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 2.2 Chromium has four naturally-occurring isotopes: 4.34% of 50Cr, with an atomic weight of 49.9460 

amu, 83.79% of 52Cr, with an atomic weight of 51.9405 amu, 9.50% of 53Cr, with an atomic weight of 52.9407 amu, 

and 2.37% of 54Cr, with an atomic weight of 53.9389 amu.  On the basis of these data, confirm that the average 

atomic weight of Cr is 51.9963 amu. 

 
  Solution 

 The average atomic weight of silicon     

��

(A Cr)  is computed by adding fraction-of-occurrence/atomic weight 

products for the three isotopes.  Thus 

 

    

��

A Cr =  f50Cr
A50Cr

 +  f52Cr
A52Cr

��  f53Cr
A53Cr

��  f54Cr
A54Cr

 

 

��

�  (0.0434)(49.9460 amu) +  (0.8379)(51.9405 amu) +  (0.0950)(52.9407  amu) +  (0.0237)(53.9389 amu) =  51.9963 amu
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 2.3  (a) How many grams are there in one amu of a material? 

 (b) Mole, in the context of this book, is taken in units of gram-mole. On this basis, how many atoms 

are there in a pound-mole of a substance? 

 

  Solution 

 (a)  In order to determine the number of grams in one amu of material, appropriate manipulation of the 

amu/atom, g/mol, and atom/mol relationships is all that is necessary, as 

 

��

# g/amu =  1 mol
6.022  �u 1023  atoms

�§��

�©��
�¨��

�·��

�¹��
�¸��

1 g /mol
1 amu /atom

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

= 1.66 �u 10-24 g/amu 
 

 (b)  Since there are 453.6 g/lbm, 

 

��

1 lb - mol =  (453.6 g/lbm) (6.022 �u 10 23 atoms/g - mol)  

 

= 2.73 �u 1026 atoms/lb-mol 
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 2.4 (a)  Cite two important quantum-mechanical concepts associated with the Bohr model of the atom. 

 (b)  Cite two important additional refinements that resulted from the wave-mechanical atomic model. 

 
  Solution 

 (a)  Two important quantum-mechanical concepts associated with the Bohr model of the atom are (1) that 

electrons are particles moving in discrete orbitals, and (2) electron energy is quantized into shells. 

 (b)  Two important refinements resulting from the wave-mechanical atomic model are (1) that electron 

position is described in terms of a probability distribution, and (2) electron energy is quantized into both shells and 

subshells--each electron is characterized by four quantum numbers. 
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 2.5 Relative to electrons and electron states, what does each of the four quantum numbers specify? 

 
  Solution 

 The n quantum number designates the electron shell. 

 The l quantum number designates the electron subshell. 
 The ml quantum number designates the number of electron states in each electron subshell. 

 The ms quantum number designates the spin moment on each electron. 
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 2.6 Allowed values for the quantum numbers of electrons are as follows: 

n = 1, 2, 3, . . . 

l = 0, 1, 2, 3, . . . , n –1 

ml = 0, ±1, ±2, ±3, . . . , ±l 

    

��

ms =  �r
1

2
 

The relationships between n and the shell designations are noted in Table 2.1. Relative to the subshells, 

 l = 0 corresponds to an s subshell 

 l = 1 corresponds to a p subshell 

 l = 2 corresponds to a d subshell 

 l = 3 corresponds to an f subshell 

For the K shell, the four quantum numbers for each of the two electrons in the 1s state, in the order of nlmlms, are 

100(

��

1
2

) and 100(

��

�� 1
2

). Write the four quantum numbers for all of the electrons in the L and M shells, and note 

which correspond to the s, p, and d subshells. 

 

  Solution 

 For the L state, n = 2, and eight electron states are possible.  Possible l values are 0 and 1, while possible ml 

values are 0 and ±1;  and possible ms values are 

��

�r 1
2
.  Therefore, for the s states, the quantum numbers are 

  

��

200(1
2
) 

and 
  

��

200(�� 1
2
).  For the p states, the quantum numbers are 

  

��

210(1
2
), 

  

��

210(�� 1
2
), 

  

��

211(1
2
) , 

  

��

211(�� 1
2
) , 

  

��

21(��1)(1
2
), and 

  

��

21(��1)(�� 1
2
). 

 For the M state, n = 3, and 18 states are possible.  Possible l values are 0, 1, and 2;  possible ml values are 

0, ±1, and ±2;  and possible ms values are 
  
�r

1
2

.   Therefore, for the s states, the quantum numbers are 
  

��

300(1
2
), 

  

��

300(�� 1
2
), for the p states they are 

  

��

310(1
2
), 

  

��

310(�� 1
2
), 

  

��

311(1
2
) , 

  

��

311(�� 1
2
) , 

  

��

31(��1)(1
2
), and 

  

��

31(��1)(�� 1
2
);  for the d 

states they are 
  

��

320(1
2
), 

  

��

320(�� 1
2
), 

  

��

321(1
2
) , 

  

��

321(�� 1
2
) , 

  

��

32 (��1)(1
2
) , 

  

��

32 (��1)(�� 1
2
), 

  

��

322(1
2
), 

  

��

322(�� 1
2
), 

  

��

32 (��2)(1
2
), 

and 
  

��

32 (��2)(�� 1
2
) . 
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 2.7  Give the electron configurations for the following ions:  Fe2+, Al3+, Cu+, Ba2+, Br-, and O2-. 
 

  Solution 

 The electron configurations for the ions are determined using Table 2.2 (and Figure 2.6). 

 

 Fe2+:  From Table 2.2, the electron configuration for an atom of iron is 1s22s22p63s23p63d64s2. In order to 

become an ion with a plus two charge, it must lose two electrons—in this case the two 4s.  Thus, the electron 

configuration for an Fe2+ ion is 1s22s22p63s23p63d6. 

 Al3+:  From Table 2.2, the electron configuration for an atom of aluminum is 1s22s22p63s23p1. In order to 

become an ion with a plus three charge, it must lose three electrons—in this case two 3s and the one 3p.  Thus, the 

electron configuration for an Al3+ ion is 1s22s22p6. 

 Cu+:  From Table 2.2, the electron configuration for an atom of copper is 1s22s22p63s23p63d104s1. In order 

to become an ion with a plus one charge, it must lose one electron—in this case the 4s.  Thus, the electron 

configuration for a Cu+ ion is 1s22s22p63s23p63d10. 

 Ba2+:  The atomic number for barium is 56 (Figure 2.6), and inasmuch as it is not a transition element the 

electron configuration for one of its atoms is 1s22s22p63s23p63d104s24p64d105s25p66s2. In order to become an ion 

with a plus two charge, it must lose two electrons—in this case two the 6s.  Thus, the electron configuration for a 

Ba2+ ion is 1s22s22p63s23p63d104s24p64d105s25p6. 

 Br-: From Table 2.2, the electron configuration for an atom of bromine is 1s22s22p63s23p63d104s24p5. In 

order to become an ion with a minus one charge, it must acquire one electron—in this case another 4p.  Thus, the 

electron configuration for a Br- ion is 1s22s22p63s23p63d104s24p6. 

 O2-: From Table 2.2, the electron configuration for an atom of oxygen is 1s22s22p4. In order to become an 

ion with a minus two charge, it must acquire two electrons—in this case another two 2p.  Thus, the electron 

configuration for an O2- ion is 1s22s22p6. 
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 2.8 Sodium chloride (NaCl) exhibits predominantly ionic bonding.  The Na+ and Cl- ions have electron 

structures that are identical to which two inert gases? 
 

  Solution 

 The Na+ ion is just a sodium atom that has lost one electron; therefore, it has an electron configuration the 

same as neon (Figure 2.6). 

 The Cl- ion is a chlorine atom that has acquired one extra electron;  therefore, it has an electron 

configuration the same as argon. 
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 The Periodic Table 

 

 2.9  With regard to electron configuration, what do all the elements in Group VIIA of the periodic table 

have in common? 
 

  Solution 

 Each of the elements in Group VIIA has five p electrons. 
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 2.10  To what group in the periodic table would an element with atomic number 114 belong? 
 

  Solution 

 From the periodic table (Figure 2.6) the element having atomic number 114 would belong to group IVA.  

According to Figure 2.6, Ds, having an atomic number of 110 lies below Pt in the periodic table and in the right-

most column of group VIII.  Moving four columns to the right puts element 114 under Pb and in group IVA. 
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 2.11 Without consulting Figure 2.6 or Table 2.2, determine whether each of the electron configurations 

given below is an inert gas, a halogen, an alkali metal, an alkaline earth metal, or a transition metal. Justify your 

choices. 

 (a) 1s22s22p63s23p63d74s2 

 (b) 1s22s22p63s23p6 

 (c) 1s22s22p5 

 (d) 1s22s22p63s2 

 (e) 1s22s22p63s23p63d24s2 

 (f) 1s22s22p63s23p64s1 
 

  Solution 

 (a)  The 1s22s22p63s23p63d74s2 electron configuration is that of a transition metal because of an incomplete 

d subshell. 

 (b)  The 1s22s22p63s23p6 electron configuration is that of an inert gas because of filled 3s and 3p subshells. 

 (c)  The 1s22s22p5 electron configuration is that of a halogen because it is one electron deficient from 

having a filled L shell. 

 (d)  The 1s22s22p63s2 electron configuration is that of an alkaline earth metal because of two s electrons. 

 (e)  The 1s22s22p63s23p63d24s2 electron configuration is that of a transition metal because of an incomplete 

d subshell. 

 (f)  The 1s22s22p63s23p64s1 electron configuration is that of an alkali metal because of a single s electron. 
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 2.12  (a) What electron subshell is being filled for the rare earth series of elements on the periodic table? 

 (b) What electron subshell is being filled for the actinide series? 
 

  Solution 

 (a)  The 4f subshell is being filled for the rare earth series of elements. 

 (b)  The 5f subshell is being filled for the actinide series of elements. 
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 Bonding Forces and Energies 

 

 2.13  Calculate the force of attraction between a K+ and an O2- ion the centers of which are separated by a 

distance of 1.5 nm. 
 

  Solution 

 The attractive force between two ions FA is just the derivative with respect to the interatomic separation of 

the attractive energy expression, Equation 2.8, which is just 

 

    

��

FA =  
dEA
dr

 =  
d ��

A
r

�§��

�©��
�¨��

�·��

�¹��
�¸��

dr
 =  A

r2  

 
The constant A in this expression is defined in footnote 3.  Since the valences of the K+ and O2- ions (Z1 and Z2) are 

+1 and -2, respectively, Z1 = 1 and Z2 = 2, then 

 

  

��

FA =  (Z1e) (Z2e)
4�S�H0r2  

 

��

=  (1)(2)(1.602  �u 10��19  C)2

(4)(�S) (8.85 �u 10��12  F/m) (1.5 �u 10��9  m)2  

 

= 2.05 �u 10-10 N 
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 2.14 The net potential energy between two adjacent ions, EN, may be represented by the sum of Equations 

2.8 and 2.9;  that is, 

  

��

EN  =  ��
A
r

 ��  B
rn  

Calculate the bonding energy E0 in terms of the parameters A, B, and n using the following procedure: 

 1. Differentiate EN with respect to r, and then set the resulting expression equal to zero, since the curve of 

EN versus r is a minimum at E0. 

 2. Solve for r in terms of A, B, and n, which yields r0, the equilibrium interionic spacing. 

 3. Determine the expression for E0 by substitution of r0 into Equation 2.11. 
 

  Solution 

 (a)  Differentiation of Equation 2.11 yields 
 

  

��

dEN
dr

 =  
d ��

A
r

�§��

�©��
�¨��

�·��

�¹��
�¸��

dr
 ��  

d B
rn

�§��

�©��
�¨��

�·��

�¹��
�¸��

dr
 

 

  

��

=  A
r(1 +  1)  ��  nB

r(n +  1)  =  0  

 
 (b)  Now, solving for r (= r0) 

 

  

��

A
r0

2  =  nB
r0

(n +  1)  

 

or 

 

  

��

r0 =  A
nB

�§��

�©��
�¨��

�·��

�¹��
�¸��
1/(1 - n)

 

 
 (c)  Substitution for r0 into Equation 2.11 and solving for E (= E0) 

 

  

��

E0 =  ��
A
r0

 +  B
r0

n  

 

  

��

=  ��
A

A
nB

�§��

�©��
�¨��

�·��

�¹��
�¸��
1/(1 - n)  +  B

A
nB

�§��

�©��
�¨��

�·��

�¹��
�¸��

n/(1 - n)  
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 2.15  For a K+–Cl– ion pair, attractive and repulsive energies EA and ER, respectively, depend on the 

distance between the ions r, according to 

��

EA � ��
1.436

r
 

 

��

ER � 
5.8  �u 10��6

r9  

 

For these expressions, energies are expressed in electron volts per K+–Cl– pair, and r is the distance in nanometers. 

The net energy EN is just the sum of the two expressions above. 

 (a) Superimpose on a single plot EN, ER, and EA versus r up to 1.0 nm. 

 (b) On the basis of this plot, determine (i) the equilibrium spacing r0 between the K+ and Cl– ions, and (ii) 

the magnitude of the bonding energy E0 between the two ions. 

 (c) Mathematically determine the r0 and E0 values using the solutions to Problem 2.14 and compare these 

with the graphical results from part (b). 
 

  Solution 

 (a)  Curves of EA, ER, and EN are shown on the plot below. 

 

 
 (b)  From this plot 

r0 = 0.28 nm 

E0 = – 4.6 eV 
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 (c)  From Equation 2.11 for EN 

     A = 1.436 

     B = 5.86 �u 10-6 

     n = 9 

Thus, 

  

  

��

r0 =  A
nB

�§��

�©��
�¨��

�·��

�¹��
�¸��
1/(1 - n)

 

 

��

� 
1.436

(8)(5.86 �u 10-6)
�ª��

�¬��
�«��

�º��

�¼��
�»��

1/(1 - 9)

� 0.279 nm
 

 

and 

 

  

��

E0 =  ��
A

A
nB

�§��

�©��
�¨��

�·��

�¹��
�¸��
1/(1 - n)  +  B

A
nB

�§��

�©��
�¨��

�·��

�¹��
�¸��

n/(1 - n)  

 

��

=  ��  1.436

1.436
(9)(5.86  �u 10��6)

�ª��

�¬��
�«��
�«��

�º��

�¼��
�»��
�»��

1/(1 ��  9)  +  5.86  �u 10��6

1.436
(9)(5.86 �u 10��6)

�ª��

�¬��
�«��
�«��

�º��

�¼��
�»��
�»��

9 /(1 ��  9)  

 

= – 4.57 eV 
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 2.16 Consider a hypothetical X+-Y- ion pair for which the equilibrium interionic spacing and bonding 

energy values are 0.35 nm and -6.13 eV, respectively.  If it is known that n in Equation 2.11 has a value of 10, using 

the results of Problem 2.14, determine explicit expressions for attractive and repulsive energies EA and ER of 

Equations 2.8 and 2.9. 
 

  Solution 

 This problem gives us, for a hypothetical X+-Y- ion pair, values for r0 (0.35 nm), E0 (– 6.13 eV), and n 

(10), and asks that we determine explicit expressions for attractive and repulsive energies of Equations 2.8 and 2.9.  
In essence, it is necessary to compute the values of A and B in these equations.  Expressions for r0 and E0 in terms 

of n, A, and B were determined in Problem 2.14, which are as follows: 

 

  

��

r0 =  A
nB

�§��

�©��
�¨��

�·��

�¹��
�¸��
1/(1 - n)

 

 

  

��

E0 =  ��
A

A
nB

�§��

�©��
�¨��

�·��

�¹��
�¸��
1/(1 - n)  +  B

A
nB

�§��

�©��
�¨��

�·��

�¹��
�¸��

n/(1 - n)  

 
Thus, we have two simultaneous equations with two unknowns (viz. A and B).  Upon substitution of values for r0 

and E0 in terms of n, these equations take the forms 

 

  

��

0.35 nm =  A
10 B

�§��

�©��
�¨��

�·��

�¹��
�¸��
1/(1 - 10)

 =  
A

10 B

�§��

�©��
�¨��

�·��

�¹��
�¸��

-1/9

  

 

and 

 

  

��

�� 6.13 eV =  ��  A

A
10 B

�§��

�©��
�¨��

�·��

�¹��
�¸��
1/(1 ��  10) +  B

A
10 B

�§��

�©��
�¨��

�·��

�¹��
�¸��
10 /(1 ��  10)  

 

  

��

=  ��  A
A

10B
�§��

�©��
�¨��

�·��

�¹��
�¸��
��1/ 9 +  B

A
10B

�§��

�©��
�¨��

�·��

�¹��
�¸��
��10 / 9  

 

We now want to solve these two equations simultaneously for values of A and B.  From the first of these two 

equations, solving for A/8B leads to 
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��

A
10B

 =  (0.35 nm)-9 

 

Furthermore, from the above equation the A is equal to 

 

  

��

A =  10B(0.35 nm)-9  

 
When the above two expressions for A/10B and A are substituted into the above expression for E0 (- 6.13 eV), the 

following results 

 

  

��

��6.13 eV =  =  ��  A
A

10B
�§��

�©��
�¨��

�·��

�¹��
�¸��
��1/ 9 +  B

A
10B

�§��

�©��
�¨��

�·��

�¹��
�¸��
��10 / 9  

 

  

��

=  ��  10B(0.35 nm)-9

(0.35 nm)-9�> �@��1/ 9 +  B

(0.35 nm)-9�> �@��10 / 9  

 

  

��

=  ��  10B(0.35 nm)-9

0.35 nm
+  B

(0.35 nm)10  

 

Or 

 

  

��

��6.13 eV =  =  ��  10B
(0.35 nm)10 +  B

(0.35 nm)10  =  ��  9B
(0.35 nm)10  

 

Solving for B from this equation yields 

 

  

��

B =  1.88 �u 10-5  eV- nm10  

 

Furthermore, the value of A is determined from one of the previous equations, as follows: 

 

  

��

A =  10B(0.35 nm)-9  =  (10)(1.88 �u 10-5  eV - nm10)(0.35 nm)-9 

 

��

�  2.39 eV- nm 
 

Thus, Equations 2.8 and 2.9 become 
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��

EA =  ��
2.39

r
 

 

  

��

ER =  1.88  �u 10��5

r10  

 

Of course these expressions are valid for r and E in units of nanometers and electron volts, respectively. 
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 2.17 The net potential energy EN between two adjacent ions is sometimes represented by the expression 

 
    

��

EN � ��
C
r

 ��  DÊexp ��
r
�U

�§��

�©��
�¨��

�·��

�¹��
�¸�� (2.12) 

in which r is the interionic separation an�G���&�����'�����D�Q�G���!���D�U�H���F�R�Q�V�W�D�Q�W�V���Z�K�R�V�H���Y�D�O�X�H�V���G�H�S�H�Q�G���R�Q���W�K�H���V�S�H�F�L�I�L�F���P�D�W�H�U�L�D�O�� 

 (a) Derive an expression for the bonding energy E0 in terms of the equilibrium interionic separation r0 and 

�W�K�H���F�R�Q�V�W�D�Q�W�V���'���D�Q�G���!���X�V�L�Q�J���W�K�H���I�R�O�O�R�Z�L�Q�J���S�U�R�F�H�G�X�U�H�� 

 1. Differentiate EN with respect to r and set the resulting expression equal to zero. 

 �������6�R�O�Y�H���I�R�U���&���L�Q���W�H�U�P�V���R�I���'�����!�����D�Q�G���U0. 

 3. Determine the expression for E0 by substitution for C in Equation 2.12. 

 (b) Derive another expression for E0 in terms of r0���� �&���� �D�Q�G�� �!�� �X�V�L�Q�J�� �D��procedure analogous to the one 

outlined in part (a). 

 

  Solution 

 (a)  Differentiating Equation 2.12 with respect to r yields 

 

  

��

dE
dr

=  
d ��

C
r

�§��

�©��
�¨��

�·��

�¹��
�¸��

dr
 ��  

d D exp ��
r
�U

�§��

�©��
�¨��

�·��

�¹��
�¸��

�ª��

�¬��
�«��

�º��

�¼��
�»��

dr
 

 

  

��

=  C
r2  ��  De�� r / �U

�U
 

 
At r = r0, dE/dr = 0, and 

 

 
  

��

C
r0

2  =  De�� (r0/�U)

�U
 (2.12b) 

 
Solving for C and substitution into Equation 2.12 yields an expression for E0 as 

 

  

��

E0 =  De�� (r0/�U)�� 1 ��  r0
�U

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

 (b)  Now solving for D from Equation 2.12b above yields 

 

  

��

D =  C�U e (r0/�U)

r0
2  
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Substitution of this expression for D into Equation 2.12 yields an expression for E0 as 

 

  

��

E0 =  C
r0

�U
r0

 ��  1
�§��

�©��
�¨��

�·��

�¹��
�¸�� 
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 Primary Interatomic Bonds 

 
 2.18  (a) Briefly cite the main differences between ionic, covalent, and metallic bonding. 

 (b) State the Pauli exclusion principle. 

 

  Solution 

 (a)  The main differences between the various forms of primary bonding are: 

  Ionic--there is electrostatic attraction between oppositely charged ions. 

  Covalent--there is electron sharing between two adjacent atoms such that each atom assumes a 

stable electron configuration. 

  Metallic--the positively charged ion cores are shielded from one another, and also "glued" 

together by the sea of valence electrons. 

 (b)  The Pauli exclusion principle states that each electron state can hold no more than two electrons, which 

must have opposite spins. 
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 2.19  Compute the percents ionic character of the interatomic bonds for the following compounds: TiO2, 

ZnTe, CsCl, InSb, and MgCl2. 
 

  Solution 

 The percent ionic character is a function of the electron negativities of the ions XA and XB according to 

Equation 2.10.  The electronegativities of the elements are found in Figure 2.7. 

 
 For TiO2, XTi = 1.5 and XO = 3.5, and therefore, 

 

  

��

%IC =  1 ��  e(�� 0.25)(3.5��1.5)2�ª��
�¬���«��

�º��
�¼���»�� �u 100 =  63.2% 

 
 For ZnTe, XZn = 1.6 and XTe = 2.1, and therefore, 

 

    

��

%IC =  1 ��  e(�� 0.25) (2.1��1.6)2�ª��
�¬���«��

�º��
�¼���»�� �u 100 =  6.1%  

 
 For CsCl, XCs = 0.7 and XCl = 3.0, and therefore, 

 

  

��

%IC =  1 ��  e(�� 0.25)(3.0�� 0.7)2�ª��
�¬���«��

�º��
�¼���»�� �u 100 =  73.4% 

 
 For InSb, XIn = 1.7 and XSb = 1.9, and therefore, 

 

  

��

%IC =  1 ��  e(�� 0.25)(1.9��1.7)2�ª��
�¬���«��

�º��
�¼���»�� �u 100 =  1.0% 

 
 For MgCl2, XMg = 1.2 and XCl = 3.0, and therefore, 

 

  

��

%IC =  1 ��  e(�� 0.25)(3.0��1.2)2�ª��
�¬���«��

�º��
�¼���»�� �u 100 =  55.5% 
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 2.20  Make a plot of bonding energy versus melting temperature for the metals listed in Table 2.3.  Using 

this plot, approximate the bonding energy for copper, which has a melting temperature of 1084�qC. 
 

  Solution 

 Below is plotted the bonding energy versus melting temperature for these four metals.  From this plot, the 

bonding energy for copper (melting temperature of 1084�qC) should be approximately 3.6 eV.  The experimental 

value is 3.5 eV. 
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 2.21  Using Table 2.2, determine the number of covalent bonds that are possible for atoms of the following 

elements:  germanium, phosphorus, selenium, and chlorine. 
 

  Solution 

 For germanium, having the valence electron structure 4s24p2, N' = 4; thus, there are 8 – N' = 4 covalent 

bonds per atom. 

 For phosphorus, having the valence electron structure 3s23p3, N' = 5;  thus, there is 8 – N' = 3 covalent 

bonds per atom. 

 For selenium, having the valence electron structure 4s24p4, N' = 6;  thus, there are 8 – N' = 2 covalent 

bonds per atom. 

 For chlorine, having the valence electron structure 3s23p5, N' = 7; thus, there are 8 – N' = 1 covalent bond 

per atom. 
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 2.22  What type(s) of bonding would be expected for each of the following materials:  brass (a copper-zinc 

alloy), rubber, barium sulfide (BaS), solid xenon, bronze, nylon, and aluminum phosphide (AlP)? 
 

  Solution 

 For brass, the bonding is metallic since it is a metal alloy. 

 For rubber, the bonding is covalent with some van der Waals. (Rubber is composed primarily of carbon 

and hydrogen atoms.) 

 For BaS, the bonding is predominantly ionic (but with some covalent character) on the basis of the relative 

positions of Ba and S in the periodic table. 

 For solid xenon, the bonding is van der Waals since xenon is an inert gas. 

 For bronze, the bonding is metallic since it is a metal alloy (composed of copper and tin). 

 For nylon, the bonding is covalent with perhaps some van der Waals.  (Nylon is composed primarily of 

carbon and hydrogen.) 

 For AlP the bonding is predominantly covalent (but with some ionic character) on the basis of the relative 

positions of Al and P in the periodic table. 
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 Secondary Bonding or van der Waals Bonding 

 

 2.23  Explain why hydrogen fluoride (HF) has a higher boiling temperature than hydrogen chloride (HCl) 

(19.4 vs. –85°C), even though HF has a lower molecular weight. 
 

  Solution 

 The intermolecular bonding for HF is hydrogen, whereas for HCl, the intermolecular bonding is van der 

Waals.  Since the hydrogen bond is stronger than van der Waals, HF will have a higher melting temperature. 
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CHAPTER 3 

 

THE STRUCTURE OF CRYSTALLINE SOLIDS  

 

PROBLEM SOLUTIONS 

 

 

 Fundamental Concepts 

 

 3.1  What is the difference between atomic structure and crystal structure? 
 

  Solution 

 Atomic structure relates to the number of protons and neutrons in the nucleus of an atom, as well as the 

number and probability distributions of the constituent electrons.  On the other hand, crystal structure pertains to the 

arrangement of atoms in the crystalline solid material. 
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 Unit Cells 

 Metallic Crystal Structures 

 

 3.2  If the atomic radius of aluminum is 0.143 nm, calculate the volume of its unit cell in cubic meters. 
 

  Solution 

 For this problem, we are asked to calculate the volume of a unit cell of aluminum.  Aluminum has an FCC 

crystal structure (Table 3.1).  The FCC unit cell volume may be computed from Equation 3.4 as 

 

  

��

VC =  16R3 2 =  (16)(0.143 �u 10-9  m)3( 2) =  6.62 �u 10-29 m3 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 3.3  Show for the body-centered cubic crystal structure that the unit cell edge length a and the atomic 

radius R are related through a =4R/ 3 . 
 

  Solution 

 Consider the BCC unit cell shown below 

 

 

 

Using the triangle NOP 

 

    

��

(NP)2 =  a2 +  a2 = 2a2 

 

And then for triangle NPQ, 

 

    

��

(NQ)2 = (QP)2 + (NP)2 

 

But   

��

NQ = 4R, R being the atomic radius.  Also,   

��

QP = a.  Therefore, 

 

    

��

(4R)2 =  a2 +  2a2 

 

or 

    

��

a =  
4R

3
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 3.4  For the HCP crystal structure, show that the ideal c/a ratio is 1.633. 
 

  Solution 

 A sketch of one-third of an HCP unit cell is shown below. 

 

 

 

Consider the tetrahedron labeled as JKLM, which is reconstructed as 

 

 

 

The atom at point M is midway between the top and bottom faces of the unit cell--that is   

��

MH  = c/2.  And, since 

atoms at points J, K, and M, all touch one another, 

 

    

��

JM = JK = 2R = a 

 

where R is the atomic radius.  Furthermore, from triangle JHM, 

 

    

��

(JM)2 = (JH)2 �� (MH)2 

or 
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��

a2 =  (JH )2 +  
c
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2
 

 

Now, we can determine the   

��

JH
 
length by consideration of triangle JKL, which is an equilateral triangle, 

 

 

 

    

��

cos 30�q =  
a/2
JH

=  
3

2
 

and 

    

��

JH =  
a
3

 

 

Substituting this value for   

��

JH in the above expression yields 

 

    

��

a2 =  
a
3

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

+
c
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

=  
a2

3
+  

c2

4
 

 

and, solving for c/a 

 

    

��

c
a

=  
8
3

=  1.633 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 3.5  Show that the atomic packing factor for BCC is 0.68. 
 

  Solution 

 The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or 

 

    

��

APF =  
VS
VC

 

 

Since there are two spheres associated with each unit cell for BCC 

 

    

��

VS =  2(sphere volume) =  2
4�SR3

3

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��=  

8�SR3

3
 

 
Also, the unit cell has cubic symmetry, that is VC = a3.  But a depends on R according to Equation 3.3, and 

 

    

��

VC =
4R

3

�§��

�©��
�¨��

�·��

�¹��
�¸��
3

=
64R3

3 3
 

Thus, 

 

    

��

APF =  
VS
VC

=  
8�SR3 /3

64R3 /3 3
=  0.68 
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 3.6  Show that the atomic packing factor for HCP is 0.74. 
 

  Solution 

 The APF is just the total sphere volume-unit cell volume ratio.  For HCP, there are the equivalent of six 

spheres per unit cell, and thus 

 

    

��

VS =  6
4�SR3

3

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��=  8�SR3 

 

Now, the unit cell volume is just the product of the base area times the cell height, c.  This base area is just three 

times the area of the parallelepiped ACDE shown below. 

 

 

The area of ACDE is just the length of   

��

CD times the height   

��

BC.  But   

��

CD is just a or 2R, and  

 

    

��

BC =  2R cos(30�q) =  
2R 3

2
 

 

Thus, the base area is just 

 

    

��

AREA =  (3)(CD)(BC) =  (3)(2R)
2R 3

2

�§��

�©��
�¨��

�·��

�¹��
�¸��=  6R2 3 

 

and since c = 1.633a = 2R(1.633) 

 

   

��

VC =  (AREA)(c) =  6R2c 3 (3.S1) 
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��

=  (6R2 3) (2)(1.633)R =  12 3 (1.633) R3 

 

Thus, 

    

��

APF =  
VS
VC

=  
8�SR3

12 3 (1.633) R3
=  0.74 
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 Density Computations 

 

 3.7  Iron has a BCC crystal structure, an atomic radius of 0.124 nm, and an atomic weight of 55.85 g/mol.  

Compute and compare its theoretical density with the experimental value found inside the front cover. 
 

  Solution 

 This problem calls for a computation of the density of iron.  According to Equation 3.5 

 

��

�U =
nAFe

VCNA
 

 

For BCC, n = 2 atoms/unit cell, and 
 

    

��

VC =  
4R

3

�§��

�©��
�¨��

�·��

�¹��
�¸��
3
 

 

Thus, 

 

  

��

�U =
nAFe

4 R
3

�§��

�©��
�¨��

�·��

�¹��
�¸��
3

NA

 

 

��

=  
(2 atoms/unit cell)(55.85 g/mol)

(4)(0.124 �u 10-7 cm)/ 3�> �@3 /(unit cell) (6.022 �u 1023 atoms/mol)
 

 

= 7.90 g/cm3 

 

The value given inside the front cover is 7.87 g/cm3. 
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 3.8  Calculate the radius of an iridium atom, given that Ir has an FCC crystal structure, a density of 22.4 

g/cm3, and an atomic weight of 192.2 g/mol. 
 

  Solution 

 We are asked to determine the radius of an iridium atom, given that Ir has an FCC crystal structure.  For 
FCC, n = 4 atoms/unit cell, and VC =     

��

16R3 2 (Equation 3.4).  Now, 

 

  

��

�U =  
nAIr

VCNA
 

 

  

��

=  
nAIr

(16R3 2)NA
 

 

And solving for R from the above expression yields 

 

  

��

R =  
nAIr

16�UNA 2

�§��

�©��
�¨��

�·��

�¹��
�¸��
1/3

 

 

��

=  
(4 atoms/unit cell)192.2 g/mol�� ��

(16)(22.4 g/cm3)(6.022 �u 1023 atoms/mol)( 2)
�ª��

�¬��
�«��

�º��

�¼��
�»��

1/3
 

 

= 1.36 �u 10-8 cm = 0.136 nm 
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 3.9  Calculate the radius of a vanadium atom, given that V has a BCC crystal structure, a density of 5.96 

g/cm3, and an atomic weight of 50.9 g/mol. 
 

  Solution 

 This problem asks for us to calculate the radius of a vanadium atom.  For BCC, n = 2 atoms/unit cell, and 
 

    

��

VC =  
4R

3

�§��

�©��
�¨��

�·��

�¹��
�¸��
3
 =  

64R3

3 3
 

 

Since, from Equation 3.5 

 

  

��

�U =  
nAV

VCNA
 

 

  

��

=  
nAV

64R3

3 3

�§��

�©��
�¨��

�·��

�¹��
�¸��NA

 

 
and solving for R the previous equation 

 

  

��

R =  
3 3nAV
64�UNA

�§��

�©��
�¨��

�·��

�¹��
�¸��
1/3

 

 

and incorporating values of parameters given in the problem statement 

 

��

R =  
(3 3) (2 atoms/unit cell)(50.9 g/mol)

(64)(5.96 g/cm3)(6.022 �u 1023 atoms/mol)
�ª��

�¬��
�«��

�º��

�¼��
�»��

1/3
 

 

= 1.32 �u 10-8 cm = 0.132 nm 
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 3.10  Some hypothetical metal has the simple cubic crystal structure shown in Figure 3.24. If its atomic 

weight is 70.4 g/mol and the atomic radius is 0.126 nm, compute its density. 
 

  Solution 

 For the simple cubic crystal structure, the value of n in Equation 3.5 is unity since there is only a single 

atom associated with each unit cell.  Furthermore, for the unit cell edge length, a = 2R (Figure 3.24).  Therefore, 

employment of Equation 3.5 yields 

 

  

��

�U =  
nA

VCNA
=  

nA

(2R)3NA
 

 

and incorporating values of the other parameters provided in the problem statement leads to 

 

��

�U=  
(1 atom/unit cell)(70.4 g/mol)

(2)(1.26 �u 10
-8

 cm)�ª��
�¬���«��

�º��
�¼���»��
3
/(unit cell)

���
�®��
�¯��

�½��
�¾��
�¿��
(6.022 �u 1023 atoms/mol)

 

 

7.31 g/cm3 
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 3.11  Zirconium has an HCP crystal structure and a density of 6.51 g/cm3. 

 (a) What is the volume of its unit cell in cubic meters? 
 (b) If the c/a ratio is 1.593, compute the values of c and a. 

 

  Solution 

 (a)  The volume of the Zr unit cell may be computed using Equation 3.5 as 

 

  

��

VC � 
nAZr
�UNA

 

 
Now, for HCP, n = 6 atoms/unit cell, and for Zr, AZr = 91.22 g/mol.  Thus, 

 

  

��

VC �  
(6 atoms/unit cell)(91.22 g/mol)

(6.51 g/cm3)(6.022 �u 1023 atoms/mol)
 

 

= 1.396 �u 10-22 cm3/unit cell = 1.396 �u 10-28 m3/unit cell 

 

 (b)  From Equation 3.S1 of the solution to Problem 3.6, for HCP 

 

    

��

VC =   6R2c 3 

 

But, since a = 2R, (i.e., R = a/2) then 

 

 

    

��

VC =  6
a
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

c 3  �  
3 3 a2c

2
 

 

but, since c = 1.593a 

 

  

��

VC =  
3 3 (1.593) a3

2
=  1.396 �u 10-22 cm3/unit cell 

 

Now, solving for a 

 

  

��

a =  
(2)(1.396 �u 10-22 cm3)

(3)( 3) (1.593)

�ª��

�¬��
�«��

�º��

�¼��
�»��

1/3
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= 3.23 �u 10-8 cm = 0.323 nm 

 

And finally 

c = 1.593a = (1.593)(0.323 nm) = 0.515 nm 
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 3.12  Using atomic weight, crystal structure, and atomic radius data tabulated inside the front cover, 

compute the theoretical densities of lead, chromium, copper, and cobalt, and then compare these values with the 

measured densities listed in this same table.  The c/a ratio for cobalt is 1.623. 
 

  Solution 

 Since Pb has an FCC crystal structure, n = 4, and VC =     

��

16R3 2 (Equation 3.4).  Also, R = 0.175 nm (1.75 

�u 10-8 cm) and APb = 207.2 g/mol.  Employment of Equation 3.5 yields 

 

  

��

�U =  
nAPb

VCNA
 

 

��

�  
(4 atoms/unit cell)(207.2 g/mol)

(16)(1.75 �u 10-8 cm)3( 2)�> �@/(unit cell)�^ �(̀6.022 �u 1023 atoms/mol)
 

 

= 11.35 g/cm3 

 

The value given in the table inside the front cover is 11.35 g/cm3. 

 

 Chromium has a BCC crystal structure for which n = 2 and VC = a3 = 
  

��

4 R
3

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��

3

 (Equation 3.3);  also ACr = 

52.00g/mol and R  = 0.125 nm.  Therefore, employment of Equation 3.5 leads to 

 

��

�U �  
(2 atoms/unit cell)(52.00 g/mol)

(4)(1.25 �u 10-8 cm)
3

�ª��

�¬��
�«��

�º��

�¼��
�»��

3

/(unit cell)
���
�®��
�°��

�¯���°��

�½��
�¾��
�°��

�¿���°��
(6.022 �u 1023 atoms/mol)

 

 

= 7.18 g/cm3 

 

The value given in the table is 7.19 g/cm3. 

 Copper also has an FCC crystal structure and therefore 

 

��

�U �  
(4 atoms/unit cell)(63.55 g/mol)

(2)(1.28 �u 10-8 cm)( 2)�> �@3/(unit cell)
���
�®��
�¯��

�½��
�¾��
�¿��
(6.022 �u 1023 atoms/mol)

 

 

= 8.90 g/cm3 
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The value given in the table is 8.90 g/cm3. 

 

 Cobalt has an HCP crystal structure, and from the solution to Problem 3.6 (Equation 3.S1), 

 

  

��

VC =  6R2c 3 

 

and, since c = 1.623a and a = 2R, c = (1.623)(2R);  hence 

 

��

VC � 6R2(1.623)(2R) 3 � (19.48)( 3)R3 

 

��

� (19.48)( 3)(1.25 �u 10��8 cm)3 

 

��

�  6.59 �u 10��23 cm3/unit cell 

 

Also, there are 6 atoms/unit cell for HCP.  Therefore the theoretical density is 

 

  

��

�U =  
nACo

VCNA
 

 

��

�  
(6 atoms/unit cell)(58.93 g/mol)

(6.59 �u 10-23 cm3/unit cell)(6.022 �u 1023 atoms/mol)
 

 

= 8.91 g/cm3 

 

The value given in the table is 8.9 g/cm3. 
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 3.13  Rhodium has an atomic radius of 0.1345 nm  and a density of 12.41 g/cm3.  Determine whether it has 

an FCC or BCC crystal structure. 
 

  Solution 

 In order to determine whether Rh has an FCC or a BCC crystal structure, we need to compute its density 

for each of the crystal structures.  For FCC, n = 4, and a =     

��

2R 2  (Equation 3.1). Also, from Figure 2.6, its atomic 

weight is 102.91 g/mol.  Thus, for FCC (employing Equation 3.5) 

 

  

��

�U �  
nARh

a3NA
 �  

nARh

(2R 2)3NA
 

 

��

   =  
(4 atoms/unit cell)(102.91 g/mol)

(2)(1.345 �u 10-8 cm)( 2)�> �@3 /(unit cell)
���
�®��
�¯��

�½��
�¾��
�¿��
(6.022�u1023atoms/mol)

 

 

= 12.41 g/cm3 

 

which is the value provided in the problem statement.  Therefore, Rh has the FCC crystal structure. 
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 3.14  Below are listed the atomic weight, density, and atomic radius for three hypothetical alloys.  For 

each determine whether its crystal structure is FCC, BCC, or simple cubic and then justify your determination. A 

simple cubic unit cell is shown in Figure 3.24. 
 

 Alloy Atomic Weight Density Atomic Radius 
  (g/mol) (g/cm3) (nm) 
 

 A 77.4 8.22 0.125 

 B 107.6 13.42 0.133 

 C 127.3 9.23 0.142 

 

  Solution 

 For each of these three alloys we need, by trial and error, to calculate the density using Equation 3.5, and 

compare it to the value cited in the problem.  For SC, BCC, and FCC crystal structures, the respective values of n 

are 1, 2, and 4, whereas the expressions for a (since VC = a3) are 2R,   

��

2R 2 , and 
    

��

4R
3

. 

 For alloy A, let us calculate �U assuming a simple cubic crystal structure. 

 

    

��

�U =  
nAA

VC NA
 

 

  

��

=  
nAA

2R�� ��3NA

 

 

��

=  
(1 atom/unit cell)(77.4 g/mol)

(2)(1.25 �u 10��8)�> �@3/(unit cell)
���
�®��
�¯��

�½��
�¾��
�¿��
(6.022 �u 1023 atoms/mol)

 

 

= 8.22 g/cm3 

 

Therefore, its crystal structure is simple cubic. 

 

 For alloy B, let us calculate �U assuming an FCC crystal structure. 

 

  

��

�U =  
nAB

(2R 2)3NA
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��

=  
(4 atoms/unit cell)(107.6 g/mol)

2 2�� ��(1.33 �u 10-8 cm)�> �@3/(unit cell)
���
�®��
�¯��

�½��
�¾��
�¿��
(6.022 �u 1023 atoms/mol)

 

 

= 13.42 g/cm3 

 

Therefore, its crystal structure is FCC. 

 

 For alloy C, let us calculate �U assuming a simple cubic crystal structure. 

 

  

��

=  
nAC

2R�� ��3NA

 

 

��

=  
(1 atom/unit cell)(127.3 g/mol)

(2)(1.42�u10-8 cm)�> �@3/(unit cell)
���
�®��
�¯��

�½��
�¾��
�¿��
(6.022 �u 1023 atoms/mol)

 

 

= 9.23 g/cm3 

Therefore, its crystal structure is simple cubic. 
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 3.15  The unit cell for tin has tetragonal symmetry, with a and b lattice parameters of 0.583 and 0.318 nm, 

respectively.  If its density, atomic weight, and atomic radius are 7.30 g/cm3, 118.69 g/mol, and 0.151 nm, 

respectively, compute the atomic packing factor. 
 

  Solution 

 In order to determine the APF for Sn, we need to compute both the unit cell volume (VC) which is just the  

a2c  product, as well as the total sphere volume (VS) which is just the product of the volume of a single sphere and 

the number of spheres in the unit cell (n).  The value of n may be calculated from Equation 3.5 as 

 

  

��

n =  
�UVCNA

ASn
 

 

��

=  
(7.30 g/cm3)(5.83)2(3.18)(�u10-24  cm3)(6.022 �u 1023 atoms/mol)

118.69 g/mol
 

 

= 4.00 atoms/unit cell 

Therefore 

 

  

��

APF =  
VS
VC

 =  
(4)

4
3

�SR3�§��

�©��
�¨��

�·��

�¹��
�¸��

(a)2(c)
 

 

��

=  
(4)

4
3

(�S)(1.51  �u 10-8  cm)3
�ª��

�¬���«��
�º��

�¼���»��

(5.83  �u 10-8  cm)2(3.18  �u 10-8  cm)
 

 

= 0.534 
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 3.16  Iodine has an orthorhombic unit cell for which the a, b, and c lattice parameters are 0.479, 0.725, 

and 0.978 nm, respectively. 

 (a) If the atomic packing factor and atomic radius are 0.547 and 0.177 nm, respectively, determine the 

number of atoms in each unit cell. 

 (b) The atomic weight of iodine is 126.91 g/mol; compute its theoretical density. 
 

  Solution 

 (a)  For indium, and from the definition of the APF 

 

  

��

APF =  
VS
VC

=  
n

4
3

�SR3�§��

�©��
�¨��

�·��

�¹��
�¸��

abc
 

 

we may solve for the number of atoms per unit cell, n, as 

 

  

��

n =  
(APF) abc

4
3

�SR3
 

 

Incorporating values of the above parameters provided in the problem state leads to 

 

��

=  
(0.547)(4.79 �u 10-8  cm)(7.25 �u 10-8  cm)(9.78 �u 10-8 cm)

4
3

�S(1.77 �u 10-8  cm)3
 

 

= 8.0 atoms/unit cell 

 

 (b)  In order to compute the density, we just employ Equation 3.5 as 

 

  

��

�U =  
nAI

abcNA
 

 

��

=  
(8 atoms/unit cell)(126.91 g/mol)

(4.79 �u 10-8 cm)(7.25 �u 10-8 cm)(9.78 �u 10-8  cm)�> �@/unit cell�^ � (̀6.022 �u 1023 atoms/mol)
 

 

= 4.96 g/cm3 
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 3. 17  Titanium has an HCP unit cell for which the ratio of the lattice parameters c/a is 1.58.  If the radius 

of the Ti atom is 0.1445 nm, (a) determine the unit cell volume, and (b) calculate the density of Ti and compare it 

with the literature value. 
 

  Solution 

 (a)  We are asked to calculate the unit cell volume for Ti.  For HCP, from Equation 3.S1 (found in the 

solution to Problem 3.6) 

 

    

��

VC =  6R2c 3 

 

But for Ti, c = 1.58a, and a = 2R, or c = 3.16R, and 

 

  

��

VC =  (6)(3.16)R3 3 

 

��

=  (6)(3.16)( 3) 1.445 �u 10-8  cm�> �@3 =  9.91 �u 10��23 cm3/unit cell 

 

 (b)  The theoretical density of Ti is determined, using Equation 3.5, as follows: 

 

  

��

�U =  
nATi

VCNA
 

 
For HCP, n = 6 atoms/unit cell, and for Ti, ATi = 47.87 g/mol (as noted inside the front cover).  Thus, 

 

��

�U =  
(6 atoms/unit cell)(47.87 g/mol)

(9.91 �u 10-23 cm3/unit cell)(6.022 �u 1023 atoms/mol)
 

 

= 4.81 g/cm3 

 

The value given in the literature is 4.51 g/cm3. 
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 3.18  Zinc has an HCP crystal structure, a c/a ratio of 1.856, and a density of 7.13 g/cm3. Compute the 

atomic radius for Zn. 
 

  Solution 

 In order to calculate the atomic radius for Zn, we must use Equation 3.5, as well as the expression which 

relates the atomic radius to the unit cell volume for HCP;  Equation 3.S1 (from Problem 3.6) is as follows: 

 

    

��

VC =  6R2c 3 

 

In this case c = 1.856a, but, for HCP, a = 2R, which means that 

 

  

��

VC =  6R2(1.856)(2R) 3  �  (1.856)(12 3)R3 

 

And from Equation 3.5, the density is equal to 

 

  

��

�U =  
nAZn

VCNA
 =  

nAZn

(1.856)(12 3)R3NA
 

 

And, solving for R from the above equation leads to the following: 

 

  

��

R =  
nAZn

(1.856)(12 3) �UNA

�ª��

�¬��
�«��

�º��

�¼��
�»��

1/3

 

 

And incorporating appropriate values for the parameters in this equation leads to 

 

��

R =  
(6 atoms/unit cell)(65.41 g/mol)

(1.856)(12 3)(7.13 g/cm3)(6.022 �u 1023 atoms/mol)
�ª��

�¬��
�«��
�«��

�º��

�¼��
�»��
�»��

1/3

 

 

= 1.33 �u 10-8 cm = 0.133 nm 
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 3.19  Rhenium has an HCP crystal structure, an atomic radius of 0.137 nm, and a c/a ratio of 1.615.  

Compute the volume of the unit cell for Re. 
 

  Solution 

In order to compute the volume of the unit cell for Re, it is necessary to use Equation 3.S1 (found in Problem 3.6), 

that is 

 

    

��

VC =  6R2c 3 

 

The problem states that c = 1.615a, and a = 2R.  Therefore 

 

  

��

VC =  (1.615)(12 3) R3 

 

��

=  (1.615)(12 3)(1.37 �u 10-8 cm)3 =  8.63 �u 10-23 cm3 =  8.63 �u 10-2  nm3 
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 Crystal Systems 
 
 3.20  Below is a unit cell for a hypothetical metal. 

 (a) To which crystal system does this unit cell belong? 

 (b) What would this crystal structure be called? 

 (c) Calculate the density of the material, given that its atomic weight is 141 g/mol. 

 
 

  Solution 

 (a)  The unit cell shown in the problem statement belongs to the tetragonal crystal system since a = b = 

0.30 nm, c = 0.40 nm, and �D = �E = �J = 90�q. 

 (b)  The crystal structure would be called body-centered tetragonal. 

 (c)  As with BCC, n = 2 atoms/unit cell.  Also, for this unit cell 

 

  

��

VC =  (3.0 �u 10��8 cm)2(4.0 �u 10��8 cm) 

 

��

=  3.60 �u 10��23 cm3/unit cell 
 

Thus, using Equation 3.5, the density is equal to 
 

    

��

�U =  
nA

VC NA
 

 

��

=  
(2 atoms/unit cell)(141 g/mol)

(3.60 �u 10-23 cm3/unit cell)(6.022 �u 1023 atoms/mol)
 

 

= 13.0 g/cm3 
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 3.21  Sketch a unit cell for the body-centered orthorhombic crystal structure. 
 

  Solution 

A unit cell for the body-centered orthorhombic crystal structure is presented below. 
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 Point Coordinates 

 

 3.22 List the point coordinates for all atoms that are associated with the FCC unit cell (Figure 3.1). 
 

  Solution 

 From Figure 3.1b, the atom located of the origin of the unit cell has the coordinates 000.  Coordinates for 

other atoms in the bottom face are 100, 110, 010, and 
  

��

1

2

1

2
0.  (The z coordinate for all these points is zero.) 

 For the top unit cell face, the coordinates are 001, 101, 111, 011, and 
  

��

1

2

1

2
1. 

 Coordinates for those atoms that are positioned at the centers of both side faces, and centers of both front 

and back faces need to be specified.   For the front and back-center face atoms, the coordinates are 
  

��

1
1

2

1

2
 and 

  

��

0
1

2

1

2
, 

respectively.  While for the left and right side center-face atoms, the respective coordinates are 
  

��

1

2
0

1

2
 and 

  

��

1

2
1

1

2
. 
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 3.23  List the point coordinates of the titanium, barium, and oxygen ions for a unit cell of the perovskite 

crystal structure (Figure 12.6). 
 

  Solution 

 In Figure 12.6, the barium ions are situated at all corner positions.  The point coordinates for these ions are 

as follows: 000, 100, 110, 010, 001, 101, 111, and 011. 

 The oxygen ions are located at all face-centered positions;  therefore, their coordinates are 
  

��

1

2

1

2
0, 

  

��

1

2

1

2
1, 

  

��

1
1

2

1

2
, 
  

��

0
1

2

1

2
, 
  

��

1

2
0

1

2
, and 

  

��

1

2
1

1

2
. 

 And, finally, the titanium ion resides at the center of the cubic unit cell, with coordinates 

��

1

2

1

2

1

2
. 
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 3.24  List the point coordinates of all atoms that are associated with the diamond cubic unit cell (Figure 

12.15). 
 

  Solution 

 First of all, one set of carbon atoms occupy all corner positions of the cubic unit cell;  the coordinates of 

these atoms are as follows: 000, 100, 110, 010, 001, 101, 111, and 011. 

 Another set of atoms reside on all of the face-centered positions, with the following coordinates: 
  

��

1

2

1

2
0, 

  

��

1

2

1

2
1, 

  

��

1
1

2

1

2
, 
  

��

0
1

2

1

2
, 
  

��

1

2
0

1

2
, and 

  

��

1

2
1

1

2
. 

 The third set of carbon atoms are positioned within the interior of the unit cell.  Using an x-y-z coordinate 

system oriented as in Figure 3.4, the coordinates of the atom that lies toward the lower-left-front of the unit cell has 

the coordinates 
  

��

3

4

1

4

1

4
, whereas the atom situated toward the lower-right-back of the unit cell has coordinates of 

  

��

1

4

3

4

1

4
.  Also, the carbon atom that resides toward the upper-left-back of the unit cell has the 

  

��

1

4

1

4

3

4
 coordinates.  

And, the coordinates of the final atom, located toward the upper-right-front of the unit cell, are 
  

��

3

4

3

4

3

4
. 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 3.25 Sketch a tetragonal unit cell , and within that cell indicate locations of the 

��

1

2
 1 

1

2
 and 

��

1

4
 

1

2
 

3

4
 point 

coordinates. 

 

  Solution 

A tetragonal unit in which are shown the 

��

1

2
 1

1

2
 and 

��

1

4

1

2

3

4
 point coordinates is presented below. 
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 3.26  Using the Molecule Definition Utility found in both “Metallic Crystal Structures and 

Crystallography” and “Ceramic Crystal Structures” modules of VMSE, located on the book’s web site 

[www.wiley.com/college/Callister (Student Companion Site)], generate a three-dimensional unit cell for the 

intermetallic compound AuCu3 given the following:  (1) the unit cell is cubic with an edge length of 0.374 nm, (2) 

gold atoms are situated at all cube corners, and  (3) copper atoms are positioned at the centers of all unit cell faces. 
 

  Solution 

 First of all, open the “Molecular Definition Utility”;  it may be found in either of “Metallic Crystal 

Structures and Crystallography” or “Ceramic Crystal Structures” modules. 

 In the “Step 1” window, it is necessary to define the atom types, colors for the spheres (atoms), and specify 

atom sizes.  Let us enter “Au” as the name for the gold atoms (since “Au” the symbol for gold), and “Cu” as the 

name for the copper atoms.  Next it is necessary to choose a color for each atom type from the selections that appear 

in the pull-down menu—for example, “Yellow” for Au and “Red” for Cu.  In the “Atom Size” window, it is 

necessary to enter an atom/ion size.  In the instructions for this step, it is suggested that the atom/ion diameter in 

nanometers be used.  From the table found inside the front cover of the textbook, the atomic radii for gold and 

copper are 0.144 nm and 0.128 nm, respectively, and, therefore, their ionic diameters are twice these values (i.e., 

0.288 nm and 0.256 nm);  therefore, we enter the values “0.288” and “0.256” for the two atom types.  Now click on 

the “Register” button, followed by clicking on the “Go to Step 2” button. 

 In the “Step 2” window we specify positions for all of the atoms within the unit cell;  their point 

coordinates are specified in the problem statement.  Let’s begin with gold.  Click on the yellow sphere that is 

located to the right of the “Molecule Definition Utility” box.  Again, Au atoms are situated at all eight corners of the 

cubic unit cell.  One Au will be positioned at the origin of the coordinate system—i.e., its point coordinates are 000, 

and, therefore, we enter a “0” (zero) in each of the “x”, “y”, and “z” atom position boxes.  Next we click on the 

“Register Atom Position” button.  Now we enter the coordinates of another gold atom;  let us arbitrarily select the 

one that resides at the corner of the unit cell that is one unit-cell length along the x-axis (i.e., at the 100 point 

coordinate).  Inasmuch as it is located a distance of a units along the x-axis the value of “0.374” is entered in the “x” 

atom position box (since this is the value of a given in the problem statement);  zeros are entered in each of the “y” 

and “z” position boxes.  We repeat this procedure for the remaining six Au atoms. 

 After this step has been completed, it is necessary to specify positions for the copper atoms, which are 

located at all six face-centered sites.  To begin, we click on the red sphere that is located next to the “Molecule 

Definition Utility” box. The point coordinates for some of the Cu atoms are fractional ones;  in these instances, the a 

unit cell length (i.e., 0.374) is multiplied by the fraction.  For example, one Cu atom is located 

��

1 1
2

1
2
 coordinate.  

Therefore, the x, y, and z atoms positions are (1)(0.374) = 0.374, 

��

1
2

(0.374) = 0.187, and 

��

1
2

(0.374) = 0.187, 

respectively. 

 For the gold atoms, the x, y, and z atom position entries for all 8 sets of point coordinates are as follows: 
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 0, 0, and 0 

 0.374, 0, and 0 

 0, 0.374, and 0 

 0, 0, and 0.374 

 0, 0.374, 0.374 

 0.374, 0, 0.374 

 0.374, 0.374, 0 

 0.374, 0.374, 0.374 

 

 Now, for the copper atoms, the x, y, and z atom position entries for all 6 sets of point coordinates are as 

follows: 

 0.187, 0.187, 0 

 0.187, 0, 0.187 

 0, 0.187, 0.187 

 0.374, 0.187, 0.187 

 0.187, 0.374, 0.187 

 0.187, 0.187, 0.374 

 

 In Step 3, we may specify which atoms are to be represented as being bonded to one another, and which 

type of bond(s) to use (single solid, single dashed, double, and triple are possibilities), or we may elect to not 

represent any bonds at all (in which case we are finished).  If it is decided to show bonds, probably the best thing to 

do is to represent unit cell edges as bonds.  This image may be rotated by using mouse click-and-drag 

 Your image should appear as the following screen shot.  Here the gold atoms appear lighter than the copper 

atoms. 
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[Note:  Unfortunately, with this version of the Molecular Definition Utility, it is not possible to save either the data 

or the image that you have generated.  You may use screen capture (or screen shot) software to record and store 

your image.] 
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 Crystallographic Directions 

 

 3.27 Draw an orthorhombic unit cell, and within that cell a 

��

[121 ]  direction. 
 

  Solution 

 This problem calls for us to draw a 

��

[121 ]  direction within an orthorhombic unit cell (a �•��b �•��c, �D = �E = �J = 

90�q).  Such a unit cell with its origin positioned at point O is shown below.  We first move along the +x-axis a units 

(from point O to point A), then parallel to the +y-axis 2b units (from point A to point B).  Finally, we proceed 

parallel to the z-axis -c units (from point B to point C).  The 

��

[121 ] direction is the vector from the origin (point O) 

to point C as shown. 
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 3.28  Sketch a monoclinic unit cell, and within that cell a 

��

[01 1]  direction. 
 

  Solution 

 This problem asks that a 

��

[ 01 1] direction be drawn within a monoclinic unit cell (a �•��b �•��c, and �D = �E = 

�����ž���•���J).  One such unit cell with its origin at point O is sketched below.  For this direction, there is no projection 

along the x-axis since the first index is zero;  thus, the direction lies in the y-z plane.  We next move from the origin 

along the minus y-axis b units (from point O to point R).  Since the final index is a one, move from point R parallel 

to the z-axis, c units (to point P). Thus, the 

��

[ 01 1] direction corresponds to the vector passing from the origin (point 

O) to point P, as indicated in the figure. 
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 3.29  What are the indices for the directions indicated by the two vectors in the sketch below? 

 
 

  Solution 

 For direction 1, the projection on the x-axis is zero (since it lies in the y-z plane), while projections on the 

y- and z-axes, b/2 and c, respectively.  This is a 

��

[ 012]  direction as indicated in the summary below. 

 

 
  x y z 

 Projections 0a b/2 c 

 Projections in terms of a, b, and c 0 1/2 1 

 Reduction to integers 0 1 2 

 Enclosure  

��

[ 012]  

 

 Direction 2 is 

��

[112 ]  as summarized below. 

 
  x y z 

 Projections a/2 b/2 -c 

 Projections in terms of a, b, and c 1/2 1/2 -1 

 Reduction to integers 1 1 -2 

 Enclosure  

��

[112 ]  
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 3.30  Within a cubic unit cell, sketch the following directions: 

(a) 

��

[1 10] , (e) 

��

[1 1 1] , 

(b) 

��

[1 2 1], (f) 

��

[1 22], 

(c) 

��

[01 2], (g) 

��

[12 3 ] , 

(d) 

��

[13 3] , (h) 

��

[ 1 03] . 

  Solution 

 The directions asked for are indicated in the cubic unit cells shown below. 
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 3.31  Determine the indices for the directions shown in the following cubic unit cell: 

 

  Solution 

 Direction A is a 

��

[ 01 1 ]direction, which determination is summarized as follows.  We first of all position 

the origin of the coordinate system at the tail of the direction vector;  then in terms of this new coordinate system 

 
  x y z 

 Projections 0a –b –c 

 Projections in terms of a, b, and c 0 –1 –1 

 Reduction to integers  not necessary  

 Enclosure  

��

[ 01 1 ]  
 

 Direction B is a 

��

[ 2 10]  direction, which determination is summarized as follows.  We first of all position 

the origin of the coordinate system at the tail of the direction vector;  then in terms of this new coordinate system 
 
  x y z 

 Projections –a 
  

��

b

2
 0c 

 Projections in terms of a, b, and c –1 
  

��

1

2
 0 

 Reduction to integers –2 1 0 

 Enclosure  

��

[ 2 10]  

 

 Direction C is a [112] direction, which determination is summarized as follows.  We first of all position the 

origin of the coordinate system at the tail of the direction vector;  then in terms of this new coordinate system 
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  x y z 

 Projections 
  

��

a

2
 

  

��

b

2
 c 

 Projections in terms of a, b, and c 
  

��

1

2
 

  

��

1

2
 1 

 Reduction to integers 1 1 2 

 Enclosure  [112] 
 

 Direction D is a 

��

[112 ]  direction, which determination is summarized as follows.  We first of all position 

the origin of the coordinate system at the tail of the direction vector;  then in terms of this new coordinate system 
 
  x y z 

 Projections 
  

��

a

2
 

  

��

b

2
 –c 

 Projections in terms of a, b, and c 
  

��

1

2
 

  

��

1

2
 –1 

 Reduction to integers 1 1 –2 

 Enclosure  

��

[112 ]  
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 3.32  Determine the indices for the directions shown in the following cubic unit cell: 

 

 
  Solution 

 Direction A is a 

��

[ 4 30]  direction, which determination is summarized as follows.  We first of all position 

the origin of the coordinate system at the tail of the direction vector;  then in terms of this new coordinate system 

 
  x y z 

 Projections –
  

��

2a

3
 

  

��

b

2
 0c 

 Projections in terms of a, b, and c –

��

2

3
 

��

1

2
 0 

 Reduction to integers –4 3 0 

 Enclosure  

��

[ 4 30]  
 

 Direction B is a 

��

[ 23 2]  direction, which determination is summarized as follows.  We first of all position 

the origin of the coordinate system at the tail of the direction vector;  then in terms of this new coordinate system 
 
  x y z 

 Projections 
    

��

2a

3
 –b 

  

��

2c

3
 

 Projections in terms of a, b, and c 
  

��

2

3
 –1 

  

��

2

3
 

 Reduction to integers 2 –3 2 

 Enclosure  

��

[ 23 2]  
 

 Direction C is a 

��

[13 3 ]  direction, which determination is summarized as follows.  We first of all position 

the origin of the coordinate system at the tail of the direction vector;  then in terms of this new coordinate system 
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  x y z 

 Projections 
  

��

a

3
 –b –c 

 Projections in terms of a, b, and c 

��

1

3
 –1 –1 

 Reduction to integers 1 –3 –3 

 Enclosure  

��

[13 3 ]  

 

 Direction D is a 

��

[136 ]  direction, which determination is summarized as follows.  We first of all position 

the origin of the coordinate system at the tail of the direction vector;  then in terms of this new coordinate system 
 
  x y z 

 Projections 
  

��

a

6
 

    

��

b

2
 –c 

 Projections in terms of a, b, and c 

��

1

6
 

  

��

1

2
 –1 

 Reduction to integers 1 3 –6 

 Enclosure  

��

[136 ]  
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 3.33 For tetragonal crystals, cite the indices of directions that are equivalent to each of the following 

directions: 

 (a) [001] 

 (b) [110] 

 (c) [010] 
 

  Solution 

 For tetragonal crystals a = b �•��c and �D = �E = �J = 90�q;  therefore, projections along the x and y axes are 

equivalent, which are not equivalent to projections along the z axis.  

 (a)  Therefore, for the [001] direction, there is only one equivalent direction: 

��

[ 001 ] . 

 (b)  For the [110] direction, equivalent directions are as follows:  

��

[ 1 1 0] , 

��

[ 1 10] , and 

��

[11 0]  

 (b)  Also, for the [010] direction, equivalent directions are the following:  

��

[ 01 0] , 

��

[100] , and 

��

[ 1 00] . 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 3.34  Convert the [100] and [111] directions into the four-index Miller–Bravais scheme for hexagonal unit 

cells. 
 

  Solution 

 For [100] 

 

 u' = 1, 

 v' = 0, 

 w' = 0 

 

From Equations 3.6 

 

  

��

u =  
1
3

(2u' ��  v' ) =  
1
3

[(2)(1) ��  0] =  
2
3

  

 

  

��

v =  
1
3

(2vÕ�� uÕ) =  
1
3

[(2)(0) ��  1] =  ��
1
3

  

 

  

��

t =  �� (u +  v) =  ��
2
3

��
1
3

�§��

�©��
�¨��

�·��

�¹��
�¸�� =  ��

1
3

 

 

w = w' = 0 

 

It is necessary to multiply these numbers by 3 in order to reduce them to the lowest set of integers.  Thus, the 

direction is represented as [uvtw] = 

��

[ 21 1 0] . 

 For [111], u' = 1, v' = 1, and w' = 1;  therefore, 

 

��

u =  
1
3

[(2)(1) ��  1] =  
1
3

 

 

��

v =  
1
3

[(2)(1) ��  1] =  
1
3

 

 

t =  

��

��
1
3

��
1
3

�§��

�©��
�¨��

�·��

�¹��
�¸��� ��

2
3

 

 

w = 1 
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If we again multiply these numbers by 3, then u = 1, v = 1, t = -2, and w = 3.  Thus, the direction is represented as 

Thus, the direction is represented as [uvtw] = 

��

[112 3] . 
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 3.35 Determine indices for the directions shown in the following hexagonal unit cells: 
 

  Solution 

 
 (a)  For this direction, projections on the a1, a2, and z axes are a, a/2, and c/2, or, in terms of a and c the 

projections are 1, 1/2, and 1/2, which when multiplied by the factor 2 become the smallest set of integers:  2, 1, and 

1.  This means that 

 u’  = 2 

 v’  = 1 

 w’  = 1 

Now, from Equations 3.6, the u, v, t, and w indices become 

 

  

��

u =
1
3

(2u' �� v' ) � 
1
3

(2)(2) �� (1)�> �@� 3
3

 �  1 

 

  

��

v =
1
3

(2vÕ�� uÕ) � 
1
3

(2)(1) �� (2)�> �@ �  0 

 

  

��

t � �� (u �� v) � �� 1 �� 0�� ��� �� 1 

w = w’ = 1 

 

No reduction is necessary inasmuch as all of these indices are integers;  therefore, this direction in the four-index 

scheme is 

��

[101 1]  
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 (b)  For this direction, projections on the a1, a2, and z axes are a/2, a, and 0c, or, in terms of a and c the 

projections are 1/2, 1, and 0, which when multiplied by the factor 2 become the smallest set of integers:  1, 2, and 0  

This means that 

  u’ = 1 

  v’ = 2 

  w’ = 0 

Now, from Equations 3.6, the u, v, t, and w indices become 

 

    

��

u � 
1
3

(2u' �� v) � 
1
3

(2)(1) �� 2�> �@� 0 

 

    

��

v � 
1
3

(2v' �� u' ) � 
1
3

(2)(2) �� 1�> �@� 1 

 

  

��

t � �� (u�� v) � �� 0 �� 1�� ��� �� 1 

 

    

��

w � w' � 0 

 

No reduction is necessary inasmuch as all of these indices are integers;  therefore, this direction in the four-index 

scheme is 

��

[ 011 0] . 
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 (c) For this direction projections on the a1, a2, and z axes are ��a, ��a, and c/2, or, in terms of a and c the 

projections are ��1, ��1, and 1/2, which when multiplied by the factor 2 become the smallest set of integers: ��2, ��2, 

and 1.  This means that 

  u’ = ��2 

  v’ = ��2 

  w’ = 1 

Now, from Equations 3.6, the u, v, t, and w indices become 

 

  

��

u � 
1
3

(2u' �� v) � 
1
3

(2)(��2) �� (��2)�> �@� �� 2
3

 

 

  

��

v � 
1
3

(2v' �� u' ) � 
1
3

(2)(��2) �� (��2)�> �@� ��
2
3

 

 

  

��

t � �� (u�� v) � �� ��
2
3

��
2
3

�§��

�©��
�¨��

�·��

�¹��
�¸��� 

4
3

 

 

  

��

w � w' � 1 

 

Now, in order to get the lowest set of integers, it is necessary to multiply all indices by the factor 3, with the result 

that this direction is a 

��

[ 2 2 43]  direction. 
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 (d)  For this direction, projections on the a1, a2, and z axes are 0a, ��a, and 0c, or, in terms of a and c the 

projections are 0, -1, and 0.  This means that 

  u’ = 0 

  v’ = ��1 

  w’ = 0 

Now, from Equations 3.6, the u, v, t, and w indices become 

 

  

��

u � 
1
3

(2u' �� v' ) � 
1
3

(2)(0) �� (��1)�> �@� 1
3

 

 

  

��

v � 
1
3

(2v' �� u' ) � 
1
3

(2)(��1) �� 0�> �@� �� 2
3

 

 

  

��

t � �� (u�� v) � ��
1
3

��
2
3

�§��

�©��
�¨��

�·��

�¹��
�¸��� 

1
3

 

 

  

��

w � wÕ� 0 

 

Now, in order to get the lowest set of integers, it is necessary to multiply all indices by the factor 3, with the result 

that this is a 

��

[12 10]  direction. 
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 3.36  Sketch the 

��

[1 1 23]  and 

��

[101 0]  directions in a hexagonal unit cell. 
 

  Solution 

 The first portion of this problem asks that we plot the 

��

[ 1 1 23]  within a hexagonal unit cell.  Below is 

shown this direction plotted within a hexagonal unit cell having a reduced-scale coordinate scheme. 

 

For this direction, projections on the a1, a2, a3, and c axes are respectively, ��1, ��1, 2, and 3, respectively.  In 

plotting this direction, we begin at the origin of the coordinate system, point o.  From here we proceed 1 unit 

distance along the ��a1 axis (to point p), from here 1 unit distance parallel to ��a2 axis (to point q), then 2 unit 

distances parallel (or along) the a3 axis (to point r), and finally, 3 unit distances parallel to the z axis (to point s).  

Thus, the 

��

[ 1 1 23]  direction is that vector that extends from point o to point s as shown. 

 

 Now we are asked to plot the 

��

[101 0]  within a hexagonal unit cell.  In the figure below is plotted this 

direction within a hexagonal unit cell having a reduced-scale coordinate scheme. 
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For this direction, projections on the a1, a2, a3, and c axes are respectively, 1, 0, ��1, and 0, respectively.  In plotting 

this direction, we begin at the origin of the coordinate system, point o.  From here we proceed 1 unit distance along 

the a1 axis (to point p).  Since there is no projection on the a2 axis it is not necessary to move parallel to this axis.  

Therefore, from point p we proceed 1 unit distance parallel to ��a3 axis (to point q).  And, finally, inasmuch as there 

is no projection along the z axis, it is not necessary to move parallel to this axis.  Thus, the 

��

[101 0]  direction is that 

vector that extends from point o to point q as shown. 
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 3.37  Using Equations 3.6a, 3.6b, 3.6c, and 3.6d, derive expressions for each of the three primed indices 

set (u�•�����Y�•�����D�Q�G���Z�•�����L�Q���W�H�U�P�V���R�I���W�K�H���I�R�X�U���X�Q�S�U�L�P�H�G���L�Q�G�L�F�H�V�����X�����Y�����W�����D�Q�G���Z���� 
 

  Solution 

 It is first necessary to do an expansion of Equation 3.6a as 

 

    

��

u � 
1
3

(2u' �� v) � 
2u'
3

��
v'
3

 

 

And solving this expression for v’ yields 

 

    

��

v' � 2u' �� 3u 

 

Now, substitution of this expression into Equation 3.6b gives 

 

    

��

v � 
1
3

(2vÕ�� uÕ) � 
1
3

(2)(2uÕ�� 3u) �� uÕ�> �@� uÕ�� 2u 

Or 

 

    

��

u' � v �� 2u 

 

And, solving for v from Equation 3.6c leads to 

 

  

��

v � �� (u �� t)  

 

which, when substituted into the above expression for u’ yields 

 

    

��

u' � v �� 2u � �� u �� t �� 2u � u �� t  

 

 In solving for an expression for v’, we begin with the one of the above expressions for this parameter—i.e., 

 

    

��

v' � 2u' �� 3u 

 

Now, substitution of the above expression for u’ into this equation leads to 

 

    

��

vÕ� 2uÕ�� 3u � (2)(u �� t) �� 3u � �� u �� 2t  
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And solving for u from Equation 3.6c gives 

 

  

��

u � �� v �� t  

 

which, when substituted in the previous equation results in the following expression for v’ 

 

    

��

vÕ� �� u �� 2t � �� (�� v �� t) �� 2t � v �� t  

 

And, of course from Equation 3.6d 

 

w’ = w 
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 Crystallographic Planes 

 
 3.38  (a) Draw an orthorhombic unit cell, and within that cell a (210) plane. 

 (b) Draw a monoclinic unit cell, and within that cell a (002) plane. 
 

  Solution 

 (a)  We are asked to draw a (210) plane within an orthorhombic unit cell.  First remove the three indices 

from the parentheses, and take their reciprocals--�L���H�����������������������D�Q�G���’�������7�K�L�V���P�H�D�Q�V���W�K�D�W���W�K�H���S�O�D�Q�H���L�Q�W�H�U�F�H�S�W�V���W�K�H��x-axis 

at a/2, the y-axis at b, and parallels the z-axis.  The plane that satisfies these requirements has been drawn within the 

orthorhombic unit cell below.  (For orthorhombic, a �•��b �•��c, and �D = �E = �J = 90�q.) 

 

 
 

 (b)  A (002) plane is drawn within the monoclinic cell shown below.  We first remove the parentheses and 

take the reciprocals of the indices;  this gives �f, �f, and 1/2.  Thus, the (002) plane parallels both x- and y-axes, and 

intercepts the z-axis at a/2, as indicated in the drawing.  (For monoclinic, a �•��b �•��c, and �D =  �J = 90�q �•���E.) 
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 3.39  What are the indices for the two planes drawn in the sketch below? 

 

 
 

  Solution 

 Plane 1 is a (020) plane.  The determination of its indices is summarized below. 

 
  x y z 

 Intercepts �fa  b/2 �fc  

 Intercepts in terms of a, b, and c �f 1/2 �f 

 Reciprocals of intercepts 0 2 0 

 Enclosure  (020) 

 

 Plane 2 is a 

��

(22 1)  plane, as summarized below. 

 

  x y z 

 

 Intercepts a/2 -b/2 c 

 Intercepts in terms of a, b, and c 1/2 -1/2 1 

 Reciprocals of intercepts 2 -2 1 

 Enclosure  

��

(22 1)  
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 3.40  Sketch within a cubic unit cell the following planes: 

 (a)  

��

(01 1 ) , (e)  

��

(1 11 ) , 

 (b)  

��

(112 ) , (f)  

��

(12 2 ) , 

 (c)  

��

(102 ) , (g)  

��

(1 23 ), 

 (d)  

��

(13 1) , (h)  

��

(01 3 ) 
 

  Solution 

 

 The planes called for are plotted in the cubic unit cells shown below. 
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 3.41  Determine the Miller indices for the planes shown in the following unit cell: 

 
  Solution 

 For plane A we will leave the origin at the unit cell as shown; this is a (403) plane, as summarized below. 

 
  x y z 

 Intercepts 

��

a

2
 �fb  

��

2c

3
 

 Intercepts in terms of a, b, and c 

��

1

2
 �f 

��

2

3
 

 Reciprocals of intercepts 2 0 

��

3

2
 

 Reduction 4 0 3 

 Enclosure  (403) 

 

 For plane B we will move the origin of the unit cell one unit cell distance to the right along the y axis, and 

one unit cell distance parallel to the x axis;  thus, this is a 

��

(1 1 2)  plane, as summarized below. 

 
  x y z 

 Intercepts – a – b 
  

��

c

2
 

 Intercepts in terms of a, b, and c – 1 – 1 
  

��

1

2
 

 Reciprocals of intercepts – 1 – 1 2 

 Reduction  (not necessary)  

 Enclosure  

��

(1 1 2)  
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 3.42  Determine the Miller indices for the planes shown in the following unit cell: 

 
  Solution 

 For plane A we will move the origin of the coordinate system one unit cell distance to the upward along the 

z axis;  thus, this is a 

��

(322 )  plane, as summarized below. 

 
  x y z 

 Intercepts 
  

��

a

3
 

  

��

b

2
 – 

  

��

c

2
 

 Intercepts in terms of a, b, and c 

��

1

3
 

  

��

1

2
 – 

  

��

1

2
 

 Reciprocals of intercepts 3  2 – 2 

 Reduction  (not necessary)  

 Enclosure  

��

(322 )  

 

 For plane B we will move the original of the coordinate system on unit cell distance along the x axis;  thus, 

this is a 

��

(1 01)  plane, as summarized below. 

 
  x y z 

 Intercepts – 

��

a

2
 �fb  

  

��

c

2
 

 Intercepts in terms of a, b, and c – 

��

1

2
 �f 

��

1

2
 

 Reciprocals of intercepts – 2 0 2 

 Reduction – 1 0 1 

 Enclosure  

��

(1 01)  
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 3.43  Determine the Miller indices for the planes shown in the following unit cell: 

 
  Solution 

 For plane A since the plane passes through the origin of the coordinate system as shown, we will move the 

origin of the coordinate system one unit cell distance to the right along the y axis;  thus, this is a 

��

(32 4)  plane, as 

summarized below. 

 
  x y z 

 Intercepts 
  

��

2a

3
 – b 

  

��

c

2
 

 Intercepts in terms of a, b, and c 

��

2

3
 – 1 

��

1

2
 

 Reciprocals of intercepts 

��

3

2
 – 1 2 

 Reduction 3 – 2 4 

 Enclosure  

��

(32 4)  
 

 For plane B we will leave the origin at the unit cell as shown;  this is a (221) plane, as summarized below. 

 
  x y z 

 Intercepts 
  

��

a

2
 

  

��

b

2
 c 

 Intercepts in terms of a, b, and c 

��

1

2
 

  

��

1

2
 1 

 Reciprocals of intercepts 2 2 1 

 Reduction  not necessary 

 Enclosure  (221) 
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 3.44  Cite the indices of the direction that results from the intersection of each of the following pair of planes 

within a cubic crystal: (a) (100) and (010) planes, (b) (111) and 

��

(111 ) planes, and (c) 

��

(101 ) and (001) 

planes. 

 

  Solution 

 (a)  In the figure below is shown (100) and (010) planes, and, as indicated, their intersection results in a [001], 

or equivalently, a 

��

[ 001 ]  direction. 

 

 

 (b)  In the figure below is shown (111) and 

��

(111 )  planes, and, as indicated, their intersection results in a 

��

[ 1 10] , or equivalently, a 

��

[11 0]  direction. 
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 (c) In the figure below is shown 

��

(101 )  and (001) planes, and, as indicated, their intersection results in a 

[010], or equivalently, a 

��

[ 01 0]  direction. 
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 3.45  Sketch the atomic packing of (a) the (100) plane for the BCC crystal structure, and (b) the (201) 

plane for the FCC crystal structure (similar to Figures 3.10b and 3.11b). 
 

  Solution 

 (a) A BCC unit cell, its (100) plane, and the atomic packing of this plane are indicated below.  

Corresponding atom positions in the two drawings are indicated by letters W, X, Y, and Z. 

 

 

 

 (b)  An FCC unit cell, its (201) plane, and the atomic packing of this plane are indicated below.  

Corresponding atom positions in the two drawing are indicated by the letters A, B, and C. 
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 3.46  Consider the reduced-sphere unit cell shown in Problem 3.20, having an origin of the coordinate 

system positioned at the atom labeled with an O. For the following sets of planes, determine which are equivalent: 

 (a) 

��

(001 ), (010), and, 

��

(1 00)  

 (b) 

��

(11 0) , 

��

(101 ), 

��

(01 1), and 

��

(1 1 0)  

 (c) 

��

(1 1 1 ) , 

��

(1 11 ) , 

��

(1 1 1) , and 

��

(11 1) 

 
 

  Solution 

 (a)  The unit cell in Problem 3.20 is body-centered tetragonal.  Of the three planes given in the problem 

statement the 

��

(1 00)  and (010) are equivalent—that is, have the same atomic packing.  The atomic packing for these 

two planes as well as the 

��

(001 )  are shown in the figure below. 

 

 

 

 (b)  Of the four planes cited in the problem statement, 

��

(11 0)  and 

��

(1 1 0)  are equivalent to one another—

have the same atomic packing.  The atomic arrangement of these planes is shown in the left drawing below.  
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Furthermore, the 

��

(101 )  and 

��

(01 1)  are equivalent to each other (but not to the other pair of planes);  their atomic 

arrangement is represented in the other drawing.  Note:  the 0.424 nm dimension in the left-most drawing comes 

from the relationship 

��

(0.30 nm)2 +  (0.30 nm)2�> �@1/ 2
.  Likewise, the 0.500 nm dimension found in the right-most 

drawing comes from 

��

(0.30 nm)2 +  (0.40 nm)2�> �@1/ 2
. 

 

 

 (c)  All of the 

��

(1 1 1 ) , 

��

(1 11 ) , 

��

(1 1 1) , and 

��

(11 1)  planes are equivalent, that is, have the same atomic 

packing as illustrated in the following figure: 

 

 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 3.47  Here are shown the atomic packing schemes for several different crystallographic directions for 

some hypothetical metal. For each direction the circles represent only those atoms contained within a unit cell, 

which circles are reduced from their actual size. 

 

 (a) To what crystal system does the unit cell belong? 

 (b) What would this crystal structure be called? 
 
  Solution 

 Below is constructed a unit cell using the six crystallographic directions that were provided in the problem. 
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 (a)  This unit cell belongs to the tetragonal system since a = b = 0.40 nm, c = 0.50 nm, and �D = �E��� ���J = 90�q. 

 (b) This crystal structure would be called face-centered tetragonal since the unit cell has tetragonal 

symmetry, and an atom is located at each of the corners, as well as at the centers of all six unit cell faces.  In the 

figure above, atoms are only shown at the centers of three faces;  however, atoms would also be situated at opposite 

faces.��



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 3.48  Below are shown three different crystallographic planes for a unit cell of some hypothetical metal. 

The circles represent atoms: 

 

 (a) To what crystal system does the unit cell belong? 

 (b) What would this crystal structure be called? 

 (c) If the density of this metal is 8.95 g/cm3, determine its atomic weight. 
 

  Solution 

 The unit cells constructed below show the three crystallographic planes that were provided in the problem 

statement. 

 

 

 (a)  This unit cell belongs to the orthorhombic crystal system since a = 0.30 nm, b = 0.40 nm, c = 0.35 nm, 

and �D = �E = �J = 90�q. 

 (b) This crystal structure would be called body-centered orthorhombic since the unit cell has orthorhombic 

symmetry, and an atom is located at each of the corners, as well as at the cell center. 

 (c)  In order to compute its atomic weight, we employ Equation 3.5, with n = 2;  thus 

 

    

��

A =  
�UVC NA

n
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��

� 
(8.95 g/cm3) (3.0)(4.0)(3.5)(�u 10-24 cm3/unit cell)(6.022 �u 10 23 atoms/mol)

2 atoms/unit cell
 

 

= 113.2 g/mol 
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 3.49  Convert the (010) and (101) planes into the four-index Miller–Bravais scheme for hexagonal unit 

cells. 
 

  Solution 

 For (010), h = 0, k = 1, and l = 0, and, from Equation 3.7, the value of i is equal to 

 

  

��

i � �� (h �� k) � �� (0 �� 1) � �� 1 

 

Therefore, the (010) plane becomes 

��

(011 0) . 

 Now for the (101) plane, h = 1, k = 0, and l = 1, and computation of i using Equation 3.7 leads to 

 

  

��

i � �� (h �� k) � �� [1 �� 0] � �� 1 

 

such that (101) becomes 

��

(101 1) . 
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 3.50  Determine the indices for the planes shown in the hexagonal unit cells below: 
 

  Solution 

 

 
 (a)  For this plane, intersections with the a1, a2, and z axes are �fa , �fa , and c/2 (the plane parallels both a1 

and a2 axes).  In terms of a and c these intersections are �f, �f, and ½, the respective reciprocals of which are 0, 0, 

and 2.  This means that 

  h = 0 

  k = 0 

  l = 2 

Now, from Equation 3.7, the value of i is 

 

  

��

i � �� (h �� k) � �� [ 0 �� 0] � 0 

 

Hence, this is a 

��

(0002)  plane. 
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 (b)  This plane passes through the origin of the coordinate axis system;  therefore, we translate this plane 

one unit distance along the x axis, per the sketch shown below: 

 

 
At this point the plane intersects the a1, a2, and z axes at a, �fa , and �fc , respectively (the plane parallels both a2 and 

z axes).  In terms of a and c these intersections are 1, �f, and �f, the respective reciprocals of which are 1, 0, and 0.  

This means that 

  h = 1 

  k = 0 

  l = 0 

Now, from Equation 3.7, the value of i is 

 

  

��

i � �� (h �� k) � �� (1 ��  0) � �� 1 

 

Hence, this is a 

��

(101 0)  plane. 
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 (c)  For this plane, intersections with the a1, a2, and z axes are –a, a, and c.  In terms of a and c these 

intersections are –1, 1, and 1, the respective reciprocals of which are 0, 1, and 1.  This means that 

  h = –1 

  k = 1 

  l = 1 

Now, from Equation 3.7, the value of i is 

 

  

��

i � �� (h �� k) � �� (��1 �� 1) � 0 

 

Hence, this is a 

��

(1 101)  plane. 
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 (d)  For this plane, intersections with the a1, a2, and z axes are –a/2, a, and c/2, respectively.  In terms of a 

and c these intersections are –1/2, 1, and 1/2, the respective reciprocals of which are –2, 1, and 2.  This means that 

  h = –2 

  k = 1 

  l = 2 

Now, from Equation 3.7, the value of i is 

 

  

��

i � �� (h �� k) � �� (��2 �� 1) � 1 

 

Therefore, this is a 

��

(2 112)  plane. 
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 3.51  Sketch the 

��

(11 01) and 

��

(112 0)  planes in a hexagonal unit cell. 
 

  Solution 

 For 

��

(11 01)  the reciprocals of h, k, i, and l are, respectively, 1, –1, �f, and 1;  thus, this plane is parallel to 

the a3 axis, and intersects the a1 axis at a, the a2 axis at –a, and the z-axis at c.  The plane having these intersections 

is shown in the figure below 

 

 

 For 

��

(112 0)  the reciprocals of h, k, i, and l are, respectively, 1, 1, –1/2, and �f;  thus, this plane is parallel to 

the z axis, and intersects the a1 axis at a, the a2 axis at a, and the a3 axis at –a/2.  The plane having these 

intersections is shown in the figure below. 
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 Linear and Planar Densities 

 

 3.52  (a) Derive linear density expressions for FCC [100] and [111] directions in terms of the atomic 

radius R. 

 (b) Compute and compare linear density values for these same two directions for silver. 
 

  Solution 

 (a)  In the figure below is shown a [100] direction within an FCC unit cell. 

 

 

 

For this [100] direction there is one atom at each of the two unit cell corners, and, thus, there is the equivalent of 1 

atom that is centered on the direction vector.  The length of this direction vector is just the unit cell edge length, 

    

��

2R 2 (Equation 3.1).  Therefore, the expression for the linear density of this plane is 

 

  

��

LD100 =  
number of atoms centered on [100] direction vector

length of [100] direction vector
 

 

    

��

� 
1 atom
2R 2

� 
1

2R 2
 

 

 An FCC unit cell within which is drawn a [111] direction is shown below. 
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For this [111] direction, the vector shown passes through only the centers of the single atom at each of its ends, and, 

thus, there is the equivalence of 1 atom that is centered on the direction vector.  The length of this direction vector is 

denoted by z in this figure, which is equal to 

 

    

��

z � x2 �� y2  

 

where x is the length of the bottom face diagonal, which is equal to 4R.  Furthermore, y is the unit cell edge length, 

which is equal to     

��

2R 2 (Equation 3.1).  Thus, using the above equation, the length z may be calculated as follows: 

 

    

��

z � (4R)2 �� (2R 2)2 � 24R2 � 2R 6  

 

Therefore, the expression for the linear density of this direction is 

 

  

��

LD111 =  
number of atoms centered on [111] direction vector

length of [111] direction vector
 

 

    

��

� 
1 atom
2R 6

� 
1

2R 6
 

 

 (b)  From the table inside the front cover, the atomic radius for silver is 0.144 nm.  Therefore, the linear 

density for the [100] direction is 

 

  

��

LD100(Ag) � 
1

2R 2
� 

1
(2)(0.144 nm) 2

� 2.46 nm��1 � 2.46�u109 m��1 

 

While for the [111] direction 

 

  

��

LD111(Ag) � 
1

2R 6
� 

1
(2)(0.144 nm) 6

� 1.42 nm��1 � 1.42�u109 m��1 
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 3.53  (a) Derive linear density expressions for BCC [110] and [111] directions in terms of the atomic 

radius R. 

 (b) Compute and compare linear density values for these same two directions for tungsten. 
 

  Solution 

 (a)  In the figure below is shown a [110] direction within a BCC unit cell. 

 

 

 

For this [110] direction there is one atom at each of the two unit cell corners, and, thus, there is the equivalence of 1 

atom that is centered on the direction vector. The length of this direction vector is denoted by x in this figure, which 

is equal to 

 

    

��

x � z2 �� y2  

 

where y is the unit cell edge length, which, from Equation 3.3 is equal to 
    

��

4R
3

.  Furthermore, z is the length of the 

unit cell diagonal, which is equal to 4R  Thus, using the above equation, the length x may be calculated as follows: 

 

    

��

x � (4R)2 ��
4R

3

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��

2

� 
32R2

3
� 4R

2
3

 

 

Therefore, the expression for the linear density of this direction is 

 

  

��

LD110 =  
number of atoms centered on [110] direction vector

length of [110] direction vector
 

 

    

��

� 
1 atom

4R
2
3

� 
3

4R 2
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 A BCC unit cell within which is drawn a [111] direction is shown below. 
 

 
 

For although the [111] direction vector shown passes through the centers of three atoms, there is an equivalence of 

only two atoms associated with this unit cell—one-half of each of the two atoms at the end of the vector, in addition 

to the center atom belongs entirely to the unit cell.  Furthermore, the length of the vector shown is equal to 4R, since 

all of the atoms whose centers the vector passes through touch one another.  Therefore, the linear density is equal to 

 

  

��

LD111 =  
number of atoms centered on [111] direction vector

length of [111] direction vector
 

 

    

��

� 
2 atoms

4R
� 

1
2R

 

 

 (b)  From the table inside the front cover, the atomic radius for tungsten is 0.137 nm.  Therefore, the linear 

density for the [110] direction is 

 

  

��

LD110(W) � 
3

4 R 2
� 

3

(4)(0.137nm) 2
� 2.23nm��1 � 2.23�u109 m��1 

 

While for the [111] direction 
 

  

��

LD111(W) � 
1
2R

� 
1

(2)(0.137nm)
� 3.65nm��1 � 3.65�u109 m��1 
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 3.54  (a) Derive planar density expressions for FCC (100) and (111) planes in terms of the atomic radius 

R. 

 (b) Compute and compare planar density values for these same two planes for nickel. 
 

  Solution 

 (a)  In the figure below is shown a (100) plane for an FCC unit cell. 
 

 

 

For this (100) plane there is one atom at each of the four cube corners, each of which is shared with four adjacent 

unit cells, while the center atom lies entirely within the unit cell.  Thus, there is the equivalence of 2 atoms 

associated with this FCC (100) plane.  The planar section represented in the above figure is a square, wherein the 

side lengths are equal to the unit cell edge length,     

��

2R 2 (Equation 3.1);  and, thus, the area of this square is just 

    

��

(2R 2)2 = 8R2.  Hence, the planar density for this (100) plane is just 

 

  

��

PD100 =  
number of atoms centered on (100) plane

area of (100) plane
 

 

    

��

� 
2 atoms

8R2
� 

1

4R2
 

 

 That portion of an FCC (111) plane contained within a unit cell is shown below. 
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There are six atoms whose centers lie on this plane, which are labeled A through F.  One-sixth of each of atoms A, 

D, and F are associated with this plane (yielding an equivalence of one-half atom), with one-half of each of atoms 

B, C, and E (or an equivalence of one and one-half atoms) for a total equivalence of two atoms.  Now, the area of 

the triangle shown in the above figure is equal to one-half of the product of the base length and the height, h.  If we 

consider half of the triangle, then 

 

    

��

(2R)2 �� h2 � (4R)2 

 

which leads to h =     

��

2R 3.  Thus, the area is equal to 

 

    

��

Area� 
4R(h)

2
� 

(4R)(2R 3)
2

� 4R2 3  

 

And, thus, the planar density is 

 

  

��

PD111 =  
number of atoms centered on (111) plane

area of (111) plane
 

 

    

��

� 
2 atoms

4R2 3
� 

1

2R2 3
 

 

 (b)  From the table inside the front cover, the atomic radius for nickel is 0.125 nm.  Therefore, the planar 

density for the (100) plane is 

 

  

��

PD100(Ni) � 
1

4 R2
� 

1

4 (0.125nm)2
� 16.00nm��2 � 1.600�u1019 m��2 

 

While for the (111) plane 

 

  

��

PD111(Ni) � 
1

2R2 3
� 

1

2 3 (0.125nm)2
� 18.48nm��2 � 1.848�u1019 m��2  
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 3.55  (a) Derive planar density expressions for BCC (100) and (110) planes in terms of the atomic radius 

R. 

 (b) Compute and compare planar density values for these same two planes for vanadium. 
 

  Solution 

 (a)  A BCC unit cell within which is drawn a (100) plane is shown below. 
 

 
 

For this (100) plane there is one atom at each of the four cube corners, each of which is shared with four adjacent 

unit cells.  Thus, there is the equivalence of 1 atom associated with this BCC (100) plane.  The planar section 

represented in the above figure is a square, wherein the side lengths are equal to the unit cell edge length, 
    

��

4R
3

 

(Equation 3.3);  and, thus, the area of this square is just 
    

��

4R
3

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��

2

 = 
    

��

16R2

3
.  Hence, the planar density for this (100) 

plane is just 
 

  

��

PD100 =  
number of atoms centered on (100) plane

area of (100) plane
 

 

    

��

� 
1 atom

16 R2

3

� 
3

16 R2
 

 

 A BCC unit cell within which is drawn a (110) plane is shown below. 
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For this (110) plane there is one atom at each of the four cube corners through which it passes, each of which is 

shared with four adjacent unit cells, while the center atom lies entirely within the unit cell.  Thus, there is the 

equivalence of 2 atoms associated with this BCC (110) plane.  The planar section represented in the above figure is 

a rectangle, as noted in the figure below. 

 

 

 

From this figure, the area of the rectangle is the product of x and y.  The length x is just the unit cell edge length, 

which for BCC (Equation 3.3) is 
    

��

4R
3

.  Now, the diagonal length z is equal to 4R.  For the triangle bounded by the 

lengths x, y, and z 

 

    

��

y � z2 �� x2  

Or 

 

    

��

y � (4R)2 ��
4R

3

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��

2

� 
4R 2

3
 

 

Thus, in terms of R, the area of this (110) plane is just 
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��

Area(110) � xy � 
4R

3

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��

4R 2

3

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��� 

16R2 2

3
 

 

And, finally, the planar density for this (110) plane is just 

 

  

��

PD110 =  
number of atoms centered on (110) plane

area of (110) plane
 

 

    

��

� 
2 atoms

16R2 2

3

� 
3

8R2 2
 

 

 (b)  From the table inside the front cover, the atomic radius for vanadium is 0.132 nm.  Therefore, the 

planar density for the (100) plane is 

 

  

��

PD100(V) � 
3

16R2
� 

3

16(0.132nm)2
� 10.76nm��2 � 1.076�u1019 m��2 

 

While for the (110) plane 

 

  

��

PD110(V) � 
3

8R2 2
� 

3

8(0.132nm)2 2
� 15.22nm��2 � 1.522�u1019 m��2 
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 3.56  (a) Derive the planar density expression for the HCP (0001) plane in terms of the atomic radius R. 

 (b) Compute the planar density value for this same plane for magnesium. 
 

  Solution 

 (a)  A (0001) plane for an HCP unit cell is show below. 

 

 

 

Each of the 6 perimeter atoms in this plane is shared with three other unit cells, whereas the center atom is shared 

with no other unit cells;  this gives rise to three equivalent atoms belonging to this plane. 

 In terms of the atomic radius R, the area of each of the 6 equilateral triangles that have been drawn is 

    

��

R2 3, or the total area of the plane shown is     

��

6R2 3.  And the planar density for this (0001) plane is equal to 

 

  

��

PD0001 � 
number of atoms centered on (0001) plane

area of (0001) plane
 

 

    

��

� 
3 atoms

6R2 3
� 

1

2R2 3
 

 

 (b)  From the table inside the front cover, the atomic radius for magnesium is 0.160 nm.  Therefore, the 

planar density for the (0001) plane is 

 

  

��

PD0001(Mg) � 
1

2R2 3
� 

1

2(0.160nm)2 3
� 11.28nm��2 � 1.128�u1019 m��2 
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 Polycrystalline Materials 

 

 3.57  Explain why the properties of polycrystalline materials are most often isotropic. 
 

  Solution 

 Although each individual grain in a polycrystalline material may be anisotropic, if the grains have random 

orientations, then the solid aggregate of the many anisotropic grains will behave isotropically. 
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 X-ray Diffraction:  Determination of Crystal Structures 

 

 3.58  Using the data for molybdenum in Table 3.1, compute the interplanar spacing for the (111) set of 

planes. 
 

  Solution 

 From the Table 3.1, molybdenum has a BCC crystal structure and an atomic radius of 0.1363 nm.  Using 

Equation (3.3), the lattice parameter a may be computed as 

 

  

��

a� 
4 R

3
� 

(4)(0.1363 nm)
3

� 0.3148 nm 

 
Now, the interplanar spacing d111 maybe determined using Equation 3.14 as 

 

  

��

d111 =
a

(1)2 +  (1)2 +  (1)2
=

0.3148 nm
3

=  0.1817 nm 
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 3.59  Determine the expected diffraction angle for the first-order reflection from the (113) set of planes for 

FCC platinum when monochromatic radiation of wavelength 0.1542 nm is used. 
 

  Solution 

 We first calculate the lattice parameter using Equation 3.1 and the value of R (0.1387 nm) cited in Table 

3.1, as follows: 

 

  

��

a = 2R 2 = (2)(0.1387 nm)( 2) = 0.3923  nm 

 

Next, the interplanar spacing for the (113) set of planes may be determined using Equation 3.14 according to 

 

  

��

d113 =  
a

(1)2 +  (1)2 +  (3)2
=

0.3923 nm
11

=  0.1183  nm 

 

And finally, employment of Equation 3.13 yields the diffraction angle as 

 

  

��

sin �T=
n�O

2d113
=

(1)(0.1542 nm)
(2)(0.1183 nm)

=  0.652 

 

Which leads to 

 

��

�T= sin-1(0.652) =  40.69�q 

 

And, finally 

 

��

2�T= (2)(40.69�q) =  81.38�q 
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 3.60  Using the data for aluminum in Table 3.1, compute the interplanar spacings for the (110) and (221) 

sets of planes. 
 

  Solution 

 From the table, aluminum has an FCC crystal structure and an atomic radius of 0.1431 nm.  Using 

Equation 3.1 the lattice parameter, a, may be computed as 

 

  

��

a = 2R 2 = (2) (0.1431nm)( 2) = 0.4047 nm 

 
Now, the d110 interplanar spacing may be determined using Equation 3.14 as 

 

  

��

d110 =  
a

(1)2 +  (1)2 +  (0)2
=

0.4047 nm
2

=  0.2862  nm 

 
And, similarly for d221 

 

  

��

d221 =
a

(2)2 +  (2)2 +  (1)2
=

0.4047 nm
9

=  0.1349  nm 
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 3.61  The metal iridium has an FCC crystal structure. If the angle of diffraction for the (220) set of planes 

occurs at 69.22�q (first-order reflection) when monochromatic x-radiation having a wavelength of 0.1542 nm is 

used, compute (a) the interplanar spacing for this set of planes, and (b) the atomic radius for an iridium atom. 
 

  Solution 

 (a)  From the data given in the problem, and realizing that 69.22�q = 2�T, the interplanar spacing for the 

(220) set of planes for iridium may be computed using Equation 3.13 as 

 

  

��

d220 =
n�O

2 sin �T
=

(1)(0.1542  nm)

(2) sin 
69.22�q

2

�§��

�©��
�¨��

�·��

�¹��
�¸��

=  0.1357  nm 

 

 (b)  In order to compute the atomic radius we must first determine the lattice parameter, a, using Equation 

3.14, and then R from Equation 3.1 since Ir has an FCC crystal structure.  Therefore, 

 

  

��

a = d220 (2)2 +  (2)2 +  (0)2 �  (0.1357  nm)( 8) =  0.3838  nm 

 

And, from Equation 3.1 

 

  

��

R =
a

2 2
=

0.3838 nm
2 2

=  0.1357  nm 
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 3.62  The metal rubidium has a BCC crystal structure. If the angle of diffraction for the (321) set of planes 

occurs at 27.00�q (first-order reflection) when monochromatic x-radiation having a wavelength of 0.0711 nm is 

used, compute (a) the interplanar spacing for this set of planes, and (b) the atomic radius for the rubidium atom. 
 

  Solution 

 (a)  From the data given in the problem, and realizing that 27.00�q = 2�T, the interplanar spacing for the 

(321) set of planes for Rb may be computed using Equation 3.13 as follows: 

 

  

��

d321 =
n�O

2 sin �T
=

(1)(0.0711  nm)

(2) sin
27.00�q

2

�§��

�©��
�¨��

�·��

�¹��
�¸��

=  0.1523  nm 

 

 (b)  In order to compute the atomic radius we must first determine the lattice parameter, a, using Equation 

3.14, and then R from Equation 3.3 since Rb has a BCC crystal structure.  Therefore, 

 

  

��

a= d321 (3)2 +  (2)2 +  (1)2 � (0.1523 nm)( 14) � 0.5700 nm 

 

And, from Equation 3.3 

 

  

��

R � 
a 3

4
=

(0.5700 nm) 3

4
� 0.2468 nm 
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 3.63  For which set of crystallographic planes will a first-order diffraction peak occur at a diffraction 

angle of 46.21�q for BCC iron when monochromatic radiation having a wavelength of 0.0711 nm is used? 
 

  Solution 

 The first step to solve this problem is to compute the interplanar spacing using Equation 3.13.  Thus, 

 

  

��

dhkl � 
n�O

2 sin �T
=

(1)(0.0711  nm)

(2) sin
46.21�q

2

�§��

�©��
�¨��

�·��

�¹��
�¸��

� 0.0906 nm 

 

Now, employment of both Equations 3.14 and 3.3 (since Fe’s crystal structure is BCC), and the value of R for iron 

from Table 3.1 (0.1241 nm) leads to 

 

  

��

 h2 +  k2 +  l2 =
a

dhkl
=

4R
dhkl 3

 

 

��

=  
(4)(0.1241 nm)
(0.0906 nm)( 3)

 =  3.163 

 

This means that 

 

  

��

h2 +  k2 +  l2 = (3.163)2 = 10.0 

 

By trial and error, the only three integers having a sum that is even, and the sum of the squares of which equals 10.0 

are 3, 1, and 0.  Therefore, the set of planes responsible for this diffraction peak are the (310) ones. 
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 3.64  Figure 3.22 shows an x-ray diffraction pattern for �D-iron taken using a diffractometer and 

monochromatic x-radiation having a wavelength of 0.1542 nm; each diffraction peak on the pattern has been 

indexed. Compute the interplanar spacing for each set of planes indexed; also determine the lattice parameter of Fe 

for each of the peaks. 

 
 

  Solution 

 For each peak, in order to compute the interplanar spacing and the lattice parameter we must employ 

Equations 3.14 and 3.13, respectively.  The first peak of Figure 3.22, which results from diffraction by the (110) set 

of planes, occurs at ���T = ���������q;  the corresponding interplanar spacing for this set of planes, using Equation 3.13, is 

equal to 

 

  

��

d110 =
n�O

2 sin �T
=

(1)(0.1542 nm)

(2) sin 
45.0�q

2

�§��

�©��
�¨��

�·��

�¹��
�¸��

 =  0.2015 nm 

 

And, from Equation 3.14, the lattice parameter a is determined as 

 

  

��

a =  dhkl (h)2 +  (k)2 +  (l)2  =  d110 (1)2 +  (1)2 +  (0)2  

 

��

=  (0.2015 nm) 2 =  0.2850 nm 

 

Similar computations are made for the other peaks which results are tabulated below: 
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 Peak Index 2�T dhkl(nm) a (nm) 

 

 200 65.1 0.1433 0.2866 

 211 82.8 0.1166 0.2856 
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 3.65  The diffraction peaks shown in Figure 3.22 are indexed according to the reflection rules for BCC 

(i.e., the sum h + k + l must be even). Cite the h, k, and l indices for the first four diffraction peaks for FCC crystals 

consistent with h, k, and l all being either odd or even. 
 

  Solution 

 The first four diffraction peaks that will occur for FCC consistent with h, k, and l all being odd or even are 

(111), (200), (220), and (311). 
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 3.66  Figure 3.25 shows the first four peaks of the x-ray diffraction pattern for copper, which has an FCC 

crystal structure; monochromatic x-radiation having a wavelength of 0.1542 nm was used. 

 (a) Index (i.e., give h, k, and l indices) for each of these peaks. 

 (b) Determine the interplanar spacing for each of the peaks. 

 (c) For each peak, determine the atomic radius for Cu and compare these with the value presented in 

Table 3.1. 

 

 
 

  Solution 

 (a)  Since Cu has an FCC crystal structure, only those peaks for which h, k, and l are all either odd or even 

will appear.  Therefore, the first peak results by diffraction from (111) planes. 

 (b)  For each peak, in order to calculate the interplanar spacing we must employ Equation 3.13.  For the 

first peak which occurs at 43.8�q 
 

  

��

d111 =
n�O

2 sin �T
=

(1)(0.1542 nm)

(2) sin
43.8�q

2

�§��

�©��
�¨��

�·��

�¹��
�¸��

 =  0.2067 nm 

 

 (c)  Employment of Equations 3.14 and 3.1 is necessary for the computation of R for Cu as 

 

  

��

R =
a

2 2
=

(dhkl) (h)2 +  (k)2 +  (l)2

2 2
 

 

��

=
(0.2067nm) (1)2 +  (1)2 +  (1)2

2 2
 

 

= 0.1266 nm 

 

Similar computations are made for the other peaks which results are tabulated below: 
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 Peak Index 2�T dhkl(nm) R (nm) 

 200 50.8 0.1797 0.1271 

 220 74.4 0.1275 0.1275 

 311 90.4 0.1087 0.1274 
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 Noncrystalline Solids 
 

 3.67  Would you expect a material in which the atomic bonding is predominantly ionic in nature to be 

more or less likely to form a noncrystalline solid upon solidification than a covalent material? Why? (See Section 

2.6.) 
 

  Solution 

 A material in which atomic bonding is predominantly ionic in nature is less likely to form a noncrystalline 

solid upon solidification than a covalent material because covalent bonds are directional whereas ionic bonds are 

nondirectional;  it is more difficult for the atoms in a covalent material to assume positions giving rise to an ordered 

structure. 
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CHAPTER 4 

 

IMPERFECTIONS IN SOLIDS  

 

PROBLEM SOLUTIONS 

 

 

 Vacancies and Self-Interstitials  

 

 4.1  Calculate the fraction of atom sites that are vacant for lead at its melting temperature of 327°C (600 

K).  Assume an energy for vacancy formation of 0.55 eV/atom. 
 

  Solution 

 In order to compute the fraction of atom sites that are vacant in lead at 600 K, we must employ Equation 
4.1.  As stated in the problem, Qv = 0.55 eV/atom.  Thus, 

 

  

��

Nv
N

=  exp ��
Qv
kT

�§��

�©��
�¨��

�·��

�¹��
�¸��=  exp ��

0.55 eV/atom

(8.62 �u 10��5  eV/atom- K) (600 K)

�ª��

�¬��
�«��

�º��

�¼��
�»�� 

 

= 2.41 �u 10-5 
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 4.2  Calculate the number of vacancies per cubic meter in iron at 850�qC.  The energy for vacancy 

formation is 1.08 eV/atom.  Furthermore, the density and atomic weight for Fe are 7.65 g/cm3 and 55.85 g/mol, 

respectively. 
 

  Solution 

 Determination of the number of vacancies per cubic meter in iron at 850�qC (1123 K) requires the 

utilization of Equations 4.1 and 4.2 as follows: 

 

  

��

Nv =  N exp ��
Qv
kT

�§��

�©��
�¨��

�·��

�¹��
�¸��=  

NA �UFe
AFe

exp ��
Qv
kT

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

And incorporation of values of the parameters provided in the problem statement into the above equation leads to 

 

��

Nv =  
(6.022 �u 1023atoms/mol)(7.65 g/cm3)

55.85 g/mol
exp ��  

1.08 eV/atom

(8.62 �u 10��5  eV/atom�� K) (850�qC + 273 K)

�ª��

�¬��
�«��

�º��

�¼��
�»�� 

 

= 1.18 �u 1018 cm-3 = 1.18 �u 1024 m-3 
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 4.3  Calculate the activation energy for vacancy formation in aluminum, given that the equilibrium number 

of vacancies at 500�qC (773 K) is 7.57 �u 1023 m-3.  The atomic weight and density (at 500�qC) for aluminum are, 

respectively, 26.98 g/mol and 2.62 g/cm3. 
 

  Solution 

 Upon examination of Equation 4.1, all parameters besides Qv are given except N, the total number of 

atomic sites.  However, N is related to the density, (�UAl), Avogadro's number (NA), and the atomic weight (AAl) 

according to Equation 4.2 as 
 

  

��

N =  
NA �UAl

AAl
 

 

��

=  
(6.022 �u 1023  atoms/mol)(2.62 g/cm3)

26.98 g/mol
 

 

= 5.85 �u 1022 atoms/cm3 = 5.85 �u 1028 atoms/m3 

 

Now, taking natural logarithms of both sides of Equation 4.1,  

 

    

��

ln Nv =  ln N ��
Qv
kT

 

 

and, after some algebraic manipulation 
 

    

��

Qv =  ��  kT ln 
Nv
N

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

��

=  ��  (8.62 �u 10-5  eV/atom- K)(500�qC + 273 K)  ln 
7.57 �u 1023  m��3

5.85 �u 1028 m��3

�ª��

�¬��
�«��

�º��

�¼��
�»�� 

 

= 0.75 eV/atom 
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 Impurities in Solids 

 

 4.4  Below, atomic radius, crystal structure, electronegativity, and the most common valence are tabulated, 

for several elements; for those that are nonmetals, only atomic radii are indicated. 

 

Element Atomic Radius 
(nm) Crystal Structure Electronegativity Valence 

Cu 0.1278 FCC 1.9 +2 

C 0.071    

H 0.046    

O 0.060    

Ag 0.1445 FCC 1.9 +1 

Al  0.1431 FCC 1.5 +3 

Co 0.1253 HCP 1.8 +2 

Cr 0.1249 BCC 1.6 +3 

Fe 0.1241 BCC 1.8 +2 

Ni 0.1246 FCC 1.8 +2 

Pd 0.1376 FCC 2.2 +2 

Pt 0.1387 FCC 2.2 +2 

Zn 0.1332 HCP 1.6 +2 

 

 Which of these elements would you expect to form the following with copper: 

 (a) A substitutional solid solution having complete solubility 

 (b) A substitutional solid solution of incomplete solubility 

 (c) An interstitial solid solution 
 

  Solution 

 In this problem we are asked to cite which of the elements listed form with Cu the three possible solid 

solution types.  For complete substitutional solubility the following criteria must be met:  1) the difference in atomic 

radii between Cu and the other element (�' R%) must be less than ±15%, 2) the crystal structures must be the same, 

3) the electronegativities must be similar, and 4) the valences should be the same, or nearly the same.  Below are 

tabulated, for the various elements, these criteria. 
 
   Crystal �' Electro-  
 Element �' R% Structure negativity Valence 

 Cu  FCC  2+ 
 C –44 
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 H –64 
 O –53 
 Ag +13 FCC 0 1+ 
 Al  +12 FCC -0.4 3+ 
 Co -2 HCP -0.1 2+ 
 Cr -2 BCC -0.3 3+ 
 Fe -3 BCC -0.1 2+ 
 Ni -3 FCC -0.1 2+ 
 Pd +8 FCC +0.3 2+ 
 Pt +9 FCC +0.3 2+ 
 Zn +4 HCP -0.3 2+ 
 

 (a) Ni, Pd, and Pt meet all of the criteria and thus form substitutional solid solutions having complete 

solubility.  At elevated temperatures Co and Fe experience allotropic transformations to the FCC crystal structure, 

and thus display complete solid solubility at these temperatures. 

 (b) Ag, Al, Co, Cr, Fe, and Zn form substitutional solid solutions of incomplete solubility.  All these metals 

have either BCC or HCP crystal structures, and/or the difference between their atomic radii and that for Cu are 

greater than ±15%, and/or have a valence different than 2+. 

 (c) C, H, and O form interstitial solid solutions.  These elements have atomic radii that are significantly 

smaller than the atomic radius of Cu. 
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 4.5  For both FCC and BCC crystal structures, there are two different types of interstitial sites. In each 

case, one site is larger than the other, and is normally occupied by impurity atoms. For FCC, this larger one is 

located at the center of each edge of the unit cell; it is termed an octahedral interstitial site. On the other hand, with 

BCC the larger site type is found at 0 

��

1

2

��

1

4
  positions—that is, lying on {100} faces, and situated midway between 

two unit cell edges on this face and one-quarter of the distance between the other two unit cell edges; it is termed a 

tetrahedral interstitial site. For both FCC and BCC crystal structures, compute the radius r of an impurity atom 

that will just fit into one of these sites in terms of the atomic radius R of the host atom. 
 

  Solution 

 In the drawing below is shown the atoms on the (100) face of an FCC unit cell;  the interstitial site is at the 

center of the edge. 
 

 

 

The diameter of an atom that will just fit into this site (2r) is just the difference between that unit cell edge length 

(a) and the radii of the two host atoms that are located on either side of the site (R);  that is 

 

2r = a – 2R 

 

However, for FCC a is related to R according to Equation 3.1 as     

��

a � 2R 2;  therefore, solving for r from the above 

equation gives 
 

    

��

r =  
a�� 2R

2
=  

2R 2 �� 2R
2

=  0.41R 

 

 A (100) face of a BCC unit cell is shown below. 
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The interstitial atom that just fits into this interstitial site is shown by the small circle.  It is situated in the plane of 

this (100) face, midway between the two vertical unit cell edges, and one quarter of the distance between the bottom 

and top cell edges.  From the right triangle that is defined by the three arrows we may write 

 

    

��

a
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

 +  
a
4

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

 =  (R �� r) 2 

 

However, from Equation 3.3, 
    

��

a =  
4R

3
, and, therefore, making this substitution, the above equation takes the form 

 

    

��

4R
2 3

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

 +  
4R

4 3

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

 =  R2 + 2Rr + r 2 

 

After rearrangement the following quadratic equation results: 

 

    

��

r 2 +  2Rr ��  0.667R2 =  0 

 

And upon solving for r:  
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��

r  �  
��(2R)  �r  (2R)2  ��  (4)(1)(��0.667R2)

2
 

 

    

��

�  
��2R�r  2.582R

2
 

 

And, finally 

 

    

��

r (��)  �  
��2R �� 2.582R

2
 �  0.291R 

    

��

r (��)  �  
��2R �� 2.582R

2
 �  �� 2.291R 

Of course, only the r(+) root is possible, and, therefore, r = 0.291R. 

 Thus, for a host atom of radius R, the size of an interstitial site for FCC is approximately 1.4 times that for 

BCC. 
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 Specification of Composition 

 

 4.6  Derive the following equations: 

 (a) Equation 4.7a 

 (b) Equation 4.9a 

 (c) Equation 4.10a 

 (d) Equation 4.11b 
 

  Solution 

 (a)  This problem asks that we derive Equation 4.7a.  To begin, C1 is defined according to Equation 4.3 as 

 

    

��

C1  =  
m1

m1  ��  m2
 �u  100 

 

or, equivalently 

 

    

��

C1  =  
m1

'

m1
'  ��  m2

'
 �u  100 

 

where the primed m's indicate masses in grams.  From Equation 4.4 we may write 

 

    

��

m1
'
 

=  nm1 A1 

 

    

��

m2
'
 
=  nm2 A2 

 
And, substitution into the C1 expression above 

 

    

��

C1 =  
nm1 A1

nm1 A1  ��  nm2 A2
 �u  100 

 

From Equation 4.5 it is the case that 

 

    

��

nm1 =  
C1

' (nm1  ��  nm2)
100
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��

nm2 =  
C2

' (nm1  ��  nm2)
100

 

 

And substitution of these expressions into the above equation leads to 

 

    

��

C1 =  
C1

' A1

C1
' A1  ��  C2

' A2

 �u  100 

 

which is just Equation 4.7a. 

 

 (b)  This problem asks that we derive Equation 4.9a.  To begin,     

��

C1
"  is defined as the mass of component 1 

per unit volume of alloy, or 

 

    

��

C1
"
 

=  
m1
V

 

 
If we assume that the total alloy volume V is equal to the sum of the volumes of the two constituents--i.e., V = V1 + 

V2--then 

 

    

��

C1
" =  

m1
V1  ��  V2

 

 

Furthermore, the volume of each constituent is related to its density and mass as 

 

    

��

V1 =  
m1
�U1

 

 

    

��

V2 =  
m2
�U2

 

 

This leads to  

 

    

��

C1
" =  

m1
m1
�U1

 ��  
m2
�U2

 

 
From Equation 4.3, m1 and m2 may be expressed as follows: 



 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

    

��

m1 =  
C1(m1  ��  m2)

100
 

 

    

��

m2 =  
C2 (m1  ��  m2)

100
 

 

Substitution of these equations into the preceding expression yields 

 

    

��

C1
" =  

C1(m1  ��  m2)
100

C1(m1  ��  m2)
100
�U1

 ��  

C2 (m1  ��  m2)
100
�U2

 

 

    

��

� 
C1

C1
�U1

��
C2
�U2

 

 
If the densities �U1 and �U2 are given in units of g/cm3, then conversion to units of kg/m3 requires that we multiply 

this equation by 103, inasmuch as 

 

1 g/cm3 = 103 kg/m3 

 

Therefore, the previous equation takes the form 

 

  

��

C1
" =  

C1
C1
�U1

��
C2
�U2

 �u  103 

 

which is the desired expression. 

 

 
 (c)  Now we are asked to derive Equation 4.10a.  The density of an alloy �Uave is just the total alloy mass M 

divided by its volume V 

 

    

��

�Uave =  
M
V
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Or, in terms of the component elements 1 and 2 

 

    

��

�Uave =  
m1  ��  m2
V1  ��  V2

 

 

[Note:  here it is assumed that the total alloy volume is equal to the separate volumes of the individual components, 
which is only an approximation;  normally V will not be exactly equal to (V1 + V2)]. 

Each of V1 and V2 may be expressed in terms of its mass and density as, 

 

    

��

V1 � 
m1
�U1

 

 

    

��

V2 � 
m2
�U2

 

 

When these expressions are substituted into the above equation, we get 

 

    

��

�Uave =  
m1  ��  m2
m1
�U1

 ��  
m2
�U2

 

 

Furthermore, from Equation 4.3 

 

    

��

m1 =  
C1(m1  ��  m2)

100
 

 

    

��

m2 =  
C2 (m1  ��  m2)

100
 

 
Which, when substituted into the  above �Uave expression yields 

 

    

��

�Uave =  
m1  ��  m2

C1(m1  ��  m2)
100
�U1

 ��  

C2 (m1  ��  m2)
100
�U2

 

 

And, finally, this equation reduces to 
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��

=  
100

C1
�U1

 ��  
C2
�U2

 

 
 (d)  And, finally, the derivation of Equation 4.11b for Aave is requested.  The alloy average molecular 

weight is just the ratio of total alloy mass in grams M’  and the total number of moles in the alloy Nm.  That is 

 

    

��

Aave =  
MÕ
Nm

=  
m1

'
 
��  m2

'

nm1  ��  nm2
 

 

But using Equation 4.4 we may write 

 

    

��

m1
'  =  nm1 A1 

 

    

��

m2
'  =  nm2 A2 

 
Which, when substituted into the above Aave expression yields 

 

    

��

Aave =  
M'
Nm

 =  
nm1 A1  ��  nm2 A2

nm1  ��  nm2
 

 

Furthermore, from Equation 4.5 
 

    

��

nm1 =  
C1

' (nm1  ��  nm2)
100

 

 

    

��

nm2 =  
C2

' (nm1  ��  nm2)
100

 

 
Thus, substitution of these expressions into the above equation for Aave yields 

 

    

��

Aave =  

C1
' A1(nm1  ��  nm2)

100
 ��  

C2
' A2 (nm1  ��  nm2)

100
nm1  ��  nm2
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��

=  
C1

' A1  ��  C2
' A2

100
 

 

which is the desired result. 
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 4.7  What is the composition, in atom percent, of an alloy that consists of 30 wt% Zn and 70 wt% Cu? 
 

  Solution 

 In order to compute composition, in atom percent, of a 30 wt% Zn-70 wt% Cu alloy, we employ Equation 

4.6 as 

 

  

��

CZn
'  =  

CZnACu
CZnACu �� CCuAZn

 �u  100 

 

��

=  
(30)(63.55 g/mol)

(30)(63.55 g/mol)  ��  (70)(65.41 g/mol)
 �u  100 

 

= 29.4 at% 

 

 

  

��

CCu
'  =  

CCuAZn
CZnACu �� CCuAZn

 �u  100 

 

��

=  
(70)(65.41 g/mol)

(30)(63.55 g/mol)  ��  (70)(65.41 g/mol)
 �u  100 

 

= 70.6 at% 
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 4.8  What is the composition, in weight percent, of an alloy that consists of 6 at% Pb and 94 at% Sn? 
 

  Solution 

 In order to compute composition, in weight percent, of a 6 at% Pb-94 at% Sn alloy, we employ Equation 

4.7 as 

 

  

��

CPb =  
CPb

' APb

CPb
' APb�� CSn

' ASn

 �u  100 

 

��

=  
(6)(207.2 g/mol)

(6)(207.2 g/mol)  ��  (94)(118.71 g/mol)
 �u  100 

 

= 10.0 wt% 

 

 

  

��

CSn =  
CSn

' ASn

CPb
' APb�� CSn

' ASn

 �u  100 

 

��

=  
(94)(118.71 g/mol)

(6)(207.2 g/mol) �� (94)(118.71 g/mol)
 �u  100 

 

= 90.0 wt% 
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 4.9  Calculate the composition, in weight percent, of an alloy that contains 218.0 kg titanium, 14.6 kg of 

aluminum, and 9.7 kg of vanadium. 
 

  Solution 

 The concentration, in weight percent, of an element in an alloy may be computed using a modified form of 
Equation 4.3.  For this alloy, the concentration of titanium (CTi) is just 

 

  

��

CTi =  
mTi

mTi �� mAl �� mV
 �u  100 

 

��

=  
218 kg

218 kg �� 14.6 kg �� 9.7 kg
 �u  100 =  89.97 wt% 

 

Similarly, for aluminum 

 

��

CAl =  
14.6 kg

218 kg �� 14.6 kg �� 9.7 kg
 �u  100 =  6.03 wt% 

 

And for vanadium 

 

��

CV =  
9.7 kg

218 kg �� 14.6 kg �� 9.7 kg
 �u  100 =  4.00 wt% 
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 4.10  What is the composition, in atom percent, of an alloy that contains 98 g tin and 65 g of lead? 
 

  Solution 

 The concentration of an element in an alloy, in atom percent, may be computed using Equation 4.5.  

However, it first becomes necessary to compute the number of moles of both Sn and Pb, using Equation 4.4.  Thus, 

the number of moles of Sn is just 

 

  

��

nmSn
 =  

mSn
'

ASn
 =  

98 g
118.71 g/mol

 =  0.826 mol 

 

Likewise, for Pb 

 

  

��

nmPb
 =  

65 g
207.2 g/mol

 =  0.314 mol 

 

Now, use of Equation 4.5 yields 

 

  

��

CSn
' =  

nmSn

nmSn
�� nmPb

 �u 100 

 

��

=  
0.826 mol

0.826 mol ��  0.314 mol
 �u 100 =  72.5 at% 

 

Also, 

 

  

��

CPb
' =  =  

0.314 mol
0.826 mol ��  0.314 mol

 �u 100 =  27.5 at% 
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 4.11  What is the composition, in atom percent, of an alloy that contains 99.7 lbm copper, 102 lbm zinc, 

and 2.1 lbm lead? 
 

  Solution 

 In this problem we are asked to determine the concentrations, in atom percent, of the Cu-Zn-Pb alloy.  It is 

first necessary to convert the amounts of Cu, Zn, and Pb into grams. 

 

  

��

mCu
' =  (99.7 lbm)(453.6  g/lbm) =  45,224  g 

 

  

��

mZn
' =  (102 lbm)(453.6 g/lbm) =  46,267 g 

 

  

��

mPb
' =  (2.1 lbm)(453.6 g/lbm) =  953 g 

 

These masses must next be converted into moles (Equation 4.4), as 
 

  

��

nmCu
 =  

mCu
'

ACu
 =  

45,224 g
63.55 g/mol

 =  711.6 mol 

 

  

��

nmZn
 =  

46,267 g
65.41 g/mol

 =  707.3 mol 

 

  

��

nmPb
 =  

953 g
207.2 g/mol

 =  4.6 mol 

 

Now, employment of a modified form of Equation 4.5, gives 

 

  

��

CCu
'  =  

nmCu

nmCu
 �� nmZn

 ��  nmPb

 �u 100 

 

��

=  
711.6 mol

711.6 mol ��  707.3 mol ��  4.6 mol
 �u 100 =  50.0 at% 

 

 

  

��

CZn
'

 =  
707.3 mol

711.6 mol ��  707.3 mol ��  4.6 mol
 �u 100 =  49.7 at% 
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��

CPb
'

 =  
4.6 mol

711.6 mol ��  707.3 mol ��  4.6 mol
 �u 100 =  0.3 at% 
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 4.12  What is the composition, in atom percent, of an alloy that consists of 97 wt% Fe and 3 wt% Si? 
 

  Solution 

 We are asked to compute the composition of an Fe-Si alloy in atom percent.  Employment of Equation 4.6 

leads to 

 

  

��

CFe
' =  

CFeASi
CFeASi  ��  CSiAFe

 �u 100 

 

��

=  
97(28.09 g/mol)

97(28.09 g/mol)  ��  3(55.85 g/mol)
 �u 100 

 

= 94.2 at% 

 

 

  

��

CSi
' =  

CSiAFe
CSiAFe  ��  CFeASi

 �u 100 

 

��

=  
3(55.85 g/mol)

3(55.85 g/mol)  ��  97(28.09 g/mol)
 �u 100 

 

= 5.8 at% 
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 4.13  Convert the atom percent composition in Problem 4.11 to weight percent. 
 

  Solution 

 The composition in atom percent for Problem 4.11 is 50.0 at% Cu, 49.7 at% Zn, and 0.3 at% Pb.  

Modification of Equation 4.7 to take into account a three-component alloy leads to the following 

 

  

��

CCu =  
CCu

' ACu

CCu
' ACu ��  CZn

' AZn  ��  CPb
' APb

 �u 100 

 

��

=  
(50.0) (63.55 g/mol)

(50.0) (63.55 g/mol)  ��  (49.7) (65.41 g/mol)  ��  (0.3) (207.2 g/mol)
 �u 100 

 

= 49.0 wt% 

 

 

  

��

CZn =  
CZn

' AZn

CCu
' ACu ��  CZn

' AZn  ��  CPb
' APb

 �u 100 

 

��

=  
(49.7) (65.41 g/mol)

(50.0) (63.55 g/mol)  ��  (49.7) (65.41 g/mol)  ��  (0.3) (207.2 g/mol)
 �u 100 

 

= 50.1 wt% 

 

 

  

��

CPb =  
CPb

' APb

CCu
' ACu ��  CZn

' AZn  ��  CPb
' APb

 �u 100 

 

��

=  
(0.3) (207.2 g/mol)

(50.0) (63.55 g/mol)  ��  (49.7) (65.41 g/mol)  ��  (0.3) (207.2 g/mol)
 �u 100 

 

= 1.0 wt% 
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 4.14  Calculate the number of atoms per cubic meter in aluminum. 
 

  Solution 

 In order to solve this problem, one must employ Equation 4.2,  

 

  

��

N =  
NA �UAl

AAl
 

 

The density of Al (from the table inside of the front cover) is 2.71 g/cm3, while its atomic weight is 26.98 g/mol.  

Thus, 
 

  

��

N =  
(6.022 �u 1023  atoms/mol)(2.71 g/cm3)

26.98 g/mol
 

 

= 6.05 �u 1022 atoms/cm3 = 6.05 �u 1028 atoms/m3 
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 4.15  The concentration of carbon in an iron-carbon alloy is 0.15 wt%.  What is the concentration in 

kilograms of carbon per cubic meter of alloy? 
 

  Solution 

 In order to compute the concentration in kg/m3 of C in a 0.15 wt% C-99.85 wt% Fe alloy we must employ 

Equation 4.9 as 

 

  

��

CC
" =  

CC
CC
�UC

 ��  
CFe
�UFe

 �u  103 

 

From inside the front cover, densities for carbon and iron are 2.25 and 7.87 g/cm3, respectively;  and, therefore 

 

  

��

CC
" =  

0.15
0.15

2.25 g/cm3
 ��  

99.85

7.87 g/cm3

 �u 103 

 

= 11.8 kg/m3 
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 4.16  Determine the approximate density of a high-leaded brass that has a composition of 64.5 wt% Cu, 

33.5 wt% Zn, and 2.0 wt% Pb. 
 

  Solution 

 In order to solve this problem, Equation 4.10a is modified to take the following form: 

 

  

��

�Uave =  
100

CCu
�UCu

 ��  
CZn
�UZn

 ��  
CPb
�UPb

 

 

And, using the density values for Cu, Zn, and Pb—i.e., 8.94 g/cm3, 7.13 g/cm3,  and 11.35 g/cm3—(as taken from 

inside the front cover of the text), the density is computed as follows: 

 

��

�Uave =  
100

64.5 wt%

8.94 g/cm3
 ��  

33.5 wt%

7.13 g/cm3
 ��  

2.0 wt%

11.35 g/cm3

 

 

= 8.27 g/cm3 
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 4.17  Calculate the unit cell edge length for an 85 wt% Fe-15 wt% V alloy.  All of the vanadium is in solid 

solution, and, at room temperature the crystal structure for this alloy is BCC. 
 

  Solution 

 In order to solve this problem it is necessary to employ Equation 3.5;  in this expression density and atomic 

weight will be averages for the alloy—that is 

 

    

��

�Uave =  
nAave

VC NA
 

 
Inasmuch as the unit cell is cubic, then VC = a3, then 

 

    

��

�Uave =  
nAave

a3NA

 

 

  

And solving this equation for the unit cell edge length, leads to 

 

    

��

a =  
nAave

�UaveNA

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��

1/3

 

 
 Expressions for Aave and �Uave��are found in Equations 4.11a and 4.10a, respectively, which, when 

incorporated into the above expression yields 

 

  

��

a =  

n 
100

CFe
AFe

 ��  
CV
AV

�§��

�©��

�¨��
�¨��
�¨��
�¨��

�·��

�¹��

�¸��
�¸��
�¸��
�¸��

100
CFe
�UFe

 ��  
CV
�UV

�§��

�©��

�¨��
�¨��
�¨��
�¨��

�·��

�¹��

�¸��
�¸��
�¸��
�¸��

NA

�ª��

�¬��

�«��
�«��
�«��
�«��
�«��
�«��
�«��
�«��
�«��

�º��

�¼��

�»��
�»��
�»��
�»��
�»��
�»��
�»��
�»��
�»��

1/ 3

 

 

 Since the crystal structure is BCC, the value of n in the above expression is 2 atoms per unit cell.  The 

atomic weights for Fe and V are 55.85 and 50.94 g/mol, respectively (Figure 2.6), whereas the densities for the Fe 

and V are 7.87 g/cm3  and 6.10 g/cm3 (from inside the front cover).  Substitution of these, as well as the 

concentration values stipulated in the problem statement, into the above equation gives 
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��

a =  

(2 atoms/unit cell) 
100

85 wt%
55.85 g/mol

 ��  
15 wt%

50.94 g/mol

�§��

�©��

�¨��
�¨��
�¨���¨��

�·��

�¹��

�¸��
�¸��
�¸���¸��

100
85 wt%

7.87 g/cm3
 ��  

15 wt%

6.10 g/cm3

�§��

�©��

�¨��
�¨��
�¨��
�¨��

�·��

�¹��

�¸��
�¸��
�¸��
�¸��

6.022 �u 1023 atoms/mol�� ��

�ª��

�¬��

�«��
�«��
�«��
�«��
�«��
�«��
�«��
�«��
�«��

�º��

�¼��

�»��
�»��
�»��
�»��
�»��
�»��
�»��
�»��
�»��

1/ 3

 

 

��

�  2.89 �u 10-8 cm =  0.289 nm 



 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 4.18  Some hypothetical alloy is composed of 12.5 wt% of metal A and 87.5 wt% of metal B. If the densities 

of metals A and B are 4.27 and 6.35 g/cm3, respectively, whereas their respective atomic weights are 61.4 and 

125.7 g/mol, determine whether the crystal structure for this alloy is simple cubic, face-centered cubic, or body-

centered cubic. Assume a unit cell edge length of 0.395 nm. 
 

  Solution 

 In order to solve this problem it is necessary to employ Equation 3.5;  in this expression density and atomic 

weight will be averages for the alloy—that is 

 

    

��

�Uave =  
nAave

VC NA
 

 
Inasmuch as for each of the possible crystal structures, the unit cell is cubic, then VC = a3, or 

 

    

��

�Uave =  
nAave

a3NA

 

 

 And, in order to determine the crystal structure it is necessary to solve for n, the number of atoms per unit 

cell.  For  n =1, the crystal structure is simple cubic, whereas for n values of 2 and 4, the crystal structure will be 

either BCC or FCC, respectively.  When we solve the above expression for n the result is as follows: 

 

    

��

n =  
�Uavea

3NA
Aave

 

 
Expressions for Aave and �Uave��are found in Equations 4.11a and 4.10a, respectively, which, when incorporated into 

the above expression yields 

 

    

��

n =  

100
CA
�UA

 ��  
CB
�UB

�§��

�©��

�¨��
�¨��
�¨��
�¨��

�·��

�¹��

�¸��
�¸��
�¸��
�¸��

a3NA

100
CA
AA

 ��  
CB
AB

�§��

�©��

�¨��
�¨��
�¨��
�¨��

�·��

�¹��

�¸��
�¸��
�¸��
�¸��
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 Substitution of the concentration values (i.e., CA = 12.5 wt% and CB = 87.5 wt%) as well as values for the 

other parameters given in the problem statement, into the above equation gives 

 

    

��

n =  

100
12.5 wt%

4.27 g/cm3
 ��  

87.5 wt%

6.35 g/cm3

�§��

�©��

�¨��
�¨��
�¨��
�¨��

�·��

�¹��

�¸��
�¸��
�¸��
�¸��

(3.95 �u 10-8  nm)3(6.022 �u 1023 atoms/mol)

100
12.5 wt%
61.4 g/mol

 ��  
87.5 wt%

125.7 g/mol

�§��

�©��

�¨��
�¨��
�¨���¨��

�·��

�¹��

�¸��
�¸��
�¸���¸��

 

 

= 2.00 atoms/unit cell 

 

 Therefore, on the basis of this value, the crystal structure is body-centered cubic. 
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 4.19  For a solid solution consisting of two elements (designated as 1 and 2), sometimes it is desirable to 

determine the number of atoms per cubic centimeter of one element in a solid solution, N1, given the concentration 

of that element specified in weight percent, C1. This computation is possible using the following expression: 

 

 

��

N1 � 
NAC1

C1A1
�U1

 ��  
A1
�U2

100�� C1�� ��
 (4.18) 

where 

 NA = Avogadro’s number 

 �!1 �D�Q�G���!2 = densities of the two elements 

 A1 = the atomic weight of element 1 

Derive Equation 4.18 using Equation 4.2 and expressions contained in Section 4.4. 
 

  Solution 

 This problem asks that we derive Equation 4.18, using other equations given in the chapter.  The 

concentration of component 1 in atom percent     

��

(C1
' )  is just 100    

��

c1
'  where     

��

c1
'  is the atom fraction of component 1.  

Furthermore,     

��

c1
'  is defined as     

��

c1
'  = N1/N where N1 and N are, respectively, the number of atoms of component 1 

and total number of atoms per cubic centimeter.  Thus, from the above discussion the following holds: 

 

    

��

N1 =  
C1

' N

100
 

 

Substitution into this expression of the appropriate form of N from Equation 4.2 yields 

 

    

��

N1 =  
C1

' NA �Uave
100Aave

 

 

And, finally, substitution into this equation expressions for     

��

C1
'  (Equation 4.6a), �Uave (Equation 4.10a), Aave 

(Equation 4.11a), and realizing that C2 = (C1 – 100), and after some algebraic manipulation we obtain the desired 

expression: 

 

    

��

N1 =  
NAC1

C1 A1

�U1
 ��  

A1
�U2

(100 ��  C1)
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 4.20  Gold forms a substitutional solid solution with silver.  Compute the number of gold atoms per cubic 

centimeter for a silver-gold alloy that contains 10 wt% Au and 90 wt% Ag.  The densities of pure gold and silver are 

19.32 and 10.49 g/cm3, respectively. 
 

  Solution 

 To solve this problem, employment of Equation 4.18 is necessary, using the following values: 

 
 C1 = CAu = 10 wt% 

 �U1 = �UAu = 19.32 g/cm3 

 �U2 = �UAg = 10.49 g/cm3 

 A1 = AAu = 196.97 g/mol 

Thus 

 

  

��

NAu =  
NACAu

CAu AAu

�UAu
 ��  

AAu
�UAg

(100 ��  CAu)
 

 

��

=  
(6.022 �u 1023  atoms/mol) (10 wt%)

(10 wt%)(196.97 g/mol)

19.32 g/cm3
 ��  

196.97 g/mol

10.49 g/cm3
(100 ��  10 wt%)

 

 

= 3.36 �u 1021 atoms/cm3 
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 4.21 Germanium forms a substitutional solid solution with silicon.  Compute the number of germanium 

atoms per cubic centimeter for a germanium-silicon alloy that contains 15 wt% Ge and 85 wt% Si.  The densities of 

pure germanium and silicon are 5.32 and 2.33 g/cm3, respectively. 
 

  Solution 

 To solve this problem, employment of Equation 4.18 is necessary, using the following values: 

 
 C1 = CGe = 15 wt% 

 �U1 = �UGe = 5.32 g/cm3 

 �U2 = �USi = 2.33 g/cm3 

 A1 = AGe = 72.64 g/mol 

Thus 

 

  

��

NGe =  
NACGe

CGeAGe
�UGe

 ��  
AGe
�USi

(100 ��  CGe)
 

 

��

=  
(6.022 �u 1023  atoms/mol) (15 wt%)

(15 wt%)(72.64 g/mol)

5.32 g/cm3
 ��  

72.64 g/mol

2.33 g/cm3
(100 ��  15 wt%)

 

 

= 3.16 �u 1021 atoms/cm3 
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 4.22  Sometimes it is desirable to be able to determine the weight percent of one element, C1, that will 

produce a specified concentration in terms of the number of atoms per cubic centimeter, N1, for an alloy composed 

of two types of atoms. This computation is possible using the following expression: 

 

 

��

C1 � 
100

1 ��  
NA�U2
N1A1

 ��  
�U2
�U1

 (4.19) 

where 

 NA = Avogadro’s number 

 �!1 �D�Q�G���!2 = densities of the two elements 

 A1 and A2 = the atomic weights of the two elements 

Derive Equation 4.19 using Equation 4.2 and expressions contained in Section 4.4. 
 

  Solution 

 The number of atoms of component 1 per cubic centimeter is just equal to the atom fraction of component 

1     

��

(c1
' )  times the total number of atoms per cubic centimeter in the alloy (N).  Thus, using the equivalent of 

Equation 4.2, we may write 

 

    

��

N1 =  c1
' N =  

c1
' NA �Uave

Aave
 

 

Realizing that 

 

    

��

c1
' =  

C1
'

100
 

 

and 

 

    

��

C2
'  =  100 ��  C1

'  

 
and substitution of the expressions for �Uave and Aave, Equations 4.10b and 4.11b, respectively, leads to 

 

    

��

N1 =  
c1

' NA�Uave
Aave
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��

=  
NAC1

' �U1�U2

C1
' �U2A1  ��  (100 ��  C1

' )�U1A2

 

 

And, solving for     

��

C1
'  

 

    

��

C1
' =  

100 N1�U1 A2
NA�U1�U2  ��  N1�U2 A1  ��  N1�U1 A2

 

 

Substitution of this expression for     

��

C1
'  into Equation 4.7a, which may be written in the following form 

 

  

��

C1 =  
C1

' A1

C1
' A1  ��  C2

' A2

 �u 100 

 

  

��

=  
C1

' A1

C1
' A1  ��  (100 �� C1

' )A2

 �u 100 

 

yields 
 

    

��

C1 =  
100

1 ��  
NA �U2
N1 A1

 ��  
�U2
�U1

 

 

the desired expression. 
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 4.23  Molybdenum forms a substitutional solid solution with tungsten.  Compute the weight percent of 

molybdenum that must be added to tungsten to yield an alloy that contains 1.0 �u 1022 Mo atoms per cubic 

centimeter.  The densities of pure Mo and W are 10.22 and 19.30 g/cm3, respectively. 
 

  Solution 

 To solve this problem, employment of Equation 4.19 is necessary, using the following values: 

 
 N1 = NMo = 1022 atoms/cm3 

 �U1 = �UMo = 10.22 g/cm3 

 �U2 = �UW = 19.30 g/cm3 

 A1 = AMo = 95.94 g/mol 

 A2 = AW = 183.84 g/mol 

 

 Thus 

 

  

��

CMo =  
100

1 ��  
NA�UW

NMo AMo
 ��  

�UW
�UMo

 

 

 

��

=  
100

1 ��  
(6.022 �u 1023 atoms/mol)(19.30 g/cm3)

(1022 atoms/cm3)(95.94 g/mol)
 ��  

19.30 g/cm3

10.22 g/cm3

�§��

�©��
�¨��

�·��

�¹��
�¸��

 

 

= 8.91 wt% 
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 4.24  Niobium forms a substitutional solid solution with vanadium.  Compute the weight percent of 

niobium that must be added to vanadium to yield an alloy that contains 1.55 �u 1022 Nb atoms per cubic centimeter.  

The densities of pure Nb and V are 8.57 and 6.10 g/cm3, respectively. 
 

  Solution 

 To solve this problem, employment of Equation 4.19 is necessary, using the following values: 

 
 N1 = NNb = 1.55 �u 1022 atoms/cm3 

 �U1 = �UNb = 8.57 g/cm3 

 �U2 = �UV = 6.10 g/cm3 

 A1 = ANb = 92.91 g/mol 

 A2 = AV = 50.94 g/mol 

 

Thus 

 

  

��

CNb =  
100

1 ��  
NA�UV

NNbANb
 ��  

�UV
�UNb

 

 

 

��

=  
100

1 ��  
(6.022 �u 1023  atoms/mol)(6.10 g/cm3)
 (1.55 �u 1022 atoms/cm3) (92.91 g/mol)

 ��  
6.10 g/cm3

8.57 g/cm3

�§��

�©��
�¨��

�·��

�¹��
�¸��

 

 

= 35.2 wt% 
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 4.25  Silver and palladium both have the FCC crystal structure, and Pd forms a substitutional solid 

solution for all concentrations at room temperature. Compute the unit cell edge length for a 75 wt% Ag–25 wt% Pd 

alloy.  The room-temperature density of Pd is 12.02 g/cm3, and its atomic weight and atomic radius are 106.4 g/mol 

and 0.138 nm, respectively. 
 

  Solution 

 First of all, the atomic radii for Ag (using the table inside the front cover) and Pd  are 0.144 and 0.138 nm, 

respectively.  Also, using Equation 3.5 it is possible to compute the unit cell volume, and inasmuch as the unit cell 

is cubic, the unit cell edge length is just the cube root of the volume.  However, it is first necessary to calculate the 

density and average atomic weight of this alloy using Equations 4.10a and 4.11a.  Inasmuch as the densities of 

silver and palladium are 10.49 g/cm3 (as taken from inside the front cover) and 12.02 g/cm3, respectively, the 

average density is just 

 

    

��

�Uave =  
100

CAg

�UAg
 ��  

CPd
�UPd

 

 

  

��

=  
100

75 wt%

10.49 g/cm3
 ��  

25 wt%

12.02 g/cm3

 

 

= 10.83 g/cm3 

 

And for the average atomic weight 

 

    

��

Aave =  
100

CAg

AAg
 ��  

CPd
APd

 

 

��

=  
100

75 wt%
107.9 g/mol

 ��  
25 wt%

106.4 g/mol

 

 

= 107.5 g/mol 

 
Now, VC is determined from Equation 3.5 as 
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��

VC =  
nAave

�UaveNA
 

 

  

��

=  
(4 atoms/unit cell)(107.5 g/mol)

(10.83 g/cm3)(6.022 �u 1023  atoms/mol)
 

 

= 6.59 �u 10-23 cm3/unit cell 

 

And, finally 

 

    

��

a =  (VC)1/3 

 

��

=  (6.59 �u 10��23cm3/unit cell)1/3 

 

= 4.04 �u 10-8 cm = 0.404 nm 
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 Dislocations—Linear Defects 

 

 4.26  Cite the relative Burgers vector–dislocation line orientations for edge, screw, and mixed dislocations. 
 

  Solution 

 The Burgers vector and dislocation line are perpendicular for edge dislocations, parallel for screw 

dislocations, and neither perpendicular nor parallel for mixed dislocations. 
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 Interfacial Defects 

 

 4.27  For an FCC single crystal, would you expect the surface energy for a (100) plane to be greater or 

less than that for a (111) plane? Why? (Note: You may want to consult the solution to Problem 3.54 at the end of 

Chapter 3.) 
 

  Solution 

 The surface energy for a crystallographic plane will depend on its packing density [i.e., the planar density 

(Section 3.11)]—that is, the higher the packing density, the greater the number of nearest-neighbor atoms, and the 

more atomic bonds in that plane that are satisfied, and, consequently, the lower the surface energy.  From the 

solution to Problem 3.54, planar densities for FCC (100) and (111) planes are 
    

��

1

4R2
 and 

    

��

1

2R2 3
, respectively—that 

is 
    

��

0.25

R2
 and 

    

��

0.29

R2
 (where R is the atomic radius).  Thus, since the planar density for (111) is greater, it will have the 

lower surface energy. 
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 4.28  For a BCC single crystal, would you expect the surface energy for a (100) plane to be greater or less 

than that for a (110) plane? Why? (Note: You may want to consult the solution to Problem 3.55 at the end of 

Chapter 3.) 
 

  Solution 

 The surface energy for a crystallographic plane will depend on its packing density [i.e., the planar density 

(Section 3.11)]—that is, the higher the packing density, the greater the number of nearest-neighbor atoms, and the 

more atomic bonds in that plane that are satisfied, and, consequently, the lower the surface energy.  From the 

solution to Problem 3.55, the planar densities for BCC (100) and (110) are 
    

��

3

16R2
 and 

    

��

3

8R2 2
, respectively—that 

is 
    

��

0.19

R2
 and 

    

��

0.27

R2
. Thus, since the planar density for (110) is greater, it will have the lower surface energy. 
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 4.29  (a) For a given material, would you expect the surface energy to be greater than, the same as, or less 

than the grain boundary energy? Why? 

 (b) The grain boundary energy of a small-angle grain boundary is less than for a high-angle one. Why is 

this so? 
 

  Solution 

  (a)  The surface energy will be greater than the grain boundary energy.  For grain boundaries, some atoms 

on one side of a boundary will bond to atoms on the other side;  such is not the case for surface atoms.  Therefore, 

there will be fewer unsatisfied bonds along a grain boundary. 

 (b)  The small-angle grain boundary energy is lower than for a high-angle one because more atoms bond 

across the boundary for the small-angle, and, thus, there are fewer unsatisfied bonds. 
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 4.30  (a) Briefly describe a twin and a twin boundary. 

 (b) Cite the difference between mechanical and annealing twins. 
 

  Solution 

 (a)  A twin boundary is an interface such that atoms on one side are located at mirror image positions of 

those atoms situated on the other boundary side.  The region on one side of this boundary is called a twin. 

 (b)  Mechanical twins are produced as a result of mechanical deformation and generally occur in BCC and 

HCP metals.  Annealing twins form during annealing heat treatments, most often in FCC metals. 
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 4.31  For each of the following stacking sequences found in FCC metals, cite the type of planar defect that 

exists: 

 (a) . . . A B C A B C B A C B A . . . 

 (b) . . . A B C A B C B C A B C . . . 

Now, copy the stacking sequences and indicate the position(s) of planar defect(s) with a vertical dashed line. 
 

  Solution 

 (a)  The interfacial defect that exists for this stacking sequence is a twin boundary, which occurs at the 

indicated position. 

 

 

 

The stacking sequence on one side of this position is mirrored on the other side. 

 

 (b)  The interfacial defect that exists within this FCC stacking sequence is a stacking fault, which occurs 

between the two lines. 

 

 

 

Within this region, the stacking sequence is HCP. 
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 Grain Size Determination 

 

 4.32  (a) Using the intercept method, determine the average grain size, in millimeters, of the specimen 

whose microstructure is shown in Figure 4.14(b); use at least seven straight-line segments. 

 (b) Estimate the ASTM grain size number for this material. 
 

  Solution 

 (a) Below is shown the photomicrograph of Figure 4.14(b), on which seven straight line segments, each of 

which is 60 mm long has been constructed;  these lines are labeled “1” through “7”.  

 

 

 

 In order to determine the average grain diameter, it is necessary to count the number of grains intersected 

by each of these line segments.  These data are tabulated below. 

 
 Line Number No. Grains Intersected 

 1 11 

 2 10 

 3 9 

 4 8.5 

 5 7 

 6 10 

 7 8 

 



 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

The average number of grain boundary intersections for these lines was 9.1.  Therefore, the average line length 

intersected is just 

 

��

60 mm
9.1

=  6.59  mm 

 

Hence, the average grain diameter, d, is 
 

  

��

d =  
ave. line length intersected

magnification
 =  

6.59 mm
100

=  6.59 �u 10��2  mm 

 

 (b)  This portion of the problem calls for us to estimate the ASTM grain size number for this same material.  

The average grain size number, n, is related to the number of grains per square inch, N, at a magnification of 100�u 

according to Equation 4.16.  Inasmuch as the magnification is 100�u, the value of N is measured directly from the 

micrograph.  The photomicrograph on which has been constructed a square 1 in. on a side is shown below. 

 

 

 

The total number of complete grains within this square is approximately 10 (taking into account grain fractions).  

Now, in order to solve for n in Equation 4.16, it is first necessary to take logarithms as 

 

    

��

log N  �  (n ��  1) log 2 

 

From which n equals 

 

    

��

n � 
log N
log 2

�� 1 
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��

� 
log 10
log 2

�� 1 � 4.3 
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 4.33  (a) Employing the intercept technique, determine the average grain size for the steel specimen whose 

microstructure is shown in Figure 9.25(a); use at least seven straight-line segments. 

 (b) Estimate the ASTM grain size number for this material. 
 

  Solution 

 (a)  Below is shown the photomicrograph of Figure 9.25(a), on which seven straight line segments, each of 

which is 60 mm long has been constructed;  these lines are labeled “1” through “7”. 

 

 

 

 In order to determine the average grain diameter, it is necessary to count the number of grains intersected 

by each of these line segments.  These data are tabulated below. 

 
 Line Number No. Grains Intersected 

 1 7 

 2 7 

 3 7 

 4 8 

 5 10 

 6 7 

 7 8 

 

The average number of grain boundary intersections for these lines was 8.7.  Therefore, the average line length 

intersected is just 
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��

60 mm
8.7

 =  6.9 mm 

 

Hence, the average grain diameter, d, is 
 

  

��

d =  
ave. line length intersected

magnification
 =  

6.9 mm
90

=  0.077 mm 

 

 (b)  This portion of the problem calls for us to estimate the ASTM grain size number for this same material.  

The average grain size number, n, is related to the number of grains per square inch, N, at a magnification of 100�u 

according to Equation 4.16.  However, the magnification of this micrograph is not 100�u, but rather 90�u.  

Consequently, it is necessary to use Equation 4.17 
 

  

��

NM
M

100

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

� 2n��1 

 
where NM = the number of grains per square inch at magnification M, and n is the ASTM grain size number.  

Taking logarithms of both sides of this equation leads to the following: 

 

    

��

log NM  ��  2 log 
M

100

�§��

�©��
�¨��

�·��

�¹��
�¸��� (n ��  1) log 2 

 

Solving this expression for n gives 
 

    

��

n � 
log NM �� 2 log

M
100

�§��

�©��
�¨��

�·��

�¹��
�¸��

log 2
�� 1 

 

The photomicrograph on which has been constructed a square 1 in. on a side is shown below. 
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From Figure 9.25(a), NM is measured to be approximately 7, which leads to 

 

  

��

n � 
log 7 �� 2 log

90
100

�§��

�©��
�¨��

�·��

�¹��
�¸��

log 2
�� 1 

 

= 3.5 
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 4.34  For an ASTM grain size of 8, approximately how many grains would there be per square inch at 

 (a) a magnification of 100, and 

 (b) without any magnification? 
 

  Solution 

 (a)  This part of problem asks that we compute the number of grains per square inch for an ASTM grain 

size of 8 at a magnification of 100�u.  All we need do is solve for the parameter N in Equation 4.16, inasmuch as n = 

8.  Thus 

 

  

��

N � 2n��1 

 

=   

��

28��1 = 128 grains/in.2 

 

 (b)  Now it is necessary to compute the value of N for no magnification.  In order to solve this problem it is 

necessary to use Equation 4.17: 

 

    

��

NM
M

100

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

� 2n��1 

 
where NM = the number of grains per square inch at magnification M, and n is the ASTM grain size number. 

Without any magnification, M in the above equation is 1, and therefore, 

 

    

��

N1
1

100

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

� 28��1 � 128 

 
And, solving for N1, N1 = 1,280,000 grains/in.2. 
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 4.35  Determine the ASTM grain size number if 25 grains per square inch are measured at a magnification 

of 600. 
 

  Solution 

 This problem asks that we determine the ASTM grain size number if 8 grains per square inch are measured 

at a magnification of 600.  In order to solve this problem we make use of Equation 4.17: 

 

    
N M

M
100

�§��

�©��
�¨��

�·��

�¹��
�¸��

2

� 2n�� 1 

 
where NM = the number of grains per square inch at magnification M, and n is the ASTM grain size number.  

Solving the above equation for n, and realizing that NM = 8, while M = 600, we have 

 

    

��

n � 
log NM �� 2 log

M
100

�§��

�©��
�¨��

�·��

�¹��
�¸��

log 2
�� 1 

 

  

��

� 
log 8 �� 2 log

600
100

�§��

�©��
�¨��

�·��

�¹��
�¸��

log 2
�� 1 � 9.2 
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 4.36  Determine the ASTM grain size number if 20 grains per square inch are measured at a magnification 

of 50. 
 

  Solution 

 This problem asks that we determine the ASTM grain size number if 20 grains per square inch are 

measured at a magnification of 50.  In order to solve this problem we make use of Equation 4.17—viz. 

 

    

��

NM
M

100

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

� 2n��1 

 
where NM = the number of grains per square inch at magnification M, and n is the ASTM grain size number.  

Solving the above equation for n, and realizing that NM = 20, while M = 50, we have 

 

    

��

n � 
log NM �� 2 log

M
100

�§��

�©��
�¨��

�·��

�¹��
�¸��

log 2
�� 1 

 

  

��

� 
log 20 �� 2 log

50
100

�§��

�©��
�¨��

�·��

�¹��
�¸��

log 2
�� 1 � 3.3 
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DESIGN PROBLEMS 

 

 Specification of Composition 

 

 4.D1  Aluminum–lithium alloys have been developed by the aircraft industry to reduce the weight and 

improve the performance of its aircraft.  A commercial aircraft skin material having a density of 2.55 g/cm3 is 

desired. Compute the concentration of Li (in wt%) that is required. 
 

  Solution 

 Solution of this problem requires the use of Equation 4.10a, which takes the form 

 

    

��

�Uave =  
100

CLi
�ULi

 ��  
100 ��  CLi

�UAl

 

 
inasmuch as CLi  + CAl  = 100.  According to the table inside the front cover, the respective densities of Li and Al 

are 0.534 and 2.71 g/cm3.  Upon solving for CLi  from the above equation, we get 

 

    

��

CLi  =  
100 �ULi (�UAl ��  �Uave)

�Uave(�UAl  ��  �ULi )
 

 

And incorporating specified values into the above equation leads to 

 

��

CLi =  
(100)(0.534 g/cm3)(2.71 g/cm3 ��  2.55 g/cm3)

(2.55 g/cm3)(2.71 g/cm3 ��  0.534 g/cm3)
 

 

= 1.540 wt% 
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 4.D2  Iron and vanadium both have the BCC crystal structure and V forms a substitutional solid solution 

in Fe for concentrations up to approximately 20 wt% V at room temperature.  Determine the concentration in 

weight percent of V that must be added to iron to yield a unit cell edge length of 0.289 nm. 
 

  Solution 

 To begin, it is necessary to employ Equation 3.5, and solve for the unit cell volume, VC, as 

 

    

��

VC =  
nAave

�UaveNA
 

 
where Aave and �Uave are the atomic weight and density, respectively, of the Fe-V alloy.  Inasmuch as both of these 

materials have the BCC crystal structure, which has cubic symmetry, VC is just the cube of the unit cell length, a.  

That is 

 

  

��

VC =  a3 =  (0.289 nm)3 

 

��

� (2.89 �u 10��8 cm)3 � 2.414 �u 10��23 cm3 

 
It is now necessary to construct expressions for Aave and �Uave in terms of the concentration of vanadium, CV, using 

Equations 4.11a and 4.10a.  For Aave we have 

 

  

��

Aave =  
100

CV
AV

 ��  
(100 ��  CV )

AFe

 

 

  

��

=  
100

CV
50.94g/mol

 ��  
(100 ��  CV )
55.85 g/mol

 

 
whereas for �Uave 

 

  

��

�Uave =  
100

CV
�UV

 ��  
(100 ��  CV )

�UFe

 

 

  

��

=  
100

CV

6.10 g/cm3
 ��  

(100 ��  CV )
7.87 g/cm3
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Within the BCC unit cell there are 2 equivalent atoms, and thus, the value of n in Equation 3.5 is 2;  hence, this 

expression may be written in terms of the concentration of V in weight percent as follows: 

 

VC = 2.414 �u 10-23 cm3 

 

    
=  

nAave
�UaveN A

 

 

  

��

=  

(2 atoms/unit cell)
100

CV
50.94 g/mol

 ��  
(100 ��  CV )
55.85 g/mol

�ª��

�¬��

�«��
�«��
�«��
�«��

�º��

�¼��

�»��
�»��
�»��
�»��

100
CV

6.10 g/cm3
 ��  

(100 ��  CV )
7.87 g/cm3

�ª��

�¬��

�«��
�«��
�«��
�«��

�º��

�¼��

�»��
�»��
�»��
�»��

(6.022 �u 1023  atoms/mol)

 

 

 
And solving this expression for CV leads to CV = 12.9 wt%. 

 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

CHAPTER 5 

 

DIFFUSION 

 

PROBLEM SOLUTIONS 
 
 

 Introduction 

 

 5.1  Briefly explain the difference between self-diffusion and interdiffusion. 
 

  Solution 

 Self-diffusion is atomic migration in pure metals--i.e., when all atoms exchanging positions are of the same 

type.  Interdiffusion is diffusion of atoms of one metal into another metal. 
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 5.2  Self-diffusion involves the motion of atoms that are all of the same type; therefore it is not subject to 

observation by compositional changes, as with interdiffusion.  Suggest one way in which self-diffusion may be 

monitored. 
 

  Solution 

 Self-diffusion may be monitored by using radioactive isotopes of the metal being studied.  The motion of 

these isotopic atoms may be monitored by measurement of radioactivity level. 
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 Diffusion Mechanisms 

 

 5.3  (a)  Compare interstitial and vacancy atomic mechanisms for diffusion. 

 (b)  Cite two reasons why interstitial diffusion is normally more rapid than vacancy diffusion. 
 

  Solution 

 (a)  With vacancy diffusion, atomic motion is from one lattice site to an adjacent vacancy.  Self-diffusion 

and the diffusion of substitutional impurities proceed via this mechanism.  On the other hand, atomic motion is from 

interstitial site to adjacent interstitial site for the interstitial diffusion mechanism. 

 (b)  Interstitial diffusion is normally more rapid than vacancy diffusion because:  (1) interstitial atoms, 

being smaller, are more mobile;  and (2) the probability of an empty adjacent interstitial site is greater than for a 

vacancy adjacent to a host (or substitutional impurity) atom. 
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 Steady-State Diffusion 

 

 5.4  Briefly explain the concept of steady state as it applies to diffusion. 
 

  Solution 

 Steady-state diffusion is the situation wherein the rate of diffusion into a given system is just equal to the 

rate of diffusion out, such that there is no net accumulation or depletion of diffusing species--i.e., the diffusion flux 

is independent of time. 
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 5.5  (a) Briefly explain the concept of a driving force. 

 (b) What is the driving force for steady-state diffusion? 
 

  Solution 

 (a)  The driving force is that which compels a reaction to occur. 

 (b)  The driving force for steady-state diffusion is the concentration gradient. 
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 5.6  The purification of hydrogen gas by diffusion through a palladium sheet was discussed in Section 5.3.  

Compute the number of kilograms of hydrogen that pass per hour through a 5-mm-thick sheet of palladium having 

an area of 0.20 m2 at 500�qC.  Assume a diffusion coefficient of 1.0 �u 10-8 m2/s, that the concentrations at the high- 

and low-pressure sides of the plate are 2.4 and 0.6 kg of hydrogen per cubic meter of palladium, and that steady-

state conditions have been attained. 
 

  Solution 

 This problem calls for the mass of hydrogen, per hour, that diffuses through a Pd sheet.  It first becomes 

necessary to employ both Equations 5.1a and 5.3.  Combining these expressions and solving for the mass yields 
 

    

��

M =  JAt =  �� DAt
�'C
�'x

 

 

��

=  ��  (1.0 �u 10-8  m2/s)(0.20 m2) (3600 s/h)
0.6 ��  2.4 kg/m3

5 �u 10��3 m

�ª��

�¬��
�«��

�º��

�¼��
�»�� 

 

= 2.6 �u 10-3 kg/h 
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 5.7  A sheet of steel 1.5 mm thick has nitrogen atmospheres on both sides at 1200�qC and is permitted to 

achieve a steady-state diffusion condition.  The diffusion coefficient for nitrogen in steel at this temperature is 6 �u 

10-11 m2/s, and the diffusion flux is found to be 1.2 �u 10-7 kg/m2-s.  Also, it is known that the concentration of 

nitrogen in the steel at the high-pressure surface is 4 kg/m3.  How far into the sheet from this high-pressure side will 

the concentration be 2.0 kg/m3?  Assume a linear concentration profile. 
 

  Solution 

 This problem is solved by using Equation 5.3 in the form 

 

    

��

J =  ��  D
CA  ��  CB
xA  ��  xB

 

 
If we take CA to be the point at which the concentration of nitrogen is 4 kg/m3, then it becomes necessary to solve 

for xB, as 

 

    

��

xB =  xA +  D 
CA  ��  CB

J

�ª��

�¬��
�«��

�º��

�¼��
�»�� 

 
Assume xA is zero at the surface, in which case 

 

  

��

xB =  0 +  (6 �u 10-11 m2/s) 4 kg/m3  ��  2 kg/m3

1.2 �u 10��7 kg/m2 - s

�ª��

�¬��
�«��

�º��

�¼��
�»�� 

 

= 1 �u 10-3 m = 1 mm 
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 5.8  A sheet of BCC iron 1 mm thick was exposed to a carburizing gas atmosphere on one side and a 

decarburizing atmosphere on the other side at 725�qC.  After having reached steady state, the iron was quickly 

cooled to room temperature.  The carbon concentrations at the two surfaces of the sheet were determined to be 

0.012 and 0.0075 wt%.  Compute the diffusion coefficient if the diffusion flux is 1.4 �u 10-8 kg/m2-s.  Hint: Use 

Equation 4.9 to convert the concentrations from weight percent to kilograms of carbon per cubic meter of iron. 
 

  Solution 

 Let us first convert the carbon concentrations from weight percent to kilograms carbon per meter cubed 

using Equation 4.9a.  For 0.012 wt% C 

 

    

��

CC
" =  

CC
CC
�UC

 ��  
CFe
�UFe

 �u 103 

 

��

=  
0.012

0.012

2.25 g/cm3
 ��  

99.988

7.87 g/cm3

 �u  103 

 

0.944 kg C/m3 

 

Similarly, for 0.0075 wt% C 

 

  

��

CC
" =  

0.0075
0.0075

2.25 g/cm3
 ��  

99.9925

7.87 g/cm3

 �u 103 

 

= 0.590 kg C/m3 

 

Now, using a rearranged form of Equation 5.3 
 

    

��

D =  ��  J 
xA  ��  xB
CA  ��  CB

�ª��

�¬��
�«��
�«��

�º��

�¼��
�»��
�»��
 

 

��

=  ��  (1.40 �u 10-8  kg/m2 - s) �� 10��3 m

0.944 kg/m3  ��  0.590 kg/m3

�ª��

�¬��
�«��

�º��

�¼��
�»�� 
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= 3.95 �u 10-11 m2/s 
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 5.9  When �D-iron is subjected to an atmosphere of hydrogen gas, the concentration of hydrogen in the iron, 
CH (in weight percent), is a function of hydrogen pressure, 

��

pH2
 (in MPa), and absolute temperature (T) according 

to 

 

  

��

CH  �  1.34 �u 10��2 pH2
exp ��

27.2 kJ /mol
RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� (5.14) 

Furthermore, the values of D0 and Qd for this diffusion system are 1.4 �u 10-7 m2/s and 13,400 J/mol, respectively.  

Consider a thin iron membrane 1 mm thick that is at 250�qC.  Compute the diffusion flux through this membrane if 

the hydrogen pressure on one side of the membrane is 0.15 MPa (1.48 atm), and on the other side 7.5 MPa (74 

atm). 
 

  Solution 

 Ultimately we will employ Equation 5.3 to solve this problem.  However, it first becomes necessary to 

determine the concentration of hydrogen at each face using Equation 5.14.  At the low pressure (or B) side 

 

  

��

CH(B) =  (1.34 �u 10-2) 0.15 MPa exp ��
27,200 J/mol

(8.31 J/mol- K)(250 ��  273 K)

�ª��

�¬���«��
�º��

�¼���»�� 

 

9.93 �u 10-6 wt% 

 

Whereas, for the high pressure (or A) side 

 

  

��

CH(A) =  (1.34 �u 10-2) 7.5 MPa exp ��
27,200 J/mol

(8.31 J/mol- K)(250 ��  273 K)

�ª��

�¬���«��
�º��

�¼���»�� 

 

7.02 �u 10-5 wt% 

 

We now convert concentrations in weight percent to mass of nitrogen per unit volume of solid.  At face B there are 

9.93 �u 10-6 g (or 9.93 �u 10-9 kg) of hydrogen in 100 g of Fe, which is virtually pure iron.  From the density of iron 

(7.87 g/cm3), the volume iron in 100 g (VB) is just 

 

    

��

VB =
100 g

7.87 g/cm3
=  12.7 cm3 = 1.27 �u 10-5 m3 

 
Therefore, the concentration of hydrogen at the B  face in kilograms of H per cubic meter of alloy [

    

��

CH(B)
’’ ] is just 

 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

  

��

CH(B)
'' =

CH(B)

VB
 

 

��

=  
9.93�u10��9 kg

1.27�u10��5 m3
=  7.82 �u 10-4  kg/m3 

 
At the A face the volume of iron in 100 g (VA) will also be 1.27 �u 10-5 m3, and 

 

  

��

CH(A)
'' =

CH(A)

VA
 

 

��

=  
7.02�u10��8 kg

1.27�u10��5 m3
=  5.53 �u 10-3 kg/m3 

 

Thus, the concentration gradient is just the difference between these concentrations of nitrogen divided by the 

thickness of the iron membrane;  that is 

 

  

��

�' C
�' x

=  
CH(B)

'' �� CH(A)
''

xB �� xA
 

 

��

=  
7.82�u10��4 kg/m3 �� 5.53�u10��3 kg/m3

10��3 m
= ��  4.75 kg/m4 

 

At this time it becomes necessary to calculate the value of the diffusion coefficient at 250�qC using Equation 5.8.  

Thus, 

 

    

��

D =  D0 exp ��
Qd
RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

��

=  (1.4 �u10��7 m2/s) exp ��
13,400 J/mol

(8.31J/mol�� K)(250 �� 273 K)

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

= 6.41 �u 10-9 m2/s 

 

And, finally, the diffusion flux is computed using Equation 5.3 by taking the negative product of this diffusion 

coefficient and the concentration gradient, as 
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��

J = �� D
�'C
�'x

 

 

��

=  �� (6.41 �u 10-9 m2/s)(�� 4.75 kg/m4) =  3.05 �u 10-8 kg/m2 - s 
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 Nonsteady-State Diffusion 

 

 5.10  Show that 

  

��

Cx =
B
Dt

exp ��
x2

4Dt

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

is also a solution to Equation 5.4b. The parameter B is a constant, being independent of both x and t. 
 

  Solution 

 

 It can be shown that 
 

  

��

Cx =
B
Dt

exp ��
x2

4Dt

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

is a solution to 
 

    

��

�wC
�wt

=  D
�w2C

�wx2
 

 
simply by taking appropriate derivatives of the Cx expression.  When this is carried out, 

 

    

��

�wC
�wt

=  D
�w2C

�wx2
=  

B

2D1/2t3/2
x2

2Dt
�� 1

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��exp ��

x2

4Dt

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸�� 
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 5.11  Determine the carburizing time necessary to achieve a carbon concentration of 0.45 wt% at a 

position 2 mm into an iron–carbon alloy that initially contains 0.20 wt% C.  The surface concentration is to be 

maintained at 1.30 wt% C, and the treatment is to be conducted at 1000�qC.  Use the diffusion data for �J-Fe in Table 

5.2. 
 

  Solution 

In order to solve this problem it is first necessary to use Equation 5.5: 
 

    

��

Cx �� C0
Cs �� C0

=  1 ��  erf 
x

2 Dt

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 
wherein, Cx = 0.45, C0 = 0.20, Cs = 1.30, and x = 2 mm = 2 �u 10-3 m. Thus, 

 

  

��

Cx �� C0
Cs �� C0

=  
0.45�� 0.20
1.30�� 0.20

=  0.2273 =  1 ��  erf 
x

2 Dt

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

or 

 

  

��

erf 
x

2 Dt

�§��

�©��
�¨��

�·��

�¹��
�¸��=  1 ��  0.2273 =  0.7727 

 

By linear interpolation using data from Table 5.1 

 

 z erf(z) 

 0.85 0.7707 

 z 0.7727 

 0.90 0.7970 

 

 

  

��

z �� 0.850
0.900�� 0.850

=
0.7727�� 0.7707
0.7970�� 0.7707

 

 

From which 

  

��

z = 0.854 =
x

2 Dt
 

 

Now, from Table 5.2, at 1000�qC (1273 K) 
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��

D =  (2.3 �u 10-5 m2/s) exp ��
148,000 J/mol

(8.31 J/mol- K)(1273 K)

�ª��

�¬��
�«��

�º��

�¼��
�»�� 

 

= 1.93 �u 10-11 m2/s 

Thus, 

 

  

��

0.854 =
2 �u10��3 m

(2) (1.93�u10��11 m2/s) (t)
 

 

Solving for t yields 

 

t = 7.1 �u 104 s = 19.7 h 
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 5.12  An FCC iron-carbon alloy initially containing 0.35 wt% C is exposed to an oxygen-rich and virtually 

carbon-free atmosphere at 1400 K (1127�qC).  Under these circumstances the carbon diffuses from the alloy and 

reacts at the surface with the oxygen in the atmosphere;  that is, the carbon concentration at the surface position is 

maintained essentially at 0 wt% C. (This process of carbon depletion is termed decarburization.) At what position 

will the carbon concentration be 0.15 wt% after a 10-h treatment?  The value of D at 1400 K is 6.9 �u 10-11 m2/s. 
 

  Solution 

 This problem asks that we determine the position at which the carbon concentration is 0.15 wt% after a 10-
h heat treatment at 1325 K when C0 = 0.35 wt% C.  From Equation 5.5 

 

  

��

Cx �� C0
Cs �� C0

=
0.15�� 0.35

0 �� 0.35
=  0.5714 = 1 ��  erf 

x
2 Dt

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

Thus, 

 

  

��

erf 
x

2 Dt

�§��

�©��
�¨��

�·��

�¹��
�¸��=  0.4286 

 

Using data in Table 5.1 and linear interpolation 

 

 z erf (z) 

 0.40 0.4284 

 z 0.4286 

 0.45 0.4755 

 

 

  

��

z �� 0.40
0.45�� 0.40

=
0.4286�� 0.4284
0.4755�� 0.4284

 

 

And, 

z = 0.4002 

 

Which means that 

  

��

x
2 Dt

=  0.4002 

And, finally 
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��

x =  2(0.4002) Dt = (0.8004) (6.9 �u10��11 m2/s)(3.6 �u104 s)  

 

= 1.26 �u 10-3 m = 1.26 mm 
 

Note:  this problem may also be solved using the “Diffusion” module in the VMSE software.  Open the “Diffusion” 

module, click on the “Diffusion Design” submodule, and then do the following: 

 1.  Enter the given data in left-hand window that appears.  In the window below the label “D Value” enter 

the value of the diffusion coefficient—viz. “6.9e-11”. 

 2.  In the window just below the label “Initial, C0” enter the initial concentration—viz. “0.35”. 

 3.  In the window the lies below “Surface, Cs” enter the surface concentration—viz. “0”. 

 4.  Then in the “Diffusion Time t” window enter the time in seconds;  in 10 h there are (60 s/min)(60 

min/h)(10 h) = 36,000 s—so enter the value “3.6e4”. 

 5.  Next, at the bottom of this window click on the button labeled “Add curve”. 

 6.  On the right portion of the screen will appear a concentration profile for this particular diffusion 

situation.  A diamond-shaped cursor will appear at the upper left-hand corner of the resulting curve.  Click and drag 

this cursor down the curve to the point at which the number below “Concentration:” reads “0.15 wt%”.  Then read 

the value under the “Distance:”.  For this problem, this value (the solution to the problem) is ranges between 1.24 

and 1.30 mm. 
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 5.13  Nitrogen from a gaseous phase is to be diffused into pure iron at 700�qC.  If the surface concentration 

is maintained at 0.1 wt% N, what will be the concentration 1 mm from the surface after 10 h?  The diffusion 

coefficient for nitrogen in iron at 700�qC is 2.5 �u 10-11 m2/s. 

 

  Solution 

 This problem asks us to compute the nitrogen concentration (Cx) at the 1 mm position after a 10 h diffusion 

time, when diffusion is nonsteady-state.  From Equation 5.5 

 

    

��

Cx �� C0
Cs �� C0

=  
Cx �� 0
0.1 �� 0

=  1 ��  erf 
x

2 Dt

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

��

=  1 ��  erf 
10��3 m

(2) (2.5 �u10��11 m2/s) (10 h)(3600s/h)

�ª��

�¬��
�«��
�«��

�º��

�¼��
�»��
�»��
 

 

= 1 – erf (0.527) 

 

Using data in Table 5.1 and linear interpolation 

 

 z erf (z) 

 0.500 0.5205 

 0.527 y 

 0.550 0.5633 

 

 

  

��

0.527 �� 0.500
0.550 �� 0.500

=  
y �� 0.5205

0.5633 �� 0.5205
 

 

from which 

y = erf (0.527) = 0.5436 

 

Thus, 

  

��

Cx �� 0
0.1 �� 0

=  1.0 ��  0.5436 
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This expression gives 

 
Cx = 0.046 wt% N 

 
Note:  this problem may also be solved using the “Diffusion” module in the VMSE software.  Open the “Diffusion” 

module, click on the “Diffusion Design” submodule, and then do the following: 

 1.  Enter the given data in left-hand window that appears.  In the window below the label “D Value” enter 

the value of the diffusion coefficient—viz. “2.5e-11”. 

 2.  In the window just below the label “Initial, C0” enter the initial concentration—viz. “0”. 

 3.  In the window the lies below “Surface, Cs” enter the surface concentration—viz. “0.1”. 

 4.  Then in the “Diffusion Time t” window enter the time in seconds;  in 10 h there are (60 s/min)(60 

min/h)(10 h) = 36,000 s—so enter the value “3.6e4”. 

 5.  Next, at the bottom of this window click on the button labeled “Add curve”. 

 6.  On the right portion of the screen will appear a concentration profile for this particular diffusion 

situation.  A diamond-shaped cursor will appear at the upper left-hand corner of the resulting curve.  Click and drag 

this cursor down the curve to the point at which the number below “Distance:” reads “1.00 mm”.  Then read the 

value under the “Concentration:”.  For this problem, this value (the solution to the problem) is 0.05 wt%. 
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 5.14  Consider a diffusion couple composed of two semi-infinite solids of the same metal, and that each 

side of the diffusion couple has a different concentration of the same elemental impurity; furthermore, assume each 

impurity level is constant throughout its side of the diffusion couple. For this situation, the solution to Fick’s second 

law (assuming that the diffusion coefficient for the impurity is independent of concentration), is as follows: 

 

 

��

Cx =  
C1 +  C2

2

�§��

�©��
�¨��

�·��

�¹��
�¸����

C1 ��  C2
2

�§��

�©��
�¨��

�·��

�¹��
�¸��erf

x
2 Dt

�§��

�©��
�¨��

�·��

�¹��
�¸�� (5.15) 

 

In this expression, when the x = 0 position is taken as the initial diffusion couple interface, then C1 is the impurity 

concentration for x < 0; likewise, C2 is the impurity content for x > 0. 

 A diffusion couple composed of two silver-gold alloys is formed;  these alloys have compositions of 98 wt% 

Ag–2 wt% Au and 95 wt% Ag–5 wt% Au. Determine the time this diffusion couple must be heated at 750ºC (1023 K) 

in order for the composition to be 2.5 wt% Au at the 50 mm position into the 2 wt% Au side of the diffusion couple.  

Preexponential and activation energy values for Au diffusion in Ag are 8.5 �u 10–5 m2/s and 202,100 J/mol, 

respectively. 
 

  Solution 

 For this platinum-gold diffusion couple for which C1 = 5 wt% Au and C2 = 2 wt% Au, we are asked to 

determine the diffusion time at 750�qC that will give a composition of 2.5 wt% Au at the 50 �Pm position.  Thus, for 

this problem, Equation 5.15 takes the form 

 

  

��

2.5 =  
5 �� 2

2

�§��

�©��
�¨��

�·��

�¹��
�¸����  

5 �� 2
2

�§��

�©��
�¨��

�·��

�¹��
�¸��erf

50 �u10��6 m
2 Dt

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 
It now becomes necessary to compute the diffusion coefficient at 750�qC (1023 K) given that D0 = 8.5 �u 10-5 m2/s 

and Qd = 202,100 J/mol.  From Equation 5.8 we have 

 

    

��

D =  D0 exp ��
Qd
RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

��

=  (8.5 �u 10-5  m2/s) exp ��
202,100 J/mol

(8.31 J/mol�� K)(1023K)

�ª��

�¬��
�«��

�º��

�¼��
�»�� 

 

= 4.03 �u 10-15 m2/s 

 

Substitution of this value into the above equation leads to 
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��

2.5 =  
5 �� 2

2

�§��

�©��
�¨��

�·��

�¹��
�¸����  

5 �� 2
2

�§��

�©��
�¨��

�·��

�¹��
�¸�� erf 

50 �u10��6 m

2 (4.03�u10��15 m2 /s) (t)

�ª��

�¬��
�«��
�«��

�º��

�¼��
�»��
�»��
 

 

This expression reduces to the following form: 

 

  

��

0.6667 =  erf
393.8 s

t

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸�� 

 

Using data in Table 5.1, it is necessary to determine the value of z for which the error function is 0.6667  We use 

linear interpolation as follows: 

 

 z erf (z) 

 0.650 0.6420 

 y 0.6667 

 0.700 0.6778 

 

 

  

��

y �� 0.650
0.700 �� 0.650

=  
0.6667 �� 0.6420
0.6778 �� 0.6420

 

from which 

 

  

��

y =  0.6844 =  
393.8 s

t
 

 

And, solving for t gives 

 

t = 3.31 �u 105 s = 92 h 
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 5.15  For a steel alloy it has been determined that a carburizing heat treatment of 10-h duration will raise 

the carbon concentration to 0.45 wt% at a point 2.5 mm from the surface.  Estimate the time necessary to achieve 

the same concentration at a 5.0-mm position for an identical steel and at the same carburizing temperature. 
 

  Solution 

 This problem calls for an estimate of the time necessary to achieve a carbon concentration of 0.45 wt% at a 

point 5.0 mm from the surface.  From Equation 5.6b, 

 

    

��

x2

Dt
=  constant 

 

But since the temperature is constant, so also is D constant, and 

 

    

��

x2

t
=  constant 

or 

 

    

��

x1
2

t1
=  

x2
2

t2
 

 

Thus, 

  

��

(2.5 mm)2

10 h
=  

(5.0 mm)2

t2
 

 

from which 
t2 = 40 h 
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 Factors That Influence Diffusion 

 

 5.16  Cite the values of the diffusion coefficients for the interdiffusion of carbon in both �.-iron (BCC) and 

��-iron (FCC) at 900°C. Which is larger? Explain why this is the case. 
 

  Solution 

 We are asked to compute the diffusion coefficients of C in both �D and �J iron at 900�qC.  Using the data in 

Table 5.2, 

 

  

��

D�D =  (6.2 �u 10-7  m2/s) exp ��
80,000 J/mol

(8.31 J/mol- K)(1173 K)

�ª��

�¬���«��
�º��

�¼���»�� 

 

= 1.69 �u 10-10 m2/s 

 

 

  

��

D�J =  (2.3 �u 10-5  m2/s) exp ��
148,000 J/mol

(8.31 J/mol- K)(1173 K)

�ª��

�¬���«��
�º��

�¼���»�� 

 

= 5.86 �u 10-12 m2/s 

 

 The D for diffusion of C in BCC �D iron is larger, the reason being that the atomic packing factor is smaller 

than for FCC �J iron (0.68 versus 0.74—Section 3.4);  this means that there is slightly more interstitial void space in 

the BCC Fe, and, therefore, the motion of the interstitial carbon atoms occurs more easily. 
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 5.17  Using the data in Table 5.2, compute the value of D for the diffusion of zinc in copper at 650ºC. 
 

  Solution 

 Incorporating the appropriate data from Table 5.2 into Equation 5.8 leads to 

 

  

��

D =  (2.4 �u 10-5 m2/s) exp ��
189,000 J/mol

(8.31 J/mol- K)(650 ��  273 K)

�ª��

�¬���«��
�º��

�¼���»�� 

 

= 4.8 �u 10-16 m2/s 

 
Note:  this problem may also be solved using the “Diffusion” module in the VMSE software.  Open the “Diffusion” 

module, click on the “D vs 1/T Plot” submodule, and then do the following: 

 1.  In the left-hand window that appears, click on the “Zn-Cu” pair under the “Diffusing Species”-“Host 

Metal” headings. 

 2.  Next, at the bottom of this window, click the “Add Curve” button. 

 3.  A log D versus 1/T plot then appears, with a line for the temperature dependence of the diffusion 

coefficient for Zn in Cu.  Now under “Temp Range” in the boxes appearing below “T Max” change the temperature 

to either “650” C or “923” K.  At the top of this curve is a diamond-shaped cursor.  Click-and-drag this cursor down 

the line to the point at which the entry under the “Temperature (T):” label reads 923 K (inasmuch as this is the 

Kelvin equivalent of 650ºC).  Finally, the diffusion coefficient value at this temperature is given under the label 

“Diff Coeff (D):”.  For this problem, the value is 4.7 �u 10-16 m2/s. 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 5.18  At what temperature will the diffusion coefficient for the diffusion of copper in nickel have a value of 

6.5 �u 10-17 m2/s.  Use the diffusion data in Table 5.2. 
 

  Solution 

 Solving for T from Equation 5.9a 
 

    

��

T =  ��  
Qd

R(ln D �� ln D0)
 

 
and using the data from Table 5.2 for the diffusion of Cu in Ni (i.e., D0 = 2.7 �u 10-5 m2/s and Qd = 256,000 J/mol) , 

we get 
 

  

��

T =  ��  
256,000 J/mol

(8.31 J/mol- K) ln (6.5 �u 10-17 m2/s) ��  ln (2.7 �u 10-5 m2/s) �> �@
 

 

= 1152 K = 879�qC 

 
Note:  this problem may also be solved using the “Diffusion” module in the VMSE software.  Open the “Diffusion” 

module, click on the “D vs 1/T Plot” submodule, and then do the following: 

 1.  In the left-hand window that appears, there is a preset set of data for several diffusion systems.  Click on 

the box for which Cu is the diffusing species and Ni is the host metal.  Next, at the bottom of this window, click the 

“Add Curve” button. 

 2.  A log D versus 1/T plot then appears, with a line for the temperature dependence of the diffusion 

coefficient for Cu in Ni.  At the top of this curve is a diamond-shaped cursor.  Click-and-drag this cursor down the 

line to the point at which the entry under the “Diff Coeff (D):” label reads 6.5 �u 10-17 m2/s.  The temperature at 

which the diffusion coefficient has this value is given under the label “Temperature (T):”.  For this problem, the 

value is 1153 K. 
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 5.19  The preexponential and activation energy for the diffusion of iron in cobalt are 1.1 �u 10-5 m2/s and 

253,300 J/mol, respectively.  At what temperature will the diffusion coefficient have a value of 2.1 �u 10-14 m2/s? 
 

  Solution 

 For this problem we are given D0 (1.1 �u 10-5)  and Qd (253,300 J/mol) for the diffusion of Fe in Co, and 

asked to compute the temperature at which D = 2.1 �u 10-14 m2/s.  Solving for T from Equation 5.9a yields 

 

    

��

T =  
Qd

R(ln D0 �� ln D)
 

 

��

=  
253,300 J/mol

(8.31 J/mol- K) ln (1.1 �u 10-5 m2/s) -  ln (2.1 �u 10-14  m2/s)�> �@
 

 

= 1518 K = 1245�qC 

 
Note:  this problem may also be solved using the “Diffusion” module in the VMSE software.  Open the “Diffusion” 

module, click on the “D vs 1/T Plot” submodule, and then do the following: 

 1.  In the left-hand window that appears, click on the “Custom1” box. 

 2.  In the column on the right-hand side of this window enter the data for this problem.  In the window 

under “D0” enter preexponential value—viz. “1.1e-5”.  Next just below the “Qd” window enter the activation 

energy value—viz. “253.3”.  It is next necessary to specify a temperature range over which the data is to be plotted.  

The temperature at which D has the stipulated value is probably between 1000ºC and 1500ºC, so enter “1000” in the 

“T Min” box that is beside “C”;  and similarly for the maximum temperature—enter “1500” in the box below “T 

Max”. 

 3.  Next, at the bottom of this window, click the “Add Curve” button. 

 4.  A log D versus 1/T plot then appears, with a line for the temperature dependence of the diffusion 

coefficient for Fe in Co.  At the top of this curve is a diamond-shaped cursor.  Click-and-drag this cursor down the 

line to the point at which the entry under the “Diff Coeff (D):” label reads 2.1 �u 10-14 m2/s.  The temperature at 

which the diffusion coefficient has this value is given under the label “Temperature (T):”.  For this problem, the 

value is 1519 K. 
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 5.20  The activation energy for the diffusion of carbon in chromium is 111,000 J/mol.  Calculate the 

diffusion coefficient at 1100 K (827�qC), given that D at 1400 K (1127�qC) is 6.25 �u 10-11 m2/s. 
 

  Solution 

 To solve this problem it first becomes necessary to solve for D0 from Equation 5.8 as 

 

    

��

D0 =  D exp
Qd
RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

��

=  (6.25 �u 10-11 m2/s)exp
111,000 J/mol

(8.31 J/mol- K)(1400 K)

�ª��

�¬���«��
�º��

�¼���»�� 

 

= 8.7 �u 10-7 m2/s 

 

Now, solving for D at 1100 K (again using Equation 5.8) gives 

 

  

��

D =  (8.7 �u 10-7 m2/s)exp ��
111,000 J/mol

(8.31 J/mol- K)(1100 K)

�ª��

�¬���«��
�º��

�¼���»�� 

 

= 4.6 �u 10-12 m2/s 
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 5.21 The diffusion coefficients for iron in nickel are given at two temperatures: 

 

T (K) D (m2/s) 

1273 9.4 × 10–16 

1473 2.4 × 10–14 
 

 (a)  Determine the values of D0 and the activation energy Qd. 

 (b)  What is the magnitude of D at 1100ºC (1373 K)? 
 

  Solution 

 (a)  Using Equation 5.9a, we set up two simultaneous equations with Qd and D0 as unknowns as follows: 

 

    

��

ln D1 � lnD0 ��
Qd
R

1
T1

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸�� 

 

    

��

ln D2 � lnD0 ��
Qd
R

1
T2

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸�� 

 
Now, solving for Qd in terms of temperatures T1 and T2 (1273

 
K and 1473

 
K) and D1 and D2 (9.4 �u 10-16 and 2.4 �u 

10-14 m2/s), we get 

 

    

��

Qd = �� R 
ln D1 �� ln D2

1
T1

��
1
T2

 

 

��

=  ��  (8.31 J/mol- K)
ln (9.4 �u 10-16) ��  ln (2.4 �u 10-14)�> �@

1
1273 K

��
1

1473 K

 

 

= 252,400 J/mol 

 
Now, solving for D0 from Equation 5.8 (and using the 1273 K value of D) 

 

    

D0 =  D1 exp
Qd
RT1

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸�� 
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��

=  (9.4 �u 10-16 m2/s)exp
252,400 J/mol

(8.31 J/mol- K)(1273 K)

�ª��

�¬���«��
�º��

�¼���»�� 

 

= 2.2 �u 10-5 m2/s 

 
 (b)  Using these values of D0 and Qd, D at 1373

 
K is just 

 

 

  

��

D =  (2.2 �u 10-5 m2/s)exp ��
252,400 J/mol

(8.31 J/mol- K)(1373 K)

�ª��

�¬���«��
�º��

�¼���»�� 

 

= 5.4 �u 10-15 m2/s 

 

 
Note:  this problem may also be solved using the “Diffusion” module in the VMSE software.  Open the “Diffusion” 

module, click on the “D0 and Qd from Experimental Data” submodule, and then do the following: 

 1.  In the left-hand window that appears, enter the two temperatures from the table in the book (viz. “1273” 

and “1473”, in the first two boxes under the column labeled “T (K)”.  Next, enter the corresponding diffusion 

coefficient values (viz. “9.4e-16” and “2.4e-14”). 

 3.  Next, at the bottom of this window, click the “Plot data” button. 

 4.  A log D versus 1/T plot then appears, with a line for the temperature dependence for this diffusion 

system.  At the top of this window are give values for D0 and Qd;  for this specific problem these values are 2.17 �u 

10-5 m2/s and 252 kJ/mol, respectively 

 5.  To solve the (b) part of the problem we utilize the diamond-shaped cursor that is located at the top of 

the line on this plot. Click-and-drag this cursor down the line to the point at which the entry under the “Temperature 

(T):” label reads “1373”.  The value of the diffusion coefficient at this temperature is given under the label “Diff 

Coeff (D):”.  For our problem, this value is 5.4 �u 10-15 m2/s. 
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 5.22  The diffusion coefficients for silver in copper are given at two temperatures: 

 

T (°C) D (m2/s) 

650 5.5 × 10–16 

900 1.3 × 10–13 

 (a)  Determine the values of D0 and Qd. 

 (b)  What is the magnitude of D at 875°C? 
 

  Solution 

  (a) Using Equation 5.9a, we set up two simultaneous equations with Qd and D0 as unknowns as follows: 

 

    

��

ln D1 � lnD0 ��
Qd
R

1
T1

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸�� 

 

    

��

ln D2 � lnD0 ��
Qd
R

1
T2

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸�� 

 
Solving for Qd in terms of temperatures T1 and T2 (923

 
K [650�qC] and 1173

 
K [900�qC]) and D1 and D2 (5.5 �u 10-

16 and 1.3 �u 10-13 m2/s), we get 

 

    

��

Qd = �� R 
ln D1 �� ln D2

1
T1

��
1
T2

 

 

��

=  ��  
(8.31 J/mol- K) ln (5.5 �u 10-16) ��  ln (1.3 �u 10-13)�> �@

1
923K

��
1

1173K

 

 

= 196,700 J/mol 

 
Now, solving for D0 from Equation 5.8 (and using the 650�qC value of D) 

 

    

��

D0 =  D1exp
Qd
RT1

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸�� 
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��

=  (5.5 �u 10-16 m2/s)exp
196,700 J/mol

(8.31 J/mol- K)(923 K)

�ª��

�¬���«��
�º��

�¼���»�� 

 

= 7.5 �u 10-5 m2/s 

 
 (b)  Using these values of D0 and Qd, D at 1148

 
K (875�qC) is just 

 

  

��

D =  (7.5 �u 10-5 m2/s)exp ��
196,700 J/mol

(8.31 J/mol- K)(1148 K)

�ª��

�¬���«��
�º��

�¼���»�� 

 

= 8.3 �u 10-14 m2/s 

 

 
Note:  this problem may also be solved using the “Diffusion” module in the VMSE software.  Open the “Diffusion” 

module, click on the “D0 and Qd from Experimental Data” submodule, and then do the following: 

 1.  In the left-hand window that appears, enter the two temperatures from the table in the book (converted 

from degrees Celsius to Kelvins) (viz. “923” (650ºC) and “1173” (900ºC), in the first two boxes under the column 

labeled “T (K)”.  Next, enter the corresponding diffusion coefficient values (viz. “5.5e-16” and “1.3e-13”). 

 3.  Next, at the bottom of this window, click the “Plot data” button. 

 4.  A log D versus 1/T plot then appears, with a line for the temperature dependence for this diffusion 

system.  At the top of this window are give values for D0 and Qd;  for this specific problem these values are 7.55 �u 

10-5 m2/s and 196 kJ/mol, respectively 

 5.  To solve the (b) part of the problem we utilize the diamond-shaped cursor that is located at the top of 

the line on this plot. Click-and-drag this cursor down the line to the point at which the entry under the “Temperature 

(T):” label reads “1148” (i.e., 875ºC).  The value of the diffusion coefficient at this temperature is given under the 

label “Diff Coeff (D):”.  For our problem, this value is 8.9 �u 10-14 m2/s. 
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 5.23  Below is shown a plot of the logarithm (to the base 10) of the diffusion coefficient versus reciprocal 

of the absolute temperature, for the diffusion of iron in chromium.  Determine values for the activation energy and 

preexponential. 

 
 
  Solution 

 This problem asks us to determine the values of Qd and D0 for the diffusion of Fe in Cr from the plot of 

log D versus 1/T.  According to Equation 5.9b the slope of this plot is equal to 
    

��

��
Qd

2.3R
 (rather than 

  

��

��
Qd
R

 since we 

are using log D rather than ln D) and the intercept at 1/T = 0 gives the value of log D0.  The slope is equal to 

 

    

��

slope =  
�' (log D)

�'
1
T

�§��

�©��
�¨��

�·��

�¹��
�¸��

=  
log D1 �� log D2

1
T1

��
1
T2

 

 
Taking 1/T1 and 1/T2 as 0.65 �u 10-3 and 0.60 �u 10-3 K-1, respectively, then the corresponding values of D1 and D2 

are 2.81 �u 10-16 and 1.82 �u 10-15, as noted in the figure below. 
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 The values of log D1 and log D2 are –15.60 and –14.74, and therefore, 

 

    

��

Qd = �� 2.3 R (slope) 

 

    

��

Qd = �� 2.3 R 
log D1 �� log D2

1
T1

��
1
T2

 

 

��

=  �� (2.3)(8.31 J/mol- K)
��15.60 �� (��14.74)

(0.65�u10��3 �� 0.60�u10��3) K��1

�ª��

�¬��
�«��

�º��

�¼��
�»�� 

 

= 329,000 J/mol 

 
 Rather than trying to make a graphical extrapolation to determine D0, a more accurate value is obtained 

analytically using Equation 5.9b taking a specific value of both D and T (from 1/T) from the plot given in the 

problem;  for example, D = 1.0 �u 10-15 m2/s at T = 1626 K (1/T = 0.615 �u 10-3 K-1).  Therefore 

 

    

��

D0 =  D exp
Qd
RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

��

=  (1.0 �u 10-15 m2/s)exp
329,000 J/mol

(8.31 J/mol- K)(1626 K)

�ª��

�¬���«��
�º��

�¼���»�� 

 

= 3.75 �u 10-5 m2/s 
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 5.24  Carbon is allowed to diffuse through a steel plate 15 mm thick. The concentrations of carbon at the 

two faces are 0.65 and 0.30 kg C/m3 Fe, which are maintained constant.  If the preexponential and activation 

energy are 6.2 �u 10-7 m2/s and 80,000 J/mol, respectively, compute the temperature at which the diffusion flux is 

1.43 �u 10-9 kg/m2-s. 
 

  Solution 

  Combining Equations 5.3 and 5.8 yields 

 

    

��

J = �� D
�'C
�'x

 

 

    

��

= �� D0
�' C
�' x

exp ��
Qd
RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

Solving for T from this expression leads to 

 

    

��

T =  
Qd
R

�§��

�©��
�¨��

�·��

�¹��
�¸��

1

ln ��
D0�'C

J �'x

�§��

�©��
�¨��

�·��

�¹��
�¸��

 

 

And incorporation of values provided in the problem statement yields 

 

��

=  
80,000 J/mol
8.31 J/mol- K

�§��

�©��
�¨��

�·��

�¹��
�¸��

1

ln
(6.2 �u10��7  m2 /s)(0.65 kg/m3 ��  0.30 kg/m3)

(1.43�u10��9  kg/m2 - s)(15 �u 10��3 m)
�ª��

�¬��
�«��

�º��

�¼��
�»��

 

 

= 1044 K = 771�qC 
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 5.25  The steady-state diffusion flux through a metal plate is 5.4 �u 10-10 kg/m2-s at a temperature of 727�qC 

(1000 K) and when the concentration gradient is -350 kg/m4.  Calculate the diffusion flux at 1027�qC (1300 K) for 

the same concentration gradient and assuming an activation energy for diffusion of 125,000 J/mol. 
 

  Solution 

 In order to solve this problem, we must first compute the value of D0 from the data given at 727�qC (1000 

K);  this requires the combining of both Equations 5.3 and 5.8 as 

 

    

��

J = �� D
�'C
�'x

 

 

    

��

= �� D0
�' C
�' x

exp ��
Qd
RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 
Solving for D0 from the above expression gives 

 

    

��

D0 = ��
J

�' C
�' x

exp
Qd
RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

��

=  ��
5.4 �u 10��10 kg/m2 - s

�� 350 kg/m4

�§��

�©��
�¨��

�·��

�¹��
�¸��exp

125,000 J/mol
(8.31 J/mol- K)(1000 K)

�ª��

�¬���«��
�º��

�¼���»�� 

 

= 5.26 �u 10-6 m2/s 

 

The value of the diffusion flux at 1300 K may be computed using these same two equations as follows: 

 

    

��

J = �� D0
�' C
�' x

�§��

�©��
�¨��

�·��

�¹��
�¸��exp ��

Qd
RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

��

= �� (5.26 �u 10-6 m2/s)(��350 kg/m4)exp ��
125,000 J/mol

(8.31 J/mol- K)(1300 K)

�ª��

�¬���«��
�º��

�¼���»�� 

 

= 1.74 �u 10-8 kg/m2-s 
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 5.26  At approximately what temperature would a specimen of �J-iron have to be carburized for 2 h to 

produce the same diffusion result as at 900�qC for 15 h? 
 

  Solution 

 To solve this problem it is necessary to employ Equation 5.7 

 

    

��

Dt =  constant 

 

Which, for this problem, takes the form 
 

  

��

D900t900 =  DTtT 

 

At 900�qC, and using the data from Table 5.2, for the diffusion of carbon in �J-iron—i.e.,  
 D0 = 2.3 �u 10-5 m2/s 

 Qd = 148,000 J/mol 

the diffusion coefficient is equal to 

 

  

��

D900 =  (2.3 �u 10-5  m2/s)exp ��
148,000 J/mol

(8.31 J/mol- K)(900 �� 273 K)

�ª��

�¬��
�«��

�º��

�¼��
�»�� 

 

= 5.9 �u 10-12 m2/s 

 

Thus, from the above equation 

 

  

��

(5.9 �u 10-12 m2/s) (15 h) = DT (2 h) 

 
And, solving for DT 

 

  

��

DT =  
(5.9 �u10-12  m2/s)(15 h)

2 h
= 4.43 �u 10-11 m2/s 

 

Now, solving for T from Equation 5.9a gives 

 

    

��

T = ��
Qd

R(ln DT �� ln D0)
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��

=  ��
148,000 J/mol

(8.31 J/mol- K) ln (4.43 �u 10-11 m2/s) ��  ln (2.3 �u 10-5  m2/s)�> �@
 

 

= 1353
 
K = 1080�qC 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 5.27  (a) Calculate the diffusion coefficient for copper in aluminum at 500ºC. 

 (b) What time will be required at 600ºC to produce the same diffusion result (in terms of concentration at a 

specific point) as for 10 h at 500ºC? 
 

  Solution 

 (a)  We are asked to calculate the diffusion coefficient for Cu in Al at 500�qC.  Using the data in Table 5.2 

and Equation 5.8 

 

    

��

D =  D0 exp ��
Qd
RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

��

=  (6.5 �u 10-5  m2/s)exp ��
136,000 J/mol

(8.31 J/mol- K)(500 �� 273 K)

�ª��

�¬��
�«��

�º��

�¼��
�»�� 

 

= 4.15 �u 10-14 m2/s 

 

 (b)  This portion of the problem calls for the time required at 600�qC to produce the same diffusion result as 

for 10 h at 500�qC.  Equation 5.7 is employed as 
 

  

��

D500t500 =  D600t600 
 

Now, from Equation 5.8 the value of the diffusion coefficient at 600�qC is calculated as��

 

  

��

D600 =  (6.5 �u 10-5  m2/s)exp ��
136,000 J/mol

(8.31 J/mol- K)(600 �� 273K)

�ª��

�¬��
�«��

�º��

�¼��
�»�� 

 

= 4.69 �u 10-13 m2/s 

 

Thus, 

  

��

t600 =
D500t500

D600
 

 

��

=  
(4.15�u10��14 m2 /s) (10h)

(4.69�u10��13m2 /s)
=  0.88 h 
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 5.28  A copper-nickel diffusion couple similar to that shown in Figure 5.1a is fashioned.  After a 700-h 

heat treatment at 1100�qC (1373 K) the concentration of Cu is 2.5 wt% at the 3.0-mm position within the nickel.  At 

what temperature must the diffusion couple need to be heated to produce this same concentration (i.e., 2.5 wt% Cu) 

at a 2.0-mm position after 700 h?  The preexponential and activation energy for the diffusion of Cu in Ni are given 

in Table 5.2. 
 

  Solution 

 In order to determine the temperature to which the diffusion couple must be heated so as to produce a 

concentration of 2.5 wt% Ni at the 2.0-mm position, we must first utilize Equation 5.6b with time t being a constant.  

That is 

 

    

��

x2

D
=  constant 

Or 

 

  

��

x1100
2

D1100
=  

xT
2

DT
 

 
Now, solving for DT from this equation, yields 

 

  

��

DT =
xT

2 D1100

x1100
2

 

 
and incorporating the temperature dependence of D1100 utilizing Equation (5.8), realizing that for the diffusion of 

Cu in Ni (Table 5.2) 
 D0 = 2.7 �u 10-5 m2/s 

 Qd = 256,000 J/mol  

then 
 

  

��

DT =  

xT
2�� ��D0 exp ��

Qd
RT

�§��

�©��
�¨��

�·��

�¹��
�¸��

�ª��

�¬��
�«��

�º��

�¼��
�»��

x1100
2

 

 

��

=  

(2 mm)2 (2.7 �u10��5 m2/s)exp ��
256,000 J/mol

(8.31 J/mol- K)(1373 K)

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��

�ª��

�¬��

�«��
�«��

�º��

�¼��

�»��
�»��

(3 mm)2
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= 2.16 �u 10-15 m2/s 
 

We now need to find the T at which D has this value.  This is accomplished by rearranging Equation 5.9a and 

solving for T as 
 

    

��

T =
Qd

R (lnD0 �� lnD)  

 

��

=  
256,000 J/mol

(8.31 J/mol- K) ln (2.7 �u 10-5 m2/s) ��  ln (2.16 �u 10-15 m2/s)�> �@
 

 

= 1325 K = 1052�qC 
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 5.29  A diffusion couple similar to that shown in Figure 5.1a is prepared using two hypothetical metals A 

and B. After a 30-h heat treatment at 1000 K (and subsequently cooling to room temperature) the concentration of 

A in B is 3.2 wt% at the 15.5-mm position within metal B.  If another heat treatment is conducted on an identical 

diffusion couple, only at 800 K for 30 h, at what position will the composition be 3.2 wt% A? Assume that the 

preexponential and activation energy for the diffusion coefficient are 1.8 �u 10-5 m2/s and 152,000 J/mol, 

respectively. 
 

  Solution 

 In order to determine the position within the diffusion couple at which the concentration of A in B is 3.2 

wt%, we must employ Equation 5.6b with t constant.  That is 

 

    

��

x2

D
=  constant 

Or 

 

    

��

x800
2

D800
=  

x1000
2

D1000
 

 
It is first necessary to compute values for both D800 and D1000;  this is accomplished using Equation 5.8 as follows: 

 

  

��

D800 =  (1.8 �u 10-5  m2/s)exp ��
152,000 J/mol

(8.31 J/mol- K)(800K)

�ª��

�¬��
�«��

�º��

�¼��
�»�� 

 

= 2.12 �u 10-15 m2/s 

 

 

  

��

D1000 =  (1.8 �u 10-5  m2/s)exp ��
152,000 J/mol

(8.31 J/mol- K)(1000 K)

�ª��

�¬���«��
�º��

�¼���»�� 

 

= 2.05 �u 10-13 m2/s 

 
Now, solving the above expression for x800 yields 

 

  

��

x800 =  x1000
D800
D1000
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��

=  (15.5 mm)
2.12 �u 10��15 m2 /s

2.05 �u 10��13 m2 /s
 

 

= 1.6 mm 
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 5.30  The outer surface of a steel gear is to be hardened by increasing its carbon content.  The carbon is to 

be supplied from an external carbon-rich atmosphere, which is maintained at an elevated temperature. A diffusion 

heat treatment at 850�qC (1123 K) for 10 min increases the carbon concentration to 0.90 wt% at a position 1.0 mm 

below the surface.  Estimate the diffusion time required at 650�qC (923 K) to achieve this same concentration also at 

a 1.0-mm position. Assume that the surface carbon content is the same for both heat treatments, which is 

maintained constant. Use the diffusion data in Table 5.2 for C diffusion in �D-Fe. 
 

  Solution 

 In order to compute the diffusion time at 650�qC to produce a carbon concentration of 0.90 wt% at a 

position 1.0 mm below the surface we must employ Equation 5.6b with position (x) constant;  that is 

 

Dt = constant 

 

Or 

  

��

D850t850 =  D650t650 

 
In addition, it is necessary to compute values for both D850 and D650 using Equation 5.8.  From Table 5.2, for the 

diffusion of C in �D-Fe, Qd = 80,000 J/mol and D0 = 6.2 �u 10-7 m2/s.  Therefore, 

 

  

��

D850 =  (6.2 �u 10-7  m2/s)exp ��
80,000 J/mol

(8.31 J/mol- K)(850 �� 273 K)

�ª��

�¬��
�«��

�º��

�¼��
�»�� 

 

= 1.17 �u 10-10 m2/s 

 

 

  

��

D650 =  (6.2 �u 10-7  m2/s)exp ��
80,000 J/mol

(8.31 J/mol- K)(650 �� 273 K)

�ª��

�¬��
�«��

�º��

�¼��
�»�� 

 

= 1.83 �u 10-11 m2/s 

 
Now, solving the original equation for t650 gives 

 

  

��

t650 =
D850t850

D650
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��

=  
(1.17 �u 10��10  m2/s) (10 min)

1.83 �u 10��11m2 /s
 

 

= 63.9 min 
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 5.31  An FCC iron-carbon alloy initially containing 0.20 wt% C is carburized at an elevated temperature 

and in an atmosphere wherein the surface carbon concentration is maintained at 1.0 wt%.  If after 49.5 h the 

concentration of carbon is 0.35 wt% at a position 4.0 mm below the surface, determine the temperature at which the 

treatment was carried out. 
 

  Solution 

 This problem asks us to compute the temperature at which a nonsteady-state 49.5 h diffusion anneal was 

carried out in order to give a carbon concentration of 0.35 wt% C in FCC Fe at a position 4.0 mm below the surface.  

From Equation 5.5 

 

  

��

Cx �� C0
Cs �� C0

=  
0.35 �� 0.20
1.0 �� 0.20

=  0.1875 =  1 �� erf 
x

2 Dt

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸�� 

 

Or 

  

��

erf
x

2 Dt

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��=  0.8125 

 

Now it becomes necessary, using the data in Table 5.1 and linear interpolation, to determine the value of 
    

��

x
2 Dt

.  

Thus 

 

 z erf (z) 

 0.90 0.7970 

 y 0.8125 

 0.95 0.8209 

 

 

  

��

y �� 0.90
0.95 �� 0.90

=  
0.8125 �� 0.7970
0.8209 �� 0.7970

 

 

From which 

y = 0.9324 

 

Thus, 

  

��

x
2 Dt

=  0.9324 
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And since t = 49.5 h (178,200 s) and x = 4.0 mm (4.0 �u 10-3 m), solving for D from the above equation yields 

 

  

��

D =  
x2

(4t)(0.9324)2
 

 

��

=  
(4.0 �u10��3 m)2

(4)(178,200 s)(0.869)
=  2.58 �u 10-11 m2/s 

 

Now, in order to determine the temperature at which D has the above value, we must employ Equation 5.9a;  

solving this equation for T yields 

 

    

��

T =
Qd

R (lnD0 �� lnD)
 

 

From Table 5.2, D0 and Qd for the diffusion of C in FCC Fe are 2.3 �u 10-5 m2/s and 148,000 J/mol, respectively.  

Therefore 

 

  

��

T =  
148,000 J/mol

(8.31 J/mol- K) ln (2.3 �u 10-5  m2/s) -  ln (2.58 �u 10-11 m2/s)�> �@
 

 

= 1300 K = 1027�qC 
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 Diffusion in Semiconducting Materials 

 

 5.32  Phosphorus atoms are to be diffused into a silicon wafer using both predeposition and drive-in heat 

treatments;  the background concentration of P in this silicon material is known to be 5 �u 1019 atoms/m3.  The 

predeposition treatment is to be conducted at 950°C for 45 minutes;  the surface concentration of P is to be 

maintained at a constant level of 1.5 �u 1026 atoms/m3.  Drive-in diffusion will be carried out at 1200°C for a period 

of 2.5 h.  For the diffusion of P in Si, values of Qd and D0 are 3.40 eV and 1.1 �u 10-4 m2/s, respectively. 

 (a) Calculate the value of Q0. 

 (b) Determine the value of xj  for the drive-in diffusion treatment. 

 (c) Also for the drive-in treatment, compute the position x at which the concentration of P atoms is 1024 m-

3. 
 

  Solution 

 (a)  For this portion of the problem we are asked to determine the value of Q0.  This is possible using 

Equation 5.12.  However, it is first necessary to determine the value of D for the predeposition treatment [Dp at Tp = 

950°C (1223 K)] using Equation 5.8.  Thus 

 

��

Dp  �  D0 exp ��
Qd
kTp

�§��

�©��
�¨��
�¨��

�·��

�¹��
�¸��
�¸�� 

 

��

�  (1.1 �u 10��4  m2 /s) exp ��
3.40 eV

(8.62 �u 10��5  eV/atom�� K)(1223 K)

�ª��

�¬��
�«��

�º��

�¼��
�»�� 

 

��

� 1.08 �u 10��18  m2 /s 

 

The value of Q0 may be determined as follows: 

 

��

Q0  �  2Cs

Dpt p

�S
 

��

�  (2)(1.5 �u 1026  atoms/m3)
(1.08 �u 10��18  m2 /s)(45 min)(60 s/min)

�S
 

= 

��

9.14 �u 1018  atoms/m2 

 

 (b)  Computation of the junction depth requires that we use Equation 5.13.  However, before this is 

possible it is necessary to calculate D at the temperature of the drive-in treatment [Dd at 1200°C (1473 K)].  Thus, 
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��

Dd �  (1.1 �u 10��4  m2 /s) exp ��
3.40 eV

(8.62 �u 10��5  eV/atom�� K)(1473 K)

�ª��

�¬��
�«��

�º��

�¼��
�»�� 

 

��

� 2.58 �u 10��16  m2 /s 

 

Now from Equation 5.13 

 

��

x j  �  (4Ddtd) ln
Q0

CB �SDdtd

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��

�ª��

�¬��
�«��
�«��

�º��

�¼��
�»��
�»��

1/ 2

 

 

��

�  (4)(2.58 �u 10��16  m2 /s)(9000 s)  ln
9.14 �u 1018  atoms/m2

(5 �u 1019  atoms/m3) (�S)(2.58 �u 10��16  m2 /s)(9000 s)

�ª��

�¬��
�«��
�«��

�º��

�¼��
�»��
�»��

���
�®��
�°��

�¯���°��

�½��
�¾��
�°��

�¿���°��

1/ 2

 

 

��

�  1.21 �u 10��5  m �  12.1 �Pm 

 

 (c)  For a concentration of 1024 P atoms/m3 for the drive-in treatment, we compute the value of x using 

Equation 5.11.  However, it is first necessary to manipulate Equation 5.11 so that x is the dependent variable.  

Taking natural logarithms of both sides leads to 

 

��

lnC(x,t)  �  ln
Q0

�SDdtd

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸�� ��

x2

4Ddtd
 

 

Now, rearranging and solving for x leads to 

 

��

x  �  (4Ddtd) ln
Q0

C(x,t) �SDdtd

�ª��

�¬��
�«��
�«��

�º��

�¼��
�»��
�»��

���
�®��
�°��

�¯���°��

�½��
�¾��
�°��

�¿���°��

1/ 2

 

 

Now, incorporating values for Q0 and Dd determined above and taking C(x,t) = 1024 P atoms/m3 yields 

 

��

x  �  (4)(2.58 �u 10��16)(9000) ln
9.14 �u 1018

(1024) (�S)(2.58 �u 10��16)(9000)

�ª��

�¬��
�«��
�«��

�º��

�¼��
�»��
�»��

���
�®��
�°��

�¯���°��

�½��
�¾��
�°��

�¿���°��

1/ 2
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��

�  3.36 �u 10��6  m �  3.36 �Pm 
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 5.33  Aluminum atoms are to be diffused into a silicon wafer using both predeposition and drive-in heat 

treatments;  the background concentration of Al in this silicon material is known to be 3 �u 1019 atoms/m3.  The 

drive-in diffusion treatment is to be carried out at 1050°C for a period of 4.0 h, which gives a junction depth xj  of 

3.0 �Pm.  Compute the predeposition diffusion time at 950°C if the surface concentration is maintained at a constant 

level of 2 �u 1025 atoms/m3. For the diffusion of Al in Si, values of Qd and D0 are 3.41 eV and 1.38 �u 10-4 m2/s, 

respectively.̀ 
 

  Solution 

 This problem asks that we compute the time for the predeposition heat treatment for the diffusion of Al in 

Si.  In order to do this it is necessary to determine the value of Q0 from Equation 5.13.  However, before doing this 

we must first calculate Dd, using Equation 5.8.  Therefore 

 

��

Dd  �  D0 exp ��
Qd
kTd

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸�� 

 

��

�  (1.38 �u 10��4  m2 /s) exp ��
3.41 eV

(8.62 �u 10��5  eV/atom�� K)(1050�qC ��  273 K)

�ª��

�¬��
�«��

�º��

�¼��
�»�� 

 

��

�  1.43 �u 10��17  m2 /s 

 

Now, solving for Q0 in Equation 5.13 leads to 

 

��

Q0  �  CB �SDdtd�� ��exp
x j

2

4Ddtd

�§��

�©��
�¨��
�¨��

�·��

�¹��
�¸��
�¸�� 

 

In the problem statement we are given the following values: 

 CB = 3 �u 1019 atoms/m3 

 td = 4 h (14,400 s) 

 xj = 3.0 �Pm = 3.0 �u 10-6 m 

Therefore, incorporating these values into the above equation yields 

 

��

Q0  �  (3 �u 1019  atoms/m3) (�S)(1.43 �u 10��17  m2 /s)(14,400 s)�> �@exp
(3.0 �u 10��6  m)2

(4)(1.43 �u 10��17  m2 /s)(14,400 s)

�ª��

�¬��
�«��

�º��

�¼��
�»�� 
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��

�  1.34 �u 1018  atoms/m2 

 

We may now compute the value of tp using Equation 5.12.  However, before this is possible it is necessary to 

determine Dp (at 950°C) using Equation 5.8.  Thus 

 

��

Dp �  (1.38 �u 10��4  m2 /s) exp ��
3.41 eV

(8.62 �u 10��5  eV/atom�� K)(950�qC ��  273 K)

�ª��

�¬��
�«��

�º��

�¼��
�»�� 

 

��

�  1.24 �u 10��18  m2 /s 

 

Now, solving for tp in Equation 5.12 we get 

 

��

t p  �  
�SQ0

2

4Cs
2Dp

 

 

And incorporating the value of Cs provided in the problem statement (2 �u 1025 atoms/m3) as well as values for Q0 

and Dp determined above, leads to 

 

��

t p  �  
�S1.34 �u 1018  atoms/m2�� ��2

(4) 2 �u 1025  atoms/m3�� ��2(1.24 �u 10��18  m2 /s)
 

 

��

�  2.84 �u 103  s �  47.4 min 
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DESIGN PROBLEMS 

 

 Steady-State Diffusion 

 

 5.D1  It is desired to enrich the partial pressure of hydrogen in a hydrogen-nitrogen gas mixture for which 

the partial pressures of both gases are 0.1013 MPa (1 atm).  It has been proposed to accomplish this by passing 

both gases through a thin sheet of some metal at an elevated temperature;  inasmuch as hydrogen diffuses through 

the plate at a higher rate than does nitrogen, the partial pressure of hydrogen will be higher on the exit side of the 

sheet.  The design calls for partial pressures of 0.0709 MPa (0.7 atm) and 0.02026 MPa (0.2 atm), respectively, for 
hydrogen and nitrogen. The concentrations of hydrogen and nitrogen (CH and CN, in mol/m3) in this metal are 

functions of gas partial pressures (pH2
 and pN2

, in MPa) and absolute temperature and are given by the following 

expressions: 

 

 
  

��

CH  �  2.5 �u 103 pH2
exp ��

27.8 kJ/mol
RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� (5.16a) 

 

 
  

��

CN  �  2.75 �u 10��3 pN2
exp ��

37.6 kJ/mol
RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� (5.16b) 

Furthermore, the diffusion coefficients for the diffusion of these gases in this metal are functions of the absolute 

temperature as follows: 

 

��

DH (m2/s) � 1.4 �u 10��7 exp ��
13.4 kJ/mol

RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� (5.17a) 

 

 

��

DN (m2/s) � 3.0 �u 10��7 exp ��
76.15 kJ/mol

RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� (5.17b) 

Is it possible to purify hydrogen gas in this manner?  If so, specify a temperature at which the process may be 

carried out, and also the thickness of metal sheet that would be required. If this procedure is not possible, then state 

the reason(s) why. 
 

  Solution 

 This problem calls for us to ascertain whether or not a hydrogen-nitrogen gas mixture may be enriched 

with respect to hydrogen partial pressure by allowing the gases to diffuse through a metal sheet at an elevated 

temperature.  If this is possible, the temperature and sheet thickness are to be specified;  if such is not possible, then 

we are to state the reasons why.  Since this situation involves steady-state diffusion, we employ Fick's first law, 

Equation 5.3.  Inasmuch as the partial pressures on the high-pressure side of the sheet are the same, and the pressure 

of hydrogen on the low pressure side is 3.5 times that of nitrogen, and concentrations are proportional to the square 
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root of the partial pressure, the diffusion flux of hydrogen JH is the square root of 3.5 times the diffusion flux of 

nitrogen JN--i.e. 

 

    

��

JH � 3.5JN  

 

Thus, equating the Fick's law expressions incorporating the given equations for the diffusion coefficients and 

concentrations in terms of partial pressures leads to the following 

 
JH 

 

    

��

� 
1
�' x

�u 

  

��

(2.5 �u103) 0.1013 MPa �� 0.0709MPa�� ��exp ��
27.8 kJ

RT

�§��

�©��
�¨��

�·��

�¹��
�¸��(1.4 �u10��7 m2 /s)exp ��

13.4 kJ
RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

    

��

� 3.5JN  

 

    

��

� 
3.5

�'x
�u 

    

��

(2.75�u103) 0.1013MPa �� 0.02026MPa�� ��exp ��
37.6 kJ

RT

�§��

�©��
�¨��

�·��

�¹��
�¸��(3.0 �u10��7 m2 /s)exp ��

76.15kJ
RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

The �' x's cancel out, which means that the process is independent of sheet thickness.  Now solving the above 

expression for the absolute temperature T gives 

 

T = 3237 K 

 

which value is extremely high (surely above the melting point of the metal).  Thus, such a diffusion process is not 

possible. 
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 5.D2  A gas mixture is found to contain two diatomic A and B species for which the partial pressures of 

both are 0.05065 MPa (0.5 atm).  This mixture is to be enriched in the partial pressure of the A species by passing 

both gases through a thin sheet of some metal at an elevated temperature.  The resulting enriched mixture is to have 

a partial pressure of 0.02026 MPa (0.2 atm) for gas A, and 0.01013 MPa (0.1 atm) for gas B. The concentrations of 
A and B (CA and CB, in mol/m3) are functions of gas partial pressures (pA2

 and pB2
, in MPa) and absolute 

temperature according to the following expressions: 

 

 
  

��

CA  �  200 pA 2
exp ��

25.0 kJ/mol
RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� (5.18a) 

 

 
  

��

CB  �  1.0 �u 10��3 pB2
exp ��

30.0 kJ/mol
RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� (5.18b) 

Furthermore, the diffusion coefficients for the diffusion of these gases in the metal are functions of the absolute 

temperature as follows: 

 
  

��

DA (m2 /s)  �  4.0 �u 10��7 exp ��
15.0 kJ/mol

RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� (5.19a) 

 

 
  

��

DB (m2 /s)  �  2.5 �u 10��6 exp ��
24.0 kJ/mol

RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� (5.19b) 

Is it possible to purify the A gas in this manner? If so, specify a temperature at which the process may be carried 

out, and also the thickness of metal sheet that would be required. If this procedure is not possible, then state the 

reason(s) why. 
 

  Solution 

 This problem calls for us to ascertain whether or not an A2-B2 gas mixture may be enriched with respect to 

the A partial pressure by allowing the gases to diffuse through a metal sheet at an elevated temperature.  If this is 

possible, the temperature and sheet thickness are to be specified;  if such is not possible, then we are to state the 

reasons why.  Since this situation involves steady-state diffusion, we employ Fick's first law, Equation 5.3.  

Inasmuch as the partial pressures on the high-pressure side of the sheet are the same, and the pressure of A2 on the 

low pressure side is 2.0 times that of B2, and concentrations are proportional to the square root of the partial 

pressure, the diffusion flux of A, JA, is the square root of 2.0 times the diffusion flux of nitrogen JB--i.e. 

 

    

��

JA  =  2.0 JB 

 

Thus, equating the Fick's law expressions incorporating the given equations for the diffusion coefficients and 

concentrations in terms of partial pressures leads to the following 
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JA 

 

    

��

=  
1
�' x

�u 

    

��

(200) 0.05065MPa �� 0.02026MPa�� ��exp ��
25.0 kJ

RT

�§��

�©��
�¨��

�·��

�¹��
�¸��(4.0 �u10��7 m2 /s)exp ��

15.0 kJ
RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

    

��

� 2.0 JB 

 

    

��

= 
2.0

�'x
�u 

    

��

(1.0 �u 103) 0.05065MPa �� 0.01013MPa�� ��exp ��
30.0 kJ

RT

�§��

�©��
�¨��

�·��

�¹��
�¸��(2.5 �u10��6 m2 /s)exp ��

24.0 kJ
RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

The �' x's cancel out, which means that the process is independent of sheet thickness.  Now solving the above 

expression for the absolute temperature T gives 

 

T = 401 K (128�qC) 

 

Thus, it is possible to carry out this procedure at 401 K or 128�qC. 
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 Nonsteady-State Diffusion 

 

 5.D3  The wear resistance of a steel shaft is to be improved by hardening its surface.  This is to be 

accomplished by increasing the nitrogen content within an outer surface layer as a result of nitrogen diffusion into 

the steel.  The nitrogen is to be supplied from an external nitrogen-rich gas at an elevated and constant 

temperature. The initial nitrogen content of the steel is 0.002 wt%, whereas the surface concentration is to be 

maintained at 0.50 wt%. For this treatment to be effective, a nitrogen content of 0.10 wt% must be established at a 

position 0.40 mm below the surface.  Specify appropriate heat treatments in terms of temperature and time for 

temperatures between 475�qC and 625�qC.  The preexponential and activation energy for the diffusion of nitrogen in 

iron are 3 �u 10-7 m2/s and 76,150 J/mol, respectively, over this temperature range. 
 

  Solution 

 This is a nonsteady-state diffusion situation; thus, it is necessary to employ Equation 5.5, utilizing the 

following values for the concentration parameters: 

 
C0 = 0.002 wt% N 

Cs = 0.50 wt% N 

Cx = 0.10 wt% N 

 

Therefore 

 

  

��

Cx �� C0
Cs �� C0

=  
0.10�� 0.002
0.50�� 0.002

 

 

  

��

=  0.1968 =  1 �� erf
x

2 Dt

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

And thus 

 

  

��

1 �� 0.1968= 0.8032 =  erf
x

2 Dt

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

Using linear interpolation and the data presented in Table 5.1 
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 z erf (z) 

 0.9000 0.7970 

 y 0.8032 

 0.9500 0.8209 

 

 

  

��

0.8032�� 0.7970
0.8209�� 0.7970

=  
y �� 0.9000

0.9500�� 0.9000
 

 

From which 

 

  

��

y =
x

2 Dt
=  0.9130 

 

The problem stipulates that x = 0.40 mm = 4.0 �u 10-4 m.  Therefore 

 

  

��

4.0 �u10��4 m
2 Dt

=  0.9130 

 

Which leads to 

 

Dt = 4.80 �u 10-8 m2 

 

Furthermore, the diffusion coefficient depends on temperature according to Equation 5.8;  and, as stipulated in the 
problem statement, D0 = 3 �u 10-7 m2/s and Qd = 76,150 J/mol.  Hence 

 

  

��

Dt =  D0exp ��
Qd
RT

�§��

�©��
�¨��

�·��

�¹��
�¸��(t) =  4.80 �u 10-8 m2 

 

  

��

(3.0 �u 10-7 m2/s)exp ��
76,150 J/mol

(8.31 J/mol- K)(T)

�ª��

�¬���«��
�º��

�¼���»��(t)  �  4.80�u10��8 m2 

 

And solving for the time t 

 

  

��

t (in s) =
0.160

exp ��
9163.7

T

�§��

�©��
�¨��

�·��

�¹��
�¸��
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Thus, the required diffusion time may be computed for some specified temperature (in K).  Below are tabulated t 

values for three different temperatures that lie within the range stipulated in the problem. 

 

   

 Temperature Time 
 (�qC) s h 
   

 500 22,500 6.3 

 550 11,000 3.1 

 600 5800 1.6 
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 Diffusion in Semiconducting Materials 

 

 5.D4  One integrated circuit design calls for the diffusion of arsenic into silicon wafers;  the background 

concentration of As in Si is 2.5 �u 1020 atoms/m3.  The predeposition heat treatment is to be conducted at 1000°C for 

45 minutes, with a constant surface concentration of 8 �u 1026 As atoms/m3.  At a drive-in treatment temperature of 

1100°C, determine the diffusion time required for a junction depth of 1.2 �Pm.  For this system, values of Qd and D0 

are 4.10 eV and 2.29 �u 10-3 m2/s, respectively. 
 

  Solution 

 This problem asks that we compute the drive-in diffusion time for arsenic diffusion in silicon.  It is first 

necessary to determine the value of Q0 using Equation 5.12.  But before this is possible, the value of Dp at 1000°C 

must be computed with the aid of Equation 5.8.  Thus, 

 

��

Dp  �  D0 exp ��
Qd
kTp

�§��

�©��
�¨��
�¨��

�·��

�¹��
�¸��
�¸�� 

 

��

�  (2.29 �u 10��3 m2/s) exp ��
4.10 eV

(8.62 �u 10��5 eV/atom�� K)(1000�qC ��  273 K)

�ª��

�¬��
�«��

�º��

�¼��
�»�� 

 

��

�  1.36 �u 10��19 m2/s 

 

Now for the computation of Q0 using Equation 5.12: 

 

��

Q0  �  2Cs

Dpt p

�S
 

 

��

�  (2)(8 �u 1026 atoms/m3)
(1.36 �u 10��19 m2/s)(45 min)(60 s/min)

�S
 

 

��

�  1.73 �u 1019 atoms/m2 

 

We now desire to calculate td in Equation 5.13.  Algebraic manipulation and rearrangement of this expression leads 

to 
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��

exp
x j

2

4Ddtd

�§��

�©��
�¨��
�¨��

�·��

�¹��
�¸��
�¸�� �  

Q0
CB �SDdtd

 

 

At this point it is necessary to determine the value of Dd (at 1100°C).  Thus 

 

��

Dd �  (2.29 �u 10��3 m2/s) exp ��
4.10 eV

(8.62 �u 10��5 eV/atom�� K)(1100�qC ��  273 K)

�ª��

�¬��
�«��

�º��

�¼��
�»�� 

 

��

�  2.06 �u 10��18 m2/s 

 

And incorporation of values of all parameters except td in the above expression yields 

 

��

exp
(1.2 �u 10��6 m)2

(4)(2.06 �u 10��18 m2/s)td

�ª��

�¬��
�«��

�º��

�¼��
�»�� �  

1.73 �u 1019 atoms/m2

(2.5 �u 1020 atoms/m3) (�S)(2.06 �u 10��18 m2/s)td

 

 

which expression reduces to 

 

��

exp
1.75 �u 105  s

td

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸�� �  

2.72 �u 107  s1/ 2

td
 

 

Solving for td is not a simple matter.  One possibility is to use a graphing technique.  Let us take the logarithm of 

both sides of the above equation, which gives 

 

��

1.75 �u 105  s
td

 �  ln 
2.72 �u 107  s1/ 2

td

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸�� 

 

Now if we plot the terms on both left and right hand sides of this equation versus td, the value of td at the point of 

intersection of the two resulting curves is correct answer.  Below is such a plot: 
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As noted, the two curves intersect at about 13,900 s, which corresponds to td = 3.86 h. 

 





 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 

    

��

�W=
V
A

 

 

For static equilibrium in the x' direction the following condition must be met: 

 

    

��

F�¦ x'
= 0 

 

which means that 

 

    

��

PÕ�� P cos �T= 0 

 

Or that 

 

    

��

P' = P cos �T 

 

Now it is possible to write an expression for the stress 

��

�V'  in terms of P' and A' using the above expression and the 

relationship between A and A' [Figure (a)]: 

 

    

��

�V' =
PÕ
AÕ

 

 

    

��

=  
Pcos�T

A
cos�T

=
P
A

cos2�T 

 

However, it is the case that P/A = �V;  and, after making this substitution into the above expression, we have 

Equation 6.4a--that is 

 

  �V' = �V cos2�T 

 

 Now, for static equilibrium in the y' direction, it is necessary that 

 

    

��

FyÕ�¦ = 0 

 

    

��

= �� VÕ+  Psin�T 
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Or 

 

    

��

V' = Psin�T 

 

We now write an expression for �W' as 

 

    

��

�WÕ=
VÕ
AÕ

 

 

And, substitution of the above equation for V' and also the expression for A' gives 

 

    

��

�W' =
VÕ
AÕ

 

 

    

��

=
Psin�T

A
cos�T

 

 

    

��

=
P
A

sin�T cos�T 

 

  

��

=  �V sin�T cos�T 

 

which is just Equation 6.4b. 
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 6.2  (a) Equations 6.4a and 6.4b are expressions for normal (�1�•�����D�Q�G���V�K�H�D�U�����2�•�����V�W�U�H�V�V�H�V�����U�H�V�S�H�F�W�L�Y�H�O�\�����D�V���D��

�I�X�Q�F�W�L�R�Q���R�I���W�K�H���D�S�S�O�L�H�G���W�H�Q�V�L�O�H���V�W�U�H�V�V�����1�����D�Q�G���W�K�H���L�Q�F�O�L�Q�D�W�L�R�Q���D�Q�J�O�H���R�I���W�K�H���S�O�D�Q�H���R�Q���Z�K�L�F�K���W�K�H�V�H���V�W�U�H�V�V�H�V���D�U�H���W�D�N�H�Q��������

of Figure 6.4). Make a plot on which is presented the orientation parameters of these expressions (i.e., cos2 �����D�Q�G��

�V�L�Q�������F�R�V���������Y�H�U�V�X�V������ 

 (b) From this plot, at what angle of inclination is the normal stress a maximum? 

 (c) Also, at what inclination angle is the shear stress a maximum? 
 

  Solution 

 (a)  Below are plotted curves of cos2�T (for 

��

�V' ) and sin���T cos �T (for �W') versus �T. 

 

 

 

 (b)  The maximum normal stress occurs at an inclination angle of 0�q. 

 (c)  The maximum shear stress occurs at an inclination angle of 45�q. 
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 Stress-Strain Behavior 

 

 6.3  A specimen of aluminum having a rectangular cross section 10 mm �u 12.7 mm (0.4 in. �u 0.5 in.) is 

pulled in tension with 35,500 N (8000 lbf) force, producing only elastic deformation.  Calculate the resulting strain. 
 

  Solution 

 This problem calls for us to calculate the elastic strain that results for an aluminum specimen stressed in 

tension.  The cross-sectional area is just (10 mm) �u (12.7 mm) = 127 mm2 (= 1.27 �u 10-4 m2 = 0.20 in.2);  also, the 

elastic modulus for Al is given in Table 6.1 as 69 GPa (or 69 �u 109 N/m2).  Combining Equations 6.1 and 6.5 and 

solving for the strain yields 
 

  

��

�H =
�V
E

=
F

A0E
=  

35,500 N

(1.27�u10��4 m2)(69 �u109  N/m2)
=  4.1 �u 10-3 
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 6.4  A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 �u 106 psi) and 

an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile load of 2000 N 

(450 lbf) is applied.  Compute the maximum length of the specimen before deformation if the maximum allowable 

elongation is 0.42 mm (0.0165 in.). 

 

  Solution 

 We are asked to compute the maximum length of a cylindrical titanium alloy specimen (before 

deformation) that is deformed elastically in tension.  For a cylindrical specimen 

 

    

��

A0 =  �S
d0
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2
 

 

where d0 is the original diameter.  Combining Equations 6.1, 6.2, and 6.5 and solving for l0 leads to 

 

    

��

l0 =  
�'l
�H

 =  
�'l
�V
E

Ê�  
�'l  E
F
A0

Ê =  

�'l  E�S 
d0
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

F
=  

�'l  E�Sd0
2

4F
 

 

��

=  
(0.42�u10��3m)(107 �u109 N /m2) (�S)(3.8 �u10��3m)2

(4)(2000 N)
 

 

= 0.255 m = 255 mm (10.0 in.) 
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 6.5  A steel bar 100 mm (4.0 in.) long and having a square cross section 20 mm (0.8 in.) on an edge is 

pulled in tension with a load of 89,000 N (20,000 lbf), and experiences an elongation of 0.10 mm (4.0 �u 10-3 in.).  

Assuming that the deformation is entirely elastic, calculate the elastic modulus of the steel. 

 

  Solution 

 This problem asks us to compute the elastic modulus of steel.  For a square cross-section, A0 =     

��

b0
2, where 

b0 is the edge length.  Combining Equations 6.1, 6.2, and 6.5 and solving for E, leads to 

 

  

��

E  =  
�V
�H

 =  

F
A0
�'l
l0

=  
Fl0

b0
2�' l

 

 

��

=  
(89,000 N)(100 �u10��3m)

(20 �u10��3m)2(0.10�u10��3m)
 

 

= 223 �u 109 N/m2 = 223 GPa  (31.3 �u 106 psi) 
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 6.6  Consider a cylindrical titanium wire 3.0 mm (0.12 in.) in diameter and 2.5 �u 104 mm (1000 in.) long.  

Calculate its elongation when a load of 500 N (112 lbf) is applied.  Assume that the deformation is totally elastic. 

 

  Solution 

 In order to compute the elongation of the Ti wire when the 500 N load is applied we must employ 

Equation�V�����������������������D�Q�G���������������6�R�O�Y�L�Q�J���I�R�U���¨l and realizing that for Ti, E = 107 GPa (15.5 �u 106 psi) (Table 6.1), 

 

    

��

�' l  =  l0�H =  l0
�V
E

=  
l0F

EA0
=

l0F

E�S
d0
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

� 
4l0F

E�Sd0
2

 

 

��

=  
(4)(25 m)(500 N)

(107 �u109 N/m2)(�S)(3 �u10��3m)2
= 0.0165 m = 16.5 mm  (0.65 in.) 
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 6.7  For a bronze alloy, the stress at which plastic deformation begins is 275 MPa (40,000 psi), and the 

modulus of elasticity is 115 GPa (16.7 �u 106 psi). 

 (a) What is the maximum load that may be applied to a specimen with a cross-sectional area of 325 mm2 

(0.5 in.2) without plastic deformation? 

 (b) If the original specimen length is 115 mm (4.5 in.), what is the maximum length to which it may be 

stretched without causing plastic deformation? 
 

  Solution 

 (a)  This portion of the problem calls for a determination of the maximum load that can be applied without 

plastic deformation (Fy).  Taking the yield strength to be 275 MPa, and employment of Equation 6.1 leads to 

 

  

��

Fy =  �Vy A0 =  (275 �u 106 N/m2)(325 �u 10-6 m2) 

 
= 89,375 N   (20,000 lbf) 

 

 (b)  The maximum length to which the sample may be deformed without plastic deformation is determined 

from Equations 6.2 and 6.5 as 
 

  

��

li =  l0 1 ��
�V
E

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

��

=  (115 mm) 1 ��
275MPa

115�u103MPa

�ª��

�¬��
�«��

�º��

�¼��
�»��=  115.28 mm (4.51 in.)  
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 6.8  A cylindrical rod of copper (E = 110 GPa, 16 �u 106 psi) having a yield strength of 240 MPa (35,000 

psi) is to be subjected to a load of 6660 N (1500 lbf).  If the length of the rod is 380 mm (15.0 in.), what must be the 

diameter to allow an elongation of 0.50 mm (0.020 in.)? 

 

  Solution 

 This problem asks us to compute the diameter of a cylindrical specimen of copper in order to allow an 

elongation of 0.50 mm.  Employing Equations 6.1, 6.2, and 6.5, assuming that deformation is entirely elastic 

 

    

��

�V =
F
A0

=
F

�S
d0

2

4

�§��

�©��

�¨��
�¨��

�·��

�¹��

�¸��
�¸��

=  E 
�' l
l0

 

 

Or, solving for d0 

 

  

��

d0 =  
4 l0F
�SE �' l

 

 

��

=  
(4)(380 �u10��3m) (6660 N)

(�S)(110 �u109 N /m2)(0.50�u10��3m)
 

 

= 7.65 �u 10-3 m = 7.65 mm  (0.30 in.) 
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 6.9  Compute the elastic moduli for the following metal alloys, whose stress-strain behaviors may be 

observed in the “Tensile Tests” module of Virtual Materials Science and Engineering (VMSE):  (a)  titanium, (b) 

tempered steel, (c) aluminum, and (d) carbon steel.  How do these values compare with those presented in Table 6.1 

for the same metals? 

 

  Solution 

 The elastic modulus is the slope in the linear elastic region (Equation 6.10) as 
 

    

��

E =
�' �V
�' �H

=  
�V2  ��  �V1
�H2  ��  �H1

 

 

Since stress-strain curves for all of the metals/alloys pass through the origin, we make take �V1 = 0 and �H1 = 0.  

Determinations of �V2 and �H2 are possible by moving the cursor to some arbitrary point in the linear region of the 

curve and then reading corresponding values in the “Stress” and “Strain” windows that are located below the plot. 

 (a)  For the titanium alloy, we selected �V2 = 404.2 MPa with its corresponding �H2 = 0.0038.  Therefore, 

 

    

��

E =  
�V2  ��  �V1
�H2  ��  �H1

 �  
404.2 MPa ��  0 MPa

0.0038 ��  0
 �  106,400 MPa �  106.4 GPa 

 

 The elastic modulus for titanium given in Table 6.1 is 107 GPa, which is in very good agreement with this 

value. 

 

 (b)  For the tempered steel, we selected �V2 = 962.2 MPa with its corresponding �H2 = 0.0047.  Therefore, 

 

    

��

E =  
�V2  ��  �V1
�H2  ��  �H1

 �  
962.2 MPa ��  0 MPa

0.0047 ��  0
 �  204,700 MPa �  204.7 GPa 
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 The elastic modulus for steel given in Table 6.1 is 207 GPa, which is in reasonably good agreement with 

this value. 

 

 (c)  For the aluminum, we selected �V2 = 145.1 MPa with its corresponding �H2 = 0.0021.  Therefore, 

 

    

��

E =  
�V2  ��  �V1
�H2  ��  �H1

 �  
145.1 MPa ��  0 MPa

0.0021 ��  0
 �  69,100 MPa �  69.1 GPa 

 

 The elastic modulus for aluminum given in Table 6.1 is 69 GPa, which is in excellent agreement with this 

value. 

 

 (d)  For the carbon steel, we selected �V2 = 129 MPa with its corresponding �H2 = 0.0006.  Therefore, 

 

    

��

E =  
�V2  ��  �V1
�H2  ��  �H1

 �  
129 MPa ��  0 MPa

0.0006 ��  0
 �  215,000 MPa �  215 GPa 

 

 The elastic modulus for steel given in Table 6.1 is 207 GPa, which is in reasonable agreement with this 

value. 
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 6.10  Consider a cylindrical specimen of a steel alloy (Figure 6.21) 10.0 mm (0.39 in.) in diameter and 75 

mm (3.0 in.) long that is pulled in tension.  Determine its elongation when a load of 20,000 N (4,500 lbf) is applied. 

 

  Solution 

 �7�K�L�V�� �S�U�R�E�O�H�P���D�V�N�V���W�K�D�W���Z�H���F�D�O�F�X�O�D�W�H���W�K�H���H�O�R�Q�J�D�W�L�R�Q���¨l of a specimen of steel the stress-strain behavior of 

which is shown in Figure 6.21.  First it becomes necessary to compute the stress when a load of 20,000 N is applied 

using Equation 6.1 as 

 

  

��

�V =
F
A0

=
F

�S
d0
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

=
20,000 N

�S
10.0�u10��3m

2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

=  255 MPa (37,700 psi) 

 

Referring to Figure 6.21, at this stress level we are in the elastic region on the stress-strain curve, which corresponds 

to a strain of 0.0012.  Now, utilization of Equation 6.2 to compute the value of �' l��

 

  

��

�' l = �Hl0 = (0.0012)(75 mm) = 0.090 mm (0.0036 in.) 
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 6.11  Figure 6.22 shows, for a gray cast iron, the tensile engineering stress–strain curve in the elastic 

region. Determine (a) the tangent modulus at 10.3 MPa (1500 psi), and (b) the secant modulus taken to 6.9 MPa 

(1000 psi). 

 

  Solution 

 (a)  This portion of the problem asks that the tangent modulus be determined for the gray cast iron, the 

stress-strain behavior of which is shown in Figure 6.22.  In the figure below is shown a tangent draw on the curve at 

a stress of 10.3 MPa (1500 psi). 

 

 

�7�K�H���V�O�R�S�H���R�I���W�K�L�V���O�L�Q�H�����L���H�������¨�V��� �̈H), the tangent modulus, is computed as follows: 

 

��

�' �V
�' �H

 =  
15 MPa ��  5 MPa
0.0074 ��  0.0003

 =  1410 MPa =  1.41 GPa  (2.04 �u 105 psi) 

 

 (b)  The secant modulus taken from the origin is calculated by taking the slope of a secant drawn from the 

origin through the stress-strain curve at 6.9 MPa (1,000 psi).  This secant is drawn on the curve shown below: 
 



 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 

 

�7�K�H���V�O�R�S�H���R�I���W�K�L�V���O�L�Q�H�����L���H�������¨�V��� �̈H), the secant modulus, is computed as follows: 

 

��

�' �V
�' �H

 =  
15 MPa ��  0 MPa

0.0047 ��  0
 =  3190 MPa =  3.19 GPa   (4.63 �u 105 psi) 
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 6.12 As noted in Section 3.15, for single crystals of some substances, the physical properties are 

anisotropic; that is, they are dependent on crystallographic direction. One such property is the modulus of 

elasticity. For cubic single crystals, the modulus of elasticity in a general [uvw] direction, Euvw, is described by the 

relationship 

 

��

1
Euvw

� 
1

E 100
�� 3

1
E 100

��
1

E 111

�§��

�©��

�¨��
�¨��

�·��

�¹��

�¸��
�¸��

�D2�E2 �� �E2�J2 �� �J2�D2�� �� 

 
where 

��

E 100  and 

��

E 111  are the moduli of elasticity in [100] and [111] directions, respectively; �.�����������D�Q�G�������D�U�H���W�K�H��

cosines of the angles between [uvw] and the respective [100], [010], and [001] directions. Verify that the 
  

��

E�¢110�² 

values for aluminum, copper, and iron in Table 3.3 are correct. 
 

  Solution 

 We are asked, using the equation given in the problem statement, to verify that the modulus of elasticity 

values along [110] directions given in Table 3.3 for aluminum, copper, and iron are correct.  The �D, �E, and �J 

parameters in the equation correspond, respectively, to the cosines of the angles between the [110] direction and 

[100], [010] and [001] directions.  Since these angles are 45�q, 45�q, and 90�q, the values of �D, �E, and �J are 0.707, 

0.707, and 0, respectively.  Thus, the given equation takes the form 

 

    

��

1
E��110�!

 

 

    

��

=  
1

E��100�!
��  3

1
E��100�!

��
1

E��111�!

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��(0.707)2(0.707)2 �� (0.707)2(0)2 �� (0)2(0.707)2�> �@ 

 

    

��

=  
1

E��100�!
��  (0.75)

1
E��100�!

��
1

E��111�!

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸�� 

 
Utilizing the values of E<100> and E<111> from Table 3.3 for Al 

 

    

��

1
E��110�!

=
1

63.7 GPa
�� (0.75)

1
63.7 GPa

��
1

76.1GPa

�ª��

�¬��
�«��

�º��

�¼��
�»�� 

 
Which leads to, E<110> = 72.6 GPa, the value cited in the table. 
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 For Cu, 

 

    

��

1
E��110�!

=
1

66.7 GPa
�� (0.75)

1
66.7 GPa

��
1

191.1GPa

�ª��

�¬��
�«��

�º��

�¼��
�»�� 

 
Thus, E<110> = 130.3 GPa, which is also the value cited in the table. 

 

 Similarly, for Fe 

 

    

��

1
E��110�!

=
1

125.0GPa
��  (0.75)

1
125.0GPa

��
1

272.7GPa

�ª��

�¬��
�«��

�º��

�¼��
�»�� 

 
And E<110> = 210.5 GPa, which is also the value given in the table. 
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 6.13  In Section 2.6 it was noted that the net bonding energy EN between two isolated positive and negative 

ions is a function of interionic distance r as follows: 
 

 

��

EN � ��
A
r

��
B

r n
 (6.25) 

 

where A, B, and n are constants for the particular ion pair. Equation 6.25 is also valid for the bonding energy 

between adjacent ions in solid materials. The modulus of elasticity E is proportional to the slope of the interionic 

force–separation curve at the equilibrium interionic separation; that is, 
 

��

E �v
dF
dr

�§��

�©��
�¨��

�·��

�¹��
�¸��
ro

 

 

Derive an expression for the dependence of the modulus of elasticity on these A, B, and n parameters (for the two-

ion system) using the following procedure: 

 1. Establish a relationship for the force F as a function of r, realizing that 
 

��

F � 
dEN
dr

 

 2. Now take the derivative dF/dr. 

 3. Develop an expression for r 0, the equilibrium separation. Since r0 corresponds to the value of r at the 

minimum of the EN-versus-r curve (Figure 2.8b), take the derivative dEN/dr, set it equal to zero, and solve for r, 

which corresponds to r0. 

 4. Finally, substitute this expression for r0 into the relationship obtained by taking dF/dr. 
 

  Solution 

 This problem asks that we derive an expression for the dependence of the modulus of elasticity, E, on the 

parameters A, B, and n in Equation 6.25.  It is first necessary to take dEN/dr in order to obtain an expression for the 

force F;  this is accomplished as follows: 

 

    

��

F =
dEN
dr

=
d ��

A
r

�§��

�©��
�¨��

�·��

�¹��
�¸��

dr
+

d
B

r n

�§��

�©��
�¨��

�·��

�¹��
�¸��

dr
 

 

    

��

=  
A

r 2
��

nB

r (n��1)
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The second step is to set this dEN/dr expression equal to zero and then solve for r (= r0).  The algebra for this 

procedure is carried out in Problem 2.14, with the result that 

 

    

��

r0 =  
A

nB

�§��

�©��
�¨��

�·��

�¹��
�¸��
1/(1��  n)

 

 

Next it becomes necessary to take the derivative of the force (dF/dr), which is accomplished as follows: 

 

    

��

dF
dr

=
d

A

r 2

�§��

�©��
�¨��

�·��

�¹��
�¸��

dr
+

d ��
nB

r (n��1)

�§��

�©��
�¨��

�·��

�¹��
�¸��

dr
 

 

    

��

= ��
2A

r 3
+

(n)(n �� 1)B

r (n�� 2)
 

 

Now, substitution of the above expression for r0 into this equation yields 

 

    

��

dF
dr

�§��

�©��
�¨��

�·��

�¹��
�¸��
r0

= ��
2A

A
nB

�§��

�©��
�¨��

�·��

�¹��
�¸��
3/(1��n)

+  
(n)(n �� 1) B

A
nB

�§��

�©��
�¨��

�·��

�¹��
�¸��
(n�� 2) /(1��n)

 

 

which is the expression to which the modulus of elasticity is proportional. 
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 6.14  Using the solution to Problem 6.13, rank the magnitudes of the moduli of elasticity for the following 

hypothetical X, Y, and Z materials from the greatest to the least. The appropriate A, B, and n parameters (Equation 

6.25) for these three materials are tabulated below; they yield EN in units of electron volts and r in nanometers: 

 
Material A B n 

X 2.5 2.0 × 10–5 8 

Y 2.3 8.0 × 10–6 10.5 

Z 3.0 1.5 × 10–5 9 

 
  Solution 

 This problem asks that we rank the magnitudes of the moduli of elasticity of the three hypothetical metals 

X, Y, and Z.  From Problem 6.13, it was shown for materials in which the bonding energy is dependent on the 

interatomic distance r according to Equation 6.25, that the modulus of elasticity E is proportional to 

 

    

��

E �v ��
2A

A
nB

�§��

�©��
�¨��

�·��

�¹��
�¸��
3/(1��n)

+  
(n)(n �� 1) B

A
nB

�§��

�©��
�¨��

�·��

�¹��
�¸��
(n�� 2) /(1��n)

 

 

 For metal X, A = 2.5, B = 2.0 �u 10-5, and n = 8.  Therefore, 

 

  

��

E �v ��
(2)(2.5)

2.5

(8)(2 �u10��5)

�ª��

�¬��

�«��
�«��

�º��

�¼��

�»��
�»��

3/(1 �� 8)
+  

(8)(8�� 1)(2 �u10��5)
2.5

(8)(2 �u10��5)
�ª��

�¬��
�«��

�º��

�¼��
�»��

(8 �� 2) /(1 �� 8)
 

 

= 1097 

 

 For metal Y, A = 2.3, B = 8 �u 10-6, and n = 10.5.  Hence 

 

  

��

E �v ��
(2)(2.3)

2.3

(10.5)(8 �u10��6)

�ª��

�¬��

�«��
�«��

�º��

�¼��

�»��
�»��

3/(1 �� 10.5)
+  

(10.5)(10.5�� 1)(8 �u10��6)
2.3

(10.5)(8 �u10��6)
�ª��

�¬��
�«��

�º��

�¼��
�»��

(10.5�� 2) /(1 �� 10.5)
 

 

= 551 

 

 And, for metal Z, A = 3.0, B = 1.5 �u 10-5, and n = 9.  Thus 
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��

E �v ��
(2)(3.0)

3.0

(9)(1.5 �u10��5)

�ª��

�¬��

�«��
�«��

�º��

�¼��

�»��
�»��

3/(1 �� 9)
+  

(9)(9 �� 1)(1.5 �u10��5)
3.0

(9)(1.5 �u10��5)
�ª��

�¬��
�«��

�º��

�¼��
�»��

(9 �� 2) /(1 �� 9)
 

 

= 1024 

 

 Therefore, metal X has the highest modulus of elasticity. 
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 Elastic Properties of Materials 

 

 6.15  A cylindrical specimen of aluminum having a diameter of 19 mm (0.75 in.) and length of 200 mm (8.0 

in.) is deformed elastically in tension with a force of 48,800 N (11,000 lbf).  Using the data contained in Table 6.1, 

determine the following: 

 (a) The amount by which this specimen will elongate in the direction of the applied stress. 

 (b) The change in diameter of the specimen. Will the diameter increase or decrease? 
 
  Solution 

  (a)  We are asked, in this portion of the problem, to determine the elongation of a cylindrical specimen of 

aluminum.  Combining Equations 6.1, 6.2, and 6.5, leads to 

 

    

��

�V =  E�H 

 

    

��

F

�S
d0

2

4

�§��

�©��

�¨��
�¨��

�·��

�¹��

�¸��
�¸��

= E
�' l
l0

 

 

Or, solving for �' l (and realizing that E = 69 GPa, Table 6.1), yields��

 

    

��

�' l =  
4F l0
�Sd0

2E
 

 

��

=  
(4)(48,800 N)(200 �u10��3m)

(�S)(19 �u10��3m)2(69 �u109 N /m2)
� 5 �u 10-4  m =  0.50 mm (0.02 in.) 

 

 (b)  We are now called upon to determine the change in diameter, �' d.  Using Equation 6.8 

 

    

��

�Q = ��
�Hx
�Hz

=  ��
�'d /d0
�' l / l0

 

 

From Table 6.1, for aluminum, �Q � �����������������1�R�Z�����V�R�O�Y�L�Q�J���W�K�H���D�E�R�Y�H���H�[�S�U�H�V�V�L�R�Q���I�R�U���¨d yields 

 

  

��

�' d = ��
�Q�'l d0

l0
= ��

(0.33)(0.50 mm)(19 mm)
200 mm

 

 

= –1.6 �u 10-2 mm  (–6.2 �u 10-4 in.) 
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The diameter will decrease. 
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 6.16  A cylindrical bar of steel 10 mm (0.4 in.) in diameter is to be deformed elastically by application of a 

force along the bar axis.  Using the data in Table 6.1, determine the force that will produce an elastic reduction of 3 

�u 10-3 mm (1.2 �u 10-4 in.) in the diameter. 

 
  Solution 

 This problem asks that we calculate the force necessary to produce a reduction in diameter of 3 �u 10-3 mm 

for a cylindrical bar of steel.  For a cylindrical specimen, the cross-sectional area is equal to 

 

    

��

A0 =
�Sd0

2

4
 

 

Now, combining Equations 6.1 and 6.5 leads to  
 

    

��

�V =  
F
A0

� 
F

�Sd0
2

4

� E�Hz 

And, since from Equation 6.8 

 

    

��

�Hz � ��
�Hx
�Q

� ��

�' d
d0
�Q

� ��
�' d
�Qd0

 

 

Substitution of this equation into the above expression gives 

 

    

��

F

�Sd0
2

4

� E ��
�'d
�Qd0

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸�� 

 

And, solving for F leads to 

 

    

��

F =  ��
d0�'d �SE

4�Q
 

 

From Table 6.1, for steel, �Q = 0.30 and E = 207 GPa.  Thus, 
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��

F = ��
(10 �u10��3m)(�� 3.0 �u10��6 m)(�S)(207 �u109 N /m2)

(4)(0.30)
 

 
= 16,250 N  (3770 lbf) 
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 6.17  A cylindrical specimen of some alloy 8 mm (0.31 in.) in diameter is stressed elastically in tension.  A 

force of 15,700 N (3530 lbf) produces a reduction in specimen diameter of 5 �u 10-3 mm (2 �u 10-4 in.).  Compute 

Poisson's ratio for this material if its modulus of elasticity is 140 GPa (20.3 �u 106 psi). 

 
  Solution 

 This problem asks that we compute Poisson's ratio for the metal alloy.  From Equations 6.5 and 6.1 

 

    

��

�Hz =  
�V
E

=
F

A0E
=

F

�S
d0
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

E

=
4F

�Sd0
2 E

 

 

Since the transverse strain �Hx is just 

 

    

��

�Hx =
�' d
d0

 

 

and Poisson's ratio is defined by Equation 6.8, then 

 

    

��

�Q =  ��
�Hx
�Hz

= ��
�'d /d0

4F

�Sd0
2E

�§��

�©��

�¨��
�¨��

�·��

�¹��

�¸��
�¸��

= ��
d0�'d �SE

4F
 

 

��

=  ��
(8 �u10��3 m)(��5 �u10��6 m) (�S)(140 �u109 N /m2)

(4)(15,700 N)
=  0.280 
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 6.18  A cylindrical specimen of a hypothetical metal alloy is stressed in compression.  If its original and 

final diameters are 20.000 and 20.025 mm, respectively, and its final length is 74.96 mm, compute its original 

length if the deformation is totally elastic.  The elastic and shear moduli for this alloy are 105 GPa and 39.7 GPa, 

respectively. 
 
  Solution 

 This problem asks that we compute the original length of a cylindrical specimen that is stressed in 

compression.  It is first convenient to compute the lateral strain �Hx as 

 

  

��

�Hx =
�' d
d0

=
20.025 mm�� 20.000 mm

20.000 mm
=  1.25 �u 10-3 

 
In order to determine the longitudinal strain �Hz we need Poisson's ratio, which may be computed using Equation 6.9;  

solving for �Q yields 

 

  

��

�Q =
E

2G
�� 1 =  

105�u103 MPa

(2)(39.7�u103 MPa)
�� 1 =  0.322 

 
Now �Hz may be computed from Equation 6.8 as 

 

  

��

�Hz = ��
�Hx
�Q

= ��
1.25 �u 10��3

0.322
=  �� 3.88 �u 10-3 

 

Now solving for l0 using Equation 6.2 

 

    

��

l0 =  
li

1 �� �Hz
 

 

��

=  
74.96 mm

1 �� 3.88�u10��3
=  75.25  mm 
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 6.19  Consider a cylindrical specimen of some hypothetical metal alloy that has a diameter of 8.0 mm (0.31 

in.).  A tensile force of 1000 N (225 lbf) produces an elastic reduction in diameter of 2.8 �u 10-4 mm (1.10 �u 10-5 in.).  

Compute the modulus of elasticity for this alloy, given that Poisson's ratio is 0.30. 
 
  Solution 

 This problem asks that we calculate the modulus of elasticity of a metal that is stressed in tension.  

Combining Equations 6.5 and 6.1 leads to 

 

  

��

E =
�V
�Hz

=
F

A0�Hz
=

F

�Hz�S
d0
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

=
4F

�Hz�Sd0
2

 

 

From the definition of Poisson's ratio, (Equation 6.8) and realizing that for the transverse strain, �Hx= 
    

��

�' d
d0

 

 

    

��

�Hz = ��
�Hx
�Q

= ��
�'d
d0�Q

 

 
Therefore, substitution of this expression for �Hz into the above equation yields 

 

    

��

E =
4F

�Hz�Sd0
2

=  
4F �Q

�Sd0�'d
 

 

��

=  
(4)(1000 N)(0.30)

�S(8 �u10��3m)(2.8 �u10��7m)
=1.705  �u 1011 Pa= 170.5 GPa  (24.7 �u 106 psi) 
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 6.20  A brass alloy is known to have a yield strength of 275 MPa (40,000 psi), a tensile strength of 380 

MPa (55,000 psi), and an elastic modulus of 103 GPa (15.0 �u 106 psi).  A cylindrical specimen of this alloy 12.7 

mm (0.50 in.) in diameter and 250 mm (10.0 in.) long is stressed in tension and found to elongate 7.6 mm (0.30 in.).  

On the basis of the information given, is it possible to compute the magnitude of the load that is necessary to 

produce this change in length?  If so, calculate the load.  If not, explain why. 
 
  Solution 

 We are asked to ascertain whether or not it is possible to compute, for brass, the magnitude of the load 

necessary to produce an elongation of 7.6 mm (0.30 in.).  It is first necessary to compute the strain at yielding from 

the yield strength and the elastic modulus, and then the strain experienced by the test specimen.  Then, if 

�H(test) < �H(yield) 

deformation is elastic, and the load may be computed using Equations 6.1 and 6.5.  However, if 

�H(test) > �H(yield) 

computation of the load is not possible inasmuch as deformation is plastic and we have neither a stress-strain plot 

nor a mathematical expression relating plastic stress and strain.  We compute these two strain values as 

 

  

��

�H(test) =  
�'l
l0

=  
7.6 mm
250 mm

=  0.03 

 

and 

  

��

�H(yield) =
�Vy

E
=

275 MPa

103�u103 MPa
=  0.0027 

 

Therefore, computation of the load is not possible since �H(test) > �H(yield). 
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 6.21 A cylindrical metal specimen 12.7 mm (0.5 in.) in diameter and 250 mm (10 in.) long is to be 

subjected to a tensile stress of 28 MPa (4000 psi);  at this stress level the resulting deformation will be totally 

elastic. 

 (a) If the elongation must be less than 0.080 mm (3.2 �u 10-3 in.), which of the metals in Table 6.1 are 

suitable candidates?  Why? 

 (b) If, in addition, the maximum permissible diameter decrease is 1.2 �u  10-3 mm (4.7 �u 10-5 in.) when the 

tensile stress of 28 MPa is applied, which of the metals that satisfy the criterion in part (a) are suitable candidates? 

Why? 
 
  Solution 

 (a)  This part of the problem asks that we ascertain which of the metals in Table 6.1 experience an 

elongation of less than 0.080 mm when subjected to a tensile stress of 28 MPa.  The maximum strain that may be 

sustained, (using Equation 6.2) is just 

 

  

��

�H =  
�' l
l0

=
0.080 mm
250 mm

=  3.2 �u 10-4 

 

Since the stress level is given (50 MPa), using Equation 6.5 it is possible to compute the minimum modulus of 

elasticity which is required to yield this minimum strain.  Hence 

 

  

��

E =
�V
�H

=
28 MPa

3.2 �u10��4
= 87.5 GPa 

 

Which means that those metals with moduli of elasticity greater than this value are acceptable candidates—namely, 

brass, Cu, Ni, steel, Ti and W. 

 (b)  This portion of the problem further stipulates that the maximum permissible diameter decrease is 1.2 �u 

10-3 mm when the tensile stress of 28 MPa is applied.  This translates into a maximum lateral strain �Hx(max) as 

 

  

��

�Hx(max) =
�'d
d0

=  
��1.2 �u10��3 mm

12.7 mm
= �� 9.45 �u 10-5 

 

But, since the specimen contracts in this lateral direction, and we are concerned that this strain be less than 9.45 �u 

10-5, then the criterion for this part of the problem may be stipulated as 
  

��

��
�' d
d0

�� 9.45 �u 10-5. 

Now, Poisson’s ratio is defined by Equation 6.8 as 
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��

�Q� ��
�Hx
�Hz

 

 

For each of the metal alloys let us consider a possible lateral strain, 
    

��

�Hx � 
�' d
d0

. Furthermore, since the deformation is 

elastic, then, from Equation 6.5, the longitudinal strain, �Hz is equal to 

 

  

��

�Hz � 
�V
E

 

 
Substituting these expressions for �Hx and �Hz into the definition of Poisson’s ratio we have 

 

    

��

�Q� ��
�Hx
�Hz

� ��

�' d
d0
�V
E

 

 

which leads to the following: 

 

    

��

��
�' d
d0

� 
�Q�V
E

 

 

Using values for �Q and E found in Table 6.1 for the six metal alloys that satisfy the criterion for part (a), and for �V = 

28 MPa, we are able to compute a 
    

��

��
�' d
d0

 for each alloy as follows: 

 

  

��

��
�' d
d0

(brass)� 
(0.34)(28 �u106 N /m2)

97 �u109 N /m2
� 9.81�u10��5 

 

  

��

��
�' d
d0

(copper)� 
(0.34)(28 �u106 N /m2)

110 �u109 N /m2
� 8.65�u10��5 

 

  

��

��
�' d
d0

(titanium) � 
(0.34)(28 �u106 N /m2)

107 �u109 N /m2
� 8.90�u10��5 

 

  

��

��
�' d
d0

(nickel) � 
(0.31)(28 �u106 N /m2)

207 �u109 N /m2
� 4.19�u10��5  

 

  

��

��
�' d
d0

(steel)� 
(0.30)(28 �u106 N /m2)

207 �u109 N /m2
� 4.06�u10��5 
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��

��
�' d
d0

(tungsten)� 
(0.28)(28 �u106 N /m2)

407 �u109 N /m2
� 1.93�u10��5 

 

Thus, of the above six alloys, only brass will have a negative transverse strain that is greater than 9.45 �u 10-5.  This 

means that the following alloys satisfy the criteria for both parts (a) and (b) of the problem:  copper, titanium, 

nickel, steel, and tungsten. 
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 6.22  Consider the brass alloy for which the stress-strain behavior is shown in Figure 6.12.  A cylindrical 

specimen of this material 6 mm (0.24 in.) in diameter and 50 mm (2 in.) long is pulled in tension with a force of 

5000 N (1125 lbf).  If it is known that this alloy has a Poisson's ratio of 0.30, compute:  (a) the specimen elongation, 

and (b) the reduction in specimen diameter. 
 

  Solution 

 (a)  This portion of the problem asks that we compute the elongation of the brass specimen.  The first 

calculation necessary is that of the applied stress using Equation 6.1, as 

 

  

��

�V =
F
A0

=
F

�S
d0
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

=
5000 N

�S
6 �u10��3m

2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

= 177 �u 106 N/m2 =177 MPa (25,000 psi) 

 

From the stress-strain plot in Figure 6.12, this stress corresponds to a strain of about 2.0 �u 10-3.  From the definition 

of strain, Equation 6.2 

 

  

��

�' l = �Hl0 = (2.0 �u 10-3) (50 mm) =  0.10 mm  (4 �u 10-3 in.) 

 

 ���E���� �� �,�Q�� �R�U�G�H�U�� �W�R�� �G�H�W�H�U�P�L�Q�H�� �W�K�H�� �U�H�G�X�F�W�L�R�Q�� �L�Q�� �G�L�D�P�H�W�H�U�� �¨d, it is necessary to use Equation 6.8 and the 
definition of lateral strain (i.e., �Hx � ��� d̈/d0) as follows 

 

  

��

�' d =  d0�Hx = �� d0�Q�Hz = �� (6 mm)(0.30)(2.0 �u 10-3)  

 

= –3.6 �u 10-3 mm  (–1.4 �u 10-4 in.) 
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 6.23 A cylindrical rod 100 mm long and having a diameter of 10.0 mm is to be deformed using a tensile 

load of 27,500 N.  It must not experience either plastic deformation or a diameter reduction of more than 7.5 �u 10-3 

mm. Of the materials listed as follows, which are possible candidates?  Justify your choice(s). 

 

Material 
Modulus of Elasticity 

(GPa) 
Yield Strength 

(MPa) Poisson’s Ratio 

Aluminum alloy 70 200 0.33 

Brass alloy 101 300 0.34 

Steel alloy 207 400 0.30 

Titanium alloy 107 650 0.34 
 

  Solution 

 

 This problem asks that we assess the four alloys relative to the two criteria presented.  The first criterion is 

that the material not experience plastic deformation when the tensile load of 27,500 N is applied;  this means that 

the stress corresponding to this load not exceed the yield strength of the material.  Upon computing the stress 

 

  

��

�V =  
F
A0

=
F

�S
d0
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

=
27,500 N

�S
10 �u10��3m

2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

=  350 �u 106 N/m2 =  350 MPa 

 

Of the alloys listed, the Ti and steel alloys have yield strengths greater than 350 MPa. 

 Relative to the second criterion (i.e., that �'d be less than 7.5 �u 10-3 mm), it is necessary to calculate the 

�F�K�D�Q�J�H���L�Q���G�L�D�P�H�W�H�U���¨d for these three alloys.  From Equation 6.8 

 

    

��

�Q = ��
�Hx
�Hz

= ��

�'d
d0
�V
E

� ��
E �'d
�Vd0

 

 

�1�R�Z�����V�R�O�Y�L�Q�J���I�R�U���¨d from this expression, 

 

    

��

�' d = ��
�Q�Vd0

E
 

 

 For the steel alloy 
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��

�' d = ��
(0.30)(350 MPa)(10 mm)

207 �u103MPa
= �� 5.1 �u 10-3 mm 

 

Therefore, the steel is a candidate. 

 For the Ti alloy 

 

  

��

�' d = ��
(0.34)(350 MPa)(10 mm)

107 �u103 MPa
= �� 11.1 �u 10-3 mm 

 

Hence, the titanium alloy is not a candidate. 
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 6.24  A cylindrical rod 380 mm (15.0 in.) long, having a diameter of 10.0 mm (0.40 in.), is to be subjected 

to a tensile load. If the rod is to experience neither plastic deformation nor an elongation of more than 0.9 mm 

(0.035 in.) when the applied load is 24,500 N (5500 lbf), which of the four metals or alloys listed below are possible 

candidates? Justify your choice(s). 

 

Material 
Modulus of Elasticity 

(GPa) 
Yield Strength 

(MPa) 
Tensile Strength 

(MPa) 

Aluminum alloy 70 255 420 

Brass alloy 100 345 420 

Copper 110 250 290 

Steel alloy 207 450 550 
 

  Solution 

 
 This problem asks that we ascertain which of four metal alloys will not (1) experience plastic deformation, 

and (2) elongate more than 0.9 mm when a tensile load of 24,500 N is applied.  It is first necessary to compute the 

stress using Equation 6.1;  a material to be used for this application must necessarily have a yield strength greater 

than this value.  Thus, 

 

  

��

�V =
F
A0

=
24,500 N

�S
10.0 �u 10��3m

2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

= 312 MPa 

 

Of the metal alloys listed, only brass and steel have yield strengths greater than this stress. 

 Next, we must compute the elongation produced in both brass and steel using Equations 6.2 and 6.5 in 

order to determine whether or not this elongation is less than 0.9 mm.  For brass 
 

  

��

�' l =  
�Vl0
E

=  
(312 MPa)(380 mm)

100 �u 103 MPa
= 1.19 mm 

 

Thus, brass is not a candidate.  However, for steel 
 

  

��

�' l =
�Vl0
E

=
(312 MPa)(380 mm)

207 �u 103MPa
= 0.57 mm 

 

Therefore, of these four alloys, only steel satisfies the stipulated criteria. 
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 Tensile Properties 

 

 6.25  Figure 6.21 shows the tensile engineering stress–strain behavior for a steel alloy. 

 (a) What is the modulus of elasticity? 

 (b) What is the proportional limit? 

 (c) What is the yield strength at a strain offset of 0.002? 

 (d) What is the tensile strength? 
 

  Solution 

 Using the stress-strain plot for a steel alloy (Figure 6.21), we are asked to determine several of its 

mechanical characteristics. 

 (a)  The elastic modulus is just the slope of the initial linear portion of the curve;  or, from the inset and 

using Equation 6.10 
 

  

��

E =
�V2 �� �V1
�H2 �� �H��

=
(200 �� 0)  MPa
(0.0010�� 0)

= 200 �u 103 MPa =  200 GPa  (29 �u 106 psi) 

 

The value given in Table 6.1 is 207 GPa. 

 (b)  The proportional limit is the stress level at which linearity of the stress-strain curve ends, which is 

approximately 300 MPa (43,500 psi). 

 (c)  The 0.002 strain offset line intersects the stress-strain curve at approximately 400 MPa (58,000 psi). 

 (d)  The tensile strength (the maximum on the curve) is approximately 515 MPa (74,700 psi). 
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 6.26  A cylindrical specimen of a brass alloy having a length of 60 mm (2.36 in.) must elongate only 10.8 

mm (0.425 in.) when a tensile load of 50,000 N (11,240 lbf) is applied.  Under these circumstances, what must be 

the radius of the specimen?  Consider this brass alloy to have the stress-strain behavior shown in Figure 6.12. 
 

  Solution 

 We are asked to calculate the radius of a cylindrical brass specimen in order to produce an elongation of 

10.8 mm when a load of 50,000 N is applied.  It first becomes necessary to compute the strain corresponding to this 

elongation using Equation 6.2 as 

 

  

��

�H =
�' l
l0

=
10.8 mm
60 mm

=  0.18 

 

From Figure 6.12, a stress of 420 MPa (61,000 psi) corresponds to this strain.  Since for a cylindrical specimen, 

stress, force, and initial radius r0 are related as 

 

    

��

�V =
F

�Sr0
2

 

 

then 

 

  

��

r0 =  
F

�S�V
=

50,000 N

�S(420 �u106 N /m2)
= 0.0062 m= 6.2mm   (0.24 in.) 
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 6.27 A load of 85,000 N (19,100 lbf) is applied to a cylindrical specimen of a steel alloy (displaying the 

stress–strain behavior shown in Figure 6.21) that has a cross-sectional diameter of 15 mm (0.59 in.). 

 (a) Will the specimen experience elastic and/or plastic deformation? Why? 

 (b) If the original specimen length is 250 mm (10 in.), how much will it increase in length when this load is 

applied? 
 

  Solution 

 This problem asks us to determine the deformation characteristics of a steel specimen, the stress-strain 

behavior for which is shown in Figure 6.21. 

 (a)  In order to ascertain whether the deformation is elastic or plastic, we must first compute the stress, then 

locate it on the stress-strain curve, and, finally, note whether this point is on the elastic or plastic region.  Thus, from 

Equation 6.1 
 

  

��

�V =
F
A0

=
85,000 N

�S
15 �u10��3m

2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

= 481 �u 106 N/m2 = 481 MPa  (69,900 psi) 

 

The 481 MPa point is beyond the linear portion of the curve, and, therefore, the deformation will be both elastic and 

plastic. 

 (b)  This portion of the problem asks us to compute the increase in specimen length.  From the stress-strain 

curve, the strain at 481 MPa is approximately 0.0135.  Thus, from Equation 6.2 
 

  

��

�' l = �Hl0 = (0.0135)(250 mm) = 3.4 mm  (0.135 in.)  
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 6.28  A bar of a steel alloy that exhibits the stress-strain behavior shown in Figure 6.21 is subjected to a 

tensile load; the specimen is 300 mm (12 in.) long, and of square cross section 4.5 mm (0.175 in.) on a side. 

 (a)  Compute the magnitude of the load necessary to produce an elongation of 0.45 mm (0.018 in.). 

 (b)  What will be the deformation after the load has been released? 
 

  Solution 

 (a)  We are asked to compute the magnitude of the load necessary to produce an elongation of 0.45 mm for 

the steel displaying the stress-strain behavior shown in Figure 6.21.  First, calculate the strain, and then the 

corresponding stress from the plot. 

 

  

��

�H =
�' l
l0

=
0.45 mm
300 mm

=1.5 �u 10��3 

 

This is near the end of the elastic region;  from the inset of Figure 6.21, this corresponds to a stress of about 300 

MPa (43,500 psi).  Now, from Equation 6.1 
 

    

��

F = �VA0 = �Vb2 

 

in which b is the cross-section side length.  Thus, 
 

  

��

F = (300 �u106 N/m2)(4.5 �u10-3 m)2 = 6075 N  (1366lbf ) 

 

 (b)  After the load is released there will be no deformation since the material was strained only elastically. 
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 6.29  A cylindrical specimen of aluminum having a diameter of 0.505 in. (12.8 mm) and a gauge length of 

2.000 in. (50.800 mm) is pulled in tension.  Use the load–elongation characteristics tabulated below to complete 

parts (a) through (f). 

 

Load Length 

N lbf mm in. 

0 0 50.800 2.000 

7,330 1,650 50.851 2.002 

15,100 3,400 50.902 2.004 

23,100 5,200 50.952 2.006 

30,400 6,850 51.003 2.008 

34,400 7,750 51.054 2.010 

38,400 8,650 51.308 2.020 

41,300 9,300 51.816 2.040 

44,800 10,100 52.832 2.080 

46,200 10,400 53.848 2.120 

47,300 10,650 54.864 2.160 

47,500 10,700 55.880 2.200 

46,100 10,400 56.896 2.240 

44,800 10,100 57.658 2.270 

42,600 9,600 58.420 2.300 

36,400 8,200 59.182 2.330 

Fracture 
 

 (a) Plot the data as engineering stress versus engineering strain. 

 (b) Compute the modulus of elasticity. 

 (c) Determine the yield strength at a strain offset of 0.002. 

 (d) Determine the tensile strength of this alloy. 

 (e) What is the approximate ductility, in percent elongation? 

 (f) Compute the modulus of resilience. 
 

  Solution 

 This problem calls for us to make a stress-strain plot for aluminum, given its tensile load-length data, and 

then to determine some of its mechanical characteristics. 
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 (a)  The data are plotted below on two plots:  the first corresponds to the entire stress-strain curve, while 

for the second, the curve extends to just beyond the elastic region of deformation. 

 

 

 

 

 

 (b)  The elastic modulus is the slope in the linear elastic region (Equation 6.10) as 
 

  

��

E =
�' �V
�' �H

=
200 MPa �� 0 MPa

0.0032 �� 0
= 62.5 �u 103 MPa = 62.5 GPa  (9.1 �u 106 psi) 
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 (c)  For the yield strength, the 0.002 strain offset line is drawn dashed.  It intersects the stress-strain curve 

at approximately 285 MPa (41,000 psi ). 

 (d)  The tensile strength is approximately 370 MPa (54,000 psi), corresponding to the maximum stress on 

the complete stress-strain plot. 

 (e)  The ductility, in percent elongation, is just the plastic strain at fracture, multiplied by one-hundred.  

The total fracture strain at fracture is 0.165;  subtracting out the elastic strain (which is about 0.005) leaves a plastic 

strain of 0.160.  Thus, the ductility is about 16%EL. 

 (f)  From Equation 6.14, the modulus of resilience is just 

 

    

��

Ur =
�Vy

2

2E
 

 

which, using data computed above gives a value of 

 

  

��

U r  =
(285 MPa)2

(2)(62.5�u103 MPa)
= 0.65 MN/m2 � 0.65 �u 106 N/m2  �  6.5 �u 105 J/m3   (93.8 in.- lbf /in.3) 
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 6.30  A specimen of ductile cast iron having a rectangular cross section of dimensions 4.8 mm �u 15.9 mm 

(3/16 in. �u 5/8 in.) is deformed in tension.  Using the load-elongation data tabulated below, complete problems (a) 

through (f). 

 

Load Length 

N lbf mm in. 

0 0 75.000 2.953 

4,740 1,065 75.025 2.954 

9,140 2,055 75.050 2.955 

12,920 2,900 75.075 2.956 

16,540 3,720 75.113 2.957 

18,300 4,110 75.150 2.959 

20,170 4,530 75.225 2.962 

22,900 5,145 75.375 2.968 

25,070 5,635 75.525 2.973 

26,800 6,025 75.750 2.982 

28,640 6,440 76.500 3.012 

30,240 6,800 78.000 3.071 

31,100 7,000 79.500 3.130 

31,280 7,030 81.000 3.189 

30,820 6,930 82.500 3.248 

29,180 6,560 84.000 3.307 

27,190 6,110 85.500 3.366 

24,140 5,430 87.000 3.425 

18,970 4,265 88.725 3.493 

Fracture 

 

 (a) Plot the data as engineering stress versus engineering strain. 

 (b) Compute the modulus of elasticity. 

 (c) Determine the yield strength at a strain offset of 0.002. 

 (d) Determine the tensile strength of this alloy. 

 (e) Compute the modulus of resilience. 

 (f) What is the ductility, in percent elongation? 
 

  Solution 
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 This problem calls for us to make a stress-strain plot for a ductile cast iron, given its tensile load-length 

data, and then to determine some of its mechanical characteristics. 

 (a)  The data are plotted below on two plots:  the first corresponds to the entire stress-strain curve, while 

for the second, the curve extends just beyond the elastic region of deformation. 

 

 

 

 

 

 (b)  The elastic modulus is the slope in the linear elastic region (Equation 6.10) as 
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��

E =
�' �V
�' �H

=
100 MPa �� 0 MPa

0.0005�� 0
�  200 �u 103 MPa = 200 GPa  (29 �u 106 psi) 

 

 (c)  For the yield strength, the 0.002 strain offset line is drawn dashed.  It intersects the stress-strain curve 

at approximately 280 MPa (40,500 psi). 

 (d)  The tensile strength is approximately 410 MPa (59,500 psi), corresponding to the maximum stress on 

the complete stress-strain plot. 

 (e)  From Equation 6.14, the modulus of resilience is just 

 

    

��

Ur  =
�Vy

2

2E
 

 

which, using data computed above, yields a value of 

 

  

��

U r  =  
(280 �u106 N /m2)2

(2)(200 �u109 N /m2)
= 1.96 �u 105 J/m3 (28.3 in.- lbf /in.3)  

 

 (f)  The ductility, in percent elongation, is just the plastic strain at fracture, multiplied by one-hundred.  The 

total fracture strain at fracture is 0.185;  subtracting out the elastic strain (which is about 0.001) leaves a plastic 

strain of 0.184.  Thus, the ductility is about 18.4%EL. 
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 6.31  For the titanium alloy, whose stress strain behavior may be observed in the “Tensile Tests” module 

of Virtual Materials Science and Engineering (VMSE), determine the following: 

 (a) the approximate yield strength (0.002 strain offset), 

 (b) the tensile strength, and 

 (c) the approximate ductility, in percent elongation. 

How do these values compare with those for the two Ti-6Al-4V alloys presented in Table B.4 of Appendix B? 
 

  Solution 

 (a)  It is possible to do a screen capture and then print out the entire stress-strain curve for the Ti alloy.  

The intersection of a straight line parallel to the initial linear region of the curve and offset at a strain of 0.002 with 

this curve is at approximately 720 MPa. 

 (b)  The maximum reading in the stress window located below the plot as the curser point is dragged along 

the stress-strain curve is 1000 MPa, the value of the tensile strength. 

 (c)  The approximate percent elongation corresponds to the strain at fracture multiplied by 100 (i.e., 12%) 

minus the maximum elastic strain (i.e., value of strain at which the linearity of the curve ends multiplied by 100—in 

this case about 0.5%);  this gives a value of about 11.5%EL. 

 

 From Table B.4 in Appendix B, yield strength, tensile strength, and percent elongation values for the 

anneal Ti-6Al-4V are 830 MPa, 900 MPa, and 14%EL, while for the solution heat treated and aged alloy, the 

corresponding values are 1103 MPa, 1172 MPa, and 10%EL.  Thus, tensile strength and percent elongation values 

for the VMSE alloy are slightly lower than for the annealed material in Table B.4 (720 vs 830 MPa, and 11.5 vs. 14 

%EL), whereas the tensile strength is slightly higher (1000 vs. 900 MPa). 
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 6.32  For the tempered steel alloy, whose stress strain behavior may be observed in the “Tensile Tests” 

module of Virtual Materials Science and Engineering (VMSE), determine the following: 

 (a) the approximate yield strength (0.002 strain offset), 

 (b) the tensile strength, and 

 (c) the approximate ductility, in percent elongation. 

How do these values compare with those for the oil-quenched and tempered 4140 and 4340 steel alloys presented in 

Table B.4 of Appendix B? 
 

  Solution 

 (a)  It is possible to do a screen capture and then print out the entire stress-strain curve for the tempered 

steel alloy.  The intersection of a straight line parallel to the initial linear region of the curve and offset at a strain of 

0.002 with this curve is at approximately 1430 MPa. 

 (b)  The maximum reading in the stress window located below the plot as the curser point is dragged along 

the stress-strain curve is 1656 MPa, the value of the tensile strength. 

 (c)  The approximate percent elongation corresponds to the strain at fracture multiplied by 100 (i.e., 14.8%) 

minus the maximum elastic strain (i.e., value of strain at which the linearity of the curve ends multiplied by 100—in 

this case about 0.8%);  this gives a value of about 14.0%EL. 

 

 For the oil-quenched and tempered 4140 and 4340 steel alloys, yield strength values presented in Table B.4 

of Appendix B are 1570 MPa and 1620 MPa, respectively;  these values are somewhat larger than the 1430 MPa for 

the tempered steel alloy of VMSE.  Tensile strength values for these 4140 and 4340 alloys are, respectively 1720 

MPa and 1760 MPa (compared to 1656 MPa for the VMSE steel).  And, finally, the respective ductilities for the 

4140 and 4340 alloys are 11.5%EL and 12%EL, which are slightly lower than the 14%EL value for the VMSE steel. 
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 6.33  For the aluminum alloy, whose stress strain behavior may be observed in the “Tensile Tests” module 

of Virtual Materials Science and Engineering (VMSE), determine the following: 

 (a) the approximate yield strength (0.002 strain offset), 

 (b) the tensile strength, and 

 (c) the approximate ductility, in percent elongation. 

How do these values compare with those for the 2024 aluminum alloy (T351 temper) presented in Table B.4 of 

Appendix B? 
 

  Solution 

 (a)  It is possible to do a screen capture and then print out the entire stress-strain curve for the aluminum 

alloy.  The intersection of a straight line parallel to the initial linear region of the curve and offset at a strain of 0.002 

with this curve is at approximately 300 MPa. 

 (b)  The maximum reading in the stress window located below the plot as the curser point is dragged along 

the stress-strain curve is 484 MPa, the value of the tensile strength. 

 (c)  The approximate percent elongation corresponds to the strain at fracture multiplied by 100 (i.e., 22.4%) 

minus the maximum elastic strain (i.e., value of strain at which the linearity of the curve ends multiplied by 100—in 

this case about 0.5%);  this gives a value of about 21.9%EL. 

 

 For the 2024 aluminum alloy (T351 temper), the yield strength value presented in Table B.4 of Appendix 

B is 325, which is slightly larger than the 300 MPa for the aluminum alloy of VMSE.  The tensile strength value for 

the 2024-T351 is 470 MPa (compared to 484 MPa for the VMSE alloy).  And, finally, the ductility for 2024-T351 is  

20%EL, which is about the same as for the VMSE aluminum (21.9%EL). 
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 6.34  For the (plain) carbon steel alloy, whose stress strain behavior may be observed in the “Tensile 

Tests” module of Virtual Materials Science and Engineering (VMSE), determine the following: 

 (a) the approximate yield strength, 

 (b) the tensile strength, and 

 (c) the approximate ductility, in percent elongation. 
 

  Solution 

 (a)  It is possible to do a screen capture and then print out the entire stress-strain curve for the plain carbon 

steel alloy.  Inasmuch as the stress-strain curve displays the yield point phenomenon, we take the yield strength as 

the lower yield point, which, for this steel, is about 225 MPa. 

 (b)  The maximum reading in the stress window located below the plot as the curser point is dragged along 

the stress-strain curve is 274 MPa, the value of the tensile strength. 

 (c)  The approximate percent elongation corresponds to the strain at fracture multiplied by 100 (i.e., 43.0%) 

minus the maximum elastic strain (i.e., value of strain at which the linearity of the curve ends multiplied by 100—in 

this case about 0.6%);  this gives a value of about 42.4%EL. 
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 6.35  A cylindrical metal specimen having an original diameter of 12.8 mm (0.505 in.) and gauge length of 

50.80 mm (2.000 in.) is pulled in tension until fracture occurs.  The diameter at the point of fracture is 6.60 mm 

(0.260 in.), and the fractured gauge length is 72.14 mm (2.840 in.).  Calculate the ductility in terms of percent 

reduction in area and percent elongation. 

 

  Solution 

 This problem calls for the computation of ductility in both percent reduction in area and percent 

elongation.  Percent reduction in area is computed using Equation 6.12 as 

 

  

��

%RA =

�S
d0
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

�� �S
df

2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

�S
d0
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

�u 100 

 

in which d0 and df  are, respectively, the original and fracture cross-sectional areas.  Thus, 

 

��

%RA =
�S

12.8 mm
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

�� �S
6.60 mm

2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

�S
12.8 mm

2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

�u 100 = 73.4% 

 

While, for percent elongation, we use Equation 6.11 as 
 

  

��

%EL =
l f �� l0

l0

�§��

�©��
�¨��

�·��

�¹��
�¸���u 100 

 

��

=
72.14 mm�� 50.80 mm

50.80 mm
�u 100 =  42% 
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 6.36  Calculate the moduli of resilience for the materials having the stress–strain behaviors shown in 

Figures 6.12 and 6.21. 

 

  Solution 

 This problem asks us to calculate the moduli of resilience for the materials having the stress-strain 

behaviors shown in Figures 6.12 and 6.21.  According to Equation 6.14, the modulus of resilience Ur is a function 

of the yield strength and the modulus of elasticity as 

 

    

��

Ur  =
�Vy

2

2E
 

 
The values for �Vy and E for the brass in Figure 6.12 are determined in Example Problem 6.3 as 250 MPa (36,000 

psi) and 93.8 GPa (13.6 �u 106 psi), respectively.  Thus 

 

  

��

U r  =
(250 MPa)2

(2)(93.8 �u103MPa)
=  3.32 �u 105 J/m3  (48.2 in.- lbf /in.3) 

 

 Values of the corresponding parameters for the steel alloy (Figure 6.21) are determined in Problem 6.25 as 

400 MPa (58,000 psi) and 200 GPa (29 �u 106 psi), respectively, and therefore 

 

  

��

U r  =
(400 MPa)2

(2)(200 �u103 MPa)
= 4.0 �u 105 J/m3   (58  in.- lbf /in.3)  
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 6.37  Determine the modulus of resilience for each of the following alloys: 

 

 Yield Strength 

Material MPa psi 

Steel alloy 550 80,000 

Brass alloy 350 50,750 

Aluminum alloy 250 36,250 

Titanium alloy 800 116,000 

 

Use modulus of elasticity values in Table 6.1. 
 

  Solution 

 The moduli of resilience of the alloys listed in the table may be determined using Equation 6.14.  Yield 

strength values are provided in this table, whereas the elastic moduli are tabulated in Table 6.1. 

 For steel 

 

    

��

Ur  =
�Vy

2

2E
 

 

��

=
(550 �u106 N /m2)2

(2)(207 �u109 N /m2)
= 7.31 �u 105 J/m3 (107  in.- lbf /in.3)  

 

 For the brass 

 

  

��

U r  =
(350 �u106 N /m2)2

(2)(97 �u109 N /m2)
= 6.31 �u 105 J/m3  (92.0 in.- lbf /in.3) 

 

 For the aluminum alloy 

 

  

��

U r  =
(250 �u106 N /m2)2

(2)(69 �u109 N /m2)
= 4.53 �u 105 J/m3  (65.7 in.- lbf /in.3) 

 

 And, for the titanium alloy 

 

  

��

U r  =
(800 �u106 N /m2)2

(2)(107 �u109 N /m2)
= 30.0�u 105 J/m3 (434  in.- lbf /in.3)  
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 6.38 A brass alloy to be used for a spring application must have a modulus of resilience of at least 0.75 

MPa (110 psi). What must be its minimum yield strength? 

 

  Solution 

 The modulus of resilience, yield strength, and elastic modulus of elasticity are related to one another 

through Equation 6.14;  the value of E for brass given in Table 6.1 is 97 GPa.  Solving for �Vy from this expression 

yields 

 

  

��

�Vy = 2U r E = (2) (0.75 MPa)(97 �u103 MPa)  

 

= 381 MPa  (55,500 psi) 
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 True Stress and Strain 

 

 6.39  Show that Equations 6.18a and 6.18b are valid when there is no volume change during deformation. 
 

  Solution 

 To show that Equation 6.18a is valid, we must first rearrange Equation 6.17 as 
 

    

��

Ai  =
A0 l0

li
 

 

Substituting this expression into Equation 6.15 yields 
 

  

��

�VT  =
F
Ai

=
F
A0

li
l0

�§��

�©��
�¨��

�·��

�¹��
�¸��= �V

li
l0

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

But, from Equation 6.2 
 

    

��

�H =
li
l0

��  1 

 

Or 

 

    

��

li
l0

= �H +  1 

Thus, 
 

    

��

�VT  = �V
li
l0

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��= �V(�H +  1) 

 

 For Equation 6.18b 
 

    

��

�HT  = ln (1 +  �H) 

 

is valid since, from Equation 6.16 
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��

�HT =  ln
li
l0

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

and 

 

    

��

li
l0

= �H +  1 

from above. 
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 6.40 Demonstrate that Equation 6.16, the expression defining true strain, may also be represented by 

 

ÛT = ln 

��

A0
Ai

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

when specimen volume remains constant during deformation. Which of these two expressions is more valid during 

necking? Why? 
 

  Solution 

 This problem asks us to demonstrate that true strain may also be represented by 

 

ÛT = ln 

��

A0
Ai

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

 

Rearrangement of Equation 6.17 leads to 

 

    

��

li
l0

=
A0
Ai

 

 

Thus, Equation 6.16 takes the form 

 

ÛT 
  

��

= ln
li
l0

�§��

�©��
�¨��

�·��

�¹��
�¸��= ln

A0
Ai

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

 The expression ÛT = ln 

��

A0
Ai

�§��

�©��
�¨��

�·��

�¹��
�¸�� is more valid during necking because Ai is taken as the area of the neck.  
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 6.41  Using the data in Problem 6.28 and Equations 6.15, 6.16, and 6.18a, generate a true stress–true 

strain plot for aluminum. Equation 6.18a becomes invalid past the point at which necking begins; therefore, 

measured diameters are given below for the last four data points, which should be used in true stress computations. 

 

Load Length Diameter 

N lbf mm in. mm in. 

46,100 10,400 56.896 2.240 11.71 0.461 

42,400 10,100 57.658 2.270 10.95 0.431 

42,600 9,600 58.420 2.300 10.62 0.418 

36,400 8,200 59.182 2.330 9.40 0.370 

 
  Solution 

 These true stress-strain data are plotted below. 
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 6.42  A tensile test is performed on a metal specimen, and it is found that a true plastic strain of 0.20 is 

produced when a true stress of 575 MPa (83,500 psi) is applied; for the same metal, the value of K in Equation 6.19 

is 860 MPa (125,000 psi).  Calculate the true strain that results from the application of a true stress of 600 MPa 

(87,000 psi). 

 
  Solution 

 It first becomes necessary to solve for n in Equation 6.19.  Taking logarithms of this expression and after 

rearrangement we have 
 

    

��

n =
log �VT �� log K

log �HT
 

 

And, incorporating values of the parameters provided in the problem statement leads to 

 

��

n =  
log (575 MPa) �� log (860 MPa)

log (0.20)
= 0.250 

 
Expressing �HT as the dependent variable (Equation 6.19), and then solving for its value from the data stipulated in 

the problem statement, leads to 
 

  

��

�HT  =
�VT
K

�§��

�©��
�¨��

�·��

�¹��
�¸��
1/n

=
600 MPa
860 MPa

�§��

�©��
�¨��

�·��

�¹��
�¸��
1/0.250

=  0.237 
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 6.43  For some metal alloy, a true stress of 415 MPa (60,175 psi) produces a plastic true strain of 0.475.  

How much will a specimen of this material elongate when a true stress of 325 MPa (46,125 psi) is applied if the 

original length is 300 mm (11.8 in.)?  Assume a value of 0.25 for the strain-hardening exponent n. 

 
  Solution 

 Solution of this problem requires that we utilize Equation 6.19.  It is first necessary to solve for K from the 

given true stress and strain.  Rearrangement of this equation yields 

 

  

��

K =
�VT

(�HT )n
=

415 MPa

(0.475)0.25
= 500 MPa  (72,500 psi) 

 

Next we must solve for the true strain produced when a true stress of 325 MPa is applied, also using Equation 6.19.  

Thus 

 

  

��

�HT =
�VT
K

�§��

�©��
�¨��

�·��

�¹��
�¸��
1/n

=
325 MPa
500 MPa

�§��

�©��
�¨��

�·��

�¹��
�¸��
1/0.25

= 0.179 = ln
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l0
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�©��
�¨��

�·��
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�¸�� 

 
Now, solving for li gives 

 

  

��

li = l0e0.179 = (300 mm)e0.179 = 358.8 mm  (14.11in.) 

 

�$�Q�G���I�L�Q�D�O�O�\�����W�K�H���H�O�R�Q�J�D�W�L�R�Q���¨l is just 

 

  

��

�' l = li ��  l0 = 358.8 mm�� 300 mm = 58.8 mm  (2.31 in.) 
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 6.44  The following true stresses produce the corresponding true plastic strains for a brass alloy: 

 

True Stress (psi) True Strain 

50,000 0.10 

60,000 0.20 

 

What true stress is necessary to produce a true plastic strain of 0.25? 

 
  Solution 

 For this problem, we are given two values of �HT and �VT,
 
from which we are asked to calculate the true 

stress which produces a true plastic strain of 0.25.  Employing Equation 6.19, we may set up two simultaneous 

equations with two unknowns (the unknowns being K and n), as 

 

  

��

log (50,000 psi) =  log K +  n log (0.10) 

 

  

��

log (60,000 psi) =  log K +  n log (0.20) 

 

Solving for n from these two expressions yields 
 

  

��

n =
log (50,000) �� log (60,000)

log (0.10) �� log (0.20)
= 0.263 

 

and for K 

log K = 4.96 or K = 104.96 =  91,623 psi 

 
Thus, for �HT = 0.25 

 

  

��

�VT  =  K (�HT )n = (91,623 psi)(0.25)0.263 = 63,700 psi   (440 MPa) 
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 6.45  For a brass alloy, the following engineering stresses produce the corresponding plastic engineering 

strains, prior to necking: 

 

Engineering Stress (MPa) Engineering Strain 

235 0.194 

250 0.296 

 

On the basis of this information, compute the engineering stress necessary to produce an engineering strain of 0.25. 

 
  Solution 

 For this problem we first need to convert engineering stresses and strains to true stresses and strains so that 
the constants K and n in Equation 6.19 may be determined.  Since �VT = �V(1 + �H) then 

 

  

��

�VT1 = (235 MPa)(1+ 0.194)= 280 MPa 

 

  

��

�VT 2 = (250 MPa)(1+ 0.296)= 324 MPa 

 
Similarly for strains, since �HT = ln(1 + �H) then 

 

  

��

�HT1 = ln (1 + 0.194)= 0.177 

 

  

��

�HT 2 = ln (1 + 0.296)= 0.259 

 

Taking logarithms of Equation 6.19, we get 

 

    

��

log �VT = log K +  n log �HT  

 

which allows us to set up two simultaneous equations for the above pairs of true stresses and true strains, with K and 

n as unknowns.  Thus 

 

  

��

log (280) = log K +  n log (0.177) 

 

  

��

log (324) = log K +  n log (0.259) 

 

Solving for these two expressions yields K = 543 MPa and n = 0.383. 
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 Now, converting �H = 0.25 to true strain 
 

  

��

�HT  =  ln (1 +  0.25) =  0.223 

 
The corresponding �VT to give this value of �HT (using Equation 6.19) is just 

 

  

��

�VT  = K�HT
n = (543 MPa)(0.223)0.383 = 306 MPa 

 
Now converting this value of �VT to an engineering stress using Equation 6.18a gives 

 

  

��

�V =
�VT

1 �� �H
=

306 MPa
1 �� 0.25

= 245 MPa 
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 6.46 Find the toughness (or energy to cause fracture) for a metal that experiences both elastic and plastic 

deformation.  Assume Equation 6.5 for elastic deformation, that the modulus of elasticity is 172 GPa (25 �u 106 psi), 

and that elastic deformation terminates at a strain of 0.01.  For plastic deformation, assume that the relationship 

between stress and strain is described by Equation 6.19, in which the values for K and n are 6900 MPa (1 �u 106 psi) 

and 0.30, respectively. Furthermore, plastic deformation occurs between strain values of 0.01 and 0.75, at which 

point fracture occurs. 

 
  Solution 

 This problem calls for us to compute the toughness (or energy to cause fracture).  The easiest way to do 

this is to integrate both elastic and plastic regions, and then add them together. 
 

    
Toughness= �Vd�H�³  

 

  

��

=  E�Hd�H
0

0.01

�³ + K�Hn d�H
0.01

0.75

�³  

 

  

��

=  
E�H2

2 0

0.01

+
K

(n �� 1)
�H(n��1)

0.01

0.75

 

 

��

=  
172 �u109  N/m2

2
(0.01)2 +

6900 �u106 N/m2

(1.0 �� 0.3)
(0.75)1.3 ��  (0.01)1.3�> �@ 

 
=  3.65 �u 109 J/m3  (5.29 �u 105 in.-lbf/in.3) 
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 6.47  For a tensile test, it can be demonstrated that necking begins when 
 

 
  

��

d�VT
d�HT

� �VT  (6.26) 

Using Equation 6.19, determine the value of the true strain at this onset of necking. 

 
  Solution 

 Let us take the derivative of Equation 6.19, set it equal to �VT, and then solve for �HT from the resulting 

expression.  Thus 

 

    

��

d K (�HT )n�> �@
d�HT

= Kn(�HT )(n��1) =  �VT  

 

However, from Equation 6.19, �VT = K(�HT)n, which, when substituted into the above expression, yields 

 

    

��

Kn(�HT )(n - 1) =  K (�HT )n 

 
Now solving for �HT from this equation leads to 

 
�HT = n 

 

as the value of the true strain at the onset of necking. 
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 6.48 Taking the logarithm of both sides of Equation 6.19 yields 

 

 �O�R�J���1T = log K + n log ÛT (6.27) 

 

�7�K�X�V�����D���S�O�R�W���R�I���O�R�J���1T versus log ÛT in the plastic region to the point of necking should yield a straight line having 

a slope of n and an interc�H�S�W�����D�W���O�R�J���1T = 0) of log K. 

 �8�V�L�Q�J���W�K�H���D�S�S�U�R�S�U�L�D�W�H���G�D�W�D���W�D�E�X�O�D�W�H�G���L�Q���3�U�R�E�O�H�P���������������P�D�N�H���D���S�O�R�W���R�I���O�R�J���1T versus log ÛT and determine 

the values of n and K. It will be necessary to convert engineering stresses and strains to true stresses and strains 

using Equations 6.18a and 6.18b. 

 
  Solution 

 This problem calls for us to utilize the appropriate data from Problem 6.29 in order to determine the values 
of n and K for this material.  From Equation 6.27 the slope and intercept of a log �VT versus log �HT plot will yield n 

and log K, respectively.  However, Equation 6.19 is only valid in the region of plastic deformation to the point of 

necking;  thus, only the 7th, 8th, 9th, and 10th data points may be utilized.  The log-log plot with these data points is 

given below. 

 

 

 

The slope yields a value of 0.136 for n, whereas the intercept gives a value of 2.7497 for log K, and thus K = 

102.7497 = 562 MPa. 
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 Elastic Recovery After Plastic Deformation 

 

 6.49  A cylindrical specimen of a brass alloy 7.5 mm (0.30 in.) in diameter and 90.0 mm (3.54 in.) long is 

pulled in tension with a force of 6000 N (1350 lbf);  the force is subsequently released. 

 (a) Compute the final length of the specimen at this time. The tensile stress–strain behavior for this alloy is 

shown in Figure 6.12. 

 (b) Compute the final specimen length when the load is increased to 16,500 N (3700 lbf) and then released. 

 
  Solution 

 (a)  In order to determine the final length of the brass specimen when the load is released, it first becomes 

necessary to compute the applied stress using Equation 6.1;  thus 

 

  

��

�V =
F
A0

=
F

�S
d0
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

=
6000 N

�S
7.5 �u10��3m

2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

= 136 MPa (19,000 psi) 

 

Upon locating this point on the stress-strain curve (Figure 6.12), we note that it is in the linear, elastic region;  

therefore, when the load is released the specimen will return to its original length of 90 mm (3.54 in.). 

 (b)  In this portion of the problem we are asked to calculate the final length, after load release, when the 
load is increased to 16,500 N (3700 lbf).  Again, computing the stress 

 

��

�V =
16,500 N

�S
7.5 �u10��3m

2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

= 373 MPa  (52,300 psi) 

 

The point on the stress-strain curve corresponding to this stress is in the plastic region.  We are able to estimate the 

amount of permanent strain by drawing a straight line parallel to the linear elastic region;  this line intersects the 
strain axis at a strain of about 0.08 which is the amount of plastic strain.  The final specimen length li may be 

determined from a rearranged form of Equation 6.2 as 

 
li = l0(1 + �H) = (90 mm)(1 + 0.08) = 97.20 mm (3.82 in.) 
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 6.50  A steel alloy specimen having a rectangular cross section of dimensions 12.7 mm × 6.4 mm (0.5 in. × 

0.25 in.) has the stress–strain behavior shown in Figure 6.21. If this specimen is subjected to a tensile force of 

38,000 N (8540 lbf) then 

 (a) Determine the elastic and plastic strain values. 

 (b) If its original length is 460 mm (18.0 in.), what will be its final length after the load in part (a) is 

applied and then released? 

 
  Solution 

 (a)  We are asked to determine both the elastic and plastic strain values when a tensile force of 38,000 N 

(8540 lbf) is applied to the steel specimen and then released.  First it becomes necessary to determine the applied 

stress using Equation 6.1;  thus 

 

    

��

�V =
F
A0

=
F

b0d0
 

 
where b0 and d0 are cross-sectional width and depth (12.7 mm and 6.4 mm, respectively).  Thus 

 

��

�V =
38,000 N

(12.7 �u10��3m)(6.4 �u10��3m)
= 468 �u106 N /m2 � 468 MPa  (68,300 psi) 

 

From Figure 6.21, this point is in the plastic region so the specimen will be both elastic and plastic strains.  The total 
strain at this point, �Ht, is about 0.010.  We are able to estimate the amount of permanent strain recovery �He from 

Hooke's law, Equation 6.5 as 

 

    

��

�He =
�V
E

 

 

And, since E = 207 GPa for steel (Table 6.1) 

 

  

��

�He =
468 MPa

207 �u103MPa
= 0.00226 

 
The value of the plastic strain, �Hp is just the difference between the total and elastic strains;  that is 

 
�Hp = �Ht – �He = 0.010 – 0.00226 = 0.00774 
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 (b)  If the initial length is 460 mm (18.0 in.) then the final specimen length li may be determined from a 

rearranged form of Equation 6.2 using the plastic strain value as 

 
li = l0(1 + �Hp) = (460 mm)(1 + 0.00774) = 463.6 mm (18.14 in.) 
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 Hardness 

 

 6.51  (a) A 10-mm-diameter Brinell hardness indenter produced an indentation 1.62 mm in diameter in a 

steel alloy when a load of 500 kg was used. Compute the HB of this material. 

 (b) What will be the diameter of an indentation to yield a hardness of 450 HB when a 500 kg load is used? 

 
  Solution 

 (a)  We are asked to compute the Brinell hardness for the given indentation.  It is necessary to use the 

equation in Table 6.5 for HB, where P = 500 kg, d = 1.62 mm, and D = 10 mm.  Thus, the Brinell hardness is 

computed as 

 

  

��

HB =
2P

�SD D �� D2 �� d2�> �@
 

 

��

=  
(2)(500 kg)

(�S)(10 mm) 10 mm �� (10 mm)2 �� (1.62 mm)2�> �@
= 241 

 

 (b)  This part of the problem calls for us to determine the indentation diameter d which will yield a 450 HB 

when P = 500 kg.  Solving for d from the equation in Table 6.5 gives 

 

    

��

d = D2 �� D ��
2P

(HB)�SD

�ª��

�¬��
�«��

�º��

�¼��
�»��
2

 

 

��

= (10mm)2 �� 10 mm ��
(2)(500 kg)

(450)(�S)(10 mm)

�ª��

�¬���«��
�º��

�¼���»��

2

= 1.19 mm 
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 6.52  Estimate the Brinell and Rockwell hardnesses for the following: 

 (a) The naval brass for which the stress–strain behavior is shown in Figure 6.12. 

 (b) The steel alloy for which the stress–strain behavior is shown in Figure 6.21. 

 
  Solution 

 This problem calls for estimations of Brinell and Rockwell hardnesses. 

 (a)  For the brass specimen, the stress-strain behavior for which is shown in Figure 6.12, the tensile 

strength is 450 MPa (65,000 psi).  From Figure 6.19, the hardness for brass corresponding to this tensile strength is 

about 125 HB or 70 HRB. 

 (b)  The steel alloy (Figure 6.21) has a tensile strength of about 515 MPa (74,700 psi) [Problem 6.25(d)].  

This corresponds to a hardness of about 160 HB or ~90 HRB from the line for steels in Figure 6.19.  Alternately, 

using Equation 6.20a 

 

��

HB � 
TS(MPa)

3.45
� 

515 MPa
3.45

� 149 
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 6.53  Using the data represented in Figure 6.19, specify equations relating tensile strength and Brinell 

hardness for brass and nodular cast iron, similar to Equations 6.20a and 6.20b for steels. 

 
  Solution 

 These equations, for a straight line, are of the form 

 

TS = C + (E)(HB) 

 

where TS is the tensile strength, HB is the Brinell hardness, and C and E are constants, which need to be 

determined. 

 One way to solve for C and E is analytically--establishing two equations using TS and HB data points on 

the plot, as 

 
(TS)1 = C + (E)(BH)1 

(TS)2 = C + (E)(BH)2 

 

Solving for E from these two expressions yields 

 

    

��

E =
(TS)1 �� (TS)2
(HB)2 �� (HB)1

 

 
For nodular cast iron, if we make the arbitrary choice of (HB)1 and (HB)2 as 200 and 300, respectively, then, from 

Figure 6.19, (TS)1 and (TS)2 take on values of 600 MPa (87,000 psi) and 1100 MPa (160,000 psi), respectively.  

Substituting these values into the above expression and solving for E gives 

 

    

��

E =
600 MPa �� 1100 MPa

200 HB �� 300 HB
= 5.0 MPa/HB  (730 psi/HB) 

 

Now, solving for C yields 

 
C = (TS)1 – (E)(BH)1 

 

= 600 MPa - (5.0 MPa/HB)(200 HB) = – 400 MPa (– 59,000 psi) 

 

Thus, for nodular cast iron, these two equations take the form 
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TS(MPa) = – 400 + 5.0 x HB 

TS(psi) = – 59,000 + 730 x HB 

 
 Now for brass, we take (HB)1 and (HB)2 as 100 and 200, respectively, then, from Figure 7.31, (TS)1 and 

(TS)2 take on values of 370 MPa (54,000 psi) and 660 MPa (95,000 psi), respectively.  Substituting these values 

into the above expression and solving for E gives 

 

    

��

E =
370 MPa �� 660 MPa
100 HB �� 200 HB

= 2.9 MPa/HB (410 psi/HB) 

 

Now, solving for C yields 

 
C = (TS)1 – (E)(BH)1 

 

= 370 MPa – (2.9 MPa/HB)(100 HB) = 80 MPa  (13,000 psi) 

 

Thus, for brass these two equations take the form 

 

TS(MPa) = 80 + 2.9 x HB 

TS(psi) = 13,000 + 410 x HB 
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 Variability of Material Properties  

 

 6.54  Cite five factors that lead to scatter in measured material properties. 

 
  Solution 

 The five factors that lead to scatter in measured material properties are the following:  (1) test method;  (2) 

variation in specimen fabrication procedure;  (3) operator bias;  (4) apparatus calibration;  and (5) material 

inhomogeneities and/or compositional differences. 
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 6.55  Below are tabulated a number of Rockwell B hardness values that were measured on a single steel 

specimen. Compute average and standard deviation hardness values. 

 

83.3 80.7 86.4 

88.3 84.7 85.2 

82.8 87.8 86.9 

86.2 83.5 84.4 

87.2 85.5 86.3 

 
  Solution 

 The average of the given hardness values is calculated using Equation 6.21 as 

 

  

��

HRB =  

HRBi
i� 1

15

�¦
15

 

 

��

=
83.3�� 88.3�� 82.8. . . . �� 86.3

15
= 85.3 

 

 And we compute the standard deviation using Equation 6.22 as follows: 

 

  

��

s =  

HRBi �� HRB�� ��2
i� 1

15

�¦
15 �� 1

 

 

��

=
(83.3�� 85.3)2 �� (88.3�� 85.3)2 �� . . . . �� (86.3�� 85.3)2

14

�ª��

�¬��
�«��

�º��

�¼��
�»��

1/2

  

 

��

=
60.31
14

= 2.08 
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 Design/Safety Factors 

 

 6.56  Upon what three criteria are factors of safety based? 

 
  Solution 

 The criteria upon which factors of safety are based are (1) consequences of failure, (2) previous 

experience, (3) accuracy of measurement of mechanical forces and/or material properties, and (4) economics. 
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 6.57  Determine working stresses for the two alloys that have the stress–strain behaviors shown in Figures 

6.12 and 6.21. 

 
  Solution 

 The working stresses for the two alloys the stress-strain behaviors of which are shown in Figures 6.12 and 

6.21 are calculated by dividing the yield strength by a factor of safety, which we will take to be 2.  For the brass 

alloy (Figure 6.12), since �Vy = 250 MPa (36,000 psi), the working stress is 125 MPa (18,000 psi), whereas for the 

steel alloy (Figure 6.21), �Vy = 400 MPa (58,000 psi), and, therefore, �Vw = 200 MPa (29,000 psi). 
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DESIGN PROBLEMS 

 

 6.D1  A large tower is to be supported by a series of steel wires.  It is estimated that the load on each wire 

will be 11,100 N (2500 lbf).  Determine the minimum required wire diameter assuming a factor of safety of 2 and a 

yield strength of 1030 MPa (150,000 psi). 

 
  Solution 

 For this problem the working stress is computed using Equation 6.24 with N = 2, as 

 

  

��

�Vw =
�Vy

2
=

1030 MPa
2

= 515 MPa (75,000 psi ) 

 
Since the force is given, the area may be determined from Equation 6.1, and subsequently the original diameter d0 

may be calculated as 

 

    

��

A0 =
F

�Vw
= �S

d0
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2
 

 

And 

 

  

��

d0 =
4F

�S�Vw
=

(4)(11,100 N)

�S(515 �u106 N /m2)
 

 

= 5.23 �u 10-3 m = 5.23 mm (0.206 in.) 
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 6.D2  (a) Gaseous hydrogen at a constant pressure of 1.013 MPa (10 atm) is to flow within the inside of a 

thin-walled cylindrical tube of nickel that has a radius of 0.1 m.  The temperature of the tube is to be 300�qC and the 

pressure of hydrogen outside of the tube will be maintained at 0.01013 MPa (0.1 atm). Calculate the minimum wall 

thickness if the diffusion flux is to be no greater than 1 �u 10-7 mol/m2-s.  The concentration of hydrogen in the 

nickel, CH (in moles hydrogen per m3 of Ni) is a function of hydrogen pressure, PH2
 (in MPa) and absolute 

temperature (T) according to 

 

 

��

CH � 30.8 pH2
exp ��

12.3 kJ/mol
RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� (6.28) 

Furthermore, the diffusion coefficient for the diffusion of H in Ni depends on temperature as 

 

 

��

DH � 4.76 �u 10��7 exp ��
39.56 kJ/mol

RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� (6.29) 

 (b) For thin-walled cylindrical tubes that are pressurized, the circumferential stress is a function of the 

�S�U�H�V�V�X�U�H���G�L�I�I�H�U�H�Q�F�H���D�F�U�R�V�V���W�K�H���Z�D�O�O�����û�S�������F�\�O�L�Q�G�H�U���U�D�G�L�X�V�����U�������D�Q�G���W�X�E�H���W�K�L�F�N�Q�H�V�V�����û�[�����D�V 

 

 
    

��

�V =
r �'p
4�' x

 (6.30) 

Compute the circumferential stress to which the walls of this pressurized cylinder are exposed. 

 (c) The room-temperature yield strength of Ni is 100 MPa (15,000 psi) and, furthermore, �Vy diminishes 

about 5 MPa for every 50�qC rise in temperature. Would you expect the wall thickness computed in part (b) to be 

suitable for this Ni cylinder at 300�qC?  Why or why not? 

 (d) If this thickness is found to be suitable, compute the minimum thickness that could be used without any 

deformation of the tube walls. How much would the diffusion flux increase with this reduction in thickness? On the 

other hand, if the thickness determined in part (c) is found to be unsuitable, then specify a minimum thickness that 

you would use. In this case, how much of a diminishment in diffusion flux would result? 

 
  Solution 

 (a)  This portion of the problem asks for us to compute the wall thickness of a thin-walled cylindrical Ni 

tube at 300�qC through which hydrogen gas diffuses.  The inside and outside pressures are, respectively, 1.1013 and 

0.01013 MPa, and the diffusion flux is to be no greater than 1 �u 10-7 mol/m2-s.  This is a steady-state diffusion 

problem, which necessitates that we employ Equation 5.3.  The concentrations at the inside and outside wall faces 

may be determined using Equation 6.28, and, furthermore, the diffusion coefficient is computed using Equation 

6.29.  Solving for �' x (using Equation 5.3) 

 

    

��

�' x = ��
D �'C

J
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��

=  ��  
1

1 �u10��7 mol/m2 �� s
�u 

 

��

(4.76 �u 10-7) exp ��
39,560 J/mol

(8.31 J/mol- K)(300 �� 273 K)

�§��

�©��
�¨��

�·��

�¹��
�¸���u 

 

��

(30.8)exp ��
12,300 J/mol

(8.31 J/mol- K)(300 �� 273 K)

�§��

�©��
�¨��

�·��

�¹��
�¸��  0.01013 MPa ��  1.1013 MPa�� �� 

 

= 0.0025 m = 2.5 mm 

 

 (b)  Now we are asked to determine the circumferential stress: 

 

    

��

�V =
r �'p
4�' x

 

 

��

=
(0.10 m)(1.013 MPa �� 0.01013 MPa)

(4)(0.0025 m)
 

 

= 10.0 MPa 

 

 (c)  Now we are to compare this value of stress to the yield strength of Ni at 300�qC, from which it is 

possible to determine whether or not the 2.5 mm wall thickness is suitable.  From the information given in the 
problem, we may write an equation for the dependence of yield strength (�Vy) on temperature (T) as follows: 

 

    

��

�Vy =  100 MPa ��  
5 MPa
50�qC

T ��  Tr�� �� 

 
where Tr is room temperature and for temperature in degrees Celsius.  Thus, at 300�qC 

 

  

��

�Vy = 100  MPa ��  (0.1 MPa/�qC) (300�qC ��  20�qC) = 72  MPa 

 

Inasmuch as the circumferential stress (10 MPa) is much less than the yield strength (72 MPa), this thickness is 

entirely suitable. 
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 (d)  And, finally, this part of the problem asks that we specify how much this thickness may be reduced and 

still retain a safe design.  Let us use a working stress by dividing the yield stress by a factor of safety, according to 

Equation 6.24.  On the basis of our experience, let us use a value of 2.0 for N.  Thus 

 

  

��

�Vw =
�Vy

N
=

72 MPa
2

= 36 MPa 

 
Using this value for �Vw and Equation 6.30, we now compute the tube thickness as 

 

    

��

�' x =
r �' p
4�Vw

 

 

��

� 
(0.10 m)(1.013 MPa �� 0.01013 MPa)

4(36 MPa)
 

 

= 0.00070 m = 0.70 mm 

 

Substitution of this value into Fick's first law we calculate the diffusion flux as follows: 

 

    

��

J = �� D
�'C
�'x

 

 

��

= ��  (4.76 �u 10-7) exp ��
39,560 J/mol

(8.31 J/mol- K)(300 �� 273 K)

�ª��

�¬��
�«��

�º��

�¼��
�»���u 

��

(30.8) exp ��
12,300 J/mol

(8.31J/mol- K)(300 �� 273 K)

�ª��

�¬��
�«��

�º��

�¼��
�»�� 0.01013 MPa ��  1.013 MPa�� ��

0.0007 m
 

 

= 3.53 �u 10-7 mol/m2-s 

 

Thus, the flux increases by approximately a factor of 3.5, from 1 �u 10-7 to 3.53 �u 10-7 mol/m2-s with this reduction 

in thickness. 
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 6.D3  Consider the steady-state diffusion of hydrogen through the walls of a cylindrical nickel tube as 

described in Problem 6.D2.  One design calls for a diffusion flux of 5 �u 10-8 mol/m2-s, a tube radius of 0.125 m, and 

inside and outside pressures of 2.026 MPa (20 atm) and 0.0203 MPa (0.2 atm), respectively;  the maximum 

allowable temperature is 450�qC.  Specify a suitable temperature and wall thickness to give this diffusion flux and 

yet ensure that the tube walls will not experience any permanent deformation. 

 
  Solution 

 This problem calls for the specification of a temperature and cylindrical tube wall thickness that will give a 

diffusion flux of 5 �u 10-8 mol/m2-s for the diffusion of hydrogen in nickel;  the tube radius is 0.125 m and the 

inside and outside pressures are 2.026 and 0.0203 MPa, respectively.  There are probably several different 

approaches that may be used;  and, of course, there is not one unique solution.  Let us employ the following 

procedure to solve this problem:  (1)  assume some wall thickness, and, then, using Fick's first law for diffusion 

(which also employs Equations 5.3 and 6.29), compute the temperature at which the diffusion flux is that required;  

(2)  compute the yield strength of the nickel at this temperature using the dependence of yield strength on 

temperature as stated in Problem 6.D2;  (3)  calculate the circumferential stress on the tube walls using Equation 

6.30;  and (4)  compare the yield strength and circumferential stress values--the yield strength should probably be at 

least twice the stress in order to make certain that no permanent deformation occurs.  If this condition is not met 

then another iteration of the procedure should be conducted with a more educated choice of wall thickness. 

 As a starting point, let us arbitrarily choose a wall thickness of 2 mm (2 �u 10-3 m).  The steady-state 

diffusion equation, Equation 5.3, takes the form 

 

    

��

J = �� D
�'C
�'x

 

 

= 5 �u 10-8 mol/m2-s 

 

  

��

=  �� (4.76 �u 10-7)exp ��
39,560 J/mol

(8.31 J/mol- K)(T)

�ª��

�¬��
�«��

�º��

�¼��
�»��  �u 

  

��

(30.8) exp ��
12,300 J/mol

(8.31 J/mol- K)(T)

�ª��

�¬��
�«��

�º��

�¼��
�»�� 0.0203 MPa ��  2.026 MPa�� ��

0.002 m
 

 

Solving this expression for the temperature T gives T = 514 K = 241�qC;  this value is satisfactory inasmuch as it is 

less than the maximum allowable value (450�qC). 

 The next step is to compute the stress on the wall using Equation 6.30;  thus 
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��

�V =
r �' p
4 �' x

 

 

��

=
(0.125 m)(2.026 MPa �� 0.0203 MPa)

(4)(2 �u10��3 m)
 

 

= 31.3 MPa 

 
Now, the yield strength (�Vy) of Ni at this temperature may be computed using the expression 

 

    

��

�Vy =  100 MPa ��  
5 MPa
50�qC

T ��  Tr�� �� 

 
where Tr is room temperature.  Thus, 

 
�Vy = 100 MPa – (0.1 MPa/�qC)(241�qC – 20�qC) = 77.9 MPa 

 

Inasmuch as this yield strength is greater than twice the circumferential stress, wall thickness and temperature 

values of 2 mm and 241�qC are satisfactory design parameters. 
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 7.2  Consider two edge dislocations of opposite sign and having slip planes that are separated by several 

atomic distances as indicated in the diagram. Briefly describe the defect that results when these two dislocations 

become aligned with each other. 

 
 

  Solution 

 When the two edge dislocations become aligned, a planar region of vacancies will exist between the 

dislocations as: 
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 7.3  Is it possible for two screw dislocations of opposite sign to annihilate each other? Explain your 

answer. 

 

  Solution 

 It is possible for two screw dislocations of opposite sign to annihilate one another if their dislocation lines 

are parallel.  This is demonstrated in the figure below. 

 

 



 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 7.4  For each of edge, screw, and mixed dislocations, cite the relationship between the direction of the 

applied shear stress and the direction of dislocation line motion. 
 

  Solution 

 For the various dislocation types, the relationships between the direction of the applied shear stress and the 

direction of dislocation line motion are as follows: 

 edge dislocation--parallel 

 screw dislocation--perpendicular 

 mixed dislocation--neither parallel nor perpendicular 
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 Slip Systems 

 

 7.5  (a) Define a slip system. 

 (b) Do all metals have the same slip system? Why or why not? 
 

  Solution 

 (a)  A slip system is a crystallographic plane, and, within that plane, a direction along which dislocation 

motion (or slip) occurs. 

 (b)  All metals do not have the same slip system.  The reason for this is that for most metals, the slip system 

will consist of the most densely packed crystallographic plane, and within that plane the most closely packed 

direction.  This plane and direction will vary from crystal structure to crystal structure. 
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 7.6  (a) Compare planar densities (Section 3.11 and Problem 3.54) for the (100), (110), and (111) planes 

for FCC. 

 (b) Compare planar densities (Problem 3.55) for the (100), (110), and (111) planes for BCC. 
 

  Solution 

 (a)  For the FCC crystal structure, the planar density for the (110) plane is given in Equation 3.11 as 

 

    

��

PD110(FCC) � 
1

4R2 2
� 

0.177

R2
 

 

 Furthermore, the planar densities of the (100) and (111) planes are calculated in Homework Problem 3.54, 

which are as follows: 

 

    

��

PD100(FCC) =  
1

4R2
� 

0.25

R2
 

 

    

��

PD111(FCC) � 
1

2R2 3
� 

0.29

R2
 

 

 (b)  For the BCC crystal structure, the planar densities of the (100) and (110) planes were determined in 

Homework Problem 3.55, which are as follows: 

 

    

��

PD100(BCC) =
3

16R2
� 

0.19

R2
 

 

    

��

PD110(BCC) � 
3

8R2 2
� 

0.27

R2
 

 

 Below is a BCC unit cell, within which is shown a (111) plane. 
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(a) 

 

The centers of the three corner atoms, denoted by A, B, and C lie on this plane.  Furthermore, the (111) plane does 

not pass through the center of atom D, which is located at the unit cell center.  The atomic packing of this plane is 

presented in the following figure;  the corresponding atom positions from the Figure (a) are also noted. 

 

 

(b) 

 

Inasmuch as this plane does not pass through the center of atom D, it is not included in the atom count.  One sixth of 

each of the three atoms labeled A, B, and C is associated with this plane, which gives an equivalence of one-half 

atom. 

 In Figure (b) the triangle with A, B, and C at its corners is an equilateral triangle.  And, from Figure (b), 

the area of this triangle is 
    

��

xy
2

.  The triangle edge length, x, is equal to the length of a face diagonal, as indicated in 

Figure (a).  And its length is related to the unit cell edge length, a, as 
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��

x2 � a2 �� a2 � 2a2 

 

or 

    

��

x � a 2  

 

For BCC,  
    

��

a � 
4R

3
 (Equation 3.3), and, therefore, 

 

    

��

x � 
4R 2

3
 

 

Also, from Figure (b), with respect to the length y we may write 

 

    

��

y2 ��
x
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

� x2 

 

which leads to 
    

��

y � 
x 3

2
.  And, substitution for the above expression for x yields 

 

    

��

y � 
x 3

2
� 

4R 2
3

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��

3

2

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��� 

4R 2

2
 

 

Thus, the area of this triangle is equal to 

 

    

��

AREA � 
1
2

x y � 
1
2

�§��

�©��
�¨��

�·��

�¹��
�¸��

4R 2

3

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��

4R 2

2

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��� 

8R2

3
 

 

And, finally, the planar density for this (111) plane is 

 

    

��

PD111(BCC) � 
0.5atom

8R2

3

� 
3

16R2
� 

0.11

R2
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 7.7  One slip system for the BCC crystal structure is 

��

110�^ �`111 .  In a manner similar to Figure 7.6b, 

sketch a 

��

110�^ � -̀type plane for the BCC structure, representing atom positions with circles. Now, using arrows, 

indicate two different 

��

111  slip directions within this plane. 
 

  Solution 

 Below is shown the atomic packing for a BCC 

��

110�^ � -̀type plane.  The arrows indicate two different 

��

111 -

type directions. 
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 7.8  One slip system for the HCP crystal structure is 

��

0001�^ �`112 0 . In a manner similar to Figure 7.6b, 

sketch a 

��

0001�^ � -̀type plane for the HCP structure and, using arrows, indicate three different 

��

112 0  slip directions 

within this plane. You might find Figure 3.8 helpful. 
 

  Solution 

 Below is shown the atomic packing for an HCP 

��

0001�^ � -̀type plane.  The arrows indicate three different 

��

112 0 -type directions.
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 7.9  Equations 7.1a and 7.1b, expressions for Burgers vectors for FCC and BCC crystal structures, are of 

the form 

��

b � 
a
2

uvw  

where a is the unit cell edge length. Also, since the magnitudes of these Burgers vectors may be determined from the 

following equation: 

 

��

b � 
a
2

u2 �� v2 �� w2�� ��1/2
 (7.10) 

determine values of |b| for aluminum and chromium.  You may want to consult Table 3.1. 
 

  Solution 

 For Al, which has an FCC crystal structure, R = 0.1431 nm (Table 3.1) and a =     

��

2R 2  = 0.4047 nm 

(Equation 3.1);  also, from Equation 7.1a, the Burgers vector for FCC metals is 

 

      

��

b �  
a
2

�¢110�² 

 

Therefore, the values for u, v, and w in Equation 7.10 are 1, 1, and 0, respectively.  Hence, the magnitude of the 

Burgers vector for Al is 

 

      

��

b =  
a
2

u2  ��  v2  ��  w2  

 

��

=  
0.4047 nm

2
(1 )2  ��  (1 )2  ��  (0)2 =  0.2862  nm 

 

 For Cr which has a BCC crystal structure, R = 0.1249 nm (Table 3.1) and 
    

��

a � 
4R

3
 = 0.2884 nm (Equation 

3.3);  also, from Equation 7.1b, the Burgers vector for BCC metals is 

 

      

��

b �  
a
2

�¢111�² 

 

Therefore, the values for u, v, and w in Equation 7.10 are 1, 1, and 1, respectively.  Hence, the magnitude of the 

Burgers vector for Cr is 

 

 

  

��

b =  
0.2884 nm

2
(1)2 �� (1)2 �� (1)2 =  0.2498 nm 
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 7.10  (a) In the manner of Equations 7.1a, 7.1b, and 7.1c, specify the Burgers vector for the simple cubic 

crystal structure. Its unit cell is shown in Figure 3.24. Also, simple cubic is the crystal structure for the edge 

dislocation of Figure 4.3, and for its motion as presented in Figure 7.1. You may also want to consult the answer to 

Concept Check 7.1. 

 (b) On the basis of Equation 7.10, formulate an expression for the magnitude of the Burgers vector, |b|, for 

simple cubic. 
 

  Solution 

 (a)  This part of the problem asks that we specify the Burgers vector for the simple cubic crystal structure 

(and suggests that we consult the answer to Concept Check 7.1).  This Concept Check asks that we select the slip 

system for simple cubic from four possibilities.  The correct answer is   

��

100�^ �`010 .  Thus, the Burgers vector will lie 

in a   

��

010 -type direction.  Also, the unit slip distance is a (i.e., the unit cell edge length, Figures 4.3 and 7.1).  

Therefore, the Burgers vector for simple cubic is 

 

      

��

b =  a 010  

 

Or, equivalently 

 

      

��

b =  a 100  

 

 (b)  The magnitude of the Burgers vector, |b|, for simple cubic is 

 

    

��

b =  a(12 +  02 +  02)1/ 2 =  a 
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 Slip in Single Crystals 

 

 7.11  Sometimes cos �I cos �O in Equation 7.2 is termed the Schmid factor. Determine the magnitude of the 

Schmid factor for an FCC single crystal oriented with its [100] direction parallel to the loading axis. 
 

  Solution 

 We are asked to compute the Schmid factor for an FCC crystal oriented with its [100] direction parallel to 

the loading axis.  With this scheme, slip may occur on the (111) plane and in the 

��

[11 0]  direction as noted in the 

figure below. 

 

 

 

The angle between the [100] and 

��

[11 0]  directions, �O, may be determined using Equation 7.6 

 

  

��

�O� cos��1
u1u2 �� v1v2 �� w1w2

u1
2 �� v1

2 �� w1
2�� ��u2

2 �� v2
2 �� w2

2�� ��

�ª��

�¬��

�«��
�«��
�«��

�º��

�¼��

�»��
�»��
�»��
 

 
where (for [100]) u1 = 1, v1 = 0, w1 = 0, and (for 

��

[11 0] ) u2 = 1, v2 = -1, w2 = 0.  Therefore, �O is equal to��

 

��

�O� cos��1
(1)(1) �� (0)(��1) �� (0)(0)

(1)2 �� (0)2 �� (0)2�> �@(1)2 �� (��1)2 �� (0)2�> �@

�ª��

�¬��

�«��
�«��
�«��

�º��

�¼��

�»��
�»��
�»��
 

 

��

� cos��1
1
2

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��� 45�q 
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Now,  the angle �I is equal to the angle between the normal to the (111) plane (which is the [111] direction), and the 
[100] direction.  Again from Equation 7.6, and for u1 = 1, v1 = 1, w1 = 1, and u2 = 1, v2 = 0, and w2 = 0, we have 

 

��

�I � cos��1
(1)(1) �� (1)(0) �� (1)(0)

(1)2 �� (1)2 �� (1)2�> �@(1)2 �� (0)2 �� (0)2�> �@

�ª��

�¬��

�«��
�«��
�«��

�º��

�¼��

�»��
�»��
�»��
 

 

��

� cos��1
1
3

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��� 54.7�q 

 

Therefore, the Schmid factor is equal to 

 

��

cos �O cos �I =  cos (45�q) cos (54.7�q) =  
1
2

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��

1
3

�§��

�©��
�¨��

�·��

�¹��
�¸��= 0.408 
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 7.12  Consider a metal single crystal oriented such that the normal to the slip plane and the slip direction 

are at angles of 43.1�q and 47.9�q, respectively, with the tensile axis.  If the critical resolved shear stress is 20.7 MPa 

(3000 psi), will an applied stress of 45 MPa (6500 psi) cause the single crystal to yield?  If not, what stress will be 

necessary? 
 

  Solution 

 This problem calls for us to determine whether or not a metal single crystal having a specific orientation 

and of given critical resolved shear stress will yield.  We are given that �I = 43.1�q, �O = 47.9�q, and that the values of 

the critical resolved shear stress and applied tensile stress are 20.7 MPa (3000 psi) and 45 MPa (6500 psi), 

respectively.  From Equation 7.2 

 

  

��

�WR =  �V cos �I cos �O =  (45 MPa)(cos 43.1�q)(cos 47.9�q) =  22.0 MPa  (3181 psi) 

 

Since the resolved shear stress (22 MPa) is greater than the critical resolved shear stress (20.7 MPa), the single 

crystal will yield. 
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 7.13  A single crystal of aluminum is oriented for a tensile test such that its slip plane normal makes an 

angle of 28.1�q with the tensile axis.  Three possible slip directions make angles of 62.4�q, 72.0�q, and 81.1�q with the 

same tensile axis. 

 (a) Which of these three slip directions is most favored? 

 (b) If plastic deformation begins at a tensile stress of 1.95 MPa (280 psi), determine the critical resolved 

shear stress for aluminum. 
 

  Solution 

 We are asked to compute the critical resolved shear stress for Al.  As stipulated in the problem, �I = 28.1�q, 

while possible values for �O are 62.4�q, 72.0�q, and 81.1�q.
 

 (a)  Slip will occur along that direction for which (cos �I cos �O) is a maximum, or, in this case, for the 

largest cos �O.  Cosines for the possible �O values are given below.
 

 

cos(62.4�q) = 0.46 

cos(72.0�q) = 0.31 

cos(81.1�q) = 0.15 

 

Thus, the slip direction is at an angle of 62.4�q with the tensile axis. 

 (b)  From Equation 7.4, the critical resolved shear stress is just 

 

  

��

�Wcrss = �Vy (cos �I cos �O)max 

 

��

=  (1.95 MPa)cos (28.1�q) cos (���������q)�> �@=  0.80 MPa  (114 psi) 
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 7.14  Consider a single crystal of silver oriented such that a tensile stress is applied along a [001] 

direction. If slip occurs on a (111) plane and in a 

��

[1 01] direction, and is initiated at an applied tensile stress of 1.1 

MPa (160 psi), compute the critical resolved shear stress. 
 

  Solution 

 This problem asks that we compute the critical resolved shear stress for silver.  In order to do this, we must 

employ Equation 7.4, but first it is necessary to solve for the angles �O and �I which are shown in the sketch below. 
 

 

 

The angle �O is the angle between the tensile axis—i.e., along the [001] direction—and the slip direction—i.e., 

  

��

[ 1 01] .  The angle �O may be determined using Equation 7.6 as 

 

  

��

�O� cos��1
u1u2 �� v1v2 �� w1w2

u1
2 �� v1

2 �� w1
2�� ��u2

2 �� v2
2 �� w2

2�� ��

�ª��

�¬��

�«��
�«��
�«��

�º��

�¼��

�»��
�»��
�»��
 

 
where (for [001]) u1 = 0, v1 = 0, w1 = 1, and (for   

��

[ 1 01] ) u2 = –1, v2 = 0, w2 = 1.  Therefore, �O is equal to��

 

 

��

�O� cos��1
(0)(��1) �� (0)(0) �� (1)(1)

(0)2 �� (0)2 �� (1)2�> �@(��1)2 �� (0)2 �� (1)2�> �@

�ª��

�¬��

�«��
�«��
�«��

�º��

�¼��

�»��
�»��
�»��
 

 

  

��

� cos��1
1
2

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��� 45�q 
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Furthermore, �I is the angle between the tensile axis—the [001] direction—and the normal to the slip plane—i.e., the 

(111) plane;  for this case this normal is along a [111] direction.  Therefore, again using Equation 7.6 

 

  

��

�I � cos��1
(0)(1) �� (0)(1) �� (1)(1)

(0)2 �� (0)2 �� (1)2�> �@(1)2 �� (1)2 �� (1)2�> �@

�ª��

�¬��

�«��
�«��
�«��

�º��

�¼��

�»��
�»��
�»��
 

 

��

� cos��1
1
3

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��� 54.7�q 

 

And, finally, using Equation 7.4, the critical resolved shear stress is equal to 
 

    

��

�Wcrss = �Vy (cos �I cos �O) 

 

��

=  (1.1 MPa) cos(54.7�q) cos(45�q)�> �@=  (1.1MPa)
1
3

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��

1
2

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��= 0.45 MPa  (65.1 psi) 
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 7.15  A single crystal of a metal that has the FCC crystal structure is oriented such that a tensile stress is 

applied parallel to the [110] direction. If the critical resolved shear stress for this material is 1.75 MPa, calculate 

the magnitude(s) of applied stress(es) necessary to cause slip to occur on the (111) plane in each of the 

��

[11 0] , 

��

[101 ]  and 

��

[011 ]  directions. 
 

  Solution 

 In order to solve this problem it is necessary to employ Equation 7.4, but first we need to solve for the  for 

�O and �I angles for the three slip systems. 

 For each of these three slip systems, the �I will be the same—i.e., the angle between the direction of the 

applied stress, [110] and the normal to the (111) plane, that is, the [111] direction.  The angle �I may be determined 

using Equation 7.6 as 

 

  

��

�I � cos��1
u1u2 �� v1v2 �� w1w2

u1
2 �� v1

2 �� w1
2�� ��u2

2 �� v2
2 �� w2

2�� ��

�ª��

�¬��

�«��
�«��
�«��

�º��

�¼��

�»��
�»��
�»��
 

 
where (for [110]) u1 = 1, v1 = 1, w1 = 0, and (for [111]) u2 = 1, v2 = 1, w2 = 1.  Therefore, �I is equal to��

 

  

��

�I � cos��1
(1)(1) �� (1)(1) �� (0)(1)

(1)2 �� (1)2 �� (0)2�> �@(1)2 �� (1)2 �� (1)2�> �@

�ª��

�¬��

�«��
�«��
�«��

�º��

�¼��

�»��
�»��
�»��
 

 

��

� cos��1
2
6

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��� 35.3�q 

 
Let us now determine �O for the   

��

[11 0]  slip direction.  Again, using Equation 7.6 where u1 = 1, v1 = 1, w1 = 0 (for 

[110]), and u2 = 1, v2 = –1, w2 = 0 (for   

��

[11 0].  Therefore, �O is determined as��

 

  

��

�O
[110]��[11 0]

� cos��1
(1)(1) �� (1)(��1) �� (0)(0)

(1)2 �� (1)2 �� (0)2�> �@(1)2 �� (��1)2 �� (0)2�> �@

�ª��

�¬��

�«��
�«��
�«��

�º��

�¼��

�»��
�»��
�»��
 

 

��

� cos��1 0 � 90�q 

 

Now, we solve for the yield strength for this (111)–  

��

[11 0]  slip system using Equation 7.4 as 
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��

�Vy � 
�Wcrss

(cos�I cos�O)
 

 

��

� 
1.75MPa

cos(35.3�q) cos(90�q)
� 

1.75MPa
��0��8����) (0)

� �f  

 

which means that slip will not occur on this (111)–  

��

[11 0]  slip system. 

 

 Now, we must determine the value of �O for the (111)–  

��

[101 ]  slip system—that is, the angle between the 

[110] and   

��

[101 ]  directions.  Again using Equation 7.6 

 

  

��

�O
[110]��[101 ]

� cos��1
(1)(1) �� (1)(0) �� (0)(��1)

(1)2 �� (1)2 �� (0)2�> �@(1)2 �� (0)2 �� (��1)2�> �@

�ª��

�¬��

�«��
�«��
�«��

�º��

�¼��

�»��
�»��
�»��
 

 

��

� cos��1
1
2

�§��

�©��
�¨��

�·��

�¹��
�¸��� 60�q 

 

Now, we solve for the yield strength for this (111)–  

��

[101 ]  slip system using Equation 7.4 as 

 

    

��

�Vy � 
�Wcrss

(cos�I cos�O)
 

 

  

��

� 
1.75MPa

cos(35.3�q) cos(60�q)
� 

1.75MPa
��0��816) (0.500)

� 4.29 MPa 

 

 And, finally, for the (111)–  

��

[011 ]  slip system, �O is computed using Equation 7.6 as follows:��

 

  

��

�O
[110]��[011 ]

� cos��1
(1)(0) �� (1)(1) �� (0)(��1)

(1)2 �� (1)2 �� (0)2�> �@(0)2 �� (1)2 �� (��1)2�> �@

�ª��

�¬��

�«��
�«��
�«��

�º��

�¼��

�»��
�»��
�»��
 

 

  

��

� cos��1
1
2

�§��

�©��
�¨��

�·��

�¹��
�¸��� 60�q 

 
Thus, since the values of �I and �O��for this (110)–  

��

[011 ]  slip system are the same as for (111)–  

��

[101 ] , so also will �Vy 

be the same—viz 4.29 MPa. 
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 7.16  (a) A single crystal of a metal that has the BCC crystal structure is oriented such that a tensile stress 

is applied in the [010] direction. If the magnitude of this stress is 2.75 MPa, compute the resolved shear stress in the 

��

[1 11] direction on each of the (110) and (101) planes. 

 (b) On the basis of these resolved shear stress values, which slip system(s) is (are) most favorably 

oriented? 
 

  Solution 

 (a)  This part of the problem asks, for a BCC metal, that we compute the resolved shear stress in the   

��

[ 1 11] 

direction on each of the (110) and (101) planes.  In order to solve this problem it is necessary to employ Equation 

7.2, which means that we first need to solve for the  for angles �O and �I for the three slip systems. 

 For each of these three slip systems, the �O will be the same—i.e., the angle between the direction of the 

applied stress, [010] and the slip direction,   

��

[ 1 11] .  This angle �O may be determined using Equation 7.6 

 

  

��

�O� cos��1
u1u2 �� v1v2 �� w1w2

u1
2 �� v1

2 �� w1
2�� ��u2

2 �� v2
2 �� w2

2�� ��

�ª��

�¬��

�«��
�«��
�«��

�º��

�¼��

�»��
�»��
�»��
 

 
where (for [010]) u1 = 0, v1 = 1, w1 = 0, and (for   

��

[ 1 11] ) u2 = –1, v2 = 1, w2 = 1.  Therefore, �O is determined as��

 

  

��

�O� cos��1
(0)(��1) �� (1)(1) �� (0)(1)

(0)2 �� (1)2 �� (0)2�> �@(��1)2 �� (1)2 �� (1)2�> �@

�ª��

�¬��

�«��
�«��
�«��

�º��

�¼��

�»��
�»��
�»��
 

 

  

��

� cos��1
1
3

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��� 54.7�q 

 

Let us now determine �I for the angle between the direction of the applied tensile stress—i.e., the [010] direction—
and the normal to the (110) slip plane—i.e., the [110] direction.  Again, using Equation 7.6 where u1 = 0, v1 = 1, w1 

= 0 (for [010]), and u2 = 1, v2 = 1, w2 = 0 (for [110]), �I is equal to��

 

  

��

�I[010]��[110] � cos��1
(0)(1) �� (1)(1) �� (0)(0)

(0)2 �� (1)2 �� (0)2�> �@(1)2 �� (1)2 �� (0)2�> �@

�ª��

�¬��

�«��
�«��
�«��

�º��

�¼��

�»��
�»��
�»��
 

 

  

��

� cos��1
1
2

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��� 45�q 
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Now, using Equation 7.2 

 

  

��

�WR � �Vcos�I cos�O 

 

we solve for the resolved shear stress for this slip system as 

 

    

��

�WR(110)��[1 11] � (2.75MPa) cos(54.7�q) cos(45�q)�> �@� (2.75MPa) (0.578)(0.707) � 1.12 MPa  

 

 Now, we must determine the value of �I for the (101)–  

��

[ 1 11]  slip system—that is, the angle between the 

direction of the applied stress, [010], and the normal to the (101) plane—i.e., the [101] direction.  Again using 

Equation 7.6 

 

  

��

�O[010]��[101] � cos��1
(0)(1) �� (1)(0) �� (0)(1)

(0)2 �� (1)2 �� (0)2�> �@(1)2 �� (0)2 �� (1)2�> �@

�ª��

�¬��

�«��
�«��
�«��

�º��

�¼��

�»��
�»��
�»��
 

 

��

� cos��1 (0) � 90�q 

 

Thus, the resolved shear stress for this (101)–  

��

[ 1 11]  slip system is 

 

    

��

�WR(101)��[1 11] � � (2.75MPa) cos(54.7�q) cos(90�q)�> �@� (2.75MPa) (0.578)(0) � 0 MPa  

 

 
�� (b)  The most favored slip system(s) is (are) the one(s) that has (have) the largest �WR value.  Therefore, the 

(110)–  

��

[ 1 11] is the most favored since its �WR (1.12 MPa) is greater than the �WR value for   

��

(101) �� [ 1 11] (viz., 0 

MPa).��
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 7.17  Consider a single crystal of some hypothetical metal that has the FCC crystal structure and is 

oriented such that a tensile stress is applied along a 

��

[1 02] direction. If slip occurs on a (111) plane and in a 

��

[1 01] 

direction, compute the stress at which the crystal yields if its critical resolved shear stress is 3.42 MPa. 
 

  Solution 

 This problem asks for us to determine the tensile stress at which a FCC metal yields when the stress is 

applied along a   

��

[ 1 02]  direction such that slip occurs on a (111) plane and in a   

��

[ 1 01]  direction;  the critical resolved 

shear stress for this metal is 3.42 MPa.  To solve this problem we use Equation 7.4;  however it is first necessary to 

determine the values of �I and �O.  These determinations are possible using Equation 7.6.   Now, �O is the angle 
between   

��

[ 1 02]  and   

��

[ 1 01] directions.  Therefore, relative to Equation 7.6 let us take u1 = –1, v1 = 0, and w1 = 2, as 

well as u2 = –1, v2 = 0, and w2 = 1.  This leads to 

 

  

��

�O� cos��1
u1u2 �� v1v2 �� w1w2

u1
2 �� v1

2 �� w1
2�� ��u2

2 �� v2
2 �� w2

2�� ��

�ª��

�¬��

�«��
�«��
�«��

�º��

�¼��

�»��
�»��
�»��
 

 

��

� cos��1
(��1)(��1) �� (0)(0) �� (2)(1)

(��1)2 �� (0)2 �� (2)2�> �@(��1)2 �� (0)2 �� (1)2�> �@

���

�®��
�°��

�¯���°��

�½��

�¾��
�°��

�¿���°��
 

 

  

��

� cos��1
3
10

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��� 18.4�q 

 

Now for the determination of �I, the normal to the (111) slip plane is the [111] direction.  Again using Equation 7.6, 
where we now take u1 = –1, v1 = 0, w1 = 2 (for   

��

[ 1 02] ), and u2 = 1, v2 = 1, w2 = 1 (for [111]).  Thus, 

 

  

��

�I � cos��1
(��1)(1) �� (0)(1) �� (2)(1)

(��1)2 �� (0)2 �� (2)2�> �@(1)2 �� (1)2 �� (1)2�> �@

���

�®��
�°��

�¯���°��

�½��

�¾��
�°��

�¿���°��
 

 

  

��

� cos��1
3
15

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��� 39.2�q 

 

It is now possible to compute the yield stress (using Equation 7.4) as 
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��

�Vy � 
�Wcrss

cos�I cos�O
� 

3.42 MPa

3
10

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��

3
15

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸��

� 4.65MPa 
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 7.18  The critical resolved shear stress for iron is 27 MPa (4000 psi).  Determine the maximum possible 

yield strength for a single crystal of Fe pulled in tension. 
 

  Solution 

 In order to determine the maximum possible yield strength for a single crystal of Fe pulled in tension, we 

simply employ Equation 7.5 as 

 

  

��

�Vy = 2�Wcrss = (2)(27 MPa) = 54 MPa   (8000 psi) 
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 Deformation by Twinning 

 

 7.19  List four major differences between deformation by twinning and deformation by slip relative to 

mechanism, conditions of occurrence, and final result. 
 

  Solution 

 Four major differences between deformation by twinning and deformation by slip are as follows:  (1) with 

slip deformation there is no crystallographic reorientation, whereas with twinning there is a reorientation;  (2) for 

slip, the atomic displacements occur in atomic spacing multiples, whereas for twinning, these displacements may be 

other than by atomic spacing multiples;  (3) slip occurs in metals having many slip systems, whereas twinning 

occurs in metals having relatively few slip systems;  and (4) normally slip results in relatively large deformations, 

whereas only small deformations result for twinning. 
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 Strengthening by Grain Size Reduction 

 

 7.20  Briefly explain why small-angle grain boundaries are not as effective in interfering with the slip 

process as are high-angle grain boundaries. 
 

  Solution 

 Small-angle grain boundaries are not as effective in interfering with the slip process as are high-angle grain 

boundaries because there is not as much crystallographic misalignment in the grain boundary region for small-angle, 

and therefore not as much change in slip direction. 



 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 7.21  Briefly explain why HCP metals are typically more brittle than FCC and BCC metals. 
 

  Solution 

 Hexagonal close packed metals are typically more brittle than FCC and BCC metals because there are 

fewer slip systems in HCP. 
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 7.22  Describe in your own words the three strengthening mechanisms discussed in this chapter (i.e., grain 

size reduction, solid-solution strengthening, and strain hardening). Be sure to explain how dislocations are involved 

in each of the strengthening techniques. 

 

 These three strengthening mechanisms are described in Sections 7.8, 7.9, and 7.10. 
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 7.23  (a) From the plot of yield strength versus (grain diameter)–1/2 for a 70 Cu–30 Zn cartridge brass, 

�)�L�J�X�U�H���������������G�H�W�H�U�P�L�Q�H���Y�D�O�X�H�V���I�R�U���W�K�H���F�R�Q�V�W�D�Q�W�V���10 and ky in Equation 7.7. 

 (b) Now predict the yield strength of this alloy when the average grain diameter is 1.0 �u 10-3 mm. 
 

  Solution 

 (a)  Perhaps the easiest way to solve for �V0 and ky in Equation 7.7 is to pick two values each of �Vy and d-1/2 

from Figure 7.15, and then solve two simultaneous equations, which may be created.  For example 

 
 d-1/2 (mm) -1/2 �Vy (MPa) 

 4 75 

 12 175 

 

The two equations are thus 

 

  

��

75 = �V0 + 4 ky 
 

  

��

175 = �V0 + 12ky 

 

Solution of these equations yield the values of 

 

  

��

ky = 12.5 MPa(mm)1/2 1810 psi(mm)1/2�> �@ 
 

�V0 = 25 MPa  (3630 psi) 

 

 (b)  When d = 1.0 �u 10-3 mm, d-1/2 = 31.6 mm-1/2, and, using Equation 7.7, 
 

  

��

�Vy = �V0 + kyd-1/2 

 

��

= (25  MPa) + 12.5 MPa(mm)
1/2�ª��

�¬���«��
�º��
�¼���»��(31.6 mm-1/2) = 420 MPa  (61,000  psi) 
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 7.24  The lower yield point for an iron that has an average grain diameter of 5 �u 10-2 mm is 135 MPa 

(19,500 psi).  At a grain diameter of 8 �u 10-3 mm, the yield point increases to 260 MPa (37,500 psi).  At what grain 

diameter will the lower yield point be 205 MPa (30,000 psi)? 
 

  Solution 

 The best way to solve this problem is to first establish two simultaneous expressions of Equation 7.7, solve 
for �V0 and ky, and finally determine the value of d when �Vy = 205 MPa.  The data pertaining to this problem may be 

tabulated as follows: 
 
 

�Vy d (mm) d-1/2 (mm)-1/2 

 135 MPa 5 �u 10-2 4.47 

 260 MPa 8 �u 10-3 11.18 

 

The two equations thus become 
 

  

��

135 MPa = �V0 + (4.47) ky 

  

��

260 MPa = �V0 + (11.18)ky  

 
Which yield the values, �V0 = 51.7 MPa and ky = 18.63 MPa(mm)1/2.  At a yield strength of 205 MPa 

 

  

��

205 MPa = 51.7 MPa +  18.63 MPa(mm)1/2�> �@d-1/2 

 

or d-1/2 = 8.23 (mm) -1/2, which gives d = 1.48 �u 10-2 mm. 
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 7.25  If it is assumed that the plot in Figure 7.15 is for noncold-worked brass, determine the grain size of 

the alloy in Figure 7.19;  assume its composition is the same as the alloy in Figure 7.15. 
 

  Solution 

 This problem asks that we determine the grain size of the brass for which is the subject of Figure 7.19.  

From Figure 7.19a, the yield strength of brass at 0%CW is approximately 175 MPa (26,000 psi).  This yield 

strength from Figure 7.15 corresponds to a d-1/2 value of approximately 12.0 (mm) -1/2. Thus, d = 6.9 �u 10-3 mm. 
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 Solid-Solution Strengthening 

 

 7.26  In the manner of Figures 7.17b and 7.18b, indicate the location in the vicinity of an edge dislocation 

at which an interstitial impurity atom would be expected to be situated. Now briefly explain in terms of lattice 

strains why it would be situated at this position. 
 

  Solution 

 Below is shown an edge dislocation and where an interstitial impurity atom would be located.  

Compressive lattice strains are introduced by the impurity atom.  There will be a net reduction in lattice strain 

energy when  these lattice strains partially cancel tensile strains associated with the edge dislocation;  such tensile 

strains exist just below the bottom of the extra half-plane of atoms (Figure 7.4). 
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 Strain Hardening 

 

 7.27  (a) Show, for a tensile test, that 

 

��

%CW � 
�H

�H�� 1

�§��

�©��
�¨��

�·��

�¹��
�¸���u100 

if there is no change in specimen volume during the deformation process (i.e., A0l 0 = Adl d). 

 (b) Using the result of part (a), compute the percent cold work experienced by naval brass (the stress-

strain behavior of which is shown in Figure 6.12) when a stress of 400 MPa (58,000 psi) is applied. 
 

  Solution 

 (a)  From Equation 7.8 
 

  

��

%CW =
A0 �� Ad

A0

�§��

�©��
�¨��

�·��

�¹��
�¸���u 100 = 1 ��

Ad
A0

�§��

�©��
�¨��

�·��

�¹��
�¸���u 100 

 

Which is also equal to 
 

  

��

1 ��
l0
ld

�§��

�©��
�¨��

�·��

�¹��
�¸���u 100 

 

since Ad/A0 = l0/ld, the conservation of volume stipulation given in the problem statement.  Now, from the definition 

of engineering strain (Equation 6.2) 
 

    

��

�H=
ld �� l0

l0
=  

ld
l0

�� 1 

 

Or, 

    

��

l0
ld

=
1

�H�� 1
 

 
Substitution for l0/ ld into the %CW expression above gives 

 

  

��

%CW = 1 ��
l0
ld

�§��

�©��
�¨��

�·��

�¹��
�¸���u 100 = 1 ��

1
�H�� 1

�§��

�©��
�¨��

�·��

�¹��
�¸���u 100 =

�H
�H�� 1

�§��

�©��
�¨��

�·��

�¹��
�¸���u 100 
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 (b)  From Figure 6.12, a stress of 400 MPa (58,000 psi) corresponds to a strain of 0.13.  Using the above 

expression 

 

��

%CW =
�H

�H�� 1

�§��

�©��
�¨��

�·��

�¹��
�¸���u 100 =

0.13
0.13 �� 1.00

�§��

�©��
�¨��

�·��

�¹��
�¸���u 100 = 11.5%CW 
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 7.28  Two previously undeformed cylindrical specimens of an alloy are to be strain hardened by reducing 

their cross-sectional areas (while maintaining their circular cross sections).  For one specimen, the initial and 

deformed radii are 16 mm and 11 mm, respectively.  The second specimen, with an initial radius of 12 mm, must 

have the same deformed hardness as the first specimen;  compute the second specimen's radius after deformation. 
 

  Solution 

 In order for these two cylindrical specimens to have the same deformed hardness, they must be deformed 

to the same percent cold work.  For the first specimen 

 

  

��

%CW =
A0 �� Ad

A0
�u 100 =

�Sr0
2 �� �Srd

2

�Sr0
2

�u 100 

 

��

=
�S(16 mm)2 �� �S(11 mm)2

�S(16 mm)2
�u 100 = 52.7%CW 

 

For the second specimen, the deformed radius is computed using the above equation and solving for rd as 

 

    

��

rd = r0 1 ��
%CW
100

 

 

��

= (12 mm) 1 ��
52.7%CW

100
= 8.25 mm 
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 7.29  Two previously undeformed specimens of the same metal are to be plastically deformed by reducing 

their cross-sectional areas.  One has a circular cross section, and the other is rectangular; during deformation the 

circular cross section is to remain circular, and the rectangular is to remain as such.  Their original and deformed 

dimensions are as follows: 

 

 Circular (diameter, mm) Rectangular (mm) 

Original dimensions 15.2 125 × 175 

Deformed dimensions 11.4 75 × 200 

 

 Which of these specimens will be the hardest after plastic deformation, and why? 
 

  Solution 

 The hardest specimen will be the one that has experienced the greatest degree of cold work.  Therefore, all 

we need do is to compute the %CW for each specimen using Equation 7.8.  For the circular one 
 

  

��

%CW =
A0 �� Ad

A0

�ª��

�¬��
�«��

�º��

�¼��
�»���u 100 

 

  

��

=
�Sr 0

2 �� �Sr d
2

�Sr 0
2

�ª��

�¬��
�«��
�«��

�º��

�¼��
�»��
�»��

�u 100 

 

��

=
�S

15.2 mm
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

�� �S
11.4 mm

2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

�S
15.2 mm

2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

�ª��

�¬��

�«��
�«��
�«��
�«��

�º��

�¼��

�»��
�»��
�»��
�»��

�u 100 = 43.8%CW 

 

For the rectangular one 
 

��

%CW =
(125 mm)(175 mm) �� (75 mm)(200 mm)

(125 mm)(175 mm)

�ª��

�¬���«��
�º��

�¼���»���u 100 = 31.4%CW 

 

Therefore, the deformed circular specimen will be harder. 
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 7.30  A cylindrical specimen of cold-worked copper has a ductility (%EL) of 25%.  If its cold-worked 

radius is 10 mm (0.40 in.), what was its radius before deformation? 
 

  Solution 

 This problem calls for us to calculate the precold-worked radius of a cylindrical specimen of copper that 

has a cold-worked ductility of 25%EL.  From Figure 7.19c, copper that has a ductility of 25%EL will have 

experienced a deformation of about 11%CW.  For a cylindrical specimen, Equation 7.8 becomes 
 

  

��

%CW =
�Sr 0

2 �� �Sr d
2

�Sr 0
2

�ª��

�¬��
�«��
�«��

�º��

�¼��
�»��
�»��

�u 100 

 
Since rd = 10 mm (0.40 in.), solving for r0 yields 

 

  

��

r0 =
rd

1 ��
%CW
100

=
10 mm

1 ��
11.0
100

= 10.6 mm  (0.424 in.)  
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 7.31  (a) What is the approximate ductility (%EL) of a brass that has a yield strength of 275 MPa (40,000 

psi)? 

 (b) What is the approximate Brinell hardness of a 1040 steel having a yield strength of 690 MPa (100,000 

psi)? 
 

  Solution 

 (a) In order to solve this problem, it is necessary to consult Figures 7.19a and 7.19c.  From Figure 7.19a, a 

yield strength of 275 MPa for brass corresponds to 10%CW.  A brass that has been cold-worked 10% will have a 

ductility of about 43%EL [Figure 7.19c]. 

 (b)  This portion of the problem asks for the Brinell hardness of a 1040 steel having a yield strength of 690 

MPa (100,000 psi).  From Figure 7.19a, a yield strength of 690 MPa for a 1040 steel corresponds to about 10%CW.  

A 1040 steel that has been cold worked 10% will have a tensile strength of about 780 MPa [Figure 7.19b].  Finally, 

using Equation 6.20a 
 

  

��

HB =
TS(MPa)

3.45
=

780 MPa
3.45

= 226 
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 7.32  Experimentally, it has been observed for single crystals of a number of metals that the critical 

resolved shear stress �2crss �L�V���D���I�X�Q�F�W�L�R�Q���R�I���W�K�H���G�L�V�O�R�F�D�W�L�R�Q���G�H�Q�V�L�W�\���!D as 
 

��

�Wcrss� �W0 �� A �UD  
 

�Z�K�H�U�H���20 and A are constants. For copper, the critical resolved shear stress is 2.10 MPa (305 psi) at a dislocation 

density of 105 mm-2.  If it is known that the value of A for copper is 6.35 �u 10-3 MPa-mm (0.92 psi-mm), compute the 

�Wcrss at a dislocation density of 107 mm-2. 
 

  Solution 

 We are asked in this problem to compute the critical resolved shear stress at a dislocation density of 107 

mm-2.  It is first necessary to compute the value of the constant �W0 (in the equation provided in the problem 

statement) from the one set of data as 
 

��

�W0 � �Wcrss�� A �UD  

 

��

� 2.10 MPa ��  (6.35 �u 10��3 MPa- mm) 105 mm��2�� ��� 0.092 MPa  (13.3 psi)  

 

Now, the critical resolved shear stress may be determined at a dislocation density of 107 mm-2 as 

 

    

��

�Wcrss = �W0 +  A �UD  

 

��

= (0.092 MPa) +  (6.35 �u 10-3 MPa- mm) 107 mm��2 = 20.2 MPa  (2920 psi) 
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 Recovery 

 Recrystallization 

 Grain Growth  

 

 7.33  Briefly cite the differences between recovery and recrystallization processes. 
 

  Solution 

 For recovery, there is some relief of internal strain energy by dislocation motion;  however, there are 

virtually no changes in either the grain structure or mechanical characteristics.  During recrystallization, on the other 

hand, a new set of strain-free grains forms, and the material becomes softer and more ductile. 
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 7.34  Estimate the fraction of recrystallization from the photomicrograph in Figure 7.21c. 
 

  Solution 

 Below is shown a square grid onto which is superimposed the recrystallized regions from the micrograph. 

Approximately 400 squares lie within the recrystallized areas, and since there are 672 total squares, the specimen is 

about 60% recrystallized. 

 

 



 

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 7.35  Explain the differences in grain structure for a metal that has been cold worked and one that has 

been cold worked and then recrystallized. 
 

  Solution 

 During cold-working, the grain structure of the metal has been distorted to accommodate the deformation.  

Recrystallization produces grains that are equiaxed and smaller than the parent grains. 
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 7.36  (a) What is the driving force for recrystallization? 

 (b) For grain growth? 
 

  Solution 

 (a)  The driving force for recrystallization is the difference in internal energy between the strained and 

unstrained material. 

 (b)  The driving force for grain growth is the reduction in grain boundary energy as the total grain 

boundary area decreases. 
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 7.37  (a) From Figure 7.25, compute the length of time required for the average grain diameter to increase 

from 0.01 to 0.1 mm at 500�qC for this brass material. 

 (b) Repeat the calculation at 600°C. 
 

  Solution 

 (a)  At 500�qC, the time necessary for the average grain diameter to grow to increase from 0.01 to 0.1 mm is 

approximately 3500 min. 

 (b)  At 600�qC the time required for this same grain size increase is approximately 150 min. 
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 7.38  The average grain diameter for a brass material was measured as a function of time at 650°C, which 

is tabulated below at two different times: 

 

Time (min) Grain Diameter (mm) 

30 3.9 × 10–2 

90 6.6 × 10–2 

 (a) What was the original grain diameter? 

 (b) What grain diameter would you predict after 150 min at 650°C? 
 

  Solution 

 (a)  Using the data given and Equation 7.9 (taking n = 2), we may set up two simultaneous equations with 

d0 and K as unknowns;  thus 

 

  

��

(3.9 �u 10-2 mm)2 ��  d0
2 =  (30 min)K  

 

  

��

(6.6 �u 10-2 mm)2 ��  d0
2 =  (90 min)K  

 
Solution of these expressions yields a value for d0, the original grain diameter, of 

 

d0 = 0.01 mm, 

and a value for K of 4.73 �u 10-5 mm2/min 

 (b)  At 150 min, the diameter d is computed using a rearranged form of Equation 7.9 as 
 

 

    

��

d = d0
2 �� Kt  

 

��

= (0.01 mm)2 �� (4.73 �u10��5 mm2/min)(150 min) = 0.085 mm 
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 7.39  An undeformed specimen of some alloy has an average grain diameter of 0.040 mm.  You are asked 

to reduce its average grain diameter to 0.010 mm.  Is this possible?  If so, explain the procedures you would use 

and name the processes involved.  If it is not possible, explain why. 
 

  Solution 

 Yes, it is possible to reduce the average grain diameter of an undeformed alloy specimen from 0.040 mm to 

0.010 mm.  In order to do this, plastically deform the material at room temperature (i.e., cold work it), and then 

anneal at an elevated temperature in order to allow recrystallization and some grain growth to occur until the 

average grain diameter is 0.010 mm. 
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 7.40  Grain growth is strongly dependent on temperature (i.e., rate of grain growth increases with 

increasing temperature), yet temperature is not explicitly given as a part of Equation 7.9. 

 (a)  Into which of the parameters in this expression would you expect temperature to be included? 

 (b)  On the basis of your intuition, cite an explicit expression for this temperature dependence. 
 

  Solution 

 (a)  The temperature dependence of grain growth is incorporated into the constant K in Equation 7.9. 

 (b)  The explicit expression for this temperature dependence is of the form 

 

    

��

K = K0 exp ��
Q
RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

in which K0 is a temperature-independent constant, the parameter Q is an activation energy, and R and T are the gas 

constant and absolute temperature, respectively. 
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 7.41 An uncold-worked brass specimen of average grain size 0.008 mm has a yield strength of 160 MPa 

(23,500 psi).  Estimate the yield strength of this alloy after it has been heated to 600�qC for 1000 s, if it is known that 

the value of ky is 12.0 MPa-mm1/2 (1740 psi-mm1/2). 
 

  Solution 

 In order to solve this problem, it is first necessary to calculate the constant �V0 in Equation 7.7 as 

 

  

��

�V0 = �Vy ��  kyd-1/2 

 

��

= 160 MPa�� (12.0 MPa�� mm1/2)(0.008mm)��1/ 2 � 25.8 MPa (4046 psi) 

 

Next, we must determine the average grain size after the heat treatment.  From Figure 7.25 at 600�qC after 1000 s 
(16.7 min) the average grain size of a brass material is about 0.20 mm.  Therefore, calculating �Vy at this new grain 

size using Equation 7.7 we get 

 

  

��

�Vy = �V0 ��  kyd-1/2 

 

��

= 25.8 MPa�� (12.0 MPa- mm1/2) (0.20 mm)-1/2 = 52.6 MPa  (7940 psi) 
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DESIGN PROBLEMS 

 

 Strain Hardening 

 Recrystallization 

 

 7.D1  Determine whether or not it is possible to cold work steel so as to give a minimum Brinell hardness 

of 225, and at the same time have a ductility of at least 12%EL.  Justify your decision. 
 

  Solution 

 The tensile strength corresponding to a Brinell hardness of 225 may be determined using Equation 6.20a as 

 

��

TS(MPa) � 3.45 �u HB � (3.45)(225) � 776 MPa 

 

Furthermore, from Figure 7.19b, in order to achieve a tensile strength of 776 MPa, deformation of at least 9%CW is 

necessary.  Finally, if we cold work the steel to 9%CW, then the ductility is 17%EL from Figure 7.19c.  Therefore, 

it is possible to meet both of these criteria by plastically deforming the steel. 
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 7.D2  Determine whether or not it is possible to cold work brass so as to give a minimum Brinell hardness 

of 120 and at the same time have a ductility of at least 20%EL.  Justify your decision. 
 

  Solution 

 According to Figure 6.19, a Brinell hardness of 120 corresponds to a tensile strength of 440 MPa (63,500 

psi.)  Furthermore, from Figure 7.19b, in order to achieve a tensile strength of 440 MPa, deformation of at least 

26%CW is necessary.  Finally, if we are to achieve a ductility of at least 20%EL, then a maximum deformation of 

23%CW is possible from Figure 7.19c.  Therefore, it is not possible to meet both of these criteria by plastically 

deforming brass. 
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 7.D3  A cylindrical specimen of cold-worked steel has a Brinell hardness of 250. 

 (a) Estimate its ductility in percent elongation. 

 (b) If the specimen remained cylindrical during deformation and its original radius was 5 mm (0.20 in.), 

determine its radius after deformation. 
 

  Solution 

 (a)  From Figure 6.19, a Brinell hardness of 250 corresponds to a tensile strength of 860 MPa (125,000 

psi), which, from Figure 7.19b, requires a deformation of 25%CW.  Furthermore, 25%CW yields a ductility of 

about 11%EL for steel, Figure 7.19c. 

 (b)  We are now asked to determine the radius after deformation if the uncold-worked radius is 5 mm (0.20 

in.).  From Equation 7.8 and for a cylindrical specimen 

 

  

��

%CW =
�Sr0

2 �� �Sr d
2

�Sr0
2

�ª��

�¬��
�«��
�«��

�º��

�¼��
�»��
�»��

�u 100 

 
Now, solving for rd from this expression, we get 

 

    

��

rd = r0 1 ��
%CW
100

 

 

��

= (5 mm) 1 ��
25

100
= 4.33 mm  (0.173 in.)  
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 7.D4  It is necessary to select a metal alloy for an application that requires a yield strength of at least 345 

MPa (50,000 psi) while maintaining a minimum ductility (%EL) of 20%. If the metal may be cold worked, decide 

which of the following are candidates:  copper, brass, and a 1040 steel.  Why? 
 

  Solution 

 For each of these alloys, the minimum cold work necessary to achieve the yield strength may be 

determined from Figure 7.19a, while the maximum possible cold work for the ductility is found in Figure 7.19c.  

These data are tabulated below. 

 

  Yield Strength Ductility 
  (> 345 MPa) (> 20%EL) 

 Steel Any %CW < 5%CW 

 Brass > 20%CW < 23%CW 

 Copper > 54%CW < 15%CW 

 

Thus, both the 1040 steel and brass are possible candidates since for these alloys there is an overlap of percents 

coldwork to give the required minimum yield strength and ductility values. 
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 7.D5  A cylindrical rod of 1040 steel originally 15.2 mm (0.60 in.) in diameter is to be cold worked by 

drawing;  the circular cross section will be maintained during deformation.  A cold-worked tensile strength in 

excess of 840 MPa (122,000 psi) and a ductility of at least 12%EL are desired.  Furthermore, the final diameter 

must be 10 mm (0.40 in.).  Explain how this may be accomplished. 
 

  Solution 

 First let us calculate the percent cold work and attendant tensile strength and ductility if the drawing is 

carried out without interruption.  From Equation 7.8 
 

  

��

%CW =
�S

d0
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

�� �S
dd
2

�§��

�©��
�¨��
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�¹��
�¸��
2

�S
d0
2
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�©��
�¨��
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�¹��
�¸��
2

�u 100 
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=
�S

15.2 mm
2

�§��

�©��
�¨��

�·��

�¹��
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2

�� �S
10 mm

2

�§��

�©��
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�¹��
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15.2 mm

2
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2

�u 100 = 56%CW 

 

At 56%CW, the steel will have a tensile strength on the order of 920 MPa (133,000 psi) [Figure 7.19b], which is 

adequate;  however, the ductility will be less than 10%EL [Figure 7.19c], which is insufficient. 

 Instead of performing the drawing in a single operation, let us initially draw some fraction of the total 

deformation, then anneal to recrystallize, and, finally, cold-work the material a second time in order to achieve the 

final diameter, tensile strength, and ductility. 

 Reference to Figure 7.19b indicates that 20%CW is necessary to yield a tensile strength of 840 MPa 

(122,000 psi).  Similarly, a maximum of 21%CW is possible for 12%EL [Figure 7.19c].  The average of these 

extremes is 20.5%CW.  Again using Equation 7.8, if the final diameter after the first drawing is     

��

d0
' , then
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20.5%CW =
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'
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And, solving the above expression for     

��

d0
' , yields  
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��

d0
'  =  

10 mm

1 ��  
20.5%CW

100

 =  11.2 mm  (0.45 in.) 
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 7.D6  A cylindrical rod of copper originally 16.0 mm (0.625 in.) in diameter is to be cold worked by 

drawing; the circular cross section will be maintained during deformation.  A cold-worked yield strength in excess 

of 250 MPa (36,250 psi) and a ductility of at least 12%EL are desired. Furthermore, the final diameter must be 

11.3 mm (0.445 in.).  Explain how this may be accomplished. 
 

  Solution 

 Let us first calculate the percent cold work and attendant yield strength and ductility if the drawing is 

carried out without interruption.  From Equation 7.8 
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At 50%CW, the copper will have a yield strength on the order of 330 MPa (48,000 psi), Figure 7.19a, which is 

adequate;  however, the ductility will be about 4%EL, Figure 7.19c, which is insufficient. 

 Instead of performing the drawing in a single operation, let us initially draw some fraction of the total 

deformation, then anneal to recrystallize, and, finally, cold work the material a second time in order to achieve the 

final diameter, yield strength, and ductility. 

 Reference to Figure 7.19a indicates that 21%CW is necessary to give a yield strength of 250 MPa.  

Similarly, a maximum of 23%CW is possible for 12%EL [Figure 7.19c].  The average of these two values is 

22%CW, which we will use in the calculations. Thus, to achieve both the specified yield strength and ductility, the 

copper must be deformed to 22%CW.  If the final diameter after the first drawing is   

��

d0
' , then, using Equation 7.8 
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And, solving for   

��

d0
'  from the above expression yields 
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d0
'  =  

11.3 mm

1 ��  
22%CW

100

 =  12.8 mm  (0.50 in.) 
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 7.D7  A cylindrical 1040 steel rod having a minimum tensile strength of 865 MPa (125,000 psi), a ductility 

of at least 10%EL, and a final diameter of 6.0 mm (0.25 in.) is desired.  Some 7.94 mm (0.313 in.) diameter 1040 

steel stock, which has been cold worked 20% is available.  Describe the procedure you would follow to obtain this 

material.  Assume that 1040 steel experiences cracking at 40%CW. 
 

  Solution 

 This problem calls for us to cold work some 1040 steel stock that has been previously cold worked in order 

to achieve minimum tensile strength and ductility values of 865 MPa (125,000 psi) and 10%EL, respectively, while 

the final diameter must be 6.0 mm (0.25 in.).  Furthermore, the material may not be deformed beyond 40%CW.  Let 

us start by deciding what percent coldwork is necessary for the minimum tensile strength and ductility values, 

assuming that a recrystallization heat treatment is possible.  From Figure 7.19b, at least 25%CW is required for a 

tensile strength of 865 MPa.  Furthermore, according to Figure 7.19c, 10%EL corresponds a maximum of 30%CW.  

Let us take the average of these two values (i.e., 27.5%CW), and determine what previous specimen diameter is 

required to yield a final diameter of 6.0 mm.  For cylindrical specimens, Equation 7.8 takes the form 
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Solving for the original diameter d0 yields 
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=  
6.0 mm

1 ��
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100

= 7.05 mm  (0.278 in.) 

 

 Now, let us determine its undeformed diameter realizing that a diameter of 7.94 mm corresponds to 

20%CW.  Again solving for d0 using the above equation and assuming dd = 7.94 mm yields 
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7.94 mm

1 ��
20%CW

100

= 8.88 mm  (0.350 in.) 

 

At this point let us see if it is possible to deform the material from 8.88 mm to 7.05 mm without exceeding the 

40%CW limit.  Again employing Equation 7.8 
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 In summary, the procedure which can be used to produce the desired material would be as follows:  cold 

work the as-received stock to 7.05 mm (0.278 in.), heat treat it to achieve complete recrystallization, and then cold 

work the material again to 6.0 mm (0.25 in.), which will give the desired tensile strength and ductility. 
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 8.2  Estimate the theoretical fracture strength of a brittle material if it is known that fracture occurs by the 

propagation of an elliptically shaped surface crack of length 0.25 mm (0.01 in.) and having a tip radius of 

curvature of 1.2 �u 10-3 mm (4.7 �u 10-5 in.) when a stress of 1200 MPa (174,000 psi) is applied. 
 

  Solution 

 In order to estimate the theoretical fracture strength of this material it is necessary to calculate �Vm using 

Equation 8.1 given that �V0 = 1200 MPa, a = 0.25 mm, and �Ut = 1.2 �u 10-3 mm.  Thus, 
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= 3.5 �u 104  MPa = 35GPa  (5.1 �u 106  psi) 
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 8.3  If the specific surface energy for soda-lime glass is 0.30 J/m2, using data contained in Table 12.5, 

compute the critical stress required for the propagation of a surface crack of length 0.05 mm. 
 

  Solution 

 We may determine the critical stress required for the propagation of an surface crack in soda-lime glass 

using Equation 8.3;  taking the value of 69 GPa (Table 12.5) as the modulus of elasticity, we get 
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= 16.2 �u 106 N/m2 = 16.2 MPa 
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 8.4  A polystyrene component must not fail when a tensile stress of 1.25 MPa (180 psi) is applied.  

Determine the maximum allowable surface crack length if the surface energy of polystyrene is 0.50 J/m2 (2.86 �u 10-3 

in.-lbf/in.2).  Assume a modulus of elasticity of 3.0 GPa (0.435 �u 106 psi). 
 

  Solution 

 The maximum allowable surface crack length for polystyrene may be determined using Equation 8.3;  

taking 3.0 GPa as the modulus of elasticity, and solving for a, leads to 
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2
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(�S)(1.25 �u106 N/m2) 2
 

 

= 6.1 �u 10-4 m = 0.61 mm  (0.024 in.) 
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 8.5  A specimen of a 4340 steel alloy having a plane strain fracture toughness of 

��

45 MPa m (

��

41 ksi in. ) 

is exposed to a stress of 1000 MPa (145,000 psi).  Will this specimen experience fracture if it is known that the 

largest surface crack is 0.75 mm (0.03 in.) long?  Why or why not?  Assume that the parameter Y has a value of 1.0. 
 

  Solution 

 This problem asks us to determine whether or not the 4340 steel alloy specimen will fracture when exposed 
to a stress of 1000 MPa, given the values of KIc, Y, and the largest value of a in the material.  This requires that we 

solve for �Vc from Equation 8.6.  Thus 

 

  

��

�Vc =
KIc

Y �Sa
=

45 MPa m

(1.0) (�S)(0.75 �u10��3 m)
= 927 MPa  (133,500 psi) 

 

Therefore, fracture will most likely occur because this specimen will tolerate a stress of 927 MPa (133,500 psi) 

before fracture, which is less than the applied stress of 1000 MPa (145,000 psi). 
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 8.6  Some aircraft component is fabricated from an aluminum alloy that has a plane strain fracture 

toughness of 

��

35 MPa m 

��

(31.9 ksi in.).   It has been determined that fracture results at a stress of 250 MPa 

(36,250 psi) when the maximum (or critical) internal crack length is 2.0 mm (0.08 in.).  For this same component 

and alloy, will fracture occur at a stress level of 325 MPa (47,125 psi) when the maximum internal crack length is 

1.0 mm (0.04 in.)?  Why or why not? 
 

  Solution 

 We are asked to determine if an aircraft component will fracture for a given fracture toughness (35 

  

��

MPa m), stress level (325 MPa), and maximum internal crack length (1.0 mm), given that fracture occurs for the 

same component using the same alloy for another stress level and internal crack length.  It first becomes necessary 

to solve for the parameter Y, using Equation 8.5, for the conditions under which fracture occurred (i.e., �V = 250 

MPa and 2a = 2.0 mm).  Therefore, 
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Now we will solve for the product   

��

Y �V �Sa   for the other set of conditions, so as to ascertain whether or not this 

value is greater than the KIc for the alloy.  Thus, 
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= 32.2 MPa m  (29.5 ksi in.) 

 
Therefore, fracture will  not occur since this value 

��

(32.3MPa m) is less than the KIc of the material, 

��

35 MPa m. 
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 8.7  Suppose that a wing component on an aircraft is fabricated from an aluminum alloy that has a plane 

strain fracture toughness of 

��

40 MPa m 

��

(36.4 ksi in.).   It has been determined that fracture results at a stress of 

365 MPa (53,000 psi) when the maximum internal crack length is 2.5 mm (0.10 in.).  For this same component and 

alloy, compute the stress level at which fracture will occur for a critical internal crack length of 4.0 mm (0.16 in.). 
 

  Solution 

 This problem asks us to determine the stress level at which an a wing component on an aircraft will 

fracture for a given fracture toughness 

��

(40 MPa m ) and maximum internal crack length (4.0 mm), given that 

fracture occurs for the same component using the same alloy at one stress level (365 MPa) and another internal 

crack length (2.5 mm).  It first becomes necessary to solve for the parameter Y for the conditions under which 

fracture occurred using Equation 8.5.  Therefore, 
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Now we will solve for �Vc using Equation 8.6 as 
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= 288  MPa  (41,500 psi) 
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 8.8 A large plate is fabricated from a steel alloy that has a plane strain fracture toughness of 

��

55 MPa m (50 ksi in.).  If, during service use, the plate is exposed to a tensile stress of 200 MPa (29,000 psi), 

determine the minimum length of a surface crack that will lead to fracture.  Assume a value of 1.0 for Y. 
 

  Solution 

 For this problem, we are given values of KIc 

��

(55 MPa m), �V����200��MPa), and Y (1.0) for a large plate and 

are asked to determine the minimum length of a surface crack that will lead to fracture.  All we need do is to solve 

for ac using Equation 8.7;  therefore 
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= 0.024  m= 24 mm  (0.95 in.) 
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 8.9  Calculate the maximum internal crack length allowable for a 7075-T651 aluminum alloy (Table 8.1) 

component that is loaded to a stress one half of its yield strength. Assume that the value of Y is 1.35. 
 

  Solution 

 This problem asks us to calculate the maximum internal crack length allowable for the 7075-T651 

aluminum alloy in Table 8.1 given that it is loaded to a stress level equal to one-half of its yield strength.  For this 

alloy,   

��

KIc � 24 MPa m (22 ksi in. );  also,  �V = �Vy/2 = (495 MPa)/2 = 248 MPa (36,000 psi).  Now solving for 

2ac using Equation 8.7 yields 
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= 0.0033  m= 3.3 mm  (0.13 in.) 
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 8.10  A structural component in the form of a wide plate is to be fabricated from a steel alloy that has a 

plane strain fracture toughness of 

��

77.0 MPa m (70.1 ksi in.)  and a yield strength of 1400 MPa (205,000 psi).  

The flaw size resolution limit of the flaw detection apparatus is 4.0 mm (0.16 in.).  If the design stress is one half of 

the yield strength and the value of Y is 1.0, determine whether or not a critical flaw for this plate is subject to 

detection. 
 

  Solution 

 This problem asks that we determine whether or not a critical flaw in a wide plate is subject to detection 
given the limit of the flaw detection apparatus (4.0 mm), the value of KIc 

��

(77 MPa m), the design stress (�Vy/2 in 

which �V y = 1400 MPa), and Y = 1.0.  We first need to compute the value of ac using Equation 8.7;  thus 
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= 0.0039  m= 3.9 mm  (0.15 in.) 

 

Therefore, the critical flaw is not subject to detection since this value of ac (3.9 mm) is less than the 4.0 mm 

resolution limit. 
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 8.11  After consultation of other references, write a brief report on one or two nondestructive test 

techniques that are used to detect and measure internal and/or surface flaws in metal alloys. 

 

 The student should do this problem on his/her own. 
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 Impact Fracture Testing 
 

 8.12  Following is tabulated data that were gathered from a series of Charpy impact tests on a ductile cast 

iron. 
 

Temperature (°C) Impact Energy (J) 

–25 124 

–50 123 

–75 115 

–85 100 

–100 73 

–110 52 

–125 26 

–150 9 

–175 6 
 

 (a)  Plot the data as impact energy versus temperature. 

 (b)  Determine a ductile-to-brittle transition temperature as that temperature corresponding to the average 

of the maximum and minimum impact energies. 

 (c)  Determine a ductile-to-brittle transition temperature as that temperature at which the impact energy is 

80 J. 
 
  Solution 

 (a)  The plot of impact energy versus temperature is shown below. 
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 (b)  The average of the maximum and minimum impact energies from the data is 

 

��

Average=
124 J �� 6 J

2
= 65  J 

 

As indicated on the plot by the one set of dashed lines, the ductile-to-brittle transition temperature according to this 

criterion is about –105�qC. 

 (c)  Also, as noted on the plot by the other set of dashed lines, the ductile-to-brittle transition temperature 

for an impact energy of 80 J is about –95�qC. 
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 8.13  Following is tabulated data that were gathered from a series of Charpy impact tests on a tempered 

4140 steel alloy. 
 

Temperature (°C) Impact Energy (J) 
100 89.3 
75 88.6 
50 87.6 
25 85.4 
0 82.9 

–25 78.9 
–50 73.1 
–65 66.0 
–75 59.3 
–85 47.9 
–100 34.3 
–125 29.3 
–150 27.1 
–175 25.0 

 

 (a) Plot the data as impact energy versus temperature. 

 (b) Determine a ductile-to-brittle transition temperature as that temperature corresponding to the average 

of the maximum and minimum impact energies. 

 (c) Determine a ductile-to-brittle transition temperature as that temperature at which the impact energy is 

70 J. 

 
  Solution 

 The plot of impact energy versus temperature is shown below. 
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 (b)  The average of the maximum and minimum impact energies from the data is 

 

��

Average=
89.3 J �� 25 J

2
= 57.2  J 

 

As indicated on the plot by the one set of dashed lines, the ductile-to-brittle transition temperature according to this 

criterion is about –75�qC. 

 (c)  Also, as noted on the plot by the other set of dashed lines, the ductile-to-brittle transition temperature 

for an impact energy of 70 J is about –55�qC. 
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 Cyclic Stresses (Fatigue) 

 The S-N Curve 

 

 8.14  A fatigue test was conducted in which the mean stress was 50 MPa (7250 psi) and the stress 

amplitude was 225 MPa (32,625 psi). 

 (a) Compute the maximum and minimum stress levels. 

 (b) Compute the stress ratio. 

 (c) Compute the magnitude of the stress range. 
 

  Solution 

 (a)  Given the values of �Vm (50 MPa) and �Va (225 MPa) we are asked to compute �Vmax and �Vmin.  From 

Equation 8.14 

 

  

��

�Vm =
�Vmax �� �Vmin

2
= 50 MPa 

Or, 
 

�Vmax + �Vmin = 100 MPa 

 

Furthermore, utilization of Equation 8.16 yields 

 

  

��

�Va =
�Vmax �� �Vmin

2
= 225 MPa 

 

Or, 
 

�Vmax – �Vmin = 450 MPa 

 

Simultaneously solving these two expressions leads to 

 

��

�Vmax = 275 MPa  (40,000 psi) 

��

�Vmin = �� 175 MPa  (��25,500 psi) 

 

 (b)  Using Equation 8.17 the stress ratio R is determined as follows: 

 

  

��

R =
�Vmin
�Vmax

=
��175 MPa
275 MPa

= �� 0.64 
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 (c)  The magnitude of the stress range �Vr is determined using Equation 8.15 as 

 

  

��

�Vr = �Vmax �� �Vmin = 275 MPa ��  (��175 MPa) = 450 MPa  (65,500 psi) 
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 8.15  A cylindrical 1045 steel bar (Figure 8.34) is subjected to repeated compression-tension stress cycling 

along its axis. If the load amplitude is 22,000 N (4950 lbf), compute the minimum allowable bar diameter to ensure 

that fatigue failure will not occur.  Assume a factor of safety of 2.0. 
 

  Solution 

 From Figure 8.34, the fatigue limit stress amplitude for this alloy is 310 MPa (45,000 psi).  Stress is 

defined in Equation 6.1 as 
    

��

�V =
F
A0

.  For a cylindrical bar 

 

  

��

A0 = �S
d0
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

 

 

Substitution for A0 into the Equation 6.1 leads to 

 

  

��

�V =  
F
A0

 =  
F

�S
d0
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

 =  
4F

�Sd0
2

 

 
 We now solve for d0, taking stress as the fatigue limit divided by the factor of safety.  Thus 

 

  

��

d0 =
4F

�S
�V
N

�§��

�©��
�¨��

�·��

�¹��
�¸��

 

 

��

=
(4)(22,000 N)

(�S)
310 �u106 N /m2

2

�§��

�©��
�¨��

�·��

�¹��
�¸��

� 13.4 �u10��3 m � 13.4 mm (0.53 in.)  
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 8.16  An 8.0 mm (0.31 in.) diameter cylindrical rod fabricated from a red brass alloy (Figure 8.34) is 

subjected to reversed tension-compression load cycling along its axis.  If the maximum tensile and compressive 

loads are +7500 N (1700 lbf) and -7500 N (-1700 lbf), respectively, determine its fatigue life.  Assume that the 

stress plotted in Figure 8.34 is stress amplitude. 
 

  Solution 

 We are asked to determine the fatigue life for a cylindrical red brass rod given its diameter (8.0 mm) and 

the maximum tensile and compressive loads (+7500 N and -7500 N, respectively).  The first thing that is necessary 

is to calculate values of �Vmax and �Vmin using Equation 6.1.  Thus 

 

  

��

�Vmax =
Fmax

A0
=

Fmax

�S
d0
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

 

 

��

 =
7500 N

(�S)
8.0 �u10��3 m

2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

= 150 �u 106  N/m2 = 150  MPa  (22,500  psi) 

 

 

  

��

�Vmin =
Fmin

�S
d0
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

 

 

��

=
��7500 N

(�S)
8.0 �u10��3 m

2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

= �� 150 �u 106 N/m2 = �� 150 MPa  (��22,500 psi) 

 

Now it becomes necessary to compute the stress amplitude using Equation 8.16 as 
 

  

��

�Va =
�Vmax �� �Vmin

2
=

150 MPa �� (��150 MPa)
2

= 150 MPa  (22,500 psi) 

 

From Figure 8.34, f for the red brass, the number of cycles to failure at this stress amplitude is about 1 �u 105 cycles. 
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 8.17  A 12.5 mm (0.50 in.) diameter cylindrical rod fabricated from a 2014-T6 alloy (Figure 8.34) is 

subjected to a repeated tension-compression load cycling along its axis.  Compute the maximum and minimum 

loads that will be applied to yield a fatigue life of 1.0 �u 107 cycles.  Assume that the stress plotted on the vertical 

axis is stress amplitude, and data were taken for a mean stress of 50 MPa (7250 psi). 
 

  Solution 

 This problem asks that we compute the maximum and minimum loads to which a 12.5 mm (0.50 in.) 

diameter 2014-T6 aluminum alloy specimen may be subjected in order to yield a fatigue life of 1.0 �u 107 cycles;  

Figure 8.34 is to be used assuming that data were taken for a mean stress of 50 MPa (7250 psi).  Upon consultation 

of Figure 8.34, a fatigue life of 1.0 �u 107 cycles corresponds to a stress amplitude of 160 MPa (23,200 psi).  Or, 

from Equation 8.16 

 

  

��

�Vmax �� �Vmin = 2�Va = (2)(160 MPa) = 320 MPa  (46,400 psi) 

 
Since �Vm = 50 MPa, then from Equation 8.14 

 

  

��

�Vmax + �Vmin = 2�Vm = (2)(50 MPa) = 100 MPa  (14,500 psi) 

 
Simultaneous solution of these two expressions for �Vmax and���Vmin yields 

 
�Vmax = +210 MPa  (+30,400 psi)  

�Vmin = –110 MPa  (–16,000 psi) 

 

Now, inasmuch as 
    

��

�V=
F
A0

 (Equation 6.1), and 
    

��

A0 = �S
d0
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

  then 

 

  

��

Fmax =
�Vmax�Sd0

2

4
=

(210 �u106 N /m2) (�S)(12.5 �u10��3 m)2

4
= 25,800 N  (6000 lbf )  

 

  

��

Fmin =
�Vmin�Sd0

2

4
=

(��110 �u106 N /m2) (�S)(12.5 �u10��3 m)2

4
= �� 13,500 N  (��3140  lbf )  
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 8.18  The fatigue data for a brass alloy are given as follows: 

 

Stress Amplitude (MPa) Cycles to Failure 

310 2 × 105 

223 1 × 106 

191 3 × 106 

168 1 × 107 

153 3 × 107 

143 1 × 108 

134 3 × 108 

127 1 × 109 

 

 (a) Make an S–N plot (stress amplitude versus logarithm cycles to failure) using these data. 

 (b) Determine the fatigue strength at 5 �u 105 cycles. 

 (c) Determine the fatigue life for 200 MPa. 
 

  Solution 

 (a)  The fatigue data for this alloy are plotted below. 

 

 

 

 (b)  As indicated by the “A” set of dashed lines on the plot, the fatigue strength at 5 �u 105 cycles [log (5 �u 

105) = 5.7] is about 250 MPa. 
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 (c)  As noted by the “B” set of dashed lines, the fatigue life for 200 MPa is about 2 �u 106 cycles (i.e., the 

log of the lifetime is about 6.3). 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 8.19  Suppose that the fatigue data for the brass alloy in Problem 8.18 were taken from torsional tests, and 

that a shaft of this alloy is to be used for a coupling that is attached to an electric motor operating at 1500 rpm.  

Give the maximum torsional stress amplitude possible for each of the following lifetimes of the coupling:  (a) 1 

year, (b) 1 month, (c) 1 day, and (d) 2 hours. 
 

  Solution 

 For each lifetime, first compute the number of cycles, and then read the corresponding fatigue strength 

from the above plot. 

 (a)  Fatigue lifetime = (1 yr)(365 days/yr)(24 h/day)(60 min/h)(1500 cycles/min) = 7.9 �u 108 cycles.  The 

stress amplitude corresponding to this lifetime is about 130 MPa. 

 (b) Fatigue lifetime = (30 days)(24 h/day)(60 min/h)(1500 cycles/min) = 6.5 �u 107 cycles.  The stress 

amplitude corresponding to this lifetime is about 145 MPa. 

 (c) Fatigue lifetime = (24 h)(60 min/h)(1500 cycles/min) = 2.2 �u 106 cycles.  The stress amplitude 

corresponding to this lifetime is about 195 MPa. 

 (d) Fatigue lifetime = (2 h)(60 min/h)(1500 cycles/min) = 1.8 �u 105 cycles.  The stress amplitude 

corresponding to this lifetime is about 315 MPa. 
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 8.20  The fatigue data for a ductile cast iron are given as follows: 

 
Stress Amplitude 

[MPa (ksi)] Cycles to Failure 

248 (36.0) 1 × 105 

236 (34.2) 3 × 105 

224 (32.5) 1 × 106 

213 (30.9) 3 × 106 

201 (29.1) 1 × 107 

193 (28.0) 3 × 107 

193 (28.0) 1 × 108 

193 (28.0) 3 × 108 

 

 (a) Make an S–N plot (stress amplitude versus logarithm cycles to failure) using these data. 

 (b) What is the fatigue limit for this alloy? 

 (c) Determine fatigue lifetimes at stress amplitudes of 230 MPa (33,500 psi) and 175 MPa (25,000 psi). 

 (d) Estimate fatigue strengths at 2 �u 105 and 6 �u 106 cycles. 
 

  Solution 

 (a)  The fatigue data for this alloy are plotted below. 

 

 

 

 (b)  The fatigue limit is the stress level at which the curve becomes horizontal, which is 193 MPa (28,000 

psi). 
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 (c)  As noted by the “A” set of dashed lines, the fatigue lifetime at a stress amplitude of 230 MPa is about 5 

�u 105 cycles (log N = 5.7).  From the plot, the fatigue lifetime at a stress amplitude of 230 MPa (33,500 psi) is about 

50,000 cycles (log N = 4.7).  At 175 MPa (25,000 psi) the fatigue lifetime is essentially an infinite number of cycles 

since this stress amplitude is below the fatigue limit. 

 (d) As noted by the “B” set of dashed lines, the fatigue strength at 2 �u 105 cycles (log N = 5.3) is about 240 

MPa (35,000 psi);  and according to the “C” set of dashed lines, the fatigue strength at 6 �u 106 cycles (log N = 6.78) 

is about 205 MPa (30,000 psi). 
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 8.21  Suppose that the fatigue data for the cast iron in Problem 8.20 were taken for bending-rotating tests, 

and that a rod of this alloy is to be used for an automobile axle that rotates at an average rotational velocity of 750 

revolutions per minute.  Give maximum lifetimes of continuous driving that are allowable for the following stress 

levels: (a) 250 MPa (36,250 psi), (b) 215 MPa (31,000 psi), (c) 200 MPa (29,000 psi), and (d) 150 MPa (21,750 

psi). 
 

  Solution 

 For each stress level, first read the corresponding lifetime from the above plot, then convert it into the 

number of cycles. 
 (a)  For a stress level of 250 MPa (36,250 psi), the fatigue lifetime is approximately 90,000 cycles.  This 
translates into (9 �u 104 cycles)(1 min/750 cycles) = 120 min. 
 (b)  For a stress level of 215 MPa (31,000 psi), the fatigue lifetime is approximately 2 �u 106 cycles.  This 
translates into (2 �u 106 cycles)(1 min/750 cycles) = 2670 min = 44.4 h. 
 (c)  For a stress level of 200 MPa (29,000 psi), the fatigue lifetime is approximately 1 �u 107 cycles.  This 
translates into (1 �u 107 cycles)(1 min/750 cycles) = 1.33 �u 104 min = 222 h. 
 (d)  For a stress level of 150 MPa (21,750 psi), the fatigue lifetime is essentially infinite since we are below 
the fatigue limit [193 MPa (28,000 psi)]. 
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 8.22  Three identical fatigue specimens (denoted A, B, and C) are fabricated from a nonferrous alloy. Each 

is subjected to one of the maximum-minimum stress cycles listed below; the frequency is the same for all three tests. 

 

Specimen �Vmax (MPa) �Vmin  (MPa) 

A +450 –350 

B +400 –300 

C +340 –340 
 

 (a) Rank the fatigue lifetimes of these three specimens from the longest to the shortest. 

 (b) Now justify this ranking using a schematic S–N plot. 
 

  Solution 

 In order to solve this problem, it is necessary to compute both the mean stress and stress amplitude for each 

specimen.  Since from Equation 8.14, mean stresses are the specimens are determined as follows: 
 

  

��

�Vm =
�Vmax �� �Vmin

2
 

 

  

��

�Vm(A) =
450 MPa �� (��350 MPa)

2
= 50 MPa 

 

  

��

�Vm(B) =
400 MPa �� (��300 MPa)

2
= 50 MPa 

 

  

��

�Vm(C) =
340 MPa �� (��340 MPa)

2
= 0 MPa 

 

Furthermore, using Equation 8.16, stress amplitudes are computed as 
 

  

��

�Va =
�Vmax �� �Vmin

2
 

 

  

��

�Va(A) =
450 MPa �� (��350 MPa)

2
= 400 MPa 

 

  

��

�Va(B) =
400 MPa �� (��300 MPa)

2
= 350 MPa 

 

  

��

�Va(C) =
340 MPa �� (��340 MPa)

2
= 340 MPa 

 
On the basis of these results, the fatigue lifetime for specimen C will be greater than specimen B, which in turn will 
be greater than specimen A.  This conclusion is based upon the following S-N plot on which curves are plotted for 
two �Vm values. 
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 8.23  Cite five factors that may lead to scatter in fatigue life data. 
 

  Solution 

 Five factors that lead to scatter in fatigue life data are (1) specimen fabrication and surface preparation, (2) 

metallurgical variables, (3) specimen alignment in the test apparatus, (4) variation in mean stress, and (5) variation 

in test cycle frequency. 
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 Crack Initiation and Propagation 

 Factors That Affect Fatigue Life 

 

 8.24  Briefly explain the difference between fatigue striations and beachmarks both in terms of (a) size and 

(b) origin. 
 

  Solution 

 (a)  With regard to size, beachmarks are normally of macroscopic dimensions and may be observed with 

the naked eye;  fatigue striations are of microscopic size and it is necessary to observe them using electron 

microscopy. 

 (b)  With regard to origin, beachmarks result from interruptions in the stress cycles;  each fatigue striation 

is corresponds to the advance of a fatigue crack during a single load cycle. 
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 8.25  List four measures that may be taken to increase the resistance to fatigue of a metal alloy. 
 

  Solution 

 Four measures that may be taken to increase the fatigue resistance of a metal alloy are: 

 (1)  Polish the surface to remove stress amplification sites. 

 (2)  Reduce the number of internal defects (pores, etc.) by means of altering processing and fabrication 

techniques. 

 (3)  Modify the design to eliminate notches and sudden contour changes. 

 (4)  Harden the outer surface of the structure by case hardening (carburizing, nitriding) or shot peening. 
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 Generalized Creep Behavior 

 

 8.26  Give the approximate temperature at which creep deformation becomes an important consideration 

for each of the following metals: nickel, copper, iron, tungsten, lead, and aluminum. 
 

  Solution 

 Creep becomes important at about 0.4Tm, Tm being the absolute melting temperature of the metal.  (The 

melting temperatures in degrees Celsius are found inside the front cover of the book.) 

��
 For Ni, 0.4Tm = (0.4)(1455 + 273) = 691

 
K or 418�qC (785�qF) 

 For Cu, 0.4Tm = (0.4)(1085 + 273) = 543
 
K or 270�qC (518�qF) 

 For Fe, 0.4Tm = (0.4)(1538 + 273) = 725
 
K or 450�qC (845�qF) 

 For W, 0.4Tm = (0.4)(3410 + 273) = 1473
 
K or 1200�qC (2190�qF) 

 For Pb, 0.4Tm = (0.4)(327 + 273) = 240
 
K or ��33�qC (��27�qF) 

 For Al, 0.4Tm = (0.4)(660 + 273) = 373
 
K or 100�qC (212�qF) 
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 8.27  The following creep data were taken on an aluminum alloy at 400�qC (750�qF) and a constant stress of 

25 MPa (3660 psi).  Plot the data as strain versus time, then determine the steady-state or minimum creep rate.  

Note:  The initial and instantaneous strain is not included. 

 

Time (min) Strain Time (min) Strain 

0 0.000 16 0.135 

2 0.025 18 0.153 

4 0.043 20 0.172 

6 0.065 22 0.193 

8 0.078 24 0.218 

10 0.092 26 0.255 

12 0.109 28 0.307 

14 0.120 30 0.368 

 
  Solution 

 These creep data are plotted below 
 

 

 

 The steady-state creep rate (�'�H/�' t) is the slope of the linear region (i.e., the straight line that has been 

superimposed on the curve) as 
 

  

��

�' �H
�' t

=
0.230 �� 0.09

30 min �� 10 min
= 7.0 �u 10-3  min-1 
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 Stress and Temperature Effects 

 

 8.28  A specimen 750 mm (30 in.) long of an S-590 alloy (Figure 8.31) is to be exposed to a tensile stress 

of 80 MPa (11,600 psi) at 815�qC (1500�qF).  Determine its elongation after 5000 h.  Assume that the total of both 

instantaneous and primary creep elongations is 1.5 mm (0.06 in.). 

 
  Solution 

 From the 815�qC line in Figure 8.31, the steady state creep rate   

��

Ý �H��s is about 5.5 �u 10-6 h-1 at 80 MPa.  The 

steady state creep strain, �Hs, therefore, is just the product of 
  
Ý �H��s and time as 

 

    

��

�Hs = Ý �H��s x  (time) 

 

��

= (5.5 �u 10��6  h-1) (5,000  h)= 0.0275 

 
Strain and elongation are related as in Equation 6.2;  solving for the steady state elongation, �' ls, leads to  

 

    

��

�' ls = l0 �Hs = (750  mm)(0.0275) = 20.6 mm  (0.81 in.) 

 
Finally, the total elongation is just the sum of this �'ls and the total of both instantaneous and primary creep 

elongations [i.e., 1.5 mm (0.06 in.)].  Therefore, the total elongation is 20.6 mm + 1.5 mm = 22.1 mm (0.87 in.). 
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 8.29  For a cylindrical S-590 alloy specimen (Figure 8.31) originally 10 mm (0.40 in.) in diameter and 500 

mm (20 in.) long, what tensile load is necessary to produce a total elongation of 145 mm (5.7 in.) after 2,000 h at 

730�qC (1350�qF)?  Assume that the sum of instantaneous and primary creep elongations is 8.6 mm (0.34 in.). 

 
  Solution 

 It is first necessary to calculate the steady state creep rate so that we may utilize Figure 8.31 in order to 
determine the tensile stress.  The steady state elongation, �'ls, is just the difference between the total elongation and 

the sum of the instantaneous and primary creep elongations;  that is, 

 

    

��

�' ls = 145 mm �� 8.6 mm = 136.4 mm  (5.36 in.)  

 

Now the steady state creep rate,   

��

Ý �H��s is just 

 

    

��

�H
.
s =

�'�H
�' t

=

�' ls
l0
�' t

� 

136.4 mm
500 mm
2,000 h

 

 

= 1.36 �u 10-4 h-1 

 

Employing the 730�qC line in Figure 8.31, a steady state creep rate of 1.36 �u 10-4 h-1 corresponds to a stress �V of 

about 200 MPa (or 29,000 psi)  [since log (1.36 �u 10-4) = -3.866].  From this we may compute the tensile load using 

Equation 6.1 as 

 

    

��

F = �VA0 = �V�S
d0
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2
 

 

��

= (200 �u 106 N/m2)(�S)
10.0 �u10��3 m

2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

= 15,700  N  (3645 lbf )  
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 8.30  If a component fabricated from an S-590 alloy (Figure 8.30) is to be exposed to a tensile stress of 

300 MPa (43,500 psi) at 650�qC (1200�qF), estimate its rupture lifetime. 

 
  Solution 

 This problem asks us to calculate the rupture lifetime of a component fabricated from an S-590 alloy 

exposed to a tensile stress of 300 MPa at 650�qC.  All that we need do is read from the 650�qC line in Figure 8.30 the 

rupture lifetime at 300 MPa;  this value is about 600 h. 
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 8.31  A cylindrical component constructed from an S-590 alloy (Figure 8.30) has a diameter of 12 mm 

(0.50 in.).  Determine the maximum load that may be applied for it to survive 500 h at 925�qC (���������qF). 

 
  Solution 

 We are asked in this problem to determine the maximum load that may be applied to a cylindrical S-590 

alloy component that must survive 500 h at 925�qC.  From Figure 8.30, the stress corresponding to 500 h is about 50 
MPa (7,250 psi).  Since stress is defined in Equation 6.1 as �V = F/A0, and for a cylindrical specimen, 

    

��

A0 =  �S
d0
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

, then 

 

  

��

F = �VA0 = �V�S
d0
2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

 

 

��

= (50 �u 106  N/m2)(�S)
12 �u10��3 m

2

�§��

�©��
�¨��

�·��

�¹��
�¸��
2

= 5655 N  (1424 lbf )  
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 8.32  From Equation 8.19, if the logarithm of   

��

Ý �H��s �L�V���S�O�R�W�W�H�G���Y�H�U�V�X�V���W�K�H���O�R�J�D�U�L�W�K�P���R�I���1�����W�K�H�Q���D���V�W�U�D�L�J�K�W���O�L�Q�H��

should result, the slope of which is the stress exponent n. Using Figure 8.31, determine the value of n for the S-590 

alloy at 925°C, and for the initial (i.e., lower-temperature) straight line segments at each of 650°C, 730°C, and 

815°C. 

 
  Solution 

 The slope of the line from a log   

��

Ý �H��s versus log �V plot yields the value of n in Equation 8.19;  that is 

 

    

��

n =
�' log Ý �H��s
�' log �V

 

 

We are asked to determine the values of n for the creep data at the four temperatures in Figure 8.31 [i.e., at 925°C, 

and for the initial (i.e., lower-temperature) straight line segments at each of 650°C, 730°C, and 815°C].  This is 

accomplished by taking ratios of the differences between two log   
Ý �H��s and log �V values.  (Note:  Figure 8.31 plots log 

�V versus log   

��

Ý �H��s;  therefore, values of n are equal to the reciprocals of the slopes of the straight-line segments.) 

Thus for 650�qC 

 

    

��

n =
�' log Ý �H��s
�' log �V

 = 

��

log (10��1) �� log (10��5)
log (545 MPa) �� log (240 MPa)

= 11.2 

 

While for 730�qC 

 

    

��

n =
�' log Ý �H��s
�' log �V

 =

��

log 1���� �� log (10��6)
log (430 MPa) �� log (125 MPa)

= 11.2 

 

And at 815�qC 

 

    

��

n =
�' log Ý �H��s
�' log �V

 = 

��

log 1���� �� log (10��6)
log (320 MPa) �� log (65 MPa)

= 8.7 

 

And, finally at 925�qC 

 

    

��

n =
�' log Ý �H��s
�' log �V

 = 

��

log 102�� ���� log (10��5)
log (350 MPa) �� log (44 MPa)

= 7.8 
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 8.33  (a) Estimate the activation energy for creep (i.e., Qc in Equation 8.20) for the S-590 alloy having the 

steady-state creep behavior shown in Figure 8.31. Use data taken at a stress level of 300 MPa (43,500 psi) and 

temperatures of 650°C and 730°C . Assume that the stress exponent n is independent of temperature. (b) Estimate 

  
Ý �H��s at 600°C (873 K) and 300 MPa. 

 
  Solution 

 (a)  We are asked to estimate the activation energy for creep for the S-590 alloy having the steady-state 

creep behavior shown in Figure 8.31, using data taken at �V = 300 MPa and temperatures of 650�qC and 730�qC.  

Since �V is a constant, Equation 8.20 takes the form 

 

    

��

Ý �H��s = K2�Vnexp ��
Qc
RT

�§��

�©��
�¨��

�·��

�¹��
�¸��= K2

' exp ��
Qc
RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

where     

��

K2
'  is now a constant.  (Note:  the exponent n has about the same value at these two temperatures per 

Problem 8.32.)  Taking natural logarithms of the above expression 

 

    

��

ln Ý �H��s =  ln K2
' ��

Qc
RT

 

 
For the case in which we have creep data at two temperatures (denoted as T1 and T2) and their corresponding 

steady-state creep rates (
    

��

Ý �H��s1
and 

    

��

Ý �H��s2
), it is possible to set up two simultaneous equations of the form as above, with 

two unknowns, namely     

��

K2
'  and Qc.  Solving for Qc yields 

 

    

��

Qc = ��  
R ln Ý �H��s1

�� ln Ý �H��s2

�§��
�©��
�¨��

�·��
�¹��
�¸��

1
T1

��
1
T2

�ª��

�¬��
�«��
�«��

�º��

�¼��
�»��
�»��

 

 
Let us choose T1 as 650�qC (923 K) and T2 as 730�qC (1003 K);  then from Figure 8.31, at �V = 300 MPa, 

    

��

Ý �H��s1
 = 8.9 �u 

10-5 h-1 and 
    

��

Ý �H��s2
 =  1.3 �u 10-2 h-1.  Substitution of these values into the above equation leads to 

 

  

��

Qc = ��  
(8.31 J/mol- K) ln (8.9 �u 10��5) �� ln (1.3 �u10��2)�> �@

1
923 K

��
1

1003 K

�ª��

�¬���«��
�º��

�¼���»��

 

 

= 480,000 J/mol 
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 (b)  We are now asked to estimate   

��

Ý �H��s at 600�qC (873 K) and 300 MPa.  It is first necessary to determine the 

value of     

��

K2
' , which is accomplished using the first expression above, the value of Qc, and one value each of   

��

Ý �H��s and 

T (say 
    

��

Ý �H��s1
 and T1).  Thus, 

 

    

��

K2
' =  Ý �H��s1

exp 
Qc
RT1

�§��

�©��
�¨���¨��

�·��

�¹��
�¸���¸�� 

 

��

=  8.9 �u 10��5 h��1�� ��exp
480,000 J/mol

(8.31 J/mol- K)(923 K)

�ª��

�¬���«��
�º��

�¼���»��=  1.34 �u 1023 h-1 

 

Now it is possible to calculate   

��

Ý �H��s at 600�qC (873 K) and 300 MPa as follows: 

 

    

��

Ý �H��s =  K2
' exp ��

Qc
RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

��

=  1.34 �u1023 h��1�� ��exp ��
480,000 J/mol

(8.31 J/mol- K)(873 K)

�ª��

�¬���«��
�º��

�¼���»�� 

 

= 2.47 �u 10-6 h-1 
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 8.34  Steady-state creep rate data are given below for nickel at 1000�qC (1273 K): 

 

  

��

Ý �H��s (s
–1) �V [MPa (psi)] 

10–4 15 (2175) 

10–6 4.5 (650) 

 

If it is known that the activation energy for creep is 272,000 J/mol, compute the steady-state creep rate at a 

temperature of 850�qC (1123 K) and a stress level of 25 MPa (3625 psi). 

 
  Solution 

 Taking natural logarithms of both sides of Equation 8.20 yields 

 

    

��

ln Ý �H��s =  ln K2 �� n ln �V ��
Qc
RT

 

 
With the given data there are two unknowns in this equation--namely K2 and n.  Using the data provided in the 

problem statement we can set up two independent equations as follows: 

 

  

��

ln 1 �u10��4  s��1�� ��� ln K2 +  n ln(15 MPa) ��
272,000 J/mol

(8.31 J/mol- K)(1273 K)
 

 

  

��

ln 1 �u10��6  s��1�� ��� ln K2 +  n ln(4.5 MPa) ��
272,000 J/mol

(8.31 J/mol- K)(1273 K)
 

 
Now, solving simultaneously for n and K2 leads to n = 3.825 and K2 = 466 s-1.  Thus it is now possible to solve for 

  

��

Ý �H��s at 25 MPa and 1123 K using Equation 8.20 as 

 

    

��

Ý �H��s = K2�Vnexp ��
Qc
RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

��

� 466 s��1�� ��(25 MPa)3.825exp ��
272,000 J/mol

(8.31 J/mol- K)(1123 K)

�ª��

�¬���«��
�º��

�¼���»�� 

 

2.28 �u 10-5 s-1 
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 8.35  Steady-state creep data taken for a stainless steel at a stress level of 70 MPa (10,000 psi) are given 

as follows: 

 

  

��

Ý �H��s (s
–1) T (K) 

1.0 × 10–5 977 

2.5 × 10–3 1089 

 

If it is known that the value of the stress exponent n for this alloy is 7.0, compute the steady-state creep rate at 1250 

K and a stress level of 50 MPa (7250 psi). 

 
  Solution 

 Taking natural logarithms of both sides of Equation 8.20 yields 

 

    

��

ln Ý �H��s =  lnK2 �� n ln�V ��
Qc
RT

 

 
With the given data there are two unknowns in this equation--namely K2 and Qc.  Using the data provided in the 

problem statement we can set up two independent equations as follows: 
 

  

��

ln 1.0 �u10��5  s��1�� ��� ln K2 +  (7.0) ln(70 MPa) ��
Qc

(8.31 J/mol- K)(977 K)
 

 

  

��

ln 2.5 �u10��3  s��1�� ��� ln K2 +  (7.0) ln(70 MPa) ��
Qc

(8.31 J/mol- K)(1089 K)
 

 
Now, solving simultaneously for K2 and Qc leads to K2 = 2.55 �u 105 s-1 and Qc = 436,000 J/mol.  Thus, it is now 

possible to solve for   

��

Ý �H��s at 50 MPa and 1250 K using Equation 8.20 as 
 

    

��

Ý �H��s = K2�Vnexp ��
Qc
RT

�§��

�©��
�¨��

�·��

�¹��
�¸�� 

 

��

� 2.55 �u 105 s��1�� ��(50 MPa)7.0exp ��
436,000 J/mol

(8.31 J/mol- K)(1250 K)

�ª��

�¬���«��
�º��

�¼���»�� 

 

0.118 s-1 
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 Alloys for High-Temperature Use 

 

 8.36  Cite three metallurgical/processing techniques that are employed to enhance the creep resistance of 

metal alloys. 

 
  Solution 

 Three metallurgical/processing techniques that are employed to enhance the creep resistance of metal 

alloys are (1) solid solution alloying, (2) dispersion strengthening by using an insoluble second phase, and (3) 

increasing the grain size or producing a grain structure with a preferred orientation. 
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DESIGN PROBLEMS 

 

 8.D1  Each student (or group of students) is to obtain an object/structure/component that has failed. It may 

come from your home, an automobile repair shop, a machine shop, etc. Conduct an investigation to determine the 

cause and type of failure (i.e., simple fracture, fatigue, creep). In addition, propose measures that can be taken to 

prevent future incidents of this type of failure. Finally, submit a report that addresses the above issues. 

 

 Each student or group of students is to submit their own report on a failure analysis investigation that was 

conducted. 
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 Principles of Fracture Mechanics 

 

 8.D2  (a) For the thin-walled spherical tank discussed in Design Example 8.1, on the basis of critical crack 

size criterion [as addressed in part (a)], rank the following polymers from longest to shortest critical crack length: 

nylon 6,6 (50% relative humidity), polycarbonate, poly(ethylene terephthalate), and poly(methyl methacrylate). 

Comment on the magnitude range of the computed values used in the ranking relative to those tabulated for metal 

alloys as provided in Table 8.3. For these computations, use data contained in Tables B.4 and B.5 in Appendix B. 

 (b) Now rank these same four polymers relative to maximum allowable pressure according to the leak-

before-break criterion, as described in the (b) portion of Design Example 8.1.  As above, comment on these values 

in relation to those for the metal alloys that are tabulated in Table 8.4. 

 
  Solution 

 (a)  This portion of the problem calls for us to rank four polymers relative to critical crack length in the 

wall of a spherical pressure vessel.  In the development of Design Example 8.1, it was noted that critical crack 
length is proportional to the square of the KIc–�Vy ratio.  Values of KIc and �Vy as taken from Tables B.4 and B.5 are 

tabulated below.  (Note:  when a range of �Vy or KIc values is given, the average value is used.) 

 
 
 Material      

��

KIc (MPa m) �Vy (MPa) 

 
 Nylon 6,6 2.75 51.7 

 Polycarbonate 2.2 62.1 

 Poly(ethylene terephthlate) 5.0 59.3 

 Poly(methyl methacrylate) 1.2 63.5 
 

On the basis of these values, the four polymers are ranked per the squares of the KIc–�Vy ratios as follows: 

 
 

 Material 

    

��

KIc
�Vy

�§��

�©��

�¨��
�¨��

�·��

�¹��

�¸��
�¸��

2

 (mm) 

 

 PET 7.11 

 Nylon 6,6 2.83 

 PC 1.26 

 PMMA 0.36 
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These values are smaller than those for the metal alloys given in Table 8.3, which range from 0.93 to 43.1 mm. 

 
 (b)  Relative to the leak-before-break criterion, the 

    

��

KIc
2 - �Vy ratio is used.  The four polymers are ranked 

according to values of this ratio as follows:  

 

 Material 
    

��

KIc
2

�Vy
 (MPa- m)  

 

 PET 0.422 

 Nylon 6,6 0.146 

 PC 0.078 

 PMMA 0.023 

 

These values are all smaller than those for the metal alloys given in Table 8.4, which values range from 1.2 to 11.2 

MPa-m. 
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 Data Extrapolation Methods 

 

 8.D3  An S-590 alloy component (Figure 8.32) must have a creep rupture lifetime of at least 100 days at 

500�qC (773 K).  Compute the maximum allowable stress level. 

 
  Solution 

 This problem asks that we compute the maximum allowable stress level to give a rupture lifetime of 100 

days for an S-590 iron component at 773 K.  It is first necessary to compute the value of the Larson-Miller 

parameter as follows: 

 

  

��

T (20 +  log tr ) = (773 K) 20 +  log (100 days)(24 h/day)�> �@�^ �  ̀

 

= 18.1 �u 103 

 

From the curve in Figure 8.32, this value of the Larson-Miller parameter corresponds to a stress level of about 530 

MPa (77,000 psi). 
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 8.D4  Consider an S-590 alloy component (Figure 8.32) that is subjected to a stress of 200 MPa (29,000 

psi).  At what temperature will the rupture lifetime be 500 h? 

 
  Solution 

 We are asked in this problem to calculate the temperature at which the rupture lifetime is 500 h when an S-

590 iron component is subjected to a stress of 200 MPa (29,000 psi).  From the curve shown in Figure 8.32, at 200 

MPa, the value of the Larson-Miller parameter is 22.5 �u 103 (K-h).  Thus, 

 

  

��

22.5 �u 103 (K - h) = T(20 + log tr ) 

 

  

��

=  T 20 + log(500 h)�> �@ 

 

Or, solving for T yields T = 991 K (718�qC). 
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 8.D5  For an 18-8 Mo stainless steel (Figure 8.35), predict the time to rupture for a component that is 

subjected to a stress of 80 MPa (11,600 psi) at 700�qC (973 K). 

 
  Solution 

 This problem asks that we determine, for an 18-8 Mo stainless steel, the time to rupture for a component 

that is subjected to a stress of 80 MPa (11,600 psi) at 700�qC (973 K).  From Figure 8.35, the value of the Larson-
Miller parameter at 80 MPa is about 23.5 �u 103, for T in K and tr in h.  Therefore, 

 

  

��

23.5 �u 103 = T(20 + log tr ) 

 

  

��

=  973(20 + log tr ) 

 
And, solving for tr 

 

  

��

24.15 = 20 + log tr  

 
which leads to tr = 1.42 �u 104 h = 1.6 yr. 
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 8.D6  Consider an 18-8 Mo stainless steel component (Figure 8.35) that is exposed to a temperature of 

500�qC (773 K).  What is the maximum allowable stress level for a rupture lifetime of 5 years?  20 years? 

 
  Solution 

 We are asked in this problem to calculate the stress levels at which the rupture lifetime will be 5 years and 

20 years when an 18-8 Mo stainless steel component is subjected to a temperature of 500�qC (773 K).  It first 

becomes necessary to calculate the value of the Larson-Miller parameter for each time.  The values of tr 

corresponding to 5 and 20 years are 4.38 �u 104 h and 1.75 �u 105 h, respectively.  Hence, for a lifetime of 5 years 

 

  

��

T (20 +  log tr ) = 773 20 + log (4.38 �u 104)�> �@= 19.05 �u 103 

 
And for tr = 20 years 

 

  

��

T (20 +  log tr ) = 773 20 + log (1.75 �u 105)�> �@= 19.51 �u 103 

 

 Using the curve shown in Figure 8.35, the stress values corresponding to the five- and twenty-year 

lifetimes are approximately 260 MPa (37,500 psi) and 225 MPa (32,600 psi), respectively. 
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which yields a value for 
    

��

m'sugar of 2667 g.  Subtracting the latter from the former of these sugar concentrations 

yields the amount of sugar that precipitated out of the solution upon cooling 
    

��

m"sugar;  that is 

 

  

��

m"sugar =  msugar ��  mÕsugar =  5022 g ��  2667 g =  2355 g 
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 9.2  At 500�qC (930�qF), what is the maximum solubility (a) of Cu in Ag?  (b) Of Ag in Cu? 
 

  Solution 

 (a)  From Figure 9.7, the maximum solubility of Cu in Ag at 500�qC corresponds to the position of the �E–(�D 

+ �E) phase boundary at this temperature, or to about 2 wt% Cu. 

 (b)  From this same figure, the maximum solubility of Ag in Cu corresponds to the position of the �D–(�D + 

�E) phase boundary at this temperature, or about 1.5 wt% Ag. 
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 Microstructure  

 

 9.3  Cite three variables that determine the microstructure of an alloy. 
 

  Solution 

 Three variables that determine the microstructure of an alloy are (1) the alloying elements present, (2) the 

concentrations of these alloying elements, and (3) the heat treatment of the alloy. 
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 Phase Equilibria 

 
 9.4  What thermodynamic condition must be met for a state of equilibrium to exist? 

 

  Solution 

 In order for a system to exist in a state of equilibrium the free energy must be a minimum for some 

specified combination of temperature, pressure, and composition. 
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 One-Component (or Unary) Phase Diagrams 

 

 9.5  Consider a specimen of ice that is at 210�qC and 1 atm pressure.  Using Figure 9.2, the pressure–

temperature phase diagram for H2O, determine the pressure to which the specimen must be raised or lowered to 

cause it (a) to melt, and (b) to sublime. 
 

  Solution 

 The figure below shows the pressure-temperature phase diagram for H2O, Figure 10.2;  a vertical line has 

been constructed at -10�qC, and the location on this line at 1 atm pressure (point B) is also noted. 

 

 

 (a)  Melting occurs, (by changing pressure) as, moving vertically (upward) at this temperature, we cross the 

Ice-Liquid phase boundary.  This occurs at approximately 570 atm;  thus, the pressure of the specimen must be 

raised from 1 to 570 atm. 

 (b)  In order to determine the pressure at which sublimation occurs at this temperature, we move vertically 

downward from 1 atm until we cross the Ice-Vapor phase boundary.  This intersection occurs at approximately 

0.0023 atm. 
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 9.6  At a pressure of 0.01 atm, determine (a) the melting temperature for ice, and (b) the boiling 

temperature for water. 

 

  Solution 

 The melting temperature for ice and the boiling temperature for water at a pressure of 0.01 atm may be 

determined from the pressure-temperature diagram for this system, Figure 10.2, which is shown below;  a horizontal 

line has been constructed across this diagram at a pressure of 0.01 atm. 

 

 

 

The melting and boiling temperatures for ice at a pressure of 0.01 atm may be determined by moving horizontally 

across the pressure-temperature diagram at this pressure.  The temperature corresponding to the intersection of the 

Ice-Liquid phase boundary is the melting temperature, which is approximately 1�qC.  On the other hand, the boiling 

temperature is at the intersection of the horizontal line with the Liquid-Vapor phase boundary--approximately 16�qC. 
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 Binary Isomorphous Systems 

 

 9.7  Given here are the solidus and liquidus temperatures for the germanium-silicon system.  Construct the 

phase diagram for this system and label each region. 

 
Composition 

(wt% Si) 
Solidus 

Temperature 
(°C) 

Liquidus 
Temperature 

(°C) 

0 938 938 

10 1005 1147 

20 1065 1226 

30 1123 1278 

40 1178 1315 

50 1232 1346 

60 1282 1367 

70 1326 1385 

80 1359 1397 

90 1390 1408 

100 1414 1414 
 

  Solution 

 The germanium-silicon phase diagram is constructed below. 
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 Interpretation of Phase Diagrams 

 

 9.8  Cite the phases that are present and the phase compositions for the following alloys: 

 (a) 90 wt% Zn-10 wt% Cu at 400�qC (750�qF) 

 (b) 75 wt% Sn-25 wt% Pb at 175�qC (345�qF) 

 (c) 55 wt% Ag-45 wt% Cu at 900�qC (1650�qF) 

 (d) 30 wt% Pb-70 wt% Mg at 425�qC (795�qF) 

 (e) 2.12 kg Zn and 1.88 kg Cu at 500�qC (930�qF) 

 (f) 37 lbm Pb and 6.5 lbm Mg at 400�qC (750�qF) 

 (g) 8.2 mol Ni and 4.3 mol Cu at 1250�qC (2280�qF) 

 (h) 4.5 mol Sn and 0.45 mol Pb at 200�qC (390�qF) 
 

  Solution 

 This problem asks that we cite the phase or phases present for several alloys at specified temperatures. 

 (a)  That portion of the Cu-Zn phase diagram (Figure 9.19) that pertains to this problem is shown below;  

the point labeled “A” represents the 90 wt% Zn-10 wt% Cu composition at 400�qC. 

 

 

As may be noted, point A lies within the �H and �K phase field.  A tie line has been constructed at 400�qC;  its 

intersection with the �H���H + �K��phase boundary is at 87 wt% Zn, which corresponds to the composition of the �H phase.  

Similarly, the tie-line intersection with the �H + �K���K��phase boundary occurs at 97 wt% Zn, which is the composition 

of the �K��phase.  Thus, the phase compositions are as follows: 
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C�H = 87 wt% Zn-13 wt% Cu 

C�K = 97 wt% Zn-3 wt% Cu
 

 

 (b) That portion of the Pb-Sn phase diagram (Figure 9.8) that pertains to this problem is shown below;  the 

point labeled “B” represents the 75 wt% Sn-25 wt% Pb composition at 175�qC. 

 

 

 

As may be noted, point B lies within the �D + �E phase field.  A tie line has been constructed at 175�qC;  its 

intersection with the �D���D + �E��phase boundary is at 16 wt% Sn, which corresponds to the composition of the �D 

phase.  Similarly, the tie-line intersection with the �D + �E���E��phase boundary occurs at 97 wt% Sn, which is the 

composition of the �E��phase.  Thus, the phase compositions are as follows: 

C�D = 16 wt% Sn-84 wt% Pb 

C�E = 97 wt% Sn-3 wt% Pb
 

 

 (c)  The Ag-Cu phase diagram (Figure 9.7) is shown below;  the point labeled “C” represents the 55 wt% 

Ag-45 wt% Cu composition at 900�qC. 
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As may be noted, point C lies within the Liquid phase field.  Therefore, only the liquid phase is present;  its 

composition is 55 wt% Ag-45 wt% Cu. 
 

 (d)  The Mg-Pb phase diagram (Figure 9.20) is shown below;  the point labeled “D” represents the 30 wt% 

Pb-70 wt% Mg composition at 425�qC. 
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As may be noted, point D lies within the �D phase field.  Therefore, only the �D phase is present;  its composition is 

30 wt% Pb-70 wt% Mg. 

 

 (e)  For an alloy composed of 2.12 kg Zn and 1.88 kg Cu and at 500�qC, we must first determine the Zn and 

Cu concentrations, as 

��

CZn � 
2.12 kg

2.12 kg ��  1.88 kg
 �u 100 �  53 wt% 

 

��

CCu � 
1.88 kg

2.12 kg ��  1.88 kg
 �u 100 �  47 wt% 

 

That portion of the Cu-Zn phase diagram (Figure 9.19) that pertains to this problem is shown below;  the point 

labeled “E” represents the 53 wt% Zn-47 wt% Cu composition at 500�qC. 
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As may be noted, point E lies within the �E + �J phase field.  A tie line has been constructed at 500�qC;  its intersection 

with the �E���E + �J��phase boundary is at 49 wt% Zn, which corresponds to the composition of the �E phase.  Similarly, 

the tie-line intersection with the �E + �J���J��phase boundary occurs at 58 wt% Zn, which is the composition of the 

�J��phase.  Thus, the phase compositions are as follows: 

C�E = 49 wt% Zn-51 wt% Cu 

C�J = 58 wt% Zn-42 wt% Cu
 

 

 (f)  For an alloy composed of 37 lbm Pb and 6.5 lbm Mg and at 400�qC, we must first determine the Pb and 

Mg concentrations, as 

��

CPb � 
37 lbm

37 lbm ��  6.5 lbm
 �u 100 �  85 wt% 

 

��

CMg � 
6.5 lbm

37 lbm ��  6.5 lbm
 �u 100 �  15 wt% 

 

That portion of the Mg-Pb phase diagram (Figure 9.20) that pertains to this problem is shown below;  the point 

labeled “F” represents the 85 wt% Pb-15 wt% Mg composition at 400�qC. 
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As may be noted, point F lies within the L + Mg2Pb phase field.  A tie line has been constructed at 400�qC;  it 

intersects the vertical line at 81 wt% Pb, which corresponds to the composition of Mg2Pb.  Furthermore, the tie line 

intersection with the L + Mg2Pb-L phase boundary is at 93 wt% Pb, which is the composition of the liquid phase.  

Thus, the phase compositions are as follows: 
CMg2Pb = 81 wt% Pb-19 wt% Mg 

CL = 93 wt% Pb-7 wt% Mg
 

 

 (g)  For an alloy composed of 8.2 mol Ni and 4.3 mol Cu and at 1250�qC, it is first necessary to determine 

the Ni and Cu concentrations, which we will do in wt% as follows: 

 

��

nNi
' � nmNi

ANi � (8.2 mol)(58.69 g/mol)= 481.3 g 

 

��

nCu
' � nmCu

ACu � (4.3 mol)(63.55 g/mol)= 273.3 g 

 

��

CNi � 
481.3 g

481.3 g +  273.3 g
 �u 100� 63.8 wt% 

 

��

CCu � 
273.3 g

481.3 g +  273.3 g
 �u 100� 36.2 wt% 

 

The Cu-Ni phase diagram (Figure 9.3a) is shown below;  the point labeled “G” represents the 63.8 wt% Ni-36.2 

wt% Cu composition at 1250�qC. 
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As may be noted, point G lies within the �D phase field.  Therefore, only the �D phase is present;  its composition is 

63.8 wt% Ni-36.2 wt% Cu. 

 

 (h)  For an alloy composed of 4.5 mol Sn and 0.45 mol Pb and at 200�qC, it is first necessary to determine 

the Sn and Pb concentrations, which we will do in weight percent as follows: 

 

��

nSn
’ � nmSn

ASn � (4.5 mol)(118.71 g/mol)= 534.2 g 

 

��

nPb
' � nmPb

APb � (0.45 mol)(207.2 g/mol)= 93.2 g 

 

��

CSn � 
534.2 g

534.2 g +  93.2 g
 �u 100� 85.1 wt% 

 

��

CPb � 
93.2 g

534.2 g +  93.2 g
 �u 100� 14.9 wt% 

 

That portion of the Pb-Sn phase diagram (Figure 9.8) that pertains to this problem is shown below;  the point 

labeled “H” represents the 85.1 wt% Sn-14.9 wt% Pb composition at 200�qC. 
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As may be noted, point H lies within the �E + L phase field. A tie line has been constructed at 200�qC;  its intersection 

with the L���E + L����phase boundary is at 74 wt% Sn, which corresponds to the composition of the L phase.  Similarly, 

the tie-line intersection with the �E + L���E��phase boundary occurs at 97.5 wt% Sn, which is the composition of the 

�E��phase.  Thus, the phase compositions are as follows: 

C�E = 97.5 wt% Sn-2.5 wt% Pb 

CL = 74 wt% Sn-26 wt% Pb 
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 9.9  Is it possible to have a copper–nickel alloy that, at equilibrium, consists of a liquid phase of 

composition 20 wt% Ni–80 wt% Cu and also an �D phase of composition 37 wt% Ni–63 wt% Cu?  If so, what will be 

the approximate temperature of the alloy?  If this is not possible, explain why. 
 

  Solution 

 It is not possible to have a Cu-Ni alloy, which at equilibrium, consists of a liquid phase of composition 20 

wt% Ni-80 wt% Cu and an �D phase of composition 37 wt% Ni-63 wt% Cu.  From Figure 9.3a, a single tie line does 

not exist within the �D + L region that intersects the phase boundaries at the given compositions.  At 20 wt% Ni, the 

L-(�D + L) phase boundary is at about 1200�qC, whereas at 37 wt% Ni the (L + �D)-�D phase boundary is at about 

1230�qC. 
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 9.10  Is it possible to have a copper-zinc alloy that, at equilibrium, consists of an �H phase of composition 

80 wt% Zn-20 wt% Cu, and also a liquid phase of composition 95 wt% Zn-5 wt% Cu?  If so, what will be the 

approximate temperature of the alloy?  If this is not possible, explain why. 
 

  Solution 

 It is not possible to have a Cu-Zn alloy, which at equilibrium consists of an �H phase of composition 80 wt% 

Zn-20 wt% Cu and also a liquid phase of composition 95 wt% Zn-5 wt% Cu.  From Figure 9.19 a single tie line 

does not exist within the �H + L region which intersects the phase boundaries at the given compositions.  At 80 wt% 

Zn, the �H-(�H + L) phase boundary is at about 575�qC, whereas at 95 wt% Zn the (�H + L)-L phase boundary is at about 

490�qC.��
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 9.11  A copper-nickel alloy of composition 70 wt% Ni-30 wt% Cu is slowly heated from a temperature of 

1300�qC (2370�qF). 

 (a) At what temperature does the first liquid phase form? 

 (b) What is the composition of this liquid phase? 

 (c) At what temperature does complete melting of the alloy occur? 

 (d) What is the composition of the last solid remaining prior to complete melting? 
 

  Solution 

 Shown below is the Cu-Ni phase diagram (Figure 9.3a) and a vertical line constructed at a composition of 

70 wt% Ni-30 wt% Cu. 

 

 

 

 (a)  Upon heating from 1300�qC, the first liquid phase forms at the temperature at which this vertical line 

intersects the �D-(�D + L) phase boundary--i.e., about 1345�qC. 

 (b)  The composition of this liquid phase corresponds to the intersection with the (�D + L)-L phase 

boundary, of a tie line constructed across the �D + L phase region at 1345�qC--i.e., 59 wt% Ni; 

 (c)  Complete melting of the alloy occurs at the intersection of this same vertical line at 70 wt% Ni with the 

(�D + L)-L phase boundary--i.e., about 1380�qC; 
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 (d)  The composition of the last solid remaining prior to complete melting corresponds to the intersection 

with �D-(�D + L) phase boundary, of the tie line constructed across the �D + L phase region at 1380�qC--i.e., about 79 

wt% Ni. 
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 9.12  A 50 wt% Pb-50 wt% Mg alloy is slowly cooled from 700�qC (1290�qF) to 400�qC (750�qF). 

 (a) At what temperature does the first solid phase form? 

 (b) What is the composition of this solid phase? 

 (c) At what temperature does the liquid solidify? 

 (d) What is the composition of this last remaining liquid phase? 
 

  Solution 

 Shown below is the Mg-Pb phase diagram (Figure 9.20) and a vertical line constructed at a composition of 

50 wt% Pb-50 wt% Mg. 

 

 

 

 (a)  Upon cooling from 700�qC, the first solid phase forms at the temperature at which a vertical line at this 

composition intersects the L-(�D + L) phase boundary--i.e., about 560�qC; 

 (b)  The composition of this solid phase corresponds to the intersection with the �D-(�D + L) phase boundary, 

of a tie line constructed across the �D + L phase region at 560�qC--i.e., 21 wt% Pb-79 wt% Mg; 

 (c)  Complete solidification  of the alloy occurs at the intersection of this same vertical line at 50 wt% Pb 

with the eutectic isotherm--i.e., about 465�qC; 
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 (d)  The composition of the last liquid phase remaining prior to complete solidification corresponds to the 

eutectic composition--i.e., about 67 wt% Pb-33 wt% Mg. 
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 9.13  For an alloy of composition 74 wt% Zn-26 wt% Cu, cite the phases present and their compositions at 

the following temperatures:  850�qC, 750�qC, 680�qC, 600�qC, and 500�qC. 
 

  Solution 

 This problem asks us to determine the phases present and their concentrations at several temperatures, for 

an alloy of composition 74 wt% Zn-26 wt% Cu.  From Figure 9.19 (the Cu-Zn phase diagram), which is shown 

below with a vertical line constructed at the specified composition: 

 

 

 

 At 850�qC, a liquid phase is present;  CL = 74 wt% Zn-26 wt% Cu 

 At 750�qC, �J and liquid phases are present;  C�J = 67 wt% Zn-33 wt% Cu; CL = 77 wt% Zn-23 wt% Cu 

 At 680�qC, �G and liquid phases are present;  C�G = 73 wt% Zn-27 wt% Cu; CL = 82 wt% Zn-18 wt% Cu 

 At 600�qC, the �G phase is present;  C�G = 74 wt% Zn-26 wt% Cu 

 At 500�qC, �J and �H phases are present;  C�J = 69 wt% Zn-31 wt% Cu;  C�H = 78 wt% Zn-22 wt% Cu 
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 9.14  Determine the relative amounts (in terms of mass fractions) of the phases for the alloys and 

temperatures given in Problem 9.8. 
 

  Solution 

 This problem asks that we determine the phase mass fractions for the alloys and temperatures in Problem 

9.8. 

 

 (a)  From Problem 9.8a, �H and �K phases are present for a 90 wt% Zn-10 wt% Cu alloy at 400�qC, as 

represented in the portion of the Cu-Zn phase diagram shown below (at point A). 

 

 

Furthermore, the compositions of the phases, as determined from the tie line are 

 C�H = 87 wt% Zn-13 wt% Cu 

 C�K = 97 wt% Zn-3 wt% Cu 

Inasmuch as the composition of the alloy C0 = 90 wt% Zn, application of the appropriate lever rule expressions (for 

compositions in weight percent zinc) leads to 

 

  

��

W�H=
C�K�� C0

C�K�� C�H
=

97 �� 90
97 �� 87

= 0.70 

 

  

��

W�K =
C0 �� C�H
C�K�� C�H

=
90 �� 87
97 �� 87

= 0.30 
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 (b) From Problem 9.8b, �D and �E phases are present for a 75 wt% Sn-25 wt% Pb alloy at 175�qC, as 

represented in the portion of the Pb-Sn phase diagram shown below (at point B). 

 

 

 

Furthermore, the compositions of the phases, as determined from the tie line are 

 C�D = 16 wt% Sn-84 wt% Pb 

 C�E = 97 wt% Sn-3 wt% Pb
 

Inasmuch as the composition of the alloy C0 = 75 wt% Sn, application of the appropriate lever rule expressions (for 

compositions in weight percent tin) leads to 

 

  

��

W�D =
C�E�� C0

C�E�� C�D
=

97 �� 75
97 �� 16

= 0.27 

 

  

��

W�E =
C0 �� C�D
C�E�� C�D

=
75 �� 16
97 �� 16

= 0.73 

 

 (c) From Problem 9.8c, just the liquid phase is present for a 55 wt% Ag-45 wt% Cu alloy at 900�qC, as may 
be noted in the Ag-Cu phase diagram shown below (at point C)—i.e., WL = 1.0 
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 (d)  From Problem 9.8d, just the �D phase is present for a 30 wt% Pb-70 wt% Mg alloy at 425�qC, as may be 

noted in the Mg-Pb phase diagram shown below (at point D)—i.e., W�D = 1.0 
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 (e) From Problem 9.8e, �E and �J phases are present for an alloy composed of 2.12 kg Zn and 1.88 kg Cu 

(i.e., of composition 53 wt% Zn-47 wt% Cu) at 500�qC.  This is represented in the portion of the Cu-Zn phase 

diagram shown below (at point E). 

 

 

 

Furthermore, the compositions of the phases, as determined from the tie line are 

 C�E = 49 wt% Zn-51 wt% Cu 

 C�J = 58 wt% Zn-42 wt% Cu
 

Inasmuch as the composition of the alloy C0 = 53 wt% Zn and application of the appropriate lever rule expressions 

(for compositions in weight percent zinc) leads to 

 

  

��

W�E =
C�J�� C0

C�J�� C�E
=

58 �� 53
58 �� 49

= 0.56 

 

  

��

W�J =
C0 �� C�E

C�J�� C�E
=

53 �� 49
58 �� 49

= 0.44 

 

 (f)  From Problem 9.8f, L and Mg2Pb phases are present for an alloy composed of 37 lbm Pb and 6.5 lbm 

Mg (85 wt% Pb-15 wt% Mg) at 400�qC.  This is represented in the portion of the Pb-Mg phase diagram shown 

below (at point F).  
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Furthermore, the compositions of the phases, as determined from the tie line are 
 CMg2Pb = 81 wt% Pb-19 wt% Mg 

 CL = 93 wt% Pb-7 wt% Mg
 

Inasmuch as the composition of the alloy C0 = 85 wt% Pb and application of the appropriate lever rule expressions 

(for compositions in weight percent lead) leads to 

 

  

��

WMg2Pb =
CL �� C0

CL �� CMg2Pb
=

93 �� 85
93 �� 81

= 0.67 

 

  

��

WL =
C0 �� CMg2Pb

CL �� CMg2Pb
=

85 �� 81
93 �� 81

= 0.33 

 

 (g)  From Problem 9.8g, just the �D phase is present (i.e., W�D = 1.0) for an alloy composed of 8.2 mol Ni 

and 4.3 mol Cu (i.e., 63.8 wt% Ni-36.2 wt% Cu) at 1250�qC;  such may be noted (as point G) in the Cu-Ni phase 

diagram shown below. 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 

 

 (h)  From Problem 9.8h, �E and L phases are present for an alloy composed of 4.5 mol Sn and 0.45 mol Pb 

(85.1 wt% Sn-14.9 wt% Pb ) and at 200�qC.  This is represented in the portion of the Pb-Sn phase diagram shown 

below (at point H). 

 

 

Furthermore, the compositions of the phases, as determined from the tie line are 
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 C�E = 97.5 wt% Sn-2.5 wt% Pb 

 CL = 74 wt% Sn-26 wt% Pb 

Inasmuch as the composition of the alloy C0 = 85.1 wt% Sn, application of the appropriate lever rule expressions 

(for compositions in weight percent lead) leads to 

 

  

��

W�E =
C0 �� CL
C�E �� CL

=
85.1 �� 74
97.5 �� 74

= 0.47 

 

  

��

WL =
C�E �� C0

C�E �� CL
=

97.5 �� 85.1
97.5 �� 74

= 0.53 
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 9.15  A 1.5-kg specimen of a 90 wt% Pb–10 wt% Sn alloy is heated to 250�qC (480�qF);  at this temperature 

it is entirely an �D-phase solid solution (Figure 9.8).  The alloy is to be melted to the extent that 50% of the specimen 

is liquid, the remainder being the �D phase.  This may be accomplished either by heating the alloy or changing its 

composition while holding the temperature constant. 

 (a) To what temperature must the specimen be heated? 

 (b) How much tin must be added to the 1.5-kg specimen at 250�qC to achieve this state? 
 

  Solution 

 (a)  Probably the easiest way to solve this part of the problem is by trial and error--that is, on the Pb-Sn 

phase diagram (Figure 9.8), moving vertically at the given composition, through the �D + L region until the tie-line 

lengths on both sides of the given composition are the same.  This occurs at approximately 295�qC (560�qF). 

 (b)  We can also produce a 50% liquid solution at 250�qC, by adding Sn to the alloy.  At 250�qC and within 

the �D + L phase region 
 

C�D = 14 wt% Sn-86 wt% Pb 

CL = 34 wt% Sn-66 wt% Pb 

 

Let C0 be the new alloy composition to give W�D = WL = 0.5.  Then, 

 

  

��

W�D = 0.5 =
CL �� C0
CL �� C�D

=
34 �� C0
34 �� 14

 

 
And solving for C0 gives 24 wt% Sn.  Now, let mSn be the mass of Sn added to the alloy to achieve this new 

composition.  The amount of Sn in the original alloy is 

 

(0.10)(1.5 kg) = 0.15 kg 

 

Then, using a modified form of Equation 4.3 
 

  

��

0.15 kg �� mSn
1.5 kg �� mSn

�ª��

�¬��
�«��

�º��

�¼��
�»���u100 = 24 

 
And, solving for mSn (the mass of tin to be added), yields mSn = 0.276 kg. 
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 9.16  A magnesium-lead alloy of mass 5.5 kg consists of a solid �.���S�K�D�V�H��that has a composition that is just 

slightly below the solubility limit at 200�qC (390�qF). 

 (a) What mass of lead is in the alloy? 

 (b) If the alloy is heated to 350�qC (660�qF), how much more lead may be dissolved in the �.���S�K�D�V�H���Z�L�W�K�R�X�W��

exceeding the solubility limit of this phase? 
 

  Solution 

 (a)  This portion of the problem asks that we calculate, for a Pb-Mg alloy, the mass of lead in 5.5 kg of the 

solid �D phase at 200�qC just below the solubility limit.  From Figure 9.20, the solubility limit for the �D phase at 
200�qC corresponds to the position (composition) of the �D-�D + Mg2Pb phase boundary at this temperature, which is 

about 5 wt% Pb.  Therefore, the mass of Pb in the alloy is just (0.05)(5.5 kg) = 0.28 kg.��

 (b)  At 350�qC, the solubility limit of the �D phase increases to approximately 25 wt% Pb.  In order to 
determine the additional amount of Pb that may be added (mPb), we utilize a modified form of Equation 4.3 as 

 

  

��

CPb = 25 wt% =
0.28 kg �� mPb
5.5 kg �� mPb

�u100 

 
Solving for mPb yields mPb = 1.46 kg. 
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 9.17  A 90 wt% Ag-10 wt% Cu alloy is heated to a temperature within the �E + liquid phase region.  If the 

composition of the liquid phase is 85 wt% Ag, determine: 

 (a) The temperature of the alloy 

 (b) The composition of the �E phase 

 (c) The mass fractions of both phases 
 

  Solution 

 (a)  In order to determine the temperature of a 90 wt% Ag-10 wt% Cu alloy for which �E and liquid phases 

are present with the liquid phase of composition 85 wt% Ag, we need to construct a tie line across the �E + L phase 

region of Figure 9.7 that intersects the liquidus line at 85 wt% Ag;  this is possible at about 850�qC. 

 (b) The composition of the �E phase at this temperature is determined from the intersection of this same tie 

line with solidus line, which corresponds to about 95 wt% Ag. 

 (c)  The mass fractions of the two phases are determined using the lever rule, Equations 9.1 and 9.2 with 
C0 = 90 wt% Ag, CL = 85 wt% Ag, and C�E = 95 wt% Ag, as 

 

  

��

W�E =
C0 �� CL
C�E �� CL

=
90 �� 85
95 �� 85

= 0.50 

 

  

��

WL =
C�E �� C0

C�E �� CL
=

95 �� 90
95 �� 85

= 0.50 
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 9.18  A 30 wt% Sn-70 wt% Pb alloy is heated to a temperature within the �D + liquid phase region.  If the 

mass fraction of each phase is 0.5, estimate: 

 (a) The temperature of the alloy 

 (b) The compositions of the two phases 
 

  Solution 

 (a) We are given that the mass fractions of �D and liquid phases are both 0.5 for a 30 wt% Sn-70 wt% Pb 

alloy and asked to estimate the temperature of the alloy.  Using the appropriate phase diagram, Figure 9.8, by trial 

and error with a ruler, a tie line within the �D + L phase region that is divided in half for an alloy of this composition 

exists at about 230�qC. 

 (b)  We are now asked to determine the compositions of the two phases. This is accomplished by noting the 

intersections of this tie line with both the solidus and liquidus lines.  From these intersections, C�D = 15 wt% Sn, and 

CL = 43 wt% Sn. 
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 9.19  For alloys of two hypothetical metals A and B, there exist �D�Q���.�����$-�U�L�F�K���S�K�D�V�H���D�Q�G���D���������%-rich phase. 

From the mass fractions of both phases for two different alloys provided in the table below, (which are at the same 

�W�H�P�S�H�U�D�W�X�U�H�������G�H�W�H�U�P�L�Q�H���W�K�H���F�R�P�S�R�V�L�W�L�R�Q���R�I���W�K�H���S�K�D�V�H���E�R�X�Q�G�D�U�\�����R�U���V�R�O�X�E�L�O�L�W�\���O�L�P�L�W�����I�R�U���E�R�W�K���.���D�Q�G �����S�K�D�V�H�V���D�W���W�K�L�V��

temperature. 

 
Alloy Composition �)�U�D�F�W�L�R�Q���.��

Phase 
�)�U�D�F�W�L�R�Q������

Phase 

60 wt% A–40 wt% B 0.57 0.43 

30 wt% A–70 wt% B 0.14 0.86 

 
 

  Solution 

 The problem is to solve for compositions at the phase boundaries for both �D and �E phases (i.e., C�D and C�E).  

We may set up two independent lever rule expressions, one for each composition, in terms of C�D and C�E as follows: 

 

  

��

W�D1 = 0.57 =
C�E �� C01

C�E �� C�D
=

C�E �� 60

C�E �� C�D
 

 

  

��

W�D2 = 0.14 =
C�E �� C02

C�E �� C�D
=

C�E �� 30

C�E �� C�D
 

 

In these expressions, compositions are given in wt% of A.  Solving for C�D and C�E from these equations, yield 

 
C�D = 90 (or 90 wt% A-10 wt% B) 

 
C�E = 20.2 (or 20.2 wt% A-79.8 wt% B) 
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 9.20  A hypothetical A–B alloy of composition 55 wt% B–45 wt% A at some temperature is found to consist 

�R�I���P�D�V�V���I�U�D�F�W�L�R�Q�V���R�I�����������I�R�U���E�R�W�K���.���D�Q�G�������S�K�D�V�H�V�����,�I �W�K�H���F�R�P�S�R�V�L�W�L�R�Q���R�I���W�K�H�������S�K�D�V�H���L�V���������Z�W�����%–10 wt% A, what is 

�W�K�H���F�R�P�S�R�V�L�W�L�R�Q���R�I���W�K�H���.���S�K�D�V�H�" 
 

  Solution 

 For this problem, we are asked to determine the composition of the �E phase given that��
 

C0 = 55 (or 55 wt% B-45 wt% A) 

 
C�E = 90 (or 90 wt% B-10 wt% A) 

 

W�D = W�E��= 0.5 

 

If we set up the lever rule for W�D 

 

  

��

W�D = 0.5 =
C�E �� C0

C�E �� C�D
=

90 �� 55
90 �� C�D

 

 

And solving for C�D 

C�D = 20 (or 20 wt% B-80 wt% A) 
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 9.21 Is it possible to have a copper-silver alloy of composition 50 wt% Ag-50 wt% Cu, which, at 

equilibrium, consists of �.���D�Q�G �����S�K�D�V�H�V having mass fractions W�D = 0.60 and W�E��= 0.40?  If so, what will be the 

approximate temperature of the alloy?  If such an alloy is not possible, explain why. 
 

  Solution 

 It is not possible to have a Cu-Ag alloy of composition 50 wt% Ag-50 wt% Cu which consists of mass 

fractions W�D = 0.60 and W�E = 0.40.  Using the appropriate phase diagram, Figure 9.7, and, using Equations 9.1 and 

9.2 let us determine W�D and W�E at just below the eutectic temperature and also at room temperature.  At just below 

the eutectic, C�D = 8.0 wt% Ag and C�E = 91.2 wt% Ag;  thus, 

 

  

��

W�D =
C�E �� C0

C�E �� C�D
� 

91.2 ��  50
91.2 ��  8

� 0.50 

 

  

��

W�E =1.00 ��  W�D=1.00 ��  0.50= 0.50 

 

Furthermore, at room temperature, C�D = 0 wt% Ag and C�E = 100 wt% Ag;  employment of Equations 9.1 and 9.2 

yields 

��

W�D� 
C�E ��  C0

C�E ��  C�D
� 

100 ��  50
100 ��  0

� 0.50 

 

And, W�E = 0.50.  Thus, the mass fractions of the �D and �E phases, upon cooling through the �D + �E phase region will 

remain approximately constant at about 0.5, and will never have values of W�D = 0.60 and W�E = 0.40 as called for in 

the problem.��
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 9.22  For 11.20 kg of a magnesium-lead alloy of composition 30 wt% Pb-70 wt% Mg, is it possible, at 

equilibrium, to have �. and Mg2Pb phases having respective masses of 7.39 kg and 3.81 kg?  If so, what will be the 

approximate temperature of the alloy?  If such an alloy is not possible, explain why. 
 

  Solution 

 Yes, it is possible to have a 30 wt% Pb-70 wt% Mg alloy which has masses of 7.39 kg and 3.81 kg for the 

�D and Mg2Pb phases, respectively.  In order to demonstrate this, it is first necessary to determine the mass fraction 

of each phase as follows: 

 

  

��

W�D =
m�D

m�D �� mMg2Pb
=

7.39 kg
7.39 kg �� 3.81 kg

= 0.66 

 

  

��

WMg2Pb = 1.00 ��  0.66= 0.34 

 
Now, if we apply the lever rule expression for W�D 

 

  

��

W�D =
CMg2Pb �� C0

CMg2Pb �� C�D
 

 

Since the Mg2Pb phase exists only at 81 wt% Pb, and C0 = 30 wt% Pb 

 

  

��

W�D = 0.66 =
81 �� 30
81 �� C�D

 

 
Solving for C�D from this expression yields C�D = 3.7 wt% Pb.  The position along the �D�����D + Mg2Pb) phase 

boundary of Figure 9.20 corresponding to this composition is approximately 190�qC. 
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 9.23  Derive Equations 9.6a and 9.7a, which may be used to convert mass fraction to volume fraction, and 

vice versa. 
 

  Solution 

 This portion of the problem asks that we derive Equation 9.6a, which is used to convert from phase weight 
fraction to phase volume fraction.  Volume fraction of phase �D, V�D, is defined by Equation 9.5 as 

 

 

    

��

V�D =
v�D

v�D �� v�E
 (9.S1) 

 
where v�D and v�E are the volumes of the respective phases in the alloy.  Furthermore, the density of each phase is 

equal to the ratio of its mass and volume, or upon rearrangement 

 

 
    

��

v�D =
m�D
�U�D

 (9.S2a) 

 

 

    

��

v�E=
m�E

�U�E
 (9.S2b) 

 

Substitution of these expressions into Equation 9.S1 leads to 

 

 

    

��

V�D =

m�D
�U�D

m�D
�U�D

��
m�E

�U�E

 (9.S3) 

 

in which m's and �U's denote masses and densities, respectively.  Now, the mass fractions of the �D and �E phases (i.e., 
W�D and W�E) are defined in terms of the phase masses as 

 

 

    

��

W�D =
m�D

m�D �� m�E
 (9.S4a) 

 

 

    

��

W�E=
m�E

m�D �� m�E
 (9.S4b) 

 

Which, upon rearrangement yield 
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��

m�D = W�D(m�D +  m�E) (9.S5a) 

 
 

    

��

m�E= W�E(m�D +  m�E) (9.S5b) 

 

Incorporation of these relationships into Equation 9.S3 leads to 

 
 

    

��

V�D� 

W�D(m�D +  m�E)
�U�D

W�D(m�D +  m�E)
�U�D

��
W�E(m�D +  m�E)

�U�E

 

 
 

 

    

��

V�D =

W�D
�U�D

W�D
�U�D

��
W�E

�U�E

 (9.S6) 

which is the desired equation. 

 

 For this portion of the problem we are asked to derive Equation 9.7a, which is used to convert from phase 

volume fraction to mass fraction.  Mass fraction of the �D phase is defined as 

 

 

    

��

W�D =
m�D

m�D �� m�E
 (9.S7) 

 

From Equations 9.S2a and 9.S2b 

 

     

��

m�D = v�D�U�D (9.S8a) 

 
 

    

��

m�E= v�E�U�E (9.S8b) 

 

Substitution of these expressions into Equation 9.S7 yields 

 

 

    

��

W�D =
v�D�U�D

v�D�U�D �� v�E�U�E
 (9.S9) 
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From Equation 9.5 and its equivalent for V�E the following may be written: 

 
 

    

��

v�D = V�D(v�D +  v�E)  (9.S10a) 

 
 

    

��

v�E= V�E(v�D +  v�E) (9.S10b) 

 

Substitution of Equations 9.S10a and 9.S10b into Equation 9.S9 yields 

 

    

��

W�D =
V�D(v�D +  v�E)�U�D

V�D(v�D +  v�E)�U�D �� V�E(v�D +  v�E)�U�E
 

 

 

    

��

W�D =
V�D�U�D

V�D�U�D �� V�E�U�E
 (9.S11) 

 

which is the desired expression. 
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 9.24  Determine the relative amounts (in terms of volume fractions) of the phases for the alloys and 

temperatures given in Problem 9.8a, b, and c.  Below are given the approximate densities of the various metals at 

the alloy temperatures: 

 

Metal Temperature (°C) Density (g/cm3) 

Ag 900 9.97 

Cu 400 8.77 

Cu 900 8.56 

Pb 175 11.20 

Sn 175 7.22 

Zn 400 6.83 

 
 

  Solution 

 This problem asks that we determine the phase volume fractions for the alloys and temperatures in 

Problems 9.8a, b, and c.  This is accomplished by using the technique illustrated in Example Problem 9.3, and also 

the results of Problems 9.8 and 9.14. 

 

 (a)  This is a Cu-Zn alloy at 400�qC, wherein 

 

  C�H = 87 wt% Zn-13 wt% Cu 

  C�K = 97 wt% Zn-3 wt% Cu 

  W�H = 0.70 

  W�K = 0.30 

  �UCu = 8.77 g/cm3 

  �UZn = 6.83 g/cm3 

 

 Using these data it is first necessary to compute the densities of the �H and �K phases using Equation 4.10a.  

Thus 

 

  

��

�U�H=
100

CZn(�H)
�UZn

��
CCu(�H)
�UCu
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��

=
100

87

6.83g/cm3
��

13

8.77 g/cm3

=  7.03g/cm3 

 

 

  

��

�U�K =
100

CZn(�K)

�UZn
��

CCu(�K)

�UCu

 

 

��

=
100

97

6.83g/cm3
��

3

8.77 g/cm3

= 6.88 g/cm3 

 

Now we may determine the V�H and V�K values using Equation 9.6.  Thus, 

 

  

��

V�H=

W�H
�U�H

W�H
�U�H

��
W�K

�U�K

 

 

��

=

0.70

7.03g/cm3

0.70

7.03g/cm3
��

0.30

6.88 g/cm3

= 0.70 

 

 

  

��

V�K=

W�K
�U�K

W�H
�U�H

��
W�K
�U�K

 

 

��

=

0.30

6.88 g/cm3

0.70

7.03g/cm3
��

0.30

6.88 g/cm3

= 0.30 

 

 (b) This is a Pb-Sn alloy at 175�qC, wherein 
 

 C�D = 16 wt% Sn-84 wt% Pb 

 C�E = 97 wt% Sn-3 wt% Pb 
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 W�D = 0.27 

 W�E = 0.73 

 �USn = 7.22 g/cm3 

 �UPb = 11.20 g/cm3 
 

Using this data it is first necessary to compute the densities of the �D and �E phases.  Thus 

 

  

��

�U�D =
100

CSn(�D)

�USn
��

CPb(�D)

�UPb

 

 

��

=
100

16

7.22 g/cm3
��

84

11.20g/cm3

= 10.29 g/cm3 

 

 

  

��

�U�E =
100

CSn(�E)

�USn
��

CPb(�E)

�UPb

 

 

��

=
100

97

7.22 g/cm3
��

3

11.20g/cm3

= 7.30 g/cm3 

 

Now we may determine the V�D and V�E values using Equation 9.6.  Thus, 

 

  

��

V�D =

W�D
�U�D

W�D
�U�D

��
W�E

�U�E

 

 

��

=

0.27

10.29g/cm3

0.27

10.29g/cm3
��

0.73

7.30 g/cm3

= 0.21 

 

 

  

��

V�E =

W�E

�U�E
W�D
�U�D

��
W�E

�U�E
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��

=

0.73

7.30 g/cm3

0.27

10.29g/cm3
��

0.73

7.30 g/cm3

= 0.79 

 

 (c)  This is a Ag-Cu alloy at 900�qC, wherein only the liquid phase is present.  Therefore, VL = 1.0. 
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 Development of Microstructure in Isomorphous Alloys 
 

 9.25  (a) Briefly describe the phenomenon of coring and why it occurs. 

 (b) Cite one undesirable consequence of coring. 
 

  Solution 

 (a)  Coring is the phenomenon whereby concentration gradients exist across grains in polycrystalline 

alloys, with higher concentrations of the component having the lower melting temperature at the grain boundaries.  

It occurs, during solidification, as a consequence of cooling rates that are too rapid to allow for the maintenance of 

the equilibrium composition of the solid phase. 

 (b)  One undesirable consequence of a cored structure is that, upon heating, the grain boundary regions will 

melt first and at a temperature below the equilibrium phase boundary from the phase diagram;  this melting results 

in a loss in mechanical integrity of the alloy. 
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 Mechanical Properties of Isomorphous Alloys 

 

 9.26  It is desirable to produce a copper-nickel alloy that has a minimum noncold-worked tensile strength 

of 350 MPa (50,750 psi) and a ductility of at least 48%EL.  Is such an alloy possible?  If so, what must be its 

composition?  If this is not possible, then explain why. 
 

  Solution 

 From Figure 9.6a, a tensile strength greater than 350 MPa (50,750 psi) is possible for compositions 

between about 22.5 and 98 wt% Ni.  On the other hand, according to Figure 9.6b, ductilities greater than 48%EL 

exist for compositions less than about 8 wt% and greater than about 98 wt% Ni. Therefore, the stipulated criteria are 

met only at a composition of 98 wt% Ni. 
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 Binary Eutectic Systems 

 

 9.27  A 45 wt% Pb–55 wt% Mg alloy is rapidly quenched to room temperature from an elevated 

temperature in such a way that the high-temperature microstructure is preserved.  This microstructure is found to 

�F�R�Q�V�L�V�W���R�I���W�K�H���.���S�K�D�V�H���D�Q�G���0�J2Pb, having respective mass fractions of 0.65 and 0.35.  Determine the approximate 

temperature from which the alloy was quenched. 
 

  Solution 

 We are asked to determine the approximate temperature from which a 45 wt% Pb-55 wt% Mg alloy was 

quenched, given the mass fractions of �D and Mg2Pb phases. We can write a lever-rule expression for the mass 

fraction of the �D phase as 

 

  

��

W�D = 0.65 =
CMg2Pb �� C0

CMg2Pb �� C�D
 

 
The value of C0 is stated as 45 wt% Pb-55 wt% Mg, and CMg2Pb is 81 wt% Pb-19 wt% Mg, which is independent 

of temperature (Figure 9.20);  thus, 

 

  

��

0.65=
81 �� 45
81 �� C�D

 

which yields 
C�D = 25.6 wt% Pb 

 
The temperature at which the �D–(�D + Mg2Pb) phase boundary (Figure 9.20) has a value of 25.6 wt% Pb is about 

360�qC (680�qF). 
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 Development of Microstructure in Eutectic Alloys 

 

 9.28  Briefly explain why, upon solidification, an alloy of eutectic composition forms a microstructure 

consisting of alternating layers of the two solid phases. 
 

  Solution 

 Upon solidification, an alloy of eutectic composition forms a microstructure consisting of alternating layers 

of the two solid phases because during the solidification atomic diffusion must occur, and with this layered 

configuration the diffusion path length for the atoms is a minimum. 
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 9.29  What is the difference between a phase and a microconstituent? 
 

  Solution 

 A “phase” is a homogeneous portion of the system having uniform physical and chemical characteristics, 

whereas a “microconstituent” is an identifiable element of the microstructure (that may consist of more than one 

phase). 
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 9.30  Is it possible to  have a copper-silver alloy in which the mass fractions of primary �� and total �� are 

0.68 and 0.925, respectively, at 775�qC (1425�qF)?  Why or why not? 
 

  Solution 

 This problem asks if it is possible to have a Cu-Ag alloy for which the mass fractions of primary �E and 

total �E are 0.68 and 0.925, respectively at 775�qC.  In order to make this determination we need to set up the 

appropriate lever rule expression for each of these quantities.  From Figure 9.7 and at 775�qC, C�D = 8.0 wt% Ag, C�E 

= 91.2 wt% Ag, and Ceutectic = 71.9 wt% Ag. 

 For primary �E 

 

  

��

W�E’ =
C0  ��  Ceutectic
C�EÊ��  Ceutectic

=
C0  ��  71.9
91.2 �� 71.9

= 0.68 

 

Solving for C0 gives C0 = 85 wt% Ag. 

 Now the analogous expression for total �E 

 

  

��

W�E =
C0  �� C�D
C�E �� C�D

=
C0 ��  8.0

91.2 �� 8.0
= 0.925 

 

And this value of C0 is 85 wt% Ag.  Therefore, since these two C0 values are the same (85 wt% Ag), this alloy is 

possible. 
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 9.31  For 6.70 kg of a magnesium-lead alloy, is it possible to have the masses of primary �. and total �. of 

4.23 kg and 6.00 kg, respectively, at 460�qC (860�qF)?  Why or why not? 
 

  Solution 

 This problem asks if it is possible to have a Mg-Pb alloy for which the masses of primary �D and total �D are 

4.23 kg and 6.00 kg, respectively in 6.70 kg total of the alloy at 460�qC.  In order to make this determination we first 

need to convert these masses to mass fractions.  Thus, 

 

  

��

W�D' =  
4.23kg
6.70 kg

= 0.631 

 

  

��

W�D =
6.00 kg
6.70 kg

= 0.896 

 
Next it is necessary to set up the appropriate lever rule expression for each of these quantities.  From Figure 9.20 

and at 460�qC, C�D = 41 wt% Pb, CMg2Pb = 81 wt% Pb, and Ceutectic = 66 wt% Pb 

 For primary �D 

 

  

��

W�D' =
Ceutectic��  C0
Ceutectic ��  C�D

=
66 ��  C0
66 �� 41

= 0.631 

 

And solving for C0 gives C0 = 50.2 wt% Pb. 

 Now the analogous expression for total �D 

 

  

��

W�D =
CMg2Pb ��  C0

CMg2Pb �� C�D
=

81 ��  C0
81 �� 41

= 0.896 

 

And this value of C0 is 45.2 wt% Pb.  Therefore, since these two C0 values are different, this alloy is not possible. 
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 9.32  For a copper-silver alloy of composition 25 wt% Ag-75 wt% Cu and at 775�qC (1425�qF) do the 

following: 

 (a) Determine the mass fractions of �.���D�Q�G�������S�K�D�V�H�V�� 

 (b) Determine the mass fractions of primary �. and eutectic microconstituents. 

 (c) Determine the mass fraction of eutectic �.�� 
 

  Solution 

 (a) This portion of the problem asks that we determine the mass fractions of �D and �E phases for an 25 wt% 

Ag-75 wt% Cu alloy (at 775�qC).  In order to do this it is necessary to employ the lever rule using a tie line that 

extends entirely across the �D + �E phase field.  From Figure 9.7 and at 775�qC, C�D = 8.0 wt% Ag, C�E = 91.2 wt% Ag, 

and Ceutectic = 71.9 wt% Sn.  Therefore, the two lever-rule expressions are as follows: 

 

  

��

W�D =
C�E �� C0

C�E �� C�D
=

91.2 �� 25
91.2 �� 8.0

= 0.796 

 

  

��

W�E =
C0 �� C�D
C�E �� C�D

=
25 �� 8.0

91.2 �� 8.0
= 0.204 

 

 (b) Now it is necessary to determine the mass fractions of primary �D and eutectic microconstituents for this 

same alloy.  This requires us to utilize the lever rule and a tie line that extends from the maximum solubility of Ag 

in the �D phase at 775�qC (i.e., 8.0 wt% Ag) to the eutectic composition (71.9 wt% Ag).  Thus 

 

  

��

W�D' =
CeutecticÊ��  C0

CeutecticÊ��  C�D
=

71.9 �� 25
71.9 �� 8.0

= 0.734 

 

  

��

We =
C0  ��  C�D

Ceutectic ��  C�D
=

25 �� 8.0
71.9 �� 8.0

= 0.266 

 

 (c) And, finally, we are asked to compute the mass fraction of eutectic �D, We�D.  This quantity is simply the 

difference between the mass fractions of total �D and primary �D as 

 
We�D = W�D – W�D' = 0.796 – 0.734 = 0.062 
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 9.33  The microstructure of a lead-tin alloy at 180�qC (355�qF) consists of primary �� and eutectic structures.  

If the mass fractions of these two microconstituents are 0.57 and 0.43, respectively, determine the composition of 

the alloy. 
 

  Solution 

 Since there is a primary �E microconstituent present, then we know that the alloy composition, C0 is 

between 61.9 and 97.8 wt% Sn (Figure 9.8).  Furthermore, this figure also indicates that C�E = 97.8 wt% Sn and 

Ceutectic = 61.9 wt% Sn.  Applying the appropriate lever rule expression for W�E' 

 

  

��

W�E' =
C0 ��  Ceutectic
C�EÊ��  Ceutectic

=
C0  ��  61.9
97.8 �� 61.9

= 0.57 

 

and solving for C0 yields C0 = 82.4 wt% Sn. 
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 9.34  Consider the hypothetical eutectic phase diagram for metals A and B, which is similar to that for the 

lead-tin system, Figure 9.8.  Assume that (1) �.���D�Q�G���� phases exist at the A and B extremities of the phase diagram, 

respectively; (2) the eutectic composition is 47 wt% B-53 wt% A; and (3) the composition of the �� phase at the 

eutectic temperature is 92.6 wt% B-7.4 wt% A.  Determine the composition of an alloy that will yield primary �. and 

total �. mass fractions of 0.356 and 0.693, respectively. 
 

  Solution 

 We are given a hypothetical eutectic phase diagram for which Ceutectic = 47 wt% B, C�E = 92.6 wt% B at 

the eutectic temperature, and also that W�D' = 0.356 and W�D = 0.693;  from this we are asked to determine the 

composition of the alloy.  Let us write lever rule expressions for W�D' and W�D 

 

  

��

W�D =
C�EÊ��  C0

C�E �� C�D
=

92.6 ��  C0
92.6 ��  C�D

= 0.693 

 

  

��

W�D' =
CeutecticÊ��  C0
CeutecticÊ��  C�D

=
47 ��  C0
47 ��  C�D

= 0.356 

 

Thus, we have two simultaneous equations with C0 and C�D as unknowns.  Solving them for C0 gives C0 = 32.6 wt% 

B. 
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 9.35  For an 85 wt% Pb-15 wt% Mg alloy, make schematic sketches of the microstructure that would be 

observed for conditions of very slow cooling at the following temperatures: 600�qC (1110�qF), 500�qC (930�qF), 270�qC 

(520�qF), and 200�qC (390�qF).  Label all phases and indicate their approximate compositions. 
 

  Solution 

 The illustration below is the Mg-Pb phase diagram (Figure 9.20).  A vertical line at a composition of 85 

wt% Pb-15 wt% Mg has been drawn, and, in addition, horizontal arrows at the four temperatures called for in the 

problem statement (i.e., 600�qC, 500�qC, 270�qC, and 200�qC). 

 

 

 

On the basis of the locations of the four temperature-composition points, schematic sketches of the four respective 

microstructures along with phase compositions are represented as follows: 
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 9.36  For a 68 wt% Zn-32 wt% Cu alloy, make schematic sketches of the microstructure that would be 

observed for conditions of very slow cooling at the following temperatures: 1000�qC (1830�qF), 760�qC (1400�qF), 

600�qC (1110�qF), and 400�qC (750�qF).  Label all phases and indicate their approximate compositions. 
 

  Solution 

 The illustration below is the Cu-Zn phase diagram (Figure 9.19).  A vertical line at a composition of 68 

wt% Zn-32 wt% Cu has been drawn, and, in addition, horizontal arrows at the four temperatures called for in the 

problem statement (i.e., 1000�qC, 760�qC, 600�qC, and 400�qC). 

 

 

 

On the basis of the locations of the four temperature-composition points, schematic sketches of the four respective 

microstructures along with phase compositions are represented as follows: 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 
 

 

 
 



Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to 
students enrolled in courses for which the textbook has been adopted.  Any other reproduction or translation of this work beyond that permitted 
by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. 

 

CHAPTER 2 

 

ATOMIC STRUCTURE AND INTERATOMIC BONDING 

 

PROBLEM SOLUTIONS 

 

 

 Fundamental Concepts 
 Electrons in Atoms 
 

 2.1  Cite the difference between atomic mass and atomic weight. 

 
  Solution 

 Atomic mass is the mass of an individual atom, whereas atomic weight is the average (weighted) of the 

atomic masses of an atom's naturally occurring isotopes. 


