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Chapter 2

2.1 (a)

g(t) = Acos(2r f.t) te {%-ﬂ

1

f ==
=

We can rewrite the half-cosine as:
Acos(27r f t)-rect (%j

Using the property of multiplication in the time-domain:
G(f)=G,(f)=G,(f)
1 sin(z fT)
==|o(f —f)+o(f +f)|* AT ————=
2[ (f=f)+o(f+1)] =

Writing out the convolution:

G(f)=T%[%j[ﬂl—(f+fc)+5(1—(f—fc)]d/1
_ A [sin((f +f)T) _sinGr(f - 1)) fo L
2z f+f, f—f, ©oT

A | cos(zfT) cos(zfT)

2B S
2T 2T
(b)By using the time-shifting property:
. T
g(t-t,) = exp(-j2r ft,) =7
G(f)zi cos(n;T)_cos(zzflT) exp(— j T)
LI T S
2T 2T
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(c)The half-sine pulse is identical to the half-cosine pulse except for the centre frequency
and time-shift.

(oL
2Ta
G(f)=2| oSz iTa) CoS(zMTa) | oo 7 fTa)— jsin(x fTa))
2r| f-f f+f,
_A _cos(27z fTa) cos(2~ fTa) N .sin(2z fTa) . sin(2x fTa)
Az -, f+f, f—f, f+f,
_ Alexp(-j2zfTa) exp(-j2zfTa)
4r| - f+f

(d) The spectrum is the same as for (b) except shifted backwards in time and multiplied
by -1.

G(1) :A cos(z fT) cos(z fT)

-exp(jz fT)
2zl gL 4L
2T 2T
_ Alexp(j2zfT) exp(j2xfT)
ar| gL fel
2T 2T

(e) Because the Fourier transform is a linear operation, this is simply the summation of
the results from (b) and (d)

G(f) _A exp(j2z fT)+exp(—j2x fT) _exp(j27rfT)+(—j27sz)
4

4 fo Ll el
2T 2T
_ A cos(2z fT) cos(27z fT)
2 TR
2T 2T
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2.2

g(t) =exp(-t)sin(2z f_t)u(t)
= (exp(-t)u(t))(sin(2z f.t))
1

. — 1 | — —

_1 ! _ 1
2j|1+j2n(f— 1) 1+j2x(f+1,)

2.3 (a)

0(t) = 0. () + 9, (1)
.= 2[9()+ (-]

t
g.(t) = Arect (Ej

go<t)=§[g(t>—g<—t)]
t—lT t+1T

g,(t) = A rect —rect
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(b)
By the time-scaling property g(-t) = G(-f)

G,(1)=3[6(1)+G(-1)]
_ %[sinc( 1) exp(— 2 fT) +sinc( fT) exp( j2 fT)]
=sinc(fT)cos(z fT)
1
G,(1)=3[G(1)~G(-1)]

=%[sinc( fT)exp(—j27z fT)—sinc(fT)exp(j27 fT)]
=—jJsinc(fT)sin(z fT)
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2.4. We need to find a function with the stated properties.

We can verify that:

G(f)=—jsgn(f)+ ju(f -W)—ju(-f-W)
meets the stated criteria.

By duality g(f) = G(-t)

1 (1 1 . (1 1 .
g(t) = EJF 1(55(0 —WJGXP(—JZﬁWt) - 1(55(0 —WJEXP(JZﬁWt)

1 . sin(2zWt)
zt 2t

25 t+T 2
g(t)=1 J' exp[—”u2 ]du
T2 T
=T

:%i h(T)dT+% [ h()dr

0

M:—lh(t—T)Jrlh(t+T)
dt T T

By the differentiation property:

dg(t)) .
F(Tj_ 27 fG(f)
~LIH(f)exp(jor fr)—H(F)exp(-j2rf7)]
T

:Z—jH(f)Sin(Zﬁfr)
T

But H(f)=rexp(-xf*?)
~G(f)= ifexp(—fzf 2r%)sin(2x fT)
T

sin(2z fT)
f
= 2T exp(—7 f ?z%)sinc(27 fT)

=exp(—x f *7?)

IirrgG(f): 2Tsinc(2z fT)
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2.6 (a)
If g(t) is even and real then  g(t) = %[g(t) +g(-1)]
and g(t)=g"(t) = G(f)=G"(-f)
G (f)=216"()+G"(-)]
1 .. 1 .
6 (1N=56"¢-1
G*(f)=G(f)
. G(f) isall real
1
If g(t) is odd and real then 9(D) =E[g(t)—g(—t)]
and g(t) =g () = G(f)=G'(-f)

G(f)=%[e(f)—e(—f)]

N 1 .. 1 ..

G (f)=36'(N-26"(-1)
G (f)=-G"(-f)

G'(f)=-G(f)
- G(f) must be all imaginary

(b)

(- j2720)G(t) = % g(~f) by duality

jd
t-G(t) = ——g(-f
(t) 2”dfg( )

The previous step can be repeated n times so:

dn
—f
el

But each factor (- j27 ft) represents another differentiation.

(-i27f)"G(t) =

v-et (L] ooen
27
Replacing g with h

t"h(t) ﬁ(ij H®™(f)
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(©)

Let h(t)=t"g(t) and H(f):(zij G™M(f)
T

Tmmm:ru@:(%{reww)
T

—00

(d)
g, (t) = G(f)

;) 2 G,(~1)

0,09, () 2 j G,(A)G, (f - 2)dA

0,090 2 j G,(1)G, (—(f —)dA
=Tegmegz—fmz

)
0.(1)g; (1) 2 [ G,(A)G, (A~ f)dA

9:(t) 9, (t)dt = G(0)

0,050t 2 | G,(1)G,(2-0)d2

0,00, Ot 2 [ G,(1G,()dA
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2.7 (a)
g(t) 2 ATsinc?(fT)

j|g(t)|dt=AT

maxG(f)=G(0)
= ATsinc?(0)
=AT

.. The first bound holds true.

(b)
|

|j27 G(f)|=|27 fATsinc*(fT)|

O
dt

sin(z fT) sin(z fT)|
T zfT |

sin(z fT)
T

= ‘272’ fAT

=‘2A sin(;rfT)‘

But, |sin(z fT)| <1 Vvf and |sinc(x fT)|<1 vf
sin(z fT)

T
~|j2x fG(f)| < 2A

S 2A <2A

sin(xz T)
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2.7¢)

\(jzzf)ZG(f)\=\4n2f2c3(f)\

sin®(z fT)

=|az? 2 AT .
(= fT)

4A . ,
=|—sIin fT
‘T (zfT)

The second derivative of the triangular pulse is plotted as:

AT AT

| |

24T
Integrating the absolute value of the delta functions gives:

o |42
I d gz(t) dt 4A
Y1 dt T

o0

~|G2rfyeh)|< |

—00

2
d*9(0) 4
dt
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2.8.(a)

9, () * 9, (t) 2 G, ()G, ()
=G, (f)G,(f) by the commutative property of multiplication

b)
0,(F)*[g,(F)*g,(F)] 2 G,(F)[G,(F)G,()]

Because multiplication is commutative, the order of the multiplication
doesn't matter.

~Gy(N[G,(NG;(1)]=[G,(1)G,(1)]Gy(F)

= G(N[G,(NG, ()] 2[0,(F)*g,(F)]*gy(F)

c)

Taking the Fourier transform gives:
G,(f)[G,(f)+G,(f)]

Multiplication is distributive so:
G,()G,(F)+G,(f)G,(f) = 9,(t)g, (1) +9,(1) 9, (1)
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2.9a)
Let h(t) = g, (t) * g,(t)

%ﬁjZﬂfH(f)
= j271G,(1)G,(f)
=(j271G,(f))G,(f)

(jzﬂfel(f))ez(fm[ 91()}920)

A s o[G0,

000,01 20 o g,0

b t

' [a@rg,002—26,(1)6,(f)+ 2O 5)
i j2nf 2

{ie(f)}e(f){e(o’ (f)}e(f)
j2rf

|1 G,(0)
{12 G(f)+= 5(f)}G(f)

A gl(t)*gz(t)dt{ [ gl(t)}*gz(t)

2.10. Y(f)= j X (V)X (f —v)dv

|X(v)|¢0if |V|SW
|X(f —v)|;t0 if |f —v|£W
(f-v)<W for f <W +v when v>0and v <W
(f-v)>-W forf <-W +v when v<0and v>-W
~(f-v)<W for0<v <W whenf <2W
(f-v)>-W for-W <v <0 whenf >-2W
.. Over the range of integration [—W,W], the integral is non-zero if |f|§ 2W

Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.



2.11 a) Given a rectangular function: g(t) =T£rect (%) for which the area under g(t) is

always equal to 1, and the height is 1/T.

1 t .
—rect| — |2 sinc(fT
T (Tj(_ (fT)

Taking the limits:
Iimirect(lj =0(t)
T0T T

lim < sinc(T) =1
T>0T

b) g(t) = 2Wsinc(2Wt)
2Wsinc(2Wt) & rect [ﬁj
vlviirgo 2Wsinc(2Wt) = 6(t)
VIvi m rect (%) =1

2.12.

11
G(f)==+=sgn(f
()= +5son(f)
By duality:
1

1
G(f)z=o(-t)———
(Ye56( 2t

a2 sy e d
L9 =550 +5 -
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2.13. a) By the differentiation property:
(j2zf) G(f)=> kexp(-j2z ft,)

B(f) =7 >k exp(-j2r )

7t f?

b)the slope of each non-flat segment is: +

b a

1
A% f?

G(f)= —[ j[t ft j[exp(jZ;r ft,) —exp(j2 ft,) —exp(j2~ ft,) +exp(j2r ft,)]

A
= —m[COS(Zﬂ' ftb) - COS(27T fta)]

But: sin(z f (t, —t,))sin(z f (t, +t,)) = %[COS(Z%’ ft,) —cos(27 ft,)] by a trig identity.

~G(f) [sin(z f (t, —t,))sin( f (t, +1,))]

Tt L)

2.14 a) let g(t) be the half cosine pulse of Fig. P2.1a, and let g(t-to) be its time-shifted
counterpart in Fig.2.1b

e=G(f)G(f)

=[e(H)f
(G(f)exp(-j27 ft,))(G"(f)exp(j27 ft,)) =[G ()] exp(- j2= ft,) exp(j27 ft,)
(G(f)exp(-j2x ft,))(G™(f)exp(j2x ft))) =|G(f )|’

Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.



2.14 b)Given that the two energy densities are equal, we only need to prove the result for
one. From before, it was shown that the Fourier transform of the half-cosine pulse was:

AT (. . 1
T[smc((f + f)T)+sinc((f — f,)T)] forf, =07

After squaring, this becomes:
APT? | sin(z(f + f)T) +Sin2(7r(f —f)T) +2sin(;z(f + f)T)sin(z(f - £)T)
4 (z(f+f)T) (z(f - f)T)° 7 T2(f+f)(f-1)

The first term reduces to:

- Vs
sin (”fTJrz)_ cos® (7 T) cos® (7 T)

2 2 202 2
(smme2] (armag) 7TUEH

The second term reduces to:

. Vs
l (”ﬁ_zj_ cos® (7 fT)

2 T o 2
(”ﬂ-—zj zTH(f 1)

The third term reduces to:

2sin(7r(f + f)T)sin(z(f — f.)T) _ cos(z)—cos’(2x fT)
A T(F + f)(f - 1)) - ﬁsz(fz_ 1 )

472
~ —1-cos(27 fT)

_ﬁsz(fZ_ 1 j
472

2cos* (7 T)

2272 f2- 1
472

A?T? | cos® (zfT) cos® (7 fT) 5 cos’ (7 fT)

2T2 2 + 2
4T f_|_i f_i (f+lj(f—lJ
oT oT 2T 2T

Summing these terms gives:

Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.



2.14 b)Cont’d

By rearranging the previous expression, and summing over a common denominator, we
get:

AT? | cos®(xfT)

472_2T2 f2_ 1 2
4T?

AT cos®(z fT)
- 2T 4
47Z-T i%(4-r2f2_1)2
16T

_ AT?| cos’(z fT)
- 2

7| (47282 1)
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2.15 a)The Fourier transform of % = 127 1G(f)

Let g'(t) :%

By Rayleigh’s theorem: T|g(t)|2 dt = T|G(f)|2 df
e JE190) dt-jf2|ez(f)| df
(Jlocof at)
_ [tla®f dt-[g'®)g " ()t
47 ([locof o)
[[t?g" g0 ~tg g " M)t |
1672 ([l (O dt)
ij t'jt(g(t)g*(t))dt}
167* ([ g(t)g" Oct)

>

Using integration by parts, we can show that:
K d 2 ¢ 2
[f‘a'g“)' dt=jw|g(t)|

1

1672
1

ar

SWAT?2 >

S WT >

Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.



2.15 b) For g(t) = exp(-~t*)
g(t) 2 exp(-xzf?)

j t2 exp(=27t%)dt - j f2exp(—2x f 2)df
AW == =

j exp(-27t?)dt
Using a table of integrals: szexp(_axz)dxzi\/g fora>0
0 4a\ a
°° 1 /1
o | t? exp(-2xt? dt=—\/:
jw p(-27t)dt =~ |2

7 1 (1
f2exp(-27t*)df =— |=
[ 1*exp(-2at’) =~

1

2

1 2
.TW:L
Ar
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2.16.
Given: ]g |x(t)|2 dt < oo and T |n(t)|dt < oo, which implies that T h(t)ldt < oo

However, if [ [x(t)]"dt<co then [[X ()] df <woand [|X(f)["df <oo. This result also
applies to h(tj. 7 7
Y(f)=H(f)X(f)

T|Y(f)|2df = T X(FYH(F)- X (F)H"(f)df

:T|X(f)|2|H(f)|2df

2

o0

j|Y(f)|2df

—0

< [IX(O)[ df [[H(F)[ df
<

T|Y(f)|2df<oo

By Rayleigh’s theorem: T Y (f )|2 df :]E |y(t)|2 dt

T ly@)|" dt <oo

Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.



2.17.
The transfer function of the summing block is: H,(f) =[1-exp(-j27 fT)].
1

The transfer function of the integrator is: H,(f) = o
|27

These elements are cascaded :

H(f)=(H.(F)H, (1)) (H(f)H,(f))

S (27zlf )2 [1-exp(-j2x fT)]2

o1 [1-2exp(—j27 fT) +exp(~ j4r fT)]

(27rf)2

Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.



2.18.a) Using the Laplace transform representation of a single stage, the transfer function
IS:

1

1+RCs
1

=1+z'os
_
1+ j2n fz,

Ho(s) =

Ho(f)=
These units are cascaded, so the transfer function for N stages is:

H(f)z(H(f))N:(;JN

1+ j2rxfr,
T2
b) For N—oo, and 75 =—
477N
1
INnH(f)=NIn| ——
1+ j2nfz,

=—NIn(1+ j27fz,)

=-NIn (1+%)

let z :Jf—T, then for very large N, |z|<1

JIN

.. We can use the Taylor series expansion of In(1+ z)

~NIn(l+z)=-N {i%(—l)”‘” zm}

m=1

(next page)
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2.18 (b) Cont’d

Taking the limit as N—oo:

. =1, maf . fTY T 272
I!IILTO]O[N [;E(—l) (JW] :U:N(JW—FWJ

=—%f2T2—jx/WfT
H(f):exp(—% f2T ) exp(—j~/N ft)

.'.|H(f)|:exp(—%f2T2)

Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.



.
2.19.3) y(t) = j x(r)dz

t-T
This is the convolution of a rectangular function with x(z). The interval of the
rectangular function is [(t-T),T], and the midpoint is T/2.

rect [%) =2 Tsinc( fT), but the function is shifted by %

s H(f) =Tsinc(fT)exp(—jx fT)

bBW =~ — L

RC T
T T
H(f)=—— exp(-j2rf —
(D= orcar P27t 3)

= T T ! exp(—jz fT)
RCI 2 | jorf
RC

- h(t) :;—Cexp(—%(t —TE)jU(t —TE)

1 T T
~exp( £ (t-3) Jute-T)

Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.



2.20. a) For the sake of convenience, let h(t) be the filter time-shifted so that it is
symmetric about the origin (t = 0).

N-1 N-1
2 2
H(f)=> wexp(-j2zfk)+ D w, exp(-j2z fk) +w,
k=1 k=-1
N-1
2
=2)" w, cos(2x fk)
k=1

Let G(f) be the filter returned to its correct position. Then

G(f)=H(f)exp(—j2rf (%)) , Which is a time-shift of (%) samples.
N-1

~.G(f)=exp(—jzf(N —1))222:Wk cos(27 tk)

b)By inspection, it is apparent that:
<G(f)=<exp(-jzf(N-1))
This meets the definition of linear phase.

Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.



2.21 Given an ideal bandpass filter of the type shown in Fig P2.7, we need to find the
response of the filter for x(t) = Acos(2x ft)

|H(f)|:irect( f- f°J+irect( f+ f°j
2B 2B 2B 2B

|X(f)|=%[§(f — )+ 5(f - ;)]

If |f,— f,| is large compared to 2B, then the response is zero in the steady state.
However:
A A A

A
xut) 2| ———+—o6(f - f))+———+—0(f + f
® ()<_(j27z(f—fo) 2 O iy T2 °)J
Since | f.— f0| is large, assume that the portion of the amplitude spectrum lying inside the

passband is approximately uniform with a magnitude of ——.
4z(f, - 1)

The phase spectum of the input is plotted as:

pifd

_pﬂ

The approximate magnitude and phase spectra of the output:

A K ApilFo-foll))

[ ] | |

-fio fo

Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.



slope = -2%pi*0

T piz
- P

-fr fo

T -pifd \

Taking the envelope by retaining the positive frequency components, shifting them to the
origin, and scaling by 2:

Aexp(—j(zj—jhﬁoj
Y(f)= if —-B<f<B

27(f,— 1)

0 otherwise
_ __AB . B .
Soy(t) _—”(fc — fO)smc[ZB(t t,)]sin(2r f.t)

Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.



2.22
H(f)=X(~f)exp(j2zfT)

X (f) =§[§(f — )+ 5(f + f,)]*Tsinc( fT)exp(—j2r f TE)
:g[sinc(T (f — ) +sinc(T (f + f,))]exp(- jz fT)
Let f, _N for N large
T

Y(f)=H(f)X(f)

= X (- f)exp(j2r fT)exp(—jzsz)A—;[sinc(T(f — f,))+sinc(T(f +f,))]

—exp(j27 fT) A24T2 [sinc(T (f — f,))+sinc(T(f + f.))][sinc(T(~f - f.))+sinc(T (- + f.))]
=exp(j2x fT) AZI’Z [sinc(— T —N) +sinc(— fT + N)][sinc(fT —N) +sinc(fT + N)]

But sinc(x)=sinc(-x)

2T 2
~Y(f)=exp(j27 fT) AZT

[sinc(fT —N)+sinc(fT +N)]

Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.



2.23 G(K)=G
1 .27
=—)>» G(k)e —k-n
g NKZ:; (k)exp(j -k n)
G\ .2
=—)> exp(j—Kk-n
NkZ:(; P kN

(eRi= .2 .. .27
=—>» cos(j—k-n sin(j—k-n
NZ (1= k-m+ jsin(j—<-k-n)

k=0

N-1
Ifn=0, g(n)=—>1=G
N =

For n= 0, we are averaging over one full wavelength of a sine or cosine, with regularly
sampled points. These sums must always be zero.

Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.



2.24. a) By the duality and frequency-shifting properties, the impulse response of an ideal
low-pass filter is a phase-shifted sinc pulse. The resulting filter is non-causal and
therefore not realizable in practice.

c)Refer to the appropriate graphs for a pictorial representation.

i)At=T/100

BT Overshoot (%) Ripple Period

5 9,98 1/5

10 9.13 1/10

20 9.71 1/20

100 100 No visible ripple
il B B S T -

05k - ol AW S - SN (W —

O M M tob ot e .....................

Time (Units)
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Response

Response

1.5

Frablem 2.24 (b) BT=10

-1 a5 05 04 02 a 02 04 s 0B 1

1.5

Time {LInits)

Froblem 2.24 (b) BT=20

-1 a5 05 04 02 a 0z 04 ns 08 1
Time {LInits)
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Frablem 2.24 (b) BT=100

! ! ! ! ! ! ! ! !
N NN, — | S| SRS . SO SO S WO S
R s ........ ....... ........ ........ ......... ........ ........ 2
(k)
wm
=
S T R RVMION . S I N . [N N, ARG YL 0 YO . S -
o
[k}
[
gl e ........ ........ ........ ........ ........ ....... i
A . S [ ....................
1 | 1 1 | 1 | 1 1

Time {LInits)

2.24 (d)

At Overshoot (%) Ripple Period
T/100 100 No visible ripple.
T/150 16.54 1/100

T/200 ~0 No visible ripple.
Discussion

Increasing B, which also increases the filter’s bandwidth, allows for more of the high-
frequency components to be accounted for. These high-frequency components are
responsible for producing the sharper edges. However, this accuracy also depends on the
sampling rate being high enough to include the higher frequencies.
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2.25

BT Overshoot (%) Ripple Period
5 8.73 1/5

10 8.8 1/10

20 9.8 1/20

100 100 -

The overshoot figures better for the raised cosine pulse that for the square pulse. This is
likely because a somewhat greater percentage of the pulse’s energy is concentrated at
lower frequencies, and so a greater percentage is within the bandwidth of the filter.

25 ! ! ! ! ! ! ! ! !

Tirne (Units)
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Response

Response

Frablem 2.25 (b) BT=10

4.5

4.5

a5 05 04 02 a 02 04 s 0B 1

Time {LInits)

Frablem 2.25 (b) BT=20

08 06 04 02 a 02 04 0B 08 1
Tirne (Units)
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Response

Frablem 2.25 (b) BT=100
4.5 ! ! ! ! ! ! ! ! !

| I ........ ........ ......... ........ ......... ......... ........ ....... i

Time {LInits)
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2.26.b)

Armplitude

Amplitude

0 2 4 B g 10

Time {Units)
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Armplitude

Tirne (Units)

2.26 b)

If B is left fixed, at B=1, and only T is varied, the results are as follows
BT Max. Amplitude

5 1.194

2 1.23

1 1.34

0.5 0.612

0.45 0.286

As the centre frequency of the square wave increases, so does the bandwidth of the signal
(and its own bandwidth shifts its centre as well). This means that the filter passes less of
the signal’s energy, since more of it will lie outside of the pass band. This results in
greater overshoot.

However, as the frequency of the pulse train continues to increase, the centre frequency is
no longer in the pass band, and the resulting output will also be attenuated.
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c)

BT Max. Amplitude
5 1.18
2 1.20
1 1.27
0.5 0.62
0.45 0.042

Extending the length of the filter’s impulse response has allowed it to better approximate
the ideal filter in that there is less ripple. However, this does not extend the bandwidth of
the filter, so the reduction in overshoot is minimal. The dramatic change in the last entry
(BT=0.45) can be accounted for by the reduction in ripple.
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2.27

a)At fs = 4000 and fs = 8000, there is a muffled quality to the signals. This improves
with higher sampling rates. Lower sampling rates throw away more of the signal’s high
frequencies, which results in a lower quality approximation.

b)Speech suffers from less “muffling” than do other forms of music. This is because a
greater percentage of the signal energy is concentrated at low frequencies. Musical
instruments create notes that have significant energy in frequencies beyond the human
vocal range. This is particularly true of instruments whose notes have sharp attack times.

w0 Signal Plots of Musical Input

Armplitude

10

apectrum( dB)

A 1 1 1
a 0.5 1 1.5 2 2.5

Fregquency( Hz) T
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2.28

Amplitude

Arnplitude

P2.28 time-Domain Impulse Hesponse
1 T T T T T T
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Time Steps

F2.28 Freguency Domain Phase Response
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Chapter 3
3.1

s(t) = Ac[1+kam(t)]cos(2 7. t)
where m(t) = sin(2zfst) and f=5 kHz and f. = 1 MHz.

- S(t) = Af[cos(27 f.t) +k?a(sin(27r( f. + fs)t) +sin(2z(f, — f)t)]

s(t) is the signal before transmission.
6
The filter bandwidth is: BW = T = 107 =5714 Hz
Q 175

m(t) lies close to the 3dB bandwidth of the filter, m(t) is therefore attenuated by a factor
of a half.

~m(t)=05m(t) ork, =0.5k,
k. =025

The modulation depth is 0.25
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3.2(a)

. v
1=1,[exp(——) -1
olexp(=g-) -1
Using the Taylor series expansion of exp(x) up to the third order terms, we get:

- |0[_L+E(LJ _l(ij |
V., 2\Vv. ) 6lV,

(b) v(t) =0.01cos(2x f,t)+cos(27 f.t)]

f+f

Let =27t ==, =27t

f

¢ 'm

then v(t) = 0.02[cos & cos ¢]

- V2 (t) = 0.02°[1+ cos(26)][1+ cos(24)]

=0.02°[1+ cos(26) + cos(2¢) + % (cos(20 + 2¢) +cos(26 — 2¢))]

=0.02°[1+cos(2z(f, + f )t)+cos(2z(f, - f )t)+ % (cos(4r f t)+cos(4rx f t))]

V(1) = 0.023[3c089+00539}{3cos¢+cosBﬂ

4 4
_0029
16 2

+ g (cos(30 + @) +cos(36 — ¢)) + % (cos(38 + 3¢) +cos(36 —3¢))]

(cos(@+ @) +cos(0 —¢)) + g (cos(8 + 3¢) + cos(8 —3¢)

0.02
16

SV () = [% (cos(2x f t)+cos(2x f, 1)) + % (cos(2z(2f, — f )t)+cos(2x(2f,, — f)t)

+%(cos(27r(2 f.+ f )t)+cos2z(2f, + f)t)) + % (cos(67 f t)+cos(6x f,t))]
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The output will have spectral components at:

fio

T T T 7

fo- 2fm fo-fin fo+fim fo+2fim
The bandpass filter must be symmetric and centred around f; . It must pass components
at f.+ f,, but reject those at f.+2 f, and higher.
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(d)

Term # Carrier Message Taylor Coef.
1 0.01 -38.46

2 0.0001 739.6

3 2.25x10° -9.48 x 10°

After filtering and assuming a filter gain of 1, we get:

i(t)=0.41cos(2x f.t)+0.074[cos(2x(f, — f )t)+cos(2z(f, + f )t)]
=0.41cos(27 ft) +.148[cos(2x f t) cos(2x f,t)]
=[0.41+0.148cos(2x f,t)]cos(2x f t)

=[1+0.36cos(2x f t)]cos(2x f.t)

.. The modulation percentage is ~36%
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Problem 2.3

(a) Let the mput voltage v; consist of a sionsoidal wave of frequency %f:. (i.e., half the desired cammier
frequency) and the message signal mif):

v; = Arcns(wfctj + mit)

Then, the output current i, is
i, = alvi+a3vf

=]

= al[ﬁccus(ﬂfctj +mif)] +a3[.-i£cus(ﬂj::r)+m(t)]3
= a [.»:I‘ous('x_,r::r) +m(i]+ ‘lqa}d‘.i [cas?r[ﬂfctj + SODs(ﬂfc.t}]

+ ;a;:ifm{tj[l + cos2(mf, )] + 3azd cos(nf,eym’ (£) + agm’ ()

Assume that m(f) cccupies the frequency mterval -F = f= W Then, the amplitude spectrum of the
output current i, is a3 shown below:

LA

—
o
.:'::_-,.

mI.’.é'n'd "
oy

3 . 3 3W W0 W AW A 7
2 o 2 F]
I 4W AW W

From this diagram we see that in order to extract a DSBSC wave, with carmer frequency f; from i,
we need a bandpass filter with mid-band frequency f, and bandwidth 21 which satisfy the
Tequirement:
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Ie

fo—W= 7+ 2w
that 15, f; = 6/
Therefore, to use the given nonlinear device as a product modulator, we may use the following
configuration:
Nonlinear
device EFF —————
Aot 3 oyt ImitcosC2ns)
m(t)

(1) To generate an AM wave with carmier frequency f, we require a simusoidal component of frequency f;
to be added to the DSBSC generated in the manner described above. To achieve this requirement, we
may use the followmg configuration invelving a par of the nonlmear devices and a pair of identical

bandpass filters.
Honlinear
device BPF
Agros(nfd)
mir)
Ay _J—_
A cos(xf0) @
a ‘Nonlinear
device BPF

The resulting AM wave is therefore 3a;4;[4, + m(f)]cos(2nf,t) . Thus, the choice of the dc level
Ay at the input of the lower branch controls the percentage modulation of the AM wave.
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Problem 3.4
Consider the square-law characteristic:

Vi) = alvl(r)+a2v$(rj 1
where a4y and a, are constants. et
V(1) = 4 _cos(2nf i)+ mif) (93]

Therefore substitutmg Eq. (2) into (1), and expandmg terms:

2
vy(f) = aldc[‘l + ;m{ﬂ]cm{ﬁnj}fj (&3}
1

+aymt) + aym’ (1) + a4 cos (2nf 1)

The first term m Eqg. (3) 15 the desired AM signal with k, = 2ap/a;. The remamng three terms are
unwanted terms that are removed by filtermg.

Let the modulating wave m(f) be limited to the band -W = = W, as in Fig. 1(a). Then, from Eq. (3) we
find that the amplitude spectrum [F5{f)] 15 as shown m Fig. 1(k). It follows therefore that the unwanted
terms may be removed from vo(f) by designing the tuned filter at the modulator output of Fig. P2.2 to
have a mid-band frequency fc and bandwidth 21, which satisfy the requirement that f; = 37

Iy Lele)
/{\ /}\ “ /I\ A
W O0WF B £ AFW 0 W OIF| L A
w
(a) (&)
Figure 1
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Problem 3.5
(a) The envelope detector output is

() = 4|1+ pcos(2nf, 1)

which 15 illustrated below for the case when p = 2.

W

We see that w(f) 1% peniodic with a period equal to f;,, and an even fimetion of ¢, and 20 we may express
W) n the form:

vi) = agt2 Yy a,cos(2nwf 1)

1/3f, 1731,
=24, j’u [1+2cos(2nuf, O)]dt +24 1, [ 3y [-1-2cos(2nnf, )]dt
"
- S+ (3 m

/31,
a, = 2, Iu vif)cos(2nnf fdt
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1/
= M'JHID 1f-[1 + 2cos(2mf, t)]cos(2nnf, t)dt

1421,
24 J"I];y_ [-1-2cos(2nf, f)]cos(2nxf, fdt

A 4
- lsin[:th - sin(mr}] + m{zm[‘%‘{nﬂj] - sin[:[n+l}]}

_A‘ - [4R .

* {n-l}n{zm[%("-ll] —sm[xn(n-1 }]}
For n =0, Eq. (2) reduces to that shown in Eq. (1).

(b) For n = 1, Eq. (2) yields

o aff]

Forn=2, it yields

4

4= n

Therefore, the ratio of second-harmonic amplitnde to fimdamental amplitude m W) 13

Do 3B g

a8 In+3.fi
FProblem 3.6
Let

vt} = 4 [1 + k mit)]cos(2nf )
(a) Then the output of the square-law device 15

vy(t) = a, +avi(h)
= aldr[l +kﬂm(r}] cns(lnfcﬂ

5 %azdi[l + () + lem (D101 + cos(4nf,0)]

@

(b) The desired sigmal. namely az.-{gkam{fj , 15 due to the ﬂz‘l-?%{f} - hence, the name “square-law
detection”. This component can be extracted by means of a low-pass filter. This is not the only
contribution within the baseband spectmm, because the term lz’lazﬁﬁkf’mzir} will give rise to a
plurality of similar frequency components. The ratio of wanted signal to distortion 15 2 m(r). To
make this ratio large, the percentage modulation, that 15, |km(f)| should be kept small compared with

umity.
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Problem 3.7
The sguarer output 13
2 2 2
v(f) = A [1 +k mi{f)] cos (Inf 1)
2

= S+ 2k_m™(1)][1 + cos(4xf,0)]

The amplitnde spectrum of v;{f) 15 therefore as follows, assuming that m(f) is limited to the interval
W=f=W:

(w0

R ¥ e B DT w

Since fi = 2W, we find that 2f; -2 = 20" Therefore, by choosing the cutoff frequency of the low-pass
filter greater than 2, but less than 2f; -2IF, we obtain the output

2z

2
V() = S 11 +em(o)’

Hence, the square-rooter output is

AC
vyt = .'—5[1 +kﬂm(r}]

A
which, except for the de component —= | is proportional to the message signal m(f).

Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.



Prohlem 3.8

(@) For f; = 123 kHz, the spectra of the message signal m(7), the product modulator cutput 5(7), and the
coherent detector output wf) are as follows, respectively:

M(f)
JkHz)
-1 0 1
S
k) 0 T3 JOtiz)
4]
4 i SkHz)
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(k) For the case when f = 0.75, the respective spectra are as follows:

Mif}
* 5 ; SikHz)
SN
T 0TS JGtiz)
FOHz)

To avoid sideband-overlap, the carmer frequency f; mmst be greater than or equal to 1 kHz. The lowest

camier frequency is therefore 1 kHz for each sideband of the modulated wave s(f) to be uniquely
deternned by m(7).

FProblem 39
The two AM modulater cutputs are

5y() = A [1 +k mit)]cos(2nf.1)
Sqf) = A [1+km(t)]cos(2nf 1)
Subtracting 54(f) from 5;{s):

5(f) = 55(f) —5,(1)

= 2k mit)cos(2nf 1)

which represents a DSB-5C modulated wave.

Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.



3.10. The circuit can be rearranged as follows:

(@)
w4 B Rf Wb
H ORI
(b)
T Ef B -

Let the voltage V,-Vq be the voltage across the output resistor, with V, and Vq4 being the
voltages at each node.

Using the voltage divider rule for condition (a):

R, R; o R—Ry
Vv, =V . V=V .V, -V =V
R; +R, R +R, R; +R,
and for (b):
R -R +R
V,=V———, V,=-V R, .V, -Vv,=v—=2 L
R; +R, R; +R, R; +R,

.. The two voltages are of the same magnitude, but are of the opposite sign.
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Problem 3.11
(2) Multiplying the signal by the local oscillator gives:

5,06 = A_m(tyeos(2nf Dcos[2Inif, + Afit]
AI!'
= Tm(:}{cus(hﬂ.ﬁ) + cos[2m2(f_+ Af)f]}
Low pass filtening leaves:
""Il:
5(f) = Tm{f}cus(?.ﬂmﬁ)
Thus the output signal 13 the message signal modulated by a smuszoid of frequency Af.

() IE m(f) = cos(2fy),

A
then 5,(f) = chus(hfmr}cm{imﬂﬁ}

Prohlem 3.12
(@) y(1) = 5°(0)
=42 2 2
= A cos (Inf fim™ ()

2
= ﬂ[l + cos(dnf.H)Im (1)
3 c
Therefore, the spectrum of the multiplier output is

Fif) = 5 Mmug".a.}druf[j MOOM(F-2f, -y + | M(L)M(,F-I-Ej::-l}ﬂ]

where M() = FIm()]
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(b} At f=2f, we have

A2 &
¥2f,) = T‘_[_EM{:,;M(ZL-:,;&

AI an an
+ T‘[I@M{L)M{—Lm + I@M{L]M{ﬂ‘lfc-hjcﬂu]
Since M{-A) = M*(3.), we may write
A2
Fi2f) = T‘[_NM{;,;M(EIC-;,;&
+A%f° WP+ [ MOOMAL —)dh 1
T[_mﬂﬁ Wdn+ [~ MOLMS, -1) ] m

With m(f) limited to -V = £ = Wand f; = I, we find that the first and third integrals reduce to zero, and
so we may simplify Eq_ (1) as follows

47 = 2
raf) = 5 MooPda

AE
4

where E is the signal energy (by Rayleigh®s energy theorem). Smmilarly, we find that

A2
Yi-2f) = T‘E

The band-pass filter output, in the frequency domain, is therefore defined by

AI
Fifi= T‘Eﬂf[{ﬁf— 2+ 8(f+21)]
Hence,

A
V(i) = TEﬂ.fms(dmj:__i‘)
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Problem 3.13
The multiplexed signal is

() = Acmltfjcus(2ﬂ£1}+dcm2{ﬂsjmil'.ﬂtj::t}
Therefore,
Ar AC
3 = ?[Mlg_fc}_'-ﬂl(f"_fc}]+2_1[M‘2(f_f::} - My(f+ £

where M;(f) = F(m;(f)] and M5(f) = F{m;(f)]. The spectrum of the raceived signal is therefore
Ei(fi = H{HS(H

—AGH M M, (f+ )+ 1M L+

= FHOMG 0+ M1+ My =f) - M+ 1))

To recover m;(f), we nmltiply r{f). the inverse Fourer transform of R(f), by cos(2nff) and then pass the
resulting output through a low-pass filter, producing a signal with the following spectrom

FirtheosQafyn = JIR(—f)+ R(HF)]
4
- TCHG_-&}[MIU_-&}+M1m+}Mz(r_-ﬂ}_}Mzm]

A
+fof+.ﬂ;]'[M1f.ﬂ + M, (f+ 2_&}+}M2—}M2g‘+;;}] (1

The condition H{f,. + f) = H¥(f; - /) 1= equivalent to H{f+ ;) = H{f - f); thiz follows from the fact that for
a real-valued impulse response h(f), we have H{-f) = H*(f). Hence, substituting this condition in Eg. (1),
we get

4
FIr(t)cosQaf,0] = —H{f—f,)My(f)

A
+FH(- S, ][Ml -2+ } (- 200+ M, (f+2f) - }MZU‘+ Efc]]

The low-pass filter output, therefore, has a spectrum equal to (A2)H{f - fOM; (-

Similarly, to recover mo(f), we multiply n(f) by sin(2nf.f), and then pass the resnlting signal through a
low-pass filter. In this case, we get an output with a spectrom equao to (420 - foma(6).
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Froblem 3.14
When the local carmiers have a phase error ¢, we may write

cos(2af f+¢) = cos(2xf t)cosd— an(2xnf f)smb

In this case, we find that by multiplying the recerved signal W) by cos(2nfif + ¢), and passing the
resulfing output through a low-pass filter, the corresponbding low-pass. filter output in the recerver has a
spectrom equal to (A /20H(f - DlcoseM(f) - singMy(f]]. This mdicates that there iz cross-talk at the
demodulator cutputs.

Problem 3.15
The transmitted signal 1= piven by
5(f) = A_m, (t)cos(2xf ) + A_m, (D) sin(2xf 1)

= A _[Vy+my(5)+m ()] cos(2mf,1) + A _[m,(f) — m ()] cin(2xf, )

(a) The envelope detection of 5(7) yields

yy(t) = AcJ{Fu +m (1) + m,(mz +(m(t) - m,{mz

) mi(f) — m () )
= A (Fy+mit)+ i'ur{ﬂ]Jl + [m]

To mininnize the distertion in the envelope detector output due to the quadrature component, we choose
the DC offset I to be large. We may then approximate yy(f) as

¥y () = AV + my(t) +m (1))
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3.16 (a)

s(t) :%a- A A cos(2z(f, + f)t) +%(1—a)AnAb cos(2z(f,,+ f.)t)

s(t) = %[a(cos(h f.t)ycos(2z f t) —sin(2x f t)sin(2x f, t))

+(1—a)(cos(27x f.t)cos(2x f,t) +sin(2x f t)sin(2x f,t))]

s(t) = %[cos(% f.t)cos(2z f t)+ (1—2a)sin(2x f.t)sin(2z f _t))]
somy(t) = %cos(Zn f.t)
m, (t) = %(1— 2a)sin(2z f t)

b)Let:
s(t) = % Am(t)cos(2x f t) + % Am(t)sin(2z £ t)

By adding the carrier frequency:

S(t) = A[1+%kam(t)] cos(2z 1) +% K Am, (©)sin(27 f.1)

where k, is the percentage modulation.
After passing the signal through an envelope detector, the output will be:

1 2 1 2 %
|S(t)|= A{{1+Ekam(t)} +[Ekams(t)} }

%
1 2
=k m_(t
2a S()

:A{Hlkam(t)] 1+ T
2 1+ km()

The second factor in |s(t)| is the distortion term d(t). For the example in (a), this
becomes:

1 21 %
—(1-2a)sin(2z f t)
d(t)=11+| 2

1+ 5 cos(2r ft)
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c)ldeally, d(t) is equal to one. However, the distortion factor increases with decreasing a.
Therefore, the worst case exists whena = 0.
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Prohlem 3.17

(@) s(t) = A (1 +k m(t)cos(2af,1)

[ k
=41+ "',,J cos(2af h)
L 1+1.

To ensure 50 percent modulation, k; =1, in which case we get

) 1 -
Hty=A|1+ cos{2af.t)
E[- 1+rl) e
) sy = Aﬂm(tjcus(lﬂ};r}
“"If-
= —cos(2af,1)

1+7¢

4
{c) s(t) = T‘[m(t)cus(? :'gf'c.t} —:h(tjsi.u(?.ﬂfc.t}]

=‘ﬂ[ L cos2af, - rzsiu(iﬂfri‘}]
2li+¢ l+¢

t
1+¢

@ sy = ﬁ[%m@{iﬂfrﬂ+ sin(27,1)|
Il 4y

As an aid to the sketchmg of the modnlated signals in {c) and (d), the envelope of either S5B wave is

_1fr2+1 1
a(t) = =5 5
1+#

i'1[.[1 iy
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FProhlem 3.1%

An error Afin the frequency of the local oscillator m the demodunlation of an S5B signal measured with
respect to the camer frequency f. pives rise to distortion m the demodulated sipmal Let the local
oscillator output be denoted by 4, cos(2n(f; + Aft). The resulting demodulated signal is given by (for the
case when the upper sideband only is transmitted)

v,(f) = %ACA'C [m(f)cos(2xAf) + m(f)sin(2xAMD)]

This demodulated signal represents an SS5B wave comesponding to a camier frequency Af
The effect of frequency error Afin the local oscillator may be interpreted as follows:

(a) If the 55B wave s5(f) contains the upper sideband and the frequency emor Af i1z positive, or

equivalently if 5(f) contams the lower sideband and Afis negative, then the frequency components of
the demodnlated sipnal v, {f) are shifted imward by the amount Af compared with the baseband sipnal

m(?). as illustrated in Fig. 1(b).

(b) If the inconing SSB wave s(f) contams the lower sideband and the frequency emmor Afis positive, or

equivalently if 5(f) contams the upper sideband and Afis negative, then the frequency components of
the demodulated signal v (f) are shifted outward by the amount Af, compared with the baseband

signal m(f). This is illustrated in Fig_ 1(c) for the case of a baseband signal (e g, voice signal) with an
energy gap occupying the interfal -f; = f< £, in part (a) of the figure.

Figure 1
M .
M(7) L aamr)
s T 0 & 5 ! F O N O
(@) ©
LA
1405

Hryf A 0 A WA r
()
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Frohlem 3.19

(2,6} The spectrum of the message signal is illustrated below:

i)
) E U A Is I

Comespondingly, the output of the upper first product modulator has the following spectrum:

%Wh@ %W‘fu}

A

A ORI

i -fy - 0 o Hith
The output of the lower first product modulator has the speetrum-

I
- f4 R
: } !
Ji' M+ ) y
The output of the upper low pass filter has the spectrum

b b

\ b

e A A

Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.



The output of the lower low pass filter has the spectrum:

w1
1M#5ﬁ;-. I/ﬂfﬁ}_ﬁ

3y

The output of the upper second product modulator has the spectrum-

3 MDD 1 1 1
‘l 5 M-/ 1) § MAF+ -5 s MAF-fo - o)
. J;. ; J'E- I

The output of the lower second product modulator has the speetmum-

3 M-p+ 1 VAR
. y a :
T 1 1 /f" kA
3 M+ i+ 1 M- -

Adding the two second product modulator cutputs, their upper sidebands add constroctively while
their lower sidebands cancel each other.

() To moedify the modulator to transmit only the lower sideband, a single sign change is required in one

of the chammels. For example, the lower first product modulater could nmltiply the message signal by
—sin(2xf,f) . Then, the upper sideband would be cancelled and the lower one transmutted.
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3.20. m(t) contains {100,200,400} Hz

The transmitted SSB signal is: %[m(t) cos(2z f t) —m(t)sin(2x f.t)
Demodulation is accomplished using a product modulator and multiplying by:
A cos(2rx f t)

(a)
v, (t) = % A A cos(27 f t)[m(t) cos(2x f t) —m(t) cos(2x f t)]
The only lowpass components will be those that are functions of only t and Af. Higher

frequency terms will be filtered out, and so can be ignored for the purposes of
determining the output of the detector.

v ()= % A A [m(t) cos(2x f At) —m(t)sin(27x f At)] by using basic trig identities.

When the upper side-band is transmitted, and Af>0, the frequencies are shifted inwards
by Af.
-V, () contains {99.98,199.98,399.98} Hz

(b) When the lower side-band is transmitted, and Af>0, then the baseband frequencies are
shifted outwards by Af.
=V, () contains {100.02,200.02,400.02} Hz
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Problem 321

LU RGN P R e i P .
cos(2wf0 cos[2p{f. + 1

(a) The first product modulator output is
v, (f) = m(t)cos(2nf 1)
The second product modulator output is
V30 = vy(thcos[2n(f, + f)i]

The amplitnde spectra of m{f), w{f), vy(f), v5(f) and 5(f) are illustrated on the next page:
We may express the voice sipnal m{f) as

m(f) = %[m.p[i‘}"‘ m_(1)]

where m,(f) is the pre-envelope of mi(f), and m.(f) = m, *(f) is its complex conyugate. The Founer
transforms of m.(f) and m_(f) are defined by (See Appendix 2)

mw={3”‘iﬂ’ f>0 }

] Jf<0
- 0, f=0
Mifi =
-0 {EM{_;"}, f<0 }
Companng the spectnum of s{f) with that of m(f), we see that 5{f) may be expressed m terms of m.(f)
and m_(f) as follows:

s(f) = % ADexp(—lxf, )+ %m_[f}aq:UE:j;ﬂ
= gm0+ jm(D]ep(i2fy + glm(s) — jm(]ep(2af;)
= i%_Jlllﬂ:i‘}wl:u::ns{2:ld||"5,a‘j|- + %ﬁ{ﬂ s (2wt}
(b) With s(f} as input, the first product modulator owtput iz

vy () = s(t)cos(2nf 1)
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3.22. f =f —Af-W
f, = f +Af

v, (t)v, (t) = AA, cos(2z ft+¢)cos(2z f.t+¢,)
= %[cos(Zﬂ( f,—f)t+¢ —¢,)+cos2r(f, + )t +4 +9,)]

The low-pass filter will only pass the first term.

“ LFP(, (% () =5 AA[c0s(-270W +28F)t+ 6~

Let vo(t) be the final output, before band-pass filtering.

v, (t) = % A A, [cos(—2x [V\\//V/Zfifz jt + W(Ile_f(bi 2) A, cos(2z ft+¢,)]

_l 2 _ ¢1_¢2 _ . ¢1_¢2
—2A1A2[cos( 27rAft+—nJr2 @,)-cos(2rx f,t+ — +4,)]

:£A¥E%02ﬂn+2M)+ﬁ1&—@hﬁm@bﬂg+ﬁ:ﬁ+@ﬂ
4 n+2 n+2
After band-pass filtering, retain only the second term.

. _1 2 _ ¢1_¢2
..vo(t)_4AlA2[cos( 2rft+ s +¢,)

6
—— "2 +4=0
n+2 n+2 %
rearranging and solving for ¢, :

5152:_i

n+1

(b) At the second multiplier, replace v,(t) with vi(t). This results in the following
expression for the phase:

b,

n+2 n+2

¢1_&

" n+3
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3.23. Assume that the mixer performs a multiplication of the two signals.

y,(t) e{1,2,3,4,5,6,7,8,9} MHz
y, (t) € £100, 200,300, 400,500, 600, 700,800,900} kHz

This system essentially produces a DSB-SC signal centred around the frequency of y;(t).

The lowest frequencies that can be produced are:

y,(t) = %[003(27:( f,— f,)t)+cos(2z(f, + f,)t)]
f,=1MHz f,—f,=0.9 MHz
f,=100 kHz f + f,=1.1 MHz

The highest frequencies that can be produced are:

f=9MHz  f—f,=81MHz
f,=900 kHz f,+ f, =9.9 MHz

The resolution of the system is the bandwidth of the output signal. Assuming that no
branch can be zeroed, the narrowest resolution occurs with a modulation frequency of
100 kHz. The widest bandwidth occurs when there is a modulation frequency of 900
kHz.
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3.24 Given the presence of the filters, only the baseband signals need to be considered.
All of the other product components can be discarded.

(@) Given the sum of the modulated carrier waves, the individual message signals are
extracted by multiplying the signal with the required carrier.

For my(t), this results in the conditions:
cos(er,) +cos(f,) =0

cos(er,)+cos(f,) =0
cos(a,) +cos(f,) =0
Lo, =ptrx

For the other signals:

m, (t):

cos(—a,) +cos(—p4,) =0 o =p*tr

COS((ZZ - al) + COS(ﬂZ _ﬂl) =0 (az - al) = (ﬂz - ﬂ1) tr
cos(a; —a,) +cos(f; — ) =0 (as—a)=(B—-B)Et7m

Similarly:

m(t):
(—a,)=(B-B)t~x
(a—a,)=(B;-B)t7

m,(t):

(o, —a,)=(B-B)tr

(a,—a)=(B,-B)tx

(b) Given that the maximum bandwidth of m;(t) is W, then the separation between f, and

fp must be | fa- fp|>2W in order to account for the modulated components corresponding to
fa- fb.
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3.25b) The charging time constant is (r, + R,)C =1us

The period of the carrier wave is 1/f; = 50 us.

The period of the modulating wave is 1/f,, = 0.025 s.

.. The time constant is much shorter than the modulating wave and therefore should track
the message signal very well.

The discharge time constant is: RC =100xs. This is twice the period of the carrier wave,
and should provide some smoothing capability.

From a maximum voltage of V,, the voltage V. across the capacitor after time t = Ts is:

T
V, =V, exp(-—=
e = Vo exp( RIC)

Using a Taylor series expansion and retaining only the linear terms, will result in the

linear approximation of V. =V,(1- RTSC) Using this approximation, the voltage will
|

decay by a factor of 0.94 from its initial value after a period of T seconds.

From the code, it can be seen that the voltage decay is close to this figure. However, it is
somewhat slower than what was calculated using the linear approximation. In a real
circuit, it would also be expected that the decay would be slower, as the voltage does not
simply turn off, but rather decreases over time.

Pr3.25 Envelope Detector Output
15 T T T T T

Amplitude

Time (s) i 1EI'3
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3.25¢)

The output of a high-pass RC circuit can be described according to:
V,(t)=1(t)R

Qc (t) = C(Vin (t) _VO (t))

_d9Q
v = dt
VO (t) =RC ( dVin (t) _ dVO (t) j
dt dt

difference equation:

Vo) = =2 Vo (=D 4V (-, (D)

Using first order differences to approximate the derivatives results in the following

The high-pass filter applied to the envelope detector eliminates the DC component.
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Pr3.25 HP Filter Output

I:IE T T T T T T

0.4

n.z2

Armplitude

0.2

0.4

0.5

_DB | | | | | |

Problem 3.25. MATLAB code

function [y,t,Vc,Vo]=AM_wave(fc,fm,mi)

%Problem 3.25

%lnputs: fc Carrier Frequency
% m Modulation Frequency
% mi modulation index

%Problem 3.25 (a)
Fs=160000; %sampling rate
deltaT=1/fs; %sampling period

t=linspace(0, .1, .1/deltaT); %Create the list of time periods
y=(1l+mi*cos(2*pi*fm*t)).*cos(*pi*fc*t); %Create the AM wave

%Problem 3.25 (b)
%%%%Create the envelope detector%%%%

Vc=zeros(1, length(y));
Vec(1)=0; %inital voltage

for k=2:length(y)
it (y(k)>(Ve(k-1)))
Ve(k)=y(k);
else
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Ve(k)=Vc(k-1)-0.023*Vc(k-1);
end
end

%Problem 3.25 (c¢)

%%%Implement the high pass filter%%%
%%This implements bias removal
Vo=zeros(1, length(y));

Vo(1)=0;

RC=.001;

beta=RC/(RC+deltaT);

for k=2:length(y)
Vo(k)=beta*Vo(k-1)+beta*(Vc(k)-Vc(k-1));

end
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Chapter 4 Problems

Prohlem 4.1

For the PM casze,

5ty = Acc-us[hl:j}r+kpm(f)]_
The angle equals

8;() = 2mf, 1+ km(1).

The instantaneons frequency,

Ak, Ak,
£ =fc+m;-zj;5'i'—“3"n} .

1z equal to f; + Ak, InT;, except for the mnstants that the message signal has discontimmties. At these
mstants, the phase shifts by -k,4/T;, radians.
5@

4

\ f\fnl\ f\zrﬂ[\ [\srul\ E
UV NV NV N

]

A
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Problem 4.2
The instantaneous frequency of the mixer output 15 as shown below:

" |

The presence of negative frequency merely indicates that the phasor representmg the difference
frequency at the mixer output has reversed its direction of rotation.

Let ¥ denote the number of beat cycles in one period. Then, noting that N is equal to the shaded area
shown above, we deduce that

N = 2447 fﬁ'l'[:;?ﬁ —1) + 287 £y

= 4Af- (1 -f1)
Since fiT <= 1, we have
N=dAf. 1

Therefore, the number of beat cycles counted over one second is egual fo

N o _
Tj’h - -4ﬂ|.ffn1:.
Frohlem 4.3

The instantaneons frequency of the modulated wave (f) is as shown below:
i)

feraf
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We may thus express s(f) as follows

cos(2xf_1), t<—
5(t) = 4 cos[2n(f, +ANe. —gs i=

cos(2wf, 1), g{ t
The Fourier transform of 5() 15 therefore

~TF2
5iH = j_m cos(2xf tyexp(—j2ufi)dt

+j_iii cos[2n(f, + Af)]exp(—2nft)dt

+ [m cos(2af, trexp(—2nfhdt

= [ cosaf,thexp(~j2nfridt

+j‘$ {cos[2n(f, + ANt — cos(2nf )]} exp (2 xft)dt

The second term of Eq. (1) is recogmized as the difference between the Fourer transforms of two BF
pulzes of unit amplimde, one having a frequency equal to f; + Afand the other having a frequency equal
to f. Hence, assuming that f 1 =>= 1, we may express S(f) as follows:

Lsor—r+ Lsine (1(r— . — a1 - Lsine [T(r— 0

3 if .ir;) im[ if f; Af)] 55"1‘3[ f fc)]-.. f=

JSU )+ JSme T+ £+ A1 - Jsime (T(F£)1, <0

Problem 4.4

(2) The envelope of the FM wave s(f) 1s

a() = 4, ,fl + B sin (2nf), 1)

The maximnm value of the envelope is
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and 1ts mimmum value 15

am.u = AC
Therefore,
a

max _ h + BZ
T i

This ratio 13 shown plotted below for 0= g = 0.3:

A
Lin

114

1005  1.02 1.044

() Expressing s(f) n terms of its frequency components:

5(f) = A cosi{2uf i)+ %Bdccus[zﬂ(ﬂ: +fmjf]—%ﬂ.-icms[2mm—fmjf]

The mean power of s(f) is therefore
2 2 2
p e P Bl
1 2 g 2
2
A, B
=_"[1+FE
FU+3

The mean power of the immodulated camier 1s

4

2

A

— [
Fe=+
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1005 1.02 1.045

(c) The angle 8,(f), expressed in terms of the in-phase component, 5(f), and the quadrature component
sQ{f}._ 1%

- -1 54D

= duf.t+ tan” [Bsin(2nf, 1]

Since tan M(x)=x - /3 + |
B 3
8,(t) = 2nf tBsin(2nf, 1) - = sin”(2mf, 0)

The harmomic distortion is the power ratio of the third and first harmonics:

1 3
iﬂ' _ ﬂ4
B| 9

D, = 5

Forp=03, Dy = 0.09%.
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Problem 4.5
() The phase-modulated wave iz
s(f) = A cos[2nf 1+ k A, cos(2nf;,0)]
= A cos[2nf t+ ﬂpcns(hfmr}]
= A cos(2nf] 1) cos[B,cos(2nf, )] — 4 sin(2nf, £ sim[B, cos(2xf, 1] n

If B, = 0.5, then

cos[B, cos(2nf, 0] =1

sin[B,cos(2nf, 0] = Bycos(2nf,1)
Hence, we may rewtite Eqg. (1) as

)= A cos(2nf i) — ﬂPA.: sin(2xf ticos{2xnf, 1)
= 4, cos(2nf,1) ~ 1B, A SmI2n(S, + fy)]

_%5 A SRS, - £, )] @

The spectrum of s(f) 13 therefore

SV = JALBY )+ 3¢+
~EBALB =) =S+ )

—‘%BPAFIBKF—L ) =8(F+f,~f,)]

() The phasor diagram for s(f) 1z deduced from Eqg. (2) to be as follows:
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The comesponding phasor diagram for the narrow-band FM wave is as follows:

.‘—
T e
Lower side-frequency

SA% frequency

Comparing these two phasor diagrams, we see that, except for a phase difference, the narrow-band
PM and FM waves are of exactly the same form.

Problem 4.6
The phase-modulated wave 1s

s(f) = A cos[2nft+ ﬂpcus(znfmﬂ]
The complex envelope of =(f) 15
i) = A exp U’ﬂpcustiﬂfmr}]

Expressing 3(f) in the form of a complex Fourier series, we have

o

=y cqexplflanf, 1)

H=-m

where

1/1f,,
= "F”-[—lfﬂ.r ¥(f)exp(—2mnf, f)dt

172,
=4Sl s, P B, cos(2xf,, ) —j2nnf,, 11dt W

Let 2nff=n72 - §.
Then, we may rewrite Eq. (1) as

2

= 4. [ JHT . _
¢y = geep( [ expl,sin(e) +jno1do

The integrand is periodic with respect to ¢ with a period of 2n. Hence, we may rewrite this expression as
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A .
¢n = zeesp(-L7)[ expUB, since) + fnods
However, from the definition of the Bessel fimction of the first kind of order n, we have
J,00 = - exp(ixsine-jne)do
Therefore,
¢n = A ep(-L) 1 (8,

We may thus express the PM wave (1) as

s5(t) = Re[3(t)exp(j2nf.1)]

= AcRe|;E J_ 0 EP)exp(—-mTI) exp{j2unf, tiexpj2nnf 1)

=4, 3 J_H{ﬂpjms[h:(f; +nf )t - %

=

The band-pass filter only passes the carmer, the first upper side-frequency, and the first lower side-
frequency, so that the resnlting cutput 1s

sot) = A Jg(By)cos(2nf,) + 4 C.I_l(ﬂp}ms[.ln{& +f,)t— %]
+Acll{ﬂpjms[2m:ffc —ft+ g]

= A Tyl Bpj cos(2nf i+ 4T, {ﬂj':' sin[2w(f + f,, )]
—AJliﬁp}Siﬂ[EELfc_fm)f]
But

J1(B,) = —Jy(B,)
Therefore,

5,0 = Ac.lﬂ(ﬁpjmsfﬁﬂj;r}
~A Jy(B){sin[2(f, + £, )0 + sm2a(f, - £, )11}

= ACJB{ Bp)msﬂitfcrj - l-ic.fl {_ﬂp} cos(2 mfmfj sin{.?.:j;.t}
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The envelope of 5,(1) equals

alt) = .-:I.:_JJE(BP) + 4.}§{ﬂpjcusz(imfmfj

The phase of 5,(f) is

Ty (8,2

-1
#(f) = —tan
To(B,)

]cus{infmtj

The instantaneous frequency of 5,(1) is

_ .1 de
KO =fty =g

21y (B (By)sim(2nff)
= P + 3
To(B,) + 438, )cos " (2xf, 1)

Problem 4.7.

s(t) = A, cos(6(t))
o(t) =2 f.t+k m(t)
Let #=0.3 for m(t) = cos(2afnt).

. s(t)= A cos(2z f t+ pm(t))
= A.[cos(2r f_t)cos(p cos(27x ft)) —sin(2x f.t)sin(B cos(27x f t))]
for small g3
cos(pcos(2x f 1)) =1
sin(gsin(2z f_t)) = pcos(2x f t)
. 8(t) = A cos(2x f t) — BA, sin(2x f.t) cos(2z fmt)

= A, cos(27 f t) —ﬂ%[sin(Z;z( f.+ f ) +sin@z(f, + f)t)
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Prohlem 4.2

(a) From Table 4.1, we find (by interpolation) that J,(B) is zere for
B=244,
g=35.52,
B=18.65,
g=1128,
and so on.
(b) The modulation index is
B = ﬁ_f = kfa_m
fu  Ju
Therefore,

_ Bfw
k=1

™

Since J() = 0 for the first time when p = 2.44, we deduce that

b 244x10°
/A

= 122 % 10° herzvolt

Next, we note that Jy(B) = 0 for the second time when g = 35.52. Hence, the corresponding value of 4,
for which the camier component i3 reduced to zero 13

Bf,
4 =™
m k_‘f

_552x10°
122 x 10°

= 452 wolts
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Froblem 49
For g =1, we have
J(1y=10.765
Ji1y=044
JS(1)y=0.115
Therefore, the band-pass filter cutput is (assuming a carrier amplitude of 1 volt)

55ty = 0.765cos(2rf 1)
+ 044 cos[2r(f_ + £, )81 — cos[2mif, — f, )1}
+i].115{1:1:::5[2';!(_,?"c +_f'mjf] + cus[l’x(f'c—?.fmjf] k.

and the amplitude spectrum (for positive frequencies) is

S
5ol 0382
F
022 022
0.058 0.058
0 fe-Ym fo-fm  f fethm  Jot Ym
Prohlem 4.10

(a) The frequency deviation is
Af = kpd,, = 25%10° %20 = 5x 10°Hz
The comesponding value of the modulation mdex is

oo A 5x10°

5
fm 10

The transmission bandwidth of the FM wave, using Carson’s e, 1s therefore

By =2f,(1+B) = 2= 100(1+35) = 1200kHz = 12MHz
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(1) Using the universal curve of Fig. 3.36 we find that for p=3:

ET
a7
Therefore,

3

B, = 3x500 = 1500kHz = 1.5MHz

(c) If the amplitude of the modulating wave iz doubled, we find that
Af—1MHz and B = 10
Thus, using Carson’s mule we obtain,

B, = 1x100(1+10) = 2200kHz = 22MHz
Using the universal curve of Fig. 3.36, we get

E
T =
af 275

and By=275 MH=z

(d) If £, is doubled, B = 2.5. Then, using Carson’s rule, By= 1.4 MHz. Using the universal curve,
Bfaf=4, and

B, = 44f = IMHz

Problem 4.11
(2) The angle of the PM wave is
8,(1) = 2af t+k m(t)
= E‘JI_]:I+ kpAm cus(lﬂfmr]
= Inf i+ ﬂpm(hfmr}
where B, = kpd,,. The instantaneous frequency of the PM wave is therefore

)
fin = I Tdr

=f.- ﬁpfm sin{ 2xf, 1)
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We see that the maximum frequency deviation i a PM wave wvaries linearly with the modulation
frequency f

Using Carson’s rule, we find that the transmission bandwidth of the PM wave is approximately (for
tbemsewhmﬁpbhl]

Br=2if,+ Bpfm:' = 2l +Bp) :Qfmﬂp.
This shows that By vanes hinearly with f;,.

(1) In an FM wave, the transmizsion bandwidth B is approximately equal to 2Af if the modulation index
B == 1. Therefore, for an FM wave, Bris effectively mdependent of the modulation frequency f,.

Problem 4.12
The filter input is
vy() = g0s(D
= g(f)cos(2nf,t— mkt)
The complex envelope of vy(9) is
P10 = g(t)exp(<nkt)

The impulse response h(f) of the filter is defined i terms of the complex mmpulse response h(t) as
follows

h(t) = Re[h(t)exp(j2xf_t)]
With
h(t) = cos(2nft+mht),

we have
h() = expyukt)

The complex envelope of the filter output is therefore
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Bglf) = éﬁfr}Hv,-m

= 3f s@esp (it expyymkce - 11'dr

= (k)| g(rexp(Jrktoide

= Lexp(mkt)Gkn)

Hence,

1
Voltd = E|G{kf)|
This shows that the envelope of the filter output is, except for scale factor of 1.2, equal to the mapnitude
of the Fourier transform of the mput signal gi(f), with kf playing the role of frequency f

Froblem 4.13
The overall frequency nmltiplication ratio 13

n=2x=3=46
Assume that the instantaneons frequency of the FM wave at the mput of the first frequency multiplier is
Jalth = f + Afces(2nf,f)

The instantaneous frequency of the resulting Fi wave at the output of the second frequency multiplier is
therefore

Sia(8) = nf_+nifeos(2nf, 1)
Thus, the frequency deviation of this FM wave 15 equal to

nAf = 6= 100 = 60kHz

and its modulation index is equal to
rAf _ 60

— ===12

S 3

The frequency separation of the adjacent side-frequencies of this FIM wave 1z unchanged at f;, = 5 kHz.
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Problem 4.14.

v, =av

s(t) = A.cos(2z f.t+ Bsin(2xz £ t))
= A cos(27z .t + pm(t))

v, =a-s’(t)

=a-cos’(2x f t+ pm(t))

- %- cos(4rx f.t+2p4m(t))

The square-law device produces a new FM signal centred at 2f. and with a frequency
deviation of 2. This doubles the frequency deviation.

Problem 4.15

(a) Let L denote the inductive component, C the capacitive component, and Cy the capacitance of each
varactor diode due to the bias voltage I actimg alone. Then we have

c, = 100, pF

and the commesponding frequency of ozcillation is
R —

L™ [ic+c,/D)

Therefore,

10°% = L

2200 x 105100 x 1072 + 50952 x 10712

Solving for 7, we get

¥y =3.52 volts
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(1) The frequency nmitiplication ratio 13 64 Therefore, the modulation index of the FM wave at the
frequency multiplier mput is
_ 3

B = i 0.078

This indicates that the FM wawve produced by the combimation of I, C and the varactor diodes is a
narrow-band one, which in tun means that the amplitode 4, of the modunlating wave 15 small
compared to 'y, We may thus express the instantaneous frequency of this F wave as follows:

-1/2
fi6 = w200 m‘“{m <1070 +50 1070352+ 4, m.:zm:;f”ﬂ

-1/2

T A 1,2
_ 10 m
= zﬁ{l +D.266[1 +Em(2mfmr}:| }

107 4 142
= I
= Nz_{l +0266[ 1~ - mn{Z'n:fmr)]}

m
= 10°[1-0.034, sin(2=f, 01
= 10°[1+ 00154 sin(2nf, 1)]
With a modulation index of 0.078, the corresponding value of the frequency deviation is
Af = Bfw

= 0.078 % 10°Hz

Therefore,
0.0154,, < 10° = 0.078 x 10*
where 4, 13 in volts. Solving for 4, we get

A, = 52x10" volts
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Problem 4.16
The transfer fimction of the BC filter 15

_ j2nfCR
HD = 173w

If 2nfCR <=1 for all frequences of interest, then we may approximate H{f) as
Hify=j2afCR

However, multiplication by j2nf m the frequency domain iz equivalent to differentiation in the time
domain. Therefore, denoting the BC filter output as vy (f), we may write

dsit
vn= CR%

- C’R%{Acms[Emfcr+ 2:15{; m{fjdf]}

_ ¢
= —CRA_[2nf, + zzkfnm]sm[z nf.t+ kaﬂum{f}dt]
The corresponding envelope detector output is
k
1+ Tmis
ﬂ_ﬂl( )

Since kgm(f)| = f; for all ¢, then

vﬂf):!:f&fﬂdc

k
1+ Imit
LM()

which shows that, except for a de bias, the output is proportional to the modulating signal m(f).

Vot = 2nf CRA_
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4.17. Consider the slope circuit response:

Slope Circuit Response

1

08

06

0.4

02 7

0oF =

Gain

N2 -

04k

OB

N8k

_1 1 1 1 1 1 1
-1000 -800  BOO -400 -200 0 200 400 GO0 800 1000
Fregquency (cycles fram fo)

The response of |Xy(f)| after the resonant peak is the same as for a single pole low-pass
filter. From a table of Bode plots, the following gain response can be obtained:

1
2
l+(f_f3j
B

Where fg is the frequency of the resonant peak, and B is the bandwidth.

| Xy (F) =

For the slope circuit, B is the filter’s bandwidth or cutoff frequency. For convenience, we
can shift the filter to the origin (with X,(f) as the shifted version).

. 1
| X(F) = =
1+(f
B
dI X (H)If _ k
3
it e B(L1+k?*)2
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Because the filters are symmetric about the central frequency, the contribution of the
second filter is identical. Adding the filter responses results in the slope at the central
frequency being:

dIX(HI| 2

- 3
it e B(L+k?)2

In the original definition of the slope filter, the responses are multiplied by -1, so do this
here. This results in a total slope of:

2k

3

B(1+k?)2

As can be seen from the following plot, the linear approximation is very accurate
between the two resonant peaks. For this plot B = 500, f;=-750, and f,=750.

Q4.17: Comparison of Bode Plot Approximation vs, Linear Approxirmation
DB T T T T T T T

i Bode Plot Approximation
0E | S — — — Straight Line Approximation |

0.4+

02r

Mormalized Magnitude

04t

Obr

1 1 1 1 | 1 |
-a00 -500 -400 -200 1] 200 400 600 800
Frequency (cycles from fc)

0.4
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Problem 218
The envelope detector input is

wit) = s(th—s(t—T)

= A_cos[2af.t+ §(1)] — A cos[2nf.(t— T) + (- T)]

(n

2 =T+ (i) + dit— 2nf T+a{)—di{i—
=-14£sm[ nf (t-T) ;() o I‘;]m[ nf, ﬂ; o0 TJ]

where

$(f) = Bsin(2nf, )

The phase difference o(f) - (¢ - T) is

() —@(t—T) = psm(2nf, 1) — psm[2nf, (t—1)]
= BISin(2nfy,1) ~ BSm2fy,(t+ )cos(2nfy, T)+ cos(2nf,sin(2nf,, T)]
= BLsin(2xf,, 1) — sin(2nf, 1) + 2nf, Tcos(2af, 1]
= 2nAfTeos(2xf, )

where

Af = Bfy

Therefore, noting that 2nf, T’ = n/2, we may write

2nf, T+ 900 = it~
sj.nl: e M;) = n:|=sin[ﬂch+‘ﬁfT‘:°5':2“fmm

= sin[g +7A ﬂcm(lnfmr}]

= fcos[nafTeos(2uf,,1)] + f2sm[rAfTeos(2xf, )]

= J2+ fnafTeos(2nf,,t)

where we have made use of the fact that AT =< 1. We may therefore rewnte Eq. (1) as
v(£) = —24f34 1+ nAfTcos(2nf, )] sin [m_;;{z:— n+ W]

Accordingly, the envelope detector output is
a(t) = 2f24_[1 + mAfTeos(2nf,, 1]

which, except for a bias term, is proportional to the modulating wave.
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Frohlem 4.19

(a) In the time interval ¢ - (T7/2) to £+ (T1/2), assume there are n zero crossings. The phase difference is
B (t+T,/2) - 8;{t—T;/2) = nm . Also, the angle of an FM wave 15

8,(f) = 2m_ﬁ.i‘+2mkj§;m(f)dt.
Since mif) 1s assumed constant, equal to my, B,(f) = lnj::t+ :'.‘J'[kf?flf . Therefore,
8,(t+T)/2)-8,(t—T)/2) = Qnf,+2mkam))t+T)/2-(t-T1/ D]

= (2ﬂ_f|'5+2'xkfn1}T1 .

But

de (1)
fin = i Zm_il':_+2n:kfml ;

Thus,
0+ T/ 2)—8(-T,/2) = fn) T, .
But this phase difference also equals nm. So,
ST, = nn
and
j}(f) = mtr’.Tl
(b) For a repetifive ramp as the modulating wave, we have the following set of waveforms

m(f)

|
|
|
0 |
|
|
|

MCOANACAGA Y
VYOI iy U\

—
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Problem 420
The complex envelope of the modulated wave 5{f) is
i) = a(fiexp[je(n)]
Since a(f) is slowly varying compared to exp{ji(f)]. the complex envelope ¥(t) is restncted effectively to

the frequency band -Bp2 < f = Bp2. An ideal frequency diseriminator comsists of a differentiator
followed by an envelope detector. The output of the differentiator, in response to ¥(f), is

¥,08) = %ﬂt}
= d{ﬂ{f) fhed] }
it explj

_ rfa{rﬂmp[j‘“) +j'd_':i,aﬂa{.t} Ezp[f‘(f)]]

_ LT L dagf) , je(f)
anepyo = +rf—df]

Since alf) 15 slowly varying compared to ¢(f), we have

1 da(t)

i)
|J 77 alty dt

dt

Accordingly, we may approximate ¥ () as

N [T
v, (1) = jath ™ Lexpljocn]

However, by definition
Y = Ink ot
8(t) = 2n ,[; m()
Therefore,
7,(f) = J2rE@(Om(t)explo(t)]

Hence, the envelope detector output is proportional to a(fm(f) as shown by

|$D1::}| = 2nka(tym(t)
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Prohlem 4.21

(a) The limiter cutput is
z(f) = sgn{a(t)cos[2nf t+§(f)]}
Since aff) 1s of positive amplitude, we have
z(t) = sgn{cos[2nf t+ ()]}
Let
wit) = 2xft = §(t)

Then, we may write

smn[cosy] = Z cﬂexp{fnq.r)

H=-o0

1 .
€y = y-sgnlcosylexp(-ny)dy

~S2 . 1 w2 .
= —]'_“ {—I)W(—Jﬂw)dw+ﬁj‘_n (+1)expi—nw)dy

1™ »
+EI_,;;1{ Lyexp(—jny)dy

Ifn=0,then

«” Tm

= %[2511(%—’) - siu{n:mj]

_ lI{—l}l'[“'ll'”, n odd
TH
0, n even

If n =0, we find from Eq. (1) that ¢, = (. Therefore,

(n-11/2 exp(jnx)

H b2

salcosy] =2 3 1)
“odd

=0y

T lms[w(2k+ 11

[
A2l
I s
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We may thus express the limiter output as

= E
e = & =13
Z() p E W1 lms [2 m_il';i‘{zk+ 1+ @t 2k+ 171] 2)
=0
(b) Consider the term

cos[2nf,t(2k+ 1) + (1) 2k + 1)] = Refexpi2nf.t(2k+ Dexp[jo(t)(2k+ 1)1}

= Rn{e:q:.ﬂnmzh Diexp(Ga(n1 1}

The fimction exp[jé(f)], representing the complex envelope of the FM wave with unit amphitude, 1z
effectively low-pass i nature. Therefore, this term represents a band-pass signal cemtered about

+(2k+1). Furthermore, the Fourier transform of {exp[jé(f)]}2k+1 is equal to that of exp[je(f1*"
convelved with itself 2k times. Therefore, assuming that exp[j§(f)] is limited to the interval -Bp2 = f

= By/2, we find that (exp[ja(f)D"F" is limited to the interval (Bp/2)(2k+1) = f= (Bp2)(2k+1).

Assuming that . = By, as 15 usually the case, we find that none of the terms comesponding to values of
k greater than zero will overlap the spectnim of the term comresponding to k = 0. Thus, if the hmiter
output 1 applied to a band-pass filter of bandwidth By and mid-band frequency f, all terms, except
the term corresponding to k= 0 in Eq. (2), are removed by the filter The resnlting filter output iz
therefore

¥ = Jeosi2af,t+ (0]

We thus see that by using the amplimde linniter followed by a band-pass filter, the effect of amplituda
variation, represented by a(f) in the moduolated wave (7). 15 completely removed.

Prohlem 4232

Consider an meoming narrow-band signal of bandwidth 10 kHz, and mid-band frequency which may lie
in the range 0.535-1.605 MHz. It is required to translate this signal to a fixed frequency band centered at
0.4535 MHz. The problem is to determine the range of tuning that must be provided in the local oscillator.

Let f denote the mid-band frequency of the incoming signal. and f; denote the local oscillator frequency.
Then we may write

0.535 < f, < 1.603
and
fo—f; = 0455

where both f and f; are expressed in MHz. That is,
S = f.—-0453

When f, = 0.535 MHz, we fet f; = 0.08 MHz; and when f = 1.605 MHz, we get ;= 1.15 MHz. Thus the
required range of tuning of the local oscillator iz 0.08 - 1.15 MHz.
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Problem 4. 23

Let (1) denote the multiplier output, as shown by
5ty = Ag(ticos(2nf 1)

where f; lies in the range fj to f + /. The amplitude spectra of s{f) and g{f) are related as follows:

|G
1G{0Y
Af

- 0 f-fit W !

IS¢l

3 A1GO)
| !
_/;%5\ 4‘(&:\
- K o SF 0 f-Wfh i f+W d

With wf) denoting the band-pass filter cutput, we thus find that the Fourier transform of wif) is
approximately given by

V(=346 fy. fo-Fmss+ ¥
The mms meter output is therefore (by using Rayleigh’s energy theorem)
I:_:-Ims _ [II‘ }'zl:f}df]l;z
P 5 qls2 12 o
= [T wora] " = 2340605+
= OGS
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Problem 4.24

The amplitude spectrum corresponding to the Gaussian pulse
p(t) = cexp| —zc’t” |*rect[t/T]
is given by the magnitude of its Fourier transform.

P(f)|= ‘F[cexp(—ﬂcztz)}F[rect(t/T)]‘
=cexp| -z £2/c¢* | [Tsinc[ fT]|
where we have used the convolution theorem

Problem 4.25
The Carson rule bandwidth for GSM is
B; =2(Af +W)
where the peak deviation is given by
kic 1
Af =—==-B/2x/log(2) =0.75B
2r 4

With BT = 0.3 and T = 3.77 microseconds, the peak deviation is 59.7 kHz
From Figure 4.22, the one-sided 3-dB bandwidth of the modulating signal is
approximately 50 kHz. Combining these two results, the Carson rule bandwidth is

B, =2(59.7+50)
=219.4 kHz

The 1-percent FM bandwidth is given by Figure 4.9 with g = @—f :% =1.19. From the

vertical axis we find that ET_f =6 , which implies By = 6(59.7) = 358.2 kHz.
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Problem 4.26.

a)
Fregquency Modulated YWiave
T T T ! T T T T T
1k - o
E
< o
E )
< i :
i i ! i . i i i i
a gos o1 015 02 025 03 03 04 045 05
Time (ms)
Fhl Spectrum: Beta=1
1 T T T T T T T T T
g : 5
= o
[
=
73]
[ak]
=
=
=
=
o : . i : :
QLT T ke S I Bl (Prm A T SR e TeTy
a0 2] a4 Sk =] o 1021 106 10 1a
Frequency (kHz)
Beta # of side frequencies
1 1
2 2
5 8
10 14

b)By experimentation, a modulation index of 2.408, will force the amplitude of the
carrier to be about zero. This corresponds to the first root of Jo(5), as predicted by the
theory.
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Problem 4.27.

a)Using the original MATLAB script, the rms phase error is 6.15 %
b)Using the plot provided, the rms phase error is 19.83%

Problem 4.28

a)The output of the detected signal is multiplied by -1. This results from the fact that
m(t)=cos(t) is integrated twice. Once to form the transmitted signal and once by the
envelope detector.

In addition, the signal also has a DC offset, which results from the action of the envelope
detector. The change in amplitude is the result of the modulation process and filters used

in detection.

Pr4.25 (a) FM Demaodulation

T T T° T

Criginal

0.5 — — — Detected ]
0.6 .
0.4 i
0.2

[k}

= .

= 0

=

T

0.2

0.4

0.5

0.8

|
8000 ga00 S000

44 1 1 1 1 1
S000 5500 B000 B500 7000 Z500

Time

b)If s(t) =sin(27 ft) +O.5COS(27Z’%tj , then some form of clipping is observed.
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FPr4.25 (b) FM Demaodulation

15 T T T T T T T s T
Original

— — — Detected |

0.5

Armplitude
o
i

]
—_

]
o

-2

_25 | | | | | | | |
o000 BOOD 7000 8000 9000 10000 11000 12000 0 13000 14000
Tirme
The above signal has been multiplied by a constant gain factor in order to highlight the
differences with the original message signal.

C)The earliest signs of distortion start to appear above about fm =4.0 kHz. As the
message frequency may no longer lie wholly within the bandwidth of either the
differentiator or the low-pass filter. This results in the potential loss of high-frequency

message components.
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4.29. By tracing the individual steps of the MATLAB algorithm, it can be seen that the
resulting sequence is the same as for the 2" order PLL.

e(t) is the phase error ¢,(t) in the theoretical model.

The theoretical model of the VCO is:
t

&, (t) = 27k, j v(t)dt
0

and the discrete-time model is:
VCOState = VCOState + 27K, (t —1)T,

which approximates the integrator of the theoretical model.

The loop filter is a PI-controller, and has the transfer function:
H(f)=1+—
if
This is simply a combination of a sum plus an integrator, which is also present in the

MATLAB code:
Filterstate = Filterstate +e(t)  Integrator

v(t) = Filterstate + e(t) Integrator +input

b)For smaller kv, the lock-in time is longer, but the output amplitude is greater.

4.29 (b) Modulating Signal kv=10

1 | |
0 045 1 15 2 25 3 3Aa 4 45 5
FPhase of Transmitted Signal

o2 T T T T T . :
S

_D2 1 1 1 1 | | | | |
0 045 1 1.4 2 25 3 348 4 4.5 g

w10 Phasze Detector Output

0 05 1 1.5 2 25 3 35 4 45 5
Recovered Signal
DI:I1 T T T T T T T T T

_DEH 1 1 1 1 | | | | |
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c)The phase error increases, and tracks the message signal.

4.29 () Proportional Only Cantrol

1 1 1
0 05 1 14 2 25 3 35 4 45 5
Fhase of Transmitted Signal

0.2 T T T T T . .
S

_|:|2 1 1 1 1 | | | |
0 0.5 1 15 2 25 3 35 4 45 5

oy Fhase Detector Qutput

5 1 |
0 0.5 1 15 2 25 3 35 4 45 5
w107 Recavered Signal

d)For a single sinusoid, the track is lost if f_ >K, where K, =k k,AA,

For this question, Ky,=100 kHz, but tracking degrades noticeably around 60-70 kHz.
e)No useful signal can be extracted.
By multiplying s(t) and r(t), we get:

%[Sin(kf ¢—VCOState) +sin(4z ft +k, 4+ VCOState) |

This is substantially different from the original error signal, and cannot be seen as an
adequate approximation.  Of particular interest is the fact that this equation is
substantially more sensitive to changes in ¢ than the previous one owing to the presence
of the gain factor k,
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4.29 (c) eft=s i)

1 | |
a 0.5 1 1.5 2 25 3 35 4 4.5 a
Phasze of Transmitted Signal

0.2 T T T T T T T
e _

n:z 1 1 1 1

|
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Chapter 5 Problems

51. (a) Given f(x)=

eXp(— (X;(f;) )

1
\ 270!

and exp(-~zt?) = exp(-~ f %), then by applying the time-shifting and scaling properties:

,_ijz ‘«/ 27rax2

=exp(-z°20 %+ ju 2zf) andlet v=2rf

F(f)= exp(-z(yJ2702) £ 2)exp(j2r f u,)

1
=exp(jvu, —Evzaf)

(b)The value of x4 does not affect the moment, as its influence is removed.

Use the Taylor series approximation of ¢(x), given u = 0.
1 2_2
¢x (V) = exp(—EV O_x)

o0 X2
exp(x) = Zm
n=0 -

erxep- 4% W)

dv" o
© 1 k zekvzk
. ¢x(v)_k_o[_5j k'

. d" o .
For any odd value of n, taking :#gv) leaves the lowest non-zero derivative as 1*".
|4

When this derivative is evaluated for v=0, then E[ X "] =0.

For even values of n, only the terms in the resulting derivative that correspond to 1*" =

V¥ are non-zero. In other words, only the even terms in the sum that correspond to k = n/2
are retained.

n! o2
(n/2)! ”

E[X"]=
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5.2. (a) All the inputs for x <0 are mapped to y = 0. However, the probability that x > 0
is unchanged. Therefore the probability density of x <0 must be concentrated at y=0.

(b) Recall that J'fxx)dx:l where f,(x) is an even function. ~ Because f,(y) is a

probability distribution, its integral must also equal 1.

j f (x)dx=0.5 and jfy(y)dy:o.s
0 0*

Therefore, the integral over the delta function must be 0.5. This means that the factor k
must also be 0.5.
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53(@  p,(Y)=p,(YIX)P(X)+p,(Y]%)P(x)
Assume: P(x,) = P(x)=0.5

3 py(y)=1[py(y|xo)+p (y1y)
(y

) ) +exp(—

(y- ))]
J

py(y) = 2\/% [exp(_

(b) P(y=a)=p,(y)dy

Use the cumulative Gaussian distribution,

(y- /1) )dy

®, .(y)= j J—exp(—

Pz =210, (@) + O, (-a)]

But, @, (y) = [L+erf 2]

o2

21 a-1
Py a) [2+erf(0\fj+erf(0\/,j
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Problem 5.4

As an illustration, three particular sample fimetions of the random process X{f), comesponding to
F=MWi4, W2, and W, are plotted below:

sim({wiFr)

NN
& U&?

ANA
Vv

siu(.?ﬂtqﬁ: ) /—\
)
2

To show that XTf) is nonstationary, we need only observe that every waveform illustrated above is zero at
t=10, positive for 0 <t < 1/2W, and negative for -1/2F = t = 0. Thus, the probability density function of
the random variable X{#;) obtaned by sampling X(f) at f1 = 1/4F is identically zero for negative
argument, whereas the probability density function of the random variable X{#,) obtamed by sampling
Xit) at £ = -1/41¥ is nonzero only for negative arguments. Clearly, therefore,

E= [

f.!‘[rlj(xlj #fxm}{xz} . and the random process X(f) 1s nonstationary.
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Problem 5.5
If, for a complex random process Z(t)
R,(7)= E[Z *(t)Z(t+ r)]

then
(i) The mean square of a complex process is given by

R, (0)=E[Z*(®)Z(1)]
~E[jz0f" |

(if) We show R, (7) has conjugate symmetry by the following
R, (-7)=E[Z*(t)Z(t—7)]
=E[Z*(s+7)Z(9)]
=E[Z(s)Z(s+7)]*
=R, (7)

where we have used the change of variables =t - =
(iii) Taking an approach similar to that of Eq. (5.67)

OSED(Z(t)iZ('Hr))ﬂ
=E[(ZMO)2Z(t+7))(Z*M) £Z*(t+7))]
=E[Z(M)Z*M)£Z(M)Z*(t+7)£Z*(O)Z(t+7)+ Z(t+7)Z*(t+7)]
- E[|Z(t)|2}_rE[Z(t)Z*(t+r)]iE[Z*(t)Z(t+r)]+E[|Z(t+r)|2}
- 2| [z(t)] |+ 2Re{E[Z* (02 (t+ )]}
= 2R, (0)+2Re(R, (z)}

Thus |Re{R, (r)}| <R, (0).
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Problem 5.6 (a)

E[Z(t)Z7(t,)]
= E[(Acos(2x ft, +6,)+ jAcos(2x f,t, +6,))- (Acos(2x f.t, +6,) + JAcos(2x f.t, +6,))]

Let on=27f1 @n=27f,

After distributing the terms, consider the first term:
A’E[cos(mt, + 6,) cos(at, +6))]

- A?Z E[cos(@ (t, —t,)) +cos(e (¢, +1,) +26,)]

The expectation over & goes to zero, because 0, is distributed uniformly over [-m,xt].
This result also applies to the term A’[cos(w,t, + 6,) cos(mw,t, +6,)] . Both cross-terms go

to zero.

2

Rt =2 [00s(ey(t,-4)) +cos(e 4, ~t,)]

(b) If f; = f,, only the cross terms may be different:

E[jA%(cos(amt, +6,) cos(amt, + 6,) +cos(amt, + 6,) cos(amt, +6,)]

But, unless 6i=6, the cross-terms will also go to zero.

- R(t,,t,) = A’ cos(a, (t, - t,))

(c) If &,=6,, then the cross-terms become:

— jA’E[cos((at, — w,t,)) + cos((at, + o,t,) +26,) + JA*E[cos((wyt, — mt,)) +cos((at, + wyt,) +26))]

After computing the expectations, the cross-terms simplify to:

"
JT[cos(a)ztl —at,) —cos(at, —wyt,)]

2

Rz (t11t2) = A?[Cos(wl (tl _tz)) + COS(&)Z (t1 - tz )) + J cos(a)ztl - a)ltz) - J Cos(wltl - 0)2'[2 )]
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Problem 5.7

(a) The expected value of Z(t;) 1s
E[Zi(t;)] = cos(2nt))E[X] + sin(2nt) }E[T]

Since E[¥] = E[¥] = 0, we deduce that

E[Zit;)1 = 0
Similarly, we find that
E[Z(t,1 = 0

IMNext, we note that
Cov[Z(t))Z(t;)] = E[Z01;)Z(t;)]

= E{[Xcos(2nt;) + Fsin(2nt,)][Xcos(2xt,) + Fsin(2nt,)]}
= cos(2nt,)cos(2mt)E[X ]
+ [cos (2t )sin(2nt,) + sin(2xt, )cos(2xt,) | E[XT]
+ sin(2nt,)sin(2xt, ) E[F]

Noting that

EX = oh+ (Ey’ = 1

EIF’] = op+ {E[N} = 1

E[XT1 =0

we obtain
Cuv[E{i‘l}Z(IZ)] = ms(.’lml)coﬁ(fﬁmﬁ) + sin(!nf])sin{}.n:fz}
= ms[h:(rl —1,11

Since every weighted sum of the samples of the process Z(f) is Gaussian, it follows that Z(r) is a
(Gaussian process. Furthermore, we note that

cr;(,l} = E[Z(1 = 1
This result is obtained by putting #; = t, in Eq. (1). Similarly,

cr;(,!} = E[Z°(t)] = 1
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Therefore, the commelation coefficient of Z{¢,) and Z(t,) 13

_ CovlZ(t))Z(1))]
P T ooz

= cos[2mity — )]

Hence, the joint probability density function of Z(t;) and Z(t,)
Szi)) ,22)(F1: 22) = Cexpl-0(z1.23)]

where

c-= 1
101 — cos (20t - 1,)]

_ 1
 Imsm[2n(f, ;)]

1 2 2
o T - - T +z
024, 24) 3 [Zm{i‘l—fz}]{zl Zoos[2mit) —1q)]2y, 25 2}

(k) We note that the covanance of Z(1,) and Z(f;) depends only on the time difference ¢, - f,. The process
Z(f) 15 therefore wide-sense stationary. Since it is Ganssian it is also strictly stationary.

Problem 5.8
(a) Let

Xif)y = A+T(H

where 4 is a constant and ¥{f) 13 a zero-mean random process. The antocorrelation fimetion of X{7) is
Rylt) = ELX(t+T)X(D]

= Ef[d+ ¥t + ][4+ FO]}

= E[A + A¥(t + 1) + AF(H) + Tt + 1) F(1)]
2

= A"+ Rp1)

which shows that Ry(t) contains a constant component equal to 4%
(b) Let

Xit) = A cos(2nf,t+8)+Z(1)
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where A _cos{2nf i+ &) represents the sinusoidal component of X{f) and 6 is a random phase
variable. The autocorrelation function of X7f) 13

Ryi1) = E[X(t+T)X(6)]

E{[d cosi2af i+ 2xf 1+ &)+ Z(t+ 1)][d cos( 2nf i+ 8) + Z(1)]}

E[4. cos(2nf,t+2nf.1+8)cos (2nf 1+ 6)]
+ E[Z(t+1)4 cos(2nf t +8)]
+ E[d, cos(2nf t + Inf v+ 80Z(1)]
+ E[Z(t+ DZ(0)]

= (42/2)cos(2mf,1) + RAT)

whih shews that R y(t) contains a sinusoidal component of the same frequency as X{f).

Problem 5.9
(a) We note that the distnbution funchion of AT7) 15
] 0, x<0
Fn() = <] 3 0<x<d
1, A<x

and the corresponding probability density fiunction 15

Fﬂr}{xj = %E(x]n + %E(x -4)

which are 1llustrated below:
1.0
Fagla | 7
1
2z
I
[l X
0 A
Fyyfx)

-
]

=
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() By ensemble-averaging, we have

ELX(0] = [ xfy, (v

= J':Jx [%sm + %5(1’ - A}]dr

_ 4
I

The autocomrelation fimection of XT7) is

Ry(t) = ELX(t+1)X(8)]

Define the square function SunEr} as the square-wave shown below:

Sagyy
10
T I 0 T T '
- -0
0 - _lll 0

Then, we may write

Ry(n) = E[4Sqy (1—1,+ 1) - ASqp (t~t,)]
= .f]‘_m Sar (1—ty+ 1)Sar (1~ ta)f7 (1)t

—Arﬂfsrusr Ly
= jr a7, ( 0Sqp( - gty

..i Il <|:|
T1 zojm

Since the wave is penodic with period Ty, Hy{t) nmst also be periodic with period T
() On the time-averaging basis, we note by inspection of Fig. P1.6 that the mean 1z
=xif)= =12
Mext, the autocorrelation function
1 o

Ty 2}
=x{f+ 1= = .T_'I I x(f+ ()i
[+ B

has its maximum value of 422 at © =0, and decreases linearly to zero at T = Ty/2. Therefore,

Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.



-4

=x(f+ 1= 3

bty g <o
{1 27 <P

Agan, the sutocorrelation must be periodic with period Tj,.
(d) We note that the ensemble-averaging and time-averaging procedures yield the same set of results for

the mesn and autocomrelation functions. Therefore, X7f) is ergodic in both the mean and the

autocorrelation function. Since ergodicity mmplies wide-sense stationarity, it follows that X{f) nmst be
wide-zense stationary.

Problem 5.10
(a) For [1] = T, the random variables X{¢) and X{t + 1) occur in different pulse intervals and are therefore
mdependent. Thus,

ElXinXie+11 = ELYinIEXe+11,  hl=T.

Since both amplimdes are equally likely, we have E[X(1)] = E[xi{¢t+1)] = 42 . Therefore, for
|l =T,

2
Rx{tj = AT

For |1 = T, the random variables occur in the same pulse interval if 7; < T—|1] . If they do oc
the same pulse interval,

2
ELX(OX(t+ )] = 347+ 207 = &

We thus have a conditional expectation:
ElXinXit+m)] = 4772, ;< Tl
= 4°/4, otherwise.
Averaging over ty, we get

=l 4%

AZ
2 2
Aol e

() The power spectral density is the Fourier transform of the autocomelation function. The Fourier
transform of

gty =1 T K=T
= (I, otherwise,
is given by
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Gif) = Tsinc (fT) .
Therefore,

2
5. = *%Fsiuczgm.

We next note that
2 2

= _d
7] 0=

2

2

2

[ s.ndr = Ry0) = <

It follows therefore that half the power 1= in the de component.

Problem 5.11

Since

T(t) = g, (1) +X(1) + f372

and gp(r} and X{f) are uncorrelated, then
Cyr) = Cg (1)+ Cxl)

where Cg (1) 1 the autocovariance of the periodic component and Cy(t) is the autocovanance of the
r
random component. Cy(7) 15 the plot m Fig. P1.8 shifted down by 3/2, removing the dc component.
C’g (1) and Cy{1) are plotted below:
&

Cgp{ﬂ

N T /\ r /.

Cxl)
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Both gp{ﬂ and X{f) have zero mean.
(a) The average power of the periodic component g;(f) is therefore,
L% Cooa= ey -
(b) The average power of the random component 1) is
ELX(6] = Cy0) = 1
Problem 5.12
(8) Ryy(t) = E[X(t+1)I(D)]
Feplacing 1 with -t:
Ryyl-1) = ELXit-1)F(0)]
Wext, replacing ¢ - © with £, we get
Ryy(—1) = E[X(t+1)X(1)]
= Rn.('n)
(b) Form the non-negative quantity

E[{Xit+ 1)+ Fn3] = E[X(t+1) + 21+ 0)F(H + F(]

= E[X(t+1) £ 2EX(t + 1) T(H)] + E[F ()]

= R A0 £ 2R 1)+ RG0)
Hence,
R0 2Ry m)+ R 20
or

Rz € %[R 40) + Ry{(0)]
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Problem 5.13
() The cascade connection of the two filters 13 equivalent to a filter with impulse response.
hit) = I:hl{u)hzfr— w)du
The autocormelation function of ¥1f) 13 given by
Ryt = [~ [ W hey) Rt =7, + 1,)d d
(k) The cross-comelation function of Ff) and Ff) 13
Rpplt) = E[F{t+1)¥(1)]

The ¥if) and F{f + 1) are related by
Yty = | V(hy(t-2)dh
Therefore,
Rpplr) = El:I"{r+ 7 ]m V(a)hy (t— ?-.}a‘:i,]
= ]‘m hy(t—RE[V(t+ T)F(R)]dh
= [ hy(t— MRyt + 1~ R)d
Substitating A for ¢ - A:
Ryp(1) = _[m hy (MR At + 1)
The autocomelation function Rp{t) is related to the given Ry(T) by

Ryfv) = _[: !‘:h]{rljhlftzjﬂx{-r— 1, + 1y)dx,dry
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Problem 5.14
(2) The cross-comrelation fimetion RppdT) 15

Ryyiv) = E[¥(t+ 0)X(8)]

The ¥(r) and X(7) are related by
Yi6) = jm X(uyhit—u)du

Therefore,

Rydt) = E[l:X(u)I{rj hit+1— u}n‘uj|
= !‘m hit+ 11— ELXu X6 1du

= f_:h{r+ T—u)R (u—du

Replacing £ + 1 - u by

Rydt) = _[: h(u) Ryt —u)du

(b) Since Ryp(t) = Ryy(-1). we have

Rypl®) = _[: h(u) Ry {~T-u)du

Since Ry(7) is an even fimction of 7-
Rypm) = ]: h(u)R (1 + u)du
Replacing u by -u:

Rygit) = ]: h(—u)R it —u)du

(c) IfXif) 15 a white noise process with zero mean and power spectral density N2, we may write

Nﬂ
Ry{t) = TE{I)
Therefora,
N
Rppl1) = EEJP )5t — u)du

Using the sifting property of the delta function:

Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.



ND
Rppl1) = Th('r}

That 1z,
hit) = 2R T}
N, rxl

This means that we may measure the impulse response of the filter by applying a white noise of
power spectral density Ny2 to the filter input, cross-comelating the filter output withthe mput, and
then multiplying the result by 2/,

Problem 5.15
(2) The power spectral density consists of two components:
(1) A delta function 5(f) at the cngin, whose inverse Fourier transform iz one.
(2) A tmangular component of unit amplitude and width 2f;, centered at the origin; the inverse
Fourier transform of this component is fsme2{fzt).

Therefore, the antocorrelation function of ATf) 15
Rty =1 +f§sj.nc2(futj
which iz sketched below:

Ry(x)

3 2 1 o 1 2 3

) fo fo Jo o Jo

(1) Since Ry{t) contains a constant compeonent of amplitude 1, it follows that the de power contained in
Afis L.

(c) The mean-square value of X{() is given by
ELX (0] = Ry(0)
=1+fy
The ac power contained in X{f) is therefore equal to f;,

{(d) If the sampling rate iz fi/n, where n is an integer, the samples are uncorrelated. They are not, however,
statistically independent. They would be statistically independent if XTf) were a Gaussian process.
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Problem 5.16
The autocomelation fimetion of ny(f) 13

Rﬁzifl, 15} = E[n,(f;In,(1,)]
= E{[n,(t,)cos(2nf.t, + 8)—n (t,)sin(2xf.t, +8)]}
. [1'11(tzjq:»::ns(l'.it_j"::t2 +8)— nl(rzjsiu(}x Lty + 81}
= E[ny{ty)ny(ty)cos(2nf t + @)cos (2nf i, +8)]

— myityImy(ty)cos(2nf t; + 8)sim(2xf iy + &)

—my(tydng(t)sm(2nff +8)cos(2nf iy +8)
+ 1y (1) )0, (t,)sin(2nf.t, + 6)sin(2nf.t, + 6)]
= E{n(t;n)(ty)cos[2nf (t; —1;)1]
—ny(ty)ny(ty)sin[2af.(t; +t;) +26]}
= E[ny(fmy(ty)]cos [2nf (1) — ;)]
—E[n, (t,)n,(t,)] « E{sin[2xf,(t, +1,) + 28]}
Since & 15 a umiformly distributed random variable, the second term is zero, giving
Ry (ty,1y) = Ry (1), ) cos[2mf (1 ~ 1,)]
Since ny(f) is stationary, we find that in terms of 1 =1y - f3;
RN:I:T} = RNI(t]cus(Em_f;t}
Taking the Founer transforms of both sides of this relation:

1
Sy = Sy, P10+ Sy (=11
With SN]{_;"J as defined in Fig. P1.13, we find .S'N!(f) 15 as shown below:

[N

2w w
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Problem 5.17
The power spectral density of the random telegraph wave is

S = [ Rymexp(2nfoide

1]
_[_m exp(2vtiexp(—2nfi)dt

+ !': exp(—2vi)exp(—2jmfr)dt

1 i
W[M{E\T_szfﬂ]

1 . o
—W[EIP(-EW —Jj2nft)ly

1 + 1
v —jnfy  2{v+jxuf)

_v
vz +:n:2f
The transfer fimetion of the filter 15

_ 1
" = T+j2afRC

Therefore, the power spectral density of the filter output 1s

SN = IHOPS

v

[1+2nROI0 + 71

To determine the autocomelation function of the filter cutput, we first expand 5S¢} in partial fractions as
follows:

S = v [ 1 L1 ]
e el (/2RO + 2P V+nif

Recognizing that

exp(-2vil) = — 2

¥2+I2f

exp{—lﬂfRC'} L %

(1/2RCY + 2°f

we obtain the desired result-

1

R 1] = ;
r 1—4R202u“["

exp(-2v[t)) - 2RCexp( |
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Problem 5.18
The autocomelation finction of X{7) 13

Ryit) = E[X(t+1)X(1)]

= A”E[cos(2_Ft+2_F_—8)cos(2_Ft—8)]

2
= & Elcos(d,Ft+2,F, ~28) + cos(2,F,)]

Averaging over §, and hoting that & is uniformly distributed over 2n radians, we get

AZ
Rylt) = TE[nm:m(?1'51*"1:)]

4=
= 5[ _friNcos2ufrrdf
MNext, we note that Ry{t) is related to the power spectral density by

Ryr) = _[:Sx{_ﬂcus{inﬁ}:ff

Therefore, comparing Eqs. (1) and (2), we deduce that the power spectral density of A1) 1s

2

S = 5D

When the frequency assumes a constant value, f; (say), we have
fel) = 30—+ 350 +£)
and, comrespondingly,

e A
Syl = G0+ s
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Problem 5.19

Let cri- denote the variance of the random vanable X} obtamed by observing the random process A(r) at

ﬁmrk'l'hevaﬁanmciisrelatedtuthe mean-square valoe of X as follows
2 2
Oy = E[Ii]_“x
where py= E[X;]. Since the process X(f) has zero mean_ it follows that
2
oy = EL%)
Next we note that
ELXG) = | Syfdf
WEmyﬂmmfmdﬂﬁmthnvmimmeu}astbnmtalmunﬂmthepuwuspecmldemitysxmas
3 a0
oy = | _Syindf w

Thus with the mean py = 0 and the vanance ui— defined in Eqg. (1), we may express the probability
density function X as follows

2
-1 X
O mu;"‘[ hij
Problem 5.20
The input-cutput relation of a full-wave rectifier is defined by

Xt),  Xit)z0 ]
¥ = )l = )
(tg) = |t X(tp, X(t)<0 J

The probability density function of the random varable X{ty), obtained by observing the input random
process at time fy, 13 defined by

2
1 X

x = — ————
R
To find the probability density function of the random variable ¥i#p), obtained by observing the output
random process, we need an expression for the mverse relation defining XTt;) in terms of ¥itg). We note
that a given value of ITty) corresponds to 2 values of ATfg), of equal magmitude and opposite sign. We may
therefore write
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Xity) = -Fity), Xt <0
Xity) = Ytp),  Xit) >0

In both cases, we have

dX(ty)

dT(t,)

= 1

The probability density function of ¥ is therefore given by

dX(t,) dXit,)
Friey @) =™ =) gy )™ =) gy

p—
= J- ZEXp
o 2[52
We may therefore write
1 2
¥ >
N = = —exp—=—, yz0
fffftj(}} T o 267
0, y<0
which 15 1llustrated below:
Trg®)
0.796
o
0 ¥
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Problem 5.21
(a) The probability density fimction of the random variable ¥{t;), obtained by observing the rectifier
output F{f) at time £, 15

fr[rﬂ(}’} =1 o
0, y=0.

1 2
—,EEP[—L . ¥z0
Ty

where 63 = ELX (t)] - {ELX(t)1}"
= ELX ()]

= Ry(0)

The mean valne of ¥{fy) 12 therefore

ELY(t] = | _fyisy0)dy

__ 1 ¥
ﬁ“xf‘: J;EKP[ Eﬂi]@

Put
y .2
_zu
Oy

Then, we may rewrite Eg. (1) as

. 2 3@ 3 -t
E[¥(t)] = J;GXLJ u exp[_—ﬂdu
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(1) The autocormrelation fimction of ¥(f) 13

Ry(t) = E[T(t+ 1) X(1)]
Since ¥{f) = X2(f), we have

Ryi1) = ELX(t+ 10X (0]

(= 1] oo 2
= I_mj_ml'lf_x{rt+ TLXI!*J{xls xl)(‘&l)"ﬁz

@

The X{t, + ©) and X(¢) are jointly Ganssian with a joint probability density fimction defined by

2 i
T1-2pyin 1 X2 T X2

1
Srie, + 01, 200X X2 = exp
g : Enﬁi-J 1- pi{tj

where u';— = Ry {0},

Cov[X(f, + 10Xit.)]
pylT) = .

Ox

: Ryl1)
= RX_{ﬂ_j

Fewnite Eq. (1) in the form:

2
1 = 2 X3

I IEEP[__JE{'IZJ#Z
Eil:ﬂ'i-,’l - pi{‘l:} - lg

R},(*l:) =
where

2
= [xy —pyiTin,]
g(xz:. = I xfmp —% dx
-= qu{l—px('rj]
Let
X —pyTir;

ax,||l - pi-('l:}

Then, we may express g(x;) in the form

Eui{l - pi{‘l::l:l :|

Elxy) = crx.|||1 — pi{'l:)]': expl:—u?ﬁ{pi{t)xg + ﬁi{l - ;.'r?;{'l:)]m2 + Zu'sz,ﬂl - pi{'l:)uxz }d’u
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However, we note that

[ () -
[ e~ o

[ en{-)an - /5

Hence,
g(x5) = GIJE x[l- pi{r]]{pi{t}xg + cri.[l - pi{t)]}dxl
Thms, from Eq. (3):

2
1 = 2 I 1.2, 3 a

R ity = IEKF——{[J T, +o fl-p T:I]}lf:

i EEEXJ- 2 [ 20_2' ' T)xy T ol —pyd 2

Using the results:
P

x 3
2 dey = ﬁu’x

= 1
| mep|——
\EEX?

.2

4 1 5
fn X, €xp = |dr, = E AL
\ ED’.‘D

we obtam,
Rr(‘l:] = 35:;.;:;{':) + cr:;.[l - pi('r)]
= ﬁ;{l + Epi{tj]
Since Gy = Ry(0)

RX(’I:)
pylt) = R_X{U}

we obtam

Ri{'l:)
Ry(t) = Ro0)|1+2
Tl Lyl ’J[ R}('—"):|

= R(0)+2RKT)
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The autocovanance fimction of ¥{f) 15 therefore
CAT) = Ryfr) - {E[¥(1)]}
2 2
= RY0)+ 2R
2
= 2RyT)

Problem 5.22

(a) The random variable ¥(t;) obtamed by observing the filter output of impulse response hy(f), at time
ty, 1z given by

¥t) = | X~ 0hy(0)de
The expected value of () 1s
my = E[¥(t;)]

= Hj(0ymy
where
H = [ by

The random variable Z(t;) obtamed by observing the filter output of impulse response ha(f), at ime
ta, 15 given by

Zity = | Xt~ why(u)d
The expected value of Z(t,) is
mz = E[z(t5)]
= Hy(0)my
where
H,(0) = I:hz{u)du

The random variable Z(t;) obtamed by observing the filter output of impulse response hy(f), at time
ty, 1s given by
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Zity) = [ _X(ty—why(u)du
The expected value of Z(t) is
Mz = E[z(15)]
= Hy(0)my
where
H,(0) = I:hz{u)d:.r
The covariance of ¥(t,) and Z(t;) is

Covl¥(t)Z(ty)] = EL(T(t))~uy WZ(t) =ny)]

=E [_F: I: (Xt — )~ up) (Xt — ) - ux}{hljmhzfu){mdu]

= E[j: I: Xty = 0) = ) (Xt —u) - J-le]hlit)hz(uj{dt]du

- I:.r_:, Cylty =ty — T+ udhy (T)hy(u)(dr)du
where Cy{7) is the autocovanance fimction of A7f). Next, we note that the vanance of ITf)) i

oy, = B[ty -np)’]

= J.::I:CX(T —w)hy (T (u)drdu
and the vaniance of Z(t,) is

oz, = H @t -uz)]

=" [ Cyr-mhy(0)hy(ududu
The correlation coefficient of ¥(r,) and Z(ty) is

o= EDE’[Y(f])Z{IE}I]
1%

Simce XTf) 1 a Ganssian process, it follows that ¥1f,) and Z(t;) are jointly Gaunssian with a probability
density function given by
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frl:fﬂ, Z'[I'le"l’ 2,) = Kexp[-0(y). 7)1

where

K= 1
2’“1'1“31 1-p

AL 1~ By Ea— It S AL
e [ e R N )
2{1-p7) n Y & Z
(k) The random varables ¥t} and Zi#;) are uncorrelated if and only if their covariance 1z zero. Since
i) and Zif) are jomntly Gaussian processes, it follows that ¥(f) and Z(t;) are statistically

independent if Cov{¥(f)) and Z(f,)] 12 zero. Therefore, the necessary and sufficient condition for
Tty and Z(t5) to be statistically mdependent is that

2

I: .l: Cylty -ty —t+uwdh () (u)drdu = 0

for choices of ) and #.

Problem 5.23
(a) The filter output is

i) = j_m W)X — 1)dT

_1 _
= T[DTIU T)dt
Put T- ¢ = u. Then, the sample value of ¥(f) at t = T equals
-1
¥ TJ’:I{ujdu

The mean of ¥ is therefore

E[T] = E[%,];X(u}du]

_ 1T
= TIUE[I{L!)]EH

=0

The variance of Y1z
o} = E[F1-{E[T1}’

= Ry{0)
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= [_syinar
= [_seniHQ

But

H) = | hnespprmar
1.7 }
= gl SpCi2ad

=]

Jz“ﬂ.tl — exp(—2xfT)]
= sme (fT)exp(—j2nfT}
Therefore,

= | Sy(nsine’(Ddf

(b) Since the filter input is Ganssian, 1t follows that ¥ 1z also Ganssian. Hence, the probability density
function of ¥ 1s

_ 1 [
¥ ﬁafp[. 251;]

where Ui 15 defined abowve.

Problem 5.24
(a) The power spectral density of the noise at the filter output is given by

j2nfL
S = lﬂﬂhﬁ

Ny (2afL/R)
Syl = {j2nfL/R) :
1+ (2rfL/R)

N, 1
) Tﬂ[l _1+{21|:_i'I.HR}|2:|

The autocomrelation function of the filter output 1s therefore

Ryft) = [5(1:) zLexpkl—ﬂ ID]
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(1) The mean of the filter output 1= equal to H(0) times the mean of the filter mput. The process at the
filter input has zero mean. The value H(0) of the filter’s transfer function H{f) is zero. It follows
therefore that the filter output also has a zero mean.

The mean-square value of the filter output is equal to Ep(0). With zero mean, it follows therefore
that the variance of the filter output is

a3 = Ryd0)

Since Rpft) contains a delta fimction 5(t) centered on 1 =0, we find that, in theory 'Ei,- is infinitely
large.

Problem 5.25
(3) The noise equivalent bandwidth is
Wy = 1;‘22].‘“ Wﬂﬂllif
IHO™ =
- 1!-‘“ _df
Y=g+ ()™

- IZH;“
i fgd

_h
T smc(l/2n)

(b) When the filter order n approaches infimity, we have

_ , 1
Fy=r ,,]J_I'fm zme (1/2n)
=fn

Problem 5.26
The process X(f) defined by

Xty = ¥ hit—1p,
=m

where h(f - 1) 13 a current pulse at time T4, i3 stationary for the following simple reason. There iz no
distinguishing origin of time.
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Problem 5.27
(a) Let5(f) denote the power spectral density of the noise at the first filter output. The dependence of

51() on frequency is illustrated below:
510
N2
| | f
e 0 ke
2B 1 2B

Let 55(f) denote the power speciral density of the noise aat the maxer output. Then, we may write

S, = IS+ * S0~
which 1z illustrated below:
50

-ig 0 gk
28 1 2B =23

The power spectral density of the noizse nif) at the second filter cutput 15 therefore defined by

T

1]
Sﬂm = T -B {f{B
0 otherwize

2

The autocorrelation function of the noise n{) 15
NyB
Rﬂ(‘l’.} = Tsmc(lE'l:}

(k) The mean value of the noize at the system output i3 zero. Hence, the vaniance and mean-square value
of this noise are the same. Now, the total area under S,{f) 15 equal to (Ny'd)(2B) = NpB/2. The
variance of the noise at the system output is therefore NpB/2.

(c) The maximum rate at which n(f) can be sampled for the resulting samples to be uncorrelated is 28
samples per second.
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Problem 5.28
(a) The antocorrelation function of the filter output 13

Ry1) = I:J':hhl}h(t:)lin,(t—tl +1,)dr, dt,

Since Rp{t) = (Np/2)8(1), we find that the impulse response h(f) of the filter mmst satisfy the
condition:

Lr o0 oo
Rylt) = T“j_mj'_mh{tl].mz}a(m—:l+T1;&c1d‘:2
Ny =
= ?j_mm‘ +15)h(T,)dty

(b) For the filter output to have a power spectral density equal to Sy{f), we have to choose the transfer

function Hif) of the filter such that
N,
0 2
40 = LIH()
of
Sxlf)
= = [

1]

c)For a given filter, H(f), let o =In|H(f)|

and the Paley-Wiener criterion for causality is: J' %d
1+ (27

For the filter of part (b)

a(f)== [In(2)+|n(S(f) In(N,)]

The flrst and the last terms have no impact on the absolute integrability of the previous
expression, and so do not matter as far as evaluating the above criterion. This leaves the
onIy condition:

I LLERC
1+ (2rf)’
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Problem 5.29
(2) The power spectral density of the m-phase component or quadrature component 15 defined by
Syl = Sy () = LSNU“ )+ Syff) BSr<B )
' ¢ otherwise .

We note that, for -2 = = 2, the 534{f + 3) and S{f - 3) are as shown below:

SpAf+3)

A 0 ’ 5 f

Sp{F+5)

We thms find that Sy N orSNQ(f) is as shown below:
Ny

v = SNQ{ﬂ

-2
(1) The cross-spectral density SNr'“'@m 15 defined by

s _ [ IS+ - Syf-f)), —-B<f<B
Nﬁ?m {'[I otherwize

2

We therefore find that Shwa{.ﬂfj iz as shown below:
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T o
2 1 :
i 7 1 y f
AU 0.5
Problem 5.30

(2) Express the noise n(f) m terms of its in-phase and quadrature components as follows:

n(f) = ngt)cos(2nf 1) - ng(r} s 2mf, 1)

The envelope of n(f) is
2 2

Ht) = fnjm (1)

which iz Rayleigh-distributed. That iz
r :r2

_ | —exp——0r, rz0
&Erj cs2 102

0 otherwize

To evaluate the variance o”, we note that the power spectral density of n{f) or nglf) 1s as follows

P =Swfp

-B 0 ]

Since the mean of n(f) 15 zero, we find that
o’ = 2IN,B

Therefore,

r [
fa(ry = { B\ TIN B/
0, otherwise

(b} The value of the envelope is equal to fnN,B, and its variance is equal to 0.858 NyB.
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Problem 5.31

(2) Consider the part of the analyzer in Fig. 1.19 defiming the in-phase component nff), reproduced here
asFig 1:

Narrowband
o 0 [Towgml o
nlt)
2eos(2uff)
Figure 1

For the multiplier output, we have

¥t = En(r)msﬂﬂfcfj

Applymg Eq. (1.55) in the textbook, we therefore gat
SP = [5Af—f0+ 50+ 100

Passing () through an ideal low-pass filter of bandwidth B, defined as one-half the bandwidth of the
narrowhand noise nif), we obtain

S;.;m={f"‘ﬁ for—Bgf_gs }

={5Mf—fc)+.ﬁ'ﬁ(f+_f;) for -B<f<B | o
0 otherwise

For the quadrature component, we have the system shown in Fig. 2:

i?;:rwhmﬂ T u(ﬂ » :LHE;E:B ﬂg(ﬂ
n(f)
sin(2nf.f)
Fig.2
The multiplier output u(r) is given by
u(f) = —2n(t)sin2xf, )

Hence

]

Sph = A=)+ S+ ]

and
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Sf) for -BEf<B
£ {n i ntbﬂm'sef }

_ { Sylf—f )+ S,(f+f,) for -B<f<B } o
0 otherwise
Accordingly, from Eqs._ (1) and (2) we have

S = Sy, 0

(k) Applying Eq. (1.78) of the textbook to Figs. 1 and 2, we obtain

Sy, = HO Sy ®
where
gy - (1t msres )

Applying Eq. (1.23) of the textbook to the problem at hand:

o "
Ry A1) = 2Ry (v)sin(2nf 1) = }Rﬂ{t}(é’ AN l_.t,l)
Applying the Fourier transform to both sides of this relation:

Sypt) = }(SM—.&)—SN(_H.&)} @
Substituting Eq. (4) into (3):

S () = JISAf+ -5 f—f01 for -B<f<B
N¥g . )

which 13 the desired result.
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Problem 5.32

If the power spectral density 534f) of narrowhand noise n{f) 1s symmetric about the midband frequency f
we then have

SAf—f)=SAf+f) for -B<f<B

From part (b) of Problem 1 22, the cross-speciral densities between the in-phase noise component nyf)
and quadrature noise compenent ng(f) are zero for all frequencies:

Sy, =0 for all £

This, in tum, means that the cross-correlation functions R"Tr'*'gﬁ) and RNQNI(T) are both zero, that 13,

E[Ny{ty+ DN(ip] = 0

which states that the random variables Nyt + t) and Ngify), obtained by observing ny(f) at time
ty + 1 and observing ny(f) at time f, are orthogonal for all t

If the narrow-band noise nif) 13 Gaussian, with zero mean (by virtue of the narmrowband nature of n(f)),
then it follows that both Nt + 1) and Nglfy) are also Gaussian with zero mean. We thus conclude the

following:
*  Njitp+ 1) and Ng(ty) are both uncomelated
* Bemg Gaussian and uncorrelated, Nyt + 1) and Ngif) are therefore statistically independent.

That is, the m-phase noise component nyf) and quadrature noise component nglf) are statistically
mdependent.

Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.



Problem 5.33

(a) The receiver position is given by x(t) = xo+vt Thus the signal observed by the
receiver is

F(t, X) = A(X) co{zyz f Et —%ﬂ

= A(X) COSt{Zﬁ f. (t _ Xt ﬂ

C
_ A(x)co{zz( f - fc"jt— f ﬁ}
C C
The Doppler shift of the frequency observed at the receiver is f, = fev :
C

(b) The expectation is given by

E[exp(j2rf,7)] =% I exp( j2x fyrcosy, )dy,

1 7 . .
:E_jﬂexp(127szrsmwn)dy/n

=J, (27 fo7)
where the second line comes from the symmetry of cos and sin under a
-1t/2 translation.
Eq. (5.174) follows directly from this upon noting that, since the expectation result is
real-valued, the right-hand side of Eq.(5.173) is equal to its conjugate.
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Problem 5.34

The histogram has been plotted for 100 bins. Larger numbers of bins result in larger
errors, as the effects of averaging are reduced.

Distance Relative Error
Oc 0.94%
lo 2.6 %
20 4.8 %
3o 47.4%
4o 60.7%

The error increases further out from the centre. It is also important to note that the
random numbers generated by this MATLAB procedure can never be greater than 5.
This is very different from the Gaussian distribution, for which there is a non-zero
probability for any real number.

P5.34 Histogram of X Compared With the True Gaussian Distribution
I:II:I3 T T T T T T T T T

0.025

0.0z

0.014

Frobability Density

0.m

0.005
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5.34 Code Listing

%Problem 5.34

%Set the number of samples to be 20,000
N=20000

M=100;

Z=zeros(1,20000);

for i=1:N
for j=1:5
Z(i)=z2(i)+2*(rand(1)-0.5);
end
end
sigma=sqrt(var(Z-mean(2)));

%Calculate a histogram of Z
[X,C]l=hist(Z,M);
I=linspace(C(1),C(M),M);

%Create a gaussian function with the same variance as Z
G=1/(sgrt(2*pi*sigman2))*exp(-(1.72)/(2*sigma™2));
deltaz2=abs(1(1)-1(2));

X=X/(20000*delta2);
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5.35 (a) For the generated sequence:

,[zy =-0.0343+ j0.0493

&, =5.597

The theoretical values are: z4 = 0 (by inspection).

The theoretical value of aj =5.56. See 5.35 (c) for the calculation.

5.35 (b)

From the plots, it can be seen that both the real and imaginary components are

approximately Gaussian. In addition, from statistics, the sum of tow zero-mean Gaussian
signals is also Gaussian distributed. As a result, the filter output must also be Gaussian.

P5.35: Histogram of Imiy)
35':' T T T T T T T

300

250

Historgram
[}
=
o}

=y
8]
]

100

a0

a
-3 ] -4 -2 a 2 4 B g
Filter Output Yalue
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F5.35: Histogram of Rely)
35':' T T T T I I '

300

250

Histogram
]
=
o

a2y
m
]

100

a0

a
-0 -6 -4 -2 a 2 4 ) 5]
Filter Clutput “alue

5.35(c)

y(n) =ay(n-1)+w(n)
Y(z2)=aY(z2)z™

2 h(n) =a"u(n)

SLH((2)=
(2) 1-az? .

Rn(2) = HH(E™) = (1-az')(1-az)

- 11
1-a’l-azt! 1-a°l-az

But, Ry(z) = Ra(z)Rw(2)
Taking the inverse z-transform:

2

O,
r(n)=—2_a
,(n) o

n —0o<N<Koo

From the plots, the measured and observed autocorrelations are almost identical.
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Autocarrelation

F3.35 Comparizon of the Measured and Theoretical Autocarrelation Functions

B

Measured

— — —Theaoretical

Lag “alue
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Chapter 6 Solutions

Problem 6.3

After passing the received signal through a narrow-band filter of bandwidth 8kHz centered on
Jz=200kHz, we get

x(t) = A m(t)cos(Inf ) +n'(t)
= A mt)cos(2f )+ n' dticos(2nf 1) — ' fism(2uf 1)

= {4 _m(1) +npt)ycos(2nf ) - H'g{l‘) smi 2af 1)

where n'(t) is the narrow-band noise produced at the filter output, and n' () E:ﬂ.di‘l'g{ﬂ are its in-phase
and quadrature components. Coherent detection of x(f) yields the output

yi6) = A mit)+n (1)

The average power of the modulated wave 13
2
(3

AP—IDH-"
3

where P 15 the average power of m(f). To calculate the average power of the m-phase noise component
n' (), we refer to the spectra shown m Fig. 1:

* Part (a) of Fig. 1 shows the power spectral density of the noise n{f), and a superposition of the
frequency response of the namrow-band filter

*  Part (b) shows the power spectral denzity of the noise n'{(f) produced at the filter output.
*  Part (c) shows the power spectral density of the in-phase component n'(t) of n'(f).

Note that since the bandwidth of the filter iz small compared to the camier frequency f., we have
approximated the spectral characteristic of n'(#) to be flat at the level of 0.3 x 10 watts/Hz. Hence, the
average power of n'(f) 1s (from Fig. 1c):

(108 watts/Hz) (8 x 10°) = 0.008 watts

The cutput signal-to-noise ratio (SNE) is therefore

10

o008 1,250

Expressing this result in decibels, we have an output SNE. of 31 dB.
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Figure 1
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Problem 6.4

we note that the cuadrature components of a namow-band noise have

RNJ.U:' = RNQ(I) = Rﬁt]ms(?m_f;'r)+ﬂy{'rj S:ill[:.zﬂ__f;‘l:]

where Rt} 1s the autocorrelation of the nammow-band noise, RN{T) 15 the Hilbert transform of Ryi1).
and f; is the band center The cross-comelation of the quadrature compenents are

R, WQ{T} = —RH;NQ(T:I = R,{t)sin(2xf t) - Ry{t)cos(2xf,1)
(a) For a DSBSC system,

RN;{T) = RNG(T) = R‘,\,{chns{Enj;t} + RN(T]sin{Eﬂ:fctj

Ry (D = Ry (T = Ryd)sing2nf, ) — Ry t)cos(2nf,1)

where f; 15 the carrier frequency. and R, (1) is the autocomrelation function of the narrow-band noise
on the interval f - W= f = f,+ 7.

() For an 55B system using the lower sideband,

RN;'[T) = R;,TQ'[TJ = Rt} CDS(I E(_ﬁ: - jﬂ’) 1:} —Byiticos [2 !(fc - @ 1:)

Ry r’*’gm = Ry gN:m = RN(T)sin[EI(fc—g:]T) —Rﬂt)m(ﬂ:(fc—gt)
where in this case, R,(7) is the autocorrelation of the narrow-band noise on the interval
fe-F=f=F

(c) For an SSB system with only the upper sideband transmitted, the correlations are similar to (b) above,
exceptthat (f, ~ 1) is replaced by (f, + 1) . and the narrow-band noise i on the interval
f2fz o+ W
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Problem 6.5

x(f) Eaﬁlidgass @ W) N chiirt;prass }?{_'I‘}
cos[2nfet + (1]

The signal at the mixer mput is equal to s(f) + n(f), where s(f) is the modulated wave, and n(f) is defined
by

n(t) = npt)cos{2nf ) — ng(t}siu(E nf t)

with
2 2

E[ny (0] = E[HQU}] = N,B;
The 5(f) is defined by for DSB-SC modulation
s(f) = Acm(r)cus(ﬂmfci‘}
The mixer output 1s
V(1) = [5(t) +n(t)]cos[2xf.t + B(1)]

= {[4d m{f) +ngf)cos(2nf t) - ng{f}mtlnfctj}cnszmj}f +8{11]
= %[.—icm(t}+nj{f){cns[5(r)]} + cos[4nf i+ ()]

+ %Arng(r}{ sin[8(1)] - sin[4xf,t + 8(1)]}

The postdetection low-pass filter removes the high frequency components of ¥(1), producing the output
¥ty = %[[Acm{l‘} +rt)]cos[B()] + %Acng(f)siﬂ[ﬂ(i‘)] 1)

When the phase error 8(f) is zero, we find that the message signal component of the receiver output is

%Aﬂm(t) . The error at the receiver output 15 therafore

"{F
e(t) = y(H)- THU}
The mean-square valoe of this emor is

£ = E[e"(1)]

- E[[y(r:r—%mm)]] @
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Substituting Eq. (1) into (2), expanding the expectation, and noting that the processes m(f), 6(¢), n() and
nglf) are all mdependent of one another, we get

2
4
& = ZEEm” (01E(cos"0(0)1+ 1EDny (D1E[cos 0(1)]
1. 2 . 2
+ zEng(n1ELsin"6(n]

2 2
4 5 A 2
+ TE["' [T]I—TEIN ()]E[cosB(f)]

We now note that
Enj($)] = Elng(t)] = o,

E[n?(r}]E[cnsﬂamHE[n’é{r]]E[za{ﬂ] = oy

Therefore,
2 2
o

E= T‘E[mzti‘}]E{ [1-cose(n] } + TN

2
E{[1+ cosB(8)]"} + ‘TTN

AP
T

where P = E[m’(£)].
For small values of &(f), we may use the approximation

2
4]
1-cosé(f) = o

Hence,

2 2
_ AEP 4 GN
& = {E0 (0] +

Simeﬂ(ﬂisﬁnnﬁian-dishﬂmtedwﬂhmmmmdvmimug,wehwe

Er8'(0] = 3o,

The mean-square error for the case of a DSBSC system i3 therefore

2 4 2
- EAGPGB . ::r_N
16 4
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Problem 6.6

Problem 6.7

(a) If the probability
P(|n,(t))) > 4 |1 + km(0)| €3,

then, with a probability greater than 1 - &;, we may say that
1.2
1.2
¥t = {[Af +A_k m(t)+n ()] }
That iz, the probability that the quadrature component n.(f) is neghgibly emall iz greater than 1 - 5,
(b) Next, we note that if km(f) < -1, then we get overmodulation, so that even in the absence of noize, the
envelope detector output is badly distorted Therefore, in order to avoid overmodulation, we assume
that k, iz adjusted relative to the message signal m(f) such that the probability
P(d,_+ 4k m(t) +n () <0) = 5,
Then, the probability of the event
yity= A1+ km(t) +n ()]
for amy value of £, is greater than (1 - 8;) (1 - 52).
{c) When &; and 8, are both small compared with unity, we find that the probability of the event
O = A1 +k mb)]+n (1)

for any value of ¢, is very close to umnity. Then the cutput of the envelope detector iz approximately
the same as the corresponding cutput of a coherent detector
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Problem 6.8
The received signal iz
x(f) = Accustiwf;r}+n{fj
= 4 cos(2nf,0) + n(ticos(2nf, 1) — n (H)sim(2nf, 1)
= [4, +n in)]cos(2nf,6) — n (f)sin( 2nf.6)

The envelope detector cutput i1s therefore

R 1.2
ait) = {[AE +n ()] +n;(r}}

For the case when the carmier-to-noise ratio is high, we may approximate this result as
ait) =.».~I£ +n(t)
The term .4, represents the useful signal component. The onqnusigmlpu'misthudi.

The power spectral densifies of m(f) and nyf) are as shown below:

Spl)
________ M2
; 0 % d
— IF - I
Sx
kK No
-F 0 W f

The cutput noise power is 2N /. The output signal-to-neise ratio is therefore

2z
(3

(SNR)o = s W
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Problem 6.9
Problem 6.10

() Following a procedure similar to that described for the case of an FM system, we find that the input of
the phase detector is

v(t) = A cos[2nf i+ 8(f)]

where

ng(f)
A

i

B(t) = km(f)+

with nQ{r} denoting the gquadrature noise component. The output of the phase discriminator is
therefore,

ngy(t)
¥ty = kymy+ 2

[

The message signal compenent of y{f) is equap to kym(f). Hence, the average output signal power is
k;P,whetePis the message signal power.

With the post detection low-pass filter following the phase detector restricted to the message
bandwidth w, we find that the average output noise power is EWNufdi ;

Hence, the output signal-to-noise ratio of the PM system is

2y 2
I PA

(SNR)e = 377w,

() The channel signal-to-noise ratio of the PM system i1s the same as that of the comesponding FM
system_ That 13,

2

— [
(SNR)o = 777w,

The figure of ment of the PM system i3 therefore equal to k;P.

For the case of sinusoidal modulation we have

mif) = Am cos(2 mfmﬂ
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Hence

2

2
JID!
P=v
The comesponding value of the fizure of ment for a PM system is thus equal to %B;_._wha'e
Bp = kyd,, - On the other hand, the figure of ment for an FM system with smusoidal modulation is
equal to %ﬂz.ﬁfﬂmﬂ:ﬂefom that for a specified phase deviation, the FM system is 3 times as good
as the PM system.
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Problem 6.11

() The power spectral densities of the original message signal, and the signal and noise components at
the frequency discriminator output (for positive frequencies) are illustrated below:

Specral density
of message

N
- fHz)

0 4

4 12 16 20 24 28 32 36 44 48 il )

Spectral density 1
of noize 1
component at !
discriminator :
output 1
I
I
I
I

0 48

fkHz)

() Each 55B modulated wave contains only the lower sideband. Let 4 and kfy denote the amplitude and
frequency of the carrier used to generate the kth modulated wave, where fy =4 kHz. and k=12, 12,
Then, we find that the kth modulated wave occupies the frequency interval (k-1{0 = | = kfy. We may
define this modulated wave by

AJ: "ik n .
5plt) = Tm(i‘}cos(hrkfnt}+ Tm{fjm(lﬂkfﬁr)

where m(f) is the oniginal message signal, and () 1s its Hilbert transform_ Therefore, the average
power of 5(f) is Ain’ri , Where P 1z the mean power of m(). We may express the output signal-to-
noize ratio for the kth S5B modulated wave as follows:
34Ky (43 P/4)
3 3
INGIE fo— (k= 1) o]

(SNR), =

222

34 AP
BN o3k —3k+1)

where 4, is the cammier amplitude of the FM wave. For equal signal-to-noise ratios, we must therefore
choose the 4; so as to satisfy the condition

4

———— = constant for k= 1,2, -, 12.
3k -3k+1
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Problem 6.12
The envelope r{f) and phase wit) of the narmow-band noise n(f) are defined by
M) = oo+ Mgt

Un 1)
= o
w(f) = tan [_nﬁfJJ

For a positive-gomg click to oceur, we therefore require the following:

ni :—Ac
ng(r) has a small positive value

“Irn ()
d (Mg
Etm 1_“:(:]'}}
Comespondimgly, for a negative-going block to occur, we require
nify=A,

ng(f) has a small negative value

-1
d H'g{ﬂ
d—rtm [m <0
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Problem 6.13

c
]
Il
b Fs
— A ,
Vil r 2E Vould

Let H{f) be oy T(7), or the transfer function of the filter At low frequencies, the capacitor behaves as
an open circuit. Then,

R R
HD=3r%5

Thus, the low frequencies of the input are frequency-modulated At high frequencies, the capacitor
behaves as a short cairewt in relatiom to the resistor. Then,
R :
H(fy=— = =jInfCR,
R+ I
JInfC
and

d
Vo) = RC E‘Til( g

Frequency modulating the derivative of a waveform is equivalent to phase modulating the waveform.
Thus, the lugh frequencies of the input are phase modulated.
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Problem 6.24

(a) For the average power of the emphasized signal to be the same as the average power of the origimal
message signal, we must choose the transfer function Hy,{f) of the pre-emphasis filter so as to satisfy

the relabiom

[ Si0dr = [_[H*Sudf

With
_ S wesew
Sl =4 1+
] 0, elsewhere.
H. ) = i1 +}t{}
we have

F df' 2.7
&
T+ (ffy) Ly¥

Solving for k, we get

k= [{;‘,tm'l@]m ()

(k) The improvement in output signal-to-noise ratio obtained by using pre-emphasis in the transmitter
and de-emphasis m the recerver is defimed by the ratio

p=-—, W
3J'_,,Jl o df

L
3]'”_2 d4f

T 1+’

LAUZIAY

AW/ fy) — tan (T f)]

Substituting Eq. (1) m (2), we get
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I |
Wrf) tan (W7,
Do (F7fy) _{1 o @
AUy —tan (W/f)0

This result applies to the case when the rms bandwidth of the FM system 13 mamtamed the same with
or without pre-emphasis. When, however, there is no such constraint, we find from Example 4 of
Chapter 6 that the cormresponding value of D is

3
. (W/fy)

= “
3LOW/f)— tan™ (W/f))

In the diagram below, we hawve plotted the mmprovement I (expressed in decibels) versus the ratio
W.f, for the two cases; when there is a transmission bandwidth constraint and when there is no
such constraint:

10log;oD
decibels
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Problem 6.15

In a PM system, the power spectral density of the noise at the phase discriminator output (in the absence
of pre-emphasis and de-emphasis) 15 approximately constant. Therefore, the mmprovement in output
signal-to-neise ratio obtained by using pre-emphasis in the transmitter and de-emphasis in the receiver of
a PM system 1z given by

" g
D= —I" d

w 2
| o [Hael)|"dr

With the transfer finction Hg,(f) of the de-emphasis filter defined by

_ 1

SR 5377 %)

we find that the cormesponding value of D ig
__F

[

O 1+(fy”

D=

Wify
tan ™ (/f)
For the case when W= 15kHz f; =21 kHz, we find that D=3, or 7 dB. The commesponding value of the
improvement ratio I for an FM system is equal to 13 dB Therefore, the
mprovement obtamed by using pre-emphasis and de-emphagiz in a PM system 12 smaller by an amount
equal to 6 dB.

Problem 6.16

Problem 6.17
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Chapter 7 Problems

Problem 7.1

Let 2 denote the bandwidth of a nammowband signal with camier frequency f;. The in-phase and

quadrature components of this sipnal are both low-pass signals with a common bandwidth of W
According to the sampling theorem there is no informatiom loss if the in-phase and gquadrature
components are sampled at a rate higher than 2. For the problem at hand. we have

fi =100kHz
2= 10kHz

Hence, "= 5kHz=, and the mimimum rate at which it is permissible to sample the in-phase and quadrature
components iz 10 kHz.

From the sampling theorem, we also know that a physical waveform can be represented over the interval
—m << by

gD = 3 a,0,(1) m

H=-a0

where {&,(f)} 15 a set of orthogonal fimctions defined as

sin{nf.(t—n/f)}

¢r:|':t:| = —HL{T_H{E)

where n iz an integer and f; is the sampling frequency. If g(f) is a low-pass signal band-limited to I Hz,
and f; = 2W then the coefficient a, can be shown to equal g(n/f;). That is, for f; = 217 the orthogonal

coefficients are simply the values of the waveform that are obtained when the waveform is sampled every
1/f; second.

As already mentioned, the narrowband signal is two-dimensional consisting of in-phase and quadrature
components. In light of Eq. (1), we may represent them as follows, respectively:

oo

gl = 3 En/f)0,00

=

Leal

gpll) = F o/, (1)

Hence, given the in-phase samples g‘G:.) and quadrature samples gg(}),wemymmthﬂ
narrowband sigmal g(f) as follows:
g() = gH{fcos(2nf, 1) —go(Nsin(2xf 1)

_ ; [gj(_;) m(hfci‘]—gg(jﬂ.)!in(hj;i‘}]in(ﬂ

where f. = 100 kHz and f; = 10 kHz, and where the same set of orthonormal basiz functions 15 nsed for
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Problem 7.2

(a) Consider a periodic frain (f) of rectangular pulses, each of duration I” The Fourier series expansion
of &(f) (assunung that a pulse of the train iz centeved on the cngin) i given by

ety = ¥ fsimc(nf T)exp(j2anf 1)

where f; is the repetition frequency, and the amplimde of a rectangnlar pulse is assomed to be 1/T (Le
each pulse has unit area). The assumption that £T == 1 means that the spectral lines (1 e harmonics)
of the peniodic pulse tram £{f) are well separated from each other

Multiplying a message signal g(f) buy c(r) yields
s(f) = e(t)g()

=y fsine(nf, T)g(t)exp(j2xnf1) M

Taking the Founer transform of both sides of Eq. (1) and nsmg the frequency-shifting property of the
Fourier transform:

S0 = ¥ fisme (nf Dg(OG(—nf) 2

n=m

where G{f) = Flg(f)]. Thus, the spectrom 5{f) consists of frequency-shifted replicas of the original
spectrum G{f), with the nth replica bemg scaled in amplittude by the factor fsme(nf,T).

(b) In accordance with the sampling theorem let it be assumed that
The signal g(f) is band-limited with

Gifi=0 for —-W<f<F
*  The sampling frequency f; 13 defined by

f22W
Then, the different frequency-shifted replicas of G{f) involved m the construction of S(f) will not
overlap. Under the conditions described herein, the onginal spectrum G{f), and therefore the signal

glf), can be recovered exactly (except for a trivial amplitude scaling) by passing s(f) through a low-
pass filter of bandwidth 7
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Problem 7.3

(a) g() = sinc(2007)

This sine pulse comresponds to a bandwidth 7= 100 Hz. Hence, the Nyquist rate 1 200 Hz, and the
Wyguist interval is 1/200 seconds.

() g() = sinc3(2000)

This signal may be viewed as the produet of the sine pulse sine(2007) with itself. Since multiplication
m the time domain comresponds to convelution i the frequency domain, we find that the signal g(f)
has a bandwidth equal to twice that of the smc pulse sin(2001), that 1s, 200 Hz. The Nyqumst rate of
g(1) 15 therefore 400 Hz, and the Nyquist interval 1z 1/400 seconds.

(c) glf) = sinc(2007) + sinc’(2007)

The bandwidth of g(f) is determined by the highest frequency component of sinc(2007) or sinc*(2001),
whichever one is the largest. With the bandwidth (i.e., highest frequency component of) the sine pulse
sine(200¢) equal to 100 Hz and that of the squared sinc pulse sinc”(200¢) equal to 200 Hz, it follows
that the bandwidth of g(f) is 200 Hz. Comespondingly, the Nyqmst rate of g(f) is 400 Hz, and its
Nyquist interval is 1/40{) seconds.
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Problem 7.4

(a) The PAM wave iz

st)y= % [l +um'(nT )]g(t—nT,),

=
where g(f) is the pulse shape, and m'() = m(r]z’z!m = ms{?:fmf) . The PAM wave is equivalent
to the convelution of the mstantanecusly sampled [1 + pm'(1)] and the pulse shape gif):

) = | ¥ [1+pm'(nT )18t —nT.)

[ ]

He(f)

1+ um'(f) 5 B(t—n T_T)

H=-o0

Hg(1)

The spectrum of the PAM wave is,

G(f)

s = |[s(ﬂ+ e 5 8{7-7)

- 7600 3 [l 1) +we(r-7]
For a rectangular pulse gif) of duration T = 0435, and with AT = 1, we have:

G(f) = ATsinc (fT)
sinc (0.45/)

For m'(f) = cos(2xnfm), and with f,, = 0.25 Hz, we have:

M = %[S(f— 0.25) +8(f+0.25)]

For T; = 15, the ideally sampled spectram 15 55(f) = 5 [8(f—m) + pdd"(f— m)].

S
1 1 1
w?2 T w2 w2 w2 w2 I w2
-IIS -1.0 -ITS -U.IS 0 IJTIS l]‘.T'IJ‘S 1.0 IIS ﬂHz:l

The actual sampled spectrum 1s:

S() = ¥ sinc(0AINLS(F-m) + uM'(f-m)]
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S50

5 1 0757

0.757
0.63Te 0.858u 0.984u 0.984u 08580 0.637
1 T 2 ] 2 -z I 2
1 1 1 I .
-125 -10 075 A0.25 0 0.25 0.75 10 125 fHz)

(k) The ideal reconstmuction filter would retain the centre 3 delta functions of 5{f) or:

&

0.984y 1 0.98
- 3

023 0 033

With no aperture effect, the two outer delta functions would have amplimde w?2. Aperture effect
distorts the reconstructed signal by attermating the high frequency portion of the message signal.

Problem 7.5

At f=1/2T, which comesponds to the highest frequency component of the message signal for a sampling
rate equal to the Nygquist rate, we find from Eqg. (6.19) that the amplitude response

12

sinc (0.5 VT 11

1.0

Figure 1
of the equalizer normalized to that at zero frequency 15 equal to

1 (m 2T/ T,)

sinc(051/1,)  sm[(n/ 2017 I,)]

where the ratio /T is equal to the duty cycle of the sampling pulses in Fig. 1, this result is plotted as a
function of TVT,. Ideally, it should be equal to cne for all values of TVT,. For a duty cycle of 10 percent, it
iz equal to 1.0041. It follows therefore that for duty cycles of less than 10 percent, the aperture effect
becomes negligible, and the need for equalization may be omutted altogether
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Problem 7.6

Consider the full-load test tone Acos(2xf,f). Denoting the kth sample amplitude of this signal by 4, we
find that the transmitted pulse is 4zg(f), where g(f) is defined by the spectnum:

1
Gf.ﬂ= E M‘:BI
0 otherwize

The mean value of the transmitted signal power is

oy [ "
Lh—?m .?.LTJ-F—LTI z A,‘,g(ﬂ dt
L

L L
g im L A ghdt
Iem QLTELM;E ¥ Apd,g
k=L n=1
£L i

R 1 LT, 2
N .E.]J—D}Im 2T, Y Xl ”]I—LI’E ()t
=L n=1L

where T, is the sampling period. However,

P=E

£ ks
2

El4gd,] =

k:
0, otherwise

Therefore,
2
_ A= 2
P= E_TEI_..;E (f1dt
Using Rayleigh’s energy theorem, we may write

[ g = lopiar

_ A 12
- —Br[E') g
_ 1
5
Therefore
2
P= A
iT5;

The average signal power at the receiver output is 4%/2. Hence, the output signal-to-noise atio is given

4t

" 5x,
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AI

B,
TP
-5

By choosimg Br= 12T, we get

P
(5NR)y = 57
° B A%
This shows that PAM and baseband signal transmission have the same signal-to-neise ratio for the same
average transmitted power, with additrve white Gaussian noise, and assuming the use of the minimmm
transmission bandwidth possible.

Problem 7.7

() The sampling interval is T, = 125 ps. There are 24 chamnels and 1 sync pulse, so the time alloted to
each channel is T, = T/25 = 5 ps. The pulse duration is 1 ps, so the time between pulses is 4 ps.

(1) If sampled at the Nyquist rate, 6.8 kHz, then I, = 147 ps, T, = 6.68 ps, and the time between pulses is
3.68 ps.

Problem 7.8

(2) The bandwidth requred for each single sideband channel is 10 kHz. The total bandwidth for 12
channels 15 120 kHz.

(b) The Nyquist rate for each signal is 20 kHz. For 12 TDM signals, the total data rate is 240 kHz. By

using a sinc pulse whose smplitude varies in accordance with the modulation, and with zero erossings
at multiples of (1/240) us, we need a minimum bandwidth of 120 kHz.
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Problem 7.9

(a) The MNyqust rate for 51(f) and 5,(1) is 160 Hz. Therefore 2400/2% mmst be greater than 160, and the

maximum F 15 3.

(k) With B = 3, we may use the following signal format to nmltiplex the signals 5,(f) and 5,(f) into 2 new
signal, and then multiplex s3(f) and 54(f) and 55(f) inchoding markers for synchronization:

Marker Marker

L
300

F

5 &

o (1724000

NN N N T TN TN T N NP N OO N N N T O N T A A
i3 94 51 f3 84 &y 53 54 T3 54 O30y i B35 B3R B3R A iR

_|.| h—17200)

Time
= ZETD sEmples

Based on this signal format, we may develop the following nmltiplexing system:

2400Hz
clock
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Problem 7.10

Problem 7.11

Problem 7.12

Voltage

Quantizer
output

Veolge

Ontput
voltage

(a)

Visltage
315
rr - Time
..... - H B
||||||| BE
..... - 5%
=315
(uantizer
gt
=

Cuantizer
ouipus

7,7 | ——
volage

Volge

Time

_|_JI._|.____
I P A B T

B e N

Ousmdizer

i it
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Problem 7.13

The guantizer has the following input-cutput curve:

Cratpur
vols gl 1111

At the sampling instants we have:

t mif) code
-3/8 342 0011
-1/8 2342 o011
+1/8 32 1100
+3/8 32 1100

And the coded waveform 1s {assuming on-off signaling):

! 1 Time (seconds)

el =
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Problem 7.14

The transmmtted code words are:
Ty Code
1 001
2 010
3 011
4 100
b 101
6 110
The sampled analog signal is

0 3T, 6T, T, 12T, 15T, 1T,
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Problem 7.15

Suppose that baseband signal m(f) is modeled as the sample function of a Gaussian random process of
zero mean, and that the amplitede range of m(r) at the quantizer mput extends from -44__ to 44 We
find that samples of the signal m() will fall outside the amplimdfe range 24, with a probability of
overload that is less than 1 in 10%. If we further assume the use of a binary code with each code word
having a length n, so that the number of quantizing levels 13 2, we find that the resultmg quantizer step
size i3

5 = S m

Substituting Eq. (1) to the fornmla for the output signal-to-quantization noise ration, we get
_ 3 .
(SNR), = 2™ @

Expressing the signal-to-noise ratio in decibels:
10log,(SKR), = 6R-7.2 3)

This fornmla states that each bit in the code word of a PCM system contributes 6 dB to the signal-to-noise
ratio. It gives a good description of the noise performance of a PCM system, provided that the following
conditions are satisfied:

1. The system operates with an average signal power above the error threshold, so that the effect of
transmission noise 1 made negligible, and performance is thereby limited essentially by quantizing
noise alone.

2. The guantizing error is uniformly distributed.

3. The guantization is fine encugh (say R = §) to prevent signal-comrelated patterns in the quantizing
error waveform.

4. The guantizer 13 aligned with the amplitude range from -44,,, to 44,

In general, conditions (1) through (3} are true of toll quality voice signals. Howewver, when demands on
voice quality are not severe, we may use a coarse quantizer corresponding to R < 6. In such a case,
degradation In system performance i reflected not only by a lower signal-to-neise ratio, but also by an
undesirable presence of signal-dependent patterns i the waveform of quantizing ermor.
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Problem 7.16

(a) Let the message bandwidth be I Then, sampling the message signal at its Nyquist rate, and using an
R-bit code to represent each sample of the mes=age sipnal we find that the bit duration is

T; 1
s~ ~ 2wz
The bit rate is
1 _

Tﬁ 2IWR

The maximum value of message bandwidth is therefore

_ 50 = 10%
mix = Jx ]
= 357x10% Hz

(b) The cutput signal-to-quantizing noise ratio is given by (see Example 2):
10log, ,(SNR), = 1.8+ 6R

=18+6x7
=438 dB
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Problem 7.17

Let a signal amplitude lying in the range

be represented by the mmﬁmmmhmdex;_mmmmhmnfthemisﬂt-xf.lﬂ
the probability density finction of the imput sipnal be fi(x). If the step size 3; is small m relation to the
mput signal excursion, then fy(x) vanes little within the quantom step and may be approximated by f(x;).
Then, the mean-square valne of the error due to signals falling within this quantom is

[

b,

3 x5+ 7
o R e
-5

X

[ I )

-
+
(=]

(2 —x) figlx)dix

1
[—
(XTI e

-
1

]

1

x,+=0

- fx(xjjJ" 2 ‘x—x,) dx
x!_j ]
1
°5

= fyxf')
_2 (]

1.3
= oSl M
The probability that the iuput signal amplitude lies within the ith interval is
1 1

5% ** 50y
IE Jtxyde=flx)] : dc = fx(x8; 2
E X

x,+
J 1
] [ 2

=

X

Therefore, eliminating f3{x;) between Eqgs. (1) and (2), we get

1
ELO] 153 5;

The total mean-square value of the quantizing error is the sum of that contributed by each of the several
quanta. hence,

1 2
E;':E[Qj] = ﬁ?fﬁf
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Problem 7.18

(a) The probability p; of any binary symbol being inverted by transmission threugh the system is usually
quite small so that the probability of emror after n regenerations in the system is very nearly equal to n
P1- For very large n, the probability of more than one inversion nmst be taken into account. Let p,

denote the probability that a binary symbel 1s in error after transmission through the complete system.
Then, p,, is also the probability of an odd munber of errors, since an even number of emrors restores
the criginal value. Counting zero as an even mumber, the probability of an even mumber of errors is 1-
Dy Henee.

Ppey = Py(l=pp+(1-p,)py
=ql _zPl}Pn +m

This is a linear difference equation of the first order. Its selution is
_ 1 n
Pﬂ - E[l_il_zP]_} ]

(k) If py is very small and » is not too large, then
(1-2p)) =1-2p;n

and

P, =3[l —(1-2pm)]
o

Problem 7.19

m(f) = Atanh(Bt)

To avoid slope overload, we require

a dm(t)

T > max s (1)
"% = Apsech’(BD @
Hence, usmg Eq. (2) in (1):

A2 max(ABsech’(B)) x T, ®)

Since sech(ft) = Eﬁ

2
g Py gl

it follows that the maxinom value of sech(ps) iz 1, which occurs at time ¢ = 0. Hence, from Eg. (3) we
find that A = ABT,.
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Problem 7.20
The modulating wave is
mi(f) = Amnm(lnfmr}

The slope of m(f) is

dm(t .
D = dxfydsin(2nf,t)

The maximum slope of m(f) is equal to 2uf4,,.
The maxinmm average slope of the approximating signal m{f) produced by the delta modulator is 37T,
where & 1s the step size and T is the sampling period. The limiting valne of 4, is thevrefore given by

&
2fuln> T

or

&

An> T T

Assuming a load of 1 ohn,ﬂnhxnmﬁthdpuwerisdifﬂjhﬁmﬁ:ue,ﬂmmﬁmmpm&ntmybe
transmitted without slope-overload distortion is equal to &7/&x T~ .
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Problem 7.21

£ = 0oy
Fiyquise = 6-8 kHz

fi=10x68x10°=68x10*Hz

dm(t)
dr

EErmix
TS

For the simmsoidal signal m(f) = A ,Sin(2nf,f), we have

d—ﬂ? = Infd,cos(2nf, 1)

Hence,
dmit)
df |max
or, equivalently,

= |2 “fm‘imlm

2 Ilnj‘m.{m| s

M 1

Therefore,
— A
|Am|ma.x - T, xInxf,
nf,

_01x68x10*

Imx10°

= 1.08V
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Problem 7.22
The maximum slope of the signal s(t) = Asin (27 ft) is 2nfA. Consequently, the

maximum change during a sample period is approximately 2rAfTs. To prevent slope
overload, we require
100mV > 27 AfT,

= 27 A(lkHz) /(68kHz)

=0.092A
orA<1.08V.

Problem 7.23
(a) Theoretically, the sampled spectrum is given by

s.(f)= 3 H,(f —nf,)

where Hy(f) is the spectrum of the signal H(f) limited to | f|< f /2. For this
example, the sample spectrum should look as below.

4 1T A,

-5 kHz 0 5 kHz
(b) o
The sampled spectrum is given by
x 10°
2.5 T
2,
£
£ 15}
£
0.5F
0 ‘ ‘ L L
-5 -4 -3 -2 -1 0 1 2 3 4 5

Frequency (kHz)
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There are several features to comment on:
0] The component at +4 kHz is due to aliasing of the -6 kHz sinusoid; and
the component at -4kHz is due to aliasing of the +6 kHz sinusoid.

(i) The lower frequency is at 2 kHz is six times larger than the one at 4 kHz.
One would expect the power ratio to be 4:1, not 6:1. The difference is due
to relationship between the FFTsize (period) and the sampling rate. (Try a
sampling rate of 10.24 kHz and compare.)

(b) The spectrum with a 11 kHz sampling rate is shown below.

X 105
2.5

1.5+ B

Amplitude Spectrum

0.5 J

L

6 -4 -2 0 2 4 6
Frequency (kHz)

As expected the 2kHz component is unchanged in frequency, while the aliased
component is shifted to reflect the new sampling rate.
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Problem 7.23
() The expanding portion of the p-law compander is given by

exp| log(l+ w)|v| -1
7000t 0]
y7]
(L+ u)expl|o[]-1
y7;

(b)
(i) For the non-companded case, the rms quantization error is determined by step size.
The step size is given by the maximum range over the number of quantization steps

2A
A
For this signal the range is from +10 to -1, so A = 10 and with Q = 8, we have A = 0.078.
From Eq. ( ), the rms quantization error is then given by

1
2 2 —-2R
O'Q = gmmaxz

1
- 10 22—16
3( )

=0.0005086
and the rms error is og — 0.02255.

(if) For a fair comparison, the signal must have similar amplitudes.
The rms error with companding is 0.0037 which is significantly less. The plot is shown
below. Note that the error is always positive.

0.035

0.03 B

0.025 J

0.015 A

0.01 4

0.005 - B

_0005 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450

Rest TBD.
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Problem 7.24

Problem 7.25
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Chapter 8

Problem 8.1
(a) The impulse response of the matched filter is
ey =s(T—H
The 5(f) and h({f) are shown below:
=(f)
A2
T
v T
7
AT fmmm———
ity
JFT.Jf pepupp—
0 T T
T
-42

() The commesponding cutput of the matched filter iz obtained by convolving h(f) with s(f). The result is
shown below:

550

b =

|
|
\/
ATEf=mma2

(c) The peak value of the filter output is equal to 4°T/4, occuring at t= T
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Problem 8.2

Problem 8.3

Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.



Figure 1

Problem 8.4

Ideal low-pass filter with vaniable bandwidth. The transfer fimction of the matched filter for a rectangular
pulse of duration T and amplitnde 4 15 given by

Hy () = sine(fDexp(~j=fT) (1

The amplitude response |H_(f} of the matched filter is plotted n Fig. 1(a). We wish to approximate this
amplitnde response with an ideal low-pass filter of bandwidth B. The amplitude respemse of this
approximating filter i1z shown in Fig. 1(b). The requirement is to determine the particular value of
bandwidth B that will provide the best approximation to the matched filter

We recall that the maximum value of the output signal, produced by an ideal low-pass filter m response to
the rectangular pulse occurs at £ = I72 for BT = 1. This maximum value, expressed in terms of the sine
mtegral, is equal to (24/m)Si(nBT). The average noise power at the output of the ideal low-pass filter is
equal to BNy The maxinmm cutput signal-to-noise ratio of the 1deal low-pass filter is therefore

(lﬁ:lf:lt] S! (nBT) @

(SNR) = i
o

Thus, nsing Eqs. (1) and (2), and assuming that AT=1, we get

(SNR)y 2 _2
m = EBTST (nEBT)

This ratio is plotted in Fig. 2 as a function of the time-bandwidth product BT. The peak value on this
curve occurs for BT = 0.683, for which we find that the maximum signal-to-noise ratio of the ideal low-
pass filter is 0.84 dB below that of the true matched filter Therefore, the “best” value for the bandwidth
of the ideal low-pass filter characteristic of Fig. 1(b) is B = 0.6835/T.

HoglH
10
_f'-"\f f
3 2 1 0 3 3 3
T I T r T T
Matched filter
(B +
Ideal I
»y ﬂ_EZS"‘. OW-pass
2| =
B O B ! %%
(b}
o 02 04 0.685 1.0
BT
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Problem 8.5

Problem 4.9

Consider the performance of a bmary PCM system in the presence of channel noise; the receiver is
depicted in Fig_ 1. We do o by evaluating the average probability of emror for such a system under the
following assumptions:

1. The PCM system uses an on-off format, in which symbol 1 is represented by 4 velts and symbol 0 by
zero volt.

2. The symbols 1 and 0 occur with equal probability.

3. The channel noise wif) is white and Ganssian with zero mean and power spectral density NO/2.

To determine the average probability of error, we consider the two possible kinds of error separately. We
begin by considering the first kind of emor that occurs when symbol 0 15 sent and the receiver chooses
symbol 1. In this case, the probability of error is just the probability that the comelator output m Fig. 1
will exceed the threshold & owing to the presence of noise, so the transmitted symbol 0 1s mistaken for
symbeol 1. Since the a pricn probabilities of symbols 1 and 0 are equal, to have py = p;. Comespondingly,
the expression for the threshold 2 simplifies as follows:

2
AT,
r-2l M

where Ty is the bit duration, and .».-IZT!, is the signal energy consumed in the transmission of symbol 1. Let
¥ denote the correlator output:

Ty
y= In s(f)x()dt 2

Under hypothesis Hy, comespending to the transmizsion of symbol 0, the received signal x(f) equals the
channel noize w(f). Under thaz hypothesis we may therefore desenbe the comelator cutput as

T
Hyy = Aj'ﬂ*w{r]dr @)
Since the white noize wif) has zero mean, the correlator output under hypothesis Hy also has zero mean.
In such a sitnation, we speak of a conditional mean, which (for the situation at hand) we describe by
Ty
1g = E[Y|H,] = E[jﬂ H?(r}df] =0 )
where the random varable ¥ represents the comelatoroutput with y as its sample valoe and WUf) i a
white-noise process with wi(f) as its sample function. The subscript 0 in the conditional mean g refers to

ﬂmcmﬂlhmﬂ]ﬂh}pﬂhmmfihlshm%eqmmhngl};letuﬁ denote the conditional variance of the
comrelator cutput, given that hypothesiz Hy is true. We may therefore write
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= EY'|H,)
e T
E[] "], Wty dn| o)

The double integration in Eq_ (3) accounts for the squaring of the correlator cutput. Interchanging the
order of integration and expectation m Eq. (3), we may write

I, T
ol = Ju*' J;E[W{II}IF{IZ}]JI‘IJI.‘Z
Ty Ty
= [, I, Ruth—t)dtydt, (6
The parameter (R, {f; - f2) is the ensemble-averaged autocorrelafion fimction of the white-noise process
W{f). From random process theory, it 1s recognized that the autocorrelation function and power spectral

density of a random process form a Fourier transform pair. Since the white-noise process FF(f) is assomed
to have a constant power spectral density of Np/2, it follows that the aufocorrelation fimetion of snch a

process consists of a delta fimetion weighted by N2, Specifically, we may wnte

J"‘Irl]
Ry(ty—ty) = 5-8(1—f; T13) 0]

Substitating Eq. (7) in (6}, and using the property that the total area under the Dirac delta fimction
S(t—#; + ;) 1s unity, we get

N.T, 4°
o = n;f‘ (®)

The statistical characterization of the correlator output 1s computed by noting that it is Gaussian
distributed, since the white noise at the correlator mput is itself Ganssian (by assumption). In summary,
we may state that under hypothesis Hy the comelator cutput is a Gaussian random variable with zero

mean and varnance N,:,Tﬁzi /2, as shown by

¥

1 1
SENES
Soly ~ bAEIP NuT.g.fIz

(&)

where the subscript m fi(y) signifies the condition that symbol 0 was sent.

Figure 2(a) shows the bellshaped curve for the probability density fimetion of the comelator cutput,
given that symbol 0 was transmitted. The probability of the receiver deciding in favor of symbel 1 is
given by the area shown shaded in Fig. 2{a). The part of the y-axis coverad by this area comesponds to the
condition that the comrelator output y 15 In excess of the threshold 1 defined by Eq. (1). Let Py denote the
conditional probability of ervor, given that symbol 0 was sent. Hence, we may write
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P = l:fnf.l’)d.!’

-y

1 = :
= r 1[.
menTbaJ.frbmm[ NﬂTbAJd} 1o

g ¥ (1)

We may then rewrite Eq. (10) in terms of the new variable £ as

1 =~ 2
-1 (~2H)dz 12
P10 ﬁf,ﬁﬂrhfzvum

which may be reformulated m terms of complementary error fimction

erfe(u) = %Imexq:l(—zzjdz (13)
mu

Accordingly, we may redefine the conditional probability of emmor Pg as

1 T, 4
Pyp = yerfe N, (14)

Consider next the second kind of error that occurs when symbol 1 s sent and the receiver chooses symbol
0. Under this condition, comresponding to hypothesis H;, the correlator input consists of a rectangular
pulse of amplinde 4 and duration T plus the channel noise wif). We may thus apply Eq. (2) to write

T,
Hyy = A]n"[d +w(t)]dt (15)

The fixed gquantity 4 n the integrand of Eq. (13) serves to shift the correlator output from a mean value of
zero volt under hypothesis Hy to a mean value of A°T, under hypothesis H;. However, the conditional
variance of the correlator output under hyupothesis Hy has the same value as that under hypothesis Hy,
Moreover, the correlator output 1s Gaussian distributed as before. In summary, the correlator cutput under
hypothesis Hj is a Gaussian random variable with mean 4T, and variance NyT%/2, as depicted in Fig.
2(b), which corresponds to those values of the correlator output less than the threshold 7 set at A2Ty/2.
From the symmetnc nature of the Gaussian density funetion, it is clear that

Pm~Puw (16)

Note that this statemnent is only true when the a priori probabilities of binary symbols 0 and 1 are equal;
this assumption was made in calculating the threshold A.
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To determine the average probability of error of the PCM receiver, we note that the two possible kinds of
error Just considered are mutually exclusive events. Thus, with the a prion probability of transmitting a
equal to pg, and the a prion probability of transmatting a 1 equal to py, we find that the average

probability of error, Py, 15 given by
Fe = PoPr10TP1P01 (17

Simce pyy =p1g and pg + py = 1, Eq. (17) simplifies as

Py =Py = P
or
2
T
P, = %Erfﬂ[% Tﬁ] (18)
o
Choose Hj if
T Dlecizion A is exceeded
(7 [ ar = I
o device Ortherwrise
T . choose Hy
s A
Figure 1
]
Jat)
— - k'\'\ l}.'
0 4
(a)
503
|
o1 |
Lo ,
[ ;_A“r,, A1,
)]
Figure 2
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Problem 8.6

In a binary PCM system, with NEZ signaling, the average probability of error is

_1 ,Eb|
FE ierfc[ 7

The signal energy per bit is
E,= 4T,

where A is the pulse amplitude and Ty is the bit (pulse) duration If the signaling rate is doubled, the bit
duration T, is reduced by half. Correspondingly, Ej, is reduced by half

Letu = r‘EbeU.Wema}rthﬁnmt

F, = 10_6 = %erfc{:.r)

@
Solving for u, we get
u=33

When the signaling rate is doubled, the new value of P, 13

P, = %erfc(%)

= %erfc(lﬂ)

=107
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Problem 8.7

(a) The average probability of error iz

fE l
P = éerfc[ FE

where Ej, = 42T, We may rewtite this formula as

P, = %eﬂcu@ o

where A 13 the pulse amplitude at ¢ = ﬁnfb_Wemajrviewuzaspla}ringﬂmmk of noise variance
at the decision device mnput. Let

= o _4

We are given that
o® =107 volts”, o = 0.1 volt
P, =10"

Since P, is quite small, we may approximate it as follows:

()
erfoc(u) = “}T

We may thus rewrite Eq. 1 as (with P, = 10%)
2

exXpi—u) — 1B

T,ﬁm 10

Solving this equation for u, we get
u =397

The comresponding value of the pulse amphitude is
A=ou=01=x3/97
= (.397 volts

(b} Let E? denote the combined variance due to noise and interference; that is

2_ 2,12
Gr =0 *to;

where o is due to noise and 1::'!.1 13 due to the interference. The new valne of the average probability
of error is 10°%. Hence

& _ 1 A
10" = fe[fc(u_j

= %erfc(ur) (2)

whers
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4

o
T
Or

Equation (2) may be approximated as (with P, = 10°%)
exp(-up) _
ZJ;H:T

Solving for uy; we get
up = 337
The corresponding value of a%- is
2 2

o2 = (;{_) - (557) = 00138 wois®
The variance of the mterference is therefore
cr? = ﬁ?-— o

= 0.0138-0.01

= 0.0038 volts”

107°®
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Problem 8.8

@D po=p

The transmitted symbol is more likely to be 0. Hence, the average probability of symboel error is smaller
when a 0 15 transmuitted than when a 1 15 transmitted. In such a situation, the threshold & i Figs. 4.5(a)
and (b) in the textbook 13 moved to the right.

() p1= po

The transmitted symbel is more likely to be 1. Hence, the average probabality of symbel error 15 smaller

when a 1 is transmatted than when a 0 is transmitted. In this second sitmation, the threshold & m Figs.
4.5(a) and (b) in the textbook 1s moved to the left.

Problem 8.9
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Problem 8.10
Since P(f) is an even real finction, its inverse Fourier transform equals
p() = 2 P(cosafidf
The P(f) is itself defined by Eq. (7.60) which is reproduced here in the form

1
W o<t

P(f) = w(A-f)
o %{l+m[ﬁ]}, fi<f<2W-f,

0 A=2w-1
Hence, using Eq. (2) in (1):

_ 14 1 2FA if—h
pit) = ﬁ,f; cos ( 2mfr)df + 38l [1 + cos o })]ms{ZEﬁ}d}'

= [Siﬂ(hﬁ)} +[siu(2::ﬁ) F-h

InWt 4nit 1A
-, 2F-f,
. “ﬂf_f])J . “(.f_fl})
| sm(hﬁ+ o +4L sm(Znﬁ—W
i+ w2 Wo . Int+ a2l Wa
sin(2xfif) sm2nt2W £
BT i
1 sm2nfi)+ sm[2me 20— 3] sin2xf 5 + sin[2x8 2 f,1)]
AW Int—m/2Wo * Ini—ms 2 W
1 _. . 1 nt
= —[sm{2nf )+ sm[2Int(2 W - ]| == —
" ! ! [‘”ﬂ 2wty —(n2 Wuf]
2
= %,[siu(?mWﬂms{E:uFﬂ][ —m;{ﬁll’m) 3 ]
Ani[(2nE) — w2 W) ]

. 1
= sinc(2 Wticos(2ma ¥t [—]
1-16a" ¢
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Problem 8.11

The mininmm bandwidth, By, is equal to 1/2T, where T is the pulse duration. For 64 quantization levels,
log64 = 6 bits are required.

Problem 8.12

The effect of a linear phase response in the channel 15 simply to introduce a constant delay T mto the pulse
p(f). The delay t iz defined az -1/{2x) times the slope of the phase response; see Eq. 2.144

Problem 8.13

The bandwidth B of a raized cosine pulse spectrom is 2 - f, where W= 12T, and f; = W{1 - a). Thus
B =M1 + o). For a data rate of 56 kilobits per second, W=28kH=z

(@) For a=1025,
BE=28kHz=x 125
=35kH=z

() BE=28kHzx 15
=42kHz

(c) B=49kH=

(d  B=56kHz

Problem 8.14

The use of eight amplitude levels ensures that 3 bits can be transmutted per pulze. The symbol pericd can
be increased by a factor of 3. All four bandwidths in Problem 7.12 will be redunced to 1/3 of their binary
PAM valunes.

Problem 8.15

(a) For a umity rolloff, raised cosme pulse spectrum, the bandwidth B equals 1/T, where T is the pulse
length. Therefore, I in this eaze ig 1/12 kHz. Quarternary PAM ensures 2 bits per pulse, so the rate of

@ = 24 kilobits per second

(b) For 128 quantizimg levels, 7 bits are reqmired to tramsmit an amplitude. the additiomal bit for
synchronization makes each code word 8 bits. The sipnal is transmitted at 24 kalobits/s, so it nmst be
sampled at

24 bats's

T biwsnple 2

The maximum possible value for the signal’s highest frequency component 1s 1.5 kHz, n order to avoid
aliasing.
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Problem 8.16

The raised cosing pulse bandwidth B = 2 - f], where "= 1/2T}. For this channel, B =75 kHz. For the
given bit duration, = 50 kHz. Then,

fi = 2W-B
= 25kHz
« = 1-f/Br
= 03
Problem 8.17
Problem 8.18
Problem 8.19
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Problem 8.20

(2) The output symbols of the modulo-2 adder are mdependent becanse:
1. the input sequence to the adder has mdependent symbols, and therefore
2. knowing the previous value of the adder does not improve prediction of the present value, ie.,

~'Ft-y?1|-1('1':|-1)I = ﬁyn] :
where y, is the value of the adder cuytput at time nT; The adder output sequence 1s another on-

off binary wave with independent symbols. Such a wave has the power spectral density (from
Problem 4.10),

2 AT
=4 b_. 2
Sy = TSU’)+T5mc UTy .
The correlative coder has the transfer function
H{fy = 1 - exp(2nfT,)
Hence, the cutput wave has the power spectral density
S = HHPO S
= [1-exp(~2nfT,)1[1 - exp(F2ufT)1S¢ )
= [E—ECDG{EE_fTb}]Srm

= 4sin "(=fT,)Sp(f)

2
- 4sm2(xﬁb}[’%5g}smc2(ﬁb}]
= AT, sin"(nfT,)sinc” (fT,)

In the last line we have nsed the fact that
sm(wfT,) =0 at f=0.

b S
F 3
r
2 2z 1 0o 1 2 3
-y Ty Ty T T Ty
540
I
2 2 1 v 1 2 3
Ty T T b I I

Note that the bipolar wave has no dc component.

(WNote: the power spectral density of a bipolar signal derived m part (a) assumes the use of a pulse of full
duration T,
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Problem 8.21

(a) Bolar Signalmg (4 =2)
In this case we have
. i
mify = Z"!n smc[ij,— n)

R
where 4, = £4/2. Digits 0 and 1 are thus represented by -4 and +472, respectively. The Founer
transform of m(f) i3

M) = ZAX.F[sich.— nﬂ
"
= TrectfT)5 4, exp(j2nnfT)
Therefore, m(f) is pa:sadﬂ]mugh the ideal low-pass filter with no distortion.

The noise appearmg at the low-pass filter output has a vanance given by
2 _ Ny
T
Suppose we transmit digit 1. Then, at the sampling mstant, we obtam a random variable at the input of
the decision device, defined by

A
= +
= E_ N

where N denotes the contribution due to noise. The decision level 15 0 wolts. If X = 0, the decision
deviee chooses symbol 1, which 12 a correct deciston. If X = (, it chooses symbol 0, which is in error.
The probability of making an erTor is

PUr<0) = [ ftndx

The expected value of Xis A2, and its variance 1s o-. Hence,

. [6-3)

.

PX<0) = 1 ujo [x_‘%)
= exp| —
A2ma = 2o”
=1 ADJ
= serfc
2 (2‘_,:2—
Sinularly, if we transmit symbol 0, an error 15 made when Y= 0, and the probability of this error is
1 A
P(X>0) = serfc _aj
2 (24‘2_

Since the symbols 1 and 0 are equally probable, we find that the average probability of emor is
P, = JP(X<0|transmit 1)+ JP(X>0|transmit 0)

= %erfc [2 .,-A'EJ
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(b) Polar temary signaling
In this case we have

= incl L_
mif) %Ansmc(r n]

where
A4, =014

The 3 digits are defined as follows

-4
0

Digit ~ Level
0
1
2 +4

Suppose we transmut digit 2, which, at the input of the decision device, yields the random variable
X=4+N
The probability density function of X'is
1 (x—AJZJ
X)) = — -
0 el 5
The decision levels are set at -4/2 and 472 volts. Hence, the probability of choosing digit 1 is

Pl:—‘g X< @ = _r:jz lﬂcﬂﬂl[-{x _‘if]dx

2o
= %[ﬂfn(%ﬂ) —erfc[:% ]
Next, the probability of choosing digit 0 is

e -4 - o3

If we transmit digit 1, the random vanable at the input of the decision device 15
X=N

The probability density function of X is therefore
_ 1 _EJ

Sr(x) ﬁuﬂP[ -

The probability of choosing digit 2 is

Axe ) - (i)
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Next, suppose we transmit digit 0. Then, the random varable at the input of the decision device is
=-A+N

The probability density function of X 15 therefore
2
1 (x+4)
frlx) = ﬂp[— }
AR e e
The probability of choosing digit 1 is

A4 Ay 1
P—i&:}({jj —ierfc

3.»:1[?)]

[ 4 cr] - erfq:[
il 2.2
The pmhahi]ity ufclmusing digit 2 is

X=z| = —e:rf —
Flr-2) = Jre 1
Assuming that digits 0, 1 al:u:i 2are equallj.rpmbahle the wemge probability of emor 13

P’_S[Qefkﬁ z izﬁﬂ.]]

erfn: oj] EIfC Eqﬁaﬂ

§.
13 erfu:[z ‘ﬁq};l—erfc . ﬁJ]+§.Ee:fc(EEJ
= %erfc[g:éw]
(c) Polar quaternary signaling
In this case, we have
4, =524

and the 4 digits are represented as follows:

Digit  Level
34

¢ 7
4

53

4

+4

2 2
34

+24

3 2

Suppose we transmut digit 3, which, at the input of the decision device, yields the random vanable:

x=3N
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The decision levels are (), £4. The probability of choosing digit 2 1z

=
P0<X<A) = ﬁ[:exp —%‘e&

R R

The probability of choosing digit 1 is
i34y
1 @ (Rl "
o | 22

= %[ch(;ﬂdaj —Erﬁ:[:2 E‘TJ]
The probability of choosing digit 0 is

[

Pi—d«<X<h =

1 —_
FiX<-A) = exp|——— |dr
Fra= | g
= lgrfc-ri
2 kgﬁ .
Suppose next we transmit digit 2, obtaming
X=44N

The probability of choosing digit 3 is
2
-9
— |dx
4]

2

'1 o0
PiX=4) = -
@>d =, "‘“P[

_1 4 7
—Eerfc[llﬁaj.

The probability of choosing digit 1 is

1 0 [:x_‘;]?

o I R

= %[e:rfc(zjéﬂ) —i:rfu::[:2 iga')]

Fi-d=X<) = dx
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The probability of choosing digit 0 is

2
PX<-d)= L [ (x_ig dx
<—4) = -
R e
1 34
——erfc
)
Suppose next we transmit digit 1, obtaming
X=-4+N
The probability of choosing digit 0 is
_1 A
P(X<—d) = jeﬂc(m—u_)
'I'hepmbabilitynfchousingdigiths

Pil<X=d)= erfc EJ erfc
2.2

7]

The probability nfclmosing digit 3 is
PX>d) = jerfc( 5

Finally, suppose we transmit digit {, obtaining
_ 34

The probability fo choosing digit 1 1s
1 A 34
P(-A<X<0) = Erfc(zﬁﬂ) —Erfc(zﬁ :|

The probability nfchmsing digit 2is

Pil=X=4d) = [erfc[ erfc uj]
The probability of choosing digit 3 iz

_1 54
PIX>4) = ierfc(z 7

Since all 4 digits are equally probable, with a probability of cccurence equal to 1/4, we find that the
average probability of error 1s
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3‘43] — erfc-'( —5"{3]
2.2 “2.
A

Problem 8.22
The average probabality of error 1s (from the solution to Problem 7.23)

P, = (1 _JITJEIECI:EEU} 1

The received signal-to-noise ratio is

2
(SNR)g = ‘i—“'j;”

12

That is,
2(SNE
4 _ ’i_j ' )
o M -1
Substituting Eq. (2) in (1), we get

3(SNE)
PE = (l—jlt;lerfc TF“
MM -1
With P, = 109 we may thus write
107 = [1 —;—d}erfc(uj 3)

where
:.rz _ 3(SNR)g

WM 1)
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For a specified value of M, we may solve Eq. (3) for the corresponding value of u. We may thus construct
the followmg table:

M a
2 3.37
4 342
2 345
16 346

We thus find that to a first degree of approximation, the mimimum value of received signal-to-noise ratio
required for P, = 105 is given by
3(SNR ,
2O R min g 4592
M -1)

That is, (SNR)g_ = 7804 1)
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Problem 8.23

() The chanmel output is
(1) = aps(t—iy) + a5t —ity)

Taking the Fourer transform of both sides:
Xif) = [a)exp(—2nfiy, )+ ayexp—2(nfig;)15(f)
The transfer fimetion of the channel] 15
= &)
H(f) )

= ayexp(~2nfty) )+ ayexp(27fy,)

Charme]l Equalizer »
ﬂ m

Ideally, the equalizer should be designed so that
H(DH,() = Koexp(2nfty)

where Ej 15 a constant gain and f; is the transmission delay. The transfer fimetion of the equalizer is
H(fy = wy+wexp(~2nfT) + wyexp(j4nfT)

()

W ) Wo )
= Wy 1 +W—HP(_.FETFm+“—,EKP(—J4“m 1
1] ]
Therefore
Eyexp(—2=fiy)
Hif) = ———a——
e )]
Eexp(—2xfi,)

@ exp(—j2ufig; )+ a,exp( 2nfig;)
_ (Kufﬂlj“]’ [_fg'“ﬂfu_ tg ]

a
1+ éexp[—ﬂﬂ:ﬁ Tz — fpp )]

Since g, =< a;, we may approximate H(f) as follows

K [, a
Hfy = ﬂ—fEKP[—.fhﬂ'{} ~fg)]4 1 ‘;j“l:’[_fl“ﬂrﬂ? ~tor)]

4

r I-fan,i

[ (92 . |
[+ 'UT_J exp [4mfltgy — fgp)] | @
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Comparing Eqs. (1) and (2), we deduce that

Tty —ty

Choosing Ky = a;, we find that the tap weights of the equalizer are as follows
wy =1
Iy

W, = ——
1
)

7
=
a4
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Problem 8.24

The Fourier transform of the tapped-delay-line equalizer output is defined by
Youl) = H{ X (N (1)

where Hif} is the equalizer’s transfer function and X (f) is the Fourer transform of the input signal. The
mput signal consists of a uniform sequence of samples, denoted by {x(nT)}. We may therefore write (see
Eq. (6.2):

50 3 @

where T is the sampling period and s(f) is the signal from which the sequence of samples is derived. For
perfect equalization, we require that

Y0 =1 forallf
From Egs. (1) and (2) we therefore find that
T

Hfy = ——— )
SX(f~k/T)

Let the impulse response (sequence) of the equalizer be denoted by {w,}. Assuming an mfinite mmber
of taps, we have

Hif) = Y w,exp(f2nfT)

R=-o
We now immediately see that Hif) is in the form of a complex Fourner series with real coefficients defined
by the tap weights of the equalizer. The tap-weights are themselves defined by

1/2T

Wy = 1 H(esp(=2nfT) , n=0,+, 42,

J-—lfz
The transfer function Hif) is itzelf defined in terms of the input signal by Eq. (3). Accordingly, a tapped-
delay-line equalizer of mfinite length can approximate any fonction in the frequency interval

(-172T, 1/2T).

Problem 8.25
Problem 8.26
Problem 8.29
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Chapter 9

Problem 9.1
The three waveforms are shown below for the sequence 0011011001. (b) is ASK, (c) is

PSK; and (d) is FSK.
Problem 9.2

The bandpass signal is given by
s(t) = g(t)cos (27 f.t)
The corresponding amplitude spectrum, using the multiplication theorem for Fourier
transforms, is given by
|S(f)|=G(f)*[§(f - f)+o(f+ fc)]
=G(f-f)+G(f+f1)

For a triangular spectrum G(f), the corresponding sketch is shown below.

Problem 9.3

To be done
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Problem 9.4

(a) ASK with coherent reception

x(f) j_ﬂ i@ I Diecision ———» M
o device »

=0
Denoting the presence of symbel 1 or symbel O by hypothesis H; or Hy, respectively, we may write
Hy: xit) = s(f)+w(t)
Hy: x(f) = wit)

where s5(f) = 4 _cos(2nft) ,withd_ = f2E, T, Therefore,

Ty
1= ju T(Es(EHdt
If I = E2, the recerver decides in faver of symbel 1. If I = Eg/2, it decides in favor of symbol 0.

The conditional probability density functions of the random variable L. whose value is denoted by 1
are defimed by

2
1 1
_,I':: D(1|D} = exp[ J
I JNGEs NE
2
1 (1-Ep)
=P TNE
JNE; Lt
The average probability of error 1s therefore,
m E,2
Fe=F, .[E*ﬂ-&m(”“:'!"'“?l .[_m St hdl

fL|1“|U =

1.= 1 i 1 Ehfz (I E
== —exp[ J _[ dl

1 !'m mp[_ijdl
m E,/2 NpE
= —Hﬁ: i r‘Eb./NDJ
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()

ASEK with noncoherent reception

) Filter — ¥ i - ]
o 1(f) =T, — I,

In this case the signal s(f) 15 defined by
S(t) = A_cos(2nf i+ 8)

whered, = f2(E, Ty}, and
| L o<e<ae

falB)y =4 In
:!_ 0, otherwise

For the case when symbol 0 is transmitted, that 15, under hypothesis Hy, we find that the random
variable L, at the input of the decision device, is Rayleigh-distibuted:

i 2
_4a [ u

For the case when symbol 1 is transmitted, that 15, under hypothesis Hy, we find that the random
variable L 1s Rician-distributed:
4l [ r +A§1§,AJI [zuc]

St = exp -
Z|1 NI, T\ N T,7Z )N,

whera I{}H(.»:Il: XNGJ 1z the modified Bessel fimction of the first kind of zero order.

Before we can obtain a solution for the emror performance of the receiver, we have to determine a
value for the threshold. Smce symbols 1 and 0 occur with equal probability, the minimum probability
of error criterion yields:

m{—ﬁirﬂf _rzur] ES m
M)A M) g

For large values of E/Np, we may approximate I,(2L4_/Ny) as follows:
214 exp(2L4_/Ny)

"
I [_GJ R
oL Ny find /N,

Using this approximation, we may rewrite Eq. (1) as follows:

EKP[ArM—AcTﬁ]] Hy f=ld,
1N, - ,‘ N,
0 H, (]
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Taking the logarithm of both sides of this relation, we get
H, c
Meglecting the second term on the right hand side of this relation, and using the fact that

£, - AflTﬁ

We may write

jHl 1 Fe/Tb
= - 2
H, 1§ 2

AT
The threshold %— 52 ? i at the point corresponding to the crossover between the two probability

density functions, as illustrated below.

SinF 10}

Sy [y

Fom Pl

N3 3
R '\\.'\\. '\\.'\\. bl I
Eply

2

T

The average probability of emror is therefore
Fe = poPro+PiPo

where
B, Ty 22
Py =] v JrjoU|0)dl
o
J:E_a_ﬂﬁ N.T Eﬂp[ dl

) [_m[_ﬁ]ﬁ?m?ﬁ
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E
_ B
- ==l o)
T, /202
P = [ fpaina
_ rﬁgryzﬁ 41 IE+.4§ B I ELdrrﬂ
o ”njbmp (NI /2 [0 Ny

B FE/ T, 242 4] [IE +A§I§,f exp{ZL{ch:_]ﬂ
0

- NoTp P NoTp/Z ) SN,
_ BTy JT Fm[_ﬂ—.icrbﬂjjﬂ o
s AT, JxN T, N,T,/2

The mtegrand in Eq. (2) is the prodoct of ﬁlﬂ[cfﬁ and the probability density fimction of a Gaussian
random variable of mean 4 752 and vanance NpTp'4. For high values of E /N, the standard deviation
Irﬁﬂ,l"b:’rl 1z mmch less than the threshold Fjiffﬁfl.ﬁ 15 quite small, that is, Fjy; = 0_ Then, we may
approximate the average probability of error as

P! :Puplﬂ
_1 E,
7P\ TaN,

where it is assumed that symbols 0 and 1 occur with equal probability.
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Problem 9.5
The transmitted binary PSK signal is defined by

J'E_aﬁr}, 0<t<T,,  symbol 1
T

~JEz#(t),  DLi<T,  symbol O
where the basis function $(f) is defined by
i) = Ecos{lif‘ﬂ
B
et} = Ecus{zwfrl"* )
= F[m(zz_&r}cusw— sm{ 2af, fsing]
B
where @ it the phase error. The correlator output is given by

Tb-
y = [ D@Dt
where
x(f) = 500+ w(f), k=12

Assurming that f 15 an mteger nmltiple of 1/, and recogmizmg that sm(2wf 1) is orthogemal to cos(2nf )
over the mterval 0 < { = Ty, we get

¥y = iJE:msq:+W
when the plus sign commesponds to symbol 1 and the minns sign comesponds to symbel 0, and Fis a zeto-

mean Ganszian variable of vanance N2 Accordingly, the average probability of emor of the binary PSK
system with phase error @ is given by

_1 F&m“
Pﬂ—ieﬂ —Nu]
When @ = 0, this formula redoces to that for the standard PSK system equipped with perfect phase
recovery. At the other extreme, when @ = 1007, P_ attains its werst valoe of mmty:
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Problem 9.6
{(a) The signal-space diagram of the scheme described in this problem is two-dimensional, as shown by

((zine)

p Ak .I"%(l-ﬂ
s In-phase

D .
4 ,'_% (1-.?} 4 {cosme)

This signal-space diagram differs from that of the conventional PSK signaling scheme in that it is
two-dimensional, with a new signal point on the quadrature axis at A _k T,./2 If k 15 reduced to
zero, the above diagram reduces to the same form as that shown m Fig. 8.14.

ul

(&)

(1) + ] T

cos(Infx) n
The signal at the decision device mput is
A T
I = J_rTf.h —K'T,+ Iﬁbw(f]custi wf, t)dt (1)

Therefore, following a procedure similar to that used for evaluating the average probability of error

for a conventional PSK system we find that for the system dfefined by Eq_ (1) the average probabihity
of error 1s

_1 ]
P, = terie[ fE,(1-#)/N,)

where E,, = 2477,

**The problem here is solved as “erfc” here and in the old edition, but listed in the
textbook question as “Q(x)”.
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(c) For the case when P, = 107* and % = 0.1, we get

107 = %erﬁ:(:.rj

et = 09
e

Using the approximation
2
-}
erfo(u) = Sxpi—u )
I

u
we obtain

exp(—uzj—iﬁ kS 10_451 =0
The solution to this equation 1s u = 2.64. The comresponding value of E5/Ng is

Ey _264)

2=
N, 09

Expressed in decibels, this value comresponds to 8.9 dB.
(d) For a conventional PSK system we have

1
P, = serfe( fE,/Ny)
In this case, we find that

E, 2
X" (2.64)° = 6.92
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Problem 9.7

The bit duration 15
_ 1 _
Ty = ———— = 04ps
23= 10" Hz
The signal energy per bit is
1,2
E, = 3 1p

= %(111‘“;:0.4: 107° = 2% 107" joules

(a) Coberent Binary FSE
The average probability of ermor 1s

_1
P, = zerfe( JE,7IN;)

- 1mfc{,.f2 < 10774 107)

2
_1
= Eﬂfctﬁ}
Using the approximation
2
erfo(u) = EXI:E; )
we obtain the resnlt
_ 1 exp(-5) _ _3
= _ = 085=10
@ 2 Jj_‘n:
(b) MSK
P, = erfti r-'Ethuj
= erfo(of10)
- exp(-10)
10=
=081 %107
(c) Noncoherent Binary FSK
I E,
S
= lemp(s)
i“P
=337x107
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Problem 9.8

(a) The comrelation coefficient of the signals sy(f) and s;(f) 12
T
]';sn{f}sl{ﬂdt

P= [I:bsi{r]dt]]H[]'?:i{i‘}df]lﬂ
) 21 cos[2n(1,+ Saf)]eos[2a(7; - Jaf)]
[%J: Tb]lﬂ[%.dzfa:rﬂ

T
- % ]';[m(zmﬁ) + cos (4mf, 1)]dt
]

_ 1 [smQmafT,) sm(4nfT,)
T, af If;

Since f == Af, then we may ignore the second term in Eq. (1), obtaining

sin(2mAfT,)
*—Tar - sinc(24fT,)

(b) The dependence of p on Afis as shown in Fig_ 1.

Correlation 1.0
coefficient
P
14 07
72T, 2T b
\ v g
1 ! 1 |7 e o
T : ™ 4T
"""""" e
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sgli} and 57(f) are orthogonal when p = 0. Therefore, the mimimmm valee of Af for which they are
orthogomal 15 12T
(c) The average probability of error i given by

1
Eb = jerfc{ ﬁi(l—p}fﬁ.ﬂn}
The most negative value of p is 0216, occuning at Af= 0.7/T;. The minimum valoe of P, is therefore
_1
Pe,mh = ii:rft:( rﬁ_ﬂ]ﬂE&/Nn}

(d) For a coberent binary PSK system, the average probability of ermor is
P, = serie( JE7Np)

Therefore, the E,/N, of this coherent binary FSK system mmst be mereased by the facter 1/0.608 =
1.645 (or 2.16 dB) 20 as to realize the same average probability of emor as a coherent binary PSK
system.

Problem 9.9

(a) Since the two oscillators used to represent symbels 1 and 0 are independent, we may view the

resulting binary FSK wave as the sum of two cn-off keying ((00K) signals. One 00K signal operates
with the oscillator of frequency f7. The second 00K sipnal operates with the oscillator of f5.

The power spectral density of a random binary wave X7(f), In which symbol 1 12 represented by A
volts and symbol 0 by zero volts, it is given by (see Problem 4.10)
24T
Sy, () = ‘{Tﬁ{ﬂ"'TEm“z{fTa]‘
where Ty iz the bit duration. When this binary wave is multiphed by a sinuscidal wave of wot
amplitude and frequency f; + Af72, we get the first 00K signal with
A= f2E/Ty

The power spectral density of this 00K signal equals
500 = % Sxif_ﬁ_%!)JrSI:[ﬁ'ﬂJr%q]

The power spectral density of the random binary wave X,(f) = X (), i which symbol 1 is
represented by zero volts and symbol 0 by A volts, 12 given by
S5 = 55,00

When X5(f) is nmltiplied by the second sinuscidal wave of unit amplitnde and frequency f - Af2, we
get the second 00K signal whose power spectral density equals
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530 el el ]

The power spectral density of the FSK signal equals:
Sesel) = 510+ 500

- ;E[a(f_ﬂ_g)+a[;+ﬂ+agj+a(f_ﬁ+%q+a[f+ﬁ_%zj]
it mnese ) |
+ sm.:z[fa{ f-fi+ %!]] + mcz[Tﬁ{ FHfi- %fﬂ

This result shows that the power spectrum of this binary FSK wave contains delta fimetions at
f=fEAF2 .

(b) At high values of x. the function sine(x) falls off as 1/x. Hence, at high frequencies, Spop falls off as
U

Problem 9.10

Problem 9.11
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(a) For coherent binary PSE,
_1 Ey
Pg - EE&.[FEJ -

For P, to equal 107, fE, 7N, = 2.64_ This yields E5/Ny = 7.0. Hence, Ej = 3.5 x 107%. The
required average carmier power is 0.35 m

() For DPSE,
_1 E,
SE]

For P, to equal 10 we have E,/N; = 8.5. Hence Ep = 4.3 x 10''%. The required average power is
0.43 mW¥.
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Problem 9.12

(a) For a coherent PSK system, the average probability of emor is

1
P, = yerfel B/ Np),1

“P[_(Ebeg }] |
J7 f'(EbKNujl

For a DPSK system, we have
1
Pg = EEKP[_{EE)FLE}JEJ

=1
73

Let

E E
Then, we may use Egs. (1) and (2) to obtain
S E,/Np), = expé
We are piven that

Hence,
5 = ln[.f72x]

= 136

Therefore,
EII
i
1

EE
10log D[FG]
2

10log,,7.2 = 8.5dB

10log 1472 + 1.56)

94248

The separation between the two (Ej/Ny) ratios is therefore 9.42 - 8 57 =0.85 dB.
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(b) For a coberent PSK system, we have

1

P = ia'fl::[ Eﬁ/'Nu}l]

21 E"P[—(Ebeglll

2 JEJEEEf Nohy

For a QPSK system we have

P, = erfc| EEKNu]z]
exp[(E,/ NQJE]

= fEEixNujz

Here agai, let

Then we may use Eqs. (3) and (4) to obtain
1_ exp(—8)

2 +8/(Eg/Ny),
Taking logarithms of both sides:
~In2 = -5-05W[1+8/(E;/Np),]
&
2—5-05—+—
(E5/Ng),y
Solving for 3:
om
]_ + U_SH"(-EbeD:Il
= (.65

&=

Therefore,
[Ep)
ll]lugm_kauJ
1

E
lﬂlngw[ .?Tr:] = 10log (72 +65)
g 2

20348

10log,((72) = 8.57dB

The separation between the two (E,/Np) ratios 13 8.95 - 8.57=038 dB.

Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.



() For a coherent binary FSK system, we have
P, = el fE o))

)

For a noncoherent binary FSK system, we have
_1 (1
el 43)

Hence,

R - =03

We are given that (Ey/Np) = 13.5. Therefore,
_ 1357

5= l“( 7 )
= 3.055

We thus find that

E
1mugm[ﬁ] = 10log,,(13.5)
1

= 113dB

E
mlugm[ﬁ] 10log (135 + 3.055)
2

12.2dB

Hence, the separation between the two (E;Ng) raties 1 12.1 - 11.3=09 dB.
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(d) For a coherent binary FSK system, we have
_1
P, = iErﬁ:[ EEXENU)IJ

[ 1{Ep) )

exp| —5| 1+ J

B L 2N,
I fE, 71Ny,

For a MSK system, we have

_1
P, = detel JTE 707

[ rE[Jx
I 1 Ea
eXp| —=|

_LAN J

ﬁﬁEaﬂNng

Hence, using Eqs. (9) and (10), we have
1 5 1.1

@

(10

Noting that
&

— =1

(Ep/Np),

We may approximate Eg. (11) to obtain

1 & 1
-1+ ===
In2 1[1 {EﬁxNﬁjl] 25 12

Solving for &, we obtain

1ln2
1

EFo),

_ 2% 0693
1
35

E:
1+

1+

=129

We thus find that

EII
lﬂlug] D[Ra]
1
2

Therefore, the separation between the two (Ep/Np) ratios is 11.7-11.3=04 dB.

10log 5(13.5) = 10x1.13 = 113dB

10log 15(13.5 + 1.29) = 11.7dB
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Problem 9.13

Problem 9.14

(a)

b 1 100 1 00010
i 11101 10 1
d 1 1 1 0 1 1 0 10 1
Transmitted

phase 0 0 O w 0 O = 0 = = 0

The waveform of the DPSK signal 15 thus as follows:

DPSE
wane
| Ty \

() Let x; = output of the integrator in the in-phase channel
xg = output of the mtegrator in the quadrature channel
xf = one-bit delayed version of x5
xg = one-bit delayed version of x5
Iy = in-phase channel output

= xpy
lg = quadrature channel output
= gt
y = htl
Transmitted
phase
(radhans) 0 0 0 « 0 0 = 0 = =n O
Polanity of x; + + + - + + - + - - +
Polanity of x; + + + - + + - + - -
Polanty of I + + - -+ - - - ¥ -
Polantyofxp - - - + - - + - + + -
Pﬂ] "rufxgr _ _ - + - - + - + +
Polarity of I + + - -+ - - - ¥ -
Polanty of y + + - -+ - - - % -
Reconstructed
data stream 110 0 1 0 0 01 O
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Problem 9.15

(2) The QPSK wave can be expressed as
s(f) = my () ms{!nfcfj + mzit}siu{zmj:_i‘j

Dividing the binary wave mto dibits and fimding m (f) and m,(f) for each dibit-

()

dibit 11
my (1) JET
mf) JEIT
mry ()
T
T
p— 1Ty —m

=]

00
_JET
_JET

10
WoEST
-JE/T

.,

=
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Problem 9.16
Let P,;=average probability of symbel error into the in-phase channe]
Pyp= average probability of symbol error info the quadrature channel

Since the mdividnal outputs of the in-phase and quadrature chammels are statistically independent, the
overall average probability of correct reception 13

P ={(1-Pl —P'Q]
I_Pef_Pﬂﬂ+PerPiQ

The owverall average probability of error is therefore

P'! = I_Pc
= Pef+PeQ_PePPtQ

Problem 9.17

For coherent MSEK, the probability of emer is

P, = erfci rl'EﬁfNuj.

While for noncoherent MSKE, (i.e., noncoherent binary FSK)
I E,
P = iexp[ KFEJ .

E
To maintain P, = 107 for coherent MSE., Fﬁ- = 9.8 . To maintain the same probability of symbol emmor
0
for noncoherent MSKE,

E
;rTrﬁ = 21.6, which is an increase of 3.4 dB.
i}
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Problem 9.18

(@)
| | | | |
|
]
| !
"’r--_-"\""-_ \’.‘_h\".-_--‘-\f'- ﬁ\’.-__“‘\.
\-..__..-'"\' ____.-"\ - ..-'\'____ -l"lx"--._..-"“l'|"'~-~-._.-""I
f.—-—.__‘f il -"‘f"-_-"\f'.-_—‘--\f-‘_-"\
"‘"_‘__'___I"" ______,A .fk'-l_'-l-;‘_‘--_.-a'k-‘_r--l’
(L)
Problem 9.19

The important point to note here, in comparison to the results plotted in Fig. 1 is that the emor
performance of the coherent (QPSK iz slightly depraded with respect to that of coberent PSK and coherent
MSK_ Otherwize, the observations made in Section 9.5 still hold here.
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Problem 9.20

Let

x(t) = d_cos(2rf t+8&)
= 4 _cos(2nf t)cos8 — A sin(2nf f)sing

The output of the square-law envelope detector in Fig. PE.2, sampled at time #= T 1s given by
2 T 2
wI) = [jzx{:} cos(2nf, r)df] + [Iu x{r)smczn_r;:)dr]
This may be written as
r
¥Iy = Iﬂ jix{rl Wity )[cosi2nf ) yeos(2nf ty) + s 2nf, )y sin 2 nf, 6) 1dty dty (1)

Put t; =t, and ¢, =+ 1. This transformation is illustrated below:

Ilz T

Then, we may rewrnte Eq_ (1) as follows

)
yT = l;ji x(f)xi(t + )[cos(Ixnf fhcos(2nf i+ Inf 1) ]
T+ sj.u{in_f;r}siuﬂmj;f+ 2m_i|';'rj]d.tﬂ"r 2)
However,

m{szcﬂ cus{EI_f;.H El_f;:‘l:] + zin(2 m_il';fj s.in(.'.lﬂ_f;f+ Eﬂ_f;‘l:] = cos(2 mj';'r)
Therefore, we may simplify Eq. (2) as follows
T It
¥y = ]‘ ] x(fx(t+ ticos(2uf t)drdt
0=—

T T
=2[Dj: “x(fpx(t+ Tycos2nf,dedt . 0=t=T @)

Define

Ry = || x(ox(e+ 0t 0zc=T
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Then, we may rewtite Eq. (3) in terms of Ry{7) as follows

¥(D) = 2 Re(r)cos 2nfv)d
= 254 )

where

.
S¢f = .Ig Ryit)cos(2nf tidr

Equation (4) is the desired result.

Problem 9.21
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Problem 9.22

The average power for any modunlation scheme 13

Ey

P—I—,b.

This can be demonstrated for the three types given by integrating their power spectral densities from —e

to oo,

P= Ilﬂ(ﬂﬁ}“

= 37 1Sa-fo+ Syt fondf

= é_r lsﬂm@p

The baseband power speciral densities for each of the modulation techniques are:

PSE QPSK MSK
5l 2E,sinc’(fT) 4E,sinc’ (2fT) 315;-[*:05(1@? a]']z
= LigfT—1

. = . 2 Eg.
SmﬁEj a sinc (ax)dc = 1,P=T
- b

p- 16Ey = [cos(l’xﬁﬁ}}
16 T, -1
_ 16Ey = cuszthx}dx
" T, 16x -1

z
T -

BE, = 1+cus{4mxj£x
2 —on 372 17
T, o

5 l6x I:x 16}

15 easily derived for PSK and QPSK. For MSK we have
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_ E; I"’ cosl + cos(dmx)

1657, = [xz_ll_ﬁjz

From mtegral tables

cos(ax)de _

T .
. (52 5 —3[sm(ab)—abm{ab}]

—_tz) 4b
For a=0, the integral 13 0.

Fora- 4=n, b=1/4, we have

P= Ea - cns(ux}ﬁ_Eb
T lelT w2 22 T,
16m 'Tb (b —x") b

For the three schemes, the values of 5(fy) are as follows:

PSK QPSE MSE
(o) E, E, 8E,
7 s
Hence, the noise equivalent bandwidth for each techmique is as follows:
PSK QPSK MSK
Bandwidth ]’l'ﬁ ﬁ %

Problem 9.23
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Chapter 10 Problems

Problem 10.1

Amount of information gamed by the occurrence of an event of probability p is

I=lop G}hits
2

T varies with p as shown below:

0

Problem 10.2

Let the event 5§ =5, denote the emission of symbel sz by the source. Hence,

Iisp) = lugzgjbits

5g 5g 51 52 53
Pi 04 03 02 01
Xis) bits 1322 1.737 2322 332
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Problem 10.3

Entropy of the source is

H(S) = Pulﬂgz(‘%]] -I-Fl],ugz[Pl]) +pglogz[Pl?) +P3logz(‘al!]

_1 1 1 1

= zlog,(3) + log (6) + Jlog (4) + 7log,(4)
05284+0431+05+05

1.950 baiz

Problem 10.4
Let X denote the number showing on a single roll of a dice. With a dice having six faces, we note that py-
18 1/6. Hence, the entropy of X'is

HUD = pylog,( -

1 .
= Zlog,(6) = 0.431 bits
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Problem 10.5

The entropy of the quanfizer cutput is
4

H= _EP{XI-}I-“EQP(X}}
=l

where X; denotes a representation level of the quantizer Since the quantizer mput iz Ganssian with zero
mean, and a Gamssian density 1% symmetric about its mean, we find that

P(-'Y[} = P{X.ﬂ
P':-I]) = P(-Y;:l

The representation level Xj = 1.5 commesponds to a quantizer mput +1 £ ¥ < oo Hence,

PLx;) = _IT ﬁ@(_%#

_11 4
) iﬁ{jﬂ
= 0.1611
The representation level X3 = 0.5 commesponds to the gquantizer imput 0 = ¥ = 1. Hence,

1 oy
Pﬂp==LjﬁmmE§}&
14
_EH(jﬂ
= (L3380

Accordingly, the entropy of the quantizer output 13

= _ (1
H= E[O.Ivﬁlllugzk'll w1+ u_szsglugzm_mg}]
= 1.91 bits
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Problem 10.6

(a) For a discrete memoryless source:
Pig;) = P(sj]}P{si-lj . .P(s,-"}

Noting that M = E”, we may therefore write

M-1 M-1
5 P(cz.} =% P(sile(sjz}...P(silj
=0

=0
E-1 K-1 £-1

Y ¥ ¥ Pl PG5 Pis; )

i=0iy=0 i=D

E-l E-l K-l

=¥ Pis, ] ¥ FPis; j -y P{:!-.j
=0 =0 i=0

= 1

(b) For k=1.2,.._n, we have
M-1 X M-1

¥ P(fr,-:llngz[ Plj = ¥ Pls; )Ps; )P {Es_Jlﬂgz(pl.J
g =0 ) !

=0

For k=1, say. we may thus wrte

M-l 1 K-l i 1 K-l K-1
¥ P(ajjlugz[p__J =5 P(sf]}lugzﬁt] ¥ P(si:}... 5 P(silj
i=0 i i=0 W j=p =0
E-1
= EP{Efl}lugﬁ[pl]
=0 i1
= H(S)
Clearly, thiz result holds not only for k=1, butalso k=2__n_
A-1
HSY=vP
(c) H(S" E m}lugP{ o
H 1 1
= Pio log-
z B2 PG, )P
M1 1
Z P{u'- )hEIP( +P(Ej}luEEP{I—j1:'
M1 .
+ ...+ Eu _F‘l[n:r!-]nluggP'{Til

Using the result of part (b), we thus get
HiS") = HS+H(S+ __ +H(S)
= nH(5)
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Problem 10.7
a)

A prefix code is defined as a code in which no code word is the prefix of any other code word By
mspection, we see therefore that codes I and IV are prefix codes, whereas codes IT and ITT are not.

To draw the decision tree for a prefix code, we simply begin from some starting node, and extend
branches forward until each symbol of the code 15 represented. We thus have:

Code I

b)To be done
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Problem 10.8

We may construct two different Huffrnan codes by choosing to place a combined symbol as low or as
high as possible when its probability is equal to that of another symbol.

We begin with the Huffinan code generated by placing a combined symbel as low as possible:

50 055 —% 035 — 055 —» u_jjj
1

51 015 —» 015 u_suj_/um
5, 015 —» 0152 0.15 —

55 010 0 0.15 =
54 U.DS }/'

The source code 15 therefore

3 0

31 11

5y 100

53 1010

5 1011

The average code-word length is therefore

4
I=75rh

=
0.55(1)+0.15(2) + 0.15¢3) + 0.1(4) + 0.05(4)
=19

The variance of I is

F

o = Epk{!'k—l}z
=0

0.55(=0.9) +0.15(0.1)% + 0.15(0.55)( 1.1 + 0.1¢2.13% + 0.05¢2.17°
=129

Next placing a combined symbol as high as possible, we obtain the second Huffman code:

s 055 —» 045 —p 045 —p 055 —
5, 015w —s 015 030 —> 045 —
53 015 —w 015 2 0.15 II_/

55 010 =2 0.15 -

se 005 L
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Cormespondimgly, the Huffman code 1=

g 0

5 100

5 101

53 110

5 111

The average code-word length is

I

0.55(1)° + (015 +0.15+ 0.1+ 0.05)(3)
=10

The variance of I is

a2 = 0.55(-0.9)% +0.15+ 0.15+0.1 +0.05(1.1)°

0.99

The two Huffman codes described herein have the same average code-word length but different
variances.
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Problem 10.9

1]
s 025 —w 025 — % 025 0.25 0.5 0.5
\\""‘“-..‘ ~ :I
55 025 —p 0_251\ 0.25 0.25 02— ™05
5 0125 0.125 "'HH 0.25 0.25 —2 T g.25—L
55 0125 0_115.\_“"‘* 0.125 —2 025 —
DTy 1
54 0125 n_uﬁj 0.125
55 0.0625 0.125 —
s 0.0625 —
The Huffman code is therefore
50 1 U
.51 1 1
5 001
5 010
s 011
55 0000
s 0001
The average code-word length 1s
<]
I=3rs
=i
= 0.25(2)(2) + 0.125(3)(3) + 0.0625(4)(2)
= 2625

The entropy of the source 1s

1]

i1

H(5) = EP,‘-I':’EZ'.&T_
=D

= n_zjcl}lugz[%J ’ U'um}mgz{ﬁ
1
+ u_uﬂi(iﬂﬂgﬂ(m)
= 2625

The efficiency of the code is therefore
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_ Hi5 _ 2625 _

I 2.625 1

We could have shown that the efficiency of the code 1s 100%: by mspection smce

3 Pilog2(1/pg)
- =0
n= 5

T Pily

where [ = log.(1/pg).
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Proble

(@ 5
5]

iz

m 10.10

07 — & mi}l
0.15 j’_/,u_s L
015 —

The Huffman code is therefore

ig
a1

]

0
10
11

The average code-word length 1=

L

(b) For

0.7¢1)+ 0.15(2) + 0.12¢2)
13

the extended source we have

5

ymbol sfp | Sof1 |Sot2 | ;if0 |0 |51

3132

i

dadz

Probabality | 0.49 | 0.105 | 0.105 | 0.105 | 0.105 | 0.0223

0.0225

0.0223

0.0225

Applyimg the Huffman algonthm to the extended source, we obtam the following source code:

Jpdo
Jpfl
Spf2
140
J2dp
191
i192
i
5253

The

1

001
010
011
0000
000100
000101
000110
000111

comesponding value of the average code-word length is

T, = 0.49(1)+0.105(3)(3)+ 0.105(4) + 0.0225{4)(4)
= 2395 bits/extended symbol

b 5

(c) The

= 1.1973 bits/symbol

orginal source has entropy
1

H(S) = 0.7log 1) +0.15(2)log 2[%}

= 118

According to Eq. (10.28),

HS) < < Bes) + L
sxs n

This 15 a condition which the extended code satisfies.
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Problem 10.11

00 .:15 0
11 % 0 o
! 0 111 1

0.1 7 — 1 1
1.0 -& —1
Computer code Probabality Huffman code

00 1 0

b

11 % 10

01 1} 110

10 . 111

The number of bits used for the instrutions based on the computer code, in a probabilistic sense, is equal
to

2[:%+%+%+%] = 2 bits

On the other hand, the number of bits used for instrductions based on the Huffman code, i3 equal to

lxl+2xl+3xl+331 =§

2 4 2 8
The percentage reduction in the number of bits used for mstruction, realized by adopting the Huffman
code, 15 therefore

1mx12ﬁ = 125 percent
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Problem 10.12

Ll step
Subsequences stored:
Data to be parsed:

Subsequences stored:
Data to be parsed:

Subsequences stored:
Data to be parsed:

Subsequences stored:
Data to be parsed:

Subsequences stored:
Data to be parsed:

Subsequences stored:
Data to be parsed:

Subsequences stored:
Data to be parsed:

Subsequences stored:
Data to be parsed:

0
11101001100010110100__.

0,1,11
101001100010110100..

0,1, 11,10
1001100010110100 ..

0,1, 11, 10, 100
1100010110100

0,1, 11, 10, 100, 110
0010110100

0,1, 11, 10, 100, 110, 00
10110100

0,1, 11, 10, 100, 110, 00, 101
10100...

0,1, 11, 10, 100, 110, 00, 101, 1010
0.

MNow that we have done as far as we can go with data parsing for the given sequence, we write

Mumerical
positions

23 4 5 6 7 8 9

.11, 10, 100, 110, 00, 101, 1010
2, 2, 41, 31, 11, 4 8l
0101, 0100, 0100, 0110, 0010, 1001, 10000
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Problem 10.13

Plx0) =P =

Pyg) = (1-plp(xg) +p pix))

1

I

Py} =p pixp+(1-pip(x))

= P®+{1—m®
1

2

Problem 10.14

plxg) = %
plxg) = i
i = (1-p)(3) +£(3)
_1.p
32
PO = p&) +(1 —P}G}
- 3.P
=173
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Problem 10.15

() When each symbol is repeated three times, we hawve

Messages  Linused signals Channel outputs
000 001 000
010 001
01 010
100 100
1M 101
110 110
111 111
We note the following:
1. The probability that no errors occur in the transmission of three 0s or three 1sis (1 - p)°.
2. The probability of just one emor occwring is 3p(1 - p)2.
3. The probability of two emrors ocouwming is 3p7(1 - p).
4. The probability of receiving all three bits in mmrispa.

With the decision-makmg based on a majority vote, it 1s clear that contributions 3 and 4 lead to the
probabality of error

P, = 3 (1-p)+p°

(k) When each symbol is transmitted five times, we have

Messages Unused signals Chamne] outputs

00000 00000
00001 00001
00010 00010
00011 00011
11110 11110

11111 11111

The probability of zero, ome, two, three, four, or five bit emors in tramsmussion 15 as follows,
respectively:

(a-py
5p(1 -py*
10p°(1 - p°
10°(1 - p)?
5p*(1 - p)

-

The last three contributions constitute the probability of emror
5 4 3 2
P =p +3p (1-p)+10p7(1-p)
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() For the general case of n = 2m + 1, we note that the decision-making process (based on a majority
vote) makes an error when m + 1 bits or more out of the n bits of a message are received in error. The
probability of i message bits being received m emor is

ny_i n—i
(Fr'a-p
Hence, the probability of error is (n general)
n

Po= 3 (Pet-p"

i=m+1
The results derived in parts (a) and (b) for m =1 and m = 2 are special cases of this general formmla.
Problem 10.16
(a) Channe] bandwidth B =34 kHz
Eeceived signal-to-noise ratio SNE.= 10° =30 dB
Hence, the channel capacity is
C = Blog,(l+5NE)

3.4 x 10Plog(1 + 107)
33.9x 10° bits/second

(b) 4800 =34 x 10°log,(1 + SNER)
Solving for the unknown SNE, we get
SNR=166=22dB

Problem 10.17

With 10 distinct brightness levels with equal probability, the information in each level is log, 10 bits. With
each picture frame containing 3 x 10° elements, the information content of each picture frame 15 3 x
10¥log, 10 bits. Thus, a rate of information transmission of 30 frames per second comesponds to

30x 3 x 10°log,10 = 9 x 10°log, 10 bits/second
That is, the channel capacity is

C = 9x10°log,10 bits/second

From the information capacity theorem:

C = Blog,(1+SNR)

With a signal-to-noise ratio SNE. = 10° = 30 dB, the channel bandwidth is therafore
R p—

Iog,(1+3REK)

9 x 10°I0g,,10

Tog, 1001

3= 10°Hz

Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.



Problem 10.18

Message Sequence  Single-paritypcheck code
000 0000
001 0011
010 0101
011 0110
100 1001
101 1010
110 1100
111 1111

Problem 10.19
For the (4,1) repetition code, the panity check matnx is

1001
H=|p10:1
001:1

For a (7.4) Hamming code, we have

100
H=|p10
001

1011
1110
0111

For the Hamming code, the parity check matrix H is more structured than that for the repetition code.
Indeed, the matrx H for the Hammmg code meludes that for the repetition code as a snbmatnx
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Problem 10.20
The generator matrrx for the (7, 4) Hamming code 1s

11011000
G = 01150100
111:0010
1 1:0001
The parity-check matrix is
100:1011
H= 01031110
001:0111
Hence,
1011
i 1110
; |[toototgjort

HG =lp1o1110||1000
oo1o0111{0p100

0010
0001
0000
=loooaol mod-2
0000
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Problem 10.21
() Viewing the matrix

100
H=|p10
001

1011
1110
0111

as a generator matnx, we may define the code vector ¢ In terms of the message vector m as

c=mH

The message word length is
n-k=74=3

Hence, we may constroct the following table

Message word Code word Hamming weight
0oo DO0O0DD 0
o1 0010111 4
010 0101110 4
011 D111001 4
100 1001011 4
101 1011100 4
110 1100101 4
111 1110010 5

(b) The mimimum value of the Hamming weight defines the Hamming distance of the dual code as
i =4
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Problem 10.22
(a) For a (3,1) repetition code:

G=[111111]

1000:1
g=|0100:1
ﬂﬂlDEl
00011
1000
0100
I
H =lo010
0001
1111
The syndrome iz
s=eHT

where & i3 the error pattern For a single ermror, we thus have

Error pattern 5 oIme
00001 1111
00010 ool
00100 o010
01000 0100
10000 1000

(b) For two errors in the received word, we have

Emror pattern 5 0Ine
00011 1110
00101 1101
01001 1011
10001 0111
00110 on11
01010 o101
10010 1001
01100 0110
10100 1010
11000 1100

We note that the syndromes for all single-error and double-error patterns are distinet This s
minitively satisfying since a (3,1) repetition code 15 capable of comecting up to two errors in the
received vector

y=e+c
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Problem 10.23
The encoder is realized by inspection:

gW=(10.1)
g@=(1,1,0)
¥ =LY

For the Hamming code, the parity check matrix H is more structured than that for the repetition code.
Indeed, the matrix H for the Hamming code includes that for the repetition code as a submatrix.

Problem 10.24

= -

Flip-ficp ]'

Using this encoder, we may construct the following table by inspection:

Meszape 1 0 1 1 1 1
Output 11 10 11 01 01 01

Ongmal meszage
The code 13 m fact symstematic.

Problem 10.25
The generator polynomials are

gV = 1+ X+ X+ X
£ = 1+x+X°

The message polynomial is

mX) =1+ +r+x'+

Hence

2

e = gMaomx
= 1+X+X;+I4+X5+__.

P = Eﬁ}(ﬁ’)mm
SEES &5 oFt S N R

Hence

2

e =1,1,011,1, ..
e = 11,1100, .

The encoder output 1s therefore 11, 11, 01, 11, 10, 10.
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Problem 10.26

The encoder of Fig 10.25 [b) has three generator sequences for each of the two input paths; they are as
follows (from top to bottom)

g’ =an g =0 g =
‘” = g =an & =00
Hence
gl =1+x gPon =1 P - 1+x
gl =x o=1+x =0

The incoming message sequence 10111... enters the encoder two bits at a time; hence

m' =11
m =01

The message polynomials are therefore

myX) = 1+X+ .
ma(X) = X+ ...

Hence, the output pelynomials are

¢Mexy = {]jl')mltﬁ'ﬁg (Aamy (XD
={(1+Xul+X+ _+XX+ )
=1+..

P = g om0 + g om0
= (MA+X+ ) +A+DEE )
=1+X+

P = gm0 + g om0
= 1+ X+ ) +HOX+ )

=1+X+
The output sequences are commespondingly as follows:
¢® =10,
e =10, ..
@ =10, .

The encoder cutput 1s therefore (1,1,13, (0,0,0), .
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Problem 10.27
(a) Coding gain for binary symmetric channel is
G, = 1mugz[m"1“2]

10l0g 2.5
4 dB

(b) Coding gain for additive white Ganssian noise channel is

G, = 10l0g, (10 )
= 10log,3
-7d8

Problem 10.28

Let the code rate of turbo code be B. We can write

1 (1 1,
() = (1)< 5]
& [

R=p/g,tq,-p)
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Problem 10.29

Figure 1 is a reproduction of the 8-state RSC encoder of Figure 10.34 used as encoder 1 and encoder 2 in
the turbo encoder of Fig. 10.25 of the textbook. For an input sequence consisting of symbol 1 followed by
an infinite number of symbels 0, the outputs of the RSC encoders will contain an infinite mumber of ones
as shown in Table 1.

Fig. 1

b=a®cde
f=bEcodde

Initial conditions: ¢ =d =& =10 {empty}

=N =1 sl = =0= .

(=N =R — R — = =1

—_ D D = O e e s Ty

GGGGGGGG'—'Q%

Hl—hcﬂl—nﬂl—hl—hl—lbi
2

S et S e et et O ] ey

The output 15 1011101001110100111._.

Therefore, an all zero sequence with a single bit error (1) will cause an mfinite mumber of channel errors.

[MNote: The all zero mput sequence produces an all zero output sequence ]
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Problem 10.30

(a) 4d-state encoder
X » ¥ (zystematic bits)

o Panity check bits

o]

8-state encoder

. ;I (systematic bits)
Parity check bits
z
16-state encoder

= p ¥ (systematic bits)

Panty check bits
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(b) 4-state encoder

£(D) = [1 ﬂ}

1+D°

By definition, we have

(f‘{ﬂ} _1+D+D?
(L 1+D?

where B{I)) denotes the transform of the panity sequence {B;} and M(I)) denotes the transform of the
messape sequence {m;}. Hence,

(1+D%B(D) = (1+D+DHMD)

The parity-check equation is given by

(m;+m;  +m, o)+ (b +b;,) =0

where the addition 12 modulo-2.

Similarly for the 8-state encoder, we find that the parity-check equation is

m;+m;

tm g +b+b  +h ,tbh =10
For the 16-state encoder, the parity-check equation is

m;+m b +b  +b o +b b, =0
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