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PREFACE ({INTERNATIONAL
EDITION)

|he chief objective of the fourth (international) edition is to respond to the tremendous

amount of technological progress in communication systems over the decade since the

third edition was published. At the same time, new software and teaching tools have
also become available, making it much easier to provide solid and illustrative examples as
well as more experimental opportunities for students. In this new edition, major changes are
implemented toincorporate recent technological advances of telecommunications. To captivate
students’ attention and make it easier for students to relate the course materials to their daily
experience with communication tools, we will provide relevant information on the operation
and features of cellular systems, wireless local area networks (LANs), and wire-line (digital
subscriber loop or DSL) internet services, among others.

Major Revision
A number of critical changes are motivated by the need to emphasize the fundamentals of
digital communication systems that have permeated our daily lives. Specifically, in light of the
widespread applications of new technologies such as spread spectrum and orthogonal frequency
division multiplexing (OFDM), we present a new chapter (Chapter 11) on spread spectrum
communications and a new chapter (Chapter 12) on frequency-selective channels and OFDM
systems. As practical examples of such systems, we provide a basic introduction of current
wireless communication standards including cellular systems and IEEE 802.11a/b/g/n wireless
LAN systems. In addition, we summarize the latest DSL modem technologies and services. At
the fundamental level, information theory and coding have also been transformed by progress
in several important areas. In this edition, we include the basic principles of multiple-input—
multiple-output (MIMO) technology which has begun to see broad commercial application. We
also cover several notable breakthroughs in error correction coding, including soft decoding,
turbo codes, and low-density parity check (LDPC) codes.

To enhance the learning experience and to give students opportunities for computer-
based experimental practice, relevant MATLAB examples and exercises have been provided
in chapters that can be enhanced by these hands-on experiments.

Organization

The fourth (international) edition, begins with a traditional review of signal and system fun-
damentals and proceeds to the core communication topics of analog modulation and digital
pulse-coded modulation. We then present the fundamental tools of probability theory and ran-
dom processes to be used in the design and analysis of digital communications in the rest of
this text. After coverage of the fundamentals of digital communication systems, the last two

xvi
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chapters provide an overview of information theory and the fundamentals of forward error
correction codes.

Ideally, the subjects covered in this text should be taught in two courses: one on the basic
operations of communication systems, and one on the analysis of modern communication
systems under noise and other distortions. The former relies heavily on deterministic analyti-
cal tools such as Fourier series, Fourier transforms and the sampling theorem, while the latter
relies on tools from probability and random processes to tackle the unpredictability of message
signals and noises. Today, however, with so many competing courses, it may be difficult to
squeezeinto atypical electrical engineering curriculum two basic courses on communications.
Some universities do require a course in probability and random processes as a prerequisite,
allowing both areas to be covered reasonably well in a one-semester course. This book is
designed for adoption both as a one-semester course (in which the deterministic aspects of
communication systems are emphasized with little consideration of the effects of noise and
interference) and for a course that deals with both the deterministic and probabilistic aspects
of communication systems. The book itself is self-contained, providing all the necessary back-
ground in probabilities and random processes. However, as stated earlier, if both deterministic
and probabilistic aspects of communications are to be covered in one semester, it is highly
desirable for students to have a good background in probabilities.

Chapter 1 introduces a panoramic view of communication systems. All the important
concepts of communication theory are explained qualitatively in a heuristic way. This attracts
students to communications topics in general. With this momentum, they are motivated to
study the tool of signal analysis in Chapters 2 and 3, where they are encouraged to see a signal
as a vector, and to think of the Fourier spectrum as a way of representing a signal in terms
of its vector components. Chapters 4 and 5 discuss amplitude (linear) and angle (nonlinear)
modulations respectively. Many instructors feel that in this digital age, modulation should be
deemphasized. We hold that modulation is not so much a method of communication as a basic
tool of signal processing; it will always be needed, not only in the area of communication
(digital or analog), but also in many other areas of electrical engineering. Hence, neglecting
modulation may prove to be rather shortsighted. Chapter 6, which serves as the fundamental
link between analog and digital communications, describes the process of analog-to-digital
conversion (ADC). It provides details of sampling, pulse code modulation (including DPCM),
delta modulation, speech coding (vocoder), image/video coding, and compression. Chapter 7
discusses the principles and techniques used in digital modulation. It introduces the concept of
channel distortion and presents equalization as an effective means of distortion compensation.

Chapters 8 and 9 provide the essential background on theories of probability and ran-
dom processes. These comprise the second tool required for the study of communication
systems. Every attempt is made to motivate students and to maintain their interest through
these chapters by providing applications to communications problems wherever possible.
Chapters 10 presents the analysis of digital communication systems in the presence of noise.
It contains optimum signal detection in digital communication. Chapter 11 focuses on spread
spectrum communications. Chapter 12 presents various practical techniques that can be used
to combat practical channel distortions. This chapter captures both channel equalization and
the broadly applied technology of OFDM. Chapter 13 provides a tutorial of information theory.
Finally, the principles and key practical aspects of error control coding are given in Chapter 14.

One of the goals for writing this book has been to make learning a pleasant or at least a
less intimidating experience for students by presenting the subject in a clear, understandable,
and logically organized manner. Every effort has been made to deliver insights—rather than
just understanding—as well as heuristic explanations of theoretical results wherever possible.
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Many examples are provided for further clarification of abstract results. Even partial success
in achieving this stated goal would make all our efforts worthwhile.

A Whole New World

There have been a number of major technology developments since the publication of the
third edition in 1998. First of all, the cellular telephone has deeply penetrated the daily lives of
urban and suburban households in most developed and even developing nations. In 1998 very
few students carried beepers and cell phones into the classroom. Now, nearly every college
student has a cell. Second, in 1998 most of the household internet connections were linked via
low speed (28.8kbit/s) voiceband modems. Today, a majority of our students are connected
to cyberspace through DSL or cable services. In addition, wireless LAN has made esoteric
terms such as IEEE 802.11 into household names. Most students in the classroom have had
experience exploring these technologies.

Because of the vast technological advances, this new generation of students is extremely
interested in learning about these new technologies and their implementation. The students are
eager to understand how and where they may be able to make contributions in industry. Such
strong motivation must be encouraged and taken advantage of. This new edition will enable
instructors either to cover the topics themselves or to assign reading materials such that the
students can acquire relevant information. The new edition achieves these goals by stressing
the digital aspects of the text and by incorporating the most commonly known wire-less and
wire-line digital technologies.

Course Adoption

With a combined teaching experience of over 55 years, we have taught communication classes
under both quarter and semester systems in several major universities. In complementary
fashion, students’ personal experiences with communication systems have continuously been
multiplying, from simple radio sets in the 1960s to the twenty-first century, with it easy access
to wireless LAN, cellular devices, satellite radio, and home internet services. Hence, more
and more students are interested in learning how familiar electronic gadgets work. With this
important need and our past experiences in mind, we revised the fourth (international) edition
of this text to fit well within several different curriculum configurations. In all cases, basic
coverage should teach the fundamentals of analog and digital communications (Chapters 1-7).

One-Semester Course (without strong probability background)

In many existing curricula, undergraduate students are not exposed to simple probability tools
until they begin to take communications. Often this occurs because the students were sent to
take an introductory statistical course that is disconnected from engineering science. This text
is well suited to students of such a background. The first seven chapters form a comprehensive
coverage of modern digital and analog communication systems for average ECE undergraduate
students. Such a course can be taught in one semester (4045 instructional hours). Under the
premise that each student has built a solid background in Fourier analysis via a prerequisite
class on signals and systems, most of the first three chapters can be treated as a review in one
week. The rest of the semester can be fully devoted to teaching Chapters 4 through 7 with
partial coverage on the practical systems of Chapters 11 and 12 to enhance students’ interest.

One-Semester Course (with a strong probability background)

For curricula that have strengthened the background coverage of probability theory, a much
more extensive coverage of digital communications can be achieved within one semester.
A rigorous probability class can be taught within the context of signal and system analysis
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(cf. George R. Cooper and Clare D. McGillem, Probabilistic Methods of Signal and System
Analysis, Oxford University Press, 1999). For this scenario, in addition to Chapters 1 through 7,
Chapter 10 and part of Chapter 12 on equalization can also be taught in one semester, provided
the students have a solid probability background that can limit the coverage of Chapters 8
and 9 to a few hours. Students completing this course would be well prepared to enter the
telecommunications industry or to enter graduate studies.

Two-Semester Series (without a separate probability course)

The entire text can be thoroughly covered in two semesters for a curriculum that does not
have any prior probability course. In other words, for a two-course series, the goal is to teach
both communication systems and fundamentals of probabilities. In an era of many competing
courses in the ECE curriculum, it is hard to set aside two semester courses for communications
alone. On the other hand, most universities do have a probability course that is separately
taught by nonengineering professors. In this scenario it would be desirable to fold probability
theory into the two communication courses. Thus, for two semester courses, the coverage can
be as follows:

+ 1st semester: Chapters 1-7 (Signals and Communication Systems)
- 2nd semester: Chapters 8—12 (Modern Digital Communication Systems)

One-Quarter Course (with a strong probability background)

In a quarter system, students must have prior exposure to probability and statistics at a rigorous
level (cf. Cooper and McGillem, Probabilistic Methods of Signal and System Analysis). They
must also have solid knowledge of Fourier analysis. Within a quarter, the class can impart the
basics of analog and digital communication systems (Chapters 3-7), and, in chapters 10 and 11,
respectively, analysis of digital communication systems and spread spectrum communications.

One-Quarter Course (without a strong probability background)

In the rare case that students come in without much background in probability, it is important
for them to acquire basic knowledge of communication systems. It is wise not to attempt to
analyze digital communication systems. Instead, basic coverage without prior knowledge of
probability can be achieved by teaching the operations of analog and digital systems (Chapters
1-7) and providing a high-level discussion of spread spectrum wireless systems (Chapter 11).

Two-Quarter Series (with basic probability background)

Unlike a one-quarter course, a two-quarter series can be well designed to teach most of the
important materials on communication systems and their analysis. The entire text can be
extensively taught in two quarters for a curriculum that has some preliminary coverage of
Fourier analysis and probabilities. Essentially viewing Chapters 1 through 3 and Chapter 8 as
partly new and partly reviews, the coverage can be as follows:

- Ist quarter: Chapters 1-9 (Communication Systems and Analysis)

+ 2nd quarter: Chapters 10-14 (Digital Communication Systems)

MATLAB and Laboratory Experience

Since many universities no longer have hardware communication laboratories, MATLAB-
based communication system exercises are included to enhance the learning experience.
Students will be able to design systems and modify their parameters to evaluate the over-
all effects on the performance of communication systems through computer displays and the
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measurement of bit error rates. Students will acquire first-hand knowledge on how to design
and perform simulations of communication systems.
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INTRODUCTION

ver the past decade, the rapid expansion of digital communication technologies has
been simply astounding. Internet, a word and concept once familiar only to technolo-
gists and the scientific community, has permeated every aspect of people’s daily lives.
It is quite difficult to find any individual in a modern society that has not been touched by new
communication technologies ranging from cellular phones to Bluetooth. This book examines
the basic principles of communication by electric signals. Before modern times, messages
were carried by runners, carrier pigeons, lights, and fires. These schemes were adequate for the
distances and “data rates” of the age. In most parts of the world, these modes of communication
have been superseded by electrical communication systems,* which can transmit signals over
much longer distances (even to distant planets and galaxies) and at the speed of light.
Electrical communication is dependable and economical; communication technologies
improve productivity and energy conservation. Increasingly, business meetings are conducted
through teleconferences, saving the time and energy formerly expended on travel. Ubiqui-
tous communication allows real-time management and coordination of project participants
from around the globe. E-mail is rapidly replacing the more costly and slower “snail mails.”
E-commerce has also drastically reduced some costs and delays associated with marketing,
while customers are also much better informed about new products and product information.
Traditional media outlets such as television, radio, and newspapers have been rapidly evolving
in the past few years to cope with, and better utilize, the new communication and networking
technologies. The goal of this textbook is to provide the fundamental technical knowledge
needed by next-generation communication engineers and technologists for designing even
better communication systems of the future.

1.1 COMMUNICATION SYSTEMS

Figure 1.1 presents three typical communication systems: a wire-line telephone—cellular phone
connection, a TV broadcasting system, and a wireless computer network. Because of the
numerous examples of communication systems in existence, it would be unwise to attempt
to study the details of all kinds of communication systems in this book. Instead, the most
efficient and effective way to learn about communication is by studying the major func-
tional blocks common to practically all communication systems. This way, students are not

* With the exception of the postal service.
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Figure 1.1
Some examples
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merely learning the operations of those existing systems they have studied; More impor-
tantly, they can acquire the basic knowledge needed to design and analyze new systems never
encountered in a textbook. To begin, it is essential to establish a typical communication sys-
tem model as shown in Fig. 1.2. The key components of a communication system are as
follows.

The source originates a message, such as a human voice, a television picture, an e-mail
message, or data. If the data is nonelectric (e.g., human voice, e-mail text, television video),
it must be converted by an input transducer into an electric waveform referred to as the
baseband signal or message signal through physical devices such as a microphone, acomputer
keyboard, or a CCD camera.

The transmitter modifies the baseband signal for efficient transmission. The transmitter
may consist of one or more subsystems: an A/D converter, an encoder, and a modulator.
Similarly, the receiver may consist of a demodulator, a decoder, and a D/A converter.
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The channel is a medium of choice thatcan convey the electric signals at the transmitter
output over a distance. A typical channel can be a pair of twisted copper wires (telephone and
DSL), coaxial cable (television and internet), an optical fiber, or a radio link. Additionally, a
channel can also be a point-to-point connection in a mesh of interconnected channels that form
a communication network.

The receiver reprocesses the signal received from the channel by reversing the signal
modifications made at the transmitter and removing the distortions made by the channel. The
receiver output is fed to the output transducer, which converts the electric signal to its original
form—the message.

The destination is the unit to which the message is communicated.

A channel is a physical medium that behaves partly like a filter that generally attenuates
the signal and distorts the transmitted waveforms. The signal attenuation increases with the
length of the channel, varying from a few percent for short distances to orders of magni-
tude in interplanetary communications. Signal waveforms are distorted because of physical
phenomena such as frequency-dependent gains, multipath effects, and Doppler shift. For
example, a frequency-selective channel causes different amounts of attenuation and phase
shift to different frequency components of the signal. A square pulse is rounded or “spread
out” during transmission over a low-pass channel. These types of distortion, called linear
distortion, can be partly corrected at the receiver by an equalizer with gain and phase
characteristics complementary to those of the channel. Channels may also cause nonlin-
ear distortion through attenuation that varies with the signal amplitude. Such distortions
can also be partly corrected by a complementary equalizer at the receiver. Channel distor-
tions, if known, can also be precompensated by transmitters by applying channel-dependent
predistortions.

In a practical environment, signals passing through communication channels not only
experience channel distortions but also are corrupted along the path by undesirable inter-
ferences and disturbances lumped under the broad term noise. These interfering signals are
random and are unpredictable from sources both external and internal. External noise includes
interference signals transmitted on nearby channels, human-made noise generated by faulty
contact switches of electrical equipment, automobile ignition radiation, fluorescent lights or
natural noise from lightning, microwave ovens, and cellphone emissions, as well as elec-
tric storms and solar and intergalactic radiation. With proper care in system design, external
noise can be minimized or even eliminated in some cases. Internal noise results from thermal
motion of charged particles in conductors, random emission, and diffusion or recombina-
tion of charged carriers in electronic devices. Proper care can reduce the effect of internal
noise but can never eliminate it. Noise is one of the underlying factors that limit the rate of
telecommunications.

Thus in practical communication systems, the channel distorts the signal, and noise accu-
mulates along the path. Worse yet, the signal strength decreases while the noise level remains
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steady regardless of the distance from the transmitter. Thus, the signal quality is continuously
worsening along the length of the channel. Amplification of the received signal to make up for
the attenuation is to no avail because the noise will be amplified by the same proportion, and
the quality remains, at best, unchanged.* These are the key challenges that we must face in
designing modern communication systems.

1.2 ANALOG AND DIGITAL MESSAGES

Messages are digital or analog. Digital messages are ordered combinations of finite symbols or
codewords. Forexample, printed English consists of 26 letters, 10 numbers, a space, and several
punctuation marks. Thus, a text document written in English is a digital message constructed
from the ASCII keyboard of 128 symbols. Human speech is also a digital message, because it is
made up from a finite vocabulary in a language.” Music notes are also digital, even though the
music sound itself is analog. Similarly, a Morse-coded telegraph message is a digital message
constructed from a set of only two symbols—dash and dot. It is therefore a binary message,
implying only two symbols. A digital message constructed with M symbols is called an M -ary
message.

Analog messages, on the other hand, are characterized by data whose values vary over a
continuous range and are defined for a continuous range of time. For example, the temperature
or the atmospheric pressure of a certain location over time can vary over a continuous range and
can assume an (uncountable) infinite number of possible values. A piece of music recorded by
a pianist is also an analog signal. Similarly, a particular speech waveform has amplitudes that
vary over a continuous range. Over a given time interval, an infinite number of possible different
speech waveforms exist, in contrast to only a finite number of possible digital messages.

1.2.1 Noise Immunity of Digital Signals

It is no secret to even a casual observer that every time one looks at the latest electronic
communication products, newer and better “digital technology” is replacing the old analog
technology. Within the past decade, cellular phones have completed their transformation from
the first-generation analog AMPS to the current second-generation (e.g., GSM, CDMA) and
third-generation (e.g., WCDMA) digital offspring. More visibly in every household, digital
video technology (DVD) has made the analog VHS cassette systems almost obsolete. Digital
television continues the digital assault on analog video technology by driving out the last
analog holdout of color television. There is every reason to ask: Why are digital technologies
better? The answer has to do with both economics and quality. The case for economics is
made by noting the ease of adopting versatile, powerful, and inexpensive high-speed digital
microprocessors. But more importantly at the quality level, one prominent feature of digital
communications is the enhanced immunity of digital signals to noise and interferences.
Digital messages are transmitted as a finite set of electrical waveforms. In other words,
a digital message is generated from a finite alphabet, while each character in the alphabet
can be represented by one waveform or a sequential combination of such waveforms. For
example, in sending messages via Morse code, a dash can be transmitted by an electri-
cal pulse of amplitude A/2 and a dot can be transmitted by a pulse of negative amplitude

’f Actually, amplification may further deteriorate the signal because of additional amplifier noise.

T Here we imply the information contained in the speech rather than its details such as the pronunciation of words
and varying inflections, pitch, and emphasis. The speech signal from a microphone contains all these details and is
therefore an analog signal, and its information content is more than a thousand times greater than the information
accessible from the written text of the same speech.
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—A/2 (Fig 1.3a). In an M-ary case, M distinct electrical pulses (or waveforms) are used;
each of the M pulses represents one of the M possible symbols. Once transmitted, the
receiver must extract the message from a distorted and noisy signal at the channel output.
Message extraction is often easier from digital signals than from analog signals because
the digital decision must belong to the finite-sized alphabet. Consider a binary case: two
symbols are encoded as rectangular pulses of amplitudes A/2 and —A/2. The only deci-
sion at the receiver is to select between two possible pulses received; the fine details of
the pulse shape are not an issue. A finite alphabet leads to noise and interference immu-
nity. The receiver’s decision can be made with reasonable certainty even if the pulses
have suffered modest distortion and noise (Fig. 1.3). The digital message in Fig. 1.3a is dis-
torted by the channel, as shown in Fig. 1.3b. Yet, if the distortion is not too large, we can
recover the data without error because we need make only a simple binary decision: Is the
received pulse positive or negative? Figure 1.3c shows the same data with channel distortion
and noise. Here again, the data can be recovered correctly as long as the distortion and the
noise are within limits. In contrast, the waveform shape itself in an analog message carries the
needed information, and even a slight distortion or interference in the waveform will show up
in the received signal. Clearly, a digital communication system is more rugged than an analog
communication system in the sense that it can better withstand noise and distortion (as long
as they are within a limit).

1.2.2 Viability of Distortionless Regenerative Repeaters

One main reason for the superior quality of digital systems over analog ones is the viability
of regenerative repeaters and network nodes in the former. Repeater stations are placed along
the communication path of a digital system at distances short enough to ensure that noise
and distortion remain within a limit. This allows pulse detection with high accuracy. At each
repeater station, or network node, the incoming pulses are detected such thatnew, “clean” pulses
are retransmitted to the next repeater station or node. This process prevents the accumulation
of noise and distortion along the path by cleaning the pulses at regular repeater intervals.
We can thus transmit messages over longer distances with greater accuracy. There has been
widespread application of distortionless regeneration by repeaters in long-haul communication
systems and by nodes in a large (possibly heterogeneous) network.

For analog systems, signals and noise within the same bandwidth cannot be separated.
Repeaters in analog systems are basically filters plus amplifiers and are not “regenerative.”
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Figure 1.4
Analog-to-digital
conversion of a
signal.

Thus, it is impossible to avoid in-band accumulation of noise and distortion along the path.
As a result, the distortion and the noise interference can accumulate over the entire transmis-
sion path as a signal traverses through the network. To compound the problem, the signal is
attenuated continuously over the transmission path. Thus, with increasing distance the signal
becomes weaker, whereas the distortion and the noise accumulate more. Ultimately, the signal,
overwhelmed by the distortion and noise, is buried beyond recognition. Amplification is of
little help, since it enhances both the signal and the noise equally. Consequently, the distance
over which an analog message can be successfully received is limited by the first transmitter
power. Despite these limitations, analog communication was used widely and successfully in
the past for short- to medium-range communications. Nowadays, because of the advent of
optical fiber communications and the dramatic cost reduction achieved in the fabrication of
high-speed digital circuitry and digital storage devices, almost all new communication sys-
tems being installed are digital. But some old analog communication facilities are still in use,
including those for AM and FM radio broadcasting.

1.2.3 Analog-to-Digital (A/D) Conversion

Despite the differences between analog and digital signals, a meeting ground exists between
them: conversion of analog signals to digital signals (A/D conversion). A key device in
electronics, the analog-to-digital (A/D) converter, enables digital communication systems to
convey analog source signals such as audio and video. Generally, analog signals are continuous
in time and in range; that is, they have values at every time instant, and their values can be any-
thing within the range. On the other hand, digital signals exist only at discrete points of time,
and they can take on only finite values. A/D conversion can never be 100% accurate. Since,
however, human perception does not require infinite accuracy, A/D conversion can effectively
capture necessary information from the analog source for digital signal transmission.

Two steps take place in A/D conversion: a continuous time signal is first sampled into a
discrete time signal, whose continuous amplitude is then quantized into a discrete level signal.
First, the frequency spectrum of a signal indicates relative magnitudes of various frequency
components. The sampling theorem (Chapter 6) states that if the highest frequency in the
signal spectrum is B (in hertz), the signal can be reconstructed from its discrete samples,
taken uniformly at a rate not less than 2B samples per second. This means that to preserve
the information from a continuous-time signal, we need transmit only its samples (Fig. 1.4).

Allowed quantization levels
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However, the sample values are still not digital because they lie in a continuous dynamic
range. Here, the second step of quantization comes to rescue. Through quantization, each
sample is approximated, or “rounded off,” to the nearest quantized level, as shown in Fig. 1.4.
As human perception has only limited accuracy, quantization with sufficient granularity does
not compromise the signal quality. If amplitudes of the message signal m(¢) lie in the range
(—my, my), the quantizer partitions the signal range into L intervals. Each sample amplitude
is approximated by the midpoint of the interval in which the sample value falls. Each sam-
ple is now represented by one of the L numbers. The information is thus digitized. Hence,
after the two steps of sampling and quantizing, the analog-to-digital (A/D) conversion is
completed.

The quantized signal is an approximation of the original one. We can improve the accu-
racy of the quantized signal to any desired level by increasing the number of levels L.
For intelligibility of voice signals, for example, L=28 or 16 is sufficient. For commercial
use, L =32 is a minimum, and for telephone communication, L =128 or 256 is commonly
used.

Atypical distorted binary signal with noise acquired overthe channel is shownin Fig. 1.3.If
A is sufficiently large in comparison to typical noise amplitudes, the receiver can still correctly
distinguish between the two pulses. The pulse amplitude is typically 5 to 10 times the rms noise
amplitude. For such a high signal-to-noise ratio (SNR) the probability of error at the receiver
is less than 10"6; that is, on the average, the receiver will make fewer than one error per
million pulses. The effect of random channel noise and distortion is thus practically eliminated.
Hence, when analog signals are transmitted by digital means, some error, or uncertainty, in the
received signal can be caused by quantization, in addition to channel noise and interferences.
By increasing L, we can reduce to any desired amount the uncertainty, or error, caused by
quantization. At the same time, because of the use of regenerative repeaters, we can transmit
signals over a much longer distance than would have been possible for the analog signal. As
will be seen later in this text, the price for all these benefits of digital communication is paid
in terms of increased processing complexity and bandwidth of transmission.

1.2.4 Pulse-Coded Modulation—A Digital Representation

Once the A/D conversion is over, the original analog message is represented by a sequence
of samples, each of which takes on one of the L preset quantization levels. The transmission
of this quantized sequence is the task of digital communication systems. For this reason,
signal waveforms must be used to represent the quantized sample sequence in the transmission
process. Similarly, a digital storage device also would need to represent the samples as signal
waveforms. Pulse-coded modulation (PCM) is a very simple and yet common mechanism for
this purpose.

First, oneinformation bit refers toone binary digit of 1 or 0. The idea of PCM is to represent
each quantized sample by an ordered combination of two basic pulses: p; (¢) representing 1 and
po(?) representing 0. Because each of the L possible sample values can be written as a bit string
of length log, L, each sample can therefore also be mapped into a short pulse sequence that
represents the binary sequence of bits. For example, if L = 16, then, each quantized level can
be described uniquely by 4 bits. If we use two basic pulses, p1(z) = A/2 and po(¢) = —A/2. A
sequence of four such pulses gives 2 x 2 x 2 x 2 = 16 distinct patterns, as shown in Fig. 1.5.
We can assign one pattern to each of the 16 quantized values to be transmitted. Each quantized
sample is now coded into a sequence of four binary pulses. This is the principle of PCM
transmission, where signaling is carried out by means of only two basic pulses (or symbols).
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Figure 1.5
Example of PCM
encoding.
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0 0000
1 0001
2 0010
3 0011
4 0100
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6 0110
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8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

The binary case is of great practical importance because of its simplicity and ease of detection.
Much of today’s digital communication is binary.*

Although PCM was invented by P. M. Rainey in 1926 and rediscovered by A. H. Reeves in
1939, it was not until the early 1960s that the Bell System installed the first communication link
using PCM for digital voice transmission. The cost and size of vacuum tube circuits were the
chief impediments to the use of PCM in the early days before the discovery of semiconductor
devices. It was the transistor that made PCM practicable.

From all these discussions on PCM, we arrive at a rather interesting (and to certain extent
not obvious) conclusion—that every possible communication can be carried on with a mini-
mum of two symbols. Thus, merely by using a proper sequence of a wink of the eye, one can
convey any message, be it a conversation, a book, a movie, or an opera. Every possible detail
(such as various shades of colors of the objects and tones of the voice, etc.) that is reproducible
on a movie screen or on the high-definition color television can be conveyed with no less
accuracy, merely by winks of an eye.

* An intermediate case exists where we use four basic pulses (quaternary pulses) of amplitudes +A/2 and £34/2. A
sequence of two quaternary pulses can form 4 x 4 = 16 distinct levels of values.

T Of course, to convey the information in a movie or a television program in real time, the winking would have to be
at an inhumanly high speed. For example, the HDTV signal is represented by 19 million bits (winks) per second.
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1.3 CHANNEL EFFECT, SIGNAL-TO-NOISE RATIO,
AND CAPACITY

In designing communication systems, it is important to understand and analyze important fac-
tors such as the channel and signal characteristics, the relative noise strength, the maximum
number of bits that can be sent over a channel per second, and, ultimately, the signal
quality.

1.3.1 Signal Bandwidth and Power

In a given (digital) communication system, the fundamental parameters and physical limita-
tions that control the rate and quality are the channel bandwidth B and the signal power Pg.
Their precise and quantitative relationships will be discussed in later chapters. Here we shall
demonstrate these relationships qualitatively.

The bandwidth of a channel is the range of frequencies that it can transmit with reasonable
fidelity. Forexample, if a channel can transmit with reasonable fidelity a signal whose frequency
components vary from 0 Hz (dc) up to a maximum of 5000 Hz (5 kHz), the channel bandwidth
B is 5 kHz. Likewise, each signal also has a bandwidth that measures the maximum range of
its frequency components.

The faster a signal changes, the higher its maximum frequency is, and the larger its
bandwidth is. Signals rich in content that changes quickly (such as those for battle scenes in
a video) have larger bandwidth than signals that are dull and vary slowly (such as those for a
daytime soap opera or a video of sleeping animals). A signal can be successfully sent over a
channel if the channel bandwidth exceeds the signal bandwidth.

To understand the role of B, consider the possibility of increasing the speed of information
transmission by compressing the signal in time. Compressing a signal in time by a factor
of 2 allows it to be transmitted in half the time, and the transmission speed (rate) doubles.
Time compression by a factor of 2, however, causes the signal to “wiggle” twice as fast,
implying that the frequencies of its components are doubled. Many people have had firsthand
experience of this effect when playing a piece of audiotape twice as fast, making the voices of
normal people sound like the high-pitched speech of cartoon characters. Now, to transmit this
compressed signal without distortion, the channel bandwidth must also be doubled. Thus, the
rate of information transmission that a channel can successfully carry is directly proportional
to B. More generally, if a channel of bandwidth B can transmit N pulses per second, then
to transmit KN pulses per second by means of the same technology, we need a channel of
bandwidth KB. To reiterate, the number of pulses per second that can be transmitted over a
channel is directly proportional to its bandwidth B.

The signal power P plays a dual role in information transmission. First, P is related to
the quality of transmission. Increasing P; strengthens the signal pulse and diminishes the effect
of channel noise and interference. In fact, the quality of either analog or digital communication
systems varies with the signal-to-noise ratio (SNR). In any event, a certain minimum SNR at
the receiver is necessary for successful communication. Thus, a larger signal power P allows
the system to maintain a minimum SNR over a longer distance, thereby enabling successful
communication over a longer span.

The second role of the signal power is less obvious, although equally important. From
the information theory point of view, the channel bandwidth B and the signal power P; are,
to some extent, exchangeable; that is, to maintain a given rate and accuracy of information
transmission, we can trade Pgs for B, and vice versa. Thus, one may use less B if one is willing
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to increase P, or one may reduce P; if one is given bigger B. The rigorous proof of this will
be provided in Chapter 13.

In short, the two primary communication resources are the bandwidth and the transmitted
power. In a given communication channel, one resource may be more valuable than the other,
and the communication scheme should be designed accordingly. A typical telephone channel,
for example, has a limited bandwidth (3 kHz), but the power is less restrictive. On the other
hand, in space vehicles, huge bandwidth is available but the power is severely limited. Hence,
the communication solutions in the two cases are radically different.

1.3.2 Channel Capacity and Data Rate

Channel bandwidth limits the bandwidth of signals that can successfully pass through, whereas
signal SNR at the receiver determines the recoverability of the transmitted signals. Higher SNR
means that the transmitted signal pulse can use more signal levels, thereby carrying more bits
with each pulse transmission. Higher bandwidth B also means that one can transmit more
pulses (faster variation) over the channel. Hence, SNR and bandwidth B can both affect the
underlying channel “throughput.” The peak throughput that can be reliably carried by a channel
is defined as the channel capacity.

One of the most commonly encountered channels is known as the additive white Gaussian
noise (AWGN) channel. The AWGN channel model assumes no channel distortions except
for the additive white Gaussian noise and its finite bandwidth B. This ideal model captures
application cases with distortionless channels and provides a performance upper bound for
more general distortive channels. The band-limited AWGN channel capacity was dramatically
highlighted by Shannon’s equation,

C = Blog,(1 + SNR) bit/s (1.1)

Here the channel capacity C is the upper bound on the rate of information transmission per
second. In other words, C is the maximum number of bits that can be transmitted per second
with a probability of error arbitrarily close to zero; that is, the transmission is as accurate as one
desires. The capacity only points out this possibility, however; it does not specify how it is to be
realized. Moreover, it is impossible to transmit at a rate higher than this without incurring errors.
Shannon’s equation clearly brings out the limitation on the rate of communication imposed by B
and SNR. If there is no noise on the channel (assuming SNR = 00), then the capacity C would
be 0o, and communication rate could be arbitrarily high. We could then transmit any amount of
information in the world over one noiseless channel. This can be readily verified. If noise were
zero, there would be no uncertainty in the received pulse amplitude, and the receiver would
be able to detect any pulse amplitude without error. The minimum pulse amplitude separation
can be arbitrarily small, and for any given pulse, we have an infinite number of fine levels
available. We can assign one level to every possible message. Because an infinite number of
levels are available, it is possible to assign one level to any conceivable message. Cataloging
such a code may not be practical, but that is beside the point. Rather, the point is that if the
noise is zero, communication ceases to be a problem, at least theoretically. Implementation
of such a scheme would be difficult because of the requirement of generation and detection
of pulses of precise amplitudes. Such practical difficulties would then set a limit on the rate of
communication. It should be remembered that Shannon’s result, which represents the upper
limit on the rate of communication over a channel, would be achievable only with a system of
monstrous and impractical complexity, and with a time delay in reception approaching infinity.
Practical systems operate at rates below the Shannon rate.
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In conclusion, Shannon’s capacity equation demonstrates qualitatively the basic role
played by B and SNR in limiting the performance of a communication system. These two
parameters then represent the ultimate limitation on the rate of communication. The possi-
bility of resource exchange between these two basic parameters is also demonstrated by the
Shannon equation.

As a practical example of trading SNR for bandwidth B, consider the scenario in which we
meet a soft-spoken man who speaks a little bit too fast for us to fully understand. This means
that as listeners, our bandwidth B is too low and therefore, the capacity C is not high enough to
accommodate the rapidly spoken sentences. However, if the man can speak louder (increasing
power and hence the SNR), we are likely to understand him much better without changing
anything else. This example illustrates the concept of resource exchange between SNR and
B. Note, however, that this is not a one-to-one trade. Doubling the speaker volume allows the
speaker to talk a little faster, but not twice as fast. This unequal trade effect is fully captured by
Shannon’s equation [Eq. (1.1)], where doubling the SNR cannot always compensate the loss
of B by 50%.

1.4 MODULATION AND DETECTION

Analog signals generated by the message sources or digital signals generated through A/D
conversion of analog signals are often referred to as baseband signals because they typically
are low pass in nature. Baseband signals may be directly transmitted over a suitable channel
(e.g., telephone, fax). However, depending on the channel and signal frequency domain char-
acteristics, baseband signals produced by various information sources are not always suitable
for direct transmission over a given channel. When signal and channel frequency bands do
not match exactly, channels cannot be moved. Hence, messages must be moved to the right
channel frequency bandwidth. Message signals must therefore be further modified to facilitate
transmission. In this conversion process, known as modulation, the baseband signal is used
to modify (i.e., modulate), some parameter of a radio-frequency (RF) carrier signal.

Acarrier is a sinusoid of high frequency. Through modulation, one of the carrier sinusoidal
parameters—such as amplitude, frequency, or phase—is varied in proportion to the baseband
signal m(t). Accordingly, we have amplitude modulation (AM), frequency modulation (FM),
or phase modulation (PM). Figure 1.6 shows a baseband signal m(¢) and the corresponding
AM and FM waveforms. In AM, the carrier amplitude varies in proportion to m(z), and in
FM, the carrier frequency varies in proportion m(t). To reconstruct the baseband signal at the
receiver, the modulated signal must pass through a reversal process called demodulation.

As mentioned earlier, modulation is used to facilitate transmission. Some of the important
reasons for modulation are given next.

1.4.1 Ease of Radiation/Transmission

For efficient radiation of electromagnetic energy, the radiating antenna should be on the order
of a fraction or more of the wavelength of the driving signal. For many baseband signals, the
wavelengths are too large for reasonable antenna dimensions. For example, the power in a
speech signal is concentrated at frequencies in the range of 100 to 3000 Hz. The corresponding
wavelength is 100 to 3000 km. This long wavelength would necessitate an impractically large
antenna. Instead, by modulating a high-frequency carrier, we effectively translate the signal
spectrum to the neighborhood of the carrier frequency that corresponds to a much smaller
wavelength. For example, a 10 MHz carrier has a wavelength of only 30 m, and its transmission
can be achieved with an antenna size on the order of 3 m. In this respect, modulation is like
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Figure 1.6
Modulation:
(a) carrier;

(b) modulating
(baseband)
signal;

(c) amplitude-
modulated wave;
(d) frequency-
modulated
wave.
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letting the baseband signal hitch a ride on a high-frequency sinusoid (carrier). The carrier and
the baseband signal may also be compared to a stone and a piece of paper. If we wish to throw
a piece of paper, it cannot go too far by itself. But if it is wrapped around a stone (a carrier), it
can be thrown over a longer distance.

1.4.2 Simultaneous Transmission of Multiple
Signals—Multiplexing

Modulation also allows multiple signals to be transmitted at the same time in the same geo-
graphical area without direct mutual interference. This case in point is simply demonstrated
by considering the output of multiple television stations carried by the same cable (or over
the air) to people’s television receivers. Without modulation, multiple video signals will all
be interfering with one another because all baseband video signals effectively have the same
bandwidth. Thus, cable TV or broadcast TV without modulation would be limited to one sta-
tion at a time in a given location—a highly wasteful protocol because the channel bandwidth
is many times larger than that of the signal.

One way to solve this problem is to use modulation. We can use various TV stations to
modulate different carrier frequencies, thus translating each signal to a different frequency
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range. If the various carriers are chosen sufficiently far apart in frequency, the spectra of the
modulated signals (known as TV channels) will not overlap and thus will not interfere with
each other. At the receiver (TV set), a tunable bandpass filter can select the desired station
or TV channel for viewing. This method of transmitting several signals simultaneously, over
nonoverlapping frequency bands, is known as frequency division multiplexing (FDM). A
similar approach is also used in AM and FM radio broadcasting. Here the bandwidth of the
channel is shared by various signals without any overlapping.

Another method of multiplexing several signals is known as time division multiplexing
(TDM). This method is suitable when a signal is in the form of a pulse train (as in PCM).
When the pulses are made narrower, the spaces left between pulses of one user signal are used
for pulses from other signals. Thus, in effect, the transmission time is shared by a number of
signals by interleaving the pulse trains of various signals in a specified order. At the receiver,
the pulse trains corresponding to various signals are separated.

1.4.3 Demodulation

Once multiple modulated signals have arrived at the receiver, the desired signal must be
detected and recovered into its original baseband form. Note that because of FDM, the first
stage of ademodulator typically requires a tunable bandpass filter so that the receiver can select
the modulated signal at a predetermined frequency band specified by the transmission station
or channel. Once a particular modulated signal has been isolated, the demodulator will then
need to convert the carrier variation of amplitude, frequency, or phase, back into the baseband
signal voltage.

For the three basic modulation schemes of AM, FM, and PM, the corresponding demod-
ulators must be designed such that the detector output voltage varies in proportion to the input
modulated signal’s amplitude, frequency, and phase, respectively. Once circuits with such
response characteristics have been implemented, the demodulators can downconvert the mod-
ulated (RF) signals back into the baseband signals that represent the original source message,
be it audio, video, or data.

1.5 DIGITAL SOURCE CODING AND ERROR
CORRECTION CODING

As stated earlier, SNR and bandwidth are two factors that determine the performance of a given
communication. Unlike analog communication systems, digital systems of tenadopt aggressive
measures to lower the source datarate and to fight against channel noise. In particular, source
coding is applied to generate the fewest bits possible for a given message withoutsacrificing its
detection accuracy. On the other hand, to combaterrorsthat arise from noise and interferences,
redundancy needs to be introduced systematically at the transmitter, such that the receivers can
rely on the redundancy to correct errors caused by channel distortion and noise. This process
is known as error correction coding by the transmitter and decoding by the receiver.

Source coding and error correction coding are two successive stages in a digital com-
munication system that work in a see-saw battle. On one hand, the job of source coding is
to remove as much redundancy from the message as possible to shorten the digital message
sequence that requires transmission. Source coding aims to use as little bandwidth as possible
without considering channel noise and interference. On the other hand, error correction coding
intentionally introduces redundancy intelligently, such that if errors occur upon detection, the
redundancy can help correct the most likely errors.
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Randomness, Redundancy, and Source Coding

Tounderstand source coding, it is important to first discuss the role of randomness in communi-
cations. As noted earlier, channel noise is a major factor limiting communication performance
because it is random and cannot be removed by prediction. On other other hand, randomness is
also closely associated with the desired signals in communications. Indeed, randomness is the
essence of communication. Randomness means unpredictability, or uncertainty, of a source
message. If a source had no unpredictability, like a friend who always wants to repeat the same
story on “how I was abducted by an alien,” then the information would be known beforehand
and would contain no information. Similarly, if a person winks, it conveys some information
in a given context. But if a person winks continuously with the regularity of a clock, the winks
convey no information. In short, a predictable signal is not random and is fully redundant.
Thus, a message contains information only if it is unpredictable. Higher predictability means
higher redundancy and, consequently, less information. Conversely, more unpredictable or less
likely random signals contain more information.

Source coding reduces redundancy based on the predictability of the message source. The
objective of source coding is to use codes that are as short as possible to represent the source
signal. Shorter codes are more efficient because they require less time to transmit at a given
data rate. Hence, source coding should remove signal redundancy while encoding and trans-
mitting the unpredictable, random part of the signal. The more predictable messages contain
more redundancy and require shorter codes, while messages that are less likely contain more
information and should be encoded with longer codes. By assigning more likely messages with
shorter source codes and less likely messages with longer source codes, one obtains more effi-
cient source coding. Consider the Morse code, for example. In this code, various combinations
of dashes and dots (code words) are assigned to each letter. To minimize transmission time,
shorter code words are assigned to more frequently occurring (more probable) letters (such
as e, t, and a) and longer code words are assigned to rarely occurring (less probable) letters
(such as x, g, and 7). Thus, on average, messages in English would tend to follow a known
letter distribution, thereby leading to shorter code sequences that can be quickly transmitted.
This explains why Morse code is a good source code.

It will be shown in Chapter 13 that for digital signals, the overall transmission time is
minimized if a message (or symbol) of probability P is assigned a code word with a length
proportional to log (1/P). Hence, from an engineering point of view, the information of a
message with probability P is proportional to log (1/P). This is known as entropy (source)
coding.

Error Correction Coding

Error correction coding also plays an important role in communication. While source coding
removes redundancy, error correction codes add redundancy. The systematic introduction of
redundancy supports reliable communication.* Because of redundancy, if certain bits are in
error due to noise or interference, other related bits may help them recover, allowing us to
decode a message accurately despite errors in the received signal. All languages are redundant.
For example, English is about 50% redundant; that is, on the average, we may throw out half
the letters or words without losing the meaning of a given message. This also means that in
any English message, the speaker or the writer has free choice over half the letters or words,
on the average. The remaining half is determined by the statistical structure of the language.
If all the redundancy of English were removed, it would take about half the time to transmit
a telegram or telephone conversation. If an error occurred at the receiver, however, it would
be rather difficult to make sense out of the received message. The redundancy in a message,
therefore, plays a useful role in combating channel noises and interferences.
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It may appear paradoxical that in source coding we would remove redundancy, only to add
more redundancy at the subsequent error correction coding. To explain why this is sensible,
consider the removal of all redundancy in English through source coding. This would shorten
the message by 50% (for bandwidth saving). However, for error correction, we may restore
some systematic redundancy, except that this well-designed redundancy is only half as long as
what was removed by source coding while still providing the same amount of error protection.
It is therefore clear that a good combination of source coding and error correction coding
can remove inefficient redundancy without sacrificing error correction. In fact, a very popular
problem in this field is the persistent pursuit of joint source-channel coding that can maximally
remove signal redundancy without losing error correction.

How redundancy can enable error correction can be seen with an example: to transmit
samples with L = 16 quantizing levels, we may use a group of four binary pulses, as shown
in Fig. 1.5. In this coding scheme, no redundancy exists. If an error occurs in the reception of
even one of the pulses, the receiver will produce a wrong value. Here we may use redundancy
to eliminate the effect of possible errors caused by channel noise or imperfections. Thus, if we
add to each code word one more pulse of such polarity as to make the number of positive pulses
even, we have a code that can detect a single error in any place. Thus, to the code word 0001
we add a fifth pulse, of positive polarity, to make a new code word, 00011. Now the number of
positive pulses is 2 (even). If a single error occurs in any position, this parity will be violated.
The receiver knows that an error has been made and can request retransmission of the message.
This is a very simple coding scheme. It can only detect an error; it cannot locate or correct
it. Moreover, it cannot detect an even number of errors. By introducing more redundancy, it
is possible not only to detect but also to correct errors. For example, for L = 16, it can be
shown that properly adding three pulses will not only detect but also correct a single error
occurring at any location. Details on the subject of error correcting codes will be discussed in
Chapter 14.

1.6 A BRIEF HISTORICAL REVIEW OF MODERN
TELECOMMUNICATIONS

Telecommunications (literally: communications at a distance) are always critical to human
society. Even in ancient times, governments and military units relied heavily on telecommu-
nications to gather information and to issue orders. The first type was with messengers on foot
or on horseback; but the need to convey a short message over a large distance (such as one
warning a city of approaching raiders) led to the use of fire and smoke signals. Using signal
mirrors to reflect sunlight (heliography), was another effective way of telecommunication. Its
first recorded use was in ancient Greece. Signal mirrors were also mentioned in Marco Polo’s
account of his trip to the Far East.! These ancient visual communication technologies are,
amazingly enough, digital. Fires and smoke in different configurations would form different
codewords. On hills or mountains near Greek cities there were also special personnel for such
communications, forming a chain of regenerative repeaters. In fact, fire and smoke signal
platforms still dot the Great Wall of China. More interestingly, reflectors or lenses, equivalent
to the amplifiers and antennas we use today, were used to directionally guide the light farther.

Naturally, these early visual communication systems were very tedious to set up and could
transmit only several bits of information per hour. A much faster visual communication system
was developed just over two centuries ago. In 1793 Claude Chappe of France invented and
performed a series of experiments on the concept of “semaphore telegraph.” His system was a
series of signaling devices called semaphores, which were mounted on towers, typically spaced
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10 km apart. (A semaphore looked like a large human figure with signal flags in both hands.) A
receiving semaphore operator would transcribe visually, often with the aid of a telescope, and
then relay the message from his tower to the next, and so on. This visual telegraph became the
government telecommunication system in France and spread to other countries, including the
United States. The semaphore telegraph was eventually eclipsed by electric telegraphy. Today,
only a few remaining streets and landmarks with the name “Telegraph Hill” remind us of the
place of this system in history. Still, visual communications (via Aldis lamps, ship flags, and
heliographs) remained an important part of maritime communications well into the twentieth
century.

These early telecommunication systems are optical systems based on visual receivers.
Thus, they can cover only line-of-sight distance, and human operators are required to decode
the signals. An important event that changed the history of telecommunication occurred in
1820, when Hans Christian Oersted of Denmark discovered the interaction between electricity
and magnetism.”> Michael Faraday made the next crucial discovery, which changed the
history of both electricity and telecommunications, when he found that electric current
can be induced on a conductor by a changing magnetic field. Thus, electricity generation
became possible by magnetic field motion. Moreover, the transmission of electric signals
became possible by varying an electromagnetic field to induce current change in a distant
circuit. The amazing aspect of Faraday’s discovery on current induction is that it provides
the foundation for wireless telecommunication over distances without line-of-sight, and more
importantly, it shows how to generate electricity as an energy source to power such systems.
The invention of the electric telegraph soon followed, and the world entered the modernelectric
telecommunication era.

Modern communication systems have come a long way from their infancy. Since it
would be difficult to detail all the historical events that mark the recent development of
telecommunication, we shall instead use Table 1.1 to chronicle some of the most notable
events in the development of modern communication systems. Since our focus is on electrical
telecommunication, we shall refrain from reviewing the equally long history of optical (fiber)
communications.

It is remarkable that all the early telecommunication systems are symbol-based digital
systems. It was not until Alexander Graham Bell’s invention of the telephone system that
analog live signals were transmitted. Live signals can be instantly heard or seen by the receiving
users. The Bell invention that marks the beginning of a new (analog communication) era is
therefore a major milestone in the history of telecommunications. Figure 1.7 shows a copy of
an illustration from Bell’s groundbreaking 1876 telephone patent. Scientific historians often
hail this invention as the most valuable patent ever issued in history.

The invention of telephone systems also marks the beginning of the analog com-
munication era and live signal transmission. On an exciting but separate path, wireless
communication began in 1887, when Heinrich Hertz first demonstrated a way to detect
the presence of electromagnetic waves. French scientist Edouard Branly, English physi-
cist Oliver Lodge, and Russian inventor Alexander Popov all made important contributions
to the development of radio receivers. Another important contributor to this area was
the Croatian-born genius Nikola Tesla. Building upon earlier experiments and inventions,
Italian scientist and inventor Guglielmo Marconi developed a wireless telegraphy sys-
tem in 1895 for which he shared the Nobel Prize in Physics in 1909. Marconi’s wireless
telegraphy marked a historical event of commercial wireless communications. Soon, the mar-
riage of the inventions of Bell and Marconi allowed analog audio signals to go wireless,
thanks to amplitude modulation (AM) technology. Quality music transmission via FM radio
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TABLE 1.1

Important Events of the Past Two Centuries of Telecommunications

Year Major Events

1820 First experiment of electric current causing magnetism (by Hans C. Oersted)
1831 Discovery of induced current from electromagnetic radiation (by Michael Faraday)
1830-32 Birth of telegraph (credited to Joseph Henry and Pavel Schilling)

1837 Invention of Morse code by Samuel F. B. Morse

1864 Theory of electromagnetic waves developed by James C. Maxwell

1866 First transatlantic telegraph cable in operation

1876 Invention of telephone by Alexander G. Bell

1878 First telephone exchange in New Haven, Connecticut

1887 Detection of electromagnetic waves by Heinrich Hertz

1896 Wireless telegraphy (radio telegraphy) patented by Guglielmo Marconi
1901 First transatlantic radio telegraph transmission by Marconi

1906 First amplitude modulation radio broadcasting (by Reginald A. Fessenden)
1907 Regular transatlantic radio telegraph service

1915 First transcontinental telephone service

1920 First commercial AM radio stations

1921 Mobile radio adopted by Detroit Police Department

1925 First television system demonstration (by Charles F. Jenkins)

1928 First television station W3XK in the United States

1935 First FM radio demonstration (by Edwin H. Armstrong)

1941 NTSC black and white television standard
First commercial FM radio service

1947 Cellular concept first proposed at Bell Labs

1948 First major information theory paper published by Claude E. Shannon
Invention of transistor by William Shockley, Walter Brattain, and John Bardeen

1949 The construction of Golay code for 3 (or fewer) bit error correction

1950 Hamming codes constructed for simple error corrections

1953 NTSC color television standard

1958 Integrated circuit proposed by Jack Kilby (Texas Instruments)

1960 Construction of the powerful Reed-Solomon error correcting codes

1962 First computer telephone modem developed: Bell Dataphone 103A (300 bit/s)

1962 Low-density parity check error correcting codes proposed by Robert G. Gallager

1968-9  First error correction encoders on board NASA space missions (Pioneer IX and Mariner VI)

1971 First wireless computer network: AlohaNet

1973 First portable cellular telephone demonstration to the U.S. Federal Communications

Commission, by Motorola
1978 First mobile cellular trial by AT&T
1984 First handheld (analog) AMPS cellular phone service by Motorola
1989 Development of DSL modems for high-speed computer connections
1991 First (digital) GSM cellular service launched (Finland)

First wireless local area network (LAN) developed (AT&T-NCR)
1993 Digital ATSC standard established
1993 Turbo codes proposed by Berrou, Glavieux, and Thitimajshima
1996 First commercial CDMA (IS-95) cellular service launched

First HDTV broadcasting
1997 IEEE 802.11(b) wireless LAN standard
1998 Large-scope commercial ADSL deployment
1999 IEEE 802.11a wireless LAN standard
2000 First 3G cellular service launched
2003 IEEE 802.11g wireless LAN standard
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broadcast was first demonstrated by American inventor Major Edwin H. Armstrong. Arm-
strong’s FM demonstration in 1935 took place at an IEEE meeting in New York’s Empire
State Building.

A historic year for both communications and electronics was 1948, the year that wit-
nessed the rebirth of digital communications and the invention of semiconductor transistors.
The rebirth of digital communications is owing to the originality and brilliance of Claude
E. Shannon, widely known as the father of modern digital communication and information
theory. In two seminal articles published in 1948, he first established the fundamental concept
of channel capacity and its relation to information transmission rate. Deriving the channel
capacity of several important models, Shannon? proved that as long as the information is
transmitted through a channel at a rate below the channel capacity, error-free communications
can be possible. Given noisy channels, Shannon showed the existence of good codes that can
make the probability of transmission error arbitrarily small. This noisy channel coding theorem
gave rise to the modern field of error correcting codes. Coincidentally, the invention of the
first transistor in the same year (by Bill Shockley, Walter Brattain, and John Bardeen) paved
the way to the design and implementation of more compact, more powerful, and less noisy
circuits to put Shannon’s theorems into practical use. The launch of Mariner IX Mars orbiter
in March of 1971 was the first NASA mission officially equipped with error correcting codes,
which reliably transmitted photos taken from Mars.

Today, we are in an era of digital and multimedia communications, marked by the wide-
spread applications of computer networking and cellular phones. The first telephone modem
for home computer connection to a mainframe was developed by AT&T Bell Labs in 1962. It
uses an acoustic coupler to interface with a regular telephone handset. The acoustic coupler
converts the local computer data into audible tones and uses the regular telephone microphone
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to transmit the tones over telephone lines. The coupler receives the mainframe computer data
via the telephone headphone and converts them into bits for the local computer terminal,
typically at rates below 300 bit/s. Rapid advances in integrated circuits (first credited to Jack
Kilby in 1958) and digital communication technology dramatically increased the link rate to
56 kbit/s by the 1990s. By 2000, wireless local area network (WLAN) modems were developed
to connect computers at speed up to 11 Mbit/s. These commercial WLAN modems, the size
of a credit card, were first standardized as IEEE 802.11b.

Technological advances also dramatically reshaped the cellular systems. Whilethe cellular
concept was developed in 1947 at Bell Labs, commercial systems were not available until 1983.
The “mobile” phones of the 1980s were bulky and expensive, mainly used for business. The
world’s first cellular phone, developed by Motorola in 1983 and known as DynaTAC 8000X,
weighed 28 ounces, earning the nickname of “brick” and costing $3995. These analog phones
are basically two-way FM radios for voice only. Today, a cellphone is truly a multimedia,
multifunctional device that is useful not only for voice communication but also can send
and receive e-mail, access websites, and display videos. Cellular devices are now very small,
weighing no morethana few ounces. Unlike in the past, cellular phones are now for the masses.
In fact, Europe now has more cellphones than people. In Africa, 13% of the adult population
now owns a cellular phone.

Throughout history, the progress of human civilization has been inseparable from tech-
nological advances in telecommunications. Telecommunications played a key role in almost
every major historical event. It is not an exaggeration to state that telecommunications helped
shape the very world we live in today'and will continue to define our future. It is therefore
the authors’ hope that this text can help stimulate the interest of many students in telecommu-
nication technologies. By providing the fundamental principles of modern digital and analog
communication systems, the authors hope to provide a solid foundation for the training of
future generations of communication scientists and engineers.
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SIGNALS AND SIGNAL
SPACE

n this chapter we discuss certain basic signal concepts. Signals are processed by systems.
We shall start with explaining the terms signals and systems.

Signals

Asignal, as the term implies, is a set of information or data. Examples include a telephone or
a television signal, the monthly sales figures of a corporation, and closing stock prices (e.g., in
the United States, the Dow Jones averages). In all these examples, the signals are functions of
the independent variable time. This is not always the case, however. When an electrical charge
is distributed over a surface, for instance, the signal is the charge density, a function of space
rather than time. In this book we deal almost exclusively with signals that are functions of
time. The discussion, however, applies equally well to other independent variables.

Systems

Signals may be processed further by systems, which may modify them or extract additional
information from them. For example, an antiaircraft missile launcher may want to know the
future location of a hostile moving target, which is being tracked by radar. Since the radar
signal gives the past location and velocity of the target, by properly processing the radar signal
(the input), one can approximately estimate the future location of the target. Thus, a system
is an entity that processes a set of signals (inputs) to yield another set of signals (outputs).
A system may be made up of physical components, as in electrical, mechanical, or hydraulic
systems (hardware realization), or it may be an algorithm that computes an output from an
input signal (software realization).

2.1 SIZE OF A SIGNAL

Signal Energy

The size of any entity is a quantity that indicates its strength. Generally speaking, a signal
varies with time. To set a standard quantity that measures signal strength, we normally view
a signal g(¢) as a voltage across a one-ohm resistor. We define signal energy E, of the signal
g(?) as the energy that the voltage g (¢) dissipates on the resistor. More formally, we define E,

20



Figure 2.1
Examples of
signals.

(a) Signal with
finite energy.
(b) Signal with
finite power.
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This definition can be generalized to a complex-valued signal g(¢) as

E=fmmmr (22)

Signal Power

To be a meaningful measure of signal size, the signal energy must be finite. A necessary
condition for energy to be finite is that the signal amplitude goes to zero as |¢| approaches
infinity (Fig. 2.1a). Otherwise the integral in Eq. (2.1) will not converge.

If the amplitude of g (¢) does not go to zero as |¢| approaches infinity (Fig. 2.1b), the signal
energy is infinite. A more meaningful measure of the signal size in such a case would be the
time average of the energy (if it exists), which is the average power P, defined (for a real
signal) by

1 T/2 5
P, = lim — d 23
p=jim g [ g 23)

We can generalize this definition for a complex signal g(¢) as

1 r7/2 5
P, = lim — 1)\ dt 2.4
ngﬁﬁmmn 24)

Observe that the signal power P, is the time average (mean) of the signal amplitude square,
that is, the mean square value of g (). Indeed, the square root of P, is the familiar rms (root
mean square) value of g(z).

The mean of an entity averaged over a large time interval approaching infinity exists if
the entity either is periodic or has a statistical regularity. If such a condition is not satisfied, an
average may not exist. For instance, a ramp signal g(t) = ¢ increases indefinitely as |t| — oo,
and neither the energy, nor the power exists for this signal.

Units of Signal Energy and Power
The standard units of signal energy and power are the joule and the watt. However, in practice,
it is often customary to use logarithmic scales to describe signal power. This notation saves
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the trouble of dealing with many decimal places when signal power is large or small. As a
convention, a signal with average power of P watts can be said to have power of

[10 - log;o P1dBw or [30 +10 - log;o P1dBm

For example, —30dBm represents signal power of 107® W in normal decimal scale.

Example 2.1  Determine the suitable measures of the signals in Fig. 2.2.

= The signal in Fig. 2.2a approaches 0 as |t| — oo. Therefore, the suitable measure for this
% signal is its energy E,, given by

00 0 oo
Eg=/ g2(t)dt=/ (2)2dt+/ de”'dt=4+4=28
- 1

00 - 0

The signal in Fig. 2.2b does not approach O as |t{| — oo. However, it is periodic, and
therefore its power exists. We can use Eq. (2.3) to determine its power. For periodic signals,
we can simplify the procedure by observing that a periodic signal repeats regularly each
period (2 seconds in this case). Therefore, averaging g2(t) over an infinitely large interval
is equivalent to averaging it over one period (2 seconds in this case). Thus

1 ! I 1
Pg=§/_1g2(t)dt=5/_lt2dt=§

Figure 2.2 2] g0

Signal for
Example 2.1.

ol (b

R | |~

Recall that the signal power is the square of its rms value. Therefore, the rms value of this
signal is 1/+/3.

2.2 CLASSIFICATION OF SIGNALS

There are various classes of signals. Here we shall consider only the following pairs of classes,
which are suitable for the scope of this book.

1. Continuous time and discrete time signals
2. Analog and digital signals



Figure 2.3

(a) Continuous
time signal.

(b) Discrete time
signals.
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3. Periodic and aperiodic signals
4. Energy and power signals
5. Deterministic and probabilistic signals

2.2.1 Continuous Time and Discrete Time Signals

A signal that is specified for every value of time ¢ (Fig. 2.3a) is a continuous time signal, and
a signal that is specified only at discrete points of ¢t = nT (Fig. 2.3b) is a discrete time signal.
Audio and video recordings are continuous time signals, whereas the quarterly gross domestic
product (GDP), monthly sales of a corporation, and stock market daily averages are discrete
time signals.

2.2.2 Analog and Digital Signals

One should not confuse analog signals with continuous time signals. The two concepts are
not the same. This is also true of the concepts of discrete time and digital. A signal whose
amplitude can take on any value in a continuous range is an analog signal. This means that
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Figure 2.4
Examples of
signals: (a)
analog and
continuous time,
(b) digital and
continuous time,
(c) analog and
discrete time,

(d) digital and

discrete time.
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an analog signal amplitude can take on an (uncountably) infinite number of values. A digital
signal, on the other hand, is one whose amplitude can take on only a finite number of values.
Signals associated with a digital computer are digital because they take on only two values
(binary signals). For a signal to qualify as digital, the number of values need not be restricted
to two. It can be any finite number. A digital signal whose amplitudes can take on M values is
an M -ary signal of which binary (M = 2) is a special case. The terms “continuous time” and
“discrete time” qualify the nature of signal along the time (horizontal) axis. The terms “analog”
and “digital,” on the other hand, describe the nature of the signal amplitude (vertical) axis.
Figure 2.4 shows examples of signals of various types. Itis clear that analog is not necessarily
continuous time, whereas digital need not be discrete time. Figure 2.4c shows an example
of an analog but discrete time signal. An analog signal can be converted into a digital signal
(via analog-to-digital, or A/D, conversion) through quantization (rounding off), as explained
in Chapter 6.

2.2.3 Periodic and Aperiodic Signals

A signal g(?) is said to be periodic if there exists a positive constant Ty such that

g(t) =g+ Ty forallt? (2.5)
The smallest value of Tj that satisfies the periodicity condition of Eq. (2.5) is the period of
g(#). The signal in Fig. 2.2b is a periodic signal with period of 2. Naturally, a signal is aperiodic
if it is not periodic. The signal in Fig. 2.2a is aperiodic.

By definition, a periodic signal g(¢) remains unchanged when time-shifted by one period.
This means that a periodic signal must start at = —oo because if it starts at some finite instant,
say, t = 0, the time-shifted signal g(¢z + Tp) will start at t = —T and g(z + Tp) would not
be the same as g(f). Therefore, a periodic signal, by definition, must start from —oco and
continue forever, as shown in Fig. 2.5. Observe that a periodic signal shifted by an integral
multiple of Ty remains unchanged. Therefore, g(¢) may be considered to be a periodic signal



Figure 2.5 A
periodic signal
of period Tj.
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with period mTp, where m is any integer. However, by definition, the period is the smallest
interval that satisfies periodicity condition of Eq. (2.5). Therefore, Ty is the period.

2.2.4 Energy and Power Signals

A signal with finite energy is an energy signal, and a signal with finite power is a power signal.
In other words, a signal g(¢) is an energy signal if

f lg(t)? dt < o0 2.6)

—o

Similarly, a signal with a finite and nonzero power (mean square value) is a power signal. In
other words, a signal is a power signal if

1 T/2
0< lim — / lg(H)|?dt < oo (2.7)
T—ooo T J_1)2

The signals in Fig. 2.2a and 2.2b are examples of energy and power signals, respectively.
Observe that power is time average of the energy. Since the averaging is over an infinitely
large interval, a signal with finite energy has zero power, and a signal with finite power has
infinite energy. Therefore, a signal cannot be both an energy and a power signal. If it is one,
it cannot be the other. On the other hand, some signals with infinite power are neither energy
nor power signals. The ramp signal is one example.

Comments
Every signal observed in real life is an energy signal. A power signal, on the other hand,
must have an infinite duration. Otherwise its power, which is its average energy (averaged
over infinitely large interval) will not approach a (nonzero) limit. Obviously it is impossible
to generate a true power signal in practice because such a signal would have infinite duration
and infinite energy.

Also, because of periodic repetition, periodic signals for which the area under |g () |2 over
one period is finite are power signals; however, not all power signals are periodic.

2.2.5 Deterministic and Random Signals

A signal whose physical description is known completely, either in a mathematical form or a
graphical form is a deterministic signal. A signal that is known only in terms of probabilistic
description, such as mean value, mean square value, and distributions, rather than its full math-
ematical or graphical description is a random signal. Most of the noise signals encountered in
practice are random signals. All message signals are random signals because, as will be shown
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later, a signal, to convey information, must have some uncertainty (randomness) about it. The
treatment of random signals will be discussed in later chapters.

2.3 UNIT IMPULSE SIGNAL

The unit impulse function §(¢) is one of the most important functions in the study of signals
and systems. Its definition and application provide much convenience that is not permissible
in pure mathematics.

The unit impulse function §(¢) was first defined by P. A. M. Dirac (hence often known as
the “Dirac delta”) as

s5(t)=0, t#£0 2.8)
/ - s@)dt =1 2.9)

We can visualize an impulse as atall, narrow rectangular pulse of unit area, as shown inFig. 2.6.
The width of this rectangular pulse is a very small value €; its height is a very large value 1/¢
in the limit as € — 0. The unit impulse therefore can be regarded as a rectangular pulse with a
width that has become infinitesimally small, a height that has become infinitely large, and an
overall area that remains constant at unity.* Thus, § (f) = 0 everywhere except at t = 0, where
it is, strictly speaking, undefined. For this reason, a unit impulse is graphically represented by
the spearlike symbol in Fig. 2.6a. ‘

Multiplication of a Function by an Impulse
Let us now consider what happens when we multiply the unitimpulse §(¢) by a function ¢ (¢)
that is known to be continuous at ¢ = 0. Since the impulse exists only at # = 0, and the value
of ¢ (t) att = 01is ¢(0), we obtain

d(0)3(1) = $(0)8(2) (2.102)
Similarly, if ¢ (¢) is multiplied by an impulse é (+ — 7)) (an impulse located at t = T), then

oSt —T)=¢(T)5(t—T) (2.10b)

provided ¢ (¢) is defined at t = T.

* The impulse function can also be approximated by other pulses, such as a positive triangle, an exponential pulse,
or a Gaussian pulse.



Figure 2.7
(a) Unit step

function u(z).

(b) Causal
exponential
e~ y(t).

2.3 Unit Impulse Signal 27

u(t)

¢ Gn

(@ (b)

The Sampling Property of the Unit Impulse Function
From Egq. (2.10) it follows that

/00 (i)(t)(S(t—T)dt:(}b(T)/oo 8 —T)dt =¢(T) (2.11a)

provided ¢ (¢) is continuous at ¢+ = 7. This result means that the area under the product of
a function with an impulse §(t) is equal to the value of that function at the instant where the
unit impulse is located. This very important and useful property is known as the sampling (or
sifting) property of the unit impulse.

Depending on the value of 7 and the integration limit, the impulse function may or may
not be within the integration limit. Thus, it follows that

a<T<b
T<a<b,orT >b>a
(2.11b)

b b
/ ¢(t)6(t—T)dt=¢(T)/ 8(t—T)dt=[ d)E)T)

The Unit Step Function u(¢)
Another familiar and useful function is theunit step function «(¢), often encountered in circuit
analysis and defined by Fig. 2.7a:

u(t):[ (1) ;ig (2.12)

If we want a signal to start at # = 0 (so that it has a value of zero for ¢ < 0), we need only
multiply the signal by u(z). A signal that starts after t = 0 is called a causal signal. In other
words, g(¢) is a causal signal if

g)=0 t<0
The signal e~ represents an exponential that starts at ¢ = —oo. If we want this signal to start
at t = 0 (the causal form), it can be described as e~#u(t) (Fig. 2.7b). From Fig. 2.6b, we
observe that the area from —o0 to 7 under the limiting form of §(¢) is zero if # < 0 and unity

if t > 0. Consequently,
! 0, t <0
/ 8(r)dr = [ 1 PR

= u(t) (2.13a)
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From this result it follows that

d—u—St 2.13b
= =50) (2.13b)

2.4 SIGNALS VERSUS VECTORS

There is a strong connection between signals and vectors. Signals that are defined for only a
finite number of time instants (say N) can be written as vectors (of dimension N ). Thus, consider
a signal g(¢) defined over a closed time interval [a, b]. Let we pick N points uniformly on the
time interval [a, b] such that

b—a
N -1

th=a, h=a+e, B=a+2, tn=a+ (N—1)e=02>, €=

Then we can write a signal vector g as an N -dimensional vector

g=[ gt) gt} - gltw) ]

As the number of time instants N increases, the sampled signal vector g will grow. Eventually,
as N — oo, the signal values will form a vector g of infinitely long dimension. Because ¢ — 0,
the signal vector g will transform into the continuous-time signal g(¢) defined over the interval
[a, b]. In other words,

lim g=g(@) t¢€la,b]
N—o00

This relationship clearly shows that continuous time signals are straightforward generalizations
of finite dimension vectors. Thus, basic definitions and operations in a vector space can be
applied to continuous time signals as well. We now highlight this connection between the finite
dimension vector space and the continuous time signal space.

We shall denote all vectors by boldface type. For example, x is a certain vector with
magnitude or length ||x||. A vector has magnitude and direction. In a vector space, we can
define the inner (dot or scalar) product of two real-valued vectors g and x as

<g x>=|lg[l-|Ix|lcos 6 (2.14)

where 0 is the angle between vectors g and x. By using this definition, we can express ||x||,
the length (norm) of a vector x as

[X]]> =< x, x > (2.15)

This defines a normed vector space.

2.4.1 Component of a Vector along Another Vector

Consider two vectors g and x, as shown in Fig. 2.8. Let the component of g along x be cx.
Geometrically the component of g along x is the projection of g on x, and is obtained by
drawing a perpendicular from the tip of g on the vector x, as shown in Fig. 2.8. What is the
mathematical significance of a component of a vector along another vector? As seen from



Figure 2.8
Component
(projection) of a
vector along
another vector.
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Fig. 2.8, the vector g can be expressed in terms of vector x as
g=cx+e (2.16)

However, this does not describe a unique way to decompose g in terms of x and e. Figure 2.9
shows two of the infinite other possibilities. From Fig. 2.9a and b, we have

g=c1xte =X+ e 2.17)

The question is: Which is the “best” decomposition? The concept of optimality depends on
what we wish to accomplish by decomposing g into two components.

In each of these three representations, g is given in terms of x plus another vector called
the error vector. If our goal is to approximate g by cx (Fig. 2.8),

g~ g=cx (2.18)

then the error in this approximation is the (difference) vector e = g — cx. Similarly, the errors
in approximations of Fig. 2.9a and b are e; and e;, respectively. The approximation in Fig. 2.8
is unique because its error vector is the shortest (with the smallest magnitude or norm). We
can now define mathematically the component (or projection) of a vector g along vector x to
be cx, where ¢ is chosen to minimize the magnitude of the error vector e = g — cx.

Geometrically, the magnitude of the component of g along x is ||g|| cos 6, which is also
equal to c||x||. Therefore

clix[l = |Igll cos &

Based on the definition of inner product between two vectors, multiplying both sides by [|x||
yields
clx||* = llgll x|l cos 6 =< g, x >

and

<gX> 1
€= <gX> (2.19)

<x, x> |[x|?
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From Fig. 2.8, it is apparent that when g and x are perpendicular, or orthogonal, then g has
a zero component along x; consequently, ¢ = 0. Keeping an eye on Eq. (2.19), we therefore
define g and x to be orthogonal if the inner (scalar or dot) product of the two vectors is zero,
that is, if

<g, x>=0 (220)
2.4.2 Decomposition of a Signal and
Signal Components
The concepts of vector component and orthogonality can be directly extended to continuous

time signals. Consider the problem of approximating a real signal g(¢) in terms of another real
signal x(¢) over an interval [#;, t]:

g() ~cx(t) n=t<n (2.21)

The error e(t) in this approximation is

(2.22)

_ ) 8@ —cx® H<t=<n
et = { 0 otherwise

For “best approximation,” we need to minimize the error signal, that is, minimize its norm.
Minimum signal norm corresponds to minimum energy E, over the interval [#1, #;] given by

19}
E, = / &2 (1) dt
5]
9]
- / [8(t) — ex()) dt
n

Note that the right-hand side is a definite integral with ¢ as the dummy variable. Hence E, is a
function of the parameter ¢ (not ¢#), and E, is minimum for some choice of ¢. To minimize E,,
a necessary condition is

dE,
dc

5
4 [/ *le(t) — ex (D)2 dt] -0
de | Jy

Expanding the squared term inside the integral, we obtain

‘ " d . d 2?2 ]_
d_cl:/; g(t)dl‘]—d—c[%/t1 g(l)x(t)dt]+d—c|ic/tlx(1)dt -0

from which we obtain

=0 (2.23)

or

19}

r,
-2 / zg(z)x(t) dt + 2c / X@t)dt =0
n

n
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and

o fEgwxwd 1 o oy at 020
- S22y dt ©Ex Jy 8 '

To summarize our discussion, if a signal g(¢) is approximated by another signal x(¢) as

g(t) =~ cx(t)

then the optimum value of ¢ that minimizes the energy of the error signal in this approximation
is given by Eq. (2.24).

Taking our cue from vectors, we say that a signal g(#) contains a component cx(¢), where
c is given by Eq. (2.24). As in vector space, cx(t) is the projection of g(¢) on x(z). Consistent
with the vector space terminolog, we say that if the component of a signal g(¢) of the form
x(t) is zero (i.e., ¢ = 0), the signals g(¢) and x(¢) are orthogonal over the interval [#1, #;]. In
other words, with respect to real-valued signals, two signals x(¢) and g(¢) are orthogonal when
there is zero contribution from one signal to the other (i.e., ¢ = 0). Thus, x(¢) and g(¢) are
orthogonal if and only if

1 .
/ 2 g®)x()dt =0 (2.25)
n

Based on the illustrations of vectors in Fig. 2.9, we can say that two signals are orthogonal if
and only if their inner product is zero. This relationship indicates thatthe integral of Eq. (2.25)
is closely related to the concept of an inner product between vectors.

Indeed, the standard definition of the inner product of two N -dimensional vectors g and x

N
cexom S m
i=1

is almost identical in form to the integration ofEq. (2.25). We therefore define the inner product
of two (real-valued) signals g(¢) and x(¢), both defined over a time interval [¢1, £2], as

5]

<g@®), x(t) >= / g(@®)x(t) dt (2.26)

131

Recall from algebraic geometry that the square of a vector length ||x||? is equal to < X, X >.
Keeping this concept in mind and continuing our analogy with vector analysis, we define the
the norm of a signal g(¢) as

eIl = v < g), g®) > (2.27)

which is the square root of the signal energy in the time interval. It is therefore clear that the
norm of a signal is analogous to the length of a finite dimensional vector. More generally,
signals may not be merely defined over a continuous segment [¢1, t2].*

* Indeed, the signal space under consideration may be over a set of time segments represented simply by ©. For
such a more general space of signals, the inner product is defined as an integral over the time domain ®. For
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Exomple 2.2  For the square signal g(¢) shown in Fig. 2.10 find the component in g(¢) of the form of sin z.
In other words, approximate g(¢) in terms of sin ¢:

g(t) ~csin t 0=t =2m

so that the energy of the error signal is minimum.

Figure 2.10
Approximation
of square signal
in terms of a
single sinusoid.

In this case

2r
x(f) =sint and E, = f sinf()dt = 7
0

From Eq. (2.24), we find

1 2 1 b4 2 4
c= —/ g@)sin tdt = — / sin ¢ dt +/ (—sin t)dt | = — (2.29)
0 g 0 T b4

T

Therefore
4 .
g(t) >~ —sin ¢ (2.30)
b4

represents the best approximation of g(¢) by the function sin ¢, which will minimize the
error signal energy. This sinusoidal component of g(¢) is shown shaded in Fig. 2.10. As
in vector space, we say that the square function g(z) shown in Fig. 2.10 has a component
of signal sin ¢ with magnitude of 4/ .

2.4.3 Complex Signal Space and Orthogonality

So far we have restricted our discussions to real functions of ¢. To generalize the results to
complex functions of ¢, consider again the problem of approximating a function g(¢) by a

complex valued signals, the inner product is modified into
< g(), x(t) >= [ gOx* (1) dt (2.28)
®

Given the inner product definition, the signal norm ||g(?)|| = \/ < g(t), g(t) > and the signal space can be defined
for any time domain signal.



2.4 Signals Versus Vectors 33

function x(¢) over an interval (] <t < fp)
g(t) >~ cx(t) (2.31)
where g(¢) and x(¢) are complex functions of ¢. In general, both the coefficient ¢ and the error
e(t) =g(t) —cx(t) (2.32)

are complex. Recall that the energy E, of the complex signal x(¢) over an interval [z, #2] is

n
EX:/ Ix(@)|? dt
n

For the best approximation, we need to choose ¢ that minimizes E,, the energy of the error
signal e(¢) given by

t
E, = / ’ lg (1) — cx(r)) dt (2.33)
n

Recall also that
lu+vI? = (u+v)* +v*) = [ul® + ]2+ u'v 4+ w* (2.34)

Using this result, we can, after some manipulation, express the integral E, in Eq. (2.33) as

2 2
+

[7] 1 7] 1 7]
Ee= 2 _ * e — —— *
/tl 8 di } = / g0 Od| +eVE~ = [ Cswx o

Since the first two terms on the right-hand side are independent of c, it is clear that E, is
minimized by choosing ¢ such that the third term is zero. This yields the optimum coefficient

e
c= —/ g(Dx*(t) dt (2.35)
Ex n

In light of the foregoing result, we need to redefine orthogonality for the complex case as
follows: complex functions (signals) x; (¢) and x,(¢) are orthogonal over an interval (t < #; <
ty) as long as

5] %)
f x (x5 di =0 or / x{(Ox2(t)dt =0 (2.36)
H 3]

In fact, either equality suffices. This is a general definition of orthogonality, which reduces to
Eq. (2.25) when the functions are real.

Similarly, the definition of inner product for complex signals over a time domain ® can
be modified:

< g, x(t) >= f g()x*(t) dt (2.37)

{t:te®}

Consequently, the norm of a signal g(¢) is simply

172
llg@®I = [ / |g(t)|2dt] (2.38)
{r:1e@®}
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2.4.4 Energy of the Sum of Orthogonal Signals

We know that the geometric length (or magnitude) of the sum of two orthogonal vectors is
equal to the sum of the magnitude squares of the two vectors. Thus, if vectors x and y are
orthogonal, and if z=x+Yy, then

l1zI1> = [Ix|1> + [lyI?

We have a similar result for signals. The energy of the sum of two orthogonal signals is equal
to the sum of the energies of the two signals. Thus, if signals x(z) and y() are orthogonal over
an interval [y, 2], and if z(¢) = x(¢) + y(¢), then

E,=E, +E, (2.39)

We now prove this result for complex signals of which real signals are a special case. From
Eq. (2.34) it follows that

15}

ty 15} 15} n
] () + y ()2 di = ] x() 2 di + ] Y0 dt + / XOy* @) di + ] Xy dr
t t 1

1 1 n n

%) 15
= / lx(1)|? dt + / ly(0)|? dt (2.40)
3]

151

The last equality follows because, as a result of orthogonality, the two integrals of the cross
products x(¢)y*(z) and x*(¢)y(¢) are zero. Thisresult can be extended to sum of any number of
mutually orthogonal signals.

2.5 CORRELATION OF SIGNALS

By defining the inner product and the norm of signals, we paved the foundation for signal
comparison. Here again, we can benefit by drawing parallels to the familiar vector space. Two
vectors g and x are similar if g has a large component along x. In other words, if ¢ in Eq. (2.19)
is large, the vectors g and x are similar. We could consider c¢ to be a quantitative measure of
similarity between g and x. Such a measure, however, would be defective because it varies
with the norms (or lengths) of g and x. To be fair, the amount of similarity between g and x
should be independent of the lengths of g and x. If we double the length of g, for example,
the amount of similarity between g and x should not change. From Eq. (2.19), however, we
see that doubling g doubles the value of ¢ (whereas doubling x halves the value of c). The
similarity measure based on signal correlation is clearly faulty. Similarity between two vectors
is indicated by the angle 6 between the vectors. The smaller the 6, the larger the similarity, and
vice versa. The amount of similarity can therefore be conveniently measured by cos 6. The
larger the cos 6, the larger the similarity between the two vectors. Thus, a suitable measure
would be p = cos 6, which is given by
<g X>

p=cosf = ——— (241
gl 11xl]

We can readily verify that this measure is independent of the lengths of g and x. This
similarity measure p is known as the correlation coefficient. Observe that

-1 < Fel < } (2.42)
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Thus, the magnitude of p is never greater than unity. If thetwo vectors are aligned, the similarity
is maximum (p = 1). Two vectors aligned in opposite directions have maximum dissimilarity
(p = —1). If the two vectors are orthogonal, the similarity is zero.

We use the same argument in defining a similarity index (the correlation coefficient) for
signals. For convenience, we shall consider the signals over the entire time interval from —oo
to oco. To establish a similarity index independent of energies (sizes) of g(¢) and x(¢), we
must normalize ¢ by normalizing the two signals to have unit energies. Thus, the appropriate
similarity index p analogous to Eq. (2.41) is given by

g(t)x(t) dt (243)

1 oo
P= JEE, /_oo

Observe that multiplying either g(¢) or x(¢) by any constant has no effect on this index. Thus,
it is independent of the size (energies) of g(¢#) and x(¢). Using the Cauchy-Schwarz inequality
(proved in Appendix B)," one can show that the magnitude of p is never greater than 1:

-1<p=1 (244)

2.5.1 Correlation Functions

We should revisit the application of correlation to signal detection in a radar unit, where a
signal pulse is transmitted to detect a suspected target. By detecting the presence or absence
of the reflected pulse, we confirm the presence or absence of the target. By measuring the time
delay between the transmitted and received (reflected) pulse, we determine the distance of the
target. Let the transmitted and the reflected pulses be denoted by g (¢) and z(t), respectively. If
we were to use Eq. (2.43) directly to measure the correlation coefficient p, we would obtain

1

,0 =
VEE;

Thus, the correlation is zero because the pulses are disjoint (nonoverlapping in time). The
integral in Eq. (2.45) will yield zero even when the pulses are identical but with relative time
shift. To avoid this difficulty, we compare the received pulse z(z) with the transmitted pulse
g(?) shifted by . If for some value of 7, there is a strong correlation, we not only detect the
presence of the pulse but we also detect the relative time shift of z(¢) with respect to g(¢). For
this reason, instead of using the integral on the right-hand side, we use the modified integral
Vg (T), the cross-correlation function of two complex signals g(¢) and z(¢), defined by

/ zZ(H)g*(t)dt =0 (2.45)

Vea(1) = / 2(0)g™(t — 7 di = / 2+ D)g* (1) di (2.46)

—0 —

Therefore, ¢, (t) is an indication of similarity (correlation) of g(¢) with z(z) advanced (left-
shifted) by T seconds.

2
 The Cauchy-Schwarz inequality states that for two real energy signals g(z) and x(z), ( ffooo g®x() dt) < EgEx

with equality if and only if x(#) = Kg(¢), where K is an arbitrary constant. There is similar inequality for complex
signals.
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Figure 2.11
Physical
explanation

of the
autocorrelation
function.

Figure 2.12

Representation of
a vector in three-

dimensional
space.

- (a)
g %
0 1 t —-
~t-T)
e
20 I\l (b)
0 T T+1 [ —-

2.5.2 Autocorrelation Function

As shown in Fig. 2.11, correlation of a signal with itself is called the autocorrelation. The
autocorrelation function ¥, (7) of a real signal g(¢) is defined as

Ye(T) = / g)gt+)at (2.47)

—00

It measures the similarity of the signal g(¢) with its own displaced version. In Chapter 3, we
shall show that the autocorrelation function provides valuable spectral information about the
signal.

2.6 ORTHOGONAL SIGNAL SET

In this section we show a way of representing a signal as a sum of orthogonal set of signals. In
effect, the signals in this orthogonal set form a basis for the specific signal space. Here again
we can benefit from the insight gained from a similar problem in vectors. We know that a
vector can be represented as a sum of orthogonal vectors, which form the coordinate system
of a vector space. The problem in signals is analogous, and the results for signals are parallel
to those for vectors. For this reason, let us review the case of vector representation.

2.6.1 Orthogonal Vector Space

Consider a multidimensional Cartesian vector space described by three mutually orthogo-
nal vectors X1, X2, and X3, as shown in Fig. 2.12 for the special case of three-dimensional
vector space. First, we shall seek to approximate a three-dimensional vector g in terms of two
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orthogonal vectors x; and x;:
g X~ c1X] +Xp

The error e in this approximation is
e=g— (c1X) +c2%2)

or equivalently,
g=1ci1X] +t X2+ €

In accordance with our earlier geometrical argument, it is clear from Fig. 2.12 that the length
of error vector e is minimum when it is perpendicular to the (X1, X») plane, and when c¢1x; and
c7X; are the projections (components) of g on x; and x;, respectively. Therefore, the constants
c1 and ¢ are given by formula in Eq. (2.19).

Now let us determine the best approximation to g in terms of all the three mutually
orthogonal vectors X1, X3, and x3:

£ ™ 01X + X+ 03X3 (2.48)

Figure 2.12 shows that a unique choice of ¢y, ¢2, and c3 exists, for which (2.48) is no longer
an approximation but an equality:

E=c1x; + caXo +03x3

In this case, c1X1, c2X2, and c3x3 are the projections (components) of g on xi,X», and X3,
respectively. Note that the approximation error e is now zero when g is approximated in terms
of three mutually orthogonal vectors: Xj, X2, and x3. This is because g is a three-dimensional
vector, and the vectors Xp, X2, and X3 represent a complete set of orthogonal vectors in three-
dimensional space. Completeness here means that it is impossible in this space to find any other
vector X4, which is orthogonal to all the three vectors X1, X, and x3. Any vector in this space
can therefore be represented (with zero error) in terms of these three vectors. Such vectors are
known as basis vectors, and the set of vector is known as a complete orthogonal basis of
this vector space. If a set of vectors {x;} is not complete, then the approximation error will
generally not be zero. For example, in the three-dimensional case just discussed earlier, it is
generally not possible to represent a vector g in terms of only two basis vectors without an
error.

The choice of basis vectors is not unique. In fact, each set of basis vectors corresponds to a
particular choice of coordinate system. Thus, a three-dimensional vector g may be represented
in many different ways depending on the coordinate system used.

To summarize, if a set of vectors {x;} is mutually orthogonal, that is, if

0 m#“n

< X Np ==
e Ap |xmlg m=n

and if this basis set is complete, a vector g in this space can be expressed as

g = c1X] + ¢3X2 } C3X3 (2.49)
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where the constants ¢; are given by

o= ~B X~ (2.50a)
<X, X; >
1
= 5 <8 Xi> i=1,2,3 (2.50a)
[1%;1]

2.6.2 Orthogonal Signal Space

We continue with our signal approximation problem, using clues and insights developed for
vector approximation. As before, we define orthogonality of a signal set x1 (¢), x2 (), ... xy (¢)
over a time domain ® (may be an interval [#1, #;]) as

* 0 m#n
m n dt = 2.51
/te@x ()50 [ B min 251)

If all signal energies areequal E,, = 1, then the set is normalized and is called an orthonormal
set. An orthogonal set can always be normalized by dividing x,(¢) by +/E,, for all n. Now, con-
sider the problem of approximating a signal g (#) over the ® by a set of N mutually orthogonal
signals x(2),x2(t), ..., xn(f):

g() = c1x1(t) + cox2(t) + - - - + enxn () (2.52a)
N

=) catat)  t€® (2.52b)
n=1

It can be shown that E,, the energy of the error signal e(?) in this approximation, is minimized
if we choose

f g(Dx, (1) dt
te®

Ch = —
/ bxn (1) 1% dt
te®

1
=—/g(r)x:;(t)dz n=1,2,...,N (2.53)
E, ®

Moreover, if the orthogonal set is complete, then the error energy E, — 0, and the represen-
tation in (2.52) is no longer an approximation, but an equality. More precisely, let the N-term
approximation error be defined by

N
en(t) = g(t) — c1x1(t) + coxa(t) + -+ enIN () =g(1) = ) _caxa(t) 1 €O (2.54)

n=1

If the orthogonal basis is complete, then the error signal energy converges to zero; that is,

Jim f len (O)*dr = 0 (2.55)
1€

N—oo
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In a strictly mathematical sense, however, a signal may not converge to zero even though
its energy does. This is because a signal may be nonzero at some isolated points.* Still, for
all practical purposes, signals are continuous for all 7, and the equality (2.55) states that the
error signal has zero energy as N — oo. Thus, for N — oo, the equality (2.52) can be
loosely written as

g(t) = crx1(®) +coxp(t) + -+ - + cpxp(t) + - -

=) ceatat)  1€® (2.56)
n=1

where the coefficients ¢, are given by Eq. (2.53). Because the error signal energy approaches
zero, it follows that the energy of g(#) is now equal to the sum of the energies of its orthogonal
components.

The series on the right-hand side of Eq. (2.56) is called the generalized Fourier series of
g(t) with respect to the set {x,(¢)}. When the set {x,(¢)} is such that the error energy Ey — 0
as N — oo for every member of some particular signal class, we say that the set {x,(?)} is
complete on {¢ : ®} for that class of g(¢), and the set {x,(¢)} is called a set of basis functions
or basis signals. In particular, the class of (finite) energy signals over ® is denoted as L2{G).
Unless otherwise mentioned, in the future we shall consider only the class of energy signals.

2.6.3 Parseval's Theorem

Recall that the energy of the sum of orthogonal signals is equal to the sum of their energies.
Therefore, the energy of the right-hand side of Eq. (2.56) is the sum of the energies of the
individual orthogonal components. The energy of a component c,x,(t) is c%En. Equating the
energies of the two sides of Eq. (2.56) yields

E, = B+ + C%E3 +-
= Zcﬁﬁ), (2.57)
L

This important result goes by the name of Parseval’s theorem. Recall that the signal energy
(area under the squared value of a signal) is analogous to the square of the length of a vector in
the vector-signal analogy. In vector space we know that the square of the length of a vector is
equal to the sum of the squares of thelengths of its orthogonal components. Parseval’s theorem
[Eq. (2.57)] is the statement of this fact as applied to signals.

2.7 THE EXPONENTIAL FOURIER SERIES

We noted earlier that orthogonal signal representation is NOT unique. While the tradi-
tional trigonometric Fourier series allows a good representation of all periodic signals, here
we provide an orthogonal representation of periodic signals that is equivalent but has a
simpler form.

* Known as a measure-zero set.
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Example 2.3

Figure 2.13
A periodic
signal.

First of all, it is clear that the set of exponentials egineot (n=0,+£1,£2,...) is orthogonal
over any interval of duration Ty = 27/ wy, that is,

0 m#n

To men (2.58)

ejmwo:(ejnwm)x dr — f

T

Iy
Moreover, this set is a complete set.2 From Egs. (2.53) and (2.56), it follows that

a signal g(f) can be expressed over an interval of duration 7y second(s) as an
exponential Fourier series

i .
gty =) Dy
n=-—00

o .
= Y Dyt (2.59)
h=—00
where [see Eq. (2.53)]
1 —jn2mfot
Dp=— | g()e "0 gy (2.60)
TO To

The exponential Fourier series in Eq. (2.59) consists of components of the form e27/! with
n varying from —oo to oo. It is periodic with period Tj.

Find the exponential Fourier series for the signal in Fig. 2.13b.

In this case, Top = &, 27 fo =27 /To = 2, and

p(1) = i Dye™

n=-—00
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where
1 j2nt
D, = so(t)e M dt
To
_ _/ e-t/2 e—j2nt dt
T Jo
_ —1— /Jr e_(%+j2n)t dl
T Jo
b g
) S e
T (% +j2n) 0
0.504
_. 2.61
T (2.61)
and
1 .
1) = 0.504 — 2.62
p(n) = n; 1+ jdn o
—0504[ 14+ ——ep L gy 1 e
1+ j4 14,8 1+j12
) 1 . 1 ;
—jot —j4t —jér ... 2.62b
tioae T Tt tione T T ] (2.620)

Observe that the coefficients D, are complex. Moreover, D, and D_, are conjugates, as
expected.

Exponential Fourier Spectra

In exponential spectra, we plot coefficients D, as a function of w. But since D, is complex in
general, we need two plots: thereal and the imaginary parts of D, or the amplitude (magnitude)
and the angle of D,,. We prefer the latter because of its close connection to the amplitudes and
phases of corresponding components of the trigonometric Fourier series. We therefore plot
|D,| versus w and ZD,, versus w. This requires that the coefficients D, be expressed in polar
form as ID,,Ie’ZD".

For a real periodic signal, the twin coefficients D, and D_, are conjugates,

|Dn| = |D—nl (2.63a)
/Dy=6, and /D_,=—b, (2.63b)

Thus,
D, = |Dpleéf™  and  D_, = |D,le % (2.64)

Note that |D,| are the amplitudes (magnitudes) and £D,, are the angles of various expo-
nential components. From Eq. (2.63) it follows that the amplitude spectrum (|D,| vs. f) is an
even function of w and the angle spectrum (£Dj, vs. f) is an odd function of f when g(¢) is a
real signal.
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Figure 2.14
Exponential
Fourier spectra
for the signal in
Fig. 2.13a.

For the series in Example 2.3, for instance,

Do = 0.504

D= 2% 012067759 _y D, =0.122, /D) = ~75.96°

0.504 e oo
Doy=r—0= 0.122¢739° — |D_;| = 0.122, ZD_, = 75.96°
—J

and

0.504 r g0
D, = TS 0.0625¢ 73287 — |D,| = 0.0625, /D, = —82.87°
J

D_, = ?—‘5% = 0.0625¢8287" — |D_5| = 0.0625, ZD_; = 82.87°
and so on. Note that D, and D_, are conjugates, as expected [see Eq. (2.63b)].

Figure 2.14 shows the frequency spectra (amplitude and angle) of the exponential Fourier
series for the periodic signal ¢(¢) in Fig. 2.13b.

We notice some interesting features of these spectra. First, the spectra exist for positive
as well as negative values of f (the frequency). Second, the amplitude spectrum is an even
function of f and the angle spectrum is an odd function of f. Equations (2.63) show the
symmetric characteristics of the amplitude and phase of D,,.

What Does Negative Frequency Mean?

The existence of the spectrum at negative frequencies is somewhat disturbing to some people
because by definition, the frequency (number of repetitions per second) is a positive quantity.
How do we interpret a negative frequency fo? We can use a trigonometric identity to express
a sinusoid of a negative frequency —fp by borrowing wo = 27fy, as

cos (—wpt 4+ 0) = cos (wot — 9)

| |
0504 o
0.122
] l 0.0625 (@
+ h 4 l I 1 l k4 M
-10 -8 -6 -4 -2 2 4 6 8 10 5
£ D,
T
..................... 5
()
10 8 -6 -4 2 t 2 14 6 8 10 o>
- J ......... l l l I
: 0 CUUSTRU SRS S S




Figure 2.15
Unit length
complex variable
with positive
frequency
(rotating counter-
clockwise) versus
unit length
complex variable
with negative
frequency
(rotating
clockwise).
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This clearly shows that the angular frequency of a sinusoid cos (—wot + 6) is |wg|, which is a
positive quantity. The commonsense statement that a frequency must be positive comes from
the traditional notion that frequency is associated with a real-valued sinusoid (such as a sine or
a cosine). In reality, the concept of frequency for a real-valued sinusoid describes only the rate
of the sinusoidal variation without addressing the direction of the variation. This is because
real-valued sinusoidal signals do NOT contain information on the direction of its variation.
The concept of negative frequency is meaningful only when we are considering complex
sinusoids for which the rate and the direction of variation are meaningful. Observe that

e = cos wot +jsin wot

This relationship clearly shows that either positive or negative w leads to periodic variation of
the same rate. However, the resulting complex signals are NOT the same. Because |e 0| = 1,
both ¢1/®0! and e /0* are unit length complex variables that can be shown on the complex
plane. We illustrate the two exponential sinusoids as unit length complex variables that vary
with time ¢ in Fig. 2.15. Thus, the rotation rate for both exponentials 0’ is |wyg . It is clear that
for positive frequency, the exponential sinusoid rotates counterclockwise while for negative
frequency, the exponential sinusoid rotates clockwise. This illustrates the actual meaning of
negative frequency.

There exists a good analogy between positive/negative frequency and positive/negative
velocity. Just as people are reluctant to use negative velocity in describing a moving object,
they are equally unwilling to accept the notion of “negative” frequency. However, once we
understand that negative velocity simply refers to both the negative direction and the actual
speed of a moving object, negative velocity makes perfect sense. Likewise, negative frequency
does NOT describe the rate of periodic variation of a sine or a cosine. It describe the direction
of rotation of a unit length exponential sinusoid and its rate of revolution.

Another way of looking at the situation is to say that exponential spectra are a graphical
representation of coefficients D, as a function of f. Existence of the spectrum at f = —nfy
merely indicates that an exponential component eI2mfot exists in the series. We know from
Euler’s identity

e e b
cos (wt 4 6) = - exp (jot) + - exp (—jot)

that a sinusoid of frequency nwo can be expressed in terms of a pair of exponentials /0!
and e /"0’ That both sine and cosine consist of positive and negative frequency exponential
sinusoidal components clearly indicates that we are NOT at all able to describe the direction of
their periodic variations. Indeed, both sine and cosine functions of frequency wg consist of two
equal-size exponential sinusoids of frequency £wq. Thus, the frequency of sine or cosine is
the absolute value of its two component frequencies and denotes only the rate of the sinusoidal
variations.

Im Im

Jongi
T B o . '\_cij{

Re . Re

(@ (b)



44  SIGNALS AND SIGNAL SPACE

Exomple 2.4  Find the exponential Fourier series for the periodic square wave w(t) shown in Fig. 2.16.

Figure 2.16
A square pulse
periodic signal.

w(t)

|
3

(S
]

(@)

w(t)= ) Dy

n=—0oo

where

1 1
Do = T_ w(t) dt = -2-

0JTy
1 o
D, = — W(t)e—jn2nf()t dt, n# {
TO To
To/4
— i 0/ e—jnZJTfot dt
To J-1y/4
I [ o—in2nfoTo/4 _ ejnznfoTo/4]
—jn2mfoTo
2 21 fo T 1
= Sil’l/n T[f() O\:—Sin (E)
nrflo \ 4 ) nm 2

In this case D, is real. Consequently, we can do without the phase or angle plot if we plot
D,, vs. f instead of the amplitude spectrum (|D,| vs. f) as shown in Fig. 2.17.

Figure 2.17
Exponential
Fourier spectrum
of the square
pulse periodic
signal.
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Example 2.5

Figure 2.18
Impulse train and
its exponential
Fourier spectra.

Find the exponential Fourier series and sketch the corresponding spectra for the impulse train
71, (t) shown in Fig. 2.18a.

The exponential Fourier series is given by

1

2
b= ) Dud"™™ fo= (2.65)

n=—0oo

where

1 .
Dn=— | b5,(t)e "N dy
Ty Jr,

Choosing the interval of integration (:21‘1, %oy and recognizing that over this interval
87, () = 8(¢), were have

To/2 .
D, ! §(t)e Tt gy

T To Jomyp

In this integral, the impulse is located at # = 0. From the sampling property of the impulse
function, the integral on the right-hand side is the value of e /720! at t = 0 (where the
impulse is located). Therefore

1
D, — — 2.66
and
 Q— 1
81, (1) = — 2: e/n2mhot == (2.67)
To( ) TO [ fo TO

Equation (2.67) shows that the exponential spectrum is uniform (D, = 1/Tp) for all the
frequencies, as shown in Fig. 2.18b. The spectrum, being real, requires only the amplitude
plot. All phases are zero.

HOERNG)

21, = 0 T 27 3 —~

Dy,

o I

—4w¢ -3w¢ —2wo - 0 [a) 20 3wo 4o S5wo 6o ®—>
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Parseval’s Theorem in the Fourier Series
A periodic signal g(¢) is a power signal, and every term in its Fourier series is also a power
signal. The power P of g(¢) is equal to the power of its Fourier series. Because the Fourier
series consists of terms that are mutually orthogonal over one period, the power of the Fourier
series is equal to the sum of the powers of its Fourier components. This follows from Parseval’s
theorem.

Thus, for the exponential Fourier series

e o]

g(t) = Do + Z D, et

#n=—oc, AFED

the power is given by (see Prob. 2.1-7)

Py = Z |Dnl2 (2.68a)

n=—00

For areal g(¢), |D_,| = |Dy|. Therefore

o0
Py =Dy* +2) D, (2.68b)

n=1

Comment: Parseval’s theorem occurs in many different forms, such as in Egs. (2.57) and
Eq. (2.68a). Yet another form is found in the next chapter for nonperiodic signals. Although
these forms appear to be different, they all state the same principle: that is, the square of the
length of a vector equals the sum of the squares of its orthogonal components. The first form
[Eq. (2.57)] applies to energy signals, and the second [Eq. (2.68a)] applies to periodic signals
represented by the exponential Fourier series.

Some Other Examples of Orthogonal Signal Sets

The signal representation by Fourier series shows that signals are vectors in every sense. Just
as a vector can be represented as a sum of its components in a variety of ways, depending upon
the choice of a coordinate system, a signal can be represented as a sum of its components in
a variety of ways. Just as we have vector coordinate systems formed by mutually orthogonal
vectors (rectangular, cylindrical, spherical, etc.), we also have signal coordinate systems, basis
signals, formed by a variety of sets of mutually orthogonal signals. There exist a large number
of orthogonal signal sets that can be used as basis signals for generalized Fourier series. Some
well-known signal sets are trigonometric (sinusoid) functions, exponential functions, Walsh
functions, Bessel functions, Legendre polynomials, Laguerre functions, Jacobi polynomials,
Hermite polynomials, and Chebyshev polynomials. The functions that concern us mostin this
book are the exponential sets discussed next in the chapter.

2.8 MATLAB EXERCISES

In this section, we provide some basic MATLAB exercises to illustrate the process of signal
generation, signal operations, and Fourier series analysis.
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Basic Signals and Signal Graphing
Basic functions can be defined by using MATLAB’s m-files. We gave three MATLAB programs
that implement three basic functions when a time vector t is provided:

- ustep.mimplements the unit step function u(t)
- rect .mimplements the standard rectangular function rect(t)
+ triangl.mimplements standard triangle function A(?)

% (file name: wustep.m)
% The unit step function is a function of time ’t’.
% Usage Yy = ustep(t)
%
% ustep(t) =0 if £t <0
% ustep(t) =1, if t >= 1
%
% t - must be real-valued and can be a vector or a matrix
%
function y=ustep(t)
y = (£>=0);
end

% (file name: rect.m)

% The rectangular function is a function of time ‘t’.

%

% Usage Yy = rect(t)

% t - must be real-valued and can be a vector or a matrix
%

% rect(t) =1, if |t]| < 0.5

% rect(t) = 0, if |t| > 0.5

% .

function y=rect(t)
vy =(sign(t+0.5)-sign(t-0.5) >0);
end

(file name: triangl.m)
The triangle function is a function of time 't-’.

triangl(t) = 1-|t|, if |t] <1
triangl(t) = 0, if le] > 1

Usage Yy = triangl (t)
t - must be real-valued and can be a vector or a matrix

00 0P 0P 0P 0P 0P 0P of o°
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Figure 2.19
Graphing a
signal.

Y rm time domain

3 T T T T T T T T

(@)

function y=triangl (t)
y = (l-abs(t)).*(t>=-1).*(t<1);
end

We now show how to use MATLAB to generate a simple signal plot through an example.
siggraf .mis provided. In this example, we construct and plot a signal

y(@) = exp (—t)sin (6x)u(t + 1)

The resulting graph shown in Fig. 2.19.

o°

(file name: siggraf.m)

% To graph a signal, the first step is to determine

% the x-axis and the y-axis to plot

% We can first decide the length of x-axis to plot
t=[-2:0.01:31]1; % "t" is from -2 to 3 in 0.01 increment

% Then evaluate the signal over the range of "t" to plot
yv=exp(-t).*sin(10*pi*t) .*ustep(t+1l);
figure(1l); figl=plot(t,y); % plot t vs y in figure 1
set (figl, 'Linewidth’,2); % choose a wider line-width
xlabel (\it t’); % use italic 't’ to label x-axis
ylabel (" \{\bf y\}(\{\it t})'); % use boldface 'y’

to label y-axis
title("\{\bf y\}\_\{\rm time domain\}’); % can use subscript

Periodic Signals and Signal Power
Periodic signals can be generated by first determining the signal values in one period before
repeating the same signal vector multiple times.

In the following MATLAB program PfuncEx.m, we generate a periodic signal and
observe its behavior over 2M periods. The period of this example is 7 = 6. The program also
evaluates the average signal power which is stored as a variable y_power and signal energy
in one period which is stored in variable y_energyT.
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(file name: PfuncEx.m)
This example generates a periodic signal, plots the signal
and evaluates the average signal power in y_power and signal

o0 0P 0P o

energy in 1 period T: y_energyT
echo off;clear;clf;
To generate a periodic signal g T(t),
we can first decide the signal within the period of 'T’ for g(t)

oe

oe

Dt=0.002; % Time interval (to sample the signal)

T=6; % period=T

M=3; % To generate 2M periods of the signal
t=[0:Dt:T-Dt]; %"t" goes for one period [0, T] in Dt increment

Then evaluate the signal over the range of "T"
yv=exp(-abs(t)/2).*sin(2*pi*t).* (ustep(t)-ustep(t-4));
$ Multiple periods can now be generated.

oe

time=[];
v_periodic=[];
for i=-M:M-1,
time=[time i*T+t];
y_periodic=[y_periodic y];
end
figure(1l); fy=plot(time,y_periodic);
set (fy, 'Linewidth’,2) ;xlabel (' {\it t}’);
echo on
% Compute average power
v_power=sum(y_periodic*y_periodic’) *Dt/ (max(time)-min(time))
Compute signal energy in 1 period T

oe

v_energyT=sum(y.*conj (y)) *Dt

The program generates a periodic signal as shown in Fig. 2.20 and numerical answers:

y_power =
0.0813

y_energyT =
0.4878

Signal Correlation

The MATLAB program can implement directly the concept of signal correlation introduced
in Section 2.5. In the next computer example, we provide a program, sign_cor .m, that
evaluates the signal correlation coefficients between x(¢) and signals g (¢), g2(2), ... g5().
The program first generates Fig. 2.21, which illustrates the six signals in the time domain.

% (file name: sign_cor.m)

clear

% To generate 6 signals x(t), g 1(t), ... g_5(t);

% of this Example

% we can first decide the signal within the period of 'T’ for g(t)
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Figure 2.20
Generating a
periodic signal.

Figure 2.21
Six simple
signals.
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t ¢ !
Dt=0.01; % time increment Dt
T=6.0; % time duration = T
t=[-1:Dt:T]; $"t" goes between [-1, T] in Dt increment

% Then evaluate the signal over the range of "t" to plot
x=ustep (t)-ustep(t-5);
gl=0.5* (ustep(t)-ustep(t-5));
g2=-(ustep(t)-ustep(t-5));
g3=exp(-t/5).* (ustep(t)-ustep(t-5));
gld=exp(-t).*(ustep(t)-ustep(t-5));
gb=sin(2*pi*t).* (ustep(t)-ustep (t-5));
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subplot(231); sigl=plot(t,x,'k’);

xlabel (’\it t’); ylabel (’{\it x} ({\it t})"); % Label axis
set(sigl, 'Linewidth’,2); % change linewidth
axis([-.5 6 -1.2 1.2]1); grid % set plot range

subplot (232); sig2=plot(t,gl, 'k’);

xlabel (“\it t’); ylabel (' {\it g}_1({\it t})’);
set (sig2, 'Linewidth’,2);

axis([-.5 6 -1.2 1.2]1); grid

subplot(233); sig3=plot(t,g2,'k’);

xlabel (\it t’); ylabel(’{\it g}_2({\it t})’");
set(sig3, 'Linewidth’,2);

axis([-.5 6 -1.2 1.2]1); grid

subplot (234); sigé4=plot(t,g3,’'k’);

xlabel (‘\it t’); ylabel (’{\it g}_3({\it t})’");
set (sig4, 'Linewidth’,2);

axis([-.5 6 -1.2 1.2]); grid

subplot (235); sigS5=plot(t,g4d, 'k’);

xlabel (“\it t’); ylabel (' {\it g}_4({\it t})");
set (sigh, 'Linewidth’,2);grid

axis([-.5 6 -1.2 1.21);

subplot (236); sig6=plot(t,g5,'k’);

xlabel ('\it t’); ylabel (’{\it g}_5({\it t})");
set(sig6, 'Linewidth’,2);grid

axis([-.5 6 -1.2 1.2]1);

% Computing signal energies
EO0=sum(x.*conj (x)) *Dt;

El=sum(gl.*conj(gl)) *Dt;
E2=sum(g2.*conj (g2)) *Dt;
E3=sum(g3.*conj (g3)) *Dt;
E4=sum(g4.*conj (g4)) *Dt;
E5=sum(g5.*conj (g5) ) *Dt;
cO=sum(x.*conj (x)) *Dt/ (sqrt (EO*E0) )
cl=sum(x.*conj(gl))*Dt/(sqrt (E0*E1l))
c2=sum(x.*conj(g2))*Dt/ (sqrt (EO*E2))
c3=sum(x.*conj (g3))*Dt/ (sqrt (EO*E3))
cd=sum(x.*conj (g4)) *Dt/ (sgrt (EO*E4) )
c5=sum(x.*conj (g5))*Dt/ (sqrt (EO*ES5))

51

The six correlation coefficients are obtained from the program as

c0 =
1
cl =
1
c2 =
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c3 =

0.9614
cd =

0.6282
ch =

8.6748e-17

Numerical Computation of Coefficients D,,
There are several ways to numerically compute the Fourier series coefficients D,. We will use
MATLAB to show how to use numerical integration in the evaluation of Fourier series.

To carry out a direct numerical integration of Eq. (2.60), the first step is to define the
symbolic expression of the signal g(z) under analysis. We use the triangle function A (¢) in the
following example.

% (funct_tri.m)

% A standard triangle function of base -1 to 1
function y = funct_tri(t)

% Usage y = func_tri(t)

% t = input variable i

y=((t>-1)-(t>1)).*(1l-abs(t));

Once the file funct_tri.m defines the function y = g(¢), we can directly carry
out the necessary integration of Eq. (2.60) for a finite number of Fourier series coefficients
{Dp,n = =N, ..., —1,0,1,..., N}. We provide the following MATLAB program called
FSexample .m to evaluate the Fourier series of A(¢/2) with period [a, b] (a = =2, b = 2).
Inthisexample, N = 11 is selected. Executing this short program in MATLAB will generate
Fig. 2.22 with both amplitude and angle of D,.

% (file name: FSexp_a.m)

% This example shows how to numerically evaluate
% the exponential Fourier series coefficients Dn
%
%
%

directly.

The user needs to define a symbolic function

g(t). In this example, g(t)=funct_tri(t).
echo off; clear; clf;

j=sqgrt(-1); % Define j for complex algebra

b=2; a=-2; % Determine one signal period

tol=1.e-5; % Set integration error tolerance

T=b-a; % length of the period

N=11; % Number of FS coefficients

% on each side of zero frequency
Fi=[-N:N]*2*pi/T; % Set frequency range



Figure 2.22
Exponential
Fourier series
coefficients of a
repeated A(t/2)
with period

T =4.

2.8 MATLAB Exercises

Amplitude of D,
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Angle of D,
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% now calculate D_0 and store it in D(N+1);
Func= @(t) funct_tri(t/2);

D(N+1)=1/T*quad(Func,a,b,tol); % Using quad.m integration
for i=1:N
% Calculate Dn for n=1,...,N (stored in D(N+2) ... D(2N+1)

Func= @(t) exp(-j*2*pi*t*i/T).*funct_tri(t/2);
D(i+N+1)=quad(Func,a,b,tol);

% Calculate Dn for n=-N,...,-1 (stored in D(1) ... D(N)
Func= @(t) exp(j*2*pi*t*(N+1-i)/T).*func_tri(t/2);
D(i)= quad(Func,a,b,tol);

end

figure(l);

subplot(211);sl=stem([-N:N],abs (D)) ;

set(sl, 'Linewidth’,2); ylabel (' |{\it D}_{\it n}|’);
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title(’Amplitude of {\it D}_{\it n}’)

subplot (212);s2=stem([-N:N],angle (D)) ;

set (s2, 'Linewidth’,2); ylabel ('<{\it D}_{\it n}’);
title(’Angle of {\it D}_{\it n}’);
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PROBLEMS

Figure P.2.1-1

2.1-1

Hill, New York, 1978.

Find the energies of the signals shown in Fig. P2.1-1. Comment on the effect on energy of sign
change, time shift, or doubling of the signal. What is the effect on the energy if the signal is
multiplied by £?

V\ sin ¢ (a) br —sinr/‘\ b) ,
2sint

2n r
01 f—‘*\/ ° r— @

2.1-3

2.14

(]lr

1 " sin ¢ (c)
ol 2 \/45:
| t—>

(a) Find E, and Ey, the energies of the signals x(¢) and y(¢) shown in Fig. P2.1-2a. Sketch the
signals x(¢) + y(¢) and x(#) — y(¢) and show that the energy of either of these two signals is
equal to Ex + E),. Repeat the procedure for signal pair in Fig. P2.1-2b.

(b) Now repeat the procedure for signal pair in Fig. P2.1-2c. Are the energies of the signals
x(¢) + y(¢t) and x(¢) — y(¢) identical in this case?

Find the power of a sinusoid C cos (wgt + 6).

Show thatif w; = wy, the power of g(t) = Cy cos(wit + 01) + C, cos(wat + 67) is [C12 +
G2 +2C1 Gy cos(f; — 67)]/2, which is not equal to (C; 2 + C22)/2.

Find the power of the periodic signal g(¢) shown in Fig. P2.1-5. Find also the powers and the rms
values of (a) —g(z) (b) 2g(¢) (c) cg(t). Comment.

Find the power and the rms value for the signals in (a) Fig. P2-1-6a; (b) Fig. 2.16; (c) Fig. P2-1-6b;
(d) Fig. P2.7-4a; (e) Fig. P2.7-4c.
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Figure P.2.1-2 x(2) y@®
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Figure P.2.1-5

A _ N

Figure P.2.1-6

wglf)

2.1-7 Show that the power of a signal g(z) given by
n .
g() = Z Dke]wkt w; # wy forall i #k
k=m

is (Parseval’s theorem)

n
Po= Y IDyf?
k=m
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2.1-8 Determine the power and the rms value for each of the following signals:

(a) 10 cos(lOOt + %) (d) 10 cos 5¢ cos 10t
(b) 10 cos (100t+ %) +16 sin (150: + 15’_) © 1F) sin 5t cos 10¢
(¢) (10 + 2 sin 3¢) cos 10t (f) & cos wpt

2.2-1 Show that an exponential e %' starting at —oo is neither an energy nor a power signal for any
real value of a. However, if a is imaginary, it is a power signal with power P = 1 regardless of
the value of a.

2.3-1 In Fig. P2.3-1, the signal g (¢z) = g(—t). Express signals g, (#), g3(), g4(2), and g5(¢) in terms
of signals g (), g1 (¢), and their time-shifted, time-scaled, or time-inverted versions. For instance,
g2(t) =g —T)+ g1 (t —T) for some suitable value of 7. Similarly, both g3(#) and g4 () can be
expressed as g(t —T) + g (t — T) for some suitable value of 7. In addition, g5(¢) can be expressed
as g () time-shifted, time-scaled, and then multiplied by a constant.

Figure P.2.3-1

82(1)
l
> 0 r—> 1 2
1.5
g1 | 8alt) &5l
t—>»
-1 fo 11— 1 1 0o 1 0 —> 2
2 2

2.3-2 For the signal g(z) shown in Fig. P2.3-2, sketch the following signals: (a) g(—t); (b) g(¢ + 6);
(©) g(3t); (d) g(6 — 1)

0 I/z 15 24 1=
Y —

2.3-3 For the signal g(¢) shown in Fig. P2.3-3, sketch (a) g(t — 4); (b) g(¢/1.5); (¢) g2t — 4); (d)
g2 —1n).
Hint: Recall that replacing ¢ with t — T delays the signal by T. Thus, g (2t — 4) is g(2¢) with ¢
replaced by ¢ — 2. Similarly, g(2 — ¢) is g(—t) with ¢ replaced by ¢ — 2.

2.3-4 For an energy signal g(¢) with energy Eg, show that the energy of any one of the signals
—g(1), g(—1), and g(t — T) is E;. Show also that the energy of g(at) as well as g(at — b)
is Eg /a. This shows that time inversion and time shifting do not affect signal energy. On the other
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Figure P.2.3-3

t—

hand, time compression of a signal by a factor a reduces the energy by the factor a. What is the
effect on signal energy if the signal is (a) time-expanded by a factor a (@ > 1) and (b) multiplied
by a constant a?

2.3-5 Simplify the following expressions:

@) ( tan ¢ )5([) (d (w> sit—1)

22 + 1 _4

jo—3 cos (rt)

© [e™tcos B3t —7/3)]8(t + ) ® (Si“wkw) 8(w)

Hint: Use Eq. (2.10b). For part (f) use L’Hospital’s rule.

2.3-6 Evaluate the following integrals:

@ [2g@st—vdr (&) [58B+ne"dr
b) [ 8mgt—1dr () [ +480 -1 dr

(© [%, 8(e @ dt @ [2.82-18B—1adt
@ [lost—Dsinmed () [ e" D cos Z(x —5)8(2x — 3)dx

Hint: §(x) is located at x = 0. For example, §(1 — ¢) is located at 1 — ¢ = 0, that is, at t = 1, and
SO on.

2.3-7 Prove that .
8(at) = —6()
lal
Hence show that .
S(w) = —6(F) where o =2xf
2w
Hint: Show that
oo 1
| swsanar = o0
—00 |al
2.4-1 Derive Eq. (2.19) in an alternate way by observing that e = (g—c x), and
lel* = (g—cx) - (@ —cx) = Ig? + c?x|? — 2cg - x
To minimize |e|2, equate its derivative with respect to ¢ to zero.
2.4-2 For the signals g(#) and x(¢) shown in Fig. P2.4-2, find the component of the form x(#) contained

in g(¢). In other words, find the optimum value of ¢ in the approximation g(¢) = cx(¢) so that the
error signal energy is minimum. What is the resulting error signal energy?
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Figure P.2.4-2 x(#)

t—> 0 1 t—>

(@) (b)

2.4-3 Forthesignals g(#) and x(¢) shown in Fig. P2.4-2, find the component of the form g(¢) contained
in x(¢). In other words, find the optimum value of ¢ in the approximation x(¢) = cg(¢) so that the
error signal energy is minimum. What is the resulting error signal energy?

2.4-4 Repeat Prob. 2.4-2 if x(¢) is a sinusoid pulse shown in Fig. P2.4-4.

Figure P.2.4-4 x(2)

sin 2

N

2.4-5 The Energies of the two energy signals x(¢) and y(¢) are Ey and Ey, respectively.

(a) If x(¢) and y(r) are orthogonal, then show that the energy of the signal x(z) + y(?) is identical
to the energy of the signal x(¢) — y(?), and is given by Ex + E;.

(b) ifx(z) and y(z) are orthogonal, find the energies of signals c1x(#) + cy(?) and c1x(z) —coy(2).
(c) We define Eyy, the cross-energy of the two energy signals x(¢) and y(¢), as

o0
Exy = / x(t)y* (2) dt
—00

If z(¢) = x(¢) & y(2), then show that
E; = Ex + Ey £ (Exy + Eyx)
2.4-6 Let xj () and x,(¢) be two unit energy signals orthogonal over an interval from ¢t = #; to #;.
Signals x () and x, () are unit energy, orthogonal signals; we can represent them by two unit
length, orthogonal vectors (x1, X2). Consider a signal g(¢) where

g(t) = cyxg () + cax0() HhEt=h

This signal can be represented as a vector g by a point (¢j, ¢p) in the x; — x, plane.

(a) Determine the vector representation of the following six signals in this two-dimensional

vector space:
M) g1() =2x1(t) —x2(2) (iv) g4(t) = x1(#) + 2x2(8)
(i) g2 (1) = —x1 (1) + 2x2(0) (v) g5(t) = 2x1(2) +x2(2)
(i) g3(1) = —x2(2) (vi) ge(t) = 3x1(2)

(b) Point out pairs of mutually orthogonal vectors among these six vectors. Verify that the pairs
of signals corresponding to these orthogonal vectors are also orthogonal.



Problems 59

2.5-1 Find the correlation coefficient c;, of signal x(¢) and each of the four pulses g1 (¢), g2 (¢), g3(¢), and
84(t) shown in Fig. P2.5-1. To provide maximum margin against the noise along the transmission
path, which pair of pulses would you select for a binary communication?

Figure P.2.5-1 X0 (a) B8 (b) g4 (©

L s sin 2m ! /\ sin 47t Lo /\—sin 2mt
1
Dy = VA v S N e

24(1) p 240
0.707 (d) 0.707 (e)
1
0 1 t—> 0 0.5 t—>
007 | L

2.7-1 (a) Sketch the signal g(¢) = 12 and find the exponential Fourier series to represent g () over the
interval (—1, 1). Sketch the Fourier series ¢(¢) for all values of z.

(b) Verify Parseval’s theorem [Eq. (2.68a)] for this case, given that

X1 xt
2 a7 %

t=

2.7-2 (a) Sketch the signal g(¢t) = ¢ and find the exponential Fourier series to represent g(¢) over the
interval (—, 7). Sketch the Fourier series ¢(t) for all values of .

(b) Verify Parseval’s theorem [Eq. (2.68a)] for this case, given that

x2

l—
Y

M2

n=1

2.7-3 If a periodic signal satisfies certain symmetry conditions, the evaluation of the Fourier series
coefficients is somewhat simplified.

(a) Show that if g(t) = g(—t) (even symmetry), then the coefficients of the exponential Fourier
series are real.

(b) Show that if g(f) = —g(—t) (odd symmetry), the coefficients of the exponential Fourier
series are imaginary.

(c) Show that in each case, the Fourier coefficients can be evaluated by integrating the periodic
signal over the half-cycle only. This is because the entire information of one cycle is implicit
in a half-cycle owing to symmetry.

Hint: If g (t) and g, () are even and odd functions, respectively, of ¢, then (assuming no impulse
or its derivative at the origin),

a 2a a
/ ge(t)dt=/0 ge(®)dt and golthdt =10

—a —a
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Also, the product of an even and an odd function is an odd function, the product of two odd
functions is an even function, and the product of two even functions is an even function.

2.7-4 For each of the periodic signals shown in Fig. P2.7-4, find the exponential Fourier series and
sketch the amplitude and phase spectra. Note any symmetric property.

Figure P.2.7-4

1

- -7 -5 3 ] o 1 3 5 7 @
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2.7-5 (a) Show that an arbitrary function g (¢) can be expressed as a sum of an even function g.(f) and
an odd function g, (z):

201y = go(t) + golt)

Hint: g0 = 5[80) +2(-0] + 3[20) ~ 5-0)]

—
8e(t)

8o(?)



Problems 61

(b) Determine the odd and even components of the following functions: (i) u(t); (ii) e~ u(t);
(iii) €.
2.7-6 (a) If the two halves of one period of a periodic signal are of identical shape except that one is the

negative of the other, the periodic signal is said to have a half-wave symmetry. If a periodic
signal g(¢) with a period T satisfies the half-wave symmetry condition, then

To _
g<t——2—>— g ()

In this case, show that all the even-numbered harmonics (coefficients) vanish.

(b) Use this result to find the Fourier series for the periodic signals in Fig. P2.7-6.

Figure P.2.7-6

~ P~ "

2.8-1 A periodic signal g(t) is expressed by the following Fourier series:

. 2w T
g()=3sint+cos | 3 — 3 + 2 cos (8 + E)

(a) By applying Euler’s identities on the signal g () directly, write the exponential Fourier series
for g (¢).

(b) By applying Euler’s identities on the signal g (¢) directly, sketch the exponential Fourier series
spectra.
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and think of systems in terms of their frequency responses. Even teenagers know about

audio signals having a bandwidth of 20 kHz and good-quality loud speakers responding
up to 20 kHz. This is basically thinking in the frequency domain. In the last chapter we
discussed spectral representation of periodic signals (Fourier series). In this chapter we extend
this spectral representation to aperiodic signals.

[ Z lectrical engineers instinctively think of signals in terms of their frequency spectra

3.1 APERIODIC SIGNAL REPRESENTATION BY
FOURIER INTEGRAL

Applying a limiting process, we now show that an aperiodic signal can be expressed as a
continuous sum (integral) of everlasting exponentials. To represent an aperiodic signal g ()
such as the one shown in Fig. 3.1a by everlasting exponential signals, let us construct a
new periodic signal g, (¢) formed by repeating the signal g () every Tp seconds, as shown in
Fig. 3.1b. The period Ty is made long enough to avoid overlap between the repeating pulses. The
periodic signal gT, (t) can be represented by an exponential Fourier series. If we let Ty — oo,
the pulses in the periodic signal repeat after an infinite interval, and therefore

lim g7, (t) = g(1)
To—00

Thus, the Fourier series representing gr, (t) will also represent g (¢) in the limit Tp — oo.
The exponential Fourier series for g7, (?) is given by

oo
g () = Y Dpd™” 3.1)
n=-—0o0
in which
1 rh/2 .
D, = — gry (1)e "0 dy (3.22)
To J-1y2

62



Figure 3.1
Construction of a
Eeriodic signal

y periodic
extension of g(2).
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8
(a)
70 t—
gTO(t)
(b)
-Ty 0 =T t —
2 2
and 5
wo = = = 2mfy (3.2b)
Ty

Observe that integrating gr,(¢) over (—To/2,Tp/2) is the same as integrating g(t) over
(—00, 00). Therefore, Eq. (3.2a) can be expressed as

o0

D, g(r)e "ot gy (3.2¢)

To oo

1 o0 .
— / g (e ¥t gy
To J

Itis interesting to see how the nature of the spectrum changes as T increases. Tounderstand
this fascinating behavior, let us define G(f), a continuous function of w, as

[e0] .
G(f) =/ g(He " dt (3.3)
= /OO g()e 7 gy (3.4)

in which w = 2xf. A glance at Egs. (3.2c) and (3.3) shows that

1
D, = —T—G(nf()) (3.5)
0

This in turn shows that the Fourier coefficients D, are (1/Tp times) the samples of G(f)
uniformly spaced at intervals of fy Hz, as shown in Fig. 3.2a.*

Therefore, (1/To)G(f) is the envelope for the coefficients D,. We now let Tp — oo
by doubling Ty repeatedly. Doubling T halves the fundamental frequency fp, so that there
are now twice as many components (samples) in the spectrum. However, by doubling T, the
envelope (1/To)G(f) is halved, as shown in Fig. 3.2b. If we continue this process of doubling Tg
repeatedly, the spectrum progressively becomes denser while its magnitude becomes smaller.

* For the sake of simplicity we assume D, and therefore G(f) in Fig. 3.2 to be real. The argument, however, is also
valid for complex Dy, [or G(f)].
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Figure 3.2
Change in the
Fourier spectrum
when the period
Tp in Fig. 3.1 is
doublec?.
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Note, however, that the relative shape of the envelope remains the same [proportional to G(f)
in Eq. (3.3)]. In the limit as Tp — oo, fy — 0 and D, — 0. This means that the spectrum is
so dense that the spectral components are spaced at zero (infinitesimal) interval. At the same
time, the amplitude of each component is zero (infinitesimal). We have nothing of everything,
yet we have something! This sounds like Alice in Wonderland, but as we shall see, these are
the classic characteristics of a very familiar phenomenon.*

Substitution of Eq. (3.5) in Eq. (3.1) yields

[= ]}
Ginfy) 25 for
gn= Y Tef o (3.6)
H=—00
As To — 00, fo = 1/Tp becomes infinitesimal (fy — 0). Because of this, we shall replace f
by a more appropriate notation, Af. In terms of this new notation, Eq. (3.2b) becomes

1
and Eq. (3.6) becomes
g ) = Y [G(nAf)IAf] el (3.7a)

Equation (3.7a) shows that g7, () can be expressed as a sum of everlasting exponentials of
frequencies 0, £Af,+2Af,+£3Af, - (the Fourier series). The amount of the component
of frequency nAf is [G(nAf)Af]. In the limit as To — oo, Af — Oand gr,(®) — g().
Therefore,

oo
— i = i G(nAf)elZmnd)iA 3.7b
g(t) = lim_gr,(t Alfrgon;oo (nf)e f (3.7b)

The sum on the right-hand side of Eq. (3.7b) can be viewed as the area under the function
G(f )e’2”ﬁ , as shown in Fig. 3.3. Therefore,

* You may consider this as an irrefutable proof of the proposition that 0% ownership of everything is better than
100% ownership of nothing!
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The Fourier series
becomes the
Fourier integral
in the limit as

Ty — oo.
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G(f)e/*™
Area GinAf )e’f mnf Af
0 nAf f>
o0 i
g(0) = / G(f)e df (3.8)
—00

The integral on the right-hand sideis called the Fourier integral. Wehave now succeeded
in representing an aperiodic signal g(¢) by a Fourier integral® (rather than a Fourier series).
This integral is basically a Fourier series (in the limit) with fundamental frequency Af — 0, as
seen from Eq. (3.7b). The amount of the exponential grnift ig G(nAf)Af . Thus, the function
G(f) given by Eq. (3.3) acts as a spectral function.

We call G(f) the direct Fourier transform of g(¢), and g (¢) the inverse Fourier transform
of G(f). The same information is conveyed by the statement that g(¢) and G(f) are a Fourier
transform pair. Symbolically, this is expressed as

G(f)=Flg®)] and g =F '[G()

or
8(1) & G(f)
To recapitulate,
G(f) = / ~ g(e 7 dr (3.92)
and —o:O
s = [ o (3.90)

where w = 2nf.

It is helpful to keep in mind that the Fourier integral in Eq. (3.9b) is of the nature of a
Fourier series with fundamental frequency Af approaching zero [Eq. (3.7b)]. Therefore, most
of the discussion and properties of Fourier series apply to the Fourier transform as well. We
can plot the spectrum G(f) as a function of f. Since G(f) is complex, we have both amplitude
and angle (or phase) spectra:

G(f) = |Gf) e

in which |G(f)| is the amplitude and 6, (f) is the angle (or phase) of G(f). From Eq. (3.9a),

G(—f) = / g (1> dy

* This should not be considered as a rigorous proof of Eq. (3.8). The situation is not as simple as we have made it

appear. !
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f versus @

Traditionally, we often use two equivalent notations of angular frequency @ and frequency
f interchangeably in representing signals in the frequency domain. There is no conceptual
difference between the use of angular frequency w (in unit of radians per second) and frequency
f (inunits of hertz, Hz). Because of their direct relationship, we can simply substitute ® = 2 f
into G(f) to arrive at the Fourier transform relationship in the w-domain:

[e.¢]

Flg)] = / g (et (3.10)

—00

Because of the additional 27 factor in the variable w used by Eq. (3.10), the inverse transform
as a function of w requires an extra division by 2x. Therefore, the notation of f is slightly
favored in practice when one is writing Fourier transforms. For this reason, we shall, for the
most part, denote the Fourier transform of signals as functions of G(f) in this book. On the
other hand, the notation of angular frequency w can also offer some convenience in dealing
with sinusoids. Thus, in later chapters, whenever it is convenient and nonconfusing, we shall
use the two equivalent notations interchangeably.

Conjugate Symmetry Property
From Egq. (3.9a), it follows that if g(¢) is a real function of ¢, then G(f) and G(—f) are complex
conjugates, that is,*

G(—f) =G* () (3.11)

Therefore,
IG(=)| = 1G()I (3.12a)
bg(=f) = —05(f) (3.12b)

Thus, for real g(z), the amplitude spectrum |G (f)| is an even function, and the phase spectrum
0, (f) is an odd function of f. This property (the conjugate symmetry property) is valid only
for real g(¢). These results were derived for the Fourier spectrum of a periodic signal in Chapter
2 and should come as no surprise. The transform G(f) is the frequency domain specification

of g(0).

Example 3.1

Find the Fourier transform of e~%u(t).

By definition [Eq. (3.9a)],

o o . -1 o]
G(f) = / e~ u(t)e 7 g = / e~ @2 gy — T p—(atj2nf)
—00 0 a+jp2nf 0
But |e727/1| = 1. Therefore, as t — oo, e~ @27/ — p=at=i2nft — (0 if g > 0.
Therefore,
1
G() = - a>0 (3.13a)
a+ jo

* Hermitian symmetry is the term used to describe complex functions that satisfy Eq. (3.11)



Figure 3.4
e~ y(t) and its
Fourier spectra.
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where w = 27f. Expressing a + jo in the polar form as va? + w2 e/ (8) | we obtain

Gy = i )

3.13b
@t (nf)? (-13b2)

Therefore,

and G (f) = — tan™! (2—12{)

IG(H) =

1
Ja? + (2rf)?

[GCFH

I{U)]

(a)

The amplitude spectrum |G(f)| and the phase spectrum 6, (f) are shown in Fig. 3.4b.
Observe that |G(f)| is an even function of f, and 6, (f) is an odd function of f, as expected.

Existence of the Fourier Transform

In Example 3.1 we observed that when a < 0, the Fourier integral for e~*u(t) does not
converge. Hence, the Fourier transform for e~ u(t) does not existifa < 0 (growingexponen-
tially). Clearly, not all signals are Fourier transformable. The existence of the Fourier transform
is assured for any g(¢) satisfying the Dirichlet conditions, the first of which is*

o0
/ lg@®)]dt < oo (3.14)
—00
To show this, recall that |e V27| = 1. Hence, from Eq. (3.9a) we obtain
o0
G = [ s

—00

This shows that the existence of the Fourier transform is assured if condition (3.14) is satisfied.
Otherwise, thereis no guarantee. We have seen in Example 3.1 thatfor an exponentially growing
signal (which violates this condition) the Fourier transform does not exist. Although this
condition is sufficient, it is not necessary for the existence of the Fourier transform of a signal.

* The remaining Dirichlet conditions are as follows: In any finite interval, g(¢) may have only a finite number of
maxima and minima and a finite number of finite discontinuities. When these conditions are satisfied, the Fourier
integral on the right-hand side of Eq. (3.9b) converges to g(¢) at all points where g(¢) is continuous and converges to
the average of the right-hand and left-hand limits of g(¢) at points where g(¢) is discontinuous.



68  ANALYSIS AND TRANSMISSION OF SIGNALS

Figure 3.5
Analogy for
Fourier
transform.

For example, the signal (sin at)/t, violates condition (3.14), but does have a Fourier transform.
Any signal that can be generated in practice satisfies the Dirichlet conditions and therefore has
a Fourier transform. Thus, the physical existence of a signal is a sufficient condition for the
existence of its transform.

Linearity of the Fourier Transform (Superposition Theorem)
The Fourier transform is linear; that is, if

10 == Gi{) and g2t} == Ga{f)
then for all constants a; and a;, we have
a1g1{t) + axg2 (N = a\G((f) + a2G2(f) (3.15)

The proof is simple and follows directly from Eq. (3.9a). This theorem simply states that
linear combinations of signals in the time domain correspond to linear combinations of their
Fourier transforms in the frequency domain. This result can be extended to any finite number
of terms as

Y ag® = Y aGi(f)
k k

for any constants {a;} and signals {g;(¢)}.

Physical Appreciation of the Fourier Transform

To understand any aspect of the Fourier transform, we should remember that Fourier repre-
sentation is a way of expressing a signal in terms of everlasting sinusoids, or exponentials.
The Fourier spectrum of a signal indicates the relative amplitudes and phases of the sinu-
soids that are required to synthesize that signal. A periodic signal’s Fourier spectrum has finite
amplitudes and exists at discrete frequencies (f and its multiples). Such a spectrum is easy
to visualize, but the spectrum of an aperiodic signal is not easy to visualize because it has a
continuous spectrum that exists at every frequency. The continuous spectrum concept can be
appreciated by considering an analogous, more tangible phenomenon. One familiar example
of a continuous distribution is the loading of a beam. Consider a beam loaded with weights
D1,D»,Ds,...,D, units at the uniformly spaced points x,x2, ..., x,, as shown in Fig. 3.5a.
The total load W7 on the beam is given by the sum of these loads at each of the » points:

n
Wr=> D
i=l

Consider now the case of a continuously loaded beam, as shown in Fig. 3.5b. In this case,
although there appears to be a load at every point, the load at any one point is zero. This does

(b)
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not mean that there is no load on the beam. A meaningful measure of load in this situation is
not the load at a point, but rather the loading density per unit length at that point. Let G(x)
be the loading density per unit length of beam. This means that the load over a beam length
Ax (Ax — 0) at some point x is G(x) Ax. To find the total load on the beam, we divide the
beam into segments of interval Ax (Ax — 0). The load over the nth such segment of length
Ax is [G(nAx)] Ax. The total load W7 is given by

Xn
Wr = 1i G(nAx) A
T fimy LG o

= /xn G(x)dx

1

In the case of discrete loading (Fig. 3.5a), the load exists only at the n discrete points. At other
points there is no load. On the other hand, in the continuously loaded case, the load exists at
every point, but at any specific point x the load is zero. The load over a small interval Ax,
however, is [G(nAx)] Ax (Fig. 3.5b). Thus, even though the load at a point x is zero, the
relative load at that point is G(x).

An exactly analogous situation exists in the case of a signal spectrum. When g(¢) is
periodic, the spectrum is discrete, and g(z) can be expressed as a sum of discrete exponentials
with finite amplitudes:

g(t) — ZDnejZﬂnf()t

For an aperiodic signal, the spectrum becomes continuous; that is, the spectrum exists for
every value of f, but the amplitude of each component in the spectrum is zero. The meaningful
measure here is not the amplitude of a component of some frequency but the spectral density
per unit bandwidth. From Eq. (3.7b) it is clear that g(¢) is synthesized by adding exponentials
of the form &/27"Af in which the contribution by any one exponential component is zero. But
the contribution by exponentials in an infinitesimal band Af located atf = nAf is G(nAf) Af,
and the addition of all these components yields g(¢) in the integral form:

T — (jn2rxf )t _ o 27 ft
g(0) = Alfngon:‘/__,“oocxmf)e Af = /_ "G

The contribution by components within the band df is G(f) df , in which df is the bandwidth
in hertz. Clearly G(f) is the spectral density per unit bandwidth (in hertz). This also means
that even if the amplitude of any one component is zero, the relative amount of a component
of frequency f is G(f). Although G(f) is a spectral density, in practice it is customarily called
the spectrum of g(¢) rather than the spectral density of g(¢). Deferring to this convention, we
shall call G(f) the Fourier spectrum (or Fourier transform) of g(z).

3.2 TRANSFORMS OF SOME USEFUL FUNCTIONS

For convenience, we now introduce a compact notation for some useful functions such as
rectangular, triangular, and interpolation functions.
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Figure 3.6
Rectangular
pulse.

Figure 3.7

Triangular pulse.
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Unit Rectangular Function
We use the pictorial notation IT(x) for a rectangular pulse of unit height and unit width, centered
at the origin, as shown in Fig. 3.6a:

1 X<

Nx)=1{ 05 |x|= (3.16)

ST STE S R

0 x| >

Notice that the rectangular pulse in Fig. 3.6b is the unit rectangular pulse IT(x) expanded
by a factor t and therefore can be expressed as IT(x/7). Observe that the denominator 7 in
IT(x/7) indicates the width of the pulse.

Unit Triangular Function
We use the pictorial notation A (x) for a triangular pulse of unit height and unit width, centered
at the origin, as shown in Fig. 3.7a:

1=21 x| <
(3.17)
0 x| >

Ax) = {

(SIS

Observe that the pulse in Fig. 3.7b is A(x/t). Observe that here, as for the rectangular pulse,
the denominator 7 in A (x/7) indicates the pulse width.

Sinc Function sinc(x)
The function sin x/x is the “sine over argument” function denoted by sinc (x).*

* sinc (x) is also denoted by Sa (x) in the literature. Some authors define sinc (x) as

sin Tx

sinc (x) =
X
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Figure 3.8
Sinc pulse.
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This function plays an important role in signal processing. We define

sin x

sinc (x) = (3.18)

Inspection of Eq. (3.18) shows that

1. sinc (x) is an even function of x.

2. sinc (x) = 0 when sin x = 0 except at x = 0, where it is indeterminate. This means that
sinc(x) = Ofort = +m,+27,+3m,....

3. Using L’Héspital’s rule, we find sinc (0) = 1.

4. sinc (x) is the product of an oscillating signal sin x (of period 27) and a monotonically
decreasing function 1/x . Therefore, sinc (x) exhibits sinusoidal oscillations of period 27,
with amplitude decreasing continuously as 1/x.

5. Insummary, sinc(x) is an even oscillating function with decreasing amplitude. Ithas a unit
peak at x = 0 and zero crossings at integer multiples of 7.

Figure 3.8a shows sinc (x). Observe that sinc (x) = O for values of x that are positive and
negative integral multiples of 7. Figure 3.8b shows sinc (3w/7). The argument 3w/7 = «
when w = 77w /3 or f = 7/6. Therefore, the first zero of this function occurs at w = 77/3

f = 7/6).
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Example 3.2  Find the Fourier transform of g(z) = I1(t/t) (Fig. 3.9a).

Figure 3.9
Rectangular
pulse and its
Fourier spectrum.

g()

We have

G(f) = [m I (%) e 27l gy

Since I1(¢/t) = 1 for |t| < t/2, and since it is zero for |¢t| > 7/2,

T/2 .
G(f) = / e 727 gy
—-1/2
1 . : 2sin (fT)
- _ jrft _ ginfty — e
= " anf ¢ 2t
= r% =1 sinc (7f1)
Therefore,
t . wT .
IT (—) &= T sinc (_,) =1 sinc (7fT1) (3.19)

T 2

Recall that sinc (x) = 0 when x = +nm. Hence, sinc (wt/2) = 0 when wt/2 = +nm;
that is, whenf = +n/t (n =1,2,3,...), as shown in Fig. 3.9b. Observe that in this case

G(f) happens to be real. Hence, we may convey the spectral information by a single plot
of G(f) shown in Fig. 3.9b.

Example 3.3  Find the Fourier transform of the unit impulse signal 8 ().

We use the sampling property of the impulse function [Eq. (2.11)] to obtain

F8()] = / S()e P gt = 20 = | (3.20a)

—00
or

5(1t) =1 (3.20b)
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Figure 3.10 shows §(¢) and its spectrum.

Figure 3.10 L
Unit impulse and - g =3 G =1
its Fourier ) A (=
spectrum. b
0 t—>
() (b)
Exomple 3.4  Find the inverse Fourier transform of 8 2nf) = %1-5 ).

Figure 3.11
Constant (dc)
signal and its

Fourier spectrum.

From Eq. (3.9b) and the sampling property of the impulse function,

Fls@rf)) = / sQrf)e* I dgf = % / 8 f)ed¥h d2nf)

—00

1 mo_ 1

2 2r
Therefore,
1
— = §(2rf) (3.21a)
2T
or
1 <) (3.21b)

This shows that the spectrum of aconstant signal g (1) = lisanimpulse§(f) = 27 8(2rf),
as shownin Fig. 3.11.

gn=1 G(f)=38(f)

B —— |

(a) (b)

The result [Eq. (3.21b)] also could have been anticipated on qualitative grounds. Recall
that the Fourier transform of g (¢) is a spectral representation of g(¢) in terms of everlasting
exponential components of the form /27, Now to represent a constant signal g () = 1,
we need a single everlasting exponential ¢/2™# withf = 0. This results in a spectrum at a
single frequency f = 0. We could also say that g(¢#) = 1 is a dc signal that has a single
frequency component at f = 0 (dc).
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If an impulse at f = 0 is a spectrum of a dc signal, what does an impulse at f = fy

represent? We shall answer this question in the next example.

Exomple 3.5 Find the inverse Fourier transform of §(f — fp).
We the sampling property of the impulse function to obtain
[o.@] . i
FUOG == [ 8 = e df = P
—00
Therefore, _
P = §(f — fo) (3.22a)
This result shows that the spectrum of an everlasting exponential &/2"/ is a single impulse
at f = fo. We reach the same conclusion by qualitative reasoning. To represent the ever-
lasting exponential &2/ we need a single everlasting exponential &2/ with w = 27 ;.
Therefore, the spectrum consists of a single component at frequency f = fo.
From Eq. (3.22a) it follows that
e TN — 5(F + fo) (3.22b)
Example 3.6  Find the Fourier transforms of the everlasting sinusoid cos 27fp.

Figure 3.12
Cosine signal
and its Fourier
spectrum.

Recall the Euler formula
1 . )
COS 27Tf()t = —2—(612”fot + e-jznfot)

Adding Egs. (3.22a) and (3.22b), and using the preceding formula, we obtain

cos 2ot = %[S(f o)+ 8(F — fo)l (323)

The spectrum of cos 2m fyt consists of two impulses at fo and —fp in the f-domain, or,
two impulses at £wg = 27 fp in the w-domain as shown in Fig. 3.12. The result also
follows from qualitative reasoning. An everlasting sinusoid cos wp? can be synthesized by
two everlasting exponentials, ¢/’ and e /“0*. Therefore, the Fourier spectrum consists
of only two components of frequencies wp and —wy.

‘0‘5

0 fo f—

ANNAL - T
VAVAVATAVAVZRN:

G(f)

(b)
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Exomp|e 3.7 Find the Fourier transform of the sign function sgn(¢) (pronounced signum ¢), shown in

Figure 3.13
Sign function.

Fig. 3.13. Its value is +1 or —1, depending on whether ¢ is positive or negative:

1 t>0
sgn(®) =1 0 t=0 (3.24)
-1 t<0

We cannot use integration to find the transform of sgn (¢) directly. This is because sgn (¢)
violates the Dirichlet condition [see E.g. (3.14) and the associated footnote]. Specifically,
sgn (¢) is not absolutely integrable. However, the transform can be obtained by considering
sgnt as a sum of two exponentials, as shown in Fig. 3.13, in the limitas a — O:

=1 —df Lo —t
sgnt a%[e u(t) — e®u(—1)

sgn (1)
| e —
................................. e u(r)
0
11—
_ealu(_t) .........................................
............. o
Therefore,
F[sgn(2)] = lim {Fle™u(t)] — Fle"u(—1)]}
a—0
. 1 1 . .
= lim - - - (see pairs 1 and 2 in Table 3.1)
a>0\a+j2rnf a—j2nf
. —janf 1
-1 _ Y= - 3.25
asd <a2+4n2f2) jrf (3:25)

3.3 SOME PROPERTIES OF THE
FOURIER TRANSFORM

We now study some of the important properties of the Fourier transform and their implications
as well as their applications. Before embarking on this study, it is important to point out a
pervasive aspect of the Fourier transform—the time-frequency duality.
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TABLE 3.1
Short Table of Fourier Transforms
g(1) G()
1
—at -
1 e %u(r) o a>0
1
at,
2 e*Hu(-1) @ j2nf a>0
2a
—alt| -
e 2 + (2nf)? @0
4 te_‘”u(t) ___l_.m a>0
(a+j21f)?
n ,—at ni
5 t"e u(t) ((1 +J27tf)”+1 a= 0
6 8(1) 1
7 1 5(F)
g 2mhor 8(f — fo)
9 cos 2nfyt 0.5[8(f +/0) + 8(f —f0)]
10 sin 27fyt JOS[8(F +fo) — 8(f —fo)]
1 L
11 u@) 25(f)+j27tf
12 sgnt ﬂTf
1 J2nf
1 2 - - BTN
3 cos2mfyt u(t) 41 [6¢f —fo) +8(f +fo)l + o fo)zz_ f(zn 2
. 7J0
14 2 —[6(f —fo)— & PSRN )
sin 27 fot u(t) 4j[ f 2f0; (f +fo)l + @t — @nf)2
15 —at o; 2 T 0 0
e~ sin2mfyt u(t) @ +j271f).2 " 47[2f02 a>
P— 5 a+j2nf 0
e~ cos 2mft u(t) @t jonf)? + 47r2f02 a>
17 1 (%) T sinc (wft)
18 2Bsinc (2 Bt) I (I—)
2B
t T . 9 wft
19 A (;) 5 SInc (T)
-2 !
20 Bsinc” (7 Bt) A (23)
2 TR st—nT) HX2 8 — nfy) fo=7%
22 e—t2/202 ame_z(aﬂf)z

3.3.1 Time-Frequency Duality

Equations (3.9) show an interesting fact: the direct and the inverse transform operations are
remarkably similar. These operations, required to go from g(¢) to G(f) and then from G(f)
to g(t), are shown graphically in Fig. 3.14. The only minor difference between these two
operations lies in the opposite signs used in their exponential indices.



Figure 3.14
Near symmetry
between direct
and inverse
Fourier
transforms.
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g(?) G(f)

This similarity has far-reaching consequences in the study of Fourier transforms. It is the
basis of the so-called duality of time and frequency. The duality principle may be compared
with a photograph and its negative. A photograph can be obtained from its negative, and
by using an identical procedure, the negative can be obtained from the photograph. For any
result or relationship between g(¢) and G(f), there exists a dual result or relationship, obtained
by interchanging the roles of g(¢) and G(f) in the original result (along with some minor
modifications arising because of the factor 27 and a sign change). For example, the time-
shifting property, to be proved later, states that if g(¢) <= G(f), then

gt — tg) < G(f)e /270
The dual of this property (the frequency-shifting property) states that
g™ = G(f ~ fo)

Observe the role reversal of time and frequency in these two equations (with the minor differ-
ence of the sign change in the exponential index). The value of this principle lies in the fact
that whenever we derive any result, we can be sure that it has a dual. This knowledge can give
valuable insights about many unsuspected properties or results in signal processing.

The properties of the Fourier transform are useful not only in deriving the direct and
the inverse transforms of many functions, but also in obtaining several valuable results in
signal processing. The reader should not fail to observe the ever-present duality in this dis-
cussion. We begin with the duality property, which is one of the consequences of the duality
principle.

3.3.2 Duality Property
The duality property states that if
g(t) <= G(f)

then
G(t) & g(—f) (3.26)
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The duality property states that if the Fourier transform of g(¢) is G(f) then the Fourier
transform of G(¢), with f replaced by ¢, is the g(—f) which is the original time domain signal
with ¢ replaced by —f .

Proof: From Eq. (3.9b),

g = / = G(x)e¥™ dx

—00
Hence,
oo ..
g(—1) = / Gx)e ™ d
—00
Changing ¢ to f yields Eq. (3.26). ]

Example 3.8

Figure 3.15
Duality property
of the Fourier
transform.

In this example we shall apply the duality property [Eq. (3.26)] to the pair in Fig. 3.15a.

1{U] L)
1
— - T
_.% o % r =
(@)
Gif
I{0]
T
TN I e B
T T T T 2 2
® “an A
From Eq. (3.19) we have
t
IT <—) & tsinc(wf 1) (3.27a)
T
t
I1 (—) <= wsinc (Tf ) (3.27b)
o —_—

8(1)

Also G(¢) is the same as G(f) with f replaced by ¢, and g(—f) is the same as g(z) with ¢
replaced by —f . Therefore, the duality property (3.26) yields

asinc (rat) < Il (—Ji) =TI (Ji) (3.28a)
e —— o o
G() —_—

8(=f)
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Substituting T = 2o, we obtain
. ot 2rnf
T sinc 5 211l - (3.28b)

In Eq. (3.8) we used the fact that IT (—¢) = I (¢) because I1(¢) is an even function. Figure
3.15b shows this pair graphically. Observe the interchange of the roles of ¢ and 2z f (with
the minor adjustment of the factor 2;). This result appears as pair 18 in Table 3.1 (with
T/2=W).

Ass an interesting exercise, generate a dual of every pair in Table 3.1 by applying the duality
property.

3.3.3 Time-Scaling Property

If
g(t) = G(f)
then, for any real constant a,
1
glat) <= —G (f:) (3.29)
la|  \a

Proof: For a positive real constant a,

[e,0]

Flg(an] = /

-0

glat)e 2™ gt = —/
a

—00

e g = L (f—)
a a

Similarly, it can be shown thatif a < 0,

g(at) = _—1G (Ji)
a a

Hence follows Eq. (3.29). |

Significance of the Time-Scaling Property

The function g (at) represents the function g(#) compressed in time by a factor a (|a| > 1).
Similarly, a function G(f /a) represents the function G(f) expanded in frequency by the same
factor a. The time-scaling property states that time compression of a signal results in its spectral
expansion, and time expansion of the signal results in its spectral compression. Intuitively,
compression in time by a factor a means that the signal is varying more rapidly by the
same factor. To synthesize such a signal, the frequencies of its sinusoidal components must
be increased by the factor a, implying that its frequency spectrum is expanded by the factor
a. Similarly, a signal expanded in time varies more slowly; hence, the frequencies of its
components are lowered, implying that its frequency spectrum is compressed. For instance,
the signal cos 4zfyt is the same as the signal cos 2zfyt time-compressed by a factor of 2.
Clearly, the spectrum of the former (impulse at +2fp) is an expanded version of the spectrum
of the latter (impulse at %fy). The effect of this scaling is demonstrated in Fig. 3.16.
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Figure 3.16 g(®)
Scaling property 1 G
of the Fourier
transform.
- L
2 2
&) G
1
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Reciprocity of Signal Duration and Its Bandwidth
The time-scaling property implies that if g(¢) is wider, its spectrum is narrower, and vice
versa. Doubling the signal duration halves its bandwidth, and vice versa. This suggests that the
bandwidth of a signal is inversely proportional to the signal duration or width (in seconds). We
have already verified this fact for the rectangular pulse, where we found that the bandwidth
of a gate pulse of width t seconds is 1/t Hz. More discussion of this interesting topic can be
found in the literature.?
Example 3.9  Show that

g(—t) < G(—f) (330)

Use this result and the fact that e *u(t) <= 1/(a +j27f), to find the Fourier transforms of
e u(—rt) and e~

Equation (3.30) follows from Eq. (3.29) by letting a = —1. Application of Eq. (3.30) to
pair 1 of Table 3.1 yields

e“u(—t) = —1—
a—Jj2nf
Also
TN = 2T Y1) + e u(—1)
Therefore,

1 n 1 _ 2a
a+j2nf  a—j2nf  a®+ 2nf)?

e—altl

(3.31)




Figure 3.17
e~ and its
Fourier spectrum.
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The signal e~%!"l and its spectrum are shown in Fig. 3.17.

£
A+ {20 f¥

A Gifl=
Hoy=e ' - :

(a) (b)

3.3.4 Time-Shifting Property

It
g(t) < G(f)
then |
gt — to) <= G(f)e /¥ 0 (3.32a)
Proof: By definition,
o0} .
Flgt — 1)l = / gt — to)e 727 gy
o0

Letting ¢t — o = x, we have

e
Flgt —t9)] = / g(x)e—jan(x—f—to) dx

—00

o0 .
_ e—j27rft0/ g(x)e_ﬂ”fx dx = G(f)e—ﬂﬂﬁo (3.32b)

—00

This result shows that delaying a signal by ty seconds does not change its amplitude spectrum.
The phase spectrum, however, is changed by —2r fto.

Physical Explanation of the Linear Phase

Time delay in a signal causes a linear phase shift in its spectrum. This result can also be derived
by heuristic reasoning. Imagine g(¢) being synthesized by its Fourier components, which are
sinusoids of certain amplitudes and phases. The delayed signal g (¢ — o) can be synthesized by
the same sinusoidal components, each delayed by #p seconds. The amplitudes of the components
remain unchanged. Therefore, the amplitude spectrum of g (¢ — #o) is identical to that of g(¢).
The time delay of #¢ in each sinusoid, however, does change the phase of each component.
Now, a sinusoid cos 2 ft delayed by fo is given by

cos 27f (t — to) = cos 2w ft — 2mfty)

Therefore, atime delay #( in a sinusoid of frequency f manifests as a phase delay of 27 ftg. This is
alinearfunction of f ,meaning that higher frequency components must undergo proportionately
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Figure 3.18
Physical
explanation of
the time-shifting
property.

higher phase shifts to achieve the same time delay. This effect is shown in Fig. 3.18 with two
sinusoids, the frequency of the lower sinusoid being twice that of the upper. The same time
delay fo amounts to a phase shift of 7 /2 in the upper sinusoid and a phase shift of 7 in the
lower sinusoid. This verifies that to achieve the same time delay, higher frequency sinusoids
must undergo proportionately higher phase shifts.

Example 3.10 Find the Fourier transform of e ~¢/"~%!,

Figure 3.19
Effect of time
shifting on the
Fourier spectrum
of a signal.

This function, showninFig. 3.19a,is a time-shifted version of e~all (shown in Fig. 3.17a).
From Egs. (3.31) and (3.32) we have

al_ 2a i
e alt=tol — me J27fio (3.33)

The spectrum of e~?/"~/! (Fig. 3.19b) is the same as that of e~/ (Fig. 3.17b), except for
an added phase shift of -2 fto.

e

ek T deany

0,(f) = —2ﬂfto/
(2) (b)

Observe that the time delay 7o causes a linear phase spectrum —2sf#p. This example
clearly demonstrates the effect of time shift.
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3.3.5 Frequency-Shifting Property

If
g(t) = G()

then .
g — G(f - fo) (3.34)

This property is also called the modulation property.

Proof: By definition,

(s 00
Flgn)e™'] = / g0 hte 2 g = / g dt = G(f — fo)

—00

n
This property states that multiplication of a signal by a factor &/’ shifts the spectrum
of that signal by f = fy. Note the duality between the time-shifting and the frequency-shifting

properties.
Changing fp to —fp in Eq. (3.34) yields

ge TN — G(f + fo) (3.35)

Because /270" s not a real function that can be generated, frequency shifting in practice
is achieved by multiplying g (¢) by a sinusoid. This can be seen from

g(t) cos 2mfot = % [g(,)eﬂﬂfot + g(t)e—jznfot]

From Egs. (3.34) and (3.35), it follows that

2(t) cos 2for = % (G —fo) + G +10)] (3.36)

This shows that the multiplication of a signal g () by a sinusoid of frequency fp shifts the
spectrum G(f) by %fp. Multiplication of a sinusoid cos 27 fyt by g(t) amounts to modulating
the sinusoid amplitude. This type of modulation is known as amplitude modulation. The
sinusoid cos 27 fot is called the carrier, the signal g (¢) is the modulating signal, and the signal
g(t) cos 2mfot is the modulated signal. Modulation and demodulation will be discussed in
detail in Chapters 4 and 5.

To sketch a signal g(#) cos 2w fp?, we observe that

g when cos 2rfot = 1
g (1) cos 2rfor = { —g() whencos 2nfot = —1
Therefore, g(t) cos 2xfyt touches g (¢) when the sinusoid cos 2 fyt is at its positive peaks and
touches —g () when cos 2xfyt is at its negative peaks. This means that g(#) and —g(¢) act as
envelopes for the signal g(¢) cos 2mfot (see Fig. 3.20c). The signal —g(#) is a mirror image
of g(z) about the horizontal axis. Figure 3.20 shows the signals g (¢), g (¢) cos 2mfyt, and their
respective spectra.
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Figure 3.20
Amplitude
modulation of a
signal causes
spectral shiffing.
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Shifting the Phase Spectrum of a Modulated Signal

We can shift the phase of each spectral component of a modulated signal by a constant amount
6o merely by using a carrier cos (2nfot 4 ) instead of cos 2mfpt. If a signal g(¢) is multiplied
by cos (2 fot + o), then we can use an argument similar to that used to derive Eq. (3.36), to
show that

g(£) cos (2 for + o) % [G(f — 1) &% + G(f +fo) e‘f%] (337)

For a special case when 8y = —m /2, Eq. (3.37) becomes

() sin 27for = % [G(f — ) e L G + 1) ef”/2] (3.38)

Observe that sin 27 fyt is cos 27 fot with a phase delay of /2. Thus, shifting the carrier phase
by 7 /2 shifts the phase of every spectral component by /2. Figures 3.20e and f show the
signal g(¢) sin 2w fot and its spectrum.

Modulation is a common application that shifts signal spectra. In particular, If several
message signals, each occupying the same frequency band, are transmitted simultaneously
over a common transmission medium, they will all interfere; it will be impossible to separate
orretrieve them at areceiver. For example, if all radio stations decide to broadcast audio signals
simultaneously, receivers will not be able to separate them. This problem is solved by using
modulation, whereby each radio station is assigned a distinct carrier frequency. Each station
transmits a modulated signal, thus shifting the signal spectrum to its allocated band, which is
not occupied by any other station. A radio receiver can pick up any station by tuning to the



Figure 3.21
Bandpass signal
and its spectrum.
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band of the desired station. The receiver must now demodulate the received signal (undo the
effect of modulation). Demodulation therefore consists of another spectral shift required to
restore the signal to its original band.

Bandpass Signals

Figure 3.20(d)(f) shows that if g.(¢) and g,(#) are low-pass signals, each with a bandwidth B
Hz or 2 B rad/s, then the signals g.(¢) cos 2 fpt and g;(¢) sin 2 fyt are both bandpass signals
occupying the same band, and each having a bandwidth of 2B Hz. Hence, a linear combination
of both these signals will also be a bandpass signal occupying the same band as that of the
either signal, and with the same bandwidth (2B Hz). Hence, a general bandpass signal g;,(?)
can be expressed as*

8hp(t) = gc(?) cos 2m fot + gs(2) sin 2w fot (3.39)
The spectrum of gp,(¢) is centered at £fy and has a bandwidth 2B, as shown in Fig. 3.21.
Although the magnitude spectra of both g.(¢) cos 2xfyt and gs(¢) sin 27 fot are symmetrical
about %fj, the magnitude spectrum of their sum, gp,(?), is not necessarily symmetrical about
=+fo. This is because the different phases of the two signals do not allow their amplitudes to
add directly for the reason that
age’“"" —}—aze’i@ # (a; + az)ef&m-k@z)

Atypical bandpasssignal gy, () and its spectra are shown in Fig. 3.21. We can use awell-known
trigonometric identity to express Eq. (3.39) as

8op(t) = E(t) cos [2rfot + ¥ (1)] (3.40)

where

E@) = +/82() + 820 (3.412)

V() = —tan”! ?Eg (3.41b)

* See Sec. 9.9 for a rigorous proof of this statement.
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Because g.(¢) and g;(¢) are low-pass signals, E(¢) and vy (¢) are also low-pass signals. Because
E(z) is nonnegative [Eq. (3.41a)], it follows from Eq. (3.40) that E(¢) is a slowly varying
envelope and ¥ (¢) is a slowly varying phase of the bandpass signal g, (?), as shown in Fig. 3.21.
Thus, the bandpass signal g, (¢) will appear as a sinusoid of slowly varying amplitude. Because
of the time-varying phase ¥ (¢), the frequency of the sinusoid also varies slowly* with time
about the center frequency fp.

Exomple 3.11 Find the Fourier transform of a general periodic signal g(¢) of period Ty, and hence, determine

Figure 3.22
Impulse train and
its spectrum.

the Fourier transform of the periodic impulse train 87, (¢) shown in Fig. 3.22a.

1
|g(r) 'G(f) = 70
-3Ty -To 0 2T, 4T, -2fo  —fo 0 fo f2f0
t—> —_—
(a) (b)

A periodic signal g(z) can be expressed as an exponential Fourier series as

o0
- 1
g0 = 3 D fy= o
n=-—0o0
Therefore,
w .
g() &= Y FID, ")
n=—00
Now from Eq. (3.22a), it follows that
o0
gt) & Y Dn8(f — nfo) (3.42)

h=—00

Equation (2.67) shows that the impulse train §7,(¢) can be expressed as an exponential
Fourier series as

1 &
81, (1) = % Z ein2rfot fo=—

n=-—0oo

* It is necessary that B < f; for a well-defined envelope. Otherwise the variations of E(¢) are of the same order as
the carrier, and it will be difficult to separate the envelope from the carrier.
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Here D,, = 1/Tj. Therefore, from Eq. (3.42),

l o0
3?’0“) — T— 8(f - nfO)
0,
L5 h=— (3.43)
_To fo 0= Ty '

Thus, the spectrum of the impulse train also happens tobe animpulse train (in the frequency
domain), as shown in Fig. 3.23b.

3.3.6 Convolution Theorem
The convolution of two functions g(#) and w(t), denoted by g(¢) * w(?), is defined by the
integral
(e 9]
g(t) = w(t) =/ g(mw( —dr
—00
The time convolution property and its dual, the frequency convolution property, state

that if

210 = Gi1{f) and &) = G2(f)

then (time convolution)
g1(t) x g2(t) <= G1(f)Ga(f) (3.44)
and (frequency convolution)

1020 <= G1(f) * G2(f) (3.45)

These two relationships of the convolution theorem state that convolution of two signals in
the time domain becomes multiplication in the frequency domain, while multiplication of two
signals in the time domain becomes convolution in the frequency domain.

Proof: By definition,

Flg1(®) * g2(t)| = / e 2 [/ gl(r)gza—r)dr} dt

- —00

= / g1(1) [/ e gyt — t)dt] dt

The inner integral is the Fourier transform of g»(z — 7), given by [time-shifting property in
Eq. (3.32a)] G»(f)e 2™/ Hence,

(0]

Flgi(0) % g2()] = / 102G (f) d

—00

=Ga2(f) / g1(D)e 7T dv = G1(F)Ga(f) ]
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The frequency convolution property (3.45) can be proved in exactly the same way by reversing
the roles of g(¢) and G(f).

Bandwidth of the Product of Two Signals

If g1(¢) and g2(¢) have bandwidths By and B, Hz, respectively, the bandwidth of g (¢)g2(¢) is
B| + B, Hz. This result follows from the application of the width property of convolution?
to Eq. (3.45). This property states that the width of x * y is the sum of the widths of x and y.
Consequently, if the bandwidth of g (¢) is B Hz, then the bandwidth of g2(z) is 2B Hz, and the
bandwidth of g"(¢) is nB Hz.*

Example 3.12 Using the time convolution property, show that if
g(t) = G(f)

then .
/ g(t)dt Z_(f; + =G(0)é(f) (3.46)

Because

1 <t
u(t_t)=[ 0 r;t

it follows that

00 t
g(t)*u(t)=/ g(f)u(t—f)df=/ g(r)dr

—0Q

Now from the time convolution property [Eq. (3.44)], it follows that
g() xu(t) — G(f)U(f)
=G| 5= + 8(f )}

f
_GWH)
2f+ G(O)S(f)

In deriving the last result we used pair 11 of Table 3.1 and Eq. (2.10a).

3.3.7 Time Differentiation and Time Integration
If

g() = G(f),

* The width property of convolution does not hold in some pathological cases. It fails when the convolution of two
functions is zero over a range even when both functions are nonzero [e.g., sin 2 fot u(t) * u(t)]. Technically the
property holds even in this case if in calculating the width of the convolved function, we take into account the range
in which the convolution is zero.
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then (time differentiation)*

dgT(:)- < 2nfG(f) (3.47)
and (time integration)
d G(f) 1
/_oog(r)dr = _]ZTf + EG(O)S(f) (3.48)

Proof: Differentiation of both sides of Eq. (3.9b) yields

d‘i—?) = / - P2rfG(f)eF df

This shows that

dgT(tt)v — 27 fG(f)

Repeated application of this property yields

d"g(t
d‘irf ) s (221G (3.49)
The time integration property [Eq. (3.48)] already has been proved in Example 3.12. ]

Exam p|e 3.13 Use the time differentiation property to find the Fourier transform of the triangular pulse A (¢/7)
shown in Fig. 3.23a.

Figure 3.23 N=pL
Using the time ! 8 =A(T)
differentiation
Froperty to
inding the (@)
Fourier transform -t 0 T =
ofa 2 2
piecewise-linear d
signal. 2 ct
T dt
=t 0 T t—> ®) -
2 » -5
T
Py
T T dt
T 0 T > ©
2 2
Ay
T

* Valid only if the transform of dg(¢)/dt exists.
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To find the Fourier transform of this pulse, we differentiate it successively, as shown in
Fig. 3.23b and c. The second derivative consists of a sequence of impulses (Fig. 3.23c).
Recall that the derivative of a signal at a jump discontinuity is an impulse of strength equal
to the amount of jump. The function dg(¢)/dt has a positive jump of 2/t att = +t/2,
and a negative jump of 4/t at t = 0. Therefore,

a2 T

GO () moas(-D)] 0w

From the time differentiation property [Eq. (3.49)],

dzg

dfr?

= (2rf)°G{) = —Cafy G (3.51a)
Also, from the time-shifting property [Eqs. (3.32)],
8(t — tg) <= e 120 (3.51b)

Taking the Fourier transform of Eq. (3.50) and using the results in Eq. (3.51), we obtain

(G27f)*G(f) = 2 (ef”ft -2 +e_j”f’) = i(cos afr—1)= _8 sin’ (m)
T T T 2
and
_ o (nfr\ _t[sinGfr/) T 2(nfr)
o0 = tog o () =3 M) =3 () e

The spectrum G(f) is shown inFig. 3.23d. This procedure of finding the Fourier transform
can be applied to any function g(¢) made up of straight-line segments with g(z) — 0 as
|t] = oo. The second derivative of such a signal yields a sequence of impulses whose
Fourier transform can be found by inspection. This example suggests a numerical method
of finding the Fourier transform of an arbitrary signal g(¢) by approximating the signal by
straight-line segments.

To provide easy reference, several important properties of Fourier transform are summa-

rized in Table 3.2.

3.4 SIGNAL TRANSMISSION THROUGH

A LINEAR SYSTEM

A linear time-invariant (LTT) continuous time system can be characterized equally well in either
the time domain or the frequency domain. The LTI system model, illustrated in Fig. 3.24,
can often be used to characterize communication channels. In communication systems and
in signal processing, we are interested only in bounded-input—bounded-output (BIBO) stable
linear systems. Detailed discussions on system stability can be found in the textbook by Lathi.?



Figure 3.24
Signal
transmission
through a linear
time-invariant
system.
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TABLE 3.2

Properties of Fourier Transform Operations
Operation g(@) G(f)
Superposition g1(®) + &) G1(f) + Ga(f)
Scalar multiplication kg(t) kG(f)

Duality G() g(=f)

Time scaling g(at) ]clz_lG (é)
Time shifting gt —tg) G(f)e J2mfio
Frequency shifting g(t)ef2nfot G —fo)
Time convolution g1 xg2(t)  G1(f)G(f)

Frequency convolution g7(2)g(¢) G1() * GL(f)

n
Time differentiation d—&n-(t—) G2 f)"G(f)

dt
Time integration S oo 8() dx G—fz,(f),; + %G(O)S (3]

Input signal Output signal
Time-domain x(1) LTI system y(t) = h(t)*x(t)
R I+ S I

Frequency-domain  X(f) H(f) Y(f)=H() XN

A stable LTI system can be characterized in the time domain by its impulse response /(t), which
is the system response to a unit impulse input, that is,

y(t) = h(t) when x(t) =6(@)
The system response to a bounded input signal x(z) follows the convolutional relationship
y(#) = h(®) xx(1) (3.53)

The frequency domain relationship between the input and the output is obtained by taking
Fourier transform of both sides of Eq. (3.53). We let

x(t) < X()
y(t) < Y(f)
h(t) < H(f)

Then according to the convolution theorem, Eq. (3.53) becomes
Y)=H({)-X() (3.54)

Generally H (f), the Fourier transform of the impulse response 4(t), is referred to as the
transfer function or the frequency response of the LTI system. Again, in general, H (f) is
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complex and can be written as
H(f) = [H (™S

where |H (f)] is the amplitude response and 6y, (f) is the phase response of the LTI system.

3.4.1 Signal Distortion during Transmission

The transmission of an input signal x(¢) through a system changes it into the output signal y(z).
Equation (3.54) shows the nature of this change or modification. Here X (f) and Y (f) are the
spectra of the input and the output, respectively. Therefore, H (f) is the spectral response of the
system. The output spectrum is given by the input spectrum multiplied by the spectral response
of the system. Equation (3.54) clearly brings out the spectral shaping (or modification) of the
signal by the system. Equation (3.54) can be expressed in polar form as

Y (1) = X FYIH ) /P00
Therefore, we have the amplitude and phase relationships

YOl = 1XOIHE)I (3.55a)
Oy(f) = 0x(f) + Ou(f) (3.55b)

During the transmission, the input signal amplitude spectrum |X (f)| is changed to |X (f)| -
|H (f)|. Similarly, the input signal phase spectrum 6, (f) is changed to 6,(f) + 6, (f).

An input signal spectral component of frequency f is modified in amplitude by a factor
|H(f)| and is shifted in phase by an angle 6;(f). Clearly, |H(f)| is the amplitude response,
and 6, (f) is the phase response of the system. The plots of |H (f)| and 6;(f) as functions of
f show at a glance how the system modifies the amplitudes and phases of various sinusoidal
inputs. This is why H (f) is called the frequency response of the system. During transmission
through the system, some frequency components may be boosted in amplitude, while others
may be attenuated. The relative phases of the various components also change. In general, the
output waveform will be different from the input waveform.

3.4.2 Distortionless Transmission

In several applications, such as signal amplification or message signal transmission over a
communication channel, we require the output waveform to be areplica of the input waveform.
Insuch cases, we need to minimize the distortion caused by the amplifier or the communication
channel. It is therefore of practical interest to determine the characteristics of a system that
allows a signal to pass without distortion (distortionless transmission).

Transmission is said to be distortionless if the input and the output have identical wave
shapes within a multiplicative constant. A delayed output that retains the input waveform is also
considered distortionless. Thus, in distortionless transmission, the input x(#) and the output
y(t) satisfy the condition

y@) =k - x(t —ty) (3.56)

The Fourier transform of this equation yields

Y(f) = kX (f)e />4



Figure 3.25
Linear
time-invariant
system frequency
response for
distortionless
transmission.
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But because

Y(f) =X HH ()
we therefore have

H(f) = ke 724

This is the transfer function required for distortionless transmission. From this equation it
follows that

[H()| =k (3.57a)
On(f) = —2nfia (3.57b)

This shows that for distortionless transmission, the amplitude response |H(f)| must be a
constant, and the phase response 6 (f ) must be a linear function of f going through the origin
f = 0, as shown in Fig. 3.25. The slope of 6, (f ) with respect to the angularfrequency w = 2xf
is —t4, where ¢4 is the delay of the output with respect to the input.*

All-Pass vs. Distortionless System

In circuit analysis and filter designs, we sometimes are mainly concerned with the gain of a
system response. An all-pass system has a constant gain for all frequencies [i.e., |H (f)| = k],
without the linear phase requirement. Note from Eq. (3.57) that a distortionless system is
always an all-pass system, whereas the converse is not true. Because it is very common for
beginners to be confused by the difference between all-pass and distortionless systems, now
is the best time to clarify.

To see how an all-pass system may lead todistortion, let us consider an illustrative example.
Imagine that we would like to transmit a recorded music signal from a violin-cello duet. The
violin contributes to the high frequency part of this music signal, while the cello contributes to
the bases part. When this music signal is transmitted through a particular all-pass system, both
parts have the same gain. However, suppose that this all-pass system would cause a 1-second
extra delay on the high-frequency content of the music (from the violin). As a result, the
audience on the receiving end will hear a “music” signal that is totally out of sync even though
all signal components have the same gain and all are present. The difference in transmission
delay for components of different frequencies is contributed by the nonlinear phase of H (f)
in the all-pass filter.

* In addition, we require that 8y, (0) either be O (as shown in Fig. 3.25) or have a constant value n (n an integer),
that s, 6, (f) = nw — 2 ft;. The addition of the excess phase of nr may at most change the sign of the signal.
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To be more precise, the transfer function gain |H (f)| determines the gain of each input
frequency component, whereas Z/H (f) determines the delay of each component. Imagine a
system input x(¢) consisting of multiple sinusoids (its spectral components). For the output
signal y(¢) to be distortionless, it should be the input signal multiplied by a gain k and delayed
by #5. To synthesize such a signal, y(#) needs exactly the same components as those of x(¢),
with each component multiplied by k and delayed by ¢,. This means that the system transfer
function H(f) should be such that each sinusoidal component encounters the same gain (or
loss) k and each component undergoes the same time delay of 7; seconds. The first condition
requires that

|H()| =k

We have seen earlier (Sec. 3.3) that to achieve the same time delay z; for every frequency
component requires a linear phase delay 27 ft; (Fig. 3.18) through the origin

Bulf) = —2afiq

In practice, many systems have a phase characteristic that may be only approximately
linear. A convenient method of checking phase linearity is to plot the slope of ZH (f) as a
function of frequency. This slope can be a function of f in the general case and is given by

o)
2T df

1) =— (3.58)

If the slope of 6 is constant (that is, if 6 is linear with respect to f), all the components
are delayed by the same time interval #;. But if the slope is not constant, then the time delay
ty varies with frequency. This means that different frequency components undergo different
amounts of time delay, and consequently the output waveform will not be a replica of the
input waveform (as in the example of the violin-cello duet). For a signal transmission to be
distortionless, 4 (f) should be a constant z; over the frequency band of interest.*

Thus, there is a clear distinction between all-pass and distortionless systems. It is acommon
mistake to think that flatness of amplitude response |H (f)| alone can guarantee signal quality.
A system that has a flat amplitude response may yet distort a signal beyond recognition if the
phase response is not linear (z; not constant).

The Nature of Distortion in Audio and Video Signals
Generally speaking, a human ear can readily perceive amplitude distortion, although it is
relatively insensitive to phase distortion. For the phase distortion to become noticeable, the

* Figure 3.25 shows that for distortionless transmission, the phase response not only is linear but also must pass
through the origin. This latter requirement can be somewhat relaxed for bandpass signals. The phase at the origin
may be any constant [6;(f) = 6y — 2mfty or 6;,(0) = 6]. The reason for this can be found in Eq. (3.37), which
shows that the addition of a constant phase 6 to a spectrum of a bandpass signal amounts to a phase shift of the
carrier by 6p. The modulating signal (the envelope) is not affected. The output envelope is the same as the input
envelope delayed by

1 dép(f)
g =—7—
2n  df
called the group delay or envelope delay, and the output carrier is the same as the input carrier delayed by
6 ()
tp = =
2zf

called the phase delay, where f; is the center frequency of the passband.
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variation in delay (variation in the slope of 6)) should be comparable to the signal duration (or
the physically perceptible duration, in case the signal itself is long). In the case of audio signals,
each spoken syllable can be considered to be an individual signal. The average duration of a
spoken syllable is of a magnitude on the order of 0.01 to 0.1 second. The audio systems may
have nonlinear phases, yet no noticeable signal distortion results because in practical audio
systems, maximum variation in the slope of 6y, is only a small fraction of a millisecond. This
is the real reason behind the statement that “the human ear is relatively insensitive to phase
distortion.* As a result, the manufacturers of audio equipment make available only |H (f)|, the
amplitude response characteristic of their systems.

For video signals, on the other hand, the situation is exactly the opposite. The human
eye is sensitive to phase distortion but is relatively insensitive to amplitude distortion. The
amplitude distortion in television signals manifests itself as a partial destruction of the relative
half-tone values of the resulting picture, which is not readily apparent to the human eye. The
phase distortion (nonlinear phase), on the other hand, causes different time delays in different
picture elements. This results in a smeared picture, which is readily apparent to the human eye.
Phase distortion is also very important in digital communication systems because the nonlinear
phase characteristic of a channel causes pulse dispersion (spreading out), which in turn causes
pulses to interfere with neighboring pulses. This interference can cause an error in the pulse
amplitude at the receiver: a binary 1 may read as 0, and vice versa.

3.5 IDEAL VERSUS PRACTICAL FILTERS

Figure 3.26
Ideal low-pass
filter frequency
response and its
impulse
response.

Ideal filters allow distortionless transmission of a certain band of frequencies and suppress
all the remaining frequencies. The ideal low-pass filter (Fig. 3.26), for example, allows all
components below f = B Hz to pass without distortion and suppresses all components above
f = B. Figure 327 shows ideal high-pass and bandpass filter characteristics.

The ideal low-pass filter in Fig. 3.26a has a linear phase of slope —¢;, which results in a
time delay of z; seconds for all its input components of frequencies below B Hz. Therefore, if
the input is a signal g (f) band-limited to B Hz, the output y(¢) is g(¢) delayed by ¢4, that is,

y(@©) =gt —t3)

The signal g(¢) is transmitted by this system without distortion, but with time delay #4.
For this filter |H (f)| = I1(f /2B), and 0, (f) = —2nft4, so that

H{f) =TI (2%) e 1emf (3.59a)
|H(.f)| RitD
0~ \/ I3 \/_-[\J-_ff—-
T - 28

B, (f)=-Inf,

(@) (b)
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Figure 3.27

Ideal high-pass
and bandpass
filter frequency
responses.
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The unit impulse response /() of this filter is found from pair 18 in Table 3.1 and the time-

shifting property:
h=7"'n L gt
2B

= 2B sinc [2nB(t — t3)] (3.59b)

Recall that A(#) is the system response to impulse input §(¢), which is applied at ¢ = 0. Figure
3.26b shows a curious fact: the response 4(¢) begins even before the input is applied (at # = 0).
Clearly, the filter is noncausal and therefore unrealizable; that is, such a system is physically
impossible, since no sensible system can respond to an input before it is applied to the system.
Similarly, one can show that otherideal filters (such as the ideal high-pass or the ideal bandpass
filters shown in Fig. 3.27) are also physically unrealizable.

For a physically realizable system, 4(#) must be causal; that is,

hit)=0 fort <0

In the frequency domain, this condition is equivalent to the Paley-Wiener criterion, which
states that the necessary and sufficient condition for |H (f)| to be the amplitude response of a
realizable (or causal) system is™
© |In|H
/ “—(f)lldf <00 (3.60)
—oo 1 +27f)

If H(f) does not satisfy this condition, it is unrealizable. Note that if |H (f)| = O over any
finite band, | In|H (f )|| = oo over that band, and the condition (3.60) is violated. If, however,
H(f) = 0 at a single frequency (or a set of discrete frequencies), the integral in Eq. (3.60)
may still be finite even though the integrand is infinite. Therefore, for a physically realizable
system, H (f) may be zero at some discrete frequencies, but it cannot be zero over any finite
band. According to this criterion, ideal filter characteristics (Figs. 3.26 and 3.27) are clearly
unrealizable.

* |H(f)| is assumed to be square integrable. That is,

/ Z H (P2 df

is assumed to be finite.



Figure 3.28
Approximate
realization of an
ideal low-pass
filter by
truncating its
impulse
response.
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The impulse response h(¢) in Fig. 3.26 is not realizable. One practical approach to filter
design is to cut off the tail of 4(#) for t < 0. The resulting causal impulse response k(¢), where

h(t) = h(t)u(t)

is physically realizable because it is causal (Fig. 3.28). If 74 is sufficiently large, ’ﬁ(t) will be a
close approximation of A(t), and the resulting filter H () will be a good approximation of an
ideal filter. This close realization of the ideal filter is achieved because of the increased value
of time delay #;. This means that the price of close physical approximation is higher delay in
the output; this is often true of noncausal systems. Of course, theoretically a delay ¢; = 0o is
needed to realize the ideal characteristics. But a glance at Fig. 3.27b shows that a delay 74 of
three or four times /W will make h(t) a reasonably close version of A(¢ — ¢;). For instance,
audio filters are required to handle frequencies of up to 20 kHz (the highest frequency the
human ear can hear). In this case a #; of about 10~ (0.1 ms) would be a reasonable choice.
The truncation operation [cutting the tail of h(f) to make it causal], however, creates some
unsuspected problems of spectral spread and leakage, and which can be partly corrected by
using a tapered window function to truncate A(¢) gradually (rather than abmptly).5

In practice, we can realize a variety of filter characteristics to approach ideal charac-
teristics. Practical (realizable) filter characteristics are gradual, without jump discontinuities
in the amplitude response |H (f)|. For example, Butterworth and Chebychev filters are used
extensively in various applications including practical communication circuits.

Analog signals can also be processed by digital means (A/D conversion). This involves
sampling, quantizing, and coding. The resulting digital signal can be processed by a small,
special-purpose digital computer designed to convert the input sequence into a desired output
sequence. The output sequence is converted back into the desired analog signal. A special
algorithm of the processing digital computer can be used to achieve a given signal operation
(e.g., low-pass, bandpass, or high-pass filtering). The subject of digital filtering is somewhat
beyond our scope in this book. Several excellent books are available on the subject.?

3.6 SIGNAL DISTORTION OVER A
COMMUNICATION CHANNEL

A signal transmitted over a channel is distorted because of various channel imperfections. The
nature of signal distortion will now be studied.

3.6.1 Linear Distortion

We shall first consider linear time-invariant channels. Signal distortion can be caused over
such a channel by nonideal characteristics of magnitude distortion, phase distortion, or both.
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We can identify the effects these nonidealities will have on a pulse g(f) transmitted through
such a channel. Let the pulse exist over the interval (a, b) and be zero outside this interval. The
components of the Fourier spectrum of the pulse have such a perfect and delicate balance of
magnitudes and phases that they add up precisely to the pulse g(¢) over the interval (a, b) and
to zero outside this interval. The transmission of g(¢) through an ideal channel that satisfies the
conditions of distortionless transmission also leaves this balance undisturbed, because a dis-
tortionless channel multiplies each component by the same factor and delays each component
by the same amount of time. Now, if the amplitude response of the channel is not ideal [i.e.,
if |[H (f)| is not equal to a constant], this delicate balance will be disturbed, and the sum of all
the components cannot be zero outside the interval (a, b). In short, the pulse will spread out
(see Example 3.14). The same thing happens if the channel phase characteristic is not ideal,
that is, if 6,(f) # —2nft;. Thus, spreading, or dispersion, of the pulse will occur if either the
amplitude response or the phase response, or both, are nonideal.

Linear channel distortion (dispersion in time) is particularly damaging to digital communi-
cation systems. It introduces what is known as intersymbol interferences (ISI). In other words,
a digital symbol, when transmitted over a dispersive channel, tends to spread more widely
than its allotted time. Therefore, adjacent symbols will interfere with one another, thereby
increasing the probability of detection error at the receiver.

Example 3.14

Figure 3.29
Pulse is
dispersed when
it passes through
a system that is
not distortionless.

A low-pass filter (Fig. 3.29a) transfer function H (f) is given by

—j2nfi
(()1+kcos2n’fT)e ¢ |fl<B (3.61)

H(f)={ 1> B

A pulse g(#) band-limited to B Hz (Fig. 3.29b) is applied at the input of this filter. Find the
output y(z).

gl

(b)
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This filter has ideal phase and nonideal magnitude characteristics. Because g(t) <
G(f), y(@) < Y(f) and

Y(f)=GHH()

=G(f).n<f

2B
= G(f)e /™ 4 k[G(f) cos 27fT] e /¥ /e (3.62)

> ( + k cos 27fT)e 27 fu

Note that in the derivation of Eq. (3.62) because g(¢) is band-limited to B Hz, we have
G(f) -1 (ifﬁ) = G(f). Then, by using the time-shifting property and Eq. (3.32a), we
have

k
YO =gt —ta) + 58t —ta = T) + gt —1a + 1)) (3.63)

The output is actually g(¢) + (k/2)[g(t — T) + g(t + T)] delayed by ;. It consists of g ()
and its echoes shifted by +¢;. The dispersion of the pulse caused by its echoes is evident
from Fig. 3.29c. Ideal amplitude but nonideal phase response of H (f) has a similar effect
(see Prob. 3.6-1).

3.6.2 Distortion Caused by Channel Nonlinearities

Until now we have considered the channel to be linear. This approximation is valid only
for small signals. For large signal amplitudes, nonlinearities cannot be ignored. A general
discussion of nonlinear systems is beyond our scope. Here we shall consider a simple case
of a memoryless nonlinear channel where the input g and the output y are related by some
(memoryless) nonlinear equation,

y=f()

The right-hand side of this equation can be expanded in a Maclaurin series as
Y(0) = ag + arg(t) + a2’ (1) + asg> (@) + - + arg" (O + - -

Recall the result in Sec. 3.3.6 (convolution) that if the bandwidth of g(¢) is B Hz, then the
bandwidth of g (¢) is kB Hz. Hence, the bandwidth of y(¢) is greater than kB Hz. Consequently,
the output spectrum spreads well beyond the input spectrum, and the output signal contains
new frequency components not contained in the input signal. In broadcast communication, we
need to amplify signals at very high power levels, where high-efficiency (class C) amplifiers are
desirable. Unfortunately, these amplifiers are nonlinear, and they cause distortion when used
to amplify signals. This is one of the serious problems in AM signals. However, FM signals
are not affected by nonlinear distortion, as shown in Chapter 5. If a signal is transmitted over
a nonlinear channel, the nonlinearity not only distorts the signal but also causes interference
with other signals on the channel because of its spectral dispersion (spreading).

For digital communication systems, the nonlinear distortion effect is in contrast to the
time dispersion effect due to linear distortion. Linear distortion causes interference among
signals within the same channel, whereas spectral dispersion due to nonlinear distortion causes
interference among signals using different frequency channels.
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Example 3.15 The input x(¢) and the output y(¢) of a certain nonlinear channel are related as
y(f) = x(2) + 0.000158x%(¢)

Find the output signal y(¢) and its spectrum Y (f) if the input signal is x(¢) = 2000
sinc (20007r¢). Verify that the bandwidth of the output signal is twice that of the input sig-
nal. This is the result of signal squaring. Can the signal x(¢) be recovered (without distortion)
from the output y(¢)?

Since

- (S
x(¢) = 2000 sinc (20007 ¢) e X(f)y=1 (2000)

We have

y(1) = x(t) + 0.000158x%(r) = 2000 sinc (20007r¢) 4 0.316 - 2000 sinc? (20007 1)
—

_ f S
Y(f) =T (50—®) +0316A (4000>

Observe that 0.316 - 2000sinc? (20007 7) is the unwanted (distortion) term in the received
signal. Figure 3.30a shows the input (desired) signal spectrum X (f); Fig. 3.30b shows
the spectrum of the undesired (distortion) term; and Fig. 3.30c shows the received signal
spectrum Y (f). We make the following observations.

1. The bandwidth of the received signal y(#) is twice that of the input signal x(¢) (because
of signal squaring).

2. The received signal contains the input signal x(f) plus an unwanted signal
632 sinc?(200077¢). The spectra of these two signals are shown in Fig. 3.30a and b.
Figure 3.30c shows Y (f), the spectrum of the received signal. Note that spectra of
the desired signal and the distortion signal overlap, and it is impossible to recover the
signal x(t) from the received signal y(#) without some distortion.

3. We can reduce the distortion by passing the received signal through a low-pass filter
of bandwidth 1000 Hz. The spectrum of the output of this filter is shown in Fig. 3.30d.
Observe that the output of this filter is the desired input signal x(¢) with some residual
distortion.

4. We have an additional problem of interference with other signals if the input signal x(¢)
is frequency-division-multiplexed along with several other signals on this channel. This
means that several signals occupying nonoverlapping frequency bands are transmitted
simultaneously on the same channel. Spreading the spectrum X (f) outside its original
band of 1000 Hz will interfere with the signal in the band of 1000 to 2000 Hz. Thus,
in addition to the distortion of x(¢), we have an interference with the neighboring
band.




Figure 3.30
Signal distortion
caused by
nonlinear
operation.

(a) Desired
(input) signal
spectrum.

(b) Spectrum of
the unwanted
signal (distortion)
in the received
signal.

(c) Spectrum of
the received
signal.

(d) Spectrum of
the received
signal after
low-pass
filtering.
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5. If x(¢) were a digital signal consisting of a pulse train, each pulse would be dis-
torted, but there would be no interference with the neighboring pulses. Moreover even
with distorted pulses, data can be received without loss because digital communica-
tion can withstand considerable pulse distortion without loss of information. Thus,
if this channel were used to transmit a time-division multiplexed signal consisting
of two interleaved pulse trains, the data in the two trains would be recovered at the
receiver.

3.6.3 Distortion Caused by Multipath Effects

A multipath transmission occurs when a transmitted signal arrives at the receiver by two or
more paths of different delays. For example, if a signal is transmitted over a cable that has
impedance irregularities (mismatching) along the path, the signal will arrive at the receiver
in the form of a direct wave plus various reflections with various delays. In radio links, the
signal can be received by direct path between the transmitting and the receiving antennas and
also by reflections from other objects, such as hills and buildings. In long-distance radio links
using the ionosphere, similar effects occur because of one-hop and multihop paths. In each
of these cases, the transmission channel can be represented as several channels in parallel,
each with a different relative attenuation and a different time delay. Let us consider the case
of only two paths: one with a unity gain and a delay #4, and the other with a gain @ and a
delay t; + At, as shown in Fig. 3.31a. The transfer functions of the two paths are given by
e/ and qei2f (ta+An) respectively. The overall transfer function of such a channel is
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Figure 3.31
Multipath

transmission.

»1 Delay 1,
Transmitted
signal ——»— Received
signal
(a) - o - Delay 1y + At
[H(f)
(b)
H(f), given by
H(f) — e—jZﬂﬁd _+_ae—j271f(td+At)
= e 2 (] 4 qe T2 ALY (3.64a)

= e 7%l (1 4+ o cos 2mf At — jo sin 2iwf At)

(3.64b)

sin 2w f At
:\/1+a2+2acos2anz exp | —j (27tftd+tan_1 o sin 27 )

14+ acos2rf At
[E i)

Both the magnitude and the phase characteristics of H(f) are periodic in f with a period of
1/ At (Fig. 3.31b). The multipath channel, therefore, can exhibit nonidealities in the magnitude
and the phase characteristics of the channel and can cause linear distortion (pulse dispersion),
as discussed earlier.

If, for instance, the gains of the two paths are very close, that is, @ = 1, then the signals
received from the two paths may have opposite phase (r radians apart) at certain frequen-
cies. This means that at those frequencies where the two paths happen to result in opposite
phases, the signals from the two paths will almost cancel each other. Equation (3.64b) shows
that at frequencies where f = n/(2At) (n odd), cos 2rf At = —1, and |H(f)| = 0 when
o = 1. These frequencies are the multipath null frequencies. At frequencies f = n/(2At)
(n even), the two signals interfere constructively to enhance the gain. Such channels cause
frequency-selective fading of transmitted signals. Such distortion can be partly corrected by
using the tapped delay-line equalizer, as shown in Prob. 3.6-2. These equalizers are useful in
several applications in communications. Their design issues are addressed later in Chapters 7
and 12.



3.7 Signal Energy and Energy Spectral Density 103
3.6.4 Fading Channels

Thus far, the channel characteristics have been assumed to be constant with time. In prac-
tice, we encounter channels whose transmission characteristics vary with time. These include
troposcatter channels and channels using the ionosphere for radio reflection to achieve long-
distance communication. The time variations of the channel properties arise because of semi
periodic and random changes in the propagation characteristics of the medium. The reflection
properties of the ionosphere, for example, are related to meteorological conditions that change
seasonally, daily, and even from hour to hour, much like the weather. Periods of sudden storms
also occur. Hence, the effective channel transfer function varies semi periodically and ran-
domly, causing random attenuation of the signal. This phenomenon is known as fading. One
way to reduce the effects of slow fading is to use automatic gain control (AGC).*

Fading may be strongly frequency dependent where different frequency components
are affected unequally. Such fading, known as frequency-selective fading, can cause serious
problems in communication. Multipath propagation can cause frequency-selective fading.

3.7 SIGNAL ENERGY AND ENERGY
SPECTRAL DENSITY

The energy E, of a signal g(¢) is defined as the area under | g(1)|*. We can also determine the
signal energy from its Fourier transform G(f) through Parseval’s theorem.

3.7.1 Parseval's Theorem

Signal energy can be related to the signal spectrum G(f) by substituting Eq. (3.9b) in Eq. (2.2):

E, =/‘ g(l)g*(t)dtz/ g(®) [/ G*(f)e_jz”ﬂdf} dt

—00 —0o0

Here, we used the fact that g*(¢), being the conjugate of g(¢), can be expressed as the conjugate
of the right-hand side of Eq. (3.9b). Now, interchanging the order of integration yields

E, = / ” G*(f) [ / g(t)e > dt] df

—00 —00

-/ : G(HG* () df

= [ e (365)

—0o0

This is the well-known statement of Parseval theorem. A similar result was obtained for a
periodic signal and its Fourier series in Eq. (2.68). This result allows us to determine the signal
energy from either the time domain specification g(¢) or the frequency domain specification
G(f) of the same signal.

* AGC will also suppress slow variations of the original signal.
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Example 3.16 Verify Parseval’s theorem for the signal g() = e~ u(?) (a > 0).

We have
o0 o0 1
E, = / gz(t) dt = / e g — — (3.66)
—00 0 Za

We now determine E, from the signal spectrum G(f) given by

1
D= jaf+a
and from Eq. (3.65),
1 i 2nf|® 1
& /_ ’G(f)l 9 = /00(2 )2 + a? 9 2ma an a |_» Z2a

which verifies Parseval’s theorem.

3.7.2 Energy Spectral Density (ESD)

Equation (3.65) can be interpreted to mean that the energy of a signal g(¢) is the result of
energies contributed by all the spectral components of the signal g(¢). The contribution of a
spectral component of frequency f is proportional to |G(f)|2. To elaborate this further, consider
a signal g(¢) applied at the input of an ideal bandpass filter, whose transfer function H (f) is
shown in Fig. 3.32a. This filter suppresses all frequencies except a narrow band Af (Af — 0)
centered at angular frequency wo (Fig. 3.32b). If the filter output is y(¢), then its Fourier
transform Y (f) = G(f)H (f), and E,, the energy of the output y(?), is

E, = f T IGHHEI (3.67)

Because H (f) = 1 over the passband Af, and zero everywhere else, the integral on the
right-hand side is the sum of the two shaded areas in Fig. 3.32b, and we have (for Af — 0)

Ey, =2|G(f)|* df

Thus, 2|G(f)|? df is the energy contributed by the spectral components within the two narrow
bands, each of width Af Hz, centered at %f;. Therefore, we can interpret |G(f)|? as the energy
per unit bandwidth (in hertz) of the spectral components of g(¢) centered at frequency f.
In other words, |G(f)|? is the energy spectral density (per unit bandwidth in hertz) of g(z).
Actually, since both the positive- and the negative-frequency components combine to form the
components in the band Af, the energy contributed per unit bandwidth is 2|G(f)|?. However,
for the sake of convenience we consider the positive- and negative-frequency components to
be independent. The energy spectral density (ESD) W, (¢) is thus defined as

W (f) = |G))? (3.68)



Figure 3.32
Interpretfation of
the energy
spectral density
of a signal.
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()

and Eq. (3.65) can be expressed as

E, = / ” W, () df (3.692)

From the results in Example 3.16, the ESD of the signal g(z) = e~%u(¢) is

1
Ve () = IG()I* = GRS (3.69b)

3.7.3 Essential Bandwidth of a Signal

The spectra of mostsignalsextend to infinity. However, because the energy of a practical signal
is finite, the signal spectrum must approach 0 as f — oco. Most of the signal energy is contained
within a certain band of B Hz, and the energy content of the components of frequencies greater
than B Hz is negligible. We can therefore suppress the signal spectrum beyond B Hz with little
effect on the signal shape and energy. The bandwidth B is called the essential bandwidth of the
signal. The criterion for selecting B depends on the error tolerance in a particular application.
We may, for instance, select B to be that bandwidth that contains 95% of the signal energy.* The
energy level may be higher or lower than 95%, depending on the precision needed. We can use
such a criterion to determine the essential bandwidth of a signal. Suppression of all the spectral
components of g(¢) beyond the essential bandwidth results in a signal g (¢), which is a close
approximation of g(¢)." If we use the 95% criterion for the essential bandwidth, the energy of
the error (the difference) g(¢) — g(¢) is 5% of E. The following example demonstrates the
bandwidth estimation procedure.

* Essential bandwidth for a low-pass signal may also be defined as a frequency at which the value of the amplitude
spectrum is a small fraction (about 5-10%) of its peak value. In Example 3.16, the peak of |G(f)| is 1/a, and it
occurs at f = 0.

TIn practice the truncation is performed gradually, by using tapered windows, to avoid excessive spectral leakage
due to the abrupt truncation.’
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Exomp|e 3.17 Estimate the essential bandwidth W (in rad/s) of the signal e "% u(t) if the essential band is

Figure 3.33
Estimating the
essential
bandwidth of a

signal.

required to contain 95% of the signal energy.

In this case,

1
Gf) = ———
" J2nf +a
and the ESD is
Gl = —a—
T Qaf)?+a?

G

“w W oo
f ; ! >
-B B f

This ESD is shown in Fig. 3.33. Moreover, the signal energy E, is the area under this
ESD, which has already been found to be 1/2a. Let W rad/s be the essential bandwidth,
which contains 95% of the total signal energy E,. This means 1/27 times the shaded area
in Fig. 3.33 is 0.95/2a, that is,

095 /W/Z’f df

2a —wyan 2f)?+a?
1 _, 2nf W /2 1 W
= ——tan = —— = —tan = —
2ma a |_wjpn T4 a
or
0957 T4
5 =tan~ — = W = 12.7arad/s
a

In terms of hertz, the essential bandwidth is

w
B=—=202a Hz
2

This means that in the band from 0 (dc) to 12.7 x a rad/s (2.02 x a Hz), the spectral
components of g () contribute 95% of the total signal energy; all the remaining spectral
components (in the band from 2.02 x a Hz to co) contribute only 5% of the signal energy.*

* Note that although the ESD exists over the band —oo to 0o, the trigonometric spectrum exists only over the band 0
to oo. The spectrum range —oo to oo applies to the exponential spectrum. In practice, whenever we talk about a
bandwidth, we mean it in the trigonometric sense. Hence, the essential band is from 0 to B Hz (or W rad/s), not from
—BtoB.
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Example 3.18 Estimate the essential bandwidth of a rectangular pulse g(z) = IT(t/T) (Fig. 3.34a), where
the essential bandwidth is to contain at least 90% of the pulse energy.

§ For this pulse, the energy E, is

) T/2
Eg=/ gz(t)dt=f dt=T

-0 -T2

Also because

I1 <—;—> <= T sinc (7 fT)

Figure 3.34
(a) EXFCNI/FGC
rectangular
function, (b) its
energy spectral
density, and

(c) fraction of
energy inside
B(H,).

g(r)
1

T
2

0N

(a)
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the ESD for this pulse is
We(f) = IG(f)I* = T*sinc” (fT)
This ESD is shown in Fig. 3.34b as a function of wT as well as fT, wheref is the frequency

in hertz. The energy Ep within the band from 0 to B Hz is given by

B
Ep = / T? sinc? (fT) df
B

Setting 27 fT = x in this integral so that df = dx /(2xT), we obtain

T 2n BT
Ep = -—/ sinc? ()—C> dx
T Jo 2

Also because E; = T, we have

E 1 2nBT
=B _ —/ sinc? (f) dx
Eg T Jo 2

The integral on the right-hand side is numerically computed, and the plot of Eg/E, vs.
BT is shown in Fig. 3.34c. Note that 90.28% of the total energy of the pulse g(¢) is
contained within the band B = 1/T Hz. Therefore, by the 90% criterion, the bandwidth
of a rectangular pulse of width T seconds is 1/7 Hz.

3.7.4 Energy of Modulated Signals

We have seen that modulation shifts the signal spectrum G(f) to the left and right by f. We
now show that a similar thing happens to the ESD of the modulated signal.
Let g(¢) be a baseband signal band-limited to B Hz. The amplitude-modulated signal

@) is
o(t) = g(t) cos2mfot

and the spectrum (Fourier transform) of ¢(z) is
O() = (G +0) + G ~ o)
The ESD of the modulated signal ¢ (¢) is |®(f)|?, that is,
Wy(f) = TIGG +/0) + G ~ )P
If fy > B, then G(f + fy) and G(f — fo) are nonoverlapping (see Fig. 3.35), and
Yy (f) = %[w ++IG(f —fo)P]

1 1
=Y Ho)+ 7% (F —f0) (3.70)



Figure 3.35
Energy spectral
densities of
modulating and
modulated
signals.
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The ESDs of both g(¢) and the modulated signal ¢(¢) are shown in Fig. 3.35. It is clear that
modulation shifts the ESD of g(¢) by %fp. Observe that the area under W, (f) is half the area
under W, (f). Because the energy of a signal is proportional to the area under its ESD, it follows
that the energy of ¢(¢) is half the energy of g(¢), that is,

1
E, = EE‘g fo=B (3.71)

It may seem surprising that a signal ¢(¢), which appears so energetic in comparison to g(t),
should have only half the energy of g(¢). Appearances are deceiving, as usual. The energy of
a signal is proportional to the square of its amplitude, and higher amplitudes contribute more
energy. Signal g(¢) remains at higher amplitude levels most of the time. On the other hand,
@(2), because of the factor cos 2 fot, dips to zero amplitude levels many times, which reduces
its energy.

3.7.5 Time Autocorrelation Function and
the Energy Spectral Density

In Chapter 2, we showed that a good measure of comparing two signals g(¢) and z(z) is the
cross-correlation function v,,(t) defined in Eq. (2.46). We also defined the correlation of a
signal g (¢) with itself [the autocorrelation function v, ()] in Eq. (2.47). For a real signal g (2),
the autocorrelation function v, (7) is given by*

Ye (1) =/ ggt +v)dt (3.72a)

—00

* For a complex signal g(¢), we define

oo 00
Yg(T) =/ g(g*(t —t)dr =f g*gt +tydr
—00 —00
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Setting x = ¢ + 7 in Eq. (3.72a) yields
o0
V(1) = / gx)gx — 1) dx
—00

In this equation, x is a dummy variable and could be replaced by ¢. Thus,

Vo) = / g(Dg(t £ 7)dt (3.72)

This shows that for a real g(t), the autocorrelation function is an even function of t, that is,

Vg(1) = Y (=1) (3.72¢)

There is, in fact, a very important relationship between the autocorrelation of a signal and
its ESD. Specifically, the autocorrelation function of a signal g(¢) and its ESD W, (f) form a
Fourier transform pair, that is,

Yo (T) &= W, (f) (3.73a)

Thus, -
qlg(f)zf{t/fg(‘[)}:/ Ve (D)e 2 T dr (3.73b)
l/fg(r):f—l{wg(f)}=/ W, (fe 72 T df (3.73c¢)

Note that the Fourier transform of Eq. (3.73a) is performed with respect to t in place of ¢.

We now prove that the ESD W, (f) = |G (f) |2isthe Fourier transform o fthe autocorrelation
function ¥¢ (7). Although the result is proved here for real signals, it is valid for complex signals
also. Note that the autocorrelation function is a function of 7, not ¢. Hence, its Fourier transform
is [ Vg (1)e ¥/ dr. Thus,

Flyg(n)] = /m eIt [/Oo g(Hg(t+ r)dt:| dt

—0o0

= / g [/00 gt + t)e_jz”f’dr] dr

The inner integral is the Fourier transform of g(z 4 ¢), which is g () left-shifted by 7. Hence, it
is given by G(f)e/?™  in accordance with the time-shifting property in Eq. (3.32a). Therefore,

Flve(t)] = G(f) / g™ dt = G(f)G(—f) = |G(f)I?

This completes the proof that
Py () = W () = |G (3.74)

A careful observation of the operation of correlation shows a close connection to con-
volution. Indeed, the autocorrelation function . (t) is the convolution of g(t) with g(—1)
because

00

g(r)*g(—r)=/ g(x)g[—(r—x)]dx=/ g()g(x — 1) dx = Y (2)

Application of the time convolution property [Eq. (3.44)] to this equation yields Eq. (3.74).
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ESD of the Input and the Output
If x(¢) and y(#) are the input and the corresponding output of a linear time-invariant (LTI)
system, then

Y(f) =H{)X()

Therefore,

Y12 = [HEPX O

This shows that
Wy (f) = [HE () (3.75)
Thus, the output signal ESD is |H (£)|? times the input signal ESD.

3.8 SIGNAL POWER AND POWER
SPECTRAL DENSITY

For a power signal, a meaningful measure of its size is its power [defined in Eq. (2.4)] as the
time average of the signal energy averaged over the infinite time interval. The power P, of a
real-valued signal g(t) is given by

1 rT2 5
P, = lim — 1) dt .
g Ti)mooT/_T/zg ® (3.76)

The signal power and the related concepts can be readily understood by defining a truncated
signal gr(?) as

) g ltl=<T/2
gr(® _{ 0 |1l >T/2

The truncated signal is shown in Fig. 3.36. The integral on the right-hand side of Eq. (3.76)
yields Eg;., which is the energy of the truncated signal g7 (¢). Thus,

Py = lim 2T (3.77)
& T-oo T )
This equation describes the relationship between power and energy of nonperiodic signals.
Understanding this relationship will be very helpful in understanding and relating all the
power concepts to the energy concepts. Because the signal power is just the time average of
energy, all the concepts and results of signal energy also apply to signal power if we modify
the concepts properly by taking their time averages.

3.8.1 Power Spectral Density (PSD)

If the signal g(¢) is a power signal, then its power is finite, and the truncated signal g7 (¢) is an
energy signal as long as T is finite. If g7(¢) <= Gr(f), then from Parseval’s theorem,

[vo) (v 4)
E, = f o2(ydr = f Gr I df

oo
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Figure 3.36
Limiting process
in derivation of
PSD.
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Hence, P, the power of g(2), is given by

Py = lim ]i;l= lim 1[/ |GT(f)|2df} (3.78)

T—00 T—oo T | J—co

As T increases, the duration of g7(¢) increases, and its energy Eg, also increases proportion-
ately. This means that |Gr (f)|? also increases with T, and as T — oo, |Gr(f)|? also approaches
oo. However, |Gr(f)|? must approach oo at the same rate as T because for a power signal, the
right-hand side of Eq. (3.78) must converge. This convergence permits us to interchange the
order of the limiting process and integration in Eq. (3.78), and we have

) 2
Py = / tim 1GTOF 4 (3.79)

o0 T—00 T

We define the power spectral density (PSD) S, (w) as

Sg(f) = lim_ E—T—g-)ﬁ (380)

Consequently,*
P, = /_Z So(f) df (3.81a)
= 2/000 S, (f) df (3.81b)

This result is parallel to the result [Eq. (3.69a)] for energy signals. The power is the area under
the PSD. Observe that the PSD is the time average of the ESD of g7 (¢) [Eq. (3.80)].

As is the case with ESD, the PSD is also a positive, real, and even function of f. If g(¢) is
a voltage signal, the units of PSD are volts squared per hertz.

* One should be cautious in using a unilateral expression such as Pg = 2 f0°° Sg () df when Sg(f) contains an
impulse at the origin (a dc component). The impulse part should not be multiplied by the factor 2.
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3.8.2 Time Autocorrelation Function of Power Signals

The (time) autocorrelation function R () of a real power signal g(¢) is defined as*

1 T/2
Re(z) = lim = / (gt — 7) dt (3.82a)
T—oo T -T/2

We can use the same argument as that used for energy signals [Egs. (3.72b) and (3.72¢)] to
show that R, () is an even function of 7. This means that for a real g(¢),

1 T/2
Reg(t) = lim —/ gg(t+1)dt (3.82b)
Tooco T -T/2
and
Re(1) = Reg(—1) (3.83)

For energy signals, the ESD W, (f) is the Fourier transform of the autocorrelation function
Vg (7). A similar result applies to power signals. We now show that for a power signal, the
PSD S, (f) is the Fourier transform of the autocorrelation function R (7). From Eq. (3.82b)
and Fig. 3.36,

Ro(t) = lim ~ / - er(Dgr(t+v)dt = lim Ver (1) (3.84)
8 T—ooo T —00 T—>o0 T

Recall from the Wiener-Khintchine theorem that ¥, (1) <= |Gr(f) |2. Hence, the Fourier
transform of the preceding equation yields

G 2
'—T;f—” = 5,(f) (3.85)

Re (1) &= Tli)moo

Although we have proved these results for a real g (¢), Egs. (3.80), (3.81a), (3.81b), and (3.85)
are equally valid for a complex g (#).

The concept and relationships for signal power are parallel to those for signal energy. This
is brought out in Table 3.3.

Signal Power Is Its Mean Square Value

A glance at Eq. (3.76) shows that the signal power is the time average or mean of its squared
value. In other words P, is the mean square value of g(#). We must remember, however, that
this is a time mean, not a statistical mean (to be discussed in later chapters). Statistical means
are denoted by overbars. Thus, the (statistical) mean square of a variable x is denoted by x2.
To distinguish from this kind of mean, we shall use a wavy overbar to denote a time average.

Thus, the time mean square value of g(z) will be denoted by g2(z). The time averages are
conventionally denoted by angle brackets, written as (g%(¢)). We shall, however, use the wavy

* For a complex g(¢), we define

R lim " * dt= lim 2 e d
g(r)=Tl>m00 T/J/Zg(t)g t—-1) t—Tme —T-/_T/zg (gt +1)at
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TABLE 3.3
_ o 2 _-l/mz — lim Zr
Eg= [ ,8°(Ndt Py = Tli>moo 7 _T/zg () dt = Tl;moo 5
00 T R ) o V(D
Yg(r) = [2o,8@glt +1)dt Rg(r) = Tll)moo T f_T/z ggt+rt)dt = Tli)moo -7
2 _ o GO Ve ()
Wg(f) = 1G] Se(f) = Jim 1OTPL — jim 2222
Ve (T) <= Wy (f) Re (1) &= Sg(f)
Eg = [20 Vg (N)df Py = [2, S, () df

overbar notation because it is much easier to associate means with a bar on top than with
brackets. Using this notation, we see that

A 1 T/2
P, = g*(t)= lim = / g2 () dr (3.862)
Tooco T -T2

Note that the rms value of a signal is the squate root of its mean square value. Therefore,

[g())rms = v/Pg (3.86b)

From Egs. (3.82), it is clear that for a real signal g(¢), the time autocorrelation function
R, (7) is the time mean of g(t)g(t & 7). Thus,

Re(r) = g(Ng(t £ 1) (3.87)

This discussion also explains why we have been using “time autocorrelation” rather than just
“autocorrelation”. This is to distinguish clearly the present autocorrelation function (a time
average) from the statistical autocorrelation function (a statistical average) to be introduced in
Chapter 9 in the context of probability theory and random processes.

Interpretation of Power Spectral Density

Because the PSD is the time average of the ESD of g(¢), we can argue along the lines used in
the interpretation of ESD. We can readily show that the PSD S, (f) represents the power per
unit bandwidth (in hertz) of the spectral components at the frequency f. The amount of power
contributed by the spectral components within the band f to f> is given by

fi
AP, =2 f S, (F) df (3.88)

i

Autocorrelation Method: A Powerful Tool

For a signal g(¢), the ESD, which is equal to |G(f)|?, can also be found by taking the Fourier
transform of its autocorrelation function. If the Fourier transform of a signal is enough to deter-
mine its ESD, then why do we needlessly complicate our lives by talking about autocorrelation
functions? The reason for following this alternate route is to lay a foundation for dealing with
power signals and random signals. The Fourier transform of a power signal generally does not
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exist. Moreover, the luxury of finding the Fourier transform is available only for deterministic
signals, which can be described as functions of time. The random message signals that occur
in communication problems (e.g., random binary pulse train) cannot be described as functions
of time, and it is impossible to find their Fourier transforms. However, the autocorrelation
function for such signals can be determined from their statistical information. This allows us
to determine the PSD (the spectral information) of such a signal. Indeed, we may consider the
autocorrelation approach to be the generalization of Fourier techniques to power signals and
random signals. The following example of a random binary pulse train dramatically illustrates
the power of this technique.

Example 3.19

Figure 3.37a shows a random binary pulse train g(#). The pulse width is 7} /2, and one binary
digit is transmitted every T}, seconds. A binary 1is transmitted by the positive pulse, and a binary
0 is transmitted by the negative pulse. The two symbols are equally likely and occur randomly.
We shall determine the autocorrelation function, the PSD, and the essential bandwidth of this
signal.

We cannot describe this signal as a function of time because the precise waveform, being
random, is not known. We do, however, know its behavior in terms of the averages (the
statistical information). The autocorrelation function, being an average parameter (time
average) of the signal, is determinable from the given statistical (average) information.
We have [Eq. (3.82a)]

1 T/2
Re(r) = Tli_)n;o ;/T 2g(t)g(t— 7) dt

Figure 3.37b shows g(¢) by solid lines and g (¢ — t), which is g(#) delayed by t, by dashed
lines. To determine the integrand on the right-hand side of the preceding equation, we
multiply g(¢) with g(¢ — 1), find the area under the product g(¢)g(t — ), and divide it
by the averaging interval 7. Let there be N bits (pulses) during this interval T so that
T = NTp,andas T — oo, N — o00. Thus,

1 NTy/2
R = lim — Ng(t —1)dt
¢ (T) Nm NT, /_NTb/zg( )g(t —1)

Let us first consider the case of T < Tj/2. In this case there is an overlap (shaded region)
between each pulse of g(#) and of g(# — 7). The area under the product g(¢)g(t — 7) is
Typ/2 — 7 for each pulse. Since there are N pulses during the averaging interval, the total
area under g(#)g(t — tv) is N(Tp/2 — ), and
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Figure 3.37
Autocorrelation
function and
power spectral
density function
of a random
binary pulse
train.
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Because R, (7) is an even function of 7,

Re (1) = % <1 - %) 7] < % (3.89a)

as shown in Fig. 3.37c.

As we increase T beyond T} /2, there will be overlap between each pulse and its immediate
neighbor. The two overlapping pulses are equally likely to be of the same polarity or of
opposite polarity. Their productis equally likely to be 1 or — 1 over the overlapping interval.
On the average, half the pulse products will be 1 (positive-positive or negative-negative
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pulse combinations), and the remaining half pulse products will be —1 (positive-negative
or negative-positive combinations). Consequently, the area under g (¢)g (¢ — t) will be zero
when averaged over an infinitely large time (T — o0), and

T
Re() =0  |7| > ?” (3.89b)

The two parts of Eq. (3.89) show that the autocorrelation function in this case is the
triangular function %A(t /Tp) shown in Fig. 3.37c. The PSD is the Fourier transform of

%A(t/Tb), which is found in Example 3.13 (or Table 3.1, pair 19) as
T,
S, (f) = Ib sinc? (”Tﬁ”) (3.90)

The PSD is the square of the sinc function, as shown in Fig. 3.37d. From the result in
Example 3.18, we conclude that 90.28% of the area of this spectrum is contained within
the band from 0 to 477 / T}, rad/s, or from O to 2/ T}, Hz. Thus, the essential bandwidth may be
taken as 2/T, Hz (assuming a 90% power criterion). This example illustrates dramatically
how the autocorrelation function can be used to obtain the spectral information of a
(random) signal when conventional means of obtaining the Fourier spectrum are not
usable.

3.8.3 Input and Output Power Spectral Densities

Because the PSD is a time average of ESDs, the relationship between the input and output
signal PSDs of a linear time-invariant (L'TT) system is similar to that of ESDs. Following the
argument used for ESD [Eq. (3.75)], we can readily show that if g(¢) and y(¢) are the input
and output signals of an LTI system with transfer function H (f), then

Sy(f) = HEHS, () (3.91)

Example 3.20 A noise signal ;(t) with PSD S,,(f) = K is applied at the input of an ideal differentiator

Figure 3.38
Power spectral
densities at the
input and the
output of an
ideal
differentiator.

(Fig. 3.38a). Determine the PSD and the power of the output noise signal n,(¢).

ni(t) d no(t)
— — —>
dt
(a)

(b)
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The transfer function of an ideal differentiator is H(f) = j2mwf. If the noise at the
demodulator output is n,(z), then from Eq. (3.91),

Sne () = |HEW Su,{F) = |27f 1K

The output PSD §,,, (f) is parabolic, as shown in Fig. 3.38c. The output noise power N, is
the area under the output PSD. Therefore,

3

B B 2n3
N, = / KQrf)?df =2K / Qrf)?df = 8°B°K
B 0

3.8.4 PSD of Modulated Signals

Following the argument in deriving Egs. (3.70) and (3.71) for energy signals, we can derive
similar results for power signals by taking the time averages. We can show that for a power
signal g(2), if

@(t) = g(t) cos 2w fot
then the PSD S, (f) of the modulated signal ¢(z) is given by

1
So(Fy = 2 [SetF +/0) + 5 — o)) (3.92)

The detailed derivation is provided in Sec. 7.8. Thus, modulation shifts the PSD of g(¢) by
1. The power of ¢(¢) is half the power of g(¢), that is,

P, =P, fo=B (3.93)

3.9 NUMERICAL COMPUTATION OF FOURIER

TRANSFORM: THE DFT

To compute G(f), the Fourier transform of g(¢), numerically, we have to use the samples of
g (). Moreover, we can determine G(f) only at some finite number of frequencies. Thus, we
can compute only samples of G (f). Forthis reason, we shall now find the relationships between
samples of g(#) and samples of G(f).

In numerical computations, the data must be finite. This means that the number of samples
of g(¢) and G(f) must be finite. In other words, we must deal with time-limited signals. If the
signal is not time-limited, then we need to truncate it to make its duration finite. The same is
true of G(f). To begin, let us consider a signal g(¢) of duration 7 seconds, starting at¢ = 0,
as shown in Fig. 3.39a. However, for reasons that will become clear as we go along, we shall
consider the duration of g(¢) to be Ty, where Ty > 1, which makes g(¢) = 0 in the interval
T < t < To, as shown in Fig. 3.39a. Clearly, this makes no difference in the computation of
G(f). Let us take samples of g(z) at uniform intervals of Ts seconds. There are a total of Ng
samples, where

No= =2 (3.94)
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To )
G(f) = /0 g(t)e—ﬂrrﬁ dt

No—1
= lim Y g(kTy)e 2T T (3.95)
7 k=0

Let us consider the samples of G(f) at uniform intervals of fo. If G, is the g-th sample, that is,
G4 = G(gfo), then from Eq. (3.95), we obtain

No—1
Gy =Y Tog(kTy)e 42Tk

k=0

No—1
= Z gre Jask (3.96)

k=0

where

8k = Tsg (kTy), G4 = G(gfo), Qo = 27foTs (3.97)

Thus, Eq. (3.96) relates the samples of g(z) to the samples of G(f). In this derivation, we
have assumed that 7; — 0. In practice, it is not possible to make 75 — 0 because this would
increase the data enormously. We strive to make 7 as small as is practicable. This will result
in some computational error.

We make an interesting observation from Eq. (3.96). The samples G, are periodic with a
period of 277/ €29 samples. This follows from Eq. (3.96), which shows that G(;42z/94) = Gy-
Thus, only 27/ €29 samples G, can be independent. Equation (3.96) shows that G, is determined
by Np independent values g;. Hence, for unique inverses of these equations, there can be only
Ny independent sample values G,. This means that

2 2 21 N,
No=Z % _ 7% (3.98)
Qo 2nfoTs 2xfoTo
In other words, we have
o= and o= - (3.99)
Tf) = — = — .
0 TO 0 TO

* The upper limit on the summation in Eq. (3.95) is Ny — 1 (not Ny) because the last term in the sum starts at
(Ng — 1)T; and covers the area under the summand up to NoTs = Tj.
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Thus, the spectral sampling interval fy Hz can be adjusted by a proper choice of Ty: the larger
the T, the smaller the fy. The wisdom of selecting Ty > t is now clear. When T is greater than
7, we shall have several zero-valued samples gy in the interval from t to 7p. Thus, by increasing
the number of zero-valued samples of g;, we reduce f; [more closely spaced samples of G(f)],
yielding more details of G(f). This process of reducing fy by the inclusion of zero-valued
samples g is known as zero padding. Also, for a given sampling interval Ty, larger Tp implies
larger Ny. Thus, by selecting a suitably large value of Ny, we can obtain samples of G(f) as
close as possible.

To find the inverse relationship, we multiply both sides of Eq. (3.96) by ¢$%4 and sum
over g as

Mp—1 Mp—1 | Mp—1
g =0 q =0 k=()

Upon interchanging the order of summation on the right-hand side,

Ng—1 MNo—1 My—1
Y Gy = Z g | Y i (3.100)
¢=0 g=0

To find the inner sum on the right-hand side, we shall now show that

(3.101)

No—1
OX: 0k _ | No n=0, £No, £2No, ...
0  otherwise

k=0
To show this, recall that 2oNg = 27 and &%k = 1 for n = 0, £Ng, 2Ny, . . ., so that

No—1 No—1
Z e}non Z 1=Ny n =0,£Ny, £2Ng, ...

To compute the sum for other values of n, we note that the sum on the left-hand side of
Eq. (3.101) is a geometric series with common ratio o = e$%_ Therefore, its partial sum of
the first Ny terms is

No-1 ;
o 21
Toen -1 T 7

where e"SNo — pi2mn — 1

This proves Eq. (3.101).

It now follows that the inner sum on the right-hand side of Eq. (3.100) is zero for k # m,
and the sum is Ny when k = m. Therefore, the outer sum will have only one nonzero term
when k = m, and it is Nogr = Nogm. Therefore,

Nog—1 2
Gae™h Qo= (3.102)

Ent No

No poar
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Equation (3.102) reveals the interesting fact that ggu+n;) = &m. This means that the
sequence g is also periodic with a period of Ny samples (representing the time duration
NoTs = Tp seconds). Moreover, G is also periodic with a period of Ny samples, representing
afrequency interval Nofo = (To/Ts)(To) = 1/T = f; hertz. But 1 /T is the number of samples
of g(¢) per second. Thus, 1/T; = f; is the sampling frequency (in hertz) of g(¢). This means
that G, is Np-periodic, repeating every f; Hz. Let us summarize the results derived so far. We
have proved the discrete Fourier transform (DFT) pair

No—1
Gy= ) gre /1% (3.103a)
k=0
1 No—1
= — G, /¥ 3.103b
8= 3 ;} g ( )

where
g = Teg(&Ty) Gq = G(q/v)

2nf 2w 2 2
Tfy = — Tfy = —
=7 ST, (3.104)
To fs 27
No=—=— Qo =2nfoTs = —
T, fo foTs No

Both the sequences g and G are periodic with a period of Ny samples. This results in g
repeating with period T seconds and G, repeating with periodf; = 1/T;rad/s,orf; = 1/T; Hz
(the sampling frequency). The sampling interval of g is T seconds and the sampling interval
of G, is fo = 1/To Hz. This is shown in Fig. 3.39c and d. For convenience, we have used the
frequency variable f (in hertz) rather than w (in radians per second).

We have assumed g(¢) to be time-limited to T seconds. This makes G(f) non-band-
limited.* Hence, the periodic repetition of the spectra G, as shown in Fig. 3.39d, will cause
overlapping of spectral components, resulting in error. The nature of this error, known as
aliasing error, is explained in more detail in Chapter 6. The spectrum G, repeats every fs
Hz. The aliasing error is reduced by increasing f;, the repetition frequency (see Fig. 3.39d).
To summarize, the computation of G, using DFT has aliasing error when g(¢) is time-limited.
This error can be made as small as desired by increasing the sampling frequency f; = 1/T (or
reducing the sampling interval T). The aliasing error is the direct result of the nonfulfillment
of the requirement 7y — 0 in Eq. (3.95).

When g(t) is not time-limited, we need to truncate it to make it time-limited. This will
cause further error in G,. This error can be reduced as much as desired by appropriately
increasing the truncating interval 7.

In computing the inverse Fourier transform [by using the inverse DFT in Eq. (3.103b)],
we have similar problems. If G(f) is band-limited, g(¢) is not time-limited, and the periodic
repetition of samples g will overlap (aliasing in the time domain). We can reduce the aliasing
error by increasing Ty, the period of g (in seconds). This is equivalent to reducing the frequency

* We can show that a signal cannot be simultaneously time-limited and band-limited. If it is one, it cannot be the
other, and vice versa.3

T The DFT relationships represent a transform in their own right, and they are exact. If, however, we identify g; and
G, as the samples of a signal g(¢) and its Fourier transform G(f), respectively, then the DFT relationships are
approximations because of the aliasing and truncating effects.
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sampling interval fo = 1/Ty of G(f). Moreover, if G(f) is not band-limited, we need to truncate
it. This will cause an additional error in the computation of g;. By increasing the truncation
bandwidth, we can reduce this error. In practice, (tapered) window functions are often used
for truncation’ in order to reduce the severity of some problems caused by straight truncation
(also known as rectangular windowing).

Because G, is Np-periodic, we need to determine the values of G, over any one period.
It is customary to determine G, over the range (0, No — 1) rather than over the range
(—=No/2, N9/2 — 1). The identical remark applies to g.

Choiceof T, Ty, and N
InDFT computation, we first need to select suitable values for Ny, Ts, and . For this purpose
we should first decide on B, the essential bandwidth of g(¢). From Fig. 3.39d, it is clear that the
spectral overlapping (aliasing) occurs at the frequency f;/2 Hz. This spectral overlapping may
also be viewed as the spectrum beyond f;/2 folding back at f; /2. Hence, this frequency is also
called the folding frequency. If the folding frequency is chosen such that the spectrum G(f) is
negligible beyond the folding frequency, aliasing (the spectral overlapping) is not significant.
Hence, the folding frequency should at least be equal to the highest significant frequency, that
is, the frequency beyond which G(f) is negligible. We shall call this frequency the essential
bandwidth B (in hertz). If g(¢) is band-limited, then clearly, its bandwidth is identical to the
essential bandwidth. Thus, 5

S

) >B Hz (3.105a)
Moreover, the sampling interval Ts = 1/f; [Eq. (3.104)]. Hence,
1
Ty < — 3.105b
s 5p ( )

Once we pick B, we can choose T according to Eq. (3.105b). Also,

1

= T (3.106)

Jo
where fj is the frequency resolution [separation between samples of G(f)]. Hence, if fy is
given, we can pick Tp according to Eq. (3.106). Knowing T and T, we determine Np from

To

3.107
T, ( )

Ng =

In general, if the signal is time-limited, G(f') is not band-limited, and there is aliasing in

the computation of G. To reduce the aliasing effect, we need to increase the folding frequency;

that is, we must reduce T (the sampling interval) as much as is practicable. If the signal is

band-limited, g(¢) is not time-limited, and there is aliasing (overlapping) in the computation

of g. To reduce this aliasing, we need to increase Ty, the period of gi. This results in reducing

the frequency sampling interval fy (in hertz). In either case (reducing 7 in the time-limited

case or increasing T in the band-limited case), for higher accuracy, we need to increase the

number of samples No because Ny = T/ T;. There are also signals that are neither time-limited
nor band-limited. In such cases, we need to reduce T and increase Tj.

Points of Discontinuity

If g () has a jump discontinuity at a sampling point, the sample value should be taken as the
average of the values on the two sides of the discontinuity because the Fourier representation
at a point of discontinuity converges to the average value.
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Using the FFT Algorithm in DFT Computations

The number of computations required in performing the DFT was dramatically reduced by
an algorithm developed by Tukey and Cooley in 1965.% This algorithm, known as the fast
Fourier transform (FFT), reduces the number of computations from something on the order
of Ng to Nolog Ng. To compute one sample G, from Eq. (3.103a), we require Ny complex
multiplications and Ny — 1 complex additions. To compute Ny valuesof G, (r =0, 1,...,Ng—
1), we require a total of Ng complex multiplications and No(No — 1) complex additions. For
large Ny, this can be prohibitively time-consuming, even for a very high-speed computer. The
FFT is, thus, a lifesaver in signal processing applications. The FFT algorithm is simplified if
we choose Ny to be a power of 2, although this is not necessary, in general. Details of the FFT
can be found in any book on signal processing (e.g., Ref. 3).

3.10 MATLAB EXERCISES

Computing Fourier Transforms

In this section of computer exercises, let us consider two examples illustrating the use of DFT
in finding the Fourier transform. We shall use MATLAB to find DFT by the FFT algorithm.
In the first example, the signal g(¢) = e~ 2 y(2) starts at t = 0. In the second example, we use
g(t) = I1(t), which starts at # = —J.

COMPUTER EXAMPLE C3.1
Use DFT (implemented by the FFT algorithm) to compute the Fourier transform of e ~2/u(t). Plot the
resulting Fourier spectra.

We first determine T and To. The Fourier transform of e~ u(t) is 1/(j2nf + 2). This
low-pass signal is not band-limited. Let us take its essential bandwidth to be that frequency
where |G(f)| becomes 1% of its peak value, which occurs at f = 0. Observe that

1
G| = ==~

1
Jerfr+4 2nf

Also, the peak of |G(f)| is at f = 0, where |G(0)| = 0.5. Hence, the essential bandwidth
Bis atf = B, where

2nf > 2

100
— =05x001 = B=—Hz
2B b4

IG(HI ~

and from Eq. (3.105b),

1
Ts < i 0.0057 = 0.0157

Let us round this value down to 75 = 0.015625 second so that we have 64 samples per
second. The second issue is to determine Tp. The signal is not time-limited. We need to
truncate it at Tp such that g(Tp) < 1. We shall pick Ty = 4 (eight time constants of
the signal), which yields Ng = To/T; = 256. This is a power of 2. Note that there is
a great deal of flexibility in determining T and Tp, depending on the accuracy desired
and the computational capacity available. We could just as well have picked Ty = 8 and
Ts = 1/32, yielding Ny = 256, although this would have given a slightly higher aliasing
erTor.
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Figure 3.40
Discrete Fourier
transform of an
exponentia
ﬂgncle‘zﬁdt)
Notice that the
horizontal axis in
this case is w (in
radians per
second).

Because the signal has a jump discontinuity at # = 0, the first sample (at = 0) is 0.5,
the averages of the values on the two sides of the discontinuity. The MATLAB program,
which implements the DFT by using the FFT algorithm is as follows:

Ts=1/64; T0=4; NO=TO0/Ts;

t=0:Ts:Ts* (NO-1);t=t"’;

g=Ts*exp(-2*t) ;

g(l)=Ts*0.5;

G=fft(g);

$ [Gp,Gm] S=cart2pol (Sreal (G),imag(G)$);
k=0:NO-1; k=k’;

w=2*pi*k/TO0;

subplot (211),stem(w(1:32),Gm(1:32));
subplot (212),stem(w(1:32),Gp(1:32))

Because G, is No-periodic, G; = Gg4256) S0 that Gys¢ = Gp. Hence, we need
to plot G, over the range g = 0 to 255 (not 256). Moreover, because of this periodicity,
G_4 = G(_g4+256), and the G, overtherange of g = —127 to —1 are identical to the G, over
the range of ¢ = 129 to 255. Thus, G-127 = G129, G_126 = G130, ..., G_1 = Goss.
In addition, because of the property of conjugate symmetry of the Fourier transform,
G 4= G;, it follows that G1o9 = GE—], G130 = G’f%, e, Goss = GT. Thus, the plots
beyond g = Np/2 (128 in this case) are not necessary for real signals (because they are
conjugates of G, for g = 0 to 128).

The plot of the Fourier spectra in Fig. 3.40 shows the samples of magnitude and phase
of G(f) at the intervals of 1/Ty = 1/4 Hz or wp = 1.5708 rad/s. In Fig. 3.40, we have
shown only the first 28 points (rather than all 128 points) to avoid too much crowding of
the data.

/

FFT values

Exact
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In this example, we knew G(f') beforehand and hence could make INTELLIGENT choices
for B (or the sampling frequency f;). In practice, we generally do not know G(f') before-
hand. In fact, that is the very thing we are trying to determine. In such a case, we must make
an intelligent guess for B or f; from circumstantial evidence. We then continue reducing
the value of Ty and recomputing the transform until the result stabilizes within the desired
number of significant digits.

Next, we compute the Fourier transform of g(¢) = 8 I1(z).

COMPUTER EXAMPLE C3.2
Use DFT (implemented by the FFT algorithm) to compute the Fourier transform of 8 I1(¢). Plot the
resulting Fourier spectra.

This rectangular function and its Fourier transform are shown in Fig. 3.41a and b. To
determine the value of the sampling interval T;, we must first decide on the essential
bandwidth B. From Fig. 3.41b, we see that G(f) decays rather slowly with f. Hence,
the essential bandwidth B is rather large. For instance, at B = 15.5 Hz (97.39 rad/s),
G(f) = —0.1643, which is about 2% of the peak at G(0). Hence, the essential bandwidth
may be taken as 16 Hz. However, we shall deliberately take B = 4 for two reasons: (1) to
show the effect of aliasing and (2) because the use of B > 4 will give an enormous number
of samples, which cannot be conveniently displayed on a book-sized page without losing
sight of the essentials. Thus, we shall intentionally accept approximation for the sake of
clarifying the concepts of DFT graphically.

The choice of B = 4 results in the sampling interval 7y = 1/2B = 1/8. Looking
again at the spectrum in Fig. 3.41b, we see that the choice of the frequency resolution
fo = 1/4 Hz is reasonable. This will give four samples in each lobe of G(f). In this case
To = 1/fo = 4 seconds and Ng = Ty/T = 32. The duration of g(¢) is only 1 second. We
must repeat it every 4 seconds (Tp = 4), as shown in Fig. 3.41c, and take samples every
0.125 second. This gives us 32 samples (Ng = 32). Also,

8k = Tsg(kT)

1
= gg(kT)

Since g(¢) = 8TI(#), the values of g; are 1, 0, or 0.5 (at the points of discontinuity), as
shown in Fig. 3.41c, where for convenience, g, is shown as a function of ¢ as well as k.
In the derivation of the DFT, we assumed that g(¢) begins at# = 0 (Fig. 3.39a), and
then took Np samples over the interval (0, Tp). In the present case, however, g (#) begins at
- % . This difficulty is easily resolved when we realize that the DFT found by this procedure
is actually the DFT of g, repeating periodically every Ty seconds. From Fig. 3.41c, it is
clear that repeating the segment of g over the interval from —2 to 2 seconds periodically
is identical to repeating the segment of g; over the interval from O to 4 seconds. Hence,
the DFT of the samples taken from —2 to 2 seconds is the same as that of the samples
taken from O to 4 seconds. Therefore, regardless of where g(¢) starts, we can always take
the samples of g(¢) and its periodic extension over the interval from 0 to Ty. In the present
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Figure 3.41
Discrete Fourier
transform of a
rectangular
pulse.
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example, the 32 sample values are

1 0<k<3 and 29<k <31
ag=10 5<k<27
0.5 k=428




%
B=4
Ts=
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Observe that the last sample is at # = 31/8, not at 4, because the signal repetition starts
att = 4, and the sample at t = 4 is the same as the sample at # = 0. Now, Ny = 32 and
Qo = 27/32 = 7 /16. Therefore [see Eq. (3.103a)],

31
Xk
Gq: E gre 716
k=0

The MATLAB program, which uses the FFT algorithm to implement this DFT equation,
is given next. First we write a MATLAB program to generate 32 samples of g, and then
we compute the DFT.

c32.m)
i f0=1/4;
1/(2*B); T0=1/£0;

NO=T0/Ts;

k=0
for

vy r N ¥

end
gk=
Gr=

:NO; k=k’;

m=1:1length(k)
if k(m)$>$=0 & k(m)$<$=3, gk(m)=1; end
if k(m)==4 & k(m)==28 gk(m)=0.5; end
if k(m)$>$=5 & k(m)$<$=27, gk(m)=0; end
if k(m)$>$=29 & k(m)S$<$=31, gk(m)=1; end

vy r r nr

k
k

gk’;
fft(gk);

subplot(211),stem(k, gk)
subplot (212),stem(k,Gr)

Figure 3.41d shows the plot of G,.

The samples G, are separated by fo = 1/Tp Hz. In this case Ty = 4, so the frequency
resolution fy is % Hz, as desired. The folding frequency f;/2 = B = 4 Hz corresponds to
q = No/2 = 16. Because G, is No-periodic (Nog = 32), the values of G, forg = —16 to
—1 are the same as those for ¢ = 16 to 31. The DFT gives us the samples of the spectrum
G(f).

For the sake of comparison, Fig. 3.41d also shows the shaded curve 8 sinc(;rf), which
istheFouriertransform of 8 I(¢). The values of G, computed from the DFT equation show
aliasing error, which is clearly seen by comparing the two superimposed plots. The error
in G, is just about 1.3%. However, the aliasing error increases rapidly with r. For instance,
the error in Gg is about 12%, and the error in G1g is 33%. The error in G14 is a whopping
72%. The percenterror increases rapidly near the folding frequency (r = 16) because g(¢)
has a jump discontinuity, which makes G(f) decay slowly as 1/f. Hence, near the folding
frequency, the inverted tail (due to aliasing) is very nearly equal to G(f) itself. Moreover,
the final values are the difference between the exact and the folded values (which are very
close to the exact values). Hence, the percent error near the folding frequency (r = 16 in
this case) is very high, although the absolute error is very small. Clearly, for signals with
jump discontinuities, the aliasing error near the folding frequency will always be high (in
percentage terms), regardless of the choice of Ny. To ensure a negligible aliasing error at
any value g, we must make sure that N9 > ¢. This observation is valid for all signals
with jump discontinuities.
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Figure 3.42
Filtering g(¢)
through H(f).

Filtering

We generally think of filtering in terms of a hardware-oriented solution (namely, building
a circuit with RLC components and operational amplifiers). However, filtering also has a
software-oriented solution [a computer algorithm that yields the filtered output y(¢) for a given
input g(¢)]. This can be conveniently accomplished by using the DFT. If g(¢) is the signal to
be filtered, then G, the DFT of g, is found. The spectrum G, is then shaped (filtered) as
desired by multiplying G, by H,, where H, are the samples of the filter transfer function H (f)
[H; = H(qfv)]. Finally, we take the inverse DFT or (IDFT) of G,H, to obtain the filtered
output yx [yx = Tsy(kT)]. This procedure is demonstrated in the following example.

COMPUTER EXAMPLE C3.3

The signal g(¢) in Fig. 3.42a is passed through an ideal low-pass filter of transfer function H (f ), shown
in Fig. 3.42b. Use DFT to find the filter output.

8 8" @ ) H(f) )
05 05 t-—» -2 2 fHz) -
1 G‘r
-40 - JJIHH—‘L %6 —l -4 4 l 3 JJ U R “”4!0 ©
q —» -
10 -8 -6 -4 -2 0 2 4 6 10
f(Hz) =
, @

We have already found the 32-point DFT of g(¢) (see Fig. 3.41d). Next we multiply G, by
H,. To compute H,, we remember that in computing the 32-point DFT of g(¢), we have
used fo = 0.25. Because G, is 32-periodic, H; must also be 32-periodic with samples
separated by 0.25 Hz. This means that H, must be repeated every 8 Hz or 167 rad/s (see
Fig. 3.42c). This gives the 32 samples of H, over 0 < f < 8 as follows:

1 0<g<7 and 25<g¢g <3l
Hy={ 0 9=<¢=x<23
05 ¢g=28,24
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We multiply G, by H, and take the inverse DFT. The resulting output signal is shown in
Fig. 3.42d. Table 3.4 gives a printout of gi, G4, Hy, Y,, and yy.

We have already found the 32-point DFT (G,) of g(¢) in Example C3.2. The MATLAB
program of Example C3.2 should be saved as an m-file (e.g., “c32.m”). We can import
G, in the MATLAB environment by the command “c32”. Next, we generate 32-point
samples of H,, multiply G, by H,, and take the inverse DFT to compute y;. We can also
find y; by convolving g; with A;.

c32;
q=0:32; q=q’;
for m=1:length(q)
if m)$>$=0 & g(m)$<$=7, Hq( )=1; end
if m)$>$=25 & g(m)$<$=31, Hg(m)=1; end
if g(m)$>$=9 & g(m)$<$=23, Hq m)=0; end
if q(m) =8 & g(m)==24, Hg(m)=0.5; end
TABLE 3.4
No. gk Gy Hy Gy4H, Yk
0 1 8,000 | 8.000 0.9285
1 1 7,179 1 7.179 1.009
2 1 5,027 1 5.027 1.090
3 1 2,331 1 2.331 0.9123
4 1 0.000 1 0.000 0.4847
5 0.5 —1.323 1 —1.323 0.08884
6 0 —1.497 1 —1.497 —0.05698
7 0 —0.8616 1 —0.8616 —0.01383
8 0 0.000 0.5 0.000 0.02933
9 0 0.5803 0 0.000 0.004837
10 0 0.6682 0 0.000 —0.01966
11 0 0.3778 0 0.000 —0.002156
12 0 0.000 0 0.000 0.01534
13 0 —0.2145 0 0.000 0.0009828
14 0 —0.1989 0 0.000 —0.01338
15 0 —0.06964 0 0.000 —0.0002876
16 0 0.000 0 0.000 0.01280
17 0 —0.06964 0 0.000 —0.0002876
18 0 —0.1989 0 0.000 —0.01338
19 0 —0.2145 0 0.000 0.0009828
20 0 0.000 0 0.000 0.01534
21 0 0.3778 0 0.000 —0.002156
22 0 0.6682 0 0.000 —0.01966
23 0 0.5803 0 0.000 0.004837
24 0 0.000 0.5 0.000 0.03933
25 0 —0.8616 1 —0.8616 —0.01383
26 0 —1.497 1 —1.497 —0.05698
27 0 —1.323 1 —1.323 0.08884
28 0.5 0.000 1 0.000 0.4847
29 1 2.331 1 2.331 0.9123
30 1 5.027 1 5.027 1.090
31 1 7.179 1 7.179 1.009
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end

Hg=Hqg';

Yg=Gqg. *Hqg;
vk=ifft(Yq) ;
clf,stem(k,yk)
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PROBLEMS

3.1-1 Show that the Fourier transform of g () may be expressed as

[o,9) [e.0]
G(f) =/ g(t)cos2rmft dt——j/ g(t)sin2mfr dt

—o0 —00

Hence, show that if g(¢) is an even function of ¢, then

o0

G) = 2/ g(t) cos2mft dt
0
and if g(¢) is an odd function of ¢, then
o0
G({f) = —2j/ g(2)sin 27 ft dt
0

Hence, prove that the following.

Ifg@)is: Then G(f) is:

areal and even function of ¢ areal and even function of f

areal and odd function of ¢ an imaginary and odd function of f
an imaginary and even function of # an imaginary and even function of f
a complex and even function of ¢ a complex and even function of f

a complex and odd function of ¢ a complex and odd function of f

3.1-2 (a) Show that for areal g (), the inverse transform, Eq. (3.9b), can be expressed as

o0
gty =2 /0 |G(F)| cosl2nft + 6 (2mf)]df
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This is the trigonometric form of the (inverse) Fourier transform.

(b) Express the Fourier integral (inverse Fourier transform) for g(t) = e %u(¢) in the
trigonometric form given in part (a).

3.1-3 If g(t) <= G(f), then show that g*(t) <= G*(—f).

3.1-4 From definition (3.9a), find the Fourier transforms of the signals shown in Fig. P3.1-4.

Figure P3.1-4 )\ @ P (b)

aar E‘l”

3.1-5 From definition (3.9a), find the Fourier transforms of the signals shown in Fig. P3.1-5.

Figure P.3.1-5 g O]
4 ]
2
t— l—>
1 2 -t |n T
(a) (b)

3.1-6 From definition (3.9b), find the inverse Fourier transforms of the spectra shown in Fig. P3.1-6.

Figure P.3.1-6 G(f)

GO

(@) (b)

Figure P.3.1-7
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Figure P.3.1-8

3.1-8

Show that the two signals in parts (a) and (b) of Fig. P3.1-8 are totally different in the time
domain, despite their similarity.

IG(F) | IG¢ £

Na

0,(f)

3.2-1

3.2-2

3.2-3

3.2-4

3.2-5

3.3-1

—tityy -

SIS}

(a) (b)

Hint: G(f) = |G(f)|e/% ). For part (a), G(f) = 1 - e727fo_ |f| < B, whereas for part (b),

le /™2 =—j 0<f<B

G = .
" 1672 = j 0>f>-B

Sketch the following functions: (a) I1(z/2) ; (b) ABw/100) ; (¢) IT(z—10/8) ; (d) sinc (rw//5);
(e) sinc[(w — 10m)/5]; (f) sinc (¢/5) T1(¢/107).

Hint: g(*3%) is g(§) right-shifted by a.
From definition (3.9a), show that the Fourier transform of rect (¢ — 5) is sinc (7 f)e /107f .

From definition (3.9b), show that the inverse Fourier transform of rect [2nf — 10)/27] is
sinc () /107,

Using pairs 7 and 12 (Table 3.1) show that u(¢) <= 0.58(f) + 1/j2nf.
Hint: Add 1 to sgn (), and see what signal comes out.

Show that cos (2 for + 6) <= [8(f +fo)e ™ + 8(f — fo)e®].
Hint: Express cos (2mfyt + 6) in terms of exponentials using Euler’s formula.

Apply the duality property to the appropriate pair in Table 3.1 to show that:

(@) 0.5[8(¢) + (j/nt)] < u(f)
(b) 8¢ +T)+8(t—T) < 2cos 2xfT
© 8t¢+T)—68@—T) < 2jsin 2nfT

Hint: g(—t) <= G(—f)andé(z) = 8(—1).
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3.3-2 The Fourier transform of the triangular pulse g(¢) in Fig. P3.3-2a is given as

1
~ @nf)?

G(f) (@ — jprfl? 1)

Use this information, and the time-shifting and time-scaling properties, to find the Fourier
transforms of the signals shown in Fig. P3.3-2b—f.

Hint: Time inversion in g(¢) results in the pulse g1 (¢) in Fig. P3.3-2b; consequently g; () =
g(—1).The pulse in Fig. P3.3-2ccan be expressed as g (t—T')+g1 (t—T') [the sum of g (¢) and g (¢)
both delayed by T']. Bothpulsesin Fig. P3.3-2d and e can be expressed as g(t — T) + g1 (¢ + T)
[the sum of g(#) delayed by T and g;(#) advanced by T'] for some suitable choice of T. The
pulse in Fig. P3.3-2f can be obtained by time-expanding g () by a factor of 2 and then delaying
the resulting pulse by 2 seconds [or by first delaying g(¢) by 1 second and then time-expanding

by a factor of 2].
Figure P.3.3-2 20

-1 0 t—>

(@ (b) (©)
15
8,(1) 8,(1) IRl
1 1 .
t—>
-1 0o t—> 1 _1 o L 0 t—> 2
2 2

(@) (e) ®

3.3-3 Using only the time-shifting property and Table 3.1, find the Fourier transforms of the signals
shown in Fig. P3.3-3.

Figure P.3.3-3 1 .
r sin ¢
-T 0 > () (b)
L _ f—>
0 :

e | '
1 T

1
O ! gat
(
> @
/ |0 }:' t—a

0 w2

Hint: The signal in Fig. P3.3-3a is a sum of two shifted rectangular pulses. The signal in
Fig. P3.3-3b is sin ¢ [u(¢) — u(t — w)] = sin t u(t) — sin tu(t — ) = sin ¢t u(t) + sin (¢ — )
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3.34

Figure P.3.3-4

u(t — m). The reader should verify that the addition of these two sinusoids indeed results in
the pulse in Fig. P3.3-3b. In the same way, we can express the signal in Fig. P3.3-3c as
cos tu(t) + sin (¢t — w/2)u(t — m/2) (verify this by sketching these signals). The signal in
Fig. P3.3-3dis e ¥ [u(t) — u(t — T)] = e~ %u(t) — e~ T e=00="Dyy _ 7).

Use the time-shifting property to show that if g(t) <= G(f), then
gt+T)+gt—T) < 2G(f)cos 2nfT

This is the dual of Eq. (3.36). Use this result and pairs 17 and 19 in Table 3.1 to find the Fourier
transforms of the signals shown in Fig. P3.3-4.

e AL A

3.3-5

Figure P.3.3-5

-2 of 2 3 4 4 5 o] 2 3 4
(a) (b)

Prove the following results:

1
g(t) sin 27fyt <= 2—j[G(f —fo) — G(f +fo)]

%j[g(tﬂ- T) — g(t — T)] < G(f) sin 2nfT

Use the latter result and Table 3.1 to find the Fourier transform of the signal in Fig. P3.3-5.

3.3-6

Figure P.3.3-6

-1

3 04} : t—>

The signals in Fig. P3.3-6 are modulated signals with carrier cos 10z. Find the Fourier transforms
of these signals by using the appropriate properties of the Fourier transform and Table 3.1. Sketch
the amplitude and phase spectra for Fig. P3.3—6a and b.

Hint: These functions can be expressed in the form g () cos 2w fyt.

(b)




Figure P.3.3-7

Figure P.3.4-1

3.3-7

Problems 135

Use the frequency shift property and Table 3.1 to find the inverse Fourier transform of the spectra
shown in Fig. P3.3-7. Notice that this time, the Fourier transform is in the w domain.

G || G(w) ‘ |

3.3-8

3.39

3.3-10

34-1

&0

3.5-1

3 o 35 % 4 2 0
(@) ®)

A signal g(¢) is band-limited to B Hz. Show that the signal g"(¢) is band-limited to nB Hz.
Hint: g2(1) < [G(f) * G(f)], and so on. Use the width property of convolution.

Find the Fourier transform of the signal in Fig. P3.3-3a by three different methods:

(a) By direct integration using the definition (3.9a).
(b) Using only pair 17 Table 3.1 and the time-shifting property.

(c) Using the time differentiation and time-shifting properties, along with the fact that
8¢ &= 1.

Hint: 1 — cos 2x = 2sin? x.

The process of recovering a signal g(¢) from the modulated signal g(f) cos 2mfyt is called
demodulation. Show that the signal g(¢) cos 2rfyt can be demodulated by multiplying it by
2 cos 2xfyt and passing the product through alow-pass filter of bandwidth B Hz [the bandwidth
of g(#)]. Assume B < fy. Hint: 2 cos? 27 fot = 1+ cos 4mfyt. Recognize that the spectrum of

g(t) cos 4mfyt is centered at 2y and will be suppressed by a low-pass filter of bandwidth B Hz.

Signals g1 (¢) = 10%11(10%) and g2(t) = () are applied at the inputs of the ideal low-pass
filters H1 (f) = I1(f/20,000) and Hy(f) = I1(f/10, 000) (Fig. P3.4-1). The outputs y; () and
¥2(¢) of these filters are multiplied to obtain the signal y(¢) = y; (¢)y2(?).

(a) Sketch Gi(f) and G, (f).

(b) Sketch H{(f) and Hy(f).

(c) Sketch Y1(f) and Y, (f).

(d) Find the bandwidths of y1(¢),y,(2), and y(z).

¥ (8 =¥, 0

For systems with the following impulse responses, which system is causal?
@) h@) = e %ut), a>0
(b) h(t) ==, a>0

(©) h(t) = e 2=yt — 1), a>0
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Figure P.3.5-4

3.5-2

3.5-3

3.5-4

(d) A(t) =sinc(at), a >0
(e) h(z) = sincla(t — t9)], a > 0.

Consider a filter with the transfer function

H(f) = e~ k@K =j2fio

Show that this filter is physically unrealizable by using the time domain criterion [noncausal
h(t)] and the frequency domain (Paley-Wiener) criterion. Can this filter be made approximately
realizable by choosing asufficiently large #;? Use your own (reasonable) criterion of approximate
realizability to determine #g.

Hint: Use pair 22 in Table 3.1.

Show that a filter with transfer function

2(10°) o—i27ft

H() = @nf)? + 1010

is unrealizable. Can this filter be made approximately realizable by choosing a sufficiently large
1p? Use your own (reasonable) criterion of approximate realizability to determine #.

Hint: Show that the impulse response is noncausal.

Determine the maximum bandwidth of a signal that can be transmitted through the low-pass
RC filter in Fig. P3.5-4 with R = 1000 and C = 10~? if, over this bandwidth, the amplitude
response (gain) variation is to be within 5% and the time delay variation is to be within 2%.

+ AN e ()

g

-

g 8 ()

3.5-5

3.6-1

A bandpass signal g(¢) of bandwidth B = 2000 Hz centered at f = 10° Hz is passed through
the RC filter in Fig. P3.5-4 with RC = 1073, If over the passband, a variation of less than 2%
in amplitude response and less than 1% in time delay is considered distortionless transmission,
would g(¢) be transmitted without distortion? Find the approximate expression for the output
signal.

A certain channel has ideal amplitude, but nonideal phase response (Fig. P3.6-1), given by

H{)I=1
0p(f) = —2nftyg — k sin 2xfT kg1

(a) Show that y(#), the channel response to an input pulse g(#) band-limited to B Hz, is

k
y(t)=g(t—to)+E[g(t—to—T)—g(t—to+T)]

Hint: Use ek sin27fT ~ 1 _ jk sin 27fT.



Problems 137

(b) Discuss how this channel will affect TDM and FDM systems from the viewpoint of
interference among the multiplexed signals.

Figure P.3.6-1 N
LR{ )

Fr

~. ﬁla(f)

3.6-2 The distortion caused by multipath transmission can be partly corrected by a tapped delay-line
equalizer. Show that if &« <« 1, the distortion in the multipath system in Fig. 3.31a can be
approximately corrected if the received signal in Fig. 3.31a is passed through the tapped delay-
line equalizer shown in Fig. P3.6-2.

Hint: From Eq. (3.64a), it is clear that the equalizer filter transfer function should be Heq(f) =
1/(1 4+ a e J21f Aty Use the fact that 1/(1 —x) = 1 +x+x2+x3 +- -+ if x < 1 to show what
should be the tap parameters a; to make the resulting transfer function

H{f Heq(f) = &2

Figure P.3.6-2
Input

Output

3.7-1 Show that the energy of the Gaussian pulse

1 2
g0 = e 27

o2

from direct integration is 1/20 /7. Verify this result by using Parseval’s theorem to derive the
energy Eg from G(f). Hint: See pair 22 in Table 3.1. Use the fact that

S 2_2 o0 2
/ / e Vdrdy=1 = / e ¥ dx=m.
—00 V=00 -0

3.7-2 Show that

o0
/ sinc? (kt)d =

—oo 4
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Figure P.3.7-6

3.7-3

3.7-4

3.7-5

3.7-6

0]

3.8-1

Hint: Recognize that the integral is the energy of g(¢) = sinc (kt). Use Parseval’s theorem to
find this energy.

Generalize Parseval’s theorem to show that for real Fourier transformable signals g () and

82(1),

(] e8] o0
f 21 (1)g2(1) lf = f CHFIGa () df = f GL ()G (=) df
—x P -

Show that

—0o0

© 0
/ sinc (2w Bt — mir) sinc 2nBt — nw)dt = 1

Hint: Recognize that

. . k 1 f j
2Bt — k) = Blr— = _ —jrfk/B
sinc (2w Bt T) = sinc [Zn (t 23‘)] = B I, (23)6

Use this fact and the result in Prob. 3.7-2 to show that
00 1 B .
/ sinc (2w Bt — mm) sinc 2w Bt — nw) dt = — / Jn=m)[2BR2nf 4¢
—00 4B? J_p

The desired result follows from this integral.

For the signal

2a
12 + a?

gt)=

determine the essential bandwidth B Hz of g(¢) such that the energy contained in the spectral
components of g (¢) of frequencies below B Hz is 99% of the signal energy Ej.

Hint: Determine G(f) by applying the duality property [Eq. (3.26)] to pair 3 of Table 3.1.

A low-pass signal g(¢) is applied to a squaring device. The squarer output g @) is appliedtoa
unity gain ideal low-pass filter of bandwidth Af Hz (Fig. P3.7-6). Show that if Af is very small
(Af — 0), the filter outputis a dc signal of amplitude 2E, Af, where E; is the energy of g(z).

Hint: The output y(¢) is a dc signal because its spectrum Y (f) is concentrated at f = 0 from
—Af to Af with Af — 0 (impulse at the origin). If gz(l) < A(f),and y(t) < Y (f), then
Y (f) ~ [2A(0) Af18(f). Now, show that E; = A(0).

= 2E AF

Show that the autocorrelation function of g(r) = C cos 2mfyt + 6p) is given by Re(7) =
(C?/2) cos 2mfyt, and the corresponding PSD is Sg(f) = (CZ/DS( — fo) + 8(f + fo)]-
Hence, show that for a signal y(¢) given by
=
(@) = Co+ ) Cn cos (2 fot + 6,)

n=]



Figure P.3.8-2

Figure P.3.8-4

3.8-2

x(1)

3.8-3

3.8-4
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the autocorrelation function and the PSD are given by

1 o
Ry(r) = Co2 + 3 Z C,,2 cos n2mfyt

n=1

l o0
Sy(F) = Co8() + 7 2 Cu I8¢ — nfo) +8(F + nfo)]

n=1

Hint: Show thatif g(r) = gy (t)+82(¢), then R (t) = Ry, (t)+Rg, (1) +Rg g, (1) +Rgyg, (T,
where Rglgz(f) = lim7p_, 5o (1/T) f_Tﬁz 81(1)g2(t + v) dr. If g (v) and g, (¢) represent any
two of the infinite terms in y(t), then show that Rg g, (t) = Rg,g, () = 0. To show this, use
the fact that the area under any sinusoid over a very large time interval is at most equal to the
area of the half-cycle of the sinusoid.

The random binary signal x(¢) shown in Fig. P3.8-2 transmits one digit every 7}, seconds. A
binary 1 is transmitted by a pulse p(t) of width 7}, /2 and amplitude A; a binary 0 is transmitted by
no pulse. The digits 1 and 0 are equally likely and occur randomly. Determine the autocorrelation
function Ry (7) and the PSD Sx(f).

1 1

1 n.nnnn

T g

LT;;J —J L—wz’ t—

Find the mean square value (or power) of the output voltage y(¢) of the RC network shown
in Fig. P3.5-4 with RC = 2 if the input voltage PSD Sx(f) is given by (a) K; (b) I1(xtf );
(©) [6(f + 1)+ 8( — D]. In each case calculate the power (mean square value) of the input
signal x(z).

Find the mean square value (or power) of the output voltage y(¢) of the system shown in Fig. P3.8-
4 if the input voltage PSD Sx(f) = Il (xf). Calculate the power (mean square value) of the
input signal x(z).

b1 |

~1F ar 30




AMPLTUDE MODULATIONS
AND DEMODUIATIONS

frequency band that is dictated by the physical channel (e.g. voiceband telephone

modems). Modulation provides a number of advantages mentioned in Chapter 1
including ease of RF transmission and frequency division multiplexing. Modulations can be
analog or digital. Though traditional communication systems such as AM/FM radios and NTSC
television signals are based on analog modulations, more recent systems such as 2G and 3G
cellphones, HDTYV, and DSL are all digital.

In this chapter and the next, we will focus on the classic analog modulations: amplitude
modulation and angle modulation. Before we begin our discussion of different analog modula-
tions, it is important to distinguish between communication systems that do not use modulation
(baseband communications) and systems that use modulation (carrier communications).

M odulation often refers to a process that moves the message signal into a specific

4.1 BASEBAND VERSUS CARRIER
COMMUNICATIONS

The term baseband is used to designate the frequency band of the original message signal
from the source or the input transducer (see Fig. 1.2). In telephony, the baseband is the audio
band (band of voice signals) of 0 to 3.5 kHz. In NTSC television, the video baseband is
the video band occupying 0 to 4.3 MHz. For digital data or pulse code modulation (PCM)
that uses bipolar signaling at a rate of R, pulses per second, the baseband is approximately
0to Ry Hz.

Baseband Communications

Inbaseband communication, message signals are directly transmitted without any modification.
Because most baseband signals such as audio and video contain significant low-frequency
content, they cannot be effectively transmitted over radio (wireless) links. Instead, dedicated
user channels such as twisted pairs of copper wires and coaxial cables are assigned to each
user for long-distance communications. Because baseband signals have overlapping bands,
they would interfere severely if sharing a common channel. Thus, baseband communications
leave much of the channel spectrum unused. By modulating several baseband signals and
shifting their spectra to nonoverlapping bands, many users can share one channel by utilizing

140
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most of the available bandwidth through frequency division multiplexing (FDM). Long-haul
communication over a radio link also requires modulation to shift the signal spectrum to
higher frequencies in order to enable efficient power radiation using antennas of reasonable
dimensions. Yet another use of modulation is to exchange transmission bandwidth for better
performance against interferences.

Carrier Modulations

Communication that uses modulation to shift the frequency spectrum of a signal is known as
carrier communication. In terms of analog modulation, one of the basic parameters (ampli-
tude, frequency, or phase) of a sinusoidal carrier of high frequency f. Hz (or w, = 27 f, rad/s)
is varied linearly with the baseband signal m(¢). This results in amplitude modulation (AM),
frequency modulation (FM), or phase modulation (PM), respectively. Amplitude modulation
is linear, while the latter two types of carrier modulation are similar and nonlinear, often known
collectively as angle modulation.

A comment about pulse-modulated signals [pulse amplitude modulation (PAM), pulse
width modulation (PWM), pulse position modulation (PPM), pulse code modulation (PCM),
and delta modulation (DM)] is in order here. Despite the term modulation, these signals are
baseband digital signals. “Modulation” is used here not in the sense of frequency or band
shifting. Rather, in these cases it is in fact describing digital pulse coding schemes used to
represent the original analog signals. In other words, the analog message signal is modulating
parameters of a digital pulse train. These signals can still modulate a carrier in order to shift
their spectra.

Amplitude Modulations and Angle Modulations

We denote as m(t) the source message signal that is to be transmitted by the sender to its
receivers; its Fourier transform is denoted as M (f). To move the frequency response of m(t)
to a new frequency band centered at f, Hz, we begin by noting that the Fourier transform has
already revealed a very strong property known as the frequency shifting property to achieve
this goal. In other words, all we need to do is to multiply m(¢) by a sinusoid of frequency f.
such that

s1(t) = m(¢) cos 2mf.t

This immediately achieves the basic aim of modulation by moving the signal frequency content
to be centered at +f;. via

1 i
S1(f) = EM(f —for+ EM(f +/)

This simple multiplication is in fact allowing changes in the amplitude of the sinusoid s (%)
to be proportional to the message signal. This method is indeed a very valuable modulation
known as amplitude modulation.

More broadly, consider a sinusoidal signal

s(2) = A(2) cos [wct + ¢ (2)]

There are three variables in a sinusoid: amplitude, (instantaneous) frequency, and phase. Indeed,
the message signal can be used to modulate any one of these three parameters to allow s(¢) to
carry the information from the transmitter to the receiver:

Amplitude A(z) linearly varies with m(#) <= amplitude modulation
Frequency linearly varies with m(z) <= frequency modulation
Phase ¢ (¢) linearly varies with m(z) <= phase modulation
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These are known, respectively, as amplitude modulation, frequency modulation, and phase
modulation. In this chapter, we describe various forms of amplitude modulation in practical
communication systems. Amplitude modulations are linear, and their analysis in the time
and frequency domains is simpler. In Chapter 5, we will separately discuss nonlinear angle
modulations.

The Interchangeable Use of f and @

In Chapter 3, we noted the equivalence of frequency response denoted by frequency f with
angular frequency w. Each of these two notations has its own advantages and disadvantages.
After the examples and problems of Chapter 3, readers should be familiar and comfortable
with the use of either notation. Thus, from this point on, we will use the two different notations
interchangeably, selecting one or the other on the basis of notational or graphical simplicity.

4.2 DOUBLE-SIDEBAND AMPLITUDE MODULATION

Amplitude modulationis characterized by an information-bearing carrier amplitude A(¢) thatis
a linear function of the baseband (message) signal m(z). At the same time, the carrier frequency
. and the phase 6, remain constant. We can assume 6, = 0 without loss of generality. If the
carrier amplitude A is made directly proportional to the modulating signal m(¢), then modulated
signalis m(t) cos w.t (Fig. 4.1). As we saw earlier [Eq. (3.36)], this type of modulation simply
shifts the spectrum of m(z) to the carrier frequency (Fig. 4.1a). Thus, if

m(t) <= M (f)

then
m(z) cos 2nfit <= FIM(f +fo) + M (f — fo)] (4.1)

Recall that M (f — f.) is M (f) shifted to the right by f., and M (f + f;) is M (f) shifted to
the left by f.. Thus, the process of modulation shifts the spectrum of the modulating signal to
the left and to the right by f.. Note also that if the bandwidth of m(r) is B Hz, then, as seen
from Fig. 4.1c, the modulated signal now has bandwidth of 2B Hz. We also observe that the
modulated signal spectrum centered at £f,. (or £, in rad/s) consists of two parts: a portion that
lies outside +f,, known as the upper sideband (USB), and a portion that lies inside =f,, known
as the lower sideband (LSB). We can also see from Fig. 4.1c that, unless the message signal
M (f) has an impulse at zero frequency, the modulated signal in this scheme does not contain
a discrete component of the carrier frequency f.. In other words, the modulation process does
not introduce a sinusoid at f;. For this reason it is called double-sideband suppressed carrier
(DSB-SC) modulation.*

The relationship of B to f; is of interest. Figure 4.1c shows that f, > B, thus avoiding
overlap of the modulated spectra centered at f, and —f;. If f. < B, then the two copies of
message spectra overlap and the information of m(¢) is lost during modulation, which makes
it impossible to get back m(¢) from the modulated signal m(z) cos wct.

Note that practical factors may impose additional restrictions on f,. For instance, in broad-
cast applications, a transmit antenna can radiate only a narrow band without distortion. This
means that to avoid distortion caused by the transmit antenna, we must have f./B > 1. The

* The term suppressed carrier does not necessarily mean absence of the spectrum at the carrier frequency fc. It
means that there is no discrete component of the carrier frequency. This implies that the spectrum of the DSB-SC
does nothave impulses at £, which also implies that the modulated signal m(t) cos 2rf.t does not contain a term
of the form k cos 2nf.t [assuming that m(z) has a zero mean value].
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Figure 4.1 m(r)
DSB-SC
modulation and
demodulation.

m(t) cos @,z

(Modulating signal) (Modulated signal)

(a) Modulator

cos .t
(Carrier)

.~ m(t) cos o

m(t) cos w.t &lr)

(e) Demodulator

cos .t
(Carrier)

broadcast band AM radio, for instance, with B = 5 kHz and the band of 550 to 1600 kHz for
the carrier frequencies, gives a ratio of f;./B roughly in the range of 100 to 300.

Demodulation

The DSB-SC modulation translates or shifts the frequency spectrum to the left and the right
by f¢ (i.e., at +f. and —f;), as seen from Eq. (4.1). To recover the original signal m(¢) from the
modulated signal, it is necessary to retranslate the spectrumto its original position. The process
of recovering the signal from the modulated signal (retranslating the spectrum to its original
position) is referred to as demodulation. Observe that if the modulated signal spectrum in
Fig. 4.1c is shifted to the left and to the right by f. (and multiplied by one-half), we obtain the
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spectrum shown in Fig. 4.1d, which contains the desired baseband spectrum plus an unwanted
spectrum at +2f,. The latter can be suppressed by a low-pass filter. Thus, demodulation, which
is almost identical to modulation, consists of multiplication of the incoming modulated signal
m(t) cos wt by a carrier cos w.t followed by a low-pass filter, as shown in Fig. 4.1e. We
can verify this conclusion directly in the time domain by observing that the signal e(#) in
Fig. 4.1e s

e(t) = m(r) cos? wt

= %[m(t) + m(t) cos 2wct] (4.22)

Therefore, the Fourier transform of the signal e(¢) is

1 1
E(f) = M)+ 7 IM(f +2e) + M(f = 2fe)] (4.2b)

This analysis shows that the signal e(#) consists of two components (1/2)m(t) and
(1/2)m(t) cos 2wct, with their nonoverlapping spectra as shown in Fig. 4.1d. The spectrum
of the second component, being a modulated signal with carrier frequency 2f., is centered at
+2f.. Hence, this component is suppressed by the low-pass filter in Fig. 4.1e. The desired com-
ponent (1/2)M (f), being a low-pass spectrum (centered at f = 0), passes through the filter
unharmed, resulting in the output (1/2)m(t). A possible form of low pass filter characteristics
is shown (under the dotted line) in Fig. 4.1d. The filter leads to a distortionless demodulation of
the message signal m(f) from the DSB-SC signal. We can get rid of the inconvenient fraction
1/2 in the output by using a carrier 2 cos w,? instead of cos w,t. In fact, later on, we shall
often use this strategy, which does not affect general conclusions.

This method of recovering the baseband signal is called synchronous detection, or coher-
ent detection, where we use a carrier of exactly the same frequency (and phase) as the carrier
used for modulation. Thus, for demodulation, we need to generate a local carrier at the receiver
in frequency and phase coherence (synchronism) with the carrier used at the modulator.

Example 4.1

For a baseband signal
m(t) = cos Wyt = cos 2T fpt,

find the DSB-SC signal, and sketch its spectrum. Identify the USB and LSB. Verify that the
DSB-SC modulated signal can be demodulated by the demodulator in Fig. 4.1e.

The case in this example is referred to as tone modulation because the modulating signal
is a pure sinusoid, or tone, cos wy,t. To clarify the basic concepts of DSB-SC modulation,
we shall work this problem in the frequency domain as well as the time domain. In
the frequency domain approach, we work with the signal spectra. The spectrum of the
baseband signal m(t) = cos wpt is given by

1
M(f)=50(f —fm) + 8(f +Sm)]

=7n[8(w — wm) + 8(w + wm)]



Figure 4.2
Example of
DSB-SC
modulation.
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The message spectrum consists of two impulses located at +-f;,, as shown in Fig. 4.2a.
The DSB-SC (modulated) spectrum, as seen from Eq. (4.1), is the baseband spectrum in
Fig. 4.2a shifted to the right and the left by £, (times one-half), as shown in Fig. 4.2b.
This spectrum consists of impulses at angular frequencies &(f; — f;;) and £(fc + f).
The spectrum beyond f; is the USB, and the one below f; is the LSB. Observe that the
DSB-SC spectrum does not have the component of the carrier frequency f.. This is why
it is called suppressed carrier.
In the time domain approach, we work directly with signals in the time domain. For the
baseband signal m(t) = cos wy,t, the DSB-SC signal ¢psp-sc(?) is

¢DsB—sc(?) = m(t) cos w,t

= COS Uyl COS il
1
= E[COS (e 4 )t 4 cos (e — )i ]

This shows that when the baseband (message) signal is a single sinusoid of frequency f,,
the modulated signal consists of two sinusoids: the component of frequency f,. + f,, (the
USB) and the component of frequency f. — f;, (the LSB). Figure 4.2b shows precisely the
spectrum of ¢, o (#). Thus, each component of frequency f,, in the modulating signal
turns into two components of frequencies f; + f;, and f. —f,, in the modulated signal. Note
the curious fact that there is no component of the carrier frequency f. on the right-hand
side of the preceding equation. As mentioned, this is why it is called double-sideband
suppressed carrier (DSB-SC) modulation.

We now verify that the modulated signal ¢psp-sc(¥) = cos w,tcos w.t, when applied
to the input of the demodulator in Fig. 4.1e, yields the output proportional to the desired
baseband signal cos w,,t. The signal e(#) in Fig. 4.1e is given by

e(t) = cos a)mtcos2 wct

1
= 3 cos wpt (1 4 cos 2w,t)

M)
12 [ ‘ [1/2 (a)
~fm 10 fm f—
(b)
DSB spectrum
1/4 1/4 1/4 _ 1/4
USB ’ ’ LSB LSB . USB
AL +fub L A =fa) fo (f —fud 1. FAF) f—-
LM
=

1/4 1/4
RN Tl | W R DR I R TR T PEER] RSN PRUCA RS P
148 , .; 523 ] ‘ ‘ 178 %, 2
; ; i



146  AMPLITUDE MODULATIONS AND DEMODULATIONS

The spectrum of the term cos wp,? cos 2wt is centered at 2w, and will be suppressed by
the low-pass filter, yielding % cos wy,t as the output. We can also derive this result in the
frequency domain. Demodulation causes the spectrum in Fig. 4.2b to shift left and right by
. (and to be multiplied by one-half). This results in the spectrum shown in Fig. 4.2c. The
low-pass filter suppresses the spectrum centered at +2w,, yielding the spectrum %M ).

Figure 4.3
Nonlinear
DSB-SC

modulator.

Modulators
Modulation can be achieved in several ways. We shall discuss some important categories of
modulators.

Multiplier Modulators: Here modulation is achieved directly by multiplying m(¢) with
cos wct, using an analog multiplier whose output is proportional to the product of two input
signals. Typically, such a multiplier may be obtained from a variable-gain amplifier in which
the gain parameter (such as the § of a transistor) is controlled by one of the signals, say, m(z).
When the signal cos w,? is applied at the input of this amplifier, the output is proportional to
m(t) cos wct.

In the early days, multiplication of two signals over a sizable dynamic range was a chal-
lenge to circuit designers. However, as semiconductor technologies continued to advance,
signal multiplication ceased to be a major concern. Still, we will present several classical mod-
ulators that avoid the use of multipliers. Studying these modulators can provide unique insight
and an excellent opportunity to pick up some new signal analysis skills.

Nonlinear Modulators: Modulation can also be achieved by using nonlinear devices,
such as a semiconductor diode or a transistor. Figure 4.3 shows one possible scheme, which
uses two identical nonlinear elements (boxes marked NL).

Let the input-output characteristics of either of the nonlinear elements be approximated
by a power series

y(t) = ax(t) + bx*(t) (4.3)

where x(#) and y(¢) are the input and the output, respectively, of the nonlinear element. The
summer output z(¢) in Fig. 4.3 is given by

2(1) =y (0) — y2(1) = [ax; () + bx12()] = [axa(t) + bxp2(D)]

Substituting the two inputs x; (f) = cos w.t+m(t) and x, (f) = cos w.t —m(t) in this equation
yields

z(t) =2a - m(t) + 4b - m(t) cos wt
The spectrum of m(t) is centered at the origin, whereas the spectrum of m(t) cos w,t is centered
at +w,. Consequently, when z(¢) is passed through a bandpass filter tuned to w,, the signal

am(t) is suppressed and the desired modulated signal 4bm(t) cos .t can pass through the
system without distortion.

m(t) N @ xlft) e »n @

(0 BPF
e 1 abm(s) cos w,t

NL

(8
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In this circuit there are two inputs: m(t) and cos w.t. The output of the last summer, z(?),
no longer contains one of the inputs, the carrier signal cos w.t. Consequently, the carrier signal
does not appear at the input of the final bandpass filter. The circuit acts as a balanced bridge
for one of the inputs (the carrier). Circuits that have this characteristic are called balanced
circuits. The nonlinear modulator in Fig. 4.3 is an example of a class of modulators known as
balanced modulators. This circuit is balanced with respect to only one input (the carrier); the
other input m(¢) still appears at the final bandpass filter, which must reject it. For this reason, it
is called a single balanced modulator. A circuit balanced with respect to both inputs is called
a double balanced modulator, of which the ring modulator (see later: Fig. 4.6) is an example.

Switching Modulators: The multiplication operation required for modulation can be
replaced by a simpler switching operation if we realize that a modulated signal can be obtained
by multiplying m(f) not only by a pure sinusoid but by any periodic signal ¢(#) of the fun-
damental radian frequency w.. Such a periodic signal can be expressed by a trigonometric
Fourier series as

o) = Z C,, cos (nwet + 6,) (4.42)
n=0
Hence,
mD$ (1) =Y Cy m(t) cos (noet + 6,) (4.4b)
n=0

This shows that the spectrum of the product m(t)¢(f) is the spectrum M (w) shifted to
tw., £2wc,...,Lnw,, .... If this signal is passed through a bandpass filter of bandwidth
2B Hz and tuned to w,, then we get the desired modulated signal c;m(¢) cos (w.t + 601).*

The square pulse train w(#) in Fig. 4.4bis a periodic signal whose Fourier series was found
earlier (by rewriting the results of Example 2.4) as

1 2 1 1
w(@) = = + — [ cos w:t — = cos 3wt + —cos Swct —--- 4.5)
2 7 3 5

The signal m(t)w(?) is given by
1 2 1 1
m@)w(t) = Em(z‘) + — l:m(t) CcoS Wt — gm(t) cos 3wt + gm(t) cos Swct — - - ] 4.6)
14

The signal m(t)w(¢) consists not only of the component m(t) but also of an infinite
number of modulated signals with carrier frequencies w., 3w¢, Swe, .. .. Therefore, the spec-
trum of m(¢#)w(¢) consists of multiple copies of the message spectrum M (f), shifted to
0, £f., £3f., £57;, ... (with decreasing relative weights), as shown in Fig. 4 4c.

For modulation, we are interested in extracting the modulated component m(t) cos w.t
only. To separate this component from the rest of the crowd, we pass the signal m(#)w(¢) through
a bandpass filter of bandwidth 2B Hz (or 4B rad/s), centered at the frequency +f.. Provided
the carrier frequency f, > 2B (or w, > 4nB), this will suppress all the spectral components
not centered at £f;. to yield the desired modulated signal (2/7)m(¢) cos w.t (Fig. 4.4d).

We now see the real payoff of this method. Multiplication of a signal by asquare pulse train
is in reality a switching operation in which the signal m(z) is switched on and off periodically; it

* The phase ; is not important.
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Figure 4.4
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can be accomplished by simple switching elements controlled by w(t). Figure 4.5a shows one
such electronic switch, the diode-bridge modulator, driven by a sinusoidA cos w,t to produce
the switching action. Diodes D, D; and D3, D4 are matched pairs. When the signal cos w,? is
of a polarity that will make terminal ¢ positive with respect to d, all the diodes conduct. Because
diodes D; and D, are matched, terminals a and b have the same potential and are effectively
shorted. During the next half-cycle, terminal d is positive with respect to ¢, and all four diodes
open, thus opening terminals a and b. The diode bridge in Fig. 4.5a, therefore, serves as a
desired electronic switch, where terminals a and b open and close periodically with carrier
frequency f. when a sinusoid A cos w,? is applied across terminals ¢ and d. To obtain the signal
m(t)w(t), we may place this electronic switch (terminals a and b) in series (Fig. 4.5b) or across
(in parallel) m(t), as shown in Fig. 4.5c. These modulators are known as the series-bridge
diode modulator and the shunt-bridge diode modulator, respectively. This switching on
and off of m(t) repeats for each cycle of the carrier, resulting in the switched signal m(t)w(¢),
which when bandpass-filtered, yields the desired modulated signal (2/7)m(t) cos wct.

Another switching modulator, known as the ring modulator, is showninFig. 4.6a. During
the positive half-cycles of the carrier, diodes D; and D3 conduct, and D, and D4 are open.
Hence, terminal a is connected to ¢, and terminal b is connected to d. During the negative
half-cycles of the carrier, diodes D; and D3 are open, and D, and D4 are conducting, thus
connecting terminal a to d and terminal b to c. Hence, the output is proportional to m(¢) during
the positive half-cycle and to —m(¢) during the negative half-cycle. In effect, m(¢) is multiplied
by a square pulse train wo(t), as shown in Fig. 4.6b. The Fourier series for wg(#) can be found
by using the signal w(t) of Eq. (4.5) to yield wo(¢) = 2w(¢) — 1. Therefore, we can use the
Fourier series of w(¢) [Eq. (4.5)] to determine the Fourier series of wo(z) as

4 1 1
wo(t) = p (cos wet — 3 cos 3wct + 5 cos Swet — - - > (4.7a)



Figure 4.5

(a) Diode-bridge
electronic switch.
(b) Series-bridge
diode modulator.
(c) Shunt-bridge
diode modulator.
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Hence, we have
4 1 1
vi(t) = m(t)wo(t) = — | m(t) cos wct — gm(t) cos 3wct + gm(t) cos Swet —--- | (4.7b)
b4

The signal m(¢#)wq(t) is shownin Fig. 4.6d. When this waveform is passed through a bandpass
filter tuned to w, (Fig. 4.6a), the filter output will be the desired signal (4/7)m(t) cos w,t.

In this circuit there are two inputs: m(¢) and cos w.t. The input to the final bandpass filter
does not contain either of these inputs. Consequently, this circuit is an example of a double
balanced modulator.

Example 4.2

Figure 4.7
Frequency mixer
or converter.

Frequency Mixer or Converter
We shall analyze a frequency mixer, or frequency converter, used to change the carrier
frequency of a modulated signal m(t) cos .t from w, to another frequency wy.

This can be done by multiplying m(t) cos w.t by 2cos wpixt, where wpix = o, + wy or

. — wy, and then bandpass-filtering the product, as shown in Fig. 4.7a.

m{t) cos at x(2) Bandpass mit) cos w;t
filter
tuned to w;

2 x
cos (w, £ wp)t @)

The product x(t) is

x(2) = 2m(t) cos wtcOs Wyixt

= m(t)[cos (wc — Wmix)t + c0s (Wc + Wmix)t]
If we select wpix = w. — wy, then
x(t) = m(t)[cos w;t + cos 2w, — wy)t]
If we select wpix = @ + wy, then

x(t) = m(t)[cos wit + cos Rwe + wy)t]

In either case, as long as w, — w; > 27B and w; > 27 B, the various spectra in Fig. 4.7b
will not overlap. Consequently, a bandpass filter at the output, tuned to wy, will pass the
term m(t) cos wyt and suppress the other term, yielding the output m(¢) cos wjt. Thus,

the carrier frequency has been translated to wy from w,.



4.3 Amplitude Modulation (AM) 151

The operation of frequency mixing/conversion (also known as heterodyning) is basically a
shifting of spectra by an additional wp;x . This is equivalent to the operation of modulation
with a modulating carrier frequency (the mixer oscillator frequency wpx ) that differs from
the incoming carrier frequency by w;. Any one of the modulators discussed earlier can be
used for frequency mixing. When we select the local carrier frequency wpix = o, + wy,
the operation is called upconversion, and when we select wnix = @, — wy, the operation
is downconversion.

Demodulation of DSB-SC Signals
As discussed earlier, demodulation of a DSB-SC signal essentially involves multiplication by
the carrier signal and is identical to modulation (see Fig. 4.1). At the receiver, we multiply the
incoming signal by a local carrier of frequency and phase in synchronism with the incoming
carrier. The product is then passed through a low-pass filter. The only difference between the
modulator and the demodulator lies in the input signal and the output filter. In the modulator,
message m(t) is the input while the multiplier output is passed through a bandpass filter tuned
to w., whereas in the demodulator, the DSB-SC signal is the input while the multiplier output
is passed through a low-pass filter. Therefore, all the modulators discussed earlier without
multipliers can also be used as demodulators, provided the bandpass filters at the output are
replaced by low-pass filters of bandwidth B.

For demodulation, the receiver must generate a carrier in phase and frequency synchro-
nism with the incoming carrier. These demodulators are synonymously called synchronous
or coherent (also homodyne) demodulators.

Example 4.3

Analyze the switching demodulator that uses the electronic switch (diode bridge) in Fig. 4.5a
as a switch (either in series or in parallel).

The input signal is m(t) cos w.t. The carrier causes the periodic switching on and off of the

input signal. Therefore, the output is m(t) cos wct x w(¢). Using the identity cos x cos y =
0.5[cos (x + y) + cos (x — y)], we obtain

m(t) cos wct X w(t)

1 2 1
m(t) cos wet| = + — | cos w.t — = cos 3wt + -+
2 7w 3
2 2
= ;m(t) cos” w.t + terms of the form m(t) cos nw,t
1 1
= —m(t) + —m(t) cos 2wt + terms of the form m(¢) cos nwt
T b/

Spectra of the terms of the form m(t) cos nw t are centered at +nw, and are filtered out
by the low-pass filter, yielding the output (1/7)m(z). It is left as an exercise for the reader
to show that the output of the ring circuit in Fig. 4.6a operating as a demodulator (with
the low-pass filter at the output) is (2/7 )m(t) (twice that of the switching demodulator in
this example).

4.3 AMPLITUDE MODULATION (AM)

In the last section, we began our discussion of amplitude modulation by introducing the DSB-
SC amplitude modulation because it is easy to understand and to analyze in both the time
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and frequency domains. However, analytical simplicity does not always equate to simplicity
in practical implementation. The (coherent) demodulation of a DSB-SC signal requires the
receiver to possess a carrier signal that is synchronized with the incoming carrier. This require-
ment is not easy to achieve in practice. Because the modulated signal may have traveled
hundreds of miles and could even suffer from some unknown frequency shift, the bandpass
received signal in fact has the form of

r(t) = Acm(t — to) cos [(we + Aw)(t — t9)] = Acm(t — tp) cos [(we + Aw)t — 6)]
in which Aw represents the Doppler effect while
By = {me + Aw)ty

comes from the unknown delay #y. To utilize the coherent demodulator, the receiver must be
sophisticated enough to generate a local oscillator cos [(w. + Aw)t — 6,4)] purely from the
received signal r(¢). Such a receiver would be harder to implement and could be quite costly.
This cost is particularly to be avoided in broadcasting systems, which have many receivers for
every transmitter.

The alternative to a coherent demodulator is for the transmitter to send a carrier A cos .t
[along with the modulated signal m(#) cos w.f] so that there is no need to generate a carrier
at the receiver. In this case the transmitter needs to transmit at a much higher power level,
which increases its cost as a trade-off. In point-to-point communications, where there is one
transmitter for every receiver, substantial complexity in the receiver system can be justified,
provided its cost is offset by a less expensive transmitter. On the other hand, for a broadcast
system with a huge number of receivers for each transmitter, it is more economical to have
one expensive high-power transmitter and simpler, less expensive receivers because any cost
saving at the receiveris multiplied by the number of receiver units. For this reason, broadcasting
systems tend to favor the trade-off by migrating cost from the (many) receivers to the (fewer)
transmitters.

The second option of transmitting a carrier along with the modulated signal is the obvious
choice in broadcasting because of its desirable trade-offs. This leads to the so-called AM
(amplitude modulation), in which the transmitted signal pam () is given by

PaM(t) = A cos wct + m(t) cos w.t (4.8a)
=[A + m(t)] cos wt (4.8b)

The spectrum of @AM (?) is basically the same as that of ¢psp_sc(t) = m(t) cos w.t except
for the two additional impulses at +f,

1 A
pam(n) = E[M(f +f)+Mf —fo)l + S +f) +8(f —fol (4.8¢)

Upon comparing @am (2) with gpsp_sc(t) = m(t) cos wt, it is clear that the AM signal is
identical to the DSB-SC signal with A + m(t) as the modulating signal [instead of m(z)]. The
value of A is always chosen to be positive. Therefore, to sketch am(2), we sketch the envelope
|A +m(t)| and its mirror image —|A + m(¢)| and fill in between with the sinusoid of the carrier
frequency f.. The size of A affects the time domain envelope of the modulated signal.

Two cases are considered in Fig. 4.8. In the first case, A is large enough that A +m(t) > 0
is always nonnegative. In the second case, A is not large enough to satisfy this condition. In
the first case, the envelope has the same shape as m(¢) (although riding on a dc of magnitude
A). In the second case, the envelope shape differs from the shape of m(¢) because the negative
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part of A 4 m(¢) is rectified. This means we can detect the desired signal m(z) by detecting the
envelope in the first case when A +m(#) > 0. Such detection is not possible in the second case.
We shall see that envelope detection is an extremely simple and inexpensive operation, which
does not require generation of a local carrier for the demodulation. But as seen earlier, the AM
envelope has the information about m(z) only if the AM signal [A + m(z)] cos w,t satisfies the
condition A 4+ m(¢) > 0 for all z.

Let us now be more precise about the definition of “envelope.” Consider a signal
E(t) cos wct. If E(¢) varies slowly in comparison with the sinusoidal carrier cos ., then the
envelope of E(t) cos wt is |E(t)|. This means [see Eq. (4.8b)] thatif and only if A +m(¢) > 0
for all ¢, the envelope of pam(?) is

A +m@)| = A+ m()

In other words, for envelope detection to properly detect m(t), two conditions must be met:

(a) f, > bandwidth of m(z)

) A+m() >0

This conclusion is readily verified from Fig. 4.8d and e. In Fig. 4.8d, where A + m(¢) = 0,
A + m(t) is indeed the envelope, and m(z) can be recovered from this envelope. In Fig. 4.8e,
where A + m(t) is not always positive, the envelope |A + m(?)| is rectified from A + m(z),
and m(t) cannot be recovered from the envelope. Consequently, demodulation of gam(?) in
Fig. 4.8d amounts to simple envelope detection. Thus, the condition for envelope detection
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of an AM signal is
A+m() >0 for all ¢ (4.9a)

If m(t) > 0O for all ¢, then A = 0 already satisfies condition (4.9a). In this case there is no need
to add any carrier because the envelope of the DSB-SC signal m(¢) cos @t is m(t) and such a
DSB-SC signal can be detected by envelope detection. In the following discussion we assume
that m(t) # O for all #; that is, m(¢) can be negative over some range of ¢.

Message Signals m(¢) with Zero Offset: Let 4m,, be the maximum and the minimum
values of m(t), respectively (see Fig. 4.8). This means that m(t) > —m,. Hence, the condition
of envelope detection (4.9a) is equivalent to

Ep—— (4.9b)

Thus, the minimum carrier amplitude required for the viability of envelope detection is m,.
This is quite clear from Fig. 4.8. We define the modulation index  as

u=%1 (4.10a)

For envelope detection to be distortionless, the condition is A > m,,. Hence, it follows that
0=<p=<l (4.10b)

is the required condition for the distortionless demodulation of AM by an envelope detector.

When A < my, Eq. (4.10a) shows that & > 1 (overmodulation). In this case, the option of
envelope detection is no longer viable. We then need to use synchronous demodulation. Note
that synchronous demodulation can be used for any value of u, since the demodulator will
recover signal A 4+ m(¢). Only an additional dc block is needed to remove the DC voltage A.
The envelope detector, which is considerably simpler and less expensive than the synchronous
detector, can be used only for u < 1.

Message Signals m(¢) with Nonzero Offset: On rare occasions, the message signal
m(t) will have a nonzero offset such that its maximum mp,x and its minimum #y;, are not
symmetric, that is,

Mimin F —Mma
In this case, it can be recognized that any offset to the envelope does not change the shape of
the envelope detector output. In fact, one should note that constant offset does not carry any
fresh information.

In this case, envelope detection would still remain distortionless if

O=p=l (4.11a)

with a modified modulation index definition of

Mmax — Mmin

- 2A + Mmpax + Mpin

" (4.11b)

Example 4.4

Sketch pam(¢) for modulation indices of ¢+ = 0.5 and . = 1, when m(t) = b cos wy,t. This
case is referred to as tone modulation because the modulating signal is a pure sinusoid (or
tone).



Figure 4.9
Tone-modulated
AM. () 12 = 0.5.
(o) w=1.
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In this case, mmax = b and mpin = —b. Hence the modulation index according to Eq.
(4.10a) is
_ bbb
K= AT+ (b A
Hence, b = nA and
m(t) = b cos wut = WA COS Wyt

Therefore,
oaM(t) = [A + m(t)] cos wet = A[1 + L cos wit] cOs Wt
Figure 4.9 shows the modulated signals corresponding to i = 0.5 and . = 1, respectively.

rn=0.5

1 +0.5 cos wy,t -

Sideband and Carrier Power
The advantage of envelope detectionin AM comes at a price. In AM, the carrier term does not
carry any information, and hence, the carrier power is wasteful from this point of view:

pam(t) = Acos w;t +  m(t) cos wct
SN———— SN——

carrier sidebands

The carrier power P, is the mean square value of Acos w.t, which is A2/2. The sideband

power P; is the power of m(t) cos w.t, which is 0.5 m?(t) [see Eg. (3.93)]. Hence,

A2 | Eree
P. = > and Py = 3 e (t)

The useful message information resides in the sideband power, whereas the carrier power is
the used for convenience in modulation and demodulation. The total power is the sum of the
carrier (wasted) power and the sideband (useful) power. Hence, 7, the power efficiency, is

ful P 2(
"= utsetll1 over = PiP " O 100%
otal power . S A4
For the special case of tone modulation,
Aaan A 2
m(t) = nAcos wpt and m2(t) = (n4)

2
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Hence
2

—* _100%

= 2+u2

with the condition that 0 < @ < 1. It can be seen that n increases monotonically with u, and
Nmax occurs at 4 = 1, for which

n

Nmax = 33%

Thus, for tone modulation, under the best conditions (.4 = 1), only one-third of the transmitted
power is used for carrying messages. For practical signals, the efficiency is even worse—on the
order of 25% or lower—compared with the DSB-SC case. The best condition implies & = 1.
Smaller values of u degrade efficiency further. For this reason, volume compression and peak
limiting are commonly used in AM to ensure that full modulation (1 = 1) is maintained most
of the time.

Example 4.5

Determine n and the percentage of the total power carried by the sidebands of the AM wave
for tone modulation when = 0.5 and when © = 0.3.

For u = 0.5,

2 2
u (0.5)
= 100% = ——>0___
2442 T 24 (05)2

Hence, only about 11% of the total power is in the sidebands. For u = 0.3,

100% = 11.11%

n

(0.3)?
= ) _100% = 4.3%
T= 35032 " 0

Hence, only 4.3% of the total power is in the sidebands that contain the message signal.

Generation of AM Signals

In principle, the generation of AM signals is identical to that of the DSB-SC modulations
discussed in Sec. 4.2 except that an additional carrier component A cos w.t needs to be added
to the DSB-SC signal.

Demodulation of AM Signals

Like DSB-SC signals, the AM signal can be demodulated coherently by a locally generated
carrier. Coherent, or synchronous, demodulation of AM, however, defeats the purpose of AM
because it does not take advantage of the additional carrier component A cos w.t. As we have
seen earlier, in the case of 4 < 1, the envelope of the AM signal follows the message signal
m(t). Hence, we shall consider here two noncoherent methods of AM demodulation under the
condition of 0 < u < 1: rectifier detection and envelope detection.

Rectifier Detector: If an AM signal is applied to a diode and a resistor circuit (Fig. 4.10),
thenegative part of the AM wave will be removed. The output across the resistoris a half-wave-
rectified version of the AM signal. Visually, the diode acts like a pair of scissors by cutting off
any negative half-cycle of the modulated sinusoid. In essence, at the rectifier output, the AM



Figure 4.10
Rectifier detector
for AM.
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[a + m(£)] cos w,t VR() /‘[A + m(1)]
] L4+ ma)

Low-pass
[A + m(2)] cos w.t filter

signal is multiplied by w(¢). Hence, the half-wave-rectified output vg(?) is
vr(t) = {[A + m(t)]cos w.t}w(t) (4.12)

1 2 1 1
=[A 4+ m(t)]cos w.t| =+ — { cos w.t — = cos 3w.t + —cos Sw.t — -
2w 3 5
(4.13)

= %[A + m(t)] + other terms of higher frequencies (4.14)
When vg(?) is applied to a low-pass filter of cutoff B Hz, the output is [A + m(#)]/7, and all
the other terms in vg of frequencies higher than B Hz are suppressed. The dc term A/ may
be blocked by a capacitor (Fig. 4.10) to give the desired output m(¢) /7. The output can be
doubled by using a full-wave rectifier.

Itis interesting to note that because of the multiplication with w(z), rectifier detection is in
effect synchronous detection performed without using a local carrier. The high carrier content
in AM ensures that its zero crossings are periodic and the information about the frequency and
phase of the carrier at the transmitter is built in to the AM signal itself.

Envelope Detector: The output of an envelope detector follows the envelope of the
modulated signal. The simple circuit shown in Fig. 4.11a functions as an envelope detector.
On the positive cycle of the input signal, the input grows and may exceed the charged voltage
on the capacity vc(?), turning on the diode and allowing the capacitor C to charge up to the
peak voltage of the input signal cycle. As the input signal falls below this peak value, it falls
quickly below the capacitor voltage (which is very nearly the peak voltage), thus causing the
diode to open. The capacitor now discharges through the resistor R at a slow rate (with a time
constant RC). During the next positive cycle, the same drama repeats. As the input signal rises
above the capacitor voltage, the diode conducts again. The capacitor again charges to the peak
value of this (new) cycle. The capacitor discharges slowly during the cutoff period.

During each positive cycle, the capacitor charges up to the peak voltage of the input signal
and then decays slowly until the next positive cycle as shown in Fig. 4.11b. The output voltage
vc(t), thus, closely follows the (rising) envelope of the input AM signal. Equally important,
the slow capacity discharge via the resistor R allows the capacity voltage to follow a declining
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Figure 4.11
Envelope
detector for AM.
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envelope. Capacitor discharge between positive peaks causes a ripple signal of frequency w,
in the output. This ripple can be reduced by choosing a larger time constant RC so that the
capacitor discharges very little between the positive peaks (RC > 1/w.). Picking RC too
large, however, would make it impossible for the capacitor voltage to follow a fast-declining
envelope (see Fig. 4.11b). Because the maximum rate of AM envelope decline is dominated
by the bandwidth B of the message signal m(¢), the design criterion of RC should be

1
1/w. < RC < 1/(2nB) or 2nB < RC < e

The envelope detector output is v¢(t) = A + m(t) with a ripple of frequency w.. The dc term
A can be blocked out by a capacitor or a simple RC high-pass filter. The ripple may be reduced
further by another (low-pass) RC filter.

4.4 BANDWIDTH-EFFICIENT AMPLITUDE
MODULATIONS

As seen from Fig. 4.12, the DSB spectrum (including suppressed carrier and AM) has two
sidebands: the upper sideband (USB) and the lower sideband (LSB), each containing the
complete information of the baseband signal m(t). As a result, for a baseband signal m(z) with
bandwidth B Hz, DSB modulations require twice the radio-frequency bandwidth to transmit.
To improve the spectral efficiency of amplitude modulation, there exist two basic schemes to
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either utilize or remove the 100% spectral redundancy:

- Single-sideband (SSB) modulation, which removes either the LSB or the USB that uses only

bandwidth of B Hz for one message signal m(t);

+ Quadrature amplitude modulation (QAM), which utilizes the spectral redundancy by sending

two messages over the same bandwidth of 2B Hz.

Amplitude Modulation: Single Sideband (SSB)
As shown in Fig. 4.13, either the LSB or the USB can be suppressed from the DSB signal
via bandpass filtering. Such a scheme in which only one sideband is transmitted is known as
single-sideband (SSB) transmission, and requires only one-half the bandwidth of the DSB
signal.

(@)

Upper

(a) Baseband

-B

Lower
sideband

Lower
sideband Upper

sideband

(b) DSB
f—>

4 (c) USB
f(‘ f—>

(d) LSB

(e)




160  AMPLITUDE MODULATIONS AND DEMODULATIONS

Figure 4.14
Transfer function
of an ideal 7/2
phase shifter
(Hilbert
transformer).

An SSB signal can be coherently (synchronously) demodulated just like DSB-SC signals.
For example, multiplication of a USB signal (Fig. 4.13c) by cos w,t shifts its spectrum to the
left and right by w,, yielding the spectrum in Fig. 4.13e. Low-pass filtering of this signal yields
the desired baseband signal. The case is similar with LSB signals. Since the demodulation of
SSB signals is identical to that of DSB-SC signals, the transmitters can now utilize only half
the DSB-SC signal bandwidth without any additional cost to the receivers. Since no additional
carrier accompanies the modulated SSB signal, the resulting modulator outputs are known as
suppressed carrier signals (SSB-SC).

Hilbert Transform
We now introduce for later use a new tool known as the Hilbert transform. We use x;,(¢) and
‘H{x(z)} to denote the Hilbert transform of signal x(z)

> x(a)

xp(2) = H{x(t)} = %/ da (4.15)

ot —

Observe that the right-hand side of Eq. (4.15) has the form of a convolution
(0 :
x(t) * —
mt

Now, application of the duality property to pair 12 of Table 3.1 yields 1/nt <= —jsgn (f).
Hence, application of the time convolution property to the convolution (of Eq. (4.15) yields

Xu(f) = —JX(f) sgn (f) (4.16)

From Eq. (4.16), it follows that if m(z) passes through a transfer function H(f) =
—j sgn (f), then the output is my,(¢), the Hilbert transform of m(¢). Because

H(f) =—jsgn (f) (4.17)
—j=1-¢7"2 f>0
={ il f =0 (4.18)

it follows that |[H (f)| = 1 and that 6;,(f) = —n/2 for f > O and /2 for f < 0, as shown in
Fig. 4.14. Thus, if we change the phase of every component of m(¢) by 7 /2 (without changing
its amplitude), the resulting signal is m;, (¢), the Hilbert transform of m(t). Therefore, a Hilbert
transformer is an ideal phase shifter that shifts the phase of every spectral component by —m /2.
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m
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Figure 4.15
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Time Domain Representation of SSB Signals
Because the building blocks of an SSB signal are the sidebands, we shall first obtain a time
domain expression for each sideband.

Figure 4.15a shows the message spectrumM (f). Figure 4.15b shows its right half M (f),
and Fig. 4.15c shows its left half M_(f). From Fig. 4.15b and ¢, we observe that

N —

1
My (f) =Mf) u(f) =M ()5 [1 +sgn(f)] = 7 [M(f) +iMp(f)] (4.192)

—_—

1
M-(f) =M (HHu(=fy =M (f)5[1 - sgn(f)] = 5 M (f) —jMn(f)] (4.19b)

[\S}

We can now express the SSB signal in terms of m(t) and my,(¢). From Fig. 4.15d it is clear
that the USB spectrum ®ysp(f) can be expressed as

Quss (f) =M+ (f —fo) + M_(f +fo)

1 1
= E[M(f —f)+M(f +f)] - -2;[M(f —Jfo) —M(f +fo)]
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From the frequency-shifting property, the inverse transform of this equation yields

@usB(t) = m(t) cos wct — my(t) sin w,t (4.20a)
Similarly, we can show that

@LsB (t) = m(t) cos wet 4 my (1) sin wet (4.20b)
Hence, a general SSB signal ¢ssp(f) can be expressed as

@ssB(2) = m(t) cos wct F my (t) sin w t (4.20¢)

where the minus sign applies to USB and the plus sign applies to LSB.
Given the time domain expression of SSB-SC signals, we can now confirm analytically
(instead of graphically) that SSB-SC signals can be coherently demodulated:
@ssB () cos wct = [m(t) cos wet F my(t) sin wct] 2 cos wct
= m(t)[1 + cos 2wct] F my(2) sin 2wt
= m(t) + [m(z) cos 2wt F mp(t) sin 2wct]

SSB-SC signal with carrier 2w,

Thus, the product ¢ssp(f) - 2 cos wct yields the baseband signal and another SSB signal
with a carrier 2w.. The spectrum in Fig. 4.13e shows precisely this result. A low-pass filter
will suppress the unwanted SSB terms, giving the desired baseband signal m(f). Hence, the
demodulator is identical to the synchronous demodulator used for DSB-SC. Thus, any one of
the synchronous DSB-SC demodulators discussed earlierin Sec. 4.2 can be used to demodulate
an SSB-SC signal.

Example 4.6

Tone Modulation: SSB
Find ¢ssp (¢) for a simple case of a tone modulation, that is, when the modulating signal is a
sinusoid m(t) = cos wy,t. Also demonstrate the coherent demodulation of this SSB signal.

Recall that the Hilbert transform delays the phase of each spectral component by 7 /2.
In the present case, there is only one spectral component of frequency w,,. Delaying the
phase of m(z) by /2 yields

myp{t) = cos (wmr — ;) = sih Wt
Hence, from Eq. (4.20c),
@ssB () = COS Wyt COS Wet F Sin wpt Sin wet
= cos (we £ wm)t
Thus,
@usB () = cos (w¢ + wp)t and @LSB (f) = €08 (W — W)t

To verify these results, consider the spectrum of m(z) (Fig. 4.16a) and its DSB-SC
(Fig. 4.16b), USB (Fig. 4.16c), and LSB (Fig. 4.16d) spectra. It is evident that the spectra
in Fig. 4.16¢ and d do indeed correspond to the ¢ysp(¢) and ¢ sg(¢) derived earlier.



Figure 4.16
SSB spectra for
tone modulation.
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Finally, the coherent demodulation of the SSB tone modulation is can be achieved by

@ssB(2)2cos wet = 2¢os (we + wy)tcos wt

= COS Wyt + cos (we + wm)t

which can be sent to a lowpass filter to retrieve the message tone cos wp,!.

SSB Modulation Systems

Three methods are commonly used to generate SSB signals: phase shifting, selective filtering,
and the Weaver method.! None of these modulation methods are precise, and all generally
require that the baseband signal spectrum have little power near the origin.

The phase shift method directly uses Eq. (4.20) as its basis. Figure 4.17 shows its imple-
mentation. The box marked “— /2” is a phase shifter, which delays the phase of every positive
spectral component by /2. Hence, it is a Hilbert transformer. Note that an ideal Hilbert phase
shifter is unrealizable. This is because the Hilbert phase shifter requires an abrupt phase change
of m at zero frequency. When the message m(¢) has a dc null and very little low-frequency
content, the practical approximation of this ideal phase shifter has almost no real effect and
does not affect the accuracy of SSB modulation.

In the selective-filtering method, the most commonly used method of generating SSB
signals, a DSB-SCsignalis passed through a sharp cutoff filter to eliminate the undesired side-
band. To obtain the USB, the filter should pass all components above frequency f, unattenuated
and completely suppress all components below f.. Such an operation requires an ideal filter,
which is unrealizable. It can, however, be approximated closely if there is some separation
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Figure 4.17
Generating SSB
using the phase
shift method.

Figure 4.18
(a) Relative
power spectrum
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and (b} cor-
responding USB
spectrum.
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between the passband and the stopband. Fortunately, the voice signal provides this condition,
because its spectrum shows little power content at the origin (Fig. 4.18a). In addition, articu-
lation tests have shown that for speech signals, frequency components below 300 Hz are not
important. In other words, we may suppress all speech components below 300 Hz (and above
3500 Hz) without affecting intelligibility appreciably. Thus, filtering of the unwanted sideband
becomes relatively easy for speech signals because we have a 600 Hz transition region around
the cutoff frequency f.. To minimize adjacent channel interference, the undesired sideband
should be attenuated at least 40 dB.

For very high carrier frequency f;, the ratio of the gap band (600 Hz) to the carrier
frequency may be too small, and, thus, a transition of 40 dB in amplitude over 600 Hz may
be difficult. In such a case, a third method, known as Weaver’s method,! utilizes two stages
of SSB amplitude modulation. First, the modulation is carried out by using a smaller carrier
frequency (f¢, ). The resulting SSB signal effectively widens the gap to 2f;, (see shaded spectra
in Fig. 4.18b). Now by treating this signal as the new baseband signal, it is possible to achieve
SSB-modulation at a higher carrier frequency.
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Detection of SSB Signals with a Carrier (SSB+C)
We now consider SSB signals with an additional carrier (SSB+4C). Such a signal can be
expressed as

@SSB+C = Acos w¢t + [m(t) cos wet + my(t) sin w,t]

and m(t) can be recovered by synchronous detection [multiplying ¢ssp+c by cos wct] if the
carrier component A cos w,t can be extracted (by narrowband filtering of) ¢ssgc. Alterna-
tively, if the carrier amplitude A is large enough, m(z) can also be (approximately) recovered
from @ssp+c by envelope or rectifier detection. This can be shown by rewriting gssp+c as

@ssB+C = [A + m(t)] cos wct + my(F) sin w,t
= E(t) cos (w:t+ 0) 4.21)

where E(t), the envelope of ¢ssp+c, is given by [see Eq. (3.41a)]
E(@t) = {[A + m®) + my(n)}'/?

1/2
B 2m()  mA(r)  mi(t)
_AP+ T 3

If A > |m(z)|, then in general* A > |my(2)|, and the terms m?(¢)/A? and mﬁ (t)/A? can be
ignored. Thus,

_ 2m(r) '/
Hﬂ-AP+ " }

Using Taylor series expansion and discarding higher order terms [because m(t)/A < 1], we
get

m(t)
E@t) ~A |:1 + —A—]

=A+ m(t)

It is evident that for a large carrier, the SSB 4 C can be demodulated by an envelope detector.

In AM, envelope detection requires the condition A > |m(t)|, whereas for SSB+C, the
condition is A >> |m(¢)|. Hence, in SSB case, the required carrier amplitude is much larger
than that in AM, and, consequently, the efficiency of SSB+C is pathetically low.

Quadrature Amplitude Modulation (QAM)

Because SSB-SC signals are difficult to generate accurately, quadrature amplitude modulation
(QAM) offers an attractive alternative to SSB-SC. QAM can be exactly generated without
requiring sharp-cutoff bandpass filters. QAM operates by transmitting two DSB signals using
carriers of the same frequency but in phase quadrature, as shown in Fig. 4.19. This scheme is
known as quadrature amplitude modulation (QAM) or quadrature multiplexing.

As shown Figure 4.19, the boxes labeled —m/2 are phase shifters that delay the phase
of an input sinusoid by —m/2 rad. If the two baseband message signals for transmission are
my (t) and m(t), the corresponding QAM signal pgam (?), the sum of the two DSB-modulated
signals, is

©QAM (2) = my(t) cos wct + my(¢) sin w.t

* This may not be true for all 7, but it is true for most ?.
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Both modulated signals occupy the same band. Yet two baseband signals can be separated at
the receiver by synchronous detection if two local carriers are used in phase quadrature, as
shown in Fig. 4.19. This can be shown by considering the multiplier output x; () of the upper
arm of the receiver (Fig. 4.19):

x1 (1) = 29Qam(t) cos wct = 2[my(t) cos wct + ma(t) sin wt]cos wct

=m1(t) + m (t) cos 2wt + my(t) sin 2wt (4.22a)

The last two terms are bandpass signals centered around 2w,. In fact, they actually form a
QAM signal with 2w, as the carrier frequency. They are suppressed by the low-pass filter,
yielding the desired demodulation output m(f). Similarly, the output of the lower receiver
branch can be shown to be m) ().

x2(t) = 2¢Qam () sin wet = 2[m1 (t) cos wt + ma(t) sin wct]sin wct
=my(t) — my(t) cos 2wt + my(t) sin 2wt (4.22b)

Thus, two baseband signals, each of bandwidth B Hz, can be transmitted simultaneously
over a bandwidth 2B by using DSB transmission and quadrature multiplexing. The upper
channel is also known as the in-phase (I) channel and the lower channel is the quadrature
(Q) channel. Both signals m () and m; (f) can be separately demodulated.

Note, however, that QAM demodulation must be totally synchronous. An error in the phase
or the frequency of the carrier at the demodulator in QAM will result in loss and interference
between the two channels. To show this, let the carrier at the demodulator be 2 cos (w.t + ).
In this case,

x1(t) = 2[my (t) cos w.t + my(t) sin wt] cos (wct + 60)
= my(¢t)cos@ — my(t) sin 6 4+ my(t) cos Qwt + 0) + my(t) sin Qwct + 6)

The low-pass filter suppresses the two signals modulated by carrier of angular frequency 2w,
resulting in the first demodulator output

my (¢) cos @ — my(t) sin O
Thus, in addition to the desired signal m (¢), we also receive signal my(¢) in the upper receiver

branch. A similar phenomenon can be shown for the lower branch. This so-called cochannel
interference is undesirable. Similar difficulties arise when the local frequency is in error (see
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Prob. 4.4-1). In addition, unequal attenuation of the USB and the LSB during transmission
leads to cross talk or cochannel interference.

Quadrature multiplexing is used in analog color television to multiplex the so-called
chrominance signals, which carry the information about colors. There, the synchronization
is achieved by periodic insertion of a short burst of carrier signal (called color burst in the
transmitted signal). Digital satellite television transmission also applies QAM.

In terms of bandwidth requirement, SSB is similar to QAM but less exacting in terms of
the carrier frequency and phase or the requirement of a distortionless transmission medium.
However, SSB is difficult to generate if the baseband signal m(¢) has significant spectral content
near the dc.

4.5 AMPLITUDE MODULATIONS: VESTIGIAL
SIDEBAND (VSB)

Figure 4.20
Spectra of the
modulating
signal and
corresponding
DSB, SSB, and
VSB signals.

As discussed earlier, it is rather difficult to generate exact SSB signals. They generally require
that the message signal m(¢) have a null around dc. A phase shifter, required in the phase shift
method, is unrealizable, or only approximately realizable. The generation of DSB signals is
much simpler, but it requires twice the signal bandwidth. Vestigial sideband (VSB) modula-
tion, also called the asymmetric sideband system, is a compromise between DSB and SSB. It
inherits the advantages of DSB and SSB but avoids their disadvantages at a small cost. VSB
signals are relatively easy to generate, and, at the same time, their bandwidth is only a little
(typically 25%) greater than that of SSB signals.

In VSB, instead of rejecting one sideband completely (as in SSB), a gradual cutoff of one
sideband as shown in Fig. 4.20d, is accepted. The baseband signal can be recovered exactly by
a synchronous detector in conjunction with an appropriate equalizer filter H,(f) at the receiver
output (Fig. 4.21). If a large carrier is transmitted along with the VSB signal, the baseband
signal can be recovered by an envelope (or a rectifier) detector.

Dpsa(f) (b) DSB
Dgsp(f) (© SSB
Dysp(f) (d) VSB
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Figure 4.21
VSB modulator
and
demodulator.

If the vestigial shaping filter that produces VSB from DSB is H;(f) (Fig. 4.21), then the
resulting VSB signal spectrum is

Svsp(f) = M(f +/o) + M (f —f)IHi(f) (4.23)

This VSB shaping filter H;(f) allows the transmission of one sideband but suppresses the
other sideband, not completely, but gradually. This makes it easy to realize such a filter, but
the transmission bandwidth is now somewhat higher than that of the SSB (where the other
sideband is suppressed completely). The bandwidth of the VSB signal is typically 25 to 33%
higher than that of the SSB signals.

We require that m(t) be recoverable from @ysg(#) by using synchronous demodulation at
the receiver. This is done by multiplying the incoming VSB signal ¢ysg(¢) by 2 cos w.z. The
product e(?) is given by

e(t) = 2¢vsp (1) cos wt <= [Pvsp(f +fo) + PvsB(f —fo)]
The signal e(?) is further passed through the low-pass equalizer filter of the transfer function

H,(f). The output of the equalizer filter is required to be m(t). Hence, the output signal
spectrum is given by

M(f) = [Pvsp(f +fo) + Pvs(f — f)IHo(f)

Substituting Eq. (4.23) into this equation and eliminating the spectra at +4f, [suppressed by a
low-pass filter H,(f)], we obtain

M (f) =M (H)[Hi(f +fo) + Hi(f — fe)IHo(f) 4.24)
Hence
1

Hi(f +fo) + Hi(f = fo)
Note that because H;( f) is a bandpass filter, the terms H;(f %f.) contain low-pass components.

Ho(f) =

fl<B (4.25)

Complementary VSB Filter and Envelope Detection of VSB + C Signals

As a special case of a filter at the VSB modulator, we can choose H;(f) such that
Hif +O)+H{(f-f)=1 Ifl =B (4.26)
The output filter is just a simple low-pass filter with transfer function:

H(f)=1 |fl=8

m(t) Ho) ¢vsa(?) ¢vsa(?) ‘ () ﬁIl‘OW'paSS m(r)
ter H,(f)

2 cos wt 2 o5 et

Transmitter Receiver



4.5 Amplitude Modulations: Vestigial Sideband (VSB) 169
The resulting VSB signal plus carrier (VSB + C) can be envelope-detected. This demod-

ulation method may be proved by using exactly the same argument used in proving the case
for SSB + C signals. In particular, because of Eq. (4.26), we can define a new low-pass filter

F(f) =701 =2H(f —fo)l = —j[1 = 2H;(f +fo)] fl<B
Defining a new (complex) low-pass signal as
my(t) <= M.(f) =F()M(f)
we can rewrite the VSB signal as

M —f)+M +f) | M(f —fo) =M(f + /o)

dysp(f) = > . 5 (4.27a)
—
@vsB(t) = m(t) cos 2f.t + m, () sin 27 f.t (4.27b)

Clearly, both the SSB and the VSB modulated signals have the same form, with m,(¢) in
SSB replaced by a low-pass signal m, (¢) in VSB. Applying the same analysis fromthe SSB+C
envelope detection, a large carrier addition to ¢vysp(#) would allow the envelope detection of
VSB +C.

We have shown that SSB+C requires a much larger carrier than DSB+C (AM) forenvelope
detection. Because VSB+C is an in-between case, the added carrier required in VSB is larger
than that in AM, but smaller than that in SSB + C.

Example 4.7

The carrier frequency of a certain VSB signalisf, = 20kHz, and the baseband signal bandwidth
is 6 kHz. The VSB shaping filter H;(f) at the input, which cuts off the lower sideband gradually
over 2 kHz, is shown in Fig. 4.22a. Find the output filter H,(f) required for distortionless
reception.

Figure 4.22b shows the low-pass segments of H;(f + f.) + H;(f —f.). We are interested
in this spectrum only over the baseband (the remaining undesired portion is suppressed
by the output filter). This spectrum, which is 0.5 over the band of 0 to 2 kHz, is 1 from
2 to 6 kHz, as shown in Fig. 4.22b. Figure 4.22c shows the desired output filter H,(f),
which is the réciprocal of the spectrum in Fig. 4.22b [see Eq. (4.25)].

Use of VSB in Broadcast Television
VSB is a clever compromise between SSB and DSB, which makes it very attractive for
television broadcast systems. The baseband video signal of television occupies an enormous
bandwidth of 4.5 MHz, and a DSB signal needs a bandwidth of 9 MHz. It would seem desirable
to use SSB to conserve bandwidth. Unfortunately, doing this creates several problems. First,
the baseband video signal has sizable power in the low-frequency region, and consequently it
is difficult to suppress one sideband completely. Second, for a broadcast receiver, an envelope
detector is preferred over a synchronous one to reduce the receiver cost. We saw earlier that
SSB+C has a very low power efficiency. Moreover, using SSB will increase the receiver cost.
Thespectral shaping of television VSBs signalscan beillustrated by Fig. 4.23. The vestigial
spectrum is controlled by two filters: the transmitter RF filter H7(f) and the receiver RF filter
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Figure 4.22
VSB modulator
and receiver
filters.

Figure 4.23
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television
systems.
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Hence, the design of the receiver output filter H,(f) follows Eq. (4.25).

The DSB spectrum of a television signal is shown in Fig. 4.24a. The vestigial shaping
filter H;(f) cuts off the lower sideband spectrum gradually, starting at 0.75 MHz to 1.25 MHz
below the carrier frequency f,, as shown in Fig. 4.24b. The receiver output filter H,(f) is
designed according to Eq. (4.25). The resulting VSB spectrum bandwidth is 6 MHz. Compare
this with the DSB bandwidth of 9 MHz and the SSB bandwidth of 4.5 MHz.

. Jointly we have

Hi(f) = Hr (/)Hr(f)

4.6 LOCAL CARRIER SYNCHRONIZATION

In a suppressed carrier, amplitude-modulated system (DSB-SC, SSB-SC, and VSB-SC), the
coherent receiver must generate a local carrier that is synchronous with the incoming carrier
(frequency and phase). As discussed earlier, any discrepancy in the frequency or phase of the

local carrier gives rise to distortion in the detector output.



Figure 4.24
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Consider an SSB-SC case where a received signal is
m(t)cos [(we + Aw)t + 8] — mp(t) sin [(w. + Aw)t + 8]

because of propagation delay and Doppler frequency shift. The local carrier remains as
2cos wct. The product of the received signal and the local carrier is e(z), given by
e(t) = 2cos wct [m(t) cos (wet + Awt + 8) — my(¢) sin (wct + Awt + 68)]
= m(t)cos(Awt+ 8) — my(¢) sin (Awt + 6)
+ m(t)cos[Rwe + Aw)t + 8] — my(¢) sin [Lw, + Aw)t + 8] (4.28)
bandpass SSB-SC signal around 2w, + Aw

The bandpass component is filtered out by the receiver low-pass filter, leaving the output
e,(1) as

e,(t) = m(t) cos (Awt + 8) — my(¢) sin (Awt + 8) (4.29)
If Aw and § are both zero (no frequency or phase error), then
eo(t) = m(t)

as expected.
In practice, if the radio wave travels a distance of d meters at the speed of light c, then the
phase delay is
8 = —(w. + Aw)d/c

which can be any value within the interval [—m, +]. Two oscillators initially of identical
frequency can also drift apart. Moreover, if the receiver or the transmitter is traveling at a
velocity of v,, then the maximum Doppler frequency shift would be

V,
Afmax = ?efc
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The velocity v, depends on the actual vehicles (e.g. spacecrafts, airplanes, cars). For example,
if the mobile velocity v, is 108 km/ph, then for a carrier frequency at 100 MHz, the maximum
Doppler frequency shift would be 10 Hz. Such a shift of every frequency component by a fixed
amount Aw destroys the harmonic relationship between frequency components. For Af = 10
Hz, the components of frequencies 1000 and 2000 Hz will be shifted to frequencies 1010
and 2010Hz, respectively. This upsets their harmonic relationship and the quality of nonaudio
signals.

Itis interesting to note that audio signals are highly redundant, and unless Af is very large,
such a change does not destroy intelligibility of the output. For audio signals Af < 30 Hz
does not significantly affect the signal quality. Af > 30 Hz results in a sound quality similar
to that of Donald Duck. But the intelligibility is not completely lost.

Generally, there are two ways to recover the incoming carrier at the receiver. One way is
for the transmitter to transmit a pilot (sinusoid) signal that can be either the exact carrier or
directly related to the carrier (e.g., a pilot athalf the carrier frequency). The pilot is separated
at the receiver by a very narrowband filter tuned to the pilot frequency. It is amplified and used
to synchronize the local oscillator. Another method, in which no pilot is transmitted, is for the
receiver to use a nonlinear device to process the received signal, to generate a separate carrier
component that can be extracted using narrow bandpass filters. Clearly, effective and narrow
bandpass filters are very important to both methods. Moreover, the bandpass filter should also
have the ability to adaptively adjust its center frequency to combat significant frequency drift
or Doppler shift. Aside from some typical bandpass filter designs, the phase-locked loop (PLL),
which plays an important role in carrier acquisition of various modulations, can be viewed as
such a narrow and adaptive bandpass filter. The principles of PLL will be discussed later in
this chapter.

4.7 FREQUENCY DIVISION MULTIPLEXING (FDM)

Signal multiplexing allows the transmission of several signals on the same channel. In
Chapter 6, we shall discuss time division multiplexing (TDM), where several signals time-
share the same channel. In FDM, several signals share the band of a channel. Each signal is
modulated by a different carrier frequency. These carriers, referred to as subcarriers, are ade-
quately separated to avoid overlap (or interference) between the spectra of various modulated
signals. Each signal may use a different kind of modulation (e.g., DSB-SC, AM, SSB-SC,
VSB-SC, or even frequency modulation or phase modulation). The modulated signal spectra
may be separated by a small guard band to avoid interference and facilitate signal separation
at the receiver.

When all the modulated spectra are added, we have a composite signal that may be
considered to be a baseband signal to further modulate a radio-frequency (RF) carrier for the
purpose of transmission.

At the receiver, the incoming signal is first demodulated by the RF carrier to retrieve
the composite baseband, which is then bandpass-filtered to separate all the modulated signals.
Then each modulated signal is demodulated individually by an appropriate subcarrier to obtain
all the basic baseband signals.

One simple example of FDM is the analog telephone long-haul system. There are two
types of long-haul telephone carrier system: the legacy analog L-carrier hierarchy systems and
the digital T-carrier hierarchy systems in North America (or the E-carrier in Europe).> Both
were standardized by the predecessor of the International Telecommunications Union known
(before 1992) as the CCITT (Comité Consultatif International Téléphonique et Télégraphique).
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We will first describe the analog telephone hierarchy that utilizes FDM and SSB modulation
here and defer the digital hierarchy discussion until later (Chapter 6).

In the analog L-carrier hierarchy,* each voice channel is modulated using SSB+C. Twelve
voice channels form a basic channel group occupying the bandwidth of 60 to 108 kHz. As
shown in Fig. 4.25, each user channel uses LSB, and frequency division multiplexing (FDM)
is achieved by maintaining the channel carrier separation of 4 kHz.

Further up the hierarchy,’ five groups form a supergroup, via FDM. Multiplexing 10
supergroups generates a mastergroup, and multiplexing six supergroups forms a jumbo
group, which consists of 3600 voice channels over a frequency band of 16.984 MHz in the
L4 system. At each level of the hierarchy from the supergroup, additional frequency gaps are
provided for interference reduction and for inserting pilot frequencies. The multiplexed signal
can be fed into the baseband input of a microwave radio channel or directly into a coaxial
transmission system.

4.8 PHASE-LOCKED LOOP AND SOME
APPLICATIONS

Phase-Locked Loop (PLL)

The phase-locked loop (PLL) is a very important device typically used to track the phase and
the frequency of the carrier component of an incoming signal. It is, therefore, a useful device
for synchronous demodulation of AM signals with a suppressed carrier or with a little carrier
(the pilot). It can also be used for the demodulation of angle-modulated signals, especially
under conditions of low signal-to-noise ratio (SNR). It also has important applications in a
number of clock recovery systems including timing recovery in digital receivers. For these
reasons, the PLL plays a key role in nearly every modern digital and analog communication
system.

A PLL has three basic components:

1. A voltage-controlled oscillator (VCO).
2. A multiplier, serving as a phase detector (PD) or a phase comparator.
3. Aloop filter H (s).
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Figure 4.26
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The operation of the PLL is similar to that of a feedback system (Fig. 4.26a). In a typical
feedback system, the feedback signal tends to follow the input signal. If the feedback signal
is not equal to the input signal, the difference (known as the error) will change the feedback
signal until it is close to the input signal. A PLL operates on a similar principle, except that the
quantity fed back and compared is not the amplitude, but the phase. The VCO adjusts its own
frequency such thatits frequency and phase can track those of the input signal. At this point,
the two signals are in synchronism (except for a possible difference of a constant phase).

The voltage-controlled oscillator (VCO) is an oscillator whose frequency can be linearly
controlled by an input voltage. If a VCO input voltage is e,(?), its output is a sinusoid with
instantaneous frequency given by

o(t) = we + ceo(t) (4.30)

where c is a constant of the VCO and w, is the free-running frequency of the VCO [when
e,(t) = 0]. The multiplier output is further low-pass-filtered by the loop filter and then applied
to the input of the VCO. This voltage changes the frequency of the oscillator and keeps the
loop locked by forcing the VCO output to track the phase (and hence the frequency) of the
input sinusoid.

If the VCO output is B cos [w.t + 6,()], then its instantaneous frequency is w. + B, (2).
Therefore,

By(t) = cey(1) 431)

Note that ¢ and B are constant parameters of the PLL.

Let the incoming signal (input to the PLL) be A sin [w.? + 6;(¢)]. If the incoming signal
happens to be A sin [w,t + ¥ (¢)], it can still be expressed as A sin [w,? + 6;(¢)], where 6;(¢) =
(wo — we)t + Y (2). Hence, the analysis that follows is general and not restricted to equal
frequencies of the incoming signal and the free-running VCO signal.

The multiplier output is

AB
AB sin (w1 + &) cos (wr+ 8,) = TISin(O; —8,) + sin (2wt + 6 + &,1]
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The sum frequency term is suppressed by the loop filter. Hence, the effective input to the loop
filter is %AB sin [6;(¢) — 6,(¢)]. If h(t) is the unit impulse response of the loop filter,

1
eo(t) = h(t) * EAB sin [6;(t) — 6,(2)]
1 t
= EAB/ h(t — x) sin[6;(x) — 6,(x)] dx. (4.32)
0
Substituting Eq. (4.32) into Eq. (4.31) and letting K = %CB lead to

t
0,(f) = AK ] h(t — x) sin 6,(x) dx (4.33)
0

where 6, (t) is the phase error, defined as
e () = 6;(2) — 6,(2)

These equations [along with Eq. (4.31)] immediately suggest a model for the PLL, as shown
in Fig. 4.26b.

The PLL design requires careful selection of the loop filter H (s) and the loop gain AK.
Different loop filters can enable the PLL to capture and track input signals with different types
of frequency variation. On the other hand, the loop gain can affect the range of the trackable
frequency variation.

Small-Error PLL Analysis
In small-error PLL analysis, sin 6, ~ 6., and the block diagram in Fig. 4.26b reduces to the
linear (time-invariant) system shown in Fig. 4.27a. Straightforward feedback analysis gives

Oo(s)  AKH(s)/s AKH(s)
®i(s) 14+[AKH(s)/s] ~ s+ AKH(s)

(4.34)

Therefore, the PLL acts as a filter with transfer function AKH (s)/[s + AKH (s)], as shown in
Fig. 4.27b. The error ®,(s) is given by

,(s)
Q;(5)

Ou(s) = O;{s) — O, (s) = {1 -

Ry

~ St AKH(s)

] Q;(s)
O;(s) (4.35)

One of the important applications of the PLL is in the acquisition of the frequency and the
phase for the purpose of synchronization. Let the incoming signal be A sin (wot + o). We wish

Biit} B.40)

AKH(s)

0(s) AKH(s) 8,(5)

0,(t - (oA
® s + AKH(s)

[ —

(a) ®
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to generate a local signal of frequency wp and phase* ¢g. Assuming the quiescent frequency
of the VCO to be w,, the incoming signal can be expressed as A sin [w,t + 6;(t)], where

0i(t) = (wo — W)t + @

and
Wy — We 7y
— + =
N

Consider the special case of H (s) = 1. Substituting this equation into Eq. (4.35),

Bi(s) =

[wo—wc  ¢o]

Oc(s) =

s+AK | sz s |
_ (@ —wc)/AK (w0 — wc) /AK )

s s+ AK s+ AK

Hence,
{ewy — @ - _
B(f) = T—)(i —e '““) + gpe (4.36a)
Observe that
. w0~
tl_lglo 6.(t) = K (4.36b)

Hence, after the transient dies (in about 4/AK seconds), the phase error maintains a con-
stant value of (wp — w.)/AK. This means the PLL frequency eventually equals the incoming
frequency wg. There is, however, a constant phase error. The PLL output is

wo — We
B cos IinI—HPO_ K ]

For a second-order PLL using

H(s) = sta (4.37a)
s

® = ——0); 4.37b
e(5) 5+ AKH(s) i(s) ( )

_ s Wy — W n %o

T 24+ AK(s+ a) 52 s

the final value theorem directly yields,®
lim 6,(t) = lim sO,(s) =0 (4.38)
t—00 s—0

In this case, the PLL eventually acquires both the frequency and the phase of the incoming
signal.

* With a difference 7 /2.



Figure 4.28
Trajectory of a
first-order PLL.
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We can use small-error analysis, to show that a first-order loop cannot track an incoming
signal whose instantaneous frequency varies linearly with time. Moreover, such a signal can be
tracked within a constant phase (constant phase error) by using a second-order loop [Eq. (4.37)],
and it can be tracked with zero phase error by using a third-order loop.”

It must be remembered that the preceding analysis assumes a linear model, which is valid
only when 6,(#) <« /2. This means the frequencies wp and w, must be very close for this
analysis to be valid. For a general case, one must use the nonlinear model in Fig. 4.26b. For
such an analysis, the reader is referred to Viterbi,” Gardner,? or Lindsey.9

First-Order Loop Analysis
Here we shall use the nonlinear model in Fig. 4.26b, but for the simple case of H (s) = 1. For
this case A(t) = 8(¢),* and Eq. (4.33) gives

6,(t) = AK sin 6,(t)
Because 6, = 6; — 0,,
8, = 6; — AK sin 8.(¢). (4.39)

Let us here consider the problem of frequency and phase acquisition. Let the incoming
signal be Asin (wp? + ¢p) and let the VCO have a quiescent frequency w,.. Hence,

B; (1) = (wp — w It + o
and
6, = (wo — we) — AK sin 6,(?) (4.40)

For abetter understanding of PLL behavior, we use Eq. (4.40) to sketch B, vs. 6,. Equation
(4.40) shows that 6, is a vertically shifted sinusoid, as shown in Fig. 4.28. To satisfy Eq. (4.40),
the loop operation must stay along the sinusoidal trajectory shown in Fig. 4.28. When 6, = 0,
the system is in equilibrium, because at these points, 6, stops varying with time. Thus 6, =
61, 62, 63, and 8, are all equilibrium points.

If the initial phase error 8,(0) = 6,0 (Fig. 4.28), then ée corresponding to this value of 6,
is negative. Hence, the phase error will start decreasing along the sinusoidal trajectory until it

6.l

(thy = W,

GI\/Z H;\T\-/ 8, t,—
|
(@o 0 ~AK frmm e

* Actually h(¢) = 2Bsinc (27 Bt), where B is the bandwidth of the loop filter. This is a low-pass, narrow band filter,
which suppresses the high-frequency signal centered at 2w.. This makes H (s) = 1 over a low-pass narrow band of B
Hz.
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reaches the value 63, where equilibrium is attained. Hence, in steady state, the phase error is a
constant 3. This means the loop is in frequency lock; that is, the VCO frequency is now wyp,
but there is a phase error of 85. Note, however, thatif |wg — w.| > AK, there are no equilibrium
points in Fig. 4.28, the loop never achieves lock, and 6, continues to move along the trajectory
forever. Hence, this simple loop can achieve phase lock provided the incoming frequency wy
does not differ from the quiescent VCO frequency w, by more than AK.

In Fig. 4.28, several equilibrium points exist. Half of these points, however, are unsta-
ble equilibrium points, meaning that a slight perturbation in the system state will move the
operating point farther away from these equilibrium points. Points 6 and 65 are stable points
because any small perturbation in the system state will tend to bring it back to these points.
Consider, for example, the point 83. If the state is perturbed along the trajectory toward the
right, 8, is negative, which tends to reduce 6, and bring it back to 3. If the operating point
is perturbed from 63 toward the left, ée is positive, 6, will tend to increase, and the operating
point will return to 63. On the other hand, at point 6, if the point is perturbed toward the right,
6, is positive, and 6, will increase until it reaches 63. Similarly, if at 6, the operating point is
perturbed toward the left, ée is negative, and 8, will decrease until it reaches 8;. Hence, 6, is
an unstable equilibrium point. The slightest disturbance, such as noise, will dislocate it either
to 61 or to 63. In a similar way, we can show that 64 is an unstable point and that 8; is a stable
equilibrium point.

The equilibrium point 63 occurs where ée = 0. Hence, from Eq. (4.40),

AK

If 63 < /2, then
Wy — W¢
AK
which agrees with our previous result of the small-error analysis [Eq. (4.36b)].

The first-order loop suffers from the fact that it has a constant phase error. Moreover, it
can acquire frequency lock only if the incoming frequency and the VCO quiescent frequency
differ by not more than AK rad/s. Higher order loops overcome these disadvantages, but they
create a new problem of stability. More detailed analysis can be found in Gardener.?

03 >~

Generalization of PLL Behaviors

To generalize, suppose that the loop is locked, meaning that the frequencies of both the input
and the output sinusoids are identical. The two signals are said to be mutually phase coherent
or in phase lock. The VCO thus tracks the frequency and the phase of the incoming signal. A
PLL can track the incoming frequency only over a finite range of frequency shift. This rahge
is called the hold-in or lock range. Moreover, if initially the input and output frequencies are
not close enough, the loop may not acquire lock. The frequency range over which the input
will cause the loop to lock is called the pull-in or capture range. Also if the input frequency
changes too rapidly, the loop may not lock.

If theinput sinusoid is noisy, the PLL not only tracks the sinusoid, but also cleans it up. The
PLL can also be used as a frequency modulation (FM) demodulator and frequency synthesizer,
as shown later, in the next chapter. Frequency multipliers and dividers can also be built using
PLL. The PLL, being a relatively inexpensive integrated circuit, has become one of the most
frequently used communication circuits.

In space vehicles, because of the Doppler shift and oscillator drift, the frequency of the
received signal has a lot of uncertainty. The Doppler shift of the carrier itself could be as high
as £75 kHz, whereas the desired modulated signal band may be just 10 Hz. To receive such a
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Narrowband
filter

signal by conventional receivers would require a filter of bandwidth 150 kHz, when the desired
signal has a bandwidth of only 10 Hz. This would cause an undesirable increase in the received
noise (by a factor of 15,000), since the noise power is proportional to the bandwidth. The PLL
proves convenient here because it tracks the received frequency continuously, and the filter
bandwidth required is only 10 Hz.

Carrier Acquisition in DSB-SC
We shall now discuss two methods of carrier regeneration using PLL atthe receiver in DSB-SC:
signal squaring and the Costas loop.

Signal-Squaring Method:

An outline of this scheme is given in Fig. 4.29. The incoming signal is squared and then passed
through a narrow (high Q) bandpass filter tuned to 2w,. The output of this filter is the sinusoid
k cos 2wct, with some residual unwanted signal. This signal is applied to a PLL to obtain a
cleaner sinusoid of twice the carrier frequency, which is passed through a 2:1 frequency divider
to obtain a local carrier in phase and frequency synchronism with the incoming carrier. The
analysis is straightforward. The squarer output x(#) is

x(1) = [mit)ycos wet]* = 1m?(®) + Am? (1) cos 2wt

Now m? (#) is a nonnegative signal, and therefore has a nonzero average value [in contrast
to m(t), which generally has a zero average value]. Let the average value, which is the dc
component of mz(t) /2, be k. We can now express mz(t) /2 as

1
SMO =k +6()
where ¢ (¢) is a zero mean baseband signal [mz(t) /2 minus its dc component]. Thus,

1 1
x(t) = Emz(t) + Emz(t) cos 2wt

= %mz(z‘) + k cos 2wt + (1) cos 2wt
The bandpass filter is a narrowband (high-Q) filter tuned to frequency 2w,. It completely sup-
presses the signal m?(r), whose spectrum is centered at @ = 0. It also suppresses most of the
signal ¢ () cos 2w.t. This is because although this signal spectrum is centered at 2w, it has
zero (infinitesimal) power at 2w, since ¢ (¢) has a zero dc value. Moreover this component
is distributed over the band of 4B Hz centered at 2w.. Hence, very little of this signal passes
through the narrowband filter* In contrast, the spectrum of k cos 2wt consists of impulses

* This will also explain why we cannot extract the carrier directly from m(f) cos wct by passing it through a
narrowband filter centered at w.. The reason is that the power of m(#) cos wct at w, is zero because m(t) has no dc
component [the average value of m(t) is zero].
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Figure 4.30
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located at +2w,. Hence, all its power is concentrated at 2w, and will pass through. Thus, the
filter output is k cos 2wt plus a small undesired residue from ¢ (¢) cos 2w.t. This residue
can be suppressed by using a PLL, which tracks k cos 2w.t. The PLL output, after pass-
ing through a 2:1 frequency divider, yields the desired carrier. One qualification is in order.
Because the incoming signal sign is lost in the squarer, we have a sign ambiguity (or phase
ambiguity of 7 ) in the carrier generated. This is immaterial for analog signals. Foradigital base-
band signal, however, the carrier sign is essential, and this method, therefore, cannot be used
directly.

Costas Loop: Yet another scheme for generating a local carrier, proposed by Costas, !0
is shown in Fig. 4.30. The incoming signal is m(t) cos (w.t + 6;). At the receiver, a VCO
generates the carrier cos (w.t + 6,). The phase error is 6, = 6; — 6,. Various sig-
nals are indicated in Fig. 4.30. The two low-pass filters suppress high-frequency terms to
yield m(¢) cos 6, and m(t) sin 8., respectively. These outputs are further multiplied to give
m?(t) sin 26,. When this is passed through a narrowband low-pass filter, the output is R sin 26,,
where R is the dc component of m?(¢)/2. The signal Rsin 26, is applied to the input of
a VCO with quiescent frequency w.. The input R sin 26, increases the output frequency,
which, in turn, reduces 6,. This mechanism was fully discussed earlier in connection with
Fig. 4.26.

Carrier Acquisition in SSB-SC

For the purpose of synchronization at the SSB receiver, one may use highly stable crystal
oscillators, with crystals cut for the same frequency at the transmitter and the receiver. At
very high frequencies, where even quartz crystals may not have adequate performance, a pilot
carrier may be transmitted. These are the same methods used for DSB-SC. However, neither
the received-signal squaring technique nor the Costas loop used in DSB-SC can be used for
SSB-SC. This can be seen by expressing the SSB signal as

@ssB (1) = m(t) cos w.t F my(t) sin w,t
= E(¢) cos [wct + 0(2)]
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where

E@®) = /m(t) + m(0)

£m (1)

a1
6(t) = tan D)

Squaring this signal yields

Pip () = E%(t) cos? [wet + 6(1)]

2
= E‘th_){l + cos 2wt +26(1)]}

The signal E2(z) is eliminated by a bandpass filter. Unfortunately, the remaining signal is not a
pure sinusoid of frequency 2w, (as was the case for DSB). There is nothing we can do to remove
the time-varying phase 26(¢) from this sinusoid. Hence, for SSB, the squaring technique does
not work. The same argument can be used to show that the Costas loop will not work either.
These conclusions also apply to VSB signals.

4.9 MATLAB EXERCISES

In this section, we provide MATLAB exercises to reinforce some of the basic concepts on
analog modulations covered in earlier sections. We will cover examples that illustrate the
modulation and demodulation of DSB-SC, AM, SSB-SC, and QAM.

DSB-SC Modulation and Demodulation

The first MATLAB program, triplesinc.m, is to generate a signal that is (almost) strictly
band-limited and consists of three different delayed version of the sinc signal:

my (t) = 2 sinc (2t/T,) + sinc 2t /T, + 1) + sinc 2¢/T, — 1)

oe

(triplesinc.m)

% Baseband signal for AM

% Usage m=triplesinc(t,Ta)
function m=triplesinc(t,Ta)

% t is the length of the signal

% Ta is the parameter, equaling twice the delay

%
sig_l=sinc(2*t/Ta) ;
sig_2=sinc(2*t/Ta-1);
sig_3=sinc(2*t/Ta+l) ;
m=2*sig_l+sig_2+sig_3;

end

The DSB-SC signal can be generated with the MATLAB file ExampleDSB . m that gen-
erates a DSB-SCsignal for = € (—0.04, 0.04). The carrier frequency is 300 Hz. The original
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Figure 4.31
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in time and
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DSB-SC
modulation.
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message signal and the DSB-SC signal for both time and frequency domains are illustrated in
Fig. 4.31.

% (ExampleDSB.m)
% This program uses triplesinc.m to illustrate DSB modulation
% and demodulation

ts=1.e-4

t=-0.04:ts:0.04;

Ta=0.01;
m_sig=triplesinc(t,Ta);
Lfft=length(t); Lfft=2"ceil(log2(Lfft));

M_fre=fftshift(fft(m_sig,Lfft));
fregm=(-Lfft/2:Lfft/2-1)/ (Lfft*ts);

s_dsb=m_sig.*cos (2*pi*500*t) ;
Lfft=length(t); Lfft=2"ceil(log2(Lfft)+1);
S_dsb=fftshift (fft(s_dsb,Lfft));
fregs=(-Lfft/2:Lfft/2-1)/(Lfft*ts);

Trange=[-0.03 0.03 -2 2]

figure(1)
subplot(221);tdl=plot(t,m_sig);
axis(Trange); set(tdl, 'Linewidth’,2);
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Message signal DSB-SC modulated signal
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xlabel (' {\it t} (sec)’); ylabel(’{\it m} ({\it t})’)

subplot (223);td2=plot(t,s_dsb);

axis (Trange); set(td2, 'Linewidth’,2);

xlabel (' {\it t} (sec)’); ylabel(’{\it s}_{\rm DSB} ({\it t})’)

Frange=[-600 600 0 200]

subplot (222) ; fdl=plot (freqgm, abs (M_fre)) ;

axis (Frange); set(fdl, 'Linewidth’,2);

xlabel (' {\it £} (Hz)’); ylabel(’{\it M} ({\it £})")

subplot (224) ; fd2=plot (freqgs,abs(S_dsb)) ;

axis(Frange); set(fd2, 'Linewidth’,2);

xlabel (' {\it f} (Hz)'); ylabel(’'{\it S}_{rm DSB} ({\it £})')

The first modulation example, ExampleDSBdemfilt . mis based on a strictly low-pass
message signal mo(t). Next, we will generate a different message signal that is not strictly
band-limited. In effect, the new message signal consists of two triangles:

ml(t)zA/t-i-O.Ol\ N /t—0.0l\

Loor / "\ o001 )

Coherent demodulation is also implemented with a finite impulse response (FIR) low-pass
filter of order 40. The original message signal m(¢), the DSB-SC signal m(t) cos w,t, the
demodulator signal e() = m(t) cos? w,t, and the recovered message signal my (¢) after low-
pass filtering are all given in Fig. 4.32 for the time domain and in Fig. 4.33 for the frequency
domain. The low-pass filter at the demodulator has bandwidth of 150 Hz. The demodulation
result shows almost no distortion.
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Figure 4.33 Message spectrum DSB-SC spectrum
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% (ExampleDSBdemfilt.m)
% This program uses triangl.m to illustrate DSB modulation
% and demodulation

ts=1.e-4;

t=-0.04:ts:0.04;

Ta=0.01;

m_sig=triangl ((t+0.01)/0.01)-triangl((t-0.01)/0.01);
Lm_sig=length(m_sig) ;

Lfft=length(t);

Lfft=2"ceil (log2 (Lfft)) ;
M_fre=fftshift(fft(m_sig,Lfft));
fregm=(-Lfft/2:Lfft/2-1)/ (Lfft*ts);

B_m=150; %$Bandwidth of the signal is B_m Hz.
h=firl (40, [B_m*ts]);

t=-0.04:ts:0.04;

Ta=0.01; £c=300;

s_dsb=m_sig.*cos (2*pi*fc*t);
Lfft=length(t); Lfft=2"ceil(log2(Lfft)+1);
S_dsb=fftshift (fft(s_dsb,Lfft));
fregs=(-Lfft/2:Lfft/2-1)/(Lfft*ts);

% Demodulation begins by multiplying with the carrier
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s_dem=s_dsb. *cos(2*pi*fc*t)*2;
S_dem=fftshift (fft(s_dem,Lfft));

% Using an ideal LPF with bandwidth 150 Hz
s_rec=filter(h,1,s_dem);
S_rec=fftshift(fft(s_rec,Lfft));

Trange=[-0.025 0.025 -2 21;

figure(l)

subplot (221);tdl=plot(t,m_sig);

axis(Trange); set(tdl, 'Linewidth’,1.5);

xlabel (' {\it t} (sec)’); ylabel(’{\it m} ({\it t})’);
title(’message signal’);

subplot (222) ;td2=plot(t,s_dsb);

axis (Trange); set(td2, 'Linewidth’,1.5);

xlabel (' {\it t} (sec)’); ylabel (’{\it s}_{\rm DSB} ({\it t})’)
title(’'DSB-SC modulated signal’);

subplot (223) ;td3=plot(t,s_dem) ;

axis(Trange); set(td3, 'Linewidth’,1.5);

xlabel (' {\it t} (sec)’); vylabel (’{\it e} ({\it t})’)
title(’{\it e} ({\it t})’);
subplot(224);tdd=plot(t,s_rec);

axis(Trange); set(td4, ’'Linewidth’,1.5);

xlabel (' {\it t} (sec)’); ylabel(’{\it m}_d({\it t})’)
title(’'Recovered signal’);

Frange=[-700 700 0 2001];

figure(2)

subplot (221); fdl=plot (freagm, abs(M_fre)) ;
axis(Frange); set(fdl, 'Linewidth’,1.5);

xlabel (' {\it £} (Hz)'); ylabel ('{\it M} ({\it £})’);
title('message spectrum’) ;

subplot (222);fd2=plot(freqgs,abs(S_dsb)) ;
axis(Frange); set(fd2, 'Linewidth’,1.5);

xlabel (' {\it £} (Hz)’); ylabel(’{\it S}_{rm DSB} ({\it £f})’);
title(’'DSB-SC spectrum’) ;

subplot (223) ; fd3=plot (freqgs,abs(S_dem)) ;
axis(Frange); set(fd3, 'Linewidth’,1.5);

xlabel (' {\it £} (Hz)'); ylabel ('{\it E} ({\it £})"');
title(’spectrum of {\it e} ({\it t})’);

subplot (224) ; fd4=plot (freqgs, abs(S_rec)) ;

axis (Frange); set(fd4, 'Linewidth’,1.5);

xlabel (' {\it £} (Hz)’); ylabel(’{\it M}_dA({\it £})’);
title(’'recovered spectrum’) ;

185

AM Modulation and Demodulation

In this exercise, we generate a conventional AM signal with modulation index of ;. = 1. Using
the same message signal m (¢), the MATLAB program ExampleAMdemfilt .m generates
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Figure 4.34
Time domain
signals in AM
modulation and
noncoherent
demodulation.
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the message signal, the corresponding AM signal, the rectified signal in noncoherent demod-
ulation, and the rectified signal after passing through a low-pass filter. The low-pass filter at
the demodulator has a bandwidth of 150 Hz. The signals in the time domain are shown in
Fig. 4.34, whereas the corresponding frequency domain signals are shown in Fig. 4.35.

Notice the large impulse in the frequency domain of the AM signal. The limited time
window means that no ideal impulse is possible and only very large spikes centered at the
carrier frequency of £300 Hz are visible. Finally, because the message signal bandwidth is
not strictly band-limited, the relatively low carrier frequency of 300 Hz forces the low-pass
filter at the demodulator to truncate some with the message component in the demodulator.
Distortion near the sharp corners of the recovered signal is visible.

% (ExampleAMdemfilt.m)
% This program uses triangl.m to illustrate AM modulation
% and demodulation

ts=1l.e-4;

t=-0.04:ts:0.04;

Ta=0.01; £c=500;

m_sig=triangl ((t+0.01)/0.01)-triangl((t-0.01)/0.01);
Lm_sig=length(m_sig);

Lfft=length(t); Lfft=2"ceil(log2(Lfft));

M _fre=fftshift(fft(m_sig,Lfft));
fregm=(-Lfft/2:Lfft/2-1)/(Lfft*ts);

B m=150; %Bandwidth of the signal is B_m Hz.
h=firl (40, [B_m*ts]);



Figure 4.35
Frequency
domain signals
in AM
modulation and
noncoherent
demodoulation.
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% AM signal generated by adding a carrier to DSB-SC
s_am=(l+m_sig).*cos(2*pi*fc*t);

Lfft=length(t); Lfft=2"ceil(log2 (Lfft)+1);

S _am=fftshift (fft(s_am,Lfft));
fregs=(-Lfft/2:Lfft/2-1)/(Lfft*ts);

% Demodulation begins by using a rectifier
s_dem=s_am. * (s_am>0) ;
S_dem=fftshift(fft(s_dem,Lfft));

% Using an ideal LPF with bandwidth 150 Hz
s_rec=filter(h,1,s_dem);
S_rec=fftshift (fft(s_rec,Lfft));

Trange=[-0.025 0.025 -2 27];

figure(1)

subplot(221);tdl=plot(t,m_sig);

axis (Trange); set(tdl, 'Linewidth’,1.5);

xlabel (' {\it t} (sec)’); ylabel (’{\it m} ({\it t})"’);
title(’'message signal’);

subplot (222) ;td2=plot(t, s_am);

axis (Trange); set(td2, 'Linewidth’,1.5);

xlabel (' {\it t} (sec)’); ylabel(’{\it s}_{\rm DSB} ({\it t})’)
title(’AM modulated signal’);
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subplot (223) ;td3=plot(t,s_dem) ;

axis (Trange); set(td3, 'Linewidth’,1.5);

xlabel (' {\it t} (sec)’); ylabel(’'{\it e} ({\it t})’)
title(’'rectified signal without local carrier’);
subplot (224) ;td4=plot (t,s_rec);

Trangelow=[-0.025 0.025 -0.5 1];

axis (Trangelow); set(td4, 'Linewidth’,1.5);
xlabel (' {\it t} (sec)’); ylabel(’{\it m}_d({\it t})’)
title(’'detected signal’);

Frange=[-700 700 0 200];

figure(2)

subplot (221); fdl=plot (fregm, abs (M_fre));

axis (Frange); set(£fdl, 'Linewidth’,1.5);

xlabel (' {\it £} (Hz)’); ylabel(’{\it M} ({\it £})");
title(’'message spectrum’);

subplot (222) ; fd2=plot (freqgs,abs(S_am)) ;

axis (Frange); set(fd2, 'Linewidth’,1.5);

xlabel (' {\it £} (Hz)’); ylabel(’{\it S}_{rm AM} ({\it £1})');
title(’AM spectrum’);

subplot (223); fd3=plot (freqgs,abs(S_dem)) ;
axis(Frange); set(fd3, 'Linewidth’,1.5);

xlabel (' {\it £} (Hz)’); ylabel(’{\it E} ({\it £})");
title(’'rectified spectrum’);

subplot (224) ; fd4=plot (freqgs,abs(S_rec)) ;
axis(Frange); set(fd4, 'Linewidth’,1.5);

xlabel (' {\it £} (Hz)’); ylabel(’'{\it M}_d({\it £1})’);
title(’'recovered spectrum’);

SSB-SC Modulation and Demodulation
Toillustrate the SSC-SC modulation and demodulation process, this exercise generates an SSB-
SC signal using the same message signal mj(t) with double triangles. The carrier frequency
is still 300 Hz. The MATLAB program ExampleSSBdemfilt .m performs this function.
Coherent demodulation is applied in which a simple low-pass filter with bandwidth of 150 Hz
is used to distill the recovered message signal.

The time domain signals are shown in Fig. 4.36, whereas the corresponding frequency
domain signals are shown in Fig. 4.37.

% (ExampleSSBdemfilt.m)
% This program uses triangl.m
% to illustrate SSB modulation % and demodulation

clear;clft;

ts=1.e-4;

t=-0.04:ts:0.04;

Ta=0.01; £c=300;

m_sig=triangl ((t+0.01)/0.01)-triangl ((t-0.01)/0.01);
Lm_sig=length(m_sig);



Figure 4.36
Time domain
signals during
SSB-SC
modulation and
coherent
demodulation.

Figure 4.37
Frequency
domain signals
in SSB-SC
modulation and
coherent
demodulation.
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Lfft=length(t); Lfft=2"ceil(log2(Lfft));
M_fre=fftshift (fft(m_sig,Lfft));
fregm=(-Lfft/2:Lfft/2-1)/(Lfft*ts);

B_m=150; %$Bandwidth of the signal is B_m Hz.
h=firl (40, [B_m*ts]);

s_dsb=m_sig.*cos (2*pi*fc*t);

Lfft=length(t); Lfft=2"ceil (log2(Lfft)+1);
S_dsb=fftshift (fft(s_dsb,Lfft));

L_lsb=floor (fc*ts*Lfft);

SSBfilt=ones(1,Lfft);

SSBfilt (Lfft/2-L_lsb+1:Lfft/2+L_1sb)=zeros(1l,2*L_1sb);
S_ssb=S_dsb.*SSBfilt;
fregs=(-Lfft/2:Lfft/2-1)/(Lfft*ts);
s_ssb=real (ifft (fftshift(S_ssb)));
s_ssb=s_ssb(l:Lm_sig);

% Demodulation begins by multiplying with the carrier
s_dem=s_ssb.*cos (2*pi*fc*t) *2;
S_dem=fftshift (fft(s_dem,Lfft));

% Using an ideal LPF with bandwidth 150 Hz
s_rec=filter(h,1l,s_dem);
S_rec=fftshift(fft(s_rec,Lfft));

Trange=[-0.025 0.025 -1 17;

figure(1l)

subplot(221);tdl=plot(t,m_sig);

axis (Trange); set(tdl, 'Linewidth’,1.5);

xlabel (' {\it t} (sec)’); ylabel (’{\it m} ({\it t})’);
title(’'message signal’);

subplot(222); td2=plot(t,s_ssb);

axis (Trange); set(td2, 'Linewidth’,1.5);

xlabel (' {\it t} (sec)’); ylabel(’{\it s}_{\rm SSB} ({\it t})’)
title(’SSB-SC modulated signal’);
subplot(223);td3=plot(t,s_dem) ;

axis (Trange); set(td3,’'Linewidth’,1.5);

xlabel (“{\it t} (sec)’); ylabel (’{\it e} ({\it t})")
title(’after multiplying local carrier’);
subplot(224);td4=plot(t,s_rec);

axis (Trange); set(td4, 'Linewidth’,1.5);

xlabel (' {\it t} (sec)’); ylabel(’'{\it m}_d({\it t})")
title(’Recovered signal’);

Frange=[-700 700 0 200];

figure(2)

subplot (221); fdl=plot (fregqm, abs (M_fre));

axis (Frange); set(fdl, 'Linewidth’,1.5);
xlabel ( {\it £} (Hz)'); ylabel (’{\it M} ({\it £})’);
title(’'message spectrum’);



Figure 4.38
Time domain
signals during
QAM
modulation and
coherent
demodulation for
the first message
ma(2).
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subplot (222) ; fd2=plot(freqgs,abs(S_ssb));
axis(Frange); set(fd2, 'Linewidth’,1.5);

xlabel (1 {\it £} (Hz)'); ylabel(’{\it S}_{rm DSB} ({\it £})");
title(’upper sideband SSB-SC spectrum’) ;

subplot (223); fd3=plot(freqgs,abs(S_dem)) ;
axis(Frange); set(fd3, 'Linewidth’,1.5);

xlabel (' {\it £} (Hz)’); ylabel(’{\it E}({\it £})’);
title(’detector spectrum’);

subplot (224) ; fd4=plot(freqgs,abs(S_rec));
axis(Frange); set(fd4, 'Linewidth’,1.5);

xlabel (' {\it £} (Hz)’); ylabel(’{\it M}_d({\it £})’);
title(’'recovered spectrum’);

QAM Modulation and Demodulation

In this exercise, we will apply QAM to modulate and demodulate two message signals m; (¢)
and m;(¢). The carrier frequency stays at 300 Hz, but two signals are simultaneously modulated
and detected. The QAM signal is coherently demodulated by multiplying with cos 600 ¢ and
sin 600r¢, respectively, to recover the two message signals. Each signal product is filtered
by the same low-pass filter of order 40. The MATLAB program ExampleQAMdemfilt.m
completes this illustration by showing the time domain signals during the modulation and
demodulation of the first signal m (¢) and the second signal m, (). The time domain results for
my (t) are shown in Fig. 4.38, whereas the frequency domain signals are shown in Fig. 4.39.
Additionally, the time domain results for m;(¢) are shown in Fig. 4.40, whereas the frequency
domain signals are shown in Fig. 4.41.
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Figure 4.39
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Frequency
domain signals
during QAM
modulation and
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demodulation for
the second
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% (ExampleQAMdemfilt.m)
% This program uses triangl.m and triplesinc.m
% to illustrate QAM modulation % and demodulation

% of two message
clear;clf;
ts=1l.e-4;
t=-0.04:ts:0.04;
Ta=0.01; £c=300;

signals

% Use triangl.m and triplesinc.m to generate

% two message signals of different shapes and spectra
m_sigl=triangl ((t+0.01)/0.01)-triangl((t-0.01)/0.01);
m_sig2=triplesinc(t,Ta) ;

Lm_sig=length(m_sigl);

Lfft=length(t);

Lfft=2"ceil (log2 (Lfft)) ;

M1_fre=fftshift(fft(m_sigl,Lfft));
M2_fre=fftshift(fft(m_sig2,Lfft));
fregm=(-Lfft/2:Lfft/2-1)/(Lfft*ts);

%

B_m=150; %$Bandwidth of the signal is B_m Hz.
% Design a simple lowpass filter with bandwidth B_m Hz.
h=firl (40, [B_m*ts]);

% QAM signal generated by adding a carrier to DSB-SC
s_gam=m_sigl.*cos(2*pi*fc*t)+m_sig2.*sin(2*pi*fc*t);

Lfft=length(t);

Lfft=2"ceil (log2 (Lfft)+1);



194  AMPLITUDE MODULATIONS AND DEMODULATIONS

S_gam=fftshift (fft(s_gam,Lfft));
fregs=(-Lfft/2:Lfft/2-1) /(Lfft*ts);

% Demodulation begins by using a rectifier
s_deml=s_gam. *cos (2*pi*fc*t) *2;
S_deml=fftshift(fft(s_deml,Lfft));

% Demodulate the 2nd signal
s_dem2=s_gam. *sin (2*pi*fc*t) *2;
S_dem2=fftshift(fft(s_dem2,Lfft));

%

% Using an ideal LPF with bandwidth 150 Hz

s_recl=filter(h,1l,s_deml) ;
S_recl=fftshift(fft(s_recl,Lfft));
s_rec2=filter(h,1l,s_dem2);
S_rec2=fftshift(fft(s_rec2,Lfft));

Trange=[-0.025 0.025 -2 27];

Trange2=[-0.025 0.025 -2 4];

figure (1)

subplot(221);tdl=plot(t,m_sigl);

axis(Trange); set(tdl, ’'Linewidth’,1.5);

xlabel (’{\it t} (sec)’); ylabel(’{\it m} ({\it t})’);
title(’'message signal 1');
subplot(222) ; td2=plot(t, s_gam) ;

axis(Trange); set(td2,’'Linewidth’,1.5);

xlabel (' {\it t} (sec)’); ylabel (’{\it s}_{\rm DSB} ({\it t})’)
title(’QAM modulated signal’) ;

subplot (223); td3=plot(t,s_deml) ;

axis(Trange2); set(td3, 'Linewidth’,1.5);

xlabel (/{\it t} (sec)’); ylabel(’{\it x} ({\it t})")
title(’first demodulator output’);

subplot(224); tdd=plot(t,s_recl);

axis (Trange); set(td4,’'Linewidth’,1.5);

xlabel (' {\it t} (sec)’); ylabel(’{\it m}_{d1} ({\it t})")
title(’detected signal 1’);

figure(2)

subplot(221); td5=plot(t,m_sig2);

axis(Trange); set(td5, ’'Linewidth’,1.5);

xlabel (' {\it t} (sec)’); ylabel (’{\it m} ({\it t})’);
title('message signal 2’);

subplot (222); tdé=plot(t,s_gam) ;

axis(Trange); set(tdé6, ’'Linewidth’,1.5);

xlabel (' {\it t} (sec)’); ylabel(’{\it s}_{\rm DSB} ({\it t})’)
title(’'QAM modulated signal’);
subplot(223);td7=plot(t,s_dem2) ;

axis (Trange2); set(td7, 'Linewidth’,1.5);

xlabel (' {\it t} (sec)’); ylabel(’{\it e}_1({\it t})"')
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title(’second demodulator output’);

subplot (224) ;td8=plot(t,s_rec2);

axis(Trange); set(td8, 'Linewidth’,1.5);

xlabel (' {\it t} (sec)’); ylabel (’{\it m}_{d2} ({\it t})’)
title(’detected signal 2');

Frange=[-700 700 0 250];

figure(3)

subplot (221) ; fdl=plot (freqgm, abs (M1_fre));

axis(Frange); set(fdl, 'Linewidth’,1.5);

xlabel (' {\it £} (Hz)'); ylabel(’{\it M} ({\it £})");
title(’'message 1 spectrum’) ;

subplot (222) ; fd2=plot (freqgs,abs(S_gam)) ;

axis (Frange); set(fd2, 'Linewidth’,1.5);

xlabel (" {\it £} (Hz)'); ylabel(’'{\it S}_{rm AM} ({\it £})’);
title(’QAM spectrum magnitude’);

subplot (223) ; fd3=plot (fregs,abs(S_deml)) ;

axis (Frange); set(fd3, 'Linewidth’,1.5);

xlabel (' {\it £} (Hz)’'); ylabel (' {\it E}_1({\it £})");
title(’first demodulator spectrum’);

subplot (224) ; fd4=plot (fregs,abs(S_recl));

axis (Frange); set(fd4, 'Linewidth’,1.5);

xlabel (/{\it £} (Hz)'); ylabel(’{\it M}_{d1} ({\it £})");
title(’recovered spectrum 1');

figure(4)

subplot (221) ; fdl=plot (freqm, abs (M2_fre)) ;

axis (Frange); set(fdl, 'Linewidth’,1.5);

xlabel (' {\it £} (Hz)’); ylabel (’{\it M} ({\it £})");
title(’'message 2 spectrum’) ;

subplot (222) ; fd2=plot (fregs,abs (S_gam) ) ;

axis(Frange); set(fd2, 'Linewidth’,1.5);

xlabel (' {\it £} (Hz)’); ylabel(’{\it S}_{rm AM} ({\it £})’);
title(’'QAM spectrum magnitude’);

subplot (223) ; fd7=plot (fregs,abs(S_dem2)) ;

axis(Frange); set(fd7, 'Linewidth’,1.5);

xlabel (' {\it £} (Hz)’'); ylabel(’'{\it E}_2({\it £})’);
title(’second demodulator spectrum’) ;

subplot (224) ; £fd8=plot (fregs,abs(S_rec2));

axis(Frange); set(£fd8, 'Linewidth’,1.5);

xlabel (' {\it £} (Hz)'); ylabel (’{\it M}_{d2} ({\it £f})’);
title(’recovered spectrum 2');
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PROBLEMS

Figure P.4.2-4

4.2-1 For each of the baseband signals: (i) m(t) = cos 1000mz; (ii) m(t) = 2cos 1000wt +

4.2-2

4.2-3

4.2-4

m(?)

sin 2000 t; (iii) m(z) = cos 1000z cos 30007z, do the following.

(a) Sketch the spectrum of m(z).
(b) Sketch the spectrum of the DSB-SC signal m(t) cos 10,0007¢.
(c) Identify the upper sideband (USB) and the lower sideband (LSB) spectra.

(d) Identify the frequencies in the baseband, and the corresponding frequencies in the DSB-SC,
USB, and LSB spectra. Explain the nature of frequency shifting in each case.

Repeat Prob. 4.2-1 [parts (a), (b), and (c) only] if: (i) m(r) = sinc (100r); (ii) m(r) = e~ !*I;
(i) m(t) = e~ "=l Observe that e~1=11 is e~ Il delayed by 1 second. For the last case you
need to consider both the amplitude and the phase spectra.

Repeat Prob. 4.2-1 [parts (a), (b), and (c) only] for m(z) = e~ Il if the carrier is cos (10, 1000z —
w/4).
Hint: Use Eq. (3.37).

You are asked to design aDSB-SCmodulator to generate a modulated signal km(t) cos (wct+6),
where m(?) is a signal band-limited to B Hz. Figure P4.2-4 shows a DSB-SC modulator available
in the stock room. The carrier generator available generates not cos wct, but cos3 wct. Explain
whether you would be able to generate the desired signal using only this equipment. You may
use any kind of filter you like.

(a) What kind of filter is required in Fig. P4.2-3?

(b) Determine the signal spectra at points b and ¢, and indicate the frequency bands occupied
by these spectra.

(c¢) What is the minimum usable value of w.?

3

(d) Would this scheme work if the carrier generator output were sin” w.t? Explain.

(f) Would this scheme work if the carrier generator output were cos” wt for any integern > 27

M(f}

km{{) cos w ¢
— Filter p————ro

@ ® ©

cos? w1

(a)
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4.2-5

4.2-6
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You are asked to design a DSB-SC modulator to generate a modulated signal km(z) cos wct
with the carrier frequency f = 300 kHz (w. = 27 x 300, 000). The following equipment is
available in the stock room: (i) a signal generator of frequency 100 kHz; (ii) a ring modulator;
(iii) a bandpass filter tuned to 300 kHz.

(a) Show how you can generate the desired signal.
(b) If the output of the modulator is k - m(f) cos w?, find k.

Amplitude modulators and demodulators can also be built without using multipliers. In Fig. P4.2-
6, the input ¢(#) = m(¢), and the amplitude A > |¢(#)|. The two diodes are identical, with a
resistance of » ohms in the conducting mode and infinite resistance in the cutoff mode. Show
that the output e, (¢) is given by

2R
eolt) = g wiym(®)

where w(?) is the switching periodic signal shown in Fig. 2.20a with period 27 /W, seconds.

(a) Hence, show that this circuit can be used as a DSB-SC modulator.

(b) How would you use this circuit as a synchronous demodulator for DSB-SC signals.

+cC

B0 A cos w1
¥
Slope -

4.2-7

4.2-8

4.2-9

| Vg ™

(@) (b)

In Fig. P4.2-6, if ¢(¢) = sin (wct + 0), and the output eg(¢) is passed through a low-pass filter,
then show that this circuit can be used as a phase detector, that is, a circuit that measures the
phase difference between two sinusoids of the same frequency (w).
Hint: Show that the filter output is a dc signal proportional to sin 6.

Twosignals m (¢) and m;(t), both band-limited to 5000 Hz, aret obe transmitted simultaneously
over a channel by the multiplexing scheme shown in Fig. P4.2-8. The signal at point b is the
multiplexed signal, which now modulates a carrier of frequency 20,000 Hz. The modulated
signal at point c is transmitted over a channel.

(a) Sketch signal spectra at points a, b, and c.
(b) What must be the bandwidth of the channel?

(c) Design a receiver to recover signals m(z) and my(#) from the modulated signal at
point c.

The system shown in Fig. P4.2-9 is used for scrambling audio signals. The output y(¢) is the
scrambled version of the input m().

(a) Find the spectrum of the scrambled signal y(?).
(b) Suggest a method of descrambling y(t) to obtain m(z).
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Figure P.4.2-8
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Q) |

2 cos 40,0007z

2 cos 20,0007z

A slightly modified version of this scrambler was first used commercially on the 25-mile radio-
telephone circuit connecting Los Angeles and Santa Catalina island.

Figure P.4.2-9 M(f)
Low-pass ¥(2)
> ~ filter t——>——— (Scrambled output)
0-15kHz
—15kHz 13 kHz
f kHz

2 cos 30,0007tz

4.2-10 A DSB-SC signal is given by m(t) cos (27)100¢. The carrier frequency of this signal, 1 MHz,
is to be changed to 400 kHz. The only equipment available consists of one ring modulator,
a bandpass filter centered at the frequency of 400 kHz, and one sine wave generator whose
frequency can be varied from 150 to 210 kHz. Show how you can obtain the desired signal
cm(t) cos (2 x 400 x ]O3t) from m(t) cos (271)106[. Determine the value of c.

4.3-1 Figure P4.3-1 shows a scheme for coherent (synchronous) demodulation. Show that this scheme

can demodulate the AM signal [A + m(t)] cos (2mfct) regardless of the value of A>

Figure P.4.3-1

[A + m(2)] :_cos w,t Lowpass Output

filter

COs w f

4.3-2 Sketch the AM signal [A 4 m(t)] cos (2xft) for the periodic triangle signal m(t) shown in
Fig. P4.3-2 corresponding to the modulation indices (a) © = 0.5; (b) u = 1; (¢) u = 2; (d)
u = oo. How do you interpret the case of u = 00?

7 \/ N
-10 t—>»

Figure P.4.3-2




Figure P.4.3-7

Figure P.4.3-8
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4.3-3 For the AM signal with m(z) shown in Fig. P4.3-2 and u = 0.8:

(a) Find the amplitude and power of the carrier.

(b) Find the sideband power and the power efficiency 7.

4.3-4 (a) Sketch the DSB-SC signal corresponding to the message signal m(t) = cos 27mt.

(b) The DSB-SC signal of part (a) is applied at the input of an envelope detector. Show that
the output of the envelope detector is not m(t), but |m(z)|. Show that, in general, if an AM
signal [A 4+ m(#)] cos wct is envelope-detected, the output is |A + m(¢)|. Hence, show that
the condition for recovering m(t) from the envelope detector is A + m(z) > 0 for all z.

4.3-5 Show that any scheme that can be used to generate DSB-SC can also generate AM. Is the
converse true? Explain.

4.3-6 Show that any scheme that can be used to demodulate DSB-SC can also demodulate AM. Is the
converse true? Explain.

4.3-7 In the text, the power efficiency of AM for a sinusoidal m(¢) was found. Carry out a similar
analysis when m(¢) is a random binary signal as shown in Fig. P4.3-7 and 1 = 1. Sketch the

AM signal with 4 = 1. Find the sideband’s power and the total power (power of the AM signal)

as well as their ratio (the power efficiency 7).

A —
+ t 1 PR
—-A
4.3-8 In the early days of radio, AM signals were demodulated by a crystal detector followed by a
low-pass filter and a dc blocker, as shown in Fig. P4.3-8. Assume a crystal detector to be basically
asquaring device. Determine the signals at points a, b, ¢, and d. Point out the distortionterm in
the output y(z). Show that if A > |m(z)|, the distortion is small.
eam(®) q x(®) L y®
—_— () > i > DC block
® ®© L=1 © @

4.4-1

Ina QAM system (Fig. 4.19), the locally generated carrier has a frequency error Aw and a phase
error §; that is, the receivercarrieris cos [(we + Aw)t + 8] or sin [(we + Aw)t + §]. Show that
the output of the upper receiver branch is

m1(t) cos [(Aw)t + 8] — my(¢) sin [(Aw)t + 8]
instead of m (¢), and the output of the lower receiver branch is
my(¢) sin [(Aw)t + 8] + ma(t) cos [(Aw)t + 8]

instead of my (¢).
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4.4-2

4.4-3

4.4-4

44-5

4.4-6

A modulating signal m(t) is given by:

(a) m(t) =cos 1007t + 2cos 300t
(b) m(t) = sin 1007z sin 5007t

In each case:

(i) Sketch the spectrum of m(t).

(ii) Find and sketch the spectrum of the DSB-SC signal 2m(¢) cos 1000rm¢.
(iii) From the spectrum obtainedin (ii), suppress the LSB spectrum to obtain the USB spectrum.
(iv) Knowing the USB spectrum in (ii), write the expression ¢ (¢) for the USB signal.

(v) Repeat (iii) and (iv) to obtain the LSB signal ¢, ¢ ().

For the signals in Prob. 4.4-2, use Eq. (4.20) to determine the time domain expressions ¢y gg (¢)
and ¢ygp (¢) if the carrier frequency w, = 1000.

Hint: If m(¢) is a sinusoid, its Hilbert transform my, (¢) is the sinusoid m(¢) phase-delayed by /2
rad.

Find ¢1 sp (#) and ¢ysp (¢) for the modulating signal m(t) = =B sinc? (27 Bt) with B = 2000
Hz and carrier frequency f. = 10,000 Hz. Follow these steps:

(a) Sketch spectra of m(t) and the corresponding DSB-SC signal 2m(¢) cos wct.
(b) To find the LSB spectrum, suppress the USB in the DSB-SC spectrum found in part (a).

(¢) Find the LSB signal ¢y gp (¢), which is the inverse Fourier transform of the LSB spectrum
found in part (b). Follow a similar procedure to find ¢ygg(?).

If my,(¢) is the Hilbert transform of m(z), then

(a) Show that the Hilbert transform of my, () is —m(z).
(b) Show also that the energies of m(#) and my,(t) are identical.

An LSB signal is demodulated coherently, as shown in Fig. P4.4-6. Unfortunately, because
of the transmission delay, the received signal carrier is not 2cos wct as sent, but rather, is
2 cos [(we + Aw)t + 8]. The local oscillator is still cos w,t. Show the following.

(@) When § = 0, the output y(z) is the signal m(¢) with all its spectral components shifted
(offset) by Aw.
Hint: Observe that the output y(¢) is identical to the right-hand side of Eq. (4.20a) with w,
replaced with Aw.

(b) When Aw = 0, the output is the signal m(z) with phases of all its spectral components
shifted by 8.
Hint: Show that the output spectrum Y (f) = M(f)e*’.5 for f > 0, and equal to M (f)e™I®
when f < 0.

(c) Ineach of these cases, explain the nature of distortion.
Hint: For part (a), demodulation consists of shifting an LSB spectrum to the left and right
by we + Aw and low-pass-filtering the result. For part (b), use the expression (4.20b) for
¢LsB (1), multiply it by the local carrier 2 cos (wct + 8), and low-pass-filter the result.
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Figure P.4.4-6 oLsg (O Low-pass ()
> * filter

T

2 cos [(w, + wA)t + 0]

4.4-7 A USB signal is generated by using the phase shift method (Fig. 4.17). If the input to this system
is my, (t) instead of m(t), what will be the output? Is this signal still an SSB signal with bandwidth
equal to that of m(#)? Can this signal be demodulated [to get back m(#)]? If so, how?

4.5-1 A vestigial filter H;(f) shown in the transmitter of Fig. 4.21 has a transfer function as shown in
Fig. P4.5-1. The carrier frequency is f = 10 kHz and the baseband signal bandwidth is 4 kHz.
Find the corresponding transfer function of the equalizer filter H,(f) shown in the receiver of
Fig. 4.21.
Hint: Use Eq. (4.25).

Figure P.4.5-1 H;(f)

21..

1+

f kHz —




ANGLE MODUIATION AND
DEMODUIATION

lating the amplitude, frequency, and phase of a sinusoidal carrier of frequency f..

In that chapter, we focused on various linear amplitude modulation systems and their
demodulations. Now we discuss nonlinear frequency modulation (FM) and phase modulation
(PM), often collectively known as angle modulation.

ﬁ s discussed in the previous chapter, a carrier modulation can be achieved by modu-

5.1 NONLINEAR MODULATION

In AM signals, the amplitude of a carrier is modulated by a signal m(¢), and, hence, the
information content of m(t) is in the amplitude variations of the carrier. As we have seen,
the other two parameters of the carrier sinusoid, namely its frequency and phase, can also
be varied in proportion to the message signal as frequency-modulated and phase-modulated
signals, respectively. We now describe the essence of frequency modulation (FM) and phase
modulation (PM).

False Start

Inthe 1920s, broadcasting was in itsinfancy. However, there was an active search for techniques
to reduce noise (static). Since the noise power is proportional to the modulated signal band-
width (sidebands), efforts were focused on finding a modulation scheme that would reduce the
bandwidth. More important still, bandwidth reduction also allows more users, and there were
rumors of a new method that had been discovered for eliminating sidebands (no sidebands, no
bandwidth!). The idea of frequency modulation (FM), where the carrier frequency would be
varied in proportion to the message m(t), was quite intriguing. The carrier angular frequency
w(¢) would be varied with time so that w(¢#) = w. + km(t), where k is an arbitrary constant.
If the peak amplitude of m(z) is m,, then the maximum and minimum values of the carrier
frequency would be w. + kmy, and w. — kmy,, respectively. Hence, the spectral components
would remain within this band with a bandwidth 2km,, centered at w.. The understanding was
that controlling the constant parameter k£ can control the modulated signal bandwidth. While
this is true, there was also the hope that by using an arbitrarily small &, we could make the
information bandwidth arbitrarily small. This possibility was seen as a passport to communi-
cation heaven. Unfortunately, experimental results showed that the underlying reasoning was
seriously wrong. The FM bandwidth, as it turned out, is always greater than (at best equal to)
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the AM bandwidth. In some cases, its bandwidth was several times that of AM. Where was
the fallacy in the original reasoning? We shall soon find out.

The Concept of Instantaneous Frequency

While AM signals carry a message with their varying amplitude, FM signals can vary the
instantaneous frequency in proportion to the modulating signal m(¢). This means that the
carrier frequency is changing continuously every instant. Prima facie, this does not make
much sense, since to define a frequency, we must have a sinusoidal signal at least over one
cycle (or a half-cycle or a quarter-cycle) with the same frequency. This problem reminds us
of our first encounter with the concept of instantaneous velocity in a beginning mechanics
course. Until the presentation of derivatives via Leibniz and Newton, we were used to thinking
of velocity as being constant over an interval, and we were incapable of even imagining that
velocity could vary at each instant. We never forget, however, the wonder and amazement that
was caused by the contemplation of derivative and instantaneous velocity when these concepts
were first introduced. A similar experience awaits the reader with respect to instantaneous
frequency.

Let us consider a generalized sinusoidal signal ¢(¢) given by

@(t) =Acos 0(t) (5.1

where 6(¢) is the generalized angle and is a function of ¢. Figure 5.1 shows a hypothetical
case of 6(¢). The generalized angle for a conventional sinusoid A cos (w.t + 6p) is a straight
line w,t + 6p, as shown in Fig. 5.1. A hypothetical case general angle of 6(¢) happens to be
tangential to the angle (w.t + 6p) at some instant ¢. The crucial point is that, around #, over
a small interval Az — O, the signal ¢(¢) = A cos 6(¢) and the sinusoid A cos (w.t + ) are
identical; that is,

(1) = Acos (wct + 6p) nH<t<nt
We are certainly justified in saying that over this small interval Az, the angular frequency of
() is w.. Because (wt + p) is tangential to 6(¢), the angular frequency of ¢(¢) is the slope

of its angle 6(¢) over this small interval. We can generalize this concept at every instant and
define that the instantaneous frequency w; at any instant ¢ is the slope of 6(¢) at ¢. Thus, for

8{1)1
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() in Eq. (5.1), the instantaneous angular frequency and the generalized angle are related via

wi(t) = % (5.22)
t
() = / wi(a) da (5.2b)

Now we can see the possibility of transmitting the information of m(z) by varying the angle 6 of
a carrier. Such techniques of modulation, where the angle of the carrier is varied in some manner
with a modulating signal m(z), are known as angle modulation or exponential modulation.
Two simple possibilities are phase modulation (PM) and frequency modulation (FM). In
PM, the angle 6(¢) is varied linearly with m(¢):

0(t) = wct + 6p + kpm(t)

where k, is a constant and w, is the carrier frequency. Assuming 6y = 0, without loss of
generality,

1) = wet + kpm(t) (5.3a)
The resulting PM wave is
@p (1) = A cos [wet + kpm(2)] (5.3b)

The instantaneous angular frequency w;(¢) in this case is given by

w;i(t) = Cfi—f = w + kpr(t) (5.3¢)

Hence, in PM, the instantaneous angular frequency w; varies linearly with the derivative of
the modulating signal. If the instantaneous frequency wj is varied linearly with the modulating
signal, we have FM. Thus, in FM the instantaneous angular frequency wj is

wi(f) = @ + kymir) (5.4a)

where Ky is a constant. The angle 0(¢) is now

t
0(r) = / [we + krm(a)]da

—00

t
= wt +kf/ m(a)da

—00

Here we have assumed the constant term in 6(¢) to be zero without loss of generality. The FM
wave is

4

@ (1) = A cos [w(r + ks f m(a)da] (5.5)

-
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Relationship between FM and PM

From Egs. (5.3b) and (5.5), it is apparent that PM and FM not only are very similar but are
inseparable. Replacing m(r) in Eq. (5.3b) with [m(«)da changes PM into FM. Thus, a signal
that is an FM wave corresponding to m(z) is also the PM wave corresponding to [m(c) de
(Fig. 5.2a). Similarly, a PM wave corresponding to m(¢) is the FM wave corresponding to
m(t) (Fig. 5.2b). Therefore, by looking only at an angle-modulated signal ¢(¢), there is no way
of telling whether it is FM or PM. In fact, it is meaningless to ask an angle-modulated wave
whether it is FM or PM. It is analogous to asking a married man with children whether he is
a father or a son. This discussion and Fig. 5.2 also show that we need not separately discuss
methods of generation and demodulation of each type of modulation.

Equations (5.3b) and (5.5) show that in both PM and FM the angle of a carrier is varied
in proportion to some measure of m(¢). In PM, it is directly proportional to m(z), whereas in
FM, it is proportional to the integral of m(z). As shown in Fig. 5.2b, a frequency modulator
can be directly used to generate an FM signal or the message input m(z) can be processed
by a filter (differentiator) with transfer function H(s) = s to generate PM signals. But why
should we limit ourselves to these cases? We have an infinite number of possible ways of
processing m(t) before FM. If we restrict the choice to a linear operator, then a measure of
m(t) can be obtained as the output of an invertible linear (time-invariant) system with transfer
function H (s) or impulse response A(). The generalized angle-modulated carrier ¢, (¢) can be
expressed as

Pem (1) = A cos[wct + ¥ (1)] (5.6a)
t
= A cos [wct + / m(a) h(t — a) da} (5.6b)

As long as H(s) is a reversible operation (or invertible), m(t) can be recovered
from ¥ (f) by passing it through a system with transfer function [H (s)]~! as shown in
Fig. 5.3. Now PM and FM are just two special cases with h(t) =kpd(¢) and h(t) = kru(2),
respectively.

This shows that if we analyze one type of angle modulation (such as FM), we can readily
extend those results to any other kind. Historically, the angle modulation concept began with
FM, and here in this chapter we shall primarily analyze FM, with occasional discussion of
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PM. But this does not mean that FM is superior to other kinds of angle modulation. On the
contrary, for most practical signals, PM is superior to FM. Actually, the optimum performance
is realized neither by pure PM nor by pure FM, but by something in between.

Power of an Angle-Modulated Wave

Although the instantaneous frequency and phase of an angle-modulated wave can vary with
time, the amplitude A remains constant. Hence, the power of an angle-modulated wave
(PM or FM) is always A? /2, regardless of the value of k, or ;.

Exomple 5.1 Sketch FM and PM waves for the modulating signal m(z) shown in Fig. 5.4a. The constants
ks and k;, are 27 x 10° and 107, respectively, and the carrier frequency £, is 100 MHz.

Figure 5.4
FM and PM

waveforms.

m)  Je—2x10"4—>| m(t)

20,000
J\ /[ N\ > 1>
-1 \/ \/ 20,000 ©

) (@

For FM:

w; = wc + kpm(t)
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Dividing throughout by 277, we have the equation in terms of the variable f (frequency in
hertz). The instantaneous frequency f; is

k
fi=fe+ Em(f)
=108 4 10°m(r)
(Fmin = 108 + 10° [m(1)]py = 99.9 MHz
(F)max = 10 + 10° [m(#)]max = 100.1 MHz
Because m(t) increases and decreases linearly with time, the instantaneous frequency

increases linearly from 99.9 to 100.1 MHz over a half-cycle and decreases linearly from
100.1 to 99.9 MHz over the remaining half-cycle of the modulating signal (Fig. 5.4b).

PM for m(t) is FM for m(t). This also follows from Eq. (5.3¢).
For PM:

ky

fi ch + —m(t)
2

=108 + 5 ()

(fmin = 108 + 5 (1) ], = 108 — 10° = 99.9 MHz
(fmax = 108 4+ 5 [1(1) ] ey = 100.1 MHz

Because r(t) switches back and forth from a value of —20,000 to 20,000, the carrier
frequency switches back and forth from 99.9 to 100.1 MHz every half-cycle of #(t), as
shown in Fig. 5.4d.

This indirect method of sketching PM [using ru(t) to frequency-modulate a carrier] works
as long as m(¢) is a continuous signal. If m(z) is discontinuous, it means that the PM sig-
nal has sudden phase changes and, hence, ri(f) contains impulses. This indirect method
fails at points of the discontinuity. In such a case, a direct approach should be used at the
point of discontinuity to specify the sudden phase changes. This is demonstrated in the next
example.

Exomple 5.2  Sketch FM and PM waves for the digital modulating signal m(t) shown in Fig. 5.5a. The
constants k¢ and k, are 27 x 10° and 7 /2, respectively, and £, = 100 MHz.

For FM:
kr 3 5
fi=fc+ 2”m(t) = 10° 4+ 10°m(z)

Because m(t) switches from 1 to —1 and vice versa, the FM wave frequency switches
back and forth between 99.9 and 100.1 MHz, as shown in Fig. 5.5b. This scheme of carrier
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Figure 5.5
FM and PM
waveforms.
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frequency modulation by a digital signal (Fig. 5.5b) is called frequency shift keying
(FSK) because information digits are transmitted by keying different frequencies (see
Sec. 7.8).

For PM:

ek o8 L
fi=f+ 21tm(t) =10° + 4m(t)

The derivative r(t) (Fig. 5.5¢) is zero except at points of discontinuity of m(t) where
impulses of strength +2 are present. This means that the frequency of the PM signal stays
the same except at these isolated points of time! It is not immediately apparent how an
instantaneous frequency can be changed by an infinite amount and then changed back to
the original frequency in zero time. Let us consider the direct approach:

Ppy (7)) = A cos [wct + kym(1)]

T
= A cos [a)ct n -im(t)]

_ A sin w.t when m(t) = —1
| —A sin w.t when m(t) =1

This PM wave is shown in Fig. 5.5d. This scheme of carrier PM by a digital signal is
called phase shift keying (PSK) because information digits are transmitted by shift-
ing the carrier phase. Note that PSK may also be viewed as a DSB-SC modulation
by m(t).

The PM wave ¢, (?) in this case has phase discontinuities at instants where impulses
of ru(¢) are located. At these instants, the carrier phase shifts by 7 instantaneously. A finite
phase shift in zero time implies infinite instantaneous frequency at these instants. This
agrees with our observation about m(¢).

The amount of phase discontinuity in ¢, () at the instant where m(t) is discontinuous
is kpmy, where my is the amount of discontinuity in m(z) at that instant. In the present
example, the amplitude of m(¢) changes by 2 (from —1 to 1) at the discontinuity. Hence,
the phase discontinuity in ¢y, (¢) is kpmg = (/2) x 2 = 7 rad, which confirms our
earlier result.
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When m(¢) is a digital signal (as in Fig. 5.5a), ¢, (t) shows a phase discontinuity
where m(t) has a jump discontinuity. We shall now show that to avoid ambiguity in
demodulation, in such a case, the phase deviation k,m(#) must be restricted to a range
(—m, m). For example, if k, were 37 /2 in the present example, then

Ei)
a
P

@py (1) = A cos [wct + §;-m(t)]

In this case ¢y, (1) = Asin w.t when m(t) = 1 or —1/3. This will certainly cause
ambiguity at the receiver when A sin w,t is received. Specifically, the receiver cannot
decide the exact value of m(f). Such ambiguity never arises if k,m(z) is restricted to the
range (—m, ).

oS b e

What causes this ambiguity? When m(¢) has jump discontinuities, the phase of ¢, ()
changes instantaneously. Because a phase ¢, + 2n is indistinguishable from the phase ¢,,
ambiguities will be inherent in the demodulator unless the phase variations are limited to the
range (—m, ). This means k, should be small enough to restrict the phase change k,m(?) to
the range (—m, ).

No such restriction on k;, is required if m(¢) is continuous. In this case the phase change is
not instantaneous, but gradual over time, and a phase ¢, + 2n7 will exhibit » additional carrier
cycles in the case of phase of only ¢,. We can detect the PM wave by using an FM demodulator
followed by an integrator (see Prob. 5.4-1). The additional n cycles will be detected by the
FM demodulator, and the subsequent integration will yield a phase 2nm. Hence, the phases ¢,
and ¢, + 2nm can be detected without ambiguity. This conclusion can also be verified from
Example 5.1, where the maximum phase change A¢ = 10r.

Because a band-limited signal cannot have jump discontinuities, w e can also say that when
m(t) is band-limited, k,, has no restrictions.

5.2 BANDWIDTH OF ANGLE-MODULATED WAVES

Unlike AM, angle modulation is nonlinear and no properties of Fourier transform can be
directly applied for its bandwidth analysis. To determine the bandwidth of an FM wave, let us
define

t
a(t):/ m(a) da 5.7

and define
@F\i ) = Ae}'lanff%ﬁ.ra{r)] - Aefi‘fa(r)ejwfr (5.82)
such that its relationship to the FM signal is
@ry (1) = Re [, (1] (5.8b)

Expanding the exponential &/%¢ ) of Eq. (5.8a) in power series yields
12

. L7 .
Goyg () = A [1 + jkralry — 2—j:a2(r) e +j”$a”(t) +. ] et (5.92)
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and

Pen (t) =Re I(:aFM (M

. . g,
= o8 wot — ka(t) sin wet i a - {t) cos w.r + —{Fa (r)sin e+ - | (5.9b)
The modulated wave consists of an unmodulated carrier plus various amplitude-modulated
terms, such as a(¢) sin wct, az(t) cos wet, a>(¢)sin wet, . ... The signal a(¢) is an integral
of m(t). If M (f) is band-limited to B, A(f) is also band-limited* to B. The spectrum of
a%(1) is simply A(f) * A(f) and is band-limited to 2B. Similarly, the spectrum of a”(¢) is
band-limited to nB. Hence, the spectrum consists of an unmodulated carrier plus spectra of
a(), az(t), ..., d*(t), ..., centered at w,. Clearly, the modulated wave is not band-limited.
It has an infinite bandwidth and is not related to the modulating-signal spectrum in any simple
way, as was the case in AM.

Although the bandwidth of an FM wave is theoretically infinite, for practical signals with
bounded |a(¢)|, |kra(?)| willremain finite. Because n! increases much faster than |ka(1)" , we
have

kjfa” ()
=0 for large n

n!

Hence, we shall see that most of the modulated-signal power resides in a finite bandwidth.
This is the principal foundation of the bandwidth analysis for angle-modulations. There are
two distinct possibilities in terms of bandwidths—narrowband FM and wideband FM.

Narrowband Angle Modulation Approximation
Unlike AM, angle modulations are nonlinear. The nonlinear relationship between a(¢) and ¢ (¢)
is evident from the terms involving a"(¢) in Eq. (5.9b). When &y is very small such that

lkpa(?)] < 1

then all higher order terms in Eq. (5.9b) are negligible except for the first two. We then have a
good approximation

Peaa (1) = A [0S wpt — kpa(?) sin @] (5.10)
This approximation is a linear modulation that has an expression similar to that of the AM
signal with message signal a(z). Because the bandwidth of a(¢) is BHz, the bandwidth of
@pv (1) in Eq. (5.10) is 2B Hz according to the frequency-shifting property due to the term
a(t) sin wct. For this reason, the FM signal for the case of |kfa(f)| < 1 is called narrowband
FM (NBFM). Similarly, the narrowband PM (NBPM) signal is approximated by

P () 7 A [cos wet — kpm(t) sin wet] (5.11)

NBPM also has the approximate bandwidth of 2B.

* This is because integration is a linear operation equivalent to passing a signal through a transfer function 1/j27f.
Hence, if M (f) is band-limited to B, A(f) must also be band-limited to B.
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A comparison of NBFM [Eq. (5.10)] with AM [Eq. (5.9a)] brings out clearly the similarities
and differences between the two types of modulation. Both have the same modulated bandwidth
2B. The sideband spectrum for FM has a phase shift of 77 /2 with respect to the carrier, whereas
that of AM is in phase with the carrier. It must be remembered, however, that despite the
apparent similarities, the AM and FM signals have very different waveforms. In an AM signal,
the oscillation frequency is constant and the amplitude varies with time, whereas in an FM
signal, the amplitude stays constant and the frequency varies with time.

Wideband FM (WBFM) Bandwidth Analysis: The Fallacy Exposed
Note that an FM signal is meaningful only if its frequency deviation is large enough. In other
words, practical FM chooses the constant k¢ large enough that the condition |kfa(t)| <1
is not satisfied. We call FM signals in such cases wideband FM (WBFM). Thus, in ana-
lyzing the bandwidth of WBFM, we cannot ignore all the higher order terms in Eq. (5.9b).
To begin, we shall take here the route of the pioneers, who by their intuitively simple rea-
soning came to grief in estimating the FM bandwidth. If we could discover the fallacy in
their reasoning, we would have a chance of obtaining a better estimate of the (wideband) FM
bandwidth.

Consider a low-pass m(t) with bandwidth B Hz. This signal is well approximated by a
staircase signal 7(¢), as shown in Fig. 5.6a. The signal m(¢) is now approximated by pulses of
constant amplitude. For convenience, each of these pulses will be called a “cell.” To ensure
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that 7(¢) has all the information of m(¢), the cell width in /%(¢) must be no greater than the
Nyquist interval of 1/2B second according to the sampling theorem (Chapter 6).

It is relatively easier to analyze FM corresponding to m(¢) because its constant amplitude
pulses (cells) of width T = 1/2B second. Consider a typical cell starting at ¢t = #. This
cell has a constant amplitude m(z;). Hence, the FM signal corresponding to this cell is a
sinusoid of frequency w. + k¢m(t;) and duration T = 1/2B, as shown in Fig. 5.6b. The FM
signal for m(t) consists of a sequence of such constant frequency sinusoidal pulses of duration
T = 1/2B corresponding to various cells of m(¢). The FM spectrum for m(¢) consists of
the sum of the Fourier transforms of these sinusoidal pulses corresponding to all the cells.
The Fourier transform of a sinusoidal pulse in Fig. 5.6b (corresponding to the kth cell) is a
sinc function shown shaded in Fig. 5.6¢c see Eq. (3.27a) with t = 1/2B and Eq. (3.26) with

fO :fc —+ kfm(tk)/27l':

1 + kemit 1 — @y — kymin]
rect(2Br) cos [wet + krm(t )] — Esinc [w we ¥ kym( k)] + —sinc [w @e — Ky k):|

4B 48

Note that the spectrum of this pulse is spread out on either side of its center frequency w, +
kgm(t) by 47 B as the main lobe of the sinc function. Figure 5.6¢ shows the spectra of sinusoidal
pulses corresponding to various cells. The minimum and the maximum amplitudes of the cells
are —my, and my, respectively. Hence, the minimum and maximum center frequencies of
the short sinusoidal pulses corresponding to the FM signal for all the cells are w. — kfmy,
and w, + kym,, respectively. Consider the sinc main lobe of these frequency responses as
significant contribution to the FM bandwidth, as shown in Fig. 5.6¢c. Hence, the maximum and
the minimum significant frequencies in this spectrum are w. +k¢ m,+4m B and w. —kgm,—47 B,
respectively. The FM spectrum bandwidth is approximately

Beng = —- ke, + 878y =2 (™ 1 28) Hz
PM = o W Tp T OB =2\ o p

We can now understand the fallacy in the reasoning of the pioneers. The maximum and
minimum carrier frequencies are w. + k¢ my, and w. — kg my, respectively. Hence, it was reasoned
that the spectral components must also lie in this range, resulting in the FM bandwidth of 2k m,.
The implicit assumption was that a sinusoid of frequency w has its entire spectrum concentrated
at w. Unfortunately, this is true only of the everlasting sinusoid with T = oo (because it turns
the sinc function into an impulse). For a sinusoid of finite duration T seconds, the spectrum is
spread out by the sinc on either side of w by at least the main lobe width of 277 /T. The pioneers
had missed this spreading effect.

For notational convenience, given the deviation of the carrier frequency (in radians per
second) by +ksm,, we shall denote the peak frequency deviation in hertz by Af. Thus,

Mmax — Mmin mp
/ ! 2.2 ! f27[

The estimated FM bandwidth (in hertz) can then be expressed as
Brvm >~ 2(Af +2B) (5.12)
The bandwidth estimate thus obtained is somewhat higher than the actual value because this

is the bandwidth corresponding to the staircase approximation of m(z), not the actual m(t),
which is considerably smoother. Hence, the actual FM bandwidth is somewhat smaller than
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this value. Based onFig. 5.6c¢, itis clear that a better FM bandwidth approximation is between
[2Af, 2Af +4B]

Therefore, we should readjust our bandwidth estimation. To make this midcourse correction,
we observe that for the case of NBFM, k; is very small. Hence, given a fixed m,, Af is
very small (in comparison to B) for NBFM. In this case, we can ignore the small Af term in
Eq. (5.12) with the result

Bry &~ 48

But we showed earlier that for narrowband, the FM bandwidth is approximately 2B Hz. This
indicates that a better bandwidth estimate is

kymp
Bem =24 + By =2( L +B (5.13)

This is precisely the result obtained by Carson,! who investigated this problem rigorously
for tone modulation [sinusoidal m(#)]. This formula goes under the name Carson’s rule
in the literature. Observe that for a truly wideband case, where Af > B, Eq. (5.13) can be
approximated as

Bim & 2Af Af > B (5.14)

Because Aw = kymy, this formula is precisely what the pioneers had used for FM bandwidth.
The only mistake was in thinking that this formula will hold for all cases, especially for the
narrowband case, where Af < B.

We define a deviation ratio S as

p="- (5.15)

Carson’s rule can be expressed in terms of the deviation ratio as
Brpm =2B(B + 1) (5.16)

The deviation ratio controls the amount of modulation and, consequently, plays a role
similar to the modulation index in AM. Indeed, for the special case of tone-modulated FM, the
deviation ratio S is called the modulation index.

Phase Modulation
All the results derived for FM can be directly applied to PM. Thus, for PM, the instantaneous
frequency is given by

w; = w + kpn(t)
Therefore, the peak frequency deviation Af is given by

Af = kp [m(t)]ma; .;ng(t)min] (5.17a)
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If we assume that

ﬁlp = [m(t)]max = - |m(1)mm| (5-17b)
then
'Pitﬁ
&f =kps? (5.17¢)
Therefore,*
Bem = 2(Af + B) (5.182)
e
=2<—"'—"’1 +B> (5.18b)
21

One very interesting aspect of FM is that Aw = k¢m, depends only on the peak value of m(¢).
Itis independent of the spectrum of m(¢). On the other hand, in PM, Aw = k1, depends on the
peak value of m(t). But ri1(¢) depends strongly on the spectral composition of m(¢). The presence
of higher frequency components in m(#) implies rapid time variations, resulting in a higher
value of rin,. Conversely, predominance of lower frequency components will result in a lower
value of r'np. Hence, whereas the FM signal bandwidth [Eq. (5.13)] is practically independent
of the spectral shape of m(t), the PM signal bandwidth [Eq. (5.18)] is strongly affected by the
spectral shape of m(z). For m(t) with a spectrum concentrated at lower frequencies, Bpm will
be smaller than when the spectrum of m(t) is concentrated at higher frequencies.

Spectral Analysis of Tone Frequency Modulation

For an FM carrier with a generic message signal m(¢), the spectral analysis requires the use of
staircase signal approximation. Tone modulation is a special case for which a precise spectral
analysis is possible: that is, when m(¢) is a sinusoid. We use this special case to verify the FM
bandwidth approximation. Let

m(t) = a cos wy,t
From Eq. (5.7), with the assumption that initially a(—o0) = 0, we have

o .
a(t) = — sin w,t
m

Thus, from Eq. (5.8a), we have

éFM{f] = Aerrr"'kfafwm Sin )
Moreover

Aw = kym, = aky

* Equation (5.17a) can be applied only if m(¢) is a continuous function of time. If m(z) has jump discontinuities, its
derivative does not exist. In such a case, we should use the direct approach (discussed in Example 5.2) to find
©pp (¢) and then determine Aw from gy (2).
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and the bandwidth of m(z) is 27 B = wy, rad/s. The deviation ratio (or in this case, the
modulation index) is

= Af Ao akr
" B 2B wnm
Hence,

é\)FM (I) — Aej(wct+ﬁ sin wyp,t)

— Aengt(efﬂ sin a)mt) (519)

Note that e/#5i0 @n? is a periodic signal with period 27 /w,, and can be expanded by the
exponential Fourier series, as usual,

)
ejﬂsinwmtz Z Dneiwmt

n=-—00

where

0 Tfm ) i T .
D, = m e}ﬁ SNl o —jRoml gy f e;(ﬁ i x—px) dx
2}1: — 7ty T it

The integral on the right-hand side cannot be evaluated in a closed form but must be integrated
by expanding the integrand in infinite series. This integral has been extensively tabulated and
is denoted by J,,(B8), the Bessel function of the first kind and the nth order. These functions are
plotted in Fig. 5.7a as a function of » for various values of 8. Thus,

o0
eiﬁ sin wmt _ Z Jn(ﬁ)ei"wmt (5.20)

n=—00

Substituting Eq. (5.20) into Eq. (5.19), we get

o
Py () = A Z Tu(B)@et+neon)

n=-—00

and

P (1) =AY Ju(B) cos (wc + nwm)t

n=—00

The tone-modulated FM signal has a carrier component and an infinite number of sidebands
of frequencies w; £ wm, e £ 2wy, . .., ©c £ Wy, ..., as shown in Fig. 5.7b. This is in stark
contrast to the DSB-SC spectrum of only one sideband on either side of the carrier frequency.
The strength of the nth sideband at w = w, +nw,, is* J,(B). From the plots of J,,(8) in Fig. 5.7a,
it can be seen that for a given 8, J,(B) decreases with n, and there are only a finite number

* Also J_,(B) = (—1)"J,(B). Hence, the magnitude of the LSB at w = w; — nwy, is the same as that of the USB at
w = w¢ + hwpy.
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Figure 5.7
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of significant sideband spectral lines. It can be seen from Fig. 5.7a that J,,(8) is negligible for
n > B + 1. Hence, the number of significant sideband impulses is 8 + 1. The bandwidth of
the FM carrier is given by

Brm = 2(B + D)fm
= 2(Af +B)

which corroborates our previous result [Egs. (5.13)]. When 8 « 1 (NBFM), there is only one
significant sideband and the bandwidth Bpy = 2f;;, = 2B. It is important to note that this tone
modulation case analysis is a verification, not a proof, of Carson’s formula.

In the literature, tone modulation in FM is often discussed in great detail. Since, however,
angle modulation is a nonlinear modulation, the results derived for tone modulation may
have little connection to practical situations. Indeed, these results are meaningless at best and
misleading at worst when generalized to practical signals.* As authors and instructors, we feel
that too much emphasis on tone modulation can be misleading. For thisreason we have omitted
further such discussion here.

The method for finding the spectrum of a tone-modulated FM wave can be used for finding
the spectrum of an FM wave when m(t) is a general periodic signal. In this case,

P (1) = Al [40)]

* For instance, based on tone modulation analysis, it is often stated that FM is superior to PM by a factor of 3 in
terms of the output SNR. This is in fact untrue for most of the signals encountered in practices.
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Because a(t) is a periodic signal, %72 is also a periodic signal, which can be expressed as an
exponential Fourierseriesin the preceding expression. After this, it is relatively straightforward
to write @p,, (¢) in terms of the carrier and the sidebands.

Example 5.3

(a) Estimate Bry and Bpym for the modulating signal m(¢) in Fig. 5.4a for kr = 27 x 10°
and k, = 5. Assume the essential bandwidth of the periodic m(¢) as the frequency of
its third harmonic.

(b) Repeat the problem if the amplitude of m(¢) is doubled [if m(¢) is multiplied by 2].

(a) The peak amplitude of m(¢) is unity. Hence, m, = 1. We now determine the
essential bandwidth B of m(z). It is left as an exercise for the reader to show that the
Fourier series for this periodic signal is given by

2

n=9Y C t =—— =10
m(t) ; » COS nwo wo %102 T
where
8
c, = | i n odd
§] neven

It can be seen that the harmonic amplitudes decrease rapidly with n. The third harmonic
is only 11% of the fundamental, and the fifth harmonic is only 4% of the fundamental.
This means the third and fifth harmonic powers are 1.21 and 0.16%, respectively, of
the fundamental component power. Hence, we are justified in assuming the essential
bandwidth of m() as the frequency of its third harmonic, that is,

10*
B=3x —2— = 15kHz
For FM:

1

1
= — (27 x 10°)(1) = 100
2ﬂkfmp 271( 7 x 10°)(1)

Af
and
Brm = 2(Af + B) = 230kHz

Alternatively, the deviation ratio 8 is given by

Af 100
=3 =T1s

and

100
Bem=2B(B+1)=230 (F + 1) = 230kHz
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For PM: The peak amplitude of #u(z) is 20,000 and
Af = ikprhp = 50 kHz
2z
Hence,
Bpm = 2(Af + B) = 130kHz

Alternately, the deviation ratio 8 is given by

_AF 50

A B 15

and

50
Bpm =2B(B+1) =30 (-1—-5 + 1) = 130 kHz.

(b) Doubling m(t) doubles its peak value. Hence, m;, = 2. Butits bandwidth is unchanged
so that B = 15 kHz.
For FM:

1 1 5
and

Brm = 2(Af + B) = 430kHz

Alternately, the deviation ratio 8 is given by

and
Bpm =2B(B 4+ 1) =30 <210?0 + 1) =430kHz
For PM: Doubling m(t) doubles its derivative so that now 7z, = 40,000, and
Af = %kpfnp = 100kHz
and

Bpm = 2(Af + B) = 230kHz
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Alternately, the deviation ratio B is given by

8= Af 100
T B T 15
and
100
Bpm =2B(B+1) =30 FH = 230kHz

Observe that doubling the signal amplitude [doubling m(#)] roughly doubles frequency
deviation Af of both FM and PM waveforms.

Example 5.4  Repeat Example 5.1 if m(z) is time-expanded by a factor of 2: that is, if the period of m(¢) is
4x 107

Recall that time expansion of a signal by a factor of 2 reduces the signal spectral width
(bandwidth) by a factor of 2. We can verify this by observing that the fundamental fre-
quency is now 2.5 kHz, and its third harmonic is 7.5 kHz. Hence, B = 7.5 kHz, which is
half the previous bandwidth. Moreover, time expansion does not affect the peak amplitude
and thus m;, = 1. However, 71, is halved, that is, iz, = 10, 000.

For FM:

1
Af = Ekfmp = 100kHz
Bpv = 2(Af +B) = 2(100+ 7.5) = 215kHz
For PM:
|
Af = T i, = 25kHz

Bpm = 2(Af + B) = 65kHz

Note that time expansion of m(#) has very little effect on the FM bandwidth, but it halves the

PM bandwidth. This verifies our observation that the PM spectrum is strongly dependent
on the spectrum of m(z).

Examp|e 5.5 Anangle-modulated signal with carrier frequency w. = 2 x 107 is described by the equation
@em (1) = 10cos (wct + 5 sin 3000z + 10 sin 20007 ¢)
(a) Find the power of the modulated signal.

(b) Find the frequency deviation Af.
(¢) Find the deviation ratio S.
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(d) Find the phase deviation Ag.
(e) Estimate the bandwidth of ¢, (¢).

The signal bandwidth is the highest frequency in m(¢) (or its derivative). In this case
B =20007/27 = 1000 Hz.

(a) The carrier amplitude is 10, and the power is

102

P = =50
2

(b) To find the frequency deviation Af, we find the instantaneous frequency w;, given by
d
w; = EO(l) = w, + 15,000 cos 3000z + 20,000 cos 2000 ¢

The carrier deviationis 15,000 cos 3000z 4+ 20, 000 cos 20007 ¢. The two sinusoids
will add in phase at some point, and the maximum value of this expressionis 15,000+
20, 0007 . This is the maximum carrier deviation Aw. Hence,

A
Af =22 —12,387.32 He
2
Af  12,38732
© =" oo = 12387

(d) The angle 8(¢) = wt + (5 sin 3000¢ + 10 sin 20007 ¢). The phase deviation is the
maximum value of the angle inside the parentheses, and is given by A¢ = 15 rad.

(e) Bem = 2(Af + B) = 26,774.65 Hz
Observe the generality of this method of estimating the bandwidth of an angle-
modulated waveform. We need not know whether it is FM, PM, or some other kind
of angle modulation. It is applicable to any angle-modulated signal.

A Historical Note: Edwin H. Armstrong (1890-1954)

Today,nobody doubts thatFM has a key place in broadcasting and communication. As recently
as the 1960s, however, the FM broadcasting seemed doomed because it was so uneconomical
in bandwidth usage.

The history of FM is full of strange ironies. The impetus behind the development of FM
was the desire to reduce signal transmission bandwidth. Superficial reasoning showed that it
was feasible to reduce the transmission bandwidth by using FM. But the experimental results
showed otherwise. The transmission bandwidth of FM was actually larger than that of AM.
Careful mathematical analysis by Carson showed that FM indeed required a larger bandwidth
than AM. Unfortunately, Carson did not recognize the compensating advantage of FM in
its ability to suppress noise. Without much basis, he concluded that FM introduces inherent
distortion and has no compensating advantages whatsoever.! In a later paper, he continues
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“In fact, as more and more schemes are analyzed and tested, and as the essential nature of
the problem is more clearly perceivable, we are unavoidably forced to the conclusion that
static (noise), like the poor, will always be with us.”? The opinion of one of the most able
mathematicians of the day in the communication field, thus, set back the development of FM
by more than a decade. The noise-suppressing advantage of FM was later proved by Major
Edwin H. Armstrong,> a brilliant engineer whose contributions to the field of radio systems
are comparable to those of Hertz and Marconi. It was largely the work of Armstrong that was
responsible for rekindling the interest in FM.

Although Armstrong did not invent the concept, he has been considered the father of
modern FM. Born on December 18, 1890, in New York City, Edwin H. Armstrong is widely
regarded as one of the foremost contributors to radio electronics of the twentieth century.
Armstrong was credited with the invention of the regenerative circuit (U.S. Patent 1,113,149
issued in 1912, while he was a junior at Columbia University), the superheterodyne circuit
(U.S. Patent 1,342,885 issued in 1918, while serving in the U.S. Army stationed in Paris, during
World War 1), the super-regenerative circuit (U.S. Patent 1,424,065, issued in 1922), and the
complete FM radio broadcasting system (U.S. Patent 1,941,066, 1933). All are breakthrough
contributions to the radio field. Fortune magazine in 1939 declared: Wideband frequency mod-
ulation is the fourth, and perhaps the greatest, in a line of Armstrong inventions that have made
most of modern broadcasting what it is. Major Armstrong is the acknowledged inventor of the
regenerative ‘feedback’ circuit, which brought radio art out of the crystal-detector headphone
stage and made the amplification of broadcasting possible; the superheterodyne circuit, which
is the basis of practically all modern radio; and the super-regenerative circuit now in wide use
in ... shortwave systems.*

Armstrong was the last of the breed of the lone attic inventors. After receiving his FM
patents in 1933, he gave his now famous paper (which later appeared in print as in the pro-
ceedings of the IRE?), accompanied by the first public demonstration of FM broadcasting
on November 5, 1935, at the New York section meeting of the Institute of Radio Engineers
(IRE, a predecessor of the IEEE). His success in dramatically reducing static noise using FM
was not fully embraced by the broadcast establishment, which perceived FM as a threat to its
vast commercial investment in AM radio. To establish FM broadcasting, Armstrong fought a
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long and costly battle with the radio broadcast establishment, which, abetted by the Federal
Communications Commission (FCC), fought tooth and nail to resist FM. Still, by December
1941, 67 commercial FM stations had been authorized with as many as half a million receivers
in use and 43 applications were pending. In fact, the Radio Technical Planning Board (RTPB)
made its final recommendation during the September 1944 FCC hearing that FM be given 75
channels in the band from 41 to 56 MHz.

Despite the recommendation of the RTPB, which was supposed to be the best advice
available from the radio engineering community, strong lobbying for the FCC to shift the FM
band persisted, mainly by those who propagated the concern that strong radio interferences in
the 40 MHz band might be possible as a result ionospheric reflection. Then in June 1945, the
FCC, on the basis of erroneous testimony of a technical expert, abruptly shifted the allocated
bandwidth of FM from the 42- to 50-MHz range to the 88- to 108-MHz. This dealt a crippling
blow to FM by making obsolete more than half a million receivers and equipment (transmitters,
antennas, etc.) that had been built and sold by the FM industry to 50 FM stations since 1941
for the 42 to 50 MHz band. Armstrong fought the decision, and later succeeded in getting the
technical expert to admit his error. In spite of all this, the FCC allocations remained unchanged.
Armstrong spent the sizable fortune he had made from his inventions in legal struggles. The
broadcast giants, which had so strongly resisted FM, turned around and used his inventions
without paying him royalties. Armstrong spent much of his time in courtin some of the longest,
most notable, and acrimonious patent suits of the era.’ In the end, with his funds depleted, his
energy drained, and his family life shattered, a despondent Armstrong committed suicide: (in
1954) he walked out of a window of his thirteenth floor apartment in New York’s River House.

Armstrong’s widow continued the legal battles and won. By the 1960s, FM was clearly
established as the superior radio system,® and Edwin H. Armstrong was fully recognized as the
inventor of frequency modulation. In 1955 the ITU added him to its roster of great inventors.
In 1980 Edwin H. Armstrong was inducted into the U.S. National Inventors Hall of Fame, and
his picture was put on a U.S. postage stamp in 1983.7

5.3 GENERATING FM WAVES

Basically, there are two ways of generating FM waves: indirect and direct. We first describe
the narrowband FM generator that is utilized in the indirect FM generation of wideband angle
modulation signals.

NBFM Generation
For NBFM and NBPM signals, we have shown earlier that because ]kfa(t)l <1 and
|kpm(t)] <« 1, respectively, the modulated signals can be approximated by

Pnpem () = Alcos oct — kra(t) sin wt] (5.21a)
Ppem (1) = Alcos wt — kpm(t) sin w,t) (5.21b)

Both approximations are linear and are similar to the expression of the AM wave. In fact,
Eqgs. (5.21) suggest a possible method of generating narrowband FM and PM signals by using
DSB-SC modulators. The block diagram representation of such systems appears in Fig. 5.8.

It is important to point out that the NBFM generated by Fig. 5.8b has some distortion
because of the approximation in Eq. (5.10). The output of this NBFM modulator also has some
amplitude variations. A nonlinear device designed to limit the amplitude of a bandpass signal
can remove most of this distortion.
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The amplitude variations of an angle-modulated carrier can be eliminated by what is known as
a bandpass limiter, which consists of a hard limiter followed by a bandpass filter (Fig. 5.9a).
Theinput-output characteristic of a hard limiter is shown in Fig. 5.9b. Observe thatthe bandpass
limiter output to a sinusoid will be a square wave of unit amplitude regardless of the incoming
sinusoidal amplitude. Moreover, the zero crossings of the incoming sinusoid are preserved
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in the output because when the input is zero, the output is also zero (Fig. 5.9b). Thus an
angle-modulated sinusoidal input v;(#) = A(z) cos 8(¢) results in a constant amplitude, angle-
modulated square wave v, (t),as shownin Fig. 5.9¢c. As we have seen, such a nonlinear operation
preserves the angle modulation information. When v, () is passed through a bandpass filter
centered at w,, the output is a angle-modulated wave, of constant amplitude. To show this,
consider the incoming angle-modulated wave

vi(t) = A(t) cos 6(1)

where
t
0(t) = wet +kf/ m(a) da

—0o0

The output v, (#) of the hard limiter is 41 or —1, depending on whether v;(#) = A(t) cos 6(¢)
is positive or negative (Fig. 5.9¢c). Because A(#) > 0, v,(f) can be expressed as a function of 6:

+1 cos >0
Vo(0) = [ -1 cos 8 <0

Hence, v, as a function of 6 is a periodic square wave function with period 27 (Fig. 5.9d),
which can be expanded by a Fourier series (Chapter 2)

4 1 1
v,,(@):;(cosQ—gcos 39+§cos 59+---)

At any instant ¢, 0 = wct + kr f m(a) do. Hence, the output v, as a function of time is
given by

volO ()] = v | wct + kf m(a)doz]

= %{ cos |:th +kf m(a) da] — %cos 3 |:th + kf /m(a)da]
+ 1
5

cos 5 l:th + kr /m(oz) da] ‘e }

The output, therefore, has the original FM wave plus frequency-multiplied FM waves
with multiplication factors of 3, 5, 7, .... We can pass the output of the hard limiter through
a bandpass filter with a center frequency w, and a bandwidth Brys, as shown in Fig. 5.9a. The
filter output e, (¢) is the desired angle-modulated carrier with a constant amplitude,

ey(t) = % cos [wc(t) + ks / m(a)dai|

Although we derived these results for FM, this applies to PM (angle modulation in general)
as well. The bandpass filter not only maintains the constant amplitude of the angle-modulated
carrier but also partially suppresses the channel noise when the noise is small.3
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Indirect Method of Armstrong
In Armstrong’s indirect method, NBFM is generated as shown in Fig. 5.8b [or Eq. (5.10)]. The
NBFM is then converted to WBFM by using additional frequency multipliers.

A frequency multiplier can be realized by a nonlinear device followed by a bandpass filer.
First consider a nonlinear device whose output signal y(¢) to an input x(¢) is given by

$(1) = axc* ()

If an FM signal passes through this device, then the output signal will be
y@) =ay cos? [wct + kf / m(a) da:|
= 0.5a; + 0.5a; cos [2wct + 2k¢ / m(a) da:| (5.22)

Thus, a bandpass filter centered at 2w, would recover an FM signal with twice the original
instantaneous frequency. To generalize, a nonlinear device may have the characteristic of

¥ = ap + ax{t) + @x? @) + - 4 @ (1) (5.23)

If x(¢) = A cos [a)ct + kr f m(cr) da], then by using trigonometric identities, we can readily
show that y(¢) is of the form

y(t) = ¢, + ¢1 cos [wct + ks /m(a) da] + ¢ cos [2wct + 2ks / m(a) da]
+ -+ cp COS [na)ct + nks / m(a) doz:| (5.24)

Hence, the output will have spectra at w., 2w,..., nw;, with frequency deviations
Af, 2Af,...,nAf, respectively. Each one of these components is an FM signal separated
from the others. Thus, a bandpass filter centering at nw, can recover an FM signal whose
instantaneous frequency has been multiplied by a factor of n. These devices, consisting of
nonlinearity and bandpass filters, are known as frequency multipliers. In fact, a frequency
multiplier can increase both the carrier frequency and the frequency deviation by an integer n.
Thus, if we want a twelfth-fold increase in the frequency deviation, we can use a twelfth-order
nonlinear device or two second-order and one third-order devices in cascade. The output has
a bandpass filter centered at 12w,, so that it selects only the appropriate term, whose carrier
frequency as well as the frequency deviation Af are 12 times the original values.

This forms the basis of the Armstrong indirect frequency modulator. First, generate an
NBFM approximately. Then multiply the NBFM frequency and limit its amplitude variation.
Generally, we require to increase Af by a very large factor n. This increases the carrier fre-
quency also by ». Such a large increase in the carrier frequency may not be needed. In this case
we can apply frequency mixing (see Example 4.2, Fig. 4.7) to shift down the carrier frequency
to the desired value.

A simplified diagram of a commercial FM transmitter using Armstrong’s method is shown
in Fig. 5.10. The final output is required to have a carrier frequency of 91.2 MHz and Af = 75
kHz. We begin with NBFM with a carrier frequency f;;, = 200 kHz generated by a crystal
oscillator. This frequency is chosen because it is easy to construct stable crystal oscillators as
well as balanced modulators at this frequency. To maintain 8 < 1, as required in NBPM, the
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Figure 5.10
Block diagram of
the Armstrong
indirect FM

transmitter.

f, = 200 kHz f,, = 128 MHz Je, = 1.9 MHz Je, =912 MHz
Af, =25Hz Afy=16kHz Af;=16kHz Af, = 76.8 kHz

aft)
Frequency l l Frequency
mir - l N
" DSB-5C multiplier Frequency multiplier Power

modulator X 64 converter % 48 amplifier

—A s, f

A o8 wd

Crystal Crystal
oscillator oscillator
200 kHz 10.9 MHz

deviation Af is chosen to be 25 Hz. For tone modulation, 8 = Af /f,,. The baseband spectrum
(required for high-fidelity purposes) ranges from 50 Hz to 15 kHz. The choice of Af = 25Hz
is reasonable because it gives 8 = 0.5 for the worst possible case (f,,, = 50).

To achieve Af = 75 kHz, we need a multiplication of 75,000/25 = 3000. This can be
done by two multiplier stages, of 64 and 48, as shown in Fig. 5.10, giving a total multiplication
of 64 x 48 = 3072, and Af = 76.8 kHz.* The multiplication is effected by using frequency
doublers and triplers in cascade, as needed. Thus, a multiplication of 64 can be obtained by six
doublers in cascade, and a multiplication of 48 can be obtained by four doublers and a tripler
in cascade. Multiplication of f, = 200 kHz by 3072, however, would yield a final carrier of
about 600 MHz. This problem is solved by using a frequency translation, or conversion, after
the first multiplier (Fig. 5.10). The first multiplication by 64 results in the carrier frequency
fe, = 200kHz x 64 = 12.8 MHz, and the carrier deviation Af, = 25 x 64 = 1.6 kHz. We
now use a frequency converter (or mixer) with carrier frequency 10.9 MHz to shift the entire
spectrum. This results in a new carrier frequency f¢, = 12.8 —10.9 = 1.9 MHz. The frequency
converter shifts the entire spectrum without altering Af. Hence, Afs = 1.6 kHz. Further
multiplication, by 48, yields f,, = 1.9 x 48 = 91.2 MHz and Afs = 1.6 x 48 = 76.8 kHz.

This scheme has an advantage of frequency stability, but it suffers from inherent noise
caused by excessive multiplication and distortion at lower modulating frequencies, where
Af [fm is not small enough.

Example 5.6

Discuss the nature of distortion inherent in the Armstrong indirect FM generator.

Two kinds of distortion arise in this scheme: amplitude distortion and frequency distortion.
The NBFM wave is given by [Eq. (5.10)]

ey (1) = Alcos wct — kra(t) sin wt]
= AE(t)cos[w.t + 6(1)]

where

E(r)=,/l+k}?a2{r) and  6(r) = tan”[kra(#)]

* If we wish Af to be exactly 75 kHz instead of 76.8 kHz, we must reduce the narrowband Af from 25 Hz to
25(75/76.8) = 24.41 Hz.
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Amplitude distortion occurs because the amplitude AE(¢) of the modulated waveform is
not constant. Thisis not a serious problem because amplitude variations can be eliminated
by a bandpass limiter, as discussed earlier in the section (see also Fig. 5.9). Ideally, 6(z)
should be k¢a(z). Instead, the phase 6(¢) in the preceding equation is

8(t) = tan ' (kea()]
and the instantaneous frequency w; (?) is

kf&(l)
1+¢ﬂm

wi() =0(t) =

ks m(t)
T 1+ kZa2(1)

= kem(D[1 = k> () + kfa* () — -]

Ideally, the instantaneous frequency should be k¢ m(t). The remaining terms in this equation
are the distortion.

Let us investigate the effect of this distortion in tone modulation where m(t) =
@ cos wpt, a(t) = o sin wyt/wm, and the modulation index B = aky /wp:

wi(t) = Bwy, cos wpt(l — ﬂ2 sin® wmt + /34 sin® wpt — -+ )

It is evident from this equation that the scheme has odd-harmonic distortion, the most
important term being the third harmonic. Ignoring the remaining terms, this equation
becomes

wi(t) = By cos wyi(]l — ,82 sin’ Wmt)

2

3
= Bony (l - %) cos wyt + p :)m cos 3yt
. S

desired distortion

The ratio of the third-harmonic distortion to the desired signal can be found for the
generator in Fig. 5.10. For the NBFM stage,

BB = Af, =25Hz

Hence, the worst possible case occurs at the lower modulation frequency. For example, if
the tone frequency is only 50 Hz, then 8 = 0.5. In this case the third-harmonic distortion
is 1/15, or 6.67%.

Direct Generation

In a voltage-controlled oscillator (VCO), the frequency is controlled by an external voltage.
The oscillation frequency varies linearly with the control voltage. We can generate an FM
wave by using the modulating signal m(¢) as a control signal. This gives

wi(t) = o + kym(t)



228  ANGLE MODULATION AND DEMODULATION

One can construct a VCO using an operational amplifier and a hysteretic comparator,” (such
as a Schmitt trigger circuit). Another way of accomplishing the same goal is to vary one of the
reactive parameters (C or L) of the resonant circuit of an oscillator. A reverse-biased semicon-
ductor diode acts as a capacitor whose capacitance varies with the bias voltage. The capacitance
of these diodes, known under several trade names (e.g., Varicap, Varactor, Voltacap), can be
approximated as a linear function of the bias voltage m(f) over a limited range. In Hartley or
Colpitt oscillators, for instance, the frequency of oscillation is given by

1
vLC

If the capacitance C is varied by the modulating signal m(¢), that is, if

wy =

C = Co — km(t)

then

1

o

1 l:l + km(t)] km(t) <
«/LC() ZCQ CO

Here we have applied the Taylor series approximation
A+x"~1+nx x| < 1

with n = 1/2. Thus,

[ km(t):l here 1
W) =w where w, = ——
0 ¢ 2Co ¢ VLCy
kw,
= krmil1 ith kr =
e + Ky m(1) wi F 2Co

Because C = Cp — km(t), the maximum capacitance deviation is

2kr Com
AC =kmy, = Sy oflp
W,

Hence,

AC  2krmp  2Af

Co B s - fc
In practice, Af /fc is usually small, and, hence, AC is a small fraction of Cp, which helps limit
the harmonic distortion that arises because of the approximation used in this derivation.
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We may also generate direct FM by using a saturable core reactor, where the inductance
of a coil is varied by a current through a second coil (also wound around the same core). This
results in a variable inductor whose inductance is proportional to the current in the second coil.

Direct FM generation generally produces sufficient frequency deviation and requires little
frequency multiplication. But this method has poor frequency stability. In practice, feedback
is used to stabilize the frequency. The output frequency is compared with a constant frequency
generated by a stable crystal oscillator. An error signal (error in frequency) is detected and fed
back to the oscillator to correct the error.

Features of Angle Modulation

FM (like angle modulation in general) has a number of unique features that recommend it
for various radio systems. The transmission bandwidth of AM systems cannot be changed.
Because of this, AM systems do not have the feature of exchanging signal power for trans-
mission bandwidth. Pulse-coded modulation (PCM) systems (Chapter 6) have such a feature,
and so do angle-modulated systems. In angle modulation, the transmission bandwidth can be
adjusted by adjusting Af. For angle-modulated systems, the SNR is roughly proportional to
the square of the transmission bandwidth Br. In PCM, the SNR varies exponentially with By
and is, therefore, superior to angle modulation.

Example 5.7

Figure 5.11
Designing an
Armstrong
indirect
modulator.

Design an Armstrong indirect FM modulator to generate an FM signal with carrier frequency
97.3 MHz and Af = 10.24 kHz. A NBFM generator of f,, = 20 kHz and Af = 5 Hz is
available. Only frequency doublers can be used as multipliers. Additionally, a local oscillator
(LO) with adjustable frequency between 400 and 500 kHz is readily available for frequency
mixing.

Jor  [Muldplier | fe: Frequency BPF  }Jo . [Multiplier | £
P 1] ¥
NBFM - . 3 - - ———
Afi M, Afz mixer @f, Afs M, Afs
b3
Local e
oscillator

The modulator is shown in Fig. 5.11. We need to determine M7, M>, and f,,. First, the
NBFM generator generates

Je, = 20,000 and AL =5
The final WBFM should have

feor =973 x10°  Afs =10,240
We first find the total factor of frequency multiplication needed as

_ M

My -M; = G = 2048 = 2! (5.25)
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Because only frequency doublers can be used, we have three equations:

M; =2M
M, =2"
ny+np =11

It is also clear that
Jeo =2V and  fo, = 2%f,
To find f, 5, there are three possible relationships:
Jao=fothe ad  fo=f,-fy
Each should be tested to determine the one that will fall in
400,000 < f,, < 500,000
(a) First, we test fo; = f¢, —fio- This case leads to

97.3 x 10° =27 (2"f., —f.0)
= 2n1+n2fm - znszo
= 2120 % 10° = 277

Thus, we have
fo=2m (4.096 x 107 = 9.73 x 107) <0

This is outside the local oscillator frequency range.
(b)  Next, we test fo; = f¢, +fi- This case leads to

97.3 x 10° = 22 (2"f., +fi,,)
= 21120 x 10% +2"2f,

Thus, we have
fo =27 (5634 x 107)

If n, =7, thenf,, = 440 kHz, which is within the realizable range of the local oscillator.
(© If we choose fo, = f o — fc,, then we have

97.3 x 10° = f, , — 2m2"f,,
=27f  — 220 x 10%)
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Thus, we have
fo =27 (13826 x 107)

No integer ny will lead to a realizable f; ,.

i

Thus, the final design is M1 = 16, M = 128, and f, , = 440 kHz.

5.4 DEMODULATION OF FM SIGNALS

Figure 5.12
(a] FM
demodulator
frequency
response.

(b) Output of a
differentiator to
the input FM
wave. (c] FM
demodulation by
direct
differentiation.

The information in an FM signal resides in the instantaneous frequency w; = w, + krm(t).
Hence, a frequency-selective network with a transfer function of the form |H (f)| = 2a7'rf +b
over the FM band would yield an output proportional to the instantaneous frequency
(Fig. 5.12a).* There are several possible circuits with such characteristics. The simplest among
them is an ideal differentiator with the transfer function j2rf.

A[w + kym(1)]

el

Mz—»

- /
(b) -
Peu(® 4 P Envel Alw, + krmit)]
d - nvelope
dr detector

(c)

* Provided the variations of w; are slow in comparison to the time constant of the network.
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Figure 5.13
(a) RC high-pass
filter.

(b) Segment of
positive slope in
amplitude
response.

If we apply ¢, (¢) to an ideal differentiator, the output is

t
O () = g; {A cos [a)ct + kr / m(a) doz”

t

= Afwc + kem(1)] sin |:a)ct + kf /

m(a)d(a) — Jr:| (5.26)
—00

Both the amplitude and the frequency of the signal ¢p,,(#) are modulated (Fig. 5.12b), the
envelope being Alw, + krm(t)]. Because Aw = krmy, < w., we have w. + kgm(t) > 0 for
all 7, and m(¢) can be obtained by envelope detection of ¢, (¢) (Fig. 5.12c).

The amplitude A of the incoming FM carrier must be constant. If the amplitude A were
not constant, but a function of time, there would be an additional term containing dA/dt on the
right-hand side of Eq. (5.26). Even if this term were neglected, the envelope of ¢, () would
be A(?)[w: + krm(2)], and the envelope-detector output would be proportional to m(2)A(z),
still leading to distortions. Hence, it is essential to maintain A constant. Several factors, such
as channel noise and fading, cause A to vary. This variation in A should be suppressed via the
bandpass limiter (discussed earlier in Sec. 5.3) before the signal is applied to the FM detector.

Practical Frequency Demodulators
The differentiator is only one way to convert frequency variation of FM signals into amplitude
variation that subsequently can be detected by means of envelope detectors. One can use
an operational amplifier differentiator at the FM receiver. On the other hand, the role of the
differentiator can be replaced by any linear system whose frequency response contains a linear
segment of positive slope. By approximating the ideal linear slope in Fig. 5.12a, this method
is known as slope detection.

One simple device would be an RC high-pass filter of Fig. 5.13. The RC frequency response
is simply

Jj2nfRC , .
Hf) = 29 L onRC if 27fRC < 1
" = T mme "R it 27/RC <

Thus, if the parameter RC is be very small such that its product with the carrier frequency
w:RC < 1, the RC filter approximates a differentiator.

Similarly, a simple tuned RLC circuit followed by an envelope detector can also serve as
a frequency detector because its frequency response |H (f)| below the resonance frequency
w, = 1/+/LC approximates a linear slope. Thus, such a receiver design requires that

(2Pl L1near segment

(a (b)
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Because the operation is on the slope of |H (f)|, this method is also called slope detection.
Since, however, the slope of |H (f)| is linear over only a small band, there is considerable
distortion in the output. This fault can be partially corrected by a balanced discriminator
formed by two slope detectors. Another balanced demodulator, the ratio detector, also widely
used in the past, offers better protection against carrier amplitude variations than does the
discriminator. For many years ratio detectors were standard in almost all FM receivers.!°

Zero-crossing detectors are also used because of advances in digital integrated circuits.
The first step is to use the amplitude limiter of Fig. 5.9a to generate the rectangular pulse
output of Fig. 5.9c. The resulting rectangular pulse train of varying width can then be applied
to trigger a digital counter. These are the frequency counters designed to measure the instan-
taneous frequency from the number of zero crossings. The rate of zero crossings is equal to
the instantaneous frequency of the input signal.

FM Demodulation via PLL
Consider a PLL that is in lock with input signal sin [w.t + 6;(¢)] and output error signal e, (t).
When the input signal is an FM signal,

t
0:i(t) = ky / m(@) da + % (5.27)

—00

then,

t
0o (t) = ks / m(a) de + 0.5 — 0,(t)

—00

With PLL in lock we can assume a small frequency error 6, (f) ~ 0. Thus, the loop filter output
signal is

1. 1d |: d kr
eo(t) = =0,(t) = —— kf/ m(a) da + 0.5 — 6,(t) | = —m(z) (5.28)
c cdt —co c

Thus, the PLL acts as an FM demodulator. If the incoming signal is a PM wave, then
eo(t) = kyrir(t) /c. In this case we need to integrate e, (¢) to obtain the desired signal m(z).

To more precisely analyze PLL behavior as an FM demodulator, we consider the case of
a small error (linear model of the PLL) with H (s) = 1. For this case, feedback analysis of the
small-error PLL in Chapter 4 becomes

AK H(s) O1(s) = AK 01(s)

Ous) = ——2) @,
o= TAKHG s+ AK

If E,(s) and M (s) are Laplace transforms of e, (t) and m(¢), respectively, then from Eqs. (5.27)
and (5.28) we have

() = —— and 5O, (s) = cEy(s)



234

ANGLE MODULATION AND DEMODULATION

Hence,

_(k\ AK
Eols) = (?) sTag®

Thus, the PLL output e,(?) is a distorted version of m(z) and is equivalent to the output of a
single-pole circuit (such as a simple RC circuit) with transfer function krAK /c(s + AK) to
which m(t) as the input. To reduce distortion, we must choose AK well above the bandwidth
of m(t), so that e, (¢) >~ krm(t)/c.

In the presence of small noise, the behavior of the PLL is comparable to that of a frequency
discriminator. The advantage of the PLL over a frequency discriminator appears only when
the noise is large.

5.5 EFFECTS OF NONLINEAR DISTORTION

AND INTERFERENCE

Immunity of Angle Modulation to Nonlinearities

A very useful feature of angle modulation is its constant amplitude, which makes it less sus-
ceptible to nonlinearities. Consider, for instance, an amplifier with second-order nonlinear
distortion whose input x(#) and output y(¢) are related by

¥ = ap+ ax(t) + azxg(f) F ot a0

Clearly, the first term is the desired signal amplification term, while the remaining terms are
the unwanted nonlinear distortion. For the angle modulated signal

x(t) = Acos [wet + ¥ ()]
trigonometric identities canbe applied to rewrite the nonideal system output y(¢) as

(1) =¢o + c1 cos[wet + ¥ (t)] + c2 cos 2wt + 2 (2)]
+ -+, cos [nwet + nr ()]

Because sufficiently large . makes each component of y(¢) separable in frequency domain,
a bandpass filter centered at w, with bandwidth equaling to Bry (or Bpym) can extract the
desired FM signal component c; cos [wct + ¥ (¢)] without any distortion. This shows that
angle-modulated signals are immune to nonlinear distortions.

A similar nonlinearity in AM not only causes unwanted modulation with carrier frequen-
cies nw. but also causes distortion of the desired signal. For instance, if a DSB-SC signal
m(t) cos w.t passes through a nonlinearity y(¢) = ax(z) + b3 (1), the output is

y(t) = amf(t) cos w.t + bm3 ® cos> wt

3b b
= [a m(t) + -4—-m3(t)j| cos wqt + st(t) cos 3wt

Passing this signal through a bandpass filterstill yields [a m(¢)+(3b/4)m>(¢)] cos w,t. Observe
the distortion component (3b/4)m3(z) present along with the desired signal a m(z).
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Immunity from nonlinearity is the primary reason for the use of angle modulation in
microwave radio relay systems, where power levels are high. This requires highly efficient
nonlinear class C amplifiers. In addition, the constant amplitude of FM gives it a kind of
immunity to rapid fading. The effect of amplitude variations caused by rapid fading can be
eliminated by using automatic gain control and bandpass limiting. These advantages made FM
attractive as the technology behind the first-generation (1G) cellular phone system.

The same advantages of FM also make it attractive for microwave radio relay systems. In
the legacy analog long-haul telephone systems, several channels are multiplexed by means of
SSB signals to form L-carrier signals. The multiplexed signals are frequency-modulated and
transmitted over a microwave radio relay system with many links in tandem. In this application,
however, FM is used not to reduce noise effects but to realize other advantages of constant
amplitude, and, hence, NBFM rather than WBFM is used.

Interference Effect
Angle modulation is also less vulnerable than AM to small-signal interference from adjacent
channels.

Let us consider the simple case of the interference of an unmodulated carrier A cos wt
with another sinusoid I cos (w, 4+ w)t. The received signal r(¢) is

r(t) = Acos wct + I cos (w, + w)t
= (A + Icos wt) cos w.t — I sin wtsin w.t

= E,(¢) cos [wct + ¥q ()]

where

I sin wt

-1
1) =t _
Va (@) an A+ 1cos wt

When the interfering signal is small in comparison to the carrier (I < A),
I .
Ya(t) ~ 7 Sin wt (5.29)

The phase of E,(t) cos [w.t + ¥4(t)] is ¥4(), and its instantaneous frequency is we + Vg (¢).
If the signal E,(¢) cos [w.t + ¥4(2)] is applied to an ideal phase demodulator, the output Yd (¥
would be ¥4 (). Similarly, the output y, (¢) of an ideal frequency demodulator wouldbe 4 (7).
Hence,

1
ya(t) = 1 sin wt for PM (5.30)

I
va(t) = Xw cos wr  for FM (5.31)

Observe that in either case, the interference output is inversely proportional to the carrier
amplitude A. Thus, the larger the carrier amplitude A, the smaller the interference effect. This
behavior is very different from that in AM signals, where the interference output is independent
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Figure 5.14
Effect of
inferference

in PM, FM, and
FM with
preemphasis-
deemphasis
(PDE).
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T JFM
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of the carrier amplitude.* Hence, angle-modulated systems are much better than AM systems
at suppressing weak interference (I < A).

Because of the suppression of weak interference in FM, we observe what is known as the
capture effect when listening to FM radios. For two transmitters with carrier frequency sep-
aration less than the audio range, instead of getting interference, we observe that the stronger
carrier effectively suppresses (captures) the weaker carrier. Subjective tests show that an inter-
ference level as low as 35 dB in the audio signals can cause objectionable effects. Hence, in
AM, the interference level should be kept below 35 dB. On the other hand, for FM, because
of the capture effect, the interference level need only be below 6 dB.

The interference amplitude (//A for PM and /w/A for FM) vs. w at the receiver output
is shown in Fig. 5.14. The interference amplitude is constant for all @ in PM but increases
linearly with w in FM."

Interference due to Channel Noise

The channel noise acts as interference in an angle-modulated signal. We shall consider the
most common form of noise, white noise, which has a constant power spectral density. Such a
noise may be considered as a sum of sinusoids of all frequencies in the band. All components
have the same amplitudes (because of uniform density). This means / is constant for all w, and
the amplitude spectrum of the interference at the receiver output is as shown in Fig. 5.14. The
interference amplitude spectrum is constant for PM, and increases linearly with w for FM.

Preemphasis and Deemphasis in FM Broadcasting

Figure 5.14 shows that in FM, the interference (the noise) increases linearly with frequency,
and the noise power in the receiver output is concentrated at higher frequencies. A glance at
Fig. 4.18b shows that the PSD of an audio signal m(¢) is concentrated at lower frequencies
below 2.1 kHz. Thus, the noise PSD is concentrated at higher frequencies, where m(¢) is

* For instance, an AM signal with an interfering sinusoid 7 cos (w, + w)t is given by
r(t) = [A + m(t)] cos wet + 1 cos (we + w)t
=[A + m(t) + I cos wt]cos wct — I sin wt sin wct

The envelope of this signal is

E(t) = {[A+ m(t) + I cos a)t]2 +12 sin? wt}l/z ~ A+ m(t) + I cos wt I1KA

Thus the interference signal at the envelope detector output is / cos «t, which is independent of the carrier amplitude
A. We obtain the same result when synchronous demodulation is used. We come to a similar conclusion for AM-SC
systems.

T The results in Egs. (5.30) and (5.31) can be readily extended to more than one interfering sinusoid. The system
behaves linearly for multiple interfering sinusoids provided their amplitudes are very small in comparison to the
carrier amplitude.



Figure 5.15
Preemphasis-

deemphasis in
an FM system.

Figure 5.16
(a) Preemphasis
filter and (b) its
frequency
response.

(c) Deemphasis
filter and (d) its
frequency
response.
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the weakest. This may seem like a disaster. But actually, in this very situation there is a
hidden opportunity to reduce noise greatly. The process, shown in Fig. 5.15, works as follows.
At the transmitter, the weaker high-frequency components (beyond 2.1 kHz) of the audio
signal m(t) are boosted before modulation by a preemphasis filter of transfer function H,(f).
At the receiver, the demodulator output is passed through a deemphasis filter of transfer
function H, (f) = 1/H,(f). Thus, the deemphasis filter undoes the preemphasis by attenuating
(deemphasizing) the higher frequency components (beyond 2.1 kHz), and thereby restores the
original signal m(t). The noise, however, enters at the channel, and therefore has not been
preemphasized (boosted). However, it passes through the deemphasis filter, which attenuates
its higher frequency components, where most of the noise power is concentrated (Fig. 5.14).
Thus, the process of preemphasis-deemphasis (PDE) leaves the desired signal untouched but
reduces the noise power considerably.

Preemphasis and Deemphasis Filters

Figure 5.14 provides an opportunity to preemphasis. The FM has smaller interference than PM
atlower frequencies, while the opposite is true at higher frequencies. If we can make our system
behave like FM at lower frequencies and behave like PM at higher frequencies, we will have
the best of both worlds. This is accomplished by a system used in commercial broadcasting
(Fig. 5.15) with the preemphasis (before modulation) and deemphasis (after demodulation)
filters H,(f) and Hy(f) shown in Fig. 5.16. The frequency f; is 2.1 kHz, and f; is typically
30 kHz or more (well beyond audio range), so that f; does not even enter into the picture.
These filters can be realized by simple RC circuits (Fig. 5.16). The choice of fi = 2.1 kHz
was apparently made on an experimental basis. It was found that this choice of fj maintained
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the same peak amplitude m, with or without preemphasis.'! This satisfied the constraint of a
fixed transmission bandwidth.
The preemphasis transfer function is

2
2 o

H, = 5.32a
p(F) T2nf + o ( )
where K, the gain, is set at a value of wp/w;. Thus,
w2\ J2nf + wy
H, =—)— 5.32b) -
b ) <w1 > j2nf + (>:320)
For2nf « wi,
Hy(fy ~ 1 (5.32¢)
For frequencies w) < 2nf < ws,
2
Hy(f) ~ f—g (5.32d)

Thus, the preemphasizer acts as a differentiator at intermediate frequencies (2.1-15 kHz),
which effectively makes the scheme PM over these frequencies. This means that FM with
PDE is FM over the modulating-signal frequency range of 0 to 2.1 kHz and is nearly PM over
the range of 2.1 to 15 kHz, as desired.

The deemphasis filter H; (f) is given by

w1

Hd(f)=m

Note that for 2nf < w2, Hp(f) =~ (j2nf + wi)/wi. Hence, Hy(f)Hy(f) ~ 1 over the
baseband of 0 to 15 kHz.

For historical and practical reasons, optimum PDE filters are not used in practice. It can
be shown that the PDE enhances the SNR by 13.27 dB (a power ratio of 21.25).

The side benefit of PDE is improvement in the interference characteristics. Because the
interference (from unwanted signals and the neighboring stations) enters after the transmitter
stage, it undergoes only the deemphasis operation, not the boosting, or preemphasis. Hence,
the interference amplitudes for frequencies beyond 2.1 kHz undergo attenuation that is roughly
linear with frequency.

The PDE method of noise reduction is not limited to FM broadcast. It is also used in
audiotape recording and in (analog) phonograph recording, where the hissing noise is also
concentrated at the high-frequency end. A sharp, hissing sound is caused by irregularities in
the recording material. The Dolby noise reduction systems for audiotapes operates on the
same principle, although the Dolby-A system is somewhat more elaborate. In the Dolby-B and
Dolby-C systems, the band is divided into two subbands (below and above 3 kHz instead of
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2.1 kHz). In the Dolby-A system, designed for commercial use, the bands are divided into four
subbands (below 80 Hz, 80-3 kHz, 3-9 kHz, and above 9 kHz). The amount of preemphasis
is optimized for each band.

We could also use PDE in AM broadcasting to improve the output SNR. In practice,
however, this is not done for several reasons. First, the output noise amplitude in AM is
constant with frequency and does not increase linearly as in FM. Hence, the deemphasis does
not yield such a dramatic improvement in AM as it does in FM. Second, introduction of PDE
would necessitate modifications of receivers already in use. Third, increasing high-frequency
component amplitudes (preemphasis) would increase interference with adjacent stations (no
such problem arises in FM). Moreover, an increase in the frequency deviation ratio 8 at high
frequencies would make detector design more difficult.

5.6 SUPERHETERODYNE ANALOG AM/FM
RECEIVERS

Figure 5.17
Superheterodyne
receiver.

The radio receiver used in broadcast AM and FM systems, is called the superheterodyne
receiver (Fig. 5.17). It consists of an RF (radio-frequency) section, a frequency converter
(Example 4.2), an intermediate-frequency (IF) amplifier, an envelope detector, and an audio
amplifier.

The RF section consists basically of a tunable filter and an amplifier that picks up the
desired station by tuning the filter to the right frequency band. The next section, the frequency
mixer (converter), translates the carrier from w, to a fixed IF frequency of wir (see Example
4.2 for frequency conversion). For this purpose, the receiver uses a local oscillator whose
frequency fi o is exactly fir above the incoming carrier frequency f,; thatis,

fio=fc +fi

The simultaneous tuning of the local oscillator and the RF tunable filter is done by one joint
knob. Tuning capacitors in both circuitsare ganged together and are designed so that the tuning
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frequency of the local oscillator is always fir Hz above the tuning frequency f. of the RF filter.
This means every station that is tuned in is translated to a fixed carrier frequency of fir Hz by
the frequency converter for subsequent processing at IF.

This superheterodyne receiver structure is broadly utilized in most broadcast systems. The
intermediate frequencies are chosen to be 455 kHz (AM radio), 10.7 MHz (FM radio), and
38 MHz (TV reception).

As discovered by Armstrong for AM signals, the translation of all stations to a fixed
intermediate frequency (fir = 455 kHz for AM) allows us to obtain adequate selectivity. It is
difficult to design precise bandpass filters of bandwidth 10 kHz (the modulated audio spectrum)
if the center frequency f; is very high. This is particularly true in the case of tunable filters.
Hence, the RF filter cannot provide adequate selectivity against adjacent channels. But when
this signal is translated to an IF frequency by a converter, it is further amplified by an IF
amplifier (usually a three-stage amplifier), which does have good selectivity. This is because
the IF frequency is reasonably low; moreover, its center frequency is fixed and factory-tuned.
Hence, the IF section can effectively suppress adjacent-channel interference because of its
high selectivity. It also amplifies the signal for envelope detection.

In reality, the entire selectivity is practically realized in the IF section; the RF section
plays a negligible role. The main function of the RF section is image frequency sup-
pression. As observed in Example 4.2, the output of the mixer, or converter, consists of
components of the difference between the incoming (f;) and the local oscillator frequen-
cies (fLo) (i.e., fir = lfLo — f¢|)- Now, consider the AM example. If the incoming carrier
frequency f. = 1000 kHz, then fi o =f. + frr = 1000 + 455 = 1455 kHz. But another carrier,
with f/ = 1455 + 455 = 1910 kHz, will also be picked up because the difference f — fio is
also 455 kHz. The station at 1910 kHz is said to be the image of the station of 1000 kHz.
AM stations that are 2fjr = 910 kHz apart are called image stations and both would appear
simultaneously at the IF output, were it not for the RF filter at receiver input. The RF filter
may provide poor selectivity against adjacent stations separated by 10 kHz, but it can provide
reasonable selectivity against a station separated by 910 kHz. Thus, when we wish to tune in
a station at 1000 kHz, the RF filter, tuned to 1000 kHz, provides adequate suppression of the
image station at 1910 kHz.

The receiver (Fig. 5.17) converts the incoming carrier frequency to the IF by using a local
oscillator of frequency fi o higher than the incoming carrier frequency and, hence, is called
a superheterodyne receiver. We pick fi o higher than f, because this leads to a smaller tuning
ratio of the maximum to minimum tuning frequency for the local oscillator. The AM broadcast-
band frequencies range from 530 to 1710 kHz. The superheterodyne fi o ranges from 1005 to
2055 kHz (ratio of 2.045), whereas the subheterodyne range of fi o would be 95 to 1145 kHz
(ratio of 12.05). It is much easier to design an oscillator that is tunable over a smaller frequency
ratio.

The importance of the superheterodyne principle in radio and television broadcasting can-
not be overstressed. In the early days (before 1919), the entire selectivity against adjacent
stations was realized in the RF filter. Because this filter often had poor selectivity, it was nec-
essary to use several stages (several resonant circuits) in cascade for adequate selectivity. In
the earlier receivers each filter was tuned individually. It was very time-consuming and cum-
bersome to tune in a station by bringing all resonant circuits into synchronism. This task was
made easier as variable capacitors were ganged together by mounting them on the same shaft
rotated by one knob. But variable capacitors are bulky, and there is a limit to the number that
can be ganged together. These factors, in turn, limited the selectivity available from receivers.
Consequently, adjacent carrier frequencies had to be separated widely, resulting in fewer fre-
quency bands. It was the superheterodyne receiver that made it possible to accommodate many
more radio stations.
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5.7 FM BROADCASTING SYSTEM

The FCC has assigned a frequency range of 88 to 108 MHz for FM broadcasting,
with a separation of 200 kHz between adjacent stations and a peak frequency deviation
Af =75 kHz.

A monophonic FM receiver is identical to the superheterodyne AM receiver in Fig. 5.17,
except that the intermediate frequency is 10.7 MHz and the envelope detector is replaced by
a PLL or a frequency discriminator followed by a deemphasizer.

Earlier FM broadcasts were monophonic. Stereophonic FM broadcasting, in which two
audio signals, L (left microphone) and R (right microphone), are used for a more natural effect,
was proposed later. The FCC ruled that the stereophonic system had to be compatible with
the original monophonic system. This meant that the older monophonic receivers should be
able to receive the signal L + R, and the total transmission bandwidth for the two signals (L
and R) should still be 200 kHz, with Af = 75 kHz for the two combined signals. This would
ensure that the older receivers could continue to receive monophonic as well as stereophonic
broadcasts, although the stereo effect would be absent.

A transmitter and a receiver for a stereo broadcast are shown in Fig. 5.18a and c. At the
transmitter, the two signals L and R are added and subtracted to obtain L + R and L — R. These
signals are preemphasized. The preemphasized signal (L — R)’ DSB-SC modulates a carrier
of 38 kHz obtained by doubling the frequency of a 19-kHz signal that is used as a pilot. The
signal (L + R)' is used directly. All three signals (the third being the pilot) form a composite
baseband signal m(t) (Fig. 5.18b),

t
m(t) = (L+ R) + (L — R) cos wct + a cos ch (5.33)

The reason for using a pilot of 19 kHz rather than 38 kHz is that it is easier to sep-
arate the pilot at 19 kHz because there are no signal components within 4 kHz of that
frequency.

The receiver operation (Fig. 5.18c) is self-explanatory. A monophonic receiver consists of
only the upper branch of the stereo receiver and, hence, receives only L + R. This is of course
the complete audio signal without the stereo effect. Hence, the system is compatible. The pilot
is extracted, and (after doubling its frequency) it is used to demodulate coherently the signal
(L — R) cos w;t.

An interesting aspect of stereo transmission is that the peak amplitude of the composite
signal m(?) in Eq. (5.33) is practically the same as that of the monophonic signal (if we ignore
the pilot), and, hence, Af—which is proportional to the peak signal amplitude for stereophonic
transmission—remains practically the same as for the monophonic case. This can be explained
by the so-called interleaving effect as follows.

The L’ and R’ signals are very similar in general. Hence, we can assume their peak ampli-
tudes to be equal to A,. Under the worst possible conditions, L and R’ will reach their peaks
at the same time, yielding [Eq. (5.33)]

Im(#)Imax = 24p + o

In the monophonic case, the peak amplitude of the baseband signal (L+ R)" is 2A,. Hence, the
peak amplitudes in the two cases differ only by «, the pilot amplitude. To account for this, the
peak sound amplitude in the stereo case is reduced to 90% of its full value. This amounts to a
reduction in the signal power by a ratio of (0.9)> = 0.81, or 1 dB. Thus, the effective SNR is
reduced by 1 dB because of the inclusion of the pilot.
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Figure 5.18
(a) FM stereo
transmitter. (b)
Spectrum of a
baseband stereo
signal. (c) FM

stereo receiver.
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5.8 MATLAB EXERCISES

In this section, we use MATLAB to build an FM modulation and demodulation example. The
MATLAB program is given by ExampleFM.m. Once again use apply the same message
signal m;(t). The FM coefficient is kr = 80 and the PM coefficient is k, = 7. The carrier
frequency remains 300 Hz. The resulting FM and PM signals in the time domain are shown in
Fig. 5.19. The corresponding frequency responses are also shown in Fig. 5.19. The frequency
domain responses clearly show the much higher bandwidths of the FM and PM signals when
compared with amplitude modulations.

% (ExampleFM.m)
% This program uses triangl.m to illustrate frequency modulation
% and demodulation



Figure 5.19
FM and PM
signals in the
time and
frequency
domains.
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ts=1.e-4;

t=-0.04:ts:0.04;

Ta=0.01;
m_sig=triangl((t+0.01)/Ta)-triangl ((t-0.01)/Ta);
Lfft=length(t); Lfft=2"ceil (log2(Lfft));

M_fre=fftshift(fft(m_sig,Lfft));
fregm=(-Lfft/2:Lfft/2-1)/(Lfft*ts);

B_m=100; $Bandwidth of the signal is B_m Hz.
% Design a simple lowpass filter with bandwidth B_m Hz.
h=£fir1 (80, [B_m*ts]);

%

kf=160*pi;

m_intg=kf*ts*cumsum(m_sig) ;
s_fm=cos(2*pi*300*t+m_intg) ;

s_pm=cos (2*pi*300*t+pi*m_sig);

Lfft=length(t); Lfft=2"ceil(log2(Lfft)+1);
S_fm=fftshift(fft(s_fm,Lfft));

S_pm=fftshift (fft(s_pm,Lfft));
fregs=(-Lfft/2:Lfft/2-1)/(Lfft*ts);

s_fmdem=diff ([s_fm(l) s_fm])/ts/kf;
s_fmrec=s_fmdem. * (s_fmdem>0) ;
s_dec=filter (h,1l,s_fmrec);

% Demodulation
% Using an ideal LPF with bandwidth 200 Hz

Trangel=[-0.04 0.04 -1.2 1.2];

figure(1)

subplot (211) ;ml=plot(t,m_sig);

axis (Trangel); set(ml, ’'Linewidth’,2);

xlabel (' {\it t} (sec)’); ylabel ('{\it m} ({\it t})’);
title(’'Message signal’);

subplot (212);m2=plot(t, s_dec) ;

set (m2, 'Linewidth’,2);

xlabel (' {\it t} (sec)’); ylabel (' {\it m}_d({\it t}) ")
title(’demodulated FM signal’);

figure(2)

subplot (211); tdl=plot(t,s_£fm);

axis(Trangel); set(tdl, 'Linewidth’,2);

xlabel (' {\it t} (sec)’); ylabel(’{\it s}_{\rm FM} ({\it t}) ')
title(’FM signal’);

subplot (212);td2=plot(t,s_pm) ;

axis (Trangel); set(td2, 'Linewidth’,2);

xlabel (' {\it t} (sec)’); ylabel (’'{\it s)}_{\rm PM} ({\it t}) ")
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title(’'PM signal’);

figure(3)

subplot (211) ; fpl=plot(t, s_fmdem) ;

set (fpl, 'Linewidth’,2);

xlabel (' {\it t} (sec)’); ylabel (’'{\it d s}_{\rm FM} ({\it t})/dt’)
title(’'FM derivative’);

subplot (212) ; fp2=plot(t, s_fmrec) ;

set (fp2, 'Linewidth’,2);

xlabel (’ {\it t} (sec)’);

title('rectified FM derivative’);

Frange=[-600 600 0 300];

figure(4)

subplot (211); fdl=plot (fregs,abs (S_fm)) ;

axis (Frange); set(fdl, 'Linewidth’,2);

xlabel (' {\it £} (Hz)'); ylabel(’{\it S}_{\rm FM} ({\it £})")
title(’'FM amplitude spectrum’) ;

subplot (212); fd2=plot (fregs,abs (S_pm)) ;

axis (Frange); set(fd2, ‘Linewidth’,2);

xlabel (’ {\it £} (Hz)’); ylabel(’{\it S}_{\rm PM} ({\it £})’)
title(’PM amplitude spectrum’);

To obtain the demodulation results (Fig. 5.20), a differentiator is first applied to change the
frequency-modulated signal into an amplitude- and frequency-modulated signal (Fig. 5.20).

Figure 5.20 FM derivative
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Figure 5.21
FM modulation
and
demodulation:
(a) original
message;

(b) recovered
signal.
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Upon applying the rectifier for envelope detection, we see that the message signal follows
closely to the envelope variation of the rectifier output.

Finally, the rectifier output signal is passed through a low-pass filter with bandwidth
100 Hz. We used the finite impulse response low-pass filter of order 80 this time because of
the tighter filter constraint in this example. The FM detector output is then compared with the
original message signal in Fig. 5.21.

The FM demodulation results clearly show some noticeable distortions. First, the higher
order low-pass filter has a much longer response time and delay. Second, the distortion dur-
ing the negative half of the message is more severe because the rectifier generates very few
cycles of the half-sinusoid. This happens because when the message signal is negative, the
instantaneous frequency of the FM signal is low. Because we used a carrier frequency of only
300 Hz, the effect of low instantaneous frequency is much more pronounced. If a practical
carrier frequency of 100 MHz were applied, this kind of distortion would be completely
negligible.
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PROBLEMS

5.1-1 Sketch ¢p,(¢) and @p\ (¢) for the modulating signal m(t) shown in Fig. P5.1-1, given w, =
108, kr = 10°, and kp = 25.

A s s
7 =

k10—

5.1-2 A baseband signal m(z) is the periodic sawtooth signal shown in Fig. P5.1-2.

(a) Sketch g, (¢) and g, (¢) for this signal m(z) if we = 27 x 109, kf = 20007, and kp = 7/2.

(b) Show that the PM signal is equivalent to a PM signal modulated by a rectangular periodic
message. Explain why it is necessary to use kp < 7 in this case. [Note that the PM signal
has a constant frequency but has phase discontinuities corresponding to the discontinuities
of m(t).]

Figure P.5.1-2 107} -

AN N/
VAV

5.1-3 Over an interval [¢| < 1, an angle-modulated signal is given by

@M (@ =10 cos 13,0007 ¢

It is known that the carrier frequency w. = 10,0007 .

(a) If this were a PM signal with kp = 1000, determine m(¢) over the interval |¢| < 1.
(b) If this were an FM signal with kf = 1000, determine m(z) over the interval |¢| < 1.
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5.2-1

5.2-2

5.2-3

5.2-4

5.2-5

5.2-6

5.2-7

5.3-1

5.3-2

For a message signal

m(t) = 2cos 100t + 18 cos 20007 ¢

(a) Write expressions (do not sketch) for ¢, (f) and @py, (1) when A = 10, o, = 106, kf =
10007, and kp, = 1. For determining ¢, (#), use the indefinite integral of m(¢); that is, take
the value of the integral att = —oo to be 0.

(b) Estimate the bandwidths of ¢, (#) and ¢, (¢).

An angle-modulated signal with carrier frequency w; = 27 x 10° is described by the equation

gy (1) = 10 cos (wct + 0.1sin 20007¢)

(a) Find the power of the modulated signal.
(b) Find the frequency deviation Af.

(c) Find the phase deviation A¢.

(d) Estimate the bandwidth of ¢gpn(2).

Repeat Prob. 5.2-2 if
©pm (O = 5 cos (wet + 20sin 10007 ¢ + 10sin 20007 £)

Estimate the bandwidth for ¢, (f) and ¢y, (¢) in Prob. 5.1-1. Assume the bandwidth of m(t) in
Fig. P5.1-1 to be the third-harmonic frequency of m(z).

Estimate the bandwidth for ¢, (t) and ¢, (t) in Prob. 5.1-2. Assume the bandwidth of m(z) in
Fig. P5.1-1 to be the fifth-harmonic frequency of m(t).

Given m(t) = sin 20007 ¢, ke = 200,000, and kp = 10.

(a) Estimate the bandwidths of ¢ (#) and ¢p), (2).

(b) Repeat part (a) if the message signal amplitude is doubled.

(c) Repeat part (a) if the message signal frequency is doubled.

(d) Comment on the sensitivity of FM and PM bandwidths to the spectrum of m(z).

Given m(t) = e_tz, fe= 10* Hz, kf = 60007, and kp = 80007 :
(a) Find Af, the frequency deviation for FM and PM.

(b) Estimate the bandwidths of the FM and PM waves.
Hint: Find M (f) and find its 3 dB bandwidth (B < Af).

Design (only the block diagram) an Armstrong indirect FM modulator to generate an FM carrier
with a carrier frequency of 98.1 MHz and Af = 75 kHz. A narrowband FM generator is available
at a carrier frequency of 100 kHz and a frequency deviation Af = 10 Hz. The stock room also
has an oscillator with an adjustable frequency in the range of 10 to 11 MHz. There are also plenty
of frequency doublers, triplers, and quintuplers.

Design (only the block diagram) an Armstrong indirect FM modulator to generate an FM carrier
with a carrier frequency of 96 MHz and Af = 20kHz. A narrowband FM generator with f = 200
kHz and adjustable Af in the range of 9 to 10 Hz is available. The stock room also has an oscillator
with adjustable frequency in the range of 9 to 10 MHz. There is a bandpass filter with any center
frequency, and only frequency doublers are available.
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5.4-1 (a) Show that when m(¢) has no jump discontinuities, an FM demodulator followed by an inte-
grator (Fig. P5.4-1a) forms a PM demodulator. Explain why it is necessary for the FM
demodulator to remove any dc offset before the integrator.

(b) Show that a PM demodulator followed by a differentiator (Fig. P5.4-1b) serves as an FM
demodulator even if m(¢) has jump discontinuities or if the PM demodulator output has dc
offset.

Figure P.5.4-1 e 1

N FM
demodulator

Y

demodulator dr

(b) FM demodulator

5.4-2 A periodic square wave m(t) (Fig. P5.4-2a) frequency-modulates a carrier of frequency f, =
10 kHz with Af = 1 kHz. The carrier amplitude is A. The resulting FM signal is demodulated,
as shown in Fig. P5.4-2b by the method discussed in Sec. 5.4 (Fig. 5.12). Sketch the waveforms
at points b, ¢, d, and e.

Figure P.5.4-2 m(t) | T |
o
1

f—
-1
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m(t)
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@ ® t © etector @ g )
\ v J
Demodulator
(b)

5.4-3 Use small-error PLL analysis to show that a first-order loop [H (s) = 1] cannottrack an incoming
signal whose instantaneous frequency is varyinglinearly with time [6; (t) = k2]. This signal can
be tracked within a constant phase if H(s) = (s 4 a)/s. It can be tracked with a zero phase error
if H(s) = (s? + as + b)/s2.

5.6-1 A transmitter transmits an AM signal with a carrier frequency of 1500 kHz. When an inexpensive
radio receiver (which has a poor selectivity in its RF-stage bandpass filter) is tuned to 1500 kHz,
the signal is heard loud and clear. This same signal is also heard (not as well) at another dial
setting. State, with reasons, at what frequency you will hear this station. The IF frequency is
455 kHz.
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5.6-2 Consider a superheterodyne FM receiver designed to receive the frequency band of 1 to 30 MHz
with an IF frequency 8 MHz. What is the range of frequencies generated by the local oscillator for
this receiver? An incoming signal with a carrier frequency of 10 MHz is received at the 10 MHz
setting. At this setting of the receiver, we also get interference from a signal with some other
carrier frequency if the receiver RF-stage bandpass filter has poor selectivity. What is the carrier
frequency of the interfering signal?



SAMPLING AND
ANALOG-TO-DIGITAL
CONVERSION

quantization. This analog-to-digital (A/D) conversion sets the foundation of modern

digital communication systems. In the A/D converter, the sampling rate must be large
enough to permit the analog signal to be reconstructed from the samples with sufficient accu-
racy. The sampling theorem, which is the basis for determining the proper (lossless) sampling
rate for a given signal, has played a huge role in signal processing, communication theory, and
A/D circuit design.

ﬁ s briefly discussed in Chapter 1, analog signals can be digitized through sampling and

6.1 SAMPLING THEOREM

We first show that a signal g(#) whose spectrum is band-limited to B Hz, that is,
G(f)=0 for |f| > B

can be reconstructed exactly (without any error) from its discrete time samples taken uniformly
at arate of R samples per second. The condition is that R > 2B. In other words, the minimum
sampling frequency for perfect signal recovery is f; = 2B Hz.

To prove the sampling theorem, consider a signal g(¢) (Fig. 6.1a) whose spectrum is band-
limited to B Hz (Fig. 6.1b).* For convenience, spectra are shown as functions of f as well as
of w. Sampling g () at a rate of f; Hz means that we take f; uniform samples per second. This
uniform sampling can be accomplished by multiplying g(¢) by an impulse train 67, (¢) of Fig.
6.1c, consisting of unit impulses repeating periodically every T seconds, where T; = 1/f;.
This results in the sampled signal g(¢) shown in Fig. 6.1d. The sampled signal consists of
impulses spaced every T seconds (the sampling interval). The nth impulse, located at ¢ = nTj,
has a strength g(nT,) which is the value of g(¢) at t = nTj. Thus, the relationship between the

* The spectrum G(f) in Fig. 6.1b is shown as real, for convenience. Our arguments are valid for complex G(f).
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Figure 6.1
Sampled signal
and its Fourier
spectra.
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sampled signal g(#) and the original analog signal g(¢) is
() = gWdr,(1) = ) g(nTy)8(t — nTy) ©6.1)
n

Because the impulse train 6, (¢) is a periodic signal of period T, it can be expressed as
an exponential Fourier series, already found in Example 3.11 as

1 — 2
= Y wg=T=02mf (6.2)
) N

n=—00

Therefore,

8(1) = g(1)dr, (1)

:Ti > g (6.3)
S p=—00

To find G(f), the Fourier transform of g(¢), we take the Fourier transform of the summation
in Eq. (6.3). Based on the frequency-shifting property, the transform of the nth term is shifted
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by nf;. Therefore,
_ 1 &
GU>=iF§;Gu—mo (6.4)

This means that the spectrum G(f) consists of G(f), scaled by a constant 1/T}, repeating
periodically with period f; = 1/T Hz, as shown in Fig. 6.1e.

After uniform sampling that generates a set of signal samples {g (kT)}, the vital question
becomes: Can g(¢) be reconstructed from g(¢) without any loss or distortion? If we are to
reconstruct g(¢) from g(¢), equivalently in the frequency domain we should be able to recover
G(f) from G(f). Graphically from Fig. 6.1, perfect recovery is possible if there is no overlap
among the replicas in G(f). Figure 6.1¢ clearly shows that this requires

fs> 2B (6.5)

Also, the sampling interval Ty = 1/f;. Therefore,

1

Ts < T (6.6)
Thus, as long as the sampling frequency f; is greater than twice the signal bandwidth B (in
hertz), G(f) will consist of nonoverlapping repetitions of G(f). When this is true, Fig. 6.1¢
shows that g(#) can be recovered from its samples g(¢) by passing the sampled signal g(z)
through an ideal low-pass filter of bandwidth B Hz. The minimum sampling rate f; = 2B
required to recover g(t) from its samples g(¢) is called the Nyquist rate for g(¢), and the
corresponding sampling interval Ty = 1/2B is called the Nyquist interval for the low-pass
signal g(¢).*

We need to stress one important point regarding the possibility of f = 2B and a particular
class of low-pass signals. For a general signal spectrum, we have proved that the sampling
rate fy > 2B. However, if the spectrum G(f) has no impulse (or its derivatives) at the highest
frequency B, then the overlap is still zero as long as the sampling rate is greater than or equal
to the Nyquist rate, that is,

£ > 2B

If, on the other hand, G(f) contains an impulse at the highest frequency + B, then the equality
must be removed or else overlap will occur. In such case, the sampling rate f; must be greater
than 2B Hz. A well-known example is a sinusoid g(¢) = sin 2w B(t — #p). This signal is band-
limited to B Hz, but all its samples are zero when uniformly taken at a rate f; = 2B (starting
att = tg), and g(¢) cannot be recovered from its Nyquist samples. Thus, for sinusoids, the
condition of f; > 2B must be satisfied.

6.1.1 Signal Reconstruction from Uniform Samples

The process of reconstructing a continuous time signal g (¢) from its samples is also known as
interpolation. In Fig. 6.1, we used a constructive proof to show that a signal g (¢) band-limited

* The theorem stated here (and proved subsequently) applies to low-pass signals. A bandpass signal whose spectrum
exists over a frequency band f; — B/2 < |f| < f; + B/2 has a bandwidth B Hz. Such a signal is also uniquely
determined by samples taken at above the Nyquist frequency 2B. The sampling theorem is generally more complex
in such case. It uses two interlaced uniform sampling trains, each at half the overall sampling rate R; > B. See, for
example, the Refs. 1 and 2.
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Figure 6.2
Ideal

inferpolation.

to B Hz can be reconstructed (interpolated) exactly from its samples. This means not only
that uniform sampling at above the Nyquist rate preserves all the signal information, but also
that simply passing the sampled signal through an ideal low-pass filter of bandwidth B Hz
will reconstruct the original message. As seen from Eq. (6.3), the sampled signal contains a
component (1/7;)g(¢), and to recover g(t) [or G(f)], the sampled signal

2(1) =Y g(nT)8(t — nTy)

must be sent through an ideal low-pass filter of bandwidth B Hz and gain 7. Such an ideal
filter response has the transfer function

® S
H(f) =T, Tl (m) =T,1 (ﬁ> (6.7)

Ideal Reconstruction

To recover the analog signal from its uniform samples, the ideal interpolation filter transfer
function found in Eq. (6.7) is shown in Fig. 6.2a. The impulse response of this filter, the inverse
Fourier transform of H(f), is

h(t) = 2BT; sinc (2w Bt) (6.8)

Assuming the use of Nyquist sampling rate, thatis, 2BT; = 1, then
h(t) = sinc (27 Bt) (6.9)
This A(t) is shown in Fig. 6.2b. Observe the very interesting fact that 2(¢f) = 0 at all Nyquist
sampling instants (z = +n/2B) except ¢t = 0. When the sampled signal g(¢) is applied at

the input of this filter, the output is g(¢). Each sample in g(¢), being an impulse, generates a
sinc pulse of height equal to the strength of the sample, as shown in Fig. 62c. The process is

. LilH])
’ H(f) I

@ = NS I \/

Sampled signal

Reconstructed signal

80 N ———80
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identical to that shown in Fig. 6.6, exceptthatz(¢) is a sinc pulse instead of a rectangular pulse.
Addition of the sinc pulses generated by all the samples results in g(¢). The kth sample of the
input g(¢) is the impulse g (kT)8(t — kT); the filter output of this impulse is g(kTs)h(t — kT).
Hence, the filter output to g(¢), whichis g(¢), can now be expressed as a sum,

g(t) =Y g(kT)h(t — kTy)
k

=) g(kTy) sinc 27 B(t — kTy)] (6.10a)
k

= g(kTy) sinc 2nBt — k) (6.10b)
k

Equation (6.10) is the interpolation formula, which yields values of g (¢) between samples as
a weighted sum of all the sample values.

Example 6.1

Figure 6.3
Signal recon-
structed from the
Nyquist samples
in Example 6.1.

Find a signal g(¢) that is band-limited to B Hz and whose samples are
g0)=1 and g(*Ty) =g(*2T,) =g(*3T) =---=0

where the sampling interval T is the Nyquist interval for g(¢), thatis, Ty = 1/2B.

We use the interpolation formula (6.10b) to construct g(#) from its samples. Since all

but one of the Nyquist samples are zero, only one term (corresponding to k = 0) in the
summation on the right-hand side of Eq. (6.10b) survives. Thus,

g(t) = sinc (2w Bt) (6.11)
This signal is shown in Fig. 6.3. Observe that this is the only signal that has a bandwidth

B Hz and sample values g(0) = 1 and g(nT;) = 0 (n # 0). No other signal satisfies these
conditions.

g ()

2B ;‘13
N s AN -
RAVAIRVAR
b) [ —

Practical Signal Reconstruction (Interpolation)

We established in Sec. 3.5 that the ideal low-pass filter is noncausal and unrealizable. This can
be equivalently seen from the infinitely long nature of the sinc reconstruction pulse used in
the ideal reconstruction of Eq. (6.10). For practical application of signal reconstruction (e.g., a
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Figure 6.4
Practical
reconstruction
(interpolation)
pulse.
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CD player), we need to implement realizable signal reconstruction systems from the uniform
signal samples.

For practical implementation, this reconstruction pulse p(¢) must be easy to generate. For
example, we may apply the reconstruction pulse p(¢) as shown in Fig. 6.4. However, we must
first use the nonideal interpolation pulse p(¢#) to analyze the accuracy of the reconstructed
signal. Let us denote the new signal from reconstruction as

t—»

Z(1) 2 g(nT)p(t — nTy) (6.12)

To determine its relation to the original analog signal g(¢), we can see from the properties of
convolution and Eq.(6.1) that

20 =) gTop(t —nTy) = p(t) = [Zg(nn)a(t - nTs)]

n

=p(1) *x g(0) (6.13a)

In the frequency domain, the relationship between the reconstruction and the original analog
signal can rely on Eq. (6.4)

~ 1
G(f) =P(f)z= ) _G(f —nf) (6.13b)

This means that the reconstructed signal g () using pulse p(¢) consists of multiple replicas of
G(f) shifted to the frequency center nf; and filtered by P(f). To fully recover g(z), further
filtering of g(¢) becomes necessary. Such filters are often referred to as equalizers.

Denote the equalizer transfer function as E(f). Distortionless reconstruction requires that

G(f) = E(f)G(f)
- E(f)P(f)Tis Z G(f —nfy)

This relationship clearly illustrates that the equalizer must remove all the shifted replicas
G(f — nf;) in the summation except for the low-pass term with n = 0, that is,

EP(f)=0 |fI>f—B (6.14a)



Figure 6.5
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Additionally, distortionless reconstruction requires that

E(f)P(f)=Ts |fl<B (6.14b)

The equalizer filter E(f) must be low-pass in nature to stop all frequency content above
fs — B Hz, and it should be the inverse of P(f) within the signal bandwidth of B Hz. Figure 6.5
demonstrates the diagram of a practical signal reconstruction system utilizing such an equalizer.

Let us now consider a very simple interpolating pulse generator that generates short
(zero-order hold) pulses. As shown in Fig. 6.6,

p(t) =TI (t - O.ST,,)
TP

This is a gate pulse of unit height with pulse duration 7). The reconstruction will first generate

—nTs — 0.5T\
T, Ji

§0 = ¢TI (t

The transfer function of filter P(f) is the Fourier transform of I1(z/T,) shifted by 0.57),:
P(f) = Tpsinc (nf T,) e/ (6.15)

As a result, the equalizer frequency response should satisfy

Ts/P(f) |fI<B
Flexible B < |f| < (1/Ts — B)
0 If1=@1/Ts — B)

E(f) =
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It is important for us to ascertain that the equalizer passband response is realizable. First
of all, we can add another time delay to the reconstruction such that

. —j2mfy
E(f)=T;s sin(nfT,,)e ’ Ifl<B (6.16)

For the passband gain of E(f) to be well defined, it is imperative for us to choose a short
pulse width T}, such that

sin (f1y)

f #0 |fI<B

This means that the equalizer E(f) does not need to achieve infinite gain. Otherwise the
equalizer would become unrealizable. Equivalently, this requires that

T, < 1/B

Hence, as long as the rectangular reconstruction pulse width is shorter than 1/B, it may be
possible to design an analog equalizer filter to recover the original analog signal g(z) from
the nonideal reconstruction pulse train. Of course, this is a requirement for a rectangular
reconstruction pulse generator. In practice, 7, can be chosen very small, to yield the following
equalizer passband response:

”f ~ T
: E(n’pr) ~ T_p lfl <B (6.17)

E (f )=T;
This means that very little distortion remains when very short rectangular pulses are used in
signal reconstruction. Such cases make the design of the equalizer either unnecessary or very
simple. An illustrative example is given as a MATLAB exercise in Sec. 6.9.

We can improve on the zero-order-hold filter by using the first-order-hold filter, which
results in a linear interpolation instead of the staircase interpolation. The linear interpolator,
whose impulse response is a triangle pulse A(z/2Ts), results in an interpolation in which
successive sample tops are connected by straight-line segments (Prob. 6.1-7).

6.1.2 Practical Issues in Signal Sampling
and Reconstruction

Realizability of Reconstruction Filters

If a signal is sampled at the Nyquist rate f; = 2B Hz, the spectrum G(f) consists of repetitions
of G(f) without any gap between successive cycles, as shown in Fig. 6.7a. To recover g(t)
from g(¢), we need to pass the sampled signal g(z) through an ideal low-pass filter (dotted
area in Fig. 6.7a). As seen in Sec. 3.5, such a filter is unrealizable in practice; it can be closely
approximated only with infinite time delay in the response. This means that we can recover
the signal g () from its samples with infinite time delay.

A practical solution to this problem is to sample the signal at a rate higher than the Nyquist
rate (f; > 2B or w; > 47 B). This yields G(f), consisting of repetitions of G(f) with a finite
band gap between successive cycles, as shown in Fig. 6.7b. We can now recover G(f) from
6( f) [or from G(f)] by using a low-pass filter with a gradual cutoff characteristic (dotted area
in Fig. 6.7b). But even in this case, the filter gain is required to be zero beyond the first cycle



Figure 6.7
Spectra of a
sampled signal:
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(a)

(b)

of G(f) (Fig.6.7b). According to the Paley-Wiener criterion, it is impossible to realize even
this filter. The only advantage in this case is that the required filter can be better approximated
with a smaller time delay. This shows that it is impossible in practice to recover a band-limited
signal g(¢) exactly from its samples, even if the sampling rate is higher than the Nyquist rate.
However, as the sampling rate increases, the recovered signal approaches the desired signal
more closely.

The Treachery of Aliasing

There is another fundamental practical difficulty in reconstructing a signal from its samples.
The sampling theorem was proved on the assumption that the signal g(7) is band-limited.
All practical signals are time-limited; that is, they are of finite duration or width. We can
demonstrate (Prob. 6.1-8) that a signal cannot be time-limited and band-limited simultaneously.
A time-limited signal cannot be band-limited, and vice versa (but a signal can be simultaneously
non-time-limited and non-band-limited). Clearly, all practical signals, which are necessarily
time-limited, are non-band-limited, as shown in Fig. 6.8a; they have infinite bandwidth, and
the spectrum G(f) consists of overlapping cycles of G(f) repeating every f; Hz (the sampling
frequency), as illustrated in Fig. 6.8b. Because of the infinite bandwidth in this case, the spectral
overlap is unavoidable, regardless of the sampling rate. Sampling at a higher rate reduces but
does not eliminate overlapping between repeating spectral cycles. Because of the overlapping
tails, G( f) no longer has complete information about G(f), and it is no longer possible, even
theoretically, to recover g(¢) exactly from the sampled signal g(¢). If the sampled signal is
passed through an ideal low-pass filter of cutoff frequency f;/2 Hz, the output is not G(f) but
G,(f) (Fig. 6.8¢c), which is a version of G(f) distorted as a result of two separate causes:

1. The loss of the tail of G(f) beyond |f| > f;/2 Hz.
2. The reappearance of this tail inverted or folded back onto the spectrum.

Note that the spectra cross at frequency f;/2 = 1/2T Hz, which is called the folding
frequency. The spectrum may be viewed as if the lost tail is folding back onto itself at the folding
frequency. For instance, a component of frequency (f;/2) + f; shows up as, or “impersonates,”
acomponent of lower frequency (f;/2)—f; in the reconstructed signal. Thus, the components of
frequencies above f;/2 reappear as components of frequencies below f; /2. This tail inversion,
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Figure 6.8
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known as spectral folding or aliasing, is shown shaded in Fig. 6.8b and also in Fig. 6.8c. In
the process of aliasing, not only are we losing all the components of frequencies above the
folding frequency f;/2 Hz, but these very components reappear (aliased) as lower frequency
components in Fig. 6.8b or c. Such aliasing destroys the integrity of the frequency components
below the folding frequency f;/2, as depicted in Fig. 6.8c.

The problem of aliasing is analogous to that of an army when a certain platoon has secretly
defected to the enemy side but remains nominally loyal to their army. The army is in double
jeopardy. First, it has lost the defecting platoon as an effective fighting force. In addition, during
actual fighting, the army will have to contend with sabotage caused by the defectors and will
have to use loyal platoon to neutralize the defectors. Thus, the army has lost two platoons to
nonproductive activity.

Defectors Eliminated: The Antialiasing Filter

If you were the commander of the betrayed army, the solution to the problem would be obvious.
As soon as you got wind of the defection, you would incapacitate, by whatever means, the
defecting platoon. By taking this action before the fighting begins, you lose only one (the
defecting)* platoon. This is a partial solution to the double jeopardy of betrayal and sabotage,
a solution that partly rectifies the problem and cuts the losses in half.

We follow exactly the same procedure. The potential defectors are all the frequency com-
ponents beyond the folding frequency f;/2 = 1/2T Hz. We should eliminate (suppress) these
components from g(t) before sampling g(t). Such suppression of higher frequencies can be
accomplished by an ideal low-pass filter of cutoff f;/2 Hz, as shown in Fig. 6.8d. This is called
the antialiasing filter. Figure 6.8d also shows that antialiasing filtering is performed before
sampling. Figure 6.8e shows the sampled signal spectrum and the reconstructed signal G, (f)
when the antialiasing scheme is used. An antialiasing filter essentially band-limits the signal
g(t) tof;/2 Hz. This way, we lose only the components beyond the folding frequency f;/2 Hz.
These suppressed components now cannot reappear, corrupting the components of frequencies
below the folding frequency. Clearly, use of an antialiasing filter results in the reconstructed
signal spectrum G, (f) = G(f) for | f| < fs/2. Thus, although we lost the spectrum beyond
fs/2 Hz, the spectrum for all the frequencies below f;/2 remains intact. The effective aliasing
distortion is cut in half owing to elimination of folding. We stress again that the antialiasing
operation must be performed before the signal is sampled.

An antialiasing filteralso helps to reduce noise. Noise, generally, has a wideband spectrum,
and without antialiasing, the aliasing phenomenon itself will cause the noise components
outside the desired signal band to appear in the signal band. Antialiasing suppresses the entire
noise spectrum beyond frequency f;/2.

The antialiasing filter, being anideal filter, is unrealizable. In practice we use a steep-cutoff
filter, which leaves a sharply attenuated residual spectrum beyond the folding frequency f/2.

Sampling Forces Non-Band-Limited Signals to Appear Band-Limited

Figure 6.8b shows the spectrum of a signal g(¢) consists of overlapping cycles of G(f). This
means that g (¢) are sub-Nyquist samples of g (z). However, we may also view the spectrumin
Fig. 6.8b as the spectrum G, (f) (Fig. 6.8¢c), repeating periodically every f; Hz without overlap.
The spectrum G, (f) is band-limited to f;/2 Hz. Hence, these (sub-Nyquist) samples of g(t)

* Figure 6.8b shows that from the infinite number of repeating cycles, only the neighboring spectral cycles overlap.
This is a somewhat simplified picture. In reality, all the cycles overlap and interact with every other cycle because
of the infinite width of all practical signal spectra. Fortunately, all practical spectra also must decay at higher
frequencies. This results in an insignificant amount of interference from cycles other than the immediate neighbors.
When such an assumption is not justified, aliasing computations become little more involved.
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are actually the Nyquist samples for signal g, (#). In conclusion, sampling a non-band-limited
signal g (¢) at a rate f; Hz makes the samples appear to be the Nyquist samples of some signal
ga(t), band-limited to f;/2 Hz. In other words, sampling makes a non-band-limited signal
appear to be a band-limited signal g, (¢) with bandwidth f;/2 Hz. A similar conclusion applies
if g (¢) is band-limited but sampled at a sub-Nyquist rate.

6.1.3 Maximum Information Rate: Two Pieces of
Information per Second per Hertz

A knowledge of the maximum rate at which information can be transmitted over a channel of
bandwidth B Hz is of fundamental importance in digital communication. We now derive one
of the basic relationships in communication, which states that a maximum of 2B independent
pieces of information per second can be transmitted, error free, over a noiseless channel of
bandwidth B Hz. The result follows from the sampling theorem.

First, the sampling theorem shows that a low-pass signal of bandwidth B Hz can be fully
recovered from samples uniformly taken at the rate of 2B samples per second. Conversely,
we need to show that any sequence of independent data at the rate of 2B Hz can come from
uniform samples of a low-pass signal with bandwidth B. Moreover, we can construct this
low-pass signal from the independent data sequence.

Suppose a sequence of independent data samples is denoted as {g,}. Its rate is 2B samples
per second. Then there always exists a (not necessarily band-limited) signal g (¢) such that

1

gn = g(nTy) T, = 2_B

In Figure 6.9a we illustrate again the effect of sampling the non-band-limited signal g(z) at
sampling rate f; = 2B Hz. Because of aliasing, the ideal sampled signal

2() =) _ g(nT)8(t — nTy)
=Y a(nT)8(t — nTy)

where g,(¢) is the aliased low-pass signal whose samples g,(nT;) equal to the samples of
g(nTy). In other words, sub-Nyquist sampling of a signal g(¢) generates samples that can
be equally well obtained by Nyquist sampling of a band-limited signal g,(¢). Thus, through
Figure 6.9, we demonstrate that sampling g () and g,(¢) at the rate of 2B Hz will generate the
same independent information sequence {g,}:

1

= (6.18)

gn = g(nTy) = ga(nTy) T

Also from the sampling theorem, a low-pass signal g, () with bandwidth B can be reconstructed
from its uniform samples [Eq. (6.10)]

8a(t) = Z gn sinc 2w Bt — ki)
n

Assuming no noise, this signal can be transmitted over a distortionless channel of bandwidth
B Hz, error free. At the receiver, the data sequence {g,} can be recovered from the Nyquist
samples of the distortionless channel output g,(¢) as the desired information data.
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This theoretical rate of communication assumes a noise-free channel. In practice, chan-
nel noise is unavoidable, and consequently, this rate will cause some detection errors. In
Chapter 14, we shall present the Shannon capacity which determines the theoretical error-free
communication rate in the presence of noise.

6.1.4 Nonideal Practical Sampling Analysis

Thus far, we have mainly focused on ideal uniform sampling that can use an ideal impulse
sampling pulse train to precisely extract the signal value g(kT) at the precise instant of ¢ =
kT;. In practice, no physical device can carry out such a task. Consequently, we need to
consider the more practical implementation of sampling. This analysis is important to the
better understanding of errors that typically occur during practical A/D conversion and their
effects on signal reconstruction.

Practical samplers take each signal sample over a short time interval 7, around ¢ = kTj.
In other words, every T seconds, the sampling device takes a short snapshot of duration T},
from the signal g(¢) being sampled. This is just like taking a sequence of still photographs
of a sprinter during an 100-meter Olympic race. Much like a regular camera that generates a
still picture by averaging the picture scene over the window T}, the practical sampler would
generate a sample value at t = kT by averaging the values of signal g () over the window T,
that is,

1 Tp/2
g1(kTy) = —/ g(kTs + 1) dt
Ty J-1,2

(6.192)

Depending on the actual device, this averaging may be weighted by a device-dependent
averaging function g(¢) such that

1 Tp/2
81(kTy) = 7‘/ q()g (kTs + 1) dt (6.19b)
2

pJ=Tp/
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Figure 6.10
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Thus we have used the camera analogy to establish that practical samplers in fact generate
sampled signal of the form

HG)

o3

i =Y g1(kT)S(t — kT (6.20)

We will now show the relationship between the practically sampled signal g (¢) and the original
low-pass analog signal g(¢) in the frequency domain.

We will use Fig. 6.10 to illustrate the relationship between g (¢) and g(¢) for the special
case of uniform weighting. This means that

1 || <0.57,

t) =
10=10 1| > 0.5T,

As shown in Fig. 6.10, g (¢) can be equivalently obtained by first using “natural gating” to
generate the signal snapshots

g(n) =g(t) - qp, (1) (6.21)
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where

o0

gr, ()= ) q(t —nTy)

n=—oo

Figure 6.10b illustrates the snapshot signal g(z). We can then define an averaging filter with
impulse response

L) R

h()=1T, 2~ 2
0  elsewhere

or transfer function

H,(f) = sinc (fT,)

Sending the naturally gated snapshot signal g(¢) into the averaging filter generates the
output signal

81(t) = ha(t) x (1)
As illustrated in Fig. 6.10c, the practical sampler generate a sampled signal g(¢) by sampling
the averaging filter output g1(k7;). Thus we have used Fig. 6.10c to establish the equivalent
process of taking snapshots, averaging, and sampling in generating practical samples of g(z).
Now we can examine the frequency domain relationships to analyze the distortion generated
by practical samplers.

In the following analysis, we will consider a general weighting function g(z) whose only
constraint is that

qt) =0,  t ¢ (=0.5T), 0.5T))
To begin, note that g, () is periodic. Therefore, its Fourier series can be written as
o0
qr, () = Z Q0ne"st
n=-—0oo

where

0.57, .
On = = f qr)e™ """ dt
Te J os,

Thus, the averaging filter output signal is
g1(0) = ha(1) * [8(1)g7, (0]

=ho() % Y Ong ()" (6.22)

n=—oo
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In the frequency domain, we have

GI(f)=H(f) Y CuG(f —nf)

n=-—00

= sinc (7fT}) Z 0 G(f — nfy) (6.23)

n=—00

Because

2 =) g1(kT\)8(t — kTy)
k
we can apply the sampling theorem to show that

v 1
G == Zcmf + mfy)

_ _ZSI |:(271f+m2nfs)T :|ZQnG(f+mfs—nfs)

1
- (F > Qusine[(rf + (1 + f)”fs)Tp]> G(f +¢£) (6.24)

14

The last equality came from the change of the summation index £ = m — n.
We can define frequency responses

1
Fo(f) = T Z On sinc [(f + (n + O)nfy)T,]

This definition allows us to conveniently write

G(f) =Y _FulH)GI(f +4f) (6.25)
£

For the low-pass signal G(f) with bandwidth B Hz, applying an ideal low-pass (interpolation)
filter will generate a distorted signal

Fo(H)G(f) (6.26a)

in which

Fo(f) = TL Z Qe sine [7(f + #f)T,] (6.26b)

It can be seen from Egs. (6.25) and (6.26) that the practically sampled signal already contains
a known distortion Fy(f).
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Moreover, the use of a practical reconstruction pulse p(¢) as in Eq. (6.12) will generate
additional distortion. Let us reconstruct g (¢) by using the practical samples to generate

2ty =Y g1(nTy)p(t —nTy)

n

Then from Eq. (6.13) we obtain the relationship between the spectra of the reconstruction and
the original message G(f) as

G() =P FulGU + fy) (6.27)

Since G(f) has bandwidth B Hz, we will need to design a new equalizer with transfer function
E(f) such that the reconstruction is distortionless within the bandwidth B, that is,

1 |f| < B
E(f)P(f)Fo(f) = {Flexible B < |f] <fi—B (6.28)
0 |fl >fs—B

This single equalizer can be designed to compensate for two sources of distortion: nonideal
sampling effect in Fo(f) and nonideal reconstruction effect in P(f). The equalizer design is
made practically possible because both distortions are known in advance.

6.1.5 Some Applications of the Sampling Theorem

The sampling theorem is very important in signal analysis, processing, and transmission
because it allows us to replace a continuous time signal by a discrete sequence of numbers.
Processing a continuous time signal is therefore equivalent to processing a discrete sequence of
numbers. This leads us directly into the area of digital filtering. In the field of communication,
the transmission of a continuous time message reduces to the transmission of a sequence of
numbers. This opens doors to many new techniques of communicating continuous time sig-
nals by pulse trains. The continuous time signal g (¢) is sampled, and sample values are used to
modify certain parameters of a periodic pulse train. We may vary the amplitudes (Fig. 6.11b),
widths (Fig. 6.11c), or positions (Fig. 6.11d) of the pulses in proportion to the sample values of
the signal g(¢). Accordingly, we can have pulse amplitude modulation (PAM), pulse width
modulation (PWM), or pulse position modulation (PPM). The most important form of pulse
modulation today is pulse code modulation (PCM), introduced in Sec. 1.2. In all these cases,
instead of transmitting g(¢), we transmit the corresponding pulse-modulated signal. At the
receiver, we read the information of the pulse-modulated signal and reconstruct the analog
signal g(¢).

One advantage of using pulse modulation is that it permits the simultaneous transmission
of several signals on a time-sharing basis—time division multiplexing (TDM). Because a
pulse-modulated signal occupies only a part of the channel time, we can transmit several pulse-
modulated signals on the same channel by interweaving them. Figure 6.12 shows the TDM
of two PAM signals. In this manner we can multiplex several signals on the same channel by
reducing pulse widths.

Another method of transmitting several baseband signals simultaneously is frequency
division multiplexing (FDM), briefly discussed in Chapter 4. In FDM, various signals are mul-
tiplexed by sharing the channel bandwidth. The spectrum of each message is shifted to a specific
band not occupied by any other signal. The information of various signals is located in nonover-
lapping frequency bands of the channel. In a way, TDM and FDM are duals of each other.
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6.2 PULSE CODE MODULATION (PCM)

PCM is the most useful and widely used of all the pulse modulations mentioned. As shown in
Fig. 6.13, PCM basically is a tool for converting an analog signal into a digital signal (A/D
conversion). An analog signal is characterized by an amplitude that can take on any value over
a continuous range. This means that it can take on an infinite number of values. On the other
hand, digital signal amplitude can take on only a finite number of values. An analog signal can
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Allowed quantization levels

be converted into a digital signal by means of sampling and quantizing, that is, rounding off
its value to one of the closest permissible numbers (or quantized levels), as shown in Fig. 6.14.
The amplitudes of the analog signal m(¢) lie in the range (—m,, mp), which is partitioned into L
subintervals, each of magnitude Av = 2m,, /L. Next, each sample amplitude is approximated
by the midpoint value of the subinterval in which the sample falls (see Fig. 6.14 for L = 16).
Each sample is now approximated to one of the L numbers. Thus, the signal is digitized, with
quantized samples taking on any one of the L values. Such a signal is known as an L-ary
digital signal.

From practical viewpoint, a binary digital signal (a signal that can take on only two values)
is very desirable because of its simplicity, economy, and ease of engineering. We can convert
an L-ary signal into a binary signal by using pulse coding. Such a coding for the case of L = 16
was shown in Fig. 1.5. This code, formed by binary representation of the 16 decimal digits
from O to 15, is known as the natural binary code (NBC). Other possible ways of assigning
a binary code will be discussed later. Each of the 16 levels to be transmitted is assigned one
binary code of four digits. The analog signal m(¢) is now converted to a (binary) digital signal.
A binary digit is called a bit for convenience. This contraction of “binary digit” to “bit” has
become an industry standard abbreviation and is used throughout the book.

Thus, each sample in this example is encoded by four bits. To transmit this binary data,
we need to assign a distinct pulse shape to each of the two bits. One possible way is to assign a
negative pulse to a binary 0 and a positive pulse to a binary 1 (Fig. 1.5) so that each sample is
now transmitted by a group of four binary pulses (pulse code). The resulting signal is a binary
signal.

The audio signal bandwidth is about 15 kHz. However, for speech, subjective tests show
that signal articulation (intelligibility) is not affected if all the components above 3400 Hz
are suppressed.*> Since the objective in telephone communication is intelligibility rather than
high fidelity, the components above 3400 Hz are eliminated by a low-pass filter. The resulting
signal is then sampled at a rate of 8000 samples per second (8 kHz). This rate is intentionally
kept higher than the Nyquist sampling rate of 6.8 kHz so that realizable filters can be applied
for signal reconstruction. Each sample is finally quantized into 256 levels (L = 256), which
requires a group of eight binary pulses to encode each sample (28 = 256). Thus, a telephone
signal requires 8 x 8000 = 64,000 binary pulses per second.

* Components below 300 Hz may also be suppressed without affecting the articulation.
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The compact disc (CD) is a more recent application of PCM. This is a high-fidelity situation
requiring the audio signal bandwidth to be 20 kHz. Although the Nyquist sampling rate is only
40 kHz, the actual sampling rate of 44.1 kHz is used for the reason mentioned earlier. The
signal is quantized into a rather large number (L = 65,536) of quantization levels, each of
which is represented by 16 bits to reduce the quantizing error. The binary-coded samples (1.4
million bit/s) are then recorded on the compact disc.

6.2.1 Advantages of Digital Communication
Here are some of the advantages of digital communication over analog communication.

1. Digital communication, which can withstand channel noise and distortion much better
than analog as long as the noise and the distortion are within limits, is more rugged than analog
communication. With analog messages, on the other hand, any distortion or noise, no matter
how small, will distort the received signal.

2. The greatest advantage of digital communication over analog communication, how-
ever, is the viability of regenerative repeaters in the former. In an analog communication system,
a message signal becomes progressively weaker as it travels along the channel, whereas the
cumulative channel noise and the signal distortion grow progressively stronger. Ultimately
the signal is overwhelmed by noise and distortion. Amplification offers little help because it
enhances the signal and the noise by the same proportion. Consequently, the distance over
which an analog message can be transmitted is limited by the initial transmission power. For
digital communications, a long transmission path may also lead to overwhelming noise and
interferences. The trick, however, is to set up repeater stations along the transmission path at
distances short enough to be able to detect signal pulses before the noise and distortion have
a chance to accumulate sufficiently. At each repeater station the pulses are detected, and new,
clean pulses are transmitted to the next repeater station, which, in turn, duplicates the same pro-
cess. If the noise and distortion are within limits (which is possible because of the closely spaced
repeaters), pulses can be detected correctly.* This way the digital messages can be transmitted
over longer distances with greater reliability. The most significant error in PCM comes from
quantizing. This error can be reduced as much as desired by increasing the number of quan-
tizing levels, the price of which is paid in an increased bandwidth of the transmission medium
(channel).

3. Digital hardware implementation is flexible and permits the use of microprocessors,
digital switching, and large-scale integrated circuits.

4. Digital signals can be coded to yield extremely low error rates and high fidelity as well
as for privacy.

5. Itis easier and more efficient to multiplex several digital signals.

6. Digital communication is inherently more efficient than analog in exchanging SNR for
bandwidth.

7. Digital signal storage is relatively easy and inexpensive. It also has the ability to search
and select information from distant electronic database.

8. Reproduction with digital messages can be extremely reliable without deterioration.
Analog messages such as photocopies and films, for example, lose quality at each successive
stage of reproduction and must be transported physically from one distant place to another,
often at relatively high cost.

* The error in pulse detection can be made negligible.



6.2 Pulse Code Modulation [PCM) 271

9. The cost of digital hardware continues to halve every two or three years, while
performance or capacity doubles over the same time period. And there is no end in sight
yet to this breathtaking and relentless exponential progress in digital technology. As a
result, digital technologies today dominate in any given area of communication or storage
technologies.

A Historical Note

The ancient Indian writer Pingala applied what turns out to be advanced mathematical concepts
for describing prosody, and in doing so presented the first known description of a binary numeral
system, possibly as early as the eighth century BCE.® Others, like R. Hall in Mathematics of
Poetry place him later, circa 200 BCE. Gottfried Wilhelm Leibniz (1646—1716) was the first
mathematician inthe West to work out systematically the binary representation (using 1s and Os)
for any number. He felt a spiritual significance in this discovery, believing that 1, representing
unity, was clearly a symbol for God, while 0 represented nothingness. He reasoned that if all
numbers can be represented merely by the use of 1 and 0, this surely proves that God created
the universe out of nothing!

6.2.2 Quantizing

As mentioned earlier, digital signals come from a variety of sources. Some sources such as
computers are inherently digital. Some sources are analog, but are converted into digital form
by a variety of techniques such as PCM and delta modulation (DM), which will now be
analyzed. The rest of this section provides quantitative discussion of PCM and its various
aspects, such as quantizing, encoding, synchronizing, the required transmission bandwidth
and SNR.

Forquantization, we limit the amplitude of the message signal m(z) totherange (—mp, mp),
asshowninFig. 6.14. Note that m, is not necessarily the peak amplitude ofm(¢). The amplitudes
of m(t) beyond £m,, are simply chopped off. Thus, m,, is not a parameter of the signal m(t);
rather, itis the limit of the quantizer. The amplitude range (—m,,, m,) is divided into L uniformly
spaced intervals, each of width Av = 2m,,/ L. A sample value is approximated by the midpoint
of the interval in which it lies (Fig. 6.14). The quantized samples are coded and transmitted
as binary pulses. At the receiver some pulses may be detected incorrectly. Hence, there are
two sources of error in this scheme: quantization error and pulse detection error. In almost all
practical schemes, the pulse detection error is quite small compared to the quantization error
and can be ignored. In the present analysis, therefore, we shall assume that the error in the
received signal is caused exclusively by quantization.

If m(kTy) is the kth sample of the signal m(z), and if m(kTy) is the corresponding quantized
sample, then from the interpolation formula in Eq. (6.10),

m(r) = Y m(kTy) sinc (2Bt — k)
k

and

) = Zr?:(kTs) sinc (27 Bt — k)
k
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where m(z) is the signal reconstructed from quantized samples. The distortion component g(z)
in the reconstructed signal is g(z) = m(¢) — m(z). Thus,

qt) = Y [mkT;) — m(KT)] sinc 2Bt — k)
k

= > q(kTy) sinc (27 Bt — k)
k

where q(kT5) is the quantization error in the kth sample. The signal g(t) is the undesired signal,
and, hence, acts as noise, known as quantization noise. To calculate the power, or the mean
square value of g(t), we have

2 1 s 2() d
f) = lim — t) dt
7@ Timoor/_m‘“)

72 2
= lim l/ [Z q(kTy) sinc (2w Bt — krr):| dt (6.29a)

T—oo T

We can show that (see Prob. 3.7-4) the signals sinc (2nBt —mr) and sinc (2n Bt — nrr) are
orthogonal, that is,

0 #
/ sinc (2r Bt — mm) sinc (2nr Bt — nw) dt = 1 (6.29b)
% 2 "

Because of this result, the integrals of the cross-product terms on the right-hand side of
Eq. (6.29a) vanish, and we obtain

[PV

() = Jim / Zq (kTs) sinc? (2Bt — k) dt
1 .
= lim — Xk:(f(kn) /_ - sinc? (2Bt — k) dt

From the orthogonality relationship (6.29b), it follows that

“anan

()= im ﬁ Zq (kTy) (6.30)

Because the sampling rate is 2B, the total number of samples over the averaging interval T is
2BT . Hence, the right-hand side of Eq. (6.30) represents the average, or the mean of the square
of the quantization error. The quantum levels are separated by Av = 2m,,/L. Since a sample
value is approximated by the midpoint of the subinterval (of height Av) in which the sample
falls, the maximum quantization error is £ Av/2. Thus, the quantization error lies in the range
(—Av/2, Av/2), where

(6.31)
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Assuming that the error is equally likely to lie anywhere in the range (—Av/2, Av/2), the

mean square quantizing error g2 is given by*

(6.32)

= 2 (6.33)

Because g2(t) is the mean square value or power of the quantization noise, we shall denote it
by Ny,

(]

T

o)
N, = ¢* ()= 51%

Assuming that the pulse detection error at the receiver is negligible, the reconstructed signal
m(t) at the receiver output is

m(t) = m(t) + q(t)

The desired signal at the output is m(¢), and the (quantization) noise is ¢g(¢). Since the power

of the message signal m(¢) is m2(¢), then

S, = mi(H)

2

m

”

No=No =312
and

S, o mA(1)
= =312 (6.34)
N, "

In this equation, m,, is the peak amplitude value that a quantizer can accept, and is therefore
a parameter of the quantizer. This means S,/N,, the SNR, is a linear function of the message

signal power m?(t) (see Fig. 6.18 with 1 = 0).

* Those who are familiar with the theory of probability can derive this result directly by noting that the probability
density of the quantization error q is 1/(2mp /L) = L/2my, over the range |q| < mp /L and is zero elsewhere. Hence,

e sitp (L » supflf e
7 = [ gplgydg = f —qldg= =
—mp fL —mp L my, kI
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6.2.3 Principle of Progressive Taxation: Nonuniform
Quantization

Recall that S,/N,, the SNR, is an indication of the quality of the received signal. Ideally we
would like to have a constant SNR (the same quality) for all values of the message signal power

A

m?(t). Unfortunately, the SNR is directly proportional to the signal power m?(¢), which varies
from speaker to speaker by as much as 40 dB (a power ratio of 10*). The signal power can also
vary because of the different lengths of the connecting circuits. This indicates that the SNR in
Eq. (6.34) can vary widely, depending on the speaker and the length of the circuit. Even for
the same speaker, the quality of the received signal will deteriorate markedly when the person
speaks softly. Statistically, it is found that smaller amplitudes predominate in speech and larger
amplitudes are much less frequent. This means the SNR will be low most of the time.

The root of this difficulty lies in the fact that the quantizing steps are of uniform value
Av = 2mp/L. The quantization noise N; = (Av)?/12 [Eq. (6.32)] is directly proportional
to the square of the step size. The problem can be solved by using smaller steps for smaller
amplitudes (nonuniform quantizing), as shown in Fig. 6.15a. The same result is obtained by
first compressing signal samples and then using a uniform quantization. The input-output
characteristics of a compressor are shown in Fig. 6.15b. The horizontal axis is the normalized
input signal (i.e., the input signal amplitude m divided by the signal peak value m,). The
vertical axis is the output signal y. The compressor maps input signal increments Am into
larger increments Ay for small input signals, and vice versa for large input signals. Hence, a
given interval Am contains a larger number of steps (or smaller step size) when m is small.
The quantization noise is lower for smaller input signal power. An approximately logarithmic
compression characteristic yields a quantization noise nearly proportional to the signal power

m?(t), thus making the SNR practically independent of the input signal power over a large
dynamic range’ (see later Fig. 6.18). This approach of equalizing the SNR appears similar to
the use of progressive income tax to equalize incomes. The loud talkers and stronger signals
are penalized with higher noise steps Av to compensate the soft talkers and weaker signals.

Among several choices, two compression laws have been accepted as desirable standards
by the ITU-T:6 the y-law used in North America and Japan, and the A-law used in Europe and
the rest of the world and on international routes. Both the p-law and the A-law curves have
odd symmetry about the vertical axis. The p-law (for positive amplitudes) is given by

g, 1+‘“") o< <1 (6.35a)
= — In — - .
Y In(1+ w) my, “my T a
The A-law (for positive amplitudes) is
A #i m 1
71+m(;) 0=, =2
¥ = (6.35b)
1 Am 1 m
I+In— T <—=<1
1 + 1nA ( n mp ) A — mp -

These characteristics are shown in Fig. 6.16.

The compression parameter p (or A) determines the degree of compression. To obtain a
nearly constant S,/N, over a dynamic range of for input signal power 40 dB, w should be
greater than 100. Early North American channel banks and other digital terminals used a value
of u =100, which yielded the best results for 7-bit (128-level) encoding. An optimum value
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of u =255 has been used for all North American 8-bit (256-level) digital terminals, and the
earlier value of u is now almost extinct. For the A-law, a value of A = 87.6 gives comparable
results and has been standardized by the ITU-T.®

The compressed samples must be restored to their original values at the receiver by using
an expander with a characteristic complementary to that of the compressor. The compressor and
the expander together are called the compandor. Figure 6.17 describes the use of compressor
and expander along with a uniform quantizer to achieve nonuniform quantization.

Generally speaking, time compression of a signal increases its bandwidth. But in PCM,
we are compressing not the signal m(¢) in time but its sample values. Because neither the time
scale not the number of samples changes, the problem of bandwidth increase does not arise
here. It happens that when a p-law compandor is used, the output SNR is

2
i3
JILg— (6.36)
m(r)

Se 312
No  [In(1+4w)?
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The output SNR for the cases of © = 255 and p = 0 (uniform quantization) as a function of

m?(t) (the message signal power) is shown in Fig. 6.18.

The Compandor
A logarithmic compressor can be realized by a semiconductor diode, because the V-1
characteristic of such a diode is of the desired form in the first quadrant:

KT 1
V=—In (1+—>
q I

Two matched diodes in parallel with opposite polarity provide the approximate characteristic
in the first and third quadrants (ignoring the saturation current). In practice, adjustable resistors
areplacedin serieswitheachdiode andathirdvariableresistor is added in parallel. By adjusting
various resistors, the resulting characteristic is made to fit a finite number of points (usually
seven) on the ideal characteristics.

An alternative approach is to use a piecewise linear approximation to the logarithmic char-
acteristics. A 15-segmented approximation (Fig. 6.19) to the eighth bit (L = 256) with ;v = 255
law is widely used in the D2 channel bank that isused in conjunction with the T1 carrier system.
The segmented approximation is only marginally inferior in terms of SNR.® The piecewise
linear approximation has almost universally replaced earlier logarithmic approximations to
the true p =255 characteristic and is the method of choice in North American standards.
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Though a true u =255 compressor working with a =255 expander will be superior to sim-
ilar piecewise linear devices, a digital terminal device exhibiting the true characteristic in
today’s network must work end-to-end against other network elements that use the piecewise
linear approximation. Such a combination of differing characteristics is inferior to either of
the characteristics obtained when the compressor and the expander operate using the same
compression law.

In the standard audio file format used by Sun, Unix and Java, the audio in “au”
files can be pulse-code-modulated or compressed with the ITU-T G711 standard through
either the wu-law or the A-law.® The u-law compressor (i = 255) converts 14-bit
signed linear PCM samples to logarithmic 8-bit samples, leading to storage saving. The
A-law compressor (A = 87.6) converts 13-bit signed linear PCM samples to logarithmic
8-bit samples. In both cases, sampling at the rate of 8000 Hz, a G.77 encoder thus creates from
audio signals bit streams at 64 kilobits per second (kbit/s). Since the A-law and the p-law are
mutually compatible, audio recoded into “au” files can be decoded in either format. It should
be noted that the Microsoft WAV audio format also has compression options that use p-law
and A-law.
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The PCM Encoder

The multiplexed PAM outputis applied attheinput of the encoder, which quantizes and encodes
each sample into a group of # binary digits. A variety of encoders is available.” 19 We shall
discuss here the digit-at-a-time encoder, which makes » sequential comparisons to generate an
n-bit codeword. The sample is compared with a voltage obtained by a combination of reference
voltages proportional to 27, 26, 25 ... 20 The reference voltages are conveniently generated
by a bank of resistors R, 2R, 22R, ..., 2'R.

The encoding involves answering successive questions, beginning with whether the sam-
ple is in the upper or lower half of the allowed range. The first code digit 1 or 0 is generated,
depending on whether the sample is in the upper or the lower half of the range. In the second
step, another digit 1 or 0 is generated, depending on whether the sample is in the upper or the
lower half of the subinterval in which it has been located. This process continues until the last
binary digit in the code has been generated.

Decoding is the inverse of encoding. In this case, each of the # digits is applied to a resistor
of different value. The kth digit is applied to a resistor 2% R. The currents in all the resistors
are added. The sum is proportional to the quantized sample value. For example, a binary code
word 10010110 will give a current proportional to 27 4+ 0+ 0+ 2* + 0+ 22 + 2! 40 = 150.
This completes the D/A conversion.

6.2.4 Transmission Bandwidth and the Output SNR

For abinary PCM, we assign a distinct group of n binary digits (bits) to each of the L quantization
levels. Because a sequence of n binary digits can be arranged in 2" distinct patterns,

£=2 or n=log, L (6.37)

each quantized sample is, thus, encoded into 7 bits. Because a signal m(t) band-limited to B
Hz requires a minimum of 2B samples per second, we require a total of 2xnB bit/s, that is, 2nB
pieces of information per second. Because a unit bandwidth (1 Hz) can transmit a maximum of
two pieces of information per second (Sec. 6.1.3), we require a minimum channel of bandwidth
Br Hz, given by

Br =nBHz (6.38)
This is the theoretical minimum transmission bandwidth required to transmit the PCM signal.

In Secs. 7.2 and 7.3, we shall see that for practical reasons we may use a transmission bandwidth
higher than this minimum.

Example 6.2

A signal m(z) band-limited to 3 kHz is sampled at a rate 33%% higher than the Nyquist rate.
The maximum acceptable error in the sample amplitude (the maximum quantization error) is
0.5% of the peak amplitude m,. The quantized samples are binary coded. Find the minimum
bandwidth of a channel required to transmit the encoded binary signal. If 24 such signals
are time-division-multiplexed, determine the minimum transmission bandwidth required to
transmit the multiplexed signal.

The Nyquist sampling rate is Ry = 2 x 3000 = 6000 Hz (samples per second). The
actual sampling rate is R4 = 6000 x (1%) = 8000 Hz.
The quantization step is Av, and the maximum quantization error is £Av/2.
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Therefore, from Eq. (6.31),

Av  my 0.5

For binary coding, L must be a power of 2. Hence, the next higher value of L that is a
power of 2 is L = 256.

From Eq. (6.37), we need n = log, 256 = 8 bits per sample. We require to transmit
atotal of C = 8 x 8000 = 64, 000 bit/s. Because we can transmit up to 2 bit/s per hertz
of bandwidth, we require a minimum transmission bandwidth By = C /2 = 32 kHz.

The multiplexed signal has a total of Cpy = 24 x 64,000 = 1.536 Mbit/s, which
requires a minimum of 1.536/2 = 0.768 MHz of transmission bandwidth.

Sk G L

Exponential Increase of the Output SNR
From Eq. (6.37), L?> = 22", and the output SNR in Eq. (6.34) or Eq. (6.36) can be expressed as

— =) 6.39
N, c(2) (6.39)
where
o
% [uncompressed case, in Eq. (6.34)]
¢ — m
3 .
—=_  [compressed case, in Eq. (6.36)]
[in (L + ] P 1

Substitution of Eq. (6.38) into Eq. (6.39) yields

;—” = c(2)*Br/B (6.40)

o

From Eq. (6.40) we observe that the SNR increases exponentially with the transmission band-
width Br. This trade of SNR for bandwidth is attractive and comes close to the upper theoretical
limit. A small increase in bandwidth yields a large benefit in terms of SNR. This relationship
is clearly seen by using the decibel scale to rewrite Eq. (6.39) as

So) (S0>
— = 10lo —
(No & 210 N,

= 10log;o[c(2)*"]
= 10log;oc + 2nlog;p2
— (@ +6n) dB (6.41)

where o = 10 log; ¢. This shows that increasing n by 1 (increasing one bit in the codeword)
quadruples the output SNR (a 6 dB increase). Thus, if we increase n from 8 to 9, the SNR
quadruples, but the transmission bandwidth increases only from 32 kHz to 36 kHz (an increase
of only 12.5%). This shows that in PCM, SNR can be controlled by transmission bandwidth.
We shall see later that frequency and phase modulation also do this. But it requires a doubling of
the bandwidth to quadruple the SNR. In this respect, PCM is strikingly superior to FM or PM.
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EXClmp|e 6.3 Asignal m(t) of bandwidth B = 4 kHz is transmitted using a binary companded PCM with
@ = 100. Compare the case of L = 64 with the case of L = 256 from the point of view of
transmission bandwidth and the output SNR.

% For L = 64, n = 6, and the transmission bandwidth is nB = 24 kHz,

S
N—°=(a+36)dB

o

= 1010g ———x = —8.51
« I (10D 2
Hence,
S
=2 =2749dB
N,

o

For L = 256, n = 8§, and the transmission bandwidth is 32 kHz,

S
=2 = o +6n=23949dB
N,

o

The difference between the two SNRs is 12 dB, which is a ratio of 16. Thus, the SNR
for L = 256 is 16 times the SNR for L = 64. The former requires just about 33% more
bandwidth compared to the latter.

Comments on Logarithmic Units

Logarithmic units and logarithmic scales are very convenient when a variable has a large
dynamic range. Such is the case with frequency variables or SNRs. A logarithmic unit for the
power ratio is the decibel (dB), defined as 10 log;, (power ratio). Thus, an SNR is x dB, where

S
x=10 10g10 1—\]—

We use the same unit to express power gain or loss over a certain transmission medium. For
instance, if over a certain cable the signal power is attenuated by a factor of 15, the cable gainis

1

or the cable attenuation (loss) is 11.76 dB.

Although the decibel is a measure of power ratios, it is often used as a measure of power
itself. For instance, “100 watt” may be considered to be a power ratio of 100 with respect to
1-watt power, and is expressed in units of dBW as

Papw = 10 log, 100 = 20 dBW
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Thus, 100-watt power is 20 dBW. Similarly, power measured with respect to 1 mW power is
dBm. For instance, 100-watt power is

100 W
Papm = 10 log TmW =50dBm

m

6.3 DIGITAL TELEPHONY: PCM IN T1
CARRIER SYSTEMS

A Historical Note

Because of the unavailability of suitable switching devices, more than 20 years elapsed between
the invention of PCM and its implementation. Vacuum tubes, used before the invention of the
transistor, were not only bulky, but they were poor switches and dissipated a lot of heat. Systems
having vacuum tubes as switches were large, rather unreliable, and tended to overheat. PCM
was just waiting for the invention of the transistor, which happens to be a small device that
consumes little power and is a nearly ideal switch.

Coincidentally, at about the time the transistor was invented, the demand for telephone
service had become so heavy that the existing system was overloaded, particularly in large
cities. It was not easy to install new underground cables because space available under the
streets in many cities was already occupied by other services (water, gas, sewer, etc.). Moreover,
digging up streets and causing many dislocations was not very attractive. An attempt was made
on a limited scale to increase the capacity by frequency-division-multiplexing several voice
channels through amplitude modulation. Unfortunately, the cables were primarily designed
for the audio voice range (0—4 kHz) and suffered severely from noise. Furthermore, cross talk
between pairs of channels on the same cable was unacceptable at high frequencies. Ironically,
PCM—requiring a bandwidth several times larger than that required for FDM signals—offered
the solution. This is because digital systems with closely spaced regenerative repeaters can
work satisfactorily on noisy lines that give poor high-frequency performance.’ The repeaters,
spaced approximately 6000 feet apart, clean up the signal and regenerate new pulses before the
pulses get too distorted and noisy. This is the history of the Bell System’s T1 carrier system.>: 1°
A pair of wires that used to transmit one audio signal of bandwidth 4 kHz is now used to transmit
24 time-division-multiplexed PCM telephone signals with a total bandwidth of 1.544 MHz.

T1 Time Division Multiplexing

A schematic of a T1 carrier system is shown in Fig. 6.20a. All 24 channels are sampled
in a sequence. The sampler output represents a time-division-multiplexed PAM signal. The
multiplexed PAM signal is now applied to the input of an encoder that quantizes each sample
and encodes it into eight binary pulses—a binary codeword* (see Fig. 6.20b). The signal,
now converted to digital form, is sent over the transmission medium. Regenerative repeaters
spaced approximately 6000 feet apart detect the pulses and retransmit new pulses. At the
receiver, the decoder converts the binary pulses into samples (decoding). The samples are
then demultiplexed (i.e., distributed to each of the 24 channels). The desired audio signal is
reconstructed by passing the samples through a low-pass filter in each channel.

* In an earlier version, each sample was encoded by seven bits. An additional bit was added for signaling.
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Figure 6.20
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The commutators in Fig. 6.20 are not mechanical but are high-speed electronic switching
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circuits. Several schemes are available for this purpose.!! Sampling is done by electronic gates

(such as a bridge diode circuit, as shown in Fig. 4.5a) opened periodically by narrow pulses of
2 us duration. The 1.544 Mbit/s signal of the T1 system, called digital signal level 1 (DS1),
is used further to multiplex into progressively higher level signals DS2, DS3, and DS4, as
described next, in Sec. 6.4

After the Bell System introduced the T1 carrier system in the United States, dozens of
variations were proposed or adopted elsewhere before the ITU-T standardized its 30-channel
PCM system with arate of 2.048 Mbit/s (in contrast to T1, with 24 channels and 1.544 Mbit/s).
The 30-channel system is used all over the world, exceptin North America and Japan. Because
of the widespread adoption of the T1 carrier system in the United States and Japan before the
ITU-T standardization, the two standards continue to be used in different parts of the world,

with appropriate interfaces in international connections.
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Synchronizing and Signaling

Binary codewords corresponding to samples of each of the 24 channels are multiplexed in
a sequence, as shown in Fig. 6.21. A segment containing one codeword (corresponding to
one sample) from each of the 24 channels is called a frame. Each frame has 24 x 8 = 192
information bits. Because the sampling rate is 8000 samples per second, each frame takes
125 us. To separate information bits correctly at the receiver, it is necessary to be sure where
each frame begins. Therefore, a framing bit is added at the beginning of each frame. This
makes a total of 193 bits per frame. Framing bits are chosen so that a sequence of framing bits,
one at the beginning of each frame, forms a special pattern that is unlikely to be formed in a
speech signal.

The sequence formed by the first bit from each frame is examined by the logic of the
receiving terminal. If this sequence does not follow the given code pattern (framing bit pattern),
a synchronization loss is detected, and the next position is examined to determine whether it
is actually the framing bit. It takes about 0.4 to 6 ms to detect and about 50 ms (in the worst
possible case) to reframe.

In addition to information and framing bits, we need to transmit signaling bits corre-
sponding to dialing pulses, as well as telephone on-hook/off-hook signals. When channels
developed by this system are used to transmit signals between telephone switching systems,
the switches must be able to communicate with each other to use the channels effectively.
Since all eight bits are now used for transmission instead of the seven bits used in the earlier
version,* the signaling channel provided by the eighth bit is no longer available. Since only a
rather low-speed signaling channel is required, rather than create extra time slots for this infor-
mation, we use one information bit (the least significant bit) of every sixth sample of a signal

* In the earlier version of T1, quantizing levels L = 128 required only seven information bits. The eighth bit was
used for signaling.
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to transmit this information. This means that every sixth sample of each voice signal will have
a possible error corresponding to the least significant digit. Every sixth frame, therefore, has
7 x 24 = 168 information bits, 24 signaling bits, and 1 framing bit. In all the remaining frames,
there are 192 information bits and 1 framing bit. This technique is called 7% bit encoding, and
the signaling channel so derived is called robbed-bit signaling. The slight SNR degradation
suffered by impairing one out of six frames is considered to be an acceptable penalty. The sig-
naling bits for each signal occur at a rate of 8000/6 = 1333 bit/s. The frame format is shown
in Fig. 6.21.

The older seven-bit framing format required only that frame boundaries be identified
so that the channels could be located in the bit stream. When signaling is superimposed on
the channels in every sixth frame, it is necessary to identify, at the receiver, which frames
are the signaling frames. A new framing structure, called the superframe, was developed
to take care of this. The framing bits are transmitted at 8 kbit/s as before and occupy the
first bit of each frame. The framing bits form a special pattern, which repeats in 12 frames:
100011011100. The pattern thus allows the identification of frame boundaries as before, but
also allows the determination of the locations of the sixth and twelfth frames within the super-
frame. Note that the superframe described here is 12 frames in length. Since two bits per
superframe are available for signaling for each channel, it is possible to provide four-state
signaling for a channel by using the four possible patterns of the two signaling bits: 00, 01,
10, and 11. Although most switch-to-switch applications in the telephone network require
only two-state signaling, three- and four-state signaling techniques are used in certain special
applications.

Advances in digital electronics and in coding theory have made it unnecessary to use
the full 8 kbit/s of the framing channel in a DS1 signal to perform the framing task. A new
superframe structure, called the extended superframe (ESF) format, was introduced during
the 1970s to take advantage of the reduced framing bandwidth requirement. An ESF is 24
frames in length and carries signaling bits in the eighth bit of each channel in frames 6, 12, 18,
and 24. Sixteen-state signaling is thus possible and is sometimes used although, as with the
superframe format, most applications require only two-state signaling.

The 8 kbit/s overhead (framing) capacity of the ESF signal is divided into three channels: 2
kbit/s for framing, 2 kbit/s for a cyclic redundancy check (CRC-6) error detection channel, and
4 kbit/s for a data channel. The highly reliable error checking provided by the CRC-6 pattern
and the use of the data channel to transport information on signal performance as received
by the distant terminal make ESF much more attractive to service providers than the older
superframe format. More discussions on CRC error detection can be found in Chapter 14.

The 2 kbit/s framing channel of the ESF format carries the repetitive pattern 001011. . ., a
pattern that repeats in 24 frames and is much less vulnerable to counterfeiting than the patterns
associated with the earlier formats.

For various reasons, including the development of intelligent network-switching nodes,
the function of signaling is being transferred out from the channels that carry the messages
or data signals to separate signaling networks called common channel interoffice signaling
(CCIS) systems. The universal deployment of such systems will significantly decrease the
importance of robbed-bit signaling, and all eight bits of each message (or sample) will be
transmitted in most applications.

The Conference on European Postal and Telegraph Administration (CEPT) has standard-
ized a PCM with 256 time slots per frame. Each frame has 30 x 8 = 240 information bits,
corresponding to 30 speech channels (with eight bits each). The remaining 16 bits per frame
are used for frame synchronization and signaling. Therefore, although the bit rate is 2.048
Mbit/s, corresponding to 32 voice channels, only 30 voice channels are transmitted.
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6.4 DIGITAL MULTIPLEXING

Several low-bit-rate signals can be multiplexed, or combined, to form one high-bit-rate signal,
to be transmitted over a high-frequency medium. Because the medium is time-shared by various
incoming signals, this is a case of TDM (time division multiplexing). The signals from various
incoming channels, or tributaries, may be as diverse as a digitized voice signal (PCM), a
computer output, telemetry data, and a digital facsimile. The bit rates of various tributaries
need not be the same.

To begin with, consider the case of all tributaries with identical bit rates. Multiplexing can
be done on a bit-by-bit basis (known as bit or digit interleaving) as shown in Fig. 6.22a, oron a
word-by-word basis (known as byte or word interleaving). Figure 6.22b shows the interleaving
of words, formed by four bits. The North American digital hierarchy uses bit interleaving
(except at the lowest level), where bits are taken one at a time from the various signals to be
multiplexed. Byte interleaving, used in building the DS1 signal and SONET-formatted signals,
involves inserting bytes in succession from the channels to be multiplexed.

The T1 carrier, discussed in Sec. 6.3, uses eight-bit word interleaving. When the bit rates
of incoming channels are not identical, the high-bit-rate channel is allocated proportionately
more slots. Four-channel multiplexing consists of three channels B, C, and D of identical bit
rate R and one channel (channel A) with a bit rate of 3R. (Fig. 6.22¢,d). Similar results can be
attained by combining words of different lengths. It is evident that the minimum length of the
multiplex frame must be a multiple of the lowest common multiple of the incoming channel
bit rates, and, hence, this type of scheme is practical only when some fairly simple relation-
ship exists among these rates. The case of completely asynchronous channels is discussed
later.

At the receiving terminal, the incoming digit stream must be divided and distributed to the
appropriate output channel. For this purpose, the receiving terminal must be able to correctly
identify each bit. This requires the receiving system to uniquely synchronize in time with the
beginning of each frame, with each slot in a frame, and with each bit within a slot. This is
accomplished by adding framing and synchronization bits to the data bits. These bits are part
of the so-called overhead bits.

6.4.1 Signal Format

Figure 6.23 illustrates a typical format, that of the DM1/2 multiplexer. We have here bit-by-bit
interleaving of four channels each at a rate of 1.544 Mbit/s. The main frame (multiframe)
consists of four subframes. Each subframe has six overhead bits: for example the subframe
1 (first line in Fig. 6.23) has overhead bits Mo, Ca, Fo, Ca, Ca, and F;. In between these
overhead bits are 48 interleaved data bits from the four channels (12 data bits from each
channel). We begin with overhead bit My, followed by 48 multiplexed data bits, then add
a second overhead bit C4 followed by the next 48 multiplexed bits, and so on. Thus, there
are a total of 48 x 6 x 4 = 1152 data bits and 6 x 4 = 24 overhead bits making a total
1176 bits/frame. The efficiency is 1152/1176 =~ 98%. The overhead bits with subscript 0
are always 0 and those with subscript 1 are always 1. Thus, My, Fp are all 0s and M; and
F; are all 1s. The F digits are periodic 010101 ... and provide the main framing pattern,
which the multiplexer uses to synchronize on the frame. After locking onto this pattern, the
demultiplexer searches for the 0111 pattern formed by overhead bits MoM; M| M. This further
identifies the four subframes, each corresponding to a line in Fig. 6.23. It is possible, although
unlikely, that signal bits will also have a pattern 101010. . . . The receiver could lock onto this
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My, [48] C, [48] F, [48] C, [48] C, [48] F; [48]
M, [48] Cp [48] F, [48] Cp [48] Cp [48] F; [48]
M, [48] Cc [48] F, [48] Cc [48] Cc [48] F, [48]

M, [48] Cp [48] F, [48] Cp [48] Cp [48] F; [49]

wrong sequence. The presence of MoM1M1M; provides verification of the genuine FoF; FoF
sequence. The C bits are used to transmit additional information about bit stuffing, as discussed
later.

In the majority of cases, not all incoming channels are active all the time: some transmit
data, and some are idle. This means the system is underutilized. We can, therefore, accept more
input channels to take advantage of the inactivity, at any given time, of at least one channel.
This obviously involves much more complicated switching operations, and also rather careful
system planning. In any random traffic situation we cannot guarantee that the number of
transmission channels demanded will not exceed the number available; but by taking account
of the statistics of the signal sources, it is possible to ensure an acceptably low probability of
this occurring. Multiplex structures of this type have been developed for satellite systems and
are known as time division multiple-access (TDMA) systems.

In TDMA systems employed for telephony, the design parameters are chosen so that any
overload condition lasts only a fraction of a second, which leads to acceptable performance
for speech communication. For other types of data and telegraphy, transmission delays are
unimportant. Hence, in overload condition, the incoming data can be stored and transmitted
later.

6.4.2 Asynchronous Channels and Bit Stuffing

In the preceding discussion, we assumed synchronization between all the incoming channels
and the multiplexer. This is difficult even when all the channels are nominally at the same
rate. For example, consider a 1000 km coaxial cable carrying 2 x 10% pulses per second.
Assuming the nominal propagation speed in the cable to be 2 x 108 m/s, it takes 1/200 second
of transit time and 1 million pulses will be in transit. If the cable temperature increases by 1°F,
the propagation velocity will increase by about 0.01%. This will cause the pulses in transit
to arrive sooner, thus producing a temporary increase in the rate of pulses received. Because
the extra pulses cannot be accommodated in the multiplexer, they must be temporarily stored
at the receiver. If the cable temperature drops, the rate of received pulses will drop, and the
multiplexer will have vacant slots with no data. These slots need to be stuffed with dummy
digits (pulse stuffing).

DS1 signals in the North American network are often generated by crystal oscillators
in individual channel banks or other digital terminal equipment. Although the oscillators are
quite stable, they will not oscillate at exactly the same frequency, leading to another cause of
asynchronicity in the network.

This shows that even in synchronously multiplexed systems, the data are rarely received
at a synchronous rate. We always need a storage (known as an elastic store) and pulse stuffing
(also known as justification) to accommodate such an situation. Obviously, this method of an
elastic store and pulse stuffing will work even when the channels are asynchronous.

Three variants of the pulse stuffing scheme exist: (1) positive pulse stuffing, (2) negative
pulse stuffing, and (3) positive/negative pulse stuffing. In positive pulse stuffing, the multiplexer
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Figure 6.24
Pulse stuffing.

Input signal to multiplexer

b4 Asd f A s Transmitted signal including
i . , stuffed digits
* he Unstuffed signal

N\ N

m Output signal after smoothing

rate is higher than that required to accommodate all incoming tributaries at their maximum
rate. Hence, the time slots in the multiplexed signal will become available at a rate exceeding
that of the incoming data so that the tributary data will tend to lag (Fig. 6.24). At some stage,
the system will decide that this lag has become great enough to require pulse stuffing. The
information about the stuffed-pulse positions is transmitted through overhead bits. From the
overhead bits, the receiver knows the stuffed-pulse position and eliminates that pulse.

Negative pulse stuffing is a complement of positive pulse stuffing. The time slots in the
multiplexed signal now appear at a slightly slower rate than those of the tributaries, and thus
the multiplexed signal cannot accommadate all the tributary pulses. Information about any
left-out pulse and its position is transmitted through overhead bits. The positive/negative pulse
stuffing is a combination of the first two schemes. The nominal rate of the multiplexer is equal
to the nominal rate required to accommodate all incoming channels. Hence, we may need
positive pulse stuffing at some times and negative stuffing at others. All this information is
sent through overhead bits.

The C digits in Fig. 6.23 are used to transmit stuffing information. Only one stuffed bit
per input channel is allowed per frame. This is sufficient to accommodate expected variations
in the input signal rate. The bits Ca convey information about stuffing in channel A, bits Cp
convey information about stuffing in channel B, and so on. The insertion of any stuffed pulse in
any one subframe is denoted by setting all the three Cs in that line to 1. No stuffing is indicated
by using Os for all the three Cs. If a bit has been stuffed, the stuffed bit is the first information
bit associated with the immediate channel following the Fy bit, that is, the first such bit in the
last 48-bit sequence in that subframe. For the first subframe, the stuffed bit will immediately
follow the F bit. For the second subframe, the stuffed bit will be the second bit following the
F; bit, and so on.

6.4.3 Plesiochronous (almost Synchronous)
Digital Hierarchy

We now present the digital hierarchy developed by the Bell System and currently included
in the ANSI standards for telecommunications (Fig. 6.25). The North American hierarchy is
implemented in North America and Japan.

Two major classes of multiplexers are used in practice. The first category is used for
combining low-data-rate channels. It multiplexes channels of rates of up to 9600 bit/s into a
signal of data rate of up to 64 kbit/s. The multiplexed signal, called “digital signal level 0”
(DSO) in the North American hierarchy, is eventually transmitted over a voice-grade channel.
The second class of multiplexers is at a much higher bit rate.
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There are four orders, or levels, of multiplexing. The first level is the T1 multiplexer
or channel bank, consisting of 24 channels of 64 kbit/s each. The output of this multiplexer
is a DS1 (digital level 1) signal at a rate of 1.544 Mbit/s. Four DS1 signals are multiplexed
by a DM1/2 multiplexer to yield a DS2 signal at a rate 6.312 Mbit/s. Seven DS2 signals are
multiplexed by a DM2/3 multiplexer to yield a DS3 signal at a rate of 44.736 Mbit/s. Finally,
three DS3 signals are multiplexed by a DM3/4NA multiplexer to yield a DS4NA signal at a
rate 139.264 Mbit/s. There is also a lower rate multiplexing hierarchy, known as the digital
data system (DDS), which provides standards for multiplexing digital signals with rates as
low as 2.4 kbit/s into a DSO signal for transmission through the network.

The inputs to a T1 multiplexer need not be restricted only to digitized voice channels
alone. Any digital signal of 64 kbit/s of appropriate format can be transmitted. The case of
the higher levels is similar. For example, all the incoming channels of the DM1/2 multiplexer
need not be DS1 signals obtained by multiplexing 24 channels of 64 kbit/s each. Some of them
may be 1.544 Mbit/s digital signals of appropriate format, and so on.

In Europe and many other parts of the world, another hierarchy, recommended by the
ITU as an standard, has been adopted. This hierarchy, based on multiplexing 30 telephone
channels of 64 kbit/s (E-O channels) into an E-1 carrier at 2.048 Mbit/s (30 channels) is shown
in Fig. 6.26. Starting from the base level of E-1, four lower level lines form one higher level line
progressively, generating an E-2 line with data throughput of 8.448 Mbit/s, an E-3 line with
data throughput of 34.368 Mbit/s, an E-4 line line with data throughput of 139.264 Mbit/s, and
an E-5 line with data throughput of 565.148 Mbit/s. Because different networks must be able
to interface with one another across the three different systems (North American, Japanese,
and other) in the world, Fig. 6.26 demonstrates the relative relationship and the points of their
common interface.
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Figure 6.26
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6.5 DIFFERENTIAL PULSE CODE
MODULATION (DPCM|

PCM is not a very efficient system because it generates so many bits and requires so much
bandwidth to transmit. Many different ideas have been proposed to improve the encoding
efficiency of A/D conversion. In general, these ideas exploit the characteristics of the source
signals. DPCM is one such scheme.

In analog messages we can make a good guess about a sample value from knowledge of
past sample values. In other words, the sample values are not independent, and generally there
is a great deal of redundancy in the Nyquist samples. Proper exploitation of this redundancy
leads to encoding a signal with fewer bits. Consider a simple scheme; instead of transmitting the
sample values, we transmit the difference between the successive sample values. Thus, if m[ k] is
the kth sample, instead of transmitting m[ k], we transmit the difference d[k] = m[k]—m[k —1].
At the receiver, knowing d[k] and several previous sample value m[k — 1], we can reconstruct
m[k]. Thus, from knowledge of the difference d[k], we can reconstruct m[k] iteratively at the
receiver. Now, the difference between successive samples is generally much smaller than the
sample values. Thus, the peak amplitude m,, of the transmitted values is reduced considerably.
Because the quantization interval Av = m,, /L, for a given L (or n), this reduces the quantization
interval Av, thus reducing the quantization noise, which is given by Av?/12. This means that
for a given n (or transmission bandwidth), we can increase the SNR, or for a given SNR, we
can reduce » (or transmission bandwidth).

We can improve upon this scheme by estimating (predicting) the value of the kth sample
m[k] from a knowledge of several previous sample values. If this estimate is m[k], then we
transmit the difference (prediction error) d [k] = m[k]—m[k]. Atthe receiver also, we determine
the estimate m[k] from the previous sample values, and then generate m[k] by adding the
received d[k] to the estimate m[k]. Thus, we reconstruct the samples at the receiver iteratively.
If our prediction is worth its salt, the predicted (estimated) value m[k] will be close to m[k],
and their difference (prediction error) d [k] will be even smaller than the difference between
the successive samples. Consequently, this scheme, known as the differential PCM (DPCM),
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is superior to the naive prediction described in the preceding paragraph, which is a special case
of DPCM, where the estimate of a sample value is taken as the previous sample value, that is,
mlk] = m[k — 1].

Spirits of Taylor, Maclaurin, and Wiener

Before describing DPCM, we shall briefly discuss the approach to signal prediction (estima-
tion). To the uninitiated, future prediction seems like mysterious stuff, fit only for psychics,
wizards, mediums, and the like, who can summon help from the spirit world. Electrical
engineers appear to be hopelessly outclassed in this pursuit. Not quite so! We can also sum-
mon the spirits of Taylor, Maclaurin, Wiener, and the like to help us. What is more, unlike
Shakespeare’s spirits, our spirits come when called.* Consider, for example, a signal m(t),
which has derivatives of all orders at ¢. Using the Taylor series for this signal, we can express
m(t + T) as

2 3
m(t + Ty) = m(t) + Ts(2) + %ﬁl([) + 7;;"ﬁi(t) +--- (6.42a)

~ m(t) + Tsm(t) for small T (6.42b)

Equation (6.42a) shows that from a knowledge of the signal and its derivatives atinstant ¢, we
can predict a future signal value at ¢ 4 T5. In fact, even if we know just the first derivative,
we can still predict this value approximately, as shown in Eq. (6.42b). Let us denote the kth
sample of m(t) by m[k], that is, m(kT) = m[k], and m(kTs; &+ T;) = m[k =+ 1], and so on.
Setting t = kT in Eq. (6.42b), and recognizing that m(kT) ~ [m(kTs) — m(kTs — T;)1/ Ty, we
obtain

N [mik] — mk — 117
mlk + 11~ mlk] + T T 1

= 2m[k] — m[k — 1]

This shows that we can find a crude prediction of the (k 4 1)th sample from the two previous
samples. The approximation in Eq. (6.42b) improves as we add more terms in the series on
the right-hand side. To determine the higher order derivatives in the series, we require more
samples in the past. The larger the number of past samples we use, the better will be the
prediction. Thus, in general, we can express the prediction formula as

mlk] ~ aymlk — 1] +aym[k — 2]+ --- +aym[k — N] (6.43)
The right-hand side is /[k], the predicted value of m[k]. Thus,

mlk] = aymlk — 1] + apm[k — 2] + - - - + aym[k — N] (6.44)
This is the equation of an Nth-order predictor. Larger N would result in better prediction in
general. The output of this filter (predictor) is #m[k], the predicted value of m[k]. The input

consists of the previous samples m[k — 1], m[k — 2], ..., m[k — N], although it is customary
to say that the input is m[k] and the output is m[k]. Observe that this equation reduces to

* From Shakespeare, Henry IV, Part 1, Act I1I, Scene 1:
Glendower: I can call the spirits from vasty deep.
Hotspur: Why, so can I, or so can any man;

But will they come when you do call for them?
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Figure 6.27
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m[k] = m[k — 1] in the case of the first-order prediction. It follows from Eq. (6.42b), where
we retain only the first term on the right-hand side. This means that a; = 1, and the first-order
predictor is a simple time delay.

We have outlined here a very simple procedure for predictor design. In a more sophisticated
approach, discussed in Sec. 8.5, where we use the minimum mean squared error criterion for
best prediction, the prediction coefficients a; in Eq. (6.44) are determined from the statistical
correlation between various samples. The predictor described in Eq. (6.44) is called a linear
predictor. It is basically a transversal filter (a tapped delay line), where the tap gains are set
equal to the prediction coefficients, as shown in Fig. 6.27.

Analysis of DPCM

As mentioned earlier, in DPCM we transmit not the present sample m[k], but d[k] (the
difference between m[k] and its predicted value m[k]). At the receiver, we generate m[k]
from the past sample values to which the received d[k] is added to generate ml[k].
There is, however, one difficulty associated with this scheme. At the receiver, instead of

the past samples m[k — 1], m[k —2], ..., as well as d[k], we have their quantized ver-
sions my[k — 1], my[k — 2], . ... Hence, we cannot determine m[k]. We can determine only
mglk], the estimate of the quantized sample my[k], in terms of the quantized samples
mglk — 1], mg[k — 2], ....This will increase the error in reconstruction. In such a case, a better

strategy is to determine ﬁzq[k], the estimate of my,[k] (instead of m[k]), at the transmitter also
from the quantized samples my[k — 1], my[k — 2], .. .. The difference d [k] = m[k] — fn (k] is
now transmitted via PCM. At the receiver, we can generate 7iiy[k], and from the received d [k],
we can reconstruct mg[k].

Figure 6.28a shows a DPCM transmitter. We shall soon show that the predictor input is
myg[k]. Naturally, its output is 7iz4[k], the predicted value of m,[k]. The difference

d[k] = m[k] — fng[k] (6.45)
is quantized to yield
dglk] = d[k] + qlk] (6.46)

where g[k] is the quantization error. The predictor output /i14[k] is fed back to its input so that
the predictor input m,[k] is
mglk] = mglk] + dylk]
= m[k] — d[k] + dq[k]
= mlk] + glk] (6.47)



Figure 6.28
DPCM system:
(a) transmitter;
(b) receiver.
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This shows that m4[k] is a quantized version of m[k]. The predictor input is indeed my4[k], as
assumed. The quantized signal d,[k] is now transmitted over the channel. The receiver shown
in Fig. 6.28b is identical to the shaded portion of the transmitter. The inputs in both cases are
also the same, namely, d,[k]. Therefore, the predictor output must be ﬁtq[k] (the same as the
predictor output at the transmitter). Hence, the receiver output (which is the predictor input) is
also the same, viz., my[k] = m[k] + g[k], as found in Eq. (6.47). This shows that we are able to
receive the desired signal m[k] plus the quantization noise g[k]. This is the quantization noise
associated with the difference signal d[k], which is generally much smaller than m[k]. The
received samples m,[k] are decoded and passed through a low-pass filter for D/A conversion.

SNR Improvement

To determine the improvement in DPCM over PCM, let m,, and d,, be the peak amplitudes
of m(t) and d(z), respectively. If we use the same value of L in both cases, the quantization
step Av in DPCM is reduced by the factor d;,/m,. Because the quantization noise power is
(Av)?/12, the quantization noise in DPCM is reduced by the factor (myp /dp)z, and the SNR
is increased by the same factor. Moreover, the signal power is proportional to its peak value
squared (assuming other statistical properties invariant). Therefore, G, (SNR improvement
due to prediction) is at least

where P, and P, are the powers of m(z) and d (¢), respectively. In terms of decibel units, this
means that the SNR increases by 10 log;(Pn./P4) dB. Therefore, Eq. (6.41) applies to DPCM
also with a value of « that is higher by 10 log(P/P4) dB. In Example 8.24, a second-order
predictor processor for speech signals is analyzed. For this case, the SNR improvement is
found to be 5.6 dB. In practice, the SNR improvement may be as high as 25 dB in such cases
as short-term voiced speech spectra and in the spectra of low-activity images.!? Alternately,
for the same SNR, the bit rate for DPCM could be lower than that for PCM by 3 to 4 bits per
sample. Thus, telephone systems using DPCM can often operate at 32 or even 24 kbit/s.
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6.6 ADAPTIVE DIFFERENTIAL PCM (ADPCM)

Figure 6.29
ADPCM encoder
uses an adaptive
quantizer
controlled only
by the encoder
output bits.

Adaptive DPCM (ADPCM) can further improve the efficiency of DPCM encoding by incor-
porating an adaptive quantizer at the encoder. Figure 6.29 illustrates the basic configuration
of ADPCM. For practical reasons, the number of quantization level L is fixed. When a fixed
quantization step Av is applied, either the quantization error is too large because Av is too
big or the quantizer cannot cover the necessary signal range when Av is too small. Therefore,
it would be better for the quantization step Av to be adaptive so that Av is large or small
depending on whether the prediction error for quantizing is large or small.

It is important to note that the quantized prediction error d4[k] can be a good indicator of
the prediction error size. For example, when the quantized prediction error samples vary close
to the largest positive value (or the largest negative value), it indicates that the prediction error
is large and Av needs to grow. Conversely, if the quantized samples oscillate near zero, then
the prediction error is small and Av needs to decrease. It is important that both the modulator
and the receiver have access to the same quantized samples. Hence, the adaptive quantizer and
the receiver reconstruction can apply the same algorithm to adjust the Av identically.

Compared with DPCM, ADPCM can further compress the number of bits needed for a
signal waveform. For example, it is very common in practice for an 8-bit PCM sequence to be
encoded into a 4-bit ADPCM sequence at the same sampling rate. This easily represents a 2:1
bandwidth or storage reduction with virtually no loss.

ADPCM encoder has many practical applications. The ITU-T standard G.726 specifies an
ADPCM speech coder and decoder (called codec) for speech signal samples at 8 kHz.” The
G.726 ADPCM predictor uses an eighth-order predictor. For different quality levels, G.726
specifies four different ADPCM rates at 16, 24, 32, and 40 kbit/s. They correspond to four
different bit sizes for each speech sample at 2 bits, 3 bits, 4 bits, and 5 bits, respectively, or
equivalently, quantization levels of 4, 8, 16, and 32, respectively.

The most common ADPCM speech encoders use 32 kbit/s. In practice, there are multiple
variations of ADPCM speech codec. In addition to the ITU-T G.726 specification,’ these
include the OKI ADPCM codec, the Microsoft ADPCM codec supported by WAVE players,
and the Interactive Multimedia Association (IMA) ADPCM, also known as the DVI ADPCM.
The 32 kbit/s ITU-TG.726 ADPCM speechcodec is widely used in the DECT (digital enhanced
cordless telecommunications) system, which itself is widely used for residential and business
cordless phone communications. Designed for short-range use as an access mechanism to the
main networks, DECT offers cordless voice, fax, data, and multimedia communications. DECT
is now in use in over 100 countries worldwide. Another major user of the 32 kbit/s ADPCM
codec is the Personal Handy-phone System (or PHS), also marketed as the Personal Access
System (PAS) and known as Xiaolingtong in China.

PHS is amobilenetwork system similar to a cellular network, operating in the 1880to 1930
MHz frequency band, used mainly in Japan, China, Taiwan, and elsewhere in Asia. Originally
developed by the NTT Laboratory in Japan in 1989, PHS is much simpler to implement and
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deploy. Unlike cellular networks, PHS phones and base stations are low-power, short-range
facilities. The service is often pejoratively called the “poor man’s cellular” because of its
limited range and poor roaming ability. PHS first saw limited deployment (NTT-Personal,
DDI-Pocket, and ASTEL) in Japan in 1995 but has since nearly disappeared. Surprisingly,
PHS has seen a resurgence in markets like China, Taiwan, Vietnam, Bangladesh, Nigeria,
Mali, Tanzania, and Honduras, where its low cost of deployment and hardware costs offset
the system’s disadvantages. In China alone, there was an explosive expansion of subscribers,
reaching nearly 80 million in 2006.

6.7 DELTA MODULATION

Figure 6.30
Delta modulation
is a special case
of DPCM.

Sample correlation used in DPCM is further exploited in delta modulation (DM) by oversam-
pling (typically four times the Nyquist rate) the baseband signal. This increases the correlation
between adjacent samples, which results in a small prediction error that can be encoded using
only one bit (L = 2). Thus, DM is basically a 1-bit DPCM, that is, a DPCM that uses only two
levels (L = 2) for quantization of m[k] — 7i4[k]. In comparison to PCM (and DPCM), it is a
very simple and inexpensive method of A/D conversion. A 1-bit codeword in DM makes word
framing unnecessary at the transmitter and the receiver. This strategy allows us to use fewer
bits per sample for encoding a baseband signal.

In DM, we use a first-order predictor, which, as seen earlier, is just a time delay of T
(the sampling interval). Thus, the DM transmitter (modulator) and receiver (demodulator) are
identical to those of the DPCM in Fig. 6.28, with a time delay for the predictor, as shown in
Fig. 6.30, from which we can write

mylk] = mg(k — 1] + dy4[k] (6.48)
Hence,
mglk — 1] = mylk — 2] + dy[k — 1]
mlk] dlk] dglk]

@ > Quantizer >

Accumulator

(@)

JHq[k - L Delay Ts J

(b)

dylk] fi\ mqlk]
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Substituting this equation into Eq. (6.48) yields
mylk] = mglk — 2] + dylk] + dglk — 1]

Proceeding iteratively in this manner, and assuming zero initial condition, that is, m4[0] = 0,
we write

k
mglkl =" dylm] (6.49)

m=0

This shows that the receiver (demodulator) is just an accumulator (adder). If the output
d4[k]is represented by impulses, then the accumulator (receiver) may be realized by an integra-
tor because its output is the sum of the strengths of the input impulses (sum of the areas under
the impulses). We may also replace with an integrator the feedback portion of the modulator
(which is identical to the demodulator). The demodulator output is my4[k], which when passed
through a low-pass filter yields the desired signal reconstructed from the quantized samples.

Figure 6.31 shows a practical implementation of the delta modulator and demodulator.
As discussed earlier, the first-order predictor is replaced by a low-cost integrator circuit (such
as an RC integrator). The modulator (Fig. 6.31a) consists of a comparator and a sampler in
the direct path and an integrator-amplifier in the feedback path. Let us see how this delta
modulator works.

The analog signal m(¢) is compared with the feedback signal (which serves as a predicted
signal) th(t). The error signal d (1) =m(t) — ﬁtq(t) is applied to a comparator. If d (¢) is positive,
the comparator output is a constant signal of amplitude F, and if d (¢) is negative, the comparator
output is —FE. Thus, the difference is a binary signal (L = 2) that is needed to generate a 1-bit
DPCM. The comparator output is sampled by a sampler at a rate of f; samples per second,
where f; is typically much higher than the Nyquist rate. The sampler thus produces a train
of narrow pulses dy[k] (to simulate impulses) with a positive pulse when m(z) > r?zq(t) and a
negative pulse when m(r) <7y (t). Note that each sample is coded by a single binary pulse
(1-bit DPCM)), as required. The pulse train d,[k] is the delta-modulated pulse train (Fig. 6.31d).
The modulated signal dy[k] is amplified and integrated in the feedback path to generate 7, (z)
(Fig. 6.31c), which tries to follow m(z).

Tounderstand how this works, we note that each pulse in d;[k] at the input of the integrator
gives rise to a step function (positive or negative, depending on the pulse polarity) in 771, (2). If,
for example, m(t) > iy,(t), a positive pulse is generated in dy[k], which gives rise to a positive
step in 1714 (1), trying to equalize 1714 (t) to m(z) in small steps at every sampling instant, as shown
in Fig. 6.31c. It can be seen that 71, (¢) is a kind of staircase approximation of m(t). When 74 (t)
is passed through a low-pass filter, the coarseness of the staircase in 7, (?) is eliminated, and
we get a smoother and better approximation to m(t). The demodulator at the receiver consists
of an amplifier-integrator (identical to that in the feedback path of the modulator) followed by
a low-pass filter (Fig. 6.31b).

DM Transmits the Derivative of m(¢)

InPCM, the analog signal samples are quantized in L levels, and this information is transmitted
by n pulses per sample (n = log, L). Alittle reflection shows that in DM, the modulated signal
carries information not about the signal samples but about the difference between successive
samples. If the difference is positive or negative, a positive or a negative pulse (respectively)
is generated in the modulated signal d,[k]. Basically, therefore, DM carries the information
about the derivative of m(t), hence, the name “delta modulation.” This can also be seen from
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the fact that integration of the delta-modulated signal yields 7, (¢), which is an approximation
of m(t).

In PCM, the information of each quantized sample is transmitted by an n-bit code word,
whereas in DM the information of the difference between successive samples is transmitted
by a 1-bit code word.

Threshold of Coding and Overloading
Threshold and overloading effects can be clearly seen in Fig. 6.31c. Variations in m(#) smaller
than the step value (threshold of coding) are lost in DM. Moreover, if m(¢) changes too fast,
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that is, if m(¢) is too high, ﬁ1q(t) cannot follow m(¢), and overloading occurs. This is the
so-called slope overload, which gives rise to the slope overload noise. This noise is one
of the basic limiting factors in the performance of DM. We should expect slope overload
rather than amplitude overload in DM, because DM basically carries the information about
(). The granular nature of the output signal gives rise to the granular noise similar to the
quantization noise. The slope overload noise can be reduced by increasing E (the step size).
This unfortunately increases the granular noise. There is an optimum value of E, which yields
the best compromise giving the minimum overall noise. This optimum value of E depends on
the sampling frequency f; and the nature of the signal.'?

The slope overload occurs when 74(f) cannot follow m(t). During the sampling interval
T, my(t) is capable of changing by E, where E is the height of the step. Hence, the maximum
slope that 7i14(7) can follow is E/T, or Ef;, where f; is the sampling frequency. Hence, no
overload occurs if

lm(n)| < Efs
Consider the case of tone modulation (meaning a sinusoidal message):
m(t) = A cos wt
The condition for no overload is
[71(2) ] pax = WA < Ef; (6.50)

Hence, the maximum amplitude Ap,ax of this signal that can be tolerated without overload is
given by

Ef;
Amax = i (6-51)
w

The overload amplitude of the modulating signal is inversely proportional to the frequency
w. For higher modulating frequencies, the overload occurs for smaller amplitudes. For voice
signals, which contain all frequency components up to (say) 4 kHz, calculating Amax by using
o = 2 x 4000 in Eq. (6.51) will give an overly conservative value. It has been shown by de
Jager!3 that A,y for voice signals can be calculated by using w, >~ 27 x 800 in Eq. (6.51),

Ef;
[Amax]voice = w_fs (6.52)

r

Thus, the maximum voice signal amplitude Apax that can be used without causing slope
overload in DM is the same as the maximum amplitude of a sinusoidal signal of reference
frequency f; (f; = 800 Hz) that can be used without causing slope overload in the same system.

Fortunately, the voice spectrum (as well as the television video signal) also decays with
frequency and closely follows the overload characteristics (curve c, Fig. 6.32). For this reason,
DM is well suited for voice (and television) signals. Actually, the voice signal spectrum (curve
b) decreases as 1/w up to 2000 Hz, and beyond this frequency, it decreases as 1/w?. If we
had used a double integration in the feedback circuit instead of a single integration, Apax in
Eq. (6.51) would be proportional to 1/w?. Hence, a better match between the voice spectrum
and the overload characteristics is achieved by using a single integration up to 2000 Hz and
a double integration beyond 2000 Hz. Such a circuit (the double integration) responds fast
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but has a tendency to instability, which can be reduced by using some low-order prediction
along with double integration. A double integrator can be built by placing in cascade two
low-pass RC integrators with time constants R1C; = 1/200r and R;Cy = 1/40007, respec-
tively. This results in single integration from 100 to 2000 Hz and double integration beyond
2000 Hz.

Sigma-Delta Modulation

While discussing the threshold of coding and overloading, we illustrated that the essence of
the conventional DM is to encode and transmit the derivative of the analog message signal.
Hence, the receiver of DM requires an integrator as shown in Fig. 6.31 and also, equivalently,
in Fig. 6.33a. Since signal transmission inevitably is subjected to channel noise, such noise
will be integrated and will accumulate at the receiver output, which is a highly undesirable
phenomenon that is a major drawback of DM.

To overcome this critical drawback of DM, a small modification can be made. First, we
canview the overall DM system consisting of the transmitter and the receiver as approximately
distortionless and linear. Thus, one of its serial components, the receiver integrator 1/s, may
be moved to the front of the transmitter (encoder) without affecting the overall modulator and
demodulator response, as shown in Fig. 6.33b. Finally, the two integrators can be merged into
a single one after the subtractor, as shown in Fig. 6.33c. This modified system is known as the
sigma-delta modulation (X-AM) .

As we found in the study of preemphasis and deemphasis filters in FM, because channel
noise and the message signal do not follow the same route, the order of serial components
in the overall modulation-demodulation system can have different effects on the SNR. The
seemingly minor move of the integrator 1/s in fact has several major advantages:

+ The channel noise no longer accumulates at the demodulator.

- The important low-frequency content of the message m(¢) is preemphasized by the integrator
1/jw. This helps many practical signals (such as speech) whose low-frequency components
are more important.

- The integrator effectively smooths the signal for encoding (Fig. 6.33b). Hence, overloading
becomes less likely.

+ The low-pass nature of the integrator increases the correlation between successive samples,
leading to smaller encoding error.

+ The demodulator is simplified.
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Figure 6.33
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Adaptive Delta Modulation (ADM)

The DM discussed so far suffers from one serious disadvantage. The dynamic range of ampli-
tudes is too small because of the threshold and overload effects discussed earlier. To address
this problem, some type of signal compression is necessary. In DM, a suitable method appears
to be the adaptation of the step value E according to the level of the input signal derivative.
For example, in Fig. 6.31, when the signal m(¢) is falling rapidly, slope overload occurs. If we
can increase the step size during this period, the overload could be avoided. On the other hand,
if the slope of m(t) is small, a reduction of step size will reduce the threshold level as well as
the granular noise. The slope overload causes dy[k] to have several pulses of the same polarity
in succession. This calls for increased step size. Similarly, pulses in d,[k] alternating contin-
uously in polarity indicates small-amplitude variations, requiring a reduction in step size. In
ADM we detect such pulse patterns and automatically adjust the step size.!* This results in a
much larger dynamic range for DM.

6.8 VOCODERS AND VIDEO COMPRESSION

PCM, DPCM, ADPCM, DM, and X-AM are all examples of what are known as waveform
source encoders. Basically, waveform encoders do not take into consideration how the signals
for digitization are generated. Hence, the amount of compression achievable by waveform
encoders is highly limited by the degree of correlation between successive signal samples.
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For a low-pass source signal with finite bandwidth B Hz, even if we apply the minimum
Nyquist sampling rate 2B Hz and 1-bit encoding, the bit rate cannot be lower than 2B bit/s.
There have been many successful methods introduced to drastically reduce the source coding
rates of speech and video signals, very important to our daily communication needs. Unlike
waveform encoders, the most successful speech and video encoders are based on the human
physiological models involved in speech generation and in video perception. Here we describe
the basic principles of the linear prediction voice coders (known as vocoders) and the video
compression method proposed by the Moving Picture Experts Group (MPEG).

6.8.1 Linear Prediction Coding Vocoders

Voice Models and Model-Based Vocoders
Linear prediction coding (LPC) vocoders are model-based systems. The model, in turn, is
based on a good understanding of the human voice mechanism. Fig. 6.34a provides a cross-
sectional illustration of the human speech apparatus. Briefly, human speech is produced by
the joint interaction of lungs, vocal cords, and the articulation tract, consisting of the mouth
and the nose cavity. Based on this physiological speech model, human voices can be divided
into voiced and the unvoiced sound categories. Voiced sounds are those made while the vocal
cords are vibrating. Put a finger on your Adam’s apple* while speaking, and you can feel the
vibration the vocal cords when you pronounce all the vowels and some consonants, such as g
asin gut, b as in but, and n as in nut. Unvoiced sounds are made while the vocal cords are not
vibrating. Several consonants such as k, p, and ¢ are unvoiced. Examples of unvoiced sounds
include 4 in hut, ¢ in cut, and p in put.

For the production of voiced sounds, the lungs expel air through the epiglottis, causing
the vocal cords to vibrate. The vibrating vocal cords interrupt the airstream and produce a
quasi-periodic pressure wave consisting of impulses. The pressure wave impulses are com-
monly called pitch impulses, and the frequency of the pressure signal is the pitch frequency or
fundamental frequency as shown in Fig. 6.34b. This is the part of the voice signal that defines
the speech tone. Speech that is uttered in a constant pitch frequency sounds monotonous. In
ordinary cases, the pitch frequency of a speaker varies almost constantly, often from syllable
to syllable.

* The slight projection at the front of the throat formed by the largest cartilage of the larynx, usually more prominent
in men than in women.
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Figure 6.35
Analysis and
synthesis of voice
signals in an LPC
encoder and
decoder.
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For voiced sound, the pitch impulses stimulate the air in the vocal tract (mouth and nasal
cavities). For unvoiced sounds, the excitation comes directly from the air flow. Extensive
studies!>~17 have shown that for unvoiced sounds, the excitation to the vocal tract is more like a
broadband noise. When cavities in the vocal tract resonate under excitation, they radiate a sound
wave, which is the speech signal. Both cavities form resonators with characteristic resonance
frequencies (formant frequencies). Changing the shape (hence the resonant characteristics) of
the mouth cavity allows different sounds to be pronounced. Amazingly, this (vocal) articulation
tract can be approximately modeled by a simple linear digital filter with an all-pole transfer
function

-1

p
H(z) = ,% =g- (1 - Zaiz_i

i=1

where g is a gain factor and A(z) is known as the prediction filter, much like the feedback filter
used in DPCM and ADPCM. One can view the function of the vocal articulation apparatus as
a spectral shaping filter H (z).

LPC Models

Based on thishumanspeech model, avoice encoding approach different from waveform coding
can be established. Instead of sending actual signal samples, the model-based vocoders analyze
the voice signals segment by segment to determine the best-fitting speech model parameters.
As shown in Fig. 6.35, after speech analysis, the transmitter sends the necessary speech model
parameters (formants) for each voice segment to the receiver. The receiver then uses the
parameters for the speech model to set up a voice synthesizer to regenerate the respective
voice segments. In other words, what a user hears at the receiver actually consists of signals
reproduced by an artificial voice synthesizing machine!

In the analysis of a sampled voice segment (consisting of multiple samples), the pitch
analysis will first determine whether the speech is a voiced or an unvoiced piece. If the signal
is classified as “voiced,” the pitch analyzer will estimate pitch frequency (or equivalently the
pitch period). In addition, the LPC analyzer will estimate the all-pole filter coefficients in A(z).
Because the linear prediction error indicates how well the linear prediction filter fits the voice
samples, the LPC analyzer can determine the optimum filter coefficients by minimizing the
mean square error (MSE) of the linear prediction error.!8- 19

Directly transmitting the linear prediction (LP) filter parameters is unsound because the
filter is very sensitive to parameter errors due to quantization and channel noises. Worse yet,
the LP filter may even become unstable because of small coefficient errors. In practice, the
stability of this all-pole linear prediction (LP) filter can be ensured by utilizing the modular
lattice filter structure through the well-known Levinson-Durbin algorithm.2% 2! Lattice filter
parameters, known as reflection coefficients {r;}, are less sensitive to quantization errors and
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TABLE 6.1
Quantization Bit Allocation in LPC-10 Vocoder

Pitch Period Voiced/Unvoiced Gain g 10 LP Filter Parameters, bits/coefficient
FlTry sy oy 10

Sbits 4bits 3bits 2bits Voiced
6 bits 1 bit 5bits 5 bits Not used Unvoiced

noise. Transmission is further improved by sending their log-area ratios (LAR), defined as

147
l—rk

o = log

or by sending intermediate values from the Levinson-Durbin recursion known as the partial
reflection coefficients (PARCOR). Another practical approach is to find the equivalent line
spectral pairs (LSP) as representation of the LPC filter coefficients for transmission over
channels. LSP has the advantage of low sensitivity to quantization noise.’>?3 As long as
the pth-order all-pole LP filter is stable, it can be represented by p real-valued, line spectral
frequencies. In every representation, however, a pth-order synthesizer filter can be obtained
by the LPC decoder from the quantization of p real-valued coefficients. In general § to 14 LP
parameters are sufficient for vocal tract representation.

We can now use a special LPC example to illustrate the code efficiency of such model-
based vocoders. In the so-called LPC-10 vocoder,* the speech is sampled at 8 kHz. 180 samples
(22.5 ms) form an LPC frame for transmission.?* The bits per speech frame are allocated to
quantize the pitch period, the voiced/unvoiced flag, the filter gain, and the 10 filter coefficients,
according to Table 6.1. Thus, each frame requires between 32 (unvoiced) and 53 (voiced) bits.
Adding frame control bits results an average coded stream of 54 bits per speech frame, or an
overall rate of 2400 bit/s.2* Based on subjective tests, this rather minimal LPC-10 codec has
low mean opinion score (MOS) but does provide highly intelligible speech connections. LPC-
10 is part of the FS-1015, a low-rate secure telephony codec standard developed by the U.S.
Department of Defense in 1984. A later enhancement to LPC-10 is known as the LPC-10(e).

Compared with the 64kbit/s PCM or the 32 kbit/s ADPCM waveform codec, LPC vocoders
are much more efficient and can achieve speech code rates below 9.6 kbit/s. The 2.4 kbit/s
LPC-10 example can provide speech digitization at a rate much lower than even the speech
waveform sampling rate of 8 kHz. The loss of speech quality is a natural trade-off. To better
understand the difference between waveform vocoders and the model-based vocoders such as
LPC, we can use the analogy of a food delivery service. Imagine a family living Alaska that
wishes to order a nice meal from a famous restaurant in New York City. For practical reasons,
the restaurant would have to send prepared dishes uncooked and frozen; then the family would
follow the cooking directions. The food would probably taste fine, but the meal would be
missing the finesse of the original chef. This option is like speech transmission via PCM. The
receiver has the basic ingredients but must tolerate the quantization error (manifested by the
lack of the chef’s cooking finesse). To reduce transportation weight, another option is for the
family to order the critical ingredients only. The heavier but common ingredients (such as rice
and potatoes) can be acquired locally. This approach is like DPCM or ADPCM, in which only
the unpredictable part of the voice is transmitted. Finally, the family can simply go online to

* So-called because it uses order p = 10. The idea is to allocate two parameters for each possible formant frequency
peak.
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order the chef’s recipe. All the ingredients are purchased locally and the cooking is also done
locally. The Alaskan family can satisfy their gourmet craving without receiving a single food
item form New York! Clearly, the last scenario captures the idea of model-based vocoders.
LPC vocoders essentially deliver the recipe (i.e., the LPC parameters) for voice synthesis at
the receiver end.

Practical High-Quality LP Vocoders

The simple dual-state LPC synthesis of Fig. 6.35 describes no more than the basic idea behind
model-based voice codecs. The quality of LP vocoders has been greatly improved by a number
of more elaborate codecs in practice. By adding a few bits, these LP-based vocoders attempt
to improve the speech quality in two ways: by encoding the residual prediction error and by
enhancing the excitation signal.

The most successful methods belong to the class known as code-excited linear prediction
(CELP) vocoders. CELP vocoders use a codebook, a table of typical LP error (or residue)
signals, which is set up a priori by designers. At the transmitter, the analyzer compares the
actual prediction residue to all the entries in the codebook, chooses the entry that is the closest
match, and just adds the address (code) for thatentry to the bits for transmission. The synthesizer
receives this code, retrieves the corresponding residue from the codebook, and uses it to modify
the synthesizing output. For CELP to work well, the codebook must be big enough, requiring
more transmission bits. The FS-1016 vocoder is an improvement over FS-1015 and provides
good quality, natural-sounding speech at 4.8 kbit/s.>> More modern variants include the RPE-
LTP (regular pulse excitation, long-term prediction) LPC codec used in GSM cellular systems,
the algebraic CELP (ACELP), the relaxed CELP (RCELP), the Qualcomm CELP (QCELP)
in CDMA cellular phones, and vector-sum excited linear prediction (VSELP). Their data rates
range from as low as 1.2 kbit/s to 13 kbit/s (full-rate GSM). These vocoders form the basis of
many modern cellular vocoders, voice over Internet Protocol (VoIP), and other ITU-T G-series
standards.

Video Compression

For video and television to go digital we face a tremendous the challenge. Because of the high
video bandwidth (approximately 4.2 MHz), use of direct sampling and quantization leads to
an uncompressed digital video signal of roughly 150 Mbit/s. Thus, the modest compression
afforded by techniques such as ADPCM and subband coding?® 2 is insufficient. The key to
video compression, as it turns out, has to do with human visual perception.

A great deal of research and development has resulted in methods to drastically reduce the
digital bandwidth required for video transmission. Early compression techniques compressed
video signals to approximately 45 Mbit/s (DS3). For the emerging video delivery technolo-
gies of HFC, ADSL, HDTYV, and so on, however, much greater compression was required.
MPEG approached this problem and developed new compression techniques, which provide
network or VCR quality video at much greater levels of compression. MPEG is a joint effort
of the International Standards Organizations (ISO), the International Electrotechnical Com-
mittee (IEC), and the American National Standards Institute (ANSI) X3L3 Committee.28-2°
MPEG has a very informative website that provides extensive information on MPEG and JPEG
technologies and standards (http://www.mpeg.org/index.html/). MPEG also has an industrial
forum promoting the organization’s products (http://www.m4if.org/).

The concept of digital video compression is based on the fact that, on the average, a
relatively small number of pixels change from frame to frame. Hence, if only the changes
are transmitted, the transmission bandwidth can be reduced significantly. Digitizing allows
the noise-free recovery of analog signals and improves the picture quality at the receiver.
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Compression reduces the bandwidth required for transmission and the amount of storage for a
video program and, hence, expands channel capacity. Without compression, a 2-hour digitized
NTSC video program would require roughly 100 gigabytes of storage, far exceeding the
capacity of any DVD disc.

There are three primary MPEG standards in use:

MPEG-1: Used for VCR-quality video and storage on video CD (or VCD) at adatarate of 1.5
Mbit/s. These VCDs were quite popular throughout Asia (except Japan). MPEG-1
decoders are available on most computers. VCD is also a very popular format for
karaoke.

MPEG-2: Supports diverse video coding applications for transmissions ranging in quality
from VCR to high-definition TV (HDTV), depending on data rate. It offers 50:1
compression of raw video. MPEG-2 is a highly popular format usedin DVD,HDTY,
terrestrial digital video broadcasting (DVB-T), and digital video broadcasting by
satellite (DVB-S).

MPEG-4 Provides multimedia (audio, visual, or audiovisual) content streaming over differ-
ent bandwidths including internet. MPEG-4 is supported by Microsoft Windows
Media Player, Real Networks, and Apple’s Quicktime and iPod. MPEG-4 recently
converged with an ITU-T standard known as H.264, to be discussed later.

The power of video compression is staggering. By comparison, NTSC broadcast television in
digital form requires 45 to 120 Mbit/s, whereas MPEG-2 requires 1.5 to 15 Mbit/s. On the other
hand HDTV would require 800 Mbit/s uncompressed which, under MPEG-2 compression, will
transmit at 19.39 Mbit/s.

There are two types of MPEG compression, which eliminate redundancies in the
audiovisual signals that are not perceptible by the listener or the viewer:

1. Video

- Temporal or interframe compression by predicting interframe motion and removing
interframe redundancy

- Spatial or intraframe compression, which forms a block identifier for a group of pixels
having the same characteristics (color, intensity, etc.) for each frame. Only the block
identifier is transmitted.

2. Audio, which uses a psychoacoustic model of masking effects.

The basis for video compression is to remove redundancy in the video signal stream. As an
example of interframe redundancy, consider Fig. 6.36a and b. In Fig. 6.36a the runner is in
position A and in Fig. 6.36b he is in position B. Note that the background (cathedral, buildings,
and bridge) remains essentially unchanged from frame to frame. Figure 6.36¢ represents the
nonredundant information for transmission; that is, the change between the two frames. The
runner image on the left represents the blocks of frame 1 that are replaced by background
in frame 2. The runner image on the right represents the blocks of frame 1 that replace the
background in frame 2.

Video compression starts with an encoder, which converts the analog video signal from
the video camera to a digital format on a pixel-by-pixel basis. Each video frame is divided
into 8 x 8 pixel blocks, which are analyzed by the encoder to determine which blocks must be
transmitted, that is, which blocks have significant changes from frame to frame. This process
takes place in two stages:
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Figure 6.36
(a) Frame 1.
(b) Frame 2.
(c) Information
transferred
between

frames 1 and 2.

(@) ® ©

1. Motion estimation and compensation. Here a motion estimator identifies the areas or groups
of blocks from a preceding frame that match corresponding areas in the current frame and
sends the magnitude and direction of the displacement to a predictor in the decoder. The
frame difference information is called the residual.

2. Transforming the residual on a block-by-block basis into more compact form.

The encoded residual signal is transformed into a more compact form by means of a discrete
cosine transform (DCT) (see Sec. 6.5.2 in Haskel et al.,zg), which uses a numerical value to
represent each pixel and normalizes that value for more efficient transmission. The DCT is of
the form

N-1N-1 .
FG.k) = g mzz;)f(n,m) cos [(2n ;NI)M:I cos [(2’” ;‘Nl)kﬂ]

where f (n, m) is the value assigned to the block in the (r, m) position. The inverse transform is

N—-1N-1

o = 73 3 3 P4 on [ 5 os [ 2087

n=0 m=0

The DCT is typically multiplied, for an 8 x 8 block, by the expression C(j)C (k) /4, where

1
— forx=0
Cx)y={v2

1 otherwise

Tables 6.2 and 6.3 depict the pixel block values before and after the DCT. One can
notice from Table 6.3 that there are relatively few meaningful elements, that is, elements
with significant values relative to the values centered about the 0, O position. Because of this,
most of the matrix values may be assumed to be zero, and, upon inverse transformation, the
original values are quite accurately reproduced. This process reduces the amount of data that
must be transmitted greatly, perhaps by a factor of 8 to 10 on the average. Note that the size
of the transmitted residual may be that of an individual block or, at the other extreme, that of
the entire picture.

The transformed matrix values of a block (Table 6.4) are normalized so that most of the
values in the block matrix are less than 1. Then the resulting normalized matrix is quantized to
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TABLE 6.2
8 x 8 Pixel Block Residual

158 158 158 163 161 161 162 162
157 157 157 162 163 161 162 162
157 157 157 160 161 161 161 161
155 155 155 162 162 161 160 159
m 159 159 159 160 160 162 161 159
156 156 156 158 163 160 155 150
156 156 156 159 156 153 151 144
155 155 155 155 153 149 144 139

TABLE 6.3
Transformed 8 x 8 Pixel Block Residual DCT Coefficients

I
1259.6 1.0 —-12.1 5.2 2.1 1.7 =27 -13
226 -—175 62 -32 29 -01 -04 -12
-10.9 93 —-16 -15 0.2 09 -0.6 0.1
71 -19 =02 1.5 -09 -0.1 0.0 0.3
k —0.6 0.8 1.5 -16 -0.1 0.7 06 -13
-1.8 -02 -16 -03 0.8 15 -1.0 -1.0
-1.3 04 -03 1.5 =05 -1.7 1.1 0.8
2.6 1.6 38 —-18 -19 1.2 06 -04

TABLE 6.4

Normalized and Quantized
Residual DCT Coefficients

=

21 0 -1 0 00 0O

2 -1 000 0 OO0

-1 1 0 000 0O

k 0 0 0 O0 0 O0 O0O0
0 o0 0 O0 0 O0 O0 O

0 o0 0 O0 0 O0 O0O0

0 0 0 0 0 O O0O

0 0 0 0 0 0 0O

obtain Table 6.4. Normalization is accomplished by a dynamic matrix of multiplicative values,
which are applied element by element to the transformed matrix. The normalized matrix of
Table 6.4 is the block information transmitted to the decoder. The denormalized matrix pictured
in Table 6.5 and the reconstructed (inverse-transformed) residual in Table 6.6 are determined
by the decoder. The transformation proceeds in a zigzag pattern, as illustrated in Fig. 6.37.
MPEG approaches the motion estimation and compensation to remove temporal (frame-to-
frame) redundancy in a unique way. MPEG uses three types of frame, the intraframe or I-frame
(sometimes called the independently coded or intracoded frame), the predicted (predictive) or
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Figure 6.37
Zigzag DCT
coefficient
scanning pattern.

TABLE 6.5
Denormalized DCT Coefficients
in
1260 0 —-12 0 0 0 0 O
23 —18 0O 0 0 0 O O
—11 10 0O 0 0 0 0 O
k 0 0 0O 0 0 0 0 O
0 0 0O 0 0 0 0o O
0 0 0O 0 0 0 0 O
0 0 O 0 0 0 0 O
0 0 0O 0 0 0 0 O
TABLE 6.6

Inverse DCT Coefficients Reconstructed Residual

158
157
157
m 155
159
156
156
155

158
157
157
155
159
156
156
155

158
157
157
155
159
156
156
155

163
162
160
162
160
158
159
155

161
163
161
162
160
163
156
153

161
161
161
161
162
160
153
149

162
162
161
160
161
155
151
144

162
162
161
159
159
150
144
139

NEJER]
Sy

e

P-frame, and the bidirectionally predictive frame or B-frame. The P-frames are predicted from
the I-frames. The B-frames are bidirectionally predicted from either past or future frames. An
I-frame and one or more P-frames and B-frames make up the basic MPEG processing pattern,
called a group of pictures (GOP). Most of the frames in an MPEG compressed image are
B-frames. The I-frame provides the initial reference for the frame differences to start the
MPEG encoding process. Note that the bidirectional aspect of the procedure introduces a
delay in the transmission of the frames. This is because the GOP is transmitted as a unit and,
hence, transmission cannot start until the GOP is complete (Fig. 6.38). The details of the
procedure are beyond the scope of this text. There are many easily accessible books that cover
this subject in detail. In addition, one may find numerous references to MPEG compression

and HDTYV on the internet.
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Figure 6.38 Bidirectional interpolation
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Other Video Compression Standards

We should mention that in addition to MPEG, there is a parallel attempt by ITU-T to standardize
video coding. These standards apply similar concepts for video compression. Today, the well-
known ITU-T video compression standards are the H.26x series, including H.261, H.263, and
H.264. H.261 was developed for transmission of video at a rate of multiples of 64 kbit/s in
applications such as videophone and videoconferencing. Similar to MPEG compression, H.261
uses motion-compensated temporal prediction.

H.263 was designed for very low bit rate coding applications, such as videoconferencing.
It uses block motion-compensated DCT structure for encoding.>® Based on H.261, H.263 is
better optimized for coding at low bit rates and achieves much higher efficiency than H.261
encoding. Flash Video, a highly popular format for video sharing on many web engines such
as YouTube and MySpace, uses a close variant of the H.263 codec called the Sorenson Spark
codec.

In fact, H.264 represents a recent convergence between ITU-T and MPEG and is a joint
effort of the two groups. Also known as MPEG-4 Part 10, H.264 typically outperforms MPEG-
2 by cutting the data rate nearly in half. This versatile standard supports video applications
over multiple levels of bandwidth and quality, including, mobile phone service at 50 to 60
kbit/s, Internet/standard definition video at 1 to 2 Mbit/s, and high-definition video at 5 to 8
Mbit/s. H.264 is also supported in many other products and applications including iPod, direct
broadcasting satellite TV, some regional terrestrial digital TV, Mac OS X (Tiger), and Sony’s
Playstation Portable.

A Note on High-Definition Television (HDTYV)

Utilizing MPEG-2 for video compression, high-definition television (HDTV) is one of the
advanced television (ATV) functions along with 525-line compressed video for direct broadcast
satellite (DBS) or cable. The concept of HDTV appeared in the late 1970s. Early development
work was performed primarily in Japan based on an analog system. In the mid-1980s it became
apparent that the bandwidth requirements of an analog system would be excessive, and work
began on a digital system that could utilize the 6 MHz bandwidth of NTSC television. In
the early 1990s seven digital systems were proposed, but testing indicated that none would
be highly satisfactory. Therefore, in 1993 the FCC suggested the formation of an industrial
“Grand Alliance” (GA) to develop a common HDTV standard. In December 1997, Standard
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A/53 for broadcast transmission, proposed by the Advanced Television Systems Committee
(ATSC), was finalized by the FCC in the United States.

The GA HDTYV standard is based on a 16:9 aspect ratio (motion picture aspect ratio)
rather than the 4:3 aspect ratio of NTSC television. HDTV uses MPEG-2 compression at
19.39 Mbit/s and a digital modulation format called 8-VSB (vestigial sideband), which uses
an eight-amplitude-level symbol to represent 3 bits of information. Transmission is in 207-
byte blocks, which include 20 parity bytes for Reed-Solomon forward error correction. The
remaining 187-byte packet format is a subset of the MPEG-2 protocol and includes headers
for timing, switching, and other transmission control.

The Advanced Television Systems Group, the successor to the Grand Alliance, has been
developing standards and recommended practices for HDTV. These are found, along with a
great deal of other information, on their website: http://www.atsc.org/.

6.9 MATLAB EXERCISES

In the MATLAB exercises of this section, we provide examples of signal sampling, signal
reconstruction from samples, uniform quantization, pulse-coded modulation (PCM), and delta
modulation (DM).

Sampling and Reconstruction of Lowpass Signals

In the sampling example, we first construct a signal g(¢) with two sinusoidal components of
1-second duration; their frequencies are 1 and 3 Hz. Note, however, that when the signal
duration is infinite, the bandwidth of g(¢) would be 3 Hz. However, the finite duration of the
signal implies that the actual signal is not band-limited, although most of the signal content
stays within a bandwidth of 5 Hz. For this reason, we select a sampling frequency of 50
Hz, much higher than the minimum Nyquist frequency of 6 Hz. The MATLAB program,
Exsample.m, implements sampling and signal reconstruction. Figure 6.39 illustrates the
original signal, its uniform samples at the 50 Hz sampling rate, and the frequency response of
the sampled signal. In accordance with our analysis of Section 6.1, the spectrum of the sampled
signal g7 (¢) consists of the original signal spectrum periodically repeated every 50 Hz.

% (Exsample.m)
% Example of sampling, quantization, and zero-order hold
clear;clf;

td=0.002; %original sampling rate 500 Hz
t=[0:td:1.]; %time interval of 1 second
xsig=sin(2*pi*t)-sin(6*pi*t); % 1Hz+3Hz sinusoids

Lsig=length(xsig);

ts=0.02; %new sampling rate = 50Hz.

Nfactor=ts/td;

% send the signal through a 16-level uniform quantizer

[s_out, sg_out, sgh_out,Delta, SONR]=sampandquant (xsig, 16, td, ts);
receive 3 signals:

oe

o

1. sampled signal s_out

o

2. sampled and quantized signal sqg_out
3. sampled, quantized, and zero-order hold signal sgh_out

90 o0
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% calculate the Fourier transforms

Lfft=2"ceil(log2 (Lsig)+1);
Fmax=1/(2*td) ;

Faxis=linspace (-Fmax, Fmax,Lfft) ;
Xsig=fftshift (fft(xsig,Lfft));
S_out=fftshift (fft(s_out,Lfft));

% Examples of sampling and reconstruction using

% a) ideal impulse train through LPF

% b) flat top pulse reconstruction through LPF

% plot the original signal and the sample signals in time
% and frequency domain

figure(1);

subplot(311); sfigla=plot(t,xsig, ‘'k’);

hold on; sfiglb=plot(t,s_out(l:Lsig),'b’); hold off;
set(sfigla, 'Linewidth’,2); set(sfiglb, 'Linewidth’,2.);
xlabel ('time (sec)’);

title(’Signal {\it g} ({\it t}) and its uniform samples’);

subplot (312); sfiglc=plot(Faxis,abs(Xsig));

xlabel (' frequency (Hz)');
axis([-150 150 0 3001])

set (sfiglc, 'Linewidth’,1);

subplot(313); sfigld=plot(Faxis,abs(S_out));
xlabel (' frequency (Hz)');
axis([-150 150 0 300/Nfactor])

title(’Spectrum of {\it g} ({\it t})’);

311
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set (sfiglc, 'Linewidth’,1); title(’Spectrum of {\it g}_T({\it t})’);
% calculate the reconstructed signal from ideal sampling and

% ideal LPF

% Maximum LPF bandwidth equals to BW=floor ((Lfft/Nfactor)/2);

BW=10; %$Bandwidth is no larger than 10Hz.
H_lpf=zeros(l,Lfft);H_ lpf(Lfft/2-BW:Lfft/2+BW-1)=1; %ideal LPF
S_recv=Nfactor*S_out.*H_1pf; % ideal filtering
s_recv=real (ifft(fftshift(S_recv))); % reconstructed f-domain
s_recv=s_recv(l:Lsig); % reconstructed t-domain
% plot the ideally reconstructed signal in time
% and frequency domain

figure(2)

subplot(211); sfigla=plot(Faxis,abs(S_recv));
xlabel (' frequency (Hz)');
axis([-150 150 0 300]);
title(’Spectrum of ideal filtering (reconstruction)’);
subplot(212); sfig2b=plot(t,xsig, 'k-.’,t,s_recv(l:Lsig), ' 'b’);
legend(’original signal’, 'reconstructed signal’);
xlabel ('time (sec)’);

title(‘original signal versus ideally reconstructed signal’);
set (sfig2b, 'Linewidth’,2) ;
% non-ideal reconstruction

ZOH=ones (1,Nfactor) ;

s_ni=kron (downsample (s_out,Nfactor) ,b ZOH) ;

S ni=fftshift(fft(s_ni,Lfft));

S_recv2=S_ni.*H_1lpf; % ideal filtering

s_recv2=real (ifft (fftshift(S_recv2))); % reconstructed f-domain
s_recv2=s_recv2(1l:Lsig); % reconstructed t-domain
% plot the ideally reconstructed signal in time

% and frequency domain

figure(3)

subplot(211); sfig3a=plot(t,xsig,’'b’,t,s_ni(l:Lsig),’'b’);
xlabel (’'time (sec)’);

title(’original signal versus flat-top reconstruction’);
subplot(212); sfig3b=plot(t,xsig,’'b’,t,s_recv2(l:Lsig), 'b--');
legend(’original signal’, 'LPF reconstruction’);

xlabel ('time (sec)’);

set (sfig3a, 'Linewidth’,2); set(sfig3b, ‘Linewidth’,2);
title(’original and flat-top reconstruction after LPF’');

To construct the original signal g () from the impulse sampling train gr(¢), we applied an
ideal low-pass filter with bandwidth 10 Hz in the frequency domain. This corresponds to the
interpolation using the ideal sinc function as shown in Sec. 6.1.1. The resulting spectrum, as
shown in Fig. 6.40, is nearly identical to the original message spectrum of g (¢). Moreover, the
time domain signal waveforms are also compared in Fig. 6.40 and show near perfect match.

In our last exercise in sampling and reconstruction, given in the same program, we use
a simple rectangular pulse of width 7; (sampling period) to reconstruct the original signal
from the samples (Fig. 6.41). A low-pass filter is applied on the rectangular reconstruction
and also shown in Fig. 6.41. It is clear from comparison to the original source signal that the
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Reconstructed
signal spectrum
and waveform
from applying
the ideal impulse
sampling and
ideal low-pass
filter reconstruc-
tion.
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recovered signal is still very close to the original signal g (). This is because we have chosen
a high sampling rate such that T, = T is so small that the approximation of Eq. (6.17) holds.
Certainly, based on our analysis, by applying the low-pass equalization filter of Eq. (6.16), the
reconstruction error can be greatly reduced.

PCM Ilustration

The uniform quantization of an analog signal using L quantization levels can be implemented
by the MATLAB function uniquan.m.

% (uniguan.m)
function [g out,Delta, SQNR]=uniquan(sig_in, L)

% Usage

% [g _out,Delta,SQONR]=uniquan(sig_in, L)

% L - number of uniform guantization levels

% sig_in - input signal vector

% Function outputs:

% g _out - gquantized output

% Delta - quantization interval

% SONR - actual signal to quantization noise ratio
sig_pmax=max(sig_in) ; % finding the positive peak
sig_nmax=min(sig_in); % finding the negative peak

Delta=(sig_pmax-sig_nmax) /L; % quantization interval
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Figure 6.41
Reconstructed
signal spectrum
and waveform
from applying
the simple
rectangular
reconstruction
pulse (Fig. 6.6)
followed by LPF
without
equalization.

Original signal versus flat-top reconstruction

1 | 1 1 1
1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time, second

Original and flat-top reconstruction after LPF

2 T T~ T T T T T T T 1)
Original signal
A\ — — LPF reconstruction

_2 1 A —1 i ! 1 I 1 1
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Time, second
g _level=sig nmax+Delta/2:Delta:sig_pmax-Delta/2; % define Q-levels
L_sig=length(sig_in); % find signal length
sigp=(sig_in-sig_nmax)/Delta+1/2; % convert into 1/2 to L+1/2 range
gindex=round(sigp) ; % round to 1, 2, L levels

gindex=min (gindex, L) ; % eleminate L+1 as a rare possibility

g out=g_level (gindex); % use index vector to generate output
SONR=20*10gl0 (norm(sig_in) /norm(sig_in-g out)); %actual SQNR value

end

The function sampandquant .m executes both sampling and uniform quantization
simultaneously. The sampling period ts is needed, along with the number L of quantization
levels, to generate the sampled output s_out, the sampled and quantized output sq_out,
and the signal after sampling, quantizing, and zero-order-hold sgh_out.

% (sampandguant.m)
function [s_out,sqg_out, sgh_out,Delta, SONR]=sampandquant (sig_in, L, td, ts)
% Usage

% [s_out,sg out,sgh_out,Delta, SQNR]=sampandquant (sig_in, L, td, fs)
% L - number of uniform quantization levels

% sig_in - input signal vector

% td - original signal sampling period of sig_in
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o

ts - new sampling period
NOTE: td*fs must be a positive integer;
Function outputs:

o0 o0 of

s_out - sampled output

o

sg_out - sample-and-quantized output

o

sgh_out- sample, quantize,and hold output

oe

Delta - quantization interval

oe

SONR - actual signal to quantization noise ratio

if (rem(ts/td,1)==0)
nfac=round(ts/td) ;

p_zoh=ones (1,nfac);

s_out=downsample (sig_in,nfac);

[sg _out,Delta, SONR]=uniquan(s_out, L) ;
s_out=upsample (s_out,nfac) ;
sgh_out=kron(sg out,p_zoh);
sg_out=upsample (sqg_out,nfac) ;

else
warning (’Error! ts/td is not an integer!’);
s_out=[];sqg out=[];sgh_out=[];Delta=[];SQONR=[];
end
end
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The MATLAB program ExPCM.m provides a numerical example that uses these two

MATLAB functions to generate PCM signals.

% (ExXPCM.m)
% Example of sampling, quantization, and zero-order hold
clear;clf;

td=0.002; %original sampling rate 500 Hz
t=[0:td:1.1]; %$time interval of 1 second
xsig=sin(2*pi*t)-sin(6*pi*t); % 1Hz+3Hz sinusoids

Lsig=length(xsig) ;

Lfft=2"ceil (log2(Lsig)+1);

Xsig=fftshift (fft(xsig,Lfft));
Fmax=1/(2*td) ;

Faxis=linspace (-Fmax,Fmax, Lfft) ;

ts=0.02; %new sampling rate = 50Hz.
Nfact=ts/td;

% send the signal through a 16-level uniform quantizer

[s_out, sq _out, sgh_outl,Delta, SONR] =sampandquant (xsig, 16, td, ts);
% obtained the PCM signal which is

% - sampled, quantized, and zero-order hold signal sgh_out
% plot the original signal and the PCM signal in time domain
figure (1) ;

subplot (211) ;sfigl=plot(t,xsig, 'k’,t,sgh_outl(l:Lsig), 'b’);
set(sfigl, 'Linewidth’,2);

title(’Signal {\it g} ({\it t}) and its 16 level PCM signal’)
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xlabel ('time (sec.)’);

% send the signal through a 16-level uniform quantizer

[s_out,sqg out,sgh_out2,Delta, SONR] =sampandquant (xsig, 4,td, ts) ;

% obtained the PCM signal which is

% - sampled, quantized, and zero-order hold signal sgh_out
% plot the original signal and the PCM signal in time domain
subplot(212);sfig2=plot(t,xsig, 'k’,t,sgh_out2(1l:Lsig),'b’);

set (sfig2, 'Linewidth’,2);

title(’Signal {\it g} ({\it t}) and its 4 level PCM signal’)
xlabel (‘time (sec.)’);

Lfft=2"ceil(log2(Lsig)+1);

Fmax=1/(2*td) ;

Faxis=linspace(-Fmax, Fmax,Lfft);
SQH1=fftshift (fft(sgh_outl,Lfft));
SQH2=fftshift (fft(sgh_out2,Lfft));
% Now use LPF to filter the two PCM signals

BW=10; %Bandwidth is no larger than 10Hz.
H_lpf=zeros(l,Lfft);H 1lpf(Lfft/2-BW:Lfft/2+BW-1)=1; %ideal LPF
S1_recv=SQHl.*H_1pf; % ideal filtering
s_recvl=real (ifft (fftshift(Sl_recv))); % reconstructed f-domain
s_recvl=s_recvl(l:Lsig); % reconstructed t-domain
S2_recv=SQH2.*H_1pf; % ideal filtering
s_recv2=real (ifft (fftshift(S2_recv))); % reconstructed f-domain
s_recv2=s_recv2(l:Lsig); % reconstructed t-domain
% Plot the filtered signals against the original signal
figure(2)

subplot (211) ;sfig3=plot(t,xsig, ‘b-’,t,s_recvl,'b-.");
legend(’original’, 'recovered’)

set (sfig3, 'Linewidth’,2);

title(’Signal {\it g} ({\it t}) and filtered 16-level PCM signal’)

xlabel (‘time (sec.)’);

subplot(212);sfigd4=plot(t,xsig, 'b-’,t,s_recv2(l:Lsig), 'b-.");
legend(’original’, 'recovered’)

set (sfig4, 'Linewidth’,2);

title(’Signal {\it g} ({\it t}) and filtered 4-level PCM signal’)

xlabel ('time (sec.)’);

In the first example, we maintain the 50 Hz sampling frequency and utilize L = 16
uniform quantization levels. The resulting PCM signal is shown in Fig. 6.42. This PCM
signal can be low-pass-filtered at the receiver and compared against the original message
signal, as shown in Fig. 6.43. The recovered signal is seen to be very close to the original
signal g(¢).

To illustrate the effect of quantization, we next apply L = 4 PCM quantization levels. The
resulting PCM signal is again shown in Fig. 6.42. The corresponding signal recovery is given
in Fig. 6.43. It is very clear that smaller number of quantization levels (L = 4) leads to much
larger approximation error.



Figure 6.42
Criginal signal
and the PCM
signals with
di%erent numbers
of quantization
levels.
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Time, second

Signal g(¢) and its 4-level PCM signal

_2 1 — Y 1 4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time, second
Delta Modulation

Instead of applying PCM, we illustrate the practical effect of step size selection A in the design
of DM encoder. The basic function to implement DM is given in deltamod.m.

% (deltamod.m)
function s_DMout= deltamod(sig_in,Delta, td, ts)
% Usage
s_DMout = deltamod(xsig,Delta,td,ts))
Delta - DM stepsize
sig_in - input signal vector
td - original signal sampling period of sig_in

00 o0 0P o0 o

ts - new sampling period
NOTE: td*fs must be a positive integer;
Function outputs:
% s_DMout - DM sampled output
if (rem(ts/td,1)==0)
nfac=round(ts/td) ;
p_zoh=ones (1,nfac);

o0 o°

s_down=downsample(sig_in,nfac);
Num_it=length(s_down) ;
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Figure 6.43
Comparison
between the
original signal
and the PCM
signals after
low-pass filtering
to recover the
original
message.
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s_DMout (1) =-Delta/2;
for k=2:Num_it
xvar=s_DMout (k-1) ;
s_DMout (k) =xvar+Delta*sign(s_down (k-1)-xvar) ;

end

s_DMout=kron (s_DMout,p_zoh) ;

else
warning (‘Error! ts/td is not an integer!’);
s_DMout=[];

end

end

To generate DM signals with different step sizes, we apply the same signal g(¢) as used
in the PCM example. The MATLAB program ExDM.m applies three step sizes: A1 = 0.2,
Ay =2A1,and A3 = 4A;.

% (EXDM.m)
% Example of sampling,
clear;clf;
td=0.002;

quantization, and zero-order hold

%original sampling rate 500 Hz
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t=[0:td:1.1; %time interval of 1 second

xsig=sin(2*pi*t)-sin(6*pi*t); % 1Hz+3Hz sinusoids

Lsig=length(xsig) ;

ts=0.02; $new sampling rate = 50Hz.

Nfact=ts/td;

% send the signal through a 16-level uniform quantizer

Deltal=0.2; % First select a small Delta=0.2 in DM

s_DMoutl=deltamod(xsig,Deltal, td, ts);

% obtained the DM signal

% plot the original signal and the DM signal in time domain

figure(l);

subplot(311) ;sfigl=plot(t,xsig, 'k’,t,s_DMoutl(l:Lsig),'b’);

set (sfigl, 'Linewidth’,2);

title(’Signal {\it g} ({\it t}) and DM signal’)

xlabel ('time (sec.)’); axis([0 1 -2.2 2.2]);

%

% Apply DM again by doubling the Delta

Delta2=2*Deltal; %

s_DMout2=deltamod(xsig,Delta2,td, ts);

% obtained the DM signal

% plot the original signal and the DM signal in time domain

subplot(312) ;sfig2=plot(t,xsig, 'k’,t,s_DMout2(l:Lsig),’'b’);

set (sfig2, 'Linewidth’,2);

title(’Signal {\it g} ({\it t}) and DM signal with doubled stepsize’)

xlabel (’time (sec.)’); axis([0 1 -2.2 2.2]);

%

Delta3=2*Delta2; % Double the DM Delta again.

s_DMout3=deltamod(xsig,Delta3, td, ts);

% plot the original signal and the DM signal in time domain

subplot(313) ;sfig3=plot(t,xsig, 'k’,t,s_DMout3(l:Lsig),’'b’);

set (sfig3, 'Linewidth’,2) ;

title(’Signal {\it g} ({\it t}) and DM signal with quadrupled
stepsize’)

xlabel ('time (sec.)’); axis([0 1 -2.2 2.2]);

To illustrate the effect of DM, the resulting signals from the DM encoder are shown in
Fig. 6.44. This example clearly shows that when the step size is too small (A1), there is a
severe overloading effect as the original signal varies so fast that the small step size is unable
to catch up. Doubling the DM step size clearly solves the overloading problem in this example.
However, quadrupling the step size (A3) would lead to unnecessarily large quantization error.
This example thus confirms our earlier analysis that a careful selection of the DM step size is
critical.

REFERENCES

1. D. A. Linden, “A discussion of sampling theorem,” Proc. IRE, vol. 47, no.7, pp. 1219-1226,
July 1959.
2. H. P. Kramer, “A Generalized Sampling Theorem,” J. Math. Phys., vol. 38, pp. 68-72, 1959.



320 SAMPLING AND ANALOG-TO-DIGITAL CONVERSION

Figure 6.44
Examples of
delta modulation
output with three
di{'@rent step
sizes: (a) small
step size leads to
overloading;

(b) reasonable
step size;

(c) large step
size causes large
quantization
errors.

H W

11.
12.

13.

14.

15.

16.

17.

Signal g(r) and DM signal

-2 1 1 s 1 1 L : ) ] =
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time, second

Signal g(t) and DM signal with doubled step size

-2 1 1 L 1 1 : e
4] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 |
Time, second

Signal g(#) and DM signal with quadrupied step size
T T

T

T T ¥ |

Time, second

. W. R. Bennett, Introduction to Signal Transmission, McGraw-Hill, New York, 1970.
. W.S. Anglin and J. Lambek, The Heritage of Thales, Springer, Berlin, 1995.
. B. Smith, “Instantaneous Companding of Quantized Signals,” BellSyst. Tech. J.,vol. 36, pp. 653-7009,

May 1957.

. ITU-T Standard Recommendation G.711, English, 1989.
. ITU-T Standard Recommendation G.726, English, 1990.
. C.L.Dammann, L. D. McDaniel, and C. L. Maddox, “D-2 Channel Bank Multiplexing and Coding,”

Bell Syst. Tech. J., vol. 51, pp. 1675-1700, Oct. 1972.

. K. W. Cattermole, Principles of Pulse-Code Modulation, llife, England, 1969.
. Bell Telephone Laboratories, Transmission Systems for Communication, 4th ed., Bell, Murray Hill,

NJ, 1970.

E. L. Gruenberg, Handbook of Telemetry and Remote Control, McGraw-Hill, New York, 1967.

J. B. O’Neal, Jr., “ Delta Modulation Quantizing Noise: Analytical and Computer Simulation Results
for Gaussian and Television Input Signals,” Bell Syst. Tech. J., pp. 117-141, Jan. 1966.

F. de Jager, “Delta Modulation, a Method of PCM Transmission Using the 1-Unit Code,” Philips
Res. Rep., no. 7, pp. 442466, 1952.

A. Tomozawa and H. Kaneko, “Companded Delta Modulation for Telephone Transmission,” IEEE
Trans. Commun. Technol., vol. CT-16, pp. 149-157, Feb. 1968.

B. S. Atal, “Predictive Coding of Speech Signals at Low Bit Rates,” I[EEE Trans. Commun., vol.
COMM-30, pp. 600-614, 1982.

J. P. Campbell and T. E. Tremain, “Voiced/Unvoiced Classification of Speech with Applications
to the U.S. Government LPC-10E Algorithm,” Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., Tokyo, pp. 473-476, 1986.

A. Gersho, “Advances in Speech and Audio Compression,” Proc. IEEE, vol. 82, pp. 900-918, 1994.



18

19.
20.
21.
22.
23.
24.

25.

26.

27.

28.

29.

30.

PROBLEMS

Figure P.6.1-1

6.

Problems 321

. L. R Rabiner and R. W. Schafer, Digital Processing of Speech Signals, Prentice-Hall, Englewood
Cliffs, NJ, 1978.

Lajos Hanzo, Jason Woodward, and Clare Sommerville, Voice Compression and Communications,
Wiley, Hoboken; NJ, 2001.

N. Levinson, “The Wiener rms Error Criterion in Filter Design and Prediction,” J. Math. Phys., vol.
25, pp. 261-278, 1947.

A. H. Sayed, Fundamentals of Adaptive Filtering, Wiley-IEEE Press, Hoboken, NJ, 2003.

J. Y. Stein, Digital Signal Processing: A Computer Science Perspective, Wiley, Hoboken, NJ, 2000.

K. K. Paliwal and B. W. Kleijn, “Quantization of LPC Parameters,” in Speech Coding and Synthesis,
W. B. Kleijn and K. K. Paliwal, Eds. Elsevier Science, Amsterdam, 1995.

T. E. Tremain, “The Government Standard Linear Predictive Coding Algorithm LPC-10,” Speech
Technol., 4049, 1982.

M. R. Schroeder and B. S. Atal, “Code-Excited Linear Prediction (CELP): High-Quality Speech at
Very Low Bit Rates,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Process. (ICASSP),
vol. 10, pp. 937-940, 1985.

S. Mallat, “ATheory of Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE
Trans. Pattern Anal. Machine Intel., vol. 11, pp. 674—693, 1989.

M. J. Smith and T. P. Barnwell, “Exact Reconstruction for Tree Structured Sub-Band Coders,” IEEE
Trans. Acoustics, Speech, Signal Process., vol. 34, no. 3, pp. 431441, 1986.

B. G. Haskel, A. Puri, and A. N. Netravali, Digital Video: An Introduction to MPEG-2, Chapman &
Hall, New York, 1996.

J. L. Mitchell, W. B. Pennebaker, C.E Fogg, and D. J. LeGall, MPEG Video Compression Standard,
Chapman & Hall, New York, 1996.

ITU-T Recommendation H.263, Video Coding for Low Bit Rate Communication.

1-1 Figure P6.1-1 shows Fourier spectra of signals g1 (¢) and g,(¢). Determine the Nyquist interval
and the sampling rate for signals g (¢), g2 (), glz(t), gé”(r), and g1 ()g2(2).
Hint: Use the frequency convolution and the width property of the convolution.

G} {alay)

0 3 % 10
(b

6.1-2 Determine the Nyquist sampling rate and the Nyquist sampling interval for the signals:

(a) sinc (1007¢)

(b) sinc? (10071)

(¢) sinc (100x2) + sinc (507?)
(d) sinc (100r¢) + 3 sinc? (6077)
(e) sinc (507¢)sinc(1007?)

6.1-3 A signal g(¢) band-limited to B Hz is sampled by a periodic pulse train pr,(¢) made up of a

rectangular pulse of width 1/8B second (centered at the origin) repeating at the Nyquist rate
(2B pulses per second). Show that the sampled signal g(¢) is given by

nm

_ 1 = 2

1) = — _ R
g8 48(??) + E i sm( 2 ) g(t) cos 4nmBt
n=
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Figure P.6.1-5

Figure P.6.1-6

Show that the signal g(f) can be recovered by passing g(#) through an ideal low-pass filter of
bandwidth B Hz and a gain of 4.

6.1-4 Asignal g(t) = sinc? (5mt) is sampled (using uniformly spaced impulses) at a rate of (i) 5 Hz;
(ii) 10 Hz; (iii) 20 Hz. For each of the three cases:
(a) Sketch the sampled signal.
(b) Sketch the spectrum of the sampled signal.
(c) Explain whether you can recover the signal g(¢) from the sampled signal.

(d) If the sampled signal is passed through an ideal low-pass filter of bandwidth 5 Hz, sketch the
spectrum of the output signal.

6.1-5 Signals g;(¢) = 104 1'1(104t) and g, (¢) = () are applied at the inputs of ideal low-pass filters
Hq(f) = II(f/20,000) and Hp(f) = I1(f/10,000) (Fig. P6.1-5). The outputs y; (t) and y; (¢)
of these filters are multiplied to obtain the signal y(tf) = y; (¢)y2(¢). Find the Nyquist rate of
y1(®),y2(t), and y(¢). Use the convolution property and the width property of convolution to
determine the bandwidth of y; ()y;(2). See also Prob. 6.1-1.

y{y=y (1) x,(0)

Input

(a) Find the unit impulse response of this circuit.
(b) Find the transfer function H (f) and sketch |H (f)|.

(c) Show that when a sampled signal g(¢) is applied at the input of this circuit, the output is a
staircase approximation of g(z). The sampling interval is 7.

6.1-7 (a) A first-order hold circuit can also be used to reconstruct a signal g(¢) from its samples. The
impulse response of this circuit is
h(t) = A !
-\ 2T

where Ty is the sampling interval. Consider a typical sampled signal g(¢#) and show that
this circuit performs the linear interpolation. In other words, the filter output consists of
sample tops connected by straight-line segments. Follow the procedure discussed in Sec.
6.1.1 (Fig. 6.2b).

(b) Determine the transfer function of this filter and its amplitude response, and compare it with
the ideal filter required for signal reconstruction.
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(¢) This filter, being noncausal, is unrealizable. Suggest a modification that will make this filter
realizable. How would such a modification affect the reconstruction of g (f) from its samples?
How would it affect the frequency response of the filter?

Prove that a signal cannot be simultaneously time-limited and band-limited.

Hint: Show that the contrary assumption leads to contradiction. Assume a signal simultaneously
time-limited and band-limited so that G(f) = O for |f| > B. In this case, G(f) = G(f) T1(f /2B)
for B' > B. This means that g(¢) is equal to g(¢) * 2B’sinc (27 B’t). Show that the latter cannot
be time-limited.

The American Standard Code for Information Interchange (ASCII) has 128 characters, which
are binary-coded. If a certain computer generates 100,000 characters per second, determine the
following:

(a) The number of bits (binary digits) required per character.

(b) The number of bits per second required to transmit the computer output, and the minimum
bandwidth required to transmit this signal.

(c) For single error detection capability, an additional bit (parity bit) is added to the code of each
character. Modify your answers in parts (a) and (b) in view of this information.

A compact disc (CD) records audio signals digitally by using PCM. Assume that the audio signal
bandwidth equals 15 kHz.

(a) Ifthe Nyquistsamplesare uniformly quantizedinto L = 65, 536 levels and then binary-coded,
determine the number of binary digits required to encode a sample.

(b) If the audio signal has average power of 0.1 watt and peak voltage of 1 volt. Find the resulting
signal-to-quantization-noise ratio (SQNR) of the uniform quantizer output in part (a).

(c) Determine the number of binary digits per second (bit/s) required to encode the audio signal.

(d) Forpracticalreasons discussed inthetext, signals are sampled at arate well above the Nyquist
rate. Practical CDs use 44,100 samples per second. If L = 65,536, determine the number
of bits per second required to encode the signal, and the minimum bandwidth required to
transmit the encoded signal.

A television signal (video and audio) has a bandwidth of 4.5 MHz. This signal is sampled,
quantized, and binary coded to obtain a PCM signal.

(a) Determine the sampling rate if the signal is to be sampled at a rate 20% above the Nyquist
rate.

(b) Ifthe samples are quantized into 1024 levels, determine the number of binary pulses required
to encode each sample.

(c) Determine thebinary pulse rate (bits per second) of the binary-coded signal, and the minimum
bandwidth required to transmit this signal.

Five telemetry signals, each of bandwidth 240 Hz, are to be transmitted simultaneously by binary
PCM. The signals must be sampled at least 20% above the Nyquist rate. Framing and synchroniz-
ing requires an additional 0.5% extra bits. A PCM encoder is used to convert these signals before
they are time-multiplexed into a single data stream. Determine the minimum possible data rate
(bits per second) that must be transmitted, and the minimum bandwidth required to transmit the
multiplex signal.

It is desired to set up a central station for simultaneous monitoring of the electrocardiograms
(ECGs) of 10 hospital patients. The data from the 10 patients are brought to a processing center over
wires and are sampled, quantized, binary-coded, and time-division-multiplexed. The multiplexed
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data are now transmitted to the monitoring station (Fig. P6.2-5). The ECG signal bandwidth
is 100 Hz. The maximum acceptable error in sample amplitudes is 0.25% of the peak signal
amplitude. The sampling rate must be at least twice the Nyquist rate. Determine the minimum
cable bandwidth needed to transmit these data.

Figure P.6.2-5

Processing
center

Cable

Monitoring
station

Receiver

6.2-6 A messagesignalm(z) is transmitted by binary PCM without compression. Ifthe SQNR is required
to be at least 47 dB, determine the minimum value of L = 2" required, assuming that m(z) is
sinusoidal. Determine the actual SQNR obtained with this minimum L.

6.2-7 Repeat Prob. 6.2-6 for m(t) shown in Fig. P6.2-7.

Hint: Thepower of a periodic signal is its energy averaged overone cycle. In this case, however,
because the signal amplitude takes on the same values every quarter cycle, the power can also be
found by averaging the signal energy over a quarter cycle.

Figure P.6.2-7

AN

NN
NN

=

6.2-8 For a PCM signal, determine L if the compression parameter 4 = 100 and the minimum SNR
required is 45 dB. Determine the output SQNR with this value of L. Remember that L must be a

power of 2, that is, L = 2" for a binary PCM.

6.2-9 Asignal band-limited to 1 MHz is sampled at arate 50% higherthanthe Nyquistrateand quantized

into 256 levels by using a u-law quantizer with u = 255.

(a) Determine the signal-to-quantization-noise ratio.

(b) The SQNR (the received signal quality) found in part (a) was unsatisfactory. It must be
increased atleast by 10 dB. Would you be able to obtain the desired SQNR without increasing
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the transmission bandwidth if it was found that a sampling rate 20% above the Nyquist rate is
adequate? If so, explain how. What is the maximum SQNR that can be realized in this way?

6.2-10 The output SQNR of a 10-bit PCM was found to be insufficient at 30 dB. To achieve the desired

6.4-1

6.4-2

6.4-3

6.7-1

SNR of 42 dB, it was decided to increase the number of quantization levels L. Find the fractional
increase in the transmission bandwidth required for this increase in L.

In a certain telemetry system, there are four analog signals my (), my(t), m3 (), and my(t). The
bandwidth of m (¢) is 3.6 kHz, but for each of the remaining signals it is 1.4 kHz. These signals
are to be sampled at rates no less than their respective Nyquist rates and are to be word-by-word
multiplexed. This can be achieved by multiplexing the PAM samples of the four signals and
then binary coding the multiplexed samples (as in the case of the PCM T1 carrier in Fig. 6.20a).
Suggest a suitable multiplexing scheme for this purpose. What is the commutator frequency (in
rotations per second)? Note: In this case you may have to sample some signal(s) at rates higher
than their Nyquist rate(s).

Repeat Prob. 6.4-1 if there are four signals m (¢), my (1), m3(t), and my (¢) with bandwidths 1200,
700, 300, and 200 Hz, respectively.

Hint: First multiplex my, m3, and m4 and then multiplex this composite signal with m; (¢).

A signal m () is band-limited to 3.6 kHz, and the three other signals m,(¢), m3(t), and m4(z) are
band-limited to 1.2 kHz each. These signals are sampled at the Nyquist rate and binary coded using
512 levels (L = 512). Suggest a suitable bit-by-bit multiplexing arrangement (as in Fig. 6.12).
What is the commutator frequency (in rotations per second), and what is the output bit rate?

In a single-integration DM system, the voice signal is sampled at a rate of 64 kHz, similar to
PCM. The maximum signal amplitude is normalized as Apmax = 1.

(a) Determine the minimum value of the step size o to avoid slope overload.

(b) Determine the granular noise power N, if the voice signal bandwidth is 3.4 kHz.

(c) Assuming that the voice signal is sinusoidal, determine S, and the SNR.

(d) Assuming that the voice signal amplitude is uniformly distributed in the range (-1, 1),
determine S, and the SNR.

(e) Determine the minimum transmission bandwidth.
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systems was in analog form. However, by the end of the 1990s, the digital format began

to dominate most applications. One does not need to look hard to witness the continuous
migration from analog to digital communications: from audiocassette tape to MP3 and CD,
from NTSC analog TV to digital HDTV, from traditional telephone to VoIP, and from VHS
videotape to DVD. In fact, even the last analog refuge of broadcast radio is facing a strong
digital competitor in the form of satellite radio. Given the dominating importance of digital
communication systems in our lives today, it is never too early to study the basic principles
and various aspects of digital data transmission, as we will do in this chapter.

This chapter deals with the problems of transmitting digital data over a channel. Hence,
the starting messages are assumed to be digital. We shall begin by considering the binary case,
where the data consist of only two symbols: 1 and 0. We assign a distinct waveform (pulse)
to each of these two symbols. The resulting sequence of these pulses is transmitted over a
channel. At the receiver, these pulses are detected and are converted back to binary data (1s
and 0s).

Throughout most of the twentieth century, a significant percentage of communication

7.1 DIGITAL COMMUNICATION SYSTEMS

A digital communication system consists of several components, as shown in Fig. 7.1. In
this section, we conceptually outline their functionalities in the communication systems. The
details of their analysis and design will be given in dedicated sections later in this chapter.

7.1.1 Source

The input to a digital system takes the form of a sequence of digits. The input could be the
output from a data set, a computer, or a digitized audio signal (PCM, DM, or LPC), digital
facsimile or HDTV, or telemetry data, and so on. Although most of the discussion in this chapter
is confined to the binary case (communication schemes using only two symbols), the more
general case of M-ary communication, which uses M symbols, will also be discussedin Secs. 7.7
and 7.9.
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Figure 7.2
Line code
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(b) polar (RZ);
() bipolar (RZ);
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(e) polar (NRZ).
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7.1.2 Line Coder

The digital output of a source encoder is converted (or coded) into electrical pulses (wave-
forms) for the purpose of transmission over the channel. This process is called line coding
or transmission coding. There are many possible ways of assigning waveforms (pulses) to
the digital data. In the binary case (2 symbols), for example, conceptually the simplest line
code is on-off, where a 1 is transmitted by a pulse p(¢) and a 0 is transmitted by no pulse
(zero signal) as shown in Fig. 7.2a. Another commonly used code is polar, where 1 is trans-
mitted by a pulse p(t) and 0 is transmitted by a pulse —p(¢) (Fig. 7.2b). The polar scheme is
the most power-efficient code because it requires the least power for a given noise immunity
(error probability). Another popular code in PCM is bipolar, also known as pseudoternary
or alternate mark inversion (AMI), where 0 is encoded by no pulse and 1 is encoded by
a pulse p(t) or —p(r) depending on whether the previous 1 is encoded by —p(¢) or p(¢). In
short, pulses representing consecutive 1s alternate in sign, as shown in Fig. 7.2c. This code
has the advantage that if one single error is made in the detecting of pulses, the received pulse
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sequence will violate the bipolar rule and the error can be detected (although not corrected)
immediately.*

Another line code that appeared promising earlier is the duobinary (and modified duobi-
nary) proposed by Lender.!? This code is better than the bipolar in terms of bandwidth
efficiency. Its more prominent variant, the modified duobinary line code, has seen applica-
tions in hard disk drive read channels, in optical 10 Gbit/s transmission for metronetworks,
and in the first-generation modems for integrated services digital networks (ISDN). Details of
duobinary line codes will be discussed later in this chapter.

In our discussion so far, we have used half-width pulses just for the sake of illustration. We
can select other widths also. Full-width pulses are often used in some applications. Whenever
full-width pulses are used, the pulse amplitude is held to a constant value throughout the
pulse interval (i.e., it does not have a chance to go to zero before the next pulse begins).
For this reason, these schemes are called non-return-to-zero or NRZ schemes, in contrast
to return-to-zero or RZ schemes (Fig. 7.2a—c). Figure 7.2d shows an on-off NRZ signal,
whereas Fig. 7.2e shows a polar NRZ signal.

7.1.3 Multiplexer

Generally speaking, the capacity of a physical channel (e.g., coaxial cable, optic fiber) for
transmitting data is much larger than the data rate of individual sources. To utilize this capac-
ity effectively, we combine several sources by means of a digital multiplexer. The digital
multiplexing can be achieved through frequency division or time division, as we have already
discussed. Alternatively, code division is also a practical and effective approach (to be discussed
in Chapter 11). Thusa physical channel is normally shared by several messages simultaneously.

7.1.4 Regenerative Repeater

Regenerative repeaters are used at regularly spaced intervals along a digital transmission line
to detect the incoming digital signal and regenerate new “clean” pulses for further transmission
alongtheline. This process periodically eliminates, and thereby combats, accumulation of noise
and signal distortion along the transmission path. The ability of such regenerative repeaters
to effectively eliminate noise and signal distortion effects is one of the biggest advantages of
digital communication systems over their analog counterparts.

If the pulses are transmitted at a rate of R, pulses per second, we require the periodic
timing information—the clock signal at R, Hz—to sample the incoming pulses at a repeater.
This timing information can be extracted from the received signal itself if the line code is
chosen properly. When the RZ polar signal in Fig. 7.2b is rectified, for example, it results in a
periodic signal of clock frequency R; Hz, which contains the desired periodic timing signal of
frequency R, Hz. When this signal is applied to a resonant circuit tuned to frequency Rj, the
output, which is a sinusoid of frequency R, Hz, can be used for timing. The on-off signal can
be expressed as a sum of a periodic signal (of clock frequency) and a polar, or random, signal
as shown in Fig. 7.3. Because of the presence of the periodic component, we can extract the
timing information from this signal by using a resonant circuit tuned to the clock frequency. A
bipolar signal, when rectified, becomes an on-off signal. Hence, its timing information can be
extracted using the same way as that for an on-off signal.

* This assumes no more than one error in sequence. Multiple errors in sequence could cancel their respective effects
and remain undetected. However, the probability of multiple errors is much smaller than that of single errors. Even
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The timing signal (the resonant circuit output) is sensitive to the incoming bit pattern. In
the on-off or bipolar case, a 0 is transmitted by ‘no pulse.’ Hence, if there are toomany 0s in a
sequence (no pulses), there is no signal at the input of the resonant circuit and the sinusoidal
output of the resonant circuit starts decaying, thus causing error in the timing information. We
shall discuss later ways of overcoming this problem. A line code in which the bit pattern does
not affect the accuracy of the timing information is said to be a transparent line code. The RZ
polar scheme (where each bit is transmitted by some pulse) is transparent, whereas the on-off
and bipolar are nontransparent.

/7.2 LINE CODING

Digital data can be transmitted by various transmission or line codes. We have given examples
of on-off, polar, and bipolar. Each line code has its advantages and disadvantages. Among other
desirable properties, a line code should have the following properties.

+ Transmission bandwidth should be as small as possible.

+ Power efficiency. For a given bandwidth and a specified detection error rate, the transmitted
power should be as low as possible.

« Error detection and correction capability. It is desirable to detect, and preferably correct,
detection errors. In a bipolar case, for example, a single error will cause bipolar violation
and can easily be detected. Error correcting codes will be discussed in depth in Chapter 14.

+ Favorable power spectral density. It is desirable to have zero power spectral density (PSD) at
f = 0 (dc) because ac coupling and transformers are often used at the repeaters.™ Significant
power in low-frequency components should also be avoided because it causes dc wander in
the pulse stream when ac coupling is used.

for single errors, we cannottell exactly where the error is located. Therefore, this code can detect the presence of
single errors, but it cannot correct them.

* The ac coupling is required because the dc paths provided by the cable pairs between the repeater sites are used to
transmit the power needed to operate the repeaters.
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Figure 7.4
Random pulse-
amplitude-
modulated
signal and its
generation from
a PAM impulse.

+ Adequate timing content. It should be possible to extract timing or clock information from
the signal.

« Transparency. It should be possible to correctly transmit a digital signal regardless of the
pattern of 1s and 0s. We saw earlier that a long string of 0s could cause problems in timing
extraction for the on-off and bipolar cases. A code is transparent if the data are so coded that
for every possible sequence of data, the coded signal is received faithfully.

7.2.1 PSD of Various Line Codes

In Example 3.19 we discussed a procedure for finding the PSD of a polar pulse train. We shall
use a similar procedure to find a general expression for PSD of the baseband modulation (line
coding) output signals as shown in Fig. 7.1. In particular, we directly apply the relationship
between the PSD and the autocorrelation function of the baseband modulation signal given in
Section 3.8 [Eq. (3.85)].

In the following discussion, we consider a generic pulse p(¢) whose corresponding Fourier
transform is P(f). We can denote the line code symbol at time k as a;. When the transmission
rate is R, = 1/T}, pulses per second, the line code generates a pulse train constructed from the
basic pulse p(z) with amplitude a; starting at time ¢ = kT; in other words, the kth symbol is
transmitted as a;p(t —kT}). Figure 7.4a provides an illustration of a special pulse p(t), whereas
Fig. 7.4b shows the corresponding pulse train generated by the line coder at baseband. As shown
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inFig.7.4b, counting a succession of symbol transmissions T second apart, the baseband signal
is a pulse train of the form

¥y =Y aplt — kTp) (1.1)

Note that the line coder determines the symbol {a;} as the amplitude of the pulse p(t — kT}).

The values g; are random and depend on the line coder input and the line code itself;
y(2) is a pulse-amplitude-modulated (PAM) signal. The on-off, polar, and bipolar line codes
are all special cases of this pulse train y(z), where a; takes on values 0, 1, or —1 randomly,
subject to some constraints. We can, therefore, analyze many line codes according to the PSD
of y(¢). Unfortunately, the PSD of y(¢) depends on both a; and p(z). If the pulse shape p()
changes, we may have to derive the PSD all over again. This difficulty can be overcome by the
simple artifice of selecting a PAM signal x(¢) that uses a unit impulse for the basic pulse p(¢)
(Fig. 7.4c). The impulses are at the intervals of T} and the strength (area) of the kth impulse
is ag. If x(¢) is applied to the input of a filter that has a unit impulse response h(t) = p(t)
(Fig. 7.4d), the output will be the pulse train y(¢) in Fig. 7.4b. Also, applying Eq. (3.92), the
PSD of y(?) is

Se(F) = IPEOIPS: D)

This relationship allows us to determine Sy (f), the PSD of a line code corresponding to any
pulse shape p(z), once we know Sy (f). This approach is attractive because of its generality.

We now need to derive R, (7), the time autocorrelation function of the impulse train x(z).
This can be conveniently done by considering the impulses as a limiting form of the rectangular
pulses, as shown in Fig. 7.5a. Each pulse has a width € — 0, and the kth pulse height

a
p=— =™
€
This way, we guarantee that the strength of the kth impulse is gy, or
chy = ag

If we designate the corresponding rectangular pulse train by x(¢), then by definition [Eq. (3.82)
in Sec. 3.8] '

T/2

Ry(t) = Tli)moo % [—T/z x()x(t — 1) dt (7.2

Because R;(7) is an even function of t [Eq. (3.83)], we need to consider only positive . To
begin with, consider the case of T < €. In this case the integral in Eq. (7.2) is the area under the
signal x(¢) multiplied by x(¢) delayed by t(r < €). As seen from Fig. 7.5b, the area associated
with the kth pulse is hi(e — 1), and

_ - 2 € —T

- Tlgréo Zk: G ( €2 )
Ry T

=Y i1_Z 7.3
cfy (1 E) (7.32)
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Figure 7.5
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Ry = lim — Z aj (7.3b)
During the averaging interval T (T — 00), there are N pulses (N — 00), where
Y (7.4)

Ty
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and from Eq. (7.3b)

1
= lim — 2 :
Ro= lim — Zk: a? (1.5)

Observe that the summation is over N pulses. Hence, Ry is the time average of the square of
the pulse amplitudes a;. Using our time average notation, we can express R as

“ean

. 1 2
Ry = Nll)moo N ;ak = a,% (7.6)

We also know that R;(7) is an even function of 7 [see Eq. (3.83)]. Hence, Eq. (7.3) can be
expressed as

Re(ry = o ( |T|>
(== (1-™ 7] < e 17)

€Ty €

This is a triangular pulse of height Ry/eT}, and width 2¢ centered at t = 0 (Fig. 7.5d).
This is expected because as T increases beyond €, there is no overlap between the delayed
signal x(t — 7) and x(¢); hence, R;(t) = 0, as seen from Fig. 7.5d. But as we increase 7
further, we find that the kth pulse of x(¢ — t) will start overlapping the (k + 1)th pulse of x(¢)
as t approaches T}, (Fig. 7.5c). Repeating the earlier argument, we see that R;(t) will have
another triangular pulse of width 2¢ centered at T = T}, and of height R; /€T}, where

Ty
R Tleoc T ;akak+|

1
lim — (%4
Naoo N g kChk+1

= dplg+1

Observe that R; is obtained by multiplying every pulse strength (a;) by the strength of its
immediate neighbor (ax41), adding all these products, and then dividing by the total number
of pulses. This is clearly the time average (mean) of the product ai ay 1 and is, in our notation,

arap41. A similar thing happens around t = 2Tp, 37T}, .... Hence, R;(t) consists of a
sequence of triangular pulses of width 2¢ centered at t = 0, £T}, £2T,, .... The height of

the pulses centered at +nT}, is R, /€Ty, where

Ty
Rk, = lim ?;ak“kﬂu

T—oc

1
lim — are
Nesoo N ; ik +n

= piyy

R, is essentially the discrete autocorrelation function of the line code symbols {ay}.
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To find R, (t), welete — 0inR3(7). As e — 0, the width of each triangular pulse— 0
and the height— oo in such a way that the area is still finite. Thus, in the limit as € — 0, the
triangular pulses become impulses. For the nth pulse centered at nT}, the height is R,,/€ T}, and
the area is R,,/Tp. Hence, (Fig. 7.5¢)

R (T) = Z R, 8(1 — nTy) (7.8)

n=—"1x

The PSD S, (f) is the Fourier transform of R (7). Therefore,

[ oy
_ — 2w ff,
S = T E R,e ¢ (7.9)
Recognizing that R_, = R,, [because R(7) is an even function of t], we have

Sx(f) = |:R0 +2 ZR,, cos nanTb:| (7.10)

n=1

The input x(z) to the filter with impulse response A(t) = p(¢) results in the output y(z), as
shown in Fig. 7.4d. If p(¢) <= P(f), the transfer function of the filter is H(f) = P(f), and
according to Eq. (3.91),

Se{f) = IP(IPS:F) (7.11a)
_ PR sty
= L;xﬁi' ’] (7.11b)
= 'P%}'_ [Rg +2§R,, cos HZIrfTb:| (7.11¢c)

Thus, the PSD of a line code is fully characterized by its R, and the pulse-shaping selection
P(f). We shall now use this general result to find the PSDs of various specific line codes by
first determining the symbol autocorrelation R,,.

7.2.2 Polar Signaling

In polar signaling, 1 is transmitted by a pulse p(¢) and 0 is represented by —p(t). In this case,
ay is equally likely to be 1 or —1, and a,% is always 1. Hence,

Rp = lim —Zak

N—oo N

There are N pulses and a,% = 1 for each one, and the summation on the right-hand side above
is N. Hence,

. 1
Ry = Nh_)moo N(N) =1 (7.12a)
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Moreover, both a; and a4 are either 1 or —1. Hence, aray41 is either 1 or —1. Because the
pulse amplitude a; is equally likely to be 1 and —1 on the average, out of N terms the product

aray+1 is equal to 1 for N /2 terms and is equal to —1 for the remaining N /2 terms. Therefore,

Possible Values of ayay 41

T ag
. -1 1 . 1[N N
-1 1 -1 -
+1 -1 1

Arguing this way, we see that the product ayay+, is also equally likely to be 1 or —1. Hence,

R,=0 n>1 (7.12¢)
Therefore from Eq. (7.11c)
POI?
S = R
y(f) T, o
P(F)I2
_ PO (7.13)
Ty

For the sake of comparison of various schemes, we shall consider a specific pulse shape.
Let p(t) be a rectangular pulse of width 7} /2 (half-width rectangular pulse), that is,

t 2t
ro=n(siz)-n(3)

and

P(f) = % sinc ﬂ—szb (7.14)
Therefore

Sy(f) = % sinc? (”Tﬂ”> (7.15)

Figure 7.6 shows the spectrum Sy (f). It is clear that the polar signal has most of its power con-
centrated in lower frequencies. Theoretically, the spectrum becomes very small as frequency
increases but never becomes totally zero above a certain frequency. To define a meaningful mea-
sure of bandwidth, we consider its first non-dc null frequency to be its essential bandwidth.*

From polar signal spectrum, the essential bandwidth of the signal is seen to be 2R, Hz
(where R;, is the clock frequency). This is 4 times the theoretical bandwidth (Nyquist band-
width) required to transmit R, pulses per second. Increasing the pulse width reduces the
bandwidth (expansion in the time domain results in compression in the frequency domain).

* Strictly speaking, the location of the first null frequency above dc is not always a good measure of signal
bandwidth. Whether the first non-dc null is a meaningful bandwidth depends on the amount of signal power
contained in the main (or first) lobe of the PSD, as we will see later in the PSD comparison of several line codes
(Fig. 7.9). In most practical cases, this approximation is acceptable for commonly used line codes and pulse shapes.
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Figure 7.6
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For a full-width pulse* (maximum possible pulse width), the essential bandwidth is half, that
is R, Hz. This is still twice the theoretical bandwidth. Thus, polar signaling is not the most
bandwidth efficient.

Second, polar signaling has no capability for error detection or error correction. A third
disadvantage of polar signaling is that ithas nonzero PSD atdc (f = 0). This will rule out the use
of ac coupling during transmission. The ac mode of coupling, which permits transformers and
blocking capacitors to aid in impedance matching and bias removal, and allows dc powering
of the line repeaters over the cable pairs, is very important in practice. Later, we shall show
how a PSD of a line code may be forced to zero at dc by properly shaping p(¢).

On the positive side, polar signaling is the most efficient scheme from the power require-
ment viewpoint. For a given power, it can be shown that the error detection probability for a
polar scheme is the lowest among all signaling techniques (see Chapter 10). Polar signaling is
also transparent because there is always some pulse (positive or negative) regardless of the bit
sequence. There is no discrete clock frequency component in the spectrum of the polar signal.
Rectification of the RZ polar signal, however, yields a periodic signal of clock frequency and
can readily be used to extract timing.

7.2.3 Constructing a DC Null in PSD by Pulse Shaping

Because Sy (f), the PSD of a line code contains a factor [P (f) 2, we can force the PSD to have
a dc null by selecting a pulse p(¢) such that P(f) is zero at dc (f = 0). Because

P(f) = / " (e gy

* Scheme using the full-width pulse p(t) = I1(¢/T}) is an example of a non-return-to-zero (NRZ) scheme. The
half-width pulse scheme, on the other hand, is an example of a return-to-zero (RZ) scheme.
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we have
P©O) = f " pydr

Hence, if the area under p(#) is made zero, P(0) is zero, and we have a dc null in the PSD. For
a rectangular pulse, one possible shape of p(f) to accomplish this is shown in Fig. 7.7a. When
we use this pulse with polar line coding, the resulting signal is known as Manchester code, or
split-phase (also called twinned-binary), signal. The reader can use Eq. (7.13), to show that
for this pulse, the PSD of the Manchester line code has a dc null (see Prob. 7.2-2).

7.2.4 On-Off Signaling

In on-off signaling, a 1 is transmitted by a pulse p(¢) and a 0 is transmitted by no pulse. Hence,
a pulse strength gy is equally likely to be 1 or 0. Out of N pulses in the interval of T seconds,
ay is 1 for N /2 pulses and is O for the remaining N /2 pulses on the average. Hence,

. 1[N _, N 5 1
Ro= lim —|—=(1 —(0)° | == 7.16
0 N;mooN[z()+2()} : (7.16)
To compute R, we need to consider the product aag,. Since a; and a4, are equally likely
to be 1 or 0, the product a;ay, is equally likely tobe 1 x 1, 1 x 0, 0 x 1 or 0 x O, thatis,
1, 0, 0, 0. Therefore on the average, the product aay+, is equal to 1 for N /4 terms and 0 for

3N /4 terms and

R,= 1 ! N(1)+3N(O) = ! >1 (7.17)
n=oN |7 s | Ty "= '
Therefore, [Eq. (7.9)]
1 =
S.f) = o+ ¢ 2 fs (7.18a)
4 2T, 4T n;w

RE=1)

1 -
- g e —ir2z Ty 7.18b
47Ty, 47y ¢ ( )

MN==00
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Equation (7.18b) is obtained from Eq. (7.18a) by splitting the term 1/27}, corresponding to
Ry into two: 1/4T}, outside the summation and 1/4T), inside the summation (corresponding to
n = 0). We now use the formula (see the footnote for a proof*)

(0.0) l [o¢]
3 eIl = s(r—-2
Ty Ty

n=—0o0 n=-—00

Substitution of this result in Eq. (7.18b) yields

n
S(f) = 4Tb 4T2 Z (—7) (7.192)

—00

and the desired PSD of the on-off waveform y(z) is [from Eq. (7.11a)]

2
Sy{f) = ]P(’r)' [ — Z (_ﬁ)] (7.19b)

H_‘—OC

Notethatunlike the continuous PSD spectrum of polar signaling, the on-off PSD of Eq. (7.19b)
also has an additional discrete part. This discrete part may be nullified if the pulse shape is
chosen such that

P(i):@ n=0, 41, ...
Ty

For the example case of a half-width rectangular pulse [see Eq. (7.14)],

S,(f) = s1 c ( J;Tb) [1+—b 3 5( —%)] (7.20)

The resulting PSD is shown in Fig. 7.8. The continuous component of the spectrum is
(T}/16) sinc? (mfTp/2). This is identical (except for a scaling factor) to the spectrum of the
polar signal [Eq. (7.15)]. The discrete component is represented by the product of an impulse
train with the continuous component (73/16) sinc? (fTp/2). Hence this component appears
as periodic impulses with the continuous component as the envelope. Moreover, the impulses
repeat at the clock frequency R, = 1/T}, because its fundamental frequency is 27 /T}, rad/s, or
1/T, Hz. This is a logical result because as Fig. 7.3 shows, an on-off signal can be expressed
as a sum of a polar and a periodic component. The polar component y; (¢) is exactly half

* The impulse train in Fig. 3.23a of Example 3.11 is 87, (1) = >0
this impulse train as found in Eq. (2.67) is

_oo 8(t — nT},). Moreover, the Fourier series for

00
1
in2m Ryt s
E 8(t —nTp) = — E e b Ry = 7

n=—00 n_—oo

We take the Fourier transform of both sides of this equation, and use the fact that §(+ — nT}) < e~ /m2nfTh and
eM2TRt s §(f — nRy). This yields

. —jn2mrfT, 1 - n
Y g Lolg)

n=—00 n=-—00
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the polar signal discussed earlier. Hence, the PSD of this component is one-fourth the PSD in
Eq. (7.15). The periodic component is of clock frequency Ry; it consists of discrete components
of frequency R, and its harmonics.

On-off signaling has very little to brag about. For a given transmitted power, it is less
immune to noise interference than the polar scheme, which uses a positive pulse for 1 and a
negative pulse for 0. This is because the noise immunity depends on the difference of ampli-
tudes representing 1 and 0. Hence, for the same immunity, if on-off signaling uses pulses of
amplitudes 2 and 0, polar signaling need use only pulses of amplitudes 1 and —1. It is simple
to show that on-off signaling requires twice as much power as polar signaling. If a pulse of
amplitude 1 or —1 has energy E, then the pulse of amplitude 2 has energy (2)°E = 4E. Because
1/T) digits are transmitted per second, polar signal power is (E)(1/Tp) = E/Tp. For the on-off
case, on the other hand, each pulse energy is 4E, though on average such a pulse is transmitted
over half of the time while nothing is transmitted over the other half. Hence, the average signal
power of on-off is

1 (4E1+0 1)_2E
Ty 2 2] T,

which is twice that required for the polar signal. Moreover, unlike the polar case, on-off
signaling is not transparent. A long string of 0s (or offs) causes the absence of a signal and
can lead to errors in timing extraction. In addition, all the disadvantages of polar signaling,
(e.g., excessive transmission bandwidth, nonzero power spectrum at dc, no error detection (or
correction) capability are also present in on-off signaling.

7.2.5 Bipolar Signaling

The signaling scheme used in PCM for telephone networks is called bipolar (pseudoternary
or alternate mark inverted). A 0 is transmitted by no pulse, and a 1 is transmitted by a pulse
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p(t) or —p(t), depending on whether the previous 1 was transmitted by —p(¢) or p(¢). With
consecutive pulses alternating, we can avoid dc wander and thus cause a dc null in the PSD.
Bipolar signaling actually uses three symbols |p(#), 0, and —p(#)], and, hence, it is in reality
ternary rather than binary signaling.

To calculate the PSD, we have

ko= Jim v 3

On the average, half of the a;s are 0, and the remaining half are either 1 or —1, with az =1.
Therefore,

. 1[N » N 5
Bo= i v [E(i” 20 ] =2
To compute Ri, we consider the pulse strength product axay+1. There are four equally
likely sequences of two bits: 11, 10, 01, 00. Since bit 0 is encoded by no pulse (a; = 0),
the product agag4; is zero for the last three of these sequences. This means, on the average,
that 3N /4 combinations have ayai+; = 0 and only N /4 combinations have nonzero ayay +1.-
Because of the bipolar rule, the bit sequence 11 can be encoded only by two consecutive

pulses of opposite polarities. This means the product a;ax+1 = —1 for the N /4 combinations.
Therefore
. 1[N 3N 1
Ri=imy [z<‘” * T(O)] =1

To compute R, in a similar way, we need to observe the product ayay;. For this, we need
to consider all possible combinations of three bits in sequence. There are eight equally likely
combinations: 111, 101, 110, 100, 011, 010, 001, 000. The last six combinations have either
the first and/or the last bit 0. Hence ayay 4, = O for all these six combinations. The first two
combinations are the only ones that yield nonzero ayay+2. From the bipolar rule, the first
and the third pulses in the combination 111 are of the same polarity, yielding axax42 = 1.
But for 101, the first and the third pulse are of opposite polarity, yielding arax, = —1.
Thus, on the average, aiay+> = 1 for N/8 terms, —1 for N/8 terms and O for 3N /4 terms.
Hence,

1[N N 3N
= — =D+ =-D+—=0)|=
R, = h—I>nooN|:8()+8( )+ 8()]
In general

= lim —Za a
Niao N e

For n > 2, the product agay, canbe 1, —1, or 0. Moreover, an equal number of combinations
have values 1 and —1. This causes R, = 0. Thus

R, =0 n>1
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$,(5)

and [see Eq. (7.11¢)]

Syf) = PO 1 —cos 2fT) (721a)
2T,

= PO G2 (7 fT3) (721b)
T

Note that S, (f) = 0 for f = 0 (dc), regardless of P(f). Hence, the PSD has a dc null, which is
desirable for ac coupling. Moreover, sin? (7fT) = 0 atf = 1/T}, thatis, atf = 1/T, = R,
Hz. Thus, regardless of P(f), we are assured of the first non-dc null bandwidth R;, Hz. For the
half-width pulse

Sy(f) = % sinc? (”—J;T—”> sin? (fT}p) (7.22)

This is shown in Fig. 7.9. The essential bandwidth of the signal is R, (R, = 1/T}), which is
half that of polar using the same half-width pulse or on-off signaling and twice the theoretical
minimum bandwidth. Observe that we were able to obtain the bandwidth R} for polar (or
on-off) case for full-width pulse. For the bipolar case, the bandwidth is R, Hz whether the
pulse is half-width or full-width.

Bipolar signaling has several advantages: (1) its spectrum has a dc null; (2) its bandwidth is
not excessive; (3) it has single-error-detection capability. This is because even single detection
error will cause a violation of the alternating pulse rule, and this will be immediately detected.
If a bipolar signal is rectified, we get an on-off signal that has a discrete component at the clock
frequency. Among the disadvantages of a bipolar signal is the requirement for twice as much
power (3 dB) as a polar signal needs. This is because bipolar detection is essentially equivalent
to on-off signaling from the detection point of view. One distinguishes between +p(t) or —p(¢)
from O rather than between +p(¢).

Another disadvantage of bipolar signaling is that it is not transparent. In practice, various
substitution schemes are used to prevent long strings of logic zeros from allowing the extracted
clock signals to drift away. We shall now discuss two such schemes.
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Figure 7.10
(a) HDB3 signal
and (b) its PSD.
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High-Density Bipolar (HDB) Signaling

The HDB schemeis an ITU (formerly CCITT) standard. In this scheme the problem of nontrans-
parency in bipolar signaling is eliminated by adding pulses when the number of consecutive
0s exceeds N. Such a modified coding is designated as high-density bipolar coding (HDBN),
where N can take on any value 1, 2, 3, .. .. The most important of the HDB codes is HDB3
format, which has been adopted as an international standard.

The basic idea of the HDBN code is that when a run of N + 1 zeros occurs, this group of
zeros is replaced by one of the special N + 1 binary digit sequences. To increase the timing
content of the signal, the sequences are chosen to include some binary 1s. The 1s included
deliberately violate the bipolar rule for easy identification of the substituted sequence. In HDB3
coding, for example, the special sequences used are 000V and BOOV where B=1 that conforms
to the bipolar rule and V=1 that violates the bipolar rule. The choice of sequence 000V or
BOOV is made in such a way that consecutive V pulses alternate signs to avoid dc wander
and to maintain the dc null in the PSD. This requires that the sequence BOOV be used when
there are an even number of 1s following the last special sequence and the sequence 000V be
used when there are an odd number of 1s following the last sequence. Figure 7.10a shows an
example of this coding. Note that in the sequence BOOV, both B and V are encoded by the
same pulse. The decoder has to check two things—the bipolar violations and the number of 0s
preceding each violation to determine if the previous 1 is also a substitution.

Despite deliberate bipolar violations, HDB signaling retains error detecting capability.
Any single error will insert a spurious bipolar violation (or will delete one of the deliberate
violations). This will become apparent when, at the next violation, the alternation of viola-
tions does not appear. This also shows that deliberate violations can be detected despite single
errors. Figure 7.10b shows the PSD of HDB3 as well as that of a bipolar signal to facilitate
comparison.’
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Binary with N Zero Substitution (BNZS) Signaling
A class of line codes similar to HDBN is the binary with N zero substitution, or BNZS
code, where if N zeros occur in succession, they are replaced, by one of the two special
sequences containing some 1s to increase timing content. There are deliberate bipolar violations
just as in HDBN. Binary with eight-zero substitution (B8ZS) is used in DS1 signals of the
digital telephone hierarchy in Chapter 6. It replaces any string of eight zeros in length with a
sequence of ones and zeros containing two bipolar violations. Such a sequence is unlikely to be
counterfeited by errors, and any such sequence received by a digital channel bank is replaced
by a string of eight logic zeros prior to decoding. The sequence used as a replacement consists
of the pattern 000VBOVB. Similarly, in B6ZS code used in DS2 signals, a string of six zeros
is replaced with OVBOVB, and DS3 signal features a three-zero B3ZS code. The B3ZS code
is slightly more complex than the others in that either BOV or 00V is used, the choice being
made so that the number of B pulses between consecutive V pulses is odd. These BNZS codes
with N = 3, 6, or 8 involve bipolar violations and must therefore be carefully replaced by their
equivalent zero strings at the receiver.

There are many other transmission (line) codes, too numerous to list here. A list of codes
and appropriate references can be found in Bylanski and Ingram.>

7.3 PULSE SHAPING

The PSD S, (f) of a digital signal y(¢) can be controlled by a choice of line code or by P(f),
the pulse shape. In the last section we discussed how the PSD is controlled by a line code. In
this section we examine how S, (f) is influenced by the pulse shape p(¢), and we learn how to
shape a pulse p(?) to achieve a desired Sy (). The PSD S, (f) is strongly and directly influenced
by the pulse shape p(t) because S, (f) contains the term |P(f )|2. Thus, in comparison to the
nature of the line code, the pulse shape is a more direct and potent factor in terms of shaping
the PSD Sy (f).

7.3.1 Intersymbol Interferences (ISI) and Effect

In the last section, we used a simple half-width rectangular pulse p(#) for the sake of illustra-
tion. Strictly speaking, in this case the bandwidth of Sy(f) is infinite, since P(f) has infinite
bandwidth. But we found that the essential bandwidth of Sy (f) was finite. For example, most of
the power of a bipolar signal is contained within the essential band 0 to R, Hz. Note, however,
that the PSD is small but is still nonzero in the range f > Rj, Hz. Therefore, when such a
signal is transmitted over a channel of bandwidth R, Hz, a significant portion of its spectrum
is transmitted, but a small portion of the spectrum is suppressed. In Sec. 3.5 and Sec. 3.6, we
saw how such a spectral distortion tends to spread the pulse (dispersion). Spreading of a pulse
beyond its allotted time interval T}, will cause it to interfere with neighboring pulses. This is
known as intersymbol interference or ISI.

ISI is not noise. ISI is caused by nonideal channels that are not distortionless over the
entire signal bandwidth. In the case of half-width rectangular pulse, the signal bandwidth is,
strictly speaking, infinity. ISI, as a manifestation of channel distortion, can cause errors in
pulse detection if it is large enough.

To resolve the difficulty of ISI, let us review briefly our problem. We need to transmit a
pulse every T} interval, the kth pulse being a;p(t —kT}). The channel has a finite bandwidth, and
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Figure 7.11
The minimum
bandwidth pulse
that satisfies
Nyquist's first
criterion and its
spectrum.

we are required to detect the pulse amplitude a; correctly (i.e., without ISI). In our discussion
so far, we have considered time-limited pulses. Since such pulses cannot be band-limited, part
of their spectra is suppressed by a band-limited channel. This causes pulse distortion (spreading
out) and, consequently, ISI. We can try to resolve this difficulty by using pulses that are band-
limited to begin with so that they can be transmitted intact over a band-limited channel. But
band-limited pulses cannot be time-limited. Obviously, various pulses will overlap and cause
ISI. Thus, whether we begin with time-limited pulses or band-limited pulses, it appears that ISI
cannot be avoided. It is inherent in the finite transmission bandwidth. Fortunately, there is an
escape from this blind alley. Pulse amplitudes can be detected correctly despite pulse spreading
(or overlapping), if there is no ISI at the decision-making instants. This can be accomplished
by a properly shaped band-limited pulse. To eliminate ISI, Nyquist proposed three different
criteria for pulse shaping,* where the pulses are allowed to overlap. Yet, they are shaped to
cause zero (or controlled) interference with all the other pulses at the decision-making instants.
Thus, by limiting the noninterference requirement only at the decision-making instants, we
eliminate the need for the pulse to be totally nonoverlapping. We shall consider only the first
two criteria. The third is much less useful than the first two criteria,> and hence, will not be
considered here.

7.3.2 Nyquist's First Criterion for Zero IS

In the first method, Nyquist achieves zero ISI by choosing a pulse shape that has a nonzero
amplitude at its center (say ¢t = 0) and zero amplitudes at t = £nT}, (n = 1, 2, 3,...), where
T} is the separation between successive transmitted pulses (Fig. 7.11a). Thus,

1 t=0

p(t) = 0 = aTy (Tb: ,1..) (7.23)
Ry

A pulse satisfying this criterion causes zero ISI at all the remaining pulse centers, or signaling
instants as shown in Fig. 7.11a, where we show several successive pulses (dashed) centered at
t =0, Ty, 2Ty, 3Ty, ... (Tp, = 1/R}). For the sake of convenience, we have shown all pulses

R, R, R, Ry Ry Ry
(b) (©
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to be positive.* It is clear from this figure that the samples at ¢t = 0, T}, 2T}, 3T}, ... consist
of the amplitude of only one pulse (centered at the sampling instant) with no interference from
the remaining pulses.

Now transmission of Ry, bit/s requires a theoretical minimum bandwidth R, /2 Hz. It would
be nice if a pulse satisfying Nyquist’s criterion had this minimum bandwidth R /2 Hz. Can we
find such a pulse p(#)? We have already solved this problem (Example 6.1 with B = R;/2),
where we showed that there exists one (and only one) pulse which meets Nyquist’s criterion
(7.23) and has a bandwidth R,/2 Hz. This pulse, p(#) = sinc (wRp?), (Fig. 7.11b) has the

property

1 t=0
i Rpt) = 1 7.24
sinc (T Rpt) g (Tb _ _) (7.24a)
Ry
Moreover, the Fourier transform of this pulse is
P{f) = Ll'[ (L) (7.24b)
Ry \Rp '

which has a bandwidth R, /2 Hz as seen from Fig. 7.11c. We can use this pulse to transmit at
arate of R}, pulses per second without ISI, over a bandwidth only R}, /2.

This scheme shows that we can attain the theoretical limit of performance by using a
sinc pulse. Unfortunately, this pulse is impractical because it starts at —oo. We will have to
wait an infinite time to generate it. Any attempt to truncate it would increase its bandwidth
beyond R, /2 Hz. But even if this pulse were realizable, it would have an undesirable feature:
namely, it decays too slowly at a rate 1/¢. This causes some serious practical problems. For
instance, if the nominal data rate of R;, bit/s required for this scheme deviates a little, the pulse
amplitudes will not vanish at the other pulse centers. Because the pulses decay only as 1/z,
the cumulative interference at any pulse center from all the remaining pulses is of the form
> "(1/n).Itis well known that the infinite series of this form does not converge and can add up
to a very large value. A similar result occurs if everything is perfect at the transmitter but the
sampling rate at the receiver deviates from the rate of R, Hz. Again, the same thing happens if
the sampling instants deviate a little because of pulse time jitter, which is inevitable even in the
most sophisticated systems. This scheme therefore fails unless everything is perfect, which is
a practical impossibility. And all this is because sinc (7w Rpt) decays too slowly (as 1/¢). The
solution is to find a pulse p(¢) that satisfies Eq. (7.23) but decays faster than 1/¢. Nyquist has
shown that such a pulse requires a bandwidth kR /2, with 1 <k < 2.

This can be proved as follows. Let p(t) <= P(f), where the bandwidth of P(f) is in the
range (Rp/2, Rp) (Fig. 7.12a). The desired pulse p(¢) satisfies Eq. (7.23). If we sample p(¢)
every T}, seconds by multiplying p(¢) by 67, (¢), (animpulse train), then because of the property
(7.23), all the samples, except the one at the origin, are zero. Thus, the sampled signal p(t) is

p(t) = p(t)d1,(2) = 8(2) (7.25)

Following the analysis of Eq. (6.4) in Chapter 6, we know that the spectrum of a sampled signal
p(#) is (1/T, times) the spectrum of p(¢) repeating periodically at intervals of the sampling

* Actually, a pulse corresponding to 0 would be negative. But considering all positive pulses does not affect our
reasoning. Showing negative pulses would make the figure needlessly confusing.
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Figure 7.12
Derivation of the
zero ISI Nyquist
criterion pulse.
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frequency Rj. Therefore, the Fourier transform of both sides of Eq. (7.25) yields

I <= I
— P(f —nRy) =1  where Ry = — (7.26)
Ty e o Ty
or
X
Z P(f —nRy) =T (7.27)
n=-—00

Thus, the sum of the spectra formed by repeating P(f) spaced R, apart is a constant T}, as
shown in Fig. 7.12b.*

Consider the spectrum in Fig. 7.12b over the range 0 < f < Rj,. Over this range only two
terms P(f) and P(f — Rp) in the summation in Eq. (7.27) are involved. Hence

PE)+P(f —Ry) =T, 0<f <Ry
Letting x = f — R, /2, we have
P(x+0.5Rp) +P(x—0.5Ry) =T, |x| < 0.5Rp (7.28a)

or, alternatively,
R R
P (x + ?*’) +P (x _ 75’) =T, x| < 0.5R, (7.28b)
Use of the conjugate symmetry property [Eq. (3.11)] on Eq. (7.28) yields

R R
P (Tb +x) s (; - x) -7, x| < 0.5R, (7.29)

* Observe thatif R, > 2B, where B is the bandwidth (in hertz) of P(f), the repetitions of P(f) are nonoverlapping,
and condition (7.27) cannot be satisfied. For R;, = 2B, the condition is satisfied only for the ideal low-pass
P(f)[p(t) = sinc (wRpt)], which is not realizable. Hence, we must have B > Ry /2.
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[P(f)]

If we choose P(f) to be real-valued and positive then only |P(f)| needs to satisfy Eq. (7.29).
Because |P(f)] is real, Eq. (7.29) implies

R ' R
‘p (; +x)‘ + ‘p (7*’ - x)‘ =7 x| < 0.5R, (7.30)

i

Hence, |P(f)| should be of the form shown in Fig. 7.13. This curve has anodd symmetry about
the set of axes intersecting at point « [the point on |P(f)| curve at f = Rj/2]. Note that this
requires that

[P(0.5Rp)| = 0.5|P(0)]
The bandwidth, in hertz, of P(f) is 0.5R;, + f;, where f; is the bandwidth in excess of
the minimum bandwidth R, /2. Let r be the ratio of the excess bandwidth f; to the theoretical

minimum bandwidth Ry, /2:

excess bandwidth

r= . T .
theoretical minimum bandwidth

k&
~ 0.5R,,

= 24T, (7.31)

Observe that because f; cannot be larger than R /2,
0=r=1 (7.32)

In terms of frequency f, the theoretical minimum bandwidth is Rj,/2 Hz, and the excess
bandwidth is f;, = rR;,/2 Hz. Therefore, the bandwidth of P(f) is

R, 1Ry (I 4+ 7Ry
Br=-24- % _» " 790 7.33
r=5+1- 5 (7.33)
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Figure 7.14
Pulses satisfying
Nyquist's first
criterion: solid
curve, ideal
fe=0(@r=0);
light dashed
curve,
x=Rp/4

(r = 0.5); heavy
dashed curve,
fx=Rp/2
(r=1).
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The constant r is called the roll-off factor and is also expressed in terms of percent. For
example, if P(f) is a Nyquist first criterion spectrum with a bandwidth that is 50% higher than
the theoretical minimum, its roll-off factor »r = 0.5 or 50%.

A filter having an amplitude response with the same characteristics is required in the
vestigial sideband modulation discussed in Sec. 4.5 [Eq. (4.26)]. For this reason, we shall
refer to the spectrum P(f) in Eqs. (7.29) and (7.30) as a vestigial spectrum. The pulse
p@) in Eq. (7.23) has zero ISI at the centers of all other pulses transmitted at a rate of
Ry, pulses per second. A pulse p(¢) that causes zero ISI at the centers of all the remaining
pulses (or signaling instants) is the Nyquist first criterion pulse. We have shown that a pulse
with a vestigial spectrum [Eq. (7.29) or Eq. (7.30)] satisfies the Nyquist’s first criterion for
zero ISL.

Because 0 < r < 1, the bandwidth of P(f) is restricted to the range R, /2 to R, Hz. The
pulse p(¢) can be generated as a unit impulse response of a filter with transfer function P(f).
But because P(f) = 0 over a frequency band, it violates the Paley-Wiener criterion and is
therefore unrealizable. However, the vestigial roll-off characteristic is gradual, and it can be
more closely approximated by a practical filter. One family of spectra that satisfies Nyquist’s
first criterion is

Rp
1’ Ifi = ? _fo
1 , f—Ry/2 Rot
P() =15 [1 —sin 7 (—%L/)] ‘f - Ebl <fe (7.34)
R
0, 1> 5+
Figure 7.14a shows three curves from this family, corresponding to f,=0 (r = 0),

fx=Rp/4 (r=0.5) and fy =R,/2 (r=1). The respective impulse responses are shown in
Fig. 7.14b. It can be seen that increasing f; (or r) improves p(¢); that is, more gradual cutoff
reduces the oscillatory nature of p(#) and causes it to decay more rapidly in time domain. For
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the case of the maximum value of f, = R, /2 (r = 1), Eq. (7.34) reduces to

P(f) = %(1 + cos wfTp) I (2%,) (7.35a)
oo (T o (1T
= cos ( 2 )l’l( > ) (7.35b)

This characteristic of Eq. (7.34) is known in the literature as the raised-cosine characteristic,
because it represents a cosine raised by its peak amplitude. Eq. (7.35) is also known as the
full-cosine roll-off characteristic. The inverse Fourier transform of this spectrum is readily
found as (see Prob 7.3-8)

cos TRyt .
ty = Rp————— sinc (w Ryt 7.36
PO = Rey—pp z sine (7R (7.36)

This pulse is shown in Fig. 7.14b (r = 1). We can make several important observations about
the raised-cosine pulse. First, the bandwidth of this pulse is R, Hz and has a value R att = 0
and is zero not only at all the remaining signaling instants but also at points midway between
all the signaling instants. Second, it decays rapidly, as 1/¢3. As a result, the raised-cosine pulse
is relatively insensitive to deviations of Rp, sampling rate, timing jitter, and so on. Furthermore,
the pulse-generating filter with transfer function P(f) [Eq. (7.35b)] is closely realizable. The
phase characteristic that goes along with this filter is very nearly linear, so that no additional
phase equalization is needed.

It should be remembered that it is the pulses received at the detector input that should
have the form for zero ISI. In practice, because the channel is not ideal (distortionless), the
transmitted pulses should be shaped so that after passing through the channel with transfer
function H.(f), they will be received with the proper shape (such as raised-cosine pulses) at
the receiver. Hence, the transmitted pulse p;(¢) should satisfy

PiYHAf) = F(f)

where P(f) has the vestigial spectrum in Eq. (7.30). For convenience, the transfer function
H.(f) as a channel may also include a receiver filter designed to reject interference and other
out-of-band noises.

Example 7.1

Determine the pulse transmission rate in terms of the transmission bandwidth By and the
roll-off factor r. Assume a scheme using Nyquist’s first criterion.

From Egq. (7.33)

_ 2
14

Ry Br

Because 0 < r < 1, the pulse transmission rate varies from 2B7 to Br, depending on the
choice of r. A smaller r gives a higher signaling rate. But the pulse p(¢) decays slowly,
creating the same problems as those discussed for the sinc pulse. For the raised-cosine
pulse » = 1 and R, = Br, we achieve half the theoretical maximum rate. But the pulse
decays faster as 1/¢3 and is less vulnerable to ISI.
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7.3.3 Controlled ISI or Partial Response Signaling

The Nyquist criterion pulse requires in a bandwidth somewhat larger than the theoretical
minimum. If we wish to further reduce the pulse bandwidth, we must find a way to widen the
pulse p(#) (the wider the pulse, the narrower the bandwidth). Widening the pulse may result in
interference (ISI) with the neighboring pulses. However, in the binary transmission with just
two possible symbols, a known and controlled amount of ISI may be possible to remove or
compensate because there are only a few possible interference patterns.

Consider a pulse specified by (see Fig. 7.15):

1 n=0,1
Tp) = ’ 7.37
pnTy) {0 for all other n ( )

This leads to a known and controlled ISI from the kth pulse to the very next transmitted
pulse. We use polar signaling by means of this pulse. Thus, 1 is transmitted by p(#) and 0 is
transmitted by using the pulse —p (). The received signal is sampled at ¢ = nT}, and the pulse
p(t) has zero value at all n except for n = 0 and 1, where its value is 1 (Fig. 7.15). Clearly,
such a pulse causes zero ISI with all the pulses except the succeeding pulse. Therefore, we
need to worry about the ISI with the succeeding pulse only. Consider two such successive
pulses located at 0 and T, respectively. If both pulses were positive, the sample value of the
resulting signal at ¢ = T}, would be 2. If the both pulses were negative, the sample value would
be —2. But if the two pulses were of opposite polarity, the sample value would be 0. With
only these three possible values, the signal sample clearly allows us to make correct decision
at the sampling instants. The decision rule is as follows. If the sample value is positive, the
present bit is 1 and the previous bit is also 1. If the sample value is negative, the present
bit is 0 and the previous bit is also 0. If the sample value is zero, the present bit is the
opposite of the previous bit. Knowledge of the previous bit then allows the determination of the
present bit.

Table 7.1 shows a transmitted bit sequence, the sample values of the received signal x(f)
(assuming no errors causes by channel noise), and the detector decision. This example also
indicates the error detecting property of this scheme. Examination of samples of the waveform
¥(¢) in Table 7.1 shows that there are always an even number of zero-valued samples between
two full-valued samples of the same polarity and an odd number of zero-valued samples
between two full-valued samples of opposite polarity. Thus, the first sample value of x(¢) is 2,
and the next full-valued sample (the fourth sample) is 2. Between these full-valued samples
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TABLE 7.1
Transmitted Bits and the Received Samples in Controlled ISI Signaling

Information sequence 1 1 0 1 1 0 0 0 1 0 1 | 1
Samples y(kTp) 1 2 0 0 2 o -2 -2 0 0 o0 2 2
Detected sequence 1 1 0 1 1 0 0 0 1 0 1 1 1

of the same polarity, there are an even number (i.e., 2) of zero-valued samples. If one of the
sample values is detected wrong, this rule is violated, and the error is detected.

The pulse p(t) goes to zero at t = —T}, and 2T}, resulting in the pulse width (of the
primary lobe) 50% higher than that of the first criterion pulse. This pulse broadening in the
time domain leads to reduction of its bandwidth. This is the second criterion proposed by
Nyquist. This scheme of controlled ISI is also known as correlative or partial-response
scheme. A pulse satisfying the second criterion in Eq. (7.37) is also known as the duobinary
pulse.

7.3.4 Example of a Duobinary Pulse

If we restrict the pulse bandwidth to R, /2, then following the procedure of Example 7.1, we
can show that (see Prob 7.3-9) only the following pulse p(#) meets the requirement in Eq. (7.37)
for the duobinary pulse:

_ sin (T Rpt)
p(t) = m (7.38)

The Fourier transform P(f) of the pulse p(¢) is given by (see Prob 7.3-9)

_ 2 o I\ -mrir
Pify= R cos (Rb) T (Rb) e b (7.39)

The pulse p(¢) and its amplitude spectrum |P(f)| are shown in Fig. 7.16.* This pulse transmits
binary data at a rate of R}, bit/s and has the theoretical minimum bandwidth R, /2 Hz. Equation
(7.38) shows that this pulse decays rapidly with time as 1/¢2. This pulse is not ideally realizable
because p(¢) is noncausal and has infinite duration [because P(f) is band-limited]. However,
it decays rapidly (as 1/¢2), and therefore can be closely approximated.

It may come as a surprise that we are able to achieve the theoretical rate using the duobinary
pulse. In fact, it is an illusion. The theoretical rate of transmission is 2 pieces of independent
information per second per hertz bandwidth. We have achieved this rate for binary information.
Here is the catch! A piece of binary information does not qualify as an independent piece of
information because it cannot take on an arbitrary value. It must be selected from a finite set.
The duobinary pulse would fail if the pulses were truly independent pieces of information,
that is, if the pulses were to have arbitrary amplitudes. The scheme works only because the
binary pulses take on finite known values, and hence, there are only a finite (known) number of
interference patterns between pulses, which permits correct determination of pulse amplitudes
despite interference.

* The phase spectrum is linear with 6,(f) = —mfT}.
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Figure 7.16
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7.3.5 Pulse Relationship between Zero-S|,
Duobinary, and Modified Duobinary

Now we can establish the simple relationship between a pulse p,(#) satisfying the first Nyquist
criterion (zero ISI) and a duobinary pulse p, () (with controlled IST). From Egs. (7.23) and
(7.37), it is clear that p,(kTp) and py,(kT}) only differ for k = 1. They have identical sample
values for all other integer k. Therefore, one can easily construct a pulse p,(¢) from p,(t) by

Pelt) = palt) + palt — Tp)

This addition is the “controlled” ISI or partial-response signaling that we deliberately intro-
duced to reduce the bandwidth requirement. To see what effect “‘duobinary” signaling has on
the spectral bandwidth, consider the relationship of the two pulses in the frequency domain:

Py(f) = Po(f)[1 + 7275
IPy(f)| = |Pa(f)|v/2(1 + cos (2mfT,)2 |cos (fT)|

(7.40a)

(7.40b)

We can see that partial-response signaling is actually forcing a frequency null at 27 f7T}, = 7 or,
equivalently f = 0.5/T}. Therefore, conceptually we can see how partial-response signaling
provides an additional opportunity to reshape the PSD or the transmission bandwidth. Indeed,
duobinary signaling, by forcing a frequency null at 0.5/7}, forces its essential bandwidth to
be at the minimum transmission bandwidth needed for a data rate of 1/7} (as discussed in
Sec. 6.1.3).
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In fact, many physical channels such as magnetic recording have a zero gain atdc. There-
fore, it makes no sense for the baseband signal to have any dc component in its PSD. Modified

partial-response signaling is often adopted to force a null at dc. One notable example is the
so-called modified duobinary signaling that requires

1 n=-1
peinlp) =1 -1 n=1 (7.41)
0 for all other integers n

A similar argument indicates that p.(¢) can be generated from any pulse p, (¢) satisfying the
first Nyquist criterion via

Pelty = pa(t + Tp) — palt — Tp)
Equivalently, in the frequency domain, the duobinary pulse is
Po(f) = 2Py (f ) sin 2rfTy)

which uses sin (27 fT}) to force a null at dc to comply with the physical channel constraint.

7.3.6 Detection of Duobinary Signaling
and Differential Encoding

For the controlled ISI method of duobinary signaling, Fig. 7.17 shows the basic transmitter
diagram. We now take a closer look at the relationship of all the data symbols at the baseband
and the detection procedure. For binary message bit [, = 0, or 1, the polar symbols are simply
dp, = 2[,( —1
Under the controlled ISI, the samples of the transmission signal y(¢) are
YkTp) = by = e + a4 (742)
The question for the receiver is how to detect I from y(kTp) or by. This question can be

answered by first considering all the possible values of b or y(kT}). Because a; = +1, then
by = 0, £2. From Eq. (7.42), it is evident that

by =2 = aq =1 or [, =1
by=—2 = a=-1 or I =0 (7.43)
by =0 = aq=—aq1 or [ =1—-1I

Message bits

Polar
I —™

line code
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Figure 7.18
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Therefore, a simple detector of duobinary signaling isto first detect all the bits /; corresponding
to by = 2. The remaining {b;} are zero-valued samples that imply transition: that is, the
current digit is 1 and the previous digit is 0, or vice versa. This means the digit detection must
be is based on the previous digit. An example of this digit-by-digit detection was shown in
Table 7.1. The disadvantage of the detection method in Eq. (7.43) is that when y(kTp) = 0, the
current bit decision depends on the previous bit decision. If the previous digit were detected
incorrectly, then the error would tend to propagate, until a sample value of £2 appears. To
mitigate this error propagation problem, we apply a effective mechanism known as differential
coding.

Figure 7.18 illustrates a duobinary signal generator by introducing an additional differ-
ential encoder prior to partial-response pulse generation. As shown in Fig. 7.18, differential
encoding is a very simple step that changes the relationship between line code and the message
bits. Differential encoding generates a new binary sequence

Py =1t B pe—y modulo 2

with the assumption that the precoder initial state is either pg = 0 or pg = 1. Now, the precoder
output enters a polar line coder and generates

ak=2pk—l

Because of the duobinary signaling b, = a; + ay—; and the zero-ISI pulse generator, the
samples of the received signal y(¢) without noise become

Y(kTp) = bp = ax + ax—1
=2k +Pr—1) — 2
=21 Dk +pk—1—1)

20—-I) pr-1=1
2k = 1) pro1 =0

(7.44)

Based on Eq. (7.44), we can summarize the direct relationship between the message bits and
the sample values as

0 L=1
kT)) = 7.45
y(kTp) ‘ 10 L =0 (7.45)

This relationship serves as our basis for a symbol-by-symbol detection algorithm. In short, the
decision algorithm is based on the current sample y (k7). When there is no noise, y(kTp) = by
and the receiver decision is

_2—| y(kTﬂ

I = ——— (7.46)

Message bits Polar | @ : ﬁ

line code
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TABLE 7.2
Binary Duobinary Signaling with Differential Encoding

Time k& 0 1 2 3 4 5 6 7 8 9 10 11 12 13

I j 1 0 1 1 0 o0 O L o 1 1 1

Pk I 0 I 0 0 0 0 | 1 0 1 0

a, -1 1 -1 -1 1 -1 -1 -1 -1 1 I —1 1 -1

by 0 -2 0 0 -2 =2 =2 0 2 0 0 0

Detected bits i 1 0 1 1 0 0 0 ] 0 i 1 1

Therefore, the incorporation of differential encoding with duobinary signaling not only sim-
plifies the decision rule but also makes the decision independent of the previous digit and
eliminates error propagation. In Table 7.2, the example of Table 7.1 is recalculated with
differential encoding. The decoding relationship of Eq. (7.45) is clearly shown in this example.

The differential encoding defined for binary information symbols can be conveniently
generalized to nonbinary symbols. When the information symbols J; are M -ary, the only change
to the differential encoding block is to replace “modulo 2 with “modulo M .” Similarly, other
generalized partial-response signaling such as the modified duobinary must also face the error
propagation problem at its detection. A suitable type of differential encoding can be similarly
adopted to prevent error propagation.

7.3.7 Pulse Generation

A pulse p(¢) satisfying a Nyquist criterion can be generated as the unit impulse response of a
filter with transfer function P(f). This will not always be easy. A better method is to generate
the waveform directly, using a transversal filter (tapped delay line) discussed here. The pulse
p(t) to be generated is sampled with a sufficiently small sampling interval T (Fig. 7.19a),
and the filter tap gains are set in proportion to these sample values in sequence, as shown
in Fig. 7.19b. When a narrow rectangular pulse with the width T, the sampling interval, is
applied at the input of the transversal filter, the output will be a staircase approximation of
p(t). This output, when passed through a low-pass filter, is smoothed out. The approximation
can be improved by reducing the pulse sampling interval .

It should be stressed once again that the pulses arriving at the detector input of the receiver
need to meet the desired Nyquist criterion. Hence, the transmitted pulses should be so shaped
that after passing through the channel, they are received in the desired (Nyquist) form. In
practice, however, pulses need not be shaped rigidly at the transmitter. The final shaping can
be carried out by an equalizer at the receiver, as discussed later (Sec. 7.5).

7.4 SCRAMBLING

In general, a scrambler tends to make the data more random by removing long strings of
1s or 0s. Scrambling can be helpful in timing extraction by removing long strings of 0s in
binary data. Scramblers, however, are primarily used for preventing unauthorized access to
the data, and they are optimized for that purpose. Such optimization may actually result in
generation of a long string of zeros in the data. The digital network must be able to cope with
these long zero strings by using the zero replacement techniques discussed in Sec. 7.2.



Figure 7.19

Pulse generation

by transversal

Fift,er. co

(@)

| Smoothing
filter

Figure 7.20
(a) Scrambler.
(b) Descrambler.

Ha LA

@

o

— N w

o

—— Clock recovery

(a) (b)



7.4 Scrambling 357

Figure 7.20 shows a typical scrambler and descrambler. The scrambler consists of a feed-
back shift register, and the matching descrambler has a feedforward shift register, as shown
in Fig. 7.20. Each stage in the shift register delays a bit by one unit. To analyze the scrambler
and the matched descrambler, consider the output sequence T of the scrambler (Fig. 7.20a). If
S is the input sequence to the scrambler, then

SeDTeD T =T (7.47)

where D represents the delay operator; that is, D" T is the sequence T delayed by » units. Now,
recall that the modulo 2 sum of any sequence with itself gives a sequence of all 0s. Adding
(D?® @ D°)T to both sides of Eq. (7.47), we get

S=T& D& D)T
=& D*aD)IT
=1FT (7.48)
where F = D3 @ D’

To design the descrambler at the receiver, we start with T', the sequence received at the
descrambler. From Eq. (7.48), it follows that

TOFT=Td D’ ®D)T =S

This equation, in which we regenerate the input sequence S from the received sequence 7, is
readily implemented by the descrambler shown in Fig. 7.20b.

Note that a single detection error in the received sequence T will affect three output bits
in R. Hence, scrambling has the disadvantage of causing multiple errors for a single received
bit error.

Example 7.2

The data stream 101010100000111 is fed to the scrambler in Fig. 7.20a. Find the scrambler
output 7, assuming the initial content of the registers to be zero.

& From Fig. 7.20a we observe that initially 7 = S, and the sequence S enters the register
§ and is returned as (D* @ D°)S = FS through the feedback path. This new sequence FS
Z  again enters the register and is returned as F 25, and so on. Hence

T=S®FSOFSOFS®---
=(10FDF’®Fa®---)S (7.49)

Recognizing that
F=D*eD’
we have
FF=peDD'eD)=D"eD"aD'eD*
Because modulo-2 addition of any sequence with itself is zero, D® @ D® = 0, and
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Similarly
P =mbepp*ap)=D'ep" ¢pgp’
and so on. Hence [see Eq. (7.49)],
T=(1EBD3€BD5€BD6®D9@D10€BD“®D1269D13€BD15---)S

Because D"S is simply the sequence S delayed by n bits, various terms in the above
equation correspond to the following sequences:

S =101010100000111

D3S = 000101010100000111

DS = 00000101010100000111

DS = 000000101010100000111

D°S = 000000000101010100000111
D'°S = 0000000000101010100000111
D''S = 00000000000101010100000111
D'25 = 000000000000101010100000111
D'3S = 0000000000000101010100000111

DS = 000000000000000101010100000111
T =101110001101001

Note that the input sequence contains the periodic sequence 10101010 - - - , as well as a
long string of 0s. The scrambler output effectively removes the periodic component, as
well as the long string of 0s. The input sequence has 15 digits. The scrambler output up
to the 15th digit only is shown, because all the output digits beyond 15 depend on input
digits beyond 15, which are not given.

Readers can verify that the descrambler output is indeed S when the foregoing
sequence T is applied at its input.

7.5 DIGITAL RECEIVERS AND

REGENERATIVE REPEATERS

Basically, areceiveroraregenerative repeater performs three functions: (1) reshaping incoming
pulses by means of an equalizer, (2) extracting the timing information required to sample
incoming pulses at optimum instants, and (3) making symbol detection decisions based on the
pulse samples. The repeater shown in Fig. 7.21 consists of a receiver plus a “regenerator.” A
complete repeater may also include provision for separation of dc power from ac signals. This
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is normally accomplished by transformer-coupling the signals and bypassing the dc around
the transformers to the power supply circuitry.*

7.5.1 Equalizers

A pulse train is attenuated and distorted by the transmission medium. The attenuation can
be compensated by the preamplifier, whereas the distortion is compensated by the equalizer.
Channel distortion is in the form of dispersion, which is caused by an attenuation of certain
critical frequency components of the data pulse train. Theoretically, an equalizer should have a
frequency characteristic that is the inverse of that of the transmission medium. This will restore
the critical frequency components and eliminate pulse dispersion. Unfortunately, this also
enhances the received channel noise by boosting its components at these critical frequencies.
This undesirable phenomenon is known as noise amplification.

For digital signals, however, complete equalization is really not necessary, because a
detector only needs to make relatively simple decisions—such as whether the pulse is positive
or negative (or whether the pulse is present or absent). Therefore, considerable pulse dispersion
can be tolerated. Pulse dispersion results in ISI and the consequent increase in error detection.
Noise increase resulting from the equalizer (which boosts the high frequencies) also increases
the detection error probability. For this reason, design of an optimum equalizer involves an
inevitable compromise betweenreducing ISI and reducing the channelnoise. Ajudiciouschoice
of the equalization characteristics is acentral feature in all well-designed digital communication
systems.®

Zero-Forcing Equalizer

It is really not necessary to eliminate or minimize ISI (interference) with neighboring pulses
for all ¢. All that is needed is to eliminate or minimize interference with neighboring pulses
at their respective sampling instants only. This is because the receiver decision is based on
sample values only. This kind of (relaxed) equalization can be accomplished by equalizers
using the transversal filter structure encountered earlier. Unlike traditional filters, transversal

* The repeater usually includes circuitry to protect the electronics of the regenerator from high-voltage transients
induced by power surges and lightning. Special transformer windings may be provided to couple fault-locate signals
into a cable pair dedicated to the purpose.
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Figure 7.22
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filter equalizers are easily adjustable to compensate against different channels or even slowly
time-varying channels. The design goal is to force the equalizer output pulse to have zero ISI
values at the sampling (decision-making) instants. In other words, the equalizer output pulses
satisfy the Nyquist or the controlled ISI criterion. The time delay T between successive taps
is chosen to be T}, the interval between pulses.

Tobegin, setthetap gains cop = 1 and ¢, = 0forall other values of k in the transversal filter
in Fig. 7.22a. Thus the output of the filter will be the same as the input delayed by NT},. For a
single pulse p, (¢) (Fig. 7.22b) at the input of the transversal filter with the tap setting just given,
the filter output p, (z) will be exactly p,(t — NT}), thatis, p,(¢) delayed by NT},. This delay has
no practical effect on our communication system and is not relevant to our discussion. Hence,
for convenience, we shall ignore this delay. This means that p,(¢) in Fig. 7.22b also represents
the filter output p,(¢) for this tap setting (co = 1 and ¢, = 0, k # 0). We require that the
output pulse p, (¢) satisfy the Nyquist’s criterion or the controlled ISI criterion, as the case may
be. For the Nyquist criterion, the output pulse p, () must have zero values at all the multiples
of T},. From Fig. 7.22b, we see that the pulse amplitudes a;, a_1, and a; at Ty, —T}, and 2T},
respectively, are not negligible. By adjusting the tap gains (cx), we generate additional shifted
pulses of proper amplitudes that will force the resulting output pulse to have desired values at
t =0, £Tp, £2Tp, ....

The output p, (¢) (Fig 7.22c) is the sum of pulses of the form c;p,(t — kT}) (ignoring the
delay of NT}). Thus

N
Po(t) = > capr(t — nTy) (7.50)
n=—N
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The samples of p,(¢) at t = kT} are

N
PokTy) = Y capr(kTy —nTy) k=0, £1, +2, +3,... (7.51a)
n=—N

By using a more convenient notation p,[k] to denote p,(kT,) and p,[k] to denote p,(kT}),
Eq. (7.51a) can be expressed as

N
Polk] = Z cnprlk — nl k=0, 1, £2, £3,... (7.51b)
n=—N

Nyquist’s first criterion requires the samples p,[k] = O for k # 0, and p,[k] = 1 for k = 0.
Upon substituting these values in Eq. (7.51b), we obtain a set of infinite simultaneous equations
in terms of 2N + 1 variables. Clearly, it is not possible to solve all the equations. However, if
we specify the values of p,[k] only at 2N + 1 points as

1 k=0
K] = 7.52
polk] [o k=41, £2.... 4N (7.52)

then a unique solution exists. This assures that a pulse will have zero interference at sampling
instants of N preceding and N succeeding pulses. Because the pulse amplitude decays rapidly,
interference beyond the Nth pulse is not significant for N > 2, in general. Substitution of the
condition (7.52) into Eq. (7.51b) yields a set of 2N + 1 simultaneous equations for 2N + 1
variables. These 2N + 1 equations can be rewritten in the matrix form of

C-N
[0 ] C_N+1
: pr[0] pr[—1] -+ pr[=2N +1] pr[-2N] ]
6 prl1] pr[0] <o pr[=2N +2] p,[-2N +1] .C—l
1 = e co
0 .
, p2N —1] p2N =21 . p,0] prl-1] “
pri2N] pr[2N =11 --- p(1] pr[0] _ :
0 CN-1
N— P, N
po \;’—d—’
c
(7.53)

In this compactexpression, the (2N + 1) x (2N + 1) matrix P, has identical entries along all
the diagonal lines. Such a matrix is known as the Toeplitzmatrix and is commonly encountered
in describing convolutive relationships. A Toeplitz matrix is fully determined by its first row
and first column. It has some nice properties and admits simpler algorithms for computing its
inverse (see, e.g., the method by Trench’). The tap gain c; can be obtained by solving this set
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of equations by taking the inverse of the matrix P,

c=Pr—lpo

Example 7.3

For the received pulse p,(¢) in Fig. 7.22b, let

pr[0]=1
pr1]=-03  pf2] =01
prl—=11=-02 pr[—2]1=0.05

Design a three-tap (N = 1) equalizer.

Substituting the foregoing values in Eq. (7.53), we obtain

0 1 —02 005 ][ e
1= -03 1 -02 || c (7.54)
0 01 =03 1 || ¢

Solution of this set yields c_1 =0.210, co =1.13, and ¢; = 0.318. This tap setting assures
us that po[0] =1 and po[—1] =po[1] =0. The ideal output p,(¢) is sketched in Fig. 7.22c.

Note that the equalizer determined from Eq. (7.53) can guarantee only the zero ISI con-
dition of Eq. (7.52). In other words, ISI is zero only for k = 0, 1, ..., £N. In fact, for k
outside this range, it is quite common that the samples p, (kT) # 0, indicating some residual
ISI. For instance, consider the equalizer problem in Example 7.3. The samples of the equalized
pulse has zero ISI for k = —1, 0, 1. However, from

N
polkl = Y cup,lk —n]
n=—N

we can see that the three-tap zero-forcing equalizer parameters will lead to

Pol—31=0.010 p,[—2] = 0.0145 p,[2] = 0.0176
Po[31=0.0318 polk]=0 k=0, £1, 4, ...

Itis therefore clear that not all the ISI has been removed because of these four nonzero samples
of the equalizer output pulse. In fact, because we only have 2N + 1 (N = 1 in Example 7.3)
parameters in the equalizer, it is impossible to force p,[k] = O for all k£ unless N = oo. This
means that we will not be able to design a practical finite tap equalizer that achieves perfect
zero ISI. Still, when N is sufficiently large, then typically the residual nonzero sample values
will be small, indicating that most of the ISI has been suppressed.
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Minimum Mean Square Error (MMSE) Method

In practice, an alternative approach is to minimize the mean square difference between the
equalizer output response p,[k] and the desired zero ISI response. This is known as the mini-
mum mean squareerror (MMSE) method for designing transversal filter equalizers. The MMSE
method does not try to force the pulse samples to zero at 2N points. Instead, we minimize the
squared errors averaged over a set of output samples. This method involves more simultaneous
equations. Thus we must find the equalizer tap values to minimize the average (mean) square
error over a larger window [—K, K]:

A 1 X 1 2
MSE £ — — k;K (Polk] — 8[k])

where we use a function known as the Kronecker delta

sy |1 k=0
0 k#0

The solution to this minimization problem can be better represented in matrix form as
il
c=P;p,

where P;r represents the Moore-Penrose pseudo-inverse of the nonsquare matrix P, of size
(2K 4+ 1) x 2N + 1). The MMSE design often leads to a more robust equalizer for the
reduction of ISIL.

Adaptive Equalization and Other More General Equalizers

The equalizer filter structure that is described here has the simplest form. Practical digital
communication systems often apply much more sophisticated equalizer structures and more
advanced equalization algorithms.® Because of the probabilistic tools needed, we will defer
detailed coverage on the specialized topic of equalization to Chapter 12.

7.5.2 Timing Extraction

The received digital signal needs tobe sampled at precise instants. This requires a clock signal
at the receiver in synchronism with the clock signal at the transmitter (symbol or bit synchro-
nization), delayed by the channel response. Three general methods of synchronization exist:

1. Derivation from a primary or a secondary standard (e.g., transmitter and receiver slaved to
a master timing source).

2. Transmitting a separate synchronizing signal (pilot clock).

3. Self-synchronization, where the timing information is extracted from the received signal
itself.

Because of its high cost, the first method is suitable for large volumes of data and high-speed
communication systems. The second method, in which part of the channel capacity is used
to transmit timing information, is suitable when the available capacity is large in comparison
to the data rate and when additional transmission power can be spared. The third method is
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Figure 7.23
Timing
extraction.

a very efficient method of timing extraction or clock recovery because the timing is derived
from the received message signal itself. An example of the self-synchronization method will
be discussed here.

We have already shown that a digital signal, such as an on-off signal (Fig. 7.3a), contains
a discrete component of the clock frequency itself (Fig. 7.3c). Hence, when the on-off binary
signal is applied to a resonant circuit tuned to the clock frequency, the output signal is the
desired clock signal.

Not all the binary signals contain a discrete component of the clock frequency. Forexample,
a bipolar signal has no discrete component of any frequency [see Eq. (7.21) or Fig. 7.9]. In such
cases, it may be possible to extract timing by using a nonlinear device to generate a frequency
tone that is related to the timing clock. In the bipolar case, for instance, a simple rectification
converts a bipolar signal to an on-off signal, which can readily be used to extract timing.

Smallrandom deviations of theincoming pulsesfromtheirideallocation (known as timing
jitter) are always present, even in the most sophisticated systems. Although the source emits
pulses at the right instants, subsequent operations during transmission (e.g., Doppler shift)
tend to cause pulses to deviate from these original positions. The Q of the tuned circuit used
for timing extraction must be large enough to provide an adequate suppression of timing jitter,
yet small enough to meet the stability requirements. During the intervals in which there are
no pulses in the input, the oscillation continues because of the flywheel effect of the high-Q
circuit. But still the oscillator output is sensitive to the pulse pattern; for example, during a
long string of 1s the output amplitude will increase, whereas during a long string of 0s it will
decrease. This introduces additional jitter in the timing signal extracted.

The complete timing extractor and time pulse generator for a polar case in shown in
Fig. 7.23. The sinusoidal output of the oscillator (timing extractor) is passed through a phase
shifter that adjusts the phase of the timing signal so that the timing pulses occur at the maximum
points. This method is used to recover the clock at each of the regenerators ina PCM system. The
jitter introduced by successive regenerators adds up, and after a certain number of regenerators
it is necessary to use a regenerator with a more sophisticated clock recovery system such as a
phase-locked loop.

A7 S
1

Rectifier I Timi
Equalizer - and - ming
. extractor
clipper

|

To regenerator
Amplifier Limiter | Pulse |0 O
r generator
Phase
NAONNr A A A A

shifter




Figure 7.24
Error probability
in threshold
detection.
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Timing Jitter

Variations of the pulse positions or sampling instants cause timing jitter. This results from
several causes, some of which are dependent on the pulse pattern being transmitted, whereas
others are not. The former are cumulative along the chain of regenerative repeaters, since all
the repeaters are affected in the same way, whereas the other forms of jitter are random from
regenerator to regenerator and therefore tend to partially cancel out their mutual effects over
a long-haul link. Random forms of jitter are caused by noise, interference, and mistuning of
the clock circuits. Pattern-dependent jitter results from clock mistuning, amplitude-to-phase
conversion in the clock circuit, and ISI, which alters the position of the peaks of the input
signal according to the pattern. The rms value of the jitter over a long chain of N repeaters can
be shown to increase as v/N.

Jitter accumulation over a digital link may be reduced by buffering the link with an elastic
store and clocking out the digit stream under the control of a highly stable phase-locked loop.
Jitter reduction is necessary aboutevery 200 miles in a long digital link to keep the maximum
jitter within reasonable limits.

7.5.3 Detection Error

Once the transmission has passed through the equalizer, detection can take place at the detector
that samples the received signal based on the clock provided by the timing extractor. The signal
received at the detector consists of the equalized pulse train plus a random channel noise. The
noise can cause error in pulse detection. Consider, for example, the case of polar transmission
using a basic pulse p(¢) (Fig. 7.24a). This pulse has a peak amplitude A,. A typical received
pulse train is shown in Fig. 7.24b. Pulses are sampled at their peak values. If noise were absent,
the sample of the positive pulse (corresponding to 1) would be A, and that of the negative
pulse (corresponding to 0) would be —A,,.* Because of noise, these samples would be +A, +n
where 7 is the random noise amplitude (see Fig. 7.24b). From the symmetry of the situation,
the detection threshold is zero; that is, if the pulse sample value is positive, the digitis detected
as 1; if the sample value is negative, the digit is detected as 0.

p(1)

Signal with noise
1 ~A, +n>0

/T\(iﬂection crror)
' \‘
Ll P, T\\

\\ A Y
Ap T >0 A +n>0
—A,+n<0 {Correct detcction) (Corr;:ect detection)
(Correct detection) (b)

* This assumes zero ISL.
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The detector’s decision of whether to declare 1 or 0 could be made readily from the pulse
sample, except that the noise value n is random, meaning that its exact value is unpredictable.
It may have a large or a small value, and it can be negative as well as positive. It is possible
that 1 is transmitted but n at the sampling instant has a large negative value. This will make
the sample value Ap + n small or even negative. On the other hand, if 0 is transmitted and n
has a large positive value at the sampling instant, the sample value —A, + n can be positive
and the digit will be detected wrongly as 1. This is clear from Fig. 7.24b.

The performance of digital communication systems is typically specified by the average
number of detection errors. For example, if two cellphones (receivers) in the same spot are
attempting to detect the same transmission from a cellular tower, the cellphone with the lower
number of detection errors is the better receiver. It is likely to have fewer dropped calls and less
trouble receiving clear speech. However, because noise is random, sometimes one cellphone
may be better while other times the other cellphone may have fewer errors. The real measure
of receiver performance is therefore the average ratio of the number of errors to the total
number of transmitted data. Thus, the meaningful performance comparison is the likelihood
of detection error, or the detection error probability.

Because the precise analysis and evaluation of this error likelihood require the knowledge
and tools from probability theory, we will postpone error analysis until after the introduction
of probability in Chapter 8. Later, in Chapter 10, we will discuss fully the error probability
analysis of different digital communication systems for different noise models as well as system
designs against different noises. For example, Gaussian noise can generally characterize the
random channel noise from thermal effects and intersystem cross talk. Optimum detectors
can be designed to minimize the error likelihood against Gaussian noise. However, switching
transients, lightning strikes, power line load switching, and other singular events cause very
high level noise pulses of short duration to contaminate the cable pairs that carry digital signals.
These pulses, collectively called impulse noise, cannot conveniently be engineered away, and
they constitute the most prevalent source of errors from the environment outside the digital
systems. Errors are virtually never, therefore, found in isolation, but occur in bursts of up to
several hundred at a time. To correct error burst, we use special burst error correcting codes
described in Chapter 14.

/7.6 EYE DIAGRAMS: AN IMPORTANT TOOL

In the last section, we studied the effect of noise and channel ISI on the detection of digital
transmissions. We also described the design of equalizers to compensate the channel dis-
tortion and explained the timing-extraction process. We now present a practical engineering
tool known as the eye diagram. The eye diagram is easy to generate and is often applied
by engineers on received signals because it makes possible the visual examination of sever-
ity of the ISI, the accuracy of timing extraction, the noise immunity, and other important
factors.

We need only a basic oscilloscope to generate the eye diagram. Given a baseband signal
at the channel output

y() = ayplt — kTp)

itcan be applied to the vertical input of the oscilloscope. The time base of the scope is triggered
at the same rate 1/7}, as that of the incoming pulses, and it yields a sweep lasting exactly T,
the interval of one transmitted data symbol a;. The oscilloscope shows the superposition of



Figure 7.25
The eye
diagram.
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many traces of length 7} from the channel output y(¢). What appears on the oscilloscope is
simply the input signal (vertical input) cut up every 7} and then superimposed on top of one
another. The resulting pattern on the oscilloscope looks like a human eye, hence the name eye
diagram. More generally, we can also apply a time sweep that lasts m symbol intervals, or mT},.
The oscilloscope pattern is simply the input signal (vertical input) cut up every mT} and then
superimposed on top of one another. The oscilloscope will then display an eye diagram that is
mT)p, wide and has the shape of m eyes in a horizontal row.

We now present an example. Consider the transmission of a binary signal by polar NRZ
pulses (Fig. 7.25a). Its eye diagrams are shown in Fig. 7.25b for the time base of 7} and
2T}, respectively. In this example, the channel has infinite bandwidth to pass the NRZ pulse
and there is no channel distortion. Hence, we obtain eye diagrams with totally open eye(s).
We can also consider a channel output using the same polar line code and a different (RZ)
pulse shape, as shown in Fig. 7.25c. The resulting eye diagrams are shown in Fig. 7.25d.
In this case, the eye is wide open only at the midpoint of the pulse duration. With proper
timing extraction, the receiver should sample the received signal right at the midpoint where
the eye is totally open, to achieve the best noise immunity at the decision point (Sec.7.5.3).
This is because the midpoint of the eye represents the best sampling instant of each pulse,
where the pulse amplitude is maximum without interference from any other neighboring pulse
(zero ISI).

We now consider a channel that is distortive or has finite bandwidth, or both. After passing
through this nonideal channel, the NRZ polar signal of Fig. 7.25a becomes the waveform of
Fig. 7.25e. The received signal pulses are no longer rectangular but are be rounded, distorted,
and spread out. The eye diagrams are not fully open anymore, as shown in Fig. 7.25f. In this
case, the ISI is not zero. Hence, pulse values at their respective sampling instants will deviate
from the full-scale values by a varying amount in each trace, causing blurs, resulting in a
partially closed eye pattern.

In the presence of channel noise, the eye will tend to close in all cases. Weaker noise
will cause proportionately less closing. The decision threshold with respect to which symbol
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Figure 7.26
Reading an eye
diagram.
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(1 or 0) was transmitted is the midpoint of the eye.* Observe that for zero ISI, the system can
tolerate noise of up to half the vertical opening of the eye. Any noise value larger than this
amount can cause a decision error if its sign is opposite to the sign of the data symbol. Because
IST reduces the eye opening, it clearly reduces noise tolerance. The eye diagram is also used
to determine optimum tap settings of the equalizer. Taps are adjusted to obtain the maximum
vertical and horizontal eye opening.

The eye diagram is a very effective tool for signal analysis during real-time experiments.
It not only is simple to generate, it also provides very rich and importantinformation about the
quality and susceptibility of the received digital signal. From the typical eye diagram given in
Fig. 7.26, we can extract several key measures regarding the signal quality.

* Maximum opening point. The eye opening amount at the sampling and decision instant
indicates that amount of noise the detector can tolerate without making an error. The quantity
is known as the noise margin. The instant of maximum eye opening indicates the optimum
sampling or decision-making instant.

- Sensitivity to timing jitter. The width of the eye indicates the time interval over which correct
decision can still be made, and it is desirable to have an eye with the maximum horizontal
opening. If the decision-making instant deviates from the instant when the eye has a maximum
vertical opening, the margin of noise tolerance is reduced. This causes higher error probability
in pulse detection. The slope of the eye shows how fast the noise tolerance is reduced and,
hence, the sensitivity of the decision noise tolerance to variation of the sampling instant. It
demonstrates the effects of timing jitter.

- Level-crossing (timing) jitter. Typically, practical receivers extract timing information about
the pulse rate and the sampling clock from the (zero) level crossing of the received signal
waveform. The variation of level crossing can be seen from the width of the eye comers.
This measure provides information about the timing jitter such a receiver is expected to
experience.

Finally, we provide a practical eye diagram example for a polar signaling waveform. In
this case, we select a cosine roll-off pulse that satisfy Nyquist’s first criterion of zero ISI.
The roll-off factor is chosen to be r = 0.5. The eye diagram is shown in Fig. 7.27 for a time
base of 27}. In fact, even for the same signal, the eye diagrams may be somewhat different
for different time offset (or initial point) values. Figure 7.27a illustrates the eye diagram of
this polar signaling waveform for a display time offset of 7}, /2, whereas Fig. 7.27b shows the

* This is true for a two-level decision [e.g., when p(¢) and —p(¢) are used for 1 and 0, respectively]. For a three-level
decision (e.g., bipolar signaling), there will be two thresholds.



Figure 7.27
Eye diagrams of
a polar signaling
system using a
raised cosine
pulse with roll-off
factor 0.5:

(a) over 2 symbol
periods 2T}, with
a time shift 7;,/2;
(b) without time
shift.
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normal eye diagram when the display time offset value is zero. It is clear from comparison
that these two diagrams have a simple horizontal circular shift relationship. By observing the
maximum eye opening, we can see that this baseband signal has zero ISI, confirming the basic
feature of the raised-cosine pulse. On the other hand, because Nyquist’s first criterion places no
requirement on the zero crossing of the pulse, the eye diagram indicates that timing jitter would
be likely.

7.7 PAM: M-ARY BASEBAND SIGNALING FOR
HIGHER DATA RATE

Regardless of which line code is used, binary baseband modulations have one thing in common:
they all transmit one bit of information over the interval of 7, second, or at the bit rate of 1/7},
bit per second. If the transmitter would like to send bits at a much higher rate, 7;, may be
shortened. For example, to increase the bit rate by M, T, must be reduced by the same factor
of M ; however, there is a heavy price to be paid in bandwidth. As we demonstrated in Fig. 7.9,
the bandwidth of baseband modulation is proportional to the pulse rate 1/7}. Shortening 7}
by a factor of M will certainly increase the required channel bandwidth by M . Fortunately,
reducing T} is not the only way to increase data rate. A very effective practical solution is to
allow each pulse to carry multiple bits. We explain this concept here.

For each symbol transmission within the time interval of 7} to carry more bits, there
must be more than two symbols to choose from. By increasing the number of symbols to M,
we ensure that the information transmitted by each symbol will also increase with M. For
example, when M = 4 (4-ary, or quaternary), we have four basic symbols, or pulses, available
for communication (Fig. 7.28a). A sequence of two binary digits can be transmitted by just one
4-ary symbol. This is because a sequence of two bits can form only four possible sequences
(viz., 11, 10, 01, and 00). Because we have four distinct symbols available, we can assign one
of the four symbols to each of these combinations (Fig. 7.28a). Each symbol now occupies a
time duration of 7. A signaling example for a short sequence is given in Fig. 7.28b and the
4-ary eye-diagram is shown in Fig. 7.28c.

This signaling allows us to transmit each pair of bits by one 4-ary pulse (Fig. 7.28b).
Hence, to transmit # bits, we need only (n/2) 4-ary pulses. This means one 4-ary symbol can
transmit the information of two binary digits. Also, because three bits canform2 x 2 x 2 =8
combinations, a group of three bits can be transmitted by one 8-ary symbol. Similarly, a group
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Figure 7.28
4-Ary PAM
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(b) baseband
transmission;
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eye diagram.
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of four bits can be transmitted by one 16-ary symbol. In general, the information /s transmitted
by an M -ary symbol is

fy = log, M bits (7.55)

This means we can increase the rate of information transmission by increasing M .

This special M -ary signaling is known as the pulse amplitude modulation (PAM)
because the data information is conveyed by the varying pulse amplitude. We should note
here that pulse amplitude modulation is only one of many possible choices of M -ary signaling.
There are an infinite number of such choices. Still, only a limited few are truly effective in
combating noise and efficient in saving bandwidth and power. A more detailed discussion of
other M -ary signaling schemes will be presented a little later, in Sec. 7.9.

As in most system designs, there are always prices to pay for every possible gain. The
price paid by PAM to increase data rate is power. As M increases, the transmitted power also
increases as M . This is because to have the same noise immunity, the minimum separation
between pulse amplitudes should be comparable to that of binary pulses. Therefore, pulse
amplitudes increase with M (Fig. 7.28). It can be shown that the transmitted power increases
as M2 (Prob. 7.7-5). Thus, to increase the rate of communication by a factor of log, M, the
power required increases as M 2. Because the transmission bandwidth depends only on the
pulse rate and not on pulse amplitudes, the bandwidth is independent of M. We will use the
following example of PSD analysis to illustrate this point.

Example 7.4

Determine the PSD of the quaternary (4-ary) baseband signaling in Fig. 7.28 when the message
bits 1 and 0 are equally likely.

The 4-ary line code has four distinct symbols corresponding to the four different
combinations of two message bits. One such mapping is

—3  message bits 00
ax = —1 message bits 01 (7.56)
+1 message bits 10

+3 message bits 11

Therefore, all four values of a; are equally likely, each with a chance of 1 in 4. Recall that

I I
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Within the summation, 1/4 of the a; will be £1, and £3. Thus,
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On the other hand, for n > 0, we need to determine

. !
R, = lim EZ“*“HH
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To find this average value, we build a table with all the possible values of the product
AkAf+n’

?fé Possible Values of ajajn

';oﬁ.

g Ak+n

—3 9 3 -3 -9

o -1 31 -1 -3
+1 -3 -1 1 3
+3 -9 -3 3 9

From the foregoing table listing all the possible products of ayaj,, we see that each
product in the summation axay4, can take on any of the following six values 1, £3, £9.
First, (£1, £9) are equally likely (1 in 8). On the other hand, £3 are equally likely (1 in
4). Thus, we can show that
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[

As aresult,

5 s,
Sx(f)=i — b)’({]—ﬁ|Pg)|

Thus, the M-ary line code generates the same PSD shape as binary polar signaling.
The only difference is that it utilizes 5 times the original signal power.

Although most terrestrial digital telephone network uses binary encoding, the subscriber
loop portion of the integrated services digital network (ISDN) uses the quaternary code, 2B1Q,
similar to Fig. 7.28a. It uses NRZ pulses to transmits 160 kbit/s of data at a baud rate (pulse
rate) of 80 kbit/s. Of the various line codes examined by the ANSI standards committee, 2B1Q
provided the greatest baud rate reduction in the noisy and cross-talk-prone local cable plant
environment.

Pulse Shaping and Eye Diagramsin PAM: In this case, we can use the Nyquist criterion
pulses because these pulses have zero ISI at the sample points, and, therefore, their amplitudes
can be correctly detected by sampling at the pulse centers. We can also use the controlled ISI
(partial-response signaling) for M-ary signaling.®



372 PRINCIPLES OF DIGITAL DATA TRANSMISSION

Figure 7.29
Eye diagrams of
a 4-ary PAM
signaling system
using a
raised-cosine
pulse with roll-off
factor 0.5:

(a) over two
symbol periods
2Ty, with time
offset T;,/2;

(b) without time
offset.

T ’ ] -.I
I
Sampling and decision instant Sampling and decision instants I

@ (b)

Eye diagrams can also be generated for M -ary PAM by using the same method used for
binary modulations. Because of multilevel signaling, the eye diagram should have M levels
at the optimum sampling instants even when ISI is zero. Here we generate the practical eye
diagram example for a four-level PAM signal that uses the same cosine roll-off pulse with
roll-off factor » = 0.5 that was used in the eye diagram of Fig. 7.27. The corresponding eye
diagrams with time offsets of 7,/2 and O are given in Fig. 7.29a and b, respectively. Once
again, no ISI is observed at the sampling instants. The eye diagrams clearly show four equally
separated signal values without ISI at the optimum sampling points.

/.8 DIGITAL CARRIER SYSTEMS

Thus far, we have discussed baseband digital systems, where signals are transmitted directly
without any shiftin frequency. Because baseband signals have sizable power at low frequencies,
they are suitable for transmission over a pair of wires and coaxial cables. Much of the modern
communication is conducted this way. However, baseband signals cannot be transmitted over a
radio link or satellites because this would necessitate impractically large antennas to efficiently
radiate the low-frequency spectrum of the signal. Hence, for these applications, the signal
spectrum must be shifted to a high-frequency range. A spectrum shift to higher frequencies
is also required to transmit several messages simultaneously by sharing the large bandwidth
of the transmission medium. As seen in Chapter 4, the spectrum of a signal can be shifted
to a higher frequency by applying the baseband digital signal to modulate a high-frequency
sinusoid (carrier).

In transmitting and receiving digital carrier signals, we need a modulator and demodulator
to transmit and receive data. The two devices, modulator and demodulator are usually packaged
in one unit called a modem for two-way (duplex) communications.

7.8.1 Basic Binary Carrier Modulations

There are two basic forms of carrier modulation: amplitude modulation and angle modulation.
In amplitude modulation, the carrier amplitude is varied in proportion to the modulating signal
(i.e., the baseband signal). This is shown in Fig. 7.30. An unmodulated carrier cos w,?is shown



Figure 7.30
(a) The carrier
cos wct. (b) The
modulating
signal m(z).

(c) ASK: the
modulated signal
m(t) cos wet.
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in Fig. 7.30a. The on-off baseband signal m(t) (the modulating signal) is shown in Fig. 7.30b.
It can be written according to Eq. (7.1) as

() =3 aplt — T, where  p(f) = II (I ~ /2

mity=» a — \ T = _—

14 &) P T

The line code a; = 0, 1 is on-off. When the carrier amplitude is varied in proportion to m(t),
we can write the carrier modulated signal as

P ask () = m(r) cos wct (7.57)

shown in Fig. 7.30c. Note that the modulated signal is still an on-off signal. This modulation
scheme of transmitting binary data is known as on-off keying (OOK) or amplitude shift
keying (ASK).

Of course, the baseband signal m(¢) may utilize a pulse p(#) different from the rectangular
one shown in the example of Fig. 7.30. This will generate an ASK signal that does not have a
constant amplitude during the transmission of 1 (a; = 1).

If the baseband signal m(t) were polar (Fig. 7.31a), the corresponding modulated signal
m(t) cos w.t would appear as shown in Fig. 7.31b. In this case, if p(¢) is the basic pulse, we
are transmitting 1 by a pulse p(#) cos w.t and 0 by —p(?) cos w.t = p(t) cos (w.t + 7). Hence,
the two pulses are 7 radians apart in phase. The information resides in the phase or the sign
of the pulse. For this reason this scheme is known as phase shift keying (PSK). Note that
the transmission is still polar. In fact, just like ASK, the PSK modulated carrier signal has the
same form

Pos () = m(t) cos et m(t) = Y ayp(t — kTp) (7.58)

with the difference that the line code is polar a; = *1.

When data are transmitted by varying the frequency, we have the case of frequency shift
keying (FSK), as shown in Fig. 73 1c. A 0 is transmitted by a pulse of frequency w,, and 1 is
transmitted by a pulse of frequency w,,. The information about the transmitted data resides in
the carrier frequency. The FSK signal may be viewed as a sum of two interleaved ASK signals,
one with a modulating frequency w,, and the other with a modulating frequency w,,. We can
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Figure 7.31
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use the binary ASK expression of Eq. (7.57) to write the FSK signal as,

Prsx (0 = Y auplt — kTp)cos w1 + ) {1 — ap)plt — kTp}cos we?

where a; = 0, 1 is on-off. Thus the FSK signal is a superposition of two AM signals with
different carrier frequencies and different but complementary amplitudes.

In practice, ASK as an on-off scheme is commonly used today in optical fiber communi-
cations in the form of laser-intensity modulation. PSK is commonly applied in digital satellite
communications and was also used in earlier telephone modems (2400 and 4800 bit/s). As for
FSK, AT&T in 1962 developed one of the earliest telephone-line modems called 103A; it uses
FSK to transmit 300 bit/s at two frequencies, 1070 and 1270 Hz, and receives FSK at 2025
and 2225 Hz.

7.8.2 PSD of Digital Carrier Modulation

We have just shown that the binary carrier modulations of ASK, PSK, and FSK can all be
written into some forms of m(¢) cos w.t. To determine the PSD of the ASK, PSK, and FSK
signals, it would be helpful for us to first find the relationship between the PSD of m(¢) and
the PSD of the modulated signal

@ () = m(t) cos wt
Recall from Eq. (3.80) that the PSD of ¢(¢) is

V7 (H)I?

Sl = 7
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where Wr (f) is the Fourier transform of the truncated signal

or@) = e@)[u@+T/2) —u(t —T/2)]
=m()[u(t +T/2) —u(t —T/2)] cos wct
= mr (t) cos wt (7.59)

Here mr(¢) is the truncated baseband signal with Fourier transform M7 (f). Applying the
frequency shift property [see Eq. (3.36)], we have

1
Yr(f) = 5 M1 (f —fe) + Mr(f +fo)]

As aresult, the PSD of the modulated carrier signal ¢(t) is

1Mz (f +fo) + Mr(f — fo)I?
S‘”(f):rlinloll r(f f)T T(f —fol

Because M (f) is a baseband signal, M7 (f + f.) and M7 (f — f.) have zero overlap as T — oo
as long as f. is larger than the bandwidth of M (f). Therefore, we conclude that

1 |2 Mr(f — )2

1 1
= ZSM(f +f)+ ZSM(f —Je (7.60)

In other words, for an appropriately chosen carrier frequency, modulation causes a shift in the
baseband signal PSD.

Now, the ASK signal in Fig. 7.30c, fits this model, with m(#) being an on-off signal (using
afull-width or NRZ pulse). Hence, the PSD of the ASK signal is the same as that of an on-off
signal (Fig. 7.4b) shifted to +f. as shown in Fig. 7.32a. Remember that by using a full-width
rectangular pulse p(t),

P(i)zo n==+1, +2, ...
Ty

In this case, the baseband on-off PSD has no discrete components except at dc in Fig. 7.30b.
Therefore, the ASK spectrum has discrete component only at w,.

The PSK signal also fits this modulation description where m(¢) is a polar signal using
a full-width NRZ pulse. Therefore, the PSD of a PSK signal is the same as that of the polar
baseband signal shifted to +w,, as shown in Fig. 7.32b. Note that this PSD has the same shape
(with a different scaling factor) as the PSD of the ASK minus its discrete components.

Finally, we have shown that the FSK signal may be viewed as a sum of two interleaved
ASK signals using the full-width pulse. Hence, the spectrum of FSK is the sum of two ASK
spectra at frequencies w¢, and w,, as shown in Fig. 7.32c. It can be shown that by properly
choosing w, and w,, and by maintaining phase continuity during frequency switching, discrete
components can be eliminated at w., and w,,. Thus, no discrete components appear in this
spectrum. It is important to note that the bandwidth of FSK is higher than that of ASK or PSK.

As observed earlier, polar signaling is the most power-efficient scheme. The PSK, being
polar, requires 3 dB less power than ASK (or FSK) for the same noise immunity, that is, for
the same error probability in pulse detection.
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Figure 7.32
PSD of (a) ASK,
(b) PSK, and
(c) FSK.

(b)

(c)

Of course, we can also modulate bipolar, or any other scheme discussed earlier. Also, note
that the use of the NRZ rectangular pulse in Fig. 7.30 or 7.31 is for the sake of illustration only.
In practice, baseband pulses may be spectrally shaped to eliminate ISI.

7.8.3 Connections between Analog and Digital
Carrier Modulations

There is a natural and clear connection between ASK and AM because the message infor-
mation is directly reflected in the varying amplitude of the modulated signals. Because of its
nonnegative amplitude, ASK is essentially an AM signal with modulation index p = 1. There
is a similar connection between FSK and FM. FSK is simply an FM signal with only limited
number of instantaneous frequencies.

The connection between PSK and analog modulation is a bit more subtle. For PSK, the
modulated signal can be written as

Ppsk (1) = A cos (wct + 6y) kTp <t < kTp + Ty

It can therefore be connected with PM. However, a closer look at the PSK signal reveals that
because of the constant phase 6, its instantaneous frequency, in fact, does not change. In fact,
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we can rewrite the PSK signal

@psk (1) = A cos Gy cos wet — A sin 6 sin wct

=y COS we! + by sin w-t Ty =t < kTy + 1y, (7.61)
by letting ay = A cos 6 and by = —A sin ;. From Eq. (7.61), we recognize its strong resem-
blance to the QAM signal representation in Sec. 4.4. Therefore, the digital PSK modulation is
closely connected with the analog QAM signal. In particular, & = 0, & for binary PSK. Thus,
binary PSK can be written as

+A cos wt

Thisis effectively a digital manifestation of the DSB-SC amplitude modulation. In fact, as will
be discussed later, by letting a; take on multilevel values while setting by = 0 we can generate
another digital carrier modulation known as the pulse amplitude modulation (or PAM), which
can carry multiple bits during each modulation time-interval 7.

As we have studied in Chapter 4, DSB-SC amplitude modulation is more power efficient
than AM. Binary PSK is therefore more power efficient than ASK. In terms of bandwidth
utilization, we can see from their connection to analog modulations that ASK and PSK have
identical bandwidth occupation while FSK requires larger bandwidth. These observations
intuitively corroborate our PSD results of Fig. 7.32.

7.8.4 Demodulation

Demodulation of digital-modulated signals is similar to that of analog-modulated signals.
Becauseofthe connections between A SK and AM, between FSK and FM, and between PSK and
QAM (or DSB-SC AM), different demodulation techniques used for the analog modulations
can be directly applied to their digital counterparts.

ASK Detection

Just like AM, ASK (Fig. 7.30c), can be demodulated both coherently (for synchronous detec-
tion) or noncoherently (for envelope detection). The coherent detector requires more elaborate
equipment and has superior performance, especially when the signal power (hence SNR) is
low. For higher SNR, the envelope detector performs almost as well as the coherent detector.
Hence, coherent detection is not often used for ASK because it will defeat its very purpose
(the simplicity of detection). If we can avail ourselves of a synchronous detector, we might as
well use PSK, which has better power efficiency than ASK.

FSK Detection

Once again, the binary FSK can be viewed as two interleaved ASK signals with carrier fre-
quencies w¢, and w¢, , respectively (Fig. 7.32c). Therefore, FSK can be detected coherently or
noncoherently. In noncoherent detection, the incoming signal is applied to a pair of filters tuned
to w¢, and wc,, respectively. Each filter is followed by an envelope detector (see Fig. 7.33a).
The outputs of the two envelope detectors are sampled and compared. If a 0 is transmitted by
a pulse of frequency wc,, then this pulse will appear at the output of the filter tuned to w,.
Practically no signal appears at the output of the filter tuned to w.,. Hence, the sample of the
envelope detector output following the w, filter will be greater than the sample of the envelope
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Figure 7.33
(a) Noncoherent

detection of FSK.

(b) Coherent

detection of FSK.

Figure 7.34
Coherent binary
PSK detector
(similar to a
DSB-SC
demodulator).
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detector output following the w,, filter, and the receiver decides that a 0 was transmitted. In
the case of a 1, the opposite happens.

Ofcourse, FSK can alsobe detected coherently by generating two references offrequencies
e, and w,, for the two demodulators, to demodulate the signal received and then comparing
the outputs of the two demodulators as shown in Fig. 7.33b. Thus, coherent FSK detector
must generate two carriers in synchronization with the modulation carriers. Once again, this
complex demodulator defeats the purpose of FSK, which is designed primarily for simpler;
noncoherent detection. In practice, coherent FSK detection is not in use.

PSK Detection

In binary PSK, a 1 is transmitted by a pulse A cos w.¢ and a 0 is transmitted by a pulse
—Acos w.t (Fig. 7.31b). The information in PSK signals therefore resides in the carrier phase.
Just as in DSB-SC, these signals cannot be demodulated via envelope detection because the
envelope stays constant for both 1 and 0 (Fig. 7.31b). The coherent detector of the binary PSK
modulation is shown in Fig. 7.34. The coherent detection is similar to that used for analog
signals. Methods of carrier acquisition have been discussed in Sec. 4.8.

Differential PSK

Although envelope detection cannot be used for PSK detection, it is still possible to exploit the
finite number of modulation phase values for noncoherent detection. Indeed, PSK signals may
be demodulated noncoherently by means of an ingenious method known as differential PSK,



Figure 7.35
(a) Differential
encoding;

(b) encoded
signal;

(c) differential
PSK receiver.
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or DPSK. The principle of differential detection is for the receiver to detect the relative phase
change between successive modulated phases 6; and 6;_;. Since the phase value in PSK is
finite (equaling to 0 and 7 in binary PSK), the transmitter can encode the information data into
the phase difference 6; — 6;_;. For example, a phase difference of zero represents 0 whereas
a phase difference of 7 signifies 1.

This technique is known as differential encoding (before modulation). In one differential
code, a 0 is encoded by the same pulse used to encode the previous data bit (no transition), and
a 1 is encoded by the negative of the pulse used to encode the previous data bit (transition).
Differential encoding is simple to implement, as shown in Fig. 7.35a. Notice that the addition
is modulo-2. The encoded signal is shown in Fig. 7.35b. Thus a transition in the line code pulse
sequence indicates 1 and no transition indicates 0. The modulated signal consists of pulses

A cos{at + ) = A cos w.t

If the data bit is 0, the present pulse and the previous pulse have the same polarity or phase; both
pulses are either A cos w,t or —A cos w,t. If the data bit is 1, the present pulse and the previous
pulse are of opposite polarities or phases; if the present pulse is A cos w,t, the previous pulse
is —A cos w.t, and vice versa.

In demodulation of DPSK (Fig. 7.35c), we avoid generation of a local carrier by observ-
ing that the received modulated signal itself is a carrier (A cos w.?) with a possible sign
ambiguity. For demodulation, in place of the carrier, we use the received signal delayed
by T} (one bit interval). If the received pulse is identical to the previous pulse, the prod-
uct y(t) = A2 cos? wet = (A2 /2)(1 4 cos 2w,t), and the low-pass filter output z(¢f) = A? /2.
We immediately detect the present bit as 0. If the received pulse and the previous pulse are of
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TABLE 7.3
Differential Encoding and Detection of Binary DPSK

Time k& 0 1 2 3 4 5 6 7 8 9 10
I ] 0 1 0 0 l 1 1 0 0
gk 1 1 0 0 0 | 0 ] 1 1
Line code qp —1 1 1 -1 -1 -1 1 -1 1 1 ]
O T 0 0 = =nm =& 0 = 0 0 0
O — O -1 T 0 = 0 0O = = =& 0 0
Detected bits 1 0 | 0 0 1 ! ] 0 0

opposite polarity, y(¢) = —AZ cos? wet and 7(t) = —A? /2, and the present bit is detected as
0. Table 7.3 illustrates a specific example of the encoding and decoding.

Thus, in terms of demodulation complexity, ASK, FSK, and DPSK can all be nonco-
herently detected without a synchronous carrier at the receiver. On the other hand, PSK
must be coherently detected. Noncoherent detection, however, comes with a price in terms
of noise immunity. From the point of view of noise immunity, coherent PSK is superior to all
other schemes. PSK also requires smaller bandwidth than FSK (see Fig. 7.32). Quantitative
discussion of this topic can be found in Chapter 10.

7.9 MARY DIGITAL CARRIER MODULATION

The binary digital carrier modulations of ASK, FSK, and PSK all transmit one bit of information
over the interval of T, second, or at the bit rate of 1/T}, bit/s. Similar to digital baseband
transmission, higher bit rate transmission can be achieved either by reducing T}, or by applying
M-ary signaling; the first option requires more bandwidth; the second requires more power.
In most communication systems, bandwidth is strictly limited. Thus, to conserve bandwidth,
an effective way to increase transmission data rate is to generalize binary modulation by
employing M-ary signaling. Specifically, we can apply M-level ASK, M-frequency FSK, and
M-phase PSK modulations.

M-ary ASK and Noncoherent Detection
M-ary ASK is a very simple generalization of binary ASK. Instead of sending only

() =0 for0 and @(t) = A cos w.t forl
M-ary ASK can send log, M bits each time by transmitting, for example,
o) =0, A cos wt, 2A cos wet, ...,(M — 1)Acos w.t
This is still an AM signal that uses M different amplitudes and a modulation index of u =
1. Its bandwidth remains the same as that of the binary ASK, while its power is increased

proportionally with M 2. Its demodulation would again be achieved via envelope detection or
coherent detection.

M-ary FSK and Orthogonal Signaling
M-FSK is similarly generated by selecting one sinusoid from the set {Acos 27xfit,
i =1,..., M} to transmit a particular pattern of log, M bits. Generally for FSK, we can
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design a frequency increment §f and let
S =fi + m—=1Déf m=1,2,....,.M

For this FSK with equal frequency separation, the frequency deviation (in analyzing the FM
signal) is
Mm—-hN

1
Af = == (M — 1)¥f

It is therefore clear that the selection of the frequency set {f;} determines the performance and
the bandwidth of the FSK modulation. If §f is chosen too large, then the M-ary FSK will use
too much bandwidth. On the other hand, if §f is chosen too small, then over the time interval
of T, second, different FSK symbols will show virtually no difference and the receiver will be
unable to distinguish the different symbols reliably. Thus large §f leads to bandwidth waste,
whereas small §f is prone to detection error due to transmission noise and interference.

The task of M-ary FSK design is to determine a small enough &f that each FSK sym-
bol A cos w;t is highly distinct from all other FSK symbols. One solution to this problem
of FSK signal design actually can be found in the discussion of orthogonal signal space in
Sec. 2.6.2. If we can design FSK symbols to be orthogonal in 7} by selecting a small §f
(or Af), then the FSK signals will be truly distinct over 7, and the bandwidth consumption
will be small.

To find the minimum &f that leads to an orthogonal set of FSK signals, the orthogonality
condition according to Sec. 2.6.2 requires that

T,
/ bA cos 2mfmt) Acos 2rfut)dt =0 m#“n (7.62)
0

We can use this requirement to find the minimum §f. First of all,

Ts AZ Ty
f Acos (2nfi,0) A cos (2afut) de = 3 [ [cos 2x (f + Fudt + cos 2m{fy; — f)e] dr
0 0

A% sin 2 (f + )T | A% sin 20 — )T

T 2t fdTy 2 27— ST
{7.63)

Since in practical modulations, (f,, + f,)T} is very large (often no smaller than 10%), the first
term in Eq. (7.63) is effectively zero and negligible. Thus, the orthogonality condition reduces
to the requirement that for any integer m # n,
A% sin 27 (frr — )T
2 2 — )

Because f,;, = f1 + (m — 1)df, for mutual orthogonality we have

0

sin [27t (m — n)8fTp] = 0 m#n

From this requirement, it is therefore clear that the smallest §f to satisfy the mutual
orthogonality condition is

1
5f = —H
f =57, B2
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Figure 7.36
Binary FSK
symbols in the
two-dimensional
orthogonal
signal space.

This choice of minimum frequency separation is known as the minimum shift FSK. Since it
forms an orthogonal set of symbols, it is often known as orthogonal signaling.

We can in fact describe the minimum shift FSK geometrically by applying the concept of
orthonormal basis functions in Sec. 2.6. Let

[2 | .
Yi(t) = E)cosZn(fl-Fz—Tb—)z i=1,2....M

It can be simply verified that

i | m=n
j; wm(f)wu(f)df:{o m;‘_-n

Thus, each of the FSK symbol can be written as

T
A cos 2nfmt=A,/7”wm(t) m=1,2....M

The geometrical relationship of the two FSK symbols for M = 2 is easily captured by Fig. 7.36.

The demodulation of M-ary FSK signals follows the same approach as the binary FSK
demodulation. Generalizing the binary FSK demodulators of Fig. 7.33 we can apply a bank of
M coherent or noncoherent detectors to the M-ary FSK signal before making a decision based
on the strongest detector branch.

Earlier in the PSD analysis of baseband modulations, we showed that the baseband digital
signal bandwidth at the symbol interval of T} can be approximated by 1/7},. Therefore, for the
minimum shift FSK, Af = (M — 1)/(4T}), and its bandwidth according to Carson’s rule is
approximately

M-3

2(Af +B) = 2T,

In fact, it can be in general shown that the bandwidth of an orthogonal M -ary scheme

is M times that of the binary scheme [see Sec. 10.7, Eq. (10.123)]. Therefore, in an M-ary

orthogonal scheme, the rate of communication increases by a factor of log, M at the cost of

M -fold transmission bandwidth increase. For a comparable noise immunity, the transmitted

power is practically independent of M in the orthogonal scheme. Therefore, unlike M-ary ASK,

M-ary FSK does not require more transmission power. However, its bandwidth requirement
increases almost linearly with M (compared with binary FSK or M-ary ASK).
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Figure 7.37
M-ary PSK
symbols in the
orthogonal
signo?spoce:
(o) M =2;

(c) M = 8.
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M-ary PSK, PAM, and QAM

By making a small modification to Eq. (7.61), PSK signals in general can be written into the

format of
2 2
Dray ) = @y | = COS wet + by [ — sih Wt
Ty Ty

in which a,, = Acos 6,, and b,, = —Asin 6,,. In fact, based on the analysis in Sec. 2.6,
V2/Tycos wct and /2/Tp sin w.t are orthogonal to each other. Furthermore, they are nor-
malized over [0, Tp]. As a result, we can represent all PSK symbols in a two-dimensional
signal space with basis functions

2 2 .
Yvi1(t) = \/T:bcos wct Y (t) = \/T:bsm w,t

Dpsk = am¥r1 (1) + bmw2(t)

0=t <Ty (7.64a)

such that
(7.64b)

We can geometrically illustrate the relationship of the PSK symbols in the signal space
(Fig. 7.37). Equation (7.64) means that PSK modulations can be represented as QAM sig-
nal. In fact, because the signal is PSK, the signal points must meet a special requirement
that

a,2n + bfn = A2 cos? 6,, + (—A)? sin? 6y,
(7.64¢)
= A% = constant

In other words, all the signal points must stay on a circle of radius A. In practice, all the signal
points are chosen to be equally spaced in the interest of obtaining the best immunity against
noise. Therefore, for M-ary PSK signaling, the angles are typically chosen uniformly as

O = B0+ 2 (m— 1 =1.2,....M
m—O M(m ) m_aa--'7

The special PSK signaling with M = 4 is an extremely popular and powerful digi-
tal modulation format.* It in fact is a summation of two binary PSK signals, one using the

* QPSK has several effective variations including the offset QPSK.
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(in-phase) carrier of cos w.t while the other uses the (quadrature) carrier of sin w.f of the same
frequency. For this reason, it is also known as quadrature PSK (QPSK). We can transmit and
receive both of these signals on the same channel, thus doubling the transmission rate.

To further generalize the PSK to achieve higher data rate, we can see that the PSK repre-
sentation of Eq. (7.64) is a special case of the quadrature amplitude modulation (QAM) signal
discussed in Chapter 4 (Fig. 4.19). The only difference lies in the requirement by PSK that the
modulated signal have a constant magnitude (modulus) A. In fact, the much more flexible and
general QAM signaling format can be conveniently used for digital modulation as well. The
signal transmitted by an M-ary QAM system can be written as

pi(t) = ajp(t) cos wct + bip(t) sin w.t

= ?'ip(” Ccos ({“t:-r -6 i= 1, 2, oM
where
7=y a’4 b and 6 =tan”! a_l: (7.65)
1

andp(?) is a properly shaped baseband pulse. The simplest choice of p(¢) would be arectangular

pulse
2
p@) = ,/ T (@) —u(t — Tp)]
b

Certainly, better pulses can also be applied conserve bandwidth.

Figure 7.38a shows the QAM modulator and demodulator. Each of the two signals m; (¢)
and my(¢) is a baseband +/M -ary pulse sequence. The two signals are modulated by two
carriers of the same frequency but in phase quadrature. The digital QAM signal p;(¢) can be
generated by means of QAM by letting my (f) = a;p(t) and my(¢¥) = bip(¢t). Both my (¢) and
my(t) are baseband PAM signals. The eye diagram of the QAM signal consists of the in-phase
component m (t) and the quadrature component m; (). Both exhibit the M-ary baseband PAM
eye diagram, as discussed earlier in Sec. 7.6.

The geometrical representation of M-ary QAM can be extended from the PSK signal
space by simply removing the constant modulus constraint Eq. (7.64c). One very popular and
practical choice of »; and 6; for M = 16 is shown graphically in Fig. 7.38b. The trans-
mitted pulse p;(#) can take on 16 distinct forms, and is, therefore, a 16-ary pulse. Since
M = 16, each pulse can transmit the information of log, 16 = 4 binary digits. This can
be done as follows: there are 16 possible sequences of four binary digits and there are 16
combinations (a;, b;) in Fig. 7.38b. Thus, every possible four-bit sequence is transmitted by
a particular (a;, b;) or (r;, ;). Therefore, one signal pulse r;p(¢) cos (w.t — 6;) transmits four
bits. Compared with binary PSK (or BPSK), the 16-ary QAM bit rate is quadrupled without
increasing the bandwidth. The transmission rate can be increased further by increasing the
value of M.

Modulation as well as demodulation can be performed by using the system in Fig. 7.38a.
Theinputs are m; (f) = a;p(t) and my(t) = b;p(t). The two outputs at the demodulator are a;p(?)
and b;p(¢). From knowledge of (a;, b;), we can determine the four transmitted bits. Further
analysis of 16-ary QAM on a noisy channel is carried out in Sec. 10.6 [Eq. (10.104)]. The practi-
cal value of this 16-ary QAM signaling becomes fully evident when we consider its broad range
of applications. In fact, 16-QAM is used in the V.32 telephone data/fax modems (9600 bit/s),
in high-speed cable modems, and in modern satellite digital television broadcasting.



Figure 7.38
(a) QAM or
quadrature
multiplexing and
(b) 16-point
QAM (M = 16).
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Note thatif we disable the data stream that modulates sin w.zin QAM, then all the signaling

points can be reduced to a single dimension. Upon setting m, () = 0, QAM becomes
pi(t) = a;p(t) cos wct, tel0, Tl

This degenerates into the pulse amplitude modulation or PAM. Comparison of the signal
expression of p; (f) with the analog DSB-SC signal makes it clear that PAM is the digital version
of the DSB-SC signal. Just as analog QAM is formed by the superposition of two DSB-SC
amplitude modulations in phase quadrature, digital QAM consists of two PAM signals, each
having ~/M signaling levels. Similarly, like the relationship between analog DSB-SC and
QAM, PAM requires the same amount of bandwidth as QAM does. However, PAM is much
less efficient because it would need M modulation signaling levels in one dimension, whereas
QAM requires only /M signaling levels in each of the two orthogonal QAM dimensions.

Trading Power and Bandwidth

In Chapter 10 we shall discuss several other types of M-ary signaling. The nature of the
exchange between the transmission bandwidth and the transmitted power (or SNR) depends
on the choice of M-ary scheme. For example, in orthogonal signaling, the transmitted power is
practically independent of M but the transmission bandwidth increases with M . Contrast this
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tothe PAM case, where the transmitted power increases roughly with M 2 while the bandwidth
remains constant. Thus, M-ary signaling allows us great flexibility in trading signal power
(or SNR) for transmission bandwidth. The choice of the appropriate system will depend upon
the particular circumstances. For instance, it will be appropriate to use QAM signaling if the
bandwidth is at a premium (as in telephone lines) and to use orthogonal signaling when power
is at a premium (as in space communication).

7.10 MATLAB EXERCISES

In this section, we provide MATLAB programs to generate the eye diagrams. The first step is
to specify the basic pulse shapes in PAM. The next four short programs are used to generate
NRZ, RZ, half-sinusoid, and raised-cosine pulses.

% (pnrz.m)

% generating a rectangular pulse of width T
% Usage function pout=pnrz(T);

function pout=prect(T);

pout=ones(1,T);

end

% (prz.m)

% generating a rectangular pulse of width T/2
% Usage function pout=prz(T);

function pout=prz(T);

pout=[zeros(1l,T/4) ones(1,T/2) zeros(1l,T/4)];
end

% (psine.m)

% generating a sinusoid pulse of width T
%

function pout=psine(T);
pout=sin(pi*[0:T-1]1/T);

end

% (prcos.m)

% Usage v=prcos (rollfac,length, T)

function y=prcos(rollfac,length, T)

% rollfac = 0 to 1 is the rolloff factor

% length is the onesided pulse length in the number of T
$ length = 2T+1;

% T is the oversampling rate

y=rcosfir(rollfac, length, T,1, ‘normal’);

end
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The first program (binary_eye.m) uses the four different pulses to generate eye
diagrams of binary polar signaling.

% (binary_eye.m)
% generate and plot eyediagrams

%

clear;clf;

data = sign(randn(1,400)); % Generate 400 random bits
Tau=64; % Define the symbol period
dataup=upsample(data, Tau); % Generate impulse train
yvrz=conv (dataup,prz(Tau)); % Return to zero polar signal
yrz=yrz(l:end-Tau+l) ;

ynrz=conv (dataup,pnrz (Tau)); % Non-return to zero polar
ynrz=ynrz (l:end-Tau+l) ;

ysine=conv(dataup,psine(Tau)); % half sinusoid polar
ysine=ysine(l:end-Tau+l) ;

Td=4; % truncating raised cosine to 4 periods
yrcos=conv (dataup, prcos(0.5,Td,Tau) ); % rolloff factor = 0.5

yrcos=yrcos (2*Td*Tau:end-2*Td*Tau+l); % generating RC pulse train
eyel=eyediagram(yrz,2*Tau, Tau,Tau/2);title(’'RZ eye-diagram’) ;
eye2=eyediagram(ynrz, 2*Tau, Tau, Tau/2);title(’'NRZ eye-diagram’) ;
eyel3=eyediagram(ysine, 2*Tau, Tau,Tau/2) ;title('Half-sine eye-diagram’) ;
eyed=eyediagram(yrcos,2*Tau,Tau); title(’'Raised-cosine eye-diagram’) ;

The second program (Mary_eye.m) uses the four different pulses to generate eye
diagrams of four-level PAM signaling.

% (Mary_eye.m)
% generate and plot eyediagrams

%

%

clear;clf;

data = sign(randn(1,400))+2* sign(randn(1,400)); % 400 PAM symbols
Tau=64; % Define the symbol period
dataup=upsample(data, Tau); % Generate impulse train

yrz=conv (dataup,prz(Tau)); % Return to zero polar signal
yrz=yrz(l:end-Tau+l) ;

ynrz=conv (dataup,pnrz (Tau)); % Non-return to zero polar
ynrz=ynrz(l:end-Tau+l) ;

ysine=conv(dataup,psine(Tau)); % half sinusoid polar
ysine=ysine(l:end-Tau+l);

Td=4; % truncating raised cosine to 4 periods
yrcos=conv (dataup,prcos (0.5,Td,Tau) ); % rolloff factor = 0.5

yrcos=yrcos (2*Td*Tau:end-2*Td*Tau+l); % generating RC pulse train
eyel=eyediagram(yrz, 2*Tau, Tau,Tau/2) ;title(’'RZ eye-diagram’) ;
eye2=eyediagram(ynrz, 2*Tau,Tau,Tau/2);title(’'NRZ eye-diagram’);
eyel3=eyediagram(ysine, 2*Tau, Tau,Tau/2) ;title(’'Half-sine eye-diagram’) ;
eyed=eyediagram(yrcos,2*Tau,Tau); title(’Raised-cosine eye-diagram’) ;
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PROBLEMS

7.2-1

7.2-2

7.2-3

7.2-4

Hall, Englewood Cliffs, NJ, 1981.

Consider a full-width rectangular pulse shape

ply =Lt /Ty)

(a) Find PSDs for the polar, on-off, and bipolar signaling.

(b) Sketch roughly the PSDs and find their bandwidths. For each case, compare the bandwidth
to the case where p(t) is a half-width rectangular pulse.

(a) A random binary data sequence 110100101- - - is transmitted by using a Manchester (split-
phase) line code with the pulse p(¢) shown in Fig. 7.7a. Sketch the waveform y(z).

(b) Derive Sy(f), the PSD of a Manchester (split-phase) signal in part (a) assuming 1 and 0
equally likely. Roughly sketch this PSD and find its bandwidth.

If the pulse shape is

t
=15t

use differential code (see Fig. 7.18) to derive the PSD for a binary signal. Determine the PSD
Sy(f)-

The duobinary line coding proposed by Lender is also ternary like bipolar, but it requires only
half the bandwidth of bipolar. In practice, duobinary coding is indirectly realized by using a
special pulse shape as discussed in Sec. 7.3 (see Fig. 7.18). In this code, a 0 is transmitted by no
pulse, and a 1 is transmitted by a pulse p(z) or —p(¢) using the following rule. A 1 is encoded
by the same pulse as that used for the previous 1 if there are an even number of 0s between
them. It is encoded by a pulse of opposite polarity if there are an odd number of 0s between
them. A number 0 is considered to be an even number. Like bipolar, this code also has a single
error detection capability, because correct reception implies that between successive pulses of
the same polarity, an even number of 0s must occur, and between successive pulses of opposite
polarity, an odd number of 0s must occur.
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(a) Assuming half-width rectangular pulse, sketch the duobinary signal y(#) for the random
binary sequence

1110001101001010 - - -

(b) Determine Ry, R1, and R, for this code. Assume (or you may show if you like) that R, = 0
for all n > 2. Find and sketch the PSD for this line code (assuming half-width pulse). Show
that its bandwidth is Ry, /2 Hz, half that of bipolar.

7.3-1 Data at a rate of 6 kbit/s is to be transmitted over a leased line of bandwidth 4 kHz by using
Nyquist criterion pulses. Determine the maximum value of the roll-off factor r that can be used.
7.3-2 In a certain telemetry system, there are eight analog measurements, each of bandwidth 2 kHz.
Samples of these signals are time-division-multiplexed, quantized, and binary-coded. The error
in sample amplitudes cannot be greater than 1% of the peak amplitude.
(a) Determine L, the number of quantization levels.
(b) Find the transmission bandwidth Bt if Nyquist criterion pulses with roll-off factor » = 0.2
are used. The sampling rate must be at least 25% above the Nyquist rate.
7.3-3 Aleased telephone line of bandwidth 3 kHz is used to transmit binary data. Calculate the data
rate (in bits per second) that can be transmitted if we use:
(a) Polar signal with rectangular half-width pulses.
(b) Polar signal with rectangular full-width pulses.
(c) Polar signal using Nyquist criterion pulses of r = 0.25.
(d) Bipolar signal with rectangular half-width pulses.
(e) Bipolar signal with rectangular full-width pulses.
7.3-4 The Fourier transform P(f) of the basic pulse p(¢) used in a certain binary communication
system is shown in Fig. P7.3-4.
(a) From the shape of P (f), explainatwhat pulse rate this pulse would satisfy Nyquist’s criterion.
(b) Find p(¢) and verify that this pulse does (or does not) satisfy the Nyquist’s criterion.
(c) If the pulse does satisfy the Nyquist criterion, what is the transmission rate (in bits per
second) and what is the roll-off factor?
P(f)
10-%
—2ax10° 0 2wx10f
7.3-5 Apulse p(t) whose spectrum P (f) is shown in Fig. P7.3-5 satisfies Nyquist’s criterion. If f{ = 0.8
MHz and f, = 1.2 MHz, determine the maximum rate at which binary data can be transmitted
by this pulse using Nyquist’s criterion. What is the roll-off factor?
7.3-6 Binary data at a rate of 1 Mbit/s is to be transmitted by using Nyquist criterion pulses with P(f)

shown in Fig. P7.3-5, The frequencies f] and f, of the spectrum are adjustable. The channel
available for the transmission of this data has a bandwidth of 700 kHz. Determine f; and f> and
the roll-off factor.
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Figure P.7.3-5

+
P(f)
0

7.3-7

7.3-8

7.3-9

7.3-10

7.3-11

7.4-1

Show that the inverse Fourier transform of P(f) in E