

تقدملجنةElCoMالاكاديمية

دفترلمادة: **كهرومغناطيسية(٢)**

من شرح: **د.عبدالكريمالبيات ي**

جزيل الشكر للطالبة: **ملاكالباشا**

16/9/2018

ANGER

CH. 7: Plane Wave Propegation Time varing electric field Time varing magnatic Field $5-30$ MHz 1) free space 2) guided * Propegation medium 1) loss less medium $(ex-air)(or-c)$ $2)$ lossy medium (0 %, $0 \neq 0$) 1 S.a. A. H. L. C. (LID) 7-1 :- Time harmonic fields $*Time$ varying \vec{E} , \vec{H} , \vec{D} , \vec{B} , \vec{R} , \vec{T} depends on (x,y,z) and time $E(x,y,z,t) = Re[E(x,y,z)]e^{jwt}$ $x^2F_x + y^2F_y + z^2F_z$ $\vec{\nabla}\cdot\mathbf{D} = \mathbf{R}$ = junti $\nabla \cdot \vec{B} = 0$ $\overrightarrow{V} \overrightarrow{X} \overrightarrow{E} = -\frac{dB}{dt}$ $\overrightarrow{V} \times \overrightarrow{H} = \overrightarrow{0} + j\omega E \overrightarrow{E} = \overrightarrow{0} + j\overrightarrow{D}$ $\overline{\nabla \cdot \vec{H}} = 0$ Comple y parmativity Comples parmaillely

(47 $\overrightarrow{YH} = \overrightarrow{oE} + j\overrightarrow{wce} = \overrightarrow{f}(\overrightarrow{o} + j\overrightarrow{wce}) = j\overrightarrow{w}(\overrightarrow{ow} + \overrightarrow{c} - \overrightarrow{E})$ = $jw(E_0 - j\alpha')\vec{E}$ of for loss less medium with $\alpha = 0$ \overrightarrow{A} \overrightarrow{H} = \overrightarrow{J} \overrightarrow{W} \overrightarrow{E}

Scanned by CamScanner

 $E_{c} = E - j \frac{\sigma v}{\omega} = E - j \epsilon v$ $\overrightarrow{\text{var}} = j\omega_{f} \in \overrightarrow{E} \qquad \qquad \overrightarrow{E} = \overrightarrow{E} = j\frac{\sigma}{\omega}$ For loss less medium $\sigma = 0$, $\varepsilon_c = \varepsilon = \varepsilon_c$ * Wave equation $\nabla X (\nabla \overrightarrow{xE}) = -jwM(\nabla \overrightarrow{XH}) = -jwM(jw\epsilon_0\overrightarrow{E}) = w^2M\epsilon_0\overrightarrow{E}$ $\nabla \times (\nabla \times \vec{E}) = \nabla (\nabla \cdot \vec{E}) - \nabla^2 \vec{E}$ $\begin{array}{ccc} \sqrt{2} \overrightarrow{E} & = & \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \overrightarrow{E} \end{array}$ $\nabla^2 \vec{E} - \omega^2 M \vec{c} \vec{c} = 0 \quad 0 = \frac{1}{2} \cdot \nabla$ MWL 8³: - propegation constant. $\gamma^2 = -\omega^2 M \epsilon_c$ $\nabla^2 \vec{E} - \vec{\gamma}^2 \vec{E} = 0$ (wave equation of \vec{E}) X Sigma) $\nabla^2 \overrightarrow{H} - \overrightarrow{\delta}^2 \overrightarrow{H} = 0 \text{ (wave equation of } \overrightarrow{H})$ other loss 229/2201 with كاكتون فالمستناء والمستنقص الملاد $\mathcal{L} = \mathcal{L}$

18 $9 / 2018$

 $S^2 \triangleq -\omega^2 \mu \epsilon_1$ E_{r} = $E - jE^4$ = $E - jE^4$ $\nabla \cdot \vec{E} = \frac{\partial E_X}{\partial x} + \frac{\partial E_Y}{\partial y} + \frac{\partial E_Z}{\partial z}$ $F = \lambda' F_{X+} 9F_{Y+}ZF_{Z}$ $V^2T = \nabla \cdot (\nabla T) \cdot \frac{1}{T} = \frac{\hat{x} \cdot \partial T}{\partial x} + \hat{y} \cdot \frac{\partial T}{\partial y} + \hat{z} \cdot \frac{\partial T}{\partial z}$ $\frac{1}{\sqrt{7}} = \frac{1}{\delta T} + \frac{1}{\delta T} + \frac{1}{\delta T}$ $\nabla^2 \vec{E} = \hat{X} \nabla^2 E_{X} + \hat{Y} \nabla E_{Y} + \hat{Z} \nabla^2 E_{Z}$ $y - 2x + 3y + 36x$
= $x^6 - 3x + 36x + 36x$
= $x^6 - 3x + 36x + 36x$
+ $y^6 - 3x + 36x$ * Plane wave propagation in a "lossless mediam" phase voltage (up) Propagation properity Swave length (2) depends on partie w ; angular frequency goverend by = $2^{\frac{2^{\circ}4!3!3!}{2!}}$ = $2^{\frac{114}{2}}$ = $2^{\frac{114}{2}}$ = $2^{\frac{114}{2}}$ E ; M ; σ $\star \sigma = 0 \rightarrow \mathcal{E}r = \mathcal{E} - \mathcal{E} \mathcal{E} = 6$ Wave number $\Rightarrow k^2 = -\gamma^2 = -(\omega^2 M \epsilon) = \omega^2 M \epsilon$ $k = w \sqrt{ME}$; $\nabla^2 \vec{E} + k^2 \vec{E} = 0$ أيتعاد شيما أحاد

 $\frac{d^2Ex + kfx \cdot b}{dt^2}$ $\overline{\mathsf{X}}$ $\frac{\delta E}{\delta E^2}$ \mathcal{Z} Ý a a a a a a a a a a a a $\frac{\delta k}{\lambda z} - \frac{1}{2}k^2 Mx = 0$ $\frac{d^{2}Hy}{dz^{2}} + k^{2}Hy=0$ assume Two have only Ex(Ey=0); we have wave in the direction only $E(z) = x^6 E x^6 e^{-j k z}$, $E y = E z = 0$ $\therefore Re\left[\mathbf{x}^{\star}E_{x}^{\dagger}\right]^{i}e^{i\mathbf{k}z}e^{j\omega t}$ $E(z) = x^6 E_{x_0}^+ e^{-j k z}$ $k^2 = w^2 N \epsilon$ Re [Ere] esint] time $domain$ $k\overline{z}^k = 2\overline{t} \implies \lambda = 2\overline{t}$ H Field restau $\boldsymbol{\mathcal{L}}$ \mathbf{a} Ś x^{\sim} 2^{\prime} \mathbf{a} $\nabla x \tilde{\vec{f}}$ = $j\omega_H \tilde{\vec{H}}$ $rac{d}{dx}$ $rac{d}{dy}$ $= -JwH(x^2H_x + s^2H_y +$ $rac{d}{dz}$ \mathbf{z}^{\prime} Hz) $\frac{d\mathbf{r}}{dt}$ \overrightarrow{E} \overline{O} Ō $\frac{x^{n}(0)+y^{n}}{dx} \frac{d\overrightarrow{Ex}}{dx} = \frac{z^{n}}{x^{n}} \frac{d\overrightarrow{Ex}}{dy}$ $\frac{14}{\sqrt{1-\frac{36}{2}}}\frac{1}{\sqrt{1-\frac{36}{2}}}}$ \mathbf{a}

 \mathbf{a}

 $E_{x0}^{+}e^{-jkz}(-jk)$ $H_y = \frac{1}{-j\omega\mu} \frac{\partial}{\partial z} (E_{x_0}^+ e^{-jkz})$ $\frac{71}{10}$ $=$ $\frac{1}{wy}$ $Ex^{\dagger}e^{-jk\tau}k$ $H_y = \frac{E_x - E_y + E_y - jkz}{\sqrt{W^2 + f^2}}$ n: eata n (intrinsic impedance) = $wM = wM = \frac{1}{k}M$ $\widetilde{\vec{E}}(z) = x^6 E_{x_0}^+ e^{-j k z}$ $E(E) = X E_{X_0} C$
 $\frac{Z}{H(E)} = \frac{1}{2} E_{X_0} + C^{-1} = \frac{1}{2} E_{X_0} + C^{-1} = C^{-1}$ $In general Exo = |Exo|e^{j\phi}$ $\eta = \frac{wM}{k} = \frac{M}{C}$ Instantaneuse (time domain) E and H $\vec{E}(z,t)$ = $ke[\vec{E}(z) e^{jwt}]$ $R = \kappa e [E(\epsilon)]$
= Re $[x^{\kappa} | E_{x}^{\dagger}] e^{j\phi} e^{-j\kappa \tau} e^{+j\omega t}$ X^{\uparrow} E $|E_{X}^{\uparrow}|$ $cos (wt - kz + \phi)^{T}$ V/m $H(z,t) = Re \left[y^0 \hat{H}(z)e^{j\omega t} \right] = \int E x^{\frac{1}{0}} \cos(\omega t - k z + \phi)$ A/m Note: - E and H are in-phase for loss less medium (since n is real) $\Rightarrow \overline{\begin{array}{c} \geq\\ \geq\\ \geq\\ \end{array}}$ $w + - kz = constant$ \Rightarrow \neq = $\frac{wt - cons}{k}$ $\frac{1}{\sqrt{1}}$

 $Up =$ $\frac{2\pi f}{k}$ $\frac{1}{k}$ JMG. $\frac{9}{2}$ $rac{3}{3}$
 $rac{3}{2}$
 $rac{1}{2}$ $\frac{\lambda = 2\pi}{k}$ $\frac{U_P}{U}$ $\Rightarrow k = 2\pi$ In Free space $M = M_0 = 4 \pi * 10^{-7}$; $E = E_0 = 10^{-9}$
36 π $7.3*10^3$ m/s $\sqrt{M_{o}E_{o}}$ $\frac{\mu}{\mu}$ $377 - 120 \pi$ example: plane wave traviding in the (+z) direction, the electric field points alony the peak value of Es 1.2 1 mv /m, E has amaximum at (t=0, Z: 50m), find the time domain expression $\vec{E}(z,t)$, $\vec{H}(z,t)$, let Ex^2 = $X^{\wedge}/Ex^{\dagger}/e^{j\phi}e^{-jkz}$ $\nu = 4$ Frailland χ_{12} ζ = f λ \Rightarrow 3*10⁸ = 10⁶ λ \Rightarrow λ = 300 m $K = 2T = 2T$
 $R = 2T$
 $\lambda = 300$
 $R = 2x^0 \cdot 2T = 12 \cos \theta$ $E(z,t) = \hat{X}$ 1.2 The cos (2Th + 10⁶⁺ - 2II Z + 0) $E(z,t) = \frac{x^{n}1.2\pi * 10^{-3} \cos(2\pi * 10^{6}t - 2\pi z + \pi)}{300}$

COLLEGE

WL C

KILL

K

a

ll in

m

 \overline{a}

 $\frac{1}{4}$ (2, †) = y^6 1.2 π * 10⁻³ cos (2 π * 10⁶ t - 2 π + π) Way for General relation between E and H $\frac{1}{H}$, 1 $k^2 \times \frac{2}{L}$ uniform plane wave in adirection of unit vector k^2 . \mathbf{r} ħ m $B = -7kx + \tilde{f}$ ÷ $TF \stackrel{\frown}{E} = x^k E_x(z) = x^k E_x - e^{-jkz}$ $k^2 = z^2$ $H = 1$ $\frac{1}{n}$ $\frac{$ If the wave is travilling in the -ve (2) direction \vec{E} = $\hat{x}^{\text{T}}E_{x}^{\text{T}}e^{jk\vec{z}}$ $k = -Z^2$ $\overrightarrow{H} = 1 - k^{\circ} \times \overrightarrow{E} = 1 - k^{\circ} \times x^{\circ} E_{x} = e^{ik\pi}$ $H = -y^k + E_{xo} e^{j k z}$ $Ingeneral:$ $E = x^4 E(\vec{x})(z) + y^6 E_y(z)$ $k^2 E^3 + k^2$ $\overrightarrow{H} = 1 \sum_{n=1}^{n} \frac{x^{n}}{n} \left[\frac{x^{n}}{x^{n}} \frac{F_{x}(z) + y^{n}}{x^{n}} \frac{F_{y}(z)}{x} \right] = \frac{y}{x} \cdot \frac{y^{n}}{n} \frac{F_{x}(z)}{n} = \frac{x^{n}}{n} \frac{F_{y}(z)}{n}$ $H_X(Z) = -F_X(Z)$, $H_Y(Z) = E_X(Z)$ LACK HOW n_{\parallel} 1 + 5 TI - to x 11 200 felti

Cxample: 10 MHz, plane wave travelling in anon-magnatic material and ϵ r = 9 I phase velocity b wave number (k) E wave length in the medium. d) Interinsic impedant. $\frac{4p}{k}$ سميقة الفهيود $C \Rightarrow$ $gUP_z 1
MR_z MR_z$ </u> $=\frac{1}{\sqrt{1}}$ $\frac{up=\frac{1}{\sqrt{ME}}}{\sqrt{ME}}$ $\frac{UP=C}{\sqrt{er}} \Rightarrow \frac{Cr}{\sqrt{UP}} \frac{(C)^2}{\sqrt{UP}}$ $\frac{1}{\sqrt{100-1}}$ $UP = 3 \times 10^8$ = $UP = 1 \times 10^8$ m/sec $\frac{UP = W \Rightarrow k = W \Rightarrow K = 2\pi * 10^7}{10^8} = 0.2\pi * 10!$ $k = W \sqrt{ME} = \frac{3}{4} \cos A \frac{1}{12} \sqrt{1 - \frac{1}{1$ Kamala $\lambda = \frac{2\pi}{k} = \frac{2\pi}{0.2\pi} = 10m$ $n = M = \frac{F_0}{F_0F} = \frac{F_0}{F_0F} = \frac{F_0}{F_0F} = \frac{n_C}{\sqrt{Fr}} = \frac{120T}{\sqrt{q}} = 127.67 \text{ A}$

 $example: - Givin \tilde{E} = Z^0 10 e^{-j4\pi j}$ (mV/m) wave is travilling in a loss less medium with n = 188.5 -1 , Find medium with the bond of the medium isnon magnatic. k^2y^6
 $\frac{1}{4}k^2x^2 = 1$
 $\frac{1}{1885}$ $k = w \int w \in \mathfrak{D}w_0 = \frac{k}{\sqrt{M_0 \mathfrak{E}_0 \mathfrak{F}_0}} = \frac{1}{\sqrt{6}}$ $example: \vec{H}(z,t) = \vec{t}$ 30Cos (108t-0.54) m Alm : In a non ang narticle direction of the wave propapulity \boxed{b} Phase velocity $\boxed{c1}$ \boxed{c} phasor. 01 7 $\lceil e \rceil$ $\frac{f}{f} = \frac{f'}{f}$ $UP = \frac{105}{0.5} = 2.15^{8}$ m/sec = 0 $\underbrace{\overline{P}U\overline{P}=f\lambda\Rightarrow\lambda=\frac{2*10^{+8}}{0.5}\rightarrow\overline{\lambda}=9\pi\rightarrow\frac{3}{10}\pi\rightarrow\frac{3}{10}\pi}$ $\boxed{\theta C_r = \left(\frac{C}{4\rho}\right)^2}$ \underline{P} $\underline{N} = \underline{N} = \underline{N} = \underline{N} = \underline{N} = \underline{120T} = 251.3 - 120 \overline{N} = 251.3 - 1$ $\vec{E} = -X^2 25.3 X 30 \cos(10^3 t - 0.54)$

 C /ample: Non-magnatic (M=Mo); $E(Z,t) = f' 3\sin(\pi * \omega^{7}t - 0.2\pi X)$ $+2^{\circ}1\cos(\pi*\sqrt{7}t - 0.2\pi x)$ V/m $Find \left[0 \right]$ $\frac{1}{2}$ $\frac{1}{2}$ <u>a</u> $\lambda = 2\pi = 2\pi$
 $k = 0.2\pi$ $\underbrace{[b]} k = w \int H E_{0} \Rightarrow E_{0} = \left(\frac{C}{v\rho}\right)^{2} = \left(\frac{27.34 \text{ m}^{2}}{5 + 10^{2}}\right) \Rightarrow E_{1} = \frac{36}{\mu_{0}} = \frac{1}{\mu_{0}} = 36$ $UP = \frac{1}{\sqrt{m\epsilon}} = \frac{W}{k} = \frac{1}{10^{2} \text{ m/s}} = 5*10^{7} \text{ m/s}$ C H time domain $\frac{n}{\sqrt{c_r}} = \frac{120 \pi}{\sqrt{36}} = 62.83 - 1$ $F = 1 k^x x E^2$; $k^r = x^r$ $\frac{2}{52.83}$ \sqrt{x} \sqrt{y} $\sqrt{x-1}$ \sqrt{x} $=$ \vec{z} 47.7 $\sin(\pi * \vec{0}^{\dagger}t - 0.2\pi x) - \vec{y}$ 63.66 cos $(\pi * \vec{0}^{\dagger}t - 0.2\pi x)$ 3 时1-2 fist+ (321-thu)200 xc $(1, 5)$ $F_{\text{max}}\left(1-\frac{1}{2}\left(\mathbb{R}\times\mathbb{R}\right)\right)$ $f(x)$ \rightarrow

Wave polarization The locus of the tip of the E-vector (in the plane orthogonal Ito direction of propegation) at agivin point in space in space as a function of time. * General polarization > elliptical lim_{α} α α \vec{E} = x² $Ex(E)$ + y² $E_y(E)$ $E_X(z)$ = $Ex_0 e^{-j k z}$ * Polarization depends on 1-1 $E_{y}(z)$ = E_{y} $e^{-j k z}$ 1 phase of Eyo relative to Exo. 1 Absolute value of Exo, Eyo, $Ex_{0} = a_{x} \leftarrow reference (phase 0)$ E_{x_0} = $a_x e^{-jkz}$ $Ey_0 = \alpha_1 e^{j\delta_{\mu\nu}} S - Sy - Sy$ ExELERVE $E(z) = (x^{n}a_{x} + y^{n}a_{y}e^{+i\delta})e^{-kz^{n}}$ $E_3e^2age^{-ikt}e^{tjk}$ $E(z,t)$ = \overrightarrow{Re} $E(x)$ e^{iwt} $x^2 - x^2 + y^2 + 4y^2 + 6z + 3 = 81$ $\#$ Modles of $E(E+)$ $0 E(z,t) = [E_x (z+3)] + E_x^2 (z,t)$ $= 6x + 5y(7, 1)^{1/2}$ $\psi(\xi/\tau) \frac{1}{2} \tan^{-1}(\xi_{y}(\xi/\tau))$ $Ex(7,t)$

linear polarization $\# C *log* 7 = 0$ $S = O(\text{in phase})$, $S = -\pi(\text{out of phase})$ $1) S = 0 \Rightarrow E(o, t) = (x^a x + y^b ay) cos(wt - kz)$ $Z/S = \overline{11} \Rightarrow \overline{E} \equiv \overline{208} (x^0 \alpha x - y^0 \alpha y) \cos(\omega t - 1cz)$ $|E'(0,t)| = \sqrt{a_x^2 + a_y^2} \cos(\omega t - k^2)$ $\frac{y'(t)}{E_{x}(t)}$ = tan⁻¹ $\left(\frac{Ey(t)}{E_{x}(t)}\right)$ = $in phase \leq \frac{1}{\sqrt{t}} \Rightarrow \frac{1}{t} \cdot \frac{1}{\sqrt{t}} \cdot \frac{1}{\sqrt{t}}$ $\frac{1}{\alpha}$ out phase $\rightarrow \frac{\gamma(1)}{1}$ $\frac{1}{\alpha}$ $\frac{1}{\alpha}$ $if ay=0 \Rightarrow Y=0 or 180 \Rightarrow X-polarized$ $if \alpha_{x} = 0 \rightarrow \gamma = 90$ or $270 \rightarrow y$ -polarized I'M + sala fundame pa la la

In phase X^a a $x + Y^a$ ay $e^{i\delta}$, $S = 0$, $S = \pi$ $|E| = \sqrt{a_x^2 + a_y^2}$ Cos wt euro_{Kokase} example $-$ the electric field is $\vec{F}(z,t) = X^2 \cos{(wt - kz) + y^2 \cos(wt - kz)}$ Find: O Polarization state. @ Modulas of E. X 13 Inclination angle. O Polarization state $S = S - S = S - S = 0$ linear @ppolarization (in-phase) \circledR Modulas of \vec{E} cos wt $|\vec{E}| = \sqrt{8x^2 + 9y^2} = \sqrt{3^2 + 4^2}$ cos wt = 5 cos wt $wf = 0$ $42E4.$ 53.13 3) Inclination angle Ex $\overline{L_3}$ $Y = \tan^{-1}(\frac{4}{3}) = 53.13^{\circ}$ $wF₅$ $Circular$ Polarization π ¹² \rightarrow right hand circularity (RHC) π π 12 \rightarrow left hand circular (LHC) 1) $a_1^3 - a_1^2 - 2$ $S = \pm \pi/2$ #LHC polarization (ay = ax, S = 17/2) = Sy-Sx (+Z ->)
 $\vec{E}(z) = (x' a_{x} + y' a_{y} e^{j\delta}) e^{-jk\delta}$ $\vec{E}(\epsilon, t)$. R [Ez $e^{j\omega t}$] $= x^{\prime}ax \cos(\omega t - kz) + y^{\prime}ay \cos(\omega t - kz + \pi)$

E(z,t) = x² or cos(wt-kz) + y² ay cos(
$$
\frac{\pi}{2}
$$
 - (-wx+kz)) ⇒ y² ay sin(-wt+kz)
\n
$$
\frac{2y^6 ay sin(wt-kz) - y^6ay sin(wt-kz)}{2y^6 ay sin(wt-kz) - y^6ay sin(wt-kz)}
$$
\n
$$
= \frac{a^2kx}{2}
$$
\n
$$
= \frac{a^
$$

Kaw ME = W SHO E JEr W JEr $2\sqrt[3]{14 \times 10^{2}}$ $\sqrt[3]{4}$ = $\frac{4\pi}{3}$
3 * 10² $\eta = \frac{\eta_{o}}{\sqrt{c}} = \frac{120 \pi}{\sqrt{7}} = 60 \pi$ $E(y, t) = Re[E(y)e^{jwt}] = 3E^c cos(wt-ky) + x^c cos(wt-ky - T/z)]$ $+$ x^2 sin (wt-ky) $\frac{1}{H}(y,t) = 1 * [Ey,t] = 3 \sum X^2 cos(\omega t - ky) - 2^2 sin(\omega t - ky)]$ When $E(y,t) = Z^{n}$ 3 cos (wt-ky) + Xⁿ 3 sin(wt-ky) mulm $\vec{H} (y_{1}t) = Re[e^{jwt}3 (Z^{\prime}e^{j\pi}+x^{\prime})e^{-jky}]$ = Z^2 3 $cos(\omega t - ky + \pi/2) + x^2$ 3 $cos(\omega t - ky)$ = Z^2 3 Cos(II/2-(w++ky) + x^2 3 Cos(wt-ky) = $\frac{2^{n}3 \sin(-wt+ky) + x^{n}3 \cos(\omega t - k^{2})}{n}$ $= -Z^2 + 3I$ Sin $(\omega t - ky) + X^2 + I$ cos/ $(\omega t - ky)$ $k^{\alpha}e^{-\beta L-\alpha}$ SO PUT D'AGRICXIO $(*$ " $s^2 + x^2) = 1$

ATT

 $\sqrt{1}$

 $\frac{1}{100}$

ALC

 $\sqrt{2}$

 $\sqrt{10}$

THE

 \mathbf{a}

CO

example: if the electric field phasor is givin by $\vec{F}(x) = (y^6 - z^3)e^{-3kx}$ Find the polarization state. $E = (x^0 a x + y^0 a y e^{i\delta})e^{-ik\epsilon}$ $E(x) = (y' + z' e^{-j\pi/z}) e^{-j k x}$ $Qy = Qz = 1$ δ = δ z = $\frac{5y}{2}$ = $\frac{\pi}{2}$ = 0 = $-\pi/2$ = $\delta \Rightarrow$ RHC polarization Eliptic polarization $a_{x} \neq 0$, $a_{y} \neq 0$, $\frac{1}{2} \neq 0$ 8: rotation angle. X: ellipticity angle. $E(z) = (x^2a + y^2a) e^{i\delta}e^{-ikz}$ $E(t_1t) = x^a x cos(\omega t - k\vec{x} + y^a \omega y cos(\omega t - ky))$ Steps- $2)$ ψ_{0} -fan¹ (ay) $1/5 = 8y - 5x$ E Prison 一种 色。 3) Rotation argle $\times 220$ $tan(2\pi) = 64 + 24 cos(5)$ $-\pi \leq 2 \leq T_1 \leq T_2 \leq \frac{\pi}{2}$ 350 if $cos\delta$ 60 $29.52 - 82.13$

4) elliptically angle (X $sin(2x) = sin(2\frac{y}{c}) sin S$ $-\frac{\pi}{\alpha} \leqslant X \leqslant \frac{\pi}{\alpha}$ $\frac{-\pi}{2}$ < 2 X < $\frac{\pi}{2}$ $if \sin 8$ $X>0$ if sin 850 X_C example i- Find the polarization state of a plane wave $F(z,1) = x^{2}3cos(\omega t - kz + 30) - y^{4}y sin(\omega t - kz + 45^{o})$ mV/m $E(z_{r}) = x_{cos(\omega t - kz + 30)} + y_{sin(-\omega t + kz - 45)}$ $-94cos(90-wt+kz-95)$ $f(\cos(\omega t - kz + 30)) + y'Y(\cos(\omega + \omega t - kz + 45))$ $-y^2$ 4 $cos (45-wt+kz)$ $-14cos(wt-kz-45)$ = $X^6 cos(wt - kz + 30) + Y$ ($cos(wt - kz + 135^\circ)$ $-94e^{-345}e^{-31}kt$ $\vec{E}(z) = \hat{xe}^{i30}e^{-ikz} + y' + e^{i135}e^{-ikz}$ y' y $e^{j190}e^{-j45}e^{-jkz}$ $Q_{x=3}$, $Q_{y=4}$, $S = S_{y-Sx=135-30^{\circ} = 105^{\circ}}$ γ_o = $\tan^{-1}(\frac{\alpha y}{\alpha y})$ = $\tan^{-1}(\frac{y}{3})$ = 53.1 141.67 $tan (28) = tan (2%) €cos 8 ⇒ tan(28) = 0.89$ 74157 138.33 $tan^{-1}(0.89) = 41.67 = 28 \rightarrow Xz$ $(180 - 41.67) = -138.33$ $\delta = \frac{1}{20.83}$ -69.16 $sin(2x) = sin(2x) sin S$ of if cos spo $= 0.93$ 68.13 $cos(8) = cos(105) = -ve$ $(0 - \xi \hat{q} \hat{o}) (2x) = 68.43$ 68.90 X 34.21) $8 = -69.1605882$ $2X (62.13)$ $180 - 63.43$ $4 - 6$ and $1 \leq 4$

 $7 / 10 / 2013$

Tax

AND

Title

 \mathbb{C}

 $\frac{1}{4}$

Actual

 $100₀$

Titua

K

Æ.

đу

m.

Œ

a

AG

(曲

 $\sqrt{2}$

100

COLLEGE

THE

COL

COL

 $\vec{E}(z,t) = -\chi^2$ 10 sin (wt-kz-60) + y_{x05}^2 (wt-kz) $\frac{1}{100000}$ (wt-kz-60) = + x^2 10 sin(-wt+kz+60) = x^2 10 cos(wt-kz-60+90) = x^{n} to cos(wt-kz+30) x^{n} $E(7,1) = X'10 cos (wt-kz+30) + y'3cos(wt-kz)$ $E(z) = x^{\prime}$ to $e^{i30^{\circ}}e^{-i k z}$ + y^{\prime} 30 cos(ωt - kz) SOULS GIVE SLH R & SCIELEX $S = Sy - Sx = 0 - 30 = -30$, $a_{x=10}$, $a_{y=30}$, $b - y = -RHR$ $\frac{v_{0}}{1} = \frac{1}{\tan(\frac{30}{10})} = \frac{71.56^{\circ}}{10}$ $H_2^{\mathcal{L}'}$ $(1 + (E^*)^2 - 1)$ $tan(28) = tan (29) sin 6 = -0.648$ $32414-8$ $(0 - 90)$ 28 = 32.98 = 28= -32.98 $11 + 2$ 147.02 586- $Cos(5) = cos(-30) + 4ve$ $28 = 147.02 - 85 = 73.31$ $-ve$ \Rightarrow RHR $sin(2x) = sin(2\%)sin \ - -0.3$ $(0-90^{\circ})$ 2X = $\sin^{-1}(0.3)$ = 17.457 $2x = -17.457 \rightarrow x = -8.728$ $2 x = \begin{cases} -17.457 \end{cases}$ \overline{r} -162.54 X 277.957 17.157

plane wave propagation in Lossy Medium $\nabla^2 \vec{E}$ - \vec{E} = 0 $y^2 = w^2Mer = w^2M(e^r - je^w)$ $\frac{K}{c_{q}}$ $\frac{1}{2}$ $8 = 8 + 3B$ $(\alpha + j\beta)^{2} = \alpha^{2} - \beta^{2} + j2\alpha\beta = -\omega^{2}M\hat{c}^{3} - j\omega M\hat{c}^{3}$ $x^{2}-B^{2}=-\omega^{2}ME^{1}$, $2\alpha B=\omega^{2}ME^{2}$ $\alpha = \omega \left[\frac{He'}{2} \sqrt{1 + (\frac{E''}{E'})^2} - 1 \right]$ k apa (28) a tant (22) $\beta = w \left[\frac{M e'}{2} \left[\sqrt{1 + \left(\frac{e'}{e'} \right)^2} + 1 \right] \right]$ CHARLES AS UNA $e^{-x}e^{-jBE}$ = $ZxB = 2w^{2}\left[\frac{\mu e^{\prime}}{(e^2)}e^{-\frac{\mu}{2}}\right]^{1/2} = 2w\left[\frac{\mu^{2}}{4}e^{-\frac{\mu}{2}}\right]^{1/2}$ 차대기 $2.8 - 14.46 + 464$ $\frac{1}{2}$ Berth

 $\overline{}$

 $\vec{E} = E_x$, $e^{-8z} = E_x$, $e^{-8z}e^{-38z}$ \overrightarrow{E} = $x^2 E_x$, $e^{-x^2} e^{-x^2 B^2}$ $\nabla \times \vec{E} = -j \omega \mu \vec{H}$ X^{\prime} \overline{A} 7^{\prime} $\frac{d/dx}{\mathbb{E}x_0 e^{-8t}}$ = $X^{\prime}(0) + \int_{0}^{1} \left(\frac{d}{dz} E_{x} e^{-\delta z}\right) + z^{\prime}(0)$ d/dy d/dz $= -jwM[X^cH_{x}+y^cH_{y}+z^cH_{z}]$ $\ddot{\mathbf{O}}$ $\mathsf{\circ}$ $\sqrt{E_{x0}(-x)}e^{-x^{2}} = \int (-i\omega\mu H_{y})$ $Hy = \frac{8}{14M} E_{xo} e^{-8z} = E_{xo} e^{-8z} e^{-j\beta z}$ $\frac{Nf}{j\omega N}$ $n_{c} = j\omega N = j\omega N = 1/\sqrt{N}$ $n_c = \sqrt{\frac{\mu}{\epsilon_c}} = \sqrt{\frac{\mu}{\epsilon^2 - i\epsilon^2}} = \sqrt{\frac{\mu}{\epsilon^2}} \left(\frac{1 - j\epsilon^2}{\epsilon^2} \right)^{-1/2}$ $E=E+E^{\prime}=\sigma$ Bothe E and H have no longer equal phase. # Both Eand H Fields decrease exponantially with (z). # Medium converts part of power into heat. \vec{F} = $x^2 E_{X_0} e^{-x^2} e^{-\beta z}$ Skin depth Ss $S_{s} = 1$ at adistance of $Z = S_{s}$ magnitude delives by e^{-1}

 $\frac{a}{\sqrt{a}}$

 ω

 \mathbf{a}

L

OL

TILL

COLA

(图1

御

Ss characterizes how well an EM wave can penetrate amedium 1) Perfect dictectric (0=0) $S_{S} = \infty$; $E^{N} = \frac{\sigma}{\omega}$
d = w $M \frac{1}{2} (\sqrt{1 + \frac{1}{C'}^{2}})^{2} - 1$ 2) Perfect conductor $(\sigma = \infty)$ $0' = \infty \implies \alpha = \infty \implies S = 1 = 0$ * The factor $\frac{e^{x}}{x} = \frac{0}{\sqrt{e}}$ plays an important role in determine how loss $\frac{1}{1}$ If $\frac{e^{x}}{1}$ < 10⁻² \Rightarrow The medium is a low-lossy medium: $2)$ If $E^{"}\rightarrow$ 100 \Rightarrow The medium Kette^agood conductors $3)$ If 10^{-2} se $\frac{e^x}{e^y}$ < 10² \rightarrow The medium have guage, connolute for Low lossy direction $\frac{8}{x^{2}}$ $X^{2} = \frac{W^{2}}{R^{2}} \mu \in_{c} \Rightarrow X = jw\sqrt{mE_{c}} \Rightarrow Gc = GrE$ $\left(\frac{1}{2}\right)^{4}$ $8 = j\omega\sqrt{Me\cdot(1-3\epsilon^{\prime\prime})^{1/2}}$ $(1-x)^{\frac{1}{2}} \simeq 1-x_{2}$

 $8 = \text{Jw}\overline{\text{JME}}\xrightarrow{e^u} \text{Jw}\overline{\text{H}e^t}$ $=\frac{WE^*}{2} \frac{M}{E^2} + jW M E^* = d + jB$ $\frac{\alpha - \sigma}{2} \sqrt{\frac{\mu}{f}}$ $B = W M C'$ $\eta_c = \frac{\mu}{\epsilon} \left(\frac{1 - j \epsilon^*}{\epsilon} \right)$ $n_c = \mu \frac{4!}{\epsilon}$ at low-loss medium * Good conductor $\left(\frac{e^{u}}{c^{1}}\right)$ 100) = 0 = 100 $N = B =$ IFM $\frac{\pi f M \infty}{\omega \sqrt{\frac{H e^{u}}{2}} = \omega M \infty} = \frac{8}{100}$ د الائبان
ح $\alpha =$ $\frac{M \sigma W}{2} = \sqrt{\pi f M \sigma} = \beta$ $\eta_{c} = \frac{\int M}{\epsilon^{N}} = \frac{(1+j)\pi f M}{\alpha} = \frac{3*(1+j) \alpha}{\alpha}$

 $11 / 10 / 2018$

example:- plane wave in the +vetolirection, sea surface => Z= 0 M For sea water \Rightarrow $6r = 80$; Mr= 1; $0 \le 4$. If the magnatic field at $Z=0$, is givin $Dy - \overrightarrow{H}(0,1) = 4$ 100 Cos $(2\pi * 10^3 t + 15^4)$ m A /m \boxed{a} find $E(z,1)$, $\overrightarrow{H}(z,1)$. \boxed{b} Find the depth at which amplitude of \overrightarrow{E} is \overrightarrow{f} $f(x, y')$ $\Box \overrightarrow{E}(t) = -\eta \overrightarrow{k} \times \overrightarrow{H}$ $0.01 < E^4 < 100$ $= x^6 E x_6 e^{-\alpha z} e^{-i\beta z}$ $\vec{H}(z) = 1$ $\vec{Z} \times \vec{X} E_{\infty} e^{-\alpha z} e^{-i\beta z} = \vec{J} E_{\infty} e^{-\alpha z} e^{i\beta z}$ $0 = 4$
WE $2\pi * 10^3 * 6.480$ $=$ 9 $*(100)$ Good conductor $X = \sqrt{\mathcal{Z} \mathcal{F}} \mathcal{F} H \odot \mathcal{F} = \beta \mathcal{F} = \sqrt{\pi \kappa_0^3 \kappa_1 \mathcal{H} \kappa_1 \delta^2 \kappa_1 \mathcal{F}}$ $0 = 0.126 = \beta$ $\eta_c = \frac{(1+i) \alpha}{\alpha} = \frac{(1+i) \alpha}{4} = \frac{\sqrt{2}}{4}e^{+\sqrt{\frac{1}{4}}} \times 0.126$ η_c = 0.044 $e^{+i\frac{\pi}{4}}$ $E_{x0} = |E_{x0}| e^{j\phi}$ $E(z, t)$ Re $Ee^{j\omega t}$ x^1 $Ex = e^{j\phi}e^{-j\phi}e^{-j\phi}$ $= X^{11}E_{x_{0}}|e^{-kz}\cos(\omega t - \beta z + \phi_{0})$ x^2 $1 \n\in x^2$ $1 \n\in x_0 1 e^{-0.1262}$ $cos(2\pi * 10^3 t - 0.126 z + 0)$

Scanned by CamScanner

W

T

 $\overrightarrow{H(z)} = y^{\prime}$ $\frac{1}{E(x_0)} e^{-x^{\prime}z} e^{-y^{\prime}z} e^{-y^{\prime}z}$ = 9° | Ex | 22.5 $e^{-0.126}$
 $cos(2\pi * 10^{3} t - 0.1267 - 45 + \emptyset)$ $\frac{7}{11}$ (o,t) = y' 100 Cos (2T * 10³t + 15) $H(e, t) = 9^2 22.5 |E_{Xs}| cos(2\pi * 10^3 t + 195 + 96)$ $15^\circ - 45 + \phi_\circ \Rightarrow \phi_\circ = 60^\circ$ $Ex_0 = 100*(0^2 - 4.44*(0^{-3})))$ $E^{\text{P}}(z,t) = X^{\text{Q}} 4.44 e^{-0.126z}$ (os $(2\pi *10^3 - 0.126z + 60^\circ)$ mv/m $H^{(2,1)} = \int 100 e^{-0.126} \cos(2\pi + 10^3 - 0.126 \cdot \frac{1}{2} \cdot 15^{o}) mV/m$ $-82 = ln^{0.1} \rightarrow 2 = ln^{0.1} = ln^{0.1}$ $7 - 36m$ Example: Copper parameters $M=16.34 \text{ T} \times 10^{-7}$, 6.560×10^{9} $\overline{36}$ m O = 5.8 * 10 }, over what frequency range copper is a good conductor $\frac{e^{x}}{e^{x}}$ = $\frac{e^{x}}{2\pi e}$ 100 = $\frac{w}{e^{x}}$ < 0.01 = $\frac{1}{2}$ + $\frac{0.010^{x}}{2\pi e}$ $\frac{F(0.0175.8*107)}{200*10^{4}}$

6 $Example: Wave is trivialing in a medium with skin depth (s) Find E[38s]
 $E[0]$$ $\sqrt{2}$ $E E [3\delta_5] = E_{x_0} e^{-\alpha 3}$ = $e^{-\alpha 3} \frac{1}{\alpha} e^{-3} = 5$ %
 $E[0] = E_{x_0} e^{-0}$ $\sqrt{2}$ J example: In amedium with Er = 9, Mr= 1, 0= 0.1. Find the phase 5 angle by which \vec{H} leads \vec{E} at 100 M Hz \rightarrow $\overrightarrow{H} = \frac{1}{n_c} k^{\prime} \times \overrightarrow{E}$ $\frac{6}{1000} = \frac{0.1}{27*10^{3} \times 96} = 2$ \rightarrow $-1/2$ $n_{c} = \sqrt{\frac{M}{\epsilon}} \left(1 - \frac{je^{x}}{\epsilon^{2}}\right)^{-1/2} = \sqrt{\frac{{}^{n}Fe}{\epsilon_{0}} \frac{F}{\epsilon_{r}}} \left(1 - \frac{je^{x}}{\sqrt{c}}\right)$ $\frac{120\pi}{\sqrt{9}}\left(1-\frac{j}{2}\right)^{-\frac{1}{2}} = 84.04\sqrt{31.72}$ Θ_{n_r} = 31.72, \overrightarrow{H} leads \overrightarrow{E} by (-Onc); by (-31.72 $\overline{\partial}$ Example: Based on measurment at IMHz S_d = 2m^o, nc = 28.1 /45 $\overline{\lambda}$ $28115 - (1+3)00$ (b) wave length in the medium @ Phase volecity in the medium ω 45° of n > have good conductor θ θ \rightarrow 1 = (1+j) d θ \rightarrow 28.1 | 45 = (1+j) d θ $28.1 \cos 45 + 128.1 \sin 45 = \frac{86}{x} + \frac{1}{x}$

14 / 10 / 2013

 \mathbf{v}

T

W.

Tue

 \leftarrow

 $\frac{1}{2}$

 \mathbb{Z}

 $\frac{1}{10}$

 $2 = 1 = 0.5 = x$ 447×1 S_{s} $\frac{\alpha}{\sqrt{22.1/\sqrt{2}}}$ 0 = 0.5 = 0 = 2.5 x 10⁻²
 $\frac{22.1}{\sqrt{2}}$ 22.1/ $\frac{1}{\sqrt{2}}$ (181) $B = \alpha = 0.5$ $\frac{1}{10}$ $\lambda = 2\pi = 2\pi = 4\pi = 12.57m = 2$ $Up = f \lambda$ First Current Flow in agood conductor > For DC, current has uniform density over the wire cross section. > For time varing current density decreases exponentially to wards the axis of swire. $(h \cup I)$ $\vec{E}(0) = \vec{x}^{\prime} E_{0}$ $E(z) = x^2 E_0 e^{-xz} e^{-i\beta z}$ $\overrightarrow{H} = 1$ $\overrightarrow{2}$ \overrightarrow{X} \overrightarrow{E} $e^{-\alpha z} e^{-j\beta z} = y^{\prime} \overrightarrow{E}$ $e^{-\alpha z} e^{-j\beta z}$

 $J_{x}(z) = 6E_{0}e^{-\alpha z}e^{-i\beta z}$ $J_{0} = 0E_{0}$ $Jx(z) = J_0 e^{-\alpha z} e^{-j\beta z}$ (A/m²) For good conductor $(\alpha = \beta = 1)$ $Jx(z) = J_0 e^{-(x+j\theta)z} = J_0 e^{-(1+j)z/\delta_s}$ \leftarrow S_{5} Current Flow in a good conductor $I = \int_{Z=0}^{\infty} J_X(z) \left(\frac{w dz}{Area}\right)$ \sqrt{z} $= \omega \int J_0 e^{(1+j)z/\delta s} dz$ = $\overline{J_0}$ w $e^{-(1+i)2/8s}$ = $\overline{J_0}$ w $\overline{S_5}$
= $(1+i)/8s$ (1+j) $-(1+i)/S_5$ $V = F_0 L = \frac{J_0}{\sigma} L$
 $Z = \frac{V}{T} = \frac{J_0}{\sigma^2} L + \frac{(1 + j)}{J_0} = \frac{(1 + j)}{\sigma^2}$ ω

Zs (Surface impedunce) $\overline{e_{\alpha}}$ Impedance for aunit length (Utlm) and width (wi= 1m) $Z_s = \frac{1+j}{\sigma \delta_s} = Rs + jwLs$ a surface resistant $=\frac{\sqrt{\pi f M \sigma}}{\sigma}$ $R_S = \frac{\pi f}{\pi}$ $Rs =$ $\frac{L_S}{2\pi f} = \frac{1}{\epsilon W \sigma S_S \sqrt{1 + \frac{2}{\pi f \sigma}}}$ $\frac{1}{\sigma \mathcal{S}_s}$ \mathcal{L}_S $R = R_S L$ $rac{1}{\alpha \delta_5}$ width $width$ Coaxial cable reactance. For copper $\sigma = 5.8 \times 10^{17}$, Assume $f = 114Hz$ $SS = \frac{1}{\sqrt{\pi f H \alpha}} \frac{1}{\sqrt{9.066 mm}}$ $R = R$ S_{S} $R = R_S U$
Width $R^1 = Rs$ Il 65 $2\pi a$ $Rin = Rs$ $Rout = Rs$
 $2\pi i$ $R = R_{in} + R_{out}$ $2\pi b$ $755 - 4$ $R_{\text{eff}} = \frac{R_s}{2\pi}$ $\frac{l}{a} + \frac{l}{b}$ $\n *l*$ 216

THE

A

La

ALL

 $example - Copper Coxial Cable 0 = 5.8×10³, 6.1, Mr. 1)$ outer thickies = 0.5mm, a=0.5cm, b=1cm, Find:-<u>O Surface resistance (Rs)</u> 2 Ac resistance at 10 MHz QRAC/RDC $\frac{\alpha}{\omega \epsilon}$ >>1 good conductor $S_{S} = \frac{1}{\alpha} = \frac{1}{\sqrt{\pi f + \omega}} = \frac{1}{\sqrt{\pi * \omega^{7} * \frac{7}{\sqrt{10}}}}$ 0.021 mm $\frac{d}{\delta_s} = \frac{0.5 \text{mm}}{0.021} \approx 25 \text{ (very thick)}$ $R_s = \frac{1}{\sigma^2 \delta_s} = \frac{\pi f M}{\frac{g}{\delta s}} = \frac{1}{5.8 \times 10^7 \times 2.1 \times 10^{-5}}$ $R^2 = R_S / \frac{d^4S}{a} + \frac{1}{b} = \frac{8.4 * 10^{-4}}{2\pi} / \frac{10^{13}}{2}$ $= 0.039 - L/m$ R_{AC} (lom) = R^4 + 10 = 0.39) stbib $R_{DC}(10m) = \frac{1}{\alpha} \frac{L}{A_{in}} + \frac{1}{\alpha} \frac{L}{A_{out}}$ 計标以 $= 7.624 * 10^{-3}$ $=$ $\frac{10}{6\sqrt{\pi}}$ $\frac{1}{0.005^2}$ $\frac{1}{0.001^2 \div 0.0045^2}$ oWa RAC & 50 times R_{DC} $\overline{\mathcal{A}}$ d π s **Real composition to the control of**

Power Density poyntiny vector 5 \overline{z} $\overrightarrow{S} = \overrightarrow{E} \times \overrightarrow{H}$ (time domain) (w/m^2) $P = \overrightarrow{S} \cdot \overrightarrow{n} \quad \text{d}A$
A surface normal $=$ SA $cos\Theta$ Time average power density $S_v = \frac{1}{2} Re \overrightarrow{F} \overrightarrow{H}^* (w/m^2)$ For aloss less medium $E(\tau) = (x^6 E x_0 + y^6 E y_0) e^{-jkz}$ $\overrightarrow{H(z)} = 1 + \overrightarrow{x} \overrightarrow{F} \Rightarrow 1 = \overrightarrow{r} \times (x^{n}F_{x_{0}} + y^{n}F_{y_{0}})e^{-jkz}$ $=$ $\frac{1}{2}$ $($ $y^6E_{xo} - x^6E_{So})e^{-jk\tau}$ $S = \frac{1}{2} Re \left[\overrightarrow{E} \times \overrightarrow{H} \right] = \frac{1}{2} Re \left[(x^2 E_{xo} + y^2 E_{yo}) e^{-jk\overrightarrow{\tau}} \times (\frac{1}{2} [Ex - x^2 E_{yo}] e^{-jk\overrightarrow{\tau}} \right]$ = $\frac{1}{2}$ $Re\left[\frac{1}{2}E_{x_{0}}^{2} + \frac{Z^{n}E_{x_{0}}^{2}}{Z} \right]$ $\left[\frac{1}{2}E^{2}E_{x_{0}}^{2} + E_{y_{0}}^{2} \right]$ $=\frac{1}{\sqrt{1-\frac{1}{2}}}$

lossy medium $E^{2}(z) = (x^{n} E x_{0} + y^{n} E y_{0}) e^{-x^{2}z} e^{-i\theta^{2}z}$ $k^2x_0 + y_0 e^{x_0}e^{-x}e^{-x}$
 $k^2x E = 1 Z^2 x (x^2Ex_0 + y^2Ex_0)e^{-x^2}e^{-i\beta x}$ $\overrightarrow{H} = \frac{1}{n}$ n_c
= $\sqrt{yE_{x_0}E_{y_0}E_{y_0}e^{-\alpha^2}e^{-i\beta^2}}$
= n_c $X I \bigcup_{\gamma_{c}} Y E_{x_{0}} - X E_{y_{0}}]e^{X}$ $\overrightarrow{S_{\alpha}} = \frac{1}{2}$ \overrightarrow{Re} $[(x^2E_{X_{\alpha}} + y^2E_{Y_{\alpha}})e^{-x^2}e^{-y^2}e^{-y^2}]$ $\eta_c = \eta_c e^{j\theta_1}$ = $\frac{1}{2}$ Re $[(Z^{n}E_{x^{n}}^{2}+Z^{n}E_{y^{o}}^{2})e^{-2\alpha Z}]$ $S_n = Z^n |F_0|^2$ $e^{-2\alpha E} cos(\theta_n)$ $2|n_c|$ $problems - 1, 3, 4, 6, 11, 14, 15, 16, 19, 21, 23, 28$ $\overrightarrow{S} = \overrightarrow{E} \times \overrightarrow{H}$ $S = E X H$
 $S = \frac{1}{2} Re \overline{LE} x \overline{H} = Z^2 \overline{L} \overline{LE}$
 27 (w/m²) loss less $= \frac{2}{2} \frac{|E_{o}|^{2}}{n_{c}} e^{-2d^{2}} \cos(\theta_{n})$

 $18 / 10 / 2018$

Example :- A submarince at depth 200 m uses awire antenna to recive at IKHZ. Find the average power density assumming $|E_0| = 4.44$ mV/m ; $\alpha = 0.126$; $\eta_{C=0.044}$ /45° $S_{av} (z) = Z^{0} |E_{o}|^{2} e^{-2\alpha z} \cos(\theta n)$ were not believe and added = $\frac{2^{n} (4.44 * 10^{-3})^{2}}{2*0.044}$ $e^{-0.126}cos(\theta_{1}) = 2.1 * 10^{-26} \text{ W/m}^{2}$ Example: A wave travelling in anon-magnatic medium with Er= 9 has E-Field $\vec{E}(z,t) = \vec{J}'$ 3 cos $(\pi * \vec{0}^t t + kx) - \vec{z}$ 2 cos $(\pi * \vec{0}^t t + kx)$ $Find:$ Odirecting of prop $\rightarrow -\nu e \hat{x} (-x^{\prime}).$ (2) average power carried by wave. $n = \frac{N}{E} = \frac{N_0}{E_0 E_r} = \frac{n_0}{\sqrt{E_r}} = \frac{120T}{1300} = \frac{10T}{10T}$

Save $\frac{k^r}{27} = -x^r \frac{(3^2 + 2^2)}{2440T} = -x^r \cdot 0.05 \frac{W}{m^2}$ O CONCIDENTS X KON

 $Example:-plane wave E = x^0 100 e^{-20y} cos(2\pi *10 t - 40 y)$ $H = -t^0$ 0.64 e^{-20y} Cos (2 $\pi * 10t - 40y - 36.85^\circ$) \overrightarrow{H} = 18k \overrightarrow{E} 00. η 4) Find the power density of the wave. 6) Find the avarge power entiring the box. $\overrightarrow{S} = \overrightarrow{E} \times \overrightarrow{H}$ = $X^0(\log P^{-209}\cos(\omega t - 409))X (-70.64e^{-209}\cos(\omega t - 409-36.85))$ $\frac{1}{2}$ 9 64 e^{-403} $\frac{1}{2}$ cos (2wt-80y - 36.85) + cos (36.85) Power entrey = $ac \times 3 - 5av$ $y = b$ $S_{av} = 3.5\frac{P_0^2}{27}e^{-\frac{14J}{2}}\cos(\theta n) = 9.8\times \frac{E_0^2}{27}$ (1- $e^{-2\alpha b}/\cos(\theta n)$) $H = 1 + E \Rightarrow -Z^0 \circ 64 e^{-269}$ constant = $\frac{1}{n_c}$ s x x 100 p 205 p x 0) $\eta_c = \frac{100}{0.01} e^{+\sqrt{36.85}}$ This D. X $\frac{100^{2}}{2 \frac{100}{2}} \cos(36.35^{\circ}) \left(1 - e^{-40b}\right) \text{ watt}$ $S_{av} = \frac{1}{2} Re \left[x'(100 e^{-263} e^{-3/103}) \times \pm (0.61 e^{-336.85} e^{-263} e^{-3763}) \right]$ $\frac{2}{2}$ Ne 1 100 c/ (1)

 $21 / 10 / 2018$ Sund CH. 8 :- Re Wave Reflection and Transmition * Normal incidence (lossless medium) $0^{\sim}=0$ $M2C2$ $M_1 \n\in \mathbb{N}$ The bondary surface is (Z=0) \overline{e} $medium - 1 : 760$ $medium = 2 : Z20$ incidentway In medium We have X-polarized wave. transmitted wave $\frac{1}{10}$ (E, H) i: incident reflected k_1 : direction of incident wave = z^2 $median₁$ $median₂$ $\frac{d}{dt}$ Reflected wave $\frac{1}{\sqrt{2}}$ $(\overrightarrow{Er}, \overrightarrow{H_{f}})$ $k_1^2 = -2^2$ reflected transmitt $\frac{1}{2}$ T_{0t} Transmitian wave \mathbf{e} $\frac{1}{\sqrt{2}}$ $(\overrightarrow{Ft}, \overrightarrow{Ht})$ $\overrightarrow{k}_{t} = \overrightarrow{t}$ incident medium medium₂ Incident wave m. $E_{\mathbf{z}}(z) = x^r E_{10} e^{-j k r^2}$ $H_1(z) = \frac{1}{\eta} k'_1 x E_1^2$ $12x^2$ X x² Eio e^{-3k_1z} $\frac{1}{\sqrt{2}}$ $= 1 \int E_{10} e^{-3k_1 z}$ μ n $\frac{1}{10}$ \mathbf{u} **IN** L.

 \bullet $\overrightarrow{E_{r}}$ t٢ \overrightarrow{Hr} $\frac{1}{H}$ → y KOUP NUMBER *Reflected wave $E_r(z) = x E_r e^{jkz}$ 1 (-2ⁿ) $X x^2 E_1 e^{j k_1 z}$ $H_f(z) = 1 - k \int_X \overleftrightarrow{F_f(z)}$ $\overline{\eta}$ η e^{jkz} \int Fr M_1 $H₂$ η_{1} ϵ . C $k_2 = w\sqrt{n_2 \epsilon_2}$ $k_1 = w \sqrt{M_1 \varepsilon_1}$ $rac{\mu_2}{\epsilon_2}$ $\frac{M_1}{C}$ * Transmited wave $E_{t}(z) = x^2 E_{t} e^{-jkz}$ JkzZ Z^{\prime} X X E_{10} e $H_t(z) = 1$ $K_f Y F_f(\vec{z}) \rightarrow$ $\frac{1}{\eta_{2}}$ $\overline{\eta_{2}}$ $y^6E_1e^{-jk_2z}$ $\overline{\eta}_{2}$ Ä

Scanned by CamScanner

Relating Er. and Et. to Ei. All wave have E H fields tanyontional to the boundary. Boundary condition :-Tanyential Eand A[>] Fields are continuus accross the boundary. Medium - 1 $E_i(z) = E_i(z) + E_i(z) = x^c (E_i \circ e^{ik_i z} + E_i \circ e^{ik_i z})$ $H(z) = \int_{0}^{1} (E_i e^{-i\theta}) e^{-i\theta} d\theta$ = $E_{ro} e^{-i\theta}$ Medium - 2 E_2 (z) = X E_1 , e^{-jk_1z} $H_2(z) = x^2 E_1 e^{-x^2}$
 $H_2(z) = y^2 E_1 e^{-x^2}$ $\frac{\times \text{Bondavg condition}}{\text{(AE, (z=0) = E_2(z=0))} \times (\text{EisF}F_10) - E_7 + \text{Eis-FisE}F_0 \dots 0}$ $\frac{E(k)}{N}$ - $\frac{E(k)}{N}$ / 1/7 m/ \overrightarrow{B} $\overrightarrow{H_1(0)}$ = $\overrightarrow{H_2(0)}$ = \overrightarrow{y} $\left(\frac{\overrightarrow{E_{10}}}{\eta} - \frac{\overrightarrow{E_{10}}}{\eta}\right)$ = \overrightarrow{y} $\frac{\overrightarrow{E_{10}}}{\eta}$... (2) $E_i = E_{r0} = E_i = E_{r0} \Rightarrow E_i = E_{r0} = E_{r0} + E_{r0}$
 η_1 η_2 η_2 η_1 η_2 η_1 η_2 $F_{10}(n_{2}-n_{1}) = F_{10}(n_{2}+n_{1})^{2t-n_{1}+2t-1}$ $\frac{1}{\sqrt{\log(1/\epsilon)}}$ F io = $n_2 + n_1 = \lceil$ (reflection coeffitiant) $n_{2,-}n_{1}$ E re

 $E_i = -\left(\frac{E_i - E_i}{\eta}\right) = E_i$ $E_{10} (\frac{2}{\eta_1}) = E_{10} (\frac{1}{\eta_2} + \frac{1}{\eta_1})$ E_{10} $\left(\frac{2}{\gamma_1}\right)$ = E_{T0} $\left(\frac{n_1 + n_2}{\gamma_1 n_2}\right)$ \Rightarrow E_{T0} = $\frac{2n_2}{n_1 + n_2}$ T (transmition cooficient) = 2 n2 $\eta_1 + \eta_2$ τ = $1 + \Gamma$ *For non magnatic medies M1 = M2 = Mo $\eta = \frac{H_0}{E_0E_1}$ $\eta_2 = \frac{H_0}{E_0E_1}$ $\eta = \frac{1}{\sqrt{2}}$ $M = \sqrt{\epsilon_{r_1} - \sqrt{\epsilon_{r_2}}}$ non-*mygmagnetic* $\sqrt{\epsilon_{r_1}} + \sqrt{\epsilon_{r_2}}$ Power Flows in Lossless medim $Sav_1 = 1$ $Re[\overline{E_1}^x \times \overline{H_1^*}]$ $E_{1} = x^{n} [E_{1}e^{-jk_{1}z} + j^{n}E_{1}e^{-jk_{1}z}]$ $\vec{H} = \vec{J}' \left[\frac{E_{io}}{\eta} e^{-j k_{i} z} + \frac{1}{\eta} \frac{E_{io}}{\rho} e^{j k_{i} z} \right]$ $H_1^* = y^n E_i e^x e^{j k_i z} + P_i^* E_i e^z e^{-j k_i z}$ $Sav_{12} = \frac{1}{2} \left[\frac{z^2 [E_{10}t^2 (1\mp |M|^2 - \mu^2 - \mu^2 - \frac{3}{2}Ik_1Z + \mu^2 - \mu^2 - \frac{3}{2}Ik_1Z)]}{T} \right]$

 \rightarrow $\frac{1}{3}$ $e^{j\theta r} e^{j2k_1^2}$ IP $e^{-j\epsilon_r}e^{-j2k_1\epsilon}$ $\frac{\times 2j}{2j}$ T. $1 - 1T^2 + 2j sin(2k_1z + \theta r))$ $\frac{|E_{i0}|^{2}}{2}$ t. $\frac{1}{27}$ $(1-\frac{1}{2})^2$ W f $\frac{1}{\int \frac{1}{\int \frac{1}{2}x^2}x^2}$ $= \frac{z^{n}}{|E_{io}|^{2}}$ $\overrightarrow{Sav_i}$ $\frac{a}{1}$ $2\eta_1$ $2n$ r^{2} Savi $\frac{1}{\pi}$ $\frac{1}{\sqrt{2}}$ x^2 τ E_i $e^{-j k_2 z} \times \sqrt[3]{\tau^*} E_i$ $e^{j k_2 z}$ E_t x H_t $\frac{1}{2}$ Re Re $=$ $Sav₂$ $\frac{1}{2}$ \blacksquare K $Re\left[\frac{1}{2} \right] \frac{1}{\pi} \frac{1}{2}$ $=\frac{1}{2}$ \mathbb{Z} $= \sum^{\prime} | \overline{L} |^2 | |E_{io}|^2$ $\overrightarrow{S_{\alpha v_2}}$ \mathbb{Z} $2\eta_2$ **CA** $\frac{1}{n}$ $1 - 1$ Sav_i Loss less \overline{M} \mathbb{Z} $\overline{\eta}_{2}$ $\overline{\eta}$ aa $\sqrt{10}$ $\sqrt{6}$ LO T TO \Box \Box

example: Er, = 9, normal incedunt, Erz = 4, both media are non magnatic givin Hi(Yit) = 2° 2cos (217 x10⁹t-ky) (A/m) $Find:$ 19 time domain expression for E, H in each of the two media.
 $E(y,t) = -\eta$, k, X H; $n_1 = n_0 = 120 \pi = 40 \pi -1$ $k_1 = \frac{W}{C} \sqrt{C_1} = \frac{2\pi * 10^9}{3 \times 10^9} \sqrt{9} = 20\pi$ $E'(y,t) = -x^2 251.34 \cos(2\pi * 10^9 t - 20\pi y)$ $k_2 = \frac{\sqrt{6}}{6} = \frac{\sqrt{0}}{3}$ $\eta_2 = \frac{\eta_0}{\sqrt{\epsilon_{r_2}}} = \frac{120\pi}{2} = 60\pi \sqrt{\frac{1}{161}}$ $\frac{\Gamma_{2} - \eta_{2} - \eta_{1}}{\Gamma_{2} + \eta_{1}} = \frac{20 \pi}{100 \pi} = \frac{1}{5}$ $\eta_{2} + \eta_{1}$ $\overline{L} = 1 + T^4 \Rightarrow \overline{L} = 1.2$ $E_r^*(t,y) = \int E_i(y,t) = -x^6(50.27 \cos(2\pi * 10^9 t + 20\pi y))$ $E_{1}(y,t) = E_{1}(y,t) + E_{1}(y,t)$ $=-X^{(251.39)}cos(217*10^{9}t-2017y)+X^{(50.27}cos(217*10^{9}t+2017))$ $\eta_{2.560\pi}$ $E_{t}(y) = -x^{n}(T - y_{0}\pi) e^{-jkz}$ k_2 = 41.917 $E_{t}(y,t) = -x^{(46\pi \cos(2\pi *10^{9}t - kz))})$ $=\int x^{1/301.593} \cos(2\pi * 10^{9}t - 41.92y)$

 $25/10/2018$

 \mathbf{u}

i.

 \mathbf{u}_i

 \mathbf{r}_k

 \mathbf{u}_i

 \mathfrak{m}_L

Ĩ.

ún.

Ψų

W O

W

16

Œ

 $Hf(y,t) = 1 k r' x Ec = 1 (-y' x - x' Bexzd cos (wt + 20\pi y))$ $=\frac{16}{10\pi}$ $\left(-\frac{7}{2}\cos(\omega t + 20\pi y)\right) = -\frac{2}{2}0.4 \cos(\omega t + 20\pi y)$ (R/m) $\frac{1}{\sqrt{17}}(y_{11}) = \frac{1}{7} k + xE_{1} - 16x(y' - x' - 46x' - 60x + 3))$ $=21.6$ Cos (Wt- $10\pi y$) (A/m) also le $25avi = 9Eiof - 9(80\pi)^2$ = 9 80 m/m² $\gamma_{2} + \gamma_{1}$ $S_{\text{avf}} = -y^2 \sqrt{1^2 S_{\text{av}}^2} = -y^2 (0.04) 80\pi = -y^2 10.05 \text{ w/m}^2$ $\frac{1}{\sqrt{2\pi}} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{2} \cdot 1.44 \frac{1}{20} = \frac{1}{24.127} \cdot 127 = 11.127$ $2\eta_2$ きじゅく \rightarrow

 ϕ

P

I.

 $28/10/2018$

T

The

TOW

 \overline{m}

Alle

CCL

TIEL

COM

THE

 $\sqrt{10}$

ATT

 $ex:= A1GHE \times x$ polarization plane wave in Air travilling in the $(+z)$ direction is insident on the (X-y) plane (Z=0) with Eig = 12mV on anatorial Surface with $(Mv=1, E=1\bar{k}, \alpha^2 = 5.3*10^7$ S/m) . obtain time domain expression for E , H in the meadium $E_1(z) = x^6 E_0 e^{-j k} k^2 (1 - \frac{1}{2}) (1 - \frac{1}{2})$ $C = \frac{W}{k} = UP^2$ $k_1 = \frac{W}{C}$ $k_1 = 2\pi$ n_1 = n_0 = 120 π = 377 $\frac{\sigma'}{\omega t} = \frac{5.8 \times 10^{7}}{2\pi \times 10^{9} \times \frac{1}{36\pi} \times 10^{-9}} = 10^{9} \text{ N}100$ good Conductor $n_{C2} = (1+j) \frac{\pi F M}{\pi} = (1+j) 8.25 * 10^{-3} M$ = $n_{c2} - n_{c1} = (1+i) 8.25 * 10^{-3} - 377$ $(1+i)8.25*10^{-3}+377$ n_{c2} + n_{c1} $\tau = 1 + \sqrt{20}$
 $F_1(z) = x^6 E_{10} (e^{-jkt} - e^{ik_1z}) 2j = -x^6 E_{10}(2j) sin k_1z$
 $2j$ $E_1(z,t) = -X^2 24 \cos(\omega t - \frac{\pi}{2}) \sin k_1 z$ $=$ X^2 24 $sin(20T + 7) sin(2T + 16t) mv/m$

 $H_1(z,t) = \frac{1}{n} Z^N X X^T$ is $e^{-3k}Z + 1 (-z) X X^T E_{10} e^{ikz}$ $-\frac{3}{5} + \frac{3}{5}$ $e^{j k_1 z}$ $=\frac{8}{377.71}$
377.71 \mathcal{C} $= 564 \cos(\frac{20\pi}{3} \cdot \cos(2\pi i \cdot 10^{4} t) (\mu A/m))$ * if Γ = -1 the boundary between dielectric and perfect conductor. 371 $120H$ $H = R \cdot R$ 风气下后 $1 - 1 + 5$ $e^{-i\mathbf{k}t\mathcal{I}} - e^{-i\mathbf{k}_1\mathcal{I}}$ 24 $\left(\frac{1}{2}+\frac{1}{2}\right)$ or 5.1 m 2 my verd that was not read

Snell's Low Bondary between two dielectric media (E, M,); (E2, M2) يحملا A' , O' $= Ar_0 = 0 At$ $U_{P,}$ U_{P_2} UP_x $\overline{\mathbf{e}}$ $A_i \circ = 00$ sin Oi Ò \sim 3 θ ro = 00'sin θ r $OAt = OO \sin \theta t$ $00'sin\theta i = 00'sin\theta r$ \Rightarrow Sin θ_i = Sin θ_i $4P_1$ $4P$ $00'$ sin Θ i = $00'$ sin Θ t θt up_2 Snell's Low for refraction $\overline{u}P$, θ _i UP_{2} UP_1 $=$ $\sqrt{M_1 E_1}$ $\sqrt{M_{2}G_{2}}$ A \overline{e} $sin \theta t$ n_1 $Sin \theta$; h_{2} CILID DACE $n_1 < n_2$ Index of Refraction MENT CET M_f ϵ $n =$ \overline{up} $W₆G₆$ Θ θ $n_1 > n_2$

critical angle Oc Is the induced angle θi at which $\theta_i = \frac{\pi}{2}$ $sin \theta t$ n_{1} n_{2} $\sin \theta_c$ $\sin \theta i$ n_2 $\frac{1}{\Theta t}$ =90 $=\sqrt{M_{28}R G_{28}F (N_{2}M_{0})}$ $sin \theta c = 2$ n_1 $\sqrt{M_{18}}$ F_{16} 78 E_{28} $= 628$ (non-magnatic) m, $J\epsilon_{\mathfrak{w}}$ E_{18} $n₂$ $Sin \theta_3$ n_{2} $sin \theta_2$ n_{1} n_{i} $sin \theta_1$ $Sin \theta_{2}$ n_{2} $\sin \theta_3 = n_2 \sin \theta_2 \implies \sin \theta_3 = n_2$ $sin \theta$ $*$ n_1 $n₂$ \overline{n} n. n_{\circ} excipton $\theta_3 = \theta_1$ \mathcal{L} exciptance η . $\overline{\eta_c}$ * الرسمة والمجمة بالكيان Fibber $\alpha < 0$

May bit rate T: bit duration Θ_2 .
spread in Fiber $f = \frac{1}{T}$ $T \geq 2T$ $\frac{t_{min}}{u\rho} = \frac{L}{c/nf} \frac{lnf_0}{C} \frac{(c - nf)}{u\rho}$ $\frac{1}{\cos \theta_2}$ $\frac{1}{n_c}$ $\frac{n_f}{n_c}$ $\frac{1}{n_f}$ $\frac{n_f}{n_c}$ $lmay$ $\frac{t_{max}}{u\rho} = \frac{lnf/nc_{max}}{c/nf} = \frac{Lnf^{2}}{c/nc}$ $=$ Cnc
2 Leff(nc-nc) $f_{max} = \frac{1}{2\tau}$ $example: - 1 km opt: Faiber 1.52, 1 c = 1.49$ $\theta a = \sin^{-1} \left(\frac{1}{n_e} \sqrt{n_f^2 - n_c^2} \right) = \sin^{-1} \left(\frac{1}{120\pi} \sqrt{1.52^2 - 1.99^2} \right)$ $=$ $\frac{1}{\sqrt{17}}\left(\frac{1}{12}\right)^{1/2}\left(\frac{1}{12}\right)^{1/2}$ $f_{P} = \frac{(n_c + 4.9013 * 10^{6} Hz)^{5}}{2L n_f (n_f - n_c)}$

Wave reflection and transmission of oblique incident *Plane of incident :- Plane containing the normal to the boundary and the direction of propagation Best way to solvies reflection / transmission problem. the incident wave (Ei, Hi) into 1) Dec a) per pen dicular polatized component. (Ei1, Hi1) b) parrallel polarized component $(\vec{E}_{\text{int}}, \vec{H}_{\text{int}})$ 2) Reflected wave $\left(\overrightarrow{E_{r}} \overrightarrow{H_{r}} \overrightarrow{H_{r}} \right)$ χ Х 5.1 $\overline{\overline{z}}$ $\mathbf{Q}_{\mathbf{r}}$ \widetilde{z} perpendicual polarization $H_{i,j}$ Parrallel polarizied $19013800 t + 2150$

The c

Allia

W

WAR

KEU

 W_{ij}

Aut

ATL

ALL

TILL

ALL

perr pendicular polarization k_{1} \mathbf{M} $E_i = \sqrt[n]{E_{i0}} + e^{-j k_i x_i}$ E_{1} $\overline{\epsilon}$ _n $Hilz = \int EidL e^{-jk_1x_i}$ \overline{z} pi E Coix k_2
 μ_2 $\Delta Z \rightarrow \Delta Z \cos \theta i$ $\overline{\epsilon}$ $DX \rightarrow AX \sin \theta i$ $cos(40-0i) = sin(0i)$ $X_i = X \sin \theta_i + Z \cos \theta_i$ $n \geq 1$ $\sqrt{\frac{9}{9}}$ 'Sin(900 $Ei_{\perp} = \frac{\sum_{i=1}^{n} E_{i} L_i}{\sum_{i=1}^{n} E_{i}} = e^{-j k_1 (x \sin \theta_i + Z \cos \theta_i)}$ GSE $\overrightarrow{H_{i}}$ = $(-x^2\cos\theta_i + z^2\sin\theta_i)$ $\overrightarrow{E_{i\circ j}}$ e^{-jk} . $(x\sin\theta_i + Z\cos\theta_i)$ $\overline{\eta_i}$ $X_i = -X^n \cos \theta_i + Z^n \sin \theta_i$ Reflected wave :- $\overbrace{E_{r} \perp}^{K} = \frac{\overbrace{v_{j1}}^{K} \overbrace{v_{j2}}^{K} \overbrace{v_{j3}}^{K} \overbrace{v_{j4}}^{K} \overbrace{$ Reflected wave :- $\overrightarrow{Hr}_{1} = (x^r \cos \theta r + z^r \sin \theta r)$ $\overrightarrow{Er} = (x^r \sin \theta r)^r$ J_2 CaS Θ_1 + η - Cas Θ_k E_{t} - $y^k E_{t-1} e^{-jk_2 (z_{cos} \theta_{t} + x_{sin} \theta_t)}$ $e^{-j k z (x sin \theta t + \frac{z}{c} cos \theta t)}$ $(-x \cos \theta t + z^2 \sin \theta t) E t - 1$ n_{2}

 $69 / 11 / 2018$ Appling boundary conditions \overrightarrow{AB} $\overrightarrow{Eiy_1} + \overrightarrow{Ery_1}$) = $\overrightarrow{Ety_1}$ \overline{z} =0 $F_{i} = E^{-j k_1 X \sin\theta_i} + F_{i} + E_{i} + E^{j k_1 X \sin\theta_i} = E_{i+1} e^{-j k_1 X \sin\theta_i}$ \boxed{B} $\overrightarrow{H_{i}y_{1}}$ + $\overrightarrow{H_{r}y_{1}}$ = $\overrightarrow{H_{t}y_{1}}$ $\frac{1}{\sqrt{12}}$ Cos(Gi) $e^{-ik_1x\sin\theta i} + \frac{Fr\circ\theta}{r}$ Cos(Gr) $e^{-jk_1x\sin\theta r} = -Er\circ\theta \cos(\theta t) e^{-jk_2x\sin\theta t}$ η. $I)Fi_{01} + Ef_{01} = Ff_{01}$ 2) $\frac{q_{00}}{n}$ $cos (0i)$ $[-E_{101} + E_{101}] = -cos(0i)E_{100}$ η . $19N2$ M_1 = E ra \perp = n_2 cos θ i = η , cos θ i $I_1=1+1$ $\eta_2 \cos\theta_1 + \eta_1 \cos\theta_1$ E_{α} 1 \overline{L}_1 = E to $1 = 2$ η_2 $\cos \theta_1$ $F_{\rm in\perp}$ η_{2} cos Θ i + η_{1} cos Θ_{\dagger} - if medium 2 is perfect conductor $6 = \infty$ $(4\Theta n/2) + 4\Theta$ and $\n *n*₂ = 0$ $T_{12} = 0$
 $T_{13} = 1$, $T_{13} = 0$ - For non-magnatic conductor (M, = M2 = M0) $M_{1} = \cos \theta i - \sqrt{(\epsilon_{2}/\epsilon_{1}) - \sin^{2} \theta i}$ $\overline{Cos \theta_i + \sqrt{(E_z/E_i) - Sin^2\theta_i}}$

8 $11 / 2018$

 Γ_{\perp} = $\cos \theta$ i - $\sqrt{(e_2/e_1)-\sin^2 \theta}$; $cos \theta_1 + \sqrt{(\theta_2/\theta_1)\sin^2 \theta_1}$ We have used $\frac{\epsilon_2}{\epsilon_1} = \left(\frac{n_2}{n_1}\right)^2$ "SNLS Low" example: plane wave air is incident on soil plane (Z=0) Given: $E_{i,l} = \frac{\sqrt{100}}{100} \cos(\sqrt{u}t - \pi x - 1 - 73 \pi z)$ V/m , soil is loss less, when with $(Er=1)$, non magnatic. Find: $I\n *a* Find k₁, k₂, \n *a*; \n *b* Find all fields (E, H) in both medium.$ $X-Z$ plane is the incident plane prop $(+z^r)(+x^r)$ directions, $E_{i,t} = 4^{n} 100 e^{-j\pi x-jt}$. 73 $\pi z = 4$ 100 e k_1 (Z cos θ_i + X sin θ_i) = k_1 Z cos θ_{i+1} k, x sin θ_i $\overline{\mathcal{L}}$ k_1 Z_{cos} θ i+ k₁ X sin θ i = π X + 1.73 π Z $k_1 \sin \theta = \pi$, $k_1 \cos \theta = 173\pi$ k_1^2 Sin $\theta_1^2 + k_1^2 \cos \theta_1^2 = \pi^2 + 173 \pi^2$ k_1^2 (Sin $\theta_1 + \cos^2 \theta_1^3$) = $\frac{1}{4}$ $\frac{1}{4}$ π^2 (1+1.73²) $(1.475 + 1.475) - 89.00$ $(1.475 + 1.435 + 1.435)$ k_{\perp} f_{22026} (for f_{14}) f_{202} (f) f_{22}

 $k_{1}sin\theta i = \frac{\overline{\kappa}}{1.73\pi}$ $\rightarrow tan\theta i = 1$ $\rightarrow \boxed{\theta i = 30}$
 $k_{1}cos\theta i = 1.73$ $k_1 \cos \theta$ $\frac{\sin \theta t}{\sin \theta i} = \frac{k_1}{k_2}$ \Rightarrow $\sin \theta t = \frac{\sin \theta i}{\sqrt[2]{\pi}} = 0.25$ θ + = $\sin^1(0.25)$ = 14.5° $M_2 = \frac{\eta_0}{\sqrt{f}} = \frac{120 \pi}{\sqrt{y}} = 60 \pi$ $M_1 = 120 \pi = 37.7$ $E_{101} = \sqrt{E_{101} - 0.38 * 100} = -38$ $E_{r_{0}l} = \sqrt{y^{n}(-38)}e^{-Jx_{r}k_{1}}$ = $\sqrt{25}e^{-Jx_{r}k_{1}}$ = $\sqrt{25}e^{-Jx_{1}(-2cos\theta r + xsin\theta r)}$ $=$ $\int -38 e^{-j(\pi x - 1.73\pi z)}$ and $=$ $\int \pi z^{3/2} e^{-j(\pi x - 1.73\pi z)}$ $E = \int \frac{1}{1 - 2 \sin \theta} e^{-i(\pi x + 1.73\pi z)} - 9.38 e^{-i(\pi x + 1.73\pi z)}$ $E_{\text{to}} = U_{\text{to}} E_{\text{to}} = 0.62 \times 100 = 62$ $F_{i1} = F_{t1} = 9^6 62 e^{-jkz}$ $L = 9$ b2 e
= $9^{\circ}62$ $e^{-j2\pi(2\cos 19\cos 19.5 + x\sin 19.5)}$
= $9^{\circ}62$ e^{-j2 $\pi(2\cos 19.5 + x\sin 19.5)$} $E_{11} = y^1 \left[100 f cos (wt - \pi x - 1.73 \pi z) - 38 cos (wt - \pi x + 1.73 \pi z) \right]$ F_{2} = y^{6} 62 cos (wt- π x -387 π z)

 $\frac{1}{n}$ case k i \times $\overrightarrow{E_{i\perp}}$ $R_{L,1}$ $k_i = \cos \theta_i \; z_+ \sin \theta_i \; x_0 = z_0 \; 0.866 + \hat{x}_0 \cdot 5$ $\overrightarrow{H_1}$ = 1 (2^o 0.866 + x^o 0.5) x (9^o 100 e⁻³ (T(x+1.73TE) ν $= 1$ $\left(-x^{2}86.6 + z^{2}50\right)e^{-3(\pi x + 1.73\pi z)cos y}$ $=$ $(x^{n}0.2297 + z^{n}0.1326)$ $cos(wt - \overline{1(x - 1.73} \pi z))$ $k_1^2 = 2^2 (-\cos \theta_1) + x^2 (\sin \theta_1) = -2^2 0.866 + x^0 0.5$ $\overrightarrow{Hr}_{\perp} = \frac{1}{377} \left(-2^{x} 0.266 + x^{0}.5\right) \times (-3^{x} 38) e^{-j(\pi x - 1.73\pi z)}$ $18.7 - 12$ med zon - Bryggede Spange Q_2 cos A, -1

AND

COL

CO

 $\sqrt{2}$

Example: Uniform plane wave in oir having $E_i = -\sqrt{2}cos(\omega t - \gamma x - 3z)w$ is incident on adjelectric slab Z20 with (Mr=1, Er=2.5, 0=0) $Find$:-Dangle of incident. 2 angle of transmition. Q refflected of transmited \vec{E} -fields 4 " of transmitted H-Fields. $E_i = 9E_{i-1}e^{-3k_1(Xsin\theta_i + 2cos\theta_i)}$ $Eio_1 = -8$ $k_1 \sin \theta = 4$ \Rightarrow $\tan \theta = 4$ $\Rightarrow \theta = 53.13$ k_1 Cos $\theta_1 = 3$ k_1 Sin $\theta_1 = 4 \Rightarrow k_1 = 5$ $\frac{W\sqrt{N_{0}\epsilon_{0}}}{W\sqrt{N_{0}\epsilon_{0}\epsilon_{0}}}$ k_{1} $=$ $\frac{1}{\sqrt{2.25}}$ $\frac{5}{5}$ $\frac{k_2}{2}$ $\frac{1}{\sqrt{2.25}}$ k_{2} $12.575.8951$ k_{2z} 7.91 $\eta_{1} = 120$ TC 0.51 $\sin \theta_1 = 5 \Rightarrow \sin \theta_1 = 26.395$ 7.51 $Sing.$ $1 = 72 \cos \theta i - 11 \cos \theta + 2$ \$54898 45-537TC - 103.51TC $45.537T + 103.5T$ $\eta_{z}\cos\theta_{1}+\eta_{1}\cos\theta_{t}$ 0.38896 τ_1 = 0.611)

 $Er_{01} = (-0.389)(-8) = 3.112$ $\overrightarrow{Er}_{1} = 3^{n}3.112 e^{-jk_1(xsin\theta r - zcos\theta r)} = 3^{n}3.112 e^{-jk_1(xz + 4x)}$ $4^{N}3.112$ Cos (wt +37-4X) $E_{t\perp} = y^6 - 4.888 e^{-jk_2(1 + x_{cos\theta + 1} + 2sin\theta_1)}$ θ i = 53.13° = Θ r = y^2 - 4.888 $e^{-j(16.82-x)(145)}$ $\theta_1 = 30.39^{\circ}$ = $y'' - 4.338 \cos(\omega t - 4\cancel{x} + 6.82\cancel{x})$ $k_i^2 = \angle \sin \theta_i - x^2 \cos \theta_i = 0.82^2 - 0.6x^2$ $kr^2 = Z^2 \sin \theta r + X^2 \cos \theta r = 0.8Z^2 + 0.6X^2$ $kt = -x^2 \cos{\theta} + t^2 \sin{\theta} + \cos{\theta} - 0.863x^2$ $\overrightarrow{Hi_1} = 1 k_i' x \overrightarrow{E_{11}} = 1 (0.82^{\circ} - 0.6x') x-y'' \overline{E}(m2 \cos(mt - 4x - 3z))$ = $(0.3x^{4} + 0.6z^{2})$ 8 $(0.5(x^{1} - 3z))$ $\overrightarrow{Hr_1} = 1$ k, $xEr_1 = 1$ $(0.87^h + 0.6x^n) x 13.112 cos(wt+32-4x)$ $= (-0.8x^{1}+0.6z^{1}) \frac{3.112}{12.011}$ $(0.5(\omega^{1}+3z-1x))$ $-(6.6 x² + 4.953 Z²) cos(\omega t + 3Z-4X)$ m $H + 1 = 1$ $(0.512^{\circ} - 0.863 x^{\circ})$ $X - 1$ $(0.4.888 \cos(\omega t - 4 \times -0.882 \cos \omega t))$
75.895 $-\frac{1}{100000}$ (0.51 $x^4 + 0.8632$) 60.4 (cps (wt-1x-0,6.822) m

Scanned by CamScanner

 $X_i = X \sin \theta_i + Z \cos \theta_i$ y_i^2 $x^2 \cos\theta_i - z^2 \sin\theta_i$ $Xr = X \sin \theta r - Z \sin \cos \theta r$ $T_{\Theta t}$ x_{t} $Yr = x^n \cos\theta - \overline{z}^n \sin\theta Xt = X \sin \Theta t + Z \cos \Theta t$ $x^3y_+ = x^2\cos\theta + z^2\sin\theta +$ $\Gamma_{11} = E_{r \circ 11}$ $M_2 \cos \theta t - 7, \cos \theta t$ E ioll η_2 cas $\theta_1 + \eta_1$ cos θ_1 $\mathcal{I}_{11} = E_{t \circ 11}$ 2η , $cos\theta$ is θ $T_{\text{H}}=(1+\Pi_{\text{H}})cos\theta$ $E_{i\bullet H}$ $cos \theta +$ $\eta_2 \cos\theta_t + \eta_1 \cos\theta_t$ -517.0 if the secound medium isperfect conductor η_c $S = \omega \Rightarrow \eta_c = 0 \Rightarrow \Gamma_u = -1 \Rightarrow T_u = 0$ $\frac{M}{E(H + \frac{1}{W} \frac{G}{W})}$ \equiv J_2 $\frac{1}{2}$ $\frac{1$ オンモントレルトの コレモ しょうロースカー $(XK-38 \times Hw)$ 201 $SSEPR$ 250208 X+ 100 2028884 19 Septem St toplease 140 (200)

Example: A plane wave in air with $E_1 = (10y + 5z^2)\cos{(wt-2y \cdot x)z}$ $(\sigma_{20}, \mu_{2}m_{9}, \epsilon_{12}y)$ $00i$, Grand θ + 3 totat \vec{F} and \vec{H} fields 2) Mi and Ti (1) Average incident power vector 26.565 $\begin{array}{ll}\n\textcircled{1} & k_1 \sin \theta_1 = \mathbb{E}^2 & \tan \theta_1 = 2 \Rightarrow \theta_1 = \mathbb{E} \times \mathbb{E} \times \mathbb{E} \times \mathbb{E}^2 \\
\textcircled{1} & k_1 \sin \theta_1 = \mathbb{E}^2 & k_1 \sin \theta_1 = 2 \Rightarrow k_1 \sin \theta_1 = \mathbb{E}^2 & k_2 \sin \theta_1\n\end{array}$ $k_1 = 4.472$ $k_1 \cos\theta_1 - \frac{1}{2}$ karamaz $\frac{|k_2|}{k_1}$ $\frac{|w_{v_2}|}{k_2}$ \Rightarrow $k_{2} = 2k_{1} \Rightarrow \sqrt{11/256}$ K2 = 8.9443 $k_1 = \frac{1}{2}$ $\frac{\sin \theta + \sin \theta}{\sin \theta}$ n_{1} = 120 π n_{2} = 60 π Γ u = 58.481-107.33 = = 0.295 $T_{11} = 0.705$ $58.181 + 107.33$ 全 $Er = (+2.95 y^{n} * 1.475 z^{n}) e^{-J(2y-4z)}$
 $Er = (-7.05 y^{n} * 3.525 z^{n}) e^{-J(2y+4z)}$ $H_1 = 1$ (y'0.89 = Z^0 0.447) \overline{Z} (-110y' + 5z') $e^{-j(2y+1/2)}$ $120T$ $\frac{1}{\sqrt{2}}$ $= 1$ $(-x^2)$ $120T$

h

i.

 \overline{u}

 29.6 V_{EH} Parrallel polarization $x_i = x \sin \theta i + Z \cos \theta i$ $-x_1$ $\Theta_{\mathcal{L}}$ ъı $x_{r} = x \sin \theta r - 2\cos \theta r$ $\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{$ Θi x_{+} = $x \sin \theta_{+} + \frac{z}{\cos \theta_{+}}$ ť. $y_i^2 = x^c \cos \theta_i - z^c \sin \theta_i$ Medium 2 (E2, M2) $Hedium1(\epsilon_1, M)$ $yr^2 = x^2 \cos \theta f + \frac{y^2}{2} \sin \theta f$ y_1^2 = $x^2 \cos \theta_t - \overline{z}^2 \sin \theta +$ $\Pi_{1} = E_{r11} = \eta_{2} \cos \theta_{1} - \eta_{1} \cos \theta_{1} \implies f \mid \eta_{2} = 0 \implies \boxed{\Gamma_{11} = -1}$ $E_{i,n}$ $\eta_{2}\cos\theta_{1}+\eta_{1}\cos\theta_{1}$ τ_u = $E + \eta = 2\eta_2 \cos\theta$ E in η_{2} cos θ + + η_{1} cos θ i $T_{II} = (1 + Iⁿ_{II})$ Cos Θ $Cos \theta_+$ For non magnatic: $\Gamma_{\parallel} = -(E_2/E_1)cos\theta_1 + (E_2/E_1) - sin^2\theta_1$ $(M_1 = M_2)$ $(E_2/E_1) \cos\theta + \sqrt{(E_2/E_1) - \sin^2\theta}$

The vector of avarage incident power density $\frac{5av_i^2}{27}$ $k_i^2 = 10^2 + 5^2$ (Z^o $294 + 5^2$ (Z) $2*377$ = $y''0.074 + z''0.118$ (w/m²) Savi = 1 Re ($\vec{E} \times \vec{H}$) = 1 Re ($\vec{F} \times \vec{H}$) #Browster angle (OB) Is the incident angle at which $(19 - 0)$ 1) perpendicular polarization $\frac{1}{1}$ = $\eta_2 \cos\theta_1 - \eta_1 \cos\theta_1 = 0 \Rightarrow \eta_2^2 \cos\theta_1 = \eta_1^2 \cos\theta_1$ $m_2 \cos \theta_1 + \eta_1 \cos \theta_1$ $\frac{1}{1000} \frac{1}{100} \frac{1}{2} \frac{\cos \theta_1 + \frac{1}{16} \cos \theta_1}{\sin^2 \theta_1} = \frac{n_1^2 (1 - \sin^2 \theta_1) \sin \theta_1}{\sin \theta_1} = \frac{u \rho_2}{\sqrt{\frac{n_1 \rho_1}{12 \rho_2}}} \frac{n_1 \rho_1}{\sqrt{\frac{n_2 \rho_2}{12 \rho_1}}}$ $sin^2 Θt = M.E_1 sin^2 Θ_1$ M_2C_2 $S_1 n \overrightarrow{b_1}$ $\left(-\eta_2^2 + \eta_1^2 \overrightarrow{H_1} \underline{\theta_1}^2\right) = \eta_2^2 - \eta_2^2$

 $sin \theta_i$
 θ_1
 θ_2 θ_2 θ_1 $\frac{M_1 \epsilon_1}{M_2 \epsilon_2}$ $=$ $\frac{M_1}{G_1}$ $rac{1}{\epsilon_2}$ $1 - \frac{\mu_{11} C_{2}}{\mu_{22} C_{1}}$ $\sin \theta_{B1} = 1 - (\frac{1}{\sqrt{2}})^2$ $iF_{M_1 M_2 M_3}$ Sin Oi = ∞ OBL dose not excist for MET2 or for non magnatic 2 Parrallel polarization $\prod_{i=1}^{n}$ 1 - $\frac{\epsilon_1 M_2}{\epsilon_2 M_1}$
1 - $(\epsilon_1/\epsilon_2)^2$ $sin \theta_{\text{BII}}$ For non magnatic $(M_1 = M_2 = M_0$
 $\Theta_{\beta_1} = \sin^{-1} \left(\frac{1}{1 + (E_1/E_2)^2} \right) = \tan^{-1} \left(\frac{E_2}{E_1} \right)$ $\#\theta$ B is called pollarizing angle θ and θ if a wave with perpendicual, parrallel polarization is incident on non-magnatic material at θ = θ BII Sothat the II-component (Γ ₁=0) is totally transmitted only the 1 component is reflected.

 $\frac{1}{2}$ Reflected and transmitivits $\frac{1}{2}$ R_{\perp} (reflected) = $\frac{P_{\perp}}{P_{\perp}}$ $P_i = Si_1$ $Ai = IE_i f^2$ Acos ei $\overline{2\eta}$ $\frac{\rho_{r1} = |E_r^2|}{2 \eta}$ Acos or $R_{t\perp} = |E_t| \uparrow R_{cos\theta t}$ 2η $R_{\perp} = \frac{|E_{\perp}r|}{|E_{\perp}r|} = |r_{\perp}^2|$ $\frac{R_{\text{II}} - R_{\text{I}} n}{P_{\text{II}}} = \frac{|\Gamma_{\text{II}}^2|}{P_{\text{II}}}$ $T_{(transmittivity)} = \frac{\rho_1}{\rho_1}$ $T_1 = (|E_{t1}|^2/2\eta_2)$ A cos $\theta_t = |T_1|^2 \eta_1 \cos \theta_t$ 7200501 $(IE_{i\perp}l^{2}/2\eta_{1})$ $A \cos \theta_{i}$ $T_u = (T_u)^2 \eta_i \cos \theta_t$ $\sqrt{|\Gamma_{\|}^2|^2 + |\Gamma_{\|}|^2} \eta_{\text{r}} \cos \theta_{\text{r}} = 1$ $\n ¹² cos \theta$ η_{2} Cos θ i $P_i = Pr + Pr$ $\sqrt{1-\frac{2}{1}+\frac{2}{1}}$ $\frac{7}{1}$ $\frac{8}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ ALL N $n₂ cos θ i$ Allen The secret of the complete the complete of