

تقدم لجنة

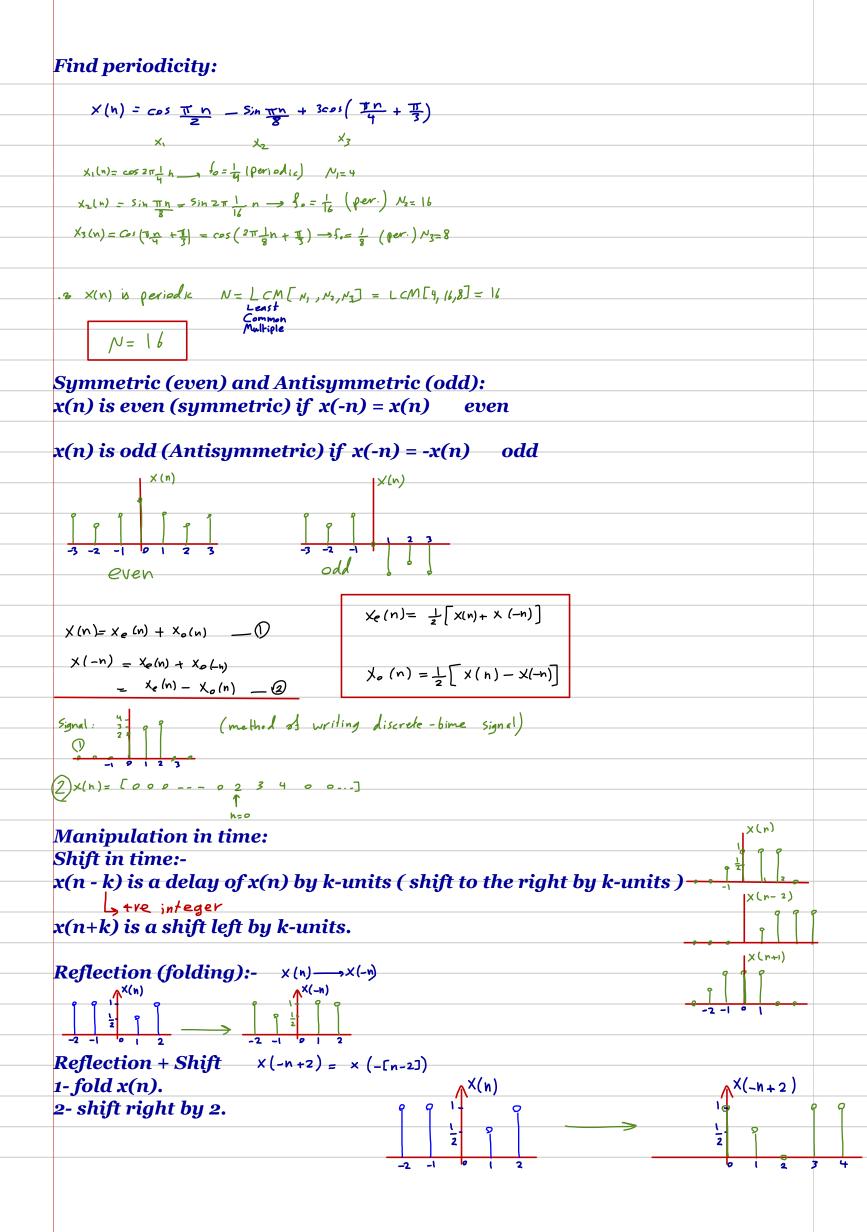
تلخيص لمادة: **معالجة اشارات رقمية**

من شرح:

د.عبدالكريم البياتي

جزيل الشكر للطالب:

The Hashemite University Faculty of Engineering Course Syllabus


Course Title:	Digital Signal Processing	Course Number:	110409422
Department:	Electrical Engineering	Designation:	compulsary
Prerequisite(s):	Signals and systems		
Instructor:	Dr. Abdul Karim Al-Bayati	Instructor's Office:	E3053
Instructor's e-mail: Office Hours:	Karim bayati@yahoo.com		
Time:			
Course description:	This second	Class Room:	
	This course aims to introduc processing. Students will let systems, specifically LTI sys frequency domain representa discrete Fourier transform an way of DFT computation whit	arn the basic types of disc tems. Students are introduce tion of discrete-time signals d its properties and applicat	rete-time signals and ed to Z-transform and and system, and the
Textbook(s):	J. G. Proakis, D. G. Manolaki algorithms and applications (Chapters: 2,3,4,5,7,8,10	s, Digital signal processing, th edition), Prentice Hall.	principles
Other required material:	 A.V. Oppenheim, R.W. Su Hall. S.K. Mitra, Digital Signal 2001), McGraw Hill. T.J. Terell, L.K. Shark, D Macmillan press Itd. V.K. Ingle, J.G.Proakis, D Brooks/Cole 	processing, a computer bas gital signal; processing, A s	sed approach (2 nd ed
Course objectives:	 Use the Z-transform in a properties. Understand the DFT and Use the DFT for spectral 	tems in the time and frequence analysis of discrete-time sys its properties and application	cy domains. tems, and utilize its s.
Topics covered:	 Basic elements of DSP sysprocessing. Discrete-time signals and sydiscrete-time systems, conversionse of LTI systems. The Z-transform, the invanalysis of LTI systems in the frequency analysis of discrete. Frequency analysis of discrete. Discrete Fourier transform analysis and filtering. The Fast Fourier transform radix-4. 	vstems, classification of sign olution, solution of difference erse transform, properties the z-domain te-time signals. te-time systems. and its properties and app	nals, analysis of LT ce equations, impulse of the z-transform plications in spectra
Grading Plan:	First Exam (25 Poi Second Exam (25 Poi Eirol Exam (25 Poi	nts)	
	Final Exam (50 Poi	nts)	

Chapter 1 Preface introduction

$\frac{1}{1}$		
omparison between Discrete & Analo SP:	g Devices:	
for High order filter, it is simpler, 1	more accuracu.	no aaina
more apps like adaptive filters(Va		
high flexibility (Software Defined		
y switch; because it's a program.		•
mitation:		
Complexity: high sampling rate		
Cost, size.		
nalog:		
good for simple filters.		
ut:		ideal filter
limited by 60 dB at cut off freq.	: 60 B	
	(best) = 0	
	(best) = 0	

Chapter 2 Discrete-time Signals and Systems

Monday 2/11/13 8:12 AM **^× (n)** $X(n) \triangleq X(t=nT)$ Some basic signals:-1) unit sample sequence 2) unit step signal 3) unit ramp signal $U(n) = \begin{cases} 1 & n \geqslant 0 & U_r(n) = \begin{cases} h & n \geqslant 0 \\ 0 & h < 0 & 0 \\ 0 & h < 0 & 0 \\ 0 & h < 0 & 0 \\ 0 & 1 & 0 & 0 \\$ $S(n) = \{ | n = \rho \}$ (o n‡o ∧8(n) 1 $\begin{array}{c} \text{Classification of signals:-} \\ \text{Energy signal:} \\ F = \underbrace{\sum_{h=-\infty}^{\infty} |X(n)|^2} \\ \text{Kin} | \stackrel{1}{2} \\ \text{Kin} | \stackrel{1}{2}$ Periodic / Aperiodic signals: x(n) is periodic with period = N if x(n + N) = x(n)N: smallest integer satisfying condition. If there is no N-value satisfying condition, x(n) is Aperiodic. EXA: $X(h) = Sin(2\pi f_{e_{h}})$ Solution EXA: determine periodicity a) $x(n) = cos(0.01 \pi n)$ Sin[2T fo(n+N] = Sin(2T fon) $= \cos \frac{2\pi}{200} h$ -Sin (2 TT fon + 211 for) $= \cos 2\pi \left(\frac{1}{200}\right) n$ foN=k (integer) ~~ X(n) is periodic with period=200 (N=200). fo = k en integer Ne " Vational $\chi(n) = \cos \frac{30\pi}{105}$ n EXA: $\chi(n) = \sin 3n$ EXA: $= \cos 2\pi \frac{15}{105} n = \sin 2\pi \left(\frac{3}{2\pi}\right) n$ $\int_{0}^{\infty} = \frac{15}{105} rational \longrightarrow X(n) is periodic. \qquad \int_{0}^{\infty} = \frac{3}{2\pi} \longrightarrow NoT rational.$ $f_{n=1} \rightarrow N=7$ (n) is NOT periodic

Discrete-time System: Is a device or algorithm that operates on a discrete-time input signal to produce an output discrete-time signal according to mathematical expression or any rate.

EXA: EXA: y(n)=x(n-1) delay syr. x(n)=[o e z | -3 s] y(1)=x(1-1)=x(0) y(n)=[o e z | -3 5] y(2)=x(1) n=0EXA: $y(n)=\frac{1}{3}[x(n+1)+x(n)+x(n-1)]$ {moving and functions of the second seco Elements of discrete-time system: Alder x2(n) = x, (n) + X2(n) => Digital Alder. Gustant Gnstant $Mu[tip]ier \times (n) \xrightarrow{a} y(n) = a \times (n) \implies Digital Multiplier.$

Wednesday 2/13/13 8:03 AM	
Signal $x_1(n) \longrightarrow (x_2(n) = \chi(n) \times \chi(n)$	
Signal $x_{+}(n) \longrightarrow (X) \longrightarrow (y(n) = X_{+}(n) X_{2}(n)$ Multiplier $x_{2}(n)$	
Unit delay $x(n) \rightarrow z^{-1} \rightarrow y(n) = x(n-1)$ causal \Rightarrow Shift register.	
element	•
Unit advance $X(n) \rightarrow Y(n) = X(n+1)$ like voice recognition. $\Rightarrow 1/2$	
Unit advance $X(n) \rightarrow Z \rightarrow Y(n) = X(n+1)$ like voice recognition. $\Rightarrow n$ 7 element	
EXA: $y(n) = \frac{1}{4} g(n-1) + \frac{1}{4} x(n) + \frac{1}{4} x(n-1)$	
constant coefficients diff. eqn. Rep. y in block diagram.	
Solution	
$X(n) \xrightarrow{\frac{1}{2}} y(n)$	
$\begin{bmatrix} 1 \\ 2 \\ 2 \\ 4 \end{bmatrix}$	
Classification of discrete-time systems: Static / dynamic system	
A system is static or memoryless if y(n) depends on input samples at time (n)	
only. Like:-	
$g(n) = a \times (n)$ $u(n) = b \times (n) + b \times^{3} (n) = Static$	
$y(n) = a \times (n)$ $y(n) = n \times (n) + b \times^{3}(n)$ $y(n) = (n+2) \times^{2}(n)$ $f(n) = (n+2) \times^{2}(n)$	
A quetem is dumanie (quith momenu) if q(n) demende en menieue en future	
A system is dynamic (with memory) if y(n) depends on previous or future x(n). Like:-	
y(n) = x(n) + 3x(n-1) <i>Dynamic</i> .	
$y(n) = 2 \times (n+1) + x(n)$	
Time-invariant, time-varying:	
A system is time-invariant if	
given X(n)	
Test of invariance of a system: 1 - y(n) = T [X(n)]	
2- Find $y(n-k)$ - $0/P$	
2- Find $y(n-k)$ 3- Delay i/p by k-units and det. o/p $y(n,k) \triangleq T[x(n-k)]$	
d - If y(n-k) = y(n,k) => System is time-invarient.	

EVA: Jatamain a incoming a of	
EXA: determine invariance of $\mathcal{Y}(n) = [N X(n)] = \top [\times(n)]$]
$y(n-k) = (h-k) \times (n-k)$	
$y(n_{k}) = T[x(n-k)] = n X(n-k)$	
$y(n-k) \neq y(n,k) \implies System is time-varying.$	
$e^{i(h_0)}$	
EXA: $y(n) = x(-n)$ folding Solution	
y(n-k) = X(-(n-k)) = X(-n+k)	
y(n,k) = T[X(n-k)] = X(-n-k) + y(n-k)	
System is time-varying.	
EXA: $y(n) = \chi(n) c_{as} w_{an}$	
solution	
$y(n-k) = \chi(n-k) \cos \psi(n-k)$ $\chi(n) \longrightarrow \chi(n)$	(n)
$y(n-k) = \chi(n-k) \cos \psi_0(n-k) \qquad \qquad \chi(n) \longrightarrow y(n-k) = \chi(n-k) = \chi(n-k) \cos \psi_0 \qquad \qquad$	
$y(n-k) \neq y(n,k) \implies Time-varying.$	
EXA: $y(n) = \chi(n) - \chi(n-1)$	
Solution y(n-k) = X(n-k) - X(n-k-1)	
$y(n_{2}k) = \chi(n-k) - \chi(n-1-k) = y(n-k)$	
lime-inversiont.	
Linear / Non-linear systems:	
a system is linear if $T_{\mathcal{A}}(w) = T_{\mathcal{A}}(w)$	
$T \left[a_1 \times (n) + a_2 \times 2(n) \right] = a_1 T \left[\times (n) \right] + a_2 T \left[\times (n) \right]$ Test:-	
$1 - let \times (n) = a_1 \times (w) + a_2 \times (n)$ 2- $Y(n) = T[X(n)]$ $Y_1(n) = T[X_1(n)]$	
$3 - q_1 y_1(n) + a_2 y_2(n) \neq y(n) \qquad y_2(n) = T[x_2(n)]$ Fanality > 1 in adv	
Equality=>Linear system.	
EXA: investigate linearity $\mathcal{Y}(n) = \chi(n^2)$	
Solution lef $\chi(n) = a_1 \chi_1(n) + a_2 \chi_2(n)$	
$y(n) = T [a_1 \times i(n) + a_2 \times 2(n)] = a_1 \times i(n^2) + a_2 \times 2(n^2)$	
$y_{1}(n) = T[x_{1}(n)] = x_{1}(n^{2})$	
$y_{1}(n) = T[x_{2}(n)] = x_{2}(n^{2})$	
$y_{2}(n) = T[x_{2}(n)] = X_{2}(n^{2})$	

$\int d x(n) = a_1 x_1(n) + a_2 x_2(n)$ $y(n) \equiv T[\int = T [a_1 x(n) + a_1 x_2(n)]$ $= a_1^2 x_1^2(n) + a_2^2 x_2^2(n) + x_2 x_3 x_4(n) + x_4 y_4(n) + y_4(n)$ $y(n) = T [x_1(n)] = x_1^2(n) = a_1 x_1^2(n) + a_2 y_2^2(n)$ $y_1(n) = - x_2^2(n) = a_1 x_1^2(n) + a_2 x_2^2(n)$ $System is Non-linear$ $EXA: y(n) = A_1 x_1(n) + B$ solution $\int d x(n) = a_1 x_1(n) + a_2 x_2(n)$ $y(n) = A[a_1 x_1(n) + a_2 x_2(n) + B]$ $y_1 = T [x_1(n)] = Ax_1(n) + B$ $y_2 = -Ax_2(n) + B$ $a_1 y_1(n) = a_1 x_4(n) + a_2 + a_2 Ax_2(n) + a_2 B = a_1 Ax_1(n) + a_2 Ax_2(n) + (a_1 + a_2)B + y(n)$ $\Rightarrow NON-linear$ $Causal / Anticausal systems:$ $A system is causal if output at time = n depends on input at present and previous time (x(n), x(n-1)) and not on future samples (x(n+1), x(n+2))$	EXA: Solutio		-
$g(n) \stackrel{q}{=} T[\stackrel{q}{=} T[(x_{1} \times (n) + a_{1} \times x_{1}(n)] $ $= a_{1}^{n} x_{1}^{n}(n) + a_{2}^{n} x_{2}^{n}(n) + 2a_{1} a_{2}^{n}(x_{1}(n) + a_{1} y_{2}^{n}(n) + a_{2}^{n} y_{2}^{n}(n) $ $g(n) = T[(x_{1}(n)] = x_{1}^{n}(n) + a_{1} y_{2}^{n}(n) + a_{2}^{n} y_{2}^{n}(n) + a_{2}^{n} y_{2}^{n}(n) $ $g(n) = T[(x_{1}(n)] = x_{1}^{n}(n) + a_{1}^{n} y_{1}(n) + a_{2}^{n} y_{2}^{n}(n) + a_{2}^{n} y_{2}^{n}(n) $ $g(n) = A_{1}(n) + B$ Solution $M = x(n) + B$ $g(n) = A_{1}(x_{1}(n) + a_{2}, y_{1}(n) + B + A_{2}(x_{1}(n) + A_{2}, y_{2}^{n}(n) + B + A_{2}(n) + A_{2}$	Solution		
$y(n) = T [x_{1}(m] = x_{1}^{2}(n) = a_{1}y_{1}(n) + a_{2}y_{2}(n) = a_{1}x_{1}^{2}(n) = a_{1}x_{1}^{2}(n$			_
$y(n) = T(x_1(n)] = x_1^{2}(n) \qquad q_1 y_1(n) + q_1 y_2(n) \neq y(n)$ $g_1(n) = = y_2^{2}(n) \qquad = d_1 x_1^{2}(n) + d_2 x_2^{2}(n)$ System is Non-linear. $EXA: y_1(n) = Ax_1(n) + B$ solution $M_{-} \chi(n) = A_1 x_1(n) + B \qquad \qquad$		$= \alpha_{1}^{2} \chi^{2}(n) + \alpha_{2}^{2} \chi_{2}^{2}(n) + 2 \alpha_{1} \alpha_{2} \chi_{1}(n) \chi_{1}(n)$	_
$y_{1}(n) = - x_{2}^{n}(n) = eq_{1}x_{1}^{n}(n) + a_{2}x_{2}^{n}(n)$ System is flow-linear. EXA: $y_{1}(n) = Ax(n) + B$ solution $u^{n}(n) = A[a_{1}x_{1}(n) + a_{2}x_{2}(n)]$ $\frac{y_{1}(n) = A[a_{1}x_{1}(n) + a_{2}x_{2}(n)] + B = Aa_{1}x_{1}(n) + Aa_{2}x_{2}(n) + B$ $y_{1} = T[x_{1}(n)] = Ax_{1}(n) + B$ $y_{1} = x(n) + B$ $y_{1}(n) = x(n) + B$ $y_{1}(n) = x(n)$ $y_{1}(n) = x(n)$ $y_{1}(n) = x(-n)$		$y(n) = T [x_1(n)] = x_1^2(n)$ $q_1 y_1(n) + q_2 y_2(n) \neq y(n)$	_
System is Non-linear. EXA: $y(n) = A_X(n) + B$ solution $M \times (n) = A_1 \times (n) + a_2 \times (n)$ $u(n) = A[a_1X_1(n) + a_2X_2(n)] + B = Aa_1X_1(n) + Aa_2X_2(n) + B$ $y_1 = T(x_1(n)] = Ax_1(n) + B$ $y_2 = -a_1X_2(n) + B$ $y_2 = -a_1X_2(n) + B$ $a_1y_1(n) + a_2y_2(n) = a_1X_1(n) + a_1B + a_2B = -a_1Ax_1(n) + a_2Ax_2(n) + (a_1 + a_2)B \neq y(n)$ $\Rightarrow NON - finear$. Causal / Anticausal systems: A system is causal if output at time = n depends on input at present and previous time (x(n), x(n-1)) and not on future samples (x(n+1), x(n+2)) EXA: $y(n) = x(n) - x(n-1)$ causal y(n) = x(n) + 3x(n+1) Anticausal y(n) = x(n) - x(n-1) causal y(n) = x(n) + 3x(n+1) Anticausal y(n) = x(n)			_
solution $ \begin{array}{c} $		-	_
solution $ \frac{\psi(x_{1}) = A_{1} \times (w_{1} + a_{2} \times (w_{2})}{\psi(x_{1}) = A_{1} \times (w_{1}) + A_{2} \times (w_{2}) + B} = A_{1} \times (w_{1}) + A_{2} \times (w_{2}) + B} = A_{1} \times (w_{1}) + B = A_{1} \times (w_{1}) + B = A_{2} \times (w_{1}) + A_{2} \times ($	EXA:	$v(n) = A \times (n) + B$	
$\begin{array}{c} u_{1}(n) = A[a_{1}X_{1}(n) + a_{2}X_{2}(n)] + B = Aa_{1}X_{1}(n) + Aa_{2}X_{2}(n) + B \\ \hline y_{1} = T(x_{1}(n)] = Ax_{1}(n) + B \\ v_{2} = -Ax_{2}(n) + B \\ a_{1}y_{1}(n) + a_{2}y_{2}(n) = a_{1}A_{1}(n) + a_{1}B + a_{2}Ax_{2}(n) + a_{2}B = -a_{1}Ax_{1}(n) + a_{2}Ax_{2}(n) + (a_{1}+a_{2})B \neq Y(n) \\ \Rightarrow MON - finear \\ \hline Causal / Anticausal systems: \\ A system is causal if output at time = n depends on input at present and previous time (x(n), x(n-1)) and not on future samples (x(n+1), x(n+2)) \\ \hline EXA: y(n) = x(n) - x(n-1) causal \\ y(n) = x(n) + 3x(n+4) Anticausal \\ y(n) = (n+2)x(n) causal \\ y(n) = x(-n) \\ n = 1 \Rightarrow y(1) = x(1) \\ \hline n = 1 \Rightarrow y(1) = x(-) \qquad Anticausal \\ y(n) = x(2n) \end{array}$		n .	
$y_{1} = T(x_{1}(n)] = Ax_{1}(n) + B$ $y_{1} = T(x_{1}(n)] = Ax_{1}(n) + B$ $y_{1} = -Ax_{2}(n) + B$ $a_{1}y_{1}(n) + a_{2}y_{2}(n) = a_{1}Ax_{1}(n) + a_{1}B + a_{2}Ax_{2}(n) + a_{2}B = -a_{1}Ax_{1}(n) + a_{2}Ax_{2}(n) + (a_{1}+a_{2})B + y(n)$ $\Rightarrow NON - finear$ Causal / Anticausal systems: A system is causal if output at time = n depends on input at present and previous time (x(n), x(n-1)) and not on future samples (x(n+1), x(n+2)) $EXA: y(n) = x(n) - x(n-1) Causal$ $y(n) = x(n) + 3x(n+4) Anticausal$ $y(n) = (n+2)x(n) Causal$ $y(n) = x(-n)$ $n = 1 \Rightarrow y(1) = x(1)$ $h_{n}ticausal$ $y(n) = X(2n)$			
$y_{1} = -Ax_{2}(n) + B$ $a_{1}y_{1}(n) + a_{2}y_{2}(n) = a_{1}x_{3}(n) + a_{1}B + a_{1}Ax_{2}(n) + a_{2}B = a_{1}Ax_{1}(n) + a_{2}Ax_{2}(n) + (a_{1}+a_{2})B + Y(n)$ $\Rightarrow NON - finear.$ Causal / Anticausal systems: A system is causal if output at time = n depends on input at present and previous time (x(n), x(n-1)) and not on future samples (x(n+1), x(n+2)) EXA: $y(n) = x(n) - x(n-1)$ causal y(n) = x(n) + 3x(n+4) Anticausal y(n) = x(-n) $n = 1 \Rightarrow Y(-1) = X(1)$ $n = 1 \Rightarrow Y(-1) = X(1)$			
$a_{1}y_{(n)} + a_{2}y_{2}(n) = a_{1}A_{x_{1}(n)} + a_{1}B + a_{2}A_{x_{2}}(n) + a_{2}B = a_{1}A_{x_{1}}(n) + a_{2}A_{x_{2}}(n) + (a_{1}+a_{2})B + y(n)$ $\Rightarrow NON - finear.$ Causal / Anticausal systems: A system is causal if output at time = n depends on input at present and previous time (x(n), x(n-1)) and not on future samples (x(n+1), x(n+2)) EXA: $y_{(n)} = x_{(n)} - x_{(n-1)}$ Causal $y_{(n)} = x_{(n)} + 3x_{(n+1)}$ Anticausal $y_{(n)} = x_{(n)} + 3x_{(n+1)}$ Causal $y_{(n)} = x_{(-n)}$ $n = -1 \Rightarrow y_{(-1)} = x_{(1)}$ $n = 1 \Rightarrow y_{(1)} = x_{(-1)}$ Anticausal $y_{(n)} = x_{(2n)}$			
$\Rightarrow NON-finear.$ Causal / Anticausal systems: A system is causal if output at time = n depends on input at present and previous time (x(n), x(n-1)) and not on future samples (x(n+1), x(n+2)) EXA: $y(n) = X(n) - X(n-1)$ Causal y(n) = X(n) + 3 X(n+1) Anticausal y(n) = (n+2) X(n) Causal y(n) = x(-n) $n=-1 \Rightarrow y(-1) = X(1)$ $n=1 \Rightarrow y(-1) = X(-1)$ Anticausal y(n) = X(2n)			
Causal / Anticausal systems: A system is causal if output at time = n depends on input at present and previous time $(x(n), x(n-1))$ and not on future samples $(x(n+1), x(n+2))$ EXA: $y(n) = X(n) - X(n-1)$ causal y(n) = X(n) + 3 X(n+4) Anticausal y(n) = (n+2) X(n) causal y(n) = x(-n) $n = -1 \Rightarrow y(-1) = X(1)$ $n = 1 \Rightarrow y(1) = X(-1)$ Anticausal y(n) = X(2n)			
A system is causal if output at time = n depends on input at present and previous time $(x(n), x(n-1))$ and not on future samples $(x(n+1), x(n+2) $	Davied		T_
$y(n) = x(-n)$ $n = -1 \Rightarrow y(-1) = x(1)$ $n = 1 \Rightarrow y(1) = x(-1)$ Anticausal $y(n) = x(2n)$	previo	us time (x(n), x(n-1)) and not on future samples (x(n+1), x(n+2))	
$y(n) = \chi(-n)$ $n = -1 \Rightarrow y(-1) = \chi(1)$ $n = 1 \Rightarrow y(1) = \chi(-1)$ Anticausal $y(n) = \chi(2n)$	previo	us time $(x(n), x(n-1))$ and not on future samples $(x(n+1), x(n+2))$ y(n) = x(n) - x(n-1) causal	
$n = 1 \Rightarrow y(1) = X(-1) \qquad \text{Anticausal}$ $y(n) = X(2n)$	previo	us time $(x(n), x(n-1))$ and not on future samples $(x(n+1), x(n+2))$ y(n) = x(n) - x(n-1) causal y(n) = x(n) + 3x(n+4) Anticausal	
$n = 1 \Rightarrow y(1) = X(-1) \qquad \text{Anticausal}$ $y(n) = X(2n)$	previo	us time $(x(n), x(n-1))$ and not on future samples $(x(n+1), x(n+2))$ y(n) = x(n) - x(n-1) causal y(n) = x(n) + 3 x(n+4) Anticausal y(n) = (n+2) x(n) causal	
y(n) = x(2n)	previo	us time $(x(n), x(n-1))$ and not on future samples $(x(n+1), x(n+2))$ y(n) = x(n) - x(n-1) causal y(n) = x(n) + 3 x(n+4) Anticausal y(n) = (n+2) x(n) causal	
n=2=> y(z)= x(4) Anticausal.	previo	us time $(x(n), x(n-1))$ and not on future samples $(x(n+1), x(n+2))$ $y(n) = \chi(n) - \chi(n-1)$ causal $y(n) = \chi(n) + 3\chi(n+4)$ Anticausal $y(n) = (n+2)\chi(n)$ causal $y(n) = \chi(-n)$ $n=-1 \Rightarrow y(-1) = \chi(1)$	
	previo	us time $(x(n), x(n-1) \dots)$ and not on future samples $(x(n+1), x(n+2)\dots)$ y(n) = x(n) - x(n-1) causal y(n) = x(n) + 3x(n+1) Anticausal y(n) = (n+2)x(n) causal y(n) = x(-n) $n = -1 \Rightarrow y(-1) = x(1)$ $n = 1 \Rightarrow y(1) = x(-1)$ Anticausal	
	previo	us time $(x(n), x(n-1))$ and not on future samples $(x(n+1), x(n+2))$ $y(n) = \chi(n) - \chi(n-1)$ causal $y(n) = \chi(n) + 3 \chi(n+4)$ Anticausal $y(n) = (n+2) \chi(n)$ causal $y(n) = \chi(-n)$ $n = -1 \Rightarrow y(-1) = \chi(1)$ $n = 1 \Rightarrow y(1) = \chi(-1)$ Anticausal $y(n) = \chi(2n)$	
	previo	us time $(x(n), x(n-1))$ and not on future samples $(x(n+1), x(n+2))$ $y(n) = \chi(n) - \chi(n-1)$ causal $y(n) = \chi(n) + 3 \chi(n+4)$ Anticausal $y(n) = (n+2) \chi(n)$ causal $y(n) = \chi(-n)$ $n = -1 \Rightarrow y(-1) = \chi(1)$ $n = 1 \Rightarrow y(1) = \chi(-1)$ Anticausal $y(n) = \chi(2n)$	
	previo	us time $(x(n), x(n-1))$ and not on future samples $(x(n+1), x(n+2))$ $y(n) = \chi(n) - \chi(n-1)$ causal $y(n) = \chi(n) + 3 \chi(n+4)$ Anticausal $y(n) = (n+2) \chi(n)$ causal $y(n) = \chi(-n)$ $n = -1 \Rightarrow y(-1) = \chi(1)$ $n = 1 \Rightarrow y(1) = \chi(-1)$ Anticausal $y(n) = \chi(2n)$	
	previo	us time $(x(n), x(n-1))$ and not on future samples $(x(n+1), x(n+2))$ $y(n) = \chi(n) - \chi(n-1)$ causal $y(n) = \chi(n) + 3 \chi(n+4)$ Anticausal $y(n) = (n+2) \chi(n)$ causal $y(n) = \chi(-n)$ $n = -1 \Rightarrow y(-1) = \chi(1)$ $n = 1 \Rightarrow y(1) = \chi(-1)$ Anticausal $y(n) = \chi(2n)$	
	previo	us time $(x(n), x(n-1))$ and not on future samples $(x(n+1), x(n+2))$ $y(n) = \chi(n) - \chi(n-1)$ causal $y(n) = \chi(n) + 3 \chi(n+4)$ Anticausal $y(n) = (n+2) \chi(n)$ causal $y(n) = \chi(-n)$ $n = -1 \Rightarrow y(-1) = \chi(1)$ $n = 1 \Rightarrow y(1) = \chi(-1)$ Anticausal $y(n) = \chi(2n)$	
	previo	us time $(x(n), x(n-1))$ and not on future samples $(x(n+1), x(n+2))$ $y(n) = \chi(n) - \chi(n-1)$ causal $y(n) = \chi(n) + 3 \chi(n+4)$ Anticausal $y(n) = (n+2) \chi(n)$ causal $y(n) = \chi(-n)$ $n = -1 \Rightarrow y(-1) = \chi(1)$ $n = 1 \Rightarrow y(1) = \chi(-1)$ Anticausal $y(n) = \chi(2n)$	
	previo	us time $(x(n), x(n-1))$ and not on future samples $(x(n+1), x(n+2))$ $y(n) = \chi(n) - \chi(n-1)$ causal $y(n) = \chi(n) + 3 \chi(n+4)$ Anticausal $y(n) = (n+2) \chi(n)$ causal $y(n) = \chi(-n)$ $n = -1 \Rightarrow y(-1) = \chi(1)$ $n = 1 \Rightarrow y(1) = \chi(-1)$ Anticausal $y(n) = \chi(2n)$	
	previo	us time $(x(n), x(n-1))$ and not on future samples $(x(n+1), x(n+2))$ $y(n) = \chi(n) - \chi(n-1)$ causal $y(n) = \chi(n) + 3 \chi(n+4)$ Anticausal $y(n) = (n+2) \chi(n)$ causal $y(n) = \chi(-n)$ $n = -1 \Rightarrow y(-1) = \chi(1)$ $n = 1 \Rightarrow y(1) = \chi(-1)$ Anticausal $y(n) = \chi(2n)$	
I I I I I I I I I I I I I I I I I I I	previo	us time $(x(n), x(n-1))$ and not on future samples $(x(n+1), x(n+2))$ $y(n) = \chi(n) - \chi(n-1)$ causal $y(n) = \chi(n) + 3 \chi(n+4)$ Anticausal $y(n) = (n+2) \chi(n)$ causal $y(n) = \chi(-n)$ $n = -1 \Rightarrow y(-1) = \chi(1)$ $n = 1 \Rightarrow y(1) = \chi(-1)$ Anticausal $y(n) = \chi(2n)$	
	previo	us time $(x(n), x(n-1))$ and not on future samples $(x(n+1), x(n+2))$ $y(n) = \chi(n) - \chi(n-1)$ causal $y(n) = \chi(n) + 3 \chi(n+4)$ Anticausal $y(n) = (n+2) \chi(n)$ causal $y(n) = \chi(-n)$ $n = -1 \Rightarrow y(-1) = \chi(1)$ $n = 1 \Rightarrow y(1) = \chi(-1)$ Anticausal $y(n) = \chi(2n)$	

$g(x) = X(4) Arti \ coused.$ Response of LTI systems to arbitrary inputs (convolution sum): x(4) y(4) y(4	$EXA: y(n) = \chi(n^2)$		
Response of LTI systems to arbitrary inputs (convolution sum): $\begin{array}{c} $./	
$\frac{1}{2} \frac{1}{2} \frac{1}$	9(2)-7(1)-7(1)-(0032		
$\frac{1}{2} \frac{1}{2} \frac{1}$	Domonoo of ITI motom	a to arbitrane innuts (convolution our).	
$\begin{aligned} & \varphi(n) = -x \xi_{-1} \int d^{n} d^{n} - \varphi(x) \int g(n+x) (y) \xi_{-1}(n-x) + z = 0 \\ & = \sum_{k=0}^{n} \sum_{k=0}^{n} (h) (h) \xi_{-k}(x) + \sum_{k=0}^{n} \sum_{k=0}^{n}$			
$\begin{aligned} & \varphi(n) = -x \xi_{-1} \int d^{n} d^{n} - \varphi(x) \int g(n+x) (y) \xi_{-1}(n-x) + z = 0 \\ & = \sum_{k=0}^{n} \sum_{k=0}^{n} (h) (h) \xi_{-k}(x) + \sum_{k=0}^{n} \sum_{k=0}^{n}$	$x^{(n)} = h^{(n)} = y^{(n)}$	ใ้เค	
$= \sum_{k=1}^{\infty} \langle h \rangle S(n-k)$ Peline: $h(n,k) \ge T[S(n-k)] = \prod_{k=1}^{\infty} T[x(h)S(n+k)] = \lim_{k \to \infty} T[x(h)S(n+k)] = \lim_{k \to $			
Projection $h(n_{2}k) \ge T[s(n+k]]$ $= T[s(n+k)] = \sum_{k=-\infty}^{\infty} T[x(k)s(n+k)] \ [interrity]$ $= \sum_{k=-\infty}^{\infty} x(k) h(n_{k}k) = \sum_{k=-\infty}^{\infty} x(k) h(n_{k}k)$ $= \sum_{k=-\infty}^{\infty} x(k) h(n_{k}k) = \sum_{k=-\infty}^{\infty} x(k) h(-(k-n))$ Convolution Sum EXA: find the output of the LTI system whose $h(n) = \{1, 2, 1, -1\}$ For the input $\chi(n) = \begin{bmatrix} 1, 2, 2, 1 \end{bmatrix}$ Solution $\chi(k)$ $= \sum_{k=-\infty}^{\infty} x(k) h(n_{k}k) = \sum_{k=-\infty}^{\infty} x(k) h(-(k-n))$ $= \sum_{k=-\infty}^{\infty} x(k) h(n_{k}k) = \sum_{k=-\infty}^{\infty} x(n) + \sum$		$\partial (n-1) + \chi(2) \rightarrow (n-2) +$	
$h(n_{2}k) \equiv T[\delta(n_{2}k)]$ $= T[\xi_{n_{n}}(x) S(n_{2}k)] = \xi_{n_{n}}(x) h(n_{n}k) = \xi_{n_{n}}(x)$			
$y(n) = T(x(n)]$ $= T\left[\sum_{k=1}^{\infty} x(k) x(n+k) \right] = \sum_{k=1}^{\infty} T\left[x(k) x(n+k) \right] \text{ Linearly }$ $= \sum_{k=1}^{\infty} x(k) T[x(n+k)] = \sum_{k=1}^{\infty} x(k) h(n_k) k = x(k) k = \sum_{k=1}^{\infty} x(k) h(n_k) k = x(k) k = \sum_{k=1}^{\infty} x(k) h(n_k) k = x(k) k $			
$= \tau \left[\sum_{k=\infty}^{\infty} \chi(k) f(n+k)\right] = \sum_{k=\infty}^{\infty} \tau \left[\chi(k) f(n+k)\right]$ $= \sum_{k=\infty}^{\infty} \chi(k) \pi \left[\chi(k) h(n,k)\right]$ $= \sum_{k=\infty}^{\infty} \chi(k) h(n-k)$ $= \sum_{k=\infty}^{\infty} \chi(k) h(n) h(n)$			
$= \sum_{k=0}^{\infty} \chi(k) \Gamma \left[f(n-k) \right] = \sum_{k=0}^{\infty} \chi(k) h(r_{k}, k)$ $g(n) = \sum_{k=0}^{\infty} \chi(k) h(n-k) = \sum_{k=0}^{\infty} \chi(k) h(r_{k}, k)$ Convolution Sum $EXA: find the output of the LTI system whose h(h) = \left\{ 1, 2, 1, -1 \right\}$ For the input $\chi(n) = \prod_{k=0}^{\infty} \chi(k)$ $= \sum_{k=0}^{\infty} \chi(k)$	-	(k) 5(n-k)]]] :	
Convolution Sum EXA: find the output of the LTI system whose $h(h) = \{1, \frac{1}{2}, 1, -1\}$ For the input $\chi(n) = \{1, 2, 7, 1\}$ Solution $\chi(h) = \{1, 2, 7, 1\}$ $h(t) = \{1, 2, 2, 1\}$ $h(t) = \{1, 2, 2, 1\}$ $h(t) = \{1, 1, 2, 2, 1\}$ g(n) = 2X1 + 1X2 = 9 g(n) = 2X1 + 1X2 = 9 g(n) = 1X1 + 2X2 + 1X2 = 8 g(n) = 1X1 + 2X2 + 1X2 = 8 g(n) = 1X1 = 1 g(n) = 1X1 + 2X2 + 1X2 = 8 g(n) = 1X1 = 1 g(n) = 1X1 + 2X2 + 1X2 = 8 g(n) = 1X1 = 1 g(n)			
Convolution Sum EXA: find the output of the LTI system whose $h(h) = \{1, \frac{1}{2}, 1, -1\}$ For the input $\chi(n) = \{1, 2, 7, 1\}$ Solution $\chi(h) = \{1, 2, 7, 1\}$ $h(t) = \{1, 2, 2, 1\}$ $h(t) = \{1, 2, 2, 1\}$ $h(t) = \{1, 1, 2, 2, 1\}$ g(n) = 2X1 + 1X2 = 9 g(n) = 2X1 + 1X2 = 9 g(n) = 1X1 + 2X2 + 1X2 = 8 g(n) = 1X1 + 2X2 + 1X2 = 8 g(n) = 1X1 = 1 g(n) = 1X1 + 2X2 + 1X2 = 8 g(n) = 1X1 = 1 g(n) = 1X1 + 2X2 + 1X2 = 8 g(n) = 1X1 = 1 g(n)	$= \sum X(k) \lfloor \partial(h-k) \rfloor = \sum X(k) h(n)$ $k = \omega$ $k = \omega$		
EXA: find the output of the LTI system whose $h(h) = \{(1, 2, 1, -1)\}$ For the input $\chi(n) = \{1, 2, 3, 1\}$ Solution $\chi(k)$ $(1) = 2\chi(1 + 1)\chi(2 = \frac{1}{2})$ $(1) = 1\chi(1 + 2\chi(2 + 1)\chi(2 = \frac{1}{2}))$ $(1) = 1\chi(1 + 2\chi(2 + 1)\chi(2 = \frac{1}{2}))$ $(1) = 1\chi(1 + 2\chi(2 + 1)\chi(2 = \frac{1}{2}))$ $(1) = 1\chi(1 + 2\chi(2 + 1)\chi(2 = \frac{1}{2}))$ $(2) = 1\chi(1 - 1)$ $(2) = 1\chi(1 - 1))$ $(2) = 1\chi(1 - 1))$ $(3) = 1\chi(1 - 1))$ (3)		h(-(k-n))	
For the input $\chi(n) = \begin{bmatrix} 1 & 2 & 3 & 1 \end{bmatrix}$ Solution $\chi(k)$ $\downarrow (x) = 2\chi(1 + 1\chi) = 2\chi$ $\downarrow (y(x) = 2\chi(1 + 1\chi) = 2\chi$ $\downarrow (y(x) = 1\chi) + 2\chi(2 + 1\chi) = 3$ $\downarrow (y(x) = 1\chi) + 2\chi(2 + 1\chi$		the ITI sustem whose h(m) - E1. 2.1 -13	
Solution $\begin{array}{c} \chi(k) \\ & & & \\ & & $	For the input $x(n) = [1, 2, 3]$	3,1]	
$y(x) = 2 \times 1 + 1 \times 2 = 4$ $y(x) = 2 \times 1 + 1 \times 2 = 4$ $y(x) = 1 \times 1 + 2 \times 2 + 1 \times 3 = 8$ $y(x) = 1 \times 1 + 2 \times 2 + 1 \times 3 = 1 \times 1 + 2 \times 2 \times 1 + 2 \times 2 \times 1 \times 1 + 2 \times 1 + 2 \times 1 \times 1 + 2 \times 1 + 2 \times 1 + 2 \times 1 + 2 \times 1 \times 1 + 2 \times 1 + 2 \times 1 + 2 \times 1 + 2 \times 1 \times 1 + 2 \times 1 + 2$			
$y(1) = x + 2x^{2} + x ^{2} = 8$ $y(1) = x + 2x^{2} + x ^{2} = 8$ $y(1) = x = 1$ $\Rightarrow y(n) = \frac{1}{1 + $	i i i i i i i i i i i i i i i i i i i		
$y(1) = x + 2x^{2} + x ^{2} = 8$ $y(1) = x + 2x^{2} + x ^{2} = 8$ $y(1) = x = 1$ $\Rightarrow y(n) = \frac{1}{1 + $	2		
$y(-1) = 1 \times 1 = 1$ $y(-1) = 1 \to 1 = 1$ $y(-1) = 1 \to 1 = 1$ $y(-1) = 1 \to 1 = 1$ $y(-1$			
$\Rightarrow y(n) = \begin{bmatrix} \cdots & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	$h^{(k)}$		
$\Rightarrow y(h) = \begin{bmatrix} -\cdots & p_{n} & p_{n$			
Properties of convolution:) commutative law:- $\times (n) * h(h) = h(n) * X(n)$ $\times (n) \rightarrow h(n) \rightarrow y(n) = h(n) \rightarrow x(m) \rightarrow y(n)$ $\times (n) \rightarrow h_1(n) \rightarrow h_2(m) \rightarrow y(n) = x(n) \rightarrow h_2(m) \rightarrow h_1(n) \rightarrow y(n)$ e) associative law:- $[\times (n) * h_1(n)] * h_2(n) = x(n) * [h_1(n) * h_2(n)]$		s outpat: n=(-1,5)	
Properties of convolution:) commutative law:- $\times (n) * h(h) = h(n) * X(n)$ $\times (n) \rightarrow h(n) \rightarrow y(n) = h(n) \rightarrow x(m) \rightarrow y(n)$ $\times (n) \rightarrow h_1(n) \rightarrow h_2(m) \rightarrow y(n) = x(n) \rightarrow h_2(m) \rightarrow h_1(n) \rightarrow y(n)$ e) associative law:- $[\times (n) * h_1(n)] * h_2(n) = x(n) * [h_1(n) * h_2(n)]$			
) commutative law:- $ \times (n) \times h(n) = h(n) \times X(n) $ $ \times (n) \rightarrow h(n) \rightarrow y(n) = h(n) \rightarrow y(n) $ $ \times (n) \rightarrow h_1(n) \rightarrow h_2(n) \rightarrow y(n) = x(n) \rightarrow h_2(n) \rightarrow h_1(n) \rightarrow y(n) $ e) associative law:- $ \left[\times (n) \times h_1(n) \right] \times h_2(n) = x(n) \times \left[h_1(n) \times h_2(n) \right] $	$\Rightarrow y(h) = L^{o,o}(1, 4, 8, 8, 3, -2, -1)$, <i>o</i> , <i>o</i>]	
) commutative law:- $ \times (n) \times h(n) = h(n) \times X(n) $ $ \times (n) \rightarrow h(n) \rightarrow y(n) = h(n) \rightarrow y(n) $ $ \times (n) \rightarrow h_1(n) \rightarrow h_2(n) \rightarrow y(n) = x(n) \rightarrow h_2(n) \rightarrow h_1(n) \rightarrow y(n) $ e) associative law:- $ \left[\times (n) \times h_1(n) \right] \times h_2(n) = x(n) \times \left[h_1(n) \times h_2(n) \right] $			
$X(n) \neq h(n) \neq h(n) \neq X(n)$ $X(n) \rightarrow h(n) \rightarrow y(n) = h(n) \rightarrow x(n) \rightarrow y(n)$ $X(n) \rightarrow h_1(n) \rightarrow h_2(n) \rightarrow y(n) = X(n) \rightarrow h_2(n) \rightarrow h_1(n) \rightarrow y(n)$ $(n) \Rightarrow h_1(n) \rightarrow h_2(n) \rightarrow h_2(n) \rightarrow h_1(n) \rightarrow y(n)$) commutative law		
$ \times (n) \rightarrow h_{1}(n) \rightarrow y(n) = \times (n) \rightarrow h_{2}(n) \rightarrow y(n) $ $ = \sum_{i=1}^{n} associative law:- \sum_{i=1}^{n} (n) + h_{1}(n) + h_{2}(n) = \sum_{i=1}^{n} (n) + h_{2}(n) + h_{2}(n) $			
e) associative law:- $[\times(n) * h_1(n)] * h_2(n) = \times (n) * [h_1(n) * h_2(n)]$			
$\left[\times (n) \ast h_1(n) \right] \ast h_2(n) = \times (n) \ast \left[h_1(n) \ast h_2(n) \right]$	$\times (n) \longrightarrow h_1(n) \longrightarrow h_2(n) -$	$\Rightarrow \mathcal{Y}(n) = x(n) \longrightarrow [n_2(n] \rightarrow [n_1(n] \rightarrow \mathcal{Y}(n)]$	
$\left[\times (n) \ast h_{1}(n) \right] \ast h_{2}(n) = \times (n) \ast \left[h_{1}(n) \ast h_{2}(n) \right]$	e) associative law:		
	[×(n)		
$\chi(n) \longrightarrow h_1(n) \longrightarrow y(n) = \chi(n) \longrightarrow h_1(n) \twoheadrightarrow y(n)$	$X(n) \longrightarrow h_1(n)$	$\Rightarrow h_2(n) \longrightarrow y(n) = \chi(n) \longrightarrow h_1(n) \star h_2(n) \longrightarrow y(n)$	

a) Distributive Law	
3) Distributive law:- $x(n) * [h_1(n) + h_2(n)] = x(n) * h_1(n) + x(n) * h_2(n) $ $e \times d:$	
$\chi(n) \xrightarrow{h_1(n)} y(n) = \chi(n) \xrightarrow{h(n)} y(n)$	
LTI systems described by different equations:	
Structures (block diagrams):-	
$y(n) = -\sum_{k=1}^{N} q_k y(n-k) + \sum_{k=0}^{M} b_k X(n-k)$ indicate the order	
indicate the order	
1st order system:-	
$y(n) = -a_1 y(n-1) + b_0 x(n) + b_1 x(n-1)$	
$\times (n) \xrightarrow{p} y(n) \times (n) \xrightarrow{p} y(n)$ $\xrightarrow{+q} \xrightarrow{p} y(n-1) \xrightarrow{+q} \xrightarrow{p} y(n)$	
Direct form-I simulation Diagram h2(n)	
$\times (n) \longrightarrow h_2(n) \longrightarrow y(n) \qquad \qquad \qquad \times (n) \longrightarrow \bigoplus \qquad \qquad$	
$y(n) = -\sum_{k=1}^{N} q_k y(n-k) + \sum_{k=0}^{N} b_k x(n-k) $ Direct form-I simulation Diagram -> reduce Sh	ist register
$\times (n) \qquad \qquad$	
EXA: $y(n) = -2y(n-1) + 3y(n-2) + y(n-3) + 4 \times (n) - 3 \times (n-1) + 5 \times (n-3)$	
Solution	
$\times (n) \rightarrow \oplus \qquad \qquad$	

XA: y(n) = -2y(n-1) + 3y(n-2) +	$y(n-3) + 4\chi(n) - 3\chi(n-1) + 5\chi(n-3)$
Solution	
pirect form-I	pirect form-II
X(Y) 4 (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)	$y(n) \qquad x(n) \longrightarrow (n)$
ZXA:	
X(n) - [z ⁻¹] - [z ⁻¹]	2-1
	$\rightarrow +$ $\rightarrow +$ $\rightarrow y(n)$
Solution	
y (n)= 	
$ZXA: \qquad \qquad$	$ \begin{array}{c} 1/2 \\ \hline \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} + \\ + \\ \end{array} \\ \end{array} \\ \begin{array}{c} + \\ + \\ \end{array} \\ \begin{array}{c} + \\ + \\ \end{array} \\ \end{array} \\ \begin{array}{c} + \\ + \\ \end{array} \\ \end{array} \\ \begin{array}{c} + \\ + \\ \end{array} \\ \begin{array}{c} + \\ + \\ \end{array} \\ \end{array} \\ \begin{array}{c} + \\ + \\ \end{array} \\ \begin{array}{c} + \\ + \\ \end{array} \\ \begin{array}{c} + \\ + \\ \end{array} \\ \end{array} \\ \begin{array}{c} + \\ + \\ \end{array} \\ \end{array} \\ \begin{array}{c} + \\ + \\ \end{array} \\ \end{array} \\ \begin{array}{c} + \\ + \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} + \\ + \\ \end{array} \\ \end{array} \\ \begin{array}{c} + \\ + \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} + \\ + \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} + \\ + \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\
olution	1/2 2-1
$y(h) = \frac{1}{2} x(n-2) + \frac{1}{2} y(n-1) + \frac{1}{2} y(n-2)$	
$\int (11)^{-\frac{1}{2}} = \frac{1}{2} \int (11)^{-\frac{1}{2} \int (11)^{-\frac{1}{2}} = \frac{1}{2} \int (11)^{-$	1/8 2-1
EXA:	
×(m) → 2-1	$ > 2^{-1} \longrightarrow y(n) $
(Vai	
ao	2 ^a 2
×+)	
Solution	$\gamma \times (n-1) + a_0 \times (n) = \cdots (n)$
- hy on	$\chi(n-1) + \alpha_0 \chi(n) = \omega(n)$
$\mathcal{Y}(n) = a_2 \omega(n-1) + \omega(n)$	
$= a_{1} \left[a_{1} x(n-2) + a_{0} x(n-1) \right]$	$1)] + a_1 \times (n-1) + a_0 \times (n)$
$= a_0 \times (n) + (a_1 + a_0 a_2) \times (n-1) + a_0$	a1 a2 X(n-2).
Correlation of discrete - tin	no cianale.
-	-
$r_{xy}(l) = \sum_{n=-\infty}^{\infty} x(n) y(n-l) y(n-l) = \sum_{n=-\infty}^{\infty} x(n) y(n-l) y(n-l) = \sum_{n=-\infty}^{\infty} x(n) y(n-l) y(n-l) y(n-l) = \sum_{n=-\infty}^{\infty} x(n) y(n-l) y$	$(n+l)y(n) ? r_{xy}(l) = r_{yx}(-l)$
$ry_{X}(l) = \Sigma y(n) X(n-l) = \Sigma y(n-l) = \Sigma y($	y (n+l) x(n)

EXA:	$\Lambda^{\times(n)}$	Solution	
	Ţ	rxy(0)=(1*1) + 0 +1+2=1	
-1	\$ {	→ n (y(n)	
	Ay(n)		
	12		
	†	$- \frac{1}{2} \frac{1}{2} \frac{1}{3} $	
	- 8 {	$\frac{1}{2}$ n $\frac{1}{2}$	
_	-1	$Y_{XY}(1) = (-1 \times 1) + 0 = -1$	
		$V_{xy}(1) = (-1 \times 1) + 0 = -1$ $\int_{1}^{\infty} V_{xy}(l) = \begin{bmatrix} 0, 0, 2, 3, 5, 1, -1, -2, 0, 0 \end{bmatrix}$ $\int_{l=0}^{1} I_{xy}(l) = \begin{bmatrix} 0, 0, 2, 3, 5, 1, -1, -2, 0, 0 \end{bmatrix}$	
Relation	n to co	nvolution:	
		(l) * y(-l)	
If y(n)			
) * x (- <i>L</i>)	
	$l) = r_{XX} l$		
		correlation:	
		n) $\rightarrow y(n)$ $\times (-l) = [x(l) + h(l)] + \times (-l) = h(l) + [x(l) + x(-l)]$	
rgxu.		?) x h(R) nally 5(1) ~	
Yuu (1)=		(-l) = [x(l) + h(l)] + [x(-l) + h(-l)]	
		* rhh (A)	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		∧ hhtt	
Radar d	letect:-		
(n) b	= x x (m_	-Ρ) → ω (n)	
		$y(n-l) = \sum_{n=-\infty}^{\infty} x(n) \left[x \times (n-l-D) + w(n-l) \right]$	
	~ (a)	$V = V_{\rm ev} \left(I + \mathbf{P} \right)$	
ru (-D)	$= dY_{v,l}$	$\rho) + r_{XW}(-D) \qquad \left\{ \left r_{XX}(o) \right \ge \left r_{XX}(b) \right \right\}$	
•••) •••			

个^{X (h)} $\int [x(t)] = x(-2)e^{2S} + x(-1)e^{S} + x(0) + x(1)e^{-S} + x(2)e^{-2S}$ $\int dt \left[z = e^{5} \times (z) = \chi(s) \right] \implies \chi(z) = \chi(-2)z^{2} + \chi(-1)z + \chi(0) + \chi(1) z^{-1} + \chi(-2)z^{-2}$ $Z = e^{5}$ Z vs S - plane:ju $Z = e^{S} = e^{-j\omega}$ =(e)e > Real б z-plane 5-plane Region of convergence:-Is the set of z-values for which x(z) has a finite value.

Monday 2/25/13 8:06 AM EXA: find Z-transform & ROC (region of convergence) $x_{1}(n) = \left\{1, 2, 5, 7, 0, 1\right\}$ Solution $X_{1}(z) = 1 \cdot \frac{z^{2}}{2} + 2z^{+1} + 5z^{2} + x(1)z^{-1} + x(2)z^{-2} + x(3)z^{-3} = z^{2} + 2z + 5 + 7z^{-1} + 0 + z^{-3}$ ROC: all z-plane except z=0, z=0 $X_2(z) = 1$, ROC: All z-plane. X(n) = [1] $X_2(n) = S(n)$ $X_{3}(z) = S(n-4)$ X3(2)= 12"= 2", ROC: all 2- except 2=0. $X_{4}(n) = S(n+3)$ X4(2)= 2³=1.2⁻⁽⁻³⁾=2³, ROC: All 2-plane except 2=0. $\chi(n) = \left(\frac{1}{2}\right)^{n} u(n)$ EXA: Solution $X(z) = \sum_{n=0}^{\infty} x(n) z^n = \sum_{n=0}^{\infty} (\frac{1}{z})^n z^n = \sum_{n=0}^{\infty} (\frac{1}{z} z^{-1})^n$ $\begin{cases} 1 + A + A^{2} + A^{3} + \dots = \frac{1}{1 - A} \text{ if } |A| < 1 \end{cases} \Rightarrow \chi(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} \text{ ; } |\frac{1}{2}z^{-1}| < 1 \end{cases}$ $ROC: |z| > \frac{1}{2} \qquad - \frac{1}{1 - \frac{1}{2}z^{-1}} \text{ ; } |\frac{1}{2}z^{-1}| < 1$ **Region of convergence:** Z = rejo $\xrightarrow{-n}_{jn\theta} \chi(z) = \sum \chi(n) r e^{-n}$ $|\chi(z)| = | \geq \chi(n) r^n e^{jn\theta} | \leq \sum_{n=\infty}^{\infty} |\chi(n) r^n e^{jn\theta} |$ Anticawal signal Roc: |z| < ri $\leq \sum_{n=-\infty}^{\infty} |\chi(n)r^{-n}|$ $\leq \sum_{n=-\infty}^{\infty} |\chi(n) \overline{r}^{n}|$ Causal signal ROC: Y772 [121] $\begin{array}{c} x = -\infty \\ \leq & \overline{z} \\ h_{n-\infty} \\ = -\infty \end{array} + \begin{array}{c} x(n) r^{n} \\ h_{n-\infty} \\ + & \overline{z} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \\ - & \overline{z} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ h_{n-1} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ + \begin{array}{c} x(n) \\ - & \overline{z} \end{array} + \begin{array}{c} x(n) \\ - & \overline{z} \\ + \begin{array}{$ ROC Anticausel causal part part Axin) Roc: rer, Roc: r>r2 12 fike 1 (example)

Causal + Anticausal:-ROC Ankicawal signal Roc: |z| < ri Case-1: 12 < | 2 < 1 if risp Causal signal ROC case-2: 1271, No intersection ROC: r7/2 X(Z) does not exist. EXA: $X(n) = \alpha^{n} \mu(n)$ ROC Solution $a^{n}u(n) \stackrel{z}{z} \stackrel{l}{z} \stackrel{l}{z} \stackrel{Roc}{z}$ EXA: $\chi(n) = -\alpha^n \mu(-n-1)$ Solution $X(n) = -\alpha^{n} u(-(n+1)) - - - \int_{-1}^{-1} \int_{-1}^{-1}$ $X(z) = \frac{z^{1}}{z^{1}} - \alpha^{n} z^{-n} ; let \qquad l = -n$ $X(z) = -\frac{2}{z} (\alpha^{-1} z)^{\ell} \qquad \left\{ A + A^{2} + A^{3} + \dots - z + A [1 + A + A^{2} + \dots] = \frac{A}{1 - A} ; |A| < 1 \right\}$ $\chi(z) = -\alpha^{-1} z \qquad \div \alpha^{-1} z \Rightarrow \chi(z) = -\frac{1}{\alpha^{2} z^{-1} - 1} = \frac{1}{1 - \alpha^{2} z^{-1}}$ **Properties of** Z - transform: 1) Linearity: $i \neq x_1(n) \leftarrow Z = X_1(z)$ $X_2(n) \stackrel{\sim}{\leftarrow} X_2(z)$ then a, X, (n)+a2 ×2(n) ~ a1 ×1(2)+ a2×2(2) ROC: Intersection of ROCS of X1(2) & X2(2) Find z-tr. p Roc d; $X(n) = 3 \cdot (2)^n u(n) - 4 \cdot (3)^n u(n)$ $x_2(n)$ $\frac{1}{1-2z^{-1}}, \frac{Roc}{|z|>2}$ EXA: Solution $X(z) = \frac{3}{1-2z^{-1}} - \frac{4}{1-3z^{-1}}$, ROC : [2]73 - ROC.

EXA: $x(n) = (\frac{1}{3})^{n} u(n) - 3(2)^{n} u(-n-1)$	
$\frac{x(z) = \frac{1}{1 - \frac{1}{2}z'} + \frac{3}{1 - 2z'}; RQC: \frac{1}{3} < 1z}{1 - 2z'}$	1 < 2
1 36 126	
EXA: $(n) = (\frac{1}{2})^n u(n) \rightarrow (\frac{1}{4})^n u(-n-1)$	
$X(z) = \frac{1}{1 - \frac{1}{2z'}} - \frac{1}{1 - \frac{1}{4z'}}, z > \frac{1}{2} \frac{2}{3} \frac{1}{3} $	esn't exist.
$\chi(n) = \cos(\omega_{on}) u(n)$. , (wN
$= \frac{1}{2} e^{jw, n} (n) + \frac{1}{2} e^{-jw, n} (n) = \frac{1}{2} (e^{jw, n})^{h}$	
$\Rightarrow X(2) = \frac{1}{2} \frac{1}{1 - e^{j\omega_2}} + \frac{1}{2} \frac{1}{(-e^{j\omega_3})} = \frac{1}{2} \frac{1}{(-e^{j\omega_3})}$	$\frac{1-e^{-3}}{1+z^{-2}} = \frac{1}{2} \frac{2-2(\cos \omega_{y})z^{-1}}{1+z^{-2}-2(\cos \omega_{y})z^{-1}}$
	[استزير کا است
$\cos(\omega_0 n)u(n) \leftarrow \overline{z} \qquad 1 - \overline{z}^1 \cos \omega_0$ $1 - 2 \overline{z}^1 \cos \omega_0 + \overline{z}^2$	KOC: 17171 [10]
	J
$(1,1,1,2,1)$ Z Z $Sin \omega_{e}$	ROC: 12171
$\frac{\sin(\omega_0 n)u(n)}{\sin(\omega_0 n)u(n)} \xrightarrow{\overline{z}} \frac{\overline{z}^{1} \sin \omega_0}{1 - 2 \overline{z}^{1} \cos \omega_0 + \overline{z}^{2}}$	$\mathbf{k} \mathbf{v} \mathbf{c} : \mathbf{c} \mathbf{v} \mathbf{v}$
if u(-n-1)> Z-side × (-1) ++*	

Wednesday 2/27/13 8:23 AM EXA: $X(n) = \begin{cases} 1 & 0 \le n \le N-1 \\ 0 & \text{elsewhere} \end{cases}$ Solution $\chi(z) = \sum_{n=1}^{\infty} \chi(n) z^{-n}$ = ^{N-1} 1. z⁻ⁿ $= \sum_{n=0}^{N-1} \left(\frac{1}{2^{-1}} \right)^n \left\{ \sum_{n=0}^{N-1} a^n = \frac{1-a^N}{1-a}; \sum_{n=0}^{4} a^n = \left[1+a+a^{\frac{1}{4}} \cdots \right] - \left[\frac{5}{a+a+a^{\frac{1}{4}}} + \frac{7}{a^{\frac{1}{4}}} - \frac{1}{a^{\frac{1}{4}}} - \frac{1}{a^{\frac{1}{4}}} - \frac{1}{a^{\frac{1}{4}}} \right] \right\}$ $\Rightarrow X(z) = \begin{cases} \frac{1-z^{-N}}{1-z^{-1}} & z \neq 1 \\ \frac{1-z^{-1}}{1-z^{-1}} & z \neq 1 \end{cases}$ If the linear combination of several signals gives a finite-length sequence, then ROC is determined by the finite duration nature of the resulting sequence. * $Sin(\omega_{o}n)u(n) \leftarrow \overline{Z} \rightarrow \frac{1-\overline{Z}^{1}Sin\omega_{o}}{1-2\overline{z}^{1}Cos\omega_{o}+\overline{Z}^{-2}}$ Time - Shift property: X(n) <u>Z</u> X(Z) $X(n-k) \subset \overline{z} \to \overline{z}^{-k} X(z);$ ROC is the same as X(z) [except in special cases] * proof:- $\sum_{k=1}^{\infty} X(n-k) z^{-k} \qquad let \qquad m=n-k$ $\Rightarrow \sum_{k=-\infty}^{\infty} x(m) \overline{z}^{(m+k)} = \sum_{k=-\infty}^{\infty} (x(m) \overline{z}^{m}) \overline{z}^{k} = \chi(\overline{z}) \overline{z}^{k}$ $X_{1}(n) = \begin{bmatrix} 1 & 2 & 7 \\ 0 & 7 & 7 \\ 0 & 0 \end{bmatrix}$ EXA: $X_{1}(z) = 1 + 2z^{1} + 5z^{2} + 7z^{-3}$ $X_{1}(n-2) = [0,0,1,2,5,7,0,0]$ $X_2(z) = \overline{z}^2 + 2\overline{z}^3 + 5\overline{z}^4 + 2\overline{z}^5$ $= \overline{z}^{2}(1+2\overline{z}^{1}+5\overline{z}^{2}+7\overline{z}^{3})$

Scaling in the Z-domain: $X(n) \stackrel{2}{\longrightarrow} X(n) \rightarrow \mathbb{R} \stackrel{(n)}{\longrightarrow} X(n) \stackrel{(n)}{\longrightarrow} X(n) \stackrel{(n)}{\longrightarrow} \frac{1}{n-\frac{1}{2}} \stackrel{(n)}{\longrightarrow} 1$		
$a^{h} \forall (n) = \frac{2}{2} \langle (a^{t}z) - Roc : - a n < z < a r_{z}$ $A^{h} \chi(n) \Rightarrow z^{h} \chi(n) z^{h} \Rightarrow z^{h} \chi(n) z^{h} \Rightarrow z^{h} \chi(n) (a^{h}z)^{h} , r_{1} < a^{h}z < r_{2} \Rightarrow a r_{1} < z < a r_{z}$ $EXA: \chi(n) = a^{h}cos(w,n) u(n)$ Solution $cos(w,n)u(n) \xrightarrow{\oplus} \frac{1 - e^{h}cosw}{1 - 2e^{h}cosw} + e^{h}$ $a^{h}cos(w,n)u(n) \xrightarrow{\oplus} \frac{1 - e^{h}cosw}{1 - 2e^{h}cosw} + e^{h}$ $a^{h}cos(w,n)u(n) \xrightarrow{\oplus} \frac{1 - e^{h}cosw}{1 - 2e^{h}cosw} + e^{h}$ $a^{h}cos(w,n)u(n) \xrightarrow{\oplus} \frac{1 - e^{h}cosw}{1 - 2e^{h}cosw} + e^{h}z^{h}$ $a^{h}cos(w,n)u(n) \xrightarrow{\oplus} \frac{1 - e^{h}cosw}{1 - 2e^{h}cosw} + e^{h}z^{h}$ $a^{h}cos(w,n)u(n) \xrightarrow{\oplus} \frac{1 - e^{h}cosw}{1 - 2e^{h}cosw} + e^{h}z^{h}$ $a^{h}cos(w,n)u(n) \xrightarrow{\oplus} \frac{1 - e^{h}cosw}{1 - 2e^{h}cosw} + e^{h}z^{h}$ $a^{h}cos(w,n)u(n) \xrightarrow{\oplus} \frac{1 - e^{h}cosw}{1 - 2e^{h}cosw} + e^{h}z^{h}$ $a^{h}cos(w,n)u(n) \xrightarrow{\oplus} \frac{1 - e^{h}cosw}{1 - 2e^{h}cosw} + e^{h}z^{h}$ $a^{h}cos(w,n)u(n) \xrightarrow{\oplus} \frac{1 - e^{h}cosw}{1 - 2e^{h}cosw} + e^{h}z^{h}$ $\chi(n) = (\frac{1}{2})^{h} \left[2(\frac{1}{2})^{h}u(n) + 3(\frac{1}{2})^{h}u(-n-1) \right]$ Solution $\chi(n) = \frac{2}{1 - \frac{1}{4}z^{h}} - \frac{1}{1 - \frac{1}{4}z^{h}} - \frac{1}{12} < z < \frac{1}{2}$ $\chi(z) = \frac{2}{1 - \frac{1}{4}(ze)^{-1}} - \frac{3}{1 - \frac{1}{4}(2e)^{1}} - \frac{1}{12} < z < \frac{1}{2}$ $\chi(z) = \frac{2}{1 - \frac{1}{4}(ze)^{-1}} - \frac{3}{1 - \frac{1}{4}(2e)^{1}} - \frac{1}{12} < z < \frac{1}{2}$ $Fine reversal property:$ $\sum_{\mu \neq \infty} \chi(n) = \frac{2}{\pi} - \chi(n) = u(n)$ Solution $u(n) = \frac{2}{1 - \frac{1}{4}} + \frac{1}{4} < z < \frac{1}{4} < z < \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} < z < \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} < z < \frac{1}{4} + \frac{1}{4} + \frac{1}{4} < z < \frac{1}{4} + \frac{1}{$	caling in the Z-domain:	
$A = a^{n} x(n) \Rightarrow \Sigma = a^{n} x(n) \overline{z}^{n} = \Sigma x(n) (a^{n} \overline{z})^{n} \qquad ; n < a^{n} \pm x < \overline{z} < a \overline{z} < z$	$X(n) \leftarrow \overline{z} \rightarrow X(z)$; $Roc: r_1 < z < r_2$	
$EXA: \chi(n) = a^{n} cos(w,n) \ u(n)$ Solution $cos(w,n)u(n) \stackrel{\text{de}}{\longrightarrow} \frac{1 - \frac{1}{2} cosw}{1 - 2x^{n} cosk + 2^{n}} \qquad or > z > 1$ $a^{n} cos(w,n)u(n) \stackrel{\text{de}}{\longrightarrow} \frac{1 - \frac{1}{2} c^{n} cosk}{1 - 2x^{n} cosk + 2^{n}} \qquad z > z $ $EXA: \chi(n) = (\frac{1}{2})^{n} [2(\frac{1}{2})^{n} (n) \land 3(\frac{1}{2})^{n} u(n-1)]$ Solution $\chi(n) \qquad \chi(n) \qquad \chi$	$a^n X(n) \leftarrow z \longrightarrow X(a^1 z) Roc: a r_1 < z < a r_2$	
Solution $cos(wa)u(n) = \frac{1}{2} + \frac{1}{2} $	$a^{n}x(n) = \sum a^{n}x(n) = \sum x(n) (a^{-1}z)^{-n} ; r_{1} < a^{-1}z < r_{2} \Rightarrow a r_{1} < z < a r_{2}$	
Solution $cos(wa)u(n) = \frac{1}{2} + \frac{1}{2} $	XA: $X(n) = a^{h} cas(\omega, n) u(n)$	
EXA: $X(n) = \left(\frac{1}{3}\right)^{n} \left[2\left(\frac{1}{3}\right)^{n} u(n) + 3\left(\frac{1}{2}\right)^{n} u(-n-1) \right]$ Solution $X_{1}(n) = \frac{2}{1-\frac{1}{3}t^{2}} - \frac{3}{1-\frac{1}{3}t^{2}} + \frac{1}{4} < 2 < \frac{1}{2}$ $X(t) = X_{1} \left(a^{-1}2\right) = X_{1} \left(32\right)$ $= \frac{2}{1-\frac{1}{4}(32)^{-1}} - \frac{3}{1-\frac{1}{2}(32)^{-1}} + \frac{1}{12} < 2 < \frac{1}{6}$ Time reversal property: $\sum_{n=-\infty}^{\infty} X(n) = \pi^{n} \Rightarrow \sum_{n=-\infty}^{\infty} X(n) (\pi^{-1})^{n} ; Y_{1} < \overline{\pi} < r_{2} \Rightarrow \frac{1}{r_{2}} < \overline{\pi} < \frac{1}{r_{1}}$ If $X(n) < \frac{3}{2} \Rightarrow X(\pi) = Y_{1} < \overline{\pi} < r_{2} = X_{1}(\pi) + \frac{1}{r_{2}} < \overline{\pi} < \frac{1}{r_{1}}$ EXA: $Fin \int_{\alpha} x + for = x(n) = u(n)$ Solution $u(n) = \frac{1}{r_{1}} (n) = x^{n} u(n)$ $u(n) < \overline{x} \Rightarrow \frac{1}{1-2^{-1}} = \infty > 2 >1$	olution	
Solution $ \begin{array}{c} \chi_{1}(\pi) = \frac{2}{1 - \frac{1}{2}\pi^{2}} - \frac{3}{1 - \frac{1}{2}\pi^{2}} & \frac{1}{4} < \pi < \frac{1}{2} < \frac{1}{2} \\ \chi_{1}(\pi) = \chi_{1}(\pi^{-1}2) = \chi_{1}(3\pi) \\ = \frac{2}{1 - \frac{1}{4}(3\pi)^{-1}} - \frac{3}{1 - \frac{1}{2}(3\pi)^{-1}} & \frac{1}{12} < \pi < \frac{1}{6} \\ \end{array} $ Time reversal property: $ \begin{array}{c} \sum_{\mu=-\infty}^{\infty} \chi_{1}(\mu) = \pi^{\mu} \Rightarrow \sum_{\mu=-\infty}^{\infty} \chi_{1}(\mu) = \pi^{\mu} = \sum_{\mu=-\infty}^{\infty} \chi_{1}(\mu) & (\pi^{-1})^{\mu} ; \gamma_{1} < \pi < \pi < \pi^{-1} > \frac{1}{2} < \pi < \frac{1}{2} \\ \end{array} $ If $\chi_{1}(\mu) = \frac{3}{2} \times \chi_{2}(\pi) = \pi^{-1} = \sum_{\mu=-\infty}^{\infty} \chi_{1}(\mu) = \frac{1}{4\pi} \\ $ EXA: Find $\pi + \frac{1}{2}$ for $\chi_{1}(\mu) = \frac{1}{1 - 2\pi^{-1}} \infty > \pi < \pi > 1$ EXA: $\chi_{1}(\mu) = \frac{1}{1 - 2\pi^{-1}} \infty > \pi > 1$ EXA: $\chi_{1}(\mu) = \chi_{1}(\mu)$	$a^{n} \cos(\omega_{0} n) u(n) = \frac{1 - az^{-1} \cos(\omega_{0})}{1 - 2az^{-1} \cos(\omega_{0}) + a^{2} z^{-2}}$ $ z a $	
Solution $ \begin{array}{c} \chi_{1}(\pi) = \frac{2}{1 - \frac{1}{2}\pi^{2}} - \frac{3}{1 - \frac{1}{2}\pi^{2}} & \frac{1}{4} < \pi < \frac{1}{2} < \frac{1}{2} \\ \chi_{1}(\pi) = \chi_{1}(\pi^{-1}2) = \chi_{1}(3\pi) \\ = \frac{2}{1 - \frac{1}{4}(3\pi)^{-1}} - \frac{3}{1 - \frac{1}{2}(3\pi)^{-1}} & \frac{1}{12} < \pi < \frac{1}{6} \\ \end{array} $ Time reversal property: $ \begin{array}{c} \sum_{\mu=-\infty}^{\infty} \chi_{1}(\mu) = \pi^{\mu} \Rightarrow \sum_{\mu=-\infty}^{\infty} \chi_{1}(\mu) = \pi^{\mu} = \sum_{\mu=-\infty}^{\infty} \chi_{1}(\mu) & (\pi^{-1})^{\mu} ; \gamma_{1} < \pi < \pi < \pi^{-1} > \frac{1}{2} < \pi < \frac{1}{2} \\ \end{array} $ If $\chi_{1}(\mu) = \frac{3}{2} \times \chi_{2}(\pi) = \pi^{-1} = \sum_{\mu=-\infty}^{\infty} \chi_{1}(\mu) = \frac{1}{4\pi} \\ $ EXA: Find $\pi + \frac{1}{2}$ for $\chi_{1}(\mu) = \frac{1}{1 - 2\pi^{-1}} \infty > \pi < \pi > 1$ EXA: $\chi_{1}(\mu) = \frac{1}{1 - 2\pi^{-1}} \infty > \pi > 1$ EXA: $\chi_{1}(\mu) = \chi_{1}(\mu)$	XA: $X(n) = (\frac{1}{2})^{n} [z(\frac{1}{2})^{n} u(n) + 3(\frac{1}{2})^{n} u(-n-1)]$	
$X_{1}(z) = \frac{2}{1-\frac{1}{2}z^{2}} - \frac{3}{1-\frac{1}{2}z^{1}} - \frac{1}{4} < z < \frac{1}{2}$ $X(z) = X_{1}(a^{-1}z) = X_{1}(3z)$ $= \frac{2}{1-\frac{1}{4}(3z)^{-1}} - \frac{3}{1-\frac{1}{2}(3z)^{1}} - \frac{1}{1-\frac{1}{2}(3z)^{1}}$ Time reversal property: $\sum_{k=0}^{\infty} X(n) z^{k} \Rightarrow \sum_{k=0}^{\infty} X(n) z^{m} = \sum X(m) (z^{1})^{m}; Y_{1} < z < \frac{1}{2} < z < \frac{1}{4}$ If $X(n) < \frac{2}{2} \Rightarrow X(z) = Y_{1} < z < \frac{1}{4}$ $If X(n) < \frac{2}{2} \Rightarrow X(z^{-1}) = \frac{1}{4} < z < \frac{1}{4}$ $EXA: Finl = 4^{n} for = x(n) = u(n)$ Solution $u(n) < \frac{2}{2} + \frac{1}{1-z^{-1}} = \infty > z > 1$		
$=\frac{2}{1-\frac{1}{4}(3\pi)^{-1}} - \frac{3}{1-\frac{1}{2}(3\pi)^{-1}} - \frac{1}{12} < z < \frac{1}{6}$ Time reversal property: $\sum_{n=-\infty}^{\infty} X(n) = n^{n} \Rightarrow \sum_{n=-\infty}^{\infty} X(n) = n^{n} = \sum_{n=-\infty}^{\infty} X(n) (z^{1})^{n} ; r_{1} < \overline{z} < r_{2} \Rightarrow \frac{1}{2} < \overline{z} < \frac{1}{r_{1}}$ If $X(n) < \frac{2}{3} \Rightarrow X(\pi) = r_{1} < \overline{z} < r_{2}$ After $X(n) < \frac{2}{3} \Rightarrow X(z^{-1}) = \frac{1}{1-2} < \overline{z} < \frac{1}{r_{1}}$ EXA: Find $z + t$. for $X(n) = u(n)$ Solution $u(n) = \int_{1-2^{-1}}^{n} w(n) = \sqrt{u(n)}$ $u(n) < \overline{z} = \frac{1}{1-2^{-1}} \infty > \overline{z} > 1$ EVA: $X(n) = u(-n)$		
$=\frac{2}{1-\frac{1}{4}(3\pi)^{-1}} - \frac{3}{1-\frac{1}{2}(3\pi)^{-1}} - \frac{1}{12} < z < \frac{1}{6}$ Time reversal property: $\sum_{n=-\infty}^{\infty} X(n) = n^{n} \Rightarrow \sum_{n=-\infty}^{\infty} X(n) = n^{n} = \sum_{n=-\infty}^{\infty} X(n) (z^{1})^{n} ; r_{1} < \overline{z} < r_{2} \Rightarrow \frac{1}{2} < \overline{z} < \frac{1}{r_{1}}$ If $X(n) < \frac{2}{3} \Rightarrow X(\pi) = r_{1} < \overline{z} < r_{2}$ After $X(n) < \frac{2}{3} \Rightarrow X(z^{-1}) = \frac{1}{1-2} < \overline{z} < \frac{1}{r_{1}}$ EXA: Find $z + t$. for $X(n) = u(n)$ Solution $u(n) = \int_{1-2^{-1}}^{n} w(n) = \sqrt{u(n)}$ $u(n) < \overline{z} = \frac{1}{1-2^{-1}} \infty > \overline{z} > 1$ EVA: $X(n) = u(-n)$	$X(z) = X_1(a^{-1}z) = X_1(3z)$	
$\sum_{n=0}^{\infty} \chi(n) = \sum_{n=0}^{\infty} \chi(n) = \sum_{n=0}^{\infty} \chi(n) (z^{-1})^{n}; Y_{1} \in z^{-1} (Y_{2} \rightarrow \frac{1}{F_{2}} < z < \frac{1}{F_{1}}$ If $\chi(n) \in \mathbb{Z}, \chi(z) = Y_{1} < z < Y_{2}$ <i>then</i> $\chi(-n) \in \mathbb{Z}, \chi(z^{-1}) = \frac{1}{Y_{2}} < z < \frac{1}{F_{1}}$ EXA: Find $z = tr.$ for $\chi(n) = u(n)$ Solution $u(n) = \sum_{n=0}^{\infty} u(n)$ $u(n) \in \mathbb{Z}, \frac{1}{1-z^{-1}} \infty > z > 1$ EVA: $\chi(n) = \chi(-n)$		
$fhen x(-n) \stackrel{2}{\leftarrow} x(z^{-1}) \frac{1}{\sqrt{2}} < z < \frac{1}{\sqrt{2}}$ $EXA: Find z \rightarrow t. for \qquad x(n) = u(n)$ $Solution \qquad u(n) = ^{n} u(n) = ^{n} u(n)$ $u(n) e^{\frac{1}{2}} = \frac{1}{ 1-z^{-1} } \infty > z > $ $EXA: x'(n) = u(-n)$	$ \underbrace{\tilde{z}}_{n=-\infty}^{\infty} \times (-n) = \frac{\tilde{z}}{n} \Rightarrow \underbrace{\tilde{z}}_{n=-\infty}^{\infty} \times (m) = \underbrace{\tilde{z}}_{n=-\infty}^{\infty} \times (m) (\underline{z}^{-1})^{\overline{n}}; r_1 < \overline{z}^{-1} < r_2 \Rightarrow \frac{1}{r_2} < \overline{z} < r_2$	ι r
Solution $u(n) = ^{h} u(n) = \alpha^{h} u(n)$ $u(n) = \frac{1}{ -2^{-1} } \implies > 2 >1$ $EVA: \qquad X(n) = u(-n)$		
$u(n) = u(n) = \alpha^{n} u(n)$ $u(n) = \frac{1}{ -2^{-1} } \longrightarrow 2 > $ $EVA. \qquad X(n) = u(-n)$	XA: Find z-tr. for $X(n) = u(n)$	
$u(n) = \frac{2}{1-2^{-1}} = 0 > 2 > $	olution	
EXA: $X(n) = u(-n)$ Solution $X(z) = \frac{1}{1-z}$ Q(-(n+1)) $X(z) = \frac{1}{1-z}$ Q(-(n+1)) $Q(z) = \frac{1}{1-z}$ $Q(z) = \frac{1}{1-z}$ $Q(z) = \frac{1}{1-z}$ $Q(z) = \frac{1}{1-z}$ $Q(z) = \frac{1}{1-z}$ $Q(z) = \frac{1}{1-z}$		
Solution $X(z) = \frac{1}{1-z}$ $P < z < 1$ $(x(-n-1) < \frac{2}{2} - \frac{1}{1-z^{-1}}$ $(z < 1)$ $(\frac{2}{1-z} = \frac{1}{z^{-1}-1} - \frac{-1}{1-z^{-1}})$	$XA: \times (n) = u(-n)$	
$X(z) = \frac{1}{1-z} 0 < z < 1 \left(\frac{z}{1-z} = \frac{1}{z^{-1}-1} = \frac{-1}{1-z^{-1}}\right)$	$\frac{1}{\text{olution}} \qquad $	
-2	$X(z) = -\frac{1}{1-z} = -\frac{1}{1-z^{-1}}$	
	1-2-	

Differentiation in the z-domain:	
$\chi(z) = \sum \chi(n) \overline{z}^{n}$	
$\frac{d^{(2)}}{dz} = \sum_{n=1}^{\infty} \chi(n) z^{n-1} = 2 - z \frac{d\chi(z)}{dz} = \sum_{n=1}^{\infty} \chi(n) z^{n-1}$	
dz dz	
T(v(x), 2 + x(z)) = 2.50000	
If $x(n) \in \mathbb{Z}$, $x(z)$, some then $nx(n) \in \mathbb{Z}$, $\frac{1}{2} \times (z)$, ROC dz	
dz	
EXA: Let $x(n) = n a^n u(n)$	
Solution $a^{n}u(n) \in \mathbb{R}$ $ z > a $	
$a^{(1)} \left(-a^{-1} \right)^{(1)} \left(-a^{-1} \right)^{(1)}$	
$n a^{n} u(n) \leftarrow \frac{2}{2} - \frac{2}{d2} \left(1 - a z^{-1} \right)^{1} = -2 \left(- \left(1 - a z^{-1} \right)^{-2} \left(a z^{-2} \right) \right)$	
$n_{\mathcal{A}}(u(n) \longleftrightarrow f(n) \longleftrightarrow f(n) = \frac{1}{d_{\mathcal{I}}}(1 - \alpha_{\mathcal{I}}) - \frac{1}{d_{\mathcal{I}}}(1 - \alpha_{\mathcal{I}}) = \frac{1}{d_{\mathcal{I}}}(1 - \alpha_{\mathcal{I}}) =$	
$na^{n}u(n) \xleftarrow{z}{(1-az^{-1})^{2}}$ $ z > a $	
$nu(n) = \frac{2}{2}$ [2] > [1]	
$nu(n) \leftarrow \frac{z}{(1-z')^2} = \frac{z'}{(1-z')^2}$	
FYA. find invorce transform of	
$X(z) = log(1 + az^{-1})$; RQ: 121>1al	
$X(z) = log (1 + az^{-1})$; $R \propto z > a $ Solution	
$X(z) = log(1 + az^{-1})$; RQ: 121>1al	
$X(z) = \log (1 + a z^{-1}) ; R\alpha: z > a $ Solution $\frac{-z d X(z)}{d z} = \frac{(-z) (-a z^{-2})}{1 + a z^{-1}} = \frac{a z^{-1}}{1 + a z^{-1}} = \frac{a z^{-1}}{1 - (-a) z^{-1}}$	
$X(z) = log(1 + az^{-1})$; $R \propto z > a $ Solution	
$X(z) = \log (1 + a z^{-1}) ; R\alpha: z > a $ Solution $-z \frac{d}{dz} = \frac{(-z)(-az^{-2})}{1 + az^{-1}} = \frac{az^{-1}}{(+az^{-1})} = \frac{az^{-1}}{1 - (-a)z^{-1}}$ $a(-a)^{v}u(n) < \frac{z}{1 - (-a)z^{-1}}$	
$X(z) = \log (1 + a z^{-1}) ; R\alpha: z > a $ Solution $-z \frac{d}{dz} = \frac{(-z)(-az^{-2})}{1 + az^{-1}} = \frac{az^{-1}}{(+az^{-1})} = \frac{az^{-1}}{1 - (-a)z^{-1}}$ $a(-a)^{v}u(n) < \frac{z}{1 - (-a)z^{-1}}$	
$X(z) = \log (1 + a z^{-1}) ; R \propto \cdot z > a $ Solution $-z d X(z) = (-z) (-a z^{-2}) = \frac{a z^{-1}}{1 + a z^{-1}} = \frac{a z^{-1}}{1 - (-a) z^{-1}}$ $a(-a)^{v} u(n) < z = \frac{a}{1 - (-a) z^{-1}}$ $a(-a)^{v} u(n) < z = \frac{a}{1 - (-a) z^{-1}}$ $a(-a)^{v} u(n) < z = \frac{a}{1 - (-a) z^{-1}}$	
$X(z) = \log (1 + a z^{-1}) ; R\alpha: z > a $ Solution $-z \frac{d}{dz} = \frac{(-z)(-az^{-2})}{1 + az^{-1}} = \frac{az^{-1}}{(+az^{-1})} = \frac{az^{-1}}{1 - (-a)z^{-1}}$ $a(-a)^{v}u(n) < \frac{z}{1 - (-a)z^{-1}}$	
$X(z) = \log (1 + a z^{-1}) ; R \propto : z > a $ Solution $-z d X(z) = \frac{(-z) (-a z^{-2})}{1 + a z^{-1}} = \frac{a z^{-1}}{1 + a z^{-1}} = \frac{a z^{-1}}{1 - (-a) z^{-1}}$ $a(-a)^{n} u(n) < z > \frac{a}{1 - (-a) z^{-1}}$ $a(-a)^{n-1} u(n-1) < z > \frac{a z^{-1}}{1 + a z^{-1}}$ $nx(n)$ $s^{n} x(n) = \frac{a (-a)^{n-1} u(n-1)}{n}$	
Solution $ \begin{array}{c} -z d(\chi(z) = (-z)(-az^{-2}) = az^{-1} = az^{-1} = az^{-1} = az^{-1} = (-a)z^{-1} = az^{-1} = (-a)z^{-1} =$	
$X(z) = \log \left(1 + a z^{-1} \right) ; Roc \cdot z > a $ Solution $-z \left(X(z) = \frac{(-z) (-a z^{-2})}{1 + a z^{-1}} = \frac{a z^{-1}}{1 + a z^{-1}} = \frac{a z^{-1}}{1 - (-a) z^{-1}}$ $a(-a)^{N} u(n) < z > \frac{a}{(-(-a) z^{-1})}$ $(a(-a)^{n-1} u(n-1)) < z > \frac{a z^{-1}}{1 + a z^{-1}}$ $(a(-a)^{n-1} u(n-1)) < z > \frac{a z^{-1}}{1 + a z^{-1}}$ $(a(-a)^{n-1} u(n-1)) < z > \frac{a (-a)^{n-1} u(n-1)}{n}$ Convolution property: $X_{1}(n) < z > X_{1}(z)$	
$X(z) = \log \left(1 + a \overline{z}^{-1} \right) ; Roc. z > a $ Solution $-z d \left(X(\overline{z}) = \frac{(-z) (-a \overline{z}^{-2})}{1 + a \overline{z}^{-1}} = \frac{a \overline{z}^{-1}}{1 + a \overline{z}^{-1}} = \frac{a \overline{z}^{-1}}{1 - (-a) \overline{z}^{-1}}$ $a(-a)^{n} u(n) < \overline{z} > \frac{a}{1 - (-a) \overline{z}^{-1}}$ $a(-a)^{n-1} u(n-1) < \overline{z} > \frac{a \overline{z}^{-1}}{1 + a \overline{z}^{-1}}$ $\frac{a(-a)^{n-1} u(n-1)}{n}$ Convolution property: $X_{1}(n) < \overline{z} > X_{2}(z)$	
$X(z) = \log (1 + a z^{-1}) ; R \propto : z > a $ Solution $-z d X(z) = (-z) (-a z^{-2}) = \frac{a z^{-1}}{1 + a z^{-1}} = \frac{a z^{-1}}{1 - (-a) z^{-1}}$ $a(-a)^{Y} u(n) < z > a (-a)^{Y} u(n) < z > a (-(-a) z^{-1}) < z > a z^{-1} (a(-a)^{n-1} u(n-1)) < z > a z^{-1} (a(-a)^{n-1} u(n-1)) < z > a z^{-1} (a(-a)^{n-1} u(n-1)) < z > a (-a)^{n-1} u(n-1) N Convolution property:X_{1}(n) < z > X_{2}(z) X_{2}(n) < z > X_{2}(z) Men$	
$X(z) = \log \left(1 + a \overline{z}^{-1} \right) ; Roc. z > a $ Solution $-z d \left(X(\overline{z}) = \frac{(-z) (-a \overline{z}^{-2})}{1 + a \overline{z}^{-1}} = \frac{a \overline{z}^{-1}}{1 + a \overline{z}^{-1}} = \frac{a \overline{z}^{-1}}{1 - (-a) \overline{z}^{-1}}$ $a(-a)^{n} u(n) < \overline{z} > \frac{a}{1 - (-a) \overline{z}^{-1}}$ $a(-a)^{n-1} u(n-1) < \overline{z} > \frac{a \overline{z}^{-1}}{1 + a \overline{z}^{-1}}$ $\frac{a(-a)^{n-1} u(n-1)}{n}$ Convolution property: $X_{1}(n) < \overline{z} > X_{2}(z)$	

EXA: Find the convolution of	
$\mathcal{L}(n) = \mathcal{L} \qquad 0 \leq n \leq 5$	
$X_{1}(n) = \sum_{n=0}^{n-2} X_{2}(n) = \begin{cases} 1 & 0 \le n \le 5 \\ 0 & \text{elserbane} \end{cases}$	
Solution	
$9(n) = X_1(n) \times X_2(n)$	
$X_1(z) = 1 - 2z^2 + z^2$	
$X_{2}(z) = 1 + \overline{z}^{1} + \overline{z}^{2} + \overline{z}^{-3} + \overline{z}^{-4} + \overline{z}^{-5}$	
$= Y(z) = X_1(z) - X_2(z) = 1 - \overline{z}^1 - \overline{z}^6 + \overline{z}^{-7}$	
$p_{0} y(n) = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}$	
- T _{n=0}	
The system fn. for LTI systems:	
$Ldt x(n) : i/p x(n) \rightarrow h(n) \rightarrow y(n) \qquad fike: y(n) = \frac{1}{2}y(n-1) + x(n)$	
y(n): o/p	
h(n): impulse response.	
$y(n) = X(n) \star h(n)$	
$Y(z) = X(z) + (z) \rightarrow + (z) = \frac{Y(z)}{X(z)} \qquad \qquad$	
×(₹)	
$y(n) = \overline{Z}^{1} \left[Y(z) \right]$	
	1

Monday 3/4/13 8:02 AM	
$y(n) = - \sum_{k=1}^{k} q_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$	
Apply z-transform.	
$Y(z) = -\sum_{k=1}^{N} q_{k} z^{-k} y(z) + \sum_{k=0}^{M} b_{k} \overline{z}^{-k} x(z) \Rightarrow Y(\overline{z}) \left[1 + \sum_{k=1}^{N} q_{k} \overline{z}^{k} \right] = X(z) \sum_{k=0}^{M} b_{k} \overline{z}^{-k}$	
$\Rightarrow H(z) = \frac{\chi(z)}{\chi(z)} = \frac{\sum_{k=0}^{k} b_k z^k}{1 + \xi a_k z^k}$	
$ = \frac{1}{\chi(z)} = \frac{1}{1+\sum_{k=1}^{k} q_k z^k} $	
Poles and zeros:	
Zeros of H(z) are values of z for which x(z) = 0	
Poles of $H(z)$ are values of z for which $x(z) = \emptyset$	
Stability:	
-An LTI system is BIBO stable iff the ROC of the system fn. includes the unit circle.	
-A causal LTI system is stable if all poles of H(z) are inside the unit circle.	
h(z) =	
H(z) =	
EXA: find the convolution of	
$X_{1}(n) = a^{n}u(n), X_{2}(n) = u(n) a < $	
Solution	
$y(n) = X_1(n) \times X_2(n)$	
$Y(z) = X_1(z) X_2(z) = X_1(z) = \frac{1}{1 - az^1} z > a , X_2(z) = \frac{1}{1 - 2^1} z > 1$	
$\Rightarrow \chi(z) = \frac{1}{(1 - az^{-1})(1 - z^{-1})} = \left(\frac{1}{1 - a}\right) \left(\frac{1}{1 - z^{-1}} - \frac{a}{1 - az^{-1}}\right) \qquad Roc: z > 1$	
$Y(n) = \frac{1}{1-\alpha} \left(u(n) - \alpha (\alpha)^{n} u(n) \right)$	
EXA: det. The system fn. H(z) and the impulse response h(n) of the system described by:-	
$y(n) = \frac{1}{2} y(n-1) + \frac{1}{2} x(n)$	
Solution	
Take Z- transform	
$\frac{\gamma(z)}{z} = \frac{1}{2} \frac{z}{z} \frac{\gamma(z)}{z} + 2\chi(z) = \frac{\gamma(z)}{z} \left[1 - \frac{1}{2} \frac{z}{z}\right] = 2\chi(z)$	
$\Rightarrow H(z) = \frac{\gamma(z)}{\chi(z)} = \frac{2}{1 - \frac{1}{2}z^{-1}}, h(n) = \overline{Z}\left[H(z)\right] = 2\left(\frac{1}{z}\right)^{n}u(n).$	

EXA: find the z-transform of:- $X(n) = (n-2) (0.5)^{n-2} \cos(\frac{\pi}{2}(n-2)) u(n-2)$ Solution $\frac{h \ 0.5^{n} \ Cos(\frac{\pi}{3}h)u(n)}{1-2\times 0.5\times (\cos\frac{\pi}{3})z^{1}} = \frac{1-0.25z^{1}}{1-0.5z^{2}} |z| > \frac{1}{2}$ $h \quad 0.5 \quad \cos[\frac{\pi}{3}h]u(n) \stackrel{2}{\leftarrow} -\frac{3}{42} \left(\right) = \frac{0.25 \, \overline{z}^{-3} - 0.5 \, \overline{z}^{-4} + 0.9625 \overline{z}^{-5}}{1 - \overline{z}^{-1} + 0.25 \overline{z}^{-2} - 0.25 \, \overline{z}^{-3} + 0.9625 \overline{z}^{-4}}$ $X(z) = z^{-2} \left[-2 \frac{d}{dz} \left(\frac{1 - 0.25 \bar{z}^{1}}{\frac{1 - 0.5 \bar{z}^{1}}{z} + 0.25 \bar{z}^{2}} \right) \right]$ EXA: find z-transform & ROC of:- $X(n) = (a^n + a^n) u(n)$ Solution \times (n)= $a^{n}u(n)$ + $\left(\frac{1}{a}\right)^{n}u(n)$ $X(2) = \frac{1}{1-a^2} + \frac{1}{1-\frac{1}{2}a^2}$, ROC: $|2| > mak \left\{ |a|, |\frac{1}{4}| \right\}$ EXA: $\frac{1}{2} (n^2 + n) (\frac{1}{2})^{n-1} u(n-1)$ Solution $\left(\frac{1}{3}\right)^{n} u(n) \xleftarrow{2}{2} \frac{1}{1-\frac{1}{3}z^{1}} \qquad |z| > \frac{1}{3}$ $\left(\frac{1}{3}\right)^{h-1}u(n-1) \xrightarrow{2} \frac{z^{-1}}{1-\frac{1}{2}z^{-1}}$ $|z| > \frac{1}{3}$ $n\left(\frac{1}{3}\right)^{n-1}u(n-1) \in \mathbb{Z}, \mathbb$ $n^{2}\left(\frac{1}{3}\right)^{n-1}u(n-1) \xrightarrow{z} - z \int_{dz} \left[\frac{z^{1}}{(1-\frac{1}{3}z^{1})^{2}}\right] = \frac{z^{1}+\frac{1}{3}z^{2}}{(1-\frac{1}{3}z^{-1})^{3}}$ $\Rightarrow X(z) = \frac{1}{2} \left[\frac{\overline{z}'}{(1 - \frac{1}{3} \overline{z'})^2} + \frac{\overline{z}' + \frac{1}{3} \overline{z}^2}{(1 - \frac{1}{3} \overline{z'})^3} \right] , \quad \text{Roc} : |z| > \frac{1}{3}$ EXA: $\chi(n) = \begin{cases} \left(\frac{1}{3}\right)^n & n \ge 0 \\ \left(\frac{1}{3}\right)^{-n} & n < 0 \end{cases}$ $\chi(n)$ Solution $\times (n) = \left(\frac{1}{3}\right)^{n} u(n) + 2^{n} u(-n-1)$ $X(z) = \frac{1}{1 - \frac{1}{3}z^{1}} - \frac{1}{1 - zz^{-1}}, Roc: \frac{1}{3} < |z| < 2$

-	ind z-transform of:-
	$\chi(n) = (n+1) \left(\frac{1}{3}\right)^{n-2} u(n+3)$
Solutio	
~	$(n) = (n+1) \left(\frac{1}{2}\right)^{5} \left(\frac{1}{2}\right)^{n+3} u(n+3)$
	$(n) = (n+1)(\overline{z}) (\overline{z}) (\overline{z})$
, n	
$\left(\frac{1}{3}\right)u$	$(n) \xleftarrow{2} \frac{1}{ -\frac{1}{2}z^{-1}} \qquad z > \frac{1}{3} \implies (\frac{1}{3})^{n+3} u(n+3) \xleftarrow{2} \frac{z^{3}}{ -\frac{1}{2}z^{-1}} \qquad z > \frac{1}{3}$
X (z	$ = \frac{3^{5}}{1 - \frac{1}{2}z^{1}} + \frac{(-z)}{4z} \frac{\partial}{\partial z} \left(\frac{z^{3}}{1 - \frac{1}{3}z^{-1}} \right) , Roc: z > \frac{1}{3} . $
	=
	$\begin{bmatrix} 1 - \frac{1}{3}z^{-1} \\ - \frac{1}{3}z^{-1} \end{bmatrix}$
	ion of z-transform:
1) cont	our integration:-
	$\chi(n) = \int \chi(z) z^{n-1} dz$ for Integration over a closed path that
	$X(n) = \frac{1}{2\pi j} \oint X(z) z^{n-1} z \qquad ; \qquad \oint Integration over a closed path that encloses the origin and lies within$
	ROC of X(z).
~) I
	division. Tial fraction and table look-up.
<i>3)</i> 1 u 1	
T	
Long a	ivision:
Long a	
Long a	ivision: $X(z) = \frac{P_1(z)}{P_2(z)} = \sum C_n z^{-n}$
	$X(z) = \frac{P_1(z)}{P_2(z)} = \sum C_n z^{-n}$
	$X(z) = \frac{P_1(z)}{P_2(z)} = \sum C_n z^{-n}$ ind the inverse transform for:-
	$X(z) = \frac{P_1(z)}{P_2(z)} = \sum C_n z^{-n}$
EXA: f	$X(z) = \frac{P_{1}(z)}{P_{2}(z)} = \sum C_{n} z^{-n}$ End the inverse transform for:- $X(z) = \frac{1}{1 - 1.5 z^{1} + 0.5 z^{2}}$
EXA:f	$X(z) = \frac{P_{1}(z)}{P_{2}(z)} = \sum C_{n} z^{-n}$ End the inverse transform for:- $X(z) = \frac{1}{1 - 1.5 z^{1} + 0.5 z^{2}}$ $P_{C}: z > 1$
EXA:f	$X(z) = \frac{P_{1}(z)}{P_{2}(z)} = \sum C_{n} z^{-n}$ End the inverse transform for:- $X(z) = \frac{1}{1 - 1.5 z^{1} + 0.5 z^{2}}$ $P_{C}: z > 1$
EXA:f	$X(z) = \frac{P_{1}(z)}{P_{2}(z)} = \Sigma C_{n} z^{-n}$ End the inverse transform for:- $X(z) = \frac{1}{1 - 1.5 z^{1} + p.5 z^{2}}$ Dc: z > 1, b) ROC: z < 0.5 $I + \frac{3}{2} z^{-1} + \frac{7}{4} z^{-2}$ $I + \frac{3}{2} z^{-1} + \frac{7}{4} z^{-2}$ $I = \frac{1}{1 - 1.5 z^{-1}}$
a) qa Solutia	$X(z) = \frac{P_{1}(z)}{P_{2}(z)} = \sum C_{n} z^{-n}$ ind the inverse transform for:- $X(z) = \frac{1}{1 - 1.5 z^{1} + 0.5 z^{2}}$ $D_{C}: z > 1, b) ROC: z < 0.5$ $I + \frac{3}{2} z^{1} + \frac{7}{4} z^{-2}$ $I - \frac{3}{2} z^{1} + \frac{1}{2} z^{2}$ $I - \frac{1}{2} z^{1} + \frac{1}{2} z^{2}$
a) qa Solutia	$X(z) = \frac{P_{1}(z)}{P_{2}(z)} = \Sigma C_{n} z^{-n}$ ind the inverse transform for:- $X(z) = \frac{1}{1 - 1.5 z^{1} + 0.5 z^{2}}$ DC: $ z > 1$, b) ROC: $ z < 0.5$ m $\frac{1 + \frac{3}{2} z^{-1} + \frac{7}{4} z^{-2}}{1 - \frac{1}{2} z^{-1} + \frac{1}{2} z^{-2}}$ (usal:- (normal order)) $\frac{1 - \frac{3}{2} z^{-1} + \frac{1}{2} z^{-2}}{\frac{1 - \frac{2}{2} z^{-1} + \frac{1}{2} z^{-2}}{\frac{2}{2} z^{-1} - \frac{1}{2} z^{-2}}}$
a) qa Solutia	$X(z) = \frac{P_{1}(z)}{P_{z}(z)} = \sum C_{n} z^{-n}$ ind the inverse transform for:- $X(z) = \frac{1}{1 - 1.5 z^{1} + 0.5 z^{2}}$ DC: $ z >1$, b) ROC: $ z <0.5$ m $\frac{1 - \frac{3}{2} z^{1} + \frac{3}{4} z^{-2}}{1 - \frac{1}{2} z^{-1} + \frac{1}{2} z^{-2}}$ (usaf:- (normal order)) $\frac{1 - \frac{3}{2} z^{1} + \frac{1}{2} z^{-2}}{1 - \frac{1 - \frac{2}{2} z^{1} + \frac{1}{2} z^{-2}}{2}}$ (z) = $1 + \frac{2}{2} z^{1} + \frac{\pi}{4} z^{2} + \dots = \sum X(n) z^{n}$ $\frac{1}{2} z^{1} - \frac{9}{4} z^{2} + \frac{3}{4} z^{-3}$
a) & Solutio a) c.	$X(z) = \frac{P_{1}(z)}{P_{2}(z)} = \sum C_{n} z^{-n}$ ind the inverse transform for:- $X(\overline{z}) = \frac{1}{1 - 1.5 z^{1} + 0.5 \overline{z}^{n}}$ $DC: z > 1, b) ROC: z < 0.5$ $(usql:- (normal order)) \frac{1 - \frac{3}{2} \overline{z}^{1} + \frac{1}{2} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \frac{1}{2} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \frac{1}{2} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \overline{z}^{2} + \frac{\pi}{4} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \overline{z}^{2} + \frac{\pi}{4} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2} + \cdots}{1 - \frac{\pi}{2} \overline{z}^{1} + \frac{1}{2} \overline{z}^{2}} = \frac{\pi}{4} \overline{z}^{2} + \frac{\pi}{4} \overline{z}^{2}$
a) & Solutio a) ca	$X(z) = \frac{P_{1}(z)}{P_{2}(z)} = \sum C_{n} z^{-n}$ ind the inverse transform for:- $X(\overline{z}) = \frac{1}{1 - 1.5 z^{1} + 0.5 \overline{z}^{n}}$ $DC: z > 1, b) ROC: z < 0.5$ $(usql:- (normal order)) \frac{1 - \frac{3}{2} \overline{z}^{1} + \frac{1}{2} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \frac{1}{2} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \frac{1}{2} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \overline{z}^{2} + \frac{\pi}{4} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \overline{z}^{2} + \frac{\pi}{4} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2} + \cdots}{1 - \frac{\pi}{2} \overline{z}^{1} + \frac{1}{2} \overline{z}^{2}} = \frac{\pi}{4} \overline{z}^{2} + \frac{\pi}{4} \overline{z}^{2}$
a) & Solutio a) c.	$X(z) = \frac{P_{1}(z)}{P_{2}(z)} = \sum C_{n} z^{n}$ ind the inverse transform for:- $X(z) = \frac{1}{1 - 1.5 z^{1} + 0.5 z^{2}}$ $D_{C}: z > 1, b) ROC: z < 0.5$ $D_{R} = \frac{1}{1 - \frac{1}{5 z^{1} + 0.5 z^{2}}}$ $Uusql:- (normal order) = \frac{1 - \frac{3}{2} z^{1} + \frac{1}{2} z^{2}}{1 - \frac{1}{2} z^{2} + \frac{1}{2} z^{2}}$ $\frac{1 - \frac{2}{2} z^{1} + \frac{1}{2} z^{2}}{\frac{1}{2} z^{2} + \frac{1}{2} z^{2}}$ $\frac{1 - \frac{2}{2} z^{1} + \frac{1}{2} z^{2}}{\frac{1}{2} z^{2} + \frac{1}{2} z^{2}}$ $\frac{1 - \frac{2}{2} z^{1} + \frac{1}{2} z^{2}}{\frac{1}{2} z^{2} + \frac{1}{2} z^{2}}$ $\frac{1 - \frac{2}{2} z^{1} - \frac{1}{2} z^{2}}{\frac{1}{2} z^{2} + \frac{1}{2} z^{2}}$ $\frac{1 - \frac{2}{2} z^{1} - \frac{1}{2} z^{2}}{\frac{1}{2} z^{2} + \frac{1}{2} z^{2}}$
a) & Solutio a) c.	$X(z) = \frac{P_{1}(z)}{P_{2}(z)} = \sum C_{n} z^{-n}$ ind the inverse transform for:- $X(\overline{z}) = \frac{1}{1 - 1.5 z^{1} + 0.5 \overline{z}^{n}}$ $DC: z > 1, b) ROC: z < 0.5$ $(usql:- (normal order)) \frac{1 - \frac{3}{2} \overline{z}^{1} + \frac{1}{2} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \frac{1}{2} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \frac{1}{2} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \overline{z}^{2} + \frac{\pi}{4} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \overline{z}^{2} + \frac{\pi}{4} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2} + \cdots}{1 - \frac{\pi}{2} \overline{z}^{1} + \frac{1}{2} \overline{z}^{2}} = \frac{\pi}{4} \overline{z}^{2} + \frac{\pi}{4} \overline{z}^{2}$
a) & Solutio a) ca	$X(z) = \frac{P_{1}(z)}{P_{2}(z)} = \sum C_{n} z^{-n}$ ind the inverse transform for:- $X(\overline{z}) = \frac{1}{1 - 1.5 z^{1} + 0.5 \overline{z}^{n}}$ $DC: z > 1, b) ROC: z < 0.5$ $(usql:- (normal order)) \frac{1 - \frac{3}{2} \overline{z}^{1} + \frac{1}{2} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \frac{1}{2} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \frac{1}{2} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \overline{z}^{2} + \frac{\pi}{4} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \overline{z}^{2} + \frac{\pi}{4} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2} + \cdots}{1 - \frac{\pi}{2} \overline{z}^{1} + \frac{1}{2} \overline{z}^{2}} = \frac{\pi}{4} \overline{z}^{2} + \frac{\pi}{4} \overline{z}^{2}$
a) & Solutio a) ca	$X(z) = \frac{P_{1}(z)}{P_{2}(z)} = \sum C_{n} z^{-n}$ ind the inverse transform for:- $X(\overline{z}) = \frac{1}{1 - 1.5 z^{1} + 0.5 \overline{z}^{n}}$ $DC: z > 1, b) ROC: z < 0.5$ $(usql:- (normal order)) \frac{1 - \frac{3}{2} \overline{z}^{1} + \frac{1}{2} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \frac{1}{2} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \frac{1}{2} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \overline{z}^{2} + \frac{\pi}{4} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \overline{z}^{2} + \frac{\pi}{4} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2} + \cdots}{1 - \frac{\pi}{2} \overline{z}^{1} + \frac{1}{2} \overline{z}^{2}} = \frac{\pi}{4} \overline{z}^{2} + \frac{\pi}{4} \overline{z}^{2}$
a) € a) € Solutio a) c.	$X(z) = \frac{P_{1}(z)}{P_{2}(z)} = \sum C_{n} z^{-n}$ ind the inverse transform for:- $X(\overline{z}) = \frac{1}{1 - 1.5 z^{1} + 0.5 \overline{z}^{n}}$ $DC: z > 1, b) ROC: z < 0.5$ $(usql:- (normal order)) \frac{1 - \frac{3}{2} \overline{z}^{1} + \frac{1}{2} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \frac{1}{2} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \frac{1}{2} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \overline{z}^{2} + \frac{\pi}{4} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \overline{z}^{2} + \frac{\pi}{4} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2} + \cdots}{1 - \frac{\pi}{2} \overline{z}^{1} + \frac{1}{2} \overline{z}^{2}} = \frac{\pi}{4} \overline{z}^{2} + \frac{\pi}{4} \overline{z}^{2}$
a) & Solutio a) c.	$X(z) = \frac{P_{1}(z)}{P_{2}(z)} = \sum C_{n} z^{-n}$ ind the inverse transform for:- $X(\overline{z}) = \frac{1}{1 - 1.5 z^{1} + 0.5 \overline{z}^{n}}$ $DC: z > 1, b) ROC: z < 0.5$ $(usql:- (normal order)) \frac{1 - \frac{3}{2} \overline{z}^{1} + \frac{1}{2} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \frac{1}{2} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \frac{1}{2} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \overline{z}^{2} + \frac{\pi}{4} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2}}{1 - \frac{1}{2} \overline{z}^{2}} = \frac{1}{2} \overline{z}^{2} + \frac{\pi}{4} \overline{z}^{2}$ $(z) = \frac{1 + \frac{2}{2} \overline{z}^{1} + \frac{\pi}{4} \overline{z}^{2} + \cdots}{1 - \frac{\pi}{2} \overline{z}^{1} + \frac{1}{2} \overline{z}^{2}} = \frac{\pi}{4} \overline{z}^{2} + \frac{\pi}{4} \overline{z}^{2}$

b) |z| < 0.5 (Long division in reverse order). $2z^{2} + 6z^{3} + 14z^{4} + \dots - \frac{1}{2}z^{2} - \frac{2}{5}z^{1} + 1$ $| - 3z + 2z^{2}$ 32 -22 $3z - 9z^{2} + 6z^{3}$ $7z^{2} - 6z^{3}$ $s_{0} \times (n) = \begin{cases} ---, 14, 6, 2, 0, 0 \\ \eta_{n=0} \end{cases}$ ~" u (n) < => | |- ~z^ $n \alpha^{n} u(n) \leftarrow \frac{2}{2} = \frac{\alpha z^{-1}}{(1 - \alpha z^{-1})^2}$

Wednesday 3/6/13 8:25 AM

--Inverse Z-transtorm by partial fraction $\chi(z) = z^{-6} + z^{-7}$ $1 + z^{-1} + z^{-2}$ -- $\frac{X(z) = N(z)}{D(z)} = \frac{b_0 + b_1 \overline{z}^{-1} + \dots + b_M \overline{z}^{-M}}{1 + a_1 \overline{z}^{-1} + a_2 \overline{z}^{-2} + \dots + a_N \overline{z}^{-M}}$ $X(z) = z^{-6} (1+z^{-1})$ $1+z^{-1}+z^{-2}$ 9 9 0 if anto -M<N X(Z) jr proper $X(z) = b_0 + b_1 z^{-1} + \dots + b_M z^{-M} + \frac{z^N}{z^N}$ --X (Z) is "proper " D Maltiply hum and en by ZW to eliminate the Prome The if x(Z) is proper (M7N) we perform long divition in reverse order · ex $X(z) = b_0 z^{N+} b_1 z^{N-1} + \dots + b_M z^{N-M}$ $z^{N+} a_1 z^{N-1} + \dots + a_N$ $X(z) = 1 + 2 z^{-1} + \frac{1}{6} + \frac{1}{3} z^{-2}$ 1+5-2-1+ 1-20 2) X(Z) = b= Z^{N-1} + ----+ bM Z^{M-M-} = Z^N+a_1Z^{N-1}+---+ aN (2-P.) (2-P.) (2-P.) (2-P.) $\begin{array}{c} \hline (\overline{mn^{\prime}}) & 2 \overline{z}^{-1} + 1 \\ \hline & \overline{z}^{-1} \overline$ $\frac{1+\frac{1}{2}}{\frac{1+\frac{1}{2}}{2}} + \frac{1}{2} + \frac{$ always proper 1 2-3+10 2-2+2 Z-1 Case I (Distinct Poles) 5(n)+25(n-1) [1 2] $\frac{\chi(3) = A_1}{z} + \frac{A_2}{(z - P_1)} + \frac{A_2}{(z - P_2)} + \frac{A_N}{(z - P_n)}$ MEN LE $A_{k} = (\overline{z} - \rho_{k}) \frac{\chi(z)}{\chi(z)}$ 9 7=PK Five Apple A 9

EXA: find PF expansion of:-

 $X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$

Solution

$$\frac{1-\chi(z)=-z^2}{z^2-1.5z+0.5}$$

$$\frac{2}{2} - \frac{\chi(z)}{z} = \frac{z}{z^2 - 1.5z + 0.5} = \frac{z}{(z - 1)(z - 0.5)}$$

$$\frac{\chi(z)}{z} = \frac{A_1}{z-1} + \frac{A_2}{z-r}$$

$$A_{1=}(2-1) \times (2) = \frac{2}{2} = \frac{2}{2-0.5} = \frac{1}{2-0.5} = 2$$

 $\frac{q_{n}^{n}}{2} = \frac{2}{2-1} = \frac{1}{2-0.5}$

EXA: find PFE of:-

$$X(z) = \frac{1+z^{-1}}{1-z^{-1}+0.5z^{-2}}$$

Solution

$$\frac{X(z)}{z^{2}-z+0.5} = \frac{Z^{2}+Z}{z^{2}-z+0.5} = \frac{Z^{2}+1}{z^{2}-z+0.5} = \frac{Z^{2}+1}{(z-r_{1})(z-r_{2})} = \frac{A_{1}}{z-r_{1}} + \frac{A_{2}}{Z-r_{2}}$$

$$l_1 = \frac{1}{2} + j\frac{1}{2}$$
, $P_2 = \frac{1}{2} - j\frac{1}{2}$

$$A_{I} = (z - P_{I}) \frac{X(z)}{z} = \frac{z + l}{z - l} = \frac{\frac{1}{2} + j\frac{1}{2} + l}{\frac{1}{2} + j\frac{1}{2} - j\frac{1}{2}} = \frac{\frac{1}{2} - j\frac{3}{2}}{\frac{1}{2} - j\frac{1}{2} - j\frac{1}{2}}$$

$$A_{2} = (\overline{z} - \beta_{z}) \frac{X(\overline{z})}{\overline{z}} = \frac{\overline{z} + 1}{\overline{z} - \beta_{1}} = \frac{1}{\overline{z}} + \frac{3}{\overline{z}}$$

Case-II: Repeated poles
EXA:
$$\chi(z) = \frac{1}{(1+z^2)(1-z^{-1})^{2}}$$

Solution
 $\chi(z) = \frac{z^3}{(z+1)(z-1)^{2}} \Rightarrow \frac{\chi(z)}{z} = \frac{z^2}{(z+1)(z-1)^{2}} = \frac{A_1}{2+1} + \frac{A_2}{z-1} + \frac{A_3}{(z-1)^{2}}$
 $\frac{1}{(z+1)(z-1)^{1}} = \frac{A_1}{z+1} + \frac{A_2}{(z-1)^{2}} + \frac{A_3}{(z-1)^{2}} + \dots + \frac{A_{L_{11}}}{(z-1)^{L}}$
 $A_1 = (z_{11})\frac{\chi(z)}{z}\Big|_{z=1} = \frac{z^2}{(z-1)^{2}}\Big|_{z=1} = \frac{1}{2}$
 $A_2 = \frac{z^2}{z+1} = \frac{A_1(z-1)^2}{z+1} + A_2(z-1) + A_3$
 $\frac{A}{4z} = \frac{z^2}{(z+1)}\Big|_{z=1} = (\frac{2A(z-1)}{z}) + A_2(z-1) + A_3$
 $A_2 = \frac{d}{4z}\Big[(\frac{z^2}{2+1})\Big]_{z=1} = (\frac{z+1}{2})(\frac{z}{z-1}-z^{2})$
 $A_2 = \frac{d}{4z}\Big[(\frac{z^2}{2+1})\Big]_{z=1} = (\frac{z+1}{(z-1)^2} + \frac{A_2}{(z-1)^2}\Big|_{z=1} = \frac{3}{4}$

$$\frac{1}{2} = \frac{1}{2} + \frac{3}{4} + \frac{1}{2} + \frac{1}$$

nversion step: Distinct poles:- $\frac{\chi(z)}{z} = \frac{A_1}{z - \rho_1} + \frac{A_2}{z - \rho_2} + \dots + \frac{A_N}{z - \rho_N}$ $\frac{\chi(z)}{z} = \frac{A_1}{1 - \rho_1 z^2} + \frac{A_2}{1 - \rho_2 z^2} + \dots + \frac{A_N}{1 - \rho_N z^2}$ $\frac{\overline{\chi}^{-1} \left[\frac{1}{1 - \rho_N z^{-1}} \right] = \begin{cases} (P_R)^n u(n) & \text{If } ROC : \overline{\chi} > P_R \\ -(P_R)^n u(-n-1) & \varphi & \varphi & \overline{\chi} < P_R \end{cases}$ Multiple poles:- $\overline{\chi}^{-1} \left[\frac{P z^{-1}}{(1 - P z^{-1})^2} \right] = \begin{cases} n \rho^n u(n) & \text{If } ROC : \overline{\chi} > P_R \\ -n \rho^n u(-n-1) & \varphi & \varphi & \overline{\chi} < P_R \end{cases}$ EXA: find inverse tr. of:- $\chi(\overline{\chi}) = \frac{1}{1 - 1.5 z^{-1} + 0.5 z^{-2}} \longrightarrow a) \overline{\chi} > 1, b) \overline{\chi} < 0.5, c) \rho.5 < \overline{\chi} < 1$ folution $\frac{\chi(z)}{z} = \frac{2}{2 - 1} - \frac{1}{z - \rho.5} \implies \chi(\overline{z}) = \frac{1}{1 - \rho.5 z^{-1}}$
$\frac{\chi(z)}{z} = \frac{A_1}{z - \rho_1} + \frac{A_2}{z - \rho_2} + \dots + \frac{A_N}{z - \rho_N}$ $\frac{\chi(z)}{z} = \frac{A_1}{1 - \rho_1 z} + \frac{A_2}{1 - \rho_2 z^2} + \dots + \frac{A_N}{1 - \rho_N z^n}$ $\frac{\overline{\chi}^{-1} \left[\frac{1}{1 - \rho_N z^{-1}} \right] = \begin{cases} (P_k)^n u(n) & \text{if } POC : \overline{Z} > P_k \\ (-(P_k)^n u(-n-1) & \sim & \sim & z < P_k \end{cases}$ Multiple poles:- $\overline{\chi}^{-1} \left[\frac{\rho z^{-1}}{(1 - \rho z^{-1})^2} \right] = \begin{cases} n \rho^n u(n) & \text{if } POC : \overline{Z} > P_k \\ (-n \rho^n u(-n-1) & \sim & \sim & z < P_k \end{cases}$ EXA: find inverse tr. of:- $\chi(\overline{z}) = \frac{1}{1 - 1.5 z^{-1} \pm 0.5 z^{-2}} \rightarrow a) \overline{z} > 1, b) \overline{z} < 0.5, c) \rho_5 < \overline{z} < 1$
$X(z) = \frac{A_{1}}{1-\rho_{x}z^{2}} + \frac{A_{z}}{1-\rho_{x}z^{2}} + \dots + \frac{A_{N}}{1-\rho_{N}z^{2}}$ $\overline{Z}^{1}\begin{bmatrix} \frac{1}{1-\rho_{x}z^{1}}\end{bmatrix} = \begin{cases} (\rho_{k})^{N}u(n) & \text{if } \rho_{0}c: z > \rho_{k} \\ -(\rho_{k})^{N}u(-n-1) & a > a > z < \rho_{k} \end{cases}$ $Multiple poles:-$ $\overline{Z}^{1}\begin{bmatrix} \frac{\rho_{z^{-1}}}{(1-\rho_{z^{-1}})^{2}}\end{bmatrix} = \begin{cases} n\rho^{N}u(n) & \text{if } \rho_{0}c: z > \rho_{k} \\ -n\rho^{N}u(-n-1) & a > a > z < \rho_{k} \end{cases}$ $ZXA: find inverse tr. of:-$ $X(z) = \frac{1}{1-1.5z^{-1}+0.5z^{-2}} \rightarrow a) z > 1, b) z < 0.5, c) 0.5 z < 1$ Follution $\frac{X(z)}{2} = \frac{2}{2-1} - \frac{1}{z-0.5} \rightarrow X(z) = \frac{1}{1-0.5z^{-1}}$
$X(z) = \frac{A_{1}}{1-\rho_{x}z^{2}} + \frac{A_{z}}{1-\rho_{x}z^{2}} + \dots + \frac{A_{N}}{1-\rho_{N}z^{2}}$ $\overline{Z}^{1}\begin{bmatrix} \frac{1}{1-\rho_{x}z^{1}}\end{bmatrix} = \begin{cases} (\rho_{k})^{N}u(n) & \text{if } \rho_{0}c: z > \rho_{k} \\ -(\rho_{k})^{N}u(-n-1) & a > a > z < \rho_{k} \end{cases}$ $Multiple poles:-$ $\overline{Z}^{1}\begin{bmatrix} \frac{\rho_{z^{-1}}}{(1-\rho_{z^{-1}})^{2}}\end{bmatrix} = \begin{cases} n\rho^{N}u(n) & \text{if } \rho_{0}c: z > \rho_{k} \\ -n\rho^{N}u(-n-1) & a > a > z < \rho_{k} \end{cases}$ $ZXA: find inverse tr. of:-$ $X(z) = \frac{1}{1-1.5z^{-1}+0.5z^{-2}} \rightarrow a) z > 1, b) z < 0.5, c) 0.5 z < 1$ Follution $\frac{X(z)}{2} = \frac{2}{2-1} - \frac{1}{z-0.5} \rightarrow X(z) = \frac{1}{1-0.5z^{-1}}$
$\overline{Z} \begin{bmatrix} \frac{1}{1 - \rho_{\mu} z^{-1}} \end{bmatrix} = \begin{cases} (\rho_{\mu})^{n} u(n) & \text{if } \rho_{0} c : \overline{Z} > \rho_{\mu} \\ (-(\rho_{\mu})^{n} u(-n-1) & z & z < \rho_{\mu} \end{cases}$ $Multiple poles:-$ $\overline{Z} \begin{bmatrix} \rho z^{-1} \\ (1 - \rho z^{-1})^{2} \end{bmatrix} = \begin{cases} n \rho^{n} u(n) & \text{if } \rho_{0} c : \overline{Z} > \rho_{\mu} \\ (-n \rho^{n} u(-n-1) & z & z < \rho_{\mu} \end{cases}$ $ZXA: find inverse tr. of:-$ $X (\overline{z}) = \frac{1}{1 - 1.5 z^{-1} + 0.5 z^{-2}} \longrightarrow a) \overline{z} > 1, b) \overline{z} < 0.5, c) 0.5 \overline{z} < 1$ $\frac{X(z)}{z} = \frac{1}{z - 0.5} \longrightarrow X(z) = \frac{1}{1 - 0.5 z^{-1}}$
$\overline{Z} \begin{bmatrix} \frac{1}{1 - \rho_{\mu} z^{-1}} \end{bmatrix} = \begin{cases} (\rho_{\mu})^{n} u(n) & \text{if } \rho_{0} c : \overline{Z} > \rho_{\mu} \\ (-(\rho_{\mu})^{n} u(-n-1) & z & z < \rho_{\mu} \end{cases}$ $Multiple poles:-$ $\overline{Z} \begin{bmatrix} \rho z^{-1} \\ (1 - \rho z^{-1})^{2} \end{bmatrix} = \begin{cases} n \rho^{n} u(n) & \text{if } \rho_{0} c : \overline{Z} > \rho_{\mu} \\ (-n \rho^{n} u(-n-1) & z & z < \rho_{\mu} \end{cases}$ $ZXA: find inverse tr. of:-$ $X (\overline{z}) = \frac{1}{1 - 1.5 z^{-1} + 0.5 z^{-2}} \longrightarrow a) \overline{z} > 1, b) \overline{z} < 0.5, c) 0.5 \overline{z} < 1$ $\frac{X(z)}{z} = \frac{1}{z - 0.5} \longrightarrow X(z) = \frac{1}{1 - 0.5 z^{-1}}$
$ \frac{\overline{Z}^{1}\left[\frac{\rho_{\overline{z}^{-1}}}{(1-\rho_{\overline{z}^{-1}})^{2}}\right] = \begin{cases} n \rho^{n} u(n) & \text{if } ROC: \overline{z} > \rho_{k} \\ (-n \rho^{n} u(-n-1) & \varphi & \varphi & \overline{z} < \rho_{k} \end{cases} $ $ \frac{ZXA: find inverse tr. of:-}{1-1.5 \overline{z}^{-1} + 0.5 \overline{z}^{-2}} \longrightarrow a) \overline{z} > 1, b) \overline{z} < 0.5, c) 0.5 \overline{z} < 1 $ Folution $ \frac{\chi(\overline{z})}{\overline{z}} = \frac{2}{\overline{z}-1} - \frac{1}{\overline{z}-0.5} \implies \chi(\overline{z}) = \frac{1}{1-0.5 \overline{z}^{-1}} $
$ \frac{\overline{Z}^{1}\left[\frac{\rho_{\overline{z}^{-1}}}{(1-\rho_{\overline{z}^{-1}})^{2}}\right] = \begin{cases} n \rho^{n} u(n) & \text{if } ROC: \overline{z} > \rho_{k} \\ (-n \rho^{n} u(-n-1) & \varphi & \varphi & \overline{z} < \rho_{k} \end{cases} $ $ \frac{ZXA: find inverse tr. of:-}{1-1.5 \overline{z}^{-1} + 0.5 \overline{z}^{-2}} \longrightarrow a) \overline{z} > 1, b) \overline{z} < 0.5, c) 0.5 \overline{z} < 1 $ Folution $ \frac{\chi(\overline{z})}{\overline{z}} = \frac{2}{\overline{z}-1} - \frac{1}{\overline{z}-0.5} \implies \chi(\overline{z}) = \frac{1}{1-0.5 \overline{z}^{-1}} $
$ \frac{\overline{Z}^{1}\left[\frac{\rho_{\overline{z}^{-1}}}{(1-\rho_{\overline{z}^{-1}})^{2}}\right] = \begin{cases} n \rho^{n} u(n) & \text{if } ROC: \overline{z} > \rho_{k} \\ (-n \rho^{n} u(-n-1) & \varphi & \varphi & \overline{z} < \rho_{k} \end{cases} $ $ \frac{ZXA: find inverse tr. of:-}{1-1.5 \overline{z}^{-1} + 0.5 \overline{z}^{-2}} \longrightarrow a) \overline{z} > 1, b) \overline{z} < 0.5, c) 0.5 \overline{z} < 1 $ Folution $ \frac{\chi(\overline{z})}{\overline{z}} = \frac{2}{\overline{z}-1} - \frac{1}{\overline{z}-0.5} \implies \chi(\overline{z}) = \frac{1}{1-0.5 \overline{z}^{-1}} $
$\overline{Z}^{-1} \begin{bmatrix} \rho z^{-1} \\ (1 - \rho z^{-1})^2 \end{bmatrix} = \begin{cases} n \rho^n u(n) & \text{if } Roc: \overline{Z} > \rho_k \\ (-n \rho^n u(-n-1) & \rho & \rho & \overline{z} < \rho_k \end{cases}$ $EXA: find inverse tr. of:-$ $X(\overline{z}) = \frac{1}{1 - 1.5 z^{-1} + 0.5 z^{-2}} \longrightarrow a) \overline{z} > 1, b) \overline{z} < 0.5, c) \rho.5 < \overline{z} < 1$ $Folution$ $\frac{X(\overline{z})}{\overline{z}} = \frac{2}{-1} - \frac{1}{\overline{z} - \rho.5} \implies X(\overline{z}) = \frac{1}{1 - \rho.5 z^{-1}}$
$XA: find inverse tr. of:- X(z) = \frac{1}{1 - 1.5 z^{-1} + 0.5 z^{-2}} \longrightarrow a) z > 1, b) z < 0.5, c) z < 1 Folution\frac{X(z)}{z} = \frac{2}{z - 1} - \frac{1}{z - 0.5} \implies X(z) = \frac{1}{1 - 0.5 z^{-1}}$
$XA: find inverse tr. of:- X(z) = \frac{1}{1 - 1.5 z^{-1} + 0.5 z^{-2}} \longrightarrow a) z > 1, b) z < 0.5, c) z < 1 Folution\frac{X(z)}{z} = \frac{2}{z - 1} - \frac{1}{z - 0.5} \implies X(z) = \frac{1}{1 - 0.5 z^{-1}}$
$XA: find inverse tr. of:- X(z) = \frac{1}{1 - 1.5 z^{-1} + 0.5 z^{-2}} \longrightarrow a) z > 1, b) z < 0.5, c) z < 1 Folution\frac{X(z)}{z} = \frac{2}{z - 1} - \frac{1}{z - 0.5} \implies X(z) = \frac{1}{1 - 0.5 z^{-1}}$
$X(z) = \frac{1}{1 - 1.5 z^{-1} + 0.5 z^{-2}} \longrightarrow a) z > 1, b) z < 0.5, c) 0.5< z < 1$ Solution $\frac{X(z)}{z} = \frac{2}{z - 1} - \frac{1}{z^{-0.5}} \longrightarrow X(z) = \frac{1}{1 - 0.5 z^{-1}}$
Folution $\frac{X(z)}{2} = \frac{2}{2-1} \xrightarrow{1} \frac{1}{z^{-0.5}} \xrightarrow{X(z)} \frac{1}{1-0.5z^{-1}}$
Folution $\frac{X(z)}{2} = \frac{2}{2-1} \xrightarrow{1} \frac{1}{z^{-0.5}} \xrightarrow{X(z)} \frac{1}{1-0.5z^{-1}}$
$\frac{X(z)}{z} = \frac{2}{z-1} \xrightarrow{I} \xrightarrow{X(z)} X(z) = \frac{1}{1 - 0.5z^{-1}}$
a) $ z > 1 \implies X(n) = 2u(n) - (0.5)^{n}u(n)$
b) $ z < 0.5 \implies X(n) = -2u(-n-1) + (0.5)^n u(-n-1)$
c) $0.5 < z < 1 \implies X(n) = -2u(-n-1) = (0.5)^{n}u(n)$
XA: find the causal signal inversal tr. of:-
$X(z) = \frac{1}{(1+z^{-1})(1-z^{-1})^2}$
$(1 + z^{-1})(1 - z^{-1})^2$
olution
$\frac{X(z)}{Z} = \frac{1/4}{Z+1} + \frac{3/4}{Z-1} + \frac{1/2}{(z-1)^2} \implies X(z) = \frac{1/4}{1+z^{-1}} + \frac{3/4}{1-z^{-1}} + \frac{0.5z^{-1}}{(1-z^{-1})^2}$
$\frac{2}{2+1} = \frac{1}{2-1} = \frac{1}{(2-1)^2} = \frac{1}{1+2^{-1}} = \frac{1}{(1-2^{-1})^2}$
$ X(n) = \frac{1}{4} (-1)^{n} u(n) + \frac{3}{4} u(n) + 0.5 n u(n) $
4 · · · · · · · · · · · · · · · · · · ·
Complex conjugate poles:-
$X(z) = \frac{A_k}{1 - \rho_k z^1} + \frac{A_k^*}{1 - \rho_k^* z^1} + \frac{A_1}{2 - \rho_1} + \frac{A_2}{2 - \rho_2} + \cdots$
$\frac{1-\rho_k \bar{z}^{1}}{1-\rho_k^{*} \bar{z}^{1}} = \frac{2-\rho_1}{2-\rho_2}$
$A_{k}\left(P_{k}\right)^{n}u(n) + A_{k}^{*}\left(P_{k}^{*}\right)^{n}u(n) \longrightarrow X(n) = 2\left[A_{k}\right]r_{k}^{n}\cos\left(B_{k}n + \alpha_{k}\right)u(n)$
$A_{k} (P_{k})^{n} u(n) + A_{k}^{*} (P_{k}^{*})^{n} u(n) \implies X(n) = 2 A_{k} r_{k}^{n} \cos (B_{k}n + \alpha_{k}) u(n)$ $A_{k} e^{i\beta k} r_{k}e^{-j\beta k} r_{k}e^{-j\beta k}$

Suggested problems:-	
Ch. 2	
7-16-17-22-23-27-30-31-33-34-46-47-48-49-51-53-57-58	
Ch. 3 1-2-4-8-11-14-15-16-19-25-26-38-40-41-43-51-55-56	
1 2 4 0 11 14 13 10 19 23 20 30 40 41 43 31 33 30	

Monday 0/11/10 8:00 AM	
Monday 3/11/13 8:09 AM	
$X(z) = \frac{A_k}{1 - \rho_k z^{-1}} + \frac{A_k^*}{1 - \rho_k^* z^{-1}}$	
$P_{k} = c_{j}^{j} B_{k}$ $(P_{k}) = A_{k}$ A_{k}	
$\begin{array}{c} P_{k} = r_{k} \frac{j^{B_{k}}}{k} \\ A_{k} = A_{k} e^{j\alpha_{k}} \end{array} \end{array} \xrightarrow{2 A_{k} r_{k}^{n} \cos(B_{k}n + \alpha_{k}) u(n)} \xrightarrow{A_{k}} \frac{A_{k}}{1 - P_{k} z^{-1}} + \frac{A_{k}^{*}}{1 - P_{k} z^{-1}} \end{array}$	
$A_{k} = (A_{k})^{2}$	
Solution of difference equations with zero-initial conditions:	
1) take z-tr. of difference eqn. :- $H(z) = \frac{\sqrt{2}}{\sqrt{2}}$	
2) take z-tr. of $\chi(n) \longrightarrow \chi(z)$	
3) obtain $\gamma(z) = H(z) \times z$	
4) $y(n) = Z^{-1} [Y(z)]$.	
EXA: find the <u>unit step response</u> of the system described by:-	
y(n) = 0.9 y(n-1) - 0.81 y(n-2) + x(n) Solution	
X(n) = u(n)	
y (z)=0.9 z y(z) - 0.81 z y(z) + X(z)	
$= \chi(z) \left[1 - 09z^{1} + 0.91z^{2} \right] = \chi(z)$	
$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 - e^{-2z^{-1} + e^{-2z^{-1$	
$\chi(z) = 1 - 0.9z^{-1} + 0.9z^{-2}$ $1 - z^{-1}$	
Y(z) = X(z)H(z) = 1 x 1 = 1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	')
$= 0.542 - j0.049 + 0.542 + j0.049 + (.099)$ $= 1 - 0.9 e^{j\pi/3} = 1 + 1 - 0.9 e^{j\pi/3} = 1 + 1 - 2^{-1}$	
1-0.9 e ^{"/3} z ⁻¹ 1-0.9 e ^{"/3} z ⁻¹ 1- z ⁻¹	
$y_{(n)} = 1.088 (0.9)^{n} cos(\underline{I}_{n} - 5.2^{\circ}) u(n) + 1.09 u(n).$	
EXA: find the convolution of :-	
$X_{1}(n) = \left(\frac{1}{3}\right)^{n} u(n) + \frac{2^{n} u(-n-1)}{2^{n} u(-n-1)}$	
$x_2(n) = (\frac{1}{2})^n u(n)$	
Solution	
$y(n) = x_1(n) * x_2(n)$	
$X_{1}(z) = \frac{1}{1 - \frac{1}{3}z'} - \frac{1}{1 - 2z''} = \frac{-\frac{5}{3}z'}{(1 - \frac{1}{3}z')(1 - 2z')} + \frac{1}{3} < z < 2$	
$(1 - \frac{1}{3}z^{-1})(1 - 2z^{-1})$	
$X_2(z) = \frac{1}{1-z^2}$ $ z > \frac{1}{2}$	

$$y(\pi) = \frac{-\frac{2}{3}\pi^{2}}{(1-\frac{1}{3}\pi^{2})(1-2\pi^{2})(1-\frac{1}{3}\pi^{2})} - \frac{1}{2} < |\pi| < 2$$

$$= \frac{2}{1-\frac{1}{3}\pi^{2}} - \frac{1}{1-\frac{2}{3}\pi^{2}} + \frac{1}{1-\frac{2}{3}\pi^{2}} - \frac{1}{2} < |\pi| < 2$$

$$\therefore y(\pi) = 2 {\binom{1}{3}}^{n} u(\pi) + \frac{1}{2} (2)^{n} u(\pi) + \frac{1}{2} (\frac{1}{3})^{n} u(\pi) - \frac{1}{2} < \frac{1}{2} |\pi| < 2$$

$$x(\pi)^{2} \in \binom{1}{3} u(\pi) + \frac{1}{4} (2)^{n} u(\pi) + \frac{1}{2} (\frac{1}{3})^{n} u(\pi) - \frac{1}{4} (\frac{1}{3})^{n$$

$$EXA: find the causal signal of x(z):-
\times (s) = \frac{1 + 2s^2 + 2^2}{1 + us^2 + us^2}$$
Solution
 $x(s) = \frac{1}{s} + \frac{z^2 + 2^2}{(1 + us^2 + us^2)}$
 $\frac{1}{s(s)} = \frac{1}{s} + \frac{z^2 + 2^2}{(1 + us^2 + us^2)}$
 $\frac{1}{s(s)} = \frac{1}{s} + \frac{z^2 + 2^2}{(1 + us^2)}$
 $\frac{1}{s(s)} = \frac{1}{s} + \frac{z^2 + 2^2}{(1 + us^2)}$
 $\frac{1}{s(s)} = \frac{1}{s(s)} + \frac{1}{s(s)} +$

Wednesday 3/13/13 8:22 AM $\frac{1}{1-a^{-1}} \quad |a| > 1 \implies 1 - For h \ge o \Rightarrow a^n$ $2 - \text{ for } n < \rho \implies n = -1 \\ h = -\nu$ we substitute $w = z^{-1} \rightarrow \overline{z_{+}w^{-1}} \qquad r_{1} < |\overline{z}| < |\overline{z}|$ $dz = -w^{-2} dw \qquad rev root = \frac{1}{r_{2}} < |w| < \frac{1}{r_{1}}$ $X(n) = \frac{1}{2\pi j} \oint_{Z-a} \frac{Z^n}{Z-a} dZ$ $X(n) = \frac{41}{2\pi j} \begin{cases} z^n \\ z^{-\alpha} \end{cases} dz \\ z^{-\alpha} \\ |z| > |\alpha| \end{cases}$ $\begin{array}{c} X(n) = -\frac{1}{2\pi j} \oint_{C} \frac{(w^{-1})^n}{w^{-1} - a} - \frac{w^{-2}}{w^{-2}} dw \\ = -\frac{1}{2\pi j} \oint_{C} - \frac{w^{n-1}}{(1 - a)^n} dw \\ = -\frac{1}{2\pi j} \oint_{C} - \frac{w^{n-1}}{(1 - a)^n} dw \\ = -\frac{1}{2\pi j} \int_{C} - \frac{w^{n-1}}{(1 - a)^n} dw \\ = = \frac{1}{2\pi j} \oint_{C'} \frac{\omega^{-n-1}}{a(\omega-\frac{1}{a})} \frac{d\omega}{d\omega}$ " Res [Pole at] = 0 $\chi(n) = a^n u(n)$ EXA: find causal signal x(n) having Z-tr. $X(Z) = \frac{1}{(1+z')(1-z')^2}$ |Z|>1 Solution $X(n) = \frac{1}{2\pi j} \int_{C} \frac{z^{n-1}}{(1+z^{-1})(1-z^{-1})} dz = \frac{1}{2\pi j} \int_{C} \frac{z^{n+2}}{(2+1)(2-1)^2} dz$ 1- For n > 0 $\Lambda(n) = \operatorname{Res}[z=1] + \operatorname{Res}[z=-1] = \frac{z^{n+2}}{(z-1)^2} \left|_{z=-1}^{2} + \frac{1}{dz} \left(\frac{z^{n+2}}{z+1}\right)\right|_{z=1}^{2}$ $=\frac{(-1)^{n}}{(-2)^{2}}+\frac{(2+1)(n+2)z^{n+1}-z^{n+2}}{(2+1)^{2}}\Big]_{z=1}=\frac{1}{4}(-1)^{n}\frac{2(n+2)!}{4}-\frac{1}{4}=\frac{1}{4}(-1)^{n}+\frac{3}{4}+\frac{n}{2}$ 2- For ne o |ω| <1 * Refer are outside (C') => Res = 0. •• $x(n) = \left[\frac{1}{4}(-1)^{n} + \frac{3}{4} + \frac{n}{2}\right]u(n)$

EXA: find causal signal x(n) having Z-tr. $X(z) = \frac{3 - 4z^{-1}}{1 - 3.5 z^{-1} + 1.5 z^{-2}}$ a) ROC: 0.5 < | = 1 < 3 b) ROC: | 21 > 3 c) ROC : 21 < 0.5 Solution $X(n) = \frac{1}{2\pi j} \oint \frac{z^{n-1}(3-4z^{-1})}{1-3.5z^{-1}+1.5z^{-2}} dz = \frac{1}{2\pi j} \oint \frac{z^{n}(3z-4)}{z^{2}-3.5z+1.5} dz = \frac{1}{2\pi j} \oint \frac{z^{n}(3z-4)}{(z-3)(z-0.5)} dz$ a) 0.5 < 121 < 3 1- For n70 X(n)= Res[Pole at 2=0.5] $\frac{2^{n}(3z-4)}{2-3}\Big|_{\frac{2}{2}=0.5}=\left(\frac{1}{2}\right)^{n}$ 2. For nep $z = \omega' \longrightarrow dz = -\omega^2 d\omega$ $X(n) = \frac{1}{2\pi j} \oint \frac{\omega^{n}(3\omega^{-1}-4)(-\omega^{-2})}{C} \int \omega = \frac{1}{2\pi j} \int \frac{\omega^{n}(3\omega^{-1}-4)}{\frac{3}{2}(\omega-\frac{1}{2})(\omega-2)} \int \omega = \frac{1}{3} \langle |\omega| < 2$ $\Rightarrow \chi(n) = \operatorname{Res}\left[\omega = \frac{1}{3} \right] = \frac{\omega^{n} (3\omega^{-} + 4)}{\frac{3}{2} (\omega - 2)} = \frac{(\frac{1}{3})^{-n} (3 \times 3 - 4)}{\frac{3}{2} (\frac{1}{3} - 2)} = (-2)(3)^{n}$ $\partial_{0}^{n} X(n) = \left(\frac{1}{2}\right)^{h} u(n) - 2(3)^{h} u(-n-1)$ $x(n) = \frac{1}{2\pi j} \oint_{C} \frac{z^{n}(3z-4)}{(z-3)(z-\frac{1}{2})} dz$ b) ROC: 121>3 $= \operatorname{Res}\left[3=3\right] + \operatorname{Res}\left[2=\frac{1}{2}\right]$ $= \frac{2^{n}(3z-4)}{2-\frac{1}{2}}\Big|_{\frac{2}{2}=3} + \frac{2^{n}(3z-4)}{2-3}\Big|_{\frac{2}{2}=\frac{1}{2}} = 2(3)^{n} + (\frac{1}{2})^{n}.$ 2- For nep 12/73 _, e<1w1<] $\int X(n) = \left[2(3)^{n} + \left(\frac{1}{2} \right)^{n} \right] u(n)$ $\chi(n) = 0$ c) X(n) = 0 for $n \neq 0$ $| \neq | < 0.5 \Rightarrow | | | > 2$ $X(n) = \operatorname{Res}\left[w = \frac{1}{\sqrt{2}} + \operatorname{Res}\left[w = 2 \right] \right]$ $= -\left[\left(\frac{1}{2} \right)^{n} + 2(3)^{n} \right] u(-n-1)$

Correlation of 2 sequences: If X,(m) <u>₹</u>, X (₹) $X_2(n) \xrightarrow{2} X_2(z)$ $Y_{X_1X_2}(l) = \chi_1(n) * \chi_2(n) \xrightarrow{2} R_{\chi_1X_2}(z) = \chi_1(z) \chi_2(z^{-1}).$ ROC: intersection of ROCS of X1(2) & X2(2") EXA: find the autocorrelation of:- $X(n) = \left(\frac{1}{2}\right)^n u(n)$ 121 21 121 CZ ROC Solution $\mathcal{R}_{X,X}(z) = \chi(z) \chi(z^{-1}) = \frac{1}{1 - \frac{1}{2}z^{-1}} \times \frac{1}{1 - \frac{1}{2}z}$ $\frac{\mathbb{P}_{XX}(z)}{z} = \frac{4/3}{z-0.5} - \frac{4/3}{z-2} \implies \mathbb{P}_{XX}(z) = \frac{4/3}{1-0.5z^{-1}} - \frac{4/3}{1-2z^{-1}} \qquad \frac{1}{2} < |z| < 2$ $v_{XX}(l) = \frac{4}{3} (0.5)^{l} u(l) + \frac{4}{3} (2)^{l} u(-l-1).$

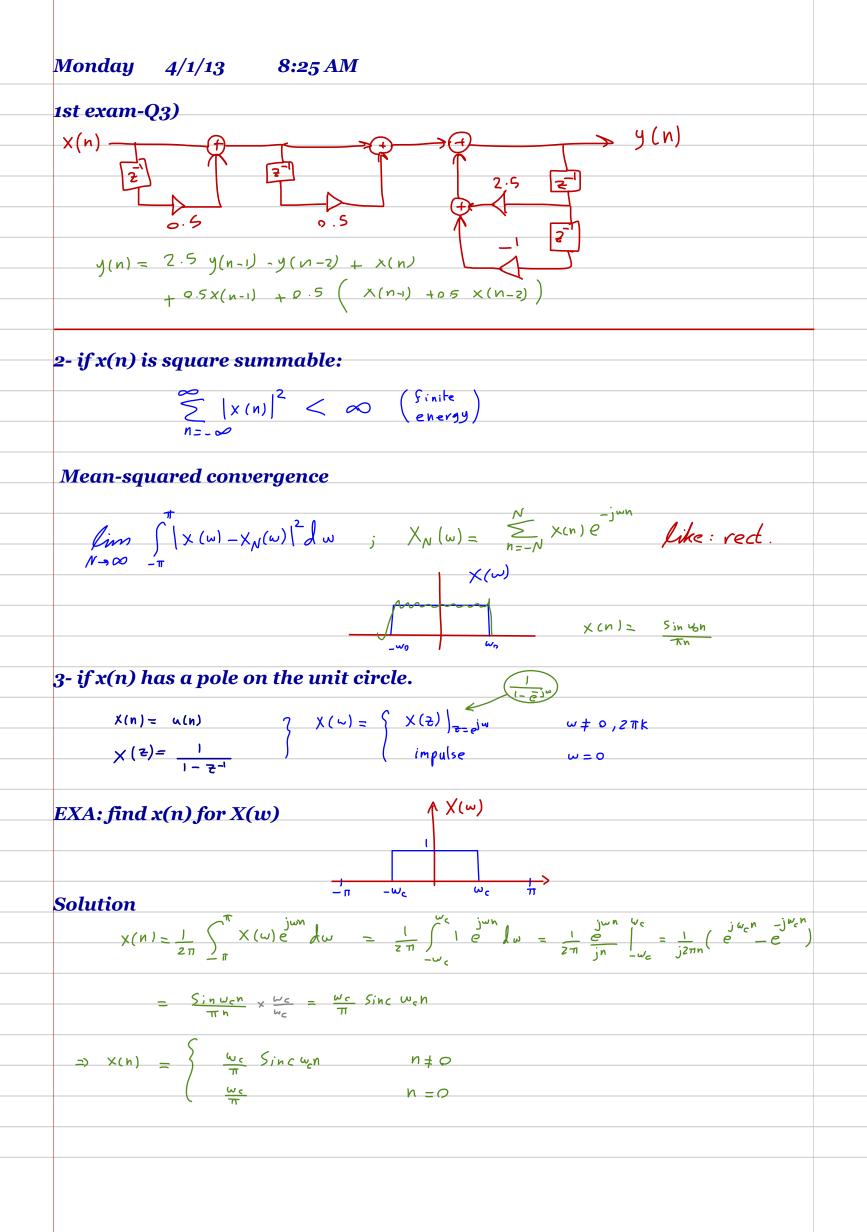
Wednesday
$$g/20/13$$
 8:06 AM
One-sided z-transform:
 $ext = g(0) + \frac{1}{2}g(u+2) + x(u)$
 $u \to -g(0) + \frac{1}{2}g(u+2) + \frac{1}{2}u + \frac{1$

EXA: solve
$$y(n) = 7y(n-1) - 4y(n-2) = x(n) + 2x(n-1)$$

 $f = -x(n) = 4^n - x(n)$
With initial conditions $y(+) = 1, -y(-2) = 2$
Solution
 $\begin{cases} x^+(\pi) - c_{control} = 3 - x(n+1) = \frac{1}{2^n} \frac{1}{2^n} (2) + 9^n - 2 - \frac{1}{2^n} \frac{1}{1 - 4^n} \frac{1}{1 - 4^n} \frac{1}{1 - 2^n}$
 $\Rightarrow y^+(\pi) = 4 - \frac{4}{3} - \frac{4\pi^{-1}}{(-\pi^2)^2} + \frac{1}{1 - 4\pi^2} + \frac{1}{1 + 2^n}$
 $\Rightarrow - y(n) = 1.2 - n(4)^n + 10.69(4)^n + 1.36(-1)^n + 1.3$

Chapter Frequency Analysis Of Discrete - time Signals

For continuous time signals, freq. range ($- \alpha \rightarrow \infty$) For discrete time signals, freq. range (\circ $_{/}$ 2 m) periodic. $\frac{1}{2 \pi} \rightarrow t \qquad freq.$ $\frac{1}{5} = \frac{1}{\tau_s} \qquad 1 \text{ yk} \qquad 10 \text{ k} \rightarrow f$ 10k->27 7.4K->~ exa: lok Periodic Signals: x(n) is periodic (f x(n) = x(n+N) for all (n). N: smallest integer satisfying condition. * X(n) can be rep. by N-harmonics:- $X(n) = \sum_{k=0}^{N-1} C_k e^{j2\pi kn} Synthesis$ $C_k = \frac{1}{N} \sum_{n=0}^{N-1} X(n)e^{-j2\pi kn} A nalysis$ Derivation of Fourier coefficients:- $X(N) = \sum_{k=0}^{N-1} \int_{k=0}^{j2\pi k n/N} \frac{Multiply both sides by}{mk sum the} e^{j2\pi l n/N}$ $\sum_{k=0}^{N-1} \sum_{k=0}^{N-1} \int_{k=0}^{N-1} \int_{$ $= \sum_{k=0}^{N-1} \sum_{j=0}^{N-1} \frac{j^{2\pi}(k-\ell)n}{N} = \frac{1-1}{2\pi} = \begin{cases} 0 & k \neq \ell \\ N & k = \ell \end{cases}$ RHS = Coxo + C1 x0 + - - + C1 xN + Q+1 x0 + - +0 $c_{\ell} = \frac{1}{N} \sum_{k=1}^{N-1} x(n) e^{-j\frac{2\pi \ln n}{N}}$


EXA: find Fourier coefficients for the signals:a) $\chi(n) = \cos \sqrt{2} \pi n$ $= \cos 2\pi (2\pi f_{on}) \Rightarrow f_{o} = \frac{1}{\sqrt{2}} \quad \text{irrational}.$ Apperiodic. b) $x(n) = \cos \frac{\pi}{3}n$ $= \cos 2\pi \frac{1}{6}n \Rightarrow f_o = \frac{1}{4} \Rightarrow N = 6$ $C_{k} = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi kn}{N}} = \frac{1}{6} \sum_{c \neq s} \frac{\pi}{3} n e^{-j\frac{2\pi kn}{6}} \xrightarrow{j\frac{2\pi}{6}n} -j\frac{2\pi}{3} n -j\frac{2\pi}{6} n \longrightarrow \sum_{k=0}^{j} \frac{\pi kn}{N}$ $= \frac{j 2 \pi \frac{1}{\zeta} n}{\frac{1}{2} e} + \frac{1}{2} \frac{e}{2}$ $C_1 = \frac{1}{2}$ $C_{-1} = \frac{1}{2}$ $\sim \left\{ C_{0}, C_{1}, C_{2}, \cdots, C_{N-1} \right\}$ Sufficient. (Cr is periodic) C $C_{-1} = C_{-1+6} = C_{5}$ C_{α} C_{1} C_{2} C_{2} C_{4} C_{5}

Wednesday 3/27/13 8:05 AM EXA: $X(n) = 2 + 2\cos \frac{\pi}{4}n + \cos \frac{\pi}{2} + \frac{1}{2}\cos \frac{3\pi}{4}n$ Solution $X(n) = 2 + 2\cos \frac{\pi}{4}n + \cos \frac{\pi}{2}n + \frac{1}{2}\cos \frac{3\pi}{4}n$ $N_{1} = 1$ $2\cos \frac{\pi}{4} = 2\cos \frac{2\pi}{8} n \longrightarrow f_{e} = \frac{1}{8} / \frac{N_{2} = 8}{N_{2} = 8}$ $\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_$ $\cos \frac{3\pi}{4}n = \cos 2\pi \frac{3}{8}n - \frac{3}{8}\int_{0}^{1} = \frac{3}{8}$, $N_{4} = 8$ $X(n) = 2 + 2 \frac{e}{2} + \frac{e}{2} + \frac{e}{2} + \frac{e}{2} + \frac{1}{2} \frac{e}{2} + \frac{e}{2} + \frac{e}{2} + \frac{e}{2} + \frac{e}{2} + \frac{1}{2} \frac{e}{2} + \frac$ $= 2 + e^{-j2\pi \frac{1}{8}n} - j^{2\pi \frac{1}{8}n} - j^{2\pi \frac{1}{8}n} - j^{2\pi \frac{1}{8}n} + j^{2\pi \frac{1}{8}n} + j^{2\pi \frac{1}{8}n} + j^{2\pi \frac{3}{8}n} + j^$ *C*₀ = 2 $C_{2} = C_{-1} = I = C_{-1+8} = C_{7}$ $C_{2} = C_{-2} = \frac{1}{2} = C_{-2+8} = C_{6}$ $C_{6} = \begin{bmatrix} 2 \\ 1 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 3 \\ 3 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ $C_1 = C_{-3} = \frac{1}{4} = C_{-3+3} = C_5$ EXA: $x(n) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ find Fourier coefficients. Solution $C_{k} = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{j \frac{2\pi k n}{N}} = \frac{1}{4} \left(x(o) e^{e} + x(1) e^{-j \frac{2\pi k 1}{4}} + 0 + 0 \right)$ Magnitude spectrum $C_{0} = \frac{1}{4}(1+1) = 1/2$ $\begin{array}{c} c_{1} = \frac{1}{4} \left[1 + e^{j\frac{\pi}{2} \times 1} \right] = \frac{1}{4} \left(1 - j \right) = \frac{2}{4} \left(\frac{1 - \pi}{4} \right) \\ c_{2} = \frac{1}{4} \left[1 + e^{j\frac{\pi}{2} \times 2} \right] = \frac{1}{4} \left(1 - 1 \right) = 0 \\ c_{3} = \frac{1}{4} \left[1 + e^{j\frac{\pi}{2} \times 3} \right] = \frac{1}{4} \left(1 + j \right) = \frac{2}{4} \left(\frac{\pi}{4} \right) \\ \end{array}$ _____ ≮C_k Phase spectrum: $k \rightarrow k$

• If
$$x(n) = a - real$$

$$\begin{bmatrix} \sum_{k=1}^{k} \sum_{k=1}^{k} real = x(n) = a \begin{bmatrix} \frac{1}{m} \sum_{k=1}^{k} x(n) e^{-\frac{1}{m}} \sum_{k=1}^{k} \sum_{k=1}^{k} x(n) e^{-\frac{1}{m}} \sum_{k=1}^{k} \sum_{k=1}^{k} x(n) e^{-\frac{1}{m}} \sum_{k=1}^{k} \sum_{k=1}^{k} x(n) e^{-\frac{1}{m}} \sum_{k=1}^{k}$$

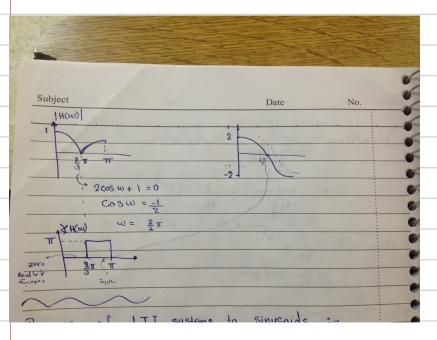
Derivation of F.T.: $X(w) = \sum_{n=-\infty}^{\infty} x(n) e^{jwn}$, multiply by e^{jwm} and integrate over $(-\pi, \pi)$ $= \int_{-\pi}^{\pi} \chi(w) e^{jw} dw = \int_{-\pi}^{\pi} \left[\sum_{h=-\infty}^{\infty} \chi(n) e^{jw} \right] e^{jw} dw = \sum_{n=-\infty}^{\infty} \chi(n) \left[\int_{-\pi}^{\pi} e^{jw} (n-n) dw \right]$ $T = \frac{e^{j\omega(m-n)}}{j(m-n)} \int_{-\pi}^{\pi} = 0 \quad m \neq n$ $= \frac{e^{j\pi(m-n)}}{j(m-n)} \int_{-\pi}^{\pi} \frac{m \neq n}{j(m-n)} \xrightarrow{T} = \begin{cases} 2\pi & m = 0 \\ 0 & m \neq 0 \end{cases}$ $= \frac{5in \pi(m-n)}{j(m-n)} \quad m \neq 0$ $X(m) = \frac{1}{2\pi} \int^{T} X(w) e^{jwm} dw$ *Convergence of F.T.:* 1) if x(n) is absolutely summable $\sum_{n=1}^{\infty} |X(w)| < \infty$ then X(w) exists $= \lim_{N \to \infty} \left[\chi(\omega) - \sum_{n=-N}^{N} \chi(n) e^{j\omega n} \right] = 0$

Periodicity in one domain <---> discretization in the other domain Like:- $M \longleftrightarrow$ _____ discr. & periodic Relation of Fourier transform to z-transform: $X(z) = \sum x(n) \overline{z}^n \quad z = e^{\sum z} = e^{i + j \omega}$ X(w) = X(z) $z = e^{j\omega}$ If ROC of X(z) includes the unit circle. Energy density spectrum [Sxx(w)]: $E_{\rm X} = \sum_{n=1}^{\infty} |x(n)|^2 - \frac{1}{2\pi!} \int_{-\pi}^{\pi} |X(\omega)|^2 d\omega$ $\frac{ESD}{\sum_{x} (\omega) = |X(\omega)|^2} = X(\omega) X^*(\omega)$ For real x(n):- $\chi^{\dagger}(\omega) = \chi(-\omega)$ $\Rightarrow S_{XX}(\omega) = X(\omega) X(-\omega) \quad \begin{cases} S_{XX}(\omega) = S_{XX}(-\omega) \\ S_{XX}(-\omega) = X(-\omega) X(\omega) \end{cases}$ (even fn.) EXA: find F.T. of $\chi(n) = a^n u(n)$ $|\alpha| < |$ $X(w) = \sum x(n) e^{jwn}$ Solution <u>super</u> $X(z) = \frac{1}{1 - az^{-1}}$ |z| > |a| ROC includes unit circle $\Rightarrow X(\omega) = X(z) \Big|_{z=e^{j\omega}} = \frac{1}{1-a\hat{e}^{j\omega}}$ $\mathcal{N}_{\mathcal{O}\mathcal{W}} = X(\omega) X^{\dagger}(\omega)$ $= \frac{1}{1 - a e^{j\omega}} = \frac{1}{1 + a^2 - 2a \cos \omega}$

EXA: Find F.T. of $\chi(n) = \begin{cases} A & o \leq n \leq L-1 \\ O & --- \end{cases}$ A - - -Solution $X (z) = \begin{cases} AL & z=1 & ROC : All z-ghane except z=0 \\ A \frac{1-z^{-L}}{1-z^{-L}} & z \neq 1 & =) includes |z| = 1 & (unit circle). \end{cases}$ $\Rightarrow X(w) = \begin{cases} AL & w = 0 \\ A & \frac{1 - e^{jwL}}{1 - e^{jw}} & w \neq 0 \end{cases}$ $= \begin{cases} A e^{-j\frac{\omega}{2}(L-l)} & \omega \neq 0 \\ Sin(\omega k) & \omega = 0 \end{cases}$ A IX(w) 7 It null:- $\frac{\omega L}{z} = \pi \Rightarrow \omega = 2\pi L$ }π ∼ 47 - **4**11 2 21

Wednesday 4/3/13 B:06 AM
EXA: find F.T. Of x(n)
x(z) = A
$$\frac{1-z^{(2,R+1)}}{1-z^{-1}} z^{n}$$
 (cc: h is does except z_{0} , z_{0} (see the hadrong cose)
 $= A \frac{z^{n+\frac{1}{2}}}{z^{1/2}} \frac{z^{n+\frac{1}{2}}}{z^{1/2}} \frac{z^{n}}{z^{1/2}} \frac{z^{n}}{z^$

 $\star X(w) = \Sigma x(n) e^{jwh}$ $X(-w) = \Sigma x(n) e^{jwh}$ $\chi^{*}(-w) = \Sigma \chi(n) e^{jwh}$ Real Signals Signal F. T. real $\chi(\omega) = \chi^{*}(-\omega)$ χ(ω) X (n) X*(-w) $\chi(n)$ $\chi_{R}(\omega) = \chi_{R}(-\omega)$ **x**^{*}(n) $X_T(\omega) = -X_I(-\omega)$ X*(-n) χ*(ω) $|\chi(\omega)| = |\chi(-\omega)|$ $\chi_{R}(n)$ $X_{e}(w) = \frac{1}{2} \left[X(w) + X^{*}(-w) \right]$ $X_{o}(\omega) = \frac{1}{2} [\chi(\omega) - \chi^{*}(-\omega)]$ $\neq X(\omega) = - \neq X(-\omega)$ jχ_τ(n) $X_{e}(n) = \frac{1}{2} [X(n) + x^{*}(-n)] \qquad X_{e}(w)$ $X_{\mathcal{R}}(n) = \frac{1}{2} [X(n) + X(-n)] \longrightarrow X_{\mathcal{R}}(\omega)$ $X_{o}(n) = \frac{1}{2} \left[X(n) - x^{*}(-n) \right] \qquad j X_{I}(\omega)$ $X_{o}(n) = \frac{1}{2} [X(n) - X(-n)]$ $jX_{I}(\omega)$ **Properties of F.T.:** 1) Linearity:-If $x_1(n) \leftarrow x_1(\omega)$ then $a_1 x_1(n) + a_2 x_2(n) \leftarrow a_1 X_1(\omega) + a_2 X_2(\omega)$ $\chi_2(n) \longrightarrow \chi_2(w)$ 2) Time shift:-If $\chi(n) \longrightarrow \chi(\omega)$ then $\chi(n-k) \longrightarrow e^{j\omega k} \chi(\omega)$ 3) Time reversal:-If $x(n) \leftarrow x(\omega)$ then $x(-n) \leftarrow x(-\omega)$ *proof . $F[\chi(-n)] = \sum_{k=1}^{\infty} \chi(-n) e^{-j^{kn}} \xrightarrow{\mathbf{m} = -\mathbf{n}} \sum_{k=1}^{\infty} \chi(m) e^{j^{kn}} = \sum_{k=1}^{\infty} \chi(m) e^{-j^{(-w)}\mathbf{m}} = \chi(-w) \quad \text{ (-w)}$ 4) Convolution Theorem:-If $x_1(m) \leftarrow x_1(m)$ then $x(n) = x_1(n) + x_2(n) \leftarrow x_1(m) + x_2(m)$ $\chi_2(n) \longrightarrow \chi_2(\omega)$ **EXA: find the convolution of** $X_1(n) = X_2(n) = \{1, 1, 1\}$ Solution $X(n) = X_1(n) * X_2(n) \Rightarrow X_1(\omega) = \mathcal{E} \times (n) \overline{e^{j\omega^n}} = |\overline{e^{j\omega(-1)}} + |\overline{e^{j\omega(1)}} = |+2\cos\omega = X_2(\omega)$ $= X_{1}(\omega) X_{2}(\omega) = (1+2\cos\omega)^{2} = 1 + 4\cos\omega + 4\cos^{2}\omega = 3 + 4\cos\omega + 2\cos\omega + 2\cos\omega = 3e^{j\omega} + 2\cos^{j\omega} = 3e^{j\omega} + 1e^{j^{2\omega}} + 1e^{j^{2\omega}} = 3e^{j\omega} + 2e^{j\omega} + 1e^{j^{2\omega}} + 1e^{j^{2\omega}} = 3e^{j\omega} + 1e^{j\omega} + 1e^{j^{2\omega}} = 3e^{j\omega} + 1e^{j\omega} + 1e^{j\omega} + 1e^{j\omega} = 3e^{j\omega} + 1e^{j\omega} + 1e^{j\omega} + 1e^{j\omega} = 3e^{j\omega} + 1e^{j\omega} + 1e^{j\omega} + 1e^{j\omega} + 1e^{j\omega} = 3e^{j\omega} + 1e^{j\omega} + 1e^{j$ $\rightarrow x(n) = \{1, 2, 3, 2, 1\}$


5) The correlation Theorem:-If $x_1(n) \leftarrow x_1(\omega)$ then $y_1 x_2(n) = \sum_{k=1}^{\infty} x_1(k) x_2(k-n) \leftarrow S_{x_1} x_2(\omega) = x_1(\omega) x_2(-\omega)$ cross-energy $X_2(n) = X_2(\omega)$ density spectrum. For real x(n) $Y_{XX}(k) \leftarrow X(\omega) X'(\omega) = |X(\omega)|^2$ $r_{xx}(l) = s_{xx}(\omega)$ 6) Freq. shift:-If $X(n) \longrightarrow X(w)$ then $e^{j\omega_0 n} \times (w - \omega_0)$ *proof :- $\sum_{i=1}^{j} (w - i - j w n = \sum_{i=1}^{j} (w - w_{\rho}) n$ 7) Modulation Theorem:-If $X(n) \longrightarrow X(w)$ then $X(n) \cos(w_0 n) \longrightarrow \frac{1}{2} \left[X(w - w_0) + X(w + w_0) \right]$ 8) Parseval's Theorem:- $X_{2}(n) \xrightarrow{} X_{2}(n)$ * proof :- $R.H.S. = \frac{1}{2\pi} \int_{-\pi}^{\pi} X_1(w) X_2(w) dw = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[\sum_{n=-\infty}^{\infty} X_1(n) e^{jwn} \right] X_2(w) dw = \sum X_1(n) \frac{1}{2\pi} \int_{-\pi}^{\pi} X_2(w) e^{-jwn} dw$ $= \sum X_1(n) \times X_2(n)$

ex) Find the spectrum of the periodic signal: = Z XIMIXZIN) Xa1 = 2 - - - - 1,2,1,2,-1,2, 1,2,1,- -----Maltiplication of two sequences : N= S - IP. XIMI Las X(W) => Sol. CK= L = Xing e X2(M) < X2(W) then X3(4) = X1(4) A2(4) <> Y3(2) = 1 f X1(X) X2(2) A)dk + 2 E + 1 E $\Rightarrow Ck: \frac{1}{6} \begin{bmatrix} 1+2e & -1e \\ 1+2e & -1e \\ 1 & -e \\ 1 &$ Differnitiation in freq-domain X(w) = Z XM e (k = 1 [1+4(->)(# k) -4 Cos(2 k)] $) \propto \left(\frac{\partial \chi(\omega)}{\partial \omega} = \sum \chi(n) e^{-j\omega n} (-jn) \right)$ > You is real power > spectrum - symmetry as in herm of = jdan = ZEnxmje Co = 1 [1 + 4 (050) - 2 (0510)] = \$ (1: [(+ 4 co> (=) -2 ca> (=)]: 2/3 n X(M) <> j d/X(W) dw C2 = 0 (3 - - 5/6 Cy = 0 7 C5= 2/3 exe Find F.J of Xm1 = 2" U(-n) Sal Xin - (2) UCM -> 5 K= [1 2 0 -5 0 2] (1) un 23 1, R.o. (2) >1 (1) un 23 1, R.o. (2) >1 1-1-22 ((includes unit coults)) Kin in term of synthesis term Yest: 2 CK C 10m1=(1)" uni Es (= W(W) 1 + 2 e - 5 e + 2 e e -> it's useful to find the support attraperiodic bustion -2 $\chi(w) = w(-w) = 1 - (e^{jw})$ EX = Find You (with period = 6) gives larvier coefficient exe . Find Farrier transform at $\chi m = (n+1) q' u(u) , |x| < 1$ SSL, a why 23 1, 1-22' CK e 1×1 > 1×1 > King = Z (includ a unit $\frac{1}{2} + \frac{1}{2} + \frac{1}$ circles) -> a" why EF 1 = 2 + 2 cos(In) + cos(2tr n). n quay and dras - i [d[(1- q e)]]

>) (-1) { 1~qe) ~ a () q e $= \frac{2}{2\pi} \begin{bmatrix} \frac{1}{2} \\ \frac$ We+ 4/2 - Re (Lare) $\rightarrow \chi_{w} = \frac{1}{1 - \kappa e} + \frac{\sqrt{w}}{(1 - \kappa e)^2} = \frac{1}{(1 - \kappa e)^2}$ $= \frac{1}{12} \left(-\frac{1}{2} + \frac{1}{2} +$ ex) Find X (11) Por X(11) = cos (11) $+\frac{2}{\pi u} \begin{bmatrix} j(w_{c}+\frac{y}{2})n & j(w_{c},\frac{y}{2})n \\ - C & j \\ j \\ z \end{bmatrix}$ Sol = X(w) = Exaje $\chi(w) = \frac{1}{2} + \frac{1}{2} \cos(6w) = \frac{1}{2} + \frac{1}{2} \frac$ $\chi(w) = \frac{2}{\pi \pi} \operatorname{Sin}\left(\left(\operatorname{We}+\frac{w}{2}\right)n\right) - \frac{2}{\pi w} \operatorname{Sin}\left(\left(\operatorname{We}-\frac{w}{2}\right)n\right)$ al n=0 ~ Xan - 1 f 2 der + 1 2 des ext. Find Xin for Xin 1 X (w) in in in in in it is = 20 -> practicly, there is no icled filter I fire for 2 multiply by areaf. Sol you = 1 S X W & du $\frac{-\omega_{+}\psi}{-2\pi}\int_{-2}^{-\omega_{+}}\frac{\omega_{+}\psi}{2}\frac{\omega_{+}}{2\pi}\int_{-2\pi}^{-\omega_{+}}\frac{\omega_{+}\psi}{2\pi}\int_{-2\pi}^{-\omega_{+}}\frac{\omega_{+}\psi}{2\pi}\frac{\omega_{+}}{2\pi}\int_{-2\pi}^{-\omega_{+}}\frac{\omega_{+}\psi}{2\pi}\frac{\omega_{+}$ ex) Find You in terms of you) EX) = Given X(M) = [-1, 2, 3, 2, -1] Ymi= Re(n+2) -jiko (u) $a_{j} = \chi(a_{j}) = \chi(a_{-1})$ You - Kros - e Kous - Kous [1 - e] Where Krus = \$1,9,-1,2,33 Find: (without find fourier Tranform) Xt-n): 53,2,-1,0,13 9) X(0) b) $y(n) = \chi(n) + \chi(u-1)$ $y(u) = \chi(u) - \chi(u) = \frac{1}{2}u^2 - \chi(u) = \frac{1}{2}u^2$ Hen = 1 [Hu + Xan] = { 1, 0, 1, 2, 1, 0, 1 } b) X (~9 c) J Xw)dw XE- Given Var = {1,0,-1,2,3} - T Sul. X(w) - Z Xw, e^{1wn} aj. X(o) - Z Xw, - - (+7 - 3 + 2 - (- - 1 Komes - 2 (1-1-1-2-1-2) 3 X au = VR au + j & I au , Find V(n) whose F.T is ь) X (П) = Z XM) e -jkan - 2 (-1j, 0, 7j, 0, -2j, 0, 4j) 3 Y(w) = XI(w) + XR(w) e²⁰ = Z X(4) - Z X741 nierer nade. = [-1,-3,-1] · [=+2] = ~9 You = Xe (nor) - jy du, = 2 - 1, 0, 25, 0, -1, 2, 25, 0, -1 Xcon- 1 [xm+Xi-y] XR(W) c) k(u) = 1 p k(u) en el u 1+2- 1 [X(A+2) + X(-m)] > XR(w) e Sin = { 1, 0, 1-1, 2, 1+12, 0, 1, j2, 0, j1 } 1/10) = 1 \$ K(4) dw > 25 K(0) = -61 Xom (m) SXI(w) - j Kohn -> KI and -> bylinearity.

Wednesday 4/10/13 8:30 AM

Subject Date No.	Subject	Subject Date No.
Frequency demain characterization of LTT systems:-	Ku	$N(w = \frac{\pi}{2}) = \frac{1}{1 - \frac{1}{2}e^{j\frac{\pi}{2}}}$
1- Response to complex expendials:-		$1 - \frac{1}{2} e^{j\frac{\pi}{2}}$
$e^{\int \omega \zeta n} \longrightarrow (h(n) \longrightarrow \mathcal{Y}(n)$		$= \frac{1}{1+j\frac{1}{2}} = \frac{2}{\sqrt{5}} \frac{e^{-j26.6}}{e^{-j26.6}}$
$X(n) = e^{j\omega_n n}$		
$\frac{X(n) = e^{j\omega_n n}}{(\omega_n - \kappa)} = \frac{e^{j\omega_n n}}{k - \omega} \frac{1}{k(\kappa)} \frac{X(n - \kappa)}{(\kappa - \kappa)} = \frac{e^{j\omega_n n}}{k - \omega} \frac{1}{k - \omega} $	ya	$y(h) = e^{i\frac{\pi}{2}} - 2e^{i2\ell \cdot c}$
$e^{i\frac{1}{k-\omega}}$		
E C h(K) C Ke-m kmisfern		$= \frac{j(\frac{\pi}{2}n - 266^{\circ})}{\sqrt{5}}$
		15
$f(n) = e^{\int \omega_* n} H(\omega_*)$	Xo	$\frac{j \pi n}{x_2(n)} = e$
		$\lambda_2(n) = 0$ $w_a = \Pi$
where H(W) = F.T [h(n]] = w.	24	
$\frac{g_{aix}}{= \begin{cases} e^{ib} h(n) e^{jwn} \\ k_{x-w} \end{cases}}$	6 2	
K=-10		$= \frac{1}{1 - \frac{1}{2}(-)} = \frac{2}{1 - \frac{1}{2}}$
EX) Find the output signal of $\chi(n) = e^{2\pi n}$ for the		
	-20	y(n) = 2 e
system with h(n) = ($\frac{1}{2}$) ⁿ u(n) $\frac{1}{2}$ jw.n		Para Maria India
$y(n) = \chi(n) H(w_0)$	e	EX Find the magnitude and phase response of the system
$y(n) = \chi(n) + (uo)$ $H(z) = \frac{1}{1 - \frac{1}{2}\bar{z}^{1}}$ $ z > \frac{1}{2}$ includes $ z = 1$	500	
	50	$y(n) = \frac{1}{3} \left[\chi(n+1) + \chi(n) + \chi(n-1) \right]$ moving Au
$\frac{H(w)}{1-\frac{1}{2}e^{-jw}}$		$Y(w) = \frac{1}{3} \left[e^{iv} X(w) + X(w) + e^{jw} X(w) \right]$
1 - <u>7</u> e ⁻¹ %		
ΝΟΤΕΒΟΟΚ		$H(w) = \frac{1}{2} \left[e^{w} + e^{1w} + 1 \right] = \frac{1}{2} \left[2 \cos w + 1 \right]$
		8

Response of LTI systems to sinusoids: $x(n) = \cos w_0 n = \frac{1}{2} \frac{j w_0 n}{e} + \frac{1}{2} \frac{-j w_0 n}{e}$ $y(n) = x_1(n) f(w_0) + x_2(n) f(-w_0)$ $H(w_{0}) = |H(w_{0})| e^{j + H(w_{0})}$ $H(w_{0}) = |H(w_{0})| e^{j + H(w_{0})}$ $H(w_{0}) = |H(w_{0})| e^{j + H(w_{0})}$ $H(w_{0}) = |H(w_{0})| e^{j + H(w_{0})}$ $\rightarrow y(n) = |H(w_p)| \cos(w_{pn} + \notin H(w_p))$ + for X(n)= Sinwon \rightarrow $y(n) = |H(\omega_0)| sin(\omega_{on} + \notin H(\omega_o))$ Effect of | H(wo) |:-1- Gain | H(wo)| 2-Phase \$ H(wo) EXA: find the output of X(n)= 10-5sin In + 20 cos TTN, applied to LTI system with: $h(n) = (\frac{1}{2})^{n} u(n)$ Solution $H(w) = \frac{1}{1 - \frac{1}{2} \overline{\rho}^{jw}}$ 3^{rd} term $w_{o}=\pi$ $H(w_{o}=\pi) = \frac{1}{1-\frac{1}{2}e^{i\pi}} = \frac{2}{3}$ » y(n)= 10 × 2 - 5 × 2 Sin (I - 26.6°) + 20 × 2 cos Th Steady state and transient response to Sinusoidal inputs: x(n) = e^{juon}u(n), applied to system: Let $h(n) = \left(\frac{1}{2}\right)^n u(n)$ $\chi(z) = \frac{1}{1 - e^{jw} z^{1}}$; |z| > 1, $H(z) = \frac{1}{1 - \frac{1}{2}}$; $|z| > \frac{1}{2}$ $\frac{\sqrt{(z)}}{1-e^{jw_{o}}z^{-1}} \times \frac{1}{1-\frac{1}{2}z^{-1}} \xrightarrow{\text{partial}} y(n) = \left(\frac{1}{1-2e^{jw_{o}}}\right) \left(\frac{1}{2}\right)^{n} u(n) + \left(\frac{1}{1-\frac{1}{2}e^{jw_{o}}}\right) e^{jw_{o}n} u(n)$ Transient response Steady state

$$\begin{aligned} & \left\{ \left(n\right) \longrightarrow \left| \begin{array}{c} \left| \left(n\right) \\ \left| \left(\omega\right) \right\rangle & \left(n\right) = x(\omega \neq h(n)) \\ y(\omega) = x(\omega) + y(\omega) \\ \left| \left(\omega\right) \right\rangle & \left(x\right) + y(\omega) \\ \left| \left(\omega\right) \right\rangle & \left(x\right) + y(\omega) \\ \left| \left(x\right) \right\rangle & \left(x\right) + y(\omega) \\ \left| \left(x\right) \right\rangle & \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ x_{2}(\omega) = \frac{1}{\sqrt{2}} \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ x_{2}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ & x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 + \frac{1}{\sqrt{2}}} \left(x\right) \\ \end{array} \right) \\ & \left\{ \begin{array}{c} x_{1}(\omega) = \frac{1}{1 +$$

Given periodic x(n) $\Lambda \times (n)$ p p ... applied to $y(n) = \frac{1}{2}y(n-1) + 2x(n)$ Solution $I) \quad H(w) = H(z) \Big|_{z=e^{j\omega_{o}}}$ 2) Find Ckx 3) Find $C_{ky} = C_{kx} H\left(\frac{2\pi k}{N}\right)$ 4) $y(n) = \sum_{k=0}^{N-1} \sum_{k=0}^{j^2 \frac{\pi k^n}{N}} j n = 0, \frac{1}{N-1}$ y(n=0) = [---]

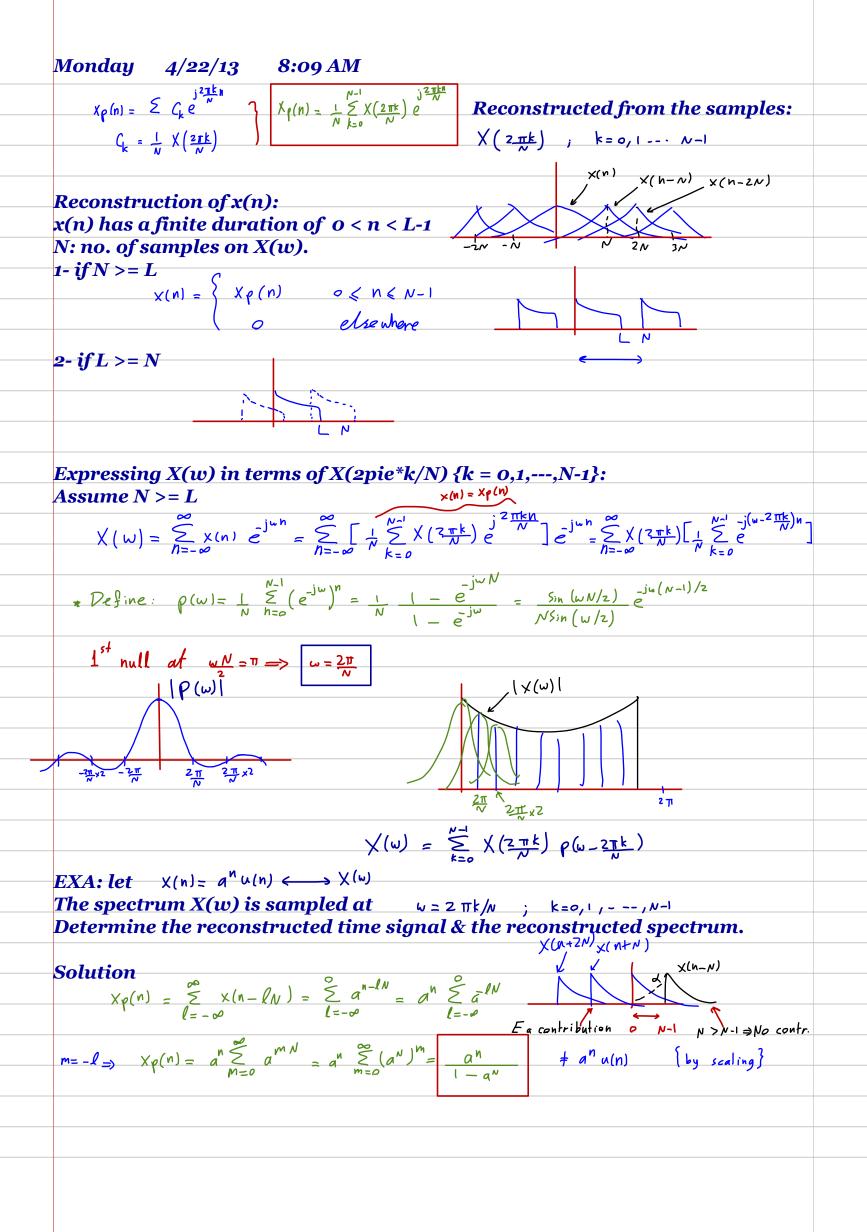
Monday	4/15/13	8:07 AM
--------	---------	---------

EXA: a digital filter described by y(n) = x(n) - x(n-10)Find a) Frey. Response H(w) b) o/p for $x(n) = cos T_0 n + 3sin(T_0 n + T_0)$ $\begin{array}{l} \text{(unit circle)} \\ y(z) = \chi(z) \left[1 - \overline{z}^{1^{\circ}} \right] \\ H(z) = 1 - \overline{z}^{1^{\circ}} \\ \end{array} \\ \begin{array}{l} \text{H}(\omega) = 1 - \overline{e}^{j^{1 \circ w}} \rightarrow \text{since } y(m) \text{ is finite}; \text{ Roc is all z-plane except } 0, w = \text{sincludes} \end{array} \end{array}$ Solution $H(\omega = \frac{\pi}{10}) = 1 - e^{j^{0}\frac{\pi}{10}} = 1 - e^{j^{\pi}} = 2 \frac{10^{\circ}}{10}$ $H(\omega = \frac{\pi}{3}) = 1 - e^{-j^{10}\frac{\pi}{3}} = 1 - e^{-j^{4}\frac{\pi}{3}} = \sqrt{3} \frac{1 - \frac{\pi}{10}}{10}$ $\Rightarrow y(n) = 2\cos \pi n + 3\sqrt{3} \sin(\pi n + \pi - \pi)$ Design of simple digital filters by pole-zero placement: Freq. response (graphical):- $H(z) = G \frac{(1-z_{1}z^{1})(1-z_{2}z^{1})---}{(1-r_{1}z^{-1})(1-r_{2}z^{-1})---}$ $gain = \int \frac{m}{(1-r_{1}z^{-1})(1-r_{2}z^{-1})---}{\prod_{k=1}^{m}(1-z_{k}e^{-jw})} \times \frac{e^{jwN}}{e^{jwN}} = G e^{jw(N-M)} \frac{m}{m}(e^{jw}-r_{k})}{\prod_{k=1}^{m}(e^{jw}-r_{k})} \left\{ \frac{1}{1-r_{k}} + \frac{$ Pole-zero placement principle:-1- place poles near points (frequencies) to be emphasized. 2- place zeros at frequencies to be de-emphasized. 3- all poles are placed inside the unit circle (for the filter to be stable.) 4- Zeros are placed anywhere in z-plane, mostly on the unit circle (for exact zero.) 5- all complex zeros & poles must occur in complex conjugate pairs. $(z - \rho e^{j\theta})(z - \rho e^{j\theta})$ $\rightarrow (1) z^2 - (2p\cos\theta) z + p^2 \rightarrow for y(n) (o/p) to be real.$ EXA: design a LPF to have one pole to satisfy $|H(\omega)|_{=} \int_{0}^{1} r = \psi_{=0}$ (H(ω)]=0.074 for ω= 其 $H(z) = G - \frac{1}{1 - \rho z^{-1}}$ $P = re^{j\theta} = ae^{j\theta} = a$ $w = e \text{ for } LPF, \text{ but } \text{ for } HPF: w = \pi \text{ (mphasized)}$ $\Rightarrow H(z) = G - \frac{1}{1 - az^{-1}} = G - \frac{z}{z - a} + H(w) = G - \frac{e^{jw}}{e^{jw} - a} = (H(w)) = G - \frac{1}{|e^{jw} - a|}$ Solution

$$\begin{aligned} \left| H(u = y) \right| &= \left(= \underbrace{G}_{\left\lfloor e^{2} - a^{1}} \longrightarrow \underbrace{G = 1 - a}_{\left\lfloor y = -a^{1} - a \right\rfloor} \right) \\ \left| H(u = \underbrace{x}_{y}) \right| &= 0, or u = \underbrace{G}_{\left\lfloor e^{2} - a^{1} - a \right\rfloor} = \underbrace{G}_{\left\lfloor y = -a^{1} - a \right\rfloor} \\ &\Rightarrow \underbrace{G^{2}}_{\left\lfloor + a^{2} - a^{2$$

Wednesday 4/17/13 8:24 AM

Pare = jr Pare = jr G2 11 - P(cost -j sint) 14 a = 0.8618 G = 1 - a = 0.0691 $\begin{array}{c} \mathbb{H}(\overline{z}) = \ \mathbb{G} \quad \left(\overline{z} - \mathbf{i} \right) \left(\overline{z} + \mathbf{i} \right) \\ \hline \overline{(\overline{z} - \mathbf{j} r)} \left(\overline{z} + \overline{\mathbf{i}} \overline{r} \right) \\ \end{array} = \begin{array}{c} \mathbb{G} \quad \left(\overline{z}^2 - \mathbf{i} \right) \\ \overline{z}^6 + r^6 \end{array}$ $\frac{\frac{1}{2} = \frac{(1-p)^{4}}{\left[\left(1-\frac{p}{\sqrt{2}}\right)^{2} + \frac{p^{2}}{2} \right]^{2}} \xrightarrow{\nabla \to U}$ $H(z) = 0.0691 1 + z^{-1}$ 1 - 0862z⁻¹ $H(w) = G - (e^{2w} - 1)$ $e^{2w} + r^2$ $P^2(\sqrt{2}-1) - \sqrt{2}P + (\sqrt{2}-1) = 0$ P=0.32, 3.09, G=0.46 ex Design atwo & pole LPF to have |H(0)|=1 $|H(\frac{1}{4})|^2 = \frac{1}{2}$ H(Z) = 0.46 $\overline{(1 - 0.32 Z^{1})^{2}}$ $= \begin{bmatrix} G & -2 \\ -1 + r^2 \end{bmatrix} \times = \begin{bmatrix} G & 2 \\ 1 - r^2 \end{bmatrix}$ $1+r^4 = 1.879 r^2 = 1.937 (1-r^2)^2$ ex] Design aband pass filles $H(z) = G - \frac{1}{(1 - Pz^{-1})^2}$ with unity gain at $(\frac{\pi}{2})$ $\left|H(w = 4\pi)\right| = \frac{1}{\sqrt{2}}$ $= 26 = 1 \implies G = \frac{1}{2} (1 - r^2) = --(0)$ $r^2 = 0.7 \implies G = \frac{1}{2}(1-r^2) = 0.15$ $\frac{P_{=}r_{e}^{i0}}{H(z) = G - (1 - z_{i}\bar{z}^{i})(1 - p_{i}\bar{z}^{i})} \frac{1}{(1 - p_{i}\bar{z}^{i})(1 - p_{i}\bar{z}^{i})}$ $H(w) = G \longrightarrow [H(w)] = G$ $[1 - Pe^{-jw}]^{9} \longrightarrow [H(w)] = G$ At $w = 4\pi \rightarrow |H(4\pi)| = \frac{1}{\sqrt{2}}$ $\frac{1}{|H(qT)|^{2}} = \frac{G}{|e^{qT}_{qT}|^{2}} = \frac{G}{|e^{qT}_{qT}|^{2}$ $H(z) = 0.15 z^2 - 1 = 0.15 1 - z$ $\mu(o) = \frac{G}{(1-P)^2} = \frac{G}{(1-P)^2} \longrightarrow G = (1-P)^2 \longrightarrow (0)$ Z2+0.7 1+1-2 cos (8π) $\frac{|H(\frac{\pi}{4})|^2 = G^2}{|1 - Pe^{\frac{1}{2}|\frac{\pi}{4}|^4}} = \frac{1}{2}$ 1+r4 +2r2 005 811 Notch Filters: Notch Filter: 🔥 |Η (ω)| $H(z) = G(1 - 2_1 \hat{z}')(1 - 2_2 \hat{z}') \quad \Im \quad H(z) = G(1 - (z_1 \hat{z}'))(1 - (z_2 \hat{z}'))$ > | $z_1 = 1e^{jw}$, $z_2 = 1e^{-jw}$. 56 $\implies H(z) = 6 \frac{G(1 - e^{j\omega_{e^{-1}}})(1 - e^{j\omega_{e^{-1}}})}{(1 - e^{j\omega_{e^{-1}}})(1 - e^{j\omega_{e^{-1}}})}$ $= G \frac{1 - (2\cos\omega_{0})\overline{z}^{1} + \overline{z}^{2}}{1 - 2r\cos\omega_{0}\overline{z}^{1} + r^{2}\overline{z}^{-2}}$ Disadvantage: it has a big delay (impulse response:p^n needs more time until it reaches the steady state.) Suggested problems: Chp. 4:-4,5,6,7,9,10,12,22. Chp. 5:-3,4,6,7,8,10,16,17,19,21,22,24,30,32,52,54,62,68


2nd Exam Wednesday 24/4/2013

Chapter 7	
The discrete	
Fourier	
Transform	
(DFT)	

Applications: Power spectrum estimation. Filtering. Correlation. Freq. estimation. Samples 211 Freq. Domain Sampling and reconstruction of time domain signals: $X(w) = \sum_{n=-\infty}^{\infty} x(n) e^{jwn} \implies X(2\pi k) = \sum_{n=-\infty}^{\infty} x(n) e^{j(2\pi k)n}; \quad k = o(1, \dots, N-1)$ $X\left(\frac{2\pi}{N}k\right) = - + \frac{-1}{2} \times (n) e^{-j\frac{2\pi}{N}kn} + \frac{N-1}{2} \times (n) e^{-j\frac{2\pi}{N}kn} + \frac{2N-1}{2} \times (n) e^{-j\frac{2\pi}{N}kn} + \frac{2N-1}{2}$ $\frac{|x|}{|x|} = \frac{1}{|x|} + \frac{1}{|x|} = \frac{1}{|x|} + \frac{1}{|x|} = \frac$ $= \text{shift in time by } (LN) \qquad \qquad 2\pi IN$ $= \underbrace{\sum_{n=0}^{N-1} x(n-lN)}_{l=-\infty} \underbrace{\sum_{n=0}^{2\pi k} (n-lN)}_{l=-\infty} \underbrace{\sum_{n=0}^{2\pi k} x(n-lN)}_{l=-\infty} \underbrace{\sum_{n=0}^{2\pi k} x(n-lN)$ $x_p(n)$: periodic? $\rightarrow x_p(n+n) = x_p(n)$ => Xp(n) is periodic = N $\sum_{n=1}^{\infty} \chi\left(\frac{2\pi k}{N}\right) = \sum_{n=1}^{\infty} \chi_{\rho(n)} e^{j^2 \frac{\pi k}{N}n}$ $= \sum_{n \neq j} \frac{N-1}{N} \sum_{n=0}^{N-1} x_{p}(n) e^{-j^{2} \frac{\pi k}{N} n}$ 2π $= NC_{k}$

Chapter 7 The discrete Fourier Transform (DFT)

Applications: Power spectrum estimation. Filtering. Correlation. Freq. estimation. Samples 211 Freq. Domain Sampling and reconstruction of time domain signals: $X(w) = \sum_{n=-\infty}^{\infty} x(n) e^{-jwn} \implies X(2\pi k) = \sum_{n=-\infty}^{\infty} x(n) e^{-j(2\pi k)n}; \quad k = o, 1, \dots, N-1$ $X\left(\frac{2\pi}{N}k\right) = - + \frac{-1}{2} \times (n) e^{-j\frac{2\pi}{N}kn} + \frac{y^{-1}}{2} \times (n) e^{-j\frac{2\pi}{N}kn} + \frac{2}{2} \times (n) e^{-j\frac{2\pi}{N}kn} + \frac{2}$ $\frac{1}{2\pi} \frac{1}{N} = \frac{1}{2\pi} \frac{1}{N} \frac{1$ $= shift in time by (LN) \qquad 2\pi/N$ $= \underbrace{\sum_{n=0}^{N-1} x(n-lN)}_{l=\infty} \underbrace{\sum_{n=0}^{N-1} x(n-lN)}_$ $x_p(n)$: periodic? $\longrightarrow x_p(n+n) = x_p(n)$ => Xp(n) is periodic = N $\sum_{n=1}^{\infty} \chi\left(\frac{2\pi k}{N}\right) = \sum_{n=1}^{\infty} \chi_{\rho(n)} e^{j^2 \frac{\pi k}{N}n}$ $= \sum_{n \in \mathbb{N}} N \frac{1}{N} \sum_{n=0}^{N-1} \chi_{\rho}(n) e^{-j^2 \frac{\pi k}{N} n}$ 2π $= NC_{k}$

 $\hat{X}(\omega) = \sum_{n=0}^{N-1} x_{p}(n) e^{-j\omega n} = \sum_{n=0}^{N-1} \frac{a^{n}}{1-a^{N}} e^{-j\omega n} = \frac{1}{1-a^{N}} \frac{1-(a e^{-j\omega})^{n}}{1-a e^{-j\omega}}$ $\hat{X}\left(\omega = \frac{2\pi k}{N}\right) = \frac{1}{1-a^{N}} \frac{1-(ae^{j\omega})^{N}}{1-(ae^{j\omega})} = \frac{1}{1-a^{N}} \frac{1-a^{N}e^{-j\frac{2\pi k}{N}}}{1-ae^{-j\frac{2\pi k}{N}}} = \frac{1}{1-ae^{-j\frac{2\pi k}{N}}}$ $X(w) = \frac{1}{1 - e^{jw}} \ll samples on X(w)$ The DFT: $DFT: X(k) = \sum_{k=0}^{N-1} x(n) e^{-j2\pi kn} ; k = 0, 1, ---, N-1$ $\vec{x} \longleftrightarrow \vec{X}$ $IDFT: x(n) = \frac{1}{N} \sum X(k) e^{j^2 \frac{\pi k n}{N}} ; n = 0, 1, \dots, N-1$ (N) Fourier Tr. => If L>N, truncate the signal to N-points. EXA: let $x(n) = \begin{cases} 1 & 0 \leq n \leq L-1 \\ 0 & else where \end{cases}$ Det. N-ot. DFT for NZL **Solution** $\chi(\omega) = \sum_{h=0}^{L-1} \chi(n) e^{j\omega N} = \sum_{n=0}^{L-1} (e^{-j\omega})^{L} = \frac{1 - e^{-j\omega L}}{1 - e^{-j\omega}} = \frac{5in (\omega L/2)}{5in (\omega/2)} e^{-j\omega(L-1)/2}$ $\Rightarrow X(k) = \frac{S_{In}\left(\frac{L 2\pi k/N}{2}\right)}{S_{in}\left(\frac{2\pi k/N}{2}\right)} e^{j\frac{2\pi k}{N}\left(\frac{L-1}{2}\right)}$ L If N=L $X(k) = \frac{\sin(\pi k)}{\sin(\pi^{k}/L)} e^{j\pi k(L-1)/L} = \begin{cases} L & k=0 \\ k=0 \end{cases}$ L = N = 10(Zero pending) $\int Jack in information$ $\int Jack in information$ 1.111.111, 112 $X(w) = \sum x(n) e^{jwn}$ W= ZTK

Monday 4/29/13 8:40 AM

 $\frac{|W|_{2}}{|W|_{2}} \qquad Duc = \begin{bmatrix} W_{1} & W_{1} & W_{2} & W_{2}$ DET X(K) = $\frac{U^{1}}{\sum_{k \in \mathcal{O}} \chi(n)} e^{\frac{1}{2} \frac{2KKn}{2k}} K_{\infty} \circ_{1} I_{2} \cdots I_{2} I_{2}$ 0000000000 $I = DET \qquad \begin{array}{c} x_{(n)} = \frac{1}{N} & \sum_{k=0}^{N-1} x_{(k)} & e^{\frac{1}{2} \frac{k \cdot k}{N}} & e^{-\alpha_{1} \cdot \beta_{1}} & \cdots & \beta_{N-1} \end{array}$ DET DET as almear trans formation. Define when gist 1 1 2 W3 W4 W4 W4 W4 W4 W4 DET $(X) = \sum_{n=0}^{N-1} \chi(n) u_N^{n}$ $IDET: X(n) = 1 = \frac{1}{N} \frac{1}{K(n)} \frac{1}{K$ $\vec{x} = \vec{w} \cdot \vec{x}$ X(0) X(1) X(0) X(1) ; X(N-) W X(N-U $-(W_N^0)^n$ $-(W_N^1)^n$ $-(W_N^2)^n$ (ww)^{2(N-1} (ww)^{2(N-1} W = WN N-1 (w) N=1 $\overline{W}_{4} = \begin{bmatrix} 1 & 1 \\ 1 & \omega_{4} \\ 1 & \omega_{4}^{2} \\ 1 & \omega_{4}^{3} \end{bmatrix}$ 1 Wy 0 4 Wy 0 4 X = WN X KAN UN X = WN wy = 1 +j -/-j 1 1 $a_{1} X_{1}(n) + a_{2} X_{2}(n) + \frac{DFT}{N} a_{1} X_{1}(x) + a_{2} X_{2}(x)$ - wy = + w2+2 Subjec * Gircular symmetry =-Circular ahift --Circular time reversal (Folding) $\vec{X}_{\pm} = \vec{\omega}_{\pm} \vec{X}$ 7X = 0 | 23 1 2 9 2 9 3 9 9 1 2 9 1 2 9 3 9 تعين قبل المسيح محمد نترة Shift نعل Shift x(n-2) 131 Xp(n) 000 نفس تسلسل الأركاح فكر x(-n) * properties of DFT :-بالاتحا والمعاكم aces le san la s Periodicity : -X(n + N) = X(n)X(K+N) = X(k)time and $\begin{array}{ccc} \text{Linewity} &:& -\\ \text{If} & x_1(n) & \xrightarrow{\text{DFT}} & x_1(k) \\ & X_2(n) & \xrightarrow{\text{DFT}} & X_2(k) \end{array}$ circularly even , X(N-n) = X(n)circularly odd : X(N-n) = -X(n)Conjegate even :- X(n) = X*(N-n)

Conjugate eve	$en: X(n) = X^{*}(N-n)$	Even	Even	
C <mark>onjugate od</mark> a	$d: \chi(n) = -\chi^*(N-n)$	Real Odd	082	Real
		012	3 088	
		Imag. Even	Even f	Imag.
X(n)	Х(Ю	time Real X(n)	freq	
<u> </u>	χ*(ν-μ	$\frac{\chi(k)}{\chi(k)} = \chi^{\star}(N-k)$		
$X^{*}(N-n)$		$X(k) = X(N-k)$ $X_{R}(k) = X_{R}(N-k)$		
	$X_{ce}(k) = \frac{1}{2} [X(k) + X'(N-k)]$			
	$X_{co}(k) = \frac{1}{2} [X(k) - X'(N-k)]$			
$X_{ce}(n) = \frac{1}{2} [X(n) + X^{*}(N-n)]$	-	$\neq X(k) = - \notin X(N-k)$		
$\chi_{co}(n) = \frac{1}{2} [\chi(n) - \chi^{*}(N-n)]$		•••		
Circular conv	olution:			
X ₁ (n) <	$\frac{DFT}{N}$ $X_1(k)$			
	N			
X2(n) ←	\mathcal{D}_{FT} , $X_2(k)$			
	$ \begin{array}{c} \stackrel{DFT}{\overset{N}{\longrightarrow}} & X_2(k) \\ (k) & X_2(k) & \stackrel{DFT}{\overset{N}{\longrightarrow}} & X_1(k) X_2 \end{array} $	(k)		
fhen X, (n)	$(N) X_{2}(n) \xleftarrow{DFT} X_{1}(k) X_{2}$			
fhen X ₁ (h) EXA: Find the	$(\mathbb{N} \times_{2}(\mathbb{N}) \leftarrow \mathbb{P} \in \mathbb{T} \times_{1}(\mathbb{K}) \times_{2} $ Circular convolution of			
$fhen X_{i}(n)$ $EXA: Find the \\ X_{i}(n) = [$	$(k) \xrightarrow{\mathbf{v}} X_{1}(\mathbf{k}) $			
$fhen X_{i}(n)$ $EXA: Find the \\ X_{i}(n) = [$	$(\mathbb{N} \times_{2}(\mathbb{N}) \leftarrow \mathbb{P} \in \mathbb{T} \times_{1}(\mathbb{K}) \times_{2} $ Circular convolution of			
$fhen X_{i}(n)$ $EXA: Find the \\ X_{i}(n) = [$	$(k) \xrightarrow{\mathbf{v}} X_{1}(\mathbf{k}) $	o f:-		
$fhen X_{1}(n)$ $EXA: Find the$ $X_{1}(n) = [$ $X_{2}(n) = [$	$(k) \xrightarrow{\mathbf{v}} X_{1}(\mathbf{k}) $	of:- y (0)=1x2 + 4x1 + 3x2 +		
$fhen X_{1}(n)$ $EXA: Find the$ $X_{1}(n) = [$ $X_{2}(n) = [$	$(k) \xrightarrow{\mathbf{v}} X_{1}(\mathbf{k}) $	$of:-$ $y(o) = x^{2} + 4x^{1} + 3x^{2} + y(1) = 2x^{2} + x + 4x^{2}$		
$fhen X_{1}(n)$ $EXA: Find the$ $X_{1}(n) = [$ $X_{2}(n) = [$	$(k) \xrightarrow{\mathbf{v}} X_{1}(\mathbf{k}) $	$0f:-$ $y(0) = x^{2} + 4x^{1} + 3x^{2} + y(1) = 2x^{2} + x^{1} + 4x^{2} + y(2) = 14$		
$fhen X_{1}(n)$ $EXA: Find the$ $X_{1}(n) = [$ $X_{2}(n) = [$	$ \begin{array}{c} $	$0f:-$ $y(0) = x^{2} + 4x^{1} + 3x^{2} + y(1) = 2x^{2} + x + 4x^{2}$ $y(2) = 4$ $y(3) = 6$	+ 3x1= 16	
$fhen X_{1}(n)$ $EXA: Find the$ $X_{1}(n) = [$ $X_{2}(n) = [$	$ \begin{array}{c} \stackrel{\sim}{\mathbb{N}} \times_{2}(n) < \stackrel{\nabla F^{\top}}{} & X_{1}(k) \times_{2} \\ \hline \begin{array}{c} \text{Circular convolution } \\ \hline \begin{array}{c} 2 & 1 & 2 & 1 \\ \hline \begin{array}{c} 1 & 2 & 3 & 4 \\ \end{array} $	$0f:-$ $y(0) = x^{2} + 4x^{1} + 3x^{2} + y(1) = 2x^{2} + x^{1} + 4x^{2} + y(2) = 14$	+ 3x1= 16	
$fhen X_{1}(n)$ $EXA: Find the$ $X_{1}(n) = [$ $X_{2}(n) = [$	$ \begin{array}{c} $	$0f:-$ $y(0) = x^{2} + 4x^{1} + 3x^{2} + y(1) = 2x^{2} + x + 4x^{2}$ $y(2) = 4$ $y(3) = 6$	+ 3x1= 16	
then $X_{1}(n)$ EXA: Find the $X_{1}(n) = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$ \begin{array}{c} $	$0f:-$ $y(0) = x^{2} + 4x^{1} + 3x^{2} + y(1) = 2x^{2} + x + 4x^{2}$ $y(2) = 4$ $y(3) = 6$	+ 3x1= 16	
$fhen \chi_{1}(n)$ EXA: Find the $\chi_{1}(n) = [$ $\chi_{2}(n) = [$ Solution $2 (2 \times 1 + 0)^{-2}$ $\frac{1}{2} (2 \times 1 + 0)^{-2}$	$ \begin{array}{c} $	$0f:-$ $y(0) = x^{2} + 4x^{1} + 3x^{2} + y(1) = 2x^{2} + x + 4x^{2}$ $y(2) = 4$ $y(3) = 6$	+ 3x1= 16	
$fhen \chi_{1}(n)$ EXA: Find the $\chi_{1}(n) = \begin{bmatrix} \\ \chi_{2}(n) = \end{bmatrix}$ Solution $f(n) = \begin{bmatrix} \\ 1 \\ 2 \\ 2 \\ \chi_{2}(n) = \end{bmatrix}$ Time reversal $\chi(n) \subset P$	$ \frac{1}{N} \times_{2}(n) \leftarrow \frac{PFT}{N} \times_{1}(k) \times_{2} $ Circular convolution of $ \begin{bmatrix} 2 & & 2 & \\ 2 & & 2 & \\ 1 & & 2 & 3 & 4 \end{bmatrix} $ $ \frac{2}{2} \qquad 3 \begin{pmatrix} 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 2 & & & \\ 3 & & \\ 4 & & \\ 1 & & & \\ 2 & & & \\ 1 & & & \\ 2 & & & \\ 1 & & & \\ 2 & & & \\ 1 & & & \\ 2 & & & \\ 1 & & & \\ 2 & & & \\ 1 & & & \\ 2 & & & \\ 1 & & & \\ 2 & & & \\ 1 & & & \\ 1 & & & \\ 2 & & & \\ 1 & & & \\ 2 & & & \\ 1 & & & \\ 2 & & & \\ 1 & & & \\ 2 & & & \\ 1 & & & \\ 2 & & & \\ 1 & & & \\ 2 & & & \\ 1 & & & \\ 2 & & & \\ 1 & & & \\ 2 & & & \\ 1 & & & \\ 2 & & & \\ 1 & & & \\ 2 & & & \\ 1 & & & \\ 2 & & & \\ 1 & & & \\ 2 & & & \\ 1 & & & \\ 2 & & & \\ 1 & & & \\ 2 & & & \\ 1 & & & \\ 2 & & & \\ 2 & & & \\ 1 & & & \\ 1 & & & \\ 2 & & & \\ 1 & & & \\ 2 & & & \\ 1 & & \\ 2 & & & \\ 1 & & \\ 2 & & & \\ 1 & & \\ 2 & &$	$of:-$ $y(o) = x^{2} + 4x + 3x^{2} + y(1) = 2x^{2} + x + 4x^{2}$ $y(2) = 4$ $y(2) = 4$ $y(3) = 6$ $\Rightarrow y(n) = [4 6 $	+ 3x1= 16	
$fhen \chi_{1}(n)$ EXA: Find the $\chi_{1}(n) = \begin{bmatrix} \\ \chi_{2}(n) = \end{bmatrix}$ Solution $f(n) = \begin{bmatrix} \\ 1 \\ 2 \\ 2 \\ \chi_{2}(n) = \end{bmatrix}$ Time reversal $\chi(n) \subset P$	$ \begin{array}{c} $	$of:-$ $y(o) = x^{2} + 4x + 3x^{2} + y(1) = 2x^{2} + x + 4x^{2}$ $y(2) = 4$ $y(2) = 4$ $y(3) = 6$ $\Rightarrow y(n) = [4 6 $	+ 3x1= 16	
$fhen \qquad \chi_{1}(n)$ EXA: Find the $\chi_{1}(n) = [$ $\chi_{2}(n) = [$ Solution $2 (2 \times 1 - 0)^{-2}$ $\frac{1}{2} (2 \times 2 - 1)^{-2}$ $\frac{1}{2} (2 \times 2 - 1)^{-2}$ Time reversal $\chi(n) = \frac{1}{2}$ $\chi((-n))_{N} = \chi(N-n)$	$ \frac{1}{N} \times_{2}(n) \leftarrow \frac{PFT}{N} \times_{1}(k) \times_{2} $ Circular convolution of $ \begin{bmatrix} 2 & 1 & 2 & 1 \end{bmatrix} $ $ \begin{bmatrix} 2 & 1 & 2 & 1 \end{bmatrix} $ $ \begin{bmatrix} 2 & 1 & 2 & 1 \end{bmatrix} $ $ \begin{bmatrix} 2 & 1 & 2 & 3 & 4 \end{bmatrix} $ $ \frac{2}{2} \qquad 3 \begin{pmatrix} 2 & 1 & 2 & 1 \\ 2 & 1 & 2 & 3 & 4 \end{bmatrix} $ $ \frac{2}{2} \qquad 3 \begin{pmatrix} 2 & 1 & 2 & 1 \\ 2 & 1 & 2 & 3 & 4 \end{bmatrix} $ $ \frac{2}{4} \qquad 1 \qquad $	$of:-$ $y(o) = x^{2} + 4x + 3x^{2} + y(1) = 2x^{2} + x + 4x^{2}$ $y(2) = 4$ $y(2) = 4$ $y(3) = 6$ $\Rightarrow y(n) = [4 6 $	+ 3x1= 16	
$fhen \qquad \chi_{1}(n)$ EXA: Find the $\chi_{1}(n) = [$ $\chi_{2}(n) = [$ Solution $2 (2 \times 1 \circ)^{-2}$ $\frac{1}{2} (2 \times 1 \circ)^{-2}$ $$	$ \frac{1}{N} \times_{2}(n) \leftarrow \frac{PFT}{N} \times_{1}(k) \times_{2} $ Circular convolution of $ \begin{bmatrix} 2 & 1 & 2 & 1 \end{bmatrix} $ $ \begin{bmatrix} 2 & 1 & 2 & 1 \end{bmatrix} $ $ \begin{bmatrix} 2 & 1 & 2 & 1 \end{bmatrix} $ $ \begin{bmatrix} 2 & 1 & 2 & 3 & 4 \end{bmatrix} $ $ \frac{2}{2} \qquad 3 \begin{pmatrix} 2 & 1 & 2 & 1 \\ 2 & 1 & 2 & 3 & 4 \end{bmatrix} $ $ \frac{2}{2} \qquad 3 \begin{pmatrix} 2 & 1 & 2 & 1 \\ 2 & 1 & 2 & 3 & 4 \end{bmatrix} $ $ \frac{2}{4} \qquad 1 \qquad $	$of:-$ $y(o) = x^{2} + 4x + 3x^{2} + y(1) = 2x^{2} + x + 4x^{2}$ $y(2) = 4$ $y(2) = 4$ $y(3) = 6$ $\Rightarrow y(n) = [4 6 $	+ 3x1= 16	

Circular freq. - shift $X(n) \xleftarrow{\text{DFT}} X(k)$ $X(n) \xleftarrow{j \xrightarrow{z \pi l n}} \bigvee ((k-l))_{k}$ Circular correlation $\sum_{k=0,1,\cdots,N-1}^{n-1} \sum_{k=0,1,\cdots,N-1}^{n-1} \sum_{k=0,1,\cdots,N-1}^{n-1$ $\widetilde{r}_{xx}(l) \leftarrow X(k)|^2 ; k=0,1,\dots,N-1$ Multiplication of two sequences $X_1(n) X_2(n) \xrightarrow{DFT} I X_1(k) (N) X_2(k)$ Parseval's Theorem $\sum_{k=0}^{N-1} \chi(n) y^{*}(n) = \frac{1}{N} \sum_{k=0}^{N-1} \chi(k) y^{*}(k)$ If y(n) = X(n) $\sum_{h=0}^{N-1} |x(h)|^{2} = \frac{1}{N} \sum_{k=0}^{N-1} |X(k)|^{2}$ Energy (N in time may be less than in freq. or the opposite ---> so we can calculate the energy with the less symbols.)

Wednesday 5/1/13 8:06 AM	
EXA: Given $X(k) = [0.25, 0.125 - j0.3, 0, 0.125 - j0]$	1
EXA: Given $(k) = (23, 23, 0)$, $(23, 0)$, $(25, 0)$, $(25, -)0$ is an 8-point DFT of real valued $x(n)$.	. 05 ₁ 0 ₁
Find the remaining points $(\times (5), \times (6), \times (7))$	
Solution	
$X(k) = \chi^{*}(N-k)$	
$X(5) = X^{*}(8-5) = X^{*}(3) = 0.125 + j0.05$	
$\chi(6) = \chi^{*}(8-6) = \chi^{*}(2) = 0$	
$\chi(7) = \chi^{*}(8-7) = \chi^{*}(1) = \rho \cdot 125 + j \rho \cdot 3$	
EXA: Complete the energy if the N- point signal	
$X(n) = \cos(2\pi \tan N) \text{ogng N}$	
Solution	• • • • • • • •
$E_{nergy} = \sum_{h=0}^{N-1} X(n) ^2 = \frac{1}{N} \sum_{k=0}^{N-1} X(k) ^2 = \frac{1}{N} \sum_{k=0}^{N-1} X(k)$	$\sum_{k=1}^{N-1} \chi(k) \in \mathbb{C}$
	·
$= X(n) = \prod_{N} \left[\frac{N}{2} e^{j \frac{z \pi k_{p} n}{N}} + \frac{N}{2} e^{-j \frac{z \pi k_{p} n}{N}} \right]$	
$\sum_{k=1}^{\infty} X(k) = \begin{bmatrix} 0 & \cdots & N \\ 0 & \cdots & N \\ z & 0 & \cdots & z \\ z & 0 & 0 \\ z &$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\implies \vec{E} = \frac{1}{N} \left[\left(\frac{N}{2} \right)^2 + \left(\frac{N}{2} \right)^2 \right] = \frac{N}{2}$	
EXA: find the circular auto correlation of	XX
$X(n) = \cos\left(\frac{2\pi}{N}n\right) \qquad o \le n \le N-1$	()
Solution	
$\widetilde{r}_{xy}(\ell) \iff \widetilde{R}_{xx}(k)$	
= X(k) Y'(k)	
$\Rightarrow \widetilde{Y}_{XX}(l) \subset \frac{DFT}{N} X(k) ^2 ; k = o_1 N - 1$	
$X(n) = \frac{j^{2\pi}}{2}e^{n} + \frac{j^{2\pi}}{2}e^{n} \times \frac{N}{N} = \frac{1}{2}\int \frac{N}{2}e^{j\frac{2\pi}{N}n} + \frac{1}{2}e^{n} \times \frac{N}{N} = \frac{1}{2}\int \frac{N}{2}e^{j\frac{2\pi}{N}n} + \frac{1}{2}e^{n} + \frac{1}{2$,, -j 2 <u>π</u> η γ
$X(n) = \frac{1}{2}e^{-t} + \frac{1}{2}e^{-t} + \frac{1}{N}e^{-t} + \frac{1}{$	$\frac{N}{2}C$
$X(1) = N = \sqrt{(1 + 1)^2} X(k) = \int O N O = - O J$	υ]
$ = X(-1) = \frac{N}{2} = X(N-1) $ $ X(k) = \begin{bmatrix} o & N & o o & N \\ 2 & 0 & 0 \\ \hline 1 & 0 \\ \hline 1 & 0 & 0$	2 1 2
$\wedge (1) = \frac{1}{2}$	e^{-1}
$\Rightarrow \widehat{R}_{xx}(k) = \begin{bmatrix} o & \underline{N}^2 & \cdots & o & \underline{N}^2 \end{bmatrix}$	
$\Rightarrow \mathcal{R}_{XX}(k) = \lfloor o \ \underline{\mathcal{N}}_{1}^{k} \ o = - o \ \underline{\mathcal{N}}_{1}^{k} \rfloor$ $\Rightarrow \widetilde{\mathcal{R}}_{XX}(k) = IDFT \left[\widetilde{\mathcal{R}}_{XX}(k) \right] = \frac{1}{N} \sum_{k=0}^{N-1} \mathcal{R}_{XX}(k) e^{k} = \frac{1}{N}$	$\left[R_{xx}(1) \rho + R_{xx}(N-1) \rho \right]$
$= \prod_{i=1}^{N} \left[\frac{N_{i}^{2}}{N} + \frac{N_{i}^{2}}{N} + \frac{N_{i}^{2}}{N} \right] = \frac{1}{N} \left[2 \frac{N_{i}^{2}}{N} \right] $	Γος 2 πl
NL4 4 N X X N Z	

EXA: Given 8- point DFT of X(n) = [||| 0 0 0 0]Find the DFT of X1(n)=[10000111] $X_{z}(n) = [\rho \circ | | | | 0 \circ]$ In terms of DFT of x(n) Solution $X_{1}(n) = X(n-5) \int_{N}^{N} \frac{1}{n} \sum_{k=1}^{j} \frac{2\pi k l}{n}$ $\Rightarrow X_{1}(k) = X(k) e^{-j\frac{2\pi k 5}{8}}$ ⇒ $X_2(k) = X(k) e^{j^2 \frac{\pi k^2}{8}} = X(k) e^{j^2 \frac{\pi k^2}{8}}$ EXA: Given X(n) = [0 | 2 3 4 0]a) Find the sequence s(n) whose 6- point DFT is $S(k) = \omega_{2}^{k} X(k) \qquad \begin{cases} \omega_{N} = e^{-j\frac{2\pi}{N}} \end{cases}$ b) Find y(n) whose 6- point DFT is Y(k) = Real [X(k)]ution a) $S(k) = \left(\frac{-j2\pi}{2}\right)^k X(k) = e^{j\pi k} X(k)$ Solution $= \chi(k) e^{j \frac{2\pi k^{3}}{2 \times 3}} = \chi(k) e^{-j^{2}\frac{\pi k^{3}}{6}}$ \Rightarrow S(n)=X((n-3)),-> s(n) = [3 4 0 0 1 2] b) Y(k) = real [X(k)] $X_{ce}(n) \xrightarrow{X_{P}} X(n) = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 0 \end{bmatrix}$ $= \frac{1}{2} \begin{bmatrix} x(n) + x^{*}(-n) \end{bmatrix} \xrightarrow{X_{e}} X(n) = \begin{bmatrix} 0 & 0 & 4 & 3 & 2 & 1 \end{bmatrix} 3^{-1}$ \implies $y(n) = \frac{1}{2} \left[\times (n) + x^{*}(-n) \right] = \left[o + \frac{1}{2} - 3 - 3 - \frac{1}{2} \right]$

EXA: find the DFT of S(n)	
Solution	
$C(\mathbf{r}) = X(\mathbf{r}) - 1$	
$X(k) = X(w) \int k = 0, 1 N - 1$ $X(k) = \lambda(w) \int k = 0, 1 N - 1$ $X(k) = 0, 1 N - 1$ $X(k) = e^{jn_0 2 \pi k}$ $X(k) = e^{jn_0 2 \pi k}$	
$W_{2} Z_{\frac{\pi k}{N}} = \sqrt{(N-N)} = \sqrt{2\pi k} - \sqrt{N-N} = \sqrt{2\pi k}$	
$X(t) = \int_{0}^{1} n_{e} \frac{2\pi t}{\pi t}$	
$X(k) = 1 \qquad k = \rho_1 \qquad \dots \qquad N = 1 \qquad (N(k) = k)$	
EXA: Given $x(n)$ $\wedge \times (n)$	
If we sample X(z) at	
$Z = e^{j^2 \frac{\pi}{4} k}$	
Find the sample the IDFT of	10
2 1 2 3 4 5	
$X_{j}(k) = X(z) _{j \ge \pi k} k = 0, 1, 2, 3$ $z = c^{4}$	
Solution	
$\begin{array}{c c} X_{1}(n) = X_{p}(h) & n = 0 \\ & X_{1}(n) = 0 \\ & X_{1}(n) \\ \end{array} \xrightarrow{N=0} \begin{array}{c} 0 & \rightarrow 3 \\ \hline & 1 \\ \hline \hline & 1 \\ \hline \hline \hline & 1 \\ \hline \hline \hline & 1 \\ \hline \hline \hline \hline & 1 \\ \hline \\ \hline \hline$	
e o	
X (n-8)	
X(n+4) 2211	
X (n+8)	

$$\int_{\mathbf{T}} \mathbf{X}(\mathbf{u}) \mathbf{X}(\mathbf{u}, \mathbf{T}) \, d\mathbf{u} = -\frac{1}{2} \int_{\mathbf{x}(\mathbf{u})}^{\mathbf{T}} \mathbf{x}(\mathbf{u}) \\ = 2\pi \mathbf{\Sigma} e^{\frac{1}{2}\mathbf{T}} \mathbf{X}(\mathbf{u}) \mathbf{X}(\mathbf{u}, \mathbf{n}) = -34\pi$$

$$= 2\pi \mathbf{\Sigma} e^{\frac{1}{2}\mathbf{T}} \mathbf{X}(\mathbf{u}) \mathbf{X}(\mathbf{u}, \mathbf{n}) = -34\pi$$

$$= \frac{5}{n_{1}} \mathbf{X}(\mathbf{u}) \left(1 \pm \frac{e^{\frac{1}{2}\mathbf{T}\mathbf{n}}}{n_{1}}\right) e^{\frac{1}{2}\mathbf{S}\mathbf{n}}$$

$$\Rightarrow -\frac{1}{2} \mathbf{X}(\frac{1}{2}) \pm -\frac{1}{2} \mathbf{X} \left(\frac{1}{2} - \mathbf{T}\right) \quad \text{Ben subtlike } \mathbf{X}$$

Monday 5/6/13 8:30 AM

EXA: Use symmetry properties to calculate DFT of 2-real even & 2-real odd simultaneously using one N-DFT only. Solution $X_{1}^{e}(n) \times Z_{2}^{e}(n)$ real $y_{1}^{e}(n) y_{2}^{e}(n)$ Generate $x(n) = x_{i}^{e}(n) + y_{i}^{o}(n) + j \left[x_{z}^{e}(n) + y_{z}^{o}(n) \right]$ $V_{R}^{e}(k) + V_{R}^{e}(k) + j V_{I}^{e}(k) + j V_{I}^{e}(k)$ $X_{i}^{e}(k) = V_{R}(k) + V_{R}(-k)$ $X_{i}^{e}(k) = V_{R}(k) - V_{R}(-k)$ $Z_{i}^{o}(k) = -j \left[V_{R}(k) - V_{R}(-k) - V_{R}($ $+ Y_{1}^{e}(k) = \frac{j V_{I}(k) - j V_{I}(-k)}{2}, \quad j X_{2}^{e}(k) = \frac{j V_{I}(k) + j V_{I}(-k)}{2} \implies X_{2}^{e}(k) = -j \int \frac{j V_{I}(k) + j V_{I}(-k)}{2}$ The Fast Fourier Transform (FFT): X(K) - Z X(n) WN + Z X(n) WN $= \underbrace{X(2 m)}_{W_{2}} \underbrace{(1)}_{W_{2}} \underbrace{(1)}_{W_{2}}$ $= W_{N/2}$ $X(x) = \frac{\sum_{m=1}^{N-1} f_{m}(m)}{\sum_{m=1}^{N} f_{m}(m)} W_{N/2}^{km} + W_{N}^{k} \sum_{m=1}^{N-1} f_{m}(m) W_{m}^{km}$ $X(k) = F_1(k) + w_N^k F_2(k); \quad k = o_{11}, \dots N^{-1}$ where $F_1(k) = F_1(k) + w_N^k F_2(k); \quad k = o_{11}, \dots N^{-1}$ where: $F_{1}(k) = F_{1}(k)$ $F_{1}(k) = F_{1}(k)$ $F_{1}(k) = F_{1}(k)$ $F_{2}(k) = F_{1}(k)$ $F_{2}(k+\frac{N}{2}) = F_{2}(k)$ $\frac{N^{2}}{4} + \frac{N^{2}}{4} = \frac{N^{2}}{2}, \quad w_{N}^{k+\frac{N/2}{2}} = -w_{N}^{k}$ * $X(k) = F_{1}(k) + w_{y}^{k} F_{2}(k)$ $X(k+\frac{w}{2}) = F_{1}(k) - w_{y}^{k} F_{2}(k)$ $F_{1}(k) = DFT(f_{1}(n))$ $\frac{N}{2}$ **∦ Radix_2 FFT.** EXA: 8-point FFT:x (0) Fi(o) X(9) $f_{1}(n) \begin{cases} x(1) \\ x(1) \\ x(2) \\ 4 \end{cases} \xrightarrow{\text{DFT}} 4$ $f_1(1)$ X(I) f1 (2) ≠ X (2) Fi (3) X(3) fz() • X (4) $f_{z}(I)$ X (5) DFT 4 $f_2(2)$ X(6) F2 (3) X (7) X(7)

XC42	· · · · · · · · · · · · · · · · · · ·			
×(2) [] at	FILLY OF			
X(6)	- W4 File	XC	()	
x(1) x(5)	0 5-(1)	DWS D	log_N AM	
2(3)	w4 . 5 . F.(3)	Dws -	Ju 1	
x(2)	Dwy or F2(4)	Dws - of XQ		
		NZ	Nz loy N	
Suggested problems:- 7.1, 4, 7, 8, 9, 11, 14, 19, 20, 2	64	40%	(92	
7.1. 4. 7. 8. 9. 11. 14. 19. 20. 2	5 1924	106	SIZ0	

