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Chapter 2 
 

2.1 (a) 
 

( ) cos(2 )       ,
2 2

1

c

c

T Tg t A f t t

f
T

π −⎡ ⎤= ∈ ⎢ ⎥⎣ ⎦

=
 

 
We can rewrite the half-cosine as: 

cos(2 ) rectc
tA f t
T

π ⎛ ⎞⋅ ⎜ ⎟
⎝ ⎠

 

Using the property of multiplication in the time-domain: 

[ ]
1 2( ) ( ) ( )

1 sin( )         ( ) ( )
2 c c

G f G f G f
fTf f f f AT

fT
πδ δ

π

= ∗

= − + + ∗
 

Writing out the convolution: 

[ ]sin( )( ) ( ( ) ( ( )
2

sin( ( ) ) sin( ( ) ) 1                  =  
2 2

cos( ) cos( )        1 12
2 2

c c

c c
c

c c

AT TG f f f f f d
T

f f T f f TA f
f f f f T

A fT fT

f f
T T

πλ δ λ δ λ λ
πλ

π π
π

π π
π

∞

−∞

⎛ ⎞= − + + − −⎜ ⎟
⎝ ⎠

⎛ ⎞+ −
= +⎜ ⎟+ −⎝ ⎠

⎛ ⎞
⎜ ⎟

= −⎜ ⎟
⎜ ⎟− +
⎝ ⎠

∫

 

 
(b)By using the time-shifting property: 

0 0 0( ) exp( 2 )         
2

cos( ) cos( )( ) exp( )1 12
2 2

Tg t t j ft t

A fT fTG f j fT
f f

T T

π

π π π
π

− − =

⎛ ⎞
⎜ ⎟

= − ⋅ −⎜ ⎟
⎜ ⎟− +
⎝ ⎠
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(c)The half-sine pulse is identical to the half-cosine pulse except for the centre frequency 
and time-shift. 
 

1
2cf Ta

=  

 
cos( ) cos( )( ) (cos( ) sin( ))

2

cos(2 ) cos(2 ) sin(2 ) sin(2 )        
4

exp( 2 ) exp( 2 )        
4

c c

c c c c

c c

A fTa fTaG f fTa j fTa
f f f f

A fTa fTa fTa fTaj j
f f f f f f f f

A j fTa j fTa
f f f f

π π π π
π

π π π π
π

π π
π

⎡ ⎤
= − ⋅ −⎢ ⎥− +⎣ ⎦

⎡ ⎤
= − + −⎢ ⎥− + − +⎣ ⎦

⎡ ⎤− −
= −⎢ ⎥− +⎣ ⎦

 

 
(d)  The spectrum is the same as for (b) except shifted backwards in time and multiplied 
by -1. 
 

cos( ) cos( )( ) exp( )1 12
2 2

exp( 2 ) exp( 2 )         1 14
2 2

A fT fTG f j fT
f f

T T

A j fT j fT

f f
T T

π π π
π

π π
π

⎛ ⎞
⎜ ⎟

= − ⋅⎜ ⎟
⎜ ⎟− +
⎝ ⎠
⎡ ⎤
⎢ ⎥

= −⎢ ⎥
⎢ ⎥− +
⎣ ⎦

 

 
(e) Because the Fourier transform is a linear operation, this is simply the summation of 
the results from (b) and (d) 

exp( 2 ) exp( 2 ) exp( 2 ) ( 2 )( ) 1 14
2 2

cos(2 ) cos(2 )         1 12
2 2

A j fT j fT j fT j fTG f
f f

T T

A fT fT

f f
T T

π π π π
π

π π
π

⎡ ⎤
⎢ ⎥+ − + −

= −⎢ ⎥
⎢ ⎥− +
⎣ ⎦
⎡ ⎤
⎢ ⎥

= −⎢ ⎥
⎢ ⎥− +
⎣ ⎦
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2.2 
 

( )( )

( )

( ) exp( )sin(2 )u( )
      exp( )u( ) sin(2 )

1 1( ) ( ) ( )
1 2 2

1 1 1           
2 1 2 ( ) 1 2 ( )

c

c

c c

c c

g t t f t t
t t f t

G f f f f f
j f j

j j f f j f f

π
π

δ δ
π

π π

= −

= −

⎡ ⎤
∴ = ∗ − − +⎢ ⎥+ ⎣ ⎦

⎡ ⎤
= −⎢ ⎥+ − + +⎣ ⎦

 

 
 
2.3 (a) 
 

[ ]

[ ]

( ) ( ) ( )
1( ) ( ) ( )
2

( ) rect
2

1( ) ( ) ( )
2

1 1
2 2( ) rect rect

e o

e

e

o

o

g t g t g t

g t g t g t

tg t A
T

g t g t g t

t T t T
g t A

T T

= +

= + −

⎛ ⎞= ⎜ ⎟
⎝ ⎠

= − −

⎛ ⎞⎛ ⎞ ⎛ ⎞− +⎜ ⎟⎜ ⎟ ⎜ ⎟
= −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © 2009 John Wiley & Sons, Inc.  All Rights Reserved.



(b) 
By the time-scaling property g(-t)  G(-f) 
 

[ ]

[ ]

[ ]

[ ]

1( ) ( ) ( )
2
1          sinc( ) exp( 2 ) sinc( ) exp( 2 )
2

          sinc( )cos( )

1( ) ( ) ( )
2
1         sinc( ) exp( 2 ) sinc( ) exp( 2 )
2

         sinc( )sin( )

e

o

G f G f G f

fT j fT fT j fT

fT fT

G f G f G f

fT j fT fT j fT

j fT fT

π π

π

π π

π

= + −

= − +

=

= − −

= − −

= −
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2.4.  We need to find a function with the stated properties. 
 
We can verify that: 

( ) sgn( ) u( ) u( )G f j f j f W j f W= − + − − − −  
meets the stated criteria. 
By duality g(f) G(-t) 
 

1 1 1 1 1( ) ( ) exp( 2 ) ( ) exp( 2 )
2 2 2 2

1 sin(2 )      
2

g t j t j Wt j t j Wt
t j t j t

Wtj
t t

δ π δ π
π π π

π
π π

⎛ ⎞ ⎛ ⎞
= + − − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= +

 

 
 
2.5   
 
 
 
 
 
 
 
By the differentiation property: 
 

[ ]

( ) 2 ( )

1                ( ) exp( 2 ) ( )exp( 2 )

2                ( )sin(2 )

dg tF j fG f
dt

H f j f H f j f

j H f f

π

π τ π τ
τ

π τ
τ

⎛ ⎞ =⎜ ⎟
⎝ ⎠

= − −

=

 

 
But 2 2( ) exp( )H f fτ π τ= −  

2 2

2 2

2 2

0

1( ) exp( )sin(2 )

sin(2 )           exp( )

           2 exp( )sinc(2 )

lim ( ) 2 sinc(2 )

G f f fT
f

fTf
f

T f fT

G f T fT
τ

π τ π
π

ππ τ
π

π τ π

π
→

∴ = −

= −

= −

=

 

 
 
 

2

2

0

0

1( ) exp

1 1      ( ) ( )

( ) 1 1( ) ( )

t T

t T

t T

t T

ug t du

h d h d

dg t h t T h t T
dt

π
τ τ

τ τ τ τ
τ τ

τ τ

+

−

+

−

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

= +

= − − + +

∫

∫ ∫
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2.6 (a) 
 
If g(t) is even and real then  
 
 

* * *

* *

*

1( ) [ ( ) ( )]
2

1 1( ) ( )
2 2

( ) ( )
( ) is all real

G f G f G f

G f G f

G f G f
G f

= + −

= −

=
∴

 

 
If g(t) is odd and real then 
 
 
 

* * *

* *

*

1( ) [ ( ) ( )]
2
1 1( ) ( ) ( )
2 2

( ) ( )
( ) ( )
( ) must be all imaginary

G f G f G f

G f G f G f

G f G f
G f G f

G f

= − −

= − −

= − −

= −
∴

 

 
(b)  

 
 
 
 
 
 

The previous step can be repeated n times so: 

( )

( )

( 2 ) ( ) ( )

But each factor ( 2 ) represents another differentiation.

( ) ( )
2

Replacing  with 

( ) ( )
2

n
n

n

n
n n

n
n n

dj ft G t g f
df
j ft

jt G t g f

g h

jt h t H f

π

π

π

π

− −

−

⎛ ⎞⋅ −⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

[ ]
* *

1( ) ( ) ( )
2

and ( ) ( ) ( ) ( )

g t g t g t

g t g t G f G f

= + −

= ⇒ = −

[ ]
* *

1( ) ( ) ( )
2

and ( ) ( ) ( ) ( )

g t g t g t

g t g t G f G f

= − −

= ⇒ = −

( 2 ) ( ) ( )   by duality

( ) ( )
2

dj t G t g f
df

j dt G t g f
df

π

π

− −

⋅ −
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(c) 
 

Let ( )( ) ( )   and  ( ) ( )
2

n
n njh t t g t H f G f

π
⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 

( )( ) (0) (0)
2

n
njh t dt H G

π

∞

−∞

⎛ ⎞= = ⎜ ⎟
⎝ ⎠∫  

 
 
(d) 

1 1
*
2 2

( ) ( )

( ) ( )

g t G f

g t G f−
 

 

1 2 1 2

*
1 2 1 2

1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ( ))

                 ( ) ( )

g t g t G G f d

g t g t G G f d

G G f d

λ λ λ

λ λ λ

λ λ λ

∞

−∞

∞

−∞

∞

−∞

−

− −

= −

∫

∫

∫

 

 
(e) 

*
1 2 1 2

*
1 2

*
1 2 1 2

*
1 2 1 2

( ) ( ) ( ) ( )

( ) ( ) (0)

( ) ( ) ( ) ( 0)

( ) ( ) ( ) ( )

g t g t G G f d

g t g t dt G

g t g t dt G G d

g t g t dt G G d

λ λ λ

λ λ λ

λ λ λ

∞

−∞

∞

−∞

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

−

−

∫

∫

∫ ∫

∫ ∫
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2.7 (a) 
2

2

( ) sinc ( )

( )

max ( ) (0)
                sinc (0)
                

The first bound holds true.

g t AT fT

g t dt AT

G f G
AT
AT

∞

−∞

=

=

=
=

∴

∫
  

 
 
(b) 

2

( ) 2

2 ( ) 2 sinc ( )

sin( ) sin( )                  2

sin( )                  2 sin( )

dg t dt A
dt

j fG f fAT fT

fT fTfAT
fT fT

fTA fT
fT

π π

π ππ
π π

π π
π

∞

−∞

=

=

= ⋅

= ⋅

∫

 

 
 
But,   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

sin( ) 1   and sinc( ) 1 

sin( )2 sin( ) 2

2 ( ) 2

fT f fT f

fTA fT A
fT

j fG f A

π π

π π
π

π

≤ ∀ ≤ ∀

∴ ⋅ ≤

∴ ≤
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2.7 c)  
 

2 2 2

2
2 2

2

2

( 2 ) ( ) 4 ( )

sin ( )                        4
( )

4                       sin ( )

4                       

j f G f f G f

fTf AT
fT

A fT
T
A

T

π π

ππ
π

π

=

=

=

≤

 

 
The second derivative of the triangular pulse is plotted as: 
 

 
Integrating the absolute value of the delta functions gives: 
 

2

2

2
2

2

( ) 4

( )( 2 ) ( )

d g t Adt
dt T

d g tj f G f dt
dt

π

∞

−∞

∞

−∞

=

∴ ≤

∫

∫
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2.8. (a) 
 

1 2 1 2

2 1

( ) ( ) ( ) ( )
                    ( ) ( )  by the commutative property of multiplication
g t g t G f G f

G f G f
∗

=
 

 
b) 

[ ] [ ]

[ ] [ ]
[ ] [ ]

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

( ) ( ) ( ) ( ) ( ) ( )
Because multiplication is commutative, the order of the multiplication
doesn't matter.

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

g f g f g f G f G f G f

G f G f G f G f G f G f

G f G f G f g f g f g f

∗ ∗

∴ =

∴ ∗ ∗

 

 
c) 
Taking the Fourier transform gives: 

[ ]1 2 3

1 2 2 3 1 2 1 2

( ) ( ) ( )
Multiplication is distributive so:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

G f G f G f

G f G f G f G f g t g t g t g t

+

+ +
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2.9 a) 
Let 1 2( ) ( ) ( )h t g t g t= ∗  

( )

( )

[ ]

1 2

1 2

1
1 2 2

1
1 2 2

( ) 2 ( )

         2 ( ) ( )
         2 ( ) ( )

( )2 ( ) ( ) ( )

( )( ) ( ) ( )

dh t j fH f
dt

j fG f G f
j fG f G f

dg tj fG f G f g t
dt

dg td g t g t g t
dt dt

π

π
π

π

=

=

⎡ ⎤ ∗⎢ ⎥⎣ ⎦
⎡ ⎤∴ ∗ = ∗⎢ ⎥⎣ ⎦

 

 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
 
2.10.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 2
1 2 1 2

1
1 2 2

1
1 2

1 2 1

(0) (0)1( ) ( ) ( ) ( ) ( )
2 2

(0)1                          ( ) ( ) ( ) ( )
2 2

(0)1                          ( ) ( ) ( )
2 2

( ) ( ) ( )

t G Gg t g t dt G f G f f
j f

GG f G f f G f
j f

GG f f G f
j f

g t g t dt g t

δ
π

δ
π

δ
π

−∞

−∞

∗ +

⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
⎡ ⎤

= +⎢ ⎥
⎣ ⎦

∴ ∗ =

∫

2 ( )
t t

g t
−∞

⎡ ⎤
∗⎢ ⎥

⎣ ⎦
∫ ∫

( ) ( ) ( )
t

Y f X X f dν ν ν
−∞

= −∫

( )
( )
( )
( )

[ ]

( ) 0 if 

( ) 0 if 

 for  when 0 and 

 for  when 0 and 

 for 0  when 2

   for - 0 when 2

Over the range of integration , ,  the integr

X W

X f f W

f W f W W

f W f W W

f W W f W

f W W f W

W W

ν ν

ν ν

ν ν ν ν

ν ν ν ν

ν ν

ν ν

≠ ≤

− ≠ − ≤

− ≤ ≤ + ≥ ≤

− ≥ − ≤ − + ≤ ≥ −

∴ − ≤ ≤ ≤ ≤

− ≥ − ≤ ≤ ≥ −

∴ − al is non-zero if 2f W≤
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2.11 a) Given a rectangular function: 1( ) rect tg t
T T

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, for which the area under g(t) is 

always equal to 1, and the height is 1/T. 
 
1 rect sinc( )t fT
T T

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
Taking the limits: 

0

0

1lim rect ( )

1lim sinc( ) 1

T

T

t t
T T

fT
T

δ
→

→

⎛ ⎞ =⎜ ⎟
⎝ ⎠

=
 

 
b)  
 
 
 
 
 
 
 
 
 
2.12. 

1 1( ) sgn( )
2 2

By duality:
1 1( ) ( )
2 2

1( ) ( )
2 2

G f f

G f t
j t

jg t t
t

δ
π

δ
π

= +

− −

∴ = +

 

 
 
 
 
 
 
 
 
 
 
 
 

( ) 2 sinc(2 )

2 sinc(2 ) rect
2

g t W Wt
fW Wt
W

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

lim 2 sinc(2 ) ( )

2lim rect 1
2

W

W

W Wt t

W

δ
→∞

→∞

=

⎛ ⎞ =⎜ ⎟
⎝ ⎠
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2.13.  a) By the differentiation property: 
( )2

2 2

2 ( ) exp( 2 )

1( ) exp( 2 )
4

i i
i

i i
i

j f G f k j ft

G f k j ft
f

π π

π
π

= −

∴ = − −

∑

∑
 

 

b)the slope of each non-flat segment is:
b a

A
t t

±
−

 

[ ]

( ) [ ]

2 2

2 2

1( ) exp( 2 ) exp( 2 ) exp( 2 ) exp( 2 )
4

        cos(2 ) cos(2 )
2

b a a b
b a

b a
b a

AG f j ft j ft j ft j ft
f t t
A ft ft

f t t

π π π π
π

π π
π

⎛ ⎞⎛ ⎞
= − − − +⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠

= − −
−

 

But: [ ]1sin( ( ))sin( ( )) cos(2 ) cos(2 )
2b a b a a bf t t f t t ft ftπ π π π− + = − by a trig identity. 

[ ]2 2( ) sin( ( ))sin( ( ))
( ) b a b a

b a

AG f f t t f t t
f t t

π π
π

∴ = − +
−

 

 
 
 
 
2.14 a) let g(t) be the half cosine pulse of Fig. P2.1a, and let g(t-t0) be its time-shifted 
counterpart in Fig.2.1b 
 

( )( )
( )( )

*

2

2*
0 0 0 0

2*
0 0

( ) ( )

  ( )

( ) exp( 2 ) ( ) exp( 2 ) ( ) exp( 2 )exp( 2 )

( ) exp( 2 ) ( ) exp( 2 ) ( )

G f G f

G f

G f j ft G f j ft G f j ft j ft

G f j ft G f j ft G f

ε

π π π π

π π

=

=

− = −

− =
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2.14 b)Given that the two energy densities are equal, we only need to prove the result for 
one.  From before, it was shown that the Fourier transform of the half-cosine pulse was: 

[ ] 1sinc(( ) ) sinc(( ) )    for 
2 2c c c

AT f f T f f T f
T

+ + − =  

 
After squaring, this becomes: 

2 22 2

2 2 2 2

sin ( ( ) ) sin ( ( ) ) sin( ( ) )sin( ( ) )2
4 ( ( ) ) ( ( ) ) ( )( )

c c c c

c c c c

f f T f f T f f T f f TA T
f f T f f T T f f f f
π π π π

π π π
⎡ ⎤+ − + −

+ +⎢ ⎥+ − + −⎣ ⎦
 

 
The first term reduces to: 

( ) ( )
( )

2
2 2

2 2 22 2

sin cos cos2

2 2
c

fT fT fT
T f ffT fT

ππ π π

ππ ππ π

⎛ ⎞+⎜ ⎟
⎝ ⎠ = =

+⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
The second term reduces to: 
 

( )
( )

2
2

2 22 2

sin cos2

2
c

fT fT
T f ffT

ππ π

πππ

⎛ ⎞−⎜ ⎟
⎝ ⎠ =

−⎛ ⎞−⎜ ⎟
⎝ ⎠

 

 
The third term reduces to: 
 

2

2 2
2 2 2

2

2 2 2
2

sin( ( ) )sin( ( ) ) cos( ) cos (2 )2
1( )( )

4
1 cos(2 )                                                     

1
4

                                       

c c

c c

f f T f f T fT
T f f f f T f

T
fT

T f
T

π π π π
π π

π

π

+ − −
=

+ − ⎛ ⎞−⎜ ⎟
⎝ ⎠

− −
=

⎛ ⎞−⎜ ⎟
⎝ ⎠

2

2 2 2
2

2cos ( )              
1

4

fT

T f
T

π

π
= −

⎛ ⎞−⎜ ⎟
⎝ ⎠

 

Summing these terms gives: 

( ) ( )2 22 2 2

2 22 2

cos cos cos ( )2
1 14 1 1

2 22 2

fT fTA T fT
T f ff f T TT T

π π π
π

⎡ ⎤
⎢ ⎥
⎢ ⎥+ −
⎢ ⎥⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ + −+ − ⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
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2.14 b)Cont’d 
 
By rearranging the previous expression, and summing over a common denominator, we 
get: 

( )

( )

2 2 2

22 2
2

2

2 2 2

2 4 22 2
4

2 2 2

22 2 2

cos ( )
4 1

4

cos ( )
1 14 4 1

16

cos ( )

4 1

A T fT
T

f
T

A T fT
T T f

T

A T fT

T f

π
π

π
π

π
π

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞−⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦
⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥−
⎣ ⎦
⎡ ⎤
⎢ ⎥=
⎢ ⎥−⎣ ⎦
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2.15 a)The Fourier transform of ( ) 2 ( )dg t j fG f
dt

π  

Let ( )'( ) dg tg t
dt

=   

By Rayleigh’s theorem: 2 2( ) ( )g t dt G f df
∞ ∞

−∞ −∞

=∫ ∫  

( )

( )

( )
( )

( )

2 22 2
2 2

22

22 *

222

2
2 * *

222

2
*

2
2 *

( ) ( )

( )

( ) '( ) ' ( )
           

4 ( )

( ) '( ) ( ) ' ( )
          

16 ( )

( ) ( )
          

16 ( ) ( )

t g t dt f G f df
W T

g t dt

t g t dt g t g t dt

g t dt

t g t g t tg t g t dt

g t dt

dt g t g t dt
dt

g t g t dt

π

π

π

⋅
∴ =

⋅
=

⎡ ⎤−⎣ ⎦≥

⎡ ⎤⋅⎢ ⎥⎣ ⎦=

∫ ∫
∫

∫ ∫
∫

∫
∫

∫

∫

 

 
 
Using integration by parts, we can show that: 

2 2

2 2
2

( ) ( )

1
16

1
4

dt g t dt g t
dt

W T

WT

π

π

∞ ∞

−∞ −∞

⋅ =

∴ ≥

∴ ≥

∫ ∫
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2.15 b) For 2( ) exp( )g t tπ= −  
2

2 2 2 2

2 2

2

( ) exp( )

exp( 2 ) exp( 2 )

exp( 2 )

g t f

t t dt f f df
W T

t dt

π

π π

π

∞ ∞

−∞ −∞
∞

−∞

−

− ⋅ −
∴ =

−

∫ ∫

∫

 

 
Using a table of integrals:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 2

0

2 2

2 2

2

2

2 2

2

1exp( )    for 0
4

1 1exp( 2 )
4 2

1 1  exp( 2 )
4 2

1  exp( 2 )
2

1 1
4 2

1
2

1            
4

1
4

x ax dx a
a a

t t dt

f t df

t

T W

TW

π

π
π

π
π

π

π

π

π

∞

∞

−∞

∞

−∞

∞

−∞

− = >

∴ − =

− =

− =

⎛ ⎞
⎜ ⎟
⎝ ⎠∴ =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∴ =

∫

∫

∫

∫
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2.16. 

Given: 2( )  and ( ) , which implies that ( )x t dt h t dt h t dt
∞ ∞ ∞

−∞ −∞ −∞

< ∞ < ∞ < ∞∫ ∫ ∫ . 

However, if 2 2 4( )  then ( )  and ( )x t dt X f df X f df
∞ ∞ ∞

−∞ −∞ −∞

< ∞ < ∞ < ∞∫ ∫ ∫ .  This result also 

applies to h(t). 
 

( ) ( ) ( )Y f H f X f=  
2 * *

2 2

2
2 4 4

2

( ) ( ) ( ) ( ) ( )

                   ( ) ( )

( ) ( ) ( )

                      

 ( )

Y f df X f H f X f H f df

X f H f df

Y f df X f df H f df

Y f df

∞ ∞

−∞ −∞

∞

−∞

∞ ∞ ∞

−∞ −∞ −∞

∞

−∞

= ⋅

=

≤

< ∞

∴ < ∞

∫ ∫

∫

∫ ∫ ∫

∫

 

 

By Rayleigh’s theorem: 2 2( ) ( )Y f df y t dt
∞ ∞

−∞ −∞

=∫ ∫  

2( )y t dt
∞

−∞

∴ < ∞∫  
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2.17. 
The transfer function of the summing block is: [ ]1( ) 1 exp( 2 )H f j fTπ= − − . 

The transfer function of the integrator is: 2
1( )

2
H f

j fπ
=  

 
These elements are cascaded : 

( ) ( )

( )
[ ]

( )
[ ]

1 2 1 2

2
2

2

( ) ( ) ( ) ( ) ( )
1         1 exp( 2 )

2
1         1 2exp( 2 ) exp( 4 )

2

H f H f H f H f H f

j fT
f

j fT j fT
f

π
π

π π
π

= ⋅

= − − −

= − − − + −
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2.18.a)  Using the Laplace transform representation of a single stage, the transfer function 
is: 

0

0

0
0

1( )
1

1         
1

1( )
1 2

H s
RCs

s

H f
j f

τ

π τ

=
+

=
+

=
+

 

 
These units are cascaded, so the transfer function for N stages is: 
 

( )
0

1( ) ( )
1 2

N
NH f H f

j fπ τ
⎛ ⎞

= = ⎜ ⎟+⎝ ⎠
 

 

b) For N→∞, and 
2

2
0 24

T
N

τ
π

=  

( )
0

0

1ln ( ) ln
1 2

             ln 1 2

             ln 1

let , then for very large ,  1

H f N
j f

N j f

jfTN
N

jfTz N z
N

π τ

π τ

⎛ ⎞
= ⎜ ⎟+⎝ ⎠
= − +

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

= <

 

 
We can use the Taylor series expansion of ln(1 )z∴ +  

 

( )

( )

1

1

1

1

1ln(1 ) 1

1                   1

m m

m

m
m

m

N z N z
m

fTN j
m N

∞
+

=

∞
+

=

⎡ ⎤− + = − −⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞= − −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

∑

∑
 

 
 
(next page) 
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2.18 (b) Cont’d 
 
Taking the limit as N→∞: 
 

( )
2 2

1

1

2 2

1lim 1
2

1                                                         
2

m
m

N m

fT fT f TN j N j
m NN N

f T j N fT

∞
+

→∞
=

⎛ ⎞⎡ ⎤ ⎛ ⎞⎛ ⎞⎜ ⎟− − = − +⎢ ⎥ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦⎝ ⎠

= − −

∑
 

2 2

2 2

1( ) exp( ) exp( )
2
1( ) exp( )
2

H f f T j N ft

H f f T

∴ = − −

∴ = −
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2.19.a) ( ) ( )
T

t T

y t x dτ τ
−

= ∫  

This is the convolution of a rectangular function with x(τ).  The interval of the 
rectangular function is [(t-T),T], and the midpoint is T/2. 
 

Tsinc( ), but the function is shifted by .
2

( ) sinc( ) exp( )

trect T fT
T

H f T fT j fTπ

⎛ ⎞
⎜ ⎟
⎝ ⎠

∴ = −
 

 

b)BW = 1 1
RC T

=  

 

( ) exp( 2 )
1 2 2

1         exp( )1 2

1( ) exp ( ) ( )
2 2

1         exp ( ) ( )
2 2

T TH f j f
j RC f

T j fT
RC j f

RC
T T Th t t u t

RC RC
T Tt u t

T

π
π

π
π

= −
+

⎛ ⎞
⎜ ⎟

= −⎜ ⎟
⎜ ⎟+
⎝ ⎠

⎛ ⎞∴ = − − −⎜ ⎟
⎝ ⎠

⎛ ⎞= − − −⎜ ⎟
⎝ ⎠
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2.20.  a) For the sake of convenience, let h(t) be the filter time-shifted so that it is 
symmetric about the origin (t = 0). 
 

1 1
2 2

0
1 1

1
2

1

( ) exp( 2 ) exp( 2 )

         2 cos(2 )

N N

k k
k k

N

k
k

H f w j fk w j fk w

w fk

π π

π

− −
−

= =−

−

=

= − + − +

=

∑ ∑

∑

 

Let G(f) be the filter returned to its correct position.  Then 
1( ) ( ) exp( 2 )

2
NG f H f j fπ −⎛ ⎞= − ⎜ ⎟

⎝ ⎠
, which is a time-shift of 1

2
N −⎛ ⎞

⎜ ⎟
⎝ ⎠

samples. 

( )( )
1

2

1
( ) exp 1 2 cos(2 )

N

k
k

G f j f N w fkπ π

−

=

∴ = − − ∑  

 
b)By inspection, it is apparent that: 

( ) exp( ( 1))G f j f Nπ= − −  
This meets the definition of linear phase. 
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2.21  Given an ideal bandpass filter of the type shown in Fig P2.7, we need to find the 
response of the filter for 0( ) cos(2 )x t A f tπ=  
 

[ ]0 0

1 1( ) rect rect
2 2 2 2
1( ) ( ) ( )
2

c cf f f fH f
B B B B

X f f f f fδ δ

− +⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= − + −

 

If 0cf f−  is large compared to 2B, then the response is zero in the steady state. 
However: 

0 0
0 0

( ) ( ) ( ) ( )
2 ( ) 2 2 ( ) 2

A A A Ax t u t f f f f
j f f j f f

δ δ
π π

⎛ ⎞
+ − + + +⎜ ⎟− +⎝ ⎠

 

Since 0cf f− is large, assume that the portion of the amplitude spectrum lying inside the 

passband is approximately uniform with a magnitude of 
04 ( )c

A
f fπ −

. 

 
The phase spectum of the input is plotted as: 
 
 
 
 
 
 
 
 
 
 
 
 
 
The approximate magnitude and phase spectra of the output: 
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Taking the envelope by retaining the positive frequency components, shifting them to the 
origin, and scaling by 2: 
 

0

0

exp 2
2   if ( )

2 ( )
0                                         otherwise

c

A j j ft
B f BY f

f f

π π

π

⎧ ⎛ ⎞⎛ ⎞− −⎜ ⎟⎪ ⎜ ⎟⎝ ⎠⎪ ⎝ ⎠ − < <⎨ −⎪
⎪⎩

 

 

[ ]

[ ]

0
0

0
0

( ) sinc 2 ( )
( )

( ) sinc 2 ( ) sin(2 )
( )

c

c
c

ABy t B t t
j f f

ABy t B t t f t
f f

π

π
π

= −
−

∴ −
−
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2.22 
( ) ( ) exp( 2 )H f X f j fTπ= −  

 

[ ]

[ ]

( ) ( ) ( ) sinc( )exp( 2 )
2 2

         sinc( ( )) sinc( ( )) exp( )
2

c c

c c

A TX f f f f f T fT j f

AT T f f T f f j fT

δ δ π

π

= − + + ∗ −

= − + + −
 

Let  for  largec
Nf N
T

=  

 

( ) ( )

( ) ( ) ( ) ( )
2 2

2 2

( ) ( ) ( )

        ( ) exp( 2 )exp( ) sinc ( ) sinc ( )
2

        exp( 2 ) sinc ( ) sinc ( ) sinc ( ) sinc ( )
4

        exp( 2 ) sinc( ) sinc(
4

c c

c c c c

Y f H f X f
ATX f j fT j fT T f f T f f

A Tj fT T f f T f f T f f T f f

A Tj fT fT N f

π π

π

π

=

= − − − + +⎡ ⎤⎣ ⎦

= − + + − − + − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= − − + −[ ][ ]) sinc( ) sinc( )T N fT N fT N+ − + +

 
But sinc(x)=sinc(-x) 
 

[ ]
2 2

( ) exp( 2 ) sinc( ) sinc( )
2

A TY f j fT fT N fT Nπ∴ = − + +  
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2.23 G(k)=G 
 

1

0
1

0

1

0

1 2( )exp( )

2    exp( )

2 2    cos( ) sin( )

N

n
k
N

k

N

k

g G k j k n
N N
G j k n
N N
G j k n j j k n
N N N

π

π

π π

−

=

−

=

−

=

= ⋅

= ⋅

= ⋅ + ⋅

∑

∑

∑

 

 

If n = 0, 
1

0
( ) 1

N

k

Gg n G
N

−

=

= =∑  

For 0n ≠ , we are averaging over one full wavelength of a sine or cosine, with regularly 
sampled points.  These sums must always be zero. 
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2.24. a) By the duality and frequency-shifting properties, the impulse response of an ideal 
low-pass filter is a phase-shifted sinc pulse.  The resulting filter is non-causal and 
therefore not realizable in practice. 
  
 
c)Refer to the appropriate graphs for a pictorial representation. 
i)Δt=T/100 
 
BT Overshoot (%) Ripple Period 
5 9,98 1/5 
10 9.13 1/10 
20 9.71 1/20 
100 100 No visible ripple 
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2.24 (d) 
Δt Overshoot (%) Ripple Period 
T/100 100 No visible ripple. 
T/150 16.54 1/100 
T/200 ~0 No visible ripple. 
 
Discussion 
 
Increasing B, which also increases the filter’s bandwidth, allows for more of the high-
frequency components to be accounted for.  These high-frequency components are 
responsible for producing the sharper edges.  However, this accuracy also depends on the 
sampling rate being high enough to include the higher frequencies. 
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2.25 
 
BT Overshoot (%) Ripple Period 
5 8.73 1/5 
10 8.8 1/10 
20 9.8 1/20 
100 100 - 
  
The overshoot figures better for the raised cosine pulse that for the square pulse.  This is 
likely because a somewhat greater percentage of the pulse’s energy is concentrated at 
lower frequencies, and so a greater percentage is within the bandwidth of the filter. 
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2.26.b) 
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2.26 b) 
If B is left fixed, at B=1, and only T is varied, the results are as follows 
 
BT Max. Amplitude 
5 1.194 
2 1.23 
1 1.34 
0.5 0.612 
0.45 0.286 
 
As the centre frequency of the square wave increases, so does the bandwidth of the signal 
(and its own bandwidth shifts its centre as well).  This means that the filter passes less of 
the signal’s energy, since more of it will lie outside of the pass band.  This results in 
greater overshoot. 
However, as the frequency of the pulse train continues to increase, the centre frequency is 
no longer in the pass band, and the resulting output will also be attenuated. 
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c) 
BT Max. Amplitude 
5 1.18 
2 1.20 
1 1.27 
0.5 0.62 
0.45 0.042 
 
Extending the length of the filter’s impulse response has allowed it to better approximate 
the ideal filter in that there is less ripple.  However, this does not extend the bandwidth of 
the filter, so the reduction in overshoot is minimal.  The dramatic change in the last entry 
(BT=0.45) can be accounted for by the reduction in ripple. 
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2.27 
a)At fs = 4000 and fs = 8000, there is a muffled quality to the signals.  This improves 
with higher sampling rates.  Lower sampling rates throw away more of the signal’s high 
frequencies, which results in a lower quality approximation. 
 
b)Speech suffers from less “muffling” than do other forms of music.  This is because a 
greater percentage of the signal energy is concentrated at low frequencies.  Musical 
instruments create notes that have significant energy in frequencies beyond the human 
vocal range.  This is particularly true of instruments whose notes have sharp attack times. 
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2.28 
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Chapter 3 
 

3.1   
 
s(t) = Ac[1+kam(t)]cos(2πfc t) 
 
where m(t) = sin(2πfs t)     and  fs=5 kHz and fc = 1 MHz. 
 

( ) [cos(2 ) (sin(2 ( ) ) sin(2 ( ) )]
2
a

c c c c s
ks t A f t f fs t f f tπ π π∴ = + + + −  

s(t) is the signal before transmission. 

The filter bandwidth is: 
610 5714 Hz

175
cfBW

Q
= = =  

m(t) lies close to the 3dB bandwidth of the filter, m(t) is therefore attenuated by a factor 
of a half. 
 

' '

'

( ) 0.5 ( )    or 0.5

0.25
a a

a

m t m t k k

k

∴ = =

∴ =
 

 
The modulation depth is 0.25 
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3.2 (a) 
 

0[exp( ) 1]
T

vi I
V

= − −  

Using the Taylor series expansion of exp(x) up to the third order terms, we get: 
 

2 3

0
1 1[ ]
2 6T T T

v v vi I
V V V

⎛ ⎞ ⎛ ⎞
= − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
(b) ( ) 0.01[cos(2 ) cos(2 )]m cv t f t f tπ π= +  
 

Let 2 ,   2
2 2

c m c mf f f ft tθ π φ π+ −
= =  

 
then ( ) 0.02[cos cos ]v t θ φ=  
 

2 2

2

2

( ) 0.02 [1 cos(2 )][1 cos(2 )]
10.02 [1 cos(2 ) cos(2 ) (cos(2 2 ) cos(2 2 ))]
2

10.02 [1 cos(2 ( ) ) cos(2 ( ) ) (cos(4 ) cos(4 ))]
2c m c m c m

v t

f f t f f t f t f t

θ φ

θ φ θ φ θ φ

π π π π

∴ = + +

= + + + + + −

= + + + − + +

 

 
3 3

3

3cos cos3 3cos cos3( ) 0.02
4 4

0.02 9 3[ (cos( ) cos( )) (cos( 3 ) cos( 3 )
16 2 2

3 1(cos(3 ) cos(3 )) (cos(3 3 ) cos(3 3 ))]
2 2

v t θ θ φ φ

θ φ θ φ θ φ θ φ

θ φ θ φ θ φ θ φ

+ +⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= + + − + + + −

+ + + − + + + −

 

 
 

2
3 0.02 9 3( ) [ (cos(2 ) cos(2 )) (cos(2 (2 ) ) cos(2 (2 ) )

16 2 2
3 1(cos(2 (2 ) ) cos(2 (2 ) )) (cos(6 ) cos(6 ))]
2 2

c m c m m t

c m m t c m

v t f t f t f f t f f t

f f t f f t f t f t

π π π π

π π π π

∴ = + + − + −

+ + + + + +
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The output will have spectral components at: 
 
fm 
fc 
fc+ fm 
fc- fm 
2fc 
2fm 
2fc- fm 
2fc+ fm 
fc- 2fm 
fc+2 fm 
3fc 
3fm 
 
 
(c) 
 
 
 
 
 
 
 
 
The bandpass filter must be symmetric and centred around fc .  It must pass components 
at fc+ fm, but reject those at fc+2 fm and higher. 
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(d) 
Term # Carrier Message Taylor Coef. 
1 0.01  -38.46 
2  0.0001 739.6 
3 2.25 x 10-6  -9.48 x 103 

 
 
After filtering and assuming a filter gain of 1, we get: 
 
( ) 0.41cos(2 ) 0.074[cos(2 ( ) ) cos(2 ( ) )]
0.41cos(2 ) .148[cos(2 )cos(2 )]
[0.41 0.148cos(2 )]cos(2 )
[1 0.36cos(2 )]cos(2 )

The modulation percentage is ~36%

c c m c m

c c m

m c

m c

i t f t f f t f f t
f t f t f t

f t f t
f t f t

π π π
π π π

π π
π π

= + − + +
= +

= +
= +

∴
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3.10.  The circuit can be rearranged as follows: 
 
(a) 

 
(b) 

 
Let the voltage Vb-Vd be the voltage across the output resistor, with Vb and Vd being the 
voltages at each node. 
 
Using the voltage divider rule for condition (a): 
 

 ,      ,     =     f b fb
b d b d

f b f b f b

R R RRV V V V V V V
R R R R R R

−
= = −

+ + +
 

 
and for (b): 
 

 ,      ,     =f b fb
b d b d

f b f b f b

R R RRV V V V V V V
R R R R R R

− +
= − = − −

+ + +
 

 
∴The two voltages are of the same magnitude, but are of the opposite sign. 
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3.16 (a)  
 

1 1( ) cos(2 ( ) ) (1 ) cos(2 ( ) )
2 2

( ) [ (cos(2 )cos(2 ) sin(2 )sin(2 ))
2

(1 )(cos(2 )cos(2 ) sin(2 )sin(2 ))]

( ) [cos(2 )cos(2 ) (1 2 )si
2

m c m c m c m c

m c
c m c m

c m c m

m c
c m

s t a A A f f t a A A f f t

A As t a f t f t f t f t

a f t f t f t f t

A As t f t f t a

π π

π π π π

π π π π

π π

= ⋅ + + − +

= −

+ − +

= + −

1

2

n(2 )sin(2 ))]

( ) cos(2 )
2

( ) (1 2 )sin(2 )
2

c m

m
m

m
m

f t f t

Am t f t

Am t a f t

π π

π

π

∴ =

= −

 

 
b)Let: 

1 1( ) ( )cos(2 ) ( )sin(2 )
2 2c c c s cs t A m t f t A m t f tπ π= +  

 
By adding the carrier frequency: 
 

1 1( ) [1 ( )]cos(2 ) ( )sin(2 )
2 2c a c a c s cs t A k m t f t k A m t f tπ π= + +  

where ak  is the percentage modulation. 
After passing the signal through an envelope detector, the output will be: 

1
2 2 2

1
2 2

1 1( ) 1 ( ) ( )
2 2

1 ( )1 2       1 ( ) 1 12 1 ( )
2

c a a s

a s

c a

a

s t A k m t k m t

k m t
A k m t

k m t

⎧ ⎫⎪ ⎪⎡ ⎤ ⎡ ⎤= + +⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥⎪ ⎪⎡ ⎤= + ⋅ +⎨ ⎬⎢ ⎥⎢ ⎥⎣ ⎦ ⎪ ⎪⎢ ⎥+

⎣ ⎦⎪ ⎪⎩ ⎭

 

The second factor in ( )s t  is the distortion term d(t).  For the example in (a), this 
becomes: 
 

1
2 21 (1 2 )sin(2 )

2( ) 1 11 cos(2 )
2

m

m

a f t
d t

f t

π

π

⎧ ⎫⎡ ⎤−⎪ ⎪⎢ ⎥⎪ ⎪= +⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥+

⎣ ⎦⎪ ⎪⎩ ⎭
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c)Ideally, d(t) is equal to one.  However, the distortion factor increases with decreasing a.  
Therefore, the worst case exists when a = 0. 
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3.20. m(t) contains {100,200,400} Hz 
 

The transmitted SSB signal is: ˆ[ ( ) cos(2 ) ( )sin(2 )
2

c
c c

A m t f t m t f tπ π−  

Demodulation is accomplished using a product modulator and multiplying by: 
' 'cos(2 )c cA f tπ  

 
(a) 

' '1 ˆ( ) cos(2 )[ ( )cos(2 ) ( )cos(2 )]
2o c c c c cv t A A f t m t f t m t f tπ π π= −  

The only lowpass components will be those that are functions of only t and Δf.  Higher 
frequency terms will be filtered out, and so can be ignored for the purposes of 
determining the output of the detector. 
 

'1 ˆ( ) [ ( ) cos(2 ) ( )sin(2 )]
4o c cv t A A m t f t m t f tπ π∴ = Δ − Δ  by using basic trig identities. 

 
When the upper side-band is transmitted, and Δf>0, the frequencies are shifted inwards 
by Δf. 

( ) contains {99.98,199.98,399.98} HzoV f∴  
 
(b)  When the lower side-band is transmitted, and Δf>0, then the baseband frequencies are 
shifted outwards by Δf. 

( ) contains {100.02,200.02,400.02} HzoV f∴  
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3.22.  
 
 

1 2 1 2 1 1 2 2

1 2
1 2 1 2 1 2 1 2

( ) ( ) cos(2 )cos(2 )

               [cos(2 ( ) ) cos(2 ( ) )]
2

v t v t A A f t f t
A A f f t f f t

π φ π φ

π φ φ π φ φ

= + +

= − + − + + + +
 

 
The low-pass filter will only pass the first term. 

1 2 1 2 1 2
1( ( ) ( )) [cos( 2 ( 2 ) )]
2

LFP v t v t A A W f tπ φ φ∴ = − + Δ + −  

 
Let v0(t) be the final output, before band-pass filtering. 
 

1 2
1 2 2 2 2

2 1 2 1 2
1 2 2 2 2

2 1 2 1 2
1 2 2 2

1 2( ) [cos( 2 ) cos(2 )]
2 / 2 / 2
1       [cos( 2 ) cos(2 )]
2 2 2
1       [cos( 2 ( 2 ) ) cos( 2 )]
4 2 2

o

c c

W fv t A A t A f t
W f W f

A A ft f t
n n

A A f f f t
n n

φ φπ π φ

φ φ φ φπ φ π φ

φ φ φ φπ φ π φ

⎛ ⎞ −+ Δ
= − + ⋅ +⎜ ⎟Δ + Δ +⎝ ⎠

− −
= − Δ + − ⋅ + +

+ +
− −

= − + Δ + − + − + +
+ +

 

 
After band-pass filtering, retain only the second term. 
 

2 1 2
1 2 2

1( ) [cos( 2 )
4 2o cv t A A f t

n
φ φπ φ−

∴ = − + +
+

 

 
1 2

2

2

1
2

0
2 2

rearranging and solving for :

1

n n

n

φ φ φ

φ
φφ

− + =
+ +

= −
+

 

 
 
(b) At the second multiplier, replace v2(t) with v1(t).  This results in the following 
expression for the phase: 

1 2
1

2
1

0
2 2

3

n n

n

φ φ φ

φφ

− + =
+ +

=
+

 

 
 
 
 

1

2

c

c

f f f W
f f f
= −Δ −
= + Δ
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3.23.  Assume that the mixer performs a multiplication of the two signals. 
 

1

2

( ) {1,2,3,4,5,6,7,8,9} MHz
( ) {100,200,300,400,500,600,700,800,900} kHz

y t
y t

∈
∈

 

 
This system essentially produces a DSB-SC signal centred around the frequency of y1(t). 
 
The lowest frequencies that can be produced are: 
 

1 2 1 2

1 1 2

2 1 2

1( ) [cos(2 ( ) ) cos(2 ( ) )]
2

1 MHz          0.9 MHz
100 kHz      1.1 MHz

oy t f f t f f t

f f f
f f f

π π= − + +

= − =
= + =

 

 
The highest frequencies that can be produced are: 
 

1 1 2

2 1 2

9 MHz          8.1 MHz
900 kHz      9.9 MHz

f f f
f f f
= − =
= + =

 

 
The resolution of the system is the bandwidth of the output signal.  Assuming that no 
branch can be zeroed, the narrowest resolution occurs with a modulation frequency of 
100 kHz.  The widest bandwidth occurs when there is a modulation frequency of 900 
kHz. 
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3.24  Given the presence of the filters, only the baseband signals need to be considered.  
All of the other product components can be discarded. 
 
(a)  Given the sum of the modulated carrier waves, the individual message signals are 
extracted by multiplying the signal with the required carrier. 
 
For m1(t), this results in the conditions: 

1 1

2 2

3 3

cos( ) cos( ) 0
cos( ) cos( ) 0
cos( ) cos( ) 0

i i

α β
α β
α β

α β π

+ =
+ =
+ =

∴ = ±

 

 
For the other signals: 
 

2

1 1 1 1

2 1 2 1 2 1 2 1

3 1 3 1 3 1 3 1

3

1 2 1 2

3 2 3 2

( ) :
cos( ) cos( ) 0                     
cos( ) cos( ) 0          ( ) ( )
cos( ) cos( ) 0          ( ) ( )

Similarly:
( ) :

( ) ( )
( ) (

m t

m t

α β α β π
α α β β α α β β π
α α β β α α β β π

α α β β π
α α β β

− + − = = ±
− + − = − = − ±
− + − = − = − ±

− = − ±
− = −

4

1 3 1 3

2 3 2 3

)

( ) :
( ) ( )
( ) ( )

m t

π

α α β β π
α α β β π

±

− = − ±
− = − ±

 

 
(b) Given that the maximum bandwidth of mi(t) is W, then the separation between fa and 
fb must be | fa- fb|>2W in order to account for the modulated components corresponding to  
fa- fb. 
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3.25 b)  The charging time constant is ( ) 1f sr R C sμ+ =  
 
The period of the carrier wave is 1/fc = 50 μs. 
The period of the modulating wave is 1/fm = 0.025 s. 
∴The time constant is much shorter than the modulating wave and therefore should track 
the message signal very well. 
 
The discharge time constant is: 100lR C sμ= . This is twice the period of the carrier wave, 
and should provide some smoothing capability. 
 
From a maximum voltage of V0, the voltage Vc across the capacitor after time t = Ts is: 

0 exp( )s
c

l

TV V
R C

= −  

Using a Taylor series expansion and retaining only the linear terms, will result in the 

linear approximation of 0 (1 )s
C

l

TV V
R C

= − .  Using this approximation, the voltage will 

decay by a factor of 0.94 from its initial value after a period of Ts seconds. 
 
From the code, it can be seen that the voltage decay is close to this figure.  However, it is 
somewhat slower than what was calculated using the linear approximation.  In a real 
circuit, it would also be expected that the decay would be slower, as the voltage does not 
simply turn off, but rather decreases over time. 
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3.25 c)  

 
 
 
The output of a high-pass RC circuit can be described according to: 

0

0

( ) ( )
( ) ( ( ) ( ))

( )  

c in

c

V t I t R
Q t C V t V t

dQI t
dt

=
= −

=

 

0
0

( ) ( )( ) indV t dV tV t RC
dt dt

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

Using first order differences to approximate the derivatives results in the following 
difference equation: 

0 0( ) ( 1) ( ( ) ( 1))in in
s s

RC RCV t V t V t V t
RC T RC T

= − + − −
+ +

 

 
The high-pass filter applied to the envelope detector eliminates the DC component. 
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Problem 3.25.  MATLAB code 
 
 
function [y,t,Vc,Vo]=AM_wave(fc,fm,mi) 
  
%Problem 3.25 
%Inputs:   fc   Carrier Frequency 
%          fm   Modulation Frequency 
%          mi   modulation index 
  
%Problem 3.25 (a) 
fs=160000;    %sampling rate 
deltaT=1/fs;  %sampling period 
  
t=linspace(0,.1,.1/deltaT); %Create the list of time periods 
y=(1+mi*cos(2*pi*fm*t)).*cos(2*pi*fc*t); %Create the AM wave 
  
%Problem 3.25 (b) 
%%%%Create the envelope detector%%%% 
  
Vc=zeros(1,length(y)); 
Vc(1)=0; %inital voltage 
  
for k=2:length(y) 
    if (y(k)>(Vc(k-1))) 
        Vc(k)=y(k); 
    else 
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        Vc(k)=Vc(k-1)-0.023*Vc(k-1); 
    end 
end 
  
  
%Problem 3.25 (c) 
%%%Implement the high pass filter%%% 
%%This implements bias removal 
Vo=zeros(1,length(y)); 
Vo(1)=0; 
RC=.001; 
beta=RC/(RC+deltaT); 
  
for k=2:length(y) 
    Vo(k)=beta*Vo(k-1)+beta*(Vc(k)-Vc(k-1)); 
     
end 
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Chapter 4 Problems 
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Problem 4.7.   
 

( ) cos( ( ))
( ) 2 ( )

c

c p

s t A t
t f t k m t

θ
θ π

=
= +

 

 
Let β = 0.3  for m(t) = cos(2πfmt). 
 

 ( ) cos(2 ( ))
          [cos(2 )cos( cos(2 )) sin(2 )sin( cos(2 ))]
for small :
cos( cos(2 )) 1
sin( sin(2 )) cos(2 )

c c

c c m c m

m

m m

s t A f t m t
A f t f t f t f t

f t
f t f t

π β
π β π π β π

β
β π
β π β π

∴ = +
= −

 

 
 ( ) cos(2 ) sin(2 )cos(2 )

          cos(2 ) [sin(2 ( ) ) sin(2 ( ) )
2

c c c c

c
c c c m c m

s t A f t A f t fmt
AA f t f f t f f t

π β π π

π β π π

∴ = −

= − + + +
 

 
 
 
 
 
 
 
 

Copyright © 2009 John Wiley & Sons, Inc.  All Rights Reserved.



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © 2009 John Wiley & Sons, Inc.  All Rights Reserved.
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Problem 4.14. 
 

2
2 1

( ) cos(2 sin(2 ))
      cos(2 ( ))

c c m

c c

v av
s t A f t f t

A f t m t
π β π
π β

=
= +
= +

 

 
2

2
2

( )

   cos (2 ( ))

   cos(4 2 ( ))
2

c

c

v a s t

a f t m t
a f t m t

π β

π β

= ⋅

= ⋅ +

= ⋅ +

 

 
The square-law device produces a new FM signal centred at 2fc and with a frequency 
deviation of 2β.  This doubles the frequency deviation. 
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4.17. Consider the slope circuit response: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The response of |X1(f)| after the resonant peak is the same as for a single pole low-pass 
filter.  From a table of Bode plots, the following gain response can be obtained: 
 

1 2

1| ( ) |

1 B

X f
f f

B

=
−⎛ ⎞+ ⎜ ⎟

⎝ ⎠

 

 
Where fB is the frequency of the resonant peak, and B is the bandwidth. 
 
For the slope circuit, B is the filter’s bandwidth or cutoff frequency.  For convenience, we 
can shift the filter to the origin (with 1( )X f  as the shifted version). 
 

1 2

1
3

2 2

1| ( ) |

1

| ( ) |

(1 )f kB

X f
f
B

d X f k
df B k=

=
⎛ ⎞+ ⎜ ⎟
⎝ ⎠

= −
+
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Because the filters are symmetric about the central frequency, the contribution of the 
second filter is identical.  Adding the filter responses results in the slope at the central 
frequency being: 
 

3
2 2

| ( ) | 2

(1 )f kB

d X f k
df B k=

= −
+

 

 
In the original definition of the slope filter, the responses are multiplied by -1, so do this 
here.  This results in a total slope of: 
 

3
2 2

2

(1 )

k

B k+
 

 
As can be seen from the following plot, the linear approximation is very accurate 
between the two resonant peaks.  For this plot B = 500, f1=-750, and f2=750. 
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Problem 4. 23 
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Problem 4.24 
 
The amplitude spectrum corresponding to the Gaussian pulse 
 2 2( ) exp * [ / ]p t c c t rect t Tπ⎡ ⎤= −⎣ ⎦  
is given by the magnitude of its Fourier transform. 
 

 
( ) ( ) ( )

[ ]

2 2

2 2

exp /

exp sinc

P f c c t rect t T

c f c T fT

π

π

⎡ ⎤ ⎡ ⎤= − ⎣ ⎦⎣ ⎦

⎡ ⎤= −⎣ ⎦

F F
 

where we have used the convolution theorem 
 
 
Problem 4.25 
 
The Carson rule bandwidth for GSM is  
 ( )2TB f W= Δ +  
 
where the peak deviation is given by  

 1 2 / log(2) 0.75
2 4

fk c
f B Bπ

π
Δ = = =  

With BT = 0.3 and T = 3.77 microseconds, the peak deviation is 59.7 kHz 
From Figure 4.22, the one-sided 3-dB bandwidth of the modulating signal is 
approximately 50 kHz. Combining these two results, the Carson rule bandwidth is 
 

 
( )2 59.7 50

219.4 kHz
TB = +

=
 

 

The 1-percent FM bandwidth is given by Figure 4.9 with 59.7 1.19
50

f
W

β Δ
= = = . From the 

vertical axis we find that 6TB
f
=

Δ
 , which implies BT = 6(59.7) = 358.2 kHz. 
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Problem 4.26. 
 
a) 
 

 
Beta # of side frequencies 
1 1 
2 2 
5 8 
10 14 
 
b)By experimentation, a modulation index of 2.408, will force the amplitude of the 
carrier to be about zero.  This corresponds to the first root of J0(β), as predicted by the 
theory. 
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Problem 4.27. 
 
a)Using the original MATLAB script, the rms phase error is 6.15 % 
b)Using the plot provided, the rms phase error is 19.83% 
 
 
Problem 4.28 
 
a)The output of the detected signal is multiplied by -1.  This results from the fact that 
m(t)=cos(t) is integrated twice.  Once to form the transmitted signal and once by the 
envelope detector. 
 
In addition, the signal also has a DC offset, which results from the action of the envelope 
detector.  The change in amplitude is the result of the modulation process and filters used 
in detection. 
 

 
 

b)If ( ) sin(2 ) 0.5cos 2
3
m

m
fs t f t tπ π⎛ ⎞= + ⎜ ⎟

⎝ ⎠
, then some form of clipping is observed. 
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The above signal has been multiplied by a constant gain factor in order to highlight the 
differences with the original message signal. 
 
c)The earliest signs of distortion start to appear above about fm =4.0 kHz.  As the 
message frequency may no longer lie wholly within the bandwidth of either the 
differentiator or the low-pass filter.  This results in the potential loss of high-frequency 
message components. 
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4.29.  By tracing the individual steps of the MATLAB algorithm, it can be seen that the 
resulting sequence is the same as for the 2nd order PLL. 
 

( ) is the phase error ( ) in the theoretical model.ee t tφ  
 
The theoretical model of the VCO is: 

2
0

( ) 2 ( )
t

vt k v t dtφ π= ∫  

and the discrete-time model is: 
VCOState VCOState 2 ( 1)v sk t Tπ= + −  
which approximates the integrator of the theoretical model. 
 
The loop filter is a PI-controller, and has the transfer function: 

( ) 1 aH f
jf

= +  

This is simply a combination of a sum plus an integrator, which is also present in the 
MATLAB code: 

 
Filterstate Filterstate ( )      Integrator
( ) Filterstate ( )                 Integrator +input

e t
v t e t

= +
= +

 

 
b)For smaller kv, the lock-in time is longer, but the output amplitude is greater. 
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c)The phase error increases, and tracks the message signal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

d)For a single sinusoid, the track is lost if 0 0   where m f v c vf K K k k A A≥ =  
 
For this question, K0=100 kHz, but tracking degrades noticeably around 60-70 kHz. 
 
e)No useful signal can be extracted. 
 
By multiplying s(t) and r(t), we get: 

sin( VCOState) sin(4 VCOState)
2
c v

f c f
A A k f t kφ π φ⎡ ⎤− + + +⎣ ⎦  

 
This is substantially different from the original error signal, and cannot be seen as an 
adequate approximation.  Of particular interest is the fact that this equation is 
substantially more sensitive to changes in φ than the previous one owing to the presence 
of the gain factor kv 
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Chapter 5 Problems 
 

5.1. (a) Given 
2

22

( )1( ) exp( )
22

x

xx

xf x μ
σπσ

−
= −  

 
and 2 2exp( ) exp( )t fπ π− − , then by applying the time-shifting and scaling properties: 
 

2 2 2 2

2

1( ) 2 exp( ( 2 ) )exp( 2 )
2

x x x

x

F f f j fπσ π πσ π π μ
πσ

= −  

          = 2 2 2exp( 2 2 )       and let  2x xf j f fπ σ μ π ν π− + =  

          = 2 21exp( )
2x xjνμ ν σ−  

 
 
(b)The value of μx does not affect the moment, as its influence is removed. 
 
Use the Taylor series approximation of φx(x), given μx = 0. 
 

2 2

2

0

1( ) exp( )
2

exp( )
!

x x

n

xx
n

φ ν ν σ

∞

=

= −

=∑
 

0

2 2

0

( )[ ]

1 ( )
2 !

n
n x

n
v

k k k
x

x
k

dE X
d

k

φ ν
ν

σ νφ ν

=

∞

=

=

⎛ ⎞∴ = −⎜ ⎟
⎝ ⎠

∑  

For any odd value of n, taking ( )n
x

n

d
d
φ ν
ν

 leaves the lowest non-zero derivative as ν2k-n.  

When this derivative is evaluated for v=0, then [ ]nE X =0. 
 
For even values of n, only the terms in the resulting derivative that correspond to ν2k-n = 
ν0 are non-zero.  In other words, only the even terms in the sum that correspond to k = n/2 
are retained. 
 

2! [ ]
( / 2)!

n
x

nE X
n

σ∴ =  
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5.2. (a)  All the inputs for x ≤0 are mapped to y = 0.  However, the probability that x > 0 
is unchanged.  Therefore the probability density of x ≤0 must be concentrated at y=0. 
 

(b) Recall that ) 1  where ( ) is an even function.x xf x dx f x
∞

−∞

=∫   Because fy(y) is a 

probability distribution, its integral must also equal 1. 
 

0 0

 ( ) 0.5   and  ( ) 0.5x yf x dx f y dy
+

∞ ∞

∴ = =∫ ∫  

   
Therefore, the integral over the delta function must be 0.5.  This means that the factor k 
must also be 0.5. 
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  5.3 (a) 
 
 
 
 
 
 
 
 

(b) ( ) ( )yP y p y dy
α

α
∞

≥ = ∫  

 
Use the cumulative Gaussian distribution, 
 

2

2

2, 2

1 ( )( ) exp( )
22

y yy dy
μ σ

μ
σπσ−∞

−
Φ = −∫  

 

2 21, 1,

1 ( ) [ ( ) ( )]
2

P y
σ σ

α α α
−

∴ ≥ = Φ − +Φ −  

 

But, 2,

1( ) [1 ( )]
2 2

yy erf
μ σ

μ
σ
−

Φ = +  

 
1 1 1 ( ) [2 ]
2 2 2

P y erf erfα αα
σ σ
− + − −⎛ ⎞ ⎛ ⎞∴ ≥ = + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 1 1

0 1

0 1

2 2

2 22

( ) ( | ) ( ) ( | ) ( )

Assume: ( ) ( ) 0.5
1 ( ) [ ( | ) ( | )
2

1 ( 1) ( 1)( ) [exp( ) exp( )]
2 22 2

y y y

y y y

y

p y p y x P x p y x P x

P x P x

p y p y x p y y

y yp y
σ σπσ

= +

= =

∴ = +

+ −
= − + −
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Problem 5.4 
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Problem 5.5 
 
If, for a complex random process Z(t) 
 [ ]( ) *( ) ( )ZR Z t Z tτ τ= +E  
then 
(i) The mean square of a complex process is given by   

[ ]
2

(0) *( ) ( )

( )

ZR Z t Z t

Z t

=

⎡ ⎤= ⎣ ⎦

E

E
 

 
(ii) We show ( )ZR τ  has conjugate symmetry by the following 

 

[ ]
[ ]
[ ]
*

( ) *( ) ( )

*( ) ( )

( ) ( ) *

( )

Z

Z

R Z t Z t

Z s Z s

Z s Z s

R

τ τ

τ

τ

τ

− = −

= +

= +

=

E

E

E
 

where we have used the change of variable s = t - τ. 
(iii) Taking an approach similar to that of Eq. (5.67) 

( )

( )( )
[ ]

[ ] [ ]

[ ]{ }
{ }

2

2 2

2

0 ( ) ( )

( ) ( ) *( ) *( )

( ) *( ) ( ) *( ) *( ) ( ) ( ) *( )

( ) ( ) *( ) *( ) ( ) ( )

2 ( ) 2 Re *( ) ( )

2 (0) 2Re ( )Z Z

Z t Z t

Z t Z t Z t Z t

Z t Z t Z t Z t Z t Z t Z t Z t

Z t Z t Z t Z t Z t Z t

Z t Z t Z t

R R

τ

τ τ

τ τ τ τ

τ τ τ

τ

τ

⎡ ⎤≤ ± +⎢ ⎥⎣ ⎦
⎡ ⎤= ± + ± +⎣ ⎦

= ± + ± + + + +

⎡ ⎤ ⎡ ⎤= ± + ± + + +⎣ ⎦ ⎣ ⎦
⎡ ⎤= ± +⎣ ⎦

= ±

E

E

E

E E E E

E E

 

 
Thus { }Re ( ) (0)Z ZR Rτ ≤ . 
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Problem 5.6 (a) 
 

*
1 2

1 1 1 2 1 2 1 2 1 2 2 2

[ ( ) ( )]
[( cos(2 ) cos(2 )) ( cos(2 ) cos(2 ))]

E Z t Z t
E A f t jA f t A f t jA f tπ θ π θ π θ π θ= + + + ⋅ + + +

 

 
Let ω1=2πf1  ω2=2πf2 
 
After distributing the terms, consider the first term: 
 

2
1 1 1 1 2 1

2

1 1 2 1 1 2 1

[cos( )cos( )]

[cos( ( )) cos( ( ) 2 )]
2

A E t t

A E t t t t

ω θ ω θ

ω ω θ

+ +

= − + + +
 

 
The expectation over θ1 goes to zero, because θ1 is distributed uniformly over [-π,π].  
This result also applies to the term 2

2 1 2 2 2 2[cos( ) cos( )]A t tω θ ω θ+ + .  Both cross-terms go 
to zero. 
 

2

1 2 1 1 2 2 1 2 ( , ) [cos( ( )) cos( ( ))]
2
AR t t t t t tω ω∴ = − + −  

 
(b) If f1 = f2, only the cross terms may be different: 
 

2
1 1 2 1 2 1 1 1 2 1 2 1[ (cos( ) cos( ) cos( ) cos( )]E jA t t t tω θ ω θ ω θ ω θ+ + + + +  

But, unless θ1=θ2, the cross-terms will also go to zero. 
2

1 2 1 1 2 ( , ) cos( ( ))R t t A t tω∴ = −  
 
 
(c) If θ1=θ2, then the cross-terms become: 
 

2 2
1 1 2 2 1 1 2 2 1 2 1 1 2 1 1 2 2 1[cos(( )) cos(( ) 2 ) [cos(( )) cos(( ) 2 )]jA E t t t t jA E t t t tω ω ω ω θ ω ω ω ω θ− − + + + + − + + +

 
After computing the expectations, the cross-terms simplify to: 
 

2

2 1 1 2 1 1 2 2[cos( ) cos( )]
2

jA t t t tω ω ω ω− − −  

 
2

1 2 1 1 2 2 1 2 2 1 1 2 1 1 2 2 ( , ) [cos( ( )) cos( ( )) cos( ) cos( )]
2Z
AR t t t t t t j t t j t tω ω ω ω ω ω∴ = − + − + − − −  
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Problem 5.7  
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Problem 5.8 
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Problem 5.9 

 
 

 
 
 
 

Copyright © 2009 John Wiley & Sons, Inc.  All Rights Reserved.



 

 
 

 

Copyright © 2009 John Wiley & Sons, Inc.  All Rights Reserved.



 
 
 
Problem 5.10 
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Problem 5.11 
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Problem 5.12 
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Problem 5.13 
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Problem 5.14 
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Problem 5.15 
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Problem 5.16 
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Problem 5.17 
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Problem 5.18 
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Problem 5.19 
 

 
Problem 5.20 
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Problem 5.21 
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Problem 5.22 
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Problem 5.23 
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Problem 5.24 
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Problem 5.25 

 

 
 
Problem 5.26 
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Problem 5.27 
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Problem 5.28 

 

 
 
c)For a given filter, ( )H f , let ln ( )H fα =  

and the Paley-Wiener criterion for causality is: 2

( )
1 (2 )

f
df

f
α
π

∞

−∞

< ∞
+∫  

 
For the filter of part (b) 

[ ]0
1( ) ln(2) ln( ( ) ln( )
2 xf S f Nα = + −  

The first and the last terms have no impact on the absolute integrability of the previous 
expression, and so do not matter as far as evaluating the above criterion.  This leaves the 
only condition: 

2

ln ( )
1 (2 )

xS f
df

fπ

∞

−∞

< ∞
+∫  
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Problem 5.29 
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Problem 5.30 
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Problem 5.31 
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Problem 5.32 
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Problem 5.33 
 

(a) The receiver position is given by x(t) = x0+vt Thus the signal observed by the 
receiver is 

0

0

( , ) ( ) cos 2

( ) cos 2

( ) cos 2

c

c

c
c c

xr t x A x f t
c

x vtA x t f t
c

f v xA x f t f
c c

π

π

π

⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤+⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞= − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

 The Doppler shift of the frequency observed at the receiver is c
D

f vf
c

= . 

(b) The expectation is given by 

( ) ( )

( )

( )0

1exp 2 exp 2 cos
2

1 exp 2 sin
2

2

n D n n

D n n

D

j f j f d

j f d

J f

π

π

π

π

π τ π τ ψ ψ
π

π τ ψ ψ
π

π τ

−

−

⎡ ⎤ =⎣ ⎦

=

=

∫

∫

E

 

where the second line comes from the symmetry of cos and sin under a 
-π/2 translation. 

Eq. (5.174) follows directly from this upon noting that, since the expectation result is 
real-valued, the right-hand side of Eq.(5.173) is equal to its conjugate. 
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Problem 5.34 
 
The histogram has been plotted for 100 bins.  Larger numbers of bins result in larger 
errors, as the effects of averaging are reduced. 
 
Distance Relative Error 
0σ 0.94% 
1σ 2.6 % 
2σ 4.8 % 
3σ 47.4% 
4σ 60.7% 
 
The error increases further out from the centre.  It is also important to note that the 
random numbers generated by this MATLAB procedure can never be greater than 5.  
This is very different from the Gaussian distribution, for which there is a non-zero 
probability for any real number. 
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5.34 Code Listing 
 
%Problem 5.34 
%Set the number of samples to be 20,000 
N=20000 
M=100; 
Z=zeros(1,20000); 
  
for i=1:N 
    for j=1:5 
        Z(i)=Z(i)+2*(rand(1)-0.5); 
    end 
end 
sigma=sqrt(var(Z-mean(Z))); 
  
%Calculate a histogram of Z 
[X,C]=hist(Z,M); 
l=linspace(C(1),C(M),M); 
 
%Create a gaussian function with the same variance as Z 
G=1/(sqrt(2*pi*sigma^2))*exp(-(l.^2)/(2*sigma^2)); 
delta2=abs(l(1)-l(2)); 
X=X/(20000*delta2); 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © 2009 John Wiley & Sons, Inc.  All Rights Reserved.



5.35 (a)  For the generated sequence: 
 

2

ˆ 0.0343 0.0493

ˆ 5.597
y

y

jμ

σ

= − +

=
 

 
The theoretical values are: μy = 0 (by inspection).   
 
The theoretical value of 2

yσ =5.56.  See 5.35 (c) for the calculation. 
 
5.35 (b) 
 
From the plots, it can be seen that both the real and imaginary components are 
approximately Gaussian.  In addition, from statistics, the sum of tow zero-mean Gaussian 
signals is also Gaussian distributed.  As a result, the filter output must also be Gaussian. 
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5.35 (c)   
 

 

 

 

 

 

 

 
Rh(z) = H(z)H(z-1) =  
 
 
 
 
But, Ry(z) = Rh(z)Rw(z) 
 
Taking the inverse z-transform: 
 

2

2( )     
1

nw
yr n a n

a
σ

= −∞ < < ∞
−

 

 
From the plots, the measured and observed autocorrelations are almost identical. 

1

1

( ) ( 1) ( )
( ) ( )

1( ) ( ) ( )
1

n

y n ay n w n
Y z aY z z

H z h n a u n
az

−

−

= − +

=

∴ = =
−

1

1

2 1 2

1
(1 )(1 )

1 1
1 1 1 1

az az
a z
a az a az

−

−

−

− −

= +
− − − −
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Chapter 6 Solutions 
 

Problem 6.3 
 

 

 
 
 
 
 
 
 
 
 
 

Copyright © 2009 John Wiley & Sons, Inc.  All Rights Reserved.



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © 2009 John Wiley & Sons, Inc.  All Rights Reserved.



Problem 6.4 
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Problem 6.5 
 

 
 

 
 
 

Copyright © 2009 John Wiley & Sons, Inc.  All Rights Reserved.



 

 
 
 
 
 

Copyright © 2009 John Wiley & Sons, Inc.  All Rights Reserved.



Problem 6.6 
 
Problem 6.7 
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Problem 6.8 
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Problem 6.9 
 
Problem 6.10 
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Problem 6.11 
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Problem 6.12 
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Problem 6.13 
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Problem 6.24 
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Problem 6.15 
 

 

 
 
Problem 6.16 
 
Problem 6.17 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © 2009 John Wiley & Sons, Inc.  All Rights Reserved.



Chapter 7 Problems 
 

Problem 7.1 
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Problem 7.2 
 

 

 
 
 
 
 
 
 
 
 
 
 

Copyright © 2009 John Wiley & Sons, Inc.  All Rights Reserved.



Problem 7.3 
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Problem 7.4 
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Problem 7.5 
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Problem 7.6 
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Problem 7.7 
 

 
 
Problem 7.8 
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Problem 7.9 
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Problem 7.10 
 
Problem 7.11 
 
Problem 7.12 
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Problem 7.13 
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Problem 7.14 
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Problem 7.15 
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Problem 7.16 
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Problem 7.17 
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Problem  7.18 
 

 

 
 
Problem 7.19 
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Problem 7.20 
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Problem 7.21 
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Problem 7.22 
The maximum slope of the signal ( )( ) sin 2s t A ftπ=  is 2πfA.  Consequently, the 
maximum change during a sample period is approximately 2πAfTs. To prevent slope 
overload, we require  

 
100 2

2 (1 ) /(68 )
0.092

smV AfT
A kHz kHz

A

π
π

>
=
=

 

or A < 1.08 V. 
 

 
Problem 7.23 

(a) Theoretically, the sampled spectrum is given by 

( ) ( )s s s
n

S f H f nf
∞

=−∞

= −∑  

where Hs(f) is the spectrum of the signal H(f) limited to / 2sf f≤ .  For this 
example, the sample spectrum should look as below. 

0 f5 kHz-5 kHz
 

(b) 
The sampled spectrum is given by 

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5
x 105

Frequency (kHz)

A
m

pl
itu

de
 S

pe
ct

ru
m
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There are several features to comment on: 
(i) The component at +4 kHz is due to aliasing of the -6 kHz sinusoid; and 

the component at -4kHz is due to aliasing of the +6 kHz sinusoid.  

(ii) The lower frequency is at 2 kHz is six times larger than the one at 4 kHz.  
One would expect the power ratio to be 4:1, not 6:1.  The difference is due 
to relationship between the FFTsize (period) and the sampling rate.  (Try a 
sampling rate of 10.24 kHz and compare.) 

(b) The spectrum with a 11 kHz sampling rate is shown below.  

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5
x 10

5

Frequency (kHz)

A
m

pl
itu

de
 S

pe
ct

ru
m

 
As expected the 2kHz component is unchanged in frequency, while the aliased 
component is shifted to reflect the new sampling rate. 
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Problem 7.23 
(a) The expanding portion of the μ-law compander is given by 

( )

exp log(1 ) 1

1 exp 1

m
μ υ

μ

μ υ
μ

⎡ ⎤+ −⎣ ⎦=

⎡ ⎤+ −⎣ ⎦=

 

 
(b) 
(i) For the non-companded case, the rms quantization error is determined by step size. 
The step size is given by the maximum range over the number of quantization steps 

2
2Q

A
Δ =  

For this signal the range is from +10 to -1, so A = 10 and with Q = 8, we have Δ = 0.078. 
From Eq. (  ) , the rms quantization error is then given by 

 

2 2 2
max

2 16

1 2
3

1 (10) 2
3
0.0005086

R
Q mσ −

−

=

=

=

 

and the rms error is σQ – 0.02255. 
 
 
(ii)  For a fair comparison, the signal must have similar amplitudes. 
The rms error with companding is 0.0037 which is significantly less.  The plot is shown 
below. Note that the error is always positive. 
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Rest TBD. 
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Problem 7.24 
 
Problem 7.25 
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Chapter 8 
 
 

Problem 8.1 
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Problem 8.2 
 
Problem 8.3 
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Problem 8.4 
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Problem 8.5 
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Problem 8.6 
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Problem 8.7 
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Problem 8.8 
 

 
 
Problem 8.9 
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Problem 8.10 
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Problem 8.11 
 

 
 
Problem 8.12 
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Problem 8.13 
 

 
 
 
Problem 8.14 
 

 
 
Problem 8.15 
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Problem 8.16 
 

 
 
Problem 8.17 
 
Problem 8.18 
 
Problem 8.19 
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Problem 8.20 
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Problem 8.21 
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Problem 8.22 
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Problem 8.23 
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Problem 8.24 
 

 

 
 
 
Problem 8.25 
Problem 8.26 
Problem 8.29 
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Chapter 9 
 

 
Problem 9.1 
The three waveforms are shown below for the sequence 0011011001. (b) is ASK, (c) is 
PSK; and (d) is FSK. 

 
 
Problem 9.2 
The bandpass signal is given by  
 ( )( ) ( ) cos 2 cs t g t f tπ=  
The corresponding amplitude spectrum, using the multiplication theorem for Fourier 
transforms, is given by 

 
[ ]( ) ( )* ( ) ( )

( ) ( )
c c

c c

S f G f f f f f
G f f G f f

δ δ= − + +

= − + +
 

  
For a triangular spectrum G(f), the corresponding sketch is shown below. 
 
Problem 9.3 
 
To be done 
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Problem 9.4 
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Problem 9.5 
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Problem 9.6 

 
 
 

 
 
**The problem here is solved as “erfc” here and in the old edition, but listed in the 
textbook question as “Q(x)”. 
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Problem 9.7 
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Problem 9.10 
 

 
Problem 9.11 
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Problem 9.12 
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Problem 9.13 
Problem 9.14 
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Problem 9.15 
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Problem 9.16 

 
 
Problem 9.17 
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Problem 9.18 
 

 
Problem 9.19 
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Problem 9.20 
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Problem 9.22 
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Chapter 10 Problems 
 

Problem 10.1 
 

 
Problem 10.2 
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Problem 10.3 
 

 
 
Problem 10.4 
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Problem 10.5 
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Problem 10.6 
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Problem 10.7 
 
a) 
 

 

 
b)To be done 
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Problem 10.8 
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Problem 10.9 
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Problem 10.10 
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Problem 10.11 
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Problem 10.12 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

Copyright © 2009 John Wiley & Sons, Inc.  All Rights Reserved.



Problem 10.13 
 

 
 
Problem 10.14 
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Problem 10.15 
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Problem 10.16 
 

 
Problem 10.17 
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Problem 10.18 
 

 
 
Problem 10.19 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © 2009 John Wiley & Sons, Inc.  All Rights Reserved.



Problem 10.20 
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Problem 10.21 
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Problem 10.22 
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