a)) # j¢ u-a
a
≤

a(x) :=  
v2

a2
# (2 # C2 + 12 # C4

# x2 + 30 # C6
# x4 + 56 # C8

# x6)   A(u) :=  (1 - £(u-2a)) # a¢ u-a
a
≤

v(x) :=  
v

a
# (2 # C2

# x + 4 # C4
# x3 + 6 # C6

# x5 + 8 # C8
# x7) V(u) :=  (1 - £(u-2a)) # v¢ u-a

a
≤

S(u) :=  (1 - £(u-2a)) # s¢ u-a
a
≤

v :=  1200 
p

30
 a :=  

105 # p
180

 u :=  0, 
p

180
 .. 2p

u = 2pu = 2 a

2 au-1
s(x) :=  h # (1 - 4x2 + 6x4 - 4x6 + x8),
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But suppose the design decisions are wrong? Can we find that out before we manufac-
ture an unsatisfactory cam? Here are some ways we can check our design:

• Sketch the cam with drafting materials as discussed earlier. If there are abrupt
changes in curvature, the actual follower motion will not be as prescribed.

• Use a commercially available computer-aided design (CAD) program for cams,
possibly integrated with a computer-aided manufacturing (CAM) program.

• Use the theory of envelopes. An introduction to that advanced topic and some
simple examples follow.

Theory of Envelopes

The process of analytically generating a profile for a disk cam closely parallels the
graphical approach that has been presented. As in the graphical approach, the desired
positions of the follower are determined for an inversion of the cam-and-follower sys-
tem in which the cam is held stationary.The cam that will produce the desired motion is
then obtained by fitting a tangent curve to the follower positions. The analytical
approach, however, can contemplate a virtually unlimited number of continuous fol-
lower positions, as opposed to a finite number of discrete positions in a graphical layout.

The basis for the approach is the theory of envelopes, from calculus. Consider the
series of follower positions shown in Figure 5.14a.The follower is depicted as a circular
roller follower. However, any shape of follower including a flat face, can be considered.
The set of all follower positions describes a family of curves, circles in this case. The
boundary of the family of follower curves is referred to as the envelope and is the cam
profile. Notice that, in this example, the envelope consists of two curves, indicating that
there are two possible cam profiles: an inner profile and an outer profile. The mathe-
matical theory for determining the envelope is described in the paragraphs that follow.

A family of curves in the xy-plane can be expressed mathematically as

(5.28)

where is called the parameter of the family. distinguishes the member curves from
one another, and for a particular value of , Eq. (5.28) defines one member of the fam-
ily of curves. For example, in Figure 5.14a, the parameter represents the location of
the center of the constant-radius circular follower. In Figure 5.14b, two member curves,
corresponding to arbitrary parameter values and are shown. It can be seen that
points lying on the envelope also lie on the curves, and therefore, the x- and y-coordi-
nates of the envelope must satisfy Eq. (5.28).

Consider the following equation involving the partial derivative of function F
with respect to parameter 

(5.29)

Equation (5.29) represents a second family of curves with parameter It can be
shown that each member curve of that equation intersects the corresponding member of
Eq. (5.28) at the envelope. Therefore, the simultaneous solution of Eqs. (5.28) and (5.29)

l.

0F

0l
(x, y, l) = 0.

l:

l2,l1

l

l

ll

F(x, y, l) = 0,
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Outer envelope or profile

Inner envelope or profile

Cam follower

(a)

(b)


 F



(x, y, �1)� 0
F(x, y, �1)� 0

F(x, y, �2)� 0


 F



(x, y, �2)� 0

Envelope

y

x

� �

FIGURE 5.14 (a) The family of circles represents the positions of a
roller follower as it moves relative to a cam. The boundary, or envelope,
of this family of curves is therefore the cam profile. (b) The mathemati-
cal basis for describing the cam profile by means of the theory of
envelopes is shown.

defines the envelope.This solution is found either by eliminating the parameter or by
expressing x and y in terms of 

SAMPLE PROBLEM 5.6

The Envelope of a Family of Circles

Figure 5.15 contains a family of circles, each having a radius of 1.0 and a center lying on a line
in the xy-plane. Determine the envelope of this family of curves.

Solution. The curves can be expressed mathematically as

(5.28a)

where a particular value of defines a circle of radius 1.0 centered at point 
Equation (5.29) takes the form

(5.29a)
0F

0l
(x, y, l) = -2(x - l) - 2(y - l) = 0.

y = l.x = l,l

F(x, y, l) = (x - l)2 + (y - l)2 - 1 = 0,

45°

l.
l
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x

y

Envelope y � x � 

�     2

�     2

2

2

Envelope y � x �

�

�

1.0 45

x � � � 1
2

x � � � 1
2

x � � � 1
2

x � � � 1
2 FIGURE 5.15 A family of circles,

each having a radius of 1.0 and a
center lying on the line As
shown, the envelope of this family
of curves consists of two straight
lines.

y = x.

From Eq. (5.29a), we obtain

Substituting into Eq. (5.28a) yields

and solving for y, we have

This equation defines the envelope: a pair of straight lines with slopes and y-intercepts of
and as shown in Figure 5.15.
Alternatively, the envelope can be found in parametric form as a function of From Eq.

(5.29a), we get

Substituting into Eq. (5.28a) and solving for x, we have

and then

y = l < A1
2

 .

x = l ; A1
2

y = 2l-x.

l.
-22,+22

45°

y = x ; 22.

Bx - ¢x + y

2
≤ R2

+ By - ¢x + y

2
≤ R2

- 1 = 0.

l =
x + y

2
 .
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Substituting a range of values for we readily see that these equations define the same enve-
lope given previously and shown in Figure 5.15.

The sections that follow present the application of the theory of envelopes to common
cam-follower types.

Disk Cam with Translating Flat-Faced Follower

A cam with a translating flat-faced follower is shown in Figure 5.16. The figure depicts
an inversion of the cam-and-follower mechanism wherein the cam is fixed and the fol-
lower moves relative to it. In normal operation, the cam would rotate and the follower
would translate in a guideway along the y-axis. In either case, the relative motion
between cam and follower is the same. The cam, having base-circle radius is
assumed to rotate in the clockwise direction under normal operation. Thus, for a cam
rotation the follower will rotate counterclockwise relative to the cam through angle

while experiencing a translational displacement s, as shown in the figure. In this and
the sections that follow, it is assumed that the follower displacement is a known func-
tion of the cam angle, as would be true in an actual design situation.

The equation of the family of straight lines (the follower face) generating the
cam profile envelope is given by

(5.30)y = mx + b,

u

u,

rb,

l,

�

�

Direction of cam
rotation

y

x

s

l

Q

P

rb
FIGURE 5.16 A disk cam with a
translating flat-faced follower. The
figure shows the motion of the fol-
lower relative to the cam. This
motion consists of follower transla-
tion s during cam rotation Point P
is the point on the follower face
coinciding with the follower center-
line, and point Q is the instanta-
neous point of contact between the
cam and follower.

u.
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where m is the slope and b is the y-intercept of the line.The origin of the xy-coordinate
system is positioned at the center of the base circle, which is also the pivot point of the
cam. From inspection of Figure 5.16, we see that

The coordinates of point P, the intersection of the face of the follower and its axis, are
given by

(5.31)

and

(5.32)

where s, the displacement of the follower, is a prescribed function of cam angle Point
P is on the line described by Eq. (5.30). Substituting Eqs. (5.31) and (5.32) into Eq. (5.30)
and solving for b, we have

and Eq. (5.30) becomes

Rearranging terms, we find that the family of straight lines (follower positions) gener-
ating the cam profile envelope is given by

(5.33)

where is the parameter of the family; that is, each value of represents a different fol-
lower position and corresponding straight line.

Differentiating Eq. (5.33) yields

(5.34)

where the quantity can be evaluated from the known displacement function.
Solving Eqs. (5.33) and (5.34) simultaneously leads to the following expressions for the
cam profile coordinates:

(5.35)x = -(rb + s)sin u -  
ds

du
 cos u

ds/du

0F

0u
= -y sin u -  x cos  u -  

ds

du
= 0,

uu

F(x, y, u) = y cos u -  x sin u -  rb - s = 0,

y =
x sin u + (rb + s)

cos u
     .

b =
(rb + s)

cos u
 ,

u.

y = (rb + s)cos u,

x = -(rb + s)sin u

m = tan u.
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and

(5.36)

Equations (5.35) and (5.36) give the coordinates of the cam-and-follower contact point
(point Q in Fig. 5.16) for cam angle The distance l between points P and Q is the per-
pendicular distance from the follower centerline to the contact point. From Eqs. (5.31),
(5.32), (5.35), and (5.36), we obtain

(5.37)

The maximum value of l can be used in determining dimensions for the follower face.
Equation. (5.37) can be rewritten as

(5.38)

which is the translational follower velocity divided by the rotational cam velocity.Thus,
for a cam with constant angular velocity, the maximum value of l occurs when the fol-
lower velocity is at a maximum. It is noteworthy that l is independent of the base-circle
radius 

SAMPLE PROBLEM 5.7

Design of a Disk Cam with a Translating Flat-Faced Follower

Design a disk cam to produce the following motion of a translating flat-faced follower: a rise
through distance h with simple harmonic motion during of rotation, followed by a return,
also with simple harmonic motion, during the remaining of cam rotation.

Solution. For this special case, simple harmonic follower motion is given by

where and the equation holds for both the rise and return motions. The derivative of dis-
placement s with respect to is

Substituting into Eqs. (5.35) and (5.36) yields the following expressions for the cam profile
coordinates:

and

  y = ¢rb +
h

2
≤cos u -

h

2
 .

  x = - ¢rb +
h

2
≤sin u

ds

du
= ¢h

2
≤sin u.

u

a = p

s =
h

2
- ¢h

2
≤  cos u,

180°
180°

rb.

l =
ds

dt
 
dt

du
=
y

v
 ,

l = 2(xP - xQ)2 + (yP - yQ)2 =
ds

du
 .

u.

y = (rb + s)cos u -  
ds

du
 sin u
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Cam profile

Base circle

Follower

y

x

h/ 2

(r b �
 h/2)

r b

FIGURE 5.17 The cam and follower of Sample Problem 5.7.
The cam profile in this case is an offset circle, which will
produce simple harmonic rise and return motion of the
follower.

Alternatively, these equations can be rearranged to eliminate leading to

It can be seen that, given a base-circle radius the cam profile is a circle with center at
and a radius equal to From Eq. (5.37),

which has a maximum absolute value of h/2 when equals and . Thus, the width of the
follower face should be made greater than h. Figure 5.17 shows the offset circular cam that will
produce the prescribed motion.

SAMPLE PROBLEM 5.8

Design of a Disk Cam with a Translating Flat-Faced Follower (to produce a different motion 
pattern).

Design a disk cam to produce the following motion of a translating flat-faced follower: a dwell
during of cam rotation, a 2-in rise with parabolic motion during the next of rotation, a150°30°

270°90°u

l =
ds

du
= ¢h

2
≤  sin u,

rb + h / 2.(x = 0, y = -h/2)
rb,

x2 + ¢y +
h

2
≤2

= ¢rb +
h

2
≤2

.

u,
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y

x

Cam profile

CAM ANGLE x COORDINATE y COORDINATE

1
11
21
31
41
51
61
71
81
91

101
111
121
131
141
151
161
171
181
191
201
211
221
231
241
251
261
271
281
291
301
311
321
331
341
351

�0.05236
�0.57243
�1.07511
�1.56267
�2.15141
�2.66160
�3.07945
�3.39105
�3.58230
�3.63926
�3.54859
�3.37396
�3.13631
�2.79649
�2.35896
�1.83482
�1.24093
�0.59879

0.08729
0.95407
1.79187
2.57522
3.28032
3.88576
4.35378
4.54998
4.67030
4.70664
4.64644
4.47496
4.17852
3.74805
3.18239
2.49063
1.69289
0.81947

2.99954
2.94488
2.80074
2.56116
2.13334
1.60483
0.98491
0.28425

�0.48454
�1.30640
�2.16325
�2.80082
�3.28674
�3.75364
�4.17560
�4.52876
�4.79293
�4.95290
�4.99924
�4.90813
�4.66789
�4.28582
�3.77352
�3.14657
�2.45819
�2.01720
�1.53317
�1.00603
�0.43967

0.15550
0.76141
1.35251
1.89769
2.36350
2.71813
2.93559

FIGURE 5.18 (a) Cam profile coordinates and layout for Sample Problem 5.8.

second dwell during the next of rotation, and a 2-in return with simple harmonic motion dur-
ing the final of cam rotation. The base-circle radius is to be 3 in.

Solution. Figures 5.18a and 5.18b show the results of a typical computer program used to
generate the required cam profile. Such a program would include analytical expressions for
profile coordinates and follower motions. In this example, equations for simple harmonic
motion and parabolic motion have been combined with Eqs. (5.35) and (5.36) to produce the
results shown.

Figure 5.18a lists some of the computed profile coordinates and shows a computer-gener-
ated drawing of the cam and follower. Figure 5.18b contains computer graphics plots of the fol-
lower displacement, velocity, and acceleration corresponding to the prescribed motion for a
complete cam rotation. It can be seen that the prescribed pattern of motion is not acceptable for
high-speed operation.

120°
60°
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Follower velocity versus cam angle

Follower displacement versus cam angle

Follower acceleration versus cam angle

Base radius:     3.0000
Type of motion and follower type:     Tran flat
Number of segments:     4
Motion Degrees Displacement
DWLL
PRAB
DWLL
SMHM

30
150
60

120

0.
2.000
0.

�2.000

FIGURE 5.18 (b) Follower displacement, veloc-
ity, and acceleration for Sample Problem 5.8.

Disk Cam with Translating, Offset Roller Follower

The configuration for the disk cam with a translating, offset roller follower type is
shown in Figure 5.19. The follower has a roller of radius and an eccentricity, or offset,
e; radial follower motion is a special case of this configuration in which offset As
before, the base-circle radius is and the follower displacement is s, which is a pre-
scribed function of cam angle 

The equation for the family of circles described by the follower roller is

(5.39)

where and are the x- and y-coordinates, respectively, of the roller center c. For the
arbitrary position shown in Figure 5.19 corresponding to cam angle 

(5.40)xc = -(rb + rf)sin(u + b) - s sin u

u,
ycxc

F(x, y, u) = (x - xc)
2 + (y - yc)

2 - rf
2 = 0,

u.
rb,

e = 0.
rf
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Direction of cam
rotation

y

x

�



�




�

rb � rf

rb

rf

e

e

c

Q

s

FIGURE 5.19 A disk cam with a translating, offset roller follower. Angle is a func-
tion of the base-circle radius the roller radius and the offset e. Angle is the
pressure angle. The follower translates through distance s as the cam rotates through
angle u.

frf,rb,
b

and

(5.41)

where

(5.42)

Substituting Eqs. (5.40) and (5.41) into Eq. (5.39), we have

(5.43)

From Eq. (5.39), the partial-derivative equation is

(5.44)
0F

0u
= -2(x - xc) 

dxc

du
- 2(y - yc) 

dyc

du
= 0,

  + [y - (rb + rf)cos (u + b) - s cos u]2 - rf
2 = 0.

  F(x, y, u) = [x + (rb + rf)sin(u + b) + s sin u]2

b = arcsin¢ e

rb + rf
≤ .

yc = (rb + rf)cos (u + b) + s cos u,
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where, from Eqs. (5.40) and (5.41),

(5.45)

and

(5.46)

Solving Eqs. (5.39) and (5.44) simultaneously gives the coordinates of the cam profile:

(5.47)

(5.48)

Note the plus-or-minus sign in Eqs. (5.47) and (5.48). This reflects the fact that there are
two envelopes: an inner profile (shown in Figure 5.19) and an outer profile.Also, observe
that the plus sign in Eq. (5.47) goes with the minus sign in Eq. (5.48) and vice versa.

Pressure Angle

A mathematical expression can also be derived for the pressure angle (See Figure
5.19.) Recall that the pressure angle is defined as the angle between the common nor-
mal at the cam–follower contact point and the line of travel of the follower. The com-
mon normal is the straight line passing through the contact point Q(x, y) [see Eqs. (5.47)
and (5.48)] and the roller center [see Eqs. (5.40) and (5.41)]. The angle that
the common normal makes with the x direction is given by

Angle can also be expressed in terms of the pressure angle and the cam angle as

Therefore, equating the two expressions for we find that the pressure angle is

(5.49a)

This equation is based on the inner-envelope cam profile coordinates. The pressure
angle for the outer envelope is equal to that for the inner envelope.As discussed earlier,
the pressure angle is an important design characteristic in cam-and-follower systems.

f =
p

2
+ u - arctan¢ yc - y

xc - x
≤ .

c,

c =
p

2
+ u -  f.

ufc

c = arctan¢ yc - y

xc - x
≤ .

cc(xc, yc)

f.

y = yc < rf¢dxc

du
≤ B ¢dxc

du
≤2

+ ¢dyc

du
≤2R-1/2

.

x = xc ; rf¢dyc

du
≤ B ¢dxc

du
≤2

+ ¢dyc

du
≤2R-1/2

;

dyc

du
= -(rb + rf)sin(u + b) - s sin u +

ds

du
 cos u.

dxc

du
= -(rb + rf)cos(u + b) - s cos u-

ds

du
 sin u
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A useful relationship between the pressure angle and the cam dimensions can
be derived from Eq. (5.49a). Rewriting that equation, we have

from which it follows that

Substituting Eqs. (5.47) and (5.48) for

where the prime notation denotes differentiation with respect to angle (i.e.,
etc.). The derivatives and are given by Eqs. (5.45) and (5.46), and

upon substitution, we obtain

Employing trigonometric identities, this equation reduces to the form

But from Eq. (5.42),

and therefore,

Finally, making the latter two substitutions, we have the desired relationship:

(5.49b)

Given a required follower displacement function s and a limit on how large the pres-
sure angle can be, Eq. (5.49b) can be used to size the cam base circle, the roller
radius, and the follower offset. Note that the equation also applies to the case of zero
offset (e = 0).

f

tan f =
s¿ -  e

s + 2(rb + rf)2 - e2
 .

cos b = 41 - sin2 b = C1 - ¢ e

rb + rf
≤2

.

sin b =
e

rb + rf
 ,

sin f
cos f

= tan f =
s¿ -  (rb + rf) sin b

s + (rb + rf) cos b
 .

tan (u -  f) =
sin (u -  f)

cos (u -  f)
=

(rb + rf) sin (u + b) + s sin u -  s¿cos u

(rb + rf) cos(u + b) + s cos u + s¿ sin u
 .

yc
œxc

œxc
œ = dxc /du,

u

tan(u -  f) = - ¢ ;yc
œ

<xc
œ ≤ =

yc
œ

xc
œ  ,

tan(u -  f) = - ¢x - xc

y - yc
≤ .

yc - y

xc - x
= tanBp

2
+ (u -  f)R = -cot (u -  f) =

-1
tan(u -  f)

,

f
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The analytical cam synthesis equations derived in this section for a translating
roller follower, as well as those equations derived for other types of follower, are most
effectively implemented in design practice through the use of a digital computer or a
programmable calculator. The intention of the examples that follow is to illustrate the
type of computation that would be performed at a relatively large number of positions
in such a process.

SAMPLE PROBLEM 5.9

Disk Cam with a Translating Roller Follower

One segment of a prescribed cam-and-follower motion calls for a lift of 30 mm with cycloidal
motion during cam rotation from to The disk cam base-circle radius is 40 mm.
The follower is a translating roller follower with a roller radius of 10 mm and an offset of 20 mm.
Determine the profile coordinates and the pressure angle corresponding to a cam angle of

Solution. Applying the equation for cycloidal motion, we have

where and leading to the relationship

Differentiating with respect to yields

When ,

or

From Eq. (5.42),

Now the quantities and can be determined from Eqs. (5.40), (5.41), (5.45), and
(5.46), respectively:

 yc = (40 + 10) cos (60° + 23.6°) + 24.13 cos 60° = 17.64 mm;

xc = -(40 + 10) sin(60° + 23.6°) - 24.13 sin 60° = -70.59 mm;

yc
œxc, yc, xc

œ ,

b = arcsin¢ 20
40 + 10

≤ = arcsin(0.4) = 23.6°.

s¿ = ¢60
p
≤ - ¢60

p
≤cos ¢4p

3
≤ = 28.65 mm/rad.

s = ¢60
p
≤  ¢p

3
≤ - ¢15

p
≤sin ¢4p

3
≤ = 24.13 mm,

u = 60° = p/3 rad

s¿ =
ds

du
=

60
p

- ¢60
p
≤cos 4u.

u

s = ¢60
p
≤u- ¢15

p
≤  sin 4u.

a = p/2 rad,h = 30 mm

s = ¢h
a
≤u - ¢ h

2p
≤sin¢2pu

a
≤ ,

u = 60°.

u = 90°.u = 0
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Substituting these values into Eqs. (5.47) and (5.48), we have the profile coordinates:

Inspection of these results shows that the coordinates of the contact point on the inner profile
corresponding to this cam angle are

and the outer-profile coordinates are

The complete cam profile can be generated by repeating the foregoing procedure over the total
range of angle 

The pressure angle is obtained from either Eq. (5.49a) or Eq. (5.49b). From the first of
these equations,

where the quadrant of the arctangent function was determined from the signs of the numerator
and denominator. As a check, using Eq. (5.49b), we find that

so that

This pressure angle may be acceptable. However, the pressure angle varies with position, so the
value is probably not the maximum that occurs during the overall motion.

SAMPLE PROBLEM 5.10

Translating Roller Follower with Zero Offset

Repeat Sample Problem 5.9, but with a follower offset of zero (i.e., the follower is a radial 
follower).

Solution. As before, at the values of the displacement and its derivative are
and But now, because Therefore, from e = 0.b = 0,s¿ = 28.65 mm/rad.s = 24.13 mm

u = 60°

7.0°

f = 7.0°.

tan f =
28.65 - 20

24.13 + 2(40 + 10)2 - (20)2
= 0.124,

 = 150° - arctan¢ 6.02
-7.98

≤ = 150° - 143.0° = 7.0°,

 f = 90° + 60° - arctanB 17.64 - 11.62
-70.59 - (-62.61)

R

u.

x = -78.57 mm and y = 23.66 mm.

x = -62.61 mm and y = 11.62 mm,

(u = 60°)

y = 17.64 < 10(-42.45)[(-42.45)2 + (-56.26)2]1/2 = 23.66, 11.62.
 = -78.57, -62.61

x = -70.59 ; 10(-56.26)[(-42.45)2 + (-56.26)2]-1/2

 = 28.65 cos 60° = -56.26 mm/rad.
 yc

œ = -(40 + 10)sin(60° + 23.6°) - 24.13  sin 60°
 - 28.65 sin 60° = -42.45 mm/rad;

 xc
œ = -(40 + 10)cos (60° + 23.6°) - 24.13 cos 60°
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Eqs. (5.40), (5.41), (5.45), and (5.46),

and

This leads to the following profile coordinate values from Eqs. (5.47) and (5.48):

The inner-profile coordinates are and and the outer-profile
coordinates are and

The pressure angle is calculated from Eq. (5.49b):

so that

Note that, whereas the value of the pressure angle for the offset case is less than 
just obtained, it should be realized that there may be other parts of the cam mechanism cycle
wherein the offset arrangement has higher pressure angle values than the radial arrangement.
However, the offset configuration may be designed to utilize the pressure angle advantage dur-
ing that portion of the cycle when loads are large and, in turn, when side forces in the follower
guideway are most critical (especially during the follower lift). Note also that the follower may
be offset either to the left, as in Figure 5.19, or to the right, in which case e would have a negative
value.

Disk Cam with Rotating Flat-Faced Follower

The oscillating, or pivoted, flat-faced follower is shown in Figure 5.20, where the vari-
ous parameters are defined. The family of follower positions is a set of straight lines.

The equation for the family of lines that determine the envelope is the same as
Eq. (5.30):

From Figure 5.20, the slope is given by

(5.50)

where is the angular displacement of the follower and b = arcsin¢ rb + e

rc
≤g

m = tan(u -  b -  g),

y = mx + b.

21.1°(f = 7.0°)

f = 21.1°.

tan f =
28.65 - 0

24.13 + 2(40 + 10)2 - (0)2
= 0.386,

y = 44.84 mm.x = -70.48 mm
y = 29.27 mm,x = -57.92 mm

 y = 37.06 < 10(-61.87)[(-61.87)2 + (-49.88)2]-1/2 = 44.84, 29.27.
 = -70.48, - 57.92;

 x = -64.20 ; 10(-49.88)[(-61.87)2 + (-49.88)2]-1/2

 yc
œ = -50 sin60° - 24.13sin60° + 28.65cos60° = -49.88 mm/rad,

 xc
œ = -50 cos60° - 24.13 cos60° - 28.65 sin60° = -61.87 mm/rad,

 yc = 50 cos60° + 24.13 cos 60° = 37.06 mm,
 xc = -50 sin60° - 24.13 sin60° = -64.20 mm,
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FIGURE 5.20 A disk cam with a rotating flat-faced follower. The motion of the fol-
lower consists of rotation during cam rotation Angle is a function of the base-
circle radius the distance between the centers of rotation of the cam and follower,
and the perpendicular distance e from the follower pivot to point P on the extension of
the follower face.

rcrb,
bu.g

is the initial follower angle. In a typical design situation, follower displacement would
be a prescribed function of cam angle The coordinates of point P on the extension of
the follower face are

(5.51)

and

(5.52)

Substituting Eqs. (5.50), (5.51), and (5.52) into Eq. (5.30) and solving for b yields

b = rc sin u -  e cos A - (rc cos u + e sin A) tan A,

y = rc sin u-e cos(u -  b -  g).

x = rc cos u + e sin(u -  b -  g)

u.
g
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where

Then

(5.53)

The partial-derivative expression is

(5.54)

where

Solving Eqs. (5.53) and (5.54) simultaneously gives the following profile coordinates:

(5.55)

(5.56)

Disk Cam with Rotating Roller Follower

The family of circles for the disk cam with a rotating roller follower is expressed by
Eq. (5.39):

The parameters are defined as shown in Figure 5.21: is the length of the follower
arm, is the roller radius, is the distance between the center of cam rotation and the
follower pivot, and is the follower angular displacement, which is a prescribed func-
tion of cam angle From the figure, it can be seen that the coordinates of the center c
of the roller are

(5.57)

and

(5.58)y = rc sin u -  ra sin (u -  b -  g),

x = rc cos u -  ra cos (u -  b -  g)

u.
g

rcrf

ra

F(x, y, u) = (x - xc)
2 + (y - yc)

2 - rf
2 = 0.

 y = -e cos A + rcB  sin u -  
 sin A cos (u -  A)

dA /du
R .

 x = e sin A + rcB  cos u -  
 cos A cos (u -  A)

dA/du
R ;

dA

du
= 1 -

dg

du
 .

 - rc cos u -  e sin A #  
dA

du
 ,

 
0F

0u
= ¢ -rc sinu + e cos A # dA

du
≤  tan A + (rc cos u + e sin A - x)sec2 A #  

dA

du

 = 0.
 F(x, y, u) = y + (rc cos u + e sin A - x) tan A - rc sin u + e cos A

A = u -  b -  g.
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FIGURE 5.21 A disk cam with a rotating roller follower. The motion of the fol-
lower consists of rotation during cam rotation Initial follower angle is a func-
tion of the base-circle radius the roller radius the center distance between
the cam and follower pivots, and the length of the follower arm.ra

rcrf,rb,
bu.g

where the initial follower angle is determined by the law of cosines, viz.,

The solution parallels that for the translating roller follower given earlier, and the cam
profile coordinates are

and

where and are given by Eqs. (5.57) and (5.58), respectively, and

(5.59)
dxc

du
= -rc sin u + ra¢1 -

dg

du
≤  sin (u -  b -  g)

ycxc

y = yc < rf¢dxc

du
≤ B ¢dxc

du
≤2

+ ¢dyc

du
≤2R-1/2

,

x = xc ; rf¢dyc

du
≤ B ¢dxc

du
≤2

+ ¢dyc

du
≤2R-1/2

b = arccosB ra
2 + rc

2 - (rb + rf)2

2rarc
R .

b
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and

(5.60)

As in the previous case of a roller follower, there are two envelopes, designated by the
plus and minus signs in the coordinate equations, representing inner and outer cam
profiles.

Cam Curvature

Another important factor affecting cam size and performance is the cam curvature.
If not limited by the pressure angle or some other consideration, the minimum size
that a cam can have for a given application will be dictated by the cam curvature. As
one attempts to make the base-circle radius, and therefore the cam, smaller, both the
graphical and analytical approaches may show the presence of cusps in the cam pro-
file. Obviously, such a cam will not perform satisfactorily. However, there are other
less obvious situations in which the curvature can adversely affect the cam’s perfor-
mance, and these situations can be identified more readily by the analytical
approach.

From calculus, the parametric expression for the radius of curvature of a curve
confined to the xy-plane is

(5.61)

The interpretation of the sign of Eq. (5.61) is as follows: In moving along the curve in
the direction corresponding to increasing values of the parameter if the sign of is
positive, then the center of curvature is along the perpendicular to the curve on the
left side, whereas if the sign of is negative, then the center of curvature of the curve
is to the right. A straight-line portion of a curve has an infinite radius of curvature,
and a cusp has a radius of curvature equal to zero. A change of sign for indicates a
transition from a convex portion of the curve to a concave portion, or vice versa. (See
Figure 5.22.) Equation. (5.61) can be utilized in examining the cam curvature for any
of the types of follower that have been considered. The sections that follow show the
application of the equation to translating follower systems.

Translating Flat-Faced Follower

The radius of curvature of the cam profile in a translating flat-faced follower system is
obtained by substituting Eqs. (5.35) and (5.36) into Eq. (5.61). The various derivatives
are as follows: From Eq. (5.35),

 
dx

du
= - ¢rb + s +

d2s

du2 ≤  cos u

r

r

ru,

r =
[(dx /du)2 + (dy /du)2]3/2

(dx /du) (d2y /du2) - (dy /du) (d2x /du)
 .

dyc

du
= rc cos u -  ra¢1 -

dg

du
≤  cos  (u -  b -  g).
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Straight line
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Direction of
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FIGURE 5.22 Various cases of the radius of curvature, for a cam profile.r,

and

From Eq. (5.36),

and

Substituting into Eq. (5.61) yields

(5.62)

It can be seen from Eq. (5.62) that the radius of curvature of the cam is dependent on
the base-circle radius and the prescribed follower motion. Figure 5.22 shows a cam
profile depicting various cases of as given by Eq. (5.62).

Obviously, cusps are to be avoided; in other words, the condition should
not occur. Furthermore, the flat-faced follower will not operate properly on a concave
portion of a cam profile.Therefore, from Eq. (5.62), the cam should be designed so that
the following inequality is maintained at all points on the profile:

(5.63)rb + s +
d2s

du2 7 0.

r = 0
r,

r = rb + s +
d2s

du2 .

 
d2y

du2 = - ¢rb + s +
d2s

du2 ≤  cos u -  ¢ ds

du
+

d2s

du3 ≤  sin u.

 
dy

du
= - ¢rb + s +

d2s

du2 ≤  sin u

 
d2x

du2 = ¢rb + s +
d2s

du2 ≤  sin u -  ¢ ds

du
+

d3s

du3 ≤  cos u.
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Given the desired follower motion s, the inequality of Eq. (5.63) can be used to deter-
mine an acceptable value for the base-circle radius. In this way, much of the trial-and-
error process inherent in graphical cam layout can be avoided.

SAMPLE PROBLEM 5.11

Cam Curvature in a Flat-Faced Follower System

Determine the minimum allowable base-circle radius based on curvature for the cam design of
Sample Problem 5.8. Recall that the motion requirements for the translating flat-faced follower
in that problem were a dwell during of cam rotation, a 2-inch rise with parabolic motion dur-
ing the next of rotation, a second dwell during the next of rotation, and a 2-inch return
with simple harmonic motion during the remaining of the cam rotation cycle.

Solution. We will determine the minimum value of the quantity (where the prime
notation refers to differentiation with respect to ) over the entire cam cycle and then use the
inequality of Eq. (5.63) to size the base circle. This will be accomplished by analyzing the four
prescribed motion segments separately.

First we consider the dwell. Here, and therefore, throughout this seg-
ment. A dwell period corresponds to a circular cam profile arc with a constant radius of curva-
ture, which here is equal to the base-circle radius.

Next, we examine the parabolic rise. Note that the designation of a particular cam position
as the zero-angle position is arbitrary. For convenience in analyzing this motion seg-
ment, we will assume that corresponds to the beginning of the rise. For in and

for the first half of the rise,

and

Obviously, Q will be greater than zero within the first half of the parabolic rise, and we need not
pursue this case any further.

For the second half of the rise, we have

and

Q = -3.17 + 3.06u - 0.584u2.

 s– = -1.17,
 s¿ = 3.06 - 1.17u,

 s = hB -1 + ¢ 4
a
≤u- ¢ 2

a2 ≤u2R = -2 + 3.06u - 0.584u2,

Q = 0.584u2 + 1.17.

 s– = 1.17,
 s¿ = 1.17u,

 s = ¢2h

a2 ≤u2 = B 2(2)

(5p / 6)2Ru2 = 0.584u2,

a = 5p/6 rad (150 degrees)
h = 2u = 0

(u = 0)

Q = 0s = s– = 0,

u

Q = s + s–

120°
60°150°

30°
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Examining the associated range of ( to ), we see that the minimum value of Q
occurs at and is

Now we look at the second dwell. As with the first dwell, Q is constant within this range, with a
value of 

Finally, we consider the simple harmonic return. Once again, for convenience, we will
assume that a cam angle of indicates to the beginning of the return motion. The follower
position is  at and at

Thus,

Substituting values ( and ) and differentiating, we have

and

By inspection, the minimum value of Q for this segment occurs at and is

Therefore, the minimum value of Q over the entire motion is , and from the inequality of
Eq. (5.63), we obtain

which indicates that the minimum limit for the base-circle radius is 

Translating Roller Follower

Generally, the curvature of the pitch curve is analyzed in considering roller followers.
The equation for the radius of curvature of the pitch curve is easier to obtain than that
of the cam profile, and, as will be seen, the necessary design conditions can be
expressed in terms of the pitch curve. The radius of curvature of the pitch curve of a
translating roller follower can be determined from Eqs. (5.40), (5.41), and (5.61).

Consider the special case of a radial follower whose offset Then, from Eq.
(5.42), and the pitch curve coordinates, Eqs. (5.40) and (5.41), are

 xc = -(rb + rf + s) sin u

b = 0,
e = 0.

rb = 0.25  in.

rb + (-0.25) 7 0,

(-0.25)

Q = 1 - 1.25 = -0.25.

u = 0

Q = s + s– = 1 - 1.25 cos 1.5u.

 s– = -2.25 cos 1.5u,
 s¿ = -1.5 sin 1.5u,
 s = 1 + cos 1.5u,

a = 2p/3, or 120°h = 2

s = h - Bh

2
- ¢h

2
≤  cos ¢p

a
u≤ R =

h

2
+ ¢h

2
≤cos ¢p

a
u≤ .

u = a.s = 0u = 0s = h
u = 0

Q = s + s– = 2 + 0 = 2.

Q = -3.17 + 3.06(1.31) - 0.584(1.31)2 = -0.164.

u = 1.31
u = 2.62u = 1.31u
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and

The derivatives are

and

Substituting into Eq. (5.61), we have the radius of curvature for a radial roller follower:

(5.64)

Here, is the radius of curvature of the pitch curve, where a positive value refers to a
convex portion of the curve and a negative value refers to a concave portion, based on
the previous definition of parameter 

Roller followers may move along concave cam profiles as well as convex cam
profiles. The two cases are depicted in Figure 5.23. For the convex case, the absolute
value of the radius of curvature, of the cam profile is

ƒr ƒ = rP - rf.

r,

u.

rp

rp =
[(rb + rf + s)2 + (ds/du)2]3/2

(rb + rf + s)2 + 2(ds /du)2 - (rb + rf + s)2(d2s /du2)
.

 
d2yc

du2 = - ¢rb + rf + s -
d2s

du2 ≤  cos u -  2 
ds

du
 sin u.

 
d2xc

du2 = ¢rb + rf + s -
d2s

du2 ≤  sin u -  2
ds

du
 cos u,

 
dyc

du
= -(rb + rf + s) sin u +

ds

du
 cos u,

 
dxc

du
= -(rb + rf + s)cos u -  

ds

du
 sin u,

  yc = (rb + rf + s)cos u.

Pitch curve

Pitch curve

Follower

FollowerCam profile

Cam profile

Convex profile Concave profile

rf

rf

�

p��

� �

�� �
�

p�� �

FIGURE 5.23 A roller follower can
operate on both convex and concave
portions of cam profiles.
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The cam will become pointed (i.e., there will be a cusp) when

SAMPLE PROBLEM 5.12

Cam Curvature in a Roller Follower System

Evaluate the curvature of the disk cam with a radial roller follower of Sample Problem 5.10 for
the position corresponding to a cam angle of 

Solution. Recall from Sample Problems 5.9 and 5.10 that and the
follower displacement function is

Differentiating this function twice with respect to angle we have

and

Evaluating these functions at yields

Summing terms produces

Substituting into Eq. (5.64), we see that the radius of curvature of the pitch curve at this point is

Thus, at the location in question, the cam profile is convex. Of course, since the curvature will, in
general, vary with position on the cam profile, it is necessary to examine the entire cam surface
for adverse curvature effects. However, the process can be expedited by the fact that the
extreme curvature positions during standard follower motions can be determined in general,
and then only these positions need be examined in specific cam designs. This means that only a
few points on the total cam profile will have to be considered.

rp =
[(74.13)2 + (28.65)2]

(74.13)2 + 2(28.65)2 - (74.13) (-66.16)
= 41.69 mm.

(rb + rf + s) = (40 + 10 + 24.13) = 74.13.

s = 24.13, 
ds

du
= 28.65, and 

d2s

du2 = -66.16.

u = p/3 rad

d2s

du2 = ¢240
p
≤  sin 4u.

ds

du
= ¢60
p
≤ - ¢60

p
≤  cos 4u

u,

s = ¢60
p
≤u -  ¢15

p
≤  sin 4u.

rf = 10 mm,rb = 40 mm,

u = 60°.

ƒr ƒ = rp - rf = 0.
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Section 5.8 Positive-Motion Cams 389

5.8 POSITIVE-MOTION CAMS

The various types of cam discussed up to this point depend on the force of gravity or a
spring force to maintain contact with the follower during the return stroke. In many
applications, it is necessary for the cam to exert positive control over the follower dur-
ing the return as well as during the rise. In this section, some of the more common
types of positive-motion cams are discussed.

Face Cam

One method of achieving positive motion is to cut a groove into the face of the cam.
The roller follower then rides in the groove. During the rise, the inner surface of the
groove (the side of the groove nearest the cam axis) causes the follower to move up,
while on the return stroke, the outer surface of the groove forces the follower down.
This type of cam is known as a face cam.

Constant-Breadth Cams

A constant-breadth cam-and-follower system is designed so that the cam surface is
always in contact with two follower surfaces. That is, the follower “boxes in” the
cam. Figure 5.24 shows a lawn sprinkler that employs a constant-breadth cam. A
water turbine and reduction gears drive the cam. The follower consists of a slotted
link with two projections contacting the cam. Note that the cam follower rotates
and translates. A guide at the cam rotation axis maintains the relationship between
the slotted link and cam. Finally, the slotted link drives the output crank, causing the
sprinkler bar to oscillate.

The manual adjustment knob effectively changes output crank length, so that the
user has the option of watering a large or small section of lawn, or watering the lawn on
only one side of the sprinkler. Can you show that the linkage has one degree of freedom
(once the manual adjustment is set)? Compare this design with a sprinkler based on a

Cam

Manual
adjustment

One follower
projection

Output
crankpin

FIGURE 5.24 A lawn
sprinkler driven by a
constant-breadth cam.

393



390 Chapter 5 Design and Analysis of Cam-and-Follower Systems

four-bar linkage (Figure 1.42). Jensen (1987) discusses design techniques for constant-
breadth cams (also called constant-diameter cams).

Conjugate Cams

A conjugate-cam system uses two cams (on the same camshaft) and two rigidly con-
nected followers to ensure positive motion. (See Figure 5.25a.) Reeve (1995) illustrates
design options for conjugate cams, including methods for reducing backlash. (For a
definition of backlash, see Section 5.9.)

Cylindrical Cams

A cylindrical, or barrel, cam (see Figure 5.25b) is used to drive a translating follower,
which moves parallel to the axis of the cam. A groove cut into the side of the cylinder
provides the path for the follower. Cylindrical cams are positive-motion cams, except
for the type known as end cams.

5.9 PRACTICAL CONSIDERATIONS IN CAM DESIGN

Practical considerations usually are the primary factors in the decision a designer
must make with regard to the type of cam system to be used to solve a particular
problem. Limitations of space and the speed of operation are perhaps the most
common factors that govern the decision. The force required to keep the follower
and cam in contact is another important consideration. The system required may be
a gravity type or a spring type. Another important factor the designer must take into
account is the accuracy of the machining operations used in manufacturing the cam.
Machining errors may cause kinematic variations from the required operating
conditions.

Follower Cam

FIGURE 5.25 (a) A conjugate disk
cam. (b) A cylindrical barrel cam.
(Source: Commercial Cam Co.)

394



Section 5.9 Practical Considerations in Cam Design 391

With the need for high-speed cams, the effect of vibrations on a cam’s perfor-
mance has also become more important. An investigation into the vibration of a cam
requires information concerning the elasticity of the system, and determining the elas-
tic response of a cam system is an extremely difficult task. It is very often desirable to
construct a prototype of the cam system. As a result of tests on the prototype, modifi-
cations can then be made to ensure a satisfactory solution to the given problem.

Tolerances, Wear, Temperature Effects, and Backlash

Cam systems, like books, professors and students are not error-free. We cannot specify
a dimension as A nonzero tolerance must be specified or implied. Add
wear and thermal expansion or contraction, and the result is backlash. In cam design,
the term backlash or lash is used to refer to accumulated tolerance, wear and tempera-
ture effects, or the shock loading due to these effects.

Backlash is of particular importance in automotive valve trains that are subject
to large temperature changes and operate at high speed. Figures 5.1e and 5.2a show
parts of reciprocating engines, including valve trains. Figure 5.26 is a schematic of a
valve train with the valve open. If we try to adjust the system so that the valve closes
exactly at end of the return part of the cam cycle, backlash may result in:

• the valve staying partly open
• or shock loading because the valve closes before the end of the return.

SAMPLE PROBLEM 5.13 

Backlash in a Valve Train

A 3–4–5 polynomial cam is designed for a 20 mm rise, and rotates at 1800 rpm. The design rise
and return intervals are each and there is a top dwell.
The cam-valve train system is intended to operate a valve with approximately the same motion
as the tappet (follower). As a result of tolerances, wear, and temperature changes, there is an
error equivalent to 10% of the rise, causing the valve to close early. What effect will this have?

25°105°

“20 ; 0 mm”.

Rocker arm

Push rod

Valve spring

Block

Block

Valve

Tappet

Cam

FIGURE 5.26 Valve train schematic (not to scale).
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FIGURE 5.27 The effect of backlash in a valve train.

Solution. A 3–4–5 cam system was analyzed previously. We can use the same basic equa-
tions, but subtract the backlash from the position equation. Approximate results are shown in
Figure 5.27. The valve is at rest until the backlash is taken up. We assume that the valve veloc-
ity is zero up to that instant, using the IF-statement

which gives the design velocity for a displacement greater than or equal to zero and zero other-
wise. There is a jump in velocity that appears to occur in zero time. But, of course, acceleration
cannot be infinite.The elasticity of the system moderates the acceleration a bit, but loads are still
severe.

Vv = if [S(u) Ú 0, V(u), 0],
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Deceleration is severe when the valve strikes the valve seat, again causing severe shock
loading. The dots at the end of the return are a “guesstimate” of the valve bounce due to elastic
collisions. Shock loading will cause excessive wear and premature failure. Valve bounce means
that the valve has not closed properly.

5.10 REDUCING SHOCK LOADING

Theoretically, the follower velocity at the beginning of the rise and at the end of the
return is zero for good high-speed cams (including the 3–4–5 polynomial cam).
However, actual valve train backlash may cause a valve to seat at high velocity.

In the previous sample problem, the backlash was excessive. Our first task would
be to improve the valve adjustment. Modifying the cam profile to produce lower veloc-
ities near the beginning of the rise and near the end of the return is another possibility.
Reeve (1995) describes a seventh-order polynomial cam law designed for low-impact
velocity in high-speed mechanisms in which backlash cannot be avoided. Be sure to
check any proposed equations for your specific application and estimate of backlash.

Hydraulic Tappets to Reduce Backlash

Manual valve adjustment is difficult and expensive in automotive engines. Hydraulic
tappets are designed to compensate for changes in valve train length due to tempera-
ture and wear. The hydraulic tappet is a cam follower that consists of a cylinder, a
plunger, an oil chamber, a check valve, and a spring. When the valve is off its seat, the
load is carried by a column of oil, which acts, for a moment, as a rigid link.The tappet is
designed with a predetermined slight oil leakage to permit the valve to seat, even if the
length of the valve train increases. If the length decreases, the plunger spring keeps the
parts in contact, increasing the volume under the plunger. Oil is then fed through the
check valve, maintaining the correct valve train length.

SUMMARY

There are hundreds of varieties of cam-and-follower systems. Some of the most com-
mon types of follower used with disk cams are translating roller followers, translating
flat-face followers, rotating roller followers, and rotating flat-face followers.

If we specify the desired follower position as a function of the cam angle, then we
can generate a prototype cam using a numerically controlled (NC) or computer
numerically controlled (CNC) machine.There are limitations, of course. If the cam is to
operate at high speed, smooth operation is critical. In particular, follower velocity and
acceleration discontinuities should be avoided.We even consider jerk, the derivative of
acceleration with respect to time.

Cams that produce cycloidal motion or higher order polynomial motion in the
follower are generally satisfactory for high-speed operation. Harmonic (sinusoidal)
motion is used for high-speed operation only if there are no dwells.
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A cam profile may be constructed graphically or may be constructed analytically
using the theory of envelopes. A profile so constructed is not used to generate a cam,
but is useful for checking for undercuts and checking the pressure angle.

Since we are interested in the follower position, velocity, acceleration, and jerk,
plots of motion characteristics are important. The Heaviside step function and/or an
interval function can be used in describing the follower rise, return, and dwell(s).

Cams can be generated with very close tolerances. Nevertheless, wear, tempera-
ture effects, and tolerances in other parts can result in shock loading. Hydraulic tap-
pets are used in valve trains to compensate for dimensional changes that cause shock
loading.

A Few Review Items

• Make a rough sketch of the position, velocity, and acceleration vs. time character-
istics for a reciprocating flat-face follower driven by an eccentric circular cam.
Are the curves smooth?

• Make a rough sketch of the position, velocity, and acceleration vs. cam angle
characteristics for a rise–dwell–return–dwell (RDRD) cam-and-follower system.
Select sinusoidal follower motion. The rise and return intervals each correspond
to 1.5 radians of cam rotation, and there is a top dwell corresponding to 0.5
radian of cam rotation. Does the acceleration plot suggest potential problems for
high-speed operation?

• Can selecting a different form of motion eliminate the problems identified in the
previous item? Write the rise equations for two satisfactory forms of motion.

• Suppose we eliminate the top dwell. Write a third equation, which is useful for a
rise–return–dwell (RRD) cam.

• Make a rough sketch of a cam and radial reciprocating roller follower. The
camshaft rotates clockwise. Orient the cam so that the pressure angle appears to
be a maximum. Can you offset the follower to improve the pressure angle?
Suppose the direction of camshaft rotation is sometimes clockwise and some-
times counterclockwise. Would offsetting the follower still be a good idea?

• Write an interval function that can be used to turn another function on at
and off at Use the programming language or software form that

you prefer.
• Identify methods for reducing backlash or mitigating its effects in valve trains or

other cam-and-follower systems.

PROBLEMS

Some of the problems that follow are based on follower motion that is unsatisfactory for
high-speed cams. This will be apparent if you calculate the follower acceleration and jerk.

5.1 A follower rises 50 mm in with constant velocity, dwells for , returns in with
constant velocity, and dwells for . Draw the follower displacement diagram.60°

120°60°120°

u = ub.u = ua
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5.2 A follower rises 50 mm in with simple harmonic motion, dwells for , returns in
with simple harmonic motion, and dwells for . Draw the follower displacement

diagram.
5.3 A follower rises 50 mm in with cycloidal motion, dwells for , returns in with

cycloidal motion, and dwells for . Write a computer program to calculate and plot the
displacement diagram.

5.4 A follower rises 50 mm in with parabolic motion, dwells for , returns in with
parabolic motion, and dwells for .Write a computer program to calculate and plot the
displacement diagram.

5.5 A follower rises 2 in in with constant velocity, returns 1 in in with constant veloc-
ity, dwells for , and returns 1 in in with constant velocity. Draw the displacement
diagram.

5.6 A follower rises 1 in in with simple harmonic motion, dwells for , rises another 1 in
in with simple harmonic motion, dwells for , returns in with simple harmonic
motion, and dwells for the remaining . Draw the displacement diagram.

5.7 A follower rises 2 in in and returns in , both with cycloidal motion.Write a com-
puter program to calculate and plot the displacement diagram.

5.8 A follower rises in in with constant acceleration, rises 1 in in with constant
velocity, rises in in with constant deceleration, dwells for , returns 2 in in 
with parabolic motion, and dwells for . Write a computer program to calculate and
plot the displacement diagram.

5.9 A follower rises 2 in in with simple harmonic motion, dwells for , returns in 
with parabolic motion, and dwells for . Write a computer program to calculate and
plot the displacement diagram.

5.10 A follower rises 2 in in with constant velocity, dwells for , returns in with
cycloidal motion, and dwells for . Write a computer program to calculate and plot the
displacement diagram.

5.11 A follower rises 40 mm in with simple harmonic motion, dwells for , and returns
40 mm in with cycloidal motion.Write a computer program to calculate and plot the
displacement diagram.

5.12 A follower rises 40 mm in with parabolic motion, returns 20 mm in with simple
harmonic motion, dwells for , returns the final 20 mm in with cycloidal motion,
and dwells for . Write a computer program to calculate and plot the displacement
diagram.

For Problems 5.13 through 5.16

Graphically lay out the profile of a disk cam for clockwise rotation of the cam. The base-
circle diameter of the cam is to be 100 mm. For those problems involving roller followers,
the roller diameter is to be 25 mm.

5.13 Lay out the cam described in Problem 5.1. Use a translating radial roller follower.
5.14 Lay out the cam described in Problem 5.2. Use a translating radial roller follower.

Determine the maximum pressure angle.
5.15 Lay out the cam described in Problem 5.2. Use a translating flat-faced follower.

30°
90°30°

90°120°

120°
90°150°

30°
150°30°150°

45°
180°45°90°

60°
180°30°30°1

2

30°30°1
2

150°210°
30°

150°30°60°
30°60°

90°60°
90°120°

60°
120°60°120°

60°
120°60°120°

60°120°
60°120°
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396 Chapter 5 Design and Analysis of Cam-and-Follower Systems

5.16 Lay out the cam described in Problem 5.2. Use a translating roller follower with an offset
of 25 mm to the right of the center of the camshaft. Determine the maximum pressure
angle.

5.17 Write a computer program to generate the disk cam for the motion described in
Problem 5.3. Use a translating radial roller follower. The cam rotation is to be clockwise.
The base-circle diameter is 100 mm, and the roller diameter is 25 mm. Determine the
maximum pressure angle.

5.18 Write a computer program to generate the disk cam for the motion described in
Problem 5.4. Use a translating radial roller follower. The cam rotation is to be clockwise.
The base-circle diameter is 100 mm, and the roller diameter is 25 mm. Determine the
maximum pressure angle.

For Problems 5.19 through 5.23

Write a computer program to generate the profile of a disk cam for clockwise rotation of
the cam. The base-circle diameter of the cam is to be 4 in. For those problems involving
roller followers, the roller diameter is to be 1 in.

5.19 Lay out the cam described in Problem 5.5. Use a translating radial roller follower.
5.20 Lay out the cam described in Problem 5.6. Use a translating roller follower with an offset

of 1 in to the right of the center of the camshaft. Determine the maximum pressure angle.
5.21 Lay out the cam described in Problem 5.7. Use a translating flat-faced follower.
5.22 Lay out the cam described in Problem 5.8. Use a translating flat-faced follower with an

offset of 1 in to the right of the center of the camshaft.
5.23 Lay out the cam described in Problem 5.9. Use a translating flat-faced follower.
5.24 Design a cam for an oscillating, pivoted flat-faced follower (like that shown in Figure

P5.1) to provide the following sequence of motion: the follower rotates clockwise for 
with simple harmonic motion in of cam rotation, dwells for , returns with
cycloidal motion in of cam rotation, and dwells for .30°150°

30°150°
15°

1/2 in

5 in

Base circle diam. � 4 in FIGURE P5.1

5.25 Design a cam for a pivoted roller follower (like that shown in Figure P5.2) to provide the
following sequence of motion: The follower rotates clockwise with simple harmonic
motion in of cam rotation, dwells for , and returns with parabolic motion in

of cam rotation.120°
20°90°150°

20°
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1 in diam. roller

4-1/2 in radius

5 in

Base circle diam. � 4 in FIGURE P5.2

For Problems 5.26 through 5.31

A follower rises 4 in in of cam rotation and then returns during the next of cam
rotation.The cam rotates at 60 rev/min. For the given follower motions, determine: (a) mathe-
matical expressions for the displacement, velocity, acceleration, and jerk of the follower; (b)
the magnitudes and locations of maximum velocity and maximum acceleration of the fol-
lower; (c) the follower displacement, velocity, acceleration, and jerk when the cam angle is

; and (d) the follower displacement, velocity, acceleration, and jerk when the follower
displacement is 3 in during the rise segment of the motion.

5.26 Uniform motion.
5.27 Modified uniform motion (with constant velocity from to and from to ).
5.28 Simple harmonic motion.
5.29 Cycloidal motion.
5.30 Parabolic motion.
5.31 3–4–5 polynomial motion.

For Problems 5.32 through 5.36

A follower rises 50 mm in of cam rotation, dwells for , returns in , and dwells
for . The cam rotational speed is 60 rev/min. For the given follower motions, determine:
(a) mathematical expressions for the displacement, velocity, acceleration, and jerk of the
follower and (b) the magnitudes and locations of maximum velocity and maximum accel-
eration of the follower.

5.32 Uniform motion.
5.33 Simple harmonic motion.
5.34 Cycloidal motion.
5.35 Parabolic motion.
5.36 3–4–5 polynomial motion.
5.37 A 3–4–5 polynomial cam imparts the following motion to a follower: a rise of 22 mm in

of cam rotation, a dwell for of cam rotation, and a return of 22 mm in of cam
rotation. Find the maximum follower velocity. The cam speed is 3200 rev/min.

5.38 A cam follower rises 2 inches in of cam rotation.The constant acceleration for the first
part of the rise is three times as great as the constant deceleration for the second part of the
lift period. If the cam is rotating at 300 rev/min, determine the value of the acceleration.

180°

80°70°80°

60°
120°60°120°

315°225°135°45°

120°

180°180°
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398 Chapter 5 Design and Analysis of Cam-and-Follower Systems

5.39 A disk cam rotates at 375 rev/min. The follower rises in with constant acceleration in
of cam rotation and then rises an additional in with constant deceleration in the

next of cam rotation. Find the acceleration and maximum velocity of the follower.
5.40 The follower of a disk cam rises in with constant acceleration, rises an additional in

with constant velocity, and then rises an additional in with constant deceleration. The
cam rotates at 200 rev/min, and the follower has a maximum velocity of 35 in/s. Calculate
the acceleration and deceleration of the follower. How many degrees has the cam
rotated while this motion is being performed?

5.41 A disk cam is to give its follower a rise through a travel distance h during a cam rotation
This motion is preceded by a dwell and is followed by a dwell. Derive the displace-

ment, velocity, acceleration, and jerk expressions that will satisfy the boundary condi-
tions for all four of these characteristics at the beginning and end of the travel distance.

For Problems 5.42 through 5.46

Write a computer program to calculate the displacement, velocity, acceleration, and jerk of
a follower for the types of motion given. During the motion segment, the cam rotates from
angle ANG1 to angle ANG2, and the follower moves from position S 1 to position

Note that the travel distance H may be positive for a rise motion, negative
for a return motion, and zero for a dwell. Also, the follower motion may be either transla-
tion or rotation. Check out the program for the case of a follower that is to have a transla-
tional displacement from 1 to 3 in during a cam rotation from to .

5.42 Uniform motion.
5.43 Simple harmonic motion.
5.44 Cycloidal motion.
5.45 Parabolic motion.
5.46 3–4–5 polynomial motion.
5.47 A family of circles has centers along a straight line passing through the origin of an xy-

coordinate system at a clockwise angle of from the x-axis. The radius of each circle is
equal to one-half of the distance from the origin to the center of the circle. Determine
the envelope for this family of curves

(a) as a function relating x and y and
(b) in parametric form, with x and y as functions of a parameter 

5.48 A translating flat-face follower is to move through a distance h with cycloidal motion
during of clockwise cam rotation. Determine expressions for the x- and y-coordi-
nates of that portion of a cam profile that will produce this motion. For a travel of 50 mm
and a base-circle radius of 100 mm, calculate and plot the cam profile. Based on this por-
tion of the cam design, what is the minimum allowable width of the follower face?

5.49 Repeat Problem 5.48 for uniform motion.
5.50 Repeat Problem 5.48 for parabolic motion.
5.51 Design a disk cam to produce the following motion of a translating radial roller follower:

a rise through a distance of 50 mm with simple harmonic motion during of rotation,
followed by a return, also with simple harmonic motion, during the remaining of
cam rotation. The base-circle radius is 100 mm and the roller radius is 25 mm. Determine
the pressure angle corresponding to cam angles of , and .90°30°, 60°

180°
180°

180°

l.

45°

150°30°

S2 = S1 + H.

a.

1
2

3
4

1
2

80°

3
480°

3
4
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5.52 Determine an expression for the curvature of the cam profile segment synthesized in
Problem 5.48. Find the minimum and maximum curvature values.

5.53 Determine an expression for the curvature of the cam profile segment synthesized in
Problem 5.49. Find the minimum and maximum curvature values.

5.54 Determine an expression for the curvature of the cam profile segment synthesized in
Problem 5.50. Find the minimum and maximum curvature values.

5.55 Determine an expression for the curvature of the cam profile segment synthesized in
Problem 5.51. Find the minimum and maximum curvature values.

5.56 Suppose we need a cam with an 18-mm rise. The rise and return intervals are both ,
and the top dwell is . The cam rotation speed will be 1000 rpm. Plot the follower posi-
tion, velocity, acceleration, and jerk for the full range of motion. Check your results.
Select cycloidal motion in your design.

5.57 A cam is needed to produce a 22-mm follower rise. The cam angular velocity will be 80
rad/s. The rise and return intervals are both , and the top dwell is . Plot the fol-
lower position, velocity, acceleration, and jerk for the full range of motion. Check your
results. Select cycloidal motion in your design.

5.58 Suppose we need a cam with a 10-mm rise. The rise and return intervals are both ,
and the top dwell is . The cam rotation speed will be 400 rpm. Plot the follower posi-
tion, velocity, acceleration, and jerk for the full range of motion. Check your results.
Select cycloidal motion in your design.

5.59 Design a cam for a 12.5-mm rise. The rise and return intervals are both , and the top
dwell is . The cam rotation speed will be 440 rpm. Find the maximum acceleration.
Plot the follower position, velocity, acceleration, and jerk for the full range of motion.
Are the boundary conditions satisfied? Check your results. Use 3–4–5 polynomial
motion in your design.

5.60 Design a cam for a 20-mm rise. The rise and return intervals are both , and the top
dwell is . The cam angular velocity will be 90 rad/s. Find the maximum acceleration.
Plot the follower position, velocity, acceleration, and jerk for the full range of motion.
Are the boundary conditions satisfied? Check your results. Use 3–4–5 polynomial
motion in your design.

5.61 Design a cam for a 15-mm rise. The rise and return intervals are both , and the top
dwell is . The cam rotation speed will be 1800 rpm. Find the maximum acceleration.
Plot the follower position, velocity, acceleration, and jerk for the full range of motion.
Are the boundary conditions satisfied? Check your results. Use 3–4–5 polynomial
motion in your design.

5.62 Suppose we need a cam for a rise–return–dwell (RRD) application. The position, veloc-
ity, and acceleration should be zero at the beginning of the rise h, and the velocity should
be zero at the end of the rise. A cam described by the follower displacement equation

is proposed. Plot the position, velocity, and acceleration to see whether the boundary
conditions are satisfied. Compare this 3–4 polynomial cam with a 3–4–5 polynomial cam.
Normalize the results by using 

5.63 Suppose we need a cam to meet the following follower-motion requirements: beginning
of rise and end of return: end of rise: (there is no
top dwell; the acceleration is unspecified at end of the rise). Show that an eighth-order
polynomial cam can satisfy these requirements. Find the arbitrary constants. Plot the

s = h; v = j = 0s = v = a = j = 0;

h = a = v = 1.

s = h[4x3 - 3x4]

45°
100°

40°
95°

15°
125°

45°
120°

20°100°

25°
105°
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400 Chapter 5 Design and Analysis of Cam-and-Follower Systems

follower motion for a 10-mm rise. The cam angular velocity is 100 rad/s, and the rise and
return intervals are each . The follower is to dwell for the remainder of the cycle.

5.64 Suppose we need a cam to meet the following follower-motion requirements: beginning
of rise and end of return: end of rise: (there is no
top dwell; the acceleration is unspecified at end of the rise). Show that an eighth-order
polynomial cam can satisfy these requirements. Find the arbitrary constants. Plot the fol-
lower motion for a 20-mm rise. The cam speed is 880 rpm, and the rise and return inter-
vals are each . The follower is to dwell for the remainder of the cycle.

5.65 Suppose we need a cam to meet the following follower-motion requirements: beginning
of rise and end of return: end of rise: (there is no
top dwell; the acceleration is unspecified at end of the rise). Show that an eighth-order
polynomial cam can satisfy these requirements. Find the arbitrary constants. Plot the fol-
lower motion for an 18 mm rise. The cam speed is 400 rpm, and the rise and return inter-
vals are each . The follower is to dwell for the remainder of the cycle.

5.66 A 3–4–5 polynomial cam is designed for a 14.5-mm rise and rotates at 1000 rpm. The
design rise and return intervals are each , and there is a top dwell. The cam is
intended to operate a valve, with essentially the same motion as the tappet (the cam fol-
lower).As a result of tolerances, wear, and temperature changes, there is an error equiva-
lent to 10% of the rise, causing the valve to close early. What effect will this error have?
Show probable position and velocity plots.

5.67 A 3–4–5 polynomial cam is designed to rotate at 2000 rpm and provide an 18-mm rise.
The design rise and return intervals are each , and there is a top dwell.The cam is
intended to operate a valve, with essentially the same motion as the tappet (the cam fol-
lower).As a result of tolerances, wear, and temperature changes, there is an error equiva-
lent to 10% of the rise, causing the valve to close early. What effect will this error have?
Show probable position and velocity plots.
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C H A P T E R  6

Spur Gears: 
Design and Analysis

Spur gears are used to transmit power between parallel shafts and to change rotation
speeds. Speed ratios are precise, and gear systems can be designed for high power;
however, shafts that carry gears must be located precisely. When precise location can-
not be maintained, V-belt or chain drives are sometimes substituted for gear drives.

Concepts and Definitions You Will Learn and Apply When
Studying This Chapter

• Speed ratios of gear sets
• Pitch circle and circular pitch
• Addendum and dedendum; standard and stub teeth
• Module and diametral pitch
• Pressure angle and line of action
• Backlash
• Base circle and properties of an involute
• Design of gear sets for adequate contact ratio
• Design and selection of gears to avoid interference; the relationship between

pressure angle, minimum number of teeth, and interference
• Forces on gear teeth

If you plan to design or select gears for high loads and critical applications, you will need
additional study and references beyond the scope of this text. Authoritative references
related to gear inspection, gear design for wear and bending stress, and gear failure modes
are available from the American Gear Manufacturers Association (1980, 1982, 1988).

6.1 BASIC CONSIDERATIONS

This chapter is devoted to a discussion of the power-transmitting machine element
known as the spur gear. The terminology, kinematics, and force analysis of spur gears
will be presented.
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402 Chapter 6 Spur Gears: Design and Analysis

A variety of machine elements can transmit power from one shaft to another. A
pair of friction wheels (rolling cylinders) is shown in Figure 6.1, where wheel 1 is the
driver and wheel 2 is the follower.

The force that cylinder 1 can transmit to cylinder 2 depends on the friction that
can be developed between the two cylinders. Assuming that the frictional resistance
between the two wheels is sufficiently large to prevent slipping of one cylinder relative
to the other, the following kinematic relationship holds:

or

(6.1)

Here, is the instantaneous velocity of the point of contact, is the angular velocity,
and r is the radius of the cylinder.

Equation (6.1) indicates that the ratio of the angular speeds of the cylinders is
inversely proportional to the ratio of their radii. Another important fact to be
observed, this time from Figure 6.1, is that the rotations of the cylinders are in opposite
directions. (Wheel 1 rotates counterclockwise, while wheel 2 rotates clockwise.)

The cylinders shown in Figure 6.1 are external to each other. Figure 6.2 shows a
similar situation, except that one of the cylinders is internal to the other. The only dif-
ference between the external and internal cylinder pairs is that the direction of rota-
tion for both cylinders of the internal pair is the same. Thus, in Figure 6.2, cylinder 1
and cylinder 2 are both rotating counterclockwise.

vvp

v1

v2
=

r2

r1
 .

vP = r1v1 = r2v2,

P

r1

r2

O1

O2

�1

�2

vp

FIGURE 6.2 Two friction wheels (internal
contact).
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FIGURE 6.1 Two friction wheels (external
cylinders).
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Section 6.2 Gear Types 403

The big disadvantage of friction wheels is the possibility that slipping may occur
between the cylinders. Therefore, when exact angular velocity ratios are required or a
constant-phase relationship must be maintained between the driver and the driven
shaft, gears are commonly used.

6.2 GEAR TYPES

There are several types of gears in common use. Among the more important types are
the following:

1. Spur gears (Figure 6.3a, b, c) and helical gears (Figure 6.4a and b) are used when
the driver and follower shafts are parallel to each other.

FIGURE 6.3 (a) A set of external spur gears. This type of gear is easily identified by its
straight teeth, which are parallel to the gear axis. (Source: Boston Gear Works.) (b) An
internal spur gear. This type of gear permits a closer positioning of the gear shafts. (Source:
Richmond Gear, Wallace Murray Corporation.) (c) A spur gear and rack set. (Source:
Browning Manufacturing Company.)

(a) (b)

(c)
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404 Chapter 6 Spur Gears: Design and Analysis

2. Bevel gears (Figure 6.5) are used when the shaft axes intersect.
3. Worm gears (Figure 6.6) and crossed helical gears (Figure 6.7) are employed

when the shaft axes are nonintersecting and nonparallel.

Gears other than spur gears will be considered in Chapter 7.

6.3 SPUR GEAR TERMINOLOGY

A spur gear can be visualized as a right circular cylinder that has teeth cut on its cir-
cumference parallel to the axis of the cylinder. Its design is the least complicated of
gear designs. For this reason, the spur gear offers a convenient starting point for the
study of gears, since the terms introduced will also apply to more complex gears dis-
cussed in the next chapter. When two gears are in mesh, it is customary to refer to the
smaller as the pinion and the larger as the gear.

The following terms are in common use (see also Figure 6.8):

Pitch circle. The circle on a gear that corresponds to the contact surface of a
friction wheel. Thus, for two gears in contact, the respective pitch circles can be

(a)

FIGURE 6.4 (a) Helical gears.These gears provide less shock and offer smoother,
quieter operation than do straight spur gears. (Source: Browning Manufacturing
Company.) (b) Herringbone gear, or double helical gear. In some cases, the presence
of end thrust inherent in helical gears is undesirable. Gears with opposing helices neu-
tralize the end thrust of each helix. (Source: Horsburgh & Scott Company.)

(b)
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Section 6.3 Spur Gear Terminology 405

imagined to roll on each other in the same manner as the circles of two friction
wheels in contact. A gear may be thought of as similar to a friction cylinder, with
the face width of the gear equal to the length of the cylinder and the diameter of
the pitch circle of the gear equal to the diameter of the cylinder.

Addendum circle. The circle circumscribing the gear.

Addendum. The radial distance from the pitch circle to the addendum circle.

Root or dedendum circle. The circle drawn through the bottom of the gear
teeth.

Dedendum. The radial distance from the pitch circle to the root circle.

Clearance circle. The largest circle centered at the gear center that is not pene-
trated by the teeth of the mating gear.

FIGURE 6.5 Bevel gears are used to provide end effector rotation about two
axes.
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406 Chapter 6 Spur Gears: Design and Analysis

FIGURE 6.6 A worm and worm gear
set. The worm gear is a special helical
gear used for large reductions in
speed. (Source: Cleveland Gear
Company.)

FIGURE 6.7 Crossed helical gears are used
with shafts that are nonparallel and noninter-
secting. (Source: Browning Manufacturing
Company.)
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Section 6.3 Spur Gear Terminology 407

Clearance. The radial distance from the clearance circle to the root circle. Since
the clearance is also equal to the distance between the root of the tooth and the
top of the tooth of the mating gear, it can also be defined as the difference
between the dedendum of one gear and the addendum of the mating gear.

Whole depth. The radial distance between the addendum and dedendum
circles.

Working depth. The radial distance between the addendum and clearance cir-
cles. The working depth is also equal to the sum of the addendums of the two
meshing gears.

Circular pitch. The circular pitch p is the sum of the tooth width and the tooth
space. It is the arc distance measured along the pitch circle from a point on one
tooth to the corresponding point on the adjacent tooth of the gear.Therefore,

(6.2)

where d is the diameter of the pitch circle in inches or millimeters and N is the
number of teeth of the gear.Accordingly, the circular pitch is equal to the circum-
ference of the pitch circle divided by the number of teeth.

Diametral pitch. The number of teeth of a gear divided by the diameter of the
pitch circle in inches. Thus,

(6.3)

where P is the diametral pitch.

P =
N

d
 ,

p =
pd

N
 ,

Face 
width

Addendum
circle

Pitch circle

Clearance circle

Dedendum (or Root )
circle

Dedendum

Working
depth

Clearance

AddendumTooth 
thickness

Tooth
space

FIGURE 6.8 Spur gear nomenclature. This figure illustrates some of the more important
terms and dimensions associated with spur gears.
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FIGURE 6.9 Plastic spur gears are among the components of this light-duty
teaching robot.

A simple relationship between the circular and diametral pitches is

(6.4)

Module. In SI units, the module m is used to express the gear tooth size, rather
than the diametral pitch P used in the U.S. customary system. The module is defined as

(6.5)

where d and m have units of millimeters. Clearly, the module is the reciprocal of the
diametral pitch; keep in mind, however, that the diametral pitch is a function of inches
and the module is a function of millimeters.
The circular pitch, in millimeters, is

(6.6)

or

(6.7)p = pm.

p =
pd

N

m =
d

N
 ,

Pp = p.
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Section 6.3 Spur Gear Terminology 409

A pair of meshing gears must have the same circular pitch. Thus, they must have the
same module or the same diametral pitch. Heavy-duty applications call for gears with a
large module. Plastic gears with a small module are used in the light-duty teaching
robot shown in Figure 6.9.

SAMPLE PROBLEM 6.1

Spur Gear Properties (Using Diametral Pitch)

A spur gear, with 32 teeth and a diametral pitch of 4 is rotating at 400 rev/min. Determine its cir-
cular pitch and its pitch-line velocity.

Solution. Since we know the diametral pitch, the circular pitch can be obtained directly from
Eq. (6.4):

To find the pitch-line velocity (equal to ), we will first have to find the pitch diameter of the
gear. From Eq. (6.3),

Converting the angular velocity of the gear from revolutions per minute to radians per second,
we have

Finally, the pitch-line velocity is the product of the pitch-circle radius and the angular velocity of
the gear [see Eq. (6.1)]:

SAMPLE PROBLEM 6.2

Spur Gear Properties (Using Module)

Repeat Sample Problem 6.1 for a gear manufactured with a module of 1.5 mm rather than a
diametral pitch of 4.

vp = rv =
dv

2
= ¢8

2
 in≤  (41.9 rad/s) = 167.6 in/s.

v = 400 rev/min ¢2p rad
1 rev

≤  ¢1 min 

60 s
≤ = 41.9 rad/s.

d =
N

P
=

32
4

= 8 in.

rv

p =
p

P
=
p

4
= 0.7854 in.
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Solution. From Eq. (6.7),

From Eq. (6.5),

Finally,

Backlash

If tooth spaces were exactly equal to tooth thicknesses, it would be extremely difficult
for the gears to mesh.Any inaccuracies in manufacturing would cause the gears to jam.
It is also very often necessary to lubricate gears. For these reasons, space must be pro-
vided between the meshing teeth. This is accomplished by making the tooth thickness
less than the tooth space. The difference between tooth space and tooth thickness is
known as backlash.

Backlash, which is measured on the pitch circle, is then equal to the distance
between the nondriving side of a tooth and the side of the corresponding tooth of the
meshing gear. If one of a pair of meshing gears is held stationary, the amount of backlash
is then proportional to the angle the other gear can be rotated through. Figure 6.10
shows the backlash between two gears.

The cutting tool used to manufacture gears can be set further into the gear blank,
thus decreasing the tooth thickness and increasing the tooth space. This is the most
common method of providing backlash for gears. Slight variations in backlash can also
be obtained by changing the distance between gear centers.

It should be emphasized that, while some backlash is necessary, too much back-
lash can result in large shock loads. Excessive backlash will also result in inaccurate
gear motion.

vp = rv = ¢48
2

 mm≤  (41.9 rad/s) = 1,005.6 mm/s.

d = mN = 1.5(32) = 48 mm.

p = pm = p(1.5) = 4.71 mm.

FIGURE 6.10 Backlash.
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6.4 FUNDAMENTAL LAW OF GEARING

An important reason for the use of gears is to maintain a constant angular-velocity
ratio. The fundamental law of gearing states the condition that the gear tooth profiles
must satisfy in order to maintain a constant angular-velocity ratio. The law may be
stated as follows: The shape (profile) of the teeth of a gear must be such that the com-
mon normal at the point of contact between two teeth always passes through a fixed
point on the line of centers of the gears. The fixed point is called the pitch point. When
the fundamental law is satisfied, the gears in mesh are said to produce conjugate action.

In Figure 6.11, and are the centers of the two gears in mesh, and are the
radii of the pitch circles, P is the pitch point, and A is the point at which the gears are in
contact.

Before proceeding with the discussion of conjugate action, we define the velocity
ratio as the angular speed of the follower (driven gear), divided by the angular
speed of the driving gear. However, the ratio can also be defined in terms of revolu-
tions per minute, pitch radii, and the number of gear teeth.

In the following equation, the subscript 1 refers to the driver and the subscript 2
refers to the follower or driven gear:

(6.8)

In this equation,

If a pair of spur gears is to mesh and operate properly, the following characteristics
must be common to the two gears:

• circular pitch (mm or in).
• diametral pitch (number of teeth divided by diameter in inches).

 N = number of teeth.
 r = pitch-circle radius, and
 n = angular velocity (rev/min ),
 v = angular velocity (rad/s),
rv = velocity ratio,

rv =
v2

v1
=

n2

n1
=

r1

r2
=

N1

N2
.

(v)

r2r1O2O1

Pitch circle
(gear 1)

Pitch circle
(gear 2)

Pitch point

Line of centers

Driver

Follower
(driven gear)r2n2

n1

O1

O2

Common normal at
point of contact

r1

P

A

FIGURE 6.11 Two gears in mesh, with
the pitch point at P. The meshing gear
teeth are shown in contact at point A.
The circles centered at points and 
and passing through the pitch point are
the pitch circles.

O2O1
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412 Chapter 6 Spur Gears: Design and Analysis

• module (diameter in mm divided by number of teeth).
• pressure angle (degrees or radians).

When we select standard gears, the addendums and dedendums are common to the
gears as well, but we sometimes use nonstandard gears with unequal addendums for
special applications. In addition, there are other restrictions. Note that the velocity
ratio equation applies to some other gear pairs, including helical gears on parallel
shafts. Usually, the pinion (the smaller gear) drives the (larger) gear, producing a
reduction in speed. (Caution: A pair of external gears rotate in opposite directions. If
you are identifying counterclockwise and clockwise rotation by plus and minus signs,
then use for a pair of external gears.)

The following partial set of rules may come in handy:

Some rules for the speed ratio of a pair of gears

The speed ratio of a pair Applies to: but not to:
of gears is equal to:

the inverse of the ratio spur gears and helical gears planetary trains, worm drives,
of the pitch radii on parallel shafts crossed helical gears, etc.

the inverse of the ratio spur gears and helical planetary trains, worm drives,
of pitch diameters gears on parallel shafts crossed helical gears, etc.

the inverse of the ratio almost all gears planetary trains
of tooth numbers

SAMPLE PROBLEM 6.3

Analysis of a Spur Gearset

Two spur gears have a velocity ratio of The driven gear has a module of 6 mm, possesses 96
teeth, and rotates at 500 rev/min. Determine the number of revolutions per minute of the driver,
the number of teeth of the driver, and the pitch-line velocity.

Solution. The angular velocity (in revolutions per minute) is obtained directly from the velocity
ratio, Eq. (6.8):

Thus,

The number of teeth on the driver also follows directly from the velocity ratio:

or

N1 = rvN2 =
1
4

 (96) = 24 teeth.

rv =
N1

N2
 ,

n1 =
n2

rv
=

500
1/4

= 2000 rev/min .

rv =
n2

n1
 .

1
4.

v2/v1 = -N1/N2
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Section 6.4 Fundamental Law of Gearing 413

The pitch-line velocity is given by Eq. (6.1), the product of the pitch-circle radius and the angular
velocity, just as in Sample Problem 6.2. We have

and

so that

As a check, since and

it follows that

and

The number of teeth must be an integer. If our calculations suggest a non-integer
number of teeth, we may relax the speed ratio requirement and adjust the calculated
number of teeth upward or downward. If the speed ratio is critical, then we can try var-
ious combinations of pinion and gear teeth to get it right. Sometimes, a double reduc-
tion works, or a planetary train may be required. Irrational ratios like or

cannot be obtained precisely.

Conjugate Action and the Involute Curve

Figure 6.12 is a magnified view of the point of contact of two gears. Line tt is tangent to
each of the two teeth at the point of contact A. Line nn is perpendicular to tt and is the
common normal at the point of contact A. In order for the fundamental law to be satis-
fied, nn must always pass through a fixed point P on the line of centers.

As the gears continue to rotate, other points on the teeth will come into contact.
However, for each successive point of contact, the common normal at that point must

n2/n1 = 1>12
n2/n1 = 1/p

vp = r1v1 = 72 mm (209.2 rad/s) = 15,062 mm/s.

v1 =
v2

rv
=

52.3
1/4

= 209.2 rad/s,

r1  =
1
4

 (288 mm) = 72 mm,

rv =
r1

r2
=
v2

v1
 ,

vp = r1 v1

vp = r2v2 = 288 mm (52.3 rad/s) = 15,062 mm/s.

v2 = n2¢2p
60
≤ = 500 rev/min ¢2p rad

1 rev
≤  ¢1 min 

60 s
≤ = 52.3 rad/s,

r2 =
d2

2
=

mN2

2
=

6(96)

2
= 288 mm
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Line of  centers

n

nA

t

t

P

A

FIGURE 6.12 Two gears in contact at point A. The tan-
gent drawn at A is tt, while the normal, nn, at point A
passes through the pitch point P.

continue to pass through the fixed point P in order for conjugate action to take place
(to maintain a constant angular-velocity ratio).

When gear profiles are cut in such a way as to produce conjugate action, the
curves are known as conjugate curves. Most gears are cut using the involute curve to
obtain conjugate action.

The Base Circle

Consider a cylinder with a string wrapped around it. An involute curve is the curve
traced out by a point on the string as the string is unwrapped from the cylinder. In gear
terminology, the cylinder around which the string is wrapped is known as the base cir-
cle. To better understand what the involute curve looks like, consider Figure 6.13a. The
base circle, of radius has a string wrapped around it. Point A is the point on the end
of the string, while point B is the corresponding point on the circle at which the string
leaves the circle.

rb,

Base
circle

O

Bi Bj

A1

Ai

Aj

C

ti/2

tj/2

A4

A3
A2

B2

B3

B4

A1B1 O

String

(a)
(b)

Ri

Rj

rb

�i

�j
rb

FIGURE 6.13 (a) Involute curve generation. As a string is unwrapped from a cylinder, the curve traced by a point on
the string is an involute curve ( ). The tangents to the base circle are the instantaneous radii of curvature
of the involute. (b) A gear tooth with an involute profile.

A1, A2, A3, A4
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Section 6.4 Fundamental Law of Gearing 415

Initially, while the string is still completely wrapped around the base circle, points
A and B coincide. This condition is represented by points and As the string is
unwrapped, point A moves to position while is the point at which the string
leaves the base circle. As the string is further unwrapped, the positions and

are likewise determined.The curve then drawn through points and is
the involute curve. A special case is the rack, for which the involute tooth profile is a
straight line.

An important property possessed by the involute curve is that a normal drawn to
it is tangent to the base circle. Referring again to Figure 6.13a, we see that 
and are radii of the base circle, while and are tangent to the
base circle and perpendicular to the radii. The distance is the radius of curvature
of the involute at that instant, since point is rotating about point at that same
instant. Similar reasoning shows that and are also instantaneous radii of
curvature. Clearly, then, the radius of curvature of an involute curve is continuously
varying. But, since at any given point on a curve, the radius of curvature is normal to
the curve, lines and are normals drawn to the involute curve and are
also tangent to the base circle. Thus, the earlier statement that a normal to the involute
curve is tangent to the base circle is correct.

From the involute geometry depicted in Figure 6.13a, a useful equation can be
derived relating the tooth thicknesses at any two arbitrary radial positions on an invo-
lute gear tooth. Figure 6.13b shows a gear tooth that has thicknesses and at radial
locations and respectively. The tooth thickness is measured as an arc length
along a circle that is centered at the gear center. Thus, from the figure,

and

where is the angle corresponding to and is the angle corre-
sponding to Combining these equations, we have

But

Therefore,

ti

2Ri
-

tj

2Rj
= ∠A1OAj - ∠A1OAi.

∠AiOAj = ∠A1OAj - ∠A1OAi.

ti

2Ri
-

tj

2Rj
= ∠AiOC - ∠AjOC = ∠AiOAj.

arc(tj/2).
∠AjOCarc(ti/2)∠AiOC

tj

2
= Rj ƒ ∠AjOC ƒ ,

ti

2
= Ri ƒ ∠AiOC ƒ

Rj,Ri

tjti

A4B4A2B2, A3B3,

A4B4A3B3

B2A2

A2B2

A4B4A3B3,A2B2,OB4

OB1, OB2, OB3,

A4A1, A2, A3,B4

A3, B3, A4,
B2A2,

B1.A1
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416 Chapter 6 Spur Gears: Design and Analysis

Now we wish to determine alternative expressions for the angles and
This can be accomplished by using the involute properties described earlier.

In particular, we see from Figure 6.13b that

where the angle is referred to as the involute angle and is defined in the figure. Also,

Now recall that, based on the string analogy, the arc length is equal to the dis-
tance (See Figure 6.13a.) Therefore,

But from Figure 6.13b,

which leads to

Combining equations, we have

where inv is the involute function. (Note that the angle must be expressed in radi-
ans.) In a similar manner,

Finally, combining equations, we obtain the desired relationship between the tooth
thicknesses, viz.,

(6.9a)

where, from Figure 6.13b,

(6.9b)cos ci =
rb

Ri

ti

2Ri
-

tj

2Rj
= inv cj - inv ci,

∠A1OAi = tan ci - ci = inv ci.

cc

∠A1OAj = tan cj - cj = inv cj,

∠A1OBj = tan cj.

tan cj =
AjBj

rb
 ,

∠A1OBj =
AjBj

rb
 .

AjBi.
A1Bj

∠A1OBj =
arc AjBj

rb
 .

cj

∠A1OAj = ∠A1OBj - ∠AjOBj = ∠A1OBj - cj,

∠A1OAi.
∠A1OAj
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and

(6.9c)

Equations (6.9a) through (6.9c) can be used to determine the tooth thickness at any
location in terms of that at another location—for example, the pitch circle.

We can now consider the action that occurs when two gear teeth, cut with invo-
lute curve profiles, are in contact.

In Figure 6.14, gear 1 is the driver and is rotating clockwise, while gear 2, the fol-
lower, rotates counterclockwise. The distance C is called the center distance and repre-
sents the spacing between the centers of the shafts upon which the gears are mounted.
The following equation may be used to determine the center distance:

(6.10)*

In this equation, and are the diameters of the pitch circles. Suppose now that the
center distance between two shafts and the speed ratio are specified. Then, with that

d2d1

c =
d1 + d2

2
 .

cos cj =
rb

Rj
 .

d2

rb2

rb1

Gear 2

Gear 1

Base circle

Pitch circle

t

c

�

t

E F

O2

O1

P B

A

d1

D

FIGURE 6.14 Two gears in contact. The center distance
c is equal to one-half the sum of the pitch diameters. As
the gears continue to rotate, the other points of contact
must have their common normal passing through the
pitch point P. For involute profiles, all contact points lie
on line AB, called the line of action. Line AB is also
called the pressure line, and is referred to as the pres-
sure angle.

f
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418 Chapter 6 Spur Gears: Design and Analysis

information, it is possible to determine the required pitch diameters. Since 
(inches) and (millimeters), we have

(6.11a)*

where c is in inches, and

(6.11b)*

where c is in millimeters.
* Equations (6.10), (6.11a), and (6.11b) apply to a pair of external gears.

The following equations apply if gear number 2 is an internal gear:

(6.11c)

(6.11d)

and

(6.11e)

The Line of Action

When two curves are in contact at a point, they must have the same tangent and nor-
mal at that point (Figure 6.12). In Figure 6.14, point D is the point of contact between
the two involute curves to which the teeth of gears 1 and 2 have been cut.The common
tangent to the tooth surfaces is tt, while line AB, which is perpendicular to tt at the
point of contact, is the common normal.

According to the fundamental law of gearing, the common normal must pass
through a fixed point on the line of centers, But according to the properties of
the involute curve discussed previously, the normal to each of the two involutes at the
point of contact is tangent to the respective generating, or base, circle. It follows that
the common normal must be simultaneously tangent to both of the base circles and
therefore is a unique line. This means that, as the gears continue to rotate and other
points become contact points, these contact points will always lie on line AB, which
will always be the common normal. Therefore, the intersection P of the common nor-
mal and the line of centers is a fixed point, and the gears have conjugate action.

The line AB is often called the line of action because the contact points of two
gears in mesh must lie along it. The force that one gear tooth exerts on the tooth of the
meshing gear acts along the common normal, which is also line AB. Therefore, the
pressure line is another name commonly given to line AB.

The Pressure Angle

The angle between the pressure line AB and the common tangent to the pitch circles
EF in Figure 6.14 is known as the pressure angle. The pressure line is located by rotat-
ing the common tangent to the pitch circles, EF, through the angle in a direction
opposite the direction of rotation of the driver. Referring again to Figure 6.14, since

f

f

O1O2.

c = m(N2 - N1) / 2.

 c = (N2 - N1) / (2P),

 c = (d2 - d1) / 2,

c =
m(N1 + N2)

2
 .

c =
1

2P
(N1 + N2),

d = mN
d = N/P
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Section 6.4 Fundamental Law of Gearing 419

gear 1, the driver, is rotating clockwise, we can locate the pressure line AB by rotating
the common tangent EF counterclockwise through the angle 

While gears may be manufactured with a wide range of pressure angles, most
gears are made with standard angles of or Although gears are desig-
nated by their pressure angle, it must be emphasized that the actual pressure angle
between two gears in contact may differ from the designated value. Changes in center
distance c will result in corresponding changes of the actual pressure angles. In other
words, two nominally gears actually may be given a slightly larger pressure angle
by increasing their center distance.

Later, in Sample Problem 6.6, we shall explain the difference between designated
and actual pressure angles. However, at this point, a diagram can illustrate the effect of
increasing the center distance. In Figure 6.15a, gears 1 and 2 have their centers at O1

20°

25°.20°,14 12°,

f.

rb1

rb2

rb2

rb1

c

c�
0.

2c

p
�

O2

O1

O'1

(a)

(b)

O'2

P

1

�

FIGURE 6.15 (a) Two gears in mesh showing center dis-
tance c, a pressure angle and base-circle radii and

(b) The center distance of the gears in Figure 6.15a is
shown increased. The base radii remain unchanged;
however, the pressure angle is now increased to f1.

rb2
.

rb1
f,
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420 Chapter 6 Spur Gears: Design and Analysis

and The pressure angle is and the base-circle radii are and The center dis-
tance is then increased so that the centers of the gears are at and Figure 6.15b
shows the new situation with the increased center distance and unchanged base-circle
radii. As in Figure 6.15a, the pressure line is drawn tangent to the base circles and
through the pitch point. The pressure angle is now increased (shown much larger than
would normally be the case, for purposes of illustration). This large change in center
distance could result in excessive backlash, and the contact ratio (considered in a later
section) might now be unsatisfactory.

To obtain a better understanding of gear tooth action, consider Figure 6.16. Two
gears, 1 and 2, are shown in mesh. The pitch radii and as well as the base-circle
radii and are shown. The base circles were determined by drawing circles tan-
gent to the pressure line AB. Therefore, the radii and are perpendicular to the
pressure line at points D and C, respectively.

By considering the right triangles and a simple relationship
between the pitch circle radius and the base circle radius is seen to exist:

(6.12)cos f =
rb1

r1
=

rb2

r2
 or rb = r cos f.

O2PC,O1PD

rb2
rb1

rb2
,rb1

r2,r1

O2
œ .O1

œ
rb2

.rb1
f,O2.

rb2

rb1

r1

r2

O2

O1

A

B

C

DP

�

�

�

FIGURE 6.16 The relationship between the
base-circle radii, the pressure angle, and the
pitch circle radii: rb = r cos f.
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SAMPLE PROBLEM 6.4

Analysis of a Gear Pair (based on diametral pitch)
Two meshing spur gears with a diametral pitch of 4, a pressure angle of and a velocity ratio
of have their centers 15 in apart. Determine the number of teeth on the driver (pinion) and the
base-circle radius of the gear.

Solution. As usual, subscript 1 will refer to the pinion and subscript 2 will refer to the gear.
From the velocity ratio, we know that

or

We can set up a second equation in and (giving us two equations in two unknowns) and
determine the values of those variables. Knowing the diametral pitch P and the distance
between centers c, we can use Eq. 6.11a to obtain

But therefore,

and it follows that

To solve for the base-circle radius of the gear, we simply solve for and then use the velocity
ratio and pressure angle formulas to find Thus,

so that in and

Finally, from Eq. (6.12), we find the base-circle radius

rb2
= r2 cos f = 12 cos 20° = 11.276 in.

r2 =
r1

n2/n1
=

3
1/4

= 12 in.

r1 = 3

d1 =
N1

P
=

24
4

= 6 in,

rb2
.

r1

N1 = 24 teeth.

120 = N1 + 4N1 = 5N1

N2 = 4N1;

15 =
1

2 * 4
(N1 + N2).

N2N1

N2 = 4N1.

rv =
n2

n1
=

N1

N2
=

1
4

 ,

1
4

20°,
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SAMPLE PROBLEM 6.5

Analysis of a Gear Pair (Based on Module)

Repeat Sample Problem 6.4 for a module of 3 mm and a center distance of 180 mm.

Solution. From the velocity ratio,

Therefore,

From Eq. (6.11b),

Hence, teeth and teeth.
From Eq. (6.5),

and

Thus, from Eq. (6.12),

SAMPLE PROBLEM 6.6

Determination of Pressure Angle

Two gears have a diametral pitch of 4. The pinion has 28 teeth, while the gear has 56 teeth.
Determine the center distance for an actual pressure angle of What is the actual pressure
angle if the center distance is increased by 0.2 in?

Solution. For the data given, the center distance is found by using Eq. (6.3) to obtain the pitch-
circle diameters and then using values obtained in Eq. (6.10):

d2 =
N2

P
=

56
4

= 14 in.

d1 =
N1

P
=

28
4

= 7 in;

20°.
20°

rb2
= r2 cos f = 144 cos 20° = 135.3 mm.

r2 =
d2

2
=

288
2

= 144 mm.

d2 = mN2 = 3(96) = 288 mm

N2 = 96N1 = 24

180 =
3(N1 + 4N1)

2
.

N2 = 4N1.

rv =
N1

N2
=

1
4

 .
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Thus,

The base-circle radius was determined when the gears were cut, and changing the center dis-
tance does not change that radius. However, increasing the center distance does increase the pitch
radius, which in turn results in a larger pressure angle. To find the actual pressure angle resulting
from an increased center distance, we must first find the base-circle radius and the new pitch
radius. From Eq. (6.12),

The new center distance is

The new pitch radii, and although changed numerically, will maintain the same proportion
held by the original pitch radii. Thus, from Eq. (6.8),

or

But

Therefore,

or

Since the base-circle radius does not change, we can finally calculate the new pressure angle
using Eq. (6.12):

so

or

f = 22.8°.

cos f =
rb1

r1
œ =

3.29
3.57

= 0.922,

rb1
= r1

œ
 cos f,

r1
œ = 3.57 in.

r1
œ + 2r1

œ = 10.7,

c¿ = r1
œ + r2

œ = 10.7.

r2
œ = 2r1

œ .

rv =
N1

N2
=

r1

r2
=

r1
œ

r2
œ =

1
2

,

r2
œ ,r1

œ

10.5 + 0.2 = 10.7 in.

c¿

rb1
= r1 cos f = 3.5 cos 20° = 3.29 in.

c =
1
2

 (d1 + d2) =
1
2

 (7 + 14) = 10.5 in.
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Contact Length

As mentioned earlier, all the points of contact between two gear teeth with involute
profiles lie along the pressure line. The initial contact between two teeth will occur
when the tip of the driven gear tooth contacts the driver tooth.The final contact occurs
when the driven gear tooth contacts the tip of the driver tooth. Another way of
describing the interval of contact is to say that initial contact occurs where the adden-
dum circle of the driven gear intersects the pressure line and final contact occurs at the
point where the addendum circle of the driver intersects the pressure line.

Figure 6.17 illustrates the important points of the preceding discussion. Initial
contact occurs at point E, which is the intersection of the addendum circle of the dri-
ven gear and the pressure line. Point F, the intersection of the addendum circle of the
driver and the pressure line, is the final contact point.

The distance between points E and F is known as the length of the line of action,
or the contact length.

�

�

�

O2

O1

Driver

Driver

�2

�1 �1

�2

� 2

r2

�1

r1

rb2

rb1

P

D

E

C

Base circle

Pitch circle

Dedendum circle

Addendum circle

Base circle

Pitch circle

Addendum circle

Dedendum circle

F

FIGURE 6.17 For the contacting gear teeth shown, initial contact occurs at point
E and final contact occurs at point F. Line EF is the length of the line of action.
Angles and are the angles of action, and are the angles of approach,
and and are the angles of recess. The angle of action is equal to the sum of
the angle of approach and the angle of recess.

b2b1

a2a1u2u1
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Section 6.4 Fundamental Law of Gearing 425

The angles and shown in the figure are known as the angles of action—the
angles turned through by the driver and follower gears, respectively, during the interval
of contact between a pair of gear teeth. The arc of action is the arc, measured on the
pitch circle, turned through by a gear as a pair of meshing gear teeth go from initial to
final contact. Note that and subtend the arcs of action.

Angles and are known as angles of approach. The angle of approach is the
angle turned through by a gear from the instant of initial tooth contact until the same
pair of teeth contact at the pitch point.

The angle of recess is defined as the angle turned through by a gear while the contact
between the teeth goes from the pitch point to the point of final contact. In Figure 6.17,
and are the angles of recess. It should be clear from the definitions as well as from
the illustration that the angle of action is equal to the sum of the angle of approach and
the angle of recess.

The angles of approach and angles of recess could be measured from points
where tooth profiles cross the pitch circle. This requires a time-consuming construc-
tion, however. Since the bottom line is the contact ratio, the analytical method in the
next section will usually be preferred.

Contact Ratio

The circular pitch, as defined in an earlier section, is equal to the distance, measured on
the pitch circle, between corresponding points of adjacent teeth. Let be the angle
determined by the circular pitch AB, as shown in Figure 6.18. The angle is known as
the pitch angle. We now define the contact ratio as the angle of action divided by the
pitch angle, or

(6.13)

If the contact ratio were equal to unity, Eq. (6.13) would indicate that the angle of
action is equal to the pitch angle. A contact ratio of unity means that one pair of teeth
are in contact at all times. If the contact ratio were less than unity, there would be an

Contact ratio =
u

g
=
a + b
g

 .

g

g

b2

b1

a2a1

u2u1

u2u1

Pitch circle Addendum circle

Dedendum circle

A

B

O

r
	

FIGURE 6.18 The pitch angle is the
angular equivalent of the circular pitch.

g
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interval during which no teeth would be in contact. Gears are usually designed with a
contact ratio of at least 1.2. Higher values should result in smoother, quieter operation.
For a contact ratio of 1.2, one pair of teeth are always in contact, and two pairs of teeth
are in contact 20 percent of the time. Therefore, the contact ratio is also commonly
defined as the average number of tooth pairs in contact.

The contact ratio can be defined in still another way. However, in order to under-
stand this definition, we must first define the base pitch. The base pitch is equal to
the distance between corresponding points of adjacent teeth measured on the base circle.
Mathematically,

(6.14)

where is the diameter of the base circle and N is the number of teeth. Since
it follows that Therefore,

But since we have

Also, hence,

(6.15)

or, SI units,

The contact ratio can now also be defined as the ratio of the length of action divided by
the base pitch. Referring again to Figure 6.17, we see that the line of action is equal to
the distance between points E and F. This definition is valid, since the length of action,
EF, is the same distance the base circle rolls through as the involute is being generated.
Therefore,

(6.16)

The length of action can be computed from the formulas

EF = EP + PF, EP = ED - PD, and PF = CF - CP.

Contact ratio =
EF
pb

 .

pb = m p cos f.

pb = p cos f,

p = p/P;

pb =
p cos f

P
 .

P = N/d,

pb =
pd cos f

N
 .

db = d cos f.rb = r cos f,
db

pb =
pdb

N
 ,

pb
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Section 6.4 Fundamental Law of Gearing 427

To obtain EF, we must determine component lengths EP and PF. In right triangle
length is equal to the sum of the pitch radius and the addendum of driven

gear 2:

is the base radius of gear 2 and is given by

We can therefore determine length ED by using the Pythagorean theorem:

Also,

Therefore,

The distance PF is found in a similar manner. In triangle length equals the
sum of the pitch radius and the addendum of the driver:

The base radius of the driver is

As with ED, CF is found by using the Pythagorean theorem:

Also,

Therefore,

PF = CF - CP = 2(r1 + a1)
2 - r1

2 cos 2 f - r1 sin f.

CP = r1 sin f.

 = 2(r1 + a1)
2 - r1

2 cos 2 f.

 CF = 2(O1F)2 - (O1C)2

O1C = rb1
= r1 cos f.

O1F = r1 + a1.

O1FO1CF,

EP = ED - PD = 2(r2 + a2)
2 - r2

2 cos 2f - r2 sin f.

PD = r2 sinf.

 = 2(r2 + a2)
2 - r2

2 cos 2f.

ED = 2(O2E)2 - (O2D)2

O2D = rb2
= r2 cos f.

O2D

O2E = r2 + a2.

O2EO2DE,
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428 Chapter 6 Spur Gears: Design and Analysis

Finally, we obtain the length of the line of action solely in terms of the pitch radii, the
addendums, and the common pressure angle:

Thus, the formula for the contact ratio, Eq. (6.16), becomes

(6.17)

SAMPLE PROBLEM 6.7

Determination of Contact Ratio

Two full-depth spur gears have a velocity ratio of 1/3. The diametral pitch is 5 and the pinion
has 20 teeth. Determine the contact ratio (number of teeth in contact) of the gears. (The formula
for the addendum of a full-depth gear is given in Table 6.1 in Section 6.6.) as 

Solution. Before using Eq. (6.17) to determine the contact ratio, we will have to find the follow-
ing values: and Thus, from Eq. (6.3),

and from the velocity ratio equation,

rn =
n2

n1
=

r1

r2
=

1
3

, or r2 = 6 in.

d1 =
N1

P
=

20
5

= 4 in, or r1 = 2 in,

cos f.sin f,r1, r2, a1, a2, pb,

a = 1/P.25°

25°

  +
2(r1 + a1)

2 - r1
2 cos 2f - r1 sin f
pb

 .

 Contact ratio =
2(r2 + a2)

2 - r2
2 cos 2f - r2 sin f

pb

  + 2(r1 + a1)
2 - r1

2 cos 2f - r1 sin f.

 = 2(r2 + a2)
2 - r2

2 cos 2f - r2 sin f
 EF = EP + PF

TABLE 6.1   Standard Gear Profiles

System Addendum Dedendum Clearance Whole depth

full-depth 
involute

full-depth 
involute (coarse pitch)

full-depth 
involute (fine pitch)

stub-tooth involute

full-depth involute

full-depth metric m 1.25m 0.25m 2.25m
standard

20°

2.25
P

0.25
P

1.25
P

1
P

25°

1.8
P

0.2
P

1
P

0.8
P

20°

2.2
P

+ 0.002 in
0.2
P

+ 0.002 in
1.2
P

+ 0.002 in
1
P

20°

2.25
P

0.25
P

1.25
P

1
P

20°

2.157
P

0.157
P

1.157
P

1
P

14  
1
2°
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Section 6.5 Internal Gears 429

The addendum is given by

The last of the unknowns is the base pitch. From Eq. (6.4),

and from Eq. (6.15),

Thus, the contact ratio formula, Eq. (6.17), is solved with the values just determined:

6.5 INTERNAL GEARS

The use of an internal gear is highly desirable in many applications, (e.g., epicyclic gear
trains, to be discussed in a later chapter).An internal gear has its teeth cut on the inside
of the rim rather than on the outside.

Figure 6.19 shows a typical internal gear in mesh with an external pinion. The
important terms and dimensions associated with internal gears are illustrated. As can
be seen from the illustration, the directions of rotation for an internal and external
gear in mesh are the same, whereas two external gears in contact have opposite direc-
tions of rotation.

Since the internal gear has a concave tooth profile, while the external gear’s
tooth profile is convex, the surface contact between the gears is increased, thus
decreasing the contact stress. The center distance between the gears is less, thus mak-
ing a more compact arrangement than that for external gear sets. Internal–external
gear sets also have a greater number of teeth in contact, resulting in smoother and
quieter operation. However, the manufacture of internal gears presents some unique
problems.

  +
2(2 + 0.2)2 - 22(0.906)2 - 2(0.423)

0.569
= 1.48.

 =
2(6 + 0.2)2 - 62(0.906)2 - 6(0.423)

0.569

  +
2(r1 + a1)

2 - r1
2 cos 2f - r1sin f

pb

 Contact ratio =
2(r2 + a2)

2 - r2
2 cos 2f - r2 sin f

pb

pb = p cos f =
p

5
 cos 25° = 0.569.

p =
p

P
=
p

5
 ,

a1 = a2 =
1
P

=
1
5

= 0.2 in.
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Circular
pitch

Line of action Clearance
Pitch point

Pressure
angle

Circular
thickness

Working
depth

Tooth flank

Pinion
12 teeth
20  P.A.

Whole depth

Base circle of
internal gear

Tooth
fillet

Dedendum

Addendum

Center
distance

Internal gear
20 teeth
20  P.A.

Root diameter

Outside diameter

Pitch diameter

Base circle diameter

Internal diameter

Tooth face

FIGURE 6.19 Nomenclature for internal gears.

6.6 STANDARD GEARS

It is economically desirable to standardize gears so that they can be interchanged.
Standard tooth systems have specified values for the addendum, dedendum, clearance,
and tooth thickness. Mating gears should have the same pressure angle, the same mod-
ule or diametral pitch, and (usually) the same addendum and dedendum.

Table 6.1 lists some of the most commonly used standard gear profile systems.The
standard gear profiles given in the table can be expressed in SI units by replacing P by
1/m. For example, for a full-depth involute (coarse pitch), the the

and so on.
The following are commonly used values of diametral pitch: coarse pitch,

and fine pitch,
20, 22, 24, 26, 32, 40, 48, 64, 72, 80, 96, and 120. Some of the standard values for metric
module are 0.3, 0.5, 1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25, 32, 40, 50. Obviously,
standard values of module do not correspond with standard values of diametral pitch.

1, 1 14, 1 12, 1 34, 2, 2 14, 2 12, 2 34, 3, 3 12, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, and 18;

dedendum = 1.25m,
addendum = m,20°
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Section 6.6 Standard Gears 431

Therefore, the two systems are not interchangeable. Many manufacturers and suppli-
ers stock only and pressure angle full-depth gears.

SAMPLE PROBLEM 6.8

Standard Gear Calculations

A full-depth spur gear has 35 teeth and a diametral pitch of 5. Determine the addendum-cir-
cle diameter, the dedendum-circle diameter, and the working depth.

Solution. The addendum- and dedendum-circle radii are found by adding the addendum to,
and subtracting the dedendum from, the pitch-circle radius, respectively. Thus, we must find the
pitch radius. From Eq. (6.3), the pitch-circle diameter is

From Table 6.1, we obtain the expression for the addendum of the gear profile system being
considered:

The addendum-circle diameter is

Similarly, the dedendum is given by

and the dedendum-circle diameter is

Also,

The clearance, from Table 6.1, is

Or, alternatively,

and

Whole depth = addendum + dedendum = 0.20 + 0.25 = 0.45 in.

Clearance = dedendum - addendum = 0.25 - 0.20 = 0.05 in

Clearance =
0.25

P
=

0.25
5

= 0.05 in.

Working depth = whole depth - clearance.

dd = d - 2(dedendum) = 7 - 2(0.25) = 6.5 in

Dedendum =
1.25

P
=

1.25
5

= 0.25 in,

da = d + 2(addendum) = 7 + 2(0.2) = 7.4 in.

Addendum =
1
P

=
1
5

= 0.2 in.

d =
N

P
=

35
5

= 7 in.

20°

20°14 12°
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432 Chapter 6 Spur Gears: Design and Analysis

Finally,

Contact Ratio in Terms of Tooth Numbers (Standard Gears)

“Designing smart” often involves using standard components. Standard “off-the-shelf”
gears cost less than nonstandard gears, and standard gear specifications are set to pro-
vide an adequate contact ratio for most applications.

We can see what influences the contact ratio by rewriting the equation. For stan-
dard full-depth teeth, we substitute

and

where

The result, given in the following sample problem, is a contact ratio equation in terms
of tooth numbers and the pressure angle.

SAMPLE PROBLEM 6.9

A Three-dimensional Bar Chart of the Contact Ratio

How is the contact ratio related to tooth numbers in a gear pair? Make a three-dimensional bar
chart of the contact ratio vs. tooth numbers.
As a design decision, we select pressure angle standard full-depth gears.

Solution summary. We begin with the contact ratio equation in terms of pitch radii and make
the substitutions just suggested . The result is an equation in terms of tooth numbers that applies
to metric or customary U.S. standard gears of any module or diametral pitch. Gears with even
numbers of teeth between 14 and 34 are considered. The results are formed into a matrix and
plotted as a three-dimensional bar chart in Figure 6.20. The contact ratio ranges from about 1.46
for two 14-tooth gears to 1.68 for two 34-tooth gears. If a 14-tooth pressure angle gear
meshes with a gear with more than 26 teeth, there is interference.As a result, a few of the plotted
values are not valid and are marked with an X.We will look into the problem of interference later.

20°

20°

 f = pressure angle.
 p = circular pitch (mm or in), and
 a = addendum (mm or in),
 P = diametral pitch (teeth/in),
 m = module (mm),
 N = number of teeth,
 r = pitch radius (mm or in),

pb = p cos f,

 p = pm = p/P,
 a = m = 1/P,
 r = N   m /2 = N/(2P),

 Or, working depth = 2 * addendum = 2(0.2) = 0.4 in.
 working depth = whole depth - clearance = 0.45 - 0.05 = 0.40 in.
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N2

N1

1.4

1.5

1.6

1.7

CONTACT RATIO CONTACT RATIO
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N1
22

26

34
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14
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CR

34
30

26
22

18
14

N2

1.4

1.5

1.6

1.7
CR

34
30

26
22

18
14

FIGURE 6.20 Contact ratio vs. number of pinion and gear teeth.

Detailed solution.

Contact Ratio Full-Depth Teeth

6.7 GEAR MANUFACTURE

Gears are usually manufactured by milling, generating, or molding. In the milling
method of manufacture, the milling cutter is shaped so as to conform to the shape of the
space between the teeth.The cutter is then moved across the face of the gear blank, thus
cutting out a space between teeth. The blank is then automatically rotated until the next
space to be cut lines up with the cutter.This process is continued until all the spaces have
been cut out, completely forming the gear. Figure 6.21a shows a typical milling cutter.

The disadvantage of the milling cutter is that a different cutter must be used not
only for different pitches, but also for different numbers of teeth. Gear manufacturers
usually shape milling cutters so that they are correct for the gear with the smallest
number of teeth, in each of eight ranges of tooth numbers, for a given pitch.This means
that when gears having a greater number of teeth are cut with a particular milling cut-
ter, an error in the tooth profile results. The error increases toward the high end of
each range of tooth numbers, but is acceptable for most applications.

Gears to be used for high-speed, high-load applications are not cut accurately
enough by the milling process. Instead, the generating method should be used when-
ever high accuracy is required.

 CR(34,34.20 # deg) = 1.681 Mi,j :=  CR(Ni,Nj,20 # deg) - 1.4  CR(14,14.20 # deg) = 1.463

 Ni :=  2 # i + 14 Nj :=  2 # j + 14
 i :=  0..10  j :=  0..10

 :=  
[(N1 + 2)2 - (N1

# cos (f))2]
1
2 + [(N2 + 2)2 - (N2

# cos (f))2]
1
2 - (N1 + N2) # sin(f)

2p # cos (f)

CR(N1, N2, f)
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434 Chapter 6 Spur Gears: Design and Analysis

(a)

(b)

FIGURE 6.21 (a) Like all milling cutters, the milling cutter shown, is accurate only for a specific
gear with a fixed pitch and a fixed number of teeth. (Source: Horsburgh & Scott Company.) 
(b) Hobbing a gear. This method of gear production is more accurate than milling, since a given
hobbing cutter can cut gears of various tooth numbers. with equal accuracy. (Source: Horsburgh
& Scott Company.)
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Section 6.7 Gear Manufacture 435

The generating process of gear cutting entails the use of either a hob or a shaper.
A hob, the cutting tool used in the hobbing process, is shown in Figure 6.21b. Cutting is
accomplished by moving the hob across the gear blank as both the gear blank and the
hob are rotated.

A second method of generating gears is by shaping. The cutting tool used in the
shaping method is either a rack cutter or a pinion cutter. The rack cutter, which has
teeth with straight sides, has its addendum made equal to the dedendum of the gear
being cut. The angular orientation of the side of the rack tooth is equal to the pressure
angle of the gear to be cut. Figure 6.22 shows a gear blank and rack cutter. Cutting isf

Rack cutter

Pressure angle

Gear blank

Pitch line (rack)

Pitch circle (gear)

FIGURE 6.22 Generation of involute gear teeth with a rack cutter. The pitch line of the rack
is tangent to the pitch circle of the gear being cut.
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436 Chapter 6 Spur Gears: Design and Analysis

started when the gear blank has been moved into the cutter until the pitch circle of the
gear blank is tangent to the pitch line of the rack cutter. The cutter is then given a reci-
procating motion across the face of the gear blank as the gear blank slowly rotates and
the rack translates. The cutting of the space between two teeth is not accomplished in
one pass, but rather, requires several passes of the cutter parallel to the gear axis. The
cutting and rolling action is continued until the end of the rack is reached, at which
point the gear blank and the cutting rack are repositioned and the rolling and cutting
action is continued until all the teeth on the gear have been cut.

The pinion cutter, as the name implies, is in the form of a gear rather than a rack.
(See Figure 6.23.) The cutting operation for the pinion cutter is basically the same as
that for the rack cutter; both are shaper operations in which the cutting tool passes
back and forth across the rotating gear blank. The pinion cutter is the tool used to cut
internal gears.

Two principal advantages to using generating cutters rather than milling cutters
are that a much higher degree of accuracy can be obtained in the cutting process and a
single cutter can be used to cut gears with any number of teeth of the same pitch.

The third general method of manufacturing gears is molding. Injection molding
and die casting are used when a large number of gears is required. Injection molding is
employed when the material is a plastic, while die casting is often the process utilized
for metals such as brass and aluminum.

FIGURE 6.23 Generation of a spur gear with a pinion cutter. (Source: Fellows Gear Shaper
Company.)
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Section 6.8 Sliding Action of Gear Teeth 437

Powder metallurgy (P/M) processes are also used to form gears. Metal powders
are compressed in a die and then sintered or heated in a controlled-atmosphere fur-
nace. P/M processes can produce complex shapes (e.g., components of compound plan-
etary gear drives).

A drawing process is used to produce steel, stainless steel, aluminum, bronze, and
brass gears of small diameter (up to 1 in).The material is drawn through a series of dies
to form the teeth. The final product, called pinion wire, is cut to form gears with the
desired face width.

Gears intended for high-speed, high-load applications often require a finishing
process. One method of finishing is shaving, which results in the removal of small
amounts of the surface of the gear. Another popular method used to finish gears is
grinding. In this method, a form grinder or a grinding wheel is used to obtain a high
degree of accuracy. Of the two methods, grinding produces the more accurate finish.
Other finishing methods are honing, lapping, and burnishing.

Gear tolerances are specified according to a quality number, where high quality
numbers imply small tolerances (high precision). High quality numbers are often spec-
ified for high-speed operation and for critical applications such as aircraft guidance
systems and space navigation systems. Low quality numbers are specified for many
agricultural machinery and construction equipment applications. The American Gear
Manufacturers Association (1988) covers gear classification and inspection in detail.

6.8 SLIDING ACTION OF GEAR TEETH

In our earlier discussion of friction wheels, we let the motion between the cylinders be
pure rolling, except when the transmitted force was large enough to cause sliding. For
gears, however, pure rolling motion occurs only when the contact point between gear
teeth is at the pitch point (for spur gears, bevel gears, and helical gears on parallel
shafts). Every other point of contact along the line of action results in sliding of one
tooth on the other. Relative sliding velocity is of importance in the design of gears
because sliding is one of the factors contributing to gear tooth wear.

Figure 6.24 shows two teeth in contact at the pitch point. The pitch-line velocity,
is given by

Now, consider velocity components normal and tangential to the tooth surfaces. Since
the coincident contact points. and have the same velocity, it follows that the nor-
mal and tangential components of velocity will also be equal; that is, and

The identical normal components represent the velocity of the gears along the
line of action. Recall from Chapter 3 that the difference in the tangential components
of velocity of the two gears represents the relative motion, or the sliding. Since in this
case the tangential components of velocity are equal, there is no relative motion and
therefore no sliding velocity. The motion is pure rolling at the instant in question.

v1
t = v2

t .
v1

n = v2
n

P2P1

vp = r1v1 = r2v2.

vp
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r1

P

r2

vn
1, vn

2

O2

v t
1, v t

2

�1

�2

�

FIGURE 6.24 The contact between the gears at the
instant shown is at the pitch point. The pitch-line
velocity is identical for and Since normal and
tangential velocity components are also identical,
there can be no relative, or sliding, motion. At this
point, the motion is pure rolling.

P2.P1

Figure 6.25 shows two teeth in contact at a point K on the line of action other
than the pitch point. The velocities and are again given by and

respectively, in the directions shown. (Note that and are not pitch
radii.) The components of these velocities acting along the line of action are equal and

R2R1v2 = R2v2,
v1 = R1v1v2v1

R1

K

O1

R2

vn

O2

�    2

�    1

�

P

v1

v2

FIGURE 6.25 Unlike the contact point in Figure
6.24, the contact point K does not coincide with the
pitch point P. In this case, the tangential velocities
are unequal, and sliding of one gear on the other
must occur.
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Section 6.9 Interference 439

are shown in the figure as Note that if the components along the line of action were
unequal, the gear teeth would be separating. Components of and in the tangential
direction are unequal, and therefore, one tooth must slide on the other.

The greater as the distance of the point of contact between the teeth from the
pitch point, the greater the sliding velocity becomes. The sliding velocity will therefore
be maximum at the points where the teeth first come into contact and where they
leave contact. The sliding velocity can be determined by any of the procedures dis-
cussed in Chapter 3.

6.9 INTERFERENCE

Involute gear teeth have involute profiles between the base circle and the addendum
circle. If the dedendum circle lies inside the base circle, the portion of the tooth
between the base circle and the dedendum circle will not be an involute. Instead, that
portion of the tooth profile may be a radial line with a fillet where it joins the base cir-
cle, a true clearance curve, or a circular arc. For this reason, if contact between two
gears occurs below the base circle of one of the gears, interference is said to occur. The
contact is then between two nonconjugate curves, and the fundamental law of gearing
will be broken.

In other words, interference occurs whenever the addendum circle of a gear
intersects the line of action beyond the interference point, which is the point where the
line of action is tangent to the base circle of the other gear.

To better understand interference, consider Figure 6.26. Point B is the intersec-
tion of the addendum circle of the gear with the line of action. Points C and D are the
points where the base circles are tangent to the line of action. Interference will occur,
since point B lies outside line segment CD. The interfering portion of the tooth of gear
2 is shown as the shaded area in the figure 6.26.

To avoid interference, the size of the addendum circle diameter must be limited.
Referring again to Figure 6.26, we see that the maximum radii that the addendum cir-
cles may have to avoid interference are and From right triangle we
observe the following relationships:

Since the distance between gear centers is

the expression for CD becomes

CD = c sin f.

c = O1P + O2P,

 CD = CP + PD = (O1P + O2P)sin f.
 CP = O2P sin f;
 PD = O1P sin f;

 O1D = O1P cos f = r1 cos f = rb1
;

 O1C = ra1
(radius of addendum circle) = 2(O1D)2 + (CD)2;

O1CD,O2D.O1C

v2v1

vn.
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The expression for the radius of the addendum circle of gear 1 then becomes

or

(6.18)

Similarly, for the other gear,

(6.19)

If the addendum circle-radius exceeds the calculated value, interference will occur. If it
is equal to or less than the calculated value, no interference will occur. However, clear-
ance must still be provided for normal operation.

SAMPLE PROBLEM 6.10

Detection of Gear Interference

Two standard full-depth gears have a module of 8 mm.The larger gear has 30 teeth, while the
pinion has 15 teeth. Will the gear interfere with the pinion?

20°

ra2
(max ) = 2r2

2 cos 2f + c2 sin2f = 2rb2

2 + c2 sin2f.

ra1
(max ) = 2r1

2 cos 2f + c2 sin2f = 2rb1

2 + c2 sin2f.

O1C = 2r1
2 cos 2f + c2 sin2f,

Dedendum2

O2

O1

Addendum2

Addendum1

C

P

B

Base2

rb2

rb1

�

�

Pitch2

Pitch1

c

D

Base1

Pressure angle                          �

FIGURE 6.26 Points C and D are referred to as interference points. The part of the
tooth that would have to be removed in order to prevent interference is shown
shaded.
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Solution. Equation (6.19) will indicate the maximum permissible addendum-circle radius for
the gear in this problem. We must therefore calculate the base-circle radius for the gear, and
the center distance c in order to use the formula. Thus, from Eq. (6.5),

and

Hence,

The radius of the base circle of the gear is therefore

We can now determine the maximum permissible addendum radius. By comparing the result
with the actual value as determined from Table 6.1, we find whether interference exists in this
case. Maximum permissible addendum radius

From Table 6.1, for the full-depth gear,

and the addendum-circle radius is the sum of the pitch radius and the addendum, or

Comparing the maximum permissible addendum radius with the actual value, we find that there
is no interference, since the actual addendum circle radius is slightly less than the maximum
allowable addendum circle radius. If had been greater than (max), interference would have
occurred.

Note that, for a pair of standard gears, if the addendum of the larger gear does
not interfere with the smaller gear, then it follows that the addendum of the smaller
gear will not interfere with the larger gear. That is, if is less than then 
will be less than where the subscript 1 designates the smaller of the two
gears. This relationship can be illustrated by considering the preceding example again,
in which it was determined that

ra2
= 128 mm and ra2

(max ) = 128.5 mm,

ra1
 (max ),

ra1
ra2

 (max ),ra2

ra2
ra2

ra2
= r2 + a2 = 120 + 8 = 128 mm.

a2 = m = 8 mm,

20°

 = 2(112.8)2 + (180)2(0.342)2 = 128.5 mm.

 ra2
(max) = 2rb2

2 + c2 sin2 f

rb2
= r2 cos f =

240
2

 cos 20° = 112.8 mm.

c =
1
2

 (d1 + d2) =
1
2

 (120 + 240) = 180 mm.

d1 = mN1 = 8(15) = 120 mm.

d2 = mN2 = 8(30) = 240 mm

rb2
,
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and therefore, no interference occurs, although the condition is close to interference.
Examining the smaller gear, we have

and

As can be seen, the actual addendum circle radius of 68 mm for the pinion is well
within the limit of 83.5 mm.

The following limiting condition based on Eq. (6.19) can be used to determine
the number of gear teeth necessary to avoid interference:

Again, the subscript 2 represents the larger of the two meshing gears. Substituting the
expressions

leads to

where for standard full-depth gears. Factoring P from the preceding inequality
and simplifying yields

(6.20)

For any given pressure angle and addendum constant k, this inequality can be used
to determine the necessary number of teeth on one of the gears in terms of the number
of teeth on the other gear in order to avoid interference. For example, rearranging
terms, we have

4k - 2N1 sin2 f …
N1

2 sin2 f-4k2

N2
.

f

4kN2 + 4k2 … N1
2 sin2 f + 2N1N2 sin2 f.

k = 1

¢N2

2P
+

k

P
≤2

… ¢N2

2P
≤2

cos 2  f + ¢N1 + N2

2P
≤2

 sin2 f,

r2 =
N2

2P
, a2 =

k

P
, and c =

1
2P

 (N1 + N2)

(r2 + a2)
2 … r2

2 cos 2 f + c2 sin2 f

 = 2(60)2(0.940)2 + (180)2(0.342)2 = 83.5 mm.

 ra1
 (max ) = 2r1

2 cos 2f + c2 sin2 f

ra1
= r1 + a1 = 60 + 8 = 68 mm
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Section 6.9 Interference 443

If we now consider the extreme case where approaches infinity, (i.e., the gear
becomes a rack), then

or

for noninterference with a rack. The equation

(6.21)

defines the minimum number of teeth that a pinion can have without interference
occurring when the pinion meshes with a rack. The following values of for standard
tooth forms are obtained from this equation, where the fractional value calculated is
rounded to the next highest integer:

These values of satisfy the general inequality condition of Eq. (6.20) not only for
but also for any value of However, the values listed are no longer

the minimum values required. That is, in some cases smaller numbers of teeth can be
used if the pinion meshes with a gear other than a rack.

Minimum Number of Pinion Teeth Required to Mesh 
with an External Gear

Let us check the last statement in the preceding paragraph if, for example, pressure
angle full-depth teeth are specified, can a pinion with less than 12 teeth mesh with an
external gear? We can set for full-depth teeth replace with in the inter-
ference inequality, and solve for the minimum number of pinion teeth in terms of the
number of gear teeth. Software with symbolic capability makes the solution easier. If
the result is not a whole number, we go the next higher integer.

SAMPLE PROBLEM 6.11

Minimum Number of Teeth to Avoid Interference

Suppose we plan to use gears with up to 80 teeth. Plot the minimum pinion size vs. the gear size.

Decision. We will consider standard full-depth teeth with pressure angle and 25°.f = 14.5°, 20°,

“=”“…”k = 1

25°

N2 Ú N1.N2 : q ,
N1

 25° full depth: N1 = 12.
 20° stub: N1 = 14 (k = 0.8);
 20° full depth: N1 = 18;

 14 12° full depth: N1 = 32;

N1

N1 =
2k

sin2 f

N1 Ú
2k

sin2 f
 ,

4k - 2N1 sin2 f … 0,

N2
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FIGURE 6.27 Minimum number of gear and pinion teeth required to avoid interference.

Solution summary. Software with symbolic capability is used to help us solve for 
as outlined in the paragraph preceding this sample problem.We select the second (positive) root
and consider gears with 8 to 80 teeth.The interference equation assumes that we reject
other solutions. Plotted results (Figure 6.27) show the minimum number of gear and pinion teeth
required to avoid interference. For example, if we select a pressure angle, a pinion with at
least 10 teeth can mesh with a gear that has 14 to 32 teeth.

Solution details.

Minimum Number Of Teeth (Full-Depth)
Pinion teeth Gear teeth Solve for minimum number of pinion teeth;

 N1 : E
-1
2

# N2

sin(f)2
# ¢2 # sin(f)2 + 2 # sin(f)

N2

# 2sin(f)2 # N2
 2 + 4 # N2≤

-1
2

# N2

sin(f)2
# ¢2 # sin(f)2 - 2 # sin(f)

N2

# 2sin(f)2 # N2
2 + 4 # N2≤

U

 4 - 2N1(sin(f))2 =
(N1sin(f))2 - 4

N2
 solve,

N2N1;

25°

N2 Ú N1;

N1(minimum),
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Section 6.9 Interference 445

Do not plot if 

The Contact ratio and interference are important measures of performance for
gears. If interference is predicted, we must revise the design. In an earlier section, we
made a three-dimensional bar chart of the contact ratio, but X’d out some gear combi-
nations due to interference. This is explained in the next sample problem.

SAMPLE PROBLEM 6.12

Contact Ratio and Interference

A -pressure-angle, 14-tooth pinion is to be used in a gearbox. The meshing gear may have
from 14 to 35 teeth, depending on the speed ratio requested by the customer. Find the contact ratios.

Solution summary. We will use the contact ratio and interference equations derived previously.
Contact ratios (CRs) are calculated and tabulated for the stated range of gears; however, the
pinion must have a minimum of 15 teeth to mesh with a gear of 27 or more teeth. Thus, contact
ratio values are valid only if the gear has 26 teeth or less. The valid range of is

If we had selected a 15-tooth pinion, it
could mesh with gears of up to 100 teeth or so. The solution is also used to simulate a rack by
putting in a large number of gear teeth. Eighteen pinion teeth are required; the result
checks previous calculations.

Solution details.

Contact Ratio and Interference: Full-Depth Teeth

Pinion teeth Gear teeth Pressure angle 

Contact Ratio

Minimum Number of Teeth to Avoid Interference

Round upward:

Not applicable if N1 7 N2   N1 min (f, N1, N2): = if(N1 … N2, NN1(f, N2),“NA’’)

 :=  ceilB -1
2

# N2

sin(f)2
# ¢2 # sin(f)2 - 2 # sin(f)

N2

# 2sin(f)2 # N2
2 + 4 # N2 + 4≤ R

NN1(f, N2)

NN1

 :=  
[(N1 + 2)2 - (N1

# cos(f))2]
1
2 + [(N2 + 2)2 - (N2

# cos(f))2]
1
2 - (N1 + N2) # sin(f)

2 # p # cos (f)

CR(N1, N2, f)

f = 20.deg.N2: = 14 Á 35.N1: = 14

(1010)

CR(14, 14, 20°) = 1.463  to CR(14, 26, 20°) = 1.542.
CR(N1, N2, f)

20°

N1 7 N2     N1 min (f, N2): = if(N1(f, N2) 6 N2
# N1(f, N2), 0)

N1(f # N2) :=  ceilB -1
2

# N2

sin(f)2
# ¢2 # sin(f)2 - 2 # sin(f)

N2

# 2sin(f)2 # N2
2 + 4 # N2 + 4≤ R
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If gear 2 is rack:

14 1.463 13
15 1.472 13
16 1.481 13
17 1.489 13
18 1.496 14
19 1.503 14
20 1.51 14
21 1.516 14
22 1.522 14
23 1.527 14
24 1.532 14
25 1.537 14
26 1.542 14
27 1.546 15
28 1.55 15
29 1.554 15
30 1.558 15
31 1.562 15
32 1.565 15
33 1.568 15
34 1.572 15
35 1.475 15

The preceding equations and results apply to a pair of external gears, or a rack
and pinion. Internal gears (ring gears) present additional problems; the equations do
not apply if one of the gears is an internal gear. Interference may occur in an internal
gear set if the two gears are close in size. A suggested guideline is

and

where

Undercutting

In Section 6.7, the generating gear cutters (rack and pinion) were discussed. During cut-
ting, the cutter and gear blank act in a manner similar to two meshing gears. It is there-
fore possible for interference to occur. However, since one of the elements is a cutting

 f = pressure angle.
 NP = number of pinion teeth, and
 NI = number of internal gear teeth,

NI - NP Ú 12 for f = 20,

NI - NP Ú 15 for f = 14.5

N1 min (f, N1, 1010) = 18

N1 min (f, N1, N2)CR(N1, N2, f)N2

446 Chapter 6 Spur Gears: Design and Analysis
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Pitch circle

Base circle

FIGURE 6.28 When gears are undercut, the
shaded portions of the teeth are removed.
Since a part of the profile that lies above the
base circle is removed in the process, the
result is a reduced length of contact.

tool, the portion of the gear that would be interfering is cut away. A gear that has had
material removed in this manner is said to be undercut.

Figure 6.28 shows undercut gear teeth, with the undercut portion shaded. As can
be seen, undercutting also removes a portion of the tooth profile above the base circle.
This is a definite disadvantage, since the length of contact is reduced, which in turn
decreases the contact ratio and results in rougher and noisier gear action, because
fewer teeth are in contact. Moreover, since undercutting removes material from the
base of the tooth, it also may seriously weaken the tooth.

If undercutting is permitted, the minimum recommended number of teeth is 16
for -pressure-angle gears and 13 for -pressure-angle gears.

Stub Teeth

To reduce the amount of interference, methods other than undercutting are also avail-
able. For example, interference can be eliminated if the height of the tooth is reduced
by cutting off a portion of its tip. Interference occurs when the tip of one gear is in con-
tact below the base circle of the mating gear. Removing a portion of the tip of the
tooth will therefore prevent contact below the base circle. This type of gear is called a
stub-tooth gear. We must recalculate and evaluate the contact ratio.

The Effect of the Pressure Angle

Increasing the pressure angle will also decrease the problem of interference. A larger
pressure angle decreases the diameter of the base circle and thus increases the involute
portion of the tooth profile. But larger pressure angles increase shaft loading as well.

An equation for determining the minimum pressure angle for which no interfer-
ence will be present can be derived from Eq. (6.19). We have

and

ra
2(max ) = rb

2 + c2 sin2 f,

ra(max ) = 2rb
2 + c2 sin2 f

20°14.5°

451
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and since 

But therefore,

Hence,

so that

(6.22)

In employing Eq. (6.22), the standard value for the addendum is to be used in deter-
mining (max). Therefore,

(6.23)

where and r refer to the larger gear. Of course, the value for the pressure angle 
must still provide an acceptable contact ratio.

SAMPLE PROBLEM 6.13

Minimum Pressure Angle to Avoid Interference

We plan to design a line of gear sets. Find the minimum allowable pressure angle.

Design decisions. We will use pinions with 9 to 14 teeth and gears with 9 to 60 teeth. We will
design for full-depth addendums, and determine the minimum pressure angle necessary to avoid
interference.

Solution summary. The equation for the pressure angle in the preceding paragraph is rewritten
in terms of tooth numbers and module. The larger gear of the pair is the offender when it comes
to interference.
Assuming that we substitute

and

We then simplify to get an equation for the minimum pressure angle in terms of tooth numbers
only. An IF-statement is used to call for a revised equation for combinations where in 
The result is then plotted for each possible combination in the specified range. (See Figure 6.29.)

N1 7 N2.

 c = (N1 + N2)/(2 m).

 ra = m N2/2 + m,
 r = m N2/2,

N2 Ú N1,

fra

sin f = Cra
2 - r2

c2 - r2 ,

ra

 sin f = Cra
2 (max ) - r2

c2 - r2  .

 sin2 f =
ra

2 (max ) - r2

c2 - r2  ,

ra
2 (max ) = r2(1 - sin2 f) + c2 sin2 f = r2 + (c2 - r2)sin2 f.

cos2 f + sin2 f = 1;

ra
2 (max ) = r2 cos2 f + c2 sin2 f.

rb = rsin f,
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FIGURE 6.29 Minimum pressure angle required to avoid interference vs. number of gear and
pinion teeth (based on full-depth teeth).

Note that the final result would be the same if we had used the customary U.S. form instead of
the metric form, substituting

Solution details.

Interference

Minimum pressure angle based on interference (full-depth teeth)
Pinion teeth Gear teeth 

f(N1,N2) :=  ifEN2 Ú N1, 

asinB2¢ N2 + 1

2 # N1
# N2 + N1

2 ≤
1
2R

deg
, 

asinB2¢ N1 + 1

2 # N1
# N2 + N2

2 ≤
1
2R

deg
U

N2 :=  9,10. Á 60.N1.

r = N2/(2P), etc.
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The results of the previous sample problem show that large pressure angles are
recommended when the pinion has a small number of teeth, particularly if the pinion
meshes with a large gear. In rare cases, we might consider generating teeth with non-
standard pressure angles. Usually, cost considerations lead us to use standard values

And remember the basic rule: If gears are to mesh, they must
have identical pressure angles and identical modules (or diametral pitches). Let us
take one more look at the relationships between the pressure angle, tooth numbers,
interference, and the contact ratio.

SAMPLE PROBLEM 6.14

Trade-offs Related to Pressure Angle, Tooth Numbers, Interference, and Contact Ratio

What is the best pressure angle?

Solution summary. Contour plots of the contact ratio vs. pinion and gear tooth numbers give us
some insight into this problem. We use previously derived equations and reject combinations
that produce interference. A matrix of contact ratios is calculated and plotted for pinions and
gears with 20 to 100 teeth. We could assess contact ratios as follows:

Contact ratio Comment

gears lose contact
tolerances, errors, and deflection may cause 
unsatisfactory operation
marginally satisfactory
good design
better design
best design for reduced noise and vibration

For a pressure angle of the contact ratio ranges from less than 1.9 to better than 2.3,
as shown in Figure 6.30. That is very good, but many combinations of gears are forbidden due to
interference (as indicated by the shaded area at the left of the contour plot).

The matrix is plotted again by changing the last argument to (See Figure 6.31.). Since
a -pressure-angle, 18-tooth full-depth pinion can mesh with any gear from 18 teeth to a rack,
there is no interference problem. However, the contact ratio ranges from less than 1.6 to better
than 1.8. Thus gears might not be as quiet, and shaft loads are increased. We will look into tooth
loading in the next section.

A contour plot for -pressure-angle gears would show contact ratios ranging from about
1.4 to 1.6. (The plot is left to the reader as an exercise.) The higher pressure angle will cause
greater shaft loads and may produce more noise and vibration, but we can operate with smaller
tooth numbers.

As regards the original question, the answer depends on the application. We could select
from all three pressure angles, depending on the specific job. However, inventory reduction is a
worthy cost-cutting goal. A good compromise might be to standardize on -pressure-angle
gears, which are available in a wide range of diametral pitches and modules.

Solution details.

Contact Ratio Full-Depth Teeth

 :=  
[(N1 + 2)2 - (N1

# cos (f))2]
1
2 + [(N2 + 2)2 - (N2

# cos (f))2]
1
2 - (N1 + N2) # sin(f)

2 # p # cos(f)

CR(N1, N2, f)

20°

25°

20°
20°.

14.5°,

2 … CR
1.4 … CR
1.2 … CR
1.1 … CR 6 1.2

1 … CR 6 1.1
CR 6 1

(14.5°, 20°, and 25°).
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FIGURE 6.30 Contour plot of contact ratios for various gear and pinion tooth num-
ber combinations (based on a pressure angle of ). The shaded area to the left
indicates gear combinations that would result in interference.

14.5°

Smallest number of teeth considered 
Range of values

Minimum Number of Teeth to Avoid Interference (Round upward)

Not applicable if 

Set contact if there is interference

Define matrix for plotting Mi,j :=  (Ni,Nj,14.5 deg)

cr(N1, N2, f) :=  if(N1 Ú NN1(f, N2), CR(N1, N2, f), 1)

ratio = 1 (not acceptable)

N1 7 N2   N1 min (f, N1, N2) :=  if(N1 … N2, NN1(f, N2), 106)

 :=  ceilB -1
2

# N2

sin(f)2
# ¢2 # sin(f)2 - 2 # sin(f)

N2

# 2sin(f)2 # N2
 2 + 4 # N2 + 4≤ R

NN1(f, N2)

NN1

Nj :=  j + N02Ni :=  i + N01j :=  0..m2i :=  0..m1m2 :=  80m1 :=  80

N01 :=  20  N02 :=  20
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FIGURE 6.31 Contour plot of contact ratios for various gear and pinion tooth number combinations
(based on a pressure angle of ).20°

Eliminating Interference by Using Unequal Addendums

The final method commonly used to eliminate interference is to cut the gears with
unequal addendum and dedendum teeth. This is accomplished by increasing the
addendum of the driver while decreasing its dedendum. The mating gear is then cut
with a decreased addendum and an increased dedendum. The result of this procedure
is to increase the length of action for which involute action is obtainable. Gears of this
type are usually called long-and-short addendum teeth gears.

The disadvantage of cutting gears with unequal addendum and dedendum teeth
is an increase in the cost of the gear and the fact that gears cut in this manner are non-
interchangeable. Such gears are also known as nonstandard gears.
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Section 6.10 Gear Tooth Forces 453

Finally, it should be clear from the previous discussion that the method used to
eliminate interference depends on the application at which the gear is aimed.

6.10 GEAR TOOTH FORCES

Aside from the kinematic considerations already discussed, the forces and torques act-
ing on spur gears are of vital importance to the designer. As was discussed earlier, the
normal force one gear exerts upon another always lies along the line of action between
them (also known as the pressure line).

In Figure 6.32, with gear 1 the driver, the normal force exerted by gear 1 on
gear 2 is shown. Keep in mind that no matter where on the line of action the two teeth
are in contact, the normal force will always pass through the pitch point P. At the pitch
point, the normal force can be resolved into the two components the tangential
force, and the radial force. Thus

(6.24)

and

(6.25)

or

(6.26)

where is the pressure angle and the forces are expressed in pounds in the English
system or in newtons in the SI system.

Clearly, the normal force exerted by gear 2 on gear 1 would act along the pres-
sure line, but in the direction opposite to that shown in the figure.

The radial force on external spur gears always acts inward toward the center of
the gear. On the other hand, the radial force acting on internal spur gears always acts

f

Fr = Ft tan f,

Fr = Fn sin f,

Ft = Fn cos f

Fr,
Ft,

Fn

O2

O1

r2

r1

rb2

rb1

P

Fr

Fn

Ft

�

FIGURE 6.32 The normal force exerted by gear 1
on gear 2 is shown, as well as its two components:
the tangential force and the radial force Gear
1 is the driver.

Fr.Ft

Fn
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outward from the center of rotation. Obviously, the radial force tends to move the gear
out of contact with its meshing gear.

The direction of the normal force along the pressure line is determined by the
direction of rotation of the driver. Follow the direction of rotation of the driver along
the pressure line to determine the direction of the normal force on the driven gear.
Clearly, the normal force exerted by the driven gear on the driver acts in the opposite
direction.

The torque that is produced about the center of a gear is given by

(6.27)

where

The power that can be transmitted from one gear to another is determined from

(6.28)

or

(6.29)

where, in the English system,

In the SI system, power is

(6.30)

or

(6.31)

where

 Ft = tangential force in newtons,
 v = rotational speed in radians per second,
 T = torque in newton-millimeters,

kW =
Ftvp

1,000,000
 ,

kW =
Tv

1,000,000
 ,

 hp = power in units of horsepower.
 vp = pitch-line velocity in feet per minute, and
 Ft = tangential force in pounds,
 n = revolutions per minute,
 T = torque in inch-pounds,

hp =
Ftvp

33,000

hp =
Tn

63,025
,

 T = torque.
 db = base-circle diameter, and
 d = pitch circle diameter,
 Ft = tangential force,
 Fn = normal force,

T = Fn¢db

2
≤ = Fn¢d

2
≤cos f = Ft¢d

2
≤ ,

458



Section 6.10 Gear Tooth Forces 455

Finally, it should be noted that the efficiency of power transmission from one
gear to another is not 100 percent. Generally, we can expectabout a 1- or 2-percent
power loss at maximum transmitted power for spur gears. Unless stated otherwise, we
will assume, when doing problems, that there is no power loss.

SAMPLE PROBLEM 6.15

Force Analysis of Spur Gears

For the three gears shown in Figure 6.33, gear 1, the driver, rotates at 1000 rev/min clockwise and
delivers 30 kW of power. Gear 1 has a module of 10 mm, a pressure angle of and 35 teeth,
while gear 2 has 45 teeth and gear 3 has 60 teeth.

(a) What is the distance between A and C?
(b) What is the speed ratio between gears 1 and 3?
(c) If gear 2 were not in the train, what would be the speed ratio between gears 1 and 3? On

the basis of this answer, what purpose does the idler gear, gear 2, serve?
(d) Draw and completely label the free-body force diagram of each gear.

Solution. (a) From Eq. (6.5),

and

d3 = mN3 = 10(60) = 600 mm.

d2 = mN2 = 10(45) = 450 mm,
d1 = mN1 = 10(35) = 350 mm,

20°,

 kW = power in kilowatts.
 vp = pitch-line velocity in millimeters per second, and

A B C

1

2

3

y

x

FIGURE 6.33 A gear train consisting of three spur gears.
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By Eq. (6.10),

and

Therefore,

Check: Upon considering the figure, it is clear that the distance between shafts A and C is

(b) From Eq. (6.8),

(c) Without gear 2,

Obviously, gear 2 does not affect the speed ratio between gears 1 and 3. However, with gear 2 in
the system, gear 3 rotates clockwise. Without gear 2, gear 3 would rotate counterclockwise.
Therefore, the purpose in introducing an idler gear between the driver and driven gears is to per-
mit the driver and driven gears to have the same direction of rotation. (d) The angular velocity
of gear 1 is

From Eq. (6.1),

By Eq. (6.31),

Ft1–2
=

kW(1,000,000)

vp
=

30(1,000,000)

18,322
= 1637 N.

vp = r1v1 =
350
2

 mm(104.7 rad/s) = 18,326 mm/s.

v1 = 1000 rev/min ¢2p rad
1 rev

≤  ¢1 min 

60 s
≤ = 104.7 rad/s.

rv =
N1

N3
=

35
60

= 0.583.

rv1–3
=

N1

N2
*

N2

N3
=

35
45

*
45
60

= 0.583.

r1 + r2 + r2 + r3 =
350
2

+
450
2

+
450
2

+
600
2

= 925 mm.

cAC = cAB + cBC = 400 + 525 = 925 mm.

cBC =
1
2

(d2 + d3) =
1
2

(450 + 600) = 525 mm.

cAB =
1
2

(d1 + d2) =
1
2

(350 + 450) = 400 mm
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From Eq. (6.27),

By Eq. (6.26),

The pressure line is located by rotating the common tangent through the pressure angle in a
direction opposite that of rotation of the driver. The force which is equal in magnitude to
force and the force which is equal in magnitude to force are the forces that shaft A
exerts on gear 1. The torque which is equal in magnitude to torque is the torque the shaft
exerts on gear 1. Figure 6.34 shows all of these vectors, with their proper directions, on a free-
body diagram of gear 1.

T1,TA,
Ft1–2

,FAy
,Fr1–2

,
FAx

,

Fr1–2
= Ft1–2

 tan f = 1637 tan20° = 1637(0.364) = 595.9 N.

T1 = Ft1–2
¢d1

2
≤ = 1637 N # ¢350

2
 mm≤ = 286,500 N # mm = 286.5 N # m.

3

�    3
FCy

FCx

TC

�

Fr2–3

Ft2–3

�    1

2

1

�    2

FAy

FAx

FBy

TA

�

��

Fr1–2

Ft1–2

Ft2–3
Ft1–2

Fr1–2
Fr2–3

FIGURE 6.34 Free-body force diagrams of the gears in the gear train of Figure 6.29 and
Sample Problem 6.10.
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From Newton’s third law (action and reaction), and since the net torque on gear 2 must be
zero, it follows that

(See Figure 6.30.) And for gear 3,

and

Check: From Eq. (6.8),

Therefore,

and

Using Eq. (6.31), we have

The complete force diagrams of the individual gears are shown in Figure 6.34. Note that each
gear satisfies force and moment equilibrium conditions. Therefore,
and where and are the bearing forces on idler gear 2 at shaft B.Torque repre-
sents the load on shaft C, against which the gear train is driving.

6.11 GEAR TOOTH FAILURE

Gear tooth failures usually result from bending or wear. Fatigue loading is an impor-
tant factor.We usually specify face width and module or diametral pitch on the basis of
tooth loading, pitch-line velocity, quality number, and related factors. Determining the
face width, module, and diametral pitch for given loading scenarios is discussed by
American Gear Manufacturers Association (1982) and Wilson (1997).

TcFBy
FBx

FBx
= 0,

+ Ft2–3
= 2Ft1–2

FBy
= Ft1–2

Ft2–3
=

kW(1,000,000)

vp
=

30(1,000,000)

18,330
= 1,637 N.

vp = r3v3 =
600
2

 mm(61.1 rad/s) = 18,326 mm/s.

v3 = v1 + ¢N1

N3
≤ = 104.7 rad/s¢35

60
≤ = 61.1 rad/s

v3

v1
=

N1

N3
.

TC = T3 = Ft2–3
¢d3

2
≤ = 1637 N # ¢600

2
 mm≤ = 491,100 N # mm = 491.1 N # m.

 FCx
= Fr2–3

= 595.9 N,
 FCy

= Ft2–3
= 1,637 N

Ft2–3
= Ft1–2

 and Fr2–3
= Fr1–2

.
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The consequences of a potential failure also affect our design.Will a tooth failure
be a minor inconvenience? Or will there be a costly interruption in production? Or
will failure cause possible injury or loss of life? Critical applications sometimes call for
extensive testing. If our tentative design is inadequate, we can examine the failure
mode as an aid to redesign. American Gear Manufacturers Association (1980) is an
excellent reference for this purpose.

6.12 GEAR MATERIALS

Common gear materials include steel, stainless steel, cast iron, bronze, nylon, and phe-
nolics. Steel with 40 points of carbon (0.40% carbon) is often selected for good fracture
strength, toughness, impact resistance, and fatigue strength. Gear teeth can be heat
treated to improve their resistance to wear.Typical hardened teeth have a Rockwell C-
scale hardness of to over Stainless steel is used when resistance to atmos-
pheric corrosion is required. Food-industry specifications sometimes specify stainless
steel. Cast iron is often selected for large gears. Cast iron has good wear characteristics
and excellent machinability. Bronze is selected for applications with high sliding veloc-
ities, particularly for worm gears.When weight must be minimized, aluminum gears are
used. Nylon gears are also light, have a low coefficient of friction, and are flexible and
capable of absorbing shock loads. Gears are also made of laminated phenolic fiber, a
non metallic material that provides electrical insulation.

SUMMARY

When two gears mesh, the smaller gear is usually called a pinion.When we use gears to
reduce speed (the usual case), the pinion is the drive gear. The speed ratio of a pair of
gears (other than planetary gears) is the inverse of the ratio of the numbers of teeth.
Standard gears are based on the involute form and made with a or pres-
sure angle. Gear tooth size is based on the module (mm) or the diametral pitch (teeth
per inch of diameter). For a pair of gears to mesh, the two gears must have the same
pressure angle and the same module or diametral pitch. The contact ratio of a pair of
gears is the average number of pairs of teeth in contact. Gears are usually designed
with a contact ratio of at least 1.2. Higher values result in smoother, quieter operation.

Gears are designed to avoid interference. Gears with a pressure angle
require up to 32 teeth to avoid interference. Pressure angles of and allow for
smaller tooth numbers. The resultant force on a gear tooth is broken into two compo-
nents: the tangential force and the normal force The tangential force is propor-
tional to the power transmitted and inversely proportional to the rotational speed.

A Few Review Items

• A -pressure-angle gear is to be cut with 21 full-depth teeth and a module of 8
mm. Calculate the radii of the pitch circle, addendum circle, base circle, and
dedendum circle.

20°

Fr.Ft

25°20°
14.5°

25°14.5°, 20°,

60 Rc.45 Rc
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460 Chapter 6 Spur Gears: Design and Analysis

• Sketch and label the pitch circle, addendum circle, base circle, and dedendum cir-
cle of the gear just described. Sketch two adjacent teeth, approximately to scale.
Show the circular pitch. Show the line of action if this 21-tooth gear rotates coun-
terclockwise and drives another gear directly above it.

• Can a pair of gears produce an output-to-input speed ratio of exactly 1: Select
a pair of gears that will approximate this ratio.

• A 1:2 speed reducer is proposed with an 18-tooth pinion and 36-tooth gear. Will
gears be OK? 

• Suppose you can only cut gears. Do you have an alternative
plan to produce the required speed ratio in the preceding problem?

• Comment on the expected performance of a pairs of gears with the following val-
ues of contact ratio: and 

• Write an equation that relates power transmitted kW, torque and
speed (rpm).

PROBLEMS

6.1 For what reasons are gears preferred over friction drives?
6.2 State the fundamental law of gearing.
6.3 Define the following terms:

(a) Pitch circle
(b) Diametral pitch
(c) Circular pitch
(d) Pitch point
(e) Addendum
(f) Dedendum
(g) Backlash
(h) Base circle
(i) Pressure angle
(j) Angle of approach
(k) Angle of recess
(l) Contact ratio
(m) Interference
(n) Speed ratio
(o) Module

6.4 What are the methods used to eliminate interference?
6.5 What is the pitch diameter of a 40-tooth spur gear having a circular pitch of 1.5708 in?
6.6 How many revolutions per minute is a spur gear turning at if it has 28 teeth, a circular

pitch of 0.7854 in, and a pitch-line velocity of 12 ft/s?
6.7 How many revolutions per minute is a spur gear turning at if it has a module of 2 mm, 40

teeth, and a pitch-line velocity of 2500 mm/s?
6.8 A spur gear having 35 teeth is rotating at 350 rev/min and is to drive another spur gear at

520 rev/min.

(N # mm),
CR = 2.2.CR = 0.95, CR = 1.01, CR = 1.4,

14.5°-pressure-angle
25°?20°?14.5°-pressure-angle

p?
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(a) What is the value of the velocity ratio?
(b) How many teeth must the second gear have?

6.9 An external full-depth spur gear has a diametral pitch of 3. The spur gear drives an
internal gear with 75 teeth to produce a velocity ratio of Determine the center distance.

6.10 A standard full-depth spur gear has 24 teeth and a circular pitch of 0.7854 in.
Determine (a) the working depth, (b) the base circle diameter, (c) the outside diameter,
(d) the tooth thickness at the base circle, and (e) the tooth thickness at the outside diameter.

6.11 A spur gear is rotating at 300 rev/min and is in mesh with a second spur gear having 60
teeth and a diametral pitch of 4. The velocity ratio of the pair of meshing gears is What
is the magnitude of the pitch-line velocity?

6.12 Two meshing spur gears have a diametral pitch of 4, a velocity ratio of and a center dis-
tance of 15 in. How many teeth do the gears have?

6.13 Two meshing spur gears have a module of 1.25 mm, a center distance of 87.5 mm, and a
velocity ratio of 0.4. How many teeth do the gears have? If the pinion speed is 1000
rev/min, what is the pitch-line velocity?

6.14 A pair of spur gears has a circular pitch of 15.708 mm, a pitch-line velocity of 4000 mm/s,
and a center distance of 350 mm.The larger gear has 84 more teeth than the smaller gear.
Determine the rotational speeds of the gears in revolutions per minute.

6.15 A pinion has 32 teeth, a diametral pitch of 4, and a pressure angle. The driven gear is
such that the velocity ratio is 

(a) What is the center distance?
(b) What is the base-circle radius of the driven gear?

6.16 A standard pinion has 30 teeth, a module of 6 mm, and a pressure angle. The velocity
ratio is 0.3.

(a) What is the center distance?
(b) What are the base-circle radii?
(c) What are the tooth thicknesses at the respective base circles?

6.17 Two meshing spur gears have a diametral pitch of 5. The pinion has 35 teeth and the
center distance is 15 in.

(a) How many teeth does the driven gear have?
(b) To what value should the center distance be increased in order for the actual pres-

sure angle to become 

6.18 Two meshing spur gears have a module of 5 mm.The pinion has 32 teeth and the cen-
ter distance is 200 mm.To what value should the center distance be increased in order for
the actual pressure angle to become 

6.19 Two meshing standard full-depth spur gears have pressure angles, addendums of in,
and a velocity ratio of The pinion has 24 teeth. Calculate the contact ratio.

6.20 Two meshing standard full-depth spur gears have pressure angles. The pinion has 32
teeth and a base pitch of 0.712 in, while the gear has 48 teeth. How many teeth are in
contact?

6.21 A pair of standard full-depth spur gears having a diametral pitch of 6 are to produce
a speed ratio of What is the minimum allowable center distance if neither gear can
have fewer than 20 teeth and the contact ratio cannot be less than 1.7?

1
3.

20°

25°

1
2.

1
320°

23°?

20°

24°?

20°

20°

1
3.

20°

1
5,

1
3.

20°,

1
3.

20°,
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462 Chapter 6 Spur Gears: Design and Analysis

6.22 Two meshing standard stub spur gears have a module of 5 mm and a center distance
of 200 mm. The pinion has 32 teeth. Calculate the contact ratio.

6.23 Two meshing standard full-depth spur gears have a module of 4 mm and a speed
ratio of The gear has 60 teeth. Calculate the contact ratio.

6.24 Two meshing standard full-depth spur gears have a module of 5 mm and a center dis-
tance of 200 mm. The pinion has 32 teeth. If the pinion speed is 1,000 rev/min, calculate
the extreme values of the relative sliding velocity of the gear teeth.

6.25 A pinion has 32 teeth, a diametral pitch of 4, and a pressure angle. The velocity ratio
is and the pinion speed is 200 rev/min. Calculate the extreme values of the relative slid-
ing velocity of the gear teeth. The gears are standard.

6.26 Two meshing standard full-depth gears have a diametral pitch of 3, the pinion has 12
teeth, and the velocity ratio is to be How much of the addenda must be removed in
order to prevent interference?

6.27 The data for this problem are the same as for Problem 6.26. What must the pressure
angle be in order to prevent interference?

6.28 A full-depth spur gear with 45 teeth has an addendum of in. What is the minimum
number of teeth the pinion may have without interference occurring?

6.29 In Figure P6.1, two base circles are shown. Gear 1 drives.

(a) Show the line of action.
(b) Label interference points and pitch point P.
(c) Show the maximum permissible addendums on gears 1 and 2 without interference.
(d) Find the contact ratio with maximum addendums.

I1 and I2

1
325°

1
2.

20°

1
2,

25°

20°

1
3.

20°

20°

2

1

10

BC2

BC1

rb1
� 1.81 in

rb2
� 3.62 in

c � 6 in

teeth

1�

FIGURE P6.1

6.30 A spur gear with 32 teeth and a diametral pitch of 4 is meshed with a second gear having
a pitch diameter of 16 in. Both gears are external standard full-depth involute gears.
Determine (a) the number of teeth on the second gear, (b) the standard addendum, and
(c) the maximum addendum for gear 2 for which no interference will occur.

6.31 Two meshing standard full-depth gears have a module of 3 mm. The pinion has 13
teeth and the velocity ratio is Determine whether the gears interfere. If so, how would
you change the addendum radii in order to prevent interference?

1
2.

20°

141
2°
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6.32 A standard full-depth spur gear has 40 teeth and a module of 8 mm. What is the min-
imum number of teeth that a meshing pinion may have without interference occurring?

6.33 A standard full-depth pinion has 15 teeth and a module of 2 mm. What is the maxi-
mum number of teeth that a meshing gear may have without interference occurring?

6.34 Two meshing standard full-depth spur gears with a module of 4 mm have 14 teeth
and 45 teeth, respectively. What must be the actual operating pressure angle, obtained by
increasing the center distance, in order to avoid interference?

6.35 A shaft rotating at 2000 rev/min has a 20-tooth, 5-diametral-pitch pinion gear keyed to
it. The pinion meshes with another spur gear whose center is 6 in from the centerline of
the first shaft. Compounded with the gear is a double-threaded left-hand worm that dri-
ves a 56-tooth worm wheel keyed to the shaft of an 8-in-diameter hoisting drum.
Calculate the distance a load attached to a cable wrapped around the drum moves
through in 1 min.

6.36 Find the maximum addendum of a pressure angle rack that is to mesh with a 6-in-
diameter pinion. Draw the gears and label the rack addendum A.

6.37 In Problem 6.36, assume that the pinion has 15 full-depth teeth. (Note that
for pinion only.)

(a) Label the beginning and end of contact with the pinion driving clockwise.
(b) Determine the contact ratio.
(c) Is the contact ratio adequate?

6.38 Find the minimum pressure angle required for a rack to mesh with a 6-in-diameter pin-
ion with 15 teeth if both the rack and pinion are to have full-depth teeth.
( )

6.39 Two spur gears, an external pinion, and an internal gear have a diametral pitch of 4. The
center distance is 10 in and the speed ratio is How many teeth do the gears have? If the
pinion speed is 250 rev/min, what is the pitch-line velocity?

6.40 The gear set shown in Figure P6.2 consists of three full-depth spur gears with a
diametral pitch of 4 and the following tooth numbers: and 
Gear 2 is an idler. The unit transmits 10 hp with the driveshaft to gear 1 rotating at 800
rev/min counterclockwise. Determine the following:

N3 = 40.N2 = 60,N1 = 20,
20°

1
5.

Addendum = 1/P.

addendum = 1/P

141
2°

20°

20°

20°

A

B C

1

2 3

90

FIGURE P6.2
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(a) The center distances.

(b) The rotational velocity (magnitude and direction) of each gear.

(c) The pitch-line velocity.

(d) The torque transmitted to each shaft.

(e) All forces (magnitude and direction) on each gear.

6.41 The gear set shown in Figure P6.3 consists of three full-depth spur gears with a mod-
ule of 8 mm and the following tooth numbers: and Gear 2 is
an idler. The unit transmits 20 kW at a rotational speed of 1000 rev/min of gear 1 in the
clockwise direction. Determine the following:

(a) The center distances

(b) The rotational velocity (magnitude and direction) of each gear.

(c) The torque transmitted to each shaft.

(d) All forces (magnitude and direction) on each gear.

N3 = 100.N2 = 40,N1 = 20,
20°

A,C

1

B

2

3 (internal gear)

FIGURE P6.3

6.42 A double-reduction gear set has the configuration shown in Figure P6.4, where gear 1 is
rigidly attached to shaft A, gears 2 and 3 are rigidly fastened to shaft B, and gear 4 is fas-
tened to shaft C. Gears 1 and 2 have 24 teeth and 60 teeth, respectively, and are 
full-depth spur gears of diametral pitch 5. Gears 3 and 4 have 20 teeth and 60 teeth,
respectively, and are full-depth spur gears of diametral pitch 4. The system transmits
20 hp at a rotational speed of 1000 rev/min of gear 1 in the clockwise direction. Find the
speed and the torque transmitted by each shaft. Determine the forces acting on each
shaft.

20°

25°
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6.43 A double-reduction gear set has the configuration shown in Figure P6.4, where gear 1 is
rigidly attached to shaft A, gears 2 and 3 are rigidly fastened to shaft B, and gear 4 is fas-
tened to shaft C. Gears 1 and 2 have 32 teeth and 80 teeth, respectively, and are 
full-depth spur gears with a module of 4 mm. Gears 3 and 4 have 24 teeth and 50 teeth,
respectively, and are full-depth spur gears with a module of 6 mm. The system trans-
mits 30 kW at a rotational speed of 1200 rev/min of gear 1 in the counterclockwise direc-
tion. Find the speed and the torque transmitted by each shaft. Determine the forces
acting on each shaft.

6.44 A gear set is to be designed with -pressure-angle gears. Construct a three-dimen-
sional bar graph relating the contact ratio to tooth numbers. Consider gears with 24 to 44
teeth. Calculate the minimum and maximum contact ratio for this range of gear pairs. Note:
Values for a few of the combinations may not be valid due to interference. (Interference
will be considered in other problems.)

6.45 A gear set is to be designed with -pressure-angle gears. Construct a three-dimensional
bar graph relating the contact ratio to tooth numbers. Consider gears with 12 to 32 teeth.
Calculate the minimum contact ratio for this range of gear pairs.

6.46 A gear set is to be designed with -pressure-angle gears. Construct a three-dimensional
bar graph relating the contact ratio to tooth numbers. Consider gears with 15 to 65 teeth.
Calculate the minimum and maximum contact ratio for this range of gear pairs. Note:
Values for a few of the combinations may not be valid due to interference. (Interference
will be considered in other problems.)

6.47 Suppose we plan to use a wide range of gears with possibly up to 1000 teeth. Plot the
minimum pinion size vs. the gear size. Consider standard full-depth teeth with pressure
angle and (Suggestion: Use a logarithmic scale for )

6.48 Design a series of gearboxes with output-to-input speed ratios of 1:1, 1:1.1, 1:1.2,
to about 1:3.5. Find the contact ratio for each pair in the series. Design decision: Try a 
10-tooth -pressure-angle pinion for each pair. Do you have to reject any designs due
to interference? Check the minimum allowable number of pinion teeth.

6.49 Design a series of gearboxes with output-to-input speed ratios of 1:1, 25:26, 25:27, to
about 5:9. Find the contact ratio for each pair in the series. Design decision: Try a 25-tooth

-pressure-angle pinion for each. Do you have to reject any designs due to interfer-
ence? Check the minimum allowable number of pinion teeth.

6.50 Design a series of gearboxes with output-to-input speed ratios of about 1:1 to about 1:4.
Design decision: Try a 15-tooth -pressure-angle pinion for each pair, and use gears
with even tooth numbers. Find the contact ratio for each pair in the series. Do you have

20°

14.5°

Á ,

25°

Á ,
N2.25°.f = 14.5°, 20°,

20°

25°

14.5°

25°

20°

A B C

Gear 4

Gear 3

Gear 2

Gear 1

FIGURE P6.4
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466 Chapter 6 Spur Gears: Design and Analysis

to reject any designs due to interference? Check the minimum allowable number of pin-
ion teeth.

6.51 Suppose we plan to design a line of gearboxes to produce a 1:1 ratio and various speed
reduction ratios. If necessary, we will consider nonstandard pressure angles. We will try
sets with 16 to 21 pinion teeth and up to 100 gear teeth. Plot the minimum pressure angle
for full-depth teeth. Be sure to avoid interference.

6.52 Suppose we plan to design a line of gearboxes to produce a 1:1 ratio and various speed
reduction ratios. If necessary, we will consider nonstandard pressure angles. We will try
sets with 5 to 10 pinion teeth and up to 60 gear teeth. Plot the minimum pressure angle
for full-depth teeth. Be sure to avoid interference.

6.53 Suppose we plan to design a line of gearboxes to produce a 1:1 ratio and various speed
reduction ratios. If necessary, we will consider nonstandard pressure angles. We will try
sets with 6, 8, 10, 15, and 25 pinion teeth and up to 50 gear teeth. Plot the minimum pres-
sure angle for full-depth teeth. Be sure to avoid interference.

6.54 Make a contour plot of the contact ratio for -pressure-angle pinions and gears with 20
to 100 teeth. Reject combinations (if any) that interfere.
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C H A P T E R  7

Helical, Worm, and Bevel
Gears: Design and Analysis

While the previous chapter was devoted exclusively to spur gears, they are by no
means the only type of gears in common use. This chapter is devoted to a discussion of
the more important types of gears other than spur gears. Figures 7.1a and b show some
of the gears that will be discussed.

Concepts You Will Learn and Apply When Studying This Chapter

• Reasons for selecting helical gears over spur gears
• Helical gear descriptors, including the helix angle, normal pitch, and normal pres-

sure angle
• Determination of normal, tangential, and thrust forces on helical gear pairs
• Selection of gear sets to transmit power between nonparallel shafts and selection

of gear sets for large speed reductions
• Crossed helical gears: their geometry, center distance, and velocity ratio
• Worm gear sets: lead, velocity ratio, and forces
• Bevel gears: pitch angle, the effect of inboard and overhung mounting, velocity

ratio, and forces
• Gears for special applications

7.1 HELICAL GEARS ON PARALLEL SHAFTS

The teeth on a helical gear are cut at an angle called the helix angle. Although there
is no set standard, “off-the-shelf” gears are often available with helix angles of

and Other helix angles are used in gear clusters to balance thrust loads
(more on that later).

45°.15°, 21.5°,

c
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468 Chapter 7 Helical, Worm, and Bevel Gears: Design and Analysis

(b)

FIGURE 7.1 (a) A gear system consisting of helical gears (left foreground) and a worm gear
set. (Source: Horsburgh & Scott Company.) (b) A pair of crossed helical gears. (Source: Boston
Gear Works.)

(a)
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Section 7.1 Helical Gears on Parallel Shafts 469

The speed reducer shown in Figure 7.2 employs a pair of hypoid gears, two left-hand
helical pinions, and two right-hand helical gears. Can you see how a right-hand helical
gear resembles a right-hand screw?

In order for two helical gears on parallel shafts to mesh, they must have equal
helix angles, but be of different handedness. For example, if the driver is right-handed,
the driven gear, or follower, must be left-handed.

Helical Gear Tooth Contact

Spur gears have an initial line contact, with the result that the impact (shock) which
occurs when two teeth come into contact is much larger than for helical gears. The ini-
tial contact between two helical gear teeth is a point. As the motion continues, the con-
tact between the teeth becomes a line.

The gradual engagement of helical gear teeth permits a larger load transmission,
smoother operation, and quieter transmission of power, compared with spur gears of
similar size. For these reasons, helical gears are often preferred over spur gears, even
though they are usually more expensive and more difficult to manufacture.

Helical Gear Terminology and Geometry

The terminology used for helical gears is similar to that used for spur gears. In fact,
most of the relationships developed for spur gears are equally applicable to helical
gears on parallel shafts. Several additional terms are necessary, however.

FIGURE 7.2 A speed reducer employing hypoid and helical gears.
(Source: Rockwell International.)
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d

w

�

�

p

A
B

AB

d

pn

c

b

Tooth
centerline

FIGURE 7.3 Helical gear terms: The diagram shows the
helix angle , the pitch diameter d, the transverse circular
pitch p, the normal circular pitch , and the gear width w.pn

c

Normal Pitch and Normal Module

The circular pitch p is defined, as for spur gears, as the distance between corresponding
points on adjacent teeth, as measured on the pitch surface. However, the pitch of a
helical gear can be measured in two different ways. The transverse circular pitch p is
measured along the pitch circle, just as for spur gears. The normal circular pitch is
measured normal to the helix of the gear, as shown in Figure 7.3. Note that the sketch
shows the pitch surface; the addendums of the teeth have been “cut off”.

The diametral pitch P, just as for spur gears, is given by the formula

(7.1)

where N is the number of teeth on the gear and d is the diameter of the pitch circle in
inches.

As before, in SI units, the module m is used to express gear tooth size, rather than
the diametral pitch P employed in the English system. As was the case for spur gears,

(7.2)

where d is expressed in millimeters and m is the module in the transverse plane.
The relationship between the normal diametral pitch and the normal circular

pitch is identical to that between the diametral pitch and the circular pitch given in the
previous chapter:

(7.3)P =
p

p
 and Pn =

p

pn .

m =
d

N
 ,

P =
N

d
 ,

pn
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Section 7.1 Helical Gears on Parallel Shafts 471

In the SI system,

(7.4)

where is the module in the normal plane. The normal pitch of a helical gear is an
important dimension, because it becomes the circular pitch of the hob cutter used to
manufacture the gear. When the cutting is done, instead, by a gear shaper, the trans-
verse circular pitch of the gear becomes the circular pitch of the cutter. It can thus be
seen why both pitches are consequential.

As seen from Figure 7.3, the relationship between the transverse and normal cir-
cular pitch is

(7.5)

Substituting the expression for the circular pitch employed in the last chapter
, we can also derive an expression for the pitch diameter in terms of the

number of teeth N, the normal circular pitch , and the helix angle 

(7.6)

From Eqs. (7.3) and (7.6), we can express the normal diametral pitch in terms of the
diametral pitch P and the helix angle:

(7.7)

In SI units,

(7.8)

Having derived the foregoing equations from Figure 7.3, we may now determine most
of the important dimensions of the helical gear.

SAMPLE PROBLEM 7.1

Properties of a Helical Gear in Terms of Module

A 30-tooth helical gear with a helix angle has a module of 10 mm. Determine the pitch diam-
eter, the normal module, and the normal and transverse circular pitches.

Solution. The pitch diameter is obtained directly from Eq. (7.2):

d = mN = 10(30) = 300 mm.

25°

cos c =
mn

m
 .

Pn =
p

pn =
p

p cos c
=

P

cos c
 .

d =
pN
p

=
pnN

p cos c
 .

c:pn
(p = pd/N)

pn = p cos c.

mn

p = pm and pn = pmn,
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From Eq. (7.8),

From Eq. (7.4),

and

Check: Using Eq. (7.5), we have

SAMPLE PROBLEM 7.2

Properties of a Helical Gear in Terms of Diametral Pitch

A helical gear has 25 teeth, a helix angle of and a transverse circular pitch of in.
Determine the pitch diameter, the diametral pitch, and the normal circular and diametral
pitches.

Solution. The pitch diameter is directly obtained from Eq. (7.6):

The diametral pitch P is given by Eq. (7.3):

The normal diametral pitch and the normal circular pitch are:

and

pn =
p

Pn =
p

5.52
= 0.569 in.

Pn =
P

cos c
=

5
cos 25°

= 5.52

P =
p

p
=
p

p/5
= 5.

d =
pN

p
=

(p/5) (25)

p
= 5 in.

p/525°,

pn = p cos c = 31.42 cos 25° = 28.47 mm.

pn = pmn = p(9.063) = 28.47 mm.

p = pm = p(10) = 31.42 mm

mn = m cos c = 10  cos 25° = 9.063 mm.
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Pressure Angle

If we view a helical gear along the shaft axis (section AA in Figure 7.3), we “see” the
transverse pressure angle However, when the gear is viewed in the normal plane
(section BB), we have the normal pressure angle The two are related to the helix
angle by the equation

(7.9)

It is clear that the transverse pressure angle must always be larger than the normal
pressure angle.

Center Distance

Some manufacturers standardize on the transverse diametral pitch, module, and pres-
sure angle. Others standardize on the normal diametral pitch, normal module, and nor-
mal pressure angle. Some methods of generating gears make the latter system
practical. How can we determine the distance between shaft centers in terms of num-
bers of gear teeth? We should be able to do this using customary U.S. and metric
descriptors. Let us start with the pitch diameter.

From the formulas for the pitch diameter and the center distance derived in the
last chapter, we obtain

(7.10)

and

(7.11)

But therefore,

(7.12)

and since , another expression for the center distance is

(7.13)

In the SI system,

and

(7.14)c =
d1 + d2

2
=

m(N1 + N2)

2
=

mn(N1 + N2)

2cos c
 .

d1 = mN1,  d2 = mN2,

c =
N1 + N2

2Pn cos c
 .

pnPn = p

c =
pn(N1 + N2)

2p cos c
 ,

pn = p cos c;

c =
d1 + d2

2
=

p

2p
 (N1 + N2) =

N1 + N2

2P
 .

d1 =
N1p
p

 , d2 =
N2p
p

 ,

cos c =
tan fn

tan f
 .

fn.
f.
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474 Chapter 7 Helical, Worm, and Bevel Gears: Design and Analysis

As an example, suppose the gears that are to be designed are to be mounted on shafts
10 in apart. The center distance is thus seen to be fixed. If the normal pitch and helix
angle are chosen first, the formulas may be used to determine the sum of and 
This value, together with the speed ratio, will enable the designer to determine the
appropriate values for and 

SAMPLE PROBLEM 7.3

Analysis of a Helical Gear Pair

A pair of meshing helical gears has a normal pressure angle of a diametral pitch of 5, and a
normal circular pitch of 0.55 in. The driver has 18 teeth and the follower has 36 teeth. Determine
the pressure angle and the center distance c.

Solution. From Eq. (7.3) and the given data, the circular pitch is

The helix angle is given by

and the pressure angle is

Hence,

Finally, the center distance is found by using Eq. (7.12):

Face Width

The face width w is the thickness of a gear measured parallel to the shaft axis. A com-
mon range for face width is

or

(7.15)6/P … w … 8/P,

m # 6 … w … m # 8,

c =
pn(N1 + N2)

2p cos c
=

0.55(18 + 36)

2p(0.876)
= 5.4 in.

f = 22.6°.

tan f =
tan fn

cos c
=

0.364
0.876

= 0.416.

cos c =
pn

p
=

0.55
0.628

= 0.876, or c = 28.8°

p =
p

P
=
p

5
= 0.628 in.

f

20°,

N2.N1

N2.N1
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Section 7.1 Helical Gears on Parallel Shafts 475

where

and

Axial Pitch

Circular pitch and axial pitch are both measured from one tooth face to the next corre-
sponding face. Circular pitch is an arc distance on the pitch circle in the plane of rota-
tion; axial pitch is measured parallel to the shaft axis. We calculate axial pitch from

(7.16)

where

and

Contact Ratio and Axial Contact Ratio (Axial Overlap)

The axial contact ratio (axial overlap) accounts for the advantage of helical gears over
straight spur gears.The axial overlap of teeth ensures smoother, quieter operation.The
contribution to the contact ratio is the face width divided by the axial pitch:

(7.17)

The total contact ratio—the average number of pairs of helical gear teeth in contact—is

(7.18)

where ratio computed for a pair of spur gears with the same number
of teeth and the same tooth form. We usually try to set —that is, a minimum
face width equal to the axial pitch. This recommendation applies to moderate and
large helix angles; it is not practical, however, for small helix angles, because the face
width would be too large and loads would not be distributed across the tooth.

Velocity Ratio of Helical Gears on Parallel Shafts

If we view a pair of helical gears along the shaft axes, we see that the speed ratio is the
same as for straight spur gears. That is,

where
 v = angular velocity (rad/s),
 n =  shaft speed (rpm),

n2/n1 = v2/v1 = N1/N2 = d1/d2 = r1/r2,

CRx Ú 1
CRspur = contact

CR = CRx + CRspur,

CRx = w/px.

c = helix angle.

p = circular pitch (in or mm) = p m = p/P,

px = axial pitch (mm or in),

px = p/tan c,

w = face width (mm or in).

P = diametral pitch (in-1),
m = module (mm),
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476 Chapter 7 Helical, Worm, and Bevel Gears: Design and Analysis

and

The speed ratio equals the inverse of the tooth numbers and the inverse of the diame-
ters or radii for spur gears and for helical gears on parallel shafts. This relationship
does not apply to planetary trains. Speed ratio equals the inverse of the tooth numbers
for all nonplanetary gear pairs. But, we cannot use the diameter or radius ratios for
worm drives and other helical gears on nonparallel shafts.

Helical Gear Forces

As in all direct-contact mechanisms, the force that one helical gear exerts on its meshing
gear acts normal (perpendicularly) to the contacting surfaces if friction forces are
neglected. This normal force can be resolved into tangential and radial components, as
was the case with spur gear forces. However, for helical gears, there is a third compo-
nent, known as the axial or thrust load.This force acts parallel to the axis of the shaft the
gear is mounted on. Figure 7.4 shows the forces acting on a helical gear. Let us assume
that the gear depicted is the driver and is rotating in the counterclockwise direction.The
forces shown in the figure are those exerted on the driver by the driven gear.

From the figure, the magnitudes of the components of the normal force are

(7.19)

(7.20)

and

(7.21)

The direction of the thrust load is determined by the right- or left-hand rule (depend-
ing on the hand of the driver), applied to the driver: The fingers point in the direction of
rotation; then the thumb points in the direction of the thrust load. The driven thrust load
is then opposite the direction of the thrust load on the driver. Actually, the thrust force
is applied at the pitch circle, leading to a combination of a thrust force and a thrust
moment at the shaft center.

The equations for torque and power are the same as those used for spur gears,
namely,

(7.22)

and

(7.23)hp =
FtvP

33,000
=

T   n

63,025
 ,

T = F  t¢d

2
≤

Fa = thrust or axial load = F    n cos fn sin c = F    t tan c.

 Fr = radial force = Fn sin fn = Ft tan f,

 Ft = tangential force = Fn cos fn cos c,

F    n

r = pitch radius (mm or in).

 d = pitch diameter (mm or in),
 N = number of teeth,
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Ft

Ft

Fr

Fr

Fa

Fa

Fn

Fn

�

�

� n

FIGURE 7.4 The normal force acting on
a helical gear consists of three components:
tangential force , radial force , and axial
or thrust force Fa.

FrFt

Fn

where velocity (feet per
minute), , and In the
SI system,

(7.24)

where , , pitch velocity
(millimeters per second), , and velocity
(radians per second).

v = angularT = torque (newton # millimeters)
vP =F  t = tangential force (newtons)kW = power (kilowatts)

kW =
FtvP

1,000,000
=

Tv

1,000,000
 ,

n = speed (revolutions per minute).T = torque (inch # pounds)
hp = horsepower, Ft = tangential force (pounds), vP = pitch
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1

2

4

3

FIGURE 7.5 Reverted gear train.

Balancing Thrust in Countershafts

Suppose we need to reduce the shaft speed by a factor of 10 or more. A single pair of
spur or helical gears might not be practical, due to the size of the larger gear. In that
case, a two-step reduction can be used. Figure 7.5 is an exploded schematic of one such
design, a reverted gear train. Input and output shafts lie on the same centerline. This
general scheme is also practical for speed changers (about which we shall have more to
say in the next chapter).

Let the input shaft drive gear 1 in the figure, and let gear 4 drive the output shaft.
The shaft of gears 2 and 3 is the countershaft. (No bearings are shown, and the sketch is
not to scale). It is possible to balance thrust loads so that there is no need for a thrust
bearing on the countershaft.

SAMPLE PROBLEM 7.4

Design of a Reverted Gear Train with Thrust Balancing

We need a line of speed reducers with output-to-input speed ratios of about and The
input speed will be 3000 rpm, and 1.5 kW of mechanical power is to be transmitted. Design the
reducers and examine the geometry and loading. Check for interference and check the contact
ratio.

Design decisions. We will design a reverted gear train similar to that shown in the figure. The
actual train will be more compact to reduce bending loads. To reduce cost, gears 1 and 2 will be
selected from commercial stock, with a module of 2.5 mm and a helix angle. Gear 1 will have
a right-handed helix and will rotate counterclockwise; gear 2 will have a left-handed helix. Gears
3 and 4, which are expected to have higher tooth loads, will have a module of 3 mm.We will spec-
ify a transverse pressure angle and specify a face width of 8 times the module for all gears.
We will try to balance thrust forces on the countershaft.

Solution summary. Sixteen-tooth gears will be selected for gears 1 and 3. Since the input and
output shafts are collinear in a reverted train, the center distance of gears 1 and 2 equals the cen-
ter distance of gears 3 and 4. In terms of tooth numbers, the center distance requirement is
equivalent to

(N1 + N2) m1 = (N3 + N4) m3.

20°

45°

2
15 

.1
30 

, 1
20 

, 1
15 

,
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This requirement limits the tooth number selection. To get whole numbers for gear 4’s teeth, we
can set We then find pitch radii

The speed ratios are the inverse of tooth numbers. The countershaft speed can be found from

and the output speed from

The pitch-line velocity (i.e., the tangential speed at the pitch circle), is given by

where

The torque applied to gear 1, the driver, is found from the power transmitted and angular veloc-
ity. The tangential force on gear 1 is the torque divided by the pitch radius. The tangential force
on gear 2 is equal and opposite. Radial and thrust forces are found from the tangential force, the
pressure angle, and the helix angle. Force and torque directions are given in the detailed solution
and shown in Figure 7.6. The figure shows partial free-body diagrams, with the countershaft bro-
ken between gears 2 and 3. (Bearings and bearing reactions are not shown.)

The tangential, radial, and thrust loads on the gears produce lateral and thrust forces and
moments on the shafts that must be considered in selecting bearings. However, we can design for
a zero net thrust on the countershaft.The torque on gear 3 is equal and opposite to the torque on
gear 2, which leads to the equations

and

(tan c2)>r2 = (tan c3)>r3.

Ft3 r3 = Ft2 r2

v = p n/30.

v = v r,

n4 = n3N3 /N4 = n1N1N3 /(N2 N4).

n2 = n3 = n1N1/N2

r = m N/2.

N2 = 20, 26, Á , 104 teeth.

T1

T4

T2

T3

Ft2 (OUT)

Ft4 (OUT)

Ft1 (IN)

Ft3 (IN)

Fr2

Fa1

Fa4

Fa2
Fa3

Fr4

Fr1

Fr3

1

2

4

3

� 1 � 4

�2 FIGURE 7.6 Reverted gear train
forces and torques.
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480 Chapter 7 Helical, Worm, and Bevel Gears: Design and Analysis

The latter equation can be used to find the helix angle for gears 3 and 4 that will balance the
countershaft thrust.

The tabulated results indicate that the required ratios are approximated if we use
80, 68, and 50 teeth in our line of reducers. An interference check shows that gear 2

cannot have more than 101 teeth without interference. This is no problem, since for an
approximate speed ratio of 1/30. The contact ratio for both meshing pairs is greater than 2.0 for
all speed ratios; hence, we can expect smooth, quiet operation. Smaller helix angles on some
gears result in lower values of the axial contact ratio (axial overlap). The contact ratio for

teeth is arbitrarily given a value of zero, because we do not want to undercut the teeth
or try some other remedy for interference.

There are dozens of chances for errors in a complicated problem like this. But the com-
puter makes checking easier. Does the output power equal the input power if friction is
neglected? Is the center distance the same for both gear pairs? Sketches help, too. Have we vio-
lated Newton’s first law (the one about equilibrium)? You need bearing reactions to check this
fully. Does Newton’s third law apply (action and reaction)? Check force directions on meshing
gears.

Detailed solution.

Helical Gears on Parallel Shafts (Units: mm, N, rad, s, kW)

Transmitted power (kW) Module (mm) 

Face width, gears 1 and 2:

Helix angles  

Hand of gears 2 and 3 opposite gear 1; gear 4 same as gear 1

Input speed (rpm) counterclockwise

Angular velocity (rad/s) 

Transverse pressure angle 

Tooth numbers 

Collinear input and output shafts require 

Pitch radii  

Center distance      c(N2) :=  r1 + r2 (N2) Check cc(N2)  :=  r3 + r4 (N2)

r3 :=  
m3

# N3

2
     r3 = 24    r4(N2) :=  

m3
# N4 (N2)

2

r1 :=  
m1

# N1

2
     r1 = 20    r2 (N2) :=  

m1
# N2

2

N4 (N2) :=  (N1 + N2) 

m1

m2
- N3

N1 :=  16  N2 :=  20, 26.. 104  N3 :=  16

f :=  20 # deg f = 0.349 rad

v1 :=  n1
# p
30

    v1 = 314.159

n1 :=  3000

c1 :=  45 # deg RH c2 :=  45 # deg

w1 :=  8 m1    w1 = 20    3 and 4:   w3 :=  8 m3    w3 = 24

m3 :=  3m1 :=  2.5Pkw :=  1.5

N2 = 104

N2 = 98
N2 = 98,
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Rotation speed (rpm)

Gears 2 and 3: Opposite input direction

Output Same direction as input

Pitch-line velocity (mm/s) gears 1 and 2    

gears 3 and 4    

Torque for free body Same direction as rotation

Tangential force opposes rotation

opposite tangential force on gear 1

Radial force 

Radial forces directed toward gear center

Thrust force at gear tooth 

For a right-hand helical driver turning counterclockwise, thrust at tooth is toward observer
but direction is opposite.

Determine helix angle for gear 3 so that countershaft thrust is balanced. Make all thrust
forces equal. Gears 2 and 3 must have same hand. Thrust on gear 3 opposite thrust on gear 2;
thrust on gear 4 same direction as thrust on gear 2.

Normal module Gears 1 and 2 

Gears 3 and 4 

Normal pressure angle Gears 1 and 2

Gears 3 and 4     

Torque for free body opposes rotation

but opposite direction

Tangential force     opposes rotation

opposite tangential force on gear 3

Radial force: gears 3 and 4 toward gear centerFr3(N2) :=  Ft3(N2) # tan(f)

Ft4(N2) :=  Ft3(N2)

Ft3(N2) :=  
T3(N2)

r3
 

T3(N2) :=  T2(N2),

T2(N2) :=  Ft2
# r2(N2)(N # mm)

fn3 (N2) :=  atan (tan(f) # cos (c3(N2)))

fn1 :=  atan (tan(f) # cos (c1))      
fn1

deg
= 14.433 deg

mn3(N2) :=  m3
# cos (c3(N2))

mn1 :=  m1
# cos (c1) mn1 = 1.768

c3 (N2)  :=  atan¢tan(c1) # r3

r2(N2)
≤

Fa2 :=  Fa1,

Fa1 :=  Ft1
# tan (c1)      Fa1 = 238.732

Fr2 :=  Fr1

Fr1 :=  Ft1
# tan (f) Fr1 = 86.891

Ft2 :=  Ft1

Ft1 :=  
T1

r1
      Ft1 = 238.732

T1 :=  
106 # Pkw

v1
 T1 = 4.775 # 103(N # mm)

v3 (N2) :=  v2(N2) # r3

v1 :=  v1
# r1       v1 = 6.283 # 103

n4 (N2) :=  n1
# N1

# N3

N2
# N4 (N2)

       v4 (N2) :=  n4 (N2) # p
30

n2 (N2) :=  n1
# N1

N2
      v2 (N2) :=  n2 (N2) 

p

30
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482 Chapter 7 Helical, Worm, and Bevel Gears: Design and Analysis

Thrust force-gears 3 and 4   

Torque for free body   Reaction torque opposes rotation

Output power check (neglects friction) 

Circular pitch: gears 1 and 2    

gears 3 and 4    

Axial pitch: gears 1 and 2    

gears 3 and 4

Axial overlap due to helix angle: gears 1 and 2: gears 3 and 4:

Check interference. Pinion teeth Gear teeth Solve for maximum number of gear teeth

Drop fractional teeth    

Profile contact ratio: gears 1 and 2

Total contact ratio (call it zero if interference occurs) Int(N2)

(CRx3(N2) + CRp3(N2)) # Int3(N2) CR3 (N2) :=

-(N3 + N4(N2)) # sin(f)

2p # cos (f)
+ CRp3a(N2) CRp3 (N2) :=

c(N3 + 2)2 - (N3
# cos (f))2 d

1
2

+ c(N4(N2) + 2)2 - (N4(N2) # cos (f))2 d

1
2

2p # cos (f)
 CRp3a (N2) :=

CR1(N2):=(CRx1 + CRp(N2)) #

c(N1 + 2)2 - (N1
# cos (f))2 d

1
2

+ c(N2 + 2)2 - (N2
# cos (f))2 d

1
2

- (N1 + N2) # sin(f)

2p # cos (f)

CRp(N2) :=

Int(N2) :=  if (N2 7 N2 max , 0, 1) Int3(N2) :=  if (N4(N2) 7 N2 max , 0, 1)

N2 max  :=  floorB -(-256 # sin(20 # deg)2 + 4)

(4 - 32 # sin(20 # deg)2)
R N2 max = 101

4 - 2N1
# (sin(f))2 =

(N1
# sin(f))2 - 4

N2 max 

 solve, N2 max :
-(-256 # sin(20 # deg)2 + 4)

(4 - 32 # sin(20 # deg)2)

N2N1

CRx1 :=  
w1

px1
 CRx1 = 2.546  CRx3(N2) :=  

w3

px3(N2)

px3(N1) :=  
p3

tan(c3(N2))

px1 :=  
p1

tan(c1)
      px1 = 7.854

p3 :=  pm3  p3 = 9.425

p1 :=  pm1  p1 = 7.854

P0(N2) :=  T4(N2) # v4(N2) # 10-6

T4(N2) :=  Ft4 (N2) # r4(N2)(N # mm)

Fa3(N2) :=  Ft3(N2) # tan(c3(N2))     Fa3(50) = 238.732
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20 14 25 21 45 2400 2742.9 6031.9 43.831 2.164 14.712

26 19 32.5 28.5 52.5 1846.2 1554.7 4639.9 36.444 2.413 16.319

32 24 40 36 60 1500 1000 3769.9 30.964 2.572 17.333

38 29 47.5 43.5 67.5 1263.2 696.9 3174.7 26.806 2.678 17.997

44 34 55 51 75 1090.9 513.4 2741.8 23.575 2.75 18.448

50 39 62.5 58.5 82.5 960 393.8 2412.7 21.007 2.801 18.767

56 44 70 66 90 857.1 311.7 2154.2 18.925 2.838 18.998

62 49 77.5 73.5 97.5 774.2 252.8 1945.8 17.207 2.866 19.172

68 54 85 81 105 705.9 209.2 1774.1 15.767 2.887 19.304

74 59 92.5 88.5 112.5 648.6 175.9 1630.2 14.545 2.904 19.408

80 64 100 96 120 600 150 1508 13.496 2.917 19.49

86 69 107.5 103.5 127.5 558.1 129.4 1402.8 12.585 2.928 19.556

92 74 115 111 135 521.7 112.8 1311.3 11.788 2.937 19.611

98 79 122.5 118.5 142.5 489.8 99.2 1231 11.085 2.944 19.656

104 84 130 126 150 461.5 87.9 1160 10.46 2.95 19.693

20 5968.3 5968.3 248.7 90.512 5222.3 1.5 4.074 3.925

26 7758.8 7758.8 323.3 117.666 9213.6 1.5 4.106 3.402

32 9549.3 9549.3 397.9 144.819 14323.9 1.5 4.13 3.078

38 11339.8 11339.8 472.5 171.973 20553.4 1.5 4.148 2.859

44 13130.3 13130.3 547.1 199.126 27901.9 1.5 4.162 2.701

50 14920.8 14920.8 621.7 226.28 36369.4 1.5 4.173 2.581

56 16711.3 16711.3 696.3 253.434 45956 1.5 4.183 2.488

62 18501.8 18501.8 770.9 280.587 56661.6 1.5 4.191 2.414

68 20292.3 20292.3 845.5 307.741 68486.4 1.5 4.198 2.352

74 22082.7 22082.7 920.1 334.894 81430.1 1.5 4.204 2.301

80 23873.2 23873.2 994.7 362.048 95493 1.5 4.209 2.258

86 25663.7 25663.7 1069.3 389.201 110674.9 1.5 4.213 2.221

92 27454.2 27454.2 1143.9 416.355 126975.8 1.5 4.217 2.188

98 29244.7 29244.7 1218.5 443.509 144395.8 1.5 4.221 2.16

104 31035.2 31035.2 1293.1 470.662 162934.9 1.5 0 2.135

Eliminating Thrust with Herringbone Gears

A herringbone gear can be thought of as a helical gear with half of its face cut right-
handed and the other half cut left-handed. Thus, the thrust loads generated by the left-
hand and right-hand teeth cancel each other. The speed changer shown in Figure 7.7
utilizes two pairs of herringbone gears. Some herringbone gears are cut with a space
between the right-hand and left-hand teeth for ease of manufacture. Herringbone gear
sets are designed with axial play to allow the gears to mesh without binding.

CR3(N2)CR1(N2)P0(N2)T4(N2)Fr3(N2)Ft3(N2)T3(N2)T2(N2)N2

fn3(N2)

deg
mn3(N2)

c3(N2)

deg
v3(N2)n4(N2)n2(N2)c(N2)r4(N2)r2(N2)N4(N2)N2
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484 Chapter 7 Helical, Worm, and Bevel Gears: Design and Analysis

FIGURE 7.7 A speed changer that utilizes four herringbone gears.
(Source: Horsburgh & Scott Company.)

7.2 CROSSED HELICAL GEARS

Helical gears can also be used when power is to be transmitted from one shaft to
another, nonparallel, nonintersecting shaft. The two helical gears are collectively
referred to as crossed helical gears. Any helical gear can be used as a crossed helical
gear; a helical gear becomes a crossed helical gear when it is meshed with another heli-
cal gear whose shaft is nonparallel and nonintersecting with the shaft of the first gear.
A typical set of crossed helical gears is illustrated in Figure 7.8.

While helical gears on parallel shafts must be of opposite hand, two crossed
helical gears usually have the same hand. And while helical gears on parallel shafts
must have identical helix angles, the helix angles for crossed helical gears do not have
to be equal.

Theoretically, helical gears on crossed shafts make point contact, while spur
gears make line contact. Helical gears on parallel shafts also make line contact.
The areas of line and point contact are not mathematical lines and points of zero
area. Rather, the point of contact may be about the size of the period at the end 
of this sentence for helical gears on crossed shafts and like a pencil line for prop-
erly aligned spur gears or helical gears on parallel shafts. For the same load, point
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Section 7.2 Crossed Helical Gears 485

FIGURE 7.8 A pair of crossed helical gears, used when the
shafts are not parallel. Usually, crossed helical gears have the
same handedness. (Source: Richmond Gear, Wallace Murray
Corporation.)

contact results in higher stresses than line contact. Design implications may include
the following:

• Rejection of crossed helical gears for heavily loaded drives

• Rejection of crossed helical gears when failure could have severe consequences

• Specifying adequate lubrication and frequent inspection when the design
includes crossed helical gears

In specifying pitch, the normal pitch rather than the transverse pitch is usually
referred to for crossed helical gears. The reason for this is that, while the normal
pitches for meshing helical gears must be equal, the transverse pitches will be unequal
if the helix angles are unequal.

Crossed Helical Gear Geometry

Some of the more important relationships involving crossed helical gears can be
obtained by considering Figure 7.9. The two helical gears shown have different helix
angles and Both gears are right-handed, and is the angle between the shafts.
For crossed helical gears, the angle between the shafts always equals the sum or differ-
ence of the helix angles of the two gears. As can be seen from the figure,

(7.25a)© = c1 + c2.

©c2.c1
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�1
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�
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Gear 1

Gear 1

Gear 2

Gear 2
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v1

v2
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FIGURE 7.9 The two crossed helical gears are of the same hand, but have different helix angles. The shaft
angle is equal to the sum of the helix angles. The normal components of the pitch-line velocities are equal,
but a sliding velocity exists.

©

If the gears were of opposite hand, the shaft angle would instead be

(7.25b)

Pitch line velocities and are shown in the figure. The normal components of 
and must be equal, are perpendicular to the axis t–t (the axis tangent to the teeth in
contact), and are both labeled Also as shown in the figure, a sliding velocity exists
for crossed helical gears, even when they contact at the pitch point.

Center Distance

A procedure similar to that used to find the center distance for helical gears on parallel
shafts, via Eqs. (7.12) through (7.14), can be followed to obtain the formulas for the
center distance between two crossed helical gears. Thus the pitch diameters are again
given by

and

d2 =
N2p2

p
=

N2p
n

p cos c2
 ,

d1 =
N1p1

p
=

N1p
n

p cos c1

vn.
v2

v1v2v1

© = c1 - c2.
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where the normal circular pitches of the two meshing gears must be equal. The center
distance is given by

Substituting the expressions for the pitch diameters into the formula for the center
distance, we obtain

(7.26)

Since another form for the center distance is

(7.27)

while in the SI system,

(7.28)

Velocity Ratio of Crossed Helical Gears

The output-to-input angular-velocity ratio for crossed helical gears is the inverse of the
tooth number ratio; that is,

(7.29)

the same equation that applies to all nonplanetary gears. We cannot use the inverse
ratio of the diameters unless the helix angles are equal. A sketch showing a pair of
teeth in mesh makes it easy to find the direction of the output shaft rotation.

Torque, Tangential Force, Radial Force, and Thrust. Suppose we need to find the
tooth loads on a pair of crossed helical gears. Forces are applied at the location of tooth
engagement.Torque, rotation speed, and power are related by the same equations used
for spur gears and helical gears on parallel shafts. Once we have found the driver
torque, the tangential force can be found from the relationship

(7.30)Ft1 = T1>r1,

rv = n2/n1 = v2/v1 = N1/N2,

c =
mn

2
¢ N1

cos c1
+

N2

cos c2
≤ .

c =
1

2Pn ¢ N1

cos c1
+

N2

cos c2
≤ ,

pnPn = p,

c =
pn

2p
 ¢ N1

cos c1
+

N2

cos c2
≤ .

c =
d1 + d2

2
 .
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where

The radial force on the driver is

and the thrust on the driver is

In general, the tangential force on the driven gear will not equal the tangential force
on the driver. The normal forces on the driver and the driven gear, however, are equal
and opposite. If the input and output shafts are perpendicular, the following relation-
ships hold:

• The tangential force on the driver is equal to and opposite the thrust force on the
driven gear.

• The thrust force on the driver is equal to and opposite the tangential force on the
driven gear.

• The radial force on the driver is equal to and opposite the radial force on the dri-
ven gear.

Think of a right-hand screw to get the thrust directions. Thrust force directions at a dri-
ving gear tooth are as follows:

• If a right-hand helical drive gear turns clockwise, the thrust force is away from
the observer.

• If a right-hand helical drive gear turns counterclockwise, the thrust force is
toward the observer.

• If a left-hand helical drive gear turns clockwise, the thrust force is toward the
observer.

• If a left-hand helical drive gear turns counterclockwise, the thrust force is away
from the observer.

And remember the law of action and reaction to get forces on the driven gear.

SAMPLE PROBLEM 7.5

Analysis of Crossed Helical Gears

Two crossed helical gears have a normal module of 15 mm. The driver has 20 teeth and a helix
angle of The angle between the shafts of the driver and follower is and the velocity ratio
is The driver and the follower are both right handed. Determine the center distance.1

2.
50°,20°.

Fa1 = Ft1 tan c1.

Fr1 = Ft1 tan f,

r1 = driver pitch radius.

T1 = driver torque, and

Ft1 = driver tangential force,

492



Section 7.3 Worm Gears 489

Solution. The helix angle of the follower is found by using the known helix angle of the driver,
the shaft angle, and Eq. (7.25a):

The number of teeth on the follower is found by using the number of teeth on the driver and the
velocity ratio formula:

Finally, the center distance for a pair of crossed helical gears is found by using Eq. (7.28):

7.3 WORM GEARS

If large speed reduction ratios are necessary between nonparallel shafts, crossed heli-
cal gears with a small driver and large follower can be used. However, the magnitude
of the load that can be transmitted by these gears is limited. A better solution to the
problem is the use of a worm and worm gear. Note, however, that worm gear sets can
be considered a special case of crossed helical gears.

In Figure 7.10, a typical worm gear set is shown. Clearly, the worm is similar to a
screw. In fact, the teeth on a worm are often spoken of as threads. The worm gear,
sometimes called a worm wheel, is a helical gear.

If an ordinary cylindrical helical gear is used, there is “point contact”. However,
worm gears are usually cut with a concave rather than a straight width. (See Figure 7.10.)
This results in the worm gear partially enclosing the worm, thus giving “line contact”.
Such a set, which is called a single-enveloping worm gear set, can transmit much more
power. If the worm is also manufactured with its length concave rather than straight,
the worm teeth will partially enclose the gear teeth, as well as the gear teeth partially
enclosing the worm teeth. Such a gear set, shown in Figure 7.11, is known as a double-
enveloping worm gear set and will provide still more contact between gears, thus per-
mitting even greater transmission of power.

Alignment is extremely important for proper operation of worm gear sets. For
single-enveloping sets, the worm gear must be mounted accurately, while for double-
enveloping sets, both the worm and the worm gear must be mounted accurately.

c =
mn

2
¢ N1

cos c1
+

N2

cos c2
≤ =

15 mm
2
¢ 20

cos 20°
+

40
cos 30°

≤ = 506 mm.

N2 =
N1

r  v
=

20
1/2

= 40 teeth.

c2 = a - c1 = 50° - 20° = 30°.
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FIGURE 7.11 A double-enveloping worm gear
set. The worm body is concave, so that the worm
encloses, in addition to being enclosed by, the
gear. (Source: Excello Corporation.)

Worm Gear Terminology and Geometry

The axial pitch of a worm is equal to the distance between corresponding points on
adjacent threads, measured along the axis of the worm. (See Figure 7.12a.) The axial
pitch of the worm and the circular pitch of the gear are equal in magnitude if the shaft
axes are apart. We will consider worm drives with perpendicular shafts only. Other
shaft angles are extremely rare (except in textbooks).

90°

FIGURE 7.10 A cylindrical worm gear set. This
gear set is single-enveloping. (Source: Horsburgh &
Scott Company.)
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Lead l

dw

Pitch pw

�w

�w

(a) (b)

dw�

�

�

Length of th
read

l

FIGURE 7.12 (a) The relationship between the pitch and lead for a worm with a triple
thread. (b) One tooth of a worm is shown unwrapped to illustrate the relationship between
the lead, the lead angle, the pitch diameter, and the helix angle. Note that the lead and helix
angles are complementary.

Lead. The lead of a worm is equal to the apparent axial distance that a thread
advances in one revolution of the worm. For a single-threaded worm (a worm with one
tooth), the lead is equal to the pitch. A double-threaded worm (a worm with two
teeth), has a lead equal to twice the pitch. The worm of Figure 7.12a has a triple thread
and thus a lead equal to three times the pitch. The lead and the pitch of a worm are
thus related by the equation.

(7.31)

where

In the SI system,

(7.32)

where is the module of the worm.The triangle shown in Figure 7.12b represents the
unwrapping of one tooth of the worm illustrated in Figure 7.12a. From Figure 7.12b,
we have

(7.33)

Since the lead angle and the helix angle of the worm are complementary to each
other, Eq. (7.33) can be rewritten as

cwl

tan l =
l

pdw
 .

mw

l = pmwN  w,

 Nw = number of teeth on the worm.
 pw = axial pitch of the worm, and

 l = lead,

l = pwN  w,
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(7.34)

For shafts apart, the lead angle of the worm and the helix angle of the gear are equal.
Once the worm pitch diameter has been determined, the gear pitch diameter can

be found by using the equation for the center distance:

(7.35)

Velocity Ratio of Worm Gear Sets with Perpendicular Shafts

The velocity ratio for worm gear sets is derived as was the velocity ratio for crossed
helical gears. In the derivation that follows, the subscript w refers to the worm, while
the subscript g refers to the worm gear. Thus,

(7.36)

From Eq. (7.31), the number of teeth on the worm is given by

The number of teeth on the worm gear is given by

But therefore,

Substituting the preceding expressions for and into the expression for the veloc-
ity ratio, we obtain

Since the shafts are perpendicular, the axial pitch of the worm, and the circular
pitch of the gear, are equal. then the velocity ratio for the worm gear set becomes

(7.37)

In most worm gear sets, the worm is the driver. The set is therefore a speed-reduction
unit. If the lead angle of the worm is greater than or so, it is possible for the gear to
be the driver, thus making the set a speed-increasing unit. Whether a given set is
reversible or not depends on how much frictional force exists between the worm and

11°

vg

vw
= rv =

l

pdg
 .

pg,
pw,

rv =
Nw

Ng
=

lpg

pwpdg
.

N  gN  w

Ng =
pd   g

p   g
 .

P  g = p/pg;

N  g = P  gdg.

Nw =
l

pw
 .

rv =
v (follower)

v (driver)
=
vg

vw
=

Nw

Ng
 .

c =
dw + dg

2
 .

90°

cot cw =
l

pdw
 .
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the gear. Gear sets that are irreversible are usually referred to as self-locking. Small
lead angles (less than ) usually result in irreversible gear sets.

In some applications, a self-locking gear set is a distinct advantage. For example,
in a hoisting-machine application, a self-locking gear set would be an advantage
because of the braking action it provides. The designer, however, must be certain that
the braking capacity of a gear set is sufficient to perform satisfactorily as a self-locking
unit. Toward that end, he or she should include a secondary braking device to ensure
safety.

SAMPLE PROBLEM 7.6

Analysis of a Worm Gear Set

A quadruple-threaded worm has an axial pitch of 1 in and a pitch diameter of 2 in. The worm
drives a gear having 42 teeth. Determine the lead angle of the worm and the center distance
between worm and gear.

Solution. Since we know that the worm has four threads and that the axial pitch is 1
in , we can easily determine the lead of the worm from Eq. (7.31):

Substituting this value into Eq. (7.33), we can determine the lead angle of the worm: We have

so that

We can now determine the center distance. Since we must have the pitch diameters of the gear
and worm in order to use the formula for the center distance [Eq. (7.35)], we must first deter-
mine the pitch diameter of the gear. Equation (7.37) gives us an expression containing this
unknown. The value of the velocity ratio can be found by using Eq. (7.36):

From Eq. (7.37), we have the pitch diameter

Finally, having found the pitch diameter of the gear we can use Eq. (7.35) to find the center
distance:

c =
dw + dg

2
=

2 + 13.4
2

= 7.7 in.

dg,

dg =
l

pr  v
=

4
p(0.095)

= 13.4 in.

r  v =
N  w

Ng
=

4
42

= 0.095.

l = 32.5°.

tan l =
l

pdw
=

4
p(2)

= 0.637,

l

l = pwN  w = 1(4) = 4 in.

(pw = 1)
(N  w = 4)

5°
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Worm

Ftg

Ftg

Frg

Frg

Fag

Fag

Fn

Gear

Frw
Faw
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�w

�g

�

n�

�

FIGURE 7.13 Forces exerted on a worm and an engaged gear. Both gears are righthanded,
with the worm driving in the direction shown. The force diagram shows the breakdown into
components of the resultant normal force on the gear. Note that l = cg.Fn

Forces in Worm Gear Sets

The forces acting on worms and worm gears are the same as those acting on helical
gears, except that the shaft axes are apart in almost all practical applications. The
free-body diagrams of a worm and worm gear shown in Figure 7.13 depict the relation-
ships of the forces for a normal force exerted between the worm and gear.

First, considering the worm gear and using Eqs. (7.19) through (7.21), we see that
the components of the resultant force consist of a tangential force

a radial force

F  rg = F  n sin fn = F  tg tan f,

F  tg = F  n cos fn cos cg,

F  n

F  n

90°
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and an axial or thrust force

where and are the normal and transverse pressure angles, respectively, and is
the helix angle of the worm gear. Since the helix angle of the gear is equal to the lead
angle of the worm (for shafts), these forces can be expressed as

and 

Next, from an examination of the free body of the worm in Figure 7.13, it is clear that
the magnitude of the axial or thrust force , on the worm is equal to that of the tan-
gential gear force (the directions are opposite). The magnitude of the tangential
force on the worm is equal to that of the axial gear force , and the magnitudes of
the two radial force components and are equal.

The relationships of these forces to the shaft torques about the respective axes of
rotation are

and

where and are the pitch radii of the worm and the gear respectively. Note that, as
pointed out earlier, the forces and are not equal, as they are for a pair of spur
gears or a pair of helical gears on parallel shafts. Instead, observing that , we
have

which leads to the following equation for the torque ratio:

This relationship follows from the fact that, in the absence of friction and other losses,
the power going into a gear set is equal to the power coming out of the gear set

The torque ratio that is derived therefore assumes a power transmission effi-
ciency of 100 percent. (Actually, efficiencies of considerably less than 100 percent can
occur in worm gear units.)

(Tgvg).
(Twvw)

Tg

Tw
=

Ftg rg

Ftg tan lrw
=

1
tan l

¢ rg

rw
≤ =

2prw

l
¢ rg

rw
≤ =

pdg

l
=

1
rv

 .

Tw = Fag rw = Ftg tan l rw,

F  tw = F  ag

F  tgF  tw

r  gr  w

Tg = Ftg rg,

Tw = Ftw rw

F  rgF  rw

F  agF  tw

F  tg

Faw

F  ag = F  n cos fn sin l = F  tg tan l.

 Frg = Fn sin fn = Ftg tan f,

 Ftg = Fn cos fn cos l,

90°

cgffn

F  ag = F  n cos fn sin cg = F  tg tan cg,
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FIGURE 7.14 A pair of bevel gears.
The pitch surfaces for the two gears are
rolling cones. (Source: Browning
Manufacturing Company.)

7.4 BEVEL GEARS

When power is to be transmitted between two shafts that intersect, the type of gear
usually used is a bevel gear. The pitch surfaces of two mating bevel gears are rolling
cones, rather than the rolling cylinders that two mating spur gears have. Figure 7.14
shows a typical pair of meshing bevel gears. While the shafts that bevel gears are
mounted on are usually apart, in certain applications the shaft angle is greater or
less than 

Bevel Gear Terminology and Geometry

Some of the more common terms used in bevel gearing are illustrated in Figure 7.15.
As seen in the illustration, the tooth size decreases along the face width as the apex of
the pitch cone is approached. The pressure angle for most straight bevel gears is 

The definitions of the terms shown in the figure are as follows:

Pitch cone: the geometric shape of bevel gears, based on equivalent rolling contact.
Apex of pitch cone: the intersection of the elements making up the pitch cone.
Cone distance: the slant height of the pitch cone—in other words, the length of a
pitch cone element.
Face cone: the cone formed by the elements passing through the top of the teeth
and the apex.
Root cone: the cone formed by the elements passing through the bottom of the
teeth and the apex.

20°.

90°.
90°
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Pitch angle

Root angle

Face angle

Apex of pitch cone

Cone distance

Dedendum angle

Addendum angle

Root cone

Pitch cone

Face cone

Addendum

Dedendum

Inside pitch diameter

Outside diameter

Back cone radius (rb)

rp

Outside pitch diameter

Face 
width

(  )�

FIGURE 7.15 Terminology associated with bevel gears.

Face angle: the angle between an element of the face cone and the axis of the gear.
Pitch angle: the angle between an element of the pitch cone and the axis of the
gear.
Root angle: the angle between an element of the root cone and the axis of the gear.
Face width: the width of a tooth.
Addendum: the distance from the pitch cone to the face cone, measured on the
outside of the tooth.
Dedendum: the distance from the pitch cone to the root cone, measured on the
outside of the tooth.
Addendum angle: the angle between an element on the pitch cone and an element
on the face cone.
Dedendum angle: the angle between an element on the pitch cone and an ele-
ment on the root cone.
Inside pitch diameter: the pitch diameter measured on the inside of the tooth.
Outside pitch diameter: the pitch diameter measured on the outside of the tooth.
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Back cone: the cone formed by elements perpendicular to the pitch cone ele-
ments at the outside of the teeth.
Back cone radius: the length of a back cone element.

Since most bevel gears are mounted on intersecting shafts, at least one is usually
mounted outboard. That is, one gear is mounted on the cantilevered end of a shaft.
Because of the outboard mounting, the deflection of the shaft where the gear is
attached may be rather large.This could result in the teeth at the small end moving out
of mesh. The load would thus be unequally distributed, with the larger ends of the
teeth taking most of the load. To mitigate this effect, the tooth face width is usually
made no greater than of the cone distance.

Classifying Bevel Gears by Pitch Angle

Bevel gears are usually classified according to their pitch angle. A bevel gear having a
pitch angle of and a plane for its pitch surface is known as a crown gear. Figure 7.16
shows such a gear.

When the pitch angle of a bevel gear exceeds the gear is called an internal
bevel gear. Like the gear shown in Figure 7.17 internal bevel gears, cannot have pitch
angles very much greater than because of the problems incurred in manufacturing
such gears. In fact, these manufacturing difficulties are the main reason internal bevel
gears are rarely used.

Bevel gears with pitch angles less than are the type most commonly used.
Figure 7.15 illustrates this kind of external bevel gear.

90°

90°

90°,

90°

1
3

rb

Pitch angle FIGURE 7.16 A crown gear is a bevel
gear with a pitch angle of The
entire pitch surface lies in a single plane
perpendicular to the gear axis.

90°.

Pitch angle
FIGURE 7.17 An internal bevel gear is
a bevel gear with a pitch angle greater
than 90°.
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When two meshing bevel gears have a shaft angle of and have the same num-
ber of teeth, they are called miter gears. Miter gears have a speed ratio of unity. Each of
the two gears has a pitch angle.

Velocity Ratio of Bevel Gears

The velocity ratio of bevel gears is given by the same expressions used to determine
the velocity ratio of spur gears, where the subscripts 1 and 2 refer to the driver and 
follower:

(7.39)

Here, r is the pitch-circle radius and N is the number of teeth.
At this point, it is desirable to derive some relationships between numbers of

teeth and pitch angles for bevel gears. In Figure 7.18, which shows the pitch cones of
two external bevel gears in mesh, is the shaft angle, and are the pitch angles, and

and are the pitch radii for the pinion and gear, respectively. From Figure 7.18,

and

 OP =
rg

sin ≠
=

rp

sin g
 .

 sin ≠ =
rg
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 , sin g =

rp
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 ,

a = ≠ + g,

r  gr  p

≠g©
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v2

v1
=

r1

r2
=

N1

N2
 .
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90°
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O
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FIGURE 7.18 Two meshing external bevel
gears, illustrating the relationships among the
shaft angle, the pitch angles, and the pitch radii.
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Thus,

Dividing this expression for by , we obtain

or

At this point, we can utilize our original velocity ratio formula to arrive at the desired
formula involving both the pitch angles and the numbers of teeth for both bevel gears.
From Eq. (7.39),

Therefore,

(7.40)

Similarly,

(7.41)

Finally, for shaft angle (which is the usual case), we obtain

(7.42)

and

(7.43)

The formulas just derived are quite useful to the designer. The shaft angle, or angle at
which one shaft intersects the other, and the required speed ratio are usually known to
the designer. Since the speed ratio is also equal to the ratio of the number of teeth, it
should be obvious that the formulas can thus be used to calculate the pitch angle
required for each gear.

tan g =
1
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=

Np
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1
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=

Ng
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 .
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 .
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tan ≠ =
(rg /rp)sin ©

1 + (rg /rp)cos ©
=
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SAMPLE PROBLEM 7.7

Analysis of Bevel Gears

A pair of straight-toothed bevel gears is mounted on shafts that intersect each other at an angle
of The velocity ratio of the gears is Determine the pitch angles of the gears.

Solution. Knowing the velocity ratio, we can use Eqs. (7.40) and (7.41) to find the pitch angles
for bevel gears with a shaft angle other than Thus,

and since 

or

Similarly,

so that

Other Types of Bevel Gears

There are a number of other types of bevel gears in addition to straight-toothed gears.
Spiral bevel gears (Figure 7.19), are used with high-speed, high-load applications. For
these gears, the transmission of power is much smoother than for straight bevel gears,
since there is gradual tooth contact in addition to more teeth being in contact at any
instant.

While a wide variety of spiral angles are used, is the most common.The spiral
angle is the angle of the spiral relative to the axis of the gear, as measured at the mid-
dle of the face width of the tooth.

Hypoid gears are used on nonintersecting shafts (Figure 7.20). Large reductions
in speed are possible with hypoid gears, which, incidentally, helped solve a problem for
designers of rear-wheel-drive automobiles (before the popularity of the front-wheel
drive). A hypoid pinion on the drive shaft is used to drive a large hypoid gear, which in
turn drives the differential case. The drive shaft is mounted below the center of the
large hypoid gear. A design with straight bevel gears results in a higher drive shaft, and
loss of clear floor space in the passenger compartment.

35°

g = 21.8°.

tan g =
sin ©

(Ng/Np) + cos ©
=

0.940
2.342

= 0.401,

≠ = 48.2°.

tan ≠ =
sin 70°

1/2 + cos 70°
=

0.940
0.842

= 1.12,

Np/Ng = rp/rg = 1
2,

tan ≠ =
sin ©

(Np/Ng) + cos ©
 ,

90°.

1
2.70°.
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FIGURE 7.20 Hypoid gears are spiral bevel gears designed to operate on nonintersecting shafts.
(Source: Richmond Gear, Wallace Murray Corporation.)

FIGURE 7.19 Spiral bevel gears feature a spiral rather than a helical tooth design.
However, for simplification of the manufacture of spiral bevel gears, the tooth is usually
made circular instead of spiral. (Source: Arrow Gear Company.)
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FIGURE 7.21 Zerol bevel gears are spiral bevel gears with a zero spiral angle. (Source: Richmond
Gear, Wallace Murray Corporation.)

Zerol bevel gears, shown in Figure 7.21, are the same as spiral gears, except that
the spiral angle is zero. Zerol gears are used when it is desirable to reduce the thrust
loads that occur when spiral bevel gears are used.

While there are still more types of bevel gears, those which have been discussed
are the types most often used. Gear manufacturers’ catalogs should be consulted when
information about other specialized gears is desired.

Forces on Straight Bevel Gears with Shaft Angles

Let us consider the forces exerted by a bevel gear on its mating gear. (See Figure 7.22.)
We will draw the force diagram for one of the gears, assuming that we have straight-
toothed bevel gears mounted on shafts that are apart.Another reasonable assump-
tion we will make is that the resultant tooth load acts at the center of the tooth. In
other words, the force acts at the mean pitch radius

where is the inside pitch diameter and is the outside pitch diameter of the gear.
(See Figure 7.15.)

In Figure 7.22, the force is the normal force exerted by the driven gear on the
driving pinion teeth. The driving pinion rotates counterclockwise when viewed from
the left. A force of equal magnitude and opposite direction will act on the driven gear.
If friction is neglected, these are the resultant gear mesh forces on the individual gears.

Fn

dodi

rm =
di + do

4
 ,

90°

90°
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�

Fn

Ftp

FIGURE 7.22 Tooth loads on straight-toothed bevel gears. The forces shown are those acting on
the driving pinion, rotating in the direction shown. Equal and opposite forces act on the driven
gear.

From Figure 7.22, for a pressure angle , the component forces on the pinion are
a tangential force

(7.44)

a radial force

(7.45)

and an axial force

(7.46)

For the gear, the tangential, radial, and axial force components are, respectively,

(7.47)

(7.48) Frg = Fn sin f cos ≠ = Ftg tan f cos ≠,

 Ftg = Fn cos f = Ftp,

Fap = Fn sin f sin g = Ftp tan f sin g.

Frp = Fn sin f cos g = Ftp tan f cos g,

Ftp = Fn cos f,

f
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and

(7.49)

It should be obvious from Figure 7.22 that the radial force component for the pinion is
equal in magnitude to the thrust or axial component for the gear, while the thrust com-
ponent for the pinion is equal in magnitude to the radial component for the gear.
Therefore, for shafts that are apart,

and

These equations follows from the fact that

and therefore,

and

Finally, the gear tooth forces produce the following torques on the pinion and gear:

(7.50)

and

(7.51)

Here, is the torque acting on the pinion and is the torque acting on the gear. The
preceding force and torque expressions can be used to determine the power transmit-
ted by a bevel gear set.

SUMMARY

Almost all gear sets are used to reduce speed. Except for planetary trains, the speed
ratio of any pair of gears equals the inverse of the tooth number ratio. The speed ratio
of helical gears on parallel shafts is also given by the inverse of the pitch diameter
ratio.

The contact ratio of a pair of helical gears on parallel shafts is higher than that of
equivalent spur gears. Helical gears are often selected to replace spur gears when

TgTp

Tg = Ftg rmg = Ftp rmg.

Tp = Ftp rmp

cos g = cos (90° - ≠) = sin ≠.

sin g = sin(90° - ≠) = cos ≠

g + ≠ = 90°,

Frp = Fag = Fn sin f cos g = Fn sin f sin ≠.

Fap = Frg = Fn sin f sin g = Fn sin f cos ≠

90°

Fag = Fn sin f sin ≠ = Ftg tan f sin ≠.
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smooth, quiet operation is required. However, helical gears introduce thrust loads, a
problem that is not present when we specify straight spur gears.

Bevel gears are used to turn a corner—for example, if we want to drive a vertical
shaft from a horizontal shaft. Crossed helical gears are used to transmit power between
non-intersecting, nonparallel shafts.

Worm drives are a special case of crossed helical gears. They are usually used for
large reductions in speed. For example, a single-toothed worm driving a 50-tooth gear
has an output-to-input speed ratio of 1 to 50. The output-to-input torque ratio would
be 50 to 1 without friction. However, sliding of the worm teeth on the gear teeth results
in substantial friction loss.

When the required speed and transmitted power are specified, we can find the
torque. The tangential force on a gear tooth equals the torque divided by the pitch
radius. The tangential force on a drive gear opposes rotation. The radial force and
thrust force are then found from the tangential force, pressure angle, and helix angle.
Free-body diagrams using an exploded view of the gear pair are useful in this regard.
The diagrams would show, for example, that the thrust force on a worm is balanced by
the tangential force on a worm gear.

A Few Review Items

• Sketch a pair of helical gears on parallel shafts. (Shown an exploded view.)
Identify the driver and driven gears, rotation directions, helix angles, and hand.
Show the torque, tangential force, radial force, and thrust on each. Is there a
torque balance? Have you violated Newton’s third law?

• A proposed spur gear pair has a contact ratio of 1.2. You decide to replace it with
a pair of helical gears to obtain a contact ratio of at least 2.2. How would you
determine the minimum face width to reach this goal?

• Why would you be reluctant to specify crossed helical gears for high-power
applications?

• What is the significance of the normal diametral pitch and normal module in
designing crossed helical gears?

• Suppose we want to balance thrust on a countershaft. Relate the helix angle to
the pitch radius. Will you specify the same hand for both gears on that shaft?

• Relate the lead angle of a worm to the helix angle of a meshing worm gear.
• Suppose you need an output-to-input speed ratio of 1 to 80.What type of gearing

would you choose? Specify the numbers of teeth.
• Suppose you need a pair of gears to operate on perpendicular shafts with inter-

secting centerlines. The output-to-input speed ratio is to be 1:2.5. Select the type
of gear. Sketch the gears (in an exploded view). Show the directions of the tooth
force and torque on the input and output gears.

• Suppose is necessary to stir four vats of chemicals. Can you design a system that
utilizes a single motor driving a horizontal shaft which, in turn, drives four stir-
rers? What type of gears have you chosen?
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• Can you suggest an alternative design with a different type of gear?
• Suppose you hear some complaints that a speed changer utilizing spur gears is

too noisy. Suggest an alternative design.
• Identify the conditions, in terms of friction and lead angle, that result in a self-

locking worm gear set.
• Give two potential applications for a self-locking worm gear set.
• Are there situations in which the self-locking feature would be undesirable?

PROBLEMS

7.1 Two helical gears mounted on parallel shafts are in mesh. The gears have a diametral
pitch of 5, a helix angle, and 20 and 30 teeth, respectively. Calculate the normal circu-
lar pitch.

7.2 Two meshing helical gears have a transverse pressure angle and a normal pres-
sure angle. The gears have a diametral pitch of 10 and possess 15 and 45 teeth, respec-
tively. Determine the center distance and helix angle.

7.3 Two parallel shafts are spaced 5 in apart. A pair of helical gears are to be selected to pro-
vide a velocity ratio of about The normal diametral pitch is to be 6, the normal pressure
angle is to be and the gears are to have at least 20 teeth. Determine the number of
teeth for the gears and the transverse pressure angle (There are many possible solutions.)

7.4 A helical pinion has a normal pressure angle of and a transverse pressure angle of
The pinion rotates at 2000 rev/min and is to drive a meshing helical gear so that the

speed ratio is The centers of the shafts are 10 in apart. Determine the normal diametral
pitch and the pitch diameters if the pinion has 20 teeth.

7.5 For the gears shown in Figure P7.1, show the rotation direction of each gear and also
indicate the direction of the thrust load for each gear if shaft C is the input and rotates
counterclockwise as observed from the left.

7.6 Two meshing helical gears on parallel shafts have a normal pressure angle of and a
transverse pressure angle of The normal circular pitch is 0.6 in. If the speed ratio is to
be 0.4, determine the number of teeth for each gear. The center distance is 8 in.

7.7 Two meshing helical gears are mounted on parallel shafts that have rotational speeds of
1000 and 400 rev/min. The helix angle is and the center distance is 252 mm. The gears
have a module of 6 mm. Determine the normal circular pitch and the transverse circular
pitch. Also, determine the number of teeth on each gear.

7.8 Two helical gears on parallel shafts have a normal circular pitch of 15 mm and a pitch-line
velocity of 4500 mm/s. If the rotational speed of the pinion is 800 rev/min and the number
of pinion teeth is 20, what must be the helix angle?

7.9 Two helical gears on parallel shafts have 30 teeth and 60 teeth and a normal module of 5
mm. The normal and transverse pressure angles are and respectively. Determine
the center distance.

7.10 Two helical gears on parallel shafts have a helix angle of a normal pressure angle of
and a normal diametral pitch of 4. The numbers of teeth are 30 and 50. The pinion

rotates at 800 rev/min and the gear set transmits 100 hp. Determine the tangential, radial,
and axial gear tooth loads. Show these forces on a sketch of the gears. The pinion is left
handed and rotates counterclockwise.

25°,
20°,

24°,20°

30°

23°.
20°

1
4.

25°.
20°,

20°,

1
2.

20°25°

40°
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7.11 Two helical gears on parallel shafts have a normal pressure angle of and a normal
module of 6 mm. The center distance is 200 mm and the tooth numbers are 20 and 40.
The gear set transmits 50 kW at a pinion speed of 1200 rev/min. Determine the tangen-
tial, radial, and thrust loads on the gear teeth, and show these forces on a sketch of the
gears. The pinion is right handed and rotates clockwise.

7.12 The double-reduction helical gear train in Figure P7.1 employs helical gears with a helix
angle of and a normal pressure angle of The normal module is 8 mm and the
numbers of teeth are , , , and The pinion has a rota-
tional speed of 1000 rev/min and the power transmitted is 20 kW. Determine the torque
carried by each shaft, the magnitude and direction of the thrust force on each shaft, and
the resultant gear load on each gear.

7.13 Two helical gears of the same hand are used to connect two shafts that are apart. The
smaller gear has 24 teeth and a helix angle of Determine the center distance
between the shafts if the speed ratio is The normal circular pitch is 0.7854 in.

7.14 Repeat Problem 7.13, but assume that the gears are of opposite hand and that the shaft
angle is 

7.15 Two left-hand helical gears having the same helix angle are used to connect two shafts
apart. The velocity ratio is to be 0.4 and the gears have a normal diametral pitch of 4.

If the center distance is to be about 12 in, determine the numbers of teeth for each gear.
60°

10°.

1
2.

35°.
90°

N4 = 50.N3 = 20N2 = 40N1 = 30
20°.30°

20°

RH

RH

LH

LH

A

B

C

3
2

1

4

FIGURE P7.1
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7.16 Two right-hand helical gears with a normal module of 4 mm connect two shafts that are
apart. The pinion has 32 teeth and the velocity ratio is The center distance is 220

mm. Determine the helix angles of the two gears.
7.17 Determine the pitch diameters of a worm gear set having a velocity ratio of 0.1 and a

center distance of in, if the worm has three teeth and a lead of 1 in.
7.18 A worm gear set has a velocity ratio of 0.05. The worm has two teeth, a lead of 3 in, and a

pitch diameter of in. Determine the helix angle and pitch diameter of the worm gear.
7.19 A worm gear set is to have a velocity ratio of 0.05.The worm has three teeth, a lead angle

of and a pitch of 1.5 in. Determine the center distance.
7.20 A worm gear set has a velocity ratio of 0.04. Find the center distance if the worm has

three teeth, a pitch diameter of 2.5 in, and an axial pitch of 0.5 in.
7.21 A worm gear set has a speed ratio of 0.05, a lead angle of and a center distance of 10

in. Determine the pitch diameters.
7.22 A single-threaded worm has an axial pitch of 20 mm and a pitch diameter of 50 mm. The

worm rotates at 500 rev/min and drives a gear having 40 teeth and a transverse pres-
sure angle. The power transmitted is 0.5 kW. Determine (a) the lead angle of the worm,
(b) the center distance between worm and gear, and (c) the tangential, radial, and thrust
forces on the worm gear.

7.23 For the gear train of Figure 7.1a, assume that the small helical gear is the input and
rotates counterclockwise at 1,000 rev/min. The power transmitted is 1.0 kW. The helical
gears on parallel shafts have a normal pressure angle, a helix angle, a center dis-
tance of 120 mm, and 24 and 48 teeth, respectively. The worm is single threaded with a
pitch of 20 mm, and the worm gear has 40 teeth and a transverse pressure angle. The
center distance of the worm gear set is 150 mm. Determine the torque and thrust load for
each shaft, and sketch the intermediate shaft, showing the gear force components acting
on it.

7.24 Two bevel gears are to be used to connect two shafts that are apart.The pinion has 18
teeth and a diametral pitch of 6. If the velocity ratio is to be 0.4, determine (a) the pitch
angles, (b) the back cone radii.

7.25 Repeat Problem 7.24 for two shafts that are apart.
7.26 Repeat Problem 7.24 for two shafts that are apart.
7.27 Two straight bevel gears have a diametral pitch of 4, and 24 and 48 teeth, respectively.

The tooth face width is 2 in. The pinion rotates at 1000 rev/min and transmits 50 hp. The
shafts are at Determine the components of the gear tooth force and show these on a
sketch of the gears.

7.28 Suppose we need a line of speed reducers with output-to-input speed ratios of about 1/25
to about 1/6. The input speed will be 2400 rpm, and 2 kW of mechanical power are to be
transmitted. Design the reducers and examine the geometry and loading. Check for
interference and check the contact ratio. Among our design decisions will be the follow-
ing: We will design a reverted gear train similar to the one in Figure 7.5. The actual train
will be designed for bearings and will be made compact to reduce bending loads. Gears 1
and 2 will be selected with a module of 3 mm and a helix angle. Gear 1 will have a
right-hand helix and rotate counterclockwise; gear 2 will have a left-hand helix. Gears 3
and 4, which are expected to have higher tooth loads, will have a module of 4 mm.We will
specify a transverse pressure angle and a face width of eight times the module for all
gears.We will try to balance thrust forces on the countershaft. Sixteen-tooth gears will be
selected for gears 1 and 3.

20°

40°

90°.

20°
110°
60°

90°

25°

20°20°

25°

20°,

20°,

1 
1
2

2 
1
2

1
2.60°
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7.29 Suppose we need a line of speed reducers with output speeds of about 120 to 600 rpm.
The input speed will be 3600 rpm, and 1.2 kW of mechanical power is to be transmitted.
Design the reducers and examine the geometry and loading. Check for interference and
check the contact ratio. Among our design decisions will be the following: We will design
a reverted gear train similar to the one in Figure 7.5. Gears 1 and 2 will be selected with a
module of 1.5 mm and a helix angle. Gear 1 will have a right-hand helix and rotate
counterclockwise; gear 2 will have a left-hand helix. Gears 3 and 4, which are expected to
have higher tooth loads, will have a module of 2 mm.We will specify a transverse pres-
sure angle and a face width of eight times the module for all gears. We will try to balance
thrust forces on the countershaft. Sixteen-tooth gears will be selected for gears 1 and 3.

7.30 Suppose we need speed reducers with output speeds of about 100 to 160 rpm. The input
speed will be 4000 rpm, and 1.2 kW of mechanical power is to be transmitted. Design the
reducers and examine the geometry and loading. Check for interference and check the
contact ratio.Among our design decisions will be the following:We will design a reverted
gear train similar to Figure 7.5. Gears 1 and 2 will be selected with a helix angle. Gear
1 will have a right-hand helix and rotate counterclockwise; gear 2 will have a left-hand
helix. All gears will have a module of 2 mm, a transverse pressure angle, and a face
width of eight times the module. We will try to balance thrust forces on the countershaft.
Sixteen-tooth gears will be selected for gears 1 and 3.
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C H A P T E R  8  

Drive Trains: Design and
Analysis

Concepts You Will Learn and Apply When Studying This Chapter

• Design of speed changers and gearing to reverse direction
• Transmissions with axial shifting
• Design of simple and compound planetary gear trains, using the formula and

superposition methods
• Design of balanced planetary trains; load sharing and elimination of lateral shaft

loads
• Design of differential drives for high reduction ratios
• The free-floating transmission
• Planetary transmissions for changing speed
• Bevel-gear differentials and other trains with more than one input
• Fixed-ratio and variable-speed chain drives
• Fixed-ratio and variable-speed belt drives
• Other friction-drive speed changers
• Flexible spline drives and impulse drives
• How we select drive train components
• Forces, torques, and transmitted power
• Gear train diagnostics; tooth error and tooth meshing frequencies

8.1 INTRODUCTION

Most electric motors, internal-combustion engines, and turbines operate efficiently and
produce maximum power at high rotating speeds—speeds much higher than the opti-
mum speeds for operating machinery. For this reason, gear trains and other speed
reducers are commonly used with industrial and domestic engines. In this chapter, various
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512 Chapter 8 Drive Trains: Design and Analysis

drive trains will be examined in terms of their operation—that is, the manner in which
they effect a reduction in speed.

Some gear trains permit us to change output speed even though the input speed
remains constant. A pair of gears may be removed from the train and replaced by a
pair having a different speed ratio. When the change in speed ratio is required only
occasionally, a design of this type is satisfactory. For rapid or frequent speed ratio
changes, pairs of gears having different ratios are engaged by shifting the location of
the gears themselves and by employing bands and clutches within the transmission.
Other continuously variable (stepless) transmissions employing belts, chains, and fric-
tion drives are available as well.

8.2 VELOCITY RATIOS FOR SPUR AND HELICAL GEAR TRAINS

Spur Gear Trains

We know from the preceding chapters that, for any pair of gears with fixed centers, the
angular-velocity ratio is given by

(8.1)

where is the absolute value of the ratio of the speeds of rotation and and 
represent the number of teeth in each gear. Since the diametral pitch P (the number of
teeth per inch of pitch diameter) must also be equal in the case of meshing gears on
parallel shafts, pitch diameters and must be proportional, respectively, to and :

For straight spur gears, this equation may be written as

(8.2)

The minus sign refers to the fact that the direction of rotation changes for any pair of
external gears. If one of the gears in the pair is a ring gear (an internal gear), then

(8.3)

and there is no change in the direction of rotation.
The result is the same if the gears conform to standard metric sizes, where in the

module m is defined as the pitch diameter (in millimeters) divided by the number of
teeth. The module is common to a pair of meshing gears, from which it follows that

leading to Eqs. (8.2) and (8.3).

m =
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=
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P =
N1

d2
=
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Helical Gear Trains

Helical gears are often used in place of spur gears to reduce vibration and noise levels.
A pair of helical gears on parallel shafts have the same helix angle, but one gear is
right-handed and the other left-handed. The hand is defined as it is for screw threads.
Also, as in the case of spur gears, the speed ratio for helical gears on parallel shafts is

where N is again the number of teeth and d is the pitch
diameter.

In the case of crossed helical gears (gears on nonparallel shafts), the velocity ratio
is still equal to the inverse ratio of the number of teeth: While helical
gears on parallel shafts must have equal helix angles (of opposite hand), crossed helical
gears usually have unequal helix angles (usually the same hand). This means that the
velocity ratio for crossed helical gears is, in general, not equal to the ratio of the pitch
diameters. Generally, the velocity ratio for helical gears is given by

(8.4)

where and are the pitch diameters and and are the respective helix angles.
(See the section on crossed helical gears in Chapter 7.)

Worm Drives

A worm drive is a special case of a pair of helical gears on crossed shafts. Most worm
drives have a shaft angle. In that case, using subscript 1 for the worm and subscript
2 for the worm gear, we have

where is the lead angle of the worm.
Helical gears may be designed to transmit power between a pair of shafts at any

angle to one another, as long as the shaft centerlines do not intersect. Bevel gears may
be used to transmit power between shafts that have intersecting centerlines. Note that
Eqs. (8.1) and (8.4) apply to any pair of helical gears (except in planetary trains), while
Eqs. (8.2) and (8.3) require that the gears be on parallel shafts.

In the case of a worm drive, the direction of worm gear rotation may be deter-
mined by analogy to the screw and nut: If a right-hand worm turns clockwise, the worm
gear teeth in contact with the worm move toward the observer. In solving gear train
problems, the direction of rotation should be marked on each gear.

Idlers

An idler may be described as a gear placed between, and meshing with, the input and
output gears. Its purpose is to reverse the direction of the output. Thus, an idler gear
affects the sign of the angular-velocity ratio. For the gear train of Figure 8.1,

n2

n1
= -

N1

N2
  and  

n3

n2
= -

N2

N3
 .

l

n2

n1
=

d1 cos c1

d2 sin c1
=
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d2
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c2c1d2d1

`
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n1
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N2 teeth
N3 teeth

N1 teeth

n2

n32

3
O3

O2

O1

n1

FIGURE 8.1 Gear train with idler. The idler affects the direction of rotation,
but not the numerical value of the speed ratio.

Multiplying the first equation by the second, we obtain

which reduces to

(8.5a)

The number of teeth in gear 2, the idler, does not affect the velocity ratio of the train.
However, the idler does affect the direction of rotation of the output gear and, of
course, takes up space. Since gear 2 meshes with both gears 1 and 3, all three gears
must have the same diametral pitch P or the same module m. Thus, for spur gears, we
may also write

(8.5b)

since and 
Occasionally, several idlers are used to transmit power between shafts that are

too far apart for the use of a single pair of gears. With an odd number of idlers, the dri-
ver and driven shafts rotate in the same direction. With an even number of idlers, one
shaft turns clockwise and the other counterclockwise.

Reversing Direction

The previous section indicates that the introduction of an idler in a spur gear train
changes the direction of velocity of the output. Both the driver and the driven gear

m = d1/N1 = d3/N3.P = N1/d1 = N3/d3
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rotate in the same direction with one idler in a simple train. When two idlers are
inserted in the train, the driver and the driven gear rotate in opposite directions. In
Figure 8.2, gears 1 and 4 have fixed centers and while gears 2 and 3 rotate in
bearings that are held in an arm. Reversing trains of this type have been used in lathes.
When the arm is fixed in the position shown at the left of the figure, the velocity ratio is
given by

where n refers to the rotation speed and N denotes the number of teeth.
When the arm is rotated about to the position shown at the right the velocity

ratio becomes

This type of train is satisfactory for occasional changing of direction, but unsatisfactory
for frequent changes, because the gears do not always correctly engage when shifted.
In some cases, the gears must be manipulated by hand before they will fully mesh.
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FIGURE 8.2 A reversing gearbox power train. In the position shown at the left, there is one
idler in the train, and the input and output shafts turn in the same direction. There are two
idlers in the train when the arm is moved to the position shown at the right, and the direc-
tion of the output shaft is reversed.
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Double Reductions

The minimum number of teeth that a spur gear may have is limited by considerations
of contact ratio and interference. While there is no theoretical maximum number of
teeth, practical considerations like cost and overall size may prevent the designer from
specifying a gear with more than, say, 100 teeth.A speed reduction on the order of 100 : 1
can be accomplished in two to four steps with a transmission requiring as many pairs of
spur gears and considerable space. A double or triple reduction is thus used in prefer-
ence to a single pair of gears in cases when the required reduction in speed is so great
that the output gear of a single pair of spur gears would have to be unreasonably large.
Worm drives are another alternative for large speed reductions.

The double reduction of Figure 8.3a is called a reverted gear train, because the
output shaft is in line with the input shaft. Examining this gear train, we see that gears 2
and 3 are keyed to the same shaft and have the same angular velocity, viz.,

and that

from which the ratio of output speed to input speed becomes

(8.6a)

Since gears 1 and 2 must have the same diametral pitch, and since gears 3 and 4 must
also have the same diametral pitch, Eq. (8.6a) may be rewritten as

(8.6b)

Note that gear 1 drives gear 2 and that gear 3 drives gear 4. By adding more pairs of
gears and examining the results, we find the general relationship to be

(8.7)

which applies to all gear trains in which the shaft centers are fixed in space. The
torque-arm speed reducer shown in Figure 8.3b is a practical example of such a dou-
ble reduction.
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4

(a)

3

1

2

FIGURE 8.3 (a) A reverted gear train. The input and output shafts have the same centerline. The speed
ratio equals the product of the tooth numbers of the driving gears divided by the product of the tooth num-
bers of the driven gears. (b) Torque-arm speed reducer. This double reduction is available with 1:15 and 1:25
output-to-input speed ratios. The helical involute teeth have an ellipsoid form, slightly narrower at the ends
for a more even load distribution. (Source: Reliance Electric Company.)

(b)
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Solution. Using Eq. (8.7), we have (product of driving gear teeth)/(product of
driven gear teeth), from which it follows that yielding
teeth. Using Eq. (8.1) yields or from which we obtain

Gears 2 and 3 turn counterclockwise and gear 4 turns counterclockwise,
as viewed from above in Figure 8.4.

8.3 SPEED RATIO CHANGE

Idlers may also be used to permit the changing of speed ratios. An arm holds idler gear
2 to drive gear 1 in Figure 8.5. Gear 1 is keyed, or splined, to the input shaft and turns
with it. Arm A does not rotate with the input shaft and gear 1 but is connected to gear
1, by a sleeve. The arm is moved axially along the input shaft with gear 1 when a new
speed ratio is required. The speed ratios available are

A typical industrial lathe may have a “cone” of as many as 12 gears on the output shaft
of a train similar to that shown in Figure 8.5. This train is partly responsible for the
wide variation of feeds that are available. (Feed refers to the movement of the cutting
tool along or into the workpiece.) With two other speed selectors, the total number of
feeds available, and therefore the number of different pitches of screw threads that can
be cut, is 48. Since thread cutting requires a high degree of accuracy, a gear drive, which
provides precise speed ratios, is ideal for this application.
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N2 = 5020/1000 = 2 * 20/(N2 * 40),
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1

1

4

�

3

2

FIGURE 8.4 Speed reducer.

SAMPLE PROBLEM 8.1

Speed Reducer

Figure 8.4 shows a gear train that is to produce a 50 : 1 reduction in speed.The following data are
given:

Gear 1, Gear 2 Gear 3, Gear 4,
Worm Worm Gear Straight Bevel Straight Bevel

Tooth numbers 2 20 40

rev/min 1,000 20

Find the number of worm gear teeth. Find the speeds and directions of the gears.
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Spline

Input

Output

1

2

3 4 5 6 7 8 9

A

FIGURE 8.5 Speed changer employing an idler. Gear 1 turns the input shaft. Arm A
holds idler gear 2 in contact with gear 1 and one of the gears on the output shaft. Arm
A is fixed in space except when changing gears.

The operator of a lathe or other machine tool may find it quite satisfactory to
interrupt production in order to change speed ratio. Practical, efficient, and safe vehi-
cle operation, however, requires a smooth, quick transition from one speed ratio to
another without completely stopping the machine; different types of transmissions are
therefore necessary.

Transmissions with Axial Shifting

Automotive transmissions include gear trains with axial shifting, fluid drive units, plan-
etary gear trains, and combinations of these. The transmission shown in Figure 8.6a is
called a three-speed transmission, even though it offers a reverse speed ratio in addition
to three forward speed ratios and a neutral position. The axial distance between gears
in the sketch has been exaggerated for clarity; a typical transmission (like the one
shown in Figure 8.6b) would be more compact.

In Figure 8.6a, shafts A, B, and D and the shaft of idler gear 6 turn in bearings
mounted in the transmission housing, but bearings and parts of the shafts have been
omitted from the sketch. Gear 1 is an integral part of input shaft A. Output shaft D is
not directly connected to the input, but power may be transmitted to it through clutch
C or through gears on countershaft B. In the position shown, no torque is transmitted
between the input and output shafts, because gear 7 is not rigidly connected to output
shaft D, but turns freely on it. This position is called neutral.

Clutch C and gear 1 have cone-shaped internal and external mating faces, respec-
tively. Clutch C and the end of the output shaft on which it rides are splined so that the
two turn together, even though C may be moved axially on the shaft. When C is made
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(a)

3rd Low2nd Reverse

Output shaft
Input shaft

1

2
3 4 5

6

87

B

DA C

FIGURE 8.6 (a) A three-speed transmission. (b) Automatic transaxle. A three-speed automatic
transaxle designed for certain front-wheel-drive automobiles. A “splitter” gear set within the torque
converter improves efficiency. In third (or drive) gear, 93 percent of the torque is transmitted
mechanically, as in a manual transmission. Only 7 percent is transmitted through the torque con-
verter, where slippage reduces efficiency. (Source: Ford Motor Company.) 

(b)
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FIGURE 8.6 (c) A four-speed transmission. (Source: Ford Motor Company.)

to contact the conical face of gear 1, the two begin to move at the same speed. In addi-
tion to the conical friction faces, C and gear 1 have internal and external mating
“teeth” that ensure a positive drive after the initial contact synchronizes the input and
output shaft speeds. The synchronizer teeth are smaller than the gear teeth, since all of
the synchronizer teeth are engaged at once. The resulting direct-drive, or one-to-one,
speed ratio is called high or third gear in the three-speed transmission.

The engine is not directly connected to the input shaft, but a disk clutch (not
shown) is installed between the two. Synchronizing the input and output shafts is
essentially independent of the engine speed when the disk clutch is disengaged. The
word clutch ordinarily refers to the disk clutch, while clutch C, called a synchromesh
clutch, is shifted by a fork that rides in an annular groove.

We see in Figure 8.6a that gears 1 and 2, gears 3 and 7, and gears 5 and 6 mesh at
all times. Gears 2, 3, 4, and 5 are integral parts of countershaft B. Therefore, all gears
except gear 8 turn at all times when the input shaft is in motion. One face of gear 7, like
gear 1, mates with clutch C. Since output shaft D and the internal surface of gear 7 are
smooth where they contact, clutch C must engage the clutch face of gear 7 when power
is transmitted through that gear. The effect is a reverted train of gears 1, 2, 3, and 7 or,
symbolically, the path of power transmission from input to output is A–1–2–3–7–C–D.
The output-to-input speed ratio is given by

where is the number of teeth in gear 1, and so on. Ratios and are both
less than unity; hence, there is a reduction in speed. This position is called second gear.
The disk clutch is disengaged when shifting, so that the speed of gear 7 can be synchro-
nized with the output shaft speed.

Gear 4 is made smaller than gear 3; consequently, engaging gear 8 with gear 
4 produces an even lower speed ratio called low or first gear, symbolically noted as

N3/N7N1/N2N1

nD

nA
=

N1N3

N2N7
 ,
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A–1–2–4–8–D. The speed ratio is given by

Of course, the shifting mechanism must be designed so that clutch C is first disengaged
from gear 7, or we would simultaneously have two different speed ratios. (Actually, the
result would be a locked gear train or a broken transmission.) If there is no synchro-
mesh in first gear, it is best to shift when the output and input shafts are stationary.This
is the case when the vehicle is stationary and the disk clutch has been disengaged a few
moments before shifting. Shifting of gear 8 along the splined portion of the output
shaft is accomplished by a fork that rides in a grooved ring (not shown). The ends of
the teeth of gears 4, 6, and 8 are rounded to facilitate engagement.

Gear 5 is made slightly smaller than gear 4 so that gear 8 cannot mesh with it, but
may be shifted to mesh with idler gear 6. As we have just seen, for first, second, and
third gears, the ratios were positive; the output shaft turned in the same direction as
the input shaft. But when engaged with gear 5, idler gear 6 causes an odd number of
changes in direction, and the output-to-input speed ratio is given by

This arrangement is reverse gear, represented symbolically by A–1–2–5–6–8–D. When
one shifts into reverse, as when shifting to first gear, the disk clutch is disengaged, and
both the input and the output shafts are stationary. Except for reverse and first gear
ratios, gear 8 must turn freely, engaging neither gear 4 nor gear 6.

Helical gears are often selected for transmissions because of their greater
strength and smoother, quieter operation. Meshing helical gears on parallel shafts are
of opposite hand with a right-hand helical gear resembling a right-hand screw. If gear 1
of Figure 8.6a is a left hand gear, then gear 2 must be right hand gear. If gear 1 turns
counterclockwise (as seen from the right), creating a thrust to the left on gear 1, then
there is a thrust to the right on the countershaft at gear 2. In second gear, gear 3 will
have a balancing thrust (to the left) if it is a right-hand helix. Gear 4 is also a right-hand
helix, so that countershaft thrust is balanced in first gear. Since gear 8 meshes with both
gears 4 and 6, gear 6 must be right hand, making gear 5 left hand.Thus, thrust is not bal-
anced when in reverse. Finally, all speed ratios and paths of power transmission for the
transmission of Figure 8.6a are summarized in Table 8.1. Automatic transmissions,
including transaxles, employ several gear trains. Figure 8.6b shows a transaxle with a
torque converter, differential and planetary gear trains. Methods of analyzing plane-
tary gear trains and differentials are discussed in the next section.

Automotive transmissions with four or more forward speed ratios are available,
some including synchromesh in all of the forward gears. (See Figure 8.6c.) While there
are many innovations among manufacturers, the basic principles are often the same.
Although the preceding discussion centers around reducing speed, in a few instances it
is desirable to increase speed. Kinematically, the equations apply to increases, as well as
reductions, in speed. Friction losses, however, make large increases in speed impossible.

nD

nA
= -

N1N5

N2N8
 .

nD

nA
=

N1N4

N2N8
 .
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TABLE 8.1 Position, Path, and Speed Ratios for Three-Speed Transmission of Figure 8.6a

Position of Output-to-input 
synchromesh Position of Path of transmitted speed ratio

Gear clutch, C gear 8 power

Neutral Center Center — —

Third (high) Left Center A–1–C–D

Second Right Center A–1–2–3–7–C–D

First(low) Center Left A–1–2–4–8–D

Reverse Center Right A–1–2–5–6–8–D -
N1N5

N2N8

+
N1N4

N2N8

+
N1N3

N2N7

+1

nD/nA

Designing for a Particular Speed Ratio

For many applications, it is necessary to have a particular relationship between the out-
put and input speed. When the required relationship is a ratio of small whole numbers,
say, one-half or five-sevenths, we have a wide selection of satisfactory pairs of gears to
choose from. However, some speed ratios are impossible to obtain exactly, and others
may be impractical to obtain exactly. An example of a speed ratio that cannot be
obtained with gears is the square root of two, an irrational number. An example of a
speed ratio that is difficult to obtain exactly (from a practical standpoint) is 503/2003,
the ratio of two prime numbers.

In the first case, we cannot express the desired ratio as a fraction made up of
whole numbers and thus cannot select a corresponding set of gear tooth numbers. The
second case involves a pair of numbers, neither of which can be factored. An exact
solution involving a pair of gears with 503 and 2003 teeth might be prohibitively
expensive. Either problem, however, may be solved if a small variation from the
desired ratio is permitted.

In some instances, a table of factors may be used to advantage. Suppose, for
example, we needed the exact speed ratio where and repre-
sent the output and input speeds, respectively. For a gear train similar to that of Figure
8.3a, leading us to try and 
Fortunately, both numbers are factorable: and 
Letting and we have the
desired ratio exactly. When the desired ratio consists of a pair of large numbers that
cannot be factored to give reasonable gear sizes, we may be forced to try a more com-
plicated and expensive solution or an approximate solution.

8.4 PLANETARY GEAR TRAINS

Gear sets of the type shown in Figure 8.7a through l are called epicyclic, or planetary,
gear trains. In planetary trains, one or more gears are carried on a rotating planet carrier,

N4 = 3 * 52 = 75,N1 = 19, N3 = 79, N2 = 22 * 5 = 20,
1500 = 23 * 3 * 53.1501 = 19 * 79

N2N4 = 1500.N1N3 = 1501n4>n1 = +N1N3> 

(N2N4)

ninono /ni = 1501/1500,
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Ring
gear
shaft

R: Ring gear
(Internal gear) P: Planet gear

C: Planet carrier

S: Sun gear

Planet carrier shaft

Sun gear shaft

(b)

(a)

(c)

(f)

(d)

C

C

C

C

C

R

R

P2

P2 P2

P2

P3

P4

P

P1P1
R1

R1

R2

R2

P1

P1

(h)

C

P2

P3

R1 R2
P1

(g)

C

P2

P4P3

P1

S1 S2

(e)

C

P2 P3

P1

S1 S2

S1S S2

S

FIGURE 8.7 Types of planetary gear train identified by Lévai. Part a includes a key to the
skeleton diagrams.
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P1

P2
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S
C

P2 P4

P1

P2

(i) (j)

(k) (l)

FIGURE 8.7 (continued)

rather than on a shaft that rotates on a fixed axis. Several types of gear trains may be
shifted manually to obtain greater or lesser reductions in speed. The shifting process,
however, is difficult to accomplish automatically with gears that rotate about fixed cen-
ters. On the other hand, planetary gear trains are readily adapted to automatic control.
Some planetary gear trains are designed to change ratios simply by using electrically or
hydraulically operated band brakes to keep one or more of the gears stationary. Other
planetary trains operating with fixed gear ratios are selected for their compact design
and high efficiency.

Lévai (1966) identified 12 possible variations of planetary trains. These are
shown in Figure 8.7a through l, using simplified schematics. The simple planetary train
shown in skeleton form in Figure 8.7a has hundreds of applications, including auto-
matic transmissions for automobiles and wheel drives for loaders and scrapers.
Motorized wheels designed for heavy-service vehicles utilize a planetary train based
on part b of the figure. Extreme reductions in speed are possible with gear drives based
on Figure 8.7c. The configuration of Figure 8.7i is used in automotive final drives,
replacing a bevel-gear differential. Some planetary train variations shown in the figure
have no commercial applications at this time. Other possible variations include plane-
tary trains in which the planet carrier rotates freely, serving as neither input nor output
of the mechanism.

The simple planetary gear train sketched in Figure 8.7a consists of a sun gear (S)
in the center, a planet gear (P), a planet carrier or arm (C), and an internal, or ring,
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526 Chapter 8 Drive Trains: Design and Analysis

gear (R). The sun gear, ring gear, and planet carrier all rotate about the same axis. The
planet gear is mounted on a shaft that turns in a bearing in the planet carrier; the
planet gear meshes with both the sun gear and the ring gear. Real gear trains are
designed with three or four planets held in a carrier that encircles the sun. Since the
planets do not rotate about a fixed center, some of the rules developed for gears rotat-
ing about fixed centers must be reexamined.

Formula Method (Train Value Formulation Method) for Solving
Planetary Trains

We noted earlier that, for gears in which the shaft centers are fixed in space, the train
value is given by

The foregoing equation does not directly apply to planetary trains, but we will use the
train value to aid in solving planetary train problems.

If the actual speeds of two of the gears in a planetary train are known, we arbi-
trarily designate one of them as the input gear and the other as the output gear. We
then find the train value with the carrier fixed:

(8.8)

Equation (8.8) is based on our arbitrary designation of input and output gears. The
asterisk indicates that the planet carrier does not rotate. The sign of is positive if the
arbitrarily designated input and output gears would rotate in the same direction with
the carrier fixed. Of course, we must correct for planet carrier rotation.

Let gears x and y be designated as input and output gears, respectively. With the
concept of relative velocity, the speed of gear x relative to carrier C, is given by the
difference in rotation speeds between the two:

Here, and are, respectively, the actual speed of gear x and the actual speed of car-
rier C. Likewise, for gear y, the speed relative to the carrier is

from which the train value with the carrier fixed is

(8.9)

Equations (8.8) and (8.9) are the basis for the formula method of solving for planetary
train speed ratios. To apply these equations, we first designate gears x and y. The

r* =
ny*

nx*
=

ny - nc

nx - nc
 .

ny* = ny - nc,

ncnx

nx* = nx - nc.

nx*,

r*

r* = (;) 
product of driving gear teeth

product of driven gear teeth
 .

`
noutput

ninput
` =

product of driving gear teeth

product of driven gear teeth
 .
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designation is arbitrary, except that we would designate gears whose speed we knew or
wished to know. Planet gears would not ordinarily be so designated. Let the number of
teeth in each gear be given. The fixed carrier train ratio is determined as if x and y
were input and output gears, respectively. Then, with Eq. (8.9), if two of the speeds

and are given, the third can be found.
Suppose, for example, that the speeds and are given for the sun gear and

ring gear, respectively, in the simple planetary train shown in Figure 8.7a. Let the sun
and ring gears be arbitrarily designated as input and output gears, respectively. Then,

From Eq. (8.8), noting that the direction of rotation changes when two external gears
mesh, but does not change when an external gear meshes with an internal gear, we
obtain

From Eq. (8.9),

Combining the two results, we obtain, for the train shown in Figure 8.7a,

SAMPLE PROBLEM 8.2

Planetary Train Analyzed by the Formula Method

For the planetary train of Figure 8.7a, let the tooth numbers be and 
Find the speed of the planet carrier if the sun gear rotates counterclockwise at 100 rev/min and
the ring gear clockwise at 300 rev/min. Use the formula method.
Solution. If we arbitrarily select the sun as the input gear and the ring as the output gear, the
train value [Eq. (8.8)] is

Using Eq. (8.9), where and we get

If we equate the two expressions for the result is clockwise.nc = 166.7 rev/minr*,

r* =
300 - nC

-100 - nC
 .

ny = 300,nx = -100

r* = -
NS

NR
= -0.5.

NR = 80.NS = 40, NP = 20,

nR - nC

nS - nC
= -

NS

NR
 .

r* =
nR - nC

nS - nC
 .

r* = ¢ -NS

NP
≤  ¢ +NP

NR
≤ = -

NS

NR
 .

nx = nS and ny = nR.

nRnS

ncnx, ny,

r*
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In some cases, the formula method must be applied in two steps. For the planetary speed
reducer of Figure 8.9 appearing later in this chapter, for example, we may let and

in Eq. (8.9) to find if and are known. Then, using the value of we have just
found and letting and in Eq. (8.9), we can find 

Input and Output Shafts

In most cases, gear trains are used to obtain a reduction in speed. Other applications
include a reversal in direction, a differential effect, an increase in speed, and even a
one-to-one, input-to-output relationship. In the skeleton diagrams of 12 types of plane-
tary train identified by Lévai, (Figures 8.7a to l), carrier, sun gear, and ring gear shafts
serve as potential input and output shafts. In Figure 8.7a, for example, the ring gear
may be fixed by a band brake. Then, if the sun gear shaft is used as the input and the
carrier shaft as output, there will be a reduction in speed. If the band brake is released,
allowing the ring gear to rotate freely, and if a clutch engages the sun gear to the car-
rier, a one-to-one speed ratio results. If, instead, the sun gear in Figure 8.7a is fixed, the
ring gear shaft can be used as the input and the planet carrier shaft as output.
Considering the planetary trains shown, with different combinations of gear tooth
numbers, the number of possible output-to-input speed ratios is virtually limitless.

Tabular Analysis (Superposition): An Alternative Method 
for Analyzing of Planetary Trains

As we have observed, the rotation of the planet carrier complicates the problem of
determining gear speeds in a planetary train. However, by the simple device of calcu-
lating rotation relative to the carrier and combining it with the rotation of the entire
train turning as a unit, we can find velocities in two steps. If the planet carrier is kept
stationary so that the centers of all gears are fixed, the gear speed ratios equal the
inverse of the ratios of the tooth numbers.

If the sun or ring gear is actually fixed, the constraint is (theoretically) temporar-
ily relaxed, and that gear is given one turn. The effect on the entire train is calculated.
Of course, since the net rotation of the fixed sun or ring gear must be zero, a compen-
sating rotation must take place to correct its position.That compensating motion is one
rotation of the entire locked train in the opposite direction.

As an example, consider the planetary train of Figure 8.8, in which the sun,
planet, and ring gears have, respectively, 40, 20, and 80 teeth, with the sun gear fixed.
The ring gear is the driver and rotates at 300 rev/min clockwise. As a first step in the
solution, let the entire train be locked together and given one clockwise rotation. Then
sun and ring gears and the planet carrier will each have turned through one clockwise
rotation about their common center of rotation. This motion, though, violates the
requirement that the sun gear be fixed. In the second step, the sun gear will be given
one counterclockwise rotation, yielding a net sun gear motion of zero. While the sun
gear is rotated counterclockwise, the carrier will be fixed so that all gears rotate on
fixed centers.The results up to this point are tabulated by denoting clockwise rotations
as positive and counterclockwise rotations as negative Thus, we are able to
construct Table 8.2.

(-).(+)

nR2
.ny = nR2

nx = nS

nCnR1
nSnCny = nR1

nx = nS
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P(20 teeth)
�2 turns

S(40 teeth)
� 1 turn

R(80 teeth)
� 0.5 turns

C
0 turns

FIGURE 8.8 Planetary train. This figure cor-
responds to step 2 in Table 8.2.

As we have noted, the planet carrier will be fixed as we complete the problem.
One counterclockwise rotation of the sun gear results in

rotations of the planet and

rotations of the ring, as shown in Figure 8.8. The planet carrier is given zero rotations.
Including these values in Table 8.2 and adding each column, we obtain the total num-
ber of rotations. We see that the ring gear makes 1.5 turns for each turn of the planet
carrier. Hence, if the ring gear is on the input shaft and the planet carrier on the output
shaft, the ratio of output to input is given by The actual rotation
speeds bear the same relationship. Thus, we divide 300 rev/min, the given speed of the
ring, by 1.5, the total rotations, to obtain a factor of 200. Multiplying each figure in the
total-rotations row by 200, we obtain the actual speeds in revolutions per minute. The
reader will observe that, in the second step of the calculations, the planet acts as an

no/ni = 1/1.5 = +2/3.

nR = np¢Np

N       R
≤ = +2¢  +

20
80
≤ = +0.5

np = ns¢
     

-
Ns

N       p
≤ = -1 ¢  -

40
20
≤ = +2

TABLE 8.2 Superposition Method for Solving Planetary Train Speed Ratios with
Sun Gear Fixed (See Figure 8.8)

Planet
Gear Sun Planet Ring carrier

No. of teeth 40 20 80

Step 1: rotations with train  
locked

Step 2: rotations with planet  0
carrier fixed

Total rotations 0

Speed (rev/min) 0 600 cw 300 cw 200 cw

+1+1.5+3

+0.5+2-1

+1+1+1+1
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idler and affects only the sign of the speed ratio. Thus, it is not necessary to compute
rotations of the planet to obtain output-to-input speed ratios.

Using the data from this example in the formula method, we find that the train
value is Selecting the sun and ring as the arbitrary input and output gears,
respectively (although the ring is the actual input gear and the carrier is the actual out-
put), we have

from which it follows that (clockwise).
As a second example, let the ring gear in Figure 8.8 be held stationary while the

planet carrier, sun, and planet gears are permitted to rotate. In order that the results be
more general, the number of teeth in the sun, planet, and ring gears will be repre-
sented, respectively, by and In tabulating the solution in Table 8.3, the first
step is identical with the previous example. In this case, however, the net rotation of the
ring gear must be zero. To accomplish this, the ring gear is given one counterclockwise
rotation in the second step of the table, while the planet carrier remains fixed. Noting
that the planet gear acts as an idler in the second step, we obtain rotations of
the sun gear for rotation of the ring gear. Tabulating these values and adding as
before, we obtain the total number of rotations.

The last line of the Table 8.3 indicates that, with the ring gear fixed, the ratio of
sun gear speed to planet carrier speed is

The speed relationship obtained for this train by the formula method is

nR - nC

nS - nC
= -

NS

NR
 .

nS

nC
= 1 +

NR

NS
 .

-1
+NR/NS

NR.NS, NP,

nC = 200 rev/min

r* =
300 - nC

0 - nC
 ,

r* = -0.5.

TABLE 8.3 Speed Ratios for a Planetary Train with the Ring Fixed (See Figure 8.8)

Planet
Gear Sun Planet Ring carrier

No. of teeth 

Step 1: rotations with 
train locked 

Step 2: rotations with 0
planet carrier fixed

Total rotations 0 +11 -
NR

NP
1 +

NR

NS

-1-
NR

NP
+

NR

NS

+1+1+1+1

NRNPNS
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With the ring gear fixed, we have

from which we obtain the same result:

Repeating the example with the sun gear fixed, but using symbols to represent the
actual numbers of teeth, we find that the ratio of ring gear speed to planet carrier
speed becomes

If the gear train operates instead with the planet carrier stationary, it no longer acts as
a planetary train.Then, the ratio of sun gear speed to ring gear speed becomes 
to 1, by inspection.

Compound Planetary Trains

A gear train that may be designed for extremely low ratios of output to input speed
employs two planet gears and two ring gears. The reducer of Figure 8.9 is made up of a
sun gear S, two ring gears and and two planet gears and The planets rotate
at the same speed. They are held in the common planet carrier C, which is free to
rotate. The input is the sun gear, and the ring gear is the output. Ring gear is
fixed.

As in the previous examples, we begin by rotating the entire train one turn clock-
wise (step 1,Table 8.4). In the second step, the planet carrier is fixed, while ring gear 
is returned to its original position by one counterclockwise turn. The number of rota-
tions of each gear is entered in Table 8.4, noting that both planets turn at the same
speed. From the sum of the motions of steps 1 and 2, it is seen that the ratio of output
to input speed is given by

(8.10)

If the gears are chosen so that the value of the term is very near to
unity, the output speed will be very low, making a very high output torque available. Of
course, if the term exactly equals unity, the reducer will be useless, since the output
shaft will not turn.

NR1
NP2

 
   /     (NP1

NR2
)

nR2

nS
=

1 - [NR1
NP2
>(NP1

NR2
)]

1 + (NR1
>NS)

.

R1

R1R2

P2.P1R2,R1

-NR/NS

nR

nC
= 1 +

NS

NR
 .

nS

nC
= 1 +

NR

NS
 .

0 - nC

nS - nC
= -

NS

NR
 ,
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Balanced Planetary Trains

In the preceding examples, only one planet gear was shown meshing with the ring gear.
Kinematically, this is sufficient, but balancing gear tooth loads and inertial forces
requires two or more planets meshing with each ring gear. (See Figures 8.10, 8.11a, and
8.11b.) The planetary gear train of Figure 8.8, for example, can be redesigned with four
planets. The planet shafts are mounted in bearings in a planet carrier equivalent to the

R1 R2

Planets P1 and P2 turn
at the same speed

Ring gear R2 shaft
(Output)

Sun gear shaft
(Input)

P1

S

C P2

FIGURE 8.9 Planetary speed reducer. This planetary train employs two planets
and two ring gears.

TABLE 8.4 Speed Ratios for a Compound Planetary Speed Reducer with Ring Gear Fixed (See
Figure 8.9)

Gear S C

No. of teeth 

Step 1: rotations with 
train locked 

Step 2: rotations with  0
planet carrier fixed 

Total number of rotations 0 +1
NP2

NR2

1 -
NR1

NP1

1 +
NR1

NS

NP2

NR2

-  

NR1

NP1

-1-
NR1

NP1

-
NR1

NP1

+
NR1

NS

+1+1+1+1+1+1

NR2
NR1

NP2
NP1

NS

R2R1P2P1

R1
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Planet gears (4)

Planet carrier

Ring gear

Sun gear

FIGURE 8.10 Planetary train with four
planets. Forces are more readily bal-
anced in a planetary train with three or
four planets. Kinematically, there is no
difference; the speed ratio remains the
same whether one or several planets
are used.

arrangement in Figure 8.10. Kinematically, the gear train of that figure is identical to
the train shown in Figure 8.8.

For a simple train of the type shown in Figures 8.8 and 8.10, the pitch diameter of
the ring gear is obviously equal to the sum of the pitch diameter of the sun gear plus
twice the pitch diameter of the planet gear. Since the metric module or the diametral
pitch must be the same on all of the gears in order that they mesh, tooth numbers are
related by the equation

(8.11a)

where subscripts R, S, and P refer to the ring, sun, and planet, respectively. When sev-
eral equally spaced planet gears are to be used, as in Figure 8.10, the designer must
ensure that it is possible to assemble the train. For example, if and

Eq. (8.11) is satisfied. However, a layout will show that four planets cannot
be equally spaced in the train. Equal spacing is possible only if

(8.11b)

where number of planets, which in turn is limited by the requirement that
there be clearance between addendum circles of adjacent planets. Figure 8.11a illus-
trates a balanced train employing three planets.

#P = the

NS + NR

#P
= an integer,

NR = 65,
NS = 25, NP = 20,

NR = NS + 2NP,
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534 Chapter 8 Drive Trains: Design and Analysis

(a)

FIGURE 8.11 (a) Simple planetary train. A train
typical of the wheel planetaries used in drive axles of
loaders and scrapers. Although this drive with three
planets is kinematically equivalent to a drive with
only one planet, the configuration shown balances
the loading and has greater capacity. The planet car-
rier is not shown. (Source: Fairfield Manufacturing
Company, Inc.) (b) Compound planetary train. This
assembly with two sets of planet gears is used in a
motorized wheel. The sun gear is driven by the shaft
of an electric motor rated at 400 hp. The outside
diameter of the ring gear is over 39 in, and the unit is
designed for heavy-duty service. (Source: Fairfield
Manufacturing Company, Inc.)(b)

SAMPLE PROBLEM 8.3

Investigating a Product Line of Speed Reducers

Suppose one would like to offer a line of speed reducers with output-to-input speed ratios
ranging from about 1:5 to about 1:30. Typical input speeds will be 4000 rpm. Investigate
potential candidates.

Design decisions. We will try a configuration similar to that in Figure 8.11b.The sun gear will be
the input, the planet carrier (not shown) will be the output, and the ring will be kept stationary.
We will use four sets of planets to share the load and balance the train. The two planets in each
set rotate as a unit. We will try 18 teeth in the sun gear and 18 or more teeth in the planets mesh-
ing with it. The planets meshing with the ring will have 20 teeth. We will use straight spur gears,
all with a 2.5-mm module.
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Section 8.4 Planetary Gear Trains 535

Solution summary. We will sit back and let the computer do most of the work. Using the for-
mula method, we obtain

Noting that the ring speed is zero, we rewrite the equation in terms of the speed ratio

and call for a symbolic solution for Next, we set up an equation containing the planet speed
and let the computer solve it. Can you find a more concise solution?

Now consider geometry. A sketch shows that the ring gear pitch diameter equals the sum
of the pitch diameters of the sun gear and the first and second planets.This relationship is rewrit-
ten in terms of tooth numbers to find the required number of ring teeth. We try various sizes for
the first planet (the one meshing with the sun). Note that the form indicates that carrier
speed depends on the number of planet one teeth. Tooth numbers for the ring, as well as pitch
radii, and speeds, are calculated and tabulated. The table includes reducers that approximate the
required ratios, and we can select from many in-between values for our line of speed reducers.
The selections should be checked to see that the addendums of the planets do not interfere. We
should also check for the required position of one planet relative to the other on the shaft.

Solution details. With the sun gear as input and the carrier as output, the sun drives the first
planet, and the second planet on the same shaft contacts the fixed ring.

Output/input speed ratio 

Formula method for speed ratio:

solve,

Planet speed:

Module for all gears (mm) 

Number of teeth in sun: First planet:

second planet: Ring:

Pitch radii

Calculate speed ratio

Number of planet pairs: Pnum :=  4

nCS(NP1) :=  NS 
NP2

(NP1
# NR(NP1) + NS

# NP2)

rS :=  NS
# m

2
rS = 22.5 rP1(NP1) :=  NP1

# m
2

rP2 :=  NP2
# m

2
rP2 = 25 rR(NP1) :=  NR(NP1) # m

2

NR(NP1) :=  NS + NP1 + NP2NP2 :=  20

NP1  :=  18, 20 .. 90NS :=  18

m :=  2.5

nP1 - nC

nS - nC
=

-NS

NP1
 solve, nP1 : - B -1

(nS - nC)
# nC +

NS

NP1
R # (nS - nC)

# NP2

(-NP1
# NR - NS

# NP2)
 nCS : -NS

nCS

1 - nCS
=

NS
# NP2

NP1
# NR

nCS =
nC

nS

nc(N   P1)

nCS.

nCS K nC/nS

(nR - nC)>(nS - nC) = -NS
# NP2>(NP1 NR).
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536 Chapter 8 Drive Trains: Design and Analysis

Input speed (rpm CCW) Angular velocity (rad/s) 

Output speed 

Calculate planet speed:

18 22.5 56 70 0.263 1,052.632

20 25 58 72.5 0.237 947.368

22 27.5 60 75 0.214 857.143

24 30 62 77.5 0.195 779.221

26 32.5 64 80 0.178 711.462

28 35 66 82.5 0.163 652.174

30 37.5 68 85 0.15 600

32 40 70 87.5 0.138 553.846

34 42.5 72 90 0.128 512.821

36 45 74 92.5 0.119 476.19

38 47.5 76 95 0.111 443.35

40 50 78 97.5 0.103 413.793

42 52.5 80 100 0.097 387.097

44 55 82 102.5 0.091 362.903

46 57.5 84 105 0.085 340.909

48 60 86 107.5 0.08 320.856

50 62.5 88 110 0.076 302.521

52 65 90 112.5 0.071 285.714

54 67.5 92 115 0.068 270.27

56 70 94 117.5 0.064 256.046

58 72.5 96 120 0.061 242.915

60 75 98 122.5 0.058 230.769

62 77.5 100 125 0.055 219.512

64 80 102 127.5 0.052 209.059

66 82.5 104 130 0.05 199.336

68 85 106 132.5 0.048 190.275

70 87.5 108 135 0.045 181.818

72 90 110 137.5 0.043 173.913

74 92.5 112 140 0.042 166.512

76 95 114 142.5 0.04 159.574

78 97.5 116 145 0.038 153.061

80 100 118 147.5 0.037 146.939

82 102.5 120 150 0.035 141.176

84 105 122 152.5 0.034 135.747

86 107.5 124 155 0.033 130.624

88 110 126 157.5 0.031 125.786

90 112.5 128 160 0.03 121.212-654.545

-666.667

-679.245

-692.308

-705.882

-720

-734.694

-750

-765.957

-782.609

-800

-818.182

-837.209

-857.143

-878.049

-900

-923.077

-947.368

-972.973

-1,000

-1,028.571

-1,058.824

-1,090.909

-1,125

-1,161.29

-1,200

-1,241.379

-1,285.714

-1,333.333

-1,384.615

-1,440

-1,500

-1,565.217

-1,636.364

-1,714.286

-1,800

-1,894.737

nC(NP1)nP1(NP1)nCS(NP1)rR(NP1)NR(NP1)rP1(NP1)NP1

# (nS - nC(NP1))nP1 (NP1) :=  - B -1
(nS - nC (NP1))

# nC (NP1) +
NS

NP1
R

nC (NP1) :=  nS
# nCS (NP1)

vS :=  
p # nS

30
 vS = 418.879nS :=  4000

540



Section 8.4 Planetary Gear Trains 537

Planetary Differential Drives

An alternative method of obtaining low ratios of output to input speed employs two
sun gears and two planet gears as shown in Figure 8.12.The planet carrier C is keyed to
the input shaft, which goes through the center of sun gear which is fixed. Sun gear

is keyed to the output shaft. Planet gears and are both keyed to the same shaft,
which turns freely in the planet carrier. Gears, and in the schematic represent
three or four pairs of planets, equally spaced in a planet carrier. Ring gears are not
used in this speed reducer.

Speed ratios are again found by rotating the entire locked gear train and then
correcting the position of sun gear while the planet carrier remains stationary. The
result, given in Table 8.5, is an output-to-input speed ratio:

(8.12)
no

ni
=

nS2

nC
= 1 -

NS1
NP2

NP1
NS2

 .

S1

P2P1

P2P1S2

S1,

S2

C

Output shaft

Planet carrier
shaft (Input)

P1 P2

S1 FIGURE 8.12 Planetary differential
drive.

TABLE 8.5 Speed Ratios for a Planetary Differential Drive with Sun Gear Fixed (See
Figure 8.12)

Gear C

No. of teeth 

Step 1: rotations with 
train locked 

Step 2: rotations with 0
planet carrier fixed

Total rotations 0 11 -
NS1

NP2

NP1
NS2

-
NS1

NP2

NP1
NS2

+
NS2

NP1

+
NS1

NP1

-1

+1+1+1+1+1

NS2
Np2

Np1
NS1

S2P2P1S1

S1
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538 Chapter 8 Drive Trains: Design and Analysis

This result may be checked by the formula method. Considering rotations relative to
the carrier, we have

If sun gear is fixed, then

from which it follows that

as before.
Gear sizes can be specified to produce a wide variety of output-to-input ratios.

By selecting gears so that the fraction is approximately (but not
exactly) unity, we obtain very great speed reductions. For example, let

Then, from Eq. (8.12),

In considering the preceding example, the reader may come to an extraordinary con-
clusion.According to the calculations, if the shaft of is given one turn, the planet car-
rier C will make 2500 revolutions. In an actual gear train possessing this speed ratio,
however, friction would prevent gear from driving the train, since a small friction
torque on the planet carrier shaft would be so greatly magnified. As is also the case
with most worm drives, this particular gear train may be used only to reduce speed.
Commercially available planetary trains of that variety may be employed to step up
speed by using sun gear for the input and the planet carrier C for the output.
Ordinarily, is limited to about 10 or 20.

A planetary speed reducer of the type sketched in Figure 8.12 is very flexible;
most output-to-input ratios may be approximated simply by selecting the appropriate
gear sizes. Exact ratios, however, are not always obtainable. Suppose, for example, that
a speed ratio is called for, where is the speed of the output, and 
is the speed of C, the input. Instead of using a trial-and-error method to select a suit-
able combination of gears, we will examine Eq. (8.12). If the term

NS1
NP2

NP1
NS2

=
1999
2000

 ,

niS2,nono/ni = 1/2000

no/ni

S2

S2

S2

no

ni
= 1 -

4998
5000

= +
1

2500
 .

 NP1
= 50, and NS2

= 100.
NP2

= 49, NS1
= 102,

NS1
Np2

/(Np1
NS1

)

nS2

nC
= 1 -

NS1
NP2

NP1
NS2

 ,

NS1
NP2

NP1
NS2

=
nS2

- nC

0 - nC
 ,

S1

nS2
*

nS1
* =

NS1
NP2

NP1
NS2

=
nS2

- nC

nS1
- nC

 .
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Section 8.4 Planetary Gear Trains 539

then

Let us, therefore, try to specify the gear sizes so that and
Referring to a table of factors and primes or using software with a

factor command, we see that which
suggests that and Unfortunately,
1999 has no factors except 1 and 1999; it is a prime number.

Since we cannot manufacture a pair of gears with 1 and 1999 teeth for this applica-
tion, we refer again to the table of factors and primes. Noting that 
we may specify and so that Then,
from Eq. (8.12), The minus sign indicates that the
output and input shafts rotate in opposite directions. If this is objectionable, an addi-
tional gear may be added to the train to change the direction of the output.

Alternatively, the desired speed ratio of 1/2000 may be approximated by using
the same factors, except that in this case

From Eq. (8.12), the result is

a value that in most cases would be close enough to be acceptable.
Manufacturing difficulties are sometimes encountered with reverted gear trains.

For the gear train of Figure 8.12, the distance between the centers of gears and is
the same as that between and since and turn about the same axis.
Therefore, the pitch diameters are related by the equation

(Recall that gears which mesh must have the same diametral pitch or module.) If the
loading is such that a diametral pitch of 10 teeth per inch of diameter is satisfactory for
gears and in the previous example, then

The diametral pitch of gears and will be

teeth per inch of diameter. Since this value is not a standard diametral pitch, special
cutters must be manufactured, increasing the cost of the gear train. On the other hand,
the use of only standard gears limits the number of different speed ratios that may be
obtained. The planetary differential drive shown in Figures 8.13a and b offers a wide
range of speed ratios, due to a broad selection of available component gears.

P =
NS1

+ NP1

dS1
+ dP1

=
80 + 29

9.4
= 11 

56
94

P1S1

dS1
+ dP1

= dS2
+ dP2

=
25
10

+
69
10

= 9.4 in.

P2S2

dS1
+ dP1

= dS2
+ dP2

.

S2S1P2,S2

P1S1

no

ni
= 1 -

80 * 25
29 * 69

= +
1

2001
 ,

 NS2
= 69, and NS1

= 80.
NP2

= 25,NP1
= 29,

no/ni = 1 - 2001/2000 = -1/2000.
NS1

* Np2
= 2001.Np2

= 29,NS1
= 3 * 23 = 69

2001 = 3 * 23 * 29,

NS2
= 2 * 2 * 2 * 2 * 5 = 80.Np1

= 5 * 5 = 25
2000 = 24 * 53 = 2 * 2 * 2 * 2 * 5 * 5 * 5,

Np1
* NS2

= 2000.
NS1

* Np2
= 1999

no

ni
=

1
2000

 (exactly).
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540 Chapter 8 Drive Trains: Design and Analysis

V-belt grooves

Planet pinion
assembly

Output hub

Sun gear (splined
to output hub) Stationary sun gear

(splined to
reaction hub)

Shaft of driven
equipment

Reaction hub

Flange for reaction
arm attachment

Rotating gear case
assembly (Input)

(b)

FIGURE 8.13 (a) Planetary differential drive. Mounted within the driven pulley and directly on the shaft of the driven
equipment, this speed reducer requires little additional space.A wide range of speed ratios and output torque capacities
results from changes in tooth number.The available output-to-input speed ratios range from 1:1.79 to 1:482, with the direc-
tion of the output opposite in some cases. (Source: Airborne Accessories Corporation.) (b) Sectional view of planetary dif-
ferential drive.The driven pulley of a V-belt drive forms the rotating gear case of the compound planetary drive.The gear
case carries the planet assemblies, each consisting of two helical planet gears splined to the same shaft. Power is transmit-
ted to a helical sun gear on the output shaft through differential action between the planets and a fixed helical sun gear.

(a)
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Section 8.4 Planetary Gear Trains 541

Nonstandard gears may also result when metric sizes are used. Suppose, for
example, we require an output speed of for an input speed of 100 rev/min.
Let us select a transmission similar to that shown in Figure 8.12, using carrier C as
input and sun gear as output, with sun gear fixed. Referring to Table 8.5, we see
that

After several attempts, we find that one possible combination of spur gears is as follows:

The speeds are

If we use a standard metric module for gears and the center distance
between the shafts is

Then, the metric module for gears and is given by

which is not a standard value.

Tandem Planetary Trains

For most planetary trains, there is no loss in generality when speed ratios are analyzed
by giving the entire train one rotation and then superimposing a correcting rotation
with the planet carrier fixed. When the gear train has more than one planet carrier,
however, this procedure, if applied to the train as a whole, would arbitrarily restrict the
planet carriers to the same speed—a result that may contradict the constraints of the
actual problem. One method of solving tandem planetary trains is to divide the train at
some convenient point and solve for the speed ratios for each half. The speed ratio for
the entire train is then the product of the separate speed ratios.

Figure 8.14 illustrates a tandem planetary train that divides conveniently
between and Following the usual procedure for the left side of the train, whichR3.R2

m2 =
2c

NS2
+ NP2

= 4.1008,

S2P2m2

c =
dS1

+ dP1

2
=

m1(NS1
+ NP1

)

2
= 244 mm.

P1,S1m1 = 4

 nS2
= 0.0625 rev/min cw,    and    nC = 100 rev/min cw.

 nS1
= 0, nP1

= nP2
= 305 rev/min (cw),

 NP1
= 40, and NP2

= 39.

 NS1
= 82,  NS2

= 80,

1 -
NS1

NP2

NP1
NS2

= 0.000625.

S1S2

1
16 rev/min

545



542 Chapter 8 Drive Trains: Design and Analysis

includes and we obtain

Similarly, for the last half of the train,

Since the output-to-input ratio for the entire train is the product of the fore-
going ratios:

no

ni
=

nR2

nS1

# nR4

nS2

 .

nR2
= nS2

,

nR4

nS2

=
1 - [NR3

NP4
>(NP3

NR4
)]

1 + (NR3
>NS2

)
 .

nR2

nS1

=
1 - [NP2

NR1
>(NP1

NR2
)]

1 + (NR1
>NS1

)
 .

C1,S1, P1, P2, R1, R2,

R1 R2 R3 R4

C1 C2
S1

P1

S2

P3 P4P2

FIGURE 8.14 Train with two planet carriers. With two independent planet carriers in a train,
the reader should assume that they do not rotate at the same speed. To solve for the overall
speed ratio, one can solve for the speed ratio of each half of this train separately, thus cor-
rectly using the superposition method. The speed ratio for the entire train is then the product
of the ratios of the two halves.
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Section 8.4 Planetary Gear Trains 543

Using factors and primes as in a previous example, we may demonstrate the flexibility
and the extreme speed reductions available with this type of gear train. For example,
letting

and

we find that the speed ratio of each part of the gear train separately is

The product of the two ratios is the output-to-input speed ratio:

The preceding set of values is only an illustration of the planetary train’s potential for
speed reduction.We might never need such extreme ratios in practice, but trains of this
type are commonly used for speed reductions from one thousand to several thousand.

Free-Floating Planetary Transmission

The free-floating planetary transmission (Figures 8.15a and b) consists of a sun gear S
(the input) which drives five planetary spindles. Each spindle has three planets:
and Ring gear is the output gear, and ring gear is fixed.There is no planet car-
rier as such; the planets are constrained by the gear meshes and the spindles, which roll
on cylindrical rings. All planets rotate at the same speed. All forces and reactions are
transmitted through the gear meshes and through rolling cylinders. The planet gears
are so spaced that tangential gear tooth forces keep the planet spindles in equilibrium.
Tooth separating and centifugal forces are balanced out by the cylindrical rings.

Using the superposition method, we may find relative speeds for the free-planet
transmission. Answers are given in Table 8.6 in terms of tooth numbers and so
on, where C refers to motion of the planet spindle centers about the centerline of the
transmission, since there is no planet carrier.

Changing Speed Ratios with Planetary Transmissions

When speed ratios must be changed smoothly and rapidly, planetary transmissions are
often selected.Automotive requirements, for example, may call for a gear train with two

NS, NP1
,

R2R1P3.
P2,P1,

no

ni
= +30.756 * 10-9 =

+1
32,514,260

 .

nR4

nS2

=
nR2

nS1

= -
47

268,000
 .

NR2
= NR4

= 100 teeth,

NP2
 = NP4

= 23 teeth,
NS1

 = NS2
= 47 teeth,

NP1
 = NP3

= 20 teeth,
NR1

 = NR3
= 87 teeth,
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(Input)

P1

P1

P1

P1

S

P2

P2

P2

P2

P3

P3

P3

P3

R2 (Fixed)

R1 (Output)

(b)

FIGURE 8.15 (a) Free-floating planetary transmission with fixed ring gear removed to show details of planet spindles.
(Source: The Free-Floating Planetary Transmission is a proprietary concept of the Curtiss-Wright Corp., Wood-Ridge,
NJ, and is covered by a number of patents, including No. 3,540,311 and others pending.) (b) Schematic of free-floating
planetary transmission, showing four of five planetary spindles.

(a)
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Section 8.4 Planetary Gear Trains 545

or more positive (forward) speed ratios and one negative (reverse) speed ratio. The
speed changes can be accomplished by clutches and brakes in a planetary transmission.

Figure 8.16 illustrates, schematically, such a transmission. With the gears as
shown, there is no output since both sun gear and ring gear R are free to turn. Gear

meshes only with and Thus, carrier C could remain stationary, even though the
input shaft is turning.

If sun gear is locked to the input shaft by engaging a clutch (not shown), a
direct drive is obtained. Since the two sun gears rotate at the same speed (and in the
same direction), the planet gears are, in effect, locked to the sun gears. The planets are
also locked to each other, because the sun gears tend to rotate the meshed planets in
the same direction (preventing any relative motion). Any motion of planets and P2P1

S2

P2.S1P1

S2

TABLE 8.6 Free-Floating Planetary Transmission

Input Output Stationary

Gear S C

Number of teeth —

1: Train locked together 

2: Correct stationary gear 0
with spindle centers fixed

(true relative speed) 0 +11 -
NR2

NP2

NP3
NR1

1 -
NR2

NP3

1 +
NR2

NP1

NP3
NS

©

-1-
NR2

NP2

NP3
NR1

-
NR2

NP3

+
NR2

NP1

NP3
NS

+1+1+1+1+1

NR2
NR1

NP1
 NP2

 NP3
NS

R2R1P1P2P3

S1

R

P2

S2

Input Output

ni
ne

P1

C

FIGURE 8.16 Planetary transmission. Planets and are carried by the common planet carrier. meshes only
with and When both and R are free to turn, there is no output; the transmission is in neutral. may be locked
to the input shaft by engaging a clutch, giving a one-to-one ratio of output to input. (See Tables 8.7 and 8.8 for other
ratios.) (Note: Gear positions in an actual transmission do not correspond with those shown in this schematic.)

S2S2P2.S1

P1P2P1
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546 Chapter 8 Drive Trains: Design and Analysis

relative to the sun gears would be incompatible with the fact that both planets are held
in the same carrier. Thus, when is locked to the input shaft, all gears lock together
and turn as a unit. The ratio of output to input speed then becomes 

To fix either the ring gear or sun gear to the frame, band brakes may be used.The
brakes would engage the outer surface of the ring gear or a drum attached to sun gear 
Both bands and drums are omitted from the figure so that we may examine the kinemat-
ics of the problem without additional complications. The effect of locking sun gear to
the frame is shown in Table 8.7. In the first step, the entire train is given one clockwise
rotation, just as in each of the previous examples. In the second step, the carrier is fixed,
while sun gear is given one counterclockwise rotation so that it has zero net motion.

By adding steps 1 and 2 in the table, we obtain an output-to-input speed reduc-
tion of

(8.13)

when gear is fixed.
When the ring gear is free to rotate (Figure 8.16), it serves no purpose in the

transmission. When the ring is fixed and gear is free to turn, however, a negative or
reverse ratio is obtained. The results are shown in Table 8.8. which is obtained by pro-
ceeding as in Table 8.7, except that in this case ring gear R is given the zero net rotation.

In this case, sun gear turns freely and serves no useful purpose. The output-
to-input speed ratio is

(8.14)
no

ni
=

1
1 - (NR/NS1

)

S2

S2

S2

no

ni
=

1
1 + (NS2

/NS1
)

S2

S2

S2.
S2

no/ni = 1.
S2

TABLE 8.7 Speed Ratios for the Planetary Transmission of Figure 8.16 with Sun Gear Fixed

Gear R C

No. of teeth 

Step 1: rotations with  
train locked

Step 2: rotations with  — — — 0
planet carrier fixed

Total number of rotations — — 0 — +11 +
NS2

NS1

-1+
NS2

NS1

+1+1+1+1+1+1

NRNS2
NP2

NP1
NS1

S2P2P1S1

S2

TABLE 8.8 Speed Ratios for the Planetary Transmission of Figure 8.16 with Ring Gear Fixed

Gear R C

No. of teeth 

Step 1: rotations with 
train locked 

Step 2: rotations with — — — 0
planet carrier fixed 

Total rotations — — — 0 11 -
NR

NS1

-1-
NR

NS1

+1+1+1+1+1+1

NRNS2
NP2

NP1
NS1

S2P2P1S1
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Section 8.4 Planetary Gear Trains 547

with the ring fixed. Since must be greater than their ratio is always negative,
indicating that the direction of rotation of the output is opposite that of the input.

Planetary Trains with More than One Input

In some planetary gear train applications, none of the gears are fixed.As an example, it
might be necessary to find the angular velocity of the planet carrier of Figure 8.8,
given and the velocities of the sun and ring, respectively. We already solved a
problem of this type earlier by the formula method. As an alternative, the data already
calculated in Tables 8.2 and 8.3 enable us to solve the problem by superposition.

Let the sun have 40 teeth and the ring 80 teeth. The given speeds are 
and (both clockwise). Table 8.2 gives gear speeds when

the sun is fixed. Since these speeds are only relative, the line indicating the total num-
ber of rotations may be multiplied by 1000 to give the correct ring speed. We have,
then, the following speeds (in revolutions per minute), adjusted to give the correct
speed for :

Next, the values of and are substituted into the last line of Table 8.3, and
the result is multiplied by 300 to give the correct sun gear speed when the ring is fixed.
We obtain

and

Adding the values for the case where the sun gear is fixed to the values for the case
where the ring is fixed, we get

and

The method that follows avoids making use of previous results. We begin the problem
by rotating the entire train revolutions (where the value of v is to be found later),
instead of revolutions as done previously. Thus, we have step 1 of Table 8.9. In step
2, sun gear S is given rotations with the carrier fixed. The value of is alsow+w

+1
+v

nC = 1000 + 300 = +1300.

 nR = 1500 + 0 = +1500,

 nS = 0 + 900 = +900,

nC = 1 * 300 = 300.

 nR = 0,
 nS = 3 * 300 = 900,

NRNS

 nC = 1 * 1000 = 1000.
 nR = 1.5 * 1000 = 1500;
 nS = 0;

nR

nR = +1500 rev/minrev/min
nS = +900

nRnS

nC

NS1
,NR
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unknown at this time. Noting the gear ratio, we obtain rotations of the
ring gear in step 2.The last line of the table is the sum of steps 1 and 2, from which we get

and

Eliminating and from the preceding equations, we obtain

(8.15)

from which it follows that

(8.16)

and

(8.17)

These three equations describe the motion of the planetary train shown in Figures 8.7a
and 8.8, for any input or output given in terms of angular velocity. When the data of the
foregoing problems are substituted into the equation for we again obtain

clockwise.nC = 130 rev/min
nC,

nS = nC + ¢NR

NS
≤  (nC - nR).

nC =
nR + nS(NS/NR)

1 + (NS/NR)

nR = nC - ¢NS

NR
≤  (nS - nC),

wv

nC = v.

 nR = v - ¢NS

NR
≤w,

 nS = v + w,

(-NS/NR) * w

TABLE 8.9 Speed Ratios for the Planetary Train of Figure 8.8 with No Fixed Gears

Gear Sun Planet Ring Carrier

No. of teeth 40 20 80

Step 1: rotations with 
train locked 

Step 2: rotations with 0
carrier fixed 

Total rotations vv - ¢NS

NR
≤wv - ¢NS

NP
≤wv + w

- ¢NS

NR
≤w- ¢NS

NP
≤w+w

+v+v+v+v
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Differentials and Phase Shifters

While engineering problem solving often suggests the use of electronic calculators and
computers, there are many specialized applications for mechanical computing devices.
Automatic control of a certain process may depend on the addition of two input func-
tions. Mechanically computed products and sums of signals from sensing devices have
been used to guide aircraft.

The tabular method may be employed with a modification to incorporate two
angular inputs. (See Figure 8.17.) In the first step (Table 8.10), the entire locked train is
given rotations. In the second step, the planet carrier is fixed while gear is given

rotations. If and have the same number of teeth, then makes rotations.
The results are given in Table 8.10, where x and y represent the actual total number of
rotations of and respectively.

On adding the values of x and y, we see that that is,

(8.18)v =
x + y

2
 or nC =

nS1
+ nS2

2
 .

x + y = 2v;
S2,S1

-wS2S2S1+w
S1+v

P

C

S2S1

x yv

FIGURE 8.17 When x and y are given as angular velocities of and respec-
tively, is the angular velocity of the planet carrier. Table 8.10 illus-
trates how this result may be obtained by using a variation of the superposition
method.

v = (x + y)/2
S2,S1

TABLE 8.10 Speed Ratio for the Bevel Gear Differential of Figure
8.17 with Two Inputs

Gear C

Step 1: rotations with 
train locked 

Step 2: rotations with 0
planet carrier fixed 

Total rotations vy = v - wx = v + w

-w+w

vvv

S2S1
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In this mechanism, x, y, and may represent angular displacement, angular velocity, or
angular acceleration. Figure 8.18a illustrates a miniature bevel gear differential that
can also be used as a phase shifter.

If the sum of the two inputs x and y is required, it is necessary only to double the
output (the rotation of the planet carrier shaft). This may be accomplished simply by a
change in scale or by using gears to effect a two-to-one increase in speed. The value of
the function where A and B are constants, is obtained by additional
pairs of gears driving the input shafts. (See Figure 8.18b.) Since the direction of rota-
tion changes with each meshing pair of external spur gears, idlers may be used to
obtain the correct sign.

When an automobile is making a turn, the wheels on the outside of the turn
travel farther than the wheels on the inside. A differential allows the wheels to rotate

v = Ax + By,

v

(a)

(b)

FIGURE 8.18 (a) The large bevel gears that act as sun gears are mounted on bearings. Each of the sun
gears may be directly attached to a spur gear through which input motion is transmitted.The planet
bevel gear drives the junction block, which is rigidly connected to the shaft through the sun gears.
(Source: Precision Industrial Components Corporation,Wells-Benrus Corporation.) (b) When this
mechanism is used to add or subtract, the shafts at the right and left foreground act as inputs (to the pair
of gears driving the bevel sun gears), and the planetary bevel gear cross arm drives the output shaft.
When the device is used as a phase shifter, the shafts at the right and left foreground become the input
and output, respectively. Rotation of the junction block changes the relative position (phase) between
input and output. (Source: Precision Industrial Components Corporation.Wells-Benrus Corporation.)
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at different velocities so that the tires are not required to drag along the road during a
turn. A typical automotive differential is similar to the sketch in Figure 8.17, except
that several bevel planet gears are carried on the same planet carrier, which is driven
by a pair of hypoid gears (Figure 8.19). Kinematically, there is no difference in the dif-
ferential itself. The input to the planet carrier (Figure 8.17) is transmitted through the
planet P to the axles represented by the shafts of and The sum of the axle speeds
is equal to twice the planet carrier speed: On a straight, dry road,

During turning, x does not equal y; however, the average of x and y is If
there is no provision for positive traction, the torque delivered to both axles is equal.
Then, with one wheel on ice and the other on dry concrete, the tire on the ice may turn
freely at a speed of while the other tire does not turn at all. This is the price we pay
to avoid excessive tire wear. Such an obvious disadvantage can be remedied by devices
that deliver most of the torque to the wheel that is not slipping. (See Figure 8.19.)

Using the formula method to describe the motion of a bevel gear differential, we
have

nS2

*

nS1

* =
nS2

- nC

nS1
- nC

= -
NS1

NS2

 .

2v

v.x = y = v.
x + y = 2v.

S2.S1

FIGURE 8.19 Limited-slip automotive differential. Engine power is transmitted to the large
hypoid gear (A), which drives the differential case (planet carrier B). The driving force moves
cross pins (C) up cam surfaces (D), engaging disk clutches (E). This type of differential applies
the greatest amount of torque to the wheel with the most traction to prevent the other wheel
from spinning on ice or snow. (Source: Dana Corporation.)
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For the carrier speed is given by

as in Eq. (8.18).
A mechanism kinematically equivalent to the bevel gear differential may be

manufactured by using spur gears. While one planet gear is sufficient in a bevel gear
differential, the spur gear differential of Figure 8.20 requires a train of two planets held
in the planet carrier. The number of teeth in sun gear will equal the number of teeth
in sun gear 

Figure 8.21 illustrates the use of a different type of spur gear differential in a final
drive assembly. This configuration is equivalent to Figure 8.7i. The differential drive
pinion is splined directly to an automatic transmission. In this particular application, a
front-wheel drive, a pair of spiral bevel gears was chosen to avoid offsetting the pinion
from the center of the planetary train. A hypoid gear is used in rear-wheel-drive vehi-
cles to make it possible to locate the driveshaft below the axle.

The spiral bevel gears produce a speed reduction of 3.21 to one, and when the car
is traveling in a straight path, the entire planetary train turns as a unit. A right turn
causes the planet carrier (driving the left axle) to overspeed, and a left turn causes the
sun gear (driving the right axle) to overspeed. During either turn, relative motion
between the ring, planets, and sun provide the differential action. The planet gears
must be in pairs, one contacting the ring and the other the sun, for proper rotation
direction. The number of teeth in the gears are as follows: sun, 36; inner planets, 16;
outer planets, 16; internal ring, 72; large spiral bevel, 45; and spiral bevel pinion, 14. So
that the axles are flexible, Rzeppa-type, constant-velocity universal joints are used in
the drive assembly.

S2.
S1

nC =
nS1

+ nS2

2
 ,

NS1
= NS2

,

C

P1

P2

S1 S2

y
v

x

FIGURE 8.20 Spur gear differential.
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8.5 OTHER DRIVE TRAIN ELEMENTS

Chain Drives

Chain drives, like gear drives, result in definite output-to-input speed ratios and
have high-power transmission capacity—over 1000 hp for some designs operating at
high speeds. Unlike the situation with gear trains, however, the distance between
shafts is not a critical factor and may even fluctuate without adverse effects during
the operation of a chain drive. The chain length is changed simply by adding or
removing a link.

Due to chordal action, speed does fluctuate slightly in chain drives. This effect is
most significant when sprockets with a small number of teeth are used. Chain drives
tend to be noisy, because of the impact of the links with sprocket teeth. An inverted-
tooth chain (sometimes called a silent chain) is usually quieter than a roller chain of
the same capacity. Chain drives should be guarded to prevent injury.

A roller chain consists of side plates and pin and bushing joints that mesh with
toothed sprockets. Roller chain sprockets have modified involute teeth. Unwrapping
the chain from the sprocket tooth resembles involute generation, although the involute
form is modified by the nonzero roller diameter. Most high-speed chain drives use a
roller-type chain or an inverted-tooth type made up of pin-connected, inward-facing
teeth. (See Figure 8.22.) For maximum chain life, both sprockets are vertical and in the
same plane. Although there is little restriction on center distances, the chain should
wrap around at least on both sprockets. The chain tension is adjusted if necessary,
by moving one of the shafts or by using an idler sprocket.

120°

FIGURE 8.21 An automotive final drive assembly. (Source: General Motors
Corporation.)
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554 Chapter 8 Drive Trains: Design and Analysis

For instrument drives and other very light-load, low-speed applications, bead
chains (Figure 8.23a) may be used. Sprockets need not be in the same plane if idlers
are provided where it is necessary to maintain chain-to-sprocket contact. The complex
drive shown in Figure 8.23b employs both bead chain and roller chain drives.

Sprocket speeds are inversely proportional to the number of teeth in each
sprocket (or the number of pockets or indentations in bead chain sprockets). Both
sprockets rotate in the same direction. The speed ratio is given by

where and are, respectively, the driver and driven sprocket speeds and and 
are, respectively, the numbers of teeth in the driver and driven sprockets. Idler sprock-
ets and the center distance do not affect speed. When bead chains are used, the chain
may be crossed between sprockets to reverse the direction of rotation.

Variable-Speed Chain Drives

Changing the speed ratio is generally not practical with high-speed or high-load roller
chain drives, except by using two or more chains and sprocket pairs, with clutches to
engage one set at a time. For low loads and low speeds, a movable idler sprocket may
be used to shift the chain from one sprocket to another without interrupting the driving.
One application is a bicycle derailleur type of transmission having two driving sprockets

N2N1n2n1

n2

n1
= +

N1

N2
 ,

FIGURE 8.22 Automotive chain drive. This
inverted-tooth chain transmits power from a
torque converter (left) to a planetary transmis-
sion (right). It was selected in preference to a
gear drive, which would have required an idler.
The links are designed for smooth engagement
with the sprockets. Although timing chains are
common in automobiles, the development of a
drive chain posed several problems, including
excessive noise. The manufacturer arrived at the
design shown after considerable analytical and
experimental study, including the use of high-
speed motion pictures. (Source: General Motors
Corporation.)
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with different numbers of teeth and a “cone” of five driven sprockets at the rear wheel
with graduated tooth numbers. Thus, 10 sprocket combinations are available, yielding
10 different speed ratios. Drives of this type are also available with additional sprock-
ets, producing 12, 15, 18, or 21 different speed ratios. For most of the ratios, the sprock-
ets and the chain are not exactly in line (i.e., the sprockets in use are not in the same
plane), but in this application, loads are light enough so that chain wear due to mis-
alignment is slight.

A variable-speed chain drive that provides essentially stepless variation in the
speed ratio is shown in Figure 8.24. The effective sheave diameter is changed by the
spacing between the sides of the grooved sheaves. The chain has floating laminations
that conform to the grooves. Thus, the output-to-input speed ratio is related to the
effective sheave diameter by Eq. (8.3): n2/n1 = d1/d2.

FIGURE 8.23 (a) Bead chain drive. Shown is a close-tolerance bead chain on pocketed sprockets for a
positive, low-speed drive. The beads swivel on pins so that sprockets need not be in the same plane.
(b) Instrument dial drive. Both bead chains and roller chains are used in this drive, assuring precise
speed ratios with maximum flexibility. (Source: Voland Corporation.)

(b)

(a)
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Belt Drives

While the low cost of belt drives is the most common reason for selecting them over
other means of power transmission, belts have other positive features. Belts absorb
shock that might otherwise be transmitted from the driven shaft back to the driver and
prevent vibrations in the driver from being transmitted to the driven shaft, thus reduc-
ing noise and damage from these sources.

In addition, a belt may act as a clutch, disengaging the driver and driven shafts
when loose and engaging them when tight. Belt tightening may be accomplished by
moving either the driver or the driven shaft, or if both shafts are fixed, a movable idler
pulley may be used to tighten the belt.This method is used to engage some power lawn
mower drives to the gasoline engine and to drive punch presses and shears, wherein a
belt is momentarily engaged to a large flywheel for the working stroke of the machine.
An idler is the less desirable of the two methods from the standpoint of belt wear; if
used, it should be as large as practical and, preferably, ride on the inside of the slack
span of the belt.

FIGURE 8.24 Variable-speed chain drive. This drive provides essentially stepless variation in the
speed ratio with a positive drive. The effective sheave (driving surface) diameter is changed by
increasing or decreasing the spacing between the sides of the grooved sheaves. The chain has floating
laminations that conform to the grooves; thus, the output-to-input speed ratio depends on the effec-
tive sheave diameters only. The speed ratio is independent of the number of grooves in the sheaves.
(Source: FMC Corporation.)
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V Belt Drives

V belts, the most common type of belts, are made of rubber reinforced with load-carrying
cords. They operate in V-grooved pulleys or sheaves. The belt sidewalls wedge into the
pulley; the belt does not ride in the bottom of the groove. The effect of this wedging
action is to improve driving traction by more than tripling the friction force over
what it would be if the pulleys were flat. The output-to-input speed ratio is given by
Eq. (8.3), viz.,

where and refer, respectively, to the driver and driven pulley pitch diameters—
the diameters of the neutral surface of the belt riding in the pulley. (The neutral sur-
face of the belt is the surface that is neither compressed nor extended due to bending
around the pulleys.)

Since the belt tension varies as each element of the belt turns about a pulley,
there is some slippage; therefore, speed ratios are not precise, except with specially
designed positive-drive belts and pulleys. If the belt does not cross itself, the driver and
driven pulleys turn in the same direction. For the best results, the pulleys should be as
large as practical and the belt should operate in a single vertical plane. Heavy loads
may be carried by a multigrooved V pulley with a single-backed multiple-V belt.

Variable-Speed Belt Drives

To change the speed ratio occasionally on light machinery, a “cone” of graduated-
diameter V pulleys is matched with a similar “cone” (with the large pulley on one
opposite the small pulley on the other). The belt is manually transferred from one pair
of pulleys to the other when the machine is stopped.

A pair of variable belt-drive pulleys, similar in appearance and operation to the
variable-speed chain drive pulleys shown in Figure 8.24, may be used to change speed
ratios on moving machinery without interrupting power. The sides of one pulley are
moved apart to decrease its pitch diameter, while the sides of the opposite pulley are
moved together to increase its pitch diameter. The output-to-input speed ratio again
equals the inverse ratio of the pitch diameters and may be continuously varied. Each
variable pulley may change diameter by as much as a factor of three or four.

The variable pulleys may be varied manually, pneumatically, or hydraulically.The
change in speed ratio may be entirely automatic in response to a speed governor on
the output shaft, output torque, engine vacuum, or some combination of them. (See
Figure 8.25.)

Some variable-speed drives use a fixed-pitch-diameter pulley opposite a spring-
loaded pulley like that shown in Figure 8.26. The sides of the spring-loaded pulley are
separated simply by increasing the distance between the driver and driven shafts. A
cam may be incorporated into the variable pulley to prevent separation of the sides
when the driven load increases. The cam is visible on the left side of the pulley shown
in Figure 8.26.

d2d1

n2

n1
=

d1

d2
 ,
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Countershaft Pulleys

If the distance between the driver and driven shafts is fixed, a variable double pulley
may be used on a countershaft, as shown in Figure 8.27a. By moving the countershaft
toward either the driver or the driven shaft, the pitch diameters of the intervening dou-
ble pulley change simultaneously, one increasing while the other decreases. This action
gives a wide range of speed ratios.

FIGURE 8.25 Pneumatically controlled belt drive. The pneumatic control regulator at the left
responds to pressure signals, continuously varying the speed of the drive for process control. Speeds
may be varied or may be adjusted to remain constant, or a predetermined cycle of variation in speed
may be programmed. The linkage simultaneously moves both halves of the variable-pitch pulley (fore-
ground) in order to keep the belt aligned as speeds are changed. Units are available with horsepowers
to 30 and speed ranges to 10:1. (Source: Lewellen Manufacturing Corporation.)

FIGURE 8.26 Variable-pitch pulley. This smooth-faced
pulley is part of a variable-speed belt drive. When the dis-
tance between pulley centers is increased, the spring-
loaded sides of the variable pulley separate to decrease
its effective diameter. A cam at the left side of the pulley
increases pressure on the pulley sides with increases in
torque, compensating for the tendency of the pulley to
separate at an increased load. (Source: T. B. Wood’s Sons
Company.)
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Control barrel
Cam maintains
belt alignment

(b)

Fixed face

Standard A-Section V-belts
Floating face

Spring-loaded face maintains
belt tension.

Motor pulley

Variable pulley
on countershaft

Countershaft position for
low output speed

Countershaft position for
high output speed

1

1

2

3

3 4

4

2

(a)

Load pulley

FIGURE 8.27 (a) Variable-speed belt drive. When the countershaft is moved toward the load pul-
ley, the spring-loaded faces of the countershaft double pulley change the effective pitch diameters

and Pitch diameter increases, while decreases. (Source: Speed Selector, Inc.) (b) A sec-
tional view of a spring-loaded, cam-aligned, countershaft double pulley for a compound variable-
speed belt drive. (Source: Speed Selector, Inc.)

d2d3d3.d2
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When one or more countershafts are used, the output-to-input speed ratio again
depends on the pitch diameters of the pulleys and is given by

(8.19)

In this case, output-to-input speed ratio is given by

where d is the pitch diameter and the subscripts 1 to 4 refer to the driver pulley, coun-
tershaft driven pulley, countershaft driver pulley, and driven pulley, in that order. The
two variable diameters are and Figure 8.27b is a sectional view of a spring-
loaded, cam-aligned, countershaft double pulley.

Flat Belts

When a single steam engine was used to drive dozens of separate pieces of factory
machinery, power was transmitted by large flat belts turning pulleys on overhead coun-
tershafts. Belts were shifted, removed, and replaced by skilled operators who worked
while the shafts were turning. While far less prominent now, flat belts have many mod-
ern, specialized applications. Light fabric belts and flat rubber-covered fabric belts are
used at speeds up to 10,000 ft/min and higher—speeds that are well above the operat-
ing range of ordinary V-belt drives. When used on balancing machine drives, light-
weight flat belts do not significantly affect the rotating mass, and in many high-speed
applications, such belts are least likely to excite and transmit vibration.

The output-to-input speed ratio for flat belts is again given by 
where pitch diameter d is measured to the center of the belt and is equal to the pulley
diameter plus one thickness of belt.As before, subscripts 1 and 2 refer to the driver and
driven pulleys, respectively. Either the driver or the driven pulley of a flat belt drive is
usually crowned to prevent the belt from riding off.

Positive-Drive Belts

A special type of flat belt called a timing belt is used as a positive drive, ensuring exact
speed ratios. Teeth on the inside surface of the belt mesh with a grooved pulley, and
there is no slippage. (See Figure 8.28.) The output-to-input speed ratio is given by Eq.
(8.1), where and are the number of grooves in the input and out-
put pulleys, respectively. Timing belts may operate at high speeds, and they require
only light tensioning, since the drive does not depend on friction.

A patented drive system for instruments and other light-duty applications uses a
reinforced plastic belt with side lugs (Figure 8.29), which meshes with a gearlike pulley
that has a central groove to accommodate the belt, but that may be meshed with a spur
gear. As with timing belts, the output-to-input speed ratio is equal to the inverse ratio
of the numbers of pulley teeth.

N2N1n2/n1 = N1/N2,

n2/n1 = d1/d2,

d3.d2

n4

n1
=

d1d3

d2d4
 ,

`
no

ni
` =

product of driving-pulley pitch diameters

product of driven-pulley pitch diameters
 .
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FIGURE 8.28 Timing belt drive. Teeth on the inside
surface of the belt mesh with grooves in the pulleys.
The speed ratio depends on the number of grooves
on the input and output pulleys. (Source: T. B.
Wood’s Sons Company.)

FIGURE 8.29 Positive-drive belt used with geared pul-
leys. The reinforced plastic belt was originally developed
as a silent drive for sound and recording systems. The
geared pulleys may be directly meshed with spur gears,
eliminating intermediate components. An idler is usually
used as shown to take up the slack. The flexibility of this
type of belt allows for considerable shaft misalignment,
and, with idlers or guides, the belt may even be used
between pulleys on perpendicular intersecting shafts.
(Source: Precision Industrial Components Corporation,
Wells-Benrus Corporation.)

Friction Disk Drives

For certain low-torque applications, disks may be used to transmit power from one
shaft to another. (See Figure 8.30.) When two disks on parallel shafts make contact at
their outer edges, the output-to-input speed ratio is equal to the inverse ratio of the
disk diameters. For any number of disks, the output-to-input speed ratio is given by

`
no

ni
` =

product of driving - disk diameters

product of driven - disk diameters
 .

Driver

Driven shaft

FIGURE 8.30 Friction drive. For this type of
drive, the speed ratio equals the inverse ratio of
the disk diameters. The drive is shifted to a
new position to change ratios, and no clutch is
required.
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To maintain adequate frictional force between the disks, alternate disks might have
rubber-covered driving surfaces.

Speed may be changed in discrete steps by using a stepped set of disks on the dri-
ven shaft and changing the location of the driving disk to mesh with the driven disk,
giving the desired speed. Alternatively, disk speed changers and reversers may employ
an idler, as is done with simple geared speed changers and reversing gear trains.
Possible slippage between disks makes this type of drive unsuitable for most instru-
ment applications, but permits a simple and inexpensive drive system for low-torque
applications, eliminating the need for a clutch. The speed ratio may be changed by
shifting disks from one location to another without stopping the drive, since there is no
problem of meshing teeth.

Variable-Speed Wheel-and-Disk Drives

A wheel-and-disk type of transmission provides stepless speed changing and reversing.
The wheel (1) of Figure 8.31 traces a path of radius on the disk (2), and the output-
to-input speed ratio is given by

where is the radius of the driver and is the distance from the axis of the driven disk
to the point of contact of the wheel and disk. When the wheel contacts the disk to the
left of the disk center, the output direction is reversed.

An alternative transmission employs two disks and an idler wheel. Only the idler
wheel is shifted while the input and output shafts rotate in place, as in Figure 8.32.
Since the velocity ratio is unaffected by the idler diameter, the speed ratio is again
given by where and vary simultaneously when the idler is shifted.

The drive shown in the figure is not reversible, but by simply moving the input
and output shafts closer together, or by increasing the output disk diameter, one could
design a drive with same-direction, zero, or reverse output. When the idler is shifted to
the center of the input disk, it does not turn, and the output speed is zero. When the
idler is shifted farther to the left, the output is reversed.

r2r1n2/n1 = r1/r2,

r2r1

n2

n1
=

r1

r2
 ,

r2

1

r1

r2

Input

Output

2

FIGURE 8.31 Wheel-and-disk drive. The output-to-input
speed ratio is where is measured from the
centerline of the disk to the point of contact. The input
and output shafts are kept perpendicular and in the same
plane.

r2n2/n1 = r1/r2,
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Variable-Speed Cone-Roller Disk Drives

An alternative speed changer design uses one or more cone rollers, shifted by an
adjusting screw when the unit is running (Figure 8.33a). Cam surfaces on the split out-
put shaft respond to high output torque by increasing the normal force between the
roller and disks to ensure adequate driving traction. When the load decreases, the nor-
mal force is decreased so that wear is not excessive. A disk drive with four cone rollers
is diagrammed in Figure 8.33b.

Variable-Speed Ball-and-Disk Drives

Friction drives require relatively high normal forces wherever the driver and driven
parts come into contact. Optimum conditions for shifting, however, include low normal
forces for drives of the type shown in Figures 8.31 and 8.32, neither of which would be
satisfactory if changes in speed were frequent or continuous.

The ball-and-disk drive of Figure 8.34, however, does not suffer extensive wear
when the speed is continuously varied, because the two balls in the cage roll on one
another and on the input disk and output shaft when the balls are shifted. (Note that a
single ball could not roll on both surfaces as radius was changed.) As with the previ-
ously discussed drives, the equation

can also be used to find the output-to-input speed ratio for the ball-and-disk drive.
When the ball cage is shifted axially to the center of the input disk, there is no output
motion, but there is still no significant wear on the drive members. Shifting farther to
the left results in an output in the opposite direction from that shown in the figure.

n2

n1
=

r1

r2

r1

r2

r1

Idler

Output

Input

1

2

FIGURE 8.32 Friction disk drive with idler
wheel. As in the Figure 8.31, the output-to-
input speed is given by where
both radii are measured from the respective
disk centerlines to the points of contact. The
input and output shafts are parallel, and the
axes of all three shafts lie in the same vertical
plane. The idler shaft is perpendicular to the
other two and is moved axially to change
speed.

n2/n1 = r1/r2,
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Input

Output

r1

r2

Cam surfaces on
split output shaft

Roller

Input Plate

Output plate

Output plate

Input plate

Helical gears

Input shaft

(a)

(b)

1

2

FIGURE 8.33 (a) Friction disk drive with cone roller. The cone roller is shifted by
means of an adjusting screw to change the radius of the rolling paths on disks 1 and 2.
As with the other disk drives, the output-to-input speed ratio is given by

(b) Disk drive with four cone rollers. With the use of four adjustable
rollers instead of one, the maximum power capacity is increased. (Source: Michigan
Tool Co.)

n2/n1 = r1/r2.
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Wheel-and-disk and ball-and-disk drives may be used as multipliers. From the
familiar speed ratio equation, we have

where and are the input and output angular displacement, respectively (measured
in degrees, radians, or revolutions, with both and in the same units). To multiply
two numbers by using the ball-and-disk drive, we adjust the ball cage position, so
that one of the numbers is represented by where is the radius of the output
shaft. The driver is then given a rotation representing the other number, and the
product is given by the rotation of the output shaft.

When is varied as a function of is the integral of with respect to 
Thus, the ball-and-disk drive may be used as an integrator. (See Figure 8.35.) For

u1.r1/r2u1, u2r1

u2,
u1

r2r1/r2,
r1,

u2u1

u2u1

u2 = ¢ r1

r2
≤u1,

Input

Output

r1

2

1

r2

FIGURE 8.34 Ball-and-disk drive. The output is
zero when the ball cage is at the disk center. The
direction reverses when the ball cage is moved
past (to the left of) the disk center.

FIGURE 8.35 Two views of a ball-and-disk integrator.
At right is a cutaway view. (Source: The Singer
Company, Librascope Division.)
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example, let the ball cage position be automatically adjusted so that is propor-
tional to the flow of liquid through a meter. Disk 1 is turned at a constant rate, and the
rotation of shaft 2 is proportional to the total amount of liquid that passed through the
meter during the measuring period. Measurements could, of course, be scaled to keep
both input and output values within a reasonable range.

Now, consider the friction disk drive of Figure 8.32 with two offset disks, but with
the idler wheel replaced instead by a single ball restrained in a cage. The variable-
speed, ball-and-disk drive sketched in Figure 8.36 operates on this principle, except
that, instead of a single ball, a cage of several steel balls rotates about its own center
between the steel input and output disks. Each ball contacts both input and output
disks at all times, permitting greater tractive forces between the two offset disks.

As far as input and output speeds are concerned, the rotating ball cage is kine-
matically equivalent to a single ball at the cage axis. When the ball cage axis coincides
with the input axis, the output speed is zero. As the ball cage is moved toward the out-
put shaft axis, the output speed increases until, at the limit for this design, the output
speed is 1.5 times the input speed. Speed ratios are changed when the unit is running.
When the recommended torque is not exceeded, there is pure rolling without sliding
between the balls and disks, except during speed changes. In general, the ratio of the out-
put to the input speed is given by where and are defined in Figure 8.36.r2r1n2/n1 = r1/r2,

r1/r2

Input shaft
axis (fixed)

1

2

Input disk Ball cage

Ball cage axis (adjustable
between input and output
axes)

Output disk

Output shaft
axis (fixed)

r1 r2

FIGURE 8.36 The Graham ball-and-disk drive employs a number of balls held in a
rotating cage. The balls contact both the input and output disks. The output-to-
input ratio is again given by and may vary from 0 to 1.5. The output
speed is increased as the ball cage centerline is moved toward the output disk axis.
(Source: Graham Company.)

n2/n1 = r1/r2
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The angular velocity of the cage is half the sum of the input and output speeds:

Variable-Speed Axle-Mounted Ball-and-Disk Drives

Another compact metal-to-metal friction drive employs axle-mounted balls that transmit
power between beveled disks, as shown in Figure 8.37.The ball axles are tilted uniformly
by a slotted iris plate (acting as a set of cams) when it is desired to change speed ratios.
(See Figure 8.38a.) In analyzing this drive kinematically, we need consider only one ball
and observe effective radii of the driving and driven paths. When the ball axle is parallel
to the input and output shafts, as shown in the figure, the distances and (from the ball
axle to the points of contact of the ball with the beveled input and output disks) are
equal. As the ball axle tilts either up or down (Figures 8.38b and c), the radii and 
change simultaneously. Using the relationship for the output-to-input speed ratio, viz.,

we obtain

no

ni
=

rir2

r1ro
=

r2

r1

no

ni
=

product of effective driving member radii

product of effective driven member radii
 ,

r2r1

r2r1

ncage =
n1

2
¢ r1

r2
+ 1≤ .

Output shaft
Input shaft

no ni

r2

r1

r4re

FIGURE 8.37 Axle-mounted ball-and-disk drive.
Since the output and input disk radii are equal

the output-to-input speed is given by
A change in the angle of the ball axle

simultaneously changes and the distances from
the ball axle to the point of contact of the ball sur-
face with the beveled faces of the input and output
disks, respectively. (Source: Cleveland Gear
Company, subsidiary of Vesper Corporation.)

r2,r1

no/ni = r2/r1.
(ro = ri)
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FIGURE 8.38 (a) With the ball axles in the position shown, the input speed equals the output speed.
(Source: Cleveland Gear Company, subsidiary of Vesper Corporation.) (b) The precision speed adjust-
ment device (worm drive) at the top of the transmission is manually adjusted. The iris plate tilts the ball
axles, simultaneously changing and as shown in the insert. The effect is a 1:3 input-to-output ratio.
(Source: Cleveland Gear Company, subsidiary of Vesper Corporation.) 
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Section 8.5 Other Drive Train Elements 569

after noting that the effective radii of the input and output disks are equal. Reversing is
not possible with this mechanism alone, but the speed ratio may be varied from to 3
while the unit is running.

Variable-Speed Roller–Torus Drives

A variation of the axle-mounted ball-and-disk drive is the roller–torus drive shown in
Figure 8.39a. This drive employs two tiltable rollers within a split torus. The roller axes
are shifted equally by gearing, which includes a worm drive to provide fine speed
adjustment. (See Figure 8.39b.) The rollers act as idlers between the input and output
tori. The output-to-input speed ratio is given by

where and are measured from the driveshaft centerline to points of contact
between the roller and the input torus and output torus, respectively. The minus sign
indicates that the direction of rotation of the output is opposite that of the input. The
roller–torus drive by itself cannot have a zero output and cannot be shifted to change
the direction of the output.

r2r1

n2

n1
= -

r1

r2
 ,

1
3

FIGURE 8.38 (c) With the axles tilted to the position shown, the input-to-output ratio becomes 3:1. For
automatic process control or remote speed adjustment, the handwheel drive may be replaced by an electric
or a pneumatic actuator. The ring that encircles the balls balances radial forces, but runs freely and does not
affect the speed ratio. (Source: Cleveland Gear Company, subsidiary of Vesper Corporation.)

3:1 Decrease
(c)

Output
shaft

Input
shaft
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570 Chapter 8 Drive Trains: Design and Analysis

FIGURE 8.39 (a) Schematic of roller–torus drive. The roller axes are shifted to change 
and The input torus drives the sun gear S; the output torus drives the ring R. (Source:
Metron Instruments, Inc.) (b) Roller–torus drive, shown combined with a planetary gear
transmission in a low-power application. (Source: Metron Instruments, Inc.)
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Friction drives and gearing are often combined to provide greater flexibility.
Consider a simple planetary gear train with no fixed gears. From our earlier discussion of
planetary trains with more than one input, the planet carrier speed is given by Eq. (8.16):

Here, n represents speed in revolutions per minute (or any other unit, provided that we
are consistent), N represents numbers of teeth, and subscripts C, R, and S refer to the
carrier, ring, and sun, respectively. Let the output torus of a roller–torus drive be
directly connected to the ring gear of the planetary train, and let the input torus shaft
pass through the output torus to drive the sun gear. Then the planet carrier may be
used as output of the combined transmission, so that a zero speed and a reverse are
possible. Recall that, for all roller positions, the output torus rotates in a direction
opposite that of the input torus. Referring to the roller–torus equation 
and to the previous equation for we have the ratio of the output to the input speed
for the combined transmission:

By rotating the rollers until is less than the fraction we obtain output and
input in the same direction (with a considerable reduction in speed). The roller adjust-
ment at which results in a zero output speed. Most of the range of the
transmission is obtained with greater than resulting in an output direction
opposite that of the input.

Planetary Traction Drives

The analysis of planetary traction drives differs little from the analysis of planetary
gear trains. The same equations are applicable, except that ratios of gear teeth are
replaced by ratios of rolling path radii.

Planetary Cone Transmission

One variable-speed planetary friction drive employs cone planets that make contact
with a variable-position reaction ring (Figure 8.40a). The drive motor may be directly
connected to the planet carrier. A set of planet pinions (integral with the planet cones)
drives a ring gear, which serves as the output.At most input speeds, inertial forces hold
the cones against the friction ring, but if the input speed is low, auxiliary springs are
used to ensure contact. For a change of speed ratio, the reaction ring is shifted axially
(Figure 8.40b) to contact the planet cones at a different location (changing the effec-
tive planet radius ). Speeds may be changed when the unit is operating if the cone
planets are spring loaded. The change in speed is stepless.

rP1

NS/NR,r1/r2

r1/r2 = NS/NR

NS/NR,r1/r2

nC

n1
=

-(r1/r2) + (NS/NR)

1 + (NS/NR)
 .

nC,
n2/n1 = -r1/r2

nC =
nR + nS(NS/NR)

1 + (NS/NR)
 .
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FIGURE 8.40 (a) Cutaway of planetary cone transmission, showing speed control mechanism. The mechanism at the
top of the transmission permits fine adjustment of the reaction ring position and a wide range of speed ratios through
zero and reverse speeds. Most models of this transmission depend on centrifugal force to hold the cone rollers against
the ring. This model, however, is designed with a spring-loading assembly in the center to ensure traction between the
cones and the ring, even at low speeds. (Source: Graham Company.) (b) Schematic of the planetary cone transmission.
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Superposition will be used to solve for relative speeds. In the first step of Table 8.11,
the entire transmission is given one positive rotation. In step 2, the reaction ring rota-
tion is corrected by giving it one negative rotation with the carrier fixed. The effect is
calculated for the cone planet and planet pinion (which turn as a unit) and for the ring
gear. Adding steps 1 and 2 of the table, we have the required rotation of the reaction
ring (zero) and one rotation of the planet carrier. The output-to-input speed ratio is
given by the total number of rotations of the ring gear divided by the carrier rotations:

(8.20)

In one model, when the reaction ring (also called the control ring) is adjusted to
approximately the middle of its range, the ratio of the reaction ring radius to the cone
radius is equal to the ratio of the ring gear teeth to the pinion teeth Then,
from Eq. (8.20), the output speed is zero. As we move the reaction ring to the left,
increases and the output speed is in the same direction as the input speed until, at its
maximum value, Moving the control ring to the right of the zero output
position gives us an output rotation opposite that of the input until we reach a limiting
value of 

Impulse Drives

A gear-and-linkage impulse drive driven by an eccentric is shown in Figure 8.41a. This
particular drive is no longer commercially available. The sketch in Figure 8.41b is incom-
plete, depicting only one of the three pinion-and-linkage assemblies of the unit, but we
will first examine the part of the drive shown before considering the entire mechanism.

The eccentric drives a roller follower pinned to link 1. The follower in turn drives
links 2 and 3. Link 3 turns a pinion counterclockwise through a one-way clutch, and the
pinion drives the output gear. The cam and follower will cause link 3 to oscillate
through the same angle whether the input cam turns clockwise or counterclockwise.
Thus, the orientation of the one-way clutch determines the directions the pinion and
output gears will turn. In this case, the output is clockwise regardless of whether the
input is clockwise or counterclockwise.

When links 2 and 3 are nearly perpendicular, the oscillation of link 3 is greatest
and the output speed is maximal. The pivot point of link 1 may be moved to make the

nR2
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TABLE 8.11 Speed Ratios for a Planetary Cone Transmission with the Reaction Ring 
Fixed (See Figure 8.40b)
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angle between links 2 and 3 quite small, so that link 3 oscillates through a small angle
and the output speed is reduced.

The output shaft would be stationary for about half of each input shaft revolution
if the drive had only one pinion-and-linkage assembly. The actual drive (Figure 8.41a),
with three such assemblies, turns continuously, each linkage driving one-third of the
time. For a given linkage, during two-thirds of each input cycle, link 3 either is rotating
in a direction opposite that of the pinion or is rotating more slowly than the pinion.
During that time, the pinion is driven by one of the other linkages.

The instantaneous output speed is found by sketching the cam and follower (or
its equivalent mechanism) and the linkage that is driving at a given instant. The proce-
dure is illustrated in Figure 8.41c. Since the roller track, which acts as a cam, and the

FIGURE 8.41 (a) Cutaway view of
the gear-and-linkage impulse drive.
(Source: Morse Chain Division, Borg
Warner.) (b) Schematic of the gear-
and-linkage impulse drive (showing
only one of the three pinion-and-
linkage assemblies).

Cam follower
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cam) input
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cam follower are circular, the distance from roller track center B to cam follower cen-
ter C is fixed and will be considered rigid link 5. The axis of rotation of the roller track
is labeled and is designated as link 4. For a specified position of adjustable
pivot we form a four-bar linkage with links 4, 5, and 1 and the frame. Given 
the angular velocity of the roller track, we may draw velocity polygon obc by using the
methods of Chapter 3. (See Figure 8.41d.) We then note that links 1, 2, and 3 and the
frame also form a four-bar linkage, permitting us to complete the polygon with velocity
point d. The linkage shown is obviously driving the transmission at this instant
(through a one-way clutch whereby link 3 drives the pinion counterclockwise). Thus,
the pinion angular velocity is given by 

The angular velocity of the output gear is related to the angular velocity of link 3
by the negative ratio of the number of pinion teeth to the number of output gear teeth.
The same roller track drives the three identical linkages; thus, the output motion is
repeated every of cam rotation.

If it is not obvious which of two linkages is driving the output gear at a particular
instant, the problem is solved for both linkages: The linkage giving the highest speed is
the actual driver. It is seen that the output is pulsating, making a drive of this type prac-
tical only for relatively low speeds.

Flexible-Spline Drives

The flexible-spline drive of Figure 8.42a operates on a unique principle, employing a wave
generator to deflect a flexible external spline. The flexible spline meshes with a slightly

120°

v3 = od/O3D.

v4,O1,
O4BO4,

FIGURE 8.41 (c) Equivalent-linkage drawing for the pinion-and-linkage assembly, showing the prin-
ciple of operation of the mechanism. (d) The velocity polygon for the pinion-and-linkage assembly.
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(a)

FIGURE 8.42 (a) Components of the flexible-spline drive are a housing with an integral 162-tooth cir-
cular spline (fixed), a plastic 160-tooth flexible spline (the output member), and a two-lobe ball-bearing
wave generator (mounted on the output shaft). Other flexible spline drives are available for heavy-
duty and high-precision applications.A combination of two rollers or an ellipselike cam is used as the
wave generator for drives of this type. (Source: Harmonic Drive Division, USM Corporation.) (b) The
wave generator makes the flexible spline “walk” around the inside of the stationary circular spline.

(b)

Rigid circular spline
(part of stationary housing)

Flexible spline
(output member)

Ellipselike wave generator
(input member)

Output shaft
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larger, rigid, stationary member having an internal circular spline.The major components
are shown in exploded view in the figure.The wave generator, usually an ellipselike cam,
is ordinarily the input to the drive. The flexible spline serves as the output, rotating in a
direction opposite that of the input. Both splines have the same circular pitch, but the sta-
tionary spline typically has two or four more teeth than the flexible spline.

The wave generator causes the flexible spline to “walk” around the inside of the
stationary spline. Since the splines mesh tooth for tooth, when the wave generator
turns one rotation clockwise, the flexible spline will advance slightly counterclockwise.
The difference in pitch circumference between the splines results in a tangential
motion with a magnitude of two or four circular pitches. In general, then, there are

rotations of the flexible spline (output) for each wave generator rotation (input),
where is the number of flexible-spline teeth and is the number of stationary
internal-spline teeth. (See Figure 8.42b.)

The speed ratio can also be obtained by employing the superposition method
used previously for planetary drives. In Table 8.12, the locked train is given one rota-
tion for step 1. In step 2, the rigid, internal spline is given one negative rotation with the
wave generator fixed. The two steps are then added as shown in the table.

The wave generator of the flexible-spline drive has two or more equally spaced
lobes or rollers; the two splines mate where the lobes or rollers press the flexible-spline
unit against the rigid splines. The difference in tooth numbers, is a whole-
number multiple of the number of lobes. An output-to-input speed ratio of for
example, is obtained by using a two-roller or two-lobe wave generator input and a flex-
ible spline of 160 teeth meshing with a 162-tooth, fixed internal spline. If the output
and input directions are to be the same, the wave generator is again used as the input
member, but the output is taken from the rigid circular spline with the flexible spline
fixed. Using the data from the preceding example, we find that this condition would
yield an output-to-input ratio of

Ns - Nf

Ns
= +

1
81

 .

- 1
80,

Ns - Nf,

NsNf

Nf - Ns

Nf

TABLE 8.12 Speed Ratios for the Flexible-Spline Drive (See Figure 8.42a)

Flexible Circular Wave
Component spline spline generator

Step 1: rotations with 
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Total number of rotations 0 +11 -
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Speed can be reduced to very low values with correspondingly great increases in out-
put torque with compact one- or two-stage flexible-spline drives. For this reason, such
drives have been used in aircraft and space applications, including vertical-takeoff air-
craft, short-takeoff-and-landing aircraft, and a meteor-detection satellite. In this last
application, a two-stage, 3-by-4-in flexible-spline drive provides a 1-to-3840 reduction
in speed to enable a secondary drive to extend 15-by-48-ft detector “wings” (while the
satellite is orbiting).

Selection of Drive Train Components

A given set of design requirements might be satisfied by more than one of the gear
train configurations, packaged speed reducers, or drive train components considered in
this chapter. A few of the most important design objectives will be discussed as an aid
to making an optimum selection.

Shaft Geometry Considerations. One of the first requirements might involve
the arrangement of the input and output shafts. If the shaft centerlines intersect as in an
outboard motor drive, bevel gears might be used. For nonintersecting perpendicular
shafts, as in a rear-wheel-drive automobile, for example, hypoid gears are used. Power
may also be transmitted between nonintersecting perpendicular shafts by a worm and
worm gear if a considerable reduction in speed is desired. If the shaft centerlines do
not intersect and are neither parallel nor perpendicular, crossed helical gears, bead
chain, and some types of belt drives are used. When the design requires parallel or
collinear input and output axes, packaged speed reducers, belt-and-chain drives, and
spur and parallel helical gear trains may be considered.

Speed Ratio Considerations. If speed must be reduced considerably, worm and
worm gear drives and some compound planetary drives are used. Rapid speed ratio
changing (in discrete steps) suggests the use of clutches engaging and disengaging spur
gears or helical gears on parallel shafts. An alternative method employs a planetary
train with band brakes and clutches to lock certain elements.

When speed must be continuously variable (i.e., if stepless variation is
required), variable-speed belt drives may be employed. For low-power applications
(e.g., instrument-type applications), disk and wheel-disk drives are used. Some disk,
roller-and-disk, and ball-and-disk drives are variable through zero output speed to neg-
ative speed ratios.

Control Considerations. The method of speed control is an important factor in
selecting a transmission. Spur and helical gear trains are ordinarily shifted manually
through mechanical linkages, but changes in speed may be actuated or assisted pneu-
matically, hydraulically, or electrically. The bands and clutches in most planetary trains
are automatically actuated by speed-sensitive and load-sensitive controls.
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Load (Power) Considerations. Bead chains and plastic belts with lugs are limited
to very low-torque applications (chart drives, etc.). High-torque or -power requirements
preclude the selection of these drives and most traction drives for many industrial appli-
cations. Drives available for high horsepower include chains, belts, and gears.

The most severe power transmission and torque requirements are met by various
forms of gearing. A single mesh using high-speed double-helical gears has been
employed for loads as high as 22,000 to 30,000 kW (30,000 to 40,000 hp). Two or more
input pinions are used (as in ship propulsion units) for drives with higher horsepower.

Precision-Drive Considerations

A requirement for precision in the transfer of motion is usually met by gear or power
screw drives. Most high-precision instrument drives employ spur gear trains, but for
high-velocity applications, helical gears are used. When a considerable reduction in
speed is required, a single precision worm and worm gear pair may be used.

Sources of positional errors in gear drives include errors in tooth form and
location; gear and shaft eccentricity, misalignment, and deflection under load; ther-
mal expansion and contraction; and looseness and deflection in couplings, bearings,
and other train components. When the output of a train must accurately reflect the
input motion, the designer may use one or more of the following methods to control
error:

1. Select precision components.
2. Use as few pairs of gears as possible to reduce integrated errors.
3. Use larger diameter or shorter shafting and rigid supports to limit deflection

under a load.
4. Replace alternate gears in the train with split antibacklash gears. The split gear is

spring loaded so that the halves rotate slightly with respect to one another and
eliminate play.

5. Attach one gear to a floating shaft that moves slightly to eliminate play between
meshing teeth.

In multistage speed reducers, angular error from each stage is reduced by the
succeeding stages. If the final (output) stage has a high reduction ratio, precision com-
ponents may be required in that stage only.

Noise, Shock, and Vibration Considerations

Noise, shock, and vibration effects are usually reduced by nonmetallic drives. Belt dri-
ves absorb vibration and shock, rather than transmitting these effects between the dri-
ver and driven shaft. For low loads, nylon or fiber gears are used to reduce noise.

Noise and vibration result as the load is transferred from one pair of gear teeth to
another. The load transfer in helical gears on parallel shafts is smoother, and more
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pairs of teeth are in contact at a given time, than for similar spur gears. For this reason,
helical gears are often chosen for high-power, high-speed drives.

Efficiency Considerations

Efficiency is an important factor in continuously operated drive trains. Over a period
of years, losses of a few percent of transmitted power can be expensive. Low efficiency
also may exact additional penalties, since friction losses represent (1) heat, which must
be dissipated, and (2) additional fuel weight to be carried (a problem in surface vehicle
design as well as in that of aircraft and space vehicles).

Spur gears, helical gears on parallel shafts, and bevel gears have efficiencies of 98
to 99 percent at rated power (for each mesh). If lubrication is poor or if the drive oper-
ates at lower-than-rated power, the efficiency will be lower. Efficiency is considerably
reduced in pairs of gears with a high sliding velocity; with high-reduction worm drives,
losses may exceed 50 percent of the power transmitted. Belt drive efficiencies are typi-
cally about 95 percent for single V belts. Traction drives have efficiencies from 65 to 90
percent (lower at very low output speeds).

Miscellaneous Considerations

Some other major selection criteria are size, weight, reliability, and cost. On a cost-per-
transmitted-horsepower basis, belt drives usually have the advantage. If speed is to be
reduced by a large factor, a worm and worm-wheel drive may be selected on the basis
of its compactness and low cost, compared with more complicated drive trains.
Reliability is an important characteristic of gear trains, particularly spur gears and heli-
cal gears on parallel shafts. Planetary gear trains offer a compact package, taking up lit-
tle space in an axial direction, even for high-power drives.

8.6 FORCES, TORQUES, AND TRANSMITTED POWER IN GEAR TRAINS

The torque T on a gear is given by the tangential force multiplied by the pitch radius
r of the gear. If a gear makes contact with two or more other gears (e.g., as in a plane-
tary train), each contact contributes to the torque. The net torque on an idler gear due
to gear tooth contacts is zero.

The radial force on a gear is given by

(8.23)

where is the pressure angle. The radial force is directed toward the center of a gear,
except for a ring gear, in which case the radial force is directed outward. Axial forces,
as well as radial and tangential forces, occur in helical gears (including worms and
worm gears), bevel gears, and hypoid gears.

One of the reasons for selecting balanced planetary trains over other drive trains
is that the former eliminate shaft bending loads due to unbalanced radial and tangential

f

Fr = Ft tan f,

Ft
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forces on the sun and ring gears. Another advantage is the reduction in tooth loads for
a given torque capacity due to the presence of two or more planet gears.

Noting that we observe that the transmitted power is given by

(8.24)

The equivalent expression in customary U.S. units is

(8.25)

SAMPLE PROBLEM 8.4 

Forces, Torques, and Transmitted Power in a Simple Planetary Train

Figure 8.43 shows a balanced planetary train. Spur gears of module and
are used. The sun gear is the input gear and the carrier is the output. The ring gear is

fixed. We have

Determine the angular velocities. Tabulate the results. Determine all forces and torques. Draw
free-body diagrams. Do the external torques balance? Does the input power equal the output
power? Do the forces balance?
Solution. For this planetary train,

from which

For a module the pitch radius of each gear is given by

The radius of the carrier is

Rotation speeds are obtained by the superposition method, as shown in Table 8.13.
Free-body diagrams are the key to the remainder of the problem. The torque on the sun

gear shaft is

This torque is balanced by tangential forces at each of the four planets:

TS = 4FtrS.

TS =
106P
v

=
106 * 14.4 kW

400 rad/s
= 36,000 N # mm.

rC = rS + rP = 36 + 32 = 68 mm.

rP =
1
2

mNt =
1
2

* 2 * Nt.

m = 2 mm,

NR = NS + 2NP = 36 + 2 * 32 = 100 teeth.

dR = dS + 2dP,

NS = 36, NP = 32, vS = 400 rad/s, and P = 14.4 kW.

f = 20°
2(d/Nt = 2 mm)

P(hp) =
T(in # lb)n(rev/min )

63,025
.

P(kW) = T(N # mm)v(rev/s) * 10-6.

1 W = 1 N # m/s,
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582 Chapter 8 Drive Trains: Design and Analysis

From this equation, the tangential force is

and the radial force is

as shown.The 250-N tangential force and 91-N radial force are each applied at four locations on the
sun gear, two locations on each of the four planet gears, and four locations on the ring gear, as shown
on the free-body diagrams in Figure 8.43. The direction of the tangential forces on the sun and the
planet, where they make contact, are opposite. The planet gear in this train acts as an idler. Thus,
planet torque enabling us to obtain the magnitude of the tangential force on the planet
where that force contacts the ring gear.The tangential force on the ring is equal and opposite.

A reaction torque is required on the ring gear to prevent it from turning. This torque is
given by

The reaction torque may be provided by bolting the ring in place if the transmission is designed
for a fixed speed ratio. If speed changing is required, the reaction torque may be provided by a
band brake about the outside of the ring.

Note that forces are balanced in the horizontal and vertical directions on the sun and ring
gears (and on the planet carrier, as will be seen later). Thus, these elements of the gear train do
not cause bending moments on their respective shafts. For the planet shown (in the top position
at this instant), the two tangential forces must be balanced by a horizontal force of

to the left. Hence, each planet causes an equal and opposite force on
the planet carrier. Torque equilibrium on the planet carrier requires, that

TC = 4 * 2FtrC = 4 * 2 * 250 * 68 = 136,000 N # mm ccw

2Ft = 2 * 250 = 500  N

TR = 4FtrR = 4 * 250 * 100 = 100,000 N # mm cw.

TP = 0,

Fr = Ft tan f = 250 tan 20° = 91 N,

Ft =
TS

4rS
=

36,000
4 * 36

= 250  N,

TABLE 8.13 Speeds, Torques, and Transmitted Power in a Planetary Train

Equation/ Gear
procedure S (input) P R (fixed) C (output)

— 36 32 100 —

36 32 100

1 Lock train

2 Correct R, 0
C fixed

Sum 0

(rad/s) 400 cw 225 ccw 0 105.88 cw

Shaft T From free body 36,000 cw 0 100,000 cw 136,000 

Shaft P 14.4 0 0 14.4
(kW)

10-6Tv

(N # mm)

400
3.777

* sumv

+1-2.125+3.77771 + 2

-1-
100
32

+
100
36

+1+1+1+1

rc = 68rp = _mNtrpitch(mm)

Nt
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on the free-body diagram of the carrier. Of course, the carrier produces a 
clockwise torque on the output shaft, which turns clockwise.

External torques on the transmission as a whole are in balance, since

Note that friction losses have been neglected. The output power is given by

PC = 10-6TCvC = 10-6 * 136,000  N # mm * 105.88  rad/s = 14.4  kW.

TS + TC + TR = 36,000 - 136,000 + 100,000 = 0.

136,000 N # mm

91

91

91

91

91

91

91

250

250
250

250

250

250

250

TR � 100,000

Tc � 136,000

Tp � 0

Ts � 
36,000

Fr � 91

Fr � 91

Fr � 91

Ft � 250

Ft � 250

Ft � 250

2Ft � 250

2Ft � 500

Ring gear

500
500

500
rc

P1

S

Carrier

R

Sun gear

Top planet

Forces in newtons
Torques in newton-millimeters

FIGURE 8.43 Forces and torques in a planetary train.
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584 Chapter 8 Drive Trains: Design and Analysis

Forces, torques, and transmitted power in a compound
planetary train

Compound planetary trains require a little more thought and care. Be sure to use
free-body diagrams. If angular accelerations are small, then inertial forces and torques
may be neglected. And one should apply Newton’s third law: When a body exerts a
force on a second body, the second exerts an equal and opposite force on the first. Insert
checks into your work; test your results. Do the external torques balance? Remember
to include reaction torques on fixed gears. Does the output power equal the input
power? The answer is yes if friction losses are neglected.

If angular accelerations are significant, then inertial forces and torques cannot be
neglected. Reverse-effective forces and torques are added to the free-body diagrams;
that is, d’Alembert’s principle applies. (Problems employing d’Alembert’s principle
are solved in Chapter 10.)

SAMPLE PROBLEM 8.5

Design of a Line of Compound Planetary
Trains; Determination of Forces and Torques

We want to offer a series of speed reducers with fixed speed ratios.The design specifications call for
an input speed of 3000 rpm and output speeds ranging from about 85 rpm to about 600 rpm. Design
the reducers and tabulate forces and torques when 2.4 kW of mechanical power is transmitted.

Design decisions. We will use a compound planetary train similar to that shown in Figure 8.44
with three sets of planets. The sun gear drives, and contacts planet 1 of each set. Both planets of
each set rotate together. The planet carrier drives the output shaft. Planet 2 of each set contacts
the fixed ring gear. All gears are straight spur gears with a 3-mm module and pressure angle.
We will select a 19-tooth sun gear; planets 1 will each have 20 or more teeth, and planets 2 will
have 18 teeth each.

Solution summary. We will specify 20, 24, 28, 92 teeth for planet 1. For this configuration,
the number of teeth in the ring gear equals the sum of the teeth in the sun and planets 1 and 2.
The formula method is used to determine speeds.

The input torque is determined from the input power and the angular velocity. Each
planet 1 contributes one-third of torque Tangential forces oppose the torque on the sun gear,
as shown in the figure. The tangential force on each planet 1 is equal to and opposite that on the
sun. There is no net torque on a planet pair. We use this condition to find the tangential force on
planet 2. A planet pair that is (instantaneously) in the top position is shown in the sketch.
Tangential forces on both planets in each pair contribute to the planet carrier torque. Note that
the load reaction torque is shown on the free-body diagram of the planet carrier; the torque on
the output shaft is in the same direction as the input torque.

Do you know where the additional torque comes from? We apply a torque to the station-
ary ring gear. In some transmissions, this is done with a band brake. The ring gear can be bolted
in place in a transmission designed for a single speed ratio. The ring gear torque must balance
the torque contributions due to the tangential forces from each planet 2.

The sum of the external torques applied to the transmission (the input torque plus the
output reaction torque plus the torque applied to the ring gear) is zero. We check this equation
by comparing the carrier torque with the sum of the sun torque and ring torque. Our calculations
show that the output power is equal to the input power. (In a real transmission, there will be
some friction loss; we neglected it here.)

Ts.

Á ,

20°
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Detailed calculations. Use the sun gear as input and the carrier as output. The sun drives the
first planet. The second planet on the same shaft contacts the fixed ring

Input speed (rpm CCW) Angular velocity (rad/s) 

Module for all gears (mm) Pressure angle 

Number of teeth in sun: First planet:

Second planet: Ring:

Pitch radii of gears:

Planet carrier radius:

Number of planet pairs: Transmitted power 

Output/input speed ratio 

Formula method for speed ratio: solve,

Planet speed: solve, nP1 : - B -1
(3000 - nC)

# nC +
19

NP1
R # (3000 - nC)

nP1 - nC

nS - nC
=

-NS

NP1

nCS : -342
(-NP1

# NR - 342)

nCS

1 - nCS
=

NS
# NP2

NP1
# NR

nCS =
nC

nS

Pkw :=  2.4pnum :=  3

rC(NP1) :=  rS + rP1(NP1)

rP2  :=  NP2
# m

2
 rP2 = 27 rR(NP1) :=  NR(NP1) # m

2

rS :=  NS
# m

2
 rS = 28.5 rP1(NP1) :=  NP1

# m
2

NR(NP1) :=  NS + NP1 + NP2NP2 :=  18

NP1 :=  20, 24 .. 92NS :=  19

f :=  20 # degm :=  3

vS :=  
p # nS

30
     vS = 314.2nS :=  3000

S

C

R
P2

Fr2

Fr1

Fr1

�

TS

s

�

Tc

c

Fr2�Fr1

Fr2�Fr1

Ft1�Ft2

Ft1�Ft2

Ft2

Ft1

Ft1

Ft2

P1

Assembly

Fr2

Top
planets

Sun Ring

TR

�

Carrier

FIGURE 8.44 Compound planetary train.
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Calculate speed ratio 

Output speed 

Calculate planet speed:

Torque on sun (N mm) 

Tangential forces on sun and first planet (N) 

Radial forces on sun and first planet (N) 
Planet torque balance, tangential forces on second planet and ring

Radial forces on second planet and ring (N) 
Reaction torque on ring 
Torque on carrier 
Check torque 
Output power check (kW, neglecting friction losses)

20 30 57 85.5 692.3

24 36 61 91.5 568.1

28 42 65 97.5 474.6

32 48 69 103.5 402.4

36 54 73 109.5 345.5

40 60 77 115.5 299.8

44 66 81 121.5 262.7

48 72 85 127.5 232

52 78 89 133.5 206.4

56 84 93 139.5 184.9

60 90 97 145.5 166.5

64 96 101 151.5 150.7

68 102 105 157.5 137.1

72 108 109 163.5 125.3

76 114 113 169.5 114.9

80 120 117 175.5 105.8

84 126 121 181.5 97.7

88 132 125 187.5 90.5

92 138 129 193.5 84-518.2

-537.7

-558.8

-581.6

-606.4

-633.3

-662.8

-695.1

-730.8

-770.3

-814.3

-863.6

-919.4

-982.8

-1,055.6

-1,140

-1,239.1

-1,357.1

-1,500

nC(NP1)nP1(NP1)rR(NP1)NR(NP1)rP1(NP1)NP1

Pout(NP1) :=  TC(NP1) # vC(NP1) # 10-6      Pout(30) = 2.4

TCcheck(NP1) :=  TS + TR(NP1)
TC(NP1) :=  (Ft1 + Ft2(NP1)) # rC(NP1) # Pnum

TR(NP1) :=  Ft2(NP1) # rR(NP1) # Pnum

Fr2(NP1) :=  Ft2(NP1) # tan(f)

TP(NP1) :=  Ft1
# rP1(NP1) Ft2(NP1) :=  

Ft1
# rP1(NP1)

rP2

Fr1 :=  Ft1
# tan(f) Fr1 = 32.5

Ft1 :=  
TS

rS
# Pnum

      Ft1 = 89.4

TS :=  106 
Pkw

vS
      TS = 7639.4

nP1(NP1) :=  - B -1
(nS - nC(NP1))

# nC(NP1) +
NS

NP1
R # (nS - nC(NP1))

nC(NP1) :=  nS
# nCS(NP1)     vC(NP1) :=  nC(NP1) # p

30

nCS(NP1) :=  NS
# NP2

(NP1
# NR(NP1) + NS

# NP2)
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20 99.3 36.1 25,464.8 33,104.2 33,104.2 2.4

24 119.1 43.4 32,702.2 40,341.6 40,341.6 2.4

28 139 50.6 40,654.3 48,293.8 48,293.8 2.4

32 158.8 57.8 49,321.3 56,960.7 56,960.7 2.4

36 178.7 65 58,703 66,342.5 66,342.5 2.4

40 198.6 72.3 68,799.6 76,439 76,439 2.4

44 218.4 79.5 79,611 87,250.4 87,250.4 2.4

48 238.3 86.7 91,137.1 98,776.6 98,776.6 2.4

52 258.1 93.9 103,378.1 111,017.6 111,017.6 2.4

56 278 101.2 116,333.9 123,973.3 123,973.3 2.4

60 297.8 108.4 130,004.5 137,643.9 137,643.9 2.4

64 317.7 115.6 144,389.8 152,029.3 152,029.3 2.4

68 337.5 122.9 159,490 167,129.4 167,129.4 2.4

72 357.4 130.1 175,305 182,944.4 182,944.4 2.4

76 377.3 137.3 191,834.8 199,474.2 199,474.2 2.4

80 397.1 144.5 209,079.3 216,718.8 216,718.8 2.4

84 417 151.8 227,038.7 234,678.2 234,678.2 2.4

88 436.8 159 245,712.9 253,352.3 253,352.3 2.4

92 456.7 166.2 265,101.9 272,741.3 272,741.3 2.4

8.7 SPREADSHEETS APPLIED TO THE DESIGN OF GEAR TRAINS

The design of a gear train may require many trials in order to meet a given set of spec-
ifications. The use of a computer permits a designer to consider several different com-
binations in attempting to optimize a design. A number of computer programs are
available for gear train design. Electronic spreadsheets are also ideally suited to the
task.

The superposition method of planetary gear train analysis fits easily into the
spreadsheet format. Calculations should be checked by a second method, though,
whenever practical. The formula method for analyzing planetary trains can be coded
into the spreadsheet as a check.

SAMPLE PROBLEM 8.6

Design of a Two-Speed Transmission

Design a transmission with output-to-input speed ratios of approximately 1:3.5 and 1:1.
Solution. There are many possible solutions. Since we have just considered planetary transmis-
sions, let us attempt to use a simple planetary transmission of the type shown in Figure 8.43. We
will try sun gears with 24 to 26 teeth and planet gears with 17 to 19 teeth, using either three or
four planet gears (18 possible combinations). The number of teeth in the ring gear is given by

NR = NS + 2NP.

Pout(NP1)TCheck(NP1)TC(NP1)TR(NP1)Fr2(NP1)Ft2(NP1)NP1
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588 Chapter 8 Drive Trains: Design and Analysis

(The solution will be outlined using symbols for convenience, whereas spreadsheet formulas are
coded in terms of cell addresses.)

We want to consider only balanced planetary trains, in order to avoid lateral loads on the
sun and carrier shafts. The train can be balanced with equally spaced planet gears if

An IF statement and modulo (remainder) function may be used. The test for a balanced train is
based on the statement

which returns “yes” if the remainder is zero (within a small round-off error). If the test returns
“no,” the train cannot be assembled with equally spaced planets, and we reject that combination
of gears.

Let the sun gear be integral with the input shaft, and let the planet carrier shaft be the out-
put. The 1:1 speed ratio requirement can be met by incorporating a clutch into the system. If the
ring gear is free to rotate and the clutch engages the sun gear to the planet carrier, then the input
and output speeds are equal.

A speed reduction is possible if the clutch is disengaged and the ring gear is held fixed.
One way to stop the ring gear from rotating is to tighten a band brake on the outer surface of the
gear.

Combining two steps in the superposition method, for one rotation of the carrier and zero
rotations of the ring gear, we have the following results:

and

Speed ratios are calculated for various combinations of gears.
If the speed ratios are divided by we obtain the ratios The result may also be

checked by the formula method, from which we obtain

A spreadsheet program was used to obtain the results shown in Table 8.14. It can be seen that 7
of the 18 combinations tested form balanced trains. The speed ratio is precisely 1:3.5 with
24, 18, and 60 teeth in the sun, planet, and ring gears, respectively. This combination will be
selected as our tentative design. Note that either three or four planet gears may be used.

If we wish to calculate shaft torques and gear tooth loading, the spreadsheet may
be expanded for that purpose. If it is decided to evaluate a change in any design para-
meter, the spreadsheet program automatically recalculates all values related to the
change. It is again recommended that checks be incorporated to detect programming
errors.

nc/ns

nC/nS = NS/[NS + NR].

n/ns.ns/nc,

nS/nC = 1 + NR/NS.

nP/nC = 1 - NR/NS

IF5MODULO[(NS + NR)/(number of planets)] 6 10-6, “yes’’, “no’’6,

(NS + NR)/(the number of planets) = an integer.
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TABLE 8.14 Planetary Gear Train with Stationary Ring, Superposition Method (Check by for-
mula method)

Planets

3 4
Sun Planet Ring Carrier Balanced

Teeth 24 17 58 No No
Speed n/n(c) 3.416667 0 1
Speed n/n(s) 1 0 .2926829
Speed check 1 0 .2926829

Teeth 24 18 60 Yes Yes
Speed n/n(c) 3.5 0 1
Speed n/n(s) 1 0 .2857143
Speed check 1 0 .2857143

Teeth 24 19 62 No No
Speed n/n(c) 3.583333 0 1
Speed n/n(s) 1 0 .2790698
Speed check 1 0 .2790698

Teeth 25 17 59 Yes Yes
Speed n/n(c) 3.36 0 1
Speed n/n(s) 1 0 .297619
Speed check 1 0 .297619

Teeth 25 18 61 No No
Speed n/n(c) 3.44 0 1
Speed n/n(s) 1 0 .2906977
Speed check 1 0 .2906977

Teeth 25 19 63 No Yes
Speed n/n(c) 3.52 0 1
Speed n/n(s) 1 0 .2840909
Speed check 1 0 .2840909

Teeth 26 17 60 No No
Speed n/n(c) 3.307692 0 1
Speed n/n(s) 1 0 .3023256
Speed check 1 0 .3023256

Teeth 26 18 62 No Yes
Speed n/n(c) 3.384615 0 1
Speed n/n(s) 1 0 .2954545
Speed check 1 0 .2954545

Teeth 26 19 64 Yes No
Speed n/n(c) 3.461538 0 1
Speed n/n(s) 1 0 .2888889
Speed check 1 0 .2888889

- .684211
-2.36842

- .722222
-2.44444

- .764706
-2.52941

- .657895
-2.31579

- .694444
-2.38889

- .735294
-2.47059

- .631579
-2.26316

- .666667
-2.33333

- .705882
-2.41176
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EXAMPLE PROBLEM 8.7

Power, Torque, and Tooth Loading in a Tentative Transmission Design

Design a planetary transmission to transmit 12 kW of mechanical power with an input speed of
120 rad/s and a speed reduction of 1:3.75.
Solution. A simple planetary train will be selected for this application. Let the sun gear be the
input and the carrier the output, and let the ring gear be held stationary. After investigating a
number of combinations, it was found that 24, 21, and 66 teeth in the sun, planet, and ring gears,
respectively, produce the required ratio.The results are shown in Table 8.15.Three (but not four)
equally spaced planet gears may be used. Design decisions include the selection of a pressure
angle and a module of Gear pitch radii are given by

The radius of the planet carrier, measured at the planet centers, is

Speed is calculated relative to the carrier speed, using the superposition method. We see that
as required. Multiplying this row by 120/3.75, we obtain the actual speed of each

gear when The result is checked by the formula method. The torque on
the input shaft is given by

where Since as the design calls for three planet gears, the tangential force is
given by

The radial force is

where the pressure angle.f = 20°,

F  r = F  t tanf,

Ft = TS/[3rS].

P = power (kW).

TS = 106P/vS,

(N # mm)vs =  120 rad/s.
ns/nc =  3.75,

rC = rS + rp.

r = mN/2.

m = 5 mm.
20°

TABLE 8.15 Planetary Gear Train with Stationary Ring, Module: 5, Power: 12 kW, Pressure angle 
Superposition method (Check by formula method; shaft torque is in )

Planets

3 4
Sun Planet Ring Carrier Balanced?

Teeth 24 21 66 Yes No
Radius(mm) 60 52.5 165 112.5
Relative speed 3.75 0 1
Speed (rad/s) 120 0 32
Speed check 120 0 32
Shaft torque 100,000 0 275,000
Tangential force (N) 555.5556 416.6667
Radial force (N) 202.2057 151.6543
Shaft power (kW) 12 0 0
Torque balance

0   OK(N # mm)

-12

-375,000

-68.5714
-2.14286

N # mm
20°.
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The torque on the ring gear is given by

and the torque on the carrier by

Free-body sketches should be used to check directions. Note that the torques in a free-body dia-
gram of the assembly balance. Of course, there are many other aspects to the design of a trans-
mission, including considerations of strength and wear.

8.8 GEAR TRAIN DIAGNOSTICS BASED ON NOISE AND VIBRATION
FREQUENCIES

Some machines produce objectionable noise and vibration. Can we track down and
correct the problem? Diagnosing noise and vibration problems is difficult because
they have many sources. However, diagnostics can be rewarding. It may be possible
to reduce one’s annoyance and risk of hearing loss due to noise. Sometimes a serious
problem is detected before it causes a catastrophic failure. We may find that gears
are to blame, or we may be able to rule out gears as the cause of noise and vibration
problems.

Noise and vibration frequencies. Noise and vibration frequencies are measured
in hertz (Hz). The range of audible sound is roughly

where noise is unwanted sound and the terms noise and sound are used interchangeably,

Interpreting noise and vibration measurements. Noise and vibration measure-
ment techniques are beyond the scope of this book. But we discuss the subject briefly
because you may sometime be asked to interpret noise or vibration measurements.

Sound levels are defined by

where

and

Vibration is usually measured with an accelerometer; common units of measurement
are ’s (where acceleration due to gravity), and decibels (with
various reference levels).

1 g = them/s2, in/s2, g

 pref = reference pressure = 2 # 10-5 Pa.

 prms = root-mean-square sound pressure,
 log = common (base-10) logarithm,

 L = sound level in decibels (dB)

L = 10 log [prms
2 /pref

2 ],

f = frequency (Hz), and 1 Hz = 1 cycle/s = 60 cycles/minute.

20 … f … 20,000 Hz,

TC = 2 * 3FtrC.

TR = 3FtrR
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592 Chapter 8 Drive Trains: Design and Analysis

Spectral analysis involves breaking down a noise or vibration signal into fre-
quency components. A fast-fourier-transform (FFT) analyzer is often used to produce
a plot of sound or vibration level against frequency. Sometimes we find distinct peaks
in the plots. The equations that follow may help us interpret those peaks and lead to
the source of the noise or vibration.

Shaft-speed-related noise and vibration. The fundamental noise or vibration
frequency due to shaft imbalance is given by

where and

If this frequency is prominent, we could consider balancing the offending gear
and shaft. (But note the next paragraph.)

Tooth-error frequencies. Consider a single tooth that is damaged or poorly cut.
If that tooth is on one of a pair of nonplanetary gears, the result is the same as before,
viz.,

where of the gear with the tooth error.
Tooth-meshing frequencies. Suppose we could manufacture perfect error-free

gears. (We cannot, of course.) There would still be shock loading due to tooth deflec-
tion. Figure 8.45 is a representation showing tooth centerlines. Gear 1 drives, and at
this instant, teeth b and c contact teeth B and C on gear 2.The deflection of these teeth
is exaggerated in the sketch.As a result of the elastic deflection, tooth d, which is about
to come into mesh, leads its theoretical position. Tooth D lags. The result is shock
loading each time gear teeth come into contact. The fundamental tooth meshing fre-
quency is

ftooth meshing = nN/60,

n = speed (rpm)

ftooth error = n/60,

n = speed (rpm) of the shaft in question.
f = fundamental frequency (Hz)

fshaft imbalance = n/60,

FIGURE 8.45 Tooth-meshing frequencies

D C B A
n2

n1

T2

T1

d c b a

596



Section 8.8 Gear Train Diagnostics Based on Noise and Vibration Frequencies 593

where of one of the gears and

If this frequency is a problem, we might consider improving the contact ratio.
The usual solution is to redesign with helical gears instead of spur gears.

Planetary trains. The foregoing results apply to a pair of gears that rotate on
shafts with fixed centerlines. What changes do we need when diagnosing a noise or
vibration problem in planetary gears? Think of the problem this way:

• The sun and planet carrier shafts rotate on fixed centerlines, so there is no change
in the sun and carrier shaft imbalance equations.

• The planets rotate within the planet carrier. Rewrite the shaft imbalance equa-
tion for planet gears to take into account the speed of the planet with respect to
the carrier.

• The number of tooth meshes depends on motion relative to the carrier. Suppose
you could stand on the planet carrier and count the number of tooth contacts.
The frequency of contacts between the sun and a single planet gear is given by

• Tooth error frequencies depend on motion of a gear with respect to the carrier
and, the for sun and ring gears, the number of planets. If a given planet contacts
both the sun and the ring gear (as in a simple planetary train), the tooth error fre-
quency is

Sideband frequencies. Sometimes tooth-meshing frequencies combine with
other sources of noise and vibration to produce sideband frequencies, which may
appear in a frequency analysis as

or

Harmonics. Harmonics are integer multiples of the fundamental frequencies.
The shock loading of tooth meshing, for example, does not produce a pure tone. The
result is the fundamental frequency just calculated, together with harmonics. For fun-
damental frequency we might have significant harmonics of frequency and 

In dealing with planetary trains, there is another complication: If the sun gear
meshes with three planet gears, are the shock loads of tooth meshing in phase or out of
phase? A significant noise or vibration level might occur at three times the tooth mesh-
ing frequency. A significant noise or vibration level might occur at twice the tooth
meshing frequency for an idler gear (depending on relative shaft position).

3f1.2f1f1,

fsideband = ftooth meshing ; ftooth error.

fsideband = ftooth meshing ; fshaft imbalance

2(nP - nC)/60.

(nS - nC)NS/60.

 N = number of teeth on the same gear
 n = speed (rpm)
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594 Chapter 8 Drive Trains: Design and Analysis

SAMPLE PROBLEM 8.8

Noise and Vibration Frequencies of a Compound Planetary Train

Suppose we are informed that our compound planetary trains may be responsible for noise and
vibration problems. The planetary train is similar to that shown in Figure 8.44. A 17-toothed sun
gear, the input, rotates at 7,500 rpm, driving planet gears that may have from 60 to 78 teeth,
depending on customer requirements. Seventeen-toothed planet gears are mounted on the same
shaft with each large planet. They mesh with a fixed ring gear. There are three equally spaced
pairs of such planets. Find the fundamental frequencies due to the gear trains so that they can be
compared with the results of measured noise and vibration spectra. This makes it possible to
propose corrective action or to rule out the planetary trains as a cause of the noise and vibration.

Solution summary. Check the geometry constraints of the gear train. The ring gear size and
the speeds of the planet gears and carrier depend on the number of teeth in planet 1. The for-
mula method is used to calculate speeds, but you may prefer the tabular (superposition) method.
Fundamental frequencies are calculated for shaft imbalance, tooth meshing, and tooth error.The
fundamental frequency for input shaft imbalance is 125 Hz. The other values are tabulated for
each gear train option. Sideband frequencies and harmonics can be calculated from the tabu-
lated values.

Detailed calculations. Use the sun gear as input and the carrier as output. The sun drives the
first planet, and the second planet on the same shaft contacts the fixed ring.

Input speed (rpm CCW) Angular velocity (rad/s) 

Module for all gears (mm) Pressure angle 

Number of teeth in sun: First planet:

Second planet: Ring:
Pitch radii of gears:

Planet carrier radius:

Number of planet pairs:

Output/input speed ratio 

Formula method for speed ratio: solve,

Planet speed: solve,

Calculate speed ratio 

Output speed nC(NP1) :=  nS
# nCS(NP1) vC(NP1) :=  nC(NP1) # p

30

nCS(NP1) :=  NS
# NP2

(NP1
# NR(NP1) + NS

# NP2)

nP1 : - B -1
(7500 - nC)

# nC +
17

NP1
R # (7500 - nC)

nP1 - nC

nS - nC
=

-NS

NP1

nCS : -289
(-NP1

# NR–289)

nCS

1 - nCS
=

NS
# NP2

NP1
# NR

nCS =
nC

nS

Pnum :=  3

rC(NP1) :=  rS + rP1(NP1)

 rP2 :=  NP2
# m

2
 rP2 = 12.8  rR(NP1) :=  NR(NP1) # m

2

 rS :=  NS
# m

2
 rS = 12.8  rP1(NP1) :=  NP1

# m
2

NR(NP1) :=  NS + NP1 + NP2NP2 :=  17

NP1 :=  60..78NS :=  17

f :=  20 # degm :=  1.5

vS :=  
p # nS

30
 vS = 785.4nS :=  7500
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Section 8.8 Gear Train Diagnostics Based on Noise and Vibration Frequencies 595

Calculate planet speed:

Possible noise and vibration frequencies (fundamental frequencies, Hz)

Sun shaft 

Planet carrier shaft 

Planet shaft 

Tooth-meshing frequencies

Sun and planet 

Planet and ring 

Check 

Tooth error frequencies

Sun 

Either planet 

Ring 

60 45 94 70.5 365.6 6.1 33.7

61 45.8 95 71.3 356.3 5.9 33.2

62 46.5 96 72 347.3 5.8 32.7

63 47.3 97 72.8 338.7 5.6 32.2

64 48 98 73.5 330.4 5.5 31.7

65 48.8 99 74.3 322.4 5.4 31.3

66 49.5 100 75 314.6 5.2 30.8

67 50.3 101 75.8 307.2 5.1 30.4

68 51 102 76.5 300 5 30

69 51.8 103 77.3 293.1 4.9 29.6

70 52.5 104 78 286.4 4.8 29.2

71 53.3 105 78.8 279.9 4.7 28.8

72 54 106 79.5 273.6 4.6 28.4

73 54.8 107 80.3 267.6 4.5 28.1

74 55.5 108 81 261.7 4.4 27.7

75 56.3 109 81.8 256.1 4.3 27.4

76 57 110 82.5 250.6 4.2 27

77 57.8 111 83.3 245.3 4.1 26.7

78 58.5 112 84 240.2 4 26.4-1,342.1

-1,356.4

-1,371

-1,385.9

-1,401.1

-1,416.7

-1,432.6

-1,448.9

-1,465.5

-1,482.6

-1,500

-1,517.9

-1,536.1

-1,554.9

-1,574.1

-1,593.8

-1,613.9

-1,634.6

-1,655.8

fP(NP1)fC(NP1)nC(NP1)nP1(NP1)rR(NP1)NR(NP1)rP1(NP1)NP1

fRE(NP1) :=  
nC(NP1)Pnum

60

fPE(NP1) :=  
ƒ nP1(NP1) - nC(NP1) ƒ

60

fSE(NP1) :=  
(nS - nC(nP1)) # Pnum

60

fPRcheck(NP1) :=  
(nC(NP1) # NR(NP1))

60

fPR(NP1) :=  
ƒ nP1(NP1) - nC(NP1) ƒ # NP2

60

fSP(NP1) :=  
(nS - nC(NP1)) # NS

60

fP(NP1) :=  
ƒ nP1(NP1) - nC(NP1) ƒ

60

fC(NP1) :=  
nC(NP1)

60

fS :=  
nS

60
 fS = 125

nP1(NP1) :=  - B -1
(nS - nC(NP1))

# nC(NP1) +
NS

NP1
R # (nS - nC(NP1))
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596 Chapter 8 Drive Trains: Design and Analysis

60 2,021.4 572.7 572.7 356.7 33.7 18.3

61 2,024.1 564.1 564.1 357.2 33.2 17.8

62 2,026.6 555.7 555.7 357.6 32.7 17.4

63 2,029 547.5 547.5 358.1 32.2 16.9

64 2,031.4 539.6 539.6 358.5 31.7 16.5

65 2,033.7 531.9 531.9 358.9 31.3 16.1

66 2,035.9 524.4 524.4 359.3 30.8 15.7

67 2,038 517.1 517.1 359.6 30.4 15.4

68 2,040 510 510 360 30 15

69 2,042 503.1 503.1 360.3 29.6 14.7

70 2,043.9 496.4 496.4 360.7 29.2 14.3

71 2,045.7 489.8 489.8 361 28.8 14

72 2,047.5 483.4 483.4 361.3 28.4 13.7

73 2,049.2 477.2 477.2 361.6 28.1 13.4

74 2,050.8 471.1 471.1 361.9 27.7 13.1

75 2,052.4 465.2 465.2 362.2 27.4 12.8

76 2,054 459.4 459.4 362.5 27 12.5

77 2,055.5 453.8 453.8 362.7 26.7 12.3

78 2,057 448.3 448.3 363 26.4 12

SUMMARY

The output-to-input speed ratio of a nonplanetary train is given by the product of the
driving gear teeth divided by the product of the driven gear teeth. Idlers serving as
both driving and driven gears change the direction of rotation, but do not affect the
speed ratio.

We can obtain a wide range of speed ratios with planetary gear trains, which can
be designed with clutches and brakes to provide smooth, rapid changes of the speed
ratio. The formula method and the tabular (superposition) method are used to analyze
planetary trains. In both methods, we consider motion relative to the planet carrier and
motion of the planet carrier. The formula method is superior if there are two inputs. It
also works well if we want a computer to produce a symbolic solution. The tabular
method helps keep everything in order. It is convenient if we want to include tooth
numbers, pitch radii, forces, torques, and transmitted power in tabular form.

Simple planetary trains almost always incorporate three or four planets to reduce
tooth loading and to eliminate bending loads on the input and output shafts. This
imposes special geometry requirements. Some planetary trains can be balanced with
three equally spaced planets, some with four. The design of compound planetary trains
also is controlled by geometry requirements.

Differentials and phase shifters can be designed with spur gears, but bevel gears
are more commonly used. The analysis of differentials and phase shifters is similar to
that used for other planetary trains. A sketch helps to get the directions right.

fRE(NP1)fPE(NP1)fSE(NP1)fPRcheck(NP1)fPR(NP1)fSP(NP1)NP1
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Summary 597

Gear-drive speed changers are limited to a few discrete speed ratios. Chain drives
and belt drives are commonly used to transmit power. Variable-pitch sheaves on spe-
cial belt and chain drives can provide smooth, stepless changes in speed. These drives
and various friction drives are not restricted to discrete speed ratios.

Free-body diagrams are essential in analyzing forces and torques in drive trains.
When a body exerts a force on a second body, the second exerts an equal and opposite
force on the first. We can often detect errors by trying to balance external torques on a
speed reducer and by comparing input and output power.

Shaft imbalance, gear tooth errors, and tooth meshing produce noise and vibra-
tion. We can predict the noise and vibration frequencies due to each of these factors
and compare those frequencies with noise and vibration measurements. Such compar-
isons are helpful for diagnostic purposes and as an aid to redesign.

A Few Review Items

• Sketch two designs for reverse gears (i.e., two schemes for changing the direction
of output shaft rotation).

• Suppose you plan to design a simple planetary train with a 20-tooth sun gear,
three planet gears in a planet carrier, and a ring gear. Can you use planets with 20
teeth each? What do you recommend?

• Describe the function of an automobile differential. Does its operation pose any
problems? Consider the consequences of eliminating the differential.

• Identify a set of requirements that would suggest selecting one of the following
drive train systems over another: reverted gear trains, simple planetary gear
trains, V-belt drives, toothed (timing) belts, inverted-tooth (silent) chain drives,
and friction drives. Consider capacity, complexity, shaft loading, speed ratio preci-
sion, input and output shaft location requirements, and other positive and nega-
tive features.

• A clockwise torque is applied to the sun (input) shaft of a simple planetary
train. The planet carrier applies a clockwise torque of to the output shaft. A
band brake holds the ring gear stationary. What is the brake torque? In what
direction?

• Suppose there are four planet gears in the transmission just described. Find tan-
gential and radial forces in terms of the sun gear pitch radius, etc. Sketch a free-
body diagram of the sun gear. Do the forces and torques balance? Sketch a
free-body diagram of the planet carrier. Do the forces and torques balance?

• Suppose someone has measured noise and vibration due to a gear train and finds
that significant noise and vibration levels occur at tooth-meshing frequencies.
Does this result indicate a design error or a manufacturing error? Do you have
any suggestions for reducing the noise and vibration?

• Suppose there is a defect on the inner race of a ball bearing. Can you relate the
resulting noise and vibration frequency to the ball bearing’s rotation speed?
(Suggestion: Use radii of the rolling paths instead of tooth numbers in the equa-
tions for a planetary train.)

4 # TS

TS
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598 Chapter 8 Drive Trains: Design and Analysis

PROBLEMS

8.1 In Figure 8.3a (a reverted gear train), input shaft 1 rotates at 2000 rev/min, and
Find the highest and lowest output speeds obtainable if the tooth numbers for

gears 2 and 3 are to be no fewer than 20 and no more than 60. (Note that shafts 1 and 4 lie
on the same centerline.) All gears have the same module.

8.2 In Figure P8.1, find the speed and direction of rotation of gear 4. Gear 1 rotates at 1000
rev/min, as shown.

N4 = 40.
N1 = 20,

FIGURE P8.1

LH
1 thread

RH
2 threads

n1

2

3

50 teeth

70 teeth

4

1

8.3 Specify the gears for a speed changer similar to that shown in Figure 8.5 (a speed changer
employing an idler), having available output-to-input speed ratios of 0.8, 0.75, 0.6, 0.5,
and 0.4. The smallest gear cannot have fewer than 20 teeth.

8.4 Sketch a transmission similar to that shown in Figure 8.6a (a three-speed transmission).
A synchromesh clutch is to be used in all gears. For the transmission you have sketched,
specify tooth numbers to produce (approximately) the following output-to-input speed
ratios: and No gear may have fewer than 18 teeth.

8.5 Specify the gears required to obtain an output-to-input speed ratio of exactly 1131/2000
with a gear train similar to that shown in Figure 8.3a (a reverted gear train). Use gears of
not fewer than 20 nor more than 50 teeth.

8.6 In Figure P8.2, tooth numbers are and Gear is
fixed, and the carrier speed is 100 rev/min clockwise. Find the speed and direction of
rotation of and which are mounted on separate shafts. Use the tabular method.
(Note: If the three sun gears have the same diameter, their pitches will be slightly differ-
ent, and the drive will not, theoretically, be precise.)

8.7 In Figure P8.3, assume that the sun gear is fixed. Find the speed of each gear by the tabu-
lar method if the planet carrier speed is 200 rev/min clockwise. Give your answer in
terms of tooth numbers and so on.NP1

,NS,
nc

S3,S2

S1NS3
= 51.Np = 30, NS1

= 50, NS2
= 49,

-0.25.nO/ni = +1, +0.5, +0.25,
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Problems 599

8.8 Repeat Problem 8.7 for the case where the ring gear is fixed.
8.9 In Figure 8.9 (a planetary speed reducer), ring gear is fixed. The sun gear rotates at

100 rev/min clockwise.

(a) Find the output speed if the tooth numbers are 
and 

(b) Let serve as the input gear rotating at 100 rev/min, and let S serve as the output
gear. Will a gear train actually operate in this manner?

8.10 Using a speed reducer similar to that shown in Figure 8.10 (a planetary train with four
planets), and with the ring gear fixed, obtain an output speed of approximately 1000
rev/min with an input speed of 3500 rev/min.

(a) Specify the tooth numbers, letting the smallest gear have at least 20 teeth.

R2

NS = 55.NR2
= 100,

NP1
= 20, NR1

= 95, NP2
= 21,

R1

FIGURE P8.2

nc

S3 S2 S1
C

P

FIGURE P8.3

Gear                No. of Teeth
S (Sun) Ns 
P1 (Planet) Np1
P2 (Planet) Np2
R (Ring) NR

P2

P1

R

SC

P1 and P2 are both held in carrier C
P1 contacts S and P2
P2 contacts P1 and R
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600 Chapter 8 Drive Trains: Design and Analysis

(b) Determine the exact output speed for the gears you selected.
(c) If the planets are to be equally spaced, how many will the design call for?

8.11 In Figure P8.4, carrier C rotates at 1000 rev/min clockwise and sun gear is fixed. Tooth
numbers are and Find the speed and direction
of rotation for each gear, using the tabular method.

NS2
= 50.NP2

= 19,NP1
= 20,NS1

= 51,
S1

8.12 Repeat Problem 8.11 for the case where sun gear is fixed.
8.13 In Figure P8.5, tooth numbers are 

and Sun gears and are fixed. If the input shaft turns at 60
rev/min, how long will it take for one revolution of the output shaft?

S3S1NP2
 =  NP4

= 99.
NP1

= NP3
= 100,NS2

= NS4
= 100,NS1

= NS3
= 101,

S2

FIGURE P8.4

P1 

S1 

C
S2

P2

FIGURE P8.5

Input OutputS1

P1

S2

P2

S3

P3

S4

P4

C1 C2 

8.14 In Figure P8.3, clockwise and clockwise. Let
teeth and teeth. Find the carrier speed.

8.15 In Figure P8.4, let speeds and be given. Find in terms of speeds and and
tooth numbers and 

Problems 8.16 through 8.49 Refer to the Simplified Schematics
of Figure 8.7

Find carrier speed in terms of input speed and tooth numbers and so on.
Use the formula method to solve Problems 8.16 through 8.33.

NS, NP,ninC

NS2
.NP2

,NP1
,NS1

,
nS1

nCnS2
nS1

nC

NR = 100NS = 40
nR = 300  rev/minnS = 400  rev/min
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8.16 Use Figure 8.7b, input gear S, and fixed gear R.
8.17 Use Figure 8.7c, input gear and fixed gear 
8.18 Use Figure 8.7d, input gear and fixed gear 
8.19 Use Figure 8.7f, input gear and fixed gear 
8.20 Use Figure 8.7g, input gear and fixed gear 
8.21 Use Figure 8.7h, input gear and fixed gear 
8.22 Use Figure 8.7i, input gear S, and fixed gear R.
8.23 Use Figure 8.7j, input gear S, and fixed gear R.
8.24 Use Figure 8.7k, input gear S, and fixed gear R.
8.25 Use Figure 8.7l, input gear S, and fixed gear R.
8.26 Use Figure 8.7b, input gear R, and fixed gear S.
8.27 Use Figure 8.7e, input gear and fixed gear 
8.28 Use Figure 8.7e, input gear and fixed gear 
8.29 Use Figure 8.7h, input gear and fixed gear 
8.30 Use Figure 8.7i, input gear R, and fixed gear S.
8.31 Use Figure 8.7j, input gear R, and fixed gear S.
8.32 Use Figure 8.7k, input gear R, and fixed gear S.
8.33 Use Figure 8.7l, input gear R, and fixed gear S.

Use the tabular (superposition) method to solve problems 8.34 through 8.49.

8.34 Use Figure 8.7b. The input gear is S and the fixed gear R.
8.35 Use Figure 8.7c. The input gear is and the fixed gear 
8.36 Use Figure 8.7d. The input gear is and the fixed gear 
8.37 Use Figure 8.7f. The input gear is and the fixed gear 
8.38 Use Figure 8.7g. The input gear is and the fixed gear 
8.39 Use Figure 8.7h. The input gear is and the fixed gear 
8.40 Use Figure 8.7i. The input gear is S and the fixed gear R.
8.41 Use Figure 8.7j. The input gear is S and the fixed gear R.
8.42 Use Figure 8.7k. The input gear is S and the fixed gear R.
8.43 Use Figure 8.7l. The input gear is S and the fixed gear R.
8.44 Use Figure 8.7b. The input gear is R and the fixed gear S.
8.45 Use Figure 8.7h. The input gear is and the fixed gear 
8.46 Use Figure 8.7i. The input gear is R and the fixed gear S.
8.47 Use Figure 8.7j. The input gear is R and the fixed gear S.
8.48 Use Figure 8.7k. The input gear is R and the fixed gear S.
8.49 Use Figure 8.7l. The input gear is R and the fixed gear S.
8.50 Design a gear train that produces one rotation of the output shaft in approximately 16

minutes, for an input speed of 100 rev/min. Use a planetary train similar to that shown in
Figure 8.7c, with the center distance between the planet shaft and the input and output

Find the speeds of all gears and the modules (which may not be stan-
dard for this problem). More than one trial solution may be required.

8.51 (a) Design a gear train similar to that of Figure P8.6 so that ccw for
Let the sun gear diameter be 80 mm and the module 4 mm. Give the

possible range of planet sizes. Find the speed of each gear after selecting planets.
(b) Check the speed ratio using the formula method.

vS = 300 rad/s cw.
vC = 100 rad/s

shafts = 244 mm.

R1.R2

R2.R1

S2.S1

R2.R1

R2.R1

S2.S1

R1.R2,
S1.S2,
S2.S1,

R2.R1,
S2.S1,
R2.R1,
R2.R1,

S2.S1,
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602 Chapter 8 Drive Trains: Design and Analysis

8.52 In the planetary train shown in Figure P8.7, the input gear is sun and the output gear is
sun Ring gear R is fixed. Planets and rotate at the same speed. Find the output-to-
input speed ratio by the superposition method (in terms of tooth numbers etc.).NS1

,nS2
/nS1

P2P1S2.
S1

8.53 In the planetary train of Figure P8.7, let 
and the module Find by the formula method if the ring

gear is stationary. (Suggestion: Find to obtain Then find )
8.54 Repeat Problem 8.53, using the superposition method.
8.55 Suppose a gear train was designed similar to the transmission shown in Figure 8.15, but

with and 
for all gears. Find speed ratio if ring gear is fixed. Use the formula method (in
two steps).

8.56 Repeat Problem 8.55 by the tabular method.
8.57 In the planetary train of Figure 8.10, and 

Find the speed of all gears if and Use the tabular method.
8.58 Repeat Problem 8.57 by the formula method.
8.59 In Figure 8.17 (a bevel gear differential), let the planet P have 20 teeth and both sun

gears 30 teeth. Gear drives the left rear axle and the right rear axle of a vehicle
making a right turn at 20 mi/h. The 26-in-diameter tires are 56 in apart (from center to

S2S1

vR = 0.vS = 400 rad/s cw
dR = 100 mm.dP = 32,dS = 36,m = 2 mm,

R2vR1
/vS

m = 2 mmdR2
= 164 mm,dR1

= 160,dP3
= 44,dP2

= 40,dP1
= 60,dS = 60,

nS2

* /nS1

* .nC/nS1
.nR

* /nS1

*
nS2

/nS1
m = 5 mm.dR = 295 mm,

dS2
= 105,dP2

= 95,dP1
= 100,dS1

= 100,

FIGURE P8.6

R

P2P1

S

FIGURE P8.7

R

P2P1

S1

S2
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Problems 603

center). The right wheel rolls in a 30-ft-radius path. Find the speed of the carrier, the
speed of each sun gear, and the speed of the planet with respect to the carrier. Use the
tabular method.

8.60 Repeat Problem 8.59, using the formula method.
8.61 In Figure P8.8, tooth numbers are and 

(a) If gear makes 40 rotations clockwise and makes 15 rotations counterclockwise,
find the angular displacement of the carrier by the tabular method. How many rota-
tions does the planet make about its own axis?

(b) Represent the motion of and by x and y, respectively. Write an expression for
the carrier motion in terms of x and y.

S2S1

S2S1

NS2
= 25.NP = 22,NS1

= 35,

FIGURE P8.8

P

S2S1

8.62 Repeat Problem 8.61 by the formula method.
8.63 In Figure 8.27a (a variable-speed belt drive), the pulley pitch diameters are and

Both countershaft pulleys are to have a minimum pitch diameter of 5 in.
Determine the range of and so that the output speed may be varied from 400 to
1400 rev/min with a motor speed of 1800 rev/min.

8.64 Repeat Problem 8.63 with and the minimum values of 
and 

8.65 In Figure 8.32 (a disk drive with an idler wheel), the input shaft rotates at 90 rev/min
counterclockwise. The input and output shaft centerlines are 2 in apart. Find idler posi-
tions for output speeds of 16, 45, and 78 rev/min counterclockwise.

8.66 Repeat Problem 8.65 if the input and output shaft centerlines are 38 mm apart.
8.67 Design a variable-speed drive similar to that of Figure 8.31 (a wheel-disk drive) to pro-

duce output speeds from 2000 rev/min through 0 to 2000 rev/min in the reverse direction
with a constant input speed of 1000 rev/min. (Hint: Disk 2 may be used as input and disk
1 as output.)

8.68 In Figure 8.40b (a planetary cone transmission), let the ring gear have 45 teeth and the
planets 15 teeth. If the reaction ring has an inside diameter of 5 in, what would the
required cone diameters be for output speeds ranging from 450 rev/min clockwise to 180
rev/min counterclockwise, with 1800 rev/min input clockwise. Give cone diameters at
points of contact for extreme positions of the reaction ring. (Note: The data for this prob-
lem do not represent actual dimensions of any commercially available transmission.)

331
3,

d3 = 100 mm.
d2d4 = 200 mm,d1 = 80 mm,

d3d2

d4 = 10 in.
d1 = 4 in
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604 Chapter 8 Drive Trains: Design and Analysis

8.69 Repeat Problem 8.68 for a planet ring of 200 mm inside diameter.
8.70 A reverted gear train is to be designed similar to that of Figure 8.3a, with input and out-

put shafts collinear. The distance from the input shaft (gear 1) to the countershaft (gears
2 and 3) is 112.5 mm. Module Find gear diameters for minimum and maxi-
mum values of the speed ratio if no gear is to have fewer than 20 teeth.

8.71 How many different speed ratios are possible in Problem 8.70? Calculate them.
8.72 Calculate the ratio of crankshaft speed to rotor speed for the rotating combustion engine

(Wankel engine) described in Chapter 1. Note that the sun gear is fixed, the crankshaft is
equivalent to the carrier, and the internal gear integral with the rotor acts as a planet.

Use the tabular method.
8.73 Repeat Problem 8.72 by the formula method.
8.74 A planetary gear train similar to that shown in Figure 8.43, but with only two planets,

transmits 20 hp. Input is to the sun gear and the carrier drives the load. The ring gear is
fixed. The sun gear has 25 teeth and the planets 20. The diametral pitch is 5 and the pres-
sure angle The sun gear rotates at 630 rev/min cw. Find speeds and draw free-body
diagrams of each gear and the carrier.

8.75 Refer to Figure 8.12. Let and Find
the required number of teeth in so that The module may be non-
standard.

8.76 Refer to Figure P8.9. The sun gear is fixed and has a radius of 20 mm. The planets each
have 20 teeth, a pressure angle and a 10-mm radius. A clockwise torque of

is applied to the ring (the input gear), which rotates at 200 rev/min clock-
wise. Determine speeds. Show free-body diagrams of each gear and determine the power
transmitted. The planet carrier is the transmission output.

12,000 N # mm
25°

nS2
= 10 rev/min cw.P1

NS2
= 49.NP2

= 39,NS1
= 25,nC = 1960 rev/min cw,

20°.

NP/NS = 1.5.

m = 5 mm.

FIGURE P8.9

S
C

R

P1

nR

TR

8.77 Design a two-speed transmission with output-to-input speed ratios of approximately
1:4.2 and 1:1. Many possible designs will satisfy this requirement. (Suggestions: Use a
computer to evaluate possible solutions. Consider a simple planetary train with 18 to 20
sun gear teeth and 19 to 21 planet gear teeth. Use three or four planet gears.)

8.78 Design a two-speed transmission with speed ratios of approximately 1:3.8 and 1:1. Many
possible designs will satisfy this requirement. (Suggestions: Use a computer to evaluate
possible solutions. Consider a simple planetary train with 21 to 23 sun gear teeth and 20
to 22 planet gear teeth. Use three or four planet gears.)
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8.79 Design a two-speed transmission with output-to-input speed ratios of approximately 3:10
and 1:1. Many possible designs will satisfy this requirement. (Suggestions: Use a com-
puter to evaluate possible solutions. Consider a simple planetary train with 18 to 26 sun
gear teeth and 18 planet gear teeth. Use three or four planet gears.)

8.80 A transmission is to be designed to transmit 2.8 kW of mechanical power. Speed is to be
reduced from 220 rad/s to about 58 rad/s. A 1:1 speed ratio should be available as well.
Evaluate the kinematic and dynamic aspects of a simple planetary transmission with 20
sun gear teeth, 18 planet gear teeth, a pressure angle, and a module of 1.5. Find

(a) The number of ring gear teeth.
(b) The actual output speed.
(c) The number of planets that will result in a balanced train.
(d) The pitch radii of the gears.
(e) The shaft torques.
(f) The tangential force at each gear mesh.
(g) The radial force at each gear mesh.

Check the torque balance.

8.81 A transmission is to be designed to transmit 12 kW of mechanical power. Speed is to be
reduced from 400 rad/s to about 107 rad/s. A 1:1 speed ratio should be available as well.
Evaluate the kinematic and dynamic aspects of a simple planetary transmission with 24
sun gear teeth, 21 planet gear teeth, a pressure angle, and a module of 5. Find

(a) The number of ring gear teeth.
(b) The actual output speed.
(c) The number of planets that will result in a balanced train.
(d) The pitch radii of the gears.
(e) The shaft torques.
(f) The tangential force at each gear mesh.
(g) The radial force at each gear mesh.

Check the torque balance.

8.82 A transmission is to be designed to transmit 3 kW of mechanical power. Speed is to be
reduced from 400 rad/s to about 105 rad/s. A 1:1 speed ratio should be available as well.
Evaluate the kinematic and dynamic aspects of a simple planetary transmission with 22
sun gear teeth, 20 planet gear teeth, a pressure angle, and a module of 2.5. Find

(a) The number of ring gear teeth.
(b) The actual output speed.
(c) The number of planets that will result in a balanced train.
(d) The pitch radii of the gears.
(e) The shaft torques.
(f) The tangential force at each gear mesh.
(g) The radial force at each gear mesh.

Check the torque balance.
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606 Chapter 8 Drive Trains: Design and Analysis

8.83 A transmission is to be designed to transmit 1.75 kW of mechanical power. Speed is to be
reduced from 400 rad/s to about 100 rad/s. A 1:1 speed ratio should be available as well.
Evaluate the kinematic and dynamic aspects of a simple planetary transmission with 20
sun gear teeth, 20 planet gear teeth, a pressure angle, and a module of 1.5. Find

(a) The number of ring gear teeth.
(b) The actual output speed.
(c) The number of planets that will result in a balanced train.
(d) The pitch radii of the gears.
(e) The shaft torques.
(f) The tangential force at each gear mesh.
(g) The radial force at each gear mesh.

Check the torque balance.

8.84 Suppose we would like to offer a line of speed reducers with output-to-input speed ratios
ranging from about 1:4 to about 1:17. Typical input speeds will be 2400 rpm. Investigate
candidates for the job. Among our design decisions, let us try a configuration similar to
that in Figure 8.11b. The sun gear will be the input, the planet carrier (not shown) will be
the output, and the ring will be kept stationary. We will use three sets of planets to share
the load and balance the train. The two planets in each set rotate as a unit. We will try 17
teeth in the sun gear and 17 or more teeth in the planets meshing with it. The planets
meshing with the ring will have 17 teeth also. We will use straight spur gears, all with a
1.5-mm module. Calculate and tabulate the number of ring teeth, as well as the pitch
radii, speed ratios, and speeds for various possible configurations.

8.85 Suppose we plan to design a line of speed reducers for an input speed of 4000 rpm and
output speeds ranging from 250 rpm to 1000 rpm. Among our design decisions; let us try
a compound planetary train similar to that in Figure 8.11b.The sun gear will be the input,
the planet carrier (not shown) will be the output, and the ring will be kept stationary. We
will use four sets of planets to share the load and balance the train. The two planets in
each set rotate as a unit. We will try 19 teeth in the sun gear and 18 or more teeth in the
planets meshing with it. The planets meshing with the ring will have 19 teeth. We will use
straight spur gears, all with a 2-mm module. Calculate and tabulate the number of ring
gear teeth, as well as the pitch radii, speed ratios, and speeds for possible speed reducer
designs.

8.86 Suppose we plan to design a line of speed reducers for an input speed of 1800 rpm and
output speeds ranging from about 75 to 450 rpm.Among our design decisions, let us try a
compound planetary train similar to that in Figure 8.11b. The sun gear will be the input,
the planet carrier (not shown) will be the output, and the ring will be kept stationary. We
will use three sets of planets to share the load and balance the train. The two planets in
each set rotate as a unit. We will try 20 teeth in the sun gear and 20 or more teeth in the
planets meshing with it.The planets meshing with the ring will have 20 teeth also.We will
use straight spur gears, all with a 3-mm module. Calculate and tabulate the number of
ring gear teeth, as well as the pitch radii, speed ratios, and speeds for possible speed
reducer designs.

8.87 Suppose we want to offer a series of speed reducers with fixed speed ratios. The design
specifications call for an input speed of 5000 rpm and output speeds ranging from about
150 rpm to about 1,200 rpm. Design the reducers and tabulate the forces and torques
when 6 kW of mechanical power are transmitted. Check the output power and the external

20°
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torque equilibrium. Among our design decisions, let us use a compound planetary train
similar to that shown in Figure 8.44, with three sets of planets. The sun gear drives and
contacts planet 1 of each set. Both planets of each set rotate together. The planet carrier
drives the output shaft. Planet 2 of each set contacts the fixed ring gear. All gears are
straight spur gears with a 4-mm module and pressure angle. We will select an 18-
tooth sun gear; planet 1 of each set will each have 18 or more teeth, and planet 2 of each
set will have 19 teeth.

8.88 Suppose we need a series of speed reducers with fixed speed ratios. The design specifica-
tions call for an input speed of 1760 rpm and output speeds ranging from about 60 rpm to
about 430 rpm. Design the reducers and tabulate forces and torques when 1.5 kW of
mechanical power are transmitted. Check the output power and the check external
torque equilibrium. Among our design decisions, let us use a compound planetary train
similar to that shown in Figure 8.44, with four sets of planets. The sun gear drives and
contacts planet 1 of each set. Both planets of each set rotate together. The planet carrier
drives the output shaft. Planet 2 of each set contacts the fixed ring gear. All gears are
straight spur gears with a 1.75-mm module and pressure angle. We will select a 20-
tooth sun gear; planet 1 of each set will each have 20 or more teeth, and planet 2 of each
set will have 19 teeth.

8.89 Suppose we need a series of speed reducers with fixed input-to-output speed ratios
ranging from about to about . The design specifications call for an input angular
velocity of 200 rad/s. Design the reducers and tabulate forces and torques when 3.5 kW
of mechanical power are transmitted. Check the output power and the external torque
equilibrium. Among our design decisions, let us use a compound planetary train similar
to that shown in Figure 8.44, with three sets of planets. The sun gear drives and contacts
planet 1 of each set. Both planets of each set rotate together. The planet carrier drives
the output shaft. Planet 2 of each set contacts the fixed ring gear. All gears are straight
spur gears with a 2.5-mm module and pressure angle. We will select a 19-tooth sun
gear; planets 1 of each set will each have 18 or more teeth, and planet 2 of each set will
have 20 teeth.

8.90 A customer insists that our compound planetary trains cause noise and vibration prob-
lems. The planetary trains are similar to that shown in Figure 8.44. A 20-tooth sun gear,
the input, rotates at 2250 rpm and drives planet gears that may have 
teeth, depending on customer requirements. Nineteen-toothed planet gears are mounted
on the same shaft with the planets that mesh with the sun gear. These planet gears mesh
with a fixed ring gear. There are three equally spaced pairs of such planets. Check the
geometry constraints of the gear train. The ring gear size and the speeds of the planet
gears and carrier depend on the number of teeth in planet 1. Use the formula method or
the tabular (superposition) method to calculate speeds. Calculate and tabulate funda-
mental frequencies for shaft imbalance, tooth meshing, and tooth error. This makes it
possible to propose corrective action or to rule out the planetary trains as a cause of the
noise and vibration problems.

8.91 Suppose we have a noise and vibration problem with a series of compound planetary
trains similar to those shown in Figure 8.44. A 19-tooth sun gear, the input, rotates at
8000 rpm and drives planet gears that may have teeth, depending on
customer requirements. Nineteen-tooth planet gears are mounted on the same shaft with
the planets that mesh with the sun gear. These planet gears mesh with a fixed ring gear.
There are four equally spaced pairs of such planets. Check the geometry constraints of
the gear train.The ring gear size and the speeds of the planet gears and carrier depend on
the number of teeth in planet 1. Use the formula method or the tabular (superposition)
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608 Chapter 8 Drive Trains: Design and Analysis

method to calculate speeds. Calculate and tabulate fundamental frequencies for shaft
imbalance, tooth meshing, and tooth error. This makes it possible to propose corrective
action.

8.92 Suppose a customer insists that our compound planetary trains cause noise and vibration
problems. The planetary trains are similar to those shown in Figure 8.44. A 17-tooth sun
gear, the input, rotates at 10,000 rpm and drives planet gears that may have

teeth, depending on customer requirements. Eighteen-tooth planet
gears are mounted on the same shaft with the planets that mesh with the sun gear. These
planet gears mesh with a fixed ring gear. There are three equally spaced pairs of such
planets. Check the geometry constraints of the gear train. The ring gear size and the
speeds of the planet gears and carrier depend on the number of teeth in planet 1. Use the
formula method or the tabular (superposition) method to calculate speeds. Calculate and
tabulate fundamental frequencies for shaft imbalance, tooth meshing, and tooth error.
This makes it possible to propose corrective action or to rule out the planetary trains as a
cause of the noise and vibration problems.

PROJECTS

8.1 Design a light-duty transmission with six forward speed ratios and six reverse speed
ratios. Output-to-input speed ratios are to range from 1.5:1 to 0.1:1 and to 

8.2 Design a light-duty transmission with continuously variable speed ratios. Output-to-
input speed ratios are to range from 2:1 to 
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C H A P T E R  9

Static-Force Analysis

Concepts You Will Learn and Apply when Studying This Chapter

• Common assumptions we make while performing static force analysis; limitations
of static force analysis.

• Review of basic principles: force and torque vectors, free-body diagrams, couples,
static equilibrium, and superposition of forces.

• Graphical force analysis for insight into static force analysis of linkages and for
checking analytical work.

Two- and three-force members.

Links with two forces and a couple.

• Graphical force analysis of the slider-crank mechanism and four-bar linkage.
An application of superposition.

• Graphical force analysis of more complex linkages.
• Analytical statics.

Equilibrium equations.

• Analytical statics applied to construction machinery and slider-crank and four-
bar linkages.

• Analyzing linkages by the method of virtual work.
• Dealing with friction in mechanisms.

9.1 INTRODUCTION

A machine is a device that performs work and thereby transmits energy by means of
mechanical force from a power source to a driven load. In the design of machine mech-
anisms, it is necessary to know the manner in which forces are transmitted from the
input to the output, so that the components of the machine can be properly sized to
withstand the stresses that are developed. If the members are not designed to be strong
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610 Chapter 9 Static-Force Analysis

enough, then the machine will fail during its operation; if, on the other hand, the
machine is designed to have much more strength than is required, then it may not be
competitive with other machines in terms of cost, weight, size, power requirements, or
other criteria.

During the course of a force analysis, various assumptions must be made that
reflect the specific characteristics of the particular system being investigated. These
assumptions should be verified as the design proceeds. A major assumption concerns
dynamic, or inertial, forces.All machines have mass, and if parts of a machine are accel-
erating, inertial forces will be associated with this motion. If the magnitudes of these
inertial forces are small relative to externally applied loads, then they can be neglected
in the force analysis. Such an analysis is referred to as static-force analysis and is the
topic of this chapter.

As an example, during the normal operation of a front-end loader, such as that
shown later in the chapter in Figure 9.13a, the bucket load and static weight loads may
far exceed any dynamic loads due to accelerating masses, and a static-force analysis
may be justified. An analysis that includes inertial effects is called a dynamic-force
analysis and will be discussed in the next chapter.An example of an application requir-
ing a dynamic-force analysis is the design of an automatic sewing machine, wherein,
due to high operating speeds, the inertial forces may be greater than the external loads
on the machine.

Another assumption deals with the rigidity of the machine components. No
material is truly rigid, and all materials experience significant deformation if the forces
acting on them, either external or inertial in nature, are great enough. In this chapter
and the next, we assume that deformations are so small as to be negligible, and there-
fore, the members will be treated as though they are rigid. The subject of mechanical
vibrations, which is beyond the scope of this book, considers the flexibility of machine
components and the resulting effects on machine behavior.

A third major assumption that is often made is that friction effects are negligible.
Friction is inherent in all devices, and its degree is dependent upon many factors,
including types of bearings, lubrication, loads, environmental conditions, and so on.
Friction will be neglected in the first few sections of this chapter; we introduce the sub-
ject in Section 9.5.

In addition to the preceding assumptions, other assumptions may be necessary,
and some of these will be addressed at various points throughout the chapter.

The first part of the chapter is a review of general force analysis principles and
will also establish some of the conventions and terminology to be used in succeeding
sections. The remainder of the chapter will present both graphical and analytical meth-
ods for the static-force analysis of machines.

9.2 BASIC PRINCIPLES OF FORCE ANALYSIS

In this section, we review the important concepts of force and torque as vector quanti-
ties, free-body diagrams, equilibrium, and superposition.
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FIGURE 9.1 A force vector F in a Cartesian
coordinate system.

Force and Torque

A force is a vector quantity, with magnitude, a direction or line of action, and a sense.
Figure 9.1 shows a force vector F, which can be expressed in terms of Cartesian coordi-
nates as

(9.1)

where and are the components of the force in the x, y, and z directions,
respectively, with these directions represented in turn by unit vectors i, j, and k. The
resultant force F of two forces and is the vector sum of those forces. This is
expressed graphically in Figure 9.2 and mathematically as:

(9.2)

where is the x component of force and so on.F1,F1x

F = F1 + F2 = (F1x + F2x)i + (F1y + F2y)j + (F1z + F2z)k,

F2F1

F     zF     x, F     y,

F = Fx i + Fy  j + Fz k,

z

x

yji

k

F2

F1

F �
 F 1 

�
 F 2

FIGURE 9.2 The resultant force F of two
forces and F2.F1
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FIGURE 9.3 Torque T is the moment of force F
about point 0. Vector R locates the line of action of
the force relative to point 0.

A torque, or moment, T, is defined as the moment of a force about a point and is
a vector quantity, too. Using the vector cross-product notation, we have

(9.3)

where R is a position vector directed from the point about which the moment is taken
to any point on the line of action of force F. (See Figure 9.3.) The magnitude of T is

where is the angle between vectors R and F, and R and F are the magnitudes of the
vectors. The direction of T is perpendicular to the plane containing R and F, and the
sense of T is given by the right-hand rule. Alternatively, in determinant form,

(9.4)

An infinite number of combinations of a force vector F and a moment arm vec-
tor R exist that will produce the same moment T; that is, different values of vectors R
and F can lead to the same cross product as given by Eq. (9.3). The resultant of two or
more moments is the vector sum of the moments.

Figure 9.4 shows two forces and that have equal magnitudes but different
lines of action. Furthermore, the two forces have parallel directions and are of opposite
sense. Such a pair of forces is called a couple. The resultant force of a couple is zero.
However, the resultant moment about an arbitrary point is not zero.

F2F1

 = (RyFz - RzFy)i + (RzFx - RxFz)j + (RxFy - RyFx)k.

 T = 3
i j k

Rx Ry Rx

Fx Fy Fz

3

u

T = RF ƒ sin u ƒ ,

T = R * F,
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FIGURE 9.4 Forces and form a couple,
which has zero resultant force, but a nonzero
resultant moment.

F2F1

For example, if moments about the origin in Figure 9.4 are summed, the resultant
moment T is

But therefore,

(9.5)

where is a vector from any point on the line of action of to any point
on the line of action of The direction of the torque is perpendicular to the plane of
the couple, and the magnitude of the torque is given by

(9.6)

where is the perpendicular distance between the lines of action. It can be
seen that the resultant moment of a couple, given by Eq. (9.5), is independent of the
point about which moments are taken. Conversely, the moment of a couple about a
particular point is independent of the position of the couple relative to the point. For
these reasons, a couple is sometimes referred to as a pure moment or pure torque. As
will be seen, the concept of a couple is very useful in force analysis applications.

Free-Body Diagrams

Free-body diagrams are extremely important and useful in force analysis. A free-body
diagram is a sketch or drawing of part or all of a system, isolated in order to determine
the nature of the forces acting on that body. Sometimes a free-body diagram may take
the form of a mental picture; however, actual sketches are strongly recommended,
especially for complex mechanical systems.

Generally, the first step (and one of the most important) in a successful force
analysis is the identification of the free bodies to be used. Figures 9.5b through 9.5e

h = R ƒ sin u ƒ

T = RF2 ƒ sin u ƒ = hF2,

F2.
F1R = R2 - R1

T = R1 * (-F2) + R2 * F2 = (R2 - R1) * F2 = R * F2,

F1 = -F2;

T = R1 * F1 + R2 * F2.
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FIGURE 9.5 (a) A four-bar linkage.
(b) Free-body diagram of the three
moving links. (c) Free-body diagram of
two connected links. (d) Free-body
diagram of a single link. (e) Free-body
diagram of part of a link.

give examples of various free bodies that might be considered in the analysis of the
four-bar linkage shown in Figure 9.5a. In Figure 9.5b, the free body consists of the
three moving members isolated from the frame; here, the forces acting on the free
body include a driving force or torque, external loads, and the forces transmitted from
the frame at bearings and The force convention is defined as follows: repre-
sents the force exerted by member i on member j. This convention will be used
throughout the text. Figure 9.5c is a free-body diagram of two links acted upon by the
forces transmitted from adjoining links as well as other applied loads. Probably the most
commonly used form of a free-body diagram is that of a single link. (See Figure 9.5d.)
Most force analyses can be accomplished by examining each of the individual mem-
bers that make up the system. Such an approach leads to the determination of all of the
bearing forces between members, as well as the required input force or torque for a
given output load or set of loads. For investigating internal forces or stresses in mem-
bers, free bodies consisting of portions of members, as in Figure 9.5e, are useful.

Static Equilibrium

For a free body in static equilibrium, the vector sum of all forces acting on the body
must be zero, and the vector sum of all moments about any arbitrary point must also be
zero. These conditions can be expressed mathematically as

(9.7a)aF = 0

FijO3.O1
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and

(9.7b)

Since each of these vector equations represents three scalar equations, a total of six
independent scalar conditions must be satisfied for the general case of equilibrium
under three-dimensional loading.

In many situations, the loading is essentially planar, and the forces can be
described by two-dimensional vectors. If the xy-plane designates the plane of loading,
then the applicable form of Eqs. (9.7a) and (9.7b) is

(9.8a)

(9.8b)

and

(9.8c)

Equations (9.8a) through (9.8c) are three scalar equations which state that, for the case
of two-dimensional xy loading, the summations of forces in the x and y directions must
individually equal zero, and the summation of moments about any arbitrary point in the
plane must also equal zero. The remainder of this chapter deals with two-dimensional
force analysis. A common example of three-dimensional forces is gear forces, which
were discussed in Chapter 7.

Superposition

The principle of superposition of forces is an extremely useful concept, particularly in
graphical force analysis. Basically, the principle states that, for linear systems, the net
effect of multiple loads on a system is equal to the superposition (i.e., vector summa-
tion) of the effects of the individual loads considered one at a time. Physically, linearity
refers to a direct proportionality between input force and output force. Its mathemati-
cal characteristics will be discussed in the section, on analytical force analysis. Generally,
in the absence of coulomb or dry friction, most mechanisms are linear for force analy-
sis purposes, despite the fact that many of these mechanisms exhibit nonlinear
motions. Examples and further discussion in later sections will demonstrate the appli-
cation of the principle of superposition.

9.3 GRAPHICAL FORCE ANALYSIS

Graphical force analysis employs scaled free-body diagrams and vector graphics in the
determination of unknown machine forces. The graphical approach is best suited for
planar force systems. Since forces are normally not constant during the motion of a

aTz = 0.

aFy = 0,

aFx = 0,

aT = 0
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machine, analyses may be required for a number of mechanism positions; however, in
many cases, critical maximum-force positions can be identified and graphical analyses
performed for those positions only. An important advantage of the graphical approach
is that it provides a useful insight into the nature of the forces in the physical system.

The approach, however, suffers from disadvantages related to accuracy and time.
As is true of any graphical procedure, the results are susceptible to drawing and mea-
surement errors. Further, a great amount of graphics time and effort can be expended
in the iterative design of a machine mechanism for which fairly thorough knowledge of
force–time relationships is required. In recent years, the physical insight of the graphics
approach and the speed and accuracy inherent in the computer-based analytical approach
have been brought together through computer graphics systems, which have proved to
be highly effective engineering design tools.

A few special types of member loadings are repeatedly encountered in the force
analysis of mechanisms: a member subjected to two forces, a member subjected to
three forces, and a member subjected to two forces and a couple. Other loading cases
with more forces can usually be reduced to one of these situations by combining
known individual forces into equivalent resultant forces. These special cases will be
considered in the paragraphs that follow, before proceeding to the graphical analysis of
complete mechanisms.

Analysis of a Two-Force Member

A member subjected to two forces is in equilibrium if and only if the two forces (1) have
the same magnitude, (2) act along the same line, and (3) are opposite in sense. Figure 9.6a
shows a free-body diagram of a member acted upon by forces and where the
points of application of these forces are A and B. For equilibrium, the directions of 
and must be along line AB, and must equal The graphical vector addition
of forces and is shown in Figure 9.6b, and, obviously, the resultant net force on
the member is zero when The resultant moment about any point will also
be zero, as can be seen from inspection or by the application of Eq. (9.5).

Thus, if the load application points for a two-force member are known, the line of
action of the forces is defined, and if the magnitude and sense of one of the forces are
known, then the magnitude and sense of the other force can immediately be deter-
mined. Such a member will be in either tension or compression. [Caution: When a slen-
der link is in compression, it may buckle. Machine design and stress analysis texts can
help us design compression members and avoid buckling (elastic stability failures).]

F1 = -F2.
F2F     1

(-F2).F     1F2

F
     1

F     2,F     1

(a)

F1 A

F2

F2

F1

B

(b)

FIGURE 9.6 (a) A two-force member.The
resultant force and the resultant moment
both equal zero. (b) Force summation for a
two-force member.

620



Section 9.3 Graphical Force Analysis 617

F1
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F3 F3

F2F2

P P

(a) (b)

FIGURE 9.7 (a) The three forces on the member do not intersect at a common point, and
there is a net resultant moment. (b) The three forces intersect at the same point P, called
the concurrency point, and the net moment is zero.

Analysis of a Three-Force Member

A member subjected to three forces is in equilibrium if and only if (1) the resultant of the
three forces is zero and (2) the lines of action of the forces all intersect at the same point.
The first condition guarantees equilibrium of forces, while the second guarantees equi-
librium of moments. The second condition can be understood by considering the case
when it is not satisfied. (See Figure 9.7a.) If moments are summed about point P, the
intersection of forces and then the moments of these forces will be zero, but 
will produce a nonzero moment, resulting in a nonzero net moment on the member. In
contrast, if the line of action of force also passes through point P (Figure 9.7b), the
net moment will be zero.This common point of intersection of the three forces is called
the point of concurrency.

A typical situation encountered is that in which one of the forces, is known
completely (i.e., its magnitude and direction are known), a second force, has a
known direction but an unknown magnitude, and a third force, has an unknown
magnitude and direction. The graphical solution of this case is depicted in Figure 9.8a
through c. First, the free-body diagram is drawn to a convenient scale, and the points of
application of the three forces are identified—points A, B, and C in this case. Next, the
known force is drawn on the diagram with the proper direction and a suitable mag-
nitude scale. The direction of force is then drawn, and the intersection of this line
with an extension of the line of action of force is the concurrency point P. For equi-
librium, the line of action of force must pass through points C and P and is therefore
as shown in Figure 9.8a.

The force equilibrium condition states that

Since the directions of all three forces are now known and the magnitude of was
given, this equation can be solved for the remaining two magnitudes. A graphical solu-
tion follows from the fact that the three forces must form a closed vector loop, called a

F1

F1 + F2 + F3 = 0.

F3

F1

F2

F1

F3,
F2,

F1,

F3

F3F2,F1
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Concurrency
point P

Line of action of F3

F1

F1

F3

F2

F2 F1

F3

A

C

B

Line of action of F2

(a)

Direction of F3

Direction of F2

Direction of F2

Direction of F3

(b) (c)

FIGURE 9.8 (a) Graphical force analysis of a three-force member. (b) Force poly-
gon for the three-force member. (c) An equivalent force polygon for the three-
force member.

force polygon. The procedure is shown in Figure 9.8b. Vector is redrawn. From the
head of this vector, a line is drawn in the direction of force and from the tail, a line
is drawn parallel to The intersection of these lines closes the vector loop and deter-
mines the magnitudes of forces and Note that the same solution is obtained if,
instead, a line parallel to is drawn from the head of and a line parallel to is
drawn from the tail of (See Figure 9.8c.) This is so because vector addition is com-
mutative, and therefore, both force polygons are equivalent to the foregoing vector
equation.

It is important to remember that, by the definition of vector addition, the force
polygon corresponding to the general force equation

will have adjacent vectors connected head to tail. This principle is used in identifying
the sense of forces and in Figures 9.8b and c. Also, if the lines of action of andF1F3F2

aF = 0

F1.
F2F1F3

F3.F2

F3.
F2,

F1
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Section 9.3 Graphical Force Analysis 619

are parallel, then the point of concurrency is at infinity and the third force must
be parallel to the other two. In this case, the force polygon collapses to a straight line.

Analysis of a Member with Two Forces and a Couple

In performing force analyses, it is imperative that we know the nature of the forces that
drive a system or that act as loads on the system. Only by knowing where these forces
act and how they act can we proceed with a complete force analysis of the system.

This point can be illustrated by considering two ways by which the input crank of
a four-bar linkage can be driven. (See Figures 9.9a and b.) In Figure 9.9a, the bell crank
is driven by a hydraulic cylinder attached at the point shown. In this case, the crank is a
three-force member, and the analysis proceeds according to the preceding section. If,
on the other hand, the crank is driven by a shaft with a direct connection to an electric
motor, as shown in Figure 9.9b, then the torque applied by the shaft takes the form of a
pure torque, and the crank is subjected to two forces plus an input couple. Both of
these drive systems can be designed to produce the same torque about pivot O, but the
forces acting on the crank will differ in the two cases.

For equilibrium of a member subjected to two forces and plus an applied
couple, forces and must form a couple that is equal and opposite to the applied
couple. Hence, if the magnitude and direction, of force are known, then force will
be equal in magnitude, parallel in direction, and opposite in sense, and the moment of
the applied couple must be equal and opposite to the moment of couple This is
illustrated in Figure 9.9b, in which the magnitude of couple T is equal to the product

where and are the magnitudes of forces and respectively.

Graphical Force Analysis of the Slider-Crank Mechanism

The slider-crank mechanism finds extensive application in reciprocating compressors,
piston engines, presses, toggle devices, and other machines in which force characteris-
tics are important.The force analysis of this mechanism employs most of the principles
described in previous sections, as demonstrated by Sample Problem 9.1.

F2,F1F2F1hF1 = hF2,

F2.F1,

F2F1

F2F1

F2F1

F3F2

(a)

T
F2

F1

OO

(b)

h

FIGURE 9.9 (a) The crank is driven by a piston and cylinder and is a three-force
member. (b) The crank is driven by an electric motor and is subjected to two
forces and a pure torque.

623



620 Chapter 9 Static-Force Analysis

SAMPLE PROBLEM 9.1

Static-Force Analysis of a Slider-Crank Mechanism

Consider the slider-crank linkage shown in Figure 9.10a, representing a compressor, operating at
so low a speed that inertial effects are negligible. It is assumed that gravity forces also are small
compared with other forces and that all forces lie in the same plane. The dimensions are

and We wish to find the required crankshaft torque T and the bear-
ing forces for a total gas pressure force at the instant when the crank angle 

Solution. The graphical analysis is shown in Figure 9.10b. First, consider connecting rod 2. In
the absence of gravity and inertial forces, this link is acted on by two forces only, at pins B and C.
These pins are assumed to be frictionless and, therefore, transmit no torque.Thus, link 2 is a two-
force member loaded at each end as shown. Forces and lie along the link, producing zero
net moment, and must be equal and opposite for equilibrium of the link. At this point, the mag-
nitudes and senses of these forces are unknown.

Next, examine piston 3, which is a three-force member. The pressure force P is completely
known and is assumed to act through the center of the piston (i.e., the pressure distribution on the

F32F12

f = 45°.P = 40 N
BC = 70 mm.OB = 30 mm

2

3

3

2

1

1

O

T

T

B

�

C

C

P

P

C

O

P

B

B

�
�

OB � 30 mm
BC � 70 mm
       � 45�

(a)

(b)

F23

F32

F03

F21

F23

F03

F12

F01

h � 26.6 mm
�

�

FIGURE 9.10 (a) Graphical force analysis of a slider-crank mechanism acted on
by piston force P and crank torque T. (b) Static force balances for the three mov-
ing links, each considered as a free body.
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Section 9.3 Graphical Force Analysis 621

piston face is assumed to be symmetric). From Newton’s third law, which states that for every
action there is an equal and opposite reaction, it follows that and the direction of

is therefore known. In the absence of friction, the force of the cylinder on the piston, is
perpendicular to the cylinder wall, and it also must pass through the concurrency point, which is
the wrist pin C. Now knowing the directions of the forces, we can construct the force polygon for
member 3 (Figure 9.10b). Scaling from this diagram, we see that the contact force between the
cylinder and piston is acting upward, and the magnitude of the bearing force at C
is This is also the bearing force at crankpin B, because 
Further, the directions of the forces on the connecting rod shown in the figure are correct, and
the link is in compression.

Finally, crank 1 is subjected to two forces and a pure torque T. The force at B is
and is now known. For force equilibrium, as shown on the free-body

diagram of link 1. However, these forces are not collinear, and for equilibrium, the moment of
this couple must be balanced by torque T.Thus, the required torque is clockwise and has magnitude

It should be emphasized that this is the torque required for static equilibrium in the position
shown in Figure 9.10a. If information about the torque is needed for a complete compression
cycle, then the analysis must be repeated at other crank positions throughout the cycle. In gen-
eral, the torque will vary with position.

Graphical Force Analysis of the Four-Bar Linkage

The force analysis of the four-bar linkage proceeds in much the same manner as that of
the slider-crank mechanism. However, in the next example, we consider the case of
external forces on both the coupler and follower links and utilize the principle of
superposition.

SAMPLE PROBLEM 9.2

Static-Force Analysis of a Four-Bar Linkage

The link lengths for the four-bar linkage of Figure 9.11a are given in the figure. In the position
shown, coupler link 2 is subjected to force of magnitude 47 N, and follower link 3 is subjected
to force of magnitude 30 N. Determine the shaft torque on input link 1 and the bearing
loads for static equilibrium.

Solution. As shown in Figure 9.11a, the solution of the stated problem can be obtained by
superposition of the solutions of subproblems I and II. In subproblem I, force is neglected,
and in subproblem II, force is neglected. This process facilitates the solution by dividing a
more difficult problem into two simpler ones.

The analysis of subproblem I is shown in Figure 9.11b, with quantities designated by
superscript I. Here, member 3 is a two-force member, because force is neglected. The direc-
tion of forces and are as shown, and the forces are equal and opposite. (Note that the
magnitudes and senses of these forces are as yet unknown.) This information allows the analysis
of member 2, which is a three-force member with completely known force known directions
for and, using the concurrency point, known direction for Scaling from the force polygon,F12

I .F32
I ,

F2
I,

F03
IF23

I
F3

F2

F3

T1F3

F2

T = F21h = (42.0 N) (26.6 mm) = 1120 N # mm = 1.12 N # m.

F01 = -F21,F21 = -F12

F12 = -F32.F23 = F32 = 42.0 N.
F03 = 12.7 N,

F03,F23

F23 = -F32,
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subproblem I subproblem II� �
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B

(a)

(b)
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F23
I

l.o.a. F
12 I

l.o
.a

. F
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I

17

85135
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m

IIT1

F3

128

O1O3 � 70 mm
O1B   � 30 mm
BC     � 100 mm
O3C   � 50 mm

F12
I

F21
I

hI �
11 mm

T1
I

B

F32
I

F03
I

F2

F01
I

O3

O1

FIGURE 9.11 (a) Graphical force analysis of a four-bar linkage, utilizing the principle of super-
position. (b) The solution of subproblem I.

we determine the following magnitudes for the forces (the directions of the forces are shown in
Figure 9.11b):

 F12
I = F21

I = 36 N.

 F32
I = F23

I = F03
I = 21 N;
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C

B

F32
II

F12
II

F03
II

F23
II

F3

F3F21
II

T1
II

O1 O3

F01
II

B

C

l.o.a. � line of action

hII � 26 mm

l.o.a. F23
II

l.o.a. F
03 II

FIGURE 9.11 (c) The solution of subproblem II.

Link 1 is subjected to two forces and couple and, for equilibrium,

and

The analysis of subproblem II is similar and is shown in Figure 9.11c, where superscript II is
used. In this case, link 2 is a two-force member and link 3 is a three-force member, and the fol-
lowing results are obtained:

and

T1
II = F21

II hII = (17 N) (26 mm) = 442 N # mm cw.

 F23
II = F21

II = F01
II = 17 N,

 F03
II = 29 N,

T1
I = F21

I hI = (36 N) (11 mm) = 396 N # mm cw.

F01
I = -F21

I

T1
I,
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2

1

3

C

B

F12
II

F21
I

T1F21
II

F01
II

F01
I

F03
I

F03
II

F03

O1

O3

F01
F3

B

F32
II

F32
I

F32

F2

F12
I

C F23
II

F23
I F23

F12

F21

FIGURE 9.11 (d) The solutions combine to give the total solution.

The superposition of the results of Figures 9.11b and c is shown in Figure 9.11d. The results must
be added vectorially, as shown. By scaling from the free-body diagrams, the overall bearing force
magnitudes are found to be

and the net crankshaft torque is

T1 = T1
I + T1

II = 838 N # mm cw.

 F12 = 50 N, and F03 = 49 N,
 F01 = 50 N,   F23 = 31 N,
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The directions of the bearing forces are as shown in the figure. These resultant quantities repre-
sent the actual mechanism forces.

It can be seen from the analysis that the effect of the superposition principle in this exam-
ple was to create subproblems containing two-force members, from which the separate analyses
could begin. If one were to attempt a graphical analysis of the original problem without superpo-
sition, one would find that not enough intuitive information about the forces was given to ana-
lyze three-force members 2 and 3, because none of the bearing force directions can be determined
by inspection.

Graphical Force Analysis of Complex Linkages

In this section, an example is presented involving the static-force analysis of a mechani-
cal system that is somewhat more complex than the previous cases considered. This
example will demonstrate that, although each force analysis problem has its own special
characteristics, the solution procedure for a broad range of mechanisms is essentially
unchanged, relying on the basic force analysis groundwork that has been developed.

SAMPLE PROBLEM 9.3

Force Analysis of a Door Mechanism

Figure 9.12a shows the plan view of a fourfold industrial door. The door, which opens at the cen-
ter, has four panels, two of which fold to the left side and two to the right side. The door is shown
in the closed position, with the open position of the panels inserted as dashed lines for reference.
The figure also shows the electrically powered operating system mounted above the doors and
consisting of two symmetric linkages driven by the same motor.

Figure 9.12b is a schematic drawing of the right half of the system, drawn to scale for an
intermediate position between the open- and closed-door positions. Including the door frame
and the two door panels as links, the mechanism is an eight-bar linkage. Member 0 is the frame,
and members 1 and 2 are the door panels hinged together at point B. Slider 3 is pinned to panel
2 and moves along a fixed track as the doors open and close. Power is transmitted to the door by
means of drive arm 7, connecting rod 6, and links 4 and 5.

Member 4 is connected to door panel 1 at point E, and member 5 is connected to the door
frame at point D.

For the position shown in Figure 9.12b, determine the required shaft torque on drive arm 7
for static equilibrium against applied load which has a magnitude of 1000 N and acts on door
panel 2 as shown.

Solution. It is assumed that inertial forces and friction effects are negligible. A planar force
analysis will be performed that takes into account those forces which act in planes parallel to
that shown in Figure 9.12b. Gravity loads, which act perpendicular to these planes, are not
included in the analysis.

The graphical analysis, presented in Figure 9.12c, starts with slider 3, which is a two-force
member. Since friction is neglected, these forces must act perpendicular to the guide track, thus
establishing the directions of forces and Door panel 2 is a three-force member with
known force and known direction of force From this information, the concurrency point
can be found and the force polygon constructed, yielding the following force magnitudes:

F32 = 420 N;  F12 = 730 N.

F32.F2

F23.F03

F2,
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FIGURE 9.12 (a) An industrial door mechanism. (Source: Electric Power Door
Company.) (b) Schematic linkage diagram.

Member 1 is also a three-force member, acted on by force which is now completely known,
and the forces and both of which have unknown direction and magnitude. In order for the
analysis of this member to be completed, the direction of either or must be determined.

The direction of can be found by considering link 4, which is another three-force mem-
ber, acted upon by force from link 1 at point E, force from link 5 at point F, and force 
from link 6 at point G. Since links 5 and 6 are two-force members, the lines of action of forces 
and are along the respective links, and the intersection of these lines is the concurrency point
for member 4. (See Figure 9.12c.) This analysis leads to the line of action for and, in turn, the
direction of 

The force polygon can now be constructed for member 1, as shown in Figure 9.12c, yield-
ing the following force magnitudes:

F01 = 960 N;  F41 = 350 N.

F41.
F14

F64

F54

F64F54F14

F41

F41F01

F41,F01

F21,
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FIGURE 9.12 (c) Graphical force analysis of an industrial door mechanism.

Next, the polygon is constructed for member 4 (see Figure 9.12c), from which we obtain

Finally, member 7 is acted upon by two forces—known force and equal and opposite force
(see Figure 9.12c)—and shaft torque which must be equal and opposite to the moment of

the couple, Therefore, the torque is counterclockwise and, scaling the moment arm from
Figure 9.12b, we find that the magnitude of the torque is

If the other half of the door system is loaded symmetrically, a total torque double that just found
would be required. From this and knowledge of the speed reduction unit, the necessary motor
torque can be found.

T7 = hF67 = (0.27 m) (220 N) = 59.4 N # m ccw.

F07.F67,
T7,F07

F67

F54 = 210 N  and  F64 = 220 N.
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Similar analyses can be performed throughout the range of motion of the mechanism in
order to size components for proper operation under various loading conditions, such as wind
loads, which would be represented by external loads on both door panels.

9.4 ANALYTICAL STATICS

Analytical methods for investigating static and dynamic forces in machines employ
mathematical models that are solved either (1) for unknown forces and torques associ-
ated with a known motion of the mechanism, or (2) for an unknown motion of a given
mechanism resulting from known driving forces or torques. This text deals almost
exclusively with the former; however, a brief discussion of the latter appears in
Chapter 10. There are two approaches to formulating mathematical models, one based
on force and moment equilibrium and the other is based on energy principles. Methods
utilizing force and moment equilibrium equations parallel very closely the graphical
method that has been presented. Both rely heavily on free-body diagrams, but the
graphical force polygons are replaced in the analytical approach by equivalent vector
equations. Energy methods utilize the principle of conservation of energy; one of the
best-known such examples is the method of virtual work.

The mathematical basis of the analytical approach lends itself well to a computer
implementation. Solutions can be obtained quickly and accurately for many positions
of a mechanism, and the computer is particularly useful in design situations in which
many variations of the mechanism are to be considered. The computer facilitates
design optimization, wherein those values of design parameters are determined such
that selected performance criteria are optimized. The designer may choose to write his
or her own computer program for analysis or apply one of a number of general-pur-
pose programs that are available.

The next sections introduce some of the basic theory involved in analytical meth-
ods uesed in static-force analysis.

Static-Equilibrium Equations

The mathematical conditions for static equilibrium of a body were stated in Eqs. (9.7a)
and (9.7b), that is,

and

The detailed mathematical expression of these equations can take many forms,
depending on the vector representation used, and, for example, may involve Cartesian
vectors or complex-number vectors, fixed or moving coordinate systems, and so on.

aT = 0.

aF = 0
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Employing Cartesian vectors referenced to a fixed x, y, z coordinate frame, we see that
the component forms of Eqs. (9.7a) and (9.7b) become

(9.9a)

(9.9b)

(9.9c)

(9.9d)

(9.9e)

and

(9.9f)

which together state that the net forces on a body in the x, y, and z directions must be
zero and the net moments on the body about any three axes parallel to the x, y, and z
directions must be zero. For two-dimensional force problems in the xy-plane, Eqs.
(9.9a) through (9.9f) reduce to the three conditions of Eqs. (9.8a) through (9.8c) pre-
sented earlier in the chapter:

For determinate force systems, Eqs. (9.9a) through (9.9f) will yield solutions to spatial force
problems, and Eqs. (9.8a) through (9.8c) will yield solutions to planar force problems.

SAMPLE PROBLEM 9.4

Force Analysis of a Front-End Loader

Figure 9.13a is a photograph of a front-end loader showing the linkage arrangement for the
boom mechanism. The boom is actuated by two hydraulic cylinders, one on each side of the
machine, and the bucket is pivoted relative to the boom by a third hydraulic cylinder. Neglecting
member weights and friction effects, determine the cylinder force required for static equilibrium
of the boom in the position shown under a total bucket load of 4000 N.

Solution. In a thorough design analysis of the loader, the member weights would also be con-
sidered; they are neglected here in order to simplify the example. Also, it is assumed that the
bucket load is evenly distributed between the two sides of the loader.Therefore, we will consider
just one side under a vertical bucket load P having a magnitude of 2000 N.

aTz = 0.

aFy = 0;

aFx = 0;

aTz = 0,

aTy = 0,

aTx = 0,

aFz = 0,

aFy = 0,

aFx = 0,
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630 Chapter 9 Static-Force Analysis

FIGURE 9.13 (a) A front-end loader. (Source: Sperry New Holland Company.)

Figure 9.13b is a drawing of the boom mechanism in the analysis position showing the
force P and various dimensions and angular orientations. The xy coordinate system has been
selected, with x horizontal and y vertical.

A free body consisting of the bucket and boom is shown in Figure 9.13c, and, as indicated,
four forces act on the body.These forces, which are identified in x and y component form, are the
vertical bucket load P, the force from member 1, the force from member 3, and the cylin-
der force Applying Eqs. (9.8a) and (9.8b), we have

(9.10a)

and

(9.10b)

and summing moments about point O, we find that Eq. (9.8c) becomes

(9.10c)2.84P - 0.71F32x - 0.90Fcx - 0.22Fcy = 0.

Fcy + F12y + F32y - P = 0,

Fcx + F12x + F32x = 0

Fc.
F32F12
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Figure 9.13 (b) Dimensions of the front-end loader. (c) Free-body diagram of
the bucket and boom.

Equations (9.10a) through (9.10c) are a system of three equations in six unknowns:
and However, links 1 and 3 and the hydraulic cylinder are two-force mem-

bers, and therefore, the directions of the forces that they exert on the boom will be along the
links. Thus, the six unknowns can be expressed in terms of three unknowns as:

 F32x = F32 cos(20°), and  F32y = F32 sin(20°),

F12y = F12 sin(38°), F12x = F12 cos(38°), 

Fcy = Fc sin(57°), Fcx = Fc cos(57°), 

F32y.F12x, F12y, F32x,
Fcx, Fcy,
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where the angular orientations of the links are for the position under consideration. Substituting
into Eqs. (9.10a) through (9.10c) we have

and

Solving these equations for the three unknowns, we obtain

or, in component form,

The signs indicate whether the force components are in the positive or negative coordinate
directions. Thus, the actual directions of the components of forces and are as shown in
Figure 9.13c, whereas the components of act in the negative coordinate directions. This
means that member 3 and the cylinder are acted on by compressive forces; whereas member 1 is
in tension for the position analyzed.

Analytical Solution for the Slider-Crank Mechanism

Because of its extensive use, the slider-crank mechanism deserves special attention. In
the next chapter, a detailed dynamic-force analysis of this mechanism will be presented
that will account for inertial effects, which are usually significant in machines such as
engines and compressors. In this chapter, a graphical static-force analysis has already
been presented to determine the relationship between piston force and crank torque.
In this section, an equivalent analytical model will be developed.

An in-line slider-crank mechanism is shown in Figure 9.14a with crank length r,
connecting rod length and piston force P. A mathematical expression is sought relat-
ing force P to the crankshaft torque T required for equilibrium.This expression will be a
function of the position of the mechanism, as given by crank angle 

Free bodies of the moving links are shown in Figure 9.14b. Connecting rod 2 is a
two-force member, and therefore, the force it exerts on piston 3, will act at the
angle of the connecting rod. Summing the forces on the piston in the x direction, we
have

F23 cos u = P,

u

F23,

f.

/,

F12

F32Fc

 F32x = 1,731 N, and  F32y = 630 N.

 F12x = -5,325 N, F12y = -4,163 N,

 Fcx = 3,594 N, Fcy = 5533 N,

Fc = 6,595 N, F12 = -6,758 N, and F32 = 1,842 N,

5,680 - (0.667) F32 - (0.675) Fc = 0.

 (0.839) Fc + (0.616) F12 + (0.342) F32 - 2,000 = 0,

 (0.545) Fc + (0.788) F12 + (0.940) F32 = 0,
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FIGURE 9.14 (a) An in-line slider-crank linkage. (b) Free-body diagrams of
the moving members, employed in an analytical solution for torque T as a func-
tion of piston force P.

or

(9.11)

Again, note that the connecting rod is a two-force member. Force is equal and
opposite force The magnitude of the force at the end of the crank is given by

(9.12)

Summing moments about point we have

(9.13)

A negative sign is used to denote a clockwise torque, which will occur for the force
convention shown (which assumes that a positive piston force P acts to the left).

T = -F21 r sin g

O1,

F21 =
P

cos u
 .

F23.
F21

F23 =
P

cos u
 .
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Substituting and Eq. (9.12) into Eq. (9.13), we have

Finally, we wish to express angle as a function of crank angle From the linkage
geometry,

and

Substitution yields

(9.14)

As can be seen, even if force P is constant, torque T will vary as the linkage orientation
changes. Of course, in engines and compressors, P (the force due to cylinder pressure)
will also vary with position.This can be accounted for in Eq. (9.14) by expressing P as a
function of The torque will be zero when , corresponding, respec-
tively, to the top and bottom dead-center positions of the mechanism. An engine can
lock in these positions under force P, unless acted upon by other forces, such as inertial
effects, or the torque from other cylinders.

SAMPLE PROBLEM 9.5

Analysis of a Slider-Crank Mechanism

Calculate the torque required for static equilibrium of an in-line slider-crank mechanism in the
position when crank angle .The dimensions are and and the pis-
ton force is 

Solution. Substituting into Eq. (9.14), we have

This result agrees with that determined by graphical solution in Sample Problem 9.1.

Detailed Force Analysis of a Linkage Using Vector Methods

After proposing a linkage design, we analyze the design through a full cycle of motion.

Link Positions. Graphical methods are out of the question for a detailed analy-
sis (except for checking one or two positions). But we can choose complex-number

 = -1119 N # mm.

 T = -(40)(30) sin (45°)B1 +
(30) cos (45°)2(70)2 - (30)2 sin2(45°)

R

P = 40 N.
l = 70 mm,r = 30 mmf = 45°

f = 0  or  180°f.

T = -P     r sin f¢1 +
r cos f2/2 - r2 sin2 f

≤ .

cos u = 21 - sin2 u = C1 - ¢ r

/
 sinf≤2

.

sin u =
r

/
 sin f

f.u

T = -
Pr

cos u
 sin[180° - (f + u)] = -Pr(sin f + cos f tan u).

g = 180° - (f + u)
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Section 9.4 Analytical Statics 635

methods, analytical vector methods, or simulation software. Suppose we select vec-
tors, which may seem complicated, but they certainly keep everything in order, and
we can use them later to find velocities, forces, and torques. One possible procedure is
as follows:

• Sketch the proposed linkage design.
• Define the rectangular unit vectors, and describe each link as a vector.
• Identify angles in standard form.
• See “Solution of Planar Vector Equations” and “Displacement Analysis of Planar

Linkages: Analytical Vector Methods” in Chapter 2.
• Select the solution that fits the mechanism and the given data.
• Solve for the unknown vectors.
• Check the vector closure equation (for at least one arbitrary position). Do the

links form a closed loop? Does the sum of the link vectors equal zero?
• Check the transmission angle if applicable. This step may provide redesign clues

if we are not happy with the force analysis that follows.
• Plot the results of the position analysis. Are the curves continuous? Are the

results reasonable?

Velocities and Accelerations. A velocity analysis may not be necessary, but it
helps to check the design. You could do the following:

• Write the vector velocity equations for the linkage considered. Use the cross-
product form (as in Chapter 3).

• Find the unknown velocities and angular velocities.
• Repeat for accelerations if desired. Refer to Chapter 4.
• Check at least one position, using graphical methods, complex-number methods,

or numerical differentiation.

Force Analysis. Are we dealing with a pump, a compressor, or a materials-han-
dling device? Applied forces are likely to be given as a function of time or a function of
link position. You may be able to find linkage forces as follows:

• Estimate component masses and the magnitude of inertial forces and torques. If
inertial effects are small compared with applied forces and torques, then static
analysis is valid.

• Construct free-body diagrams of each link. A few minutes spent drawing such a
diagram will be repaid as you avoid errors in the analysis.

• Identify known and unknown forces and torques. If there is a piston, be sure to
include the lateral force that the cylinder exerts on the piston.

• Write the force and moment equilibrium equations.
• Look for easy solutions. If you start in the right place, the equations may be

uncoupled. Otherwise you may have to solve simultaneous equations.
• If a connecting rod or coupler is a two-force member, then the force in that body

lies along its axis.

639



636 Chapter 9 Static-Force Analysis

• Use Newton’s third law: If one link exerts a force on a second link, the second link
exerts an equal and opposite force on the first. Solve one link; move along to solve
the next link.

• If the force at the head of a link vector has the same sense as the vector itself, the
link is in tension at that time. The link is in compression if the force and the vec-
tor oppose each other.

Torque. If you are designing a pump, compressor, or crusher, you probably
know the required output forces. You must find the required input torque. If you are
designing an engine, and gas pressure is known in terms of piston position, then you
can predict the output torque. Try these steps:

• Calculate link forces.
• A force vector F at the head of a link vector r has a moment That moment

is balanced by a torque at the other end of the link.
• Consider a free-body diagram of the linkage as a whole. Do the external forces

and torques balance?
• Plot forces and torques against crank position.
• You may also want to plot forces and torques against piston position. These plots

will be continuous curves.
• Examine both sets of plots. Redesign the linkage if it does not meet your needs.

Static-Force Analysis as a First Approximation

Consider a moving component in a linkage. Suppose the product of mass and accelera-
tion may be significant in comparison with applied forces. Or suppose the product of
mass moment of inertia and angular acceleration may be significant compared with
applied torques.Then, a designer must consider inertial effects.The difficulty is twofold:

• A designer needs to know inertial forces and inertial torques in order to specify
the magnitudes of components, but

• Inertial effects depend on the size and mass of components that are yet to be
designed.

Static-force analysis will at least provide a first approximation of loading on a linkage,
even before we know the final masses. If it appears that inertial forces will be signifi-
cant compared with static forces, then we must use dynamic-force analysis (to be
examined in the next chapter).

SAMPLE PROBLEM 9.6

Detailed Analysis of a Proposed Compressor Design

Design a single-cylinder compressor to operate at 30 rpm and compress air to about 3.25 MPa (gage
pressure).Analyze positions, forces and torques through a full cycle of operation. Plot the results.

T = -r * F
r * F.
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Section 9.4 Analytical Statics 637

Design decisions. An 80-mm-diameter cylinder will be used. We will try an offset slider-
crank linkage with 75-mm crank length, 135-mm connecting-rod length, and 10-mm offset.
(See Figure 9.15.) The offset is not typical of this application; it is included only to show cal-
culation methods for the more general case. Linkage proportions are usually based on the
designer’s experience with similar applications. A static-force analysis will enable the
designer to tentatively specify the magnitudes and weights of components. If inertial effects
appear significant compared to static forces and torques, then a dynamic-force analysis
should follow.

(a)

(b)

  (c)

Gas
force

C

r1

e

r0

r2

F02
F21

F12

F01

T1

2

1 2

1

z, k
(out)

x, i

y, j
�

FIGURE 9.15 Analysis of a proposed compressor design. (a) Linkage sketched as a
closed vector loop. (b) Connecting rod forces. (c) Crank forces and torque.
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640 Chapter 9 Static-Force Analysis

Solution summary. The links are described by the closed vector loop

where and the crank position is identified as T (rad) for convenience. Analytical
vector methods are used to complete the position analysis. Checking the vector loop, we find the
closure error insignificant. Vector methods are used to find the angular velocity of the connect-
ing rod and the piston velocity. Numerical differentiation is used to check the results for one
position; the results agree.

Maximum air pressure causes a piston force of

This gas force on the piston is modeled with a spring that is “connected” for only part of the
cycle (when ). The spring force is

where 
An if-statement is used to turn off the spring when a valve discharges the compressed air. An
additional force that opposes the motion of the piston models friction effects with a constant
force of The gas force and friction force combine to a produce total horizontal force

on the wrist pin.

Detailed calculations.
Compressor static-force analysis using vector methods directly. Units: N, mm, sec, rad
Vector equation where 

Let 

Given: Clockwise configuration
Crank length Connecting rod length 

Offset 

Angular velocity rad/s 

Rectangular unit vectors 

Angular acceleration 

Position analysis

The magnitude of and the direction of are unknown.

Crank vector Add offset, define vector 

Slider position vector r0(T) :=  [-r3(T) # r0u + [R2
 2 - [r3(T) # (r0u * k)]2]

1
2] # r0u

r3(T) :=  r1(T) + er1(T) :=  C
R1

# cos(T)
R1

# sin(T)
0

S
r2r0

a1 :=  0

i :=  C
1
0
0
S j :=  C

0
1
0
S k :=  C

0
0
1
S

v1 :=  
p # n1

30
 v1 = 3.142

r0u :=  C
-1
0
0
S Crank speed rpm n1 :=  30e :=  C

0
-10

0
S ro unit vector

R2 :=  135R1 :=  75

T :=  0, 
p

72
# # 2pT = u1 = crank position (radians)

r3 = r1 + er3 + r2 + r0 = 0

F02x

0.05R1 K.

K = spring rate = 110 N/mm.

Fspring = -K[R0 - (R2 - R1)],

VC Ú 0

- p  Acyinder = -3.25 # p 402 = -16,336 N.

r3 = r1 + e,

r3 + r2 + r0 = 0,
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Scalar for plotting   

For convenience, define 

Connecting rod vector 

Angular position 

for plotting 

Check vector closure 

Velocity analysis

Connecting-rod angular velocity 

Slider velocity vector (positive to right) 
scalar 

Numerical differentiation 

Check:

Force analysis
Model gas forces with spring. Spring force opposes motion of piston
Spring rate N/mm Add an additional force to approximate friction effects:

Reaction force due to cylinder
Connecting rod is a two-force member

Force vector on connecting rod at piston

If force vector has same sense as connecting-rod vector, connecting rod is in tension If vec-
tors oppose, compression 

Total force on link 2      

F2(0) = -16,918.182 F2(p) = 413.636

F2(T) :=  F02(T) # r2(T)

R2
 F2(1.75 # p) = -14,449.833

(-)
(+);

F02(T) :=  C
F02x(T)
F02y(T)

0
S F02(0) = C

-16,871.703
-1253.199
0

S

F02y(1) = -176.515 F02y(1.75 # p) = -6746.789

F02y(T) :=  F02x(T) # tan (u2(T))

F02x(0) = -16,871.703 F02x(.25 # p) = 412.5 F02x(1.75 # p) = -12,778.049

F02x(T) :=   if [VC(T) Ú 0, -K # [R0(T) - (R2 - R1) + .05 # R1],.05 # R1
# K]

K :=  110

 v2(1) = -1.026     v2n(1) = -1.026   rad/s
 VC(1) = -252.743  VCn(1) = -252.743  mm/s

VCn(T) :=  v1
# ¢ d

dT
R0(T)≤   v2n(T) :=  v1

# ¢ d
dT

 u2(T)≤
VC(T) :=  vC(T) # i

vC(T) :=  v1
# (k * r1(T)) + v2(T) # (k * r2(T))

v2(T) :=  
-v1

# (r1(T) # i)

r2(T) # i

e + r0(1) + r1(1) + r2(1) = C
1.421 # 10-14

0
0

S

u2(T) :=  if(q(T) … p, q(T), q(T) - 2p),  
u2(60 # deg)

deg
= -24.02 deg

q(T) :=  angle (r2(T)0, r2(T)1)

r2(T) :=  -A(T) # (r0u * k) - (R2
 2 - A(T)2)

1
2 # r0u

A(T) :=  r3(T) # (r0u * k) R0(p) = 59.629

R0(T) :=  -r0(T) # i (+  to right)  R0(0) = 209.629
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642 Chapter 9 Static-Force Analysis

Check magnitude 
For two-force connecting rod, force from piston is applied at crankpin; the torque is and
the torque applied by the crankshaft is

Check torque based on external forces 

Analytical Solution for the Four-Bar Linkage

In this section, a generalized analysis of the four-bar linkage will be presented. The
equations to be derived are applicable to a wide variety of static-force situations, and
in the next chapter it will be shown that they also apply to dynamic-force analysis. In
addition, the same procedure with essentially the same equations can be used to ana-
lyze more complex mechanisms.

A four-bar linkage is shown in Figure 9.16a, with the link lengths designated by 
and angular positions represented by angles , where The distances with

locate the points of intersection of the lines of action of applied forces 
and with the respective links. In addition to these loads, it is assumed that each link
is acted upon by an externally applied couple and input link 1 is driven by shaft
torque T. The sign convention to be used for torques is that counterclockwise torques
are positive and clockwise torques are negative. Employing this convention, we treat
torques, which in the strict sense are vectors perpendicular to the xy-plane, as scalars.
The forces and couples are assumed to be known quantities. Most typical forms
of external loading can be represented by some combination of these forces and cou-
ples. Torque T will be treated as an unknown input required for equilibrium of the
mechanism in the given position under specified loads.

Free-body diagrams of the three moving links are drawn in Figure 9.16b, which
shows the bearing forces as well as the loads just defined. The location and orientation
of the xy coordinate system are arbitrary. Angles are measured counterclockwise
from the positive x direction. All forces are expressed in terms of x and y components.

Since the mechanism is planar, a maximum of three independent equilibrium
equations can be written for each link considered as a free body. Beginning with link 3
and summing forces in the x and y directions and moments about pivot we have

(9.15a)

(9.15b)

and

(9.15c)F23y /3 cos f3 - F23x /3 sin f3 + F3y r3 cos f3 - F3xr3 sin f3 + C3 = 0.

F03y + F23y + F3y = 0,

F03x + F23x + F3x = 0,

O3,

fi

CiFi

Ci

F3

F1, F2,i = 1,2,3,
ri,i = 1,2,3.fi

/i

T1c(T) :=  -(F02y(T) # R0(T) + F02x(T) # e # j)  T1c(1.75 # p) = 1.035 # 106

T1(T) :=  -r1(T) * F02(T)  r1(1.75 # p) = C
53.033

-53.033
0

S  T1(1.75 # p) = C
0
0
1.035 # 106

S

R * F,
F2m(T) :=  (F02x(T)2 + F02y(T)2)

1
2  F2m(1.75 # p) = 14449.833
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FIGURE 9.16 (a) A four-bar linkage. (b) Free-body diagrams of the moving mem-
bers, employed in an analytical solution for forces and torques.

Equations (9.15a) through (9.15c) contain four unknowns 
and therefore cannot be solved completely. Examining link 2 and writing a similar set
of equations, where moments are summed about point B, we have

and

F32y /2 cos f2 - F32x /2 sin f2 + F2y r2 cos f2 - F2xr2 sin f2 + C2 = 0.

F12y + F32y + F2y = 0,
F12x + F32x + F2x = 0,

(F03x, F03y, F23x, and F23y)
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These three equations appear to introduce four new unknowns:
However, from Newton’s third law,

and

Substituting these relationships into the equilibrium equations for link 2, we get

(9.16a)

(9.16b)

and

(9.16c)

Now, Eqs. (9.15a) through (9.16c) are a system of six equations in six unknowns:
The solution of these equations is simplified by

observing that Eqs. (9.15c) and (9.16c) contain only two of the unknowns:
Rearranging those equations, we have

(9.17a)

and

(9.17b)

where

and

Solving, we obtain

(9.18a)

and

(9.18b)F23y =
a11 b2 - a21 b1

a11 a22 - a12 a21
 .

F23x =
a22 b1 - a12 b2

a11 a22 - a12 a21

b2 = F2x r2 sin f2 - F2yr2 cos f2 - C2.

 b1 = F3xr3 sin f3 - F3y r3 cos f3 - C3,

 a22 = -/2 cos f2,

 a21 = /2 sin f2,

 a12 = -/3 cos f3,
 a11 = -/3 sin f3,

a21F23x + a22F23y = b2,

a11F23x + a12F23y = b1

F23x and F23y.

F12x, F12y, F23x, F23y, F03x, and F03y.

- F23y /2 cos f2 - F23x /2 sin f2 + F2y r2 cos f2 - F2x r2 sin f2 + C2 = 0.

 F12y + F23y + F2y = 0,

 F12x + F23x + F2x = 0,

F32y = -F23y.

F32x = -F23x

and F32y.
F12x, F12y, F32x, 
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Returning to Eqs. (9.15a), (9.15b), (9.16a), and (9.16b), we can determine the other
four unknown bearing force components as follows:

(9.19a)

(9.19b)

(9.20a)

and

(9.20b)

Negative values for any of the quantities indicate that their directions are actually in
the negative coordinate directions, opposite to the directions shown in Figure 9.16b.

Proceeding to member 1, the equilibrium equations are slightly different due to
the presence of torque T (moments are summed about pivot ):

Substituting and and rearranging terms, we solve these
equations for and T:

(9.21a)

(9.21b)

(9.22)

This completes the analysis of the four-bar linkage, in which we already determined
the x and y components of the four bearing forces, Eqs. (9.18a) through (9.21b), and
the required input torque given by Eq. (9.22).

SAMPLE PROBLEM 9.7

Analysis of a Four-Bar Linkage

Solve Sample Problem 9.2 by the analytical method.

Solution. The four-bar linkage of Figure 9.11 is redrawn in Figure 9.17, showing the various
dimensions and forces in component form. The following information may be deter-
mined from the figure:

 F1x = F1y = C1 = C2 = C3 = 0.
 F3x = 30 cos(128°) = -18.5 N; F3y = 30 sin(128°) = 23.6 N;

 F2x = 47 cos(132°) = -31.4 N; F2y = 47 sin(132°) = 34.9 N;

 r1 = 0;              r2 = 45 mm;   r3 = 38 mm;

 f1 = 135°;     f2 = 17°;        f3 = 85°;

 /1 = 30 mm; /2 = 100 mm; /3 = 50 mm;

F2 and F3

 T = F12y  /1 cos f1 - F12x /1 sin f1 - F1yr1 cos f1 + F1xr1 sin f1 - C1.

 F01y = F12y - F1y;

 F01x = F12x - F1x;

F01x, F01y,
F21y = -F12yF21x = -F12x

 T + F21y /1 cos f1 - F21x /1 sin f1 + F1y r1 cos f1 - F1x r1 sin f1 + C1 = 0.

 F01y + F21y + F1y = 0;

 F01x + F21x + F1x = 0;

O1

F12y = F23y - F2y

 F12x = F23x - F2x,

 F03y = -F23y - F3y,

 F03x = -F23x - F3x,
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FIGURE 9.17 The four-bar linkage of Sample Problem 9.7.

From these data, the coefficients and right-hand terms in Eqs. (9.17a) and (9.17b) are calculated
as follows:

Then, from Eqs. (9.18a) through (9.21b),

and

and the magnitudes of these forces are

and

Finally, the torque is calculated by Eq. (9.22):

Recall that a negative torque is clockwise.
How closely does the calculated torque agree with a graphical solution to the same problem pre-
sented earlier?

T = -845 N # mm.

F03 = 49.1 N, F01 = 50.2 N.

F23 = 31.1 N, F12 = 50.2 N,

F01x = 49.2 N, F01y = -9.42 N,

F12x = 49.2 N, F12y = -9.42 N,
F03x = 0.64 N, F03y = -49.1 N
F23x = 17.8 N, F23y = 25.5 N,

a12 = 4.36; a22 = -95.6; b2 = -1910.
a11 = -49.8; a21 = 29.2; b1 = -778;
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Superposition

Sometimes it is convenient to divide a problem into two or more parts. For example,
we can consider only the forces and torques (if any) acting on link 2 of the preceding
four-bar linkage. Then we can consider only the forces and torques on link 3. Finally,
we can combine the two steps in a procedure called superposition.

Each of the nine equations (i.e., three equilibrium equations for each of three
members) that have been derived consists of a sum of multiples of the nine unknowns:

and T. The coefficients of the unknowns in
these equations do not depend on the applied forces, and there are no nonlinear terms
in the unknowns or applied loads. Such a set of equations is said to be linear, and the
principle of superposition applies. Recall that this principle states that the solution
under a combined loads is equal to the sum of the solutions for the individual loads
that combine to produce the total load.

For a linear set of equations, superposition can be demonstrated by examining
Eqs. (9.17a) and (9.17b). The coefficients are functions of the link-
age configuration only and are not functions of the loads on the linkage. Right-hand
term is a linear function of the loading on member 3, and the term is a linear func-
tion of the loading on member 2. Consider the case where the forces on member 3 are
zero; that is, and, in turn, (We will refer to this case as subproblem
I.) Then, Eqs. (9.17a) and (9.17b) become

(9.23a)

and

(9.23b)

respectively, where and are the bearing forces resulting from this loading.
Next, consider the case where the forces on member 2, and therefore are zero (sub-
problem II):

(9.24a)

and

(9.24b)

Here, are the bearing forces resulting from the loading on member 3 only.
Combining the two sets of equations by adding Eq. (9.23a) to Eq. (9.24a) and Eq.
(9.23b) to Eq. (9.24b) yields

and

By comparison with Eqs. (9.17a) and (9.17b),

F23x = F23x
I + F23x

I

a21(F23x
I + F23x

II ) + a22(F23y
I + F23y

II ) = b2.

a11(F23x
I + F23x

II ) + a12(F23y
I + F23y

II ) = b1

F23x
II andF23y

II

a21F23x
II + a22F23y

II = 0.

a11F23x
II + a12F23y

II = b1

b2,
F23y

IF23x
I

a21F23x
I + a22F23y

I = b2,

a11F23x
I + a12F23y

I = 0

b1 = 0.F3 = C3 = 0

b2b1

a11, a12, a21, anda22

F23x, F23y, F03x, F03y, F12x, F12y, F01x, F01y,
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648 Chapter 9 Static-Force Analysis

and

Thus, superposition of the solutions to subproblems I and II leads to the total solution
for force It can be shown that the other unknowns, including torque T, can also be
found by superposition.

Detailed Analysis Using Simulation Software

A major strength of simulation software is its ability to animate a linkage and track the
motion of each part. If the animation of a proposed design does not look right to us, we
can make design changes ‘’on the spot.’’ Loading can be represented by linear springs
or by equations. Loading forces can be ‘’turned on or off’’ during part of a cycle. If you
are inexperienced in motion simulation, build your model one link at a time. Try ani-
mating the model after each step, to verify the effect of each constraint. It is advisable
to review the results of a simulation carefully. Examine the motion of the linkage and
the forces and torques on members for a full cycle of motion. Do the results approxi-
mate your expectations? Methods of static-force analysis are not restricted to bodies
and parts that are stationary. If a linkage operates at low speed, then a static analysis
can be used to check forces and torques for one or two positions.

Suppose your computer results are inconsistent with your independent analysis.
Although software may contain errors, other sources of error are far more likely. You
might begin by checking the input data. Verify the properties and the geometry of indi-
vidual links. Review the software manual and software ‘’help’’ topics. Check the assem-
bly of the bodies and the constraints in your model. Is the assembly actually consistent
with your proposed design and consistent with the instructions in the software manual?

Suggestions for Building Complex Models

When you gain more skill in modeling, complex models will be within your grasp. But
try a simplified model first; debug it and take approximate measurements from it.
Knowledge Revolution (1996) recommends increasing the fidelity of a model gradu-
ally, verifying the behavior of the model at each step. This approach is faster than the
everything-at-once approach because it saves debugging time. Also recommended is a
modular method of modeling. Subcomponents are modeled in separate documents,
tested as stand-alone linkages, and then incorporated into the main model.

SAMPLE PROBLEM 9.8

Using motion simulation software to aid in the design of a compressor

Suppose we need to supply air at a gage pressure of about 100,000 Pa. Propose and analyze a
tentative design.
Design and modeling decisions. Let us try a tentative air compressor design based on an in-line
slider-crank linkage with a 40-mm crank length, 64-mm connecting-rod length, and 78-mm-diameter
piston. A motor rotating at 30 rpm will drive the compressor. We will simulate the air pressure

F23.

F23y = F23y
I + F23y

II .
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Section 9.4 Analytical Statics 649

with a linear spring that is active only during the compression stroke.The spring force on the piston
will range from zero to 480 N during that stroke and will be zero during the other part of the
cycle. Note that we are using only a rough approximation of actual conditions. For a more pre-
cise model, we would have to consider heat transfer as the air was compressed and know more
about airflow through the valves. We want to find the required crank torque, the lateral force on
the piston, and the forces on the connecting rod.

Solution. The linkage was simulated in Working ModelTM. (See Figure 9.18.) A linear spring
with a spring rate of 6 N/mm is attached to the piston. The spring force is zero when the piston is
moving to the left and goes from zero to 480 N when the piston is moving to the right.

Part a of the figure tracks the motion of each link and the center of the connecting rod as
the crank rotates counterclockwise. The links are shown as narrow bars in the simulation. The
crank, connecting rod, and piston in an actual linkage will not have the same proportions as the
links used in the simulation.

is the vertical component of the connecting-rod force on the crank and the lateral
force of the piston on the cylinder. Its maximum magnitude occurs at about 1.68 s into the cycle,
corresponding to a crank angle of about The last-drawn linkage position in the simulation
(which appears closest to the observer) results in the maximum magnitude for The meters in
part a show the spring tension, motor torque, and crankpin forces at that instant.

Part b of the figure shows the linkage position when the motor torque is at maximum mag-
nitude. The meters show the maximum motor torque and the corresponding spring tension and
crankpin forces. Part c of the figure shows the variation in the spring tension, motor torque, and
crankpin forces during a full crank rotation.

Checking our results. At 30 rpm (2 s/rev), inertial forces should be negligible. If so, then the con-
necting rod is a two-force member. Measure the connecting-rod angle in parts a and b of the fig-
ure with a protractor, but correct for the proper quadrant.

Do the crankpin forces correspond to the angle of the connecting rod in each of the two
positions shown? Does the maximum spring tension correspond to the maximum horizontal
force on the crankpin? Now consider a free-body diagram of the entire linkage, and measure the
distance from the wrist pin to the crankshaft in part b of the figure. Does the product of the lat-
eral force on the cylinder and the distance from the wrist pin to the crankshaft balance the
motor torque?

The Method of Virtual Work

The method of virtual work utilizes energy principles for force analysis. This approach
offers advantages in certain types of analyses. For example, an entire mechanism can
be examined as a whole, without the need for dividing it up into a number of free bod-
ies. This leads directly to a relationship between input and output forces or torques
without the need for an intermediate solution for bearing forces throughout the mech-
anism. The method is applicable to both static-force and dynamic-force analyses; we
discuss its application to the former.

As the name indicates, the method of virtual work derives from the concept of
work, which is defined as a force (or torque) acting through a displacement. In mathe-
matical terms, work is the vector dot product of force and displacement; that is,

(9.25a)W = F # S,

FY.
302°.

FY
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FIGURE 9.18 Using motion simulation software to analyze a tentative design: (a) Tracking the motion of each link.
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where W is the work, F is the force, and S is the vector displacement at the point of
application of the force. For rotational motion,

(9.25b)

where T is the torque and is the angular displacement in a plane perpendicular to the
torque. Since the result of the dot-product operation is a scalar, work is a scalar quan-
tity. The units of work are those of energy.

The mathematical definition of work in Eq. (9.25a) provides some useful insight
into the nature of work. In particular, no net work is performed in the following cases:

1. when there is no displacement at the point of application of the force.
2. When the force F is perpendicular to the displacement S.
3. when equal, but opposite, forces act at the same point.

Consider these statements as they pertain to the slider-crank mechanism shown in
Figure 9.19. The mechanism is acted on by external piston force P and external crank-
shaft torque T, as well as bearing forces. Bearing friction is negligible.We wish to deter-
mine the work performed as the mechanism travels through a small displacement from
crank position during which the angular displacement of the crank is and the
corresponding displacement of the piston is (See Figure 9.19.) If we examine all
forces acting on the mechanism, we see that the bearing force on the mechanism at
crank pivot produces no work because there is no displacement of point 
Neglecting friction between the piston and cylinder, we see that the force of the cylin-
der on the piston is perpendicular to the piston displacement, and hence no work is
performed by this force. No work is performed by internal forces either, including
bearing forces at the crankpin and the wrist pin, because equal and opposite forces act
at all internal points. Thus, the only work performed is that by torque T and force P:

(9.26)

We assume here that torque T and force P are constant during the displacement of the
mechanism. For small displacements, this is a reasonable approximation. If the force
varies significantly during a displacement, then we must integrate find the work. Note
that work is positive if the force acts in the same direction as the displacement and is
negative if the force acts in a direction opposite that of the displacement. Both T and P

W = Tdf + Pdx.

O1.O1

dx.
dff,

c

W = Tc,

1
2

3�

��

T
r

l

P

x�x
O1

FIGURE 9.19 A slider-crank mechanism to be analyzed by the method of vir-
tual work.
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654 Chapter 9 Static-Force Analysis

acting as indicated in Figure 9.19 would produce positive work during the displace-
ment shown.

In a true statics problem, there is no displacement. We therefore introduce a
quantity called a virtual displacement, which is defined as an imaginary infinitesimal
displacement of the system that is consistent with the constraints on it. For example,
the constraints on the slider-crank mechanism are that all members, including the
frame, be rigid and that all joints maintain contact. Thus, Figure 9.19 depicts a virtual
displacement of the mechanism, where and are related by the kinematics of the
rigid-membered linkage. Virtual work is defined as the work performed during a vir-
tual displacement.

We now can state the principle of virtual work as it applies to equilibrium of
mechanisms: The work performed during a virtual displacement from equilibrium is
equal to zero. The interested student should consult a text on engineering mechanics
for a complete derivation of this principle.

Let us now apply the principle to determine the torque T required in the slider-
crank mechanism of Figure 9.19 for static equilibrium against applied force P for the
mechanism position given by crank angle For virtual displacements and it
follows from Eq. (9.26) that

(9.27)

for equilibrium. Before solving this equation, we introduce one more characteristic of
virtual displacements:They are assumed to take place during the same time interval dt.
Dividing Eq. (9.27) by dt yields

or

(9.28)

where and are the instantaneous velocities of the crank and piston, respectively.
Solving for T, we have

(9.29)

Recall from Chapter 3 that

and therefore,

(9.30)T = -Pr sin fB1 +
r cos f2/2 - (r sin f)2

R .

x
# = r f 

#
sin fB1 +

r cos f2/2 - (r sin f)2
R ,

T = -
x
#

f
#  P.

x
#

f
#

Tf
#

+ Px
# = 0,

T
df

dt
+ P
dx

dt
= 0,

Tdf + Pdx = 0

dx,dff.

dxdf
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Section 9.5 Friction in Mechanisms 655

The negative sign indicates that, for equilibrium, torque T must produce a negative
amount of work in Eq. (9.27) equal to the positive amount produced by force P, and
therefore, the torque must be clockwise in Figure 9.19.

It can be seen from this example that, for a mechanism in equilibrium under the
action of two forces—an input driving force and an output load—the ratio of the mag-
nitude of the input force to the magnitude of the output force equals the inverse ratio
of the magnitudes of the corresponding velocities. Of course, the method can also be
used to analyze mechanisms with multiple loads, in which case the summation of all of
the virtual work performed by the individual forces and torques must equal zero for
equilibrium. Gravity loadings can be treated like any other force. Furthermore, inertial
forces can be included, so that the method can be employed in dynamic-force analysis.

9.5 FRICTION IN MECHANISMS

Whenever two connected members of a mechanism are in relative motion, friction
occurs at the joint that connects them. The friction produces heat and wear, which may
eventually lead to bearing failure. It can also adversely affect the motion response of
the mechanism; for example, friction will slow the response of fast-action devices, such
as mechanical circuit breakers for electrical transmission lines, and it may alter the syn-
chronization of automated systems, such as multiple-input manipulators. In addition,
friction can substantially increase the energy requirements of a machine.

The nature and amount of friction depend on the type of bearing employed. High-
speed, high-load machinery is often designed with low-friction bearings: either rolling-
contact bearings, utilizing balls or rollers to eliminate relative sliding, or thick-film
bearings, in which the moving parts are separated by a layer of lubricant film. However,
in many situations, direct physical contact between sliding members occurs. This type of
friction is referred to as dry or Coulomb friction, which will be examined shortly.

Dry friction can occur for various reasons. For example, equipment may be
poorly lubricated, or there may be loss of lubricant due to leakage. In other cases, the
environment places severe restrictions on the use of lubrication. For example, lubri-
cants are prohibited in outer-space applications and in certain food-processing applica-
tions; special self-lubricating bearing materials with low coefficients of friction have
found successful application in these areas. Purely economic considerations sometimes
rule against the use of low-friction bearings, resulting in machines or products in which
dry-friction effects can be significant. Even in hydrodynamic thick-film bearings, direct
surface contact will occur when the machine starts up, before the lubricant layer develops,
resulting in Coulomb friction.

Two common types of joints in which sliding friction can be present are prismatic or
slider connections and revolute or journal bearings. Figure 9.20 shows a sliding block mov-
ing relative to a flat surface, which may be moving or fixed. In general, the applied force
on the slider consists of components parallel and perpendicular to its direction of motion.
These components are shown as P and N, respectively. The Coulomb friction force F is
related to the normal force N between contacting surfaces, and its magnitude is given by

(9.31)F = mN,
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N

Direction of motion

P

F

	N
� R

FIGURE 9.20 Dry friction in a translating bearing. Friction
force F acting on the sliding block opposes the motion of the
block relative to the contacting surface.

where is defined as the coefficient of sliding friction, which is a characteristic of both
the contacting materials and the operating conditions. Although precise values for
coefficients of friction are extremely difficult, if not impossible, to obtain, handbooks
contain extensive lists of approximate values that are acceptable for most design pur-
poses. The direction of the friction force is always such that the relative motion is
opposed. In Figure 9.20, the block is assumed to be sliding to the right. The friction
force F acting on the block is therefore directed to the left.

The resultant force R that the surface exerts on the block has components of
magnitude N and , and therefore, the angle of this resultant from the normal
direction is given by

(9.32)

Angle is referred to as the friction angle, and it is evident that the direction of R is
known once the coefficient of friction has been determined. As a limiting case, when
there is no friction , and the resultant force is normal to the surfaces.

Friction in a journal bearing (see Figure 9.21) is essentially the same as that for a
sliding block. Shown in the figure is a journal or pin of radius r attached to one mem-
ber that rotates in a bearing or sleeve in another member. The center of the bearing is
at point A, and the center of the journal is at point B; normally, the clearance in the
joint is much less than that depicted in the figure, since large clearances can lead to
serious impact problems. The two members instantaneously contact at point C, where
there is a resultant force R of the bearing on the journal. This force consists of a com-
pressive normal component N and a friction component F, that opposes the sliding
motion of the journal relative to the bearing.

As before, the two force components are related by the equation

where is the coefficient of friction, and the friction angle is given by

tan f = m.

fm

F = mN,

(m = 0), f = 0

f

tan f =
F

N
=
mN

N
= m.

fF = mN

m
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FIGURE 9.21 Dry friction in a journal
bearing. The resultant force R acts tangent
to the friction circle and includes a compo-
nent F that opposes relative motion and a
component N that acts normal to the con-
tacting surfaces.

Thus, as long as the coefficient of friction is constant, the resultant force will always act
at a fixed angle with respect to the common normal to the two surfaces. It follows
that the line of action of resultant R will always be tangent to a circle with center at
point B and radius

(9.33)

(See Figure 9.21). This circle is called the friction circle, and with the following trigono-
metric identity, its radius can be expressed as

(9.34a)

For small values of , which is often the case, the radius can be approximated as

(9.34b)

In addition to being tangent to the friction circle, the resultant force R will be directed
so as to produce a moment about journal center B that opposes the relative motion.As
we shall demonstrated in the sections that follows, the friction circle is a useful concept
for force analysis.

Graphical Solution for a Slider-Crank Mechanism 
Including Friction

We illustrate the material of the preceding section by investigating the slider-crank
linkage shown in Figure 9.22a. The force analysis will consider the presence of friction
at all four connections: the three turning connections and one sliding connection. A
load P is applied to the piston and the various bearing forces and the required input
torque for static equilibrium are to be determined. Crank 1 is rotating in the clockwise
direction.

Figure 9.22b shows the free-body diagrams of the members. The friction circles
are constructed for the three rotating joints by means of Eq. (9.34a) or Eq. (9.34b).The

rf = r sin f � r tan f = rm.

m

rf = r sin f =
r tan f21 + tan2 f

=
rm21 + m2

 .

rf = r sin f.

f
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FIGURE 9.22 (a) Graphical force analysis of a slider-crank mechanism including
friction. The crank rotates clockwise. (b) Free-body diagrams and force polygon.

forces at these joints must be tangent to the friction circles. Furthermore, the forces
must act in such a way as to oppose relative motion at the joints. By inspection, the rel-
ative link motions are as shown in Figure 9.22a for clockwise crank rotation.

First, consider connecting rod 2. This link is a two-force member and obviously is
in compression for the loading and position being analyzed. Therefore, the forces 
and must be collinear, with force producing a clockwise moment about pin B
opposing the counterclockwise rotation of link 2 relative to link 1. Force produces a
clockwise moment about pin C opposing the counterclockwise rotation of link 2 rela-
tive to piston 3.The line of action of the compressive forces, which is shown on the free
body of link 2, will satisfy these conditions. Notice that four straight lines can be drawn
tangent to the two friction circles, but that the one shown is the only one that will sat-
isfy all of the conditions stated. Generally, some intuitive guessing or trial and error is
necessary in properly locating lines of action.

Having found the line of action for member 2, we can now proceed with the
analysis of the piston. Force P is known completely, and the line of action of force is
now known. Force exerted by the frame on the piston, must pass through the con-
currency point, given by the intersection of P and and must act at the friction angleF23,

F03,
F23

F32

F12F32

F12
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Section 9.5 Friction in Mechanisms 659

with respect to the normal to the surfaces.Angle is measured as shown, taking into
account a friction force to the left opposing the sliding of the block to the right. From
this information, the force polygon is constructed, yielding forces and and, in
turn, forces and 

Force has been drawn on the free body of crank 1. Note that this force will
produce a counterclockwise moment about the joint that opposes the clockwise rota-
tion of link 1 relative to link 2. Force must be equal in magnitude and opposite in
direction to It is drawn tangent to the friction circle at pin and is properly
placed to oppose the clockwise rotation of the crank relative to the frame. Finally, the
moment created by this couple must be opposed by the driving torque the
direction of which is clockwise, by inspection of the free-body diagram.

The graphical force analysis of other types of mechanisms with friction would
proceed in a similar fashion. However, the more complex the mechanism is, the greater
is the probability that a trial-and-error solution will be required in the determination
of forces.

The performance of a machine with friction is evaluated relative to ideal, friction-
free operation by means of a quantity called the instantaneous efficiency, which is
defined as the ratio of the required input torque or force in the absence of friction to
that in the presence of friction. For the slider-crank mechanism under consideration,

(9.35)

where e is the instantaneous efficiency, is the required input torque when there is no
friction present, and T is the required input torque with friction included. For the case
just analyzed, T is greater than because the input driving torque must overcome
friction from the mechanism as well as the piston force P.

As the name implies, the instantaneous efficiency may vary with the position of
the mechanism, as would be the case for the slider-crank mechanism. Also, for this
mechanism, if one considers the case of counterclockwise rotation of crank 1, with the
same applied piston force P, the instantaneous efficiency will apparently be greater
than unity. Looking at it another way, the piston force may more logically be thought of
as the input in this situation, and for a given torque load T, the efficiency

will be less than unity.

Analytical Solution for a Slider-Crank Mechanism 
Including Friction

Some disadvantages are inherent in the analysis procedure of the previous section.
First, friction circles may be much smaller than those utilized for illustrative purposes
in the slider-crank example, which can lead to graphical inaccuracies. Second, since
guesswork on the placement of forces is necessary in some analyses, the amount of

e =
Po

P

To

To

e =
To

T
 ,

T = hF21,

O1F21.
F01

F21

F21.F32, F12,
F23F03

ff
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FIGURE 9.23 (a) The force transmit-
ted at a journal bearing with friction.
The diagram shows the actual line of
action of the resultant bearing force.
(b) An equivalent combination of a
force and a torque.

graphical construction may be quite time consuming. An alternative is the analytical
approach that follows, which can be computerized for a faster and more accurate solution.

Figure 9.23a shows a machine member i that is connected to a member j (not
shown) by means of a journal bearing, of radius r and an assumed negligible clearance.
The friction circle is shown, and bearing force of member j on member i acts along a
direction tangent to the friction circle and is positioned so as to oppose the rotation of
member i relative to member j.

In Figure 9.23b, the bearing force has been replaced by a combination of a force
and a couple. The two force systems will be equivalent if they produce the same net
force and the same net moment about any arbitrary point. The force, represented by
perpendicular x and y components, has the same magnitude and direction as the origi-
nal force, but has a line of action through the center of the joint. The couple 
accounts for the offset of the original force and can be expressed as

(9.36)

The sign function is defined as

(9.37)

where and are the angular velocities of members i and j, respectively. The differ-
ence in the angular velocities, is an indication of the motion of link i relative to
link j. Therefore, the force system in Figure 9.23b has a net force equal to and a net
moment about the bearing center that is equal in both magnitude and direction to that
in Figure 9.23a, and the two systems are equivalent.

This representation of bearing friction eliminates any guesswork in the analysis
and is well suited for implementation on a computer. For example, let us return to the

Fji

vi - vj,
vjvi

sign(vj - vi) = c
-1 if (vj - vi) 6 0
0 if (vj - vi) = 0,

+1 if (vj - vi) 7 0

Cji = rf ƒ Fji ƒ sign(vj - vi) � mr(Fjix
2 + Fjiy

2 )1/2 sign(vj - vi).

rf

Cji

Fji
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FIGURE 9.24 (a) A slider-crank mechanism. (b) Free-body diagrams to be used for an
analytical solution including friction effects.
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slider-crank mechanism of the previous section. The mechanism and free bodies are
redrawn in Figures 9.24a and b with the new force representation. Summing forces on
connecting rod 2 and moments about point B, we have

(9.38a)
(9.38b)

and

(9.38c)+ m12 r12(F12x
2 + F12y

2 )1/2 sign(v1 - v2) = 0,

F32y / cos u + F32y / sin u + m32 r32(F32x
2 + F32y

2 )1/2 sign(v3 - v2)

F12y + F32y = 0,
F12x + F32x = 0,
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where is the connecting-rod length and  and are the coefficient of friction and
bearing radius, respectively, for the joint connecting members i and j. Note that, in this
case, the angular velocity of member 3, the piston, is zero.

Let us made a couple of observations. First, the equilibrium conditions have pro-
duced three equations in four unknowns. Therefore, more information, which can be
obtained by examining the free bodies of other members, is necessary before the sys-
tem of equations can be solved. For the piston in Figure 9.24b,

(9.39a)

and

(9.39b)

where is the piston velocity (assumed to be positive to the right) and sign is
defined analogously to Eq. (9.37).Thus, when the piston is moving to the right, will be
positive and friction force will be negative, or directed towards the left. Equations
(9.39a) and (9.39b) are two new equations introducing only one new unknown,
and the five equations can now be solved simultaneously.

The second observation to be made is that the equations are nonlinear in the
unknowns, due to the presence of the square-root terms, which, by the way, disappear if
the friction is zero. This nonlinearity has serious ramifications in that the principle of
superposition no longer holds, and also, the solution procedure is much more difficult.
In general, numerical techniques or approximation methods must be employed in solv-
ing the equations.

The solution is facilitated in the present case by the fact that the connecting rod is
a two-force member. Solving Eqs. (9.38a) and (9.38b) for and and then sub-
stituting the resulting expressions into Eq. (9.38c) and factoring yields

(9.40)

where

Next, we express the force components and in terms of polar coordinates as

(9.41a)

and

(9.41b)

where is the magnitude of the force transmitted from member 3 to member 2 and
angle is its argument with respect to the positive x axis. (See Figure 9.25.) The valuec

F32

F32y = F32 sin  c,

F32x = F32 cos c

F32yF32x

k = m12 r12 sign(v1 - v2) + m32 r32 sign(v3 - v2).

F32y / cos u + F32x/ sin u + k2F32x
2 + F32y

2 = 0,

F12yF12x

F03y,
F03x

s
# (-s

#
)s

#

F03y + F23y = F03y - F32y = 0,

F03y + F23x = m03 ƒ F03y ƒ  sign(-s
#
) - F32x = P
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rijmij/

666



Section 9.5 Friction in Mechanisms 663

of angle will depend on whether the connecting rod is in tension or compression and
on the relative motion at joints B and C. As mentioned earlier, there are four possible
orientations of the force line of action tangent to each of the two friction circles.

Substituting Eqs. (9.41a) and (9.41b) into Eq. (9.40), we have

or

Solving for angle we obtain

(9.42)

In this equation, has two solutions, one corresponding to compression of the con-
necting rod and the other corresponding to tension; note that the relative joint motions
are accounted for by the sign functions in the expression for k. For example, when
there is no friction, the solutions are

and

Inspection of Figures 9.24a and 9.25 shows that the first of these solutions represents
tension of the connecting rod, as would occur when force P on the piston is directed to
the right. The second solution represents the situation depicted in Figure 9.24a with
piston force P acting to the left and the connecting rod therefore in compression.

c = p-u

c = -u

c

c = arcsin¢ -
k

/
≤ - u.

c,

/ sin (c + u) + k = 0.

F32  / sin c cos u + F32  / cos c sin u + kF32 = 0,

c

B

Friction circle

Friction circle

C
�

x

y �

2

F12

F32

FIGURE 9.25 Free-body diagram of connecting rod 2, showing the
orientation of the forces at bearings B and C.
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Equation (9.42) gives the argument of force however, the magnitude of this
force is as yet unknown. Combining Eqs. (9.39a) and (9.39b) results in

where Substituting Eqs. (9.41a) and (9.41b) into this equation
yields,

or

(9.43)

Force is now completely determined by Eqs. (9.42) and (9.43). The latter equation
also serves as a check for the proper solution for angle from Eq. (9.42). The correct
value of is that which will yield a positive value for the right side of Eq. (9.43), which
represents the absolute value of force 

The various x and y force components can now be expressed as

(9.44a)

and

(9.44b)

Once and have been determined, the analysis can be completed by
solving of the following equations for crank 1 (see Figure 9.24b):

(9.45a)

(9.45b)

(9.45c)

In Eq. (9.45c), r is the crank length,

and

Note that the angular velocity of frame 0 is zero. The instantaneous efficiency can then
be determined as before.

C21 = m21r21(F21x
2 + F21y

2 )1/2 sign(v2 - v1).

C01 = m21r21(F01x
2 + F01y

2 )1/2 sign(-v1),

 T + C01 + C21 + F21y r cos f -F21x r sin f = 0.

 F01y + F21y = 0;

 F01x + F21x = 0;

F21yF21x

F32y = -F23y = -F12y = F21y = F03y = F32 sin c

F32x = -F23x = -F12x = F21x = F32 cos c

F32.
c

c

F32

F32 =
-P

cos c + m03 ƒ sin c ƒ sign(s
#
)
 .

m03 ƒ F32y ƒ sign(s
#
) + F32 cos c + P = 0,

sign(s
#
) = -sign(-s

#
).

m03 ƒ F32y ƒ sign(s
#
) + F32x + P = 0,

F32;
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SAMPLE PROBLEM 9.9

Analysis of a Slider-Crank Mechanism with Friction

Determine the instantaneous efficiency of the slider-crank mechanism of Sample Problems 9.1
and 9.5. The mechanism has a crank length r of 30 mm and a connecting-rod length of 70 mm.
The analysis is to be performed, as before, for a crank angle Recall that, in the absence
of friction, the crankshaft torque for a piston force was found to be 
with the negative sign indicating that the torque is clockwise. Assume that the coefficient of fric-
tion for all bearings is 0.1.The three journal bearings have radii of 10 mm, and the crank is rotat-
ing in the clockwise direction.

Solution. From the specified information, we have

and

The sign functions for a complex mechanism would require a kinematic velocity analysis to
determine relative joint velocities. In this case, the functions can be determined by inspection
(for example, see Figure 9.22a):

Angle (see Figure 9.24a) can be calculated from the following relationships developed earlier
in the chapter:

Angle in Eq. (9.42) can now be determined as follows:

Since the connecting rod is in compression, angle must be in the second quadrant, indicating
that is the correct value. Substituting into Eq. (9.43) yields

F32 =
-40

cos (160.7°) + 0.1 ƒ sin(160.7°) ƒ (+1)
= 43.9 N.

c = 160.7°
c

 c = arcsinB -
(-2)

70
R - 17.6° = -15.9°, 160.7°.

k = 0.1(10) (-1) + 0.1(10) (-1) = -2;

c,

 u = 17.6°

 sin u =
r

/
 sin f =

30
70

 sin 45° = 0.303;

u

 sign(v0 - v1) = sign(-v1) = +1.
 sign(v1 - v2) = sign(v2 - v1) = -1;
 sign(v3 - v2) = sign(-v2) = -1;

 sign(s
#
) = +1;

m03 = m01 = m12 = m23 = 0.1.

r01 = r12 = r23 = 10 mm

T = -1119 N  #  mm,P = 40 N
f = 45°.

/
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666 Chapter 9 Static-Force Analysis

The positive value obtained for confirms the choice of for The force components,
then, are

and

Noting that the magnitudes of forces and are all equal, we can now compute the
input crank torque from Eq. (9.45c):

The instantaneous efficiency is thus

9.6 FORCES IN GEAR AND CAM MECHANISMS

Up to now, this chapter has dealt exclusively with forces in linkage mechanisms.
However, the general force analysis principles that have been presented are applicable
to mechanisms of all types, including gears and cams.

Due to the special nature of gears, associated forces are described in Chapters 6,
7, and 8, where terminology specific to gears is defined. Helical, worm, and bevel gear
systems are subject to three-dimensional loading, while forces on spur gears are essen-
tially planar. Drawing free-body diagrams of individual gears usually makes the force
analysis treatment of these machine components relatively straightforward.

The analysis methods and principles described earlier in the chapter can be
applied to cam mechanisms, as sample problem 9.10 illustrates.

SAMPLE PROBLEM 9.10

Analysis of a Cam Mechanism

The cam in Figure 9.26a drives the four-bar linkage against an applied load having a magni-
tude of 100 N. Determine the torque required on the camshaft for static equilibrium. Neglect
friction.

Solution. Figure 9.26b shows free-body diagrams of the individual moving members. The solu-
tion will be carried out graphically. Before the force polygon for member 3 can be constructed,
we need to determine the direction of the force at pin C. This is accomplished by considering
member 2, because the directions of two of its three forces are already known: The force at
point D is directed along link 4, which is a two-force member, and, in the absence of friction, the

F42

F3

e =
-1119
-1273

= 0.88 (88 percent).

 = -1273 N # mm.

 - (14.5) (30) cos  45° + (-41.4) (30) sin 45°
T = -0.1(10) (43.9) (+1) - 0.1(10) (43.9) (+1)

F01F32, F12,

F32y = -F23y = -F12y = F21y = F03y = 43.9 sin 160.7° = 14.5 N.

F32x = -F23x = -F12x = F21x = 43.9 cos 160.7° = -41.4 N

c.160.7°F32
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F23 �	F32
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O3
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T1

F21
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F3

F03

F42

F32

C

Q
F12

F42
B
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D
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FIGURE 9.26 (a) Force analysis of a cam linkage system. Friction at all other joints is
neglected. (b) Free-body diagrams and force polygons.
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contact force of the cam acts along the common normal at point B. The intersection of these
two lines of action is concurrency point P for member 2, and line PC is the direction of force 
and, in turn, force 

Now the force polygon for member 3 can be determined, as shown in Figure 9.26b, by first
establishing the location of concurrency point Q. If we measure the magnitude of force from
this polygon, the polygon for member 2 can then be constructed; this polygon is also shown in
Figure 9.26b. Finally, considering cam 1, which is acted on by two forces and a torque, we now
know force and force must be equal and opposite. Torque must balance this couple,
and measuring the perpendicular distance between these forces, we find that the magnitude is

By inspection, the direction is counterclockwise.

As is true of other types of mechanism, friction effects may be significant in gears
and cams, depending on factors such as loads, speeds, lubrication, and operating condi-
tions. Efficiencies of less than 100 percent are tabulated for gear drives in gear design
handbooks to account for friction losses, which can be substantial in units such as
worm gear drives. In Sample Problem 9.11, the mechanism of Sample Problem 9.10 is
considered again, this time with friction at the cam surface included.

SAMPLE PROBLEM 9.11

Analysis of a Cam Mechanism with Friction

The cam in Figure 9.27a rotates in the counterclockwise direction. Determine the camshaft
torque required for static equilibrium against applied load which has a magnitude of
100 N. The coefficient of friction between cam 1 and coupler link 2 is 0.1, while friction in the
linkage bearings and pin is negligible.

Solution. The solution procedure is similar to that of Sample Problem 9.10. The only difference
is that the net force between members 1 and 2 does not act along the common normal in this
case. Instead, it acts at an angle to the normal equal to the friction angle defined by Eq. (9.32):

This angle is incorporated into the free-body diagrams of Figure 9.27b and must reflect the
proper direction of the friction force. By inspection of Figure 9.27a, the sliding velocity will
have the direction shown. This will therefore be the direction of the friction force acting on
member 2, with the friction force on member 1 equal and opposite. Figure 9.27b shows the com-
plete static-force analysis, from which torque is found to have a magnitude of

and a counterclockwise direction. As expected, the presence of friction brings about increased
torque requirements compared to with those of Sample Problem 9.10.

T1 = (64 N) (30 mm) = 1,920 N # mm

T1

vB1B2

tan f = m = 0.1 or f = 6°.

O1

F3,T1

T1 = (70 N) (26 mm) = 1,820 N #  mm.

T1F01F21,

F32

F23.
F32

F12
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FIGURE 9.27 (a) Force analysis of a cam linkage system including friction at the cam
surface. Friction at all other joints is neglected. (b) Free-body diagrams and force polygons.
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SUMMARY

Academic problems in stress analysis and machine design often specify the load
applied to a member. Real-world design problems are not so straightforward. Inertia
effects are present whenever a mass is accelerated. If inertial forces are significant
compared with applied loads, static-force analysis is inadequate. We then need a thor-
ough kinematic and dynamic analysis to find forces in links, pins, bearings and fasteners.
The same is true if inertial torques are significant compared with applied torques.
(Dynamic-force analysis is considered in Chapter 10.)

Early in the design process, the actual shape and mass of each linkage component
are often unspecified. If so, a static-force analysis may provide a reasonable first
approximation of actual conditions. Using that analysis and other information, we may
select tentative masses. We can then decide whether a dynamic-force analysis is
required for accurate results. In some cases, it is also necessary to consider friction.

Tools commonly used for linkage design and force analysis of linkages include
graphical methods, detailed computer analysis methods based on mathematics soft-
ware, and motion simulation software. The method of virtual work based on energy
principles is another alternative. Each method has advantages and disadvantages.
Since errors can creep into any design or analysis, you may want to solve the same
problem in two different ways.

If we need to find forces in a linkage for only one position, graphical methods
may be considered. Graphical methods are also used to help formulate a solution in a
detailed analysis of a linkage and to check a computer solution at an arbitrary position.

Are you comfortable with free-body diagrams? If not, spend a few minutes review-
ing examples of such diagrams in this chapter or in an elementary engineering mechanics
text. Here are a few concepts that you can use for static-force analysis of linkages:

• For a planar linkage, two force equilibrium equations and one torque equilibrium
equation must be satisfied for each link.

• Suppose we consider the linkage as a whole; that is, we look at a free-body dia-
gram of the assembled linkage. Then, external forces are in equilibrium and
external torques and moments are in equilibrium. Examples of external forces
on a pump or piston engine are fluid force applied to the piston and reaction
forces on the piston and crankshaft.

• A two-force member is in equilibrium if and only if the two forces are equal and
opposite and lie along the same line.

• The forces in a three-force member have a concurrency point.
• If one link exerts a force on a second link, the second exerts an equal and oppo-

site force on the first (Newton’s third law).

Linkage design usually requires a detailed computer analysis. Such an analysis
begins with describing link positions.Vector methods are useful because they fit in well
with force analysis methods. Be sure, however, to check for mechanism closure. Is the
sum of the vector links zero? Check the transmission angle when designing a crank-
rocker linkage. If the transmission angle falls outside of the generally accepted range,
then the linkage may jam; the coupler may not be able to drive the output crank. After
correcting any flaws in the tentative linkage design, redo the position analysis and fol-
low up with velocity and acceleration analyses.
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Before starting a detailed force analysis, make a rough estimate of maximum
inertial forces and torques. If inertial effects are small compared with applied forces
and torques, a static-force analysis will be reasonably accurate. Then

• Identify known and unknown forces and torques.
• If you are analyzing a piston engine, pump or compressor, be sure to include the

lateral force that the cylinder exerts on the piston.
• Write force and moment equilibrium equations.
• Try to uncouple the equations.
• If you cannot uncouple the equations, set up the simultaneous equations in a

form that is acceptable to the software you have chosen.
• Plot forces and torques as a function of crank angle.
• Interpret the results. Identify maximum values of tension and compression in links.
• Use your results to redesign the linkage if necessary.

Motion simulation software can be a powerful and efficient design tool, but it
does not relieve the user of thinking. Instead, it reduces the labor of programming
and allows more time for “what if” analysis and redesign based on analyzing various
configurations.

A Few Review Items

• Identify a two-force member that is a component of a piston pump.
• Suppose the pump operates at high speed. Will static-force analysis apply? Is the

component you identified still a two-force member?
• A piston, wrist pin, and connecting rod are assembled. Can you make a free-body

diagram showing the external forces on this assembly?
• Sketch a crank-rocker linkage driven by the small crank. The large crank drives

the output shaft. Sketch a free-body diagram of each link. Does your sketch vio-
late Newton’s third law? If so, make the necessary changes.

• Can you relate input torque and output torque to reaction forces on a four-bar
linkage?

PROBLEMS

For Problems 9.1 through 9.17

Perform a graphical static-force analysis of the given mechanism. Construct the complete force
polygon for determining bearing forces and the required input force or torque. Mechanism dimen-
sions are given in the accompanying figures.

9.1 The applied piston load P on the in-line slider-crank mechanism of Figure P9.1 remains
constant as angle varies. P has a magnitude of 500 N. Determine the required input
torque for static equilibrium at the following crank positions:

(a)
(b)
(c) f = 270°.
f = 135°.
f = 45°.

T1

f
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P
C

B

OB � 40 mm
BC � 100 mm

�

T1

O
3

1 2

FIGURE P9.1

9.2 The applied piston load P on the offset slider-crank mechanism of Figure P9.2 remains
constant as angle varies. P has a magnitude of 100 lb. Determine the required input
torque for static equilibrium at the following crank positions:

(a)
(b)
(c)
(d) f = 315°.
f = 270°.
f = 135°.
f = 45°.

T1

f

C

B

60

45

30

30

OB � 30 mm
BC � 90 mm

T1

F2

O

3

1

2

10 mm

FIGURE P9.3

P
C

B

OB � 2 in
BC � 4 in

�

T1

O

31

2

0.5 in

FIGURE P9.2

9.3 Determine the required input torque for static equilibrium of the mechanism shown
in Figure P9.3. Force has a magnitude of 200 N.F2

T1

9.4 Determine the required input torque for static equilibrium of the mechanism shown
in Figure P9.4. Force has a magnitude of 100 lb, and piston force P is 200 lb. Both
forces act horizontally.

F2

T1
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9.5 Determine the required input torque for static equilibrium of the mechanism shown
in Figure P9.5. Forces and have magnitudes of 50 N and 75 N, respectively. Force 
acts in the horizontal direction.

F2F3F2

T1

9.6 Determine the required input torque for static equilibrium of the mechanism shown
in Figure P9.6. Forces and have magnitudes of 20 lb and 10 lb, respectively. Force 
acts in the horizontal direction.

F3F3F2

T1

OB � 3 ft
BC � CD � BD � 5 ft

75

T1

F2

O

1

3

2
B

C
P

D

FIGURE P9.4

O1O3 � 90 mm
O1B   � 40 mm
BC     � 60 mm
O3C   � 50 mm
BD     � 40 mm
CD     � 30 mm

60
45

T1

F2

F3

B

D

C

25 m
m

O1
O3

1

2 3

FIGURE P9.5

F3

T1

O1

O3

F2

2

1

3

0.
5 

in

1 
in

2 in
135

B

C

3 in

O1B   � 1 in
BC     � 4 in
O3C   � 2 in

120

FIGURE P9.6
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1 2
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T2
T3

B

45

C

O1

O3

O1B    �  80 mm
BC       �  160 mm
O3C     �  100 mm
O1O3   �  200 mm

FIGURE P9.7

1
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A

B
C

60
60

12 in9 in
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O1

O

O3

T3

OA    �  9 in
O1A  �  6 in
O1B  �  9 in

O3C  �  12 in
BC    �  15 in

FIGURE P9.8

9.7 Determine the required input torque for static equilibrium of the mechanism shown
in Figure P9.7. Torques and are pure torques, with magnitudes of and

respectively.7 N # m,
10 N # mT3T2

T1

9.8 Determine the required cylinder gage pressure for static equilibrium of the mechanism
shown in Figure P9.8. Torque has a magnitude of The diameter of the
piston is 1.5 in.

1000 in # lb.T3

9.9 Figure P9.9 shows a four-bar linkage that has link masses of 7 kg, 15 kg, and 12 kg for
members 1, 2, and 3, respectively. The centers of mass are at the link centers, and gravity
acts in the negative y direction. Determine the required force in the horizontal spring
attached to member 1 at point A for static equilibrium.

9.10 Determine the required input torque for static equilibrium of the mechanism shown
in Figure P9.10. Force on the slider has a magnitude of 1000 lb.

9.11 Determine the required input torque for static equilibrium of the quick-return mecha-
nism shown in Figure P9.11. Force on the slider has a magnitude of 800 lb. Angle 
equals 105°.

uF5

T2

F5

T1
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T1

110

O4 O1
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O1O4  �  170 mm
O1B    �    35 mm
BC      �  130 mm
O4D    �  145 mm
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CE      �  110 mm
O4F     �    65 mm

FIGURE P9.13

9.12 Determine the required input torque for static equilibrium of the mechanism shown
in Figure P9.12. Torque has a magnitude of 600 in # lb.T5

T1

9.13 Figure P9.13 is a schematic diagram of a linkage similar to the variable-stroke pump
shown in Figure 1.11. Determine the torque required for static equilibrium when pis-
ton load P has a magnitude of 500 N.

T1
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9.14 For the toggle mechanism shown in Figure P9.14, determine the force developed at slider
5 for an input torque of clockwise, assuming that inertial forces and friction
forces are negligible. Perform the analysis for the following crank positions:

(a)
(b)
(c) u = 60°.
u = 30°.
u = 0.

100 in # lbT1

9.15 Determine the torque required for static equilibrium of the two-cylinder engine
depicted in Figure P9.15. Piston forces and have magnitudes of 6,000 N and 2,000 N,
respectively. Consider the case where cylinder V angle is crank spacing is and
crank angle is 160°.f

90°,u90°,c

F5F4

T1

5
4

2

1

3
C

B �

O1

O3

T1

D

O1E � 3 in
O3E � 4 in
O1B � 1 in
BC   � 3 in
O3C � 3 in
CD   � 3 in

E

FIGURE P9.14
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�
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F4

O1B  � O1D  �  50 mm
BC    � DE    � 210 mm

C

E

FIGURE P9.15
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9.16 Determine torque required for static equilibrium of the two-cylinder engine depicted
in Figure P9.16. Piston forces and have magnitudes of 3000 N and 7000 N, respec-
tively. Consider the case where cylinder V angle is and crank angle is 20°.f90°c

F5F4

T1

F5

F4

O1B �  60 mm
BC � BD �  200 mm

2

4

3

5

1
B

O1
�

�

C

D

FIGURE P9.16

9.17 Determine the handle force P necessary to produce a jaw force Q of 100 lb on the lever
wrench shown in Figure P9.17. Force P, force
Q, and line BC are vertical. Angles are measured from the horizontal.

 CD = 1.3 in. BC = 1.2 in,AB = 3.0 in,

P

P

A

D

7

C

B

Q

Q

3

4

1

26

4.0� 1.5�

FIGURE P9.17

For Problems 9.18 through 9.34

Obtain an analytical static-force solution for the given mechanism, using the force and moment
equilibrium approach. Determine all bearing forces and the required input force or torque at the
specified position(s). Mechanism dimensions are given in the accompanying figures.

9.18 Analyze the mechanism of Problem 9.1.
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9.19 Analyze the mechanism of Problem 9.2. Derive a general function relating input torque
to piston force P and crank angle for an offset slider-crank mechanism with crank

length r, connecting-rod length and offset h. Calculate the input torque and bearing
forces at the following crank positions of the mechanism of Figure P9.2:

(a)

(b)

(c)

(d)

9.20 Analyze the mechanism of Problem 9.3.

9.21 Analyze the mechanism of Problem 9.4.

9.22 Analyze the mechanism of Problem 9.5.

9.23 Analyze the mechanism of Problem 9.6.

9.24 Analyze the mechanism of Problem 9.7.

9.25 Analyze the mechanism of Problem 9.8.

9.26 Analyze the mechanism of Problem 9.9.

9.27 Analyze the mechanism of Problem 9.10.

9.28 Analyze the mechanism of Problem 9.11.

9.29 Analyze the mechanism of Problem 9.12.

9.30 Analyze the mechanism of Problem 9.13.

9.31 Analyze the mechanism of Problem 9.14.

9.32 Analyze the mechanism of Problem 9.15.

9.33 Analyze the mechanism of Problem 9.16.

9.34 Analyze the mechanism of Problem 9.17.

9.35 Analyze the mechanism of Problem 9.1 by the method of virtual work.

9.36 Analyze the mechanism of Problem 9.2 by the method of virtual work.

9.37 Analyze the mechanism of Problem 9.3 by the method of virtual work.

9.38 Analyze the mechanism of Problem 9.4 by the method of virtual work.

9.39 Analyze the mechanism of Problem 9.5 by the method of virtual work.

9.40 Analyze the mechanism of Problem 9.6 by the method of virtual work.

9.41 Analyze the mechanism of Problem 9.7 by the method of virtual work.

9.42 Analyze the mechanism of Problem 9.8 by the method of virtual work.

9.43 Analyze the mechanism of Problem 9.10 by the method of virtual work.

9.44 Analyze the mechanism of Problem 9.11 by the method of virtual work.

9.45 Analyze the mechanism of Problem 9.15 by the method of virtual work.

9.46 Analyze the mechanism of Problem 9.16 by the method of virtual work.

9.47 Perform a graphical force analysis of the mechanism of Problem 9.1, including friction
effects. The coefficients of friction are 0.1 at bearing O, 0.15 at each of pins B and C, and
0.2 at the slider. The bearing radii are 20 mm at O, 15 mm at B, and 15 mm at C. The
crank rotates clockwise. Determine the following for crank angle 

(a) the torque required for static equilibrium.
(b) the instantaneous efficiency.

T1

f = 45°:

f = 315°.

f = 270°.

f = 135°.

f = 45°.

/,
fT1
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680 Chapter 9 Static-Force Analysis

9.48 Do Problem 9.47 by the analytical method.

9.49 Perform a graphical force analysis of the mechanism of Problem 9.2, including friction
effects. The coefficients of friction are 0.15 at bearing O, 0.25 at bearing B, 0.1 at bearing
C, and 0.2 at the slider. The bearing radii all equal 1.0 in. The crank rotates clockwise.
Determine the following for crank angle 

(a) the torque required for static equilibrium.
(b) the instantaneous efficiency.

9.50 Do Problem 9.49 by the analytical method.

9.51 Perform a graphical force analysis of the mechanism of Problem 9.3, including friction
effects.The radii of the friction circle are 4 mm at O, 5 mm at B, and 3 mm at C.The crank
rotates clockwise. Determine the torque required for static equilibrium. Neglect fric-
tion between the slider and the frame.

9.52 Perform a graphical force analysis, including friction effects, of the mechanism of
Problem 9.5 with force The coefficients of friction are 0.2 at each of bearings

and and 0.15 at each of bearings B and C. The bearing radii are all equal to 15
mm. The crank rotates counterclockwise. Determine the torque required for static
equilibrium.

9.53 Perform a graphical force analysis, including friction of the mechanism of Problem 9.6
with force The coefficients of friction all equal 0.2, and the bearing radii are 0.3 in
at and 0.5 in at B, C, and The crank rotates clockwise. Determine the torque 
required for static equilibrium.

9.54 Figure P9.18 shows a geared five-bar linkage, with the larger gear fixed to the frame and
the smaller gear attached to link 2. The gears are spur gears with a pressure angle of 
and pitch diameters of 6 in and 4 in. A force of 200 lb is applied as shown at the mid-
point of member 4. Determine the required torque for static equilibrium.T1

F4

20°

T1O3.O1

F2 = 0.

T1

O2O1

F2 = 0.

T1

T1

f = 45°:

9.55 Determine the camshaft torque required for static equilibrium of the cam-and-follower
mechanism of Figure P9.19. Torque has a magnitude of and a counterclock-
wise direction. Neglect friction.

50 in # lbT2

T1

1

2

3

4

6060

45
B

C D

T1

O1 O4

F4

O1B   � 5 in
 BC     � 3.5 in
CD    � 3 in
O1O4 � 12 in
O4D   � 7 in

FIGURE P9.18
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9.56 Repeat Problem 9.55, including friction at the cam-follower interface. The coefficient of
friction is 0.15, and the cam rotates clockwise.

9.57 Determine the camshaft torque required for static equilibrium of the cam-and-fol-
lower mechanism of Figure P9.20. Force on the follower has a magnitude of 20 lb.
Neglect friction.

F2

T1

1

2

Cam

C

r1 � 1.5 in
r 2 

�
 3

.5
 in

 (
co

ns
t.)

O1

T1

T2

0.75 in

3.5 in
1.25 in

Follower

O2

B1, B2

D

FIGURE P9.19 At the instant shown, point D, the cen-
ter of curvature of the cam follower, lies directly above

and point C lies directly above O1.O2,

Cam
O1C  � 1 in

135

r � 2 in

C

O1

T1
F2

Follower

B1 on 1
B2 on 2

1

2

FIGURE P9.20

9.58 Repeat Problem 9.57, including friction at both the cam–follower interface and the fol-
lower–guideway interface. The coefficient of friction is 0.15, and the cam has counter-
clockwise rotation.

9.59 An in-line slider-crank mechanism with a 30-mm crank length and 70-mm connecting
rod length operates at a crank speed of 20 rpm.There is a constant 40-N force on the slider
(toward the crankshaft). Plot the slider position, connecting-rod position, connecting-rod
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682 Chapter 9 Static-Force Analysis

force, and crankshaft torque against crank position.The same linkage was analyzed graph-
ically and analytically for one crank position in sample problems 9.1 and 9.5. You may
want to check your results against those problems.

9.60 Design a single-cylinder compressor to operate at 20 rpm. Analyze the compressor posi-
tion, connecting-rod forces, and crankshaft torque through a full cycle of the machine’s
operation. Check the torque for one crankshaft position. Plot the results against the
crank angle and piston position. Among your design decisions, try an in-line slider-crank
linkage with crank length and connecting-rod length 
Represent the axial piston force (N) by

where position (mm), measured from the crankshaft.
9.61 Design a single-cylinder compressor to operate at 12 rpm. Analyze the compressor posi-

tion, connecting-rod forces, and crankshaft torque through a full cycle of the machine’s
operation. Check the torque for one crankshaft position. Plot the results against the
crank angle and piston position. Among your design decisions, try an in-line slider-crank
linkage with crank length and connecting-rod length 
Represent the axial piston force (N) by

where position (mm), measured from the crankshaft.
9.62 Consider an air compressor in the form of an offset slider crank linkage. The compressor

will operate at a constant speed of 25 rpm. Analyze the compressor position, forces, and
torques through a full cycle of the machine’s operation. Plot the results against crank
angle and piston position. Use the moments of external forces to check the torque for
one crankshaft position. Among your design decisions, try crank length 
connecting-rod length and a 15-mm offset. The offset is not typical of this
application.We estimate that the axial force on the piston due to air pressure and friction
will be

where and position (mm), measured from the crankshaft.
9.63 Consider an air compressor in the form of an offset slider-crank linkage. The compressor

will operate at a constant speed of 30 rpm. Analyze the compressor position, forces, and
torques through a full cycle of the machine’s operation. Plot the results against the crank
angle and piston position. Use the moments of external forces to check the torque for
one crankshaft position. Among your design decisions, try crank length 
connecting-rod length and a 25-mm offset. We estimate that the axial
force on the piston due to air pressure and friction will be

where position (mm), measured from the crankshaft, and K = 180 N/mm.R0 = wrist-pin

b -K[R0 - (R2 - R1) + 0.05R1]  when piston velocity … 0 and
0.06R1K, when piston velocity 7 0

R2 = 155 mm,
R1 = 75 mm,

R0 = wrist-pinK = 150 N/mm

b -K[R0 - (R2 - R1) + 0.05R1]  when the piston is moving to the right and
0.05R1K  when the piston is moving to the left,

R2 = 130 mm,
R1 = 60 mm,

R0 = wrist-pin

b -200[R0 - (R2 - R1) + 0.05R1]  for piston velocity Ú 0 and
12R1  for piston velocity 6 0,

R2 = 144 mm.R1 = 65 mm

R0 = wrist-pin

b -100[R0 - (R2 - R1) + 0.05R1]  for piston velocity Ú 0 and
5R1 otherwise,

R2 = 110 mm.R1 = 50 mm
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Problems 683

9.64 Refer to the Sample Problem 9.8, and examine the effect of offsetting the crankshaft from
the cylinder centerline. We need to supply air at a gage pressure of about 100,000 Pa.
Among your design and modeling decisions, consider a tentative air compressor design
based on an offset slider-crank linkage with a 40-mm crank length, 64-mm connecting-rod
length, and 78-mm-diameter piston. Try offsetting the crankshaft 8 mm in the direction
that will increase the time of the compression stroke.A motor rotating at a constant 30 rpm
will drive the compressor. Simulate the air pressure with a linear spring that is active only
during the compression stroke; the spring force will be zero during the other part of the
cycle. The spring, with a spring rate of 6 N/mm, is attached to the piston. Note that we are
using only a rough approximation of actual conditions. Find the required crank torque, the
lateral force on the piston, and the forces on the connecting rod.

(a) Track the motion of the linkage components for one crank rotation.
(b) Find the maximum magnitude of the vertical component of the connecting-rod

force on the crank, and the lateral force of the piston on the cylinder. Show the link-
age position, spring tension, and motor torque, as well as the other crankpin forces,
at the instant that has maximum magnitude.Assume that inertial forces are small;
that is, assume that a static-force analysis will give a reasonably accurate approxima-
tion of the actual conditions under which the machine operates.

(c) Find the maximum magnitude of the motor torque, Show the crank position,
spring tension, and crankpin forces at the instant that the motor torque has maxi-
mum magnitude.

(d) Plot the variation in the spring tension, motor torque, and crankpin forces during a
full crank rotation.

9.65 Consider a tentative air compressor design based on an in-line slider-crank linkage with
a 40-mm crank length and 76-mm connecting-rod length. A motor rotating at a constant
30 rpm will drive the compressor. Simulate the air pressure with a linear spring that is
active only during the compression stroke; the spring force will be zero during the other
part of the cycle. The spring, with a spring rate of 5 N/mm, is attached to the piston. Note
that we are using only a rough approximation of the actual conditions. Find the required
crank torque, the lateral force on the piston, and the forces on the connecting rod.

(a) Track the motion of the linkage components for one crank rotation.
(b) Find the maximum magnitude of the vertical component of the connecting rod

force on the crank, and the lateral force of the piston on the cylinder. Show the link-
age position, spring tension, and motor torque, as well as the other crankpin forces,
at the instant that has maximum magnitude. Ignore inertial forces.

(c) Find the maximum magnitude of the motor torque, Show the crank position,
spring tension, and crankpin forces at the instant that the motor torque has maxi-
mum magnitude

(d) Plot the variation in the spring tension, motor torque, and crankpin forces during a
full crank rotation.

9.66 Consider a tentative air compressor design based on an in-line slider-crank linkage with
a 19-mm crank length and 36-mm connecting rod length. A motor rotating at a constant
1 rad/s will drive the compressor. Simulate the air pressure with a linear spring that is
active only during the compression stroke; the spring force will be zero during the other
part of the cycle.The spring, with a spring rate of 10 N/mm, is attached to the piston. Note
that we are using only a rough approximation of actual conditions. Find the required

ƒ T ƒ max.
FY

FY,

ƒ T ƒ max.

FY

FY,
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crank torque and the horizontal, vertical, and resultant forces that the connecting rod
exerts on the wrist pin.

(a) Track the motion of the linkage components for one crank rotation.
(b) Plot the variation in the spring tension, motor torque, and wrist-pin forces during a

full crank rotation.

PROJECTS

See Projects 1.1 through 1.6 and suggestions in Chapter 1.
Describe and plot representative forces and torques. Make use of computer soft-

ware wherever practical. Check your results by a graphical method for at least one link-
age position. Evaluate the linkage in terms of its performance requirements.
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C H A P T E R  1 0

Dynamic-Force Analysis

Methods and Concepts You Will Learn and Apply when
Studying This Chapter

• Newton’s second law of motion.
• Calculation of mass moment of inertia for linkage elements.
• Use of software to calculate mass, mass moment of inertia, and center of mass of

complex shapes.
• Inertial forces and torques and d’Alembert’s principle.
• Dynamic analysis of the four-bar linkage, using graphical and analytical methods.
• Application to equivalent linkages.
• Dynamic analysis of the slider-crank mechanism, using graphical and analytical

methods.
• Verifying the results of a simulation.
• Dynamic analysis of compound linkages.
• Dynamic analysis of a linkage subject to a specified speed-related torque input.
• Applications involving inertial forces only and applications that include fluid

forces.
• Balancing of machinery. Static balancing and dynamic balancing.
• Balancing of reciprocating machines. Single- and multicylinder machines and in-

line-, opposed, and V engines.

10.1 INTRODUCTION

This chapter deals with dynamic forces in machines. Dynamic forces are associated
with accelerating masses, and since virtually all machines contain accelerating parts,
dynamic forces are always present.

Perhaps the simplest example of a dynamic force is the case of a mass mounted
on a rod that is rotating about a fixed pivot with constant angular velocity. (See Figure
10.1a.) We know that in order for the mass to maintain a circular path of motion, the
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Centrifugal
force

Centrifugal
force

Mass

Rod

Constant
angular
velocity

Constant
angular
velocity

Center of 
mass

(a) (b)

FIGURE 10.1   (a) A mass that is moving in a circular path undergoes centripetal accel-
eration, and there is a dynamic force, referred to as centrifugal force, associated with the
acceleration. The centrifugal force is exerted by the mass on the rod, and is transmitted
to the bearing. (b) The shaft is subject to centrifugal force because the center of mass of
the rotor does not lie on the shaft enterline.

rod and, in turn, the pivot must provide a force acting radially inward (a centripetal
force). As a result, the rod and, in turn, the pivot will be acted upon by a force directed
radially outward. This force, commonly referred to as a centrifugal force, is a dynamic
force because it results from the centripetal acceleration of the mass. This type of
dynamic force is prevalent in machines. For example, a centrifugal force will act upon a
rotating shaft or rotor if its center of mass does not lie exactly on the bearing center-
line, as shown in Figure 10.1b. Discrepancies between the location of the center of mass
and that of the center of rotation of an actual rotor can result from a number of factors,
such as manufacturing inaccuracies, inhomogeneity of the material of the rotor and
bowing or bending of the shaft.

In the previous chapter, it was pointed out that in certain applications dynamic
forces are small compared with other forces acting on the system, and in those cases
dynamic forces may be neglected in the analysis. However, in many situations the
reverse is true, and dynamic forces are dominant or at least comparable in magnitude
to external forces. The group of problems in this class continues to grow with the trend
toward machines with higher and higher operating speeds, as, for example, in industrial
manufacturing processes where the speed of a machine has a direct bearing on a
worker’s productivity. As new machines are designed to operate at higher speeds,
dynamic-force effects become increasingly important. For example, rotors have been
designed and built that run at rotational speeds in excess of 100,000 rev/min. Even the
slightest eccentricity of the center of mass from the axis of rotation will lead to signifi-
cant dynamic forces that, if not accounted for in the design process, may result in vibra-
tions, noise, wear, or even failure of the machine.
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Section 10.2 Newton’s Second Law of Motion 687

10.2 NEWTON’S SECOND LAW OF MOTION

The basis for investigating dynamic forces in machines is Newton’s second law of
motion, which states that a particle acted on by forces whose resultant is not zero will
move in such a way that its acceleration will at any instant be proportional to the resul-
tant force. This law is expressed mathematically, for the special case of a particle with
invariant mass, as

(10.1)

where F is the resultant force on the particle, m is the mass of the particle, and a is the
acceleration of the particle. Newton’s second law can be extended to a rigid body in the
form

(10.2a)

for linear motion or

(10.2b)

for rotational (uniform circular) motion.
Equation (10.2a) states that the resultant external force on a rigid body is

equal to the product of the mass of the body, m, and the acceleration of the center of
mass, where G designates the location of the center of mass. Equation (10.2b),
which is the analogous statement for rotational motion, states that the resultant exter-
nal moment on the body about its center of mass, is equal to the rate of change of
the body’s angular momentum H with respect to time. This statement is often
expressed in the following component form, known as Euler’s equations of motion for
a rigid body:

(10.2c)

(10.2d)

(10.2e)

In this formulation, the xyz-axes are the principal axes of the body, with their origin at
the center of mass, G, of the body.

The mass moment of inertia of a particle about a particular axis is defined as the
product of the mass of the particle and the square of the distance of the particle from
the axis. For a continuous body made up of an infinite number of mass particles, the
moment of inertia, I, is the integral of all of the individual moments of inertia; that is,

where dm is the mass of a particle and r is the distance of that particle from the axis.
This mathematical definition can be used to compute mass moments of inertia of

I =
L

r2
 dm,

TeGz
 = Iz az + (Iy - Ix)vxvy.

TeGy
 = Iy ay + (Ix - Iz)vzvx;

TeGx
 = Ix ax + (Iz - Iy)vyvz;

TeG,

aG,

Fe

TeG = H
#

Fe = maG

F = ma,
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TeG

aG aG

G

Fe

m,IG

(a)

m, IG

G��

�maG

(b)

�IG �

FIGURE 10.2   (a) A rigid body
accelerating under the influence
of external force and external
torque (b) The inertial force
and the inertial torque corre-
sponding to planar motion of a
rigid body.

TeG.
Fe

machine members, and tables are available in mechanics texts and handbooks that
contain expressions for moments of inertia determined this way for standard shapes.
However, experimental methods of determination are often used for complex shapes,
such as connecting rods and cams. Note that the moment of inertia of a body depends
on the particular reference axis, as well as on the shape of the body and the manner in
which its mass is distributed.

In the SI system, mass moment of inertia is expressed in units of kilogram-meter
squared 

The preferred customary U.S. unit for mass is the pound second squared per inch
obtained by dividing the weight of a body by the acceleration due

to gravity. Thus, the customary U.S. unit for mass moment of inertia is the pound sec-
ond squared inch 

For the special case of planar motion, angular momentum Equation
10.2b can be stated as

(10.2f)

where vectors and are perpendicular to the plane of motion of the body. The
subscript G in Eq. (10.2f) indicates that the moment of inertia is with respect to an axis
passing through the center of mass, G, and perpendicular to the plane of rotation of the
body. Equations (10.2a) and (10.2f) are depicted in Figure 10.2a. Part b of the figure
illustrates d’Alembert’s principle (to be discussed later). Do you remember the paral-
lel-axis theorem? It is the relationship between the moment of inertia, I, of a body
about any axis and the moment of inertia, about a parallel axis through the center
of mass:

where m is the mass of the body and R is the perpendicular distance between the two
axes.

An important observation from Eqs. (10.2a) and (10.2b) is based on the follow-
ing two ways in which the equations can be interpreted:

1. The equations can be solved for the force and torque required to produce a
known motion of a body.

I = IG + mR2,

IG,

ATeG, V,

TeG = IGA,

H = IG V.
(lb # s2 # in).

386 in/s2,(lb-s2/in),

(kg # m2).
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Section 10.2 Newton’s Second Law of Motion 689

2. The equations can be solved for the motion of a body resulting from the applica-
tion of known forces and torques.

Strictly speaking, the second approach is the more accurate analytical procedure in
machinery dynamics, because we are more apt to have knowledge of the nature of
applied loads and input forces (e.g., torque–speed characteristics for electric motors)
than knowledge of the exact motion response of complex nonlinear mechanisms.
However, the solution by this approach is more difficult than by the first approach.

In many design situations, it is common practice to utilize the first approach
and to assume that the motion of the mechanism is equal to the ideal required
motion for the specific application. The solution is then carried out for the resulting
forces, and the information obtained thereby is used to size the members and bear-
ings of the mechanism and to select an input power source. This is an iterative
process, because the forces are dependent on the sizes of the members. Also, it is
almost impossible to select design components so that the forces required for the
ideal assumed motion are produced exactly. Therefore, it may be necessary to evalu-
ate the mechanism design obtained in this way, either by construction and testing a
physical prototype or by examining a computer model based on the second approach
described; these procedures can be used to “fine-tune’’ the design by adjusting the
final design parameters.

Most of the examples and problems of this chapter will be based on the approach
of assumed motion of the mechanism. In the next section, it will be shown that
dynamic-force analysis can be expressed in a form very similar to static-force analysis,
so that solution techniques from Chapter 9 can be applied.

Calculation of Mass and Mass Moment of Inertia for Linkage
Elements

Suppose we intend to construct mechanisms that include bodies shaped like those in
Figure 10.3. The bodies have uniform thickness h and uniform mass density and will
move in the plane of the figure.The center of mass (center of gravity) is shown for each
body. We want to know the mass and mass moment of inertia of each body about an
axis perpendicular to the figure and through the center of mass.

Consider, for example, a circular disk of radius The mass is

We substitute

in the equation for mass moment of inertia and integrate from

r = 0 to r = R0

dm = gh # 2pr dr

m = gh pR0
 2.

R0.

g
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Body dimensions
(m or in)

Mass:  m(kg or lb s2/in)
for mass density �
(kg/m3 or lb s2/in4)

Mass moment of inertia
about xx-axis through the
center of mass:
IG (kg.m2 or lb s2 in)

x

h

R0
x

x

x

x

x

x

x

c

h

b

x

c

h
b

x

Disk-radius R0
thickness h

��R0
2h mR0

2/2

Disk-radius R0
mass concentrated
at outer rim

mR0
2

Slender rod length c
width b, thickness h
b �� c
h �� c

� b c h mc2/12

Slender rod
radius a, length c
a �� c

� � a2 c mc2/12

Rectangular body
length c, width b,
thickness h

� b c h m[b2�c2]/12

Mass and mass moment of inertia.

to obtain

This result and the properties of some other simple shapes are tabulated below.

Icircular disk = gh pR0
4/2 = m R0

2/2.

If we prefer to “work smart,’’ we will use software to calculate the
masses and mass moments of inertia of more complex shapes. The following
example utilizes Working software.

SAMPLE PROBLEM 10.1

Using Software to Calculate Mass and Mass Moment of Inertia

The bodies shown in Figure 10.3 are made of 1-mm-thick steel. The grid markings are
10 mm apart. Determine the mass and mass moment of inertia of each body about an
axis perpendicular to the figure through the center of gravity of the body.

ModelTM
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Solution. Working was used to obtain the properties shown in the table follows,
where etc. Dimensions in millimeters were converted to meters, so that the mass
moment of inertia appears in This avoids conversion problems if we use the listed values
to compute inertial torques later. Properties for the simple shapes were verified with the equa-
tions just set out. The software was trusted to calculate the properties for the irregular shapes,
and the results were compared (for order of magnitude) with those for a rectangular body of
similar mass.

Various 1-mm-thick steel bodies Mass m (kg) Mass moment of inertia about 
mass density center of mass:

10-mm-radius disk 2.513e-3 1.257e-7 (approaches 2.513e-7 
if the same mass is concen-
trated near the outer rim)

10-mm-by-10 mm-square body 8e-4 1.333e-8

1-mm-by-100-mm slender rod 8e-4 6.667e-7

20-mm-by-50-mm rectangular body 8e-3 1.933e-6

Curved link 7.992e-3 2.463e-6

Polygon 8e-3 2.128e-6

IG (kg # m2)gsteel = 8,000 kg/m3

kg # m2.
e-3 = 10-3,

ModelTM

0.000e+000 4.000e+001 8.000e+001 1.200e+002 1.600e+002

Polygon

Curved link
Slender rectangleCircle

Square

Rectangle

FIGURE 10.3   Mass and mass moment of inertia of simple and complex shapes.
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Center of Mass

It is easy to locate the center of mass of regular shapes: a circle, square, or rectangle of
uniform thickness and uniform mass. For an irregularly shaped body, the coordinates
of the center of mass can be found from the integrals:

and

where the origin of the coordinates is arbitrary,
dm is an element of mass,

dm is the total mass of the body,
x and y are the coordinates of the element of mass,
integration takes place over the entire body, and

and are the coordinates of the center of mass of the body.

Locating the center of mass of a complex body can be a time-consuming calcula-
tion. If software (e.g., Working ) is used to find the center of mass and other
properties, then we have more time for important design tasks, such as performing a
dynamic analysis, interpretating results, and redesign.

10.3 D’ALEMBERT’S PRINCIPLE AND INERTIAL FORCES

An important principle, known as d’Alembert’s principle, can be derived from
Newton’s second law. In words, d’Alembert’s principle states that the reverse-effective
forces and torques and the external forces and torques on a body together are equivalent
to static equilibrium. Transposing the right-hand terms of Eqs. (10.2a) and (10.2b) yields

(10.3a)

and

(10.3b)

The terms in parentheses in Eqs. (10.3a) and (10.3b) are called the reverse-effective
force and the reverse-effective torque, respectively. (These quantities are also referred
to as the inertial force and inertial torque.) Thus, we define the inertial force as

(10.4a)Fi = -maG

TeG + (-H
#
) = 0.

Fe + (-maG) = 0

ModelTM

yGxG

1

yG = 1y dm>   1dm,

xG = 1x dm>   1dm
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which reflects the concept that a body resists any change in its velocity by an inertial
force that is proportional to the mass of the body and its acceleration.The inertia force
acts through the center of mass, G of the body. The inertial torque, or inertial couple, is
given by

(10.4b)

or, for the case of planar motion (see Eq. (10.2f)),

(10.4c)

As indicated, the inertial torque is a pure torque or couple. Figure 10.2b shows these
quantities for the case of planar motion, where, from Eqs. (10.4a) and (10.4c), their
directions are opposite to that of the accelerations. Substituting Eqs. (10.4a) and
(10.4b) into Eqs. (10.3a) and (10.3b) leads to equations that are similar to those used in
static-force analysis, viz.,

(10.5a)

(10.5b)

where refers here to the summation of external forces and therefore is the resul-
tant external force and is the summation of external moments, or resultant
external moment, about the center of mass, G. Thus, the dynamic-analysis problem is
reduced in form to a static-force and -moment balance in which inertial effects are
treated in the same manner as external forces and torques. In particular, for the case
where the motion of the mechanism is assumed, the inertial forces and couples can
be determined completely and thereafter treated as known mechanism loads. The
graphical or analytical solution techniques described in Chapter 9 can then be
employed.

Furthermore, d’Alembert’s principle facilitates summing moments about any
arbitrary point P in the body, as long as we remember that the moment due to inertial
force must be included in the summation. Hence,

(10.5c)

where is the summation of moments (including inertial moments) about point P,
is the summation of external moments about P, is the inertial couple defined

by Eq. (10.4b) or (Eq. 10.4c), is the inertial force defined by Eq. (10.4a), and is a
vector from point P to point G. It is clear that Eq. (10.5b) is the special case of Eq.
(10.5c) in which point P is taken as the center of mass, G (i.e., ).RPG = 0

RPGFi

Ci©TeP

©TP

aTP = aTeP + Ci + RPG * Fi = 0,

Fi

©TeG

©Fe

 aTG = aTeG + Ci = 0,

 aF = aFe + Fi = 0

Ci = -IGA.

Ci = -H
#
,
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694 Chapter 10 Dynamic-Force Analysis

For a body in plane motion in the xy-plane, with all external forces in that plane,
Eqs. (10.5a) and (10.5b) become

(10.6a)

(10.6b)

(10.6c)

where and are the x and y components of Equations (10.6a) through
(10.6c) are three scalar equations for which the sign convention for torques and angu-
lar accelerations is based on a right-hand xyz coordinate system; that is, counterclock-
wise is positive and clockwise is negative. The general summation of moments about
arbitrary point P, Eq. (10.5c), becomes

(10.6d)

where and are the x and y components of position vector This expres-
sion for dynamic moment equilibrium will be useful in the analyses to be presented in
the rest of this chapter.

SAMPLE PROBLEM 10.2

Inertial Effects on a Rotating Body

A steel disk 0.3 m in radius and 0.0398 m thick with two blades is shown in Figure 10.4. Each
blade is 1 m square by 0.05 m thick, has a mass of 10 kg, and is subject to air resistance equal to

where of the blade center, and An
electric motor applying a torque of drives the assembly. Find the mass moment of iner-
tia and the terminal angular velocity of the assembly. Find the angular acceleration and motor
power at 20 rad/s angular velocity.

Calculation decision. We will use mathematics software in the solution.

Solution summary. The mass density of steel is about The table of masses and
mass moments of inertia can be used to calculate the mass moment of inertia about an axis
through the center of gravity of the disk and each vane. However, because the vanes rotate
about the center of the disk, we must correct the mass moment of inertia of the vanes by adding
the product of the mass of the vane and the square of the distance from the center of rotation to
the center of each vane. We find the mass moment of inertia of the assembly (the disk and two
vanes) to be about 18.5 kg # m2.

8,000 kg/m3.

25 N # m
A = blade area.k = 0.025 Ns2/m4, v = velocityk # v2 # A,

RPG.RPGyRPGx

 = aTeP + (-IGa) + RPGx(-maGy) - RPG(-maGx) = 0,

 aTP = aTeP + Ci + RPGxFiy - RPGyFix

aG.aGyaGx

 aTG = aTeG + Ci = aTeG + (-IGa) = 0,

 aFy = aFey + Fiy = aFey + (-maGy) = 0,

 aFx = aFex + Fix = aFex + (-maGx) = 0,
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Section 10.3 D’Alembert’s Principle and Inertial Forces 695

FIGURE 10.4   Inertial effects on
a rotating body.

We now apply d’Alembert’s principle, adding the applied torque, air resistance torque,
and reverse-effective torque and then equating the sum to zero. Next, we rearrange the equation
to find the angular acceleration in terms of the angular velocity.When the angular acceleration is
zero, the assembly has reached its terminal angular velocity, about 31.25 rad/s. At the terminal
angular velocity, the angular acceleration is zero, and the air resistance torque balances the
applied torque, plus or minus a small rounding error. Although a numerical procedure is used in
the detailed calculations, you may discover a closed-form solution for the terminal velocity.

The mechanical power (W) is given by the product of the angular velocity (rad/s) and the
applied torque The motor will, of course, be less than 100% efficient. Thus, the electric
power requirement is somewhat higher than the calculated mechanical power.
Detailed calculation.
Inertia of rotating body units: mks
Circular disk Radius     Thickness    

Material: steel, mass density     
mass

mass moment of inertia

Rectangular vane length 

mass 
distance from center of disk to center of vane 
mass moment of inertia

Assembly:
mass moment of inertia      

air resistance at midpoint of one vane  
total torque due to air resistance

Motor: Torque  Power  
Angular momentum H(v) :=  I # v

P(v) :=  T # vT  :=  25
Ta(v)  :=  2 # Fv(v) # x
k :=  0.025 Fv(v) :=  k # (v # x)2 # hv

# c 

I :=  Ic + 2 # Iv  I = 18.522

 Iv :=  Iv0 + mv
# x2   Iv = 7.235

 Iv0  :=  
mv

# (b2 + c2)

12
  Iv0 = 0.835

x :=  0.8
mv :=  10

c :=  1 width b :=  .05 depth hv:=1

Ic :=  
mc

# R0
2

2
 Ic = 4.051

mc :=  g # h # p # R0
2  mc = 90.025

g :=  8000
h :=  0.0398R0 :=  0.3

(N # m).
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696 Chapter 10 Dynamic-Force Analysis

Angular acceleration

Terminal angular velocity Estimate:

Force (air resistance) Torque  

Angular acceleration Power  
Angular momentum of hub

Check for 
Angular acceleration Power  

Using Animation Software to Display Transient Effects

In the preceding sample problem, torque, angular acceleration, and power were
expressed in terms of angular velocity. We sometimes need to know how these quanti-
ties vary with time. It is possible to work out the relationship mathematically. As an
alternative, we can “work smart’’ (or be lazy) and let animation software solve the
problem and plot the results.

SAMPLE PROBLEM 10.3

Transient Effects

Examine the motion of the assembly of Sample Problem 10.2.

a. Find the value of the following quantities at one-half second after starting the motor:
mechanical power, and angular position, velocity, and acceleration of the assembly.

b. Plot the following variables against time: air resistance on one blade, angular velocity
and angular acceleration of the assembly, and angular momentum of the disk.

Solution. The results at second and the plots against time are shown in Figure 10.5. The
plots agree with the terminal velocity calculations in the previous sample problem. In addition,
we can find the time at which the angular velocity is 20 rad/s and the corresponding angular
acceleration. Again the results agree with those of the previous example.

A Note on Fluid Resistance

The foregoing examples were used to illustrate dynamic effects, employing a very
rough approximation of fluid behavior. It is assumed that the relationship between air
resistance and speed is based on tests of similar assemblies. As an alternative, you can
determine drag coefficients and integrate the torque contributions over the surface of
the blade. If you study fluid mechanics, you will be able to develop a more precise
model of fluid resistance.

t = 0.5

P(v2) = 500a(v2) = 0.797
v = 20 v2 :=  20

Ic
# v1 = 126.6

P(v1) = 781.258a(v1) = -2.879 # 10-5

Ta(v1) = 25.001Fv(v1) = 15.625

v :=  20 v1 :=  root(a(v), v) v1 = 31.25

a(v) :=  
T - Ta(v)

I
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Air Resistance on Rectangle 8 Velocity of Circle 1

|F|

[rad/s]

24

16

12

8

4

32 326S

16

8

Acceleration of Circle 1

[rad/s^2]

1.6

0.8

1.2

0.4

[kg-m^2-rad/s]
128

64

96

32

8

Angular Momentum of Circle 1

Time

0.500 s

Rotation of Motor 3

Power of Motor 3

P                16.870 W �"                    1.349 rad/s^2

�                0.169 rad

Rot Velocity of Motor 3

�'                       0.675 rad/s
(a)

(b)

Rot Accel of Motor 3

20 2

t = 0.5
25 Nm torque
motor

8

3

32
32[s] 6 [s]

[s] 6

FIGURE 10.5   Inertial effects in Sample Problem 10.3.
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G�

�maG

�maG
�maG

h � 	IG�	/	maG	 h � 	IG�	/	maG	

Q � maG

�maG

�IG�

�Q

�Q

Q
h

aG

G

h

G

G

h

(a) (b)

(c) (d)

FIGURE 10.6   (a) Equivalent
offset inertial force associ-
ated with planar motion of a
rigid body. (b) Replacement
of the inertial torque by a
couple. (c) The strategic
choice of a couple. (d) The
single force is equivalent to
the combination of a force
and a torque in (a) .

Equivalent Offset Inertial Force

For purposes of graphical plane force analysis, it is convenient to define what is known
as the equivalent offset inertial force, a single force that accounts for both translational
inertia and rotational inertia corresponding to the plane motion of a rigid body. Figure
10.6a shows a rigid body, with planar motion represented by acceleration of the center
of mass of the body, and angular acceleration The inertial force and inertial
torque associated with this motion are also shown. The inertial torque can be
expressed as a couple consisting of forces Q and separated by perpendicular dis-
tance h, as shown in Figure 10.6b. The necessary conditions for the couple to be equiv-
alent to the inertial torque are that the sense and magnitude of the two be the same.
Therefore, in this case, the sense of the couple must be clockwise, and the magnitudes
of Q and h must satisfy the relationship

Otherwise, the couple is arbitrary and an infinite number of possibilities will work.
Furthermore, the couple can be placed anywhere in the plane.

Figure 10.6c shows a special case of the couple, where force vector Q is equal to
and acts through the center of mass of the body. Force must then be placed as

shown to produce a clockwise sense at a distance

(10.7)h =
ƒ IGa ƒ
ƒ Q ƒ

=
ƒ IGa ƒ
ƒ maG ƒ

 .

-QmaG

ƒ Qh ƒ = ƒ IGa ƒ .

-Q,
(-IGa)

a.aG,
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Section 10.4 Dynamic Analysis of the Four-Bar Linkage 699

Force Q will cancel with the inertia force leaving the single equivalent
offset force shown in Figure 10.6d, which has the following characteristics:

1. The magnitude of the force is 
2. The direction of the force is opposite to that of acceleration 
3. The perpendicular offset distance from the center of mass to the line of action of

the force is given by Eq. (10.7).
4. The force is offset from the center of mass so as to produce a moment about the

center of mass that is opposite in sense to acceleration 

The usefulness of this approach for graphical force analysis will be demonstrated in the
next section. Note, however, that the approach is usually unnecessary in analytical
solutions, wherein Eqs. (10.6a) through (10.6d), including the original inertial force and
inertial torque, can be applied directly.

10.4 DYNAMIC ANALYSIS OF THE FOUR-BAR LINKAGE

The analysis of a four-bar linkage will effectively illustrate most of the ideas that have
been presented. Furthermore, the extension to other types of mechanisms should
become clear from the analysis of the linkage.

SAMPLE PROBLEM 10.4

Dynamic-Force Analysis of a Four-Bar Linkage

In the four-bar linkage of Figure 10.7a, the dimensions are as shown in the figure, where G refers
to center of mass and the mechanism has the following mass properties:

Determine the instantaneous value of drive torque T required to produce an assumed motion
given by input angular velocity counterclockwise and input angular acceleration

for the position shown in the figure. Neglect gravity and friction effects.

Solution. This problem falls into the first analysis category described in Section 10.2; that is,
given the motion of the mechanism, determine the resulting bearing forces and the necessary input
torque. Therefore, the first step in solving the problem is to determine the inertial forces and iner-
tial torques.Thereafter, the problem can be treated as if it were a static-force analysis problem.

The mechanism can be analyzed kinematically by using the methods presented in Chapter
2, 3, and 4. Figure 10.7b shows a graphical analysis employing velocity and acceleration polygons.
From the analysis, the following accelerations are determined:

aG3 = 100,000∠308° mm/s2;     A3 = 2740 rad/s2 cw.

aG2 = 235,000∠312° mm/s2;     A2 = 520 rad/s2 ccw;

aG1 = 0 (stationary center of mass);  A1 = 0 (given);

a1 = 0
v1 = 95 rad/s

 m3 = 0.3 kg IG3 = 400 kg # mm2.
 m2 = 0.2 kg IG2 = 400 kg # mm2;
 m1 = 0.1 kg IG1 = 20 kg # mm2;

a.

aG.
ƒ maG ƒ .

Fi = -maG,
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32

1
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O1O3   � 70 mm
O1B     � 30 mm
BC       � 100 mm
BG2     � 50 mm
O3C     � 50 mm
O3G3   � 25 mm

O3

135

17
G3

G2

C

B

T

O1, G1

y

Velocity polygon

Acceleration polygon

x

(a)

(b)

2700

2380

14
6,

00
0

137,000

52,000

55,700

271,000 m
m/s 2

28
50

 m
m

/se
c

o

b

b'

c'

o'

g'3

g'2

c

   1 � 95 rad/s
   1 � 0


�

    2 � 23.6 rad/s ccw
    3 � 54.0 rad/s ccw





    G2  � 235,000 �312  mm/s2

    2     � 520 rad/s2 ccw
a
�

    G1  � 100,000 �308  mm/s2

    3     � 2740 rad/s2 cw
a
�

FIGURE 10.7   (a) The four-bar linkage of Sample Problem 10.4. (b) The velocity and accel-
eration analyses necessary for determining inertial forces and inertial torques.

Note that the angles of the acceleration vectors are measured counterclockwise from the posi-
tive x direction shown in the figure. From Eqs. (10.4a) and (10.4c), the inertial forces and inertial
torques are

 Fi3 = -m3aG3 = 30,000∠128° kg #  mm/s2 = 30∠128° N,
 Fi2 = -m2aG2 = 47,000∠132° kg #  mm/s2 = 47∠132° N,
 Fi1 = 0,
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1

2

3

O3O1, G1

C

132

G3

F3

h3

h2

G2

F2
B

T

128

r3

r2

1

2
3

O3O1, G1

C

G3

C3

G2

C2
F3x

F2x

F3y

F2y�2

�1 �3

B

T

r3

�3

r2

�2

�
1

(c)

(d)

FIGURE 10.7   (c) Equivalent offset inertial forces for members 2 and 3.
(d) Combinations of inertial forces and inertial torques for members 2 and 3.

and

The inertial forces have lines of action through the respective centers of mass, and the inertial
torques are pure torques.
Graphical Solution. To simplify the graphical force analysis, we will account for the inertial
torques by introducing equivalent offset inertial forces. These forces are shown in Figure 10.7c,
and their placement is determined according to the discussion of the previous section. For link 2,
offset force is equal and parallel to inertial force Therefore,

F2 = 47∠132° N.

F12.F2

Ci3 = -IG3a2 = 274,000 kg #  mm2/s2 ccw = 274 N #  mm ccw.

 Ci2 = -IG2a2 = 208,000 kg #  mm2/s2 cw = 208 N #  mm cw,
 Ci1 = 0,
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is offset from the center of mass, by a perpendicular distance equal to

measured to the left as shown in order to produce the required clockwise direction for the iner-
tial moment about point In a similar manner, the equivalent offset inertial force for link 3 is

at an offset distance

measured to the right from in order to produce the necessary counterclockwise inertia
moment about From the values of and and the angular relationships, the force positions

and in Figure 10.7c are computed to be

and

Now, we wish to perform a graphical force analysis for known forces and This has been
done in Sample Problem 9.2, and the reader is referred to that analysis. The required input
torque was found to be

and the bearing forces were also determined in that example. Free-body diagrams of the three
moving members are shown in Figure 9.11d.

Analytical Solution. Having determined the equivalent offset inertia forces and the
analytical solution could proceed according to Sample Problem 9.7, which examined the same
problem. However, it is not necessary to convert to the offset force, and here we will carry out
the analytical solution in terms of the original inertial forces and inertial couples.

Figure 10.7d shows the linkage with the inertial torques and the inertial forces in xy-coor-
dinate form. We define the following quantities:

 F1x = F1y = C1 = 0.

 C2 = -208 N #  mm; C3 = 274 N # mm;

 F3x = 30 cos(128°) = -18.5 N; F3y = 30 sin(128°) = 23.6 N;

 F2x = 47 cos(132°) = -31.4 N; F2y = 47 sin(132°) = 34.9 N;

 r1 = 0; r2 = 50 mm; r3 = 25 mm;

 f1 = 135°; f2 = 17°; f3 = 85°;

/1 = 30 mm; /2 = 100 mm; /3 = 50 mm;

F3,F2

T = 838 N #  mm cw,

F3.F2

r3 = O3G3 +
h3

cos (90°–85°–128°)
= 38.4 mm.

r2 = BG2 -
h2

cos (132°–17°–90°)
= 45.1 mm

r3r2

h3h2G3.
G3

h3 =
ƒ IG3A3 ƒ
ƒ m3aG3 ƒ

=
274
30

= 9.13 mm,

F3 = 30∠128° N,

G2.

h2 =
ƒ IG2A2 ƒ
ƒ m2aG2 ƒ

=
208
47

= 4.43 mm,

G2,F2
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Section 10.4 Dynamic Analysis of the Four-Bar Linkage 703

These data lead to approximately the same values as these found in Sample Problem 9.7 for the
coefficients and right-hand terms in Eqs. (9.17a) and (9.17b), where the differences are due to
round-off:

Then, from Eqs. (9.18a) through (9.22), we get

and

and it follows that

Thus, it can be seen that the form of the general analytical solution of the four-bar linkage pre-
sented in Chapter 9 as a study of static-force analysis is equally well suited to dynamic-force
analysis.

Before leaving this example, a couple of general comments should be made about it. First,
the torque that is determined is the instantaneous value required for the prescribed motion, and
the value will vary with position. Furthermore, for the position considered, the torque is opposite
in direction to the angular velocity of the crank.This opposition can be explained by the fact that
the inertia of the mechanism in the indicated position tends to accelerate the crank in the coun-
terclockwise direction, and therefore, the required torque must be clockwise to maintain a con-
stant angular speed. If a constant speed is to be maintained throughout the cycle of the
mechanism’s motion, there will be other positions of the mechanism for which the required
torque will be counterclockwise. The second comment is that it may be impossible to find a
mechanism actuator, such as an electric motor, that will supply the required torque-versus-posi-
tion behavior. This problem can be alleviated, however, in the case of a ‘‘constant’’ rotational
speed mechanism through the use of a flywheel, which is mounted on the input shaft and which
produces a relatively large mass moment of inertia for crank 1. The flywheel can absorb torque
and energy variations of the mechanism with minimal fluctuation in speed, thereby maintaining
an essentially constant input speed. In such a case, the assumed-motion approach to dynamic-
force analysis is appropriate.

SAMPLE PROBLEM 10.5

Dynamic-Force Analysis of an Air Pump

In Chapter 4, an acceleration analysis was carried out for a curved-wing air pump, utilizing an
equivalent four-bar linkage. (See Sample Problem 4.13 and Figure 4.15.) The equivalent linkage
considered in that example and the resulting acceleration polygon are reproduced here as
Figures 10.8a and b. This linkage represents the drive crank (link 1), one of the four curved wings
(link 2), and the housing (link 3), which constrains the motion of the tip of the wing (point C).

T = -185 N # mm.

F03 = 49.2 N,  F01 = 50.3 N,

F23 = 31.3 N,  F12 = 50.3 N,

a12  = 4.36;    a22 = -95.6;   b2 = -1,920.
a11 = -49.8; a21 = 29.2;   b1 = -786;
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Figure 10.8   (a) Dynamic-force analysis of a curved-wing air pump. The diagram shows
the equivalent four-bar linkage. (b) Acceleration polygon from Chapter 4. (c) The graphi-
cal force analysis.

Point D is the center of mass of the wing. The angular velocity of the shaft is constant at 400
rev/min counterclockwise. The acceleration of the center of mass of the wing at the instant
shown was found to have a magnitude of and the direction shown in the acceleration
polygon (Figure 10.8b). The instantaneous angular acceleration of the wing was determined to
be counterclockwise.

Perform a dynamic-force analysis of the mechanism to determine (1) the restraining force
exerted by the housing on the wing at point C at the instant shown in the figure and (2) the nec-
essary drive torque on link 1 associated with the inertial force and torque of the wing. The
weight of the wing is 1 lb and the moment of inertia about the wing’s center of mass is

Furthermore, assume that the coefficient of sliding friction between the wing and
the housing is 0.2. Neglect friction at pins and B. (As mentioned in Chapter 4, these dimen-
sions may not correspond to an actual pump and are used here to illustrate general principles of
force analysis only.)

O1

0.004 lb # s2 # in.

265 rad/s2

5400 in/s2
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Section 10.4 Dynamic Analysis of the Four-Bar Linkage 705

Solution. The solution will be carried out graphically. First, we must determine the inertial
forces and inertial torques. For link 1, we assume that the center of mass is coincident with the
stationary point of rotation, since the member is symmetric (see Figure 4.15), and therefore,
the associated inertial force is zero. Further, the inertial torque for member 1 is also zero,
because the angular acceleration is zero. Since a moving member 3 does not actually exist, there
are obviously no corresponding inertial terms for that member. Member 2 has an inertial force
given by

which has a magnitude of

and a direction opposite to that of acceleration with a line of action through point D. The
inertial torque of member 2 has a magnitude equal to

and a clockwise direction opposite to that of the angular acceleration.
Since the analysis will be graphical, we will make use of an equivalent offset inertial force

for member 2. This force has a magnitude of 14.0 lb, a direction opposite to and a line of
action that is displaced by the perpendicular distance

from the center of mass.
Inspection of Figure 10.8a shows that the offset should be downward from point D in

order to produce a clockwise inertial torque. Note that the offset is negligible in this example.
Figure 10.8c shows a free-body diagram of member 2 with the offset inertial force placed on the
diagram to a suitable scale. The member is a three-force member with known force and
unknown forces at points B and C. We can, however, determine the direction of the force
exerted by the housing at point C. In the absence of friction, it would act normal to the contact-
ing surfaces—that is, along imaginary link 3 toward point With friction present, that force
acts at an angle to the normal, given by Eq. (9.32):

The direction in which this angle is measured is based on the relative motion of the contacting
surfaces and should produce a friction force that opposes that motion. In Figure 10.8a, point C
on the wing moves counterclockwise relative to the housing: and therefore, the angle is laid off
as shown in Figure 10.8c, thus producing a clockwise-acting friction force of the housing on the
wing. This establishes the line of action of force in Figure 10.8c.

Now, knowing the lines of action of forces and we can find the location of the point
of concurrency, P, at the intersection of these lines and thereby obtain the line of action of the
third force applied at point B. Next, the force polygon for member 2 is constructed, as shown
in Figure 10.8c. Finally, member 1 is subjected to two forces and a torque. (See the free-body dia-
gram of Figure 10.8c.) Force is equal and opposite to force and force is, in turn, equal
and opposite to force 

We can now address the specific requirements of the problem.
F21.

F01F12,F21

F12,

F32,F2

F32

tan f = 0.2, or f = 11.3°.

O3.

F2

h2 =
IG2a2

m2aD
=

1.06
14.0

= 0.076 in

aD,F2

ƒ C2 ƒ = ƒ IG2a2 ƒ = (0.004 lb # s2 # in) (265 rad/s2) = 1.06 lb # in

aD

Fi2 = m2aD = ¢w2

g
≤aD = ¢ 1 lb

386.4 in/s2 ≤  (5400 in/s2) = 14.0 lb

Fi2 = -m2aD

O1,
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From the force polygon of Figure 10.8c, the force of the housing on the wing has a
magnitude of approximately 11 lb and the direction shown. The components of this force are a
normal force of magnitude and a friction force of magnitude

The required shaft torque is equal in magnitude to the moment produced by the force
couple That is,

and, by inspection, the torque must be counterclockwise. Note that a complete force analysis of
the pump would also consider the other wings and forces produced by air pressure.

10.5 DYNAMIC ANALYSIS OF THE SLIDER-CRANK MECHANISM

Dynamic forces are a very important consideration in the design of slider-crank mech-
anisms for use in machines such as internal-combustion engines and reciprocating
compressors. A dynamic-force analysis of this mechanism can be carried out in exactly
the same manner as for the four-bar linkage in the previous section. In accordance with
such a process, a kinematic analysis is first performed, from which expressions are
developed for the inertial force and inertial torque for each of the moving members.
These quantities may then be converted to equivalent offset inertial forces for graphi-
cal analysis, or they may be retained in the form of forces and torques for an analytical
solution, utilizing, in either case, the methods presented in Chapter 9. In fact, the analy-
sis of the slider-crank mechanism is somewhat easier than that of the four-bar linkage,
because there is no rotational motion and, in turn, no inertial torque for the piston or
slider, which has translational motion only. The next few paragraphs describe an ana-
lytical approach in detail.

Figure 10.9a is a schematic diagram of a slider-crank mechanism, showing crank 1,
connecting rod 2, and piston 3, all of which are assumed to be rigid.The locations of the
center of mass are designated by letter G, and the members have masses and
moments of inertia for The analysis that follows will consider the rela-
tionships of the inertial forces and torques to the bearing reactions and the drive
torque on the crank, at an arbitrary position of the mechanism given by crank angle 
Friction will be neglected.

Figure 10.9b shows free-body diagrams of the three moving members of the link-
age. Applying the dynamic equilibrium conditions of Eqs. (10.4a) through (10.6d) to
each member yields the required set of equations. For the piston (moment equation
not included),

(10.8a)

and

(10.8b)F03y + F23y = 0.

F23x + (-m3 aG3) = 0

f.

i = 1, 2, 3.IGi,
mi

T1 = (10 lb) (1.3 in) = 13 lb # in,

(F21, F01).
T1

11 sin(11.3°) = 2.2 lb.
11 cos(11.3°) = 10.8 lb

F32
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�

G3
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G1
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�
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3
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�G

FIGURE 10.9   (a) Dynamic-force analysis of a slider-crank mechanism. (b) Free-
body diagrams of the moving members.

For the connecting rod (with moments about point B),

(10.8c)
(10.8d)

and

(10.8e)

For the crank (with moments about point ),

(10.8f)
(10.8g)F01y + F21y + (-m1 aG1y) = 0,

F01x + F21x + (-m1 aG1x) = 0,

O1

 + (-m2 aG2y) /G cos u + (-IG2 a2) = 0.

 F32x / sin u + F32y / cos u + (-m2 aG2x) /G sin u

F12y + F32y + (-m2 aG2y) = 0,
F12x + F32x + (-m2 aG2x) = 0,
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708 Chapter 10 Dynamic-Force Analysis

and

(10.8h)

where is the input torque on the crank. This set of equations embodies both of the
dynamic-force analysis approaches described in Section 10.2; however, its form is best
suited for the case where the motion of the mechanism is known, as illustrated by the
next sample problem.

SAMPLE PROBLEM 10.6

Dynamic-Force Analysis of a Slider-Crank Mechanism

Perform a dynamic-force analysis of the in-line slider-crank mechanism for which a kinematic accel-
eration analysis was carried out in Sample Problem 4.8.That mechanism has dimensions in
and in and a known motion based on a crank angular velocity of and an
angular acceleration of when the crank angle is (therefore, ).
We assume, for the purpose of this example, that the locations of the center of mass are in
and in and that the mass properties are 

and 

Solution. From the previous acceleration analysis in Chapter 4, the following quantities are
obtained:

The inertial force components and inertial torques are calculated as follows:

 -m3aG3 = - ¢ 3
386.4

≤  (-70) = 0.543 lb.

 -IG2a2 = -(0.02) (46) = -0.92 lb # in;

 -m2aG2y = - ¢ 2
386.4

≤  (-80.0) = 0.414 lb;

 -m2aG2x = - ¢ 2
386.4

≤  (-106) = 0.549 lb;

 -IG1a1 = -(0.01 lb # s2 # in) (40 rad/s2) = -0.4 lb # in;

 -m1aG1y = - ¢ 1
386.4

≤  (-79.5) = 0.206 lb;

 - m1aG1x = - ¢ 1 lbm

386.4 lbm # in/s2 # lb
≤  (-71.6 in/s2) = 0.185 lb;

 aG2x = -106 in/s2.

 a1 = 40 rad/s2,    aG3 = -70 in/s2,

 aG1y = -79.5 in/s3,  a2 = 46 rad/s2,

 aG1x = -71.6 in/s2, aG2y = -80.0 in/s2,

IG2 = 0.02 lb # s2 # in.IG1 = 0.01 lb # s2 # in,
m3 = 3 lbm,m2 = 2 lbm,m1 = 1 lbm,/G = 1.88

rG = 1
u = 30°f = 70°a1 = +40 rad/s2

v1 = +10 rad/s/ = 3.76
r = 2

T1

 + (-m1aG1y)rG cos f + (-IG1a1) = 0,

 T1 - F21x r sin f + F21y r cos f-(-m1 aG1x)rG sin f
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Section 10.5 Dynamic Analysis of the Slider-Crank Mechanism 709

Substituting into Eqs. (10.8a) and (10.8e) yields

and, from Eq. (10.8b),

Using Eqs. (10.8c) and (10.8d), we have

and

From Eqs. (10.8f) and (10.8g),

and

Finally, substituting into Eq. (10.8h), we find the required input torque for the prescribed motion
to be

Thus, an instantaneous counterclockwise torque of is required at the mechanism posi-
tion considered.

Designers of slider-crank linkages for applications such as engines and compres-
sors often use approximations, to simplify the analysis task. These approximations
which deal with the mass distribution of the connecting rod and the acceleration of the
piston, are the topics of the next several sections and will also be useful in a later sec-
tion of this chapter on balancing reciprocating masses. In addition, we will analyze this

2.54 lb # in

 = 2.54 lb # in.
 + (0.185) (1) sin (70°) - (0.206) (1) cos (70°) + 0.4

T1 = (1.09) (2) sin (70°) - (0.018) (2) cos (70°)

F01y = -0.018 - 0.206 = -0.224 lb.

F01x = -1.09 - 0.185 = -1.28 lb

F12y = -F21y = -0.396 - 0.414 = -0.018 lb.

F12x = -F21x = -0.543 - 0.549 = -1.09 lb

F03y = -0.396 lb.

 = -0.396 lb,

 =
0.543(3.76) sin 30° - 0.549(1.88) sin 30° - 0.414(1.88) cos 30° + 0.92

3.76 cos(30°)

 F32y = -F23y

 F23x = -0.543 = -F32x
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710 Chapter 10 Dynamic-Force Analysis

mechanism from the two standpoints discussed earlier, namely, force analysis under
assumed motion and motion analysis under assumed forces.

Using Motion-Simulation Software for Dynamic Force Analysis
of Linkages

The analysis in Sample Problem 10.6 required substantial effort. Is there a better way
to get the correct result? Mathematics software and motion simulation software
should be considered when it is necessary to analyze a linkage through a full cycle of
motion. And since improved design is the goal of analysis, mathematics software and
motion simulation software offer another advantage: We can do ‘‘what if’’ analysis and
find the effect of a proposed design change with a few keystrokes. Designers some-
times look at inertial forces alone, leaving out gas forces on the piston, etc. Then they
use the result of this analysis to design and specify mounts for isolating vibration.

SAMPLE PROBLEM 10.7 

Using Motion-Simulation Software for Dynamic Force Analysis of a Slider-Crank Linkage

A pump in the form of an in-line slider-crank linkage has a 51-mm crank length and 96-mm con-
necting-rod length. The crank, connecting rod, and piston masses are 0.45, 0.91, and 1.36 kg,
respectively. Mass moments of inertia are and for the crank and
connecting rod, respectively (about their centers of gravity). The crank angular velocity is a con-
stant 100 rad/s. Plot the motor torque and linkage motion against time. Find the maximum motor
torque and the corresponding values of power, linkage motion, and forces.

Decisions. We will examine inertial forces for the purpose of selecting vibration mounts. Fluid
forces on the piston are not considered.

Solution. Working is used to animate the linkage and plot the results, beginning at
the head-dead-center position. The maximum torque is at crank position 
rad and Note that discrete time steps are used; the accuracy of these values
depends on the size of the step. (See Figure 10.10 for a detailed solution.)

Verifying the Results of a Simulation

We cannot rely totally on the results of mathematics software and motion simulation
software. In addition, we should obtain plenty of output data and make simple checks
of validity. Software errors are not unknown, but most discrepancies are the result of
data entry errors. We can check velocity and acceleration at limiting positions and
Newton’s laws come in handy for checking forces and torques. If a connecting rod or
coupler is temporarily given a very small mass and mass moment of inertia, then it
approximates a two-force member. In that case, we can check whether the forces at
either end balance and lie along the member.At high angular velocities, inertial effects
are dominant and gravity forces are not important. For machines with heavy links
moving at relatively low speeds, the weight of a link may be significant compared with
the product of its mass and acceleration. When gravity forces are included in a simula-
tion, the orientation of the linkage (relative to the vertical) is important.

t = 0.0059 s.
u1 = 0.5943.04 N # m

ModelTM

7.008 # 10-4 kg # m29.845 # 10-5
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t                   0.006 s

Torque of Motor 6

P            4304.254 W

Force of crankpin

Fx

Fy

|F|

Fx -1192.326 N

Fy 217.194 N

|F| 1211.947 N

Crank ang pos, vel, acc

P�

V�

A�

P� 0.590 rad

V� 100.000 rad/s

A� -1.082e-010 rad/s^2

Con rod ang pos,vel,acc

P�

V�

A�

P� -0.300 rad

V� -46.216 rad/s

A� 2433.477 rad/s^2

Piston pos, vel, acc

Px

Vx

Ax

Px 0.134 m

Vx -4.149 m/s

Ax -550.675 m/s^2

Con rod ang pos, vel, acc

P�

V�

A�

Force on wristpin

Fx

Fy

|F|

Fx 748.918 N

Fy -346.318 N

|F| 825.115 N

1.000

[rad]

[rad/s]

[rad/s^2]

�2 
2 �2

0.020 (s)

Piston pos, vel, acc

Px

Vx

Ax

0.200

[m]

[m/s]

[m/s^2]

0.020 [s]

a

a

v

v

x

[N-m]

0.000

-32.000

0.010 0.030 0.050 [s] 0.070

C

B

01

Full scale: +/-
1 rad,100rad/s,10000rad/s^2,0.2m,8m/s,800m/s^2

r1=0.051 r2=0.096
m1=0.45 m2=0.91 m3=1.36

Torque       43.043 N-m

Time

Power of Motor

Motor torque 50 N m full scale

FIGURE 10.10   Using motion-simulation software for the dynamic force analysis of a slider-crank linkage.
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712 Chapter 10 Dynamic-Force Analysis

SAMPLE PROBLEM 10.8

Checking a Simulation

Spot-check the results of Sample Problem 10.7.

Decisions. We can use known relationships from earlier chapters, particularly the values at
limiting positions. We can also rerun the simulation, use Newton’s laws, and begin a new simula-
tion with a small connecting-rod mass.

Solution. The power transmitted by the motor equals the product of the torque and the angu-
lar velocity. The horizontal force on the crankpin (reverse effective force) equals the product of
the piston mass and acceleration, with a change in sign. These calculations check exactly. For
constant angular velocity of the crank, the crank position is proportional to time.We see that the
curve of torque vs. time is antisymmetric about seconds, or crank position radians. The
net work over a full cycle is zero, because we considered only inertial effects. Checking the plots
of piston position, velocity, and acceleration, we see that zero velocity corresponds to the
extreme piston positions and that the greatest positive and negative velocities occur when the
acceleration is zero.

A real machine could not go from zero to 100 rad/s crank speed instantaneously. Thus,
accelerations at zero time are meaningless in this simulation. Let us go back to Chapter 4 to find
the acceleration of the piston at top dead center. At the end of the first cycle, the acceleration
should be

where the subscripts 1, 2, and 3 refer to the crank, connecting rod, and piston, respectively. The
closest point to a crank position of radians essentially agrees with the calculated acceleration.

We could have checked the connecting-rod equilibrium with the use of d’Alembert’s prin-
ciple—that is, by including the reverse effective force and torque. Instead, the simulation is
repeated with a connecting rod mass of 1 gram. The rod should then behave approximately as a
two-force member. Forces on either end of the connecting rod (on the crankpin and wrist pin)
are almost exactly equal and opposite. Finally, arctangent checks the angular position of
the connecting rod.

Fluid Forces and Dynamic Forces on a Linkage

Most real-world machines are intended to perform some task resulting in external
forces or torques and requiring a net energy input. If a motor drives the crank of a
slider-crank linkage, the integral of the power input with respect to time over a full
cycle is positive.

SAMPLE PROBLEM 10.9

Analysis of a Linkage Subject to Fluid Forces

The piston of a pump is subject to fluid forces given by
when (i.e, when the piston is moving toward the cylinder head) and

otherwise,Fd = 0
vC 7 0Fd = -60 vC

 2

(Fy  /Fx)

2p

a3 = -r1 v1
 2 [1 + r1/r2] = -0.051 # 1002 [1 + 0.051/0.096] = -780.9 m/s2,

pp/100
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Section 10.5 Dynamic Analysis of the Slider-Crank Mechanism 713

where force (N) resisting piston motion and

The pump will have the form of an in-line slider-crank linkage with a 50-mm crank length and
90-mm connecting-rod length. The crank, connecting rod, and piston masses are 1.5, 1, and 2 kg,
respectively. The mass moments of inertia are and for the crank
and connecting rod, respectively (about their centers of gravity). The crank angular velocity is a
constant 100 rad/s. Plot the motor torque and linkage motion against time. Find the maximum
motor power and the corresponding values of the torque, linkage motion, and forces.

Decisions. We will use Working inserting a damper that applies a force to the piston
proportional to the square of its velocity.

Solution. The maximum motor power is 12.89 kW, occurring at 49.1 milliseconds, correspond-
ing to crank position rad measured from the head-dead-center position. The actual
input energy depends on the efficiency of the motor. For example, if we use an electric motor
with 85% efficiency, the approximate electrical power load would peak at 

Since the angular velocity is a constant 100 rad/s, we can multiply the time scale of the
torque curve by 100 to get a curve of the crank torque vs. crank position. The area under that
curve represents mechanical work in During the first
half of the cycle, the torque is dependent on inertia of the parts only; the work input is followed
by ‘‘coasting.’’ During the second half of the cycle, the piston is opposed by fluid pressure, and
there is net work input. The detailed solution is shown in Figure 10.11.

Compound Linkages

Motion simulation software can save considerable time when we are required to design
and analyze multibar linkages. The time saved in analysis can be used for interpreting
the results of the analysis and for redesigning the linkage on the basis of those results.

SAMPLE PROBLEM 10.10

Dynamic Analysis of a Multibar Linkage

Figure 10.12a shows a linkage made up of a four-bar linkage, a connecting rod, and a slider. At
the initial position of the linkage, the crank and the coordinates of the points shown
are given in mm as follows:

Motor 0, 0 Fixed point 140, 0

B: 52,0 D: 35.5,

C: 95.4, Reentrant corner of coupler: 51.7,

Wrist-pin path: x, E: 151.2,

The bodies have the following masses (kg) and mass moments of inertia respectively:

Drive crank 0.08, 8.0 Coupler BDC: 0.20, 109.225

Driven crank 0.150, 60 Connecting rod DE: 0.18, 216.035

Piston E: 0.25, 30.9 

03C:

01B:

(kg # mm2),

-50-50

-71-90.6

-81.6

03:01:

angle = 0,

newton-meters = watt-seconds = joules.

12.89/0.85 = 15.2 kW.

u1 = 4.91

ModelTM,

6.771 # 10-4 kg # m23.156 # 10-4

vC = piston velocity (m/s).
Fd = fluid
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Force of crankpin
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FIGURE 10.11   Fluid forces and dynamic forces on a linkage

718



Section 10.5 Dynamic Analysis of the Slider-Crank Mechanism 715

B

C

01 (motor)

E

D

03 (Fixed)

FIGURE 10.12   (a) Dynamic analysis of a compound linkage.

a. Find the number of degrees of freedom of the linkage.

b. A motor drives the crank at a constant speed of 3000 rpm counterclockwise. Plot the pis-
ton position, velocity, and acceleration against time.

Determine the following for the instant that the magnitude of the piston acceleration is
maximum: crankshaft position; piston position, velocity, and acceleration; and forces
applied by the connecting rod to the wrist pin. Sketch the linkage for this instant.

c. Plot the horizontal, vertical, and resultant forces applied to the wrist pin by the connect-
ing rod against time.

d. Is the force applied by the connecting rod to the wristpin in the x direction consistent
with the piston acceleration?

Solution. (a) This is a planar linkage with six links, including the frame. There are six revolute
joints and one sliding pair, for a total of seven pairs, each having one degree of freedom.The num-
ber of degrees of freedom for the linkage are given by the following equation (see Chapter 1):

Thus, we can determine the linkage motion and inertial forces if the motion of one link is specified.
(b) Working was used to obtain the plots, sketch, and values shown in Figure 10.12b.
(c) See Part c of the figure.
(d) The force applied by the connecting rod to the wrist pin in the x direction is about

Applying d’Alembert’s principle to horizontal forces on the piston yields

-1,687.75 - (0.25) (-6,751) = 0.

-1687.75N.

ModelTM

DFplanar = 3(nL - nJ - 1) + © fi = 3(6 - 7 - 1) + 7 = 1.
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Px

Vx/

Ax/

Px mm

Vx/100

Ax/100,800

a/100,000

x
v/100

64.000

0.000

-64.000

-128.000

0.002 0.006
03 [fixed]

C

E

0.010 0.014 t0.018

Px

Vx

Ax

Piston: x, v, a

Px 160.008 mm

Vx -1972.889 mm/s

Ax -6751014.460 mm/s^2

Piston: x, v, a

P� 5.845 rad

V� 314.159 rad/s

A� 0.000 rad/s^2

Crank ang. pos,vel,acc

P�

V�

A�

Fx -1687.754 N

Fy -1346.745 N

|F| 2159.221 N

Wristpin force

Fx

Fy

|F|

01 [motor]

B

time millisec

t 18.600

D

FIGURE 10.12 (b) Piston motion plotted against time. The linkage is sketched at the instant the magnitude of the piston acceleration is maximal; corre-
sponding motion and force values are shown.
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Fx

Fx Fx
Fx

Fx

Fy

Fy
Fy

|F|

|F|

|F|

Wristpin force

-2048.000

2048.000

-1024.000

1024.000

0.000

time (s)
0.010 0.020

FIGURE 10.12 (c) The forces applied by the connectiong rod to the wrist pin, and the resultant
force in the x and y directions are all plotted against time.

Equivalent Inertia

The slider-crank mechanism of Figure 10.9a is reproduced in Figure 10.13a. The crank
and piston perform rotational motion and rectilinear motion, respectively, which are
relatively simple motions to analyze. The connecting rod exhibits a more complex
motion, except for the special points B (the crankpin) and C (the wrist pin). These
points coincide with points on the crank and piston, and therefore, point B has a circu-
lar path and point C follows a straight-line path.

Because of the simplified kinematics for points B and C, we will examine the pos-
sibility of representing the mass distribution of the original connecting rod by an
equivalent body consisting of two point masses and at points B and C, respec-
tively, connected by a massless rigid rod. (See Figure 10.13.) The two members are
equivalent for dynamic analysis purposes if the following three conditions are satisfied:

1. The centers of mass must be at the same location, point 
2. The total masses must be equal.
3. The moments of inertia with respect to the center of mass must be equal.

G2.

mCmB
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1

2

3

G1
G2

G2

G3

O1

mB

B

C

(a)

(b)

(c)

�

�

r

Point mass model m

Original connecting rod
C

C

B

�C

G2

m2, IG2

�BB

With reference to Figure 10.13b, these conditions can be expressed mathematically as

1.
2.

and

3.

Since there are only two adjustable quantities ( and ) in these equations, not all
three conditions will be satisfied in general.Therefore, the point-mass representation is
an approximation of the original connecting rod. Using the first two equations to set
values for masses and we have

(10.9a)mB = ¢ /C

/B + /C
≤  m2 = ¢ /C

/
≤m2

mC,mB

mCmB

mB /B
2 + mC /C

2 = IG2.

mB + mC = m2,
mB /B = mC /C,

FIGURE 10.13   (a) A slider-crank mech-
anism. (b) A point-mass approximation
of the continuous-mass connecting rod.
(c) An engine connecting rod.
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Section 10.5 Dynamic Analysis of the Slider-Crank Mechanism 719

and

(10.9b)

The accuracy of the approximation employing these point masses will depend on how
closely the third condition is satisfied. There are many actual geometries for which
such an approximation is quite satisfactory. For example, Figure 10.13c shows an
engine connecting rod that can be modeled this way.

Approximate Dynamic Analysis Equations

In this section, we make use of the point-mass approximation of the previous section to
derive equations for the dynamic analysis of the slider-crank mechanism. Figure 10.14a
shows the mechanism and includes pertinent information. Note that the center of mass
of the crank is located at fixed pivot for this analysis.As a result, the associated iner-
tial force will be zero. The more general analysis of Eqs. (10.8a) through (10.8h) can be
applied when the center of mass is located elsewhere.

O1

mC = ¢ /B

/B + /C
≤  m2 = ¢ /B

/
≤m2.

1

1

2

2

3

3

O1

B

B

F01y

F21y

F21x

F12y

F32y

F32x

F23x

F23y

F03y

F12x

F01x

�I01   1

�mBaB

�mCaC

�m3aC

T

C

C

�




x

y

(a)

(b)

B

�

CG3

�

r
1, 1

O1, G1

�

�

FIGURE 10.14   (a) Approximate dynamic analysis of a slider-crank mechanism. (b) Free-
body diagrams of the moving members.
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Figure 10.14b contains free-body diagrams of the three moving links, including
inertial forces and torques. The piston is not acted upon by an inertial torque, because
its angular acceleration is zero. The two inertial forces shown for the equivalent con-
necting rod represent the combined inertial force and inertial torque of the actual con-
necting rod. Bearing forces are shown in the figure in terms of x and y components.
Expressing the inertial forces in component form, we have

(10.10)

(10.11a)

and

(10.11b)

where the accelerations and will, in general, be functions of the crank angular
position, velocity, and acceleration and the linkage dimensions. Summing forces on the
piston in the x and y directions yields

From the first of these equations,

(10.12)

Writing a moment equation for link 2 about point B, we obtain

from which it follows that

(10.13)

Summing forces on the connecting rod, we have

(10.14)

and

(10.15)

Finally, summing moments on the crank about pivot produces

(10.16)

Notice that, in the determination of bearing forces, it is necessary to distinguish, for
example, between the mass of the connecting rod at point C and the mass of the piston
at that same point C. Similarly, mass is on the connecting-rod side of crankpin B.

The analysis just described is similar to using Eqs. (10.8a) through (10.8h), but
includes the point-mass approximation of the connecting rod.The next several sections

mB

T = IG1a1 + F21xr sin f-F21yr cos f.

O1

F12y = -F21y = F01y = mBaBy - (mC + m3)aCx tan u

F12x = -F21x = F01x = mBaBx + (mC + m3)aCx

F32y = -F23y = F03y = (mC + m3) aCx tan u.

(F32x - mCaCx)/ sin u + F32y/ cos u = 0,

F23x = -F32x = m3aCx.

F23x - m3aCx = 0
F03y - F23y = 0.

aCaB

-m3aC = -m3aCxi,

-mCaC = -mCaCxi,

-mBaB = -mBaBxi - mBaBy j,
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will illustrate how the model, in conjunction with an approximation dealing with the
kinematics of the mechanism, can be applied to a variety of operating conditions.

Dynamic-Force Analysis for an Assumed Motion 
of a Mechanism

Suppose we wish to determine the bearing forces and required crankshaft torque dur-
ing a complete cycle of the mechanism for the case where the angular velocity of the
crank is assumed to be constant. We will substitute analytical acceleration expressions
for this motion into the equations derived in the previous section. The result will be
equations for the bearing forces and input torque as functions of the parameters (i.e.,
dimensions, masses, etc.) of the mechanism and the crank angle for constant crank
speed 

From Figure 10.14, the acceleration is determined by differentiating the posi-
tion vector

(10.17)

The velocity and acceleration so obtained, with constant, are

(10.18)

and

(10.19)

and, therefore, the associated inertial force is

(10.20)

This is a centrifugal force directed radially outward along the crank. Equations 10.14
through 10.16 indicate that torque T is independent of this inertial force.

From Figure 10.14a, the position vector for point C is

(10.21)

Angle can be expressed in terms of from the relationship

(10.22)

which leads to

(10.23)

This expression can be substituted into the position vector and the result differentiated
twice to obtain the exact acceleration. Alternatively, we introduce an approximate

cos u = 21 - sin2 u = A1 - a
r

/
 sin fb

2
.

/ sin u = r sin f,

fu

RC = (r cos f + / cos u)i.

-mB aB = mB rv1
2(cos fi + sin fj).

aB = -rv1
2 cos fi + rv1

2 sin fj,

vB = -rv1 sin fi + rv1 cos fj

v1

RB = r cos fi + r sin fj.

aB

(a1 = 0).
f

v1
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722 Chapter 10 Dynamic-Force Analysis

form that will reduce the mathematical complexity and that is quite satisfactory for crank-
length-to-connecting-rod-length ratios commonly found in engines and compressors.

The following binomial series will be utilized:

(10.24)

This is an infinite series that holds for magnitudes of Since r must be less than 
if the crank is to rotate completely, and since cannot exceed unity, the series can
be used in Eq. (10.23) with

(10.25)

Furthermore, the square root may be approximated by a truncated partial sum of the
infinite series. Using the first two terms of the series, we have

(10.26)

Because s is proportional to this approximation will be more accurate for
smaller values of . For example, for the magnitude of the third term in Eq.
(10.24) will be less than 0.0005, which is small enough to be neglected in most analyses.

Substituting the trigonometric identity

we find that Eq. (10.26) becomes

(10.27)

and it follows that

(10.28)

Differentiating twice with held constant, we have

(10.29)

and

(10.30)aC = ¢ -rv1
2 cos f-

r2v1
2

/
 cos 2f≤ i.

vC = ¢ -rv1 sin f-
v1r

2

2/
 sin 2f≤ i

v1

RC = ¢/ -  
r2

4/
+ r cos f +

r2

4/
 cos 2f≤i.

cos u � 1 -
1
4

 ¢ r

/
≤2

+
1
4

 ¢ r

/
≤2

 cos 2f,

sin2 f =
1
2

-
1
2

 cos 2f,

r// … 1
4,r//

(r//)2,

cos u � 1 -
1
2

 ¢ r

/
≤2

 sin2 f.

s = ¢ r

/
 sin f≤2

.

sin f
/s 6 1.

21 - s = 1 -
1
2

 s -
1
8

 s2 -
1
16

 s3 - Á .

726



Section 10.5 Dynamic Analysis of the Slider-Crank Mechanism 723

The corresponding inertial forces are

(10.31)

and

(10.32)

Substituting the expressions for the acceleration into the previous force analysis
equations, Eqs. (10.12) through (10.16), leads to the following relationships for the
bearing forces and crankshaft torque:

(10.33)

(10.34)

(10.35)

(10.36)

and

(10.37)

These are explicit relationships among forces, motion, and design parameters having to
do with the mechanism that are useful to the design engineer who must properly size a
mechanism for a given set of performance requirements.

In the absence of friction, the superposition principle can be applied to deter-
mine the combined effects of cylinder pressure forces and inertia of the mechanism.
The force analysis for an external piston force has been presented in Chapter 9.

SAMPLE PROBLEM 10.11

Dynamic Analysis of a Slider-Crank Mechanism under Assumed Input Motion

An in-line slider-crank mechanism has a crank length a connecting-rod length
and a reciprocating mass Determine the variation in torque

required over a complete cycle in order to maintain a constant crank speed of 1000 rev/min.
(mc + m3) = 0.6 kg./ = 0.16 m,

r = 0.04 m,

T = (mC - m3)r2v1
2 sin f¢cos f +

r

/
 cos 2f≤  ¢1 +

r cos f2/2 - r2
 sin2 f

≤ .

 +
(mC + m3) r2v1

2 sin f [cos f + (r//) cos 2f]2/2 - r2
 sin2 f

,

 F12y = F01y = -mB rv1
2 sin f

 F12x = F01x = -mB rv1
2 cos f-(mC - m3) rv1

2¢cos f +
r

/
 cos 2f≤ ,

 F32y = F03y =
-(mC - m3)r2v1

2 sin f [cos f + (r//) cos 2f]2/2 - r2
 
 sin2f

,

 F32x = m3 rv1
2 ¢cos f +

r

/
 cos 2f≤ ,

- m3 aC = m3 rv1
2¢cos f +

r

/
 cos 2f≤i.

- mC aC = mC rv1
2¢cos f +

r

/
 cos 2f≤ i
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FIGURE 10.15   Input torque versus crank angle for the slider-crank mechanism of Sample
Problem 10.11. The input crank is assumed to have a constant velocity of 1,000 rev/min.

Solution. The angular velocity is

Substituting this value and the given data into Eq. (10.37), we find that the crank torque, as a
function of crank angle , is

The torque is plotted as a function of in Figure 10.15.

Dynamic-Motion Analysis for an Assumed Input Torque

In this section, the dynamic analysis equations derived previously will be employed in
dynamic-motion analysis, sometimes referred to as time-response analysis. Here, the
motion of the mechanism is not assumed and is treated as an unknown. Instead, an
assumption will be made about the input torque T representative of the behavior of a
typical driving device. Once again, although a totally general analysis can be under-
taken, the approximations that were described and that are typically valid, will be
imposed to simplify the mathematical development somewhat.

f

T = 10.53 sin f (cos f + 0.25 cos 2f)B1 +
0.25 cos f21 - (0.25 sin f)2

RN # m.

f

v1 =
1000 rev/min

60 s/min
# 2p rad/rev = 104.72 rad/s.

v1
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FIGURE 10.16   A slider-crank mechanism
for which a dynamic-motion analysis is to
be performed.

Consider the slider-crank mechanism shown in Figure 10.16. The inertial effects
of the rotating part of the connecting-rod mass (mass ) can be nullified by counter-
weighting the crank; assuming that that has been done in this case, we set The
net mass moment of inertia of the crank will then be referred to as I. Further, let

The mechanism is to be driven by an electric motor, governed by the
following torque–speed equation, which is a function of the motor characteristics:

(10.38)

Here, A and B are motor constants. The relationship embodied in Eq. (10.38) which is
typical of some DC motors, indicates that the input torque varies inversely with the
crank speed; that is, the torque increases as decreases and decreases as increases.
We wish to determine the motion of the mechanism when it is driven by such a motor.

Substituting Eqs. (10.14), (10.15), and (10.38) into Eq. (10.16), with we
obtain

Rearranging terms yields

(10.39)

Acceleration is obtained by differentiating Eq. (10.29), where now 

(10.40)

Substituting into Eq. (10.39) yields

(10.41)K1 
d2f

dt2 + B 
df

dt
+ K2¢df

dt
≤2

- A = 0,

 = -ra1Bsin f + ¢ r

2/
≤sin 2fR - rv1

2Bcos f + ¢ r

/
≤cos 2fR .

 acx = -ra1 sin f -  rv1
2 cos f -  ¢a1r

2

2/
≤  sin 2f -  ¢v1

2r2

/
≤  cos 2f

a1 Z 0:aCx

Ia1 + Bv1 - mraCx (sin f + cos f tan u) - A = 0.

A - Bv1 = Ia1 - mraCx sin f - mraCx cos f tan u.

m3 = 0,

v1v1

T = A - Bv1.

m = mC + m3.

mB = 0.
mB
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726 Chapter 10 Dynamic-Force Analysis

where

and

Equation (10.41) is a nonlinear differential equation relating crank angle and time t.
It can be solved by numerical methods.

Once the motion and its derivatives and have been calculated, the
bearing forces can be determined from Eqs. (10.12) through (10.15). Although quanti-
tative results are difficult to obtain, some qualitative information follows from inspec-
tion of Eq. (10.41). For example, solving for the second derivative of we have

(10.42)

As the moment of inertia, I, increases, denominator will grow large, and the magni-
tude of the acceleration will decrease. Therefore, for some suitably large value of I
(such as that produced by a flywheel), will become negligibly small, and the mecha-
nism can be assumed to be operating at constant angular speed On the other hand,
the inertia of the piston is represented by the second term in the equation for 
which varies between limiting values of zero and Therefore, for a small moment of
inertia, I, the acceleration will also vary and will have large values at certain crank
positions, leading to a considerable fluctuation in the speed of the mechanism.

SAMPLE PROBLEM 10.12

Dynamic Analysis of a Slider-Crank Mechanism under an Assumed Input Torque

An in-line slider-crank mechanism has a crank length a connecting-rod length
a reciprocating mass and a crank moment of inertia 

The mechanism is driven by a DC motor having the constants and
Determine how the crank velocity varies over a complete steady-state cycle of the

mechanism.

Solution. Notice that this is the same mechanism as was studied in Sample Problem 10.11;
however, a more realistic input actuator is now considered. Figure 10.17 shows a plot of the
crank angular velocity versus angle for a complete rotation of the crank. The response
was obtained by numerically solving Eq. (10.41), starting from initial conditions of rest; that is,

when time The data plotted in the figure are for the eighth cycle of rota-
tion, by which time steady-state motion had been established.

t = 0.f = df>dt = 0

360°f

B = 1.0 N # m # s.
A = 105 N # m

I = 0.001 kg # m2.m = 0.6 kg,/ = 0.16 m,
r = 0.04 m,

mr2.
K1,

v1.
a1

K1

d2f

dt2 =
A - B (df/dt) - K2 (df/dt)2

K1
.

f,

a1(t)v1(t)f(t)

f

tan u =
r sin f2/2 - r2

 sin2f
.

 K2 = mr2Bcos f + ¢ r

/
≤cos 2fR(sin f + cos f tan u),

 K1 = I + mr2Bsin f + ¢ r

2/
≤  sin 2fR(sin f + cos f tan u),

 
df

dt
= v1 

d2f

dt2 = a1,
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FIGURE 10.17   Crank angular velocity versus crank angle for the slider-crank mechanism
of Sample Problem 10.12. The average velocity is 105 rad/s (approximately 1000 rev/min).

Linkage Motion in Response to a Specified Torque: Applying
Motion Simulation Software to Solve for Motion and Forces in
a Linkage Subject to Fluid Forces and Inertial Effects

The preceding analysis illustrates the difficulty in determining the motion of a linkage
in response to a specified input torque. Motion simulation software can be a great help
in a problem like this. A motor that applies a constant input torque would be unrealis-
tic, because it would add energy to the system during each cycle, and the speed of the
system could increase indefinitely. Motor characteristics can be modeled by an equa-
tion or by combining a torque motor with a torsional damper. The net motor power
(W) is the product of the net torque and the crank angular velocity (rad/s).

It is so easy to introduce errors into problems of this type. Measure all relevant
variables. Check initial conditions; compare plots and other output data. Are the
results consistent? Do they make sense? The output data may help you to redesign the
linkage. For example, if the crankshaft speed varies over too wide a range, you might
try using a higher crank mass moment of inertia.

SAMPLE PROBLEM 10.13

Applying Motion Simulation Software to Solve for Motion and Forces in a Linkage Subject to
Fluid Forces and Inertial Effects

(N # m)
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A motor driving a piston pump has torque characteristics approximated by

where torque and
angular velocity.

The piston is subject to fluid forces given by
when (i.e., when the piston is moving toward the cylinder head) and

otherwise.
force (N) and

is the velocity (m/s) of the piston.

The pump will have the form of an in-line slider-crank linkage with a 50-mm crank length
and a 110-mm connecting-rod length. The crank, connecting-rod, and piston masses are 2, 1.25,
and 1.36 kg, respectively. Mass moments of inertia are 0.005 and for the crank and
connecting rod, respectively (about their centers of gravity). Plot the motor torque, motor
power, and motion of the linkage against time. Find the maximum motor power and the corre-
sponding values of torque, linkage motion, and forces.

Decisions. We will use Working to simulate the linkage, adding a torque motor and
velocity-squared torsional damper. Fluid force will be simulated with a damper that opposes
fluid motion when the piston velocity is positive (away from the crankshaft).

Solution. Figure 10.18 shows the linkage; plots of the crank angular position, velocity, and accel-
eration; plots of the piston position, velocity, and acceleration; and plots of the net motor torque
and power, all against time.The time span is a bit more than two crankshaft revolutions.Values of
the foregoing quantities and of the crankpin and wrist-pin forces are shown at the instant the
power is approximately a maximum.The maximum power driving the linkage is about 2.53 kW.

Note that the crank starts out at zero angular velocity; the linkage is ‘‘getting up to
speed’’ during the first revolution of the crankshaft, and the first crankshaft revolution
takes longer than subsequent revolutions.After the first crankshaft revolution, we expect
the plots to have a repetitive pattern. The intermittent piston load and piston and con-
necting-rod inertial forces cause a wide fluctuation in the crankshaft speed. We cannot
eliminate this fluctuation, but increasing the crank mass moment of inertia can reduce it.

10.6 BALANCING OF MACHINERY

Up to this point, little mention has been made of the dynamic forces that are transmit-
ted to the frame of a machine. And yet, some of the more serious problems encoun-
tered in high-speed machinery are the direct result of these forces.As can be seen from
the analyses presented previously, the forces exerted on the frame by moving machine
members will, in general, vary with time and will therefore impart vibratory motion to
the frame. This vibration, together with the accompanying noise, can produce human
discomfort, alter the desired machine performance, and adversely affect the structural
integrity of the machine’s foundation. Furthermore, these effects are intensified both
by increased operating speeds, which lead to greater inertial forces, and by conditions
of resonance (vibration at the natural frequency).

ModelTM

0.001 kg # m2

vC

Fd is the fluid
Fd = 0

vC 7 0Fd = -55vC
 2

v1 = crank
(N # m)T = net

T = 60 - 0.005 v1
 2 ,
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FIGURE 10.18   Applying motion simulation software to solve for motion and forces in a linkage subject to fluid forces and inertial effects.

733



730 Chapter 10 Dynamic-Force Analysis

A net unbalanced force acting on the frame of a machine or mechanism (i.e., the
resultant of the forces transmitted at all of the connections between the machine and
frame) is referred to as a shaking force. Likewise, a resultant unbalanced moment act-
ing on the frame is called a shaking moment. Since the shaking force and shaking
moment are unbalanced effects, they will cause the frame to vibrate, with the magni-
tude of the vibration dependent on the amount of unbalance. Clearly, then, an impor-
tant design objective is to minimize machine unbalance.

The process of designing or modifying machinery in order to reduce unbalance to
an acceptable level is called balancing. Since unbalance is caused in the first place by
the inertial forces associated with the mass of a moving machine, the most common
approach to balancing is to redistribute the machine’s mass, accomplished by adding
mass to, or removing mass from, various machine members. However, other tech-
niques, involving springs and dampers or balancing mechanisms, are also used.

The method of balancing that is employed depends to a considerable extent on
the type of unbalance present in the machine. The two basic types are rotating unbal-
ance and reciprocating unbalance, which may occur separately or in combination.
These two types of unbalance are considered in detail in the next few sections.

10.7 BALANCING OF RIGID ROTORS

In the introduction to this chapter, a dynamic force was presented that was a centrifu-
gal force associated with a mass attached to a rotating rod. (See Figure 10.1a.) The
same kind of force occurs in an eccentric rotor. (See Figure 10.1b.) In both cases, the
bearing mounts on the machine frame were acted upon by a net unbalanced shaking
force.This type of unbalance due to a rotating mass is referred to as rotating unbalance,
and since virtually all machines contain rotating parts, that form of unbalance is very
common. It occurs, for example, in such diverse applications as turbine rotors, engine
crankshafts, washing machine drums, and window fans. Fortunately, rotating unbalance
is relatively easy to deal with.

Figure 10.19 shows a rotor consisting of a disk of mass m attached to a rigid shaft
with an assumed negligible mass. We also assume that the rotor has constant angular
velocity The center of mass, G, of the disk does not coincide with the bearing center-
line AB, with the amount of this eccentricity represented by e. The rotor is acted upon

v.

A

A

B

Gm

e




a b

m

FA FC  (me   2)


e

� � a � b

FB

BG

FIGURE 10.19   Static unbalance caused by an eccentric mass on a rotating shaft.
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by the centrifugal force which has a magnitude equal to Summing forces and
moments on the rotor, we find that the bearing reactions on the shaft are

and

which act in the directions shown in the figure. The net force on the frame will there-
fore be a force of magnitude

and with a direction that rotates with speed Thus, the centrifugal force is transmitted
directly to the frame. Notice that if the rotational speed is doubled, the shaking force is
quadrupled.

The unbalance just described is fairly easy to detect. For example, if the shaft
were mounted horizontally on knife-edge bearings, then, due to gravity, the rotor
would always seek the static position with point G below the bearing centerline. Any
rotating unbalance that can be detected in a static test is referred to as a static unbal-
ance, which actually is somewhat of a misnomer in that we are concerned primarily
with the dynamic effects caused by such an unbalance. Not only can a static unbalance
be detected through a static test, but it can also be corrected through a static proce-
dure. The bubble balance sometimes used for automobile wheels is an example; the
device statically determines the location and amount of unbalance so that corrective
counterweights can be attached in such a way that the combined center of mass is coin-
cident with the bearing centerline (i.e., ) and the resulting shaking force is zero.

Contrasted with the case of Figure 10.19 is the rotor of Figure 10.20, with two
disks having masses and and eccentricities and Suppose that the centers of
mass, and of the disks are apart, as shown in the figure.Then, again assuming180°G2,G1

e2.e1m2m1

e = 0

v.

Fs = ¢a

/
≤mev2 + ¢b

/
≤mev2 = ¢a + b

/
≤mev2 = mev2

FB = ¢a

/
≤mev2,

FA = ¢b

/
≤mev2

mev2.FC,

G1

G2

A

FA

FB

G2

G1

m1
e1

e2

m2

B

�
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bFC1

FC2

(m1 e1    
2)� 

(m2e2    
2)�  

�

FIGURE 10.20   Dynamic unbalance due to eccentric masses at multiple axial loca-
tions on a rotating shaft.
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constant angular velocity and a negligible mass for the shaft, we can determine the
bearing reactions to be

and

The directions of and are based on the signs of these equations; if the sign is pos-
itive, then the force is oriented as shown in Figure 10.20; if the sign is negative, then the
direction of the force is reversed. The forces rotate about the bearing centerline with
angular speed The magnitude of the shaking force is

and if then the shaking force is zero. However, in this situation, even
though the resultant force on the frame is zero, the individual bearing forces are
nonzero, now having equal magnitudes given by

but opposite directions, as shown in Figure 10.20.Thus, a resultant, or shaking, couple is
still acting on the frame. In general, shaking couples occur when unbalanced masses
are located at multiple axial positions on a rotor.

The unbalance shown in Figure 10.20 with could not be detected in
a static test; for example, the rotor would take random orientations in the gravity test
described earlier. Such an unbalance can be detected only by means of a dynamic test
in which the rotor is spinning. Any unbalance that can be detected through such a test
is referred to as a dynamic unbalance. (By this definition, the static unbalance defined
previously is also one form, but not the only form, of dynamic unbalance.) A static bal-
ancing procedure will not completely correct a dynamic unbalance, and a statically bal-
anced rotor may perform very poorly under actual operating conditions. In such a
situation, dynamic balancing procedures are required, wherein the rotor is driven at an
arbitrary speed and bearing forces are measured. From this information, magnitudes
and locations of corrective counterweights are determined.

In general, static unbalance is characterized by a net shaking force, and dynamic
unbalance is characterized by a combination of a net shaking force and a net shaking
couple. Dynamic unbalance is more apt to be significant in cases of rotors having their
mass distributed over relatively large axial distances. For example, static balancing may
be satisfactory for machine components such as automobile wheels or household win-
dow fans, which have short axial lengths, whereas dynamic balancing must be per-
formed on equipment such as automotive crankshafts and multistage turbine rotors
that have large axial lengths.

m1e1 = m2e2

FA = FB = ¢m1e1v
2

/
≤[/ - (a + b)],

m1e1 = m2e2,

FS = ƒ FA - FB ƒ = v2 ƒ  m1e1 - m2e2 ƒ ,

v.

FBFA

FB = ¢v2

/
≤[m2e2(/ - b) - m1 e1 a].

FA = ¢v2

/
≤ [m1e1(/ - a) - m2 e2 b]

v
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From the preceding discussion, general balancing procedures for sizing and posi-
tioning corrective masses on rotors are based on the following criteria:

1. For static balance, the shaking force must be zero.
2. For dynamic balance, the shaking force and the shaking moment must both be

zero.

These procedures are illustrated in the next few sections.

Static Balancing

Consider the rigid rotor shown in Figure 10.21a. The rotor is assumed to be rotating
with constant angular velocity Unbalanced masses are depicted as point masses m at
radial distances r and may represent a variety of actual rotating masses, including tur-
bine or propeller blades, eccentric disks, crank throws, and so on. In this case, there are
three masses, but there could be any number. It is assumed here that all of the masses
lie in a single transverse plane at the same axial location along the shaft or close to the
same plane. It will be shown that this arrangement can be balanced by a single counter-
balance lying in that plane and represented by dashed lines in Figure 10.21b.

v.

m2

r2

r3

r1

m3

mc

m2r2

mcrc m1r1

m3r3

m1

rc

z

z

y x

� 2

� 3

�



1

�c

(a)

(b)

FIGURE 10.21   (a) A static unbalance can
be eliminated by the addition of a single
counterweight at the proper radial dis-
tance and angle (b) Graphical determi-
nation of the counterweight size and
location.
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Each of the original masses produces a centrifugal force acting radially outward
from the axis of rotation with a magnitude equal to where The vec-
tor sum of these forces will be transmitted through the support bearings to the frame,
resulting in a shaking force

If this vector sum is zero, then the rotor is balanced. In general, though, that will not be
the case, and we therefore introduce the counterweight of mass shown in Figure
10.21a at radial distance The magnitude and location of this counterweight are
determined from the condition that the resultant inertial force must now be zero; that is,

(10.43)

The quantity can be factored out of Eq. (10.43), whereupon dividing by yields the
following relationship for static balance:

(10.44a)

This equation indicates that the combined center of mass must lie on the axis of rota-
tion. In general, for N initial masses, the balancing condition is

(10.44b)

Since all the vectors in Eq. (10.44a) lie in a plane that is parallel to the yz-plane in
Figure 10.21a, that equation is a two-dimensional vector equation, and it therefore can
be satisfied by the two parameters—that is, magnitude and direction—associated with
the vector for the single counterweight The equation can be solved either graphi-
cally or mathematically. Figure 10.21b shows a graphical solution wherein vectors

and are drawn in sequence to a suitable scale. The vector that closes
this loop and that therefore satisfies Eq. (10.44a) is The direction of this vector
identifies the angular orientation of the counterweight relative to that of the other
masses, and the magnitude of the vector is the required amount of correction,
Note that, because only the proper value of the product is required, either or can
be selected arbitrarily. For example, if mass is chosen, then the preceding solution
determines vector location of this counterweight.

Equation (10.44a) can also be solved mathematically by dividing it into y and z
components. We then obtain

and

m1r1 sin u1 + m2r2 sin u2 + m3r3 sin u3 + mcrc sin uc = 0,

m1r1 cos u1 + m2r2 cos u2 + m3r3 cos u3 + mcrc cos uc = 0

rc

mc

rcmc

mcrc.

mcrc.
m3r3m1r1, m2r2,

mc.

a
N

n = 1
mnrn + mcrc = 0.

m1r1 + m2r2 + m3r3 + mcrc = 0.

vv2

m1v
2r1 + m2v

2r2 + m3v
2r3 + mcv

2rc = 0.

rc.
mc

FS = m1v
2r1 + m2v

2r2 + m3v
2r3.

n = 1, 2, 3.mnrnv
2,
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where represents instantaneous angular orientation with respect to the y-axis. (See
Figure 10.21a.) Solving for and we have

(10.45)

and

(10.46)

Note that the signs of the numerator and denominator of the arctan function in Eq.
(10.46) will identify the proper quadrant for angle Rotors are often balanced
through the removal of mass, as by drilling holes, rather than by adding counter-
weights. This is accomplished in the foregoing procedure by specifying a negative cor-
rection mass. Therefore, the rotor in Figure 10.21a is also balanced by removing an
amount of mass at position 

SAMPLE PROBLEM 10.14

Static Balancing of a Rotor

The rotor of Figure 10.21a has the following properties:

Determine the amount and location of the counterweight required for static balance.
Solution. Substituting the values given into Eq. (10.45), we have

This product will result, for example, from a counterweight mass of 2.85 kg at a radial distance of
80 mm. The angular position of the counterweight is calculated from Eq. (10.46), viz.,

where from the signs of the numerator and denominator in the argument of the arctan function
indicate that the angle is in the fourth quadrant. Better still, use a two-argument function (e.g.
angle (x, y) or (x, y)).A graphical solution of this example is sketched in Figure 10.21b.arctan2

uc = arctan¢ -203.0
+103.4

≤ = 297.0°,

 = [(103.4)2 + (203.0)2]1/2 = 227.8 kg # mm.
 + (240 sin 60° + 160 sin 150° + 120 sin 225°)2]1/2

mcrc = [(240 cos 60° + 160 cos 150° + 120 cos 225°)2

 m3 = 2 kg, r3 = 60 mm, and u3 = 225°.
 m2 = 2 kg, r2 = 80 mm,   u2 = 150°,
 m1 = 3 kg, r1 = 80 mm,   u1 = 60°,

-rc.-mc

uc.

uc = arctan¢ -m1r1 sin u1 - m2r2 sin u2 - m3r3 sin u3

-m1r1 cos u1 - m2r2 cos u2 - m3r3 cos u3
≤ .

 +(m1r1 sin u1 + m2r2 sin u2 + m3r3 sin u3)
2]1/2

 mcrc = [(m1r1 cos u1 + m2r2 cos u2 + m3r3 cos u3)
2

uc,mcrc

u
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FIGURE 10.22   (a) In general, dynamic balancing requires the use of two counter-
weights. Shown are counterbalances placed in arbitrarily selected planes at axial posi-
tions P and Q. (b) Graphical determination of counterweight 2. (c) Graphical
determination of counterweight 1.

Dynamic Balancing

Figure 10.22a shows a rotor with eccentric masses at multiple axial locations. As a
result, the rotor experiences general dynamic unbalance. As in the preceding section,
the case of three initial masses will be presented here; the results will then be general-
ized to any number of masses.

We will examine the possibility of completely balancing the given rotor through
the addition of two countermasses and placed in transverse planes at arbitrar-
ily selected axial locations P and Q. For static balance, the sum of all the inertial forces
must be zero, a condition that yields the following equations, which are similar to Eqs.
(10.44a) and (10.44b):

(10.47a)

For the general case of N original masses, we have

(10.47b)a
N

n = 1
mnrn + mc1rc1 + mc2rc2 = 0.

m1r1 + m2r2 + m3r3 + mc1rc1 + mc2rc2 = 0.

mc2,mc1
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However, a shaking couple will still exist if the inertial forces produce a net couple.
Therefore, the additional condition for dynamic balance is that the sum of the
moments of the inertia forces about any arbitrary point be zero. For convenience in
determining the required counterbalances, we will take moments about point P, the
axial location of counterweight 1, thereby eliminating this unknown counterweight
from the moment equation. The axial distances of all other masses relative to point P
are designated by symbol s in Figure 10.22a.

Recalling the definition for the moment of a force, Eq. (9.3), we find that the sum
of the inertial force moments about point P is

Factoring terms, we can rearrange this equation as

(10.48)

where vectors and do not have i components. The only way Eq. (10.48) can
be satisfied is if the second factor in the cross product is zero. Factoring out which
appears in each term, leads to the following condition for dynamic balance:

(10.49a)

Extended to the general case, Eq. (10.49a) yields

(10.49b)

Thus, Eq. (10.47a) or Eq. (10.47b), together with Eq. (10.49a) or Eq. (10.49b), consti-
tutes the requirement for complete rotor balancing, and the pair of equations must be
solved simultaneously for the necessary counterbalances. Thus, we have two-dimen-
sional vector equations in two unknown vectors and 

The graphical solution is shown in Figure 10.22b and c for the case of three initial
masses. Equation (10.49a) is solved first (see Figure 10.22b) by drawing the first three
vectors, which are completely known, to an appropriate scale. The vector that closes
this polygon is The direction of this vector specifies the required angular ori-
entation of the counterweight in the transverse plane at point Q, and the magnitude of
the vector divided by the known distance is the required correction The
counterweight in the plane at point P can now be determined from Eq. (10.47a), since
vector is now known. (See Figure 10.22c.) The vector that closes this polygon is

which identifies the direction and magnitude of the counterbalance.
The mathematical solution parallels the graphical approach. First, Eq. (10.49a) is

divided into component form:

 m1s1r1 sin u1 + m2s2r2 sin u2 + m3s3r3 sin u3 + mc2sc2rc2 sin uc2 = 0;

 m1s1r1 cos u1 + m2s2r2 cos u2 + m3s3r3 cos u3 + mc2sc2rc2 cos uc2 = 0;

mc1rc1,
mc2rc2

mc2rc2.sc2

mc2sc2rc2.

mc2rc2.mc1rc1

a
N

n = 1
mnsnrn + mc2sc2rc2 = 0.

m1s1r1 + m2s2r2 + m3s3r3 + mc2sc2rc2 = 0.

v2,
rc2r1, r2, r3,

i * (m1s1v
2r1 + m2s2v

2r2 + m3s3v
2r3 + mc2sc2v

2rc2) = 0,

 + (sc2i * mc2v
2rc2) = 0.

(s1i * m1v
2r1) + (s2i * m2v

2r2) + (s3i * m3v
2r3)
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Solving for and we have

(10.50)

and

(10.51)

Next, Eq. (10.47a) is solved for and 

(10.52)

(10.53)

The signs of the numerator and denominator in the arctan functions of Eqs. (10.51)
and (10.53) identify the correct quadrants of angles and 

SAMPLE PROBLEM 10.15

Dynamic Balancing of a Rotor

The rotor of Figure 10.22 has the following properties:

and

The total axial length is 1000 mm between bearings. Counterweights are to be placed in planes
that are 100 mm from each bearing. The axial distances in Figure 10.22a are then

Determine the amounts and locations of the counterweights in planes P and Q required for
complete balance.
Solution. From Eq. (10.50),

mc2rc2 =
1

800
 [(104,679)2 + (22,172)2]1/2 = 133.8 kg # mm.

s1 = 200 mm, s2 = 500 mm, s3 = 700 mm, and sc2 = 800 mm.

m3 = 2 kg, r3 = 60 mm, u3 = 225°.

 m2 = 2 kg, r2 = 80 mm, u2 = 150°,
 m1 = 3 kg, r1 = 80 mm, u1 = 60°,

uc1.uc2

uc1 = arctan¢ -m1r1 sin u1 - m2r2 sin u2 - m3r3 sin u3 - mc2rc2 sin uc2

-m1r1 cos u1 - m2r2 cos u2 - m3r3 cos u3 - mc2rc2 cos uc2
≤ .

 + (m1r1 sin u1 + m2r2 sin u2 + m3r3 sin u3 + mc2rc2 sin uc2)
2]1/2;

mc1rc1 = [(m1r1 cos u1 + m2r2 cos u2 + m3r3 cos u3 + mc2rc2 cos uc2)
2

uc1.mc1rc1

uc2 = arctan¢ -m1s1r1 sin u1 - m2s2r2 sin u2 - m3s3r3 sin u3

-m1s1r1 cos u1 - m2s2r2 cos u2 - m3s3r3 cos u3
≤ .

mc2rc2 =
1

sc2
[(m1s1r1 cos u1 + m2s2r2 cos u2 + m3s3r3 cos u3)

2

+ (m1s1r1 sin u1 + m2s2r2 sin u2 + m3s3r3 sin u3)
2]1/2

uc2,mc2rc2
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One combination that will produce this product is and The angle is
computed from Eq. (10.51):

Now, from Eqs. (10.52) and (10.53), and can be computed to be

(e.g., 2.96 kg at 60 mm) and

The negative numerator and denominator indicate that is in the third quadrant. The graphi-
cal solution of this example is shown to scale in Figures 10.22b and c.

A couple of observations follow from the previous discussion. First, the question
arises as to whether a rotor can be completely balanced by means of a single counter-
balance. Earlier, we saw that a single counterweight will suffice for the case of static
unbalance alone. In general, however, a rotor cannot be completely balanced by one
counterweight, because there are four scalar conditions to be satisfied, but only three
design parameters: the axial location of the counterweight, the angular orientation 
and the correction magnitude One special case where a single counterbalance
will work is the situation in which all the initial masses lie in a single plane containing
the shaft axis (i.e., all the angular orientations are either equal or differ by ) and
an initial static unbalance exists. In this case, Eqs. (10.47b) and (10.49b) will reduce to
two scalar equations for the unknown counterweight.

We saw that, because two counterweights represent a total of six design parame-
ters, two values can be selected arbitrarily: the axial locations P and Q in Figure 10.22a.
Two different parameters could have been selected, of course, but an advantage of
choosing the axial locations is that the counterweights can be placed near bearing sup-
ports in order to minimize the bending moments and resulting shaft deflection that
they will produce.This fact leads to a second observation: Equations (10.44a), (10.44b),
(10.47a), (10.47b), (10.49a), and (10.49b) are independent of shaft speed This inde-
pendence means that the rotor will be balanced at any speed for which the initial
assumptions—particularly that dealing with the rigidity of the rotor—are valid. For a
range of speeds, depending on the rotor material and size, deflections will be negligible
and rigid-rotor balancing is satisfactory. However, as speeds are increased, eventually
the flexibility of the shaft becomes significant.

Critical Speed. The critical speed of a shaft is the rotational speed at which
severe vibration may occur, even with slight unbalance. Critical speed depends
on the shaft elasticity and the mass of gears and other bodies integral with the
shaft. The calculation of critical speed is discussed in a number of texts on vibra-
tion, including Dimarogonas (1996) and James et al. (1989).

v.

180°u

mcrc.
uc,

uc1

uc1 = arctan¢ -175.3
-27.4

≤ = 261.1°.

mc1rc1 = [(27.4)2 + (175.3)2]1/2 = 177.4 kg # mm

uc1mc1rc1

uc2 = arctan¢ 22,172
104,679

≤ = 348.0°.

rc2 = 60 mm.mc2 = 2.23 kg
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10.8 BALANCING OF RECIPROCATING MACHINES

Another common type of machine unbalance is reciprocating unbalance, which is
caused by the inertial forces associated with a translating mass. The effects of recipro-
cating unbalance are evident in machines such as piston engines and compressors. The
balancing of reciprocating machines is more difficult than that of rotors, and in many
cases complete balancing cannot be achieved by practical means.

Figure 10.23a shows a slider-crank mechanism with crank length r, connecting-
rod length and reciprocating mass m. Recall that m consists of the piston mass plus
part of the connecting-rod mass based on a lumped-mass approximation. In what fol-
lows, it will be assumed that the angular velocity of the crank is constant. It will also
be assumed that the rotating unbalance associated with the mechanism being exam-
ined is balanced by a counterweight mounted on the crank. This is common practice
and reduces the inertial forces produced by the crank and the rotating part of the con-
necting-rod mass to such an extent that they may be neglected.

Figure 10.23b shows a free-body diagram of the frame. Based on the foregoing
assumptions, the forces transmitted to the mechanism supports are obtained from Eqs.
(10.34), (10.35), and (10.36), with and 

(10.54)

(10.55) F10y =
-mr2v2 sin fBcos f + ¢ r

/
≤cos 2fR

(/2 - r2
 
 sin2 f)1/2 ;

 F10x = mrv2Bcos f + ¢ r

/
≤  cos 2fR ;

v1 = v:mB = 0, mC + m3 = m,

v

/,

1

2

3

(a)

(b)

y

r

x

B

�




C

C

m

�maC

F30y

F10x

F10y

O1

O1

�

FIGURE 10.23   (a) Slider-crank mechanism. The inertia force of a reciprocat-
ing mass creates a shaking force and a shaking couple on the machine frame.
(b) Free-body diagram of the machine frame.
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(10.56)

The net effects of these forces are a shaking force and a shaking couple consisting
of equal and opposite forces and The shaking force produces translational
vibration of the frame, whereas the shaking couple results in rotational vibration about
an axis parallel to the crankshaft.

The largest, and probably the most critical, of the three forces just defined is 
We will therefore restrict our attention to the balancing of this shaking force, which,
upon substituton of is rewritten as

(10.57)

The shaking force has variable magnitude and sense, but its line of action is always
along the cylinder centerline (i.e., line in Figure 10.23a; thus, the translational
vibration induced will be in that direction. The first term in Eq. (10.57), which is the
larger of the two terms, is called the primary part of the shaking force and has a fre-
quency equal to the rotational frequency of the crank.The second term is referred to
as the secondary part of the shaking force and has a frequency twice that of the
crank. In the sections that follow, we will explore ways of counteracting this shaking
force.

Single-Cylinder Machines

One approach used to partially balance forces in single-cylinder engines and compres-
sors is to add a rotating counterbalance to the crank. This counterweight supplements
that described in the preceding section, which is used to counteract the rotating unbal-
ance due to the crank mass and the rotating part of the connecting-rod mass. Figure
10.24a shows the mechanism of Figure 10.23a with a counterweight of mass 
mounted on the crank at a radial distance from main bearing and at an angular
position equal to This mass will create a constant-magnitude centrifugal
force at that rotates with speed The total shaking force will then be the vector
sum of the centrifugal force and the force of Eq. (10.57), as shown in Figure 10.24b. In
terms of x and y unit vectors,

(10.58)

Clearly, this counterweight cannot eliminate the shaking force entirely, because it
introduces a nonzero y component, and the x component, though reduced, will not be
identically equal to zero. However, by properly sizing the correction the maxi-
mum magnitude of the shaking force can be reduced considerably.

Correction amounts typically used range from to For
example, consider the case of for a mechanism with a ratio of crankmcrc = 0.6mr

mcrc = 2mr/3.mcrc = mr/2

mcrc,

 -mcrcv
2 sin fjFs = Bmrv2 cos f + mrv2¢ r

/
≤  cos 2f-mcrcv

2 cos fR i

v.O1

f + 180°.
O1rc

mc

2v,
v

O1C

Fs = mrv2 cos vt + mrv2¢ r

/
≤  cos 2vt.

f = vt,

F10x.

F30y.F10y

F10x

 F30y =
mr2v2 sin fBcos f + ¢ r

/
≤  cos 2fR

(/2 - r2 sin2f)1/2  .
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FIGURE 10.24   (a) Partial shaking-force balancing of a slider-crank mechanism
by means of a rotating counterweight attached to the crank. (b) The net shaking
force (c) Polar plot of the shaking force.Fs.
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length to connecting-rod length given by The following expression for the
shaking force results:

The magnitude of this force, as a function of crank angle is

Figure 10.24c shows a polar plot of the shaking force, where each point on the curve
defines the magnitude and direction of the force for a corresponding value of The
maximum magnitude of the shaking force is and occurs when 
equals and Superimposed on Figure 10.24c is the initial shaking-force varia-
tion (dashed line) without the counterweight. The maximum shaking force is

at Thus, a 47-percent reduction in magnitude has been
achieved through the addition of a rotating counterweight. The optimum size of the
counterweight would be that which produces equal shaking force magnitudes at points

and on the polar-force plot of Figure 10.24c. Examination of the figure shows
that the correction used in this example is close to optimum, and therefore, little
improvement beyond the 47-percent reduction could be obtained.

Multicylinder Machines

Many applications of the slider-crank mechanism in engines, pumps, and compressors
involve the use of multiple mechanisms, which are designed to provide smoother flow
of fluid or transmission of power than can be accomplished in a single-cylinder device.
These multicylinder systems facilitate one of the more effective means of reducing the
consequences of shaking forces. By a proper arrangement of the individual mecha-
nisms, the shaking forces will partially, and perhaps totally, cancel one another. In the
paragraphs that follow, we will first develop general shaking-force-balancing relation-
ships for multicylinder machines and then examine some specific configurations.

Figure 10.25 depicts a general arrangement in which the total number of cylin-
ders is N. (Only three cylinders are shown in the figure.) It is assumed that all the
slider-crank mechanisms have the same crank length r, connecting-rod length and
reciprocating mass m and that the crank angular velocity is constant. The cylinder
orientations are defined by angles which are fixed angular posi-
tions with respect to the y-axis. The angular crank throw spacings with respect to crank
1 are represented by angles which do not vary with time (i.e., each
crank is rigidly attached to the same crankshaft).

Each slider-crank mechanism will generate a shaking force with a line of action
along that particular cylinder’s centerline (i.e., at angle with respect to the y-axis).
From Eq. (10.57), the expression for the individual shaking forces is

Fsn = mrv2 cos fn + mrv2¢ r

/
≤cos 2fn n = 1, 2, Á , N.

un

n = 2, 3, Á , N,cn,

n = 1, 2, Á , N,un,
v

/,

P3P1, P2,

f = 0.ƒ Fs ƒ max = 1.25mrv2

260°.100°
fƒ Fs ƒ max = 0.66mrv2

f.

ƒ Fs ƒ = mrv22(0.4 cos f + 0.25 cos 2f)2 + (0.6 sin f)2.

f,

Fs = (0.4mrv2 cos f + 0.25mrv2 cos 2f)i - 0.6mrv2 sin f j.

r// = 0.25.
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FIGURE 10.25   A multicylinder machine. The individual shaking forces combine vectori-
ally to produce the net shaking force. Because of the axial distribution of the cylinders,
the individual forces also produce a shaking moment.

Substituting the angle relationships from Figure 10.25, we can rewrite this equation as

(10.59)

where from the previous definition of angle The resultant shaking force will
be the vector sum of all of the individual shaking forces:

(10.60)

In order for the forces to be completely balanced in the arrangement, the y and z com-
ponents of Eq. (10.60) must be identically zero; that is,

(10.61a)

and

(10.61b)a
N

n = 1
Fsn sin un = 0 for all t.

a
N

n = 1
Fsn cos un = 0 for all t

Fs = a
N

n = 1
(Fsn cos unj + Fsn sin unk).

cn.c1 = 0

 n = 1, 2, Á , N,

 Fsn = mrv2 cos (vt + cn - un) + mrv2¢ r

/
≤  cos [2(vt + cn - un)]
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Substituting Eq. (10.59), we see that the conditions become

and

Canceling which is nonzero, and factoring further, we have

(10.62a)

and

(10.62b)

The only way that these expressions can be identically zero is if the individual coeffi-
cients of the time-dependent sine and cosine functions are all zero. This yields the fol-
lowing eight necessary conditions for complete balance of the shaking forces:

(10.63a)

(10.63b) a
N

n = 1
sin (cn - un)cos un = 0;

 a
N

n = 1
cos (cn - un)cos un = 0;

 - ¢ r

/
≤sin 2vta

N

n = 1
sin (2cn - 2un)sin un = 0.

 + ¢ r

/
≤cos 2vta

N

n = 1
cos (2cn - 2un)sin un

cos v ta
N

n = 1
cos (cn - un)sin un - sin vta

N

n = 1
sin (cn - un)sin un

 - ¢ r

/
≤sin 2vta

N

n = 1
 sin (2cn - 2un)cos un = 0

 + ¢ r

/
≤cos 2vta

N

n = 1
 cos (2cn - 2un)cos un

cos vt a
N

n = 1
cos (cn - un)cos un - sin vta

N

n = 1
 sin(cn - un)cos un

mrv2,

 + ¢ r

/
≤  cos (2vt + 2cn - 2un) sin unR = 0.

mrv2a
N

n = 1
 Bcos (vt + cn - un) sin un

 + ¢ r

/
≤  cos (2vt + 2cn - 2un)cos unR = 0

mrv2a
N

n = 1
 Bcos (vt + cn - un)cos un
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(10.63c)

(10.63d)

(10.63e)

(10.63f)

(10.63g)

(10.63h)

The first four conditions account for the primary parts of the shaking forces, and if
these are all satisfied, then the primary shaking forces are balanced. The last four con-
ditions represent the secondary parts, and if those conditions are satisfied, then the sec-
ondary shaking forces are balanced. Note that the eight conditions are in terms of the
cylinder orientations and the angular crank spacing and it follows that some
arrangements of these parameters may balance the forces while other arrangements
will not. Further, some arrangements may result in only primary force balancing or
only secondary force balancing. Of these two possibilities, primary balancing is pre-
ferred, because it represents cancellation of the larger parts of the shaking forces.

In most multicylinder machines, the slider-crank mechanisms must be spaced axi-
ally along the crankshaft in order to avoid interference during their operation. This
axial spacing is represented in Figure 10.25 by distances measured
from that cylinder designated as number 1 (therefore, ). Since the individual
shaking forces will not, in general, lie in a single transverse plane, they will produce a
net shaking moment, as well as a net shaking force, that will tend to cause an end-over-
end rotational vibration of the crankshaft.

A set of conditions for balancing shaking moment can be established by impos-
ing the requirement that the sum of shaking-force moments about any arbitrary axial
location must be zero. Taking moments about the axial location of cylinder 1 yields

(10.64)

or, upon factoring,

i * a
N

n = 1
(snFsn cos un  j + snFsn sin un k) = 0.

a
N

n = 1
sni * (Fsn cos un  j + Fsn sin un k) = 0,

s1 = 0
n = 1, 2, Á , N,sn,

cn,un

 a
N

n = 1
sin (2cn - 2un)sin un = 0.

 a
N

n = 1
cos (2cn - 2un)sin un = 0;

 a
N

n = 1
sin (2cn - 2un)cos un = 0;

 a
N

n = 1
cos (2cn - 2un)cos un = 0;

 a
N

n = 1
sin (cn - un)sin un = 0;

 a
N

n = 1
cos (cn - un)sin un = 0;
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In order for this equation to be satisfied, the individual j and k components of the sec-
ond factor in the cross product must be identically zero; that is,

(10.65a)

and

(10.65b)

These equations are similar to Eqs. (10.61a) and (10.61b) and lead to the following
similar set of conditions for balancing shaking moments.

(10.66a)

(10.66b)

(10.66c)

(10.66d)

(10.66e)

(10.66f)

(10.66g)

(10.66h)

The first four conditions guarantee primary shaking-moment balance, while the last four
conditions yield secondary shaking-moment balance. Taken together, the eight equations
account for the axial configuration of the cylinders, as well as for their angular orientation
and the angular crank spacing. Equations (10.63a) through (10.63h) and (10.66a) through
(10.66h) can be used to investigate the balancing of any piston engine or compressor.

In-Line Engines

Consider an engine, all of whose cylinders lie in a single plane and on one side of the
crank axis. Suppose that these locations are given by u1 = u2 = Á = un = Á

 a
N

n = 1
sn sin(2cn - 2un)sin un = 0.

 a
N

n = 1
sn cos(2cn - 2un)sin un = 0;

 a
N

n = 1
sn sin(2cn - 2un)cos un = 0;

 a
N

n = 1
sn cos(2cn - 2un)cos un = 0;

 a
N

n = 1
sn sin(cn - un)sin un = 0;

 a
N

n = 1
sn cos(cn - un)sin un = 0;

 a
N

n = 1
sn sin(cn - un)cos un = 0;

 a
N

n = 1
sn cos(cn - un)cos un = 0;

a
N

n = 1
snFsn sin un = 0 for all t.

a
N

n = 1
snFsn cos un = 0 for all t
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748 Chapter 10 Dynamic-Force Analysis

Suppose further that the cylinders are equally spaced axially with a spac-
ing s; then, where the cylinders are numbered consecutively from one end
of the crankshaft to the other. Substituting this information, we see that Eqs. (10.63a)
through (10.63h) and (10.66a) through (10.66h) reduce to the following conditions:

Figure 10.26 shows a two-cylinder, in-line arrangement with cranks; that is,
and Substituting into the foregoing equations, we obtain

a
2

n = 1
sin cn = sin (0) + sin p = 0,

a
2

n = 1
cos cn = cos (0) + cos p = 0,

s  primary force

c2 = p.N = 2, c1 = 0,
180°

 a
N

n = 1
sin 2cn = 0; a

N

n = 1
(n - 1)sin 2cn = 0.

 a
N

n = 1
cos 2cn = 0; a

N

n = 1
(n - 1)cos 2cn = 0;

 a
N

n = 1
cos cn = 0; a

N

n = 1
(n - 1)cos cn = 0;

 a
N

n = 1
sin cn = 0; a

N

n = 1
(n - 1)sin cn = 0;

sn = (n - 1)s,
= uN = p/2.

z

z

y x

2 2

1 1


t

Fsecondary

Fsecondary

Fprimary

Fprimary

S

FIGURE 10.26   An in-line two-cylin-
der engine with cranks.180°
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Section 10.8 Balancing of Reciprocating Machines 749

and

Thus, the primary parts of the shaking forces are always equal and opposite; therefore,
they cancel, but because they are offset axially, they form a nonzero couple. This is
shown in Figure 10.26. On the other hand, the secondary parts of the shaking forces are
always equal with the same sense, and they therefore combine to produce a net force
and also cause a net moment. From Eq. (10.60), the net shaking force is

with a maximum magnitude of Although this shaking force is nonzero, it
nevertheless represents a significant improvement in comparison to a single-cylinder
engine with respect to typical ratios. However, as noted, a shaking couple has
been introduced.

(r//)

2mrv2(r//).

 = -2mrv2¢ r

/
≤cos 2vtk,

 + mrv2 cos¢vt +
p

2
≤ + mrv2¢ r

/
≤cosB2¢vt +

p

2
≤ R rk

 = emrv2 cos¢vt -
p

2
≤ + mrv2¢ r

/
≤cosB2¢vt -

p

2
≤ R

 Fs = a
2

n = 1
Fsnk

a
2

n = 1
(n - 1)cos 2cn = (0) cos (0) + (1)cos 2p = -1,

a
2

n = 1
(n - 1)sin 2cn = (0) sin(0) + (1)sin 2p = 0.

s  secondary moment

a
2

n = 1
(n - 1)sin cn = (0) sin (0) + (1)sin p = 0,

a
2

n = 1
(n - 1)cos cn = (0) cos(0) + (1)cos p = -1,

s  primary moment

a
2

n = 1
cos 2cn = cos (0) + cos 2p = 2,

a
2

n = 1
sin 2cn = sin (0) + sin 2p = 0,

s  secondary force
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750 Chapter 10 Dynamic-Force Analysis

Opposed Engines

In an opposed engine, all the cylinders lie in the same plane, with half on each side of
the crank axis. Selecting and we
note that half of Eqs. (10.63a) through (10.63h) and (10.66a) through (10.66h) are
automatically satisfied; these are Eqs. (10.63a), (10.63b), (10.63e), (10.63f), (10.66a),
(10.66b), (10.66e), and (10.66f). This is because there will be no y-direction forces or z-
direction moments in the general force and moment equations. As an example, con-
sider the two-cylinder opposed engine of Figure 10.27a, with cranks, where

and Substituting intos2 = s.N = 2, u1 = p/2, u2 = 3p/2, c1 = 0, c2 = p, s1 = 0,
180°

uN/2 + 1 = Á = uN = 3p/2,u1 = Á = uN/2 = p/2

z

z

x

(a)

(b)

y

s � 0

2 2

2

1 1

1

s

FIGURE 10.27   (a) An opposed
two-cylinder engine with 
cranks. (b) Double connecting
rods for cylinder 1.

180°
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Section 10.8 Balancing of Reciprocating Machines 751

Eqs. (10.63c), (10.63d), (10.63g), (10.63h), (10.66c), (10.66d), (10.66g), and (10.66h), we
have

and

The net shaking force is zero, because both parts of the individual shaking forces can-
cel. This is an improvement over the two-cylinder, in-line engine of Figure 10.26, but
there will be a significant shaking couple (both primary and secondary) due to the
staggering of the crank throws. Clearly, the smaller the spacing s, the better will be the
design from the point of view of balancing. One method of reducing s to zero and
thereby eliminating the shaking couple is to use double connecting rods for one of the
cylinders, as shown in Figure 10.27b.

a
2

n = 1
sn cos(2cn - 2un)sin un = (0) + s cos(-p)sin 

3p
2

= s,

a
2

n = 1
sn sin(2cn - 2un)sin un = (0) + s sin(-p)sin 

3p
2

= 0.
t secondary

moment

a
2

n = 1
sn cos (cn - un)sin un = (0) + s cos¢  -

p

2
≤sin 

3p
2

= 0,

a
2

n = 1
sn sin(cn - un)sin un = (0) + s sin¢  -

p

2
≤sin 

3p
2

= s,
t   

primary
moment

a
2

n = 1
 cos(2cn - 2un)sin un = cos(-p)sin 

p

2

 + cos(-p)sin 
3p
2

= 0,

a
2

n = 1
 sin(2cn - 2un)sin un = sin(-p)sin 

p

2

 + sin(-p)sin 
3p
2

= 0,

x  
secondary
force

a
2

n = 1
 cos(cn - un)sin un = cos¢  -

p

2
≤sin 

p

2

 + cos¢  -
p

2
≤sin 

3p
2

= 0,

a
2

n = 1
 sin(cn - un)sin un = sin¢  -

p

2
≤sin 

p

2

 + sin¢  -
p

2
≤sin 

3p
2

= 0,

x  
primary
force
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z

z

x

(a)

(b)

y

y

z

1, 2

1, 2

1, 2

1, 2

7, 8

s s s

5

6

4

3

6

2 1

3 5
4

8 7

3, 4

3, 4

3, 4

7, 8

7, 8
7, 8

5, 6

5, 6
5, 6 rc

rc

rc

rc

mc

mc

mc

Ms
Ms

sc

mc

18.4

18.4

71.6


t

18.4

FIGURE 10.28   (a) A V-8 engine with cranks. This arrangement can be completely bal-
anced with the addition of rotating counterweights on the crankshaft. (b) Location of the
counterweights.

90°

V Engines

Due to its compact form, the V engine is common in automotive and other applica-
tions. Consider, for example, the V-8 engine of Figure 10.28a, consisting of two banks of
four cylinders with an angle of between banks. The four-throw crankshaft has 
cranks, with an axial spacing s between cranks.The following quantities are determined
from the figure:

c1 = c2 = 0; c5 = c6 =
3p
2

;

u2  = u4 = u6 = u8 =
3p
4

;

u1  = u3 = u5 = u7 =
p

4
;

90°90°
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Section 10.8 Balancing of Reciprocating Machines 753

The force-balance conditions, as evaluated from Eqs. (10.63a) through (10.63h), are

and

Thus, the engine is completely force balanced. In fact, this configuration is force bal-
anced for any angle between the cylinder banks, because each bank of four cylinders is
force balanced independently.

 = -
122

+
122

+
122

-
122

+
122

-
122

-
122

+
122

= 0.

a
8

n = 1
 sin (2cn - 2un)sin un

a
8

n = 1
cos (2cn - 2un)sin un = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 0,

= -
122

-
122

+
122

+
122

+
122

+
122

-
122

-
122

= 0,

a
8

n = 1
sin (2cn - 2un)cos un

 a
8

n = 1
cos (2cn - 2un)cos un = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 0,

 a
8

n = 1
sin (cn - un)sin un = -

1
2

-
1
2

+
1
2

-
1
2

-
1
2

+
1
2

+
1
2

+
1
2

= 0,

 a
8

n = 1
cos (cn - un)sin un =

1
2

-
1
2

+
1
2

+
1
2

-
1
2

-
1
2

-
1
2

+
1
2

= 0,

 a
8

n = 1
sin (cn - un)cos un = -

1
2

+
1
2

+
1
2

+
1
2

-
1
2

-
1
2

+
1
2

-
1
2

= 0,

 a
8

n = 1
cos (cn - un)cos un =

1
2

+
1
2

+
1
2

-
1
2

-
1
2

+
1
2

-
1
2

-
1
2

= 0,

s3  = s4 = s; s7 = s8 = 3s.

s1  = s2 = 0; s5 = s6 = 2s;

c3 = c4 =
p

2
 ;   c7 = c8 = p;
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754 Chapter 10 Dynamic-Force Analysis

Examining the shaking-moment conditions leads to the following results:

There is a primary shaking couple, but no secondary shaking couple; hence, the engine
arrangement, by itself, does not yield a complete force and moment balance. However,
the shaking couple has a special nature that facilitates total balancing by means of a
relatively straightforward modification. To understand that nature, consider Eq.
(10.64), where refers to the shaking moment:

 + sn cos(vt + cn - un)cos un k].

 = mrv2
a

8

n = 1
[-sn cos(vt + cn - un)sin un  j

 = a
8

n = 1
(-Fsnsn sin un   j + Fsnsn cos un k)

 Ms = a
8

n = 1
sn i * (Fsn  cos un  j + Fsn sin un k)

Ms

 = 0 + 0 +
s22

-
s22

+
2s22

-
2s22

-
3s22

+
3s22

= 0.

a
8

n = 1
sn sin (2cn - 2un)sin un

a
8

n = 1
sn cos (2cn - 2un)sin un = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 0;

= 0 + 0 +
s22

+
s22

+
2s22

+
2s22

-
3s22

-
3s22

= 0;

a
8

n = 1
sn sin(2cn - 2un)cos un

a
8

n = 1
sn cos(2cn - 2un) cos un = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 0;

a
8

n = 1
sn sin(cn - un) sin un = 0 + 0 +

s

2
-

s

2
- s + s +

3s

2
+

3s

2
= 3s;

a
8

n = 1
sn cos(cn - un) sin un = 0 + 0 +

s

2
+

s

2
- s - s -

3s

2
+

3s

2
= -s;

a
8

n = 1
sn  sin (cn - un)cos un = 0 + 0 +

s

2
+

s

2
- s - s +

3s

2
-

3s

2
= -s;

a
8

n = 1
 sn cos(cn - un) cos un = 0 + 0 +

s

2
-

s

2
- s + s -

3s

2
-

3s

2
= -3s;

758



Summary 755

In this equation, the secondary parts of the shaking forces have been disregarded, since
they will cancel. Rearranging terms and substituting the results obtained earlier, we
have

The magnitude of this moment is which is constant for all values of time t,
and the direction of the moment is perpendicular to the crank axis and rotates with
speed where at any instant the angle of the moment vector with respect to the y
direction is This is exactly the same as the rotating, unbalanced dynamic
couple discussed earlier. Thus, the net effect of this engine arrangement is what
appears to be rotating dynamic unbalance. Therefore, the shaking couple can be bal-
anced by a set of rotating counterweights that produce an equal, but opposite, rotating
couple. The magnitude of this couple is given by and the loca-
tions are as depicted in Figure 10.28b, where is the mass, is the radial position, and

is the axial spacing of the counterweights. Because this engine can be completely bal-
anced in this fashion, it exhibits smooth-running performance.

SUMMARY

Newton’s second law of motion is utilized in d’Alembert’s principle, enabling us to
portray a dynamics problem in the form of a statics problem. However, some machine
components, including connecting rods and couplers, have complicated motion pat-
terns that generate both inertial forces and inertial torques. Graphical methods are
useful for illustrating principles of dynamic analysis, for analyzing a linkage in one or
two positions, and for checking analytical work. But graphical methods are not recom-
mended for dynamic analysis of a linkage over a full cycle of motion. Even analytical
dynamic force analysis can be time consuming. The difficulty can be partly resolved by
using approximate methods or motion simulation software.

In solving dynamics problems, we need to know component masses and mass
moments of inertia. It is easy to locate the center of mass and calculate the mass
moment of inertia for regular shapes, and motion simulation software can be used to
find the properties of irregular shapes. Computer-generated plots and other results
that look convincing sometimes contain serious errors. Accordingly, one should
always verify results with simple checks. One can use common sense to spot errors;
employ Newton’s laws; and compare position, velocity, and acceleration curves, noting
all maxima.

Sometimes the motion of a linkage component is specified. For example, crank
speed in a slider crank or four-bar linkage may be a given constant value. We begin by
finding all positions, velocities, and accelerations (including angular velocities and
accelerations) in terms of crank position or time. Then, we can find inertial forces and
torques, consider any external forces that are present, and find the required motor
torque and power and forces on individual links and bearings. The problem may be

sc

rcmc

mcrcscv
2 = mrsv2210,

(vt - 71.6°).
v,

mrsv2210,

 = mrsv2210[cos(vt - 71.6°)j + sin (vt - 71.6°)k].

 Ms = mrsv2[(3 sin vt + cos vt)j + (sin vt - 3 cos vt)k]

759



756 Chapter 10 Dynamic-Force Analysis

long and difficult, but it is straightforward; we follow a step-by-step procedure.
Contrast this situation with that when motion is not specified.

Now, consider the response of a linkage to a motor that has specified angular-
velocity-related torque characteristics. Inertial forces on the linkage components depend
on component accelerations and angular accelerations, and these accelerations in turn
depend on the speed of the motor, but the inertial forces affect that speed. Velocity-
related external forces might also be present, as in, say, a piston pump or compressor.
This linkage motion problem is not straightforward; one might want to use numerical
methods or motion simulation software to solve the problem and others like it.

When a shaft assembly is unbalanced, inertial forces cause shaking and, some-
times, catastrophic failure. If the sources of unbalance lie in a single plane perpendicu-
lar to the shaft, static balancing may be possible. If there are unbalanced rotors at
multiple axial locations, dynamic balancing techniques are used. Balance is accom-
plished by adding or removing mass from the system. Shaking forces in single- and
multicylinder machines can also be reduced by the addition of counterweights. Shaking
forces can be virtually eliminated in some machine configurations.

The purpose of analysis is to serve design; that is, the results of your analysis
should be used to justify and improve your tentative designs. Generate as much data as
you need to understand the motion and forces on a linkage. Try changing a dimension
on a linkage component. Consider changing the mass or another property of the com-
ponent. If you have written a good program or if you are using motion simulation soft-
ware, this can be done with a few keystrokes. Can you find ways to make the linkage
better?

A Few Review Items

• Relate d’Alembert’s principle to Newton’s laws.

• A slender rod rotates about one end. Find the mass moment of inertia (about the
center of rotation), in terms of the length and mass of the rod.

• How are the torque applied to the rod and the angular acceleration related?
Suppose there is also velocity-dependent fluid resistance to the motion of the rod.
Express the relationship among these variables by using d’Alembert’s principle.

• Sketch a free-body diagram of a connecting rod. Include inertial effects.

• Suppose you need to check a computer program. What data will you change
(temporarily) to make a connecting rod a two-force member? Then, what output
data will you compare?

• The torque input to a linkage is dependent on speed. We find the variation in
crank speed to be too great. Suggest one or more ways to correct the situation.

• Eccentric masses are located at several axial locations on a rotating shaft. Will
static balancing be satisfactory? Explain.

• Identify some of the problems one faces when trying to balance a reciprocating
engine.
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Problems 757

PROBLEMS

10.1 Determine the magnitude and location of the equivalent offset inertial force for the con-
necting rod, link 2, of the slider-crank mechanism of Figure P10.1 for the position shown.
The crank has a constant angular velocity of 100 rad/s counterclockwise. The mass of the
connecting rod is 0.2 kg, and the moment of inertia about the center of mass, is
300 kg #  mm2.

G2,

10.2 For the mechanism of Problem 10.1, determine the crank torque required for dynamic
equilibrium at the position shown. Neglect external loads and the inertia of crank 1 and
slider 3.

10.3 For the mechanism of Problems 10.1 and 10.2, determine the crank torque required
for dynamic equilibrium if slider 3 has a mass of 0.3 kg. Neglect external loads and the
inertia of crank 1.

10.4 Determine the magnitude and location of the equivalent offset inertial force for the cou-
pler link 2 of the slider-crank mechanism at the position shown in Figure P10.2. The
crank has a constant angular velocity of 60 rev/min clockwise. The weight of the coupler
is 1000 lb, and the moment of inertia about the center of mass, is 70 lb #  s2 #  ft.G2,

T1

T1

1
2

3
O

G2

C, G3 

B

45

OB     �     40 mm
BC     �    100 mm
BG2   �      50 mm

FIGURE P10.1

1
2

3

G2

C

D

B

O 

75

OB  � 3 ft
OB  � CD � BD � 5 ft

2.5 ft

1.4 ft

FIGURE P10.2

10.5 The four-bar linkage of Figure P10.3 has a constant crank angular velocity 
clockwise. Coupler link 2 has a mass of 0.3 kg and a moment of inertia about the center of
mass, of Follower link 3 has a mass of 0.2 kg and a moment of inertia1000 kg #  mm2.G2,

v1 = 60 rad/s
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758 Chapter 10 Dynamic-Force Analysis

about its center of mass, of For the position shown, determine the
following:

(a) The equivalent offset inertial force for the coupler.
(b) The equivalent offset inertial force for the follower.
(c) The crank torque required for dynamic equilibrium.

10.6 For the mechanism shown in Figure P10.4, member 2 has a weight of 2 lb and a moment
of inertia of in about its center of mass, Sliding block 1 has a constant
velocity of 10 ft/s upward.

(a) Determine the instantaneous force required to produce the motion, assuming
that sliding block 3 is massless.

(b) Determine the required instantaneous force if sliding block 3 has a weight of 1 lb.F1

F1

G2.0.04 lb #  s2 #

T1

150 kg #  mm2.G3,

10.7 The slider-crank mechanism of Figure P10.5 has a constant crank angular velocity of 50
rad/s counterclockwise. The acceleration polygon is shown in the figure. The connecting
rod weighs 2 lb, with a mass moment of inertia about its center of mass of

The piston has a weight of 1.5 lb. Determine all bearing forces and the
required input torque for the position shown.T1

0.009 lb # s2 # in.
G2,

1

2

3

G2

G3

C 

B

O1 O3

60

O1O3   �  90 mm
O1B     �  40 mm
BC       �  60 mm
BG2     �  40 mm
CG2     �  30 mm
O3C     �  50 mm
O3G3   �  25 mm

FIGURE P10.3

1

2

3

F1

G2

B, G3 

A

50

AB   � 10 in
AG2 �  4 in

FIGURE P10.4
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10.8 The crank of the slider-crank mechanism of Figure P10.6 has an instantaneous angular
velocity of 10 rad/s clockwise and an angular acceleration of clockwise.
Information related to acceleration is given in the figure. The connecting rod has a mass
of 15 kg and a mass moment of inertia of about its center of mass, The
slider has a mass of 8 kg. The crank has a moment of inertia of about its
stationary center of mass, Determine all bearing forces and the input torque for
the position shown.

T1G1.
4000 kg # mm2

G2.7500 kg # mm2

200 rad/s2

10.9 The four-bar linkage of Figure P10.7 has a constant input angular velocity
clockwise. This results in the following accelerations:

and cw. Coupler link 2
weighs 1.2 lb and has a mass moment of inertia about center of mass, equal to

Follower link 3 weighs 1.0 lb and has a mass moment of inertia about its0.03 lb # s2 # in.
G2,

a3 = 6940 rad/s2a2 = 2670 rad/s2 ccw, aG3 = 14,600l294° in/s2,
l298° in/s2,aG2 = 34,500

v1 = 200 rad/s

OB   �  2 in
BC   �  4 in
BG2  �  2 in/s2

1 2

3

O

G2
C, G3 

B

60
0.5 in

4340 in/s2

689 in/sec2

1780 in/s2

5000 in/s2

b'

oc'

FIGURE P10.5

1
2

3

G2

C, G3 O, G1 

B

60

30

30

10 mmy

x

OB   �  30 mm

G2
  �   3810 �325  mm/s2a

2    �   66.3 rad/s2 ccw�

G3
  �   5800 �0   mm/s2a

BC   �  90 mm

FIGURE P10.6
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center of mass, equal to Determine all bearing forces and instanta-
neous input torque by (a) a graphical solution and (b) an analytical solution.

10.10 The four-bar linkage of Figure P10.8 has a constant input angular velocity 
counterclockwise. The acceleration polygon is shown in the figure. The masses of coupler
link 2 and follower link 3 are 1.0 kg and 0.6 kg, respectively, and the moments of inertia
about the centers of mass are and respectively. Determine all
bearing forces and instantaneous torque by (a) a graphical solution and (b) an analyt-
ical solution.

T1

500 kg # mm2,700 kg # mm2

v1 = 60 rad/s
T1

0.002 lb # s2 # in.G3,

O1B    �  1 in

O3C    �  2 in

O3G3   �  1 in

BC      �  4 in
BG2    �  2 in 1

2
3

O1

O3

G2

G3

C 

B

120
0.5 in

3 in FIGURE P10.7

O1B    �  80 mm

O3C    �  100 mm

O3G3   �  50 mm

O1O3  �  200 mm

BC      �  160 mm

BG2    �  100 mm

255,000 mm/s2

288,000 mm/s2

168,000 mm/s2

578,000 mm/s2

4000 mm/s2

1

2

3

O1 O3

G2 G3

C

B

45

b'

o'

c'

FIGURE P10.8
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10.11 For the mechanism of Problem 10.10, determine the bearing forces and input torque if
the constant-input angular velocity of 60 rad/s is clockwise rather than counterclockwise.
How do the forces change if the input speed is doubled?

10.12 The four-bar linkage of Figure P10.9 has the following weights and moments of iner-
tia: and and 

Input link 1 has instantaneous angular velocity and acceleration of 10
rad/s clockwise and counterclockwise, respectively, leading to the following accel-
erations: a2 = 19 aG3

= 610l182° in/s2,aG2
= 1240l189° in/s2,aG1

= 636l195° in/s2,
100 rad/s2

= 0.3 lb # s2 # in.
IG3

IG2
= 0.3 lb # s2 # in,w2 = 5 lb, w3 = 4 lb, IG1

= 0.1 lb # s2 # in,w1 = 3 lb,

and Determine the bearing forces and instantaneous input
torque by (a) a graphical solution and (b) an analytical solution.

10.13 An in-line slider-crank mechanism has a crank length of 0.1 m and a connecting-rod
length of 0.5 m. The piston has a mass of 3 kg. The connecting rod has a mass of 2 kg with
a center of mass located at a distance of 0.15 m from the crankpin end of the rod.
Utilizing a lumped-mass approximation for the connecting rod, determine an expression
for the torque required to maintain a constant crank speed of 200 rev/min. Evaluate the
torque on the following crank angles and 

10.14 For the mechanism of Problem 10.13, determine the magnitudes and directions of all
bearing forces for crank angle and Assume that the center of
mass of the crank is stationary.

10.15 An in-line slider-crank mechanism has a crank length of 2 ft and a connecting-rod length
of 7 ft. The piston has a weight of 100 lb. The connecting rod has a weight of 75 lb with a
center of gravity located at a distance of 2 ft from the crankpin end of the rod. Utilizing a
lumped-mass approximation for the connecting rod, determine an expression for the
torque required to maintain a constant crank speed of 60 rev/min. Evaluate the torque
for the following crank angles 

10.16 For the mechanism of Problem 10.15, determine the magnitudes and directions of all
bearing forces for crank angle and The crank is balanced.

10.17 Derive an expression for input torque similar to Eq. (10.37) for the offset slider-crank
mechanism of Figure P10.10 with constant crank angular velocity For the parameter
values of Problem 10.13 and an offset e of 0.1 m, evaluate the torque at the following
crank angles and 180°.f: 0, 30°, 60°, 90°, 120°, 150°,

V1.
T1

180°.f = 0, 45°, 90°, 135°,

f: 0, 30°, 60°, 90°, 120°, 150°, 180°.

180°.f = 0, 45°, 90°, 135°,

180°.f: 0°, 30°, 60°, 90°, 120°, 150°,

T1

a3 = 77 rad/s2 ccw.rad/s2 ccw,

2

3

1

B

C

G3

G2

G1

O1

O3

60

O1B    � 9 in
O1G1  � 4.5 in
BC      � 15 in
BG2    � 7.5 in
O3C    � 12 in
O3G3  � 6 in

3 in

12 in FIGURE P10.9

765
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10.18 Determine the torque required to maintain a constant crank speed of 1,000 rev/min
ccw for the two-cylinder engine depicted in Figure P10.11. The individual pistons and
connecting rods have masses of 1.0 kg and 0.8 kg, respectively. Consider the case where
the cylinder V angle is the crank spacing is and the crank angle is
160° # BG2 = DG3 = 105 mm.

f90°,u90°,c

T1

10.19 Determine the torque required to maintain a constant crank speed of 1,000 rev/min
ccw for the two-cylinder engine depicted in Figure P10.12. The individual pistons and
connecting rods have masses of 1.0 kg and 0.8 kg, respectively. Consider the case where
the cylinder V-angle is and the crank angle is 

10.20 Figure P10.13 is a schematic of a three-bladed propeller. Determine the location and cor-
rection amount of the counterweight that will balance the rotor. Perform the solution by
using (a) the graphical method and (b) the analytical method.

10.21 Determine the corrections needed in planes P and Q to balance the rotor shown in
Figure P10.14. Carry out the solution by (a) the graphical method and (b) the analytical
method.

BG2 = BG3 = 100 mm.20°.f90°c

T1

2

3
1

O1

r

e

�

B

C

�

FIGURE P10.10

1

2

4

3

5

B

D

�

�

�

O1
G3

G2

C

E

O1B � O1D � 50 mm
BC   � DE   � 210 mm
BG2 � DG3 � 105 mm

FIGURE P10.11
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2

4

1

3

5

B

�

�

O1

G2

G3

C

D

O1B � 60 mm
BC   � BD   � 200 mm
BG2 � BG3 � 100 mm

FIGURE P10.12

1 1

y

z
2

3

2

3

1 � 0�

2 � 120�

3 � 240�

m1  � 1 kg
m2  � 1 kg
m3  � 1 kg

r1  � 3 mm
r2  � 6 mm
r3  � 2 mm

x

FIGURE P10.13

1

y

z

2 2

1

6 in

1 � 90�

2 � 0�
w1  � 4 oz
w2  � 2 oz

r1 � 2 in
r2 � 2.5 in

x

P Q

6 in 6 in

FIGURE P10.14
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764 Chapter 10 Dynamic-Force Analysis

10.22 For the rotor shown in Figure P10.15, unbalanced masses 1 and 2 have weights of 6 lb and
4 lb, respectively. The system is to be balanced by adding mass in the L plane at a radius
of 3.0 in and removing mass in the R plane at a radius of 3.5 in. Determine the magni-
tudes and locations of the required corrections by (a) a graphical solution and (b) an
analytical solution.

10.23 The rotor of Figure P10.16 has unbalanced weights and 
at radial positions and Determine the necessary counter-
weight correction amounts and locations in balance planes at points P and Q for
complete static and dynamic balance of the rotor by (a) a graphical solution and (b) an
analytical solution.

(in # oz)
r3 = 2 in.r1 = 3 in, r2 = 3 in,

w3 = 2 oz,w1 = 2 oz, w2 = 3 oz,

10.24 The rotor of Figure P10.17 has the following unbalanced amounts:
and Balance the rotor by determining the

angular orientation and correction amount for a counterweight in plane P and the axial
location and angular orientation of a second counterweight having a correction amount
of by (a) a graphical solution and (b) an analytical solution.

10.25 Figure P10.18 depicts a four-throw crankshaft that has the following properties:
and Determine the balancing

arrangement in correction planes P and Q.
r1 = r2 = r3 = r4 = 40 mm.m1 = m2 = m3 = m4 = 10 kg

1,000 kg # mm

m3r3 = 1500 kg # mm.m2r2 = 2000 kg # mm,
m1r1 = 1500 kg # mm,

1

y

z

2 2

1

4 in

1 � 90�

w1  � 6 lb
r1  � 4 in

2 � 210�

w2 � 4 lb
r2  � 5.25 in

x

L R

9 in 7 in

FIGURE P10.15

2 2

33

1 1

z

y x
� 1 � 60
� 2  � 150

� 3  � 270

1 in 1 in 1 in 1 in2 in

Q P

FIGURE P10.16
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10.26 Figure P10.19 depicts a four-throw crankshaft that has the following properties:
and Determine the balancing

arrangement in correction planes P and Q.
r1 = r2 = r3 = r4 = 40 mm.m1 = m2 = m3 = m4 = 10 kg

1

1

3

2

2

3

30

45

90
0.6 m 0.9 m

0.5
m

P

FIGURE P10.17

50
mm

50
mm100 mm 100 mm 100 mm

90

90

90

90

1 1

2 2

3 3

4 4
P Q

FIGURE P10.18

50
mm

50
mm100 mm 100 mm 100 mm

90

90

90

90

1 1

3 3

2 2

4 4
P Q

FIGURE P10.19

10.27 Repeat Problem 10.14, except include a rotating counterweight on the crankshaft at an
angle of relative to the crank.The counterweight has a mass of 3.5 kg and a center of
mass located at a distance of 0.1 m from the crankshaft axis.

10.28 Repeat Problem 10.16, except add a rotating counterweight on the crankshaft at an angle
of relative to the crank. The counterweight has a weight of 100 lb and a center of
mass located at a distance of 2.5 ft from the crankshaft axis.

180°

180°
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766 Chapter 10 Dynamic-Force Analysis

10.29 Figure P10.20 shows an in-line, two-cylinder engine arrangement in which the cranks are
spaced at Determine expressions for the net shaking force and its axial position a
as functions of angle For each cylinder, and where m is
the reciprocating mass, r is the crank length, and is the connecting-rod length.Axial dis-
tance Which of the following are balanced: primary shaking force, secondary
shaking force, primary shaking moment, secondary shaking moment?

s = 4 in.
/

r// = 0.25,mrv2 = 2,000 lbvt.
Fs90°.

10.30 Figure P10.21 shows an in-line, two-cylinder engine with cranks. Also shown is a
gear and rotating counterweight arrangement that is driven from the crankshaft. What
gear ratio, correction amount, and counterweight orientation must be used to balance
the net shaking force?

180°

22

11
Fs

a

s

90

�t

FIGURE P10.20

11

2 2

�

�

r

r

�

m

m

FIGURE P10.21
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2
1

FIGURE P10.22

1

23

4

1, 4

2, 3 FIGURE P10.23

10.31 Examine the shaking-force balance conditions as they apply to the two-cylinder opposed
engine of Figure P10.22, which has a single crank and zero axial distance between cylinders.

10.32 Examine the balance conditions, both shaking force and shaking moment, as they apply
to the four-cylinder, in-line engine of Figure P10.23.

10.33 Examine the balance conditions, both shaking force and shaking moment, as they apply
to the four-cylinder, in-line engine of Figure P10.24.

90

90

90

90
1

1

2

2

4

4

3

3

FIGURE P10.24
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10.34 Examine the balance conditions, both shaking force and shaking moment, as they apply
to the six-cylinder, in-line engine of Figure P10.25.

10.35 Examine the shaking-force balance of the two-cylinder V engine of Figure P10.11. The
two cylinders lie in the same axial plane. Angle is and angle is 

10.36 Examine the shaking-force balance of the two-cylinder V engine of Figure P10.12. The
two cylinders lie in the same axial plane. Angle is 

10.37 The four-cylinder radial engine depicted in Figure P10.26 is an excellent engine from the
point of view of dynamic balance. Show that the engine can be balanced by means of a
single rotating counterweight mounted on the crankshaft, and determine the location
and magnitude of such a counterweight. The crank length is r, the connecting rod lengths
all equal , and the reciprocating masses all equal m. The rotating masses are balanced,
and all four cylinders lie in a single transverse plane.

/

90°.c

90°.u90°c

120

120

120
2, 5

1, 6

3, 4

6

5

4 3

2

1

FIGURE P10.25

FIGURE P10.26
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10.38 A 4-mm-thick steel body has the shape of an irregular polygon. The coordinates of the
points describing the polygon are as shown in Figure P10.27 (in meters, where e indicates
powers of 10).

(a) Sketch the body.
(b) Determine the area.
(c) Locate and mark the center of mass.
(d) Determine the mass.
(e) Determine the mass moment of inertia.

Suggestion: Use software to sketch the body and determine its properties.

0.000e�000 0.000e�000

2.000e�002

3.000e�002

1.000e�002

1.000e�002

0.000e�000

0.000e�000

1.500e�002

0.000e�000

2.000e�002

3.000e�002

4.000e�002

4.000e�002

2.000e�002

1.500e�002

1

2

3

4

5

6

7

8

X Y

FIGURE P10.27

10.39 A 1-mm-thick steel body has the shape of an irregular polygon. The coordinates of the
points describing the polygon are as shown in Figure P10.28 (in meters, where e indicates
powers of 10).

(a) Sketch the body.
(b) Determine the area.
(c) Locate and mark the center of mass.
(d) Determine the mass.
(e) Determine the mass moment of inertia.

Suggestion: Use software to sketch the body and determine its properties.

 0.00000  0.00000

 0.00000

1

 1.00000e�002  2.00000e�002

 3.00000e�002

 3.00000e�002

 1.50000e�002

2

3.00000e�0023

 5.00000e�002

 2.50000e�002

 1.00000e�002

4

5

6

X Y

FIGURE P10.28

10.40 A 1-mm-thick steel body has the shape of an irregular polygon. The coordinates of the
points describing the polygon are as shown in Figure P10.29 (in meters, where e indicates
powers of 10).

(a) Sketch the body.
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770 Chapter 10 Dynamic-Force Analysis

(b) Determine the area.
(c) Locate and mark the center of mass.
(d) Determine the mass.
(e) Determine the mass moment of inertia.

Suggestion: Use software to sketch the body and determine its properties.
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2.00000e�002

1.50000e�002
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4

5
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7

8
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X Y

FIGURE P10.29

10.41 A 0.3 m radius by 0.04995 m thick disk with two blades is shown in Figure 10.4 in the text.
The mass density of steel is about 
Each blade is 1 m square by 1.25 mm thick, has a mass of 10 kg, and is subject to air resis-
tance equal to where of the blade center, and 
area. An electric motor applying a torque of drives the assembly. Use mathe-
matics software to
• Find the mass moment of inertia of the assembly.
• Find the terminal angular velocity of the assembly. Calculate the power and check the

air resistance torque and angular acceleration at this speed.
• Calculate the angular acceleration and power when the rotation speed is 20 rad/s.

10.42 Use motion simulation software to examine the assembly in the previous problem. Find
the power, rotation position, angular velocity, and angular acceleration at 136.1 seconds
after the motor is started. Plot the following against time: air resistance force on one
blade, angular velocity and acceleration of the assembly, and angular momentum of the
central disk.

10.43 A rotating assembly consists of a steel disk with two blades similar to the one shown in
Figure 10.4 in the text. The disk has a radius of 300 mm and is 100 mm thick. The mass
density of steel is about Each blade is 1 m square by 5 mm thick, has a mass
of 0.5 kg, and is subject to air resistance equal to where of
the blade center, and area. An electric motor applying a torque of 
drives the assembly. Use mathematics software to
Find the mass moment of inertia of the assembly.

10 N # mA = blade
k = 0.025, v = velocitykv2A,

8000 kg/m3.

15 N # m
A = bladek = 0.025, v = velocitykv2A,

8,000 kg/m3.
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Problems 771

Find the terminal angular velocity of the assembly. Calculate the power and check the air
resistance torque and angular acceleration at this speed.
Calculate the angular acceleration and power when the rotation speed is 16 rad/s.

10.44 Use motion simulation software to examine the assembly in the previous problem. Find
the rotation position 10 seconds after starting the motor. Plot the following against time:
air resistance force on one blade, angular velocity and acceleration of the assembly, and
angular momentum of the center disk.

10.45 A 0.3 m radius by 0.04995 m thick steel disk has two blades as shown in Figure 10.4 in the
text. The mass density of steel is about Each blade is 1 m square by 0.05 m
thick, has a mass of 10 kg, and is subject to air resistance equal to where

of the blade center, and area. An electric motor
applying a torque of drives the assembly.
(a) Find the following quantities 10 seconds after the motor is started: Mechanical

power supplied to the assembly and angular displacement, velocity, and acceleration
of the assembly.

(b) Find the same quantities one minute after the motor is started.
(c) How long does it take the motor to reach an angular velocity of 20 rad/s?

10.46 In the following problem, examine only inertial effects. Fluid forces on the piston are not
considered. A pump in the form of an in-line slider-crank linkage has a 51-mm crank
length and 96-mm connecting-rod length. The crank, connecting rod, and piston masses
are 0.45, 0.91, and 1.36 kg, respectively. The mass moments of inertia are and

for the crank and connecting rod, respectively (about their centers of
gravity). The crank angular velocity is a constant 100 rad/s. Find the maximum crankpin
force. Find the corresponding wrist-pin force, as well as the crank angle and time. (Note:
If the problem is solved for discrete time steps, results are not likely to be exact.)

10.47 In this problem, the connecting rod is given a negligible mass so that it approximates a
two-force member and we examine only inertial effects. Fluid forces on the piston are
not considered. A pump in the form of an in-line slider-crank linkage has a 51-mm crank
length and 96-mm connecting-rod length. Crank, connecting rod, and piston masses are
450, 1, and 1,360 grams, respectively. Mass moments of inertia are and

for the crank and connecting rod, respectively (about their centers of
gravity). The crank speed is a constant 95.49 rpm. Plot the angular position, angular
velocity, and angular acceleration of the connecting rod. Plot the position, velocity, and
acceleration of the piston. Find the maximum motor torque and power and the corre-
sponding time and crank angle. Find the corresponding forces at either end of the con-
necting rod and its position, velocity, and acceleration.

10.48 Repeat the previous problem, but consider the linkage position that results in the maximum
piston acceleration magnitude. Find the piston acceleration at that instant. Find the motor
torque and power and the corresponding time and crank angle. Find the corresponding
forces at either end of the connecting rod and its position, velocity, and acceleration.

10.49 The piston of a pump is subject to fluid forces given by when (i.e.,
when the piston is moving away from the cylinder head) and otherwise, where

force (N) resisting piston motion, and velocity (m/s). The pump
will have the form of an in-line slider-crank linkage with a 51-mm crank length and 96-
mm connecting-rod length. The crank, connecting rod, and piston masses are 0.45, 0.91,
and 1.36 kg, respectively. The mass moments of inertia are and

for the crank and connecting rod, respectively (about their centers of
gravity). The crank angular velocity is a constant 100 rad/s. Plot the motor torque and
7.008 # 10-4 kg # m2

9.845 # 10-5

vC = pistonFd = fluid
Fd = 0

vC 6 0Fd = 50 vC
2

8 # 10-7 kg # m2
9.845 # 10-5

7.008 # 10-4kg # m2
9.845 # 10-5

15 N # m
A = bladek = 0.025, v = velocity

kv2A,
8000 kg/m3.
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772 Chapter 10 Dynamic-Force Analysis

linkage motion against time. Find the maximum motor power and the corresponding
time and values of torque, linkage motion, and forces.

10.50 Repeat the previous problem, but find the magnitude of the greatest lateral force on the
cylinder and the time and crank position when that force is reached. Also, find, for that
instant, the motor power and torque; the piston position, velocity, and acceleration; the
connecting-rod angular position, velocity, and acceleration; and the horizontal, vertical,
and resultant forces on the crankpin and wrist pin.

10.51 The piston of a pump is subject to fluid forces given by when (i.e.,
when the piston is moving away from the cylinder head) and otherwise, where

force (N) resisting piston motion and velocity (m/s). The pump
will have the form of an in-line slider-crank linkage with a 50-mm crank length and 90-
mm connecting-rod length. The crank, connecting rod, and piston masses are 1.5, 1, and 2
kg respectively. Mass moments of inertia are and for the
crank and connecting rod, respectively (about their centers of gravity). The crank angu-
lar velocity is a constant 100 rad/s. Plot the motor torque and linkage motion against
time. Find the maximum motor power, the time at which the maximum power is reached,
and the corresponding values of the crank position and torque. Also, find, for that
instant, the piston position, velocity, and acceleration; the connecting-rod angular posi-
tion, velocity, and acceleration; and the horizontal, vertical, and resultant forces on the
crankpin and wrist pin.

10.52 Repeat the previous problem, but find the magnitude of the greatest lateral force on the
cylinder and the time and crank position at which the maximum force is reached. Also,
find, for that instant, the piston position, velocity, and acceleration; the connecting-rod
angular position, velocity, and acceleration; the motor torque and power; and the remain-
ing horizontal, vertical, and resultant forces on the crankpin and wrist pin.

10.53 A motor with torque characteristics approximated by drives a pis-
ton pump, where torque and angular velocity. The piston is
subject to fluid forces given by when (i.e., when the piston is mov-
ing toward the cylinder head) and otherwise, where force (N) resisting
piston motion and velocity (m/s). The pump will have the form of an in-line
slider-crank linkage with a 50-mm crank length and 110-mm connecting-rod length. The
crank, connecting rod, and piston masses are 2, 1.25, and 1.36 kg, respectively. The mass
moments of inertia are 0.005 and for the crank and connecting rod, respec-
tively (about their centers of gravity). Show the linkage; plots of the crank angular posi-
tion, velocity, and acceleration; plots of the piston position, velocity, and acceleration; and
plots of the net motor torque and power, all against time. Find the maximum motor
power and the corresponding values of torque, linkage motion, and forces.

10.54 A motor with torque characteristics approximated by drives a piston
pump, where torque and angular velocity. The piston is sub-
ject to fluid forces given by when (i.e., when the piston is moving
toward the cylinder head) and otherwise, where force (N) resisting
piston motion, and velocity (m/s). The pump will have the form of an in-line
slider-crank linkage with a 51-mm crank length and 96-mm connecting-rod length. The
crank, connecting rod, and piston masses are 2, 0.91, and 1.36 kg, respectively. Mass
moments of inertia are 0.0046 and for the crank and connecting rod,
respectively (about their centers of gravity). Show the linkage; plots of the crank angular
position, velocity, and acceleration; plots of the piston position, velocity, and acceleration;

0.0007kg # m2

vC = piston
Fd = fluidFd = 0

vC 7 0Fd = -45 vC
 2
v1 = crank(N # m)T = net

T = 50 - 0.005 v1
 2

0.001 kg # m2

vC = piston
Fd = fluidFd = 0

vC 7 0Fd = -45 vC
 2
v1 = crank(N # m)T = net

T = 50 - 0.005 v1
 2

6.771 # 10-4 kg # m23.156 # 10-4

vC = pistonFd = fluid
Fd = 0

vC 6 0Fd = 50 vC
 2
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and plots of the net motor torque and power, all against time. Find the maximum motor
power and the corresponding values of torque, linkage motion, and forces.

10.55 Repeat the previous problem, except

(a) Find the maximum crankshaft speed and the corresponding values of torque, power,
linkage motion, and forces.

(b) Find the elapsed time for the first revolution of the crankshaft and the values of
torque, power, linkage motion, and forces at the end of the first cycle of motion.

10.56 Refer to Figure 10.12a in the text, which shows a mechanism made up of a four-bar link-
age, connecting rod, and slider. At the initial position of the mechanism, the crank

and the coordinates of the points shown are given in mm as follows: motor 
0,0; fixed point 140, 0; B: 52, 0; D: 35.5, C: 95.4, reentrant corner of cou-
pler: 51.7, Wrist-pin path: E: 151.2,
The bodies have the following masses (kg) and mass moments of inertia 
drive crank coupler BDC: 0.20,109; driven crank connecting
rod DE: 0.18, 216; piston E: 0.25, 30.9. A motor drives the crank at a constant angular
velocity of counterclockwise. Determine the following for the instant the
magnitude of the piston velocity is maximum: time; crankshaft position; piston position,
velocity, and acceleration; and forces applied by the connecting rod to the wrist pin.
Sketch the linkage for this instant. Consider only inertial effects.

10.57 Repeat the previous problem, but consider the instant the piston acceleration reaches its
maximum positive value (to the right). Also, consider only inertial effects.

10.58 Repeat the previous problem, but plot the motor torque against time. Find the instant in
time that the torque reaches its maximum value. Sketch the linkage at that instant.
Determine the following for that instant: crankshaft position; piston position, velocity,
and acceleration; and forces applied by the connecting rod to the wrist pin. Consider only
inertial effects.

PROJECTS

See Projects 1.1 through 1.6 and suggestions in Chapter 1.
Review the results of the study of acceleration and angular acceleration characteristics of
linkages in the design. Plot representative dynamic forces and torques in the linkages.
Make use of computer software wherever practical. Check your results by a graphical
method for at least one linkage position. Evaluate the linkage in terms of its perfor-
mance requirements.
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C H A P T E R  1 1

Synthesis

Methods and Concepts You Will Learn and Apply when Studying
This Chapter

• What to take into account in selecting the type of mechanism and the number of
links and joints in a mechanism to fill a specified need.

• Graphical design methods for guiding a link into two specified positions.
• Writing a program to do the preceding.
• Methods for guiding a link into two specified positions when the calculated

pivot-point location is inaccessible.
• Analytical and graphical design methods for guiding a link into three specified

positions.
• A complex-number method for proportioning a linkage to produce specified

velocities and accelerations.
• Design of a function generator to produce a specified output-to-input relation-

ship using the dot-product method.
• A complex-number matrix method for carrying out the preceding task.
• Evaluation and redesign of function generators.
• Design of linkages to produce coupler curves with specified properties.
• Design of a linkage for a specified motion requirement. Selecting and applying a

coupler curve for this application.
• Utilizing motion simulation software and computational software to aid in per-

forming the foregoing tasks, to evaluate results, and to test and evaluate redesign
decisions.

If the dimensions of a mechanism are given, and we attempt to determine its motion
characteristics, the process is called analysis. Synthesis is the inverse process: Given a
set of performance requirements, we attempt to proportion a mechanism to meet those
specifications. Ideally, all mechanisms would be designed by some mathematical syn-
thesis process. However, because of the complexity of real-world machine requirements,
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ingenuity, judgment, and analysis are still a major part of the design process, while the
application of formal synthesis is limited.

Type synthesis, number synthesis, and various forms of dimensional synthesis are
described in the paragraphs that follow. Design methods involving less formal synthe-
sis procedures are illustrated throughout the text.

In some situations, the performance requirements and our design decisions
reduce a synthesis problem to a simple analysis task. In other cases, the synthesis
approach yields many acceptable solutions. Whenever possible, a figure of merit is
defined (e.g., minimum cost or weight), and the design is optimized.Then the proposed
design is analyzed to confirm that the performance requirements are met.

11.1 TYPE SYNTHESIS

The process of deciding whether to use gears, cams, linkages, or other machine ele-
ments to transmit motion is called type synthesis. For example, when a precise, constant
speed ratio is required, as in driving a camshaft, a gear or chain drive might be selected.
A four-bar linkage might be selected to change continuous rotation to oscillation. If we
need to change rotational motion into linear (rectilinear) motion, as in a compressor, a
slider-crank linkage is likely to be considered. But the slider-crank linkage is also the
basis for the piston engine, where the piston is driven by gas forces and the crank is the
output link. We would select a cam-and-follower system to change rotational motion
into linear motion when a precise input–output relationship is required.

Other considerations in type synthesis include static and inertial loading, wear,
reliability, and cost. Type synthesis is largely dependent on the experience and creativ-
ity of the designer and may be followed by number synthesis, dimensional synthesis,
selection of materials, and processing. As part of the adequacy assessment, analysis is
an essential ingredient. Expert-system computer software packages, which are
described in recent literature, may also be of interest to the designer.

11.2 NUMBER SYNTHESIS

Number synthesis is the determination of linkage configurations (the number of links
and joints) that satisfy given criteria. Number synthesis allows us to consider a variety
of linkages for a particular application. Suppose, for example, we wish to identify pla-
nar, one-degree-of-freedom linkages with revolute joints. Grübler’s criterion (see
Chapter 1) relates the number of links and pairs by the relationship

(11.1)

from which it follows that

(11.2)

where number of links and number of revolute joints. Since the
number of joints and the number of links must be integers, the following combinations

nœ
J = thenL = the

nL = (2nœ
J + 4)>3,

2nœ
j - 3nL + 4 = 0,
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satisfy the criterion:

1 2
4 4
7 6
10 8
13 10, etc.

The first combination represents two links joined by a revolute (pin) joint. The second
is a four-bar linkage. The Watt linkage and the Stephenson linkage (Figure 1.10) are
each formed by six links and seven pin joints.

11.3 TWO-POSITION SYNTHESIS

Consider the situation in which a link must assume certain prescribed positions, as, for
example, in Figure 11.1. Such requirements are common in the design of materials-
handling equipment. If a link must assume three positions in a plane, the link may be
guided as the coupler of a four-bar linkage. If only two planar positions are prescribed,
the link may be rotated about a single pivot point, or a four-bar linkage may be used.
This synthesis problem may be solved analytically or graphically.

Graphical Solution

Figure 11.2 shows a machine member in planar motion with only two positions pre-
scribed. Two points B and C are arbitrarily selected within the member, where the ini-
tial and final positions are identified by subscripts 1 and 2, respectively. If point B
moves in a circular path between the initial and final positions of the member, the cen-
ter of that circular path lies on the perpendicular bisector of line Likewise, if C
moves in a circular path, the center lies on the perpendicular bisector of The link
will assume the two prescribed positions if a fixed pivot (revolute joint) is located at
the intersection of the perpendicular bisectors, as shown in the figure. If translation in
the z direction is required as well, a helical pair (a screw or a helical spline) could be
used instead of the revolute joint.

C1C2.
B1B2.

nLnœ
J

FIGURE 11.1 Design for specified positions.
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C1

C2

Fixed pivot

Position 1

Position 2

z FIGURE 11.2 Two-position problem.

Computer Solution

An analytical solution of the planar two-position synthesis problem is outlined in the
flowchart of Figure 11.3 Length L is the distance between points B and C, and angle 
is the orientation of line BC. If the angle is input in degrees, it may be changed to radi-
ans by multiplying by PI/180, where Point C is located by
the equations

and

(11.3)

where the subscripts identify the x- and y-coordinates. It is suggested that input values
and all relevant calculated values be printed out as an aid to debugging and to check
the results graphically.

The midpoints of lines B(1)B(2) and C(1)C(2) are identified, respectively, by
and where

(11.4)

The slopes of the perpendicular bisectors are given by and where

(11.5)

We may now write the equations of the perpendicular bisectors in the form

y = MBx + KB

MB = [Bx(1) - Bx(2)]>[By(2) - By(1)], etc.

MC,MB

Dx = [Bx(1) + Bx(2)]>2, etc.

(Ex, Ey),(Dx, Dy)

Cy(I) = By(I) + L sin b,

Cx(I) = Bx(I) + L cos b

PI = 4 * arctangent (1).

b
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Input link length

For I � 1 to 2
Input Bx(I) , By(I) ,    (I)�

Locate Cx(I) , Cy(I)

I � 2?

No

Yes

Locate midpoints of
lines B(1)B(2) and

C(1)C(2)

Find slope MB and 
constant KB in 
y � MBx � KB,

the equation for the
perpendicular 

bisector of B(1)B(2)

Repeat for
y � Mcx � Kc,

the equation for the
perpendicular

bisector of C(1)C(2)

Solve the above 
simultaneous equations 

for x and y

Next I

FIGURE 11.3 Flowchart for two-position problem.
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and

(11.6)

where the constants are given by

and

(11.7)

Solving these equations simultaneously, we find that the location of the fixed pivot
point (x, y) is given by

and

(11.8)

If one of the selected points moves in the x direction, the perpendicular bisector will
have an infinite slope. This special case can be handled by a branch in the program. A
final step in the computer program may include drawing line BC in the specified posi-
tions and plotting the location of the pivot point.

SAMPLE PROBLEM 11.1

Computer-Aided Two-Position Synthesis

A link identified by points B and C, which are 50 mm apart, is to assume the following positions:

Coordinates Angle 

Position 1 75 80
Position 2 125 85

Find the location of a fixed pivot that will permit the indicated motion.

Solution. A program based on the flowchart of Figure 11.3 and equations described in the para-
graph before this sample problem is used to obtain the following results:

Coordinate x y

Point C(1) 124.24 71.32
Point C(2) 96.32 125.96
Midpoint of B(1)B(2) 100 82.5
Midpoint of C(1)C(2) 110.28 98.64
Fixed pivot location 98.96 92.86

The results agree with the graphical solution shown in Figure 11.2.

125°
–10°

bByBx

y = MB[KC - KB]>[MB - MC] + KB.

x = [KC - KB]>[MB - MC]

KC = Ey - MC Ex.

KB = Dy - MB Dx

y = MCx + KC,
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Inaccessible Pivot Point

If the intersection of the perpendicular bisectors of the displacement is inaccessible, or if
other design considerations make the use of the intersection as a pivot point impractical,
a four-bar linkage may be employed. Fixed revolute joints may be located anywhere
along the said perpendicular bisectors. However, transmission angles should be consid-
ered when one locates these pivots.

SAMPLE PROBLEM 11.2

Two-Position Synthesis Using a Four-Bar Linkage

A link containing points B and C, which are 75 mm apart, is to assume the following positions:

Coordinates
Position 1 140 180
Position 2 225 185

Design a linkage that will permit the indicated motion.

Solution. A program based on the flowchart in Figure 11.3 and Eqs. (11.3) through (11.8) gives
the following results:

Coordinates x y

Midpoint of B(1)B(2) 182.5 182.5
Midpoint of C(1)C(2) 256.2 192.2
Intersection of perpendicular bisectors 163.5 505.3

Slope Orientation

Perpendicular bisector of B(1)B(2)
Perpendicular bisector of C(1)C(2)

Use of the intersection of the perpendicular bisectors as a pivot point would probably result in
an unacceptable design in this case. One possible design is four-bar linkage shown in
Figure 11.4, where fixed revolute joints and are arbitrarily located along the perpendicular
bisectors. (Note that the graphical solution shown in the figure verifies the computer solution.)

OCOB

OBBCOC

106.49°–3.377
93.37°–17

15°
0°
bByBx

150

200

250

300

100 150 200 250 300

OB

B1 B2

C2

C1

OC

y

Position 2Position 1

x FIGURE 11.4 Two-position problem using a four-bar
linkage.
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11.4 THREE-POSITION SYNTHESIS USING A FOUR-BAR LINKAGE

If three positions of a link are specified, it will not generally be possible to use a single
pivot point. Figure 11.5 shows a link containing points B and C in three positions in a
plane, identified by subscripts 1, 2, and 3.

The concept and the design procedure are as follows:

• We will try to design a four-bar linkage with coupler BC that assumes the three
required positions: and 

• The paths of points B and C will be circular arcs.

• We know from elementary geometry that three points determine a circle.

• The center of the circle lies at the intersection of the perpendicular bisectors of
two chords.

• is one chord of the circular path of point B; is another.

• The intersection of the perpendicular bisector of with the perpendicular
bisector of locates fixed pivot of the four-bar linkage.

• Fixed pivot of the four-bar linkage is located similarly, after one locates the
required positions of point C.

It may be possible to drive one of the crank links (at or ) to produce the
required motion. Or the set of required positions may lead to a linkage that works best
if the drive motor is located between a crank and the coupler (at point B or point C).
In some cases, a four-bar linkage may not be a practical solution to the three-position
synthesis problem.

OCOB

OC

OBB2B3

B1B2

B2B3B1B2

B3C3.B1C1, B2C2,

Position 3

Position 2

Position 1

C3

B3

OB B2

C2

OC

C1

B1

2.35

1.79

1

2

3

4

5

�1 0, 0 1 2 3 4 5
x

y

FIGURE 11.5 Three-position problem.
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SAMPLE PROBLEM 11.3

Computer-Aided Three-Position Synthesis

A link containing points B and C, which are 3.1 in apart, must assume the following positions:

Coordinates Angle 
Position 1 0 0

2 1.1 1.9
3 4.3

Design a linkage that will satisfy this requirement.

Solution. (See Figure 11.5.) Fixed pivot is located at the intersection of the perpendicular
bisectors of chords B(1)B(2) and B(2)B(3). Fixed pivot is similarly located with respect to the
position of point C. A computer-aided solution is outlined in the flowchart given in Figure 11.6.
The equations represented in the flowchart are similar to those used in two-position synthesis.

11.5 VELOCITY AND ACCELERATION SYNTHESIS BY THE COMPLEX
NUMBER METHOD

A four-bar linkage may be proportioned to produce specified values of angular veloc-
ity and acceleration for each link, using a procedure developed by Block. (See
Rosenauer, 1954.) Unfortunately, applications of this method of synthesis are limited,
since, in general, the specified values can be produced for only an instant (i.e., for only
one linkage position).

In Bloch’s procedure, the links are described by complex numbers. Referring to
Figure 11.7, with link 1 represented by vector and so on, we see that the closed poly-
gon formed by the four-bar linkage may be represented by the vector equation

(11.9)

Putting the fixed-link vector on the right side of the equation and using the com-
plex exponential form , we have

(11.10)

Differentiating with respect to time, we obtain

(11.11)

where angular velocity and . Differentiating with respect to time
again yields

(11.12)

where angular acceleration .a = dv>dt

(ja1 - v1
2)r1e

ju1 + (ja2 - v2
2)r2e

ju2 + (ja3 - v3
2)r3e

ju3 = 0,

v0 = 0v = du>dt

jv1r1e
ju1 + jv2r2e

ju2 + jv3r3e
ju3 = 0,

r1e
ju1 + r2e

ju2 + r3e
ju3 = -r0e

ju0

r = reju

r1 + r2 + r3 + r0 = 0

r1,

OC

OB

–20°-1.7
0°

28°
bByBx
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Input link length

For I � 1 to 3
Input Bx(I), By(I),    (I)�

Locate Cx(I), Cy(I)

I � 1?

No

Yes

Locate midpoints of
 lines B(I � 1)B(I) and

C(I � 1)C(I)

Find slopes MB(I) and
 constants KB(I)of

perpendicular bisectors
of B(I � 1)B(I), etc.
where y � MBx �KB

Repeat for point C

I � 3?

No

Solve above simultaneous
equations for intersections

 of perpendicular bisectors of 
B(1)B(2) and B(2)B(3) to find

x and y coordinates of OB

Repeat for OC

Calculate lengths of
crank links

Yes Next I

FIGURE 11.6 Flowchart for three-position problem.
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r1

r2

r3

r0

�1

�2

�0

�3

(Fixed link) FIGURE 11.7 Mechanism synthesis for
specified angular velocities and angular
accelerations.

After dividing all terms of Eq. (11.11) by j, we write Eqs. (11.10) through (11.12)
in vector form as

and

which may be expressed by the matrix equation

(11.13)

The solution of this equation is given in determinant form by

and so on, where

The term appears in the equation for and as well. For convenience, we may
set equal to unity in each r equation and still satisfy the specified conditions (given
values of and ). Each link will change in length by the same proportion, and eachav

–r0>D
r3r2–r0>D

D = 3
1 1 1
v1 v2 v3

ja1 - v1
2 ja2 - v2

2 ja3 - v3
2

3

r1 =
-r0

D
3 1 1 1
0 v2 v3

0 ja2 - v2
2 ja3 - v3

2

3

C
1 1 1
v1 v2 v3

ja1 - v1
2 ja2 - v2

2 ja3 - v3
2
S C

r1

r2

r3

S = C
-r0

0
0
S

(ja1 - v1
2)r1 + (ja2 - v2

2)r2 + (ja3 - v3
2)r3 = 0,

 v1r1 + v2r2 + v3r3 = 0,
 r1 + r2 + r3 = -r0,
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angle will change by the same value. The resulting linkage is represented by vectors
and (where etc.), which are given by the determinants

(11.14)

(11.15)

and

(11.16)

with
(11.17)

SAMPLE PROBLEM 11.4

Velocity and Acceleration Synthesis

Let us examine the synthesis of a linkage for specified angular velocities and accelerations. The
values are as follows:

Link: 0 (fixed) 1 2 3
0 2 0 1
0 0 1 1

Specify a linkage that (instantaneously) satisfies these values.

Solution. We have

 R3 = 3
1 1 1
2 0 0

-4 j 0

3 = j2 = 2e-jp>2,

 R2 = 3
1 1 1
2 0 1

-4 0 j - 1

3 = -2 - j2 = 2.828e-j2.356,

 R1 = 3
1 1 1
0 0 1
0 j j - 1

3 = -j = e-jp>2,

a(rad>s2):
v (rad>s):

R0 = -R1 - R2 - R3.

R3 = 3
1 1 1
v1 v2 0

ja1 - v1
2 ja2 - v2

2 0

3 ,

R2 = 3
1 1 1
v1 0 v3

ja1 - v1
2 0 ja3 - v3

2

3 ,

R1 = 3
1 1 1
0 v2 v3

0 ja2 - v2
2 ja3 - v3

2

3 ,

R1 = r1>(–r0>D),R3R0, R1, R2,

790



Section 11.5 Velocity and Acceleration Synthesis by the Complex Number Method 787

Imaginary axis

Real axis

R 0 �
 2 � j

R2 � �2�j2
R3 �  j2

R1  � �j

FIGURE 11.8 Synthesis solution to Sample Problem 11.4.

and

The resulting linkage is sketched in Figure 11.8. This mechanism will satisfy the required conditions
only when the links pass through the relative position shown.

An Alternative Solution Using the Matrix Inverse. Let the matrix equation (11.13) be
represented by

(11.18)

where

Multiplying both sides of the equation by the inverse of matrix A, yields

(11.19)

This form of solution is most convenient for computer calculations. A program for multiplication
and inversion of complex matrices may be written by the user or purchased as part of a commercial
software package.

X = A-1B.

A–1,

X = C
r1

r2

r3

S , etc.

AX = B,

 R0 = j + 2 + j2 - j2 = 2 + j = 2.236ej0.464.
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SAMPLE PROBLEM 11.5

Computer Solution Using the Matrix Inverse

Use the matrix inverse method to solve Sample Problem 11.4.

Solution. It can be seen from the preceding results that one link vector may be chosen arbitrar-
ily. For convenience, we let Using a software package to solve Eq. (11.19), we obtain X,
from which it follows that and The proportions
of the linkage are the same as in the previous solution, but the size and orientation are different.
If each link vector is multiplied by then the results are identical to those of the earlier
sample problem.

11.6 DESIGN OF A FUNCTION GENERATOR: DOT-PRODUCT METHOD

Four-bar linkages may be used as function generators. Their low friction and higher
load capacity make them preferable to cams for certain applications.An important dis-
advantage of the four-bar-linkage function generator, however, is its inability to repre-
sent an arbitrary function exactly, except at a few points, called precision points. The
range of input and output motion is further limited by the limiting positions of the
linkage itself and sometimes by problems associated with mechanical advantage or the
transmission angle.

Consider the problem of designing a four-bar linkage so that output angle is a
specified function of input angle where links and angles are identified as in Figure 11.9.
Each of the four links of the mechanism is considered a vector, as shown in part b of
the figure. The coupler link vector is equated to the vector sum of the other three link
vectors, and a dot or scalar product is formed from the vectors on both sides of the
equation. Thus, we have the vector relationship

(11.20)

and

(11.21)

where we have formed the dot product of each side of Eq. (11.20) with itself.
Freudenstein (1955) developed the dot-product method to obtain linkage dimensions
of a function generator by using three, four, or five precision points. Freudenstein’s
three-point approximation is obtained as follows:

1. Select three input angles and anid the corresponding output angles
and Compute each output angle so that the required relationship

between and is satisfactory at each of the three precision points for the pre-
scribed function 
Figure 11.10 shows input link 1 and output link 3 at the three precision points. The
desired relationship between and is achieved exactly at and

and satisfied approximately at other values of and f.u(u3, f3)
(u1, f1),(u2, f2),fu

f = f(u).
fu

f3.f1, f2,
u3u1, u2,

r2
# r2 = r2

2 = (r1 + r0 + r3) # (r1 + r0 + r3),

- r2 = r1 + r0 + r3

u,
f

2 + j,

r3 = 0.4 + j0.8.r1 = –0.2–j0.4, r2 = –1.2–j0.4,
r0 = 1.
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1

3

2
Coupler

Output link

Input link

0 Fixed link

(a)

(b)

��

r2

r1

r3

r0

FIGURE 11.9 (a) Design of a function gen-
erator. (b) Vectors representing the linkage.

2. In order to simplify the expressions for the lengths of links 1 and 3, compute the
following angle relationships, which will be used shortly.

3. If the fixed link is arbitrarily given a length the lengths of the input and output
cranks are, respectively,

(11.22)r1 =
BC - AD

AF - BE
 r0 and r3 =

BC - AD

CF - DE
 r0.

r0,

 F = cos (u1 - f1) - cos (u3 - f3).

 E = cos (u1 - f1) - cos (u2 - f2);

 D = cos f1 - cos f3;

 C = cos f1 - cos f2;

 B = cos u1 - cos u2;

 A = cos u1 - cos u2;
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1 3
Input link

Output link

� �

�
1 2

�1
�2

�3
3

x

y

1

1

2
2

3

3

4

5

FIGURE 11.10 Proposed function generator. The input and output links of this
four-bar linkage are to generate the function y for values of x
(input) between 1 and 3. The coupler (link 2) is not shown. The sketch is not to
scale, since link dimensions are yet to be determined.

(output) = x1.5

If is found to be negative, link 1 is drawn in a direction opposite that shown in
Figure 11.10. Similarly, if is negative, its direction is reversed.

SAMPLE PROBLEM 11.6

Design of a Function Generator

Design a four-bar linkage to generate the function for values of x between 1 and 3.

Solution.

STEP 1. Angular displacement of the input crank will be proportional to x, and angular
displacement of the output crank will be proportional to y. At our disposal, we
have the initial values of and which will be taken as and 
We are also free to select the ranges of and which will both be for this
example. (See Figure 11.10.) Measured from the initial values, the change in is
proportional to the change in x, or, when 

(11.23)

Similarly,

(11.24)

As x varies from 1 to 3, y varies from from which we
obtain output crank angle

(11.25)f = 18.55 + 21.45y (both u and f measured in degrees).

(1)1.5 = 1 to (3)1.5 = 5.196,

f = f0 +
range of f

range of y
 (y - y0).

u = u0 +
 range of u

range of x
 (x - x0) = 15 + 45x.

x0 = 1,
u

90°f,u

f0 = 40°.u0 = 60°f,u

f

u

y = x1.5

r3

r1
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STEP 2. For convenience, the precision points will be selected as

The preceding equations give the corresponding values of y, , and :

Point x y

1 1.000 1.000
2 2.000 2.828 105 79.22
3 3.000 5.196 150 130

STEP 3. Using these values in Eq. (11.22) and arbitrarily letting in, we calculate
the lengths of the input and output cranks:

The coupler length in may be found analytically or simply by drawing
the input and output cranks in positions and , respectively. The positions for
the other precision points are also sketched to check for limiting positions, as in
Figure 11.11. It can be seen that the limiting positions do not fall within the range
of operation of the linkage, making the design satisfactory from that standpoint.
If the linkage proportions are not acceptable, the designer would try a new set of
initial values or new ranges for and .

STEP 4. In order to transform crank angle to output y, we rewrite Eq. (11.25) to obtain

y =
f - 18.55

21.45
,

f

fu

f1u1

r2 = 2.57

r1 = 10.38 in and r3 = 10.06 in

r0 = 2

40°60°

fu

fu

x1 = 1, x2 = 2, and x3 = 3.

3

2

1

1

2

2

13

3

� � �
1

2 3

�2

�1

�3

L0

FIGURE 11.11 A linkage designed to approximate the relationship y = x1.5.
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where is measured in degrees. The linkage generates the exact function
for the precision points and 3 (corresponding to 

and ). An error in the generated function for any other value of x depends
on the initial values and ranges of and , as well as on the particular value of x.

A computer solution allows the designer of a function generator to try var-
ious design changes when link ratios or other parameters are unsatisfactory. A
computer solution also makes it practical to evaluate the function generator as it
moves through its range of positions. The solution to this sample problem was
made easier by using a spreadsheet that incorporated the position analysis equa-
tions of a four-bar linkage. Figure 11.12a shows the value of y (as generated),
compared with the ideal value The greatest error is about 1.5%. The
error is, of course, zero at the precision points corresponding to and 3.
Figure 11.12b shows output angle and the transmission angle plotted against
input angle . The transmission angle ranges from about to as the input
crank moves within its to operating range. Transmission angles in the150°60°

50°120°u

f

x = 1, 2,
(y = x1.5).

fu

150°
u = 60°, 105°,x = 1, 2,y = x1.5
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FIGURE 11.12 Function generator
(a) Generated value of y and per-

cent error. (b) Output angle and trans-
mission angle.

x1.5.
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range from about or to or are generally considered acceptable.
Thus, the function generator is satisfactory from the standpoint of the transmis-
sion angle.

Selection of Precision Points

The output of a function generator will differ from the desired function, due to
mechanical error and structural error. Mechanical error results from tolerances on the
link length, bearing clearance, and other characteristics of the actual components of
the mechanism. Structural error results from the inability of a four-bar linkage to gen-
erate an arbitrary function precisely, except at the precision points (although certain
functions can be generated precisely over a continuous range of values).

In the previous example, the beginning, midpoint, and end of the range were
selected as precision points. Other selections may be made in an attempt to reduce
structural error (See Freudenstein 1955, 1959.) One method of selection, called
Chebychev spacing, is described by Hinkle (1960). For three precision points, the values
would be

(11.26)

and

where is the mean value of x in the range of the function generator.

SAMPLE PROBLEM 11.7

Design of a Function Generator Using Chebychev Spacing

Design a four-bar linkage to generate the function for values of x between and
(corresponding to and ).

Solution. For and we obtain

and

 y3 = 1.6091

 x3 = 0.5 +
1
2

 cos 30° = 0.9330

 y2 = 1.1487

 x2 = 0.5.

 y1 = ex1 - x1 = 1.0023,

 x1 = 0.5 -
1
2

 cos 30° = 0.0670,

xmid = 0.5,xrange = 1

yf = 1.7183y0 = 1xf = 1
x0 = 0y = ex–x

xmid

x3 = xmid +
1
2

 xrange cos 30°,

 x2 = xmid,

 x1 = xmid -
1
2

 xrange cos 30°,

140°135°45°40°
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We select the range of from to and the (approximate) range of from
to . For changes in and proportional to changes in x and y, respectively, we

have

or

and

or

The values of x, y, , and are as follows:

Position x

0 0 1(ideal)
1(precision point) 0.0670 1.0023
2(precision point) 0.5 1.1487
3(precision point) 0.9330 1.6091
f 1 1.7183(ideal)

Equations (11.22) are used to compute link lengths (where any convenient value of may be
selected). The results are and from which it follows that 

We note that the sum of the lengths of the longest and shortest links is less than the sum of
the other link lengths and that the coupler is shortest.Thus, on the basis of the Grashof criterion,
the proposed linkage is a double rocker. Figure 11.13 shows the linkage in positions correspond-
ing to the three precision points. Table 11.1 of input and output values tells us that something is
wrong: Limiting positions of the proposed linkage do not permit an input crank angle of the
software returns “ERR’’ instead of the desired output values.

When a function generator design fails, we have a number of alternatives. If there are to be
three precision points, then the beginning and ending values of and are at our disposal.We can
also use a different scheme to select precision points. In this example, the nature of the function

is also a problem, in that

dy>dx = 0 at x = 0

y = ex–x for 0 … x … 1

fu

65°;

r2>r0 = 0.45.r3>r0 = 1.78,r1>r0 = 1.65
r0

80°(ideal)125°
73.92°120.98°
48.28°95°
40.13°69.02°
40°(ideal)65°

fuy = ex–x

fu

f(degrees) = 51.086y - 11.086°.

 = 40° +
80° - 40°
1.7183 - 1

 (y - 1),

 f = f0 +
range of f

range of y
 (y - y0)

u(degrees) = 60x + 65°,

 = 65° +
125° - 65°

1 - 0
 (x - 0),

 u = u0 +
range of u

range of x
 (x - x0)

fuf2 = 80°f0 = 40°
fu2 = 125°u0 = 65°u
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1
3

2

B

B

B

C

C

C

O1
O3 FIGURE 11.13 A linkage designed to

approximate the relationship y = ex–x.

TABLE 11.1  The effect of limiting positions on the performance of a
function generator

Theta, Phi, Error
deg deg x y %

65 ERR 0.000 ERR 1.000 ERR
70 39.811 0.083 0.997 1.004
75 39.924 0.167 0.999 1.015
80 41.198 0.250 1.022 1.034
85 43.085 0.333 1.055 1.062
90 45.455 0.417 1.098 1.100
95 48.282 0.500 1.149 1.149

100 51.595 0.583 1.208 1.209
105 55.465 0.667 1.278 1.281
110 60.018 0.750 1.359 1.367
115 65.480 0.833 1.458 1.468
120 72.327 0.917 1.581 1.584
125 82.365 1.000 1.761 1.718 2.47

-0.24
-0.69
-0.55
-0.26
-0.04
-0.00
-0.21
-0.65
-1.21
-1.58
-0.69

ex–x
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This condition would (ideally) require link 3 to remain stationary when link 1 begins to move.
Thus, we might consider excluding from the range of operation of the function generator.
An alternative is to use a different type of configuration—a cam, for example—to generate the
function.

11.7 DESIGNING A FUNCTION GENERATOR: COMPLEX MATRIX
METHOD

In Section 11.5, a complex-number method was used to design a four-bar linkage with
specified angular velocities and accelerations. Although velocity and acceleration syn-
thesis has little practical value, complex-number synthesis is a useful and powerful tool
when applied to a design of a function generator. In this application, output crank posi-
tions must be related to input crank positions by a specified function. The specifica-
tions for the function generator can be the same as in the foregoing paragraph, but the
solution involves a complex matrix instead of the dot-product method. Again, three
precision points will be used.

Suppose we wish to control a process with a four-bar linkage function generator.
Can we design a linkage that will produce output crank positions proportional to any
specified function y(x), where input crank positions are proportional to x between 
and Here are some steps that may lead to a satisfactory function generator:

• First, develop the complex-matrix equation. Consider a four-bar linkage like the
one in Figure 11.7, except that fixed link position 

• The closed vector loop is represented by Eq. (11.9), and, in complex polar form,
by Eq. (11.10).

• The latter equation becomes three equations, one for each precision point.
• Since we are dealing with angles, relative link proportions matter, but we do not

care about linkage scale at this step. We divide the terms in each equation by the
term representing the fixed link.

• Finally, we express the result in complex-matrix form:

In this equation,

 R = C
r1>r0

r2>r0

r3>r0

S ,

 A = C
1 1 1
eju1a eju2a eju3a

eju1b eju2b eju3b

S ,

AR = B

u0 = 0.

x0 + xrange?
x0

x = 0
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and

where position vectors at first precision point (in complex form),
position angles, subscripts 0, 1, 2, and 3 refer, respectively, to the fixed link, input crank,
coupler, and output link, a refers to the change in angle from the first to the second
precision point, and b refers to the change in angle from the first to the third precision
point.

Using the matrix equation we just developed, we can try to design a function gen-
erator in accordance with the following steps:

• Select a reasonable range of motion for the input and output links.
• Select three precision points: and These points, can be the minimum,

midrange, and maximum values of input variable x, or another selection procedure,
such as Chebychev spacing, can be used.

• For the input crank, calculate the change in angle from the first to the second
precision point:

• Calculate the change in angle from the first to the third precision point:

• Calculate the corresponding values for the output crank motion, where 

• Assume values for the corresponding changes in angle for the coupler:

• Calculate the complex link ratio vector:

• Multiply all three complex components of R by the same real number to obtain a
function generator of any desired size.

R = A-1B

u2a and u2b.

u3b = [y(x3) - y(x1)](u3 range>yrange).

u3a = [y(x2) - y(x1)](u3 range>yrange);

y = y(x):

u1b = (x3 - x1) (u1 range>Xrange).

u1a = (x2 - x1) (u1 range>Xrange).

x3.x1, x2,

u = linkr = link

 B = C
-1
-1
-1
S ,
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• Analyze the four-bar linkage through its range of motion. Check the motion of
each link and check the transmission angle.

• Evaluate the linkage as a function generator. Compare the generated values of
the output variable with exact (ideal) values of y(x).

• Use the results to improve the design. You have the precision points, the angular
range of input and output links, and the changes in angle of the coupler at your
disposal.

• Note that the answer to the question “Can you design a linkage [to generate] any
specified function ’’ is “NO’’: Your function generator may be unsatisfac-
tory because you did not try hard enough. Or it may be that no four-bar linkage
function generator is suitable for generating the specified function over the
required range.

SAMPLE PROBLEM 11.8

Using a Complex Matrix to Design a Function Generator

Design a system to produce output rotation proportional to

for input rotation proportional to x, where 
Design decisions. We will try a four-bar linkage function generator with input link range

and output link range The fixed link will be 33 mm long.

Solution summary. Precision points are selected at the beginning, the midpoint, and the end of
the range of x. For the first trial, it is assumed that the coupler rotates through an angle of 0.3
radian between the first and second precision points, and 0.6 radian between the first and third
precision points. Matrix A and column matrix B are formed, and the equation is solved for the
complex link length ratios. Multiplying each by we can describe each link in complex
form at the first precision point. The sum of the link vectors is zero, plus or minus a rounding
error tolerance.

The cross-product method (described in Chapter 2) is then used to obtain link positions
through the full range of motion of the system. We see that the counterclockwise configuration
applies by comparing values of at the first precision point. As expected, the linkage produces
accurate values at the three precision points. Unfortunately, it performs very poorly as a function
generator, producing an error of about midway between the first two precision points.

For the second trial, we specify a coupler rotation of 0.1 radian between the first and sec-
ond precision points, and 0.25 radian between the first and third precision points. The perfor-
mance is improved: The error is now about midway between the first two precision
points. For this trial, the transmission angle could be a problem if the output link works against a
significant load. Results of the second trial are shown in the detailed solution and are plotted in
Figure 11.14a and 11.14b.

Note that the form of the detailed solution allows for changing the precision points. For
example, the first precision point, might differ from the beginning of the range. The
detailed solution also contains many redundant calculations that are used to check the linkage
for closure and as an attempt to detect errors. If we were to make additional trials, both the cou-
pler rotation and the precision points might be changed. Clearly, designing of a satisfactory function
generator is likely to require many trials.

x0,x1,

-38%

-72%

u3

-33 mm,

u3range = 40°.u1range = 45°

1 … x … 5.

y = x-1>2 # ex

y(x) Á
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FIGURE 11.14 (a) Design and evaluation of a four-bar function generator. Link positions and
transmission angle plotted against crank position (percent of crank range of motion).
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Section 11.7 Designing a Function Generator: Complex Matrix Method 801

Detailed calculation. Design of a four-bar function generator using a complex-number method

Closed vector loop

Output function y in terms of input function x 

Input values: start and range

Ideal output

Range of input and output links

Range of output variable:

Selection of precision points:

Angle change from first to second precision point

Input crank

Coupler-assume value

Output crank 

Angle change from first to third precision point

Input crank 

Coupler-assume value

Output crank 

Position matrix 

Complex link ratio vector

Links in complex form at first precision point where fixed link 

ƒ r3 ƒ = 5.863 mmƒ r2 ƒ = 48.612 ƒ r1 ƒ = 11.348
r3 = -4.054 + 4.235jr2 = 48.177 - 6.485j r1 = -11.123 + 2.25j
r3 :=  r0

# R2r2 :=  r0
# R1 r1 :=  r0

# R0

r0 :=  -33:

R :=  A-1 # B R = C
0.337 - 0.068j
-1.46 + 0.197j
0.123 - 0.128j

S

A :=  C
1 1 1

exp(j # u1a) exp(j # u2a) exp(j # u3a)
exp(j # u1b) exp(j # u2b) exp(j # u3b)

S B:= C
-1
-1
-1
S

u3b:=
u3 range

yrange

# (y(x3) - y(x1)) u3b = 0.698 
u3b
deg

= 40

u2b:= .25

u1b :=  
u1 range

xrange

# (x3 - x1)   u1b = 0.785

u3a :=  
u3 range

yrange
 (y(xmid) - y(x1))  u3a = 0.097

u2 a :=  1

u1a :=  
u1 range

xrange
 (xmid - x1) u1a = 0.393  

u1a
deg

= 22.5

x3 = 5x2 = 3 x1 = 1
x3 :=x0 + xrange x2 :=  xmid

x1 :=  x0 xmid :=  
xrange

2
+ x0

yrange = 63.654yrange :=  y(x0 + xrange) - y(x0)

u3 range :=  40 # degu1 range :=  45 # deg

y(x0 + xrange) = 66.372y(x0) = 2.718

xrange :=  4x0 :=  1

y(x) :=  x-0.5 # exp(x)

r0 + r1 + r2 + r3 = 0
j :=  (-1).5
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Locate fixed drive crank bearing 01 at 0,0; fixed driven crank bearing 03 at crank pin B at 
and end C of coupler at where

Check link closure:
Input crank position at beginning of range

Position analysis: Cross-product method. Link lengths: L. Link vectors: r

Rotate drive crank through range of motion

Redefine links as vectors

Diagonal vector

Define

for assembly configuration with vector loop clockwise; if counterclockwise

Coupler vector

 u2(u1) :=  angle (r2(u1)0, r2(u1)1) - 2 # p
 r2(u1) :=  q # 2L3

 2 - a(u1)
2 # (rdu(u1) * k) + rdu(u1) # (a(u1) - ƒ rd(u1) ƒ )

q:= -1
-1r2r3rdq = 1

a(u1) :=  
L3

 2 - L2
 2 + (|rd(u1)|)2

2 ƒ rd(u1) ƒ
 

Rectangular
unit
vectors

i :=  C
1
0
0
S  j :=  C

0
1
0
S  k :=  C

0
0
1
S

rd(u1) :=  r0 + r1(u1) rdu(u1) :=  
rd(u1)

ƒ rd(u1) ƒ

r1(u10) = C
-11.123

2.25
0

Sr1(u1) :=  C
L1

# cos (u1)
L1

# sin (u1)
0

Sr0 :=  C
-L0

0
0
S   r0 :=  C

-33
0
0
S

range%(u1) :=  
(u1 - u10)

u1 range

# 100

u1 :=  u10, u10 +
x

720
.. u10 + u1 range

L0 :=  -r0 L1 :=  ƒ r1 ƒ L2 :=  ƒ r2 ƒ L3 :=  ƒ r3 ƒ mm

u10 :=  -u1 range 
x1 - x0

xrange
+ u11  u10 = 2.942   

u10

deg
= 168.566

r0 + r1 + r2 + r3 = -4.441 # 10-15 - 1.51 # 10-14j

r1 + r2 = 37.054 - 4.235j

r1 + r2,
r1;-r0;

u31

deg
= 133.748

u21

deg
= -7.666 

u11

deg
= 168:566

u31 :=  2.334u21 :=  -0.134u11 :=  2.942
u31 :=  arg(r3) radu21 :=  arg(r2)u11 :=  arg(r1)
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Follower crank vector

Compare

Check closure at start

Transmission angle: Check transmission angle at motion limits and midrange

Rotate drive crank through range of motion

Evaluate linkage as a function generator

Ideal

Output function of generator

Percent error

 y%err(u10 + 0.75 # u1 range) = 6.491        y%err(u10 + u1 range) = 7.708 # 10-13

 y%err(u10 + 0.25 # u1 range) = -38.364 y%err(u10 + 0.5 # u1 range) = 3.523 # 10-13

 y%err(u1):=100 
yg(u1) - y(x(u1))

y(x(u1))
   y%err(u10) = 0

 yg(u10) = 2.781  yg(u10 + u1range) = 66.372

 yg(u1) :=  y(x0) + (u3(u1) - u3(u10)) 
yrange

u3range

output = y(x)  y(x0) = 2.718  y(x0 + xrange) = 66.372

x(u1) :=  u0 + (u1 - u10) 
xrange

u1 range
    x(u10) = 1 x(u10 + u1b) = 5

u1 :=  u10, u10 +
u1 range

200
.. u10 + u1range

 
f(u10 + u1 range)

deg
= 12.91 

f(u10 + u1a)

deg
= 38.737 

f(u10)

deg
= 38.586

 BL2
 2 + L3

 2 - ( ƒ rd(u1) ƒ )2

2 # L2
# L3

R f(u1) :=  acos

r0 + r1(u10) + r2(u10) + r3(u10) = C
9.77 # 10-15

0
0

S

r0 = C
-33

0
0
S   r1(u11) = C

-11.123
2.25
0

S   r2(u11) = C
48.177
-6.485

0
S   r3(u11) = C

-4.054
4.235
0

S

u31

deg
= 133.748

u3(u1) :=  angle (r3(u1)0,r3(u1)1) 
u3(u11)

deg
= 133.748 

u3(u10 + u1range)

deg
= 173.748

r3(u1) :=  -q # 2L3
 2 - a(u1)

2 # (rdu(u1) * k) - rdu(u1) # a(u1)
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11.8 COUPLER CURVES

We are severely limited in the flexibility of our design if we consider only the motion of
the two cranks in the four-bar linkage. Coupler curves—curves generated by points on
the coupler (connecting rod) of a four-bar linkage—provide a variety of paths to
choose from. For some applications, a point on the coupler itself is utilized directly, as
in a film drive mechanism or for a mixing device. In other cases, a point on the coupler
is used to drive an added linkage. By using a catalog of coupler curves, we may select
linkage dimensions to perform a specific function. An exhaustive catalog of coupler
curves for the crank-rocker mechanism (over 7000 curves made up of about half a mil-
lion plotted locations and velocities) was constructed by Hrones and Nelson (1951).
We would now use motion simulation software to plot coupler curves and evaluate
them for specialized design applications. A collection of coupler curves might be of
help in a design task similar to the next sample problem.

SAMPLE PROBLEM 11.9

Approximate Straight-Line Motion

Design a linkage to generate approximate straight-line motion over a portion of its cycle.
Design decisions. The requirement for straight-line motion is satisfied by a piston and cylinder
or a linear slide, although another configuration sometimes fits in better. A four-bar double-
rocker linkage is one possibility. To satisfy the Grashof criterion, the sum of the lengths of the
longest and shortest links must be less than the sum of the other two; the coupler is the shortest
link. Figure 11.15a shows a tentative design with the following dimensions: links and

coupler fixed link We extend the coupler to
form a rectangle of 65 by 210.2 mm and check various coupler curves.At the instant shown, points
D, E, and F lie on the line joining the fixed bearings. Point E is midway between the bearings.

O1O3 = 130 mm.BC = 65 mm;O3C = 110 mm;
O1B

50

100

150

0

200

�100 �50 0 50 100 150 200

B G Point C

D E FPoint O1

H

Point O3 (fixed)

FIGURE 11.15 An attempt to generate straight-line motion. (a) A four-bar double-rocker
linkage.
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Coupler curves

Solution. A motor at point B drives the coupler at 1 rad/s relative to link Figure 11.15b
shows the linkage after a partial cycle of motion and traces the motion of several points on the
coupler. Figure 11.15c shows coupler curves for a full cycle, with the linkage hidden. The coupler
curve for point E (shown solid) looks most promising. A portion of the curve (about midway
between the fixed bearings) looks like a straight line. The x- and y-coordinates of point E are
plotted against time in Figure 11.15d (where the position of the linkage in part a of the figure
corresponds to ).We may want to attach another link at point E. If the result is satisfac-
tory, we can trim down the coupler; it needs to be large enough only to accommodate bearings at
points B, C, and E.

time = 0

O1B.

Coupler curves

D B C

E

H

F

�50

0

50

100

150

200

350300250200150100500�100�150

(c)

FIGURE 11.15 (b) The linkage after a partial cycle of motion, with traces of several points on the cou-
pler. (c) Coupler curves for a full cycle.
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0

FIGURE 11.15 (d) The x- and y-coordinates of point E.

Several mechanisms for generating approximate straight-line motion were developed many
years ago. They include designs equivalent to the one we reinvented in the preceding sample
problem and designs that will be developed and examined in homework problems. These link-
ages can be evaluated by motion simulation software (e.g., Working ModelTM) or analyzed by
vector methods (e.g., we could use MathcadTM and the cross-product method for position analy-
sis). In some cases, simple principles of geometry can be employed to evaluate the linkage.

SAMPLE PROBLEM 11.10

Evaluation of Coupler Curve Accuracy

Determine whether the following linkages can produce an exact straight line:

a. The linkage sketched in Figure 11.15.
b. The linkage sketched in Figure 11.16.

Solution. a. Noting the dimensions of the double-rocker linkage (Figure 11.15), we see that

O1B = BE = EC = CO3 and O1O3 = 2BC.
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1

O1

C

B

D

2

FIGURE 11.16 Exact straight-line linkage.

Assume that point E on the coupler actually moves in a straight line when it is near the midpoint
between the fixed bearings. Then, a slider could be attached to point E, and the point would
move horizontally. Triangles and should both be isosceles. As point E moves to the
right, the projection of point B on the x–axis lies midway along the base of triangle and the
projection of C lies midway along the base of triangle The horizontal distance between B
and C is but the vertical distance between B and C is not zero. Thus, if point E
moves in an exact straight line, the coupler would have to stretch. Hence, our assumption is
incorrect: The motion is only an approximation of a straight line.

b. Let the in-line slider-crank linkage of Figure 11.16 be proportioned so that

Then, and are both isosceles triangles. From the sketch, the sum of angles 
and is Also, we know that the sum of the internal angles of a triangle equals 
Thus, angles are related as follows:

Hence, we have

The last equation shows that point D moves on a line perpendicular to the path of wrist pin C.
The straight-line motion for this design is exact, except for errors due to dimensional tolerances
and link deflections.The trade-off for the precision is that the linkage requires a slider (e.g., a lin-
ear slide or a piston and cylinder) to produce straight-line motion of point D.

 CO1D = CO1B + DO1B = 180°(CBO1 + O1BD)>2 = 90°.
 CO1B = (180° - CBO1)>2,

 CO1D = CO1B + DO1B = 180° - (CBO1 + O1BD)>2 = 90°.
 CO1B = (180° - CBO1)>2;
 DO1B = (180° - O1BD)>2;

180°.180°.O1BD
CBO1O1BDO1BC

O1B = BC = BD.

O1O3>2 = BC,
ECO3.

O1BE
ECO3O1BE
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O4(pivot for link 4 ) determined by
straight line portion of coupler curve
and tangent to coupler curve

Coupler curve generated by point P

Straight line portion of coupler curve

Tangent to coupler curve

Relative Linkage Proportions
O1B    1

BC      2

BP      2.8

CO3    3.5

O1O3   4

1

2

B

O1 O3


1

P

C

20

FIGURE 11.17 (a) Coupler curve of a four-bar linkage.

SAMPLE PROBLEM 11.11

An Application of Coupler Curves

Design a linkage to meet the following requirements: One of the links is to rotate through an
angle of at a rate of 1 cycle per second with a dwell of 1/6 second between oscillations. The
drive link is to rotate at a constant angular velocity.

Solution. Problems of this type are common in the design of machinery. The solution almost
always involves a cam, but we will attempt to use a four-bar linkage for purposes of illustrating
linkage design procedures. Examining a catalog of coupler curves, we see several possibilities,
one of which is sketched in Figure 11.17a. During about one-sixth of each cycle, the coupler
curve described by point P in that figure approximates a straight line. By combining the four-bar
linkage with a sliding contact linkage (Figure 11.17b), we may take advantage of the straight-line
portion of the coupler curve to provide the required dwell.

Link 4, the output link, is located by using the coupler curve. The straight-line portion of
the coupler curve defines one limiting position of link 4.The other limiting position is defined by

20°
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4

3

2

1

Oscillating output link

O4

O1 O3

C

P

B


1

FIGURE 11.17 (b) Link 4 and a slider are added to the four-bar link-
age. The output link oscillates with a dwell period.

a tangent to the coupler curve that intersects the first (limiting-position) line at an angle of 
Link 4 is pivoted at that intersection, and its length must be sufficient to allow the slider to
assume all positions on the coupler curve. Since a complete cycle of motion corresponds to one
rotation of link 1, that link will be driven at 60 rev/min.

When link 1 turns with constant angular velocity, the time required for output link 4 to
rotate from one position to another is proportional to the angle between corresponding posi-
tions of link 1. On this basis, the approximate motion of link 4 is as follows: dwell, 17 percent;
clockwise rotation, 30 percent; and counterclockwise rotation, 53 percent (expressed in terms of
the time required for one complete cycle, i.e., one clockwise rotation of link 1).

20°.
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810 Chapter 11 Synthesis

Pattern-Matching Synthesis

The synthesis process can be further automated by pattern matching applied to coupler
curves, utilizing artificial intelligence programming techniques. We are thus able to use
the computer to determine the parameters of a linkage that will produce a required
function.

Visual or computer-aided pattern-matching techniques may be applied to the
synthesis of both planar and spatial linkages. Sodhi, et al. (1985) present a set of com-
puter-generated curves for use in designing four-revolute spherical function genera-
tors.Their method involves matching a plot of the desired function with curves derived
from computer solutions of the displacement equation.

SUMMARY

Practical mechanism design usually involves a large measure of ingenuity and judg-
ment. Tentative designs are subject to analysis and testing, the results of which influ-
ence redesign. Formal synthesis is a direct attempt to produce a mechanism that meets
specified performance requirements. Ideally, the performance specifications are fed
into a computational program which outputs an acceptable linkage design. In practice,
it is not that easy. However, formal synthesis techniques can be useful tools for design-
ing mechanisms to meet certain needs.

When there is a need to guide a body through only two specified positions, a sin-
gle pivot point may be located by simple graphical or analytical methods. A four-bar
linkage is an alternative solution to the two-position problem if the single pivot point
falls at an unacceptable location. A mechanism for guiding a body through three speci-
fied positions can also be based on a four-bar linkage.

We can form a complex matrix to design a four-bar function generator in which
the positions of the input crank and the output crank must approximate a predeter-
mined relationship. Or we can design a function generator by an alternative method
based on the dot product. We can also use a complex-number method to design a
four-bar linkage when angular velocities and accelerations are specified for each link.

Coupler curves offer a virtually unlimited number of design possibilities. We can
look at the motion of various points on the coupler of a four-bar linkage or some other
mechanism.The coupler can be extended in any direction.A selected point on the cou-
pler can be used to guide or drive a device or a point on another linkage.

Motion simulation software (e.g., Working ModelTM) and computational soft-
ware are useful for synthesiing of mechanisms to meet specified requirements.We may
trace and evaluate a large number of coupler curves in an attempt to find the best pos-
sible design for a particular application. Motion simulation software makes this task
easier, leaving us more time to consider innovative design changes.

A Few Review Items

• Can you design a seven-link, planar, one-degree-of-freedom linkage with revolute
joints? What is the basis for your decision?
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Problems 811

• A body must assume two positions in a plane.A line on the body in the first position
is parallel to the same line in the second position. Can the body be constrained by
a single pivot?

• Can you propose a design to guide the aforementioned body through the two
positions just described?

• Describe the geometric principle used to locate pivot points for three-position
synthesis.

• Can you think of any application for velocity and acceleration synthesis? If you
cannot, then identify a major limitation of the technique.

• In designing a function generator by the dot-product method, which parameters
do you have at your disposal (i.e., which can you select)?

• In designing a function generator by the complex-matrix method, which parame-
ters do you have at your disposal, (i.e., which can you select)?

• Compare four-bar linkage function generators with cam-and-follower systems.
Note the advantages and disadvantages of each.

• Are there any applications where a mechanism incorporating the motion of a
point on the coupler of a four-bar linkage might replace a cam and follower?

• Compare coupler-curve-based mechanism designs with cam-and-follower sys-
tems. Note the advantages and disadvantages of each.

PROBLEMS

11.1 A link containing points B and C, which are 150 mm apart, is to assume the following
positions:

Coordinates (degrees)

Position 1 0 0 35
Position 2 250 0 75

Find the location of a fixed pivot that will permit the indicated motion. Use graphical
methods.

11.2 A link containing points B and C, which are 6 in apart, is to assume the following positions:

Coordinates

Position 1 5 4 10
Position 2 4 7.5 – 40

Find the location of a fixed pivot that will permit the indicated motion. Use graphical
methods.

11.3 A link containing points B and C, which are 4 in apart, is to assume the following positions:

Coordinates

Position 1 2 3 30
Position 2 7 8 60

Design a four-bar linkage that will permit the indicated motion. Use graphical methods.
11.4 Write a computer program for two-position synthesis. Include enough output data for

the design of a four-bar linkage or single-pivot linkage.

b (degrees)ByBx

b (degrees)ByBx

bByBx
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812 Chapter 11 Synthesis

11.5 A link containing points B and C, which are 150 mm apart, is to assume the following
positions:

Coordinates

Position 1 0 0 35
Position 2 250 0.001 75

Find the location of a fixed pivot that will permit the indicated motion. Solve the prob-
lem analytically, using a computer if available.

11.6 A link containing points B and C, which are 3.5 in apart, is to assume the following positions:

Coordinates

Position 1 2 3 12
Position 2 5.5 3.2 190

Find the location of a fixed pivot that will permit the indicated motion. Solve the prob-
lem analytically, using a computer if available.

11.7 A link containing points B and C, which are 4 in apart, is to assume the following positions:

Coordinates

Position 1 2 3 30
Position 2 7 8 60

Design a four-bar linkage that will permit the indicated motion. Solve the problem ana-
lytically, using a computer if available.

11.8 A link containing points B and C, which are 4.2 in apart, must assume the following three
positions:

Coordinates
Position 1 0 0 18
Position 2 1.3 1 8
Position 3 2.6 0.6 11

Design a linkage that will satisfy these requirements. Use graphical methods.
11.9 A link containing points B and C, which are 3 in apart, must assume the following three

positions:

Coordinates

Position 1 2 2
Position 2 5.5 1.5 5
Position 3 7.5 0.5 40

Design a linkage that will satisfy these requirements. Use graphical methods.
11.10 Write a computer program for three-position synthesis.
11.11 A link containing points B and C, which are 60 mm apart, must assume the following

three positions:

Coordinates

Position 1 0 0 20
Position 2 20 40 5
Position 3 4

Design a linkage that will satisfy these requirements. Solve the problem analytically. Use
a computer if available.

-15-1.5

b (degrees)ByBx

-30

b (degrees)ByBx

b (degrees)ByBx

b (degrees)ByBx

b (degrees)ByBx

b (degrees)ByBx
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Problems 813

11.12 A link containing points B and C, which are 1.5 in apart, must assume the following three
positions:

Coordinates

Position 1 1 1 15
Position 2 2 3 0
Position 3 0 5

Design a linkage that will satisfy these requirements. Solve the problem analytically. Use
a computer if available.

11.13 A link containing points B and C, which are 100 mm apart, must assume the following
three positions:

Coordinates

Position 1 0 0
Position 2 50 5
Position 3 20 30

Design a linkage that will satisfy these requirements. Solve the problem analytically. Use
a computer if available.

11.14 Specify a linkage that (instantaneously) satisfies the following conditions:

Link: 0 1 2 3

0 2 1 1
0 1 0

11.15 (a) Design a four-bar linkage to satisfy the following velocity and acceleration
requirements:

Link: 0 1 2 3

0 2 0
0 1 0 2

(b) Sketch the solution to this problem. Draw velocity and acceleration polygons.
Compare your results with the given data.

11.16 (a) Design a four-bar linkage to satisfy the following velocity and acceleration
requirements:

Link: 0 1 2 3

0 2 0
0 0 1 2

(b) Sketch the solution to this problem. Draw velocity and acceleration polygons.
Compare your results with the given data.

11.17 Letting design a linkage to satisfy the following requirements:

(Suggestion: Solve this problem by the matrix inverse method, using a computer.)
11.18 The fixed link of a four-bar linkage is to be 1 in long, oriented in the positive real direc-

tion Velocities and accelerations are as given in Problem 11.14.

(a) Design a linkage to satisfy the given conditions, using the matrix inverse method.

(i.e., r0 = 1).

a3 = -1600a2 = -400a1 = 2500a0 = 0
v3 = -90v2 = -50v1 = 150v0 = 0

r0 = 100,

a (rad/s2):
-1v (rad/s):

a (rad/s2):
-1v (rad/s):

-1a (rad/s2):
v (rad/s):

-50
-40

-10

b (degrees)ByBx

-15

b (degrees)ByBx
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814 Chapter 11 Synthesis

(b) If you have already solved Problem 11.14, compare the two sets of results by multi-
plying the link vectors in this solution by the value of found previously.

11.19 The fixed link of a four-bar linkage is to be 1 in long, oriented in the positive real direc-
tion Velocities and accelerations are as given in Problem 11.15.

(a) Design a linkage to satisfy the given conditions, using the matrix inverse method.
(b) If you have already solved Problem 11.15, compare the two sets of results by multi-

plying the link vectors in this solution by the value of found previously.

11.20 The fixed link of a four-bar linkage is to be 1 in long, oriented in the positive real direc-
tion Velocities and accelerations are as given in Problem 11.16.

(a) Design a linkage to satisfy the given conditions, using the matrix inverse method.
(b) If you have already solved Problem 11.16, compare the two sets of results by multi-

plying the link vectors in this solution by the value of found previously.

11.21 Design a four-bar linkage to generate the function where 
and A computer solution is

suggested.

(a) Determine the relative link lengths.
(b) Tabulate the input angle, the output angle, x, y (generated), y (ideal), and the percent

error.
(c) Plot the output angle and the transmission angle vs. the input angle.

11.22 Design a four-bar linkage to generate the function where 
and A computer solution is

suggested.

(a) Determine the relative link lengths.
(b) Tabulate the input angle, the output angle, x, y (generated), y (ideal), and the percent

error.
(c) Plot the output angle and the transmission angle vs. the input angle.

11.23 Suppose we need a mechanism that produce output rotation proportional to 
for input rotation proportional to x, where As a design decision, try a four-bar
linkage function generator with input link range and output link range

The fixed link will be 55 mm long. Select precision points at the beginning,
the midpoint, and the end of the range of x. Let the coupler rotate through an angle of
0.3 radian between the first and second precision point, and 0.6 radian between the first
and third precision point. Use the complex-matrix method to design the linkage. Is the
vector loop clockwise or counterclockwise? Analyze the linkage through its range
of motion. Check the link closure. Plot the transmission angle and the motion of each
link. Plot the as-generated output variable and the ideal value. Check the error in the
generated output at the precision points and between precision points.

11.24 Suppose we need a mechanism that produces output rotation proportional to
for input rotation proportional to x, where As a design

decision, try a four-bar linkage function generator with input link range 
output link range and a 60-mm fixed link. Select precision points at the
beginning, the midpoint, and the end of the range of x. Let the coupler rotate through an
angle of 0.2 radian between the first and second precision point and 0.5 radian between

u3range = 40°,
u1range = 45°,

0.5 … x … 4.y = arctangent(x)

r2r3rd

u3range = 40°.
u1range = 45°

1 … x … 4
y = x3 # e-x

frange = 40°.xrange = 1.0, u0 = 75°, f0 = 40°, urange = 60°,
x0 = 0.5, y = ex - 0.2x2,

frange = 60°.xrange = 1.0, u0 = 70°, f0 = 40°, urange = 60°,
x0 = 0.5,y = ex - 0.5x1.1,

r0

(i.e., r0 = 1).

r0

(i.e., r0 = 1).

r0
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the first and third precision point. Use the complex-matrix method to design the linkage.
Is the vector loop clockwise or counterclockwise? Analyze the linkage through its
range of motion. Check the link closure. Plot the transmission angle and the motion of
each link. Plot the as-generated output variable and the ideal value. Check the error in
the generated output at the precision points and between precision points.

11.25 A function generator designed according to the specifications listed in problem 11.24
produces an error of about 11.5% midway between the first two precision points. In addi-
tion, the transmission angle exceeds during part of the range of motion. Can you
reduce the error and improve the transmission angle as well? (Suggestion: Try increasing
the range of coupler motion. There are many possible solutions.)

11.26 Design a linkage that will generate approximate straight-line motion over a portion of its
cycle. As a design decision, use a four-bar double-rocker linkage. Try the following speci-
fications: length of both rocker between its bear-
ings, and distance between fixed Extend the coupler, keeping its
bearings 200 mm apart. Drive the coupler. Plot traces of various points on the coupler
(between and beyond the points where the coupler joins the other links). Look for a por-
tion of the coupler curve that approximates a straight line.

11.27 Suppose we need to guide a point on another linkage in a straight line (or an approximate
straight line). There is no requirement for continuous rotation. As a design decision, try a
four–bar linkage with the following dimensions: length of and 250 mm,

between its bearings, and distance between fixed 

(a) Classify this linkage, using the Grashof criterion.
(b) Extend the coupler, keeping its bearings 250 mm apart. Try to find a point to pro-

duce a coupler curve that approximates a straight line.

PROJECT

Plastic tires are used on utility carts and garden equipment. Consider the problem of
forming a tire from a continuous tube. It is necessary to measure and cut the tube, form it
into a circle,and join the cut ends. Determine which of these processes can be automated.
It may be possible to apply number and type synthesis, three-position synthesis, or motion
synthesis using coupler curves. Do not limit your study to methods discussed in this text.

BIBLIOGRAPHY AND REFERENCES

Angeles, J., Spatial Kinematic Chains: Analysis–Synthesis–Optimization, Springer, New York,
1982.

Freudenstein, F., “Approximate Synthesis of Four-Bar Linkages,’’ Transactions of the American
Society of Mechanical Engineers, vol. 77, 1955, pp. 853–861.

Freudenstein, F., “Structural Error Analysis in Plane Kinematic Synthesis,’’ Transactions of the
American Society of Mechanical Engineers, Ser. B, Journal of Engineering for Industry, vol. 81,
1959, pp. 15–22.

Hinkle, R., Kinematics of Machines, 2d ed., Prentice Hall, Upper Saddle River, NJ, 1960.
Hrones, J. A., and G. L. Nelson, Analysis of the Four-Bar Linkage: Its Application to the Synthesis

of Mechanisms, Wiley, New York, 1951.

bearings = 539 mm.coupler = 250 mm
cranks = 200

bearings = 400 mm.
links = 500 mm, coupler = 200 mm

160°

r2r3rd

819



816 Chapter 11 Synthesis

Kishore, A., and M. Keefe, “Synthesis of an Elastic Mechanism,’’ Mechanism and Machine
Theory, Penton, Cambridge, U.K. vol. 23, no. 4, 1988, pp. 305–312.

Knowledge Revolution, Working ModelTM 2D User’s Manual, Knowledge Revolution, San
Mateo, CA, 1996.

Mallik, A.K., A. Ghosh, and G. Dittrich, Kinematic Analysis and Synthesis of Mechanisms, CRC
Press, Boca Raton FL, 1994.

MathSoft, Mathcad2000TM User’s Guide, MathSoft, Inc., Cambridge MA, 1999.
Rosenauer, N., “Complex Variable Method for Synthesis of Four-Bar Linkages,’’ Australian

Journal of Applied Science, vol. 5, no. 4, 1954.
Sodhi, R. S., A. J. Wilhelm, and T. E. Shoup, “Design of a Four-Revolute Spherical Function

Generator with Transmission Effectiveness by Curve Matching,’’ Mechanism and Machine
Theory, Pergamon Press, vol. 20, no. 6, 1985, pp. 577–585.

820



Partial Answers to 
Selected Problems

Note: Some of your solutions may not agree with the answers below. Perhaps the prob-
lem required design decisions, and your decisions differed from those of the authors.
Do not be discouraged; your decisions may be equally valid, or they may be superior to
the decisions of the authors.

CHAPTER 1

1.1 (a)
(b)
(c)
(d) Motion occurs in a plane or a set of parallel planes.

1.3 in/s
1.5 378 and 553 in/s
1.7 For piston position is given as follows:

Crank Angle Piston Position 
0 2.487

20 2.433
40 2.199
60 1.844

1.9 For piston position is given as follows:
Crank Angle Piston Position 

0 2.755
20 2.739
40 2.550
60 2.239

1.11 (b) 19.99 in/s to the left
(c) 22.83 in/s to the left

1.13 Triple rocker (non-Grashof)
1.15 Change-point mechanism
1.17 Triple rocker (non-Grashof)
1.19 Change-point mechanism

X2T1
�

R = 1,

X2T1
�

R = 1,

vav = 400

DFplanar = 2
DFspatial Ú -5
DFspatial = 6
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1.21 Drag link
1.23

1.25 (a)
(b) None
(c) None
(d) and 60
(e) and 
(f) and 

1.27 (a) None
(b) None
(c)
(d) and 260
(e)
(f) and 

1.29 (a)
(b) None
(c)
(d) or 1.5 or 2.9
(e) and 
(f) and 

1.31 Permissible values for the crank-rocker mechanism lie within the region bounded by
the inequalities and 

1.33 The linkage satisfies the Grashof criteria for a crank rocker, but an actual linkage
with these proportions is likely to jam.

1.35 No value of satisfies the criteria.
1.37 No value of satisfies the criteria.
1.39 Other solutions are possible.
1.41 For the permissible region is bounded by the following points:

1.5 3.867
2 4.060
3 4.243
4 3.828
4.22 3.294
1.5 3.826
2 3.382
3 2.406
3.5 1.870

1.43 848.5 mm
1.45 494.97 mm

L3/L1L2/L1

L0/L1 = 4,
L2/L1 = 3.045.

L3

L3

L3/L1 7 L2/L1 - 1L3/L1 6 L2/L1 + 1, L3/L1 7 3 - L2/L1,

2.9 6 L2/L1 6 4.90.5 6 L2/L1 6 1.5
1.5 … L2/L1 … 2.90 6 L2/L1 … 0.5

L2/L1 = 0.5
0 6 L2/L1 6 0.5

1.5 6 L2/L1 6 2.9

260 6 L3 6 42020 6 L3 6 180
180 … L3 … 260
L3 = 180
180 6 L3 6 260

20 6 L1 6 6060 6 L1 6 140
L1 = 600 6 L1 … 20

L1 = 20

0 6 L1 6 20

120 … L2 … 480 mm

870 Partial Answers to Selected Problems

822



1.47 0.4571L
1.51 Set 
1.53 In a double-rocker linkage (of the first kind), the coupler must be free to rotate

through 
1.55 In Figure 1.29a, let F is the tracing point.
1.57 In Figure 1.29a, let Point A traces the pattern.
1.59 Many solutions are possible. Let Then,

1.61
1.63 One possible solution: Use teeth, and 

from which and A minimum crank length
is satisfactory.

1.65 to 1035.3 rev/min
1.67
1.69 One possible solution: Refer to Figures 1.23 and 1.25; let and

results in a ratio of 2.5 to 1 (approx).
1.71 One possible solution: Let and

is satisfactory.
1.73 One possible solution: and 
1.75 Selecting and 

1.77 The stroke is 3.14 in.
1.79 (a) 1.05 (b) 4.016
1.85
1.87
1.89
1.91
1.93 Away from crank: toward crank:
1.95
1.97

1.101 The conditions are met with an eccentricity of 1.163 times the crank length.
1.103 Minimum transmission angle is about at and 
1.105 Minimum transmission angle is about at and 
1.107 Fixed link, drive crank, coupler and driven crank lengths of 147.8, 173.9, 189.7 and

200 mm, respectively, may be used. Minimum transmission angle is a special
concern.

CHAPTER 2

2.1 (a) Piston, rack, reciprocating cam follower, straight edge on a drafting machine,
the straight section of a belt or chain that is in tension, etc.

R3 = 4.R2 = 460°
R3 = 3.R2 = 339°

DFspatial = 6
DFspatial Ú 4

vav = 21,940 mm/svav = 26,960 mm/s;
L2 = 219.08 mm; fmax = 80.83°
fmax = 85.5°; L2 = 212.13 mm
95 6 L2 6 305 mm
100 6 L2 6 300 mm

= 43.67 mm.
O1BminO1Bmax = 77.25 mmO1O2 = 250 mm,O2C = 453 mm.

L1(max) = 4.36.O1O2 = 7, L2 = 8.03, L3 = 4,
L2 = 67.5L4 = 80 mm.

L0 = 20 mm, L1 = 45 mm,L3 = 75 mm.
L2 = 7.25L3 = 5.

L0 = 2, L1 = 4.5,
13.86°
n2 = 965.9
r1(min) = 0.090r0

r2 = 1.002r0.r1(max) = 0.287r0

fmin = 45°,r3/r0 = 0.5,N = 15L = 15 mm,
L2 - L1 = 0.005 in
d = 129.6 mm.

f = 30°, N = 6 cylinders, A = (d/6)2.
AB/AC = 0.40.
DA/DF = 2.

360°.

df/du = R cos u/(L cos f) = 0.

Chapter 2 871
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2.3 (a) 9.425 m/s
(b)
(c) 930,

2.5
2.7
2.9

2.11
2.13
2.15
2.17
2.19
2.21
2.23
2.25
2.27
2.29
2.31 In this case, reversing the order of the rotations affects only the altitude change.

In general, the commutative law of vector addition does not apply to finite rotations.
2.33
2.35
2.37
2.41 and 2.43
2.45
2.47
2.49
2.51
2.53

2.55

2.57

2.59
2.61 rad after four iterations.
2.63
2.65
2.67 Transmission angle ranges from 59.4 to 
2.69 Transmission angle ranges from 63.2 to 116.2°.

104.9°.
u2 = 0.16, u3 = 5.476, rD = 61.39, rE = 158.79
u2 = 0.293, u3 = 4.698, rD = 4, rE = 4.944
u2 = 0.296, u3 = 4.132
r2x = [-r2

2 + cy
2 + r3

2 - cx
2]/[2 cx] where cx = -r0 + r1 cos u and cy = r1 sin u

B * D = C
-32

31
-19
S

D * C = C
106
22

152
S

r3 = 180.4 mm at u = 45°
r0 = -0.5892r1 or 2.1212r1; r2 = ( ; 1.3552 - j   0.6428)r1

R2 = 261.85 + j159.75 = 306.7ej0.548

dR1/dt = -20.78 + j12

r2 = i90.56 - j106.76; r3 = - i22.52 + j76.77

r2 = i139.6 + j10.8; r3 = - i49.6 - j62.8
r0 = i0.5893r1 or - i2.1213r1; r2 = r1(-0.6428 j < 1.3553 i)
T = 3672 N # mm cw
r1 = -75.54; r2 = -18.63

- i[3ry + (5 + 3t)dry>dt] + j[3rx + (5 + 3t)drx>dt]
C # (A * B) = 0
A # (B * C) = 0
A # B = 1.732
C * (D * E) = k7.954
A * B = k1
1.759∠176.39°
2.909∠50.10°
vmax = 31.42 in/s; amax = 3948 in/s2s
44.27 rad/s
x = 20[1 - cos(100t)]; v = 4000 sin(200t); a = 800,000 cos(200t)
D = S = 2.323 in
D = S = 303 mm

190 m/s3
2961 m/s2

872 Partial Answers to Selected Problems
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2.71 A drive crank angle of results in a driven crank angle of and a trans-
mission metric of 

CHAPTER 3

3.1
3.3
3.5
3.7
3.9 opposite the direction of rolling

3.11

3.13

3.15

3.17
3.19
3.21
3.23

3.27
3.29
3.31

3.33 (a) 20 in/s
(b) 20 in/s

3.35 Sliding 
3.37 (a) and (b)
3.39 Follower 
3.41
3.43 Sliding 
3.45
3.47 Sliding 
3.49
3.51
3.53
3.57 u1(Degrees) v2(rad/s) v3(rad/s)

30 -0.633 -4.106
60 -0.696 -3.927
90 -0.809 -3.599

120 -0.977 -3.077

vC = 367 mm/s
v4 = 433 rad/s ccw
vC = 210 in/s

velocity = 17 in/s
vD = 62 in/s

velocity = 163 in/s
vD = 17.5; vE = 30 in/s; v3 = 12.9 rad/s cw

velocity = 7.1 in/s
vCB = vR

velocity = 32 in/s

v2 = 60 rad/s
v2 = 3.1 rad/s
u = 54.6°; v = 1.13Rv

u1(degrees): 0 15 30 45
v2 /v1: 0.25 0.247 0.237 0.219

O2B = 74.31; u2 = 16.59; v2 = 3.55 rad/s
O2B = 79.36; u2 = 5.61°; v2 = 3.73 rad/s
v2 = 5.03 rad/s ccw

u1(degrees): 15 30 45 60 75
v3 /v1: -0.129 0.173 0.362 0.467 0.519

vC = 217.25 mm/s ∠147.8°
u2 = 16.35°, u3 = -122.19°; v2 = -2.87 rad/s, v3 = 10.86 rad/s;

vB = 37.7∠ -10.8°
vCB = 670.2 in/s
R
#

= I572.4 - J82.6
n = 12s/(pd)
v = 1260 in/s
v = - i100 - j2600 + k2000

-0.511.
276.4°160°
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3.59 to the right
3.61 The angular velocities of links 2 and 3 are 1.06 rad/s cc and 32.3 rad/s cw, respectively.
3.63 and 3.65 to the left.
3.67 At the angular velocities of links 2 and 3 are 0.205 and 

respectively.
3.69 At 
3.71 At normalized slider velocity is 
3.73 At the angular velocities of links 2 and 3 are 0.25 and 

respectively.
3.75 At input crank output crank and output crank

angular The matrix solution agrees with values obtained
by numerical differentiation. Other solutions are possible.

3.77 At input crank output crank and output crank
angular The matrix solution agrees with values obtained
by numerical differentiation. Other solutions are possible.

CHAPTER 4

4.1
4.3

4.5 (a)
(b)

4.7
4.9

4.11
4.13

4.15

4.19
4.21
4.23
4.25
4.27
4.29 (b) to the left when 
4.31
4.33

4.35 aE = 1100 in/s2

aC1

N = 100 in/s2; aC1

T = 0; aC2
= 70.7 in/s2

aE = 40,000 in/s2
u = 0aC = 33,300 in/s2

a1 = 63 rad/s2
a2 = 138.5 rad/s2; a3 = 440 rad/s2
aD = 5040 in/s2; a2 = 147 rad/s2; a3 = 267 rad/s2
aD = 23,000 in/s2; a2 = 2230 rad/s2
a2 = 45.7 rad/s2

u1(Degrees) v3/v1 a3/v1
2

30 1.333 -0.246
60 1.205 -0.220
90 1.106 -0.164

aC = 31,381i - 48,131j = 57,457 mm/s2∠ -56.9°
R = i20 + j60; R

#
= - i8995 + j2985 + k10; R

$
= - i499,790 - j1,346,870 + k20

at
B = 12,500 mm/s2; aB

n = 72,000 mm/s2; aB = 73,077 mm/s2
an = 19.29 m/s2

aav - 2.09 rad/s2
aav = 5.236 rad/s2

aav = 2000 in/s2
a = - i100,800 - j88,600 - k30,000

velocity = -4.29 rad/s.
position = 75.9°,position = 160°,

velocity = 1.709 rad/s.
position = 134.6°,position = 70°,

-0.22 rad/s,u1 = 30°,
-0.96.u1 = 60°,

u1 = 45°, vD = 490.2 at 99.4°.

-0.238 rad/s,u1 = 45°,
vc = 7.37 in/s

vB2
= vD = v1 = 0; a1(av) = 181,000 rad/s2 cw; aD(av) = 76,000 m/s2
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4.37
4.39
4.41 Crank 
4.43
4.47
4.53
4.55
4.57
4.63
4.65
4.67

4.69

4.71 At and Multiply by angular velocity
squared of link 1.

4.73 At and Multiply by angular velocity
squared of link 1.

4.75 At Multiply by angular velocity squared of link 1.
4.77 At a crank angle of one radian, slider 
4.79 At a crank angle of one radian, angular acceleration of the connecting 

4.81 At a drive crank angle of one radian, angular acceleration of the driven

CHAPTER 5

5.1 The displacement vs. time plot is linear. The cam follower cannot actually repro-
duce this motion at dwell, rise, and return transition points.

5.3 The displacement vs. time plot is cycloidal. Cam follower motion is smooth at
dwell, rise, and return transition points.

5.5 The displacement vs. time plot is linear. The cam follower cannot actually repro-
duce this motion at dwell, rise, and return transition points.

5.7 The displacement vs. time plot is cycloidal. Cam follower motion is smooth at
dwell, rise, and return transition points.

5.9 Although cam follower motion appears smooth, there will be acceleration jumps
at dwell, rise, and return transition points.

5.11 Although cam follower motion appears smooth, there will be acceleration jumps
at dwell and rise transition points.

crank = -1265 rad/s2.

# 103 rad/s2.
rod = 4.14

acceleration = -1.264 # 105 mm/s2.
u1 = 160°, a2 = 0.119*. *:

a3 = 0.4205*. *:u1 = 35°, a2 = 0.0847*

 *:a3 = 0.6791*.a2 = 0.2938*u1 = 35°,

u(Degrees) a3/v1
2r1

0 -0.802
30 -0.727
60 -0.501

a3 = as2
= -8117 in/s2

a2 = 391.5 rad/s2; a3 = 541.9 rad/s2
a2/v1

2 = -0.05197 at u1 = 30°
aC = 900 m/s2
aC = 1615 mm/s2
aC = 625,000 mm/s2; a2 = 1233 rad/s2
amax = 1.667 Rv2
a1 = 5780 rad/s2; a3 = 5150 rad/s2

speed = 903 rev/min
a2 = 120 rad/s2
aD = 700 in/s2
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5.13 The cam follower cannot actually produce the desired motion at dwell, rise, and
return transition points.

5.15 Although the cam appears smooth, there will be acceleration jumps at dwell, rise,
and return transition points.

5.19 The cam follower cannot actually produce the desired motion at dwell, rise, and
return transition points.

5.23 Although the cam appears smooth, there will be acceleration jumps at dwell, rise,
and return transition points.

5.25 Although the cam appears smooth, there will be acceleration jumps at dwell, rise,
and return transition points.

5.27 (b) from to from to 
for from 0 to and to for from

to 
(c)
(d)

5.29 (b) at at at
and at and 

(c)
(d)

5.31 (b) at at at 
and at and 

(c)
(d)

5.33 (b) at at at
and at 

5.35 (b) at at for 
from 0 to and 240 to for from 60 to and 180
to 

5.37
5.39
5.47 (a)

(b)
5.49 mini-

mum follower face width
5.51

at 
5.53 neglecting possible discontinuities at ends of travel,

5.55 147.9 mmrp = 25(37 -  12 cos u)3/2/(38  -  18 cos u); rp(max) = 156.2 mm, rp(min) =
rmin = 100 mm and rmax = 150 mm
r = rb + hu/p = 100 + 15.9u;

u = 60°f = 8.9°5(6 - cos u) ; [(6 - cos u + sin u tan u) /237 - 12 cos u ]6;
y = 25 cos ux = -25 sin u5(6  -   cos u) ; [(6  -   2 cos u)/237 - 12 cos u]6,

= 31.8 mm
x = -(rb + hu/p) sin u - (h/p) cos u, y = (rb + hu/p) cos u-(h/p) sin u;

x = (3/4 ; 23/4)l, y = (-3/4 ; 23/4)l
y = (-2 + 23)x and y = (-2 - 23)x

a = 1190 in/s2, vmax = 42.2 in/s
vmax =  9900 mm/s

240°
120°ua = -1800 mm/s2300°,60°

ua = 1800 mm/s2u = 240°;v = -300 mm/su = 60°,v = 300 mm/s
u = 120 and 180°a = -225p2 mm/s2300°, u = 0

a = 225p2 mm/s2u = 240°;v = -75p mm/su = 60°,v = 75p mm/s
s = 3.0 in, v = 12.7 in/s, a = -61.9 in/s2, j = -734 in/s3
s = 3.16 in, v = 11.8 in/s, a = -71.1 in/s2, j = -640 in/s3

1.211pu = 0.789pa = -92.4 in/s21.789p,
u = 0.211pa = 92.4 in/s2u = 3p/2;v = -15 in/su = p/2,v = 15 in/s

s = 3.0 in, v = 13.4 in/s, a = -74.7 in/s2, j = -845 in/s3
s = 3.22 in, v =  12 in/s, a = -87.1 in/s2, j = -632 in/s3

5p/4u = 3p/47p/4, a = -32p in/s2
 u = p/4a = 32p in/s2 u = 3p/2;u = p/2, v = -16 in/sv = 16 in/s

s = 3.0 in, v = 10.7 in/s, a = 0, j = 0
s = 2.89 in, v = 10.7 in/s, a = 0, j = 0

5p/43p/4
u2p; a = -85.3 in/s27p/4p/4ua = 85.3 in/s2

7p/4;u = 5p/43p/4; v = -10.7 in/su = p/4v = 10.7 in/s
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5.57 Maximum 
5.59 Maximum 
5.61 Maximum This cam may cause high inertia

forces, depending on the design of the follower and related components.
5.63 The displacement equation for the rise is

5.65 The displacement equation for the rise is

5.67 Subtract wear from displacement, but note that valve will seat for negative cam
follower displacement. Valve for negative cam follower displace-
ment except for bouncing as valve seats abruptly. Actual valve acceleration
depends on mass of valve train. Velocity at 

CHAPTER 6

6.5
6.7
6.9

6.11
6.13
6.15
6.17
6.19 Contact 
6.21
6.23 Contact 
6.25 17.5 in/s at beginning of contact; 16.6 in/s at end of contact
6.27
6.31 Interference; remove 0.25 mm from teeth of larger gear
6.33
6.35 Load moves 897 in.
6.39
6.41 (a)

(b)
(c)
(d) Ft = 2388 N, Fr = 869 N

TA = 191 N # m, TB = 0, TC = 955 N # m
v1 = 104.7 rad/s cw; v2 = 52.4 rad/s ccw; v3 = 20.9 rad/s ccw
cAB = cBC = 240 mm

N1 = 20, N2 = 100, vp = 65.4 in/s

N2 = 45

f = 21.9°

ratio = 1.66
c = 8.0 in

ratio = 1.67
N2 = 115, c = 15.43 in
c = 16 in, rb2 = 11.3 in
N1 = 40, N2 = 100, vp = 2618 mm/s
vp = 78.5 in/s
c = 8.33 in
n = 596.8 rev/min
d = 20.0 in

mid-rise = 3281 mm/s.

velocity = 0

s = 18[1 - 4x2 + 6x4 - 4x6 + x8]

s = h [1 - 4x2 + 6x4 - 4x6 + x8]

acceleration = 1.01 # 106 mm/s2.
acceleration = 3.219 # 104 mm/s2.
acceleration = 2.904 # 105 mm/s2.
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6.43

6.45 The contact for a pair of 12 tooth, pressure angle spur gears.
6.47 A full-depth pressure angle, 15 tooth pinion will mesh with a 40 tooth gear

without interference.
6.49 A full-depth pressure angle 25 tooth pinion meshing with a 35 tooth gear

will have a contact 
6.51 If the pinion has 16 teeth and the gear 100 teeth, a pressure angle is

required to avoid interference (for full-depth teeth).
6.53 If the pinion has 10 teeth and the gear 30 teeth, the minimum pressure angle

required to avoid interference is approximately (for full-depth teeth).

CHAPTER 7

7.1
7.3

Other solutions are also possible.
7.5 Thrust force is to the left on gear 3. Thrust force is to the right on gear 2.
7.7
7.9

7.11
7.13
7.15
7.17
7.19
7.21
7.23

7.25 (a)
(b)

7.27
7.29 If gear 2 has 72 teeth and gear 4 has 50 teeth, the output The

helix angle of gears 3 and 4 should be to balance thrust on the countershaft.
Output (neglecting friction).

CHAPTER 8

8.1 Output speeds may range from 500 to 667 rev/min if all gears have the same module.
8.3 One possible solution: Let Then,

N7 = 60, N2 = 26.
N6 = 48,N5 = 40,N4 = 32,N3 = 30,N1 = 24.

torque = 44,762 N # mm
16.5°

speed = 256 rpm.
Ftp = Ftg = 1236 lb, Frp = Fag = 402 lb, Fap = Frg = 201 lb

rbp = 1.56 in, rbg = 5.18 in
gp = 16.2°, ≠g = 43.8°

FaC = 844 N
TA = 9.55 N # m, TB = 19.1 N # m, TC = 764 N # m, FaA = 87 N,  FaB = 607 7  N,
dw = 2.41 in, dg = 17.59 in
c = 16.22 in
dw = 1.82 in, dg = 3.18 in
N1 = 24, N2 = 60
c = 14.2 in
Ft = 5980 N, Fr = 2410 N, Fa = 2890 N
c = 275 mm,
pn = 16.32 mm, p = 18.85 mm, N1 = 24, N2 = 60

N1 = 20, N2 = 38, f = 20.6°
pn = 0.481 in

25°

Ú 20°
ratio = 1.94.

14.5°

20°
25°ratio = 1.315

FC = 9144 N
FB = 12,280 N,FA = 3970 N,TB = 597 N # m, TC = 1243 N # m;TA = 239 N # m,

nC = 230 rev/min ccw;nB = 480 rev/min cwnA = 1200 rev/min ccw
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8.5 One possible solution:
8.7

8.9 (a) cw
(b) Impossible due to friction

8.11 cw
8.13 makes one revolution in (about 3 years and 2 months)
8.15
8.17
8.19
8.21
8.23
8.25
8.27
8.29
8.31
8.33
8.35
8.37
8.39
8.41
8.43
8.45
8.47
8.49
8.51
8.53
8.57
8.59

8.61 (a) 17.083 carrier rotations; rotations
(b) Carrier 

8.63
8.65 for 16 rev/min, 0.5406 for 0.667 for 45 rev/min, and

0.9286 for 78 rev/min
8.67 The drive may be similar to Figure 8.31 except that disk 2 drives and the diameter

of disk 2 exceeds twice the diameter of disk 1.
8.71 There are 36 combinations producing 19 different ratios ranging from 0.64 to

1.5625.
8.73
8.75 NP1 = 20

nc/nP = 3

33 13 rev/min,r1 = 0.3019 in
5 … d2 … 9 in; 5 … d3 … 7.92 in

rotations = (7/12)x + (5/12)y

nPC = 36.458

vS2
= 25.14 rad/s

vP = 225 rad/s cw; vC = 105.88 rad/s cw
nS2

/nS1
= 0.92795

NS = 20; NR = 80; dR = 320 mm; 15 … Np … 37
nC = (nRNRNP1

NP3
)/(NP1

NP3
NR - NP2

NP4
NS)

nC = (nRNRNP1
)/(NRNP1

- NSNP2
)

nC = (nR2
NR2

NP1
)/(NP1

NR2
+ NR1

NP2
)

nC = (NSnSNP2
NP4

)/(NSNP2
NP4

- NRNP1
NP3

)
nC = nSNSNP2

/(NSNP2
- NRNP1

)
nC = (NP2

NR1
nR1

)/(NP2
NR1

+ NR2
NP1

)
nC = (nR1

NR1
NP2

NP4
)/(NR1

NP2
NP4

+ NR2
NP1

NP3
)

nC = (nS1
NS1

NP2
)/(NP2

NS1
- NS2

NP1
)

nC = nR/51 - [NSNP2
NP4

/(NP1
NP3

NR)]6
nC = nR/51 - [NSNP2

/(NP1
NR)]6

nC = nR2
/51 + [NR1

NP2
/(NP1

NR2
)]6

nC = (nS1
NS1

NP3
)/(NS1

NP3
+ NP2

NS2
)

nC = (nSNP2
NP4

NS)/(NSNP2
NP4

- NP1
NP3

NR)
nC = (N    SN    P2

nS)/(N    SN    P2
- N    P1

N    R)
nC = (N    R1

N    P2
nR1

)/(N    P1
N    R2

+ N    R1
N    P2

)
nC = (N    R1

N    P2
N    P4

nR1
)/(N    R1

N    P2
N    P4

+ N    P1
N    P3

N    R2
)

nC = (NS1
NP2

nS1
)/(NS1

NP2
- NP1

NS2
)

nS2
= nC + (nS1

- nC)(NS1
NP2

)/(NP1
NS2

)
108 sS4

nS2
= 31 rev/min

nR2
= 0.0915 rev/min

nR = 200(1 - NS/NR)
N1 = 29, N2 = 40, N3 = 39, N4 = 50
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8.77 The desired reduction is produced (approximately) if the sun, planet, and ring gears
have 19, 21, and 61 teeth, respectively.The train may be balanced with four planets.

8.79 The desired reduction is produced (approximately) if the sun, planet, and ring
gears have 26, 18, and 62 teeth, respectively. The train may be balanced with four
planets.

8.81 Torques are 30,000, 0, 82,500, and on the sun, planet, ring, and
carrier shafts, respectively.

8.83 Torques are 4375, 0, 13,125, and on the sun, planet, ring, and car-
rier shafts, respectively.

8.85 The number of teeth in the planets meshing with the sun is varied from 18 to 58,
and speed ratios are calculated. If those planets each have 19 teeth and the ring
has 57 teeth, the output speed is 1000 rpm. If those planets each have 57 teeth and
the ring has 95 teeth, the output speed is 250 rpm.

8.87 Using 19 to 88 teeth in planets #1 satisfies the approximate output speed require-
ment. If planets #1 each have 28 teeth and the ring 65 teeth, carrier speed is about
791 rpm, ring torque reaction is and carrier torque is 72,441

8.89 Using 19 to 90 teeth in planets #1 satisfies the approximate output speed require-
ment. If planets #1 each have 30 teeth and the ring 69 teeth, carrier speed is about
296 rpm, ring torque reaction is and carrier torque is 112,829

8.91 If planets #1 each have 46 teeth, the ring must have 84 teeth. For that combina-
tion, noise or vibration at the following frequencies may be significant.
Shaft error frequencies (Hz):

Tooth meshing frequencies (Hz):

Tooth error frequencies (Hz):

CHAPTER 9

9.1 (a)
9.3
9.5
9.7
9.9

9.11
9.13
9.15
9.17 P = 13 lb

T1 = 121 N #  m cw
T1 = 8.22 N #  m cw
T2 = 1340 lb #  in ccw
Fs =  168 N
T1 = 4.92 N #  m cw
T1 = 230 N #  mm cw
T1 = 2.84 N #  m cw

T1 = 18.3 N #  m cw

sun = 487.8; any planet = 50.4; ring = 45.6.

sun and planet = 2316.9; planet and ring = 957.

sun shaft = 133.3; planet carrier shaft = 11.4; planet shaft = 50.4.

N #  mm.
95,329 N #  mm,

N #  mm.
60,981 N #  mm,

-17,500 N #  mm

-112,500 N #  mm
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9.18 (a)
9.20
9.22
9.24
9.26
9.28
9.30
9.32
9.34
9.35 (a)
9.37
9.39
9.41
9.44
9.45

9.47 (a)
(b)

9.48 (a)
(b)

9.51
9.53
9.55
9.57
9.59 At crank angle rad, the cylinder applies a vertical reaction force

component on the connecting rod. At crank the torque
applied by the crankshaft is 

9.61 When crank the axial piston force is If crankshaft rotation
is counterclockwise, it applies a small counterclockwise torque during the first
half of the cycle and a significant counterclockwise torque during the second half.
At crank rad, the connecting rod is subject to a 22,513 N compres-
sive force and crank 

9.63 When crank the axial piston force is If crankshaft rotation
is counterclockwise, it applies a small counterclockwise torque during the first
half of the cycle and a significant counterclockwise torque during the second half.
At crank rad, the connecting rod is subject to a 23,063 N compres-
sive force and crank 

9.65 Maximum lateral force magnitude on the at At
that instant, spring and motor torque 
N # mm.

magnitude = 11,761tension = 263.5 N
 time = 1.68 s.piston = 132.6 N

torque = 1.673 # 106 N #  mm.
angle = 1.75 p

-27,310 N.angle = 0,
torque = 1.311 # 106 N #  mm.

angle = 1.75 p

-26,650 N.angle = 0,
-1118.4 N #  mm.

angle = p/4= 15.466 N
= 1

T1 = 14.1 lb #  in ccw
T1 = 10.7 lb #  in cw
T1 = 6.90 lb #  in cw
T1 = 4.51 N #  m cw

e = 0.80
T1 = 22.8 N #  m cw

e = 0.80
T1 = 22.8 N #  m cw

T1 = 121 N #  m cw
T2 = 1340 lb #  in ccw
T1 = 5.09 N #  m cw
T1 = 233 N #  mm cw
T1 = 2.72 N #  m cw

T1 = 18.3 N #  m cw
P = 13 lb
T1 = 121 N #  m cw
T1 = 8.44 N #  m cw
T2 = 1340 lb #  in ccw
Fs = 168 N
T1 = 5.09 N #  m cw
T1 = 234 N #  mm cw
T1 = 2.74 N #  m cw

T1 = 18.3 N #  m cw
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CHAPTER 10

10.1
10.3
10.5 (a)
10.7
10.9

10.13
10.15
10.17
10.19
10.21
10.23
10.25
10.27 At 

10.29 secondary
shaking forces balance

10.31 Primary forces do not balance; secondary forces balance.
10.33 Primary moments do not balance.
10.35 Neither primary nor secondary forces balance.
10.37 Correction counterweight from crank
10.39 The center of gravity is located at and The mass

moment of inertia about a z-axis through the center of 
10.41 The mass moment of inertia about an axis through the center of rotation

Terminal angular At 20 rad/s, angular accel-
eration

10.43 The mass moment of inertia about an axis through the center of rotation
Terminal angular At 16 rad/s, angular

acceleration
10.45 At power angular 

angular and angular 
10.47 Maximum motor Maximum 
10.49 Maximum motor 

The corresponding 
10.51 Maximum motor At that instant, crank angular position

and motor 
10.53 Maximum motor 
10.55 Maximum crankshaft At that instant, net motor torque

Approximate elapsed time for the first revolution of the crank-
shaft

10.57 Maximum piston acceleration is about The approximate crank angle
at that instant.= 1.42 rad

3136 m/s2.
= 81.1 millisec.

= -9.56 N # m.
speed = 109 rad/s.

power = 2048 W.
torque = 118.1 N #  m.= 0.9 rad

power = 11.81 kW.
torque = 111.1 N #  m.

power = 11.11 kW.
power = 3.11 W.torque = 0.311 N #  m.

acceleration = 0.695 rad/s2.velocity = 7.42 rad/s;
displacement = 37.7 rad;supplied = 111.35 W;time = 10 s:

= 0.316 rad/s2.
velocity = 19.766 rad/s. = 10.9 kg # m2.

 = 0.243 rad/s2.
velocity = 24.2 rad/s. = 5.084 kg # m2.

gravity = 7.976 # 10-7 kg # m2
y = 1.690 # 10-2 m.x = 2.071 # 10-2

location = 180°magnitude = 2 mr,

Fs = 2000(cos vt - sin vt), a = (4 sin vt + cos 2vt)/(sin vt - cos vt);
= -97 N
f = 0, F32x = 158 N,  F32y = F03y = F12y = F01y = 0,  F12x = -251 N,  F01x

mPrP = mQrQ = 141 kg #  mm, uP = 90°, uQ = 270°
wPrP = 6.36 oz #  in, uP = 35°, wQrQ = 9.37 oz #  in, uQ = 268°
wPrP = 5.59 oz #  in, uP = 253°, wQrQ = 4.27 oz #  in, uQ = 219°
T = 5.94 N #  m cw
T = 6.94 N #  m when f = 30°
T = 375 lb #  ft when f = 30°
T = 8.93 N #  m when f = 30°
T1 = 34.4 lb #  in cw
T1 = 26.9 lb #  in ccw

F2 = 49.5∠45° N, h2 = 15.3 mm
T1 = 4.4 N #  m ccw
ƒ m2 aG2 ƒ = 64 N, h2 = 12.6 mm
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CHAPTER 11

11.1 The coordinates of the fixed pivot are 125, 344.
11.3 Fixed center must lie along a line through point 4.5, 5.5 at angle 
11.5 The coordinates of the fixed pivot are 124.999, 344.
11.7 Fixed center must lie along a line through point 7.23, 8.23 at an angle of 
11.9 Locate fixed pivot at 2.5,

11.11 Locate fixed pivot at 25.96, 12.02.
11.13 Locate fixed pivot at 26.18,
11.15
11.17
11.19
11.21
11.23 At the first precision point,

(all mm). The error is essentially zero at the precision points.
The at one-quarter of the range of x.

11.25 Let the coupler rotate 0.3 radians between the first and second precision points
and 0.6 radians between the first and third. At the first precision point,

The
error is essentially zero at the precision points. The at one-quar-
ter of the range of x.

11.27 The linkage is a triple rocker. Extend the coupler outward from C in a straight
line to a point D, where Point D traces an approximately straight
line over a portion of its motion.

CHAPTER 12

12.1 (a) (b) (c) (d)

12.3
12.5

12.7 i5P6 = f
1 -

122

1 +
122

0

v

i5P6 = f
22
222
2

-22

v

j
i[R] = C

(cos b cos g) (-sin g) (sin b cos g)
(cos a cos b sin g + sin a sin b) (cos a cos g) (cos a sin b sin g - sin a cos b)
(sin a cos b sin g - cos a sin b) (sin a cos g) (sin a sin b sin g + cos a cos b)

S
DF = 2DF = 1DF = 1DF = 1

CD = 250 mm.

error = -7.33%
r1 = -172.69 + j 81.1; r2 = 240.12 - j 66.04; r3 = -7.44 - j 15.06(all mm).

error = 2.37%
r3 = -3.95 - j 6.11

r2 = 218.94 - j 64.23;r1 = -159.99 + j 70.34;

r1/r0 = 2.32, r2/r0 = 0.62, r3/r0 = 2.43
r1 = -0.308 - j 0.462, r2 = -0.154 - j 0.231, r3 = -0.538 + j 0.692

r1 = -9.48 - j1.68, r2 = -168.10 + j10.08, r3 = 77.58 - j8.40

R1 = j4, R2 = j   2, R3 = 6 - j  2

-18.53.OB

OB

-7.OB

151°.Oc

135°.OB
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12.11

12.13

12.15

12.17
12.19
12.21 When the end of link 3 is farthest to the left, the center of link 2 is located at

and the center of link 3 is located at 
(all m).

12.23 At the center of link 2 is located at and the
center of link 3 is located at (all m).

12.25 The angular position of link 3 in a fixed reference rad at
The velocity magnitude of the center of link at

time = 0.15 s.
3 = 4.726 m/stime = 0.15 s.

frame = 2.015
x = -0.175, y = -0.015

x = -0.069, y = 0.124;time = 0.2 s:

x = -0.327, y = 0.100x = -0.139, y = 0.146;

uA = -63.44°, sA = 8 in, sB = 3.42 in
uA = 68.7°, 164.5°; uB = 95.7°, -95.7°

05P6C = d
13.11
6.04
10.61

1

t

05P6D = d
5(1 + 23)
5(3 + 23)

0
1

t

15P6 = d
3
6
4
1

t
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Index
Page references followed by "f" indicate illustrated
figures or photographs; followed by "t" indicates a
table.

#, 1, 9-11, 41-42, 44-45, 51-52, 116-124, 128-130,
132, 148, 160-162, 166-168, 171, 175-176,
182, 184, 189-192, 196, 198, 201-204,
206-208, 266-269, 277-278, 280-281, 306,
321-324, 326-328, 331, 334, 348-349,
354-358, 360-361, 363, 366-368, 385, 437,
448-449, 453-455, 461-462, 464, 478, 481,
484-486, 539-540, 546, 585-587, 589-590,
594-595, 598-599, 601, 608, 625, 627-628,
631, 638, 644-646, 650, 653, 658, 666,
668-670, 672, 678, 680-681, 684, 691-693,
695-700, 703-710, 712-714, 716-717, 728,
730-732, 739, 742-743, 761-766, 768,
774-777, 792, 802, 805-807, 818, 824-827,
829-830, 832-834

A
Accelerated, 674
Acceleration, 1-2, 7, 9-10, 45-46, 78, 106-107, 120,

137, 143, 152, 159, 163, 165, 171, 174, 215,
224, 246, 260-261, 264-326, 328-338, 342,
351-368, 376-377, 396-399, 401-404, 554,
595, 640, 644, 674, 690-692, 697-700,
702-704, 707-709, 712-714, 716, 719,
724-725, 727, 729-730, 732, 759-760,
762-765, 774-777, 787, 789-791, 800, 815,
817, 827-829, 834

Newton’s second law, 691, 759
Accuracy, 6, 15, 87, 204, 211, 215, 224, 232, 288, 313,

346, 394, 437-438, 440-441, 522, 620, 714,
723, 810

Actuator, 67, 72-73, 573, 707, 730
Addition, 70, 90, 103, 107-108, 110-113, 136-137, 160,

176, 208, 212, 218, 222, 224, 289-290, 292,
294-295, 302, 313, 316, 416, 494, 505, 523,
525, 553, 560, 614, 620, 622, 646, 659, 661,
700, 713-714, 737, 740, 747, 756, 760, 819,
824

Adjustment, 27, 66, 70-71, 92, 154, 243, 393, 397,
572-573, 575-576

Advanced, 103, 164, 369
Air, 14, 58-60, 62, 102, 237, 240, 243, 300-303,

308-309, 340, 342, 640, 644, 652-653,
686-687, 698-700, 707-708, 710, 774-775

compressors, 710
Air pollution, 342
Aircraft, 5, 81, 100, 108, 160, 176-177, 441, 553, 582,

584
Aluminum, 100, 169, 440-441, 463

production, 463
recycling, 100

American Society of Mechanical Engineers, 101-102,
163, 338, 819

Amplitude, 159
Analytical approach, 369, 387, 620, 632, 664, 710
Analytical solution, 123, 142, 149, 156, 169, 172, 225,

242, 289, 297-298, 307, 636-637, 646-647,
663, 665, 697, 706-707, 710, 764-765, 768,
782

and, 1-3, 5-22, 24-32, 34, 36-52, 54-102, 103-164,
165-187, 189-212, 214-237, 240, 242-263,
264-275, 277-297, 299-304, 306-313,
315-326, 328, 330-338, 339-404, 405-470,
471-514, 515-592, 594-612, 613-625,
627-644, 646-653, 657-678, 681-688,
689-700, 702-714, 716-717, 719, 721-732,
734-745, 747-766, 768-778, 779-798,
800-820, 821-836

Angle:, 40-42, 44-45, 52, 130, 432, 475, 486, 501, 807
Angles, 10, 38, 44, 47-48, 50, 52, 99-100, 108, 146,

150, 158-159, 174, 212, 218, 222, 232, 259,
261, 278, 288, 303, 342, 344, 402, 420, 423,

428-429, 451, 454, 463, 465, 470, 471, 473,
479, 484, 488-491, 494-495, 497, 499,
502-505, 507, 510-511, 513, 517, 639, 646,
682, 704, 742, 747, 765, 785, 792, 796,
800-801, 811

bearings, 50, 146, 513, 742, 811
deflection, 454, 502
measurement, 10

Angular acceleration, 2, 10, 46, 260-261, 264-265,
267, 269, 272, 275, 280-281, 283-284, 286,
288-292, 296, 302, 305, 307, 309-310, 313,
317-319, 321-322, 324-325, 328, 331-333,
336-338, 554, 640, 644, 698-700, 702-703,
708-709, 712, 724, 760, 763, 774-775, 777,
787, 827, 834

displacement, 2, 272, 283, 310, 317-319, 554, 775,
827, 834

momentum, 699-700, 774-775
velocity, 2, 10, 46, 260-261, 264-265, 267, 269,

272, 275, 280-281, 283, 286, 288-292,
296, 302, 305, 307, 309-310, 313,
317-319, 321-322, 324-325, 328,
331-333, 336-338, 554, 644, 698-700,
703, 708, 712, 724, 760, 763, 774-775,
777, 787, 827, 834

Arc, 8, 22, 123, 153, 227, 389, 411, 419-420, 429, 443,
479

Arcs, 310, 429, 786
area, 58, 63, 70, 101, 119, 443, 454-455, 488, 698,

717, 773-775
Arguments, 139, 187

law of, 139
ARM, 2, 15-16, 20-21, 56, 79-81, 104, 108, 163, 310,

385-386, 395, 519-523, 529, 544, 554, 616,
629-631

Arrays, 111
Artificial, 308, 814

intelligence, 814
Artificial intelligence, 814
Assembly, 12, 67-68, 92, 102, 106-107, 123-125, 129,

131-134, 147-148, 158, 162-163, 177, 185,
197, 206, 261, 273, 327, 538, 544, 556-557,
576, 578-579, 589, 595, 652, 675, 698-700,
760, 774-775, 806

automated, 102
flexible, 556, 579
high-speed, 557
manual, 652
robotic, 102
selective, 102
systems for, 102

Assumptions, 8, 613-614, 743-744
Atmosphere, 441
Attributes, 87
Automated, 57, 90, 102, 659, 814, 819

assembly, 102
guided vehicle, 102

Automatic, 524, 526, 529, 553, 556, 561, 573, 614
Automatic control, 529, 553
Automation, 102
Automobiles, 65, 505, 524, 529, 558
Availability, 56, 113, 171
Average, 48, 68, 94, 96, 98, 165-166, 169, 171-172,

204, 235, 260, 265, 284, 331, 430, 463, 479,
555, 731

Average value, 731
Axis, 2, 21-22, 28, 63-65, 68-69, 80, 107-110, 117,

130, 135, 137-138, 143, 159, 162, 167-168,
172, 175, 192-193, 196-197, 200-201, 204,
237, 242, 252-253, 262, 266, 277, 282,
321-322, 325, 328-329, 337-338, 342, 344,
347, 372-373, 393-394, 402, 407-408, 440,
477-480, 490, 494, 501-502, 505, 529-530,
543, 566, 570, 574, 578-579, 607, 639, 666,
690-694, 698, 738-739, 743, 745, 747, 751,
754, 759, 769, 791, 811, 834

B
Back, 2, 11, 16, 18, 47, 104, 174, 280, 365, 440,

501-502, 513, 539, 560, 716
Backlash, 71-72, 77, 394-398, 405, 414, 424, 464
Ball, 12-13, 28, 67, 72-73, 78-80, 99, 114-115, 141,

148, 150, 168, 199, 201, 266-267, 325, 337,
567, 569-573, 580, 582, 601

Band, 529, 532, 550, 582, 586, 588, 592, 601
Bar, 8, 22-25, 28-29, 31, 33-37, 45, 54-55, 69-70, 83,

90, 92, 95-96, 99, 113, 121, 124-125,
129-131, 133-134, 142, 153-154, 156, 158,
161-163, 165, 181-183, 185, 187-188,
220-222, 227-228, 232-233, 237, 246-247,
249-252, 259, 261, 270-271, 273-275,
294-298, 300-301, 303, 305, 310-312, 314,
330, 333, 335-336, 393-394, 436, 449, 469,
579, 613, 618, 623, 625-626, 629, 646-647,
649-651, 670, 675, 678, 684, 689, 703-705,
707-710, 717, 759, 761, 763-765, 777,
780-781, 785-787, 792, 794, 796-797, 800,
802-803, 805, 808, 812-820

Barrel, 394, 563
Bars, 25, 100, 111, 653
base, 1-2, 15, 80, 99-100, 177, 342, 345-346, 361,

363, 365-366, 368, 372-378, 380-381,
386-390, 400-402, 405, 418-419, 421-425,
427-428, 430-431, 433-434, 443, 445, 451,
458, 463-466, 595, 811

Basic, 5-12, 14, 16, 18, 20, 22, 24, 26, 28-30, 32, 34,
36, 38, 40, 42, 44, 46, 48, 50, 52, 54-56, 58,
60-62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82,
84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 165,
167, 169, 171, 173, 208, 220-223, 225, 227,
229, 231-233, 235, 237-241, 246, 251,
264-265, 267, 269, 302, 311, 325, 330,
337-338, 362, 396, 405, 454, 526, 613-615,
617, 629, 632, 734

size, 56, 58, 96, 237, 614, 632
Beads, 559
Bearings, 8, 12, 22, 28, 32, 37, 50, 54, 72, 92, 146,

266, 482-483, 513, 519, 523, 536, 554, 583,
614, 618, 659, 667, 669, 672, 674, 684, 693,
735, 738, 742, 759, 808-809, 811, 819

assumed, 54, 693
Bending, 405, 462, 470, 482, 513-514, 561, 584, 586,

600, 690, 743
force, 405, 462, 513, 561, 584, 586, 690
terminology, 405

Bending moments, 586, 743
binding, 2, 37, 100, 487
Blank, 414, 437, 439-440, 450

design, 414, 440, 450
Body force, 459, 461
Boom, 102, 633-635
Boring, 180
Bottom, 14, 46, 68, 170, 349, 409, 429, 500, 561, 638
Boundary, 356-357, 359-361, 363-365, 367-370,

402-403
Boundary conditions, 356-357, 359-361, 363-365,

367-368, 402-403
Brakes, 529, 549-550, 582, 600
Brass, 440-441
Breakdown, 498
Breaking down, 596
Bronze, 441, 463
Buckling, 620
Burnishing, 441

gears, 441

C
Cables, 100
CAD systems, 83
Calculations, 8, 10, 40, 44, 51, 119, 128, 130, 133,

158, 191, 196, 202-204, 249, 251, 324-325,
331, 356, 417, 435, 449, 533, 542, 588-589,
591, 598, 644, 699-700, 716, 791, 802
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rotation, 204, 356, 533, 802
Calculators, 139, 553
Calls, 92, 250, 381, 594
Carbon, 252, 463
Career, 203

engineering, 203
Carrier, 1-2, 24, 62, 176-177, 527-539, 541-542, 545,

547, 549-556, 575, 577, 585-590, 592-595,
597-604, 607-608, 610-612, 831-832

frequencies, 595, 597-599, 601, 611-612, 832
Carriers, 545-546
carry, 37, 50, 405, 706, 766
Cast, 463
Cast iron, 463
Casting, 440

process, 440
Catastrophic failure, 595, 760
cell, 7, 187, 592
Cell references, 187
Cells, 7, 187
Center, 1-2, 12, 26-28, 34, 46-47, 68, 78-80, 104, 114,

142, 152-153, 169, 185, 208, 214, 219,
226-227, 248, 250, 252, 257, 267, 281, 290,
301-303, 308, 329-330, 340, 342, 344-346,
351, 369-371, 373, 375, 377, 379, 385-387,
400, 402, 409, 419, 421, 423-424, 426-427,
433-434, 445, 457-458, 465-468, 471,
477-478, 480, 482, 484-485, 490-493,
496-497, 505, 507, 511-513, 527, 529-530,
532, 541, 545, 556-558, 564, 566-567,
569-570, 576, 579, 584, 605-607, 624, 629,
638, 653, 660-661, 664, 685, 689-699,
702-703, 706, 708-710, 712, 714, 716-717,
721, 723, 734-735, 738, 759-765, 769,
773-775, 781, 786, 834-836

Center of gravity, 219, 290, 302-303, 693-694, 698,
765, 834

Centrifugal, 73, 576, 690, 725, 734-735, 738, 745
Centrifugal force, 576, 690, 725, 734-735, 738, 745
Chain, 11-12, 15, 21, 93, 120, 152, 203, 207, 278, 280,

321, 328, 341, 354, 356, 359, 365, 405, 515,
557-561, 578, 582, 601, 780, 823

Chain rule, 120, 203, 207, 278, 280, 321, 328, 354,
356, 359, 365

Chains, 12, 15-16, 92, 263, 516, 558-559, 583, 819
changing, 26, 39, 53, 66, 185, 242, 307, 346, 414,

427, 454, 515, 519, 522-523, 547, 558, 566,
572, 575, 582, 586, 601, 760, 802

Chemical, 612
Circles, 62, 344, 347, 363, 369-371, 377, 385, 402,

408-409, 411, 415, 421-422, 424, 443,
465-466, 537, 661-663, 667

Circular, 1, 8, 100, 104-105, 142, 153, 159, 217, 227,
308, 310, 369, 375, 389, 398, 405, 408,
411-413, 415, 429, 434, 436, 443, 464-465,
474-476, 478-479, 486, 491, 494, 496, 506,
511-512, 579-581, 689-691, 693, 699, 721,
781, 786

Circular arcs, 310, 786
Clearance, 12, 409, 411, 432, 434-436, 443-444, 537,

660, 664, 797
Closing, 13
Closure, 132, 134, 144, 192, 195, 280, 325, 327,

336-338, 639, 644-645, 674, 802, 806-807,
818-819

Closure error, 644
Clusters, 471
Coefficient, 2, 224, 463, 660-661, 666, 669, 672, 685,

708
of friction, 2, 224, 463, 660-661, 666, 669, 672, 685

Coefficient of friction, 224, 463, 660-661, 666, 669,
672, 685

Collection, 808
Column matrix, 178-180, 202-203, 324, 360, 802
Columns, 113, 177-178
Combustion, 58, 60-62, 104, 237, 340-341, 404, 515,

608, 710
Communication, 90
Complex numbers, 7, 103, 134-136, 158-159, 192,

194, 281, 284, 330, 787
graphical representation of, 135

component, 1-2, 5, 12, 18, 21, 109-110, 147, 154, 175,
183, 188, 197, 208, 231, 233, 240, 270, 290,
294, 296, 303-304, 308-309, 321, 330, 345,
431, 480, 508-509, 543, 577, 581, 615,
633-634, 636, 639-640, 649, 653, 660-661,
674-675, 687, 691, 724, 741, 745, 759-760,
833

name, 653

type, 12, 240, 309
Compound, 441, 515, 535-536, 538, 544, 563, 582,

588-589, 598, 600, 610-612, 689, 717, 719
dies, 441

Compressed, 14, 441, 561, 644, 653
Compression, 62, 340, 620, 625, 640, 645, 653, 662,

667, 669, 675, 687
Compression members, 620
Compressors, 21, 208, 623, 636, 638, 710, 713, 726,

744-745, 747
Computer, 1-2, 5-9, 15, 32, 34, 50, 56, 80-83, 85-87,

89-90, 92, 94-96, 99, 101, 108, 124, 128,
152-153, 155, 157-158, 161, 163, 199,
202-203, 208, 216, 250-252, 260, 263, 275,
279, 288, 313, 323, 332, 335-336, 338, 342,
344, 348, 356, 361, 368-369, 376, 381, 397,
399-400, 402, 470, 484, 539, 591, 600,
608-609, 620, 632, 652, 664, 674, 688, 693,
759-760, 777, 780, 782, 784-785, 787,
791-792, 796, 814-818

simulation, 7-9, 32, 158, 652, 674, 759-760, 814
Computer software, 8, 163, 263, 338, 348, 688, 777,

780
Computer-aided, 1-2, 56, 82-83, 85-86, 90, 101, 313,

369, 784, 787, 814
computer-aided design, 1, 82, 86, 90, 101, 369
Computer-aided manufacturing (CAM), 369
Computers, 7, 82, 87, 92, 113, 139, 171, 278, 553
Concrete, 555
Concurrent engineering, 82
Conditioning, 58-59
Connectivity, 1, 6, 13, 19, 22, 163
Conservation of, 632

energy, 632
Constants, 40, 318, 359-361, 364-365, 367-368,

403-404, 554, 729-730, 784, 788
special, 784

Construction, 5, 45, 82, 86, 93, 102, 211, 220, 229,
246-247, 292, 294, 296, 303, 349, 429, 441,
613, 664, 693

cranes, 102
Continuous, 29-30, 68, 72, 141, 159, 238, 352, 369,

567, 639-640, 691, 722, 780, 797, 819
Contours, 80
Contrast, 8, 222, 621, 760
Control, 15-16, 26-28, 63-66, 68-69, 73-74, 81, 83-84,

98, 100, 243, 328, 330, 340-341, 344, 393,
529, 553, 562-563, 573, 576-577, 582-583,
800

adaptive, 16
numerical, 330

Controlling, 15
Controls, 72, 582
Conversion, 11, 134, 137, 139, 185, 695
Conveyors, 102
Coordinate systems, 85, 120, 174-175, 267, 632
Coordinates, 2, 85, 104, 108-109, 121, 144, 149, 160,

174-175, 252, 269, 297, 369, 373-374,
376-377, 379, 381-386, 390, 402, 615, 666,
696, 717, 773, 777, 782, 784-785, 787-788,
809-810, 815-817, 835

Corners, 9
Corrections, 766, 768
cost, 6, 55, 69, 436, 454, 456, 482, 520, 543, 560,

584, 614, 780
Costs, 69

variable, 69
Coulomb friction, 659
Covers, 11, 441
Cranes, 102
Creativity, 3, 6, 8, 82, 100, 174, 780
Creep, 674
Cross, 1-2, 63, 76-78, 103, 113-122, 124, 126-127,

130, 134, 137, 158, 160-161, 168, 175-176,
180, 183, 185, 201, 208, 267-268, 279, 322,
325, 330, 337-338, 341-342, 429, 554-555,
561, 616, 741, 751, 802, 806, 810

Crown, 343, 502
Curvature, 2, 26-28, 227, 301, 369, 387-392, 403,

418-419, 685
Curves, 8-9, 42, 44, 171-172, 174, 187, 204, 278, 281,

325, 363-364, 369-371, 398, 402, 418, 422,
443, 639-640, 759, 779, 808-809, 811-814,
819

customer, 449, 598, 611-612
Cutting off, 451
Cycles, 10, 18, 595
Cylinders, 2, 58, 62-64, 93, 237, 240, 406-407, 441,

500, 547, 633, 638, 747-748, 751-752,

754-757, 771-772, 823

D
Damper, 717, 731-732
data, 3, 7-8, 85, 98, 102, 127, 156, 182, 187, 202-203,

208, 245, 247, 273, 287, 289, 292, 307, 309,
313, 331, 426, 466, 470, 478, 522, 534,
551-552, 581, 607, 639, 650, 652, 707, 714,
728, 730-731, 760, 815, 817

Dead center, 46, 169, 340, 716
Decibels, 595
Decimal places, 156
Decisions, 6, 30, 40, 44, 49, 99-100, 144, 146, 201,

204, 262-263, 322, 325, 337-338, 346, 349,
356, 359, 368-369, 452, 482, 513-514, 538,
588, 594, 610-611, 641, 652, 686-687, 714,
716-717, 732, 779-780, 802, 808, 821

Deflections, 11-12, 76, 743, 811
excessive, 12

Deformation, 234, 614
Degree, 10, 12, 19, 21-25, 28, 81, 83, 87, 92, 94,

99-100, 141-143, 152, 156, 243, 313, 344,
358, 393, 440-441, 522, 614, 719, 780, 814

Degree of freedom, 12, 19, 21, 23-25, 28, 92, 99, 142,
243, 313, 393, 719

Degrees of freedom, 1, 5, 12, 19-25, 27-28, 92-94,
98-99, 104, 143, 200, 321, 719

density, 2, 693-695, 698-699, 774-775
Departures, 55
Depth, 411, 432, 434-437, 444-449, 452-454, 463,

465-470, 699, 830
Derived units, 9

pressure, 9
Design, 1-3, 5-9, 12, 27-28, 30-32, 37-38, 40-41,

43-45, 48-49, 53-55, 58, 75-76, 80, 82-83,
85-87, 90-92, 96-97, 99-102, 103, 122, 124,
128-129, 144, 146, 158-159, 163-164,
165-166, 174, 187, 204, 217, 225, 232, 237,
239-240, 251, 262-263, 281, 310, 325, 328,
330, 337-338, 339-340, 342-346, 348,
350-354, 356, 358-396, 398, 400, 402-404,
405-406, 408, 410, 412, 414, 416, 418, 420,
422, 424, 426, 428, 430, 432, 434, 436, 438,
440-442, 444, 446, 448-450, 452, 454, 456,
458, 460, 462-464, 466, 468-470, 471-472,
474, 476, 478, 480, 482-484, 486, 488-490,
492, 494, 496, 498, 500, 502, 504-506, 508,
510-514, 515-516, 518, 520, 522, 524, 526,
528-530, 532, 534, 536, 538, 540, 542, 544,
546, 550, 552, 554, 556, 558, 560, 562, 564,
566-568, 570, 572, 574, 576, 578, 580, 582,
584, 586, 588, 590-596, 598, 600-602,
604-612, 613-614, 620, 632-633, 638-641,
652, 660, 672, 674-675, 686-687, 690, 693,
696, 710, 714, 717, 727, 734, 743, 755, 760,
777-778, 779-781, 785-787, 792-803, 805,
808, 811-812, 814-820, 821, 829

attributes, 87
Design considerations, 90-91, 340, 785
Design decisions, 6, 30, 40, 44, 49, 99-100, 144, 146,

204, 262-263, 325, 337-338, 356, 359,
368-369, 452, 482, 513-514, 538, 588, 594,
610-611, 641, 686, 780, 802, 808, 821

Design for, 405, 452, 454, 483, 781, 814
Design parameters, 251, 632, 693, 727, 743
Design process, 6, 76, 82, 85, 90, 674, 690, 780
Design variables, 6
Determinant, 1, 111-114, 127, 152, 154, 177, 179-181,

183-184, 284, 616, 789
Diagrams, 16, 23, 352-353, 461-462, 483, 498, 510,

528, 532, 585-586, 588, 601, 608, 613-614,
617, 619, 628, 632, 637, 639, 646-647,
661-662, 665, 670-674, 706, 710-711,
723-724

Die, 440-441
Dies, 441
Diesel, 340
Differentiation:, 281
Digital, 381
Digits, 10
Dimension, 11, 96, 253-258, 334, 395, 475, 760
Dimensional tolerances, 37, 811
Dimensioning, 58
Direct, 7, 187, 279, 313, 480, 525, 549, 619, 623, 659,

690, 732, 814
Discontinuities, 358, 366, 397, 828
Discrepancies, 690, 714
Displacement, 2, 65-66, 94, 103-107, 123, 130, 137,

141, 143, 150-153, 157, 159, 161, 163-164,
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166, 169-170, 174, 192-193, 195, 199, 225,
272, 274, 282-283, 310, 317-320, 345-346,
351-356, 358, 361, 368, 372-374, 376-377,
380, 382-385, 392, 396, 398-399, 401-403,
554, 569, 607, 639, 653, 657-658, 775, 785,
794, 814, 827, 829, 834

simple harmonic motion, 352, 374, 376, 399,
401-402

Distances, 56, 217, 247-249, 468, 557, 571, 646,
736-737, 741-742, 750

perpendicular, 217, 247-249, 646
Distribution, 63, 521, 624, 713, 721, 748
Dividers, 215
Dot product, 45, 103, 113, 116-119, 122, 130, 132-134,

146, 158, 161, 189, 201, 277, 279, 321, 325,
337-338, 653, 792, 814

Double, 5, 14, 22, 24, 31-32, 34-36, 71, 94-96, 146,
156-157, 162, 210-211, 222-223, 225, 231,
286-288, 332, 347, 408, 417, 467-469,
494-495, 512, 520-521, 554, 562-564, 583,
631, 754-755, 798, 808, 810, 819, 823

Drafting materials, 369
Draw, 111, 208, 210, 216, 222-223, 232, 235, 243,

245, 247, 253-260, 288, 292, 296, 302, 307,
313, 332-335, 340, 344, 398-399, 459, 467,
507, 579, 585, 608, 817

Drawing, 18, 56-57, 123, 140, 207, 211, 215, 217,
219-220, 222, 231, 236, 248, 292-296, 302,
376, 424, 441, 579, 617, 620, 629, 634, 639,
670, 741, 784, 795

of dies, 441
Drilling, 81, 739
driver, 29, 35-36, 38, 46, 52, 58, 73, 75, 107, 124, 140,

159, 201, 225, 227-230, 257, 259, 301, 315,
321, 329-330, 406-407, 415-416, 421-423,
425, 428-429, 431, 456-461, 473, 478, 480,
483, 485, 491-493, 496, 503, 510, 518-519,
532, 558, 560-562, 564-567, 569, 579, 583

Drop, 486
Dry, 555, 619, 659-661, 824
dual, 339
Dynamic loads, 614

E
Earth, 102, 174, 176
Efficiency, 1, 63, 96, 159, 341-342, 459, 499, 524, 529,

584, 663, 668-670, 683-684, 717
Elastic deformation, 234
Elasticity, 234, 395-396, 743
Electric, 36, 515, 521, 538, 573, 623, 630, 693,

698-699, 707, 717, 729, 774-775
electron, 72
Elements, 12, 71, 76, 104, 111, 164, 177-179,

181-182, 187, 204, 207, 229, 263, 281, 325,
327-328, 406, 450, 500, 502, 557, 559, 561,
563, 565, 567, 569, 571, 573, 575, 577, 579,
581-583, 586, 689, 693, 780

frame, 12, 71, 182, 579
two-dimensional, 104

Ellipsoid, 521
End effector, 16, 409
energy, 9-11, 58, 234, 238, 285, 341, 613, 632, 653,

657, 659, 674, 707, 716-717, 731
head, 716-717
joules, 717
power and, 717
work, 9-11, 613, 632, 653, 657, 659, 674, 716-717

Engineering, 2-3, 10, 55, 82, 85, 87, 100-101, 163,
177, 203, 245, 281, 284, 338, 340, 347, 349,
356, 404, 553, 612, 620, 658, 674, 688,
777-778, 819

civil, 612
computer, 2, 82, 85, 87, 101, 163, 203, 338, 356,

620, 674, 688, 777
concurrent, 82
environmental, 100
stress, 10, 620, 674
value, 2, 10, 87, 203, 349, 356, 777, 819

Engineering design, 82, 85, 101, 620
Engineering notation, 10
Engineering problem solving, 553
Engineers, 7, 100-102, 163, 338, 404, 688, 777, 819
Engines, 21, 46, 102, 208, 237, 281, 285, 330,

340-341, 395, 397, 404, 515, 612, 623, 636,
638, 689, 710, 713, 726, 744-745, 747, 751,
754, 756

diesel, 340
internal combustion, 340, 404
two-stroke, 237, 341

English system, 457-458, 474
Environmental, 100, 614
Equations, 2, 7, 83, 85, 89-90, 103, 107, 110-111, 113,

118, 120-126, 133, 140-141, 143-145,
147-149, 152-159, 168, 177, 179-185, 187,
191, 193-203, 208, 211, 244, 251, 261, 267,
270, 272, 274-275, 279, 281, 283-284, 289,
299, 307, 313, 321, 323-324, 335, 347, 352,
355-356, 358-362, 365-367, 372, 374-376,
381-382, 387, 396-398, 419-422, 425,
449-450, 454, 475, 480, 483, 491, 509, 526,
530, 552, 575, 596-597, 601, 613, 619, 632,
635-636, 639, 646-649, 651-652, 666, 668,
674-675, 691-693, 695, 697-698, 710, 712,
722-725, 727-728, 736, 740-741, 743,
751-752, 754, 782-784, 787-788, 795-796,
798, 800

Equilibrium, 115-116, 462, 484, 547, 586, 611,
613-614, 618-621, 623-625, 627, 629,
632-633, 636, 638-639, 646, 648-649, 651,
658-659, 661, 666, 670, 672, 674-678,
680-685, 696, 698, 710, 716, 761-762

Equipment, 80-81, 100, 102, 441, 544, 659, 736, 781,
819

Error, 52, 87-88, 133, 158, 186, 245, 279, 324-325,
365, 395, 404, 437, 515, 542, 583, 592,
596-599, 601, 611-612, 644, 652, 662-663,
699, 796-797, 799, 802, 807, 818-819, 832,
835

loading, 395, 592, 596-597, 601, 652, 662
scale, 245, 395

Errors, 9, 132, 158, 203, 216, 274, 324, 394, 454, 484,
583, 592, 601, 620, 639, 652, 674, 714, 731,
759, 802, 811

eliminating, 601
Evaluation, 187, 779, 803-804, 810
Even function, 364, 366
Exhaust, 60, 62-63, 340-341
Extreme values, 37-38, 45, 96, 128, 140, 162-163, 466

F
Factors, 11, 92, 394, 441, 462, 527, 543, 547, 601,

612, 614, 672, 690
Failure, 12, 83, 397, 405, 462-463, 470, 489, 514, 595,

659, 690, 760
consequences of, 463
mode, 463

Failures, 462, 620
False, 348
Fatigue, 78, 462-463

failure, 462-463
Feed, 16, 73, 75-76, 96, 100, 522

rod, 96
Feedback control, 83-84, 328, 330
Feedback system, 16
Fiber, 463, 583
Figures, 9, 25, 32, 36, 39-40, 63, 69, 93, 96, 123, 139,

192, 212, 237, 243, 282, 294, 307, 344, 376,
395, 471, 532, 536-537, 543, 547, 552, 567,
571, 617, 622-623, 628, 665, 667, 675, 682,
707, 743, 823

Film, 659, 808
Fine, 65, 432, 434, 514, 573, 576, 693
Firing, 341
Fit, 674
Fits, 591, 639, 808
Fitting, 369
Flat, 104, 159, 339, 343, 369, 372, 374-375, 377,

383-384, 387-389, 397-400, 402, 561, 564,
659

Flaws, 674
Flexibility, 48, 65, 69, 83, 547, 559, 565, 575, 614,

743, 808
Flexible, 66, 76, 80, 83-84, 207, 463, 515, 542, 556,

579-582
Flow rate, 27, 65, 159

volumetric, 159
Fluid, 26, 62-66, 523, 674, 689, 700, 714, 716-717,

731-732, 747, 760, 775-776
Fluid mechanics, 700
Force, 1, 9-11, 16, 37, 46, 48, 73, 92, 107, 115-116,

146, 161, 163, 215, 234, 285, 319, 345-346,
352, 393-394, 405-406, 422, 441, 457-459,
461-463, 480-481, 483-486, 491-492, 496,
498-499, 507-510, 512-513, 555, 561,
566-567, 576, 584, 586, 588, 594, 601,
609-610, 613-646, 648-650, 652-653,
657-678, 680-688, 689-694, 696-698, 700,
702-712, 714, 716-717, 719, 721-728, 730,

732, 734-738, 740-742, 744-748, 750,
752-762, 764, 766, 768, 770-772, 774-776,
778, 830, 833

body, 459, 461, 483, 485-486, 498-499, 510, 586,
588, 601, 613-614, 617-621, 624-625,
628, 632-635, 637, 639-640, 646, 653,
661-663, 665, 667, 670-675, 691-694,
696-698, 702, 706, 709-710, 721, 724,
744, 760, 774

centrifugal, 73, 576, 690, 725, 734-735, 738, 745
in pounds, 457-458

Format, 118, 187, 348-349, 591
Forming, 162, 170, 234, 292, 316, 437, 819
FORTRAN, 7
Fracture, 463
Free-body diagram, 587-588, 595, 601, 617-618,

620-621, 625, 635, 640, 653, 663, 667,
674-675, 709, 744, 760

Free-body diagrams, 483, 498, 510, 585-586, 588,
601, 608, 613-614, 617, 619, 628, 632, 637,
639, 646-647, 661-662, 665, 670-674, 706,
710, 724

Freeze, 90
Frequency, 1, 10, 595-598, 601, 732, 745

carrier, 1, 595, 597-598, 601
reference, 595

Friction, 2, 12, 37, 43, 67, 72-73, 146, 224, 227-229,
249, 406-409, 441, 463-464, 480, 484, 486,
499, 507, 510-511, 515-516, 525-526, 542,
561, 564-565, 567-568, 570-571, 575, 584,
587-588, 590, 601, 613-614, 619, 625, 629,
633, 644-645, 657, 659-667, 669-674, 681,
683-686, 703, 708-710, 727, 792, 830-831

Friction angle, 2, 660, 672
Full, 28, 56, 58, 69, 128, 166, 172, 194, 196, 202, 237,

249-250, 285, 311, 321, 323, 330, 355-356,
358, 361, 363, 403, 432, 434-437, 444-449,
452-454, 463, 465-470, 638, 640, 652-653,
686-688, 714, 716, 759, 802, 809, 830

Function generator, 779, 792-805, 807, 814-815,
818-820

Functions, 7, 10, 82, 118, 120, 160, 175, 187, 288,
347-350, 356, 358, 361, 363, 392, 402, 553,
651, 667, 669, 724-725, 742, 749, 770, 797

G
Gage, 640, 652, 678, 687
Gage pressure, 640, 652, 678, 687
Gain, 7, 160, 346, 652
Gases, 341
Gasoline, 58, 560
Gate, 347-350
Gear manufacture, 437, 439

generating, 437, 439
Gears, 3, 12-13, 24, 65-67, 100, 102, 146, 222,

229-232, 249, 257, 341, 393, 405-418,
420-430, 432-452, 454, 456-470, 471-514,
516-523, 525-527, 529-532, 534-539,
541-545, 547, 549-552, 554-556, 565, 568,
575, 577, 582-586, 588-589, 591-592,
594-598, 600-602, 604-606, 608-612, 670,
672, 684, 743, 780, 830, 832

bevel, 3, 66, 146, 408-409, 441, 471-472, 474, 476,
478, 480, 482, 484, 486, 488, 490, 492,
494, 496, 498, 500-510, 512-514, 517,
522, 529, 554-556, 582, 584, 600, 606,
670

quality, 100, 146, 441, 462
General, 6, 18-21, 56, 71, 81, 83, 104, 108, 113, 119,

121, 141, 143-144, 152-153, 158, 164, 167,
169, 171, 176, 185, 196, 209, 217, 231, 246,
249, 264-265, 267, 269, 283, 288, 294, 309,
312, 315, 317, 341, 358, 392, 440, 447, 482,
492, 517, 520, 534, 557-558, 570, 581, 612,
614, 619, 622, 625, 632, 641, 659, 666, 670,
683, 698, 707-708, 722-724, 728, 732,
736-738, 740-741, 743, 747, 750, 754, 787,
824

Generation, 344, 418, 439-440, 557
Generator, 579-581, 779, 792-805, 807, 814-815,

818-820
Geometric, 12, 53, 301, 500, 815
Geometry, 29, 101, 142, 152, 161, 419, 470, 471, 473,

482, 489, 494, 500, 513-514, 539, 582, 598,
600, 611-612, 638, 652, 786, 810

Glass, 100
Goals, 7, 100
Gradient method, 158
graph, 204, 278-279, 325, 469
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Graphs, 8, 187
Gravity, 159, 219, 290, 302-303, 393-394, 595, 624,

629, 659, 678, 692-694, 698, 703, 714, 717,
732, 735-736, 765, 775-776, 834

Gravity loads, 629
Greater than, 22, 37, 47, 172-173, 211, 289, 375, 389,

396, 445, 484, 496, 502, 551, 575, 614, 663
Grinding, 441

wheels, 441
Group, 100, 102, 152, 163, 242, 690

technology, 102
Gun, 81

H
Hand, 15-16, 71, 75, 108, 113, 116, 127, 142,

167-168, 361, 457, 467, 473, 480, 484-485,
487-488, 490, 492, 510, 512-514, 517, 519,
526, 529, 543, 614, 616, 623, 650-651, 696,
698, 707, 730, 753

Handling, 15, 134, 639
Hard, 7, 802
Hardness, 463
Harmonic, 102, 351-352, 374-376, 389-390, 397,

399-402, 580
order, 351, 397

Harmonic motion, 351-352, 374, 376, 389, 399-402
Head, 46, 111, 176, 211-213, 287, 296-297, 307, 622,

640, 714, 716-717, 732, 775-776
pump, 640, 714, 716-717, 732, 775-776

Heading, 164, 470, 612, 778
Hearing, 16, 595
Heart, 68
heat, 58-59, 463, 584, 653, 659

checking, 653
Heat transfer, 653
Height, 451, 500
Helix angle, 2, 231, 471, 474-479, 482-486, 492-493,

495-496, 499, 510-514, 517, 830
Help, 7, 86, 121, 158, 180, 251, 279, 324, 347, 349,

356, 448, 484, 596, 620, 652, 674, 731, 808
recommended, 158, 652

Hertz, 10, 595
Hertz (Hz), 595
High-speed, 165, 225, 281, 310, 330, 340, 350,

352-354, 358-359, 361, 363, 365, 367, 376,
395, 397-398, 437, 441, 505, 557-558, 564,
583-584, 732

History, 208
Hob, 439, 475
Honing, 441
Horizontal axis, 159, 204, 325, 347
Horsepower, 1, 10-11, 237, 458, 481, 583-584
HP, 1, 10-11, 458, 467-468, 480-481, 511, 513, 538,

557, 583, 585, 608
Human, 15, 82, 87, 90, 101, 104, 328-329, 732
Humans, 85
Hydraulic, 15, 62-66, 93, 102, 397-398, 623, 633, 635

I
Identity matrix, 178, 180
Ignition, 62, 340
Impact, 397, 463, 473, 557, 660

toughness, 463
Incomplete, 577
Increased precision, 297
Independent variable, 19, 104
Index, 102, 108, 113, 168
Indicators, 57
Induction, 340
Industrial, 15-16, 18-19, 66, 80, 102, 515, 522, 554,

565, 583, 629-631, 690
Revolution, 18

Industrial products, 66
Industrial robots, 80, 102
Inertia force, 1, 697, 703, 744
Information, 7, 82, 84, 101-102, 107, 246, 296, 368,

395, 422, 507, 625, 629, 649, 663, 666, 669,
674, 693, 723, 730, 736, 752, 763

Initial conditions, 85, 730-731
Injection molding, 440
Input, 3, 8, 26, 48, 55, 58, 65-66, 68-69, 73-74, 76,

78-79, 85, 90, 97, 128, 141-143, 146,
152-153, 159, 162-163, 204, 217, 234,
262-263, 284, 342, 464, 469, 482, 484-485,
491-492, 510-511, 513-514, 515-517,
519-527, 529-536, 538-555, 557, 559-561,
564-578, 580-583, 585-586, 588-589,
591-592, 594, 598, 600-612, 613, 618-619,

623, 625, 640, 646, 649, 652-653, 659, 661,
663, 670, 675-678, 680-683, 689, 693, 703,
706-707, 712-713, 716-717, 725, 727-731,
760, 762-765, 779-780, 782-783, 788,
792-796, 798, 800-802, 804-806, 814, 818,
826

Inputs, 65, 85, 130, 553-554, 600
Installation, 72
Instruments, 56, 564, 574
integer, 75, 91, 417, 447, 537, 592, 597
Integrated, 84, 101, 263, 338, 369, 470, 583
Integration, 7, 696
Integrator, 569
Intent, 346
Interest, 11, 45, 83, 88, 101, 104, 151, 224, 246, 319,

780
Interference, 2, 5, 50, 54-55, 92, 96, 405, 436,

443-457, 463-464, 466-467, 469-470, 482,
484, 486, 513-514, 520, 750, 829-830

Intermediate, 8, 27-28, 30, 36, 49, 78, 95, 290, 513,
565, 629, 653

Internal, 16, 50, 58, 61-62, 104, 126, 139, 156, 161,
212, 222, 237, 340, 404, 406-407, 422,
433-434, 440, 450, 457, 465, 467-468, 502,
515-516, 523, 525, 528-529, 531, 556, 581,
608, 618, 657, 710, 811

Internal forces, 618, 657
Internet, 101, 164, 404, 470, 612, 778
Intervals, 342, 344, 347, 352, 355-356, 359, 361,

364-366, 395, 398, 403-404
Inventory, 454
Inverse matrix, 180, 187
Iron, 463
Isolation, 171
Iterative process, 121, 693

J
Jacks, 72
Jigs, 15
Joining, 12, 28, 50, 111, 246, 306, 808
Junction, 554

K
Knee, 34
Known directions, 625

L
Label, 187, 246, 288, 307, 459, 464, 466-467
Labor, 152, 675
Lapping, 441
Latch, 100
Lateral forces, 346
Lathes, 519
Laws, 108, 117, 714, 716, 759-760

Newton’s second, 759
Lay, 399-400
layout, 124, 215, 345, 369, 376, 389, 537
Lead, 1-2, 40, 71, 75, 154, 246, 361, 454, 471,

495-497, 499, 510-511, 513, 517, 596, 616,
659-660, 663, 690, 707, 732, 751, 786, 800

screw, 71, 75, 517
Leading, 7, 10, 89, 375, 381, 480, 516, 527, 730, 765
Leakage, 397, 659
Less than, 29, 37, 39, 47-48, 279, 383, 414, 429, 436,

444-445, 447, 454, 465, 497, 499-500, 502,
525, 575, 660, 663, 672, 699, 726, 798, 808

Less than or equal to, 279
Leveling, 72
Lift tables, 102
Lifting, 106
Light, 44, 342, 412-413, 463, 558-559, 561, 564, 612
Limits, 37, 40-41, 45, 130, 147, 163, 174, 262, 483,

543, 807
Linear, 10, 67, 71-72, 96, 107, 121, 154, 177, 179-181,

199, 202, 265, 359, 361, 619, 651-653, 687,
691, 780, 808, 811, 827

array, 177
Linear algebra, 177
Linear relationships, 180
Linear simultaneous equations, 199
Linearity, 619
Lines, 6, 66, 208, 211, 215-216, 220, 231, 249, 299,

301, 344, 346-347, 371-373, 383, 419, 437,
488, 616-617, 621-622, 629-630, 646, 659,
662, 672, 705, 709, 737, 782-783, 788

Liquid, 63, 570
List, 2, 11, 101, 159, 331
literal, 349

Loading, 24, 84, 368, 395, 397-398, 451, 454, 462,
482, 513-514, 538, 543, 576, 592, 594,
596-597, 600-601, 619-620, 632, 640, 646,
651-652, 662, 670, 780

Loads, 383, 396, 405, 414, 454, 463, 471, 479,
482-483, 487, 491, 507-508, 510-514, 515,
536, 558-559, 561, 583-585, 592, 597, 600,
614, 618-619, 623, 625, 629, 632, 646, 651,
659, 672, 674, 693, 697, 761

combinations, 454, 559, 592
factors, 614, 672
free, 483, 510, 515, 585, 592, 614, 618-619, 625,

632, 646, 672, 674
Locks, 73
Loop, 12-13, 15, 19, 21, 83, 92-93, 126-127, 129,

132-134, 141-144, 148, 152, 155-157, 160,
162-163, 192, 195, 206, 261, 270-271, 278,
326-327, 330, 621-622, 639, 641, 644, 738,
800, 805-806, 818-819

closed, 12, 15, 19, 21, 83, 92, 141-143, 152, 156,
195, 278, 330, 621, 639, 641, 644, 800,
805

Loops, 85, 156
Low-carbon steel, 252
Lower, 12, 16, 22, 25, 28, 43, 91, 100, 107, 112-113,

125-127, 397, 484, 525, 584
Lubricants, 659
Lubrication, 37, 146, 489, 584, 614, 659, 672

M
Machine, 5-6, 11, 16, 18, 34, 48, 55, 62-63, 65-66, 70,

72, 90, 92, 96, 101-102, 130, 133, 159,
163-164, 177, 234, 263, 281, 308, 328-329,
397, 405-406, 470, 497, 523, 560-561, 564,
612, 613-614, 619-620, 633, 659, 663-664,
670, 674, 686-687, 690, 692, 716, 732, 734,
736, 744, 748, 759-760, 779-781, 820, 823

tool, 48, 70, 90, 177, 523
Machinery, 1-2, 5, 9, 11, 16, 48, 69, 72-73, 86, 93,

101-102, 103-104, 106, 108, 110, 112, 114,
116, 118, 120, 122, 124, 126, 128, 130, 132,
134, 136, 138, 140, 142, 144, 146, 148, 150,
152, 154, 156, 158, 160, 162, 164, 165, 177,
203, 217, 264, 281, 330, 339, 361, 368, 405,
441, 471, 515, 561, 564, 613, 659, 689, 693,
732, 734, 778, 779, 812, 821

Machining, 102, 394
Machining operations, 394
Manipulators, 3, 15, 659
Manual, 70, 101, 164, 187, 263, 338, 348-349, 393,

397, 524, 652, 688, 778, 820
Manufacturing, 14, 22, 80, 82, 101-102, 164, 240-241,

340, 344, 369, 394, 407-408, 410, 414, 440,
500, 502, 538, 543, 562, 601, 690, 778

defect, 601
variations, 394, 414

Marking, 96
Mass, 1-2, 9-11, 69, 73, 78, 90, 285, 329-330, 564,

614, 640, 674, 678, 689-699, 702-703,
705-710, 712-714, 716-717, 721-724, 727,
729-732, 734-736, 738-739, 743-747,
759-765, 768-770, 773-777, 829, 834

Mass moment of inertia, 1, 9-10, 78, 640, 689,
691-695, 698-699, 707, 714, 729, 731-732,
759-760, 762-763, 773-774, 834

Material, 90, 232, 440-441, 451, 463, 614, 661, 690,
699, 743

cost, 614
Materials, 15, 102, 285, 369, 463, 514, 614, 639,

659-660, 780
selection of, 780
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Models, 6, 26, 82-83, 85, 87, 101, 576, 632, 644, 652

construction of, 82
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716-717, 759-760

Newton’s laws, 714, 716, 759-760
of motion, 714, 759

Newton’s second law, 689, 691, 693, 695-696, 759
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Problem-solving, 85
Procedures, 6, 111, 154, 180, 208, 313, 443, 693,

736-737, 780, 812
Process, 3, 6, 62, 76, 82, 85, 87, 90, 121, 154, 173,

233, 310, 340, 344, 369, 381, 389, 392, 437,
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Projects, 100-101, 163, 263, 338, 612, 688, 777
Property, 249, 419, 760
Prototype, 20-21, 344, 368, 395, 397, 693
Protractor, 208, 303, 653
Proximity, 16
Pulley, 96, 342, 544, 560-564, 607
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835

argument, 10, 356, 454
Rapid, 48, 187, 516, 582, 600
Ratios, 3, 39, 48, 51, 56, 58, 65, 70, 92, 172-173, 234,
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Rolling, 13, 406, 440-442, 500, 547, 568, 570, 575,

601, 825
rings, 547
shapes, 441

Rotary, 207
Rotation, 2, 13, 18-19, 21-22, 26, 28-30, 34, 54, 56,

58, 62, 64, 67-69, 71, 73, 75, 80, 92,
104-105, 107, 117, 137, 140, 143-144, 149,
159, 166-168, 197, 200-201, 204, 214, 217,
225-227, 232, 234, 262-263, 265, 267, 308,
321, 328, 342, 344-346, 351-352, 355-356,
358, 361, 363, 372, 374-376, 378, 381,
384-386, 389, 393, 398-403, 405-406, 409,
416, 422, 433, 458, 460-461, 479-480,
485-486, 491, 499, 510-511, 516-519,
530-534, 545, 550-551, 554, 556, 558,
569-570, 573, 577, 579, 581, 585, 592,
600-602, 604-605, 653, 662-664, 685,
687-688, 690, 692, 698, 709, 730, 738, 760,
774-775, 780, 802, 813, 818-819, 833-834

calculations, 204, 356, 533, 802
Rotational motion, 63-64, 70, 657, 691, 710, 721, 780
Rotations, 62, 75, 108, 160, 406, 532-536, 541-542,

550-553, 577, 581, 592, 607, 824, 831
Rounding, 274, 279, 325, 699, 802
routing, 81
Rubber, 561, 564, 566, 612
Rules, 29, 107, 120, 134, 136, 180, 189, 416, 530

S
Saddle, 101, 470, 688, 777-778, 819
Safety, 37, 102, 497
Sample, 27, 30, 35, 38, 40-41, 43-44, 49, 53, 58,

75-76, 89-91, 101-102, 114, 117-118, 123,
126, 128, 131, 133, 139, 144, 146-147,
149-150, 152, 154, 157, 161-162, 169, 173,
181-182, 185, 187, 190, 194, 197, 201-204,
211, 265, 267, 273-275, 279, 284-285,
289-290, 292, 296-297, 301-305, 307-308,
318, 321, 323, 325, 331-332, 349, 356, 359,
361, 363, 365, 370, 374-377, 381-382, 389,
392, 395, 397, 413, 416-417, 423, 425-426,
432, 435-436, 444, 447-449, 452, 454, 459,
461, 475-476, 478, 482, 492, 497, 505, 522,
531, 538, 585, 588, 591, 598, 623-625, 629,
633, 638, 640, 649-650, 652, 669-670, 672,
686-687, 694, 698, 700, 703-704, 706-707,
712, 714, 716-717, 727-728, 730-731, 739,
742, 784-785, 787, 790-792, 794, 796-797,
802, 808, 810, 812

repeated, 154, 267, 625, 716
Scalar product, 116, 792
Scale, 56, 76, 126, 131, 144, 152-153, 176, 200, 208,

210-211, 213, 215-216, 220, 223, 227,
232-233, 235, 243-245, 254-258, 278,
286-288, 292, 294, 296, 302-303, 307,
312-313, 332-333, 395, 464, 469, 482, 554,
621, 629-630, 671, 673, 708-709, 717, 738,
741, 743, 794, 800

Scientific notation, 10
Scope, 100, 344, 405, 595, 614
Screw, 13, 15, 27, 54, 67, 70-73, 75, 83, 92, 96, 167,

473, 492-493, 517, 522, 526, 567-568, 583,
781

threads, 71-72, 75, 493, 517, 522
Seconds, 2, 11, 215, 325, 342, 356, 716-717, 774-775
Segments, 377, 389
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Selection criteria, 340, 584
manufacturing processes, 340

Selective, 102
Sensing device, 57
Sensors, 16, 102
Separation, 561
Shading, 30-31
Shape, 16, 85, 310, 339, 344-345, 361, 369, 415, 437,

500, 674, 692, 773
Shapers, 285
Shaving, 441
Sheaves, 559-561, 601
shifter, 554
Shock loading, 84, 368, 395, 397-398, 596-597
SI units, 412, 430, 434, 474-475
Side, 29, 35, 48, 70, 73, 130, 132, 144, 150, 152-153,

175, 196, 201, 203, 211, 238, 253, 268, 272,
292, 296, 302, 307, 319, 342, 346, 383, 387,
393-394, 414, 439, 545, 557, 561-562, 564,
629, 633, 668, 724, 751, 754, 787, 792

Signals, 553, 562
Signs, 122, 125-127, 130, 361, 382, 387, 416, 636,

736, 739, 742
SIMPLE, 3, 8, 55, 87, 90, 104, 141, 153, 173, 176,

203, 208, 211, 234-235, 237, 250, 311, 316,
324, 352, 369, 374-376, 389-390, 399-402,
412, 424, 515, 519, 529, 531-532, 537-538,
566, 575, 585, 591, 594, 597, 600-601,
608-610, 694-695, 714, 721, 759, 780, 810,
814

Simple harmonic motion, 352, 374, 376, 389, 399-402
Simulation, 7-9, 30-32, 84, 102, 103, 121, 158, 164,

196, 285, 311, 639, 652-653, 674-675, 689,
714, 716-717, 731, 759-760, 774-775, 778,
779, 808, 810, 814

spreadsheet, 7-8
steps, 714, 775
switch, 7

Single, 6, 15, 24, 28, 34, 46, 54, 58, 68-70, 72, 75, 80,
87, 103-104, 141, 145, 149, 153-154, 156,
210-211, 220, 234, 237, 239-242, 251, 289,
308-309, 311, 341, 364, 440, 482, 493-495,
502, 510, 513, 518, 520, 561, 564, 567, 570,
583-584, 588, 596-597, 618, 640, 686, 689,
702-703, 737-738, 743, 745, 747, 750-751,
753, 760, 771-772, 781, 786, 814-815

Sizing, 737, 745
Skeleton, 18, 23, 34, 46, 156, 210, 215, 249, 294-296,

302-303, 311, 528-529, 532
Sketches, 62, 89, 211, 484, 595, 617
Slack, 560, 565
Slope, 1, 87, 100, 203-204, 280, 297, 299, 324-325,

373, 383, 783-785
Smart, 8, 177, 194, 203, 264, 285, 323, 330, 356, 361,

364, 436, 694, 700
Smoothing, 69
Society of Automotive Engineers, 404
socket, 13, 80
Software, 2, 7-10, 30-32, 40, 83-84, 87, 90, 92, 102,

103, 108, 113, 118-119, 121-122, 128, 148,
153, 158, 163-164, 177, 180, 187, 189-191,
193, 196, 203, 206-208, 250-251, 261-263,
275, 277, 279-280, 285, 297, 311, 328-331,
337-338, 348-349, 361, 398, 447-448, 543,
639, 652, 674-675, 688, 689, 694-696, 698,
700, 714, 717, 731, 759-760, 773-775,
777-778, 779-780, 791-792, 798, 808, 810,
814

Solid, 92, 301, 364, 809
Sources, 101, 560, 583, 595, 597, 652, 760
specification, 173
Spindle, 252, 547, 549
Spindle speed, 252
Spinning, 555, 736
Split nut, 71
Spread, 12
Spreadsheets, 7, 187, 591, 593
Springs, 73, 207-208, 575, 652, 734
Sprinkler, 69-70, 393
Sprockets, 557-559
Square, 89, 111, 119, 145, 178, 238, 275, 325, 527,

595, 666, 691, 695-696, 698, 717, 726,
774-775

Square matrix, 178
Stability, 620
Standard, 392, 405, 416, 423, 432, 434-436, 444-447,

452, 454, 463, 465-467, 469-470, 471, 514,
516, 543, 545, 563, 605, 639, 692

of mass, 692

Static equilibrium, 116, 613, 618, 625, 629, 632-633,
638, 658, 661, 670, 672, 675-678, 680-685,
696

Stationary, 6, 11, 27, 68-69, 73, 140, 167-168, 176,
200, 247, 342-344, 369, 414, 526, 529, 532,
534-535, 538, 541, 544, 549, 578, 580-581,
588, 593-594, 601, 606, 610, 652, 703, 709,
763, 765, 800

Steel, 56, 58, 73, 100, 252, 342, 441, 463, 570,
694-695, 698-699, 773-775

Step function, 2, 347-349, 355, 366, 368, 398
Stoke, 70
Stops, 141, 315
Straight lines, 371-373, 383, 662
Strategies, 85
Strength, 463, 470, 514, 526, 595, 614, 652
Stress, 9-10, 405, 433, 620, 674
Stresses, 12, 76, 340, 489, 613, 618
String, 418-420
Structural integrity, 732
Structure, 23-24, 94, 163
Structures, 21
Substitution, 32, 125, 380, 638
Subtraction, 110-112, 136
Superposition, 515, 532-533, 546-547, 551, 553, 577,

581, 585, 591-594, 598, 600, 605-606,
611-612, 613-614, 619, 625-626, 628-629,
651-652, 666, 727

Surface, 5, 12-13, 169, 231, 252, 310, 344-345,
392-393, 408, 433, 441, 474, 502, 525, 550,
560-561, 564-565, 571, 584, 592, 659-660,
672-673, 700

finish, 441
Surfaces, 342, 393, 422, 441, 480, 500, 555, 566-568,

659-661, 663, 709
Switches, 342
Symmetry, 281, 364-366
Synthesis, 3, 6, 55, 83, 90, 263, 310, 340, 381, 404,

779-792, 794, 796, 798, 800, 802, 804, 806,
808, 810, 812, 814-816, 818-820

System, 9-10, 16, 18-19, 56, 63, 70, 73, 80, 83-85,
100-101, 104, 108-109, 120, 126, 154, 160,
167, 174-176, 184, 194, 198, 207-208, 227,
240, 252, 264-265, 267-269, 306, 331,
340-342, 344, 354, 363, 368-369, 373, 387,
389, 392-396, 398, 402, 412, 432, 435,
457-458, 460, 468-469, 472, 474-475, 477,
481, 491, 495, 510, 564, 566, 592, 614-615,
617-620, 623, 629, 631, 634-635, 646, 648,
658, 664, 666, 671, 673, 690, 692, 698, 731,
760, 768, 780, 802

of units, 9

T
Tail, 111, 307, 622
Tangents, 418
Tasks, 8, 15-16, 90, 696, 779
temperature, 341, 395, 397-398, 404
Test, 8-9, 30, 32, 36, 95-96, 151, 208, 251, 265, 588,

592, 735-736, 779
Testing, 102, 164, 463, 693, 778, 814
thermal, 395, 583
Thermal expansion, 395, 583
Thickness, 2, 411, 414, 419, 421, 434, 465, 478, 564,

693-694, 696, 699
Thread, 70-72, 75, 177, 495, 522, 602
Thread cutting, 522
Three-dimensional, 82, 104, 141, 143, 145, 147, 149,

151, 195-196, 265, 317, 343, 436, 449, 469,
619, 670

timer, 1
Tires, 265, 555, 606, 819
Tolerances, 22, 37, 76, 81, 395, 398, 404, 441, 454,

797, 811
dimensional, 37, 398, 811

Tool, 15, 48, 52, 56-57, 70, 73, 90, 100, 103, 177, 187,
235, 244, 284, 414, 439-440, 451, 522-523,
568, 675, 800

Tools, 6-7, 62-63, 65, 90, 100, 103, 211, 237, 250,
620, 674, 814

Top, 26, 46, 68, 73, 100, 144, 150, 152-153, 169-170,
196, 238, 252-253, 303, 319, 340, 342-343,
347, 349, 355-356, 361, 363-365, 395, 398,
403-404, 411, 500, 572, 576, 586-589, 638,
716

Topology, 85
Total, 19, 28, 78, 144, 166, 174, 267, 269, 285, 287,

291, 302-303, 307, 346, 351, 353-354, 359,
382, 392, 479, 486, 522, 533-534, 536, 541,

550-553, 570, 577, 581, 619, 624, 626, 628,
631, 633, 644-645, 651-652, 696, 699, 719,
721, 742-743, 745, 747, 758

Trace, 9, 56, 345, 814
Trade, 346, 454, 811

trade-off, 346, 811
Trade-offs, 454
Transducer, 16
Transfer, 55, 341, 583, 653

mechanisms, 55
Transform, 596, 795
Transformation, 1-2
Transmission lines, 659
Transportation, 5, 339
Transverse, 1-2, 474-477, 482, 484, 489, 499, 511,

513-514, 737, 740-741, 750, 772
Trials, 52, 591, 802
Trigonometric identities, 380
Tube, 819
Turning, 37, 52, 71, 75, 80, 160, 464, 485, 532, 549,

555, 564, 586, 661
Twist, 2
Types, 12, 73, 92, 113, 118, 139, 141, 202, 238, 245,

313, 339, 363, 372, 381, 387, 393, 397, 402,
407, 471, 505, 507, 523, 528-529, 532, 582,
614, 620, 653, 659, 663, 670, 672, 703, 734

U
Undercuts, 398
Undercutting, 450-451
Uniform, 237, 287, 351-352, 401-402, 691, 693, 696
Units, 9-10, 204, 251, 278, 280, 324-325, 330-331,

342, 356, 362, 412, 430, 434, 458, 474-475,
484, 499, 523, 562, 569, 583, 585, 595, 644,
657, 672, 692, 699

of velocity, 330
Units of measurement, 595
Unity, 172, 261, 289, 429, 503, 525, 535, 542, 663,

726, 789
unknown, 53-54, 95, 121-122, 124, 145, 153, 179-180,

187, 189, 192, 196, 202, 204, 210-211, 213,
220-221, 223-224, 231, 244, 246-248,
251-252, 279-280, 284-286, 288, 297, 299,
309, 312, 321, 324-325, 497, 552, 619, 621,
624-625, 630, 632, 639, 644, 646, 649, 666,
668, 675, 709, 714, 728, 741, 743

Us, 38, 44, 92, 107, 110, 145-146, 154, 158, 169-170,
173, 201, 204, 217-218, 245-247, 265, 278,
285, 288, 293-294, 296, 303, 308, 313, 316,
321, 344, 348, 354, 361, 365, 425, 447-448,
454, 477, 480, 497, 507, 516, 527, 543, 545,
551, 577, 579, 586, 591, 596, 610-611, 620,
652, 658, 664, 666, 716, 759, 780, 790, 798,
814

Utility, 81, 216, 819

V
Vacuum, 308, 561
Value, 2, 8, 10, 39, 44, 46, 49, 53, 73, 87, 89-90, 99,

104, 134, 149, 151, 153, 155-156, 169, 172,
187, 195-196, 203-204, 207, 212, 214-215,
227, 242, 278-280, 289, 299, 308, 316, 319,
325, 331-332, 348-349, 356, 369-370,
373-375, 382-383, 389-391, 401, 423,
444-445, 447, 452, 465, 478, 484, 497, 516,
518, 530-532, 534-535, 543, 545, 551, 554,
577, 668-670, 700, 703, 707, 728, 730-731,
738, 747, 759, 777, 790, 796-798, 800, 805,
818-819, 822

added, 227, 308, 349, 543
Values, 6, 10, 35, 37-41, 45, 49, 89, 95-96, 126, 128,

139-140, 143, 145-146, 149, 151, 154, 158,
162-163, 166, 171, 179, 186-187, 191, 197,
220, 222, 225, 234, 252, 260-261, 273-274,
278-280, 283, 285, 287, 302, 307, 312, 319,
324, 332, 335-336, 344, 369, 372, 382-383,
387, 390, 403, 425-426, 430, 432-434, 436,
447, 449, 454-455, 463-464, 466, 469, 478,
484, 533-534, 539, 547, 551, 553, 570, 582,
592, 598, 607-608, 616, 632, 649, 660-661,
675, 695, 706-707, 714, 716-717, 719, 722,
726, 730, 732, 739, 743, 759, 765, 776-777,
782, 787, 789-790, 792, 794-798, 801-802,
805, 822, 826

Valves, 18, 61, 339-341, 653
Variables, 6, 8, 16, 24, 28, 40, 103, 128, 153-154, 180,

284, 342, 425, 700, 731, 760
Variations, 78, 237, 394, 414, 529, 632, 707
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Vats, 510
vector, 1-3, 6, 45, 103, 107-137, 141-149, 152-156,

158-164, 165-169, 174-176, 178, 180-187,
189-193, 195-201, 203, 205-208, 210-213,
216-221, 223-225, 227, 229-230, 232-233,
235, 237, 240, 243-246, 250-253, 258,
261-263, 264-275, 277-297, 299, 302-307,
309, 311-313, 315-318, 320-323, 325-328,
330-332, 334-338, 365, 614-622, 632,
638-641, 644-645, 653, 657, 674, 688,
697-698, 702, 725, 738, 741, 745, 748, 759,
777, 787, 789, 792, 800-801, 805-807, 810,
818-819, 824

Vector equation, 111, 120-124, 137, 141, 143, 149,
156, 158, 189, 193, 196, 200, 211, 244, 253,
279-280, 282, 285, 288, 294, 302, 313, 316,
320, 336-337, 622, 644, 738, 787

Vectors:, 148, 201, 243, 280, 322, 806
Vehicle, 11, 20-21, 80, 102, 330-331, 523, 526, 584,

606
Velocity, 1-2, 7-12, 45-49, 52, 71-72, 75-79, 94, 96, 98,

102, 105-108, 113-115, 117, 120, 137, 143,
152, 159, 163, 165-178, 180, 182-204,
206-237, 240, 242-263, 264-272, 274-275,
277-283, 285-296, 300-328, 330-338, 342,
351-368, 374, 376-377, 396-399, 401-404,
406-407, 413, 415-418, 425-426, 432,
441-443, 458-460, 462, 464-468, 471, 479,
481, 483-485, 490-493, 496-497, 503-505,
511-513, 516-521, 530, 540, 551-554, 556,
566, 571, 579, 583-584, 588-589, 598, 611,
639, 644-645, 666, 668-669, 672, 674, 686,
689-690, 697-700, 703-704, 707-708, 712,
714, 716-717, 719, 724-725, 728, 730-732,
734, 736-737, 744, 747, 759-765, 774-777,
787, 789-791, 800, 812-813, 815, 817,
825-827, 829, 834, 836

actual, 171-172, 190-191, 203, 212, 214, 234, 242,
245, 249, 280, 287, 300-302, 342, 351,
397, 426, 465, 467, 513, 530, 553, 579,
674, 690, 708, 717, 724, 736-737, 829

apparent, 287, 313, 363, 398
Vertical, 12, 14, 21, 56, 107, 111, 155, 157, 204, 243,

245, 250, 313, 316, 324, 510, 557, 561, 567,
582, 586, 633-634, 653, 682, 687-688, 714,
719, 776, 811, 833

Vibration, 78, 171, 341, 395, 454, 517, 564, 583,
595-599, 601, 611-612, 714, 732, 734, 743,
745, 750, 777-778, 832

Vibration isolation, 171
Vibrations, 395, 560, 614, 690
Virtual displacements, 2, 658
VOL, 101, 163-164, 263, 338, 470, 612, 819-820
Volume, 63-64, 66, 397
Volumes, 341
Vt, 442, 699, 745, 748-749, 753, 758-759, 834

W
Washing, 734
Washing machine, 734
Water, 70, 393
Wave, 172, 347, 579-581

speed, 579, 581
Wear, 12, 37, 71, 80, 224, 340, 344, 395-398, 404,

405, 441, 462-463, 555, 559-560, 567, 595,
659, 690, 780, 829

parts, 395, 397-398, 567, 659
severe, 396-397, 659

Weight, 2, 6, 83, 342, 463, 584, 614, 692, 708, 714,
761-762, 765, 769, 780

Welding, 15, 81, 102
gun, 81

Welds, 80
Well, 7, 11, 83, 90, 92, 100-101, 104, 118, 120, 137,

143, 145, 187, 203, 212, 240, 284, 294, 317,
325, 337-338, 341, 352, 356, 381, 391, 393,
416, 424, 429, 446, 451, 457, 493, 516, 526,
539, 564, 584, 600, 609-610, 618, 632, 646,
657, 663-664, 674, 687, 692, 707, 750-751,
775, 781, 789, 796, 819

Wells, 554, 565
White, 612
Wind loads, 632
Wings, 300-301, 582, 707, 710
Wire, 441
Wood, 100, 548, 562, 565
Word, 7, 25, 113, 525
Work, 2, 5, 7-11, 16, 75, 90, 103, 113, 128, 174, 177,

194, 250, 275, 284, 323, 330, 356, 539, 588,

613, 632, 653, 657-659, 674, 683, 694, 700,
702, 716-717, 743, 759

envelope, 16
Work envelope, 16
Worms, 498, 584
Wrench, 682

X
x-axis, 108-110, 130, 162, 252, 262, 277, 402, 811

Y
Yaw, 15, 108
y-axis, 109, 372, 739, 747
Yield, 194, 279, 581, 633, 668, 751, 758
Yielding, 124, 126, 183, 522, 532, 559, 629-630, 663

844


	Cover
	Table of Contents
	Symbols
	Chapter 1. Mechanisms and Machines: Basic Concepts
	Chapter 2. Motion in Machinery
	Chapter 3. Velocity Analysis of Planar and Spatial Mechanisms
	Chapter 4. Acceleration Analysis of Planar and Spatial Mechanisms
	Chapter 5. Design and Analysis of Cam and Follower Systems
	Chapter 6. Spur Gears: Design and Analysis
	Chapter 7. Helical, Worm, and Bevel Gears: Design and Analysis
	Chapter 8. Drive Trains: Design and Analysis
	Chapter 9. Static-Force Analysis
	Chapter 10. Dynamic-Force Analysis
	Chapter 11. Synthesis
	Partial Answers to Selected Problems
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y


