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6. MAXWELL'S EQUATIONS IN TIME-VARYING FIELDS

- /e Applied EM by Ulaby and Ravaioli



Chapter 6 Overview
I




Maxwell’'s Equations
-

Table 6-1: Maxwell's equations.

Reference Differential Form Integral Form
Giauss's law V-D=p, -?,‘J D-ds= () 6.1}
5
B aB
Faraday’s law VxE=-""_ ﬁE ~dl= — r — s (6.2)*
. dar J or
& 5
Gauss's law for magnetism V:B=10 % B:ds=10 (6.3)
s
A 4D
Ampiere's law VxH=]+ o ﬁ[—l “ dl =f (.l + j—) «ds  (64)
ot i
. 5
*For a stationary surface 5,

In this chapter, we will examine Faraday’s and Ampére’s laws
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Figure 6-1: The galvanometer {predecessor of the ammeter)
shows a deflection whenever the magnetic flux passing through
the square loop changes with time.

Magnetic fields can produce an electric current in a closed
loop, but only if the magnetic flux linking the surface area of
the loop changes with time.The key to the induction process
is change.



Three types of EMF

I. A time-varying magnetic field linking a stationary loop:;
the induced emf is then called the transformer emf, V!

eml”

2. Amoving loop with a time-varying surface area (relative to
the normal component of B) in a static field B; the induced
emf is then called the motional emf. V..

3. A moving loop in a time-varying field B.

The total emf is given by

Veme = V;;f + V;;fa (6.7)



Stationary Loop in

Time VCI rying B It is impartant to remember that By, serves to oppose the

change in B(t), and not necessarily Bir) itself.

o B
yg;-ﬁ__.: N f z_r ceds  (transtormer emf).
K

The comnection between the direction of ds and the polariry
of VI ¢ is governed by the following right-hand rule: if ds
paiits along the thumb of the right hand, then the divection
of the contour C indicated by the four fingers is such that it
always passes across the opening from the positive terminal
of Vi 10 the negative terminal,

Ve

eml

j— eml (6.9)
R+ R, i

For good conductors, R; usually is very small. and it may be
ignored in comparison with practical values of R.

The polarity of V. and hence the divection of I is governed
by Lenz’s law, which states that the current in the loop is
afwavs i a divection thar opposes the change of magnetic

flux (1) that produced 1.

(hangmy B(r)
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{a) Loop in achanging B field
N
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Figure 6-2: (a} Stationary circular loop in a changing magnetic
hield Bit). and (b} its equivalent circuit.



Example 6-1: Inductor in a Changing Magnetic Field

An inductor 15 formed by winding N turns of a thin conducting

wire 1nto a circular loop of radius ¢. The inductor loop 15 in

the x—v plane with its center at the origin, and connected to a - ]

resistor R, as shown in Fig. 6-3. In the presence of a magnetic

field B = By(¥2+23) sin cwr, where o is the angular [requency,

find

(a) the magnetic flux linking a single turn of the inductor.

(b) the transformer emf, given that ¥ =10, By =02 T,
a = 10 cm, and @ = 107 rad/s,

(¢) the polarity of Vi - atr =0, and

(d) the induced current in the circuit for B = | k&2 (assume B
the wire resistance to be much smaller than R). B

L

R

/ N tums

Figure 6-3: Circular loop with & turns in the x—v plane. The
magnetic field is B = Bp(¥2 + z3) sin wi (Example 6-1).
cont.



Example 6-1 Solution

Solution: (a) The magoetic flux linking cach turn of the
inductor 15

= [

»,
¢ = [ B-ds N lums
5
, Fizure -3z Circular loop with & tumes i the x—v plane. The
= j [Boiv 2 4 231 sinewr] - 7 ds magnetic feld is B = Bpi¥2 4+ 230 sinex (lxample 6-1).
5 {ctAtt =0, dd/dt = Dund 1-’3;1r = —188.3V, Since the Hux
— 3ra’ By sin wi, 15 creasing, the current { must be in the direction shown in

Fig. -3 i onder 1o sabishy Lene's baw, Conseguent]y. lerminal 2
(b To find .:;IL'“P We can ‘*PF"F F.LI. (6.8} or we can ui‘-'["l|}r‘ 1% ul # hmgher potential thun termmal T and
the generul expression given by Fq. (6.6) directly. The latter
approach gives _
P £ r
1’c:ml' =¥i—="¥

d b e V.

'L_.rll' = I'H'r
: ! el

e

-[.'I 1
= — - (IxNa"Bysinwi) W I
't " {d} The current [ is given by

- T
— — 37 Noewar™ By cos enl

ForN = 1), a =0.1 m, e = 10" rad/s. and By = 0.2 T. R

Vi = —1885cos 10% (V). —0.19cs 105 (A,

c



I Module 6.1 Circular Loop in Time=-varying Magnetic Field

Cemonstration of Faraday's Law

The circular wire loop shown in the ligure = connected

to @ simp's circuit compased of s resistar R in series

witn & current metar, The timesandng magneatic

filac linking the surface of the loop Induces a Va .

and hence a current through B The purposs of this

dema is Lo illustrate, in the form of a slow-mobian
widea, how the current I'wares with bme, in both

Ammeter s S : ¥

magnitude and direction, when Biti= Bycoso

4
B I kote that IO L) s a masdmum when the slcos of Bit) s
a rmadrnum, which coours when B ilsell is 2era. The
\ directicr of Ift) = dictaked by Lenz's Law
\\W -
Ll

P
e clomer

i — ] _lu"rrl--'“ul
|§".'FE.T.| it b1 T T o e Fr "
" | Appiet Desigr: Janice Richards




Example 6-2: Lenz’s Law

!
-
Determine voltages V; and V; across the 2-Q2 and 4-Q2 resistors €y ®)
shown in Fig. 6-4. The loop is located in the x—y plane, its area
is 4 m?, the magnetic flux density is B = —20.3¢ (T). and the + (x) - X
®
®

internal resistance of the wire may be ignored. 4 0 ; 1 Vi § 70
Solution: The flux flowing through the loop is - 1‘__ X
B T Area =4 m-
@:fB-ds:f(—io.:%r}-ids ® ®
S S
=—03t x4=-—1.2¢t (Wb),

Figure 6-4: Circuil for Example 6-2.
and the corresponding transformer emf is

dd

v =12 (V).

T T The total voltage of 1.2 V is distributed across two resistors

in series. Consequently,

th‘

J — emf
Ri + R»
1.2

-

= —0.2A,
2+4 |

and

Vi=IR =02x2=04V,
Vo=IR; =02 x4=08V.



ldeal Transformer
_—

v 49
T

A similar relation holds true on the secondary side:

o
Vo = — N> ;
df
Vi . N, Il Nz
VE NE I - }H"l.'r]
V)
Rin = —
I

7 1

Vo f NI Y Ny~
= — | — == . 6.20)
Rin I ( -".""r.",) [ N> ) R '

When the load is an impedance Z and V) is a sinusoidal source,
the phasor-domain equivalent of Eq. (6.20}) 1s

N .
z"“:(w_;) Zi. (621

—
D
jr] e e
’ ===
— \ I
F ] o
- LI{I}E ﬁ'l'u. iolR
Ny 2 L
l ¥
L3 I
-..__._I_‘-----"r
D
(h)

Figure 6-5: In a transformer, the directions of §y and f» are
such that the flux & generated by one of them is opposite (o that
penerated by the other. The direction of the secondary winding
in (b} 15 opposite o that in (a), and 50 are the direction of /> and
the polarity of V.



Motional EMF

Magnetic force on charge g moving with
velocity v in a magnetic field B:

F,, =¢qluxB).

This magnetic force is equivalent to the
electrical force that would be exerted on

the particle by the electric field Em given
by

Moving

B® ® ®© ® B
© o0fle o
Enfll
O © © © . X
—1u
® @ O ®
/ J “Magnetic field line
(out of the page)
® ® ® ®

Figure 6-7: Conducting wire moving with velocity u in a static

F. magnetic feld.
E,=— =uxB.
q For the conducting wire, u X B = Xu X 2By = —VyuBp and
This, in turn, induces a voltage dl = ¥ dl. Hence,
difference between ends 1 and 2,
with end 2 being at the higher V™ — Vip = —uBol. (6.25)

potential. The induced voltage is

emf"“Vll_'fEm'dlzf(llK B)-dl.

2 2



Motional EMF

In general, if any segment of a closed circuit with contour C

moves with a velocity u across a static magnetic field B, then
the induced motional emf 1s given by

T f (ux B) -dl (motional emf). (6.26)
C

Only those segments of the circuit that cross magnetic field

: g " m
lines contribute to V..



Example 6-3: Sliding Bar

4
V= Vip=Vyz = f{u % B) - dl
3

Note that B increases with x

4
— f{iu x ZBpxg) - ¥ dl = —uBpxpl

The length of the loop is T
related to u by xo = ut. Hence

m _— _ Bou“lt (V).L

emfl =




Example 6-5: Moving Rod Next to a Wire

The wire shown in Fig. 6-10 carries a current / = 10 A. A
30-cm-long metal rod moves with a constant velocity u = z5

m/s. Find Vlz.

Via =
-, i ]‘r
Pie o L
2mr
B B
i mﬁ.f“ s
- " Metal rod
BO Wire ll::jz‘:II B T / 2
= | [} 171 = | 3} C11] —]
B() G0 B

= 139

10 cm

f (ux B)-dl

40 ¢m

10} cm

J

40 ¢m

. ~ ol
Z5 % ¢ m

)-f‘n’r

100 cm
510l dr

25 ¥
40 ¢cm

5xdmw x 1077 x 10
2

(V).

<

10

40

)



EM Motor/ Generator Reciprocity

LY

rl fra
\A.:-: 15 of rotation
(b) ac generator

Axis of rotation

(a) ac motor

Motor: Electrical to mechanical Generator: Mechanical to
energy conversion electrical energy conversion



EM Generator EMF

As the loop rotates with an angular velocity
w about its own axis, segment 1—2 moves
with velocity u given by

Also: nXz=Xxsinw
Segmen’r 3-4 moves with velocity —u. Hence:
ym = 1f4_f(uxﬂj -dl + f{u}{E} dl

172

Slip

Tings -
B8 Loop surface

norml

Brushes

Figore 6-12: A loop rotating ina magnetic feld indoces an emf.

me — wlw By sina = AwBj sin «,

L=

a = wt + Cy,

j nm v » iﬁu] X dx

—y,

V.= AwBysin(wt + Cp) (V).




I Module 6.2

Rotating Wire Loop in Constant Magnetic Field

N

x B
I8
.Y
™ time
X
E L >
4 clower faster ==

AR
wr

Demonstration of Motional EMF

A rectangular wire loop of area A rotates at an
angular frequency w in a constant magnetic flux
density By. The purpose of the demo is to illustrate

how the current varies in time relative to the loop's
position.

Mote the direction of the current and its magnitude,
as indicated by its brightness.

['hax = wBgA

Applet Design: Janice Richards




Tech Brief 12: EMF Sensors
I

'.,-'-‘_'_'_--_‘_""'h. - T
i'L:mr' L

l ]- - Dipole ?.I:
\-—,.r e
Fol—

{a} No force (h) Compressed erystal {c) Stretched crystal

I
)

Figure TF12-1: Response of a piezoelectric crystal to an applied force.

* Piezoelectric crystals generate a voltage across them proportional to
the compression or tensile (stretching) force applied across them.

* Piezoelectric transducers are used in medical ultrasound,
microphones, loudspeakers, accelerometers, etc.

* Piezoelectric crystals are bidirectional: pressure generates emf, and
conversely, emf generates pressure (through shape distortion).



Faraday Accelerometer

]
Conducting 10$
o S
_I_
' [
Vemf
o

X —

U —

Figure TF12-3: In a Faraday accelerometer, the induced
emf is directly proportional to the velocity of the loop (into
and out of the magnet’s cavity).

The acceleration a is determined by differentiating
the velocity u with respect to time




The Thermocouple
N

Cold reference junction
o 1 5 N R 'l iy ot LY
Measurement Copper ¢ :
junction

-

e Bismuth

Figure TF12-4: Principle of the thermocouple.

* The thermocouple measures the unknown temperature T, at a junction
connecting two metals with different thermal conductivities, relative to a
reference temperature T,.

* In today’s temperature sensor designs, an artificial cold junction is used
instead. The artificial junction is an electric circuit that generates a voltage
equal to that expected from a reference junction at temperature T,.



Displacement Current
N

Ampere’s law 1n differential form is given by

55
VxH=J+ "L—r (Ampére’s law). (6.41)

Integrating both sides of Eq. (6.41) over an arbitrary open
surface § with contour ', we have
dID
f{?h{ H}'f.f!'i:f.l'ﬂlﬁ'{— g—jrff'h fﬁ-—l:l
L
5

5 5

[

This term is This term must

conduction represent a

current | current Application of Stokes’s theorem gives:

?{.H-._m:ifcuk f Z—?-ds (Ampere’s law)
O 5

Cont.



Displacement Current

fﬁ-];[-._:ﬂ = I+ f% ~ds  (Ampere’s law)
e s

Define the displacement current as:

The displacement current does not
Iy _de ds_f_ -ds, (644 involve real charges;

it is an equivalent current that
depends on i/ it

where Jq = 0D/ d1 represents a displacement current density.
In view of Eq. (6.44).

ng'L“:JFC—FIﬂ:I., (6.43)
[



g
Capacitor Circuit | i

surface &

+
I ;
= [oragzinary
sUrtaes ba

Given: Wires are perfect X
conductors and capacitor '
insulator material is perfect For Surface Sy

dielectric. [2 = [2c + [2d

For Surface S.: [2c = 0 (perfect dielectric)
‘l.
b Ve W
T=¥ — =¥ — Ccos ot
&1 )]
he=cLC _c Ly, C Vo si h":fﬁ'ds
=0 —=C— (Vycoswt) = — G111 et
o o 57 (Vo cosat) [ SI1 g A
A . -‘:.‘F[J. .
[ig =0 (D=0 in perfect conductor) = =\ cosat | | (¥ dy)
r J
A
= - Vore sin et = —C Vigew 510 cof
i

Conclusion: I, =1,



Example 6-7: Displacement Current Density

‘The conduction current lowing through a wire with conductiv-
ity o = 2 x 107 S/m and relative permittivity & = 1 is given

by I. = 2sine (mA). If w = 10% radss, find the displacement
I current. ]

Solution: The conduction current /. = fA = o £ A, where
A 15 the cross section of the wire. Hence,

i I _E:x: 1077 sin e
oA 2x 1074

1% 10710
= it ) Sirl et (Vim),

Application of Eq. (6.44), with D = ¢ E, leads to

/ A where we used w = ;ﬂi: radfs and £ = Ep = B85 % 10~ 12 Fim.
47 ] Note that f. and [ are in phase quadrature (90" phase shift
. PE between them). Also, [y is about nine orders of magnitude
it smaller than /;. which 1s why the displacement current usually
& 1100 15 1gnored in good conductors.
—gA — SAIL el
ot ;

— e % 10710 cos i = 0.885 % 10717 cos wi (A



Boundary Conditions
T

Table 6-2: Boundary conditions for the electric and magnetic fields.

Field Components Gonuesl Form I\-['E(Iium'l M:adiuml2 I\'l.edium.l Medium 2
Dielectric Dielectric Dielectric Conductor

Tangential E mx(Ef —Ex)=0 Ei = Eoq Eijt=E=0

Normal D n «(D) — D) = ps D1y — Doy = ps Din = ps Doy =0

Tangential H iy X (Hf —H>) = Js Hyy = Hy, Hy = Js Hy =0

Normal B n2-(By—Bx)y=0 Bin = By Bin= B =0

Notes: (1) pg is the surface charge density at the boundary: (2) Js is the surface current density at the boundary: (3) normal

components of all fields are along ny, the outward unit vector of medium 2; (4) Ey, = E, implies that the tangential

components are equal in magnitude and parallel in direction; (5) direction of Js is orthogonal to (Hy — H»).




Charge Current Continuity Equation

Current | out of a volume is equal to rate of
decrease of charge Q contained in that volume:

d

%J cds = —— | oy dV
dr
A) W

dd

s = V- -JdV=——

%J ’ f ! dt
5

v

Used Divergence Theorem

Charge density p,

S encloses v

Figure 6-14: The total current flowing out of a volume V' is equal
to the flux of the current density J through the surface S, which
in turn 1s equal to the rate of decrease of the charge enclosed

in V.

fﬂv dV

'I-"’ v‘_J:

dpy

it

(6.54)

which is known as the charge-current continuity relation, or
simply the charge confinuity equation.



Charge Dissipation

Question 1: What happens if you place a certain amount of free charge inside of a material?
Answer: The charge will move to the surface of the material, thereby returning its interior to a
neutral state.

Question 2: How fast will this happen?
Answer: It depends on the material; in a good conductor, the charge dissipates in less than a
femtosecond, whereas in a good dielectric, the process may take several hours.

_Derivation of charge density equation:
Dy

ar

In a conductor, the point form of Ohm’s law, given by Eq. (4.63),
states that J = o E. Hence.

3

(6.58)

Ay

oV:-E=—
it

(6.59)

Next, we use Eg. (6.1), V-E = p, /e, to obtain the partial
differential equation

o 1] .

ar E Cont.



Solution of Charge Dissipation Equation

dpy, O
5 T a0

Given that py, = py, at t = 0, the solution of Eq. (6.60) 1s

B (t) = poge N = pe™H%  (Cl?),

where 1, = ¢/0 15 called the relaxation timk' constant.
For copper: 1. = 1.53 x 10-19 ¢

For mica: ==y 3% 10* s = 15 hours



=1

Charge AV

EM POfenﬁCI IS distribution p,,
I

HR)

Static condition

-

1 (R , :

V(R) = fﬁ{ IJ{I"V
die R’
Ve .

Pynamic condifion Figure 6-16: Electric potential V(R) due to a charge
ViR, 1) = ! f P (R: r) d1’ distribution p, over a volume V.

dmre R

'L_!'.'

Dynamic condition with propagation delay: Similarly, for the magnetic vector potential:

I AR, = R . JR, t— R/ ,
VIR, {) — fﬁt : M0 gy oy, Amﬂ=“fﬂ‘ : ) vt Wb,
dore I 4 f
Vi W



Time Harmonic Potentials

If charges and currents vary sinusoidally with time: oK
£

PRy, 1) = py (Ry) coslat + ¢b)
we can use phasor notation:

o (Ri. 1) = Me [,ax.-mn H ,

with
5(Ri) = pu(Ry) e'®.

Expressions for potentials become:

\ ==
N = R’
Ll?nl
= w f HRp)e JERS
AR) = |
R) = — Ee el
"l;."

= opy kR
I fm{Rl}f . oy V).

Also: E=-¥V - == (dynamic case).
{
L l -
H=-VxA
e

Maxwell’s equations become:

V x E = —jm-,u,ﬁ

= ] 2
or H=—- V x E.
Jeufd
ST B
VxH=j jweE or E=—V x H.
JiaE



Example 6-8: Relating E to H

In a nonconducting medium with & = 16gy and pu = pg. the
electric field intensity of an electromagnetic wave 1s

E(z,1) = %10sin(10'% —kz)  (V/m). (6.88)

Determine the associated magnetic field intensity H and find
the value of k.

Solution: We begin by finding the phasor E(z) of E(z, 1).
Since E(z, t) 1s given as a sine function and phasors are defined
in this book with reference to the cosine function, we rewrite

Eq. (6.88) as

E(z,1) =% 10cos(10'% — kz — 7/2) (V/m)
— Re [E(z) eff”"] , (6.89)

with @ = 101? (rad/s) and

Cont.
E(z) = % 10e /527172 = _%j10e /%2, (6.90)



Example 6-8: Relating Eto H

To find both H(z) and k. we will perform a “circle™ we will

use the given expression for E(z) in Faraday’s law to find H(2):

then we will use H(z) in Ampere’s law to find E(z) which we I
will then compare with the original expression for E(2); and the

comparison will yield the value of k. Application of Eq. (6.87)

gives
i | s
H(z)=—VXE
jou
| X y Z
= —— d/dx d/dy d/0z
JOR | i10e—i%2 0
! —A —jkz
= —— y —(—j10e™7%%)
Jou |° 0.
10k _.
=_—§j —e 2 (6.91)
i

Cont.



Example 6-8 cont.

So far. we have used Hq. (6.90) for E(z) to find H(z). but &
remains unknown. To find £, we use H{z) in Eq. (6.86) to find

I N 2): ]

T | i
Ez)=—VxH

Jewe

N (_f ﬁf—ﬁ:z)
JeuE 0 T otud

s TR
#

= —Xj _-'f"!r';r. (G.O2)

4
= JLE

Lquating LEgs. (6.90) and (6.92) leads to

x|

7 L
k™ = ) lLE,
or

k= w /e
= 4w/ togg

4 4 % 1010
— S O 133 (rad/m). (6.93)
' T P

Cont.



Example 6-8 cont.

With k£ known, the instantaneous magnetic field intensity is then
given by

H(z. 1) = Re |H(2) ef“”]

10k L
— Me —yj —e jﬂzejcu.’jl
(oL

=v0.11sin(10'"r — 1332) (A/m).  (6.94)

We note that £ has the same expression as the phase constant
of a lossless transmission line [Eq. (2.49)].



Summary
N

Chapter 6 Relationships

Faraday’s Law EMN Potentials
d d aA
FEW:_E = —EIB{£5= F,J_'[r”[-i-]-"rurnlr E=—?F—E
5 B=VxA
Transformer
vl — _Nf ﬂ T (N loops) Current Densily
eml —
% dt Conduction Je=aE
At . 4D
Motional Displacement Ja = =
I

Fﬂ,=§{uxﬂ}-d]
o

Conductor Charge Dissipation
Charge-Cuorrent Continuity

oy
v-]=-"%
J i

F"l.-'[ﬂ = P\Ing—tafe}r = P‘me_”i}



traffic

Once activated by the signal from the
tag reader (which acts as both a
transmitter and a receiver), the RFID
tag responds by transmitting the
identifying serial number programmed
into its electronic chip.

Tag reader

The reader forwards the
data it received from the
RFID tag to a database
that can then match the
tag’s identifying serial
number to an authorized
account and debit that
account.

Figure TF13-2: How an RFID system works is illustrated through this EZ-Pass example. (Tag courtesy of

Texas Instruments.)

/. PLANE WAVE PROPAGATION

/e Applied EM by Ulaby and Ravaioli




Chapter 7 Overview
D
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Earth's surface
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Guided EM Waves
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(a) Sphercal wave
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(b} Plane-wave approximation

Unbounded EM Waves



Maxwell’'s Equations

For sinusoidal time variations:

V-E=j /e
?xﬁ:—jmuﬁ,
V.H=0,
VxH=7J+ jocE.

VxH= j—l— _}'m&'ﬁ

- €Y
— (6 | jwe)b = jew (;-: _,f—] E.

By delining the complex permittivily &, as

H,,:g—jz, (7.4)

Lq. (7.3) can be rewritten as

VxH= _jm;—.';ﬁ.

For any vector field:

V-VxH=0

Hence: V-E=0 and p, = ()

Consequently, Maxwell’s equations become:
v-E=0,
V x
V-H=0,
VxH= ] mscﬁ.

= —jm,uﬁ,

F}l

We will use these to derive the wave equation

for EM waves.



Complex Permittivity

go=¢6— j—=2¢ — jg", (7.7)
with
¢ =e¢, (7.8a)

(7.8b)

For a lossless medium with o = 0, it follows that €” = 0 and
!
EE = F = £



Wave Equations

(7.6a)
(7.6h)
(7.6¢)
(7.6d)

Vx (VxEi= __;'m,u:'-.?xﬁ]_ (7.9)
Upen substmring Eq. (7.6d) inte Eq. (7.9} we obtain
VoV ox Ei = —juuu.,r':m;.:i'_;j — mz;xaci:_l- L

From D;:| (31130, we knoas that the cupl of the cupl of E 1=

Vo (Vx El=V(V E —VE

where V7E is the Laplacian ol E. which in Curlesiun
coordinares is given hy

A

_ e HE 32N
?213:(, i g )1:
dy=  dy-  dz-

E12)

-

In view of Eq. (7.6a), the use of Eq. (7.11) in Eq. (7.10h gives

VE + w' e E =0, (7.13)

which 15 known as the homogeneous wave equation for E. By
defining the propagation constant 3 as

! 2

¥ = e, (7:14)

Eq. (7.13) can be written as

VE—»E—0. (715

o derve kg, £7.13), we ook the curl ol both sides ol
Eq. (7.6b) and then we wsed Eq. (7.6d) to eliminare H and
oblain an equalion 1n E only. I we reverse the process, thul 1%,
If we start by taking the curl of both sides of Eq. {7.06d) and then
use kg. (7.6b] o eliminale F we obLuin a wave equation for H:

VIH— v H=0. (7.16]

Since the wave equations for E and H are of the same form, so
are their solutions.



Lossless Media
I

If the medium is nonconducting (o = 0), the wave does not
suffer any attenuation as it travels and hence the medium
is said to be lossless.

-1

y = —m’ e, (7.1°7)

For lossless media, it is customary to define the wavenumber k
as

k=w /me. (7.18)

In view of Eq. (7.17), y* = —k?* and Eq. (7.15) becomes

V2E + k°E = 0. (7.19)



Uniform Plane Wave

For an electric field phasor decomposed in 1its Cartesian

B I ) 1ponents as ]
E=XE, +VE, +iE,, (7.20)

substitution of Eq. (7.12) into Eq. (7.19) gives

92 92 52 - - -

+kKX(REx + VE, +2E,)=0. (7.21)

To satisty Eq. (7.21), each vector component on the left-hand
side of the equation must vanish. Hence.

(ﬁ T YRR T kz) == -

and similar expressions apply to E, and E,. Cont.



Uniform Plane Wave

A uniform plane wave is characterized by electric and
magnetic fields that have uniform properties at all points
across an infinite plane.

If this happens to be the x—v plane. then E and H do not

vary with x and ¥, Hence, G, /i = 0und #E, /iy = 0. and

Eq. (7.22) reduces to = 0
Application of ¥ % K — — jwpH yields:

fi'rzﬁ.k T = iy
+hF, =0 T
2 A J _ 3

General Form of the Solution:

En (2) = E: () + E; (z) = EI]E_-I#E i E;:IE-”-H Summary: This is a plane wave with
E(z) =XE] () = XEe *2,

For a wave travelling along +z only:

i = - ~ SRR JER
I":{?} - %1‘11;. [;} - ihj;}f' iKZ H [?} =¥ r?,} = 3, jl-;-ﬂ -"'Ei'fﬁr
1A i
with ,'r]' = t’!j!.h', - rrdid (N E {ﬂ}

k B fxl,\/),ht_{%:-‘!}l;




Summary from previous slide:

E(z) = iE;'(z} = iE_:DE_H”'._

W B0 EL s,

H S
Time-Domain Solution

- ¢ ) = - - — . o E i '
Inthe general case, £, 1sacomplex quantity with magnitude
|Pfh| and phase angle ¢ That is,

EL = |ES e/ (7.33)
The instantaneous electric and magnetic fields therefore are
E(z,t) = Re [ﬁ{z} ef':”’]
— ii]E_:}_]| cos(wt —kz+¢™)  (Vim), (7.34a)
and
Hiz. 1) = NRe [ﬁ{z} e?-’-“”:|

I
£l
1

o
h

coslent —kz + &)1 (A/m). (7.34b)



Wave’'s Phase Velocity
I

(1) w 1

ON TN T

(m/s), (7.35)

and its wavelength is

p=r U8 i .36)

fnvacuum. ¢ = gp and (1t = pg. and the phase velocity «p and
the intrinsic impedance n given by Eq. (7.31) are

1

HOED

=3x10°  (mhs). (7.37)

Hp:[_':

—_—

ey
n=no = — =377 (&) = 120 (§2), (7.38)

V =0



Example 7-1: EM Plane Wave in Air

This example is analogous to the “Sound Wave in Water”
problem given by Example 1-1.
The electric field of a 1-MHz plane wave traveling in the
+z-direction in air points along the x-direction. If this field e
reaches a peak value of 1.27 (mV/m)atr =0 and z = 50 m,
obtain expressions for E(z, ¢) and H(z, 1), and then plot them
as a function of z atr = 0.

Solution: At f = | MHz, the wavelength in air is

s
N = —

;l" - —} [ 106 = 300 m,

and the corresponding wavenumber is & = (2 /300 (rad/m).
The general expression for an x -directed electric field traveling
in the +z-direction 1s given by Eq. (7.34a) as
E(z. t) = X|L,|cos{ewt —kz+¢7)
N : 2wz
=x |.27 cos (’LT w 107 — — + ! ) (mV/m).
300 _
The field KE{z, 1) is maximum when the argument of the cosing
functionequals zero oramultiple ol 27, Aty = Oand 2 = 30m.
this condition vields

2o o= 50 T
-+l = or gb':?_

300 Cont.



X

Example 7-1 cont. e
I
10 (eAfm) 0
{ e
i
Hence,
. | . 27z T
Eiz,t) =xX1.27cos | 2m x 10" — —— + — (mV/m),
300 3

and from Eq. (7.34b} we have

N ()

o

2Tz 0w
—v10cos |27 % 10% — =— 4 — A/m),
¥ L{}H(JT}{ 3{}04—3) (eA/m)

Ty
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Module 7.2 Plane Wave f| (S50 (557 L et R R s AR T 2l e
| [ = 08S3T (il [ = 250 | = . W |Fh@sors| Freguency f —|'.-|.'-'E":' Hz
:l il i E-pkascr Magrisude == H-phaser Magncude LANELILEY o= F"D Sim

ezt Erlathes Fermittadby = =|: o

Relathe Permesaiity [T = .o

- I_ n
L] o SO0
T Efield Amplitude z=01 E. = I': o Wim
| \\\ Sfield phase fz=0) @ =f0  rad
i L=ngth Dy=played i TI'-.:':'- ] A
(A & [3] Winaoms ANGS. I: .0 e
: Jpdate
w L] ek m.:d [ J—l
B
¥
Output Wave Properties ||
Wawelength X o= 300 |[cm] B

hase Velocly 4y = 3.0x10% [mie|
Taricd T = Loxlod[=]

ﬂ f=10% mpedance of the Mediam § {71
Za . F] = 3TE. 2091118 + | D.O
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a 18 [r
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Directional Relation Between E and H

® ] -~ Pt
Figure 7-% A rransverse clectromagnetic (TEM) wave H= E kx E, (7.39a)
propagating in the direction k = 2. For all TEM waves, k is
parallel 1o E x H. EZ—T;EK H (7.39b)

The following right-hand rule applies: when we rotate the
four fingers of the right hand from the direction of E toward
thar of H, the thumb points in the direction of wave travel, K.



Maodule 7.1 Linking Eto H

Freguency = 10.0 [GHz)]

=
":Ir =10
0=a5.0° 0=00
|EI=100[Vim] @'T'
{E} Select E y ) Select H

n =376.991 (O]

[kl=209.43951[radm!]
k, =148.096098 [rad m~1]
k, =0.0rad m-1]

k, = 148.096098 [rad m~1]

IEl=10.0[V/m]

E, =0.0[V/m]
E, =10.0[V/m]
E, =0.0[V/m]

IHI=0.026526 [ A/m]
H, =-0.018757 [A/m]
H, =0.0 [A/m]

H, =0.018757 [A/m]

Instructions |




Wave decomposition

In general, a unmiform plane wave ftraveling in the

- _ +z-direction may have both x- and y-components, in whmhl

case E is given by

E=%El(z) +§E} (2), (7.43a)

o e e 2
;
' and the associated magnetic field is
:
' H=xHz) +§H ). (7.43h)
,q_i-_i_*-!_h- X ) ) .
: ES Application of Eq. (7.39a) gives

" " E+ 7 E+
Figure 7-6: The wave (E. H) is equivalent to the sum of v H = l % F = (2) + ¥ Ey(2) (7.44)
waves, one with fields (E; . H_,,'." } and another with [E_;!', H i " I
with both traveling in the +z-direction.
By equating Eq. (7.43b) to Eq. (7.44). we have
2 Et+(z) 2 E+(z)
o AR ) + B B z
H (z)=— H (z)= . (7.45)

L l E n



Tech Brief 13: RFID Tags

Figure TF13-1: Passive RFID tags were developed in the
1970s for tracking cows.



Overall System View

3 The reader forwards the

Once activated by the signal from the £ R . EIIEH mt: datf;ubr:;he

taqg reader (which acts as both a [ A t&gﬂ:: h L

transmitter and a receiver), the RFID t{l;" v - matc ; tl!

tag responds by transmitting the t&gshﬂmmlfpr-g “E e

identifying serial number programmed e, ;r:j:.; =

into its electronic chip. OO 31 el
account,

Flgure TF12-2 How an RFID system works is illustrated through this EZ-Pass example. The UHF RFID shown is courtesy
of Prof. C. F. Huang of Tatung University, Taiwan.



RFID Tag Communication
L

RFID reader )) Chip

Antenna Antenna

Tag

Figure TF13-3: Simplified diagram for how the RFID reader communicates with the tag. Atthe two lower carrier frequencies
commonly used for RFID communication, namely 125 kHz and 13.56 MHz, coil inductors act as magnetic antennas. In
systems designed to operate at higher frequencies (900 MHz and 2.54 GHz), dipole antennas are used instead.



RFID Tag Frequencies

Table TT13-1: Comparison of RFID frequency bands.

Band LF HF UHF Microwave
RFID frequency | 125-134 kHz 13.56 MHz 865-956 MHz 245 GHz
Read range ={(.5m <1.5m <3m < [m
L fehes e S LU
Typical o Animal 11 o Smart cards o Supply chain » Vehicle toll collection
applications ¢ Automobile key/antitheft e Arlicle surveillunce management o Railroad car monitoring
e Access control o Aurline baggage tracking e Logistics
¢ Library book tracking




Wave Polarization
I

The polarization of a uniform plane wave describes the locus
traced by the tip of the E vector (in the plane orthogonal 1o
the direction of propagation) ar a given point in space ds d
function of time.
If: Evy = ay,

)
Plane wave propagating along +z: E;ft] = “,rfj )

i R i then
E(x) =IE£{J}+}E1(*’J - - .
E(z) = (Xa, + ¥a,e/%)e ¥,
wilh
N | and the corresponding instantaneous field is
Ey(Z) = -E.J.ﬂﬁa_"rkz-.

F:'T i _— " ' .?_jkg W I
Ev(2) = Eype : E(z, t) = Ne [E{x} E“‘”]

= Xat, COS(ewf — k)

+ ¥a, cos{ewt — kz + §).



Polarization State
I

Polarization state describes the trace of E as a function of time
at a fixed z

Magnitude of E Inclination Angle
— E {Eu I}
_ g2 2 1/2 ) — | E)
[E(z,1)| = [Ef(z.t) + E(z,1)] Y(z,1) = tan (Ex(z, I})

= [uf CDSE{mI —Kkz)

+ a? cos? (wt — kz + 8)]'/?



Linear Polarization:
S=0or d=m

A wave s said 1o be linearly polarized if for a fived z. r.".'rl
tip of E(z, 1) traces a straight line segment ay a function of
time. This happens when E (2, tyand E (z, t) are in-phase
(e, & = 0} or out-of-phase (§ = ).

Under these conditions Eq. (7.50) simplifies to

E(0, t) = (Xa, + Ya,) cos{wi — kz) (in-phase), (7.53a)

E((}, 1) = (Xay — ¥ay)cos(wt — kz) (out-of-phase).
{7.53h)

Let us examine the 1-:':'-]["‘1'1:'|:']"l"'“"*'lﬂ case, The field’s 'I'I'Ii.lgﬂill..lLlE is Figure 7-T:  Linearly polarieed wave (raveling n the
+=alirection Cout of the peoe),

[E(z, )] = [a7 + a1]"*| cos(wr — kz)], (7.54a)

E traces a line( in blue)

and the inclination angle is
as the wave traverses

a fixed plane

fr = tan ( H"') {out-of-phase). (7.54b)

Ifa, = 0. then ¢ = 0% or 180°, and the wave is x-polarized;
conversely, if a, = 0, then ¥ = 907 or —90°, and the wave is
y-polarized.




Polarization Handedness
I

Folarization handedness s defined in terms of the rotation
of K as a function of time in a fixed plane orthogonal ro the
divection of propagation, which is opposite of the direction
of rotation of E as a function of distance ar a fived point in
e,

-

d
-
oy
-
\ 1
E \
id) A

(a) LHC polarization

.
Sy
%
w A"
E \
\

(b) RHC polarization



LH Circular Polarization:
ay =ay=aand § = /2
ta) Left-Hand Circular (LHC) Polarization

Foray, = ay =aand § = /2, Egs. (7.49) and (7.50) become

B =

E(z) = (Xa + i’il’f"”rfz}l‘_’_'jk?

= a(X + jf}f’_‘f“,

E(z, t) = Re [ﬁm piot }

= Xat cos{wt — kz) + Yacos(wt — kz + m/2)

= Xa cos{at — kz) — }ﬁ'ﬁ sinf{et — k7).

The corresponding field magnitude and inclination angle are
Wiz, 1)
i 5 172
E(z, 1)] = [E;{z, N+ EXz, ;;.]

- ﬂ e "
= [a" cos™(wr — kZ) + a” sin~(wf — kz)]l“‘

=W,

=1

v =
; !
Ja
- T e
i 3
F |."" i
F 3
¥
f i it 'll
i ie .
" E\..-r ]
I
'I.\ 7
N >
ra
'b.“_ -'"_..

(a) 1.HC polarization

e} FE}'{L 1)
ran s
| Ey(z,1)
1 [—asin(wt — kz)
tan
| acos(ml — kz)
— (et — kZ)




RH Circular Polarization:
ay =ay=aand § = —m/2

-] |
(b) Right-Hand Circular (RHC) Polarization

Fora;, =ay, =aand § = —n /2, we have

IE(z,t)| =a, ¢ = (ot —kz).

(a) LHC polarization

--v :
t }
419
W \""\
} ok
|}
. w 1

(b)y RHC polarization



Example 7-2: RHC Polarized Wave

An RHC polarized plane wave with electric field magnitude
of 3 (mV/m) is traveling in the +y-direction in a dielectric
medium with ¢ = 4ey, © = g, and o = 0. If the frequency
1s 100 MHz, obtain expressions for E(y, #) and H(y, ).

Solution: Since the wave is traveling in the 4 y-direction, its
field must have components along the x- and z-directions. The
rotation of E(y, ) is depicted in Fig. 7-10, where y is out of the
page. By comparison with the RHC polarized wave shown in
Fig. 7-8(b), we assign the z-component of E(y) a phase angle
of zero and the x-component a phase shift of § = —m /2.

Cont.



Example 7-2 cont.

Wave with electric field magnitude

of 3 (mV/m) traveling in the +y- With @ = 27 f = 27 x 10° {rad/s), the wavenumber £ is
direction

(tho /By

ﬁ{y}:igx —I_i-.'-F':-ﬁ' ¢

— Rae T2y | gae~ kY 2 x 108 /4
A - — ke B 3
= (—%j +2)3e/® (mV/m}, 3x 10
= - (rad/m),

and application of (7.39a) gives
i "
| .. . o —iky
= =¥ X (—Xj+2)3c '™
iy

3 b
= (i +%e Y (mA/m). Cont.
1



Example 7-2 cont.

The instantancous fields E(v, r) and H(v, 1) arc

1no
- Ver E(y.1) = Re -E(}J) Ej"’f]
~ 2R = Re [ (&) + i)3e—ikﬁ'eiﬂ”}
J4 :
= 60 (Q). = 3[x sin{wt — ky) + Zcos(wt — ky)]  (mV/m)

and

H(y, 1) = e |H(y) e-f“”]

B . = pmea
= Re | —(Zj + X)e J’k-"’e”‘”]

= ——[Xcos(wt — ky) — zsin(ews — ky)] (mA/m).
205



Elliptical Polarization: General Case

Linear and circular polarizations are special cases of elliptical o
i Ellipticity angle
tan 2 = (tan 2¢fpicos d  (—mf2 =y = /), <
§in 2y = (sin 2 sind (/4 = oy = i), \3’ *\
J’ X
where by 1s an auxiliary angle defined by :
Maior Rotation
e angle
. , - XIS Minor =
tan yip = — ([} = g = —) . axis
€y 2

. Polarization ellipse
w =0 if cosd = 0, . B

vo= 00 cosd = (. o
Positive

values of y, corresponding to siné = 0, are associated with

left-handed rotation, and negative values of y, corresponding
to sind < 0, are associated with right-handed rotation.



Example 7-3: Polarization State

Determine the polarization state of a plane wave with electric
held

E(z,t)=x3cos(wt — kz + 307%)
— y4sin(wr — kz + 45°) (mV/m).
Solution:  We begin by converting the second term to 4 cosine
reference.

E =x3cos(wr — kz 4+ 307)
— ydcos(mt — kz +45° — 907)
= X 3cos(wr — kz 4+ 30%) — y4cos(wr — kz — 45°).

The corresponding field phasor E(2) is

ol

. T . A t4En
(Z) =X e Jkz , 530 — vde Jk# =43

I

f e

i - 4| '1 o o R oY _ A2 ] Q0
% 3e ka"fui-[-] _|_}_1f _,r.L#.f 743 -&"”H“

i N . jimee
E{J—JRIFJSU __}_},_4€ _akgf_;1351

I
)

Cont.



Example 7-3 cont.

dy
iy — tan~ (—)
iy
4
=1Ill"l_]( )
3

=53.1°.

tan 2y = (tan 24 ) cos é
= tan 106.27 cos 1057
= (.89,

which gives two solutions for y, namely y = 20.8" and
p = —09.27. Since cosd = 0, the correct value of 3 15 —69.2°,
From Eq. (7.59b),

sin 2y = (sin 24 sin d
= sin 106.2° sin 1057
=093 or yx =34.0°%

The magnitude of x indicates that the wave 1s elliptically
polarized and its positive polarity specifies its rotation as left
handed.



Module 7.3 Polarization 1 The polarization is ELLIPTICAL { right-handed )

Instructions

Amplitude X

1.0
Phase X (¢)ideg ( Irad

00

Amplitude Y

PhaseY  (e)deg ( rad

695

Animation speed
Update -
- .-

Trace: @@ﬂ Oﬂﬁ'

The wave travels in the z-direction (towards the viewer)
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Tech Brief /7: LCD

x-oriented
I I o~ filter
e _ et

Liquid crystals are neither a pure solid
nor a pure liquid, but rather a hybrid of
both. One particular variety of interest is
the twisted nematic liquid crystal whose
rod-shaped molecules have a natural
tendency to assume a twisted spiral
structure when the material is

sandwiched between finely grooved glass

substrates with orthogonal orientations.

x-polanzed Light y,

onl-shapedd

A”” .

f malecules

A
| R f | |
| |
Crrthogonal I I)II
N

Eroove
onentabions

y-oriented
poelarizing fil
N

T

incident light

x ¥
Unpolanzed light

r-orented
exit substrate

through polanzing
filter

Figure TF14-1: The rod-shaped molecules of a liguid
crystal sandwiched between grooved subslrates with
orthogonal orientations causes tha electric field of the light

passing through it to rotate by 90°,



Operation of a Single Pixel

i(b) OFF state (switch closed)

{a) OM state {switch open)

e-pixel LCO.

Figure TF14-2: Singl



LCD 2-D Array

-1 pixel array

Liguid crystal
e

Unpolanzed hight

Exit polarizer

B

~L] |

Entrance polarizer Molecular spiral

LD display

Figure TF14-3: 2-D LCD array.



Lossy Media

For a uniform plane wave with electric field E=x Ex(x}
traveling along the z-direction. the wave equation given by
Eq. (7.61) reduces to

dX E (7 A |
#—}fj Eulz) =10, (7.67)
dz
with | |
y? = —w’ue. = —w (e’ — je). (7.62)

where ¢’ = £ and £” = o /w. Since y is complex, we express
Il as
y =a+ jh, (7.63)
where « is the medium’s aftenuation constant and B its phase
constant. By replacing y with (e + j8) in Eq. (7.62), we obtain
(a + jB) = (¢ — B°) + j2ap Cont.

= —w’ue' + jolue”. (7.64)



Lossy Media

s of rebrs ' ' 1 imagi
The rules of complex algebra require the real and imagin
parts on one side of an equation to equal the real and imaginary
parts on the other side. Hence,

a’ — 7 = —w ue', (7.63a)

2af = mz;w”* (7.65b)

Solving these two equations lor ¢ and g gives

> o8
r E.H .
o % JH—(E) = (Np/m),

(7.66a)

o
e gt 2 "

(7.66b)




Attenuation
e
E and H fields:

P

E(z) = RE (z) = REge V% = RE ge %% P2, (7.68)

The associated magnetic field H can be determined by
applying Eq. (7.2b): V x E= —jmuﬁ, or using Eq. (7.39a):

= (k x E)/n¢, where . is the intrinsic impedance of the
lossy medium. Both approaches give

— § X az,—jbz  (769)

Cont.




Attenuation

Magnitude of E

|E.(2)] = |Evpe e /P?| = |E ple™?

. —
Skin depth d

Figure 7-13: Artenuation of the magnirude of E.(7) with
(7.72) distance z. The skin depth & is the value of z at which
|Ec(z)|/|Evy = ¢ orz =8 = 1.

b= i),
¥

the wave magnitude decreases by a factor of ¢! = 0.37
(Fig. 7-13). At depth z = 34, the field magnitude is less than
3% of its initial value, and at z = 34;, it is less than [ %.

This distance 8., called the skin depth of the medium,
characterizes how deep an electromagnetic wave can
penetrate info a conducting medinm,



Low and High Frequency Approximations
N

Table 7-1: Expressions for a, B, nc, up, and 2 for various types of media.

Lossless Low-loss Good
Any Medium Medium Medium Conductor Units
6=0) | (" «1) | (") >1)
- =~ 912
[LE ol o (i
= — ‘/1 + (F) — 1 0 Ve VI fpo (Np/m)
~ = 12
[LE e\~
B = S 1< (? + 1 w. /e . /LE VI f o (rad/m)
' _EH —1/2 .
e = %(1—;—,) JE JE 1+ )= (Q)
g\ £ £ £
Up = w/ B 1/. /e 1/. /e Janf/uo (m/s)
A= 2n/p =up/f up/f up/f up/f (m)
Notes: ¢’ = ¢; ¢’ = o/w; in free space, ¢ = g9, 1 = pq; in practice, a material is considered a low-loss medium
if " /¢! = o /we < 0.01 and a good conducting medium if ¢” /¢" > 100.




Example 7-4: Plane Wave in Seawater
1

A uniform plane wave is traveling in seawater. Assume that the
x—y plane resides just below the sea surface and the wave travels
in the +z-direction into the water. The constitutive parameters
of seawater are & =80, u, =1, and 6 =4 S/m. If the
magnetic fieldatz = 0is H(0, 1) = ¥ 100 cos(2r x 1071 +15°)
(mA/m).

(a) obtain expressions for E(z. 1) and H(z. 7). and
(b) determine the depth at which the magnitude of E is 1% of

its value at z = ().

Solution: (a) Since His along y and the propagation direction
is Z. E must be along X. Hence. the general expressions for the
phasor fields are

E{H} = iE_fnf?_ﬂ‘?f?_jﬁ?* (7.78a)
. Ex .
Hiz)=y i ¢ ¥Zp—IBZ (7.78b)

He Cont.



Example 7-4: Plane Wave in Seawater
1

g #] (¥ 4

— —

T we  weey 27w x 108 x 80 x (10-9/367)
=9 x 10°.

E

This qualifies seawater as a good conductor at | kHz and allows
us to use the good-conductor expressions given in Table 7-1:

&= xm

=+ x 10} xdmr x 1077 x 4

={.126 (Np/m), (7.70a)
p—-a.= 0126 (rad/m), (7.79h)

o
"Fu:::“ = il —
F

- 0.126 :
= h/? E?J;TH]T = (0.044¢77/4 (2},  (7.79¢)

Cont.



Example 7-4: Plane Wave in Seawater
-

E(z,1) =Re [ilExglﬁfme_“ze_fﬁzemx]

— X|Evole 1252 cos(2mr x 10°t — 0.1262 + ¢p)
(V/m), (7.80a)

. |Exole’®
Rt =y [F O 0MheTTAE

= §22.5|Eole " 1% cos(27 x 10°1
—0.126z + ¢ —45°)  (A/m). (7.80b)

—HEE-JﬁzijI]

Cont.



Example 7-4: Plane Wave in Seawater

Atz =10,

H(0, 1) = ¥22.5|E 0l cosi2m x 107 + ¢p — 45°)  (A/m).
(7.81)
Bv comparing Eq. (7.81) with the expression given in the
problem statement,

H({0. 1) = ¥ 100 cos(2m x 10°t 4+ 15%) (mASm),
we deduce that
22.5(E.0] = 100 % 1073

or

| Exn| = 4.44 (mV/m),

and

o __ 150 . —
dy —45° = 15 ol o = 607, Cont.



Example 7-4: Plane Wave in Seawater
1

Hence. the final expressions for E(z, t) and H(z, 1) are

E(z, t) = %4.44e 1202 0022 50 1071 — 0.1262 + 60°)

(mV/m), (7.824)
Hiz. t) = ¥ 100e71%% cos (27 x 107t — 0.1262 + 15%)
(mA/m). (7.82b)

(h) The depth at which the amplitude of E has decreased to 1%
of 1ts initial value al z = (15 obtained [rom

0.01 = =012

or
_In{0.01)

—s — 36. =
7 0.6 36.55m 7m
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dc vs ac Current Flow in Conductors
—

—
— J —
—

+

I__.-"
(a) dc case

I

% u % N

o+ —
K1)
(b) ac case

Figure 7-14: Current density J in o conducting wire s (a)
untform across its cross section in the de case, but (b} in the
ac case. J 1s highest along the wire's perimeter.




Linear Conductor

For a conductor with E, at the surface:
EfE} = JE_E.:'.{*_&?E_J'H{_.

— . .
f(z) = 0 o e
Ne

From J = oE. the current flows in the x-direction,

density 1s = _
JHz)=xJ,(2),

with

j;—ff] = HEHE_HEE?_JI}E{ — jﬁ{*—ﬁ‘{f’_.’:ﬁ'{l

Total current crossing y-z plane:

R
[ =w f j;[x] dz
0l
: J'[]urc?h-
= ! .f[}f?_{l_i_"rjz"mi di = —— (A)
! (14 j)
(.

(7.83a)

(7.83h)

and 1ts

(7.84)

(b) Equivalent Jy over skin depth 4,

Figure 7-15: Exponential decay of current density Jy (z) with
Z in a solid conductor. The total current Aowing through {a)
a section of widlth w extending between 2 =0 and 2 = o0 i
equivalent to {b) a constant current density Jy flowing through
a section of depth 4.



Surface Impedance

The voltage across a length / at the surface [Fig. 7-15(b)] is ||

given by
- Jo
V=FEil=—1I (7.88)
or
Hence, the impedance of a slab of width w. length /, and depth
d = o (or, in practice, d > 335) is

V Y5
y SR L R '+ ) (7.89)
| ody W
It is customary to represent Z as
/
ul

where Z. the internal or surface impedance of the conductor,
is defined as the impedance Z foralength/ = 1 m and a width
w = 1 m. Thus,

| 4+

Ell,;: g’ﬁs

(). (7.91)

Thus, conductor is equivalent to a resistor in
series with an inductor.

Hy —
— X
=0
'-"'t—-"-"l'—-—-._..r"-‘\-..___..-'--._--
¥

o

(b} Equivalent .y over skin depth 8,

Fisure 7-15; Exponcnotial decay of currenl density I.r () with
Z in a solid conductor. The total current flowing through (a)
a section of width w extending between 7 = U and 7 = 0o I8
equivalent to (b} a constant current density Jy Howing through
a section of depth ;.



ac Resistance of Coaxial Cable
N

Since in the ac case, most of the current
flows through a very thin skin along the

outside of the inner conductor and along Giates piadinton
=

A

—=g 2h

the inside of the outer conductor, we can
use the results of the planar conductor
to figure out the resistance of the coax.

c;

| Diclectric

The procedure leads to the following

. . . Inner conductor
expression for the resistance per unit

(a) Coaxial cable

length:

e g g R LGN e
R _RI—I-RE_EJI (g-{-b) (ﬂr"‘ﬂl,

—
X

{b) Equivalent inner conductor

Figure 7-16: The inner conductor of the coaxial cable in (a)
15 represented in (b) by a planar conductor of width 27 a and
depth 4, as if its skin has been cut along its length on the bottom
side and then unfurled into a planar geomelry.



Modile 7.6 Current in a Conductor

= 1Ll mef = 1"

| Equivalent 7o

[ Enveiupe  [WShow Ilﬁ

IRstrictians |

[
|

Iii

B, = L1502 & = 503202 [pm|

L]
|.1I1'--l'rr||||-l-

h =104

ma fnmacian speed

Input
Frisfuaney g o= 10E9 Hz
o =| LOE? _ 5fm
oo=[ta
M= I 1.0
FoFuld Altudo =0y Ep =] 10
E-fimld Phase (z=01

Halghe Qi jilagenl 2]

Conduceyiny

Rkt Permisliviow

Feabve Pesmeabiliny

Length of Sample (=l

=
Wildeheal Samgk 1y W | 1.0

' = | | upgace |

| Imgedance Properties

Output

Surlace [mpedance

.25 = H.5+]}{5= R.5+_||3.I'.5

= 0019369 + J 0019369 0 |

surface Indisctance

=316 1071 [H]
Tatal Impedance £ = 15. il

£ = 0019869 + | 0019865 2]
Toral Current in The Sample

Tm: = 3A5.5RR1ZT . -0, 7854 rad [ A
waltage Across Sample

Fip= 1.0 = D0 rad [ V]




Power Density
[

Poynting vector:
S=ExH (W/m?).

Total power intercepted by A:
P = fS-ﬁdA (W),
A

Time-average power density:

Sw=3Re[ExH|  (Wm?).




Power Density Carried by Plane Wave
N

For a plane wave with E field :
E(z) =XE (2) + ¥ E,(2)
=(XEy+ 57 pr*ﬂ)f?-jkza

the average power density carried by the wave is:
Spy =% — (| Exol? + | Esol?
av — Z E(l x0]” + | yUl )

=2

s|=

(W/m?),



Plane Wave in Lossy Medium
N

For a plane wave travelling in a lossy medium:
E(z) =% E.(2) +§ E,(2)

= (R Exo + § Eyo)e “%e™ /P2,

~ 1 A ;
H(z) = — (=K Eyo + § Exo)e— %297,

e
the power density is : By expressing ne in polar form as

] ~ o~ .
Sﬂ‘v‘(z) = - mf [E X l.'_[*:| He = |.i'],;~_|£-!'"r .'_.

2 ——

s 2 2 NEOYE 4.

_ Z(|Exol” + [E vl J'E—zw e 1N s iy = E(D)] =22 cos0. (Wimd)
2 | nk ) 21nel

Whereas the fields E(z) and H(z) decay with z as e 77, the
. 1 et b
power densirv 8., decreases as =%




Example 7-6: Power Received by a Submarine Antenna

A submarine at a depth of 200 m below the sea surface
uses a wire antenna o receive signal (ransmissions al | kHz,

Determine the power density incident upon the submarine [NNENEGEGGNNNNNNNNGGGGE

antenna due to the EM wave of Example 7-4.,

Solution: From Example 7-4, |E(0)] = |E.ql =4.44
(mV/m), o« =0.126 (Np/m), and »n. = 0.04435" (£2).
Application of Eq. (7.109) gives

2

! 0! fz_j‘"za:usfé!j}
2|me] Transmitter

4. .44 s H_}—E 2 e antenna
lf ] {J—U._.fl_-z COS 4{.5#.‘; \.i

2 % 0.044 Al

-~ . . Ea s | F |
— 7016 12322 (mW/m?).

Suu'(fj =7z

=3

At 7 = 200 m. the incident power density is

7
—2.1 % 10 (W/m?).




Summary

I
Chapter 7 Relationships

Complex Permitrivity

Maxwell’s Equations for Time-Harmonic Ficlds

oy =g g V-E=0
=g VxFE=—jwuuH
E-“” = -~
m YV-H=10
VxH= _.r'-:uE,_.f
Lossless Medinm
k= pe Lossy Medivm
et : - — =12
n=J5 (@) pet | [ pEny? ;
YV oe o=y ‘!ll | + [-'_J — 1|3 {Npfmp
11 [ o ' £
_ . = 3312
.H'I-| = T = [H].I'IE] i fil
o E A =uw il I.I| g (E—) 41 {radim}
Im  Mip 20 [ &
A= T = T b = =
- i _ [ N THE
| Jeoll—ig ()
Wave Polarization ¥ % '
i s re
H=-k=E ds = — ta
i L¥
Eenixd

Power Density

e ;me[ﬁ % I"i*] (Wimd)
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Input
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Fragisency = 1.842E70

Range:| |+

__l_lpmate| bp= 1.0

i aidier madai dis led inlhe PMods Propabas panal |

8. WAVE REFLECTION & TRANSMISSION

/e Applied EM by Ulaby and Ravaioli




Overview
A




Signal Refraction at Boundaries
-

Transmitter
ant{?a Radiation by antenna (Chapter 9)
1
p -| Wave propagation in lossless medium (Chapter 7)
€ :
[ 1 2: Wave refraction across a
Tx ' Alr :
— boundary (this chapter)
3 Water
|
' Receiver

medium (Chapter 7)

antenna
Wave propagation in lossy 4/ 4‘/
. PI‘

Antenna reception (Chapter 9) " Rx

Figure 8-1: Signal path between a shipboard transmitter (Tx)
and a submarine receiver (Rx).



Normal and Oblique Incidence

Incident wave

Reflected wave

¥

f 1

Medium 1
i'il'l

Medium 2
2

(a) Normal incidence

Reflected
ave

Incident
wave

Medmm |

Ul

Medium 2
2

(b) Ray representation of
oblique incidence

\

il

Medium | Medium 2
i 2

(c) Wavefront representation of
oblique incidence

\




°
Normal Incidence
Transmission ling |
- _ Transmission line 2

Incident wave

Transmitted
2ot wave '
L. . Reflected wave 2y
We can use all the transmission-line —
concepts and techniques of Chapter 2 e
to analyze plane wave reflection and (a) Boundary between transmission lines

transmission at interfaces between

dissimilar media :
Incident plane wave

Transmitted plane wave
-

Reflected plane wave

Medium | Medium 2
M 2

z'={)
(b) Boundary between different media

Figure 8-2: Discontinuity between two different transmission
lines is analogous to that between two dissimilar media.



Modeling Normal Incidence

]
£ i E,
H"CL— K Hti)- i,
E.T
CID‘;—.-E
i ~4:> =
Medium 1 (2, 1) Medium 2 (g5, 1t2)
=1

(a) Boundary between dieleetric media

."'_":[_|] E.'m i

Infinite line

z=1)

(b) Transmission-line analogue




Individual Waves
-

. , Note — sign 7
Incident Wave )
. . L/ K H'

Medium 1 (2, g)

J—
)
=
- -

i F“;i'[zl . |;1] I =70
Hiz)=2Zx —=§ — ¢ HE
i 1
Reflected Wave
Er{z] = iEag-ﬁkl”‘ Note + sign
as . E'(2) P .-
H'(z) = (—7) x @ =—j 0 etkiz,
i i
Transmitted Wave
e ~ ot —jk
E () = REpe ™", ‘ Kote  sign

E(z) . E} ¢,

§ ok
2 12

H(z) =% x

Medium 2 (£7. 12)



Boundary Conditions

Total fields
Medium 1

=Ei(z) + E'(2)
— % El —qu_'_Er _.'M?'
ﬁuﬂ=ﬁu] H'(2)

E|i(2)

o4 s i
—§ — (Ehe~thiz _ gioihizy
I

(B.da

(%.4b)

With only the transmitted wave present in medium 2, the total

helds are

Medium 2

E:(z) = ENz) = RELe /%27,

o i Et
H:(z)=H'(z) = § —ZLp— /%27
2

At the boundary z = O:
E (0) = E2(0)  or

H(0) = T:(0)  or

Ej+ Ej = Ej,
EL, E, E}|
mooom o0

(&, Y0

(.Y

f;r .—@L H

Medium 1 {51, i11)

z e
Solution gives:

r__
k=

- .
£y =

where

()

(a2 — 11
\ 2
{ Elgf:

- _}E ZTEi.
U?E-I-?H) ! !

Medium 2 (& 1)

) E[j} — rE1i]-.

Ey m—m
TE, mtm
B EE[:, 212

EL m+m

(normal incidence),

(normal incidence).




Reflection and Transmission Coefficients

Ef —
F— oo Jaeri (normal incidence), o
Ey m+m Similar form as for
o ) transmission lines
=Y = it (normal 1ncidence).
Ey, m+m

= 14 F (normal incidence).

SEr T &S Er ; :
Pt ~  (nonmagnetic media).
A I!‘EI‘| -l_ At Erg




Analogy of Normal Incidence to Transmission Lines

||“:I:?" k,
O -
k- —CLQ’I:['

Mueidiom 2 {es, 10

=,
§ o

Infinite hine

Mduclium 1 iy, 2] L= U
z={

Table 8-1: Analosy between plane-wave equations for nermal incidence and transmission-line equations, both under lossless conditions.

Plane Wave [Fig. 8-dia)] Transmission Line [Fig. 8-dih)]
Ei(2) = §E (e 17 L Tef17y  (8.5a) Vitz) = Vi (e /P L Telfi?y  (8.5h)
e - EE-J 'l‘: 5 'J}I_. E I"rﬂ+ Ilﬁ ﬁ
Hi(z) =§ —ie 1M = Pe/M5y  (B.6a) (2} = —— (e IF1E — [alfits) {5.6h)
11 201
Exiz) = Re Ele— it (8.7} Valz) = tV e iR (8.7h)
s Bl - Vol
Ha(z) = jr —2 ok (%.8a) Ihz) =1 —2 g 122 (8.8h]
n2 L
M= (2 —m )/ O +n1) I'=(Zyr — £ )/ (22 + Zo1)
T=14T r=1+41T
L=w/Jugs ., b=/ Bl =wJuig . =0
H =~ 11fET Nz =+ iajer Ziyy and Zpz depend on
lransmission-line paramelers




Incident wave

R_cﬂcctcd Wave

Power Transfe

&

I
Medium 1

Sav, (2) = $9RelE (2) x H{(2)]
Medmm 1

%ﬂf{e[i‘: Eyle M7 4 reiti7) g

}{} E‘D l:{,.fnr[:: r*f?_'fk]zjj|
)
5 | n|_
= %),
3"’]1
Medium 2

Savs (2) = 1Re[Ea(2) x Hy(2)]

| - 1, —jk2z =k Efl}* jhr#
=zHe | xrlje™ " xyrm — /"
12
N I
=z|r|?
2n2

Transmitted wave
-

Medium 2
M2

i r
S'll‘-'l — Sm-' i Sm-‘*

= —|T|*S.,.
M

(lossless media),

leads to

Szwl — h‘aw: -




f = 14 EHz

hy= 300% 107 [m] Ryg= 30 % 12= [m)

Erigle of Foperoe, o

|

HrsEr

Ratiscihiy K=10
I ransmiEEs ey T =10

7 L 'y
Morrnal bncidesrsce o “seker Diasrsns | | B § B Ylaring Wave Pallsrin
oL i =] :
|| Medule &1 porfect Conductor :
) —— =t e 0
| msdiuin 1 Parallel ¥ medium 2
PR Palarzation ; | B =2
S LTr} Gy =[G
Heq=1.0 el B
3, = 0[5
[
E!
k T .8 .
4 L) " z-paardinete
: ]
z Input Outpuk Feaflection Behowor £9
i kl latzpam
Hurll £ g — F‘_ = ne:danl &wols Sl -wchinn Annle
£ = iLo0ed Hz ET | g, D0f Gy = N
gl T Tieztriz T ald
o ==l [#ETe T Pacliziler Zuele ool |" = 11 00
Medi i Tranemizsier ToaffoarkT - 20+ (02
A . - . Hannetiz Feld
AL normal inddessce there is g longer distindion Fatareatiar Ineldart Trarsyarsa Sakl Refectisr Coefficent T= 10|00
between parallzel and perpendicular polarization e Sin @ _ow @ rranemiesir CnaffrankT =00+ 03




Example 8-1: Radar Radome Design

A 10-GHz aircraft radar uses a narrow-beam scanning antenna
mounted on a gimbal behind a dielectric radome, as shown in
Fig. 8-5. Even though the radome shape is far from planar, it is —
approximately planar over the narrow extent of the radar beam.
If the radome material 1s a lossless dielectric with &, = 9 and
1y = 1, choose its thickness ¢ such that the radome appears
transparent to the radar beam. Structural integrity requires d to

be greater than 2.3 cm.
\ Antenna beam

Radar (’1

Antenna Dielectric
. radome

d

Cont.



Example 8-1: Radar Radome
N

From transmission lines, since Media 1 and Incident wave Radome | Transmitted wave

3 are the same (air), no net reflection will

occur at z = —d if the radome thickness is
an integer multiple of iz

Medium | {air) Medium 2 Medium 3 {air)

At 10GHz, the wavelength o e i
. all . . 4 L i I
inairis Ay = ¢/f = 3 cm, while in the radome material it is . i
z=— =1
Ay 3cm d z=1

5 8

Hence. by choosing d = 3k /2 = 2.5 cm, the radome will be

non-reflecting and structurally stable. Lme2

Line 1

Zn=Hy Lp—= L= L=y

1




Example 8-2: Yellow Light Incident upon a Glass
Surface

A beam of yellow light with wavelength 0.6 ptm i1s normally R
incident in air upon a glass surface. If the surface is situated

in the plane z = 0 and the relative permittivity of glass is 2.25,
determine:

(a) the locations of the electric field maxima in medium 1 (air),
(b) the standing-wave ratio, and

(c) the fraction of the incident power transmitted into the glass
medium.

Solution:
and I';

n= 2L = [E% ~ 1907 (o),
£ £0

L2 o 1 1207
= [~ = | : i = 80x (Q2),
! €2 g0 Er /2.2 :
I’

nm—m  80m — 1207
— —- = —U.Eu Cont
n2+m 80w + 120x '

(a) We begin by determining the values of ny. n».




Example 8-2 cont.

Hence, [T’ = 0.2 and 8, = . From Eq. (8.16), the electric-

g g fcld megnitude 1s maximum at S

Bei A1

I|IIm.inf.: vy

rEakid

A A1
- — -— =0, 1,2 .
3 + n 3 (n )

with 41 = 0.6 m.

(b)
14T 1402

— = =1
-] 1-=-02
(¢) The fraction of the incident power transmitted into the
glass medium is equal to the ratio of the transmitted power
density, given by Eq. (8.20), to the incident power density,
Sk = 1E§I*/2m:

Swa _ 2 1B [IIEE | _ am
Siv 2m 2 n

In view of Eq. (8.21).
S:l'uz

4
Sk

=1—I'F=1-=(0.2)* =096, or96%.




Example 8-3: Normal Incidence on a Metal Surface

A 1-GHz x-polarized plane wave traveling in the +z-direction

1s incident from air upon a copper surface. The air-to-copper 7
interface 1s at z =0 and copper has & = 1. pur =1, and

o = 5.8 x 107 S/m. If the amplitude of the electric field of

the mcident wave 15 12 (mV/m), oblain expressions lor the

instantaneous electric and magnetic fields in the air medium.

Assume the metal surface to be several skin depths deep.

Solation: In medium 1 (air). @ = 0,

(0 2 % 10¢ 205

— = = = ad/ :
Al = T e 3 )
2
1= o =377 15, =t 5= = 0.3 m.
|

At f = 1 GHz, copper is an excellent conductor because

M

£ (7 5.8 % 107

= =1x10"> 1.
weo | 27 x 10° x (1079/367) 4 Cont.

!_-'h



Example 8-3 (cont.)

T
Ner, = (1 4+ 1) —

0+ ) 7 x 10° x 47 x 1077 /2
B / 5.8 x 107

= 8.25(1 + J) (m§2).

Since 1, is so small compared to ny = 377 (£2) for air, the
copper surface acts. in effect, like a short circuit. Hence,

. Nea — 10 _
Nes + 10

I —1.

Cont.




Example 8-3 (cont.)

Upon setting I' = —1
[ ] ﬁl (z) = iEé(e_Jk'z _ E;jklz)

— —Xj2ELsink) 2,
~ E! . _
Hi(z) =§ — (/"7 4 &/47)
M
1
=32 —Lcosk; ~.
M1
With Eé, = 12 ({mV¥/m), the instantaneous Oelds associated with

these phasors are .
_— , : : iz,
E (7. 1) = NRe|E, (2) e/ : CﬂFf : (=0
=3'E'2E£] sin k7 sin e : ) ’ ‘*-‘ :
: L ‘o
— %24 5in(20m 7/3) sin(27w % 10%)  (mV/m), .
- . Iy Al
Hiiz. 1y =Re[H(7) &'™] -t
: - rli _—"]' Is
o 'y 2 K
=v2 =2 cosk 2 cos wt . L
m . J‘* : : ‘h

=y 64 cos(20mz/3) cos(2m = 1071) {peAm), o Cmr=ﬂ



Snell’s Laws




Angles of Incidence, Reflection & Refraction
-

6, =6, (Snell’s law of reflection), (8.28a)

sinty  up, [L1E]

sin £, a Up, L2 E2
(Snell’s law of refraction). (8.28b)

Snell’s law of reflection states thar the angle of reflection
equals the angle of incidence, and Snell’s law of refraction
provides a relation between sin 6; and sin 6; in terms of the
ratio of the phase velocities.



Nonmagnetic Media

Index of refraction n:

C [ LE
n e 0 A HrEr ( )

In view of Eq. (8.29), Eq. (8.28b) may be rewritten as

sind, [ [ir, &r,

sind: ny V it Ers

i (8.30)

For nonmagnetic materials, 1, = p, = 1, in which case

sinfy ny 3 2
o I forpy = ). (831)
sin 1o Es Ul




Inward refraction Outward refraction

Refraction

(a) my =ny (b) m =ny
When the refraction angle is

90 degrees, the corresponding

incidence angle is called the
critical angle.

No transmission

L HE’ oL ':. .H
sinfo=—sinf|  =—=
' ?i!z;!l =Fﬂ H]

(or p1 = y12).

(¢) mp=mand &, =&,



Example 8-4: Light Beam Passing through a Slab

A dielectric slab with index of refraction 2 is surrounded by a
medium with index of refraction n . as shown in Fig. 8-11. If

B < He. show that the emerging beam 1s parallel to the incident
beam.

Solution: At the slab’s upper surface, Snell’s law gives

- no,o
sin G2 = — sin &y
i 1
and, similarly. at the slab’s lower surtace, -
. n2 . na _
SNy = — s = — sinéh, Ry = M
;3 nj

Substituting Eq. (8.33) into Eq. (8.34) gives

Figmre B-11: The exi angle dy 15 equal o the incidence angle &

1 1"y i he dieleciric slab has parallel boundaries and is surrounded
. %= (_-) (_) Sin H| = Sin f‘-"[ C by omedig weth the sgme dndes oF relragtion on both sicdes

| na (Erample 8-4,

Hence, #3 = ). The slab displaces the beam’s position, but the
beam’s direction remains unchanged.



Optical Fiber

{3

Fiber core

3 e Cladding

M

{a) Optical tiber (b) Successive internal reflections

Flgure 8-12: Waves can he guided along optical fihers as long as the reflection angles exceed the critical angle for total internal reflection.

The acceptance angle 0, is defined as the maximum value

of #; tfor which the condition of total internal reflection remains
satisfied:

I
sinf, = —(nz —n2)V2.  (8.40)
iy




Modal Dispersion
-

Claddmg Cnre

L1 - GBS - Sha

—T—

High-order mnde an order mode A:ual mode

Figure 8-13: Distortion of rectangular pulses caused by modal dispersion in optical fibers.

Highest data rate:

f I | CH e (bits/s)
= e— = — 1 A
o 2T 2lns(ng — ne)
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Example 8-5: Transmission Data Rate on Optical Fibers

A l-km-long optical fiber (in air) i1s made of a fiber core with

B I an index of refraction of 1.52 and a cladding with an index of |y
refraction of 1.49. Determine

(a) the acceptance angle #,, and
(b) the maximum usable data rate of signals that can be
transmitied through the fiber.

Solution: (a) From Eq. (8.40).

I 2
sinfy, = —(nf —n2)1? =[(1.52)* — (149712 = 0.3,
Hi)

which corresponds to 8, = 17.5°.

(b) From Eq. (8.45).

fo=

2Une(ng —ne)

3% 10% x 1.49
2 x 103 x 1.52(1.52 — 1.49)

= 4.9 (Mb/s).



Oblique Incidence
I

Plane of incidence is defined as the plane
containing the normal to the boundary and the
direction of propagation of the incident wave (x-y
plane in the figure).

A wave of arbitrary polarization may be
described as the superposition of two
orthogonally polarized waves, one with its
electric field parallel to the plane of
incidence (parallel polarization) and the other
with its electric field perpendicular to the
plane of incidence (perpendicular polarization).

Bedium |
(21,00 )

g=0

Medium 2
(£3. 1)

(a) Perpendicular polanzation

Medium 1
(. 441)

=10

7 H!

L] - - - -[-----'-*-:

Medium 2
(&0 i7)

(b} Parallel polanzation



Perpendicular
Polarization

¥ =xsmb.—zcos &,

- -

I I
Xr
S inm:..t,d.\;,_- =xemd;+xcosd

11
ﬁn;ﬂ\\
| 1
_4' |'_,|'

V=X condl— 7 sin &

Incident Wave

For a wave incident

%~ Hcos - E£sind,
Medium 2 (29, 102)

Medium | (£, 1)

2lone the I‘}I'ﬂp E’l"f'dtiﬂl] direction ii Figure #-152 Perpendicularly polarized plane wave incident at an angle & upon a planar hoandany.

B = §E e/,
.;I"J

i o L=k
fh

From the figure:
Xi = X SIN#H; + zcosH,.

V. = —XCos b + Zsinf.

Hence:

Fi —epl e ikilvsinditecoss)
1L u 10l 1

H'| = (—%cos0; + 2sin )

i
W Ll EJJ} E—jh{.r hi1||5'.—|—.?n.:mH,}l

m



Perpendicular

Polarization
I .

=xsinf, - zcos 6 |

-

P Tnset AN _
. ""_ vap=xsm - zcos

i X ¥ i

Medivm 1 {2, 1)

Reflected Wave

B = §Eoe M

ot ikl sin g —r cos s
= } EJ_G'E .
. . ET ]
H =3, —=2 ¢ /m
M
= (XCosH, | Zsintd))
E'

“L0 E—_,r'.'l'] [r s —7 cos i)
i

*

[n:«iulw
o X =xsm b +zcos
\ L4,

¥i~—Kcos 4 bFdsin
Medium 2 (22 )

==0 Transmitted Wave

e

W At — ik
E') =¥L£) e

ot —ikzixsinf 4z cosf)
= ¥E | ¢ .

ﬁ' - E'J_H

L=, ek

N2
= {—Xcosth + zsin )
E!
L0 8 Fhrix sin & 42 cos i ]
na

*



Perpendicular

Polarization
I

xp=x §in B — z.co5 6. |

/fujelt N 1= s i +zcos
| A
L4 /
B ot

Applying Boundary

¥i = —% cos &+ Fsin dy
Conditions

Medium 1 (e, 1) Medium 2 {1, jiz)
=10
Tangential H continuous

Tangential E continuous

r7i T 7t
[HJ_A'+H_£}- - J_'~'|;._L'.I'

Al =1 ee 3L
{Ll1'+LJ_'|'} — mibp
; = L Z==(} oz P
) : ; : 4 - i | a
— Fhy v AL o — fkx s el e T [ I e
E! e Fhypvsin J EI‘I e Jkyxsind, ETI NG fhpesing | Lg Cisth g ikxsing o L cosl, ¢ ihiasing
i i

|.I T
= £10 cos ¢ eSS

ha




Solution of Boundary Equations
N

1. Exponents have to be equal for all values of x. Hence,

kysmé, = kysin6; = kysin 6,

2. Consequently, remaining terms become 3. Solution gives expressions for
i : reflection and transmission coefficients:
E'y+E\y=E).

cos 6, . B cost E'y nacos# —n cosb
l(_hiu—l—hlﬂ:]:— htj_lf_‘] FJ_:Ei — 7 -y :
i N 12 2l N2COSE; 11y COSO
i

T E', ncost +nicost

T, =14+1].



Example 8-6: Wave Incident Obliquely on a Soil Surface

Using the coordinate system of Fig. 8-15, a plane wave radiated
by a distant antenna is incident in air upon a plane soil surface
located at z = 0. The electric field of the incident wave is given
by

E' = §100cos(wr — rx — 1.7372)  (V/m),  (8.61)

and the soil medium may be assumed to be a lossless dielectric
with a relative permittivity of 4.
(a) Determine k. k7, and the incidence angle 6;.
(b) Obtain expressions tor the total electric fields in air and in
the soil.
(¢) Determine the average power density carried by the wave
traveling in soil.

Cont.



Example 8-6 (cont.)

Solution:  (a) We begin by converting Eq. (8.61) into phasor
form, akin to the expression given by Eq. (8.46a):

i — Srlﬂﬂf—j:r.r—j].]'_hz
= y100e= M5 (vim), (8.62)
where x; is the axis along which the wave is traveling. and
kijxi=mx 4+ 1.737z. (8.63)
Using Eq. (8.47a), we have

kixy; = kixsind; + k2 cos ;. (8.64)

Hence.

£ osin &

T,

fpcosd = 173,

which together give

k| = ,,rf'rrz +{1.73m)° =27 {rad/m),

g = tan~! ( ) — 30°,

0
.73 Cont.



Example 8-6 (cont.)

The waveleneth in medium 1 (air) is

2T

o= —
1 T

= 1 m.

and the wavelengeth in medium 2 (soil)y 18

(b} Given that #; = 307, the transmussion angle & s obtained
with the help of Eq. (8.56):

The corresponding wave number in medium 2 18 k) iz

- !..;_i" H = — f'-.'i_]',l 3':-.":' = {.]-Ij
k " dn

q
-

sSINH =

[~
]

.lr-.'g =

-.|

=4 (rad/m).

B
[ ]

or
& = 14.5°,
With &y =&y and & = enep0 = 4eg. the reflection and

transmission coefficients tor perpendicular polarization are
determined with the help of Egs. (8.59) and (8.60),

i Ty
costy — /(ea2/E)) — sIn= &
[ =

— = —(1.38,
cos B 4 o/ (E2/81) — sin~ B

ri=1+TL =062 Cont.



Example 8-6 (cont.)

Using Egs. (8.48a) and (8.49a) with E', = 100 V/m and
&, = 6., the total electric field in medium 1 1s

i =
""J_ - [1-1'_ —I_ PJJ_
— }’?Elﬂp—.f"flir SINH =7 cos &

"""l-. - .I' “'__.-..Ilf]_
_|_},| Ell e Fhpiasind,—z cos )

_ {,]DDE—_HJTA'—H.?.ERE] . j“.,f_gge—_,f{_r:x—]-?.‘-;rz"}

and the corresponding instantaneous electric field in medium |
15

E! (v, 2.1) = Re [E] /']
= y[100 cos(ewt — mx — 1. 737 2) Cont.

— 38 cos(wt —ax + 1.7377)] (V/m).



Example 8-6 (cont.)

I
In medium 2, Hﬁing Eq (8.49¢) with Etl” =TL Ej_ﬂ gi‘iﬂ:S
ﬁ'l — if*r Eiuf_..f_-kl{r’i sin £ +2 cos )

= irﬁzf?—j{rrx+3.3?_-'u}
and, correspondingly,

E! (x.z.1) = Re [E;iﬁjmf]
= §62cos(wt —rx —3.87wz)  (V/m).

(¢) In medium 2, 2 = no/ . /6, = 1207 /+/4 = 60 (), and
the average power density carried by the wave 1s

[Efgl*  (62)°

— —=10.2 /m?).
212 2 x 60 (Wime)

B

av




Parallel Polarization
B

-

E|I|ﬂ a2 COS H — 17 COS H

F | e | £ 2
'TE T mcosth+ i costh
t
) _ B 212 €08 6
: Elilﬂ n>cos B, + ncost
COs &;
=0+ —F. .
cos 6,

Medium 1 (&, g1)

X;=Xxsinf; +zcos f;

Vi=Xcos &, —2sinf,

Vv, Xcos .+ Zsint

X; = x sin f + =z cos 6,
?t:iﬂﬂﬁ Et—i."iil'l Ht

Medium 2 (&3, 2)




Reflection Coefficient vs. Angle
I

(.4

1,064 Wet soil
(e,=25)

[Dry soil -
(r=3) _a=="

(B dry soil) (Ag wet soily (g water)
Incidence angle ¢ (degrees)

Figure 8-17: Plots for [I” [ and |17 | as a function of ¢ for a dry
so1l surface. a wet-so1l surface. and a water surface. For each
surface, [17)] = 0 at the Brewster angle.



Brewster Angle
N

The Brewster angle 0y is defined as the incidence angle 6
at which the Fresnel reflection coefficient I' = 0.

Perpendicular Polarization
&g 1 does not exist for nonmagnetic materials.
Parallel Polarization

1
L in
fg|| = sin \/l+(£;f£g)

P :
= lan -~ (lfor i1 = o).
1
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Power Reflectivity and Transmissivity

11

PUIEY P i Acosh

1

I |g ) oS B
= s cosd;

1
i! ~n? (r“ I:USHI)
Pll | 172 COS i

L |E 1P m2 Acosd

(8.79a)

(8.79b)

The incident, reflected. and transmitted waves do not have
ro obev any such laws as conservation of electric field,
conservation of magnetic freld, or comservation of power
densiry, buf they do have io obev the law of conservation of

POWEr,

x‘rﬁf :
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Summary For Reflection and Transmission
1

Table 8-2: Expressions for 1", r. £, and 1" for wave incidence from a medium with intrinsic impedance 5 onto a medium with intrinsic
impedance n2. Angles & and & are the angles of incidence and transmission, respeclively,

Normal Incidence Perpendicular I"arallel
Property th =t =0 Folarization Polarization
1 — 3 COsLl — nj COs (L i Cosith —ny cos ik
Reflection coelfcient I = i il i 1= 2 ¥ L o JELCOST W) '
na+ N 12 CO8 & + i cos B 3 COS By 4 1y COs B
2 20z Cos 8, 2z COsH,
Aransmission coeflicient | T = L T = L e T = Tertive
e + my fa costh + 17 COS th 2 costh + 17q Ccos O
g T : . oo
Relation of 1 to « r=1+1 1) =1+1 i (PP ——
= = COs B
T ¥ q 2
Reflectivily R=]T* | Ry =[P} /) = |Tyl=
08 COs &
Transmissivity T =|rf2 (ﬂ) By = g B LD i =it TR
i I cos i O onpoos
Relation of & to T F'=1-~R 'ir=1—-Ry Ti|=1—R||
Notes: (D sinthy = e fuseasind: (20 m = o fe: 03 ma = ez fe (4) Tor nonmagnelic media, na /i = ny /0o,
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Tech Brief 16: Bar-Code Reader

I

Bar coda ‘ ‘
Central store ".
Ccomputer
D Glass filter
Cash register
Sensor

s ||
7

Figure TF16-1: Elements of a bar-code reader.

‘ Rotating mirror
" (5,000 rpm)




Tech Brief 16: Bar-Code Reader

Bar code

Electrical signal NN _N_N_NN NV U

Digitalcode [UTIM_N_N MMM LA
10110100010001000110010

Figure TF16-2: Bar code contained in reflected laser beam.



Waveguides oA

i

* Examples of non-TEM transmission lines Mietal

Flollow o
diclectric filled

* We covered the basics of wave
propagation in an optical fiber earlier

* We will now examine wave propagation in
a rectangular waveguide with metal surfaces (b) Circular waveguide

wlctal Hallow or

°The energy is carried by Transverse Electric dicleatric filled

or Transverse Magnetic modes, or a
combination of both

I E iy transverse o Kk bur H s not, we call it a transverse
electric (TE) mode, and if H is transverse to k but E is nor,
we call it a transverse magnetic (1M ) mode, (¢} Rectngular waveguide

Figore 8=30:  Wave iravel by socoessive rellectiions in (a)
an optical fAber, (b} 4 circular mectal waveguicke, and (c) a
rectangular metal waveguide.



Coax-to-Waveguide Connection

Waveguide

I / ]

An extended section of the inner
conductor of a coaxial cable can serve
to couple energy into a waveguide or
from the waveguide

Coaxial line

{a) Coax-to-waveguide coupler

Elcetnie ficld
v=h
",‘ '!‘ ‘!‘ + "-l/ EM wave
Vil FaVas—

(b Cross-sectional view al x = a2

Figure 8-21: The inner conductor of a coaxial cahle can cxcite
an EM wave in the waveguide,



Transverse Magnetic (TM) Mode

Applying Maxwell’s equations to a wave
propagating in the z-direction with its Hz = 0
(for the TM Mode) leads to:

T

E,=7¢,e 1P

. {MIXN L ARTVN
=E:}Hil‘|( ):-;m( ; )f* Bz,

i 2

. — i g, MTX N ATV
£, = — (—) oy {;us( ) sin (— ¢ A7
a .

5:3 h

i

— ' FT T X Ny "
Ey = i (—) Eqy sin( )ms( }) e~ 10,

I h

figh 1
[

Si1de view

Front view

(8. 104a)
ol

(a) Cross-sectional planes

(% 104h)

— JmE FRTN o G IITX Iy iz
H, = ( ]L;[]F.m( ){;m;( )E‘.’ "

ke T f

o ol

(8. 104¢) m and n are positive integers

- IE,LJE M T . MW R
H, = J ( )Eucm( )Sm( ' ) g ife

it ¢t b

-
ks



Transverse Magnetic (TM) Mode

H field

Each combination of the integers m and n represents a viable
solution, or @ mode, denoted TM ... Associated with each mn
mode are specific field distributions for the region inside the
euide. Figure 8-23 depicts the E and I field lines for the TM
mode across two dilTerent cross sections of the guide,

{h) Field lines for front view

Side view

-!:
3 - 4 2H field into page  E field
Front view 1» J'r |

s _AIN LA

Y
n
Sy
L]
=
o
I-a
c/é
ﬁ/
Do
@ &
jﬂ
(o)
B
e,
ﬁhf
*tl

o r 0 @ H ficld out of page
) {c) Field lines for side view
{a) Cross-sectional planes
Figure 8-23: TM | electric and magnctic ficld lincs across two
criss-sec lomal planes.



Properties of TM Modes
)

1. Phase constant : .
F line inside th e of A wave, in a given mode, can propagate
or a wave travelling inside the guide along through the guide only if its frequency f >

the z-direction, its phase factor is e—j6z fmn, as only then 6 = real.

with:
B = f'rkz 2 3. Phase Velocity
=\ 5
i Hpo ~
. rm— eI Up = — = — . (TE and TM)
= \:.“m—;u? — ( . ) - ( b ) (TE and TM). b \/] R

2. Cutoff Frequency
Corresponding to each mode (m, n), there
is a cutoff frequency fmn at which 8 = 0. ~ -~ .' . w2
. — A 2 Ey E v A | Juin
By setting 8 = 0 in Eq. (8.105) and then Zim = = =nl— ,
, Ho k) f
solving for f, we have

4. Wave Impedance in the Guide

1

Rusf

Whereas properties 1 to 3 are common
=

4 ey 2 1% 2 . et
e ﬂ\/(_) i (_) (TE and TM) to both modes, property 4 is specific to
2 el b TM modes.



Example 8-8: Mode Properties

A TM wave propagating in a dielectric-filled waveguide of
unknown permittivity has a magnetic field with y-component

siven by I

H, = 6cos(25rx) sin( 100z y)

w sin( .57 x 10! — 1097 2) (mASm).

If the guide dimensions are ¢ = 2b = 4 ¢m, determine: (a) the
mode numbers, (b) the relative permittivity of the material in
the guide, (c) the phase velocity, and (d) obtain an expression
for E,.

Solution:  (2a) By comparison with the expression for H y given
by L. (8.104d), we deduce that the argument of v 1s (morfa)
and the arcument of v 1s (n/b). Hence,

25 mr
T = 7,
4w 102
o
1007 = — .
2w 1) =

which yvield m = 1 and n = 2. Therelore. the mode is TM»,



Example 8-8: Mode Properties (cont.)

(b) The second sine function in the expression for H, represents
sin(ed — A7), which means that

]
w = 1.57 x 109 (rad/s), or f = 7.5 GHz,

B = 1097 (rad/m).

By rewriting Eq. (8.105) so as to oblain an expression for
gr = & /e n terms of the other quantities, we have

c= e+ () +(2)]

where ¢ is the velocity of light. Inserting the available values,

(3 % 10%)2
(1.57 % 1010)2

1097 )2 E_Y 2\ 9
i **(W)*(W) r

Er =



Example 8-8: Mode Properties (cont.)
(¢)

w 157 x 10" 28+ 108
= T T 109 = 1.38 x 107 m/s, I

(d) From Eq. (8.109),

Ztm = n\/l — (fiz/f)?

Application of Eq. (8.106) yields f12 = 5.15 GHz for the TM >
mode. Using that in the expression for Zp. in additon to

f=7.5GHzand n = /e = (Vio/e0)/ /& = 377//9 =
125.67 2, gives

Figr = 9136

Hence.

E, = ZmuH,
= 91.3 x 6¢cos(23mx) sin(100z y)
x sin(1.57 x 101°% —10972)  (mV/m)
= 0.55¢cos(25mx) sin(100m y)
x sin(1.57 x 101% — 10972)  (V/m).



Transverse Electric Mode

-]
For the TE mode with E, = O,

-~ — il ST M X HITyV Ty
E, = St ( )Hnsm( )cns (—) e

‘ffE o i Iy
(8.110b)
~  JH gmm _mTx ATV
A, =— (—) Hiy sin ( COs (—) ; Jﬁ-fj
(8. 110¢)
H, = ;—"? (HT) Hy cos (nmx) sin (nﬁ}:) e P2,
' ks M b i b
(8.110d) TE mode properties are the same
~ T X NIy _ as TM , except for wave
H; = Hycos ( ) Cﬁﬂ( - ) & J-ﬁg" (8.110e) impeddnce:
of 1 :

1= Fand 2




Example 8-9: Cutoff Frequencies

For a hollow rectangular waveguide with dimensions ¢ = 3 ¢m
and » = 2 cm. determine the cutoff frequencies tor all modes,

up Lo 20 Gz, Over what [requency range will the guide support -]

the propagation of a single dominant mode?

Solution: A hollow guilde has g = pg and £ = &;. Henee,
wp, = 1/ /tagn = ¢, Application of Eq. (8.106) gives the
cutott frequencies shown in Fig. 8-24. which start at 5 GHz
for the TEp mode. To avoid all other modes, the frequency ol
operation should be restricted to the 5-7.5 GHz range.

TE |, TF2
TE)g TEy |TEzy TEay TEzp TEg
'l'L'l*'- -“""IZE
3 3 3 3 3 J'r|:|;|_|| l:.{--':IIE}
g 3 ! | f =
0 5 BID 4 154 4 4 20
TMa-

IMyy TMzp TMy2 TMy

Figure 8-24: Cutoll frequencics for TE and T™M modes in a
hollow rectangular waveguide with ¢ = 3 cm and £ =2 ¢m
(Example 5-9),



Properties of TE and TM Modes
N

Table 8-3: Wave properties for TE and 'TM modes in a rectangular wavegnide with dimensions a x b, filled with a dielectric material with
constitulive parameiers # and g, The TEM case, shown [or reference, pertains o plang-wave propagation in an unbounded medium,

Rectangular Waveguides Plane Wave

TE Modes T™ Muodes TEM Mode
B = L (55) Hocos ("25) sin (%E) =/ | By = S (2T) Bpcos (255 sin (55) e7#% | By = Exoe™
p = TG (B g, sin (I2) cos (2X2) e~B2 | B, = :ﬁ—r (2L} Eysin (2E2) cos (2) /82 | E, = EypeiP?

ki

[

-

0

@

E; = Eysin (2Z£) sin (25X) e-if2

e O o

S

Hy = _E_'uu"' i
ﬁ}' o -:-.l.'f'llz'll.:

Zre = 0/ 1 — (/P2

i, = —-"T:'__w"g'rm
iy = Exf Zy

ﬁE:Hum:-;ll:m‘nﬁ}cm{$} Pl H, =

Zmm = 0 1 — (f /-

Properties Common o TE and 1M Modes

gy ," 1 R il
L=35() +(3)
B =kyT= (TP
i A
itp = % = tpy /1 = (Fel )2

E, =0

fy = —Ey/n
fl, = E.
H, =0

n= /e

Je = not applicable

ko=, /e
gy = Lf Jfpie




[ J [ J ([ J
Propagation Velocities
Gaussian pulse High-frequency
-] \ vwr{e1' [
1. Phase Velocity \
The phase velocity is defined as the
velocity of the sinusoidal pattern of the wave

©_ LA LU
B~ JT= Gl HH””‘ h”'””

2. Group Velocity
The velocity with which the envelope—

HP:"

or equivalently the wave group—travels

through the medium is called the group 4 mml"l:t“d;‘
. . . modulate
velocity u . As such, u_ is the velocity of waveform
the energy carried by the wave-group,
and of the information encoded in it.
Depending on whether or not the J
propagation medium is dispersive, u, may
or may not be equal to the phase velocity u,.. (b)
_ 1 — \/ . { f ,-"‘ f]g Figure 8-25: The amplitude-modulated high-frequency
g = dﬁ }g dio - "Po mn waveform in (b) is the product of the Gaussian-shaped pulse

with the sinusoidal high-Trequency carrier in (a).



w-6 Diagram for TE and TM Modes
e

o (rad/s)
'
1. Note cutoff frequencies along
vertical axis.
Ty and THE]
13- 2. The ratio of the value of w to that
of B defines u, = w/B, whereas it is
Uit the slope dw/dp of the curve at
| that point that defines the group
Jor velocity u,.
Jio- 3. For all modes, as f becomes much
larger than the cutoff frequency,
. the w-P curve approaches the TEM
S (rad/m) fB hich pp_
. case, for whichu, = u,.
Figure 8-26: w-f diagram for TE and TM modes in a hollow | 4. e
rectangular waveguide. The straight ling pertains (o propagation "p”g o 'up.[].'
in an unbounded medium or on a TEM transmission line.




Ligzag Reflections
—

Up = Up;/ SILLE
—_—

(b) TEM waves

Figure 8-27: The TE |y mode can be constructed as the sum of
two TEM waves.



Flcrchle B, E z Miceche: Poaogpren fies strurticis
I 1= 85 e tangular Wn'.rcgl.lll:te! LS : ML TE1.0
— - T Trre [urdamente made iz the TE- (e e
k| = 209.4355 (M=~ | §= 10 Gk i e e S e i
b= 003 | m | s s S TR D g i
El=l.m oltaff waveenges A =002 [ m |
T x — —F = —F - — —F —F
W, =1.0 B=0021m] &t tha frequanty af oparation
[ERER KL b T | phassvalocihy Lo = 453557 [ 1569 mis oo paltn By bl s
arous velecky Geg = 1LABA3L [107 mis!
guize weelength. K, = DDASISE [m]
T quice mpedancs P = SE88E5F [ ]
| Wane sectoe components
k, = 138.53121 | met
kK =157.07953 [ m==
A k, =00 [ M
i Tatal numbier of Arapegating mades = 1 - S = -
A Mancmode Candelan - e
- = e e e e e
b = s s s s s s
Input Mode Select T ™ R L S
wigth a = [0.02 i il T il e
Rarg | | A | i oo 1
Fatima‘h — |.'-'.-:-"I €z = = o
Transwerse Electric Fleld < E( =, ¥ ) ¥
kacge| | —d
Fraquency = F-'—'Elf =
Rarge [ |
=10 Upsate kp =10
Flat
e 1
8o TEXA rade 2

e 3




Resonant Cavities

A rectangular waveguide has metal walls on four
sides. When the two remaining sides are
terminated with conducting walls, the waveguide

becomes a cavity. By designing cavities to

resonate at specific frequencies, they can be used

as circuit elements in microwave oscillators,

amplifiers, and bandpass filters.

Resonant Frequency

.,ﬁmrp S

Quality

Q =~

Exl

factor
fmn_u

Af

1

ol

F G+ G

The quality factor is defined in terms
of the ratio of the energy

stored in the cavity volume to the
energy dissipated in the

cavity walls through conduction.

Hollow or dielectric-filled resonant cavity
/

|~

i
W | -
|
|

i

Sl |7|7-I = =
N | | | 0
[mput =ignal
{a) Resonant cavity
e e iy,
A,
2 %
i 3,
| Y
Y ; LS .'r

(o) Otput spectrum

Figure 8«28: A resonanl cavily supports o very nasow

beredweniths sronmcd il resoasnl I'rl.:|,|:|-;!||¢_':.- fa



Example 8-11: (’ of a Resonant Cavity

The quality factor for a hollow resonant cavity operating in the
TE | mode is

| nhd{u: +d?)

P ——,
ds [ (d +26) + d-(a + 26)]

(8.]24)

where & = ij,j';'rj},mﬂ,uncrc is the skin depth and o is the
conductivity of the conducting walls. Design a cubic cavity

with a TEjp; resonant frequency of 12.6 GHz and evaluate 1ts
bandwidth. The cavity walls are made of copper.

Solution: Fora=b=d, m=1, n=0, p=1, and
Up, = ¢ =3 x 10* m/s, Eq. (8.122) simplifies to

, 342 % 108
fior = : (Hz),
o)

which. for fio = 12.6 GHz, gives

a = |.68 ¢m.

Cont.



Example 8-11: ¢ of a Resonant Cavity

At fio1 = 12.6 GHz, the skin depth for copper (with
o. = 5.8 x 107 S/m) is

 [mfio1pooc] 2

5
B 1
T [ x 12.6 x 109 x 47 x 107 x 5.8 x 107]1/2
=5.89 x 107" m.

Upon setting a = b = d in Eq. (8.124), the expression for Q of
a cubic cavity becomes

. ()
. - Jron
168 x 1077 oy i .ﬁfE?
T 3x58x 107 T T g
126 %10
Hence, the cavity bandwidth is 9, 500
~ 1.3 MHz.




Chapter 8 Summary

Chapter 8 Relationships

- - Taermial Inckdence
=fa_m—m
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By _ 2m
BT omtm
r=1+T

=
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T rz
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th =8

=in gy TR
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E
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My =
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Chapter 2 Overview
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Transmission Lines
N

A transmission ling connects & gengrator 1o o load

Z, LA 8
< % s
i-""s SIS S Transmission line Recomitg-end §EL
port port
-0 —
A B
{senerator circuil Load circuit

Figure 2-1 A transmission line is a two-port network connecting a generator circuit at the sending end to a load at the receiving end.

Transmission lines include:
* Two parallel wires

* Coaxial cable

« Microstrip line

* Optical fiber

* Waveguide

* etc.



Transmission Line Effects

Is the pair of wires connecting the voltage
source to the RC load a transmission line?

Yes.

The wires were ignored in circuits courses.
Can we always ignore them?¢ Not always.

Vaar = Valr) = Vpcoser (V)
Vep ity = Vaalt —I/c)  Delayed by I/c
= Vycos|wm(t —1/c)]

= ¥y costewr — ),

(2) But if | = 20 km:
Vﬂﬁ' = 0.91 L"r{]

At t =0, and for f = 1 kHz, if:

(1) I=5cm:

Vgg = VocosiZa fi/c) = 0.999999999993 1

wl 2w fl ! . .
== == 1-‘1’_— radians. (2.4)
L L A
When { /4 is very small, transmission-line effects may be
ignoved, but when [/ = 0.01, it may be necessary to
daecount not only for the phase shaft due fo the nme delay,
bat also for the presence of reflected signals that may have
been bounced back By the load roward the generator,




Dispersion
B M —

Dispersionless line

|

Long dispersive line

Figure 2-3: A dispersionless line does not distort signals
passing through 1t regardless ol its length, whereas a dispersive
line distorts the shape of the input pulses because the different
frequency components propagale at different velocities. The
degree of distortion 1s proportional to the length of the dispersive
line.



Types of Transmission Modes

]
TEM (Transverse
Electromagnetic):
Electric and
magnetic flelds
are orthogonal to
one anather, and
both are
orthogonal to
direction of
propagation

Metal Metal
1 2b
2 'S-d :

Diclecinic spacing IMelectric spacing

{a) Coaxial line b)) Two-wire line (c) Parallel-plate line

Dielectric spacing

Metal sirip condoctor Metal

Metal

z‘i letal ground plane

‘{M‘-"“I ground plane Diglectric spacing

Diclectrie spacing

Diclectric spacing

(d) Strip line {e) Microstrip line {f) Coplanar waveguide

TEM Transmission Lines

Metal ﬁ
Coneeniric
idliclectriv
layers

{g) Rectangular waveguide (h} Optical fiber

Higher-Order Transmission Lines



Example of TEM Mode

- — = Magnetic field lines

Electric ficld lines

S

Coaxial line

&2

Cross section

Generator Load

Electric Field E is radial
Magnetic Field H is azimuthal

Propagation is into the page




Transmission Line Model

(a) Parallel-wire representation

il Az Az Jhr

0 L 0
(b} Differential sections each Az long
RUA=  LTA- .I'E'ﬂ: L' A= A= | LUVAs AA= LAz
A TV — T —
G Az }c".ﬁ_— G'AS +L"ﬁ: G Az
o o i
| Az | Az | Az

(c) Ench section is represented by an equivalent circuit

o B': The combined resistance of both conductors per unit ® G The eonductance of the insulation medivm between the
lepoth. in O4n lwo conduclors per unit length, in 5/m. and

¢ L". The combined inductance of both conductors per unit o ¢ The capavitance of the two conductors per unit length, in
length, in H/m. Fim.



Table 2-1: Transmission-line parameters R, L', &', and € ' lor three types ol lines,

Paramcter Coaxial Two-Wire Parallcl-Plate Unit

; Re. ¥ | ) 2R, 2R
I 1 £2/m

i (r_r b T i

J] e i
E ,f— Inth/a) £ In [:D;d: i H,*“!DMF I} HE H/m

2 T w

2 7

G’ T - T(F _ au S/m
;" 2 RFi __________ — <l Fim

In{b/a) In [m;d} + D) = 1] I

Notes: (1) Refer to Fig. 2-4 for definitions of dimensions. (2) g, 2, and o pertain to the insulating
material between the conductors. (3) Ry = /7 fpee/me. (4) pre and g pertain to the conductors.
I D) 3 Lthen In[(D/d) + v (D/d)? — 1] = In2D/d).

The pertinent constitutive parameters apply to all three lines
and contsist of two groups: (1) je and o, are the magnetic
permeability and electrical conductivity of the conductors,
and (2) &, i, and o are the electrical permittivity, magnetic
permeability, and electrical conductivity of the msiulation
material separating them.

{7y i, 1)

Insulating material

Expressions
will be
derived in
later
chapters

Comductors
{ig. ol




Transmission-Line Equations
Node, Node L

N N+1

_b;aw,,—rmr I‘ ——o+ i(z,1)— G Az viz + Az 1)

R Az
i dufz 4+ Azt =
—C'Az - ar }—:'{;:+£~.z.:]=ﬂ. (2.135)
|
1z, f) f:".-"'.zg —_—Ar nz Az
Upon dividing all terms by Az and tking the limit Az — 0,
e Eq. (2.15) becomes a second-order differential equation:
| A - |
w(z. t)— R'Azi(z.1)
. Ea’{z,r] dulz, r] _
¥ oo LT e o' .
— LAz rl;; r'—u{E-l-.fEE.i":I:ﬂ. Az viz 1) + €' —— ar (2:19)
Upon dividing all terms by Az and rearranging them, we obtain ac signals: use phasors
17 i inad
w(z + Az t) —v(z. 1) di(z, 1) viz, 1) = Re[V(z) ],
= =Rilz.t)+ L : . joor
Az At iz, 1) =Me|Tiz) e,
(2.13)
In the limit as Az — 0. Eq. (2.13) becomes a differential i
S Vi e
o — al (R + jwl") [{z), :
iz Telegrapher’s
dulz, 1) : di(z, t 1z s equations
‘ i T R il TP e

iz ar el




Derivation of Wave Equations
T

avi(. )
4D L e i)
dz attenuation
_dﬂ_z) (Gl Lieeh ﬁ{z}. complex constant
dz propagation constant
Phase constant
Combining the two equations leads to: \ : /
25 Yy =ua+ jp
: [f — (R + jwL'Y (G + juC"y V(z) =0,
dz=-
élﬁf} -y Vi =0, (221 By
7 .
‘ — Re («J{R’ E IRl + i *}) (Np/m).
Second-order differential equation
(2.23a)
g =Jmiy)
P =R+ joL NG + jwC")., (2.22) = Jm (J{R" + je L' WG + juwC '-J) (rad/m).
(2.25h)




Solution of Wave Equations (cont.)

P

(Fo'.dgDe = Incident wave

Ve Y,
-4 | (Vo . Jg)e= Reflected wave
d*Viz) o~
~ v V@ =0, (221
dz2 Figure 2-9: In general. a transmission line can support two

traveling waves, an incident wave [with voltage and current
amplitudes ( Uﬂ'". 1y Mtraveling along the +z-direction (towards
the load) and a reflected wave [with (V. £ 1] traveling along
the —z-dhrection (towards the source).

Compuarison ol each erm with the corresponding lerm in
Proposed form of solution: Eq. (2.26b) leads us to conclude that

Viz)= Vie ¥ + Vyet? (V)

- . Vi s W g
[(z)= IV + 1, e (A). i = 7y = e (2.28)
. d‘?{z} : -
USlngo _ — {RJ‘ _|_ JE”LF} I (z'}* where
dz
It follows [,y = i [Vife ™ — Vg e'?] 7o = R'+ jwl’ _ Illl R +Jlr'-:uL“ S e
that: R' 4+ jerl' v V G+ jmd!

is culled the characteristic impedance ol Lhe line.




Solution of Wave Equations (cont.)

F o

(Vo' foDe ™ Incident wave

In general:

Vﬂ+ — | Vﬂ_l_ |E"i¢+ ___

2
(Vo .y e Rellected wave -I

o

b
—z
The presence of two waves on the line propagating in
opposite directions produces a standing wave.

Y
el

Vo = |V, |e’? .

u(7. 1) = Re(V(7)e!™)

= MNRe [(Vﬂ_"e* 4 \J"U_Ew) Ej””':|

— Ne H -,‘,'”-l- | Ej¢_f_,j£ﬂrf,—{a+jﬁﬁli

= & | Lfﬂ_ |F,_if‘f'_ ﬁ.jwrf,fﬂf+_fﬂ}f'l
wave along +z because coefficients of + and z

R T i 7 AN 5 +y
= Vg le " cos(wt — Bz +¢7) have opposite signs

+ |1f"u_|f*'”{:n:~1{mf + Bz4+¢7)
™ wave along —z because coefficients of + and z have
the same sign



With R" = G" = 0, Egs. (2.25b) and (2.29) reduce to
Example 2-1: Air Line b = 3 | GT G|
- . :jm(jmm)zwm.

An air line 1s a transmission line in which air separates the Zii | jwL' f?
two conductors, which renders G’ = 0 because o = 0. In ? “jwf." Ve

addition. assume that the conductors are made of a material
with high conductivity so that R’ ~ 0. For an air line with |The ratio of § to Zg is
a characteristic impedance of 50 © and a phase constant of

20 rad/m at 700 MHz. find the line inductance L" and the line # wC’
capacitance C ', Zy '
Solution: The following quantities are given: or
Cl= e
o= 50, B = 20 rad/m, T wy
f =700 MHz = 7 x 10® Hz. 20

2w x T x 10% % 50

=0.00 % 107" (F/m) =90.9 (pE/m).

From Zyp = /L'/C 7, 1t follows that

gl e
Zac!
(50)% % 90,9 x 10712

Ill

2.27 % 1077 (Him) =227 (nH/m).




Module 2.1 Two-Wire Line The input data specifies the geometric and electric parameters of a two-wire transmission line.
The output includes the calculated values for the line parameters, characteristic impedance #q, and attenuation and phaze
constants, a5 well as plots of £pas a function of  and D,

| Module 2.1 Two-Wire Line ” Select: Impedance vs. Distance D | \

eal Part of Characteristic Impedance

d
+
e

Substrate Wiraes
€, = 2.3 o, = 5.8E7 [Sim]

/d
—E/l-.
: +

o

Input | Output
p |_Instructions | P f = 2.094 [GH:

Structure LData

L =4,
Wire Diameter d = [1.5652  [mm] E =¥5?gz E::} st

| Range | | | - Z, = 170.956829-/0.028473 |0 |
Centers distance D= [7.012 (] C° = 28570333 | pFim |

L™ = B64.229547 | FiHim |
_Range | | I | R° = 5792047 €1 Jm |
o

Freguency f = [3.004EQ [Hz ] = 0.0 | Sfm |
Range | || | > | hp=8.6962 [cm | in vacuum
e, o [ Sm ] o [ Sm) = !5_-_39_3'5 [ em | in guide

2.3 0.0 5.797E7 a = 0.016943 | Npim |
B = 98.274954 [radim |

Update |




Module 2.2 Coaxial Cable Excep for changing the geometric parameters to those of a coaxial transmission line, this
module offers the same output information as Module 2.1.

Module 2.2 Coaxial Cable " Select: | Impedance vs. Radiusb 5 |

Real Part of Characteristic impedance

Input Output

ety =257 " Structure Data
a =297 [mm] b/a=2.72673

Range| | = b = 8.0984 [mm]

Z; = 39.685654 - j0.00447118 [ Q ]

l - C' = 127.382312 [ pF/m |

L° = 200620912 [ H/m |
Frequency f = 452869 [ Hz ] R™ = 1286118 (2 /fm ]
| | G° = 00 [5/m]

= : Ly = 6.6254 [cm] in vacuum
[§/m] ©¢ [S/m] L o= 4.3687 [cm] In guide

0.0 5.797E7 |
o = 0.016204 [ Np/m |
Update | B = 143.823202 [rad/m ]




Conducting —

Lossless Microstrip Line s
I

o

JEr
i
A/ Eell %

Er+ 1 gr — 1 10y~ Cotidiicbing i nﬂl'c,f.f"l
Eeff = rT +(r )(l-l- ) 1 (2.36) onducting ground plane (4., 7.}

Phase velocity in dielectric:  up, =

Phase velocity for microstrip: Up =

¥ 7
— —

& {2} Longitudinal view

B e
where 5 s the width-to-thickness ratio, P g
H LT I -r'; Lo b
Quasi-TEM s e
U == A e
& If_ - (2.37) ] ) L B I
3 S A

; (2.38a)

§4 137 w 10-4¢?
_1==1+4}.nzm(""+ . T)

54 4+0.43
+0.05In(1 + 1.7 » 107453, (2.38h)

() Microwave circuit



Microstrip (cont.) ~ B
N S 0 [

The characteristic impedance of the microstrip line 1s given by i i - w=strip width
() b+ (2 —6)e" 4 !
P e o S W T
 Eell 5 5?
| 0.75 0 ' . . ‘ '
= ("“'ﬁ?) 2 4 o 8 10
) N

L - . . =
R =10 (because a, = oc), Conducting —_

Strip (g, )

G =10 (because o = (),

.::, ¥ 'FL"'I'T
Zoe
L'=ZiC’,

o =0 (because R' = ' = 0), -

o Condueting ground plane (g, a.) 4
B = P Eeff - {2) Longitudinal view



Microstrip (cont.)
I

Inverse process:

Given Z,, find s

The solution formulas are based on
two numerical fits, defined in terms
of the value of Z, relative to that

of the effective permittivity.

(a) For Zp =< (44 — 2&,) @,

~

It_q — 1 —n(2g — 1)
4

ur
.= —

h

't — 0.52
2 [In[q 14020 — } }
r £
(2.42a)
with
rh) 2
q = H ' (2.42h)
21y Er
and
(b tor Zg = (44 — 2ep) 8,
w Ret N
=== . (2.434)

wilh




Example 2-2: Microstrip Lina Henee,

A SU-02 microstrip line uses w 0.3-mim- thick sapphire substrate = g/l

with £, = Y. What is the width of its copper strip? = LOSE S
Solution: Since Zj =50 = 44 —~ 18 = 32, we should uvse = (.33 mm,

Eg-(2.43):

To check our caleulations, we will use 5 = 1.036 o calculule

feet 1 2o fr— 1 5 012 Zp 1o verify that the value we obtained is indeed equal or close
PV "2 N Naa ) Bt to 50 €. With &, = 9, Egs. (2.36) to (2.40) yield
9+1 50 (u—l‘) n.lz] )
=y x =t | —] 023 x =055,
Y 2 e \e+i, + .
= 2.06, y =099
b i =12:al;
b=
' Eoif = 6.1,
- “HM Zn=4993 Q.
g=F — 2
o 206 o .
i ' The caleulaled value of Zg is. lor ull practical purposes, equal
6 =2 to the value specified in the problem statement.

= 1.0036.



Module 2.3 Lossless Microstrip Line The output panel lists the values of the ransmission-line parameters and displays
the vartation of Zp and ey with A and w.

Module 2.3 Lossless Microstrip Line Select: | Impedance vs. Frequency & |

I Microstrip Characteristic Impedance

Frequency [Hz)
1.42 [GHz ]

Output

Structure Data
w = 1335 |mm]
Strip widthw = 1,335 [mml h = 0.679 [mm wih = 1966127
| Z, = 33.782711 [Q]
[Range] | — e = 7.057855
Substrate thickness h =  0.679 up = 1.129236[ 10 m/s
Range| | - L = 0.079524 [m]
Frequency f = ' 1.42E9 [ Hz ] £62.132341 [ pFim ]

: 299164183 [ nH/m |
[Range| [ < [Q /m]

[ 5/m]

| Np/m |
79.010228 [rad/m )




Lossless Transmission Line
I 5

‘ 2m 2T
¥ = \/((R"‘FjWLJ]I{G;‘[‘jWC;]- ~ i B VL' CT
I ]
If R <ol and G' < oC’ T Y T e
Then:
B =ajue (rad/m), (2.49)
s=a b = e LT (2.44) |
y =o + jii = jo O — (m/s), (2.50)
which in ouen implies that H

I sinusoidal waves of different [requencies ravel on a

=1 (Inssless line), s b _ _ on
PR o . fransnrission line with the same phase velociry, the fing iy
=Vl flossless line). (245 colled nondispersive.
For the churacteristic impedance, application of the lossless ling , 1 3
conditions to Eq. (2.29) leads to T H_P S i — ()
/ J Er Er

Zn =y (lossless ling),  (2.46)

L
Il




Table 2-2: Characteristic parameters of transmission lines.

Propagation Phase Characteristic
Constant Velocity Impedance
y=a+ jp tp Zo

R+ jolL'
General case y = V(R +joLl) (G + joC’)  up=o/p = \/ CEy

(G'+ jwC')
Lossless a=0, 8=w/i/c ug=1cfff Ze=+LJC*
(R'=G'=0)
Lossless coaxial | @« =0, 8 =w,/6/c up=c/Je&r Zop= {60,:"\/8_1-) In(b/a)
Lossless a=0, f=ow/fi/c up =c/ /i Zy=(120/./%)

two-wire ‘In[(D/d) + /(D/d)? — 1]
Zy ~ (120/ /%) In(2D/d).
if D> d

Lossless a=0, B=oefc up = c/&r  Zp = (120m/ /&) (h/w)

parallel-plate

Notes: (1) u = pp, &€ = erep. ¢ = 1/ /ppep. and /g /eg == (120m) €2, where g, is the relative permittivity of
insulating material. (2) For coaxial line, @ and b are radii of inner and outer conductors. (3) For two-wire line,
d = wire diameter and D = separation between wire centers. (4) For parallel-plate line, w = width of plate and

h = separation between the plates.




Voltage Reflection Coefficient
-

— Vie—( — VT 7= : Transmission line
W= Vz=0)=V"+V S i
P Voo W p
_.J’L = f{?:{]] = Z_[} — Z_[} . FH@ r. ey F. EI;
At the load (z = 0): Generator - " Load
| .
r'rl_ Z= _"r = {]
L = — of —a—} I
I
L =1 d=10
Vi =Viz=0) =V} 4+ v, reYo _ZL-Zo Reflection
‘V[;" VARE WA ffici
" " 'L,-’”:" Vi coeftricient
I|J:f{j‘_’2[}]=— - —. ELKZU—]
2y Lo = —
Zrffn+1
Using these expressions in Eq. (2.55), we obtain _4a- 1 (dimensionless), (2.59)
. 7+ 1
Vot 4+ Vo i
7= (H) Z. , _ 21 Normalized load
H J L= 7, impedance



Voltage Reflection Coefficient T =[Tle’*

Reflection Coefficient ' = |['|e/™
l.oad 1IN By

Lo 1/2
ZI =(r 4 j0Z =12+ an—! [ — an—! [ —
| =(r+ jix)Zy PRIV an m— A (F ]

-

£y @E{. 0 (no reflection) irrelevant
) i

_q:.

£y

—_—

(short) 1 4+ I80% { phase opposition)

{open) | () {in-phase)

iy iX = jwl | +180° — 2tan~" v
Eg_—?—jx=_f 1 +180° + 2tan~ 'y
J I:'r.-'C

7z =L/ Lp=(R+jX)/Ly=r+ jx



Current Reflection Coefficient
N

Iy Vo
L=— =T, (26l
ly Yo

We note that whereas the ratio of the voltage amplitudes is
equal to T, the ratio of the current amplitudes is equal to —T .



Example 2-3: Reflection Coefficient

of a Series AC Load

A 100-22 transmission line 15 connected to a load consisting
of a 50-£2 resistor in series with a 10-pF capacitor. Find the

reflection coefficient at the load for a 100-MH7 signal.

Solution:  The following quantities are given (Fig. 2-13): Transmission line A
Ry =509, Cp=10pF =101 E
Z R RLZ 500
" Zy = 100 Q)
Lo = 1) 22 = {0 MHz = 10" Hz. -
0 -/ z ¢ Cp =5 10 pF
The normalized load impedunce is —OH
5 = Zi, _ R — j/wC)
Ay Zn - 71— |
7.+ 1

! 1
=[50~
mu( Y37 % 108 % 1011
= (05— j1.59) .

)

05— j1.59— 1
TS =159 4]

05— j1.59  —1.67/72%
1.5— j1.59  2.19¢-f46.7°

This result may be converted into the form of Eq. (2.62) by
. ; : : L 0
replacing the minus sign with e=/'%%" Thus,

— —ﬂ-?ﬁ:’“‘i I ]'-J.f":'_

[ = 0,766/ 1193 =i 180° _ () 76,=760.1° _ () 76,/-60.7°

or

|| =0.76, B = —60.7°.




Standing Waves
N (L Tonsioine ]

: i ats — - = 7 7 lﬁ.
Using the relation V,; =TV
. -
yiclds L
Viz) =V (e 7P% 4+ TelP?), -
V+ : _: :_
f{z} — (e —ipz 1‘34’;"'3)1_ Generator Load
En | z
z=-] z=()
_ L d = |
V(2)| = {[uﬁfr-fﬂ*"- + [r|vf*‘-'=‘*efﬁ*-']] d=1 d=0
P 6 _ipz 1/2 T express the magnitude of Voasa
: |:‘ Vo ) (e’™ + T |e™ "j“ function of ¢ instead of z, we replace z with —d on the right-

1/2 hand side ol Eg. (2.64)

g

1""+|[| _|_|r| |F|[:’H2ﬂr+ﬁ']+1’_"I.{.']'ﬁ?+ﬂ'}}j| s

. V)| = |v¢,+|[1 +1rf +2|r;m5qzﬁ¢f—r}.-:]’ . (2:66)
= |Vl [' +1r? +3|r|ﬂ:ﬂﬁffﬁﬁ+f4r}] T ey voltuge magnitude

By applying the same steps ro Eq. (2.63b), a simifar expression
vitnl be denived for [}, the magnitude of the current £{d):

+
|1y = l l [l {-'FI‘ — 2| cos{28d — 8p)1Y=. (2.67)

current magnitude




Standing-Wave Pattern

Voltage P _h\[:f' (d)
I, e " 7
Whereas the repetition period is A for the incident and reflected 1?|mi“
waves considered individually, the repetition period of the
standing-wave pattern is b /2. :
= 12 S i L Gl A
V() = V] [l + +2|I‘|-:m(2,ﬁd—ﬂ,}] . (2.66) A N £ e
" 1 (a) |A(d)| versus d
» Vo | 2 12 ' 3 " o
[H{d)| = —— [1+ |T'|* = 2|T"| cos(2Bd — 6)]"/=. (2.67) ' | Wiz
2o Current® i
_ ) ] ' ' 30 mA
Voltage magnitude is maximum P = = = 95

max min

When voltage is a maximum, current
is a minimum, and vice versa 1 31
4

(1R 5
Rt

(b) |H(d)| versus d

Figure 2-14: Standing-wave pattern for (a) IF{d}I and
{h) |f|[d']| for a lossless transmission ling of characteristic
impedance Z; =350 Q. terminated in a load with a
reflection coeflicient I = 0.3, The magnitude of the
incident wave |1rf'n+| =1 V. The standing-wave ralio is
8 = |V lmax/I Vlmin = 1.3/0.7 = 1.86.



Standing Wave Patterns for 3 Types of Loads

i)
Matched line n With no reflected wave present, there will be no interference
d ¥ and no standing waves,
2 3 i A 2 Example 2-4: |T| for Purely Reactive Load
g 5 5 ple 2-4: |T'| for Purely Reactive Loa _
@2, =2 Show that |I'| = | for a lossless line connected to a purely
_ —_— _ b reactive loud,
Short-circuited line
el Solution:  The load impedance of a purely reactive load 1s
Al = J X
I'rom Lq. (2,59, the reflection coefhicient 1s
Z|, — &y
3 3 = :
b} |2, =0 (short ci 1] poy
= short cireut ,
e = _JXi—Z
Crpen-circutted line -~ XL+ 2y
| 112 | il _ [ 2 3~
2k —(Zo—jX1) VLot ALe —j24
= = —_—— = —
(Zo+ FX)) 2 "
P / y,-"'—rn‘l‘x| aft
A 34 P A 0 where = lun~' X1/ Zp, Hence
4 3 4

fma — 2y St 1L LR - INE TR I
(¢} |ZL = o5 (open circuit) [F)=] =™ == =1




Maxima & Minima

Voltage
Standing-Wave Pattern i L4V
P imax 12
7 _ Let us denote dy;, as the distance from the ég
load at which |Vid}| is a maximum. It then follows that | ¥ min 0.6
N 0.4
|Vid)| = |V]max = |V |[1 + T[], (2.6%) PR B : ; 3.2
r 'E :i {-“Illljllli EJ';HM
when 14 2 4
2pdnay — 0 = 2nm, (2.69) ' (a) |F{ﬂ?| versus d
i r g,
e : . fiz
with n = 0 or a positive integer. Solving Eq. (2.69) for d,x. Ciirront! . ’ /G
we have I ’ . im. A

g = 6 +2nm Gk nk
max = 2.& = e +?+ iﬂmm . j [
111111

4 + 10
e T B it <0, e max j i
n=012... ifg.20 d -—t - : ; 0
. 34 A ? .
4 2 3

(b) |Nd) versus d



Maxima & Minima (cont.)

|{;|min == |VU+|[] = |1—[]* Voltage : f ()|

_ 5 1.4V
when (28dwpin — &) = C2n + ) 1.2
1.0
0.8
0.6
0.4
0.2
-y § i ] i i 0
v 1+ | : . ' s Aol
§ = ||¥||mm = :F: (dimensionless) A |% % "”-“% e
e ' (a) |W(d)| versus d
' ' ' 1)
| i Z
S = Voltage Standing Wave Ratio Current" ) ;
: ' 430 mA
Hlmax = = = e S ]
T 20
Firr o mietches oo 5 =1 oo v s ) 15
min
max 11‘1in/I T!0
For a short, open, or purely reactive load: T°
= d <— : : : 0
= A 34 A A
4 2 4

(b) |Kd)| versus d



Module 2.4 Transmission-Line Simulator Upon specifying the requisite input data—including the load impedance
at d = 0 and the generator voltage and impedance at d = [—this module provides a wealth of output information about the
voltage and current waveforms along the trasmission line. You can view plots of the standing wave patterns for voltage and
current, the ime and spatial vanations of the instantaneous voltage vid, 1) and current i (d. 1), and other related quantities.

Ciptions:

Zat inpul f Output

2 =100/0+ 00 0

To—2104 00V

Set Line
Length wnibs: 5 | X Am]

Instructicna

Low Loss Approximation

Cha Ssiergts - !. -
T = g PeT

|
sregarey. [ w|[0ES

Ndatme
P rlbnaly

& =50
1 ={p.0

Update

Line Length

oo

e

i impedanca

Admitlance

Updatg ||

1

Sat Generator

[i.0

+] 0.0

Y I:ii.':'l_"

Lpdate |

Output

Cursor

lrn_ru:rms_mn L'fﬁ_ Dﬂl’:_l

d =81%8 % =47 7T mm

Fmpedatce X4 =3203523 - [ IL. 06859

ol

= 3078664 £ -0.5080 rad

Admitance Widl = 0021754 ¢ § 0 014535

5]
Relleilon
Coafficient

= 0.QE3THE o 0 B5EY rad

g =-013812515 - | 0 30855045
=0, 33F33333 4 -1 WEI0SIrag
-0 FIFRIFEY £ J)4.58 0

Valigge
[¥]
Cilrr=pd
L&

Tidi = 0.270561 # § b 210236

=0 3284 £ 06608 rad

Tidl = 0002706 + | 0 DoELOR

m [ DOBESE £ 1 2555 rad

Powar Flow P =100

[e=W]




Example 2-6: Measuring Z, with a Slotted Line

shdmg probe

To detectonr s /
Provhe tip
—

Slit

/
i

.

Solution:  The [ollowing guanhities are given:
Lo = 0 &1,
§=13

ﬂlmiﬂ = 12 T,
Since the distance berween successive voltage minimais A/2,
A =213 =06,

and
2 A [}

e o T ey S {rad/m).
'ﬁ i b 1.6 3

Fram Eq. (2,73}, salving for [T in terms of & gives

I
=

Mexl, we use the comdition given by Eqg. (2.71) to find 0

2 Bdmin — - =, For i = O (first manimum ),

which aives

e = z.ﬁdmin — T

10
:ExTT % .12 —m

= —).27 {rud)
= —3A[".
Hence,

[ = |[|e/™
= {).5e~ /3’

= (.405 — j0.294.

Solving Eq. (2.39) for Z1.. we have

1 T°
EI_.ZEH-[ * ]

=T

_ 50 [i + 0.405 —_J'U.EEH]
1 —0.405 + 70.294

= (83 — j67) L.




Wave Impedance
N

At a distance d from the load:
Vid
Zid) = _,{f )
()
= “Hrh.w * FE’_JM] 0
],JH"[E iBd — T e—ibd]
1 4 [e—72Ad
| — r._-:—ﬂﬂff]

I
N

where we define

Iy = Fe™ %P = |T|eib eI = |[|e! G—=2P4)

as the phase-shifted voltage reflection coefficient,

(b) Equivalent circuit
Zd ) is the ratio of the total voltage (incident- and reflected-
wave vollages) to the total curvent at any point d on the line,
i contrast witlh the characreristic impedance of the line Zy,
which relates the voltage and current of each of the wo

waves individuallv ( Zy = 'Lj:',r’ fo = =Nl E



Input Impedance
T

_E e ".l[ Trunsmission ling o : 7] COS 'ﬂf 4 J' 5in ﬁli-
"- + f EEI‘I == z'} :
_ * cos Bl + jz sin fil
V. V. Z.. Z A : i
@ 1y — 1 L) = 7. -|- J tan g . (2.79)
\ 1+ jz tan BI
=4 05
Ciencrator T T Load . L
et =0 Fig. 2-18. The phasor voltage across Z;y, is given by
d=1T =10 o
} m i TeB
1 1510 EE + Ei“ L] -
"rl i = . . W . &
—Ii '_""*;"..r Simultaneously, from the standpoint of the transmission line.

the voltage across it at the input of the line is given by Eq. (2.63a)

If@ P Ein with z = —{:

Equating Eq. (2.80) to Eq. (2.81) and then solving for V;;” leads

| 7 | o
zm=£UL:&{ i q.
szj“ 1 g

Vi = V(=) = Vi [ + Te=i#], (2.81)

[, = Te 2P = ||/ & =28



Example 2-7: Complete Solution for viz, 1)

and iz, 1)
A LO3-GH7 generator circuil with series impedance “'_':E- —R I ;I:J.ﬂflmﬂ " [}I._th:j Fhﬂm “ Iﬁt:hﬂl.wmm}r of Tight in-a yacuurm.
and veltage source given by Lt S
. Solution: From the relationship wp, = Af. we find the
vuld ) = 10 sin (e + 30°) V) wavelineth
15 commected o a load 2y, = (1K + 30 £2 through a 3(0-52, 3 — Iy
a7-cm long lossless transmission line, The phase velocity of B
i N L 0.7 x 3% 108
1 i.._ ‘_j[ Iransmission line — :-c_ 2
Ly O O . 1.05 % 10¢
L= -+ ‘IL
4+ = (.2 m,

&@ Vi Zip m— £ Vi 2'[-.I and

| _ e
Generator E ~| Load — e x .67
z=—{ z=0 -
d= d=10 =80m=01x=126",
‘ where we have subtracted multiples of 2x.  The voltage
. reflection coellicient al the Toad 18
]f'.
Ze PR | L —Zp
- L+ Zy
+ (100 4+ F50) — 50
V Vi Zin — (100 + j50) 4 50
- = 0.45¢/259°
A Cont—»




Example 2-7: Complete Solution for niz, 1)
andiiz,t) (con’r.)

A 1.05-GHz generator circuit with series impedance Z, = 1022
and voltage source given by

vglr) = 10sin(wr +30°) (V) ]

7 i.._ ";..I Transmission line
s + b | + T
L Zu=2Z )
Ll / I ‘ " ! ol = F,r
ﬁg@ Vi Zn=ee Iy i [z /1 4 Fei2fl
) \ l - W Frﬂﬁ*)
— A - / T
] | [ ] <+ D.-‘JE’"’"E"'E‘I & St !
Generator |- ,h_l ; Load = 50 1= 0.450i26.6° g—j252° | = 219+ j17.4) 2.
da=0 Rewriting the expression for the generator voltage with the
cosine reference, we have
ue(r) = 10 sin{wr + 30%)
= 10 cos(90° — 1 — 307)
= 10 cos(wr — 60%)
_E - = Re[ 106/ gdor] = Eﬂc[ﬁu-‘"m] (V).

Conf,—._;



i G
Exampie 2.7: Compiete Solution 1or biz: 1) Application of Eq. (2.82) gives

and i{7,t) (conf.) »
; Vn'=( 1f!zu.)( 1 )
= — :I Transmission line Zy+ Zig | \ e8! L Te—ifl
£ ¥ — i -
| We R+ J17.4)
+ - 1042194 4174 -
F’é@ Vi Zipy e i (VB () 450 B - 12
- \ = 10.267% (W),
-A"
s
Generator I-' '-| Load Using Eqg. (2.63a) with 2 = —d_ the phasor voltage on the line
z=0 15
d=10

= 1026/ (/04 4 (145612087 ¢ 1)

and the comesponding instantaneous voltage wd, 1) 1=

n eid, 1) :fﬁz[ﬁ{ﬂ'] e
= 10,2 cos{ent + fd + 1597)
+ 4. 35 cos(et — fAd + 185.67) (V).

LT rj ¢ T H.F { o . ]
Hence, the phasor voltage V; 1s given by Similarly, Eq. (2.63b) leads to

_ 160° Fidy = 0,206/ (o84 _ ) 4572007 =18y
Ve = 10— 60 ('} (e Le € ¢ )
60 ild, 1) = 0.20cosimt + fd + 1597)
— | =0 V.
| A ¥l 4+ 0.0971 cosler — B + 185.67) {A).




Module 2.5 Wave and Input Impedance The wave impedance, Z{d) = Vid)/I(d). exhibits a cyclical pattemn as a
function of position along the line. This module displays plots of the real and imaginary parts of £{d'), specifies the locations
of the voltage maximum and minimum nearest to the load, and provides other related mformation.

Options:  Display Plots & Output Data |

25.0+150.0 01

Output

Fe{ Zld)} [C¥]
Cursar

= 0

impedance Z(d= 25 -j 50

(0] = 55902 £ -11071 rad
Admittance Yi{dl= 0.008 + | 0.016

[&] =0,008 £ 1.1071 rad

Reflaction ry =0076 -] 0.615
Coetlicient =062 £ -1.446 rad
= 062 £ B3 875 %

Waltage Standing Wave Ratio
SWH = 4 266

Location of Frst veltage Maximum & Minimum
d (max) = 0,365 & = 57734 [ mm ]
dimin) =0135% 4 = 20,234 [mm ]

Wavelength K =150 [ mm ]

m{Ztd)} [




3
e 7 *.-i]_'luﬂ_
z' “ 0 cireik
O

Short-Circuvited Line !

(a)
Vedkel)
. v [l
Tﬂl]'il}iL‘_‘_“\‘ ! T1
I
For the short-circuited line: I* = I o : \ 0
P . : A Al A A
Vield) = VPP — 1P = 27V T sin Bd, . : .
. 1 I
+-1
y vt o e 2WT . (b)
[oid) = 2 e/fd f o=ibd) 20 o 8d ' I _
eld) = — e + e = — = cos fd. : | e 2y
= - 2y
Zootd) = 2D n B : | I
Al ) = = = Lo .
T Tl : :
]
L : : d ' 0
At its input, the line appears like 3N
an inductor or a capacitor ?
depending on the sign of tan fd ! -
| zis
jwle = jZotan B, if tan g1 = () ! =
|
l ;
. . |
v JZtan B, if tan Bl = () f o 0
]
T 1
|




Example 2-8: Equivalent Reactive Elements Solution:  We are given
Choose the length ol shorted 50-82 Tossless transmission line
(g, 2-20) such that its input impedance at 2.23 GHz is identical
to that of a capacitor with capacitance Ceq = 4 pF. The wave
velocity on the line is 0.75¢.

up = 0.75¢ = 0,75 x 3 x 10% = 2.25 x 10° myss,
Zo =50,

f =2.25GHz =225 x 10° Hz.
Coq=d4pF=4x 1r2E

SE e Z short Ir 2mf 2w ox 225 107
zl-”' 0 Circu ﬁ = — = f = A i =625 {ru{ﬂ"]}_
= L Uy 2.25 % 10

From Eq. (2.89), 1t follows that

|
lan Al = .-?.'ﬁmf'f.;q
B |
S0 2r %225 % 109 x4 x 1012
= 1,354,

The tangent function is negative when its arcument is in the

second or fourth quadrants.  The solution Tor the second
quadrant 18

2. 2
fly=28rad or |l = _? =5 = 446 cm,
and the solution for the fourth quadrant 1s
fla=59%ml or |h= E—Eﬂ-‘lEn::m
e Ty




o A

Lify et £y
Open-Circvited Line s 5
(a)
Vaele)
I 205
| Voltage B
o = ; 0
w . : &
Voeld) = Vi [P 4 7P = 2Vt cos Bd. | | 4
; B a2V | |
loc(d) = pi[fjﬁff _ E—jﬁrf] _ J, g e Bd. '  ram f:;lﬂ'}'fn
.ZU' i) : : \;I 3 l_."l'll
Voell | d )
70 = loell) _ _ iz cotpl.  (293) ©)
IﬂE{I} =3
Ze
Jlgn'l‘:um'v [ 7
{ 0
(d) 4




Short-Circuit /Open-Circuit Method

]
0 For a line of known length |, measurements of its
input impedance, one when terminated in a short
and another when terminated in an open, can be
used to find its characteristic impedance Z, and
electrical length gi

7 Zo=2r 7%,
L= — " — jZptanpl. —
se(f)
. Vel —
Z:':' — HU'L—() = —jZycot Bl. ] \ _JHL
loc (1) - tan Bl =

o T
Z in



2-84 Lines of Length{ = ni /2 Example 2-10: 1 /4 Transformer

If | = na/2, where n is an integer, A 50-€2 lossless transmission line 1s to be matched to a resistive
load impedance with Z; = 100 € via a quarter-wave section
tan Al = tan [(Fe &) (/2] = tannm =0, as shown in Fig. 2-22, thereby eliminating reflections along

the feedline. Find the required characteristic impedance of the
quarter-wave transformer.

Consequently, Eq. (2.79) reduces 1o

Zin =21, forl =na/2, (2.96) Feedline A4
O
A/4 transformer
which means that a half-wavelength hine (or any integer multiple
of A /2) does not modify the load impedance, Zii =500 Zi ot Zip ZL=100Q
2-8.5  Quarter-Wavelength Transformer : Lo
& A4 x
s ES’ : Figure 2-22: Configuration for Example 2-10.
= 7 forl = A/4 4 ni /2.
i

Solution: To eliminate reflections at terminal A A, the input
impedance Z;; looking into the quarter-wave line should be
equal to Zgy, the characteristic impedance of the feedline. Thus,
Zin =30 2. From Eq. (2.97),
72
Zin — e s

or

Zoa =/ Zin Z1. = v/50 x 100 = 70.7 <.

Whereas this eliminates reflections on the feedline, it does
not eliminate them on the 2 /4 line.



Tahle 2-4: Propertics of standing waves on a lossless transmission line.

Wiolisee Mosinm

YVodtage Minimum

'i"; max — |.""r|_I|-|” + T'”

Wl = ¥ L1 — [Tl

, . . A A
Positons of voltage maximn Calse positions  dipas = 'E:Ir b : =01 20
of current mininma) T -
fi-h ,
Sl HO =@ ==
Position of first maximum (also position of - dyy,, = 4
s ini Ak
first caurrent minimem ) Eir I MNP
4x 2
i o 2 dha  (m+ s
Positions of voltage minima (also positions dpyip = g + o - L B [ opes

of current maximal

Position of first munimmam {also posiion of
First carrent o simmn

s B }
d [ Tl
TR | ( T

Input Impedance

2z =i'—’u( IrL -|-_nuu.ﬁi|' ] =x“(| H’:a)
— jzp_tan fi 1 -1

Positions at which &5, 15 real

ol vodtaze maximas and minima

Zig ab viliage maxima

Zig ol vollage minima

. 7 | + T
Al = eI'I(J ~ |ri)

| =T}
z‘"_3”(1—”‘:)

Zig ol short-circuited line

E:';I' = { Zplan Bl

Lin of open-circuited line

IFI.':'-' = —j Ly oot f

Zin of line of length [ =na /2 Zin = F1.. A=012000
Zig of line of length f = 2/4 4 ni /2 Zip= Eé,ﬂ'fL. ne=40 1R
Fin of matched line Zin = Zn

|'if'n+| = gmplitude of incident wave; [N = |r!r:-f""' with =7 = # = 73 & in radians; Ty = Te 28




Instantaneous Power Flow
I

bid, 1) = ':‘HE[FE*"IW]

= ::p{,,-[m:r 16787 (3P 4 ||t omiBdypiuty

= 1V[]'"|{::nsf:u: + fd + ™)
+ || cos(er — Bd + o7 +6,)].

VT
id, t)y = — |

! [cos(wt + Bd + ¢T)
f
— || cos{ewr — Bd + @™ +8,)],

Pld. t)y=uvld,t)ild,t)
= |VgHlcostr + Bd + %)
+ || cos{wt — fd + ¢ + &)]
Vi
Zn

— |T| cos(ewt — Bd + ¢ + 6,)]
Vo'l

=~V [cos”(wt + fd + o)
Zy

[cos{ewr + Bd 4+ ¢7)

— [P cos®(wr — Bd + ¢+ + 6]

.I.._L"I'

Vo |* 3
Plid. 1) = % cos™(wt + fid +¢™)

0l

(W,

IV 1P

P'd, 1) = —|T")? cos’(wt — Bd + ¢t + ;)

(2.9U4a) i

Using the trigonometric identity

(2.99h) .
COs™ X = ?l] + cos 2x ),

the expressions in Eq. (2.101) can be rewritten as

: Lk
Pd, B = 75 [1+ cos(2er + 284 + 2¢7)].
L4
2
Pf:fs?;;=—|r|3| v | || + cos(2mt — 28d

37,

+ 2 + 26,1

The power oscillates at twice the rate of the voltage or
Current,




Average Power
—

i |1_,-'[]‘|'|2 | L
Pid, ty= ?[I + cos(2enr + 2fd + 2807 )].
0

T i g
1 J. : v _
P::'Ll:{‘il:l = T f PI':II.I}IIT: _:U / P1I::.{|r} di. (2,103
Ft+2 / 1 )

T
. i | I‘
Plid,ty = —|I')7 | 2% (1 cosi2wf — 28d
g Upon nserting Eq. (2, 102a) nto Eq. (2,103} and performing
+ 267 + 201 the integration, we obtain
. I.l.,.-'.-!-li
PL="0" W) @2l
Transmission line 22y
Ly |—0—07
+ F‘-L.:,,- : which is identical with the de term of Pid, ) oiven by
I, _ . IfL Lq. (2.102a). A simular treatment for the reflected wave gives
Vi IF i
| — Pj =_]_"'1 L E—'F-Pl. ol e |
o = o =1

The average reflected power iy equal to the average incident
prower dintinished by o peltiplicarive factor of |17]°.



Tech Brief 3: Standing Waves in Microwave Oven
]

Mewl T The stirrer or rotation
AeeEns | { of the food platform
‘l is used to constantly
I change the standing
| wave pattern in the
i oven cavity
|
|
b
15V
High-{oltapge
II rr*.'ml"t:urrrnr:rE -




Tech Brief 3: Role of Frequency
B

At low frequencies,

T'=20°C
absorption rate is small,
0 so it would take a long
time for the food to cook
N bt
............................. aﬁ_w.“ --...--.-...-.-..
. ﬂﬁﬂcar -— Chocolate bar

. At very high frequencies,
the food cooks fast, but
. only its the surface layer

Penctration Depth &, (em)

Microwave oven frequency I_E 54 GHz)

Freqg uen-;::,' (CiHz)

Figure TF3-1: Penetration depth as a function of frequency (1-5 GHz) for pure water and two foods with different
water contents.



The Smith Chart

0 Developed in 1939 by P. W.
Smith as a graphical tool to

inziructions - Color
| R

analyze and design
transmission-line circuits

0 Today, it is used to
characterize the
performance of microwave
circuits




Complex Plane
I - i

Ty =03+ 04 =050

11 — j_-' frj'f"ll — l"r _|_Jl-l

b, = 53"

B = 180"

I,
g =10

|
Shart-cirenii \
livacd
Open-circuit
Inadl

Fp= 05 j0.2 =052

L mit ¢ircle

IIJ'ilr 2707 or =90



Smith Chart Parametric Equations

Aifly -1 g -]

C ZiZa+ 1 4]

I+ T
- — 2.112
=g = (el

2, =rL+ JxL.

(1+4+I+ LG

L+ Jjxp =
ST W Y

| -T;—T7
LU +r7?
215
XL = — —
(I =1+ 177 Equation for o irgle

X

FL. ? ) 1 .
I — R : (2.11€
( i E—|—rL) i (1+FL) i

The standard equation for a circle in the x—y plane with center

at (xg, vo) and radius ¢ is

(x —x0)2 + (v — vo) = a’. (2117

A similar manipulation of the expression for x given by
Eq. (2.115b) leads to

. s Ve g e
X, AL



Smith Chart Parametric Equations

2 )
" i |
I — Ta= . (2116
( > 1+F|.] T (]+rl.) w

r, circles

r, circles are contained inside the unit circle |

) joz 152
I.Tr—JJ“'-I-(F':— ) =( ) g (2.11%)
AL X1

X circles

Only parts of the x, circles are contained
within the unit circle

Flgore 2-25: Familees of /. and g edrcles within the domain U] = 1.



Complete Smith Chart

Positive xL Circles
P s
.".‘q, xﬁhh.'* e
LN
it U SN
LR
it e IL Circles
A iR
Hale e

: ¥
3 T
? 1
g F et
¥.] e
= ; 1- %;
{-E

i on PRI -.- "-'*r .
PG ":l - ?IF <%
.-%J%“fm; 5 o




The reffection coefficient has a magnitde

Point P represents o normalized load impedance 5 =2 — 1.

1" = O K =

wavelengths toward

- Tenerator

toward load —

Outermost scale:
e m T T
wavelengths

Reflection coefficient at the load
Figurme 2-26;

= (I gircle {which also is the |I'| = 1 circle).

—20.6%, Point & is an arbitrary point on (he 1

.43 and an angle & =



()
O
c
O
o)
()
o
=
—
2
o
=

2 -l

0:2874

0.6 §0.66.

Figwre 2-27; Point A represents a normalized load 21, — 2 — 7 Lat 02874 on the WTG scale, Point B repeesents the line input at d — 0,14

from the load. At B, =(d)



o S s namerically equai to the value of rp af P
-]

02134

Dhstance to voltage
maximum from load

iy = 00374

0.254

Dhistance to voltage
minimum from load

1
|
E zp =241
|

doi = 02874

Fignre 2-28: Paint A represents a normalized load with 21, = 24 71, The standing wave ratio is § = 2.6 (a0 Fpax ), the distance between the
o s the liest vollage maximoam is dipgs = (0025 — 021334 = 0.0374, and the distance between the load and (e frst vollage minimum
i8 imin = (0037 + (L25)A = 02874,

- M€ Point ar

Sz Which the SWR circle intersects the real ' axis ro.the righr
Lol the charl's cenler,
. .-"' w



Impedance to Admittance Transformation i
-2

Rotarion v 3 /4 on the SWR corcle reansforms z mto v, and .
VICE VErsd,

Load admittance vy

= B - i T
etz ed admiffanioe ot

Bl g o
= — = — —_— ] IMENEI0ONIess), (o122
' Yo ¥ ) Va i b

where Yo = | /7 is the charecteristic admittance of the line




Example 2-11: Smith Chart Calculations

A 50-£2 lossless transmission line of length 3.3 1s terminated
by a load impedance Zp = (25 4 j50) Q.

[ ]
21 23+ 30 , " = 0.62283
= - = (1.5
Fil 7 50 054 /1 |
(b)
Ol s =426

(<) e = 0.2 —0.133)4 =0.1154 / :?’ ; -




Example 2-12: Determining Zj,

Using the Smith Chart

3
Z,=500

first voltage min @ 5 cm from load /4.~
Distance between adjacent minima =4

Determine: Z;

]
Given:
S =

YVoltage min

2. =0.6— 0.8

== thnin =]

0(0.6 — jO.8) =[{30 — ;j40) O

5

L=



Matching Networks
—

The purpose of the matching network is to eliminate
reflections at terminals MM’ for waves incident from the
source, Even though multiple reflections may occur between
AA" and MM', only a forward traveling wave exists on the

feedline.
Feedline M A

+

77 Matching ‘ |

V., Z

= network L
A r

+

Generator L.oad




Examples of Matching Networks

Feedline o y: : W)
A4 translonmer :1: Racadiiil 14 A
L) Lyt £y T,I £y, Be— = e
Mg o iy Lijjy = 'S o L
A i 14"
{a) In-series o4 translormer mserted al 44" O
id) In-parallel msertion of inductor at distance o>
e
Feedline 341 ~4 I il .4 vdh)
?ﬂ - Feedline | Al i l.-!
AT Zy> E Ly EL \
M 5 & A - 20 0 41
il :Lif.l :'il
(b) In-series A/4 transformer inserted at o — gy OF & '-'
i) iy
Feedline M A
* o
i
..E[:, ?II'I i e EI ‘E[:I EL
A ey 14
& O

(c]) In-parallel msertion of capacitor at distance o,

ie) ln-parallel insertion of a short-circuited stub



Lumped-Element Matching

Clpose o and ¥t acliieve o match at A8

Yy
Feedline " H l | Feedline M
Yo Y= |V, ¥y ﬁf = Fin—- A E
| o M ——

I""HI!.I.IJ:II clement Load
(b) Equivalent circuit

(@) Transmission-line circuit
Figure 2-34: Inserting a reactive element with admittance ¥ at MM’ modities ¥4 to ¥;;,.

Vin = &d T+ .I'{E}d =4 b'-;:' (2.140)

Yin = Y4+ 15 o : T Fa
l'o achieve a maltched condition at MM, 1t 1s necessary that

Yin = (Ga+ jBy) + B, Vin = 1 4+ jO. which translates into two specific conditions,

Gyt j(By+ B, namely

gd =1 (real-part condition), (2.141a)

by = —by (imaginary-part condition). (2.141b)




Example 2-13: Lumped Element J

A load impedance Z) = 25 — j50 €2 is connected to a 30-82
transmission line, Insertashuntelement to eliminate reflections
Llowards the sending end ol the line. Specily the insert location d
(1n wavelengths), the type ol element. and its value, given that

= 100 MHz.
o g 20— JF _—
.= 7 30 =05—Jl
v =04+ jO.8

First mtersection of
i = | cieche with SWR cirele.

- AtC, vy = 1+ /158,

E\l}\ gL = 1 cocle

L1
3:',. I' Admittance of

! 1'/1,"’# short circuit stub
o (Exnmple 2-14}
o A

Solution for Peint C (Fig. 2-36): ALC,
v = | 4+ F1.58,

which is located al 0.1785 on the WTG scale. The distance [/
berween points & and C is :

di = (0,178 — 0.1154 = 0.063..

we need y,, = | + j0. Thus,

| + j0= v, 4+ 1 4 j1.58,

or

v = = j1.58.




Example 2-13: Lumped Element Cont.

A load impedance Z) = 25 — j50 €2 is connected to a 30-82
transmission line, Insert ashunt element to eliminate reflections
Llowards the sending end ol the line. Specily the insert location d

(1n wavelengths), the type ol element. and its value, given that e
{ = 100 MHz.

Zi 25— j50 The corresponding impedance of the lumped element is
f=—=——=05-jl
Zn 30 ! | z Z i Z
| Zy=— = S B o Y i O o R 7 8
v, =04+ 0.8 Yo yu¥o by, —j158 158

Since the value of Zg, is positive, the element 1o be inserted
should be an inductor and 1ts value should be

L_:‘H.lﬁz_ 31.62
va =1+ j1.58, T @ 2mow 108

Solution for Point C' (Fig. 2-36): At C,

= 50 nH.

which 1s located at 0.178% on the WTG scale. The distance
between points B and C is

di = (0178 — 0.1 15w = 00634,
we need vi, = | + j0. Thus,
| 4+ j0=vi+ 1+ j1.58,

or
vg = — j1.58.



Single-Stub Matching

I
Feedline 1] d 1
Hj ]’;,. — E:[.
M ~
“3 Load
The requived two degrees of freedom are provided by the
length I of the stub and the distance d jfrom the load to the
Shorted
stub

{#) Transmission line ciroul

‘ v

stuh p;?.u‘{'r{'uﬂ,

M
o

Feedline

Vi —

M
L

(h) Egquivalent circuit



Solution:  In Example 2-13, we demonstraled that the load

Example 2-14: Single-Stub Matching can he matched to the line via either of cwo solutions:

Repeal Example 2-13, but use a shorted stub {instead
of a2 lumped element) to match the load impedance {1}y = 0.0634, and ¥y, = jby, = —f1.58,
£ = (25 — j50) 2 to the 50-82 transmission line.

|
Feedline At o

{2}y = (L2004, and Ve = _H;'_ﬂ = jl.5%8:

fi = (0.34 - 0.25)A

Ly —

Yoo ¥ig—= L
m b
:'_
-~ Laad Frest inlerse gmn ol
g = 1 edrele with S3WER zircle,
X_,H' AL ¥y = | +/1.58,
Shorted ; . Y : A
(a) Transmission line circuit stub e A v : A P 0 g — 1 circle

I-,.u-‘

\

Feedline M

_Auddmitomes aff
“ gl circuit sk
[ Exarpla 2-141)

r

in — ¥y ¥

(h) Equivalent circuit



Module 2.7 Quarter-Wavelength Transformer This module allows you to go through a multi-step procedure to design
a quarter-wavelength transmission line that, when inserted at the appropriate location on the original line, presents a matched
load to the feedline.

Instructian

o = 108,98 8.0 0

'Z;E e

Input panoll
Charastenst T
impedance Zo=pO.0 | 0¥
Load . — —— i ol
Irpadancs E._-ﬁm.c- | +| |an.:u | =
A o I L 20 +,26

Eelati : .
Earatity, Eri=pL0 | Eo=fl0 | 055494 L 3992723 °¢

& IO4ER - 02430
&0+, 248

Display Line Admittance? Mes : g iﬁg‘; .}-ﬂzii;gz?JE 2

Main Ling Transtafmer

FPerglitent Trace on Charl? (5 Ve

2fd = 0.0 rad = b.00
Animation Speed C 0Sh-d=05A 281054 -dl = 52832 rad = 360 02

L




Module 2.8 Discrete Element Matching For each of two possible solutions, the module guides the user through a
procedure to match the feedline to the load by inserting a capacitor or an inductor at an appropriate location along the line.

Module 2.2 Tutearial
Discrete Elament Matching

Zy=5000
E; - 1.0

Ly =100.0+ | 80D 0O
L = 1.0 GHz

=03

€ heradtonche
Iirpedancs In‘g?ﬂ- ) iil £
:-rrn'::ﬂmr.-a zl..'ﬂ_“;{!'{' l +| |s0.0

Fraquency i 1 QER | Hz

Felatue o
e e, E =lL0 | | = 855454 L 29922137
ki SR 0.30988 - | 0.2953

; 20+)18
Disploy Line Impedence? ves 055404 L 2802315 ¢

Persistent Trace on Chart? L as 0. 3018F - 0. 3039

 d=so0aA Ip o = 00 rad = 0.02
Arimation Speed (" 05A-d=05A 2B (0.5 A -d = 62832 rad = 350 0F




Module 2.9 Single-Stub Tuning

SHORTED STLIE

1000+ 8005
1.0 GH2
o —ﬂjm

Step 4 - First Solution

Ta cancel the imaginary part of the
line admittance we add a stub with;

=0 @ =z = 20+j16
Length: I, =0.1024 A T - ossdes L 29922130
Admittance: O y_ = 0.30488-02439
s = 10+j00
Y,=-j002668 S (actual) S de GG Lo
il s f0+j00
yy =-] 133417 (narmalized) Ll ‘
C d=02134 4 2@ d =2 6813 rad =153 52870

™ 05A-d=02888A 20 (0.5 A - d) = 36019 rad = 206 3713°




Transients
I

T'he transient response of a voltage pulse on a transmission
line is a time record of its back and forth travel between the
sending and receiving ends of the line, taking into account
all the multiple reflections (echoes) at both ends.

) ")
" Vi(1) = Vo u(7)
0
=
! : -1
TR
(a) Pulse of duration 1 (b) W(t)= V(1) + Va(?)

Rectangular pulse is equivalent to the sum of two
step functions



Transient Response

Ry =0 Transmission line Initial current and voltage
%—o—; i—f_‘;
+ 1= L _
Ve = Zy § Ry R, + Zy
- ;
—  C——— vit=112z, = _Ye?o
| —z Ry + Zo
z=0 z=1]
(a) Transmission-line circuit Reflection at the load
1.-'?_ —_— l_" 'L_.-"_
! LYy -
— MWA——0
+ N . Ry — 7Zn
— t Load reflection coefficient 1. = ————
Ve = it §Zu - R+ 24y
N {
.|. —2 Second transient

+ _ pov— ot
(b) Equivalent circuit at = 0" Vor =TV =Tl

Generator reflection coefficient [, % 15
o u + _J.I:I



) Voltage Wave
ﬂg _|_ 21 g R
e .| [
b } z
z=10) z={
" WA W T =1/u, is the time it takes the wave to
o IR travel the full length of the line
Mz, Ti2) Mz, 3T12) Viz, 5T12)
t { {.FI-I- T Fl_} t /{. I'fl|.++ ‘Ei_ + FE-'-] {F'I"' 3+ !_.-"I_}
1 (V) e ) L - ’ /
I ¥ 1/ N s
Wy Ky T V2 =Tgh
e i z t -
0 {2 { 0 2 ! 0 i2 !
(a) F(z)atr=T/72 (b) Hizyatr=3T72 (¢) Flz)ati=5T72
RII

=l

= 4Zp and Ry = 2£y. The corresponding reflection coefficients are I'y, = 1/3 and 'y = 3/3,



¥

R,

E

1

i=1

7 ]

= Transmission line
.q: o
|

-

z=19

[ gl

() ‘lransmission-line circult

¥z, Ti2)
A

F."' e

/{ i)
By

‘
2

- =
(1] {
{a} Hzyatty - T/2
iz, ey
4
(1)
i '/
.lf' e ‘
i =
0 12 {
(d)y fizhat¢ =112

Kz, 3T12)
4

J_" =1a

¥y

/“"|'!- H/

lF|I L3 i_.rl ]

by Fiz)at/

iz, 3712)
4

I /

()

AT

ie)] fz)

at i =372

Iy
17 =—Tal{

il /
I i

P — = A

Current Wave

Reflection coefficient for current is the
negative of that for voltage

=T 1,

L
sl

Hiz, 53TV2)
b
F.l" S / 1

g e
I’r| T

]
= DLl

(¥ =¥

(c) KFiz)aty

Iz, 5772)
4

' +4 +1)

fii=-Tgl *

ST2

(y =14

/

i {2

() fiz)atr= 5772




Steady State Response
N

, !Ei P Transmission line

vV FERI
L m [E—

R 2 + Ry

(a) Transmission-line circuit

Fhe mf,iffzf;i."e-n;fh:'f'fzm'a process continues indefinitely, and Vg Ve
the ultimate value that V (2, 1) reaches as ¢ approaches +o0 oo =—— =
~ v -0k i AT R Ro+RL
is the same at all locations on the rransmission line.



I Iy |
Bounce Diagrams I=;’ R
-
I ar 2T
ir
4T 7
Kl 417 sl 4an ]
A Y ¥ ¥
! i ¢ i
(u} Vollage bounce diagram (b) Current bounve diagrim
(4, n 1+ + I-IFl Cy+1 s e+ 1 ﬁj-ll-j} F]+
‘ (1+ T+ Tl + T Iy
b= 1':'3 {1+ ]_LH’II-F e
S ki k (14T +T, T ¥ = .
" Pt i : E
it ' : : .
L L
[ : ! 1
: —— : —— ' -t
T T 7T 2T 97 3T IST 4T 17T 5T
4 4 4 4 4

(¢} Voltage versus time at = = 14



Example 2-15: Pulse Propagation

The transmission-line circuit of Fig, 2-43(a) 1s excited by a
rectangular pulse of duration r = 1 ns that starts at t = (.
Establish the wavelorm ol the voltave response at the load,

given that the pulse amplitude is 3 V, the phase velocity is ¢, _

and the length of the line is (L6 m.
Solution: The one-way propagation time 18

/ 0.6
T =

— T 1y
PEEE TR T S

The reflection coefficients at the load and the sending end are

. _RL—ED_lﬁﬂ—Sﬂ_
T e TN T T
RS T 5
=20 —_06
Ry+2Zo 125450

By Eq. (2.147), the pulse is treated as the sum ol two step
functions, one that starts at r = 0 with an amphitude Vig =3V
and a second one that starts at + = | ns with an amplitude
Von = —5 V. Except for the time delay of | ns and the
sign reversal of all voltaze values, the two step [unctions will
veperate identical bounce diagrams, as shown in Fig, 2-43(b).
For the first step function. the initial voltage is given by

v_:z I’rmfu _ _'-'PKEU _ ;
'Ry +Zo 125450

i
6V

avi
24

_2 1|'-'__
4v1

[2.5€

A= 50 3 L5010

(a1 Pulse cienit

F,=—{.6 =05

| ng
2ns
e IRV
4 ns
ans
L
=47 s
Lk
T g
1 n=

[l ms

12 n=

First stop tunction
----- Second step funciion
(b1 Howmoee diagram

(¥

(.54 v
—1 f(ns)

3 SU 101112

o AN

(c) Voltage waveform at the load



Module 2.10

Transient Response

Options:

Transient Plots

Transient Plots

(" Step Pulse Width 160.0 ps
Voltage V(t) v Gpuse [ L '
2000 - Vi) [mV]  Curmsor Location <
1M s
I
-2000 4 +
0 4T 8T 12T

Set Load
R = 100 [a] Update
{* Resistance " Conductance
Set Generator
V'mxz 1.0 [vl
Rg = 1000 Q]
Update
Data
Pulse Input T =160.0 [ps]
Cursor Z =48.83 [mm]

Transit Time: input to load
T =333.33333 [ps]

Transit Time: input to cursor position
Te=1631 [ps]

Transit Time: input to load and back to cursor
Ty = 503.56667 [ps]

Phase velocity up=3.0 [10% mis]

Reflection coeflicients
I‘a =0.6 I, =-0.6667




Technology Brief 4: EM Cancer Zapper

Uitrasound transducer

Ablatbon catheter dtransmission line)

Liver

Ultrasound image

Figure TF4-1: Microwave ablation for liver cancer treatment.

FigureTF4-2: Photograph of the setup for a percutaneou
microwave ablation procedurs in which three single
microwave applicators are connecled o three microwave
generators, (Courtesy of RadioGraphics, Cctober 2005

pp. S68-583.)



Technology Brief 4: High Voltage Pulses

3 When the
traifing edges

afl Ll wiaaies
finally meet, the
pribse ety

Condwoior ——=

1 Weith the swich opern, the
devics is charged up by it
connection tothe highvoltage g e p
source, Closing the switch sats
up transient waves,

2 Thiz woitane waves 1),.

reflect aff the onds of the il ——
“‘)._-_;_ transmassion line, The wawve mear ‘(“‘3.4-_, ﬂ‘:,.;
the switch inwarts (red)—its polarity

changes—when it reflacrs, becausa that end is shosted, When the invarted and
rioninvertad waves crash into 2ach other atthe load, a pulse of valtage resules.

High-volfage sauree

Figure TF4-3: High-voltage nanosecond pulse delivered to tumor cells via a transmission ling, The cells to be shocked
by the pulse sit in a break in one of the tfransmission-line conductors, (Courtesy of IEEE Spectrum, August 2006.)
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Chapter 2 Relationships
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