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Communication system elements
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𝑐
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, wave-length ➔ antenna length



Communication 
system elements

1. The source originates a message, such as a human voice, a 
television picture, an e-mail message, or data. If the data is 
nonelectric (e.g., human voice, e-mail text, a scene)

2. The transmitter transforms the input (message) signal into an 
appropriate form for efficient transmission. The transmitter 
may consist of one or more subsystems: an analog-to-digital 
(A/D) converter, an encoder, and a modulator. 

3. The channel is a medium of choice that can convey the 
electric signals at the transmitter output over a distance. A 
typical channel can be a pair of twisted copper wires (e.g., in 
telephone and DSL), coaxial cable (e.g. in television and 
Internet), an optical fiber, or a radio cellular link. 

4. The receiver reprocesses the signal received from the channel 
by reversing the signal transformation made at the transmitter 
and removing the distortions caused by the channel. The 
receiver output is passed to the output transducer, which 
converts the electric signal to its original form—the message. 

5. The destination is the unit where the message transmission 
terminates.



mt = A sin 2 𝜋 𝑓𝑚 𝑡 ⇒ 𝑓𝑟𝑒𝑞 = 𝑓𝑚

mt = A sin 100𝜋𝑡 ⇒ 100𝜋𝑡 = 2 𝜋 𝑓𝑚 𝑡 ⇒ 𝑓𝑚 = 50 𝐻𝑧

mt = A sin 100𝜋𝑡 = A sin 2𝜋 50 𝑡



Transmission types:
Base band: the band of the frequencies supported by the channel closely matches the 
frequency occupied by the message signal.

Band pass: the transmission ban of the channel is centered at a frequency much higher than 
the highest frequency component of the message signal.
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Primary Resources and 
Operational Requirements
oTransmitted power, which is defined as the average power 
of the transmitted signal

oChannel bandwidth, which is defined by the width of the 
passband of the channel.



Issues in modulation theory 
that need to be addressed

1. Time-domain description of the modulated signal. 

2. Frequency-domain description of the modulated signal. 

3. Detection of the original information-bearing signal and 
evaluation of the effect of noise on the receiver.



FOURIER 
ANALYSIS
Fourier analysis provides the 
mathematical basis for evaluating 
the following issues:

• Frequency-domain description of a 
modulated signal, including its 
transmission bandwidth.

• Transmission of a signal through a linear 
system exemplified by a communication 
channel or (frequency-selective) filter. 

• Correlation (i.e., similarity) between a 
pair of signals.





Classes of signals in communication 
systems 

1. Periodic and non-periodic

A continuous time signal x(t) is said to be periodic if and only if:

𝑥(𝑡 + 𝑇) = 𝑥(𝑡) for − ∞ < 𝑡 < ∞

Where, T is a positive constant that represents the time period of the periodic signal.

2. Deterministic and non-deterministic signals:

A signal is said to be deterministic if there is no uncertainty with
respect to its value at any instant of time. Or signals which can be
defined exactly by a mathematical formula are known as
deterministic signals.

A signal is said to be non-deterministic if there is uncertainty with
respect to its value at some instant of time. Non-deterministic signals
are random in nature hence they are called random signals. Random
signals cannot be described by a mathematical equation. They are
modelled in probabilistic terms.



Classes of signals in communication 
systems 
3- Energy and Power Signals

A signal is said to be energy signal when it has finite energy.

A signal is said to be power signal when it has finite power.

NOTE: A signal cannot be both, energy and power simultaneously. Also, a signal may be neither 
energy nor power signal. 
Power of energy signal = 0 

Energy of power signal = ∞

𝑥 𝑡 is an energy signal if 0 < 𝐸 < ∞

𝑥 𝑡 is a power signal if 0 < P < ∞



MODULATION THEORY
Modulation is a signal-processing operation that is basic to 
the transmission of an information- bearing signal over a 
communication channel, whether in the context of digital or 
analog communications. The carrier wave may take one of 
two basic forms, depending on the application of interest:

❑Sinusoidal carrier wave, whose amplitude, phase, or 
frequency is the parameter chosen for modification by the 
information-bearing signal. 

❑Periodic sequence of pulses, whose amplitude, width, or 
position is the parameter chosen for modification by the 
information-bearing signal.



Modulation and de-
modulation
Modulation : In electronics and telecommunications, 
modulation is the process of varying one or more properties 
of a periodic waveform, called the carrier signal, with a 
separate signal called the modulation signal that typically 
contains information to be transmitted.

Demodulation: Demodulation is extracting the original 
information-bearing signal from a carrier wave.

Types of modulation:

1- Continuous wave of modulation.

2- Pulse modulation.

Continuous wave of modulation.

Pulse modulation.



Types of modulation
Continuous wave of modulation:

1- Amplitude modulation

2- Angle modulation

Pulse modulation 

1- Analog pulse modulation: in analog pulse modulation, 
the amplitude (PAM), duration (PDM) or position (PPM) of 
the pulse is varied in accordance with the sample values of 
the message signal.

2- Digital pulse modulation.

𝑐 𝑡 = 𝐴 cos 𝜙 𝑡 ; 𝜙 𝑡 = 2𝜋𝑓𝑡



DETECTION THEORY

The signal-detection problem is 
complicated by two issues:

• The presence of noise. 
• Factors such as the unknown phase-shift introduced 

into the carrier wave due to transmission of the 
sinusoidally modulated signal over the channel.



Shannon’s channel capacity
Channel capacity, in electrical engineering, computer science, 
and information theory, is the tight upper bound on the rate at 
which information can be reliably transmitted over a 
communication channel.

An application of the channel capacity concept to an additive 
white Gaussian noise (AWGN) channel with B Hz bandwidth 
and signal-to-noise ratio SNR is the Shannon theorem:

𝐶 = 𝐵 log2(1 + 𝑆𝑁𝑅) bits/hertz

C: maximum channel capacity

B: channel bandwidth

SNR: Signal to noise ratio



𝑟 𝑡 = 𝑠 𝑡 + 𝑛 𝑡

𝑆𝑁𝑅: 𝑠𝑖𝑔𝑛𝑎𝑙 𝑡𝑜 𝑛𝑜𝑖𝑠𝑒 𝑟𝑎𝑡𝑖𝑜 signal power / noise 
power

𝑆𝑁𝑅 =
𝑆

𝑁
=
𝑃𝑆
𝑃𝑁

Signal Noise HIGH SNR = 25

LOWER SNR

VERY LOWER SNR = 0.11
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frequency domain

Autocorrelation 
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Fourier transform 
Fourier transform (FT) is a mathematical transform that 
decomposes functions depending on space or time into 
functions depending on spatial or temporal frequency, such 
as the expression of a musical chord in terms of the 
amplitudes and frequencies of its constituent notes. The term 
Fourier transform refers to both the frequency domain 
representation and the mathematical operation that 
associates the frequency domain representation to a function 
of space or time.



Fourier transform 
Let 𝑔 𝑡 denote to a non periodic deterministic signal. Then: 

𝐺 𝑓 = ∞−
∞
𝑔 𝑡 𝑒−𝑗𝜔𝑡𝑑𝑡 = ∞−

∞
𝑔 𝑡 𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡

𝑔 𝑡 = ∞−
∞
𝐺 𝑓 𝑒𝑗2𝜋𝑓𝑡𝑑𝑓

𝐺 𝑓 = 𝐺 𝑓 𝑒𝑗𝜃(𝑓)

𝐺 𝑓 is even function of 𝑓 (symmetric)

𝜃 𝑓 is odd function of 𝑓 (un-symmetric)

𝜃(𝑓): phase spectrum

𝐺 𝑓 : amplitude spectrum



Example:
Let 𝑔 𝑡 be a rectangular pulse

𝐺 𝑓 = 
−
𝑇

2

𝑇

2 𝐴𝑒−𝑗𝜔𝑡𝑑𝑡 =
𝐴𝑇𝑠𝑖𝑛 𝜋𝑓 𝑇

𝜋𝑓𝑇
= ATsinc(f T)

𝑇

2

−𝑇

2

𝐴 T=1
𝑔 𝑡 =A 𝑟𝑒𝑐𝑡(

𝑡

𝑇
)



Properties of Fourier transform
Operation FT Property:  Given 𝐠 𝒕 ⇔ 𝐆 𝒇

Linearity 𝑎g1 𝑡 + 𝑏𝑔2 𝑡 ⇔ 𝑎𝐺1 𝑓 + 𝑏𝐺2 𝑓

Time Shifting 𝑔 𝑡 − 𝑡0 ⇔ 𝑒−𝑗2𝜋𝑓𝑡0 𝐺 𝑓

Time Scaling 𝑔(𝑎𝑡) ⇔
1

𝑎
𝐺

f

𝑎

Modulation (1) 𝑔 𝑡 𝑐𝑜𝑠 2𝜋𝑓𝑜𝑡 =
𝑔 𝑡

2
(𝑒𝑗2𝜋𝑓𝑜𝑡 + 𝑒−𝑗2𝜋𝑓𝑜𝑡) ⇔

1

2
𝐺 f − 𝑓0 + 𝐺 f + 𝑓0

Modulation (2) = 
Frequency shifting

𝑔 𝑡 𝑒𝑗2𝜋𝑓o𝑡 ⇔𝐺 f − 𝑓0

Area under G(f) 𝐴 = 𝑔 0 = න

−∞

∞

𝐺 𝑓 𝑒0𝑑𝑓 = න

−∞

∞

𝐺 𝑓 𝑑𝑓

Area under g(t) 𝐴 = 𝐺 0 = න

−∞

∞

𝑔 𝑡 𝑒0𝑑𝑡 = න

−∞

∞

𝑔 𝑡 𝑑𝑡



Properties of Fourier transform
Differentiation If x 𝑡 =

𝑑𝑔 𝑡

𝑑𝑡
, then X(f) = 𝑗2𝜋𝑓 ⋅ 𝐺 f

Integration If x 𝑡 = ∞−
𝑡
𝑔 𝛼 𝑑𝛼, then X(f) =

1

𝑗2𝜋𝑓
𝐺 f

Convolution 𝑔 𝑡 ∗ x 𝑡 ⇔ 𝐺 f X f , where 𝑔 𝑡 ∗ x 𝑡 ≡ ∞−
∞
𝑔 𝛼 x 𝑡 − 𝛼 𝑑𝛼

Multiplication x 𝑡 ⋅ 𝑔 𝑡 ⇔ X f ∗ 𝐺 f = න
−∞

∞

𝑔 𝛼 x f − 𝛼 𝑑𝛼

Duality If 𝑔 𝑡 ⇔ G f , then G 𝑡 ⇔ 𝑔 −f

Hermitian Symmetry
If g(t) is real-valued then 𝐺 −f = 𝐺∗ f ( 𝐺 −f = 𝐺 f and ∠𝐺 −f

= −∠𝐺 f )

Conjugation 𝑔∗ 𝑡 ⇔ 𝐺∗ −f

Parseval’s Theorem 𝑃𝑎𝑣𝑔 = න
−∞

∞

𝑔 𝑡 2𝑑𝑡 =න
−∞

∞

𝐺 2𝜋𝑓 2𝑑f



h(t)m(t)
𝑦 𝑡 = 𝑚 𝑡 ∗ ℎ(𝑡)

Convolution

H(𝒇)M(f)
𝑌 𝑓 = 𝑀 𝑓 𝐻(𝑓)

Multiplication

Time domain LTI

Frequency domain LTI

F.T



LOW PASS FILTER 𝑯(𝒇)M(f) 𝑌 𝑓 = 𝑀 𝑓 𝐻(𝑓)

MultiplicationFrequency domain LTI

Passes only low frequencies

3000-3000

3000-3000

1

3000-3000



900MHz-900MHz

900MHz-900MHz

900MHz-900MHz

U(f)

H(f)

Y(f)=H(f)U(f)

Passing the pass band signal through ideal filter to filter out the lower side band of the signal

BPF

Upper
side 
band 
(usb)

Lower
side 
band 
(LSB)



Hilbert transform (90 degree 𝑝ℎ𝑎𝑠𝑒 𝑠ℎ𝑖𝑓𝑡)
Hilbert transform of a signal g(t) is defined as the 
transform in which phase-angle of all components of the 
signal is shifted by ±90 degrees

Hilbert transform of g(t) is represented with

ො𝑔 𝑡 =
1

𝜋𝑡
∗ 𝑔 𝑡 =

1

𝜋
∞−
∞ 𝑔 𝜏

𝑡−𝜏
𝑑𝜏

The inverse Hilbert transform is given by:

𝑔(𝑡) =
1

𝜋𝑡
∗ ො𝑔 𝑡 =

1

𝜋
∞−
∞ ො𝑔(𝑡)

𝑡−𝜏
𝑑𝜏

Frequency domain representation
𝐺 𝑓 = 𝐺 𝑓 −𝑗𝑠𝑔𝑛 𝑓 = −𝑗𝑠𝑔𝑛 𝑓 𝐺(𝑓) 1

𝜋𝑡
≪≫ −𝑗𝑠𝑔𝑛(𝑓)

sgn 𝑥 = ቐ
1, 𝑥 > 0
0, 𝑥 = 0
−1, 𝑥 < 0

−jsgn 𝑓 = ൞

−𝑗, 𝑓 > 0
0, 𝑓 = 0
𝑗, 𝑓 < 0



.
g(t) 𝒈 𝒕 g(t) 𝒈 𝒕1

𝜋𝑡

G(f)
H(f)= −𝑗𝑆𝑔𝑛(𝑓)

𝑮 𝒇 G(f)
𝑮 𝒇

𝝅

𝟐
phase shift

Different representations of Hilbert transform



fo-fo

-1

1

sgn 𝑓

𝑗

1

2

1

2

fo-fo

-1

1

2𝑗

−1

2𝑗

−𝑗𝑠𝑔𝑛 𝑓 =
𝑗

𝑗
−𝑗𝑠𝑔𝑛 𝑔 =

sgn 𝑓

𝑗



Hilbert transform (Example)
Ex: For 𝑔 𝑡 = cos(2𝜋𝑓𝑐𝑡), find ො𝑔(𝑡)

𝐺 𝑓 =
1

2
𝛿 𝑓 − 𝑓𝑐 + 𝛿 𝑓 + 𝑓𝑐

𝐺 𝑓 =
−𝑗𝑠𝑔𝑛(𝑓)

2
𝛿 𝑓 − 𝑓𝑐 + 𝛿 𝑓 + 𝑓𝑐 = −jsgn f G(f)

𝐺 𝑓 =
−𝑗

2
𝛿 𝑓 − 𝑓𝑐 − 𝛿 𝑓 + 𝑓𝑐 = 

1

2𝑗
𝛿 𝑓 − 𝑓𝑐 − 𝛿 𝑓 + 𝑓𝑐

➔ ො𝑔 𝑡 = sin(2𝜋𝑓𝑐𝑡)

𝛿 𝑓 − 𝑓𝑐
2

𝛿 𝑓 + 𝑓𝑐
2

𝑓𝑐−𝑓𝑐

𝛿 𝑓 − 𝑓𝑐
2

−𝛿 𝑓 + 𝑓𝑐
2

𝑓𝑐−𝑓𝑐



Hilbert transform properties
1- 𝑔 𝑡 𝑎𝑛𝑑 ො𝑔(𝑡) have the same amplitude spectrum:

| − 𝑗𝑠𝑔𝑛(𝑓)𝐺(𝑓)| = |𝐺 𝑓 |

| 𝐺 𝑓 | = |𝐺 𝑓 |

2- The Hilbert transform of ො𝑔(𝑡) is −𝑔 𝑡 , provided that 𝐺 0 = 0:

g(t) 𝒈 𝒕1

𝜋𝑡

1

𝜋𝑡

−𝒈(𝒕)

−𝑗𝑠𝑔𝑛(𝑓)

𝑮(𝒇) 𝐺 𝑓
−𝑗𝑠𝑔𝑛(𝑓)

−𝐺(𝑓)

−𝒈(𝒕) = 𝒈 𝒕 ∗
1

𝜋𝑡
∗

1

𝜋𝑡
➔ 𝑮(𝒇) = 𝑮 𝒇 (−𝐣𝐬𝐠𝐧(𝐟))(−𝐣𝐬𝐠𝐧(𝐟))



Hilbert transform properties
3- A signal 𝑔 𝑡 and its Hilbert transform ො𝑔(𝑡) are orthogonal:

∞−
∞
𝑔 𝑡 ො𝑔 𝑡 𝑑𝑡 = 0

Ex: −∞
∞
sin 2𝜋𝑓𝑐𝑡 cos(2𝜋𝑓𝑐𝑡)𝑑𝑡 = 0➔



Pre-envelop (Analytic signal)
An analytic signal is a complex signal created by taking a signal and then adding in 
quadrature its Hilbert Transform. It is also called the pre-envelope of the real signal

𝑔+ 𝑡 = 𝑔 𝑡 + 𝑗 ො𝑔(𝑡) : pre-envelop for positive frequency

𝑔− 𝑡 = 𝑔 𝑡 − 𝑗 ො𝑔(𝑡) : pre-envelop for negative frequency

In frequency domain:

𝐺+ 𝑓 = G f + j −jsgn f G f = ቊ
2𝐺 𝑓 , 𝑓 > 0
0, 𝑓 ≤ 0

: pre-envelop for positive frequency

𝐺− 𝑓 = G f − j[−jsgn f G(f)] = ቊ
0, 𝑓 ≥ 0

2𝐺 𝑓 , 𝑓 < 0
: pre-envelop for negative frequency

Useful link

http://www.ece.iit.edu/~biitcomm/research/references/Other/Tutorials%20in%20Communications%20Engineering/Tutorial%207%20-%20Hilbert%20Transform%20and%20the%20Complex%20Envelope.pdf


𝑔+ 𝑡 = 𝑔 𝑡 + 𝑗 ො𝑔(𝑡)

𝐺 𝑓
𝐺+ 𝑓 − 𝑓𝑐

2

𝐺− 𝑓 = 2𝐺 𝑓 , 𝑓 < 0
𝐺 𝑓

𝐺− 𝑓 − 𝑓𝑐 2

𝐺+ 𝑓 = 2𝐺 𝑓 , 𝑓 > 0



Pre envelope

f

|G(f| 

-3KHz

BW = 3KHz

0
3KHz

𝑮+(𝒇) = 2G(f); for f >0

-3KHz

BW = 3KHz

3KHz

𝑮−(f) = 2G(f); for f <=0

BW = 3KHz

𝑮+(𝒇 − 𝒇𝟎) = 2G(f-f); for f >=0

-fc

BW = 3KHz

fc  

Real{.}𝒈+(𝒕) 𝒈(𝒕)

Imaginary{.}𝒈+(𝒕)
𝒈 𝒕



MATLAB code for envelope detection
fs = 600; %sampling frequency in Hz

t = 0:1/fs:1-1/fs; %time base

a_t = 1.0 + 0.7 * sin(2.0*pi*3.0*t) ; %information signal

c_t = chirp(t,20,t(end),80); %chirp carrier

x = a_t .* c_t; %modulated signal

subplot(2,1,1); plot(x);hold on; %plot the modulated signal

z = hilbert(x); %form the analytical signal

inst_amplitude = abs(z); %envelope extraction

inst_phase = unwrap(angle(z));%inst phase

inst_freq = diff(inst_phase)/(2*pi)*fs;%inst frequency

%Regenerate the carrier from the instantaneous phase

regenerated_carrier = cos(inst_phase);

plot(inst_amplitude,'r'); %overlay the extracted envelope

title('Modulated signal and extracted envelope'); xlabel('n'); 

ylabel('x(t) and |z(t)|');

subplot(2,1,2); plot(cos(inst_phase));

title('Extracted carrier or TFS'); xlabel('n'); 

ylabel('cos[\omega(t)]');



Representation of Band-Pass signal
Let g(t) be a narrow band signal with G(f) is its FT, then the positive pre-envelope of g(t) can 
be expressed as:

𝑔+ 𝑡 = 𝑔 𝑡 𝑒𝑗2𝜋𝑓𝑐𝑡

𝑔 𝑡 : complex envelope, (Read as: g Tilda of t)

𝐺+ 𝑓 = ෨𝐺 𝑓 − 𝑓𝑐

g(t) = Re{𝑔+(𝑡)}= Re{ 𝑔 𝑡 𝑒𝑗2𝜋𝑓𝑐𝑡} 

g(t) = Re{𝑔+(𝑡)}= Re{ 𝑔 𝑡 [cos 2𝜋𝑓𝑐𝑡 + jsin(2𝜋𝑓𝑐𝑡)]} 

𝑔 𝑡 = g𝐼 𝑡 + 𝑗𝑔𝑄(𝑡)

g𝐼 𝑡 : in phase component

g𝑄 𝑡 : quadrature component

f
0 𝑓𝑐−𝑓𝑐

Carrier frequency 

2W 2W



Representation of Band-Pass signal
𝑔 𝑡 = g𝐼 𝑡 + 𝑗𝑔𝑄(𝑡)

𝑔(𝑡) = 𝑅𝑒 g𝐼 𝑡 +𝑗𝑔𝑄 𝑡 . [cos 2𝜋𝑓𝑐𝑡 + jsin(2𝜋𝑓𝑐𝑡)]

𝑔 𝑡 = 𝑔𝐼 𝑡 cos 2𝜋𝑓𝑐𝑡 − 𝑔𝑄 𝑡 sin(2𝜋𝑓𝑐𝑡)



Hybrid form of amplitude and angle 
modulation
𝑔 𝑡 = g𝐼 𝑡 + 𝑗𝑔𝑄(𝑡)

𝑔 𝑡 = g𝐼 𝑡
2 + 𝑔𝑄 𝑡 2𝑒

𝑗𝑡𝑎𝑛−1
𝑔𝑄 𝑡

𝑔𝐼(𝑡)

𝑎 𝑡 = g𝐼 𝑡
2 + 𝑔𝑄 𝑡 2, natural envelope

𝜙 𝑡 = 𝑡𝑎𝑛−1
𝑔𝑄 𝑡

𝑔𝐼(𝑡)
, phase of g(t)

𝑔 𝑡 = 𝑎 𝑡 𝑒𝑗𝜙(𝑡)

𝑔 𝑡 = 𝑅𝑒{𝑎 𝑡 𝑒𝑗𝜙 𝑡 𝑒𝑗2𝜋𝑓𝑐𝑡}
𝒈 𝒕 = 𝒂 𝒕 𝐜𝐨𝐬(𝟐𝝅𝒇𝒄𝒕 + 𝝓(𝒕))

Real valued low pass signal

𝑔𝐼(𝑡)

𝑔𝑄(𝑡) 𝑔 𝑡

Re

Im

𝜙 𝑡 = 𝑡𝑎𝑛−1
𝑔𝑄 𝑡

𝑔𝐼(𝑡)



Continuous wave modulation
Carrier➔ sinusoidal signal 𝑐 𝑡

Base band signal (information signal)➔modulation wave 𝑚 𝑡

Results ➔ modulated wave s(t)

Amplitude modulation (FULL AM)
𝑐 𝑡 = 𝐴𝑐cos(2𝜋𝑓𝑐𝑡)

𝐴𝐶: Amplitude

𝑓𝑐: 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

s 𝒕 = 𝑨𝒄 𝐜𝐨𝐬 𝟐𝝅𝒇𝒄𝒕 𝟏 + 𝒌𝒂𝒎 𝒕 , 𝒌𝒂𝒎 𝒕 ≤ 𝟏,  𝒇𝒄 ≫ 𝟐𝑾

𝒌𝒂: a constant called amplitude sensitivity of the modulator



%% Amplitude modulation with varying K_a

t = 0:.001:2;

n = 0;

ct = 5*cos(2*pi*10*t);

mt = cos(2*pi*2*t);

ka = 1.3;

st = (1 + ka.*mt).*ct;

subplot(3,1,1)

plot(t,mt,"LineWidth",2)

title("m(t) = 1 cos(2\pi 2 t)")

subplot(3,1,2)

plot(t,ct,"LineWidth",2)

title("c(t) = 5 cos(2\pi 10 t) ")

subplot(3,1,3)

plot(t,st+ n,"LineWidth",2)

title("s(t) = 5 [1 + k_a m(t)] c(t),   k_a = 1.3")

hold on

plot(t,abs(5*(1 + ka.*mt)),"--r","LineWidth",2)

grid on



Phase reversal or envelope distortion



Noise effect on AM vs. amplitude sensitivity 𝑘𝑎



M(f)

fc-fc

1/2
𝐂(𝐟)

s 𝑡 = 𝐴𝑐 cos 2𝜋𝑓𝑐𝑡 [1 + 𝑘𝑎𝑚 𝑡 ]

s 𝑡 = 𝐴𝑐 cos 2𝜋𝑓𝑐𝑡 + 𝐴𝑐𝑘𝑎𝑚(𝑡) cos 2𝜋𝑓𝑐𝑡 = 𝐴𝑐 cos 2𝜋𝑓𝑐𝑡 + 𝐴𝑐𝑘𝑎𝑚(𝑡)(
𝑒𝑗2𝜋𝑓𝑐𝑡+𝑒−𝑗2𝜋𝑓𝑐𝑡

2
)

S 𝑓 =
𝐴𝑐

2
𝛿 𝑓 − 𝑓𝑐 + 𝛿 𝑓 + 𝑓𝑐 +

𝐴𝑐𝑘𝑎

2
[𝑀 𝑓 − 𝑓𝑐 +𝑀(𝑓 + 𝑓𝑐)]

𝑓𝑀

𝒇𝒄-fc

𝐴𝑐
2

𝐴𝑐
2

UPPER SIDE BAND (USB)LOWER SIDE BAND (LSB)UPPER SIDE BAND LOWER SIDE BAND

𝑓𝑀 + fc−𝑓𝑀 + fc

𝐵𝑊 = 2𝑓𝑚



𝑴(𝒇)

fc-fc

1/2
𝑪(𝒇)

s 𝑡 = 𝐴𝑐 cos 2𝜋𝑓𝑐𝑡 [1 + 𝑘𝑎𝑚 𝑡 ]

s 𝑡 = 𝐴𝑐 cos 2𝜋𝑓𝑐𝑡 + Ac𝜇 cos(2𝜋𝑓𝑚𝑡) cos 2𝜋𝑓𝑐𝑡

S 𝑓 =
𝐴𝑐

2
𝛿 𝑓 − 𝑓𝑐 + 𝛿 𝑓 + 𝑓𝑐 +

𝐴𝑐𝑘𝑎

4
[𝛿 𝑓 − 𝑓𝑐 − 𝑓𝑚 + 𝛿 𝑓 − 𝑓𝑐 + 𝑓𝑚 + 𝛿 𝑓 + 𝑓𝑐 − 𝑓𝑚 + 𝛿 𝑓 + 𝑓𝑐 + 𝑓𝑚 ]

𝒇𝒄-fc

𝐴𝑐
2

𝐴𝑐
2

UPPER SIDE BAND (USB)LOWER SIDE BAND (LSB)

UPPER SIDE BAND LOWER SIDE BAND

𝑓𝑀

𝑓𝑀 + fc−𝑓𝑀 + fc 𝐵𝑊 = 2𝑓𝑚

𝐴𝑐𝐴𝑚𝑘𝑎
4

𝐴𝑚
2

Single tone modulation

𝑚 𝑡 = 𝐴𝑚cos(2𝜋𝑓𝑚𝑡) 𝝁 = 𝑨𝒎𝒌𝒂 = modulation factor (index) = percentage modulation < 100% 

−𝑓𝑀



EX: 𝑚 𝑡 = 𝐴1 cos 2𝜋200𝑡 + 𝐴2 cos 2𝜋600𝑡 , plot the 
amplitude spectrum of s(t) for FULL-AM 

𝐴2
2

𝐴1
2

600 𝐻𝑧200 𝐻𝑧−200 𝐻𝑧−600 𝐻𝑧

|𝑴 𝒇 |

s 𝑡 = 𝐴𝑐 cos 2𝜋𝑓𝑐𝑡 1 + 𝑘𝑎𝑚 𝑡 = 𝐴𝑐 cos 2𝜋𝑓𝑐𝑡 1 + 𝑘𝑎[𝐴1 cos 2𝜋200𝑡 + 𝐴2 cos 2𝜋600𝑡 ]

𝐴2𝑘𝑎
4𝐴1𝑘𝑎

4

𝑓𝑐 + 600 𝐻𝑧

|𝑴 𝒇 |

0-𝑓𝑐 − 600 𝐻𝑧 -𝑓𝑐 − 200 𝐻𝑧 -𝑓𝑐 + 200 𝐻𝑧 -𝑓𝑐 + 600 𝐻𝑧
𝑓𝑐 − 600 𝐻𝑧 𝑓𝑐 − 200 𝐻𝑧 𝑓𝑐 + 200 𝐻𝑧

𝐴𝑐
2

𝐴𝑐
2

𝐴1𝑘𝑎
4

𝐴2𝑘𝑎
4

−𝑓𝑐 𝑓𝑐



Power analysis of AM

Carrier power = 
𝐴𝐶
2

2

Upper side band power = 
𝐴𝑐
2𝜇2

8

Lower side band power = 
𝐴𝑐
2𝜇2

8

Power efficiency = 𝜼

=
𝒕𝒐𝒕𝒂𝒍 𝒑𝒐𝒘𝒆𝒓 𝒊𝒏 𝒔𝒊𝒅𝒆𝒃𝒂𝒏𝒅𝒔

𝒕𝒐𝒕𝒂𝒍 𝒑𝒐𝒘𝒆𝒓 𝒐𝒇 𝒔(𝒕)
=

𝑨𝒄
𝟐𝝁𝟐

𝟒

𝑨𝒄
𝟐𝝁𝟐

𝟒
+
𝑨𝑪
𝟐

𝟐

=
𝝁𝟐

𝝁𝟐+𝟐



Percentage modulation

𝜇 =
𝐴𝑚𝑎𝑥−𝐴𝑚𝑖𝑛

𝐴𝑚𝑎𝑥+𝐴𝑚𝑖𝑛

Ex: in the figure to the right, measure the 
percentage modulation.

𝜇 =
1.8−.2

1.8+.2
=

1.6

2
= 0.8 = 80%

𝜂 =
0.82

0.82+2
=

0.64

2.64
= 24.24 %

𝐴𝑚𝑎𝑥

𝐴𝑚𝑖𝑛

𝝁 = 𝑨𝒎𝒌𝒂 = modulation factor = percentage modulation



Switching modulator
Switching modulator is a simple version of AM modulation techniques.

We assume the following for a proper switching diode circuit operation:

1- it assumed that the diode is ideal (𝑟𝑑 = 0 forward bias, 𝑟𝑑 = ∞ reverse bias)

2- 𝑐(𝑡) is large in amplitude.

3- 𝑚 𝑡 is weak if compared to 𝑐(𝑡)

𝑣1 𝑡 = 𝐴𝑐 cos 2𝜋𝑓𝑐𝑡 + 𝑚 𝑡

𝑣𝑜 = 𝑣2 𝑡 = ቊ
𝑣1 𝑡 , 𝑐 𝑡 > 0

0, 𝑐 𝑡 < 0

𝑣𝑜 = 𝐴𝑐 cos 2𝜋𝑓𝑐𝑡 + 𝑚 𝑡 𝑔𝑇𝑜(𝑡)



Switching modulator
𝑔𝑇𝑜 𝑡 = 𝑠𝑞𝑢𝑎𝑟𝑒 (𝑓𝑐) =

1

2
+
2

𝜋


𝑛=1

∞
−1 𝑛−1

2𝑛 − 1
cos(2𝜋𝑓𝑐𝑡(2𝑛 − 1))

The output 𝑣𝑜 𝑡 can be seen as two components:

1- The wanted component:

𝑨𝑪

𝟐
𝟏 +

𝟐

𝝅𝑨𝒄
𝒎(𝒕) 𝐜𝐨𝐬(𝟐𝝅𝒇𝒄𝒕) = 

𝐴𝐶

2
1 + 𝑘𝑎𝑚(𝑡) cos(2𝜋𝑓𝑐𝑡)

2- Unwanted components:

a- deltas at ±2𝑓𝑐 , ±4𝑓𝑐 , ±6𝑓𝑐 ,….

b- versions of the message signal at ±1𝑓𝑐 , ±3𝑓𝑐 , ±5𝑓𝑐 ,….
𝑣1(𝑡)

𝑔𝑇𝑜(𝑡)



𝒇𝒄
−𝒇𝒄

𝐴𝑐
2

𝐴𝑐
2

-fc 𝒇𝒄 𝟑𝒇𝒄−𝟐𝒇𝒄

Switching
diode

𝒇𝒄−𝒇𝒄

𝟐𝒇𝒄 𝟒𝒇𝒄
−𝟒𝒇𝒄 −𝟑𝒇𝒄



Non- Coherent detection 
Envelope detector -
(FULL) AM RECIVER

Demodulation of an AM wave can be accomplished by means of a simple and yet highly 
effective circuit called the envelope detector, provided two practical conditions are 
satisfied: 

1. The AM wave is narrowband, which means that the carrier frequency is large 
compared to the message bandwidth (𝑓𝑐 ≫ 𝑊).

2. The percentage modulation in the AM wave is less than 100 percent.

Also, we need to ensure the following conditions:

1. The charging time constant (𝑟𝑓+𝑅𝑠)𝐶 must be short compared with the carrier period 
1

𝑓𝑐
➔(𝒓𝒇+𝑹𝒔)𝑪 >> 

𝟏

𝒇𝒄
.

2. The discharging time constant 𝑹𝒍𝑪 must be long enough to ensure that the capacitor 
discharges slowly through the load resistor 𝑹𝒍 between positive peaks of the carrier 
wave, but not so long that the capacitor voltage will not discharge at the maximum rate 

of change of the modulating wave➔
𝟏

𝒇𝒄
≪ 𝑹𝒍𝑪 ≪

𝟏

𝑾



Full AM limitations 
❑It is wasteful of bandwidth: it requires 2W while W is enough.

❑It is wasteful of power: 
2

3
of the power is for the carrier.

❑AM detectors are very sensitive to noise.

Modified forms of AM
❑Double side band suppressed carrier (DSB-SC)
❑We only transmit the side bands without the carrier.

❑Single side band (SSB) modulation
❑Only one side band is transmitted.

❑Vestigial side band modulation (VSB)
❑One side band is transmitted with trace of the other



Double side band suppressed carrier 
(DSB-SC) modulation
Basically, double sideband-suppressed carrier (DSB-SC) modulation consists of the product  
of the message signal and the carrier wave:

𝑠 𝑡 = 𝑚 𝑡 𝑐 𝑡 = 𝐴𝑐 cos 2𝜋𝑓𝑐𝑡 𝑚(𝑡)

𝑠 𝑓 =
𝐴𝑐

2
[𝑀 𝑓 − 𝑓𝑐 +𝑀(𝑓 + 𝑓𝑐)]

Product 
modulator

𝑠 𝑡𝑚 𝑡

𝑐 𝑡 = 𝐴𝑐 cos 2𝜋𝑓𝑐𝑡

𝒇𝒄-fc 𝑓𝑀 + fc−𝑓𝑀 + fc

|M(f)|

|S(f)|



Double side band suppressed carrier 
(DSB-SC) De-modulation

Product 
modulator

𝑣 𝑡𝑠 𝑡

𝐴𝑐
` cos 2𝜋𝑓𝑐𝑡

Low pass filter
𝑚` 𝑡 = 𝐴𝑐𝐴𝑐

`𝑚(𝑡)

Modulated signal undergoes a phase reversal 
whenever the message signal crosses zero. The 
envelope of a DSB-SC modulated signal is 
therefore different from the message signal, 
which means that simple demodulation using an 
envelope detection is not a viable option for DSB-
SC modulation.



Coherent detection of DSB-SC
𝑣 𝑡 = 𝐴𝑐

` cos 2𝜋𝑓𝑐𝑡 + 𝜙 𝑠 𝑡

𝑣 𝑡 = 𝐴𝑐
` 𝐴𝑐 cos 2𝜋𝑓𝑐𝑡 + 𝜙 cos 2𝜋𝑓𝑐𝑡 𝑚(𝑡)

𝑣 𝑡 =
𝐴𝑐
` 𝐴𝑐

2
cos 4𝜋𝑓𝑐𝑡 + 𝜙 𝑚(𝑡) + 

𝐴𝑐
` 𝐴𝑐

2
cos 𝜙 𝑚(𝑡)

➔ 𝑣𝑜 𝑡 = 
𝐴𝑐
` 𝐴𝑐

2
cos 𝜙 𝑚(𝑡)

◦ 𝑣𝑜 𝑡 is max when 𝜙 = 0

◦ 𝑣𝑜 𝑡 is zero when 𝜙 = ±
𝜋

2

Product 
modulator

𝑣 𝑡𝑠 𝑡

𝐴𝑐
` cos 2𝜋𝑓𝑐𝑡 + 𝜙

Low pass 
filter

𝑣𝑜 𝑡

2𝑓𝑐−2𝑓𝑐

2W2W2W

|𝑉 𝑓 |

1

4
𝐴𝑐
` 𝐴𝑐 M(0)

1

2
𝐴𝑐
` 𝐴𝑐 cos 𝜙 M(0)

Quadrature null effect



2𝑓𝑐−2𝑓𝑐

2W2W2W

2W

DSB-SC DEMODULATION

|𝑉𝑜 𝑓 |

|𝑉 𝑓 |



Costas 
Receiver 
(Coherent 
detection)
❑Coherent detection of a DSB-SC 
modulated wave requires that the 
locally generated carrier in the 
receiver be synchronous in both 
frequency and phase with the 
oscillator responsible for generating 
the carrier in the transmitter.

❑One method of satisfying this 
requirement is to use the Costas 
receiver



Quadrature carrier multiplexing
The quadrature null effect of the coherent detector may also be put to good use in the construction of 
the so-called quadrature-carrier multiplexing or quadrature-amplitude modulation (QAM).

𝒔 𝒕 = 𝑨𝒄𝒎𝟏 𝒕 𝐜𝐨𝐬 𝟐𝝅𝒇𝑪𝒕 + 𝑨𝒄𝒎𝟐 𝒕 𝐬𝐢𝐧 𝟐𝝅𝒇𝑪𝒕



[𝒎𝟏(𝑡)cos(2𝜋𝑓𝑐𝑡) + 𝑚2(t)sin(2𝜋𝑓𝑐𝑡)]cos(2𝜋𝑓𝑐𝑡) =
[𝒎𝟏(𝑡)𝑐𝑜𝑠(4𝜋𝑓𝑐𝑡) + 𝒎𝟏(𝒕)𝑐𝑜𝑠(0)] + [𝑚2 𝑡 𝑠𝑖𝑛 4𝜋𝑓𝑐𝑡
+ [𝑚2 𝑡 𝑠𝑖𝑛 0 ]
➔ LPF➔ 𝑚1 𝑡 cos 0 = 𝑚1(𝑡)

[𝑚1(𝑡)cos(2𝜋𝑓𝑐𝑡) + 𝑚2(t)sin(2𝜋𝑓𝑐𝑡)]sin(2𝜋𝑓𝑐𝑡) =
[𝑚1 𝑡 𝑠𝑖𝑛(4𝜋𝑓𝑐𝑡) - 𝑚1 𝑡 sin(0)] + [𝑚2 𝑡 𝑐𝑜𝑠(0)
−𝑚2 𝑡 cos(4𝜋𝑓𝑐𝑡)]
➔ LPF➔ 𝑚2 𝑡 cos 0 = 𝑚2(𝑡)

First branch

Second  branch



Single side band modulation (SSB)

The SSB formula is as follows:
𝑠 𝑡 = 𝐴𝑐𝑚 𝑡 cos 2𝜋𝑓𝑐𝑡 ± 𝐴𝑐 ෝ𝑚(𝑡) sin 2𝜋𝑓𝑐𝑡

In the frequency domain we can right for the upper side band:

𝒔 𝒇 = ቐ

𝑨𝒄
𝟐
𝑴 𝒇 − 𝒇𝒄 , 𝒇 ≥ 𝒇𝒄

𝟎, 𝟎 < 𝒇 ≤ 𝒇𝒄
And for the lower side band

𝒔 𝒇 = ቐ

𝟎 , 𝒇 ≥ 𝒇𝒄
𝑨𝒄
𝟐
𝑴 𝒇 − 𝒇𝒄 , 𝟎 < 𝒇 ≤ 𝒇𝒄

❑ DSB-SC takes care of the major disadvantage of the full AM and saves the wasted power in the carrier
❑ To achieve saving the bandwidth, we need to suppress one of the two sidebands in the DSB-SC

modulated wave.
❑ SSB modulation relies solely on the lower sideband or upper sideband to transmit the message signal

across a communication channel. Depending on which sideband is transmitted, we speak of lower SSB
or upper SSB modulation.



COHERENT DETECTION OF SSB
❑The demodulation of DSB-SC is complicated by the suppression of the carrier in the transmitted signal.

❑To make up for the absence of the carrier in the received signal, the receiver resorts to the use of coherent
detection, which requires synchronization of a local oscillator in the receiver with the oscillator responsible for
generating the carrier in the transmitter.

❑The synchronization requirement has to be in both phase and frequency.

❑However, the demodulation of SSB is further complicated by the additional suppression of the upper or lower
sideband.

❑The coherent detector of the DSB-SC applies equally well to the demodulation SSB; the only difference
between these two applications is how the modulated wave 𝑆(𝑡) is defined



SSB modulators:
❑ 1) Frequency Discrimination Method: consists of two components: product modulator followed by band-

pass filter. The product modulator produces a DSB-SC modulated wave with an upper sideband and a 
lower sideband. The band-pass filter is designed to transmit one of these two sidebands, depending on 
whether the upper SSB or lower SSB is the desired modulation.

Product 
modulator

𝑠𝐷𝑆𝐵−𝑆𝐶 𝑡
𝑚 𝑡

𝐴𝑐 cos 2𝜋𝑓𝑐𝑡

Band pass 
filter (BPF)

𝑠𝑆𝑆𝐵 𝑡

𝒇𝒄-fc

USBLSB

𝑓𝑀 + fc−𝑓𝑀 + fc

USB LSB

BPFBPF



𝒇𝒄-fc

USBLSB

𝑓𝑀 + fc−𝑓𝑀 + fc

USB LSB

BPFBPF

𝒇𝒄-fc

USBLSB

𝑓𝑀 + fc−𝑓𝑀 + fc

USB LSB

Non ideal BPF for SSB modulation

DSB-SC

Trace of the lower side band



SSB modulators:
2) Phase Discrimination Method: Its implementation follows from the time-domain description of SSB
waves and consists of two parallel paths, one called the in-phase path and the other called the quadrature
path. Each path involves a product modulator:

𝑠 𝑡 = 𝐴𝑐𝑚 𝑡 cos 2𝜋𝑓𝑐𝑡 ± 𝐴𝑐 ෝ𝑚(𝑡) sin 2𝜋𝑓𝑐𝑡



PASSIVE RC LPF

h(t) =
𝑉𝑜 𝑡

𝑉𝑖𝑛(𝑡)
=

𝑋𝑐

𝑋𝐶
2+𝑅2

𝑋𝑐=|𝑧𝑐 | = 
1

2𝜋𝑓∗𝐶
LPF with h(t) =

𝑉𝑜 𝑡

𝑉𝑖𝑛(𝑡)

F1 = 1 F2 = 30

H(f) = 
1

𝑓

Y(f) = X(f)H(f)
F1 = 1 F2 = 30



Vestigial Sideband Modulation
❑Single-sideband modulation works satisfactorily for an information-bearing signal (e.g.,
speech signal) with an energy gap centered around zero frequency.

❑Typically, the spectra of wideband signals (exemplified by television video signals and
computer data) contain significant low frequencies, which make it impractical to use SSB
modulation.

❑Vestigial sideband (VSB) modulation distinguishes itself from SSB modulation in two
practical respects:

1. Instead of completely removing a sideband, a trace or vestige of that sideband is transmitted;
hence, the name “vestigial sideband”.

2. Instead of transmitting the other sideband in full, almost the whole of this second band is also
transmitted. Accordingly, the transmission bandwidth of a VSB modulated signal is defined by:

𝐵𝑊 = 𝑓𝑣 +𝑊

where, 𝑓𝑣 : vestige bandwidth, W : massage bandwidth 



Vestigial Sideband Modulation

Sideband shaping filter must itself satisfy the following 
condition:

𝐻(𝑓 + 𝑓𝑐)+ 𝐻 𝑓 − 𝑓𝑐 = 1, for  −𝑊 ≤ 𝑓 ≤ 𝑊

𝑢 𝑓 =
𝐴𝑐

2
[𝑀 𝑓 − 𝑓𝑐 +𝑀(𝑓 + 𝑓𝑐]

𝑆 𝑓 =
𝐴𝑐

2
[𝑀 𝑓 − 𝑓𝑐 +𝑀 𝑓 + 𝑓𝑐 𝐻(𝑓)

𝑉 𝑓 =
𝐴𝑐
′

2
[𝑆 𝑓 − 𝑓𝑐 + 𝑆(𝑓 + 𝑓𝑐)]

Product 
modulator

𝑚 𝑡

𝐴𝑐 cos 2𝜋𝑓𝑐𝑡

VSB-SHAPING 
FILTER:
𝐻(𝑓)

𝑢(𝑓)

Product 
modulator

𝐴𝑐
′ cos 2𝜋𝑓𝑐𝑡

LFP
𝑣𝑜 𝑡

𝑉(𝑓)

𝑠𝑉𝑆𝐵 𝑡𝑠𝑉𝑆𝐵 𝑡

Receiver Transmitter 

𝒇𝒄-fc 𝑓𝑀 + fc−𝑓𝑀 + fc

U
S
B

BPF

𝒇𝒄-fc 𝑓𝑀 + fc−𝑓𝑀 + fc

U
S
B

BPF

𝐻(𝑓)



𝑢 𝑓 =
𝐴𝑐

2
[𝑀 𝑓 − 𝑓𝑐 +𝑀(𝑓 + 𝑓𝑐]

𝑆 𝑓 =
𝐴𝑐

2
[𝑀 𝑓 − 𝑓𝑐 +𝑀 𝑓 + 𝑓𝑐 𝐻(𝑓)

Coherent detection of VSB

𝑉 𝑓 =
𝐴𝑐
′𝐴𝑐

4
𝑀 𝑓 − 2𝑓𝑐 𝐻 𝑓 − 𝑓𝑐 +𝑀 𝑓 𝐻 𝑓 − 𝑓𝑐 +𝑀 𝑓 𝐻 𝑓 + 𝑓𝑐 +𝑀 𝑓 + 2𝑓𝑐 𝐻 𝑓 + 𝑓𝑐 ]

𝑉 𝑓 =
𝐴𝑐
′𝐴𝑐

4
𝑀 𝑓 − 2𝑓𝑐 𝐻 𝑓 − 𝑓𝑐 +𝑀 𝑓 + 2𝑓𝑐 𝐻(𝑓 + 𝑓𝑐) + 

𝐴𝑐
′𝐴𝑐

4
𝑀 𝑓 𝐻 𝑓 − 𝑓𝑐 +𝐻 𝑓 + 𝑓𝑐

𝑉𝑜 𝑓 =
𝐴𝑐
′𝐴𝑐

4
𝑀(𝑓) 1

𝑠 𝑡 = 𝑆𝐼 𝑡 cos 2𝜋𝑓𝑐𝑡 + 𝑆𝑄 𝑡 sin 2𝜋𝑓𝑐𝑡

𝑆𝐼 𝑓 = ቊ
𝑆 𝑓 − 𝑓𝑐 + 𝑆 𝑓 + 𝑓𝑐 , −𝑊 ≤ 𝑓 ≤ 𝑊

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

𝑆𝐼 𝑓 = 
𝐴𝑐

2
𝑀 𝑓 𝐻 𝑓 − 𝑓𝑐 + 𝐻 𝑓 + 𝑓𝑐

𝑆𝐼 𝑓 = 
𝐴𝑐

2
𝑀 𝑓 ➔ 𝑆𝐼 𝑡 =

𝐴𝑐

2
𝑚 𝑡

𝑆𝑄 𝑓 = ቊ
𝑗[𝑆 𝑓 − 𝑓𝑐 − 𝑆 𝑓 + 𝑓𝑐 ], −𝑊 ≤ 𝑓 ≤ 𝑊

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

𝑆𝑄 𝑓 = 
𝐴𝑐

2
𝑀 𝑓 𝑗 𝐻 𝑓 − 𝑓𝑐 − 𝐻 𝑓 + 𝑓𝑐

𝐻𝑄 𝑓 = 𝑗 𝐻 𝑓 − 𝑓𝑐 − 𝐻 𝑓 + 𝑓𝑐

𝑆𝑄 𝑓 = 
𝐴𝑐

2
𝑀 𝑓 𝐻𝑄 𝑓 ➔ 𝑆𝑄 𝑡 = = 𝐹−1[

𝐴𝑐

2
𝑀 𝑓 𝐻𝑄 𝑓 ]

PM

PM

−90𝑜 phase shiftℎ𝑄(𝑡) ⇔ 𝐻𝑄(𝑓)

Oscillator

Σ𝑚(𝑡)
+

-

𝐴𝑐cos(2𝜋𝑓𝑐𝑡)

General form of phase discriminator for SSB + VSB

𝑠 𝑡



PM

PM

−90𝑜 phase shiftℎ𝑄(𝑡) ⇔ 𝐻𝑄(𝑓)

Oscillator

Σ𝑚(𝑡)
+

-

𝐴𝑐cos(2𝜋𝑓𝑐𝑡)

General form of phase discriminator for SSB + VSB

𝑠 𝑡

𝐻𝑄 𝑓 = 𝑗 𝐻 𝑓 − 𝑓𝑐 − 𝐻 𝑓 + 𝑓𝑐
|𝐻𝑄 𝑓 | = |𝐻 𝑓 − 𝑓𝑐 − 𝐻 𝑓 + 𝑓𝑐 |
|𝐻𝑄 𝑓 = −𝑗 sgn 𝑓 𝐻𝐼(𝑓)

𝑠 𝑡 = 𝐴𝑐𝑚 𝑡 cos 2𝜋𝑓𝑐𝑡 − 𝐴𝑐 ෝ𝑚(𝑡) sin 2𝜋𝑓𝑐𝑡
Or 
𝑠 𝑡 = 𝐴𝑐𝑚 𝑡 cos 2𝜋𝑓𝑐𝑡 − 𝐴𝑐𝑚

′(𝑡) sin 2𝜋𝑓𝑐𝑡

𝐻(𝑓)

fc-w    fc    fc+w



The coherent detection of VSB requires synchronism of the
receiver to the transmitter, which increases system
complexity. To simplify the demodulation process, we may
purposely add the carrier to the VSB signal (scaled by the
factor 𝑘𝑎) prior to transmission and then use envelope
detection in the receiver.

1. 𝑘 =
1

2
, DSB-SC

2. 𝑘 = 0, LOWER SSB
3. 𝐾 = 1, UPPER SSB

4. 0 < 𝑘 <
1

2
, VSB + attenuated version of USB

5.
1

2
< 𝑘 < 1, VSB + attenuated version of LSB



The coherent detection of VSB requires
synchronism of the receiver to the
transmitter, which increases system
complexity. To simplify the demodulation
process, we may purposely add the carrier
to the VSB signal (scaled by the factor 𝒌𝒂)
prior to transmission and then use
envelope detection in the receiver.



SSB VS VSB
A. VSB modulation is a tradeoff between DSB modulation and SSB modulation.

B. Use more bandwidth than SSB but simplifies the system.
I. The VSB filter is much easier to implement than the SSB filter, which requires near ideal

frequency response at '0’ or 𝑓𝑐 .

II. The VSB filter can be implemented at the receiver instead of at the transmitter due to power
constraints.

C. C. Envelope detection is also possible for VSB:

D. Used in Television Transmission system.



Summary of 
amplitude 
modulation 
techniques



FREQUENCY TRANSLATION
Suppose that we have a modulated wave 𝑠1(𝑡) whose spectrum is centered on a carrier frequency
𝑓1 and the requirement is to translate it upward or downward in frequency, such that the carrier
frequency is changed from 𝑓1 to a new value 𝑓2. This requirement is accomplished by using a mixer.

𝑺𝟏(𝒇)

𝑺𝟐(𝒇)

𝑓1

𝑓2−𝑓2



FREQUENCY-DIVISION 
MULTIPLEXING (FDM)

PM
𝒎𝟏(𝒕)

c𝒐𝒔(𝟐𝝅 𝒇𝒄𝒕)

Σ

M1(f-fc) M2(f-fc-1fo)

𝒇𝒐

M3(f-fc-2fo) Mn(f-fc-(N-1)fo)

PBF

PM
𝒎𝟐(𝒕)

c𝒐𝒔(𝟐𝝅 (𝒇𝒄+𝒇𝒐)𝒕)

PBF

PM
𝒎𝟑(𝒕)

c𝒐𝒔(𝟐𝝅 (𝒇𝒄+𝟐𝒇𝒐)𝒕)

PBF

PM
𝒎𝑵(𝒕)

c𝒐𝒔(𝟐𝝅 (𝒇𝒄+(𝑵 − 𝟏)𝒇𝒐)𝒕)

PBF

𝑆𝐹𝐷𝑀(𝑓)



Time domain

Frequency

T1                       T2

F1

F2

F3

F4

F3,T1          F3,T2
F4,T1          F4,T2

Time domain

Frequency

T1                     T2

F1

F2

F3

F4

F3,T1          F3,T2
F4,T1          F4,T2

Frequency
Time
Location (spatial)
Phase
Power

Phase

Domain = Resource



Angle Modulation



Angle Modulation
❑Another way of modulating a sinusoidal carrier wave— namely, angle modulation, in which 
the angle of the carrier wave is varied according to the information-bearing signal.

❑Angle modulation can provide better discrimination against noise and interference than 
amplitude modulation.

❑Angle modulation is a nonlinear process, which testifies to its sophisticated nature. In the 
context of analog communications, this distinctive property of angle modulation has two 
implications:
❑The spectral analysis of angle modulation is complicated.
❑the implementation of angle modulation is demanding.

❑The transmission bandwidth of an angle-modulated wave may assume an infinite extent, at 
least in theory.

❑Additive noise would affect the performance of angle modulation to a lesser extent than 
amplitude modulation



Angle Modulation
Let 𝜃𝑖 𝑡 denote the angle of a modulated sinusoidal carrier at time t; it is assumed to be a function of the
information-bearing signal or message signal. We express the resulting angle-modulated wave as:

𝑠 𝑡 = 𝐴𝑐cos(𝜃𝑖 𝑡 )
If 𝜃𝑖 𝑡 increases monotonically with time, then the average frequency in hertz, over a small interval:

𝑓∆𝑡 𝑡 =
𝜃𝑖 𝑡 + ∆𝑡 − 𝜃𝑖 𝑡

2𝜋∆𝑡
If ∆𝑡➔ 0; then the instantaneous frequency is defined as:

𝑓𝑖 𝑡 = lim
∆𝑡→0

𝑓∆𝑡 𝑡

𝑓𝑖 𝑡 = lim
∆𝑡→0

𝜃𝑖 𝑡 + ∆𝑡 − 𝜃𝑖 𝑡

2𝜋∆𝑡

=
𝟏

𝟐𝝅

𝒅 𝜽𝒊 𝒕

𝒅𝒕
Before performing any modulation:

𝜽𝒊 𝒕 = 𝟐𝝅𝒇𝒄𝒕 + 𝝓𝒄

There are an infinite number of ways in which the angle may be varied in some manner with the message signal.
However, we shall consider only two commonly used methods, phase modulation and frequency modulation,

𝜃𝑖 𝑡

𝑡 𝑡 + ∆𝑡



1 - Phase modulation
𝒔 𝒕 = 𝑨𝒄𝒄𝒐𝒔 [𝜽𝒊 𝒕 ]

𝜽𝒊 𝒕 = 𝟐𝝅𝒇𝒄𝒕 + 𝒌𝒑𝒎(𝒕)

𝑘𝑝: phase sensitivity of the modulator [rad/volt]
𝒔 𝒕 = 𝑨𝒄𝒄𝒐𝒔 [𝟐𝝅𝒇𝒄𝒕 + 𝒌𝒑𝒎(𝒕)]

2 - Frequency modulation
𝒔 𝒕 = 𝑨𝒄𝒄𝒐𝒔 [𝜽𝒊 𝒕 ]

𝒇𝒊 𝒕 = 𝒇𝒄 + 𝒌𝒇𝒎(𝒕)

𝑘𝑓: frequency sensitivity of the modulator [hertz/volt]

𝒇𝒊 𝒕 =
𝟏

𝟐𝝅

𝒅 𝜽𝒊 𝒕

𝒅𝒕
➔ 𝜽𝒊 𝒕 = 𝟐𝝅𝟎

𝒕
𝒇𝒊 𝒕 𝒅𝒕

𝜽𝒊 𝒕 = 𝟐𝝅𝟎
𝒕
[𝒇𝒄 + 𝒌𝒇𝒎(𝒕)] 𝒅𝒕 = 𝟐𝝅𝒇𝒄𝒕 + 𝟐𝝅𝒌𝒇 𝟎

𝒕
𝒎 𝒕 𝒅𝒕

𝒔 𝒕 = 𝑨𝒄𝒄𝒐𝒔 [𝟐𝝅𝒇𝒄𝒕 + 𝟐𝝅𝒌𝒇 𝟎
𝒕
𝒎 𝒕 𝒅𝒕]

න Phase 
modulator

𝑚(𝑡) FM

𝑑

𝑑𝑡

Freq 
modulator

𝑚(𝑡) PM



%% Matlab code

t = 0:.001:.1;

fm = 10;

ct = cos(2*pi*50*t);

mt = cos(2*pi*fm*t);

kf = 50;

st_FM = cos(2*pi*50*t + 

2*pi*kf*sin(2*pi*fm*t)/2/fm/pi) ;

subplot(3,1,1)

plot(t,ct)

title("c(t)")

subplot(3,1,2)

grid on

plot(t,mt)

title("m(t), "+ "f_m = " + fm )

grid on

subplot(3,1,3)

plot(t,st_FM )

title("s(t), "+ "kf = " + kf )



Frequency modulation
𝒔 𝒕 = 𝑨𝒄𝒄𝒐𝒔 [𝜽𝒊(𝒕)] = 𝑨𝒄𝒄𝒐𝒔 [𝟐𝝅𝒇𝒄𝒕 + 𝟐𝝅𝒌𝒇 𝟎

𝒕
𝒎 𝒕 𝒅𝒕]

Cases of FM modulation:

1. Single tone m(t) which produces narrow band FM (NBFM)

2. Single tone m(t) which produces wide band FM (WBFM)
𝑓𝑖 𝑡 = 𝑓𝑐 + 𝑘𝑓𝑚(𝑡)

𝑓𝑖 𝑡 = 𝑓𝑐 + 𝒌𝒇𝑨𝒎𝑐𝑜𝑠 2𝜋𝑓𝑚𝑡

∆𝒇 = 𝒌𝒇𝑨𝒎, frequency deviation

𝜃𝑖 𝑡 = 2𝜋𝑓𝑐𝑡 +
2𝜋𝑘𝑓𝐴𝑚 sin 2𝜋𝑓𝑚𝑡

2𝜋𝑓𝑚

𝜃𝑖 𝑡 = 2𝜋𝑓𝑐𝑡 +
∆𝑓

𝑓𝑚
sin 2𝜋𝑓𝑚𝑡

𝜃𝑖 𝑡 = 2𝜋𝑓𝑐𝑡 + 𝛽 sin 2𝜋𝑓𝑚𝑡 , 𝜷:𝒎𝒐𝒅𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝒊𝒏𝒅𝒆𝒙, 𝛽 =
𝑘𝑓𝐴𝑚

𝑓𝑚
=

∆𝒇

𝒇𝒎

𝒔 𝒕 = 𝑨𝒄𝒄𝒐𝒔 [𝟐𝝅𝒇𝒄𝒕 + 𝜷 𝒔𝒊𝒏 𝟐𝝅𝒇𝒎𝒕 ]



𝜃𝑖 𝑡 = 2𝜋𝑓𝑐𝑡 + 𝛽 sin 2𝜋𝑓𝑚𝑡

1. If 𝛽 is small compared to 1 radian ➔ NBFM

2. If 𝛽 is large compared to 1 radian ➔WBFM

❑Narrow band FM

𝒔 𝒕 = 𝑨𝒄𝒄𝒐𝒔 [2𝜋𝑓𝑐𝑡 + 𝛽 sin 2𝜋𝑓𝑚𝑡 ]

𝒔 𝒕 = 𝑨𝒄𝒄𝒐𝒔 [2𝜋𝑓𝑐𝑡] 𝒄𝒐𝒔 [𝛽 sin 2𝜋𝑓𝑚𝑡 ] - 𝐀𝒄𝐬𝐢𝐧[2𝜋𝑓𝑐𝑡] 𝒔𝒊𝒏 [𝛽 sin 2𝜋𝑓𝑚𝑡 ]

If 𝜷 is small compared to 1 radian:

𝒄𝒐𝒔 [𝛽 sin 2𝜋𝑓𝑚𝑡 ] = 1

𝒔𝒊𝒏 [𝛽 sin 2𝜋𝑓𝑚𝑡 ]= 𝛽 sin 2𝜋𝑓𝑚𝑡

𝒔 𝒕 = 𝑨𝒄𝒄𝒐𝒔 [2𝜋𝑓𝑐𝑡] - 𝐀𝒄𝜷 𝐬𝐢𝐧[2𝜋𝑓𝑐𝑡] sin 2𝜋𝑓𝑚𝑡

𝒔𝑵𝑩𝑭𝑴 𝒕 = 𝑨𝒄𝒄𝒐𝒔 [2𝜋𝑓𝑐𝑡] + 
𝐀𝒄

𝟐
𝜷 𝐜𝐨𝐬[2𝜋(𝑓𝑐+𝑓𝑚)𝑡] -

𝐀𝒄

𝟐
𝜷 cos 2𝜋(𝑓𝑐−𝑓𝑚)𝑡

𝒔𝑨𝑴 𝒕 = 𝑨𝒄𝒄𝒐𝒔 [2𝜋𝑓𝑐𝑡] +
𝐀𝒄

𝟐
𝝁 𝐜𝐨𝐬[2𝜋(𝑓𝑐+𝑓𝑚)𝑡] +

𝐀𝒄

𝟐
𝜇 cos 2𝜋(𝑓𝑐−𝑓𝑚)𝑡

Types of single tone FM

2𝑓𝑚



❑Wide band FM (WBFM)
𝑚 𝑡 = 𝐴𝑚 cos 2𝜋𝑓𝑐𝑡
𝒔 𝒕 = 𝑨𝒄𝒄𝒐𝒔 [2𝜋𝑓𝑐𝑡 + 𝛽 sin 2𝜋𝑓𝑚𝑡 ]
𝑠 𝑡 = 𝑅𝑒{𝐴𝑐𝑒

𝑗(2𝜋𝑓𝑐𝑡+𝛽 sin 2𝜋𝑓𝑚𝑡 )}

𝑠 𝑡 = 𝑅𝑒{𝐴𝑐𝑒
𝑗(2𝜋𝑓𝑐𝑡)𝑒𝑗(𝛽 sin 2𝜋𝑓𝑚𝑡 )}

ǁ𝑠 𝑡 = 𝐴𝑐𝑒
𝑗(𝛽 sin 2𝜋𝑓𝑚𝑡 ) periodic function with fundamental frequency = 𝑓𝑚

Using Fourier series:

ǁ𝑠 𝑡 = σ𝑛=−∞
∞ 𝐶𝑛𝑒

𝑗2𝜋𝑛𝑓𝑚𝑡 , 𝑇 =
1

𝑓𝑚

𝐶𝑛 = 𝑓𝑚 න

−
1

2𝑓𝑚

1
2𝑓𝑚

ǁ𝑠 𝑡 𝑒−𝑗2𝜋𝑛𝑓𝑚𝑡𝑑𝑡 = 𝐴𝑐𝑓𝑚 න

−
1

2𝑓𝑚

1
2𝑓𝑚

𝑒𝑗(𝛽 sin 2𝜋𝑓𝑚𝑡 −𝑗2𝜋𝑛𝑓𝑚𝑡)𝑑𝑡

Let 𝑥 = 2𝜋𝑓𝑚𝑡:

𝐶𝑛 =
𝐴𝑐𝑓𝑚
2𝜋

න

−𝜋

𝜋

𝑒𝑗(𝛽 sin 𝑥 −𝑛𝑥)𝑑𝑥 = 𝐽𝑛 𝛽 𝐴𝑐 ← 𝐽𝑛 𝛽 =
1

2𝜋
න

−𝜋

𝜋

𝑒𝑗(𝛽 sin 𝑥 −𝑛𝑥)𝑑𝑥

𝐽𝑛 𝛽 : nth order Bessel function of first kind with argument of 𝛽.



ǁ𝑠 𝑡 = Acσ𝑛=−∞
∞ 𝐽𝑛 𝛽 𝑒𝑗2𝜋𝑛𝑓𝑚𝑡

𝑠 𝑡 = 𝑅𝑒{ ǁ𝑠 𝑡 𝑒𝑗2𝜋𝑓𝑐𝑡}

𝑠 𝑡 = 𝑅𝑒{Ac 𝑒
𝑗2𝜋𝑓𝑐𝑡 

𝑛=−∞

∞

𝐽𝑛 𝛽 𝑒𝑗2𝜋𝑛𝑓𝑚𝑡}

𝑠 𝑡 = 𝑅𝑒{𝐴𝑐 

𝑛=−∞

∞

𝐽𝑛 𝛽 𝑒𝑗2𝜋𝑛𝑓𝑚𝑡+𝑗2𝜋𝑓𝑐𝑡}

𝑠 𝑡 = 𝐴𝑐 

𝑛=−∞

∞

𝐽𝑛 𝛽 cos(2𝜋 𝑓𝑐 + 𝑛𝑓𝑚 𝑡)

S 𝑓 =
𝐴𝑐

2
σ𝑛=−∞
∞ 𝐽𝑛 𝛽 [ 𝛿 𝑓 + 𝑓𝑐 + 𝑛𝑓𝑚 + 𝛿(𝑓 − 𝑓𝑐 − 𝑛𝑓𝑚)]

%% matlab code ^^

for n = 0:5

beta = 0:.001:10;

y = besselj(n,beta);

plot(beta,y,"LineWidth",2);

hold on

end

grid on

xlabel("\beta")

ylabel("J_n(\beta)")



Some properties of Bessel function:
1- For n = even , 𝐽𝑛 𝛽 = 𝐽−𝑛 𝛽

For n = odd , 𝐽𝑛 𝛽 = −𝐽−𝑛 𝛽 ,,,,,   𝐽𝑛 𝛽 = −1 𝑛𝐽−𝑛 𝛽

2- For small values of 𝛽, 𝐽0 𝛽 = 1, 𝐽1 𝛽 =
𝛽

2
, 𝐽𝑛 𝛽 ≅ 0 𝑓𝑜𝑟 𝑛 > 2

3-σ𝑛=−∞
∞ 𝐽𝑛

2 𝛽 = 1

𝒔 𝒕 = 𝑨𝒄𝒄𝒐𝒔 [2𝜋𝑓𝑐𝑡 + 𝛽 sin 2𝜋𝑓𝑚𝑡 ]

Power of FM modulated signal:

𝑃𝐹𝑀 =
𝐴𝑐
2

2
Power of the carrier before modulation:

𝑃𝑐 =
𝐴𝑐
2

2
Power of the carrier after modulation:

𝑃𝑐 =
𝐴𝑐𝐽𝑜 𝛽

2

2
Side band power after modulation:

𝑃𝑠 =
𝐴𝑐
2

2
−

𝐴𝑐𝐽𝑜 𝛽
2

2



Transmission Bandwidth of FM Waves

❑ CARSON’S RULE

𝐵𝑊 = 2∆𝑓 + 2𝑓𝑚 = 2∆𝑓(1 +
1

𝛽
)

❑ UNIVERSAL CURVE FOR FM TRANSMISSION BANDWIDTH
-Carson’s rule is simple to use, but, unfortunately, it does not
always provide a good estimate of the bandwidth requirements
of communication systems using wideband frequency
modulation. For a more accurate assessment of FM bandwidth,
we may use a definition based on retaining the maximum number
of significant side frequencies whose amplitudes are all greater
than some selected value.
-We may thus define the transmission bandwidth of an FM wave
as the separation between the two frequencies beyond which
none of the side frequencies is greater than one percent of the
carrier amplitude obtained when the modulation is removed.

FM wave contains an infinite number of side-frequencies so that the bandwidth required to transmit such a 
modulated wave is similarly infinite in extent. In practice, however, we find that the FM wave is effectively 
limited to a finite number of significant side-frequencies compatible with a specified amount of distortion



clear

t = 0:.001:1;

fm = 1;

fc = 100;

beta = 8.65;

mt = 1*cos(2*pi*fm*t);

st = cos(2*pi*fc*t+beta*sin(2*pi*fm*t));

st2 = 0;

N=20;

N = -N:1:N;

for i=1:length(N)

dt(i) = besselj(N(i), beta)/2

end

fss = fc+N*fm;

stem(fss,abs(dt),"^","LineWidth",2)

set(gca,"FontSize",13)

grid on

yticks([0:0.025:1])

xlabel("f")

ylabel("|S(f)|")

hold on

plot( [80,120], [0.01 .01],"g--")

Above 1 %



ARBITRARY MODULATING WAVE (General Case)

If 𝑚 𝑡 has a BW of 𝑊, then we define the deviation ratio as:

𝐷 =
∆𝑓

𝑊
The deviation ratio D plays the same role for no sinusoidal modulation that the modulation index 𝛽 plays for
the case of sinusoidal modulation.
Hence, replacing 𝛽 by D and replacing 𝑓𝑚 with W, we may generalize:

𝐵𝑊 = 2(∆𝑓 +𝑊)

Ex: Commercial FM Broadcasting
In North America, the maximum value of frequency deviation ∆𝑓 is fixed at 75 kHz for commercial FM
broadcasting by radio. If we take the modulation frequency 𝑊 = 15 kHz which is typically the “maximum”
audio frequency of interest in FM transmission, we find that the corresponding value of the deviation ratio is

𝐷 =
75

15
= 5 ➔ 𝐵𝑊 = 2 75 + 15 = 180 KHz

On the other hand, use of the universal curve gives the transmission bandwidth of the FM signal to be:
𝐵𝑊 = 3.2 ∆𝑓 = 3.2 × 75 = 240 KHz

In this example, Carson’s rule underestimates the transmission bandwidth by 25 percent
compared with the result of using the universal curve



Generation of FM Waves

To design of a frequency modulator, we need a device that produces an output signal whose instantaneous
frequency is sensitive to variations in the amplitude of an input signal in a linear manner. There are two basic
methods of generating frequency-modulated waves, one direct and the other indirect.

Direct method:
-Direct method uses a sinusoidal oscillator, with one of the reactive elements (e.g., capacitive element) in the
tank circuit of the oscillator being directly controllable by the message signal.
-A serious limitation of the direct method is the tendency for the carrier frequency to drift, which is usually
unacceptable for commercial radio applications.

INDIRECT METHOD: ARMSTRONG MODULATOR
The message signal is first used to produce a narrow-band FM, which is followed by frequency multiplication to increase the
frequency deviation to the desired level.
The carrier-frequency stability problem is alleviated by using a highly stable oscillator (e.g., crystal oscillator) in the
narrowband FM generation; this modulation scheme is called the Armstrong wide-band frequency modulator.





Voltage controlled oscillator 
𝑓𝑖 𝑡 =

1

2𝜋 𝐿1 + 𝐿2 𝑐(𝑡)

For a sinusoidal 𝑚 𝑡 modulating signal, with frequency 𝑓𝑚:
𝑐 𝑡 = 𝐶𝑜 + ∆𝐶 cos 2𝜋𝑓𝑚𝑡

𝑓𝑖 𝑡 =
1

2𝜋 𝐿1 + 𝐿2 (𝐶𝑜 + 𝑘𝑐𝑚(𝑡))
=

1

2𝜋 𝐿1 + 𝐿2 (𝐶𝑜 + 𝐴𝑐𝑘𝑐 cos 2𝜋𝑓𝑚𝑡 )

𝐶𝑜: total capacitance in absence of the 𝑚 𝑡 .
∆𝐶: maximum change in the capacitance.

𝑓𝑖 𝑡 = 𝑓𝑜 1 +
∆𝐶

𝐶𝑜
cos 2𝜋𝑓𝑚𝑡

−
1

2

If ∆𝐶 is small compared to 𝐶𝑜:

𝑓𝑖 𝑡 = 𝑓𝑜(1 −
∆𝐶

2𝐶𝑜
cos 2𝜋𝑓𝑚𝑡 )

𝑓𝑖 𝑡 = 𝑓𝑜 + ∆𝑓𝑐𝑜𝑠(2𝜋𝑓𝑚𝑡) ;   ∆𝑓 = −
∆𝐶𝑓𝑜

2𝐶𝑜

The capacitance could be a varactor diode. The varactor diode is used in a place 
where the variable capacitance is required, and that capacitance is controlled 
with the help of the voltage

C
ap

ac
it

an
ce

 

Negative voltages – reverse bias



f0 = 10;

delta_c = 1;

c0 = 20;

fm = 1;

t = 0:.001:4;

fi1 = f0*(1+delta_c./c0.*cos(2*pi*fm*t)).^(-.5);

delta_f = -delta_c*f0/2/c0

fi_approx = f0+delta_f.*cos(2*pi*fm*t);

plot(t,fi1,t,fi_approx,"--r")

hold on

xlabel("time")

ylabel("f_i")

f0 = 10;

delta_c = 1;

c0 = 3;

fm = 1;

t = 0:.001:4;

fi1 = f0*(1+delta_c./c0.*cos(2*pi*fm*t)).^(-.5);

delta_f = -delta_c*f0/2/c0

fi_approx = f0+delta_f.*cos(2*pi*fm*t);

plot(t,fi1,t,fi_approx,"--r")

hold on

xlabel("time")

ylabel("f_i")



Demodulation of FM signal
With the frequency modulator being a device that produces an output signal whose instantaneous frequency varies
linearly with the amplitude of the input message signal, it follows that for frequency demodulation we need a
device whose output amplitude is sensitive to variations in the instantaneous frequency of the input FM wave in a
linear manner too.
We will discuss two types of FM demodulation:
1- Frequency discriminator
2- Phase-locked loop (PLL)

Frequency discriminator
The frequency discriminator consists of two parts –
1- SLOPE CIRCUIT (diff)
2- ENVELOP DETECTOR

Remember: 𝒔 𝒕 = 𝑨𝒄𝒄𝒐𝒔 [𝟐𝝅𝒇𝒄𝒕 + 𝟐𝝅𝒌𝒇 𝟎
𝒕
𝒎 𝒕 𝒅𝒕]

How do we recover the message signal 𝑚(𝑡) from the modulated signal 𝑠(𝑡)?
Differentiation?
𝑑𝑠 𝑡

𝑑𝑡
= − (2𝜋𝑓𝑐 + 2𝜋𝑘𝑓𝑚(𝑡))𝐴𝑐 sin(2𝜋𝑓𝑐𝑡 + 2𝜋𝑘𝑓න

𝑡

𝑚 𝑡 𝑑𝑡)

𝑯𝟏 𝒇 = 𝒋𝟐𝝅 𝒇 − 𝒇𝒄 −
𝑩𝑻

𝟐
, 𝒇𝒄 −

𝑩𝑻

𝟐
≤ 𝒇 ≤ 𝒇𝒄 +

𝑩𝑻

𝟐

𝒅[]

𝒅𝒕

𝑠(𝑡) 𝑑[𝑠(𝑡) ]

𝑑𝑡

S(𝑓)

H(f) = 𝑗2𝜋𝑓 = 𝑗 𝑤

𝑗2𝜋𝑓 𝑆(𝑓)

𝑍𝐿 = 𝑗𝑊𝐿

|𝐻(𝑓)|

f



|𝐻(𝑓)|

f

1 X(𝑓)

H(f)
𝑥(𝑡) 𝛼 𝑑𝑥 𝑡

𝑑𝑡

𝑓1 𝑓2

𝑓𝑐



fm = 1;

fc = 20;

t = 0:.001:3;

Ac = 2;

kf= 2;

mt = sin(2*pi*fm*t)

subplot(3,1,1)

plot(t,mt,"LineWidth",2)

st = Ac*cos(2*pi*fc*t+ 

2*pi*kf*cos(2*pi*fm*t));

subplot(3,1,2)

plot(t,st,"LineWidth",2)

subplot(3,1,3)

dsdt = -(2*pi*fc + 

2*pi*kf*sin(2*pi*fm*t))...

.*sin(2*pi*fc*t+ 

2*pi*kf*cos(2*pi*fm*t));

plot(t,dsdt,"LineWidth",2)



𝒇𝒄 −
𝑩𝑻

𝟐 𝒇𝒄 +
𝑩𝑻

𝟐

𝐻1 𝑓

f𝒇𝒄

𝑢𝑛𝑖𝑡 𝑠𝑙𝑜𝑝𝑒

𝑑

𝑑𝑡

ELVELOPE 
DETECTOR

s(𝑡) 𝑚(𝑡)

It is simplest to proceed with a complex baseband representation of the signal 
processing performed by the discriminator

ǁ𝑠 𝑡 = 𝐴𝑐exp(𝑗2𝜋𝑘𝑓න
𝑡

𝑚 𝑡 𝑑𝑡)

we may express the complex baseband filter (i.e., slope circuit) as:

෪𝐻1 𝑓 = ቐ𝒋𝟐𝝅 𝒇 +
𝑩𝑻

𝟐
, −

𝑩𝑻

𝟐
≤ 𝒇 ≤

𝑩𝑻

𝟐
0, 𝑜𝑤

ሚ𝑆1 𝑓 =
1

2
෪𝐻1 𝑓 ሚ𝑆 𝑓 = ቐ

𝒋𝟐𝝅 𝒇 +
𝑩𝑻

𝟐
ሚ𝑆 𝑓 , −

𝑩𝑻

𝟐
≤ 𝒇 ≤

𝑩𝑻

𝟐

0, 𝑜𝑤

ǁ𝑠1 𝑡 = 
1

2

𝑑

𝑑𝑡
ǁ𝑠 𝑡 +

1

2
𝑗𝜋𝐵𝑇 ǁ𝑠 𝑡

ǁ𝑠1 𝑡 = 
1

2
𝑗𝜋𝐴𝑐𝐵𝑇 1 +

2𝑘𝑓

𝐵𝑇
𝑚 𝑡 exp(𝑗2𝜋𝑘𝑓 

𝑡
𝑚 𝑡 𝑑𝑡)

𝑠1 𝑡 = 𝑹𝒆 ǁ𝑠1 𝑡 exp 𝑗2𝜋𝑓𝑐𝑡

=
1

2
𝑗𝜋𝐴𝑐𝐵𝑇 1 +

2𝑘𝑓

𝐵𝑇
𝑚 𝑡 cos(2𝜋𝑓𝑐𝑡 + 𝑗2𝜋𝑘𝑓න

𝑡

𝑚 𝑡 𝑑𝑡 +
𝜋

2
)

➔ 𝑣1 𝑡 =
1

2
𝜋 𝐴𝑐𝐵𝑇 [1 +

2𝑘𝑓

𝐵𝑇
𝑚(𝑡)]

➔ The bias in is defined by the constant term
➔ To remove the bias, we may use a second slope

circuit followed by an envelope detector of its own.



To remove the bias, we may use a second slope circuit followed by an envelope detector of its own

𝑣2 𝑡 =
1

2
𝜋 𝐴𝑐𝐵𝑇 [1 −

2𝑘𝑓

𝐵𝑇
𝑚(𝑡)]

𝑣 𝑡 = 𝑣1 𝑡 − 𝑣2 𝑡 = 𝑐 𝑚 (𝑡)

➔ 𝑣1 𝑡 =
1

2
𝜋 𝐴𝑐𝐵𝑇 [1 +

2𝑘𝑓

𝐵𝑇
𝑚(𝑡)]



PHASE-LOCKED LOOP (PLL)
The phase-locked loop is a feedback system whose operation is closely 
linked to frequency modulation. It is commonly used for carrier 
synchronization, and indirect frequency demodulation. the phase-
locked loop consists of three major components:
• Voltage-controlled oscillator (VCO), which per forms frequency 

modulation on its own control signal.
• Multiplier, which multiplies an incoming FM wave by the output of the 

voltage-controlled oscillator.
• Loop filter of a low-pass kind, the function of which is to remove the 

high-frequency components contained in the multiplier’s output signal 
and thereby shape the overall frequency response of the system.

o If 𝑣(𝑡) (control voltage) is zero, then the VCO is adjusted to satisfy 
the following conditions:

1. The output frequency of the VCO is 𝑓𝑐
2. The output voltage of the VCO has 90𝑜 phase shift with 

respect to the carrier
𝑐 𝑡 = 𝐴𝑐cos(2𝜋𝑓𝑐𝑡)

𝑟 𝑡 = 𝐴𝑣cos(2𝜋𝑓𝑐𝑡 −
𝜋

2
)



𝑠 𝑡 = 𝐴𝑐 cos 2𝜋𝑓𝑐𝑡 + 𝜙1 𝑡 = 𝐴𝑐cos(2𝜋𝑓𝑐𝑡 + 2𝜋𝑘𝑓න
𝑡

𝑚 𝑡 𝑑𝑡)

𝑟 𝑡 = 𝐴𝑣 sin 2𝜋𝑓𝑐𝑡 + 𝜙2 𝑡 = 𝐴𝑣sin(2𝜋𝑓𝑐𝑡 + 2𝜋𝑘𝑣න
𝑡

𝑣 𝑡 𝑑𝑡)

𝑒 𝑡 will be of two terms:
• A high-frequency component, which is defined by the double-frequency term:

𝑘𝑚𝐴𝑐𝐴𝑣sin(4𝜋𝑓𝑐𝑡 + 𝜙1 𝑡 + 𝜙2 𝑡 )
• A low-frequency component, which is defined by the difference-frequency term:

𝑘𝑚𝐴𝑐𝐴𝑣sin(𝜙1 𝑡 − 𝜙2 𝑡 )
The loop-filter is designed to suppress the high-frequency components in the multiplier’s 
output:

𝑒 𝑡 = 𝑘𝑚𝐴𝑐𝐴𝑣sin(𝜙1 𝑡 − 𝜙2 𝑡 ) = 𝑘𝑚𝐴𝑐𝐴𝑣sin(𝜙𝑒 𝑡 )

𝜙𝑒 𝑡 = 𝜙1 𝑡 - 2𝜋𝑘𝑣 
𝑡
𝑣 𝑡 𝑑𝑡

When the phase error 𝜙𝑒 𝑡 is zero the phase-locked loop is said to be in phase-lock. It is said 
to be near-phase-lock when the phase error is small compared with one radian, under which 
condition we may use the approximation:

sin(𝜙𝑒 𝑡 ) ≈ 𝜙𝑒 𝑡

➔ 𝑒 𝑡 = 𝑘𝑚𝐴𝑐𝐴𝑣 𝜙𝑒 𝑡 = 
𝐾0

𝐾𝑣
𝜙𝑒 𝑡

loop-gain parameter of the phase-lock loop ∶ K0 = kmkvAcAv
➔ The error signal 𝑒 𝑡 acts on the loop filter to produce the overall output 𝑣(𝑡)



𝑣(𝑡) can be measured as:

𝑣 𝑡 = න
−∞

∞

𝑒 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏

From linear feedback theory, we recall the following important theorem
When the open-loop transfer function of a linear feedback system has a large magnitude compared with unity 
for all frequencies, the closed-loop transfer function of the system is effectively determined by the inverse of the 
transfer function of the feedback path. 
Stated in another way, the closed-loop transfer function of the feedback system becomes essentially independent of 
the forward path.

• The inverse of this feedback path is described in the time domain by the scaled differentiator:

𝑣 𝑡 = 
1

2𝜋𝑘𝑣

𝑑𝜙2 𝑡

𝑑𝑡

• The closed-loop time-domain behavior of the phase-locked loop is described by the overall output 𝑣(𝑡)
produced in response of he angle 𝜙1 𝑡

• The magnitude of the open-loop transfer function of the phase-locked loop is controlled by the loop-gain 
parameter 𝐾𝑜

Assuming that the loop-gain parameter is large compared with unity, application of the linear feedback theorem 
to the model:

𝑣 𝑡 ≈
1

2𝜋𝑘𝑣

𝑑𝜙1 𝑡

𝑑𝑡
= 

1

2𝜋𝑘𝑣

𝑑

𝑑𝑡
2𝜋𝑘𝑓 

𝑡
𝑚 𝑡 𝑑𝑡 = 

𝑘𝑓

𝑘𝑣
𝑚(𝑡)



𝜙2 𝑡 = 2𝜋𝑘𝑣 
𝑡
𝑣 𝑡 𝑑𝑡 ➔ 𝑣 𝑡 =

1

2𝜋 𝑘𝑓

𝑑𝜙2 𝑡

𝑑𝑡

𝑑𝜙𝑒 𝑡

𝑑𝑡
= 
𝑑𝜙1 𝑡

𝑑𝑡
− 2𝜋𝑘𝑣 ∞−

∞
𝑒 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏

𝑑𝜙𝑒 𝑡

𝑑𝑡
= 
𝑑𝜙1 𝑡

𝑑𝑡
− 2𝜋𝑘𝑣 ∞−

∞
sin(𝜙𝑒)ℎ 𝑡 − 𝜏 𝑑𝜏

sin(…) ℎ(𝑡)×

න

Σ ×
𝜙1 𝑡 𝜙𝑒 𝑡

-

𝜙2 𝑡

2𝜋𝑘𝑜

𝜙2
′ 𝑡 𝑣(𝑡)

1

2𝜋𝑘𝑣

Non-linear



FM STEREO
Stereo multiplexing is a form of frequency-division multiplexing (FDM) designed to transmit 
two separate signals via the same carrier. It is widely used in FM radio broadcasting to send 
two different elements of a program



PULSE MODULATION: TRANSITION FROM 
ANALOG TO DIGITAL COMMUNICATIONS

In continuous-wave (CW) modulation, which we studied in AM and FM, some parameter of a sinusoidal 
carrier wave is varied continuously in accordance with the message signal.
In pulse modulation, some parameter of a pulse train is varied in accordance with the message signal. In this 
context, we may distinguish two families of pulse modulation:

1. Analog pulse modulation: periodic pulse train is used as the carrier wave, and some characteristic feature 
of each pulse (e.g., amplitude, duration, or position) is varied in a continuous manner in accordance with 
the corresponding sample value of the message signal. 

2. Digital pulse modulation: the message signal is represented in a form that is discrete in both time and 
amplitude, thereby permitting its transmission in digital form as a sequence of coded pulses.

50𝑜 𝐶 (DECIMAL) ➔ 110010 2

50.00001300434450➔
10001110000110111100110000101011000111000111000010010 2



Sampling Process

In signal processing, sampling is the reduction of a continuous-time signal to a discrete-time signal. A common 
example is the conversion of a sound wave to a sequence of "samples".

The sampling is being made with a sampling period of 𝑇𝑠 which is taken to be ≤
𝑇𝑓

2
, where 𝑇𝑓 is the maximum 

frequency in the message signal 𝑔(𝑡).

𝑇𝑠 =
1

𝑓𝑠
This ideal form of sampling is called instantaneous sampling.

The samples version of 𝑔 𝑡 can be writes as:

𝑔𝑠 𝑡 = 

𝑛=−∞

∞

𝑔 𝑛𝑇𝑠 𝛿(𝑡 − 𝑛𝑇𝑠)

{𝑔 𝑛𝑇𝑠 } = {… , 𝑔 −𝑇𝑠 , 𝑔 0 … . 𝑔 1𝑇𝑠 , 𝑔 2𝑇𝑠 , … . }

𝑓𝑠 = 10 𝑠𝑎𝑚𝑝𝑙𝑒𝑠/𝑠𝑒𝑐𝑜𝑛𝑑



Sampling Process
clear

clf

ts = .02;

t1 = .5:ts:1;

t2 = .5:.001:1;

stream = ones(1,length(t1));

y1 = t1.^2.*sin(2*pi*1*t1) ;

y2 = t2.^2.*sin(2*pi*1*t2) ;

subplot(3,1,1)

plot(t2,abs(y2),'LineWidth',2)

xlabel("time (s)")

ylabel("y")

set(gca,'FontSize',15)

subplot(3,1,2)

stem(t1,stream,'^','LineWidth',2)

xlabel("time (s)")

ylabel("y")

set(gca,'FontSize',15)

subplot(3,1,3)

xlabel("time (s)")

ylabel("y")

stem(t1,abs(y1),'^','LineWidth',2)

set(gca,'FontSize',15)



A human retina is less than a 
centimeter square and a half-
millimeter thick. It has about 100 
million neurons, of five distinct kinds.



Sampling process and Sampling theorem

𝑮𝒔 𝒇 = 𝒇𝒔σ𝒎=−∞
∞ 𝑮(𝒇 −𝒎𝒇𝒔) 𝒈𝒔(𝒕)

𝐺𝑠 𝑓 = 𝑓𝑠𝐺 𝑓 + 𝑓𝑠 σ𝑚≠0 𝐺(𝑓 −𝑚𝑓𝑠)

➔ 𝐺 𝑓 =
𝐺𝑠 𝑓

𝑓𝑠
, −W < f < W

If 𝑓𝑠 = 2𝑊

𝐺 𝑓 =
1

2𝑊
σ𝑚=−∞
∞ 𝑔

𝑛

2𝑊
𝑒−

𝑗𝜋𝑛𝑓

𝑊

g 𝑡 = ∞−
∞
𝐺 𝑓 𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓

𝑔 𝑡 = ∞−
∞
[
1

2𝑊
σ𝑚=−∞
∞ 𝑔

𝑛

2𝑊
𝑒−

𝑗𝜋𝑛𝑓

𝑊 ]𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓

… .

𝑔 𝑡 = 

𝑛=−∞

∞

𝑔
𝑛

2𝑊
𝑠𝑖𝑛𝑐(2𝑊𝑡 − 𝑛)

Nyquist rate
The Nyquist Sampling Theorem states 
that: A bandlimited continuous-time 
signal can be sampled and perfectly 
reconstructed from its samples if the 
waveform is sampled over twice as 

fast as it's highest frequency 
component.

𝒇𝒔 ≥ 𝟐𝒇𝒎



g(t) ➔ G(f)

𝑔𝑠 𝑡 ➔ 𝐺𝑠 𝑓 = 𝑓𝑠σ𝐺(𝑓 −𝑚𝑓𝑠)
𝒇𝒔 ≥2w

2𝑓𝑠

𝑊−𝑊

𝑊 2𝑊
3𝑊

𝑓𝑠 =
1

𝑡𝑠

𝑓𝑚

Guard band

LPF
𝐺𝑠(𝑓) G(𝑓)



g(t) ➔ G(f)

𝑔𝑠 𝑡 ➔ 𝐺𝑠 𝑓 = 𝑓𝑠σ𝐺(𝑓 −𝑚𝑓𝑠)

𝑓𝑠 <2w

2𝑓𝑠

𝑊−𝑊

𝑊 2𝑊 3𝑊
Aliasing



g(t) ➔ G(f)

𝑔𝑠 𝑡 ➔ 𝐺𝑠 𝑓 = 𝑓𝑠σ𝐺(𝑓 −𝑚𝑓𝑠)

𝒇𝒔 =2w
2𝑓𝑠

𝑊
−𝑊

𝑊 2𝑊 3𝑊

Nyquist rate ➔ 𝑓𝑠 = 2𝑓𝑚 = 2𝑊



Pulse amplitude modulation (PAM)
𝑠 𝑡 = σ𝑛=−∞

∞ 𝑚 𝑛𝑇𝑠 ℎ(𝑡 − 𝑛𝑇𝑠) = 𝑚𝑠 𝑡 ∗ ℎ(𝑡)

𝑆 𝑓 = 𝑀𝑠 𝑓 𝐻(𝑓)

𝑀𝑠 𝑓 = 𝑓𝑠 σ𝑘=−∞
∞ 𝑀(𝑓 − 𝑘𝑓𝑠)

𝑆 𝑓 = 𝑓𝑠 σ𝑘=−∞
∞ 𝑀 𝑓 − 𝑘𝑓𝑠 𝐻(𝑓)

The summation terms follows therefore that the PAM signal is mathematically equivalent to the convolution of 𝑚𝑠 𝑡 and

ℎ 𝑡 , where ℎ 𝑡 is a standard rectangular pulse of unit amplitude and duration 𝑡.

ℎ 𝑡 = 𝑟𝑒𝑐𝑡
𝑡 −

𝑇
2

𝑇
=

1, 0 < 𝑡 < 𝑇
1

2
, 𝑡 = 0, 𝑡 = 𝑇

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

There are two operations involved in the generation of the PAM signal:

1. Instantaneous sampling of the message signal.

2. Lengthening the duration of each sample



ℎ(𝑡) ℎ(𝑡 − 𝑡𝑜) ℎ(𝑡 − 2𝑡𝑜)



𝑛=−∞

∞

ℎ(𝑡 − 𝑛𝑡𝑜)

….….

ℎ(𝑡)

ℎ(𝑡 − 𝑡𝑜)

ℎ(𝑡 − 2𝑡𝑜)

….….



ts = .2;

dudtycycle = .5;

end_t = 2;

t = linspace(0,end_t,10000);

st_PWM = 0;

st_PAM = 0;

st_PPM = 0;

x_saw = sawtooth(2*pi*(1/ts)*t);

for n = 1:end_t/ts

st_PWM =  st_PWM + rct(n*ts,t,ts*(sin(2*pi*1*(n*ts))+1)/6);

st_PAM =  st_PAM + sin(2*pi*1*(n*ts))*rct(n*ts,t,ts*dudtycycle) ;

st_PPM =  st_PPM + rct(n*ts

+ts/6*(sin(2*pi*1*(n*ts))+1),t,ts*dudtycycle/10) ;

end

subplot(3,1,1)

plot(t,st_PAM )

hold on, grid on, title("PAM")

plot(t,sin(2*pi*1*(t)),"--")

subplot(3,1,2)

plot(t,st_PWM )

title("PWM"), hold on, grid on

plot(t,sin(2*pi*1*(t)),"--")

subplot(3,1,3)

plot(t,st_PPM,"-r")

hold on, grid on, title("PPM")

plot(t,sin(2*pi*1*(t)),"--")

function y = rct(q,t,w)

y  = heaviside(t-q)-heaviside(t-(q+w)); 

end

Pulse DURATION modulation (PDM) and pulse POSITION modulation (PPM)

𝑠 𝑡 = 

𝑛=−∞

∞

𝑔(𝑡 − 𝑛𝑇𝑠 − 𝑘𝑝𝑚(𝑛𝑇𝑠))

Where 𝑔 𝑡 is the standard pulse of interest, 𝑘𝑝 is the 
sensitivity factor of the pulse position modulator 



Pulse position modulation generation technique

Sample 
and hold

Adder 
Threshold 

circuit

Pulse 
shaping 

filter

Pulse 
generator

Sawtooth 
generator

𝑚(𝑡) 𝑠(𝑡)
PAM PDM PPM𝑣(𝑡)



T = 10*(1/50);fs = 20000; t = 0:1/fs:T-1/fs;fontSIZE = 13;

subplot(6,1,1)

mt = 2*sin(2*pi*2.5*t)

plot(t,mt, 'LineWidth',2 )

set(gca,'FontSize', fontSIZE)

subplot(6,1,2)

x = sawtooth(2*pi*50*t);

plot(t,x, 'LineWidth',2 )

set(gca,'FontSize', fontSIZE)

subplot(6,1,3)

threshold = 1.0

plot(t,x+mt, 'LineWidth',2 )

thr = threshold*ones(1,length(t));

hold on

plot(t,thr)

set(gca,'FontSize', fontSIZE)

subplot(6,1,4)

plot(t,(x+mt)>=threshold, 'LineWidth',2 )

set(gca,'FontSize', fontSIZE)

subplot(6,1,5)

edges = diff([(x+mt)>=threshold, 0 ]);

plot(t,edges>0, 'LineWidth',2 )

set(gca,'FontSize', fontSIZE)

subplot(6,1,6)

PPM_OUT = ppm_shape(edges>0,40);

plot(t, PPM_OUT, 'LineWidth',2 )

set(gca,'FontSize', fontSIZE)

function [y] = ppm_shape(x,n)

y = 0;

for i = 1:n

y = y + circshift(x,i);

end

end



Sample Quantization Code

1 1 0000

1 - 0.125 2 0001

1 - 2*0.125 3 0010

--- 4 0011

--- 5 0100

…. … ….

X_16 16 1111

Quantization process
Quantization, in mathematics and digital signal processing, is the process of mapping input values from a large 
set (often a continuous set) to output values in a (countable) smaller set, often with a finite number of elements. 
Rounding and truncation are typical examples of quantization processes.



Pulse-Code Modulation (PCM)
• In pulse code modulation (PCM), a message signal is represented by a sequence of coded pulses, which is 

accomplished by representing the signal in discrete form in both time and amplitude.
• The basic operations performed in the transmitter of a PCM system are sampling, quantization, and encoding.
• In other words: A signal is pulse code modulated to convert its analog information into a binary sequence, i.e., 1s 

and 0s. The output of a PCM will resemble a binary sequence. The following figure shows an example of PCM 
output with respect to instantaneous values of a given sine wave.

OPERATIONS IN THE TRANSMITTER
1- Sampling.
2- Non uniform quantization:
• The sampled version of the message signal is then quantized, thereby providing a new
representation of the signal that is discrete in both time and amplitude. The weak passages
that need more protection are favored at the expense of the loud passages.
• The use of a nonuniform quantizer is equivalent to passing the message signal through a compressor and then 

applying the compressed signal to a uniform quantizer.
3- Encoding: 





Basic Elements of PCM



clear

clf

Ts = .1; % SAMPLING PERIOD

t1 = 0:Ts:1;

t2 = .0:.001:1;

stream = ones(1,length(t1));

y1 = 100*t1.^2.*sin(2*pi*1*t1) ;

y2 = 100*t2.^2.*sin(2*pi*1*t2) ;

subplot(4,1,1)

plot(t2,abs(y2),'LineWidth',2)

xlabel("time (s)")

ylabel("y")

set(gca,'FontSize',15)

subplot(4,1,2)

stem(t1,stream,'^','LineWidth',2)

xlabel("time (s)")

ylabel("y")

set(gca,'FontSize',15)

subplot(4,1,3)

xlabel("time (s)")

ylabel("y")

stem(t1,abs(ceil(y1)),'o','LineWidth',2)

yabs = abs(ceil(y1));

set(gca,'FontSize',15)

bin_seq = dec2bin(abs(ceil(y1)))

for i=1:length(bin_seq)

text(t1(i),yabs(i)+10,bin_seq(i,:))

end

subplot(4,1,4)

xlabel("time (s)")

ylabel("y")

bin_seq = bin_seq;

bns = str2num(bin_seq(:))

t11 = linspace(0,1,length(bns)); % Time Vector

s = stairs(t11,bns,'LineWidth',2); % Plotting3

xlabel("time (s)")

ylabel("y")

set(gca,'FontSize',15)



Non uniform quantization

𝜇 − 𝑙𝑎𝑤: In this type of compression, the 
relationship between the input signal and the 
output signal of the compressor is as follows:

𝑭𝝁 𝒎 =
𝒍𝒐𝒈(𝟏 + 𝝁|𝒎|)

𝒍𝒐𝒈(𝟏 + 𝝁)
𝑚 : the normalized input signal
𝐹 𝑥 : the normalized output signal

Another compression law is called 𝐴 − 𝑙𝑎𝑤:

𝑭𝑨 𝒎 = ൞

𝑨 𝒎

𝟏+𝒍𝒐𝒈(𝑨)
, 𝟎 ≤ 𝒎 ≤

𝟏

𝑨

𝟏+𝒍𝒐𝒈 𝑨 𝒎

𝟏+𝒍𝒐𝒈(𝑨)
,
𝟏

𝑨
≤ 𝒎 ≤ 𝟏

𝑭𝝁 𝒎 𝑭𝑨 𝒎



TIME-DIVISION MULTIPLEXING

• The sampling theorem provides the basis for transmitting the information contained in a band-limited
message signal as a sequence of samples of taken uniformly at a rate that is usually slightly higher than the
Nyquist rate. An important feature of the sampling process is a conservation of time. That is, the
transmission of the message samples engages the communication channel for only a fraction of the
sampling interval.

• We thereby obtain a time-division multiplex (TDM) system, which enables the joint utilization of a common
communication channel by a plurality of independent message sources without mutual interference among
them.




