Chapter 1: Introduction: Waves and Phasors

Lesson #1

Chapter — Section: Chapter 1
Topics: EM history and how it relates to other fields

Highlights:

EM in Classical era: 1000 BC to 1900

Examples of Modern Era Technology timelines
Concept of “fields” (gravitational, electric, magnetic)

Static vs. dynamic fields
The EM Spectrum

Special Illustrations:
e Timelines from CD-ROM

Timeline for Electromagnetics in the Classical Era

ca. 900 Legend has it that while walking 1752
BC across a field in northern Greece, a

shepherd named Magnus experiences

a pull on the iron nails in his sandals

by the black rock he was standing on.

The region was later named Magnesia

and the rock became known as 1785

magnetite [a form of iron with

permanent magnetism].

ca. 600  Greek philosopher Thales
BC describes how amber,
after being rubbed
with cat fur, can pick
up feathers [static
electricity].

1800

1820

ca. 1000 Magnetic compass used as
a navigational device.

Benjamin Franklin
(American) invents the [
lightning rod and
demonstrates that i
lightning is electricity.

Charles-Augustin de
Coulomb (French) demonstrates that
the electrical force between charges is
proportional to the inverse of the
square of the distance between them.

Alessandro Volta
(Italian) develops the
first electric battery.

Hans Christian Oersted
(Danish) demonstrates the
interconnection between
electricity and magnetism
through his discovery that an electric
current in a wire causes a compass
needle to orient itself perpendicular to
the wire.




Lessons #2 and 3
Chapter — Sections: 1-1to 1-6

Topics: Waves

Highlights:

e Wave properties
e Complex numbers
e Phasors

Special Illustrations:

e C(CD-ROM Modules 1.1-1.9
e CD-ROM Demos 1.1-1.3

Module 1.6: Red Wave in a Lossy Medium
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Q1. What is the wave amplitude?
A: V l’_’check answer'fl l’_'lgi\re U|::n‘_1
Q2. What is the wave frequency? [Use the digital clock to estimate it]
f: HZ I'_'check answer\_l I'_'Igi\re up‘.'l

Q3. What 1s the wavelength?
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Chapter 1

Section 1-3: Traveling Waves

Problem 1.1 A 2-kHz sound wave traveling in the x-direction in air was observed to
have a differential pressure p(x,t) = 10 N/m? at x = 0 and t = 50 ps. If the reference
phase of p(x,t) is 36°, find a complete expression for p(x,t). The velocity of sound
in air is 330 mf/s.

Solution: The general form is given by Eq. (1.17),

2t 21X
t) =Acos [ - — 22
p(x) = Acos (5 -2 ).
where it is given that @y = 36°. From Eq. (1.26), T = 1/f = 1/(2 x 10%) = 0.5 ms.
From Eq. (1.27),

u 330
A=-P=_"_-0.165m.
f = 2x103 m
Also, since
2Tt 50 x 10~6 Ttrad
_ _ _ 2y _ o
p(x=0, t =50 ps) =10 (N/m )_Acos( 5% 103 +36 180°>

= Acos(1.26 rad) = 0.31A,

it follows that A = 10/0.31 = 32.36 N/m?2. So, with t in (s) and x in (m),

t
p(x,t) = 32.36c0s (21 10° 5 — 2mix 103% +36°)  (Nim?)

— 32.36c0s(41x 10% — 12.12mx + 36°)  (N/m?).

Problem 1.2  For the pressure wave described in Example 1-1, plot

(@) p(x,t) versusxatt =0,

(b) p(x,t) versustatx =0.
Be sure to use appropriate scales for x and t so that each of your plots covers at least
two cycles.

Solution: Refer to Fig. P1.2(a) and Fig. P1.2(b).
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Figure P1.2: (a) Pressure wave as a function of distance at t = 0 and (b) pressure
wave as a function of time at x = 0.

Problem 1.3 A harmonic wave traveling along a string is generated by an oscillator
that completes 180 vibrations per minute. If it is observed that a given crest, or
maximum, travels 300 cm in 10 s, what is the wavelength?

Solution:
180
f= w0 - 3 Hz.
300 cm
Up=—"05 = 0.3 m/s.
)\:u—fzoé—szo.lm:lOcm.

Problem 1.4 Two waves, y1(t) and y,(t), have identical amplitudes and oscillate at
the same frequency, but y»(t) leads y;(t) by a phase angle of 60°. If

y1(t) = 4cos(2mx 10%),

write down the expression appropriate for y»(t) and plot both functions over the time
span from O to 2 ms.

Solution:
y2(t) = 4cos(2mx 10% + 60°).
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Figure P1.4: Plots of y4(t) and yx(t).

Problem 1.5 The height of an ocean wave is described by the function
y(x,t) = 1.5sin(0.5t — 0.6x)  (m).

Determine the phase velocity and the wavelength and then sketch y(x,t) att =25
over the range from x =0 to x = 2A.

Solution: The given wave may be rewritten as a cosine function:
y(x,t) = 1.5c0s(0.5t — 0.6x — 11/2).
By comparison of this wave with Eq. (1.32),
y(x,t) = Acos(wt — BX+ @),
we deduce that

w = 2rnf = 0.5 rad/s, B= ZTT[ = 0.6 rad/m,

w 05 2m 2n
up_E_ﬁ_O.BSm/s, )\_F_ﬁ_lo'ﬂm'
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Figure P1.5: Plot of y(x,2) versus X.

Att =25, y(x,2) = 1.5sin(1 — 0.6x) (m), with the argument of the cosine function
given in radians. Plot is shown in Fig. P1.5.

Problem 1.6 A wave traveling along a string in the +x-direction is given by
y1(X,t) = Acos(wt — Bx),

where x = 0 is the end of the string, which is tied rigidly to a wall, as shown in
Fig. 1-21 (P1.6). When wave y1(x,t) arrives at the wall, a reflected wave y,(x,t) is
generated. Hence, at any location on the string, the vertical displacement ys will be
the sum of the incident and reflected waves:

yS(Xat) = yl(Xat) + yZ(Xat)'

(@) Write down an expression for y»(x,t), keeping in mind its direction of travel
and the fact that the end of the string cannot move.

(b) Generate plots of yi(x,t), ya2(x,t) and ys(x,t) versus x over the range
—2A <x<0atwt=T1/4and at wt = 11/2.

Solution:
(a) Since wave y»(x,t) was caused by wave y1(x,t), the two waves must have the
same angular frequency w, and since y,(x,t) is traveling on the same string as y1 (X, t),
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Incident Wave
——

x=0

Figure P1.6: Wave on a string tied to a wall at x = 0 (Problem 1.6).

the two waves must have the same phase constant 3. Hence, with its direction being
in the negative x-direction, y,(x,t) is given by the general form

ya(x,t) = Beos(wt + Bx+ o), @)
where B and @y are yet-to-be-determined constants. The total displacement is
Ys(X,t) = y1(%,t) +y2(x,t) = Acos(wt — Bx) + Bcos(wt + BXx + @p)-

Since the string cannot move at x = 0, the point at which it is attached to the wall,
ys(0,t) = 0 for all t. Thus,

ys(0,t) = Acoswt + B cos(wt + @g) = 0. )

(i) Easy Solution: The physics of the problem suggests that a possible solution for
(2) isB=—Aand @y = 0, in which case we have

y2(x,t) = —Acos(wt + Bx). 3)
(ii) Rigorous Solution: By expanding the second term in (2), we have
Acos wt + B(cos wt cos @ — sin wt sin @) = 0,
or
(A+ Bcosqy) cosuwt — (Bsingp) sinwt = 0. 4)
This equation has to be satisfied for all values of t. Att =0, it gives

A+Bcosq =0, 5)
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and at wt = 11/2, (4) gives
Bsingy =0. 6)
Equations (5) and (6) can be satisfied simultaneously only if
A=B=0 @)
or
A=—-B and @=0. ()]

Clearly (7) is not an acceptable solution because it means that y;(x,t) = 0, which is
contrary to the statement of the problem. The solution given by (8) leads to (3).
(b) At wt = T11/4,

y1(x,t) = Acos(11/4 — Bx) = Acos (g— ZTT[X> ,

y2(x,t) = —Acos(wt + Bx) = —Acos (ng ZTT‘X> ]

Plots of yy, Yo, and y3 are shown in Fig. P1.6(b).

, (et X) $ 15A

wt=174

Figure P1.6: (b) Plots of y1, y2, and ys versus x at wt = 11/4.
Atwt =T11/2,

y1(x,t) = Acos(1/2 — Bx) = AsinBx = Asin ZTTD( ,
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y2(x,t) = —Acos(1/2 4 Bx) = AsinBx = Asin ZTTIX .

Plots of y;, Yo, and y3 are shown in Fig. P1.6(c).
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Figure P1.6: (c) Plots of y1, y2, and ys versus x at wt = 11/2.

Problem 1.7 Two waves on a string are given by the following functions:

y1(x,t) = 4cos(20t — 30x) (cm),
y2(x,t) = —4cos(20t + 30x) (cm),

where X is in centimeters. The waves are said to interfere constructively when their
superposition |ys| = |y1+Y2| is a maximum and they interfere destructively when |ys|
IS a minimum.

(@) What are the directions of propagation of waves y1(x,t) and y2(x,t)?

(b) Att = (11/50) s, at what location x do the two waves interfere constructively,

and what is the corresponding value of |ys|?
(c) Att = (1/50) s, at what location x do the two waves interfere destructively,

and what is the corresponding value of |ys|?

Solution:
(@) ya(x,t) is traveling in positive x-direction. y»(x,t) is traveling in negative
x-direction.
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(b) Att = (11/50) s, ys = Y1+ Y2 = 4[cos(0.411— 30x) — cos(0.411+ 3x)]. Using the
formulas from Appendix C,
2sinxsiny = cos(x —y) — (cosx+Y),
we have
ys = 8sin(0.411) sin 30x = 7.61sin 30X.

Hence,

and it occurs when sin30x = 1, or 30x = g+ 2NTL Or X = (6% + 23%1) cm, where
n=0,1,2,....

. nTt
(€) |yslmin=0and it occurs when 30x = nTt, or x = 0 cm.

Problem 1.8 Give expressions for y(x,t) for a sinusoidal wave traveling along a
string in the negative x-direction, given that yna = 40 cm, A =30 cm, f = 10 Hz,
and

(@) y(x,0) =0atx=0,

(b) y(x,0) =0atx=7.5cm.

Solution: For a wave traveling in the negative x-direction, we use Eq. (1.17) with
w = 2mtf = 201 (rad/s), B = 21/ = 21/0.3 = 2011/3 (rad/s), A = 40 cm, and X
assigned a positive sign:

y(x,t) = 40cos (20T[t + %TX—F q)o) (cm),

with x in meters.
(@) y(0,0) =0=40cosqy. Hence, @y = +11/2, and

y(x,t) = 40cos (20T[[ + ?xi g)
_ [ —40sin (201t + Ay) (cm),  if o =T1/2,
40sin (201t + ") (cm),  if o = —T/2.

(b) Atx=7.5cm=7.5x10"2m, y=0=40c0s(T//2+ @). Hence, g =0or 1,
and

(x1) = 40cos (201t + 2™x) (cm), if o =0,
YU =1 —40cos (20t + &) (cm), if@=TU
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Problem 1.9 An oscillator that generates a sinusoidal wave on a string completes
20 vibrations in 50 s. The wave peak is observed to travel a distance of 2.8 m along
the string in 50 s. What is the wavelength?

Solution:

50 2.8
T:%:ZSS, up:?:0.56m/s,

A=uUpT =0.56x25=14m.

Problem 1.10 The vertical displacement of a string is given by the harmonic

function:
y(x,t) = 6cos(16mt — 20TX) (M),

where X is the horizontal distance along the string in meters. Suppose a tiny particle
were to be attached to the string at x = 5 ¢cm, obtain an expression for the vertical
velocity of the particle as a function of time.

Solution:
y(x,t) = 6cos(161t — 20T%x)  (m).

dy(xt)
dt  |io0s
= 9671sin (16Tt — 20TX) | x=0.05

= 96Ttsin (167t — )
= —967tsin(167t)  (M/s).

u(0.05,t) =

Problem 1.11 Given two waves characterized by
y1(t) = 3cosui,
y2(t) = 3sin(wt + 36°),
does y,(t) lead or lag y1(t), and by what phase angle?
Solution: We need to express y,(t) in terms of a cosine function:
y2(t) = 3sin(wt + 36°)
= 3c0s (g— wt— 36°) = 3c0s(54° — wt) = 3cos(wt —54°).
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Hence, y»(t) lags y1(t) by 54°.

Problem 1.12 The voltage of an electromagnetic wave traveling on a transmission
line is given by v(z,t) = 5e~%sin(41tx 10°% — 201w) (V), where z is the distance in
meters from the generator.

(a) Find the frequency, wavelength, and phase velocity of the wave.

(b) Atz =2 m, the amplitude of the wave was measured to be 1 V. Find a.

Solution:

(a) This equation is similar to that of Eq. (1.28) with w = 41t x 10° rad/s and
B = 20mrad/m. From Eq. (1.293), f = w/2m = 2 x 10° Hz = 2 GHz; from
Eqg. (1.29b), A = 21t/ = 0.1 m. From Eq. (1.30),

Up = w/B=2x 10% ms.

(b) Using just the amplitude of the wave,

-1 1
1="5e ", o= 2m|n(5) 0.81 Np/m.

Problem 1.13 A certain electromagnetic wave traveling in sea water was observed
to have an amplitude of 98.02 (V/m) at a depth of 10 m and an amplitude of 81.87
(V/m) at a depth of 100 m. What is the attenuation constant of sea water?

Solution: The amplitude has the form Ae®?. Atz =10 m,

Ae19 —098.02
and at z= 100 m,
Ae—1%00 — g1 87
The ratio gives
—10a
e _ 98.02 _ 120
e—100a 8187
or
g 100 — 1 D100

Taking the natural log of both sides gives
In(e~10%) = In(1.2¢100%),
—10a = In(1.2) — 100aq,
90a =1In(1.2) =0.18.

Hence, 0.18
= —. = -3 .
a= %0 2x10 (Np/m)
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Section 1-5: Complex Numbers

Problem 1.14 Evaluate each of the following complex numbers and express the
result in rectangular form:

(a) zp = 4el3,

(b) 2o =V/3ePV4,

(©) z3=6e" 12,

d) za=j3,
() z5=j%
(f z6=(1—]))3

@ z7=(1-})"2
Solution: (Note: In the following solutions, numbers are expressed to only two
decimal places, but the final answers are found using a calculator with 10 decimal
places.) _
(a) z1=4el™3 =4(cosT/3+ jsinT/3) = 2.0+ j3.46.
(b)
7, =/3el¥4 = /3 [cos (37") + jsin (37")] = —1.22+ j1.22 = 1.22(—1+j).
(c) z3=6e~ 12 =6[cos(—T/2) + jsin(—11/2)] = — j6.
(d) za=j=j-j?=—jor

€ z5=j4=(elV2) A= 12T=1,

(f)
6= (1— )3 = (V243 = (v/2)3 i34
= (v/2)%[cos(3m/4) — jsin(31/4)]
=—2-j2=-2(1+]).
(9)

77=(1—j)¥2 = (V2e IV4H1/2 = £21/4 =18 — 11.19(0.92 — j0.38)
= +(1.10 — j0.45).

Problem 1.15 Complex numbers z1 and z, are given by

21:3_ 127
Ip = —4-|-j3.



14 CHAPTER 1

(a) Express z1 and z, in polar form.

(b) Find |z1| by applying Eq. (1.41) and again by applying Eq. (1.43).
(c) Determine the product z1z, in polar form.

(d) Determine the ratio z;/z, in polar form.

(e) Determine z:f in polar form.

Solution:
(a) Using Eq. (1.41),

721 =3— j2=3.6e71%87

Zp= —4+ j3=5ei14317
(b) By Eq. (1.41) and Eq. (1.43), respectively,

|z1) = |3 j2| = /324 (-2)2 = V13 = 3.60,
21| = /(83— j2)(3+ j2) = V13 = 3.60.

(c) By applying Eq. (1.47b) to the results of part (),
217, = 3607187  5eil431° _ 18010947
(d) By applying Eq. (1.48b) to the results of part (a),

- 0
71 3.6e713%7

. o
Zp  5eis3l’ = 0.72¢7110%.
2 Geils

(e) By applying Eq. (1.49) to the results of part (a),

. 0 3 . 0 . o)
23 = (3.6e71%7 )" = (3.6)% 15T = 46.66e 11011

Problem 1.16 If z= —2+ j4, determine the following quantities in polar form:
(@) 1/z,
(b) 2,
() |z,
(d) Im{z},
(e) Im{z*}.

Solution: (Note: In the following solutions, numbers are expressed to only two
decimal places, but the final answers are found using a calculator with 10 decimal
places.)
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(@)
1 — —
z —2+j4

(b) 22 = (—2+ j4)3 = (4.47e/1186°)3 = (4.47)3e13500" — 89 .44~ 117

©)|z?=2z-7* = (=2 + j4) (=2 — j4) = 4+ 16 = 20.

(d) Im{z} =Im{—2+ j4} =4.

(e) Im{z*} = Im{—2— j4} = —4 = 4el™.

(—2+ j4) 1= (4.47eI1166 )1 — (4 47) 1 11168 — g pp g i1166°

Problem 1.17 Find complex numberst = z1 4z, and s = z1 — 25, both in polar form,
for each of the following pairs:

(@) z1=24]j3, zo=1-j3,

(b) z1=3, =3,

(c) 29 =3430, 2o =330,

(d) 23 =3/30°, 7z, = 3/=150°,

Solution:
@)
t=21+22=(2+]j3)+(1-j3) =3,
s=21-2,=(2+]3) = (1- j3) =1+ j6 = 6.08¢/%°".
(b)
t=2+2=3-j3=4.24¢ 1%
s=171—2=3+ j3=4.24e}%",
(©)

t =2y +2p = 3/30° 4 3/=30°
—=3e/3 1 3730 — (2.6 + j1.5) + (2.6 — j1.5) =5.2,
s=17—12, =3e13 —3e71%" = (2.6+ j1.5) — (2.6 — j1.5) = j3 = 3%,

(d)

t=1214+2p =30 43410 = (2.6+ j1.5)+ (—2.6 — j1.5) =0,
S=271—2p = (2.64 j1.5) — (—2.6 — j1.5) = 5.2+ j3 = 6/,

Problem 1.18 Complex numbers z1 and z, are given by
7y =5/=680°,
2y =2/%5.
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(a) Determine the product z;z, in polar form.
(b) Determine the product z1z5 in polar form.
(c) Determine the ratio z;/z; in polar form.
(d) Determine the ratio z; /z5 in polar form.
(e) Determine /zy in polar form.

Solution: . . .
(@) z12p =5e7 160" x 245" = 10e~ 115",

. .0 .0 . 0

(b) 2123 =5e 180" x 2e 1% =10 1155,

fj600 ) o
© 22 " _j5ins
o 2ei
@ 2= (Z—l) = 2.5/105",

(€) Zi= V5e-i60 — +,/5e~i30",

Problem 1.19 If z=3— j5, find the value of In(z).

Solution:

-5
lz| = +v/324+52=583, B=tan"? <?> = —99°,

7= z7lel® = 5.83¢ 1%,
In(z) = In(5.83e~1%")
— In(5.83) + In(e~15%")

Coo .59°T
=1.76 — j59 _1.76—11800

= 1.76 — j1.03.

Problem 1.20 If z =3 — j4, find the value of eZ.

Solution:
e =e3 14 =ed.e7 14 = e3(cos4 — jsin4),

e3=20.09, and 4rad= %x 180° = 229.18°.

Hence, e* = 20.08(c0s 229.18° — jsin229.18°) = —13.13 + j15.20.
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Section 1-6: Phasors

Problem 1.21 A voltage source given by vs(t) = 25cos(2mx 103t —30°) (V) is
connected to a series RC load as shown in Fig. 1-19. If R =1 MQ and C = 200 pF,
obtain an expression for vc(t), the voltage across the capacitor.

Solution: In the phasor domain, the circuit is a voltage divider, and

G,y YieC Vs
°7 PR+1/juC (14 jwRC)’

Now Vs = 2513 \/ with oo = 271 108 rad/s, so

V. — 25e130° v/
©7 1+ j((2mx 103 rad/s) x (108 Q) x (200 x 10-12 F))
256130 v/ -
1t j2T[/5 15.57e V.

Converting back to an instantaneous value,
Ve(t) = ReVeel™ = 9Re15.57el(@—8L5") v — 15 57 cos (2mx 10% — 81.5°) V,

where t is expressed in seconds.

Problem 1.22 Find the phasors of the following time functions:
(@) v(t) = 3cos(wt —11/3) (V),
(b) v(t) = 12sin(wt +11/4) (V),
(©) i(x,t) = 2e~*sin(wt +T11/6) (A),

(d) i(t) = —2cos(wt +311/4) (A),

() i(t) =4sin(uwt +11/3) + 3cos(wt — 11/6) (A).

Solution:

(@) V=3 1"3V

(b) v(t) = 12sin(wt + 11/4) = 12c0s(11/2 — (Wt + 1/4)) = 12cos (wt — 11/4) V,
V=124V,

(©

i(t) = 2e~sin (wt 4 11/6) A = 2~ cos (T1/2 — (wt +T17/6)) A
= 2e7cos (wt — 11/3) A,

| =2e ¥ I3 A
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(d)

i(t) = —2cos(wt + 311/4),
I = —2e18V4 — 2~ ITeI3W4 _ pe—JV4 A

(€
i(t) = 4sin(wt + 11/3) + 3cos(wt — 11/6)
= 4cos[1/2 — (t + 11/3)] + 3cos(wt — 11/6)
= 4cos(—wt + 11/6) + 3cos(wt — 11/6)
= 4cos(wt — T1/6) + 3cos(wt — 11/6) = 7 cos(wt — 11/6),
I=7e71V6 A,

Problem 1.23 Find the instantaneous time sinusoidal functions corresponding to
the following phasors:

() V = —5elW3 (v),

(b) V = jee 14 (v),

© 1=(6+]j8) (A),

(d) T=-3+j2 (A),
) 1=j (A),
() 1=2ei6 (A).
Solution:
(@)
V = 53\ = 5el(V3-1 \y — 5123/,
v(t) = 5cos (wt — 211/3) V.

(b)

V = jee V4V = gel CVHT2) v = gelV4 v,

v(t) = 6cos (wt + 11/4) V.
(©)
T=(6+j8) A=10ei532 A,
i(t) =10cos (wt +53.1°) A.

(d)

I'=—3+ j2=3.61e/4631"
i(t) = Me{3.61e/1963"J) — 3 61 cos(wt + 146.31°) A.
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()
r: J = ejT[/Z’
i(t) = Re{eW2eI™} = cos(wt + 11/2) = —sinwt A.
)
= 216,

I
i(t) = Re{2e/V6eI¥} = 2cos(wt 4 T1/6) A.

Problem 1.24 A series RLC circuit is connected to a generator with a voltage
vs(t) = Vocos(uwt + 11/3) (V).
(@) Write down the voltage loop equation in terms of the current i(t), R, L, C, and
vs(t).
(b) Obtain the corresponding phasor-domain equation.
(c) Solve the equation to obtain an expression for the phasor current .

R L
Wy TN—

V(t) '9 =C

Figure P1.24: RLC circuit.

Solution: di 1
) i .
(@) vs(t)=Ri+ La +6/Idt'

.~ e e
(b) In phasor domain: Vs = Rl + jwLI + o

© = Vs _ Voel™® _ GCVeelm3
T R¥j(W—1/uC) R+j(wl—1/uC) WRC+j(WLC—1)°

Problem 1.25 A wave traveling along a string is given by

y(x,t) = 2sin(4mt + 10Tx)  (cm)
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where x is the distance along the string in meters and y is the vertical displacement.
Determine: (@) the direction of wave travel, (b) the reference phase @g, (c) the
frequency, (d) the wavelength, and (e) the phase velocity.

Solution:
(a) We start by converting the given expression into a cosine function of the form
given by (1.17):

y(x,t) = 2cos (4nt +10Tx — g) (cm).

Since the coefficients of t and x both have the same sign, the wave is traveling in the
negative x-direction.
(b) From the cosine expression, @y = —T1/2.
(c) w=2mf =4m,
f =4m/2n=2Hz.

(d) 2ryA = 101,
A =21/10m=0.2 m.

(&) up= fA=2x0.2=0.4 (m/s).

Problem 1.26 A laser beam traveling through fog was observed to have an intensity
of 1 (UW/m?) at a distance of 2 m from the laser gun and an intensity of 0.2
(MW/m?) at a distance of 3 m. Given that the intensity of an electromagnetic
wave is proportional to the square of its electric-field amplitude, find the attenuation
constant a of fog.

Solution: If the electric field is of the form
E(x,t) = Ege~ ™ cos(wt — Bx),
then the intensity must have a form
1(x,t) =~ [Ege~ cos(t — Bx)]?
~ E2e 2™ cos?(wt — BX)

or
I(x,t) = loe ?** cos?(wt — BX)
where we define lp = Eg. We observe that the magnitude of the intensity varies as
lpe 2%, Hence,
atx=2m, lpe™® =1x10"% (W/m?),
atx=3m, lge™®=02x10"% (Wim?).
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le™ 107
lpe=6@  0.2x106
e~ . gb0 —g20 _ g

a=0.8 (NP/m).

Problem 1.27 Complex numbers z;1 and z, are given by
71 = -3+ j2
=1— j2
Determine (a) z12o, (b) z1/25, (C) 2, and (d) z1z3, all all in polar form.

Solution:
(a) We first convert z; and z, to polar form:

21=—(3-j2)=— (\/32+722 e*jtanflz/3)
_ _ /T3 BT
_ /13 ei(180°-337°)
_ /1361463

Zy=1—j2=+1tde a2
_ /5o 634

212, = /13 ej146.3° % \/g e—j63.4°
_ VB5 el

(b)

a_ V13 el1463 _ 13 gie2e
75 \/5ei63 5 ’
©

Z% — (\/E)Z(ejl46.3°)2 — 13ej292.6°
— 13e—j360°ej292.6°

= 13e~ 1974,
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(d)

212} = V/13 @116 5 /13 ¢~ 11463
=13.

Problem 1.28 If z = 3ei™® find the value of e?.

Solution:
z = 3el® = 3cosT1/6 + j3sinTI/6
—26+jL5

26+]L5 _ 026 3 jLl5

ef=e
=e2%(cos1.5+ jsin1.5)
— 13.46(0.07 + j0.98)

=0.95+ j13.43.

Problem 1.29 The voltage source of the circuit shown in the figure is given by
vs(t) = 25c0s(4 x 10% —45°) (V).

Obtain an expression for iy (t), the current flowing through the inductor.

AM———2 .
+ Ir 2 L

vs(t) ’\) R L

R1=20Q,R,=30Q,L=04mH

Solution: Based on the given voltage expression, the phasor source voltage is
Vs=25e714" (V). 9)
The voltage equation for the left-hand side loop is

Ryi+ Raig, = Vs (10)
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For the right-hand loop,
. di_
Rolr, = LW )
and at node A,
i =ir, +iL.

Next, we convert Egs. (2)—(4) into phasor form:

Rl +Ralg, = Vs
Rolg, = jowLlI,
T=Tg,+1L

Upon combining (6) and (7) to solve for Ig, in terms of I, we have:

~ jwb
R2 ™ Ryt juL

Substituting (8) in (5) and then solving for I leads to:

JRowL ~ ~
L= 1=V
R+ jol S

~ ij(x)L 7
'iv R1R2+ JR]_(A)L"‘ JRZ(JJL _v
R+ jol s

Ryl +

~ \RiRo+ jwL(R1+Ry) ) %
Combining (6) and (7) to solve for 1, in terms of I gives

=2
T Ryt jol

Combining (9) and (10) leads to
" \Ret+jwL/) \RiRo+ joL(Ri+Rp) ) °

R ~
— 2 V.
RiR2++jwL(R1+R2)

23

(11)

(12)

(13)
(14)
(15)

(16)

17

(18)
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Using (1) for Vs and replacing Ry, R, L and w with their numerical values, we have

N 30

L= :

LT 20x 30+ j4 x 107 x 0.4 x 10-3(20+ 30)
0x25 i

25~ 145

~ 600+ j800
75 e 7.5e71% 0810
=" o 075 1B (A).
6+ 8 106157 ¢ )
Finally,
iL(t) = Re[l eI

=0.75c0s(4 x 10t —98.1°)  (A).



Chapter 2: Transmission Lines

Lesson #4
Chapter — Section: 2-1, 2-2

Topics: Lumped-element model

Highlights:

e TEM lines
e (General properties of transmission lines
e L.C,R, G

25
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Lesson #5
Chapter — Section: 2-3,2-4

Topics: Transmission-line equations, wave propagation

Highlights:

e Wave equation
e Characteristic impedance
e General solution

Special Illustrations:

e Example 2-1



Lesson #6
Chapter — Section: 2-5

Topics: Lossless line

Highlights:
e General wave propagation properties
e Reflection coefficient
e Standing waves
e Maxima and minima

Special Illustrations:

e Example 2-2
e Example 2-5

27
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Lesson #7
Chapter — Section: 2-6
Topics: Input impedance

Highlights:

e Thévenin equivalent
e Solution for V and 7 at any location

Special Illustrations:

e Example 2-6
e (CD-ROM Modules 2.1-2.4, Configurations A-C
e (CD-ROM Demos 2.1-2.4, Configurations A-C

Module 2.4B:Z,=(0.5 - j 0.5)Z,,
Given: A coaxial line connected as shown.

Vy = 10 cos o
Z, =500
=500

Z;=(0.5-j 0.5) Z, w=73mx 109 rad/s
g,=4
Line length { =24 cm
Zr=(05-505 %
Diameter ratio bfa = §

Coaxial linc

=045 /-116°
81=48 7 (rad), and Z = (71- j56) Q
Vot =5V /-144°

Q. Obtain a complete expression for v(z,7). The solution has the
general form:
v(z,¢) = Acos(3mx 10°r — 207z + 0

+Bcos(3n x 10%+20mz +02) ¥,

with z = 0 being located at the load.

A - (check answer') (I give up':l
B = (check answer} [_’I give up\__l
¢ l: 2 (check answerj {I give up‘_]

¢ 2= 0 lf-check answer‘.] (I give upj]




Lessons #8 and 9
Chapter — Section: 2-7, 2-8

Topics: Special cases, power flow

Highlights:

Sorted line

Open line

Matched line
Quarter-wave transformer
Power flow

Special Illustrations:

e Example 2-8

CD-ROM Modules 2.1-2.4, Configurations D and E
e (CD-ROM Demos 2.1-2.4, Configurations D and E

Demo 2.2D: Z,=0Q

Given: A coaxial line connected as shown.

29

Coaxial line

Load

Vg = 10 cos ot

Z, =50
Zn=35048

®w=3wx 109 rad/s
ep=4

Line length 7 =24 cm
Zr.=0

Diameter ratio /g = 3

(oisolay ) (7, t) for Z, =0




30

Lessons #10 and 11
Chapter — Section: 2-9
Topics: Smith chart

Highlights:

e Structure of Smith chart
e C(Calculating impedances, admittances, transformations
e Locations of maxima and minima

Special Illustrations:

e Example 2-10
e Example 2-11
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Lesson #12
Chapter — Section: 2-10
Topics: Matching

Highlights:

e Matching network
e Double-stub tuning

Special Illustrations:

e Example 2-12
e Technology Brief on “Microwave Oven” (CD-ROM)

Microwave Ovens

Percy Spencer, while working for Raytheon in the 1940s on the design and construction of
magnetrons for radar, observed that a chocolate bar that had unintentionally been exposed to
microwaves had melted in his pocket. The process of cooking by microwave was patented in
1946, and by the 1970s microwave ovens had become standard household items.

METAL SCREEN

™~

\/

115V
HIGHVOLIAGE 8 o

I TRANSFORMER
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Lesson #13
Chapter — Section: 2-11
Topics: Transients

Highlights:
e Step function
e Bounce diagram

Special Illustrations:

e CD-ROM Modules 2.5-2.9
e C(CD-ROM Demos 2.5-2.13

Demo 2.13

Demo 8.13: R,=06 Z;,,Z =15 Z,

Given: A fault, represented by a ES-Q shunt resistance, is located at a distance of 800 km from the sending end of a 2400-km long transmission
line with 1, = 2¢/3. The switch is closed at t = 0 and the line is not properly matched at either end (R, =0.67; and Z; =15 Z;).

(=0 V,=160V
[ =2400 km
d =800 km
R,=30Q
g Zn=50Q
-1 7, =750
0 z=d z=l R}‘: 250
u,=(2/3)c

The fault at z = d 15 represented by a

=
A

fault resistance R¢

 p— . v .
Display | the voltage along the line as a function of time fort = 0.

100 7| Volts
30
60
40
20
400 300 1200 1600 2000 2400
km

‘Start Animat



CHAPTER 2 33

Chapter 2

Sections 2-1 to 2-4: Transmission-Line Model

Problem 2.1 A transmission line of length | connects a load to a sinusoidal voltage
source with an oscillation frequency f. Assuming the velocity of wave propagation
on the line is c, for which of the following situations is it reasonable to ignore the
presence of the transmission line in the solution of the circuit:

(@ 1=20cm, f =20 kHz,

(b) 1=50km, f =60 Hz,

(c) =20cm, f =600 MHz,

(d) =1mm, f =100 GHz.

Solution A transmission line is negligible when I /A < 0.01.
_If (20x1072m) x (20 x 103 Hz)

(@) - =0 3% 0% s = 1.33 x 1072 (negligible).
(b) )\ L:: (50 10332)125?/: L0°H2) _ 01 (borderling).

© % - % _ (20 10_232) ;;é?r?gx 10°H2) _ 4 40 (nonnegligible).
@ % - % _ (Ax107 3"2 :Oglr?f/’: 10°H2) _ 1 33 (nonnegligible).

Problem 2.2 Calculate the line parameters R’, L/, G’, and C’ for a coaxial line with
an inner conductor diameter of 0.5 cm and an outer conductor diameter of 1 cm,
filled with an insulating material where g = o, & = 4.5, and 0 = 10~3 S/m. The
conductors are made of copper with ¢ = Hlo and o¢ = 5.8 x 107 S/m. The operating
frequency is 1 GHz.

Solution: Given
a=(0.5/2) cm=0.25x10"2m,
=(1.0/2) cm =0.50 x 1072 m,

combining Egs. (2.5) and (2.6) gives

1 if e 1
R= 2T[ Oc <a + b)
_ 1 /m(10° Hz)(4mx 10~7 H/im) ( 1 1 )

21 5.8 x 107 S/m 0.25x 1072 m + 0.50 x 102 m
=0.788 Q/m.
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From Eq. (2.7),

b\  4mx 107 H/
U= Hn(2) 222 BN yo 139 nHim.
21 a 21

From Eq. (2.8),

,  2mo_ 2mx1073S/m

G = n(b/a) i3 =9.1 mS/m.
From Eq. (2.9),
-12
cl = 2T _ 2Megy _ 2Mx 45X (8.854 x 10~ ** F/m) _ 362 pF/m.
In(b/a) In(b/a) In2

Problem 2.3 A 1-GHz parallel-plate transmission line consists of 1.2-cm-wide
copper strips separated by a 0.15-cm-thick layer of polystyrene. Appendix B gives
He = Ho = 411x 10~/ (H/m) and o = 5.8 x 107 (S/m) for copper, and & = 2.6 for
polystyrene. Use Table 2-1 to determine the line parameters of the transmission line.
Assume | = o and o ~ O for polystyrene.

Solution:

2Ry 2 [mfp 2 Tix 109 % 411 107\ 72
w wV 0. 12x102 5.8 x 107 (Q/m),

ud  4mx 107" x 1.5x 1073

L' = i 5% 10-2 = 157%x107" (H/m),
G'=0 because 0 = 0,
,_ew__ w_10° 1.2x1072 _10
Cl= - =eofrg = 2 X 26X T 5 =184x10 (F/m).

Problem 2.4 Show that the transmission line model shown in Fig. 2-37 (P2.4)
yields the same telegrapher’s equations given by Egs. (2.14) and (2.16).

Solution: The voltage at the central upper node is the same whether it is calculated
from the left port or the right port:

. 0.
1 1 1
V(z+ 340z,t) = v(z,t) — 3R'Azi(z,t) — §L’Azat i(z,1)

. 0
=V(z+0z,t)+ 3ROz i(z+ Az, t) + L'z

a|(z—|-Az,t).
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R'Az  L'Az R'Az  L'Az
i(z,t) 2 2 2 2 i(z+Az, 1)
+.—>_AN\,_W_<»—AN\,—WU\—>—.+

e

—
~

G'Az% J‘ C'Az V(z+Az, 1)
1

Az >

—_——
Loet—" —»

A

Figure P2.4: Transmission line model.

Recognizing that the current through the G’ || C’ branch is i(z,t) —i(z+ Az,t) (from
Kirchhoff’s current law), we can conclude that
i(z,t) —i(z+Az,t) = G'Az v(z+ LAz,1) +C’Az%v(z +30z,1).

From both of these equations, the proof is completed by following the steps outlined
in the text, ie. rearranging terms, dividing by Az, and taking the limit as Az — 0.

Problem 2.5 Find a,[3,up, and Zo for the coaxial line of Problem 2.2.
Solution: From Eq. (2.22),

y=+v/(R'+ jwl')(G'+ juC’)
= /(0.788 Q/m) + j (21 109 51)(139 x 10-° H/m)

x /(9.1 10-2 S/m) +- j(2x 109 5-1)(362 x 1012 F/m)
= (109 x 107>+ j44.5) m ™.
Thus, from Egs. (2.25a) and (2.25b), a = 0.109 Np/m and B = 44.5 rad/m.
From Eq. (2.29),
_/R+jwl [ (0.788 Q/m) + j(2mx 109 s71)(139 x 10-9 H/m)
T\ G+ jaC’ |/ (9.1x 1073 S/m) + j(2rx 109 s~1) (362 x 102 F/m)
= (19.6 4 j0.030) Q.

From Eq. (2.33),

w  27mx 10°

— 8
Up = 5 Y 1.41 x 10° m/s.
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Section 2-5: The Lossless Line

Problem 2.6 In addition to not dissipating power, a lossless line has two important
features: (1) it is dispertionless (up is independent of frequency) and (2) its
characteristic impedance Zg is purely real. Sometimes, it is not possible to design
a transmission line such that R’ < wL’ and G’ < wC’, but it is possible to choose the
dimensions of the line and its material properties so as to satisfy the condition

R'C'=L'G" (distortionless line).

Such aline is called a distortionless line because despite the fact that it is not lossless,
it does nonetheless possess the previously mentioned features of the loss line. Show
that for a distortionless line,

LI

CI
a=RY/F=VRG, p=wVlC, Zo=yg-

Solution: Using the distortionless condition in Eq. (2.22) gives

y=0o+jB=v/(R+jwl) (G + juC’)

!
_\/LICI\/ +JQ) (G +j(x)>

CI

R
—\/W¢ =+ jw <U+Jw>

R c’ .
L'C’ <U+ j(.o) =R\ 7+ jwvLC.

Hence,
of W 1
p— — ! - — — _ — =
a=%Re(y) =R 7 B=Jm(y) = wvL'C’, up_B_m.
Similarly, using the distortionless condition in Eqg. (2.29) gives
R+ JooL' R/L'+ jw
G'+ juC’ C’ G'/C'+jw

Problem 2.7 For a distortionless line with Zg =50 Q, o = 20 (mNp/m),
Up=2.5x 108 (m/s), find the line parameters and A at 100 MHz.
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Solution: The product of the expressions for a and Zg given in Problem 2.6 gives
R'=0Zp=20x10"3x50=1 (Q/m),
and taking the ratio of the expression for Z to that for up = w/p = 1/+v/L'C’ gives

Zo 50 _
U'=""=__ " _—2x10 7 (H/m)=200 (nH/m).
up 2.5x 108 x (H/m) (nH/m)

With L' known, we use the expression for Zq to find C':

L' 2x1077
C'= = ?ST —8x 107 (F/m)=80 (pF/m).
0

The distortionless condition given in Problem 2.6 is then used to find G'.

R'C’ 1x80x10712 _
G = = g =A% 10 4(S/m) =400 (uS/m),

and the wavelength is obtained by applying the relation

_ Wp_ 25x10% _
A= f _100><106_2'5m'

Problem 2.8 Find a and Zg of a distortionless line whose R’ = 2 Q/m and
G' =2x10"*S/m.

Solution: From the equations given in Problem 2.6,

VRIG' =[2x2x 10742 =2x10"2 (Np/m),
o T ()
C/ ' (2><10 4) =100

Problem 2.9 A transmission line operating at 125 MHz has Zo =40 Q, a =0.02
(Np/m), and B = 0.75 rad/m. Find the line parameters R’, L/, G/, and C'.

Solution: Given an arbitrary transmission line, f = 125 MHz, Zo = 40 Q,
o = 0.02 Np/m, and B = 0.75rad/m. Since Zg is real and a # 0, the line is
distortionless. From Problem 2.6, 3 = wv/L'C’ and Zo = +/L'/C/, therefore,

BZo  0.75x40

!
L= ®W  21mx 125 x 106

= 38.2 nH/m.
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Then, from Zy = /L'/C/,

B L’ 38.2nH/m

C'=—=
z3 402

= 23.9 pF/m.
From o = vR'G’ and R'C’ = L'G/,

/R /L
R'=VR'G G- vR'G = 0Zp=0.02 Np/m x 40 Q = 0.6 Q/m

and

_a? _ (0.02 Np/m)?

G=—-=
R 0.8 Q/m

= 0.5 mS/m.

Problem 2.10 Using a slotted line, the voltage on a lossless transmission line was
found to have a maximum magnitude of 1.5 V and a minimum magnitude of 0.6 V.
Find the magnitude of the load’s reflection coefficient.

Solution: From the definition of the Standing Wave Ratio given by Eq. (2.59),

S= “ﬁ'max _15_ 2.5.
|V|min 0.6

Solving for the magnitude of the reflection coefficient in terms of S, as in
Example 2-4,

wn
[EY

25-1
\F\——S —2.5_*_1—0.43.

=

Problem 2.11 Polyethylene with €, = 2.25 is used as the insulating material in a
lossless coaxial line with characteristic impedance of 50 Q. The radius of the inner
conductor is 1.2 mm.

(a) What is the radius of the outer conductor?

(b) What is the phase velocity of the line?

Solution: Given a lossless coaxial line, Zg =50 Q, & =2.25, a=1.2 mm:
(a) From Table 2-2, Zg = (60/4/¢,) In (b/a) which can be rearranged to give

b = ae?oV&/0 = (1.2 mm)e>V225/60 — 4 2 mm.
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(b) Also from Table 2-2,

c 3x 108 m/s

U= —— =" "> —20x108 mis.
PTVE T V225

Problem 2.12 A 50-Q lossless transmission line is terminated in a load with
impedance Z, = (30 — j50) Q. The wavelength is 8 cm. Find:

(a) the reflection coefficient at the load,

(b) the standing-wave ratio on the line,

(c) the position of the voltage maximum nearest the load,

(d) the position of the current maximum nearest the load.

Solution:
(a) From Eq. (2.49a),

Z|_ — ZO (30 — JSO) — 50 —i79 80
= = : =0.57e717° .
ZL+Z0 (30— j50)+50 ¢
(b) From Eqg. (2.59),
S— 1+ 14057 _ 365,

S 1-|F] 1-057

(c) From Eq. (2.56)

_6A nA —79.8°x8cmmrad nx8cm

| — 4 — =
ma =20t 41t 180° T 2
=—-0.89cm+4.0cm=3.11 cm.

(d) A current maximum occurs at a voltage minimum, and from Eq. (2.58),

Imin = lmax —A/4=3.11cm—8cm/4 =1.11 cm.

Problem 2.13 On a 150-Q lossless transmission line, the following observations
were noted: distance of first voltage minimum from the load = 3 cm; distance of first
voltage maximum from the load =9 cm; S= 3. Find Z,..

Solution: Distance between a minimum and an adjacent maximum = A/4. Hence,

9cm—3cm=6cm=A/4,
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or A =24 cm. Accordingly, the first voltage minimum is at £mn = 3cm = 2

8-
Application of Eq. (2.57) with n = 0 gives

2 A
er—2><7><§_—
which gives 6, = —11/2.
S—-1 3-1 2
M=sr1=3717 2%
Hence, T = 0.5e~1W2 = _j0.5.
Finally,
14T 1—j0.5 .
Z =7 =150 = (90— j120) Q.
L °[1-r] [1+j0.5} (90— j120)

Problem 2.14  Using a slotted line, the following results were obtained: distance of
first minimum from the load = 4 cm; distance of second minimum from the load =
14 cm, voltage standing-wave ratio = 1.5. If the line is lossless and Zg = 50 Q, find
the load impedance.

Solution: Following Example 2.5: Given a lossless line with Zg =50 Q, S=1.5,
lmin(o) =4 €M, Imin(z) = 14 cm. Then

A
Imin(l) - Imin(O) = 2

or
A=2x (Imin(l) - Imin(O)) =20cm

and

_2m_ 2mrad/cycle

B= N 20cmicycle L0rtrad/m.

From this we obtain

Br = 2Blmin(n) — (2n+1)mtrad = 2 x 101t rad/m x 0.04 m — mrrad
= —0.2rrad = —36.0°.

Also,
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So

14T 14 0.2¢ 1360° .
2L =2 50 = ) =(67.0— j16.4) Q.
- °<1 F) (1—0.2ej36-0° ( 116.4)

Problem 2.15 A load with impedance Z; = (25— j50) Q is to be connected to a
lossless transmission line with characteristic impedance Zg, with Zg chosen such that
the standing-wave ratio is the smallest possible. What should Zq be?

Solution: Since S is monotonic with || (i.e., a plot of Svs. || is always increasing),
the value of Zg which gives the minimum possible S also gives the minimum possible
IF], and, for that matter, the minimum possible |I|?. A necessary condition for a
minimum is that its derivative be equal to zero:
| | 0 |RL+jXL_ZO|2
Kz 0Zo [Ry + jX_ +Zof?
0 (RL—Z0)*+X2  4RL(ZZ—(RE+XD)
= 37~ 2 = 2 -
0Z0 (RL+Zo)"+ X ((RL+Z0)2+X2)

Therefore, Z3 = RZ + X7 or

Zo=|Z.| = /(252 + (—50)?) = 55.9 Q.

A mathematically precise solution will also demonstrate that this point is a
minimum (by calculating the second derivative, for example). Since the endpoints
of the range may be local minima or maxima without the derivative being zero there,
the endpoints (namely Zo =0 Q and Zy = « Q) should be checked also.

Problem 2.16 A 50-Q lossless line terminated in a purely resistive load has a
voltage standing wave ratio of 3. Find all possible values of Z, .

Solution:

S—-1 3-1

M= S+1 3+1_0'5'
For a purely resistive load, 6, =0 or 1t For 6, =0,

1+1 1405

Z"_ZO[l—F}_50[1—0.5]_1509'
For6, =1, ' =—-0.5and
1-05
ZL_50[1+0.5]_15Q.
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Section 2-6: Input Impedance

Problem 2.17 At an operating frequency of 300 MHz, a lossless 50-Q air-spaced
transmission line 2.5 m in length is terminated with an impedance Z; = (40+ j20) Q.
Find the input impedance.

Solution: Given a lossless transmission line, Zog =50 Q, f =300 MHz, | =2.5m,
and Z, = (40+ j20) Q. Since the line is air filled, u, = ¢ and therefore, from Eq.
(2.38),

®  21x 300 x 10°
B= u_p = axi® - 21trad/m.

Since the line is lossless, Eg. (2.69) is valid:

. — 7 (ZL + jZotan BI) _gp <(40+ j20) + j50tan (2mtrad/m x 2.5 m))
Zo+ jZ  tanpl 50+ j(40+ j20)tan (2rtrad/m x 2.5 m)

(40+ j20) 4 jS0x 0

(50+j(40+j20) x0

) — (40+ j20) Q.

Problem 2.18 A lossless transmission line of electrical length | = 0.35A is
terminated in a load impedance as shown in Fig. 2-38 (P2.18). Find I, S, and Zjp.

|[+——1 = 0.35A ——|
o o

Zin—> Zp=100Q Z, =(60+j30) Q

(e O

Figure P2.18: Loaded transmission line.

Solution: From Eq. (2.49a),

Z—-Zp  (60+ j30)—100
T Z+Zo (60+ j30)+100

r — 0.307e11325"

From Eq. (2.59),

14 1+40.307

S= =
1—|r] ~ 1-0.307

=1.89.
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From Eq. (2.63)

7 _7 Z, + jZptan Bl
=20\ Zo+ jZL tan B

_ 100 [ (60+i30) + j100tan (21redp 350
100+ j(60+ j30) tan (2%20.35))

) = (64.8— j38.3) Q.

Problem 2.19 Show that the input impedance of a quarter-wavelength long lossless
line terminated in a short circuit appears as an open circuit.

7 _7 Z, + jZptan Bl
N =0\ Zo+ jZitanpl )

Solution:

Forl=2%, Bl=2T.2 =2 With Z, =0, we have

jZot 2
2= 2o o2

) = joo  (Open circuit).
Zy

Problem 2.20 Show that at the position where the magnitude of the voltage on the
line is a maximum the input impedance is purely real.

Solution: From Eq. (2.56), Imax = (6 + 2n1) /23, so from Eq. (2.61), using polar
representation for I,

. B 1+ |r|ej9re—j2[3|max
Zm(—lmax) =20 (1 — |r|ej9re_j25|max

14| |eifreiBr+2mm) 1+
= Zo - T = ZO ’
1— T |ei®rg—i(Br+2nm) 1—|r|

which is real, provided Zg is real.

Problem 2.21 A voltage generator with vg(t) = 5cos(2m x 10%) V and internal
impedance Zg = 50 Q is connected to a 50-Q lossless air-spaced transmission
line. The line length is 5 cm and it is terminated in a load with impedance
Z, = (100 - j100) Q. Find

(a) T atthe load.

(b) Zin at the input to the transmission line.

(c) the input voltage V; and input current ;.
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Solution:
(a) From Eq. (2.49a),

Z.—Zo  (100— j100) —50

_ - _ = 0.628 127"
Z.+Z0  (100—j100) 50 ¢

(b) All formulae for Zj, require knowledge of 3 = w/up. Since the line is an air line,
Up = ¢, and from the expression for vg(t) we conclude w = 21 10° rad/s. Therefore

8- 2mx 109 rad/s  20m cad/m
- 3x108m/s 3 )

Then, using Eq. (2.63),
o Z| + jZptanfl
Zin=Zo <zo+ jZ, tanpl
5 [ (100— j100) + j50tan (2 rad/m x 5 cm)
50+ j(100 — j100) tan (%" rad/m x 5 cm)

100 — j100) + j50tan (T r
( 1100) + | 3 rad) =(125-j12.7) Q
50+ j(100 — j100) tan (3 rad)

An alternative solution to this part involves the solution to part (a) and Eq. (2.61).
(c) In phasor domain, Vg 5V ei®. From Eq. (2.64),

~  VgZin _ 5x(12.5-j12.7)

= = “o) 140710 (v
' T Zg+Zn 50+ (125- j12.7) ¢ W),

and also from Eq. (2.64),

ISRV 1.4¢1340° e
li=-=-—"F"—"——=784e'> (mA).
"7 Zin  (125—j12.7) (MA)

Problem 2.22 A 6-m section of 150-Q lossless line is driven by a source with
Vg(t) = 5cos(8mx 10°t—30°) (V)

and Zg = 150 Q. If the line, which has a relative permittivity &, = 2.25, is terminated
inaload Z, = (150 — j50) Q, find

(@) A onthe line,

(b) the reflection coefficient at the load,

(c) the input impedance,
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(d) the input voltage V;,
(e) the time-domain input voltage v;(t).

Solution:
Vg(t) = 5cos(8mx 10°t —30°) V,
Vg =5e71%" v.

Transmission line

|
0O O
+ P
viL
+

\79® Vi zZo—=  zo=150Q V, |Z [(150-50) @

T\ '

,T L oad
z=-l z=0

Figure P2.22: Circuit for Problem 2.22.

@)
upzéz3\/X2.1_205_)8:2><108 (m/s),
2 2Tix 2 x 108
B= u_u:, = ?;7110237 =0.41 (rad/m),

Bl =0.41tx 6 = 2.411 (rad).
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Since this exceeds 21t (rad), we can subtract 211, which leaves a remainder 31 = 0.41t
(rad).

ZL—Zy 150—j50—150 —j50 _is05°
by = = ; = = 0.16e71805%
(b) ZL+Zo 150—j50+150  300— j50
©
Z, + jZptan Bl
Zin=2Zo | =——————
=<0 [Zo—|- jZ, tanpl
(150 — j50) + j150tan (0.4) .
=150 : _ = (115.70+ j27.42) Q.
[150+ {150 j50) @n(0.4m) | +127.42)
(d)
G- VgZin 56713 (115.7 + j27.42)
' Zg+Zn 150+ 115.7+ j27.42
_gja (1157 +j27.42
265.7 + j27.42
=513 % 0.44e)74 = 22712256 (v),
()

Vi(t) = Re[Viel?] = Re[2.2e71256"¢9] = 2 2cos(8rx 10t — 22.56°) V.

Problem 2.23 Two half-wave dipole antennas, each with impedance of 75 Q, are
connected in parallel through a pair of transmission lines, and the combination is
connected to a feed transmission line, as shown in Fig. 2.39 (P2.23(a)). All lines are

50 Q and lossless.
(a) Calculate Zj,,, the input impedance of the antenna-terminated line, at the
parallel juncture.
(b) Combine Z;,, and Z;y, in parallel to obtain Z{ , the effective load impedance of
the feedline.
(c) Calculate Zj, of the feedline.

Solution:

(@)

7 _z [ZL1+jZotanBI1]

"m0 70+ jZo, tanPly
B 75+ j50tan[(217/A)(0.2M)]
N { 50+ j75tan[(21/A)(0.2)\)]

} = (35.20 — j8.62) Q.
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75Q
(Antenna)

(Antenna)

Figure P2.23: (a) Circuit for Problem 2.23.

(b)
Zin,Zi (35.20 — j8.62)? _
! ing&iny
= = . = (17.60— j4.31) Q.
L Zin,+Zin, 2(35.20— j8.62) ( 14.31)

(©)

|«——I =0.3A ——|
(e, O

(e O

Figure P2.23: (b) Equivalent circuit.

7= 50{ (17.60 — j4.31) + j50tan[(21/A) (0.3M)]

50+ j(17.60 — j4.31) tan[(21y/A) (0.3V)] } = (107.57 = j86.7) Q.
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Section 2-7: Special Cases

Problem 2.24 At an operating frequency of 300 MHz, it is desired to use a section
of a lossless 50-Q transmission line terminated in a short circuit to construct an
equivalent load with reactance X = 40 Q. If the phase velocity of the line is 0.75c,
what is the shortest possible line length that would exhibit the desired reactance at its
input?

Solution:

(2mrad/cycle) x (300 x 108 cycle/s)

— 8.38 rad/m.
0.75 x (3 x 108 mis) radim

B=w/up=

On a lossless short-circuited transmission line, the input impedance is always purely
imaginary; i.e., Z = jXi*. Solving Eq. (2.68) for the line length,

1 (Xi?f) B 1 tan-1 (40 Q) (0.675+ nm) rad

1
I=gtn Zo ) 8.38rad/m 8.38 rad/m ’

B

for which the smallest positive solution is 8.05 cm (with n = 0).

50 Q

Problem 2.25 A lossless transmission line is terminated in a short circuit. How
long (in wavelengths) should the line be in order for it to appear as an open circuit at
its input terminals?

Solution: From Eq. (2.68), ZX = jZotanpl. If Bl = (11/2+n1), then Z£ = joo (Q).
Hence,

This is evident from Figure 2.15(d).

Problem 2.26 The input impedance of a 31-cm-long lossless transmission line of
unknown characteristic impedance was measured at 1 MHz. With the line terminated
in a short circuit, the measurement yielded an input impedance equivalent to an
inductor with inductance of 0.064 uH, and when the line was open circuited, the
measurement yielded an input impedance equivalent to a capacitor with capacitance
of 40 pF. Find Z of the line, the phase velocity, and the relative permittivity of the
insulating material.

Solution: Now w = 27tf = 6.28 x 10° rad/s, so

ZE = jolL = j2mx 10° x 0.064 x 107° = j0.4 Q
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and Z€ =1/ juC = 1/(j2mx 10° x 40 x 10 12) = — j4000 Q.
From Eq. (2.74), Zo = \/ZFZT = 1/(j0.4 Q)(—j4000 Q) = 40 Q. Using
Eq. (2.75),

w @ wl
7B tanl,/—Z%/Z%
6.28 x 10° x 0.31 1.95 x 108

= == m/S,
tan-1 (:I: V=047 (= j4000)) (+0.01+nm)

where n > 0 for the plus sign and n > 1 for the minus sign. For n = 0,
Up = 1.94 x 108 m/s = 0.65¢ and & = (c/up)? = 1/0.65% = 2.4. For other values
of n, up is very slow and &, is unreasonably high.

Problem 2.27 A 75-Q resistive load is preceded by a A /4 section of a 50-Q lossless
line, which itself is preceded by another A /4 section of a 100-Q line. What is the input
impedance?

Solution: The input impedance of the A /4 section of line closest to the load is found
from Eq. (2.77):
z5 502

— =33.33Q.

Zin= -9 =
Nz, 75

The input impedance of the line section closest to the load can be considered as the
load impedance of the next section of the line. By reapplying Eq. (2.77), the next
section of A/4 line is taken into account:

Z§ 100
Z, ~ 33.33

Zin= =300 Q.

Problem 2.28 A 100-MHz FM broadcast station uses a 300-Q transmission line
between the transmitter and a tower-mounted half-wave dipole antenna. The antenna
impedance is 73 Q. You are asked to design a quarter-wave transformer to match the
antenna to the line.
(a) Determine the electrical length and characteristic impedance of the quarter-
wave section.
(b) If the quarter-wave section is a two-wire line with d = 2.5 cm, and the spacing
between the wires is made of polystyrene with €, = 2.6, determine the physical
length of the quarter-wave section and the radius of the two wire conductors.
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Solution:

(a) For a match condition, the input impedance of a load must match that of the
transmission line attached to the generator. A line of electrical length A/4 can be
used. From Eq. (2.77), the impedance of such a line should be

Zo=+ZinZ  =+/300 x 73 =148 Q.
(b)

A Up c 3 x 108

A_ U _ _ — 0.465 m,
4 4f  A/&f  44/2.6 x 100 x 106
2

and, from Table 2-2,

Hence,

d d\? 148+/2.6
o) () (&) | -2 -xm

d d\?
<£>+ (5) —1=17.31,

and whose solution isa=d/7.44 = 25 cm/7.44 = 3.36 mm.

which leads to

Problem 2.29 A 50-MHz generator with Zg = 50 Q is connected to a load
Z, = (50— j25) Q. The time-average power transferred from the generator into the
load is maximum when Zy = Z*, where Z" is the complex conjugate of Z, . To achieve
this condition without changing Zg, the effective load impedance can be modified by
adding an open-circuited line in series with Z, , as shown in Fig. 2-40 (P2.29). If the
line’s Zg = 100 Q, determine the shortest length of line (in wavelengths) necessary
for satisfying the maximum-power-transfer condition.

Solution: Since the real part of Z, is equal to Zg, our task is to find | such that the
input impedance of the line is Zj, = +j25 Q, thereby cancelling the imaginary part
of Z, (once Z_ and the input impedance the line are added in series). Hence, using
Eq. (2.73),

—j100cot Bl = j25,
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z, |50j25) @

O
O

Figure P2.29: Transmission-line arrangement for Problem 2.29.

or

25
cotpl = —7== = —0.25,

which leads to
Bl = —1.326 or 1.816.

Since | cannot be negative, the first solution is discarded. The second solution leads

© 1.816  1.816
== =— = 0.29\.

B (2/A)

Problem 2.30 A 50-Q lossless line of length | = 0.375A connects a 300-MHz
generator with Vg =300 V and Zq = 50 Q to a load Z, . Determine the time-domain
current through the load for:

(@ Z. = (50— j50) Q,

(b) Z. =50Q,

(c) Z_ = 0 (short circuit).

Solution:
(@ Z_=(50-j50) Q, Bl = 27“ x 0.375\ = 2.36 (rad) = 135°.

_Z -7y 50-j50-50  —j50

= = _ = —_ —(.45¢71634%"
Z +Zo 50— j50+50  100— j50 ¢

r

Application of Eqg. (2.63) gives:

Z, + jZptanfBl
Zo+ jZ, tanfl

Zin=2o — (100+ j50) Q.

(50— j50) + j50tan135°
50+ j(50 — j50) tan 135°
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50 © Transmission line
+
\79 @ Zin—> Zo=50Q Z |(50-j50) Q
Gener ator T<—I =0.375 )\—>V L oad

z=-l z=0

+
Y

Figure P2.30: Circuit for Problem 2.30(a).

Using Eq. (2.66) gives

0 T\ Zg+2zn) \eP e M

_300(100 + j50) ( 1 )

50+ (100 + j50) \ ei13%° 4 0.45¢ 6343 g~ j135°

=150e711%5" (),
IR VA —j135° ) . ) .
=00 1= T (1 045 i) — 2 6ge 184 (a),

50

— 9%[268 e—j108.44° ej61'[><108t]

= 2.68¢0s(6TTx 10% — 108.44°)  (A).
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(b)
Z, =50Q,
r=o,
Zin= Zo="50Q,

+_300><50( 1

= : =150e 1135 (v
0 ™ 50+50 e1135°—|-0> V),

~ V) 150 s -
=0 _ —J135° _ 35—J135° (A
L ZO 50 e € ( )7

iL (t) = PRe[3e71135° @I 10%) _ 3005(6mrx 108 — 135°)  (A).

(©

Z. =0,
r=-1,
0+ jZotan135°) . _
300(—j50) 1 e
+ = _ 135
Vo = 50 — j50 (ejl35°—e—j135°) = 150e™ ),
~ Vvt 150¢ i13%° o
Zy 50

iL(t) = 6cos(6TTx 10% —135°)  (A).

Section 2-8: Power Flow on Lossless Line

Problem 2.31 A generator with Vg = 300 V and Zg = 50 Q is connected to a load
Z, =75 Q through a 50-Q lossless line of length | = 0.15A.
(a) Compute Zjn, the input impedance of the line at the generator end.
(b) Compute I; and V.
(c) Compute the time-average power delivered to the line, Pin = 29%¢[V; 7).
(d) Compute Vi, Iy, and the time-average power delivered to the load,
P.= 19%D7|_T[f]. How does P;, compare to P_? Explain.
(e) Compute the time average power delivered by the generator, Pg, and the time
average power dissipated in Zg. Is conservation of power satisfied?

Solution:
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50 Q o
'\M __Transmission line

¢

o]

+
\79@ Zin—> Zo=50Q 75 Q

O

|«—— 1=0.15A —»] Load
z=-l z=0

Generator

Figure P2.31: Circuit for Problem 2.31.

(@
Bl = 2711 x 0.15\ = 54°,
Z, + jZptan Bl 75+ j50tan54° .
Zin=2Zo| =22 =50 | — """ | —(41.25— j16.35) Q.
n O[Zo+jZLtanB| 50+ j75tan 54° ( 116.35)
(b)

' T Zy+Zin 50+ (41.25— j16.35)
Vi = 1;Zin = 3.24e11016° (41.25 — j16.35) = 143.6e 11246 (V).

0 Vg 300

=3.2401018 (A,
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(©
Lop g L —j11.46° -j10.16°
P = 3RelVil{] = 59e[143.66 71114 x 3.24¢711019]
143.6 x 3.24
:+003(21.62°):216 (W).
(d)
ZL—Zy 7550
r: = :0.2
2L +72Zo 75+50 ’
~ 1 143.6¢ 111.46° g0
—\/ — _ —j54
Vo =Y (eJB' +Fe—il3') ~ o 1o e (V)

VL =V (1+1) = 150e 15 (1+0.2) = 180e 5 (v),

~ Vi 150e 1%#
L=2(1-MN="————
L zo( ) 50

1 o~ o~ 1 H o 1 ]
PL= SMelVLI] = S9Re[180e 15 x 2.461%] =216 (W).

(1—-0.2) =2.4e7 1% (p),

P. = Pin, which is as expected because the line is lossless; power input to the line
ends up in the load.

(€)

Power delivered by generator:
1oy 1 j10.16° 0
Py = Ei)ie[\/gli] = 52)%[300 x 3.24e)°7°°] = 486c0s(10.16°) = 478.4 (W).
Power dissipated in Zg:
1. ~~ 1~ 1~ 1 5
Pzg = EE)‘ie[livzg] = Ei)‘ie[lili Zg| = §|Ii| Zg= 3 (3.24)° x50=262.4 (W).
Note 1: Py = Pzq + Pin = 478.4 W.

Problem 2.32 If the two-antenna configuration shown in Fig. 2-41 (P2.32) is
connected to a generator with Vg = 250 V and Zq = 50 Q, how much average power
is delivered to each antenna?

Solution: Since line 2 is A/2 in length, the input impedance is the same as
Z,, =75 Q. The same is true for line 3. At junction C-D, we now have two 75-Q
impedances in parallel, whose combination is 75/2 = 37.5 Q. Line 1 is A/2 long.
Hence at A—C, input impedance of line 1 is 37.5 Q, and

A 250

i = = =286 (A
' Zg+Zn 50+375 ),
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Z,=75Q
(Antenna 1)

A
+
250V Zin—> Linel
B
Generator

2 ,=75Q
(Antenna 2)

Figure P2.32: Antenna configuration for Problem 2.32.

1 oo 1 oo (2.86)2x37.5
Pin = 59e[iV]'] = SRe[li/Z}) = (286)” x 375 5 —153.37  (W).

This is divided equally between the two antennas. Hence, each antenna receives
15337 — 76.68 (W).

Problem 2.33 For the circuit shown in Fig. 2-42 (P2.33), calculate the average
incident power, the average reflected power, and the average power transmitted into
the infinite 100-Q line. The A/2 line is lossless and the infinitely long line is
slightly lossy. (Hint: The input impedance of an infinitely long line is equal to its
characteristic impedance so long as a # 0.)

Solution: Considering the semi-infinite transmission line as equivalent to a load
(since all power sent down the line is lost to the rest of the circuit), Z, =Z; =100 Q.
Since the feed line is A/2 in length, Eq. (2.76) gives Zi, = Z. = 100 Q and
Bl = (21/A)(A/2) = 1, s0 e*IB = —1, From Eq. (2.49a),

ZL—Zp 100-50 1

M= = =-.
Z +Z9 100+50 3
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r I
Pa\/ <_I

Figure P2.33: Line terminated in an infinite line.

Also, converting the generator to a phasor gives \7g — 2¢i%° (V). Plugging all these
results into Eq. (2.66),

v = VoZin 1 [ 2x100 1
O "\ Zg+Zin) \eif +re-B )~ \50+100/ \ (—1)+1(-1)

=1e/8" = _1 (V).

From Egs. (2.84), (2.85), and (2.86),

_ V+|2 |1ej1800|2
P :| 0l — =10.0 mW
i 270 2 x50 ’

2
x 10 MW = —1.1 mW,

. 1

2
Pa = —I""Pa = —|3
PL, =Py =P, +P,=10.0mW—1.1 mW = 8.9 mW.

Problem 2.34 Anantenna with a load impedance Z; = (75+ j25) Q is connected to
a transmitter through a 50-Q lossless transmission line. If under matched conditions
(50-Q load), the transmitter can deliver 20 W to the load, how much power does it
deliver to the antenna? Assume Zg = Zo.
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Solution: From Egs. (2.66) and (2.61),

0 Zg+Zin | \ el 4 el

L VgZo [(14Te 1) /(1—Trei2¥)] e~ IB

T Zo+Zo[(14Te-i2)/(1—Te-i28)] " 14 Fe-i2
Vge I8!

~ (1—Te2B) 4 (14 Te-i2p)
Vge I8 - g

(1—Te~ i) 4 (14 re-i2B)
Thus, in Eqg. (2.86),

_ P

o _ 1 e~ 182
& 27,

|13V
1-|r?) = 22—
(1 =[T[%) 274

_ Vgl

1-rP) =
(1=1r%) 87

(1=r ).
Under the matched condition, || = 0 and P_ = 20 W, so |Vg|2/8Zo = 20 W.
When Z, = (75+ j25) Q, from Eq. (2.49a),

2 -7y (75+25) Q-500Q

= = : —0.277¢1%3¢
ZL+Z0  (75+)25) Q+50Q ’

r

50 Py =20 W (1—|[|?) =20 W (1—0.2772) = 18.46 W.

Section 2-9: Smith Chart

Problem 2.35 Use the Smith chart to find the reflection coefficient corresponding
to a load impedance:

(@) ZL = 32,
(b) ZL = (2-2]j)Zo,
(€) ZL = —2jZ,,

(d) Z_ = 0 (short circuit).

Solution: Refer to Fig. P2.35.
(a) Point Ais 2, = 3+ jO. I = 0.5¢%”
(b) Point Bisz, =2— j2. T = 0.62e=2%7
(c) PointCisz = 0— j2. [ = 1.0e~537°
(d) Point D is z, = 0+ jO. I = 1.0e1800"
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Figure P2.35: Solution of Problem 2.35.

impedance

load

Problem 2.36 Use the Smith chart to find the normalized

corresponding to a reflection coefficient:

(@) I =0.5,

(b) T

0.5460,

©r=-1,

0.3£=3%,

() F=0,

@dr

fr=i
Solution: Refer to Fig. P2.36.
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“‘0000
SO
5 M‘W _w“

Figure P2.36: Solution of Problem 2.36.

=0.5atz. =3+ jO.

isl

(a) Point A

=1+ j1.15.

(e}
0" atz,

0.5¢16

(b) Point B" is

0+ jO.
—J30° gt L

—latz.
0.3e

(c) PointC’"isT

1.60 — j0.53.

(d) Point D" is I

Oatz. =1+ j0.

(e) PointE'is T

0+ jl.

(f) Point F'isT = jatz_

100 Q,

Problem 2.37 On a lossless transmission line terminated in a load Z

the standing-wave ratio was measured to be 2.5. Use the Smith chart to find the two

possible values of Zg.
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Refer to Fig. P2.37. S = 2.5 is at point L1 and the constant SWR

Solution:

z, is real at only two places on the SWR circle, at L1, where

circle is shown.

=40Q

0.4. s0 Zg1 = Z|_/Z|_1 =100 Q/25

2.5,and L2, where z,. =1/S

and Zgp = Z|_/Z|_2

7L=S

250 Q.

100 Q/0.4 =

5e
585 esgte!
setie’
sgeses

0’

8

Figure P2.37: Solution of Problem 2.37.

Problem 2.38 A lossless 50-Q transmission line is terminated in a load with

Z, = (50+ j25) Q. Use the Smith chart to find the following:

(a) the reflection coefficient I,
(b) the standing-wave ratio,

(c) the input impedance at 0.35A from the load,
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(d) the input admittance at 0.35A from the load,

(e) the shortest line length for which the input impedance is purely resistive,
(f) the position of the first voltage maximum from the load.

Figure P2.38: Solution of Problem 2.38.

Solution: Refer to Fig. P2.38. The normalized impedance

1+ j0.5

(50+ j25) Q
50 Q

is at point Z-LOAD.

(o}

0.24¢i76.0

The angle of the reflection coefficient is read of that scale at

(@ T
the point 6,.
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(b) At the point SWR: S = 1.64.

(c) Zinis 0.350A from the load, which is at 0.144A on the wavelengths to generator
scale. So point Z-IN is at 0.144A + 0.350A = 0.494A on the WTG scale. At point
Z-IN:

Zin =zinZo = (0.61— j0.022) x 50 Q = (30.5— j1.09) Q.
(d) At the point on the SWR circle opposite Z-IN,

_ Yin _ (1.64+ j0.06)

V=30 =g = (27+jL17) ms.

(e) Traveling from the point Z-LOAD in the direction of the generator (clockwise),
the SWR circle crosses the x_ = 0 line first at the point SWR. To travel from Z-LOAD
to SWR one must travel 0.250\ —0.144A = 0.106A. (Readings are on the wavelengths
to generator scale.) So the shortest line length would be 0.106A.

(f) The voltage max occurs at point SWR. From the previous part, this occurs at
z=—0.106A.

Problem 2.39 A lossless 50-Q transmission line is terminated in a short circuit.
Use the Smith chart to find

(a) the input impedance at a distance 2.3\ from the load,

(b) the distance from the load at which the input admittance is Yj, = —j0.04 S.

Solution: Refer to Fig. P2.39.

() For a short, zj, = 0+ jO. This is point Z-SHORT and is at 0.000A on the WTG
scale. Since a lossless line repeats every A /2, traveling 2.3\ toward the generator is
equivalent to traveling 0.3A toward the generator. This point is at A: Z-IN, and

Zin =ZinZo = (0— j3.08) x 50 Q = —j154 Q.

(b) The admittance of a short is at point Y-SHORT and is at 0.250\ on the WTG
scale:

Yin =YinZo = —]0.04 Sx 50 Q = —j2,

which is point B : Y -IN and is at 0.324A on the WTG scale. Therefore, the line length
is 0.324A\ — 0.250A = 0.074A. Any integer half wavelengths farther is also valid.
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Figure P2.39: Solution of Problem 2.39.

1.5— j0.7.

Solution: Refer to Fig. P2.40. The point Z represents 1.5 — j0.7. The reciprocal of

point Z is at point Y,

Problem 2.40 Use the Smith chart to find y, if z_

which is at 0.55+ j0.26.
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Figure P2.40: Solution of Problem 2.40.

Q transmission line 3A/8 in length is terminated in

Problem 2.41 A lossless 100

an unknown impedance.

If the input impedance is Zj, = — 2.5 Q,

(a) use the Smith chart to find Z_.

(b) What length of open
Solution: Refer to Fig. P2.41. z;,

circuit line could be used to replace Z ?

— J0.025 which

0.0

=Zin/Zo=—j2.5Q/100 Q

is at point Z-IN and is at 0.004A on the wavelengths to load scale.

load from the end of the line. Thus, on the

(a) Point Z-LOAD is 0.375A toward the
wavelength to load scale, it is at 0.004A + 0.375A

0.379A.

(0+ j0.95) x 100 Q = j95 Q.

ZL=12129
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5
S
S
>

K

0.246 A

Figure P2.41: Solution of Problem 2.41.

located at point Z-OPEN, which is at 0.250A on the

(b) An open circuit is
wavelength to load scale. Therefore

have a length of 0.250A — 0.004A

an open circuited line with Z;, = —j0.025 must

0.246A.

—60°, use the

If S=1.8and 6,

Problem 2.42 A 75-Q lossless line is 0.6A long.

Smith chart to find |

,Z1, and Zjp.

Solution: Refer to Fig. P2.42. The SWR circle must pass through S = 1.8 at point

SWR. A circle of this radius has

0.29.

— |

IT
wln

M=
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Figure P2.42: Solution of Problem 2.42.

The load must have a reflection coefficient with 8, = —60°. The angle of the reflection

The intersection of the circle of

coefficient is read off that scale at the point 6,.

which has a

constant |I"| and the line of constant 6, is at the load, point Z-LOAD,

value z;

1.15— j0.62. Thus,

Q.

)

LOAD is at 0.333A,

— j46.6

) x 75 Q = (86.5

1.15— j0.62

(

2129 =
A 0.6A line is equivalent to a 0.1A line. On the WTG scale

Z =

z

0.433A and has a value

so Z-IN is at 0.333A + 0.100A

0.63 — j0.29.

Zin
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= (47.0— j21.8) Q.

(0.63— j0.29) x 75 Q

ZinZo

Therefore Zj,

Problem 2.43 Using a slotted line on a 50-Q air-spaced lossless line, the following

1.6, |V | max occurred only at 10 cm and 24 cm from

the load. Use the Smith chart to find Z .

measurements were obtained: S

Figure P2.43: Solution of Problem 2.43.

Refer to Fig. P2.43. The point SWR denotes the fact that S = 1.6.

Solution:

This point is also the location of a voltage maximum. From the knowledge of the

28 cm.

2(24 cm—10cm)

0.357A from the first voltage maximum, which is at

locations of adjacent maxima we can determine that A

i« 10cm
Therefore, the load is %8 Cm)\

0.250A on the WTL scale. Traveling this far on the SWR circle we find point Z-LOAD
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at 0.250A + 0.357A — 0.500A = 0.107A on the WTL scale, and here
z. =0.82—j0.39.

Therefore Z, =z, Zo = (0.82— j0.39) x 50 Q = (41.0— j19.5) Q.

Problem 2.44 At an operating frequency of 5 GHz, a 50-Q lossless coaxial line
with insulating material having a relative permittivity €, = 2.25 is terminated in an
antenna with an impedance Z_ = 150 Q. Use the Smith chart to find Z;,. The line
length is 30 cm.

Solution: To use the Smith chart the line length must be converted into wavelengths.
Since B = 21/ and u, = W/P,

2 21U, c 3x 108 m/s
B w V&f 225x(5x10°Hz)
Hence, 1= 339M)\ = 7.5\. Since this is an integral number of half wavelengths,

Zin=12_ =150 Q.

Section 2-10: Impedance Matching

Problem 2.45 A 50-Q lossless line 0.6A long is terminated in a load with
Z, = (50+ j25) Q. At 0.3A from the load, a resistor with resistance R = 30 Q is
connected as shown in Fig. 2-43 (P2.45(a)). Use the Smith chart to find Zjp.

O . O
Zin—> Zp=50Q 30Q Zp=50Q 7
(e, . O

| 0.3A >| 0.3A >

2 =(50+j25) Q

Figure P2.45: (a) Circuit for Problem 2.45.
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Figure P2.45: (b) Solution of Problem 2.45.

Solution: Refer to Fig. P2.45(b). Since the 30-Q resistor is in parallel with the input
impedance at that point, it is advantageous to convert all quantities to admittances.

1+ j0.5

(50+ j25) Q

Zy

Zg

50 Q

LOAD. The corresponding normalized load admittance is

and is located at point Z

at point Y-LOAD, which is at 0.394\ on the WTG scale. The input admittance of
the load only at the shunt conductor is at 0.394A + 0.300A

denoted by point A. It has a value of

0.500A = 0.194A and is

1.37 + j0.45.

Yina
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The shunt conductance has a normalized conductance

50 Q
g= 300" 1.67.

The normalized admittance of the shunt conductance in parallel with the input
admittance of the load is the sum of their admittances:

Ying = g+ Yina = 1.67 + 1.37 + j0.45 = 3.04 + j0.45

and is located at point B. On the WTG scale, point B is at 0.242A. The input
admittance of the entire circuit is at 0.242A 4+ 0.300A — 0.500A = 0.042A and is
denoted by point Y-IN. The corresponding normalized input impedance is at Z-IN
and has a value of

Zn=19—jl.4.
Thus,

Zin=1ZinZo= (1.9—j1.4) x50 Q = (95— j70) Q.

Problem 2.46 A 50-Q lossless line is to be matched to an antenna with
Z, = (75— j20) Q

using a shorted stub. Use the Smith chart to determine the stub length and the distance
between the antenna and the stub.

Solution: Refer to Fig. P2.46(a) and Fig. P2.46(b), which represent two different
solutions.

_ZL (75-j20) Q

7
and is located at point Z-LOAD in both figures. Since it is advantageous to work in
admittance coordinates, y, is plotted as point Y -LOAD in both figures. Y -LOAD is at
0.041A on the WTG scale.

For the first solution in Fig. P2.46(a), point Y-LOAD-IN-1 represents the point
at which g = 1 on the SWR circle of the load. Y-LOAD-IN-1 is at 0.145A on the
WTG scale, so the stub should be located at 0.145\ — 0.041A\ = 0.104A from the
load (or some multiple of a half wavelength further). At Y-LOAD-IN-1, b = 0.52,
so a stub with an input admittance of yguw = 0 — j0.52 is required. This point is
Y-STUB-IN-1 and is at 0.423A on the WTG scale. The short circuit admittance
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Figure P2.46: (a) First solution to Problem 2.46.

is denoted by point Y-SHT, located at 0.250A. Therefore, the short stub must be
0.423\ — 0.250A = 0.173A long (or some multiple of a half wavelength longer).

For the second solution in Fig. P2.46(b), point Y -LOAD-IN-2 represents the point
at which g = 1 on the SWR circle of the load. Y-LOAD-IN-2 is at 0.355A on the
WTG scale, so the stub should be located at 0.355\ — 0.041A\ = 0.314A from the
load (or some multiple of a half wavelength further). AtY-LOAD-IN-2, b = —0.52,
so a stub with an input admittance of yguw = 0+ j0.52 is required. This point is
Y -STUB-IN-2 and is at 0.077A on the WTG scale. The short circuit admittance
is denoted by point Y-SHT, located at 0.250A. Therefore, the short stub must be
0.077A — 0.250\ 4 0.500A = 0.327A long (or some multiple of a half wavelength



73

CHAPTER 2

013

AL

A

o
S

O
O
%

yam e ys
AuEmE ﬂt@‘t‘t‘
O

Figure P2.46: (b) Second solution to Problem 2.46.

longer).

Q.

(100 + j50)

Solution: Refer to Fig. P2.47(a) and Fig. P2.47(b), which represent two d

solutions.

Problem 2.47 Repeat Problem 2.46 for a load with Z_

ifferent

2+ j1

100+ j50 Q
50Q

_a
-5

7L

and is located at point Z-LOAD in both figures. Since it is advantageous to work in

admittance coordinates, y| is plotted as point Y -LOAD in both figures. Y -LOAD is at

0.463A on the WTG scale.
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RESISTANCE COMPONENT (R/Zo| OR CONDUCTANCE COMPO}

Y-LOAD

Figure P2.47: (a) First solution to Problem 2.47.

(G/Yol

& )

For the first solution in Fig. P2.47(a), point Y-LOAD-IN-1 represents the point
at which g = 1 on the SWR circle of the load. Y-LOAD-IN-1 is at 0.162A on the
WTG scale, so the stub should be located at 0.162A — 0.463A + 0.500A = 0.199A
from the load (or some multiple of a half wavelength further). AtY-LOAD-IN-1,
b =1, so a stub with an input admittance of ygu = 0 — j1 is required. This point
iS Y-STUB-IN-1 and is at 0.375A on the WTG scale. The short circuit admittance
is denoted by point Y-SHT, located at 0.250A. Therefore, the short stub must be
0.375A — 0.250A = 0.125A long (or some multiple of a half wavelength longer).

For the second solution in Fig. P2.47(b), point Y -LOAD-IN-2 represents the point
at which g = 1 on the SWR circle of the load. Y-LOAD-IN-2 is at 0.338A on the



75

0.375A

o kN H XA

> SeaRe %
S 00‘0@ ST
S

075

0.375 A

)

S/

4

Fg | | LN
= SN

ST SRS
B SIS, AN
T SSRR

2 03
38 037

CHAPTER 2

Figure P2.47: (b) Second solution to Problem 2.47.

WTG scale, so the stub should be located at 0.338\ — 0.463A + 0.500A

from the load (or some multiple of a half wavelength further). AtY-LOAD-IN-2,

b

—1, so a stub with an input admittance of yg,, = 0+ j1 is required. This point

is Y-STUB-IN-2 and is at 0.125A on the WTG scale. The short circuit admittance
is denoted by point Y-SHT, located at 0.250A. Therefore, the short stub must be
0.125A — 0.250A + 0.500A = 0.375A long (or some multiple of a half wavelength

longer).

Problem 2.48 Use the Smith chart to find Z;, of the feed line shown in Fig. 2-44

(P2.48(a)). All lines are lossless with Zo = 50 Q.
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Z1=(50+j50) Q

Z,=(50 - j50) Q

Figure P2.48: (a) Circuit of Problem 2.48.

Solution: Refer to Fig. P2.48(b).

Z; 50450 Q i
n= 7 T 500 +)
and is at point Z-LOAD-1.
Z, 50-—j50Q .
2= 7,7 500 J

and is at point Z-LOAD-2. Since at the junction the lines are in parallel, it is
advantageous to solve the problem using admittances. y; is point Y -LOAD-1, which
is at 0.412A on the WTG scale. y» is point Y-LOAD-2, which is at 0.088A on the
WTG scale. Traveling 0.300A from Y -LOAD-1 toward the generator one obtains the
input admittance for the upper feed line, point Y -IN-1, with a value of 1.97 + j1.02.
Since traveling 0.700A is equivalent to traveling 0.200A on any transmission line,
the input admittance for the lower line feed is found at point Y -IN-2, which has a
value of 1.97 — j1.02. The admittance of the two lines together is the sum of their
admittances: 1.97 + j1.02 4+ 1.97 — j1.02 = 3.94 + jO and is denoted Y-JUNCT.
0.300A from Y-JUNCT toward the generator is the input admittance of the entire
feed line, point Y -IN, from which Z-IN is found.

Zin=ZinZo = (1.65— j1.79) x 50 Q = (82.5— j89.5) Q.
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Figure P2.48: (b) Solution of Problem 2.48.

Problem 2.49 Repeat Problem 2.48 for the case where all three transmission lines
are A/4 in length.

Solution: Since the transmission lines are in parallel, it is advantageous to express
loads in terms of admittances. In the upper branch, which is a quarter wave line,

A

Yiin= 2 ==
1lin Yl ZS 3
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and similarly for the lower branch,

Y2 7,
Y H = —O = — .
2in Y2 ZS
Thus, the total load at the junction is
21425

Yicr =Y1in+Y2in = 7
0
Therefore, since the common transmission line is also quarter-wave,

Zin=123/Zyxt =231 = Z1+Zo = (50 + j50) Q+ (50 — j50) Q =100 Q.

Section 2-11: Transients on Transmission Lines

Problem 2.50 Generate a bounce diagram for the voltage V (z,t) for a 1-m long
lossless line characterized by Zo = 50 Q and u, = 2c/3 (where c is the velocity of
light) if the line is fed by a step voltage applied att = 0 by a generator circuit with
Vg =60 V and Rg = 100 Q. The line is terminated in a load Z| = 25 Q. Use the
bounce diagram to plot V (t) at a point midway along the length of the line fromt =0
tot =25ns.

Solution:
Rg—Zo 100-50 50 1

[q= = = =
9 Rg+Zp 100+50 150 3’
Z-Zy 25-50 -25 -1

~Z.+Zo 25+50 75 3 °

Mo

From Eq. (2.124b),

v = VoZo _ 60x50

- - =20 V.
Rg+Zo 100450

Also,

I I 3

T:—: =
up 2¢/3 2x3x108

=5ns.

The bounce diagram is shown in Fig. P2.50(a) and the plot of V (t) in Fig. P2.50(b).



CHAPTER 2
Voltage
Mr=r,= l ag = rL =- l
o3 z=05m 3
z=0 _ + z=1m
|
v, =20V
|
: F5ns
-6.67 Vo
|
10 ns; _2.22\/|
:
: L 15 ns
0.74V_.
|
20ns 0.25V
:
|
*.0.08 L a—] 2208
y A
t t
Figure P2.50: (a) Bounce diagram for Problem 2.50.
V(0.5m,t)
A
20V + 20V
— >t (ns)
5 10 15 20 25

Figure P2.50: (b) Time response of voltage.

79
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Problem 2,51 Repeat Problem 2.50 for the current | on the line.

Solution:
r _Rg—Zy _100-50 1
97 Ry+Zo 100+50 3’
r_Z4-Z_25-5 -1
‘T Zi+Zo 25+50 3
From Eq. (2.124a),
V, 60
If =3¢ 0.4 A.

Rg+Zo 100+50
The bounce diagram is shown in Fig. P2.51(a) and I(t) in Fig. P2.51(b).

F:—Fg:—% Current F:-FL:%
z=05m
z=0 } z=1m
I,"=04A
1
: -5ns
0.133A
1
10 ns I
1
: -0.044 A
: L 15 ns
-0.015A .
1
20 ns :
: 5x103A
. - 25ns
A\ y
t t

Figure P2.51: (a) Bounce diagram for Problem 2.51.
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1(0.5m, t)
A
0.533 A
04 A
— >t (ns)
5 10 15 20 25

Figure P2.51: (b) Time response of current.

Problem 2.52 In response to a step voltage, the voltage waveform shown in Fig.
2-45 (P2.52) was observed at the sending end of a lossless transmission line with
Rg=50Q, Zo =150 Q, and & = 2.25. Determine (a) the generator voltage, (b) the
length of the line, and (c) the load impedance.

V(0, 1)
A

5V

3V

0 6 us

\/
N

Figure P2.52: Observed voltage at sending end.

Solution:
(a) From the figure, Vfr =5V. Applying Eqg. (2.124b),

1 Rg+Zo Zo+Zo 2 ’

which gives Vg = 2V;F =10 V.
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c 3x 108
b) uy, = — = Z=—— = 2 x 108 m/s. The first change in the waveform occurs
(b) Uy V& V225 g

at At = 6 us. But At = 21 /up. Hence,

_ Atp,  6x107°

; 5 x 2 x 108 = 600 m.

(c) Since Rg = Zo, 'g=0. Hence V," = 0 and the change in level from 5 V down
to3VisduetoV; =—2V. But

Vi -2
Vo =rvf, o or rL:v_1+:T:_O'4'
1

From

14T 1-04
ZL:ZO< + L)=50(1+04):21.43§2.

Problem 2.53 In response to a step voltage, the voltage waveform shown in Fig.
2.46 (P2.53) was observed at the sending end of a shorted line with Zg = 50 Q and
& = 4. Determine Vg, Ry, and the line length.

V(0, 1)
A

122V

3V
L—o75v

Figure P2.53: Observed voltage at sending end.

Solution:
c 3 x 108
U= —— = =1.5x 108 m/s,
P \/S_r \/21
21 21
Tus=7x10%s="=__— |
Ho = I Uy 15x10°

Hence, | =525 m.
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From the voltage waveform, V;" = 12 V. Att = 7ps, the voltage at the sending end
is

V(z=0,t=7ps) =V, + T VF +Tgh V) =—Tgv;t (because I = —1).

Hence, 3V= -l x 12V, or g = —0.25. From Eq. (2.128),
B 1+Tg\ 1-0.25\
Ry =20 (1—rg) =0 <1+o.25) =300

VeZo Vg x 50
Vit =2 12=_2
L T Retzo” 30+ 50

Also,

which gives Vg = 19.2 V.

Problem 2.54 Suppose the voltage waveform shown in Fig. 2-45 was observed at
the sending end of a 50-Q transmission line in response to a step voltage introduced
by a generator with Vq = 15 V and an unknown series resistance Rg. The line is 1 km
in length, its velocity of propagation is 1 x 108 m/s, and it is terminated in a load
Z, =100 Q.
(a) Determine Rg.
(b) Explain why the drop in level of V (0,t) att = 6 ps cannot be due to reflection
from the load.
(c) Determine the shunt resistance R and the location of the fault responsible for
the observed waveform.

Solution:

V(0, 1)
A

5V

3V

0 6 us

\
N

Figure P2.54: Observed voltage at sending end.
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(@)
+ _ VgZo )
1 Rg + ZO
From Fig. 2-45, V,;" = 5 V. Hence,
1550
~ Rg+50’

which gives Ry =100 Q and g =1/3.
(b) Roundtrip time delay of pulse return from the load is

_2_I_2><103

2T = =
up 1x108

= 20 s,

which is much longer than 6 ps, the instance at which V (0,t) drops in level.
(c) The new level of 3 V is equal to V;" plus V;~ plus V.,

Vi +V +V =545 +5MFg=3 (V),
which yields 't = —0.3. But

_4it—2Zo _
Zii+Zo
which gives Z; ; = 26.92 Q. Since Z; is equal to R; and Zg in parallel, R = 58.33 Q.

I —0.3,

Problem 2.55 A generator circuit with Vg = 200 V and Rg = 25 Q was used to
excite a 75-Q lossless line with a rectangular pulse of duration T = 0.4 ps. The line
is 200 m long, its up = 2 x 108 m/s, and it is terminated in a load Z| = 125 Q.
(a) Synthesize the voltage pulse exciting the line as the sum of two step functions,
Vgl (t) and ng (t)
(b) For each voltage step function, generate a bounce diagram for the voltage on
the line.
(c) Use the bounce diagrams to plot the total voltage at the sending end of the line.

Solution:
(a) pulse length = 0.4 ps.

Vg (t) = Vg, (t) +Vg,(t),
with

Vg, (t) = 200U (t)  (V),
Vg, (t) = —200U (t — 0.4 pis) (V).
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25Q t=0
_o o_
+
200V r\D =750 31250
L O o—

200 M —»|

Figure P2.55: (a) Circuit for Problem 2.55.

\VO

Va0

200V
>t
I\
0.4 ps

-200V Tt

Vo

Figure P2.55: (b) Solution of part (a).

®) I 200

T = — = — =
up 2x108
We will divide the problem into two parts, one for Vg, (t) and another for Vg, (t) and
then we will use superposition to determine the solution for the sum. The solution
for Vg, (t) will mimic the solution for Vg, (t), except for a reversal in sign and a delay
by 0.4 ps.

For Vg, (t) = 200U (t):

1 ps.

r_ Rg—Zo 25—75
97 Rg+Zo 25+75
ZL—Z9 125-75
 ZL+Zo 125475

0.5,

M 0.25,
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V]_Zo . 200 x 75

V. — — =150 V
L 7 Rg+Z9 25475 ’
VoZ1 200 x 125
Vo= —2— = = 166.67 V.
Rg+ZL ~ 25+125
(i) V1(0,t) at sending end due to Vg, (t):
Vg ()
r:rg:-% gl r:rLZ%
z=0 z=200m
t=0 N
V" =150V
lus
37.5V
2s 1 _18.75V
- 3US
-4.69V
41y 234V
0.56V S us
6 usy -0.28V
y A 4
t t

Figure P2.55: (c) Bounce diagram for voltage in reaction to Vg, (t).
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(ii) V2(0,t) at sending end due to Vg, (t):

Vg (D)

- _ 1 9 _r -1
r=rg=-= r=ro=5
z=0 z=200m

t=04ys V1+ = 150V
+ 1.4 us
-37.5V
24 s 18.75V
- 3.4 us
4.69V
4.4 s 234V
-0.56V 5.4 |1s
6411 0.28V
Y \
t t

Figure P2.55: (d) Bounce diagram for voltage in reaction to Vg, (t).
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(b)
(i) V1(0,t) at sending end due to Vg, (t):

V,(0,t)

168.75 166.41 167.58 166.67

150V

: | | > t (11S)

Figure P2.55: (e) V1(0,t).
(i) V2(0,t) at sending end:
V,(0,1)

A

0.4 2.4 4.4 6.4
} } } > t (US)

-150V

-168.75 -166.41 -167.58 -166.67

Figure P2.55: (f) V2(0,t).
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(iii) Net voltage V (0,t) =V1(0,t) +V2(0,t):

V(0,t)
A
150V
18.75
4 4.4 0.28 9
— — = > t (S
0.4 2 24 L 6 6.4
234

Figure P2.55: (g) Net voltage V (0,t).

Problem 2.56 For the circuit of Problem 2.55, generate a bounce diagram for the
current and plot its time history at the middle of the line.

Solution: Using the values for 'y and " calculated in Problem 2.55, we reverse
their signs when using them to construct a bounce diagram for the current.

V,;f 150
+_—1 = —_—
'1_20 75 2A,
Vb —150
If=2=—"——==-2A
27 Z 75 ’
Voo
IF==2=133A.

[ Zl_
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-—r.=4
r=-re=3
z=0
t=0
2A

-0.5A
2 s -0.25A

62.5mA
4 Hs+ 31.25mA

-7.79mA
6 s -3.90mA
A J

1,(t)

t

- 3 US

- 5 us

CHAPTER 2

Figure P2.56: (a) Bounce diagram for I1(t) in reaction to Vg, (t).



CHAPTER 2
I, (1)

_1 2 _
r=-rg=2 r=_r,
z=0

t=04pus
-2A

0.5A
2.4 us+ 0.25A

-62.5mA
44 s -31.25mA

7.79mA
6.4 ps 3.90mA
A J

t

Figure P2.56: (b) Bounce diagram for current I(t) in reaction to Vg, (t).

- 3.4 us

- 5.4 us

91
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(i) 12(1/2,t) due to Vg, (t):

I, (100, 1)

A

15 1p5 13125 13333

} } } > t (US)
0.5 15 25 35

Figure P2.56: (c) 11(1/2,1).

(i) 12(1/2,t) due to Vg, (t):

I,(100,t)

0.9 1.9 29 39

125 - :
G 13125 -1.3333

-2A

Figure P2.56: (d) 12(1/2,t).
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(iii) Net current 1(1/2,t) = 11(1/2,t) + 12(1/2,1):

1 (0,t)
A
2A
15 19 25 25 0625
— — > t(ps)
05 09 L] 05 05
-0.25
-05

Figure P2.56: (e) Total 1(1/2,t).

Problem 2.57 For the parallel-plate transmission line of Problem 2.3, the line
parameters are given by:

R=1 (Q/m),
L'=167 (nH/m),
G =0,

C' =172 (pF/m).

Find a, 3, up, and Zg at 1 GHz.
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Solution: At 1 GHz, w= 2mf = 2mx 10° rad/s. Application of (2.22) gives:
y=+/(R'+ joL")(G' + juC’)
= [(1+ j2mx 10° x 167 x 1079) (0 + j2rix 10° x 172 x 10~ 1%)]%/2
[(1+ j1049)(j1.1)]Y/2

[ . 1172 -
1+ (1049)2 gitn 11049 x 1.1ng0 ] ’ (J — e190 )
. ; o . 11/2

— |1049¢i89-95 ><1.1e190] /

, ]1/2

_ '1154ej179.95°

= 3418997 — 34¢0589.97° + j345in89.97° = 0.016 + j34.
Hence,

a =0.016 Np/m,
3 = 34 rad/m.

O 2nf  2mx 10°

BB
-Rl—l-j(.OLl 1/2

[10490i89.95° 711/2

= 954071005 | 2

— 31e100%° ~ (31— j0.01) Q.

=1.85 x 108 m/s.

Problem 2.58

R=600Q
Z,=300Q
L=0.02mH
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A 300-Q lossless air transmission line is connected to a complex load composed of
a resistor in series with an inductor, as shown in the figure. At 5 MHz, determine:
@ T, (b)S, (c) location of voltage maximum nearest to the load, and (d) location of
current maximum nearest to the load.

Solution:
@)
ZL =R+ juwl
=600+ j21x 5% 108 x 2 x 10> = (600 + j628) Q.
-2
CZL+2Zo
600+ j628 — 300
~ 600+ j628+ 300
300+ j628 i20.6°
— m — 0.63e -
® 1+|F| 140.63
1-|F| 1-0.63
(©)
(:H)
lmax = ——  for 8 > 0.
max a1t or o, >
29.6°1T\ 60 3x 108
_(1800>ET’ (A_5x106_60m>
—=2.46m

(d) The locations of current maxima correspond to voltage minima and vice versa.
Hence, the location of current maximum nearest the load is the same as location of
voltage minimum nearest the load. Thus

A A

=2.464+15=17.46 m.

Problem 2.59
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R=75Q

Z,=50Q coo

O

A 50-Q lossless transmission line is connected to a load composed of a 75-Q resistor
in series with a capacitor of unknown capacitance. If at 10 MHz the voltage standing
wave ratio on the line was measured to be 3, determine the capacitance C.

Solution:
S—1 3-1 2
M=s31=37172=%°
Z =R —jX where Xc = — .
L L — JAc, CTC
A4
N Z + 29
|55 (%)
Z +2Zg Zl + 2o
2= ZLZ}+Z5—Zo(ZL + Z})
ZLZ} + 25+ Zo(ZL + Z7)
Noting that:

2,7 = (RL— jXc)(RL+ jXc) =RE + X,
Zo(ZL +Z[) = Zo(RL — jXc +RL + jXc) = 2ZoRy,
»  REH+XE+ZE—2ZRL
I "~ R?+XE+Z3+2ZR.

Upon substituting [ | = 0.5, RL =75 Q, and Zo = 50 Q, and then solving for Xc,
we have
Xc=166.1 Q.
Hence
1 1

C= =
wXc  21x 107 x 66.1

= 2.41 x 10719 = 241 pF.

Problem 2.60 A 50-Q lossless line is terminated in a load impedance
Z, = (30— j20) Q.
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Z,=50Q [1z=@0-j200

O

(a) Calculate " and S.

(b) It has been proposed that by placing an appropriately selected resistor across the
line at a distance Imax from the load (as shown in the figure below), where Iya is the
distance from the load of a voltage maximum, then it is possible to render Z; = Z,
thereby eliminating reflections back to the sending end. Show that the proposed
approach is valid and find the value of the shunt resistance.

Z,=50Q |_, R []z =@-j20)0

Solution:
@
_ Z, —Zy _ 30— j20—-50 _ —20—j20 _ —(20+ j20) _ 0.34e-1121°
ZL +Zy 30— j20450 80— j20 80— j20
14 14034
S 1-|f| 1-0.34

S 2.

(b) We start by finding Imax, the distance of the voltage maximum nearest to the
load. Using (2.56) with n =1,

L _8A A
M= 4 2
—121°t\ A A
= (71800 ) E[-i— 5= 0.33A.

Applying (2.63) at | = Imax = 0.33A, for which Bl = (21/A x 0.33\ = 2.07 radians,
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the value of Z;, before adding the shunt resistance is:

7 _7 Z, + jZptan Bl
"~ 2O\ Zo+ jZo tanpl

_ g ( (30— J20) + j50tan2.07
~ "\ 50+ j(30— j20) tan 2.07

) = (102+ j0) Q.

Thus, at the location A (at a distance Ima from the load), the input impedance is
purely real. If we add a shunt resistor R in parallel such that the combination is equal
to Zg, then the new Zj, at any point to the left of that location will be equal to Zo.
Hence, we need to select R such that
1 1 1

RY102 " 50

orR=98 Q.

Problem 2.61 For the lossless transmission line circuit shown in the figure,
determine the equivalent series lumped-element circuit at 400 MHz at the input to
the line. The line has a characteristic impedance of 50 Q and the insulating layer has
& = 2.25.

Solution: At 400 MHz,

8
f fv&  4x108/2.25
21T 21T

Subtracting multiples of 21, the remainder is:

Bl = 0.87trad.
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Using (2.63),

Zo+ jZ tanfl
B 75+ j50tan 0.81
N 50+ j75tan 0.81t

Z + jZotanBl
Zin:ZO< Lt ] oanB)

) = (52.38+ j20.75) Q.

Zin is equivalent to a series RL circuit with

R
Z,
L
R=52.38Q

wL =2nfL =20.75 Q

or 20.75

— : — -9

= S 4% 108 8.3x10 " H,
which is a very small inductor.
Problem 2.62

Ry

Wy
+
Vy Z=1000 [z =(s0+]j100) 0

The circuit shown in the figure consists of a 100-Q lossless transmission line
terminated in a load with Z, = (50 + j100) Q. If the peak value of the load voltage
was measured to be |V | = 12V, determine:

(a) the time-average power dissipated in the load,
(b) the time-average power incident on the line, and

(c) the time-average power reflected by the load.
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Solution:
@) _ :
I_ _ ZL _ZO _ 50+ JlOO_ 100 _ _50+ JlOO _ 0 62eJ8290
~ Z +Zy 50+j100+100 150+ j100 '
The time average power dissipated in the load is:
1~
Pa = - [IL[?
v 2|||_| Ro
1|V P
L
=-|=| R
20z -
1V 1 .. 50
= — R ==-x12x———-=029W.
21ZL2 T 2 T B0z 1002
(b) .
Pav = Py (1 =T [?)
Hence, b 0.29
Pl=—% _—_ = = 0.47 W.
& 1-r2 1-0.622
(©) .
P!, = —|F|?PL, = —(0.62)? x 0.47 = —0.18 W.
Problem 2.63

clT? ,=3M8 =2 I;=5M8
B B,

Z, > Z,=100Q0 Z,=500Q [ |z =(5-j50)Q

[e

Use the Smith chart to determine the input impedance Zj, of the two-line
configuration shown in the figure.
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N
! I“\ L\
guseR!

S
AR T

SIS
SRR
2

Smith Chart 1
Solution: Starting at point A, namely at the load, we normalize Z, with respect
to Zgo:
2 = Z _ 75— j50
Zop 50
From point A on the Smith chart, we move on the SWR circle a distance of 5\ /8 to

point B, which is just to the right of point B (see figure). At B, the normalized input
impedance of line 2 is:

Zinp = 0.48 — j0.36 (point B, on Smith chart)
Next, we unnormalize zjno:
Zin2 = ZOZZinZ =50 x (0.48 — j0.36) = (24 — j18) Q.

=15—]jl (point A on Smith chart 1)
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O
HA,

AT
....h

Smith Chart 2
To move along line 1, we need to normalize with respect to Zg;. We shall call this z; ;:

Zip 24— 18

= —_— =0.24—j0.1 int B ith chart 2
21 Zo1 100 0 j0.18 (point B, on Smith chart 2)

After drawing the SWR circle through point B,, we move 3A /8 towards the generator,
ending up at point C on Smith chart 2. The normalized input impedance of line 1 is:

Zin=0.66— j1.25
which upon unnormalizing becomes:

Zin = (66— j125) Q.
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Problem 2.64

=7

-

i

[Jz =250

Z=7

75Q

O
O

Z

Q lossless transmission line. Reflections back

A 25-Q antenna is connected to a 75

toward the generator can be eliminated by placing a shunt impedance Z at a distance |

from the load. Determine the values of Z and |I.

Solution:

%!
8%s
RS

‘&\Q
XS

X

X
S

S

<R
<L
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The normalized load impedance is:

2 = % =0.33 (point A on Smith chart)

The Smith chart shows A and the SWR circle. The goal is to have an equivalent
impedance of 75 Q to the left of B. That equivalent impedance is the parallel
combination of Zj, at B (to the right of the shunt impedance Z) and the shunt
element Z. Since we need for this to be purely real, it’s best to choose | such that
Zin is purely real, thereby choosing Z to be simply a resistor. Adding two resistors in
parallel generates a sum smaller in magnitude than either one of them. So we need
for Zi,, to be larger than Zg, not smaller. On the Smith chart, that point is B, at a
distance | = A/4 from the load. At that point:

Zin = 37

which corresponds to
Yin = 0.33.

Hence, we need y, the normalized admittance corresponding to the shunt
impedance Z, to have a value that satisfies:

Yin+y:1
y=1-vyj3,=1-0.33=0.66
1 1
=—-=——=15
y 0.66
Z=75x15=1125Q.
In summary,
A
l=-
47
Z=1125Q

Problem 2.65 In response to a step voltage, the voltage waveform shown in the
figure below was observed at the midpoint of a lossless transmission line with
Zo =50 Q and up, = 2 x 108 m/s. Determine: (a) the length of the line, (b) Z,,
(c) Rg, and (d) Vg.
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V(1/2, 1)
12V |------
15 21 t (us)
3 9 -
_3 V __________________________________ I
Solution:

(a) Since it takes 3 ps to reach the middle of the line, the line length must be
| =2(3x107® x up) =2x 3 x107% x 2 x 108 = 1200 m.

(b) From the voltage waveform shown in the figure, the duration of the first
rectangle is 6 s, representing the time it takes the incident voltage V," to travel
from the midpoint of the line to the load and back. The fact that the voltage drops to
zero at t = 9 s implies that the reflected wave is exactly equal to V," in magnitude,
but opposite in polarity. That is,

V==V
This in turn implies that ', = —1, which means that the load is a short circuit:
Z =0.

(c) After V; arrives at the generator end, it encounters a reflection coefficient I .
The voltage at 15 s is composed of:

V=V +V +V,f
= (14T + LTV,
V

From the figure, V /V,;" = —3/12 = —1/4. Hence,
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which means that

14T 140.25
Rg:( ks g)zoz( i )50:83.3(2.

1-Tyg 1—0.25
(d)
VoZo
Vi=12=_19
1 Rg+ZO
12(Rq+2Z 12(83.3+50
Vg = (Rg+7Z0) _ 12(83.3+ ):32\/_

Zy 50
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Chapter 3: Vector Analysis

Lesson #14
Chapter — Section: 3-1
Topics: Basic laws of vector algebra

Highlights:
e Vector magnitude, direction, unit vector
e Position and distance vectors
e Vector addition and multiplication
- Dot product
- Vector product
- Triple product

Special Illustrations:
e CD-ROM Module 3.2

Module 3.2 Two Intersecting Vectors

(Given: Vectors A and B both lie in the
-z plane and they have the same
magnitude of 2.

Q1. What is the value of the dot
product of A and B?
Choose one answer.

A "_SE|EEtj" A * B = 346

2 (‘select ) A-B=2
(seect) A-B=1.73

Q2. What is the cross product of A and
B?

x Choose one answer.

(eec) AXB=21.73

(‘select ) AxB=x346

'r_select_\' A X .B = -ii' 2

3004 2
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Lessons #15 and 16
Chapter — Section: 3-2
Topics: Coordinate systems

Highlights:

e Commonly used coordinate systems: Cartesian, cylindrical, spherical
e Choice is based on which one best suits problem geometry
e Differential surface vectors and differential volumes

Special Illustrations:

e Examples 3-3 to 3-5
e Technology Brief on “GPS” (CD-ROM)

Global Positioning System

The Global Positioning System (GPS),

initially developed in the 1980s by the U.S.
Department of Defense as a navigation tool for
military use, has evolved into a system with
numerous civilian applications including vehicle
tracking, aircraft navigation, map displays in
automobiles, and topographic mapping. The
overall GPS is composed of 3 segments. The
space segment consists of 24 satellites (A), each
circling Earth every 12 hours at an orbital
altitude of about 12,000 miles and transmitting
continuous coded time signals. The user segment
consists of hand-held or vehicle-mounted
receivers that determine their own locations by
receiving and processing multiple satellite
signals. The third segment is a network of five
ground stations, distributed around the world,

. . . . A. GPS nominal satellite constellation
that monitor the satellites and provide them with 4 Babelile=in sach Plane

. : o . 20,200 krn Altitudes, 58 Degres Inalinat
updates on their precise orbital information. B s e

GPS provides a location inaccuracy of about 30
m, both horizontally and vertically, but it

can be improved to within 1 m by

differential GPS (see illustration).
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Lesson #17
Chapter — Section: 3-3

Topics: Coordinate transformations

Highlights:

e Basic logic for decomposing a vector in one coordinate system into the coordinate
variables of another system

e Transformation relations (Table 3-2)

Special Illustrations:

e Example 3-8
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Lesson #18
Chapter — Section: 3-4

Topics: Gradient operator

Highlights:
e Derivation of V T in Cartesian coordinates

e Directional derivative
e VT in cylindrical and spherical coordinates

Special Illustrations:

e Example 3-10(b)
e (CD-ROM Modules 3.5 or 3.6
e (CD-ROM Demos 3.1-3.9 (any 2)

Demo 3.6: Gradient of Scalar Fields

4

y Given: A scalar field defined by:

T =1+sin(2mx/6)  for — 10 < x < 10.

The field T is displayed graphically in the figure, wherein the brightness of the
image at a given location is proportional to the magnitude of T at that location.

(oispiay ) the graphical and analytical solution for VT
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Lesson #19
Chapter — Section: 3-5
Topics: Divergence operator

Highlights:

e Concept of “flux”
e Derivation of V.E
e Divergence theorem

Special Illustrations:

e (CD-ROM Modules 3.7-3.11 (any 2)
e (CD-ROM Demos 3.10-3.15 (any 1 or 2)

Demo 3.14: Divergence of Vector Fields

4

10{Y Given: A vector field defined by:
I R S I . 0< r< 10 and
'\ li T } : 1 T f /‘ A =fr4prcosd for{qu)%Zn:
\ V1o 1t / / The vector A is displayed graphically in
\ oo | A / / the figure, wherein vectors are used to
‘\0"‘ R PPN, depict the direction and magnitude of A
-1 LN S B 10 at any given location.
R e e b w e —
—a— ,(’ + \_. Ty, T
SN T ‘biseiay ) the graphical and analytical
10 solution for V * A
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Lesson #20
Chapter — Section: 3-6
Topics: Curl operator

Highlights:
e Concept of “circulation’

e Derivation of VX B
e Stokes’s theorem

b

Special Illustrations:

e Example 3-12



Lesson #21
Chapter — Section: 3-7
Topics: Laplacian operator

Highlights:
e Definition of V>V
e Definition of V> E

Special Illustrations:

113

e Technology Brief on “X-Ray Computed Tomography”

X-Ray Computed Tomography

Tomography is derived from the Greek words
tome, meaning section or slice, and graphia,
meaning writing. Computed tomography, also
known as CT scan or CAT scan (for computed
axial tomography), refers to a technique
capable of generating 3-D images of the x-ray
attenuation (absorption) properties of an
object. This is in contrast with the traditional
x-ray technique which produces only a 2-D
profile of the object. CT was invented in 1972
by British electrical engineer Godfrey
Hounsfield, and independently by Allan
Cormack, a South African-born American
physicist. The two inventors shared the 1979
Nobel Prize for Physiology or Medicine.
Among diagnostic imaging techniques, CT has
the decided advantage in having the sensitivity
to image body parts on a wide range of
densities, from soft tissue to blood vessels and
bones.

A. CT Scanner

COMPUTER
AND CHITOR

xm*rsnumg/_. - \
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Chapter 3

Section 3-1: Vector Algebra

Problem 3.1 Vector A starts at point (1,—1,—3) and ends at point (2,—1,0). Find
a unit vector in the direction of A.

Solution:

A=R(2—-1)+§(—=1—(=1)) +2(0— (=3)) = K+ 23,

A = VIF9=23.16,
. A R+33 .
_ A — %0.32+20.95.
A=A T 31e  oete

Problem 3.2 Givenvectors A=%X2—9y3+7, B=%X2—y+23,and C =%4+Yy2—72,
show that C is perpendicular to both A and B.

Solution:

Problem 3.3 In Cartesian coordinates, the three corners of a triangle are P1(0,4,4),
Po(4,—4,4), and P3(2,2,—4). Find the area of the triangle.

Solution: LetB= Pﬁz =X4—y8and C = Pﬁg = X2—§2— 28 represent two sides of

the triangle. Since the magnitude of the cross product is the area of the parallelogram

(see the definition of cross product in Section 3-1.4), half of this is the area of the

triangle:
A=3|BxC|=3|(X4—98) x (X2 — 92 —28)|

(—8)(—8) + ¥(—(4)(=8)) +2(4(-2) — (-8)2)|

%64 + 932+ 28| = 31/642 + 322+ 82 = 11/5184 = 36,

where the cross product is evaluated with Eq. (3.27).

I
Nl Nl ik

x>

Problem 3.4 Given A=%X2—y3+21and B = XBx+ Y2+ ZB;:
(a) find By and B, if A is parallel to B;
(b) find a relation between By and B, if A is perpendicular to B.
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Solution:
(a) If A is parallel to B, then their directions are equal or opposite: 4, = +ag, or

A/IA|=+B/|B],
R2—93+2 _ , KBx+92+12B;

V14 \/A+BZ2+BZ’

From the y-component,
-3 +2
V14 \/A+BZ+B2

which can only be solved for the minus sign (which means that A and B must point
in opposite directions for them to be parallel). Solving for B2 4 B2,

2 2 20
B2+ B2 = (—3\/ﬁ> —4=

From the x-component,

2 —By B _ —2v/56 _ —4
v1a /569’ T 3y1a 3
and, from the z-component,
-2
B,= —.
tT3

This is consistent with our result for B2+ B2.

These results could also have been obtained by assuming 6 was 0° or 180° and
solving |A||B| = £A- B, or by solving A x B=0.

(b) If A is perpendicular to B, then their dot product is zero (see Section 3-1.4).
Using Eq. (3.17),

0=A-B=2By—6+B;,,
or
BZZG—ZB)(.

There are an infinite number of vectors which could be B and be perpendicular to A,
but their x- and z-components must satisfy this relation.

This result could have also been obtained by assuming 6a5 = 90° and calculating
|Al[B] = |AxB].

Problem 3.5 Given vectors A= X+§2—23, B=X2—y4, and C = y2 — 74, find
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(@) Aand 3,

(b) the component of B along C,
(¢) Bac,

(d) AxC,

(e) A-(BxC),

(f) Ax(BxC),

(9) Xx B, and

(h) (Ax9)-2.

Solution:
(a) From Eq. (3.4),

A=1/124+22 4 (—3)* = V14,

and, from Eq. (3.5),

ap— X+92—123 .
V14
(b) The component of B along C (see Section 3-1.4) is given by
B-C -8
BcosBgc = < - \/ﬁ =-1.8.
(c) From Eq. (3.21),
AC 4412 .

Bpc =COS™ T ——— =17.0°.

16
— COS =C0S ~——
AC v 14+/20 280

(d) From Eq. (3.27),
A x C=K(2(—4) — (=3)2) + ¥((—=3)0— 1(—4)) + 2(1(2) — 2(0)) = —X2 + Y4 + 22.
(e) From Eq. (3.27) and Eq. (3.17),
A-(BxC)=A-(X16+98+24) = 1(16) + 2(8) + (—3)4 = 20.

Eg. (3.30) could also have been used in the solution. Also, Eq. (3.29) could be used
in conjunction with the result of part (d).
(f) By repeated application of Eq. (3.27),

Ax (BxC)=Ax (X16+ §8+24) = X32 — §52 — 224.

Eq. (3.33) could also have been used.
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(9) From Eq. (3.27),

Xx B=-24.

(h) From Eqg. (3.27) and Eq. (3.17),
(AxVY)-2=(X34+2)-2=1.

Eq. (3.29) and Eq. (3.25) could also have been used in the solution.

Problem 3.6 Given vectors A =X2—9+23 and B = X3— 22, find a vector C whose
magnitude is 9 and whose direction is perpendicular to both A and B.

Solution: The cross product of two vectors produces a new vector which is
perpendicular to both of the original vectors. Two vectors exist which have a
magnitude of 9 and are orthogonal to both A and B: one which is 9 units long in
the direction of the unit vector parallel to A x B, and one in the opposite direction.

AxB (32— 9+123) x (X3 22)
C=49— - =49
AxB|  |(R2—9+23)x (8_22)|
21913423
— 49 N EYIOH LS L (R1.344 §8.67+22.0).

V224132432

Problem 3.7 Given A = X(x+2y) —Y(y+ 3z) + 2(3x—Yy), determine a unit vector
parallel to A at point P(1,—1,2).

Solution: The unit vector parallel to A = X(x+2y) —y(y+3z) +2(3x—vy) at the

point P(1,—1,2) is

@8’:1’2;' Xyl X _\/VEJF 2 e 80.15—§0.77+20.62.
Sl E T A

Problem 3.8 By expansion in Cartesian coordinates, prove:
(a) the relation for the scalar triple product given by (3.29), and
(b) the relation for the vector triple product given by (3.33).

Solution:
(a) Proof of the scalar triple product given by Eq. (3.29): From Eg. (3.27),

A x B =X(AyB, — A;By) + Y(A;Byx — AB;) + Z(ABy — AyBy),
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B x C = X(ByC; —B,Cy) +¥(B,Cx — BxC;) + Z(B«Cy — By,Cy),
C X A - ;((CyAz - Csz) + y(CzAX - CxAz) + 2(CxAy - CyAx).

Employing Eq. (3.17), it is easily shown that

A- (B x C) = Ay(ByC; — B,Cy) + Ay(B,Cx — BxC;) + Az(BxCy — ByCy),

B (C x A) = By(CyA; —C,Ay) + By (C,Ax — CxA;) + B, (CxAy — CyAy),

C - (A X B) = Cx(AyBZ —_— Asz) +Cy(Asz —_— Asz) +C2(AxBy - AyBx),
which are all the same.

(b) Proof of the vector triple product given by Eq. (3.33): The evaluation of the left
hand side employs the expression above for B x C with Eq. (3.27):

— )A((Ay(Bny - Bny) - Az(BzCX - Bxcz))
+Y(A:(B,C; — B,.Cy) — Ax(B«Cy — ByCy))
+ 2(Ax(BCx — BxC;) — Ay(ByC; — B,Cy)),
while the right hand side, evaluated with the aid of Eq. (3.17), is
+9(By(AxCx +A,C;) —Cy(AxBx +A;B;))

By rearranging the expressions for the components, the left hand side is equal to the
right hand side.

Problem 3.9 Find an expression for the unit vector directed toward the origin from
an arbitrary point on the line described by x =1 and z = 2.

Solution: An arbitrary point on the given line is (1,y,2). The vector from this point
to (0,0,0) is:

A=X0-1)+9(0—-y)+2(0—-2) =X -y —22,

Al=V1+y2+4=1/5+y2,
LA —K-gy-22

Al /Bry?
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Problem 3.10 Find an expression for the unit vector directed toward the point P
located on the z-axis at a height h above the x-y plane from an arbitrary point
Q(x,y,—3) in the plane z = —3.

Solution: Point P is at (0,0,h). Vector A from Q(x,y, —3) to P(0,0,h) is:

A=R(0-xX) +9(0—y) +2(h+3) = —%x— Yy + 2(h+3),
Al =[P +y?+ (h+3)7Y/2,
A —Rx—9y+2(h+3)

a= Al T 2+y2+ (h+3)q2°

Problem 3.11 Find a unit vector parallel to either direction of the line described by

2X+z=4.

Solution: First, we find any two points on the given line. Since the line equation
is not a function of y, the given line is in a plane parallel to the x-z plane. For
convenience, we choose the x-z plane withy = 0.

Forx =0, z=4. Hence, point P is at (0,0, 4).

Forz=0, x=2. Hence, point Q is at (2,0,0).

Vector A from P to Q is:

A=%(2—0)+§(0—0)+2(0—4) =%2— 24,
L A _%-4
Al Va0 e

Problem 3.12 Two lines in the x-y plane are described by the expressions:

Line 1 X+2y =—6,
Line 2 3x+4y =8.

Use vector algebra to find the smaller angle between the lines at their intersection
point.
Solution: Intersection point is found by solving the two equations simultaneously:
—2x—4y =12,
3x+4y = 8.
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735 30 25 20 -15-10 (0' 10 E%:s 20 25 30 35
10+ A
154+
Ve
20+ f
254 /4 AB
304

Figure P3.12: Lines 1 and 2.

The sum gives x = 20, which, when used in the first equation, gives y = —13.
Hence, intersection point is (20, —13).
Another point on line 1 is x =0, y= —3. Vector A from (0,—3) to (20,—13) is

A = %(20) + §(—13 4 3) = %20 — 10,
|A| = v/202 + 102 = v/500.
Apointon line 2isx =0, y=2. Vector B from (0,2) to (20,—13) is
B = X(20) + §(—13 —2) = X20 — y15,
|B| = v/20? + 152 = v/625.

Angle between A and B is
A-B 400 + 150
Opg = cos 1 (—) =cos~ ! (7> —10.3°.
AB A[[B] /500 /625

Problem 3.13 A given line is described by

X+ 2y =4.

\ector A starts at the origin and ends at point P on the line such that A is orthogonal
to the line. Find an expression for A.
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Solution: We first plot the given line. Next we find vector B which connects point
P1(0,2) to P,(4,0), both of which are on the line:

B=X(4-0)+9(0—2) =%4—92.
\ector A starts at the origin and ends on the line at P. If the x-coordinate of P is x,

y

\

P02

P49

(0,0) \

Figure P3.13: Given line and vector A.

then its y-coordinate has to be (4 —x)/2 in order to be on the line. Hence P is at
(X, (4—x)/2). Vector A is
oo ofbd—
A=XX+Vy <TX> .

But A is perpendicular to the line. Hence,
A-B=0,
N A
[xx+y(Tx>] -(X4—-92) =0,

4x—(4—x)=0, or

4
=—-=0.8.
X=3
Hence,
4-0.8
A:20.8+§/( > )220.8+§/1.6.

Problem 3.14 Show that, given two vectors A and B,
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(a) the vector C defined as the vector component of B in the direction of A is given

by

c-ae-a) - 20,

where & is the unit vector of A, and
(b) the vector D defined as the vector component of B perpendicular to A is given

by
A(B-A)

D=B-
A2

Solution:
(a) By definition, B - a is the component of B along a. The vector component of

(B-a) along A is

C=a(B-8)= o (B A):A(B‘A)

DA A AR

(b) The figure shows vectors A, B, and C, where C is the projection of B along A.
It is clear from the triangle that

B=C+D,
o A(B-A)
D=B-C=B-— :
|A|2
A
C
D
B

Figure P3.14: Relationships between vectors A, B, C, and D.
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Problem 3.15 A certain plane is described by

2x+ 3y +4z = 16.
Find the unit vector normal to the surface in the direction away from the origin.
Solution: Procedure:

1. Use the equation for the given plane to find three points, P1, P, and P3 on the
plane.

2. Find vector A from P4 to P, and vector B from P, to Ps.

3. Cross product of A and B gives a vector C orthogonal to A and B, and hence
to the plane.

4. Check direction of ¢.

Steps:
1. Choose the following three points:
P]_ at (0,0,4),
P, at (8,0,0)
Psat (0,%,0).

bl

2. Vector A from P, to P,
A=%X(8-0)+y(0—0)+2(0—4)=%8-124
Vector B from P; to P

B=x(0-0)+9 (£ -0) +2(0-4) =9 2 - 24

C=AxB
R (AyB; — A;By) + ¥ (A;By — AB,) + 2 (ABy — AyBy)
X (o-(—4) —(—4)- %6> +9((—4)-0—8-(—4))+2 (8- %6 —0-0)

64 128
493245
3 +Yy32+2 3

Il
)
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Verify that C is orthogonal to A and B

64 128 512 512
AC=(82) 43200+ (2. (—4)) =22_22_p
(:5) + 2o+ (B 0) = 52-5

64 16 128 512 512
BC= (0'?>+(32'?)+(T'(_4)) =3 3¢

e & 493247128 . . .
b - X5y 3 —0.374§0.56+20.74.

Ve e ()

¢ points away from the origin as desired.

Problem 3.16 Given B =X(z—3y) +¥(2x—3z) — Z(x+Y), find a unit vector parallel
to B at point P(1,0,—1).

Solution: AtP(1,0,—1),

Problem 3.17 When sketching or demonstrating the spatial variation of a vector
field, we often use arrows, as in Fig. 3-25 (P3.17), wherein the length of the arrow
is made to be proportional to the strength of the field and the direction of the arrow
is the same as that of the field’s. The sketch shown in Fig. P3.17, which represents
the vector field E = fr, consists of arrows pointing radially away from the origin and
their lengths increase linearly in proportion to their distance away from the origin.
Using this arrow representation, sketch each of the following vector fields:

(@) Ex=—%y,

(b) E2=yx,

() Ez=%Xx+yy,

(d) E4=xXx+9y2y,

(e) Es=gr,

(f) Eg =Trsing.
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<

X

Figure P3.17: Arrow representation for vector field E = fr (Problem 3.17).

Solution:

(@)

E . . E

D D -~ D
- - -~ -~
R - -~ -~ R -~
- - - - - - - -
) X
— — — — — — — —
— — — — — —
—_ —_ —_ —_
_— _— _— _—

> >

E " E

P2.13a E;=-XY



CHAPTER 3

126

(b)

P3.17b: E;

(©

N N
= XX+yy

P2.13c: E,
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(d)

(€)



128 CHAPTER 3

)

P2.13f: Eg= f sing

Problem 3.18 Use arrows to sketch each of the following vector fields:
(@) E1=%x—Yy,
(b) Ex=—9,
(c) Ea=Y3,
(d) E4=Tcosq

Solution:



N,

- a0 —p ——p ——p X
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(©
y
4y X
AE
x \
;iiiiuvvvvv: H¥$1it y
H XAAAAAH
Yy 1
v Y "x x Indicates |E| isinfinite
P2.14c: E;= y (1/X)
(d)
y
\E fE
< N Ao
N /:/' g
—E>—> —\\l‘ —_— X
-7
S
A NN
e/ N xg
/ \
AE \E

P2.14d:E,= /r\cosq)
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Sections 3-2 and 3-3: Coordinate Systems

Problem 3.19 Convert the coordinates of the following points from Cartesian to
cylindrical and spherical coordinates:

(a) P1(1,2,0),

(b) P2(05052)1

(C) P3(17173)'

(d) P4(—2,2,-2).

Solution: Use the “coordinate variables” column in Table 3-2.
() In the cylindrical coordinate system,

P. = (v12+ 22,tan 1 (2/1),0) = (v/5,1.107 rad, 0) ~ (2.24,63.4°,0).

In the spherical coordinate system,

P; = (V12422402 tan~(1/12422/0),tan"1(2/1))
= (v/5,11/2 rad, 1.107 rad) ~ (2.24,90.0°,63.4°).

Note that in both the cylindrical and spherical coordinates, @is in Quadrant I.
(b) In the cylindrical coordinate system,

P, = (/024 02,tan 1(0/0),2) = (0,0 rad,2) = (0,0°,2).
In the spherical coordinate system,

P, = (v/024 02+ 22 tan~1 (1/02 4+ 02/2),tan~1(0/0))
= (2,0 rad,0 rad) = (2,0°,0°).

Note that in both the cylindrical and spherical coordinates, @ is arbitrary and may
take any value.
(c) In the cylindrical coordinate system,

P3= (V124 12,tan"1(1/1),3) = (v/2,m/4 rad,3) ~ (1.41,45.0°,3).
In the spherical coordinate system,

P = (V12412432 tan" 1 (1/12 4+ 12/3), tan"1(1/1))
= (v/11,0.44 rad, /4 rad) ~ (3.32,25.2°,45.0°).

Note that in both the cylindrical and spherical coordinates, @is in Quadrant I.
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(d) In the cylindrical coordinate system,

Py=(\/(—2)*+22tan"1(2/ — 2),—2)

= (2v/2,31/4 rad, —2) ~ (2.83,135.0°, —2).

In the spherical coordinate system,

Py= (\/(—2)2+22+ (—=2)% tan~ 1 (y/(—2)%+ 22/ —2),tan"1 (2/ — 2))
= (2V/3,2.187 rad, 31/4 rad) ~ (3.46,125.3°,135.0°).

Note that in both the cylindrical and spherical coordinates, @is in Quadrant I1.

Problem 3.20 Convert the coordinates of the following points from cylindrical to
Cartesian coordinates:

(@) Pi(2,1/4,-2),

(b) P2(3,0,—-2),

(c) Ps(4,m3).
Solution:

(@)
. m,_ . T
P1(x,y,2) = Pi(rcos@,rsing,z) = Py (2cos Z,Zsm Z,—Z) =P;(1.41,1.41,-2).

(b) Pa(x,y,2) = P2(3c0s0,3sin0, —2) = P(3,0,—2).
(c) P3(x,y,z) = P3(4cosm4sinT, 3) = P3(—4,0,3).

Problem 3.21 Convert the coordinates of the following points from spherical to
cylindrical coordinates:

(a) P1(5,0,0),
(b) P2(5,0,m),
(c) P5(3,11/2,0).
Solution:
@)
Pi(r,@ z) = P1(RsinB,@,Rcos0) = P1(5sin0,0,5c0s0)
= P4(0,0,5).

(b) Pa(r,@,z) = Po(5sin0,1,5c050) = P,(0,115).
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(€) Ps(r,@.2) = Ps(3sinJ,0,3c0s ) = P5(3,0,0).

Problem 3.22 Use the appropriate expression for the differential surface area ds to
determine the area of each of the following surfaces:

@ r=3 0<e<1/3; —2<2<2,

(b) 2<r<5; W2<@<m z=0,

() 2<r<5; p=1/4; —2<12<2,

(d R=2;0<06<T1/3;, 0< <™

() 0<KR<5 6=1/3;, 0<@<2m
Also sketch the outlines of each of the surfaces.

Solution:
y A
5 2
(b) (©)
(d) (e

Figure P3.22: Surfaces described by Problem 3.22.

(a) Using Eq. (3.43a),
2 /3 3 2
A= [ Dlsdedz= (EeS)[_,=an
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(b) Using Eg. (3.43c),

5 ,m m 21m
_ — ((Lr20)° el
A= [, Olododr= (GrolL,)|, ="

(c) Using Eq. (3.43b),

A= [ ] @lemadraz= ()2 )

(d) Using Eg. (3.50b),

5
=12.
r=2

/3 3 _
/(p:O R?sin®)[._,dpdd = (( 4¢cos )| )‘(p: =21

(e) Using Eq. (3.50c¢),

B 102, i 1[ 21
A_/R O/ (Rsin6)|g_ry3d@dR = ((2R (psm3)‘(p:0)

Problem 3.23  Find the volumes described by
(@ 2<r<5 m/2<e<m 0<2<2,
(b) 0<KR<5 0<0<T/3; 0< <21
Also sketch the outline of each volume.

V4 V4
_._ 5
2
/ > 5 y é‘y
()

@

> 25/3m
R=0 2 .

Solution:

X

Figure P3.23: Volumes described by Problem 3.23 .

(a) From Eq. (3.44),

V:/Zio/q:n/z/:zrdrd(pdz:<(( (pz)| )

Tt
=17 2)
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(b) From Eq. (3.50e),
2n /3 5
V= / R2sinBdRdOdo
9=0J6=0 JR=0
T[/3 21
1251

RS\ °
( (— oS G?(p>

R=0> 8=0

Problem 3.24 A section of a sphere is described by 0 <R <2, 0 <6< 90°, and
30° < @< 90°. Find:
(a) the surface area of the spherical section,

(b) the enclosed volume.
Also sketch the outline of the section.

Solution:

z

i S

' ~s

Vi A3

‘Q

] \‘

(]

.
: N
3 -
[] ’ y
.
’

] ’O

I .

1 ’

] ,"

X -
@=30° /I

Figure P3.24: Outline of section.
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/2 /2
S= R2sin@8dBd@lr—2
@=1/6/6=0
o (T [ coso™2] —ax T4 (2
_4(2 6)[ cos 8|, ]_4x3_ (m?),
2 /2 /2
vz/ / R2sinBdRdOdo
R=0J ¢=1/6/6=0
R32/m m w2, 8T 8m
= —| (z—=)[-cosBly =775 =— (md).
3 0(2 6) 0 33

Problem 3.25 A vector field is given in cylindrical coordinates by
E = frcos @+ @rsin@+ 222,

Point P(2, Tt 3) is located on the surface of the cylinder described by r = 2. At point P,
find:

(a) the vector component of E perpendicular to the cylinder,

(b) the vector component of E tangential to the cylinder.

Solution:
(@ En=7(f-E)="1[f- (?rCOS(p+&Jrsin @+ 22%)] = frcos@.
AtP(2,13), E,=f2cosTt= —f2.
(b) E;=E—En=@rsing+ 2z2.
At P(2,1,3), E; = @2sinTi+ 232 = 9.

Problem 3.26 At a given point in space, vectors A and B are given in spherical
coordinates by
A=R4+02—q
B=—R2+¢3.
Find:
(a) the scalar component, or projection, of B in the direction of A,

(b) the vector component of B in the direction of A,
(c) the vector component of B perpendicular to A.

Solution:
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(a) Scalar component of B in direction of A:

A A o~ (RA+62—0)
C=B-a=B-— =(—R24+@3) - ———"
A ( %) V16+4+1
—8-3 11
= =— =-2.4.
V21 V21
(b) Vector component of B in direction of A:
5 C o anian o (=24)
C=a8C=A—=(R4+02—
A=l O

= —(R2.09+61.05—0.52).

(c) Vector component of B perpendicular to A:

D=B-C=(—R2+q3)+ (R2.09+81.05—0.52)

—R0.09+61.05+(2.48.

137

Problem 3.27 Given vectors
A = t(cos @+ 3z) — @(2r + 4sin ) + 2(r — 22),
B = —fsin@+Zcosq,

find

(@) Oap at (2,11/2,0),
(b) aunit vector perpendicular to both A and B at (2,11/3,1).

Solution: It doesn’t matter whether the vectors are evaluated before vector products
are calculated, or if the vector products are directly calculated and the general results

are evaluated at the specific point in question.
(@) At (2,1/2,0), A= —@+22 and B = —F. From Eq. (3.21),

A-B 0
Bpg = COs * (ﬁ) =cos ! (E) =90°.

(b) At (2,1/3,1), A=t —@4(1+ 3v/3) and B= —#1v/3+21. Since Ax B is
perpendicular to both A and B, a unit vector perpendicular to both A and B is given

by

AxB _ | F(=4(1+3v9)(3) —9()(3) —2(4(1+3VB3)(3v3)

[AxB|

~ F(70.487 + 0.228 + 70.843).

VA3V + (D)2 + B +2v3)
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Problem 3.28 Find the distance between the following pairs of points:
(@) P1(1,2,3) and Po(—2,—3,—2) in Cartesian coordinates,
(b) Ps(1,11/4,3) and P4(3,11/4,4) in cylindrical coordinates,
(c) Ps(4,11/2,0) and Pg(3,11,0) in spherical coordinates.

Solution:

(a)
d=[(—2—1)2+(—3—2)2+ (—2—3)% 2 = [9+ 25+ 25)%/2 = \/59 = 7.68.
(b)

d = [r34r? —2rirpcos(@ — @) + (2o — 21) 32
= [9+1-2x3x1xcos(7— 1) +(4-3)7
=(10-6+1)Y2=5Y2=224.

©
d = {R3 + RZ — 2R1R,[c0s B, C0s B; + Sin B 5in B, O — 1 )]} /2
= {9+ 16—-2x3x4 [cosncongrsin gsinncos(O— 0)] }1/2
= {9+16—0}2=y/25=5.

Problem 3.29 Determine the distance between the following pairs of points:
(@ P1(1,1,2) and P,(0,2,3),
(b) P3(2,11/3,1) and P4(4,11/2,3),
(c) Ps(3,1,11/2) and Ps(4,11/2,11).

Solution:
(a) From Eq. (3.66),

d= \/(0—1)2+(2—1)2+(3—2)2:\/§.

(b) From Eqg. (3.67),

d= \/22+42—2(2)(4) cos (g— g) +(3—-1)>=1/24—8V3~3.18.
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(c) From Eq. (3.68),

Tt Tt T
— (32442 = inTIsin — —)) =
d= \/3 +42—-2(3)(4) (cos 5 COS TT+ SiNTtSin 5 COS (T[ )) 5.

Problem 3.30 Transform the following vectors into cylindrical coordinates and
then evaluate them at the indicated points:

(@ A=X(x+y) atPi(1,2,3),

(b) B==X(y—x)+¥(x—y) atPs(1,0,2),

(©) C=%y?/(x*+y%) —9x?/(x®+y?) + 24 at P3(1,-1,2),

(d) D= Rsm9+6cose+(pc032(p at P4(2,1/2,11/4),

(e) E = Rcos@+ Osin@+@sin6 at Ps(3,71/2, ).

Solution: From Table 3-2:

(@)
A = (fcos@— @sin@)(rcos @+ rsing)
= Frcos @(cos @+ sin@) — (brsin(p(coscp+sin<p),
Py = (v/12+22,tan 1(2/1),3) = (v/5,63.4°,3),
A(Py) = (F0.447 — ©0.894)/5 (.447 +.894) = 71.34 — 92.68.
(b)

B = ( cos @— @sin @) (rsin @— rcos @) + (9cos e+ sin @) (r cos e— rsing)
= Pr(2sincos @— 1) + @r(cos? — sin?@) = Fr(sin2¢— 1) -+ @r cos 2q,
P, = (/124 02,tan 1(0/1),2) = (1,0°,2),
B(P,) = —T+@

(©)

~ 2¢in2 ~ 2 5
C = (Poosg—sing)- Srlg ®_ (@cosg+sing) 5 2424

— Psingcos (sin p— cos @) — @(sin® -+ cos® @) + 24,
Ps=(\/12+ (-1) tan"1(~1/1),2) = (V/2,—-45°,2),
C(Ps) = 70.707 + 24.
(d)
D = (#sinB-+ 2cos 6) sin B+ (F cos 6 — 2sin B) cos B+ Pcos® @ = ¥ + Pcos? ,
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Py= (23 r1( T/2),1y/4,2¢08 (1/2)) = (2,45°,0),
D(Pa) =F+

(€
E = (FsinB+ 2cosB) cos @+ (#cos8 — 25sin B) sin @+ @sin?e,
Tt
P5:(37§7 )a
— (tsin 45005 " Poos N 5sin V) sinTit @sin? X = 4 q
E(P5)_(rsm2+zcosz)cosn+(rc032 25|n2)smn+(psm 5= r+o.

Problem 3.31 Transform the following vectors into spherical coordinates and then
evaluate them at the indicated points:
(@) A=Ry?>+9xz+24 atPy(1,-1,2),
(b) B=9(+y?+7%) —2(x*+Yy?) at P»(—1,0,2),
(c) C=rtcos@—@sinp+2zcos@sing at P3(2,1/4,2), and
(d) D =8y?/(x®+y?) —9x%/ (x> +y?) + 24 at P4y(1,—1,2).
Solution: From Table 3-2:
(@)
— (RsinBcos g+ Bcos B cos p— @sin @) (RsinBsing)?
+ (RsinBsin @+ Bcos Bsin @+ pcos @) (Rsin Bcos @) (Rcos H)
+ (Rcos® —Bsin6)4
= R(R?sin?Bsin @cos ¢(sin Bsin ¢+ cos 6) + 4cos 6)
+68(R?sinBcos Osin gcos ((sin Bsin @+ cos6) — 4sinB)
+(pR sin®(cos 8cos? p—sinBsin® @),

P = (\/12+(—1)2+22,tan_1( 12+(—1)2/2) ,tan_l(—l/l))
— (v/6,35.3°,—45°),
A(Py) ~ R2.856 — 02.888 + ¢2.123.

(b)

(RsinBsin @+ BcosBsin @+ @cos )R? — (Rcos B — BsinB)R?sin?6
:IA? R?sin B(sin g— sinBcos 6) + BR?(cos Bsin @+ sin6) -+ PR?cos @,

Po= (Vcvt+one 2zt (/o 072) -t 0/(-1)

= (v/5,26.6°,180°),
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B(P;) ~ —R0.896 +60.449 — ¢5.

(©
C = (Rsin B+ 8cos 6) cos p— @sin @+ (RcosB — BsinB) cos gsin @
= Rcos @(sin 4 cos Bsin @) -+ Bcos @(cos 6 — sinBsin ) — @sin g,
Py = (V224 2%, tan"* (2/2),1/4) = (2V/2,45°,45°),
C(Ps) ~ R0.854 +80.146 — 0.707.
(d)

R2sin?0sin @
R2sin?0sin® @+ R2sin®0cos2 @

R2sin®0cos2 @
R2sin?@sin® @+ R2sin0cos2 @

D = (Rsin Bcos @+ B¢cosO.cos p— @sin (0)

— (RsinBsin @+ Bcos Osin -+ Pcos )

+ (RcosB—Bsin6)4

= R(sinBcos @sin? @— sinBsin gcos? @+ 4cosh)
+6(cosBcos @sin® g— cos Bsin pcos? p— 4sin )
— @(cos® @+sin® @),

Pa(1,—1,2) = Py [\/1+ 114,tan Y(viT 1/2),tan’l(—1/1)]
= P4(/6,35.26°, —45°),

D(P4) = R(sin35.26° cos45° sin?45° — sin35.26° sin(—45°) cos?45° + 4.c0s35.26°)
+6(c0s35.26° 05 45° 5in45° — c05 35.26° sin(—45°) c0s? 45° — 45in 35.26°)
— @(cos®45° + sin®45°)
=R3.67—01.73 — ¢0.707.

Sections 3-4 to 3-7: Gradient, Divergence, and Curl Operators

Problem 3.32  Find the gradient of the following scalar functions:
(@) T=3/(*+2),
(b) V = xy?z%,
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(€) U =zcosq@/(1+r?),
(d) W =eRsin8,

(e) S=4x2e2+y3,

() N =r?cos?q,

(g) M =RcosBsinq.

Solution:
(a) From Eq. (3.72),

A 6X . 6z
OT = —X > —2 5 -
(@+29)° (422

(b) From Eq. (3.72),
OV = Ry?z* + §2xyz* + 24xy?z>.
(c) From Eq. (3.82),

L2rzcos@ -~ zsin@ . COSQ

U = —¢ —~ :
(1+7r2)? YA e

(d) From Eqg. (3.83),
OW = —Re Rsin8+8(e R/R)cosb.

(e) From Eq. (3.72),

S=4x%e 2 +y3
0S 0S 0S
OS=X— +§— +2— = x8xe~ 2+ y3y* — 24x%eZ.
0x Y oy + 0z Yoy

(f) From Eq. (3.82),

2 nne2
N = r<cos“q,

.ON ~10N _ON Al
ON=F=C+Q- - +2-= F2r cos? p— @2r sin (cos .

or r oQ 0
(9) From Eq. (3.83),
M = Rcos8sin¢,
_AOM 210M ~ 1 OM . : A Aok ~ COS (@
OM = Ra—R +6E ¥ —|—(pm 0 Rcosesmcp—esmesmcp—k(pm.
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Problem 3.33 The gradient of a scalar function T is given by
OT =2¢ %

IfT =10atz =0, find T(z).

Solution:
OT = 2e~ %,

By choosing P; at z =0 and P, at any point z, (3.76) becomes

/DT dl = / e~ . (XdX' + §dy’ +2dZ')

37 |*
' —e
:/ e ¥d = —
0 3

1—e & :10+1 1—e™ %),
3

Hence,

Problem 3.34 Follow a procedure similar to that leading to Eq. (3.82) to derive the
expression given by Eq. (3.83) for [ in spherical coordinates.

Solution: From the chain rule and Table 3-2,

aT L 0T aT

Ol =X +V5y 2%,
4 0T dR aT 00 4 oT 09
OR 9x 69 ox 0@ 0x

<>

OTIR T30 3T g
(OR ay a8 6y+6<p6y>
GTOR 9T 30 T dg
<6R oz 98 az+6(paz)

m%a_tan (VL) + St 0/

N)

!
/—\
(o8
5| S
2|

—

T 0 oT

/Xy 2 212 90 Y tan?
(aRa X2 +y2+z +aea tan~t (v/x2 +y2/2) + 0 0 tan (y/x))
T 0 N oT >

2\ R VX2 y2 422 +a—a— L(Vx2+y2/2) +——tan Yy/x)
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—(

(3]

T X aT X aT -y
\/x2+y2+22 a9><2+y2+22\/x2+y2 09 X2 +y?

<)

oR

LTz y 0T x

x2+y2+22 a9><2+y2+22\/x2+y2 0Q X2 +y?
aT

/x2 vz o

( X2+y2+22 69X2+y2+22 Xy 0)

a_T sinBcosq 0T Rcos6 Rsmecoscp+ 0T —RsinBsin@

oR R 90 RZ2  Rsind 09 R2sin’0

(aT Rsmesm(p 0T RcosORsinBsing AT Rschoscp)

A

69 R2 Rsin® Jracp R2sin%0
aTRcose aT Rsme)

dR R R2

4 (aR sinBcos o+ O aT cosBcosqp 0T —smcp)

00 R T 0@ RsinB
+9 a—Tsmesm + —

0T cos@sing 4T cos@
00 R acp Rsin®

43 aTcose-l-aT —sin@
R M R

= (XsinBcos @+ ysinBsin @+ ZcosH) g;

+ (XcosBcos @+ §cosOsin@— 2sinB) é g(Ta
oT

Rsin® dg
—éa_T_Fela_T_F(pA ! a_T
OR  "RAO TRsinBIgp’

which is Eq. (3.83).

+ (—Xsin@+ ycos @)

Problem 3.35 For the scalar function V = xy? — z?, determine its directional

derivative along the direction of vector A= (X—9z) and then evaluate it at
P(1,—1,4).

Solution: The directional derivative is given by Eq. (3.75) asdV /dl =[OV - &, where
the unit vector in the direction of A is given by Eqg. (3.2):

X—Vyz

Vit+22’

a =
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and the gradient of V in Cartesian coordinates is given by Eq. (3.72):

[V = Ry? + §2xy — 22z.
Therefore, by Eq. (3.75),

v y*—2xyz
dl V1422
AtP(1,-1,4),
dV) 9
— = —=2.18.
(0” (1-14 V17

Problem 3.36 For the scalar function T = %e—r/E’coscp, determine its directional
derivative along the radial direction ¥ and then evaluate it at P(2,11/4,3).

Solution:
T= %e‘r/f’coscp,
0T ~10T 0T e "/5cosp ~ePsing
OT =r— - — —_— = —
or +q)r a(p+zaz TV ¢ 2r
dT . e "/5cos
F T TR
e=2/5cos I
dT _ S T Pa . a74x10°2
a2 mag) 10

Problem 3.37 For the scalar function U = £sin?@, determine its directional
derivative along the range direction R and then evaluate it at P(5,11/4,11/2).

Solution:
U= %sinze,
U :ﬁg_l;‘ké%g_:Jr(bﬁg% :_ﬁsi?;e_éZsinicose,
%—LIJ:DU-F“e:—SigZe,
du __sin’(1/4)

habetl — = —0.02.
dl |5, ry/4m/2) 25
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Problem 3.38 Vector field E is characterized by the following properties: (a) E
points along R, (b) the magnitude of E is a function of only the distance from the
origin, (c) E vanishes at the origin, and (d) O-E = 12, everywhere. Find an expression
for E that satisfies these properties.

Solution: According to properties (a) and (b), E must have the form

E = RER
where Eg is a function of R only.
10
0-E=— — (R?ER) =12
reor (R ER) =12

% (R%ER) = 12R?,

/Ri(R2E )dR—/R12R2dR
o OR T o ’

12R3 R
RZEng = )
3 0
R%Eg = 4RS.
Hence,
Er = 4R,
and
E = R4R.

Problem 3.39 For the vector field E = Xxz — §yz2 — 2xy, verify the divergence
theorem by computing:

(a) the total outward flux flowing through the surface of a cube centered at the
origin and with sides equal to 2 units each and parallel to the Cartesian axes,
and

(b) the integral of (- E over the cube’s volume.

Solution:
(a) For a cube, the closed surface integral has 6 sides:

7£ E - ds = Frop + Foottom + Fright + Feft + Front + Foack;
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1 1
Frop = /X.—l/Y—l ()A(XZ a 9}/22 - 2Xy) |z:1' (zdydx)

1 1 22\ |1 1
—/ / xydydx = (ﬂ) =0,
x=—1Jy=—1 4 y=1/)|,__4
1 T, i
Foottom = / / (% —9yz* —2xy)|,_ ,-(—2dydx)
x=—1Jy=—-1
1 1 22\ (1 1
= / / xydydx = (ﬂ) =0,
=—1Jy=—1 4 y=1/)|,__4
Fright —/ / (fxz —yz —zxy)| - (§dzdx)
=—1J=21
3 —
——/ / 22dzdx = — (£> :—4,
=—1J1=-1 3 /)= .
Reft = / / (&xz — 9yz® — 2xy) | ,__ ydzdx)
=—1Jz=—1 y=
3 —
——/ / 22dzdx = — (£> :—4,
=—1Jz=—1 3 )l . 3
Front = / / XXZ — yyz — ny) | (Xdzdy)
“1Jz=1

=0,

L e () i_l)

= [ [ a9y 20)],_ (~xdzay)

(G|

—4 —4 —8
%E-ds_0+0+?+?+0+0—?.

=0,
-1
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(b)

1o 1
// D-Edv:/ / / O-(%xz — §yz% — 2xy) dzdy dx
x=—1Jy=-1Jz=-1
1o
:/ / / (z—1z%) dzdydx
x=—1Jy=-1J7=-1

(G- =

Problem 3.40 For the vector field E = f10e~" — 23z, verify the divergence theorem
for the cylindrical region enclosed by r=2, z=0, and z = 4.

Solution:

2 21
7.éE-ols:/ / (P10 —232) - (—2rdrdg)) |, ,
r=0J¢=0 -

4
/ ((f10e™" —232) - (frdedz))|,_,
z=0 -
n / / (106"~ 232) - (2rdrdg)) |,
r= O -

21
=0+ 10e 22d(pdz+/ / —12rdrdg
=0 =0

— 160TR 2 — 48TT~ —82.77,

// D.Edq/:/z;/r 0/ <10e—r - 3>rd(pdrdz

2
= 8n/ (10e~"(1—r)—3r)dr

r=0
2

3 2
=8m (—10e_r +10e~"(1+47r) — %)

r=0
— 160TE % — 48Tt~ —82.77.

Problem 3.41 A vector field D = fr2 exists in the region between two concentric
cylindrical surfaces defined by r = 1 and r = 2, with both cylinders extending
between z = 0 and z = 5. Verify the divergence theorem by evaluating:

@) féD-ds,
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(b) /q/D-Dde.

Solution:

(@
/ D - ds = Finner + Fouter + Foottom + Ftops
mne,_/ /zo Pré) - (—frdzde))|,_,
/Z , (—r*dzdg)|,_, = —10m,
Fouter_/ / ((7rd) - (frdzde)) | _,
z=0
/ (r*dzdg)|,_, = 160m,
Fbottom—/r / (—2rdedr))|,_, =0,
Fmp:/r 1/ ) (zrdedr))|,_s=0.

Therefore, [/D-ds= 150t
(b) From the back cover, 0-D = (1/r)(8/ar)(rr®) = 4r2. Therefore,

5 2n 2 2n 5
. _ 2 _ 42
// 0-Ddv /zzo/q):o r:l4r rdrdedz (((r )\r:1> (p:())

=0
Problem 3.42 For the vector field D = R3R2, evaluate both sides of the divergence
theorem for the region enclosed between the spherical shells defined by R = 1 and
R=2.

Solution: The divergence theorem is given by Eq. (3.98). Evaluating the left hand

side:
2 2 2 ai
/DDde / /GO/R 1(R26R (R2(3R )))R sinBdRdBdo

— 2m(—cos8)|%_ (3RY)|>_, = 180T

= 1501t
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The right hand side evaluates to

7£D ds = (/ /eo RR25|n6d9d(p))
</ N O (R3R?). (RR23|n6d9dcp))

= —2TT 3sin6d9+2n 48sin0d6 = 180Tt
8=0 8=0

R=1

R=2

Problem 3.43  For the vector field E = &xy — §(x? + 2y?), calculate
@ 7£ E - dl around the triangular contour shown in Fig. P3.43(a), and
C

(b) /(D x E) - ds over the area of the triangle.
s

Solution: In addition to the independent condition that z = 0, the three lines of the
triangle are represented by the equations y = 0, x =1, and y = X, respectively.

b o

(b)

Figure P3.43: Contours for (a) Problem 3.43 and (b) Problem 3.44.

()
jéE"“ =Li+La+Ls,
L1=/(>‘<xy—>7(><2+2y2))-(>‘<dx+ydy+2dz)

1 0 0
2 o2
:/X:O (Xy)|y:o’z:0d)(—/y;0 (x*+2y )|Z:0dy+/2:0 (0)]y—odz =0,
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Lz=/(>‘<xy—>7(x2+2y2))-(>‘<dx+ydy+2dz)

1 1
:~/x:1 (XY)|Z:0dX—/: (X +2y )‘x 1z= 0dy+/ |x 1

_ 23\ |*
=0 (1+%)

y=0
L3=/(>‘<xy—>7(x2+2y2))-(>‘<dx+ydy+2dz)

0 0
= [ 0 ot [+, gty [ Ol
2

X= —
%3\ |°
:(3> 3

Therefore,

-5
0=—
+ 3

0
- (y3) ‘y:l—i_o =

x=1

5 2
E-dl=0—-+=-=-1.
7£ 313

(b) From Eq. (3.105), OxE = —23x, so that

//DXE ds_/ / —23x) - (zdydx))|,_o
x=0.Jy=0

X
=— 3xdydx=— [ 3x(x—0)dx Y-
/xOyoxyX / XX ) (X)‘O

Problem 3.44 Repeat Problem 3.43 for the contour shown in Fig. P3.43(b).
Solution: In addition to the independent condition that z = 0, the three lines of the
triangle are represented by the equations y = 0, y = 2 —x, and y = X, respectively.

(@)
7£E-d|:L1—I—L2—I—L3,

L1=/(*XV—V(X2+2y2))-(>“<dx+ydy+2dz)
2 0
:/x:o 09)ly-02-0 0% - y=0 (X +2y%) [, ody+/ 0)ly—odz =0,

Lo= /(ﬁxy—il(xz+2y2)) - (Rdx+ 9 dy +2dz)
1

1
= - (XY)|20,y2_de—‘/y:0 (X + 2y )|x 2—yz= 0dy+/ |y oy dz

1

—11
— (4y—2y? +y)| Lot 0=—5",
X=2
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= [ (Rxy—9(x®+2y?)) - (Rdx+§dy +2dz)
0 0

=/ (V) [y z—0 dX — /y: (x+2y%)|,_ Ly Ody+/ 0)ly—y d
x3 2

- (3) )bato=3

Therefore,

2
E-dl=0- 2 42= 3
f it

(b) From Eq. (3.105), OxE = —23x, so that

//DxE-ds:/xiO/y:O((—23x)-(2dydx))|Z:0

+/i1/y: ((~23%) - (2dyd¥))],_q

1 X 2 2—x
:—/ 3xdydx—/ / 3xdydx
x=0Jy=0 x=1Jy=0

1 2
:—/X:O3x(x—0)dx—/X l3x((2—x)—0)dx
=~ (F)|o— (B[, =3

Problem 3.45 Vferify Stokes’s theorem for the vector field B = (¥rcos @+ (i)sin [0)
by evaluating:

@ 74 B - dl over the semicircular contour shown in Fig. P3.46(a), and
C

(b) /(D x B) - ds over the surface of the semicircle.
S

Solution'

7£B di= [ Bodit [ Bedlt [ Bod,
Ly Lo

B-dl= (rrcoscp+(psm o) - (rdr+(prd(p+2dz) =rcos@dr+rsinede,

2 0
B-dl= (/ rcoscpdr) + (/ rsincpdcp)
Ly r=0 =0, z=0 =0

- ()o0-2

=0
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y

2 L 2 L
ARWEN
g g X O—p 75—~
@) (b)
Figure P3.46: Contour paths for (a) Problem 3.45 and (b) Problem 3.46.

r=2, z=0

2 s
B-dl= (/ rcoscpdr) + (/ rsin(pd(p)
Lo r=2 7—0 ¢=0

=04 (—2c0s Q) |0 = 4,
0 T
B-dl= / rcoscpdr) +</ rsin(pd(p)
L3 r=2 @=mz=0 =Tt
= (-3) | +0=2

jéB-dI:2—|—4+2:8.

=0

(b)
OxB = Ox(frcos @+ @sing)

(10 0, . ~ (0 0
_r<Fa—(pO—a—Z(sm(p)>+(p<a—z(rcoscp)—go)

+2% (%(r(sin 9)— %(rcoscp))

= P04 §0+ 27 (sing+ (rsing)) = 2sin(p(1+ %) ,

//DxB-ds:/q:O/:o (2sincp(1-|—%>> -(Zrdrdeg)

:/(pzo/riosin(p(rJrl)drd(P: ((~cosa3r+1)[,)

s
=8.
=0

Problem 3.46 Repeat Problem 3.45 for the contour shown in Fig. P3.46(b).

Solution:
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(@)
%B«ﬂ: BdL+/[}dH— B-dl+ [ B-dI,
L1 Lo L3 L4
B-dI:(l“’rcoscp+fpsin(p)-(fdr+fprd(p+2dz) =rcos@dr+rsin@de,
2 0
B-dl= (/ rcoscpdr) + (/ rsin(pd(p)
L1 r=1 @=0, z=0 ¢=0 z=0
1.2\ 2 3
= (3r)[j, +0= 2
T/
B-dl= ( rcoscpdr) + (/ rsin(pdcp)
L2 7=0 ¢=0 r=2, z=0
=0+ (—2c0sq) [ =2,
/2
B-dl= ( rcoscpdr) + (/ rsin(pd(p) =0,
Ls o=1/2, z=0 ¢=T7/2 =0
0
B-dl= ( rcoscpdr) + (/ rsincpdcp)
La 7=0 ¢=T1/2 r=1, z=0
=0+ (- COS(p)|(p:T[/2: -1
3 5
%B@L_§+2+0—1_§.
(b)
OxB = Ox (frcos @+ @sing)
10 0 0 0
= (Fa—(pO—a—(mn(p)) (p( (rcoscp)—a—o)

//DXB ds

CHAPTER 3

+2% ( 9 (r(sing@)) — %(rcoscp))

}_\

= r0+¢0-|—zF(smcp-|- (rsing)) = 2sin(p(1+ %) ,

o) o

/2
/ sing(r+1)drde
r=1

+1)) ‘5:1)

/2

5

= ((—cosq)(ir >

=0
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Problem 3.47 Verify Stokes’s Theorem for the vector field A = R cose+(bsin 0 by
evaluating it on the hemisphere of unit radius.

Solution: A A A
A = Rcos 0+ @sin 8 = RAR + 0Ag + @A,

Hence, Ar =c0s6, Ag =0, Ap=siné.

L1 0 -
DXA—RW <£(A¢,Sln9)) -0
; 10

- A 10
=Resn098 (sin?@) — 6—aR (Rsin®) — Ea—e(cose)
_§2cose_ésin9+Asin9
B R R ’ R

For the hemispherical surface, ds = RRZsin8d0da.

/2
/ / (OxA)-
6=

2 (R2c0SO AsinB ~sinB\ - 2 .
/ /e ( ~67 o7 )-RR sinBdOde
/2

R=1
sin%0

= 2TL
R=1

0

The contour C is the circle in the x—y plane bounding the hemispherical surface.

o=ry2 = 21

2n 2n
jéA dl = / (RcosB+@sin®) - R do|g_ H/Z_Rsme/ do|

Problem 3.48 Determine if each of the following vector fields is solenoidal,
conservative, or both:

(@) A=Xx>—9y2xy,

(b) B = %x%—9y?+ 22z,

(©) C=t(sing)/r2+@(cosq)/r?,

(d) D=R/R,

) E=T(3— %) +1

() F=&y+9x)/(x*+y?),

(@) G=R(C+2%) —9(y* +x°) —2(y*+2°),
(h) H=R(R e—R).
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Solution:

(@)

O-A = O-(%x% — §2xy) = %xz — (%2xy —2Xx—2x =0,

OxA = Ox (%x% — §2xy)
YA o} (0 5 0 [0 0, 5
_X(ayo az( 2xy))+y(az(x) axo>+z(0x( 2xy) ay(x))
=X0+90—2(2y) #0.

The field A is solenoidal but not conservative.

(b)

a d a
O0B=0-(XC—§y2+227) = —X°— — V2 4+ — 27 =2Xx—2y+2#£0
("~ Yy”+222) = = ay.\/+azz X—2y+2#0,

OxB = Ox (%% — Jy? + 222)

=X (;—y(ZZ) - %(—ﬁ) +9 (%(Xz) - :—X(Zz)) +2 <:—x(—y2) - %(x2)>

= X0+ Y0+ 20.
The field B is conservative but not solenoidal.
(©
.SIN@ ~CcosQ
0.c=0- (I"T +¢T)

10 sing 10 /cosg 0

=_— — —— | == —0
ror (r( r2 >)+r6(p( r2 >+az
—sing —sing —2sin@

:r3—i—r3—|—0: B3

r2

(10 0 [cos@ ~(0d (sing 0

- (Fapt-2 (7)) ol (F°) -a0)
1[0 cos@ d [sing

(3 0(5) (%)

PO S | cosQ cosQ _ ,—2C0sQ

—r0+q)0+zF(—< 2 )—( 2 ))—z 3

The field C is neither solenoidal nor conservative.

OxC = 0Ox (f‘%p—k(p—woscp)
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o [(RY 10 [,(1 1 9, . 1 o0, 1
Ob=0 (ﬁ) “RZR (R (E)) T Rsin6 a8 "0+ BB o’ ~ RE”

=R——s (ai(OSin 6) — a%o) +é% (ﬁa% (%) — a%(R(o))>
+{p% (%(R(o))_ % (%)) — 70+ 60 + ¢0.

The field D is conservative but not solenoidal.

(e)

" r ~
E:r<3——)+zz,
1+r

19 10E, OE,
DE= o B+ 50 T o

2r r2
P L S
[ 1+r+(1+r)2]+
34+3r24+6r—2r—2r2+r2 2r2 4+ 4r+3
+3r24+6r—2r—2r2+r 1:r+r++1#0’
(1+47r)2 r(1+4r)2

= 1 aEZ aE(p ~ aEr aEZ ~ 1 a 1 aEr _
DXE_r(FanE)+"’<E‘W)“(FE“E“’)_FT¢) =0

Hence, E is conservative, but not solenoidal.

)

CRy+Yx oy .
Ty gy T gy

0 y 0 X
=g ()t (i)

—2Xy —2xy

- (X2 +y2)2 + (x2+y2)2 70,
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. X To X 0 y
DXF_X(0—0)+Y(0—0)+Z[& (m) oy <m>]

5 1 ¥ 1 N 2y?
X2+y2 (X2 +y2)2 X2 +y2 (X2+y2)2

5 2(y> —x%)

“oaryz

Hence, F is neither solenoidal nor conservative.

(9)
= R(X* +2%) = 9(y* +X%) — 2(y? + 22),

G
0-G

222_22 2_322
x X )5, X — 5, 747

=2X—2y—27#0,

_A_izzﬂzzAﬂzzizz
DxG_x( ay(y +z)+az(y +x°) ) +9 az(x +Z)+6X(y +79)

5 0 2 2 0 2 2
+2 (=g 624 = 5 04
= —X2y+9y2z—22x #0.

Hence, G is neither solenoidal nor conservative.

(h)
H=R(Re™™),
Dwﬂziniﬂﬁ€ﬁ:>£@W€ﬂ—R%4)ZERB—R)#O
R2 9R R2 ’
OxH=0.

Hence, H is conservative, but not solenoidal.

Problem 3.49 Find the Laplacian of the following scalar functions:
(@) V = 4xy?z3,
(b) V =xy+yz+zx,
(©) V =3/(¢+y?),
(d) V =5e""cosq,
(e) V = 10e Rsin®.

Solution:
(a) From Eq. (3.110), 0?(4xy?z%) = 8xz° + 24xy?z.
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(b) O?(xy+yz+2x) =0.
(c) From the inside back cover of the book,

g (%) =0%@r?) =12r= Lz :
Xty (X +y?)

(d)
02(5e ™" cos@) = 5" cosp( 1 — 1_1).
rr?

(€)

2\  cos?B—sin?0
2(106—R cin @) — 100—R [ <i _£)  cosTu—siny
[04(10e™"sinB) = 10e (sme (1 R) + R2SinG ) .

Problem 3.50 Find a vector G whose magnitude is 4 and whose direction is
perpendicular to both vectors E and F, where E=X+y2—Z72and F =§3—76.

Solution: The cross product of two vectors produces a third vector which is
perpendicular to both of the original vectors. Two vectors exist that satisfy the stated
conditions, one along E x F and another along the opposite direction. Hence,

ExF (R+92—22) x (y3—26)
G=44 — +4 5 A
|Ex F| |(X +y2 22) x (y3—126)]
—:l:4( X6+96+23)
B V3643649

4 o o . 8 .8 .4
—4+_ (—R6+ — (%2492 435-).
9( X6+96+123) ( x3+y3+23)

Problem 3.51 A given line is described by the equation:
y=x—1.

Vector A starts at point P1(0,2) and ends at point P, on the line such that A is
orthogonal to the line. Find an expression for A.

Solution: We first plot the given line.
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AN

3 (01 '1)

Next we find a vector B which connects point P3(0, 1) to point P4(1,0), both of which
are on the line. Hence,

B=X(1—0)+§(0+1) =%+7.

Vector A starts at P;1(0,2) and ends on the line at P,. If the x-coordinate of P is x,
then its y-coordinate has to be y = x — 1, per the equation for the line. Thus, P, is at
(x,x—1), and vector A is

A=X(x—0)4+9(x—1—-2) =KXx+9(x—3).

Since A is orthogonal to B,

A-B=0,
[Rx+9 (x—3)]-(X+9) =0
X+x—3=0

N W

X =

Finally,

A=Xx+§(x—3)

Il
PoS)

Il
P
NlwWw N W
| +
<> <>
Nloo/-\
- N w
|
w
N——
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Problem 3.52 Vector field E is given by
E=R 5Rcose—él—R2 sinBcos @+ @3sin @.

Determine the component of E tangential to the spherical surface R = 2 at point
P(2,30°,60°).

Solution: At P, E is given by
- ~12 . AL
E=R5x2c0s30° — 97 sin30° cos60° + @3sin 60°
—R8.67—01.5+q2.6.

The R component is normal to the spherical surface while the other two are tangential.
Hence, A A
Ei = —01.5+@2.6.

Problem 3.53 Transform the vector
A = Rsin?0cos ¢+ 0 cos?o— @sing
into cylindrical coordinates and then evaluate it at P(2,1/2,11/2).
Solution: From Table 3-2,
A = (f sin@+ 2c0s8) sinBcos @+ ( cos® — 2sin 6) cos? p— @sin @
= 7 (sin®Bcos g+ cos Bcos? @) — @sin P+ 2 (cos Bsin?Ocos ¢— sinOcos? @)

AtP(2,1/2,11/2),
A=—Q.

Problem 3.54 Evaluate the line integral of E = Xx — §y along the segment P; to P,
of the circular path shown in the figure.

P, (0, 3)

P, (-3,0)
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Solution: We need to calculate:

P2
E-de.
P1
Since the path is along the perimeter of a circle, it is best to use cylindrical
coordinates, which requires expressing both E and d€ in cylindrical coordinates.
Using Table 3-2,

P cos p— @sin )r cos @ — (¥ sin @+ Pcos P)rsin @
r(cos? @— sin? @) — g2r sin cos @

The designated path is along the @-direction at a constant r = 3. From Table 3-1, the
applicable component of d# is:

E=%Xx—9yy

de = @r do.
Hence,

P2 ¢=180° ~ ~
/ E-df= [f’r(cosch— sin @) — @2rsin (pcoscp] -Qr d(p‘ ,
Py r=

@=90°
8
= —2r?sin@cos pdq|,_,
o0 =
sin? ™
— —2r2 T — 9
¢=90],—_3

Problem 3.55 \Verify Stokes’s theorem for the vector field B = (T cos @+ (])sin ®) by
evaluating:

(@ 74 B - d£ over the path comprising a quarter section of a circle, as shown in the
c
figure, and

(b) /(D x B) -ds over the surface of the quarter section.
§
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Solution:

(@)

%B-dé:/ B-de+/ B-de+ [ B-de
C Ly Lo L3

Given the shape of the path, it is best to use cylindrical coordinates. B is already
expressed in cylindrical coordinates, and we need to choose d€ in cylindrical
coordinates:

dé = dr+qrdo+2dz

Along path Ly, dp=0and dz=0. Hence, dé = dr and

r=3 R
/B-dﬁ:/ (F cos@+@sing) -t dr
Ly r=0

3
= / cosqdr
r=0 ¢=90°

Along Ly, dr =dz =0. Hence, d¢ = &)r depand

@=90°

3
= rcosq|;_ ‘ =0.
(p|r70 =90°

180° N ~
/ B-dé:/ (fcoscp+tpsincp)-cprdcp‘
Lo @=90° r=3

= —3cos@lay =3.

Along L3, dz=0and dp=0. Hence, d¢ =t dr and

0 ~
B-dez/ f cos sing) - dr
/L 3 r:3( @+ @sing) \(p:lsoo

0
= /r_3 cos@dr|,_qg0 = —rl3=3.
Hence,
%B-de:0+3+3=6.
C

1/0 0B,

(ar (=-5))
(—(rsin(p)—i(cosqa)>
or 0

i ) A2 .
(sin@+sing) = stm(p.

3 180 / 9
/(DxB)-ds:/ / (2—sin(p>-2rdrd(p
S r=0.J@=90° r

= —orf? qJl O =6
= r Cos ‘ =0.
|r_0 90°

(b)

[
X
o
I
N>
oY

I
N>

I
N>
sl sk =]
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Hence, Stokes’s theorem is verified.

Problem 3.56 Find the Laplacian of the following scalar functions:
(@) Vi =10r3sin2¢
(b) V2 = (2/R?)cosBsing

Solution:
@)
10 ((24), 10%
ror 2 o@ ' 922
19/ 0 1 02 3.
=3 (ra—(10r sm2(p)> + —2W(10r sin2¢) +0
10 3. 3,
= FE(%r sin2¢) — ﬁ(lor )4sin2¢@
= 90rsin 2¢p— 40r sin 2¢p = 50r sin 2.
(b)
10 oV, 1 0 oV 1 0,
0V, = = — (R?=2 = (sin6=2 ) + ==
2= R29R ( 6R> + RZsin6 00 ( N85 )  R2sin?6 0@
d

1 20 (2
= RZ3R (R R (R2 cosesmcp))
+71 i nE)i 2 cos0sin
RZsin6 20 FEAGE ¢

+— ! o (2 cos@sin )
R2sin2 0 0P ¢

4 . 4 i
= Ra cosfsin@— Ra cosfsin@— —;

cosO .
R*sin%@

sin@

2 cosOsing
R4 sin2e
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Chapter 4: Electrostatics

Lesson #22
Chapter — Section: 4-1 to 4-3

Topics: Charge and current distributions, Coulomb’s law

Highlights:

e Maxwell’s Equations reduce to uncoupled electrostatics and magnetostatics when
charges are either fixed in space or move at constant speed.

e Line, surface and volume charge distributions

e Coulomb’s law for various charge distributions

Special Illustrations:

e Examples 4-3 and 4-4
e CD-ROM Modules 4.1-4.5
e CD-ROM Demos 4.1-4.8

Demo 4.5: Square with Diagonal Symmetry

6
|
I Given: Four point charges on the
E 1700 o3y corners of a square, with Q| =
SRR R e i -
e At ) Q3 = IC, Elnd Q2 = Q4 = 'lC,
;;;:\:\m Hf:;:/i:: as shown
| #1114 PrEAN XA A A X s :
Ei R A SRRy i _
b e e In this demo, arrows are used
i et S to sketch the electric field
attern in the x-v plane.
P yPp
—6

(rress) to display the graphical and analytical solution.
Note: Color intensity is proportional to the strength of the Electric field.
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Lesson #23
Chapter — Section: 4-4
Topics: Gauss’s law

Highlights:

e Gauss’s law in differential and integral form
e The need for symmetry to apply Gauss’s law in practice
e Coulomb’s law for various charge distributions

Special Illustrations:

e Example 4-6
e CD-ROM Module 4.6
e CD-ROM Demos 4.9 and 4.10

Demo 4.10: Two Concentric Spherical Shells of Opposite Polarity

Given: Two thin, concentric spherical

shells, of radii ¢ and
2a. Positive charge Q is
distributed uniformly over the

x outer shell and negative charge
-Q is distributed uniformly over
the inner shell. Sketch the
electric field pattern in the x-y
plane.

(press) to display the graphical and
analytical solution.
Note: Color intensity is proportional to the strength of the Electric field.



Lesson #24
Chapter — Section: 4-5
Topics: Electric potential

Highlights:
e Concept of “potential”
e Relation to electric field
e Relation to charges
e Poisson’s and Laplace’s equations

Special Illustrations:

e Example 4-7

167
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Lesson #25
Chapter — Section: 4-6 and 4-7
Topics: Electrical materials and conductors

Highlights:
e Conductivity ranges for conductors, semiconductors, and insulators
e Ohm’s law
e Resistance of a wire
e Joule’s law

Special Illustrations:

e Example 4-9
e Technology Brief on “Resistive Sensors” (CD-ROM)

Resistive Sensors

An electrical sensor is a device capable of responding to an applied stimulus by generating an
electrical signal whose voltage, current, or some other attribute is related to the intensity of the
stimulus. The family of possible stimuli encompasses a wide array of physical, chemical, and
biological quantities including temperature, pressure, position, distance, motion, velocity,
acceleration, concentration (of a gas or liquid), blood flow, etc. The sensing process relies on
measuring resistance, capacitance, inductance, induced electromotive force (emf), oscillation
frequency or time delay, among others. This Technology Brief covers resistive sensors.
Capacitive, inductive, and emf sensors are covered

separately (in this and later chapters).

R
A

Piezoresistivity /
According to Eq. (4.70), the resistance of a

cylindrical resistor or wire conductor is given by

R =1/cA), where [ is the cylinder’s length, 4 is its STHETCHG

cross-sectional area, and o is the conductivity of _—
. . ; . . F _’u‘_ F Ft—— (-7
its material. Stretching the wire by an applied

external force causes / to increase and 4 to —_— P FORCE
decrease. Consequently, R increases (A).

Conversely, compressing the wire causes R to "

decrease. The Greek word piezein means to press, F=0

from which the term piezoresistivity is derived.
This should not be confused with piezoelectricity,

R A1. Piezoresistance varies with applied force
which is an emf effect (see EMF Sensors).
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Lesson #26
Chapter — Section: 4-8, 4-9

Topics: Dielectrics, boundary conditions

Highlights:

e Relative permittivity and dielectric strength

e Electrostatic boundary conditions for various dielectric and conductor
combinations

Special Illustrations:

e Example 4-10
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Lesson #27
Chapter — Section: 4-10
Topics: Capacitance

Highlights:
e Capacitor as “charge accumulator”
e General expression for C
e (Capacitance of parallel-plate and coaxial capacitors
e Joule’s law

Special Illustrations:

e Examples 4-11 and 4-12
e Technology Brief on “Capacitive Sensors” (CD-ROM)

Capacitive Sensors

To sense is to respond to a stimulus (see Resistive Sensors). A capacitor can function as a sensor
if the stimulus changes the capacitor’s geometry—usually the spacing between its conductive
elements—or the diclectric properties of the insulating material situated between them.
Capacitive sensors are used in a multitude of

applications. A few examples follow.
TO CAPACITIVE BRIDGE CIRCUIT

Fluid Gauge

The two metal electrodes in (A), usually rods or
plates, form a capacitor whose capacitance is
directly proportional to the permittivity of the
material between them. If the fluid section is of
height H; and the height of the empty space above
it is (H — Hy), then the overall capacitance is
equivalent to two capacitors in parallel:

(wH)  (H— Hy)
d v

AR

FLLUID

TANK ——

C=G+C,=¢

where w is the electrode plate width, d is the
spacing between electrodes, and ¢r and ¢, are the

permittivities of the fluid and air, respectively. A. Fluid tank
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Lesson #28
Chapter — Section: 4-11
Topics: Energy

Highlights:

e A charged capacitor is an energy storage device
e Energy density

Special Illustrations:
e Technology Brief on “Non-Contact Sensors” (CD-ROM)

Non-Contact Sensors

Precision positioning is a critical ingredient of semiconductor device fabrication, as well as the
operation and control of many mechanical systems. Non-contact capacitive sensors are used to
sense the position of silicon wafers during the deposition, etching, and cutting processes, without
coming in direct contact with the wafers. They are also used to sense and control robot arms in
equipment manufacturing and to position hard disc drives, photocopier rollers, printing presses,
and other similar systems.

Basic Principle

CONDUCTIVE PLATES

The concentric plate capacitor (A1) consists of
two metal plates, sharing the same plane, but
electrically isolated from each other by an
insulating material. When connected to a
voltage source, charges of opposite polarity will

ELECTRIC FIELD LINES

form on the two plates, resulting in the creation p—_—
of electric-field lines between them. The same C
principle applies to the adjacent-plates capacitor

in (A2). In both cases, the capacitance is ®

determined by the shapes and sizes of the INSULATOR
conductive elements and by the permittivity of
the dielectric medium containing the electric

field lines between them. A1. Concentric-plates capacitor
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Lesson #29
Chapter — Section: 4-12
Topics: Image method

Highlights:
¢ Image method useful for solving problems involving charges next to conducting
planes
e Remove conducting plane and replace with mirror images for the charges (with
opposite polarity)

Special Illustrations:

e Example 4-13
e CD-ROM Demos 4.11-4.13

Demo 4.12: Two Charges of Opposite Polarity Above a Conducting Plane

i
|
|
) Frtaieeny ¢ 4 Given: Q= 1C and Q; = -1C, with
ot DR Foeg both located above a
AR Sl e x conducting plane situated in the
II_IG{II FEEPFAP PP Ar S ll!//({_l.{fﬁ/!li!ﬁ{l ‘x_}‘ p]ane, as ShOWI] Sk{:‘tCh the
electric field pattern in the x-y
plane.
6 (press) to display the graphical and
analytical solution.

Note: Color intensity is proportional to the strength of the Electric field.
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Chapter 4

Sections 4-2: Charge and Current Distributions

Problem 4.1 A cube 2 m on a side is located in the first octant in a Cartesian
coordinate system, with one of its corners at the origin. Find the total charge
contained in the cube if the charge density is given by p, = xy?e=% (mC/m?3).

Solution: For the cube shown in Fig. P4.1, application of Eq. (4.5) gives

2 2 g2

Q:/ p\,dq/:/ / / xy?e~% dxdy dz
VvV x=0Jy=0J2z=0
2 12 g2

_ _123—22
_<12Xye

8
=5- e~*) =2.62mC.

x=01y=01z=0
z
A
22 1 1) a
7 /I
7/ 7/
7 7 1
7 7 1
e N .
1 ) X
! 1 12m
. .
L 0 T y
4
! 1,
2me - - - - L7
X

Figure P4.1: Cube of Problem 4.1.

Problem 4.2 Find the total charge contained in a cylindrical volume defined by
r<2mandO0<z<3mifpy, = 20rz (mC/m?3).

Solution: For the cylinder shown in Fig. P4.2, application of Eq. (4.5) gives
3 pom g2
Q:/ / 20rzrdrdodz
z=0J¢@=0Jr=0

o 2 o |3
_ (?r3(p22> — 48071 (MC) = 1.5 C.

=0

r=01¢@=0



174 CHAPTER4

3m

2m
X

Figure P4.2: Cylinder of Problem 4.2.

Problem 4.3 Find the total charge contained in a cone defined by R < 2 m and
0 < 0 < 11/4, given that py = 10R?c0s?8 (MC/m?3).

Solution: For the cone of Fig. P4.3, application of Eq. (4.5) gives

2n /4 2
0= / 10R2cos2OR2sin8dR dOd¢
¢=0J8=0 JR=0

-2
R=0l6=0l¢=0

3
1281 V2
=5 (1 <7> ) = 86.65 (MC).

2 /4 2n
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2m

4

X

Figure P4.3: Cone of Problem 4.3.

Problem 4.4 If the line charge density is given by p; = 24y? (mC/m), find the total
charge distributed on the y-axis fromy = —-5toy = 5.

Solution:

5 5 : 24y3
Q:/ Pldy:/ 24y dYZT =2000mC =2C.
-5 -5

5
-5

Problem 4.5 Find the total charge on a circular disk defined by r <aand z= 0 if:
(@) ps= pPspCos(C/m?),
(b) ps= pssin®e(C/m?),
(€) ps= psoe™" (C/m?),
(d) ps= psoe~"sin?q (C/m?),
where pgy is a constant.

Solution:
@)
a om I‘2 a 21
Q:/psds:/ pocCos@ rdrde=py —| sing| =0.
r=0J¢=0 2 0 0
(b)
a p2m 218 pom /1
Q= [ [ posin®prdrde—po | [ <71 COSZ“’) do
r=0J¢@=0 2 |pJo 2
_ ped? sin2g\ |7" @2
—T<‘P‘ 2 )0 ~ 2 P




176 CHAPTER4

(©)
a 2n a
Q:/ / pg)e‘rrdrd(pzzrrpso/ re~"dr
r=0J¢=0 0
= 2mpg [—re " —e "] ]
= 2Mpy[l —e?(1+a)].
(d)

a 2n
Q:/ / pe " sin@ rdrdg
r=0J¢@=0

a 21
— pso/ re*rdr/ sin?@deg
r=0 =0

= pso[l —e (1 +a)] - = Tpg[1 —e™*(1+a)].

Problem 4.6 If J = 94xz (A/m?), find the current | flowing through a square with
corners at (0,0,0), (2,0,0), (2,0,2), and (0,0,2).

Solution: Using Eq. (4.12), the net current flowing through the square shown in Fig.
P4.6 is

I:/SJ-ds:/XZO/ZZO()sz)

2 2
=16 A.

=0

-(§dxdz) = (x?2%)
y=0

x=0

Figure P4.6: Square surface.
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Problem 4.7 IfJ= IiS/R (A/m?), find | through the surface R =5 m.
Solution: Using Eq. (4.12), we have

2 pm .5 R
I:/J-ds:/ / (R—) .(RRZsin6dBdg)
s ¢=0Jo=0\ R

T |21
=100mt=314.2 (A).
=0

= —5R@cos 6

R=516=0

Problem 4.8 An electron beam shaped like a circular cylinder of radius rq carries a

charge density given by
_ [ _—Po 3
pV—<l+r2> (C/m )7

where pg is a positive constant and the beam’s axis is coincident with the z-axis.
(a) Determine the total charge contained in length L of the beam.
(b) If the electrons are moving in the +z-direction with uniform speed u, determine
the magnitude and direction of the current crossing the z-plane.

Solution:

(a)
ro L ro L _
Po
e [
Q /r:O z:opv r=0Jz=0 \ 1+ 12

o r 2
——ZTEpOL/O mdr——npol_ln(l‘i‘ro).

>2T[rdrdz

(b)

5 UPo
J: = —
U Z1+r2

I:/J-ds
ro 21 . Upo ~
= -2 -zrdrd
~/r:0/(p:0< 1+r2> ?

ro r
= —2T[upo/o (e dr = —twpoIn(1+r3) (A).

(A/m?),

Current direction is along —Z.




178 CHAPTER4

Section 4-3: Coulomb’s Law

Problem 4.9 A square with sides 2 m each has a charge of 40 uC at each of its four
corners. Determine the electric field at a point 5 m above the center of the square.

Qs(-1-10)

Qz(-l,l,O)

\ /

Ql(l!lvo)

\
<

Q4(1-1,0)

Figure P4.9: Square with charges at the corners.

Solution:  The distance |R| between any of the charges and point P is
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IR| =12+ 12452 =/27.

_Q [Rl Rz  R3 Ry
4reo [R® IR R [R]?
Q [-X—9+25 X—9+25 —KX+9Y+25 X+9+25
:4nso[ e R TV C PR T TE
L 5x40uC 142

A 5 ~ K
22(27)3(/22% =2 ey — ey <10 (VM) =251.2 (RVIm).

Problem 4.10 Three point charges, each with g = 3 nC, are located at the corners
of a triangle in the x-y plane, with one corner at the origin, another at (2 cm,0,0),
and the third at (0,2 cm,0). Find the force acting on the charge located at the origin.

Solution: Use Eq. (4.19) to determine the electric field at the origin due to the other
two point charges [Fig. P4.10]:

1 [3 nC (—ko.oz)] 3nC (—90.02)

~ 4 (0.02)3 (0.02)3 = —67.4(x+9) (kV/m) at R = 0.

Employ Eq. (4.14) to find the force F = qE = —202.2(X +¥) (UN).

y
] Ry=-%2cm
2cmi Q R2=-y2cm
R2
Ry Q «
Q 2cm

Figure P4.10: Locations of charges in Problem 4.10.

Problem 4.11 Charge q; = 6 uC is located at (1 cm,1cm,0) and charge Q>
is located at (0,0,4 cm). What should g, be so that E at (0,2 c¢cm,0) has no
y-component?

Solution: For the configuration of Fig. P4.11, use of Eq. (4.19) gives
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Ri=-X+§(2-1) = (X +y)cm
R, = (§2 - 24) cm

E1

Figure P4.11: Locations of charges in Problem 4.11.

. 1 [6UC(—%+¥) x 1072  gp(y2—24) x 1072
ER=y2em) = 22 |~ ax 10972 (20 x 10-2)3/2

1
= 7= [~%21.21x 107° 4 §(21.21 x 10"° + 0.224qp)
—20.447q2]  (V/m).

If E, = 0, then g = —21.21 x 10 %/0.224 ~ —94.69 (uC).

Problem 4.12 A line of charge with uniform density p; =8 (UC/m) exists in air
along the z-axis between z=0and z=5 cm. Find E at (0,10 cm,0).

Solution: Use of Eq. (4.21c) for the line of charge shown in Fig. P4.12 gives

1 A/p|dll
E=— | R—
4TIEQ/|’ RZ2 '

R'=90.1-12z

100 (90.1-122)
— = [ Tex1076) W2 =2D)
4.‘.[50 ~/Z:0 ( X )[(0.1)2+ZZ]3/2 z

~ . 0.05
 8x10°® [ §10z+2
o 2,2
4T (0.1)2+22]|,_,
—71.86 x 10°[§4.47 —21.06] = §321.4 x 103 —276.2 x 10°  (V/m).
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Figure P4.12: Line charge.

Problem 4.13 Electric charge is distributed along an arc located in the x-y plane
and defined by r=2 cmand 0 < @< 11/4. If p; =5 (uC/m), find E at (0,0,z) and
then evaluate it at (a) the origin, (b) z=5cm, and (c) z= —5 cm.

Solution: For the arc of charge shown in Fig. P4.13, dl = rd@ = 0.02d¢, and
R’ = —%0.02cos @— ¥0.02sin @+ 2z. Use of Eq. (4.21c) gives

1 ~prdl’
E=— /R
4T[50A R’2

1 (™4 (—%0.02cos@— §0.02sin @+ 22)
/ P 21 72)3/2
o0 ((0:02)2+227

_4_]_[50

0.02dg

8988
((0.02)2 + 22)%/2

0.014 —90.006+20.782]  (V/m).

(@ Atz=0,E=—-%1.6—9y0.66 (MV/m).
(b) Atz=5cm, E=—%81.4—933.7+ 2226 (kV/m).
(c)Atz=—-5cm, E=—%81.4—933.7—2226 (kV/m).
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z
A
1z
R' =“r0.02+zz
N >y
f2cm=70.02m
w4 R
Y
2cm N
YN
S
X

Figure P4.13: Line charge along an arc.

Problem 4.14 A line of charge with uniform density p; extends between z= —L/2
and z = L /2 along the z-axis. Apply Coulomb’s law to obtain an expression for the
electric field at any point P(r, @, 0) on the x-y plane. Show that your result reduces to
the expression given by Eq. (4.33) as the length L is extended to infinity.

Solution: Consider an element of charge of height dz at height z. Call it element 1.
The electric field at P due to this element is dE;. Similarly, an element at —z
produces dE,. These two electric fields have equal z-components, but in opposite
directions, and hence they will cancel. Their components along t will add. Thus, the
net field due to both elements is

. _ .2pjcosBdz  TpcosBdz
dE=dEs+dE2 =T RZ ~  2meoR

where the cos 0 factor provides the components of dE; and dE; along T.

Our integration variable is z, but it will be easier to integrate over the variable 0
fromB=0to
1 L2

Bp =sin™
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dE;

0 > xypl
5 » Xy plane

dE;

I

|

|

|
@
N

-L/2

N
\U

Figure P4.14: Line charge of length L.

Hence, with R = r/cos®, and z = rtan 8 and dz = rsec?>6d8, we have

L/2 8 8 3
E- [ T4E= odE:/ "¢ P1C0S"0 2040
0

7=0 6=0 2TEg 2
0
—p P /Ocosede
2Tl Jo
. . . L/2
:rismeo:r il /

2mEOr 2eor (/124 (L/2)%°

ForL>r,
L/2 N

Ny
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and
]

E=t
2TEQr

(infinite line of charge).

Problem 4.15 Repeat Example 4-5 for the circular disk of charge of radius a, but
in the present case assume the surface charge density to vary with r as

ps=paor® (C/m?),

where pgy is a constant.

Solution: We start with the expression for dE given in Example 4-5 but we replace
s With pgr?:
h

5 3
dE=2 Ireo(2 W2 (2mpgordr),

2psoh/a r3dr
260 Jo (r2+h2)32°

E

To perform the integration, we use
R?=r?+h?,
2RdR = 2rdr,

(a®+h*)Y2 (R2 _h2) dR
R2

(a2+h2)l/2 (a2+h2)l/2 2
Yl / dR — / " R
€ |/h h R2

h2
va2+h?2+ ————2h|.

m
[l
N>
©
BE
S—

Problem 4.16 Multiple charges at different locations are said to be in equilibrium
if the force acting on any one of them is identical in magnitude and direction to the
force acting on any of the others. Suppose we have two negative charges, one located
at the origin and carrying charge —9e, and the other located on the positive x-axis at
a distance d from the first one and carrying charge —36e. Determine the location,
polarity and magnitude of a third charge whose placement would bring the entire
system into equilibrium.

Solution: If

F, = force on Qq,
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Q=-% Q3 Q2 = -36e
@ 4 \ 4 - X
x=0

Figure P4.16: Three collinear charges.

F, = force on Qo,
F3 = force on Q3,

then equilibrium means that
Fi1=F,=Fs.

The two original charges are both negative, which mean they would repel each other.
The third charge has to be positive and has to lie somewhere between them in order

to counteract their repulsion force. The forces acting on charges Qi, Q», and Q3 are
respectively

F Rx1Q1Q2 R31QiQs _ g 324e? . 9eQ3
1T 4TEoR3, | 4TEQRE, ATEQd? " 4TEQX?
E R12Q1Q2 = R22Q3Q2 _5 324¢2 o 36eQs
4TEQR2, = 4TEQRS,  4TEQd? T 4TEg(d —X)2’
_ Ri3Q1Qs  RxQaQs _ o 9%Qs o 36eQs
4TEQR2;  4TEQRZ, 4TEQXZ " ATEQ(d —X)2

Hence, equilibrium requires that

32 9Q; _324e  36Q: _ 9Qs, 36Q:
d2 x2  d2 (d—-x)2 x2 " (d—x)?’

Solution of the above equations yields

Q3 = 4e, X=

w|

Section 4-4: Gauss’s Law

Problem 4.17 Three infinite lines of charge, all parallel to the z-axis, are located at
the three corners of the kite-shaped arrangement shown in Fig. 4-29 (P4.17). If the
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two right triangles are symmetrical and of equal corresponding sides, show that the
electric field is zero at the origin.

-2p,

Y P

Y
x

Figure P4.17: Kite-shaped arrangment of line charges for Problem 4.17.

Solution: The field due to an infinite line of charge is given by Eq. (4.33). In the
present case, the total E at the origin is

E=Ei1+Ex+Es.

The components of E; and E» along X cancel and their components along —Vy add.
Also, E3 is along § because the line charge on the y-axis is negative. Hence,

_ ~2picosO o 2p
=V omR: Y 2Ry

But cos® = R;/R». Hence,

. P R1 P
E=— e —0.
y TEgR1 R2 Y TEQR2

Problem 4.18 Three infinite lines of charge, p;, = 3 (hC/m), pi, = —3 (nC/m), and
p1; = 3 (NC/m), are all parallel to the z-axis. If they pass through the respective points
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y
A
(Ovb) [ p|3
R3 E1
E
PI2 :2 P . X
a0
Es
©O:-b)¥py,

Figure P4.18: Three parallel line charges.

(0,—b), (0,0), and (0,b) in the x-y plane, find the electric field at (a,0,0). Evaluate
your result fora=2cmandb=1cm.

Solution:
pi, =3 (nC/m),
p,=—3 (nC/m),
P1z =PIy,

E=E;+Ex+Es.

Components of line charges 1 and 3 along y cancel and components along x add.
Hence, using Eq. (4.33),

o 2P . P
E= L cosHO z_
X2T[F.0R;|_C 3 +X2T[an
) a
with cos8 = ——— and Ry = va2+ b2,

Vo

X3 2a 1 9
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Fora=2cmandb=1cm,

E=%1.62 (kV/m).

Problem 4.19 A horizontal strip lying in the x—y plane is of width d in the
y-direction and infinitely long in the x-direction. If the strip is in air and has a
uniform charge distribution ps, use Coulomb’s law to obtain an explicit expression
for the electric field at a point P located at a distance h above the centerline of the
strip. Extend your result to the special case where d is infinite and compare it with
Eqg. (4.25).

Figure P4.19: Horizontal strip of charge.

Solution: The strip of charge density ps (C/m?) can be treated as a set of adjacent line
charges each of charge p; = psdy and width dy. At point P, the fields of line charge
at distance y and line charge at distance —y give contributions that cancel each other
along ¥ and add along Z. For each such pair,

_ 5 2Psdycos6

dE
2TEgR



CHAPTER4 189

With R = h/cos®, we integrate from y = 0 to d/2, which corresponds to 6 = 0 to
8o = sin 1[(d/2)/(h? + (d/2)?)/?]. Thus,

OI/2 5 Ps d/2 cos@ . Ps [%cos?0 h
E= / N /o R dy_zﬁ/o h 'coszede

5 Ps
T[E %.

For an infinitely wide sheet, 6o = 11/2 and E = 2 2?:
0

(4.25).

which is identical with Eq.

Problem 4.20 Given the electric flux density
D =%2(x+y) +§(3x—2y) (C/m?),

determine

() pv by applying Eq. (4.26),

(b) the total charge Q enclosed in a cube 2 m on a side, located in the first octant
with three of its sides coincident with the x-, y-, and z-axes and one of its
corners at the origin, and

(c) the total charge Q in the cube, obtained by applying Eq. (4.29).

Solution:
(a) By applying Eq. (4.26)

pv:D‘D:

d d
&(ZX+2y)+a—y(3><—2y)—

(b) Integrate the charge density over the volume as in Eq. (4.27):

2 2 2
Q:/ D-qu/:/ / 0dxdydz = 0.
vV x=0Jy=0J2z=0

(c) Apply Gauss’ law to calculate the total charge from Eq. (4.29)

= jé D - ds = Feront + Foack + Fright + Reft + Frop + Foottoms

2 2
z=0

y=0

- (Xdzdy)
X=2

dzdy = [ 2z (2y+ %y2>
x=2

2 2
o= | [ (820+y) +9(3¢~2y))
y=0Jz=0

2 2
= / 2(x+y)
y=0.Jz=0
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- (—Xdzdy)

x=0
2
z=0

2 2
:_/ 2(x+y)| dzdy=— (zy2
y=0J/2z=0 =0
-(ydzdx)

2 2
Fion = | [ (%20c+y) +9(3x=2)
x=0Jz=0 y=2

2 2 3
:/ / (3x—2y)| dzdx= |z <—x2—4x>
x=0J/z=0 y=2 2

Fan= [ (R2bcty) +9(3x-2)

[

2 2
I:top = ()A(Z(X‘Fy) +9(3X_ 2y))
x=0Jz=0
dydx =0,

2 2
ol
x=0Jz=0 12

Fom = [ [ (520x) +9(3-2))

2 2
=)y
x=0Jz=0

Thus Q = jéD-ds:24—8—4—12+0+0:0.

Fra = [ [ (20 +5(3x-29)

2
=8,
y=0

- (=9 dzdx)

y=0
3 2
_ o 2
dzdx = z<2x> )
z=0

y=0

2
=12,
x=0

-(2dydx)
7=2

-(2dydx)
z=0

dydx=0.
z=0

Problem 4.21 Repeat Problem 4.20 for D = &xy3z° (C/m?).
Solution:

(a) From Eq. (4.26), py = 0-D = %(xy323) =y32.
(b) Total charge Q is given by Eq. (4.27):

2 2 2 xy*z4
Q:/ D-qu/:/ / vy dxdydz = =32C.
Vv 7=0Jy=0Jx=0 16

=0

x=01ly=0
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(c) Using Gauss’ law we have

%g D - ds = Front + Foack + Frignt + Feft + Ftop + Foottom-

Note that D = XDy, 50 only Fon: and Foack (integration over Z surfaces) will contribute
to the integral.

2 2 ey
I:front = / / (Xxy Z )
z=0Jy=0 _

- (Xdydz)

X
2\ 2

2 2 454

:/ / xy3z3|  dydz= 2(%)‘ =32,
2=0/y=0 X=2 y=0 z=0
2 2

Fback:/ / (xy32%)| - (—Rdydz) = / / xy323|  dydz=0.

z=0Jy=0 z=0Jy=0 x—0

Thus Q = jéo-ds:32+o+o+o+o+0=32 C.

Problem 4.22 Charge Q1 is uniformly distributed over a thin spherical shell of
radius a, and charge Q is uniformly distributed over a second spherical shell of
radius b, with b > a. Apply Gauss’s law to find E in the regions R <a, a<R < b,
and R > b.

Solution: Using symmetry considerations, we know D = RDg. From Table 3.1,
ds = RR?sin@d@ dg for an element of a spherical surface. Using Gauss’s law in
integral form (Eq. (4.29)),

%D-ds = Qtot,
S

where Qy is the total charge enclosed in S. For a spherical surface of radius R,

/ / (RDR) - (RR?sin08dBd (@) = Qi
=0

DrR?(210)[— cos 8] = Quat,

Qtot

Dg = .
R~ amR2

From Eqg. (4.15), we know a linear, isotropic material has the constitutive relationship
D = €E. Thus, we find E from D.
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(a) Inthe region R < a,

Qtot =0, E=RER= ;- =0 (V/m)
(b) In the region a < R < b,
~ R
Q=01  E=REr= b (Vim)
(c) In the region R > D,
. R(Q1+
Qu=Qi+Qs  E=REg= Q) ()

Problem 4.23 The electric flux density inside a dielectric sphere of radius a
centered at the origin is given by

D=RpoR (C/m?),

where pg is a constant. Find the total charge inside the sphere.

Solution:

s 2 R
Q:%D-ds:/ / RpoR - RR2sin0d0 do
S 6=0Jg=0

Tt
= 2Trpoa3[) sin@dB = —2mpoa’cos B|T = 4mpoa®  (C).

R=a

Problem 4.24 In a certain region of space, the charge density is given in cylindrical
coordinates by the function:

py=50re™" (C/m3).

Apply Gauss’s law to find D.

Solution:
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\

Figure P4.24: Gaussian surface.

Method 1: Integral Form of Gauss’s Law

Since py varies as a function of r only, so will D. Hence, we construct a cylinder of

radius r and length L, coincident with the z-axis. Symmetry suggests that D has the
functional form D = D. Hence,

%D-ds:Q,
S
/fD-ds:D(sz),

r
Q= 2m_/ 50re~" - rdr
0
= 100TL[—r?e " +2(1—e~"(1+1))],

o - 2
D=fD=150 [F(l—e_r(1+r)) —re”"|.

Method 2: Differential Method
U-D=py, D =1Dr,
with Dy being a function of r.

10 r
Cor (rDy) =50re™",
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%(rDr) =50r<e ",
ro ' 2,—T
/Oa(rDr)dr:/O 50r<e "dr,
rDy =50[2(1 —e~"(14r)) —r%e"],
2
T

D=F%rD, =150 [ (1—e"(14r))—re7"|.

Problem 4.25 An infinitely long cylindrical shell extending between r = 1 m and
r =3 m contains a uniform charge density pyo. Apply Gauss’s law to find D in all
regions.

Solution: Forr<1m,D=0.
For1<r<3m,

%fDr-ds:Q,
S
D, - 21rL = pyo- TL(r? — 12),
2 2 _
D:fDr:fpvom(r 1):fpV0(r 1)3 1Sr§3m
omrL 2r
Forr>3m,

Dy - 21rL = pyort (3% — 1) = 8pyoT,

. 4
D=D, =1 F:’VO, r>3m.
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N

TAW

Figure P4.25: Cylindrical shell.

Problem 4.26 If the charge density increases linearly with distance from the origin
such that p, = 0 at the origin and p, = 40 C/m3 at R = 2 m, find the corresponding
variation of D.

Solution:

pv(R)
pv(0)

a+bR,
a=0,
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pv(2) = 2b = 40.

Hence, b = 20.
pv(R) =20R (C/m3).

Applying Gauss’s law to a spherical surface of radius R,

%D-ds:/pvdq/,
S v
4

R
DR-4T[R2:/ 20R-4T|R2dR:80T[RT,
0

Dr =5R? (C/m?),
D=RDgr =R5R? (C/m?).

Section 4-5: Electric Potential

Problem 4.27 A square in the x—y plane in free space has a point charge of +Q at
corner (a/2,a/2) and the same at corner (a/2,—a/2) and a point charge of —Q at
each of the other two corners.

(a) Find the electric potential at any point P along the x-axis.

(b) EvaluateV atx =a/2.

Solution: R; =Ry and Rz = Ra.

Q Q —Q —Q Q (1 1)

T ATEQR, | 4TEQR, | 4TEQR3 < 4TEoR; 2TEo \R; Rs
with
a\ 2 a\ 2
Rl:\/<x_§) +(3)"
a\ 2 a\ 2
R3_\/(X+§) +(3)
Atx=a/2,
a
Ry = —
1 27
R3:ﬂ§a
2
Q (2 2 0.55Q
V=_—<_ ([2_ = .
2Tep \a +/5a TEoa
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Figure P4.27: Potential due to four point charges.

Problem 4.28 The circular disk of radius a shown in Fig. 4-7 (P4.28) has uniform
charge density ps across its surface.
(@) Obtain an expression for the electric potential V at a point P(0,0,z) on the
z-axis.
(b) Use your result to find E and then evaluate it for z = h. Compare your final
expression with Eq. (4.24), which was obtained on the basis of Coulomb’s law.

Solution:
(a) Consider a ring of charge at a radial distance r. The charge contained in
width dr is
dg = ps(21r dr) = 21psr dr.

The potential at P is
_dg 21pgr dr
©ATEQR  4TEg(r24-22)%/2°

The potential due to the entire disk is

_[? _&/a rdr  Ps 2 21
V_[) dV_Zso o (r24+z2)l2 Zeo(r +7)

dv

a p /
S 2 2\1/2
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E
P(0,0,h)
h

Figure P4.28: Circular disk of charge.

© Y
v gV oV oV s |,z
E=-0V= an yay Zaz 2% [1 —a2+22]'
h.

The expression for E reduces to Eq. (4.24) when z =

Problem 4.29 A circular ring of charge of radius a lies in the x-y plane and is
centered at the origin. If the ring is in air and carries a uniform density py, (a) show
that the electrical potential at (0,0,2) is given by V = pja/[2go(a? + 22)Y/?], and (b)
find the corresponding electric field E.

Solution:
(a) For the ring of charge shown in Fig. P4.29, using Eq. (3.67) in Eq. (4.48c) gives
1 P 1 /2" Pi
VIR)=— [ —dl'=— ad
® 4o Jr R 41eo Jg=0 /a2 + 12— 2arcos (¢ — @) + 22 ¢

Point (0,0,z) in Cartesian coordinates corresponds to (r,@,z) = (0,,z) in cylindrical
coordinates. Hence, for r =0,

T p _ pa

1
V(0,0,2) = / adg = — %
(©,0.2) 4TEo Jg=0 /a2 + 22 ¢ 2epval + 72
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Z
A
z4
Rl = a2+z2
0 = -y
dg d = adg

: P|/‘

Figure P4.29: Ring of charge.

(b) From Eqg. (4.51),

__v= PO 2 a2 PR 2
E=-0V=-2 (ac+1z9) _2250(a2+22)3/2 (V/m).

2€0 02

Problem 4.30 Show that the electric potential difference V1o between two points in
air at radial distances ry and ro from an infinite line of charge with density p, along
the z-axis is V12 = (py/2T®€g) In(ra/r1).

Solution: From Eq. (4.33), the electric field due to an infinite line of charge is

P

E=fE =T ;
" 2TEor

Hence, the potential difference is
n ntp PI r2
vlzz—/ E-dI:—/ #dr=-"in(2),
ry r, 2TEQr 2T ry

Problem 4.31 Find the electric potential V at a location a distance b from the origin
in the x-y plane due to a line charge with charge density p, and of length I. The line
charge is coincident with the z-axis and extends fromz=—1/2toz=1/2.
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B A 1~

Figure P4.31: Line of charge of length 2.

Solution: From Eg. (4.48c), we can find the voltage at a distance b away from a line
of charge [Fig. P4.31]:

V)= L [Prgp_ P P9z o 1 VIZHADT )
—1+ V124 4h?

T4 )V 4TE

:H I R!

Problem 4.32 For the electric dipole shown in Fig. 4-13, d =1cm and |E| =4
(mV/Im)atR=1mand8=0° FindEatR=2mand 68 = 90°.

Solution: ForR=1mand 6=0°, |E| =4 mV/m, we can solve for q using Eq. (4.56):

E qd (R2cos B+ Bsin6).

~ ATER3
Hence,
|E| = (£> 2=4mV/m at6=0°
41
103 x8mgy, 10 3 x 81y
= g = 10-2 = 0.8 (C)

Again using Eq. (4.56) to find E at R =2 m and 8 = 90°, we have

_ 0.8Tg x 1072 A

E= Ireg X 20 (R(0)+0)=6> (mV/m).

Bl
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Problem 4.33 For each of the following distributions of the electric potential V,
sketch the corresponding distribution of E (in all cases, the vertical axis is in volts
and the horizontal axis is in meters):

Solution:

30
8 11 13 16

-30

> M

10 1

-10

(@)

X
3 v 9 v 15
420
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\Y
/
4
3 6 9 12 15
.......... + > X
-4
E
A
2.6
6 9, 5
— X
-2.6
(c)

Figure P4.33: Electric potential distributions of Problem 4.33.

Problem 4.34 Given the electric field
. 18
E=R r2 (V/m),
find the electric potential of point A with respect to point B where A is at +2 m and
B at —4 m, both on the z-axis.
Solution: A
Vag = Va — Vg = —/ E-dl.
B

Along z-direction, R =2 and E = 2% forz>0,and R=—2and E = —22 for

z < 0. Hence,

2,18 | 0 18 2 18 .
VAB—_/4RZ_2'ZdZ__ [/4—22—2-zdz+/0 zz—z-zdz] =4V.
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A ¢ z=2m

B & z=-4m

Figure P4.34: Potential between B and A.

Problem 4.35 An infinitely long line of charge with uniform density p; = 9 (nC/m)
lies in the x-y plane parallel to the y-axis at x = 2 m. Find the potential Vg at point
A(3m,0,4 m) in Cartesian coordinates with respect to point B(0,0,0) by applying
the result of Problem 4.30.

Solution: According to Problem 4.30,

2T[Eo r
where r1 and r» are the distances of A and B. In this case,

rn=4/(3-22+42=v17m,

rp=2m.
Hence, o
9x 10~ 2
Vag = | =—-117.09 V.
A8 omIx8.85x10-2 (m)
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4m

ra Py

Figure P4.35: Line of charge parallel to y-axis.

Problem 4.36 The x-y plane contains a uniform sheet of charge with ps = 0.2
(nC/m?) and a second sheet with ps, = —0.2 (nC/m?) occupies the plane z =6 m.
Find Vag, Vac, and Vac for A(0,0,6 m), B(0,0,0), and C(0,—2 m,2 m).

Solution: We start by finding the E field in the region between the plates. For any
point above the x—y plane, E1 due to the charge on x-y plane is, from Eq. (4.25),

Ei=z2_—>.
! 280

In the region below the top plate, E would point downwards for positive ps, on the
top plate. In this case, ps, = —ps,. Hence,

5Ps 5Ps, _ 52Ps 5 Ps
1t R 2¢€0 2€0 2€0 €0

Since E is along Z, only change in position along z can result in change in voltage.

6 6 -9
~Ps = Ps, 6ps, 6x0.2x10
0 %8 1T e ,T e 88Bx10 L

Vag = —
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Ps= - 0.2 (NC/m2)

.

Figure P4.36: Two parallel planes of charge.

The voltage at C depends only on the z-coordinate of C. Hence, with point A being at
the lowest potential and B at the highest potential,
-2 (—135.59)
Vec=—Vpg=———~
BC 6 AB 3
Vac = Vag +Vec = —135.59+45.20 = —90.39 V.

=45.20V,

Section 4-7: Conductors

Problem 4.37 A cylindrical bar of silicon has a radius of 4 mm and a length of 8 cm.
If a voltage of 5 V is applied between the ends of the bar and pe = 0.13 (M?/V-s),
Hp = 0.05 (M?/V-s), Ne = 1.5 x 106 electrons/m?, and Ny, = N, find

(a) the conductivity of silicon,

(b) the current | flowing in the bar,

(c) the drift velocities ug and up,

(d) the resistance of the bar, and

(e) the power dissipated in the bar.
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Solution:
(a) Conductivity is given in Eq. (4.65),
0 = (Nele+ Nnln)e
= (1.5x 10%)(0.1340.05)(1.6 x 1071°) = 4.32 x 107*  (S/m).

(b) Similarly to Example 4.8, parts b and c,

5V

| =JA=0EA=(4.32x107") (m

) (M4 x107%)2) =136 (uA).
(c) From Eqgs. (4.62a) and (4.62b),

5 E E
Ue = —UeE = —(0.13) (0 08) |E| —8. 125|E| (mfs),

5 E E
Up = PnE = +(0.05) (0 08) E = 3.125E (m/s).

(d) To find the resistance, we use what we calculated above,

Vv 5V
R="1 = 135a =368 (MO

(e) Power dissipated in the bar is P = 1V = (5V)(1.36 UA) = 6.8 (UW).

Problem 4.38 Repeat Problem 4.37 for a bar of germanium with pe = 0.4 (m?/V:s),
Hp = 0.2 (M?/V-s), and Ng = Np = 2.4 x 109 electrons or holes/m?.

Solution:
(a) Conductivity is given in Eq. (4.65),

= (Nekle+ Nypy)e = (2.4 x 10%%)(0.44-0.2)(1.6 x 107°) = 2.3 (S/m).

(b) Similarly to Example 4.8, parts b and c,

5V
0.08

(c) From Eqgs. (4.62a) and (4.62b),

| =JA=0EA=(2.3) ( ) (M4 x107%)2) =7.225 (mA).

5
Ue = —HeE = — (—) — ZSE (m/s),

uh:uhE:(O 2) <—

ol
N——
}_\

[\J
_O'I
™| m

—~

3

3

)
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(d) To find the resistance, we use what we calculated above,

VsV
I~ 7.225mA

(e) Power dissipated in the bar is P = IV = (5V)(7.225 mA) = 36.125 (mW).

R= =069 (kQ).

Problem 4.39 A 100-m-long conductor of uniform cross section has a voltage drop
of 4 V between its ends. If the density of the current flowing through it is 1.4 x 108
(A/m?), identify the material of the conductor.

Solution: We know that conductivity characterizes a material:

4(V)
100 (m)

J=0oE, 14x10°(A/m?)=0c ( ) , 0=35x10" (S/m).

From Table B-2, we find that aluminum has o = 3.5 x 107 (S/m).

Problem 4.40 A coaxial resistor of length | consists of two concentric cylinders.
The inner cylinder has radius a and is made of a material with conductivity o1, and
the outer cylinder, extending between r = a and r = b, is made of a material with
conductivity o,. If the two ends of the resistor are capped with conducting plates,
show that the resistance between the two ends is R = 1 /[1(01a2 4 05(b? — a?))].

Solution: Due to the conducting plates, the ends of the coaxial resistor are each
uniform at the same potential. Hence, the electric field everywhere in the resistor
will be parallel to the axis of the resistor, in which case the two cylinders can be
considered to be two separate resistors in parallel. Then, from Eq. (4.70),

1 . 1 1 . 01A1  02A; . O';|_TIB.2 0'2T[(b2—a2)
R Rinner Router |1 |2 | | ’

or

I
R= (0182 + 02(b2 — a2)) ().

Problem 4.41 Apply the result of Problem 4.40 to find the resistance of a 20-cm-
long hollow cylinder (Fig. P4.41) made of carbon with o = 3 x 10* (S/m).

Solution: From Problem 4.40, we know that for two concentric cylinders,

I
R= (01382 + 02(b?% — a2)) ).
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7N

Carbon

Figure P4.41: Cross section of hollow cylinder of Problem 4.41.

For air g, = 0 (S/m), 0> = 3 x 10* (S/m); hence,

R 0.2
~ 3mx 104((0.03)2 — (0.02)2)

=42 (mQ).

Problem 4.42 A 2 x 10~3-mm-thick square sheet of aluminum has 5 cm x 5 cm
faces. Find:
(a) the resistance between opposite edges on a square face, and
(b) the resistance between the two square faces. (See Appendix B for the electrical
constants of materials).

Solution:

(@)
|

= a .
For aluminum, o = 3.5 x 107 (S/m) [Appendix B].

I=5cm, A=5cmx2x103mm=10x10"2x10"%=1x10""m?
5x 1072

R —
3.5x 107 x1x 107

=14 (mQ).

() Now, | =2 x 10 mmand A=5cmx5cm=2.5x10"3m?,

2x10°6

R—
3.5%x10"x25%x 103

=22.8pQ.
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Section 4-9: Boundary Conditions

Problem 4.43 With reference to Fig. 4-19, find E; if E; = X3 — 92+ 22 (V/m),
€1 = 2€o, € = 18¢y, and the boundary has a surface charge density
Ps = 3.54 x 10~ (C/m?). What angle does E» make with the z-axis?

Solution: We know that E;; = Ex for any 2 media. Hence, Ey = Ex = X3 — 92,
Also, (D1 — D3) - fi = ps (from Table 4.3). Hence, €1(E1-N) —2(E2-N) = ps, which
gives

_ pst+EEy;  354x107H N 18(2)  3.54x 107
N €1 N 2¢o 2  2x885x10-12
Hence, E1 = X3 — 92+ 220 (V/m). Finding the angle E, makes with the z-axis:

Ey, +18=20 (V/m).

2
E>-2=|Ez/cos®, 2=+9+4+4cos8, 6O=cos? (—) =61°.
2:2=|Ep] JI7

Problem 4.44 An infinitely long conducting cylinder of radius a has a surface
charge density ps. The cylinder is surrounded by a dielectric medium with €, = 4
and contains no free charges. If the tangential component of the electric field in the
region r > a is given by E; = —@cos2q/r2, find ps.

Solution: Let the conducting cylinder be medium 1 and the surrounding dielectric
medium be medium 2. In medium 2,

R ~1
Eo=FE— ¢ cos? ¢,
with E;, the normal component of E», unknown. The surface charge density is related
to E;. To find E;, we invoke Gauss’s law in medium 2:
0-D,=0,
o 10 10 1
S (rE)+=— [—=cos?@) =0
rar(r r)_Irraq)( rZCS(p> ’
which leads to
3(rE)—i L cos2) = — 2 singcos
a7 ap\r2 ?) = TsInecose

Integrating both sides with respect to r,

/%(rEr) dr = —Zsin(pcoscp/r—lzdr

2 .
rE, = . sin@cos @,



210 CHAPTER4

or
2.

E = ﬁsm QCcos Q.

Hence,
L2 . ~1 5
Ex=7 ﬁsm (pcoscp—(pﬁ Cos“@.

According to Eq. (4.93),

fiz- (D1—D2) = ps,

where i, is the normal to the boundary and points away from medium 1. Hence,
N, = . Also, D; = 0 because the cylinder is a conductor. Consequently,

Ps = —F+D2|r=a
= —T-&E5|r-a

. L2 . -
= —T &€ |T—sinQcosp— @ cos”®
r r r=a

8eop .
:—a—203|ncpcoscp (CIm?).

Problem 4.45 A 2-cm conducting sphere is embedded in a charge-free dielectric
medium with g5 = 9. If E; = R3cos8 —03sin® (V/m) in the surrounding region,
find the charge density on the sphere’s surface.

Solution: According to Eqg. (4.93),
fiz- (D1—D2) = ps.
In the present case, fi, = R and D; = 0. Hence,

Ps= —ﬁ'D2|r:20m
— —R-g»(R3c0s0—B3sin0)
= —27g9c0s0 (C/m?).

Problem 4.46 If E = R150 (V/m) at the surface of a 5-cm conducting sphere
centered at the origin, what is the total charge Q on the sphere’s surface?

Solution: From Table 4-3, - (D1 — D3) = ps. E2 inside the sphere is zero, since we
assume it is a perfect conductor. Hence, for a sphere with surface area S = 41@a?,
ps  Q

Dip = Eip= == <
1R = Ps, 1R & Seo’
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3Ty

Q = ERSeo = (150)41(0.05)%gp = (C).

Problem 4.47 Figure 4-34(a) (P4.47) shows three planar dielectric slabs of equal
thickness but with different dielectric constants. If Eq in air makes an angle of 45°
with respect to the z-axis, find the angle of E in each of the other layers.

z
A EO
45°
€o (air)

€1=3¢g

€5 = 5gg

€3= 780

go (air)

Figure P4.47: Dielectric slabs in Problem 4.47.
Solution: Labeling the upper air region as region 0 and using Eqg. (4.99),
9, =tan~! (%tan 90) —tan~1 (3tan45°) = 71.6°,
0
_1 & -1 S o o
6, = tan —tanB; ) =tan —tan71.6° | = 78.7°,
€1 3
-1 €3 -1 7 o o
B3 =tan s—tanez =tan gtan78.7 =81.9°.
2

In the lower air region, the angle is again 45°.

Sections 4-10 and 4-11: Capacitance and Electrical Energy

Problem 4.48 Determine the force of attraction in a parallel-plate capacitor with
A=5cm?,d=2cm,and & = 4 if the voltage across it is 50 V.
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Solution: From Eq. (4.131),

50

eA|E|? _ 50
0.02

F=_3
275

2
—32e0(5x 10°%) < ) =—2553%x10"° (N).

Problem 4.49 Dielectric breakdown occurs in a material whenever the magnitude
of the field E exceeds the dielectric strength anywhere in that material. In the coaxial
capacitor of Example 4-12,
(@) Atwhat value of r is |[E| maximum?
(b) What is the breakdown voltage if a =1 cm, b=2cm, and the dielectric
material is mica with g, = 6?

Solution:

(a) From Eq. (4.114), E = —fpy/21er for a < r < b. Thus, it is evident that |E| is
maximum at r = a.

(b) The dielectric breaks down when |E| > 200 (MV/m) (see Table 4-2), or

P P
TEr  21(6go)(10-2)

which gives p; = (200 MV/m)(21)6(8.854 x 10712)(0.01) = 667.6 (uC/m).
From Eq. (4.115), we can find the voltage corresponding to that charge density,

vo P by _ (667.6uC/m)
- 2me \a/ 12m(8.854 x 1012 F/m)

Thus, V = 1.39 (MV) is the breakdown voltage for this capacitor.

—200 (MV/m),

E| =
El=5

In(2) =139 (MV).

Problem 4.50 An electron with charge Qe = —1.6 x 1071° C and mass
me = 9.1 x 10~3% kg is injected at a point adjacent to the negatively charged plate in
the region between the plates of an air-filled parallel-plate capacitor with separation
of 1 cm and rectangular plates each 10 cm? in area Fig. 4-33 (P4.50). If the voltage
across the capacitor is 10 V, find

(a) the force acting on the electron,

(b) the acceleration of the electron, and

(c) the time it takes the electron to reach the positively charged plate, assuming

that it starts from rest.

Solution:
(a) The electric force acting on a charge Qe is given by Eq. (4.14) and the electric
field in a capacitor is given by Eq. (4.112). Combining these two relations, we have

v _19 10 _
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1lcm

A
\ 4

Qe

N
_II|+

Vo=10V

Figure P4.50: Electron between charged plates of Problem 4.50.

The force is directed from the negatively charged plate towards the positively charged
plate.
(b)
_F 16x 10-16
" m 9.1x10°3
(c) The electron does not get fast enough at the end of its short trip for relativity to
manifest itself; classical mechanics is adequate to find the transit time. From classical
mechanics, d = dg+ Ugt + %atz, where in the present case the start position is dg = 0,
the total distance traveled is d = 1 cm, the initial velocity ug = 0, and the acceleration
is given by part (b). Solving for the time t,

[2d 2% 0.01 o

=1.76 x 10**  (m/s?).

Problem 4.51 In a dielectric medium with €, = 4, the electric field is given by
E=%(x*4+22)+9x®—2(y+2) (V/m).

Calculate the electrostatic energy stored in the region — 1 m<x<1m, 0<y<2m,
and0<z<3m.
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Solution: Electrostatic potential energy is given by Eq. (4.124),

3 2 g1
WeZE/ s\E|2dq/:E/ / / [(X2+22)? + x*+ (y+2)?] dxdydz
2J)y 2 Jz=0Jy=0Jx=-1

1 2 3
x=—1 y=0

Problem 4.52 Figure 4-34a (P4.52(a)) depicts a capacitor consisting of two
parallel, conducting plates separated by a distance d. The space between the plates

2

_ 40 <@> =4.62x10"° (J).

= ((<5x yz+§z X y+§z Xy + E(y+z) X _

5

@

Ci=— Co— .

(b)

Figure P4.52: (a) Capacitor with parallel dielectric section, and (b) equivalent circuit.

contains two adjacent dielectrics, one with permittivity €; and surface area A;
and another with €, and A,. The objective of this problem is to show that the
capacitance C of the configuration shown in Fig. 4-34a (P4.52(a)) is equivalent to
two capacitances in parallel, as illustrated in Fig. 4-34b (P4.52(b)), with

C=C1+Cy, (4.132)
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where
A
Cr= % (4.133)
A
Co= % (4.134)

To this end, you are asked to proceed as follows:
(a) Find the electric fields E; and E in the two dielectric layers.
(b) Calculate the energy stored in each section and use the result to calculate Cq
and C,.
(c) Use the total energy stored in the capacitor to obtain an expression for C. Show
that Eq. (4.132) is indeed a valid result.

Solution:

€1 €2

Y-

Tl |+

- Q. —>

©

Figure P4.52: (c) Electric field inside of capacitor.

(a) Within each dielectric section, E will point from the plate with positive voltage
to the plate with negative voltage, as shown in Fig. P4-52(c). FromV = Ed,

Y

Ei1=E,=—.

1 2=y
® 1 1 V2 1 A
_ 2 _ 2R
Wel—ESlEl'rV—ESlF'Ald—ESJ_V F.

But, from Eq. (4.121),
w&:%clvz.

Ao A
HenceCi = ¢4 Fl . Similarly, Co = ¢, Fz .
(c) Total energy is
2

1V 1
We = We, +We, = = - (E1A1+ €29) = Ecvz.
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Hence, A A
€ €
C:%+%:C1+Cz.

Problem 4.53  Use the result of Problem 4.52 to determine the capacitance for each

of the following configurations:
(a) conducting plates are on top and bottom faces of rectangular structure in Fig.

4-35(a) (P4.53(a)),
(b) conducting plates are on front and back faces of structure in Fig. 4-35(a)

(P4.53(a)),
(c) conducting plates are on top and bottom faces of the cylindrical structure in

Fig. 4-35(b) (P4.53(b)).

Solution:
(a) The two capacitors share the same voltage; hence they are in parallel.

(5x1)x 1074

A]_ _2
Crogr ok — gy XY XY 5 v10
e R T X

A 5 x 3) x 104
Com ey 2 = ggy BX 3 X107 o w102,

d 2x1072
C =C1+C, = (5e0+30g0) x 1072 = 0.35¢9 = 3.1 x 10712 F.

(b)
AL (2x1)x1074 »
Cl—slﬁ—ZEOW—O.SEOX].O y
Ay (B3x2)x107% 24 5
C2—82d —480 5X10_2 —5 x 10 ,
C=C1+C,=05x10"F.
(c)
G — ey M _ AT o 16792 004 % 10-2 F
d 2x10-2 102 ’
_ oA (T[("%— rf) AL —3y2 _3\27 _12
Co=gr =405 25 =15 [(4%x107%)%— (2% 107%)?] = 0.06 x 10722 F,

A (mr5-rd) T —3y2 —3\21 _ _12
Comes? =280y 22 = 20 [(Bx107°)2— (4x107%)7 = 012 x 102 F,

C=C;+Cp+C3=0.22x10"F.
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r{ =2mm
r, =4mm
r3 = 8mm

Sy E E o o M M W M M M o o o m

€1 = 8eg; €2 = 4€q; €3 = 2¢€9

(b)

Figure P4.53: Dielectric sections for Problems 4.53 and 4.55.
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Problem 4.54 The capacitor shown in Fig. 4-36 (P4.54) consists of two parallel
dielectric layers. We wish to use energy considerations to show that the equivalent
capacitance of the overall capacitor, C, is equal to the series combination of the
capacitances of the individual layers, C1 and C», namely

C.Co
— , 4.136
Ci1+Co ( )
where
Ci=¢— Cr=c¢ é
1= ldl’ 2= 2d2'

@

C1

C

— i
-
<

(b)

Figure P4.54: (a) Capacitor with parallel dielectric layers, and (b) equivalent circuit
(Problem 4.54).

(a) LetV; and V> be the electric potentials across the upper and lower dielectrics,
respectively. What are the corresponding electric fields E; and E»? By
applying the appropriate boundary condition at the interface between the two
dielectrics, obtain explicit expressions for E; and E, in terms of €4, €5, V, and
the indicated dimensions of the capacitor.

(b) Calculate the energy stored in each of the dielectric layers and then use the sum
to obtain an expression for C.
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I+

Figure P4.54: (c) Electric fields inside of capacitor.

(c) Show that C is given by Eq. (4.136).

Solution:
(a) If Vq is the voltage across the top layer and V, across the bottom layer, then

V:V1+V2a
and y y
1 2
Ei1=-—< Eo=-=.
1 0 2 a0

According to boundary conditions, the normal component of D is continuous across
the boundary (in the absence of surface charge). This means that at the interface
between the two dielectric layers,

Dln = D2n

or
€1E1 = &E.

Hence, £
£
V =Ed; +Exdy = Eqdy + % do,
2

which can be solved for E4:

Vv
Ei= &
di+—d>
€2
Similarly,
Vv
E2
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(b)
2
1 1 \ 1 81€2Ad1
Wo = —gE2. 9 ==g; | — Y | .Adj = Zvy2|__S12001
e 2 =1 1 2 1 dl_l_ﬂdz 1 2 |:(€2d1+81d2)2:|’
&
2
1 1 % 1 £2e,Ad,
We, = €E2-vp =2 | ——— | -Adp=2V2| 122
AR A \dz—l—gdl °T2 [(€1d2+82d1)2]’
€1
1 8182Ad1 + 82€2Ad2
We =We, +We, = 2V |2 L
) (€1d2+ €2d1)?
But We = 3CV2, hence,
_ SlsgAdl—l—S%SgAdg . (g2d1 + €1d2) . £182A
(€201 + €1d7)? P2 (eady + €102)2 €201 + €107

(c) Multiplying numerator and denominator of the expression for C by A/d1dz, we
have

C = dl d2 _ C1C2
GA  8A  Ci+Cp’
dq do
where A A
€1 2
C = — C = —.
1 dy 2 dy

Problem 4.55 Use the expressions given in Problem 4.54 to determine the
capacitance for the configurations in Fig. 4.35(a) (P4.55) when the conducting plates
are placed on the right and left faces of the structure.

Solution:
A (2x5)x1074 5 1
Ci=¢1—=26p———-—=20 107 =1.77x 10 F
1=& a0 €0 1x 102 €o X X )
(2x5)x1074 1
Comep— =dggo V"2  —118x10"2F
2=t T T3 102 X :

c_ CiCo _ 177x118

_ = 1072 =0.71x 10712 F.
Ci+C, 177+118 " %
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Figure P4.55: Dielectric section for Problem 4.55.

Section 4-12: Image Method

Problem 456 With reference to Fig. 4-37 (P4.56), charge Q is located at a
distance d above a grounded half-plane located in the x—y plane and at a distance d

from another grounded half-plane in the x—z plane. Use the image method to
(a) establish the magnitudes, polarities, and locations of the images of charge Q
with respect to each of the two ground planes (as if each is infinite in extent),

and
(b) then find the electric potential and electric field at an arbitrary point P(0,y,z).

z

*P(0,y. 2

d Jr---:Q0.d.0

Figure P4.56: Charge Q next to two perpendicular, grounded, conducting half planes.

Solution:

(a) The original charge has magnitude and polarity +Q at location (0,d,d). Since
the negative y-axis is shielded from the region of interest, there might as well be a
conducting half-plane extending in the —y direction as well as the +y direction. This
ground plane gives rise to an image charge of magnitude and polarity —Q at location
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Figure P4.56: (a) Image charges.

(0,d,—d). In addition, since charges exist on the conducting half plane in the +z
direction, an image of this conducting half plane also appears in the —z direction.
This ground plane in the x-z plane gives rise to the image charges of —Q at (0, —d,d)
and +Q at (0, —d, —d).

(b) Using Eq. (4.47) with N = 4,
Q ( 1 1
4re \ [xx+y(y—d)+2(z—d)|  [}x+¥(y+d)+2(z—d)|

V(x,y,z) =

1 1
+ %X+ 9(y+d) +2(z+d)| |>‘<x+§/(y—d)+2(z+d)|>

_i 1 B 1
4m(¢x2+(yd)2+(zd>2 Ve + )2+ (2—0)?

N 1 - 1 )
R+ y+ 0P+ @ +d)? (et (y—d)+ (z+d)?

Q 1
T4 (\/x2-|-y2—2yd-|—22—22d—|-2d2
1
- /X2 +y2 +2yd + 22 — 2zd 4 2d2
.\ 1
VX2 +y2 4 2yd + 22 4 2zd + 2d2

1
— V).
\/x2+y2—2yd+22+22d+2d2> M
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From Eq. (4.51),
E=-0V
1 1

Q(g -0
4Te \/x2+(y—d)2+(z—d)2 \/x2+(y+d)2+(z—d)2

1 1
+0 —U

R+ (y+d)2+ (2+0)’ ¢x2+<yd)z+<z+d)2)
:g( Yy —d)+2z—d)  fx+y(y+d)+2z—d)
T\ (2t (y—d)2+ @—d))”7? (@t (yrd)2e@—d)D)”

X+9(y+d)+2(z+d) X+ 9(y—d)+2(z+d)
377 3/2) (V/m).

(@4 (y+d)°+(z+d)2)7" @+ (y—d)’+(z+d)?)

Problem 4.57 Conducting wires above a conducting plane carry currents I; and
I> in the directions shown in Fig. 4-38 (P4.57). Keeping in mind that the direction

I

e
T Iy —
| — | —
(€Y (b)

Figure P4.57: Currents above a conducting plane (Problem 4.57).

of a current is defined in terms of the movement of positive charges, what are the
directions of the image currents corresponding to 11 and 1,?

Solution:
(a) In the image current, movement of negative charges downward = movement of
positive charges upward. Hence, image of I is same as |1.
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é +g@t=t;
Iy :

: +q@t=0
T -q@t=0

Iy :
(image) l ' -q@t=ty

Figure P4.57: (a) Solution for part (a).

(b) In the image current, movement of negative charges to right = movement of
positive charges to left.

Figure P4.57: (b) Solution for part (b).

Problem 4.58 Use the image method to find the capacitance per unit length of an
infinitely long conducting cylinder of radius a situated at a distance d from a parallel
conducting plane, as shown in Fig. 4-39 (P4.58).

Solution: Let us distribute charge p; (C/m) on the conducting cylinder. Its image
cylinder at z= —d will have charge density —py.

For the line at z = d, the electric field at any point z (at a distance of d — z from the
center of the cylinder) is, from Eq. (4.33),

_ 5 P
Bi=-2 2o (d —2)
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— V=0

Figure P4.58: Conducting cylinder above a conducting plane (Problem 4.58).

®

B T
N

Figure P4.58: (a) Cylinder and its image.

where —2 is the direction away from the cylinder. Similarly for the image cylinder at
distance (d 4 z) and carrying charge —p,

P G ) P o B
Ez_ZZmo(dJrz) B ZZTIEo(d +2)°

The potential difference between the cylinders is obtained by integrating the total
electric field fromz=—(d —a) toz= (d — a):

1
v :—/ (E1+Ey)-2dz
2

d—a
_ 5 0] 1 1 ~
B /—(d—a) ZZTIEO (d—z+d+z> 2dz
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po[ia
- 2meg /—(d—a) ( d+z)

Y]
zz—m[—ln(d—z)+ln(d+z] _a)
Y]
= o1 [—In(a) +In(2d —a) +In(2d —a) — In(a)]

_ P n(2d—a>‘
TEQ a
Foralength L, Q =pL and

_Q_ piL
~V  (pi/TEo)In[(2d —a)/a]’

and the capacitance per unit length is

C TEQ

TR

(C/m).

Problem 4.59 A circular beam of charge of radius a consists of electrons moving
with a constant speed u along the +z direction. The beam’s axis is coincident with
the z-axis and the electron charge density is given by

py=—cr? (c/m3)
where ¢ is a constant and r is the radial distance from the axis of the beam.

(a) Determine the charge density per unit length.

(b) Determine the current crossing the z-plane.

Solution:

(@)

pI:/pvdS

a gp2m 42 4
:/ / —er?ordrdo=—2c | =— =2 cim).
r=0.J¢=0 41, 2
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(b)

J=puu=—2cr’u (A/m?

I:/J-ds

a 2n
:/ / (—zcur?)-zrdrde
r=0J¢=0

4
=pu. (A).

a Tcua
:—chu/ rdr=—
0

Problem 4.60 A line of charge of uniform density p; occupies a semicircle of
radius b as shown in the figure. Use the material presented in Example 4-4 to
determine the electric field at the origin.

4
e ]
/7
/
L’ R

b

X

Solution: Since we have only half of a circle, we need to integrate the expression for
dE1 given in Example 4-4 over ¢ from 0 to 7t Before we do that, however, we need
to set h = 0 (the problem asks for E at the origin). Hence,

_ pib (—Fb+2h)

dE; = d
L7 amey (21 h232 O
_—p
N 4T[Eob d(p
m —pi
E, = dE{ = —F.
! ¢=0 ! 4eob

Problem 4.61 A spherical shell with outer radius b surrounds a charge-free cavity
of radius a < b. If the shell contains a charge density given by

Pvo
TR
where pyo is a positive constant, determine D in all regions.

pV: aSRSba
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Solution: Symmetry dictates that D is radially oriented. Thus,

D = RDk.
At any R, Gauss’s law gives

%D-ds:Q
S

/F‘eDR Rds=0Q

S
4TR’DR = Q
_Q
PR = g2

(a) For R < a, no charge is contained in the cavity. Hence, Q =0, and
Dr = 0, R<a.
(b) Fora<R <b,

R R
o=/ pav=/[ —P0 4mR24r

R=a R=a ﬁ
= —4mpp(R—a).
Hence,
Pvo(R—2) a<R<b
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(c) ForR> D,
b
Q= o P dV = —4mpyo(b—a)
=a
pvo(b—a)
DR = —T , R Z b

Problem 4.62 Two infinite lines of charge, both parallel to the z-axis, lie in the x—z
plane, one with density p; and located at x = a and the other with density —p; and
located at x = —a. Obtain an expression for the electric potential V (x,y) at a point
P(x,y) relative to the potential at the origin.

Ay
. P(xy)
A

r ,.’/ \‘ r'

e \
_ ,/ \
p\‘/ ‘.pl . X
(-a,0) (a 0)

Solution: According to the result of Problem 4.30, the electric potential difference
between a point at a distance r; and another at a distance r, from a line charge of

density pj is
V= P n (2> .
2Ty r

Applying this result to the line charge at x = a, which is at a distance a from the
origin:

V’:—th"_:0 n(%) (rp=aandry =r')

_ P a
= 2rgg In ( i(x—a)z—l—yz) .

Similarly, for the negative line charge at x = —a,

— a
VH:Z—Trg)In(W) (p=aandry =r')

_ —Pi a
= r8g In ( i(x—lra)z—l—yz) .
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The potential due to both lines is

V=V v =

P a a
2TEo [ln (x/(X—a)Zerz) - (x/(X+a)2+y2>

At the origin, V = 0, as it should be since the origin is the reference point. The
potential is also zero along all points on the y-axis (x = 0).

Problem 4.63 A cylinder-shaped carbon resistor is 8 cm in length and its circular
cross section has a diameter d = 1 mm.

(a) Determine the resistance R.

(b) To reduce its resistance by 40%, the carbon resistor is coated with a layer of
copper of thickness t. Use the result of Problem 4.40 to determine t.

Solution:
(a) From (4.70), and using the value of o for carbon from Appendix B,

I I 8 x 1072
R=—= = =34Q.
oA om(d/2)?2 3x10%m(10-3/2)2
(b) The 40%-reduced resistance is:
R'=0.6R=0.6 x3.4=2.04 Q.
Using the result of Problem 4.40:
R = ! =2.04 Q.

(0182 + 02(b% —a?))

With g; = 3.4 x 10* S/m (carbon), o, = 5.8 x 107 S/m (copper), a = 1 mm/2 =
5x 104 m, and b unknown, we have

b = 5.00086 x 10 % m
and

t=b—a=(5.00086—5) x 10~*
=0.00086 x 10~% m = 0.086 pm.

Thus, the addition of a copper coating less than 0.1 pum in thickness reduces the
resistance by 40%.
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Problem 4.64 A coaxial capacitor consists of two concentric, conducting,
cylindrical surfaces, one of radius a and another of radius b, as shown in the figure.
The insulating layer separating the two conducting surfaces is divided equally into
two semi-cylindrical sections, one filled with dielectric €, and the other filled with
dielectric €.

(a) Develop an expression for C in terms of the length | and the given quantities.

(b) Evaluate the value of C fora=2 mm, b=6 mm, &, =2, &, =4, and
I=4cm.

Solution:

(a) For the indicated voltage polarity, the E field inside the capacitor exists in only
the dielectric materials and points radially inward. Let E; be the field in dielectric €1
and E» be the field in dielectric €. At the interface between the two dielectric
sections, E; is parallel to E» and both are tangential to the interface. Since boundary
conditions require that the tangential components of E1 and E> be the same, it follows
that:

E1=E,=-TE.
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At r = a (surface of inner conductor), in medium 1, the boundary condition on D, as
stated by (4.101), leads to

D1 =¢&1E1 =1Npg

—fegE = ?psl
or

Ps1 = —ElE.
Similarly, in medium 2

P2 = —82E.

Thus, the E fields will be the same in the two dielectrics, but the charge densities will
be different along the two sides of the inner conducting cylinder.

Since the same voltage applies for the two sections of the capacitor, we can treat
them as two capacitors in parallel. For the capacitor half that includes dielectric €1,
we can apply the results of Egs. (4.114)—(4.116), but we have to keep in mind that Q
is now the charge on only one half of the inner cylinder. Hence,

. T[E;|_|
" In(b/a)
Similarly,
. TS|
2" In(b/a)’
and (e + &)
. . €1+€&
C—C;rl—Cz—W
(b)

_ Tix4x107%(2+4) x8.85x 10 12

¢ n(6/2)

= 6.07 pF.
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Chapter S: Magnetostatics

Lesson #30
Chapter — Section: 5-1

Topics: Magnetic forces and torques

Highlights:

e Lorentz force on a charged particle
e Magnetic force on a current in a magnetic field
e Torque on a loop

Special Illustrations:
e Examples 5-1
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Lesson #31
Chapter — Section: 5-2
Topics: Biot-Savart law

Highlights:

e Magnetic field induction by electric currents
e Magnetic field due to linear conductor
e Magnetic dipole

Special Illustrations:

e Example 5-2
e Example 5-3
e (CD-ROM Modules 5.3 and 5.4

Module 5.3: Field at Center of a Square

In example 5-2 in the text, it was shown that the

f— [ —] magnetic flux density at a distance r from the
- midpoint of a conductor of length [/ is:
1 - B=uH=p_ Ho (T) (5.29)
- Pt 27/ Are 12 - -
v Q. Use the above result to determine B at the center

of a square of sides [.

“eet) B =0

Gee) B = iZ\/E,uoI/:t!
) B=—Z 2\/5,&01/7:!
Geec) B = i\/iuoffﬁn:!

[t
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Lesson #32
Chapter — Section: 5-3, 5-4
Topics: Magnetic force, Ampere’s law

Highlights:
e Attraction and repulsion forces between currents

e Gauss’s law for magnetics
e Ampere’s law

Special Illustrations:

e Example 5-6
e CD-ROM Modules 5.1 and 5.2

Module 5.2: Wire Next to a Loop

1 Given: A wire loop lies in the same plane as an infinitely long
! wire. Initially, neither wire is carrying a current.
———— Q1. If ;=0 and a current /5 is made to flow through the loop

in the direction shown, what will happen to the loop?

"_select \ MNothing.

"_select \ It will try to expand.

£ N .
[ select | It will contract.

I;

Q2. If in addition to f3, a strong current /) is made to flow

through the linear wire, what is likely to happen to the

loop?

(‘select | Naothing.

'r_select ‘ It will try to expand.

£ N -
| select | It will contract.



236

Lesson #33
Chapter — Section: 5-5, 5-6

Topics: Vector magnetic potential, magnetic materials

Highlights:
e Relationof Ato B
e Vector Poisson’s Eq.
e Magnetic permeability
e Ferromagnetism, hysteresis

Special Illustrations:

e Technology Brief on “Electromagnetic and magnetic switches” (CD-ROM)

Electromagnets and Magnetic Relays

William Sturgeon developed the first practical electromagnet in the 1820s. Today the principle of
the electromagnet is used in motors, relay switches in read/write heads for hard disks and tape
drives, loudspeakers, magnetic levitation and many other applications.

Basic Principle

Electromagnets can be constructed in various shapes,
including the linear solenoid described in Section 5-8.1.
When an electric current generated by a power source,
such as a battery, flows through the wire coiled around
the central core, it induces a magnetic field with field
lines resembling those generated by a bar magnet (Al).
The strength of the magnetic field is proportional to the
current, the number of turns, and the magnetic
permeability of the core material. By using a
ferromagnetic core, the field strength can be increased
by several orders of magnitude, depending on the purity
of the iron material. When subjected to a magnetic
field, ferromagnetic materials, such as iron or nickel,
get magnetized and act like magnets themselves.
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Lesson #34
Chapter — Section: 5-7
Topics: Boundary conditions

Highlights:

e Analogy with electric-field boundary conditions

Special Illustrations:
e Technology Brief on “Magnetic Recording” (CD-ROM)

Magnetic Recording

Valdemar Poulsen, a Danish engineer, invented magnetic recording by demonstrating in 1900 that
speech can be recorded on a thin steel wire using a simple electromagnet. Magnetic tapes were
developed as an alternative medium to wires in the 1940s and became very popular for recording
and playing music well into the 1960s. Videotapes were introduced in the late 1950s for
recording motion pictures for later replay on television. Because video signals occupy a much
wider bandwidth, tape speeds for video recording (past the magnetic head) have to be at rates on
the order of 5 m/s, compared with only 0.3 m/s for audio. Other types of magnetic recording
media were developed since then, including the flexible plastic disks called “floppies,” the hard
disks made of glass or aluminum, the magnetic drum, and the magnetic bubble memory. All take
advantage of the same fundamental principle of being able to store electrical information through
selective magnetization of a magnetic material, as well as the ability to retrieve it (playback)
when so desired.

AMPFLIFIER

TTTTOTIT RECORDING HEAD
Lol .-k"' .."".- u‘.-'ﬂ'. -.-"..
- L

2 3 MAGHETIC FIELD 4
INDLCED BY SIGRAL

== I 7]
A. Tape recording process MAGHETIC TAFE

REEL REEL

LOUDSFEAKER [, AMFLIFIER

FICK-LIP HEAD

k
&

. MAGNETIC FIELD
' INDUUCED BY TAPE

g}w—ﬂn [T “_8
B. Replay process
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Lesson #35
Chapter — Section: 5-8
Topics: Inductance

Highlights:

e Solenoid
e Self inductance

Special Illustrations:

e Example 5-8
e Technology Brief on “Inductive Sensors” (CD-ROM)

Inductive Sensors

Magnetic coupling between different coils forms the basis of several different types of inductive
sensors. Applications include the measurement of position and displacement (with sub-millimeter
resolution) in device fabrications processes, proximity detection of conductive objects, and other
related applications.

Linear Variable Differential Transformer (LVDT)

A LVDT comprises a primary coil connected to an
ac source, typically a sine wave at a frequency in
the 1-10 KHz range, and a pair of secondary coils,
all sharing a common ferromagnetic core (A1).
The magnetic core serves to couple the magnetic

flux generated by the primary coil into the two PUSH ROD

secondaries, thereby inducing an output voltage e _W
across each of them. The secondary coils are
connected in opposition, so that when the core is
positioned at the magnetic center of the LVDT, the
individual output signals of the secondaries cancel S BREECOIES
each other out, producing a null output voltage.
The core is connected to the outside world via a - Voutl +
nonmagnetic rod. When the rod moves the core

away from the magnetic center, the magnetic A1. LVDT circuit

fluxes induced in the secondary coils are no longer

equal, resulting in a non-zero output voltage. The

LVDT is called a “linear” transformer because the

output voltage is a linear function of displacement

over a wide operating range.




Lesson #36
Chapter — Section: 5-9
Topics: Magnetic energy

Highlights:

e Magnetic energy density
e Magnetic energy in a coax

Special Illustrations:

e Example 5-9
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Chapter 5

Sections 5-1: Forces and Torques

Problem 5.1 An electron with a speed of 8 x 106 m/s is projected along the
positive x-direction into a medium containing a uniform magnetic flux density
B = (%4 —23) T. Given that e = 1.6 x 1071° C and the mass of an electron is
me = 9.1 x 103! kg, determine the initial acceleration vector of the electron (at the
moment it is projected into the medium).

Solution: The acceleration vector of a free particle is the net force vector divided by
the particle mass. Neglecting gravity, and using Eq. (5.3), we have

= e~ m U ¥ B= g xro-a

= —y4.22 x 10 (m/s?).

Fo  — _1.6x1071 o
a—-m__° X %8 x 106) x (%4 — 23)

Problem 5.2 When a particle with charge g and mass m is introduced into a medium
with a uniform field B such that the initial velocity of the particle u is perpendicular
to B, as shown in Fig. 5-31 (P5.2), the magnetic force exerted on the particle causes it
to move in a circle of radius a. By equating Fn, to the centripetal force on the particle,
determine a in terms of g, m, u, and B.

Solution: The centripetal force acting on the particle is given by F. = mu?/a.

Figure P5.2: Particle of charge q projected with velocity u into a medium with a
uniform field B perpendicular to u (Problem 5.2).
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Equating F; to Fr, given by Eq. (5.4), we have mu?/a = quBsin 6. Since the magnetic
field is perpendicular to the particle velocity, sin® = 1. Hence, a = mu/qB.

Problem 5.3 The circuit shown in Fig. 5-32 (P5.3) uses two identical springs to
support a 10-cm-long horizontal wire with a mass of 20 g. In the absence of a
magnetic field, the weight of the wire causes the springs to stretch a distance of
0.2 cm each. When a uniform magnetic field is turned on in the region containing the
horizontal wire, the springs are observed to stretch an additional 0.5 cm. What is the
intensity of the magnetic flux density B? The force equation for a spring is F = kd,
where Kk is the spring constant and d is the distance it has been stretched.

40 12V

/Spri ngs\
2 =

®© [®© ® @ oB

© [© © o ©
10cm

Figure P5.3: Configuration of Problem 5.3.

Solution: Springs are characterized by a spring constant k where F = kd is the
force exerted on the spring and d is the amount the spring is stretched from its rest
configuration. In this instance, each spring sees half the weight of the wire:

~mg 20x10°3x9.38

=20~ 2x2xio3 29 (Nm).

F= %mg =kd, k
Therefore, when the springs are further stretched by an additional 0.5 cm, this
amounts to an additional force of F =49 N/m x (5 x 1073 m) = 245 mN per spring,
or a total additional force of F = 0.49 N. This force is equal to the force exerted
on the wire by the interaction of the magnetic field and the current as described by
Eq. (5.12): F, = 1£x B, where £ and B are at right angles. Moreover £ x B is in the
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downward direction, and | =V /R =12 V/4 Q = 3 A. Therefore,

_ [Fml _ 049 _ ) g (M.

Fonl = [1][€]|B Bl = = a0 =
ol = 1118, 18] = 11 = 501

Problem 5.4 The rectangular loop shown in Fig. 5-33 (P5.4) consists of 20 closely
wrapped turns and is hinged along the z-axis. The plane of the loop makes an
angle of 30° with the y-axis, and the current in the windings is 0.5 A. What
is the magnitude of the torque exerted on the loop in the presence of a uniform
field B = 92.4 T? When viewed from above, is the expected direction of rotation
clockwise or counterclockwise?

z
A
—_ \HO.SA
04m /20 turns
30° =Y
0.2m>

X

Figure P5.4: Hinged rectangular loop of Problem 5.4.

Solution: The magnetic torque on a loop is given by T =m x B (Eq. (5.20)), where
m = ANIA (Eqg. (5.19)). For this problem, itis given that | = 0.5 A, N = 20 turns, and
A=0.2mx 0.4 m=0.08 m?. From the figure, A = —Xcos30° +¥sin30°. Therefore,
m =A0.8 (A-m?) and T = 0.8 (A-m?) x 2.4 T = —21.66 (N-m). As the torque is
negative, the direction of rotation is clockwise, looking from above.

Problem 5.5 In a cylindrical coordinate system, a 2-m-long straight wire carrying
a current of 5 A in the positive z-direction is located at r = 4 cm, @ = 11/2, and
—Im<z<lm.

(@) IfB=1t0.2cos@ (T), what is the magnetic force acting on the wire?
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5A

Figure P5.5: Problem 5.5.

(b) How much work is required to rotate the wire once about the z-axis in the
negative @-direction (while maintaining r = 4 cm)?
(c) Atwhat angle @is the force a maximum?

Solution:
(@)
F=1£xB
=522 % [f0.2cos @)
= (2COS .

At @=T1/2, @= —X. Hence,
F = —X2cos(1/2) = 0.
(b)

21

21 . R
W= F-dI:/ Q[2cos @ -(—@)rdo
=0 0

r=4cm

= —8x 10~ 2[sin@Z" = 0.

r=4cm

2n
:—Zr/ cospdq
0

The force is in the +¢-direction, which means that rotating it in the —@-direction
would require work. However, the force varies as cos@, which means it is positive
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when —11/2 < @ < 11/2 and negative over the second half of the circle. Thus, work
is provided by the force between ¢ = 1/2 and @ = —11/2 (when rotated in the
—(i}direction), and work is supplied for the second half of the rotation, resulting in a
net work of zero.

(c) The force F is maximum when cos@= 1, or ¢=0.

Problem 5.6 A 20-turn rectangular coil with side | =20 cm and w = 10 cm s
placed in the y—z plane as shown in Fig. 5-34 (P5.6).

z
A )
I 20-turn coil
// \\
e !
1o !
Y~ - - I
I -1~ - I
(| 1
| Al |
1 1
1 ' 1
I PR N 1
1 Sl
|’/ \q
[ 7 > Y
\
A AT I

Figure P5.6: Rectangular loop of Problem 5.6.

(a) If the coil, which carries a current I = 10 A, is in the presence of a magnetic
flux density
B=2x10"2(8+92) (T),
determine the torque acting on the coil.
(b) Atwhat angle @ is the torque zero?
(c) Atwhat angle @is the torque maximum? Determine its value.
Solution:
(@) The magnetic field is in direction (X + §2), which makes an angle
@ =tan~12 =63.43°.
The magnetic moment of the loop is

m=ANIA=A20x 10 (30x 10) x 1074 =6 (A-m2),
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Figure P5.6: (a) Direction of B.

where 1 is the surface normal in accordance with the right-hand rule. When the loop
is in the negative-y of the y—z plane, f is equal to X, but when the plane of the loop is
moved to an angle ¢, 1 becomes

= Xcos@+ ysing,

A
T=mxB=A6x2x10"2(X+92)

A

= (XCos @+ 9sing) 6 x 2 x 1072(X +92)
=20.12[2cos @—sing (N-m).

(b) The torque is zero when
2cos@—sin@=0,

or
tanp=2, (©=63.43° or —116.57°.

Thus, when i is parallel to B, T = 0.
(c) The torque is a maximum when 1 is perpendicular to B, which occurs at

@=63.43+90° = —26.57° or +153.43°.

Mathematically, we can obtain the same result by taking the derivative of T and
equating it to zero to find the values of @at which |T| is a maximum. Thus,
oT 0

90 = g (0 12(2c0s0—sing) =0
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or
—2sin@+cos@= 0,

which gives tang= —3, or

(= —26.57° or 153.43°,

at which T =20.27 (N-m).

Section 5-2: Biot—Savart Law

Problem 5.7 An 8 cm x 12 cm rectangular loop of wire is situated in the x-y
plane with the center of the loop at the origin and its long sides parallel to the x-axis.
The loop has a current of 50 A flowing with clockwise direction (when viewed from
above). Determine the magnetic field at the center of the loop.

Solution: The total magnetic field is the vector sum of the individual fields of each
of the four wire segments: B = B; + B, + B3+ B4. An expression for the magnetic
field from a wire segment is given by Eq. (5.29).

z

4

4
-6 cm /@
4

e
4
4 @ |
4
v

4 cm

Figure P5.7: Problem 5.7.

For all segments shown in Fig. P5.7, the combination of the direction of the current
and the right-hand rule gives the direction of the magnetic field as —z direction at the
origin. Withr =6 cmand | =8 cm,

A il
27
21/ 4r? + 12
. 4mx107"x50x0.08

=-2
211 0.06 X /4 x 0.062 4 0.082

Bi=—

——29.24%x10"° (T).
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For segment 2, r =4 cmand | = 12 cm,

B— 2 M
/T
. 4mx 107" x50 x0.12 .
— _p ATXD XX — _520.80x 1075 (T).
211%x 0.04 x v/4 x 0.042 +0.122
Similarly,

Bs=—-29.24x10"° (T), Bs=—-220.80x10"% (T).

The total field is then B=B;+ B>+ B3+ B4y = —70.60 (mT).

Problem 5.8 Use the approach outlined in Example 5-2 to develop an expression
for the magnetic field H at an arbitrary point P due to the linear conductor defined by
the geometry shown in Fig. 5-35 (P5.8). If the conductor extends between z; =3 m
and z, = 7 m and carries a current | = 15 A, find H at P(2,¢,0).

3] \
P1(z1) A 1 R

r P(r. ¢.2)

Figure P5.8: Current-carrying linear conductor of Problem 5.8.

Solution: The solution follows Example 5-2 up through Egq. (5.27), but the
expressions for the cosines of the angles should be generalized to read as
coselzi, cos0, = -
r2+(Z—Zl)2 r2+(2—22)2
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instead of the expressions in Eq. (5.28), which are specialized to a wire centered at
the origin. Plugging these expressions back into Eg. (5.27), the magnetic field is
given as

For the specific geometry of Fig. P5.8,

~ 15 [ 0-3 0-7

— _ _ ~ _3 _ ~
H= ¢41T>< 232522 72 _|_22:| @77.4x107° (A/m) =@77.4 (mA/m).

Problem 5.9 The loop shown in Fig. 5-36 (P5.9) consists of radial lines and
segments of circles whose centers are at point P. Determine the magnetic field H
atPintermsofa, b, 6,and I.

AN

l—a—|P

Figure P5.9: Configuration of Problem 5.9.

Solution: From the solution to Example 5-3, if we denote the z-axis as passing out
of the page through point P, the magnetic field pointing out of the page at P due to
the current flowing in the outer arc is Houer = —218/41b and the field pointing out
of the page at P due to the current flowing in the inner arc is Hiner = 210/418a. The
other wire segments do not contribute to the magnetic field at P. Therefore, the total
field flowing directly out of the page at P is

16 (1 1>:2M_

H = Houter + Hipner = Z2—— 2 b 418h

41t

Problem 5.10 An infinitely long, thin conducting sheet defined over the space
0<x<wand —o <y < o s carrying a current with a uniform surface current
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IR = Vx2+ 22

A
Y

Figure P5.10: Conducting sheet of width w in x-y plane.

density Js = §5 (A/m). Obtain an expression for the magnetic field at point P(0,0,z)
in Cartesian coordinates.

Solution: The sheet can be considered to be a large number of infinitely long but
narrow wires each dx wide lying next to each other, with each carrying a current
Iy = Jsdx. The wire at a distance x from the origin is at a distance vector R from

point P, with
R = —Xx+2z.

Equation (5.30) provides an expression for the magnetic field due to an infinitely long
wire carrying a current | as

_B_9

Mo 2m’
We now need to adapt this expression to the present situation by replacing | with
Iy = Jsdx, replacing r with R = (x?4-z2)%/2, as shown in Fig. P5.10, and by assigning
the proper direction for the magnetic field. From the Biot-Savart law, the direction
of H is governed by | x R, where | is the direction of current flow. In the present case,
| is in the ¥ direction. Hence, the direction of the field is

IxR  yx(—Xx+2z) Xz + 2

IXR| |gx (—%x+2z)] (x24+22)1/2°
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Therefore, the field dH due to the current Iy is

dH — X2+2x Iy (RXz+2x)Jsdx

(x2+z22)Y2 2R~ 2m(x2+22) ’

and the total field is

Jsdx

H(0,0,z) = /X(xz+zx)2(

X2 + 2?)
W

Z+ZX 22

S,
(X X= oX2 2/x oX;(—-I—XZZ)
( ( tan™ 1( )) (3In(x®+z ))|WO>

[x2ntan_1( ) +23(In(w?+2%) —1In (O+22))] for z #0,
[xZntan 1 (g) +231In (g)] (AIm) forz#0.

An alternative approach is to employ Eq. (5.24a) directly.

':\:’|01 ':\:’|01 ':\:’|<5‘ Eﬂm ':\:’I

Problem 5.11 An infinitely long wire carrying a 25-A current in the positive
x-direction is placed along the x-axis in the vicinity of a 20-turn circular loop located
in the x-y plane as shown in Fig. 5-37 (P5.11(a)). If the magnetic field at the center
of the loop is zero, what is the direction and magnitude of the current flowing in the
loop?

Iy

Figure P5.11: (a) Circular loop next to a linear current (Problem 5.11).

Solution: From Eq. (5.30), the magnetic flux density at the center of the loop due to
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@)

Figure P5.11: (b) Direction of I.

the wire is ™
Bi1=2_—1
1 ord -
where Z is out of the page. Since the net field is zero at the center of the loop, 1o must
be clockwise, as seen from above, in order to oppose I;. The field due to I, is, from

Eq. (5.35),

B=poH=—2 ”02'\:2 .
Equating the magnitudes of the two fields, we obtain the result
NIz Iy
2a  2m’
or
L 2aly 1x25 _02A

T 2mNd  Tix20x2

Problem 5.12 Two infinitely long, parallel wires carry 6-A currents in opposite
directions. Determine the magnetic flux density at point P in Fig. 5-38 (P5.12).

L11=6A Y12=6A

0.5m

2m

Figure P5.12: Arrangement for Problem 5.12.

Solution:

_ .~ kol & Hol2 ~Ho _~ 8o
B _(p2n(0.5) Jr([,21'[(1.5) =% (6+2)=0 Tt (T-
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Problem 5.13 A long, East-West oriented power cable carrying an unknown
current | is at a height of 8 m above the Earth’s surface. If the magnetic flux density
recorded by a magnetic-field meter placed at the surface is 15 uT when the current is
flowing through the cable and 20 uT when the current is zero, what is the magnitude
of 1?

Solution: The power cable is producing a magnetic flux density that opposes Earth’s,
own magnetic field. An East-West cable would produce a field whose direction at
the surface is along North—South. The flux density due to the cable is

B = (20— 15) pT = 5yT.

As a magnet, the Earth’s field lines are directed from the South Pole to the North
Pole inside the Earth and the opposite on the surface. Thus the lines at the surface are
from North to South, which means that the field created by the cable is from South
to North. Hence, by the right-hand rule, the current direction is toward the East. Its
magnitude is obtained from

_ Hol _ 4mx 10771

5uT=5x106="2" _“"2°* ~
HE=ox od - 2mix8

which gives | = 200 A.

Problem 5.14 Two parallel, circular loops carrying a current of 40 A each are
arranged as shown in Fig. 5-39 (P5.14). The first loop is situated in the x—y plane
with its center at the origin and the second loop’s center is at z=2 m. If the two
loops have the same radius a = 3 m, determine the magnetic field at:

(@ z=0,
(b) z=1m,
() z=2m.

Solution: The magnetic field due to a circular loop is given by (5.34) for a loop in
the x-y plane carrying a current | in the +¢-direction. Considering that the bottom
loop in Fig. P5.14 is in the x—y plane, but the current direction is along —@,

5 la?
2(a2+2)32°
where z is the observation point along the z-axis. For the second loop, which is at a

height of 2 m, we can use the same expression but z should be replaced with (z— 2).
Hence,

Hy=—

1a2

Hy=—2 .
2= T R (2272
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X

Figure P5.14: Parallel circular loops of Problem 5.14.

The total field is

H = ot Hp— 22 L L
-t = 2 |(@2+122)32 " [a2+ (z—2)232

(@ Atz=0,andwitha=3mand | =40 A,

| am.

. 40x9
_Z—

H=
2

1 1 o
|:¥ + W] =—-710.5 A/m.

(b) Atz =1 m (midway between the loops):

H_ _ 5%0x9 11
B 2 [(9+1)%2  (9+1)32

(c) Atz =2 m, H should be the same as at z = 0. Thus,

] =—711.38 A/m.

H=-210.5 A/m.

Section 5-3: Forces between Currents

Problem 5.15 The long, straight conductor shown in Fig. 5-40 (P5.15) lies in the
plane of the rectangular loop at a distance d = 0.1 m. The loop has dimensions
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b=0.5m

| |
d=01m ! a=0.2m !

Figure P5.15: Current loop next to a conducting wire (Problem 5.15).

a=0.2mand b= 0.5m, and the currents are I; = 20 A and I, = 30 A. Determine
the net magnetic force acting on the loop.

Solution: The net magnetic force on the loop is due to the magnetic field surrounding
the wire carrying current 1. The magnetic forces on the loop as a whole due to the
current in the loop itself are canceled out by symmetry. Consider the wire carrying
I1 to coincide with the z-axis, and the loop to lie in the +x side of the x-z plane.
Assuming the wire and the loop are surrounded by free space or other nonmagnetic
material, Eq. (5.30) gives

_plols
B=¢ o
In the plane of the loop, this magnetic field is

~ Hol1

2T

Then, from Eq. (5.12), the force on the side of the loop nearest the wire is

— _ 5 AUO_ll _ _,\U0|1|2b
Fmi = 12€ x B = I5(Zb) x <y2m> X:d— X ord
The force on the side of the loop farthest from the wire is
. ~ Hol1 . Hol1l2b
F2=|2£XB=|2—ZbX(y—> =X——"
; ( ) 2TX x=a+d 2n(a + d)
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The other two sides do not contribute any net forces to the loop because they are
equal in magnitude and opposite in direction. Therefore, the total force on the loop is

F= le+ I:m2
_)A(Llo|1|2b - Holil2b
2md 2m(a+d)
. Ho|1|2ab
- "2md(a+d)
-7
_ _)24n>< 107" %x20x30x0.2x 0.5 — %04 (mN).

211%x 0.1 % 0.3
The force is pulling the loop toward the wire.

Problem 5.16 In the arrangement shown in Fig. 5-41 (P5.16), each of the two long,
parallel conductors carries a current I, is supported by 8-cm-long strings, and has a
mass per unit length of 1.2 g/cm. Due to the repulsive force acting on the conductors,
the angle 8 between the supporting strings is 10°. Determine the magnitude of | and
the relative directions of the currents in the two conductors.

Figure P5.16: Parallel conductors supported by strings (Problem 5.16).

Solution: While the vertical component of the tension in the strings is counteracting
the force of gravity on the wires, the horizontal component of the tension in the strings
is counteracting the magnetic force, which is pushing the wires apart. According
to Section 5-3, the magnetic force is repulsive when the currents are in opposite
directions.

Figure P5.16(b) shows forces on wire 1 of part (a). The quantity F’ is the tension
force per unit length of wire due to the mass per unit length m’ = 1.2 g/cm = 0.12
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kg/m. The vertical component of F’ balances out the gravitational force,

R/ =mg, (19)
where g = 9.8 (m/s?). But
F, = F'cos(8/2). (20)
Hence,
m'g
I_
~ cos(8/2) 1)

The horizontal component of F’ must be equal to the repulsion magnitude force given
by Eq. (5.42):

r_ ol 2 o Hol?
0= o = 2m{2¢sin(8/2)]

(22)

where d is the spacing between the wires and £ is the length of the string, as shown
in Fig. P5.16(c). From Fig. 5.16(bh),

HZF@MWQZ&ﬁgzﬂMW3=Wmmwﬁ) (23)

Equating Egs. (22) and (23) and then solving for I, we have

avm'g sin5e 411 0.08 X 0.12 X 9.8
HoCos(8/2) 41X 107 cos5°

I =sin(6/2) =848 (A).

Problem 5.17 An infinitely long, thin conducting sheet of width w along the
x-direction lies in the x-y plane and carries a current I in the —y-direction. Determine
(a) the magnetic field at a point P midway between the edges of the sheet and at a
height h above it (Fig. 5-42 (P5.17)), and then (b) determine the force per unit length
exerted on an infinitely long wire passing through point P and parallel to the sheet
if the current through the wire is equal in magnitude but opposite in direction to that
carried by the sheet.

Solution:
(a) The sheet can be considered to consist of a large number of infinitely long but
narrow wires each dx wide lying next to each other, with each carrying a current
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" dp
| /

|
I w I

Figure P5.17: A linear current source above a current sheet (Problem 5.17).

Ix = 1dx/w. If we choose the coordinate system shown in Fig. P5.17, the wire at a
distance x from the origin is at a distance vector R from point P, with

R = —Xx+ zh.

Equation (5.30) provides an expression for the magnetic field due to an infinitely long
wire carrying a current | as

B -~ 1
He = —@p—.
Ho 21r

We now need to adapt this expression to the present situation by replacing | with
Iy = 1dx/w, replacing r with R = (x? 4 h?)1/2, and by assigning the proper direction
for the magnetic field. From the Biot-Savart law, the direction of H is governed by
I x R, where | is the direction of current flow. In the present case, | is out of the page,
which is the —¥ direction. Hence, the direction of the field is

IxR —§ % (—Xx+zh) —(Xh+ 2x)

IXR| ~ [—9x (—&x+2h)|  (@+h2)2’

Therefore, the field dH due to current Iy is

dH = —(%h+2x) Iy —(Xh+2x)ldx
T (®4+h2)Y/22mR T 2rw(x24-h2)
and the total field is
w/2 - 1 dx
H(0,0,h) — /X oy R
- Kh + 2X) ———
2T|.\N X:*W/Z(X +ZX) X2+h2

_ oh w/2 dx L (W2 xdx
o ﬁ X /x:w/z X2+h2+z/xzw/2 X2 4+ h2
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= (.. (1, _q/X%

= Zrw (Xh (Hta” (ﬁ))

oW

= —xmtan <%) (A/m).
At P in Fig. P5.17, the field is pointing to the left. The z-component could have
been assumed zero with a symmetry argument. An alternative solution is to employ
Eq. (5.24a) directly.

(b) From Eq. (5.9), a differential force is of the form dF,, = I dl x B or, assuming

dl = &, d/, the force per unit length is given by

oF . . Mol /W Auolz A
! m 1 1
Fmn= 5 = Gy xB=1yx (—x—tan <_2h)> =2——tan (_2h> (N).

w/2 w2
+2(3In(+h) [0,
Xx=—w/2

The force is repulsive; the wire is experiencing a force pushing it up.

Problem 5.18 Three long, parallel wires are arranged as shown in Fig. 5-43
(P5.18(a)). Determine the force per unit length acting on the wire carrying |3.

- ® 1,=10A

-+ F—2m——® 1;=10A

— ©® 1,=10A

Figure P5.18: (a) Three parallel wires of Problem 5.18.

Solution: Since I; and I, are equal in magnitude and opposite in direction, and
equidistant from I3, our intuitive answer might be that the net force on I3 is zero. As
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T l1 into the page (¥)

l1

Fa1
Fz
o X » X
4
i
e 3

Figure P5.18: (c) Forces acting on 3.

we will see, that’s not the correct answer. The field due to 1, (which is along §) at

location of I3 is
L
Bi=b; —
1 12T[R1

where 61 is the unit vector in the direction of B1 shown in the figure, which is
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perpendicular to R1. The force per unit length exerted on |3 is

; _ bolals o w0 & Holils
17 R, (yxb1)=—Ry IR,

Similarly, the force per unit length excited on I3 by the field due to I, (which is
along —V) is
~ Holzls
F =R .

32 2R,
The two forces have opposite components along X and equal components along 2.
Hence, with R; = R, = v/8 mand 8 = sin™1(2/+/8) = sin"1(1/v/2) = 45°,

. I11 Il .
=] :Ffa,l—I—ng:Z(UO13+UO23>sm6

2TR;  2TR>
-7
:22(4HX10 ><1OXZO)><i:22><10_5N/m.
2Ttx /8 V2

Problem5.19 A square loop placed as shown in Fig. 5-44 (P5.19) has 2-m sides and
carries a current I =5 A. If a straight, long conductor carrying a current I, =10 A is
introduced and placed just above the midpoints of two of the loop’s sides, determine
the net force acting on the loop.

X

Figure P5.19: Long wire carrying current I, just above a square loop carrying I¢
(Problem 5.19).

Solution: Since |5 is just barely above the loop, we can treat it as if it’s in the same
plane as the loop. For side 1, I; and I, are in the same direction, hence the force on
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side 1 is attractive. That is,

- Molilpa  _4mx107"x5x10x2 5
Fr— = =92x10°N.
=Y oma2) ~ 7 27X 1 yex

I1 and I, are in opposite directions for side 3. Hence, the force on side 3 is repulsive,
which means it is also along . That is, F3 = F;.
The net forces on sides 2 and 4 are zero. Total net force on the loop is

F=2F1=94x10°N.

Section 5-4: Gauss’s Law for Magnetism and Ampeére’s Law

Problem 5.20 Current I flows along the positive z-direction in the inner conductor
of a long coaxial cable and returns through the outer conductor. The inner conductor
has radius a, and the inner and outer radii of the outer conductor are b and c,
respectively.
(a) Determine the magnetic field in each of the following regions: 0 <r < a,
a<r<b b<r<c,andr>c.
(b) Plot the magnitude of H as a function of r over the range from r = 0 to
r=10cm, giventhat | =10 A,a=2cm,b=4cm, and c=5cm.

Solution:
(a) Following the solution to Example 5-5, the magnetic field in the region r < a,

~ rl
A=

and in the regiona <r < b,
H= S
=P

The total area of the outer conductor is A = 1i(c? — b?) and the fraction of the area
of the outer conductor enclosed by a circular contour centered at r = 0 in the region
b<r<cis

m(r’—b?) r?—p?

mc2—b?) c2—b?’

The total current enclosed by a contour of radius r is therefore

rz_bz Cz_rz
|enc|o%d =1{1- m

2_p2’
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and the resulting magnetic field is

~ 1 [c2—r?
—_ " = (p— > 1o |-
21 21r \c’—b
For r > c, the total enclosed current is zero: the total current flowing on the inner
conductor is equal to the total current flowing on the outer conductor, but they are

flowing in opposite directions. Therefore, H = 0.
(b) See Fig. P5.20.

0.8 [
0.7
06
05
04}
03

0.2 F

Magnetic field magnitude H (A/cm)

0.1Ff

0.0

6. 7. 8. 9. 10

Radial distance r (cm)

Figure P5.20: Problem 5.20(b).

Problem 5.21 A long cylindrical conductor whose axis is coincident with the z-axis
has a radius a and carries a current characterized by a current density J = 2Jo/r,
where Jg is a constant and r is the radial distance from the cylinder’s axis. Obtain an
expression for the magnetic field H for (a) 0 <r <aand (b) r > a.

Solution: This problem is very similar to Example 5-5.
(a) For 0 <r; < a, the total current flowing within the contour C1 is

2 prp 2J0 . ry
Ilz//J-ds:/ / (—)-(zrdrdcp):ZTt/ Jodr = 211 Jp0.
@e=0Jr=0\ T r=0
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Therefore, since 11 = 21r1H;, Hy = Jo within the wire and H1 = @o-
(b) For r > a, the total current flowing within the contour is the total current flowing
within the wire:

2n ra ZJO a
I://J-ds:/ / (—)-(irdrd(p)zzn/ Jodr = 2m@aJo.
@e=0Jr=0 \ I r=0

Therefore, since | = 2rrH,, Hy = Joa/r within the wire and H, = &)Jo(a/r).

Problem 5.22 Repeat Problem 5.21 for a current density J = ZJge™".

z

A

wn

PR
A
A\
1
T
1
1
\ 4
-

-
1
1
1
1
1
\

v

<8}

-<

A}

1

1
7

4
1
[
1
1
\
\
.

Figure P5.22: Cylindrical current.

Solution:
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(a) Forr < a, Ampere’s law is

%H-dl:l:/\]-ds,
c S

~ ~ r r
(pH-(pZT[r:/ J-ds:/ 2Joe”" - 221w dr,
0 0
r
21rH :2T[Jo/ re "dr
0
= 21Jo[—e"(r+1)]p = 2mJo[l —e~"(r+ 1)].

Hence, ]
H:&)H:&)To[l—e_r(r-l—l)], forr <a.

(b) Forr > a,
21rH = 2mg[—e " (r+1)]3 = 2mo[1 — e 3(a+1)],
H=@H :cb‘]—ro [1-e3(@+1)], r>a

Problem 5.23 In a certain conducting region, the magnetic field is given in
cylindrical coordinates by

~4
H=g_[1- (1+3r)e 3.
Find the current density J.
Solution:
10 4
J=0OxH=2-—(r-—[1—(1+3r)e ™
% Zrar(r r[ (1+3n) ]>
1
=2- [126 % (14 2r) — 12e %] = 224e " AIm?.

Section 5-5: Magnetic Potential

Problem 5.24 With reference to Fig. 5-10, (a) derive an expression for the vector
magnetic potential A at a point P located at a distance r from the wire in the x-y plane,
and then (b) derive B from A. Show that your result is identical with the expression
given by Eq. (5.29), which was derived by applying the Biot-Savart law.
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Solution:
(a) From the text immediately following Eq. (5.65), that equation may take the
form

0/2
o 'dl':ﬁ/ L NP

4T[ YA RI 4T[ Z’:—Z/Z A /ZIZ_I_ r2

IJO 12 2 5/2

T 4m (zlln( e )>‘z’:—€/2

ol 0)241/(€)2)%+12
—fan"

—0)24\/(—£]2)*+r2

°|n L+ V02 +4r2
—t+VPxaz)

=

Z

5E
=

(b) From Eqg. (5.53),

B=0OxA
_ Ox uol In L4074+ 4r?
“an "\ Cea vt
—Auoliln L+ 02+ 4r2
dmor -\ —4 402+ 4r2
__~pol [ L+ V024 4r2 L+ V2 +4r2
Pan \ VA —t+P1ar2
_ ~pol €+\/£2+4r
Pan L+ aZ
y (( e+¢m)g_r(e+\/m)_(e+m)g_r(_e+\/m)>
(—0+ VP21 ar2)°
ool [ (L4 VE2+4r2) — (L+ V2 +4r?) Ar
Pan (—L+ V2 +4r2) (L + V2 +4r2) ) 12+ 4r?
~ ol (—24) 4r ~ UolZ
=—@— = T).
s\ @2 ) JZraz  VomyEyar (N

which is the same as Eqg. (5.29).

Problem 5.25 In a given region of space, the vector magnetic potential is given by
A =X5cosTy + 2(2 + sinTx) (Wb/m).
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(a) Determine B.

(b) Use Eq. (5.66) to calculate the magnetic flux passing through a square loop
with 0.25-m-long edges if the loop is in the x—y plane, its center is at the origin,
and its edges are parallel to the x- and y-axes.

(c) Calculate @ again using Eq. (5.67).

Solution:
(a) From Eg. (5.53), B = O x A = Z5115in Tly — YTTCOS TIX.
(b) From Eqg. (5.66),

0.125m 0.125m
dJ://B-ds:/ / (25msinTy — yTicos Tx) - (2 dx dy)
y=—0.125m Jx=—0.125m

cos 0.125
_ (—Snx ny)
M /lx=-0125/|,__g125

-7 (= (5) () o

(c) From Eq. (5.67), ® = % A-d£, where C is the square loop in the x-y plane with

0.125

C
sides of length 0.25 m centered at the origin. Thus, the integral can be written as
®= 7§:A' dé = Stront + Sback + Sieft + Srighta

where Stront, Sback: Sieft, and Syight are the sides of the loop.

0.125
St = [ (R5008Ty +2(2+ SInT))],__g.135°(R0)
X=—0.

0.125

x=—0.125
0.125 5 -7 5 TT
x=-0125 4 ( 8 ) 4 (8) ’

0.125
Sback:/ o2 (X5cosTy +2(2 +SINTX) )|y g 105 - (—X dX)
x=—0.

= ( (5xcosTy) |y:—0.125)

0.125
= —/X 5cos le|y:0.125 dx

=—0125
0.125 5 T
— —cos (—)
x=—0.125 4 8/’

= ( (—5xcosTy) |y:04125)

0.125
Siert = / (%5008 T + 2(2 + SINTX) )|, __o 105 -(— dY)
y=—0.125
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0.125

= —/ 0lx=—0.125dy =0,
y=—0.125

0.125
St = [ (%500sTY + 2(2++ $InT) 159 )
y=—0.125

0.125
= / O|x=0.125dy = 0.
y=—0125

Thus,

5 m 5 T
®= 7€A'de = Stront + Sback + Sieft + Sright = ZCOS (g) - ZCOS (g) +0+0=0.

Problem 5.26 A uniform current density given by
J=12Jy (A/m?),
gives rise to a vector magnetic potential

A= _3 “"TJO(X2 +v?)  (Wh/m).
(a) Apply the vector Poisson’s equation to confirm the above statement.
(b) Use the expression for A to find H.

(c) Use the expression for J in conjunction with Ampére’s law to find H. Compare
your result with that obtained in part (b).

Solution:
(@)
X i . A J
[PA = K O?A+ 9 0%A 4+ 20°A, = 2 (W tozt @> [—Hozo (x? +y2)]

SN R
=7 quo (2+2) = —ZpoJo-

Hence, 0%A = —pgJ is verified.

(b)

Ll L[ O (%A A, (0 oA
H_UODXA_uo[X(ay 62>+y(62 6x>+z<6x 6y>]
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[
Y

~—1]

Figure P5.26: Current cylinder of Problem 5.26.

(©)

%H-dl:l:/\]-ds,
C S

®Hy- @210 = Jo- 1%,
~ A~ T
H=¢@Hy= (pJoE .
We need to convert the expression from cylindrical to Cartesian coordinates. From
Table 3-2,
y .~ X

7_}_ —_—
vy ey

@ = —Ksin@+Jcosp= —X

r=+/x2+y2.
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Hence

s Y . X Jo /5= Yo, XD
=TV s | 2 VY =5 Y5
VY2 Tty

which is identical with the result of part (b).

Problem 5.27 A thin current element extending between z= —L/2 and z = L/2
carries a current | along +Z through a circular cross section of radius a.

(a) Find A ata point P located very far from the origin (assume R is so much larger
than L that point P may be considered to be at approximately the same distance
from every point along the current element).

(b) Determine the corresponding H.

L/2 4

[
\J
-

~

-L/2

A

1\ Cross-section 12

Figure P5.27: Current element of length L observed at distance R > L.

Solution:
(a) Since R > L, we can assume that P is approximately equidistant from all
segments of the current element. Hence, with R treated as constant, (5.65) gives

uo/ J oMo [, L o ol M2 poll
A=t [ 2y Mo dz—z oL [T g, g b0l
4 Jy R 4R Jo i) TR Je T AR
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(b)
H:iDXA
Ho
L[ o
" Mo | oy yax

}

it ' ()| ' ()
ho | Oy | 4m X2 +y2 422 ox | 4m X2 4y2 472

IL —Xy + Yx

~am [(x2+y2+22)3/2] '

Section 5-6: Magnetic Properties of Materials

Problem 5.28 In the model of the hydrogen atom proposed by Bohr in 1913, the
electron moves around the nucleus at a speed of 2 x 10® m/s in a circular orbit of
radius 5 x 10~ m. What is the magnitude of the magnetic moment generated by the
electron’s motion?

Solution: From Eq. (5.69), the magnitude of the orbital magnetic moment of an
electron is

|mo| = ‘—%eur| =2x1.6x 10 ¥%x2x108x5x10 1 =8x10"% (A-m?).

Problem 5.29 Iron contains 8.5 x 10?8 atoms/m3. At saturation, the alignment
of the electrons’ spin magnetic moments in iron can contribute 1.5 T to the total
magnetic flux density B. If the spin magnetic moment of a single electron is
9.27 x 10~2* (A-m?), how many electrons per atom contribute to the saturated field?

Solution: From the first paragraph of Section 5-6.2, the magnetic flux density of a
magnetized material is By, = oM, where M is the vector sum of the microscopic
magnetic dipoles within the material: M = Nemg, where mg is the magnitude of the
spin magnetic moment of an electron in the direction of the mean magnetization, and
Ne is net number of electrons per unit volume contributing to the bulk magnetization.
If the number of electrons per atom contributing to the bulk magnetization is ne, then
Ne = NeNaoms Where Naoms = 8.5 x 10?8 atoms/m? is the number density of atoms

for iron. Therefore,
Ne M B 15
ne = = = =

=1.5 (electrons/atom).
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Section 5-7: Magnetic Boundary Conditions

Problem 5.30 The x-y plane separates two magnetic media with magnetic
permeabilities |3 and |z, as shown in Fig. 5-45 (P5.30). If there is no surface current
at the interface and the magnetic field in medium 1 is

Hl - )’ZH]_X + yH]_y + 2H12,

find:
(a) H2a
(b) 61 and 65, and

(c) evaluate Hp, 61, and 6, for Hy, = 2 (A/m), Hyy = 0, Hy; =4 (A/m), Uy = Ho,
and po = 4uo.

0
~ H1

> X-y plane
Ho

Figure P5.30: Adjacent magnetic media (Problem 5.30).

Solution:
(a) From (5.80),
H1H1n = p2aHon,

and in the absence of surface currents at the interface, (5.85) states
Hat = Hat.
In this case, H1, = Hiyn, and Hyy and Hyy are tangential fields. Hence,

H1H1z = p2H2;,
HlX = H2Xa
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and u
HZZ)A(Hlx‘FyHly‘l‘iu_lle-
2
(b)
Hy = /HZ +HZ,
/42 2
tan© —M—M
1—le_ le )
/142 2
tan© —E— Hlx_l_Hly—Etane
" Hy M Hy, T v
M2
(©

Problem 5.31 Given that a current sheet with surface current density Js= X8 (A/m)
exists at y = 0, the interface between two magnetic media, and Hy = 211 (A/m) in
medium 1 (y > 0), determine Hy in medium 2 (y < 0).

Solution:
‘JS = 5\(8 A/m,
Hy =211 A/m.

H, is tangential to the boundary, and therefore H» is also. With h, =¥, from Eq.
(5.84), we have

Az x (Hy—H2) =Js,
§x (211 — Hy) = %8,
11— 9 x Hp = %8,

or
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Figure P5.31: Adjacent magnetic media with Js on boundary.

which implies that H does not have an x-component. Also, since p1Hiy = poHoy and
H, does not have a y-component, it follows that H, does not have a y-component
either. Consequently, we conclude that

Hy, =123.

Problem 5.32 In Fig. 5-46 (P5.32), the plane defined by x —y = 1 separates
medium 1 of permeability p; from medium 2 of permeability W,. If no surface current
exists on the boundary and

Bi=X2+y3 (T),
find B, and then evaluate your result for y; = 5u,. Hint: Start out by deriving the
equation for the unit vector normal to the given plane.

Solution: We need to find n,. To do so, we start by finding any two vectors in the
plane x—y = 1, and to do that, we need three non-collinear points in that plane. We
choose (0,—1,0), (1,0,0), and (1,0,1).
Vector Az is from (0,—1,0) to (1,0,0):
A =X1+V1.
Vector A; is from (1,0,0) to (1,0,1):
A,=121.

Hence, if we take the cross product A, x A1, we end up in a direction normal to the
given plane, from medium 2 to medium 1,

Ao x A1 _ 21)(()?14—91) _ 91—5\(1

A y
Np = = — -7
2 |A2XA1| |A2XA1| VvVi+1 \/Z

X
7
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43)
N

\/
x

Medium 1 ‘ﬁz (1.0)
1 Medium 2

Ha
/ (01 -1)

Figure P5.32: Magnetic media separated by the plane x—y = 1 (Problem 5.32).

In medium 1, normal component is

R y X o 3 2 1
Bin=fpB1=( 22— =) -R2+493) = = — — = —,
o (\/Z \/§>( y3) V2 V2 V2

R y X 1 9y X
o=t (7~ 5) 75752

Tangential component is

N <

Byt = By — Bin = (X24§3) — (— - g) — 8254925

Boundary conditions:

y X
Bln:BZna or BZn:%_ﬁa
Bax  But
Hyi=Hx, or —=-—.
u 2 Ho H1
Hence,
Bax = 12By, = M2 (22,54 92.5).
M1 M1
Finally,
v % ) )
By = Bon+ By = (X——) + ¥ (3254 925).
2 2] m
For 1 = Sy,
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Problem 5.33 The plane boundary defined by z = 0 separates air from a block of
iron. If By =%4—y6+28 inair (z > 0), find B, in iron (z < 0), given that p = 5000y
for iron.

Solution: From Eq. (5.2),
B a_ge3m).

Hi =
! M1 Ha

The z component is the normal component to the boundary at z = 0. Therefore, from
Eq. (5.79), By, = By, = 8 while, from Eg. (5.85),

1 1
H = H = —4, H prmnd H = ——6,
2x 1x ™ 2y 1y ™
or
H2 H2
B = H = —4’ B = H = ——6,
2x = HazF2x m 2y = K2y m

where [z/p1 = Wy = 5000. Therefore,

B2 = X20000 — 30000 + Z8.

Problem 5.34 Show that if no surface current densities exist at the parallel
interfaces shown in Fig. 5-47 (P5.34), the relationship between 64 and 61 is
independent of .

Figure P5.34: Three magnetic media with parallel interfaces (Problem 5.34).
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Solution: B
tanB, = i,
! Bln
and B
tan6, = —2
BZn
B B
But Bo,, = B, and S Hence,
H2 H1
tan 6, = & Ha 12 tan 0.
mHr M
We note that 8, = 63 and
tan64 = Hs tan63 = Hs tan B, = Hs Ha tan6, = Hs tan B4,
Ho H2 M2 M1 H1

which is independent of 5.

Sections 5-8 and 5-9: Inductance and Magnetic Energy

Problem 5.35 Obtain an expression for the self-inductance per unit length for the
parallel wire transmission line of Fig. 5-27(a) in terms of a, d, and , where a is
the radius of the wires, d is the axis-to-axis distance between the wires, and p is the
permeability of the medium in which they reside.

Solution: Let us place the two wires in the x—z plane and orient the current in one
of them to be along the +z-direction and the current in the other one to be along the
—z-direction, as shown in Fig. P5.35. From Eg. (5.30), the magnetic field at point
P(x,0,z) due to wire 1 is

~ ul . Ml
B1= O =Yoo

where the permeability has been generalized from free space to any substance with
permeability |, and it has been recognized that in the x-z plane, (]): yand r =xas
long as x > 0.

Given that the current in wire 2 is opposite that in wire 1, the magnetic field created
by wire 2 at point P(x,0,2) is in the same direction as that created by wire 1, and it is
given by

ul

B2 :y2n(d —X)
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®
)
®

s
]
->: a l

I
|———>1

Figure P5.35: Parallel wire transmission line.

Therefore, the total magnetic field in the region between the wires is

T AN 1 . uld
B=B1+Bx=y— (- = .
152 y2n<x+d—x> y2T|>((d—x)
From Eq. (5.91), the flux crossing the surface area between the wires over a length |
of the wire structure is

®= //B ds—/ZZOH/X (Am“éd_ )).(9dxdz)
-5 (i ().
AL ()
e (52) i (42)
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Since the number of ‘turns’ in this structure is 1, Eq. (5.93) states that the flux linkage
is the same as magnetic flux: A = @. Then Eq. (5.94) gives a total inductance over
the length | as

ANl d—a
L_T_T_E'”(T) .

Therefore, the inductance per unit length is

L = L _H In (d;a> ~ H In (9) (H/m),
| Tt a Tt a

where the last approximation recognizes that the wires are thin compared to the
separation distance (i.e., that d > a). This has been an implied condition from the
beginning of this analysis, where the flux passing through the wires themselves have
been ignored. This is the thin-wire limit in Table 2-1 for the two wire line.

Problem 5.36 A solenoid with a length of 20 cm and a radius of 5 cm consists
of 400 turns and carries a current of 12 A. If z = 0 represents the midpoint of the
solenoid, generate a plot for |H(z)| as a function of z along the axis of the solenoid
for the range —20 cm < z < 20 cm in 1-cm steps.

Solution: Let the length of the solenoid be | =20 cm. From Eq. (5.88a) and Eq.

(5.88b), z = atan® and a2 +t2 = a?sec?6, which implies that z/v/z2 + a2 = sin®.
Generalizing this to an arbitrary observation point z’ on the axis of the solenoid,

(z—17')/4/(z—17')%+ a2 = sin@. Using this in Eq. (5.89),
|

H(0,0,7') = % = 2%(sin92—sin61)

|
N>
(NYR=3

1/2—7 B —l/2-7
Vj2=22+a \J(-1j2-2)2+a2
o it S Vs 3 ) (Am).
2 (\/(I/Zz’)2+a2 Vij2+2)2 a2

A plot of the magnitude of this function of z' with a =5 cm, n = 400 turns/20 cm =
20,000 turns/m, and | = 12 A appears in Fig. P5.36.
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300,
275. |- .
250, |- ]
225, | ]
200. | -
175. |
150. |
125, |
100. |
75. |
50, |
25, |

Magnitude of Magnetic Field H (kA/m)

Position on axis of solenoid z (cm)

Figure P5.36: Problem 5.36.

Problem 5.37 In terms of the d-c current I, how much magnetic energy is stored in
the insulating medium of a 3-m-long, air-filled section of a coaxial transmission line,
given that the radius of the inner conductor is 5 cm and the inner radius of the outer
conductor is 10 cm?

Solution: From Eg. (5.99), the inductance per unit length of an air-filled coaxial

cable is given by
;__ Ho 9
L'= —ann (a) (H/m).

Over a length of 2 m, the inductance is

3x4mtx 10~7 In (10

9! _ ) = -9 .
L=2L'= - 5) 416 x107° (H)

From Eq. (5.104), W, = L12/2 = 20812 (nJ), where Wy, is in nanojoules when | is in
amperes. Alternatively, we can use Eq. (5.106) to compute Wyy:

szl/ HoH?d .
2 )y



280 CHAPTER S5

From Eq. (5.97), H = B/up = | /21, and

1 p3m p2m b | \? irdod 5
Wn == / / (—) rdr 7z =208l nJ).
m=3) o=0)r—a Ho ST ¢ (nJ)

Problem 5.38 The rectangular loop shown in Fig. 5-48 (P5.38) is coplanar with
the long, straight wire carrying the current | = 20 A. Determine the magnetic flux

through the loop.

20A 30cm

5cm
<—— 20cm—|

X

Figure P5.38: Loop and wire arrangement for Problem 5.38.

Solution: The field due to the long wire is, from Eq. (5.30),

_~bol o pol o Hol
B_(pZT[I’ T Tom T X2ny’
where in the plane of the loop, (i) becomes —X and r becomes y.
The flux through the loop is along —X, and the magnitude of the flux is

20cm &
dJ:/B-ds:g—(;l/ —5-—?((300m><dy)
S 5

cm y
0.2
= “—ol x 0.3 %
21 005 Y
. 0.3o

0.2 6
x 20 x In (m) =1.66x 107 (Whb).
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Problem 5.39 A circular loop of radius a carrying current 11 is located in the x-y
plane as shown in the figure. In addition, an infinitely long wire carrying current I,
in a direction parallel with the z-axis is located at y = yo.

K f parallel to 2
2
-\ : y
a A
Iy

X

(@) Determine H at P(0,0,h).
(b) Evaluate Hfora=3cm, yo=10cm, h=4cm, I; =10A,and I, =20 A.
Solution:

(a) The magnetic field at P(0,0,h) is composed of H; due to the loop and H» due
to the wire:

H=Hi+Ho>.
From (5.34), withz = h,
A |13.2
Hi=2—————~ (A/m).
1T 2(a2+ h2)3/2 (A/m)

From (5.30), the field due to the wire at a distance r = yg is

HZZ&)Z—nyO

where (])is defined with respect to the coordinate system of the wire. Point P is located
at an angel @ = —90° with respect to the wire coordinates. From Table 3-2,

@= —XsinQ+§cos@
=X (at = —90°).

Hence, ,
N l1a . b2
H=2 X A/m).
2(a2+h2)3/2 + 2Tyo ( )
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(b)
H=236+%31.83 (A/m).

Problem 5.40 A cylindrical conductor whose axis is coincident with the z-axis has
an internal magnetic field given by

H= &’%[1 —(4r+1)e ] (A/m)forr<a

where a is the conductor’s radius. If a=5 cm, what is the total current flowing in the
conductor?

Solution: We can follow either of two possible approaches. The first involves the
use of Ampére’s law and the second one involves finding J from H and then | from J.
We will demonstrate both.

Approach 1: Ampére’s law

Applying Ampeére’s law at r = a,

H-del,_, =
oo H-del g =1
2T[,\2 R

[ et e ) grag =1
0

r=a

| =41 — (4a+1)e™®] (A).

Fora=5cm, | =0.22 (A).
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Approach2: H—J— |

J=0xH

.10
zFa(rH(p)
10

= 2Fa(2[1—(4r+1)e*4r])

1
=2- [—8e ¥ +8(4r+1)e ]

=232e7%.

a
I:/J-ds:/ 732 4 .221r dr

S r=0

a
= 6411 / re ¥ dr
r

=0
_ b4am
~ 16
=4m{1—(4a+1)e ®] (A).

[1— (4a+1)e %

Problem 5.41 Determine the mutual inductance between the circular loop and the
linear current shown in the figure.

\/
=<

Solution: To calculate the magnetic flux through the loop due to the current in the
conductor, we consider a thin strip of thickness dy at location y, as shown. The
magnetic field is the same at all points across the strip because they are all equidistant
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(at r = d +y) from the linear conductor. The magnetic flux through the strip is
d®, =B(y)-ds= 2U70| -22(a2 _y2)1/2 dy

2n(d +y)
_ ol (@ —y*)"

-~ md+y)

1
L12 = T/dq)lZ
s

_@/a (a—y?)/2dy
S Ty=—a  (d+y)

dy

Letz=d+y — dz=dy. Hence,

=

d+a \/ d2 +2dz—22
e,

:@/@
n) z
where R = ag + boz + coz? and
ag = a®—d?
bog=2d
00:—1

A = 4agco— b3 = —4a® < 0

From Gradshteyn and Ryzhik, Table of Integrals, Series, and Products (Academic
Press, 1980, p. 84), we have

VR dz bo dz
Y dz=vR+a — .
/ z 0 \/_ vR

For

d+a d+a

vR — /a2 —d242dz— 72 —0-0=0.

z=d—a

z=d—a

For / 7R several solutions exist depending on the sign of ag and A.
z
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For this problem, A < 0, also let ag < 0 (i.e., d > a). Using the table of integrals,

d+a
a dz a[ 1 sinl( 2ag + boz )]
0f —F==a0 | 77— —F
zvR Vv—ao fh2
z4/bg— 4apCo dea
2 42 d+a
:_\/dz—az[sinl(ia d +dz)]
az 7=d—a
=-—-m/d?—a2.

d . . . . .
For / —; different solutions exist depending on the sign of cg and A.
In this problem, A < 0 and co < 0. From the table of integrals,

bo E_@[ -1 Sm_lzconrm,]“a
z vR 2 [vV—Co V=D 1= a

_ d+a
— _d [Sin_1<—d Z)] — 1.
a z=d—a

L= PO, [nd _m/d2— aZ]

L

— Lo [d— \/d2—a2] .

Thus
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Chapter 6: Maxwell’s Equations for Time-Varying Fields

Lesson #37
Chapter — Section: 6-1, 6-2

Topics: Faraday’s law, stationary loop in changing magnetic field

Highlights:
e Faraday’s law
e EMF

Special Illustrations:

Example 6-1

Example 6-2

CD-ROM Demo 6.1

CD-ROM Modules 6.1 and 6.2

Demo 6.1: Circular Loop in Time-varying Magnetic Field

The circular wire loop shown in the figure is connected to a simple circuit
composed of a resistor R in series with a current meter. The time-varying magnetic
flux linking the surface of the loop induces a V _,,;, and hence a current through R.
The purpose of this demo is to illustrate in the form of a slow-motion video how
the current 7 varies with time, in both magnitude and direction, when B(1) =B ; cos
Wt .

Eb)o

Ammeter

1B 1

L

time

( Start Animation )

[Note that I(z) is a maximum when the slope of B(z) is a maximum, which occurs
when B itself is zero!]
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Lesson #38
Chapter — Section: 6-3, 6-4

Topics: Ideal transformer, moving conductor

Highlights:

e Transformer voltage and current relations
e EMF for moving conductor

Special Illustrations:

e CD-ROM Modules 6.3 and 6.4
e C(CD-ROM Demo 6.2

Demo 6.2: Rotating Wire Loop in Constant Magnetic Field

The rectangular wire loop rotates at an angular frequency win a constant magnetic
flux density B,,. The purpose of the demo is to illustrate how the current varies in
time relative to the loop's position.

¥

L

=

MNote the direction of the current, and its
intensity (indicated by its brightness),

{ Stop Animation )
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Lesson #39
Chapter — Section: 6-5, 6-6

Topics: EM Generator, moving conductor in changing field

Highlights:

e Motor and generator reciprocity

e EMF for combination of motional and transformer

Special Illustrations:

e Technology Brief on “EMF Sensors” (CD-ROM)

EMF Sensors

An electromotive force (emf) sensor is a device that can generate an induced voltage in response to an
external stimulus. Three types of emf sensors are profiled in this Technical Brief: the piezoelectric
transducer, the Faraday magnetic flux sensor, and the thermocouple.

A1l. No force

Piezoelectric Transducers

Piezoelectricity refers to the property of certain
crystals, such as quartz, to become electrically
polarized when the crystal is subjected to
mechanical pressure, thereby exhibiting a
voltage across it. The crystal consists of polar
domains represented by equivalent dipoles (A).
Under the absence of an external force, the polar
domains are randomly oriented throughout the
material (A1), but when compressive or tensile
(stretching) stress is applied to the crystal, the
polar domains align themselves along one of the
principal axes of the crystal, leading to a net
polarization (electric charge) at the crystal
surfaces (A2 and A3). Compression and
stretching generate voltages of opposite polarity.
The piezoelectric effect (piezein means to press

F&I .

N I o
R =l
LT,

+

Vo)

emf

A2. Compressed crystal

‘1 |
-+
7 V.,<0

A3. Stretched crystal

or squeeze in Greek) was discovered by the
Curie brothers, Pierre and Paul-Jacques, in 1880,
and a year later Lippmann predicted the
converse property, namely that if subjected to an
electric field, the crystal would change in shape.
Thus, the piezoelectric effect is a reversible
(bidirectional) electro-mechanical process.

\\ Coaxial Cable Connacor
Signal Wire

Ground Wire

Wear Plate




Lesson #40
Chapter — Section: 6-7, 6-8

Topics: Displacement current, boundary conditions

Highlights:

e Concept of “displacement current”
e Boundary conditions for the dynamic case

Special Illustrations:

e Example 6-7
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Lesson #41
Chapter — Section: 6-9, 6-10

Topics: Charge-current continuity, charge dissipation

Highlights:

e Continuity equation
e Relaxation time constant

Special Illustrations:



Lesson #42
Chapter — Section: 6-11
Topics: EM potentials

Highlights:

e Retarded potential
e Relation of potentials to fields in the dynamic case

Special Illustrations:
Example 6-8
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Chapter 6

Sections 6-1 to 6-6: Faraday’s Law and its Applications

Problem 6.1 The switch in the bottom loop of Fig. 6-17 (P6.1) is closed att =0
and then opened at a later time t;. What is the direction of the current I in the top
loop (clockwise or counterclockwise) at each of these two times?

Ry
AAA
yvy
|
+
L w—

Figure P6.1: Loops of Problem 6.1.

Solution: The magnetic coupling will be strongest at the point where the wires of
the two loops come closest. When the switch is closed the current in the bottom loop
will start to flow clockwise, which is from left to right in the top portion of the bottom
loop. To oppose this change, a current will momentarily flow in the bottom of the
top loop from right to left. Thus the current in the top loop is momentarily clockwise
when the switch is closed. Similarly, when the switch is opened, the current in the
top loop is momentarily counterclockwise.

Problem 6.2 The loop in Fig. 6-18 (P6.2) is in the x-y plane and B = ZBgsinwt
with Bg positive. What is the direction of | (@or —@) at (a) t =0, (b) wt = 11/4, and
(c) wt =m/2?

Solution: | = Vant/R. Since the single-turn loop is not moving or changing shape
with time, VI = 0 V and Vems = V' . Therefore, from Eq. (6.8),

-1 roB

If we take the surface normal to be +Z, then the right hand rule gives positive
flowing current to be in the +¢direction.
—-A0 —AByw

| = — —Bpsinwt =
R ot °

coswt (A),
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X

Figure P6.2: Loop of Problem 6.2.

where A is the area of the loop.

(@) A, wand R are positive quantities. Att =0, coswt =1 so | < 0 and the
current is flowing in the —&) direction (so as to produce an induced magnetic field
that opposes B).

(b) At wt = T1/4, coswt = v/2/2 s0 | < 0 and the current is still flowing in the —Q
direction.

(c) Atwt =T11/2, coswt = 0so | =0. There is no current flowing in either direction.

Problem 6.3 A coil consists of 100 turns of wire wrapped around a square frame
of sides 0.25 m. The coil is centered at the origin with each of its sides parallel to
the x- or y-axis. Find the induced emf across the open-circuited ends of the coil if the
magnetic field is given by

(a) B=220e"%(T),
(b) B =220cosx cos103%t (T),
(c) B =220cosx sin2y cos10°% (T).

Solution:  Since the coil is not moving or changing shape, Vi, = 0V and
Vemt = V2 .. From Eq. (6.6),

d ; d (0125 (0125 ixd
V, :—N—/B- s:—N—/ / B- (Zdxdy),
emf dt Js dt J_0125./-0.125 ( y)
where N = 100 and the surface normal was chosen to be in the 4-Z direction.
(a) For B = 220e=3 (T),

Vemf = —100%(20e_3‘(0.25)2) =375¢% (V).
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(b) For B = 220cosxcos 103t (T),

d 0.125 0.125
Vemt = —100— <20cos 10%t / cosxdxdy) —=124.65in10%t  (kV).
dt x=—0.125 Jy=—0.125

(c) For B = 220cos xsin 2y cos 10%t (T),

0.125 0.125

Vemt = —100 d

— (20cos 103t
dt X

CosXxsin 2ydxdy) =0.
=-0.125 Jy=—0.125

Problem 6.4 A stationary conducting loop with internal resistance of 0.5 Q is
placed in a time-varying magnetic field. When the loop is closed, a current of 5 A
flows through it. What will the current be if the loop is opened to create a small gap
and a 2-Q resistor is connected across its open ends?

Solution: Vet is independent of the resistance which is in the loop. Therefore, when
the loop is intact and the internal resistance is only 0.5 Q,

Vemi =5AXx05Q=25V.

When the small gap is created, the total resistance in the loop is infinite and the
current flow is zero. With a 2-Q resistor in the gap,

| =Vemi/(2Q+05Q)=25V/25Q=1 (A).

Problem 6.5 A circular-loop TV antenna with 0.02 m? area is in the presence of a
uniform-amplitude 300-MHz signal. When oriented for maximum response, the loop
develops an emf with a peak value of 30 (mV). What is the peak magnitude of B of
the incident wave?

Solution: TV loop antennas have one turn. At maximum orientation, Eqg. (6.5)
evaluates to @ = [ B-ds = +BA for a loop of area A and a uniform magnetic field
with magnitude B = |B|. Since we know the frequency of the field is f = 300 MHz,
we can express B as B = Bgcos (wt + ag) with w = 211x 300 x 10° rad/s and ag an
arbitrary reference phase. From Eq. (6.6),

do d .
Vemf = — G —Aa[Bocos(wt + 0p)] = ABgwsin(wt + ap).
Vemf 1S maximum when sin(wt + ag) = 1. Hence,

30 x 1073 = ABow = 0.02 x Bg x 671 108,



CHAPTER 6 295

which yields Bo = 0.8 (nA/m).

Problem 6.6 The square loop shown in Fig. 6-19 (P6.6) is coplanar with a long,
straight wire carrying a current

I(t) =5cos2mx 10% (A).

(a) Determine the emf induced across a small gap created in the loop.

(b) Determine the direction and magnitude of the current that would flow through
a 4-Q resistor connected across the gap. The loop has an internal resistance of

1Q.
z
I |« 10cm—|
1) 1
10cm
5cm l
> Y
X
Figure P6.6: Loop coplanar with long wire (Problem 6.6).
Solution:

(a) The magnetic field due to the wire is

B:&)U_OI:_)‘(“_OI,

where in the plane of the loop, (i): —X and r =y. The flux passing through the loop
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o= [B-d 15cm( ‘“°'> [~%10 (cm)] d
= ds = —K— ] -[—%10 (cm
/ oo (g g

Mol x10°1 .15

- 2n 5

_ 41x 1077 x 5cos(2mx 10%) x 1071

N 21

=1.1x10""cos(2mx 10%) (Wh).

do 4 i 4 -7
Vemt = T 1.1 x 21tx 10%sin(2mtx 10°t) x 10
= 6.9 x 10 3sin(2rtx 10%) (V).

x 1.1

(b)

Vemi _ 6.9x 1073
441 5

lindg = sin(2mx 10%) = 1.38sin(2mtx 10%) (MA).

At t =0, B is a maximum, it points in —X-direction, and since it varies as
cos(2rmx 10%), it is decreasing. Hence, the induced current has to be CCW when
looking down on the loop, as shown in the figure.

Problem 6.7 The rectangular conducting loop shown in Fig. 6-20 (P6.7) rotates at
6,000 revolutions per minute in a uniform magnetic flux density given by

B=950 (mT).

Determine the current induced in the loop if its internal resistance is 0.5 Q.

Solution:

D= /B-dS =950 x 1073-9(2 x 3x 107*) cos @(t) = 3 x 10> cos ¢(t),
S

ot) = wt = %Oxm?’t =200t (rad/s),
® =3 x 10~°cos(2007t) (Wh),
Vemf = _‘L_‘f = 3 x 10> x 2007sin(2007t) = 18.85 x 10~ 3sin(200mt)  (V),
Vet

ling = =2 = 37.7sin(200Mt)  (MA).

05
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A
)
— > B
3cm
>Y
900 Ve
X

Figure P6.7: Rotating loop in a magnetic field (Problem 6.7).

The direction of the current is CW (if looking at it along —X-direction) when the loop
is in the first quadrant (0 < @ < 11/2). The current reverses direction in the second
guadrant, and reverses again every quadrant.

Problem 6.8 A rectangular conducting loop 5 cm x10 cm with a small air gap in
one of its sides is spinning at 7200 revolutions per minute. If the field B is normal to
the loop axis and its magnitude is 6 x 108 T, what is the peak voltage induced across
the air gap?
Solution:
21trad/cycle x 7200 cycles/min
w= .
60 s/min
A =5cm x 10 cm/(100 cm/m)? = 5.0 x 1073 m?.

From Eqgs. (6.36) or (6.38), Vemi = AwBgsin wit; it can be seen that the peak voltage is
VP — AGBo = 5.0 x 1073 x 2401Tx 6 x 1076 = 22.62  (uV).

emf —

= 2401t rad/s,

Problem 6.9 A 50-cm-long metal rod rotates about the z-axis at 90 revolutions per
minute, with end 1 fixed at the origin as shown in Fig. 6-21 (P6.9). Determine the
induced emfVq ifB=22x 1074 T.
Solution: Since B is constant, Vem = V. The velocity u for any point on the bar
is given by u = @rw, where

__2mrad/cycle x (90 cycles/min)

w= (60 s/min) = 3rtrad/s.
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Figure P6.9: Rotating rod of Problem 6.9.

From Eq. (6.24),

1 0o
vlzzvef,“m:/2 (u><B)-dl:/r_OS(qBT[rx22><10*4)-?dr
0
=6mx 107* rdr
r=0.5

0
— 31T 10‘4r2‘
0.5

= —3nx1074x0.25=-236 (uV).

Problem 6.10 The loop shown in Fig. 6-22 (P6.10) moves away from a wire
carrying a current 1, = 10 (A) at a constant velocity u = §7.5 (m/s). If R=10 Q
and the direction of I, is as defined in the figure, find I, as a function of yg, the
distance between the wire and the loop. Ignore the internal resistance of the loop.

Solution: Assume that the wire carrying current 4 is in the same plane as the loop.
The two identical resistors are in series, so |2 = Vemt /2R, where the induced voltage
is due to motion of the loop and is given by Eq. (6.26):

Vem = VI — %E(UXB)-dI.

The magnetic field B is created by the wire carrying 1. Choosing Z to coincide with
the direction of 11, Eq. (5.30) gives the external magnetic field of a long wire to be

~ ~Hol

B=¢p—.
21
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l;=10A

Figure P6.10: Moving loop of Problem 6.10.

For positive values of yg in the y-z plane, § =T, so

~ o ~loly . Hol
uxB:y|u\xB:r|u|x¢%:zugnlru.

Integrating around the four sides of the loop with dl = Zdz and the limits of
integration chosen in accordance with the assumed direction of 15, and recognizing
that only the two sides without the resistors contribute to V., we have

emfr
A :/ (ZUOl) -(2dz) + (z
emf 0 2.,.[', f=yo ( ) 0.2 2.,.[',
B 4tx 107" x10x 7.5 % 0.2 i_ 1
N 21 Yo Yo+0.1
1 1
—3x107° (— — > V),
Yo VYo+0.1 V)

-(2dz)
r=yo+0.1

and therefore

VA 1 1
| =ﬂf:15o(—— ) nA).
2 2R Yo VYo+0.1 (nA)

Problem 6.11 The conducting cylinder shown in Fig. 6-23 (P6.11) rotates about its
axis at 1,200 revolutions per minute in a radial field given by

B=6 (T).
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10cm

Sliding contact

Figure P6.11: Rotating cylinder in a magnetic field (Problem 6.11).

The cylinder, whose radius is 5 cm and height 10 cm, has sliding contacts at its top
and bottom connected to a voltmeter. Determine the induced voltage.

Solution: The surface of the cylinder has velocity u given by

A A 1,200 A
U= Qwr = Q21X ,60 x5x107? =@2m (m/s),

L 01
Vlz:%) (ux B)-dI:A (@2mx 76)-2dz= —3.77 (V).

Problem 6.12 The electromagnetic generator shown in Fig. 6-12 is connected to an
electric bulb with a resistance of 150 Q. If the loop area is 0.1 m? and it rotates
at 3,600 revolutions per minute in a uniform magnetic flux density Bo = 0.4 T,
determine the amplitude of the current generated in the light bulb.

Solution: From Eq. (6.38), the sinusoidal voltage generated by the a-c generator is
Vemt = AwBgpsin(wt + Cp) = Vpsin(wt 4+ Cp). Hence,

271 3,600
Vo = AwBg = 0.1 x ”XT x0.4=15.08 (V),
Vo 15.08
1= 2 =20 =01 (A)

Problem 6.13 The circular disk shown in Fig. 6-24 (P6.13) lies in the x-y plane
and rotates with uniform angular velocity w about the z-axis. The disk is of radius a
and is present in a uniform magnetic flux density B = ZBy. Obtain an expression for
the emf induced at the rim relative to the center of the disk.
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X

Figure P6.13: Rotating circular disk in a magnetic field (Problem 6.13).

X

Figure P6.13: (a) Velocity vector u.

Solution: At a radial distance r, the velocity is
u= &)(or

where @is the angle in the x—y plane shown in the figure. The induced voltage is
a a .
v :/ (ux B)-dl:/ [(@oor) x 2Bq] - F dr.
0 0

@ x Z is along t. Hence,

(,\)Boa2
2

a
V:coBo/ rdr=
0

Section 6-7: Displacement Current

Problem 6.14 The plates of a parallel-plate capacitor have areas 10 cm? each
and are separated by 2 cm. The capacitor is filled with a dielectric material with
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£ = 4¢gp, and the voltage across it is given by V (t) = 30cos2rmx 10% (V). Find the
displacement current.

Solution: Since the voltage is of the form given by Eq. (6.46) with Vo = 30 V and
w = 211 108 rad/s, the displacement current is given by Eq. (6.49):

€A .
lg= —Fvooosmwt
4%8.854x10712x10x 1074 6. 6
=— 7% 10=2 x 30 x 21 x 10°sin(2mx 10°t)

= —0.33sin (2 10%) (mA).

Problem 6.15 A coaxial capacitor of length | = 6 cm uses an insulating dielectric
material with &, = 9. The radii of the cylindrical conductors are 0.5 cm and 1 cm. If
the voltage applied across the capacitor is

V(t) =50sin(1201t) (V),

what is the displacement current?

|
|

A
+
X
v () 22 %
' T
X

Figure P6.15:

Solution: To find the displacement current, we need to know E in the dielectric space
between the cylindrical conductors. From Egs. (4.114) and (4.115),

. Q

E=—f-——
r2T[.'-:rl ’

_Q b
V= 21El In (a ’
Hence,
.V .. 50sin(120Tt L 12.1 .
E=—p = sin(120m) _ . sin(1207t)  (V/m),
rin (5) rin2 r
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D=c¢E
= &&oE

. 72.1 .
= —79x8.85x 10712 x =~ sin(1207)

_5.75x 1079 .
r#sm(lzom) (C/m?).

The displacement current flows between the conductors through an imaginary
cylindrical surface of length | and radius r. The current flowing from the outer
conductor to the inner conductor along —f crosses surface S where

S=—t2mrl.
Hence,

—9
P 0 (LS x 10 sin(lZOnt)) (~¢2ml)

= 5.75 x 1079 x 1207 x 21 cos(1207t)
= 0.82cos(1201t) (uA).

Alternatively, since the coaxial capacitor is lossless, its displacement current has to
be equal to the conduction current flowing through the wires connected to the voltage
sources. The capacitance of a coaxial capacitor is given by (4.116) as

21l
(%)
The current is

|=C Z—\t/ — % [1207r 50cos(1207t)] = 0.82cos(1207t)  (LA),
n =
a

which is the same answer we obtained before.

Problem 6.16 The parallel-plate capacitor shown in Fig. 6-25 (P6.16) is filled
with a lossy dielectric material of relative permittivity €, and conductivity . The
separation between the plates is d and each plate is of area A. The capacitor is
connected to a time-varying voltage source V (t).

(a) Obtain an expression for I¢, the conduction current flowing between the plates
inside the capacitor, in terms of the given quantities.
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Y —

A
T
+
v Q) €0 d
'4’ ----------- S '

Figure P6.16: Parallel-plate capacitor containing a lossy dielectric material (Problem
6.16).

(b) Obtain an expression for lg, the displacement current flowing inside the
capacitor.

(c) Based on your expression for parts (a) and (b), give an equivalent-circuit
representation for the capacitor.

(d) Evaluate the values of the circuit elements for A =4 cm?,d =0.5cm, g =4,
0 = 2.5 (S/m), and V (t) = 10cos(3mx 10%t) (V).

Solution:
(@
Ro 4 LV _VoA
oA’ R d
) V oD 0E e€AoVv
E:H’ Id:E'AZSAE:FE'

(c) The conduction current is directly proportional to V, as characteristic of a
resistor, whereas the displacement current varies as dV/dt, which is characteristic
of a capacitor. Hence,

d €A
R=— d C=—.
oA an d
(d)
)
0.5x 10 50,

T 25x4x10%
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\ i

VH

+ lq +
Voo (0) T — R{}C () vo

||
al

Actua Circuit Equivalent Circuit

Figure P6.16: (a) Equivalent circuit.

o 4x885x107x4x 107"

NI =2.84x10 P F.

Problem 6.17 An electromagnetic wave propagating in seawater has an electric
field with a time variation given by E = ZEgcoswt. If the permittivity of water is
81gp and its conductivity is 4 (S/m), find the ratio of the magnitudes of the conduction
current density to displacement current density at each of the following frequencies:
(@) 1 kHz, (b) 1 MHz, (c) 1 GHz, (d) 100 GHz.

Solution: From Eq. (6.44), the displacement current density is given by

0 0
Jd == ED = EEE
and, from Eq. (4.67), the conduction current is J = oE. Converting to phasors and

taking the ratio of the magnitudes,

3
Jg

| oE

(0)
jﬂ)ﬁrioE

T wegp

(@) At f =1 kHz, = 21X 108 rad/s, and

J
Ja

4

_ _ 3
= SIx 10° X 8L x 8.854 x 10-2 ~ 208 x 10

The displacement current is negligible.
(b) At f =1 MHz, w = 21 x 10° rad/s, and

J
Jg

4
"~ 2% 106 x 81 x 8.854 x 1012

888.
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The displacement current is practically negligible.
(c) At f =1 GHz, w= 21tx 10° rad/s, and

J
Jg

4

= = (.888.
21x 109 x 81 % 8.854 x 1012

Neither the displacement current nor the conduction current are negligible.
(d) At f =100 GHz, w= 21 x 10*! rad/s, and

J
Jg

4

= —8.88 x 1073,
27Tx 1011 x 81 x 8.854 x 10~ 12 %

The conduction current is practically negligible.

Sections 6-9 and 6-10: Continuity Equation and Charge Dissipation

Problem 6.18 Att =0, charge density py,o was introduced into the interior of a
material with a relative permittivity €, =9. If at t = 1 ps the charge density has
dissipated down to 10~3pyo, what is the conductivity of the material?

Solution: We start by using Eq. (6.61) to find T1,:

pv(t) = pvoe_t/na

or
10_3pv0 = vae_lO_G/rra
which gives
1076
In10~3 = — )
Tr

or

1076 N

n:—mﬁzzL%xm7($

But 1, = €/0 = 9¢p/0. Hence

90 9x8.854x10 %
T 145x10°7

=55x10"% (S/m).
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Problem 6.19 If the current density in a conducting medium is given by
J(x,Y,Z;t) = (%22 — §4y? + 22x) cos o,

determine the corresponding charge distribution py(x,y,z;t).

Solution: Eg. (6.58) is given by

9Py

0-J= .
ot

(24)

The divergence of J is

(0 0 L0\ o2 o 94
0.-J= (x& +ya_y+25> (Xz° — 4y~ 4 22x) cos uxt

_ 492 _
__46_y(y coswt) = —8ycos wt.

Using this result in Eq. (24) and then integrating both sides with respect to t gives

pV:_/(D.J)dt:_/—8ycoswtdt:8—LZSin(d+Co,

where Co is a constant of integration.

Problem 6.20 In a certain medium, the direction of current density J points in the
radial direction in cylindrical coordinates and its magnitude is independent of both @
and z. Determine J, given that the charge density in the medium is

py = porcoswt (C/m3).

Solution: Based on the given information,
J=T1J(r).

With Jo = J, = 0, in cylindrical coordinates the divergence is given by

0.J=

Sl

o}
ar (rdp).

From Eq. (6.54),

0-J= 9py 9 Por COS Wt) = Prwsin wt.

“w T al
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Hence
10 .
Tar (rdr) = porwsinux,
d
— (rJ;) = porwsin ut
ar( r) Po ;
r a X r 2
/ —(rJr)dr:powsmwt/ redr,
o or 0
3
r|o = (powsinwt) = | ,
3 o
Powr? .
J = sinai,
3
and
PoLIr
J=t)="F sinwt  (A/m?).

Problem 6.21 If we were to characterize how good a material is as an insulator by
its resistance to dissipating charge, which of the following two materials is the better
insulator?

Dry Soil: & =25 o0=10"%(S/m)

Fresh Water: & =80, o=10"3(S/m)

Solution: Relaxation time constant T, = £.

o
. 2.5 4
For dry soil, T = 104 =25x10%s.
80 4
For fresh water, T, = 103 =8x10%s.

Since it takes longer for charge to dissipate in fresh water, it is a better insulator than
dry soil.

Sections 6-11: Electromagnetic Potentials

Problem 6.22 The electric field of an electromagnetic wave propagating in air is
given by

E(z,t) = X4cos(6 x 10% — 2z) + §3sin(6 x 10% —2z)  (V/m).
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Find the associated magnetic field H(z,t).

Solution: Converting to phasor form, the electric field is given by
E(z) = %4e™1Z — j§3e=12  (V/m),
which can be used with Eq. (6.87) to find the magnetic field:

H(z) = L OkE
—Joyl
1 X y Z
=——| 0/0x d/oy  d/oz
—Jol Je— & _j3e—j22 0

= — .1@” (%66 1% — §jBe 1)
j

= 5% 108 x 4 10=7 *© —§j8)e” 1% = j%8.0e7 % 4-910.6e "%  (mA/m).

Converting back to instantaneous values, this is

H(t,z) = —%8.0sin (6 x 10% — 2z) +§10.6cos (6 x 108t —2z) (MA/m).

Problem 6.23 The magnetic field in a dielectric material with € = 4¢q, U= Jo, and
o =0 is given by

H(y,t) = &5cos(2mx 10't +ky) (A/m).

Find k and the associated electric field E.

Solution: In phasor form, the magnetic field is given by H = %5l (A/m). From
Eq. (6.86),

E = lilf:l = ;H(25ejky
Jwe JoE
and, from Eq. (6.87),
- 1 ~ —jkE
H=—_0OxE=———x5elW,
— joou —J(}OZEP.

which, together with the original phasor expression for H, implies that

W& _ 2mx10'V4  4m
c  3x108 30

k=w/ep= (rad/m).
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Inserting this value in the expression for E above,

= 5 411/30 jary/30 5 jany/30
B =l a0 B = 2841 (vim).

Problem 6.24 Given an electric field

E = XEpsinaycos(wt — kz),
where Eg, a, w, and k are constants, find H.
Solution:

Eosinaycos(wt — kz),

o)

0 i 0 i
- _ g2 R —jkzy _ 5 Y : —jkz
— [yaz (Eosinaye™ %) Zay (Epsinaye )]
Eo .., . - i
— —2[yksinay — 2 jacosay]e™
w[y y—2j y]
H = Re[He!*]
:%e{%[9ksinay—|—2acosaye‘j"/2]e‘jkzej‘*‘}
_Eo At . n Tt
= [yksm aycos(wt — kz) + Zacosaycos (cut —kz— 5)]

= % [Vksinaycos(wt — kz) + Zacosaysin(wt —kz)].

Problem 6.25 The electric field radiated by a short dipole antenna is given in
spherical coordinates by

A 2
E(R,0;1) = 62220

sin@ cos(6rx 108t —21R)  (V/m).

Find H(R,6;t).
Solution: Converting to phasor form, the electric field is given by

-2 %1072

E(R,8) =0E; =6 sin@e~ 7R (v/m),
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which can be used with Eq. (6.87) to find the magnetic field:

1 ~ 1 O0Eg -~1 0
—— |[Re—— — RE
—jwu | Rsin® do -Hpﬁ 6R( 0)

1 ~2x1072 0
— —j2mR
—joou(p R smeaR( )
21T 2x102

6mix 108 x 4mtx 107 R

= (i)% sinBe™IZR  (uA/m).

sin Ge~12R

=0

Converting back to instantaneous value, this is

H(R,8;t) = &)% sinBcos (6T 108t — 21R)  (WA/m).

Problem 6.26 A Hertzian dipole is a short conducting wire carrying an
approximately constant current over its length 1. If such a dipole is placed along
the z-axis with its midpoint at the origin and if the current flowing through it is
i(t) = lpcos i, find
(a) the retarded vector potential A(R,e, @) at an observation point Q(R,8,) in a
spherical coordinate system, and

(b) the magnetic field phasor H(R, 8, ¢).
Assume | to be sufficiently small so that the observation point is approximately
equidistant to all points on the dipole; that is, assume that R’ ~ R.

Solution: _
(a) In phasor form, the current is given by I = lg. Explicitly writing the volume
integral in Eq. (6.84) as a double integral over the wire cross section and a single

integral over its length,
1/2 jkR!
// Je” dsdz,
—1/2

where s is the wire cross section. The wire is infinitesimally thin, so that R’ is not a
function of x or y and the integration over the cross section of the wire applies only to
the current density. Recognizing that J = Zlp/s, and employing the relation R’ ~ R,

~ 1/2 a—]JkR' 1/2 a—jkR
A_ Hlo/ e 4z ~ Hlo/ e dz—iulole kR
an iz R an) 2 R ATR
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In spherical coordinates, Z = Rcos6 — Bsin®, and therefore
A = (Rcos6 — Bsin 9)&0|e‘jkR
4TR )
(b) From Eq. (6.85),

~ 1~ gl - A e IR
H—EDXA—E[DX [(Rcose—esme) R

o IOI ~ 1 0 - 7ij 6 eiij
~ m®R (OR (—singe ) — 55 (cos0=

-~ lolsinBe kR 'k+£
=R K+g )

Problem 6.27 The magnetic field in a given dielectric medium is given by
H = §6c0s2zsin(2 x 10't —0.1x)  (A/m),

where x and z are in meters. Determine:
(a) E,
(b) the displacement current density Jg, and
(c) the charge density py.

Solution:
(@)
H = §6c0s2zsin(2 x 10"t —0.1x) = §6¢0s2z¢0s(2 x 10°t — 0.1x — 11/2),
H = y6cos2ze 10Xe"1W2 — _y j6cos 2z~ 101X

E- 1 oxh
Jwe
X % z
0/0x d/0y 0/0z
0 —j6cos2zei0x ¢

Jwe

1 0 . 0 .
— = I —j0.1x 5 i —j0.1x
j {x [ az( jécos2ze )] +2 [_ax( j6cos2ze )]}

=% (—E sin22e‘j°'1x) +2 (M C0S 2z e‘jo‘lx) :
we we

From the given expression for H,

w=2x10" (rad/s),
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B=0.1 (rad/m).

Hence, ©
Up =g = 2% 108 (mis),

2 3\ 2
C 3x10
=—) = —= ] =2.25.
Er (up> <2x103)

Using the values for w and €, we have

and

E = (—%30sin2z+ 2 j1.5¢0522) x 103719 (v/m),
E = [—%30sin2zcos(2 x 10"t — 0.1x) — 21.5cos 2zsin(2 x 10"t — 0.1x)]  (kKV/m).
(b)
D = €E = g,60E = (—%0.65in 22+ 2 j0.03c0s 22) x 10~ ~1%1x  (C/m?),
oD

Jo=—
d at7

or
Jg = joD = (=X j12sin2z — 20.6cos 2z)e 101X,
Ja = Me[Jge’™]
= [%12sin2zsin(2 x 10"t — 0.1x) — 20.6c0s2zc0s(2 x 10t — 0.1x)]  (A/m?).

(c) We can find py from

U-D=py
or from 5
__9pv
0.J= 5
Applying Maxwell’s equation,
B B B O0Ex OE;

yields

0 .
py = Erio{& [—30sin2zcos(2 x 10"t — 0.1x)]

0z
= g€ [—3sin2zsin(2 x 107t — 0.1x) + 3sin2zsin(2 x 10t —0.1x)] =0.

+ 9 [—1.5c0s2zsin(2 x 10t — 0.1x)] }
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Problem 6.28 The transformer shown in the figure consists of a long wire
coincident with the z-axis carrying a current I = Igcoswit, coupling magnetic energy
to a toroidal coil situated in the x—y plane and centered at the origin. The toroidal core
uses iron material with relative permeability p,, around which 100 turns of a tightly
wound coil serves to induce a voltage Vens, as shown in the figure.

Iron core with |,

(a) Develop an expression for Ven.

(b) Calculate Vs for f =60 Hz, y, =4000, a=5cm, b=6cm, ¢=2cm, and
lo =50 A.

Solution:
(a) We start by calculating the magnetic flux through the coil, noting that r, the
distance from the wire varies fromato b

b
CD:/B-ds:/ Ru—l-kcdr:“—dln b
S a 210 21 a
do UcN b\ dl
me—‘NW—‘E'”(a) at

_ McNwlg by .
= In<a>smwt (V).
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(b)

4000 x 411 1077 x 2 x 1072 x 100 x 211x 60 % 50In(6/5)
2m

sin377t

Vemf =

=5.5sin377t (V).

Problem 6.29 In wet soil, characterized by o = 1072 (S/m), i, = 1, and &, = 36,
at what frequency is the conduction current density equal in magnitude to the
displacement current density?

Solution: For sinusoidal wave variation, the phasor electric field is

E = Egel®t.
Jo = OE = OEqei™

ob OE i
Ji= = =&— = jweEge!®
T ot 0
Je

Jd

we 21ef

or
o 102

T 2T 2Mx 36 x8.85 x 10-22

f =5x10% =5 MHz.

Problem 6.30 In free space, the magnetic field is given by
~ 36 9
H= (pT cos(6 x 10°t —kz) (mA/m).

(a) Determine k.
(b) Determine E.

(c) Determine Jg.

Solution:

(a) From the given expression, w = 6 x 10° (rad/s), and since the medium is free
space,
w  6x10°



316 CHAPTER 6

(b) Convert H to phasor:

H= (i)ﬁ e~ (mA/m)

.
E:.LDXQ

Jueo

1 [ .Hy .10
= [ —=2+22 —(rH

joxo | | 0z My ‘p)}

JWEo |
= 3K e 30X o g3 p B30 iy,
WeQr r r
— ?%6 cos(6 x 10% —20z)  (V/m).
(c)
oE
Ji=¢€ —
d=%05
136 0 9
= = €0 (c05(6 x 10% —202))
. 13.650 x 6 x 10° .
= 20 Xr “ = sin(6 x 10% —20z2) (A/m?)

. 0.72 .
= —F——sin(6 10% —20z) (A/m?).



Chapter 7: Plane-Wave Propagation

Lesson #43
Chapter — Section: 7-1

Topics: Time-harmonic fields

Highlights:
e Phasors
e Complex permittivity
e Wave equations

Special Illustrations:

317
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Lesson #44
Chapter — Section: 7-2
Topics: Waves in lossless media

Highlights:

Uniform plane waves
Intrinsic impedance
Wave properties

Special Illustrations:

Example 7-1
CD-ROM Modules 7.3 and 7.4

Module 7.2: Wave Properties

Given: The electric field of a plane electromagnetic wave traveling in air exhibits
the pattern shown in the figure. In order to be able to visually observe the time
variation, the rate has been slowed down by a factor M.

SA
41T
3T
1
1T
AT
27

37T

4T
Sy

2.0 3.0 4.0 o

‘Start Animati) 0:03

Q1. What is the wavelength of the wave?

A= Ccm '.’ check answer T' '.’ | give up T'

Q2. What is the apparent frquency of the wave?
f: HZ ' check answer \ ' I give up \

Q3. What is the slow-down factor, M = (True frequency / Apparent
frequency)?
M: X |0g '.’ check answer T' '.’ I give up T-
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Lesson #45 and 46
Chapter — Section: 7-3
Topics: Wave polarization

Highlights:

e Definition of polarization
e Linear, circular, elliptical

Special Illustrations:

e CD-ROM Demos 7.1-7.5
e Liquid Crystal Display

Liquid Crystal Display (LCD)

LCDs are used in digital clocks, cellular phones, desktop
and laptop computers, and some televisions and other FOLARIZED LIGHT
electronic systems. They offer a decided advantage over
other display technologies, such as cathode ray tubes, in
that they are much lighter and thinner and consume a lot
less power to operate. LCD technology relies on special
electrical and optical properties of a class of materials
known as liquid crystals, first discovered in the 1880s by
botanist Friedrich Reinitzer.

Physical Principle

Liquid crystals are neither a pure solid nor a pure liquid,
but rather a hybrid of both. One particular variety of
interest is the twisted nematic liquid crystal whose
molecules have a natural tendency to assume a twisted

spiral structure when the material is sandwiched between LMPOLARIZED LIKHT
finely grooved glass substrates with orthogonal
orientations (A). Note that the molecules in contact with A.LCD structure

the grooved surfaces align themselves in parallel along

the grooves. The molecular spiral causes the crystal to

behave like a wave polarizer; unpolarized light incident upon the entrance substrate follows the
orientation of the spiral, emerging through the exit substrate with its polarization (direction of
electric field) parallel to the groove’s direction.
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Lesson #47
Chapter — Section: 7-4
Topics: Waves in lossy media

Highlights:
e Attenuation and skin depth

e Low loss medium
e Good conductor

Special Illustrations:
e (CD-ROM Demos 7.6-7.8

Demo 7.7: Moderately Lossy

Given: A 10-MHz EM plane wave propagating in a moderately lossy medium
characterized by:

=9 and o=102S/m.
Assuming that E has a magnitude of 10 V/m at z=0, solve for and display
the following profiles:

(a) E(z,1).
(b) 9.1 H(z,1).
(c) The power density S(z,1).

E 10 V/m M. [ 10 V/m 100 Wim®

foa—
Ll

II /_H
2.2m 2.2m w 2.2m

L In. JH

FA x L LA

{ Start Animation )




Lesson #48
Chapter — Section: 7-5

Topics: Current flow in conductors

Highlights:

e Skin depth dependence on frequency
e Surface impedance

Special Illustrations:

321
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Lesson #49
Chapter — Section: 7-6
Topics: EM power density

Highlights:

e Power density in a lossless medium
e Power density in a lossy medium
e Time-average power

Special Illustrations:
e (CD-ROM Module 7.5

Module 7.5: UHF Antenna Reception

Given: A television receiver with a loop antenna.

Loop Antenna Loop Antenna

TV TV

>

H (a) (b}

Q. If the electric field of the wave radiated by the TV station
antenna is along the vertical (z-axis), what plane should the loop
antenna be placed into in order to maximize the received signal? In
(a) the loop is in the E-k plane, and in (b) it is in the E-H plane.

o (wiea) Configuration (a)
K seec) Configuration (b)
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Chapter 7

Section 7-2: Propagation in Lossless Media

Problem 7.1 The magnetic field of a wave propagating through a certain
nonmagnetic material is given by

H = 230cos(10% — 0.5y) (MA/m).

Find (a) the direction of wave propagation, (b) the phase velocity, (c) the wavelength
in the material, (d) the relative permittivity of the material, and (e) the electric field

phasor.

Solution:
(a) Positive y-direction.
(b) w= 108 rad/s, k = 0.5 rad/m.

Up=— = = =2x 108 m/s.

() A= 2m/k = 21/0.5 = 12.6 m.

2 g\ 2
c 3x 10
d) &= (u—p> = (—leos) =2.25.

(e) From Eq. (7.39b),

nkx
\/7 1201‘[ 1201‘[ _ 25133 (Q)

I’

=¥, and H=1230e19% x 102 (A/m).
Hence,
E = —251.33) x 230e10% x 1073 = —%7.54¢7 1%  (v/m),
and

E(y,t) = Re(Eel™) = —%7.54c0s(10% — 0.5y)  (V/m).

Problem 7.2 Write general expressions for the electric and magnetic fields of a
1-GHz sinusoidal plane wave traveling in the +y-direction in a lossless nonmagnetic
medium with relative permittivity €, = 9. The electric field is polarized along the
x-direction, its peak value is 6 V/m and its intensity is4 V/matt =0andy =2 cm.
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Solution: For f =1 GHz, y, =1, and & =9,

w=2mf = 21x 10° rad/s,
2T[ 21T x 10°

k= \/_— &= 108\/5:201Trad/m,

E(y,t) = X6 cos(an 10% — 20ny+(po) (V/m).
Att=0andy=2cm,E =4 V/m:

4 =6c0s(—20Tx 2 X 1072+ @) = 6cos(—0.411+ @p).

Hence,
qo— 0.41t=cos ¢ (g) —0.84 rad,
which gives
@ =2.1rad =120.19°
and

E(y,t) = X6cos(2mmx 10% — 20Ty 4 120.19°)  (V/m).

Problem 7.3 The electric field phasor of a uniform plane wave is given by
E = §10e1%2 (\//m). If the phase velocity of the wave is 1.5 x 108 m/s and the relative
permeability of the medium is pu, = 2.4, find (a) the wavelength, (b) the frequency f
of the wave, (c) the relative permittivity of the medium, and (d) the magnetic field
H(zt).

Solution: _
(a) From E = 910192 (\V/m), we deduce that k = 0.2 rad/m. Hence,

2T[ 21T

02" =101t= 31.42 m.
(b)
_up_1.5><108_ 61
f= N~ 3147 =4.77 x 10° Hz = 4.77 MHz.
(c) From
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(d)
U My 2.4
=, /= ~120m, /= =120/ —— = 451.94 (Q
== ™ 167 @),
H= %(—2) xE= %(—2) x 9100102 = £22.13e1%2  (mA/m),
H(z,t) = X22.13cos(wt +0.2z) (MA/m),

with w = 21tf = 9.541Tx 108 rad/s.

Problem 7.4 The electric field of a plane wave propagating in a nonmagnetic
material is given by

E = [§3sin(1rx 10"t — 0.21x) + 24 cos(Tix 10°t — 0.2x)]  (V/m).

Determine (a) the wavelength, (b) €, and (c) H.

Solution:
(a) Since k = 0.2,

2 2n
A=—=—-=10m.
kK oam
(b)
w Tx 107 ;
Up = K= oo T 5x 10" m/s.
But
U=
p \/8_r
Hence,
2 8\ 2
() - ()
Up 5 x 107
(©)
1z Lo e 7 5 7
H= ﬁkx E= ﬁx x [§3sin(Trx 10t — 0.2mx) + 24 cos(Tx 10"t — 0.27X) |
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with

_ Mo 10m o 6283 (Q).

=%

Problem 7.5 A wave radiated by a source in air is incident upon a soil surface,
whereupon a part of the wave is transmitted into the soil medium. If the wavelength
of the wave is 60 cm in air and 20 cm in the soil medium, what is the soil’s relative
permittivity? Assume the soil to be a very low loss medium.

Solution: From A = Ao/+/%r,
2 2
(o (20) 2 () g
A 20

Problem 7.6 The electric field of a plane wave propagating in a lossless,
nonmagnetic, dielectric material with €, = 2.56 is given by

E = §20cos(6mx 10% —kz) (V/m).

Determine:
(@ f,up Ak andn, and
(b) the magnetic field H.

Solution:

(@)

w = 21tf = 61T 10° rad/s,
f =3x10° Hz = 3 GHz,

c 3x 108
Uy = —— = — 1.875 x 108 m/s,
T V& V256
Up  1875x108
= T w109 =3.12 cm,
211 211
n=no _ 317 31T 60

V& 256 16
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(b)

327

. 20
H= R cos(61x 10% —k2)

=—X 20 cos
- 235.62

(6TTx 10% — 201.47)

= —%8.49 x 102 cos(61Tx 10% — 201.4z) (A/m).

Section 7-3: Wave Polarization

Problem 7.7 An RHC-polarized wave with a modulus of 2 (V/m) is traveling in free
space in the negative z-direction. Write down the expression for the wave’s electric
field vector, given that the wavelength is 6 cm.

y
A

\ wt=0

Figure P7.7: Locus of E versus time.

Solution: For an RHC wave traveling in —Z, let us try the following:

E = Xacos(wt + kz) + asin(wt + kz).

Modulus |E| = va2+ a2 = ay/2 = 2 (V/m). Hence,

2
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Next, we need to check the sign of the y-component relative to that of the
We do this by examining the locus of E versus t at z = 0: Since
the wave is traveling along —Z, when the thumb of the right hand is along —Z (into
the page), the other four fingers point in the direction shown (clockwise as seen from
above). Hence, we should reverse the sign of the §-component:

X-component.

with

and

CHAPTER 7

E = Xv2cos(wt +kz) — §v2sin(wt +kz)  (V/m)

2
(x):kC:—T[x3x108:1'[><1010

k =

A

21T

A

T 6x102

=104.72 (rad/m),

(rad/s).

Problem 7.8 For a wave characterized by the electric field

identify the polarization state, determine the polarization angles (y,X), and sketch the

E(z,t) = Xay cos(wt — kz) + a, cos(wt — kz+ d),

locus of E(0O,t) for each of the following cases:

(@) ax=3V/m,ay=4V/m,and d=0,
(b) ax=3V/m,a,=4V/m, and = 180°,
(c) ax=3V/m,a,=3V/m,and d = 45°,
(d) ax=3V/m,ay=4V/m,and d = —135°.
Solution:
o =tan"*(ay/ay), [Eq. (7.60)],
tan2y = (tan2y)p)cosd [Eq. (7.59a)],
sin2y = (sin2yp)sind [Eq. (7.59b)].
Case | ax | ay o) Wo s X Polarization State
@ | 3] 4 0 53.13° | 53.13° 0 Linear
(o) | 3| 4| 180° | 53.13° | —53.13° 0 Linear
() | 3|3 45° 45° 45° 22.5° Left elliptical
(dy | 3 | 4 | —135° || 53.13° | —56.2° | —21.37° | Right elliptical
(@) E(z,t) = X3cos(uwt — kz) + 4 cos(wt —kz).
(b) E(z,t) = X3cos(wt —kz) — §4cos(wt — kz).
(c) E(z,t) = X3cos(wt —kz) + §3cos(wt — kz + 45°).
(d) E(z,t) = X3cos(wt —kz) 4 Y4 cos(wt —kz — 135°).
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y y
af - 1
31 | | 3
| |
24 I I 2
| |
1t | | 1
— X 4 X
4321/ 1234 4321, N12 34
| |
| -24 2 |
/A 3\
A1 § Y/} I
@ (b)
y y
4]
2
! !
b X :4 Y X
-4 4 1
2
-4
(d)

Figure P7.8: Plots of the locus of E(0,t).

Problem 7.9 The electric field of a uniform plane wave propagating in free space
is given by E = (X+ j§)20e~i™/6 (\/m). Specify the modulus and direction of the
electric field intensity at the z=0 plane att = 0, 5 and 10 ns.
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Solution:
E(z,t) = Re[Eel¥]
= Re[(X+ j§)20e1®/Ceit]
= Re[(X+ YelV2) 20 I™/6gict]
= X20cos(wt — 1Z/6) + §20cos(wt — 12/6 + 11/2)
= X20cos(wt — 12/6) — §20sin(wt —12/6)  (V/M),
E| = [E2+E2Y? =20 (Vim),

g =tan? (E—i) = —(wt —12/6).

From

c_ ke _ m/6x3x10°
A o2m 21
w=21f = 51t 10’ rad/s.

= 2.5x 10" Hz,

Atz=0,

0 att =0,
P=—t=-5mx10"t = —0.25t=—45° att=>5ns,
—0.51=-90° att =10ns.

Therefore, the wave is LHC polarized.

Problem 7.10 A linearly polarized plane wave of the form E = Raxe~ ¥ can be
expressed as the sum of an RHC polarized wave with magnitude ar and an LHC
polarized wave with magnitude a_. Prove this statement by finding expressions for
ar and a,_ in terms of ay.

Solution:

E = xae 1%,
RHC wave: Eg = ar(X+ye 12)e~ 1% = ag(x — j§)e~ 1%,
LHC wave: E, =a (X+9elV2)e 1 —a (x+ j§)e i,
E=Er+EL,
Xay = ar(X— jy) +aL (X+ jy).

By equating real and imaginary parts, ax =ar+a., 0= —ar+ap, or a_ = ax/2,
ar = ax/2.
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Problem 7.11 The electric field of an elliptically polarized plane wave is given by
E(z,t) = [—X10sin(wt —kz — 60°) +y30cos(wt —kz)] (V/m).

Determine (a) the polarization angles (y,x) and (b) the direction of rotation.

Solution:

(@)

E(z,t) = [-X10sin(wt —kz — 60°) + §30cos(wt — kz)]
= [X10cos(wt —kz +30°) +y30cos(wt — kz)] (V/m).

Phasor form:
E = (103" 4 930)e~lk,
Since 0 is defined as the phase of Ey relative to that of Ey,
0= -30°
30

—tan!
Po = tan ( 10
tan2y = (tan2yp)cosd= —0.65 or y=73.5°,

sin2x = (sin2yp)sind = —0.40 or x = —8.73°.

) = 71.56°,

(b) Since x < 0, the wave is right-hand elliptically polarized.

Problem 7.12 Compare the polarization states of each of the following pairs of
plane waves:

(@) wave 1: E; = X2cos(wt — kz) + §2sin(wt —kz),
wave 2: Ep = X2 cos(wt + kz) + §2sin(wt +kz),
(b) wave 1: E; = X2cos(wt — kz) — §2sin(wt — kz),
wave 2: Ep = X2cos(wt + kz) — §2sin(wt +kz).
Solution:
(@)

E1 = X2cos(wt —kz) 4+ §2sin(wt —kz)
= X2cos(wt —kz) +y2cos(uwt —kz—T11/2),
Ey = %2e~1 1 §2e~ikegi2,
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_ -1 ﬂ _ -11 _ gpo
Yo =tan (ax)_tan 1=145°
o= —T1/2.
Hence, wave 1 is RHC.

Similarly,
E, = %2eik 4 y2eikzg=im2,

Wave 2 has the same magnitude and phases as wave 1 except that its direction is
along —Z instead of +Z. Hence, the locus of rotation of E will match the left hand
instead of the right hand. Thus, wave 2 is LHC.

(b)
E1 =X2cos(wt — kz) — §2sin(wt —kz),
Eq = %261 4 g2e—ikeeim/2,
Wave 1is LHC.
E, = %2el¥ 4 g 2eikzein/2,

Reversal of direction of propagation (relative to wave 1) makes wave 2 RHC.

Problem 7.13  Plot the locus of E(0,t) for a plane wave with
E(z,t) = Xsin(wt 4 kz) + §2cos(wt + kz).

Determine the polarization state from your plot.

Solution:
E = X sin(wt + kz) + §2cos(wt + kz).

Wave direction is —Z. Atz =0,
E =Xsinwt +y2coswt.

Tip of E rotates in accordance with right hand (with thumb pointing along —2).
Hence, wave state is RHE.
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Figure P7.13: Locus of E versus time.

Sections 7-4: Propagation in a Lossy Medium

Problem 7.14 For each of the following combination of parameters, determine if
the material is a low-loss dielectric, a quasi-conductor, or a good conductor, and then
calculate a, B, A, up, and ne:

(a) glasswith iy =1, & =5, and 0 = 10712 S/m at 10 GHz,

(b) animal tissue with u, =1, & =12, and o = 0.3 S/m at 100 MHz,

(c) wood with g, =1, & =3, and 0 = 10~* S/m at 1 kHz.

Solution: Using equations given in Table 7-1:

Case (a) Case (b) Case ()
o/we 3.6x107°13 45 600
Type | low-loss dielectric  quasi-conductor  good conductor
a | 8.42x107 Np/m 9.75 Np/m 6.3 x 10~* Np/m
B 468.3 rad/m 12.16 rad/m 6.3 x 10~* rad/m
A 1.34cm 51.69 cm 10 km
Up 1.34 x 108 m/s 0.52 x 108 m/s 0.1 x 108 m/s
Nc ~168.5Q 39.54+ j31.72Q  6.28(1+j) Q
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Problem 7.15 Dry soil is characterized by €, = 2.5, p, =1, and o = 10~% (S/m).
At each of the following frequencies, determine if dry soil may be considered a good
conductor, a quasi-conductor, or a low-loss dielectric, and then calculate a, B, A, {p,
and nc:

(a) 60 Hz,

(b) 1kHz,

(c) 1 MHz,

(d) 1GHz.

Solution: & =2.5, yy=1, 0=10"%S/m.

f— 60 Hz 1kHz 1 MHz 1 GHz
€ o
¢ (‘;’8 1.2 x 104 720 0.72 7.2x 1074
" 2mfereo
Type of medium | Good conductor | Good conductor | Quasi-conductor | Low-loss dielectric
a (Np/m) 1.54x 104 6.28 x 10~ 1.13x 1072 1.19x 102
B (rad/m) 1.54x 104 6.28 x 10~ 3.49x 1072 33.14
A (m) 4.08 x 10* 10* 180 0.19
up (M/s) 2.45 x 10° 107 1.8 x 108 1.9 x 108
Ne (Q) 1.54(1+ j) 6.28(1+ j) 204.28+ j65.89 238.27

Problem 7.16 In a medium characterized by ¢, =9, W =1, and 0 = 0.1 S/m,
determine the phase angle by which the magnetic field leads the electric field at
100 MHz.

Solution: The phase angle by which the magnetic field leads the electric field is -6,
where 6, is the phase angle of nc.

o 0.1x 36T B
we 2mx108x10-9%x9

Hence, quasi-conductor.

_[u 1__5_” _1/2_1201'[ 1 o \ ¥
Ne= o Js’ _\/S_r qusosr

=125.67(1— j2)"Y/? = 71.49 + j44.18 = 84.04/3L72° .
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Therefore 8, = 31.72°.
Since H = (1/n¢)k x E, H leads E by —6,,, or by —31.72°. In other words, H lags
E by 31.72°.

Problem 7.17 Generate a plot for the skin depth &5 versus frequency for seawater
for the range from 1 kHz to 10 GHz (use log-log scales). The constitutive parameters
of seawater are iy =1, & =80and 0 =4 S/m.

Solution:
5 ~1/2
1 1 |pe e

Ta wl|2 +(a’) ’

w = 2f,

g = sa—ﬂ—§—780

H _lJOOr—Cz—Cz—(leog)za

7

g€ _o© o 4 x 36m Exlog.

£ e WegE 2mfx109x80 80f
See Fig. P7.17 for plot of &g versus frequency.

) Skin depth vs. frequency for seawater
10 T T T T

10"

Skin depth (m)

10+

-2

10

‘ ‘
10° 107 10" 10° 10 10 10 10

Frequency (MHz)

2 3 4

Figure P7.17: Skin depth versus frequency for seawater.




336 CHAPTER 7

Problem 7.18 Ignoring reflection at the air-soil boundary, if the amplitude of a
3-GHz incident wave is 10 VV/m at the surface of a wet soil medium, at what depth will
it be down to 1 mV//m? Wet soil is characterized by i, = 1, & =9,and 0 =5x 10~*
Sim.

Solution:

E(z) = Ege™® = 10e~%,
o 5x 10~* x 3671

— = =3.32x 1074
e 2Mx3x109x10 9x 9 %

Hence, medium is a low-loss dielectric.

120m 5% 104 x 120
_ O R0 2o _ox Y XM h032 (Np/m),
2Ve 2 e 2x+/9
103 =10e 9%Z  |n10~*= —0.032z,

7=287.82m.

Problem 7.19 The skin depth of a certain nonmagnetic conducting material is 3 um
at 5 GHz. Determine the phase velocity in the material.

Solution: For a good conductor, o = 3, and for any material s = 1/a. Hence,

onf
Up = %’ - % = 2mfds = 2mx 5x 10°x 3x 10 ®=9.42x 10% (mls).

Problem 7.20 Based on wave attenuation and reflection measurements conducted
at 1 MHz, it was determined that the intrinsic impedance of a certain medium is
28.1/45 (Q) and the skin depth is 2 m. Determine (a) the conductivity of the
material, (b) the wavelength in the medium, and (c) the phase velocity.

Solution:
(a) Since the phase angle of n is 45°, the material is a good conductor. Hence,

Ne=(1+ j)% — 28.1e/%° — 28.1c0s45° + j28.15in 45°,
or

g — 28.1c0s45° = 19.87.
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Sincea =1/8 =1/2=0.5 Np/m,

a 0.5

_ _ _ -2
o= 1987 — 10.87 2.52x 107 S/m.

(b) Since a = B for a good conductor, and a = 0.5, it follows that B = 0.5.
Therefore,

2T 2T
AN=—=—=41=12.57 m.
B 05 m

(©) up = fA =108 x 12.57 = 1.26 x 107 ms.

Problem 7.21 The electric field of a plane wave propagating in a nonmagnetic
medium is given by

E = 225e 3 cos(2mx 10% — 40x)  (V/m).

Obtain the corresponding expression for H.

Solution: From the given expression for E,

w=2mx 10° (rad/s),
a =30 (Np/m),
=40 (rad/m).

From (7.65a) and (7.65b),

!

2 2 2 ol !
o — % = —wpe’ = —w’lloEot; = —— &,

2
WP
20p = w’pe’ = = el
Using the above values for w, a, and 3, we obtain the following:

g = 1.6,
g = 5.47.

ny\ —1/2 -1/2 s
_ o (1_j€_f> :ﬂ(l—j%> = 157.9e1%88° ().
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E = 225¢ 3~ 140x,
~ 1. = 1
A= 0 E= a7 gemes
H = Re{Hel™} = —90.16e73™ cos(2mx 10°% — 40x — 36.85°)  (A/m).

K x 225 3% 14X — _ (0. 16 3Ne 40X 13685

Section 7-5: Current Flow in Conductors

Problem 7.22 In a nonmagnetic, lossy, dielectric medium, a 300-MHz plane wave
is characterized by the magnetic field phasor

H=(X— j42)e @e” 1% (A/m).
Obtain time-domain expressions for the electric and magnetic field vectors.

Solution: N o
E=-nckxH.

To find N, we need €’ and €”. From the given expression for H,

oa=2 (Np/m),
B=9 (rad/m).

Also, we are given than f =300 MHz = 3 x 108 Hz. From (7.65a),

C(2 _ BZ — —(.OZUEI,
1 -9
4—81=—(2mx 3 x 1082 x 4mx 10~ x € x 2670

whose solution gives
g = 1.95.
Similarly, from (7.65b),
20p = w’pe”,
8\2 —7 " 10_9
2x2x9=(21tx3x10°)“x4mtx 10" ' x €& X 26T

which gives

g’ =0.91.
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091\ Y% 377 _ e
— o (1—1—) :ﬁ(0.93—|—10.21):256.9e112‘6.

Hence,

E = —256.9e/26 ¢ x (x — j42)e Ve ¥
— (R jA+2)256.9e Ve i1%gi126
= (X4e)Y2 1 3)256.9e Ve 1%l126
E = Re{Ee/*}
= %1.03 x 103%™ cos(wt — 9y + 102.6°)
+2256.9e ¥ cos(wt — 9y +12.6°)  (V/m),
H = SRe{Hel*'}
= Re{(X+ j42)e Ve 1Welty
— ke~ cos(wt — 9y) + 24eYsin(wt —9y)  (A/m).

Problem 7.23 A rectangular copper block is 30 cm in height (along z). In response
to a wave incident upon the block from above, a current is induced in the block in the
positive x-direction. Determine the ratio of the a-c resistance of the block to its d-c
resistance at 1 kHz. The relevant properties of copper are given in Appendix B.

30cm

Figure P7.23: Copper block of Problem 7.23.
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Solution:
d-c resistance Rgc = L = #
©=GA~ 030w’
. I
a-C resistance Ry = .
T owds
R 0.3
o =5 =03/mfuc =03[rx 10% x 411x 1077 x 5.8 x 10"]%/2 = 143.55.
dc s

Problem 7.24 The inner and outer conductors of a coaxial cable have radii of
0.5 cm and 1 cm, respectively. The conductors are made of copper with &, = 1,
U =1and o =5.8 x 10" S/m, and the outer conductor is 0.5 mm thick. At 10 MHz:

(a) Are the conductors thick enough to be considered infinitely thick so far as the
flow of current through them is concerned?

(b) Determine the surface resistance Rs.
(c) Determine the a-c resistance per unit length of the cable.

Solution:
(a) From Egs. (7.72) and (7.77b),

s = [mfuo] ™2 = [mx 107 x 41tx 107 x 5.8 x 10/]7%2 = 0.021 mm.

Hence,

d B 0.5 mm N
8 0.021mm

Hence, conductor is plenty thick.
(b) From Eq. (7.92a),

1 1

— = =8.2x107Q.
06, 58x107x21x105 %

Rs:

(c) From Eq. (7.96),

Re /1 1) 8.2x10% 1 1
r_Rsf1 1) _ _
R =2> (a + b) = (5 SR 102) 0.039 (Q/m).
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Section 7-6: EM Power Density

Problem 7.25 The magnetic field of a plane wave traveling in air is given by
H = X50sin(2mx 107t — ky) (mA/m). Determine the average power density carried
by the wave.

Solution:

H = 50sin(21tx 10t —ky) (mA/m),
E = —no¥ x H = 2no50sin(2mtx 10t —ky)  (mV/m),

2
Sa = (2% 2)@ 1076 = 9?1(50)2 x 1070 =90.48 (W/m2).

Problem 7.26 A wave traveling in a nonmagnetic medium with & = 9 is
characterized by an electric field given by

E = [§3cos(Ttx 107t + kx) — 22cos(mrx 10't + kx)]  (V/m).

Determine the direction of wave travel and the average power density carried by the
wave.

Solution:
No 1201t
~ —=""" =401t (Q).
n N Q)
The wave is traveling in the negative x-direction.
. [3%+27] . 13 N )
Sy =— = — = —X0.05 (W/m>%).
&= Xoxaon~ 005 (Wim%)

Problem 7.27 The electric-field phasor of a uniform plane wave traveling
downward in water is given by

E = %56 0%e=10Z  (y/m),

where Z is the downward direction and z = 0 is the water surface. If 0 =4 S/m,
(a) obtain an expression for the average power density,
(b) determine the attenuation rate, and
(c) determine the depth at which the power density has been reduced by 40 dB.
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Solution:
(a) Since a = 3 = 0.2, the medium is a good conductor.

a 02 . jac°
Ne=(1+])2 = (1+])— = (1+])0.05=0.0707e" (Q).

From Eq. (7.109),

5 |E0|2 —20z 5 25
cosOy =72———
"™ %2x0.0707

e 0% c0s45° = 21257 %%  (W/m?).

(b) A= —8.680z = —8.68 x 0.2 = —1.74z (dB).
(c) 40 dB is equivalent to 10~4. Hence,

1074 =e 22 = 0% In(107%) = 0.4z,

orz=23.03 m.

Problem 7.28 The amplitudes of an elliptically polarized plane wave traveling in a
lossless, nonmagnetic medium with €, = 4 are Hyo = 3 (MA/m) and H,o = 4 (MA/m).
Determine the average power flowing through an aperture in the y-z plane if its area
is 20 m?,

Solution:

_ Mo 120m oo 18850,

TV
188 5 6 X
Sav =X+ [H +HZ] =%——[9+16] x107°=2.36 (mW/m?),
P= Sa,A = 2.36 x 1073 x 20 =47.13 (mW).

Problem 7.29 A wave traveling in a lossless, nonmagnetic medium has an electric
field amplitude of 24.56 VV/m and an average power density of 2.4 W/m?2. Determine
the phase velocity of the wave.

Solution:
S — |Eol? _ |Eof
av 2r] ’ zsava
or
2
(24.56) =125.67 Q.

T 2x24
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But
_ Mo 37 (377 \ g
=& V& o \imer
Hence,
3x 108
VE 3

Problem 7.30 At microwave frequencies, the power density considered safe for
human exposure is 1 (mW/cm?). A radar radiates a wave with an electric field
amplitude E that decays with distance as E(R) = (3,000/R) (V/m), where R is the
distance in meters. What is the radius of the unsafe region?

Solution:
E(R)|?
Sy = | 2(ﬂ ) . 1(mwW/em?) =103 W/cm?2 = 10 W/m?2,
0

oo (3x10%\° 1 12x10f

- R 2x120m Rz 7

N 1/2
_ (1'25010 ) —34.64m.

Problem 7.31 Consider the imaginary rectangular box shown in Fig. 7-19 (P7.31).
(a) Determine the net power flux P(t) entering the box due to a plane wave in air
given by
E = XEpcos(wt —ky)  (V/m).

(b) Determine the net time-average power entering the box.

Solution:

(@)
= XEgcos(wt —Kky),

E

H —ZEcos(wt—ky).
No

B2,

S(t):ExH:yn—cos (ot —ky),
0

2

()

P(t) = S(t) Alyco— S(t) Alyep = E ac]cos it — cos2(ct — kb)),
0
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N

Figure P7.31: Imaginary rectangular box of Problems 7.31 and 7.32.

(o .
Pa,:?/o P(t) dt.

where T = 2117/ .
Edac [ w [2Vw
Py = 02— —/ c0s? ot — cos?(ct — kb dt}:o.
w202 (@t — kD)
Net average energy entering the box is zero, which is as expected since the box is in
a lossless medium (air).

Problem 7.32 Repeat Problem 7.31 for a wave traveling in a lossy medium in which

E = %100e~2% cos(2mx 10% — 40y)  (V/m),
H = —20.64e~2% cos(2mx 10°% — 40y — 36.85°)  (A/m).

The box has dimensions A=1cm,b=2cm, and c=0.5 cm.
Solution:
(@)
St)=ExH
= %100e~2% cos(2mx 10% — 40y)
x (—20.64)e~2Y cos(2mx 10% — 40y — 36.85°)
= §64e~%Y cos(211x 10% — 40y) cos(2mx 10% — 40y — 36.85°).
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Using the identity cosBcos@= 3[cos(6+ @) + cos(6 — )],

64
S(t) = > e~ [cos(411x 10°% — 80y — 36.85°) + €05 36.85°],

P(t) = S(t) Aly=0—S(t) Aly=p
= 32ac{[cos(4mx 10% — 36.85°) 4 c0536.85°]
— e~ *%[cos(4mx 10% — 80y — 36.85°) + €05 36.85°]}.

() 1 /T 2w
w
Pay = ?/0 PO =5 [ Pt

The average of cos(wt + 6) over a period T is equal to zero, regardless of the value
of 6. Hence,
Pa = 32ac(1 — e %) c0s 36.85°.

Witha=1cm, b=2cm, and c = 0.5 cm,
Pay=7.05x10"% (W).

This is the average power absorbed by the lossy material in the box.

Problem 7.33 Given a wave with
E = XEpcos(wt —kz),

calculate:
(a) the time-average electric energy density

1T LI

(b) the time-average magnetic energy density

(W) —E/TW dt—i/T H2dt

and
(c) show that (We)ay = (Wm)av-

Solution:
(@)
1 T
(We)ar = o= / eEZ cos?(wt — kz) dt.
0
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With T = 21,
E2 r2mw
(We)ay = =0 / cos?(wt — kz) dt
amt Jo

2 p2m
_ EEg

-0 2(t —
= /o cos“(wt —kz) d(wt)

2
_ ek

(b)

(©)

Problem 7.34 A 60-MHz plane wave traveling in the —x-direction in dry soil
with relative permittivity €, = 4 has an electric field polarized along the z-direction.
Assuming dry soil to be approximately lossless, and given that the magnetic field has
a peak value of 10 (mA/m) and that its value was measured to be 7 (mA/m) att =0
and x = —0.75 m, develop complete expressions for the wave’s electric and magnetic
fields.

Solution: For f =60 MHz =6 x 10" Hz, & =4, y,=1,

) 21Ix 6 % 107
k‘E\/s_r_ 3x 108

Given that E points along Z and wave travel is along —X, we can write

V4=0.81 (rad/m).

E(x,t) = 2Egcos(21tx 60 x 10°% + 0.8+ @)  (V/m)

where Eg and g are unknown constants at this time. The intrinsic impedance of the

medium is n 1207
== —0 = —— =
n= e > 60Tt (Q).
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With E along 2 and k along —X, (7.39) gives

~

H=—-kxE
n
or £
H(x,t) =9 FO cos(1.21x 108t + 0.8 + @)  (A/m).

Hence,

% =10 (mA/m)

Eo=10x 60mx 103 = 0.6m (V/m).
Also,

H(—0.75m,0) = 7 x 1073 = 10cos(—0.81x 0.75+ qp) x 1072

which leads to ¢ = 153.6°.
Hence,

E(x,t) = 20.67cos(1.21tx 108t 4 0.8 + 153.6°)  (V/m).
H(x,t) = §10cos(1.2rx 108t 4-0.87x + 153.6°)  (MA/m).

Problem 7.35 At 2 GHz, the conductivity of meat is on the order of 1 (S/m). When
a material is placed inside a microwave oven and the field is activated, the presence
of the electromagnetic fields in the conducting material causes energy dissipation in
the material in the form of heat.

(a) Develop an expression for the time-average power per mm? dissipated in a
material of conductivity o if the peak electric field in the material is Eg.

(b) Evaluate the result for meat with Eq = 4 x 10* (V/m).

Solution:

(a) Let us consider a small volume of the material in the shape of a box of length d
and cross sectional area A. Let us assume the microwave oven creates a wave
traveling along the z direction with E along y, as shown.
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e

/

Along vy, the E field will create a voltage difference across the length of the box V,
where
V =Ed.

Conduction current through the cross sectional area A is
| =JA=0EA.
Hence, the instantaneous power is

P =1V =0E2(Ad)
— oE%w.

where ¢ = Ad is the small volume under consideration. The power per mm? is
obtained by setting » = (1073%)3,

P = % = 0E?x107° (W/mm?).

As a time harmonic signal, E = Egcoswt. The time average dissipated power is
) 1T o o -9
Py = ?A OEgcos“wt dt| x 10

1
= §0E§ x107°  (W/mm3).
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(b)
1
Pl = 5 1x(4x10%2x107°=0.8 (W/mm3).

Problem 7.36 A team of scientists is designing a radar as a probe for measuring the
depth of the ice layer over the antarctic land mass. In order to measure a detectable
echo due to the reflection by the ice-rock boundary, the thickness of the ice sheet
should not exceed three skin depths. If €/ = 3 and &/ = 10~2 for ice and if the
maximum anticipated ice thickness in the area under exploration is 1.2 km, what
frequency range is useable with the radar?

Solution:
30s=1.2 km = 1200 m
05 = 400 m.
Hence,
a= 635 = 200 = 25 1073 (Np/m).

Since € /¢’ <« 1, we can use (7.75a) for a:

g W [ _ 2mfele _ mfel  mf x 1072

2 5_2\/54\/%‘/”_0_0\/5_3x108\/§

Fora =25x10"3=6f x 10711,

=6f x 10~ 1*Np/m.

f =41.6 MHz.
Since a increases with increasing frequency, the useable frequency range is

f <41.6 MHz.
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Chapter 8: Reflection, Transmission, and Waveguides

Lessons #50 and 51
Chapter — Section: 8-1
Topics: Normal incidence

Highlights:

e Analogy to transmission line
e Reflection and transmission coefficient
Special Illustrations:

e Example 8-1
e CD-ROM Modules 8.1-8.5
¢ CD-ROM Demos 8.2

Demo 8.2: Medium-contrast Interface

Consider a 6-GHz plane wave in air incident upon the planar surface of a
lossless dielectric medium with g, = 9.

! x
E i B
. i .
H] ] Ht kt
EI.'
O—c
¥
kL- HL'
Medium 1 (€,= €0) Mediuin 2 (g,=9¢)
Ingcident wave 1
AN AN AN AN A
\V \VARV
I'=-0.5
Total wave Transmitted wave T = 0.5
er, =1 e, =9

z=10

¢ Start Animation )
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Lesson #52
Chapter — Section: 8-2
Topics: Snell’s laws

Highlights:

e Reflection and refraction
e Index of refraction

Special Illustrations:

e Example 8-4
e Technology Brief on “Lasers” (CD-ROM)

Lasers

Lasers are used in CD and DVD players, bar-code readers, eye surgery and multitudes of other
systems and applications. A laser—acronym for light amplification by stimulated emission of
radiation—is a source of monochromatic (single wavelength), coherent (uniform wavefront),
narrow-beam light, in contrast with other sources of light (such as the sun or a light bulb) which
usually encompass waves of many different wavelengths with random phase (incoherent). A laser
source generating microwaves is called a maser. The first maser was built in 1953 by Charles
Townes and the first laser was constructed in 1960 by Theodore Maiman.

ORIGINAL
INGIDENT ELECTRON Sl
ENERGY OR 4 : ANy
PHOTON

FPava e S

STIMULATED
PHOTON

PHOTON PHOTON

NUCLEUS

ORBIT OF
GROUND STATE

ORBIT OF
EXCITED STATE

A. Pumping electron B. Spontaneous emission C. Stimulated emission
to excited state

LASER LIGHT
PERFECTLY
REFLECTING
MIRROR
= PARTIALLY
REFLECTING
MIRROR

FLASH TUBE

D. Principle of operation



352

Lesson #53
Chapter — Section: 8-3
Topics: Fiber optics

Highlights:

e Structure of an optical fiber
e Dispersion

Special Illustrations:

e Example 8-5
e Technology Brief on “Bar-Code Reader” (CD-ROM)

Bar Code Readers

A bar code consists of a sequence of parallel bars of certain widths, usually printed in black
against a white background, configured to represent a particular binary code of information about
a product and its manufacturer. Laser scanners can read the code and transfer the information to a
computer, a cash register, or a display screen. For both stationary scanners built into checkout
counters at grocery stores and handheld units that can be pointed at the bar-coded object like a
gun, the basic operation of a bar-code reader is the same.

ROTATING MIRROI
(6,000 rpm)

SENSOR

A. Elements of a bar code reader
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Lessons #54 and 55
Chapter — Section: 8-4
Topics: Oblique incidence

Highlights:

e Parallel and perpendicular polarizations
e Brewster angle
e Total internal reflection

Special Illustrations:

e Example 8-6 and 8-7
e CD-ROM Demos 8.4-8.6

Demo 8.5: Moderate-contrast Interface

Consider a plane wave in air incident upon the planar surface of a lossless
dielectric medium with g, = 9.

Press to display the following:

(1) The directions of the incident, reflected and transmitted rays as
a function of the incidence angle.

(2) The magnitude of the reflection coefficient for both parallel and
perpendicular polarizations as a function of the incidence angle.

. . & Reflection
incident reﬂegted_ : 1.0 Coefficient |F1| |I"|||
ry —
0.8
]
Ef}f 0.6
€r, =9 A 0.4
0.2 .
tr itted .
ASHATLe 00— T T1T T T 1T T T 1T
: 10 20 30 40 S0 60 70 80 20
sin O — Ej Brewster incident
sing; Er, Angle angle
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Lesson #56
Chapter — Section: 8-5
Topics: Reflectivity and transmissivity

Highlights:

e Power relations

Special Illustrations:

e Example 8-7



Lessons #57-59
Chapter — Section: 8-6 to 8-10
Topics: Waveguides

Highlights:

e TE and TM modes
e Cutoff frequency
e Phase and group velocities

Special Illustrations:
e Examples 8-8, 8-9, and 8-10

Lesson #60
Chapter — Section: 8-11
Topics: Cavity Resonators

Highlights:
e Resonant frequency
e Q factor

e Applications

355



356 CHAPTER S8

Chapter 8

Section 8-1: Reflection and Transmission at Normal Incidence

Problem 8.1 A plane wave in air with an electric field amplitude of 20 V/m is
incident normally upon the surface of a lossless, nonmagnetic medium with €, = 25.
Determine:

(a) the reflection and transmission coefficients,

(b) the standing-wave ratio in the air medium, and

(c) the average power densities of the incident, reflected, and transmitted waves.

Solution:
@ 1201
Ni=no=120m (Q), ﬂzz%:T:Mn (Q)
From Egs. (8.8a) and (8.9),
p_fN2—n1i_ 24n—120m_ —96 _ 067,

CN24N1 24m+120m 144
T=1+I=1-0.67=0.33.

® 1+|F| 140.67
S— = =5.
1—-|F|  1-0.67
(c) According to Egs. (8.19) and (8.20),
i |EdI? 4
Sav = |2r(1)|0 T 2x ggm = 0.52 Wi,
Sh, = |2k, = (0.67) x 0.52 = 0.24 W/m?,
1207

% 0.52 = 0.28 W/mZ2.

g1, = RIS Mg, (0.33)2
& 2n2 N2 & 241

Problem 8.2 A plane wave traveling in medium 1 with g4 = 2.25 is normally
incident upon medium 2 with g, = 4. Both media are made of nonmagnetic, non-
conducting materials. If the electric field of the incident wave is given by

E' = y8cos(61rx 10% — 30mx)  (V/m),

(a) obtain time-domain expressions for the electric and magnetic fields in each of
the two media, and
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(b) determine the average power densities of the incident, reflected and transmitted

waves.
Solution:
@
E' = §y8cos(6Tx 10°% —30mx)  (V/m),
No No Nno 377
= = =12 2" —251330Q,
M= e T V25 15 15
No no 377
2= e VA 2
. N2—nN1 . 1/2—1/1.5 __0‘143’

T n2+ny 1/24+1/15
T=1+I=1-0.143 =0.857,
E'=TE = —1.14ycos(6mx 10% +30mx)  (V/m).

Note that the coefficient of x is positive, denoting the fact that E" belongs to a wave
traveling in —x-direction.

E; =E'+E" = §[8cos(6x 10% — 30mx) — 1.14cos (611 x 10°% 4 30mx)]  (A/m),

H = 2ni cos(61tx 10% — 30Tx) = 231.83cos(671x 10% — 30TX)  (MA/m),
1

1.14
H = in— cos(61x 10% + 30Tx) = 24.54cos(6Tx 10% +30mx)  (MA/m),
1

Hi=H'+H'
— 2[31.83¢0s(67Tx 10°% — 30TX) + 4.54 cos(6T1x 10% 4 30TX)]  (MA/m).

Since k; = w,/p€1 and ky = w,/pEy,

kz_,/ kl \/22 30mt=40rmt  (rad/m),

—E'= y8T cos(61Tx 10% — 40Tx) = ¥6.86cos(6T1x 10% — 401X)  (V/m),

Hy=H!'= 2ﬁ—Tcos(6nx 10% — 401X) = 236.38cos(61x 10% — 40mx)  (MA/m).
2
(b)
. 8 64
S =X o = 5 25133
S, = —|I'?S, = —%(0.143)2 x 0.127 = —%2.6 (MW/m3),

=%127.3 (MW/m?),
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B
S = 2n2
. »(8)2 _(0.86)%64 )
_ _ — %1247 (MW/m?).
o, “2x1885 (mW/m=)

Within calculation error, S, + S, = S,

Problem 8.3 A plane wave traveling in a medium with &, = 9 is normally incident
upon a second medium with €., = 4. Both media are made of nonmagnetic, non-
conducting materials. If the magnetic field of the incident plane wave is given by

H' = 22cos(2mx 10% —ky) (A/m),

(a) obtain time domain expressions for the electric and magnetic fields in each of
the two media, and
(b) determine the average power densities of the incident, reflected and transmitted

waves.
Solution:
(@) In medium 1,
c 3 x 108
U — — —=1x10% (m/s),
p /—srl \/g ( )
w 2mx10°
1= T Ix108 2om (rad/m),
H' = 22cos(2mx 10% — 20my)  (A/m),
Nno 377
= =—=12567Q
N1 Ve 3 .
Nno 377
= =—=1885Q
N2 Ve 5 )

E' = —%2n;cos(2mx 10% — 20my)
= —%251.34c0s(2mx 10% — 20my)  (V/m),

r_N2—N1_ 188512567 _
Nn2+n1 188.5+125.67
1=14T=12,
E" = —%251.34 x 0.2cos(21x 10% + 20my)
— —%50.27 cos(2mx 10% +20my)  (V/m),

0.2,
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50.27

N1
= —20.4cos(21x 10% +-20My)  (A/m),

Hf =2

cos (27 x 10°% + 20my)

E;=E +E'
— —%[25.134cos (21 10% — 20my) + 50.27 cos (21 x 10% + 20my)]  (V/m),
Hy = H'+H" = 2[2cos(2mx 10°% — 20my) — 0.4 cos(2m x 10% + 20Ty)]  (A/m).

&, /4 _40m
kz_,/slkl_\/;xmn_ 3 (rad/m),

) 40
E, — E' = —251.347c0s <2T[>< 10% — TTW)

In medium 2,

= —%301.61cos <2T[>< 10% — 40—“y> (V/m),

3
Hy = Ht = 239162 o <2T[>< 10% — —4O“y>
N2 3
— 21.6c05 <2T[>< 10% — 4OTHV> (A/m).

(b)

o |Eo* . (251.34)2 )
=9 o ~ Vo x1m e —=9251.34 (W/m?),

S, = —¥||?(251.34) = §10.05 (W/m?),
S, =9(251.34— 10.05) = §241.29 (W/m2).

Sa

Problem 8.4 A 200-MHz left-hand circularly polarized plane wave with an electric
field modulus of 5 V/m is normally incident in air upon a dielectric medium with
€ = 4 and occupying the region defined by z > 0.
(a) Write an expression for the electric field phasor of the incident wave, given that
the field is a positive maximumatz=0and t =0.
(b) Calculate the reflection and transmission coefficients.
(c) Write expressions for the electric field phasors of the reflected wave, the
transmitted wave, and the total field in the region z < 0.
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(d) Determine the percentages of the incident average power reflected by the

boundary and transmitted into the second medium.

= 88.89%.

Solution:
(a
w 2mx2x10%8  4m
k = = —
175 30 73 rad/m,
Up,
LHC wave:
E' = ag(X+9el?)e 1 = ag( + j§)e 1,
E'(z,t) = Xapcos(wt — kz) — Jagsin(wxt — kz),
E'| = [a3cos?(at — kz) 4 a3sin?(wt )}1/2—a0 5 (V/m).
Hence, - _
E' =5(%+ j9)e 1423  (v/m).
®) No _ No
ni=no=120m (Q), n2 N, 60Tt (Q)
Equations (8.8a) and (8.9) give
Nn2—n1 60m—120m —60 1
No+n: 60m+i20m 180 3’ "
(©
= 5T (R + 96 = 2 (%4 9)el (vim),
~ i 10 . ..
E'=51(X+ j9)e1e* = §O(x+ j§)e 183 (vim),
E;=E +E =5(X+jy) [ei‘”'z/?’ - %ej‘”‘z/?’] (V/m).
(d)
, 100
% of reflected power = 100 x |['|= = 5 = 11.11%,
2
% of transmitted power = 100 x ]T|2m =100 x (%) 16200T[
2
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Problem 8.5 Repeat Problem 8.4 after replacing the dielectric medium with a poor
conductor characterized by &, =2.25, g, =1, and o = 10~ S/m.

Solution:
(a) Medium 1:

W 2mMx2x10®  4m

=Ng=12 Q ki=—=—>7—F— = — .
N1=nNo o (Q), 1= 3% 108 3 (rad/m)
Medium 2: 4
02 _ 107" x 36m _4x103
Wey  2Tmx 2x108x2.25 x 109
Hence, medium 2 is a low-loss dielectric. From Table 7-1,
_ % [i
g2 = 2 %)
—4
_02 120112 o2 1201 _ 10 " 120n: 126 %102 (NP/m),
2 /&, 2 +/2.25 2 15
W,/
B2 = wy/h2€2 = # =21 (rad/m),
P2 jO2 1201 . _3 1201
=, /= (1+—= ) = 1+ j2x107°) ~ —— =180 Q).
N2 sz<+2we2> \/q(ﬂx )= 75 m (Q)

LHC wave:

E'=ao(X+ jye 17,
[El|=ao=5 (V/m),

E' =5(X+ j9)e 19%/3  (Vim).
(b) According to Egs. (8.8a) and (8.9),

poNe—n_ 80— 120

_ — 02 —14+T7=1-02=08.
nain.  somrizom 0 TTLF 0208

©
E =5 (X + j9)el? = — (R + j9)el¥™®3  (v/m),
E = 5T(R + j§)e %% P2 = 4(% + j§)e 12410 % 2% (v/m),
E;=E +E =5(%+ jy)[e 143 —0.214%/3]  (vim).
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(d)

% of reflected power = 100|I"|2 = 100(0.2)? = 4%,

% of transmitted power = 100|T|2% —100(0.8)2 x %T — 96%.
2

Problem 8.6 A 50-MHz plane wave with electric field amplitude of 50 V/m is
normally incident in air onto a semi-infinite, perfect dielectric medium with g, = 36.
Determine (a) I, (b) the average power densities of the incident and reflected waves,
and (c) the distance in the air medium from the boundary to the nearest minimum of
the electric field intensity, |E|.

Solution:
(@
H2 120t 120

=nNo=12 Q =,/== =——=2 Q
Ni=no=120m (Q), n & Ve, 5 o (Q),
_N2—ni_ 20m—120m
= N2+N1 20T+ 120m 0-7L.
Hence, |I'| = 0.71 and 6,, = 180°.
(b)
. |EQl® _ (50)2 2
Sav = Ny 2><12On_3'32 (W/m9),

Sty = T%S,, = (0.71)*x3.32 = 1.67 (W/m?).

() In medium 1 (air),

c 3x108
M=t =g qe 8M
From Egs. (8.16) and (8.17),
Imax_4—rr_ = =15m,

Imin = Imax — % =1.5—1.5=0m (at the boundary).

Problem 8.7 What is the maximum amplitude of the total electric field in the air
medium of Problem 8.6, and at what nearest distance from the boundary does it
occur?
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Solution: From Problem 8.6, = —0.71and A =6 m.
E1|max = (1+|[)E) = (1+0.71) x 50 = 85.5 V/m,

Problem 8.8 Repeat Problem 8.6 after replacing the dielectric medium with a
conductor with &, =1, Wy =1, and 0 = 2.78 x 1073 S/m.

Solution:
(a) Medium 1:
c 3x108
N1 =no=120m=377 (Q), Al_T_W_ﬁm
Medium 2:

we;  2mMx5x107x10°9
Hence, Medium 2 is a quasi-conductor. From Eq. (7.70),

-1/2 -1/2
_ e & _ _ 02
N2 = (1 18,2 =120m| 1 10082

€2
=120m(1— j1)"Y/?
= 120m(v/2) Y225 = (202.88+ j121.31) (Q).

02 278x 103 x 3671

N2—n1  (292.88+ j121.31) — 377 _
= = . — 009+ j0.12 = 0.22./1145" .
N2+ni  (292.88+ j121.31) + 377 +l

(b)

i IE§2 502 2
b= g = ot =32 (Wimd),

ISL,| = |28k, = (0.22)%(3.32) =0.16  (W/m?).

() In medium 1 (air),
c_3x 108

f = 5x107
For 6, = 114.5° = 2 rad, Egs. (8.16) and (8.17) give
O O _20) g,

[
M A 2

A=
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A 6
Iminzlmax—jl23—123—1.5:1.5m.

Problem 89 The three regions shown in Fig. 8-32 (P8.9) contain perfect
dielectrics. For a wave in medium 1 incident normally upon the boundary at z = —d,
what combination of €, and d produce no reflection? Express your answers in terms
of &, &, and the oscillation frequency of the wave, f.

[+——d——]
Medium 1 Medium 3
—_—
€r, e

Figure P8.9: Three dielectric regions.

Solution: By analogy with the transmission-line case, there will be no reflection at
z = —d if medium 2 acts as a quarter-wave transformer, which requires that

=7

and
N2 =+/N1N3.

The second condition may be rewritten as

1/2
No No No
= or &, =+¢&,&
8['2 \/q \/% ’ Iy ricrz»

AN C o

)\ - = = ,
? €r, f\/% f(£r18f3)1/4

n
and c

d=——.
41 (gr,8,) V4
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Problem 8.10 For the configuration shown in Fig. 8-32 (P8.9), use transmission-
line equations (or the Smith chart) to calculate the input impedance at z = —d for
&, =1, &,=09, &,=4, d=1.2m, and f =50 MHz. Also determine the fraction
of the incident average power density reflected by the structure. Assume all media
are lossless and nonmagnetic.

Solution: In medium 2,

8
N 3x10°

A: = = =
Ve, fy&, 5x107x3

Hence,

B2 = i_n = Ttrad/m, Bod = 1.21trad.
2

At z = —d, the input impedance of a transmission line with load impedance Z is
given by Eqg. (2.63) as

Z + jZotanBod
Zin(—d) = Zo (M)

Zo+ jZ, tanBod

In the present case, Zo = N2 = No/\/&, = No/3 and Z = N3 = No//&; = No/2,
where ng = 12011 (Q). Hence,

N2+ jnatanPzd / 3

+ jnatanBod 1+jd)tanl2n
Zin(—d) :r]z(w) _ Mo <2 J(f)
2

) =No(0.35— j0.14).

Atz = —d,

Z|n_Zl n0(0.35_ j0.14)_r]0 —i162.14°
r— - ] — 0.49¢ 116214,
Zin+Z1 no(0.35—j0.14)+no

Fraction of incident power reflected by the structure is |I'|? = |0.49|? = 0.24.

Problem 8.11 Repeat Problem 8.10 after interchanging €, and €.

Solution: In medium 2,

8
h_ Mo _ 3x10°

VEn  fvE, 5x107x3
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Hence,

B2 = i_n = 1rrad/m, Bod = 1.21trad.
2

Atz = —d, the input impedance of a transmission line with impedance Z is given as
Eq. (2.63),
_ B Z| + jZptanBd
Zin(—d) =Zo (Zo+ jZ tanp2d )
In the present case, Zo = N2 = No/ /&, = No/3, ZL = N3 = No//&, = No, Where
No = 1201 (Q). Hence,

N3+ jnztanl1.2m
N2+ jnatanl.2m

=2
_No <1+(j/3)tan1.2n>
3

Zin(—d)

(1/3)+ jtanl.2m
1+ (j/3)tanl.2m
1+ j3tanl.2m

=

0 > — (0.266 — j0.337)N = 0.431/=5L7".

Atz = —d,
Zin—Zl . 0.43/=517 —%

[ = =
Zin+Z1 043,57 41

= 0.49/-101.1°

Fraction of incident power reflected by structure is |I"|? = 0.24.

Problem 8.12 Orange light of wavelength 0.61 um in air enters a block of glass
with g = 1.44. What color would it appear to a sensor embedded in the glass? The
wavelength ranges of colors are violet (0.39 to 0.45 um), blue (0.45 to 0.49 pm),
green (0.49 to 0.58 um), yellow (0.58 to 0.60 um), orange (0.60 to 0.62 um), and red
(0.62 to 0.78 pm).

Solution: In the glass,

_ 08 s508um.

A=
V1.44

Bl
L\‘)O

The light would appear green.

Problem 8.13 A plane wave of unknown frequency is normally incident in air upon
the surface of a perfect conductor. Using an electric-field meter, it was determined
that the total electric field in the air medium is always zero when measured at a
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distance of 2 m from the conductor surface. Moreover, no such nulls were observed
at distances closer to the conductor. What is the frequency of the incident wave?

Solution: The electric field of the standing wave is zero at the conductor surface,
and the standing wave pattern repeats itself every A /2. Hence,

A:2m, orA=4m,
2
in which case o
f:;:3x410 — 75x107 = 75 MHz.

Problem 8.14 Consider a thin film of soap in air under illumination by yellow light
with A = 0.6 pm in vacuum. If the film is treated as a planar dielectric slab with
€ = 1.72, surrounded on both sides by air, what film thickness would produce strong
reflection of the yellow light at normal incidence?

Solution: The transmission line analogue of the soap-bubble wave problem is shown
in Fig. P8.14(b) where the load Z, is equal to no, the impedance of the air medium
on the other side of the bubble. That is,

377
=377 Q, =——=2875Q.
No N1 JiT2
The normalized load impedance is
7 =10 _131.
N1

For the reflection by the soap bubble to be the largest, Zj, needs to be the most
different from no. This happens when z, is transformed through a length A /4. Hence,

é_ Ao . 0.6 um
4 4 4172

where A is the wavelength of the soap bubble material. Strong reflections will also
occur if the thickness is greater than L by integer multiples of nA /2 = (0.23n) pm.
Hence, in general

L=(0.115+0.23n)ypm, n=0,1,2,... .

L= —0.115 pm,

According to Section 2-7.5, transforming a load Z, = 377 Q through a A /4 section
of Zo = 287.5 Q ends up presenting an input impedance of

B z_g _ (2875)?

Zin = Z. 377

=219.25 Q.
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Yellow Light
>
A=0.6 um

-« L >

() Yellow light incident on soap bubble.

No=377Q N 3 A=Ne=sTrQ

(b) Transmission-line equivalent circuit

Figure P8.14. Diagrams for Problem 8.14.

This Z;, is at the input side of the soap bubble. The reflection coefficient at that

interface is
Zin—No  219.25-377

r— = =
Zin+Nno 219.25+ 377
Any other thickness would produce a reflection coeffficient with a smaller magnitude.

—0.27.

Problem 8.15 A 5-MHz plane wave with electric field amplitude of 10 (V/m) is
normally incident in air onto the plane surface of a semi-infinite conducting material
with & =4, u, =1, and o = 100 (S/m). Determine the average power dissipated
(lost) per unit cross-sectional area in a 2-mm penetration of the conducting medium.

Solution: For convenience, let us choose E' to be along X and the incident direction
to be +2. With
w 2mx5x10® m

RS T ')

(rad/m),



CHAPTER 8 369

we have
i o 7, Tt
E' = X10cos (T[>< 10°t 30 z) (VIm),
N1=no=377 Q.
From Table 7-1,
g o 100 x 36Tt

== = =9 x 10*
g  wegy Tx 107 x4x10-9 Siadk

which makes the material a good conductor, for which

O = /Tifpo = V/Tix 5 x 108 x 471 10~ 7 x 100 = 44.43 (Np/m),
Bo=44.43 (rad/m),

L a . 44.43 .
Ne, = (L+1) o = (14 ]) g5 =044(1+1) Q.

According to the expression for Sy, given in the answer to Exercise 8.3,

R Ei 2 1
Savz — Z|T|2| O| 8_20(22%2 <_*> )
2 &
The power lost is equal to the difference between Sy, atz=0and Sy, atz=2 mm.
Thus,

P’ = power lost per unit cross-sectional area
= Sav,(0) — Sav,(z =2 mm)
Ei 2
— |.[|2| O| Re <i*> [1_6720(221]
2 r]Cz

where z; = 2 mm.

T=14T

N2—N1 0.44(1+ j)—377 . _3_ i

14 —1 . ~0.0023 (1 + j) = 3.3 x 10~ 3ei45"
N2+N1 0.44(1+ ) +377 (1+1)

1 1
Re| — | =Re| ————
(7)) = (emaryr)
B 1 B 1+ \ 1
=N <0.44(1— j)> =N <0.44>< 2) ~oss

10? _
P'=(3.3x 10—3)2% x 1.14[1 — g~ 2¥443x2x107%) _ 1 01 5 1074 (W/m?).
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Problem 8.16 A 0.5-MHz antenna carried by an airplane flying over the ocean
surface generates a wave that approaches the water surface in the form of a normally
incident plane wave with an electric-field amplitude of 3,000 (V/m). Sea water is
characterized by €, =72, i, =1, and 0 = 4 (S/m). The plane is trying to communicate
a message to a submarine submerged at a depth d below the water surface. If the
submarine’s receiver requires a minimum signal amplitude of 0.01 (uV/m), what is
the maximum depth d to which successful communication is still possible?

Solution: For sea water at 0.5 MHz,

g o 4 x 36T1

g  we 2mx0.5x106x72x10-° 000

Hence, sea water is a good conductor, in which case we use the following expressions
from Table 7-1:

Oy = /TIfHO = V/Ttx 0.5 x 108 x 41tx 107 x 4=2.81 (Np/m),
B> =2.81 (rad/m),
05 281

002:(14'])? :(1+j)T—0-7(1+j) Q,

Me—n1 0.7(1+j)—377
Nz2+n1 0.7(1+j)+377
T=1+T =524 x 10 348"

EY = [tEje %29

(—0.9963 + j3.7 x 1073),

We need to find the depth z at which |E!| = 0.01 pV/m = 108 \V/m.

1078 =5.24 x 1073 x 3 x 10% 2814,
e 2814 =636 x 101,
—2.81d = In(6.36 x 10719) = —21.18,

or
d=754 (m).
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Sections 8-2 and 8-3: Snell’s Laws and Fiber Optics

Problem 8.17 A light ray is incident on a prism at an angle 8 as shown in Fig.
8-33 (P8.17). The ray is refracted at the first surface and again at the second surface.
In terms of the apex angle @ of the prism and its index of refraction n, determine
the smallest value of © for which the ray will emerge from the other side. Find this
minimum 6 for n =4 and @ = 60°.

Figure P8.17: Prism of Problem 8.17.

Solution: For the beam to emerge at the second boundary, it is necessary that
03 < 6,
where sinB; = 1/n. From the geometry of triangle ABC,
180° = @+ (90° — 62) + (90° — B3),

or 8, = @— B3. At the first boundary, sin8 = nsin0,. Hence,

$inBpmin = Nsin(@— 03) = nsin ((p—sinl <%>) ,

i)

Forn=4and @=60°,

or

Bmin = sin! [4sin(60° —sin~t (%)] = 20.4°.
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Problem 8.18 For some types of glass, the index of refraction varies with
wavelength. A prism made of a material with

4 .
n=171- %Ao, (Ao in pm),
where Ag is the wavelength in vacuum, was used to disperse white light as shown in
Fig. 8-34 (P8.18). The white light is incident at an angle of 50°, the wavelength A of
red light is 0.7 um and that of violet light is 0.4 um. Determine the angular dispersion
in degrees.

Figure P8.18: Prism of Problem 8.18.

Solution: For violet,

4 . sin®  sin50°
ny=171- 30~ 0.4 =1.66, sinBy = = 166

or
0, = 27.48°.

From the geometry of triangle ABC,

180° = 60° + (90° — 8) + (90° — B3),

or
03 =60° — 0, = 60 — 27.48° = 32.52°,
and
sinB4 = nysinB3 = 1.66sin32.52° = 0.89,
or

64 = 63.18°.
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For red,

373

4
n= 171 %07 =162,
8, — sin~? [3'1”22 } — 28.22°,

05 = 60° — 28.22° = 31.78°,
0,4 = sin~1[1.62sin 31.78°] = 58.56°.

Hence, angular dispersion = 63.18° — 58.56° = 4.62°.

Problem 8.19 The two prisms in Fig. 8-35 (P8.19) are made of glass with n = 1.5.
What fraction of the power density carried by the ray incident upon the top prism
emerges from bottom prism? Neglect multiple internal reflections.

Figure P8.19: Periscope problem.

Solution: Using n = no/n, at interfaces 1 and 4,

At interfaces 3 and 6,

_hp—np 1-15

= = =-0.2.
& ni+ny 1+15

MN=-Ta=0.2
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At interfaces 2 and 5,

8. =sint <%> =sint <%> =41.81°.

Hence, total internal reflection takes place at those interfaces. At interfaces 1, 3, 4
and 6, the ratio of power density transmitted to that incident is (1 —I'2). Hence,
St

g=0- %)%= (1-(0.2)%)*=0.85.

Problem 8.20 A light ray incident at 45° passes through two dielectric materials
with the indices of refraction and thicknesses given in Fig. 8-36 (P8.20). If the ray
strikes the surface of the first dielectric at a height of 2 cm, at what height will it strike
the screen?

nm=1 =15 n3=13 ng=1 o

/52' hy screen

sz Y
_L \45°

Figure P8.20: Light incident on a screen through a multi-layered dielectric (Problem
8.20).

Solution: 1
. ni . .
0, = —sinB; = —sin45° = 0.47.
sinB, ~ sinB, 15 sin
Hence,
06, =28.13°,
h, =3cm xtanB, =3 cm x 0.53 = 1.6 cm,
. Ny . 1.5 .
== = _—_-sin28.13° = 0.54.
sinB3 n33|n62 1'Ssm 8.13° =0.5
Hence,

03 = 32.96°,
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hs =4 cm x tan32.96° = 2.6 cm,
sinB, = k] sinB3 = 0.707.
Ny
Hence,

04 = 45°,
hgs =5cm x tan45° =5 cm.

Total height =h; +ha+hz+hs=(241.64+2.64+5) =11.2 cm.

Problem 8.21 Figure P8.21 depicts a beaker containing a block of glass on the
bottom and water over it. The glass block contains a small air bubble at an unknown
depth below the water surface. When viewed from above at an angle of 60°, the air
bubble appears at a depth of 6.81 cm. What is the true depth of the air bubble?

5!

dy

A

P

X
g /
7
w
r &
Q.
N
-

Figure P8.21: Apparent position of the air bubble in Problem 8.21.

Solution: Let

da = 6.81 cm = apparent depth,
d; = true depth.

_'*lm'__'fli' ol __ o
0, =sin [nz sme,] =sin [1.33 sin60 ] =40.6°,
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. _q g . T I S o
83 =sin 1[n—;smei] =sin 1[Rsm60 ] =32.77°,

X1 = (10 cm) x tan40.6° = 8.58 cm,
X = dycot30° = 6.81cot30° = 11.8 cm.

Hence,
Xo =X—X; =11.8—-8.58 =3.22 cm,

and
do =x2c0t32.77° = (3.22 cm) x cot32.77° = 5 cm.

Hence, d; = (10+5) = 15cm.

Problem 8.22 A glass semicylinder with n = 1.5 is positioned such that its flat face
is horizontal, as shown in Fig. 8-38 (P8.22). Its horizontal surface supports a drop of
oil, as shown. When light is directed radially toward the oil, total internal reflection
occurs if 8 exceeds 53°. What is the index of refraction of the oil?

oil drop

=

Figure P8.22: Oil drop on the flat surface of a glass semicylinder (Problem 8.22).

Solution:

. N2 Ngjl
SiN0 = = = —
“np 15

Noi| = 1.5sin53° = 1.2.

Problem 8.23 A penny lies at the bottom of a water fountain at a depth of 30 cm.
Determine the diameter of a piece of paper which, if placed to float on the surface of
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.:Wmer surface“

Y

30cm

Figure P8.23: Light cone bounded by total internal reflection.

the water directly above the penny, would totally obscure the penny from view. Treat
the penny as a point and assume that n = 1.33 for water.

Solution:

1.33
d =2x = 2[(30 cm)tanBc] = (60 cm) x tan48.75° = 68.42 cm.

B =sint [i} =48.75°,

Problem 8.24 Suppose the optical fiber of Example 8-5 is submerged in water (with
n = 1.33) instead of air. Determine 65 and fj, in that case.

Solution: With ng = 1.33, ns = 1.52 and n. = 1.49, Eq. (8.40) gives

1/2

sinB, = ni(nf2 —n2)¥% = - [(1.52)? - (1.49)%] ' = 0.23,
0

1
1.33
or
0, =13.1°.

The data rate fy given by Eq. (8.45) is not a function of no, and therefore it remains
unchanged at 4.9 (Mb/s).
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Problem 825 Equation (8.45) was derived for the case where the light incident
upon the sending end of the optical fiber extends over the entire acceptance cone
shown in Fig. 8-12(b). Suppose the incident light is constrained to a narrower range
extending between normal incidence and 6, where 6’ < 6,.

(a) Obtain an expression for the maximum data rate fp, in terms of @'

(b) Evaluate f, for the fiber of Example 8-5 when 8’ = 5°.

Solution:
(@) For6, =0,

. 1 .
sinB, = —sin@/,
Ny

I I I Ing
Imax = = - = - ’
cosB2  \/1—sin?8, \/1_<gn9,)2 \/nfz—(sine’)z
L
- Imax . Imax N _ Inf2
max — — — - ’
n
tmin:—pzlga
T:At:tmax—tmin:Iﬁ L_l ’
-1
1 .
fpzz_:% M (bits/s).
(b) For:
ng = 1.52,
9/250’
I =1km,

¢ =3 x 108 mJs,
f,=59.88 (Mb/s).
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Sections 8-4 and 8-5: Reflection and Transmission at Oblique Incidence

Problem 8.26 A plane wave in air with
E' = §20e" 13442 (v/m),

is incident upon the planar surface of a dielectric material, with €, = 4, occupying the
half space z > 0. Determine:

(a) the polarization of the incident wave,

(b) the angle of incidence,

(c) the time-domain expressions for the reflected electric and magnetic fields,

(d) the time-domain expressions for the transmitted electric and magnetic fields,

and
(e) the average power density carried by the wave in the dielectric medium.

Solution:

(@) E' = y20e~i(x+42) \//m.

Since E' is along ¥, which is perpendicular to the plane of incidence, the wave is
perpendicularly polarized.

(b) From Eq. (8.48a), the argument of the exponential is

— jk1(xsin®; +zcos6;) = —j(3x+4z).

Hence,
kisin6; = 3, ki cos6; = 4,

from which we determine that

3
tan@; = 2 or 0; = 36.87°,

o ki =1/32+42=5 (rad/m).
Also,
W=Upk=ck=3x108x5=15x10° (rad/s).
©
N1=nNo=377Q,
N2 — \;]%:%:188.5 Q,

. inB; . in36.87°
B, =sin~t ST _ gip-1 | AN20-S0 =17.46°,
VEr \/Z
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_ N2c0sBi —nicosB;
© N2C0sB+n1c0s0;
T, =1+0; =0.59.

L —0.41,
In accordance with Eq. (8.49a), and using the relation E§ = I" | E],
Er — _98.26—j(3x—4z)7
Hr & 5qi 8.2 —j(3x—42)
H :(xcosei+zsm9i)n—e J :
0

where we used the fact that 6; = 6, and the z-direction has been reversed.

E' = Re[E'e/¥] = —§8.2c0s(1.5 x 10% — 3x+4z) (V/m),
H" = (X17.4+213.06)cos(1.5 x 10% —3x+4z) (mA/m).

(d) In medium 2,

— /z—j —5V4—=20 (rad/m),

. . . 1 .
8 =sin~?! [, /€ gin ei} =sin~! [— sin 36.87"} =17.46°
& 2

and the exponent of E' and H' is

and

— jka(xsinB; +zcosB;) = — j10(xsin17.46° +zc0s17.46°) = — j(3x+9.542).
Hence,
Et — 920 x 0.59¢I(3+9542)

H o o 20x0.59 _.
HY = (—X 0SBy + 25in By) T g=1(3:+9542)

n2
E' = Re[E'e/¥] = §11.8c0s(1.5 x 10% —3x—9.547)  (V/m),
H' = (—Xcos17.46° + 2sin17.46°) 1181585 cos(1.5 x 10% — 3x — 9.542)

= (—X239.72+2z16. COS(l.0o X t—3x—9.54z7 mA/m).
£59.72 +218.78) cos(1.5 x 10% — 3x — 9.54z) (mA/m)

()
o El?_ (118)2

S., = =
¥~ 2N,  2x1885

=036 (W/m2).
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Problem 8.27 Repeat Problem 8.26 for a wave in air with
H' =92 x 102 1(®+62  (A/m),

incident upon the planar boundary of a dielectric medium (z > 0) with &, = 9.

Solution:

() H =92 x10 21662,

Since H' is along ¥, which is perpendicular to the plane of incidence, the wave is
TM polarized, or equivalently, its electric field vector is parallel polarized (parallel to
the plane of incidence).

(b) From Eq. (8.65b), the argument of the exponential is

— jk1(xsin®; 4+zcos6;) = — j(8x + 62).

Hence,
kisin®; = 8, kic0s6; = 6,

from which we determine

8
8 =tan~t <g> —53.13°,

ki =V62+82=10 (rad/m).

Also,
Ww=uUpk=ck=3x108x10=3x10° (radfs).
(©
N1=nNo=377Q,
No No
= =~ =125.67 Q,
o= UE 3
B =sin! [Smei] —=sin! [7&”53'13 } = 15.47°,
Ve V9
= N2 C0Ss B; — 11C0S 6 _ 030,
N2 C0S B; + 11 C0S 6
c0s 6;

In accordance with Egs. (8.65a) to (8.65d), E{) =2x10"?nsand

E' = (Xcos6; — 2sin8;)2 x 1072, e /&+62) — (%452 — 26.03) e~} (E+62),
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E' is similar to E' except for reversal of z-components and multiplication of amplitude
by I'y. Hence, with ') = —0.30,

E = Re[E /] = —(%1.36 +21.81) cos(3 x 10% — 8x -+ 62) V/m,
H" =92 x 1072 cos(3 x 10% — 8x + 62)
— —90.6 x 1072¢os(3 x 10°% — 8x + 6z) A/m.

(d) In medium 2,

ko = Ky ? — 10v/9 = 30 rad/m,
1

. . . 1 .
8 =sin~?! [, /2 6in ei} =sin~! [— sin 53.13"} =15.47°,
€1 3

and the exponent of E' and H' is
— jka(xsin6; 4 zcos6;) = —j30(xsin15.47° +zc0s15.47°) = — j(8x+28.91z).
Hence,

E' = (Xcos 6, — 2sin Gt)E(i)r‘le*i(8X+28-912)
= (%X0.96 —20.27)2 x 1072 x 377 x 0.44 ¢ 1(8x+28.912)
= (%X3.18 —20.90) e—j(8x+28.91z)’
H'=y ol o—i(Bx+28912)
N2
= §2.64 x 102 1(8+28912)

E' = Re{E'e/?}
— (%3.18 — 20.90) cos(3 x 10% — 8x — 28.917) V/m,
H' = $2.64 x 10"2cos(3 x 10% — 8x — 28.91z) A/m.

(€)

Et 2 Ht 2 . —2\2
st — IEol” _ Hol® (264x107%)% 105 67 — a4 mwim?.
2N, 2 2

Problem 8.28 Natural light is randomly polarized, which means that, on average,
half the light energy is polarized along any given direction (in the plane orthogonal
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to the direction of propagation) and the other half of the energy is polarized along the
direction orthogonal to the first polarization direction. Hence, when treating natural
light incident upon a planar boundary, we can consider half of its energy to be in
the form of parallel-polarized waves and the other half as perpendicularly polarized
waves. Determine the fraction of the incident power reflected by the planar surface
of a piece of glass with n = 1.5 when illuminated by natural light at 70°.

Solution: Assume the incident power is 1 W. Hence:
Incident power with parallel polarization =05W,
Incident power with perpendicular polarization =0.5W.
€2/€1 = (np/n1)? = n? = 1.5% = 2.25. Equations (8.60) and (8.68) give

70° — /2.25 —sin?70°
rL:cos 0 5—sin“70 0.55.

€0s70° + /2.25 —sin?70°
 —2.25c0870° 4 1/2.25 —sin®70°

M= =0.21.
2.25c0870° + 1/2.25 —sin?70°
Reflected power with parallel polarization =05 (I'H)2
=0.5(0.21)2 =22 mW,
Reflected power with perpendicular polarization = 0.5(I" ,)?

= 0.5(0.55)2 = 151.3 mW.
Total reflected power = 22 4+ 151.3 = 173.3 mW, or 17.33%..

Problem 8.29 A parallel polarized plane wave is incident from air onto a dielectric
medium with & = 9 at the Brewster angle. What is the refraction angle?

Figure P8.29: Geometry of Problem 8.29.

Solution: For nonmagnetic materials, Eq. (8.72) gives

€
0, =0g =tan" !, /E—i —tan~13 = 71.57°.
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But inG; sinG;  sin7L57°
sinezzsm 1_sinB; _ sin7l. _ 032,
NG 3 3
or 6, = 18.44°,

Problem 8.30 A perpendicularly polarized wave in air is obliquely incident upon
a planar glass-air interface at an incidence angle of 30°. The wave frequency is
600 THz (1 THz = 10% Hz), which corresponds to green light, and the index of
refraction of the glass is 1.6. If the electric field amplitude of the incident wave is 50
V/m, determine

(a) the reflection and transmission coefficients, and

(b) the instantaneous expressions for E and H in the glass medium.

Solution:
(a) For nonmagnetic materials, (g2/€1) = (nz/n1)?. Using this relation in Eq.
(8.60) gives

- cosB; — \/(nz/nl)z—sinzei c0s30° — \/(1.6)2—sin230° 027
L= g = —U. s
cos8; + \/(nz/nl)2 —sin?@;,  cos30°+ \/(1.6)2 —sin?30°

TJ_:1+FJ_:1—027:073

(b) In the glass medium,

. sin®;  sin30°
sinB; = n—2 ~ 716 0.31,
or 6; = 18.21°.
12
no= /B2 =00 1O _son_ 3562 (@),

& No W
w 2if  2nfn 211x 600 x 1012 x 1.6
W oh ¢ 3xit®
E{=1,E)=0.73x50 = 36.5 V/m.

ko — 6.411% 10° rad/m,

From Egs. (8.49c¢) and (8.49d),

ct ot o— jko(xsinB+zcosO
E'! =yEle Jka( k t)7

t . .
HY = (—%cos8;+ 2sin8,) Ee*JKZ(XS'”et+Z°059‘>,
n2
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and the corresponding instantaneous expressions are:

E' (x,2,t) = ¥36.5c0s(0t — koxsin 6y — kpzcos®)  (V/m),
Hi(x, Z,t) = (—Xc0s6; — 2c0s 6;)0.16 cos(wt — koxsin B; — kpozcos6;)  (A/m),

with w = 21 x 10%° rad/s and ky = 6.471x 10° rad/m.

Problem 8.31 Show that the reflection coefficient I | can be written in the form
. sin(et — 6|)
L sin(6+8)
Solution: From Eq. (8.58a),

_ N2C0s6 —nycosB;  (n2/n1)cos6; —cosb
© N2c0s6; +n1cosB;  (n2/n1)cos6;+cosb;

L

Using Snell’s law for refraction given by Eq. (8.31), we have

N2 _ sin 6;
n. sing’

we have . . .
_ sinBcos6; —cosB;sinG;  sin(6; — 6;)

L7 sinB;cosB; +cosBsin®;  sin(B;+6;)

Problem 8.32  Show that for nonmagnetic media, the reflection coefficient I} can

be written in the form
_ tan(6—6))

= tan(6; +6;)
Solution: From Eg. (8.66a), I'|| is given by

N2€0s6; —n1cos6;  (n2/n1)cos6; — cosb;

I Nacos6 +nicos6 (N2/N1)cos6;+ cos6;

For nonmagnetic media, 4y = 42 = o and

na_ [ _m

N1 € N2’
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Snell’s law of refraction is

sin6y  ng
sinG  ny’
Hence, 6
SIN B¢
r, _ Sing; c0s8; — cosby _ sinB;cos 6; — sin®; cos B
I~ Sing; 008, 1 cos6; ~ sinB;cosB; +sinB;cosB;
sin 6;

To show that the expression for I" is the same as

_ tan(6,—6))
= tan(6; + 6;) ’
we shall proceed with the latter and show that it is equal to the former.

tan(6; —6;)  sin(6; —6;)cos(6; +6))
tan(6;+6;)  cos(6;—6;)sin(6+6;)

Using the identities (from Appendix C):
2sinxcosy = sin(x+y) +sin(x—y),

and if we let x = 6; — 6; and y = 6; + 6; in the numerator, while letting x = 6; + 6; and
y = 6; — 6; in the denominator, then

tan(6; —6;)  sin(26;) + sin(—26;)

tan(6; + 6;) sin(26;) +sin(26;)

But sin26 = 2sinBcos B, and sin(—B) = —sin®, hence,

tan(6; —6;)  sinB;cos6; — sinB;cos6;
tan(6;+6;)  sinB;cosO; +sinB;cosH; ’

which is the intended result.

Problem 8.33 A parallel polarized beam of light with an electric field amplitude of
10 (V/m) is incident in air on polystyrene with i, = 1 and &, = 2.6. If the incidence
angle at the air—polystyrene planar boundary is 50°, determine
(a) the reflectivity and transmissivity, and
(b) the power carried by the incident, reflected, and transmitted beams if the spot
on the boundary illuminated by the incident beam is 1 m? in area.
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Solution:
(a) From Eqg. (8.68),

_ —(e2/e1)c0osBi +/(e2/81) —sin?6,

(g2/€1)c080; + 1/ (e2/€1) —Sin 6,

_ o _ H 2 (o}

_ 2.6c0s50° + v/ 2.6 —sin“50 ~ 008,
2.6c0850° + /2.6 —sin250°
R = |ry|*=(0.08)>=6.4x 103,

T)=1-R = 0.9936.

(b)

_ |Ejol? (10)2
[ R
PI= 0, A8 = 2 To0m

Pl = RHPﬁ = (6.4x107%) x 0.085 = 0.55 MW,
Pﬁ — T”Pli‘ = 0.9936 x 0.085 = 84.45 mW.

x €0s50° = 85 mW,

Sections 8-6 to 8-11

Problem 8.34 Derive Eq. (8.89b).

Solution:
We start with Egs. (8.88a and e),

e, .. -
a—yz + jB8y = — joophy,
_~  oh, .

—jBhyx— a_xz = juegy.

To eliminate hy, we multiply the top equation by (3 and the bottom equation by wy,
and then we add them together. The result is:

08 . oo oh, .,
Ba—y+1[3 ey—wpa_szusey.
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Multiplying all terms by e~ 1P to convert €y to Ey (and similarly for the other field
components), and then solving for E, leads to

- 1 0E, _ oH,
o ) (‘Ba—y“’“W)

_ i g%, 0
“ke\ Py T )
where we used the relation
k? = w’ue — B2.

Problem 8.35 A hollow rectangular waveguide is to be used to transmit signals at
a carrier frequency of 6 GHz. Choose its dimensions so that the cutoff frequency of
the dominant TE mode is lower than the carrier by 25% and that of the next mode is
at least 25% higher than the carrier.

Solution:
Form =1and n= 0 (TE mode) and up, = ¢ (hollow guide), Eq. (8.106) reduces
to

c
fio=—.
10 2a

Denote the carrier frequency as fo = 6 GHz. Setting
f10=0.75fp = 0.75 x 6 GHz = 4.5 GHz,

we have
c 3x 108

8= Dt 2x45x 109

If b is chosen such thata > b > % the second mode will be TEq;, followed by TExq
at foo =9 GHz. For TEq,,

=3.33cm.

c
for==—.
01 =op
Setting fo1 = 1.25fg = 7.5 GHz, we get
C 3 x 108

=2cm.

b: pumy
2fo1 2x7.5x10°
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Problem 8.36 A TE wave propagating in a dielectric-filled waveguide of unknown
permittivity has dimensions a=5 cmand b = 3 cm. If the x-component of its electric
field is given by

Ex = —36.c0s(401) sin(1001y)
-sin(2.41tx 10%% — 52.917),  (V/m)

determine:
(a) the mode number,
(b) &, of the material in the guide,
(c) the cutoff frequency, and
(d) the expression for Hy.

Solution:
(a) Comparison of the given expression with Eg. (8.110a) reveals that

m?n = 40T, hence m=2
%T = 100Tm, hence n = 3.

Mode is TE»s.
(b) From sin(wt — [3z), we deduce that

w=241x 10 rad/s, B =52.9mrad/m.

Using Eqg. (8.105) to solve for €, we have

o= 5 B4 () ()]

~ 225
(©)
3% 10°
lUpy =~ = S = 2% 10% mis.
VEr 2.25
Upg

f_u 2\? 3\ ?
z=7\\a) "o

=10.77 GHz.
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(@)
zTEZE—?Zn/\/l—(fzs/ﬂz
:%/,/1— (%)2 —569.9 0.
Hence,
yE

= —0.063cos(40mx) sin(1007y) sin(2.411x 10%°%t —52.917)  (A/m).

Problem 8.37 A waveguide filled with a material whose €, = 2.25 has dimensions
a=2cmand b =1.4 cm. If the guide is to transmit 10.5-GHz signals, what possible
modes can be used for the transmission?

Solution:
Application of Eg. (8.106) with up, = ¢/\/& = 3 x 108/1/2.25 = 2 x 108 m/s,
gives:

fi10 =5 GHz (TE only)

for = 7.14 GHz (TE only)
f11 =8.72 GHz (TE or TM)
foo = 10 GHz (TE only)

fo1 =12.28 GHz (TE or TM)
f12 =15.1 GHz (TE or TM).

Hence, any one of the first four modes can be used to transmit 10.5-GHz signals.

Problem 8.38 For a rectangular waveguide operating in the TE;o mode, obtain
expressions for the surface charge density ps and surface current density Js on each
of the four walls of the guide.

Solution:
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For TEjq, the expressions for E and H are given by Eqg. (8.110) with m =1 and
n=0,

Ex=0,

£ — Mo g (TXY -1z
=" k2a sm(a)e ’
EJZ:O7

~ PriHy X\
o Bin ()
Hvy:O,

H, = Hocos (Z) e P2,
The applicable boundary conditions are given in Table 6-2. At the boundary between
a dielectric (medium 1) and a conductor (medium 2),
Ps=fp-Dy = €1/, Ey,
js — ﬁz X ﬁl,
where E; and H are the fields inside the guide, €, is the permittivity of the material
filling the guide, and A is the normal to the guide wall, pointing away from the wall

(inwardly). In view of the coordinate system defined for the guide, f, = X for side
wall at x =0, Ny = —X for wall at x = a, etc.

Ay
b
b
np
A
np A
2 — nH<—m 1
A
P
X <=
a 3 0

(a) Atside wall 1 at x =0, A, = X. Hence,
pS == Sls\('yEy|X:0 = O
Js = X x (XHy + 2Hy)|x=0
= _yﬁz‘x:o
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(b) At side wall 2 at x =a, fip = —X. Hence,

ps=0
Js = §Hoe P2,

(c) At bottom surface aty =0, i, =¥. Hence,

Ps=¢€1Y-YEyly-0

kZa
Js =¥ x (XHy+2H,)
— s ™\ . pm —~ipz
_Ho[xcos<a) ZJkgasm( )]e

~ LWEUTHp . E —ipz
=17 (5 )

Js=Ho [—)“(cos (%) +2j%sin (%)} e 1Pz,

Problem 8.39 A waveguide, with dimensions a =1 cm and b= 0.7 cm, is to be
used at 20 GHz. Determine the wave impedance for the dominant mode when

(a) the guide is empty, and

(b) the guide is filled with polyethylene (whose €, = 2.25).

Solution:
For the TE o mode,
Up, c

fi0= 2a T\/s—r .
When empty,
fro— 3x 108
2x 102
When filled with polyethylene, f1p = 10 GHz.
According to Eq. (8.111),

=15 GHz.

n No

e T (/T Va1 (/N2
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When empty,
Ze=—— __ _sn00
/1—(15/20)2
When filled,

377

T V225,/1_(10/20)2 200

Z1e

Problem 840 A narrow rectangular pulse superimposed on a carrier with a
frequency of 9.5 GHz was used to excite all possible modes in a hollow guide with
a=3cmand b =2.0 cm. If the guide is 100 m in length, how long will it take each
of the excited modes to arrive at the receiving end?

Solution:
Witha=3cm, b=2cm, and up, =c =3 x 108 m/s, application of Eq. (8.106)
leads to:

fio=5GHz
fop = 7.5 GHz
f11=9.01 GHz
fgo =10 GHz

Hence, the pulse with a 9.5-GHz carrier can excite the top three modes. Their group
velocities can be calculated with the help of Eq. (8.114),

Ug = c\/1— (fan/ )2,

0.85¢c = 2.55 x 108 m/s, for TEqg
Ug =4 0.61c = 1.84 x 108 m/s, for TEq
0.32c = 0.95 x 108 m/s, for TE11 and TMq1

which gives:

Travel time associated with these modes is:

0.39 us, for TEqg
d 100
T= T 0.54 us, for TEp

9 9 1.05 ps, for TE11 and TMys.
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Problem 8.41 If the zigzag angle 6’ is 42° for the TE1o mode, what would it be for
the TEyo mode?

Solution:
For TEjg, the derivation that started with Eq. (8.116) led to

RYAL
fo=tan"1 <§> . TEjo mode.
Had the derivation been for n = 2 (instead of n = 1), the x-dependence would have
involved a phase factor (2mx/a) (instead of (1x/a)). The sequence of steps would
have led to

4 (2T
ho = tan~1 <§> , TE,o mode.

Given that 8/, = 42°, it follows that
T tan42° = 0.90
Ba

Hence,
6’20 = tan*1(2 x 0.9) =60.9°.

Problem 8.42 Measurement of the TE1o; frequency response of an air-filled cubic
cavity revealed that its Q is 4802. If its volume is 64 mm?3, what material are its sides
made of?

Solution:
According to Eq. (8.121), the TE10;1 resonant frequency of a cubic cavity is given
by

3 % 108 3 % 108
X X — 53.0 GHz.

f101 =
1ot V2a V2 x4 %103
Its Q is given by

a
Q=55 = 4802
which gives s = 2.78 x 10~/ m. Applying
s__ 1
° V/Tf101H00c

and solving for o leads to
0c ~ 6.2 x 107 S/m.
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According to Appendix B, the material is silver.

Problem 8.43 A hollow cavity made of aluminum has dimensions a = 4 ¢m and
d = 3 cm. Calculate Q of the TE19; mode for

(@ b=2cm, and

(b) b=3cm.

Solution:
For the TE101 mode, f101 is independent of b,

1\%2 [/1\?

<a> +<a>

~ 3x10® 1 2+ 1 \?
2 4 %102 3x10-2

=6.25 GHz.

For aluminum with o = 3.5 x 107 S/m (Appendix B),

ds = _ 1.08 x 10 % m.

/Ttf101H00¢

(@Fora=4cm, b=2cmandd =3cm,

o 1 abd (a2 +d?)
O [a3(d +2b) +d3(a+ 2b)]
= 8367.

(b) Fora=4cm, b=3cm,and d =3 cm,

Q = 9850.

Problem 8.44 A 50-MHz right-hand circularly polarized plane wave with an
electric field modulus of 30 VV/m is normally incident in air upon a dielectric medium
with €, = 9 and occupying the region defined by z > 0.
(a) Write an expression for the electric field phasor of the incident wave, given that
the field is a positive maximumatz=0and t = 0.
(b) Calculate the reflection and transmission coefficients.
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(c) Write expressions for the electric field phasors of the reflected wave, the

transmitted wave, and the total field in the region z < 0.
(d) Determine the percentages of the incident average power reflected by the

boundary and transmitted into the second medium.
Solution:
@

w 2mx50x10% T
= = — rad/m,

¢ 3x108 3
ko = %)w/sr2 = g\@: Ttrad/m.

ki=

From (7.57), RHC wave traveling in 4z direction:

E' = ag(k+ e 12)e 14z — ao(x — j)e Ik
E'(z,t) = Re [E'ej“}
= Re [ao()zej(wtfklz) _|_yej(wtfklzfn/2))}

Xapcos(uwt —kiz) + Yagcos(wt — kiz —11/2)
= Xapcos(wt —ki1z) + yagsin(wt —kyz)
E'| = [a3cos?(ot — kiz) +agsin?(ot — kiz)] Y2 _ 35 =30 Vim.

Hence, _
E =30(xo— jyo)e ™3 (Vim).

(b)
1207
Ni=no=120m (Q), n2— \;‘f_ == =4 (@)
2
_ N2—n1 40m—120m 05
T N2+n1 40m+120m

1=14IN=1-05=0.5.
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©
E'=rag(x— j§)el?
= —0.5x30(% — j§)elk?
= —15(%— j§)el™3  (Vim).
E' = tag(X— j§)e Ik
=15(%— j§)e ™ (Vim).
E,—E +E
=30(X— jy)e ™3~ 15(% — j)el™/°
= 15(X — j§)[2e71™@/3 —eI™/3]  (V/m).
(d)
% of reflected power = 100 x |I'|? = 100 x (0.5) = 25%

120m

% of transmitted power — 100|T|2% — 100 % (05)% x = = 75%.
2

Problem 8.45 Consider a flat 5-mme-thick slab of glass with €, = 2.56.

(a) If a beam of green light (Ao = 0.52 pm) is normally incident upon one of the
sides of the slab, what percentage of the incident power is reflected back by the
glass?

(b) To eliminate reflections, it is desired to add a thin layer of antireflection coating
material on each side of the glass. If you are at liberty to specify the thickness
of the antireflection material as well as its relative permittivity, what would
these specifications be?

Solution:
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Air Glass Air
Green Light € =256
|

\4 5mm >\

Zi=n |—> Z,= Ny %ZLGo

(a) Representing the wave propagation process by an equivalent transmission line
model, the input impedance at the left-hand side of the air-glass interface is (from

2.63):
Z| + jZptan Bl
Zi=20 00— ——=
=0 (Zo+ jZ, tanpl

For the glass,

No No No

Z g = —— = e ——

0= Ne= g T V256 16

ZL=nNo

Bl—ziTl—ziTﬁl—Lxx/256><5x10*3—3076923n
TN XY T 052x10°6 ‘ B ‘

Subtracting the maximum possible multiples of 21, namely 307687, leaves a
remainder of
Bl =1.23mrad.

Hence,

7 — MNo (No+ j(no/1.6)tan1.23m
' 1.6 \ (No/1.6) + jnotan1.23m

B < 1.6+ jtan 1.23T[> 1201

1+ jl.6tan1.23m) 1.6
 /16+0.882\ 120m
“\1+j141 ) 16

= 249/-258 — (224.2 — 108.4) Q.
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With Z; now representing the input impedance of the glass, the reflection coefficient
at point A is:
r— Zi—nNo
Zi+nNo
2242 j108.4— 120t 187.34 /1446
~ 224.2—j108.4+120m  610.89/-10.2°

% of reflected power = |I|? x 100 = 9.4%.
(b) To avoid reflections, we can add a quarter-wave transformer on each side of the
glass.

= 0.3067/=1%48"

Antireflection Antireflection
coating coating
Air \ Glass / Air
€, = 2.56

ldl< 5mm »d]
This requires that d be:
A
d=-—+42nA, n=0,12,...

4

where A is the wavelength in that material; i.e., A = Ao/+/€rc, Where g is the relative
permittivity of the coating material. It is also required that n of the coating material
be:

NG = NoNg.
Thus 5
g _ Mo
€rc NG ’
or
Erc = \/E_r =V 256 == 16
Hence,
Ao  0.52pum
A= - —0.411 pum,
NG H
A
d= 7 +2nA

=(0.103+0.822n) (um), n=0,1,2,...
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Problem 8.46 A parallel-polarized plane wave is incident from air at an angle
0; = 30° onto a pair of dielectric layers as shown in the figure.

(a) Determine the angles of transmission 82, 83, and 6.

(b) Determine the lateral distance d.

5crtn AV 8“;2;5
-1L Iel e
L -
3 ur_l
SCT l 'B\i g =225
|
| )
|
: 16} Air
| |
e d—

Solution:
(a) Application of Snell’s law of refraction given by (8.31) leads to:

== —_— = N _— = -2
sin9, smel,/8r2 sin30°4 / 535 0

0, = 11.54°.
Similarly,
. . 8[’2 . ° 625
= — =5sin11.54°y/ —— =0.
sinB3 =sinBy, / & sin11.54°4/ 55 0.33
03 =19.48°.
And,
. . / . 2.2
sinB4 = sinB3 £r3 =1sin19.48° —5 =05
€r4 1
04 = 30°.

As expected, the exit ray back into air will be at the same angle as 6;.
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(b)

d = (5cm)tanB2 + (5 cm)tan 63
= 5tan11.54° 4+ 5tan19.48° = 2.79 cm.

Problem 8.47 A plane wave in air with

E = (X2—94—26)e />+3  (v/m)

is incident upon the planar surface of a dielectric material, with €, = 2.25, occupying
the half-space z > 0. Determine

(&) The incidence angle 6;.

(b) The frequgr;cy of the wave.

(c) The field E of the reflected wave.

(d) The field Et of the wave transmitted into the dielectric medium.

(e) The average power density carried by the wave into the dielectric medium.

Solution:

(a) From the exponential of the given expression, it is clear that the wave direction
of travel is in the x-z plane. By comparison with the expressions in (8.48a) for
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perpendicular polarization or (8.65a) for parallel polarization, both of which have
the same phase factor, we conclude that:

Hence,

Also,

(b)

kising; = 2,
kicos6; = 3.

ki =v22+32=3.6 (rad/m)

0 =tan"1(2/3) = 33.7°.

ko =ki\/€r, =3.6V2.25=5.4 (rad/m)

1
= i _l i H —_— pr— °
0, =sin lsm i1/ 2'25] 21.7°.

27tf
L
1 C
8
g ki 36x3x107 o) ihz.
21T 21T

(c) In order to determine the electric field of the reflected wave, we first have to
determine the polarization of the wave. The vector argument in the given expression

for E indicates that the incident wave is a mixture of parallel and perpendicular
polarization components. Perpendicular polarization has a §-component only (see
8.46a), whereas parallel polarization has only X and Z components (see 8.65a). Hence,
we shall decompose the incident wave accordingly:

with

E —E +E

E| = —§4e 1@+ (v/m)
E| = (k2—26)e 1>+ (v/m)

From the above expressions, we deduce:

Elo=—4V/m

Eo= V22462 =6.32 V/m.
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Next, we calculate I" and T for each of the two polarizations:

cosB; — 1/ (g2/€1) — sin6;
L pu—

cosB; + 1/ (g2/€1) — sin 6;
Using 6; = 33.7° and €/€1 = 2.25/1 = 2.25 leads to:

N =-0.25
T, =1+T, =0.75.
Similarly,

—(€2/€1)€080; + 1/ (€2/€1) — Sin?B;
P Tleaeeostit eofe) —sinte
(€2/€1)C0S0; + 1/ (€2/€1) — Sin? 6;
C0s B €0s33.7°
=(1+T =(1-0.15)———— =0.76.
T (1+ H)coset (1-0 5)00321.70 0.76
The electric fields of the reflected and transmitted waves for the two polarizations are
given by (8.49a), (8.49c), (8.65c), and (8.65e):

=r &l a—jki(xsinBr—zcos
E, =JE[ e llabn®r "

El —JE! e~ jka(xSinB¢+2zcos6t)
Elr‘ = ()’i cos O, + Zsin er)Eﬁoe—jkl(XsinBr—zcosar)
ET‘ = (Xcos8; — 2sin Gt)Eﬁoe*“@(xs‘”eﬁzcoset)
Based on our earlier calculations:
6, =6, =33.7°
0, =21.7°
ki = 3.6 rad/m, ko = 5.4 rad/m,
E'o=T.E\ = (—0.25) x (—4) =1 V/m.
E'ly=T.E q=0.75x (—4) = -3 V/m.
Efo =T Ejo = (—0.15) x 6.32 = —0.95 V/m.
Ejo=T|E|o=0.76 x6.32 = 4.8 V/m.
Using the above values, we have:
= (=%0.79+§ —20.53)e />3 (v/m).
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(d)
~t ~t ~t
E =E, +E |
— (X4.46 —§3—21.78)e (252 (v/m).
©
St — |E(t)|2
2n2
IEL[2 = (4.46)2 + 32 1 (1.78)% = 32.06
No 377
= =2 —2513Q
N2 & 15 51.3
. 3206

_ v 2
= 5 oe15 =638 (MW/m?),

CHAPTER S8
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Chapter 9: Radiation and Antennas

Lesson #61
Chapter — Section: 9-1
Topics: Retarded potential, short dipole

Highlights:

e Radiation by short dipole
e Far-field distance

Special Illustrations:

e Exercise 9.1
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Lesson #62
Chapter — Section: 9-2
Topics: Radiation characteristics

Highlights:

e Antenna pattern
e Antenna directivity
e Antenna gain

Special Illustrations:

e Example 9-2
e Example 9-3



Lesson #63
Chapter — Section: 9-3 and 9-4

Topics: Half-wave dipole

Highlights:
e Radiation pattern
e Directivity
e Radiation resistance

Special Illustrations:

e (CD-ROM Module 9.1
e (CD-ROM Demo 9.1

Module 9.1: Polarization and Orientation

407

Given: A cellular phone base station with a vertical dipole antenna at the top, and

a cellular phone user nearby.

Q1. Imagine someone in his backyard
pool, talking on the phone and
sunning himself. His cell phone is
oriented such that the antenna is
horizontal, as shown in the
figure. Is his reception:

i
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Lesson #64
Chapter — Section: 9-5, 9-6

Topics: Effective area, Friis formula

Highlights:
e Receiving aperture of an antenna

e Relation of aperture to directivity
e Friis formula

Special Illustrations:

e Example 9-5
e Demo9.2

Demo 9.2: Paraboloc Dish Antenna

A parabolic dish fed by a dipole or a small horn placed at the dish's focal point is
an example of an aperture antenna. If the aperture is illuminated uniformly (or
approximately so), its radiation pattern takes the form of a sinc function, as
discussed in Section 9-8. This demo illustrates the dependence of the pattern on
the size of the antenna, expressed in terms of d/x.

Humination pattern MR Display the patterns for the
following antenna sizes:
“Display ) AIX=2.
Radiating antenna ‘Display) AIA=4.
(Display | d/»=8.
( é I "Display | dix=16.
>-| "Display | d/x=32.

d/A=2
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Lessons #65 and 66
Chapter — Sections: 9-7 and 9-8
Topics: Aperture antennas

Highlights:

e Aperture illumination
e Rectangular aperture
e Beamwidth and directivity

Special Illustrations:
e (CD-ROM Demo 9.3

- L
d
- [ ]
d
- . | . X
d !
- ¢ B /
d B //‘ /
- . .

| A

d=X e
o

(b) Array Pattern F, (#)

\
z ™10 dB % 0 dB
20 dB}- -

(c) Antenna Array Pattern F(#) = E.(B)F, (@)
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Lessons #67—-69
Chapter — Sections: 9-9 to 9-11
Topics: Antenna arrays

Highlights:

e Array factor
e Multiplication principle
e Electronic scanning

Special Illustrations:
e (CD-ROM Demo 9.4

The array pattern of an equally-spaced linear array can be steered in direction by applying
linear phase across the array as shown. Note that & = kd cos 0, with 6 o measured from

the +z-axis.

e

0dB |-

-10 dB

-20 dB

[Febtdods

d=x/2 8, = 60° § = 1.57 radians

Display the array pattern
for the following values
of the beam center angle:

0, = 90° (broadside)

0,=60°

(30° above x-axis)
0,=30°

(60° above x-axis)
0,=120°

(30° below x-axis)
0,=150°

(60° below x-axis)
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Chapter 9

Sections 9-1 and 9-2: Short Dipole and Antenna Radiation Characteris-
tics

Problem 9.1 A center-fed Hertzian dipole is excited by a current Io = 20 A. If the
dipole is A/50 in length, determine the maximum radiated power density at a distance
of 1 km.

Solution: From Eg. (9.14), the maximum power density radiated by a Hertzian
dipole is given by
_ nok?1Z12 377 x (21YA)? x 202 x (A/50)°
- MRz 3212(103)?
=76x10°W/m?=7.6 (UW/m?).

So

Problem 9.2 A 1-m-long dipole is excited by a 1-MHz current with an amplitude
of 12 A. What is the average power density radiated by the dipole at a distance of
5 km in a direction that is 45° from the dipole axis?

Solution: At 1 MHz, A =c¢/f = 3 x 108/10% = 300 m. Hence I/A = 1/300, and
therefore the antenna is a Hertzian dipole. From Eq. (9.12),

Nok2I212\ .
120t (21m/300)2 x 122 x 12

) o 9 >
3212 x (5 x 103)2 sin“45° =1.51x 10 (W/im#).

Problem 9.3 Determine the (a) direction of maximum radiation, (b) directivity, (c)
beam solid angle, and (d) half-power beamwidth in the x—z plane for an antenna
whose normalized radiation intensity is given by

|1, for0<0<60°and 0 < < 21,
(6.9 = { 0, elsewhere.

Suggestion: Sketch the pattern prior to calculating the desired quantities.

Solution: The direction of maximum radiation is a circular cone 120° wide centered
around the +2Z-axis. From Eq. (9.23),
41t 41t 41t _ 2 _4-6dB,

D= = o = ©
JlanFdQ om0 singdedey  2m(—cos®)|®  —z+1
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4Ttsr - ATusr
sz—D = =10 (SI).

The half power beamwidth is 3 = 120°.

Problem 9.4 Repeat Problem 9.3 for an antenna with
sinBcos?q, for0<O<mand —T/2< @< T/2,
F(6,¢) =
0, elsewhere.

Solution: The direction of maximum radiation is the +X-axis (where 6 = 11/2 and
¢@=0). From Eq. (9.23),

4Tt
D=—_
[ 4F dQ
_ an
J™2, [3'sin®6cos2 gsin©dBdg
_ 41
JT2, cos2 @i 3'sin®0.d@
_ 41
ffﬁ§2%(1+cosch) dcpf_ll(l_xz) dx
3 (o+3sin20) |7, (x—3/3)|,  zTH4/3)
4mtsr 4misr 2
QP_T_T_gn (sr).

In the x-z plane, @ = 0 and the half power beamwidth is 90°, since sin?(45°) =
sin?(135°) = 3.

Problem 9.5 A 2-m-long center-fed dipole antenna operates in the AM broadcast
band at 1 MHz. The dipole is made of copper wire with a radius of 1 mm.
(a) Determine the radiation efficiency of the antenna.

(b) What is the antenna gain in dB?
(c) What antenna current is required so that the antenna would radiate 80 W, and

how much power will the generator have to supply to the antenna?

Solution:
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(a) Following Example 9-3, A = ¢/f = (3 x 108 m/s)/(10° Hz) = 300 m. As
I/A = (2m)/(300 m) = 6.7 x 103, this antenna is a short (Hertzian) dipole. Thus,
from respectively Egs. (9.35), (9.32), and (9.31),

Rrad = zaor@(%)2 — 80M2(6.7x 10°3)° =35 (mQ),

I [y 2m (106 Hz)(411x 10—7 H/m)
Rioss = =—— = =83 (MQ
== 2mV o,  2m(10-3m) \/ 5.8 x 107 S/m (M),
R 35 mQ
g m — 29.7%.

Rrad + Rioss 35 MQ + 83 mQ

(b) From Example 9-2, a Hertzian dipole has a directivity of 1.5. The gain, from
Eg. (9.29),isG=&D =0.297 x 1.5 = 0.44 = —3.5 dB.
(c) From Eq. (9.30a),

2P 2(80 W)
lo=+/ _ —67.6 A
0 Rrad 35 mQ

Pog 80W
Po=—d 220 _ 269 W.
YT T 0.297

and from Eq. (9.31),

Problem 9.6 Repeat Problem 9.5 for a 20-cm-long antenna operating at 5 MHz.

Solution:

(@) At 5 MHz, A =¢/f =3 x108/(5x 108) =60m. As I/A = 0.2/60 =
3.33 x 1073, the antenna length satisfies the condition of a short dipole. From
Egs. (9.35), (9.32), and (9.31),

2
Rrad = 80T G) —80m x (3.33x107%)2=8.76 (MQ),

I mfuc 0.2 Tix 5% 106 x 411 10~7
Rinee = —— = =1857 (mQ
" omV o, 2mx 103\/ 5.8 x 107 (M)
R 8.76
§ red —=0.32, or 32%.

" Rig+Rioss  8.76+ 18.57

(b) For Hertzian dipole, D= 1.5,and G =&D = 0.32 x 1.5 = 0.48 = —3.2dB.
(c) From Eq. (9.30a),

2Prad \/ 2 % 80
I — _ —135.2 A.
0 \/ Rrad 8.76 x 103
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Problem 9.7 An antenna with a pattern solid angle of 1.5 (sr) radiates 60 W of
power. At a range of 1 km, what is the maximum power density radiated by the
antenna?

Solution: From Eq. (9.23), D = 411/Qj, and from Eq. (9.24), D = 4TR?Spax/Prad.
Combining these two equations gives

s _ Pa _ 60
M T QuR2 T 1.5 (108)2

=4x10"° (W/m?).

Problem 9.8 An antenna with a radiation efficiency of 90% has a directivity of
7.0 dB. What is its gain in dB?

Solution: D = 7.0 dB corresponds to D = 5.0.
G=¢D=0.9%x5.0=4.5=6.54 dB.
Alternatively,

G (dB) = & (dB) + D (dB) = 1010g0.9+ 7.0 = —0.46 4 7.0 = 6.54 dB.

Problem 9.9 The radiation pattern of a circular parabolic-reflector antenna consists
of a circular major lobe with a half-power beamwidth of 3° and a few minor lobes.
Ignoring the minor lobes, obtain an estimate for the antenna directivity in dB.

Solution: A circular lobe means that 3y, = By, = 3° = 0.052 rad. Using Eq. (9.26),

we have am am
_ _ = 4.58 x 10°.
Bx.By:  (0.052)2

D

In dB,
D(dB) = 10log D = 10log(4.58 x 103) = 36.61 dB.

Problem 9.10 The normalized radiation intensity of a certain antenna is given by
F(8) =exp(—200%) for0<@<m,

where 8 is in radians. Determine:
(a) the half-power beamwidth,
(b) the pattern solid angle,
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Figure P9.10: F(8) versus 6.

(c) the antenna directivity.

Solution:
(@) Since F(0) is independent of ¢, the beam is symmetrical about z= 0. Upon
setting F(6) = 0.5, we have
F(8) = exp(—208?) = 0.5,
In[exp(—206%)] = In(0.5),

200% = —0.693,
1/2
6=+ (%) = 40.186 radians.

Hence, B =2 x 0.186 = 0.372 radians = 21.31°.



416 CHAPTER9
(b) By Eq. (9.21),
sz/ F(6)sinBdad

4n
2m  pm

_ / exp(—2062)sin0dBde
©=0/6=0

Tt
:2n/ exp(—2062)sin6de.

0

Numerical evaluation yields

Qp=0.156 sr.
© 41 41
D=—=—— =280.55.
Qp, 0.156

Sections 9-3 and 9-4: Dipole Antennas

Problem 9.11 Repeat Problem 9.5 for a 1-m-long half-wave dipole that operates in
the FM/TV broadcast band at 150 MHz.

Solution:
(a) Following Example 9-3,

A=c/f=(3x10%m/s)/(150 x 10° Hz) =2 m.

Asl/A=(1m)/(2m)= % this antenna is a half-wave dipole. Thus, from Eq. (9.48),
(9.32), and (9.31),

Raa=73Q,
R — I [y 1m (150 x 10° Hz)(41tx 10~7 H/m) 050
== omV o,  2m103m) 5.8 x 107 S/m T
R 730
f=_ = 99.3%.

Rad+ Rios  73Q+05Q

(b) From Eq. (9.47), a half-wave dipole has a directivity of 1.64. The gain, from
Eq. (9.29),isG=¢D =0.993x 1.64 = 1.63 = 2.1 dB.
(c) From Eq. (9.30a),

2Pra 2(80 W)
o=/ = —1.48A
0 Rrad 730 ’
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and from Eq. (9.31),

Pog 80W
o= _ 22 _g0.4W.
YT T 0.993

Problem 9.12 Assuming the loss resistance of a half-wave dipole antenna to be
negligibly small and ignoring the reactance component of its antenna impedance,
calculate the standing wave ratio on a 50-Q transmission line connected to the dipole
antenna.

Solution: According to Eq. (9.48), a half wave dipole has a radiation resistance of
73 Q. To the transmission line, this behaves as a load, so the reflection coefficient is

_ Read—2Zo  73Q-50Q
C Ra+Zo 73Q+50Q

and the standing wave ratio is

_14r| 140187
-~ 1-|f] 1-0.187

—0.187,

S 1.46.

Problem 9.13  For the short dipole with length | such that | < A, instead of treating
the current 1(z) as constant along the dipole, as was done in Section 9-1, a more
realistic approximation that insures that the current goes to zero at the ends is to

describe 1(z) by the triangular function
T2) = lo(1—2z2/1), for0<z<1/2,
T lo(1+22/1),  for —1/2<2z<0,

as shown in Fig. 9-36 (P9.13). Use this current distribution to determine (a) the far-
field E(R,8,9), (b) the power density S(R,6,q), (c) the directivity D, and (d) the
radiation resistance R;yg.

Solution:
(a) When the current along the dipole was assumed to be constant and equal to g,
the vector potential was given by Eq. (9.3) as:

~ Ho (e iR /I /2
AR)=27— lpdz.
R) 4n( R ) Jp?®
If the triangular current function is assumed instead, then lg in the above expression
should be replaced with the given expression. Hence,

~ . Ho (e IR 2 (. 2 0 2z L Holol [e IR
A_Z‘m( R )IO[[J 1 OIZ-I_/—l/z ) =g (v )
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Figure P9.13: Triangular current distribution on a short dipole (Problem 9.13).

which is half that obtained for the constant-current case given by Eq. (9.3). Hence,
the expression given by (9.9a) need only be modified by the factor of 1/2:

- A ~ —JjkR
E:BES:GJIOIKHO (e )sine.

81t R

(b) The corresponding power density is

Eg|? nok21212\
S(R,6) = |2n|0 = (1281120R2 sin?0.

(c) The power density is 4 times smaller than that for the constant current case, but
the reduction is true for all directions. Hence, D remains unchanged at 1.5.

(d) Since S(R,0) is 4 times smaller, the total radiated power Py is 4-times
smaller. Consequently, Rygg = 2Prad/lg is 4 times smaller than the expression given
by Eq. (9.35); that is,

Rrag = 2012(1/A)2  (Q).

Problem 9.14  For a dipole antenna of length | = 3\ /2, (a) determine the directions
of maximum radiation, (b) obtain an expression for Smax, and (c) generate a plot
of the normalized radiation pattern F(8). Compare your pattern with that shown in
Fig. 9.17(c).
Solution:

(a) From Eqg. (9.56), S(8) for an arbitrary length dipole is given by

1513 | cos (R cosB) —cos () ?
- TR? sin@

S(8)
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For 1 =3A/2, S(8) becomes

1512 | cos (¥ cos6) ?
S9)= TIR? sin® )

Solving for the directions of maximum radiation numerically yields two maximum
directions of radiation given by
emaxl = 42.60, emaX2 - 137.40

(b) From the numerical results, it was found that S(8) = 1513 /(TR?)(1.96) at Bax-
Thus,

1512

(c) The normalized radiation pattern is given by Eq. (9.13) as
F(B)=—=
Using the expression for S(8) from part (a) with the value of Sya found in part (b),

F(0) 1 [COS(%T[COSG)IZ'

- 1.96 sin@

The normalized radiation pattern is shown in Fig. P9.14, which is identical to that
shown in Fig. 9.17(c).
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Figure P9.14: Radiation pattern of dipole of length 3A /2.

Problem 9.15 Repeat parts (a)—(c) of Problem 9.14 for a dipole of length | = 3A /4.

Solution:

(@) For I =3\A/4, Eq. (9.56) becomes

S(6)

1512

= g2

1518

[ cos (3 cosB) —cos (3) 2
sin@

[cos (3 cosB) + L1

1
V2

= Re

sin®

Solving for the directions of maximum radiation numerically yields

emaxl — 900 )

emaxz — 2700.

(b) From the numerical results, it was found that S(8) = 1513/(TR?)(2.91) at Bmax-
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Thus,

1512
Smax = Wg (2.91).

Figure P9.15: Radiation pattern of dipole of length | = 3A /4.

(c) The normalized radiation pattern is given by Eqg. (9.13) as

ro)~ 50
Smax

Using the expression for S(8) from part (a) with the value of Sya found in part (b),

2

F ()

3
1 feos (Fcos8) + 7
291

sin@

The normalized radiation pattern is shown in Fig. P9.15.

Problem 9.16 Repeat parts (a)—(c) of Problem 9.14 for a dipole of length | = A.
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Solution: For I = A, Eq. (9.56) becomes

S(8)

1513 [cos (1icos ) — cos () 2_ 1512 [cos(mcos8) + 1 2
- TR? sin® - TR? sin® ’

Solving for the directions of maximum radiation numerically yields

X
A

0
%,

Figure P9.16: Radiation pattern of dipole of length | = A.

emaxl — 900, emaX2 — 2700.

(b) From the numerical results, it was found that S(6) = 1512/(TiR?)(4) at Bmax-
Thus,

S
max — T[R2 .
(c) The normalized radiation pattern is given by Eqg. (9.13), as
F@) - 50
Smax

Using the expression for S(8) from part (a) with the value of Sy found in part (b),

1

2
F(6) = : [cos(ncose)+1] .

sin@
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The normalized radiation pattern is shown in Fig. P9.16.

Problem 9.17 A car antenna is a vertical monopole over a conducting surface.
Repeat Problem 9.5 for a 1-m-long car antenna operating at 1 MHz. The antenna
wire is made of aluminum with pc = o and o = 3.5 x 107 S/m, and its diameter is
1lcm.

Solution:

(a) Following Example 9-3, A = ¢/f = (3 x 108 m/s)/(10% Hz) = 300 m. As
/A =2x(1m)/(300 m) = 0.0067, this antenna is a short (Hertzian) monopole.
From Section 9-3.3, the radiation resistance of a monopole is half that for a
corresponding dipole. Thus,

Rrag = %SOTIZ(%)Z — 4017(0.0067)%2 = 17.7 (MQ),

I /mfue 1m (106 Hz) (411% 10~7 H/m)
o=V oe  m10-2m) \/ 3.5 % 107 S/m M2
£ Rrad 17.7 mQ _ 62%.

Rred + Rios  17.7 mQ +10.7 mQ

(b) From Example 9-2, a Hertzian dipole has a directivity of 1.5. The gain, from
Eq. (9.29),isG=¢D=0.62x 1.5=0.93=-0.3dB.

(c) From Eq. (9.30a),
_ [2Pag  [2(80W)
o=\Ry = Viz7zma =2

p=—d_ 2 1292 W.
T E T 062

and from Eq. (9.31),

Sections 9-5 and 9-6: Effective Area and Friis Formula

Problem 9.18 Determine the effective area of a half-wave dipole antenna at
100 MHz, and compare it to its physical cross section if the wire diameter is 2 cm.

Solution: At f =100 MHz, A =c¢/f = (3 x 108 m/s) /(100 x 10® Hz) =3 m. From
Eqg. (9.47), a half wave dipole has a directivity of D = 1.64. From Eq. (9.64),
e=A2D/4Tt= (3 m)% x 1.64/4T=1.17 m2.
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The physical cross section is: Ap = Id = 3Ad = (3 m)(2x 1072 m) = 0.03 m?.
Hence, Ag/Ap = 39.

Problem 9.19 A 3-GHz line-of-sight microwave communication link consists of
two lossless parabolic dish antennas, each 1 m in diameter. If the receive antenna
requires 10 nW of receive power for good reception and the distance between the
antennas is 40 km, how much power should be transmitted?

Solution: At f =3 GHz, A =c¢/f = (3 x 108 m/s)/(3 x 10° Hz) = 0.10 m. Solving
the Friis transmission formula (Eg. (9.75)) for the transmitted power:
A?R?
P =Precse——
TR AN
¢ (0.100 m)2(40 x 103 m)?

. — - =25.9x 1072 W =259 mW.
1x1x (%1 m)?)(Z(1m)?)

=10"

Problem 9.20 A half-wave dipole TV broadcast antenna transmits 1 kW at 50 MHz.
What is the power received by a home television antenna with 3-dB gain if located at
a distance of 30 km?

Solution: At f =50 MHz, A =c/f = (3 x 108 m/s) /(50 x 10° Hz) = 6 m, for which
a half wave dipole, or larger antenna, is very reasonable to construct. Assuming the
TV transmitter to have a vertical half wave dipole, its gain in the direction of the
home would be G; = 1.64. The home antenna has a gain of G; = 3 dB = 2. From the
Friis transmission formula (Eq. (9.75)):

MGG _ 3 (6 m)? x 1.64 x 2

— = 5 5 =8.3x107" W.
(4m)“R2 (41)(30 x 103 m)

rec:Pt

Problem 9.21 A 150-MHz communication link consists of two vertical half-wave
dipole antennas separated by 2 km. The antennas are lossless, the signal occupies a
bandwidth of 3 MHz, the system noise temperature of the receiver is 600 K, and the
desired signal-to-noise ratio is 17 dB. What transmitter power is required?

Solution: From Eq. (9.77), the receiver noise power is
Pn = KTgysB = 1.38 x 1072* x 600 x 3 x 10° = 2.48 x 10~ W.
For a signal to noise ratio S, = 17 dB = 50, the received power must be at least

Prec = SnPn=50(2.48 x 1071 W) =1.24 x 1072 w.
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Since the two antennas are half-wave dipoles, Eq. (9.47) states D; = D, = 1.64, and
since the antennas are both lossless, G; = D; and G; = D,. Since the operating
frequency is f =150 MHz, A =c¢/f = (3 x 108 m/s) /(150 x 108 Hz) =2 m. Solving
the Friis transmission formula (Eqg. (9.75)) for the transmitted power:

(4m2(2x103m)®
(2 m)?(1.64)(1.64)

(4m)%R2

L —124x10712
22G, Gy %

(UW).

F)t = F)rec

Problem 9.22 Consider the communication system shown in Fig. 9-37 (P9.22),
with all components properly matched. If P, =10 W and f = 6 GHz:
(a) what is the power density at the receiving antenna (assuming proper alignment
of antennas)?
(b) What is the received power?
(c) If Tyys= 1,000 K and the receiver bandwidth is 20 MHz, what is the signal to
noise ratio in dB?

G;=20dB G, =23dB
AP, | 20 km | YPrec

[ [~
Figure P9.22: Communication system of Problem 9.22.

Solution:
(@) Gt =20dB =100, G, =23dB =200, and A =c/f =5 cm. From Eq. (9.72),

P 10% x 10

_ _ _ -7 2
5= OmRe = amx 2 x 102 — 210 (WM.
(b)
A\ 2 5x10°2 \?
Prec = PG{G —10x100x200x [ ——"" ) =7.92x1079W.
rec = Pt r(4nR> Shnttbate (4n><2><104> %

(©
Pn=KTgsB=1.38x10"2x103x2x 10" =2.76 x 1072 W,
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Prec  7.92x107°

— 4 _
P—n_m_lB?xlO =44.6 dB.

Sn:

Sections 9-7 and 9-8: Radiation by Apertures

Problem 9.23 A uniformly illuminated aperture is of length Iy, = 20A. Determine
the beamwidth between first nulls in the x-z plane.

Solution: The radiation intensity of a uniformly illuminated antenna is given by Eq.
(9.90):
F (8) = sinc?(1dysinB/A) = sinc?(my),

with
y=IxsinB/A.

For I, = 20A,
y=20sin®.

The first zero of the sinc function occurs when y = =1, as shown in Fig. 9-23. Hence,

1=20sin6,

1
O=sint({ =) =287
sin (20) ,

Bnu” — 26 — 5.730.

or

and

Problem 9.24 The 10-dB beamwidth is the beam size between the angles at which
F(©) is 10 dB below its peak value. Determine the 10-dB beamwidth in the x—z plane
for a uniformly illuminated aperture with length I, = 10A.

Solution: For a uniformly illuminated antenna of length I, = 10A Eq. (9.90) gives
F (8) = sinc?(tdysinB/A) = sinc?(107isin 8).

The peak value of F(0) is 1, and the 10-dB level below the peak corresponds to when
F(6) =0.1 (because 10log0.1 = —10 dB). Hence, we set F (8) = 0.1 and solve for 6:

0.1 = sinc?(107isin 8).
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From tabulated values of the sinc function, it follows that the solution of this equation
is
107t5in 8 = 2.319

or
0~ 4.23°.

Hence, the 10-dB beamwidth is

B~ 20 =8.46°,

Problem 9.25 A uniformly illuminated rectangular aperture situated in the x-—y
plane is 2 m high (along x) and 1 m wide (along y). If f = 10 GHz, determine
(a) the beamwidths of the radiation pattern in the elevation plane (x-z plane) and
the azimuth plane (y-z plane), and
(b) the antenna directivity D in dB.

Solution: From Egs. (9.94a), (9.94b), and (9.96),

A B 0.88 x 3 x 1072

B = 0.88; = ————— =1382x 10~2 rad = 0.75°,
X
-2
By = 0.88|A - w —2.64%10~2rad = 1.51°,
y
D= 4T _ am — 3.61 x 10* — 45.6 dB.

~ BaBy  (1.32x10 2)(2.64 x 10 2)

Problem 9.26 An antenna with a circular aperture has a circular beam with a
beamwidth of 3°at 20 GHz.
(a) What is the antenna directivity in dB?
(b) If the antenna area is doubled, what would be the new directivity and new
beamwidth?
(c) If the aperture is kept the same as in (a), but the frequency is doubled to 40
GHz, what would the directivity and beamwidth become then?

Solution:
(a) From Eg. (9.96),

4 4
oM " 450 x 103 = 36.6 dB.

TR (3° x1/180°)°
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(b) If area is doubled, it means the diameter is increased by v/2, and therefore the
beamwidth decreases by v/2 to
3° .
B 7 2.2°.
The directivity increases by a factor of 2, or 3 dB, to D = 36.6 4+ 3 = 39.6 dB.
(c) If f is doubled, A becomes half as long, which means that the diameter to
wavelength ratio is twice as large. Consequently, the beamwidth is half as wide:

30
=_-—=15°
B 2 3

and D is four times as large, or 6 dB greater, D = 36.6 + 6 = 42.6 dB.

Problem 9.27 A 94-GHz automobile collision-avoidance radar uses a rectangular-
aperture antenna placed above the car’s bumper. If the antenna is 1 m in length and
10 cm in height,

(a) what are its elevation and azimuth beamwidths?

(b) what is the horizontal extent of the beam at a distance of 300 m?

Solution:

(@) At 94 GHz, A = 3 x 108/(94 x 10%) = 3.2 mm.  The elevation
beamwidth is Be = A/0.1 m = 3.2 x 10~2rad = 1.8°. The azimuth beamwidth is
Ba=A/1m=3.2x10"3rad =0.18°.

(b) At a distance of 300 m, the horizontal extent of the beam is

Ay = BaR =3.2x 1073 x 300 = 0.96 m.

Problem 9.28 A microwave telescope consisting of a very sensitive receiver
connected to a 100-m parabolic-dish antenna is used to measure the energy radiated
by astronomical objects at 20 GHz. If the antenna beam is directed toward the moon
and the moon extends over a planar angle of 0.5° from Earth, what fraction of the
moon’s cross section will be occupied by the beam?

Solution:
8 A 15x1072
ot d - 100

For the moon, Bmeon = 0.5° x T1/180° = 8.73 x 10 3rad. Fraction of the moon’s
cross section occupied by the beam is

2 _4 2
(BBant ) - (%) =0.3x1073, or 0.03%.
moon .

=1.5x 10 *rad.
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0.5°

Figure P9.28: Antenna beam viewing the moon.

Sections 9-9 to 9-11: Antenna Arrays

Problem 9.29 A two-element array consisting of two isotropic antennas separated
by a distance d along the z-axis is placed in a coordinate system whose z-axis points
eastward and whose x-axis points toward the zenith. If ag and a; are the amplitudes
of the excitations of the antennas at z = 0 and at z = d respectively, and if d is the
phase of the excitation of the antenna at z = d relative to that of the other antenna,
find the array factor and plot the pattern in the x—z plane for

(@ ap=a1=1, d=T1/4,andd =A/2,

(b) ag=1, a1 =2, d=0,andd =A,

(c) ag=a1=1, d=—-m/2,andd =A/2,

(d) ap=ai, a1 =2, d=m/4,andd =A/2, and

(e) ag=a1, a1 =2, d=m/2, and d = A/4.

Solution:
(a) Employing Eq. (9.110),

1 2
Fa(e) — ‘;aiejwiejlkdcose
i=

_ |1+ el(2TN)(/2) cos04y4) 2

— |14 ed(M0SO+TY4)|12 _ 40052 (g(4cose+ ).

A plot of this array factor pattern is shown in Fig. P9.29(a).
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Figure P9.29: (a) Array factor in the elevation plane for Problem 9.29(a).

(b) Employing Eq. (9.110),

2
1 . ..
Fa(e) — ‘;aiejwiejlkdcose
i=

= |14 2el((2TYMAC0S8+0)|2 _ |1 | 2e2MC0S8|2 — 5 4 4¢os (2mC0S B).

A plot of this array factor pattern is shown in Fig. P9.29(b).
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Figure P9.29: (b) Array factor in the elevation plane for Problem 9.29(b).

(c) Employing Eq. (9.110), and settingagp=a; =1, ¢y =0, Py =0= —1/2 and
d =A/2, we have
1 2
Fa(e) _ %aiejwiejikdcose

|14 e im2ei@mA0/2) 56|

_ 1_|_ej(ncose—n/2)

— 4c0s? (gcose— ;) .

‘2

A plot of the array factor is shown in Fig. P9.29(c).
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Figure P9.29: (c) Array factor in the elevation plane for Problem 9.29(c).

(d) Employing Eg. (9.110), and setting ap =1, a1 =2, Wo =0, Y1 =0 =T11/4,
and d = A/2, we have

1 2

Fa(e) — _Z}aiejwi ejikd cos

_ |14 2eimagi2mA)(A/2)cose|?

_ 1_|_2ej(ncose+r[/4)

‘ 2

54 4cos (those+ TZT) .

A plot of the array factor is shown in Fig. P9.29(d).
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Figure P9.29: (d) Array factor in the elevation plane for Problem 9.29(d).

(e) Employing Eg. (9.110), and setting ag =1, a1 =2, Yo =0, Y3 =0=T17/2,
and d = A\ /4, we have

1 2

Fa(0) = .%aiejll-'iejikd cosB

_ |14 2eim2gi@mA A/ 4)cos8|?

_ 1_|_Zej(rrcose+n)/2

‘2
=544cos (gcose—l-g) =5—4sin (gcose) .

A plot of the array factor is shown in Fig. P9.29(e).
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Figure P9.29: (e) Array factor in the elevation plane for Problem 9.29(e).

Problem 9.30 If the antennas in part (a) of Problem 9.29 are parallel vertical
Hertzian dipoles with axes along the x-direction, determine the normalized radiation
intensity in the x-z plane and plot it.

Figure P9.30: (a) Two vertical dipoles of Problem 9.30.
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Figure P9.30: (b) Pattern factor in the elevation plane of the array in Problem 9.30(a).

Solution: The power density radiated by a Hertzian dipole is given from Eqg. (9.12)
by Se(8') = Sosin?®', where ©' is the angle measured from the dipole axis, which in
the present case is the x-axis (Fig. P9.30).

Hence, @ = 1/2 — 6 and Se(B) = Sosin?(31—6) = Spcos?6.  Then, from
Eqg. (9.108), the total power density is the product of the element pattern and the
array factor. From part (a) of the previous problem:

S(8) = Se(B)Fa(B) = 4Spcos?Bcos? (g(4cos 0+ 1)) :
This function has a maximum value of 3.52Sq and it occurs at Oa = £135.5°. The

maximum must be found by trial and error. A plot of the normalized array antenna
pattern is shown in Fig. P9.30.
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Problem 9.31 Consider the two-element dipole array of Fig. 9.29(a). If the two
dipoles are excited with identical feeding coefficients (ag =a; =1 and Yo = Y1 =0),
choose (d/A) such that the array factor has a maximum at 6 = 45°.

Solution: Withapg=a;=1and g = 1 =0,
_ j(2rd/N)cos82 __ 2 md
Fa(B) =|1+e |©=4cos Tcose .

Fa(6) is @ maximum when the argument of the cosine function is zero or a multiple
of Tt Hence, for a maximum at 6 = 45°,

%cos45°:nn, n=0,1,2,....

The first value of n, namely n = 0, does not provide a useful solution because it
requires d to be zero, which means that the two elements are at the same location.
While this gives a maximum at 8 = 45°, it also gives the same maximum at all
angles 0O in the y-z plane because the two-element array will have become a single
element with an azimuthally symmetric pattern. The value n = 1 leads to

d 1

—=———=1.414.
A cos4be

Problem 9.32 Choose (d/A) so that the array pattern of the array of Problem 9.31
has a null, rather than a maximum, at 8 = 45°.

Solution: Withag=a;=1and Yo =1 =0,
_ j(2r/\)cos8(2 _ 42 (T
Fa(B) = |1+e |“=4cos TCose .

Fa(B) is equal to zero when the argument of the cosine function is [(11/2) + nT.
Hence, for a null at 8 = 45°,

T , Tt
700545 _§+nn, n=0,12,....
Forn=0,

= 0.707.

A - 2c0s45°
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Problem 9.33 Find and plot the normalized array factor and determine the half-
power beamwidth for a five-element linear array excited with equal phase and a
uniform amplitude distribution. The interelement spacing is 3\ /4.

Solution: Using Eq. (9.121),

F(6) = sin?[(NTd/A)cosB]  sin?[(1511/4) cos 6]
T N2sin?[(Td /M) cos 6] 25sin?[(371/4) cos 6]
and this pattern is shown in Fig. P9.33. The peak values of the pattern occur at

6= 490°. From numerical values of the pattern, the angles at which Fz;(8) = 0.5
are approximately 6.75°on either side of the peaks. Hence, 3 ~ 13.5°.

X
A

\J

L »
D
N

Figure P9.33: Normalized array pattern of a 5-element array with uniform amplitude
distribution in Problem 9.33.

Problem 9.34 A three-element linear array of isotropic sources aligned along the z-
axis has an interelement spacing of A/4 Fig. 9-38 (P9.34). The amplitude excitation
of the center element is twice that of the bottom and top elements and the phases
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are —T1/2 for the bottom element and 11/2 for the top element, relative to that of the
center element. Determine the array factor and plot it in the elevation plane.

T 1/m2 &

N4

-%— 2/0 ¢———
M4

!

— 1&2T

Figure P9.34: (a) Three-element array of Problem 9.34.

Solution: From Eq. (9.110),

2 2
Fa(e) — Zjaiejlpi ejlkd cosO
i_

_ ‘aoejllJo + alejllJlejkd cos8 + azej¢2ejzkdcose|2

eiWi=T2) | 9oiigi(2IA)(A/4)a0S8 | oi(Wi+/2) i2(2/N) (/4 cose |

2

ejwlej(n/Z)cose e—jn/ze—j(n/Z)cose+2+ejn/2ej(n/2)cose

]

2
)

2

This normalized array factor is shown in Fig. P9.34.
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Figure P9.34: (b) Normalized array pattern of the 3-element array of Problem 9.34.

Problem 9.35 An eight-element linear array with A /2 spacing is excited with equal
amplitudes. To steer the main beam to a direction 60° below the broadside direction,
what should be the incremental phase delay between adjacent elements? Also, give
the expression for the array factor and plot the pattern.

Solution: Since broadside corresponds to 6 = 90°, 60° below broadside is
B0 = 150°. From Eg. (9.125),

d=kdcos6p = 2711% c0s150° = —2.72 (rad ) = —155.9°.

Combining Eq. (9.126) with (9.127) gives

Fa(6) = sin? (3Nkd(cos® —cosBo))  sin?(4m(cosB + 3v/3))
7 N2sin? (3kd(cos® —cosBp))  64sin? (3m(cos6+ $v/3))

The pattern is shown in Fig. P9.35.
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Figure P9.35: Pattern of the array of Problem 9.35.

Problem 9.36 A linear array arranged along the z-axis consists of 12 equally spaced
elements with d = A/2. Choose an appropriate incremental phase delay & so as to
steer the main beam to a direction 30° above the broadside direction. Provide an
expression for the array factor of the steered antenna and plot the pattern. From the
pattern, estimate the beamwidth.

Solution: Since broadside corresponds to 6 = 90°, 30° above broadside is 89 = 60°.
From Eq. (9.125),

0=kdcosp = 2%[% c0s60° = 1.57 (rad) = 90°.

Combining Eq. (9.126) with (9.127) gives

Fa(6) = sin?(312kd(cos®—cos6p))  sin?(6m(cos8 — 0.5))
77 144sin? (Lkd (cos® —cosBp))  144sin? (¥(cos8—0.5))
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Figure P9.36: Array pattern of Problem 9.36.

The pattern is shown in Fig. P9.36. The beamwidth is =~ 10°.

Problem 9.37 A 50-cm long dipole is excited by a sinusoidally varying current
with an amplitude Iop =5 A. Determine the time average power radiated by the dipole
if the oscillating frequency is:

(@) 1 MHz,
(b) 300 MHz.
Solution:
(a) At 1 MHz, .
3x10
A= T 300 m.

Hence, the dipole length satisfies the “short” dipole criterion (I < A/50).
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Using (9.34),
I 2
Prag = 401713 (-)
A
0.5)2
=40 x 52 x [ — | =27.4mw.
X 52 % (300) m
(b) At 300 MHz,
_ 3x108 im
T 3x108 T T

Hence, the dipole is A/2 in length, in which case we can use (9.46) to calculate Pyq:
Prad = 36.612 = 36.6 x 52 = 915 W.

Thus, at the higher frequency, the antenna radiates [915/27.3 x 1073)] = 33,516.5
times as much power as it does at the lower frequency!

Problem 9.38 The configuration shown in the figure depicts two vertically oriented
half-wave dipole antennas pointed towards each other, with both positioned on 100-
m-tall towers separated by a distance of 5 km. If the transit antenna is driven by a
50-MHz current with amplitude 1o = 2 A, determine:
(a) The power received by the receive antenna in the absence of the surface.
(Assume both antennas to be lossless.)
(b) The power received by the receive antenna after incorporating reflection by
the ground surface, assuming the surface to be flat and to have &, = 9 and
conductivity o = 10~3 (S/m).

Direct

h=100m S Reflected, - *~ 100m

Solution:
(a) Since both antennas are lossless,

F)rec = Pint = SiAer
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where S; is the incident power density and Ag is the effective area of the receive
dipole. From Section 9-3,

1512
Si=So="57,
and from (9.64) and (9.47),
ND A2 1.64\2
Hence, , )
1515  1.64A 6
Prec = TR X e =3.6x10° W.

(b) The electric field of the signal intercepted by the receive antenna now consists
of a direct component, Eq, due to the directly transmitted signal, and a reflected
component, E;, due to the ground reflection. Since the power density S and the
electric field E are related by

it follows that

where the phase of the signal is measured with respect to the location of the transmit
antenna, and k = 211/A. Hence,

Eq = 0.024e~ 112" (v/m).

The electric field of the reflected signal is similar in form except for the fact that
R should be replaced with R’, where R’ is the path length traveled by the reflected
signal, and the electric field is modified by the reflection coefficient I'. Thus,

[30No lo

From the problem geometry

R = 2\/(2.5 x 103)2 + (100)2 = 5004.0 m.
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Since the dipole is vertically oriented, the electric field is parallel polarized. To
calculate I, we first determine

£ o 103 .04
g wepg,  2Mx50x 106x8.85x10-12x9 T

From Table 7-1,
H_ Mo _ Mo _MNo

NV T T Ve
From (8.66a),
N2€0s6; — 105 6
= N2€05s B¢ + nN1C0s 6
From the geometry,
cos6; = ﬁ = % =0.04
6, =87.71°
6; =sin~! (ﬂ) = 19.46°
Ve
N1 = nNo (air)
N2=n= lo .
3

Hence,
(I’]o/3) % 0.94—np x0.04 .

(No/3) x0.94+4no x 0.04 -
The reflected electric field is

30No o _jwe
EfZ(\/TaeJ r

=0.018¢/°¢"  (v/m).

0.77.

M=

The total electric field is

E=E4+FE
= 0.024e~112% 4 0.018¢108
=0.02e7173%  (V/m).
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The received power is

Prec = SiAer
_|EP? y 1.64\?
2I’]0 41T
=25%x107%W.

445

Problem 9.39

|«— d —

©

The figure depicts a half-wave dipole connected to a generator through a matched
transmission line. The directivity of the dipole can be modified by placing a reflecting
rod a distance d behind the dipole. What would its reflectivity in the forward direction

be if:
(@ d=A/4,
(b) d=A/2.

Solution: Without the reflecting rod, the directivity of a half-wave dipole is 1.64
(see 9.47). When the rod is present, the wave moving in the direction of the arrow
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consists of two electric field components:

 —l =1

r
E=E;+Ey, > E;

where E; is the field of the radiated wave moving to the right and E is the field that
initally moved to the left and then got reflected by the rod. The two are essentially
equal in magnitude, but E5 lags in phase by 2kd relative to E1, and also by 1thecause
the reflection coefficient of the metal rod is —1. Hence, we can write E at any point
to the right of the antenna as

E =E;+E el 12d
— El(l_l_e—j(zkd—T[))

(@) Ford = A/4, 2kd :2-?—”-%:11
E=E(14e 1) = 2E,.

The directivity is proportional to power, or [E|2. Hence, D will increase by a factor
of 4to
D =1.64 x4 =6.56.

(b) Ford =A/2, 2kd = 21t
E=Ey(1-1)=0.

Thus, the antenna radiation pattern will have a null in the forward direction.
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Problem 9.40 A five-element equally spaced linear array with d = A/2 is excited
with uniform phase and an amplitude distribution given by the binomial distribution
(N—=1)!

i=——— _— i=0,1,...,.N—1
& if(N—i—1)! '

where N is the number of elements. Develop an expression for the array factor.

Solution: Using the given formula,

(5-1)
2= "0
41
1:ﬁ:
41
41
o

Application of (9.113) leads to:

=1 (note that 0! = 1)

az
az

as

N-1|?
;aie“y
i=

= [1+4elV+ Gej2v+4ej3v+ej4v|2

= ‘e]zy(e_12y+4e_JV+6_|_4eJy+ e12V)|2
= (6+8cosy+2cos2y)2.

, y:@cose

Fa(y) = by

With d =A/2, y=2"- 2 cos@ = TicosH,

Fa(8) = [6+ 8cos(Ttcos 8) + 2cos(2tcos 8)]2.
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Chapter 10: Satellite Communication Systems
and Radar Sensors

Lesson #70 and 71
Chapter — Section: 10-1 to 10-4

Topics: Communication systems

Highlights:

Geosynchronous orbit
Transponders, frequency allocations
Power budgets

Antennas

Lesson #72 and 73
Chapter — Section: 10-5 to 10-8
Topics: Radar systems

Highlights:
e Acronym for RADAR
e Range and azimuth resolutions
e Detection of signal against noise
e Doppler
e Monopulse radar
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Chapter 10

Sections 10-1 to 10-4: Satellite Communication Systems

Problem 10.1 A remote sensing satellite is in circular orbit around the earth at an
altitude of 1,100 km above the earth’s surface. What is its orbital period?

Solution: The orbit’s radius is Rg = Re+h = 6,378+ 1,100 = 7478 km. Rewriting
Eq. (10.6) for T:

1/2

GMe 6.67 x 1011 x 5.98 x 1024
= 4978.45 s = 82.97 minutes.

. (4T[2R8>1/2 _ [ ATE x (7.478 x 105)3

Problem 10.2 A transponder with a bandwidth of 400 MHz uses polarization
diversity. If the bandwidth allocated to transmit a single telephone channel is 4 kHz,
how many telephone channels can be carried by the transponder?

2x400 MHz _ 2x 4 x 108

_ 5
akHz  4xi08 X0

Solution: Number of telephone channels =

channels.

Problem 10.3 Repeat Problem 10.2 for TV channels, each requiring a bandwidth
of 6 MHz.

i 2x4x108
Solution: Number of telephone channels = % = 133.3 ~ 133 channels.

We need to round down becasue we cannot have a partial channel.

Problem 10.4 A geostationary satellite is at a distance of 40,000 km from a ground
receiving station. The satellite transmitting antenna is a circular aperture with a
1-m diameter and the ground station uses a parabolic dish antenna with an effective
diameter of 20 cm. If the satellite transmits 1 kW of power at 12 GHz and the ground
receiver is characterized by a system noise temperature of 1,000 K, what would be
the signal-to-noise ratio of a received TV signal with a bandwidth of 6 MHz? The
antennas and the atmosphere may be assumed lossless.

Solution: We are given

R=4x10'm, d=1m, d,=02m, P =10°W,
f=12GHz, Tgs=1,000K,  B=6MHz
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At f=12GHz, A=c/f =3x108/12x 10° =2.5x 10~ 2 m. With & = & =1,

ATA,  4T(TZ/4) 4mixTix 1
G =D — - - =15,791.37
TN A2 4x(25%x102)2 ’
. 4mA, 4anm(ro?/4)  4mxm(0.2)2
Gr=Pr=%2 =72 Tax@sxizz B

Applying Eg. (10.11) with YB) = 1 gives:

PGGr [/ A \? 103x15791.37x631.65 [ 2.5x10°2 \°
Sn= — 298.

~ KTgsB \ 4TR T 1.38x 102 x 103 x 6 x 106 \ 471 4 x 107

Sections 10-5 to 10-8: Radar Sensors

Problem 10.5 A collision avoidance automotive radar is designed to detect the
presence of vehicles up to a range of 0.5 km. What is the maximum usable PRF?

Solution: From Eq. (10.14),

o 3 x 108

fo=—— =_—""" __3x10°Hz
PR, 2x05x108 X z

Problem 10.6 A 10-GHz weather radar uses a 15-cm-diameter lossless antenna. At
a distance of 1 km, what are the dimensions of the volume resolvable by the radar if
the pulse length is 1 us?

Solution: Resolvable volume has dimensions Ax, Ay, and AR.

A 3x1072 o

Mx =y =PR=SR=""""0 x10°=200m,
8

pR=ST = 3107 66— 150 m.

2 2

Problem 10.7 A radar system is characterized by the following parameters:
Po=1kW, 1=0.1ps, G=30dB, A=3cm, and Tgs= 1,500 K. The radar
cross section of a car is typically 5 m2. How far can the car be and remain detectable
by the radar with a minimum signal-to-noise ratio of 13 dB?
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Solution: Sy = 13 dB means Spin = 20. G = 30 dB means G = 1000. Hence, by
Eg. (10.27),

PtTGz)\ZO't 14

[ 103x107"x10°x (3% 107%)? x5
| (413 x 1.38 x 102 x 1.5 x 103 x 20

Rmax:[

1/4
= 4837.8 m = 4.84 km.

Problem 10.8 A 3-cm-wavelength radar is located at the origin of an x-y coordinate
system. A car located at x = 100 m and y = 200 m is heading east (x-direction) at a
speed of 120 km/hr. What is the Doppler frequency measured by the radar?

y

A

200 m+ 8 u =120 km/hr

Figure P10.8: Geometry of Problem 10.8.

Solution:
200
_ -1 — o
0 = tan (—100) 63.43°,
1.2 x 10°
fy= %Y cosp = 2% 3333 63.43° — _993.88 Hz.

A 3x10-2



