

## تقدم لجنة ElCoM الاكاديمية

دفتر لمادة:

كمرومفناطيسية (2)

من شرح:

د.عبدالكريم البياتي

جزيل الشكر للطالبة:

مك ك الباشا



88899

= iw(Eo-jor) = For loss less medium with or=0

Ec=E-jo= = E'-jE" TXH = JWECE , E=E. , E= 50 For loss less medium o= 0, Ec = E'= E. \* wave equation VX(VXE) = -jwM(DXH) = -jwM(jwE&E) = w2MECE VX(VXE) = V(V.E) - V2E  $\sqrt{2}\vec{E} = \left(\frac{\vec{J}^2}{\partial X^2} + \frac{\vec{J}^2}{\partial y^2} + \frac{\vec{J}^2}{\partial z^2}\right) \vec{E}$ V2E-W2MECE=0 0=8.V 83: - propegation constant. 8=-W2MEC  $\nabla^2 \vec{E} - 8^2 \vec{E} = 0$  (wave equation of  $\vec{E}$ )  $\nabla^2 \overrightarrow{H} - 8^2 \overrightarrow{H} = 0$  (wave equation of  $\overrightarrow{H}$ ) of for loss less medium with

$$\nabla^2 \vec{E} = \delta^2 \vec{E} = 0 \qquad ; \nabla^2 \vec{H} = 0$$

$$\nabla^2 \vec{H} - 8^2 \vec{H} = 0$$

$$\nabla^2 T = \nabla \cdot (\nabla T) = X \partial T + Y \partial T + Z \partial \overline{Z}$$

$$\nabla^2 T = \frac{\partial^2 T}{\partial X^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}$$

$$\nabla^2 \vec{E} = x \nabla^2 E_{x+} y \nabla^2 E_{y+} + 2 \nabla^2 E_{z}$$

$$= \chi^{2} + \frac{\partial x}{\partial x} + \frac{\partial x}{\partial y} + \frac{\partial x}{\partial z} + \frac{\partial$$

$$\nabla^{2} \overrightarrow{F} + \underline{F}^{2} \overrightarrow{F} = 0$$

$$\Rightarrow X^{*} (\frac{\partial Ex}{\partial x} + \frac{\partial Ex}{\partial x} + \frac{\partial Ex}{\partial x}) + J^{*} (\frac{\partial Ex}{\partial x} + \frac{\partial Ex}{\partial x} + \frac{\partial Ex}{\partial x}) + K^{*} (J Ex + J Ey + Z Ey +$$



\_ Ext e-jkz (-jk) Hy= 1 & (Ext e-jkz) = 1 Ex. e-jkt K Hy= K Exole-jkz n (intrinsic impedance) = WH = WH = H E(z) = x Ex. e-jkz H(Z) = Y Ex. e-jkz = y Hy. e-jkz In general Exo = |Exo | ejd n=wM=NE Instantaneuse (time domain) Eand H Etz,t) = ke[E(z) ejwt] = Re [x^ |Ex. | eight e-ikz e+jwt] X [ | Exo | cos (w+ - kz+ 0)] H(Z,+) = Re [y] H(Z)ejwt] = y [Exot cos (wt-kZ+Ø) Alm Note :- E and H are in-phase for loss less medium (since 1 is real)  $wt - kz = constant \Rightarrow \overline{Z} = wt - cons$ 

In Free space N=Mo= 411 \* 10.7; E= Eo= 10-9 = 3 x 108 m/s IM. E. example: Blane wave traveling in the (+Z) direction, the electric field points along the peak value of Es 1.2 IT mv/m; E has amaximum at (t=0, Z=50m), find the time domain expression F(Z,+), H(Z,+), let Ex= x^ /Ex=/ejoe-jkz Xm C=f 2 = 3×108 = 1062 = 2 = 300 m  $K = 2\pi = 2\pi$  Re  $[X^1.2\pi e^{j\varphi}e^{-jkz}e^{j\omega t}] = X^1.2\cos \frac{1}{2}$ E(Z1+) = X 1.2TT4COS (2TT x 106+-2TT Z+0) Peak at t=0, Z = 50m => -211 +50+ Ø=0 => Ø= II  $\vec{E}(Z,t) = x^{n} \cdot 1.2 \pi \times 10^{3} \cos(2\pi \times 10^{6}t - 2\pi Z + \pi)$ 

$$H^{\prime}(Z;T) = y^{\prime} \cdot 2\pi \times 10^{-3} \cos(2\pi \times 10^{6} t - 2\pi + \pi)$$

$$Examples Seneral relation between $E$ and $H$

$$H^{\prime} = 1 \quad k^{\prime} \times \tilde{E} \quad \text{uniform plane wave in a direction of unit vector } k^{\prime}.$$

$$R^{\prime} = -7 k^{\prime} \times \tilde{H}$$

If  $\tilde{E} = x^{\prime} E_{x}(Z) = x^{\prime} E_{x^{\prime}} e^{-jkZ} \quad k^{\prime} = Z^{\prime}$ 

$$H^{\prime} = 1 \quad Z \times x^{\prime} E_{x^{\prime}} e^{-jkZ} = y^{\prime} E_{x^{\prime}} e^{-jkZ}$$

$$1$$

If the wave is travilling in the -ve($E$) direction $E^{\prime} = x^{\prime} E_{x^{\prime}} e^{-jkZ}$$

$$k^{\prime} = -Z^{\prime}$$

$$H^{\prime} = -y^{\prime} = 1 \quad -k^{\prime} \times Z \quad x^{\prime} E_{x^{\prime}} e^{-jkZ}$$

$$1$$

Ingeneral:
$$H^{\prime} = -y^{\prime} = 1 \quad E_{x^{\prime}} e^{-jkZ}$$

$$H^{\prime} = 1 \quad Z^{\prime} X^{\prime} E_{x^{\prime}} (Z) + y^{\prime} E_{y^{\prime}} (Z) \quad k^{\prime} = Z^{\prime}$$

$$H^{\prime} = 1 \quad Z^{\prime} X^{\prime} E_{x^{\prime}} (Z) + y^{\prime} E_{y^{\prime}} (Z) \quad k^{\prime} = Z^{\prime}$$

$$H^{\prime} = 1 \quad Z^{\prime} X^{\prime} E_{x^{\prime}} (Z) \quad H^{\prime} (Z) = E_{x^{\prime}} (Z)$$

$$H^{\prime} (Z) = -F_{y^{\prime}} (Z) \quad H^{\prime} (Z) = E_{x^{\prime}} (Z)$$

example: - 10 MHZ, plane wave travelling in anon-magnatic material and a phase velocity b wave number (k) a wave length in the medium. d Interingic impedant. DUP= 1 = 1 THE; THE.Er  $\frac{UP = C}{\sqrt{Er}} \Rightarrow \frac{Er}{(up)^2}$ UP= 3 × 108 => UP= 1 × 108 m/sec  $\frac{UP = W \Rightarrow k = W \Rightarrow K = 2TI \times 10^{7} = 0.2TI \text{ bis is arrays}}{108}$ K=WJME = 2 and The Wild Control  $\lambda = \frac{2\pi}{k} = \frac{2\pi}{10m}$ n = M = Mo Er = No Er = 127.67 2 Ex Eo Er Eo TF V9

example: - Givin = = Z 10 e-jully (mV/m) wave is travelling in a loss less medium with n = 188.5 1. Find a magnatic field phasor 3 Instantus by E (4,1) if the medium  $k^{-}=y^{-}$   $H = 1 k^{-}x^{-}$   $K = 1 y x = 10 e^{-j x \pi y} = x^{-}53 e^{-j y \pi y}$  $k = W \int W \in \mathcal{Y} W_{0} = k$  = k = k  $\int M_{0} \notin \mathcal{F}_{0} = k$  = k = kexample: - H(Z,t) = Z 30(os (108t-0.54) m A/m : In a non ang martipe direction of the wave propapulity. b Phase relocity []2 []Er phasor. A K = y B UP= 1 = W K = 0.5 UP = 105 = 2 x 15 8 m/sec -01 15 [ UP= f2 =) 2 = 2 × 10 = 2 = 4 TT [d] Er = (C)2  $e = 1 = 100 = 120\pi = 251.3 - 120\pi$ E = - X^ 25.3 X 30 cos (108t - 0.54)

| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cyample: Non-magnatic (M= H0); $E(Z,t) = \int 3\sin(\pi \times \omega^7 t - 0.2\pi x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| + + 1031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Find 102 BG OH timedomain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\Box 1 - 2\pi = 2\pi \boxed{10m = k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| [b] k= w [HE. ⇒ Er = (C)2 = (\$73×10°) ⇒ [Er = 36]<br>5×10²) µ: Mo → lose less                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $UP = 1 = W = \pi + 10^{7} = 5 \times 10^{7} \text{ m/s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| JME K 0.2TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| E Hims donain State of the Stat |
| C IT TIME GOMAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $n = n_0 = 120\pi = 62.83-1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\overrightarrow{H} = \frac{1}{n} k^{2} x \overrightarrow{E}$ ; $k^{2} = x^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cutton du partit de tracilitation de la companya del la companya de la companya d |
| = 1 x x [y3sin(TI*07=0.2TIX)+2 4cos(TI*107t-0.ZTIX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 62.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| = Z 47.7 sin(T(* 10 t - 0.21 x) - f 63.66 cos (TT * 10 t - 0.21 x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ela, O = Rol Eldo out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 18 tt 1- 30 [ 13] + (5) + (5) - (tw) 200 x0x =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Modles of F(£+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| * OCH EN FELIN "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4 ( 5 ) 1 + and f Ex ( 5 ) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right)\right)\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Wave polarization The locus of the tip of the E-vector (in the plane orthogonal \$ to direction of propegation) at agivin point in space in space as a function of time. \* General polarization > elliptical linear circular = x^Ex(Z) + y^Ey(Z) Ex (Z) = Ex. e-JkZ \* Polarization depends on 1-Ey (Z) = Eyo e-jkZ O phase of Eyo relative to Exo. @ Absolute value of Exo, Eyo. Exo = ax < reference (phase 0) Eyo = ay e Som S-\_ Sy-Sx E(z) = (x^ax + y^ay e+is) e-kz Eyo = ay e-jkte+ i8 \* Instantany 0- 1 01 11 200 00 00 00 } (x 250- 1 0x 11) E(z,t) = Re[ E(x) e swt] = x^ax cos(wt)- kZ) + y by (wt - k ) 81 # Modles of E(Z+) OE(Z,t) = [[Ex(Z+3]] + Ex(Z+)] = org Ey (Z, H) 1/2 4 ( 7/1T) = tan-1/ Ey ( 2/t) Ex (2,+)

linear polarization # Close 7 = 0 S=O(inphase), S=-IT(out of phase) 1)  $S = 0 \Rightarrow E(0,t) = (x^2 + y^2 + y^2) \cos(wt - kz)$ 2) S = TI > Fil = Was (x^ax - y^ay) cos(wt - KZ)  $\overrightarrow{IE}(0,+)I = \sqrt{\alpha_x^2 + \alpha_y^2} \quad \cos(w + - k + 2)$  $\Upsilon(t) = tan^{-1} \left( \frac{Ey(t)}{E_X(t)} \right) =$ in phase  $\beta \rightarrow \Upsilon(t) = \tan^{-1}\left(\frac{ay}{a_r}\right)$ out phase  $\rightarrow \forall (t) = tan^{-1} \left( \frac{-ay}{ax} \right)$ if ay = 0 => Y=0 or 180 => X-polarized ifax =0 -> Y = 90 or 270 -> y-polarized



E(zit) = X^ax cos(wt-kz)+y^ay cos(其-(-wt+kz)) 的y^ay sin(-wt+kz) = y ay sin (wt-kz) E(z,t) = x ax cos(wt-kz) - y ay sin(wt-kz)  $|E| = \int E_x^2 + E_y^2 = \int a_x^2 \cos^2(wt - kz) + a_y \sin^2(wt - kz)$  let  $a_x = a_y = a_z$ =  $Q^2 = Q^2 \times 1 = Q^2$  independent on tor Z $Y(z,t) = \tan^{-1}\left(\frac{E_X(z,t)}{E_X(z,t)}\right) = \tan^{-1}\left(\frac{-a_y\sin(\omega t - kz)}{a\cos(\omega t - kz)}\right) = \tan^{-1}\left(\frac{-tan(\omega t - kz)}{a\cos(\omega t - kz)}\right)$ = = (wt-kz) = kz-wt RHC polarization (ax=ay=a ), S=-T1/2)  $E(Z,t) = \chi^2 a \cos(\omega t - kz) + y^2 a \sin(\omega t - kz)$ RHC 1E1 = a Y(Z,+) = W+-KZ example: - Find the expression is (RHC, polarization) E(y,+); H(y,+) modulas = 3 mv/m, medium is non magnatic (M=Mo); (E= 4Eo); or= o, propagation direction (+ y direction ax = ay = 3m V/m , S = -T1/2 = Sz-Sz Sz=0 8 = - 11/2 = Sx E(y)= 3= x(z^+ x^e-j/2)e-jky  $H(y) = \frac{1}{n} k^{n} x \overrightarrow{E} = \frac{1}{n} y^{n} x^{3} (z^{n} + x^{n} e^{-i \pi k}) e^{-i ky} = \frac{3}{n} (x^{n} + z^{n} e^{-i \pi k}) e^{-i ky}$ 

k= w THE = w JHOEO JEr - w JEr 7 = 10 - 120TT = 60TT E(y,+) = Re[E(y)ejwt] = 3[Z^cos(w+-ky)+x^cos(w+-ky+-T/z)]  $\overrightarrow{H}(Y,t) = 1 \times \left[ E_{Y}, t \right] = 3 \left[ X^{\circ}(os(wt-ky) - Z^{\circ} sin(wt-ky)) \right]$   $(os(wt-ky) - Z^{\circ} sin(wt-ky))$   $(os(wt-ky) - Z^{\circ} sin(wt-ky))$   $(os(wt-ky) - Z^{\circ} sin(wt-ky))$   $(os(wt-ky) - Z^{\circ} sin(wt-ky))$ E (y,t) = Z 3 cos (wt-ky )+ x 3 sin (wt-ky) mu/m  $\overrightarrow{H}$  (y,+) = Re[ejwt 3 (Z^ej\vec{T}\_+ x^\*) e^{-jky} =  $\frac{7}{7} \cos(w + ky + \pi/2) + x^{3} \cos(w + ky)$ = Z 3 Cos(11/2-(-w++ky) + x 3 Cos(wt-ky) = Z3 sin (-w+ky)+ x3 cos(w+-ky) =- Z 31 sin (wt-ky) + x 1 cos(wt-ky)



4) elliptically angle (X Sin (2X) = Sin (2 Yo) Sin S  $\frac{-\pi}{Q} \leqslant X \leqslant \frac{\pi}{Q}$ -11 < 2 X < 11 3 if sin 820 if sin Sco XCO example :- find the polarization state of a plane wave E(Z,t)= X^3 cos(wt-kZ+30)-y^4 sin (wt-1cz+45°) mV/m E(ZH) = X COS(Wt-KZ+30) + J 4 Sin (-Wt+KZ-45) -JYCOS (90-W+ KZ-45) = x (os (wt-kz+30) + y 4 cos (90+wt-kz+45) -y 4 cos (45-w++ k Z) - y 4cos (wt- tz-45) = x^cos(wt-kz+30) + y 4 (os(wt-kz+135°) - y 40-145 e-1KZ E(Z) = x3ei30 ejkz + y 4ei135 e-ikz y 4 e e 145 p - j kz ax=3, ay=4, S= Sy-Sx= 135-30° = 105° Yo = tan (ay) = tan (4) = 53.1 541.67 tan (28)= tan (2 %) fos 8 => tan (28)=0.89 tan (0.89) - 41.67= 28 -> 1/2 - (180 - 41.67) =- 138.33° D= 20.83. -69.16 Sin (2X) = Sin (27.) Sin S 870 if cos 8>0 = 0.93 (05(8)=cos(105)=-Ve (0-90°) (2X) = 68.43 8=-69-16 2X (68.43) 180-68.43

Com

- Klue

A IIII

Million

William .

W WIL

| Olone ways proposed the list basel Modium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Plane wave propagation in Lossy Medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\nabla^2 \vec{E} - \chi^2 \vec{E} = 0$ , $\chi^2 = -\omega^2 M (e^2 - ie^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| / \.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E(B) = x 10 (1x 6 1x 3 50 50 50 50 50 50 50 50 50 50 50 50 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $(\alpha + j\beta)^2 = \alpha^2 - \beta^2 + j2\alpha\beta = -\omega^2 M \tilde{\mathcal{E}}^* - j\omega M \tilde{\mathcal{E}}^*)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\times^2 B^2 = -\omega^2 M E'$ , $2 \times B = \omega^2 M E''$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Salt was the M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $ \alpha = \omega \left( \frac{Me'}{2} \left[ \sqrt{1 + \left( \frac{e''}{e'} \right)^2} - 1 \right] \right) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1/2 Dia series Dia series Dant ( Ma) et al ( Ma) est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $B = W \left[ \frac{Me'}{2} \left[ \sqrt{1 + \left( \frac{e'}{e'} \right)^2} + 1 \right] \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| P- XZ = 1BZ = 7 × D = 2 2 (410/12/01/12) = [-27]1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $e^{-\alpha z}e^{-jBZ} \Rightarrow Z \times B = 2\omega^2 \left[\frac{\mu e'}{z}\right]^2 \left(\frac{G''}{z}\right)^2 = 2\omega \left[\frac{\mu^2}{4}e^{\frac{7}{2}}\right]^{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 28 = 147 43 51 - 1 - VE - NHK 1 1 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 500 = 300 (of 2) miz = (xx) miz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10-340) 2X = 510 (0 5/-17-12 ) Act +11-12 07 612 = X= (0)66-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2X - 1-12 454 per 2X - 47 457 - 8-728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| X 1/2.531 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FOR THE PARTY OF T |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23/63/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 180-52.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 화물하다 나는 사람들은 사람들이 되었다. 그런 그리고 가는 사람들이 되었다면 그들은 사람들이 가는 사람들이 하는 것이 되었다면 그렇게 그렇게 되었다면 그렇게 되었다면 그렇게 그렇게 되었다면 그렇게                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Scanned by CamScanner

| $\vec{E} = E_x$ , $e^{-8\vec{z}} = E_x$ , $e^{-\alpha z}e^{-j8\vec{z}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\overline{E} = x^* E_x \cdot e^{-\lambda z} e^{-\lambda Bz}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DXE = - jwhi www (ore) and ordered (ordered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Control 1 to 2 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X Y Z'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\frac{d}{dx}$ $\frac{d}{dx}$ $\frac{d}{dz} = X^{(0)} + y^{(d)} = X_{x_0} e^{-8z} + z^{(0)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\left[ E_{X_0} e^{-82}  O  O \right] = -jwM \left[ x^2 H_{x+} y^2 H_{y+} z^2 H_z \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2) Portex conductor (0 = 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| y Ex. (-8)e-82 = y (-jωμ Hy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $Hy = \delta  E_{xo} e^{-\delta^2} = E_{xo} e^{-\alpha^2} e^{-jB^2}$ $jwh \qquad n_c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| The factor of th |
| 16/=/8/2 nc= jwH = jwH = N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| int No Jame HEC EC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $n_c - M = M = M \left(1 - j \tilde{\epsilon}\right)^{-1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $n_{c} = \sqrt{\frac{M}{\varepsilon}} = \frac{M}{\varepsilon} \left( \frac{1 - j\varepsilon}{\varepsilon} \right)^{-1/2}$ $\varepsilon_{c} = \sqrt{\varepsilon} - j\varepsilon$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E = E = E = 0 in the second compression with a second of $E = E = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| # Bothe E and H have no longer equal phase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| # Both Eand H fields decrease exponantially with (Z).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| # Medium Converts part of power into heat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\overrightarrow{F} = x^2 E_{x_0} e^{-\alpha z} e^{-Bz}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| - Skin depth &s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $S_s = 1$ at adistance of $Z = S_s$ magnitude delves by $e^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Mi.

Ss characterizes how well an EM wave can penetrate amedium 1) Perfect dielectric (0=0) 2) Perfect conductor (0 = 0) \* The factor E" = 0 plays an important
the medium. 1) If E" < 10-2 ⇒ The medium is a low-lossy medium.

E' 2) If E" > 100 => The medium Kickee good conductors 3) If 10-2 < E" < 102 -> The medium have quar i connductor Low lossy direction X2 = - B2 M Ec -> 8 = jwJMEc => Gc=GrE 8 = jw Me! (1-je") 1/2 (1-X)= 2 1-X2



example: - plane wave in the +vezdirection, sea surface => Z=0

For sea water => Er=80; Mr=1; 0=4. If the magnatic field at Z=0, is givin by:- H(0,+1= y 100 cos (211 x 103t + 15°) mA/m

 $\square$  find  $\overrightarrow{E}(\overline{z},+)$ ,  $\overrightarrow{H}(\overline{z},+)$ .

[ Find the depth at which amplitude of E is 71% of the value at 7 = 0.

Z'X Y

Q ECZ=-1 KXH

0.01 < E" < 100

= x Exo e-XZ e-jBZ

 $\vec{H}(z) = 1$   $\vec{Z} \times \vec{X} \cdot \vec{E}_{xo} \cdot e^{-\alpha z} \cdot e^{-j\beta z} = \vec{y} \cdot \vec{E}_{xo} \cdot e^{-\alpha z} \cdot e^{j\beta z}$ 

6 = 4

= 9 × 105 >> 100

WE 217 x 103 + E. \*80

Good conductor

Q = JZITFHOV = B = JT \* 103 \* 4# \* 107 \* 4

d = 0.126 = B

 $\eta_{c} = (1+i) \alpha = (1+i) 0.126 = \sqrt{2} e^{+J\sqrt{4}} * 0.126$ 

nc = 0.044 et ju

Exo= | Exolej&

E(Z,+) - Re[ejwt x^ | Ex. | ejø. e-dz e-jBZ]

= X^ |Ex. | e-KZ (OS(W+-BZ + Ø.)

= X^ | Exole -0.126Z Cos(211 x 103t - 0.126 Z+00)

H(z) = y | [Ex. ] e - x = - 18 = e 16. = y | Exo| 22.5 e cos (211 x 103 + -0.126 = -45 + 06) H(0,t) = y 100 cos (2T \* 103t + 15) H(0,+) = y 22.5 | Exol cos (211 + 103 + +-45+00) 15 = -45+ Ø. ⇒ Ø. = 60° Ex. = 100 × 10<sup>-3</sup> = 4.44 × 10<sup>-3</sup> E (Z,+) = X 4.44 e cos (ZIT \*103 - 0.126Z +60°) mu/m H(Z,t) = y 100 e -0.126Z (OS(2T + 103 - 0.126Z + 15°) mv/m D 0.01=e-α2, e-α2=0  $-XZ = Ln^{0.1} \rightarrow Z = Ln^{0.1} = Ln^{0.1}$ Example: Copper parameters, M=Ho=YTT+10-7, E=Eo-109 0 = 5.8 x 107, over what frequency range copper is a good conductor E" = 0 100 = WE (0.01 -) F (0.01 0)
2TTE  $\frac{f < 0.01 \times 5.8 \times 10^{7}}{200 \times 10^{9}} = f < 5.8 \times 10^{7} = 1.044 \times 10^{16} \text{ Hz}$   $\frac{200 \times 10^{9}}{310}$ 

example: - wave is travilling in amedium with skin depth (S). find E [38s]  $BE[3S_s] = E_{x_0} e^{-\alpha 3S} = e^{-\alpha 3 \frac{1}{M}} = e^{-3} = 5\%$ ELOJ example: - In amedium with Er = 9, Hr=1, 0=0.1. Find the phase ongle by which H leads Eat 100 MHZ  $\overrightarrow{H} = \frac{1}{n} k^{\prime} \times \overrightarrow{E}$  $n_{c} = \sqrt{\frac{M}{E'}} \left(1 - je^{-1/2}\right)^{-1/2} \Rightarrow = \sqrt{\frac{M}{E}} \left(1 - j\sigma\right)^{-1/2} = \sqrt{\frac{M}{E}} \left(1 - j\sigma\right)^{-1/2}$  $\frac{120\pi}{\sqrt{9}} \left(1 - j 2\right)^{-\frac{1}{2}} = 84.04 / 31.72$ On = 31.72; H leads E by (-Onc); by (-31.72 Example 1 - Based on measurment at IMHZ St = 2m , nc = 28.1/45 28 x /45 = (1+5) QG (b) wave length in the medium (C) Phase volecity in the medium 45° of 1 -> have good conductor @ 6 → nc = (1+j) dE => 28.1 [45 =(1+j) dE 28.1 cos 45 + j 28.1 sin 45 = & + j dE





example: - Copper Coxial cable 0= 5.8 x 107, Er= 1, Mr= 1, outer thickies = 0.5 mm, a = 0.5 cm, b = 1 cm, Find: O Surface resistance (Rs) @ Ac resistance at 10 MHZ @ RAC/RDC we > 1 good conductor JTIFHO JTIX 107 X YTTX 10 X 5. 2 X 107  $d = 0.6 \text{mm} \sim 25 \text{ (very thick)}$ s = 0.021 $R_{S} = \frac{1}{11} = \frac$ = 0.039 2/m RAC (10m) = R' \* 10 = 0.39 2 RDC(10m) = 1 L + 1 L = 7. 624 × 10<sup>-3</sup>  $= \frac{10}{6\pi} \left| \frac{1}{0.005^2} + \frac{1}{001^2 \div 0.0045^2} \right|$ RAC ~ 50 times Roc 211 6



lossy medium E (Z) = (x^Ex . + y Ey .) e-xz e-iBZ  $k^{x} \times \vec{E} = \frac{1}{2} \times (x^{x} + y^{x})e^{-d^{2}}e^{-i\beta^{2}}$ = 1 [yEx. FZXEyoJe-dze-iBz X 1 [y Exo-x Eyo]e de de Sar = 1 Re[(x^Exo+y^Eyo)e-xze-iBzη = η ein = 1 Re [(Z^Exo + Z^Eyo)e-2xz  $\overrightarrow{S_n} = \overrightarrow{Z} |F_0|^2 e^{-2 \sqrt{2}} \cos(\Theta_n)$ problems: - 1,3,4,6→11,14,15,16,19,21,23→28  $\overrightarrow{Sav} = \frac{1}{2} \operatorname{Re} \overrightarrow{LE} \overrightarrow{XH} = \overrightarrow{Z} \underbrace{\overrightarrow{IE'}}_{20} (\omega Im^2) \text{ loss less}$  $= \frac{2^{2} |E_{0}|^{2}}{2|\eta_{c}|} e^{-2\alpha Z} \cos(\theta_{0})$ 

Example: A submarince at depth 200m uses awire antenna to recive at IkHz. Find the average power density assumming  $|E_0| = 4.44 \, \text{mV/m}$ ; x = 0.126;  $R_c = 0.044 \, \text{/45}^\circ$ 

$$\overrightarrow{S_{\text{av}}(z)} = z^{2} |E_{0}|^{2} e^{-2\alpha z} \cos(\Theta_{n})$$

$$= 2|n_{c}|$$

$$= Z^{2} (4.44 \times 10^{-3})^{2} e^{-0.126Z} \cos(\theta_{\eta}) = 2.1 \times 10^{-26} \text{ W/m}^{2}$$

$$= 2 \times 0.044$$

- Example: A wave travelling in anon-magnatic medium with  $E_1 = 9$  has  $\vec{E} 1$  field  $\vec{E}(Z_1 + 1) = 9^3 3 \cos(\pi * 10^7 t + kx) \vec{Z} 2 \cos(\pi * 10^7 t + kx)$ 
  - Odirecting of prop  $\rightarrow$  -ve  $\hat{x}(-x^{-})$ .
  - 2) average power carried by wave.

$$\eta = \frac{\mu}{E} = \frac{\mu_0}{E_0 E_r} = \frac{120\pi}{5} = 40\pi$$

$$\frac{\Rightarrow}{Sav} = \frac{k^{2} |E_{0}|^{2}}{2\eta} = -x^{2} \frac{(3^{2} + 2^{2})}{2 \times 40\pi} = -x^{2} 0.05 \left(\frac{W}{m^{2}}\right)$$







Relating Er. and Eto to Eio All wave have E H fields tanyontional to the boundary. Boundary condition :-Tangential Eard A Fields are continous accross the boundary. Medium - 1  $\overline{E_{i}(z)} = \overline{E_{i}(z)} + \overline{E_{i}(z)} = x^{r} \left( \overline{E_{io}} e^{jk_{i}z} + \overline{E_{io}} e^{jk_{i}z} \right)$ H,(Z) = y (Eio e-jtiz - Ero ejkiz) F2(2) = x E+0 e-jk22 H2(2) = y Eto e-jk22 \* Bondary Condition X (Eis Fro)

[A] F<sub>1</sub> (Z=0) = E<sub>2</sub> (Z=0) = E(Eio Fro) = E<sub>7</sub> = Eio - Ero = ETO ..... ① Elib / -/ 1/3/774  $\overline{B} \stackrel{\longrightarrow}{H_1(0)} = \overline{H_2(0)} \Rightarrow y^{\circ} \left( \underline{E_{io}} - \underline{E_{ro}} \right) = y^{\circ} \underbrace{E_{To}}_{\eta} \cdots 2$  $\frac{E_{io} - E_{ro} = E_{io}}{\eta_{i}} \frac{E_{ro}}{\eta_{i}} \Rightarrow \frac{E_{io} - E_{io}}{\eta_{2}} = \frac{E_{ro}}{\eta_{1}} + \frac{E_{ro}}{\eta_{2}}$  $F_{io}(n_2-n_1) = F_{ro}(n_2+n_1)$ [Fio = n2+n, = (reflection coeffitiant)

$$\frac{E_{io}}{\eta_{i}} - \left(\frac{E_{ro} - E_{io}}{\eta_{i}}\right) = E_{ro}$$

$$\frac{P_{io}}{\eta_{i}} - \left(\frac{P_{ro} - E_{io}}{\eta_{i}}\right) = E_{ro} \left(\frac{P_{ro}}{\eta_{i}}\right)$$

$$\frac{E_{io}}{\eta_{i}} \left(\frac{P_{ro}}{\eta_{i}}\right) = E_{ro} \left(\frac{P_{ro}}{\eta_{i}}\right) \Rightarrow \frac{E_{ro}}{\theta_{i}} = \frac{P_{ro}}{\eta_{i}} = \frac{P_{ro}}$$

\* 2j E+ X H+ = 1 Re[Z^ |T|2 |Ei0] = Z^ IT 12 /Eio12

example: - Er, = 9, normal incedunt, Erz = 4, both media are non magnatic givin Hi(Y1+) = 7 2cos (211 x 109t - ky) (A/m) Find :-1 time domain expression for E, H in each of the two media.

E(yit) = - 1, ki X Hi  $n_1 = n_0 = 120\pi = 40\pi - 2$  $k_1 = \frac{\omega}{C} \sqrt{E_1} = \frac{2\pi \times 10^9}{3 \times 10^9} \sqrt{9} = 20\pi$  $E(y,t) = -x^2 251.34 \cos(2\pi \times 10^9 t - 20\pi y)$ k2 = w√Er2 = 40π  $\eta_2 = \frac{\eta_0}{\sqrt{\epsilon_{r_2}}} = \frac{120\pi}{2} = 60\pi \Lambda$  $\int_{-\infty}^{\infty} - \frac{1}{2} = \frac{20\pi}{5}$  $T = 1 + P \Rightarrow T = 1.2$  $\overrightarrow{Er}(t,y) = \Gamma Ei(y,t) = -x^{6}50.27 \cos(2\pi * 169t + 20\pi y)$  $E_{1}(y,t) = E_{1}(y,t) + E_{1}(y,t)$ = - x^(251.34 cos(21+109t-2011y) + x^(50.27cos(211+109+2011) 1/2 = 60TC E+(4) = -x (T 40T) e-jk2y = kz= 41.917 E+ (y,+) = -x (96T cos (21+109+ - k2y)) = - x 301.593 cos (2 x x 109t - 41.92y)

W.

= 
$$16 \left(-\frac{7}{2}\cos(\omega t + 20\pi y)\right) = -\frac{7}{2}\cos(\omega t + 20\pi y) \left(\frac{A}{m}\right)$$

$$H_{+}^{2}(y_{1}t) = 1 \quad k_{+}^{2} \times E_{+}^{2} = 1 \quad (y^{2} \times - x^{2} + 96\pi \cos(\omega t + y_{0}))$$

Savt = 
$$\sqrt{\frac{1}{2}} = \sqrt{\frac{20\pi}{1.44}} = \sqrt{\frac{20\pi}$$

South a property of the control of t

S - X 24 Cas flore militain k P

Example: A beam of yellow light with wove length 0.6 mm is normally incident in air upon aglass surface. Assume the glass is sufficiently thick as to ignore its back surface if the surface is situated in the plane Z = 0 and the relative permittivity of glass is 2.25, determine:

- 1) the location of the electric field maxima in medium !
- 2) the standing wave ratio
- 3) the fraction of incident power transmittied into the glass medium.

$$0 \eta_1 = \frac{\eta_0}{\sqrt{\epsilon_{r_1}}} = 120\pi$$
 ;  $\eta_2 = \frac{120\pi}{\sqrt{2.25}} = 251.327 = 80\pi$ 

$$S = 1 + |\Pi|_{=} 1.2 |\Xi|_{1.5} |\pi_{0.8}|_{Fr.1} |\pi_{0.8}$$

$$\frac{\text{3 Savit}}{\text{Savit}} = \frac{T^2 \frac{\text{Eio}^2}{n_2}}{\frac{\text{Eio}^2}{\eta_1}} = \frac{\eta_1}{\eta_2} t^2 \Rightarrow 120\pi \cdot 0.64 = 0.96 = 96\%$$

((0))

Al III

111

ex:- A I GHZ x polarization plane wave in Air travilling in the (+Z) direction is insident on the (x-y) plane (Z=0) with Eio = 12mV on amaterial Surface with (Mr=1, E=1), or = 5.8 x 107 S/m) . obtain time domain expression for E, H in the meadium  $\overrightarrow{E_i(z)} = x^* E_{io} e^{-jk} \vec{z}$ 

 $\frac{C = W}{k} = up^2$ 

 $k_1 = 2\pi$ 

n1 = n0 = 120TE = 377

 $0 = 5.8 \times 10^{\frac{7}{36\pi}} - 10^{\frac{7}{36\pi}} \times 10^{-\frac{7}{36\pi}}$ 

good Conductor

 $n_{C2} = (1+j) | TFM = (1+j) 8.25 * 10^{-3}$ 

=  $n_{c2} - n_{c1} = (1+i)8.25 \times 10^{-3} - 377$  $(1+i)8.25 \times 10^{-3} + 377$ nc2 + nc1

T= 1+ [=0

 $E_{i}(z) = x^{k_{i}} = 0$   $E_{i}(z) = x^{k_{i}} = 0$   $E_{i}(z) = x^{k_{i}} = 0$   $2i = -x^{k_{i}} = 0$   $2i = -x^{k_{i}} = 0$   $2i = -x^{k_{i}} = 0$ 

 $\frac{2}{E_1(zt)} = -X^2 24 \cos(\omega t + \frac{\pi}{2}) \sin(k_1 z)$ 

= x 24 sin(2017) sin(211 x 169+) mv/m





critical angle Oc Is the induced angle Di at which Ot= IC Sin Ot Sin Oi n2 0t=90° = JM288 E28 (N = MO) JMISS EXB = E28 (non-magnatic) JEIS EIN Sin O3 Sin Oz Sin Oz Sin Oi no excipton  $\theta_3 = \theta_1$ exciptance n. # الرسحة والمحكة مالكيان

Scanned by CamScanner



| Wave reflection and transmission of oblique inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ident stop and vehi                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | witgue hat T                                |
| *plane of incident :- Plane containing the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | : normal to the boundary and                |
| the direction of propagation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a boxyge D                                  |
| Best way to solvies reflection / transmission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             |
| 1) Dec the incident wave (Ei, Hi) in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (44)                                        |
| a) perpendicular polarized component. (Ei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |
| b) parrallel polarized component (Eii, i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| 2) Reflected wave (Er. J. Hr.I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | out V cas 6 <sub>2</sub>                    |
| The state of the s | tomas tomax a tof !                         |
| X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Anlx gu                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| TEN Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 max = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = |
| H., C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ht.                                         |
| 5 and 10 the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | o' Z                                        |
| E W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /                                           |
| Parrallel polarizied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | perpendicual polarization                   |
| Pariance policities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | € 0 # ( ) Mel, #                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| 7013 4 10° H & blsec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24 Ap (ng-19c)                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |



| 69 / 11 / 2018                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <del></del>                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Appling boundary conditions                                                                                                                            | gen pedd.culun yeli cedhon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| A(Eiy1 + Ery1) = Ety                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Z=0 $Z=0$                                                                                                                                              | Company of the Compan |
| Eiol Z E-Jk, X sine; + Erol e-Jk, Xsine                                                                                                                | r - F. , o-jk2 X Sin Ot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| tol 3 the trol C                                                                                                                                       | = L70] (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\rightarrow$ $\downarrow$ $\rightarrow$ $\rightarrow$                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| B Hiyi + Hryi = Htyi   Z=0 Z=0                                                                                                                         | 8.20 ad <- 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                        | The state of the s |
| -Eio_1 cos(Θi) e-ik, xsinθ; + Ero_1 cos                                                                                                                | S(Or) e-jk, x sin or = - Etol (OS(Ot) e-jk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| el nome le proposition no                                                                                                                              | $\eta_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (B20)                                                                                                                                                  | lie was a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1) Eio_1 + Ero_1 = Eto_1                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2) Essa Cos (Oi) [-Eio] + Ero] = - Cos (                                                                                                               | 0.1 Filanz's - 10200'x - ) 3 = 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\frac{2) \operatorname{Eng} \operatorname{Cos}(\Theta_1) \left[ -L_{10} \right] + \operatorname{Ero} \left[ \right] = -\operatorname{Cos}(\Theta_1) $ | OH LTOS I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\eta_1$ $\eta_2$                                                                                                                                      | 2 10 10 N 2 15 1 10 200 1 X- 2 1 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M_ = Eral = N2 COS Oi - N, COS Oi                                                                                                                      | effected wave to although the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Eight $\eta_2 \cos \theta i + \eta_1 \cos \theta t$                                                                                                    | TL = 1+ M1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| [1 = Eto1 = 2η2 cos θ;                                                                                                                                 | 1 2 1 1 VO 4 2 3 - 10 (8) 2 8 3 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Eio $1$ $\eta_2 \cos \Theta_i + \eta_1 \cos \Theta_t$                                                                                                  | Market and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| if medium 2 is perfect conductor 6                                                                                                                     | ~= ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| _                                                                                                                                                      | 1 - of Fire Challens Eq. Xsmer)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - M2 = 0 (49 end die 18 milk) extig                                                                                                                    | 1 ad 3 (18 m2 5 + 2 3 2 2 X - ) (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\Gamma_{1}=-1$ , $T_{1}=0$                                                                                                                            | T 23 5 X 98 MK 3 1, 3 1, 531 V 2 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                        | 21,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| For non-magnatic conductor (M. = 1                                                                                                                     | 42 = Mo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $M_1 = \cos \theta i - \sqrt{(\epsilon_2   \epsilon_1) - \sin^2 \theta i}$                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $I = \frac{\cos \theta_1 - \sqrt{(c_2/c_1) - \sin \theta_2}}{\cos \theta_1 - \sqrt{(c_2/c_1) - \sin \theta_2}}$                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\cos \Theta_i + \sqrt{(\varepsilon_2 1 \varepsilon_1) - \sin^2 \Theta_i}$                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

 $\prod_{i=1}^{n} \frac{\cos \theta_{i} - \sqrt{(\epsilon_{2}/\epsilon_{1}) - \sin^{2}\theta_{i}}}{\cos \theta_{i} + \sqrt{(\epsilon_{2}/\epsilon_{1}) - \sin^{2}\theta_{i}}}$ We have used  $\frac{\epsilon_{2}}{\epsilon_{1}} = \frac{(n_{2})^{2}}{(n_{1})^{2}}$  "SNLS Low"

Ei\_ = J'100 cos (wt-TIX \_ 1-73 TZ) V/m, soil is loss less, wh with

(Er=Y), non magnatic. Find:

Infind k., k2, 0; Ib Find all fields (E, H) in both medium

X-Z plane is the incident plane prop (+Z^)(+x^) directions,

Ei 1 = Υ 100 e-jπx-j1.73πZ = y 100 e

k, (Z cos 0; + x sin 0;) = k, Z cos 0; + k, x sin 0;

KIZcas θi+ KIX Sin Θi = TX + 1.73πZ

KI Sin Oi= T, KI COS Oi = 1.73T

 $k_1^2 \sin \theta_1^2 + k_1^2 \cos \theta_1^2 = \pi^2 + 1.73\pi^2$ 

k, (Sinθ; + cosθ; 3) = 2/4/3/π/ π² (1+1.73²)

k. 135731-38 cos (+1 + x x +1) +3523/ (-x)

1 = 1162 cos(w) -3 87 TE)

 $k_i \sin \theta i = \overline{K} \rightarrow \tan \theta i = 1 \rightarrow \theta i = 30$  $\frac{\sin \theta_{t}}{\sin \theta_{i}} = \frac{k_{1}}{k_{2}} \Rightarrow \frac{\sin \theta_{t}}{\sin \theta_{i}} = \frac{2\pi}{4\pi} = 0.25$  $\theta$  + =  $\sin^{-1}(0.25) = 14.5^{\circ}$  $\eta_2 = \frac{\eta_0}{\sqrt{\epsilon_\ell}} = \frac{120\pi}{\sqrt{4}} = 60\pi \qquad \eta_1 = 120\pi = 37.7$ E(0) = Fio1 = -0.38 \* 100 = -38 Erol = y^(-38) e-Jxrk, =y-38 e-jk, (-Zcoser + xsiner) = y - 38 e - j(\tau x - 1.73\tau Z) 9 001 } 5 THER IL OTHER ON 1/2  $\overrightarrow{E}_{1} = y^{2} 100 e^{-j(\pi x + 1.73\pi z)} - y^{2} 38 e^{-j(\pi x + 1.73\pi z)}$ Eto1 = T1 Eio1 = 0.62 \* 100= 62  $\overrightarrow{Eil} = \overrightarrow{Etl} = y^{\circ} 62 e^{-jk_2 xt}$ =  $y^{62}e^{-j2\pi(Z\cos 14.5 + X\sin 14.5)}$  =  $y^{62}e^{-j(3.87\pi Z + \pi x)}$ Eil, = y^[100fos (wt-T(X-1.73TTZ)-38 cos (wt-T(X+1.73TTZ)) F2 L = y 62 cos (wt - TX - 387 TZ)



Example: - Uniform plane wave in air having Ei = - 48cos (wt-4x-3Z)W is incident an adjelectric slab 720 with (Mr=1, Er=2.5, or=0) Dangle of incident. 2 angle of transmition. 3 refflected of transmitted P-fields 9 " of transmitted H-fields. Ei = y Eiol e-jk, (Xsingi+Zcospi) Eio1 = -8  $k_1 \sin \theta i = 4 \Rightarrow \tan \theta i = \frac{4}{3} \Rightarrow \theta i = 53.13$ ki Costi= 3 K, Sin 0; = 4 ⇒ k, = 5  $\frac{1}{\sqrt{2.25}} = \frac{5}{k_2} = \frac{1}{12.5} \times \frac{5}{12.5}$ 72=75.895TL Kz = 7.91 n, = 120TC 0.51  $Sin\theta_{+} = 5 \Rightarrow Sin\theta_{+} = 4/2 \Rightarrow \theta_{+} = 30.395$ 7.91 Sinai  $1 = \eta_2 \cos \theta_i - \eta_1 \cos \theta_+$ ₩/898 45.5371 - 103.511 45.537TT+ 103.51TT nz costi+ n, cost+ T, = 0.611)

```
Erol = (-0.389)(-8) = 3.112
Er_ = y 3.112 e-jk, (xsin0r-zcos0r) = y 3.112 e-j (-2+4x)
       4 3.112 cos (w+ +37-4X)
Et1 = y^-4.888 e-1k2(+xcos0++Zsin0+)
                                                 0; = 53.13° = 0r
     = y^- 4.888 p-j(+6.82 =x+4Z)
                                                 O+ = 30.39°
     = y - 4.889 cos(wt - 4x + 6.827)
 ki = Z sin θi - x cosθi = 0.82 - 0.6x
 Kr = Z sin Or + x cosor = 0.82 + 0.6x
 kt = - x coso+ + 2 sin 0+ = 0.512 - 0.863 x
Hil = 1 ki x Eil = 1 (0.82 -0.6x) X-y & (m8 cos (wt -4 x-32))
  = (0.8x1+0.6Z) & COS (wt-4x-3Z)
H_{1} = 1 \quad k_{1} \times E_{1} = 1 \quad (0.8 \, Z^{2} + 0.6 \, x^{3}) \times y^{3} \cdot 112 \cos(w + 3Z - 4x)
      = (-0.8x+0.62) 3.112 cos (w+32-4x)
       =(6.6 x) 4.953Z) cos(w++ 3Z-4X) m
H+1 = 1 (0.512^-0.863x^) X-y^ (~4.888cos(w+-4x-2-6.82Z)
75.895
       = {// (0.51 x^+ 0.8632^1) 64.4 (cps (wt-4,x-&6.822) m
```







The vector of avarage incident power density  $Sav_i = \frac{1E_i^2}{2\eta_i} k_i = \frac{10^2 + 5^2}{2} (Z^0.894 + y^0.447)$ = y^0.074 + 2^0.118 (w/m2) #Browster angle (OB) Is the incident angle at which (M = 0) 1) perpendicular polarization  $\frac{1}{L} = n_2 \cos \theta i - n_1 \cos \theta_+ = 0 \Rightarrow \eta_2^2 \cos \theta i = \eta_1 \cos \theta_+$  $\eta_2 \cos \theta_i + \eta_i \cos \theta_t$ = n2 (1- Sin2 θi) = n1 (1- Sin2θt) sinθt = up2 = MiE1 Sin Ot = MIEI Sin Oi Sin Di  $(-\eta_2^2 + \eta_1^2 + \eta_1^2 + \eta_2^2) = \eta_1^2 - \eta_2^2$   $M_2 \mathcal{E}_z$ 

if M, = M2 . Sin Oi = w OBL dose not excist for Mi=tz or for non magnatic 2)Parrallel polarization  $\int_{11}^{1} = 0$ Sin OBIL = For non magnatic  $(M_1 = M_2 = M_0)$   $\Theta_{B_{11}} = Sin^{-1} \left( \frac{1}{|E_1|^2} \right) = tan^{-1} \left( \frac{|E_2|}{|E_1|} \right)$ #OB is called pollarizing angle if awave with perpendicual, parrallel polarization is incident on non-magnatic material at 0: = 0811 Sothat the 11-component (Th=0) is totally transmitted only the I component is reflected.



Reflected and transmitivits

$$P_{i,j} = S_{i,j} A_i = \frac{1E_{i,j}^2 A_{\cos \theta_i}}{2\eta_i}$$

$$P_{\Gamma \perp} = \frac{|E_{\Gamma}^2|}{2\eta_i} A_{\cos} \theta r$$

$$R_{+\perp} = \frac{|E_{+\perp}|}{2n} A \cos \theta_{+}$$

$$R_{\perp} = \frac{|E_{\perp}r^2|}{|E_{\perp}|^2}$$

$$R_{II} = \frac{R_{III}}{R_{III}} = \frac{|\Pi_{II}|^2}{|\Pi_{II}|}$$

$$T_{\perp} = \frac{\left(\left|E_{t\perp}\right|^{2}/2\eta_{2}\right) A \cos \theta_{t}}{\left(\left|E_{i\perp}\right|^{2}/2\eta_{1}\right) A \cos \theta_{i}} = \left|T_{\perp}\right|^{2} \eta_{1} \cos \theta_{i}}{\eta_{2} \cos \theta_{i}}$$

$$T_{II} = (T_{II})^2 \eta_i \cos \theta_t$$

nz cos Oi

 $\left| \prod_{\parallel} \right|^2 + \left| \prod_{\parallel} \right|^2 \eta_{1} \cos \theta + = 1$