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Introduction to Communication
Systems

* What is a communication system?
* Any means for transmission of information.

* Examples: Telephone, Telegraph, Mobile
phone, TV, Radio, Internet, hard disk in a
PC, Radar, Satellite, microwave link. ...
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Elements of a Communication
System

o Communication involves the transfer of
information from a source to a recipient via
a channel or medium.

» Basic block diagram of a communication
system:

Channel ‘
}SourcelﬁTransmiﬁer——)Receiver Recipient
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Brief Description

Q
8w

Source: emits analog or digital data.

Transmitter: transducer, amplifier, modulator,
oscillator, power amp., antenna

Channel: e.g. cable, optical fiber, waveguide,
radio link (free space)

Receiver: antenna, amplifier, demodulator,
oscillator, power amplifier, transducer

Recipient: e.g. person, speaker, computer
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Transmitter
. o),z .
o |t may include transducer, amplifier, modulator,

. oscillator, power amplifier and antenna.
S
» [t modifies the message or the baseband signal
for efficient transmission by a process called

modulation.

e Other functions: filtering, amplification, radiation
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Modulation

Modulation: the process by which the base
band signal is used to modify some
parameter of a high frequency carrier.

Types of modulation

* Continuous wave (CW) modulation.

— RF sinusoidal carrier wave(30K-300GHz).
* Pulse modulation.

— RF pulse carrier wave.
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Why modulation?

For ease of radiation.

Modulation for multiplexing.

For exchange of SNR with BW.

To over come equipment limitation.
To match channel characteristics.
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Channel

o |t is the physical medium between the
transmitter and the receiver. It can be guided,
as optical fiber cables, waveguide, or unguided
as radio link, water, free space. L Ve

o Whatever the medium, the signal is corrupted in
a random manner by noise and interference ——
(thermal noise, lightning discharge, automobile
ignition noise, interference from other users ...)

* Both additive and nonadditive signal distortions
are usually characterized as random
phenomena and described in statistical terms.

10
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Mathematical Model of Channel

o |_inear
> filter

> K(t)
h(f)
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/0O of a comm. channel

|r(l‘) - S(Z‘) % h(t) + n‘(z‘) '
R
= [h@)s@-1)dr +n(D).

13
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Channel Bandwidth

» The bandwidth of a channel is the range of

frequencies that it can transmit with
reasonable fidelity.

* For example, the bandwidth of
—twisted pair: several hundred kHz
—coax cable: several hundred MHz
—wave guide: few GHz
—optic fiber: very wide

14
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Receiver

Its main function is to recover the message
from the received signal.

It includes antenna, amplifier, demodulator,
oscillator, power ampilifier, transducer

Demodulation: inverse of the modulation

Operates in the presence of noise &
interference. Hence, some distortions are
unavoidable.

Some other functions: filtering, suppression of
noise & interference Sog2 Ay

15
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« Types of Communication Systems

* guided & unguided (wireless).

e

» Digital & analog,
» Point-to-point & broadcasting,

—_
oe______) =3

Scanned by CamScanner



Types of comm. systems

° Analog comm. system

» Transport analog information using analog
modulation techniques (AM,FM,PM). )
» Digital comm:. system. A
» Transport digital information using digital /7 ) o
modulation techniques (ASK,FSK,PSK).
*  Hybrid comm. system.
» Transport digitized analog information using one of
~ the following digital techniques:
1. Analog pulse modulation schemes
~— (PAM,PDM,PPM).
2. digital modulation schemes (ASK,FSK,PSK). |
3. Pulse code modulation schemes (PCM,DPCM, 0).7.
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. Types of Transmission

e Base-band transmission:
| — Short distance.
9 — No modulation is needed. —~ (\/P
» Band-pass transmission:
@ - long distance.
@ — Modulation is needed.
@ - Analog or digital.

_ (‘v?)
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Transmission Terminology

- Simplex transmission

— One direction
¢ e.9. Radio and television broadcast.

e Half duplex transmission
— Either direction, but only one way at a time
¢ e.g. police radio(walki-talki)
* Full duplex transmission

— Both directions at the same time
° e.g. telephone,
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Simplex vs. Duplex

@ Send or receive ) Simplex

Send and receive .
@ (Only one way at a time Half-duplex
Send

®) e @  Ful-Duplex

/ simultaneously

VORY
: Wf 20
< .nf/‘¢ }/9
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Analog Transmission

« Analog signal transmitted without regard to
their content (May be analog or digital
data)

o Attenuated over distance

~ = Useamplifiers to boost signal

o Also ampllﬂes noise, thus received signal
will be distorted.

o If digital data is encoded then amplifiers
will increase BER (bit error rate).

J

S ¢
oSas U5 ey )T | 21
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Digital Transmission

« Concerned with content of the signal.

e Integrity endangered by noise, attenuation
etc.
T ‘Repeaters used to achieve greater
distance.
- Repeater receives signal
» € Extracts bit pattern -

é/-Retransmits new signal
s & -Attenuation is overcome

* -Noise is not amplified 22
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Transmission Impairments

Signal received may differ from signal
transmitted

Analog - degradation of signal quality
Digital - bit errors
Caused by

— Attenuation and attenuation distortion
— Delay distortion
— Noise

23

Scanned by CamScanner



Attenuation

o Signal strength falls off with distance

e Depends on medium
-guided: attenuation is logarithmic.

-unguided: attenuation depends on
atmospheric structure.

> Received signal strength:

— must be enough to be detected
— must be sufficiently higher than noise to be received
without error

24
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Atten. Cont.

o Attenuation is an increasing function of

frequency.
_attenuation distortion affects analog signals
much more than digital signals.

- Fading channel.
. Equalizers: reduce attenuation distortion.

25
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Delay Distortion ¢, ;. =. _,

Only in guided media
Caused by: Propagation velocity varies

with frequency.

- different frequency components arrive at the
receiver at different times causing phase

shifts.
for digital data delay distortion introduces
inter-symbol interference (ISI).

Equalizers : reduce delay distortion.

26
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~ Noise

 Additional signals inserted between
transmitter and receiver

 Thermal
— Due to thermal agitation of electrons
— Uniformly distributed
— White noise

* Intermodulation

— produce signals at frequency that is the sum
and difference of original frequencies sharing
a medium.

— Caused by nonlinearity in Tx, Rx, or channel _
because of signal strength.
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—Noise cont.

o Crosstalk
— A signal from one line is picked up by another

» Impulse
— Irregular pulses or spikes
— e.g. External electromagnetic interference
— Short duration
— High amplitude
— Severe effect on digital signal of high data

rate.
29
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Radio Communication Channels
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[ MHz+10¢  Medium Frequency AM broadeasting
MF (300 kHz - 3 MIz)

+ Low Frequency Radio beacons, weather broadcast stations
LEF (30 - 300 kHz) for air navigation

T Very Low Frequency Navigation and position location
YLF (3- 30 kHz)

[kHz+10®  Ultra Low Frequency Audio signals on telephone

ULF (300 Hz - 3 kHz)

- Super Low Frequency Tonospheric sensing, electric power
SLF (30 - 300 Hz) distribution, submarine communication

T Fxtremely Low Frequency ~ Detection of buried metal objects
ELF (3 - 30 Hz)
1 Hz+ Magnetotelluric sensing of the
= f<3Hr N
earth’s structure
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Frequency (Hz)

i Corien
— Band Applications
] 1
Z s Extremely High Frequency ~ Radar, advanced comurunication systems,
EHF (30 - 300 GHz) remnote sensing, radio astronomy
| - Super High Frequeney Radar, satellite communzcation systems, aircraft
Microwave SHE (3- 30 GHz) navigation, radio astronomy, remote sensing
|GHz+10°  Ultra High Frequency TV broadeastmg. radar. radio astronomy.,
UHE (300 MHz - 3 GHz) microwave ovens, cellular telephone
T Very High Frequency TV and FM broadcasting. mobile radio
t VHE (30 - 300 MHz) communication, i traffic control
High Frequency Short wave broadcasting
HEF (3-30 MHz)
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EE 325: Chapter 2

Introduction to Signals
and systems

M. A. Smadi
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Outlines

Classification of signals and systems
Some useful signal operations
Some useful signals.

Frequency domain representation for
periodic signals

Fourier Series Coefficients

Power content of a periodic signal and
Parseval’ s theorem for the Fourier series
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Classification of Signals

» Continuous-time and discrete-time signals
* Analog and digital signals
. Deterministic and random signals

signals 5 g ectum
Qo\/\
)& . Power and energy signals
~ _+ Causal and non-causal.

(_+ Time-limited and band- limited. |
* Base-band and band-pass.
* Wide-band and narrow—band W3

X < \/’/( 2
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Continuous-time and discrete-time

periodic signals

B

%
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Continuous-time and discrete-time
aperiodic signals

Scanned by CamScanner



Analog & digital signals

- |f a continuous-time signal g(n can take on any
values in a continuous time interval, then ¢ is

called an ana/og signal.

+ If a discrete-time signal can take on only a finite
number of distinct values, ¢(#] then the signal is

called a dlg/ta/signal.
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Analog and Digital Signals

5 (kg Yo b &Y
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Deterministic signal

* A Delerministic signalis uniquely
described by a mathematical expression.

* They are reproducible, predictable and
well-behaved mathematically.

* Thus, everything is known about the signal
for all time.
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A deterministic signal
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Random signal

« Ranadom signals are unpredictable.

« They are generated by systems that
contain randomness.

At any particular time, the signal is a
random variable, which may have well
defined average and variance, but is not
completely defined in value.

10
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B

A random signal

!l ‘,L‘! l‘l 'l, A I,." I
H " / 4

Scanned by CamScanner



Periodic and aperiodic Signals

* Asignal x() is a periodicsignal if

X ()=x(+nT,),Vt,n is integer.

T, : period(second)

So= TL(HZ ). fundamental frequency

0
o =2xf (rad/sec), angulr (radian) frequency

» Otherwise, itis gperiodicsignal.

12
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_,Squaresignal

-2 - Timeo(s) 2
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A

_vawtooth signal

-1 TimeO(s\ .

Scanned by CamScanner



. A simple harmonic oscillation is mathematically
described by

x®=Acos(@t+0), for-o<t<ow

» This signal is completely characterized by three
parameters:

A: is the amplitude (peak value) of x(t).
o: is the radial frequency in (rad/s),
O: is the phase in radians (rad)

15
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Example:

Determine whether the following signals are
periodic. In case a signal is periodic,
specify its fundamental period. T

a) X,(t)= 3 cos(3x t+n/6), .o,
b) X,(t)= 2 sin(100~ t),

c) x3(t)= X1 (t)+ x2(t)

d) x4(t)= 3 cos(3n t+n/6) + 2 sin(10 t), s -«
€) Xs(t)= 2 exp(-j 20 = t)
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Power and Energy signals

« A signal with finite energy is an energy signal
+%0

E, = “g(z‘)lzdt < 00!

A signal with finite poWer is a power signal

- +T,?Aw"mm

{ .
P, = hm— g(t) dt < oo
- ° T—oeo [’ -]J‘/L | l o o
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Power of a Periodic Signal

. The power of a periodic signal x(t) with period
T, is defined as the mean- square value over
a period

R
P =— j x () dt
L Ty/2

18
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Example D

. Determine whether the signal g(t) is power or

iqnals or neither,
energy sign Nt

6 2 4 6 8 19
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Exercise

* Determine whether the signals are power or
energy signals or neither:

1) X(t)= u(t) Po e
2)y(t)=Asint

3) s(t)=t u(t)

4)z(t)= S(r) ew/8Y

S)v () =cos(107t )u ()

6)w (¢)=sin 27zl [u(t)-u(t - 2r)]

20
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Exercise

« Determine whether the signals are power or energy
signals or neither

x () =acos(wt +6,)+b cos(a,l +6,)

1)

2) ¥ (1) =acos(of +6))+b cos(of + .)

3) » ()= ZT: c,cos(w,l +6,)

n=1

21
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Exercise: Determine the suitable measures for the signal
X(t)
‘Sawtooth signal

: i
i :
I 1

-1 TimeO(s\ 1

22
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T
Some Useful Functions

Unit impulse function
Unit step function
Rectangular function
Triangular function
Sampling function
Sinc function

Sinusoidal, exponential and logarithmic
functions

23
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O(t) =+

r

QO

Unit impulse function

* The wnit impulse function, also known as the
0’/rac o’e/z‘a funcz‘/on 6(1) |s deflned by

>

0,

SN

t—()‘
z‘;:O

o)

+00

and j 5(t) dt =1

—00

» 24
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* Multiplication of a function by 6(t)

8@ ot - ~1)=g(7) (1)
2(0) 5(1)=g(0) 5(0),

« We can also prove that

I:-l".)C'

[s(0)8(-7) de=5(7)

sy sy d = .s-(())%



Unit step function \\
o The wnit step function (1) is
1, >0
vu(t):<0, t<0§

* u(t) is related to 3(t) by

u(t)= |o(r) dr: =0(t)
‘LHE) —joo (T) Codr ( );,
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V Unit step

28
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Rectangular function

+ A single rectangular pu/seis denoted by
(
I, III <7/2
| 4 L
:rect[—) =40.5, ltl =7/2
.‘ T

0, |t|>7/2
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_Rectangular signal
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NP Triangular function

* A Ilriangular functionis denoted by

r

(ol 1

A\ T ;
; 0, £>—1-
o\ AN
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* Sinc function

SN C 2= l

sinc(x ) = sin(@rx )

) &t XU

e e —

« Sampling function

g ’\\"":/K‘)/ s

Nevsy - 2

5r, (t)= Z o(t —nT,), T :samplig interval

H==/
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Sinc signal

-5 0 5
Time ()
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Some Useful Signal Operations

* Time shifting
g(r—r) (shift right or delay)

g +r) (shift left or advance)
» Time scaling

g (at).|a|> 1 is compression

g (ar),|a|<1is expansion

g(4).|a|>1is expansion

g(;—).[a,-< l is compression

34
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Signal operations cont.

e Time inversion

g (=) : mirror image of g () about Y-axis

g (—t +1): shift right of g(—¢)
g (—t —7):shift left of g(—)

35
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Scaling
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Time Inversion

2 . e

1.8 .

|

1 J

05} o

o J

-5 5

2 — ;

!
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1t ]
0.5

0 _

-5 5
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Inner product of signals

* Inner product of two complex si
' gnals x(t), y(t) over
the interval [t1,t2] is 0y

I

(e @)y @) =[x @)y ()

I

If inner product=0, x(t), y(t) are orthogonal.
o

(DTN
. (J// -
e
™ T

40
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Inner product cont.

« The approximation of x(t) by y(t) over the interval
[1,.1.] is given by

x()=Cy({)

« The optimum value of the constant C'that minimize
the energy of the error signal

e(t)=x)-Cy()

is given by C :EL I x (1)y (t)dt

¥ 41
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Power and energy of orthogonal
signals

* The power/energy of the sum of mutually
orthogonal signals is sum of their individual

powers/energies ,i.e., if
x(t)=> g,
i =l

Such that g,(f).7 =1,...n are mutually
orthogonal, then

p.=).p,
i=1

42
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Time and Frequency Domains
representations of signals

* Time domain: an oscilloscope displays the
amplitude versus time

* Frequency domain: a spectrum analyzer

displays the amplitude or power versus
frequency

) !:requency-domain display provides
Information on bandwidth and harmonic
components of a signal

43
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Benefit of Frequency Domain
Representation

* Distinguishing a signal from noise
X(t) = sin(2rx 50t)+sin(2rx 120t);
Wt) = x(t) + noise,

 Selecting frequency bands in
Telecommunication system
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’/Sigéwal Corrupted with Zero-Mean Random Noise

0 10 20 30 40 50
Time (seconds)
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Fourier Series Coefficients

. The.freguer?cy domain representation of a
peﬂc?d/c S/gnalis obtained from the
Fourier series expansion.

* The frequency domain representation of a

non-/.oeriodic s/gnalis obtained from the
Fourier transform.

47
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o The Fourier series is an effective technique for
describing periodic functions. It provides a
method for expressing a periodic function as a
linear combination of sinusoidal functions.

e Trigonometric Fourier Series

e Compact trigonometric Fourier Series

e Complex Fourier Series

48
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Trigonometric Fourier Series

x () =a,+ ) (a,cos2znf,f +b, sin2znf )

n '--l

a =-——I.x (t) cos(ZﬂnfOz‘)dr

0 Ly

i\b,, Ti j (t)sm(272'nfot)d1‘ '

0T,

49
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Trigonometric Fourier Series
cont.

a, = ]—"]- f x (1)l

07,

50
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Compact trigonometric Fourier
series

x(@)=c, + Zc” cosQanf ¢ —6)
k=1

51

Scanned by CamScanner



Complex Fourier Series

o If x(t) is a periodic signal with a
fundamental period To=1/4

x@—ZDe”W

11=—%0

o e — - — -

° D “are called the Four/er coefficients

52
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Complex Fourier Series cont

.
»

__‘/'(}

"

53
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Frequency Specira

» A plot of |D,| versus the frequency is called the
amplitude spectrum of x(t).

» A plot of the phase 6, versus the frequency is
called the phase spectrum of x(t).

 The frequency spectra of x(t) refers to the
amplitude spectrum and phase spectrum.

Scanned by CamScanner



Example

* Find the exponential Fourier series and sketch
the corresponding spectra for the sawtooth
signal with period 2 n

2| . | J

1 L} -

0.5 -}-/- .

0t f
10 -5 0 5 10
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Power Content of a Periodic Signal

* The power content of a periodic signal x(t)
with period T, is defined as the mean- square
value over a period

+1y/2

%— []xof dti

0 ~Ty/2

)
|
3
!
i
| —
'
|
|
.

58
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Parseval’'s Power Theorem

* Parseval' s power theorem series states that
If X(t) is a periodic signal with period T, then

ZPr
1T i
T _[ Ix ()| d’_ﬁco+2—— .
i =Ty:2 i
|
' % +Za Zb?

59
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Example 1

 Compute the complex Fourier series coefficients for
the first ten positive harmonic frequencies of the
periodic signal f(t) which has a period of 2r and
defined as:

f(t)=5%"0<t<2x

60
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—Xxample 2

« Plot the spectra of x(t) if T,= T/4

<AL

. w e } | | e
NN T AR W Y SR [m-
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=xample 3

* Plot the spectra of x(t).

x(1)= Z o —nly)

62
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Classification of systems

* Linear and non-linear:

-linear :if system i/o satisfies the superposition
principle. i.e.

Flac, () +bx, () =ay, (1) + by, (t)
where y (1) = Flx ()]
and Ya(t)=Flx,()]

63
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Classification of sys. Cont.

* Time-shift invariant and time varying

-invariant: delay i/p by t0 the o/p delayed by same a
mount. i.e

i y@)=F[x)]
then y(f —f0)=F[x2(t _to)]
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Classification of sys. Cont.

« Causal and non-causal system

- causal: if the o/p at t=t0 only depends on th
and previous values of the i/p. i.e

yo)=Flx(1),0 <t,]

4\l

LTI system is causal if its impulse response is causzl.

i.e.
h(t)=0,vVr <0
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Suggested problems

2.1.1,2.1.22.1.4,2.1.8
2.3.1,2.3.3,2.3.4

2.4.22.4.3
2.7.1,2.7.4,2.7.5

2.8.1

66
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EE325: Chapter 3

Analysis and
Transmission of Signals

.
1>
/)
}
h
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Outline

Introduction

Fourier transform and its inverse

Fourier transform of some useful functions
Properties of Fourier transform
Transmission through LT| system

Correlation functions and spectral
densities.
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Introduction

* Fourier series works for periodic signals only.

What's about aperiodic

signals? This is very

large & important class of signals

AN ¢
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Its spectrum

"m a T
. “ - ,
i |
V11T
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Introduction (cont.)

Aperiodic signal can be considered as
periodic for T 2 «

Fourier series changes to Fourier transform,
complex exponents are infinitesimally close in
frequency

Discrete spectrum becomes a continuous one,
also known as spectral density
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Fourier Transform and Its Inverse

« Fourfer transform: if g(t) is aperiodic signal then

G(f)= Jg(/) e""'z'ﬁrdl%

2(0) = fG(/‘) e 2 1gf

-7

0)=G ()
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FT cont.

GUrH=6( e

* For real g(t),

SN :amplitude spectrum
O(f ) .phase spectrum
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Example

* Find the FT and plot amplitude and phase spectra
of:

1) g()=e™u(t)

2) x(1)=e"u(-t)
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Fourier Transform of Some Useful
Functions

1 ) R
2 l <=> o)
) e’ S5 -f,)
3) eV o S +f )
4) rect (£) < T sinc(fT)
5) A(R)Ye T sinc’ (fT)

6)cos(2n_fcl)© Lo =S )+6( +/ )]
Sin(27f,1) & H0U - )-8 +1)]
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Spectra of
v(t)=Asm2xfy

!
Al 2 | g0
4 i J T-*
-fO fo -fD *- }
900
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Time domain Frequency domai k

Arsmﬂﬁ
1 T
raec:t(t){ll2
i 0|f|>
1 4-»
T 01 32N 1 1V2 8
2 2 rt 17 7 T
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Properties of Fourier Transform

. Llnearlty

ax, (z‘)+a7x (t)<—%71X (f )+a X, (f)

» Time shifting: X (l 1 )<_>X (f )e—/“/ /o

* Time reversal: ’x( t)('»X( f)

» Time scaling: X (af) < :

i 4

X (L)
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* Frequency shift (modulation): \

x(z‘)e’w“ <—>X(f -—-f)

e Time diﬁerentiation:%x(r) = 27Z'f X (f

* Time mtegratlon

o — e —

/4

,jx(f)dro , ] X(f)+1X(0)5(f)
. j2xf |
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* Time Convolution:

\(f)‘*‘/l(/)<~——-> X ()H(f )

1\(r) “h(t) = j\(r)lz(l - r)c/r*

* Time Multiplication (Frequency convolution)

XOYOX V()
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« Duality

I x@) X))
then X (1) ex (=)

* Differentiation in frequency

dX (/)
af

(—=j27x)x (1) <
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Examples

» Use the Fourier transform properties to find
the Fourier transform of the following:

1) X (’/)=e“‘ﬂ'
2)g(t)= sinc(2B1)

-7 2

3) y (1) = rect ()
4) vy =etsin@afu)
O) x(@)=sgn(t)

6) gt)=u()

18
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Fourier transform of periodic signal

 If x,() s periodic signal of period 7, then

X,(0)= Z x(t-ml,)=+ Z X (nf, '™

n == n =~

Then the Fourier transform of ~,«) is
Z x(@-mT )(—»—‘- ZX(H/U)()(/ —-nf,)

==

19
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Signal Transmission Through a
Linear Time Invariant System

°* System representation

* Impulse response and transfer function
* Distortionless transmission

20
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System Representation

* A system is defined mathematically as a
transformation or operator that maps an input
X(t) into an output y(t).

System |

X (1) —> — v )

Ml

21
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Impulse Response of an LT
system

. The impulse response of an LTI system is defined
as the response of the system when the input 1S

o(t). 1.e
/ (f ) =) ([ ) ‘Lx (1)=0(1)

» For any arbitrary input signal x(t), the response

Y =x()*h(t) = TX(T) hit —f)dfé

| SN U S — ——— = — e s o it ;b - - - . . - come o —

.
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Frequency response of an LTI system

° The transfer function of an LTI system is

Hy=21y

3 ([ ) x (1)=e’ =

H()=[H ()]el?

. The response to an mput X(t) is

Y (f)=X()H()

23
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Signal Distortion during Transmission

° The transmission of an input signal x(t) through
a system changes it into the output signal y(t).

* During transmission through the system, some
frequency components may be boosted in
amplitude while others may be attenuated.

* The relative phases of the various components
also change due to different delays.
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Distortionless Transmission

° Transmission is said to be distortionless if

Y (f)=X (F)H(f)=kX (f )7
S H({ )=k e/*"

25
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Dispersive channel

» Channel which adds distortion is dispersive
channel.

- Amplitude distortion: when HOl#k  channel
is a fading channel.

- Phase distortion: when 6(f )#«f , channel
is a jittering channel.
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The Nature of Distortion in Audio
and Video Signals

 The human ear can perceive amplitude

distortion but it is relatively insensitive to phase
distortion.

* The human eye is sensitive to phase distortion

but is relatively insensitive to amplitude
distortion.

27
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|deal and Practical Filters

A filter is a system whose transfer
function takes significant values only

in certain frequency bands. Filter are
usually classified as

—Low-pass,
—high-pass,
—Band-pass, or
—Band-stop

28
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ldeal Low-Pass Filter

i/(/ { / ]
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Transfer function of an ideal LPF

H e () = rect ( ..-__,_) -1,

—h(1)=2f, sine (2. (1 =1,))
—» unrealizable

30
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|deal High-Pass Filter
[H ()
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|deal Band-Pass Filter

|H(w)]
] ] >
—0)2 —0)1 U) 1 0)2 (’j)
0, (o)
\
L Wy O ’
—0y —04 \ ; 0
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ldeal Band-Stop Filter
[H(o)]
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Pkt fOVflﬁ\f\Sf:

0, otherwise

34
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Ideal versus Practical Low-Pass

Filter
by (l)
LPF
] —'ﬁ
h(t)

yi)=x(-t,)

h(t) 2f sinc [2f (-1, )]

35
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* For a physical realizable system, h(t) must
be causal; that is,

h(t)=0,vt <0
* One practical approach is to cut off the tail
of h(t) for t<0

h(t) = h(t) u(r),

* If ty is sufficient large

h(t)~ h(t)

-
&
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Filter or System Bandwidth

The bandwidth of an ideal low-pass filter
Bw =1,

The bandwidth of an ideal band-pass filter

Bw :—'fh —f/ :f 7 —..f 1
No bandwidth for high-pass and band-stop filters.

For practical filters, a common definition of filter
bandwidth is the 3-dB bandwidth.

38
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Signal Bandwidth

 The bandwidth of a signal can be defined
as the range of frequencies in which most
of the energy or power lies.

* It can also be defined in terms of the 3-dB
bandwidth.

* The signal bandwidth is also called the
essential bandwidth of the signal

39
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Signal Energy and Energy Spectral
Density

° The signal energy can be determined from its
Fourier transform using Parseval's theorem

E, =T]g(t)|2dr = I\G(f)‘zdf

40
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—
Example

» Verify Parseval's theorem for the signal

]
g(t)y=e™u(r), = E =1/2a
1) gW)=e™u(r), G() j2/tf+a:> ,

2) x(7)=sinc(Rar)

41
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Energy Spectral Density (ESD)
EE j ¥ (f)df
Whe1e ‘P (f) IG(f)'

¥ (1) is called the energy spectral density (ESD)

o For previous example

]
¥, ()=

(27f )2+a2 42
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Example

« Estimate the essential bandwidth B of the
signal

g)=e"u(l)

if the essential bandwidth is required to
contain 95% of the signal energy.

- F
Ly =B =20 I
—F (2”:[ )- +a”

2a

=12.7a rad /s A
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Correlation of Energy Signals

» There are applications where it is
necessary to compare one reference
signal with one or more signals to
determine the similarity between the pair
from which some information will be

extracted.

» This comparison can be done by
computing the correlation between these
signals. 4
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Cross-correlation

« A measure of similarity between a pair of energy
signals, x(¢) andy () is given by the cross-
correlation function expressed as

v, (0= [x@)y@-odr

—o0

45
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Cross-correlation cont.

. If we wish to makey (¢) the reference signal, then
the corresponding cross-correlation function is

given by

é(//yx(z'): J’y(f)x(l—f)dl:

: 46
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Autocorrelation function

+ In the special case where ¥ ()=x(t) , we have

the aufocorrelation of x (1) which is defined as

|

x(t)x(t—-1)dt:

| Y :

~ :

N i

o
[pa—

47
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Properties of Crosscorrelation and
Autocorrelation functions

wxy D)=y, (- f)
% (r)=y.(-7)




» Autocorrelation function and the energy
spectral density

v, (1) =¥, (/)

« ESD of the Input and the Output

Y O=H O V)

49
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Signal Power and Power Spectral B

Density
» For a__rgal power signal g(t)
L iTi2
t . I ,
P =lim— j o2 (¢) dt
: > T-—)f T 1 .

» The tlme averaged autocorrelatlon function of
g(t) is defined as
I 1 +T /2 |
9% [(D)=lim— | g(t)g(t-r)dr

——)3"T —T/')

e S - e - 90
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- Autocorrelation of periodic signal

* If g(t) is periodic with period T

1 T2
R @)= | g g-n)ar
- T ]

51
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. The power spectral density (PSD) of g(t).s, v,
is the Fourler transform of R ('r)

,_.__ —— b -_—-—

S )= *J%g(we-”ﬂffdfg

| —o0

R,(0)= [ 5,0)e d

[ e et e s m—t e e e+ ———

1 sT/2

R, (O)=lim— [ g*(r)dt = jS (F)df = Pi

o0 T T

52.
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PSD cont.

* Input and output spectral densities

5= 5.6

53
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Example

 Find the autocorrelation function and ESD of
x({)=e¢ u(t)

v ()= [ e @ u(t)e ™ u( -r)dt

|

. < |

:e‘"J-e’“’ di = —e "V

i g 2d

 Hence ] 2
p = = X !
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Suggested problems

3.1.3, 3.1.5, 3.1.7
3.2.3,3.2.5
3.3.1,3.3.2,3.3.6
3.4.1

3.5.3,3.54

3.6.1

3.7.4, 3.7.5

3.8.1,3.8.4

55
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EE325: Chapter 4 (Lec. #1)

Amplitude Modulations &
Demodulations

M. A. Smadi
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Outlines

Introduction
Base-band and Carrier Communication
Amplitude Modulation (AM):DSB-Large Carrier

Amplitude Modulation: Double sideband- Suppressed
Carrier (DSBSC)

Quadrature amplitude Modulation (QAM)
Single Sideband Modulation (SSB)
Vestigial Sideband (VSB)

Frequency mixing

Superhetrodyne AM radio.

Frequency division multilplexing (FDM).
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Introduction

* Modulation is a process that causes a shift in
the range of frequencies of a message signal.

® A communication that does not use modulation
Is called baseband communication

* A communication that uses modulation is
called carrier communication
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Example of AM transmitter

Information Signal

Audio ./ i

- Oscillator Asf:}m
Ourtput I
Modulator \ Amplifier | \

YWWWWWWWAW , '
Carrier AM Wavefaorm
Generator | \ . ES |

Carrier Wave
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Example of AM (radio) Receiver
Ankans W

ol ol AL
i ——f—/

(RF Ampifir [ Miser | IF Amplifis (= IF Amplifer [)2:23(;; AF Amplifier -m

—

’ /’ l \:\ R nLy"f('WC/ Loodspeake
it ,;;.’ | Locl Mw
Oscillator
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- W«

" Baseband and Carrier

Communication

« Baseband Com.: is message signal (information
signal) delivered by the information source. It is

usually low frequency signal.

» Communication that uses modulation to shift
the frequency spectrum of message signal is
known as carrier communication.

— Amplitude modulation (AM)
—Frequency modulation (FM)
—Phase modulation (PM)
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Amplitude Modulation (AM)
“— Double Sideband Large Carrier (DSB-LC)

S )=[m@)+A]cos2xf 1

g

¢
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mi(r)

/\m' Sgm

A+ m)>0 for all s

\ { ——=
(a)

*'I”'

A+mu)>0 for all ¢

—
R \
(b) { ——
Envelope
A+ m(" En\'clopc

V/\[uw.- N

/' (d)

14+ m(1)]

(c) D Vo,
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Another example of AM Waveform
| (single tone modulation)

Cer

LT

EUV{/OPE b

o

c(t)=FE,sm2xf 1
m(y=E snm2xf f

s()=\k.+m@)]sin2xf 1

m

9
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Modulation Index

* The amount of modulation in AM signal is given by
Its modulation index:

n I
1= _ P _ = max Ymm m p = min | m (f )l
A E max + E min
E =4 +in . L= -,

When m,=A, p=1o0r100% modulation.

Over-modulation, i.e., m, >A (x>1), should be
avoided because it will create distortions. 10
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Effect of Modulation Index

m (i)
A
o {.f:n-...

=
-« .
V A
Jaiereererert
s >
@ /.Hx\
N =)
_.._.._ Jl'kﬂ S
\nlllh
L
\.ollllll..
A N
Y o R —
[N '
Y \1\
/(/|l.|h..lll..\.llllll|.c\
ll-ﬂ*.
= h?
o —
™~ H "ﬂ.l”‘l.f
Q Q
gy T A.H




~ . :. ' y r
\ = -
| \ A " |

u=t

'\
~
“

'l"‘i'-’ ‘ﬂ A1 1)

i

1

r‘ .
i R “

» Time
\ oL
rn;-c;"'.—iwl\‘l.
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Effects of Modulation Index

w W\‘M‘
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Sideband and Carrier Power
S, @)=[m({)+A]cos2xf 1

; _ 1
Carrier Power: -5
Sideband Power: ,,‘=f2£

Total power: =P, +P,

L) N

P+P A +P

¢ s m

Power efficiency: n=

For single tone modulation: {m(t) = ud cos2xf, 1) J

Pm _(/_IA_)_-_ﬁlz__L’l
2 2447 14
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efficiency, %

Power efficiency of AM

() 02 04 06 038 l

| ' Modulation index
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Example

« Conventional AM signal with a sinusoidal
message has the following parameters:

A=10, u=0.5, f.= 1MHz, and f,= 1kHz
1. Find time-domain expression s...(")
2. Find its Fourier transform

3. Sketch its spectrum

4. Find the signal power, carrier power and the
power efficiency

5. Find the AM signal bandwidth

16
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Generation of AM Signals
diode as NLE or as switch

ool

L

i
Bandpass '(fi

filter 0
if\
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Square-law modulator

v, () =av, (1) +bv] (1) Honipzmt

pe’ v;(l)=[aA +2Abm(t)]cos2nf t @SQ WA

t/‘ / [, =3B B:m(t) BW; To avoid overlap the spectrum of

m*(r) and M(/-fc)
Y
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Switching modulator

* Assume |m(1)|T 4,and diode an ideal switch

Sar(E)=[m(t)+ A4 cos2xf.t 1¢(t),

o) = —l-+zzj: D cos[2zf .(2n —1)t]

2 I n=1 2n -1
+¢(1) :Square train pulse; then pass it BPF (/)

v, (1)= [-’—4—- +-?1m(t )]cos2rf 1
2
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Demodulation of AM signals

* AM signals can be demodulated by
—Envelope detector
—- Rectifier detector

—Coherent (synchronous) detector.
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Envelope Detector

g b s o
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Envelope Detector (Cont.)

Amplitude
4

y (1)

Envelope
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Rectifier Detector

Low-pass

A% m]cos g iler
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l [0 + m(1)] cos wy Vall) [A+ m(1)]
ﬂ'fh\}\ w”! 1

ym\u_ ! ‘ -

‘W' é é

l
T
. e R .
[4 +m(1)] cos w1 g filter R? _11_; )
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Rec. Detector cont.

* Hence,

,.\,—(r) =[A +m(t)]cos2zf t ¢(r),

-1_3

o2& (=) P rme zen
o(l)=—=+— ——cos[27zf . (Zn —1) ]
2 53 2n—1
e Or
1
Vo ()=—[A +m(t)]+ high freq. rerms

T
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Coherent detector

£m(r)cosd

A cos(2rf 1 +0)
|Local oscillator
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Advantages/Disadvantages of
Conventional AM (DSB-LC)

* Advantages
— Very simple demodulation (envelope detector)
- “Linear” modulation

* Disadvantages
— Low power efficiency

— Transmission bandwidth twice the message
bandwidth.

27
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EE325: Chapter 4 (Lec. #2)

Amplitude Modulations &
Demodulations

Scanned by CamScanner



Double-sideband suppressed carrier DSBSC

(Modulating signal)

cos @, ¢
(Carrier)

m(t) cos W
R SEEL RS
(Modulated signal)

(a) Modulator
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The modulating signal m(t)

m(/
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!.f

‘a
é (_rittf
U .“.“,,,..

DSBSC signal: m(t) cos(w,t)

.b. 3, aE.FJ.h
o T
e

LY
~

S e

Scanned by CamScanner



N —)

Modulated signal m(t) cos(w, 1)

m(f)\ e A-.. mi1)cos @ |
) : .
,I' ~ /
\\ ’I’
J, \\
-‘ '4"‘ -
\\‘ . e
d "~ L
_f/ \- ‘.&-’
(1)
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Example.

——y

A (f]
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S.(f)
Upper Lower © T ower Upper
sideband sideband sideband sideband

DN
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DSBSC Modulators

* DSBSC signal can be generated using several
types of modulators:

— Multiplier Modulators
—Nonlinear Modulators

— Switching Modulators
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A cos(2af t)

oscillator
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Nonlinear Modulators
Single Balanced Mod.

m(r) ' x|
»_%- NL
e ' — NL

»(n

Ya(1)

y()=ax(t)+bx ()
z(t)=2am (1 )+4bm(t)cos(27zf 1)
| e

10

| BPF
+

t >

4bm(1) cos w, !
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Switching Modulators ]

S i)

kil jeos 2xf 1

7 BPF s
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Switching Modulators

m(t)

/\/‘_

w(r)

n=1 =11

l-

ﬂ m(t)w(e)
_ -

12
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14

Diode-bridge mod. (switch)
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Series-bridge diode modulator

15
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16

Shunt-bridge diode modulator
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Ring Modulator

Y Bandpass
(i) V filter
d e e——

km(1) cos G,
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Ring modulator
Double Balanced Mod.

w (1)
W
4 / ( ])n‘l (b)
wo(l)=2w({)-1=— S cos| 27 (2~ 1y
(1) ) /_[;2”_] |2/, i |
m(r) vi = m(t)wy(t)
{ =i
) (d)
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Demodulation of DSBSC

m(t)cos(2xf 1)

2m(t)cosd

A cosQ2af 1 +0)

Local
oscillator

19
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Quadrature Amplitude Modulation (QAM)

LPf
ol e

2008 27 f[__‘_ ¢
Local carrnier

QA’\-‘\ _900
S 2 SiN27 s t
LPF
X A1) Y o(t)
Transmitter Raceiver
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Transmitter

cos 27 fs t XS

t)
5 >

QAM

signal
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4

X (1) |
1
B ams

Receiver
LPF

y (1)

P

2Cos 27 fpt

Local carrier

-900°

2 Sin 27 fC {

PE
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QAM cont.

* Quadrature multiplexing is used in color
television to multiplex the signals which carry
the information about colors.
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EE325: Chapter 4 (Lec. #3)

Amplitude Modulations &
Demodulations
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Single Sideband (SSB)

T (fF )

-
(&)
S )
Upper Lower ¢ ( ‘Lower Ul?per
sidebaind sidebainnd sideband sideband
Gt ! £
- O fe
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SSB time representation

Seep W)Y=m (@ )cos2zf 1 Fm (1)sin 27f 1
—:USB
+:LSB

N . .
() =m() —{‘_ Hilpert transform of m (1)
by

OR
M, (f)==jM (f)sen(f Y= M (f YH ()

—-7/2, f >0

= Ideal phase shilter by 7/2
/2, [ <0

H(f)=l<
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SSB representation

J\F(){L"

\- o\ o a . - l

M ()Y=M{ ) y=M( )= [lesgn(f)) = _;M L4 M ()
."1_ (/‘ ) =\ (/‘ )’l (-—-‘-/p ) =\ (/ )%l] _Sgn(/' )I ______:l;["‘:[ (,/ ) "‘.I'.'\Ih(/” )]

Hence,

Suss (V=M ([ -fc)+M ( +fc)
1 L oo . "
=5[-'V(/ ~fc)+M(/f 'f".lt").l-a;'[-'\/;,(/ =fe)=M (/" +/c)]

AND,
S () =m(t)cos2af 1 —m, (1)sin27f t
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Example

* Single tone message signal: m(r)=cos21/./
* Then !N;,(:')=CLWS(2,T‘/'f,,,f—.7/2)=si11(3f(/',,,/)
Hence,

Sz (1) =cos(2af 1) cos(2af .1 ) Fsin(2af, I)slll(.-/t/ 1) =cos(2Af £/ ¥)

S ) == [ac/ +f )+ =S )]

Sissl/ )——[o(/ )+ S+ )]
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Selective filtering method

Upper S ; Upper
sideband psg 1 sideband
. T
fe 0
|H f
.T » [
-fe 0 fC
Upper S.(f) Upper
sideband T sideband
AN i

fe
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Selective filtering method (Cont.)
BPF

4+ |S. ()

7 ™ SSB signal
L

—
e
L
T
= —

Local carriaer
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Phase-Shift Method

M (f)

» Frequency

Upper g Upper
sideband c () sigzband
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m (t)

Phase-Shift Method

DSB signal

cos 27 f(\ !

:

e

-90
0 m (t}%

sin 27 fC t

+

s (t)
) M =
SSB

signal

DSB signal
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Phase=Shift Method (Cont.)

* Advantages:
—Does not deploy bandpass filter.

—Suitable for message signals with frequency
content down to dc.

* Disadvantage:

—Practical realization of a wideband 90°
phase shift circuit is difficult.

10
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Demodulation of SSB Signals

* Demodulation of SSB signals can be accomplished
by using a synchronous detector, as used in the
demodulation of normal AM and DSBSC signals.

* If we want to use an envelope detector, it can be
shown that we must insert a pilot carrier signal
Acos(2 7f t) to the SSB signal,

where A >> m(t) and A >>m, ()

° The pilot signal carries most of the transmission
power which becomes inefficient.

11
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Vestigial-Sideband Modulation (VSB)

Upper S Upper
sideband = sicl=bhand

! - 1 >
'I(C ") O‘(ﬁ
Upper Spo(r) Upper
sideband T sideband
N N&(ﬁ » 7

& i) -
-~ - o~
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VSB modulator

Se(t)
— /SB signal
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Demodulation of VSB

» Demodulation of VSB signals can be accomplished
by using a synchronous detector.

LPF
Sc(:) X(f)*i,yg)

COoS 27 fC ¢

Local carrier
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Transfer function of LPF in VSB receiver

Spsp(f ) = (M (f +f )+M(f =) H e )

A= S (F +/ ) +Spsp (=)

Y(F)=MF)=X (f)H,..(f )

=M GOH 5o (F +f )4 H e (F —fH 122 (7))
Hence

i ()= — =2
HBPF(f —‘fc)_%_H',:gp]: (7 TTL ) o
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MU

S| .

= M(0) /—

-

]

Vi)
21 /(0) -
K prd
{ I ] )
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VSB+C

¢ VSB modulated signals can also be detected
by an envelope detector.

e As in the demodulation of a SSB signal, we
need to send a pilot carrier signal, resulting an
inefficient use of available transmitted power.

18
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Comparison of conventional AM, DSB-SC,
SSB and VSB.

Conventional AM: simple to modulate and to

demodulate, but low power efficiency (50% max)
and double the bandwidth

DSB-SC: high power efficiency, more complex to
modulate & demodulate, double the bandwidth

SSB: high power efficiency, the same (message)
bandwidth, more difficult to modulate &
demodulate.

VSB: lower power efficiency & larger bandwidth but
easier to implement.

19
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EE325: Chapter 4 (Lec. #4)

Amplitude Modulations &
Demodulations

M. A. Smadai
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Multiplexing

Multiplexing: combining a number of message
signals into a composite signal to transmit them
simultaneously over a wideband channel.

Two commonly-used types: time-division
multiplexing (TDM) and frequency division
multiplexing (FDM).

TDM: transmit different message signals in
different time slots (mostly digital).

FDM: transmit different message signals in
different frequency slots (bands) using dlfferent
carrier frequencies. :
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m (t) S. t)
1 Modulator A

Srmre i
“FDM
-
FDM signal

v

fodulator

(@) Transmitter
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S s (1)
FOM +

+ |5, 1(,! | m 1{? j
P‘ Z ————-| Demodulator F——
Zfe
BPF o |
~ SC 1({ ) /7 9{2‘ ]
£ ——®{Demodulator ——
*fe
PE o |
S it} 7 (f ]
+ (" 5. / f D"’ }
L -1 Demodulator
T fe A

(b} Receiver
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Time Division Multiplexing

Switch Switch

----------------

R Output 1

Signal 1

-
Channel __,/

Slgnaln—H -—J Output n

—— Timer eyt
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TDM

=
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AM receiver for many radio stations ?

SFom (1)

_...

s (1)

c1

Demodulator

S ol )

Demodulator

1 Demodulat

(b) Receiver

m (t)
()

m 5(: )
or l——’
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Frequency mixing

- |t is desired in communication system to transiate
the spectrum of the modulated signal up word or
down word in frequency to be centered around

desired frequency
fo= =1
, f, —f. :up conversio#
=Jo = {f _—f, :down conversiorn
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Superheterodyne AM Receiver

Anlenna

W

A

RF
Incoming  amplifier
EM filed =Y -
\
\=

\ B

Miyel {->

Baseband

ampa il VOICE.

\ ‘@ fatod.
)
T 05 Ty

\ —

, AG0 J wdeo. data

! AbomatrL
NoltmecowbAo |
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» The RF amplifier § [
amplifies the . /o
incoming signal N /,/
and start the )
process of |
selecting the o
wanted station I I I
and rejecting the R
unwanted ones. " o et e

Stunal = (Ll
srengh |
il the ¢
AT ;
ot T
|
jii -
i | I
1} - =

h{TH] K1 bl 230 ity Srepees-
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The Mixer and the IF Amplifier

finfenna
/\/ .; \ T Baseband
[ output:
; ! ke
Incoming (t’a/mphi;; {\ L '
EM filed S e voIce,
AGC l video. data
\ Volwne cuakb \_
\
\
A ‘\'\" dl':““’;t( AFC may be used
12
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Hl( ﬁ) " ( ‘ S I ; Frmage abben wetion
Ce— - |

£ = ?50 ,% - 1305 Rimag= 1.760KHZ

—
i
L

455k, ] 455KHE
*
( ﬂlokﬂz
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vt

The input to the diode delector ’f.gf | M;
(rom the JagtIF ampi}ﬁc{ V ‘V IW

Dutputef diode deteclorincludes:

2 DC level. ﬂ‘f\'\wk j\f\w
the audio signal, 0V
ripple at [F Iroguency

Output afler {llering

Scanned by CamScanner



This part of the transmission
At low signal strength the  will overload the receiver
AGC circutl has no effect  gnd cause distortion

AGC OFF /W& A

oooooooo

]‘hj'eshold ]cve! ..................................

o — R ‘nlni .

The AGC has limited the

AGC ON amplification to prevent
overload and distortion

Thieshold level
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Carrier Acquisition

> To ensure identical carrier frequencies at the
transmitter and the receiver, we can use quartz

crystal oscillators, which are generally very
stable.

» At very high carrier frequencies, the quartz-
crystal performance may not be adequate, we
can use the phased-locked loop (PLL)

18
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e ———

| Phased-Locked Loop (PLL)

. Phase-locked loop is one of the most
commonly used circuit in both
telecommunication and measurement

engineering.

s PLL can be used to track the phase and the
frequency of the carrier component of an

incoming signal.

17
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« A PLL has three basic components:
1. A voltage controlled oscillator

2. A multiplier
3. A loop filter H(s)
Vi) OF x(t) Loop Filter €o(1)
X
H(s)

Vout(t) | Voltage-Controlled
Oscillator (VCO)

recovered carrier signal
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In every application, the PLL tracks the
frequency and the phase of the input signal.
However, before a PLL can track, it must first
reach the phase-locked condition.

In general, the VCO center frequency differs
from the frequency of the input signal.

First the VCO frequency has to be tuned to the

Input frequency by the loop. This process is
called frequency pull-in.

Then the VCO phase has to be adjusted
according to the input phase. This process is
Known as pfase lock-in.

19
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How the PLL works?

v, (1) =4 sin(w,1+6))

iy i
Loop Filter
H(s)
Voltage-Controlled
Oscnllator (VCO)

v, . ()=B cos(a).f+t9m_)“

x(t)-ABIZ.[SI'n(-O 8)+sinogdt 640
e,(t)=0.5 AB sin(0,-6,)= 0.5 AB sin(6,)

o | "
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EE325: Chapter 4 (Lec. #5)

Effect of Noise on Analog
Communication Systems
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Introduction

o Angle modulation systems and FV can provide 2
high degree of noise immunity

o This noise immunity is obtained at the price of
sacrificing channel bandwidth

 Bandwidth requirements of angle modulation
systems are considerably higher than that of
amplitude modulation systems
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EFFECT OF NOISE ON AM SYSTEMS

° Effect of Noise on a Baseband System
° Effect of Noise on DSB-SC AM

° Effect of Noise on Conventional AM
r()=u(t)+n(r)

* (1) ‘is the Txd signal

*1(!) tis the additive White Gaussian noise process
(thermal noise) characterized by its flat PSD of

S, (f)="2 (Walt! Hz)
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Effect of Noise on a Baseband System

Since baseband systems serve as a basis for comparison of

various modulation systems, we begin with a noise analysis of a
baseband system.

In this case, there is no carrier demodulatlon to be performed.

—e—

The receiver consists only of an ideal low pass filter with the
bandwidth W.

The baseband noise power at the output of the receiver, for a
white noise input, is

Ny
P, = J'_W»—zidj = N

If we denote the received power by P, the baseband SNR is given

b
NJ, NJV
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White Noise Process

o White process is processes in which all frequency components
appear with equal power, i.e., the power spectral density (PSD),

S (f), is a constant for all frequencies. )
the PSD of thermal noise, S, (f), is usually given as S,() =75
(where k is Boltzrnann's constant and Tis the temperature)

The value kT is usually denoted by N, Then S, (/) ="

Sa 8

Flaasu o Spwecttrann o

- Filganse S.19

7 white procoess.

AY A

IV

Figzure S.200 1'oser spac vt ol

-

tharimal noesee,
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Effect of Noise on DSB-SC AM

Madutatesd Poe-, . W
signal > Bandc-pass ’

. . liter
A (})
-}

Ncse
L)

o Transmitted signal : (1) = Am(t)cos(27 f.r)

> Cemaoditator

. Oulput

sigral

) o« n -
e e s i
i
i
!
]
. i . —_—

* Afiltered noise process can be expressed in terms of its in-phase and

quadrature components as

n(t) = A(r)cos[ 241 1+ O()] = A(/) cos O(r) cos(2f 1) - A sin O(1)sin(2 4/ 1)
= (1) cos(2 1) - n, (1)sin(2af.1)
— where n,(t} is in-phase component and n(t) is quadrature

component
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Effect of Noise on DSB-SC AM

° Received signal (Adding the filtered noise to the
modulated signal)

ry=u(r)+ nr)
= A.m(t) cos(lﬁfci)+ n.(1)cos(2x f.r)—n (1) sin (277./;f)
* Demodulate the received signal by first multiplying r(t)

by a locally generated sinusoid cos(2nft ), where is the
phase of the sinusoid (coherent detection).

° Then passing the product signal through an ideal
lowpass filter having a bandwidth W.
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Effect of Noise on DSB-SC AM

¢ The multiplication of r(t) with cos(2nfct) yields

r(rycos(2x £.1) = u(r) cos(27 /i) +n(f)cos(2x f.r)
= A,m(1)cos(27 f.1)cos(27 fit)
+n, (r)cos(2;rj:.r)cos(27rfcr)— n.(1 sin(.-'Zzz'f({)cos(B;rf(I)
— %:’Lm(f) +1.A.m(r) cos(47 fct)
+4n () +1n.(Ncosldx f1)- n, ()sin(47 [.1)]

° The lowpass filter rejects the double frequency components and

passes only the lowpass components:

we)y=1Am@)+Ln ()
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Effect of Noise on DSB-SC A

Thferefore, at the receiver output, the message signal and the
noise components are additive and we are able to define a
meaningful SNR. The message signal power is given by

A’ 1

=—PF, :‘:)'PR

— power P,, is the content of the message signal
The noise power is given by
l 1

P =—pP =P
Y 4 78 4 n
The power content of n(t) can be found by noting that it is the
result of passing n(t) through a filter with bandwidth 2W.

o]

Scanned by CamScanner




Effect of Noise on DSB-SC AM

Therefore, the PSD of n(t) is given by

B\ f-fi<w
S = r =
A { 0  otherwise

The bandpass noise power is

2 =j:5n(f')4f’= —%‘-’-—xﬂfW =2WN,

Now we can find the output SNR as

(_:S‘_ _Po_ %PH _ABPM
NJ, B, {2HN, 2N,

p,
In this case, the received signal power is
Py=AZ2P,/2
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Effect of Noise on DSB-SC AM

- The output SNR for DSB-SC AM may be expressed as

(5%
N Opss N W
— which is identical to baseband SNR.

In DSB-SC AM, the output SNRis the same as the SNR for a
baseband system

— DSB-SC AM does not provide any SNR improvement over
a simple baseband communication system
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Effect of Noise on Conventional AM

* DSBAMsignal:  wu(r)y= A [L+am(t)|cos(2m [ 1)
° Received signal at the input to the demodulator

r(tr)y=AJ[l+am()]cos(2x f.r)+n(r)
= A[1+am (1)]cos2x f.1)+n_ (1) cos(erfcz)— n (1) sin(Zﬂfcf)

= [Ac[l +am()]+n_(1)]cos(2x f.1)=n, (1) sin(27 /1)
— ais the modulation index

— m(t) is normalized so that its minimum value is -1

— If a synchronous demodulator is employed, the situation is basically
similar to the DSB case, except that we have 1 + am(t) instead of m(t).

* After mixing and lowpass filtering

) v(t) = Y[ A am(t)+n (1))
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Effect of Noise on Conventional AM

° Received signal power
42
D) - & o )]
P, = [] - q B‘{J

— Assumed that the message process is zero mean.
» Now we can derive the output SNR as |
N 2.1 2 _4_?5[ 2 J

[E,,)Qw“ Lp  NW 1+dB, N

WA/ R R EY -15)
1+a*R, MW 1+a*P,\N), "\ N/,
— 7y denotes the modulation efficiency

~ Since a*P, <1+a’h, , the SNRin conventional AM is always smaller
than the SNR in a baseband or DSB systems.

13
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Fffect of Noise on Conventional AM

— In practical applications, the modulation index a is in the range of
0.8-0.9.

— Power content of the normalized message process depends on the
message source.

— Speech signals : Large dynamicrange, P,,is about 0.1.

* The overall loss in SNR, when compared to a baseband system, is a
factor of 0.075 or equivalent to a loss of 11 dB.

— The reason for this loss is that a large part of the transmitter power
is used to send the carrier component of the modulated signal and

not the desired signal.
¢ To analyze the envelope-detector performance in the presence of
noise, we must use certain approximations.
— This is a result of the nonlinear structure of an envelope detector,
which makes an exact analysis difficult.

i
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Effect of Noise on Conventional AM

— In this case, the demodulator detects the envelope of the
received signal and the noise process.

— The input to the envelope detector is
r() = [.4([1 +am (1] n (/)Jcos(_l'r./;/) —-n.(Nsin(27 f1)
— Therefore, the envelope of r ( t ) is given by
V(1) = Y[ 4L+ amD]+ 0O +n(r)

— Now we assume that the signal componentinr(t)is
much stronger than the noise component. Then

P(nc(l) << A|l+am(n)]) =1
— Therefore, we have a high probability that

V.()=A[l+am(®]+n()
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Effect of Noise on Conventional AM

* After removing the DC component, we obtain
v()=A.am(t)+n (1)
— which is basically the same as y(t) for the synchronous
demodulation without the % coefficient.
— This coefficient, of course, has no effect on the final SNR.

— S0 we conclude that, under the assumption of high SNR at
the receiver input, the performance of synchronous and
envelope demodulators is the same in terms of power
efficiency.
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EE325: Chapter 5 (Lec. #1)

ANGLE MODULATION &
DEMODULATIONS
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Qutlines

Introduction

Concepts of instantaneous frequency
Bandwidth of angle modulated signals
Narrow-band and wide-band frequency
modulations

Generation of FM signals
Demodulation of FM signals

superhetrodyne FM radio
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Introduction

- Angle modulation: either frequency modulation
(FM) or phase modulation (PM).

» Basic idea: vary the carrier frequency (FM) or
phase (PM) according to the message signal.

—~—

\\

o
¥ N
Infermation signal /K’/% High amplitude
| _— gives incredsed
frequency

Fra:qucncy modulated The amvplitude
carrieyr doex riok chﬁnge
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rectangular pulse

-
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« While AM is linear process, FM and PM are
highly nonlinear.

« FM/PM provide many ad\ﬁntages (main —
noise immunity, mterference exchange of
power with bandwidth ) over AM, at a cost of
larger transmission bandwidth.

» Demodulation may be complex, but modern
ICs allow cost-effective implementation.
Example: FM radio (high quality, not
expensive receivers).
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Concepts of Instantaneous
Frequency

* A general form of an angle modulated signal is
given by

SU)=Acost)(1)=A cos(2af 1 +¢ (1))

. \/\,/ﬁ\_/\

6.(1) is the instantaneous angle
@, (1) is the instantaneous phase deviation.
* The instantaneous angular frequency of S0)

do(t) _ » +a’¢{.(\r)
dt ‘ dt 7

W (1)=
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- The instantaneous frequency of S

] d(‘?{.(/‘)__ S | d¢,(”

/4‘1‘ (f ) — ¢
21 dt 27 dt
“M',\:U:;u
. Theﬂginstantaneous frequency deviation
| dg, (1)

)= 2r  dt
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Example

* for the signal below find the instantaneous

frequency and maximum frequency
deviation.

x()= A cos(10 nt + 7 t?)

f.@)=5+¢
A, (6) =1
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Phase modulation (PM)

- For phase modulation (PM), the instantaneous
phase deviationis ¢ ) = k,m (/)

S (1) = A cos [2xf 1 +/( m(1)]

° k,is the phase sensitivity of the PM modulator
expressed in (rad/ V) if m(t) is in Volts

 The instantaneous frequency of S, (1)
, dm(l)

27[ dt 10
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Frequency Modulation (FM)

* For Frequency Modulation (FM), the
Instantaneous phase deviation is

!

g(1) = k, j/): (a)d «

; .

Spy (1) =4 cos| 21 1 +k, Jm(a)c/a

k7 is the frequency sens/li;//a/of the FM
modulator expressed in rad/ V s if m(t) in Volts.

' The instantaneous fre?’uency of 5, ()

f()=f, + =L (1) "
27

Scanned by CamScanner



Angle modulation viewed as FM or
PM

~
“~ .' "‘ . - . - - - — - W G WA w—r o o —
S e _/

SR | TAVATR FTAVAA

FM signal WMAM/\/\[\M MAANANDN
IAAAA AL NAVAVAYA




11 (1)

m(r)

Phase
Modulator
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Facts

« A PM/FM modulator may be used to
generate an FM/PM waveform

» FM.is much more frequently used than PM

« All the properties of a PM signal may be
deduced from that of an FM signal

« In the remaining part of the chapter we
- deal mainly with FM signals.
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Example 5.1

» Sketch FM and PM waves for the modulating
signal m(t) shown in Fig. 5.4a. The constants k;
and k; are 2nx10° and 10x, respectively, and
the carrier frequency £.is 100 MHz..

FM k
f@)=f.+=—Lm@)=10"+10"m()
27
(f,)... =99.9MH:
(f,),.. =100.IMH= ;
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PM

Example Cont.

/,

v,
7

f)=f +==m)=10"+35m (1)

27

(fl' .)min =99 9MH=
(fi )max - 100 IA/IH:

16
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EE325: Chapter 5 (Lec. #2)

ANGLE MODULATION &
DEMODULATIONS
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t

Bandwidth of Angle Modulated
Signals

1) FM signals (using Taylor series)

)
"““*‘\ /D f\Q)‘d c)()\&l Cﬂ_}_q__. K)

S ., (1) = A Re{e/ 275 My a0 Kylepdb
=A [ cos2nf t)- k/ a(f)sm(erft)]

SN (vJCf\‘)

+A{———/§—’—/a (/)COS(Zﬂ'fl)+ ;/67/2;>S]1](?7T/ 1)+.. :|
104
where a(t) = J m(a)a’a

-

. =00 « : 2
B FM (theoretically)
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\\
» Narrow-Band Frequency Modulation (NBFM):

ke ra(r)|<<1

Snpa )~ A [ 003(2717( t)— k a(f )Sm(zﬂf ! )]
* Narrow-Band Phase Modulatlon (NBPM)

k,m(t)|<<1

Sy ) ~A| 082 1)k, mit)sin271) |
B yppy =2B 3
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A COS 27 fc L.
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Generation of NBPM

fﬁk% >k

L _900

_




e If k.atr). 1{Sccdcnvation)
B., =2(Af +B)=2B(f+1)
Kk m
ke g
27

Af maximum carrier frequency devuatlon
B: deviation ratio or modulation index
m, = max lm(/ )l
* Wide- Band Frequency Modulation (WBFM)
ks a(t)]>>1 or $>100

~ D Af
Bu'm‘w > 24/
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Single tone modulation

e Let m(t)=cos2xaf 1;

X (1) =A cos[27f 1 + Bsin(27f,1)] =4 Re[e’ (@r=Funanih

. By FS e 1A sment _ Z J” (/i)e_;mo.l
. Hence,

Xy (1) =4 i J () cos[.’lﬂ([r +nf )1]

J (B)= ._)lT. [ o/t#mx-mige s the nth order

Bessel function with first kind
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Spectrum of Angle-Modulated Signal

’ . . . , ) M - ‘ . ' . ¢
:' l’ M Y .’- " ' ‘. » - » b 0 \ v
- - N
' \ iy \ TRNTE i [N - -
- -
| 1 S L ERRIK s - - ! M |
- ®w
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- - ®
~ il N NS R H"‘ Y L - l _\ -
-
c——
. [N XL R Y s N )
- ————

IEE .. N - ]
t tui N | ! (FI
H the fast significant el s e 3ty o
N speclral component: TR 2 N X
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0.001 0005 0031 0115  0.353
0.020 0.129
0.002 0.
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| . 1 B Frequency
Ly fo T,
Er
2A7
‘4——-—-_‘@- B =5
F! l i !fl ! t L- lb" Frequency
<

-
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sz

* Note, /.(8 is negligible for n> 3 +1

B;-:u =2+ l)/‘m

Af :ak_,.

27

Af
3=
f .

« The results is valid only for sinusoidal signal

* The single tone method can be used for
finding the spectrum of an FM wave when
m(t) is any periodic s@gn:gl.m

e —

16
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EE325: Chapter 5 (Lec. #3)

ANGLE MODULATION &
DEMODULATIONS
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Features of Angle Modulation

» Channel bandwidth may be exchanged for
improved noise performance. Such trade-off
Is nof possible with AM

« Angle modulation is less vulnerable than AM
to small signal interference from adjacent J
channels and more resistant to noise. pm

« Immunity of angle modulation to O

nonlinearities thus used for high power

systems as microwave radio.
SYSTS
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FM is used for: radio broadcasting, sound
signal in TV, two-way fixed and mobile

radio systems, cellular telephone systems,
and satellite communications.

PM is used extensivelfy in data
communications and for indirect FM.

—

WBFM is used widely in space and
satellite communication systems.

WBFM is also used for high fidelity radio
transmission over rather limited areas.
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Generation of FM Signals

» There are two ways of generating FM
waves:

—Indirect generation

—Direct generation
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Indirect Generation of NBFM

S )= A4 [ oM 27 1)k, ).\iul‘."f‘ll]: k, A1) <<l

R
A C0S 27T fc .

—
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Indirect Generation of Wideband FM

* In this method, a narrowband frequency-
modulated signal is first generated and then a
frequency multiplier (nonlinear device) is used
to increase the modulatlon lndex

ﬂ_’, ———— _—-—-"—’ =

m(t) Frequency *emlh)
NBFI

6
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Indirect Wideband FM
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Armstrong Indirect FM Transmitter

6 —
@D | Frequency f;=12.8MH
@-\)/ | Af= 1.6 kH
-NBFM Multiplier
_ x64
f,=200 kHz
Af,= 25 Hz f.s=1.9 MH}
Y Af,= 1.6 kH}
Frequency| — " %
| o Multiplierfe BPF f—(X
i 48 | . f.
f,=91.2MHz
Af,= 76.8 kHz Oscillator

S MHZ |
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Direct Generation

» The modulating signal m(t) directly controls
the carrier frequency. [ /=7 =k m)]

» A common method is to vary the inductance or
capacitance of a voltage controlled oscillator.

Modulating WBFM
f
Resonance
frequency
f

C
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v
Voltage increases g Voltage decreases

- =7
Capacitance decreases | Capacitance increases

h

__

Frequency mcreases ‘

\~\ /”' ) Fl'equcng}: decreases
\ (
M v
\[\WVWV\ 10
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In Hartley or Colpitt osmllator the frequency is

e

given by
(5)\‘ - ":"’lt':":
JIL.C
If C=C,~km@) and km(t) << G,
(), = l . _____ll + /Lin(l_ll
}“.U“ Amu) \/l( 20,
\ C
(J+x) =l+nv, v <<
Hence W, =0 +hk m), k, = &(L‘)‘— N
o 2(
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— + Supply

\"JTf:gh'l[' £
!)]l ldg

L1
— N
4 |
FM | Oscillator Information
Output Signal
Y "
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» Advantage - Large frequency deviations are
possible and thus less frequency multnplucajygﬂ
IS needed.

S
- Disadvantage - The carrier frequency tends to

.~ drift and additional circuitry is required for
frequency stabilization.

e —————

e ———————

- To stabilize the carrier frequency, a phase-
locked loop can be used.

13

Scanned by CamScanner



o [ater!l!

Examples 5.6 & 5.7

14
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Demodulation of FM Signals
x(1)= A cos [a)(,t + ¢(f)]

FM
)=k 420

Demodulator di

* Demodulation of an FM signal requires a
system that produces an output proportional to
the instantaneous frequency deviation of the

input signal.
» Such system is called a frequency
discriminator. s
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Amphtude of
Qutput Stenal
A straight charactensue ¢
causes no distorion

AM Signal

I .

Input Frequency

! FM Signal

16
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* A freguency-selective network with a transfer
function of the form |H(0)|= a  over the FM

band would yield an output proportional to
the instantaneous frequency.

* There are several possible examples for
frequency discriminator, the simplest is the

FM demodulator by direct differentiation
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FM demodulator via direct differentiation ‘

Se(t) se(t) Envelo Y (t)
| I velope S
d/dl » detector ‘

———

s.(t)=4 cos[erfcr +k, I m(a)da}

1

- s.(t)=-4 [a)c +kfm(t)] sin (oct+kf jm(a)da

» The basic idea is to convert FM into AM
and then use AM demodulator. 18
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Bandpass Limiter

Hard | [ BPF
Limier O

() =A(t)cos[0(r)] 1, cos(8) >0 vo(t)=%cos[€(t)]

v, (6) ={

By FS ~1,cos() <0
v, (6) = i[cos(ﬂ) ~1/3cos(0)+1/5¢c0s(0) —..... ]
" Output signal |
11__ 01) =t +k, _fm(a)a’a
— o ® Input signal
1 19
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Preset amplitude limits

R / b AR b
y wv%m =1 Amplitude Limiter }— w UW W
Ngise sp'%ke.s on All the noise
Input signal 1s removed

. Any signal which exceeds the preset limits are '
simply chopped off 20
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EE325: Chapter 5 (Lec. #4)

ANGLE MODULATION &
DEMODULATIONS |
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Practical Frequency Demodulators

* There are several possible networks for
frequency discriminator

—FM slope detector

— Balanced discriminator
— Quadrature Demodulator

« Another superior technique for the
demodulation of the FM signal is to use the
Phased locked loop (PLL)
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Fvi Slope Detector

s.(@)=4 co:i 2f 1 +k, J‘ mia)xda

Ff M &'\C/}" O
Ampc\?-/{‘ ude Copen Tl EN\/L ’gﬂﬁ-@ﬁﬁ'u}é’/

8 | - 3

|
4 \
{ \
Y ; \

%Q‘» ‘ ‘ " : N O s ey S ' g o
\
k s .

PR TR T

AV

s
3
v

Vit 1

1L
I.

L—-'-,, LA
t
-

. —

\o -
| ; ;
N | B
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FM Slope Detector

Freguency to-
qmp dibisde Convetes™

A
\

R
A, IM __,_K“_

. .
fH) ( - ?[_/
: /
o )

Scanned by CamScanner



FM Slope Detector

I ! §
¥ } :
i ! i
: ! '
k {
" - t ‘.
3 " . -
o oy - . )
i -~ .'4
s - >
3 4
i J ;
}
{ ‘
o §
. *
{
; i "
5
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VA,

Balanced Discriminator

twvnc] cicwi P FaVelife |
#HE@P, J&hﬁ‘u/

Ton ad;mf H#) bred Gzc'vh}‘ 1
U\a{qc"l’lsl—/X\ thpu(wl I EL
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Balanced Discriminator (Cont.)

Tuned ciccu b4

Tuned corcuit#2 e
charectenistic

character l Sﬁ(—

—0

|
| Owerall Frequency-to~
| voltage characteriste

S+
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Balanced Discriminator (Cont.)

| ETERI S TN | S

.

Ay
-
g_) / % pry —— %
L ,_‘_e...'-._-.

-~

|
L

1l
i

A~
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Quadrature Demodulator
. FM is converted into PM

« PM detector is used to recover message
signal

M tnput
signal )
Phase Low Audio
1 Comparaior — Puss s Qurput
Circuit Filier stznal
Phase
Shifting
Circuit
5
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Quadrature Demodulator

_®__. Ry |— M)

T ST T T T T T |

| ¢ ,
— | A
] * ‘.,/.‘\ ,’v,\ A 1 I

' J(S{S( ) :'?J ) TN CP I

I L |

e e o e mmm eem e— we—— e e e

Phase shifter

10

r !
st)=A sin[.’./z)‘:_r +/(j-, f m(a)da%—/c;', mit )J
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Phase shift [degree]

..10’.

-30 .

-110

-130

-150 -

-170]

Phase response of phase shifter g

n
e L e T —

[ E : -
1.07 1.1

- S T — T
118 flhg

i

=190
0.95

b 107

Frequency [MHz)
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Transfer function of
Quadrature demodulator

7119
Z'ou.l,

A

fi

fri

12
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il Phase-Lockeq Loop (PLL)

V)= A sin(w 1+ 9 g
C ! ) €, (f )=k -2’ i
Vin(t) . .

Voltage-Controlled
Voul(’) =B COS((/..)CT +()0) OSC'IIator (VCO)
On &)=k, [m(@)da+x/2  0,0)=k [maxa+xi2-60)

e(t)=cdO (1) di x k,m() 13
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Zero-Crossing Detectors

« Zero-Crossing Detectors are also used because
of advances in digital integrated circuits.

. These are the frequency counters designed to
measure the instantaneous frequency by the
number of zero crossings.

. The rate of zero crossings is equal to the
instantaneous frequency of the input signal

14
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- m e e e mn. aemw

~ . .
OUIIIIIicuy

» Concepts of instantaneous frequency

* FM and PM signals

« Bandwidth of angle modulated signals
NBFM and WBFM

Generation of FM signals

— Direct and indirect generation
Demcdulation of FM signals
— frequency discriminator

- PLL

15
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EE325: Chapter 6 (Lec. #1)

Sampling and Pulse Code
Modulation

- M. A. Smadi
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Outline

introduction
Sampling and sampling theorem

Practical sampling and pulse amplitude
modulation (PAM)

Pulse code modulation (PCM)
Differential pulse code modulation (DPCM)
Delta modulation.
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Introduction

There is an increase use of digital communication
systems

Digital communications offer several important
advantages compared to analog communications

such as higher performance, higher security and
greater flexibility.

Digital transmission of analog signals require
Analog to Digital conversion (AD).

Digital pulse modulation
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Analog to Digital converter

Xa(t)

Sample
and hold

x(n)

Quantizer X | Coder  |10110
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Message
—

m(t)

PCM system

Sammer QUF:’”'IUSE’I'

filter

Low-pass

Fricoder

L e

Scanned by CamScanner




Sampling

* A typical method for obtaining a discrete-time
sequence x(n) from a continuous-time signal
x(t) is through periodic sampling.

X(n)=x(nT,), for -ee < n < oo
* T, : sampling period.
 /:sampling frequency 1

or sampling rate P ﬁ
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Spectrum of X(f)

; 1 o » |
[ 1\ xn=L 3 xr-k)
<€ U > | T; k=—oc
2B S ——
X0
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Sampling

X(nT,)

X(t
L [sampler]

* |sit possible to reconstruct the analog signal
from the sampled valued?

Q0
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Sampling

* Given any analog signal, how should we select the
sampling period T, (or the sampling frequency f,)
without losing the important information contained
in the signal.
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Spectrum of X, (f)

Xl £y

|>.213__LLA /Jm

Il

i2
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) X0 ln < 2l;mx
X
- =\ , I
4 .*_f A W >
()
X(0 T =20,
L
X(h
— R x_.__-h . — g, o
""" " \/ :\/ \ X‘/ \/ ' '/-__.Q,L;\’/ T_J_“, >
AT T QT i ¥y VY
(b
XY - 9
y A9 /T> fmm

(R} (C)
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Sampling Theorem

» Let m(t) be areal valued band-limited signal having a
bandwidth B, and m(nT,) be the sample values of m(t)
where nis an integer.

« The sampling theorem states that the signal m(t) can
be reconstructed from m(nT,) with no distortion if the
sampling frequency

1,228

e The minimum sampling rate 28 is called the Nyquist
sampling rate.

14

Scanned by CamScanner




—

Typical sampling rates for some common

applications
Application B £
Speech 4 kHz 8 kHz
Audio 20kHz | 40 kHz
Video 4MHz | 8 MHz

15
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Example

* Determine the Nyquist rate of the following

analog signal and plot the spectrum of the
sampled signal for :

1. £s=150Hz 2. fs=300Hz 3. fs=500 Hz

x(t) = 3cos(507nt) + 10sin(3007t) - cos(100xt)

16
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To Avoiding aliasing

* Band-limiting signals (by filtering) before
sampling.

* Sampling at a rate that is greater than the

Nyquist rate.
Sampler
12 2B

Anti-
Aliasing
Filter

x(t)

17
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EE325: Chapter 6 (Lec. #2)

Sampling and Pulse Code
Modulation

M. A. Smadi
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Practical Sampling

* In practice, we multiply a signal x(t) by a train of
pulses of finite width.

* There are two types of practical sampling

— Natural Sampling (Gating)

—Instantaneous Sampling. Also known as flat-top
PAM or sample-and-hold.
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Natural Sampling

TN -

~

L PR BT
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Generation of PAM with natural sampling

: .
e Nt A e e oty
.

:: - :. CY T
(B SRR e
X(t) - '.‘m'""""""“‘h B R ﬁ“* ”
v

)...-‘--.r.,«wm !

<
ey —— TR
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‘-—-LL.-....._.._-_.I—. .-.c.-.—b --l—-—--—u\-—sl:-\ﬂ-
MLIVLIITEI TAGCE |..'!: W 1oLt et }.'nz 5
Signal waveform
Natural sampler ‘

I
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Sampled waveform

s

Ny
—~

N (] '

L
201 401 GO1 331 120t 201 401 1330 183 203
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Sample-and-Hold
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Sampling  Discharge
switch switch

ex

m(t)

Sample-ana-ho/d (S/H) circuit.
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Natural Sampling (Gating): Spectrum

* The spectrum (FT) of the sampled (PAM)
signal is

X.(f) dZsmc(kd)X(f /g’)

A =0

d=— Duty cylce of s(t)
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Natural Sampling (Gating): Spectrum

CdX( 1),

3\_, -/ ~d sinc(kd)
14 - :

1
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Sample-and-Hold( flat-top sampling)

]

A.:—f

f)

12
i B b PN S g e e e e e X
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Sample and hold: Spectrum

x (1) = Z x(kTs,)recl[’_AT

k=-r 4

= rect( Z x(kT”) o(t—kT )

k== —

e = i —

o c,«.m\} 10600‘:} Sw’?\\'\b S

(O-)r

X (f)=rsinc(f 1) Z X (f -Kf.)
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Sample and hold: Spectrum

1 e e v - opren | NV e
J 't sinc(<f) X(f) U

g8
J f ‘ .‘ ' g .
¢ W d o sinelth)
o Ay
N I8 J’ dging (Tl
.\,('I\; ‘ nee M -
7 / ) -
. : 2P
) FT 7[ : §
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), W - _ - ; —
, —= T - ' ";_,:;f-/) {

-

+* we see that by using flat-top sam'plinﬁé have

introduced amplitude distortion, and the primary
effect is 2an attenuation of high-frequency
components. This effect is known as the aperture

effect.

* If 7<<T, then H(f)represents a LPF.

* Else, we can use a LPF such that
H,,( f)= 1/H(f)
The LPF is called an equalization filter.

%
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Reasons for intentionally lengthening the duration of
each sample are:

o Reduce the required transmission bandwidth: B is
inversely proportional to pulse duration

e To get the exact signal value, the transient must
fade away

16
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EE325: Chapter 6 (Lec. #3)

Sampling and Pulse Code
Modulation

M. A. Smadi
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Pulse Modulation

* Pulse modulation results when some characteristic
of a pulse is made to vary in one-to-one
correspondence with the message signal.

* A pulse is characterized by three qualities:
— Amplitude

— Width —> C ,J“-‘U )
e, . ‘-”) 9 A Cnd/

— Position ——> X
* Pulse amplitude modulation, Pulse width

modulation, and Pulse position modulation
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Pulse amplitude modulation (PAM)

In Pulse Amplitude Modulation, a pulse is generated
with an amplitude corresponding to that of the
modulating waveform.

There are two types of PAM sampling
— Natural Sampling (Gating)

— Flat-top or sample-and-hold.
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PAM System

L PF
fn(:t‘_:' SC{\I,} 1(.
Sampler —p T —*
PARK] signal Recovered
signal o
; ] i
Transmifter Recejver

Figure 12,6 PAN svatem

» A system transmitting sample values of the analog
signal is called a pulse-amplitude modulation (PAM)

system.

4
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PAM
A ;

2

* Like AM, PAM is very sensitive to noise. S
\)

A

* While PAM was deployed in early AT&'f Dimension
PBXs, there are no practical implementations in use
today. However, PAM is an important first step in a
modulation scheme known as Pulse Code
Modulation.
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Note

* PBX: Short for private branch exchange, a

private telephone network used within an
enterprise.

* Users of the PBX share a certain number of

outside lines for making telephone calls
external to the PBX.
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Pulse Width Modulation (PWM)

* In PWM, pulses are generated at a regular rate. The
length of the pulse is controlled by the modulating

signal's amplitude.

! LJ\Jric,i \‘!ﬁ _4;? \_(ﬁ_
~r L \,& U & <2 i e e e—— I =
T‘@U" f_)vofo - ii\rugu}—/ G oy LW

g 7 - )

e
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Pulse Position Modulation (PPM)

* PPM is a scheme where the pulses of equal
amplitude are generated at a rate
controlled by the modulating signal's
amplitude.
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10

2o r €— Pulse Code Modulation

\*\”

X()
—

Sample

and hold

W)L QS\—A

o

AN

|

x(n)
BN

\mc)\ ’—’7

Quantizer

X{)
—>

Coder

10110
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Advantages of PCM

* Inexpensive digital circuitry may be used in the
system.

* All-digital transmission.

* Further digital signal processing such as
3V encryption is possible.

* Errors may be minimized by appropriate coding of
the signals.

e Signals may be regularly reshaped or regenerated
using repeaters at appropriate intervals.

10
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A single-channel PCM transmission system

Message ,
— Sampler Quantiser Encoder

m(t)

a—| Low-pass I
& filter -
m(t)

11
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/V Advantages of PCM

Inexpensive digital circuitry may be used in the
system.

All-digital transmission.

Further digital signal processing such as
encryption is possible.

Errors may be minimized by appropriate coding of
the signals.

Signals may be regularly reshaped or regenerated
using repeaters at appropriate intervals.

13
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A single-channel PCM transmission system

[Message
—

m(t)

m(t)

"

Sampler

Low-pass
filter

Quantiser

—Decoder

Encoder

—
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Quantization

* Quantizer converts the discrete time signal
into a sampled and quantized signal that is
discrete in both time and amplitude

15
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m(t) and its sampled value m(kT,)

FALL
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N 4 -
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Input-output characteristics of the quantizer

Output

17
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* Quantization can be uniform and nonuniform

* The quantization discussed so far is said to be
uniform since all of the steps A are of equal size.

* Nonuniform quantization uses unequal steps

18
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Uniform Quantization

 The amplitude of m(t) can be confined to the range
['mq) mq]

e This range can be divided in L zones, each of step A
such that

A=2m,/L

e The sample amplitude value is approximated by the
midpoint of the interval in which it lies.

19
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4 CKIs)  ty v qa*“hrzoh o~ avier (A W
Quantization Noise
* The difference between the input and output

signals of the quantizer becomes the quantizing
error or quantizing noise

A A

—_2can<s

35903
m,(t) m(t)

— T

m,(t)- Af2 m,(t) mg(th+ A/2
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Sampling imes

Analog signal, a(t) -2
——PAM signal, r=T,  -4f

—— Quantized PAM signal -6}
-8}

21
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Quantization Error or Noise
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» Assuming that the error is equally likely (uniform
distributed) to lie anywhere in the range (-A/2,
A/2), the mean- square quantlzmg error is given by

M-y ] Al 5 ;= Az??
qg =— |4 —
l A‘.A_._/Z ]2

(=~ m; S >, M (z)
ey L:N =3l — |
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Example

* For a full-scale sinusoidal modulating signal m(t)= A
cos(w,,t), show that | q 372

T 0

N 2

.0 '

o S0 | 1 76420l0g, (L) (dB)
N B |

0

24
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EE325: Chapter 6 (Lec. #4)

Sampling and Pulse Code
Modulation

M. A. Smadi
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Nonuniform Quantization

* For many classes of signals the uniform quantizing is
not efficient.

* Example: speech signal has large probability of

small values and small probability of large ones.
. J&L‘ [
* Solution: allocate more levels for small amplitudes

and less for large. Thus, total quantizing noise is
greatly reduced
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Example of Nonuniform quantization

0 0.005 0.01 0.015 0.02
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Nonuniform Quantization
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B ine eTTect ui PUTIUNNCT T Yuarnicicig war

obtained by first passing the analog signal through
a compression (nonlinear) amplifier and then into
the PCM circuit that uses a uniform quantizer.

* Atthe receiver end, demodulate uniform PCM and
expand it.
° The technique is called companding.
* Two common techniques
;/—\\s 1. pu-law companding
2. A-law companding
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p-law Compression Characteristic

0 \
= In| 1+ pu—
ln(1+,u) \ mq)

Y

i

* where

0<— <1
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___ u-law Compression Characteristic
bk ¥ 1.0

0.8

0.6

0.4

0.2
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A-law Compression Characteristic

i A m 7

! | 0< m < 1
I+Ind \m, | m, A
)=

- Co( T wmT 1

| | I o om
l+InfA— ||, — < —<1
; \1+lnA \ - omy ) A m,
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A-law Compression Characteristic
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Nonuniform Quantization

* The compressed samples must be restored to
their original values at the receiver by using an

expander with a characterlstncs comp[ememdr/ |
to that of the compressor.

* The combination of compression and expansion
is called companding

10
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i !t can be shown that when 3 H-law compander
IS used, the output SNR is
s e
S, . 3L
N > [ln(l - ,u)]z

* where

11
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* The coding process in an A/D converter assigns a
unique binary number to each quantization level.
For example, we can use binary and gray coding.

> Aword length of n bits can create L= 2" different
binary numbers.

* The higher the number of bits, the finer the

quantization and the more expensive the device
becomes.

13
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Bmary Code
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Binary and Gray coding of samples.

I 6
5
I — ¢ Quantised samples
|.T. 'TUIITI I
7 6 5
A A

AO000 0 O, sinery cods

0 0 0000,  orycode
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Output SNR
. SNR is controlled by the PCM bandwidth

2
- el
i —cLz = clz”
| S : ] S In(2)
| ==| =a+6 B) .a -10102 ¢; log, (¥)=——=lo
/i(.]\fa ]dB T n ‘EC )! 10 »; u( ) 1 (10) g2(x)
.0 7B P
. : - , (- L W;
Vet |mae P “ T amresse) cose
cl c = %a-?—- .
\L:Lit ‘ﬁ/J;/kh ,:1)1;(’) ,  Uniform i,_v AN C oy regy ) Gfe
* However
BT =nB

T i¢ fle paeorebiood mingmem
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Comments About dB Scale

* The deubel can be a measure o(ower ratio -

l SO, S S

| ==
S

* |t can also be used for measuring power

PdBH =10 10g10mPuf
! Py
1mW

=10 log10
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Examples

p
’ Gain:(Pout/Pin)=2=+3dB \o\‘-’GB‘{Z: "
2mW 4mW O . \e\ey &
Network Y I3 o -
emW 7mW(Out Uﬂ =

m 90B P P,,i= 48 mW

X

QA - =N
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EE325: Chapter 6 (Lec. #5)

Sampling and Pulse Code
Modulation

M. A. Smadi
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Bandwidth of PCM

* What is the spectrum of a PCM signal?

* The spectrum of the PCM signal depends on the bit
rate, the correlation of the PCM data, and on the
PCM waveform pulse shape (usually rectangular)
used to describe the bits.

* The dimensionality theorem [2] shows that the
bandwidth of the PCM waveform is bounded by |

Boew 2 R/2=n Z/2

where R: bit rate
’ /
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Transmission Bandwidth

» For L quantization levels and n bits
Ll=2"or n=log,L

« The bandwidth of the PCM waveform

e

>n@ HZ tsf 1:
./7 s r!?

BPCI\./‘I
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Example: PCM for Telephone System

Al 1w S 5 2

Telephone spectrum: [300 Hz, 3400 Hz]

Min. sampling gegduenc_y_ L min= 2 fa=6.8 kHZ 2]

Some guard band is required:
| f-— 2 F « Af (8 kHz S’f/’ ey 1

n=8-bit codewords are tgfgﬁj > Ldi56; gf . I
The transmission rate: R=n* f 64 Kbits/s gaJJ
Minimum PCM bandwidth: Bey = R/2=32 kHz <~
g pad e
A e S
‘ e
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Example 6.3 ‘
~ ) o |
A signal m(t) of bandwidth B= 4 kHz is transmitted
using a binary companded PCM with p=100. v~
Compare the case of L=64 (n=6) with the case of

L=256 (n=8) from the point of view of transmission
bandwidth and the output SNR.

s, 32 |
SELIN B=nB Hz
N, [n(1+ )}
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, { ~ .
=4 Differential PCM (DPCM)
* Samples of a band-limited signal are correlated.

* This can be used to improve PCM performance: to
decrease the number of bits used (and, hence, the

bandwidth) or to increase the quantization SNR for
a given bandwidth.

* Main idea: quantize and transmit the dlfference
between two adjacent samples rather than sample

values.

-

* Since two adjacent samples are correlated, they
difference is small and requires less bits to transmit.
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\DPCM System- Modulato
d(k) =0 .;;;_.(A) —i, (k) d(k)=d (A )+ q(k)

S

g \(_)\j\"
,:’77[/"']‘”/[/"'] q(k): is the quantization error

m, ()=, () +dy ()| (exol e

LT
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DPCM System-Demodulator
d, (_{c) =m, (k_) —,’?z_qf_'.[_‘?) ’”/(f) :dq(k ) +”’q (/"

Sy output m.(k)
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U< Vv

Predictor
;\(Erom Taylor series (At
171(~tm-1-f)¥)m(t)+7 m (t) I <<
°Or L_&,e)(a(,\— ,/)SA) ' %0%4/%:/2@
m[k+l]~ mlk|+T [m[ 1=k _l]]
ke &2 T‘ ‘
Sw’ﬁ\i =2mlk] - mlk -1]
WV
e
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o iz SNRimprovementin DPCM
* Let Igz; IPeak of m(l)andd(z‘)‘

e 51V o 3 2m

d | e

* If we use the same L, Chreu =2 <1 [
(Z\f') » o (,J w\ @JCU “n?q | L= 2

e Or, quantlzatlon noise reduced by ( )

* Hence, SNR improvement will be

i~ P Y __2) =
A 153
( SHMR l,,«sz.vM due +o @redich on)

10
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/ Time Divisjon Multiplexing (TDM)

Low-pass (g i
Message (pre-alias) Low-pass
inputs  filters (reconstruction) Message
| filters outputs
———>{ LPF ‘ 1
| awe ;, LPF f—p
_ “~ Synchronized
. k
/ \
2 J \ 2
\ 1 Pulse Communication Pulse | / ‘¢
| modulator chanel  []demod: ‘
\ g ulator | \ /’
- \\.__
Commutator T Decommutator
Clock pulses Clock pulses
N b N
o LPF p———>
11
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Lop fs IUs ~ Ten-Channel PCM System .4y )
2 - o3 . -
(a) Transmitter (b) Receiver

>4 30-3200 Hz

D =

m»](t ) ac—«)rq ‘(c-)-'ﬂa . “) _
moc T, 8000 cycles/s ST e

2 ~

: quantiser encoder
171 (t) 256

10" " g o

(a)
m ()
8000 cycles/s Filter
—®|Decoder —# Fl!t&‘:f’

: m 40t )
o—® Filter —LL
30-3200 Hz

12
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: . U’)“rw.

N ] n\ Signal Shapes
/~éo )
11213 1011[213 10] .
_>
- 125Hs f&ﬂ 125 s 1 125 us .l
6
513 2
2. Quantised 5 4 4V
11213 1011 [2]3 ﬂ
> e 7 -
12503 ISR plg 12545
- ““‘\“"‘:
T al ;
A0 1 84 0D
3. Binary coded . ——/1><L
4218 ! |g =
” > ,*12.5 Us
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Bandwidth Requirements for TDM

If N band-limited signals are multiplexed each
with bandwidth B

The minimum TDM sampling rate is
fom=2NB
If each sample is coded with n bits, then the
minimum transmitted data rate is
R=2nNB
The minimum transmission bandwidth is

=nNB
% L

’I )\ )’_&

i (WO

Scanned by CamScanner



TDM: Concept of Framing and Synchronization

XN Marker X5 Xy Marker x

PAM

Frame

* The time interval T, containing one sample from each
message signal is called a frame.

» an extra pulse (called marker) is transmitted for
synchronization /

/ 15
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Comparison of Time and Frequency Division
\ Multiplexing

* Time division multiplexing: Individual TDM
channels are assigned to distinct time slots but
jumbled together in the frequency domain.
Channels are separated in the time domain

* Frequency division multiplexing: Individual FDM
channels are assigned to distinct frequency regions
but jumbled together in the time domain. Channels
are separated in the frequency domain

16
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Comparison of Time and Frequency Division
Multiplexing

* Many of the TDM advantages are technology
driven. The digital circuits are much cheaper and

~easier to implement
|

* In FDM, imperfect bandpass filtering and
nonlinear cross-modulation cause cross talk.
TDM is not sensitive to these problems.

17
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Example - ...

* A binary channel with bit rate R,=36000 bits/s is
available for PCM transmission. Find appropriate
values of the sampling rate f,, the quantizing level,

and the binary dlgltS n, assuming the Signa| N
bandwidth is B=3.2 kHz.

o £>=2 B=6.4 KHz Syt i 6 o

o Ry>=n £ n56thenweusen5L32 .
/"' \ =

0 £=R,/5=7.2KHz /"0 Paby

SR

18 | 4 ( E
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d,b\ \),,\ LJ S\(“’A\‘(/ ‘ _\
Delta Modulation (DM) " . -

» Definition: Delta Modulation is a technique
which provides a staircase approximation to
an over-sampled versioh of the message
signal (analog input). \

[
< f%’ o

« Sampling is at a rate higher than the

Nyquist rate — aims at increasing the

correlation between adjacent samples;
simplifies quantizing of the encoded signal
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lllustration of the DM process

(1)

- _A Staircase .
I x approximation ~

mq (I)

~
L
- b
0

Binary
sequence 0
at moduiator
output

m)

a 1 1 r 1 0 i O O ¢ 6 ¢ 0
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Principle Operation
N Sewp limy Vel
message signal is over-sampled s Al >

difference between the input and the
approximation is quantized in two levels +/-A

these levels correspond to positive/negative
differences

provided signal does not change very rapidly
the approximation remains within +/-A

)

N
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Assumptions and model

We assume that:

* m(t) denotes the input message signal
* m,(t) denotes the staircase approximation

* m[n] =m(nT,), n=+/-1, +/-2 ... denotes a
sample of the signal m(t) at time t=nT,, where
T, is the sampling period

* then
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6/45

Cont.

we can express the basic principles of the del
modulation in a mathematical form as follow:

e[n] = m[n] —mgln - 1]: error signal
S

e }[ .{— EE Q_J .
e, [n] = Asgn(e n])1 quantized error signal
! e\ S
TR A V‘J’ﬂw"*" ‘

ta

v |

mg[n] =myq [n — 1] + eq[n]: quantized output

e Mo

———————

L "
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Pros and cons

* Main advantage — simplicity

* Sampled version of the message is applied to
a modulator (comparator, quantizer,
accumulator)

* delay in accumulator is “unit delay” = one

sample period (z1)
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DM Block Diagram

Comparalar o e
Sampled « o] T oepa |
message signal / One-bit 1% . Encoder
Jﬂ?'l IE K ’ Donquant zer r -',: =nLLaT
min - ‘ E :
vt In )]
o
4 i
‘.' H
o :
i e m‘.,h.'!
- B, - i
Accumalalor
)
Sampled : . ’ )
. Lot Ly
channel i Decoser " _ !’"1...;..
outpul i ; ' N
i S :
1 .
i A !
] I :
!
e oS S S i iy G paia wtimn )
Accurmulitor

)]

O

oy

Hercnustiuoied

meLsape Lipnal
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Transmitter Side

* comparator — computes difference between input signal and

one interval delayed version of it

* quantizer —includes a hard-
limiter with an input-output
relation a scaled version of
the signum function

/)

« accumulator — produces the = Ze,,[i]
approximation m,[n] (final =l
result) at each step by

m [n]=AY sgn(eli])
=

adding either +A or —A \ 71‘)\
« =tracking input samples by -~ 4
one step at a time -
<
A,
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Receiver Side

* decoder — creates the sequence of positive or
negative pulses

* accumulator — creates the staircase
approximation m [n] similar to Tx side

* out-of-band noise is cut off by low-pass filter

(bandwidth equal to original message
bandwidth)

10
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Granular Noise

In contrast to slope overhead

Occurs when step size is too large

Usually relatively flat segment of the signal
Analogous to quantization noise in PCM systems

Granular noise

NS

Slope-overload
distortion

m 1) ——

Staircase
approximation

mq(l)

14
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Slope Overhead Distortion

* The quantized message

signal can be mq[n] = m[n] + q[n]
represented as: mqln =11+ eqln] = min] + qln)

* where the input to the
quantizer can be

e[n] =m[n]-m[n-1]-qn-1)
represented as:

So, (except for the quantization error) the quantizer input
is the first backward difference (derivative) of the input

signal = inverse of the digital integration process
12/45
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input signal in its max
slope region the
following condition
should be fulfilled:

Discussion
* Consider the max slope A
of the input signal m(t) e
* Toincrease the samples A S dm(1)
{m,[n]} as fast as the T max dt

otherwise the
step-size A is too
small

13
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Granular Noise

In contrast to slope overhead

Occurs when step size is too large

Usually relatively flat segment of the signal

Analogous to quantization noise in PCM systems

Granular norse

Slope-overioad
distoriion

s (z)
— =

Stawcase
approumation
- ()
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Conclusion

* Large step-size is necessary to accommodate a
wide dynamic range

* Small step-size is required for accuracy with
low-level signals

« = compromise between slope overhead and
granular noise

* = adaptive delta modulation, where the step
size is made to vary with the input signal

16
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Delta Sigma Modulation (DSM)

» Conventional delta modulation - Quantizer
input is an approximation of the derivative of
the input message signal m(t).

» Results in the accumulation of error (noise)

* Possible solution: integrating the message
before delta modulation — called delta sigma
modulation
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Remark

The message signal is defined in its continuous
form — so pulse modulator contains a hard
limiter and a pulse generator to produce a 1-
bit encoded signal

Integration at the Tx requires differentiation
at the Rx side.

But: As in conventional DM the message has
to be integrated at the final stage this
eliminates the need of differentiation here.
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Block diagrams DSM
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Pros and cons for DSM

* Simplicity of implementation both at the Tx
and Rx side

* Requires sampling rate far in excess of the
Nyquist rate (PCM) —increase in transmission

and channel bandwidth
* |f bandwidth is at a premium we have to
choose increased system complexity

(additional signal processing) to achieve
reduced bandwidth.

19
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EE 325: Chapter 7 (Lec.#1)

Principals of Digital Data
Transmission

M. A Smadi
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Digital Communication Systems

Line Coding

Pulse Shaping

M-ary Communication
Digital Carrier Systems

Digital Multiplexing
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Principals of Digital Data Transmission

This chapter deals with the problems of transmitting digital
data over a channel. Hence, the starting messages are
assumed to be digital. To begin with we shall consider the
binary case, where the data consists of only two symbols: 1
and 0. We assign a distinct waveform (pulse) to each of
these two symbols. The resulting sequence of these pulses
is transmitted over a channel. At the receiver, these pulses

are detected and are converted back to (1's and 0’s).
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Principals of Digital Data Transmission

Source

* The input to a digital system is in the form of a sequence
of digits. The input could be the output from such sources
as a data set, a computer, a digitized voice signal (PCM
or DM), a digital facsimile or television, or telemetry
equipment. Most of the discussion in this is restricted to

the binary case (communication schemes using only two
symbols).

 General case of M-ary communication which uses M
symbols is discussed later.
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Principals of Digital Data Transmission

Multiplexer

* Generally speaking, the capacity of a practical channel
transmitting data is much larger than the data rate of
individual sources. To utilize this capacity effectively, we
combine several sources through a digital multiplexer

using the process of interleaving.

« Thus a channel is time shared by several messages

simultaneously.
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Principals of Digital Data Transmission

Line Coder
« The output of a multiplexer is coded into electrical pulses
or waveforms for the purpose of transmission over the

channel. This process is called line coding.
 There are many possible ways of assigning waveforms

(pulses) to the digital data. In the next paragraph we

consider the binary case (two symbols)
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Principals of Digital Data Transmission

RZ and NRZ signals

* When the pulse duration is half the bit duration ( 75 /2)

the resulting signal is called RZ (return to zero)

* When the pulse duration is equal to the bit duration ( 75)

the resulting signal is called NRZ (non return to zero)
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Principals of Digital Data Transmission

Regenerative repeater

° Regenerative repeaters are used at regularly spaced
intervals along a digital transmission line to detect the

incoming digital signal and regenerate new clean pulses

for further transmission along the line.

° This process periodically eliminates, and thereby
combats, the accumulation of noise and signal distortion

along the transmission path.
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Line Coding

On-Off Line Coding
Bit =1 - is transmitted by a pulse o7/

Bit = 0 = is transmitted by no pulse (zero signal)

1 1
: HI—I — RZ on-off

[ —>

NRZ on-off

L ——

(d)
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Line Coding

Polar Line Coding
Bit = 1 - is transmitted by a pulse o7/
Bit = 0 - is transmitted by -0/

Aavaniages. Power efficiency

1 1. 1.0 0 1 0 1 L 0 0 o0

Hﬂﬂ nonn . RZ polar
00 0 00T
— NRZ polar

(c)

10
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Line Coding

Bipolar Line Coding (pseudoternary or also alternate mark
inversion AMI)

Bit = 0 - is transmitted by no pulse

Bit = 1 > is transmitted by p#) or -o#) depending whether
the previous 1 is transmitted by -p/)or p(%)

Advaniages: Error detection capability

ﬂ ﬂ{{ H RZ bipolar
I
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Line Coding

Digital data can be transmitted by various transmission or
line codes, such as on-off, polar, bipolar, and so on. Each
has its advantages and disadvantages. Among other
desirable properties, a line code should have the following
properties:

1. Transmission bandwidth: It should be as small as
possible.

2. Power efficiency: For a given bandwidth and a specified

detection error probability, the transmitted power should be

as small as possible.
12
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Line Coding

3. Error detection and correction capability: It should be
possible to detect, and preferably correct, detection errors. In a bipolar
case, for example, a single error will cause bipolar violation and can

gasily be detected.

4. Favorable power spectral density: It is desirable to have zero
PSD at w = 0 (dc), because ac coupling and transformers are used at
the repeaters. The ac coupling is required because the dc paths
provided by the cable pairs between the repeater sites are used to

transmit the power required to operate the repeaters.
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Line Coding

5. Adequate timing content: It should be possible to extract

timing or clock information from the signal.

6. Transparency. It should be possible to transmit a digital
signal correctly regardless of the pattern of 1's and 0's. A long
string of O's could cause errors in timing extraction in on-off and
bipolar cases. If the data are so coded that for every possible
sequence of data the coded signal is received faithfully, the code
is transparent.
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Line Coding

PSD of Various Line Codes

Procedure to find a general expression for PSD of a large class of
line codes are as follows:

Consider the pulse train in Fig. 7.3b constructed from a basic pulse
£ (Fig. 7.3a) repeating at intervals of 7, with relative strength ak
for the pulse starting at /= 47, . In other words, the 4” pulse in this
pulse train y(t) is g,00%) The values a, are arbitrary and random. This
is @ PAM signal. The on-off, polar, and bipolar line codes are all
special case of this pulse train y (t), where a, takes on values 0,1, or
-1 randomly subject to some constraints. We therefore, analyze
many line codes from the knowledge of the PSD of y12)

15
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Line Coding

ri)

¥(1)

ANERTNANEYN

KT, (kDT \/ \ =

(b)

ot et
x( ¥ lu“LT'i' (k-17, * * | —

)

x(1) : yl)
3 hin=pn -
S{(w) = |P(w)* S,(w)

(d)

Figure 7.3 A random PAM signal and its gencration from a PAM impulse sequence.
16
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Line Coding

The input x(¢) to the filter with impulse response h(1) = p(r) results in the output y(1), as
shown in Fig. 7.3d. I p(1) <= P(w), the transfer function of the filter is H (w) = P(w), and
according to Eq. (3.90).

| < .
R,(r):-?b Y Ry8(t —nT) (7.7)
Nz =00
The PSD S; (w) is the Fourier transform of R, (z). Therefore,
l oc
S; = — —jnwTy .
@ =~ D Rue (1.8)
nm—-0C
Recognizing the fact that R_, = R, [because R () is an even function of t], we have
I 2D
Sy (w) = ;_; (Ro +2 ,.Z._.; R, cos anb) (7.9)
17
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Line Coding

= A Ak4n
S{w) = IP(w)]*S, (@) (7.10a)
1P(w)l? )i fasit )
= Rue y (7-10b)
T, e

” o0
= [P w)l (Ro +2 z R, cos anb) (7.10¢)

b |

Using this result, we shall now find the PSDs of various line codes.

18
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Line Coding

Example: Polar Line Coding

In polar signaling, 1 is transmitted by a pulse p(r)and 01is transmitted by —p(2). In B case
2, is equally likely tobe 1 or —1, and aj is always 1. Hence,

There are N pulses and a? = 1 for each one. The summation on the right-hand sice of 2m
equation is N. Hence,

s 1 — e -
RD:;\!T;N(N)— 1 dls
Moreover, both a; and a;; are either 1 or —1. Hence, @;@¢+) is ither 1 or — 1. Becavss o
pulse amplitude ay is equally likely to be 1 and —1 on the average, vul of N terms the produes
arag+ is equal to 1 for N /2 terms and is equal to — | for the remaining N /2 terms. Thersfore

1 | N N
R, = h!un —-[?U)*i- '7)-(—1)] =0 (7.1

<
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Line Coding

Polar Line Coding
Arguing this way, we see that the product a; a4 is also equally likely to be 1 or —1. Hence,
R,=0 n>1 : (7.11c)
Therefore from Eq. (7.10c),
P(w)|?
S)(‘U) = | T) Ro
b
|P(@)I?
1
T, (7.12)

For the sake of comparison of various schemes, we shall consider a specific pulse shape. L&t
p(1) be a recrangular pulse of width T;/2 (a half-width rectangular pulse), that is,

p(t) = rect (-—'—) = rect (2)
Tp/2 T,

_B . (2T 13
P(w) = 2 sinc ( 2 ) .

20
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r—f Line Coding

Polar Line Coding

7, bit width or bit _?f'rb/ﬁz R=AIT,
duration (in second) '

transmission
rate (Hz)

Figure 7.5 Power spectral density of a polar signal.
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Line Coding

Polar Line Coding

Figure 7.5.shows the spectrum Sy(w). From this spectrum, the essential bandwidth of the
signal is seen to be 2 R, Hz (where Ry, is the clock frequency). This is four times the theoretical
bandwidth (Nyquist bandwidth) required to transmit Ry pulses per second. Increasing the
pulse width rcducces the bandwidth (expansion in the time domain results in compression in
the frequency domain). For a full-width pulse (maximum possible pulse width). the essential
bundwidth is half, that is. R, Hz. This is still twice the theoretical bandwidth, Thus, polar
signaling is not bandwidth efficient.

Second, polar signaling has no crror-detection or error-correction capability. A third
disadvantage of polar signaling is that it has nonzero PSD at dc (w = 0). This will rule oul
the use of ac coupling during transmission. The ac coupling, which permits trensformers and
blocking capacitors to aid in impedance matching and bias removal, and which allows dc
powering of the linc repeaters over the cable pairs, is very important.in practice. Later, we
shall show how a PSD of a line code may be forced to zero at dc by properly shaping p(r).

On the positive side, polar signaling is the most efficient scheme from the power
requirement viewpoint. For a given power, it can be shown that the detection-error probability
for 2 polar scheme is the smallest possible (see Sec. 7.6). Polar signaling is also transparent
because there is always some pulse (posilive or negative) regardless of the bit sequence. There

is no discrete clock frequency component in the spectrum of the polar signal. Rectification of
the polar signal, however, yiclds a periodic signal of the clock frequency and can readily be
used to extract Uming.

22
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Line Coding

Polar Line Coding

Achieving a DC Null in PSD by Pulse Shaping

Because S, (w), the PSI? of a line code, contains a factor | P(w)|?, we can force the PSp to
have a dc null by selecting a pulse p(t) such that P{w) is zero at dc (w = 0). Because

P(w) = f p()e™ " dt

—00
we have

¢
P(O):] p)de
-
Hence, il the area under p(r) is made zero, P(0) is zero, and we have a dec null in the PSD
For a rectangular pulse, one possible shape of p(¢) to accomplish this is shown in Fig. 7_5&'
When we use this pulse with polar line coding, the resulting signal is known as Manchester
or split-phase (also twinned-binary) signal. '
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Line Coding

Polar Line Coding

S,lw)
Bipular
"
—_ Tb N 3 _; /-Sp!il phase

0 = S Polar

(1) # \\\\\‘.
-,']if'li[“r‘m;pj' Ey £

! L J : J . U L LJ l (— . Ky, ’:I\'J, S—r

(b) T

Fiwe 7.6 ol hase (anchestr o inned inayiignal. o Basicpue i) o Mancheste il

1 PSD of Mancheste sipnaling.
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Line Coding

Example: On-off Line Coding

In this case a 1 is transmitted by a pulse p(r) and a 0 is transmitted by no pulse. Hence, a pulse
strength a; is equally likely to be 1 or 0. Out of N pulses in the interval of T seconds, g is |
for N/2 pulses and O for the remaining N /2 pulses on the average. Hence,

Ry = i ! N(1)+N(0) = ! (7.15)

e 2 )72 o
To compute R, we need to consider the product a;a;4,. Since a; and a; ., are equally likely
to be 1 or 0, the product a;a., is equally likelytobe 1 x 1, 1 x 0, 0 x 1, or 0 x 0, that is,
1,0, 0, 0. Therefore, on the average, the product a;ay., is equal to 1 for N /4 terms and 0 for

3N/4 terms, and

1
- n>l\ (7.16)
2

. 1[N 3N
Rp = Nh_{ﬂw N [Z(l) + —4‘(0)] =

L
\n
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Line Coding

On-off Line Coding
Therefore [Eq. (7.8)],
I -
= - —jneTy
S; (w) o, + T, ;me (7.17a)
n#0
= L -~ _L i e'j"“rb (7 l?b)
47, 4T, ~ )

Equation (7.17b) is obtained from Eq. (7.17a) by spliting the term 1/27, corrcsponding 10
Rp into two: 1/4T, outside the summation and 1 /47, inside the summation (corresponding to
n = (). We now usc the formula (see the footnoic for a proof)*

TemeE T e- 1)
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Line Coding

On-off Line Coding

Substitution of this result into Eq. (7.170) yields

S,(w)—4—7_b+ T Z 6(w-—-)

b rm-00

and the desired PSD of the on-off waveform y(#) is [Eq. (7.10a)]

| P(w))? 2T — 2
Sy(w) = 4+ = -1
7=, [+T,28( T)

Am—=00 b

For the case of a half-width rectangular pulse [see Eq. (7.13))

Ts T, =
Sy(w) = Tgsmc (%)[l-{-z;r B(w—z—;ﬂ
b N =20

(7.18a)

(7.18b)

)] (7.19)

Scanned by CamScanner



Line Coding

On-off Line Coding

4Ry, -3Ry 2R, -Ry, O R, 2Ry 3Ry 4Ry [

Figure7.7 Power spectral density of an gy off 53nal

Scanned by CamScanner



Line Coding

Example: Bipolar Line Coding

This is the signaling scheme used in PCM thesc days. A 0 is transmiticd by no pulse. and 21
is transmitted by a pulse p(1) or — p(1), depending on whether the previous 1 was transmiued
by — p(t) or p(1). With consecutive pulses alternating, we can avoid the dc wander and thus
causc a de null in the PSD. Bipolar signaling actually uses three symbols [ p(7). 0. and —pio)l
and, hence. it is in reality ternary rather than binary signaling.
To calculatc the PSD, we have
Ro = lim —]- Eaf
k

N—ox N

Q9
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Line»Coding
Bipolar Line Coding

On the average, half of the a,'s are 0, and ihe remaining half are either 1 or

=1, witha = 1.
Thercfore,

TSRS FLPT SRR I

Ru-h!l_l‘lch[z(i:U + 2(0)]-— 3
To compute R, we consider the pulse strength product @, a;..,. There are four possible
equally likely scquences of two bits: 11, 10, 01, 00. Since bit 0 is encoded by no pulse (a; = 0),
the product a;a; .| = 0 for the last three of these sequences. This means that, on the average,
3N /4 combinations have a;ar¢; = 0 and only N/4 combinations have nonzero a.a;..
Because of the bipolar rule, the bit sequence 11 can only be encoded by two consecutive

pulses of opposite polarities. This means the product agag 4y = —1 for the N /4 combinations.
Therefore,

To compule R; in a similar way, we need 10 observe the product azay ;. For this, we need
(o consider all possible combinations of three bits in sequence. There are eight equally likely
combinations: 111, 101, 110, 100, 011, 010, 001, 000. The last six combinations have either
the first or the Jast bit 0, or both. Hence, ayai.2 = 0 for all these six combinations. The first
two combinations are the only ones that yield nonzero a;a; +». Using the bipolar rule, the first
and the third pulses in the combination 111 are of the same polarity. yielding aza.> = 1. But
for 101, the first and third pulscs are of opposite polarity, yielding ayag,» = - 1. Thus, on the
average, aya;.; = | for N/8 ierms, - for N /8 terms, and 0 for 3N /4 terms. Hence.

fr=tim | Yyr Yo+ ol =
VA IR i
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Line Coding

Bipolar Line Coding

In general,

N

. 1
Ry = lim 'ﬁ ;akak+l

Forn > 1, the product a4a, 42 canbe 1, =1, or 0. Moreover, an equal number of combinations
have values 1 and —1. This causes R, = 0. Thus,

Ro=0 n>I
and [see Eq. (7.10¢))
P 2
S,@) =" ,“;’:' (1 - coswTy ] (7.20a)
_1P@R (o,
= Tb sin —2— (720b)

Note that §,(w) = 0 for w = 0 (dc), regardless of P{w). Hence, the PSD has a dc null. which
is desirable for ac coupling. Moreover, sin®(w74/2) = 0 at w = 27 /7T, thatis. at l/f --‘R
Hz. Thus, regardless of P(w), we are assured of a bandwidth of R, Hz. For the hul:"-widdl-;

pulse,
I, . .{wT,\ . wT, ‘
Sylw) = 7 sinc? (T) sin’ (_’—") (7.21)

31
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Bipolar Line Coding (Advantages)

Line Coding

S).(w)

/-Splil phase
~
N\

Palar

el i’ﬁ W —
Ty T,
0 }; 2th S—

Figure 7.8 PSD of bipolae, polar,
and split-phose signals normahzed
for equal powers. Hall-vidth reqt:
angular pulses arc used.

e
b
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Line Coding

High Density Bipolar

To solve the non transparency problem of the bipolar line any
sequence of /7#7 successive “0” is replaced by a special code.
HBD3 is adopted as international standard. Any sequence “0000"
is replaced by “000V” or “BOOV”

« Bisregular“1”

« Visa“1” that violates the bipolar rule
The choice of “000V” or “BO0V" is made such that consecutive
“V" pulses alternate signs to avoid dc wander and maintain dc
null PSD. How?
“‘BOOV” is used when the number of “1” after the last special
sequence is even. Otherwise the sequence “000V" is used.

R
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Line Coding

High Density Bipolar

Input digits 010111000010110100000000001011010100001

Coded digits ~ 010111{000Vj101101100VI00Vj0010110101000V]

Transmitted

waveform _1‘(1)—?—n'f—uﬂu-l—¢-+'-ﬂ~'—u-n-i—u—n-o—f—‘-u-4—¢—l‘r - nlfun: T n... I—U
\Y A4 \% v
sl
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Line Coding

High Density Bipolar

Ry f""’"

Scanned by CamScanner



Line Coding

Binary with 8 zero Substitution (B8ZS )

Any sequence of 8 zeros is replaced by “000VBOVB”. This code is
unlikely to happen which make its detection at the receiver easy.
This signaling is used with the DS1 signal.

Binary with 6 zero Substitution (B6ZS)

Any sequence of 6 zeros is replaced by “0VBOVB”". This code is
unlikely to happen which make its detection at the receiver easy.

This signaling is used with the DS2 signal.

36
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Line Coding

Binary with 8 zero Substitution (B8ZS)

Any sequence of 8 zeros is replaced by “000VBOVB". This code is

unlikely to happen which make its detection at the receiver easy.
This signaling is used with the DS1 signal.

Binary with 6 zero Substitution (B6ZS)

Any sequence of 6 zeros is replaced by “0VBOVB". This code is
unlikely to happen which make its detection at the receiver easy.
This signaling is used with the DS2 signal.
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EE 325: Chapter 7 (Lec.#2)

Principals of Digital Data Transmission

M. A. Smadi
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Pulse Shaping

*+ The PSD Sy w)is strongly and directly influenced by
the pulse shape p(?)because S(w) contains the term
|Pwj?. Thus, compared to the nature of the line

code, the pulse shape is a much more potent factor in
terms of shaping the PSD S w)
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Pulse Shaping

Problem

« We need to transmit a pulse every Tb interval, the 4
pulse being a, p(t - kTb) . The channel has a finite
bandwidth, and we are required to detect the pulse
amplitude ak correctly (that is, without ISI).

 In our discussion so far, we are considering time-
limited pulses. Since such pulses cannot be band-
limited, part of their spectra is suppressed by a band-
limited channel. This causes pulse distortion
(spreading out) and, consequently, Intersymbol
Interference (ISI).
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Pulse Shaping

We can try to resolve this difficulty by using pulses which are band-
limited to begin with so that they can be transmitted intact over a
band-limited channel. But band-limited pulses cannot be time-
limited. Obviously, various pulses will overlap and cause an inter-
symbo Interference (ISl). Thus, whether we begin with time-limited
pulses or band-limited pulses, it appears that ISI cannot be avoided

Solution

Pulse amplitudes can be detected correctly despite pulse spreading
(or overlapping) if there is no IS| at the decision-making instants.
This can be accomplished by a properly shaped band-limited pulse.
To eliminate ISI, Nyquist proposed three different criteria for pulse
shaping.
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Pulse Shaping
Nyquist Criterion for Zero IS|

In the first method, Nyquist achieves zero ISI by choosing a pulse
shape that has a nonzero amplitude at its center (say t = 0) and

zero amplitudes att = nTb (n=1, 2, 3, .. .), Tb is the separation
between successive transmitted pulses (Fig. 7.10a),

be=0 | 720)
P(‘)""{o { = +nT, (T,,:-) (7.
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Pulse Shaping

Figure 7.10 Minimum bandwidth pulse
that satisfies the Nyquist criterion and its

spectrum.
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Pulse Shaping

Question

Now transmission of Rb bit/s requires a theoretical minimum
bandwidth of Rb/2 Hz. It would be nice if a pulse satisfying
Nyquist's criterion had this minimum bandwidth Rb/2 Hz. Can we

find such a pulse p(t)?

Answer
Yes, This pulse, p(t) = sinc(mTRbt), (see Fig. 7.10b) has the property

1 t=0
sinc (7 Rpt) = {0 t ==2nT, (T,, = -1—) (7.23a)
Ry
Moreover, the Fourier transform of this pulse is
I w
P(w) = —rect 72
(w) R,,mc (21: Rb) (7.23b)
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Pulse Shaping

Problem

 This scheme shows that we can attain the theoretical limit
of performance by using a sic pulse. Unfortunately, this
pulse is impractical because it is non causal.

* We will have to wait an infinite time to generate it. Any
attempt to truncate it would increase its bandwidth beyond
Rb/2 Hz. Also it has the undesirable feature that it decays
too slowly at a rate of Iit. This causes some serious
practical problems, specially when any deviation from Rb
rate occurs at the transmitter or the receiver sides.
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Pulse Shaping

Solution

The solution is to find a pulse p2) that satisfies Eq.
(7.22) but decays faster than 1 / t . Nyquist shown that
such a pulse have excess bandwidth. i.e. the bandwidth
of P(w) is (wb/2) + wx, where wx, is the bandwidth in
excess of the theoretical minimum bandwidth. Let r be

the ratio of the excess bandwidth wx, to the theoretical
minimum bandwidth wb/2.

excess bandwidth Wy 2w,

r

—
St ce——
et

" theoretical minimum bandwidth wp/2 Wy
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Pulse Shaping

£/ y—

I (), S,

Figure 7.12  Vestigial spectrum.
10
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Pulse Shaping

* One family of spectra that satisfies the Nyquist

criterion is :

! (7w = (wp/2)] _ D
H-i[l—sm( o )} lw 2l<wx
1 lw| < . Wy

2

Figure 7.13a shows three curves, corresponding to wx = 0 (r
= 0), wx = wb/4 (r = 0.5), wx = wb/2 (r = 1). The respective
impulse responses are shown in Fig. 7.13b. It can be seen
that increasing wx, (or r) improves p(t); that is, more gradual
cutoff reduces the oscillation nature of p(t) and causes it to

decay more rapidly.
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Pulse Shaping

~—— Ideal o, =0 (r=0) R &
——=—= w,=up/4 (r=0.5) y
| P(w)] T smwR U=l
{ —rrT \\
~
SN
\\\ /
\L\ /
N /
N
\:\> e
0 LT
2 4
-2T,, =T Ty 2T
(a) ()

Figure 7.13  Pulscs satisfying the Nyquist criterion.
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Pulse Shaping

For the case of the maximum value of wx = wb/2 (r = 1), Eq. (7.33)
reduces to

1 w w
P(w) 5 (1 4+ cos 2Rb) rect (‘m Rb)
— cos2 | & @ 7.34b)
cos (4Rb) rect (47: Rb) (

This characteristic is known in the literature as the
ra/sed-cosine characteristic, because it represents a
cosine raised by its peak amplitude. It is also known as
the #ull-cosine roll off.
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Pulse Shaping

« The inverse Fourier transform of this spectrum is readily
found as

_ cosm Ryt .
p(t) = Rbl Y sinc (77 Ryt) (7.35)
Characteristics

1. Bandwidth = A,
2. Amplitude = Rg at t = 0, zero at signaling instant and

zero at midway
3. Decays with 7/“rate.
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Pulse Shaping

Signaling with Controlled ISI: Partial Response Signals

« The Nyquist criterion pulse results in a bandwidth
somewhat larger than the theoretical minimum. If we wish
to reduce the pulse bandwidth further, we must somehow

widen pulse p(t)

« Consider the following pulse

_ 1 n=0,1
p(nls) = 0 for all other n (7.36)
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Pulse Shaping

Signaling with Controlled ISI: Partial Response Signals

',/\.\/‘
AN T -Th =~

Figure 7.14  Communication using duobinary pulses.
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Signaling with Controlled I1SI: Partial Response Signals

We use polar signaling using this pulse. Thus, 1 is
transmitted by p(t) and 0 is transmitted using the pulse
-p(t). The received signal is sampled at t = n Tb, and the

pulse p(t) has value at all n except n = 0 and 1, where its
value is 1.

Clearly, such a pulse causes zero IS| with all the pulses

except the succeeding pulse. Therefore, we need Worry
about the ISI with the succeeding pulse only.
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Pulse Shaping

Signaling with Controlled ISI: Partial Response Signals

« Consider two such successive pulses located at 0 and Tb
respectively. If both pulses were positive, the sample value
of the resulting signal at t =Tb would be 2. If the both
pulses were negative, the sample value would be -2. But if
the pulses were of opposite polarity, the sample value

would be 0. This clearly allows us to correct decisions at
the sampling instants.

« The decision rule is as follows. If the sample value is
positive, the present bit is 1 and the previous bit is also 1.
If the sample value is negative, the present bit is 0 and the
previous bit is also 0. If the sample value is zero, the
present bit is the complement of the previous bit. The
knowledge of the previous bit then allows the

determination of the present bit. .
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Pulse Shaping

Signaling with Controlled ISI: Partial Response Signals

Transmitied seguence |1 I 0 1 1 0 0 0 1 0 1 1
Samples of x(r) | 2 0 0 2 0o =2 -2 0 0 0 2

Detected sequence 1 1 0 1 1 0o o0 0 1 0 1 1

Figure 7.15  Transmitied bits and the received samples in controlled ISI signaling.

Example of a Duobinary Pulse

If we restrict the pulse bandwidth to R, /2, then following the procedure of Example 6.1, we can
show that (see Prob. 7.3-9) only the following pulse p(r) meets the requirement in Eq. (7.36)
for the duobinary pulse,

B sin (71 Rpt) 737
i = i
o xRyt (1 = Rpt) (/:37)

The Fourier transform P (w) of the pulse p(r) is given by (see Prob. 7.3-8)

2 w w '
Plw) = — — -is;
(w) 7, cos(zkb) rect (27'&)3 (7.38)
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Pulse Shaping

Signaling with Controlled ISI: Partial Response Signals

p(t)

(a)
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Puise Shaping

Signaling with Controlled ISI: Partial Response Signals

| P(w)l

(b)

Figure 7.16 Minimum-bandwidth pulse
satisfies the duobinary pulse criterion ang s
spectrum.

21
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Pulse Shaping

Problem

When we receive a signal OV - the value of the
corresponding bit depends on the previous bit. If we make
error in the previous bit we will have error in the current bit >
error propagation

Solution

Use of the differential coding with the duobinary pulse.

Use of Differential Coding

1 - same pulse as previous bit.
0 - opposite pulse compared to previous bit

0 N I
T00 0 O 000-
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Pulse Shaping

1 0 0 o 1 0

0 nno.nio o~
000 O O 000-

Received 10-2-20200 200 0-2-2
x(t)

Detected 10 1 1 01 00 1000 1 1

sequence

Advantages
1. Independent decision making for each bit - no error

propagation
2. Simplified decision making circuit:

~ (2V,-2V) - 1 logic; 0V - 0 logic

23
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M-ary Communication

In the past we considered binary signals that is each
symbol represent 1 bit with 2 levels (/= 2)

In this paragraph we discuss the aspect of M-ary
communication

1101100010011 11 011

R | IO | N 1
UUU

(a) (b)
Figure 728 4-ary multiamplitude signal.

4-ary (quaternary) symbols or pulses
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M-ary Cominunication

A 4-ary symbol represents 2 bits
A 16-ary symbol represents 4 bits
An M —ary symbol represents Iy bits

M = 2%l and ly = log(M) binary digits or bits

Pulse Shaping in the Multiamplitude Case:

1. Pulses satisfying zero IS|
2. Pulses satisfying controlled S|

- 3. Orthogonal pulses
4, e Huge number of choices

25
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M-ary Communication

Orthogonal pulses

Consider M orthogonal pulses é,%) ¢x7), ...... IAT)

T C =

Pulse example

_ sin%‘l O0<t <T, k=1.2, .... M
Pult) = 0 otherwise
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M-ary Communication

oA N
VAVAVE

hpannn.
SATATATATATE

Question
Why orthogonal pulses
Answer

Essential for symbol detection. Explain

ep(l)
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Digital Carrier Systems

So far we have discussed baseband communication :

No shift (translation) of the message signal spectrum.
This is good for two-wire, coaxial or optical fiber
communication. But not good for wireless transmission.

As seen in chapter 3, frequency shifting using carrier
modulation allows

7. wireless transmission

2. Frequency aivision multiplexing (FOM)

Similar as in the analog communication we distinguish
three main modulation techniques

7. Amplitude shirt keying (ASK), equivalent to AM

2 Phase shift keying (PSK), equivalent to PM

3. Frequency shift keying (FSK), equivalent fto FM

28
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Digital Carrier Systems

So far we have discussed baseband communication :

No shift (translation) of the message signal spectrum.
This is good for two-wire, coaxial or optical fiber
communication. But not good for wireless transmission.

As seen in chapter 3, frequency shifting using carrier

modulation allows
7. wireless transmission
2. Frequency division multiplexing (FDM)

Similar as in the analog communication we distinguish

three main modulation techniques
7. Amplitude shift keying (ASK), equivalent fto AM
2. Phase shift keying (PSK), equivalent to PM
3. Frequency shift keying (FSK), equivalent to FM

28
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Digital Carrier Systems

2&3. Phase shift keying (PSK) and frequency shift keying

(FSK)
1 0 1 1 0 0 0 1

[ —>

(a)

UL AR ANARANNARALA S
VVW UV YYUUVUWUYVUVUVIUY VUV —

(b)

AL AR ANAWAILT
'H!!HHHH!!!!HH

(c)

(a) Moaulating signal
m(t)

(b) PSK modulated

s/ignal m(tjcos(wt)

(¢) FSK modulated
signal

30
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Digital Carrier Systems

Spectra of ASK, PSK and FSK signals

A

()

ASK

PSK

FSK

3l
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Digital Carrier Systems

Demoauiation

7. ASK signals can be demoaulated coherently
(synchronous defection) or non coherently (envelop
delector)

2. PSK signals cannot be demodulated using envelop
deleclors since 1 and 0 have the same envelop. 2 only
coherently (synchronous defection) /s possible.

3. FSK signals can be demodulated coherently or non
coherently but using two frequencies
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Digital Multiplexing

c.Uﬂﬂ-U———-\, AMAARKLSERCGCGD D DD,

udu (b) Ward (or byte) interleaving
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Digital Multiplexing

ARNACGADARKAGAD

(¢) Interleaving channcl having Jifferent bat rate

A, B, Acc\ A)D.A.‘;MC%&Da

U (4) Alierate scheme for (<)
Figre 7.3)  lencdviion mutpicamg of dgnal sspnsh.

34
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Digital Multiplexing

Digital Hierarchy

Channelx
- i_—"‘ Chaunncl l
s = =———1  bank or / DM 1/IC p———r
DSO signal . digital 3.152 Mbivs
2|  swikch 2 ¥ DSIC signal
1.544 Mbiv/s
DS signal | -
2 bpmn
K ——
g —
6 312 Mus
DS2 wignal
I -
) —————
- DM 23
7 -—'—-——..
44.716 MbiUs
DS 3 signal | >
9 N
- | DM 3/14NA
3 —]

North American digital hierarchy
(AT&T system)

139.264 Mbits
35
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Digital Multiplexing

Digital Hierarchy

Channels
| ———d
I/ Mmux

2 0=3 Mbits
: N
i — " wMUX
{—
I
N .
§ MUX
§—e
34.368 Mbivs
[
_ T mux
Europe and the rest of the word (Consultative t——a]
Committee on International Telephony and
Telegraphy), CCITT

119,264 Mbit/s
36

Scanned by CamScanner



