
Chapter 1:  Introduction:  Waves and Phasors 
 
 
Lesson #1 
Chapter — Section:  Chapter 1 
Topics:  EM history and how it relates to other fields 
 
Highlights: 

• EM in Classical era:  1000 BC to 1900   
• Examples of Modern Era Technology timelines   
• Concept of “fields” (gravitational, electric, magnetic) 
• Static vs. dynamic fields   
• The EM Spectrum 

 
Special Illustrations: 

• Timelines from CD-ROM 
 

Timeline for Electromagnetics in the Classical Era 
 
ca. 900  Legend has it that while walking 
BC  across a field in northern Greece, a 

shepherd named Magnus experiences 
a pull on the iron nails in his sandals 
by the black rock he was standing on. 
The region was later named Magnesia 
and the rock became known as 
magnetite [a form of iron with 
permanent magnetism]. 

 
ca. 600  Greek philosopher Thales  
BC describes how amber, 

after being rubbed 
with cat fur, can pick 
up feathers [static 
electricity].  

ca. 1000 Magnetic compass used as 
a navigational device.  

 

 

1752   Benjamin Franklin  
 (American) invents the 

lightning rod and 
demonstrates that 
lightning is electricity.  

 
1785 Charles-Augustin de  

Coulomb (French) demonstrates that 
the electrical force between charges is 
proportional to the inverse of the  
square of the distance between them.  

 
1800 Alessandro Volta 

(Italian) develops the 
first electric battery.  

1820 Hans Christian Oersted 
(Danish) demonstrates the 
interconnection between 
electricity and magnetism  
through his discovery that an electric 
current in a wire causes a compass 
needle to orient itself perpendicular to 
the wire.
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Highlights: 

• Wave properties 
• Complex numbers 
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Special Illustrations: 

• CD-ROM Modules 1.1-1.9 
• CD-ROM Demos 1.1-1.3 
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Chapter 1

Section 1-3: Traveling Waves

Problem 1.1 A 2-kHz sound wave traveling in the x-direction in air was observed to
have a differential pressure p

�
x � t ��� 10 N/m2 at x � 0 and t � 50 µs. If the reference

phase of p
�
x � t � is 36 � , find a complete expression for p

�
x � t � . The velocity of sound

in air is 330 m/s.

Solution: The general form is given by Eq. (1.17),

p
�
x � t ��� Acos

�
2πt
T � 2πx

λ 	 φ0 
 �
where it is given that φ0 � 36 � . From Eq. (1.26), T � 1 � f � 1 � � 2 � 103 ��� 0  5 ms.
From Eq. (1.27),

λ � up

f
� 330

2 � 103 � 0  165 m 
Also, since

p
�
x � 0 � t � 50 µs ��� 10 (N/m2) � Acos

�
2π � 50 � 10 � 6

5 � 10 � 4 	 36 � π rad
180 � 
� Acos

�
1  26 rad ��� 0  31A �

it follows that A � 10 � 0  31 � 32  36 N/m2. So, with t in (s) and x in (m),

p
�
x � t ��� 32  36cos � 2π � 106 t

500 � 2π � 103 x
165 	 36 ��� (N/m2)� 32  36cos

�
4π � 103t � 12  12πx 	 36 � � (N/m2) 

Problem 1.2 For the pressure wave described in Example 1-1, plot
(a) p

�
x � t � versus x at t � 0,

(b) p
�
x � t � versus t at x � 0.

Be sure to use appropriate scales for x and t so that each of your plots covers at least
two cycles.

Solution: Refer to Fig. P1.2(a) and Fig. P1.2(b).



4 CHAPTER 1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
-12.

-10.

-8.

-6.

-4.

-2.

0.

2.

4.

6.

8.

10.

12.

A
m

pl
itu

de
(N

/m
2 )

Distance x (m)

p(x,t=0)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
-12.

-10.

-8.

-6.

-4.

-2.

0.

2.

4.

6.

8.

10.

12.

A
m

pl
itu

de
(N

/m
2 )

Time t (ms)

p(x=0,t)

(a) (b)

Figure P1.2: (a) Pressure wave as a function of distance at t � 0 and (b) pressure
wave as a function of time at x � 0.

Problem 1.3 A harmonic wave traveling along a string is generated by an oscillator
that completes 180 vibrations per minute. If it is observed that a given crest, or
maximum, travels 300 cm in 10 s, what is the wavelength?

Solution:

f � 180
60

� 3 Hz 
up � 300 cm

10 s
� 0  3 m/s 

λ � up

f
� 0  3

3
� 0  1 m � 10 cm 

Problem 1.4 Two waves, y1
�
t � and y2

�
t � , have identical amplitudes and oscillate at

the same frequency, but y2
�
t � leads y1

�
t � by a phase angle of 60 � . If

y1
�
t ��� 4cos

�
2π � 103t � �

write down the expression appropriate for y2
�
t � and plot both functions over the time

span from 0 to 2 ms.

Solution:
y2
�
t ��� 4cos

�
2π � 103t 	 60 � � 
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Figure P1.4: Plots of y1
�
t � and y2

�
t � .

Problem 1.5 The height of an ocean wave is described by the function

y
�
x � t ��� 1  5sin

�
0  5t � 0  6x � (m) 

Determine the phase velocity and the wavelength and then sketch y
�
x � t � at t � 2 s

over the range from x � 0 to x � 2λ.

Solution: The given wave may be rewritten as a cosine function:

y
�
x � t ��� 1  5cos

�
0  5t � 0  6x � π � 2 � 

By comparison of this wave with Eq. (1.32),

y
�
x � t ��� Acos

�
ωt � βx 	 φ0 � �

we deduce that

ω � 2π f � 0  5 rad/s � β � 2π
λ

� 0  6 rad/m �
up � ω

β
� 0  5

0  6 � 0  83 m/s � λ � 2π
β

� 2π
0  6 � 10  47 m 
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Figure P1.5: Plot of y
�
x � 2 � versus x.

At t � 2 s, y
�
x � 2 � � 1  5sin

�
1 � 0  6x � (m), with the argument of the cosine function

given in radians. Plot is shown in Fig. P1.5.

Problem 1.6 A wave traveling along a string in the 	 x-direction is given by

y1
�
x � t ��� Acos

�
ωt � βx � �

where x � 0 is the end of the string, which is tied rigidly to a wall, as shown in
Fig. 1-21 (P1.6). When wave y1

�
x � t � arrives at the wall, a reflected wave y2

�
x � t � is

generated. Hence, at any location on the string, the vertical displacement ys will be
the sum of the incident and reflected waves:

ys
�
x � t ��� y1

�
x � t � 	 y2

�
x � t � 

(a) Write down an expression for y2
�
x � t � , keeping in mind its direction of travel

and the fact that the end of the string cannot move.
(b) Generate plots of y1

�
x � t � , y2

�
x � t � and ys

�
x � t � versus x over the range� 2λ �

x
�

0 at ωt � π � 4 and at ωt � π � 2.

Solution:
(a) Since wave y2

�
x � t � was caused by wave y1

�
x � t � , the two waves must have the

same angular frequency ω, and since y2
�
x � t � is traveling on the same string as y1

�
x � t � ,
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Figure P1.6: Wave on a string tied to a wall at x � 0 (Problem 1.6).

the two waves must have the same phase constant β. Hence, with its direction being
in the negative x-direction, y2

�
x � t � is given by the general form

y2
�
x � t ��� Bcos

�
ωt 	 βx 	 φ0 � � (1)

where B and φ0 are yet-to-be-determined constants. The total displacement is

ys
�
x � t ��� y1

�
x � t � 	 y2

�
x � t ��� Acos

�
ωt � βx � 	 Bcos

�
ωt 	 βx 	 φ0 � 

Since the string cannot move at x � 0, the point at which it is attached to the wall,
ys
�
0 � t ��� 0 for all t. Thus,

ys
�
0 � t ��� Acosωt 	 Bcos

�
ωt 	 φ0 ��� 0  (2)

(i) Easy Solution: The physics of the problem suggests that a possible solution for
(2) is B � � A and φ0 � 0, in which case we have

y2
�
x � t ��� � Acos

�
ωt 	 βx �  (3)

(ii) Rigorous Solution: By expanding the second term in (2), we have

Acosωt 	 B
�
cosωt cosφ0 � sinωt sin φ0 ��� 0 �

or �
A 	 Bcosφ0 � cos ωt � �

Bsinφ0 � sin ωt � 0  (4)

This equation has to be satisfied for all values of t. At t � 0, it gives

A 	 Bcosφ0 � 0 � (5)
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and at ωt � π � 2, (4) gives

Bsinφ0 � 0  (6)

Equations (5) and (6) can be satisfied simultaneously only if

A � B � 0 (7)

or

A � � B and φ0 � 0  (8)

Clearly (7) is not an acceptable solution because it means that y1
�
x � t � � 0, which is

contrary to the statement of the problem. The solution given by (8) leads to (3).
(b) At ωt � π � 4,

y1
�
x � t ��� Acos

�
π � 4 � βx ��� Acos

�
π
4 � 2πx

λ 
 �
y2
�
x � t ��� � Acos

�
ωt 	 βx ��� � Acos

�
π
4 	 2πx

λ 
 
Plots of y1, y2, and y3 are shown in Fig. P1.6(b).
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Figure P1.6: (b) Plots of y1, y2, and ys versus x at ωt � π � 4.

At ωt � π � 2,

y1
�
x � t ��� Acos

�
π � 2 � βx ��� Asinβx � Asin

2πx
λ

�
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y2
�
x � t ��� � Acos

�
π � 2 	 βx ��� Asinβx � Asin

2πx
λ


Plots of y1, y2, and y3 are shown in Fig. P1.6(c).
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Figure P1.6: (c) Plots of y1, y2, and ys versus x at ωt � π � 2.

Problem 1.7 Two waves on a string are given by the following functions:

y1
�
x � t ��� 4cos

�
20t � 30x � (cm) �

y2
�
x � t ��� � 4cos

�
20t 	 30x � (cm) �

where x is in centimeters. The waves are said to interfere constructively when their
superposition � ys � ��� y1 	 y2 � is a maximum and they interfere destructively when � ys �
is a minimum.

(a) What are the directions of propagation of waves y1
�
x � t � and y2

�
x � t � ?

(b) At t � �
π � 50 � s, at what location x do the two waves interfere constructively,

and what is the corresponding value of � ys � ?
(c) At t � �

π � 50 � s, at what location x do the two waves interfere destructively,
and what is the corresponding value of � ys � ?

Solution:
(a) y1

�
x � t � is traveling in positive x-direction. y2

�
x � t � is traveling in negative

x-direction.
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(b) At t � �
π � 50 � s, ys � y1 	 y2 � 4 � cos

�
0  4π � 30x � � cos

�
0  4π 	 3x ��� . Using the

formulas from Appendix C,

2sin xsin y � cos
�
x � y � � �

cosx 	 y � �
we have

ys � 8sin
�
0  4π � sin 30x � 7  61sin 30x 

Hence,

� ys � max � 7  61

and it occurs when sin 30x � 1, or 30x � π
2 	 2nπ, or x � �

π
60 	 2nπ

30 
 cm, where

n � 0 � 1 � 2 �    
(c) � ys �min � 0 and it occurs when 30x � nπ, or x � nπ

30
cm.

Problem 1.8 Give expressions for y
�
x � t � for a sinusoidal wave traveling along a

string in the negative x-direction, given that ymax � 40 cm, λ � 30 cm, f � 10 Hz,
and

(a) y
�
x � 0 ��� 0 at x � 0,

(b) y
�
x � 0 ��� 0 at x � 7  5 cm.

Solution: For a wave traveling in the negative x-direction, we use Eq. (1.17) with
ω � 2π f � 20π (rad/s), β � 2π � λ � 2π � 0  3 � 20π � 3 (rad/s), A � 40 cm, and x
assigned a positive sign:

y
�
x � t ��� 40cos

�
20πt 	 20π

3
x 	 φ0 
 (cm) �

with x in meters.
(a) y

�
0 � 0 ��� 0 � 40cos φ0. Hence, φ0 ��� π � 2, and

y
�
x � t ��� 40cos

�
20πt 	 20π

3
x � π

2 

� � � 40sin � 20πt 	 20π

3 x � (cm), if φ0 � π � 2 �
40sin � 20πt 	 20π

3 x � (cm), if φ0 � � π � 2 
(b) At x � 7  5 cm = 7  5 � 10 � 2 m, y � 0 � 40cos

�
π � 2 	 φ0 � . Hence, φ0 � 0 or π,

and

y
�
x � t ��� �

40cos � 20πt 	 20π
3 x � (cm), if φ0 � 0 �� 40cos � 20πt 	 20π

3 x � (cm), if φ0 � π 
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Problem 1.9 An oscillator that generates a sinusoidal wave on a string completes
20 vibrations in 50 s. The wave peak is observed to travel a distance of 2.8 m along
the string in 50 s. What is the wavelength?

Solution:

T � 50
20

� 2  5 s � up � 2  8
5

� 0  56 m/s �
λ � upT � 0  56 � 2  5 � 1  4 m 

Problem 1.10 The vertical displacement of a string is given by the harmonic
function:

y
�
x � t ��� 6cos

�
16πt � 20πx � (m) �

where x is the horizontal distance along the string in meters. Suppose a tiny particle
were to be attached to the string at x � 5 cm, obtain an expression for the vertical
velocity of the particle as a function of time.

Solution:
y
�
x � t ��� 6cos

�
16πt � 20πx � (m) 

u
�
0  05 � t ��� dy

�
x � t �

dt ����
x � 0 � 05� 96πsin

�
16πt � 20πx � � x � 0 � 05� 96πsin
�
16πt � π �� � 96πsin
�
16πt � (m/s) 

Problem 1.11 Given two waves characterized by

y1
�
t ��� 3cos ωt �

y2
�
t ��� 3sin

�
ωt 	 36 � � �

does y2
�
t � lead or lag y1

�
t � , and by what phase angle?

Solution: We need to express y2
�
t � in terms of a cosine function:

y2
�
t ��� 3sin

�
ωt 	 36 � �� 3cos � π

2 � ωt � 36 � � � 3cos
�
54 � � ωt ��� 3cos

�
ωt � 54 � � 
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Hence, y2
�
t � lags y1

�
t � by 54 � .

Problem 1.12 The voltage of an electromagnetic wave traveling on a transmission
line is given by v

�
z � t � � 5e � αz sin

�
4π � 109t � 20πz � (V), where z is the distance in

meters from the generator.
(a) Find the frequency, wavelength, and phase velocity of the wave.
(b) At z � 2 m, the amplitude of the wave was measured to be 1 V. Find α.

Solution:
(a) This equation is similar to that of Eq. (1.28) with ω � 4π � 109 rad/s and

β � 20π rad/m. From Eq. (1.29a), f � ω � 2π � 2 � 109 Hz � 2 GHz; from
Eq. (1.29b), λ � 2π � β � 0  1 m. From Eq. (1.30),

up � ω � β � 2 � 108 m/s 
(b) Using just the amplitude of the wave,

1 � 5e � α2 � α � � 1
2 m

ln

�
1
5 
 � 0  81 Np/m.

Problem 1.13 A certain electromagnetic wave traveling in sea water was observed
to have an amplitude of 98.02 (V/m) at a depth of 10 m and an amplitude of 81.87
(V/m) at a depth of 100 m. What is the attenuation constant of sea water?

Solution: The amplitude has the form Aeαz. At z � 10 m,

Ae � 10α � 98  02

and at z � 100 m,
Ae � 100α � 81  87

The ratio gives
e � 10α

e � 100α � 98  02
81  87

� 1  20

or
e � 10α � 1  2e � 100α 

Taking the natural log of both sides gives

ln
�
e � 10α ��� ln

�
1  2e � 100α � �

� 10α � ln
�
1  2 � � 100α �

90α � ln
�
1  2 ��� 0  18 

Hence,

α � 0  18
90

� 2 � 10 � 3 (Np/m) 
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Section 1-5: Complex Numbers

Problem 1.14 Evaluate each of the following complex numbers and express the
result in rectangular form:

(a) z1 � 4e jπ � 3,
(b) z2 ��� 3 e j3π � 4,
(c) z3 � 6e � jπ � 2,
(d) z4 � j3,
(e) z5 � j � 4,
(f) z6 � �

1 � j � 3,
(g) z7 � �

1 � j � 1 � 2.

Solution: (Note: In the following solutions, numbers are expressed to only two
decimal places, but the final answers are found using a calculator with 10 decimal
places.)

(a) z1 � 4e jπ � 3 � 4
�
cos π � 3 	 j sinπ � 3 ��� 2  0 	 j3  46.

(b)

z2 � � 3e j3π � 4 � � 3

�
cos

�
3π
4 
 	 j sin

�
3π
4 
�� � � 1  22 	 j1  22 � 1  22

� � 1 	 j � 
(c) z3 � 6e � jπ � 2 � 6 � cos

� � π � 2 � 	 j sin
� � π � 2 ��� � � j6.

(d) z4 � j3 � j � j2 � � j, or

z4 � j3 � �
e jπ � 2 � 3 � e j3π � 2 � cos

�
3π � 2 � 	 j sin

�
3π � 2 ��� � j 

(e) z5 � j � 4 � �
e jπ � 2 � � 4 � e � j2π � 1.

(f)

z6 � �
1 � j � 3 � � � 2e � jπ � 4 � 3 � � � 2 � 3e � j3π � 4� � � 2 � 3 � cos

�
3π � 4 � � j sin

�
3π � 4 ���� � 2 � j2 � � 2

�
1 	 j � 

(g)

z7 � �
1 � j � 1 � 2 � � � 2e � jπ � 4 � 1 � 2 ��� 21 � 4e � jπ � 8 � � 1  19

�
0  92 � j0  38 �� � � 1  10 � j0  45 � 

Problem 1.15 Complex numbers z1 and z2 are given by

z1 � 3 � j2 �
z2 � � 4 	 j3 
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(a) Express z1 and z2 in polar form.
(b) Find � z1 � by applying Eq. (1.41) and again by applying Eq. (1.43).
(c) Determine the product z1z2 in polar form.
(d) Determine the ratio z1 � z2 in polar form.
(e) Determine z3

1 in polar form.

Solution:
(a) Using Eq. (1.41),

z1 � 3 � j2 � 3  6e � j33 � 7 � �
z2 � � 4 	 j3 � 5e j143 � 1 � 

(b) By Eq. (1.41) and Eq. (1.43), respectively,

� z1 � � � 3 � j2 � ��� 32 	 � � 2 � 2 � � 13 � 3  60 �
� z1 � ��� �

3 � j2 � � 3 	 j2 ��� � 13 � 3  60 
(c) By applying Eq. (1.47b) to the results of part (a),

z1z2 � 3  6e � j33 � 7 � � 5e j143 � 1 � � 18e j109 � 4 � 
(d) By applying Eq. (1.48b) to the results of part (a),

z1

z2
� 3  6e � j33 � 7 �

5e j143 � 1 � � 0  72e � j176 � 8 � 
(e) By applying Eq. (1.49) to the results of part (a),

z3
1 � �

3  6e � j33 � 7 � � 3 � �
3  6 � 3e � j3 � 33 � 7 � � 46  66e � j101 � 1 � 

Problem 1.16 If z � � 2 	 j4, determine the following quantities in polar form:
(a) 1 � z,
(b) z3,
(c) � z � 2,
(d) ���	� z 
 ,
(e) ���	� z ��
 .

Solution: (Note: In the following solutions, numbers are expressed to only two
decimal places, but the final answers are found using a calculator with 10 decimal
places.)
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(a)

1
z
� 1

� 2 	 j4
� � � 2 	 j4 � � 1 � �

4  47e j116 � 6 � � � 1 � �
4  47 � � 1e � j116 � 6 � � 0  22e � j116 � 6 � 

(b) z3 � � � 2 	 j4 � 3 � �
4  47e j116 � 6 � � 3 � �

4  47 � 3e j350 � 0 � � 89  44e � j10 � .
(c) � z � 2 � z � z � � � � 2 	 j4 � � � 2 � j4 ��� 4 	 16 � 20.
(d) ���	� z 
 � ���	� � 2 	 j4 
 � 4.
(e) ���	� z � 
 � ��� � � 2 � j4 
 � � 4 � 4e jπ.

Problem 1.17 Find complex numbers t � z1 	 z2 and s � z1 � z2, both in polar form,
for each of the following pairs:

(a) z1 � 2 	 j3, z2 � 1 � j3,
(b) z1 � 3, z2 � � j3,
(c) z1 � 3

�
30 � , z2 � 3

� � 30 � ,
(d) z1 � 3

�
30 � , z2 � 3

� � 150 � .

Solution:
(a)

t � z1 	 z2 � �
2 	 j3 � 	 �

1 � j3 ��� 3 �
s � z1 � z2 � �

2 	 j3 � � �
1 � j3 ��� 1 	 j6 � 6  08e j80 � 5 � 

(b)

t � z1 	 z2 � 3 � j3 � 4  24e � j45 � �
s � z1 � z2 � 3 	 j3 � 4  24e j45 � 

(c)

t � z1 	 z2 � 3
�

30 � 	 3
� � 30 �� 3e j30 � 	 3e � j30 � � �

2  6 	 j1  5 � 	 �
2  6 � j1  5 � � 5  2 �

s � z1 � z2 � 3e j30 � � 3e � j30 � � �
2  6 	 j1  5 � � �

2  6 � j1  5 � � j3 � 3e j90 � 
(d)

t � z1 	 z2 � 3
�

30 � 	 3
� � 150 � � �

2  6 	 j1  5 � 	 � � 2  6 � j1  5 ��� 0 �
s � z1 � z2 � �

2  6 	 j1  5 � � � � 2  6 � j1  5 � � 5  2 	 j3 � 6e j30 � 
Problem 1.18 Complex numbers z1 and z2 are given by

z1 � 5
� � 60 � �

z2 � 2
�

45 � 
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(a) Determine the product z1z2 in polar form.
(b) Determine the product z1z �2 in polar form.
(c) Determine the ratio z1 � z2 in polar form.
(d) Determine the ratio z �1 � z �2 in polar form.
(e) Determine � z1 in polar form.

Solution:
(a) z1z2 � 5e � j60 � � 2e j45 � � 10e � j15 � .
(b) z1z �2 � 5e � j60 � � 2e � j45 � � 10e � j105 � .
(c)

z1

z2
� 5e � j60 �

2e j45 � � 2  5 � j105 � .
(d)

z �1
z �2 � �

z1

z2

 � � 2  5 j105 � .

(e) � z1 � � 5e � j60 � � � � 5e � j30 � .
Problem 1.19 If z � 3 � j5, find the value of ln

�
z � .

Solution:

� z � � 	 � 32 	 52 � 5  83 � θ � tan � 1

� � 5
3 
 � � 59 � �

z � � z � e jθ � 5  83e � j59 � �
ln
�
z ��� ln

�
5  83e � j59 � �� ln
�
5  83 � 	 ln

�
e � j59 � �� 1  76 � j59 � � 1  76 � j

59 � π
180 � � 1  76 � j1  03 

Problem 1.20 If z � 3 � j4, find the value of ez.

Solution:

ez � e3 � j4 � e3 � e � j4 � e3 � cos4 � j sin4 � �
e3 � 20  09 � and 4 rad � 4

π
� 180 � � 229  18 � 

Hence, ez � 20  08
�
cos 229  18 � � j sin229  18 � ��� � 13  13 	 j15  20.
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Section 1-6: Phasors

Problem 1.21 A voltage source given by vs
�
t � � 25cos

�
2π � 103t � 30 � � (V) is

connected to a series RC load as shown in Fig. 1-19. If R � 1 MΩ and C � 200 pF,
obtain an expression for vc

�
t � , the voltage across the capacitor.

Solution: In the phasor domain, the circuit is a voltage divider, and

�
Vc � �

Vs
1 � jωC

R 	 1 � jωC
� �

Vs�
1 	 jωRC � 

Now
�
Vs � 25e � j30 � V with ω � 2π � 103 rad/s, so

�
Vc � 25e � j30 � V

1 	 j
� �

2π � 103 rad/s ��� �
106 Ω ��� �

200 � 10 � 12 F � �
� 25e � j30 � V

1 	 j2π � 5 � 15  57e � j81 � 5 � V.

Converting back to an instantaneous value,

vc
�
t ��� ��� �

Vce jωt � ���
15  57e j � ωt � 81 � 5 ��� V � 15  57cos

�
2π � 103t � 81  5 � � V �

where t is expressed in seconds.

Problem 1.22 Find the phasors of the following time functions:
(a) v

�
t ��� 3cos

�
ωt � π � 3 � (V),

(b) v
�
t ��� 12sin

�
ωt 	 π � 4 � (V),

(c) i
�
x � t ��� 2e � 3x sin

�
ωt 	 π � 6 � (A),

(d) i
�
t ��� � 2cos

�
ωt 	 3π � 4 � (A),

(e) i
�
t ��� 4sin

�
ωt 	 π � 3 � 	 3cos

�
ωt � π � 6 � (A).

Solution:
(a)

�
V � 3e � jπ � 3 V.

(b) v
�
t � � 12sin

�
ωt 	 π � 4 � � 12cos

�
π � 2 � �

ωt 	 π � 4 � � � 12cos
�
ωt � π � 4 � V,�

V � 12e � jπ � 4 V.
(c)

i
�
t ��� 2e � 3x sin

�
ωt 	 π � 6 � A � 2e � 3x cos

�
π � 2 � �

ωt 	 π � 6 � � A� 2e � 3x cos
�
ωt � π � 3 � A ��

I � 2e � 3xe � jπ � 3 A 
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(d)

i
�
t ��� � 2cos

�
ωt 	 3π � 4 � ��

I � � 2e j3π � 4 � 2e � jπe j3π � 4 � 2e � jπ � 4 A 
(e)

i
�
t ��� 4sin

�
ωt 	 π � 3 � 	 3cos

�
ωt � π � 6 �� 4cos � π � 2 � �

ωt 	 π � 3 ��� 	 3cos
�
ωt � π � 6 �� 4cos

� � ωt 	 π � 6 � 	 3cos
�
ωt � π � 6 �� 4cos

�
ωt � π � 6 � 	 3cos

�
ωt � π � 6 ��� 7cos

�
ωt � π � 6 � ��

I � 7e � jπ � 6 A 
Problem 1.23 Find the instantaneous time sinusoidal functions corresponding to
the following phasors:

(a)
�
V � � 5e jπ � 3 (V),

(b)
�
V � j6e � jπ � 4 (V),

(c)
�
I � �

6 	 j8 � (A),
(d) Ĩ � � 3 	 j2 (A),
(e) Ĩ � j (A),
(f) Ĩ � 2e jπ � 6 (A).

Solution:
(a)

�
V � � 5e jπ � 3 V � 5e j � π � 3 � π � V � 5e � j2π � 3 V �

v
�
t ��� 5cos

�
ωt � 2π � 3 � V 

(b)
�
V � j6e � jπ � 4 V � 6e j � � π � 4 � π � 2 � V � 6e jπ � 4 V �

v
�
t ��� 6cos

�
ωt 	 π � 4 � V 

(c)
�
I � �

6 	 j8 � A � 10e j53 � 1 � A �
i
�
t ��� 10cos

�
ωt 	 53  1 � � A.

(d)
�
I � � 3 	 j2 � 3  61e j146 � 31 � �

i
�
t ��� ��� � 3  61e j146 � 31 � e jωt 
 � 3  61 cos

�
ωt 	 146  31 � � A 
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(e)
�
I � j � e jπ � 2 �

i
�
t ��� ��� � e jπ � 2e jωt 
 � cos

�
ωt 	 π � 2 ��� � sinωt A 

(f)
�
I � 2e jπ � 6 �

i
�
t ��� ��� � 2e jπ � 6e jωt 
 � 2cos

�
ωt 	 π � 6 � A 

Problem 1.24 A series RLC circuit is connected to a generator with a voltage
vs
�
t ��� V0 cos

�
ωt 	 π � 3 � (V).

(a) Write down the voltage loop equation in terms of the current i
�
t � , R, L, C, and

vs
�
t � .

(b) Obtain the corresponding phasor-domain equation.
(c) Solve the equation to obtain an expression for the phasor current

�
I.

Vs(t)

R L

C

i

Figure P1.24: RLC circuit.

Solution:

(a) vs
�
t ��� Ri 	 L

di
dt 	 1

C

�
i dt 

(b) In phasor domain:
�
Vs � RĨ 	 jωLĨ 	 Ĩ

jωC


(c) Ĩ � �
Vs

R 	 j
�
ωL � 1 � ωC � � V0e jπ � 3

R 	 j
�
ωL � 1 � ωC � � ωCV0e jπ � 3

ωRC 	 j
�
ω2LC � 1 � 

Problem 1.25 A wave traveling along a string is given by

y
�
x � t ��� 2sin

�
4πt 	 10πx � (cm)
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where x is the distance along the string in meters and y is the vertical displacement.
Determine: (a) the direction of wave travel, (b) the reference phase φ0, (c) the
frequency, (d) the wavelength, and (e) the phase velocity.

Solution:
(a) We start by converting the given expression into a cosine function of the form

given by (1.17):

y
�
x � t ��� 2cos � 4πt 	 10πx � π

2
� (cm) 

Since the coefficients of t and x both have the same sign, the wave is traveling in the
negative x-direction.

(b) From the cosine expression, φ0 � � π � 2.
(c) ω � 2π f � 4π,

f � 4π � 2π � 2 Hz 
(d) 2π � λ � 10π,

λ � 2π � 10π � 0  2 m.

(e) up � f λ � 2 � 0  2 � 0  4 (m/s).

Problem 1.26 A laser beam traveling through fog was observed to have an intensity
of 1 (µW/m2) at a distance of 2 m from the laser gun and an intensity of 0.2
(µW/m2) at a distance of 3 m. Given that the intensity of an electromagnetic
wave is proportional to the square of its electric-field amplitude, find the attenuation
constant α of fog.

Solution: If the electric field is of the form

E
�
x � t ��� E0e � αx cos

�
ωt � βx � �

then the intensity must have a form

I
�
x � t ��� � E0e � αx cos

�
ωt � βx ��� 2

� E2
0 e � 2αx cos2 � ωt � βx �

or
I
�
x � t ��� I0e � 2αx cos2 � ωt � βx �

where we define I0 � E2
0 . We observe that the magnitude of the intensity varies as

I0e � 2αx. Hence,

at x � 2 m � I0e � 4α � 1 � 10 � 6 (W/m2) �
at x � 3 m � I0e � 6α � 0  2 � 10 � 6 (W/m2) 
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I0e � 4α

I0e � 6α � 10 � 6

0  2 � 10 � 6 � 5

e � 4α � e6α � e2α � 5

α � 0  8 (NP/m) 
Problem 1.27 Complex numbers z1 and z2 are given by

z1 � � 3 	 j2

z2 � 1 � j2

Determine (a) z1z2, (b) z1 � z �2, (c) z2
1, and (d) z1z �1, all all in polar form.

Solution:
(a) We first convert z1 and z2 to polar form:

z1 � � � 3 � j2 ��� � � � 32 	 22 e � j tan � 1 2 � 3 �� � � 13 e � j33 � 7 �

� � 13 e j � 180 � � 33 � 7 � �

� � 13 e j146 � 3 � 
z2 � 1 � j2 � � 1 	 4 e � j tan � 1 2

� � 5 e � j63 � 4 � 
z1z2 � � 13 e j146 � 3 � � � 5 e � j63 � 4 �

� � 65 e j82 � 9 � 
(b)

z1

z �2 � � 13 e j146 � 3 �� 5 e j63 � 4 �
� �

13
5

e j82 � 9 � 
(c)

z2
1 � � � 13 � 2 � e j146 � 3 � � 2 � 13e j292 � 6 �

� 13e � j360 � e j292 � 6 �

� 13e � j67 � 4 � 
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(d)

z1z �1 � � 13 e j146 � 3 � � � 13 e � j146 � 3 �� 13 
Problem 1.28 If z � 3e jπ � 6, find the value of ez.

Solution:

z � 3e jπ � 6 � 3cos π � 6 	 j3sinπ � 6� 2  6 	 j1  5
ez � e2 � 6 � j1 � 5 � e2 � 6 � e j1 � 5

� e2 � 6 � cos1  5 	 j sin 1  5 �� 13  46
�
0  07 	 j0  98 �� 0  95 	 j13  43 

Problem 1.29 The voltage source of the circuit shown in the figure is given by

vs
�
t ��� 25cos

�
4 � 104t � 45 � � (V) 

Obtain an expression for iL
�
t � , the current flowing through the inductor.

vs(t) L

iR1

R2

iL

A

iR2+

-

R1 = 20 Ω, R2 = 30 Ω, L = 0.4 mH

Solution: Based on the given voltage expression, the phasor source voltage is
�
Vs � 25e � j45 � (V)  (9)

The voltage equation for the left-hand side loop is

R1i 	 R2iR2 � vs (10)
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For the right-hand loop,

R2iR2 � L
diL
dt

� (11)

and at node A,

i � iR2 	 iL  (12)

Next, we convert Eqs. (2)–(4) into phasor form:

R1

�
I 	 R2

�
IR2 � �

Vs (13)

R2

�
IR2 � jωL

�
IL (14)�

I � �IR2 	 �IL (15)

Upon combining (6) and (7) to solve for
�
IR2 in terms of

�
I, we have:

�
IR2 � jωL

R2 	 jωL
I  (16)

Substituting (8) in (5) and then solving for
�
I leads to:

R1

�
I 	 jR2ωL

R2 	 jωL

�
I � �

Vs

�
I

�
R1 	 jR2ωL

R2 	 jωL 
 � �
Vs

�
I

�
R1R2 	 jR1ωL 	 jR2ωL

R2 	 jωL 
 � �
Vs

�
I � �

R2 	 jωL
R1R2 	 jωL

�
R1 	 R2 � 
 �Vs  (17)

Combining (6) and (7) to solve for
�
IL in terms of

�
I gives

�
IL � R2

R2 	 jωL

�
I  (18)

Combining (9) and (10) leads to

�
IL � �

R2

R2 	 jωL 

�

R2 	 jωL
R1R2 	 jωL

�
R1 	 R2 � 
 �Vs

� R2

R1R2 	 	 jωL
�
R1 	 R2 � �Vs 
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Using (1) for
�
Vs and replacing R1, R2, L and ω with their numerical values, we have

�
IL � 30

20 � 30 	 j4 � 104 � 0  4 � 10 � 3
�
20 	 30 � 25e � j45 �

� 30 � 25
600 	 j800

e � j45 �

� 7  5
6 	 j8

e � j45 � � 7  5e � j45 �

10e j53 � 1 �
� 0  75e � j98 � 1 � (A) 

Finally,

iL
�
t ��� ��� � �ILe jωt �� 0  75cos

�
4 � 104t � 98  1 � � (A) 
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Chapter 2

Sections 2-1 to 2-4: Transmission-Line Model

Problem 2.1 A transmission line of length l connects a load to a sinusoidal voltage
source with an oscillation frequency f . Assuming the velocity of wave propagation
on the line is c, for which of the following situations is it reasonable to ignore the
presence of the transmission line in the solution of the circuit:

(a) l � 20 cm, f � 20 kHz,
(b) l � 50 km, f � 60 Hz,
(c) l � 20 cm, f � 600 MHz,
(d) l � 1 mm, f � 100 GHz.

Solution: A transmission line is negligible when l � λ �
0  01.

(a)
l
λ
� l f

up
� �

20 � 10 � 2 m ��� �
20 � 103 Hz �

3 � 108 m/s
� 1  33 � 10 � 5 (negligible).

(b)
l
λ
� l f

up
� �

50 � 103 m ��� �
60 � 100 Hz �

3 � 108 m/s
� 0  01 (borderline) 

(c)
l
λ
� l f

up
� �

20 � 10 � 2 m ��� �
600 � 106 Hz �

3 � 108 m/s
� 0  40 (nonnegligible) 

(d)
l
λ
� l f

up
� �

1 � 10 � 3 m ��� �
100 � 109 Hz �

3 � 108 m/s
� 0  33 (nonnegligible) 

Problem 2.2 Calculate the line parameters R � , L � , G � , and C � for a coaxial line with
an inner conductor diameter of 0  5 cm and an outer conductor diameter of 1 cm,
filled with an insulating material where µ � µ0, εr � 4  5, and σ � 10 � 3 S/m. The
conductors are made of copper with µc � µ0 and σc � 5  8 � 107 S/m. The operating
frequency is 1 GHz.

Solution: Given

a � �
0  5 � 2 � cm � 0  25 � 10 � 2 m �

b � �
1  0 � 2 � cm � 0  50 � 10 � 2 m �

combining Eqs. (2.5) and (2.6) gives

R � � 1
2π

�
π f µc

σc

�
1
a 	 1

b 

� 1

2π
π
�
109 Hz � � 4π � 10 � 7 H/m �

5  8 � 107 S/m

�
1

0  25 � 10 � 2 m 	 1
0  50 � 10 � 2 m 
� 0  788 Ω/m 
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From Eq. (2.7),

L � � µ
2π

ln

�
b
a 
 � 4π � 10 � 7 H/m

2π
ln2 � 139 nH/m 

From Eq. (2.8),

G � � 2πσ
ln
�
b � a � � 2π � 10 � 3 S/m

ln2
� 9  1 mS/m 

From Eq. (2.9),

C � � 2πε
ln
�
b � a � � 2πεrε0

ln
�
b � a � � 2π � 4  5 � �

8  854 � 10 � 12 F/m �
ln2

� 362 pF/m 
Problem 2.3 A 1-GHz parallel-plate transmission line consists of 1.2-cm-wide
copper strips separated by a 0.15-cm-thick layer of polystyrene. Appendix B gives
µc � µ0 � 4π � 10 � 7 (H/m) and σc � 5  8 � 107 (S/m) for copper, and εr � 2  6 for
polystyrene. Use Table 2-1 to determine the line parameters of the transmission line.
Assume µ � µ0 and σ � 0 for polystyrene.

Solution:

R � � 2Rs

w
� 2

w

�
π f µc

σc
� 2

1  2 � 10 � 2

�
π � 109 � 4π � 10 � 7

5  8 � 107 
 1 � 2 � 1  38 (Ω/m) �
L � � µd

w
� 4π � 10 � 7 � 1  5 � 10 � 3

1  2 � 10 � 2 � 1  57 � 10 � 7 (H/m) �
G � � 0 because σ � 0 �
C � � εw

d
� ε0εr

w
d
� 10 � 9

36π
� 2  6 � 1  2 � 10 � 2

1  5 � 10 � 3
� 1  84 � 10 � 10 (F/m) 

Problem 2.4 Show that the transmission line model shown in Fig. 2-37 (P2.4)
yields the same telegrapher’s equations given by Eqs. (2.14) and (2.16).

Solution: The voltage at the central upper node is the same whether it is calculated
from the left port or the right port:

v
�
z 	 1

2∆z � t ��� v
�
z � t � � 1

2R � ∆z i
�
z � t � � 1

2L � ∆z
∂
∂t

i
�
z � t �

� v
�
z 	 ∆z � t � 	 1

2R � ∆z i
�
z 	 ∆z � t � 	 1

2L � ∆z
∂
∂t

i
�
z 	 ∆z � t � 
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G'∆z C'∆z

∆z

R'∆z
2

L'∆z
2

R'∆z
2

L'∆z
2i(z, t)

+

-

+

-

i(z+∆z, t)

v(z, t) v(z+∆z, t)

Figure P2.4: Transmission line model.

Recognizing that the current through the G �
�

C � branch is i
�
z � t � � i

�
z 	 ∆z � t � (from

Kirchhoff’s current law), we can conclude that

i
�
z � t � � i

�
z 	 ∆z � t ��� G � ∆z v

�
z 	 1

2∆z � t � 	 C � ∆z
∂
∂t

v
�
z 	 1

2∆z � t � 
From both of these equations, the proof is completed by following the steps outlined
in the text, ie. rearranging terms, dividing by ∆z, and taking the limit as ∆z � 0.

Problem 2.5 Find α � β � up, and Z0 for the coaxial line of Problem 2.2.

Solution: From Eq. (2.22),

γ � � �
R � 	 jωL � � � G � 	 jωC � �� � �
0  788 Ω/m � 	 j

�
2π � 109 s � 1 � � 139 � 10 � 9 H/m �

� � �
9  1 � 10 � 3 S/m � 	 j

�
2π � 109 s � 1 � � 362 � 10 � 12 F/m �� �

109 � 10 � 3 	 j44  5 � m � 1 
Thus, from Eqs. (2.25a) and (2.25b), α � 0  109 Np/m and β � 44  5 rad/m.

From Eq. (2.29),

Z0 � R � 	 jωL �
G � 	 jωC �

� �
0  788 Ω/m � 	 j

�
2π � 109 s � 1 � � 139 � 10 � 9 H/m ��

9  1 � 10 � 3 S/m � 	 j
�
2π � 109 s � 1 � � 362 � 10 � 12 F/m �� �

19  6 	 j0  030 � Ω 
From Eq. (2.33),

up � ω
β
� 2π � 109

44  5 � 1  41 � 108 m/s 
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Section 2-5: The Lossless Line

Problem 2.6 In addition to not dissipating power, a lossless line has two important
features: (1) it is dispertionless (µp is independent of frequency) and (2) its
characteristic impedance Z0 is purely real. Sometimes, it is not possible to design
a transmission line such that R ��� ωL � and G ��� ωC � , but it is possible to choose the
dimensions of the line and its material properties so as to satisfy the condition

R � C � � L � G � (distortionless line) 
Such a line is called a distortionless line because despite the fact that it is not lossless,
it does nonetheless possess the previously mentioned features of the loss line. Show
that for a distortionless line,

α � R �

�
C �
L �

� � R � G � � β � ω � L � C � � Z0 � �
L �
C �


Solution: Using the distortionless condition in Eq. (2.22) gives

γ � α 	 jβ � � �
R � 	 jωL � � � G � 	 jωC � �

� � L � C �

�
R �
L � 	 jω 
 �

G �
C � 	 jω 


� � L � C �

�
R �
L � 	 jω 
 �

R �
L � 	 jω 


� � L � C �

�
R �
L � 	 jω 
 � R �

�
C �
L � 	 jω � L � C � 

Hence,

α � ��� �
γ ��� R �

�
C �
L �

� β � ��� � γ ��� ω � L � C � � up � ω
β
� 1� L � C �


Similarly, using the distortionless condition in Eq. (2.29) gives

Z0 � R � 	 jωL �
G � 	 jωC �

� �
L �
C �

R � � L � 	 jω
G � � C � 	 jω

� �
L �
C �


Problem 2.7 For a distortionless line with Z0 � 50 Ω, α � 20 (mNp/m),
up � 2  5 � 108 (m/s), find the line parameters and λ at 100 MHz.
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Solution: The product of the expressions for α and Z0 given in Problem 2.6 gives

R � � αZ0 � 20 � 10 � 3 � 50 � 1 (Ω/m) �
and taking the ratio of the expression for Z0 to that for up � ω � β � 1 � � L � C � gives

L � � Z0

up
� 50

2  5 � 108 � 2 � 10 � 7 (H/m) � 200 (nH/m) 
With L � known, we use the expression for Z0 to find C � :

C � � L �
Z2

0

� 2 � 10 � 7�
50 � 2 � 8 � 10 � 11 (F/m) � 80 (pF/m) 

The distortionless condition given in Problem 2.6 is then used to find G � .

G � � R � C �
L �

� 1 � 80 � 10 � 12

2 � 10 � 7 � 4 � 10 � 4 (S/m) � 400 (µS/m) �
and the wavelength is obtained by applying the relation

λ � µp

f
� 2  5 � 108

100 � 106 � 2  5 m 
Problem 2.8 Find α and Z0 of a distortionless line whose R � � 2 Ω/m and
G � � 2 � 10 � 4 S/m.

Solution: From the equations given in Problem 2.6,

α � � R � G � � � 2 � 2 � 10 � 4 � 1 � 2 � 2 � 10 � 2 (Np/m) �
Z0 � �

L �
C �

� �
R �
G �

� �
2

2 � 10 � 4 
 1 � 2 � 100 Ω 
Problem 2.9 A transmission line operating at 125 MHz has Z0 � 40 Ω, α � 0  02
(Np/m), and β � 0  75 rad/m. Find the line parameters R � , L � , G � , and C � .

Solution: Given an arbitrary transmission line, f � 125 MHz, Z0 � 40 Ω,
α � 0  02 Np/m, and β � 0  75 rad/m. Since Z0 is real and α �� 0, the line is
distortionless. From Problem 2.6, β � ω � L � C � and Z0 � � L � � C � , therefore,

L � � βZ0

ω
� 0  75 � 40

2π � 125 � 106 � 38  2 nH/m 
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Then, from Z0 � � L � � C � ,

C � � L �
Z2

0

� 38  2 nH/m
402 � 23  9 pF/m 

From α � � R � G � and R � C � � L � G � ,

R � � � R � G �

�
R �
G �

� � R � G �

�
L �
C �

� αZ0 � 0  02 Np/m � 40 Ω � 0  6 Ω/m

and

G � � α2

R �
� �

0  02 Np/m � 2
0  8 Ω/m

� 0  5 mS/m 
Problem 2.10 Using a slotted line, the voltage on a lossless transmission line was
found to have a maximum magnitude of 1.5 V and a minimum magnitude of 0.6 V.
Find the magnitude of the load’s reflection coefficient.

Solution: From the definition of the Standing Wave Ratio given by Eq. (2.59),

S � � �V � max

�
�
V � min

� 1  5
0  6 � 2  5 

Solving for the magnitude of the reflection coefficient in terms of S, as in
Example 2-4,

�Γ � � S � 1
S 	 1

� 2  5 � 1
2  5 	 1

� 0  43 
Problem 2.11 Polyethylene with εr � 2  25 is used as the insulating material in a
lossless coaxial line with characteristic impedance of 50 Ω. The radius of the inner
conductor is 1.2 mm.

(a) What is the radius of the outer conductor?
(b) What is the phase velocity of the line?

Solution: Given a lossless coaxial line, Z0 � 50 Ω, εr � 2  25, a � 1  2 mm:
(a) From Table 2-2, Z0 � �

60 � � εr � ln � b � a � which can be rearranged to give

b � aeZ0 � εr � 60 � �
1  2 mm � e50 � 2 � 25 � 60 � 4  2 mm 
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(b) Also from Table 2-2,

up � c� εr
� 3 � 108 m/s� 2  25

� 2  0 � 108 m/s 
Problem 2.12 A 50-Ω lossless transmission line is terminated in a load with
impedance ZL � �

30 � j50 � Ω. The wavelength is 8 cm. Find:
(a) the reflection coefficient at the load,
(b) the standing-wave ratio on the line,
(c) the position of the voltage maximum nearest the load,
(d) the position of the current maximum nearest the load.

Solution:
(a) From Eq. (2.49a),

Γ � ZL � Z0

ZL 	 Z0
� �

30 � j50 � � 50�
30 � j50 � 	 50

� 0  57e � j79 � 8 � 
(b) From Eq. (2.59),

S � 1 	 �Γ �
1 � �Γ � �

1 	 0  57
1 � 0  57

� 3  65 
(c) From Eq. (2.56)

lmax � θrλ
4π 	 nλ

2
� � 79  8 � � 8 cm

4π
π rad
180 � 	 n � 8 cm

2� � 0  89 cm 	 4  0 cm � 3  11 cm 
(d) A current maximum occurs at a voltage minimum, and from Eq. (2.58),

lmin � lmax � λ � 4 � 3  11 cm � 8 cm � 4 � 1  11 cm 
Problem 2.13 On a 150-Ω lossless transmission line, the following observations
were noted: distance of first voltage minimum from the load � 3 cm; distance of first
voltage maximum from the load � 9 cm; S � 3. Find ZL.

Solution: Distance between a minimum and an adjacent maximum � λ � 4. Hence,

9 cm � 3 cm � 6 cm � λ � 4 �
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or λ � 24 cm. Accordingly, the first voltage minimum is at � min � 3 cm � λ
8 .

Application of Eq. (2.57) with n � 0 gives

θr � 2 � 2π
λ

� λ
8
� � π �

which gives θr � � π � 2.

�Γ � � S � 1
S 	 1

� 3 � 1
3 	 1

� 2
4
� 0  5 

Hence, Γ � 0  5e � jπ � 2 � � j0  5.
Finally,

ZL � Z0

�
1 	 Γ
1 � Γ � � 150

�
1 � j0  5
1 	 j0  5 � � �

90 � j120 � Ω 
Problem 2.14 Using a slotted line, the following results were obtained: distance of
first minimum from the load � 4 cm; distance of second minimum from the load �
14 cm, voltage standing-wave ratio � 1  5. If the line is lossless and Z0 � 50 Ω, find
the load impedance.

Solution: Following Example 2.5: Given a lossless line with Z0 � 50 Ω, S � 1  5,
lmin � 0 � � 4 cm, lmin � 1 � � 14 cm. Then

lmin � 1 � � lmin � 0 � � λ
2

or

λ � 2 � �
lmin � 1 � � lmin � 0 � ��� 20 cm

and

β � 2π
λ

� 2π rad/cycle
20 cm/cycle

� 10π rad/m 
From this we obtain

θr � 2βlmin � n � � �
2n 	 1 � π rad � 2 � 10π rad/m � 0  04 m � π rad� � 0  2π rad � � 36  0 � 

Also,

�Γ � � S � 1
S 	 1

� 1  5 � 1
1  5 	 1

� 0  2 
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So

ZL � Z0

�
1 	 Γ
1 � Γ 
 � 50

�
1 	 0  2e � j36 � 0 �
1 � 0  2e � j36 � 0 ��� � �

67  0 � j16  4 � Ω 
Problem 2.15 A load with impedance ZL � �

25 � j50 � Ω is to be connected to a
lossless transmission line with characteristic impedance Z0, with Z0 chosen such that
the standing-wave ratio is the smallest possible. What should Z0 be?

Solution: Since S is monotonic with �Γ � (i.e., a plot of S vs. �Γ � is always increasing),
the value of Z0 which gives the minimum possible S also gives the minimum possible
�Γ � , and, for that matter, the minimum possible �Γ � 2. A necessary condition for a
minimum is that its derivative be equal to zero:

0 � ∂
∂Z0
�Γ � 2 � ∂

∂Z0

�RL 	 jXL � Z0 � 2
�RL 	 jXL 	 Z0 � 2

� ∂
∂Z0

�
RL � Z0 � 2 	 X2

L�
RL 	 Z0 � 2 	 X2

L

� 4RL
�
Z2

0 � �
R2

L 	 X2
L � �� �

RL 	 Z0 � 2 	 X2
L � 2 

Therefore, Z2
0 � R2

L 	 X2
L or

Z0 � � ZL � � � �
252 	 � � 50 � 2 ��� 55  9 Ω 

A mathematically precise solution will also demonstrate that this point is a
minimum (by calculating the second derivative, for example). Since the endpoints
of the range may be local minima or maxima without the derivative being zero there,
the endpoints (namely Z0 � 0 Ω and Z0 � ∞ Ω) should be checked also.

Problem 2.16 A 50-Ω lossless line terminated in a purely resistive load has a
voltage standing wave ratio of 3. Find all possible values of ZL.

Solution:

�Γ � � S � 1
S 	 1

� 3 � 1
3 	 1

� 0  5 
For a purely resistive load, θr � 0 or π. For θr � 0,

ZL � Z0

�
1 	 Γ
1 � Γ � � 50

�
1 	 0  5
1 � 0  5 � � 150 Ω 

For θr � π, Γ � � 0  5 and

ZL � 50

�
1 � 0  5
1 	 0  5 � � 15 Ω 
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Section 2-6: Input Impedance

Problem 2.17 At an operating frequency of 300 MHz, a lossless 50-Ω air-spaced
transmission line 2.5 m in length is terminated with an impedance ZL � �

40 	 j20 � Ω.
Find the input impedance.

Solution: Given a lossless transmission line, Z0 � 50 Ω, f � 300 MHz, l � 2  5 m,
and ZL � �

40 	 j20 � Ω. Since the line is air filled, up � c and therefore, from Eq.
(2.38),

β � ω
up

� 2π � 300 � 106

3 � 108 � 2π rad/m 
Since the line is lossless, Eq. (2.69) is valid:

Zin � Z0

�
ZL 	 jZ0 tanβl
Z0 	 jZL tanβl 
 � 50

� �
40 	 j20 � 	 j50tan

�
2π rad/m � 2  5 m �

50 	 j
�
40 	 j20 � tan

�
2π rad/m � 2  5 m � 


� 50

� �
40 	 j20 � 	 j50 � 0

50 	 j
�
40 	 j20 ��� 0 
 � �

40 	 j20 � Ω 
Problem 2.18 A lossless transmission line of electrical length l � 0  35λ is
terminated in a load impedance as shown in Fig. 2-38 (P2.18). Find Γ, S, and Z in.

Zin Z0 = 100 Ω ZL = (60 + j30) Ω

l = 0.35λ

Figure P2.18: Loaded transmission line.

Solution: From Eq. (2.49a),

Γ � ZL � Z0

ZL 	 Z0
� �

60 	 j30 � � 100�
60 	 j30 � 	 100

� 0  307e j132 � 5 � 
From Eq. (2.59),

S � 1 	 �Γ �
1 � �Γ � �

1 	 0  307
1 � 0  307

� 1  89 
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From Eq. (2.63)

Zin � Z0

�
ZL 	 jZ0 tanβl
Z0 	 jZL tanβl 


� 100

� �
60 	 j30 � 	 j100tan � 2π rad

λ 0  35λ �
100 	 j

�
60 	 j30 � tan � 2π rad

λ 0  35λ � � � �
64  8 � j38  3 � Ω 

Problem 2.19 Show that the input impedance of a quarter-wavelength long lossless
line terminated in a short circuit appears as an open circuit.

Solution:

Zin � Z0

�
ZL 	 jZ0 tanβl
Z0 	 jZL tanβl 
 

For l � λ
4 , βl � 2π

λ � λ
4 � π

2 . With ZL � 0, we have

Zin � Z0

�
jZ0 tanπ � 2

Z0

 � j∞ (open circuit) 

Problem 2.20 Show that at the position where the magnitude of the voltage on the
line is a maximum the input impedance is purely real.

Solution: From Eq. (2.56), lmax � �
θr 	 2nπ � � 2β, so from Eq. (2.61), using polar

representation for Γ,

Zin
� � lmax ��� Z0

�
1 	 �Γ � e jθre � j2βlmax

1 � �Γ � e jθre � j2βlmax �
� Z0

�
1 	 �Γ � e jθre � j � θr � 2nπ �
1 � �Γ � e jθre � j � θr � 2nπ � � � Z0

�
1 	 �Γ �
1 � �Γ � 
 �

which is real, provided Z0 is real.

Problem 2.21 A voltage generator with vg
�
t � � 5cos

�
2π � 109t � V and internal

impedance Zg � 50 Ω is connected to a 50-Ω lossless air-spaced transmission
line. The line length is 5 cm and it is terminated in a load with impedance
ZL � �

100 � j100 � Ω. Find
(a) Γ at the load.
(b) Zin at the input to the transmission line.
(c) the input voltage

�
Vi and input current Ĩi.



44 CHAPTER 2

Solution:
(a) From Eq. (2.49a),

Γ � ZL � Z0

ZL 	 Z0
� �

100 � j100 � � 50�
100 � j100 � 	 50

� 0  62e � j29 � 7 � 
(b) All formulae for Zin require knowledge of β � ω � up. Since the line is an air line,

up � c, and from the expression for vg
�
t � we conclude ω � 2π � 109 rad/s. Therefore

β � 2π � 109 rad/s
3 � 108 m/s

� 20π
3

rad/m 
Then, using Eq. (2.63),

Zin � Z0

�
ZL 	 jZ0 tanβl
Z0 	 jZL tanβl 


� 50

� �
100 � j100 � 	 j50tan � 20π

3 rad/m � 5 cm �
50 	 j

�
100 � j100 � tan � 20π

3 rad/m � 5 cm � �
� 50

� �
100 � j100 � 	 j50tan � π

3 rad �
50 	 j

�
100 � j100 � tan � π

3 rad � � � �
12  5 � j12  7 � Ω 

An alternative solution to this part involves the solution to part (a) and Eq. (2.61).
(c) In phasor domain,

�
Vg � 5 V e j0 � . From Eq. (2.64),

�
Vi � �

VgZin

Zg 	 Zin
� 5 � �

12  5 � j12  7 �
50 	 �

12  5 � j12  7 � � 1  40e � j34 � 0 � (V) �
and also from Eq. (2.64),

�
Ii � �

Vi

Zin
� 1  4e � j34 � 0 ��

12  5 � j12  7 � � 78  4e j11 � 5 � (mA) 
Problem 2.22 A 6-m section of 150-Ω lossless line is driven by a source with

vg
�
t ��� 5cos

�
8π � 107t � 30 � � (V)

and Zg � 150 Ω. If the line, which has a relative permittivity εr � 2  25, is terminated
in a load ZL � �

150 � j50 � Ω � find
(a) λ on the line,
(b) the reflection coefficient at the load,
(c) the input impedance,
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(d) the input voltage
�
Vi,

(e) the time-domain input voltage vi
�
t � .

Solution:

vg
�
t ��� 5cos

�
8π � 107t � 30 � � V ��

Vg � 5e � j30 � V 

Vg

Ii
Zg

Zin Z0
ZL

~

Vi
~~

+

+

-

+

-

-

VL
~

IL
~+

-

Transmission line

Generator Load
z = -l z = 0

Vg

Ii
Zg

Zin

~

Vi
~~

+

-

⇓

 150 Ω

 (150-j50) Ω

l = 6 m

 = 150 Ω

Figure P2.22: Circuit for Problem 2.22.

(a)

up � c� εr
� 3 � 108� 2  25

� 2 � 108 (m/s) �
λ � up

f
� 2πup

ω
� 2π � 2 � 108

8π � 107 � 5 m �
β � ω

up
� 8π � 107

2 � 108 � 0  4π (rad/m) �
βl � 0  4π � 6 � 2  4π (rad) 
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Since this exceeds 2π (rad), we can subtract 2π, which leaves a remainder βl � 0  4π
(rad).

(b) Γ � ZL � Z0

ZL 	 Z0
� 150 � j50 � 150

150 � j50 	 150
� � j50

300 � j50
� 0  16e � j80 � 54 � .

(c)

Zin � Z0

�
ZL 	 jZ0 tanβl
Z0 	 jZL tan βl �

� 150

� �
150 � j50 � 	 j150tan

�
0  4π �

150 	 j
�
150 � j50 � tan

�
0  4π � � � �

115  70 	 j27  42 � Ω 
(d)

�
Vi � �

VgZin

Zg 	 Zin
� 5e � j30 �

�
115  7 	 j27  42 �

150 	 115  7 	 j27  42

� 5e � j30 �

�
115  7 	 j27  42
265  7 	 j27  42 
� 5e � j30 � � 0  44e j7 � 44 � � 2  2e � j22 � 56 � (V) 

(e)

vi
�
t ��� ��� � �Vie

jωt � � ��� � 2  2e � j22 � 56 � e jωt � � 2  2cos
�
8π � 107t � 22  56 � � V 

Problem 2.23 Two half-wave dipole antennas, each with impedance of 75 Ω, are
connected in parallel through a pair of transmission lines, and the combination is
connected to a feed transmission line, as shown in Fig. 2.39 (P2.23(a)). All lines are
50 Ω and lossless.

(a) Calculate Zin1 , the input impedance of the antenna-terminated line, at the
parallel juncture.

(b) Combine Zin1 and Zin2 in parallel to obtain Z �L, the effective load impedance of
the feedline.

(c) Calculate Zin of the feedline.

Solution:
(a)

Zin1 � Z0

�
ZL1 	 jZ0 tan βl1
Z0 	 jZL1 tan βl1

�
� 50

�
75 	 j50tan � � 2π � λ � � 0  2λ ���
50 	 j75tan � � 2π � λ � � 0  2λ ����� � �

35  20 � j8  62 � Ω 
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0.2λ

0.2λ

75 Ω
(Antenna)

75 Ω
(Antenna)

Zin

0.3λ

Zin

Zin

1

2

Figure P2.23: (a) Circuit for Problem 2.23.

(b)

Z �L � Zin1Zin2

Zin1 	 Zin2

� �
35  20 � j8  62 � 2

2
�
35  20 � j8  62 � � �

17  60 � j4  31 � Ω 
(c)

Zin  

l  = 0.3 λ

ZL'

Figure P2.23: (b) Equivalent circuit.

Zin � 50

� �
17  60 � j4  31 � 	 j50tan � � 2π � λ � � 0  3λ ���

50 	 j
�
17  60 � j4  31 � tan � � 2π � λ � � 0  3λ ����� � �

107  57 � j56  7 � Ω 
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Section 2-7: Special Cases

Problem 2.24 At an operating frequency of 300 MHz, it is desired to use a section
of a lossless 50-Ω transmission line terminated in a short circuit to construct an
equivalent load with reactance X � 40 Ω. If the phase velocity of the line is 0  75c,
what is the shortest possible line length that would exhibit the desired reactance at its
input?

Solution:

β � ω � up � �
2π rad/cycle ��� �

300 � 106 cycle/s �
0  75 � �

3 � 108 m/s � � 8  38 rad/m 
On a lossless short-circuited transmission line, the input impedance is always purely
imaginary; i.e., Zsc

in � jX sc
in . Solving Eq. (2.68) for the line length,

l � 1
β

tan � 1

�
X sc

in

Z0

 � 1

8  38 rad/m
tan � 1

�
40 Ω
50 Ω 
 � �

0  675 	 nπ � rad
8  38 rad/m

�
for which the smallest positive solution is 8  05 cm (with n � 0).

Problem 2.25 A lossless transmission line is terminated in a short circuit. How
long (in wavelengths) should the line be in order for it to appear as an open circuit at
its input terminals?

Solution: From Eq. (2.68), Zsc
in � jZ0 tanβl. If βl � �

π � 2 	 nπ � , then Zsc
in � j∞

�
Ω � .

Hence,

l � λ
2π

� π
2 	 nπ � � λ

4 	 nλ
2


This is evident from Figure 2.15(d).

Problem 2.26 The input impedance of a 31-cm-long lossless transmission line of
unknown characteristic impedance was measured at 1 MHz. With the line terminated
in a short circuit, the measurement yielded an input impedance equivalent to an
inductor with inductance of 0.064 µH, and when the line was open circuited, the
measurement yielded an input impedance equivalent to a capacitor with capacitance
of 40 pF. Find Z0 of the line, the phase velocity, and the relative permittivity of the
insulating material.

Solution: Now ω � 2π f � 6  28 � 106 rad/s, so

Zsc
in � jωL � j2π � 106 � 0  064 � 10 � 6 � j0  4 Ω
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and Zoc
in � 1 � jωC � 1 � � j2π � 106 � 40 � 10 � 12 ��� � j4000 Ω.

From Eq. (2.74), Z0 � � Zsc
in Zoc

in � � �
j0  4 Ω � � � j4000 Ω � � 40 Ω  Using

Eq. (2.75),

up � ω
β
� ωl

tan � 1 � � Zsc
in � Zoc

in� 6  28 � 106 � 0  31

tan � 1 � � � � j0  4 � � � j4000 ��� � 1  95 � 106� � 0  01 	 nπ � m/s �
where n � 0 for the plus sign and n � 1 for the minus sign. For n � 0,
up � 1  94 � 108 m/s � 0  65c and εr � �

c � up � 2 � 1 � 0  652 � 2  4. For other values
of n, up is very slow and εr is unreasonably high.

Problem 2.27 A 75-Ω resistive load is preceded by a λ � 4 section of a 50-Ω lossless
line, which itself is preceded by another λ � 4 section of a 100-Ω line. What is the input
impedance?

Solution: The input impedance of the λ � 4 section of line closest to the load is found
from Eq. (2.77):

Zin � Z2
0

ZL
� 502

75
� 33  33 Ω 

The input impedance of the line section closest to the load can be considered as the
load impedance of the next section of the line. By reapplying Eq. (2.77), the next
section of λ � 4 line is taken into account:

Zin � Z2
0

ZL
� 1002

33  33
� 300 Ω 

Problem 2.28 A 100-MHz FM broadcast station uses a 300-Ω transmission line
between the transmitter and a tower-mounted half-wave dipole antenna. The antenna
impedance is 73 Ω. You are asked to design a quarter-wave transformer to match the
antenna to the line.

(a) Determine the electrical length and characteristic impedance of the quarter-
wave section.

(b) If the quarter-wave section is a two-wire line with d � 2  5 cm, and the spacing
between the wires is made of polystyrene with εr � 2  6, determine the physical
length of the quarter-wave section and the radius of the two wire conductors.
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Solution:
(a) For a match condition, the input impedance of a load must match that of the

transmission line attached to the generator. A line of electrical length λ � 4 can be
used. From Eq. (2.77), the impedance of such a line should be

Z0 � � ZinZL � � 300 � 73 � 148 Ω 
(b)

λ
4
� up

4 f
� c

4 � εr f
� 3 � 108

4 � 2  6 � 100 � 106
� 0  465 m �

and, from Table 2-2,

Z0 � 120� ε
ln

�� �
d
2a 
 	

�
d
2a 
 2 � 1 �� Ω 

Hence,

ln

�� �
d
2a 
 	

�
d
2a 
 2 � 1 �� � 148 � 2  6

120
� 1  99 �

which leads to �
d
2a 
 	

�
d
2a 
 2 � 1 � 7  31 �

and whose solution is a � d � 7  44 � 25 cm � 7  44 � 3  36 mm.

Problem 2.29 A 50-MHz generator with Zg � 50 Ω is connected to a load
ZL � �

50 � j25 � Ω. The time-average power transferred from the generator into the
load is maximum when Zg � Z �L � where Z �L is the complex conjugate of ZL. To achieve
this condition without changing Zg, the effective load impedance can be modified by
adding an open-circuited line in series with ZL, as shown in Fig. 2-40 (P2.29). If the
line’s Z0 � 100 Ω, determine the shortest length of line (in wavelengths) necessary
for satisfying the maximum-power-transfer condition.

Solution: Since the real part of ZL is equal to Zg, our task is to find l such that the
input impedance of the line is Zin � 	 j25 Ω, thereby cancelling the imaginary part
of ZL (once ZL and the input impedance the line are added in series). Hence, using
Eq. (2.73), � j100cot βl � j25 �
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Vg Z L
~

+

-

 (50-j25) Ω

Z0 = 100 Ω
l

 50 Ω

Figure P2.29: Transmission-line arrangement for Problem 2.29.

or

cotβl � � 25
100

� � 0  25 �
which leads to

βl � � 1  326 or 1  816 
Since l cannot be negative, the first solution is discarded. The second solution leads
to

l � 1  816
β

� 1  816�
2π � λ � � 0  29λ 

Problem 2.30 A 50-Ω lossless line of length l � 0  375λ connects a 300-MHz
generator with

�
Vg � 300 V and Zg � 50 Ω to a load ZL. Determine the time-domain

current through the load for:
(a) ZL � �

50 � j50 � Ω �
(b) ZL � 50 Ω,
(c) ZL � 0 (short circuit).

Solution:
(a) ZL � �

50 � j50 � Ω, βl � 2π
λ � 0  375λ � 2  36 (rad) � 135 � .

Γ � ZL � Z0

ZL 	 Z0
� 50 � j50 � 50

50 � j50 	 50
� � j50

100 � j50
� 0  45e � j63 � 43 � 

Application of Eq. (2.63) gives:

Zin � Z0

�
ZL 	 jZ0 tanβl
Z0 	 jZL tanβl � � 50

� �
50 � j50 � 	 j50tan 135 �

50 	 j
�
50 � j50 � tan 135 � � � �

100 	 j50 � Ω 
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Vg Zin Z0
ZL

~
+

-

+

-

Transmission line

Generator Load
z = -l z = 0

Vg

Ii

Zin

~

Vi
~~

+

-

⇓

 (50-j50) Ω

l = 0.375 λ

 = 50 Ω

 50 Ω

Zg

Figure P2.30: Circuit for Problem 2.30(a).

Using Eq. (2.66) gives

V �
0 � � �

VgZin

Zg 	 Zin � �
1

e jβl 	 Γe � jβl 

� 300

�
100 	 j50 �

50 	 �
100 	 j50 �

�
1

e j135 � 	 0  45e � j63 � 43 � e � j135 � 
� 150e � j135 � (V) �
�
IL � V �

0

Z0

�
1 � Γ ��� 150e � j135 �

50

�
1 � 0  45e � j63 � 43 � ��� 2  68e � j108 � 44 � (A) �

iL
�
t ��� ��� � �ILe jωt �� ��� � 2  68e � j108 � 44 � e j6π � 108t �� 2  68cos

�
6π � 108t � 108  44 � � (A) 
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(b)

ZL � 50 Ω �
Γ � 0 �

Zin � Z0 � 50 Ω �
V �

0 � 300 � 50
50 	 50

�
1

e j135 � 	 0 
 � 150e � j135 � (V) �
�
IL � V �

0

Z0
� 150

50
e � j135 � � 3e � j135 � (A) �

iL
�
t ��� ��� � 3e � j135 � e j6π � 108t � � 3cos

�
6π � 108t � 135 � � (A) 

(c)

ZL � 0 �
Γ � � 1 �

Zin � Z0

�
0 	 jZ0 tan135 �

Z0 	 0 
 � jZ0 tan135 � � � j50 (Ω) �
V �

0 � 300
� � j50 �

50 � j50

�
1

e j135 � � e � j135 � 
 � 150e � j135 � (V) �
�
IL � V �

0

Z0
� 1 � Γ � � 150e � j135 �

50
� 1 	 1 � � 6e � j135 � (A) �

iL
�
t ��� 6cos

�
6π � 108t � 135 � � (A) 

Section 2-8: Power Flow on Lossless Line

Problem 2.31 A generator with
�
Vg � 300 V and Zg � 50 Ω is connected to a load

ZL � 75 Ω through a 50-Ω lossless line of length l � 0  15λ.
(a) Compute Zin, the input impedance of the line at the generator end.
(b) Compute

�
Ii and

�
Vi.

(c) Compute the time-average power delivered to the line, Pin � 1
2

��� � �Vi

�
I �i � .

(d) Compute
�
VL,

�
IL, and the time-average power delivered to the load,

PL � 1
2

��� � �VL

�
I �L � . How does Pin compare to PL? Explain.

(e) Compute the time average power delivered by the generator, Pg, and the time
average power dissipated in Zg. Is conservation of power satisfied?

Solution:
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Vg Zin Z0
~

+

-

+

-

Transmission line

Generator Load
z = -l z = 0

Vg

Ii
Zg

Zin

~

Vi
~~

+

-

⇓
l = 0.15 λ

 = 50 Ω

 50 Ω

 75 Ω

Figure P2.31: Circuit for Problem 2.31.

(a)

βl � 2π
λ

� 0  15λ � 54 � �
Zin � Z0

�
ZL 	 jZ0 tanβl
Z0 	 jZL tanβl � � 50

�
75 	 j50tan 54 �
50 	 j75tan 54 � � � �

41  25 � j16  35 � Ω 
(b)

�
Ii � �

Vg

Zg 	 Zin
� 300

50 	 �
41  25 � j16  35 � � 3  24e j10 � 16 � (A) �

�
Vi � �IiZin � 3  24e j10 � 16 � � 41  25 � j16  35 � � 143  6e � j11 � 46 � (V) 
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(c)

Pin � 1
2
��� � �Vi

�
I �i � � 1

2
��� � 143  6e � j11 � 46 � � 3  24e � j10 � 16 � �

� 143  6 � 3  24
2

cos
�
21  62 � ��� 216 (W) 

(d)

Γ � ZL � Z0

ZL 	 Z0
� 75 � 50

75 	 50
� 0  2 �

V �
0 � �

Vi

�
1

e jβl 	 Γe � jβl 
 � 143  6e � j11 � 46 �

e j54 � 	 0  2e � j54 �
� 150e � j54 � (V) �

�
VL � V �

0

�
1 	 Γ ��� 150e � j54 � � 1 	 0  2 ��� 180e � j54 � (V) �

�
IL � V �

0

Z0

�
1 � Γ ��� 150e � j54 �

50

�
1 � 0  2 ��� 2  4e � j54 � (A) �

PL � 1
2
��� � �VL

�
I �L � � 1

2
��� � 180e � j54 � � 2  4e j54 � � � 216 (W) 

PL � Pin, which is as expected because the line is lossless; power input to the line
ends up in the load.

(e)
Power delivered by generator:

Pg � 1
2
��� � �Vg

�
Ii � � 1

2
��� � 300 � 3  24e j10 � 16 � � � 486cos

�
10  16 � ��� 478  4 (W) 

Power dissipated in Zg:

PZg � 1
2
��� � �Ii

�
VZg � � 1

2
��� � �Ii

�
I �i Zg � � 1

2
�
�
Ii � 2Zg � 1

2

�
3  24 � 2 � 50 � 262  4 (W) 

Note 1: Pg � PZg 	 Pin � 478  4 W.

Problem 2.32 If the two-antenna configuration shown in Fig. 2-41 (P2.32) is
connected to a generator with

�
Vg � 250 V and Zg � 50 Ω, how much average power

is delivered to each antenna?

Solution: Since line 2 is λ � 2 in length, the input impedance is the same as
ZL1 � 75 Ω. The same is true for line 3. At junction C–D, we now have two 75-Ω
impedances in parallel, whose combination is 75 � 2 � 37  5 Ω. Line 1 is λ � 2 long.
Hence at A–C, input impedance of line 1 is 37.5 Ω, and

�
Ii � �

Vg

Zg 	 Zin
� 250

50 	 37  5 � 2  86 (A) �
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Z in

+

-

Generator

 50 Ω

λ/2

λ/2

λ/2

ZL  = 75 Ω
(Antenna 1)

ZL  = 75 Ω
(Antenna 2)

A

B D

C

 250 V Line 1

Line 2

Line 3

1

2

Figure P2.32: Antenna configuration for Problem 2.32.

Pin � 1
2
��� � �Ii

�
V �i � � 1

2
��� � �Ii

�
I �i �Z �in � � �

2  86 � 2 � 37  5
2

� 153  37 (W) 
This is divided equally between the two antennas. Hence, each antenna receives
153 � 37

2 � 76  68 (W).

Problem 2.33 For the circuit shown in Fig. 2-42 (P2.33), calculate the average
incident power, the average reflected power, and the average power transmitted into
the infinite 100-Ω line. The λ � 2 line is lossless and the infinitely long line is
slightly lossy. (Hint: The input impedance of an infinitely long line is equal to its
characteristic impedance so long as α �� 0.)

Solution: Considering the semi-infinite transmission line as equivalent to a load
(since all power sent down the line is lost to the rest of the circuit), ZL � Z1 � 100 Ω.
Since the feed line is λ � 2 in length, Eq. (2.76) gives Zin � ZL � 100 Ω and
βl � �

2π � λ � � λ � 2 � � π, so e � jβl � � 1. From Eq. (2.49a),

Γ � ZL � Z0

ZL 	 Z0
� 100 � 50

100 	 50
� 1

3
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Z0 = 50 Ω Z1 = 100 Ω

λ/250 Ω

2V

+

-

∞

Pav
i

Pav
r

Pav
t

Figure P2.33: Line terminated in an infinite line.

Also, converting the generator to a phasor gives
�
Vg � 2e j0 � (V). Plugging all these

results into Eq. (2.66),

V �
0 � � �

VgZin

Zg 	 Zin � �
1

e jβl 	 Γe � jβl 
 � �
2 � 100
50 	 100 


�
1� � 1 � 	 1

3

� � 1 � �� 1e j180 � � � 1 (V) 
From Eqs. (2.84), (2.85), and (2.86),

Pi
av � ��

V �
0 ��

2

2Z0
� � 1e j180 � � 2

2 � 50
� 10  0 mW �

Pr
av � � �Γ � 2Pi

av � � ����
1
3 ����

2 � 10 mW � � 1  1 mW �
Pt

av � Pav � Pi
av 	 Pr

av � 10  0 mW � 1  1 mW � 8  9 mW 
Problem 2.34 An antenna with a load impedance ZL � �

75 	 j25 � Ω is connected to
a transmitter through a 50-Ω lossless transmission line. If under matched conditions
(50-Ω load), the transmitter can deliver 20 W to the load, how much power does it
deliver to the antenna? Assume Zg � Z0.
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Solution: From Eqs. (2.66) and (2.61),

V �
0 � � �

VgZin

Zg 	 Zin � �
1

e jβl 	 Γe � jβl 

� � �

VgZ0
� �

1 	 Γe � j2βl � � � 1 � Γe � j2βl ���
Z0 	 Z0

� �
1 	 Γe � j2βl � � � 1 � Γe � j2βl � � � � e � jβl

1 	 Γe � j2βl
�

� �
Vge � jβl�

1 � Γe � j2βl � 	 �
1 	 Γe � j2βl �

� �
Vge � jβl�

1 � Γe � j2βl � 	 �
1 	 Γe � j2βl � � 1

2

�
Vge � jβl 

Thus, in Eq. (2.86),

Pav � �V �
0 � 2

2Z0

�
1 � �Γ � 2 ��� � 12

�
Vge � jβl � 2

2Z0

�
1 � �Γ � 2 ��� �

�
Vg � 2
8Z0

�
1 � �Γ � 2 � 

Under the matched condition, � Γ � � 0 and PL � 20 W, so �
�
Vg � 2 � 8Z0 � 20 W.

When ZL � �
75 	 j25 � Ω, from Eq. (2.49a),

Γ � ZL � Z0

ZL 	 Z0
� �

75 	 j25 � Ω � 50 Ω�
75 	 j25 � Ω 	 50 Ω

� 0  277e j33 � 6 � �
so Pav � 20 W

�
1 � �Γ � 2 ��� 20 W

�
1 � 0  2772 � � 18  46 W.

Section 2-9: Smith Chart

Problem 2.35 Use the Smith chart to find the reflection coefficient corresponding
to a load impedance:

(a) ZL � 3Z0,
(b) ZL � �

2 � 2 j � Z0,
(c) ZL � � 2 jZ0,
(d) ZL � 0 (short circuit).

Solution: Refer to Fig. P2.35.
(a) Point A is zL � 3 	 j0. Γ � 0  5e0 �
(b) Point B is zL � 2 � j2. Γ � 0  62e � 29 � 7 �
(c) Point C is zL � 0 � j2. Γ � 1  0e � 53 � 1 �
(d) Point D is zL � 0 	 j0. Γ � 1  0e180 � 0 �
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Figure P2.35: Solution of Problem 2.35.

Problem 2.36 Use the Smith chart to find the normalized load impedance
corresponding to a reflection coefficient:

(a) Γ � 0  5,
(b) Γ � 0  5 �

60 � ,
(c) Γ � � 1,
(d) Γ � 0  3 � � 30 � ,
(e) Γ � 0,
(f) Γ � j.

Solution: Refer to Fig. P2.36.
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Figure P2.36: Solution of Problem 2.36.

(a) Point A � is Γ � 0  5 at zL � 3 	 j0.
(b) Point B � is Γ � 0  5e j60 � at zL � 1 	 j1  15.
(c) Point C � is Γ � � 1 at zL � 0 	 j0.
(d) Point D � is Γ � 0  3e � j30 � at zL � 1  60 � j0  53.
(e) Point E � is Γ � 0 at zL � 1 	 j0.
(f) Point F � is Γ � j at zL � 0 	 j1.

Problem 2.37 On a lossless transmission line terminated in a load ZL � 100 Ω,
the standing-wave ratio was measured to be 2.5. Use the Smith chart to find the two
possible values of Z0.
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Solution: Refer to Fig. P2.37. S � 2  5 is at point L1 and the constant SWR
circle is shown. zL is real at only two places on the SWR circle, at L1, where
zL � S � 2  5, and L2, where zL � 1 � S � 0  4. so Z01 � ZL � zL1 � 100 Ω � 2  5 � 40 Ω
and Z02 � ZL � zL2 � 100 Ω � 0  4 � 250 Ω.
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Figure P2.37: Solution of Problem 2.37.

Problem 2.38 A lossless 50-Ω transmission line is terminated in a load with
ZL � �

50 	 j25 � Ω. Use the Smith chart to find the following:
(a) the reflection coefficient Γ,
(b) the standing-wave ratio,
(c) the input impedance at 0  35λ from the load,
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(d) the input admittance at 0  35λ from the load,
(e) the shortest line length for which the input impedance is purely resistive,
(f) the position of the first voltage maximum from the load.
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Figure P2.38: Solution of Problem 2.38.

Solution: Refer to Fig. P2.38. The normalized impedance

zL � �
50 	 j25 � Ω

50 Ω
� 1 	 j0  5

is at point Z-LOAD.
(a) Γ � 0  24e j76 � 0 � The angle of the reflection coefficient is read of that scale at

the point θr.
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(b) At the point SWR: S � 1  64.
(c) Zin is 0  350λ from the load, which is at 0  144λ on the wavelengths to generator

scale. So point Z-IN is at 0  144λ 	 0  350λ � 0  494λ on the WTG scale. At point
Z-IN:

Zin � zinZ0 � �
0  61 � j0  022 � � 50 Ω � �

30  5 � j1  09 � Ω 
(d) At the point on the SWR circle opposite Z-IN,

Yin � yin

Z0
� �

1  64 	 j0  06 �
50 Ω

� �
32  7 	 j1  17 � mS 

(e) Traveling from the point Z-LOAD in the direction of the generator (clockwise),
the SWR circle crosses the xL � 0 line first at the point SWR. To travel from Z-LOAD
to SWR one must travel 0  250λ � 0  144λ � 0  106λ. (Readings are on the wavelengths
to generator scale.) So the shortest line length would be 0  106λ.

(f) The voltage max occurs at point SWR. From the previous part, this occurs at
z � � 0  106λ.

Problem 2.39 A lossless 50-Ω transmission line is terminated in a short circuit.
Use the Smith chart to find

(a) the input impedance at a distance 2  3λ from the load,
(b) the distance from the load at which the input admittance is Yin � � j0  04 S.

Solution: Refer to Fig. P2.39.
(a) For a short, zin � 0 	 j0. This is point Z-SHORT and is at 0  000λ on the WTG

scale. Since a lossless line repeats every λ � 2, traveling 2  3λ toward the generator is
equivalent to traveling 0  3λ toward the generator. This point is at A : Z-IN, and

Zin � zinZ0 � �
0 � j3  08 ��� 50 Ω � � j154 Ω 

(b) The admittance of a short is at point Y -SHORT and is at 0  250λ on the WTG
scale:

yin � YinZ0 � � j0  04 S � 50 Ω � � j2 �
which is point B : Y -IN and is at 0  324λ on the WTG scale. Therefore, the line length
is 0  324λ � 0  250λ � 0  074λ. Any integer half wavelengths farther is also valid.
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Figure P2.39: Solution of Problem 2.39.

Problem 2.40 Use the Smith chart to find yL if zL � 1  5 � j0  7.

Solution: Refer to Fig. P2.40. The point Z represents 1  5 � j0  7. The reciprocal of
point Z is at point Y , which is at 0  55 	 j0  26.
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Figure P2.40: Solution of Problem 2.40.

Problem 2.41 A lossless 100-Ω transmission line 3λ � 8 in length is terminated in
an unknown impedance. If the input impedance is Zin � � j2  5 Ω,

(a) use the Smith chart to find ZL.
(b) What length of open-circuit line could be used to replace ZL?

Solution: Refer to Fig. P2.41. zin � Zin � Z0 � � j2  5 Ω � 100 Ω � 0  0 � j0  025 which
is at point Z-IN and is at 0  004λ on the wavelengths to load scale.

(a) Point Z-LOAD is 0  375λ toward the load from the end of the line. Thus, on the
wavelength to load scale, it is at 0  004λ 	 0  375λ � 0  379λ.

ZL � zLZ0 � �
0 	 j0  95 ��� 100 Ω � j95 Ω 
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0.246 λ

0.375 λ

Z-IN

Z-LOAD

Z-OPEN

Figure P2.41: Solution of Problem 2.41.

(b) An open circuit is located at point Z-OPEN, which is at 0  250λ on the
wavelength to load scale. Therefore, an open circuited line with Zin � � j0  025 must
have a length of 0  250λ � 0  004λ � 0  246λ.

Problem 2.42 A 75-Ω lossless line is 0  6λ long. If S � 1  8 and θr � � 60 � , use the
Smith chart to find �Γ � , ZL, and Zin.

Solution: Refer to Fig. P2.42. The SWR circle must pass through S � 1  8 at point
SWR. A circle of this radius has

�Γ � � S � 1
S 	 1

� 0  29 
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SWR

Z-LOAD
Z-IN

θr

Figure P2.42: Solution of Problem 2.42.

The load must have a reflection coefficient with θr � � 60 � . The angle of the reflection
coefficient is read off that scale at the point θr. The intersection of the circle of
constant �Γ � and the line of constant θr is at the load, point Z-LOAD, which has a
value zL � 1  15 � j0  62. Thus,

ZL � zLZ0 � �
1  15 � j0  62 � � 75 Ω � �

86  5 � j46  6 � Ω 
A 0  6λ line is equivalent to a 0  1λ line. On the WTG scale, Z-LOAD is at 0  333λ,

so Z-IN is at 0  333λ 	 0  100λ � 0  433λ and has a value

zin � 0  63 � j0  29 
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Therefore Zin � zinZ0 � �
0  63 � j0  29 � � 75 Ω � �

47  0 � j21  8 � Ω.

Problem 2.43 Using a slotted line on a 50-Ω air-spaced lossless line, the following
measurements were obtained: S � 1  6, �

�
V � max occurred only at 10 cm and 24 cm from

the load. Use the Smith chart to find ZL.
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0.357 λ

SWR

Z-LOAD

Figure P2.43: Solution of Problem 2.43.

Solution: Refer to Fig. P2.43. The point SWR denotes the fact that S � 1  6.
This point is also the location of a voltage maximum. From the knowledge of the
locations of adjacent maxima we can determine that λ � 2

�
24 cm � 10 cm � � 28 cm.

Therefore, the load is 10 cm
28 cm λ � 0  357λ from the first voltage maximum, which is at

0  250λ on the WTL scale. Traveling this far on the SWR circle we find point Z-LOAD
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at 0  250λ 	 0  357λ � 0  500λ � 0  107λ on the WTL scale, and here

zL � 0  82 � j0  39 
Therefore ZL � zLZ0 � �

0  82 � j0  39 � � 50 Ω � �
41  0 � j19  5 � Ω.

Problem 2.44 At an operating frequency of 5 GHz, a 50-Ω lossless coaxial line
with insulating material having a relative permittivity εr � 2  25 is terminated in an
antenna with an impedance ZL � 150 Ω. Use the Smith chart to find Zin. The line
length is 30 cm.

Solution: To use the Smith chart the line length must be converted into wavelengths.
Since β � 2π � λ and up � ω � β,

λ � 2π
β

� 2πup

ω
� c� εr f

� 3 � 108 m/s� 2  25 � �
5 � 109 Hz � � 0  04 m 

Hence, l � 0 � 30 m
0 � 04 mλ � 7  5λ. Since this is an integral number of half wavelengths,

Zin � ZL � 150 Ω 

Section 2-10: Impedance Matching

Problem 2.45 A 50-Ω lossless line 0  6λ long is terminated in a load with
ZL � �

50 	 j25 � Ω. At 0  3λ from the load, a resistor with resistance R � 30 Ω is
connected as shown in Fig. 2-43 (P2.45(a)). Use the Smith chart to find Z in.

Zin Z0 = 50 Ω ZL

ZL = (50 + j25) Ω

Z0 = 50 Ω 30 Ω

0.3λ 0.3λ

Figure P2.45: (a) Circuit for Problem 2.45.
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0.300 λ

Z-LOAD

Y-LOAD

A

B

Y-IN

Z-IN

Figure P2.45: (b) Solution of Problem 2.45.

Solution: Refer to Fig. P2.45(b). Since the 30-Ω resistor is in parallel with the input
impedance at that point, it is advantageous to convert all quantities to admittances.

zL � ZL

Z0
� �

50 	 j25 � Ω
50 Ω

� 1 	 j0  5
and is located at point Z-LOAD. The corresponding normalized load admittance is
at point Y -LOAD, which is at 0  394λ on the WTG scale. The input admittance of
the load only at the shunt conductor is at 0  394λ 	 0  300λ � 0  500λ � 0  194λ and is
denoted by point A. It has a value of

yinA � 1  37 	 j0  45 
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The shunt conductance has a normalized conductance

g � 50 Ω
30 Ω

� 1  67 
The normalized admittance of the shunt conductance in parallel with the input
admittance of the load is the sum of their admittances:

yinB � g 	 yinA � 1  67 	 1  37 	 j0  45 � 3  04 	 j0  45

and is located at point B. On the WTG scale, point B is at 0  242λ. The input
admittance of the entire circuit is at 0  242λ 	 0  300λ � 0  500λ � 0  042λ and is
denoted by point Y-IN. The corresponding normalized input impedance is at Z-IN
and has a value of

zin � 1  9 � j1  4 
Thus,

Zin � zinZ0 � �
1  9 � j1  4 ��� 50 Ω � �

95 � j70 � Ω 
Problem 2.46 A 50-Ω lossless line is to be matched to an antenna with

ZL � �
75 � j20 � Ω

using a shorted stub. Use the Smith chart to determine the stub length and the distance
between the antenna and the stub.

Solution: Refer to Fig. P2.46(a) and Fig. P2.46(b), which represent two different
solutions.

zL � ZL

Z0
� �

75 � j20 � Ω
50 Ω

� 1  5 � j0  4
and is located at point Z-LOAD in both figures. Since it is advantageous to work in
admittance coordinates, yL is plotted as point Y -LOAD in both figures. Y -LOAD is at
0  041λ on the WTG scale.

For the first solution in Fig. P2.46(a), point Y -LOAD-IN-1 represents the point
at which g � 1 on the SWR circle of the load. Y -LOAD-IN-1 is at 0  145λ on the
WTG scale, so the stub should be located at 0  145λ � 0  041λ � 0  104λ from the
load (or some multiple of a half wavelength further). At Y-LOAD-IN-1, b � 0  52,
so a stub with an input admittance of ystub � 0 � j0  52 is required. This point is
Y -STUB-IN-1 and is at 0  423λ on the WTG scale. The short circuit admittance
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Z-LOAD

Y-LOAD

Y-LOAD-IN-1

Y-SHT

Y-STUB-IN-1

0.104 λ

0.173 λ

Figure P2.46: (a) First solution to Problem 2.46.

is denoted by point Y -SHT, located at 0  250λ. Therefore, the short stub must be
0  423λ � 0  250λ � 0  173λ long (or some multiple of a half wavelength longer).

For the second solution in Fig. P2.46(b), point Y -LOAD-IN-2 represents the point
at which g � 1 on the SWR circle of the load. Y -LOAD-IN-2 is at 0  355λ on the
WTG scale, so the stub should be located at 0  355λ � 0  041λ � 0  314λ from the
load (or some multiple of a half wavelength further). At Y-LOAD-IN-2, b � � 0  52,
so a stub with an input admittance of ystub � 0 	 j0  52 is required. This point is
Y -STUB-IN-2 and is at 0  077λ on the WTG scale. The short circuit admittance
is denoted by point Y -SHT, located at 0  250λ. Therefore, the short stub must be
0  077λ � 0  250λ 	 0  500λ � 0  327λ long (or some multiple of a half wavelength
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Figure P2.46: (b) Second solution to Problem 2.46.

longer).

Problem 2.47 Repeat Problem 2.46 for a load with ZL � �
100 	 j50 � Ω.

Solution: Refer to Fig. P2.47(a) and Fig. P2.47(b), which represent two different
solutions.

zL � ZL

Z0
� 100 	 j50 Ω

50 Ω
� 2 	 j1

and is located at point Z-LOAD in both figures. Since it is advantageous to work in
admittance coordinates, yL is plotted as point Y -LOAD in both figures. Y -LOAD is at
0  463λ on the WTG scale.
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0.125 λ

Figure P2.47: (a) First solution to Problem 2.47.

For the first solution in Fig. P2.47(a), point Y -LOAD-IN-1 represents the point
at which g � 1 on the SWR circle of the load. Y -LOAD-IN-1 is at 0  162λ on the
WTG scale, so the stub should be located at 0  162λ � 0  463λ 	 0  500λ � 0  199λ
from the load (or some multiple of a half wavelength further). At Y -LOAD-IN-1,
b � 1, so a stub with an input admittance of ystub � 0 � j1 is required. This point
is Y-STUB-IN-1 and is at 0  375λ on the WTG scale. The short circuit admittance
is denoted by point Y -SHT, located at 0  250λ. Therefore, the short stub must be
0  375λ � 0  250λ � 0  125λ long (or some multiple of a half wavelength longer).

For the second solution in Fig. P2.47(b), point Y -LOAD-IN-2 represents the point
at which g � 1 on the SWR circle of the load. Y -LOAD-IN-2 is at 0  338λ on the
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0.375 λ

Figure P2.47: (b) Second solution to Problem 2.47.

WTG scale, so the stub should be located at 0  338λ � 0  463λ 	 0  500λ � 0  375λ
from the load (or some multiple of a half wavelength further). At Y -LOAD-IN-2,
b � � 1, so a stub with an input admittance of ystub � 0 	 j1 is required. This point
is Y-STUB-IN-2 and is at 0  125λ on the WTG scale. The short circuit admittance
is denoted by point Y -SHT, located at 0  250λ. Therefore, the short stub must be
0  125λ � 0  250λ 	 0  500λ � 0  375λ long (or some multiple of a half wavelength
longer).

Problem 2.48 Use the Smith chart to find Zin of the feed line shown in Fig. 2-44
(P2.48(a)). All lines are lossless with Z0 � 50 Ω.
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Z1 = (50 + j50) Ω

Z2 = (50 - j50) Ω

Zin

0.7λ

0.3λ

0.3λ

Z1

Z2

Figure P2.48: (a) Circuit of Problem 2.48.

Solution: Refer to Fig. P2.48(b).

z1 � Z1

Z0
� 50 	 j50 Ω

50 Ω
� 1 	 j1

and is at point Z-LOAD-1.

z2 � Z2

Z0
� 50 � j50 Ω

50 Ω
� 1 � j1

and is at point Z-LOAD-2. Since at the junction the lines are in parallel, it is
advantageous to solve the problem using admittances. y1 is point Y-LOAD-1, which
is at 0  412λ on the WTG scale. y2 is point Y-LOAD-2, which is at 0  088λ on the
WTG scale. Traveling 0  300λ from Y -LOAD-1 toward the generator one obtains the
input admittance for the upper feed line, point Y-IN-1, with a value of 1  97 	 j1  02.
Since traveling 0  700λ is equivalent to traveling 0  200λ on any transmission line,
the input admittance for the lower line feed is found at point Y-IN-2, which has a
value of 1  97 � j1  02. The admittance of the two lines together is the sum of their
admittances: 1  97 	 j1  02 	 1  97 � j1  02 � 3  94 	 j0 and is denoted Y -JUNCT .
0  300λ from Y -JUNCT toward the generator is the input admittance of the entire
feed line, point Y-IN, from which Z-IN is found.

Zin � zinZ0 � �
1  65 � j1  79 � � 50 Ω � �

82  5 � j89  5 � Ω 
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Y-JUNCT

Y-IN

Z-IN

Figure P2.48: (b) Solution of Problem 2.48.

Problem 2.49 Repeat Problem 2.48 for the case where all three transmission lines
are λ � 4 in length.

Solution: Since the transmission lines are in parallel, it is advantageous to express
loads in terms of admittances. In the upper branch, which is a quarter wave line,

Y1 in � Y 2
0

Y1
� Z1

Z2
0

�
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and similarly for the lower branch,

Y2 in � Y 2
0

Y2
� Z2

Z2
0


Thus, the total load at the junction is

YJCT � Y1 in 	 Y2 in � Z1 	 Z2

Z2
0


Therefore, since the common transmission line is also quarter-wave,

Zin � Z2
0 � ZJCT � Z2

0YJCT � Z1 	 Z2 � �
50 	 j50 � Ω 	 �

50 � j50 � Ω � 100 Ω 

Section 2-11: Transients on Transmission Lines

Problem 2.50 Generate a bounce diagram for the voltage V
�
z � t � for a 1-m long

lossless line characterized by Z0 � 50 Ω and up � 2c � 3 (where c is the velocity of
light) if the line is fed by a step voltage applied at t � 0 by a generator circuit with
Vg � 60 V and Rg � 100 Ω. The line is terminated in a load ZL � 25 Ω. Use the
bounce diagram to plot V

�
t � at a point midway along the length of the line from t � 0

to t � 25 ns.

Solution:

Γg � Rg � Z0

Rg 	 Z0
� 100 � 50

100 	 50
� 50

150
� 1

3
�

ΓL � ZL � Z0

ZL 	 Z0
� 25 � 50

25 	 50
� � 25

75
� � 1

3


From Eq. (2.124b),

V �
1 � VgZ0

Rg 	 Z0
� 60 � 50

100 	 50
� 20 V 

Also,

T � l
up

� l
2c � 3 � 3

2 � 3 � 108 � 5 ns 
The bounce diagram is shown in Fig. P2.50(a) and the plot of V

�
t � in Fig. P2.50(b).
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V1
+ = 20V

-6.67 V

-2.22 V

0.74 V

0.25 V

-0.08 V

20 ns

10 ns 

5 ns

15 ns

25 ns

z = 0 z = 1 m
z = 0.5 m

Γ = Γg = 1
3

Γ = ΓL = - 1
3

t t

Voltage

Figure P2.50: (a) Bounce diagram for Problem 2.50.

5 10 15 20

20 V
20 V

V(0.5 m, t)

13.34 V
11.12 V 11.86 V 12.10 V

25
t (ns)

Figure P2.50: (b) Time response of voltage.
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Problem 2.51 Repeat Problem 2.50 for the current I on the line.

Solution:

Γg � Rg � Z0

Rg 	 Z0
� 100 � 50

100 	 50
� 1

3
�

ΓL � ZL � Z0

ZL 	 Z0
� 25 � 50

25 	 50
� � 1

3


From Eq. (2.124a),

I �
1 � Vg

Rg 	 Z0
� 60

100 	 50
� 0  4 A 

The bounce diagram is shown in Fig. P2.51(a) and I
�
t � in Fig. P2.51(b).

I1
+ = 0.4 A

0.133 A

-0.044 A

-0.015 A

5 × 10-3 A

20 ns

10 ns

5 ns

15 ns

25 ns

z = 0 z = 1 m
z = 0.5 m

Γ = -ΓL = 1
3

Γ = -Γg = - 1
3

t t

Current

Figure P2.51: (a) Bounce diagram for Problem 2.51.
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5 10 15 20

0.4 A

0.533 A
0.489 A 0.474 A 0.479 A

I(0.5 m, t)

25
t (ns)

Figure P2.51: (b) Time response of current.

Problem 2.52 In response to a step voltage, the voltage waveform shown in Fig.
2-45 (P2.52) was observed at the sending end of a lossless transmission line with
Rg � 50 Ω, Z0 � 50 Ω, and εr � 2  25. Determine (a) the generator voltage, (b) the
length of the line, and (c) the load impedance.

6 µs0

V(0, t)

z

5 V

3 V

Figure P2.52: Observed voltage at sending end.

Solution:
(a) From the figure, V �

1 � 5 V. Applying Eq. (2.124b),

V �
1 � VgZ0

Rg 	 Z0
� VgZ0

Z0 	 Z0
� Vg

2
�

which gives Vg � 2V �
1 � 10 V.
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(b) up � c� εr
� 3 � 108� 2  25

� 2 � 108 m/s. The first change in the waveform occurs

at ∆t � 6 µs. But ∆t � 2l � up. Hence,

l � ∆tµp

2
� 6 � 10 � 6

2
� 2 � 108 � 600 m 

(c) Since Rg � Z0, Γg � 0. Hence V �
2 � 0 and the change in level from 5 V down

to 3 V is due to V �1 � � 2 V. But

V �1 � ΓLV �
1 � or ΓL � V �1

V �
1

� � 2
5

� � 0  4 
From

ZL � Z0

�
1 	 ΓL

1 � ΓL

 � 50

�
1 � 0  4
1 	 0  4 
 � 21  43 Ω 

Problem 2.53 In response to a step voltage, the voltage waveform shown in Fig.
2.46 (P2.53) was observed at the sending end of a shorted line with Z0 � 50 Ω and
εr � 4. Determine Vg, Rg, and the line length.

7 µs 14 µs0

V(0, t)

z

12 V

0.75 V
3 V

Figure P2.53: Observed voltage at sending end.

Solution:

up � c� εr
� 3 � 108� 4

� 1  5 � 108 m/s �
7 µs � 7 � 10 � 6 s � 2l

up
� 2l

1  5 � 108 
Hence, l � 525 m.
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From the voltage waveform, V �
1 � 12 V. At t � 7µs, the voltage at the sending end

is

V
�
z � 0 � t � 7µs ��� V �

1 	 ΓLV �
1 	 ΓgΓLV �

1 � � ΓgV
�

1 (because ΓL � � 1 � 
Hence, 3 V � � Γg � 12 V, or Γg � � 0  25. From Eq. (2.128),

Rg � Z0

�
1 	 Γg

1 � Γg

 � 50

�
1 � 0  25
1 	 0  25 
 � 30 Ω 

Also,

V �
1 � VgZ0

Rg 	 Z0
� or 12 � Vg � 50

30 	 50
�

which gives Vg � 19  2 V.

Problem 2.54 Suppose the voltage waveform shown in Fig. 2-45 was observed at
the sending end of a 50-Ω transmission line in response to a step voltage introduced
by a generator with Vg � 15 V and an unknown series resistance Rg. The line is 1 km
in length, its velocity of propagation is 1 � 108 m/s, and it is terminated in a load
ZL � 100 Ω.

(a) Determine Rg.
(b) Explain why the drop in level of V

�
0 � t � at t � 6 µs cannot be due to reflection

from the load.
(c) Determine the shunt resistance Rf and the location of the fault responsible for

the observed waveform.

Solution:

6 µs0

V(0, t)

z

5 V

3 V

Figure P2.54: Observed voltage at sending end.
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(a)

V �
1 � VgZ0

Rg 	 Z0


From Fig. 2-45, V �
1 � 5 V. Hence,

5 � 15 � 50
Rg 	 50

�
which gives Rg � 100 Ω and Γg � 1 � 3.

(b) Roundtrip time delay of pulse return from the load is

2T � 2l
up

� 2 � 103

1 � 108 � 20 µs �
which is much longer than 6 µs, the instance at which V

�
0 � t � drops in level.

(c) The new level of 3 V is equal to V �
1 plus V �1 plus V �

2 ,

V �
1 	 V �1 	 V �

2 � 5 	 5Γf 	 5ΓfΓg � 3 (V) �
which yields Γf � � 0  3. But

Γf � ZLf � Z0

ZLf 	 Z0
� � 0  3 �

which gives ZLf � 26  92 Ω. Since ZLf is equal to Rf and Z0 in parallel, Rf � 58  33 Ω.

Problem 2.55 A generator circuit with Vg � 200 V and Rg � 25 Ω was used to
excite a 75-Ω lossless line with a rectangular pulse of duration τ � 0  4 µs. The line
is 200 m long, its up � 2 � 108 m/s, and it is terminated in a load ZL � 125 Ω.

(a) Synthesize the voltage pulse exciting the line as the sum of two step functions,
Vg1

�
t � and Vg2

�
t � .

(b) For each voltage step function, generate a bounce diagram for the voltage on
the line.

(c) Use the bounce diagrams to plot the total voltage at the sending end of the line.

Solution:
(a) pulse length � 0  4 µs.

Vg
�
t ��� Vg1

�
t � 	 Vg2

�
t � �

with

Vg1

�
t ��� 200U

�
t � (V) �

Vg2

�
t ��� � 200U

�
t � 0  4 µs � (V) 
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t = 0

200 V



Z0

25 Ω

= 75 Ω 125 Ω

200 m

+

-

Figure P2.55: (a) Circuit for Problem 2.55.

V(t)

t

Vg
1
(t)

Vg
2
(t)

0.4 µs

200 V

-200 V

Figure P2.55: (b) Solution of part (a).

(b)

T � l
up

� 200
2 � 108 � 1 µs 

We will divide the problem into two parts, one for Vg1

�
t � and another for Vg2

�
t � and

then we will use superposition to determine the solution for the sum. The solution
for Vg2

�
t � will mimic the solution for Vg1

�
t � , except for a reversal in sign and a delay

by 0  4 µs.

For Vg1

�
t ��� 200U

�
t � :

Γg � Rg � Z0

Rg 	 Z0
� 25 � 75

25 	 75
� � 0  5 �

ΓL � ZL � Z0

ZL 	 Z0
� 125 � 75

125 	 75
� 0  25 �
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V �
1 � V1Z0

Rg 	 Z0
� 200 � 75

25 	 75
� 150 V �

V∞ � VgZL

Rg 	 ZL
� 200 � 125

25 	 125
� 166  67 V 

(i) V1
�
0 � t � at sending end due to Vg1

�
t � :

V1
+ = 150V

37.5V

-18.75V

-4.69V

2.34V

0.56V

4 µs

2 µs

1 µs

3 µs

5 µs

z = 0 z = 200 m

Γ = Γg = - 1
2

Γ = ΓL = 1
4

t t

t = 0

-0.28V
6 µs

Vg
1
(t)

Figure P2.55: (c) Bounce diagram for voltage in reaction to Vg1

�
t � .
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(ii) V2
�
0 � t � at sending end due to Vg2

�
t � :

V1
+ = -150V

-37.5V

 18.75V

 4.69V

-2.34V

-0.56V

4.4 µs

2.4 µs

1.4 µs

3.4 µs

5.4 µs

z = 0 z = 200 m

Γ = Γg = - 1
2

Γ = ΓL = 1
4

t t

t = 0.4 µs

 0.28V
6.4 µs

Vg
2
(t)

Figure P2.55: (d) Bounce diagram for voltage in reaction to Vg2

�
t � .



88 CHAPTER 2

(b)
(i) V1

�
0 � t � at sending end due to Vg1

�
t � :

t (µs)

V ( 0, t )

150V

168.75 166.41 167.58 166.67

2 64

1

Figure P2.55: (e) V1
�
0 � t � .

(ii) V2
�
0 � t � at sending end:

t (µs)

-150V

-168.75 -166.41 -167.58 -166.67

2.4 6.44.4

V ( 0, t )2

0.4

Figure P2.55: (f) V2
�
0 � t � .
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(iii) Net voltage V
�
0 � t ��� V1

�
0 � t � 	 V2

�
0 � t � :

t (µs)

V ( 0, t )

150V

18.75

-2.34


0.28

2 6

4

0.4 2.4

4.4

6.4

Figure P2.55: (g) Net voltage V
�
0 � t � .

Problem 2.56 For the circuit of Problem 2.55, generate a bounce diagram for the
current and plot its time history at the middle of the line.

Solution: Using the values for Γg and ΓL calculated in Problem 2.55, we reverse
their signs when using them to construct a bounce diagram for the current.

I �
1 � V �

1

Z0
� 150

75
� 2 A �

I �
2 � V �

2

Z0
� � 150

75
� � 2 A �

I �
∞ � V∞

ZL
� 1  33 A 
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2A

-0.5A

 -0.25A

 62.5mA

31.25mA

-7.79mA

4 µs

2 µs

1 µs

3 µs

5 µs

z = 0 z = 200 m

Γ = -Γg = 1
2

Γ = -ΓL = -

t t

t = 0

 -3.90mA6 µs

I1 
(t) 1

4

Figure P2.56: (a) Bounce diagram for I1
�
t � in reaction to Vg1

�
t � .
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-2A

0.5A

 0.25A

 -62.5mA

-31.25mA

7.79mA

4.4 µs

2.4 µs

1.4 µs

3.4 µs

5.4 µs

z = 0 z = 200 m

Γ = -Γg = 1
2

Γ = -ΓL = -

t t

 t = 0.4 µs

 3.90mA6.4 µs

I2 
(t) 1

4

Figure P2.56: (b) Bounce diagram for current I2
�
t � in reaction to Vg2

�
t � .
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(i) I1
�
l � 2 � t � due to Vg1

�
t � :

t (µs)

I ( 100, t )1

0.5 1.5 2.5 3.5

2A

1.5
1.25 1.3125 1.3333

Figure P2.56: (c) I1
�
l � 2 � t � .

(ii) I2
�
l � 2 � t � due to Vg2

�
t � :

t (µs)

I ( 100, t )2

0.9 1.9 2.9 3.9

-2A

-1.5
-1.25 -1.3125 -1.3333

Figure P2.56: (d) I2
�
l � 2 � t � .
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(iii) Net current I
�
l � 2 � t ��� I1

�
l � 2 � t � 	 I2

�
l � 2 � t � :

t (µs)

I ( 0, t )

2A


0.9

1.5

0.5

1.9 2.5 2.5

0.5 0.5

-0.5


-0.25

.0625

Figure P2.56: (e) Total I
�
l � 2 � t � .

Problem 2.57 For the parallel-plate transmission line of Problem 2.3, the line
parameters are given by:

R � � 1 (Ω/m) �
L � � 167 (nH/m) �
G � � 0 �
C � � 172 (pF/m) 

Find α, β, up, and Z0 at 1 GHz.



94 CHAPTER 2

Solution: At 1 GHz, ω � 2π f � 2π � 109 rad/s. Application of (2.22) gives:

γ � � �
R � 	 jωL � � � G � 	 jωC � �� � � 1 	 j2π � 109 � 167 � 10 � 9 � � 0 	 j2π � 109 � 172 � 10 � 12 ��� 1 � 2� � � 1 	 j1049 � � j1  1 ��� 1 � 2

� � � 1 	 �
1049 � 2 e j tan � 1 1049 � 1  1e j90 � � 1 � 2 � �

j � e j90 � �
��� 1049e j89 � 95 � � 1  1e j90 ��� 1 � 2
��� 1154e j179 � 95 � � 1 � 2
� 34e j89 � 97 � � 34cos 89  97 � 	 j34sin 89  97 � � 0  016 	 j34 

Hence,

α � 0  016 Np/m �
β � 34 rad/m 

up � ω
β
� 2π f

β
� 2π � 109

34
� 1  85 � 108 m/s 

Z0 � � R � 	 jωL �
G � 	 jωC �

� 1 � 2
� � 1049e j89 � 95 �

1  1e j90 � � 1 � 2
��� 954e � j0 � 05 � � 1 � 2
� 31e � j0 � 025 � �

�
31 � j0  01 � Ω 

Problem 2.58

L = 0.02 mH

R = 600

Z0 = 300 Ω

Ω
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A 300-Ω lossless air transmission line is connected to a complex load composed of
a resistor in series with an inductor, as shown in the figure. At 5 MHz, determine:
(a) Γ, (b) S, (c) location of voltage maximum nearest to the load, and (d) location of
current maximum nearest to the load.

Solution:
(a)

ZL � R 	 jωL� 600 	 j2π � 5 � 106 � 2 � 10 � 5 � �
600 	 j628 � Ω 

Γ � ZL � Z0

ZL 	 Z0� 600 	 j628 � 300
600 	 j628 	 300� 300 	 j628
900 	 j628

� 0  63e j29 � 6 � 
(b)

S � 1 	 �Γ �
1 � �Γ � �

1 	 0  63
1 � 0  63

� 1  67 
(c)

lmax � θrλ
4π

for θr � 0 
� �

29  6 � π
180 � 
 60

4π
� �

λ � 3 � 108

5 � 106 � 60 m 

� 2  46 m

(d) The locations of current maxima correspond to voltage minima and vice versa.
Hence, the location of current maximum nearest the load is the same as location of
voltage minimum nearest the load. Thus

lmin � lmax 	 λ
4
� �

lmax �
λ
4
� 15 m 


� 2  46 	 15 � 17  46 m 
Problem 2.59
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C = ?
Z0 = 50 Ω 

RL = 75 Ω

A 50-Ω lossless transmission line is connected to a load composed of a 75-Ω resistor
in series with a capacitor of unknown capacitance. If at 10 MHz the voltage standing
wave ratio on the line was measured to be 3, determine the capacitance C.

Solution:

�Γ � � S � 1
S 	 1

� 3 � 1
3 	 1

� 2
4
� 0  5

ZL � RL � jXC � where XC � 1
ωC


Γ � ZL � Z0

ZL 	 Z0

�Γ � 2 � � � ZL � Z0

ZL 	 Z0

 �

Z �L � Z0

Z �L 	 Z0

 �

�Γ � 2 � ZLZ �L 	 Z2
0 � Z0

�
ZL 	 Z �L �

ZLZ �L 	 Z2
0 	 Z0

�
ZL 	 Z �L �

Noting that:

ZLZ �L � �
RL � jXC � � RL 	 jXC ��� R2

L 	 X2
C �

Z0
�
ZL 	 Z �L ��� Z0

�
RL � jXC 	 RL 	 jXC ��� 2Z0RL �

�Γ � 2 � R2
L 	 X2

C 	 Z2
0 � 2Z0RL

R2
L 	 X2

C 	 Z2
0 	 2Z0RL


Upon substituting �ΓL � � 0  5, RL � 75 Ω, and Z0 � 50 Ω, and then solving for XC,
we have

XC � 66  1 Ω 
Hence

C � 1
ωXC

� 1
2π � 107 � 66  1 � 2  41 � 10 � 10 � 241 pF 

Problem 2.60 A 50-Ω lossless line is terminated in a load impedance
ZL � �

30 � j20 � Ω.
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 Z0 = 50 Ω ZL = (30 - j 20) Ω

(a) Calculate Γ and S.
(b) It has been proposed that by placing an appropriately selected resistor across the

line at a distance lmax from the load (as shown in the figure below), where lmax is the
distance from the load of a voltage maximum, then it is possible to render Z i � Z0,
thereby eliminating reflections back to the sending end. Show that the proposed
approach is valid and find the value of the shunt resistance.

Z0 = 50 Ω ZL  = (30 - j 20) Ω

A

R

Zi

lmax

Solution:
(a)

Γ � ZL � Z0

ZL 	 Z0
� 30 � j20 � 50

30 � j20 	 50
� � 20 � j20

80 � j20
� � � 20 	 j20 �

80 � j20
� 0  34e � j121 � 

S � 1 	 �Γ �
1 � �Γ � �

1 	 0  34
1 � 0  34

� 2 
(b) We start by finding lmax, the distance of the voltage maximum nearest to the

load. Using (2.56) with n � 1,

lmax � θrλ
4π 	 λ

2� � � 121 � π
180 � 
 λ

4π 	 λ
2
� 0  33λ 

Applying (2.63) at l � lmax � 0  33λ, for which βl � �
2π � λ � 0  33λ � 2  07 radians,
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the value of Zin before adding the shunt resistance is:

Zin � Z0

�
ZL 	 jZ0 tanβl
Z0 	 jZL tanβl 


� 50

� �
30 � j20 � 	 j50tan 2  07

50 	 j
�
30 � j20 � tan 2  07 
 � �

102 	 j0 � Ω 
Thus, at the location A (at a distance lmax from the load), the input impedance is
purely real. If we add a shunt resistor R in parallel such that the combination is equal
to Z0, then the new Zin at any point to the left of that location will be equal to Z0.

Hence, we need to select R such that

1
R 	 1

102
� 1

50

or R � 98 Ω.

Problem 2.61 For the lossless transmission line circuit shown in the figure,
determine the equivalent series lumped-element circuit at 400 MHz at the input to
the line. The line has a characteristic impedance of 50 Ω and the insulating layer has
εr � 2  25.

Z0 = 50 Ω 75 ΩZin

1.2 m

Solution: At 400 MHz,

λ � up

f
� c

f � εr
� 3 � 108

4 � 108 � 2  25
� 0  5 m 

βl � 2π
λ

l � 2π
0  5 � 1  2 � 4  8π 

Subtracting multiples of 2π, the remainder is:

βl � 0  8π rad 
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Using (2.63),

Zin � Z0

�
ZL 	 jZ0 tanβl
Z0 	 jZL tanβl 


� 50

�
75 	 j50tan 0  8π
50 	 j75tan 0  8π 
 � �

52  38 	 j20  75 � Ω 
Zin is equivalent to a series RL circuit with

Zin

R

L

R � 52  38 Ω
ωL � 2π f L � 20  75 Ω

or

L � 20  75
2π � 4 � 108 � 8  3 � 10 � 9 H �

which is a very small inductor.

Problem 2.62

Rg

+

-
ZL = (50 + j 100) Ω

Z0 = 100 ΩVg

~

The circuit shown in the figure consists of a 100-Ω lossless transmission line
terminated in a load with ZL � �

50 	 j100 � Ω. If the peak value of the load voltage
was measured to be �

�
VL � � 12 V, determine:

(a) the time-average power dissipated in the load,

(b) the time-average power incident on the line, and

(c) the time-average power reflected by the load.
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Solution:
(a)

Γ � ZL � Z0

ZL 	 Z0
� 50 	 j100 � 100

50 	 j100 	 100
� � 50 	 j100

150 	 j100
� 0  62e j82 � 9 � 

The time average power dissipated in the load is:

Pav � 1
2
�
�
IL � 2RL

� 1
2 �����

�
VL

ZL
�����

2

RL

� 1
2
�
�
VL � 2
� ZL � 2 RL � 1

2
� 122 � 50

502 	 1002 � 0  29 W 
(b)

Pav � Pi
av
�
1 � �Γ � 2 �

Hence,

Pi
av � Pav

1 � �Γ � 2 � 0  29
1 � 0  622 � 0  47 W 

(c)
Pr

av � � �Γ � 2Pi
av � � � 0  62 � 2 � 0  47 � � 0  18 W 

Problem 2.63

Zin ZL = (75 - j 50) ΩZ01 = 100 Ω Z02 = 50 Ω

ABC
BrBl

l2 = 5λ/8l1 = 3λ/8

Use the Smith chart to determine the input impedance Zin of the two-line
configuration shown in the figure.
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Smith Chart 1

Solution: Starting at point A, namely at the load, we normalize ZL with respect
to Z02:

zL � ZL

Z02
� 75 � j50

50
� 1  5 � j1  (point A on Smith chart 1)

From point A on the Smith chart, we move on the SWR circle a distance of 5λ � 8 to
point Br, which is just to the right of point B (see figure). At Br, the normalized input
impedance of line 2 is:

zin2 � 0  48 � j0  36 (point Br on Smith chart)

Next, we unnormalize zin2:

Zin2 � Z02zin2 � 50 � �
0  48 � j0  36 � � �

24 � j18 � Ω 
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To move along line 1, we need to normalize with respect to Z01. We shall call this zL1:

zL1 � Zin2

Z01
� 24 � j18

100
� 0  24 � j0  18 (point B � on Smith chart 2)

After drawing the SWR circle through point B � , we move 3λ � 8 towards the generator,
ending up at point C on Smith chart 2. The normalized input impedance of line 1 is:

zin � 0  66 � j1  25

which upon unnormalizing becomes:

Zin � �
66 � j125 � Ω 
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Problem 2.64

Z0 = 75 Ω ZL = 25 Ω

A

Z = ?

l =? 
B

A 25-Ω antenna is connected to a 75-Ω lossless transmission line. Reflections back
toward the generator can be eliminated by placing a shunt impedance Z at a distance l
from the load. Determine the values of Z and l.

Solution:
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The normalized load impedance is:

zL � 25
75

� 0  33 (point A on Smith chart)

The Smith chart shows A and the SWR circle. The goal is to have an equivalent
impedance of 75 Ω to the left of B. That equivalent impedance is the parallel
combination of Zin at B (to the right of the shunt impedance Z) and the shunt
element Z. Since we need for this to be purely real, it’s best to choose l such that
Zin is purely real, thereby choosing Z to be simply a resistor. Adding two resistors in
parallel generates a sum smaller in magnitude than either one of them. So we need
for Zin to be larger than Z0, not smaller. On the Smith chart, that point is B, at a
distance l � λ � 4 from the load. At that point:

zin � 3 �
which corresponds to

yin � 0  33 
Hence, we need y, the normalized admittance corresponding to the shunt
impedance Z, to have a value that satisfies:

yin 	 y � 1

y � 1 � yin � 1 � 0  33 � 0  66

z � 1
y
� 1

0  66
� 1  5

Z � 75 � 1  5 � 112  5 Ω 
In summary,

l � λ
4
�

Z � 112  5 Ω 
Problem 2.65 In response to a step voltage, the voltage waveform shown in the
figure below was observed at the midpoint of a lossless transmission line with
Z0 � 50 Ω and up � 2 � 108 m/s. Determine: (a) the length of the line, (b) ZL,
(c) Rg, and (d) Vg.
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-3 V

12 V

3 9

V (l/2 , t)

15 21 t (µs)

Solution:
(a) Since it takes 3 µs to reach the middle of the line, the line length must be

l � 2
�
3 � 10 � 6 � up ��� 2 � 3 � 10 � 6 � 2 � 108 � 1200 m 

(b) From the voltage waveform shown in the figure, the duration of the first
rectangle is 6 µs, representing the time it takes the incident voltage V �

1 to travel
from the midpoint of the line to the load and back. The fact that the voltage drops to
zero at t � 9 µs implies that the reflected wave is exactly equal to V �

1 in magnitude,
but opposite in polarity. That is,

V �1 � � V �
1 

This in turn implies that ΓL � � 1, which means that the load is a short circuit:

ZL � 0 
(c) After V �1 arrives at the generator end, it encounters a reflection coefficient Γg.

The voltage at 15 µs is composed of:

V � V �
1 	 V �1 	 V �

2� �
1 	 ΓL 	 ΓLΓg � V �

1

V

V �
1

� 1 � 1 � Γg

From the figure, V � V �
1 � � 3 � 12 � � 1 � 4. Hence,

Γg � 1
4
�
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which means that

Rg � �
1 	 Γg

1 � Γg

 Z0 � �

1 	 0  25
1 � 0  25 
 50 � 83  3 Ω 

(d)

V �
1 � 12 � VgZ0

Rg 	 Z0

Vg � 12
�
Rg 	 Z0 �

Z0
� 12

�
83  3 	 50 �

50
� 32 V 
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Chapter 3:  Vector Analysis 
 
 
Lesson #14 
Chapter — Section:  3-1 
Topics:  Basic laws of vector algebra 
 
Highlights: 

• Vector magnitude, direction, unit vector 
• Position and distance vectors 
• Vector addition and multiplication 

- Dot product 
- Vector product 
- Triple product 

 
Special Illustrations: 

• CD-ROM Module 3.2 
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Lessons #15 and 16 
Chapter — Section:  3-2 
Topics:  Coordinate systems  
 
Highlights: 

• Commonly used coordinate systems:  Cartesian, cylindrical, spherical 
• Choice is based on which one best suits problem geometry 
• Differential surface vectors and differential volumes 

 
Special Illustrations: 

• Examples 3-3 to 3-5 
• Technology Brief on “GPS” (CD-ROM) 
 
 

Global Positioning System  

The Global Positioning System (GPS), 
initially developed in the 1980s by the U.S. 
Department of Defense as a navigation tool for 
military use, has evolved into a system with 
numerous civilian applications including vehicle 
tracking, aircraft navigation, map displays in 
automobiles, and topographic mapping. The 
overall GPS is composed of 3 segments. The 
space segment consists of 24 satellites (A), each 
circling Earth every 12 hours at an orbital 
altitude of about 12,000 miles and transmitting 
continuous coded time signals. The user segment 
consists of hand-held or vehicle-mounted 
receivers that determine their own locations by 
receiving and processing multiple satellite 
signals.  The third segment is a network of five 
ground stations, distributed around the world, 
that monitor the satellites and provide them with 
updates on their precise orbital information.  
GPS provides a location inaccuracy of about 30 
m, both horizontally and vertically, but it 
can be improved to within 1 m by 
differential GPS (see illustration).  
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Lesson #17 
Chapter — Section:  3-3 
Topics:  Coordinate transformations 
 
Highlights: 

• Basic logic for decomposing a vector in one coordinate system into the coordinate 
variables of another system 

• Transformation relations (Table 3-2) 
 
Special Illustrations: 

• Example 3-8 
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Lesson #18 
Chapter — Section:  3-4 
Topics:  Gradient operator 
  
Highlights: 

• Derivation of ∇ T in Cartesian coordinates 
• Directional derivative 
• ∇ T  in cylindrical and spherical coordinates 

 
Special Illustrations: 

• Example 3-10(b) 
• CD-ROM Modules 3.5 or 3.6 
• CD-ROM Demos 3.1-3.9 (any 2) 
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Lesson #19 
Chapter — Section:  3-5 
Topics:  Divergence operator 
  
Highlights: 

• Concept of “flux” 
• Derivation of ∇ .E 
• Divergence theorem 

 
Special Illustrations: 

• CD-ROM Modules 3.7-3.11 (any 2) 
• CD-ROM Demos 3.10-3.15 (any 1 or 2) 
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Lesson #20 
Chapter — Section:  3-6 
Topics:  Curl operator 
  
Highlights: 

• Concept of “circulation” 
• Derivation of ∇ x B 
• Stokes’s theorem 

 
Special Illustrations: 

• Example 3-12 
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Lesson #21 
Chapter — Section:  3-7 
Topics:  Laplacian operator 
  
Highlights: 

• Definition of 2∇ V 
• Definition of 2∇ E 

 
Special Illustrations: 

• Technology Brief on “X-Ray Computed Tomography” 
 
 
X-Ray Computed Tomography  

Tomography is derived from the Greek words 
tome, meaning section or slice, and graphia, 
meaning writing.  Computed tomography, also 
known as CT scan or CAT scan (for computed 
axial tomography), refers to a technique 
capable of generating 3-D images of the x-ray 
attenuation (absorption) properties of an 
object.  This is in contrast with the traditional 
x-ray technique which produces only a 2-D 
profile of the object.  CT was invented in 1972 
by British electrical engineer Godfrey 
Hounsfield, and independently by Allan 
Cormack, a South African-born American 
physicist. The two inventors shared the 1979 
Nobel Prize for Physiology or Medicine. 
Among diagnostic imaging techniques, CT has 
the decided advantage in having the sensitivity 
to image body parts on a wide range of 
densities, from soft tissue to blood vessels and 
bones.  
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Chapter 3

Section 3-1: Vector Algebra

Problem 3.1 Vector A starts at point
�
1 � � 1 � � 3 � and ends at point

�
2 � � 1 � 0 � . Find

a unit vector in the direction of A.

Solution:

A � x̂
�
2 � 1 � 	 ŷ

� � 1 � � � 1 � � 	 ẑ
�
0 � � � 3 � ��� x̂ 	 ẑ3 �

�A � � � 1 	 9 � 3  16 �
â � A
�A � � x̂ 	 ẑ3

3  16
� x̂0  32 	 ẑ0  95 

Problem 3.2 Given vectors A � x̂2 � ŷ3 	 ẑ, B � x̂2 � ŷ 	 ẑ3, and C � x̂4 	 ŷ2 � ẑ2,
show that C is perpendicular to both A and B.

Solution:

A � C � �
x̂2 � ŷ3 	 ẑ � � � x̂4 	 ŷ2 � ẑ2 ��� 8 � 6 � 2 � 0 �

B � C � �
x̂2 � ŷ 	 ẑ3 � � � x̂4 	 ŷ2 � ẑ2 ��� 8 � 2 � 6 � 0 

Problem 3.3 In Cartesian coordinates, the three corners of a triangle are P1
�
0 � 4 � 4 � ,

P2
�
4 � � 4 � 4 � , and P3

�
2 � 2 � � 4 � . Find the area of the triangle.

Solution: Let B � � �

P1P2 � x̂4 � ŷ8 and C � � �

P1P3 � x̂2 � ŷ2 � ẑ8 represent two sides of
the triangle. Since the magnitude of the cross product is the area of the parallelogram
(see the definition of cross product in Section 3-1.4), half of this is the area of the
triangle:

A � 1
2 �B � C � � 1

2 �
�
x̂4 � ŷ8 ��� �

x̂2 � ŷ2 � ẑ8 � �� 1
2 � x̂

� � 8 � � � 8 � 	 ŷ
� � � 4 � � � 8 ��� 	 ẑ

�
4
� � 2 � � � � 8 � 2 � �� 1

2 � x̂64 	 ŷ32 	 ẑ8 � � 1
2
� 642 	 322 	 82 � 1

2
� 5184 � 36 �

where the cross product is evaluated with Eq. (3.27).

Problem 3.4 Given A � x̂2 � ŷ3 	 ẑ1 and B � x̂Bx 	 ŷ2 	 ẑBz:
(a) find Bx and Bz if A is parallel to B;
(b) find a relation between Bx and Bz if A is perpendicular to B.
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Solution:
(a) If A is parallel to B, then their directions are equal or opposite: âA � � âB, or

A � �A � � � B � �B � �
x̂2 � ŷ3 	 ẑ� 14

� � x̂Bx 	 ŷ2 	 ẑBz� 4 	 B2
x 	 B2

z


From the y-component,

� 3� 14
� � 2

� 4 	 B2
x 	 B2

z

which can only be solved for the minus sign (which means that A and B must point
in opposite directions for them to be parallel). Solving for B2

x 	 B2
z ,

B2
x 	 B2

z � � � 2

� 3
� 14 
 2 � 4 � 20

9


From the x-component,

2� 14
� � Bx� 56 � 9 � Bx � � 2 � 56

3 � 14
� � 4

3

and, from the z-component,

Bz � � 2
3


This is consistent with our result for B2

x 	 B2
z .

These results could also have been obtained by assuming θAB was 0 � or 180 � and
solving �A � �B � � � A � B, or by solving A � B � 0.

(b) If A is perpendicular to B, then their dot product is zero (see Section 3-1.4).
Using Eq. (3.17),

0 � A � B � 2Bx � 6 	 Bz �
or

Bz � 6 � 2Bx 
There are an infinite number of vectors which could be B and be perpendicular to A,
but their x- and z-components must satisfy this relation.

This result could have also been obtained by assuming θAB � 90 � and calculating
�A � �B � � �A � B � .

Problem 3.5 Given vectors A � x̂ 	 ŷ2 � ẑ3, B � x̂2 � ŷ4, and C � ŷ2 � ẑ4, find
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(a) A and â,
(b) the component of B along C,
(c) θAC,
(d) A � � � C,
(e) A �

�
B � � � C � ,

(f) A � � � �
B � � � C � ,

(g) x̂ � � � B, and
(h)

�
A � � � ŷ ��� ẑ.

Solution:
(a) From Eq. (3.4),

A � � 12 	 22 	 � � 3 � 2 � � 14 �
and, from Eq. (3.5),

âA � x̂ 	 ŷ2 � ẑ3� 14


(b) The component of B along C (see Section 3-1.4) is given by

BcosθBC � B � C
C

� � 8� 20
� � 1  8 

(c) From Eq. (3.21),

θAC � cos � 1 A � C
AC

� cos � 1 4 	 12� 14 � 20
� cos � 1 16� 280

� 17  0 � 
(d) From Eq. (3.27),

A � C � x̂
�
2
� � 4 � � � � 3 � 2 � 	 ŷ

� � � 3 � 0 � 1
� � 4 � � 	 ẑ

�
1
�
2 � � 2

�
0 � ��� � x̂2 	 ŷ4 	 ẑ2 

(e) From Eq. (3.27) and Eq. (3.17),

A � � B � C � � A � � x̂16 	 ŷ8 	 ẑ4 ��� 1
�
16 � 	 2

�
8 � 	 � � 3 � 4 � 20 

Eq. (3.30) could also have been used in the solution. Also, Eq. (3.29) could be used
in conjunction with the result of part (d).

(f) By repeated application of Eq. (3.27),

A � �
B � C � � A � �

x̂16 	 ŷ8 	 ẑ4 ��� x̂32 � ŷ52 � ẑ24 
Eq. (3.33) could also have been used.
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(g) From Eq. (3.27),

x̂ � B � � ẑ4 
(h) From Eq. (3.27) and Eq. (3.17),�

A � ŷ � � ẑ � �
x̂3 	 ẑ � � ẑ � 1 

Eq. (3.29) and Eq. (3.25) could also have been used in the solution.

Problem 3.6 Given vectors A � x̂2 � ŷ 	 ẑ3 and B � x̂3 � ẑ2, find a vector C whose
magnitude is 9 and whose direction is perpendicular to both A and B.

Solution: The cross product of two vectors produces a new vector which is
perpendicular to both of the original vectors. Two vectors exist which have a
magnitude of 9 and are orthogonal to both A and B: one which is 9 units long in
the direction of the unit vector parallel to A � B, and one in the opposite direction.

C � � 9
A � B
�A � B � � � 9

�
x̂2 � ŷ 	 ẑ3 ��� �

x̂3 � ẑ2 �
� � x̂2 � ŷ 	 ẑ3 ��� �

x̂3 � ẑ2 � �� � 9
x̂2 	 ŷ13 	 ẑ3� 22 	 132 	 32

� � � x̂1  34 	 ŷ8  67 	 ẑ2  0 � 
Problem 3.7 Given A � x̂

�
x 	 2y � � ŷ

�
y 	 3z � 	 ẑ

�
3x � y � , determine a unit vector

parallel to A at point P
�
1 � � 1 � 2 � .

Solution: The unit vector parallel to A � x̂
�
x 	 2y � � ŷ

�
y 	 3z � 	 ẑ

�
3x � y � at the

point P
�
1 � � 1 � 2 � is

A
�
1 � � 1 � 2 �

�A �
1 � � 1 � 2 � � � � x̂ � ŷ5 	 ẑ4

� � � 1 � 2 	 � � 5 � 2 	 42
� � x̂ � ŷ5 	 ẑ4� 42

� � x̂0  15 � ŷ0  77 	 ẑ0  62 
Problem 3.8 By expansion in Cartesian coordinates, prove:

(a) the relation for the scalar triple product given by (3.29), and
(b) the relation for the vector triple product given by (3.33).

Solution:
(a) Proof of the scalar triple product given by Eq. (3.29): From Eq. (3.27),

A � B � x̂
�
AyBz � AzBy � 	 ŷ

�
AzBx � AxBz � 	 ẑ

�
AxBy � AyBx � �
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B � C � x̂
�
ByCz � BzCy � 	 ŷ

�
BzCx � BxCz � 	 ẑ

�
BxCy � ByCx � �

C � A � x̂
�
CyAz � CzAy � 	 ŷ

�
CzAx � CxAz � 	 ẑ

�
CxAy � CyAx � 

Employing Eq. (3.17), it is easily shown that

A � � B � C � � Ax
�
ByCz � BzCy � 	 Ay

�
BzCx � BxCz � 	 Az

�
BxCy � ByCx � �

B � � C � A � � Bx
�
CyAz � CzAy � 	 By

�
CzAx � CxAz � 	 Bz

�
CxAy � CyAx � �

C � � A � B � � Cx
�
AyBz � AzBy � 	 Cy

�
AzBx � AxBz � 	 Cz

�
AxBy � AyBx � �

which are all the same.
(b) Proof of the vector triple product given by Eq. (3.33): The evaluation of the left

hand side employs the expression above for B � C with Eq. (3.27):

A � �
B � C � � A � �

x̂
�
ByCz � BzCy � 	 ŷ

�
BzCx � BxCz � 	 ẑ

�
BxCy � ByCx � �� x̂

�
Ay
�
BxCy � ByCx � � Az

�
BzCx � BxCz � �

	 ŷ
�
Az
�
ByCz � BzCy � � Ax

�
BxCy � ByCx ���

	 ẑ
�
Ax
�
BzCx � BxCz � � Ay

�
ByCz � BzCy � � �

while the right hand side, evaluated with the aid of Eq. (3.17), is

B
�
A � C � � C

�
A � B � � B

�
AxCx 	 AyCy 	 AzCz � � C

�
AxBx 	 AyBy 	 AzBz �� x̂

�
Bx
�
AyCy 	 AzCz � � Cx

�
AyBy 	 AzBz � �

	 ŷ
�
By
�
AxCx 	 AzCz � � Cy

�
AxBx 	 AzBz � �

	 ẑ
�
Bz
�
AxCx 	 AyCy � � Cz

�
AxBx 	 AyBy � � 

By rearranging the expressions for the components, the left hand side is equal to the
right hand side.

Problem 3.9 Find an expression for the unit vector directed toward the origin from
an arbitrary point on the line described by x � 1 and z � 2.

Solution: An arbitrary point on the given line is
�
1 � y � 2 � . The vector from this point

to
�
0 � 0 � 0 � is:

A � x̂
�
0 � 1 � 	 ŷ

�
0 � y � 	 ẑ

�
0 � 2 ��� � x̂ � ŷy � 2ẑ �

�A � � � 1 	 y2 	 4 � � 5 	 y2 �
â � A
�A � � � x̂ � ŷy � ẑ2

� 5 	 y2
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Problem 3.10 Find an expression for the unit vector directed toward the point P
located on the z-axis at a height h above the x–y plane from an arbitrary point
Q
�
x � y � � 3 � in the plane z � � 3.

Solution: Point P is at
�
0 � 0 � h � . Vector A from Q

�
x � y � � 3 � to P

�
0 � 0 � h � is:

A � x̂
�
0 � x � 	 ŷ

�
0 � y � 	 ẑ

�
h 	 3 ��� � x̂x � ŷy 	 ẑ

�
h 	 3 � �

�A � � � x2 	 y2 	 �
h 	 3 � 2 � 1 � 2 �

â � A
�A � � � x̂x � ŷy 	 ẑ

�
h 	 3 �

� x2 	 y2 	 �
h 	 3 � 2 � 1 � 2 

Problem 3.11 Find a unit vector parallel to either direction of the line described by

2x 	 z � 4 
Solution: First, we find any two points on the given line. Since the line equation
is not a function of y, the given line is in a plane parallel to the x–z plane. For
convenience, we choose the x–z plane with y � 0.

For x � 0, z � 4. Hence, point P is at
�
0 � 0 � 4 � .

For z � 0, x � 2. Hence, point Q is at
�
2 � 0 � 0 � .

Vector A from P to Q is:

A � x̂
�
2 � 0 � 	 ŷ

�
0 � 0 � 	 ẑ

�
0 � 4 ��� x̂2 � ẑ4 �

â � A
�A � � x̂2 � ẑ4� 20


Problem 3.12 Two lines in the x–y plane are described by the expressions:

Line 1 x 	 2y � � 6 �
Line 2 3x 	 4y � 8 

Use vector algebra to find the smaller angle between the lines at their intersection
point.

Solution: Intersection point is found by solving the two equations simultaneously:

� 2x � 4y � 12 �
3x 	 4y � 8 
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10 20 302515 35-10-15-20-25-30-35

-10

-15

-20

-25

-30

10

15

20
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30

(0, 2)

(0, -3)

(20, -13)

B
A

θAB

Figure P3.12: Lines 1 and 2.

The sum gives x � 20, which, when used in the first equation, gives y � � 13.
Hence, intersection point is

�
20 � � 13 � .

Another point on line 1 is x � 0, y � � 3. Vector A from
�
0 � � 3 � to

�
20 � � 13 � is

A � x̂
�
20 � 	 ŷ

� � 13 	 3 ��� x̂20 � ŷ10 �
�A � � � 202 	 102 � � 500 

A point on line 2 is x � 0, y � 2. Vector B from
�
0 � 2 � to

�
20 � � 13 � is

B � x̂
�
20 � 	 ŷ

� � 13 � 2 ��� x̂20 � ŷ15 �
�B � � � 202 	 152 � � 625 

Angle between A and B is

θAB � cos � 1

�
A � B
�A � �B � 
 � cos � 1

�
400 	 150� 500 � � 625


 � 10  3 � 
Problem 3.13 A given line is described by

x 	 2y � 4 
Vector A starts at the origin and ends at point P on the line such that A is orthogonal
to the line. Find an expression for A.
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Solution: We first plot the given line. Next we find vector B which connects point
P1
�
0 � 2 � to P2

�
4 � 0 � , both of which are on the line:

B � x̂
�
4 � 0 � 	 ŷ

�
0 � 2 ��� x̂4 � ŷ2 

Vector A starts at the origin and ends on the line at P. If the x-coordinate of P is x,

x

y

A B

P (0,2)1

P (4,0)2

(0,0)

Figure P3.13: Given line and vector A.

then its y-coordinate has to be
�
4 � x � � 2 in order to be on the line. Hence P is at�

x � � 4 � x � � 2 � . Vector A is

A � x̂x 	 ŷ

�
4 � x

2 
 
But A is perpendicular to the line. Hence,

A � B � 0 ��
x̂x 	 ŷ

�
4 � x

2 
 � � � x̂4 � ŷ2 ��� 0 �
4x � �

4 � x ��� 0 � or

x � 4
5
� 0  8 

Hence,

A � x̂0  8 	 ŷ

�
4 � 0  8

2 
 � x̂0  8 	 ŷ1  6 
Problem 3.14 Show that, given two vectors A and B,



122 CHAPTER 3

(a) the vector C defined as the vector component of B in the direction of A is given
by

C � â
�
B � â ��� A

�
B � A �
�A � 2 �

where â is the unit vector of A, and

(b) the vector D defined as the vector component of B perpendicular to A is given
by

D � B � A
�
B � A �
�A � 2 

Solution:
(a) By definition, B � â is the component of B along â. The vector component of�

B � â � along A is

C � â
�
B � â ��� A

�A �
�

B �

A
�A � 
 � A

�
B � A �
�A � 2 

(b) The figure shows vectors A, B, and C, where C is the projection of B along A.
It is clear from the triangle that

B � C 	 D �
or

D � B � C � B � A
�
B � A �
�A � 2 

A

C

D

B

Figure P3.14: Relationships between vectors A, B, C, and D.
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Problem 3.15 A certain plane is described by

2x 	 3y 	 4z � 16 
Find the unit vector normal to the surface in the direction away from the origin.

Solution: Procedure:

1. Use the equation for the given plane to find three points, P1, P2 and P3 on the
plane.

2. Find vector A from P1 to P2 and vector B from P1 to P3.

3. Cross product of A and B gives a vector C orthogonal to A and B, and hence
to the plane.

4. Check direction of ĉ.

Steps:

1. Choose the following three points:

P1 at
�
0 � 0 � 4 � �

P2 at
�
8 � 0 � 0 � �

P3 at
�
0 � 16

3 � 0 � 
2. Vector A from P1 to P2

A � x̂
�
8 � 0 � 	 ŷ

�
0 � 0 � 	 ẑ

�
0 � 4 ��� x̂8 � ẑ4

Vector B from P1 to P3

B � x̂
�
0 � 0 � 	 ŷ

�
16
3 � 0 
 	 ẑ

�
0 � 4 ��� ŷ

16
3 � ẑ4

3.

C � A � � � B� x̂
�
AyBz � AzBy � 	 ŷ

�
AzBx � AxBz � 	 ẑ

�
AxBy � AyBx �� x̂

�
0 � � � 4 � � � � 4 � � 16

3 
 	 ŷ
� � � 4 � � 0 � 8 � � � 4 � � 	 ẑ

�
8 � 16

3 � 0 � 0 

� x̂

64
3 	 ŷ32 	 ẑ

128
3
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Verify that C is orthogonal to A and B

A � C � �
8 � 64

3 
 	 �
32 � 0 � 	

�
128

3
� � � 4 � 
 � 512

3 � 512
3

� 0

B � C � �
0 � 64

3 
 	
�

32 � 16
3 
 	

�
128
3
� � � 4 � 
 � 512

3 � 512
3

� 0

4. C � x̂ 64
3 	 ŷ32 	 ẑ 128

3

ĉ � C
�C � � x̂ 64

3 	 ŷ32 	 ẑ 128
3

� � 64
3 � 2 	 322 	 � 128

3 � 2
� x̂0  37 	 ŷ0  56 	 ẑ0  74 

ĉ points away from the origin as desired.

Problem 3.16 Given B � x̂
�
z � 3y � 	 ŷ

�
2x � 3z � � ẑ

�
x 	 y � , find a unit vector parallel

to B at point P
�
1 � 0 � � 1 � .

Solution: At P
�
1 � 0 � � 1 � ,

B � x̂
� � 1 � 	 ŷ

�
2 	 3 � � ẑ

�
1 ��� � x̂ 	 ŷ5 � ẑ �

b̂ � B
�B � � � x̂ 	 ŷ5 � ẑ� 1 	 25 	 1

� � x̂ 	 ŷ5 � ẑ� 27


Problem 3.17 When sketching or demonstrating the spatial variation of a vector
field, we often use arrows, as in Fig. 3-25 (P3.17), wherein the length of the arrow
is made to be proportional to the strength of the field and the direction of the arrow
is the same as that of the field’s. The sketch shown in Fig. P3.17, which represents
the vector field E � r̂r, consists of arrows pointing radially away from the origin and
their lengths increase linearly in proportion to their distance away from the origin.
Using this arrow representation, sketch each of the following vector fields:

(a) E1 � � x̂y,

(b) E2 � ŷx,

(c) E3 � x̂x 	 ŷy,

(d) E4 � x̂x 	 ŷ2y,

(e) E5 � φ̂φφr,

(f) E6 � r̂sinφ.
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x

y

EE

EE

Figure P3.17: Arrow representation for vector field E � r̂r (Problem 3.17).

Solution:
(a)

x

y

x̂E1P2.13a: = - y

E E

EE
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(b)

x

y

E

E

E

E

P3.17b: E2 � ŷx
(c)

x

y

E

EE

E

E

x̂E3P2.13c: = x + ŷy
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(d)

x

y

x̂E4P2.13d: = x + ŷ2y

E

E

E

E

(e)

x

y

φ̂E5P2.13e: = r

E

E
E

E
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(f)

x

y

r̂E6P2.13f: = sinφ

E

E

E E

Problem 3.18 Use arrows to sketch each of the following vector fields:

(a) E1 � x̂x � ŷy,

(b) E2 � � φ̂φφ,

(c) E3 � ŷ 1
x ,

(d) E4 � r̂cosφ.

Solution:
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(a)

x

y

x̂E1P2.14a: = x - ŷy

E
E

E
E

(b)

x

y

φ̂E2P2.14b: = - 

E

E
E

E
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(c)

x

y

Indicates |E| is infinite

E3P2.14c: = ŷ (1/x)

E

E

(d)

x

y

r̂E4P2.14d: = cosφ

E

E

E

EE

E

E

E

E
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Sections 3-2 and 3-3: Coordinate Systems

Problem 3.19 Convert the coordinates of the following points from Cartesian to
cylindrical and spherical coordinates:

(a) P1
�
1 � 2 � 0 � ,

(b) P2
�
0 � 0 � 2 � ,

(c) P3
�
1 � 1 � 3 � ,

(d) P4
� � 2 � 2 � � 2 � .

Solution: Use the “coordinate variables” column in Table 3-2.
(a) In the cylindrical coordinate system,

P1 � � � 12 	 22 � tan � 1 � 2 � 1 � � 0 ��� � � 5 � 1  107 rad � 0 ��� �
2  24 � 63  4 � � 0 � 

In the spherical coordinate system,

P1 � � � 12 	 22 	 02 � tan � 1 � � 12 	 22 � 0 � � tan � 1 � 2 � 1 � �� � � 5 � π � 2 rad � 1  107 rad � � �
2  24 � 90  0 � � 63  4 � � 

Note that in both the cylindrical and spherical coordinates, φ is in Quadrant I.
(b) In the cylindrical coordinate system,

P2 � � � 02 	 02 � tan � 1 � 0 � 0 � � 2 � � �
0 � 0 rad � 2 ��� �

0 � 0 � � 2 � 
In the spherical coordinate system,

P2 � � � 02 	 02 	 22 � tan � 1 � � 02 	 02 � 2 � � tan � 1 � 0 � 0 � �� �
2 � 0 rad � 0 rad ��� �

2 � 0 � � 0 � � 
Note that in both the cylindrical and spherical coordinates, φ is arbitrary and may
take any value.

(c) In the cylindrical coordinate system,

P3 � � � 12 	 12 � tan � 1 � 1 � 1 � � 3 ��� � � 2 � π � 4 rad � 3 � � �
1  41 � 45  0 � � 3 � 

In the spherical coordinate system,

P3 � � � 12 	 12 	 32 � tan � 1 � � 12 	 12 � 3 � � tan � 1 � 1 � 1 � �� � � 11 � 0  44 rad � π � 4 rad � � �
3  32 � 25  2 � � 45  0 � � 

Note that in both the cylindrical and spherical coordinates, φ is in Quadrant I.
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(d) In the cylindrical coordinate system,

P4 � � � � � 2 � 2 	 22 � tan � 1 � 2 � � 2 � � � 2 �� �
2 � 2 � 3π � 4 rad � � 2 ��� �

2  83 � 135  0 � � � 2 � 
In the spherical coordinate system,

P4 � � � � � 2 � 2 	 22 	 � � 2 � 2 � tan � 1 � � � � 2 � 2 	 22 � � 2 � � tan � 1 � 2 � � 2 � �� �
2 � 3 � 2  187 rad � 3π � 4 rad � � �

3  46 � 125  3 � � 135  0 � � 
Note that in both the cylindrical and spherical coordinates, φ is in Quadrant II.

Problem 3.20 Convert the coordinates of the following points from cylindrical to
Cartesian coordinates:

(a) P1
�
2 � π � 4 � � 2 � ,

(b) P2
�
3 � 0 � � 2 � ,

(c) P3
�
4 � π � 3 � .

Solution:
(a)

P1
�
x � y � z � � P1

�
r cos φ � r sin φ � z ��� P1 � 2cos

π
4
� 2sin

π
4
� � 2 � � P1

�
1  41 � 1  41 � � 2 � 

(b) P2
�
x � y � z ��� P2

�
3cos 0 � 3sin 0 � � 2 ��� P2

�
3 � 0 � � 2 � .

(c) P3
�
x � y � z ��� P3

�
4cos π � 4sin π � 3 ��� P3

� � 4 � 0 � 3 � .
Problem 3.21 Convert the coordinates of the following points from spherical to
cylindrical coordinates:

(a) P1
�
5 � 0 � 0 � ,

(b) P2
�
5 � 0 � π � ,

(c) P3
�
3 � π � 2 � 0 � .

Solution:
(a)

P1
�
r� φ � z ��� P1

�
Rsinθ � φ � Rcos θ ��� P1

�
5sin 0 � 0 � 5cos 0 �� P1
�
0 � 0 � 5 � 

(b) P2
�
r� φ � z ��� P2

�
5sin 0 � π � 5cos 0 ��� P2

�
0 � π � 5 � .
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(c) P3
�
r� φ � z ��� P3

�
3sin π

2 � 0 � 3cos π
2 ��� P3

�
3 � 0 � 0 � .

Problem 3.22 Use the appropriate expression for the differential surface area ds to
determine the area of each of the following surfaces:

(a) r � 3; 0
� φ � π � 3; � 2

�
z

�
2,

(b) 2
�

r
�

5; π � 2 � φ � π; z � 0,
(c) 2

�
r

�
5; φ � π � 4; � 2

�
z

�
2,

(d) R � 2; 0
� θ � π � 3; 0

� φ � π,
(e) 0

�
R

�
5; θ � π � 3; 0

� φ �
2π.

Also sketch the outlines of each of the surfaces.

Solution:

3 2

∆Φ = π/3

25

y

x

2
5

(a) (b)

(d) (e)

(c)

Figure P3.22: Surfaces described by Problem 3.22.

(a) Using Eq. (3.43a),

A � � 2

z � � 2

� π � 3
φ � 0

�
r � � r � 3 dφ dz � � � 3φz � � π � 3φ � 0 � ���

2

z � � 2
� 4π 
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(b) Using Eq. (3.43c),

A � � 5

r � 2

� π

φ � π � 2 � r � � z � 0 dφ dr � � � 1
2 r2φ � ��

5
r � 2 � ���

π

φ � π � 2 � 21π
4


(c) Using Eq. (3.43b),

A � � 2

z � � 2

� 5

r � 2

�
1 � � φ � π � 4 dr dz � � � rz � � 2z � � 2 � ���

5

r � 2
� 12 

(d) Using Eq. (3.50b),

A � � π � 3
θ � 0

� π

φ � 0
� R2 sinθ � ��

R � 2 dφ dθ � � � � 4φcos θ � � π � 3θ � 0 � ���
π

φ � 0
� 2π 

(e) Using Eq. (3.50c),

A � � 5

R � 0

� 2π

φ � 0

�
Rsinθ � � θ � π � 3 dφ dR � � � 1

2R2φsin
π
3
� ���

2π

φ � 0

 ����

5

R � 0
� 25 � 3π

2


Problem 3.23 Find the volumes described by
(a) 2

�
r

�
5; π � 2 � φ � π; 0

�
z

�
2,

(b) 0
�

R
�

5; 0
� θ � π � 3; 0

� φ �
2π.

Also sketch the outline of each volume.

Solution:

(a) (b)

z

y

x

z

y

x

2 5

5
2

Figure P3.23: Volumes described by Problem 3.23 .

(a) From Eq. (3.44),

V � � 2

z � 0

� π

φ � π � 2
� 5

r � 2
r dr dφ dz � � � � 1

2r2φz � ��
5
r � 2 � ���

π

φ � π � 2 
 ����

2

z � 0
� 21π

2
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(b) From Eq. (3.50e),

V � � 2π

φ � 0

� π � 3
θ � 0

� 5

R � 0
R2 sin θ dR dθ dφ

�
�� � �

� cosθ
R3

3
φ 
 ����

5

R � 0
� �����

π � 3
θ � 0

��
������

2π

φ � 0

� 125π
3



Problem 3.24 A section of a sphere is described by 0
�

R
�

2, 0
� θ �

90 � � and
30 � � φ �

90 � . Find:

(a) the surface area of the spherical section,

(b) the enclosed volume.
Also sketch the outline of the section.

Solution:

y

z

x

φ=30o

Figure P3.24: Outline of section.
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S � � π � 2
φ � π � 6

� π � 2
θ � 0

R2 sinθ dθ dφ � R � 2

� 4 � π
2 � π

6
� � � cosθ � π � 20

� � 4 � π
3
� 4π

3
(m2) �

V � � 2

R � 0

� π � 2
φ � π � 6

� π � 2
θ � 0

R2 sin θ dR dθ dφ

� R3

3 ����

2

0
� π

2 � π
6
� � � cosθ � π � 20 � � 8

3
π
3
� 8π

9
(m3) 

Problem 3.25 A vector field is given in cylindrical coordinates by

E � r̂r cos φ 	 φ̂φφr sinφ 	 ẑz2 
Point P

�
2 � π � 3 � is located on the surface of the cylinder described by r � 2. At point P,

find:

(a) the vector component of E perpendicular to the cylinder,

(b) the vector component of E tangential to the cylinder.

Solution:
(a) En � r̂

�
r̂ � E ��� r̂ � r̂ � � r̂r cosφ 	 φ̂φφr sin φ 	 ẑz2 ��� � r̂r cos φ.

At P
�
2 � π � 3 � , En � r̂2cos π � � r̂2.

(b) Et � E � En � φ̂φφr sinφ 	 ẑz2.
At P

�
2 � π � 3 � , Et � φ̂φφ2sin π 	 ẑ32 � ẑ9.

Problem 3.26 At a given point in space, vectors A and B are given in spherical
coordinates by

A � R̂4 	 θ̂θθ2 � φ̂φφ �
B � � R̂2 	 φ̂φφ3 

Find:

(a) the scalar component, or projection, of B in the direction of A,

(b) the vector component of B in the direction of A,

(c) the vector component of B perpendicular to A.

Solution:
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(a) Scalar component of B in direction of A:

C � B � â � B � A
�A � � � � R̂2 	 φ̂φφ3 � � � R̂4 	 θ̂θθ2 � φ̂φφ �� 16 	 4 	 1� � 8 � 3� 21

� � 11� 21
� � 2  4 

(b) Vector component of B in direction of A:

C � âC � A
C
�A � � �

R̂4 	 θ̂θθ2 � φ̂φφ � � � 2  4 �� 21� � � R̂2  09 	 θ̂θθ1  05 � φ̂φφ0  52 � 
(c) Vector component of B perpendicular to A:

D � B � C � � � R̂2 	 φ̂φφ3 � 	 �
R̂2  09 	 θ̂θθ1  05 � φ̂φφ0  52 �� R̂0  09 	 θ̂θθ1  05 	 φ̂φφ2  48 

Problem 3.27 Given vectors

A � r̂
�
cos φ 	 3z � � φ̂φφ

�
2r 	 4sin φ � 	 ẑ

�
r � 2z � �

B � � r̂sinφ 	 ẑcosφ �
find

(a) θAB at
�
2 � π � 2 � 0 � ,

(b) a unit vector perpendicular to both A and B at
�
2 � π � 3 � 1 � .

Solution: It doesn’t matter whether the vectors are evaluated before vector products
are calculated, or if the vector products are directly calculated and the general results
are evaluated at the specific point in question.

(a) At
�
2 � π � 2 � 0 � , A � � φ̂φφ8 	 ẑ2 and B � � r̂. From Eq. (3.21),

θAB � cos � 1

�
A � B
AB 
 � cos � 1

�
0

AB 
 � 90 � 
(b) At

�
2 � π � 3 � 1 � , A � r̂7

2 � φ̂φφ4
�
1 	 1

2 � 3 � and B � � r̂1
2 � 3 	 ẑ1

2 . Since A � B is
perpendicular to both A and B, a unit vector perpendicular to both A and B is given
by

� A � B
�A � B � � � r̂

� � 4
�
1 	 1

2 � 3 � � � 1
2 � � φ̂φφ

� 7
2 � � 1

2 � � ẑ
�
4
�
1 	 1

2 � 3 � � � 1
2 � 3 �

� �
2
�
1 	 1

2 � 3 � � 2 	 � 7
4 � 2 	 �

3 	 2 � 3 � 2
���

�
r̂0  487 	 φ̂φφ0  228 	 ẑ 0  843 � 
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Problem 3.28 Find the distance between the following pairs of points:

(a) P1
�
1 � 2 � 3 � and P2

� � 2 � � 3 � � 2 � in Cartesian coordinates,

(b) P3
�
1 � π � 4 � 3 � and P4

�
3 � π � 4 � 4 � in cylindrical coordinates,

(c) P5
�
4 � π � 2 � 0 � and P6

�
3 � π � 0 � in spherical coordinates.

Solution:
(a)

d � � � � 2 � 1 � 2 	 � � 3 � 2 � 2 	 � � 2 � 3 � 2 � 1 � 2 � � 9 	 25 	 25 � 1 � 2 � � 59 � 7  68 
(b)

d � � r2
2 	 r2

1 � 2r1r2 cos
�
φ2 � φ1 � 	 �

z2 � z1 � 2 � 1 � 2
� � 9 	 1 � 2 � 3 � 1 � cos � π

4 � π
4
� 	 �

4 � 3 � 2 � 1 � 2
� �

10 � 6 	 1 � 1 � 2 � 51 � 2 � 2  24 
(c)

d � � R2
2 	 R2

1 � 2R1R2 � cosθ2 cosθ1 	 sinθ1 sinθ2 cos
�
φ2 � φ1 ��� 
 1 � 2

� �
9 	 16 � 2 � 3 � 4 � cos πcos

π
2 	 sin

π
2

sinπcos
�
0 � 0 � ��� 1 � 2

� � 9 	 16 � 0 
 1 � 2 � � 25 � 5 
Problem 3.29 Determine the distance between the following pairs of points:

(a) P1
�
1 � 1 � 2 � and P2

�
0 � 2 � 3 � ,

(b) P3
�
2 � π � 3 � 1 � and P4

�
4 � π � 2 � 3 � ,

(c) P5
�
3 � π � π � 2 � and P6

�
4 � π � 2 � π � .

Solution:
(a) From Eq. (3.66),

d � � �
0 � 1 � 2 	 �

2 � 1 � 2 	 �
3 � 2 � 2 � � 3 

(b) From Eq. (3.67),

d � �
22 	 42 � 2

�
2 � � 4 � cos � π

2 � π
3
� 	 �

3 � 1 � 2 � � 24 � 8 � 3 � 3  18 
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(c) From Eq. (3.68),

d � �
32 	 42 � 2

�
3 � � 4 ��� cos

π
2

cos π 	 sinπsin
π
2

cos � π � π
2
� � � 5 

Problem 3.30 Transform the following vectors into cylindrical coordinates and
then evaluate them at the indicated points:

(a) A � x̂
�
x 	 y � at P1

�
1 � 2 � 3 � ,

(b) B � x̂
�
y � x � 	 ŷ

�
x � y � at P2

�
1 � 0 � 2 � ,

(c) C � x̂y2 � � x2 	 y2 � � ŷx2 � � x2 	 y2 � 	 ẑ4 at P3
�
1 � � 1 � 2 � ,

(d) D � R̂sinθ 	 θ̂θθcosθ 	 φ̂φφcos2 φ at P4
�
2 � π � 2 � π � 4 � ,

(e) E � R̂cosφ 	 θ̂θθsinφ 	 φ̂φφsin2 θ at P5
�
3 � π � 2 � π � .

Solution: From Table 3-2:
(a)

A � �
r̂cosφ � φ̂φφsinφ � � r cos φ 	 r sinφ �� r̂r cos φ

�
cos φ 	 sinφ � � φ̂φφr sin φ

�
cos φ 	 sinφ � �

P1 � � � 12 	 22 � tan � 1 � 2 � 1 � � 3 ��� � � 5 � 63  4 � � 3 � �
A
�
P1 ��� �

r̂0  447 � φ̂φφ0  894 � � 5
�  447 	  894 � � r̂1  34 � φ̂φφ2  68 

(b)

B � �
r̂cosφ � φ̂φφsinφ � � r sin φ � r cosφ � 	 �

φ̂φφcosφ 	 r̂sinφ � � r cos φ � r sinφ �� r̂r
�
2sin φcos φ � 1 � 	 φ̂φφr

�
cos2 φ � sin2 φ ��� r̂r

�
sin 2φ � 1 � 	 φ̂φφr cos 2φ �

P2 � � � 12 	 02 � tan � 1 � 0 � 1 � � 2 ��� �
1 � 0 � � 2 � �

B
�
P2 ��� � r̂ 	 φ̂φφ 

(c)

C � �
r̂cosφ � φ̂φφsinφ � r2 sin2 φ

r2 � �
φ̂φφcos φ 	 r̂sinφ � r2 cos2 φ

r2 	 ẑ4� r̂sinφcos φ
�
sin φ � cosφ � � φ̂φφ

�
sin3 φ 	 cos3 φ � 	 ẑ4 �

P3 � � � 12 	 � � 1 � 2 � tan � 1 � � 1 � 1 � � 2 ��� � � 2 � � 45 � � 2 � �
C
�
P3 ��� r̂0  707 	 ẑ4 

(d)

D � �
r̂sinθ 	 ẑcosθ � sinθ 	 �

r̂cos θ � ẑsin θ � cos θ 	 φ̂φφcos2 φ � r̂ 	 φ̂φφcos2 φ �
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P4 � �
2sin

�
π � 2 � � π � 4 � 2cos

�
π � 2 ����� �

2 � 45 � � 0 � �
D
�
P4 ��� r̂ 	 φ̂φφ1

2 
(e)

E � �
r̂sin θ 	 ẑcos θ � cos φ 	 �

r̂cosθ � ẑsinθ � sin φ 	 φ̂φφsin2 θ �
P5 � � 3 � π

2
� π � �

E
�
P5 ��� � r̂sin

π
2 	 ẑcos

π
2
� cos π 	 � r̂cos

π
2 � ẑsin

π
2
� sinπ 	 φ̂φφsin2 π

2
� � r̂ 	 φ̂φφ 

Problem 3.31 Transform the following vectors into spherical coordinates and then
evaluate them at the indicated points:

(a) A � x̂y2 	 ŷxz 	 ẑ4 at P1
�
1 � � 1 � 2 � ,

(b) B � ŷ
�
x2 	 y2 	 z2 � � ẑ

�
x2 	 y2 � at P2

� � 1 � 0 � 2 � ,
(c) C � r̂cos φ � φ̂φφsin φ 	 ẑcos φsinφ at P3

�
2 � π � 4 � 2 � , and

(d) D � x̂y2 � � x2 	 y2 � � ŷx2 � � x2 	 y2 � 	 ẑ4 at P4
�
1 � � 1 � 2 � .

Solution: From Table 3-2:
(a)

A � �
R̂sin θcosφ 	 θ̂θθcosθcos φ � φ̂φφsinφ � � Rsinθsinφ � 2
	 �

R̂sinθsin φ 	 θ̂θθcosθsin φ 	 φ̂φφcos φ � � Rsinθcos φ � � Rcosθ �
	 �

R̂cosθ � θ̂θθsinθ � 4� R̂
�
R2 sin2 θsin φcosφ

�
sin θsin φ 	 cosθ � 	 4cosθ �

	 θ̂θθ
�
R2 sinθcos θsinφcos φ

�
sin θsin φ 	 cosθ � � 4sinθ �

	 φ̂φφR2 sinθ
�
cos θcos2 φ � sinθsin3 φ � �

P1 � � � 12 	 � � 1 � 2 	 22 � tan � 1

� � 12 	 � � 1 � 2 � 2 
 � tan � 1 � � 1 � 1 � 

� � � 6 � 35  3 � � � 45 � � �

A
�
P1 ��� R̂2  856 � θ̂θθ2  888 	 φ̂φφ2  123 

(b)

B � �
R̂sinθsinφ 	 θ̂θθcosθsin φ 	 φ̂φφcosφ � R2 � �

R̂cosθ � θ̂θθsinθ � R2 sin2 θ� R̂R2 sinθ
�
sin φ � sinθcosθ � 	 θ̂θθR2 � cos θsinφ 	 sin3 θ � 	 φ̂φφR2 cosφ �

P2 � � � � � 1 � 2 	 02 	 22 � tan � 1

� � � � 1 � 2 	 02 � 2 
 � tan � 1 � 0 � � � 1 ��� 

� � � 5 � 26  6 � � 180 � � �
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B
�
P2 ��� � R̂0  896 	 θ̂θθ0  449 � φ̂φφ5 

(c)

C � �
R̂sin θ 	 θ̂θθcos θ � cos φ � φ̂φφsin φ 	 �

R̂cosθ � θ̂θθsinθ � cosφsin φ� R̂cosφ
�
sin θ 	 cosθsinφ � 	 θ̂θθcos φ

�
cos θ � sinθsin φ � � φ̂φφsinφ �

P3 � � � 22 	 22 � tan � 1 � 2 � 2 � � π � 4 � � �
2 � 2 � 45 � � 45 � � �

C
�
P3 ��� R̂0  854 	 θ̂θθ0  146 � φ̂φφ0  707 

(d)

D � �
R̂sinθcos φ 	 θ̂θθcosθcos φ � φ̂φφsin φ � R2 sin2 θsin2 φ

R2 sin2 θsin2 φ 	 R2 sin2 θcos2 φ

� �
R̂sinθsin φ 	 θ̂θθcos θsinφ 	 φ̂φφcosφ � R2 sin2 θcos2 φ

R2 sin2 θsin2 φ 	 R2 sin2 θcos2 φ

	 �
R̂cosθ � θ̂θθsinθ � 4� R̂
�
sinθcos φsin2 φ � sinθsin φcos2 φ 	 4cosθ �

	 θ̂θθ
�
cosθcos φsin2 φ � cosθsinφcos2 φ � 4sinθ �

� φ̂φφ
�
cos3 φ 	 sin3 φ � �

P4
�
1 � � 1 � 2 ��� P4 � � 1 	 1 	 4 � tan � 1 � � 1 	 1 � 2 � � tan � 1 � � 1 � 1 � �� P4

� � 6 � 35  26 � � � 45 � � �
D
�
P4 ��� R̂

�
sin35  26 � cos 45 � sin2 45 � � sin35  26 � sin

� � 45 � � cos2 45 � 	 4cos35  26 � �
	 θ̂θθ

�
cos35  26 � cos45 � sin2 45 � � cos35  26 � sin

� � 45 � � cos2 45 � � 4sin35  26 � �
� φ̂φφ

�
cos3 45 � 	 sin3 45 � �� R̂3  67 � θ̂θθ1  73 � φ̂φφ0  707 

Sections 3-4 to 3-7: Gradient, Divergence, and Curl Operators

Problem 3.32 Find the gradient of the following scalar functions:
(a) T � 3 � � x2 	 z2 � ,
(b) V � xy2z4,
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(c) U � zcos φ � � 1 	 r2 � ,
(d) W � e � R sin θ,
(e) S � 4x2e � z 	 y3,
(f) N � r2 cos2 φ,
(g) M � Rcosθsinφ.

Solution:
(a) From Eq. (3.72),

∇T � � x̂
6x�

x2 	 z2 � 2 � ẑ
6z�

x2 	 z2 � 2 
(b) From Eq. (3.72),

∇V � x̂y2z4 	 ŷ2xyz4 	 ẑ4xy2z3 
(c) From Eq. (3.82),

∇U � � r̂
2rzcos φ�
1 	 r2 � 2 � φ̂φφ

zsinφ
r
�
1 	 r2 � 	 ẑ

cosφ
1 	 r2 

(d) From Eq. (3.83),

∇W � � R̂e � R sinθ 	 θ̂θθ
�
e � R � R � cos θ 

(e) From Eq. (3.72),

S � 4x2e � z 	 y3 �
∇S � x̂

∂S
∂x 	 ŷ

∂S
∂y 	 ẑ

∂S
∂z

� x̂8xe � z 	 ŷ3y2 � ẑ4x2e � z 
(f) From Eq. (3.82),

N � r2 cos2 φ �
∇N � r̂

∂N
∂r 	 φ̂φφ

1
r

∂N
∂φ 	 ẑ

∂N
∂z

� r̂2r cos2 φ � φ̂φφ2r sin φcos φ 
(g) From Eq. (3.83),

M � Rcosθsin φ �
∇M � R̂

∂M
∂R 	 θ̂θθ

1
R

∂M
∂θ 	 φ̂φφ

1
Rsinθ

∂M
∂φ

� R̂cosθsin φ � θ̂θθsinθsin φ 	 φ̂φφ
cosφ
tanθ
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Problem 3.33 The gradient of a scalar function T is given by

∇T � ẑe � 3z 
If T � 10 at z � 0, find T

�
z � .

Solution:
∇T � ẑe � 3z 

By choosing P1 at z � 0 and P2 at any point z, (3.76) becomes

T
�
z � � T

�
0 ��� � z

0
∇T � dl � � � z

0
ẑe � 3z � � � x̂ dx � 	 ŷ dy � 	 ẑ dz � �

� � z

0
e � 3z � dz � � � � e � 3z �

3 �����

z

0

� 1
3

�
1 � e � 3z � 

Hence,

T
�
z ��� T

�
0 � 	 1

3

�
1 � e � 3z ��� 10 	 1

3

�
1 � e � 3z � 

Problem 3.34 Follow a procedure similar to that leading to Eq. (3.82) to derive the
expression given by Eq. (3.83) for ∇ in spherical coordinates.

Solution: From the chain rule and Table 3-2,

∇T � x̂
∂T
∂x 	 ŷ

∂T
∂y 	 ẑ

∂T
∂z

� x̂

�
∂T
∂R

∂R
∂x 	 ∂T

∂θ
∂θ
∂x 	 ∂T

∂φ
∂φ
∂x 


	 ŷ

�
∂T
∂R

∂R
∂y 	 ∂T

∂θ
∂θ
∂y 	 ∂T

∂φ
∂φ
∂y 


	 ẑ

�
∂T
∂R

∂R
∂z 	 ∂T

∂θ
∂θ
∂z 	 ∂T

∂φ
∂φ
∂z 


� x̂

�
∂T
∂R

∂
∂x
� x2 	 y2 	 z2 	 ∂T

∂θ
∂
∂x

tan � 1 � � x2 	 y2 � z � 	 ∂T
∂φ

∂
∂x

tan � 1 � y � x � 

	 ŷ

�
∂T
∂R

∂
∂y
� x2 	 y2 	 z2 	 ∂T

∂θ
∂
∂y

tan � 1 � � x2 	 y2 � z � 	 ∂T
∂φ

∂
∂y

tan � 1 � y � x � 

	 ẑ

�
∂T
∂R

∂
∂z
� x2 	 y2 	 z2 	 ∂T

∂θ
∂
∂z

tan � 1 � � x2 	 y2 � z � 	 ∂T
∂φ

∂
∂z

tan � 1 � y � x � 
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� x̂

�
∂T
∂R

x

� x2 	 y2 	 z2 	 ∂T
∂θ

z
x2 	 y2 	 z2

x

� x2 	 y2 	 ∂T
∂φ

� y
x2 	 y2 �

	 ŷ

�
∂T
∂R

y

� x2 	 y2 	 z2 	 ∂T
∂θ

z
x2 	 y2 	 z2

y

� x2 	 y2 	 ∂T
∂φ

x
x2 	 y2 �

	 ẑ

�
∂T
∂R

z

� x2 	 y2 	 z2 	 ∂T
∂θ

� 1
x2 	 y2 	 z2

� x2 	 y2 	 ∂T
∂φ

0 �
� x̂

�
∂T
∂R

Rsinθcosφ
R 	 ∂T

∂θ
Rcosθ

R2

Rsinθcosφ
Rsinθ 	 ∂T

∂φ
� Rsinθsin φ

R2 sin2 θ 

	 ŷ

�
∂T
∂R

Rsinθsin φ
R 	 ∂T

∂θ
Rcosθ

R2

Rsinθsin φ
Rsinθ 	 ∂T

∂φ
Rsinθcos φ

R2 sin2 θ 

	 ẑ

�
∂T
∂R

Rcosθ
R 	 ∂T

∂θ
� Rsinθ

R2 

� x̂

�
∂T
∂R

sinθcos φ 	 ∂T
∂θ

cosθcos φ
R 	 ∂T

∂φ
� sinφ
Rsinθ 


	 ŷ

�
∂T
∂R

sinθsin φ 	 ∂T
∂θ

cosθsin φ
R 	 ∂T

∂φ
cosφ

Rsinθ 

	 ẑ

�
∂T
∂R

cosθ 	 ∂T
∂θ

� sinθ
R 


� �
x̂sinθcos φ 	 ŷsinθsin φ 	 ẑcosθ � ∂T

∂R

	 �
x̂cosθcos φ 	 ŷcosθsin φ � ẑsinθ � 1

R
∂T
∂θ

	 � � x̂sinφ 	 ŷcosφ � 1
Rsinθ

∂T
∂φ

� R̂
∂T
∂R 	 θ̂θθ

1
R

∂T
∂θ 	 φ̂φφ

1
Rsinθ

∂T
∂φ

�
which is Eq. (3.83).

Problem 3.35 For the scalar function V � xy2 � z2, determine its directional
derivative along the direction of vector A � �

x̂ � ŷz � and then evaluate it at
P
�
1 � � 1 � 4 � .

Solution: The directional derivative is given by Eq. (3.75) as dV � dl � ∇V � âl , where
the unit vector in the direction of A is given by Eq. (3.2):

âl � x̂ � ŷz� 1 	 z2
�
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and the gradient of V in Cartesian coordinates is given by Eq. (3.72):

∇V � x̂y2 	 ŷ2xy � ẑ2z 
Therefore, by Eq. (3.75),

dV
dl

� y2 � 2xyz� 1 	 z2


At P
�
1 � � 1 � 4 � , �

dV
dl 
 ����

� 1 � � 1 � 4 �
� 9� 17

� 2  18 
Problem 3.36 For the scalar function T � 1

2 e � r � 5 cosφ, determine its directional
derivative along the radial direction r̂ and then evaluate it at P

�
2 � π � 4 � 3 � .

Solution:

T � 1
2

e � r � 5 cosφ �
∇T � r̂

∂T
∂r 	 φ̂φφ

1
r

∂T
∂φ 	 ẑ

∂T
∂z

� � r̂
e � r � 5 cosφ

10 � φ̂φφ
e � r � 5 sinφ

2r
�

dT
dl

� ∇T � r̂ � � e � r � 5 cosφ
10

�
dT
dl ����

� 2 � π � 4 � 3 �
� � e � 2 � 5 cos π

4

10
� � 4  74 � 10 � 2 

Problem 3.37 For the scalar function U � 1
R sin2 θ, determine its directional

derivative along the range direction R̂ and then evaluate it at P
�
5 � π � 4 � π � 2 � .

Solution:

U � 1
R

sin2 θ �
∇U � R̂

∂U
∂R 	 θ̂θθ

1
R

∂U
∂θ 	 φ̂φφ

1
Rsinθ

∂U
∂φ

� � R̂
sin2 θ

R2 � θ̂θθ
2sin θcos θ

R
�

dU
dl

� ∇U � R̂ � � sin2 θ
R2 �

dU
dl ����

� 5 � π � 4 � π � 2 � � � sin2 � π � 4 �
25

� � 0  02 
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Problem 3.38 Vector field E is characterized by the following properties: (a) E
points along R̂, (b) the magnitude of E is a function of only the distance from the
origin, (c) E vanishes at the origin, and (d) ∇ � E � 12, everywhere. Find an expression
for E that satisfies these properties.

Solution: According to properties (a) and (b), E must have the form

E � R̂ER

where ER is a function of R only.

∇ � E � 1
R2

∂
∂R

�
R2ER ��� 12 �

∂
∂R

�
R2ER ��� 12R2 �

� R

0

∂
∂R

�
R2ER � dR � � R

0
12R2 dR �

R2ER � R0 � 12R3

3 ����

R

0
�

R2ER � 4R3 
Hence,

ER � 4R �
and

E � R̂4R 
Problem 3.39 For the vector field E � x̂xz � ŷyz2 � ẑxy, verify the divergence
theorem by computing:

(a) the total outward flux flowing through the surface of a cube centered at the
origin and with sides equal to 2 units each and parallel to the Cartesian axes,
and

(b) the integral of ∇ � E over the cube’s volume.

Solution:
(a) For a cube, the closed surface integral has 6 sides:

�

�
E � ds � Ftop 	 Fbottom 	 Fright 	 Fleft 	 Ffront 	 Fback �
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Ftop � � 1

x � � 1

� 1

y � � 1
� x̂xz � ŷyz2 � ẑxy � ��

z � 1 � � ẑ dy dx �
� � � 1

x � � 1

� 1

y � � 1
xy dy dx � � �

x2y2

4 
 ����

1

y � � 1
� �����

1

x � � 1

� 0 �
Fbottom � � 1

x � � 1

� 1

y � � 1
� x̂xz � ŷyz2 � ẑxy � ��

z � � 1 � � � ẑ dy dx �
� � 1

x � � 1

� 1

y � � 1
xy dy dx � � �

x2y2

4 
 ����

1

y � � 1
� �����

1

x � � 1

� 0 �
Fright � � 1

x � � 1

� 1

z � � 1
� x̂xz � ŷyz2 � ẑxy � ��

y � 1 � � ŷ dz dx �
� � � 1

x � � 1

� 1

z � � 1
z2 dz dx � �

� �
xz3

3 
 ����

1

z � � 1
� �����

1

x � � 1

� � 4
3

�
Fleft � � 1

x � � 1

� 1

z � � 1
� x̂xz � ŷyz2 � ẑxy � ��

y � � 1 � � � ŷ dz dx �
� � � 1

x � � 1

� 1

z � � 1
z2 dz dx � �

� �
xz3

3 
 ����

1

z � � 1
� �����

1

x � � 1

� � 4
3

�
Ffront � � 1

y � � 1

� 1

z � � 1
� x̂xz � ŷyz2 � ẑxy � ��

x � 1 � � x̂ dz dy �
� � 1

y � � 1

� 1

z � � 1
z dz dy � � �

yz2

2 
 ����

1

z � � 1
� �����

1

y � � 1

� 0 �
Fback � � 1

y � � 1

� 1

z � � 1
� x̂xz � ŷyz2 � ẑxy � ��

x � � 1 � � � x̂ dz dy �
� � 1

y � � 1

� 1

z � � 1
z dz dy � � �

yz2

2 
 ����

1

z � � 1
� �����

1

y � � 1

� 0 �
�

�
E � ds � 0 	 0 	 � 4

3 	 � 4
3 	 0 	 0 � � 8

3
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(b)

� � �
∇ � E dv � � 1

x � � 1

� 1

y � � 1

� 1

z � � 1
∇ � � x̂xz � ŷyz2 � ẑxy � dz dy dx

� � 1

x � � 1

� 1

y � � 1

� 1

z � � 1

�
z � z2 � dz dy dx

�
�� � �

xy

�
z2

2 � z3

3 
 
 ����

1

z � � 1
� �����

1

y � � 1

��
������

1

x � � 1

� � 8
3


Problem 3.40 For the vector field E � r̂10e � r � ẑ3z, verify the divergence theorem
for the cylindrical region enclosed by r � 2, z � 0, and z � 4.

Solution:

�

�
E � ds � � 2

r � 0

� 2π

φ � 0
� � r̂10e � r � ẑ3z � � � � ẑr dr dφ � � ��

z � 0

	 � 2π

φ � 0

� 4

z � 0
� � r̂10e � r � ẑ3z � � � r̂r dφ dz � � ��

r � 2

	 � 2

r � 0

� 2π

φ � 0
� � r̂10e � r � ẑ3z � � � ẑr dr dφ � � ��

z � 4

� 0 	 � 2π

φ � 0

� 4

z � 0
10e � 22 dφ dz 	 � 2

r � 0

� 2π

φ � 0 � 12r dr dφ

� 160πe � 2 � 48π � � 82  77 �� � �
∇ � E dV � � 4

z � 0

� 2

r � 0

� 2π

φ � 0

�
10e � r � 1 � r �

r � 3 
 r dφ dr dz

� 8π
� 2

r � 0

�
10e � r � 1 � r � � 3r � dr

� 8π
�
� 10e � r 	 10e � r � 1 	 r � � 3r2

2 
 ����

2

r � 0� 160πe � 2 � 48π � � 82  77 
Problem 3.41 A vector field D � r̂r3 exists in the region between two concentric
cylindrical surfaces defined by r � 1 and r � 2, with both cylinders extending
between z � 0 and z � 5. Verify the divergence theorem by evaluating:

(a) �

�
S

D � ds,



CHAPTER 3 149

(b)
�

V
∇ � D dV .

Solution:
(a)

� �
D � ds � Finner 	 Fouter 	 Fbottom 	 Ftop �
Finner � � 2π

φ � 0

� 5

z � 0
� � r̂r3 � � � � r̂r dz dφ � � ��

r � 1

� � 2π

φ � 0

� 5

z � 0
� � r4 dz dφ � ��

r � 1 � � 10π �
Fouter � � 2π

φ � 0

� 5

z � 0
� � r̂r3 � � � r̂r dz dφ � � ��

r � 2

� � 2π

φ � 0

� 5

z � 0
� r4 dz dφ � ��

r � 2 � 160π �
Fbottom � � 2

r � 1

� 2π

φ � 0
� � r̂r3 � � � � ẑr dφ dr � � ��

z � 0 � 0 �
Ftop � � 2

r � 1

� 2π

φ � 0
� � r̂r3 � � � ẑr dφ dr � � ��

z � 5 � 0 
Therefore,

���
D � ds � 150π.

(b) From the back cover, ∇ �D � �
1 � r � � ∂ � ∂r � � rr3 ��� 4r2. Therefore,

� � �
∇ �D dV � � 5

z � 0

� 2π

φ � 0

� 2

r � 1
4r2r dr dφ dz � � � � r4 � ��

2
r � 1 � ���

2π

φ � 0

 ����

5

z � 0
� 150π 

Problem 3.42 For the vector field D � R̂3R2, evaluate both sides of the divergence
theorem for the region enclosed between the spherical shells defined by R � 1 and
R � 2.

Solution: The divergence theorem is given by Eq. (3.98). Evaluating the left hand
side:

�
V

∇ �D dV � � 2π

φ � 0

� π

θ � 0

� 2

R � 1

�
1

R2

∂
∂R

�
R2 � 3R2 � � 
 R2 sinθ dR dθ dφ

� 2π
� � cosθ � � πθ � 0 � 3R4 � ��

2
R � 1 � 180π 
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The right hand side evaluates to

�

�
S

D � ds � � � 2π

φ � 0

� π

θ � 0

�
R̂3R2 � � � � R̂R2 sinθ dθ dφ � 
 ����

R � 1

	
� � 2π

φ � 0

� π

θ � 0

�
R̂3R2 � � � R̂R2 sinθ dθ dφ � 
 ����

R � 2� � 2π
� π

θ � 0
3sin θ dθ 	 2π

� π

θ � 0
48sin θ dθ � 180π 

Problem 3.43 For the vector field E � x̂xy � ŷ
�
x2 	 2y2 � , calculate

(a) �

�
C

E � dl around the triangular contour shown in Fig. P3.43(a), and

(b)
�

S

�
∇ � � � E ��� ds over the area of the triangle.

Solution: In addition to the independent condition that z � 0, the three lines of the
triangle are represented by the equations y � 0, x � 1, and y � x, respectively.

1

1
x

y

1

1 2
x

y

(a) (b)

0 0

L3 L2

L1
L2

L1

L3

Figure P3.43: Contours for (a) Problem 3.43 and (b) Problem 3.44.

(a)

�

�
E � dl � L1 	 L2 	 L3 �

L1 � � �
x̂xy � ŷ

�
x2 	 2y2 � � � � x̂ dx 	 ŷ dy 	 ẑ dz �

� � 1

x � 0

�
xy � � y � 0 � z � 0 dx � � 0

y � 0
� x2 	 2y2 � ��

z � 0 dy 	 � 0

z � 0

�
0 � � y � 0 dz � 0 �
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L2 � � �
x̂xy � ŷ

�
x2 	 2y2 � � � � x̂ dx 	 ŷ dy 	 ẑ dz �

� � 1

x � 1

�
xy � � z � 0 dx � � 1

y � 0
� x2 	 2y2 � ��

x � 1 � z � 0 dy 	 � 0

z � 0

�
0 � � x � 1 dz

� 0 �
�

y 	 2y3

3 
 ����

1

y � 0 	 0 � � 5
3

�
L3 � � �

x̂xy � ŷ
�
x2 	 2y2 � � � � x̂ dx 	 ŷ dy 	 ẑ dz �

� � 0

x � 1

�
xy � � y � x � z � 0 dx � � 0

y � 1
� x2 	 2y2 � ��

x � y� z � 0 dy 	 � 0

z � 0

�
0 � � y � x dz

� �
x3

3 
 ����

0

x � 1 � � y3 � ��
0
y � 1 	 0 � 2

3


Therefore,

�

�
E � dl � 0 � 5

3 	 2
3
� � 1 

(b) From Eq. (3.105), ∇ � E � � ẑ3x � so that� �
∇ � E � ds � � 1

x � 0

� x

y � 0

� � � ẑ3x � � � ẑ dy dx � � � z � 0

� � � 1

x � 0

� x

y � 0
3x dy dx � � � 1

x � 0
3x
�
x � 0 � dx � � � x3 � ��

1
0 � � 1 

Problem 3.44 Repeat Problem 3.43 for the contour shown in Fig. P3.43(b).

Solution: In addition to the independent condition that z � 0, the three lines of the
triangle are represented by the equations y � 0, y � 2 � x, and y � x, respectively.

(a)

�

�
E � dl � L1 	 L2 	 L3 �

L1 � � �
x̂xy � ŷ

�
x2 	 2y2 � � � � x̂ dx 	 ŷ dy 	 ẑ dz �

� � 2

x � 0

�
xy � � y � 0 � z � 0 dx � � 0

y � 0
� x2 	 2y2 � ��

z � 0 dy 	 � 0

z � 0

�
0 � � y � 0 dz � 0 �

L2 � � �
x̂xy � ŷ

�
x2 	 2y2 � � � � x̂ dx 	 ŷ dy 	 ẑ dz �

� � 1

x � 2

�
xy � � z � 0 � y � 2 � x dx � � 1

y � 0
� x2 	 2y2 � ��

x � 2 � y� z � 0 dy 	 � 0

z � 0

�
0 � � y � 2 � x dz

� �
x2 � x3

3 
 ����

1

x � 2 � � 4y � 2y2 	 y3 � ��
1
y � 0 	 0 � � 11

3
�
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L3 � � �
x̂xy � ŷ

�
x2 	 2y2 � � � � x̂ dx 	 ŷ dy 	 ẑ dz �

� � 0

x � 1

�
xy � � y � x � z � 0 dx � � 0

y � 1
� x2 	 2y2 � ��

x � y� z � 0 dy 	 � 0

z � 0

�
0 � � y � x dz

� �
x3

3 
 ����

0

x � 1 � � y3 � ��
0
y � 1 	 0 � 2

3


Therefore,

�

�
E � dl � 0 � 11

3 	 2
3
� � 3 

(b) From Eq. (3.105), ∇ � E � � ẑ3x � so that

� �
∇ � E � ds � � 1

x � 0

� x

y � 0

� � � ẑ3x � � � ẑ dy dx � � � z � 0

	 � 2

x � 1

� 2 � x

y � 0

� � � ẑ3x � � � ẑ dy dx ��� � z � 0

� � � 1

x � 0

� x

y � 0
3x dy dx � � 2

x � 1

� 2 � x

y � 0
3x dy dx

� � � 1

x � 0
3x
�
x � 0 � dx � � 2

x � 1
3x
� �

2 � x � � 0 � dx

� � � x3 � ��
1
0 � � 3x2 � x3 � ��

2
x � 1 � � 3 

Problem 3.45 Verify Stokes’s theorem for the vector field B � �
r̂r cos φ 	 φ̂φφsinφ �

by evaluating:

(a) �

�
C

B � dl over the semicircular contour shown in Fig. P3.46(a), and

(b)
�

S

�
∇ � � � B ��� ds over the surface of the semicircle.

Solution:
(a)

�

�
B � dl � �

L1

B � dl 	 �
L2

B � dl 	 �
L3

B � dl �
B � dl � �

r̂r cos φ 	 φ̂φφsin φ � � � r̂ dr 	 φ̂φφr dφ 	 ẑ dz ��� r cos φ dr 	 r sinφ dφ ��
L1

B � dl � � � 2

r � 0
r cos φ dr 
 ����

φ � 0 � z � 0 	
� � 0

φ � 0
r sin φ dφ 
 ����

z � 0� � 1
2r2 � ��

2
r � 0 	 0 � 2 �
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2
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yy

(a) (b)

L2 L2L3

L4 L1

L1L3

Figure P3.46: Contour paths for (a) Problem 3.45 and (b) Problem 3.46.

�
L2

B � dl � � � 2

r � 2
r cos φ dr 
 ����

z � 0 	
� � π

φ � 0
r sinφ dφ 
 ����

r � 2 � z � 0� 0 	 � � 2cosφ � � πφ � 0 � 4 �
�

L3

B � dl � � � 0

r � 2
r cos φ dr 
 ����

φ � π � z � 0 	
� � π

φ � π
r sin φ dφ 
 ����

z � 0� � � 1
2r2 � ��

0
r � 2 	 0 � 2 �

�

�
B � dl � 2 	 4 	 2 � 8 

(b)

∇ � B � ∇ � � r̂r cos φ 	 φ̂φφsinφ �
� r̂

�
1
r

∂
∂φ

0 � ∂
∂z

�
sinφ � 
 	 φ̂φφ

�
∂
∂z

�
r cos φ � � ∂

∂r
0 


	 ẑ
1
r

�
∂
∂r

�
r
�
sin φ � � � ∂

∂φ
�
r cos φ � 


� r̂0 	 φ̂φφ0 	 ẑ
1
r

�
sinφ 	 �

r sin φ � ��� ẑsinφ
�

1 	 1
r 
 �

� �
∇ � B � ds � � π

φ � 0

� 2

r � 0

�
ẑsinφ

�
1 	 1

r 
 
 � � ẑr dr dφ �
� � π

φ � 0

� 2

r � 0
sinφ

�
r 	 1 � dr dφ � � � � cosφ

� 1
2 r2 	 r � � ��

2
r � 0 � ���

π

φ � 0
� 8 

Problem 3.46 Repeat Problem 3.45 for the contour shown in Fig. P3.46(b).

Solution:
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(a)

�

�
B � dl � �

L1

B � dl 	 �
L2

B � dl 	 �
L3

B � dl 	 �
L4

B � dl �
B � dl � �

r̂r cos φ 	 φ̂φφsin φ � � � r̂ dr 	 φ̂φφr dφ 	 ẑ dz ��� r cos φ dr 	 r sinφ dφ ��
L1

B � dl � � � 2

r � 1
r cos φ dr 
 ����

φ � 0 � z � 0 	
� � 0

φ � 0
r sin φ dφ 
 ����

z � 0� � 1
2r2 � ��

2
r � 1 	 0 � 3

2
�

�
L2

B � dl � � � 2

r � 2
r cos φ dr 
 ����

z � 0 	
� � π �

φ � 0
r sinφ dφ 
 ����

r � 2 � z � 0� 0 	 � � 2cosφ � � π � 2φ � 0 � 2 �
�

L3

B � dl � � � 1

r � 2
r cos φ dr 
 ����

φ � π � 2 � z � 0 	
� � π � 2

φ � π � 2 r sin φ dφ 
 ����
z � 0

� 0 �
�

L4

B � dl � � � 1

r � 1
r cos φ dr 
 ����

z � 0 	
� � 0

φ � π � 2 r sin φ dφ 
 ����
r � 1 � z � 0� 0 	 � � cosφ � � 0φ � π � 2 � � 1 �

�

�
B � dl � 3

2 	 2 	 0 � 1 � 5
2


(b)

∇ � B � ∇ � � r̂r cos φ 	 φ̂φφsin φ �
� r̂

�
1
r

∂
∂φ

0 � ∂
∂z

�
sinφ � 
 	 φ̂φφ

�
∂
∂z

�
r cos φ � � ∂

∂r
0 


	 ẑ
1
r

�
∂
∂r

�
r
�
sin φ ��� � ∂

∂φ
�
r cos φ � 


� r̂0 	 φ̂φφ0 	 ẑ
1
r

�
sinφ 	 �

r sin φ � ��� ẑsinφ
�

1 	 1
r 
 �

� �
∇ � B � ds � � π � 2

φ � 0

� 2

r � 1

�
ẑsin φ

�
1 	 1

r 
 
 � � ẑr dr dφ �
� � π � 2

φ � 0

� 2

r � 1
sinφ

�
r 	 1 � dr dφ

� � � � cosφ
� 1

2r2 	 r � � ��
2
r � 1 � ���

π � 2
φ � 0

� 5
2
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Problem 3.47 Verify Stokes’s Theorem for the vector field A � R̂cosθ 	 φ̂φφsinθ by
evaluating it on the hemisphere of unit radius.

Solution:
A � R̂cos θ 	 φ̂φφsinθ � R̂AR 	 θ̂θθAθ 	 φ̂φφAφ 

Hence, AR � cosθ, Aθ � 0, Aφ � sinθ.

∇ � A � R̂
1

Rsinθ

�
∂

∂θ
�
Aφ sinθ � 
 � θ̂θθ

1
R

∂
∂R

�
RAφ � � φ̂φφ

1
R

∂AR

∂θ

� R̂
1

Rsinθ
∂

∂θ
�
sin2 θ � � θ̂θθ

1
R

∂
∂R

�
Rsinθ � � φ̂φφ

1
R

∂
∂θ

�
cos θ �

� R̂
2cos θ

R � θ̂θθ
sin θ

R 	 φ̂φφ
sinθ

R


For the hemispherical surface, ds � R̂R2 sinθ dθ dφ.

� 2π

φ � 0

� π � 2
θ � 0

�
∇ � A � � ds

� � 2π

φ � 0

� π � 2
θ � 0

�
R̂2cos θ

R � θ̂θθ
sinθ

R 	 φ̂φφ
sin θ

R 
 � R̂R2 sinθ dθ dφ ����
R � 1

� 4πR
sin2 θ

2 ����

π � 2
0

�����
R � 1

� 2π 
The contour C is the circle in the x–y plane bounding the hemispherical surface.

�

�
C

A � dl � � 2π

φ � 0

�
R̂cosθ 	 φ̂φφsinθ � � φ̂φφR dφ ����

θ � π � 2
R � 1

� Rsinθ
� 2π

0
dφ ����

θ � π � 2
R � 1

� 2π 
Problem 3.48 Determine if each of the following vector fields is solenoidal,
conservative, or both:

(a) A � x̂x2 � ŷy2xy,
(b) B � x̂x2 � ŷy2 	 ẑ2z,
(c) C � r̂

�
sin φ � � r2 	 φ̂φφ

�
cosφ � � r2,

(d) D � R̂ � R,
(e) E � r̂ � 3 � r

1 � r � 	 ẑz,
(f) F � �

x̂y 	 ŷx � � � x2 	 y2 � ,
(g) G � x̂

�
x2 	 z2 � � ŷ

�
y2 	 x2 � � ẑ

�
y2 	 z2 � ,

(h) H � R̂
�
Re � R � .
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Solution:
(a)

∇ �A � ∇ � � x̂x2 � ŷ2xy ��� ∂
∂x

x2 � ∂
∂y

2xy � 2x � 2x � 0 �
∇ � A � ∇ � � x̂x2 � ŷ2xy �

� x̂

�
∂
∂y

0 � ∂
∂z

� � 2xy � 
 	 ŷ

�
∂
∂z

�
x2 � � ∂

∂x
0 
 	 ẑ

�
∂
∂x

� � 2xy � � ∂
∂y

�
x2 � 


� x̂0 	 ŷ0 � ẑ
�
2y � �� 0 

The field A is solenoidal but not conservative.
(b)

∇ �B � ∇ � � x̂x2 � ŷy2 	 ẑ2z ��� ∂
∂x

x2 � ∂
∂y

y2 	 ∂
∂z

2z � 2x � 2y 	 2 �� 0 �
∇ � B � ∇ � � x̂x2 � ŷy2 	 ẑ2z �

� x̂

�
∂
∂y

�
2z � � ∂

∂z

� � y2 � 
 	 ŷ

�
∂
∂z

�
x2 � � ∂

∂x

�
2z � 
 	 ẑ

�
∂
∂x

� � y2 � � ∂
∂y

�
x2 � 


� x̂0 	 ŷ0 	 ẑ0 
The field B is conservative but not solenoidal.

(c)

∇ �C � ∇ � � r̂
sinφ
r2 	 φ̂φφ

cosφ
r2 


� 1
r

∂
∂r

�
r

�
sinφ
r2 
 
 	 1

r
∂

∂φ

�
cosφ

r2 
 	 ∂
∂z

0

� � sinφ
r3 	 � sinφ

r3 	 0 � � 2sin φ
r3 �

∇ � C � ∇ � �
r̂

sinφ
r2 	 φ̂φφ

cos φ
r2 


� r̂

�
1
r

∂
∂φ

0 � ∂
∂z

�
cosφ

r2 
 
 	 φ̂φφ
�

∂
∂z

�
sinφ
r2 
 � ∂

∂r
0 


	 ẑ
1
r

�
∂
∂r

�
r

�
cosφ

r2 
 
 � ∂
∂φ

�
sinφ
r2 
 


� r̂0 	 φ̂φφ0 	 ẑ
1
r

�
�
�

cosφ
r2 
 �

�
cosφ

r2 
 
 � ẑ � 2cosφ
r3 

The field C is neither solenoidal nor conservative.
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(d)

∇ �D � ∇ � � R̂
R � � 1

R2

∂
∂R

�
R2

�
1
R 
 
 	 1

Rsinθ
∂

∂θ
�
0sin θ � 	 1

Rsinθ
∂

∂φ
0 � 1

R2 �
∇ � D � ∇ � �

R̂
R �

� R̂
1

Rsinθ

�
∂

∂θ
�
0sin θ � � ∂

∂φ
0 
 	 θ̂θθ

1
R

�
1

sinθ
∂

∂φ

�
1
R 
 � ∂

∂R

�
R
�
0 ��� 


	 φ̂φφ
1
R

�
∂

∂R

�
R
�
0 � � � ∂

∂θ

�
1
R 
 
 � r̂0 	 θ̂θθ0 	 φ̂φφ0 

The field D is conservative but not solenoidal.
(e)

E � r̂

�
3 � r

1 	 r 
 	 ẑz �
∇ � E � 1

r
∂
∂r

�
rEr � 	 1

r

∂Eφ

∂φ 	 ∂Ez

∂z

� 1
r

∂
∂r

�
3r � r2

1 	 r 
 	 1

� 1
r

�
3 � 2r

1 	 r 	 r2�
1 	 r � 2 � 	 1

� 1
r

�
3 	 3r2 	 6r � 2r � 2r2 	 r2�

1 	 r � 2 � 	 1 � 2r2 	 4r 	 3
r
�
1 	 r � 2 	 1 �� 0 �

∇ � E � r̂

�
1
r

∂Ez

∂φ � ∂Eφ

∂z 
 	 φ̂φφ
�

∂Er

∂z � ∂Ez

∂r 
 	 ẑ

�
1
r

∂
∂r

�
rEφ � � 1

r
∂Er

∂φ 
 � 0 
Hence, E is conservative, but not solenoidal.

(f)

F � x̂y 	 ŷx
x2 	 y2 � x̂

y
x2 	 y2 	 ŷ

x
x2 	 y2 �

∇ � F � ∂
∂x

�
y

x2 	 y2 
 	 ∂
∂y

�
x

x2 	 y2 

� � 2xy�

x2 	 y2 � 2 	 � 2xy�
x2 	 y2 � 2 �� 0 �
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∇ � F � x̂
�
0 � 0 � 	 ŷ

�
0 � 0 � 	 ẑ

�
∂
∂x

�
x

x2 	 y2 
 � ∂
∂y

�
y

x2 	 y2 
 �
� ẑ

�
1

x2 	 y2 � 2x2�
x2 	 y2 � 2 � 1

x2 	 y2 	 2y2�
x2 	 y2 � 2 


� ẑ
2
�
y2 � x2 ��

x2 	 y2 � 2 �� 0 
Hence, F is neither solenoidal nor conservative.

(g)

G � x̂
�
x2 	 z2 � � ŷ

�
y2 	 x2 � � ẑ

�
y2 	 z2 � �

∇ � G � ∂
∂x

�
x2 	 z2 � � ∂

∂y

�
y2 	 x2 � � ∂

∂z

�
y2 	 z2 �

� 2x � 2y � 2z �� 0 �
∇ � G � x̂

�
� ∂

∂y

�
y2 	 z2 � 	 ∂

∂z

�
y2 	 x2 � 
 	 ŷ

�
∂
∂z

�
x2 	 z2 � 	 ∂

∂x

�
y2 	 z2 � 


	 ẑ

�
� ∂

∂x

�
y2 	 x2 � � ∂

∂y

�
x2 	 z2 � 


� � x̂2y 	 ŷ2z � ẑ2x �� 0 
Hence, G is neither solenoidal nor conservative.

(h)

H � R̂
�
Re � R � �

∇ � H � 1
R2

∂
∂R

�
R3e � R ��� 1

R2

�
3R2e � R � R3e � R ��� e � R � 3 � R � �� 0 �

∇ � H � 0 
Hence, H is conservative, but not solenoidal.

Problem 3.49 Find the Laplacian of the following scalar functions:
(a) V � 4xy2z3,
(b) V � xy 	 yz 	 zx,
(c) V � 3 � � x2 	 y2 � ,
(d) V � 5e � r cosφ,
(e) V � 10e � R sinθ.

Solution:
(a) From Eq. (3.110), ∇2 � 4xy2z3 ��� 8xz3 	 24xy2z 
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(b) ∇2 � xy 	 yz 	 zx ��� 0 
(c) From the inside back cover of the book,

∇2

�
3

x2 	 y2 
 � ∇2 � 3r � 2 ��� 12r � 4 � 12�
x2 	 y2 � 2 

(d)

∇2 � 5e � r cosφ ��� 5e � r cosφ
�

1 � 1
r � 1

r2 
 
(e)

∇2 � 10e � R sinθ ��� 10e � R

�
sinθ

�
1 � 2

R 
 	 cos2 θ � sin2 θ
R2 sinθ 
 

Problem 3.50 Find a vector G whose magnitude is 4 and whose direction is
perpendicular to both vectors E and F, where E � x̂ 	 ŷ2 � ẑ2 and F � ŷ3 � ẑ6.

Solution: The cross product of two vectors produces a third vector which is
perpendicular to both of the original vectors. Two vectors exist that satisfy the stated
conditions, one along E � � � F and another along the opposite direction. Hence,

G � � 4
E � � � F
�E � � � F � � � 4

�
x̂ 	 ŷ2 � ẑ2 � � � � �

ŷ3 � ẑ6 �
� � x̂ 	 ŷ2 � ẑ2 � � � � �

ŷ3 � ẑ6 � �
� � 4

� � x̂6 	 ŷ6 	 ẑ3 �� 36 	 36 	 9� � 4
9

� � x̂6 	 ŷ6 	 ẑ3 ��� � �
� x̂

8
3 	 ŷ

8
3 	 ẑ

4
3 
 

Problem 3.51 A given line is described by the equation:

y � x � 1 
Vector A starts at point P1

�
0 � 2 � and ends at point P2 on the line such that A is

orthogonal to the line. Find an expression for A.

Solution: We first plot the given line.
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P1 (0, 2)

y

x

BA

P4 (1, 0)

P3 (0, -1)

P2 (x, x-1)

Next we find a vector B which connects point P3
�
0 � 1 � to point P4

�
1 � 0 � , both of which

are on the line. Hence,

B � x̂
�
1 � 0 � 	 ŷ

�
0 	 1 ��� x̂ 	 ŷ 

Vector A starts at P1
�
0 � 2 � and ends on the line at P2. If the x-coordinate of P2 is x,

then its y-coordinate has to be y � x � 1, per the equation for the line. Thus, P2 is at�
x � x � 1 � , and vector A is

A � x̂
�
x � 0 � 	 ŷ

�
x � 1 � 2 ��� x̂x 	 ŷ

�
x � 3 � 

Since A is orthogonal to B,

A � B � 0 �
� x̂x 	 ŷ

�
x � 3 ��� � � x̂ 	 ŷ ��� 0

x 	 x � 3 � 0

x � 3
2


Finally,

A � x̂x 	 ŷ
�
x � 3 ��� x̂

3
2 	 ŷ

�
3
2 � 3 


� x̂
3
2 � ŷ

3
2
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Problem 3.52 Vector field E is given by

E � R̂ 5Rcos θ � θ̂θθ
12
R

sin θcosφ 	 φ̂φφ3sin φ 
Determine the component of E tangential to the spherical surface R � 2 at point
P
�
2 � 30 � � 60 � � .

Solution: At P, E is given by

E � R̂ 5 � 2cos 30 � � θ̂θθ
12
2

sin30 � cos60 � 	 φ̂φφ3sin 60 �� R̂ 8  67 � θ̂θθ1  5 	 φ̂φφ2  6 
The R̂ component is normal to the spherical surface while the other two are tangential.
Hence,

Et � � θ̂θθ1  5 	 φ̂φφ2  6 
Problem 3.53 Transform the vector

A � R̂sin2 θcos φ 	 θ̂θθcos2 φ � φ̂φφsinφ

into cylindrical coordinates and then evaluate it at P
�
2 � π � 2 � π � 2 � .

Solution: From Table 3-2,

A � �
r̂ sinθ 	 ẑcosθ � sin2 θcosφ 	 �

r̂ cos θ � ẑsin θ � cos2 φ � φ̂φφsinφ� r̂
�
sin3 θcosφ 	 cosθcos2 φ � � φ̂φφsinφ 	 ẑ

�
cosθsin2 θcos φ � sinθcos2 φ �

At P
�
2 � π � 2 � π � 2 � ,

A � � φ̂φφ 
Problem 3.54 Evaluate the line integral of E � x̂x � ŷy along the segment P1 to P2

of the circular path shown in the figure.

x

y

P1 (0, 3)

P2 (-3, 0)
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Solution: We need to calculate:
� P2

P1

E � d � � � 
Since the path is along the perimeter of a circle, it is best to use cylindrical
coordinates, which requires expressing both E and d � � � in cylindrical coordinates.
Using Table 3-2,

E � x̂x � ŷy � �
r̂ cos φ � φ̂φφsin φ � r cos φ � �

r̂ sinφ 	 φ̂φφcosφ � r sin φ� r̂ r
�
cos2 φ � sin2 φ � � φ̂φφ2r sin φcos φ

The designated path is along the φ-direction at a constant r � 3. From Table 3-1, the
applicable component of d � � � is:

d � � � � φ̂φφ r dφ 
Hence,

� P2

P1

E � d � � � � � φ � 180 �

φ � 90 �
� r̂r

�
cos2 φ � sin2 φ � � φ̂φφ 2r sin φcosφ � � φ̂φφ r dφ ���

r � 3

� � 180 �

90 � � 2r2 sinφcos φ dφ ��
r � 3

� � 2r2 sin2 φ
2 ����

180 �

φ � 90 �
�����
r � 3

� 9 
Problem 3.55 Verify Stokes’s theorem for the vector field B � �

r̂ cosφ 	 φ̂φφsinφ � by
evaluating:

(a) �

�
C

B � d � � � over the path comprising a quarter section of a circle, as shown in the

figure, and

(b)
�

S

�
∇ � � � B ��� ds over the surface of the quarter section.

y

(-3, 0)

(0, 3)

x

L2

L3

L1
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Solution:
(a)

�

�
C

B � d � � � � �
L1

B � d � � � 	 �
L2

B � d � � � 	 �
L3

B � d � � �

Given the shape of the path, it is best to use cylindrical coordinates. B is already
expressed in cylindrical coordinates, and we need to choose d � � � in cylindrical
coordinates:

d � � � � r̂ dr 	 φ̂φφr dφ 	 ẑ dz 
Along path L1, dφ � 0 and dz � 0. Hence, d � � � � r̂ dr and

�
L1

B � d � � � � � r � 3

r � 0

�
r̂ cosφ 	 φ̂φφsinφ � � r̂ dr ����

φ � 90 �� � 3

r � 0
cosφ dr ����

φ � 90 �

� r cos φ � 3r � 0 ���
φ � 90 �

� 0 
Along L2, dr � dz � 0. Hence, d � � � � φ̂φφr dφ and

�
L2

B � d � � � � � 180 �

φ � 90 �

�
r̂ cosφ 	 φ̂φφsinφ � � φ̂φφr dφ ���

r � 3� � 3cos φ � 180 �
90 � � 3 

Along L3, dz � 0 and dφ � 0. Hence, d � � � � r̂ dr and
�

L3

B � d � � � � � 0

r � 3

�
r̂ cosφ 	 φ̂φφsinφ � � r̂ dr ���

φ � 180 �� � 0

r � 3
cosφ dr � φ � 180 � � � r � 03 � 3 

Hence,
�

�
C

B � d � � � � 0 	 3 	 3 � 6 
(b)

∇ � B � ẑ
1
r

�
∂
∂r

�
rBφ � ∂Br

∂φ 
 

� ẑ

1
r

�
∂
∂r

�
r sin φ � � ∂

∂φ
�
cos φ � 


� ẑ
1
r

�
sinφ 	 sinφ ��� ẑ

2
r

sin φ 
�

S

�
∇ � B ��� ds � � 3

r � 0

� 180 �

φ � 90 �

�
ẑ

2
r

sinφ 
 � ẑr dr dφ

� � 2r � 3r � 0 cosφ ���
180 �

φ � 90 �
� 6 
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Hence, Stokes’s theorem is verified.

Problem 3.56 Find the Laplacian of the following scalar functions:

(a) V1 � 10r3 sin2φ

(b) V2 � �
2 � R2 � cos θsin φ

Solution:
(a)

∇2V1 � 1
r

∂
∂r

�
r

∂V1

∂r 
 	 1
r2

∂2V1

∂φ2 	 ∂2V
∂z2

� 1
r

∂
∂r

�
r

∂
∂r

�
10r3 sin2φ � 
 	 1

r2

∂2

∂φ2

�
10r3 sin2φ � 	 0

� 1
r

∂
∂r

�
30r3 sin2φ � � 1

r2

�
10r3 � 4sin 2φ� 90r sin 2φ � 40r sin 2φ � 50r sin 2φ 

(b)

∇2V2 � 1
R2

∂
∂R

�
R2 ∂V2

∂R 
 	 1
R2 sinθ

∂
∂θ

�
sinθ

∂V2

∂θ 
 	 1

R2 sin2 θ
∂2V2

∂φ2

� 1
R2

∂
∂R

�
R2 ∂

∂R

�
2

R2 cosθsin φ 
 

	 1

R2 sinθ
∂

∂θ

�
sinθ

∂
∂θ

�
2

R2 cosθsinφ 
 

	 1

R2 sin2 θ
∂2

∂φ2

�
2

R2 cos θsinφ 

� 4

R4 cos θsinφ � 4
R4 cos θsinφ � 2

R4

cosθ
sin2 θ

sin φ

� � 2
R4

cosθsin φ
sin2 θ
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Chapter 4:  Electrostatics 
 
 
Lesson #22 
Chapter — Section:  4-1 to 4-3 
Topics:  Charge and current distributions, Coulomb’s law 
 
Highlights: 

• Maxwell’s Equations reduce to uncoupled electrostatics and magnetostatics when 
charges are either fixed in space or move at constant speed. 

• Line, surface and volume charge distributions 
• Coulomb’s law for various charge distributions 

 
Special Illustrations: 

• Examples 4-3 and 4-4 
• CD-ROM Modules 4.1-4.5 
• CD-ROM Demos 4.1-4.8 
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Lesson #23 
Chapter — Section:  4-4 
Topics:  Gauss’s law 
 
Highlights: 

• Gauss’s law in differential and integral form 
• The need for symmetry to apply Gauss’s law in practice 
• Coulomb’s law for various charge distributions 

 
Special Illustrations: 

• Example 4-6 
• CD-ROM Module 4.6 
• CD-ROM Demos 4.9 and 4.10 
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Lesson #24 
Chapter — Section:  4-5 
Topics:  Electric potential 
 
Highlights: 

• Concept of “potential” 
• Relation to electric field 
• Relation to charges 
• Poisson’s and Laplace’s equations 

 
Special Illustrations: 

• Example 4-7 
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Lesson #25 
Chapter — Section:  4-6 and 4-7 
Topics:  Electrical materials and conductors 
 
Highlights: 

• Conductivity ranges for conductors, semiconductors, and insulators 
• Ohm’s law 
• Resistance of a wire 
• Joule’s law 

 
Special Illustrations: 

• Example 4-9 
• Technology Brief on “Resistive Sensors” (CD-ROM) 

 
 
Resistive Sensors  

An electrical sensor is a device capable of responding to an applied stimulus by generating an 
electrical signal whose voltage, current, or some other attribute is related to the intensity of the 
stimulus.  The family of possible stimuli encompasses a wide array of physical, chemical, and 
biological quantities including temperature, pressure, position, distance, motion, velocity, 
acceleration, concentration (of a gas or liquid), blood flow, etc.  The sensing process relies on 
measuring resistance, capacitance, inductance, induced electromotive force (emf), oscillation 
frequency or time delay, among others.  This Technology Brief covers resistive sensors.  
Capacitive, inductive, and emf sensors are covered 
separately (in this and later chapters).  

Piezoresistivity  

According to Eq. (4.70), the resistance of a 
cylindrical resistor or wire conductor is given by  
R = l/σA), where l is the cylinder’s length, A is its 
cross-sectional area, and σ is the conductivity of 
its material. Stretching the wire by an applied 
external force causes l to increase and A to 
decrease.  Consequently, R increases (A). 
Conversely, compressing the wire causes R to 
decrease.  The Greek word piezein means to press, 
from which the term piezoresistivity is derived.  
This should not be confused with piezoelectricity, 
which is an emf effect (see EMF Sensors).  
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Lesson #26 
Chapter — Section:  4-8, 4-9 
Topics:  Dielectrics, boundary conditions 
 
Highlights: 

• Relative permittivity and dielectric strength 
• Electrostatic boundary conditions for various dielectric and conductor 

combinations 
 
Special Illustrations: 

• Example 4-10 
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Lesson #27 
Chapter — Section:  4-10 
Topics:  Capacitance 
 
Highlights: 

• Capacitor as “charge accumulator” 
• General expression for C 
• Capacitance of parallel-plate and coaxial capacitors 
• Joule’s law 

 
Special Illustrations: 

• Examples 4-11 and 4-12 
• Technology Brief on “Capacitive Sensors” (CD-ROM) 

 
 
Capacitive Sensors  

To sense is to respond to a stimulus (see Resistive Sensors).  A capacitor can function as a sensor 
if the stimulus changes the capacitor’s geometry—usually the spacing between its conductive 
elements—or the dielectric properties of the insulating material situated between them. 
Capacitive sensors are used in a multitude of 
applications. A few examples follow.  

Fluid Gauge  

The two metal electrodes in (A), usually rods or 
plates, form a capacitor whose capacitance is 
directly proportional to the permittivity of the 
material between them. If the fluid section is of 
height Hf  and the height of the empty space above 
it is (H – Hf ), then the overall capacitance is 
equivalent to two capacitors in parallel:  

 
where w is the electrode plate width, d is the 
spacing between electrodes, and εf and εa are the 
permittivities of the fluid and air, respectively.   
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Lesson #28 
Chapter — Section:  4-11 
Topics:  Energy 
 
Highlights: 

• A charged capacitor is an energy storage device 
• Energy density 

 
Special Illustrations: 

• Technology Brief on “Non-Contact Sensors” (CD-ROM) 
 
 
Non-Contact Sensors  

Precision positioning is a critical ingredient of semiconductor device fabrication, as well as the 
operation and control of many mechanical systems.  Non-contact capacitive sensors are used to 
sense the position of silicon wafers during the deposition, etching, and cutting processes, without 
coming in direct contact with the wafers.  They are also used to sense and control robot arms in 
equipment manufacturing and to position hard disc drives, photocopier rollers, printing presses, 
and other similar systems. 

Basic Principle 

The concentric plate capacitor (A1) consists of 
two metal plates, sharing the same plane, but 
electrically isolated from each other by an 
insulating material.  When connected to a 
voltage source, charges of opposite polarity will 
form on the two plates, resulting in the creation 
of electric-field lines between them.  The same 
principle applies to the adjacent-plates capacitor 
in (A2). In both cases, the capacitance is 
determined by the shapes and sizes of the 
conductive elements and by the permittivity of 
the dielectric medium containing the electric 
field lines between them.  
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Lesson #29 
Chapter — Section:  4-12 
Topics:  Image method 
Highlights: 

• Image method useful for solving problems involving charges next to conducting 
planes 

• Remove conducting plane and replace with mirror images for the charges (with 
opposite polarity) 

 
Special Illustrations: 

• Example 4-13 
• CD-ROM Demos 4.11-4.13 

 

 
 



CHAPTER 4 173

Chapter 4

Sections 4-2: Charge and Current Distributions

Problem 4.1 A cube 2 m on a side is located in the first octant in a Cartesian
coordinate system, with one of its corners at the origin. Find the total charge
contained in the cube if the charge density is given by ρv � xy2e � 2z (mC/m3).

Solution: For the cube shown in Fig. P4.1, application of Eq. (4.5) gives

Q � �
V

ρv dV � � 2

x � 0

� 2

y � 0

� 2

z � 0
xy2e � 2z dx dy dz

� � � 1
12

x2y3e � 2z 
 �����

2

x � 0
�����

2

y � 0
�����

2

z � 0

� 8
3

�
1 � e � 4 ��� 2  62 mC 

2 m

0

2 m

2 m y

z

x

Figure P4.1: Cube of Problem 4.1.

Problem 4.2 Find the total charge contained in a cylindrical volume defined by
r

�
2 m and 0

�
z

�
3 m if ρv � 20rz (mC/m3).

Solution: For the cylinder shown in Fig. P4.2, application of Eq. (4.5) gives

Q � � 3

z � 0

� 2π

φ � 0

� 2

r � 0
20rz r dr dφ dz

� �
10
3

r3φz2 
 �����

2

r � 0
�����

2π

φ � 0
�����

3

z � 0

� 480π (mC) � 1  5 C 
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3 m

0

2 m

2 m
y

z

x

Figure P4.2: Cylinder of Problem 4.2.

Problem 4.3 Find the total charge contained in a cone defined by R
�

2 m and
0

� θ � π � 4, given that ρv � 10R2 cos2 θ (mC/m3).

Solution: For the cone of Fig. P4.3, application of Eq. (4.5) gives

Q � � 2π

φ � 0

� π � 4
θ � 0

� 2

R � 0
10R2 cos2 θ R2 sinθ dR dθ dφ

� � � 2
3

R5φcos3 θ 
 �����

2

R � 0
�����

π � 4
θ � 0

�����

2π

φ � 0

� 128π
3

��
1 �

� � 2
2 � 3

��
� 86  65 (mC) 
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2 m

0
y

z

x

π/4

Figure P4.3: Cone of Problem 4.3.

Problem 4.4 If the line charge density is given by ρl � 24y2 (mC/m), find the total
charge distributed on the y-axis from y � � 5 to y � 5.

Solution:

Q � � 5

� 5
ρl dy � � 5

� 5
24y2 dy � 24y3

3 ����

5

� 5
� 2000 mC � 2 C 

Problem 4.5 Find the total charge on a circular disk defined by r
�

a and z � 0 if:
(a) ρs � ρs0 cos φ (C/m2),
(b) ρs � ρs0 sin2 φ (C/m2),
(c) ρs � ρs0e � r (C/m2),
(d) ρs � ρs0e � r sin2 φ (C/m2),

where ρs0 is a constant.

Solution:
(a)

Q � �
ρs ds � � a

r � 0

� 2π

φ � 0
ρs0 cosφ r dr dφ � ρs0

r2

2 ����

a

0
sinφ ����

2π

0

� 0 
(b)

Q � � a

r � 0

� 2π

φ � 0
ρs0 sin2 φ r dr dφ � ρs0

r2

2 ����

a

0

� 2π

0

�
1 � cos2φ

2 
 dφ

� ρs0a2

4

�
φ � sin2φ

2 
 ����

2π

0
� πa2

2
ρs0 
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(c)

Q � � a

r � 0

� 2π

φ � 0
ρs0e � rr dr dφ � 2πρs0

� a

0
re � r dr

� 2πρs0
� � re � r � e � r � a

0� 2πρs0 � 1 � e � a � 1 	 a ��� 
(d)

Q � � a

r � 0

� 2π

φ � 0
ρs0e � r sin2 φ r dr dφ

� ρs0

� a

r � 0
re � r dr

� 2π

φ � 0
sin2 φ dφ

� ρs0 � 1 � e � a � 1 	 a ��� � π � πρs0 � 1 � e � a � 1 	 a ��� 
Problem 4.6 If J � ŷ4xz (A/m2), find the current I flowing through a square with
corners at

�
0 � 0 � 0 � , � 2 � 0 � 0 � , � 2 � 0 � 2 � , and

�
0 � 0 � 2 � .

Solution: Using Eq. (4.12), the net current flowing through the square shown in Fig.
P4.6 is

I � �
S

J � ds � � 2

x � 0

� 2

z � 0

�
ŷ4xz � �����

y � 0

� � ŷ dx dz ��� � x2z2 � �����

2

x � 0
�����

2

z � 0

� 16 A 

2 m

2 m

0
y

z

x

J

Figure P4.6: Square surface.
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Problem 4.7 If J � R̂5 � R (A/m2), find I through the surface R � 5 m.

Solution: Using Eq. (4.12), we have

I � �
S

J � ds � � 2π

φ � 0

� π

θ � 0

�
R̂

5
R 
 � � R̂R2 sinθ dθ dφ �

� � 5Rφcosθ �����
R � 5

�����

π

θ � 0
�����

2π

φ � 0

� 100π � 314  2 (A) 
Problem 4.8 An electron beam shaped like a circular cylinder of radius r0 carries a
charge density given by

ρv � � � ρ0

1 	 r2 
 (C/m3 � �
where ρ0 is a positive constant and the beam’s axis is coincident with the z-axis.

(a) Determine the total charge contained in length L of the beam.
(b) If the electrons are moving in the 	 z-direction with uniform speed u, determine

the magnitude and direction of the current crossing the z-plane.

Solution:
(a)

Q � � r0

r � 0

� L

z � 0
ρv dV � � r0

r � 0

� L

z � 0

� � ρ0

1 	 r2 
 2πr dr dz

� � 2πρ0L
� r0

0

r
1 	 r2 dr � � πρ0L ln

�
1 	 r2

0 � 
(b)

J � ρvu � � ẑ
uρ0

1 	 r2 (A/m2) �
I � �

J � ds

� � r0

r � 0

� 2π

φ � 0

�
� ẑ

uρ0

1 	 r2 
 � ẑr dr dφ

� � 2πuρ0

� r0

0

r
1 	 r2 dr � � πuρ0 ln

�
1 	 r2

0 � (A) 
Current direction is along � ẑ.
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Section 4-3: Coulomb’s Law

Problem 4.9 A square with sides 2 m each has a charge of 40 µC at each of its four
corners. Determine the electric field at a point 5 m above the center of the square.

R3


R2


z

P(0,0,5)

y

x

R1R4

Q1(1,1,0)

Q2(-1,1,0)

Q3(-1,-1,0)

Q4(1,-1,0)

Figure P4.9: Square with charges at the corners.

Solution: The distance �R � between any of the charges and point P is
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�R � � � 12 	 12 	 52 � � 27.

E � Q
4πε0

�
R1

�R � 3 	 R2

�R � 3 	 R3

�R � 3 	 R4

�R � 3 �
� Q

4πε0

� � x̂ � ŷ 	 ẑ5�
27 � 3 � 2 	 x̂ � ŷ 	 ẑ5�

27 � 3 � 2 	 � x̂ 	 ŷ 	 ẑ5�
27 � 3 � 2 	 x̂ 	 ŷ 	 ẑ5�

27 � 3 � 2 �� ẑ
5Q�

27 � 3 � 2πε0
� ẑ

5 � 40 µC�
27 � 3 � 2πε0

� 1  42
πε0

� 10 � 6 (V/m) � ẑ51  2 (kV/m) 
Problem 4.10 Three point charges, each with q � 3 nC, are located at the corners
of a triangle in the x–y plane, with one corner at the origin, another at

�
2 cm � 0 � 0 � ,

and the third at
�
0 � 2 cm � 0 � . Find the force acting on the charge located at the origin.

Solution: Use Eq. (4.19) to determine the electric field at the origin due to the other
two point charges [Fig. P4.10]:

E � 1
4πε

�
3 nC

� � x̂0  02 ��
0  02 � 3 � 	 3 nC

� � ŷ0  02 ��
0  02 � 3 � � 67  4 � x̂ 	 ŷ � (kV/m) at R � 0 

Employ Eq. (4.14) to find the force F � qE � � 202  2 � x̂ 	 ŷ � (µN) 
2 cm

2 cmQ

Q

Q

x

y

R2

R1

R1 = -x 2 cm^

R2 = -y 2 cm^

Figure P4.10: Locations of charges in Problem 4.10.

Problem 4.11 Charge q1 � 6 µC is located at
�
1 cm � 1 cm � 0 � and charge q2

is located at
�
0 � 0 � 4 cm � . What should q2 be so that E at

�
0 � 2 cm � 0 � has no

y-component?

Solution: For the configuration of Fig. P4.11, use of Eq. (4.19) gives
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4 cm

1 cm

1 cm 2 cm
0 y

z

x

R2

E2
R1

E1

q1

q2

R2 = (y2 - z4) cm ^ ^

R1 = -x + y(2-1) = (-x + y) cm^ ^ ^^

Figure P4.11: Locations of charges in Problem 4.11.

E
�
R � ŷ2cm ��� 1

4πε

�
6µC

� � x̂ 	 ŷ ��� 10 � 2�
2 � 10 � 2 � 3 � 2 	 q2

�
ŷ2 � ẑ4 ��� 10 � 2�
20 � 10 � 2 � 3 � 2 �

� 1
4πε

� � x̂21  21 � 10 � 6 	 ŷ
�
21  21 � 10 � 6 	 0  224q2 �

� ẑ0  447q2 � (V/m) 
If Ey � 0, then q2 � � 21  21 � 10 � 6 � 0  224 � � 94  69 (µC) 
Problem 4.12 A line of charge with uniform density ρl � 8 (µC/m) exists in air
along the z-axis between z � 0 and z � 5 cm. Find E at (0,10 cm,0).

Solution: Use of Eq. (4.21c) for the line of charge shown in Fig. P4.12 gives

E � 1
4πε0

�
l �

R̂ � ρl dl �

R � 2
�

R � � ŷ0  1 � ẑz

� 1
4πε0

� 0 � 05

z � 0

�
8 � 10 � 6 � �

ŷ0  1 � ẑz �
� � 0  1 � 2 	 z2 � 3 � 2 dz

� 8 � 10 � 6

4πε0

�
ŷ10z 	 ẑ

� �
0  1 � 2 	 z2 � �����

0 � 05

z � 0� 71  86 � 103 � ŷ4  47 � ẑ1  06 � � ŷ321  4 � 103 � ẑ76  2 � 103 (V/m) 
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5 cm

dz

10 cm
0 y

z

x

R' = y0.1 - zz^ ^

Figure P4.12: Line charge.

Problem 4.13 Electric charge is distributed along an arc located in the x–y plane
and defined by r � 2 cm and 0

� φ � π � 4. If ρl � 5
�
µC/m), find E at

�
0 � 0 � z � and

then evaluate it at (a) the origin, (b) z � 5 cm, and (c) z � � 5 cm.

Solution: For the arc of charge shown in Fig. P4.13, dl � r dφ � 0  02 dφ � and
R � � � x̂0  02cos φ � ŷ0  02sin φ 	 ẑz. Use of Eq. (4.21c) gives

E � 1
4πε0

�
l �

R̂ � ρl dl �

R � 2� 1
4πε0

� π � 4
φ � 0

ρl

� � x̂0  02cos φ � ŷ0  02sin φ 	 ẑz �� �
0  02 � 2 	 z2 � 3 � 2 0  02 dφ

� 898  8� �
0  02 � 2 	 z2 � 3 � 2 � � x̂0  014 � ŷ0  006 	 ẑ0  78z � (V/m) 

(a) At z � 0, E � � x̂1  6 � ŷ0  66 (MV/m) 
(b) At z � 5 cm, E � � x̂81  4 � ŷ33  7 	 ẑ226 (kV/m) 
(c) At z � � 5 cm, E � � x̂81  4 � ŷ33  7 � ẑ226 (kV/m) 
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2 cm

z

y

z

x

R' = -r 0.02 + zz^ ^

r2 cm = ^
π/4

r 0.02 m^ 

dz

Figure P4.13: Line charge along an arc.

Problem 4.14 A line of charge with uniform density ρl extends between z � � L � 2
and z � L � 2 along the z-axis. Apply Coulomb’s law to obtain an expression for the
electric field at any point P

�
r� φ � 0 � on the x–y plane. Show that your result reduces to

the expression given by Eq. (4.33) as the length L is extended to infinity.

Solution: Consider an element of charge of height dz at height z. Call it element 1.
The electric field at P due to this element is dE1. Similarly, an element at � z
produces dE2. These two electric fields have equal z-components, but in opposite
directions, and hence they will cancel. Their components along r̂ will add. Thus, the
net field due to both elements is

dE � dE1 	 dE2 � r̂
2ρl cosθ dz

4πε0R2 � r̂ρl cosθ dz
2πε0R2 

where the cosθ factor provides the components of dE1 and dE2 along r̂.
Our integration variable is z, but it will be easier to integrate over the variable θ

from θ � 0 to

θ0 � sin � 1 L � 2
� r2 	 �

L � 2 � 2 
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z

L/2

1

R

2

z

-z

θ0
θ
θ

θ
θ

r

2

dE2

dE1

-L/2

dz

x-y plane

Figure P4.14: Line charge of length L.

Hence, with R � r � cos θ, and z � r tan θ and dz � r sec2 θ dθ, we have

E � � L � 2
z � 0

dE � � θ0

θ � 0
dE � � θ0

0
r̂

ρl

2πε0

cos3 θ
r2 r sec2 θ dθ

� r̂
ρl

2πε0r

� θ0

0
cos θ dθ

� r̂
ρl

2πε0r
sinθ0 � r̂

ρl

2πε0r
L � 2

� r2 	 �
L � 2 � 2 

For L � r,
L � 2

� r2 	 �
L � 2 � 2 � 1 �
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and
E � r̂

ρl

2πε0r
(infinite line of charge) 

Problem 4.15 Repeat Example 4-5 for the circular disk of charge of radius a, but
in the present case assume the surface charge density to vary with r as

ρs � ρs0r2 (C/m2) �
where ρs0 is a constant.

Solution: We start with the expression for dE given in Example 4-5 but we replace
ρs with ρs0r2:

dE � ẑ
h

4πε0
�
r2 	 h2 � 3 � 2 � 2πρs0r3 dr � �

E � ẑ
ρs0h
2ε0

� a

0

r3 dr�
r2 	 h2 � 3 � 2 

To perform the integration, we use

R2 � r2 	 h2 �
2R dR � 2r dr�

E � ẑ
ρs0h
2ε0

� � a2 � h2 � 1 � 2

h

�
R2 � h2 � dR

R2

� ẑ
ρs0h
2ε0

� � � a2 � h2 � 1 � 2

h
dR � � � a2 � h2 � 1 � 2

h

h2

R2 dR �
� ẑ

ρs0h
2ε0

� � a2 	 h2 	 h2� a2 	 h2 � 2h � 
Problem 4.16 Multiple charges at different locations are said to be in equilibrium
if the force acting on any one of them is identical in magnitude and direction to the
force acting on any of the others. Suppose we have two negative charges, one located
at the origin and carrying charge � 9e, and the other located on the positive x-axis at
a distance d from the first one and carrying charge � 36e. Determine the location,
polarity and magnitude of a third charge whose placement would bring the entire
system into equilibrium.

Solution: If

F1 � force on Q1 �
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(d-x)x

d

Q1 = -9e Q3 Q2 = -36e

x=0
x

Figure P4.16: Three collinear charges.

F2 � force on Q2 �
F3 � force on Q3 �

then equilibrium means that
F1 � F2 � F3 

The two original charges are both negative, which mean they would repel each other.
The third charge has to be positive and has to lie somewhere between them in order
to counteract their repulsion force. The forces acting on charges Q1, Q2, and Q3 are
respectively

F1 � R̂21Q1Q2

4πε0R2
21 	 R̂31Q1Q3

4πε0R2
31

� � x̂
324e2

4πε0d2 	 x̂
9eQ3

4πε0x2 �
F2 � R̂12Q1Q2

4πε0R2
12 	 R̂32Q3Q2

4πε0R2
32

� x̂
324e2

4πε0d2 � x̂
36eQ3

4πε0
�
d � x � 2 �

F3 � R̂13Q1Q3

4πε0R2
13 	 R̂23Q2Q3

4πε0R2
23

� � x̂
9eQ3

4πε0x2 	 x̂
36eQ3

4πε0
�
d � x � 2 

Hence, equilibrium requires that

� 324e
d2 	 9Q3

x2 � 324e
d2 � 36Q3�

d � x � 2 � � 9Q3

x2 	 36Q3�
d � x � 2 

Solution of the above equations yields

Q3 � 4e � x � d
3


Section 4-4: Gauss’s Law

Problem 4.17 Three infinite lines of charge, all parallel to the z-axis, are located at
the three corners of the kite-shaped arrangement shown in Fig. 4-29 (P4.17). If the
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two right triangles are symmetrical and of equal corresponding sides, show that the
electric field is zero at the origin.

y

x

ρl ρl

-2ρl

Figure P4.17: Kite-shaped arrangment of line charges for Problem 4.17.

Solution: The field due to an infinite line of charge is given by Eq. (4.33). In the
present case, the total E at the origin is

E � E1 	 E2 	 E3 
The components of E1 and E2 along x̂ cancel and their components along � ŷ add.
Also, E3 is along ŷ because the line charge on the y-axis is negative. Hence,

E � � ŷ
2ρl cos θ
2πε0R1 	 ŷ

2ρl

2πε0R2


But cosθ � R1 � R2. Hence,

E � � ŷ
ρl

πε0R1

R1

R2 	 ŷ
ρl

πε0R2
� 0 

Problem 4.18 Three infinite lines of charge, ρl1 � 3 (nC/m), ρl2 � � 3 (nC/m), and
ρl3 � 3 (nC/m), are all parallel to the z-axis. If they pass through the respective points
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ρl3

ρl2

ρl1

R3 E1

E3

P

(a,0)

(0,-b)

(0,b)

E2

y

x

Figure P4.18: Three parallel line charges.

�
0 � � b � , � 0 � 0 � , and

�
0 � b � in the x–y plane, find the electric field at

�
a � 0 � 0 � . Evaluate

your result for a � 2 cm and b � 1 cm.

Solution:

ρl1 � 3 (nC/m) �
ρl2 � � 3 (nC/m) �
ρl3 � ρl1 �
E � E1 	 E2 	 E3 

Components of line charges 1 and 3 along y cancel and components along x add.
Hence, using Eq. (4.33),

E � x̂
2ρl1

2πε0R1
cosθ 	 x̂

ρl2

2πε0a


with cos θ � a� a2 	 b2
and R1 � � a2 	 b2,

E � x̂3
2πε0

�
2a

a2 	 b2 � 1
a � � 10 � 9 (V/m) 
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For a � 2 cm and b � 1 cm,

E � x̂1  62 (kV/m) 
Problem 4.19 A horizontal strip lying in the x–y plane is of width d in the
y-direction and infinitely long in the x-direction. If the strip is in air and has a
uniform charge distribution ρs, use Coulomb’s law to obtain an explicit expression
for the electric field at a point P located at a distance h above the centerline of the
strip. Extend your result to the special case where d is infinite and compare it with
Eq. (4.25).

� � � � � �

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�

ρs

xd

dE2

z

dE1

y

1

2
y

-y

R�
�
�

θ θ

θ0

P(0,0,h)

� � � � �

Figure P4.19: Horizontal strip of charge.

Solution: The strip of charge density ρs (C/m2) can be treated as a set of adjacent line
charges each of charge ρl � ρs dy and width dy. At point P, the fields of line charge
at distance y and line charge at distance � y give contributions that cancel each other
along ŷ and add along ẑ. For each such pair,

dE � ẑ
2ρs dycos θ

2πε0R
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With R � h � cos θ, we integrate from y � 0 to d � 2, which corresponds to θ � 0 to
θ0 � sin � 1 � � d � 2 � � � h2 	 �

d � 2 � 2 � 1 � 2 � . Thus,

E � � d � 2
0

dE � ẑ
ρs

πε0

� d � 2
0

cosθ
R

dy � ẑ
ρs

πε0

� θ0

0

cos2 θ
h

� h
cos2 θ

dθ

� ẑ
ρs

πε0
θ0 

For an infinitely wide sheet, θ0 � π � 2 and E � ẑ
ρs

2ε0
, which is identical with Eq.

(4.25).

Problem 4.20 Given the electric flux density

D � x̂2
�
x 	 y � 	 ŷ

�
3x � 2y � (C/m2) �

determine
(a) ρv by applying Eq. (4.26),
(b) the total charge Q enclosed in a cube 2 m on a side, located in the first octant

with three of its sides coincident with the x-, y-, and z-axes and one of its
corners at the origin, and

(c) the total charge Q in the cube, obtained by applying Eq. (4.29).

Solution:
(a) By applying Eq. (4.26)

ρv � ∇ � D � ∂
∂x

�
2x 	 2y � 	 ∂

∂y

�
3x � 2y ��� 0 

(b) Integrate the charge density over the volume as in Eq. (4.27):

Q � �
V

∇ � DdV � � 2

x � 0

� 2

y � 0

� 2

z � 0
0 dx dy dz � 0 

(c) Apply Gauss’ law to calculate the total charge from Eq. (4.29)

Q � �

�
D � ds � Ffront 	 Fback 	 Fright 	 Fleft 	 Ftop 	 Fbottom �

Ffront � � 2

y � 0

� 2

z � 0

�
x̂2
�
x 	 y � 	 ŷ

�
3x � 2y � � �����

x � 2

� � x̂ dz dy �
� � 2

y � 0

� 2

z � 0
2
�
x 	 y � �����

x � 2

dz dy �
��

2z

�
2y 	 1

2
y2 
 �����

2

z � 0

��
�����

2

y � 0

� 24 �
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Fback � � 2

y � 0

� 2

z � 0

�
x̂2
�
x 	 y � 	 ŷ

�
3x � 2y � � �����

x � 0

� � � x̂ dz dy �
� � � 2

y � 0

� 2

z � 0
2
�
x 	 y � �����

x � 0

dz dy � �
��

zy2 �����

2

z � 0

��
�����

2

y � 0

� � 8 �
Fright � � 2

x � 0

� 2

z � 0

�
x̂2
�
x 	 y � 	 ŷ

�
3x � 2y � � �����

y � 2

� � ŷ dz dx �
� � 2

x � 0

� 2

z � 0

�
3x � 2y � �����

y � 2

dz dx �
��

z

�
3
2

x2 � 4x 
 �����

2

z � 0

��
�����

2

x � 0

� � 4 �
Fleft � � 2

x � 0

� 2

z � 0

�
x̂2
�
x 	 y � 	 ŷ

�
3x � 2y � � �����

y � 0

� � � ŷ dz dx �
� � � 2

x � 0

� 2

z � 0

�
3x � 2y � �����

y � 0

dz dx � �
��

z

�
3
2

x2 
 �����

2

z � 0

��
�����

2

x � 0

� � 12 �
Ftop � � 2

x � 0

� 2

z � 0

�
x̂2
�
x 	 y � 	 ŷ

�
3x � 2y � � �����

z � 2

� � ẑ dy dx �
� � 2

x � 0

� 2

z � 0
0 �����

z � 2

dy dx � 0 �
Fbottom � � 2

x � 0

� 2

z � 0

�
x̂2
�
x 	 y � 	 ŷ

�
3x � 2y � � �����

z � 0

� � ẑ dy dx �
� � 2

x � 0

� 2

z � 0
0 �����

z � 0

dy dx � 0 
Thus Q � �

�
D � ds � 24 � 8 � 4 � 12 	 0 	 0 � 0 

Problem 4.21 Repeat Problem 4.20 for D � x̂xy3z3 (C/m2).

Solution:

(a) From Eq. (4.26), ρv � ∇ � D � ∂
∂x

�
xy3z3 ��� y3z3 

(b) Total charge Q is given by Eq. (4.27):

Q � �
V

∇ � DdV � � 2

z � 0

� 2

y � 0

� 2

x � 0
y3z3 dx dy dz � xy4z4

16 �����

2

x � 0
�����

2

y � 0
�����

2

z � 0

� 32 C 
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(c) Using Gauss’ law we have

�

�
S

D � ds � Ffront 	 Fback 	 Fright 	 Fleft 	 Ftop 	 Fbottom 
Note that D � x̂Dx, so only Ffront and Fback (integration over ẑ surfaces) will contribute
to the integral.

Ffront � � 2

z � 0

� 2

y � 0

�
x̂xy3z3 � �����

x � 2

� � x̂ dy dz �
� � 2

z � 0

� 2

y � 0
xy3z3 �����

x � 2

dy dz �
��

2

�
y4z4

16 
 �����

2

y � 0

��
�����

2

z � 0

� 32 �
Fback � � 2

z � 0

� 2

y � 0

�
x̂xy3z3 � �����

x � 0

� � � x̂ dy dz ��� � � 2

z � 0

� 2

y � 0
xy3z3 �����

x � 0

dy dz � 0 
Thus Q � �

�
D � ds � 32 	 0 	 0 	 0 	 0 	 0 � 32 C 

Problem 4.22 Charge Q1 is uniformly distributed over a thin spherical shell of
radius a, and charge Q2 is uniformly distributed over a second spherical shell of
radius b, with b � a. Apply Gauss’s law to find E in the regions R � a, a � R � b,
and R � b.

Solution: Using symmetry considerations, we know D � R̂DR. From Table 3.1,
ds � R̂R2 sinθ dθ dφ for an element of a spherical surface. Using Gauss’s law in
integral form (Eq. (4.29)),

�

�
S

D � ds � Qtot �
where Qtot is the total charge enclosed in S. For a spherical surface of radius R,

� 2π

φ � 0

� π

θ � 0

�
R̂DR � � � R̂R2 sinθ dθ dφ ��� Qtot �

DRR2 � 2π � � � cos θ � π0 � Qtot �
DR � Qtot

4πR2 
From Eq. (4.15), we know a linear, isotropic material has the constitutive relationship
D � εE. Thus, we find E from D.
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(a) In the region R � a,

Qtot � 0 � E � R̂ER � R̂Qtot

4πR2ε
� 0 (V/m) 

(b) In the region a � R � b,

Qtot � Q1 � E � R̂ER � R̂Q1

4πR2ε
(V/m) 

(c) In the region R � b,

Qtot � Q1 	 Q2 � E � R̂ER � R̂
�
Q1 	 Q2 �
4πR2ε

(V/m) 
Problem 4.23 The electric flux density inside a dielectric sphere of radius a
centered at the origin is given by

D � R̂ρ0R (C/m2),

where ρ0 is a constant. Find the total charge inside the sphere.

Solution:

Q � �

�
S

D � ds � � π

θ � 0

� 2π

φ � 0
R̂ρ0R � R̂R2 sinθ dθ dφ ����

R � a� 2πρ0a3
� π

0
sinθ dθ � � 2πρ0a3 cosθ � π0 � 4πρ0a3 (C) 

Problem 4.24 In a certain region of space, the charge density is given in cylindrical
coordinates by the function:

ρv � 50re � r (C/m3 � 
Apply Gauss’s law to find D.

Solution:
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L r

z

Figure P4.24: Gaussian surface.

Method 1: Integral Form of Gauss’s Law

Since ρv varies as a function of r only, so will D. Hence, we construct a cylinder of
radius r and length L, coincident with the z-axis. Symmetry suggests that D has the
functional form D � r̂D. Hence,

�

�
S

D � ds � Q �
�

r̂D � ds � D
�
2πrL � �

Q � 2πL
� r

0
50re � r � r dr

� 100πL � � r2e � r 	 2
�
1 � e � r � 1 	 r � ��� �

D � r̂D � r̂50

�
2
r

�
1 � e � r � 1 	 r � � � re � r � 

Method 2: Differential Method

∇ � D � ρv � D � r̂Dr �
with Dr being a function of r.

1
r

∂
∂r

�
rDr ��� 50re � r �
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∂
∂r

�
rDr ��� 50r2e � r �

� r

0

∂
∂r

�
rDr � dr � � r

0
50r2e � r dr�

rDr � 50 � 2 � 1 � e � r � 1 	 r � � � r2e � r � �
D � r̂rDr � r̂50

�
2
r

�
1 � e � r � 1 	 r � � � re � r � 

Problem 4.25 An infinitely long cylindrical shell extending between r � 1 m and
r � 3 m contains a uniform charge density ρv0. Apply Gauss’s law to find D in all
regions.

Solution: For r � 1 m, D � 0.
For 1

�
r

�
3 m,

�

�
S

r̂Dr � ds � Q �
Dr � 2πrL � ρv0 � πL

�
r2 � 12 � �

D � r̂Dr � r̂
ρv0πL

�
r2 � 1 �

2πrL
� r̂

ρv0
�
r2 � 1 �
2r

� 1
�

r
�

3 m 
For r � 3 m,

Dr � 2πrL � ρv0πL
�
32 � 12 ��� 8ρv0πL �

D � r̂Dr � r̂
4ρv0

r
� r � 3 m 
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L

3m

z

r

1m

Figure P4.25: Cylindrical shell.

Problem 4.26 If the charge density increases linearly with distance from the origin
such that ρv � 0 at the origin and ρv � 40 C/m3 at R � 2 m, find the corresponding
variation of D.

Solution:

ρv
�
R ��� a 	 bR �

ρv
�
0 ��� a � 0 �
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ρv
�
2 ��� 2b � 40 

Hence, b � 20.
ρv
�
R ��� 20R (C/m3) 

Applying Gauss’s law to a spherical surface of radius R,

�

�
S

D � ds � �
V

ρv dV �
DR � 4πR2 � � R

0
20R � 4πR2 dR � 80π

R4

4
�

DR � 5R2 (C/m2) �
D � R̂DR � R̂5R2 (C/m2) 

Section 4-5: Electric Potential

Problem 4.27 A square in the x–y plane in free space has a point charge of 	 Q at
corner

�
a � 2 � a � 2 � and the same at corner

�
a � 2 � � a � 2 � and a point charge of � Q at

each of the other two corners.
(a) Find the electric potential at any point P along the x-axis.
(b) Evaluate V at x � a � 2.

Solution: R1 � R2 and R3 � R4.

V � Q
4πε0R1 	 Q

4πε0R2 	 � Q
4πε0R3 	 � Q

4πε0R4
� Q

2πε0

�
1

R1 � 1
R3



with

R1 � � � x � a
2
� 2 	 � a

2
� 2 �

R3 � � � x 	 a
2
� 2 	 � a

2
� 2 

At x � a � 2,

R1 � a
2
�

R3 � a � 5
2

�
V � Q

2πε0

�
2
a � 2� 5a


 � 0  55Q
πε0a
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-Q

-Q

y

xP(x,0)

R1

R2

R4

R3

Q

Q

a/2-a/2

a/2

-a/2

Figure P4.27: Potential due to four point charges.

Problem 4.28 The circular disk of radius a shown in Fig. 4-7 (P4.28) has uniform
charge density ρs across its surface.

(a) Obtain an expression for the electric potential V at a point P
�
0 � 0 � z � on the

z-axis.
(b) Use your result to find E and then evaluate it for z � h. Compare your final

expression with Eq. (4.24), which was obtained on the basis of Coulomb’s law.

Solution:
(a) Consider a ring of charge at a radial distance r. The charge contained in

width dr is
dq � ρs

�
2πr dr ��� 2πρsr dr

The potential at P is

dV � dq
4πε0R

� 2πρsr dr

4πε0
�
r2 	 z2 � 1 � 2 

The potential due to the entire disk is

V � � a

0
dV � ρs

2ε0

� a

0

r dr�
r2 	 z2 � 1 � 2 � ρs

2ε0

�
r2 	 z2 � 1 � 2 ����

a

0
� ρs

2ε0
� � a2 	 z2 � 1 � 2 � z � 
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z

P(0,0,h)

h

y

x

a

a

r

dr

dq = 2π ρs r drρs

E

Figure P4.28: Circular disk of charge.

(b)

E � � ∇V � � x̂
∂V
∂x � ŷ

∂V
∂y � ẑ

∂V
∂z

� ẑ
ρs

2ε0

�
1 � z� a2 	 z2 � 

The expression for E reduces to Eq. (4.24) when z � h.

Problem 4.29 A circular ring of charge of radius a lies in the x–y plane and is
centered at the origin. If the ring is in air and carries a uniform density ρ l , (a) show
that the electrical potential at

�
0 � 0 � z � is given by V � ρla � � 2ε0

�
a2 	 z2 � 1 � 2 � , and (b)

find the corresponding electric field E.

Solution:
(a) For the ring of charge shown in Fig. P4.29, using Eq. (3.67) in Eq. (4.48c) gives

V
�
R ��� 1

4πε0

�
l �

ρl

R �
dl � � 1

4πε0

� 2π

φ � � 0

ρl� a2 	 r2 � 2ar cos
�
φ � � φ � 	 z2

a dφ � 
Point

�
0 � 0 � z � in Cartesian coordinates corresponds to

�
r� φ � z ��� �

0 � φ � z � in cylindrical
coordinates. Hence, for r � 0,

V
�
0 � 0 � z ��� 1

4πε0

� 2π

φ � � 0

ρl� a2 	 z2
a dφ � � ρla

2ε0 � a2 	 z2
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z

a
dl' = a dφ'

a
0 y

z

x

dφ'

ρl

R'  =   a2 + z2| |

Figure P4.29: Ring of charge.

(b) From Eq. (4.51),

E � � ∇V � � ẑ
ρla
2ε0

∂
∂z

�
a2 	 z2 � � 1 � 2 � ẑ

ρla
2ε0

z�
a2 	 z2 � 3 � 2 (V/m) 

Problem 4.30 Show that the electric potential difference V12 between two points in
air at radial distances r1 and r2 from an infinite line of charge with density ρl along
the z-axis is V12 � �

ρl � 2πε0 � ln � r2 � r1 � .
Solution: From Eq. (4.33), the electric field due to an infinite line of charge is

E � r̂Er � r̂
ρl

2πε0r


Hence, the potential difference is

V12 � � � r1

r2

E � dl � � � r1

r2

r̂ρl

2πε0r
� r̂ dr � ρl

2πε0
ln

�
r2

r1

 

Problem 4.31 Find the electric potential V at a location a distance b from the origin
in the x–y plane due to a line charge with charge density ρl and of length l. The line
charge is coincident with the z-axis and extends from z � � l � 2 to z � l � 2.
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l/2

-l/2

dz

z

b
y

z

R'

V(b)
l

 =   z2 + b2R'  | |

Figure P4.31: Line of charge of length � .

Solution: From Eq. (4.48c), we can find the voltage at a distance b away from a line
of charge [Fig. P4.31]:

V
�
b ��� 1

4πε

�
l �

ρl

R �
dl � � ρl

4πε

� l � 2
� l � 2 dz� z2 	 b2

� ρl

4πε
ln

�
l 	 � l2 	 4b2

� l 	 � l2 	 4b2 � 
Problem 4.32 For the electric dipole shown in Fig. 4-13, d � 1 cm and �E � � 4
(mV/m) at R � 1 m and θ � 0 � . Find E at R � 2 m and θ � 90 � .
Solution: For R � 1 m and θ � 0 � , �E � � 4 mV/m, we can solve for q using Eq. (4.56):

E � qd
4πε0R3

�
R̂2cos θ 	 θ̂θθsin θ � 

Hence,

�E � � �
qd

4πε0

 2 � 4 mV/m at θ � 0 � �

q � 10 � 3 � 8πε0

d
� 10 � 3 � 8πε0

10 � 2 � 0  8πε0 (C) 
Again using Eq. (4.56) to find E at R � 2 m and θ � 90 � , we have

E � 0  8πε0 � 10 � 2

4πε0 � 23

�
R̂
�
0 � 	 θ̂θθ ��� θ̂θθ

1
4

(mV/m) 
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Problem 4.33 For each of the following distributions of the electric potential V ,
sketch the corresponding distribution of E (in all cases, the vertical axis is in volts
and the horizontal axis is in meters):

Solution:

10

-10

E

x

3

30

-30

5 8 11 13 16

V

x

(a)

4.20

-4.20

3 6 9 12 15

E

x

3 6 9 12 15

4

-4

V

x

(b)
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3 6 12 15

2.6

-2.6

x

E

3 6 9 12 15

4

-4

V

x

9

(c)

Figure P4.33: Electric potential distributions of Problem 4.33.

Problem 4.34 Given the electric field

E � R̂
18
R2 (V/m) �

find the electric potential of point A with respect to point B where A is at 	 2 m and
B at � 4 m, both on the z-axis.

Solution:

VAB � VA � VB � � � A

B
E � dl 

Along z-direction, R̂ � ẑ and E � ẑ
18
z2 for z � 0, and R̂ � � ẑ and E � � ẑ

18
z2 for

z
�

0. Hence,

VAB � � � 2

� 4
R̂

18
z2 � ẑ dz � �

� � 0

� 4 � ẑ
18
z2 � ẑ dz 	 � 2

0
ẑ

18
z2 � ẑ dz � � 4 V 
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A

B

z = 2m

z = -4m

Figure P4.34: Potential between B and A.

Problem 4.35 An infinitely long line of charge with uniform density ρl � 9 (nC/m)
lies in the x–y plane parallel to the y-axis at x � 2 m. Find the potential VAB at point
A
�
3 m � 0 � 4 m � in Cartesian coordinates with respect to point B

�
0 � 0 � 0 � by applying

the result of Problem 4.30.

Solution: According to Problem 4.30,

V � ρl

2πε0
ln

�
r2

r1



where r1 and r2 are the distances of A and B. In this case,

r1 � � �
3 � 2 � 2 	 42 � � 17 m �

r2 � 2 m 
Hence,

VAB � 9 � 10 � 9

2π � 8  85 � 10 � 12 ln

�
2� 17


 � � 117  09 V 
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� � � � � �

A(3, 0, 4)

z

4m

r1

B
yr2

2m

3m

x

Figure P4.35: Line of charge parallel to y-axis.

Problem 4.36 The x–y plane contains a uniform sheet of charge with ρs1 � 0  2
(nC/m2 � and a second sheet with ρs2 � � 0  2 (nC/m2) occupies the plane z � 6 m.
Find VAB, VBC, and VAC for A

�
0 � 0 � 6 m � , B

�
0 � 0 � 0 � , and C

�
0 � � 2 m � 2 m � .

Solution: We start by finding the E field in the region between the plates. For any
point above the x–y plane, E1 due to the charge on x–y plane is, from Eq. (4.25),

E1 � ẑ
ρs1

2ε0


In the region below the top plate, E would point downwards for positive ρs2 on the
top plate. In this case, ρs2 � � ρs1 . Hence,

E � E1 	 E2 � ẑ
ρs1

2ε0 � ẑ
ρs2

2ε0
� ẑ

2ρs1

2ε0
� ẑ

ρs1

ε0


Since E is along ẑ, only change in position along z can result in change in voltage.

VAB � � � 6

0
ẑ

ρs1

ε0
� ẑ dz � � ρs1

ε0
z ����

6

0
� � 6ρs1

ε0
� � 6 � 0  2 � 10 � 9

8  85 � 10 � 12 � � 135  59 V 
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A 6 m

B 0

x

z

y

ρs2= - 0.2 (nC/m2)

ρs1
=  0.2 (nC/m2)

C (0, -2, 2)

Figure P4.36: Two parallel planes of charge.

The voltage at C depends only on the z-coordinate of C. Hence, with point A being at
the lowest potential and B at the highest potential,

VBC � � 2
6

VAB � �
� � 135  59 �

3
� 45  20 V �

VAC � VAB 	 VBC � � 135  59 	 45  20 � � 90  39 V 
Section 4-7: Conductors

Problem 4.37 A cylindrical bar of silicon has a radius of 4 mm and a length of 8 cm.
If a voltage of 5 V is applied between the ends of the bar and µe � 0  13 (m2/V � s),
µh � 0  05 (m2/V � s), Ne � 1  5 � 1016 electrons/m3, and Nh � Ne, find

(a) the conductivity of silicon,
(b) the current I flowing in the bar,
(c) the drift velocities ue and uh,
(d) the resistance of the bar, and
(e) the power dissipated in the bar.
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Solution:
(a) Conductivity is given in Eq. (4.65),

σ � �
Neµe 	 Nhµh � e� �
1  5 � 1016 � � 0  13 	 0  05 � � 1  6 � 10 � 19 ��� 4  32 � 10 � 4 (S/m) 

(b) Similarly to Example 4.8, parts b and c,

I � JA � σEA � �
4  32 � 10 � 4 � � 5V

0  08 
 �
π
�
4 � 10 � 3 � 2 ��� 1  36 (µA) 

(c) From Eqs. (4.62a) and (4.62b),

ue � � µeE � � � 0  13 � � 5
0  08 
 E

�E � � � 8  125
E
�E � (m/s) �

uh � µhE � 	 � 0  05 � � 5
0  08 
 E

�E � � 3  125
E
�E � (m/s) 

(d) To find the resistance, we use what we calculated above,

R � V
I
� 5V

1  36 µA
� 3  68 (MΩ) 

(e) Power dissipated in the bar is P � IV � �
5V � � 1  36 µA ��� 6  8 �

µW � 
Problem 4.38 Repeat Problem 4.37 for a bar of germanium with µe � 0  4 (m2/V � s),
µh � 0  2 (m2/V � s), and Ne � Nh � 2  4 � 1019 electrons or holes/m3.

Solution:
(a) Conductivity is given in Eq. (4.65),

σ � �
Neµe 	 Nuµu � e � �

2  4 � 1019 � � 0  4 	 0  2 � � 1  6 � 10 � 19 ��� 2  3 (S/m) 
(b) Similarly to Example 4.8, parts b and c,

I � JA � σEA � �
2  3 � � 5V

0  08 
 �
π
�
4 � 10 � 3 � 2 ��� 7  225 (mA) 

(c) From Eqs. (4.62a) and (4.62b),

ue � � µeE � � � 0  4 �
�

5
0  08 
 E

�E � � � 25
E
�E � (m/s) �

uh � µhE � �
0  2 � � 5

0  08 
 � 12  5 E
�E � (m/s) 
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(d) To find the resistance, we use what we calculated above,

R � V
I
� 5V

7  225 mA
� 0  69 (kΩ) 

(e) Power dissipated in the bar is P � IV � �
5V � � 7  225 mA ��� 36  125 (mW) 

Problem 4.39 A 100-m-long conductor of uniform cross section has a voltage drop
of 4 V between its ends. If the density of the current flowing through it is 1  4 � 106

(A/m2), identify the material of the conductor.

Solution: We know that conductivity characterizes a material:

J � σE � 1  4 � 106 (A/m2) � σ
�

4 (V)
100 (m) 
 � σ � 3  5 � 107 (S/m) 

From Table B-2, we find that aluminum has σ � 3  5 � 107 (S/m).

Problem 4.40 A coaxial resistor of length l consists of two concentric cylinders.
The inner cylinder has radius a and is made of a material with conductivity σ1, and
the outer cylinder, extending between r � a and r � b, is made of a material with
conductivity σ2. If the two ends of the resistor are capped with conducting plates,
show that the resistance between the two ends is R � l � � π � σ1a2 	 σ2

�
b2 � a2 � ��� .

Solution: Due to the conducting plates, the ends of the coaxial resistor are each
uniform at the same potential. Hence, the electric field everywhere in the resistor
will be parallel to the axis of the resistor, in which case the two cylinders can be
considered to be two separate resistors in parallel. Then, from Eq. (4.70),

1
R
� 1

Rinner 	 1
Router

� σ1A1

l1 	 σ2A2

l2
� σ1πa2

l 	 σ2π
�
b2 � a2 �
l

�
or

R � l
π
�
σ1a2 	 σ2

�
b2 � a2 � � (Ω) 

Problem 4.41 Apply the result of Problem 4.40 to find the resistance of a 20-cm-
long hollow cylinder (Fig. P4.41) made of carbon with σ � 3 � 104 (S/m).

Solution: From Problem 4.40, we know that for two concentric cylinders,

R � l
π
�
σ1a2 	 σ2

�
b2 � a2 � � (Ω) 
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3 cm

2 cm

Carbon

Figure P4.41: Cross section of hollow cylinder of Problem 4.41.

For air σ1 � 0 (S/m), σ2 � 3 � 104 (S/m); hence,

R � 0  2
3π � 104

� �
0  03 � 2 � �

0  02 � 2 � � 4  2 (mΩ) 
Problem 4.42 A 2 � 10 � 3-mm-thick square sheet of aluminum has 5 cm � 5 cm
faces. Find:

(a) the resistance between opposite edges on a square face, and
(b) the resistance between the two square faces. (See Appendix B for the electrical

constants of materials).

Solution:
(a)

R � l
σA


For aluminum, σ � 3  5 � 107 (S/m) [Appendix B].

l � 5 cm � A � 5 cm � 2 � 10 � 3 mm � 10 � 10 � 2 � 10 � 6 � 1 � 10 � 7 m2 �
R � 5 � 10 � 2

3  5 � 107 � 1 � 10 � 7 � 14 (mΩ) 
(b) Now, l � 2 � 10 � 3 mm and A � 5 cm � 5 cm � 2  5 � 10 � 3 m2.

R � 2 � 10 � 6

3  5 � 107 � 2  5 � 10 � 3 � 22  8 pΩ 
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Section 4-9: Boundary Conditions

Problem 4.43 With reference to Fig. 4-19, find E1 if E2 � x̂3 � ŷ2 	 ẑ2 (V/m),
ε1 � 2ε0, ε2 � 18ε0, and the boundary has a surface charge density
ρs � 3  54 � 10 � 11 (C/m2). What angle does E2 make with the z-axis?

Solution: We know that E1t � E2t for any 2 media. Hence, E1t � E2t � x̂3 � ŷ2.
Also,

�
D1 � D2 � � n̂ � ρs (from Table 4.3). Hence, ε1

�
E1 � n̂ � � ε2

�
E2 � n̂ ��� ρs � which

gives

E1z � ρs 	 ε2E2z

ε1
� 3  54 � 10 � 11

2ε0 	 18
�
2 �

2
� 3  54 � 10 � 11

2 � 8  85 � 10 � 12 	 18 � 20 (V/m) 
Hence, E1 � x̂3 � ŷ2 	 ẑ20 (V/m). Finding the angle E2 makes with the z-axis:

E2 � ẑ � �E2 � cos θ � 2 � � 9 	 4 	 4cosθ � θ � cos � 1

�
2� 17


 � 61 � 
Problem 4.44 An infinitely long conducting cylinder of radius a has a surface
charge density ρs. The cylinder is surrounded by a dielectric medium with εr � 4
and contains no free charges. If the tangential component of the electric field in the
region r � a is given by Et � � φ̂φφcos2 φ � r2, find ρs.

Solution: Let the conducting cylinder be medium 1 and the surrounding dielectric
medium be medium 2. In medium 2,

E2 � r̂Er � φ̂φφ
1
r2 cos2 φ �

with Er, the normal component of E2, unknown. The surface charge density is related
to Er. To find Er, we invoke Gauss’s law in medium 2:

∇ � D2 � 0 �
or

1
r

∂
∂r

�
rEr � 	 1

r
∂

∂φ

�
� 1

r2 cos2 φ 
 � 0 �
which leads to

∂
∂r

�
rEr ��� ∂

∂φ

�
1
r2 cos2 φ 
 � � 2

r2 sinφcos φ 
Integrating both sides with respect to r,

� ∂
∂r

�
rEr � dr � � 2sin φcos φ

�
1
r2 dr

rEr � 2
r

sinφcos φ �
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or

Er � 2
r2 sinφcosφ 

Hence,

E2 � r̂
2
r2 sinφcos φ � φ̂φφ

1
r2 cos2 φ 

According to Eq. (4.93),
n̂2 � � D1 � D2 ��� ρs �

where n̂2 is the normal to the boundary and points away from medium 1. Hence,
n̂2 � r̂. Also, D1 � 0 because the cylinder is a conductor. Consequently,

ρs � � r̂ � D2 � r � a� � r̂ � ε2E2 � r � a

� � r̂ � εrε0

�
r̂

2
r2 sin φcosφ � φ̂φφ

1
r2 cos2 φ � ����

r � a� � 8ε0

a2 sinφcos φ (C/m2) 
Problem 4.45 A 2-cm conducting sphere is embedded in a charge-free dielectric
medium with ε2r � 9. If E2 � R̂3cos θ � θ̂θθ3sinθ (V/m) in the surrounding region,
find the charge density on the sphere’s surface.

Solution: According to Eq. (4.93),

n̂2 � � D1 � D2 ��� ρs 
In the present case, n̂2 � R̂ and D1 � 0. Hence,

ρs � � R̂ � D2 � r � 2 cm� � R̂ � ε2
�
R̂ 3cos θ � θ̂θθ3sin θ �� � 27ε0 cosθ (C/m2) 

Problem 4.46 If E � R̂150 (V/m) at the surface of a 5-cm conducting sphere
centered at the origin, what is the total charge Q on the sphere’s surface?

Solution: From Table 4-3, n̂ � � D1 � D2 ��� ρs. E2 inside the sphere is zero, since we
assume it is a perfect conductor. Hence, for a sphere with surface area S � 4πa2,

D1R � ρs � E1R � ρs

ε0
� Q

Sε0
�
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Q � ERSε0 � �
150 � 4π

�
0  05 � 2ε0 � 3πε0

2
(C) 

Problem 4.47 Figure 4-34(a) (P4.47) shows three planar dielectric slabs of equal
thickness but with different dielectric constants. If E0 in air makes an angle of 45 �
with respect to the z-axis, find the angle of E in each of the other layers.

ε3 = 7ε0

ε2 = 5ε0

ε1 = 3ε0

ε0 (air)

ε0 (air)
45°

z

E0

Figure P4.47: Dielectric slabs in Problem 4.47.

Solution: Labeling the upper air region as region 0 and using Eq. (4.99),

θ1 � tan � 1

�
ε1

ε0
tanθ0 
 � tan � 1 � 3tan 45 � ��� 71  6 � �

θ2 � tan � 1

�
ε2

ε1
tanθ1 
 � tan � 1

�
5
3

tan71  6 � 
 � 78  7 � �
θ3 � tan � 1

�
ε3

ε2
tanθ2 
 � tan � 1

�
7
5

tan78  7 � 
 � 81  9 � 
In the lower air region, the angle is again 45 � .
Sections 4-10 and 4-11: Capacitance and Electrical Energy

Problem 4.48 Determine the force of attraction in a parallel-plate capacitor with
A � 5 cm2, d � 2 cm, and εr � 4 if the voltage across it is 50 V.
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Solution: From Eq. (4.131),

F � � ẑ
εA �E � 2

2
� � ẑ2ε0

�
5 � 10 � 4 � � 50

0  02 
 2 � � ẑ55  3 � 10 � 9 (N) 
Problem 4.49 Dielectric breakdown occurs in a material whenever the magnitude
of the field E exceeds the dielectric strength anywhere in that material. In the coaxial
capacitor of Example 4-12,

(a) At what value of r is �E � maximum?
(b) What is the breakdown voltage if a � 1 cm, b � 2 cm, and the dielectric

material is mica with εr � 6?

Solution:
(a) From Eq. (4.114), E � � r̂ρl � 2πεr for a � r � b. Thus, it is evident that �E � is

maximum at r � a.
(b) The dielectric breaks down when �E � � 200 (MV/m) (see Table 4-2), or

�E � � ρl

2πεr
� ρl

2π
�
6ε0 � � 10 � 2 � � 200 (MV/m) �

which gives ρl � �
200 MV/m � � 2π � 6 � 8  854 � 10 � 12 � � 0  01 ��� 667  6 �

µC/m).
From Eq. (4.115), we can find the voltage corresponding to that charge density,

V � ρl

2πε
ln

�
b
a 
 � �

667  6µC/m �
12π

�
8  854 � 10 � 12 F/m � ln

�
2 ��� 1  39 (MV) 

Thus, V � 1  39 (MV) is the breakdown voltage for this capacitor.

Problem 4.50 An electron with charge Qe � � 1  6 � 10 � 19 C and mass
me � 9  1 � 10 � 31 kg is injected at a point adjacent to the negatively charged plate in
the region between the plates of an air-filled parallel-plate capacitor with separation
of 1 cm and rectangular plates each 10 cm2 in area Fig. 4-33 (P4.50). If the voltage
across the capacitor is 10 V, find

(a) the force acting on the electron,
(b) the acceleration of the electron, and
(c) the time it takes the electron to reach the positively charged plate, assuming

that it starts from rest.

Solution:
(a) The electric force acting on a charge Qe is given by Eq. (4.14) and the electric

field in a capacitor is given by Eq. (4.112). Combining these two relations, we have

F � QeE � Qe
V
d
� � 1  6 � 10 � 19 10

0  01
� � 1  6 � 10 � 16 (N) 
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Qe

1 cm

V0 = 10 V
+-

Figure P4.50: Electron between charged plates of Problem 4.50.

The force is directed from the negatively charged plate towards the positively charged
plate.

(b)

a � F
m
� 1  6 � 10 � 16

9  1 � 10 � 31
� 1  76 � 1014 (m/s2) 

(c) The electron does not get fast enough at the end of its short trip for relativity to
manifest itself; classical mechanics is adequate to find the transit time. From classical
mechanics, d � d0 	 u0t 	 1

2at2, where in the present case the start position is d0 � 0,
the total distance traveled is d � 1 cm, the initial velocity u0 � 0, and the acceleration
is given by part (b). Solving for the time t,

t � �
2d
a
� �

2 � 0  01
1  76 � 1014 � 10  7 � 10 � 9 s � 10  7 (ns) 

Problem 4.51 In a dielectric medium with εr � 4, the electric field is given by

E � x̂
�
x2 	 2z � 	 ŷx2 � ẑ

�
y 	 z � (V/m) 

Calculate the electrostatic energy stored in the region � 1 m
�

x
�

1 m, 0
�

y
�

2 m,
and 0

�
z

�
3 m.
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Solution: Electrostatic potential energy is given by Eq. (4.124),

We � 1
2

�
V

ε �E � 2 dV � ε
2

� 3

z � 0

� 2

y � 0

� 1

x � � 1
� � x2 	 2z � 2 	 x4 	 �

y 	 z � 2 � dx dy dz

� 4ε0

2

�� �� �
2
5

x5yz 	 2
3

z2x3y 	 4
3

z3xy 	 1
12

�
y 	 z � 4x 
 �����

1

x � � 1

��
�����

2

y � 0

��
�����

3

z � 0

� 4ε0

2

�
1304

5 
 � 4  62 � 10 � 9 (J) 
Problem 4.52 Figure 4-34a (P4.52(a)) depicts a capacitor consisting of two
parallel, conducting plates separated by a distance d. The space between the plates

(a)

(b)

ε1

A1 A2

ε2d

+

-
V

C1 C2
V

+

-

Figure P4.52: (a) Capacitor with parallel dielectric section, and (b) equivalent circuit.

contains two adjacent dielectrics, one with permittivity ε1 and surface area A1

and another with ε2 and A2. The objective of this problem is to show that the
capacitance C of the configuration shown in Fig. 4-34a (P4.52(a)) is equivalent to
two capacitances in parallel, as illustrated in Fig. 4-34b (P4.52(b)), with

C � C1 	 C2 � (4.132)
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where

C1 � ε1A1

d
� (4.133)

C2 � ε2A2

d
 (4.134)

To this end, you are asked to proceed as follows:
(a) Find the electric fields E1 and E2 in the two dielectric layers.
(b) Calculate the energy stored in each section and use the result to calculate C1

and C2.
(c) Use the total energy stored in the capacitor to obtain an expression for C. Show

that Eq. (4.132) is indeed a valid result.

Solution:

V
+

-

(c)

E1 E2

ε2

d

ε1

Figure P4.52: (c) Electric field inside of capacitor.

(a) Within each dielectric section, E will point from the plate with positive voltage
to the plate with negative voltage, as shown in Fig. P4-52(c). From V � Ed,

E1 � E2 � V
d


(b)

We1 � 1
2

ε1E2
1 � V � 1

2
ε1

V 2

d2 � A1d � 1
2

ε1V 2 A1

d


But, from Eq. (4.121),

We1 � 1
2

C1V
2 

Hence C1 � ε1
A1

d
. Similarly, C2 � ε2

A2

d
.

(c) Total energy is

We � We1 	 We2 � 1
2

V 2

d

�
ε1A1 	 ε2A2 ��� 1

2
CV 2 
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Hence,

C � ε1A1

d 	 ε2A2

d
� C1 	 C2 

Problem 4.53 Use the result of Problem 4.52 to determine the capacitance for each
of the following configurations:

(a) conducting plates are on top and bottom faces of rectangular structure in Fig.
4-35(a) (P4.53(a)),

(b) conducting plates are on front and back faces of structure in Fig. 4-35(a)
(P4.53(a)),

(c) conducting plates are on top and bottom faces of the cylindrical structure in
Fig. 4-35(b) (P4.53(b)).

Solution:
(a) The two capacitors share the same voltage; hence they are in parallel.

C1 � ε1
A1

d
� 2ε0

�
5 � 1 ��� 10 � 4

2 � 10 � 2 � 5ε0 � 10 � 2 �
C2 � ε2

A2

d
� 4ε0

�
5 � 3 ��� 10 � 4

2 � 10 � 2 � 30ε0 � 10 � 2 �
C � C1 	 C2 � �

5ε0 	 30ε0 ��� 10 � 2 � 0  35ε0 � 3  1 � 10 � 12 F 
(b)

C1 � ε1
A1

d
� 2ε0

�
2 � 1 ��� 10 � 4

5 � 10 � 2 � 0  8ε0 � 10 � 2 �
C2 � ε2

A2

d
� 4ε0

�
3 � 2 ��� 10 � 4

5 � 10 � 2 � 24
5

ε0 � 10 � 2 �
C � C1 	 C2 � 0  5 � 10 � 12 F 

(c)

C1 � ε1
A1

d
� 8ε0

�
πr2

1 �
2 � 10 � 2 � 4πε0

10 � 2

�
2 � 10 � 3 � 2 � 0  04 � 10 � 12 F �

C2 � ε2
A2

d
� 4ε0

�
π
�
r2

2 � r2
1 �

2 � 10 � 2
� 2πε0

10 � 2
� � 4 � 10 � 3 � 2 � �

2 � 10 � 3 � 2 � � 0  06 � 10 � 12 F �
C3 � ε3

A3

d
� 2ε0

�
π
�
r2

3 � r2
2 �

2 � 10 � 2 � πε0

10 � 2 � � 8 � 10 � 3 � 2 � �
4 � 10 � 3 � 2 � � 0  12 � 10 � 12 F �

C � C1 	 C2 	 C3 � 0  22 � 10 � 12 F 
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(a)

3 cm

5 cm

1 cm

2 cm

εr = 2 εr = 4

2 cm

ε3 ε2

r1 = 2mm

r2 = 4mm

r3 = 8mm

ε1 = 8ε0; ε2 = 4ε0; ε3 = 2ε0

ε1

(b)

Figure P4.53: Dielectric sections for Problems 4.53 and 4.55.
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Problem 4.54 The capacitor shown in Fig. 4-36 (P4.54) consists of two parallel
dielectric layers. We wish to use energy considerations to show that the equivalent
capacitance of the overall capacitor, C, is equal to the series combination of the
capacitances of the individual layers, C1 and C2, namely

C � C1C2

C1 	 C2
� (4.136)

where

C1 � ε1
A
d1

� C2 � ε2
A
d2



C1

C2

V
+

-

(a)

(b)

d1

d2

+

-
V

A

ε 1

ε 2

Figure P4.54: (a) Capacitor with parallel dielectric layers, and (b) equivalent circuit
(Problem 4.54).

(a) Let V1 and V2 be the electric potentials across the upper and lower dielectrics,
respectively. What are the corresponding electric fields E1 and E2? By
applying the appropriate boundary condition at the interface between the two
dielectrics, obtain explicit expressions for E1 and E2 in terms of ε1, ε2, V , and
the indicated dimensions of the capacitor.

(b) Calculate the energy stored in each of the dielectric layers and then use the sum
to obtain an expression for C.
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+

- VE1

E2

ε1

ε1

V1

+

-

V1

+

-

d1

d2

Figure P4.54: (c) Electric fields inside of capacitor.

(c) Show that C is given by Eq. (4.136).

Solution:
(a) If V1 is the voltage across the top layer and V2 across the bottom layer, then

V � V1 	 V2 �
and

E1 � V1

d1
� E2 � V2

d2


According to boundary conditions, the normal component of D is continuous across
the boundary (in the absence of surface charge). This means that at the interface
between the two dielectric layers,

D1n � D2n

or
ε1E1 � ε2E2 

Hence,

V � E1d1 	 E2d2 � E1d1 	 ε1E1

ε2
d2 �

which can be solved for E1:

E1 � V

d1 	 ε1

ε2
d2


Similarly,

E2 � V

d2 	 ε2

ε1
d1
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(b)

We1 � 1
2

ε1E2
1 � V 1 � 1

2
ε1

���
V

d1 	 ε1

ε2
d2

�
�� 2

� Ad1 � 1
2

V 2

�
ε1ε2

2Ad1�
ε2d1 	 ε1d2 � 2 � �

We2 � 1
2

ε2E2
2 � V 2 � 1

2
ε2

���
V

d2 	 ε2

ε1
d1

�
�� 2

� Ad2 � 1
2

V 2

�
ε2

1ε2Ad2�
ε1d2 	 ε2d1 � 2 � �

We � We1 	 We2 � 1
2

V 2

�
ε1ε2

2Ad1 	 ε2
1ε2Ad2�

ε1d2 	 ε2d1 � 2 � 
But We � 1

2 CV 2, hence,

C � ε1ε2
2Ad1 	 ε2

1ε2Ad2�
ε2d1 	 ε1d2 � 2 � ε1ε2A

�
ε2d1 	 ε1d2 ��
ε2d1 	 ε1d2 � 2 � ε1ε2A

ε2d1 	 ε1d2


(c) Multiplying numerator and denominator of the expression for C by A � d1d2, we
have

C � ε1A
d1
� ε2A

d2
ε1A
d1 	 ε2A

d2

� C1C2

C1 	 C2
�

where

C1 � ε1A
d1

� C2 � ε2A
d2


Problem 4.55 Use the expressions given in Problem 4.54 to determine the
capacitance for the configurations in Fig. 4.35(a) (P4.55) when the conducting plates
are placed on the right and left faces of the structure.

Solution:

C1 � ε1
A
d1

� 2ε0

�
2 � 5 ��� 10 � 4

1 � 10 � 2 � 20ε0 � 10 � 2 � 1  77 � 10 � 12 F �
C2 � ε2

A
d2

� 4ε0

�
2 � 5 ��� 10 � 4

3 � 10 � 2 � 1  18 � 10 � 12 F �
C � C1C2

C1 	 C2
� 1  77 � 1  18

1  77 	 1  18
� 10 � 12 � 0  71 � 10 � 12 F 
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3 cm

5 cm

1 cm

2 cm

εr = 2 εr = 4

Figure P4.55: Dielectric section for Problem 4.55.

Section 4-12: Image Method

Problem 4.56 With reference to Fig. 4-37 (P4.56), charge Q is located at a
distance d above a grounded half-plane located in the x–y plane and at a distance d
from another grounded half-plane in the x–z plane. Use the image method to

(a) establish the magnitudes, polarities, and locations of the images of charge Q
with respect to each of the two ground planes (as if each is infinite in extent),
and

(b) then find the electric potential and electric field at an arbitrary point P
�
0 � y � z � .

d

d

z

y

P(0, y, z)

Q(0, d, d)

Figure P4.56: Charge Q next to two perpendicular, grounded, conducting half planes.

Solution:
(a) The original charge has magnitude and polarity 	 Q at location

�
0 � d � d � . Since

the negative y-axis is shielded from the region of interest, there might as well be a
conducting half-plane extending in the � y direction as well as the 	 y direction. This
ground plane gives rise to an image charge of magnitude and polarity � Q at location
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d

d-d
-d

z

y

P(y, z)Q-Q

-QQ

Figure P4.56: (a) Image charges.

�
0 � d � � d � . In addition, since charges exist on the conducting half plane in the 	 z

direction, an image of this conducting half plane also appears in the � z direction.
This ground plane in the x-z plane gives rise to the image charges of � Q at

�
0 � � d � d �

and 	 Q at
�
0 � � d � � d � .

(b) Using Eq. (4.47) with N � 4,

V
�
x � y � z ��� Q

4πε

�
1

� x̂x 	 ŷ
�
y � d � 	 ẑ

�
z � d � � � 1

� x̂x 	 ŷ
�
y 	 d � 	 ẑ

�
z � d � �

	 1
� x̂x 	 ŷ

�
y 	 d � 	 ẑ

�
z 	 d � � � 1

� x̂x 	 ŷ
�
y � d � 	 ẑ

�
z 	 d � � 


� Q
4πε

��
1

� x2 	 �
y � d � 2 	 �

z � d � 2 � 1

� x2 	 �
y 	 d � 2 	 �

z � d � 2
	 1

� x2 	 �
y 	 d � 2 	 �

z 	 d � 2 � 1

� x2 	 �
y � d � 2 	 �

z 	 d � 2
��

� Q
4πε

�
1

� x2 	 y2 � 2yd 	 z2 � 2zd 	 2d2

� 1

� x2 	 y2 	 2yd 	 z2 � 2zd 	 2d2

	 1

� x2 	 y2 	 2yd 	 z2 	 2zd 	 2d2

� 1

� x2 	 y2 � 2yd 	 z2 	 2zd 	 2d2 � (V) 
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From Eq. (4.51),

E � � ∇V

� Q
4πε

��
∇

1

� x2 	 �
y � d � 2 	 �

z � d � 2 � ∇
1

� x2 	 �
y 	 d � 2 	 �

z � d � 2
	 ∇

1

� x2 	 �
y 	 d � 2 	 �

z 	 d � 2 � ∇
1

� x2 	 �
y � d � 2 	 �

z 	 d � 2
��

� Q
4πε

�
x̂x 	 ŷ

�
y � d � 	 ẑ

�
z � d ��

x2 	 �
y � d � 2 	 �

z � d � 2 � 3 � 2 � x̂x 	 ŷ
�
y 	 d � 	 ẑ

�
z � d ��

x2 	 �
y 	 d � 2 	 �

z � d � 2 � 3 � 2
	 x̂x 	 ŷ

�
y 	 d � 	 ẑ

�
z 	 d ��

x2 	 �
y 	 d � 2 	 �

z 	 d � 2 � 3 � 2 � x̂x 	 ŷ
�
y � d � 	 ẑ

�
z 	 d ��

x2 	 �
y � d � 2 	 �

z 	 d � 2 � 3 � 2 � (V/m) 
Problem 4.57 Conducting wires above a conducting plane carry currents I1 and
I2 in the directions shown in Fig. 4-38 (P4.57). Keeping in mind that the direction

I1

I2

(a) (b)

Figure P4.57: Currents above a conducting plane (Problem 4.57).

of a current is defined in terms of the movement of positive charges, what are the
directions of the image currents corresponding to I1 and I2?

Solution:
(a) In the image current, movement of negative charges downward � movement of

positive charges upward. Hence, image of I1 is same as I1.
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I1

+ q @ t=t1

+ q @ t=0

- q @ t=0

- q @ t=t1

I1

(image)

Figure P4.57: (a) Solution for part (a).

(b) In the image current, movement of negative charges to right � movement of
positive charges to left.

I1

+ q @ t=t1
+ q 

- q - q @ t=t1

I1 (image)

@t=0

@t=0

Figure P4.57: (b) Solution for part (b).

Problem 4.58 Use the image method to find the capacitance per unit length of an
infinitely long conducting cylinder of radius a situated at a distance d from a parallel
conducting plane, as shown in Fig. 4-39 (P4.58).

Solution: Let us distribute charge ρl (C/m) on the conducting cylinder. Its image
cylinder at z � � d will have charge density � ρl.

For the line at z � d, the electric field at any point z (at a distance of d � z from the
center of the cylinder) is, from Eq. (4.33),

E1 � � ẑ
ρl

2πε0
�
d � z �
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V  = 0

a

d

Figure P4.58: Conducting cylinder above a conducting plane (Problem 4.58).

ρl

z

−ρl

d

a

d

a

Figure P4.58: (a) Cylinder and its image.

where � ẑ is the direction away from the cylinder. Similarly for the image cylinder at
distance

�
d 	 z � and carrying charge � ρl ,

E2 � ẑ
� � ρl �

2πε0
�
d 	 z � � � ẑ

ρl

2πε0
�
d 	 z � 

The potential difference between the cylinders is obtained by integrating the total
electric field from z � � � d � a � to z � �

d � a � :
V � � � 1

2

�
E1 	 E2 � � ẑ dz

� � � d � a

� � d � a � � ẑ
ρl

2πε0

�
1

d � z 	 1
d 	 z 
 � ẑ dz



226 CHAPTER 4

� ρl

2πε0

� d � a

� � d � a �

�
1

d � z 	 1
d 	 z 
 dz

� ρl

2πε0
� � ln

�
d � z � 	 ln

�
d 	 z ��� d � a� � d � a �

� ρl

2πε0
� � ln

�
a � 	 ln

�
2d � a � 	 ln

�
2d � a � � ln

�
a ���

� ρl

πε0
ln

�
2d � a

a 
 
For a length L, Q � ρlL and

C � Q
V
� ρlL�

ρl � πε0 � ln � � 2d � a � � a � �
and the capacitance per unit length is

C � � C
L
� πε0

ln � � 2d � a � � 1 � (C/m) 
Problem 4.59 A circular beam of charge of radius a consists of electrons moving
with a constant speed u along the 	 z direction. The beam’s axis is coincident with
the z-axis and the electron charge density is given by

ρv � � cr2 (c/m3)

where c is a constant and r is the radial distance from the axis of the beam.

(a) Determine the charge density per unit length.

(b) Determine the current crossing the z-plane.

Solution:
(a)

ρl � �
ρv ds

� � a

r � 0

� 2π

φ � 0 � cr2 � r dr dφ � � 2πc
r4

4 ����

a

0
� � πca4

2
(C/m) 
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(b)

J � ρvu � � ẑcr2u (A/m2)

I � �
J � ds

� � a

r � 0

� 2π

φ � 0

� � ẑcur2 ��� ẑr dr dφ

� � 2πcu
� a

0
r3 dr � � πcua4

2
� ρlu  (A) 

Problem 4.60 A line of charge of uniform density ρl occupies a semicircle of
radius b as shown in the figure. Use the material presented in Example 4-4 to
determine the electric field at the origin.

x

y

z

b

z

ρl

Solution: Since we have only half of a circle, we need to integrate the expression for
dE1 given in Example 4-4 over φ from 0 to π. Before we do that, however, we need
to set h � 0 (the problem asks for E at the origin). Hence,

dE1 � ρlb
4πε0

� � r̂b 	 ẑh ��
b2 	 h2 � 3 � 2 dφ ����

h � 0� � r̂ρl

4πε0b
dφ

E1 � � π

φ � 0
dE1 � � � r̂ρl

4ε0b


Problem 4.61 A spherical shell with outer radius b surrounds a charge-free cavity
of radius a � b. If the shell contains a charge density given by

ρv � � ρv0

R2 � a
�

R
�

b �
where ρv0 is a positive constant, determine D in all regions.
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b

r2

r1

r3

a
ρv

Solution: Symmetry dictates that D is radially oriented. Thus,

D � R̂DR 
At any R, Gauss’s law gives

�

�
S

D � ds � Q
�

S
R̂DR � R̂ ds � Q

4πR2DR � Q

DR � Q
4πR2 

(a) For R � a, no charge is contained in the cavity. Hence, Q � 0, and

DR � 0 � R
�

a 
(b) For a

�
R

�
b,

Q � � R

R � a
ρv dV � � R

R � a � ρv0

R2 � 4πR2 dR

� � 4πρv0
�
R � a � 

Hence,

DR � � ρv0
�
R � a �
R2 � a

�
R

�
b 
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(c) For R � b,

Q � � b

R � a
ρv dV � � 4πρv0

�
b � a �

DR � � ρv0
�
b � a �
R2 � R � b 

Problem 4.62 Two infinite lines of charge, both parallel to the z-axis, lie in the x–z
plane, one with density ρl and located at x � a and the other with density � ρl and
located at x � � a. Obtain an expression for the electric potential V

�
x � y � at a point

P
�
x � y � relative to the potential at the origin.

x

y

(a, 0)(-a, 0)

P(x,y)

� �� �-ρl ρl

r'r''

Solution: According to the result of Problem 4.30, the electric potential difference
between a point at a distance r1 and another at a distance r2 from a line charge of
density ρl is

V � ρl

2πε0
ln

�
r2

r1

 

Applying this result to the line charge at x � a, which is at a distance a from the
origin:

V � � ρl

2πε0
ln � a

r �
� �

r2 � a and r1 � r � �
� ρl

2πε0
ln

�
a

� �
x � a � 2 	 y2 � 

Similarly, for the negative line charge at x � � a,

V � � � � ρl

2πε0
ln � a

r � �
� �

r2 � a and r1 � r � �
� � ρl

2πε0
ln

�
a

� �
x 	 a � 2 	 y2 � 
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The potential due to both lines is

V � V � 	 V � � � ρl

2πε0

�
ln

�
a

� �
x � a � 2 	 y2 � � ln

�
a

� �
x 	 a � 2 	 y2 � � 

At the origin, V � 0, as it should be since the origin is the reference point. The
potential is also zero along all points on the y-axis (x � 0).

Problem 4.63 A cylinder-shaped carbon resistor is 8 cm in length and its circular
cross section has a diameter d � 1 mm.

(a) Determine the resistance R.

(b) To reduce its resistance by 40%, the carbon resistor is coated with a layer of
copper of thickness t. Use the result of Problem 4.40 to determine t.

Solution:
(a) From (4.70), and using the value of σ for carbon from Appendix B,

R � l
σA

� l
σπ

�
d � 2 � 2 � 8 � 10 � 2

3 � 104π
�
10 � 3 � 2 � 2 � 3  4 Ω 

(b) The 40%-reduced resistance is:

R � � 0  6R � 0  6 � 3  4 � 2  04 Ω 
Using the result of Problem 4.40:

R � � l
π
�
σ1a2 	 σ2

�
b2 � a2 � � � 2  04 Ω 

With σ1 � 3  4 � 104 S/m (carbon), σ2 � 5  8 � 107 S/m (copper), a � 1 mm � 2 �
5 � 10 � 4 m, and b unknown, we have

b � 5  00086 � 10 � 4 m

and

t � b � a � �
5  00086 � 5 ��� 10 � 4

� 0  00086 � 10 � 4 m � 0  086 µm 
Thus, the addition of a copper coating less than 0.1 µm in thickness reduces the
resistance by 40%.
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Problem 4.64 A coaxial capacitor consists of two concentric, conducting,
cylindrical surfaces, one of radius a and another of radius b, as shown in the figure.
The insulating layer separating the two conducting surfaces is divided equally into
two semi-cylindrical sections, one filled with dielectric ε1 and the other filled with
dielectric ε2.

a

b

l

E +
+

- +
V

ε1

ε2

(a) Develop an expression for C in terms of the length l and the given quantities.

(b) Evaluate the value of C for a � 2 mm, b � 6 mm, εr1 � 2, εr2 � 4, and
l � 4 cm.

Solution:
(a) For the indicated voltage polarity, the E field inside the capacitor exists in only

the dielectric materials and points radially inward. Let E1 be the field in dielectric ε1

and E2 be the field in dielectric ε2. At the interface between the two dielectric
sections, E1 is parallel to E2 and both are tangential to the interface. Since boundary
conditions require that the tangential components of E1 and E2 be the same, it follows
that:

E1 � E2 � � r̂E 



232 CHAPTER 4

At r � a (surface of inner conductor), in medium 1, the boundary condition on D, as
stated by (4.101), leads to

D1 � ε1E1 � n̂ρs1

� r̂ε1E � r̂ρs1

or
ρs1 � � ε1E 

Similarly, in medium 2
ρs2 � � ε2E 

Thus, the E fields will be the same in the two dielectrics, but the charge densities will
be different along the two sides of the inner conducting cylinder.

Since the same voltage applies for the two sections of the capacitor, we can treat
them as two capacitors in parallel. For the capacitor half that includes dielectric ε1,
we can apply the results of Eqs. (4.114)–(4.116), but we have to keep in mind that Q
is now the charge on only one half of the inner cylinder. Hence,

C1 � πε1l
ln
�
b � a � 

Similarly,

C2 � πε2l
ln
�
b � a � �

and

C � C1 	 C2 � πl
�
ε1 	 ε2 �

ln
�
b � a � 

(b)

C � π � 4 � 10 � 2 � 2 	 4 ��� 8  85 � 10 � 12

ln
�
6 � 2 �� 6  07 pF.
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Chapter 5:  Magnetostatics 
 
 
Lesson #30 
Chapter — Section:  5-1 
Topics:  Magnetic forces and torques 
 
Highlights: 

• Lorentz force on a charged particle 
• Magnetic force on a current in a magnetic field 
• Torque on a loop 

 
Special Illustrations: 

• Examples 5-1 
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Lesson #31 
Chapter — Section:  5-2 
Topics:  Biot-Savart law 
 
Highlights: 

• Magnetic field induction by electric currents 
• Magnetic field due to linear conductor 
• Magnetic dipole 

 
Special Illustrations: 

• Example 5-2 
• Example 5-3 
• CD-ROM Modules 5.3 and 5.4 
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Lesson #32 
Chapter — Section:  5-3, 5-4 
Topics:  Magnetic force, Ampère’s law 
 
Highlights: 

• Attraction and repulsion forces between currents 
• Gauss’s law for magnetics 
• Ampère’s law 

 
Special Illustrations: 

• Example 5-6 
• CD-ROM Modules 5.1 and 5.2 
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Lesson #33 
Chapter — Section:  5-5, 5-6 
Topics:  Vector magnetic potential, magnetic materials 
 
Highlights: 

• Relation of A to B 
• Vector Poisson’s Eq. 
• Magnetic permeability 
• Ferromagnetism, hysteresis 

 
Special Illustrations: 

• Technology Brief on “Electromagnetic and magnetic switches” (CD-ROM) 
 
 
Electromagnets and Magnetic Relays  

William Sturgeon developed the first practical electromagnet in the 1820s. Today the principle of 
the electromagnet is used in motors, relay switches in read/write heads for hard disks and tape 
drives, loudspeakers, magnetic levitation and many other applications.  
 
Basic Principle  

Electromagnets can be constructed in various shapes, 
including the linear solenoid described in Section 5-8.1. 
When an electric current generated by a power source, 
such as a battery, flows through the wire coiled around 
the central core, it induces a magnetic field with field 
lines resembling those generated by a bar magnet (A1). 
The strength of the magnetic field is proportional to the 
current, the number of turns, and the magnetic 
permeability of the core material.  By using a 
ferromagnetic core, the field strength can be increased 
by several orders of magnitude, depending on the purity 
of the iron material. When subjected to a magnetic 
field, ferromagnetic materials, such as iron or nickel, 
get magnetized and act like magnets themselves.  
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Lesson #34 
Chapter — Section:  5-7 
Topics:  Boundary conditions 
 
Highlights: 

• Analogy with electric-field boundary conditions 
 
Special Illustrations: 

• Technology Brief on “Magnetic Recording” (CD-ROM) 
 

 
Magnetic Recording  

Valdemar Poulsen, a Danish engineer, invented magnetic recording by demonstrating in 1900 that 
speech can be recorded on a thin steel wire using a simple electromagnet. Magnetic tapes were 
developed as an alternative medium to wires in the 1940s and became very popular for recording 
and playing music well into the 1960s.  Videotapes were introduced in the late 1950s for 
recording motion pictures for later replay on television.  Because video signals occupy a much 
wider bandwidth, tape speeds for video recording (past the magnetic head) have to be at rates on 
the order of 5 m/s, compared with only 0.3 m/s for audio. Other types of magnetic recording 
media were developed since then, including the flexible plastic disks called “floppies,” the hard 
disks made of glass or aluminum, the magnetic drum, and the magnetic bubble memory. All take 
advantage of the same fundamental principle of being able to store electrical information through 
selective magnetization of a magnetic material, as well as the ability to retrieve it (playback) 
when so desired.  
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Lesson #35 
Chapter — Section:  5-8 
Topics:  Inductance 
 
Highlights: 

• Solenoid 
• Self inductance 

 
Special Illustrations: 

• Example 5-8 
• Technology Brief on “Inductive Sensors” (CD-ROM) 

 
 
Inductive Sensors 

Magnetic coupling between different coils forms the basis of several different types of inductive 
sensors. Applications include the measurement of position and displacement (with sub-millimeter 
resolution) in device fabrications processes, proximity detection of conductive objects, and other 
related applications. 

Linear Variable Differential Transformer (LVDT) 

A LVDT comprises a primary coil connected to an 
ac source, typically a sine wave at a frequency in 
the 1–10 KHz range, and a pair of secondary coils, 
all sharing a common ferromagnetic core (A1). 
The magnetic core serves to couple the magnetic 
flux generated by the primary coil into the two 
secondaries, thereby inducing an output voltage 
across each of them.  The secondary coils are 
connected in opposition, so that when the core is 
positioned at the magnetic center of the LVDT, the 
individual output signals of the secondaries cancel 
each other out, producing a null output voltage.  
The core is connected to the outside world via a 
nonmagnetic rod.  When the rod moves the core 
away from the magnetic center, the magnetic 
fluxes induced in the secondary coils are no longer 
equal, resulting in a non-zero output voltage.  The 
LVDT is called a “linear” transformer because the 
output voltage is a linear function of displacement 
over a wide operating range.  
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Lesson #36 
Chapter — Section:  5-9 
Topics:  Magnetic energy 
 
Highlights: 

• Magnetic energy density 
• Magnetic energy in a coax 

 
Special Illustrations: 

• Example 5-9 
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Chapter 5

Sections 5-1: Forces and Torques

Problem 5.1 An electron with a speed of 8 � 106 m/s is projected along the
positive x-direction into a medium containing a uniform magnetic flux density
B � �

x̂4 � ẑ3 � T. Given that e � 1  6 � 10 � 19 C and the mass of an electron is
me � 9  1 � 10 � 31 kg, determine the initial acceleration vector of the electron (at the
moment it is projected into the medium).

Solution: The acceleration vector of a free particle is the net force vector divided by
the particle mass. Neglecting gravity, and using Eq. (5.3), we have

a � Fm

me
� � e

me
u � B � � 1  6 � 10 � 19

9  1 � 10 � 31

�
x̂8 � 106 ��� �

x̂4 � ẑ3 �
� � ŷ4  22 � 1018 (m/s2) 

Problem 5.2 When a particle with charge q and mass m is introduced into a medium
with a uniform field B such that the initial velocity of the particle u is perpendicular
to B, as shown in Fig. 5-31 (P5.2), the magnetic force exerted on the particle causes it
to move in a circle of radius a. By equating Fm to the centripetal force on the particle,
determine a in terms of q, m, u, and B.

Solution: The centripetal force acting on the particle is given by Fc � mu2 � a.

Fm
Fm

B

Fm

+

+

++

q

a
q

q
q

u

u

u

P

Figure P5.2: Particle of charge q projected with velocity u into a medium with a
uniform field B perpendicular to u (Problem 5.2).
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Equating Fc to Fm given by Eq. (5.4), we have mu2 � a � quBsin θ. Since the magnetic
field is perpendicular to the particle velocity, sinθ � 1. Hence, a � mu � qB.

Problem 5.3 The circuit shown in Fig. 5-32 (P5.3) uses two identical springs to
support a 10-cm-long horizontal wire with a mass of 20 g. In the absence of a
magnetic field, the weight of the wire causes the springs to stretch a distance of
0.2 cm each. When a uniform magnetic field is turned on in the region containing the
horizontal wire, the springs are observed to stretch an additional 0.5 cm. What is the
intensity of the magnetic flux density B? The force equation for a spring is F � kd,
where k is the spring constant and d is the distance it has been stretched.

4Ω 12V

B

10 cm

Springs

+ -

Figure P5.3: Configuration of Problem 5.3.

Solution: Springs are characterized by a spring constant k where F � kd is the
force exerted on the spring and d is the amount the spring is stretched from its rest
configuration. In this instance, each spring sees half the weight of the wire:

F � 1
2 mg � kd � k � mg

2d
� 20 � 10 � 3 � 9  8

2 � 2 � 10 � 3 � 49 (N/m) 
Therefore, when the springs are further stretched by an additional 0.5 cm, this
amounts to an additional force of F � 49 N/m � �

5 � 10 � 3 m ��� 245 mN per spring,
or a total additional force of F � 0  49 N. This force is equal to the force exerted
on the wire by the interaction of the magnetic field and the current as described by
Eq. (5.12): Fm � I � � ���� � B, where � � � and B are at right angles. Moreover � � � � � � B is in the
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downward direction, and I � V � R � 12 V � 4 Ω � 3 A. Therefore,

�Fm � � � I � � � � � � �B � � �B � � �Fm �
� I � � � � � � � 0  49

3 � 0  1 � 1  63 (T) 
Problem 5.4 The rectangular loop shown in Fig. 5-33 (P5.4) consists of 20 closely
wrapped turns and is hinged along the z-axis. The plane of the loop makes an
angle of 30 � with the y-axis, and the current in the windings is 0.5 A. What
is the magnitude of the torque exerted on the loop in the presence of a uniform
field B � ŷ2  4 T? When viewed from above, is the expected direction of rotation
clockwise or counterclockwise?

30°

0.4 m

0.2 m

y

x

z

I = 0.5 A

20 turns

Figure P5.4: Hinged rectangular loop of Problem 5.4.

Solution: The magnetic torque on a loop is given by T � m � � � B (Eq. (5.20)), where
m � n̂NIA (Eq. (5.19)). For this problem, it is given that I � 0  5 A, N � 20 turns, and
A � 0  2 m � 0  4 m � 0  08 m2. From the figure, n̂ � � x̂cos 30 � 	 ŷsin30 � . Therefore,
m � n̂0  8 (A � m2 � and T � n̂0  8 (A � m2 ��� ŷ2  4 T � � ẑ1  66 (N �m). As the torque is
negative, the direction of rotation is clockwise, looking from above.

Problem 5.5 In a cylindrical coordinate system, a 2-m-long straight wire carrying
a current of 5 A in the positive z-direction is located at r � 4 cm, φ � π � 2, and� 1 m

�
z

�
1 m.

(a) If B � r̂0  2cos φ (T), what is the magnetic force acting on the wire?
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z

y

-1 m

1 m

4 cm

5A

Figure P5.5: Problem 5.5.

(b) How much work is required to rotate the wire once about the z-axis in the
negative φ-direction (while maintaining r � 4 cm)?

(c) At what angle φ is the force a maximum?

Solution:
(a)

F � I � � � � � � B� 5ẑ2 � � � � r̂0  2cos φ �� φ̂φφ2cos φ 
At φ � π � 2, φ̂φφ � � x̂. Hence,

F � � x̂2cos
�
π � 2 ��� 0 

(b)

W � � 2π

φ � 0
F � dl � � 2π

0
φ̂φφ � 2cos φ � � � � φ̂φφ � r dφ ����

r � 4 cm� � 2r
� 2π

0
cosφ dφ ����

r � 4 cm
� � 8 � 10 � 2 � sinφ � 2π

0 � 0 
The force is in the 	 φ̂φφ-direction, which means that rotating it in the � φ̂φφ-direction
would require work. However, the force varies as cosφ, which means it is positive
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when � π � 2 � φ � π � 2 and negative over the second half of the circle. Thus, work
is provided by the force between φ � π � 2 and φ � � π � 2 (when rotated in the� φ̂φφ-direction), and work is supplied for the second half of the rotation, resulting in a
net work of zero.

(c) The force F is maximum when cosφ � 1, or φ � 0.

Problem 5.6 A 20-turn rectangular coil with side l � 20 cm and w � 10 cm is
placed in the y–z plane as shown in Fig. 5-34 (P5.6).

φ

z

y

x

l

w

I

n̂

20-turn coil

Figure P5.6: Rectangular loop of Problem 5.6.

(a) If the coil, which carries a current I � 10 A, is in the presence of a magnetic
flux density

B � 2 � 10 � 2 � x̂ 	 ŷ2 � (T) �
determine the torque acting on the coil.

(b) At what angle φ is the torque zero?

(c) At what angle φ is the torque maximum? Determine its value.

Solution:
(a) The magnetic field is in direction

�
x̂ 	 ŷ2 � , which makes an angle

φ0 � tan � 1 2
1 � 63  43 � .

The magnetic moment of the loop is

m � n̂NIA � n̂20 � 10 � �
30 � 10 ��� 10 � 4 � n̂6 (A �m2) �
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1

2

z

y

B

x

φ0 = 63.43o

Figure P5.6: (a) Direction of B.

where n̂ is the surface normal in accordance with the right-hand rule. When the loop
is in the negative-y of the y–z plane, n̂ is equal to x̂, but when the plane of the loop is
moved to an angle φ, n̂ becomes

n̂ � x̂cosφ 	 ŷsinφ �
T � m � B � n̂6 � � � 2 � 10 � 2 � x̂ 	 ŷ2 �� �

x̂cos φ 	 ŷsinφ � 6 � � � 2 � 10 � 2 � x̂ 	 ŷ2 �� ẑ0  12 � 2cos φ � sinφ � (N �m) 
(b) The torque is zero when

2cos φ � sinφ � 0 �
or

tanφ � 2 � φ � 63  43 � or � 116  57 � 
Thus, when n̂ is parallel to B, T � 0.

(c) The torque is a maximum when n̂ is perpendicular to B, which occurs at

φ � 63  43 � 90 � � � 26  57 � or 	 153  43 � 
Mathematically, we can obtain the same result by taking the derivative of T and
equating it to zero to find the values of φ at which �T � is a maximum. Thus,

∂T
∂φ

� ∂
∂φ

�
0  12

�
2cos φ � sinφ � ��� 0
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or � 2sin φ 	 cosφ � 0 �
which gives tanφ � � 1

2 , or

φ � � 26  57 � or 153  43 � �
at which T � ẑ0  27 (N �m).

Section 5-2: Biot–Savart Law

Problem 5.7 An 8 cm � 12 cm rectangular loop of wire is situated in the x–y
plane with the center of the loop at the origin and its long sides parallel to the x-axis.
The loop has a current of 50 A flowing with clockwise direction (when viewed from
above). Determine the magnetic field at the center of the loop.

Solution: The total magnetic field is the vector sum of the individual fields of each
of the four wire segments: B � B1 	 B2 	 B3 	 B4. An expression for the magnetic
field from a wire segment is given by Eq. (5.29).

-4 cm
4 cm

-6 cm

6 cm

y

x

I

z

4

3

2

1

Figure P5.7: Problem 5.7.

For all segments shown in Fig. P5.7, the combination of the direction of the current
and the right-hand rule gives the direction of the magnetic field as � z direction at the
origin. With r � 6 cm and l � 8 cm,

B1 � � ẑ
µIl

2πr � 4r2 	 l2

� � ẑ
4π � 10 � 7 � 50 � 0  08

2π � 0  06 � � 4 � 0  062 	 0  082
� � ẑ9  24 � 10 � 5 (T) 
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For segment 2, r � 4 cm and l � 12 cm,

B2 � � ẑ
µIl

2πr � 4r2 	 l2

� � ẑ
4π � 10 � 7 � 50 � 0  12

2π � 0  04 � � 4 � 0  042 	 0  122
� � ẑ20  80 � 10 � 5 (T) 

Similarly,

B3 � � ẑ9  24 � 10 � 5 (T) � B4 � � ẑ20  80 � 10 � 5 (T) 
The total field is then B � B1 	 B2 	 B3 	 B4 � � ẑ0  60 (mT).

Problem 5.8 Use the approach outlined in Example 5-2 to develop an expression
for the magnetic field H at an arbitrary point P due to the linear conductor defined by
the geometry shown in Fig. 5-35 (P5.8). If the conductor extends between z1 � 3 m
and z2 � 7 m and carries a current I � 15 A, find H at P

�
2 � φ � 0 � .

I

z

P(r, φ, z)

P1(z1)

P2(z2)
θ2

θ1

r

Figure P5.8: Current-carrying linear conductor of Problem 5.8.

Solution: The solution follows Example 5-2 up through Eq. (5.27), but the
expressions for the cosines of the angles should be generalized to read as

cos θ1 � z � z1

� r2 	 �
z � z1 � 2 � cosθ2 � z � z2

� r2 	 �
z � z2 � 2
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instead of the expressions in Eq. (5.28), which are specialized to a wire centered at
the origin. Plugging these expressions back into Eq. (5.27), the magnetic field is
given as

H � φ̂φφ
I

4πr

��
z � z1

� r2 	 �
z � z1 � 2 �

z � z2

� r2 	 �
z � z2 � 2

��


For the specific geometry of Fig. P5.8,

H � φ̂φφ
15

4π � 2

�
0 � 3� 32 	 22 � 0 � 7� 72 	 22 � � φ̂φφ77  4 � 10 � 3 (A/m) � φ̂φφ77  4 (mA/m) 

Problem 5.9 The loop shown in Fig. 5-36 (P5.9) consists of radial lines and
segments of circles whose centers are at point P. Determine the magnetic field H
at P in terms of a, b, θ, and I.

θ

b

a P

I

Figure P5.9: Configuration of Problem 5.9.

Solution: From the solution to Example 5-3, if we denote the z-axis as passing out
of the page through point P, the magnetic field pointing out of the page at P due to
the current flowing in the outer arc is Houter � � ẑIθ � 4πb and the field pointing out
of the page at P due to the current flowing in the inner arc is Hinner � ẑIθ � 4πa. The
other wire segments do not contribute to the magnetic field at P. Therefore, the total
field flowing directly out of the page at P is

H � Houter 	 Hinner � ẑ
Iθ
4π

�
1
a � 1

b 
 � ẑ
Iθ
�
b � a �

4πab


Problem 5.10 An infinitely long, thin conducting sheet defined over the space
0

�
x

�
w and � ∞ �

y
� ∞ is carrying a current with a uniform surface current
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z

x
x

R

P(0, 0, z)

0

|R|  x2 + z2

w

=

Figure P5.10: Conducting sheet of width w in x–y plane.

density Js � ŷ5 (A/m). Obtain an expression for the magnetic field at point P
�
0 � 0 � z �

in Cartesian coordinates.

Solution: The sheet can be considered to be a large number of infinitely long but
narrow wires each dx wide lying next to each other, with each carrying a current
Ix � Js dx. The wire at a distance x from the origin is at a distance vector R from
point P, with

R � � x̂x 	 ẑz 
Equation (5.30) provides an expression for the magnetic field due to an infinitely long
wire carrying a current I as

H � B
µ0

� φ̂φφI
2πr


We now need to adapt this expression to the present situation by replacing I with
Ix � Js dx, replacing r with R � �

x2 	 z2 � 1 � 2, as shown in Fig. P5.10, and by assigning
the proper direction for the magnetic field. From the Biot–Savart law, the direction
of H is governed by l � � � R, where l is the direction of current flow. In the present case,
l is in the ŷ direction. Hence, the direction of the field is

l � � � R
� l � � � R � � ŷ � � � � � x̂x 	 ẑz �

� ŷ � � � � � x̂x 	 ẑz � � � x̂z 	 ẑx�
x2 	 z2 � 1 � 2 
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Therefore, the field dH due to the current Ix is

dH � x̂z 	 ẑx�
x2 	 z2 � 1 � 2 Ix

2πR
� �

x̂z 	 ẑx � Js dx
2π
�
x2 	 z2 � �

and the total field is

H
�
0 � 0 � z ��� � w

x � 0

�
x̂z 	 ẑx � Js dx

2π
�
x2 	 z2 �� Js

2π

� w

x � 0

�
x̂z 	 ẑx � dx

x2 	 z2

� Js

2π

�
x̂z

� w

x � 0

dx
x2 	 z2 	 ẑ

� w

x � 0

x dx
x2 	 z2 


� Js

2π

�
x̂z

�
1
z

tan � 1

�
x
z 
 
 ����

w

x � 0 	 ẑ � 1
2 ln

�
x2 	 z2 � � ��

w

x � 0 

� 5

2π

�
x̂2π tan � 1

�
w
z 
 	 ẑ1

2

�
ln
�
w2 	 z2 � � ln

�
0 	 z2 � � � for z �� 0 �

� 5
2π

�
x̂2π tan � 1

�
w
z 
 	 ẑ1

2 ln

�
w2 	 z2

z2 
�� (A/m) for z �� 0 
An alternative approach is to employ Eq. (5.24a) directly.

Problem 5.11 An infinitely long wire carrying a 25-A current in the positive
x-direction is placed along the x-axis in the vicinity of a 20-turn circular loop located
in the x–y plane as shown in Fig. 5-37 (P5.11(a)). If the magnetic field at the center
of the loop is zero, what is the direction and magnitude of the current flowing in the
loop?

1 m

d = 2m

I1

x

Figure P5.11: (a) Circular loop next to a linear current (Problem 5.11).

Solution: From Eq. (5.30), the magnetic flux density at the center of the loop due to
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I2

Figure P5.11: (b) Direction of I2.

the wire is
B1 � ẑ

µ0

2πd
I1

where ẑ is out of the page. Since the net field is zero at the center of the loop, I2 must
be clockwise, as seen from above, in order to oppose I1. The field due to I2 is, from
Eq. (5.35),

B � µ0H � � ẑ
µ0NI2

2a


Equating the magnitudes of the two fields, we obtain the result

NI2

2a
� I1

2πd
�

or

I2 � 2aI1

2πNd
� 1 � 25

π � 20 � 2
� 0  2 A 

Problem 5.12 Two infinitely long, parallel wires carry 6-A currents in opposite
directions. Determine the magnetic flux density at point P in Fig. 5-38 (P5.12).

I2 = 6AI1 = 6A

0.5m

2m

P

Figure P5.12: Arrangement for Problem 5.12.

Solution:

B � φ̂φφ
µ0I1

2π
�
0  5 � 	 φ̂φφ

µ0I2

2π
�
1  5 � � φ̂φφ

µ0

π
�
6 	 2 ��� φ̂φφ

8µ0

π
(T) 
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Problem 5.13 A long, East-West oriented power cable carrying an unknown
current I is at a height of 8 m above the Earth’s surface. If the magnetic flux density
recorded by a magnetic-field meter placed at the surface is 15 µT when the current is
flowing through the cable and 20 µT when the current is zero, what is the magnitude
of I?

Solution: The power cable is producing a magnetic flux density that opposes Earth’s,
own magnetic field. An East–West cable would produce a field whose direction at
the surface is along North–South. The flux density due to the cable is

B � �
20 � 15 � µT � 5µT 

As a magnet, the Earth’s field lines are directed from the South Pole to the North
Pole inside the Earth and the opposite on the surface. Thus the lines at the surface are
from North to South, which means that the field created by the cable is from South
to North. Hence, by the right-hand rule, the current direction is toward the East. Its
magnitude is obtained from

5 µT � 5 � 10 � 6 � µ0I
2πd

� 4π � 10 � 7I
2π � 8

�
which gives I � 200 A.

Problem 5.14 Two parallel, circular loops carrying a current of 40 A each are
arranged as shown in Fig. 5-39 (P5.14). The first loop is situated in the x–y plane
with its center at the origin and the second loop’s center is at z � 2 m. If the two
loops have the same radius a � 3 m, determine the magnetic field at:

(a) z � 0,

(b) z � 1 m,

(c) z � 2 m.

Solution: The magnetic field due to a circular loop is given by (5.34) for a loop in
the x–y plane carrying a current I in the 	 φ̂φφ-direction. Considering that the bottom
loop in Fig. P5.14 is in the x–y plane, but the current direction is along � φ̂φφ,

H1 � � ẑ
Ia2

2
�
a2 	 z2 � 3 � 2 �

where z is the observation point along the z-axis. For the second loop, which is at a
height of 2 m, we can use the same expression but z should be replaced with

�
z � 2 � .

Hence,

H2 � � ẑ
Ia2

2 � a2 	 �
z � 2 � 2 � 3 � 2 
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z = 2m

0

z

y

x

a

a

I

I

Figure P5.14: Parallel circular loops of Problem 5.14.

The total field is

H � H1 	 H2 � � ẑ
Ia2

2

�
1�

a2 	 z2 � 3 � 2 	 1

� a2 	 �
z � 2 � 2 � 3 � 2 � A/m 

(a) At z � 0, and with a � 3 m and I � 40 A,

H � � ẑ
40 � 9

2

�
1
33 	 1�

9 	 4 � 3 � 2 � � � ẑ10  5 A/m 
(b) At z � 1 m (midway between the loops):

H � � ẑ
40 � 9

2

�
1�

9 	 1 � 3 � 2 	 1�
9 	 1 � 3 � 2 � � � ẑ11  38 A/m 

(c) At z � 2 m, H should be the same as at z � 0. Thus,

H � � ẑ10  5 A/m 
Section 5-3: Forces between Currents

Problem 5.15 The long, straight conductor shown in Fig. 5-40 (P5.15) lies in the
plane of the rectangular loop at a distance d � 0  1 m. The loop has dimensions
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I2

I1

a = 0.2md = 0.1m

b = 0.5m

Figure P5.15: Current loop next to a conducting wire (Problem 5.15).

a � 0  2 m and b � 0  5 m, and the currents are I1 � 20 A and I2 � 30 A. Determine
the net magnetic force acting on the loop.

Solution: The net magnetic force on the loop is due to the magnetic field surrounding
the wire carrying current I1. The magnetic forces on the loop as a whole due to the
current in the loop itself are canceled out by symmetry. Consider the wire carrying
I1 to coincide with the z-axis, and the loop to lie in the 	 x side of the x-z plane.
Assuming the wire and the loop are surrounded by free space or other nonmagnetic
material, Eq. (5.30) gives

B � φ̂φφ
µ0I1

2πr


In the plane of the loop, this magnetic field is

B � ŷ
µ0I1

2πx


Then, from Eq. (5.12), the force on the side of the loop nearest the wire is

Fm1 � I2 � � ���� � B � I2
�
ẑb � � � � �

ŷ
µ0I1

2πx 
 ����
x � d

� � x̂
µ0I1I2b

2πd


The force on the side of the loop farthest from the wire is

Fm2 � I2 � � ����� B � I2
� � ẑb � � � � �

ŷ
µ0I1

2πx 
 ����
x � a � d

� x̂
µ0I1I2b

2π
�
a 	 d � 
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The other two sides do not contribute any net forces to the loop because they are
equal in magnitude and opposite in direction. Therefore, the total force on the loop is

F � Fm1 	 Fm2� � x̂
µ0I1I2b

2πd 	 x̂
µ0I1I2b

2π
�
a 	 d �� � x̂

µ0I1I2ab
2πd

�
a 	 d �

� � x̂
4π � 10 � 7 � 20 � 30 � 0  2 � 0  5

2π � 0  1 � 0  3 � � x̂0  4 (mN) 
The force is pulling the loop toward the wire.

Problem 5.16 In the arrangement shown in Fig. 5-41 (P5.16), each of the two long,
parallel conductors carries a current I, is supported by 8-cm-long strings, and has a
mass per unit length of 1.2 g/cm. Due to the repulsive force acting on the conductors,
the angle θ between the supporting strings is 10 � . Determine the magnitude of I and
the relative directions of the currents in the two conductors.

8 cm

2
1

θ = 10°

z

x

z

d
x

y

θ
2 θ

2

F' F'v

F'h

(a) (b) (c)

Figure P5.16: Parallel conductors supported by strings (Problem 5.16).

Solution: While the vertical component of the tension in the strings is counteracting
the force of gravity on the wires, the horizontal component of the tension in the strings
is counteracting the magnetic force, which is pushing the wires apart. According
to Section 5-3, the magnetic force is repulsive when the currents are in opposite
directions.

Figure P5.16(b) shows forces on wire 1 of part (a). The quantity F � is the tension
force per unit length of wire due to the mass per unit length m � � 1  2 g/cm � 0  12
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kg/m. The vertical component of F � balances out the gravitational force,

F �v � m � g � (19)

where g � 9  8 (m/s2). But

F �v � F � cos
�
θ � 2 �  (20)

Hence,

F � � m � g
cos

�
θ � 2 �  (21)

The horizontal component of F � must be equal to the repulsion magnitude force given
by Eq. (5.42):

F �h � µ0I2

2πd
� µ0I2

2π � 2 � sin
�
θ � 2 ��� � (22)

where d is the spacing between the wires and � is the length of the string, as shown
in Fig. P5.16(c). From Fig. 5.16(b),

F �h � F � sin
�
θ � 2 ��� m � g

cos
�
θ � 2 � sin

�
θ � 2 ��� m � g tan

�
θ � 2 �  (23)

Equating Eqs. (22) and (23) and then solving for I, we have

I � sin
�
θ � 2 � 4π � m � g

µ0 cos
�
θ � 2 � � sin5 � �

4π � 0  08 � 0  12 � 9  8
4π � 10 � 7 cos 5 � � 84  8 (A) 

Problem 5.17 An infinitely long, thin conducting sheet of width w along the
x-direction lies in the x–y plane and carries a current I in the � y-direction. Determine
(a) the magnetic field at a point P midway between the edges of the sheet and at a
height h above it (Fig. 5-42 (P5.17)), and then (b) determine the force per unit length
exerted on an infinitely long wire passing through point P and parallel to the sheet
if the current through the wire is equal in magnitude but opposite in direction to that
carried by the sheet.

Solution:
(a) The sheet can be considered to consist of a large number of infinitely long but

narrow wires each dx wide lying next to each other, with each carrying a current
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I

I
P

h

w

Figure P5.17: A linear current source above a current sheet (Problem 5.17).

Ix � I dx � w. If we choose the coordinate system shown in Fig. P5.17, the wire at a
distance x from the origin is at a distance vector R from point P, with

R � � x̂x 	 ẑh 
Equation (5.30) provides an expression for the magnetic field due to an infinitely long
wire carrying a current I as

H � B
µ0

� φ̂φφ
I

2πr


We now need to adapt this expression to the present situation by replacing I with
Ix � I dx � w, replacing r with R � �

x2 	 h2 � 1 � 2, and by assigning the proper direction
for the magnetic field. From the Biot–Savart law, the direction of H is governed by
l � � � R, where l is the direction of current flow. In the present case, l is out of the page,
which is the � ŷ direction. Hence, the direction of the field is

l � � � R
� l � � � R � � � ŷ � � � � � x̂x 	 ẑh �

� � ŷ � � � � � x̂x 	 ẑh � � � � � x̂h 	 ẑx ��
x2 	 h2 � 1 � 2 

Therefore, the field dH due to current Ix is

dH � � � x̂h 	 ẑx ��
x2 	 h2 � 1 � 2 Ix

2πR
� � � x̂h 	 ẑx � I dx

2πw
�
x2 	 h2 � �

and the total field is

H
�
0 � 0 � h ��� � w � 2

x � � w � 2 � � x̂h 	 ẑx � I dx
2πw

�
x2 	 h2 �

� � I
2πw

� w � 2
x � � w � 2 � x̂h 	 ẑx � dx

x2 	 h2

� � I
2πw

�
x̂h

� w � 2
x � � w � 2 dx

x2 	 h2 	 ẑ
� w � 2

x � � w � 2 x dx
x2 	 h2 
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� � I
2πw

�
x̂h

�
1
h

tan � 1 � x
h
� 
 ����

w � 2
x � � w � 2 	 ẑ � 1

2 ln
�
x2 	 h2 � � ��

w � 2
x � � w � 2 �

� � x̂
I

πw
tan � 1 � w

2h
� (A/m) 

At P in Fig. P5.17, the field is pointing to the left. The z-component could have
been assumed zero with a symmetry argument. An alternative solution is to employ
Eq. (5.24a) directly.

(b) From Eq. (5.9), a differential force is of the form dFm � I dl � � � B or, assuming
dl � â � d � , the force per unit length is given by

F �m � ∂Fm

∂ � � Iâ � � � � B � Iŷ � � � �
� x̂

µ0I
πw

tan � 1 � w
2h
� 
 � ẑ

µ0I2

πw
tan � 1 � w

2h
� (N) 

The force is repulsive; the wire is experiencing a force pushing it up.

Problem 5.18 Three long, parallel wires are arranged as shown in Fig. 5-43
(P5.18(a)). Determine the force per unit length acting on the wire carrying I3.

I1 = 10A

I2 = 10A

I3 = 10A

2m

2m

2m

Figure P5.18: (a) Three parallel wires of Problem 5.18.

Solution: Since I1 and I2 are equal in magnitude and opposite in direction, and
equidistant from I3, our intuitive answer might be that the net force on I3 is zero. As
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x

x

2 m

2 m

R1

B2 R2

R1B1

R2 = R1

x

z

into the page (y)

out of the page (-y)

I1

I2

I3

Figure P5.18: (b) B fields due to I1 and I2 at location of I3.

x

xθ

F31'

F32'

I3

I1

I2

x

Figure P5.18: (c) Forces acting on I3.

we will see, that’s not the correct answer. The field due to I1 (which is along ŷ) at
location of I3 is

B1 � b̂1
µ0I1

2πR1

where b̂1 is the unit vector in the direction of B1 shown in the figure, which is
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perpendicular to R̂1. The force per unit length exerted on I3 is

F �31 � µ0I1I3

2πR1

�
ŷ � � � b̂1 ��� � R̂1

µ0I1I3

2πR1


Similarly, the force per unit length excited on I3 by the field due to I2 (which is
along � ŷ) is

F �32 � R̂2
µ0I2I3

2πR2


The two forces have opposite components along x̂ and equal components along ẑ.
Hence, with R1 � R2 � � 8 m and θ � sin � 1 � 2 � � 8 ��� sin � 1 � 1 � � 2 ��� 45 � ,

F �3 � F �31 	 F �32 � ẑ

�
µ0I1I3

2πR1 	 µ0I2I3

2πR2

 sinθ

� ẑ2

�
4π � 10 � 7 � 10 � 20

2π � � 8

 � 1� 2

� ẑ2 � 10 � 5 N/m 
Problem 5.19 A square loop placed as shown in Fig. 5-44 (P5.19) has 2-m sides and
carries a current I1 � 5 A. If a straight, long conductor carrying a current I2 � 10 A is
introduced and placed just above the midpoints of two of the loop’s sides, determine
the net force acting on the loop.

z

x

ya

a
1 3

4

2

I1

I2

Figure P5.19: Long wire carrying current I2, just above a square loop carrying I1

(Problem 5.19).

Solution: Since I2 is just barely above the loop, we can treat it as if it’s in the same
plane as the loop. For side 1, I1 and I2 are in the same direction, hence the force on
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side 1 is attractive. That is,

F1 � ŷ
µ0I1I2a
2π
�
a � 2 � � ŷ

4π � 10 � 7 � 5 � 10 � 2
2π � 1

� ŷ2 � 10 � 5 N 
I1 and I2 are in opposite directions for side 3. Hence, the force on side 3 is repulsive,
which means it is also along ŷ. That is, F3 � F1.

The net forces on sides 2 and 4 are zero. Total net force on the loop is

F � 2F1 � ŷ4 � 10 � 5 N 
Section 5-4: Gauss’s Law for Magnetism and Ampère’s Law

Problem 5.20 Current I flows along the positive z-direction in the inner conductor
of a long coaxial cable and returns through the outer conductor. The inner conductor
has radius a, and the inner and outer radii of the outer conductor are b and c,
respectively.

(a) Determine the magnetic field in each of the following regions: 0
�

r
�

a,
a

�
r

�
b, b

�
r

�
c, and r � c.

(b) Plot the magnitude of H as a function of r over the range from r � 0 to
r � 10 cm, given that I � 10 A, a � 2 cm, b � 4 cm, and c � 5 cm.

Solution:
(a) Following the solution to Example 5-5, the magnetic field in the region r � a,

H � φ̂φφ
rI

2πa2 �
and in the region a � r � b,

H � φ̂φφ
I

2πr


The total area of the outer conductor is A � π
�
c2 � b2 � and the fraction of the area

of the outer conductor enclosed by a circular contour centered at r � 0 in the region
b � r � c is

π
�
r2 � b2 �

π
�
c2 � b2 � � r2 � b2

c2 � b2 
The total current enclosed by a contour of radius r is therefore

Ienclosed � I

�
1 � r2 � b2

c2 � b2 
 � I
c2 � r2

c2 � b2 �
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and the resulting magnetic field is

H � φ̂φφ
Ienclosed

2πr
� φ̂φφ

I
2πr

�
c2 � r2

c2 � b2 
 
For r � c, the total enclosed current is zero: the total current flowing on the inner

conductor is equal to the total current flowing on the outer conductor, but they are
flowing in opposite directions. Therefore, H � 0.

(b) See Fig. P5.20.
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Figure P5.20: Problem 5.20(b).

Problem 5.21 A long cylindrical conductor whose axis is coincident with the z-axis
has a radius a and carries a current characterized by a current density J � ẑJ0 � r,
where J0 is a constant and r is the radial distance from the cylinder’s axis. Obtain an
expression for the magnetic field H for (a) 0

�
r

�
a and (b) r � a.

Solution: This problem is very similar to Example 5-5.
(a) For 0

�
r1

�
a, the total current flowing within the contour C1 is

I1 � � �
J � ds � � 2π

φ � 0

� r1

r � 0

�
ẑJ0

r 
 � � ẑr dr dφ ��� 2π
� r1

r � 0
J0 dr � 2πr1J0 
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Therefore, since I1 � 2πr1H1, H1 � J0 within the wire and H1 � φ̂φφJ0.
(b) For r � a, the total current flowing within the contour is the total current flowing

within the wire:

I � � �
J � ds � � 2π

φ � 0

� a

r � 0

�
ẑJ0

r 
 � � ẑr dr dφ ��� 2π
� a

r � 0
J0 dr � 2πaJ0 

Therefore, since I � 2πrH2, H2 � J0a � r within the wire and H2 � φ̂φφJ0
�
a � r � .

Problem 5.22 Repeat Problem 5.21 for a current density J � ẑJ0e � r.

a

z

r

J

S

Figure P5.22: Cylindrical current.

Solution:
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(a) For r
�

a, Ampère’s law is

�

�
c
H � dl � I � �

S
J � ds �

φ̂φφH � φ̂φφ2πr � � r

0
J � ds � � r

0
ẑJ0e � r � ẑ2πr dr�

2πrH � 2πJ0

� r

0
re � r dr

� 2πJ0 � � e � r � r 	 1 ��� r0 � 2πJ0 � 1 � e � r � r 	 1 ��� 
Hence,

H � φ̂φφH � φ̂φφ
J0

r
� 1 � e � r � r 	 1 ��� � for r

�
a 

(b) For r � a,

2πrH � 2πJ0 � � e � r � r 	 1 ��� a0 � 2πJ0 � 1 � e � a � a 	 1 ��� �
H � φ̂φφH � φ̂φφ

J0

r

�
1 � e � a � a 	 1 � � � r � a 

Problem 5.23 In a certain conducting region, the magnetic field is given in
cylindrical coordinates by

H � φ̂φφ
4
r
� 1 � �

1 	 3r � e � 3r � 
Find the current density J.

Solution:

J � ∇ � � � H � ẑ
1
r

∂
∂r

�
r � 4

r
� 1 � �

1 	 3r � e � 3r � 

� ẑ

1
r
� 12e � 2r � 1 	 2r � � 12e � 2r � � ẑ24e � 3r A/m2 

Section 5-5: Magnetic Potential

Problem 5.24 With reference to Fig. 5-10, (a) derive an expression for the vector
magnetic potential A at a point P located at a distance r from the wire in the x–y plane,
and then (b) derive B from A. Show that your result is identical with the expression
given by Eq. (5.29), which was derived by applying the Biot–Savart law.
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Solution:
(a) From the text immediately following Eq. (5.65), that equation may take the

form

A � µ
4π

�
� �

I
R �

dl � � µ0

4π

� � � 2
z � � � � � 2 I

� z � 2 	 r2
ẑ dz �

� µ0

4π
� ẑI ln

�
z � 	 � z � 2 	 r2 � � ���

� � 2
z � � � � � 2

� ẑ
µ0I
4π

ln

��
� � 2 	 � �

� � 2 � 2 	 r2

� � � 2 	 � � � � � 2 � 2 	 r2

��

� ẑ
µ0I
4π

ln

�
� 	 � � 2 	 4r2

� � 	 � � 2 	 4r2 � 
(b) From Eq. (5.53),

B � ∇ � � � A

� ∇ � � � �
ẑ

µ0I
4π

ln

�
� 	 � � 2 	 4r2

� � 	 � � 2 	 4r2 � �
� � φ̂φφ

µ0I
4π

∂
∂r

ln

�
� 	 � � 2 	 4r2

� � 	 � � 2 	 4r2 �
� � φ̂φφ

µ0I
4π

� � � 	 � � 2 	 4r2

� 	 � � 2 	 4r2 � ∂
∂r

�
� 	 � � 2 	 4r2

� � 	 � � 2 	 4r2 �
� � φ̂φφ

µ0I
4π

� � � 	 � � 2 	 4r2

� 	 � � 2 	 4r2 �
� � � � � 	 � � 2 	 4r2 � ∂

∂r

�
� 	 � � 2 	 4r2 � � �

� 	 � � 2 	 4r2 � ∂
∂r

� � � 	 � � 2 	 4r2 �� � � 	 � � 2 	 4r2 � 2 �
� � φ̂φφ

µ0I
4π

� � � � 	 � � 2 	 4r2 � � �
� 	 � � 2 	 4r2 �� � � 	 � � 2 	 4r2 � � � 	 � � 2 	 4r2 � � 4r� � 2 	 4r2

� � φ̂φφ
µ0I
4π

� � 2 �
4r2 
 4r� � 2 	 4r2

� φ̂φφ
µ0I �

2πr � � 2 	 4r2
(T) 

which is the same as Eq. (5.29).

Problem 5.25 In a given region of space, the vector magnetic potential is given by
A � x̂5cos πy 	 ẑ

�
2 	 sinπx � (Wb/m).
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(a) Determine B.

(b) Use Eq. (5.66) to calculate the magnetic flux passing through a square loop
with 0.25-m-long edges if the loop is in the x–y plane, its center is at the origin,
and its edges are parallel to the x- and y-axes.

(c) Calculate Φ again using Eq. (5.67).

Solution:
(a) From Eq. (5.53), B � ∇ � � � A � ẑ5πsin πy � ŷπcosπx.
(b) From Eq. (5.66),

Φ � � �
B � ds � � 0 � 125 m

y � � 0 � 125 m

� 0 � 125 m

x � � 0 � 125 m

�
ẑ5πsinπy � ŷπcosπx � � � ẑ dx dy �

� � � � 5πx
cos πy

π
� ���

0 � 125

x � � 0 � 125

 ����

0 � 125

y � � 0 � 125� � 5
4

�
cos � π

8
� � cos

� � π
8 
 
 � 0 

(c) From Eq. (5.67), Φ � �

�
C

A � d � � � , where C is the square loop in the x-y plane with

sides of length 0.25 m centered at the origin. Thus, the integral can be written as

Φ � �

�
C

A � d � � � � Sfront 	 Sback 	 Sleft 	 Sright �
where Sfront, Sback, Sleft, and Sright are the sides of the loop.

Sfront � � 0 � 125

x � � 0 � 125

�
x̂5cos πy 	 ẑ

�
2 	 sinπx ��� � y � � 0 � 125 �

�
x̂ dx �

� � 0 � 125

x � � 0 � 125
5cos πy � y � � 0 � 125 dx

� � � 5xcos πy � � y � � 0 � 125 � ���
0 � 125

x � � 0 � 125
� 5

4
cos

� � π
8 
 � 5

4
cos � π

8
� �

Sback � � 0 � 125

x � � 0 � 125

�
x̂5cos πy 	 ẑ

�
2 	 sinπx ��� � y � 0 � 125 �

� � x̂ dx �
� � � 0 � 125

x � � 0 � 125
5cos πy � y � 0 � 125 dx

� � � � 5xcos πy � � y � 0 � 125 � ���
0 � 125

x � � 0 � 125
� � 5

4
cos � π

8
� �

Sleft � � 0 � 125

y � � 0 � 125

�
x̂5cos πy 	 ẑ

�
2 	 sinπx ��� � x � � 0 � 125 �

� � ŷ dy �
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� � � 0 � 125

y � � 0 � 125
0 � x � � 0 � 125 dy � 0 �

Sright � � 0 � 125

y � � 0 � 125

�
x̂5cos πy 	 ẑ

�
2 	 sinπx ��� � x � 0 � 125 �

�
ŷ dy �

� � 0 � 125

y � � 0 � 125
0 � x � 0 � 125 dy � 0 

Thus,

Φ � �

�
c
A � d � � � � Sfront 	 Sback 	 Sleft 	 Sright � 5

4
cos � π

8
� � 5

4
cos � π

8
� 	 0 	 0 � 0 

Problem 5.26 A uniform current density given by

J � ẑJ0 (A/m2) �
gives rise to a vector magnetic potential

A � � ẑ
µ0J0

4

�
x2 	 y2 � (Wb/m) 

(a) Apply the vector Poisson’s equation to confirm the above statement.

(b) Use the expression for A to find H.

(c) Use the expression for J in conjunction with Ampère’s law to find H. Compare
your result with that obtained in part (b).

Solution:
(a)

∇2A � x̂∇2Ax 	 ŷ∇2Ay 	 ẑ∇2Az � ẑ

�
∂2

∂x2 	 ∂2

∂y2 	 ∂2

∂z2 
 � � µ0
J0

4

�
x2 	 y2 � �

� � ẑµ0
J0

4

�
2 	 2 ��� � ẑµ0J0 

Hence, ∇2A � � µ0J is verified.
(b)

H � 1
µ0

∇ � � � A � 1
µ0

�
x̂

�
∂Az

∂y � ∂Ay

∂z 
 	 ŷ

�
∂Ax

∂z � ∂Az

∂x 
 	 ẑ

�
∂Ay

∂x � ∂Ax

∂y 
��
� 1

µ0

�
x̂

∂Az

∂y � ŷ
∂Az

∂x 

� 1

µ0

�
x̂

∂
∂y

�
� µ0

J0

4

�
x2 	 y2 � 
 � ŷ

∂
∂x

�
� µ0

J0

4

�
x2 	 y2 � 
 �

� � x̂
J0y
2 	 ŷ

J0x
2

(A/m) 
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r

J0

z

Figure P5.26: Current cylinder of Problem 5.26.

(c)

�

�
C

H � dl � I � �
S

J � ds �
φ̂φφHφ � φ̂φφ2πr � J0 � πr2 �

H � φ̂φφHφ � φ̂φφJ0
r
2


We need to convert the expression from cylindrical to Cartesian coordinates. From
Table 3-2,

φ̂φφ � � x̂sinφ 	 ŷcosφ � � x̂
y

� x2 	 y2 	 ŷ
x

� x2 	 y2
�

r � � x2 	 y2 
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Hence

H � �
� x̂

y

� x2 	 y2 	 ŷ
x

� x2 	 y2 � � J0

2
� x2 	 y2 � � x̂

yJ0

2 	 ŷ
xJ0

2
�

which is identical with the result of part (b).

Problem 5.27 A thin current element extending between z � � L � 2 and z � L � 2
carries a current I along 	 ẑ through a circular cross section of radius a.

(a) Find A at a point P located very far from the origin (assume R is so much larger
than L that point P may be considered to be at approximately the same distance
from every point along the current element).

(b) Determine the corresponding H.

z

L/2

-L/2

θ

P

Cross-section 

R

πa2

I

Figure P5.27: Current element of length L observed at distance R � L.

Solution:
(a) Since R � L, we can assume that P is approximately equidistant from all

segments of the current element. Hence, with R treated as constant, (5.65) gives

A � µ0

4π

�
V �

J
R �

dV � � µ0

4πR

�
V �

ẑ
I�

πa2 � πa2 dz � ẑ
µ0I
4πR

� L � 2
� L � 2 dz � ẑ

µ0IL
4πR
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(b)

H � 1
µ0

∇ � � � A

� 1
µ0

�
x̂

∂Az

∂y � ŷ
∂Az

∂x �
� 1

µ0

�
x̂

∂
∂y

�
µ0IL
4π

�
1

� x2 	 y2 	 z2 � � � ŷ
∂
∂x

�
µ0IL
4π

�
1

� x2 	 y2 	 z2 � ���
� IL

4π

� � x̂y 	 ŷx�
x2 	 y2 	 z2 � 3 � 2 � 

Section 5-6: Magnetic Properties of Materials

Problem 5.28 In the model of the hydrogen atom proposed by Bohr in 1913, the
electron moves around the nucleus at a speed of 2 � 106 m/s in a circular orbit of
radius 5 � 10 � 11 m. What is the magnitude of the magnetic moment generated by the
electron’s motion?

Solution: From Eq. (5.69), the magnitude of the orbital magnetic moment of an
electron is

�m0 � � �� �
1
2eur ��

� 1
2 � 1  6 � 10 � 19 � 2 � 106 � 5 � 10 � 11 � 8 � 10 � 24 (A �m2) 

Problem 5.29 Iron contains 8  5 � 1028 atoms/m3. At saturation, the alignment
of the electrons’ spin magnetic moments in iron can contribute 1.5 T to the total
magnetic flux density B. If the spin magnetic moment of a single electron is
9  27 � 10 � 24 (A �m2), how many electrons per atom contribute to the saturated field?

Solution: From the first paragraph of Section 5-6.2, the magnetic flux density of a
magnetized material is Bm � µ0M, where M is the vector sum of the microscopic
magnetic dipoles within the material: M � Nems, where ms is the magnitude of the
spin magnetic moment of an electron in the direction of the mean magnetization, and
Ne is net number of electrons per unit volume contributing to the bulk magnetization.
If the number of electrons per atom contributing to the bulk magnetization is ne, then
Ne � neNatoms where Natoms � 8  5 � 1028 atoms/m3 is the number density of atoms
for iron. Therefore,

ne � Ne

Natoms
� M

msNatoms
� B

µ0msNatoms
� 1  5

4π � 10 � 7 � 9  27 � 10 � 24 � 8  5 � 1028� 1  5 (electrons/atom) 
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Section 5-7: Magnetic Boundary Conditions

Problem 5.30 The x–y plane separates two magnetic media with magnetic
permeabilities µ1 and µ2, as shown in Fig. 5-45 (P5.30). If there is no surface current
at the interface and the magnetic field in medium 1 is

H1 � x̂H1x 	 ŷH1y 	 ẑH1z �
find:

(a) H2 �
(b) θ1 and θ2, and

(c) evaluate H2, θ1, and θ2 for H1x � 2 (A/m), H1y � 0, H1z � 4 (A/m), µ1 � µ0,
and µ2 � 4µ0.

θ1
µ1

µ2

H1

z

x-y plane

Figure P5.30: Adjacent magnetic media (Problem 5.30).

Solution:
(a) From (5.80),

µ1H1n � µ2H2n �
and in the absence of surface currents at the interface, (5.85) states

H1t � H2t 
In this case, H1z � H1n, and H1x and H1y are tangential fields. Hence,

µ1H1z � µ2H2z �
H1x � H2x �
H1y � H2y �
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and
H2 � x̂H1x 	 ŷH1y 	 ẑ

µ1

µ2
H1z 

(b)

H1t � � H2
1x 	 H2

1y �
tanθ1 � H1t

H1z
� � H2

1x 	 H2
1y

H1z
�

tanθ2 � H2t

H2z
� � H2

1x 	 H2
1y

µ1

µ2
H1z

� µ2

µ1
tanθ1 

(c)

H2 � x̂2 	 ẑ
1
4
� 4 � x̂2 	 ẑ (A/m) �

θ1 � tan � 1

�
2
4 
 � 26  56 � �

θ2 � tan � 1

�
2
1 
 � 63  44 � 

Problem 5.31 Given that a current sheet with surface current density Js � x̂8 (A/m)
exists at y � 0, the interface between two magnetic media, and H1 � ẑ11 (A/m) in
medium 1

�
y � 0 � , determine H2 in medium 2

�
y � 0 � .

Solution:

Js � x̂8 A/m �
H1 � ẑ11 A/m 

H1 is tangential to the boundary, and therefore H2 is also. With n̂2 � ŷ, from Eq.
(5.84), we have

n̂2 � � � � H1 � H2 ��� Js �
ŷ � � � �

ẑ11 � H2 ��� x̂8 �
x̂11 � ŷ � � � H2 � x̂8 �

or
ŷ � � � H2 � x̂3 �
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y

H1

Js

H2

n2

x

Figure P5.31: Adjacent magnetic media with Js on boundary.

which implies that H2 does not have an x-component. Also, since µ1H1y � µ2H2y and
H1 does not have a y-component, it follows that H2 does not have a y-component
either. Consequently, we conclude that

H2 � ẑ3 
Problem 5.32 In Fig. 5-46 (P5.32), the plane defined by x � y � 1 separates
medium 1 of permeability µ1 from medium 2 of permeability µ2. If no surface current
exists on the boundary and

B1 � x̂2 	 ŷ3 (T) �
find B2 and then evaluate your result for µ1 � 5µ2. Hint: Start out by deriving the
equation for the unit vector normal to the given plane.

Solution: We need to find n̂2. To do so, we start by finding any two vectors in the
plane x � y � 1, and to do that, we need three non-collinear points in that plane. We
choose

�
0 � � 1 � 0 � , � 1 � 0 � 0 � , and

�
1 � 0 � 1 � .

Vector A1 is from
�
0 � � 1 � 0 � to

�
1 � 0 � 0 � :
A1 � x̂1 	 ŷ1 

Vector A2 is from
�
1 � 0 � 0 � to

�
1 � 0 � 1 � :

A2 � ẑ1 
Hence, if we take the cross product A2 � � � A1, we end up in a direction normal to the
given plane, from medium 2 to medium 1,

n̂2 � A2 � � � A1

�A2 � � � A1 � � ẑ1 � � � �
x̂1 	 ŷ1 �

�A2 � � � A1 � � ŷ1 � x̂1� 1 	 1
� ŷ� 2 � x̂� 2
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µ1

y

x
(1, 0)

(0, -1)

Medium 1

µ2

Medium 2

n2

n2



Figure P5.32: Magnetic media separated by the plane x � y � 1 (Problem 5.32).

In medium 1, normal component is

B1n � n̂2 � B1 � �
ŷ� 2 � x̂� 2


 � � x̂2 	 ŷ3 ��� 3� 2 � 2� 2
� 1� 2

�
B1n � n̂2B1n � �

ŷ� 2 � x̂� 2

 � 1� 2

� ŷ
2 � x̂

2


Tangential component is

B1t � B1 � B1n � �
x̂2 	 ŷ3 � �

�
ŷ
2 � x̂

2 
 � x̂2  5 	 ŷ2  5 
Boundary conditions:

B1n � B2n � or B2n � ŷ
2 � x̂

2
�

H1t � H2t � or
B2t

µ2
� B1t

µ1


Hence,
B2t � µ2

µ1
B1t � µ2

µ1

�
x̂2  5 	 ŷ2  5 � 

Finally,

B2 � B2n 	 B2t � �
ŷ
2 � x̂

2 
 	 µ2

µ1

�
x̂2  5 	 ŷ2  5 � 

For µ1 � 5µ2,
B2 � ŷ (T) 
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Problem 5.33 The plane boundary defined by z � 0 separates air from a block of
iron. If B1 � x̂4 � ŷ6 	 ẑ8 in air (z � 0), find B2 in iron (z

�
0), given that µ � 5000µ0

for iron.

Solution: From Eq. (5.2),

H1 � B1

µ1
� 1

µ1

�
x̂4 � ŷ6 	 ẑ8 � 

The z component is the normal component to the boundary at z � 0. Therefore, from
Eq. (5.79), B2z � B1z � 8 while, from Eq. (5.85),

H2x � H1x � 1
µ1

4 � H2y � H1y � � 1
µ1

6 �
or

B2x � µ2H2x � µ2

µ1
4 � B2y � µ2H2y � � µ2

µ1
6 �

where µ2 � µ1 � µr � 5000. Therefore,

B2 � x̂20000 � ŷ30000 	 ẑ8 
Problem 5.34 Show that if no surface current densities exist at the parallel
interfaces shown in Fig. 5-47 (P5.34), the relationship between θ4 and θ1 is
independent of µ2.

µ1

µ2

µ3

B1

B2

B3

θ1

θ3θ2

θ4

Figure P5.34: Three magnetic media with parallel interfaces (Problem 5.34).
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Solution:
tanθ1 � B1t

B1n
�

and

tanθ2 � B2t

B2n


But B2n � B1n and
B2t

µ2
� B1t

µ1
. Hence,

tanθ2 � B1t

B1n

µ2

µ1
� µ2

µ1
tanθ1 

We note that θ2 � θ3 and

tanθ4 � µ3

µ2
tanθ3 � µ3

µ2
tan θ2 � µ3

µ2

µ2

µ1
tanθ1 � µ3

µ1
tanθ1 �

which is independent of µ2.

Sections 5-8 and 5-9: Inductance and Magnetic Energy

Problem 5.35 Obtain an expression for the self-inductance per unit length for the
parallel wire transmission line of Fig. 5-27(a) in terms of a, d, and µ, where a is
the radius of the wires, d is the axis-to-axis distance between the wires, and µ is the
permeability of the medium in which they reside.

Solution: Let us place the two wires in the x–z plane and orient the current in one
of them to be along the 	 z-direction and the current in the other one to be along the� z-direction, as shown in Fig. P5.35. From Eq. (5.30), the magnetic field at point
P
�
x � 0 � z � due to wire 1 is

B1 � φ̂φφ
µI

2πr
� ŷ

µI
2πx

�
where the permeability has been generalized from free space to any substance with
permeability µ, and it has been recognized that in the x-z plane, φ̂φφ � ŷ and r � x as
long as x � 0.

Given that the current in wire 2 is opposite that in wire 1, the magnetic field created
by wire 2 at point P

�
x � 0 � z � is in the same direction as that created by wire 1, and it is

given by

B2 � ŷ
µI

2π
�
d � x � 
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z

P

x
x

d
I

d-x

1 2

I

a

Figure P5.35: Parallel wire transmission line.

Therefore, the total magnetic field in the region between the wires is

B � B1 	 B2 � ŷ
µI
2π

�
1
x 	 1

d � x 
 � ŷ
µId

2πx
�
d � x � 

From Eq. (5.91), the flux crossing the surface area between the wires over a length l
of the wire structure is

Φ � � �
S

B � ds � � z0 � l

z � z0

� d � a

x � a

�
ŷ

µId
2πx

�
d � x � 
 � � ŷ dx dz �

� µIld
2π

�
1
d

ln

�
x

d � x 
 
 ����

d � a

x � a� µIl
2π

�
ln

�
d � a

a 
 � ln

�
a

d � a 
 

� µIl

2π
� 2ln

�
d � a

a 
 � µIl
π

ln

�
d � a

a 
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Since the number of ‘turns’ in this structure is 1, Eq. (5.93) states that the flux linkage
is the same as magnetic flux: Λ � Φ. Then Eq. (5.94) gives a total inductance over
the length l as

L � Λ
I
� Φ

I
� µl

π
ln

�
d � a

a 
 (H) 
Therefore, the inductance per unit length is

L � � L
l
� µ

π
ln

�
d � a

a 
 �
µ
π

ln

�
d
a 
 (H/m) �

where the last approximation recognizes that the wires are thin compared to the
separation distance (i.e., that d � a). This has been an implied condition from the
beginning of this analysis, where the flux passing through the wires themselves have
been ignored. This is the thin-wire limit in Table 2-1 for the two wire line.

Problem 5.36 A solenoid with a length of 20 cm and a radius of 5 cm consists
of 400 turns and carries a current of 12 A. If z � 0 represents the midpoint of the
solenoid, generate a plot for �H �

z � � as a function of z along the axis of the solenoid
for the range � 20 cm

�
z

�
20 cm in 1-cm steps.

Solution: Let the length of the solenoid be l � 20 cm. From Eq. (5.88a) and Eq.
(5.88b), z � a tan θ and a2 	 t2 � a2 sec2 θ, which implies that z � � z2 	 a2 � sinθ.
Generalizing this to an arbitrary observation point z � on the axis of the solenoid,�
z � z � � � � �

z � z � � 2 	 a2 � sinθ. Using this in Eq. (5.89),

H
�
0 � 0 � z � ��� B

µ
� ẑ

nI
2

�
sin θ2 � sinθ1 �

� ẑ
nI
2

��
l � 2 � z �

� �
l � 2 � z � � 2 	 a2 � � l � 2 � z �

� � � l � 2 � z � � 2 	 a2

��

� ẑ
nI
2

��
l � 2 � z �

� �
l � 2 � z � � 2 	 a2 	 l � 2 	 z �

� �
l � 2 	 z � � 2 	 a2

��
(A/m) 

A plot of the magnitude of this function of z � with a � 5 cm, n � 400 turns � 20 cm �
20 � 000 turns/m, and I � 12 A appears in Fig. P5.36.
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Figure P5.36: Problem 5.36.

Problem 5.37 In terms of the d-c current I, how much magnetic energy is stored in
the insulating medium of a 3-m-long, air-filled section of a coaxial transmission line,
given that the radius of the inner conductor is 5 cm and the inner radius of the outer
conductor is 10 cm?

Solution: From Eq. (5.99), the inductance per unit length of an air-filled coaxial
cable is given by

L � � µ0

2π
ln

�
b
a 
 (H/m) 

Over a length of 2 m, the inductance is

L � 2L � � 3 � 4π � 10 � 7

2π
ln

�
10
5 
 � 416 � 10 � 9 (H) 

From Eq. (5.104), Wm � LI2 � 2 � 208I2 (nJ), where Wm is in nanojoules when I is in
amperes. Alternatively, we can use Eq. (5.106) to compute Wm:

Wm � 1
2

�
V

µ0H2 dV 
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From Eq. (5.97), H � B � µ0 � I � 2πr, and

Wm � 1
2

� 3m

z � 0

� 2π

φ � 0

� b

r � a
µ0

�
I

2πr 
 2

r dr dφ dz � 208I2 (nJ) 
Problem 5.38 The rectangular loop shown in Fig. 5-48 (P5.38) is coplanar with
the long, straight wire carrying the current I � 20 A. Determine the magnetic flux
through the loop.

y

x

z

5cm

20A

20cm

30cm

Figure P5.38: Loop and wire arrangement for Problem 5.38.

Solution: The field due to the long wire is, from Eq. (5.30),

B � φ̂φφ
µ0I
2πr

� � x̂
µ0I
2πr

� � x̂
µ0I
2πy

�
where in the plane of the loop, φ̂φφ becomes � x̂ and r becomes y.

The flux through the loop is along � x̂, and the magnitude of the flux is

Φ � �
S

B � ds � µ0I
2π

� 20 cm

5 cm � x̂
y
� � x̂

�
30 cm � dy �

� µ0I
2π

� 0  3 � 0 � 2
0 � 05

dy
y

� 0  3µ0

2π
� 20 � ln

�
0  2

0  05 
 � 1  66 � 10 � 6 (Wb) 
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Problem 5.39 A circular loop of radius a carrying current I1 is located in the x–y
plane as shown in the figure. In addition, an infinitely long wire carrying current I2

in a direction parallel with the z-axis is located at y � y0.

x

y

z

yo
a

parallel to n̂ ẑ

P(0, 0, h)
I2

I1

(a) Determine H at P
�
0 � 0 � h � .

(b) Evaluate H for a � 3 cm, y0 � 10 cm, h � 4 cm, I1 � 10 A, and I2 � 20 A.

Solution:
(a) The magnetic field at P

�
0 � 0 � h � is composed of H1 due to the loop and H2 due

to the wire:
H � H1 	 H2 

From (5.34), with z � h,

H1 � ẑ
I1a2

2
�
a2 	 h2 � 3 � 2 (A/m) 

From (5.30), the field due to the wire at a distance r � y0 is

H2 � φ̂φφ
I2

2πy0

where φ̂φφ is defined with respect to the coordinate system of the wire. Point P is located
at an angel φ � � 90 � with respect to the wire coordinates. From Table 3-2,

φ̂φφ � � x̂sin φ 	 ŷcos φ� x̂
�
at φ � � 90 � � 

Hence,

H � ẑ
I1a2

2
�
a2 	 h2 � 3 � 2 	 x̂

I2

2πy0
(A/m) 
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(b)
H � ẑ36 	 x̂31  83 (A/m) 

Problem 5.40 A cylindrical conductor whose axis is coincident with the z-axis has
an internal magnetic field given by

H � φ̂φφ
2
r
� 1 � �

4r 	 1 � e � 4r � (A/m) for r
�

a

where a is the conductor’s radius. If a � 5 cm, what is the total current flowing in the
conductor?

Solution: We can follow either of two possible approaches. The first involves the
use of Ampère’s law and the second one involves finding J from H and then I from J.
We will demonstrate both.

Approach 1: Ampère’s law

Applying Ampère’s law at r � a,

�

�
C

H � d � � � � r � a � I
� 2π

0
φ̂φφ

2
r
� 1 � �

4r 	 1 � e � 4r � � φ̂φφr dφ ����
r � a

� I

I � 4π � 1 � �
4a 	 1 � e � 4a � (A) 

For a � 5 cm, I � 0  22 (A).
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Approach 2: H � J � I

J � ∇ � H

� ẑ
1
r

∂
∂r

�
rHφ �

� ẑ
1
r

∂
∂r

�
2 � 1 � �

4r 	 1 � e � 4r � �
� ẑ

1
r
� � 8e � 4r 	 8

�
4r 	 1 � e � 4r �� ẑ32e � 4r 

I � �
S

J � ds � � a

r � 0
ẑ32e � 4r

� ẑ2πr dr

� 64π
� a

r � 0
re � 4r dr

� 64π
16

� 1 � �
4a 	 1 � e � 4a �� 4π � 1 � �

4a 	 1 � e � 4a � (A) 
Problem 5.41 Determine the mutual inductance between the circular loop and the
linear current shown in the figure.

a

d

I1

x
y

y

Solution: To calculate the magnetic flux through the loop due to the current in the
conductor, we consider a thin strip of thickness dy at location y, as shown. The
magnetic field is the same at all points across the strip because they are all equidistant
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(at r � d 	 y) from the linear conductor. The magnetic flux through the strip is

dΦ12 � B
�
y ��� ds � ẑ

µ0I
2π
�
d 	 y � � ẑ2

�
a2 � y2 � 1 � 2 dy

� µ0I
�
a2 � y2 � 1 � 2

π
�
d 	 y � dy

L12 � 1
I

�
S

dΦ12

� µ0

π

� a

y � � a

�
a2 � y2 � 1 � 2 dy�

d 	 y �
Let z � d 	 y � dz � dy. Hence,

L12 � µ0

π

� d � a

z � d � a

� a2 � �
z � d � 2

z
dz

� µ0

π

� d � a

d � a

� �
a2 � d2 � 	 2dz � z2

z
dz

� µ0

π

� � R
z

dz

where R � a0 	 b0z 	 c0z2 and

a0 � a2 � d2

b0 � 2d

c0 � � 1

∆ � 4a0c0 � b2
0 � � 4a2 � 0

From Gradshteyn and Ryzhik, Table of Integrals, Series, and Products (Academic
Press, 1980, p. 84), we have

� � R
z

dz � � R 	 a0

�
dz

z � R 	 b0

z

�
dz� R


For � R ���

d � a

z � d � a
� � a2 � d2 	 2dz � z2 ���

d � a

z � d � a
� 0 � 0 � 0 

For
�

dz

z � R
, several solutions exist depending on the sign of a0 and ∆.
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For this problem, ∆ � 0, also let a0 � 0 (i.e., d � a). Using the table of integrals,

a0

�
dz

z � R
� a0

��
1� � a0

sin � 1

��
2a0 	 b0z

z � b2
0 � 4a0c0

�� �� d � a

z � d � a

� � � d2 � a2

�
sin � 1

�
a2 � d2 	 dz

az 
�� d � a

z � d � a� � π � d2 � a2 
For

�
dz� R

, different solutions exist depending on the sign of c0 and ∆.

In this problem, ∆ � 0 and c0 � 0. From the table of integrals,

b0

z

�
dz� R

� b0

2

� � 1� � c0
sin � 1 2c0z 	 b0� � ∆ � d � a

z � d � a

� � d

�
sin � 1

�
d � z

a 
 � d � a

z � d � a
� πd 

Thus

L12 � µ0

π
� � πd � π � d2 � a2 �

� µ0 � d � � d2 � a2 � 
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Chapter 6:  Maxwell’s Equations for Time-Varying Fields 
 
 
Lesson #37 
Chapter — Section:  6-1, 6-2 
Topics:  Faraday’s law, stationary loop in changing magnetic field 
 
Highlights: 

• Faraday’s law 
• EMF 

 
Special Illustrations: 

• Example 6-1 
• Example 6-2 
• CD-ROM Demo 6.1 
• CD-ROM Modules 6.1 and 6.2 
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Lesson #38 
Chapter — Section:  6-3, 6-4 
Topics:  Ideal transformer, moving conductor 
 
Highlights: 

• Transformer voltage and current relations 
• EMF for moving conductor 

 
Special Illustrations: 

• CD-ROM Modules 6.3 and 6.4 
• CD-ROM Demo 6.2 
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Lesson #39 
Chapter — Section:  6-5, 6-6 
Topics:  EM Generator, moving conductor in changing field 
 
Highlights: 

• Motor and generator reciprocity 
• EMF for combination of motional and transformer 

 
Special Illustrations: 

• Technology Brief on “EMF Sensors” (CD-ROM) 
 
 
EMF Sensors  

An electromotive force (emf) sensor is a device that can generate an induced voltage in response to an 
external stimulus. Three types of emf sensors are profiled in this Technical Brief:  the piezoelectric 
transducer, the Faraday magnetic flux sensor, and the thermocouple.  

 

Piezoelectric Transducers 

Piezoelectricity refers to the property of certain 
crystals, such as quartz, to become electrically 
polarized when the crystal is subjected to 
mechanical pressure, thereby exhibiting a 
voltage across it. The crystal consists of polar 
domains represented by equivalent dipoles (A). 
Under the absence of an external force, the polar 
domains are randomly oriented throughout the 
material (A1), but when compressive or tensile 
(stretching) stress is applied to the crystal, the 
polar domains align themselves along one of the 
principal axes of the crystal, leading to a net 
polarization (electric charge) at the crystal 
surfaces (A2 and A3). Compression and 
stretching generate voltages of opposite polarity. 
The piezoelectric effect (piezein means to press 

or squeeze in Greek) was discovered by the 
Curie brothers, Pierre and Paul-Jacques, in 1880, 
and a year later Lippmann predicted the 
converse property, namely that if subjected to an 
electric field, the crystal would change in shape. 
Thus, the piezoelectric effect is a reversible 
(bidirectional) electro-mechanical process.
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Lesson #40 
Chapter — Section:  6-7, 6-8 
Topics:  Displacement current, boundary conditions 
 
Highlights: 

• Concept of “displacement current” 
• Boundary conditions for the dynamic case 

 
Special Illustrations: 

• Example 6-7 
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Lesson #41 
Chapter — Section:  6-9, 6-10 
Topics:  Charge-current continuity, charge dissipation 
 
Highlights: 

• Continuity equation 
• Relaxation time constant 

 
Special Illustrations: 

 



 291

Lesson #42 
Chapter — Section:  6-11 
Topics:    EM potentials 
 
Highlights: 

• Retarded potential 
• Relation of potentials to fields in the dynamic case 

 
Special Illustrations: 

Example 6-8 
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Chapter 6

Sections 6-1 to 6-6: Faraday’s Law and its Applications

Problem 6.1 The switch in the bottom loop of Fig. 6-17 (P6.1) is closed at t � 0
and then opened at a later time t1. What is the direction of the current I in the top
loop (clockwise or counterclockwise) at each of these two times?

R2

R1

I

+
-

Figure P6.1: Loops of Problem 6.1.

Solution: The magnetic coupling will be strongest at the point where the wires of
the two loops come closest. When the switch is closed the current in the bottom loop
will start to flow clockwise, which is from left to right in the top portion of the bottom
loop. To oppose this change, a current will momentarily flow in the bottom of the
top loop from right to left. Thus the current in the top loop is momentarily clockwise
when the switch is closed. Similarly, when the switch is opened, the current in the
top loop is momentarily counterclockwise.

Problem 6.2 The loop in Fig. 6-18 (P6.2) is in the x–y plane and B � ẑB0 sinωt
with B0 positive. What is the direction of I (φ̂φφ or � φ̂φφ) at (a) t � 0, (b) ωt � π � 4, and
(c) ωt � π � 2?

Solution: I � Vemf � R. Since the single-turn loop is not moving or changing shape
with time, V m

emf � 0 V and Vemf � V tr
emf. Therefore, from Eq. (6.8),

I � V tr
emf � R � � 1

R

�
S

∂B
∂t
� ds 

If we take the surface normal to be 	 ẑ, then the right hand rule gives positive
flowing current to be in the 	 φ̂φφ direction.

I � � A
R

∂
∂t

B0 sinωt � � AB0ω
R

cosωt (A) �
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R

z

y

x

I

Figure P6.2: Loop of Problem 6.2.

where A is the area of the loop.
(a) A, ω and R are positive quantities. At t � 0, cosωt � 1 so I � 0 and the

current is flowing in the � φ̂φφ direction (so as to produce an induced magnetic field
that opposes B).

(b) At ωt � π � 4, cosωt � � 2 � 2 so I � 0 and the current is still flowing in the � φ̂φφ
direction.

(c) At ωt � π � 2, cosωt � 0 so I � 0. There is no current flowing in either direction.

Problem 6.3 A coil consists of 100 turns of wire wrapped around a square frame
of sides 0.25 m. The coil is centered at the origin with each of its sides parallel to
the x- or y-axis. Find the induced emf across the open-circuited ends of the coil if the
magnetic field is given by

(a) B � ẑ20e � 3t (T),

(b) B � ẑ20cos x cos103t (T),

(c) B � ẑ20cos x sin2y cos103t (T).

Solution: Since the coil is not moving or changing shape, V m
emf � 0 V and

Vemf � V tr
emf. From Eq. (6.6),

Vemf � � N
d
dt

�
S

B � ds � � N
d
dt

� 0 � 125

� 0 � 125

� 0 � 125

� 0 � 125
B � � ẑ dx dy � �

where N � 100 and the surface normal was chosen to be in the 	 ẑ direction.
(a) For B � ẑ20e � 3t (T),

Vemf � � 100
d
dt

�
20e � 3t � 0  25 � 2 ��� 375e � 3t (V) 
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(b) For B � ẑ20cos xcos 103t (T),

Vemf � � 100
d
dt

�
20cos 103t

� 0 � 125

x � � 0 � 125

� 0 � 125

y � � 0 � 125
cosx dx dy 
 � 124  6sin 103t (kV) 

(c) For B � ẑ20cos xsin 2ycos 103t (T),

Vemf � � 100
d
dt

�
20cos 103t

� 0 � 125

x � � 0 � 125

� 0 � 125

y � � 0 � 125
cosxsin 2y dx dy 
 � 0 

Problem 6.4 A stationary conducting loop with internal resistance of 0.5 Ω is
placed in a time-varying magnetic field. When the loop is closed, a current of 5 A
flows through it. What will the current be if the loop is opened to create a small gap
and a 2-Ω resistor is connected across its open ends?

Solution: Vemf is independent of the resistance which is in the loop. Therefore, when
the loop is intact and the internal resistance is only 0  5 Ω,

Vemf � 5 A � 0  5 Ω � 2  5 V 
When the small gap is created, the total resistance in the loop is infinite and the
current flow is zero. With a 2-Ω resistor in the gap,

I � Vemf � � 2 Ω 	 0  5 Ω ��� 2  5 V � 2  5 Ω � 1 (A) 
Problem 6.5 A circular-loop TV antenna with 0.02 m2 area is in the presence of a
uniform-amplitude 300-MHz signal. When oriented for maximum response, the loop
develops an emf with a peak value of 30 (mV). What is the peak magnitude of B of
the incident wave?

Solution: TV loop antennas have one turn. At maximum orientation, Eq. (6.5)
evaluates to Φ � �

B � ds � � BA for a loop of area A and a uniform magnetic field
with magnitude B � �B � . Since we know the frequency of the field is f � 300 MHz,
we can express B as B � B0 cos

�
ωt 	 α0 � with ω � 2π � 300 � 106 rad/s and α0 an

arbitrary reference phase. From Eq. (6.6),

Vemf � � N
dΦ
dt

� � A
d
dt
�B0 cos

�
ωt 	 α0 ��� � AB0ωsin

�
ωt 	 α0 � 

Vemf is maximum when sin
�
ωt 	 α0 ��� 1. Hence,

30 � 10 � 3 � AB0ω � 0  02 � B0 � 6π � 108 �
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which yields B0 � 0  8 (nA/m).

Problem 6.6 The square loop shown in Fig. 6-19 (P6.6) is coplanar with a long,
straight wire carrying a current

I
�
t ��� 5cos 2π � 104t (A) 

(a) Determine the emf induced across a small gap created in the loop.

(b) Determine the direction and magnitude of the current that would flow through
a 4-Ω resistor connected across the gap. The loop has an internal resistance of
1 Ω.

y

x

z

5cm

I(t)

10cm

10cm

Figure P6.6: Loop coplanar with long wire (Problem 6.6).

Solution:
(a) The magnetic field due to the wire is

B � φ̂φφ
µ0I
2πr

� � x̂
µ0I
2πy

�
where in the plane of the loop, φ̂φφ � � x̂ and r � y. The flux passing through the loop
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is

Φ � �
S

B � ds � � 15 cm

5 cm

�
� x̂

µ0I
2πy 
 � � � x̂10 (cm) � dy

� µ0I � 10 � 1

2π
ln

15
5� 4π � 10 � 7 � 5cos

�
2π � 104t ��� 10 � 1

2π
� 1  1� 1  1 � 10 � 7 cos

�
2π � 104t � (Wb) 

Vemf � � dΦ
dt

� 1  1 � 2π � 104 sin
�
2π � 104t ��� 10 � 7

� 6  9 � 10 � 3 sin
�
2π � 104t � (V) 

(b)

Iind � Vemf

4 	 1
� 6  9 � 10 � 3

5
sin

�
2π � 104t ��� 1  38sin

�
2π � 104t � (mA) 

At t � 0, B is a maximum, it points in � x̂-direction, and since it varies as
cos

�
2π � 104t � , it is decreasing. Hence, the induced current has to be CCW when

looking down on the loop, as shown in the figure.

Problem 6.7 The rectangular conducting loop shown in Fig. 6-20 (P6.7) rotates at
6,000 revolutions per minute in a uniform magnetic flux density given by

B � ŷ50 (mT) 
Determine the current induced in the loop if its internal resistance is 0  5 Ω.

Solution:

Φ � �
S

B � dS � ŷ50 � 10 � 3
� ŷ
�
2 � 3 � 10 � 4 � cos φ

�
t ��� 3 � 10 � 5 cosφ

�
t � �

φ
�
t ��� ωt � 2π � 6 � 103

60
t � 200πt (rad/s) �

Φ � 3 � 10 � 5 cos
�
200πt � (Wb) �

Vemf � � dΦ
dt

� 3 � 10 � 5 � 200πsin
�
200πt ��� 18  85 � 10 � 3 sin

�
200πt � (V) �

Iind � Vemf

0  5 � 37  7sin
�
200πt � (mA) 
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y

x

z

B

B

ω
φ(t)

3cm

2cm

Figure P6.7: Rotating loop in a magnetic field (Problem 6.7).

The direction of the current is CW (if looking at it along � x̂-direction) when the loop
is in the first quadrant (0

� φ � π � 2). The current reverses direction in the second
quadrant, and reverses again every quadrant.

Problem 6.8 A rectangular conducting loop 5 cm � 10 cm with a small air gap in
one of its sides is spinning at 7200 revolutions per minute. If the field B is normal to
the loop axis and its magnitude is 6 � 10 � 6 T, what is the peak voltage induced across
the air gap?

Solution:

ω � 2π rad/cycle � 7200 cycles/min
60 s/min

� 240π rad/s �
A � 5 cm � 10 cm � � 100 cm/m � 2 � 5  0 � 10 � 3 m2 

From Eqs. (6.36) or (6.38), Vemf � AωB0 sin ωt; it can be seen that the peak voltage is

V peak
emf � AωB0 � 5  0 � 10 � 3 � 240π � 6 � 10 � 6 � 22  62

�
µV � 

Problem 6.9 A 50-cm-long metal rod rotates about the z-axis at 90 revolutions per
minute, with end 1 fixed at the origin as shown in Fig. 6-21 (P6.9). Determine the
induced emf V12 if B � ẑ2 � 10 � 4 T.

Solution: Since B is constant, Vemf � V m
emf. The velocity u for any point on the bar

is given by u � φ̂φφrω, where

ω � 2π rad/cycle � �
90 cycles/min ��

60 s/min � � 3π rad/s 
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ω

1

2

x

y

z

B

Figure P6.9: Rotating rod of Problem 6.9.

From Eq. (6.24),

V12 � V m
emf � � 1

2

�
u � B � � dl � � 0

r � 0 � 5
�
φ̂φφ3πr � ẑ2 � 10 � 4 � � r̂ dr

� 6π � 10 � 4
� 0

r � 0 � 5 r dr

� 3π � 10 � 4r2 ���
0

0 � 5� � 3π � 10 � 4 � 0  25 � � 236
�
µV � 

Problem 6.10 The loop shown in Fig. 6-22 (P6.10) moves away from a wire
carrying a current I1 � 10 (A) at a constant velocity u � ŷ7  5 (m/s). If R � 10 Ω
and the direction of I2 is as defined in the figure, find I2 as a function of y0, the
distance between the wire and the loop. Ignore the internal resistance of the loop.

Solution: Assume that the wire carrying current I1 is in the same plane as the loop.
The two identical resistors are in series, so I2 � Vemf � 2R, where the induced voltage
is due to motion of the loop and is given by Eq. (6.26):

Vemf � V m
emf � �

�
C

�
u � B � � dl 

The magnetic field B is created by the wire carrying I1. Choosing ẑ to coincide with
the direction of I1, Eq. (5.30) gives the external magnetic field of a long wire to be

B � φ̂φφ
µ0I1

2πr
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u

u

I1 = 10 A

I2
20 cm

R

z

R

y0

10 cm

Figure P6.10: Moving loop of Problem 6.10.

For positive values of y0 in the y-z plane, ŷ � r̂, so

u � B � ŷ � u � � � � B � r̂ � u � � � � φ̂φφ
µ0I1

2πr
� ẑ

µ0I1u
2πr


Integrating around the four sides of the loop with dl � ẑ dz and the limits of
integration chosen in accordance with the assumed direction of I2, and recognizing
that only the two sides without the resistors contribute to V m

emf, we have

V m
emf � � 0 � 2

0

�
ẑ

µ0I1u
2πr 
 ����

r � y0

�

�
ẑ dz � 	 � 0

0 � 2
�

ẑ
µ0I1u
2πr 
 ����

r � y0 � 0 � 1 �
�
ẑ dz �

� 4π � 10 � 7 � 10 � 7  5 � 0  2
2π

�
1
y0 � 1

y0 	 0  1 

� 3 � 10 � 6

�
1
y0 � 1

y0 	 0  1 
 (V) �
and therefore

I2 � V m
emf

2R
� 150

�
1
y0 � 1

y0 	 0  1 
 (nA) 
Problem 6.11 The conducting cylinder shown in Fig. 6-23 (P6.11) rotates about its
axis at 1,200 revolutions per minute in a radial field given by

B � r̂6 (T) 
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z

10cm +

-
V

5cm

ω

Sliding contact

Figure P6.11: Rotating cylinder in a magnetic field (Problem 6.11).

The cylinder, whose radius is 5 cm and height 10 cm, has sliding contacts at its top
and bottom connected to a voltmeter. Determine the induced voltage.

Solution: The surface of the cylinder has velocity u given by

u � φ̂φφωr � φ̂φφ2π � 1 � 200
60

� 5 � 10 � 2 � φ̂φφ2π (m/s) �
V12 � � L

0

�
u � � � B � � dl � � 0 � 1

0

�
φ̂φφ2π � � � r̂6 � � ẑ dz � � 3  77 (V) 

Problem 6.12 The electromagnetic generator shown in Fig. 6-12 is connected to an
electric bulb with a resistance of 150 Ω. If the loop area is 0.1 m2 and it rotates
at 3,600 revolutions per minute in a uniform magnetic flux density B0 � 0  4 T,
determine the amplitude of the current generated in the light bulb.

Solution: From Eq. (6.38), the sinusoidal voltage generated by the a-c generator is
Vemf � AωB0 sin

�
ωt 	 C0 ��� V0 sin

�
ωt 	 C0 � . Hence,

V0 � AωB0 � 0  1 � 2π � 3 � 600
60

� 0  4 � 15  08 (V) �
I � V0

R
� 15  08

150
� 0  1 (A) 

Problem 6.13 The circular disk shown in Fig. 6-24 (P6.13) lies in the x–y plane
and rotates with uniform angular velocity ω about the z-axis. The disk is of radius a
and is present in a uniform magnetic flux density B � ẑB0. Obtain an expression for
the emf induced at the rim relative to the center of the disk.
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z

y

x

a

+- V

ω

Figure P6.13: Rotating circular disk in a magnetic field (Problem 6.13).

y

x

φ
ur

Figure P6.13: (a) Velocity vector u.

Solution: At a radial distance r, the velocity is

u � φ̂φφωr

where φ is the angle in the x–y plane shown in the figure. The induced voltage is

V � � a

0

�
u � � � B � � dl � � a

0
� � φ̂φφωr � � � � ẑB0 � � r̂ dr

φ̂φφ � � � ẑ is along r̂. Hence,

V � ωB0

� a

0
r dr � ωB0a2

2


Section 6-7: Displacement Current

Problem 6.14 The plates of a parallel-plate capacitor have areas 10 cm2 each
and are separated by 2 cm. The capacitor is filled with a dielectric material with
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ε � 4ε0, and the voltage across it is given by V
�
t � � 30cos 2π � 106t (V). Find the

displacement current.

Solution: Since the voltage is of the form given by Eq. (6.46) with V0 � 30 V and
ω � 2π � 106 rad/s, the displacement current is given by Eq. (6.49):

Id � � εA
d

V0ωsin ωt

� � 4 � 8  854 � 10 � 12 � 10 � 10 � 4

2 � 10 � 2 � 30 � 2π � 106 sin
�
2π � 106t �

� � 0  33sin
�
2π � 106t � (mA) 

Problem 6.15 A coaxial capacitor of length l � 6 cm uses an insulating dielectric
material with εr � 9. The radii of the cylindrical conductors are 0.5 cm and 1 cm. If
the voltage applied across the capacitor is

V
�
t ��� 50sin

�
120πt � (V) �

what is the displacement current?

l

r

Id

+

-
V(t) 2a 2b

Figure P6.15:

Solution: To find the displacement current, we need to know E in the dielectric space
between the cylindrical conductors. From Eqs. (4.114) and (4.115),

E � � r̂
Q

2πεrl
�

V � Q
2πεl

ln

�
b
a 
 

Hence,

E � � r̂
V

r ln � b
a � � � r̂

50sin
�
120πt �

r ln2
� � r̂

72  1
r

sin
�
120πt � (V/m) �
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D � εE� εrε0E

� � r̂9 � 8  85 � 10 � 12 � 72  1
r

sin
�
120πt �

� � r̂
5  75 � 10 � 9

r
sin

�
120πt � (C/m2) 

The displacement current flows between the conductors through an imaginary
cylindrical surface of length l and radius r. The current flowing from the outer
conductor to the inner conductor along � r̂ crosses surface S where

S � � r̂2πrl 
Hence,

Id � ∂D
∂t
� S � � r̂

∂
∂t

�
5  75 � 10 � 9

r
sin

�
120πt � 
 � � � r̂2πrl �

� 5  75 � 10 � 9 � 120π � 2πl cos
�
120πt �� 0  82cos

�
120πt � (µA) 

Alternatively, since the coaxial capacitor is lossless, its displacement current has to
be equal to the conduction current flowing through the wires connected to the voltage
sources. The capacitance of a coaxial capacitor is given by (4.116) as

C � 2πεl

ln � b
a � 

The current is

I � C
dV
dt

� 2πεl

ln � b
a � � 120π � 50cos

�
120πt ��� � 0  82cos

�
120πt � (µA) �

which is the same answer we obtained before.

Problem 6.16 The parallel-plate capacitor shown in Fig. 6-25 (P6.16) is filled
with a lossy dielectric material of relative permittivity εr and conductivity σ. The
separation between the plates is d and each plate is of area A. The capacitor is
connected to a time-varying voltage source V

�
t � .

(a) Obtain an expression for Ic, the conduction current flowing between the plates
inside the capacitor, in terms of the given quantities.
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+

-
V(t)

I

A

dε, σ

Figure P6.16: Parallel-plate capacitor containing a lossy dielectric material (Problem
6.16).

(b) Obtain an expression for Id, the displacement current flowing inside the
capacitor.

(c) Based on your expression for parts (a) and (b), give an equivalent-circuit
representation for the capacitor.

(d) Evaluate the values of the circuit elements for A � 4 cm2, d � 0  5 cm, εr � 4,
σ � 2  5 (S/m), and V

�
t ��� 10cos

�
3π � 103t � (V).

Solution:
(a)

R � d
σA

� Ic � V
R
� V σA

d


(b)

E � V
d
� Id � ∂D

∂t
� A � εA

∂E
∂t

� εA
d

∂V
∂t


(c) The conduction current is directly proportional to V , as characteristic of a

resistor, whereas the displacement current varies as ∂V � ∂t, which is characteristic
of a capacitor. Hence,

R � d
σA

and C � εA
d


(d)

R � 0  5 � 10 � 2

2  5 � 4 � 10 � 4 � 5 Ω �
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+

-

V(t)

I
Id

C
Ic

RV(t)

+

-

ε, σ

Actual Circuit Equivalent Circuit

Figure P6.16: (a) Equivalent circuit.

C � 4 � 8  85 � 10 � 12 � 4 � 10 � 4

0  5 � 10 � 2 � 2  84 � 10 � 12 F 
Problem 6.17 An electromagnetic wave propagating in seawater has an electric
field with a time variation given by E � ẑE0 cosωt. If the permittivity of water is
81ε0 and its conductivity is 4 (S/m), find the ratio of the magnitudes of the conduction
current density to displacement current density at each of the following frequencies:
(a) 1 kHz, (b) 1 MHz, (c) 1 GHz, (d) 100 GHz.

Solution: From Eq. (6.44), the displacement current density is given by

Jd � ∂
∂t

D � ε
∂
∂t

E

and, from Eq. (4.67), the conduction current is J � σE. Converting to phasors and
taking the ratio of the magnitudes,

�����

�
J�
Jd

�����
� �����

σ
�
E

jωεrε0

�
E �����

� σ
ωεrε0


(a) At f � 1 kHz, ω � 2π � 103 rad/s, and

�����

�
J�
Jd

�����
� 4

2π � 103 � 81 � 8  854 � 10 � 12 � 888 � 103 
The displacement current is negligible.

(b) At f � 1 MHz, ω � 2π � 106 rad/s, and

�����

�
J�
Jd

�����
� 4

2π � 106 � 81 � 8  854 � 10 � 12 � 888 
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The displacement current is practically negligible.
(c) At f � 1 GHz, ω � 2π � 109 rad/s, and

�����

�
J�
Jd

�����
� 4

2π � 109 � 81 � 8  854 � 10 � 12 � 0  888 
Neither the displacement current nor the conduction current are negligible.

(d) At f � 100 GHz, ω � 2π � 1011 rad/s, and

�����

�
J�
Jd

�����
� 4

2π � 1011 � 81 � 8  854 � 10 � 12 � 8  88 � 10 � 3 
The conduction current is practically negligible.

Sections 6-9 and 6-10: Continuity Equation and Charge Dissipation

Problem 6.18 At t � 0, charge density ρv0 was introduced into the interior of a
material with a relative permittivity εr � 9. If at t � 1 µs the charge density has
dissipated down to 10 � 3ρv0, what is the conductivity of the material?

Solution: We start by using Eq. (6.61) to find τr:

ρv
�
t ��� ρv0e � t � τr �

or

10 � 3ρv0 � ρv0e � 10 � 6 � τr �
which gives

ln10 � 3 � � 10 � 6

τr
�

or

τr � � 10 � 6

ln10 � 3 � 1  45 � 10 � 7 (s) 
But τr � ε � σ � 9ε0 � σ. Hence

σ � 9ε0

τr
� 9 � 8  854 � 10 � 12

1  45 � 10 � 7 � 5  5 � 10 � 4 (S/m) 
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Problem 6.19 If the current density in a conducting medium is given by

J
�
x � y � z; t � � �

x̂z2 � ŷ4y2 	 ẑ2x � cos ωt �
determine the corresponding charge distribution ρv

�
x � y � z; t � .

Solution: Eq. (6.58) is given by

∇ � J � � ∂ρv

∂t
 (24)

The divergence of J is

∇ � J � �
x̂

∂
∂x 	 ŷ

∂
∂y 	 ẑ

∂
∂z 
 �

�
x̂z2 � ŷ4y2 	 ẑ2x � cos ωt

� � 4
∂
∂y

�
y2 cosωt ��� � 8ycos ωt 

Using this result in Eq. (24) and then integrating both sides with respect to t gives

ρv � � � �
∇ � J � dt � � � � 8ycosωt dt � 8y

ω
sinωt 	 C0 �

where C0 is a constant of integration.

Problem 6.20 In a certain medium, the direction of current density J points in the
radial direction in cylindrical coordinates and its magnitude is independent of both φ
and z. Determine J, given that the charge density in the medium is

ρv � ρ0r cos ωt
�
C/m3 � 

Solution: Based on the given information,

J � r̂Jr
�
r � 

With Jφ � Jz � 0, in cylindrical coordinates the divergence is given by

∇ � J � 1
r

∂
∂r

�
rJr � 

From Eq. (6.54),

∇ � J � � ∂ρv

∂t
� � ∂

∂t

�
ρ0r cos ωt ��� ρ0rωsin ωt 
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Hence

1
r

∂
∂r

�
rJr ��� ρ0rωsin ωt �

∂
∂r

�
rJr ��� ρ0r2ωsin ωt �

� r

0

∂
∂r

�
rJr � dr � ρ0ωsin ωt

� r

0
r2 dr�

rJr � r0 � �
ρ0ωsinωt � r3

3 ����

r

0
�

Jr � ρ0ωr2

3
sinωt �

and

J � r̂Jr � r̂
ρ0ωr2

3
sinωt (A/m2) 

Problem 6.21 If we were to characterize how good a material is as an insulator by
its resistance to dissipating charge, which of the following two materials is the better
insulator?

Dry Soil: εr � 2  5, σ � 10 � 4 (S/m)
Fresh Water: εr � 80, σ � 10 � 3 (S/m)

Solution: Relaxation time constant τr � ε
σ .

For dry soil, τr � 2  5
10 � 4 � 2  5 � 104 s.

For fresh water, τr � 80
10 � 3 � 8 � 104 s.

Since it takes longer for charge to dissipate in fresh water, it is a better insulator than
dry soil.

Sections 6-11: Electromagnetic Potentials

Problem 6.22 The electric field of an electromagnetic wave propagating in air is
given by

E
�
z � t ��� x̂4cos

�
6 � 108t � 2z � 	 ŷ3sin

�
6 � 108t � 2z � (V/m) 
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Find the associated magnetic field H
�
z � t � .

Solution: Converting to phasor form, the electric field is given by
�
E
�
z ��� x̂4e � j2z � jŷ3e � j2z (V/m) �

which can be used with Eq. (6.87) to find the magnetic field:

�
H
�
z ��� 1

� jωµ
∇ � �E

� 1

� jωµ
������

x̂ ŷ ẑ
∂ � ∂x ∂ � ∂y ∂ � ∂z

4e � j2z � j3e � j2z 0
������� 1

� jωµ

�
x̂6e � j2z � ŷ j8e � j2z �

� j
6 � 108 � 4π � 10 � 7

�
x̂6 � ŷ j8 � e � j2z � jx̂8  0e � j2z 	 ŷ10  6e � j2z (mA/m) 

Converting back to instantaneous values, this is

H
�
t � z ��� � x̂8  0sin

�
6 � 108t � 2z � 	 ŷ10  6cos

�
6 � 108t � 2z � (mA/m) 

Problem 6.23 The magnetic field in a dielectric material with ε � 4ε0, µ � µ0, and
σ � 0 is given by

H
�
y � t ��� x̂5cos

�
2π � 107t 	 ky � (A/m) 

Find k and the associated electric field E.

Solution: In phasor form, the magnetic field is given by
�
H � x̂5e jky (A/m). From

Eq. (6.86),

�
E � 1

jωε
∇ � �H � � jk

jωε
ẑ5e jky

and, from Eq. (6.87),

�
H � 1

� jωµ
∇ � �E � � jk2

� jω2εµ
x̂5e jky �

which, together with the original phasor expression for
�
H, implies that

k � ω � εµ � ω � εr

c
� 2π � 107 � 4

3 � 108 � 4π
30

(rad/m) 
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Inserting this value in the expression for
�
E above,

�
E � � ẑ

4π � 30
2π � 107 � 4 � 8  854 � 10 � 12 5e j4πy � 30 � � ẑ941e j4πy � 30 (V/m) 

Problem 6.24 Given an electric field

E � x̂E0 sinaycos
�
ωt � kz � �

where E0, a, ω, and k are constants, find H.

Solution:

E � x̂E0 sinaycos
�
ωt � kz � ��

E � x̂E0 sinay e � jkz �
�
H � � 1

jωµ
∇ � � � �E

� � 1
jωµ

�
ŷ

∂
∂z

�
E0 sin ay e � jkz � � ẑ

∂
∂y

�
E0 sinay e � jkz � �

� E0

ωµ
� ŷk sinay � ẑ jacos ay � e � jkz �

H � ��� � �He jωt �
� ���

�
E0

ωµ
� ŷk sinay 	 ẑacosay e � jπ � 2 � e � jkze jωt �� E0

ωµ
� ŷk sinaycos

�
ωt � kz � 	 ẑacos aycos � ωt � kz � π

2
� �

� E0

ωµ
� ŷk sin aycos

�
ωt � kz � 	 ẑacos aysin

�
ωt � kz ��� 

Problem 6.25 The electric field radiated by a short dipole antenna is given in
spherical coordinates by

E
�
R � θ; t ��� θ̂θθ

2 � 10 � 2

R
sinθ cos

�
6π � 108t � 2πR � (V/m) 

Find H
�
R � θ; t � .

Solution: Converting to phasor form, the electric field is given by

�
E
�
R � θ ��� θ̂θθEθ � θ̂θθ

2 � 10 � 2

R
sinθe � j2πR (V/m) �
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which can be used with Eq. (6.87) to find the magnetic field:

�
H
�
R � θ ��� 1

� jωµ
∇ � �E � 1

� jωµ

�
R̂

1
Rsinθ

∂Eθ

∂φ 	 φ̂φφ
1
R

∂
∂R

�
REθ � �

� 1

� jωµ
φ̂φφ

2 � 10 � 2

R
sinθ

∂
∂R

�
e � j2πR �

� φ̂φφ
2π

6π � 108 � 4π � 10 � 7

2 � 10 � 2

R
sin θe � j2πR

� φ̂φφ
53
R

sinθ e � j2πR (µA/m) 
Converting back to instantaneous value, this is

H
�
R � θ; t ��� φ̂φφ

53
R

sinθcos
�
6π � 108t � 2πR � (µA/m) 

Problem 6.26 A Hertzian dipole is a short conducting wire carrying an
approximately constant current over its length l. If such a dipole is placed along
the z-axis with its midpoint at the origin and if the current flowing through it is
i
�
t ��� I0 cos ωt, find

(a) the retarded vector potential
�
A
�
R � θ � φ � at an observation point Q

�
R � θ � φ � in a

spherical coordinate system, and

(b) the magnetic field phasor
�
H
�
R � θ � φ � .

Assume l to be sufficiently small so that the observation point is approximately
equidistant to all points on the dipole; that is, assume that R � � R.

Solution:
(a) In phasor form, the current is given by

�
I � I0. Explicitly writing the volume

integral in Eq. (6.84) as a double integral over the wire cross section and a single
integral over its length,

�
A � µ

4π

� l � 2
� l � 2

� �
s

�
J
�
Ri � e � jkR �

R �
ds dz �

where s is the wire cross section. The wire is infinitesimally thin, so that R � is not a
function of x or y and the integration over the cross section of the wire applies only to
the current density. Recognizing that

�
J � ẑI0 � s, and employing the relation R � � R,

�
A � ẑ

µI0

4π

� l � 2
� l � 2 e � jkR �

R �
dz � ẑ

µI0

4π

� l � 2
� l � 2 e � jkR

R
dz � ẑ

µI0l
4πR

e � jkR 
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In spherical coordinates, ẑ � R̂cosθ � θ̂θθsinθ, and therefore

�
A � �

R̂cosθ � θ̂θθsinθ � µI0l
4πR

e � jkR 
(b) From Eq. (6.85),

�
H � 1

µ
∇ � �A � I0l

4π
∇ � � � R̂cosθ � θ̂θθsinθ � e � jkR

R �
� I0l

4π
φ̂φφ

1
R

�
∂

∂R
� � sinθe � jkR � � ∂

∂θ

�
cosθ

e � jkR

R 
 

� φ̂φφ

I0l sinθe � jkR

4πR

�
jk 	 1

R 
 
Problem 6.27 The magnetic field in a given dielectric medium is given by

H � ŷ6cos 2zsin
�
2 � 107t � 0  1x � (A/m) �

where x and z are in meters. Determine:

(a) E,

(b) the displacement current density Jd, and

(c) the charge density ρv.

Solution:
(a)

H � ŷ6cos 2zsin
�
2 � 107t � 0  1x ��� ŷ6cos 2zcos

�
2 � 107t � 0  1x � π � 2 � ��

H � ŷ6cos 2z e � j0 � 1xe � jπ � 2 � � ŷ j6cos 2z e � j0 � 1x �
�
E � 1

jωε
∇ � � � �H

� 1
jωε ������

x̂ ŷ ẑ
∂ � ∂x ∂ � ∂y ∂ � ∂z

0 � j6cos 2z e � j0 � 1x 0
������� 1

jωε

�
x̂

�
� ∂

∂z

� � j6cos 2z e � j0 � 1x � � 	 ẑ

�
∂
∂x

� � j6cos 2z e � j0 � 1x � � �
� x̂

�
� 12

ωε
sin2z e � j0 � 1x 
 	 ẑ

�
j0  6
ωε

cos 2z e � j0 � 1x 
 
From the given expression for H,

ω � 2 � 107 (rad/s) �
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β � 0  1 (rad/m) 
Hence,

up � ω
β
� 2 � 108 (m/s) �

and

εr � �
c
up

 2 � �

3 � 108

2 � 108 
 2 � 2  25 
Using the values for ω and ε, we have
�
E � � � x̂30sin 2z 	 ẑ j1  5cos 2z ��� 103e � j0 � 1x (V/m) �
E � � � x̂30sin 2zcos

�
2 � 107t � 0  1x � � ẑ1  5cos 2zsin

�
2 � 107t � 0  1x � � (kV/m) 

(b)
�
D � ε

�
E � εrε0

�
E � � � x̂0  6sin 2z 	 ẑ j0  03cos 2z ��� 10 � 6e � j0 � 1x (C/m2) �

Jd � ∂D
∂t

�
or
�
Jd � jω

�
D � � � x̂ j12sin 2z � ẑ0  6cos 2z � e � j0 � 1x �

Jd � ��� � �Jde jωt �� �
x̂12sin 2zsin

�
2 � 107t � 0  1x � � ẑ0  6cos 2zcos

�
2 � 107t � 0  1x � � (A/m2) 

(c) We can find ρv from
∇ � D � ρv

or from

∇ � J � � ∂ρv

∂t


Applying Maxwell’s equation,

ρv � ∇ � D � ε∇ � E � εrε0

�
∂Ex

∂x 	 ∂Ez

∂z 

yields

ρv � εrε0

�
∂
∂x

� � 30sin 2zcos
�
2 � 107t � 0  1x ���

	 ∂
∂z

� � 1  5cos 2zsin
�
2 � 107t � 0  1x � � �� εrε0

� � 3sin 2zsin
�
2 � 107t � 0  1x � 	 3sin 2zsin

�
2 � 107t � 0  1x � � � 0 



314 CHAPTER 6

Problem 6.28 The transformer shown in the figure consists of a long wire
coincident with the z-axis carrying a current I � I0 cosωt, coupling magnetic energy
to a toroidal coil situated in the x–y plane and centered at the origin. The toroidal core
uses iron material with relative permeability µr, around which 100 turns of a tightly
wound coil serves to induce a voltage Vemf, as shown in the figure.

a

b

x

y

z

I

Vemf

c

N+

-

Iron core with µr

(a) Develop an expression for Vemf.

(b) Calculate Vemf for f � 60 Hz, µr � 4000, a � 5 cm, b � 6 cm, c � 2 cm, and
I0 � 50 A.

Solution:
(a) We start by calculating the magnetic flux through the coil, noting that r, the

distance from the wire varies from a to b

Φ � �
S

B � ds � � b

a
x̂

µI
2πr

� x̂c dr � µcI
2π

ln

�
b
a 


Vemf � � N
dΦ
dt

� � µcN
2π

ln

�
b
a 
 dI

dt

� µcNωI0

2π
ln

�
b
a 
 sin ωt (V) 
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(b)

Vemf � 4000 � 4π � 10 � 7 � 2 � 10 � 2 � 100 � 2π � 60 � 50ln
�
6 � 5 �

2π
sin 377t� 5  5sin 377t (V) 

Problem 6.29 In wet soil, characterized by σ � 10 � 2 (S/m), µr � 1, and εr � 36,
at what frequency is the conduction current density equal in magnitude to the
displacement current density?

Solution: For sinusoidal wave variation, the phasor electric field is

E � E0e jωt 
Jc � σE � σE0e jωt

Jd � ∂D
∂t

� ε
∂E
∂t

� jωεE0e jωt

����
Jc

Jd ����
� 1 � σ

ωε
� σ

2πε f

or

f � σ
2πε

� 10 � 2

2π � 36 � 8  85 � 10 � 12 � 5 � 106 � 5 MHz 
Problem 6.30 In free space, the magnetic field is given by

H � φ̂φφ
36
r

cos
�
6 � 109t � kz � (mA/m) 

(a) Determine k.

(b) Determine E.

(c) Determine Jd.

Solution:
(a) From the given expression, ω � 6 � 109 (rad/s), and since the medium is free

space,

k � ω
c
� 6 � 109

3 � 108 � 20 (rad/m) 
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(b) Convert H to phasor:

�
H � φ̂φφ

36
r

e � jkz (mA/m)

�
E � 1

jωε0
∇ � �H

� 1
jωε0

�
� r̂

∂Hφ

∂z 	 ẑ
1
r

∂
∂r

�
rHφ � �

� 1
jωε0

�
� r̂

∂
∂z

�
36
r

e � jkz 
 	 ẑ
r

∂
∂r

�
36e � jkz � �

� 1
jωε0

�
r̂

j36k
r

e � jkz �
� r̂

36k
ωε0r

e � jkz � r̂
36 � 377

r
e � jkz � 10 � 3 � r̂

13  6
r

e � j20z (V/m) 
E � ��� � �Ee jωt �
� r̂

13  6
r

cos
�
6 � 109t � 20z � (V/m) 

(c)

Jd � ε0
∂E
∂t� r̂

13  6
r

ε0
∂
∂t

�
cos

�
6 � 109t � 20z � �

� � r̂
13  6ε0 � 6 � 109

r
sin

�
6 � 109t � 20z � (A/m2)

� � r̂
0  72

r
sin

�
6 � 109t � 20z � (A/m2) 
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Chapter 7:  Plane-Wave Propagation 
 

Lesson #43 
Chapter — Section:  7-1 
Topics:  Time-harmonic fields 
 
Highlights: 

• Phasors 
• Complex permittivity 
• Wave equations 

 
Special Illustrations: 
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Lesson #44 
Chapter — Section:  7-2 
Topics:  Waves in lossless media 
 
Highlights: 

• Uniform plane waves 
• Intrinsic impedance 
• Wave properties 

 
Special Illustrations: 

• Example 7-1 
• CD-ROM Modules 7.3 and 7.4 
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Lesson #45 and 46 
Chapter — Section:  7-3 
Topics:  Wave polarization 
 
Highlights: 

• Definition of polarization 
• Linear, circular, elliptical 

 
Special Illustrations: 

• CD-ROM Demos 7.1-7.5 
• Liquid Crystal Display 

 
 

Liquid Crystal Display (LCD)  

LCDs are used in digital clocks, cellular phones, desktop 
and laptop computers, and some televisions and other 
electronic systems.  They offer a decided advantage over 
other display technologies, such as cathode ray tubes, in 
that they are much lighter and thinner and consume a lot 
less power to operate. LCD technology relies on special 
electrical and optical properties of a class of materials 
known as liquid crystals, first discovered in the 1880s by 
botanist Friedrich Reinitzer.  

Physical Principle  

Liquid crystals are neither a pure solid nor a pure liquid, 
but rather a hybrid of both. One particular variety of 
interest is the twisted nematic liquid crystal whose 
molecules have a natural tendency to assume a twisted 
spiral structure when the material is sandwiched between 
finely grooved glass substrates with orthogonal 
orientations (A). Note that the molecules in contact with 
the grooved surfaces align themselves in parallel along 
the grooves.  The molecular spiral causes the crystal to 
behave like a wave polarizer; unpolarized light incident upon the entrance substrate follows the 
orientation of the spiral, emerging through the exit substrate with its polarization (direction of 
electric field) parallel to the groove’s direction.  
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Lesson #47 
Chapter — Section:  7-4 
Topics:  Waves in lossy media 
 
Highlights: 

• Attenuation and skin depth 
• Low loss medium 
• Good conductor 

 
Special Illustrations: 

• CD-ROM Demos 7.6-7.8 
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Lesson #48 
Chapter — Section:  7-5 
Topics:  Current flow in conductors 
 
Highlights: 

• Skin depth dependence on frequency 
• Surface impedance 

 
Special Illustrations: 
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Lesson #49 
Chapter — Section:  7-6 
Topics:  EM power density 
 
Highlights: 

• Power density in a lossless medium 
• Power density in a lossy medium 
• Time-average power 

 
Special Illustrations: 

• CD-ROM Module 7.5 
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Chapter 7

Section 7-2: Propagation in Lossless Media

Problem 7.1 The magnetic field of a wave propagating through a certain
nonmagnetic material is given by

H � ẑ30cos
�
108t � 0  5y � (mA/m) 

Find (a) the direction of wave propagation, (b) the phase velocity, (c) the wavelength
in the material, (d) the relative permittivity of the material, and (e) the electric field
phasor.

Solution:
(a) Positive y-direction.
(b) ω � 108 rad/s, k � 0  5 rad/m.

up � ω
k
� 108

0  5 � 2 � 108 m/s 
(c) λ � 2π � k � 2π � 0  5 � 12  6 m.

(d) εr � �
c
up

 2 � �

3 � 108

2 � 108 
 2 � 2  25.

(e) From Eq. (7.39b),
�
E � � ηk̂ � �H �
η � �

µ
ε
� 120π� εr

� 120π
1  5 � 251  33 (Ω) �

k̂ � ŷ � and
�
H � ẑ30e � j0 � 5y � 10 � 3 (A/m) 

Hence,
�
E � � 251  33ŷ � ẑ30e � j0 � 5y � 10 � 3 � � x̂7  54e � j0 � 5y (V/m) �

and

E
�
y � t ��� ��� � �

Ee jωt ��� � x̂7  54cos
�
108t � 0  5y � (V/m) 

Problem 7.2 Write general expressions for the electric and magnetic fields of a
1-GHz sinusoidal plane wave traveling in the 	 y-direction in a lossless nonmagnetic
medium with relative permittivity εr � 9. The electric field is polarized along the
x-direction, its peak value is 6 V/m and its intensity is 4 V/m at t � 0 and y � 2 cm.
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Solution: For f � 1 GHz, µr � 1, and εr � 9,

ω � 2π f � 2π � 109 rad/s �
k � 2π

λ
� 2π

λ0
� εr � 2π f

c
� εr � 2π � 109

3 � 108
� 9 � 20π rad/m �

E
�
y � t ��� x̂6cos

�
2π � 109t � 20πy 	 φ0 � (V/m) 

At t � 0 and y � 2 cm, E � 4 V/m:

4 � 6cos
� � 20π � 2 � 10 � 2 	 φ0 ��� 6cos

� � 0  4π 	 φ0 � 
Hence,

φ0 � 0  4π � cos � 1

�
4
6 
 � 0  84 rad �

which gives

φ0 � 2  1 rad � 120  19 �
and

E
�
y � t ��� x̂ 6cos

�
2π � 109t � 20πy 	 120  19 � � (V/m) 

Problem 7.3 The electric field phasor of a uniform plane wave is given by�
E � ŷ10e j0 � 2z (V/m). If the phase velocity of the wave is 1  5 � 108 m/s and the relative
permeability of the medium is µr � 2  4, find (a) the wavelength, (b) the frequency f
of the wave, (c) the relative permittivity of the medium, and (d) the magnetic field
H
�
z � t � .

Solution:
(a) From

�
E � ŷ10e j0 � 2z (V/m), we deduce that k � 0  2 rad/m. Hence,

λ � 2π
k
� 2π

0  2 � 10π � 31  42 m 
(b)

f � up

λ
� 1  5 � 108

31  42
� 4  77 � 106 Hz � 4  77 MHz 

(c) From

up � c� µrεr
� εr � 1

µr

�
c
up

 2 � 1

2  4
�

3
1  5 
 2 � 1  67 
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(d)

η � �
µ
ε

� 120π
�

µr

εr
� 120π

�
2  4

1  67
� 451  94 (Ω) �

�
H � 1

η
� � ẑ ��� �E � 1

η
� � ẑ ��� ŷ10e j0 � 2z � x̂22  13e j0 � 2z (mA/m) �

H
�
z � t ��� x̂22  13cos

�
ωt 	 0  2z � (mA/m) �

with ω � 2π f � 9  54π � 106 rad/s.

Problem 7.4 The electric field of a plane wave propagating in a nonmagnetic
material is given by

E � � ŷ3sin
�
π � 107t � 0  2πx � 	 ẑ4cos

�
π � 107t � 0  2πx ��� (V/m) 

Determine (a) the wavelength, (b) εr, and (c) H.

Solution:
(a) Since k � 0  2π,

λ � 2π
k
� 2π

0  2π
� 10 m 

(b)

up � ω
k
� π � 107

0  2π
� 5 � 107 m/s 

But

up � c� εr


Hence,

εr � �
c
up

 2 � �

3 � 108

5 � 107 
 2 � 36 
(c)

H � 1
η

k̂ � E � 1
η

x̂ � �
ŷ3sin

�
π � 107t � 0  2πx � 	 ẑ4cos

�
π � 107t � 0  2πx � �

� ẑ
3
η

sin
�
π � 107t � 0  2πx � � ŷ

4
η

cos
�
π � 107t � 0  2πx � (A/m) �
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with

η � η0� εr
�

120π
6

� 20π � 62  83 (Ω) 
Problem 7.5 A wave radiated by a source in air is incident upon a soil surface,
whereupon a part of the wave is transmitted into the soil medium. If the wavelength
of the wave is 60 cm in air and 20 cm in the soil medium, what is the soil’s relative
permittivity? Assume the soil to be a very low loss medium.

Solution: From λ � λ0 � � εr,

εr � �
λ0

λ 
 2 � �
60
20 
 2 � 9 

Problem 7.6 The electric field of a plane wave propagating in a lossless,
nonmagnetic, dielectric material with εr � 2  56 is given by

E � ŷ20cos
�
6π � 109t � kz � (V/m) 

Determine:
(a) f , up, λ, k, and η, and
(b) the magnetic field H.

Solution:
(a)

ω � 2π f � 6π � 109 rad/s �
f � 3 � 109 Hz � 3 GHz �

up � c� εr
� 3 � 108� 2  56

� 1  875 � 108 m/s �
λ � up

f
� 1  875 � 108

6 � 109 � 3  12 cm �
k � 2π

λ
� 2π

3  12 � 10 � 2 � 201  4 rad/m �
η � η0� εr

� 377� 2  56
� 377

1  6 � 235  62 Ω 
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(b)

H � � x̂
20
η

cos
�
6π � 109t � kz �

� � x̂
20

235  62
cos

�
6π � 109t � 201  4z �� � x̂8  49 � 10 � 2 cos

�
6π � 109t � 201  4z � (A/m) 

Section 7-3: Wave Polarization

Problem 7.7 An RHC-polarized wave with a modulus of 2 (V/m) is traveling in free
space in the negative z-direction. Write down the expression for the wave’s electric
field vector, given that the wavelength is 6 cm.

y

x
z

ωt=0

ωt=π/2

Figure P7.7: Locus of E versus time.

Solution: For an RHC wave traveling in � ẑ, let us try the following:

E � x̂acos
�
ωt 	 kz � 	 ŷasin

�
ωt 	 kz � 

Modulus �E � � � a2 	 a2 � a � 2 � 2 (V/m). Hence,

a � 2� 2
� � 2 
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Next, we need to check the sign of the ŷ-component relative to that of the
x̂-component. We do this by examining the locus of E versus t at z � 0: Since
the wave is traveling along � ẑ, when the thumb of the right hand is along � ẑ (into
the page), the other four fingers point in the direction shown (clockwise as seen from
above). Hence, we should reverse the sign of the ŷ-component:

E � x̂ � 2cos
�
ωt 	 kz � � ŷ � 2sin

�
ωt 	 kz � (V/m)

with

k � 2π
λ

� 2π
6 � 10 � 2 � 104  72 (rad/m) �

and

ω � kc � 2π
λ

� 3 � 108 � π � 1010 (rad/s) 
Problem 7.8 For a wave characterized by the electric field

E
�
z � t ��� x̂ax cos

�
ωt � kz � 	 ŷay cos

�
ωt � kz 	 δ � �

identify the polarization state, determine the polarization angles
�
γ � χ � , and sketch the

locus of E
�
0 � t � for each of the following cases:

(a) ax � 3 V/m, ay � 4 V/m, and δ � 0,

(b) ax � 3 V/m, ay � 4 V/m, and δ � 180 � ,
(c) ax � 3 V/m, ay � 3 V/m, and δ � 45 � ,
(d) ax � 3 V/m, ay � 4 V/m, and δ � � 135 � .

Solution:

ψ0 � tan � 1 � ay � ax � � [Eq. (7.60)] �
tan2γ � �

tan2ψ0 � cos δ [Eq. (7.59a)] �
sin2χ � �

sin2ψ0 � sin δ [Eq. (7.59b)] 
Case ax ay δ ψ0 γ χ Polarization State
(a) 3 4 0 53  13 � 53  13 � 0 Linear
(b) 3 4 180 � 53  13 � � 53  13 � 0 Linear
(c) 3 3 45 � 45 � 45 � 22  5 � Left elliptical
(d) 3 4 � 135 � 53  13 � � 56  2 � � 21  37 � Right elliptical

(a) E
�
z � t ��� x̂3cos

�
ωt � kz � 	 ŷ4cos

�
ωt � kz � .

(b) E
�
z � t ��� x̂3cos

�
ωt � kz � � ŷ4cos

�
ωt � kz � .

(c) E
�
z � t ��� x̂3cos

�
ωt � kz � 	 ŷ3cos

�
ωt � kz 	 45 � � .

(d) E
�
z � t ��� x̂3cos

�
ωt � kz � 	 ŷ4cos

�
ωt � kz � 135 � � .
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Figure P7.8: Plots of the locus of E
�
0 � t � .

Problem 7.9 The electric field of a uniform plane wave propagating in free space
is given by

�
E � �

x̂ 	 jŷ � 20e � jπz � 6 (V/m). Specify the modulus and direction of the
electric field intensity at the z � 0 plane at t � 0, 5 and 10 ns.
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Solution:

E
�
z � t ��� ��� � �Ee jωt �� ��� � � x̂ 	 jŷ � 20e � jπz � 6e jωt �� ��� � � x̂ 	 ŷe jπ � 2 � 20e � jπz � 6e jωt �� x̂20cos

�
ωt � πz � 6 � 	 ŷ20cos

�
ωt � πz � 6 	 π � 2 �� x̂20cos

�
ωt � πz � 6 � � ŷ20sin

�
ωt � πz � 6 � (V/m) �

�E � � �
E2

x 	 E2
y � 1 � 2 � 20 (V/m) �

ψ � tan � 1

�
Ey

Ex

 � � � ωt � πz � 6 � 

From

f � c
λ
� kc

2π
� π � 6 � 3 � 108

2π
� 2  5 � 107 Hz �

ω � 2π f � 5π � 107 rad/s 
At z � 0,

ψ � � ωt � � 5π � 107t ������ 0 at t � 0 �� 0  25π � � 45 � at t � 5 ns �� 0  5π � � 90 � at t � 10 ns 
Therefore, the wave is LHC polarized.

Problem 7.10 A linearly polarized plane wave of the form
�
E � x̂axe � jkz can be

expressed as the sum of an RHC polarized wave with magnitude aR and an LHC
polarized wave with magnitude aL. Prove this statement by finding expressions for
aR and aL in terms of ax.

Solution:
�
E � x̂axe � jkz �

RHC wave:
�
ER � aR

�
x̂ 	 ŷe � jπ � 2 � e � jkz � aR

�
x̂ � jŷ � e � jkz �

LHC wave:
�
EL � aL

�
x̂ 	 ŷe jπ � 2 � e � jkz � aL

�
x̂ 	 jŷ � e � jkz ��

E � �
ER 	 �EL �

x̂ax � aR
�
x̂ � jŷ � 	 aL

�
x̂ 	 jŷ � 

By equating real and imaginary parts, ax � aR 	 aL, 0 � � aR 	 aL, or aL � ax � 2,
aR � ax � 2.
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Problem 7.11 The electric field of an elliptically polarized plane wave is given by

E
�
z � t ��� � � x̂10sin

�
ωt � kz � 60 � � 	 ŷ30cos

�
ωt � kz ��� (V/m) 

Determine (a) the polarization angles
�
γ � χ � and (b) the direction of rotation.

Solution:
(a)

E
�
z � t ��� � � x̂10sin

�
ωt � kz � 60 � � 	 ŷ30cos

�
ωt � kz ���� � x̂10cos

�
ωt � kz 	 30 � � 	 ŷ30cos

�
ωt � kz ��� (V/m) 

Phasor form:
�
E � �

x̂10e j30 � 	 ŷ30 � e � jkz 
Since δ is defined as the phase of Ey relative to that of Ex,

δ � � 30 � �
ψ0 � tan � 1

�
30
10 
 � 71  56 � �

tan2γ � �
tan 2ψ0 � cosδ � � 0  65 or γ � 73  5 � �

sin 2χ � �
sin 2ψ0 � sinδ � � 0  40 or χ � � 8  73 � 

(b) Since χ � 0, the wave is right-hand elliptically polarized.

Problem 7.12 Compare the polarization states of each of the following pairs of
plane waves:

(a) wave 1: E1 � x̂2cos
�
ωt � kz � 	 ŷ2sin

�
ωt � kz � ,

wave 2: E2 � x̂2cos
�
ωt 	 kz � 	 ŷ2sin

�
ωt 	 kz � ,

(b) wave 1: E1 � x̂2cos
�
ωt � kz � � ŷ2sin

�
ωt � kz � ,

wave 2: E2 � x̂2cos
�
ωt 	 kz � � ŷ2sin

�
ωt 	 kz � .

Solution:
(a)

E1 � x̂2cos
�
ωt � kz � 	 ŷ2sin

�
ωt � kz �� x̂2cos

�
ωt � kz � 	 ŷ2cos

�
ωt � kz � π � 2 � ��

E1 � x̂2e � jkz 	 ŷ2e � jkze � jπ � 2 �
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ψ0 � tan � 1 � ay
ax
� � tan � 1 1 � 45 � �

δ � � π � 2 
Hence, wave 1 is RHC.

Similarly, �
E2 � x̂2e jkz 	 ŷ2e jkze � jπ � 2 

Wave 2 has the same magnitude and phases as wave 1 except that its direction is
along � ẑ instead of 	 ẑ. Hence, the locus of rotation of E will match the left hand
instead of the right hand. Thus, wave 2 is LHC.

(b)

E1 � x̂2cos
�
ωt � kz � � ŷ2sin

�
ωt � kz � ��

E1 � x̂2e � jkz 	 ŷ2e � jkze jπ � 2 
Wave 1 is LHC. �

E2 � x̂2e jkz 	 ŷ2e jkze jπ � 2 
Reversal of direction of propagation (relative to wave 1) makes wave 2 RHC.

Problem 7.13 Plot the locus of E
�
0 � t � for a plane wave with

E
�
z � t ��� x̂sin

�
ωt 	 kz � 	 ŷ2cos

�
ωt 	 kz � 

Determine the polarization state from your plot.

Solution:
E � x̂ sin

�
ωt 	 kz � 	 ŷ2cos

�
ωt 	 kz � 

Wave direction is � ẑ. At z � 0,

E � x̂ sinωt 	 ŷ2cos ωt 
Tip of E rotates in accordance with right hand (with thumb pointing along � ẑ).
Hence, wave state is RHE.
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Figure P7.13: Locus of E versus time.

Sections 7-4: Propagation in a Lossy Medium

Problem 7.14 For each of the following combination of parameters, determine if
the material is a low-loss dielectric, a quasi-conductor, or a good conductor, and then
calculate α, β, λ, up, and ηc:

(a) glass with µr � 1, εr � 5, and σ � 10 � 12 S/m at 10 GHz,

(b) animal tissue with µr � 1, εr � 12, and σ � 0  3 S/m at 100 MHz,

(c) wood with µr � 1, εr � 3, and σ � 10 � 4 S/m at 1 kHz.

Solution: Using equations given in Table 7-1:

Case (a) Case (b) Case (c)

σ � ωε 3  6 � 10 � 13 4.5 600
Type low-loss dielectric quasi-conductor good conductor

α 8  42 � 10 � 11 Np/m 9.75 Np/m 6  3 � 10 � 4 Np/m
β 468  3 rad/m 12.16 rad/m 6  3 � 10 � 4 rad/m
λ 1.34 cm 51.69 cm 10 km
up 1  34 � 108 m/s 0  52 � 108 m/s 0  1 � 108 m/s
ηc � 168  5 Ω 39  54 	 j31  72Ω 6  28

�
1 	 j � Ω
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Problem 7.15 Dry soil is characterized by εr � 2  5, µr � 1, and σ � 10 � 4 (S/m).
At each of the following frequencies, determine if dry soil may be considered a good
conductor, a quasi-conductor, or a low-loss dielectric, and then calculate α, β, λ, µp,
and ηc:

(a) 60 Hz,
(b) 1 kHz,
(c) 1 MHz,
(d) 1 GHz.

Solution: εr � 2  5, µr � 1, σ � 10 � 4 S/m.

f � 60 Hz 1 kHz 1 MHz 1 GHz

ε
� �

ε
��� σ

ωε

� σ
2π f εrε0

1 � 2 � 104 720 0.72 7 � 2 � 10 � 4

Type of medium Good conductor Good conductor Quasi-conductor Low-loss dielectric

α (Np/m) 1 � 54 � 10 � 4 6 � 28 � 10 � 4 1 � 13 � 10 � 2 1 � 19 � 10 � 2

β (rad/m) 1 � 54 � 10 � 4 6 � 28 � 10 � 4 3 � 49 � 10 � 2 33.14

λ (m) 4 � 08 � 104 104 180 0.19

up (m/s) 2 � 45 � 106 107 1 � 8 � 108 1 � 9 � 108

ηc (Ω) 1 � 54
�
1 � j 	 6 � 28

�
1 � j 	 204 � 28 � j65 � 89 238.27

Problem 7.16 In a medium characterized by εr � 9, µr � 1, and σ � 0  1 S/m,
determine the phase angle by which the magnetic field leads the electric field at
100 MHz.

Solution: The phase angle by which the magnetic field leads the electric field is � θη
where θη is the phase angle of ηc.

σ
ωε

� 0  1 � 36π
2π � 108 � 10 � 9 � 9

� 2 
Hence, quasi-conductor.

ηc � �
µ
ε �

�
1 � j

ε � �
ε �

 � 1 � 2 � 120π� εr

�
1 � j

σ
ωε0εr


 � 1 � 2
� 125  67

�
1 � j2 � � 1 � 2 � 71  49 	 j44  18 � 84  04

�
31 � 72 � 
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Therefore θη � 31  72 � .
Since H � �

1 � ηc � k̂ � E, H leads E by � θη, or by � 31  72 � . In other words, H lags
E by 31  72 � .
Problem 7.17 Generate a plot for the skin depth δs versus frequency for seawater
for the range from 1 kHz to 10 GHz (use log-log scales). The constitutive parameters
of seawater are µr � 1, εr � 80 and σ � 4 S/m.

Solution:

δs � 1
α
� 1

ω

��
µε �
2

��
1 	

�
ε � �
ε �

 2 � 1�� �� � 1 � 2 �

ω � 2π f �
µε � � µ0ε0εr � εr

c2 � 80
c2 � 80�

3 � 108 � 2 �
ε � �
ε �

� σ
ωε

� σ
ωε0εr

� 4 � 36π
2π f � 10 � 9 � 80

� 72
80 f

� 109 
See Fig. P7.17 for plot of δs versus frequency.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

Skin depth vs. frequency for seawater

Frequency (MHz)

S
ki

n 
de

pt
h 

(m
)

Figure P7.17: Skin depth versus frequency for seawater.
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Problem 7.18 Ignoring reflection at the air-soil boundary, if the amplitude of a
3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will
it be down to 1 mV/m? Wet soil is characterized by µr � 1, εr � 9, and σ � 5 � 10 � 4

S/m.

Solution:

E
�
z ��� E0e � αz � 10e � αz �

σ
ωε

� 5 � 10 � 4 � 36π
2π � 3 � 109 � 10 � 9 � 9

� 3  32 � 10 � 4 
Hence, medium is a low-loss dielectric.

α � σ
2

�
µ
ε
� σ

2
� 120π� εr

� 5 � 10 � 4 � 120π
2 � � 9

� 0  032 (Np/m) �
10 � 3 � 10e � 0 � 032z � ln10 � 4 � � 0  032z �

z � 287  82 m 
Problem 7.19 The skin depth of a certain nonmagnetic conducting material is 3 µm
at 5 GHz. Determine the phase velocity in the material.

Solution: For a good conductor, α � β, and for any material δs � 1 � α. Hence,

up � ω
β
� 2π f

β
� 2π f δs � 2π � 5 � 109 � 3 � 10 � 6 � 9  42 � 104 (m/s) 

Problem 7.20 Based on wave attenuation and reflection measurements conducted
at 1 MHz, it was determined that the intrinsic impedance of a certain medium is
28  1 �

45 �
�
Ω � and the skin depth is 2 m. Determine (a) the conductivity of the

material, (b) the wavelength in the medium, and (c) the phase velocity.

Solution:
(a) Since the phase angle of ηc is 45 � , the material is a good conductor. Hence,

ηc � �
1 	 j � α

σ
� 28  1e j45 � � 28  1cos 45 � 	 j28  1sin 45 � �

or

α
σ
� 28  1cos 45 � � 19  87 
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Since α � 1 � δs � 1 � 2 � 0  5 Np/m,

σ � α
19  87

� 0  5
19  87

� 2  52 � 10 � 2 S/m 
(b) Since α � β for a good conductor, and α � 0  5, it follows that β � 0  5.

Therefore,

λ � 2π
β

� 2π
0  5 � 4π � 12  57 m 

(c) up � f λ � 106 � 12  57 � 1  26 � 107 m/s.

Problem 7.21 The electric field of a plane wave propagating in a nonmagnetic
medium is given by

E � ẑ25e � 30x cos
�
2π � 109t � 40x � (V/m) 

Obtain the corresponding expression for H.

Solution: From the given expression for E,

ω � 2π � 109 (rad/s) �
α � 30 (Np/m) �
β � 40 (rad/m) 

From (7.65a) and (7.65b),

α2 � β2 � � ω2µε � � � ω2µ0ε0ε �r � � ω2

c2 ε �r �
2αβ � ω2µε � � � ω2

c2 ε � �r 
Using the above values for ω, α, and β, we obtain the following:

ε �r � 1  6 �
ε � �r � 5  47 

ηc � �
µ
ε �

�
1 � j

ε � �
ε �

 � 1 � 2

� η0� ε �r

�
1 � j

ε � �r
ε �r

 � 1 � 2 � 377� 1  6

�
1 � j

5  47
1  6 
 � 1 � 2 � 157  9e j36 � 85 � (Ω) 
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�
E � ẑ25e � 30xe � j40x �
�
H � 1

ηc
k̂ � � � �E � 1

157  9e j36 � 85 �
x̂ � � � ẑ25e � 30xe � j40x � � ŷ0  16e � 30xe � 40xe � j36 � 85 � �

H � ��� � �He jωt 
 � � ŷ0  16e � 30x cos
�
2π � 109t � 40x � 36  85 � � (A/m) 

Section 7-5: Current Flow in Conductors

Problem 7.22 In a nonmagnetic, lossy, dielectric medium, a 300-MHz plane wave
is characterized by the magnetic field phasor

H̃ � �
x̂ � j4ẑ � e � 2ye � j9y (A/m) 

Obtain time-domain expressions for the electric and magnetic field vectors.

Solution: �
E � � ηck̂ � � � �H 

To find ηc, we need ε � and ε � � . From the given expression for
�
H,

α � 2 (Np/m) �
β � 9 (rad/m) 

Also, we are given than f � 300 MHz � 3 � 108 Hz. From (7.65a),

α2 � β2 � � ω2µε � �
4 � 81 � � � 2π � 3 � 108 � 2 � 4π � 10 � 7 � ε �r � 10 � 9

36π
�

whose solution gives
ε �r � 1  95 

Similarly, from (7.65b),

2αβ � ω2µε � � �
2 � 2 � 9 � �

2π � 3 � 108 � 2 � 4π � 10 � 7 � ε � �r � 10 � 9

36π
�

which gives

ε � �r � 0  91 
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ηc � �
µ
ε �

�
1 � j

ε � �
ε �

 � 1 � 2

� η0� ε �r

�
1 � j

0  91
1  95 
 � 1 � 2 � 377� 1  95

�
0  93 	 j0  21 � � 256  9e j12 � 6 � 

Hence,
�
E � � 256  9e j12 � 6 � ŷ � � � �

x̂ � j4ẑ � e � 2ye � j9y

� �
x̂ j4 	 ẑ � 256  9e � 2ye � j9ye j12 � 6 �

� �
x̂4e jπ � 2 	 ẑ � 256  9e � 2ye � j9ye j12 � 6 � �

E � ��� � �Ee jωt 
� x̂1  03 � 103e � 2y cos
�
ωt � 9y 	 102  6 � �

	 ẑ256  9e � 2y cos
�
ωt � 9y 	 12  6 � � (V/m) �

H � ��� � �He jωt 
� ��� � � x̂ 	 j4ẑ � e � 2ye � j9ye jωt 
� x̂e � 2y cos
�
ωt � 9y � 	 ẑ4e � 2y sin

�
ωt � 9y � (A/m) 

Problem 7.23 A rectangular copper block is 30 cm in height (along z). In response
to a wave incident upon the block from above, a current is induced in the block in the
positive x-direction. Determine the ratio of the a-c resistance of the block to its d-c
resistance at 1 kHz. The relevant properties of copper are given in Appendix B.

w

l

J

30 cm

Figure P7.23: Copper block of Problem 7.23.



340 CHAPTER 7

Solution:

d-c resistance Rdc � l
σA

� l
0  3σw

�
a-c resistance Rac � l

σwδs


Rac

Rdc
� 0  3

δs
� 0  3 � π f µσ � 0  3 � π � 103 � 4π � 10 � 7 � 5  8 � 107 � 1 � 2 � 143  55 

Problem 7.24 The inner and outer conductors of a coaxial cable have radii of
0.5 cm and 1 cm, respectively. The conductors are made of copper with εr � 1,
µr � 1 and σ � 5  8 � 107 S/m, and the outer conductor is 0.5 mm thick. At 10 MHz:

(a) Are the conductors thick enough to be considered infinitely thick so far as the
flow of current through them is concerned?

(b) Determine the surface resistance Rs.

(c) Determine the a-c resistance per unit length of the cable.

Solution:
(a) From Eqs. (7.72) and (7.77b),

δs � � π f µσ � � 1 � 2 � � π � 107 � 4π � 10 � 7 � 5  8 � 107 � � 1 � 2 � 0  021 mm 
Hence,

d
δs

� 0  5 mm
0  021 mm

� 25 
Hence, conductor is plenty thick.

(b) From Eq. (7.92a),

Rs � 1
σδs

� 1
5  8 � 107 � 2  1 � 10 � 5 � 8  2 � 10 � 4 Ω 

(c) From Eq. (7.96),

R � � Rs

2π

�
1
a 	 1

b 
 � 8  2 � 10 � 4

2π

�
1

5 � 10 � 3 	 1
10 � 2 
 � 0  039 (Ω/m) 



CHAPTER 7 341

Section 7-6: EM Power Density

Problem 7.25 The magnetic field of a plane wave traveling in air is given by
H � x̂50sin

�
2π � 107t � ky � (mA/m). Determine the average power density carried

by the wave.

Solution:

H � x̂50sin
�
2π � 107t � ky � (mA/m) �

E � � η0ŷ � H � ẑη050sin
�
2π � 107t � ky � (mV/m) �

Sav � �
ẑ � x̂ � η0

�
50 � 2
2

� 10 � 6 � ŷ
120π

2

�
50 � 2 � 10 � 6 � ŷ0  48 (W/m2) 

Problem 7.26 A wave traveling in a nonmagnetic medium with εr � 9 is
characterized by an electric field given by

E � � ŷ3cos
�
π � 107t 	 kx � � ẑ2cos

�
π � 107t 	 kx ��� (V/m) 

Determine the direction of wave travel and the average power density carried by the
wave.

Solution:

η �
η0� εr

� 120π� 9
� 40π (Ω) 

The wave is traveling in the negative x-direction.

Sav � � x̂
� 32 	 22 �

2η
� � x̂

13
2 � 40π

� � x̂0  05 (W/m2) 
Problem 7.27 The electric-field phasor of a uniform plane wave traveling
downward in water is given by

�
E � x̂5e � 0 � 2ze � j0 � 2z (V/m) �

where ẑ is the downward direction and z � 0 is the water surface. If σ � 4 S/m,

(a) obtain an expression for the average power density,

(b) determine the attenuation rate, and

(c) determine the depth at which the power density has been reduced by 40 dB.
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Solution:
(a) Since α � β � 0  2, the medium is a good conductor.

ηc � �
1 	 j � α

σ
� �

1 	 j � 0  2
4

� �
1 	 j � 0  05 � 0  0707e j45 � (Ω) 

From Eq. (7.109),

Sav � ẑ
�E0 � 2
2 �ηc � e

� 2αz cos θη � ẑ
25

2 � 0  0707
e � 0 � 4z cos 45 � � ẑ125e � 0 � 4z (W/m2) 

(b) A � � 8  68αz � � 8  68 � 0  2z � � 1  74z (dB).
(c) 40 dB is equivalent to 10 � 4. Hence,

10 � 4 � e � 2αz � e � 0 � 4z � ln
�
10 � 4 ��� � 0  4z �

or z � 23  03 m.

Problem 7.28 The amplitudes of an elliptically polarized plane wave traveling in a
lossless, nonmagnetic medium with εr � 4 are Hy0 � 3 (mA/m) and Hz0 � 4 (mA/m).
Determine the average power flowing through an aperture in the y-z plane if its area
is 20 m2.

Solution:

η � η0� εr
� 120π� 4

� 60π � 188  5 Ω �
Sav � x̂

η
2
�H2

y0 	 H2
x0 � � x̂

188  5
2

� 9 	 16 � � 10 � 6 � 2  36 (mW/m2) �
P � SavA � 2  36 � 10 � 3 � 20 � 47  13 (mW) 

Problem 7.29 A wave traveling in a lossless, nonmagnetic medium has an electric
field amplitude of 24.56 V/m and an average power density of 2.4 W/m2. Determine
the phase velocity of the wave.

Solution:

Sav � �E0 � 2
2η

� η � �E0 � 2
2Sav

�
or

η � �
24  56 � 2
2 � 2  4 � 125  67 Ω 
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But

η � η0� εr
� 377� εr

� εr � �
377

125  67 
 2 � 9 
Hence,

up � c� εr
� 3 � 108

3
� 1 � 108 m/s 

Problem 7.30 At microwave frequencies, the power density considered safe for
human exposure is 1 (mW/cm2). A radar radiates a wave with an electric field
amplitude E that decays with distance as E

�
R � � �

3 � 000 � R � (V/m), where R is the
distance in meters. What is the radius of the unsafe region?

Solution:

Sav � �E �
R � � 2

2η0
� 1 (mW/cm2) � 10 � 3 W/cm2 � 10 W/m2 �

10 � �
3 � 103

R 
 2 � 1
2 � 120π

� 1  2 � 104

R2 �
R � �

1  2 � 104

10 
 1 � 2 � 34  64 m 
Problem 7.31 Consider the imaginary rectangular box shown in Fig. 7-19 (P7.31).

(a) Determine the net power flux P
�
t � entering the box due to a plane wave in air

given by
E � x̂E0 cos

�
ωt � ky � (V/m) 

(b) Determine the net time-average power entering the box.

Solution:
(a)

E � x̂E0 cos
�
ωt � ky � �

H � � ẑ
E0

η0
cos

�
ωt � ky � 

S
�
t ��� E � � � H � ŷ

E2
0

η0
cos2 � ωt � ky � �

P
�
t ��� S

�
t � A � y � 0 � S

�
t � A � y � b � E2

0

η0
ac � cos2 ωt � cos2 � ωt � kb ��� 
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a

b

c

x

y

z

Figure P7.31: Imaginary rectangular box of Problems 7.31 and 7.32.

(b)

Pav � 1
T

� T

0
P
�
t � dt 

where T � 2π � ω.

Pav � E2
0 ac
η0

�
ω
2π

� 2π � ω
0

� cos2 ωt � cos2 � ωt � kb ��� dt � � 0 
Net average energy entering the box is zero, which is as expected since the box is in
a lossless medium (air).

Problem 7.32 Repeat Problem 7.31 for a wave traveling in a lossy medium in which

E � x̂100e � 20y cos
�
2π � 109t � 40y � (V/m) �

H � � ẑ0  64e � 20y cos
�
2π � 109t � 40y � 36  85 � � (A/m) 

The box has dimensions A � 1 cm, b � 2 cm, and c � 0  5 cm.

Solution:
(a)

S
�
t ��� E � � � H� x̂100e � 20y cos

�
2π � 109t � 40y �� � � � � ẑ0  64 � e � 20y cos

�
2π � 109t � 40y � 36  85 � �� ŷ64e � 40y cos

�
2π � 109t � 40y � cos

�
2π � 109t � 40y � 36  85 � � 



CHAPTER 7 345

Using the identity cos θcosφ � 1
2 � cos

�
θ 	 φ � 	 cos

�
θ � φ ��� ,

S
�
t ��� 64

2
e � 40y � cos

�
4π � 109t � 80y � 36  85 � � 	 cos36  85 � � �

P
�
t ��� S

�
t � A � y � 0 � S

�
t � A � y � b� 32ac � � cos

�
4π � 109t � 36  85 � � 	 cos36  85 � �

� e � 40b � cos
�
4π � 109t � 80y � 36  85 � � 	 cos36  85 � � 
 

(b)

Pav � 1
T

� T

0
P
�
t � dt � ω

2π

� 2π � ω
0

P
�
t � dt 

The average of cos
�
ωt 	 θ � over a period T is equal to zero, regardless of the value

of θ. Hence,
Pav � 32ac

�
1 � e � 40b � cos 36  85 � 

With a � 1 cm, b � 2 cm, and c � 0  5 cm,

Pav � 7  05 � 10 � 4 (W) 
This is the average power absorbed by the lossy material in the box.

Problem 7.33 Given a wave with

E � x̂E0 cos
�
ωt � kz � �

calculate:
(a) the time-average electric energy density�

we � av � 1
T

� T

0
we dt � 1

2T

� T

0
εE2 dt �

(b) the time-average magnetic energy density�
wm � av � 1

T

� T

0
wm dt � 1

2T

� T

0
µH2 dt �

and
(c) show that

�
we � av � �

wm � av.

Solution:
(a) �

we � av � 1
2T

� T

0
εE2

0 cos2 � ωt � kz � dt 
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With T � 2π
ω , �

we � av � ωεE2
0

4π

� 2π � ω
0

cos2 � ωt � kz � dt

� εE2
0

4π

� 2π

0
cos2 � ωt � kz � d

�
ωt �

� εE2
0

4


(b)

H � ŷ
E0

η
cos

�
ωt � kz � 

�
wm � av � 1

2T

� T

0
µH2 dt

� 1
2T

� T

0
µ

E2
0

η2 cos2 � ωt � kz � dt

� µE2
0

4η2 
(c) �

wm � av � µE2
0

4η2 � µE2
0

4 � µ
ε � � εE2

0

4
� �

we � av 
Problem 7.34 A 60-MHz plane wave traveling in the � x-direction in dry soil
with relative permittivity εr � 4 has an electric field polarized along the z-direction.
Assuming dry soil to be approximately lossless, and given that the magnetic field has
a peak value of 10 (mA/m) and that its value was measured to be 7 (mA/m) at t � 0
and x � � 0  75 m, develop complete expressions for the wave’s electric and magnetic
fields.

Solution: For f � 60 MHz � 6 � 107 Hz, εr � 4, µr � 1,

k � ω
c
� εr � 2π � 6 � 107

3 � 108
� 4 � 0  8π (rad/m) 

Given that E points along ẑ and wave travel is along � x̂, we can write

E
�
x � t ��� ẑE0 cos

�
2π � 60 � 106t 	 0  8πx 	 φ0 � (V/m)

where E0 and φ0 are unknown constants at this time. The intrinsic impedance of the
medium is

η � η0� εr
� 120π

2
� 60π (Ω) 
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With E along ẑ and k̂ along � x̂, (7.39) gives

H � 1
η

k̂ � � � E

or

H
�
x � t ��� ŷ

E0

η
cos

�
1  2π � 108t 	 0  8πx 	 φ0 � (A/m) 

Hence,

E0

η
� 10 (mA/m)

E0 � 10 � 60π � 10 � 3 � 0  6π (V/m) 
Also,

H
� � 0  75 m � 0 ��� 7 � 10 � 3 � 10cos

� � 0  8π � 0  75 	 φ0 ��� 10 � 3

which leads to φ0 � 153  6 � .
Hence,

E
�
x � t ��� ẑ0  6πcos

�
1  2π � 108t 	 0  8πx 	 153  6 � � (V/m) 

H
�
x � t ��� ŷ10cos

�
1  2π � 108t 	 0  8πx 	 153  6 � � (mA/m) 

Problem 7.35 At 2 GHz, the conductivity of meat is on the order of 1 (S/m). When
a material is placed inside a microwave oven and the field is activated, the presence
of the electromagnetic fields in the conducting material causes energy dissipation in
the material in the form of heat.

(a) Develop an expression for the time-average power per mm3 dissipated in a
material of conductivity σ if the peak electric field in the material is E0.

(b) Evaluate the result for meat with E0 � 4 � 104 (V/m).

Solution:
(a) Let us consider a small volume of the material in the shape of a box of length d

and cross sectional area A. Let us assume the microwave oven creates a wave
traveling along the z direction with E along y, as shown.
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E

A

d x

y

z

Ek^k^

Along y, the E field will create a voltage difference across the length of the box V ,
where

V � Ed 
Conduction current through the cross sectional area A is

I � JA � σEA 
Hence, the instantaneous power is

P � IV � σE2 � Ad �� σE2V 
where V � Ad is the small volume under consideration. The power per mm3 is
obtained by setting V � �

10 � 3 � 3,

P � � P
10 � 9 � σE2 � 10 � 9 (W/mm3) 

As a time harmonic signal, E � E0 cosωt. The time average dissipated power is

P �av � � 1T � T

0
σE2

0 cos2 ωt dt � � 10 � 9

� 1
2

σE2
0 � 10 � 9 (W/mm3) 
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(b)

P �av � 1
2
� 1 � �

4 � 104 � 2 � 10 � 9 � 0  8 (W/mm3) 
Problem 7.36 A team of scientists is designing a radar as a probe for measuring the
depth of the ice layer over the antarctic land mass. In order to measure a detectable
echo due to the reflection by the ice-rock boundary, the thickness of the ice sheet
should not exceed three skin depths. If ε �r � 3 and ε � �r � 10 � 2 for ice and if the
maximum anticipated ice thickness in the area under exploration is 1.2 km, what
frequency range is useable with the radar?

Solution:

3δs � 1  2 km � 1200 m

δs � 400 m 
Hence,

α � 1
δs

� 1
400

� 2  5 � 10 � 3 (Np/m) 
Since ε � � � ε � � 1, we can use (7.75a) for α:

α � ωε � �
2

�
µ
ε �
� 2π f ε � �r ε0

2 � ε �r � ε0
� µ0 � π f ε � �r

c � εr
� π f � 10 � 2

3 � 108 � 3
� 6 f � 10 � 11Np/m 

For α � 2  5 � 10 � 3 � 6 f � 10 � 11,

f � 41  6 MHz 
Since α increases with increasing frequency, the useable frequency range is

f
�

41  6 MHz 
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Chapter 8:  Reflection, Transmission, and Waveguides 
 
 
Lessons #50 and 51 
Chapter — Section:  8-1 
Topics:  Normal incidence 
 
Highlights: 

• Analogy to transmission line 
• Reflection and transmission coefficient 

Special Illustrations: 
• Example 8-1 
• CD-ROM Modules 8.1-8.5 
• CD-ROM Demos  8.2 
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Lesson #52 
Chapter — Section:  8-2 
Topics:  Snell’s laws 
 
Highlights: 

• Reflection and refraction 
• Index of refraction 

 
Special Illustrations: 

• Example 8-4 
• Technology Brief on “Lasers” (CD-ROM) 

 
 

Lasers  

Lasers are used in CD and DVD players, bar-code readers, eye surgery and multitudes of other 
systems and applications. A laser—acronym for light amplification by stimulated emission of 
radiation—is a source of monochromatic (single wavelength), coherent (uniform wavefront), 
narrow-beam light, in contrast with other sources of light (such as the sun or a light bulb) which 
usually encompass waves of many different wavelengths with random phase (incoherent). A laser 
source generating microwaves is called a maser. The first maser was built in 1953 by Charles 
Townes and the first laser was constructed in 1960 by Theodore Maiman.  
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Lesson #53 
Chapter — Section:  8-3 
Topics:  Fiber optics 
 
Highlights: 

• Structure of an optical fiber 
• Dispersion 

 
Special Illustrations: 

• Example 8-5 
• Technology Brief on “Bar-Code Reader” (CD-ROM) 

 
 

Bar Code Readers  

A bar code consists of a sequence of parallel bars of certain widths, usually printed in black 
against a white background, configured to represent a particular binary code of information about 
a product and its manufacturer.  Laser scanners can read the code and transfer the information to a 
computer, a cash register, or a display screen. For both stationary scanners built into checkout 
counters at grocery stores and handheld units that can be pointed at the bar-coded object like a 
gun, the basic operation of a bar-code reader is the same.  
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Lessons #54 and 55 
Chapter — Section:  8-4 
Topics:  Oblique incidence 
 
Highlights: 

• Parallel and perpendicular polarizations 
• Brewster angle 
• Total internal reflection 

 
Special Illustrations: 

• Example 8-6 and 8-7 
• CD-ROM Demos 8.4-8.6 
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Lesson #56 
Chapter — Section:  8-5 
Topics:  Reflectivity and transmissivity 
 
Highlights: 

• Power relations 
 
Special Illustrations: 

• Example 8-7 
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Lessons #57–59 
Chapter — Section:  8-6 to 8-10 
Topics:  Waveguides 
 
Highlights: 

• TE and TM modes 
• Cutoff frequency 
• Phase and group velocities 
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Chapter 8

Section 8-1: Reflection and Transmission at Normal Incidence

Problem 8.1 A plane wave in air with an electric field amplitude of 20 V/m is
incident normally upon the surface of a lossless, nonmagnetic medium with εr = 25.
Determine:

(a) the reflection and transmission coefficients,
(b) the standing-wave ratio in the air medium, and
(c) the average power densities of the incident, reflected, and transmitted waves.

Solution:
(a)

η1 = η0 = 120π (Ω), η2 =
η0√

εr
=

120π
5

= 24π (Ω).

From Eqs. (8.8a) and (8.9),

Γ =
η2 −η1

η2 +η1
=

24π−120π
24π+120π

=
−96
144

= −0.67,

τ = 1+Γ = 1−0.67 = 0.33.

(b)

S =
1+ |Γ|
1−|Γ| =

1+0.67
1−0.67

= 5.

(c) According to Eqs. (8.19) and (8.20),

Si
av =

|E i
0|2

2η0
=

400
2×120π

= 0.52 W/m2,

Sr
av = |Γ|2Si

av = (0.67)2 ×0.52 = 0.24 W/m2,

St
av = |τ|2 |E

i
0|2

2η2
= |τ|2 η1

η2
Si

av = (0.33)2 × 120π
24π

×0.52 = 0.28 W/m2.

Problem 8.2 A plane wave traveling in medium 1 with εr1 = 2.25 is normally
incident upon medium 2 with εr2 = 4. Both media are made of nonmagnetic, non-
conducting materials. If the electric field of the incident wave is given by

Ei = ŷ8cos(6π×109t −30πx) (V/m),

(a) obtain time-domain expressions for the electric and magnetic fields in each of
the two media, and
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(b) determine the average power densities of the incident, reflected and transmitted
waves.

Solution:
(a)

Ei = ŷ8cos(6π×109t −30πx) (V/m),

η1 =
η0√εr1

=
η0√
2.25

=
η0

1.5
=

377
1.5

= 251.33 Ω,

η2 =
η0√εr2

=
η0√

4
=

377
2

= 188.5 Ω,

Γ =
η2 −η1

η2 +η1
=

1/2−1/1.5
1/2+1/1.5

= −0.143,

τ = 1+Γ = 1−0.143 = 0.857,

Er = ΓEi = −1.14 ŷcos(6π×109t +30πx) (V/m).

Note that the coefficient of x is positive, denoting the fact that Er belongs to a wave
traveling in −x-direction.

E1 = Ei +Er = ŷ [8cos(6π×109t −30πx)−1.14cos(6π×109t +30πx)] (A/m),

Hi = ẑ
8

η1
cos(6π×109t −30πx) = ẑ31.83cos(6π×109t −30πx) (mA/m),

Hr = ẑ
1.14
η1

cos(6π×109t +30πx) = ẑ4.54cos(6π×109t +30πx) (mA/m),

H1 = Hi +Hr

= ẑ [31.83cos(6π×109t −30πx)+4.54cos(6π×109t +30πx)] (mA/m).

Since k1 = ω√µε1 and k2 = ω√µε2 ,

k2 =

√
ε2

ε1
k1 =

√
4

2.25
30π = 40π (rad/m),

E2 = Et = ŷ8τcos(6π×109t −40πx) = ŷ6.86cos(6π×109t −40πx) (V/m),

H2 = Ht = ẑ
8τ
η2

cos(6π×109t −40πx) = ẑ36.38cos(6π×109t −40πx) (mA/m).

(b)

Si
av = x̂

82

2η1
=

64
2×251.33

= x̂127.3 (mW/m2),

Sr
av = −|Γ|2Si

av = −x̂(0.143)2 ×0.127 = −x̂2.6 (mW/m2),
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St
av =

|E t
0|2

2η2

= x̂τ2 (8)2

2η2
= x̂

(0.86)264
2×188.5

= x̂124.7 (mW/m2).

Within calculation error, Si
av +Sr

av = St
av.

Problem 8.3 A plane wave traveling in a medium with εr1 = 9 is normally incident
upon a second medium with εr2 = 4. Both media are made of nonmagnetic, non-
conducting materials. If the magnetic field of the incident plane wave is given by

Hi = ẑ2cos(2π×109t − ky) (A/m),

(a) obtain time domain expressions for the electric and magnetic fields in each of
the two media, and

(b) determine the average power densities of the incident, reflected and transmitted
waves.

Solution:
(a) In medium 1,

up =
c√εr1

=
3×108
√

9
= 1×108 (m/s),

k1 =
ω
up

=
2π×109

1×108 = 20π (rad/m),

Hi = ẑ2cos(2π×109t −20πy) (A/m),

η1 =
η0√εr1

=
377

3
= 125.67 Ω,

η2 =
η0√εr2

=
377

2
= 188.5 Ω,

Ei = −x̂2η1 cos(2π×109t −20πy)

= −x̂251.34cos(2π×109t −20πy) (V/m),

Γ =
η2 −η1

η2 +η1
=

188.5−125.67
188.5+125.67

= 0.2,

τ = 1+Γ = 1.2,

Er = −x̂251.34×0.2cos(2π×109t +20πy)

= −x̂50.27cos(2π×109t +20πy) (V/m),
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Hr = −ẑ
50.27

η1
cos(2π×109t +20πy)

= −ẑ0.4cos(2π×109t +20πy) (A/m),

E1 = Ei +Er

= −x̂ [25.134cos(2π×109t −20πy)+50.27cos(2π×109t +20πy)] (V/m),

H1 = Hi +Hr = ẑ [2cos(2π×109t −20πy)−0.4cos(2π×109t +20πy)] (A/m).

In medium 2,

k2 =

√
ε2

ε1
k1 =

√
4
9
×20π =

40π
3

(rad/m),

E2 = Et = −x̂251.34τcos

(
2π×109t − 40πy

3

)

= −x̂301.61cos

(
2π×109t − 40πy

3

)
(V/m),

H2 = Ht = ẑ
301.61

η2
cos

(
2π×109t − 40πy

3

)

= ẑ1.6cos

(
2π×109t − 40πy

3

)
(A/m).

(b)

Si
av = ŷ

|E0|2
2η1

= ŷ
(251.34)2

2×125.67
= ŷ251.34 (W/m2),

Sr
av = −ŷ |Γ|2(251.34) = ŷ10.05 (W/m2),

St
av = ŷ(251.34−10.05) = ŷ241.29 (W/m2).

Problem 8.4 A 200-MHz left-hand circularly polarized plane wave with an electric
field modulus of 5 V/m is normally incident in air upon a dielectric medium with
εr = 4 and occupying the region defined by z ≥ 0.

(a) Write an expression for the electric field phasor of the incident wave, given that
the field is a positive maximum at z = 0 and t = 0.

(b) Calculate the reflection and transmission coefficients.
(c) Write expressions for the electric field phasors of the reflected wave, the

transmitted wave, and the total field in the region z ≤ 0.
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(d) Determine the percentages of the incident average power reflected by the
boundary and transmitted into the second medium.

Solution:
(a)

k1 =
ω
c

=
2π×2×108

3×108 =
4π
3

rad/m,

k2 =
ω

up2

=
ω
c
√

εr2 =
4π
3

√
4 =

8π
3

rad/m.

LHC wave:

Ẽi = a0(x̂+ ŷe jπ/2)e− jkz = a0(x̂ + jŷ)e− jkz,

Ei(z, t) = x̂a0 cos(ωt − kz)− ŷa0 sin(ωt − kz),

|Ei| = [a2
0 cos2(ωt − kz)+a2

0 sin2(ωt − kz)]1/2 = a0 = 5 (V/m).

Hence,
Ẽi = 5(x̂ + jŷ)e− j4πz/3 (V/m).

(b)
η1 = η0 = 120π (Ω), η2 =

η0√
εr

=
η0

2
= 60π (Ω).

Equations (8.8a) and (8.9) give

Γ =
η2 −η1

η2 +η1
=

60π−120π
60π+120π

=
−60
180

= −1
3

, τ = 1+Γ =
2
3

.

(c)

Ẽr = 5Γ(x̂ + jŷ)e jk1z = −5
3
(x̂+ jŷ)e j4πz/3 (V/m),

Ẽt = 5τ(x̂ + jŷ)e− jk2z =
10
3

(x̂+ jŷ)e− j8πz/3 (V/m),

Ẽ1 = Ẽi + Ẽr = 5(x̂ + jŷ)

[
e− j4πz/3 − 1

3
e j4πz/3

]
(V/m).

(d)

% of reflected power = 100×|Γ|2 =
100

9
= 11.11%,

% of transmitted power = 100×|τ|2 η1

η2
= 100×

(
2
3

)2

× 120π
60π

= 88.89%.
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Problem 8.5 Repeat Problem 8.4 after replacing the dielectric medium with a poor
conductor characterized by εr = 2.25, µr = 1, and σ = 10−4 S/m.

Solution:
(a) Medium 1:

η1 = η0 = 120π (Ω), k1 =
ω
c

=
2π×2×108

3×108 =
4π
3

(rad/m).

Medium 2:
σ2

ωε2
=

10−4 ×36π
2π×2×108 ×2.25×10−9 = 4×10−3.

Hence, medium 2 is a low-loss dielectric. From Table 7-1,

α2 =
σ2

2

√
µ2

ε2

=
σ2

2
120π√εr2

=
σ2

2
× 120π√

2.25
=

10−4

2
× 120π

1.5
= 1.26×10−2 (NP/m),

β2 = ω
√

µ2ε2 =
ω√εr2

c
= 2π (rad/m),

η2 =

√
µ2

ε2

(
1+

jσ2

2ωε2

)
=

120π√εr2

(
1+ j2×10−3)' 120π

1.5
= 80π (Ω).

LHC wave:

Ẽi = a0(x̂ + jŷ)e− jk1z,

|Ẽi| = a0 = 5 (V/m),

Ẽi = 5(x̂+ jŷ)e− j4πz/3 (V/m).

(b) According to Eqs. (8.8a) and (8.9),

Γ =
η2 −η1

η2 +η1
=

80π−120π
80π+120π

= −0.2, τ = 1+Γ = 1−0.2 = 0.8.

(c)

Ẽr = 5Γ(x̂ + jŷ)e jk1z = −(x̂+ jŷ)e j4πz/3 (V/m),

Ẽt = 5τ(x̂ + jŷ)e−α2ze− jβzz = 4(x̂ + jŷ)e−1.26×10−2ze− j2πz (V/m),

Ẽ1 = Ẽi + Ẽr = 5(x̂ + jŷ)[e− j4πz/3 −0.2e j4πz/3] (V/m).



362 CHAPTER 8

(d)

% of reflected power = 100|Γ|2 = 100(0.2)2 = 4%,

% of transmitted power = 100|τ|2 η1

η2
= 100(0.8)2 × 120π

80π
= 96%.

Problem 8.6 A 50-MHz plane wave with electric field amplitude of 50 V/m is
normally incident in air onto a semi-infinite, perfect dielectric medium with εr = 36.
Determine (a) Γ, (b) the average power densities of the incident and reflected waves,
and (c) the distance in the air medium from the boundary to the nearest minimum of
the electric field intensity, |E|.
Solution:

(a)

η1 = η0 = 120π (Ω), η2 =

√
µ2

ε2
=

120π√εr2

=
120π

6
= 20π (Ω),

Γ =
η2 −η1

η2 +η1
=

20π−120π
20π+120π

= −0.71.

Hence, |Γ| = 0.71 and θη = 180◦.
(b)

Si
av =

|E i
0|2

2η1
=

(50)2

2×120π
= 3.32 (W/m2),

Sr
av = |Γ|2Si

av = (0.71)2 ×3.32 = 1.67 (W/m2).

(c) In medium 1 (air),

λ1 =
c
f

=
3×108

5×107 = 6 m.

From Eqs. (8.16) and (8.17),

lmax =
θrλ1

4π
=

π×6
4π

= 1.5 m,

lmin = lmax −
λ1

4
= 1.5−1.5 = 0 m (at the boundary).

Problem 8.7 What is the maximum amplitude of the total electric field in the air
medium of Problem 8.6, and at what nearest distance from the boundary does it
occur?
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Solution: From Problem 8.6, Γ = −0.71 and λ = 6 m.

|Ẽ1|max = (1+ |Γ|)E i
0 = (1+0.71)×50 = 85.5 V/m,

lmax =
θrλ1

4π
=

π×6
4π

= 1.5 m.

Problem 8.8 Repeat Problem 8.6 after replacing the dielectric medium with a
conductor with εr = 1, µr = 1, and σ = 2.78×10−3 S/m.

Solution:
(a) Medium 1:

η1 = η0 = 120π = 377 (Ω), λ1 =
c
f

=
3×108

5×107 = 6 m,

Medium 2:
σ2

ωε2
=

2.78×10−3 ×36π
2π×5×107 ×10−9 = 1.

Hence, Medium 2 is a quasi-conductor. From Eq. (7.70),

η2 =

√
µ2

ε2

(
1− j

ε′′2
ε′2

)−1/2

= 120π
(

1− j
σ2

ωε2

)−1/2

= 120π(1− j1)−1/2

= 120π(
√

2)−1/2e j22.5◦ = (292.88+ j121.31) (Ω).

Γ =
η2 −η1

η2 +η1
=

(292.88+ j121.31)−377
(292.88+ j121.31)+377

= −0.09+ j0.12 = 0.22∠114.5◦ .

(b)

Si
av =

|E i
0|2

2η1
=

502

2×120π
= 3.32 (W/m2),

|Sr
av| = |Γ|2Si

av = (0.22)2(3.32) = 0.16 (W/m2).

(c) In medium 1 (air),

λ1 =
c
f

=
3×108

5×107 = 6 m.

For θr = 114.5◦ = 2 rad, Eqs. (8.16) and (8.17) give

lmax =
θrλ1

4π
+

(0)λ1

2
=

2(6)

4
+0 = 3 m,
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lmin = lmax −
λ1

4
= 3− 6

4
= 3−1.5 = 1.5 m.

Problem 8.9 The three regions shown in Fig. 8-32 (P8.9) contain perfect
dielectrics. For a wave in medium 1 incident normally upon the boundary at z = −d,
what combination of εr2 and d produce no reflection? Express your answers in terms
of εr1 , εr3 and the oscillation frequency of the wave, f .

Medium 2

εr2

Medium 3

εr3

Medium 1

εr1

z = -d z = 0

z

d

Figure P8.9: Three dielectric regions.

Solution: By analogy with the transmission-line case, there will be no reflection at
z = −d if medium 2 acts as a quarter-wave transformer, which requires that

d =
λ2

4

and
η2 =

√
η1η3 .

The second condition may be rewritten as

η0√εr2

=

[
η0√εr1

η0√εr3

]1/2

, or εr2 =
√

εr1εr3 ,

λ2 =
λ0√εr2

=
c

f
√εr2

=
c

f (εr1 εr3)
1/4

,

and
d =

c

4 f (εr1εr3)
1/4

.
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Problem 8.10 For the configuration shown in Fig. 8-32 (P8.9), use transmission-
line equations (or the Smith chart) to calculate the input impedance at z = −d for
εr1 = 1, εr2 = 9, εr3 = 4, d = 1.2 m, and f = 50 MHz. Also determine the fraction
of the incident average power density reflected by the structure. Assume all media
are lossless and nonmagnetic.

Solution: In medium 2,

λ =
λ0√εr2

=
c

f
√εr2

=
3×108

5×107 ×3
= 2 m.

Hence,

β2 =
2π
λ2

= π rad/m, β2d = 1.2π rad.

At z = −d, the input impedance of a transmission line with load impedance ZL is
given by Eq. (2.63) as

Zin(−d) = Z0

(
ZL + jZ0 tanβ2d
Z0 + jZL tanβ2d

)
.

In the present case, Z0 = η2 = η0/
√εr2 = η0/3 and ZL = η3 = η0/

√εr3 = η0/2,
where η0 = 120π (Ω). Hence,

Zin(−d) = η2

(
η3 + jη2 tan β2d
η2 + jη3 tan β2d

)
=

η0

3

(
1
2 + j

(
1
3

)
tan1.2π

1
3 + j

(
1
2

)
tan1.2π

)
= η0(0.35− j0.14).

At z = −d,

Γ =
Zin −Z1

Zin +Z1
=

η0(0.35− j0.14)−η0

η0(0.35− j0.14)+η0
= 0.49e− j162.14◦ .

Fraction of incident power reflected by the structure is |Γ|2 = |0.49|2 = 0.24.

Problem 8.11 Repeat Problem 8.10 after interchanging εr1 and εr3 .

Solution: In medium 2,

λ =
λ0√εr2

=
c

f
√εr2

=
3×108

5×107 ×3
= 2 m.
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Hence,

β2 =
2π
λ2

= π rad/m, β2d = 1.2π rad.

At z = −d, the input impedance of a transmission line with impedance ZL is given as
Eq. (2.63),

Zin(−d) = Z0

(
ZL + jZ0 tanβd
Z0 + jZL tanβ2d

)
.

In the present case, Z0 = η2 = η0/
√εr2 = η0/3, ZL = η3 = η0/

√εr1 = η0, where
η0 = 120π (Ω). Hence,

Zin(−d) = η2

(
η3 + jη2 tan1.2π
η2 + jη3 tan1.2π

)

=
η0

3

(
1+( j/3) tan 1.2π
(1/3)+ j tan 1.2π

)

= η0

(
1+( j/3) tan 1.2π

1+ j3tan 1.2π

)
= (0.266− j0.337)η0 = 0.43η0∠−51.7◦ .

At z = −d,

Γ =
Zin −Z1

Zin +Z1
=

0.43∠−51.7◦ − 1
2

0.43∠−51.7◦ + 1
2

= 0.49∠−101.1◦ .

Fraction of incident power reflected by structure is |Γ|2 = 0.24.

Problem 8.12 Orange light of wavelength 0.61 µm in air enters a block of glass
with εr = 1.44. What color would it appear to a sensor embedded in the glass? The
wavelength ranges of colors are violet (0.39 to 0.45 µm), blue (0.45 to 0.49 µm),
green (0.49 to 0.58 µm), yellow (0.58 to 0.60 µm), orange (0.60 to 0.62 µm), and red
(0.62 to 0.78 µm).

Solution: In the glass,

λ =
λ0√

εr
=

0.61√
1.44

= 0.508 µm.

The light would appear green.

Problem 8.13 A plane wave of unknown frequency is normally incident in air upon
the surface of a perfect conductor. Using an electric-field meter, it was determined
that the total electric field in the air medium is always zero when measured at a
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distance of 2 m from the conductor surface. Moreover, no such nulls were observed
at distances closer to the conductor. What is the frequency of the incident wave?

Solution: The electric field of the standing wave is zero at the conductor surface,
and the standing wave pattern repeats itself every λ/2. Hence,

λ
2

= 2 m, or λ = 4 m,

in which case

f =
c
λ

=
3×108

4
= 7.5×107 = 75 MHz.

Problem 8.14 Consider a thin film of soap in air under illumination by yellow light
with λ = 0.6 µm in vacuum. If the film is treated as a planar dielectric slab with
εr = 1.72, surrounded on both sides by air, what film thickness would produce strong
reflection of the yellow light at normal incidence?

Solution: The transmission line analogue of the soap-bubble wave problem is shown
in Fig. P8.14(b) where the load ZL is equal to η0, the impedance of the air medium
on the other side of the bubble. That is,

η0 = 377 Ω, η1 =
377√
1.72

= 287.5 Ω.

The normalized load impedance is

zL =
η0

η1
= 1.31.

For the reflection by the soap bubble to be the largest, Zin needs to be the most
different from η0. This happens when zL is transformed through a length λ/4. Hence,

L =
λ
4

=
λ0

4
√

εr
=

0.6 µm

4
√

1.72
= 0.115 µm,

where λ is the wavelength of the soap bubble material. Strong reflections will also
occur if the thickness is greater than L by integer multiples of nλ/2 = (0.23n) µm.

Hence, in general

L = (0.115+0.23n) µm, n = 0,1,2, . . . .

According to Section 2-7.5, transforming a load ZL = 377 Ω through a λ/4 section
of Z0 = 287.5 Ω ends up presenting an input impedance of

Zin =
Z2

0

ZL
=

(287.5)2

377
= 219.25 Ω.
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Yellow Light

λ = 0.6 µm

Air Soap Air
εr1=1 εr3=1εr2=1.72

L

(b) Transmission-line equivalent circuit

η0 = 377Ω η2 
ZL = η0 = 377 Ω

(a) Yellow light incident on soap bubble.

Figure P8.14: Diagrams for Problem 8.14.

This Zin is at the input side of the soap bubble. The reflection coefficient at that
interface is

Γ =
Zin −η0

Zin +η0
=

219.25−377
219.25+377

= −0.27.

Any other thickness would produce a reflection coeffficient with a smaller magnitude.

Problem 8.15 A 5-MHz plane wave with electric field amplitude of 10 (V/m) is
normally incident in air onto the plane surface of a semi-infinite conducting material
with εr = 4, µr = 1, and σ = 100 (S/m). Determine the average power dissipated
(lost) per unit cross-sectional area in a 2-mm penetration of the conducting medium.

Solution: For convenience, let us choose Ei to be along x̂ and the incident direction
to be +ẑ. With

k1 =
ω
c

=
2π×5×106

3×108 =
π
30

(rad/m),
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we have

Ei = x̂10cos
(

π×107t − π
30

z
)

(V/m),

η1 = η0 = 377 Ω.

From Table 7-1,

ε′′

ε′
=

σ
ωεrε0

=
100×36π

π×107 ×4×10−9 = 9×104,

which makes the material a good conductor, for which

α2 =
√

π f µσ =
√

π×5×106 ×4π×10−7 ×100 = 44.43 (Np/m),

β2 = 44.43 (rad/m),

ηc2 = (1+ j)
α2

σ
= (1+ j)

44.43
100

= 0.44(1+ j) Ω.

According to the expression for Sav2 given in the answer to Exercise 8.3,

Sav2 = ẑ |τ|2 |E
i
0|2
2

e−2α2z
Re

(
1

η∗
c2

)
.

The power lost is equal to the difference between Sav2 at z = 0 and Sav2 at z = 2 mm.
Thus,

P′ = power lost per unit cross-sectional area

= Sav2(0)−Sav2(z = 2 mm)

= |τ|2 |E
i
0|2
2

Re

(
1

η∗
c2

)
[1− e−2α2z1 ]

where z1 = 2 mm.

τ = 1+Γ

= 1+
η2 −η1

η2 +η1
= 1+

0.44(1+ j)−377
0.44(1+ j)+377

≈ 0.0023(1+ j) = 3.3×10−3e j45◦ .

Re

(
1

η∗
c2

)
= Re

(
1

0.44(1+ j)∗

)

= Re

(
1

0.44(1− j)

)
= Re

(
1+ j

0.44×2

)
=

1
0.88

= 1.14,

P′ = (3.3×10−3)2 102

2
×1.14 [1− e−2×44.43×2×10−3

] = 1.01×10−4 (W/m2).
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Problem 8.16 A 0.5-MHz antenna carried by an airplane flying over the ocean
surface generates a wave that approaches the water surface in the form of a normally
incident plane wave with an electric-field amplitude of 3,000 (V/m). Sea water is
characterized by εr = 72, µr = 1, and σ = 4 (S/m). The plane is trying to communicate
a message to a submarine submerged at a depth d below the water surface. If the
submarine’s receiver requires a minimum signal amplitude of 0.01 (µV/m), what is
the maximum depth d to which successful communication is still possible?

Solution: For sea water at 0.5 MHz,

ε′′

ε′
=

σ
ωε

=
4×36π

2π×0.5×106 ×72×10−9 = 2000.

Hence, sea water is a good conductor, in which case we use the following expressions
from Table 7-1:

α2 =
√

π f µσ =
√

π×0.5×106 ×4π×10−7 ×4 = 2.81 (Np/m),

β2 = 2.81 (rad/m),

ηc2 = (1+ j)
α2

σ
= (1+ j)

2.81
4

= 0.7(1+ j) Ω,

Γ =
η2 −η1

η2 +η1
=

0.7(1+ j)−377
0.7(1+ j)+377

= (−0.9963+ j3.7×10−3),

τ = 1+Γ = 5.24×10−3e j44.89◦ ,

|E t| = |τE i
0e−α2d|.

We need to find the depth z at which |E t| = 0.01 µV/m = 10−8 V/m.

10−8 = 5.24×10−3 ×3×103e−2.81d ,

e−2.81d = 6.36×10−10,

−2.81d = ln(6.36×10−10) = −21.18,

or
d = 7.54 (m).
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Sections 8-2 and 8-3: Snell’s Laws and Fiber Optics

Problem 8.17 A light ray is incident on a prism at an angle θ as shown in Fig.
8-33 (P8.17). The ray is refracted at the first surface and again at the second surface.
In terms of the apex angle φ of the prism and its index of refraction n, determine
the smallest value of θ for which the ray will emerge from the other side. Find this
minimum θ for n = 4 and φ = 60◦.

θ

θ3

φ

n

A

B

C
θ2

Figure P8.17: Prism of Problem 8.17.

Solution: For the beam to emerge at the second boundary, it is necessary that

θ3 < θc,

where sinθc = 1/n. From the geometry of triangle ABC,

180◦ = φ+(90◦−θ2)+(90◦−θ3),

or θ2 = φ−θ3. At the first boundary, sinθ = nsin θ2. Hence,

sinθmin = nsin(φ−θ3) = nsin

(
φ− sin−1

(
1
n

))
,

or

θmin = sin−1
[

nsin

(
φ− sin−1

(
1
n

))]
.

For n = 4 and φ = 60◦,

θmin = sin−1
[

4sin(60◦− sin−1
(

1
4

)]
= 20.4◦.
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Problem 8.18 For some types of glass, the index of refraction varies with
wavelength. A prism made of a material with

n = 1.71− 4
30

λ0, (λ0 in µm),

where λ0 is the wavelength in vacuum, was used to disperse white light as shown in
Fig. 8-34 (P8.18). The white light is incident at an angle of 50◦, the wavelength λ0 of
red light is 0.7 µm and that of violet light is 0.4 µm. Determine the angular dispersion
in degrees.

50°

60°

Red
Green

Violet

Angular dispersion

A

B

C
θ4θ3

θ2

Figure P8.18: Prism of Problem 8.18.

Solution: For violet,

nv = 1.71− 4
30

×0.4 = 1.66, sinθ2 =
sinθ
nv

=
sin 50◦

1.66
,

or
θ2 = 27.48◦.

From the geometry of triangle ABC,

180◦ = 60◦ +(90◦−θ2)+(90◦−θ3),

or
θ3 = 60◦−θ2 = 60−27.48◦ = 32.52◦,

and
sinθ4 = nv sinθ3 = 1.66sin 32.52◦ = 0.89,

or
θ4 = 63.18◦.
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For red,

nr = 1.71− 4
30

×0.7 = 1.62,

θ2 = sin−1
[

sin50◦

1.62

]
= 28.22◦,

θ3 = 60◦−28.22◦ = 31.78◦,

θ4 = sin−1 [1.62sin 31.78◦] = 58.56◦.

Hence, angular dispersion = 63.18◦−58.56◦ = 4.62◦.

Problem 8.19 The two prisms in Fig. 8-35 (P8.19) are made of glass with n = 1.5.
What fraction of the power density carried by the ray incident upon the top prism
emerges from bottom prism? Neglect multiple internal reflections.

45°

45°

45°

45°

90°

90°

Si

St

65

4

3

21

Figure P8.19: Periscope problem.

Solution: Using η = η0/n, at interfaces 1 and 4,

Γa =
n1 −n2

n1 +n2
=

1−1.5
1+1.5

= −0.2.

At interfaces 3 and 6,
Γb = −Γa = 0.2.
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At interfaces 2 and 5,

θc = sin−1
(

1
n

)
= sin−1

(
1

1.5

)
= 41.81◦.

Hence, total internal reflection takes place at those interfaces. At interfaces 1, 3, 4
and 6, the ratio of power density transmitted to that incident is (1−Γ2). Hence,

St

Si = (1−Γ2)4 = (1− (0.2)2)4 = 0.85.

Problem 8.20 A light ray incident at 45◦ passes through two dielectric materials
with the indices of refraction and thicknesses given in Fig. 8-36 (P8.20). If the ray
strikes the surface of the first dielectric at a height of 2 cm, at what height will it strike
the screen?

45°
2cm

screen

n4 = 1n1 = 1 n3 = 1.3n2 = 1.5

3cm 4cm 5cm

45°

h4

h3

h2

h1

θ2

θ3

θ4

Figure P8.20: Light incident on a screen through a multi-layered dielectric (Problem
8.20).

Solution:

sinθ2 =
n1

n2
sinθ1 =

1
1.5

sin45◦ = 0.47.

Hence,

θ2 = 28.13◦,

h2 = 3 cm× tanθ2 = 3 cm×0.53 = 1.6 cm,

sinθ3 =
n2

n3
sinθ2 =

1.5
1.3

sin28.13◦ = 0.54.

Hence,

θ3 = 32.96◦,
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h3 = 4 cm× tan32.96◦ = 2.6 cm,

sinθ4 =
n3

n4
sinθ3 = 0.707.

Hence,

θ4 = 45◦,

h4 = 5 cm× tan45◦ = 5 cm.

Total height = h1 +h2 +h3 +h4 = (2+1.6+2.6+5) = 11.2 cm.

Problem 8.21 Figure P8.21 depicts a beaker containing a block of glass on the
bottom and water over it. The glass block contains a small air bubble at an unknown
depth below the water surface. When viewed from above at an angle of 60◦, the air
bubble appears at a depth of 6.81 cm. What is the true depth of the air bubble?

60°

10 cm

θ2

da

d2

θ2

θ3

x2

x

x1

dt

Figure P8.21: Apparent position of the air bubble in Problem 8.21.

Solution: Let

da = 6.81 cm = apparent depth,

dt = true depth.

θ2 = sin−1
[

n1

n2
sinθi

]
= sin−1

[
1

1.33
sin 60◦

]
= 40.6◦,
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θ3 = sin−1
[

n1

n3
sinθi

]
= sin−1

[
1

1.6
sin60◦

]
= 32.77◦,

x1 = (10 cm)× tan40.6◦ = 8.58 cm,

x = da cot30◦ = 6.81cot 30◦ = 11.8 cm.

Hence,
x2 = x− x1 = 11.8−8.58 = 3.22 cm,

and
d2 = x2 cot32.77◦ = (3.22 cm)× cot32.77◦ = 5 cm.

Hence, dt = (10+5) = 15 cm.

Problem 8.22 A glass semicylinder with n = 1.5 is positioned such that its flat face
is horizontal, as shown in Fig. 8-38 (P8.22). Its horizontal surface supports a drop of
oil, as shown. When light is directed radially toward the oil, total internal reflection
occurs if θ exceeds 53◦. What is the index of refraction of the oil?

θ

nglass= 1.5

noil

oil drop

Figure P8.22: Oil drop on the flat surface of a glass semicylinder (Problem 8.22).

Solution:

sinθc =
n2

n1
=

noil

1.5
,

noil = 1.5sin 53◦ = 1.2.

Problem 8.23 A penny lies at the bottom of a water fountain at a depth of 30 cm.
Determine the diameter of a piece of paper which, if placed to float on the surface of
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d
x x

30 cm

θc

θc

water surface

Figure P8.23: Light cone bounded by total internal reflection.

the water directly above the penny, would totally obscure the penny from view. Treat
the penny as a point and assume that n = 1.33 for water.

Solution:

θc = sin−1
[

1
1.33

]
= 48.75◦,

d = 2x = 2[(30 cm) tanθc] = (60 cm)× tan48.75◦ = 68.42 cm.

Problem 8.24 Suppose the optical fiber of Example 8-5 is submerged in water (with
n = 1.33) instead of air. Determine θa and fp in that case.

Solution: With n0 = 1.33, nf = 1.52 and nc = 1.49, Eq. (8.40) gives

sinθa =
1
n0

(n2
f −n2

c)
1/2 =

1
1.33

[
(1.52)2 − (1.49)2]1/2

= 0.23,

or
θa = 13.1◦.

The data rate fp given by Eq. (8.45) is not a function of n0, and therefore it remains
unchanged at 4.9 (Mb/s).
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Problem 8.25 Equation (8.45) was derived for the case where the light incident
upon the sending end of the optical fiber extends over the entire acceptance cone
shown in Fig. 8-12(b). Suppose the incident light is constrained to a narrower range
extending between normal incidence and θ′, where θ′ < θa.

(a) Obtain an expression for the maximum data rate fp in terms of θ′.
(b) Evaluate fp for the fiber of Example 8-5 when θ′ = 5◦.

Solution:
(a) For θi = θ′,

sinθ2 =
1
nf

sin θ′,

lmax =
l

cosθ2
=

l√
1− sin2 θ2

=
l√

1−
(

sinθ′
nf

)2
=

lnf√
n2

f − (sinθ′)2
,

tmax =
lmax

up
=

lmaxnf

c
=

ln2
f

c
√

n2
f − (sinθ′)2

,

tmin =
l

up
= l

nf

c
,

τ = ∆t = tmax − tmin = l
nf

c


 nf√

n2
f − (sinθ′)2

−1


 ,

fp =
1
2τ

=
c

2lnf


 nf√

n2
f − (sinθ′)2

−1



−1

(bits/s).

(b) For:

nf = 1.52,

θ′ = 5◦,

l = 1 km,

c = 3×108 m/s,

fp = 59.88 (Mb/s).
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Sections 8-4 and 8-5: Reflection and Transmission at Oblique Incidence

Problem 8.26 A plane wave in air with

Ẽi = ŷ20e− j(3x+4z) (V/m),

is incident upon the planar surface of a dielectric material, with εr = 4, occupying the
half space z ≥ 0. Determine:

(a) the polarization of the incident wave,
(b) the angle of incidence,
(c) the time-domain expressions for the reflected electric and magnetic fields,
(d) the time-domain expressions for the transmitted electric and magnetic fields,

and
(e) the average power density carried by the wave in the dielectric medium.

Solution:
(a) Ẽi = ŷ20e− j(3x+4z) V/m.
Since Ei is along ŷ, which is perpendicular to the plane of incidence, the wave is

perpendicularly polarized.
(b) From Eq. (8.48a), the argument of the exponential is

− jk1(xsin θi + zcosθi) = − j(3x+4z).

Hence,
k1 sinθi = 3, k1 cosθi = 4,

from which we determine that

tanθi =
3
4

or θi = 36.87◦,

and
k1 =

√
32 +42 = 5 (rad/m).

Also,
ω = upk = ck = 3×108 ×5 = 1.5×109 (rad/s).

(c)

η1 = η0 = 377 Ω,

η2 =
η0√εr2

=
η0

2
= 188.5 Ω,

θt = sin−1
[

sinθi√εr2

]
= sin−1

[
sin36.87◦√

4

]
= 17.46◦,
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Γ⊥ =
η2 cos θi −η1 cosθt

η2 cos θi +η1 cosθt
= −0.41,

τ⊥ = 1+Γ⊥ = 0.59.

In accordance with Eq. (8.49a), and using the relation E r
0 = Γ⊥E i

0,

Ẽr = −ŷ8.2e− j(3x−4z),

H̃r = (x̂ cosθi + ẑsinθi)
8.2
η0

e− j(3x−4z),

where we used the fact that θi = θr and the z-direction has been reversed.

Er = Re[Ẽre jωt ] = −ŷ8.2cos(1.5×109t −3x+4z) (V/m),

Hr = (x̂17.4+ ẑ13.06)cos(1.5×109t −3x+4z) (mA/m).

(d) In medium 2,

k2 = k1

√
ε2

ε1
= 5

√
4 = 20 (rad/m),

and

θt = sin−1
[√

ε1

ε2
sinθi

]
= sin−1

[
1
2

sin 36.87◦
]

= 17.46◦

and the exponent of Et and Ht is

− jk2(xsin θt + zcosθt) = − j10(xsin 17.46◦ + zcos17.46◦) = − j(3x+9.54z).

Hence,

Ẽt = ŷ20×0.59e− j(3x+9.54z) ,

H̃t = (−x̂cosθt + ẑsin θt)
20×0.59

η2
e− j(3x+9.54z).

Et = Re[Ẽte jωt ] = ŷ11.8cos(1.5×109t −3x−9.54z) (V/m),

Ht = (−x̂cos17.46◦ + ẑsin17.46◦)
11.8
188.5

cos(1.5×109t −3x−9.54z)

= (−x̂59.72+ ẑ18.78) cos(1.5×109t −3x−9.54z) (mA/m).

(e)

St
av =

|E t
0|2

2η2
=

(11.8)2

2×188.5
= 0.36 (W/m2).
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Problem 8.27 Repeat Problem 8.26 for a wave in air with

H̃i = ŷ2×10−2e− j(8x+6z) (A/m),

incident upon the planar boundary of a dielectric medium (z ≥ 0) with εr = 9.

Solution:
(a) H̃

i
= ŷ2×10−2e− j(8x+6z).

Since Hi is along ŷ, which is perpendicular to the plane of incidence, the wave is
TM polarized, or equivalently, its electric field vector is parallel polarized (parallel to
the plane of incidence).

(b) From Eq. (8.65b), the argument of the exponential is

− jk1(xsin θi + zcosθi) = − j(8x+6z).

Hence,
k1 sinθi = 8, k1 cosθi = 6,

from which we determine

θi = tan−1
(

8
6

)
= 53.13◦,

k1 =
√

62 +82 = 10 (rad/m).

Also,
ω = upk = ck = 3×108 ×10 = 3×109 (rad/s).

(c)

η1 = η0 = 377 Ω,

η2 =
η0√εr2

=
η0

3
= 125.67 Ω,

θt = sin−1
[

sinθi√εr2

]
= sin−1

[
sin53.13◦√

9

]
= 15.47◦,

Γ‖ =
η2 cosθt −η1 cosθi

η2 cosθt +η1 cosθi
= −0.30,

τ‖ = (1+Γ‖)
cosθi

cosθt
= 0.44.

In accordance with Eqs. (8.65a) to (8.65d), E i
0 = 2×10−2η1 and

Ẽi = (x̂cos θi − ẑsinθi)2×10−2η1 e− j(8x+6z) = (x̂4.52− ẑ6.03)e− j(8x+6z).
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Ẽr is similar to Ẽi except for reversal of z-components and multiplication of amplitude
by Γ‖. Hence, with Γ‖ = −0.30,

Er = Re[Ẽ
r
e jωt ] = −(x̂1.36+ ẑ1.81)cos(3×109t −8x+6z) V/m,

Hr = ŷ2×10−2Γ‖ cos(3×109t −8x+6z)

= −ŷ0.6×10−2 cos(3×109t −8x+6z) A/m.

(d) In medium 2,

k2 = k1

√
ε2

ε1
= 10

√
9 = 30 rad/m,

θt = sin−1
[√

ε2

ε1
sinθi

]
= sin−1

[
1
3

sin53.13◦
]

= 15.47◦,

and the exponent of Et and Ht is

− jk2(xsin θt + zcosθt) = − j30(xsin 15.47◦ + zcos15.47◦) = − j(8x+28.91z).

Hence,

Ẽt = (x̂cosθt − ẑsin θt)E
i
0τ‖e− j(8x+28.91z)

= (x̂0.96− ẑ0.27)2×10−2 ×377×0.44e− j(8x+28.91z)

= (x̂3.18− ẑ0.90)e− j(8x+28.91z) ,

H̃t = ŷ
E i

0τ‖
η2

e− j(8x+28.91z)

= ŷ2.64×10−2 e− j(8x+28.91z),

Et = Re{Ẽte jωt}
= (x̂3.18− ẑ0.90)cos(3×109t −8x−28.91z) V/m,

Ht = ŷ2.64×10−2 cos(3×109t −8x−28.91z) A/m.

(e)

St
av =

|E t
0|2

2η2
=

|H t
0|2
2

η2 =
(2.64×10−2)2

2
×125.67 = 44 mW/m2.

Problem 8.28 Natural light is randomly polarized, which means that, on average,
half the light energy is polarized along any given direction (in the plane orthogonal



CHAPTER 8 383

to the direction of propagation) and the other half of the energy is polarized along the
direction orthogonal to the first polarization direction. Hence, when treating natural
light incident upon a planar boundary, we can consider half of its energy to be in
the form of parallel-polarized waves and the other half as perpendicularly polarized
waves. Determine the fraction of the incident power reflected by the planar surface
of a piece of glass with n = 1.5 when illuminated by natural light at 70◦.

Solution: Assume the incident power is 1 W. Hence:
Incident power with parallel polarization = 0.5 W,
Incident power with perpendicular polarization = 0.5 W.

ε2/ε1 = (n2/n1)
2 = n2 = 1.52 = 2.25. Equations (8.60) and (8.68) give

Γ⊥ =
cos 70◦−

√
2.25− sin2 70◦

cos 70◦ +
√

2.25− sin2 70◦
= −0.55,

Γ‖ =
−2.25cos 70◦ +

√
2.25− sin2 70◦

2.25cos 70◦ +
√

2.25− sin2 70◦
= 0.21.

Reflected power with parallel polarization = 0.5(Γ‖)
2

= 0.5(0.21)2 = 22 mW,
Reflected power with perpendicular polarization = 0.5(Γ⊥)2

= 0.5(0.55)2 = 151.3 mW.
Total reflected power = 22+151.3 = 173.3 mW, or 17.33%..

Problem 8.29 A parallel polarized plane wave is incident from air onto a dielectric
medium with εr = 9 at the Brewster angle. What is the refraction angle?

θ1 εr1 = 1

εr2 = 9
θ2

Figure P8.29: Geometry of Problem 8.29.

Solution: For nonmagnetic materials, Eq. (8.72) gives

θ1 = θB = tan−1

√
ε2

ε1
= tan−1 3 = 71.57◦.
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But

sin θ2 =
sin θ1√εr2

=
sinθ1

3
=

sin71.57◦

3
= 0.32,

or θ2 = 18.44◦ .

Problem 8.30 A perpendicularly polarized wave in air is obliquely incident upon
a planar glass-air interface at an incidence angle of 30◦. The wave frequency is
600 THz (1 THz = 1012 Hz), which corresponds to green light, and the index of
refraction of the glass is 1.6. If the electric field amplitude of the incident wave is 50
V/m, determine

(a) the reflection and transmission coefficients, and
(b) the instantaneous expressions for E and H in the glass medium.

Solution:
(a) For nonmagnetic materials, (ε2/ε1) = (n2/n1)

2. Using this relation in Eq.
(8.60) gives

Γ⊥ =
cos θi −

√
(n2/n1)2 − sin2 θi

cos θi +
√

(n2/n1)2 − sin2 θi

=
cos30◦−

√
(1.6)2 − sin2 30◦

cos30◦ +
√

(1.6)2 − sin2 30◦
= −0.27,

τ⊥ = 1+Γ⊥ = 1−0.27 = 0.73.

(b) In the glass medium,

sinθt =
sin θi

n2
=

sin 30◦

1.6
= 0.31,

or θt = 18.21◦ .

η2 =

√
µ2

ε2
=

η0

n2
=

120π
1.6

= 75π = 235.62 (Ω),

k2 =
ω
up

=
2π f
c/n

=
2π f n

c
=

2π×600×1012 ×1.6
3×108 = 6.4π×106 rad/m,

E t
0 = τ⊥E i

0 = 0.73×50 = 36.5 V/m.

From Eqs. (8.49c) and (8.49d),

Ẽt
⊥ = ŷE t

0e− jk2(xsinθt+zcosθt),

H̃t
⊥ = (−x̂cos θt + ẑsinθt)

E t
0

η2
e− jk2(xsinθt+zcosθt),
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and the corresponding instantaneous expressions are:

Et
⊥(x,z, t) = ŷ36.5cos(ωt − k2xsin θt − k2zcosθt) (V/m),

Ht
⊥(x,z, t) = (−x̂cosθt − ẑcosθt)0.16cos(ωt − k2xsin θt − k2zcos θt) (A/m),

with ω = 2π×1015 rad/s and k2 = 6.4π×106 rad/m.

Problem 8.31 Show that the reflection coefficient Γ⊥ can be written in the form

Γ⊥ =
sin(θt −θi)

sin(θt +θi)
.

Solution: From Eq. (8.58a),

Γ⊥ =
η2 cos θi −η1 cosθt

η2 cos θi +η1 cosθt
=

(η2/η1)cos θi − cosθt

(η2/η1)cos θi + cosθt
.

Using Snell’s law for refraction given by Eq. (8.31), we have

η2

η1
=

sinθt

sinθi
,

we have

Γ⊥ =
sinθt cos θi − cosθt sinθi

sinθt cos θi + cosθt sinθi
=

sin(θt −θi)

sin(θt +θi)
.

Problem 8.32 Show that for nonmagnetic media, the reflection coefficient Γ‖ can
be written in the form

Γ‖ =
tan(θt −θi)

tan(θt +θi)
.

Solution: From Eq. (8.66a), Γ‖ is given by

Γ‖ =
η2 cos θt −η1 cosθi

η2 cos θt +η1 cosθi
=

(η2/η1)cos θt − cosθi

(η2/η1)cos θt + cosθi
.

For nonmagnetic media, µ1 = µ2 = µ0 and

η2

η1
=

√
ε1

ε2
=

n1

n2
.
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Snell’s law of refraction is
sinθt

sinθi
=

n1

n2
.

Hence,

Γ‖ =

sinθt

sinθi
cos θt − cosθi

sinθt

sinθi
cos θt + cosθi

=
sinθt cosθt − sinθi cos θi

sinθt cosθt + sinθi cos θi
.

To show that the expression for Γ‖ is the same as

Γ‖ =
tan(θt −θi)

tan(θt +θi)
,

we shall proceed with the latter and show that it is equal to the former.

tan(θt −θi)

tan(θt +θi)
=

sin(θt −θi)cos(θt +θi)

cos(θt −θi)sin(θt +θi)
.

Using the identities (from Appendix C):

2sin xcos y = sin(x+ y)+ sin(x− y),

and if we let x = θt −θi and y = θt +θi in the numerator, while letting x = θt +θi and
y = θt −θi in the denominator, then

tan(θt −θi)

tan(θt +θi)
=

sin(2θt)+ sin(−2θi)

sin(2θt)+ sin(2θi)
.

But sin2θ = 2sin θcos θ, and sin(−θ) = −sinθ, hence,

tan(θt −θi)

tan(θt +θi)
=

sinθt cosθt − sinθi cos θi

sinθt cosθt + sinθi cos θi
,

which is the intended result.

Problem 8.33 A parallel polarized beam of light with an electric field amplitude of
10 (V/m) is incident in air on polystyrene with µr = 1 and εr = 2.6. If the incidence
angle at the air–polystyrene planar boundary is 50◦, determine

(a) the reflectivity and transmissivity, and
(b) the power carried by the incident, reflected, and transmitted beams if the spot

on the boundary illuminated by the incident beam is 1 m2 in area.
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Solution:
(a) From Eq. (8.68),

Γ‖ =
−(ε2/ε1)cosθi +

√
(ε2/ε1)− sin2 θi

(ε2/ε1)cos θi +
√

(ε2/ε1)− sin2 θi

=
−2.6cos 50◦ +

√
2.6− sin2 50◦

2.6cos 50◦ +
√

2.6− sin2 50◦
= −0.08,

R‖ = |Γ‖|2 = (0.08)2 = 6.4×10−3,

T‖ = 1−R‖ = 0.9936.

(b)

Pi
‖ =

|E i
‖0|2

2η1
Acosθi =

(10)2

2×120π
× cos50◦ = 85 mW,

Pr
‖ = R‖Pi

‖ = (6.4×10−3)×0.085 = 0.55 mW,

Pt
‖ = T‖Pi

‖ = 0.9936×0.085 = 84.45 mW.

Sections 8-6 to 8-11

Problem 8.34 Derive Eq. (8.89b).

Solution:
We start with Eqs. (8.88a and e),

∂ẽz

∂y
+ jβẽy = − jωµh̃x,

− jβh̃x −
∂h̃z

∂x
= jωεẽy.

To eliminate h̃x, we multiply the top equation by β and the bottom equation by ωµ,
and then we add them together. The result is:

β
∂ẽz

∂y
+ jβ2ẽy −ωµ

∂h̃z

∂x
= jω2µεẽy.
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Multiplying all terms by e− jβz to convert ẽy to Ẽy (and similarly for the other field
components), and then solving for Ẽy leads to

Ẽy =
1

j(β2 −ω2µε)

(
−β

∂Ẽz

∂y
+ωµ

∂H̃z

∂x

)

=
j

k2
c

(
−β

∂Ẽz

∂y
+ωµ

∂H̃z

∂x

)
,

where we used the relation
k2

c = ω2µε−β2.

Problem 8.35 A hollow rectangular waveguide is to be used to transmit signals at
a carrier frequency of 6 GHz. Choose its dimensions so that the cutoff frequency of
the dominant TE mode is lower than the carrier by 25% and that of the next mode is
at least 25% higher than the carrier.

Solution:
For m = 1 and n = 0 (TE10 mode) and up0

= c (hollow guide), Eq. (8.106) reduces
to

f10 =
c

2a
.

Denote the carrier frequency as f0 = 6 GHz. Setting

f10 = 0.75 f0 = 0.75×6 GHz = 4.5 GHz,

we have

a =
c

2 f10
=

3×108

2×4.5×109 = 3.33 cm.

If b is chosen such that a > b > a
2 , the second mode will be TE01, followed by TE20

at f20 = 9 GHz. For TE01,

f01 =
c

2b
.

Setting f01 = 1.25 f0 = 7.5 GHz, we get

b =
c

2 f01
=

3×108

2×7.5×109 = 2 cm.
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Problem 8.36 A TE wave propagating in a dielectric-filled waveguide of unknown
permittivity has dimensions a = 5 cm and b = 3 cm. If the x-component of its electric
field is given by

Ex = −36cos(40πx)sin(100πy)

· sin(2.4π×1010t −52.9πz), (V/m)

determine:
(a) the mode number,
(b) εr of the material in the guide,
(c) the cutoff frequency, and
(d) the expression for Hy.

Solution:
(a) Comparison of the given expression with Eq. (8.110a) reveals that

mπ
a

= 40π, hence m = 2

nπ
b

= 100π, hence n = 3.

Mode is TE23.
(b) From sin(ωt −βz), we deduce that

ω = 2.4π×1010 rad/s, β = 52.9π rad/m.

Using Eq. (8.105) to solve for εr, we have

εr =
c2

ω2

[
β2 +

(mπ
a

)2
+
(nπ

b

)2
]

= 2.25.

(c)

up0
=

c√
εr

=
3×108
√

2.25
= 2×108 m/s.

f23 =
up0

2

√(
2
a

)2

+

(
3
b

)2

= 10.77 GHz.
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(d)

ZTE =
Ex

Hy
= η

/√
1− ( f23/ f )2

=
377√

εr

/√

1−
(

10.77
12

)2

= 569.9 Ω.

Hence,

Hy =
Ex

ZTE

= −0.063cos(40πx)sin(100πy)sin(2.4π×1010t −52.9πz) (A/m).

Problem 8.37 A waveguide filled with a material whose εr = 2.25 has dimensions
a = 2 cm and b = 1.4 cm. If the guide is to transmit 10.5-GHz signals, what possible
modes can be used for the transmission?

Solution:
Application of Eq. (8.106) with up0

= c/
√

εr = 3 × 108/
√

2.25 = 2 × 108 m/s,
gives:

f10 = 5 GHz (TE only)

f01 = 7.14 GHz (TE only)

f11 = 8.72 GHz (TE or TM)

f20 = 10 GHz (TE only)

f21 = 12.28 GHz (TE or TM)

f12 = 15.1 GHz (TE or TM).

Hence, any one of the first four modes can be used to transmit 10.5-GHz signals.

Problem 8.38 For a rectangular waveguide operating in the TE10 mode, obtain
expressions for the surface charge density ρ̃s and surface current density J̃s on each
of the four walls of the guide.

Solution:
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For TE10, the expressions for Ẽ and H̃ are given by Eq. (8.110) with m = 1 and
n = 0,

Ẽx = 0,

Ẽy = − j
ωµπH0

k2
c a

sin
(πx

a

)
e− jβz,

Ẽz = 0,

H̃x = j
βπH0

k2
ca

sin
(πx

a

)
e− jβz,

H̃y = 0,

H̃z = H0 cos
(πx

a

)
e− jβz.

The applicable boundary conditions are given in Table 6-2. At the boundary between
a dielectric (medium 1) and a conductor (medium 2),

ρ̃s = n̂2 · D̃1 = ε1 n̂2 · Ẽ1,

J̃s = n̂2 × H̃1,

where Ẽ1 and H̃1 are the fields inside the guide, ε1 is the permittivity of the material
filling the guide, and n̂2 is the normal to the guide wall, pointing away from the wall
(inwardly). In view of the coordinate system defined for the guide, n̂2 = x̂ for side
wall at x = 0, n̂2 = −x̂ for wall at x = a, etc.

n2
^

n2
^

n2
^

n2
^

y

b

x
a

4

2

3

1

0

(a) At side wall 1 at x = 0, n̂2 = x̂. Hence,

ρs = ε1 x̂ · ŷEy|x=0 = 0

Js = x̂× (x̂H̃x + ẑH̃z)|x=0

= −ŷH̃z|x=0

= −ŷH0e− jβz.
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(b) At side wall 2 at x = a, n̂2 = −x̂. Hence,

ρs = 0

Js = ŷH0e− jβz.

(c) At bottom surface at y = 0, n̂2 = ŷ. Hence,

ρs = ε1 ŷ · ŷEy|y=0

= − j
ωεµπH0

k2
ca

sin
(πx

a

)
e− jβz

J̃s = ŷ× (x̂H̃x + ẑH̃z)

= H0

[
x̂cos

(πx
a

)
− ẑ j

βπ
k2

ca
sin
(πx

a

)]
e− jβz.

(d) At top surface at y−b, n̂2 = −ŷ. Hence,

ρ̃s = j
ωεµπH0

k2
ca

sin
(πx

a

)
e− jβz

J̃s = H0

[
−x̂cos

(πx
a

)
+ ẑ j

βπ
k2

c a
sin
(πx

a

)]
e− jβz.

Problem 8.39 A waveguide, with dimensions a = 1 cm and b = 0.7 cm, is to be
used at 20 GHz. Determine the wave impedance for the dominant mode when

(a) the guide is empty, and
(b) the guide is filled with polyethylene (whose εr = 2.25).

Solution:
For the TE10 mode,

f10 =
up0

2a
=

c
2a
√

εr
.

When empty,

f10 =
3×108

2×10−2 = 15 GHz.

When filled with polyethylene, f10 = 10 GHz.
According to Eq. (8.111),

ZTE =
η√

1− ( f10/ f )2
=

η0√
εr

√
1− ( f10/ f )2

.
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When empty,

ZTE =
377√

1− (15/20)2
= 570 Ω.

When filled,

ZTE =
377√

2.25
√

1− (10/20)2
= 290 Ω.

Problem 8.40 A narrow rectangular pulse superimposed on a carrier with a
frequency of 9.5 GHz was used to excite all possible modes in a hollow guide with
a = 3 cm and b = 2.0 cm. If the guide is 100 m in length, how long will it take each
of the excited modes to arrive at the receiving end?

Solution:
With a = 3 cm, b = 2 cm, and up0

= c = 3× 108 m/s, application of Eq. (8.106)
leads to:

f10 = 5 GHz

f01 = 7.5 GHz

f11 = 9.01 GHz

f20 = 10 GHz

Hence, the pulse with a 9.5-GHz carrier can excite the top three modes. Their group
velocities can be calculated with the help of Eq. (8.114),

ug = c
√

1− ( fmn/ f )2,

which gives:

ug =





0.85c = 2.55×108 m/s, for TE10

0.61c = 1.84×108 m/s, for TE01

0.32c = 0.95×108 m/s, for TE11 and TM11

Travel time associated with these modes is:

T =
d
ug

=
100
ug

=





0.39 µs, for TE10

0.54 µs, for TE01

1.05 µs, for TE11 and TM11.
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Problem 8.41 If the zigzag angle θ′ is 42◦ for the TE10 mode, what would it be for
the TE20 mode?

Solution:
For TE10, the derivation that started with Eq. (8.116) led to

θ′10 = tan−1
(

π
βa

)
, TE10 mode.

Had the derivation been for n = 2 (instead of n = 1), the x-dependence would have
involved a phase factor (2πx/a) (instead of (πx/a)). The sequence of steps would
have led to

θ′20 = tan−1
(

2π
βa

)
, TE20 mode.

Given that θ′
10 = 42◦, it follows that

π
βa

= tan42◦ = 0.90

Hence,
θ′20 = tan−1(2×0.9) = 60.9◦.

Problem 8.42 Measurement of the TE101 frequency response of an air-filled cubic
cavity revealed that its Q is 4802. If its volume is 64 mm3, what material are its sides
made of?

Solution:
According to Eq. (8.121), the TE101 resonant frequency of a cubic cavity is given

by

f101 =
3×108
√

2a
=

3×108
√

2×4×10−3
= 53.0 GHz.

Its Q is given by

Q =
a

3δs
= 4802,

which gives δs = 2.78×10−7 m. Applying

δs =
1√

π f101µ0σc
,

and solving for σc leads to
σc ' 6.2×107 S/m.
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According to Appendix B, the material is silver.

Problem 8.43 A hollow cavity made of aluminum has dimensions a = 4 cm and
d = 3 cm. Calculate Q of the TE101 mode for

(a) b = 2 cm, and
(b) b = 3 cm.

Solution:
For the TE101 mode, f101 is independent of b,

f101 =
c
2

√(
1
a

)2

+

(
1
d

)2

=
3×108

2

√(
1

4×10−2

)2

+

(
1

3×10−2

)2

= 6.25 GHz.

For aluminum with σc = 3.5×107 S/m (Appendix B),

δs =
1√

π f101µ0σc
= 1.08×10−6 m.

(a) For a = 4 cm, b = 2 cm and d = 3 cm,

Q =
1
δs

abd(a2 +d2)

[a3(d +2b)+d3(a+2b)]

= 8367.

(b) For a = 4 cm, b = 3 cm, and d = 3 cm,

Q = 9850.

Problem 8.44 A 50-MHz right-hand circularly polarized plane wave with an
electric field modulus of 30 V/m is normally incident in air upon a dielectric medium
with εr = 9 and occupying the region defined by z ≥ 0.

(a) Write an expression for the electric field phasor of the incident wave, given that
the field is a positive maximum at z = 0 and t = 0.

(b) Calculate the reflection and transmission coefficients.
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(c) Write expressions for the electric field phasors of the reflected wave, the
transmitted wave, and the total field in the region z ≤ 0.

(d) Determine the percentages of the incident average power reflected by the
boundary and transmitted into the second medium.

Solution:
(a)

k1 =
ω
c

=
2π×50×106

3×108 =
π
3

rad/m,

k2 =
ω
c
√

εr2 =
π
3

√
9 = π rad/m.

From (7.57), RHC wave traveling in +z direction:

Ẽ
i
= a0(x̂ + ŷe− jπ/2)e− jk1z = a0(x̂− jŷ)e− jk1z

Ei(z, t) = Re

[
Ẽ

i
e jωt
]

= Re

[
a0(x̂e j(ωt−k1z) + ŷe j(ωt−k1z−π/2))

]

= x̂a0 cos(ωt − k1z)+ ŷa0 cos(ωt − k1z−π/2)

= x̂a0 cos(ωt − k1z)+ ŷa0 sin(ωt − k1z)

|Ei| =
[
a2

0 cos2(ωt − k1z)+a2
0 sin2(ωt − k1z)

]1/2
= a0 = 30 V/m.

Hence,

Ẽ
i
= 30(x0 − jy0)e

− jπz/3 (V/m).

(b)

η1 = η0 = 120π (Ω), η2 =
η0√εr2

=
120π√

9
= 40π (Ω).

Γ =
η2 −η1

η2 +η1
=

40π−120π
40π+120π

= −0.5

τ = 1+Γ = 1−0.5 = 0.5.
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(c)

Ẽ
r
= Γa0(x̂− jŷ)e jk1z

= −0.5×30(x̂− jŷ)e jk1z

= −15(x̂− jŷ)e jπz/3 (V/m).

Ẽ
t
= τa0(x̂− jŷ)e− jk2z

= 15(x̂− jŷ)e− jπz (V/m).

Ẽ1 = Ẽ
i
+ Ẽ

r

= 30(x̂− jŷ)e− jπz/3 −15(x̂− jŷ)e jπz/3

= 15(x̂− jŷ)[2e− jπz/3 − e jπz/3] (V/m).

(d)

% of reflected power = 100×|Γ|2 = 100× (0.5)2 = 25%

% of transmitted power = 100|τ|2 η1

η2
= 100× (0.5)2 × 120π

40π
= 75%.

Problem 8.45 Consider a flat 5-mm-thick slab of glass with εr = 2.56.
(a) If a beam of green light (λ0 = 0.52 µm) is normally incident upon one of the

sides of the slab, what percentage of the incident power is reflected back by the
glass?

(b) To eliminate reflections, it is desired to add a thin layer of antireflection coating
material on each side of the glass. If you are at liberty to specify the thickness
of the antireflection material as well as its relative permittivity, what would
these specifications be?

Solution:
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ZL = η0Z2 = ηg

A

Z1 = η0

5 mm

AirGlass
εr = 2.56Green Light

Air

5 mm

Zi

(a) Representing the wave propagation process by an equivalent transmission line
model, the input impedance at the left-hand side of the air-glass interface is (from
2.63):

Zi = Z0

(
ZL + jZ0 tanβl
Z0 + jZL tanβl

)

For the glass,

Z0 = ηg =
η0√

εr
=

η0√
2.56

=
η0

1.6

ZL = η0

βl =
2π
λ

l =
2π
λ0

√
εr l =

2π
0.52×10−6 ×

√
2.56×5×10−3 = 30769.23π.

Subtracting the maximum possible multiples of 2π, namely 30768π, leaves a
remainder of

βl = 1.23π rad.

Hence,

Zi =
η0

1.6

(
η0 + j(η0/1.6) tan 1.23π
(η0/1.6)+ jη0 tan1.23π

)

=

(
1.6+ j tan1.23π

1+ j1.6tan 1.23π

)
120π
1.6

=

(
1.6+ j0.882

1+ j1.41

)
120π
1.6

= 249∠−25.8◦ = (224.2− j108.4) Ω.
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With Zi now representing the input impedance of the glass, the reflection coefficient
at point A is:

Γ =
Zi −η0

Zi +η0

=
224.2− j108.4−120π
224.2− j108.4+120π

=
187.34∠−144.6◦

610.89∠−10.2◦
= 0.3067∠−154.8◦ .

% of reflected power = |Γ|2 ×100 = 9.4%.
(b) To avoid reflections, we can add a quarter-wave transformer on each side of the

glass.

AirGlass
εr = 2.56

Air

5 mmd d

Antireflection 
coating

Antireflection 
coating

Antireflection 
coating

This requires that d be:

d =
λ
4

+2nλ, n = 0,1,2, . . .

where λ is the wavelength in that material; i.e., λ = λ0/
√

εrc, where εrc is the relative
permittivity of the coating material. It is also required that ηc of the coating material
be:

η2
c = η0ηg.

Thus
η2

0

εrc
= η0

η0√
εr

,

or
εrc =

√
εr =

√
2.56 = 1.6.

Hence,

λ =
λ0√
εrc

=
0.52 µm√

1.6
= 0.411 µm,

d =
λ
4

+2nλ

= (0.103+0.822n) (µm), n = 0,1,2, . . .
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Problem 8.46 A parallel-polarized plane wave is incident from air at an angle
θi = 30◦ onto a pair of dielectric layers as shown in the figure.

(a) Determine the angles of transmission θ2, θ3, and θ4.
(b) Determine the lateral distance d.

d

5 cm

5 cm

θi

θ2

θ4

θ3

Air

Air

µr = 1
εr = 2.25

µr = 1
εr = 6.25

Solution:
(a) Application of Snell’s law of refraction given by (8.31) leads to:

sin θ2 = sin θ1

√
εr1

εr2
= sin30◦

√
1

6.25
= 0.2

θ2 = 11.54◦.

Similarly,

sinθ3 = sinθ2

√
εr2

εr3
= sin11.54◦

√
6.25
2.25

= 0.33

θ3 = 19.48◦.

And,

sin θ4 = sinθ3

√
εr3

εr4
= sin 19.48◦

√
2.25

1
= 0.5

θ4 = 30◦.

As expected, the exit ray back into air will be at the same angle as θi.
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(b)

d = (5 cm) tanθ2 +(5 cm) tan θ3

= 5tan 11.54◦ +5tan19.48◦ = 2.79 cm.

Problem 8.47 A plane wave in air with

Ẽ
i
= (x̂2− ŷ4− ẑ6)e− j(2x+3z) (V/m)

is incident upon the planar surface of a dielectric material, with εr = 2.25, occupying
the half-space z ≥ 0. Determine

(a) The incidence angle θi.
(b) The frequency of the wave.
(c) The field Ẽ

r
of the reflected wave.

(d) The field Ẽ
t

of the wave transmitted into the dielectric medium.
(e) The average power density carried by the wave into the dielectric medium.

Solution:

x

z
θi

θ2

(a) From the exponential of the given expression, it is clear that the wave direction
of travel is in the x–z plane. By comparison with the expressions in (8.48a) for
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perpendicular polarization or (8.65a) for parallel polarization, both of which have
the same phase factor, we conclude that:

k1 sinθi = 2,

k1 cosθi = 3.

Hence,

k1 =
√

22 +32 = 3.6 (rad/m)

θi = tan−1(2/3) = 33.7◦.

Also,

k2 = k1
√

εr2 = 3.6
√

2.25 = 5.4 (rad/m)

θ2 = sin−1

[
sinθi

√
1

2.25

]
= 21.7◦.

(b)

k1 =
2π f

c

f =
k1c
2π

=
3.6×3×108

2π
= 172 MHz.

(c) In order to determine the electric field of the reflected wave, we first have to
determine the polarization of the wave. The vector argument in the given expression

for Ẽ
i

indicates that the incident wave is a mixture of parallel and perpendicular
polarization components. Perpendicular polarization has a ŷ-component only (see
8.46a), whereas parallel polarization has only x̂ and ẑ components (see 8.65a). Hence,
we shall decompose the incident wave accordingly:

Ẽ
i
= Ẽ

i
⊥ + Ẽ

i
‖

with

Ẽ
i
⊥ = −ŷ4e− j(2x+3z) (V/m)

Ẽ
i
‖ = (x̂2− ẑ6)e− j(2x+3z) (V/m)

From the above expressions, we deduce:

E i
⊥0 = −4 V/m

E i
‖0 =

√
22 +62 = 6.32 V/m.
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Next, we calculate Γ and τ for each of the two polarizations:

Γ⊥ =
cos θi −

√
(ε2/ε1)− sin2 θi

cos θi +
√

(ε2/ε1)− sin2 θi

Using θi = 33.7◦ and ε2/ε1 = 2.25/1 = 2.25 leads to:

Γ⊥ = −0.25

τ⊥ = 1+Γ⊥ = 0.75.

Similarly,

Γ⊥ =
−(ε2/ε1)cos θi +

√
(ε2/ε1)− sin2 θi

(ε2/ε1)cos θi +
√

(ε2/ε1)− sin2 θi

= −0.15,

τ‖ = (1+Γ‖)
cos θi

cos θt
= (1−0.15)

cos 33.7◦

cos 21.7◦
= 0.76.

The electric fields of the reflected and transmitted waves for the two polarizations are
given by (8.49a), (8.49c), (8.65c), and (8.65e):

Ẽ
r
⊥ = ŷE r

⊥0e− jk1(xsinθr−zcosθr)

Ẽ
t
⊥ = ŷE t

⊥0e− jk2(xsinθt+zcosθt)

Ẽ
r
‖ = (x̂cosθr + ẑsinθr)E

r
‖0e− jk1(xsinθr−zcosθr)

Ẽ
t
‖ = (x̂cosθt − ẑsinθt)E

t
‖0e− jk2(xsinθt+zcosθt)

Based on our earlier calculations:

θr = θi = 33.7◦

θt = 21.7◦

k1 = 3.6 rad/m, k2 = 5.4 rad/m,

E r
⊥0 = Γ⊥E i

⊥0 = (−0.25)× (−4) = 1 V/m.

E t
⊥0 = τ⊥E i

⊥0 = 0.75× (−4) = −3 V/m.

E r
‖0 = Γ‖E i

‖0 = (−0.15)×6.32 = −0.95 V/m.

E t
‖0 = τ‖E i

‖0 = 0.76×6.32 = 4.8 V/m.

Using the above values, we have:

Ẽ
r
= Ẽ

r
⊥ + Ẽ

r
‖

= (−x̂0.79+ ŷ− ẑ0.53)e− j(2x−3z) (V/m).
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(d)

Ẽ
t
= Ẽ

t
⊥ + Ẽ

t
‖

= (x̂4.46− ŷ3− ẑ1.78)e− j(2x+5z) (V/m).

(e)

St =
|E t

0|2
2η2

|E t
0|2 = (4.46)2 +32 +(1.78)2 = 32.06

η2 =
η0√εr2

=
377
1.5

= 251.3 Ω

St =
32.06

2×251.3
= 63.8 (mW/m2).
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Chapter 9:  Radiation and Antennas 
 
 
Lesson #61 
Chapter — Section:  9-1 
Topics:  Retarded potential, short dipole 
 
Highlights: 

• Radiation by short dipole 
• Far-field distance 

 
Special Illustrations: 

• Exercise 9.1 
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Lesson #62 
Chapter — Section:  9-2 
Topics:  Radiation characteristics 
 
Highlights: 

• Antenna pattern 
• Antenna directivity 
• Antenna gain 

 
Special Illustrations: 

• Example 9-2 
• Example 9-3 
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Lesson #63 
Chapter — Section:  9-3 and 9-4 

Topics:  Half-wave dipole 
 
Highlights: 

• Radiation pattern 
• Directivity 
• Radiation resistance 

 
Special Illustrations: 

• CD-ROM Module 9.1 
• CD-ROM Demo 9.1 
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Lesson #64 
Chapter — Section:  9-5, 9-6 
Topics:  Effective area, Friis formula 
 
Highlights: 

• Receiving aperture of an antenna 
• Relation of aperture to directivity 
• Friis formula 

 
Special Illustrations: 

• Example 9-5 
• Demo 9.2 
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Lessons #65 and 66 
Chapter — Sections:  9-7 and 9-8 
Topics:  Aperture antennas 
 
Highlights: 

• Aperture illumination 
• Rectangular aperture 
• Beamwidth and directivity 

 
Special Illustrations: 

• CD-ROM Demo 9.3 
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Lessons #67–69 
Chapter — Sections:  9-9 to 9-11 
Topics:  Antenna arrays 
 
Highlights: 

• Array factor 
• Multiplication principle 
• Electronic scanning 

 
Special Illustrations: 

• CD-ROM Demo 9.4 

The array pattern of an equally-spaced linear array can be steered in direction by applying 
linear phase across the array as shown. Note that δ = kd cos θ0, with θ 0 measured from 
the +z-axis.  

 

Display the array pattern 
for the following values 
of the beam center angle: 
 θ0 = 90o (broadside)

 θ 0 = 60o  
(30o above x-axis) 

 θ 0 = 30o  
(60o above x-axis) 

 θ 0 = 120o  
(30o below x-axis) 

 θ 0 = 150o  
(60o below x-axis)   
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Chapter 9

Sections 9-1 and 9-2: Short Dipole and Antenna Radiation Characteris-
tics

Problem 9.1 A center-fed Hertzian dipole is excited by a current I0 � 20 A. If the
dipole is λ � 50 in length, determine the maximum radiated power density at a distance
of 1 km.

Solution: From Eq. (9.14), the maximum power density radiated by a Hertzian
dipole is given by

S0 � η0k2I2
0 l2

32π2R2 � 377 � �
2π � λ � 2 � 202 � �

λ � 50 � 2
32π2

�
103 � 2� 7  6 � 10 � 6 W/m2 � 7  6 (µW/m2) 

Problem 9.2 A 1-m-long dipole is excited by a 1-MHz current with an amplitude
of 12 A. What is the average power density radiated by the dipole at a distance of
5 km in a direction that is 45 � from the dipole axis?

Solution: At 1 MHz, λ � c � f � 3 � 108 � 106 � 300 m. Hence l � λ � 1 � 300, and
therefore the antenna is a Hertzian dipole. From Eq. (9.12),

S
�
R � θ ��� �

η0k2I2
0 l2

32π2R2 
 sin2 θ

� 120π � �
2π � 300 � 2 � 122 � 12

32π2 � �
5 � 103 � 2 sin2 45 � � 1  51 � 10 � 9 (W/m2) 

Problem 9.3 Determine the (a) direction of maximum radiation, (b) directivity, (c)
beam solid angle, and (d) half-power beamwidth in the x–z plane for an antenna
whose normalized radiation intensity is given by

F
�
θ � φ ��� �

1 � for 0
� θ �

60 � and 0
� φ �

2π �
0 � elsewhere.

Suggestion: Sketch the pattern prior to calculating the desired quantities.

Solution: The direction of maximum radiation is a circular cone 120 � wide centered
around the 	 ẑ-axis. From Eq. (9.23),

D � 4π
���

4π F dΩ
� 4π

� 2π
0

� 60 �
0 sin θ dθ dφ

� 4π

2π
� � cosθ � � 60 �

0 � � 2

� 1
2 	 1

� 4 � 6 dB �
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Ωp � 4π sr
D

� 4π sr
4

� π (sr) 
The half power beamwidth is β � 120 � .
Problem 9.4 Repeat Problem 9.3 for an antenna with

F
�
θ � φ ��� �

sin2 θcos2 φ � for 0
� θ � π and � π � 2 � φ � π � 2 �

0 � elsewhere.

Solution: The direction of maximum radiation is the 	 x̂-axis (where θ � π � 2 and
φ � 0). From Eq. (9.23),

D � 4π
���

4π F dΩ

� 4π
� π � 2� π � 2 � π

0 sin2 θcos2 φsin θ dθ dφ

� 4π
� π � 2� π � 2 cos2 φdφ

� π
0 sin3 θ dθ

� 4π
� π � 2� π � 2 1

2

�
1 	 cos2φ � dφ

� 1� 1

�
1 � x2 � dx

� 4π
1
2 � φ 	 1

2 sin2φ � ��
π � 2� π � 2 � x � x3 � 3 � � 1� 1

� 4π
1
2π
�
4 � 3 � � 6 � 7  8 dB �

Ωp � 4π sr
D

� 4π sr
6

� 2
3

π (sr) 
In the x-z plane, φ � 0 and the half power beamwidth is 90 � , since sin2 � 45 � � �
sin2 � 135 � ��� 1

2 .

Problem 9.5 A 2-m-long center-fed dipole antenna operates in the AM broadcast
band at 1 MHz. The dipole is made of copper wire with a radius of 1 mm.

(a) Determine the radiation efficiency of the antenna.
(b) What is the antenna gain in dB?
(c) What antenna current is required so that the antenna would radiate 80 W, and

how much power will the generator have to supply to the antenna?

Solution:
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(a) Following Example 9-3, λ � c � f � �
3 � 108 m/s � � � 106 Hz � � 300 m. As

l � λ � �
2 m � � � 300 m ��� 6  7 � 10 � 3, this antenna is a short (Hertzian) dipole. Thus,

from respectively Eqs. (9.35), (9.32), and (9.31),

Rrad � 80π2 � l
λ
� 2 � 80π2 � 6  7 � 10 � 3 � 2 � 35 (mΩ) �

Rloss � l
2πa

�
π f µc

σc
� 2 m

2π
�
10 � 3 m � π

�
106 Hz � � 4π � 10 � 7 H/m �

5  8 � 107 S/m
� 83 (mΩ) �

ξ � Rrad

Rrad 	 Rloss
� 35 mΩ

35 mΩ 	 83 mΩ
� 29  7% 

(b) From Example 9-2, a Hertzian dipole has a directivity of 1.5. The gain, from
Eq. (9.29), is G � ξD � 0  297 � 1  5 � 0  44 � � 3  5 dB.

(c) From Eq. (9.30a),

I0 � �
2Prad

Rrad
� �

2
�
80 W �

35 mΩ
� 67  6 A

and from Eq. (9.31),

Pt � Prad

ξ
� 80 W

0  297
� 269 W 

Problem 9.6 Repeat Problem 9.5 for a 20-cm-long antenna operating at 5 MHz.

Solution:
(a) At 5 MHz, λ � c � f � 3 � 108 � � 5 � 106 � � 60 m. As l � λ � 0  2 � 60 �

3  33 � 10 � 3, the antenna length satisfies the condition of a short dipole. From
Eqs. (9.35), (9.32), and (9.31),

Rrad � 80π2

�
l
λ 
 2 � 80π2 � �

3  33 � 10 � 3 � 2 � 8  76 (mΩ) �
Rloss � l

2πa

�
π f uc

σc
� 0  2

2π � 10 � 3

π � 5 � 106 � 4π � 10 � 7

5  8 � 107 � 18  57 (mΩ) �
ξ � Rrad

Rrad 	 Rloss
� 8  76

8  76 	 18  57
� 0  32 � or 32% 

(b) For Hertzian dipole, D � 1  5, and G � ξD � 0  32 � 1  5 � 0  48 � � 3  2dB.
(c) From Eq. (9.30a),

I0 � �
2Prad

Rrad
� �

2 � 80
8  76 � 10 � 3 � 135  2 A 
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Problem 9.7 An antenna with a pattern solid angle of 1.5 (sr) radiates 60 W of
power. At a range of 1 km, what is the maximum power density radiated by the
antenna?

Solution: From Eq. (9.23), D � 4π � Ωp, and from Eq. (9.24), D � 4πR2Smax � Prad.
Combining these two equations gives

Smax � Prad

ΩpR2 � 60
1  5 � �

103 � 2 � 4 � 10 � 5 (W/m2) 
Problem 9.8 An antenna with a radiation efficiency of 90% has a directivity of
7.0 dB. What is its gain in dB?

Solution: D � 7  0 dB corresponds to D � 5  0.

G � ξD � 0  9 � 5  0 � 4  5 � 6  54 dB 
Alternatively,

G
�
dB ��� ξ

�
dB � 	 D

�
dB ��� 10log 0  9 	 7  0 � � 0  46 	 7  0 � 6  54 dB 

Problem 9.9 The radiation pattern of a circular parabolic-reflector antenna consists
of a circular major lobe with a half-power beamwidth of 3 � and a few minor lobes.
Ignoring the minor lobes, obtain an estimate for the antenna directivity in dB.

Solution: A circular lobe means that βxz � βyz � 3 � � 0  052 rad. Using Eq. (9.26),
we have

D � 4π
βxzβyz

� 4π�
0  052 � 2 � 4  58 � 103 

In dB,
D
�
dB ��� 10log D � 10log

�
4  58 � 103 ��� 36  61 dB 

Problem 9.10 The normalized radiation intensity of a certain antenna is given by

F
�
θ ��� exp

� � 20θ2 � for 0
� θ � π �

where θ is in radians. Determine:
(a) the half-power beamwidth,
(b) the pattern solid angle,
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β

0θ1 θ2π
16
- π

16

0.5

F(θ)

1

θ

Figure P9.10: F
�
θ � versus θ.

(c) the antenna directivity.

Solution:
(a) Since F

�
θ � is independent of φ, the beam is symmetrical about z � 0. Upon

setting F
�
θ ��� 0  5, we have

F
�
θ ��� exp

� � 20θ2 ��� 0  5 �
ln � exp

� � 20θ2 ��� � ln
�
0  5 � �

20θ2 � � 0  693 �
θ � �

�
0  693

20 
 1 � 2 � � 0  186 radians 
Hence, β � 2 � 0  186 � 0  372 radians � 21  31 � .
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(b) By Eq. (9.21),

Ωp � � �
4π

F
�
θ � sin θ dθ dφ

� � 2π

φ � 0

� π

θ � 0
exp

� � 20θ2 � sinθ dθ dφ

� 2π
� π

0
exp

� � 20θ2 � sin θ dθ 
Numerical evaluation yields

Ωp � 0  156 sr 
(c)

D � 4π
Ωp

� 4π
0  156

� 80  55 
Sections 9-3 and 9-4: Dipole Antennas

Problem 9.11 Repeat Problem 9.5 for a 1-m-long half-wave dipole that operates in
the FM/TV broadcast band at 150 MHz.

Solution:
(a) Following Example 9-3,

λ � c � f � �
3 � 108 m/s � � � 150 � 106 Hz ��� 2 m 

As l � λ � �
1 m � � � 2 m � � 1

2 , this antenna is a half-wave dipole. Thus, from Eq. (9.48),
(9.32), and (9.31),

Rrad � 73 Ω �
Rloss � l

2πa

�
π f µc

σc
� 1 m

2π
�
10 � 3 m � π

�
150 � 106 Hz � � 4π � 10 � 7 H/m �

5  8 � 107 S/m
� 0  5 Ω �

ξ � Rrad

Rrad 	 Rloss
� 73 Ω

73 Ω 	 0  5 Ω
� 99  3% 

(b) From Eq. (9.47), a half-wave dipole has a directivity of 1.64. The gain, from
Eq. (9.29), is G � ξD � 0  993 � 1  64 � 1  63 � 2  1 dB.

(c) From Eq. (9.30a),

I0 � �
2Prad

Rrad
� �

2
�
80 W �
73 Ω

� 1  48 A �
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and from Eq. (9.31),

Pt � Prad

ξ
� 80 W

0  993
� 80  4 W 

Problem 9.12 Assuming the loss resistance of a half-wave dipole antenna to be
negligibly small and ignoring the reactance component of its antenna impedance,
calculate the standing wave ratio on a 50-Ω transmission line connected to the dipole
antenna.

Solution: According to Eq. (9.48), a half wave dipole has a radiation resistance of
73 Ω. To the transmission line, this behaves as a load, so the reflection coefficient is

Γ � Rrad � Z0

Rrad 	 Z0
� 73 Ω � 50 Ω

73 Ω 	 50 Ω
� 0  187 �

and the standing wave ratio is

S � 1 	 �Γ �
1 � �Γ � �

1 	 0  187
1 � 0  187

� 1  46 
Problem 9.13 For the short dipole with length l such that l � λ, instead of treating
the current

�
I
�
z � as constant along the dipole, as was done in Section 9-1, a more

realistic approximation that insures that the current goes to zero at the ends is to
describe

�
I
�
z � by the triangular function

�
I
�
z ��� �

I0
�
1 � 2z � l � � for 0

�
z

�
l � 2 �

I0
�
1 	 2z � l � � for � l � 2 �

z
�

0 �
as shown in Fig. 9-36 (P9.13). Use this current distribution to determine (a) the far-
field

�
E
�
R � θ � φ � , (b) the power density S

�
R � θ � φ � , (c) the directivity D, and (d) the

radiation resistance Rrad.

Solution:
(a) When the current along the dipole was assumed to be constant and equal to I0,

the vector potential was given by Eq. (9.3) as:

�
A
�
R ��� ẑ

µ0

4π

�
e � jkR

R 
 � l � 2
� l � 2 I0 dz 

If the triangular current function is assumed instead, then I0 in the above expression
should be replaced with the given expression. Hence,

�
A � ẑ

µ0

4π

�
e � jkR

R 
 I0

� � l � 2
0

�
1 � 2z

l 
 dz 	 � 0

� l � 2
�

1 	 2z
l 
 dz � � ẑ

µ0I0l
8π

�
e � jkR

R 
 �
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l I0

I(z)~

Figure P9.13: Triangular current distribution on a short dipole (Problem 9.13).

which is half that obtained for the constant-current case given by Eq. (9.3). Hence,
the expression given by (9.9a) need only be modified by the factor of 1 � 2:

�
E � θ̂θθ

�
Eθ � θ̂θθ

jI0lkη0

8π

�
e � jkR

R 
 sinθ 
(b) The corresponding power density is

S
�
R � θ ��� � �Eθ � 2

2η0
� �

η0k2I2
0 l2

128π2R2 
 sin2 θ 
(c) The power density is 4 times smaller than that for the constant current case, but

the reduction is true for all directions. Hence, D remains unchanged at 1.5.
(d) Since S

�
R � θ � is 4 times smaller, the total radiated power Prad is 4-times

smaller. Consequently, Rrad � 2Prad � I2
0 is 4 times smaller than the expression given

by Eq. (9.35); that is,

Rrad � 20π2 � l � λ � 2 (Ω) 
Problem 9.14 For a dipole antenna of length l � 3λ � 2, (a) determine the directions
of maximum radiation, (b) obtain an expression for Smax, and (c) generate a plot
of the normalized radiation pattern F

�
θ � . Compare your pattern with that shown in

Fig. 9.17(c).

Solution:
(a) From Eq. (9.56), S

�
θ � for an arbitrary length dipole is given by

S
�
θ ��� 15I2

0

πR2

�
cos � πl

λ cos θ � � cos � πl
λ �

sinθ � 2 
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For l � 3λ � 2, S
�
θ � becomes

S
�
θ ��� 15I2

0

πR2

�
cos � 3π

2 cos θ �
sinθ � 2 

Solving for the directions of maximum radiation numerically yields two maximum
directions of radiation given by

θmax1 � 42  6 � � θmax2 � 137  4 � 
(b) From the numerical results, it was found that S

�
θ ��� 15I2

0 � � πR2 � � 1  96 � at θmax.
Thus,

Smax � 15I2
0

πR2

�
1  96 � 

(c) The normalized radiation pattern is given by Eq. (9.13) as

F
�
θ ��� S

�
θ �

Smax


Using the expression for S
�
θ � from part (a) with the value of Smax found in part (b),

F
�
θ ��� 1

1  96

�
cos � 3π

2 cosθ �
sinθ � 2 

The normalized radiation pattern is shown in Fig. P9.14, which is identical to that
shown in Fig. 9.17(c).
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z

x

θ

Figure P9.14: Radiation pattern of dipole of length 3λ � 2.

Problem 9.15 Repeat parts (a)–(c) of Problem 9.14 for a dipole of length l � 3λ � 4.

Solution:
(a) For l � 3λ � 4, Eq. (9.56) becomes

S
�
θ ��� 15I2

0

πR2

�
cos � 3π

4 cosθ � � cos � 3π
4 �

sinθ � 2

� 15I2
0

πR2

�
cos � 3π

4 cosθ � 	 1
� 2

sinθ � 2 
Solving for the directions of maximum radiation numerically yields

θmax1 � 90 � � θmax2 � 270 � 
(b) From the numerical results, it was found that S

�
θ ��� 15I2

0 � � πR2 � � 2  91 � at θmax.
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Thus,

Smax � 15I2
0

πR2

�
2  91 � 

x

Z
θ

Figure P9.15: Radiation pattern of dipole of length l � 3λ � 4.

(c) The normalized radiation pattern is given by Eq. (9.13) as

F
�
θ ��� S

�
θ �

Smax


Using the expression for S
�
θ � from part (a) with the value of Smax found in part (b),

F
�
θ ��� 1

2  91

�
cos � 3π

4 cosθ � 	 1
� 2

sinθ � 2 
The normalized radiation pattern is shown in Fig. P9.15.

Problem 9.16 Repeat parts (a)–(c) of Problem 9.14 for a dipole of length l � λ.
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Solution: For l � λ, Eq. (9.56) becomes

S
�
θ ��� 15I2

0

πR2

�
cos

�
πcosθ � � cos

�
π �

sinθ � 2 � 15I2
0

πR2

�
cos

�
πcosθ � 	 1
sin θ � 2 

Solving for the directions of maximum radiation numerically yields

x

Z

θ

Figure P9.16: Radiation pattern of dipole of length l � λ.

θmax1 � 90 � � θmax2 � 270 � 
(b) From the numerical results, it was found that S

�
θ � � 15I2

0 � � πR2 � � 4 � at θmax.
Thus,

Smax � 60I2
0

πR2 
(c) The normalized radiation pattern is given by Eq. (9.13), as

F
�
θ ��� S

�
θ �

Smax


Using the expression for S
�
θ � from part (a) with the value of Smax found in part (b),

F
�
θ ��� 1

4

�
cos

�
πcosθ � 	 1
sinθ � 2 
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The normalized radiation pattern is shown in Fig. P9.16.

Problem 9.17 A car antenna is a vertical monopole over a conducting surface.
Repeat Problem 9.5 for a 1-m-long car antenna operating at 1 MHz. The antenna
wire is made of aluminum with µc � µ0 and σc � 3  5 � 107 S/m, and its diameter is
1 cm.

Solution:
(a) Following Example 9-3, λ � c � f � �

3 � 108 m/s � � � 106 Hz � � 300 m. As
l � λ � 2 � �

1 m � � � 300 m � � 0  0067, this antenna is a short (Hertzian) monopole.
From Section 9-3.3, the radiation resistance of a monopole is half that for a
corresponding dipole. Thus,

Rrad � 1
280π2 � l

λ
� 2 � 40π2 � 0  0067 � 2 � 17  7 (mΩ) �

Rloss � l
2πa

�
π f µc

σc
� 1 m

π
�
10 � 2 m � π

�
106 Hz � � 4π � 10 � 7 H/m �

3  5 � 107 S/m
� 10  7 mΩ �

ξ � Rrad

Rrad 	 Rloss
� 17  7 mΩ

17  7 mΩ 	 10  7 mΩ
� 62% 

(b) From Example 9-2, a Hertzian dipole has a directivity of 1.5. The gain, from
Eq. (9.29), is G � ξD � 0  62 � 1  5 � 0  93 � � 0  3 dB.

(c) From Eq. (9.30a),

I0 � �
2Prad

Rrad
� �

2
�
80 W �

17  7 mΩ
� 95 A �

and from Eq. (9.31),

Pt � Prad

ξ
� 80 W

0  62
� 129  2 W 

Sections 9-5 and 9-6: Effective Area and Friis Formula

Problem 9.18 Determine the effective area of a half-wave dipole antenna at
100 MHz, and compare it to its physical cross section if the wire diameter is 2 cm.

Solution: At f � 100 MHz, λ � c � f � �
3 � 108 m/s � � � 100 � 106 Hz ��� 3 m. From

Eq. (9.47), a half wave dipole has a directivity of D � 1  64. From Eq. (9.64),
Ae � λ2D � 4π � �

3 m � 2 � 1  64 � 4π � 1  17 m2.
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The physical cross section is: Ap � ld � 1
2λd � 1

2

�
3 m � � 2 � 10 � 2 m � � 0  03 m2.

Hence, Ae � Ap � 39.

Problem 9.19 A 3-GHz line-of-sight microwave communication link consists of
two lossless parabolic dish antennas, each 1 m in diameter. If the receive antenna
requires 10 nW of receive power for good reception and the distance between the
antennas is 40 km, how much power should be transmitted?

Solution: At f � 3 GHz, λ � c � f � �
3 � 108 m/s � � � 3 � 109 Hz ��� 0  10 m. Solving

the Friis transmission formula (Eq. (9.75)) for the transmitted power:

Pt � Prec
λ2R2

ξtξrAtAr

� 10 � 8
�
0  100 m � 2 � 40 � 103 m � 2

1 � 1 � � π
4

�
1 m � 2 � � π

4

�
1 m � 2 � � 25  9 � 10 � 2 W � 259 mW 

Problem 9.20 A half-wave dipole TV broadcast antenna transmits 1 kW at 50 MHz.
What is the power received by a home television antenna with 3-dB gain if located at
a distance of 30 km?

Solution: At f � 50 MHz, λ � c � f � �
3 � 108 m/s � � � 50 � 106 Hz � � 6 m, for which

a half wave dipole, or larger antenna, is very reasonable to construct. Assuming the
TV transmitter to have a vertical half wave dipole, its gain in the direction of the
home would be Gt � 1  64. The home antenna has a gain of Gr � 3 dB � 2. From the
Friis transmission formula (Eq. (9.75)):

Prec � Pt
λ2GrGt�
4π � 2R2

� 103
�
6 m � 2 � 1  64 � 2�

4π � 2 � 30 � 103 m � 2 � 8  3 � 10 � 7 W 
Problem 9.21 A 150-MHz communication link consists of two vertical half-wave
dipole antennas separated by 2 km. The antennas are lossless, the signal occupies a
bandwidth of 3 MHz, the system noise temperature of the receiver is 600 K, and the
desired signal-to-noise ratio is 17 dB. What transmitter power is required?

Solution: From Eq. (9.77), the receiver noise power is

Pn � KTsysB � 1  38 � 10 � 23 � 600 � 3 � 106 � 2  48 � 10 � 14 W 
For a signal to noise ratio Sn � 17 dB � 50, the received power must be at least

Prec � SnPn � 50
�
2  48 � 10 � 14 W ��� 1  24 � 10 � 12 W 
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Since the two antennas are half-wave dipoles, Eq. (9.47) states Dt � Dr � 1  64, and
since the antennas are both lossless, Gt � Dt and Gr � Dr. Since the operating
frequency is f � 150 MHz, λ � c � f � �

3 � 108 m/s � � � 150 � 106 Hz � � 2 m. Solving
the Friis transmission formula (Eq. (9.75)) for the transmitted power:

Pt � Prec

�
4π � 2R2

λ2GrGt
� 1  24 � 10 � 12

�
4π � 2 � 2 � 103 m � 2�
2 m � 2 � 1  64 � � 1  64 � � 75 (µW) 

Problem 9.22 Consider the communication system shown in Fig. 9-37 (P9.22),
with all components properly matched. If Pt � 10 W and f � 6 GHz:

(a) what is the power density at the receiving antenna (assuming proper alignment
of antennas)?

(b) What is the received power?
(c) If Tsys � 1 � 000 K and the receiver bandwidth is 20 MHz, what is the signal to

noise ratio in dB?

Tx

Pt

Gt = 20 dB Gr = 23 dB

Rx

Prec20 km

Figure P9.22: Communication system of Problem 9.22.

Solution:
(a) Gt � 20 dB � 100, Gr � 23 dB � 200, and λ � c � f � 5 cm. From Eq. (9.72),

Sr � Gt
Pt

4πR2 � 102 � 10
4π � �

2 � 104 � 2 � 2 � 10 � 7 (W/m2) 
(b)

Prec � PtGtGr

�
λ

4πR 
 2 � 10 � 100 � 200 � �
5 � 10 � 2

4π � 2 � 104 
 2 � 7  92 � 10 � 9 W 
(c)

Pn � KTsysB � 1  38 � 10 � 23 � 103 � 2 � 107 � 2  76 � 10 � 13 W �
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Sn � Prec

Pn
� 7  92 � 10 � 9

2  76 � 10 � 13 � 2  87 � 104 � 44  6 dB 
Sections 9-7 and 9-8: Radiation by Apertures

Problem 9.23 A uniformly illuminated aperture is of length lx � 20λ. Determine
the beamwidth between first nulls in the x–z plane.

Solution: The radiation intensity of a uniformly illuminated antenna is given by Eq.
(9.90):

F
�
θ ��� sinc2 � πlx sinθ � λ ��� sinc2 � πγ � �

with
γ � lx sinθ � λ 

For lx � 20λ,
γ � 20sin θ 

The first zero of the sinc function occurs when γ � � 1, as shown in Fig. 9-23. Hence,

1 � 20sin θ �
or

θ � sin � 1

�
1

20 
 � 2  87 � �
and

βnull � 2θ � 5  73 � 
Problem 9.24 The 10-dB beamwidth is the beam size between the angles at which
F
�
θ � is 10 dB below its peak value. Determine the 10-dB beamwidth in the x–z plane

for a uniformly illuminated aperture with length lx � 10λ.

Solution: For a uniformly illuminated antenna of length lx � 10λ Eq. (9.90) gives

F
�
θ ��� sinc2 � πlx sinθ � λ ��� sinc2 � 10πsin θ � 

The peak value of F
�
θ � is 1, and the 10-dB level below the peak corresponds to when

F
�
θ � � 0  1 (because 10log 0  1 � � 10 dB). Hence, we set F

�
θ � � 0  1 and solve for θ:

0  1 � sinc2 � 10πsin θ � 
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From tabulated values of the sinc function, it follows that the solution of this equation
is

10πsin θ � 2  319

or
θ � 4  23 � 

Hence, the 10-dB beamwidth is

β � 2θ � 8  46 � 
Problem 9.25 A uniformly illuminated rectangular aperture situated in the x–y
plane is 2 m high (along x) and 1 m wide (along y). If f � 10 GHz, determine

(a) the beamwidths of the radiation pattern in the elevation plane (x–z plane) and
the azimuth plane (y–z plane), and

(b) the antenna directivity D in dB.

Solution: From Eqs. (9.94a), (9.94b), and (9.96),

βxz � 0  88
λ
lx
� 0  88 � 3 � 10 � 2

2
� 1  32 � 10 � 2 rad � 0  75 � �

βyz � 0  88
λ
ly
� 0  88 � 3 � 10 � 2

1
� 2  64 � 10 � 2 rad � 1  51 � �

D � 4π
βxzβyz

� 4π�
1  32 � 10 � 2 � � 2  64 � 10 � 2 � � 3  61 � 104 � 45  6 dB 

Problem 9.26 An antenna with a circular aperture has a circular beam with a
beamwidth of 3 � at 20 GHz.

(a) What is the antenna directivity in dB?
(b) If the antenna area is doubled, what would be the new directivity and new

beamwidth?
(c) If the aperture is kept the same as in (a), but the frequency is doubled to 40

GHz, what would the directivity and beamwidth become then?

Solution:
(a) From Eq. (9.96),

D �
4π
β2 � 4π�

3 � � π � 180 � � 2 � 4  59 � 103 � 36  6 dB 
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(b) If area is doubled, it means the diameter is increased by � 2, and therefore the
beamwidth decreases by � 2 to

β � 3 �� 2
� 2  2 � 

The directivity increases by a factor of 2, or 3 dB, to D � 36  6 	 3 � 39  6 dB.
(c) If f is doubled, λ becomes half as long, which means that the diameter to

wavelength ratio is twice as large. Consequently, the beamwidth is half as wide:

β � 3 �
2
� 1  5 � �

and D is four times as large, or 6 dB greater, D � 36  6 	 6 � 42  6 dB.

Problem 9.27 A 94-GHz automobile collision-avoidance radar uses a rectangular-
aperture antenna placed above the car’s bumper. If the antenna is 1 m in length and
10 cm in height,

(a) what are its elevation and azimuth beamwidths?
(b) what is the horizontal extent of the beam at a distance of 300 m?

Solution:
(a) At 94 GHz, λ � 3 � 108 � � 94 � 109 � � 3  2 mm. The elevation

beamwidth is βe � λ � 0  1 m � 3  2 � 10 � 2 rad � 1  8 � . The azimuth beamwidth is
βa � λ � 1 m � 3  2 � 10 � 3 rad � 0  18 � .

(b) At a distance of 300 m, the horizontal extent of the beam is

∆y � βaR � 3  2 � 10 � 3 � 300 � 0  96 m 
Problem 9.28 A microwave telescope consisting of a very sensitive receiver
connected to a 100-m parabolic-dish antenna is used to measure the energy radiated
by astronomical objects at 20 GHz. If the antenna beam is directed toward the moon
and the moon extends over a planar angle of 0  5 � from Earth, what fraction of the
moon’s cross section will be occupied by the beam?

Solution:

βant � λ
d
� 1  5 � 10 � 2

100
� 1  5 � 10 � 4 rad 

For the moon, βmoon � 0  5 � � π � 180 � � 8  73 � 10 � 3 rad. Fraction of the moon’s
cross section occupied by the beam is�

βant

βmoon

 2 � �

1  5 � 10 � 4

8  73 � 10 � 3 
 2 � 0  3 � 10 � 3 � or 0  03% 



CHAPTER 9 429

0.5°

β

Figure P9.28: Antenna beam viewing the moon.

Sections 9-9 to 9-11: Antenna Arrays

Problem 9.29 A two-element array consisting of two isotropic antennas separated
by a distance d along the z-axis is placed in a coordinate system whose z-axis points
eastward and whose x-axis points toward the zenith. If a0 and a1 are the amplitudes
of the excitations of the antennas at z � 0 and at z � d respectively, and if δ is the
phase of the excitation of the antenna at z � d relative to that of the other antenna,
find the array factor and plot the pattern in the x–z plane for

(a) a0 � a1 � 1, δ � π � 4, and d � λ � 2,
(b) a0 � 1, a1 � 2, δ � 0, and d � λ,
(c) a0 � a1 � 1, δ � � π � 2, and d � λ � 2,
(d) a0 � a1, a1 � 2, δ � π � 4, and d � λ � 2, and
(e) a0 � a1, a1 � 2, δ � π � 2, and d � λ � 4.

Solution:
(a) Employing Eq. (9.110),

Fa
�
θ ��� �����

1

∑
i � 0

aie
jψie jikd cos θ �����

2

� � 1 	 e j � � 2π � λ � � λ � 2 � cos θ � π � 4 � � 2� � 1 	 e j � πcos θ � π � 4 � � 2 � 4cos2 � π
8

�
4cos θ 	 1 � � 

A plot of this array factor pattern is shown in Fig. P9.29(a).
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z

x

θ

Figure P9.29: (a) Array factor in the elevation plane for Problem 9.29(a).

(b) Employing Eq. (9.110),

Fa
�
θ ��� �����

1

∑
i � 0

aie
jψie jikd cos θ �����

2

� � 1 	 2e j � � 2π � λ � λcos θ � 0 � � 2 � � 1 	 2e j2πcos θ � 2 � 5 	 4cos
�
2πcos θ � 

A plot of this array factor pattern is shown in Fig. P9.29(b).
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z

x

θ

Figure P9.29: (b) Array factor in the elevation plane for Problem 9.29(b).

(c) Employing Eq. (9.110), and setting a0 � a1 � 1, ψ � 0, ψ1 � δ � � π � 2 and
d � λ � 2, we have

Fa
�
θ ��� �����

1

∑
i � 0

aie
jψie jikd cos θ �����

2

� ���
1 	 e � jπ � 2e j � 2π � λ � � λ � 2 � cos θ ���

2

� ���
1 	 e j � πcosθ � π � 2 � ���

2

� 4cos2 � π
2

cos θ � π
4
� 

A plot of the array factor is shown in Fig. P9.29(c).



432 CHAPTER 9

Z
θ

x

Figure P9.29: (c) Array factor in the elevation plane for Problem 9.29(c).

(d) Employing Eq. (9.110), and setting a0 � 1, a1 � 2, ψ0 � 0, ψ1 � δ � π � 4,
and d � λ � 2, we have

Fa
�
θ ��� �����

1

∑
i � 0

aie
jψie jikd cos θ �����

2

� ���
1 	 2e jπ � 4e j � 2π � λ � � λ � 2 � cos θ ���

2

� ���
1 	 2e j � πcos θ � π � 4 � ���

2

� 5 	 4cos � πcos θ 	 π
4
� 

A plot of the array factor is shown in Fig. P9.29(d).
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x

Z
θ

Figure P9.29: (d) Array factor in the elevation plane for Problem 9.29(d).

(e) Employing Eq. (9.110), and setting a0 � 1, a1 � 2, ψ0 � 0, ψ1 � δ � π � 2,
and d � λ � 4, we have

Fa
�
θ ��� �����

1

∑
i � 0

aie
jψie jikd cos θ �����

2

� ���
1 	 2e jπ � 2e j � 2π � λ � � λ � 4 � cos θ ���

2

� ���
1 	 2e j � πcos θ � π � � 2 ���

2

� 5 	 4cos � π
2

cosθ 	 π
2
� � 5 � 4sin � π

2
cosθ � 

A plot of the array factor is shown in Fig. P9.29(e).
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x

Z
θ

Figure P9.29: (e) Array factor in the elevation plane for Problem 9.29(e).

Problem 9.30 If the antennas in part (a) of Problem 9.29 are parallel vertical
Hertzian dipoles with axes along the x-direction, determine the normalized radiation
intensity in the x-z plane and plot it.

d

z

x

θ'
θ

Figure P9.30: (a) Two vertical dipoles of Problem 9.30.
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z

x

θ

Figure P9.30: (b) Pattern factor in the elevation plane of the array in Problem 9.30(a).

Solution: The power density radiated by a Hertzian dipole is given from Eq. (9.12)
by Se

�
θ � ��� S0 sin2 θ � , where θ � is the angle measured from the dipole axis, which in

the present case is the x-axis (Fig. P9.30).
Hence, θ � � π � 2 � θ and Se

�
θ � � S0 sin2 � 1

2 π � θ � � S0 cos2 θ. Then, from
Eq. (9.108), the total power density is the product of the element pattern and the
array factor. From part (a) of the previous problem:

S
�
θ ��� Se

�
θ � Fa

�
θ ��� 4S0 cos2 θcos2 � π

8

�
4cos θ 	 1 � � 

This function has a maximum value of 3  52S0 and it occurs at θmax ��� 135  5 � . The
maximum must be found by trial and error. A plot of the normalized array antenna
pattern is shown in Fig. P9.30.
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Problem 9.31 Consider the two-element dipole array of Fig. 9.29(a). If the two
dipoles are excited with identical feeding coefficients (a0 � a1 � 1 and ψ0 � ψ1 � 0),
choose

�
d � λ � such that the array factor has a maximum at θ � 45 � .

Solution: With a0 � a1 � 1 and ψ0 � ψ1 � 0,

Fa
�
θ ��� � 1 	 e j � 2πd � λ � cos θ � 2 � 4cos2

�
πd
λ

cosθ 
 
Fa
�
θ � is a maximum when the argument of the cosine function is zero or a multiple

of π. Hence, for a maximum at θ � 45 � ,
πd
λ

cos45 � � nπ � n � 0 � 1 � 2 �    
The first value of n, namely n � 0, does not provide a useful solution because it
requires d to be zero, which means that the two elements are at the same location.
While this gives a maximum at θ � 45 � , it also gives the same maximum at all
angles θ in the y-z plane because the two-element array will have become a single
element with an azimuthally symmetric pattern. The value n � 1 leads to

d
λ
� 1

cos45 � � 1  414 
Problem 9.32 Choose

�
d � λ � so that the array pattern of the array of Problem 9.31

has a null, rather than a maximum, at θ � 45 � .
Solution: With a0 � a1 � 1 and ψ0 � ψ1 � 0,

Fa
�
θ ��� � 1 	 e j � 2πd � λ � cos θ � 2 � 4cos2

�
πd
λ

cosθ 
 
Fa
�
θ � is equal to zero when the argument of the cosine function is � � π � 2 � 	 nπ � .

Hence, for a null at θ � 45 � ,
πd
λ

cos45 � � π
2 	 nπ � n � 0 � 1 � 2 �    

For n � 0,

d
λ
� 1

2cos 45 � � 0  707 
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Problem 9.33 Find and plot the normalized array factor and determine the half-
power beamwidth for a five-element linear array excited with equal phase and a
uniform amplitude distribution. The interelement spacing is 3λ � 4.

Solution: Using Eq. (9.121),

Fan
�
θ ��� sin2 � � Nπd � λ � cos θ �

N2 sin2 � � πd � λ � cos θ � � sin2 � � 15π � 4 � cos θ �
25sin2 � � 3π � 4 � cos θ �

and this pattern is shown in Fig. P9.33. The peak values of the pattern occur at
θ � � 90 � . From numerical values of the pattern, the angles at which Fan

�
θ � � 0  5

are approximately 6.75 � on either side of the peaks. Hence, β � 13  5 � .

z

x

θ

Figure P9.33: Normalized array pattern of a 5-element array with uniform amplitude
distribution in Problem 9.33.

Problem 9.34 A three-element linear array of isotropic sources aligned along the z-
axis has an interelement spacing of λ � 4 Fig. 9-38 (P9.34). The amplitude excitation
of the center element is twice that of the bottom and top elements and the phases
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are � π � 2 for the bottom element and π � 2 for the top element, relative to that of the
center element. Determine the array factor and plot it in the elevation plane.

1 -π/2

λ/4

λ/4

z

2 0

1 π/2

Figure P9.34: (a) Three-element array of Problem 9.34.

Solution: From Eq. (9.110),

Fa
�
θ ��� �����

2

∑
i � 0

aie
jψi e jikd cos θ �����

2

� ��
a0e jψ0 	 a1e jψ1e jkd cos θ 	 a2e jψ2 e j2kd cos θ

��
2

� ���
e j � ψ1 � π � 2 � 	 2e jψ1e j � 2π � λ � � λ � 4 � cos θ 	 e j � ψ1 � π � 2 � e j2 � 2π � λ � � λ � 4 � cos θ ���

2

� ���
e jψ1e j � π � 2 � cos θ ���

2

���
e � jπ � 2e � j � π � 2 � cos θ 	 2 	 e jπ � 2e j � π � 2 � cos θ ���

2

� 4
�
1 	 cos

� 1
2π
�
1 	 cosθ � � � 2 �

Fan
�
θ ��� 1

4

�
1 	 cos

� 1
2π
�
1 	 cosθ � � � 2 

This normalized array factor is shown in Fig. P9.34.
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z

x

θ

Figure P9.34: (b) Normalized array pattern of the 3-element array of Problem 9.34.

Problem 9.35 An eight-element linear array with λ � 2 spacing is excited with equal
amplitudes. To steer the main beam to a direction 60 � below the broadside direction,
what should be the incremental phase delay between adjacent elements? Also, give
the expression for the array factor and plot the pattern.

Solution: Since broadside corresponds to θ � 90 � , 60 � below broadside is
θ0 � 150 � . From Eq. (9.125),

δ � kd cosθ0 � 2π
λ

λ
2

cos150 � � � 2  72
�
rad ��� � 155  9 � 

Combining Eq. (9.126) with (9.127) gives

Fan
�
θ ��� sin2 � 1

2Nkd
�
cosθ � cosθ0 � �

N2 sin2 � 1
2kd

�
cos θ � cosθ0 � � � sin2 � 4π

�
cos θ 	 1

2 � 3 � �
64sin2 � 1

2π
�
cos θ 	 1

2 � 3 ��� 
The pattern is shown in Fig. P9.35.
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z

x

θ

Figure P9.35: Pattern of the array of Problem 9.35.

Problem 9.36 A linear array arranged along the z-axis consists of 12 equally spaced
elements with d � λ � 2. Choose an appropriate incremental phase delay δ so as to
steer the main beam to a direction 30 � above the broadside direction. Provide an
expression for the array factor of the steered antenna and plot the pattern. From the
pattern, estimate the beamwidth.

Solution: Since broadside corresponds to θ � 90 � , 30 � above broadside is θ0 � 60 � .
From Eq. (9.125),

δ � kd cos θ0 � 2π
λ

λ
2

cos60 � � 1  57
�
rad ��� 90 � 

Combining Eq. (9.126) with (9.127) gives

Fan
�
θ ��� sin2 � 1

212kd
�
cos θ � cosθ0 � �

144sin2 � 1
2kd

�
cos θ � cosθ0 � � � sin2 � 6π

�
cos θ � 0  5 ���

144sin2 � π
2

�
cos θ � 0  5 � � 
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z

x

θ

Figure P9.36: Array pattern of Problem 9.36.

The pattern is shown in Fig. P9.36. The beamwidth is � 10 � .
Problem 9.37 A 50-cm long dipole is excited by a sinusoidally varying current
with an amplitude I0 � 5 A. Determine the time average power radiated by the dipole
if the oscillating frequency is:

(a) 1 MHz,
(b) 300 MHz.

Solution:
(a) At 1 MHz,

λ � 3 � 108

106 � 300 m 
Hence, the dipole length satisfies the “short” dipole criterion (l

� λ � 50).
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Using (9.34),

Prad � 40π2I2
0

�
l
λ 
 2

� 40π2 � 52 � �
0  5
300 
 2 � 27  4 mW 

(b) At 300 MHz,

λ � 3 � 108

3 � 108 � 1 m 
Hence, the dipole is λ � 2 in length, in which case we can use (9.46) to calculate Prad:

Prad � 36  6I2
0 � 36  6 � 52 � 915 W 

Thus, at the higher frequency, the antenna radiates � 915 � 27  3 � 10 � 3 ��� � 33 � 516  5
times as much power as it does at the lower frequency!

Problem 9.38 The configuration shown in the figure depicts two vertically oriented
half-wave dipole antennas pointed towards each other, with both positioned on 100-
m-tall towers separated by a distance of 5 km. If the transit antenna is driven by a
50-MHz current with amplitude I0 � 2 A, determine:

(a) The power received by the receive antenna in the absence of the surface.
(Assume both antennas to be lossless.)

(b) The power received by the receive antenna after incorporating reflection by
the ground surface, assuming the surface to be flat and to have εr � 9 and
conductivity σ � 10 � 3 (S/m).

5 Km

θi

Direct

Reflectedh = 100 m 100 m

Solution:
(a) Since both antennas are lossless,

Prec � Pint � SiAer
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where Si is the incident power density and Aer is the effective area of the receive
dipole. From Section 9-3,

Si � S0 � 15I2
0

πR2 �
and from (9.64) and (9.47),

Aer � λ2D
4π

� λ2

4π
� 1  64 � 1  64λ2

4π


Hence,

Prec � 15I2
0

πR2 � 1  64λ2

4π
� 3  6 � 10 � 6 W 

(b) The electric field of the signal intercepted by the receive antenna now consists
of a direct component, Ed, due to the directly transmitted signal, and a reflected
component, Er, due to the ground reflection. Since the power density S and the
electric field E are related by

S � �E � 2
2η0

�
it follows that

Ed � � 2η0Si e � jkR

� 2η0 � 15I2
0

πR2 e � jkR

� �
30η0

π
I0

R
e � jkR

where the phase of the signal is measured with respect to the location of the transmit
antenna, and k � 2π � λ. Hence,

Ed � 0  024e � j120 � (V/m) 
The electric field of the reflected signal is similar in form except for the fact that
R should be replaced with R � , where R � is the path length traveled by the reflected
signal, and the electric field is modified by the reflection coefficient Γ. Thus,

Er � � �
30η0

π
I0

R �
e � jkR � � Γ 

From the problem geometry

R � � 2 � �
2  5 � 103 � 2 	 �

100 � 2 � 5004  0 m 
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Since the dipole is vertically oriented, the electric field is parallel polarized. To
calculate Γ, we first determine

ε � �
ε �

� σ
ωε0εr

� 10 � 3

2π � 50 � 106 � 8  85 � 10 � 12 � 9
� 0  04 

From Table 7-1,

ηc � η � �
µ
ε
� η0� εr

� η0� 9
� η0

3


From (8.66a),

Γ � � η2 cosθt � η1 cos θi

η2 cosθt 	 η1 cos θi

From the geometry,

cosθi � h�
R � � 2 � � 100

2502
� 0  04

θi � 87  71 �
θt � sin � 1

�
sin θi� εr


 � 19  46 �
η1 � η0 (air)

η2 � η � η0

3


Hence,

Γ � � �
η0 � 3 ��� 0  94 � η0 � 0  04�
η0 � 3 ��� 0  94 	 η0 � 0  04

� 0  77 
The reflected electric field is

Er � � �
30η0

π
I0

R �
e � jkR � � Γ

� 0  018e j0 � 6 � (V/m) 
The total electric field is

E � Ed 	 Er� 0  024e � j120 � 	 0  018e j0 � 6 �

� 0  02e � j73 � 3 � (V/m) 
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The received power is

Prec � SiAer

� �E � 2
2η0

� 1  64λ2

4π� 2  5 � 10 � 6 W 
Problem 9.39

d

The figure depicts a half-wave dipole connected to a generator through a matched
transmission line. The directivity of the dipole can be modified by placing a reflecting
rod a distance d behind the dipole. What would its reflectivity in the forward direction
be if:

(a) d � λ � 4,
(b) d � λ � 2.

Solution: Without the reflecting rod, the directivity of a half-wave dipole is 1.64
(see 9.47). When the rod is present, the wave moving in the direction of the arrow
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consists of two electric field components:

E � E1 	 E2 �
E1

E2

where E1 is the field of the radiated wave moving to the right and E2 is the field that
initally moved to the left and then got reflected by the rod. The two are essentially
equal in magnitude, but E2 lags in phase by 2kd relative to E1, and also by π because
the reflection coefficient of the metal rod is � 1. Hence, we can write E at any point
to the right of the antenna as

E � E1 	 E1e jπe � j2kd

� E1
�
1 	 e � j � 2kd � π � �

(a) For d � λ � 4, 2kd � 2 � 2π
λ � λ

4 � π.

E � E1
�
1 	 e � j � π � π � ��� 2E1 

The directivity is proportional to power, or �E � 2. Hence, D will increase by a factor
of 4 to

D � 1  64 � 4 � 6  56 
(b) For d � λ � 2, 2kd � 2π.

E � E1
�
1 � 1 ��� 0 

Thus, the antenna radiation pattern will have a null in the forward direction.
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Problem 9.40 A five-element equally spaced linear array with d � λ � 2 is excited
with uniform phase and an amplitude distribution given by the binomial distribution

ai � �
N � 1 � !

i!
�
N � i � 1 � ! � i � 0 � 1 �    � N � 1

where N is the number of elements. Develop an expression for the array factor.

Solution: Using the given formula,

a0 � �
5 � 1 � !
0!4!

� 1
�
note that 0! � 1 �

a1 � 4!
1!3!

� 4

a2 � 4!
2!2!

� 6

a3 � 4!
3!1!

� 4

a4 � 4!
0!4!

� 1

Application of (9.113) leads to:

Fa
�
γ ��� �����

N � 1

∑
i � 0

aie
jiγ �����

2 � γ � 2πd
λ

cosθ

� ��
1 	 4e jγ 	 6e j2γ 	 4e j3γ 	 e j4γ

��
2

� ��
e j2γ � e � j2γ 	 4e � jγ 	 6 	 4e jγ 	 e j2γ � ��

2

� �
6 	 8cos γ 	 2cos2γ � 2 

With d � λ � 2, γ � 2π
λ � λ

2 cosθ � πcosθ,

Fa
�
θ ��� � 6 	 8cos

�
πcos θ � 	 2cos

�
2πcos θ ��� 2 
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Chapter 10

Sections 10-1 to 10-4: Satellite Communication Systems

Problem 10.1 A remote sensing satellite is in circular orbit around the earth at an
altitude of 1,100 km above the earth’s surface. What is its orbital period?

Solution: The orbit’s radius is R0 � Re 	 h � 6 � 378 	 1 � 100 � 7478 km. Rewriting
Eq. (10.6) for T :

T � �
4π2R3

0

GMe 
 1 � 2 � � 4π2 � �
7  478 � 106 � 3

6  67 � 10 � 11 � 5  98 � 1024 � 1 � 2
� 4978  45 s � 82  97 minutes.

Problem 10.2 A transponder with a bandwidth of 400 MHz uses polarization
diversity. If the bandwidth allocated to transmit a single telephone channel is 4 kHz,
how many telephone channels can be carried by the transponder?

Solution: Number of telephone channels � 2 � 400 MHz
4 kHz

� 2 � 4 � 108

4 � 103 � 2 � 105

channels.

Problem 10.3 Repeat Problem 10.2 for TV channels, each requiring a bandwidth
of 6 MHz.

Solution: Number of telephone channels � 2 � 4 � 108

6 � 106 � 133  3 � 133 channels.

We need to round down becasue we cannot have a partial channel.

Problem 10.4 A geostationary satellite is at a distance of 40,000 km from a ground
receiving station. The satellite transmitting antenna is a circular aperture with a
1-m diameter and the ground station uses a parabolic dish antenna with an effective
diameter of 20 cm. If the satellite transmits 1 kW of power at 12 GHz and the ground
receiver is characterized by a system noise temperature of 1,000 K, what would be
the signal-to-noise ratio of a received TV signal with a bandwidth of 6 MHz? The
antennas and the atmosphere may be assumed lossless.

Solution: We are given

R � 4 � 107 m � dt � 1 m � dr � 0  2 m � Pt � 103 W �
f � 12 GHz � Tsys � 1 � 000 K � B � 6 MHz 
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At f � 12 GHz, λ � c � f � 3 � 108 � 12 � 109 � 2  5 � 10 � 2 m. With ξt � ξr � 1,

Gt � Dt � 4πAt

λ2 � 4π
�
πd2

t � 4 �
λ2 � 4π � π � 1

4 � �
2  5 � 10 � 2 � 2 � 15 � 791  37 �

Gr � Dr � 4πAr

λ2 � 4π
�
πd2

r � 4 �
λ2 � 4π � π

�
0  2 � 2

4 � �
2  5 � 10 � 2 � 2 � 631  65 

Applying Eq. (10.11) with ϒ
�
θ ��� 1 gives:

Sn � PtGtGr

KTsysB

�
λ

4πR 
 2 � 103 � 15 � 791  37 � 631  65
1  38 � 10 � 23 � 103 � 6 � 106

�
2  5 � 10 � 2

4π � 4 � 107 
 2 � 298 
Sections 10-5 to 10-8: Radar Sensors

Problem 10.5 A collision avoidance automotive radar is designed to detect the
presence of vehicles up to a range of 0.5 km. What is the maximum usable PRF?

Solution: From Eq. (10.14),

fp � c
2Ru

� 3 � 108

2 � 0  5 � 103 � 3 � 105 Hz 
Problem 10.6 A 10-GHz weather radar uses a 15-cm-diameter lossless antenna. At
a distance of 1 km, what are the dimensions of the volume resolvable by the radar if
the pulse length is 1 µs?

Solution: Resolvable volume has dimensions ∆x � ∆y, and ∆R.

∆x � ∆y � βR � λ
d

R � 3 � 10 � 2

0  15
� 103 � 200 m �

∆R � cτ
2
� 3 � 108

2
� 10 � 6 � 150 m 

Problem 10.7 A radar system is characterized by the following parameters:
Pt � 1 kW, τ � 0  1 µs, G � 30 dB, λ � 3 cm, and Tsys � 1 � 500 K. The radar
cross section of a car is typically 5 m2. How far can the car be and remain detectable
by the radar with a minimum signal-to-noise ratio of 13 dB?
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Solution: Smin � 13 dB means Smin � 20. G � 30 dB means G � 1000. Hence, by
Eq. (10.27),

Rmax � � PtτG2λ2σt�
4π � 3KTsysSmin

� 1 � 4
� � 103 � 10 � 7 � 106 � �

3 � 10 � 2 � 2 � 5�
4π � 3 � 1  38 � 10 � 23 � 1  5 � 103 � 20 � 1 � 4 � 4837  8 m � 4  84 km 

Problem 10.8 A 3-cm-wavelength radar is located at the origin of an x–y coordinate
system. A car located at x � 100 m and y � 200 m is heading east (x-direction) at a
speed of 120 km/hr. What is the Doppler frequency measured by the radar?

θ

θ

u = 120 km/hr200 m

100 m
x

y

Figure P10.8: Geometry of Problem 10.8.

Solution:

θ � tan � 1

�
200
100 
 � 63  43 � �

u � 120 km/hr � 1  2 � 105

3600
� 33  33 m/s �

fd � � 2u
λ

cosθ � � 2 � 33  33
3 � 10 � 2 cos 63  43 � � � 993  88 Hz 


