

Hashemite University

Faculty of Engineering and Technology

Computer Engineering Department

Microprocessors Lab Manual

Prepared By: Eng. Ezya Khader & Eng. Sara Al-shaer

 2

Table of Content

Lab Rules 3

Guidelines for Writing Lab report 4

Review of the System Commands and Assembly Instruction Set 6

Developing Assembly Language Programs and Executing using

Emu8086 and MASM

22

Programming Techniques 28

BIOS Interrupts Programming 33

DOS & Mouse Interrupts Programming 40

Parallel Data Input/output 45

I/O Applications: Dynamic Display 48

LCD & Keypad Interrupts 50

Design and conduct an Experiment 52

Appendix A: Communicating with MTS-8088 KIT

54

 3

Lab Rules

 General Rules:

o Be PUNCTUAL for your laboratory session.

o Foods, drinks and smoking are NOT allowed.

o The lab timetable must be strictly followed. Prior permission from the Lab

Supervisor must be obtained if any change is to be made.

o Experiment must be completed within the given time.

 Instruments:

o Be careful in dealing with the lab apparatus.

o Don't change the place of any instrument or any of its cables.

o The main equipment that you will use in the lab experiments is the MTS-8088

trainer kit; check your program carefully before implementing it in order to

avoid harming or damaging the kit ICs.

o Don't touch or remove the kit ICs.

o When you connect interfaces cards to the kit, make sure that you use the right

connector in its right location.

o If you face any problem or you have any question about the instruments

operations please refer to the laboratory supervisor.

o At the end of the lab turn-off all the instruments.

 Lab Reports:

o Lab work is very important to you as an engineer, it gives you some practical

experience that you will need in your future work. Also it increases your

understanding of the theoretical material that you have taken at class.

o Writing lab reports with high quality is also important to you, it develops your

ability to express your ideas, work, and your observations to other people in the

field.

o You must follow the following sequence in organizing your lab report .

Lab Report Items

Cover Page

Objectives

Theoretical Background

Equipment

Procedure

Results

Conclusions

o Be organized in your lab report, and be clear in expressing your theoretical and

experimental data.

o Make sure to include all the required and important data and items within your

report to make it comprehensive and self contained.

o Copies will take zero grades.

o Report submission will be due to the next lab. Only one day late is allowed with

25% deduction.

 4

Guidelines for Writing Lab Report

The most effective way to acquire the practical skills in engineering studies is usually

by experimenting in a laboratory. The process of experimentation involves organization,

observation, familiarization with various pieces of equipment, working with others, writing,

and communicating ideas and information. These are the skills required of an engineer.

In a practical situation, such as that in the industry or university research, experiments

are designed for the purpose of clarifying research questions or conflicting theories by means of

collecting a series of data. The conclusions drawn from that data can be used to validate a

theory or sometimes to develop a theory that explains the behavior of an engineering object.

The report for this kind of experiments must includes an introduction to the topic and purpose

of the experiment, the theory, method, procedure, equipment used in the experiment, the data

presented in an organized manner, and the conclusions based on the data gathered.

In engineering education, lab experiments are usually designed to enhance the

understanding in engineering topics. Students are supposed to "dirty their hand" in preparing

the experiment setup, organize the experiment flow, and learn to observe the salient features as

well as to spot any unexpected occurrence as part of the training to acquire the practical skill to

become an engineer. Although the introduction and the procedure are usually given in the lab

handouts, students should practice writing a proper lab report which includes all the necessary

sections, targeting at a reader who does not have any prior knowledge about the experiment.

This is to develop the skill in documenting the laboratory work and communicating that

experience to others. This write-up gives some guidelines on what to write in each section in

preparing laboratory reports for engineering curricula.

Title Page

The title page should contain the title of the experiment, the code and title of the course,

the name of the writer, the date when the experimental work was performed, submission date of

the lab report, and the name of lecturer for whom the report is prepared for.

Introduction or Objectives

An introduction is necessary to give an overview of the overall topic and the purpose of

the report. The motivation to the initialization of the experimental work can be included. Its

content should be general enough to orientate the reader gracefully into the subject materials.

 Theoretical Background

This section is to discuss the theoretical aspects leading to the experiment. Typically,

this involves the historical background of the theories published in the research literature and

the questions or ambiguities arose in these theoretical work. Citations for the sources of

information should be given in one of the standard bibliographic formats (for example, using

square brackets with the corresponding number [2] that points to the List of References).

Explore this background to prepare the readers to read the main body of the report. It should

contain sufficient materials to enable the readers to understand why the set of data are

collected, and what are the salient features to observe in the graph, charts and tables presented

in the later sections.

Depending on the length and complexity of the report, the introduction and the

theoretical background may be combined into one introductory section.

 Experimental Method, Procedure and Equipment

 This section describes the approach and the equipment used to conduct the experiment.

It explains the function of each apparatus and how the configuration works to perform a

 5

particular measurement. Students should not recopy the procedures of the experiment from the

lab handout, but to summarize and explain the methodology in a few paragraphs.

Observations, Data, Findings, Results

The data should be organized and presented in the forms of graphs, charts, or tables in

this section, without interpretive discussion. Raw data which may take up a few pages, and

most probably won't interest any reader, could be placed in the appendices.

Calculations and Analysis

The interpretation of the data gathered can be discussed in this section. Sample

calculations may be included to show the correlation between the theory and the measurement

results. If there exists any discrepancy between the theoretical and experimental results, an

analysis or discussion should follow to explain the possible sources of error.

 The experimental data and the discussions may also be combined into one section, for

example, under the heading called "Discussion of Experimental Results".

Conclusions

 The conclusions section closes the report by providing a summary to the content in the

report. It indicates what is shown by the experimental work, what is its significance, and what

are the advantages and limitations of the information presented. The potential applications of

the results and recommendations for future work may be included.

Appendices

 The appendices are used to present derivations of formulae, computer program source

codes, raw data, and other related information that supports the topic of the report.

 List of References

 The sources of information are usually arranged and numbered according to the order

they are cited in the report. The reference materials may be entered in the following formats:

[1] Author, "Title of the book", 2nd edition, New York: Publisher, 1989.

[2] Author, "Title of the paper", Journal name, Vol. 2, No. 3, Jan 1990, pg. 456-458.

[3] Author, "Title of the paper", Proceedings of Conference 1991, pg. 5-6.

[4] Author, "Title of the thesis", Ph.D. thesis, RiceUniversity, Houston, May 1973.

 6

Hashemite University

Faculty of Engineering and Technology
Computer Engineering Department

Experiment 1:

Review of the System Commands and Assembly Instruction Set

1.1 Objectives:
1. Be familiar with the software structure of MTS-8088 kit.

2. To utilize and apply the system commands of MTS-8088 system.

3. Calculate the physical address of storage locations in the memory address space.

4. Assemble instructions into the memory and Disassemble machine code stored in

memory.

1.2 Pre-lab Preparation:
 Read the experiment thoroughly before coming to the lab.

 Download the Dosbox and try all the examples on the experiment.

1.3 Equipments:
 Personal computer.

Introduction: How to enter Debug?

a) Working on 32 bit operating system:

To load DEBUG program from DOS:

Start programs Run write cmd then depress Enter (↵) key.

Write DEBUG and depress Enter (↵) key:

Prompt (-) is then displayed.

All we need to do is type in the command and then depress Enter (↵) key. These debug

commands are the tools a programmer needs to enter, execute, and debug programs. At the

completion of the operation, results are displayed on the screen and the DEBUG prompt (−) is

redisplayed. The PC waits in this state for a new entry.

b) Working on 64 bit operating system:

You have to install the DOSBox 0.7 program.

DOSBox is a program that emulates the functions of MS-DOS, including sound, graphics,

input, and networking.

 7

Step 1:

Download the appropriate version of the program for your operating system, then Install the

DOSBox 0.7setup on your computer.

Step 2:

Make a folder for you to use it when you need to run MS-DOS commands.

Create your folder on D:\ drive for example then name it 8086

Step 3:

For our lab you have to put all 8086 assembler commands inside this folder. (See figure 1)

 Figure 1

Step 4:

Click on DOSBox 0.74 to run the program.

 8

Two black screens will be appeared, but we will use the below one. (Figure 2)

 Figure 2

Step 5:

Mount the D:\8086 directory, by writing the following commands. (See figure 3)

Figure 3

 9

Step 6:

Now you can use all the command inside this folder just by typing it on this black window then

press Enter.

For example to use the debug just write debug then press Enter. (See figure 4)

Figure4

First: System Commands
Table 1 lists the most of the system commands used in the MTS-8088. The 8088

System has two command groups. These are the system commands and the I/O Driver

commands. The system commands provide ways to utilize the system’s resources, and the I/O

Driver Commands are used to control I/O devices.

Command Description

 Memory Management Commands

D Display the contents of Memory

C Compare the contents of Memory

E Edit/Modify the memory contents

F Fill memory

M

S

Move the contents of memory

Search the memory

Assembler Commands

A Command A is used to write an assembly language program.

U Disassemble the assembly language instructions into machine code

Program Control Commands

G Executing Programs

R Display / modify the contents of registers.

T Trace the program execution

Table 1: System commands.

 10

Memory Management Commands:

D (Dump)

The D command displays memory on the screen as single bytes in both hexadecimal and

ASCII.

Command formats:

D

D address

D range

If no address or range is given, the location begins where the last D command left off, or at

location DS: 00 if the command is being typed for the first time. If address is specified, it

consists of either a segment-offset address or just a 16-bit offset. Range consists of the

beginning and ending addresses to dump.

Example Description

D F000:0 Segment-offset

D ES:100 Segment register-offset

D 100 Offset

The default segment is DS, so the segment value may be left out unless you want to dump and

offset from another segment location. A range may be given, telling Debug to dump all bytes

within the range.

D 150, 15A (dump DS: 0150 through 015A, means 11 locations will be displayed)

Other segment registers or absolute addresses may be used, as following examples show:

Example Description

D Dump 128 bytes from the last referenced location

D SS:0,5 Dump the bytes at offset 0 to 5 from SS

D 915:0 Dump 128 bytes at offset zero from segment 0915H

D 0,200 Dump offsets 0-200 from DS

Memory Dump Example:

The following figure shows an example of a memory dump. The numbers at the left are the

segment and offset address of the first byte in each line, the next 16 pairs of digits are the

hexadecimal contents of each byte, the characters to the right are the ASCII representation of

each byte.

 11

E (Enter/Edit)

The E command places individual bytes in memory, you must supply a starting memory

location where the values will be stored. If only an offset value is entered then the offset is

assumed to be from DS, otherwise a 32 bit address may be entered or another segment register

may be used. Command formats are:

E address enter new byte value at address

E address, list replace the contents of one or more bytes starting at the specified address

with the values contained in the list.

Examples:

To begin entering hexadecimal or character data at DS: 100, type:

E 100

Press the space bar to advance to the next byte, and press Enter key to stop.

To enter a string into memory starting at location ES: 500, type:

E ES: 500,"this is a string values"

F (Fill)

The fill command fills a range of memory with a single value or list of values, the range must

be specified as two offset addresses or segment-offset addresses. Command format:

F range, list

Here are some examples;

Example Description

F 100,500,' ' Fill locations 100 through 500 with spaces

F ES:300,320,FF Fill locations ES:300 through ES:320 with value FFh

F 20,30,BB Fill locations DS:20 through DS:30 with value BBh

F 20,40,CC,DD,EE,11 Fill locations DS:20 through ds:40 with values CC,DD,EE,11

 12

C (Compare)

The C command compares bytes between a specified ranges with the same number of bytes at a

target address. Command format:

C range address

For example, the bytes between DS: 0100 and DS: 0105 are compared to the bytes at DS: 0200:

C 100,105,200

The debug will display the different values between the two blocks.

M (Move)

The M command copies a block of data from one memory location to another. The command

format is:

M range address

 13

Range consists of the starting and ending addresses of the bytes to be copied. Address is the

target location to which the data will be copied. All offsets are assumed to be from DS unless

specified otherwise.

Examples:

Example Description

M 100,105,110 Move bytes in the range DS:100-105 to location DS:110

M ES:100,105,110 Same as above, except that all offsets are relative to the segment value

in ES

Sample string Move:

The following example uses the M command to copy the string 'ABCDEF' from offset 100h to

106h. First the string is stored at location 100h; then memory is dumped, showing the string,

next we move (copy) the string to offset 106h and dump offsets 100h-10Bh:

S (Search)

The S command searches a range of addresses for a sequence of one or more bytes the

command format is:

S range list

Here are some examples:

Example Description

S 100,1000, 0D Search DS:100 to DS:1000 for the value 0Dh

S 100,1000,CD,20 Search for the sequence CD,20

S 100,9FFF,"COPY" Search for the word "COPY"

Assembler Commands

A (Assemble)

Assemble a program into machine language. Command formats:

 A

 A address

If only the offset portion ofaddress is supplied, it is assumed to be an offset from CS.

 14

Here are examples:

Example Description

A 100 Assemble at CS:100H

A Assemble from current location

A DS:2000 Assemble at DS:2000H

When you press Enter at the end of each line, debug prompts you for the next line of inputs.

Each input line starts with a segment –offset address. To terminate input, press the enter key on

a blank line.

For example:

U (Unassemble)

The U command translate memory into assembly language machine code. This is also called

disassembling memory, if you don’t supply an address debug disassembles from the location

where the last U command left off. If the command is used for the first time after loading debug

memory is unassembled from location CS: 100. Command formats are:

U

U startaddr

U startaddrendaddr

Where the startaddr is the starting point and endaddr is the ending address. Examples:

Example Description

U Disassemble the next 32 bytes.

U 0 Disassemble 32 bytes at CS:0

U 100,108 Disassemble the bytes from CS:100 to CS:108

Program Control Commands

G (Go)

Execute the program in memory.

Command formats:

G

G breakpoint

G= startAddr breakpoint

G= startAddr breakpoint1 breakpoint2 …

 15

Breakpoint is a 16 or 32 bit address at which the processor should stop, and startAddr is an

optional starting address for the processor, if no breakpoints are specified the program runs

until it stop by itself and returns to debug, up to 10 breakpoints may be specified on the same

command line. Examples:

Example Description

G Execute from the current location to the end of the program

G 50 Execute from the current location and stop before the instruction at

offset CS:50

G= 10,50 Begin execution at CS:10 and stop before the instruction at offset

CS:50

T (Trace)

The T command executes one or more instructions at either the current CS:IP location or at

optional address. The contents of the registers are shown after each instruction is executed. The

command formats are:

T

T count

T = address, count

Where count is the number of instructions to trace, and address is the starting address for the

trace.

Examples:

Example Description

T Trace the next instruction

T 5 Trace the next five instructions.

T=105,10 Trace 16 instructions starting at CS:105

R (Register)

The R command may be used to do any of the following:

1. Display the contents of one register, and allowing it to be changed.

2. Display all registers, flags, and the next instruction about to be executed.

3. Display all eight flag setting, and allowing any or all of them to changed

Command formats:

R

R register

 16

Here are some examples:

Example Description

R Display the contents of all registers.

R IP Display the contents of IP and prompt for a new value.

R CX Display the contents of CX and prompt for a new value.

R F Display all flags and prompt for a new flag value.

Once the R F command has displayed the flags, you can change any single flag by typing its

new state. For example: we set the Zero flag by typing the following two command:

R F [Press Enter] ZR

The following is a sample register display (all values in hexadecimal):

The complete set of possible flag mnemonics in Debug (ordered from left to right) are as

follows:

The R command also displays the next instruction to be executed:

 17

Q (Quit)

The Q command quits Debug and returns to DOS.

Second: Addressing Modes;

The addressing modes are categorized into the categories:-

 Register Operand Addressing Mode.

 Immediate Operand Addressing Mode.

 Direct Addressing Modes.

 Register Indirect Addressing.

 Based-Index Addressing Mode.

 Register Relative Addressing.

 Based relative-plus-index addressing.

Third: Instruction Set:

Arithmetic Instructions

Instruction Operation

ADD operand1,operand2

Operand1=operand1 + operand2

SUB operand1,operand2

Operand1=operand1- operand2

MUL operand

Operand must be a REG or MEM

When operand is a byte:

AX = AL * operand.

when operand is a word:

(DX AX) = AX * operand

DIV operand

Operand must be a REG or MEM

when operand is a byte:

AL = AX / operand

AH = remainder (modulus)

when operand is a word:

AX = (DX AX) / operand

DX = remainder (modulus)

Data Transfer Instructions:

Data movement instructions include:

1- General Purpose instructions group: MOV

2- Stack instructions group: PUSH, POP

4- String Instructions group: LODS, STOS, MOVS

 18

 General Purpose Instructions Group

MOV: Copy Data from source to destination. Source contents are not affected.

Format: MOV Destination, Source

Operation: (S) (D)

Example:

MOV Ax, 00FE

 Stack Instructions Group
There are two typical instructions that are used with stack. They are:

A- PUSH: push word into stack

 Format: PUSH (16-bit register)

 Operation: 1) SP = SP – 2

 2) (16-bit register) (SS:SP)

B- POP: Pop word of the stack to destination register.

 Format: POP (16-bit register)

 Operation: 1) (SS:SP) (16-bit register)

 2) SP = SP + 2

Examples:

Before Executions Instructions After Executions

SP = B3F

SS = 0040

SS:B3A = 00

SS:B3B = 00

SS:B3C = 00

SS:B3D = 00

SS:B3E = 00

SS:B3F = 00

Mov CX, 88AA

Mov DX,BB99

PUSH CX

PUSH DX

SP = B3B

SS = 0040

SS:B3A = 00

SS:B3B = 99

SS:B3C = BB

SS:B3D = AA

SS:B3E = 88

SS:B3F = 00

SP = B3B

SS = 0040

SS:B3A = 00

SS:B3B = 22

SS:B3C = 66

SS:B3D = CC

SS:B3E = 88

SS:B3F = 00

POP BX

POP wo[80]

SP = B3F

SS = 0040

SS:B3A = 00

SS:B3B = 22

SS:B3C = 66

SS:B3D = CC

SS:B3E = 88

SS:B3F = 00

BX = 6622

DS:80 = CC

DS:81 = 88

 String Instructions Group

By String we mean a series of data words (or bytes) that reside in consecutive memory

locations. The string instructions of the 8088 permit a programmer to implement operations

such as moving data from one block of memory to another block elsewhere in memory.

Associated with string operation, the direction flag that is explained below.

 19

The Direction Flag

The Direction flag (D) (located in the flag register) selects the auto-increment (D = 0) or

the auto decrement (D = 1) operation for the DI and SI registers during string operations. The

Direction flag is used only with the String operations. The CLD instruction clears the D flag (D

= 0), The STD instruction sets the D flag (D = 1)

A- LODS

The LODS instruction loads AL or AX with data stored at the data segment offset

address indexed by the SI register. After loading AL with a byte or AX with a word, the

contents of SI increment, if D = 0 or the contents of SI decrement, if D = 1.

Before Execution Instructions After Execution

Df = 0 LODSB
AL = DS:[SI]

SI = SI + 1

Df = 1 LODSB
AL = DS:[SI]

SI = SI – 1

Df = 0 LODSW

AL = DS:[SI]

AH = DS:[SI+1]

SI = SI + 2

Df = 1 LODSW

AL = DS:[SI]

AH = DS:[SI+1]

SI = SI - 2

B- STOS

The STOS instruction stores AL or AX at the extra segment memory locations

addressed by the DI register.

Before Execution Instructions After Execution

Df = 0 STOSB
ES:[DI] = AL

DI = DI + 1

Df = 1 STOSB
ES:[DI] = AL

DI = DI – 1

Df = 0 STOSW

ES:[DI] = AL

ES:[DI+1] = AH

DI = DI + 2

Df = 1 STOSW

ES:[DI] = AL

ES:[DI+1] = AH

DI = DI - 2

C- MOVS

The instruction MOVS transfers data from one memory location to another. This is the

only memory-to-memory transfer allowed in the 8088.

The MOVS instruction transfers a byte or word from the data segment location

addressed by SI to the extra segment location addressed by DI.

The pointers (SI & DI) then increment or decrement the value as dictated by the

direction flag.

Before Execution Instructions After Execution

Df = 0 MOVSB

ES:[DI] = DS:[SI]

DI = DI + 1

SI = SI + 1

Df = 1 MOVSB
ES:[DI] = DS:[SI]

DI = DI - 1

 20

SI = SI – 1

Df = 0 MOVSW

ES:[DI] = DS:[SI]

ES:[DI+1] = DS:[SI+1]

DI = DI + 2

SI = SI + 2

Df = 1 MOVSW

ES:[DI] = DS:[SI]

ES:[DI+1] = DS:[SI+1]

DI = DI – 2

SI = SI - 2

REPEAT

In most applications, the basic string operations must be repeated in order to process

arrays of data. This is done by inserting a repeat prefix ‘REP’ before the instruction that is to be

repeated. ‘REP’, causes the basic operation to be repeated until the contents of register CX

become equal to 0. Each time the instruction is executed, it causes CX to be tested for 0. if CX

is found not to be 0, it is decremented by 1 and the basic string operation is repeated. ‘REP’ is

useful when used with the instructions: MOVS and STOS.

Examples

LODS
Before Execution Instructions After Execution

DS:7F = C2

DS:80 = 30

DS:81 = 24

DS:82 = 8B

DS:83 = 71

DS:84 = FC

DS:85 = 90

DS:86 = A0

DS:87 = F9

CLD

MOV SI,80

LODSB

Df = 0

SI = 81

AL = 30

CLD

MOV SI,83

LODSW

Df = 0

SI = 85

AX = FC71

STD

MOV SI,83

LODSW

MOV DX,AX

LODSW

Df = 1

SI = 7F

DX = FC71

AX = 8B24

 STOS

Instructions After Execution

CLD

MOV DI,53

MOV AL, 56

STOSB

ES:53 = 56

DI = 54

Df = 0

CLD

MOV DI,70

MOV AX, 927C

STOSW

ES:70 = 7C

ES:71 = 92

DI = 72

Df = 0

STD

MOV DI, 94

MOV AL,33

STOSB

ES:94 = 33

DI = 93

Df = 1

STD

MOV DI, 62

MOV AX,5D7F

STOSW

ES:62 = 7F

ES:63 = 5D

DI = 60

Df = 1

CLD

MOV DI,90

MOV AL,F3

MOV CX,4

REP STOSB

ES:90 = F3

ES:91 = F3

ES:92 = F3

ES:93 = F3

DI = 94

Df = 0

 21

MOVS

Before Executions Instructions After Executions

DS:7E = 14

DS:7F = C2

DS:80 = 30

DS:81 = 24

DS:82 = 8B

DS:83 = 71

DS:84 = FC

DS:85 = 90

DS:86 = A0

DS:87 = F9

DS:88 = 8C

CLD

MOV SI,82

MOV DI,60

MOVSB

Df = 0

SI = 83

DI = 61

ES:60 = 8B

CLD

MOV SI,84

MOV DI,5B

MOVSB

MOVSB

Df = 0

SI = 86

DI = 5D

ES:5B = FC

ES:5C = 90

STD

MOV SI,86

MOV DI,9B

MOVSW

Df = 1

SI = 84

DI = 99

ES:9B = A0

ES:9C = F9

CLD

MOV SI,7F

MOV DI,6F

MOV CX,4

REP MOVSW

Df = 0

SI = 87

DI = 77

ES:6F = C2

ES:70 = 30

ES:71 = 24

ES:72 = 8B

ES:73 = 71

ES:74 = FC

ES:75 = 90

ES:76 = A0

STD

MOV SI,87

MOV DI,9B

MOV CX,3

REP MOVSW

Df = 1

SI = 81

DI = 95

ES:97 = 71

ES:98 = FC

ES:99 = 90

ES:9A = A0

ES:9B = F9

ES:9C = 8C

STD

MOV DI,88

MOV AX,749A

MOV CX,3

REP STOSW

ES:84 = 9A

ES:85 = 74

ES:86 = 9A

ES:87 = 74

ES:88 = 9A

ES:89 = 74

DI = 82

Df = 1

 22

Hashemite University

Faculty of Engineering and Technology
Computer Engineering Department

Experiment 2

Developing Assembly Language Programs and Executing using

Emu8086 and MASM

1.1 Objectives:
1. Assemble and execute instructions into the memory using Emu8086

2. Use MASM to identify then correct syntax errors and assemble a source program into

object code.

3. Edit an existing source program.

4. Explore the listing file and identify its different parts.

5. Make a run module with the LINK program then load and execute it with the DEBUG

program.

6. Learn how to write assembly programs using simplified and full segment definitions

1.2 Pre-lab Preparation:
 Read the experiment thoroughly.

1.3 Equipments:
 Personal computer with MASM 6.11 software installed on it.

 MTS-8088 kit.

1.4 Theoretical background:
The Microsoft Assembler package, MASM, is a programming environment that

contains two major tools: the assembler/linker and the CodeView debugger. The

assembler/linker translates x86 instructions to machine code and produces an ".exe" file that

can be executed under DOS. The CodeView tool is an enhanced version of DEBUG with a

graphical interface that also handles 32 bit instructions.

First: MASM 6.11:
 Assemble the Source File(.ASM file):

After writing the source code in .asm file you can assemble it using the MASM software to do

that; do the following steps:

1) Suppose we have exp2.asm file saved in the following directory: (D:\8086)

2) Open DOSboxthen go to the path (D:\8086).

 23

3) Use MASM/L command to assemble the source file exp2.ASM into a machine

language object file exp2.OBJ.

Note: MASM checks the source file for syntax errors. If it finds any, a short description

of the errors will be displayed with the line number of each.

Now the files exp2.OBJ will be created.

Before feeding the ".OBJ" file into LINK, all syntax errors produced by the assembler

must be corrected.

The ".lst" file which is optional is very useful to the programmer because it lists all the

opcodes and offset addresses as well as errors that MASM detected.

4) LINK program with MASM version 6.11 take one or more object files and combine

them into a single executable file (.EXE file).

Now the files exp2.EXE and exp2.MAP will be created.
The ".MAP" file which is optional gives the name of each segment, where it starts,

where it stops, and its size in bytes.

So when there are many segments for

code or data there is a need to see

where each is located and how many

bytes are used by each.

We can summaries the above steps as

in the beside figure:

 24

Second: Emu8086

Emulator has a complete 8086 instruction set, press on HELP

Third: Developing Assembly Language Programs

 Data Definition
Using assembly language the user can define different types of data with different sizes. Data

allocation directives (DB, DW, DD…….) are used to declare variables as in the following

examples:

Var1 DB 15 : Defines a variable called Var1 and initializes it with value 15

Var2 DB 12, 13, 15 : Defines an array of bytes called Var2, Var2 [0] =12, Var2 [1] =13

 An error occurs if the value assigned is greater than memory size allocated to it

VAR3 DB 270 : error

VAR4 DW 270 : correct

 Variables of type character can be defined by placing data between single quotations

STR1 DB ‘A’ ; STR1 ='A', the ASCII code of 'A'

STR2 DB ‘8’ ; STR2='8', the ASCII code of '8'

 String variables can be defined by enclosing the string between single quotations

STR3 DB ‘Hello to assembly language laboratory’, STR3 [0] =’H’ STR3 [1] = ’e’

 Illegal instructions

In assembly language there are some illegal operations that the user should avoid to make sure

that the assembler will not generate errors:

1- Segment to Segment data transfer
MOV DS, ES; illegal

MOV DS, CS; illegal

2- Code segment (CS) can not be a destination operand
MOV CS, AX ; illegal

3- Write an immediate value to a segment

MOV ES, 1422h ; illegal

4- Instructions that have operands with different sizes

VAR DB 5

MOV AX, VAR ; error

 25

 Directives vs. Instructions.

Directives:

1. Use Directives to tell assembler what to do

2. Commands that are recognized and acted upon by the assembler

 Not part of the Intel instruction set

 Used to declare code, data areas, select memory model, declare procedures, etc.

3. Different assemblers have different directives

 NASM != MASM, for example.

Instructions:
1. Use Instructions to tell CPU what to do.

2. Assembled into machine code by assembler

3. Executed at runtime by the CPU

4. Member of the Intel IA-32,IA-16 instruction set

 Segment Definition
There are two ways to define segments in assembly

 Simplified segment Definition

 Full segment Definition

Simplified segment Definition

The following example shows the structure of a main module using simplified segment directives:

.MODEL memorymodel ; It is required before you can use other simplified segment

directives

 .STACK ; Use default 1-kilobyte stack

 .DATA ; Begin data segment

 ; Place data declarations here

 .CODE ; Begin code segment

 .STARTUP ; Generate start-up code

 ; Place instructions here

.EXIT ; Generate exit code

END

 .MODEL Directive
The .MODEL directive defines the attributes that affect the entire module: memory model,

default calling and naming conventions, operating system, and stack type.

You must place .MODEL in your source file before any other simplified segment directive.

The syntax is: .MODEL memorymodel

The memorymodel field is required and must appear immediately after the .MODEL directive

The following list summarizes the memorymodel field.

Memory model No. of code

segments

No. of data

segments

Data and code

combined

Segment size

Tiny 1 Yes 64k

Compact 1 Many No 64k

Small 1 1 No 64k

Medium Many 1 No 64k

Large Many Many No 64k

Flat 1 Yes 32 bit OS

 4G

 26

 Starting and Ending Code with .STARTUP and .EXIT

The easiest way to begin and end an MS-DOS program is to use the .STARTUP and .EXIT

directives in the main module. The main module contains the starting point and usually the

termination point.

These directives make MS-DOS programs easy to maintain. They automatically generate code

appropriate to the stack distance specified with .MODEL. However, they do not apply to flat-

model programs written for 32-bit operating systems.

To start a program, place the .STARTUP directive where you want execution to begin. Usually,

this location immediately follows the .CODE directive:

.CODE

.STARTUP
;Place executable code here

.EXIT

END

Full Segment Definitions
If you need complete control over segments, you can fully define the segments in your

program.

 Defining Segments with the SEGMENT Directive

A defined segment begins with the SEGMENT directive and ends with the ENDS directive:

Name SEGMENT

Name ENDS

 The ASSUME Directive
Recall that all memory addresses have two components: a segment address and an offset

Address. Furthermore, every label in an assembly-language program (with the single

Exception of labels used before the SEGMENT directive) represents some offset address from a

segment address.

But which segment address?

Look at the data segment block named MyData:

; BEGIN DATA SEGMENT

MyData SEGMENT

Eatl DB "Eat at Joe's!"."$" ; Strings are terminated by "$"

CRLF DB 0DH, 0AH,'$' ;for printing by DOS

MyData ENDS

; END DATA SEGMENT

Everything between the two directives SEGMENT and ENDS is the program's data segment.

There is nothing in this segment definition to tell the assembler that it is a data segment. You

can define variables in the code segment or in the stack segment if you want, even though it's

customary and more correct programming practice to keep variables in the data segment.

Segment MyData could be just as easily considered a code segment, though not a stack

segment. We have the problem of indicating to the assembler which segment is the data

segment. This might seem like an easy one, but rather than a single problem it is actually two

problems: one is that the assembler needs to know which segment address to put into the Data

Segment (DS) register; and the other problem is which form of memory-addressing machine

instructions to use.

The first problem is easily addressed:
MOV AX,MyData ; Set up our own data segment address in DS

 27

MOV DS,AX ;Can't load segment reg. directly from memory

MyData,
If you recall, segment registers (ES, DS, SS), contain the segment address of a segment defined

using the SEGMENT and ENDS directives. That address is first loaded into AX, and then from AX

the address is loaded into DS. This roundabout path is necessary because the DS register cannot be

loaded with either immediate data or memory data; it must be loaded from one of the other

registers.

The end result is that the segment address represented by the label MyData is loaded into DS. This

neatly solves the first problem of specifying the address of the data segment.

We simply load the data segment's address into DS. Now MyData can be considered a real data

segment because its segment address is in the data segment register, DS.

That, however, doesn't solve the second problem. Although we wrote two instructions that moved

the address of our data segment into DS, the assembler doesn't "know" that this move took place.

Never forget that the assembler follows its orders without understanding them. It doesn't make

inferences based on what you do to addresses or the segment registers. It must be told which

segment is to be used as the data segment, the code segment, and the stack segment. Somewhere

inside the assembler program is a little table where the assembler "remembers" that segment

MyData is to be considered the data segment, and that segment MyCode is to be considered the

code segment, and that segment MyStack is to be considered the stack segment. It can't remember

these relationships, however, unless you first tell the assembler what they are somehow. This

somehow (for the data, code, and extra segments, at least) is the ASSUME directive.

Why is this important? It has to do with the way the assembler creates the binary opcodes for a

given instruction. When you write an instruction that addresses memory data like this:
MOV AX,Eat1

The assembler must put together the series of binary values that will direct the CPU to perform this

action. What that series of binary values turns out to be depends on what segment the label Eat1

resides in. If Eat1 is in the data segment, the binary opcodes will be one thing, but if Eat1 resides in

the code segment, stack segment, or extra segment, the binary opcodes will be something else

again. The assembler must know whether any label indicates an address within the data segment,

code segment, stack segment, or extra segment. The assembler knows that Eat1 indicates an address

within the segment MyData, but you must tell the assembler that MyData is in fact the data

segment.

The Syntax of the ASSUME Directive is:
ASSUME CS:MyCode, DS:MyData, SS:MyStack

Example :
The following code shows how to define the same program using the simplified and full segments

definitions:

SIMPLIFIED SEGMENT

DEFINITION
FULL SEGMENT DEFINITION

.MODEL SMALL

.STACK 64

.DATA

N1 DW 1432H

N2 DW 4365H

SUM DW 0H

.CODE

.STARTUP

MOV AX,N1

ADD AX,N2

MOV SUM,AX

.EXIT

END

MyStack SEGMENT

DB 64 DUP (?)

MyStack ENDS

MyData SEGMENT

N1 DW 1432H

N2 DW 4365H

SUM DW 0H

MyData ENDS

MyCode SEGMENT

ASSUME CS:MyCode, DS:MyData, SS:MyStack

 MOV AX,MyData

 MOV DS,AX

 MOV AX,N1

 ADD AX,N2

 MOV SUM,AX

 MOV AH,4C

 INT 21

MyCode ENDS

 28

Hashemite University

Faculty of Engineering and Technology
Computer Engineering Department

Experiment 3

Programming Techniques

1.1 Objectives:
1. Define subroutines .

2. Define macros by coding its definition directives, write assembly language instructions

to invoke macros.

1.2 Equipments:
 Personal computer with MASM software installed on it.

 MTS-8088 kit.

1.3 Theoretical background:

First: Subroutines

A subroutine (also known as procedure) is a special segment of program that can be

called for execution from any point in a program. The subroutine is written to provide a

function that may be performed at various points in the main program. The process of

transferring control from the main program to a subroutine and return control back to the main

program is achieved by what is known as subroutine handling instructions.

 Subroutine Handling Instruction:

There are two basic instructions for subroutine handling: the call (CALL) and ret

(RET) instructions. Together they provide the mechanism for calling a subroutine into

operation and returning control back to the main program.

a- CALL
Format: CALL Operand

Operation: PUSH IP

IP = operand (16 bit)

Flags affected: None

b- RET
Format: RET or RET Operand

Operation: POP IP

SP = SP + Operand

Flags affected: None

.MODEL SMALL

.DATA

ARR DB 0,1,1,2,3,5,8,13,21

SUM1 DB ?

.CODE

MOV AX,@DATA

MOV DS,AX

CALL SUM

MOV SUM1,BL

JMP FINISH

SUM PROC

LEA SI,ARR

MOV BX,00

MOV CX,9

L1:ADD BL,[SI]

 INC SI

 LOOP L1

RET

SUM ENDP

FINISH:

END

 29

.MODEL SMALL

.DATA

N1 DB 12

N2 DB 5

.CODE

.STARTUP

MACRO MULT V1, V2

 LOCAL L1

 MOV AL,V1

MOV AH,V2

 MOV BX,00

 L1:ADD BL,AL

 DEC AH

 CMP AH,0

 JNE L1

MULT ENDM

MULT N1, N2

MULT 2, 3

END

;EXAMPLE 1:

.MODEL SMALL

.DATA

PUBLIC Table1

PUBLIC Table2

PUBLIC Table3

PUBLIC Datax

Table1 DW

01H,02H,3FH,42H,05H,16H

Table2 DW 10DUP(?)

Table3 DB 10DUP(?)

Datax DD 4DUP(?)

.CODE

.STARTUP

PUBLIC Main

Main PROC FAR

MOV SI, OFFSET Table1

MOV DI, OFFSET Table2

MOV CX, 6H

LO:

MOVSW

LOOP LO

Main ENDP

END

Second: Macros
A macro is a group of instructions that perform one

task, just as a procedure performs one task. The difference

is that a procedure is accessed via a CALL instruction,

while a macro, and all the instructions defined in the macro,

is inserted in the program at the point of usage. Macro

sequences execute faster than procedures because there are

no CALL and RET instructions to execute. The instructions

of the macro are placed in your program by the assembler at

the point they are invoked.

The MACRO and ENDM directives delineate a

macro sequence. The first statement of a macro is the

MACRO instruction, which contains the name of the macro

and any parameters associated with it.

If a macro is expanded more than once in a program and

there is a label in the label field of the body of the macro,

these labels must be declared as LOCAL. Otherwise, an

assembler error would be generatedwhen the same label was

encountered in two or more places. The directive LOCAL is

used to declare a local label. It must appear right after the

MACRO directive, before comments and the body of the

macro. The LOCAL directive can be used to declare all names and labels at once.

Third: PUBLIC and EXTRN directives:
The PUBLIC and EXTRN directives are very

important in modular programming. We use PUBLIC to

declare that labels of code, data, or entire segments are

available to other program modules. EXTRN (external)

declares that labels are external to a module.

The PUBLIC directive is placed in the opcode field

of an assembly language statement to define a label as

public, so that the label can be used by other modules. The

label declared as public can be a jump address, a data

address, or an entire segment. When segments are made

public, they are combined with other public segments that

contain data with the same segment name. See Example 1

 30

The EXTRN statement appears in both data and

code segments to define labels as external to the segment. If

data are defined as external, their sizes must be defined as

BYTE, WORD, or DWORD. If a jump or call address is

external, it must be defined as NEAR or FAR. Example 2

shows how the external statement is used to indicate that

several labels are external to the program listed.

Fourth: Libraries
Library files are collections of procedures that are used by many different programs.

These procedures are assembled and compiled into a library file by the LIB program that

accompanies the MASM assembler program. Libraries allow common procedures to be

collected into one place so they can be used by many different applications. The library file

(FILENAME.LIB) is invoked when a program is linked with the linker program.

When the library file is linked with a program, only the procedures required by the

program are removed from the library file and added to the program- If any amount of

assembly language programming is to be accomplished efficiently, a good set of library files is

essential and saves many hours in receding common functions.

A library file is created with the LIB command, typed at the DOS prompt. A library file

is a collection of assembled .OBJ files that each performs one procedure or task. The name of

the procedure must be declared PUBLIC in a library file and does not necessarily need to match

the file name. Each procedure is defined as a FAR procedure, so that the linker can place the

procedures in a code segment separate from the main program.

Example: Library creation:
Assume we have three different subroutines each is written in assembly source file as

shown in figure1 (trianglearea,squarearea,display) and you want to create a library from these

three subroutines, you need to follow the following steps:

;EXAMPLE 2:

.MODEL SMALL

.DATA

EXTRN Table1:WORD

EXTRN Table2:WORD

EXTRN Table3:BYTE

EXTRN DATAx :DWORD

.CODE

EXTRN Main:FAR

.STARTUP

MOV DX, OFFSET Table3

MOV AX,05H

MOV [DX],AX

.EXIT

END

 31

Figure 1

Step#1 : masm each asm file

Step#2 : Use lib command to create the library from the object files created from step#1 (name

it shape)

The LIB program begins with the copyright message from Microsoft, followed by the prompt

Library name. The library name chosen is name for the name.LIB file. Because this is a new

 32

file, the library program asks if we wish to create the library file. The Operations: prompt is

where the library module names are typed. In this case, we create a library by using three

procedure files (SUB1, SUB2, and SUB3). The list file shows the contents of the library, the

list file shows the size and names of the files used to create the library, and the public label

(procedure name) that is used in the library file.

Step#3: write a test program that call all the subroutines in the library and masm it.

Step#4: link test.obj with the library (shape.lib)

Once the library file is linked to your program file, only the library procedures actually used by

your program are placed in the execution file. Don't forget to use the label EXTRN when

specifying library calls from your program module.

Step#5: run the test program (test.exe) to see the output

*change the values in the test program (len & wid) and repeat the steps 3, 4 &5 to see different

result.

 33

Hashemite University

Faculty of Engineering and Technology
Computer Engineering Department

Experiment 4

BIOS Interrupts Programming

1.1 Objectives:
1. To become familiar with the BIOS interrupts of the 8086/88 processor.

1.2 Pre-lab Preparation:
 Read the experiment thoroughly and make a real effort to run the code examples.

1.3 Equipments:
 Personal computer with MASM software installed on it.

 MTS-8088 kit.

1.4 Theoretical background:

There are some extremely useful subroutines within BIOS and DOS that are available to the

user through the INT instruction. The INT instruction is somewhat like a FAR call. When it is

invoked, it saves CS:IP and then flags on the stack and goes to the subroutine associated with

that interrupt. The INT instruction has the following format:

INT xx ; the interrupt number xx can be 00 – FF

Since interrupts are numbered 00 to FF, this gives a total of 256interrupts in 80x86

microprocessors. Of these 256 interrupts, two are the most widely used: INT10 and INT 21.

Each one can perform many functions. You can find a list of these interrupts in textbooks or on

the web. Before the service of INT 10H or INT 21H is requested, certain registers must have

specific values in them, depending on the function being requested. Various functions of INT

21H and INT 10H are selected by the value put in the AH register.

BIOS Interrupts

Interrupt types 0-1FH are known as BIOS interrupts. This is because most of these service

routines are BIOS routines residing in the ROM segment F000h.

 Interrupt Types 0 – 7
Interrupt types 0 – 7 are reserved by Intel, with types 0 – 4 being predefined. IBM uses type 5

for print screen. Types 6 and 7 are not used.

 Interrupt Types 8h – Fh
The 8086 has only one terminal for hardware interrupt signals. To allow more devices to

interrupt the 8086, IBM uses an interrupt controller, the Intel 8259 chip which can interface up

to eight devices. Interrupt types 8 – Fh are generated by hardware devices connected to 8259.

 Interrupt Types 10h – 1Fh
The interrupt routines 10h – 1Fh can be called by application programs to perform various I/O

operations and status checking.

 34

Text Display Programming
One of the most interested and useful applications of assembly language are in controlling the

monitor display

.

 Display Modes
We commonly see both text and picture images displayed on the monitor. The computer has

different techniques and memory requirements for displaying text and picture graphics. So the

adapters have two display modes: text and graphics. In the text mode, the screen is divided into

columns and rows, typically 80 columns by 25 rows, and the character is displayed at each

screen position. In graphics mode, the screen is divided into columns and rows, and each

screen position is called a pixel. A picture can be displayed by specifying the color of each

pixel on the screen.

 Kinds of video adapters
The video adapters for the IBM PC differ in resolution and the number of colors that can be

displayed. IBM introduced two adapters with the original PC, the MDA (Monochrome Display

Adapter) and CGA (Color Graphics Adapter). The MDA can only display text and was

intended for business software, which at that time did not use graphics. The CGA can display in

color both text and graphics, but it has lower resolution. In text mode, each character cell is

only 8×8 dots. In 1984 IBM introduced EGA (Enhanced Graphics Adapter), which has good

resolution and color graphics. The character cell is 8×14 dots. In 1988 IBM introduced the PS/2

models which are equipped with the VGA (Video Graphics Array) and MCGA (Multi-color

Graphics Array) adapters. These adapters have better resolution and can display more colors in

graphics mode than EGA. The character cell is 8×19 dots.

 Mode Numbers
Depending on the type of adapter present, a program can select text or graphics modes. Each

mode is identified by a mode number; table 4.1 lists the text modes for the different kinds of

adapters.

Table 4.1: Video adapter text modes

 Display Pages
For the DMA, the display memory can hold one screenful of data. The graphics adapter,

however, can store several screens of text data. This is because graphics display requires more

memory, so the memory unit in a graphics adapter is bigger. To fully use the display memory, a

graphics adapter divides its display memory into display pages. One page can hold the data for

one screen. The pages are numbered, starting with 0; the number of pages available depends on

the adapter and the mode selected. If more than one page is available, the program can display

one page while updating another one. Table 4.2 shows the number of display pages for the

MDA, CGA, EGA, and VGA in text mode. In the 80×25 text mode, each display page is 4KB.

The MDA has only one page, page0; it starts at location B000:0000h. The CGA has four pages,

starting at address B800:0000h. In text mode, the EGA and VGA can emulate either the MDA

or CGA.

Adapters Description Mode Number

CGA,EGA,MCGA,VGA 40×25 16-color text (color burst off) 0

CGA,EGA,MCGA,VGA 40×25 16-color text 1

CGA,EGA,MCGA,VGA 80×25 16-color text (color burst off) 2

CGA,EGA,MCGA,VGA 80×25 16-color text 3

MDA,EGA,VGA 80×25 Monochrome text 7

 35

Table 4.2: Number of text mode display pages

Modes Maximum Number of Pages

CGA EGA VGA

0-1 8 8 8

2-3 4 8 8

7 NA 8 8

 The Attribute Byte
In a display page, the high byte of the word that specifies a display character is called the

attribute byte. It describes the color and intensity of the character, the background color, and

whether the character is blinking and/or underlined.

 16 – Color Display
The attribute byte for 16 – color text display (modes 0 – 3) has the format shown below. A 1 in

a bit position selects an attribute characteristic. Bits 0 – 2 specify the color of the character

(foreground color) and bits 4 – 6 give the color background at the character's position. Bit 3

specifies the intensity of the character and bit 7 specifies whether the character is blinking or

not.

Bit 7 6 5 4 3 2 1 0

Attribute Blinking Background color Intensity Foreground color

Red Green Blue Red Green Blue

 Monochrome Display
For monochrome display, the possible colors are white and black. For white, the RGB bits are

all 1; for black, they are all 0. Normal video is a white character on a black background; the

attribute byte is 0000 0111 = 7h. Reverse video is a black character on a white background, so

the attribute is 0111 0000 = 70h.

 INT 10h
Even though we can display data by moving them directly into the active display page, this is a

very tedious way to control the screen. Instead we use the BIOS video screen routines which is

invoked by the INT 10h instructions; a video functions is selected by putting a function

number in the AH register.

Function 0:

Select Display Mode
Input: AH = 0

AL = mode number (see table 7.1)

Output: none

Function 1:

Change Cursor Size
Input: AH = 1

 CH = Starting scan line

 CL = ending scan line

Output: none

In text mode, the cursor is displayed as a small dot array at a screen position (in graphics mode,

there is no cursor). For the MDA and EGA, the dot array has 14 rows (0 – 13) and for the CGA,

there are 8 rows (0 – 7). Normally only rows 6 and 7 are lit for the CGA cursor, and rows 11

and 12 for the MDA and EGA cursor. To change the cursor size, put the starting and ending

numbers of the rows to be lit in CH and CL, respectively.

 36

Function 2:

Move Cursor
Input: AH = 2

 DH = new cursor row (0 – 24)

 DL = new cursor column. 0 – 79 for 80×25 display, 0 – 39 for 40×25 display.

 BH = Page number

Output: none

Function 3:

Get Cursor Position and Size
Input: AH = 3

 BH = page number

Output: DH = cursor row

 DL = cursor column

 CH = cursor starting scan line

 CL = cursor ending scan line

Function 5:

Select Active Display Page
Input: AH = 5

AL = active display page

 0 – 7 for modes 0,1

 0 – 3 for CGA modes 2,3

 0 – 7 for EGA, MCGA, VGA modes 2,3

 0 – 7 for EGA, VGA mode 7

Output: none

Function 6:

Scroll the Screen or a Window UP
Input: AH = 6

AL = number of lines to scroll (Al = 0 means scroll the whole screen or window)

 BH = attribute for blank lines

 CH,CL = row, column for upper left corner of window (see table 4.3)

 DH,DL = row, column for lower right corner of window (see table 4.3)

Output: none

Function 7:

Scroll the screen or a Window Down
Input: AH = 7

AL = number of lines to scroll (Al = 0 means scroll the whole screen or window)

 BH = attribute for blank lines

 CH,CL = row, column for upper left corner of window (see table 4.3)

 DH,DL = row, column for lower right corner of window (see table 4.3)

Output: none

Function 8:

Read Character at the Cursor
Input: AH= 8

 BH = page number

Output: AH = attribute of character

AL = ASCII code of character

 37

Table 4.3: some 80×25 screen positions

Position Decimal Hex

Column Row Column Row

Upper left corner 0 0 0 0

Lower left corner 0 24 0 18

Upper right corner 79 0 4F 0

Lower right corner 79 24 4F 18

Center of the screen 39 12 27 C

Function 9:

Display Character at the Cursor with Any Attribute
Input: AH = 9

 BH = page number

AL = ASCII code of character

 CX = number of times to write character

 BL = attribute of character

output: none

Function Ah:

Display Character at the Cursor with Current Attribute
Input: AH = 0Ah

 BH = page number

AL = ASCII code of character

 CX = number of times to write character

Output: none

Function Eh:

Display Character and Advance Cursor
Input: AH = 0Eh

AL = ASCII code of character

 BH = page number

 BL = foreground color (graphics mode only)

Output: none

This is the BIOS function used by INT 21h, function 2, to display a character. The control

characters bell (07h), backspace (08h), line feed (0Ah), and carriage return (0Dh) cause control

functions to be performed.

Function Fh:

Get Video Mode
Input: AH = 0Fh

Output: AH = number of screen columns

AL = display mode (see table 4.1)

 BH = active display page

This function can be used with function 5 to switch between pages being displayed.

 Graphics Modes
In graphics mode operation, the screen display is divided into columns and rows; and each

screen position, given by a column number and row number, is called a pixel (picture element),

the number of columns and rows gives the resolution of the graphics mode. The columns are

numbered from left to right starting with 0, and rows are numbered from top to bottom starting

with 0, depending on mapping of rows and columns into the scan lines and dot positions, a

pixel may contain one or more dots. For example, in the low-resolution mode of the CGA,

there are 160 columns by 100 rows, but the CGA generates 320 dots and 200 scan lines; so a

pixel is formed of 2×2 set of dots. A graphics mode is called APA (all points addressable) if it

 38

maps a pixel into a single dot. Table 4.4 shows the APA graphics modes of the CGA, EGA, and

VGA. To maintain compatibility, the EGA is designed to display all CGA modes and the VGA

can display all the EGA modes.

Table 4.4: Video adapter graphics display modes

Mode Number (Hex) CGA Graphics

4 320×200 4 color

5 320×200 4 color (color burst off)

6 640×200 2 color

 EGA Graphics

D 320×200 16 color

E 640×200 16 color

F 640×350 Monochrome

10 640×350 16 color

 VGA Graphics

11 640×480 2 color

12 640×480 16 color

13 320×200 256 color

Note: the screen mode is normally set to text mode; hence the first operation to begin graphics

display is to set the display mode using function 0, INT 10h.

CGA Graphics
The CGA has three graphics resolutions: a low resolution of 160×100, a medium resolution of

320×200, and a high resolution of 640×200. only the medium-resolution and high-resolution

modes are supported by the BIOS INT 10h routine.

Medium-Resolution Mode
The CGA can display 16 colors; Table 4.5 shows the 16 colors of the CGA. In medium

resolution, four colors can be displayed at one time. This is due to the limited size of the

display memory.

Table 4.5: Sixteen standard CGA colors

I R G B Color

0 0 0 0 Black

0 0 0 1 Blue

0 0 1 0 Green

0 0 1 1 Cyan

0 1 0 0 Red

0 1 0 1 Magenta

0 1 1 0 Brown

0 1 1 1 White

1 0 0 0 Gray

1 0 0 1 Light Blue

1 0 1 0 Light Green

1 0 1 1 Light Cyan

1 1 0 0 Light Red

1 1 0 1 Light Magenta

1 1 1 0 Yellow

1 1 1 1 Intense White

 39

To read or write a pixel, we must identify the pixel by its column and row numbers. These

functions 0Dh and 0Ch are for read and write respectively.

Function 0Ch:

Write Graphics Pixel
Input: AH = 0Ch

AL = pixel value

 BH = page (for the CGA, this value is ignored)

 CX = column number

 DX = row number

Output: none

Function 0Dh:

Read Graphics Pixel
Input: AH = 0Dh

 BH = page (for the CGA, this value is ignored)

 CX = column number

 DX = row number

Output: AL = pixel value

 Examples:
Below are two examples that use BIOS interrupts:

a) Setting the cursor position to the middle of the screen then display character A five

times with a blue color and a white background.

MOV AH, 02 ; set cursor option

MOV BH, 00 ; page 0

MOV DL, 40 ; column position

MOV DH, 13 ; row position

INT 10H

MOV AH,9 ;Display a character with attribute

MOB BL,72H ; attribute of character

MOV CX,5 ; number of times to write character

MOV AL,'A' ;character to display

INT 10H

b) Draw the following line :

MOV AH,0 ;change mode

MOV AL,12H ;select graphic mode

INT 10H

MOV AH,0CH ;write pixel value

MOV AL,07 ;pixel value(color)

MOV CX,100 ;column number

MOV DX,150 ;row number

L1:INT 10H

 INC CX ;move to the next column

 CMP CX,150

 JNZ LQ1

 40

Hashemite University

Faculty of Engineering and Technology
Computer Engineering Department

Experiment 5

DOS & Mouse Interrupts Programming

1.1 Objectives:
1. To become familiar with the DOS interrupts of the 8086/88 processor.

2. To become familiar with the mouse interrupts.

1.2 Pre-lab Preparation:
 Read the experiment thoroughly and make a real effort to run the code examples.

1.3 Equipments:
 Personal computer with MASM software installed on it.

 MTS-8088 kit.

1.4 Theoretical background:
The interrupt types 20-3FH are serviced by DOS routines that provide high level service

to hardware as well as system resources such files and directories. The most useful is INT 21H,

which provides many functions for doing keyboard, video, and file operations.

Interrupt 20h – Program terminate Interrupt 20h can be used by a program to return control

to DOS. It is not widely used because CS must be set to the program segment prefix before

using INT 20h. It is more convenient to exit a program with INT 21h, function 4Ch.

Interrupt 21h – Function Request Interrupt 21h may be use for various functions, these

functions may be classified as character I/O, file processing, memory management, disk access,

and miscellaneous.

Interrupt 22h – 26h Interrupt routines 22h – 26h handle Ctrl-Break, critical errors, and direct

disk access.

Interrupt 27h–Terminate but Stay Resident Interrupt 27h allows programs to stay in

memory after termination

 INT 21h
INT 21h may be used to invoke a large number of DOS functions, a particular function is

requested by placing a function number in the AH register and invoking INT 21h. Here we are

interested in the following functions.

Character I/O Functions:

Function 1:

Single Key Input
Input: AH = 1

Output: AL = ASCII code if character Key is pressed

 = 0 if non character key is pressed

The processor will wait for the user to hit a key if necessary. If a character key is pressed, AL

gets its ASCII code; the character is also displayed on the screen. Because INT 21h doesn't

prompt the user for input, he might not know whether the computer is waiting for input or is

occupied by some computation. The next function can be used to generate an input prompt.

 41

Function 2:

Display a character or execute a control function
Input: AH = 2

 DL = ASCII code of the display character or control character

Output: AL = ASCII code of the display character or control character

Table 5.7 shows some of the control characters and their corresponding control functions.

Table 5.7: control characters and functions

ASCII Code Symbol Function

7 BEL Beep (sounds a tone)

8 BS backspace

9 HT tab

A LF Line feed (new line)

D CR Carriage return (start of current line)

In case the programmer wants to prompt user for input by a meaningful message function 9

could be used.

Function 9:

Display a String
Input: AH = 9

DX = offset address of string.

The string must end with a '$' character.

See also AH = 6h, AH = 7h, and AH = 0Ah

 File Processing Functions
INT 21h provides a group of functions called file handle functions. These functions make file

operations much easier than the file control block method used before. In the latter, the

programmer was responsible for setting a table that contained information about open files.

With file handle functions, DOS keeps track of open file data in its own internal tables, thus

relieving the programmer of this responsibility.

File Handle
When a file is opened or created in a program, DOS assign it a unique number called the file

handle. This number is used to identify the file, so program must save it.

There are five predefined file handles. They are:

0 Keyboard

1 Screen

2 Error output – screen

3 Auxiliary device

4 Printer

File Errors
There is many opportunities for errors in INT 21h file handling; DOS identifies each error by a

code number. In the functions described here, if an error occurred then CF is set and the code

number appears in AX. Table 5.8 shows the most common file handling errors.

 42

Table 5.8: File handling errors

Hex Error Code Meaning

1 Invalid function number

2 File not found

3 Path not found

4 All available handles in use

5 Access denied

6 Invalid file handle

C Invalid access code

F Invalid drive specified

10 Attempt to remove current directory

11 Not the same device

12 No more files to be found

Opening and closing a file:
Before a file can be used, it must be opened. To create a new file or rewrite an existing file, the user

provides a file name and an attribute; DOS return a file handle.

Function 3Ch

Create a New File/Rewrite a File
Input: AH= 3Ch

 DS:DX = address of file name which is an ASCIIZ string

 CL = attribute byte

Output: If successful, AX = file handle

 Error if CF = 1, error code in AX (3,4, or 5)

Attribute byte is a byte in which each bit specifies file attribute.

Bit 7 6 5 4 3 2 1 0

Attribute Not

used

Not

used

Archive

bit

Subdire

ctory

Volume

label

DOS

system

file

Hidden

file

Read-

Only

file

To open an existing file, there is another function.

Function 3Dh

Open an Existing File
Input: AH = 3Dh

 DS:DX = address of a file name which is an ASCIIZ string

AL = access code: 0 means open for reading

 1 means open for writing

 2 means open for both

output: if successful, AX = file handle

 Error if CF = 1, error code in AX (2, 4, 5, 12)

After a file has been processed, it should be closed. This frees the file handle for use with

another file. If the file is being written, closing causes any data remaining in memory to be

written to the file, and the file's time, date, and size to be updated in the directory.

Function 3Eh

Close a File
Input: BX = file handle

Output: if CF = 1, error code in AX (6)

 43

Reading a file
The following function reads a specified number of bytes from a file and stores them in

memory.

Function 3Fh

Read a File
Input: AH = 3Fh

 BX = file handle

 CX = number of bytes to read

 DS:DX = memory buffer address

Output: AX = number of bytes actually read

 If AX = 0 or AX < CX, end of file encountered

 If CF = 1, error code in AX (5, 6)

Writing a file
Function 40h writes a specified number of bytes to a file or device.

Function 40h

Write File
Input: AH = 40h

 BX = file handle

 CX = number of bytes to write

 DS:DX = data address

Output: AX = bytes written. If AX < CX, error (full disk)

 If CF = 1, error code in AX (5, 6)

 INT 33h : Mouse driver interrupts

function 00h

Mouse initialization

Input: AX=00

Output: if successful: AX=0FFFFh and BX=number of mouse buttons.

 if failed: AX=0.

Function 01h

Show mouse pointer

Input: AX=01

Output : display mouse pointer

Function 02h

Hide visible mouse pointer.

Input: AX=02

Output : hide mouse pointer

Function 03h

Get mouse position and status of its buttons

Input: AX=03

Output: if left button is down: BX=1

 if right button is down: BX=2

 if both buttons are down: BX=3

 CX = x column number

 DX = y row number

; Note: the value of CX is doubled.

 44

.MODEL SMALL

.CODE

MOV AH,0

MOV AL,12H

INT 10H

MOV AX,00

INT 33H

MOV AX,1

INT 33H

AGAIN:

MOV AX,3

INT 33H

CMP BX,1

JE LEFT

CMP BX,2

JE RIGHT

JMP AGAIN

LEFT:
 SHR CX,1
 MOV AH,0CH
 MOV AL,0EH
 INT 10H
 JMP AGAIN
RIGHT:
 SHR CX,1
 MOV AH,0CH
 MOV AL,04H
 INT 10H
 JMP AGAIN
END

Example:

Write a code to check the mouse click, if the right button is clicked draw a yellow pixel in the

mouse location, else if the left button is clicked draw a red pixel in the mouse location.

 45

Hashemite University
Faculty of Engineering and Technology

Computer Engineering Department

Experiment 6

Parallel Data Input/Output

1.1 Objectives:
1) To understand the decoding circuit that is implemented for the 8088 input and output

subsystems.

2) To know how to download assembly program from PC to the MTS-8088 kit, using

serial communication port RS232.

3) Programming the 8255 Programmable Peripheral Interface.

1.2 Pre-lab Preparation:
 Read the experiment thoroughly.

 Read Appendix A: Communicating with MTS-8088 kit (Very Important).

1.3 Equipments:
 Personal computer with MASM software installed on it.

 MTS-8088 kit.

 EDS-8809.

 50 pins IDC flat cable

 RS232 serial cable.

1.4 Theoretical background:
Input and output Units provide the microprocessor with the means for communicating

with the outside world. Examples for the I/O interfaces are: PC keyboard, display and serial

communication interface. For the 8088 microprocessor, 16- address lines are used to assign up

to 216 I/O port. Figure 1 is an example of an 8-port output circuit for the 8088 microprocessor.

First: 8255 Programmable Peripheral Interface (PPI):
The 8255 is an example of I/O port. It is a programmable peripheral interface device

designed for use with Intel microcomputer systems. The programmable peripheral interface

(PPI) 8255 is used with 8088 microprocessor to permit easy implementation of parallel I/O. It

has three ports that are used as I/O ports, And a control register. Table 1 shows the addresses of

them.

Address Address allocated to

FF10 H Port A

FF11 H Port B

FF12 H Port C

FF13 H Control Register

Table 1

 46

Figure1: shows the pin layout of the programmable 8255 interface.

Figure1

 To Write a Program:

1. Send Control Byte to Control Register.

Control Register (8 bits):

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 0 0 Port A

Upper Port C 0 Port B

lower Port C

To decide the value of bits (0, 1, 3, and 4):

If the port is connected to Input Device, the value will be 1.

If the port is connected to Output Device, the value will be 0.

Example:
If we connect 7-segment display to Port A (Output), 8 Push buttons to Port B (Input), and 8

LEDs to Port C (Output), the value of Control Register should be 10000010B= 82H.

MOV DX, ….…. ; put the address of Control Register

MOV AL, ……… ; put the value of Control Byte. It is 82h in the example above. OUT DX,

AL ; after executing OUT instruction, the Control Register is initialized.

2. To Read from any Port.

MOV DX, ….…. ; put the address of the Port you want to read a Byte from.

IN AL, DX ;after executing IN instruction, AL contains the Byte you have just read

3. To Write (Send) on Any Port.

MOV DX, ….…. ; put the address of the Port you want to send a byte to it.

MOV AL, ……… ; put the value of the Byte (Data).

OUT DX, AL ; after executing OUT instruction, the date is transferred to the Port.

 47

Second: 7-segment display:

The 7-segment LED display can be found in many applications that range from the

simple toaster ovens to more sophisticated industrial control rooms. It is composed of 7 LEDs

that are fabricated in one case to make it more convenient for displaying numbers and some

letters, figure 2 shows the connection way of six 7-segments at port A, port B, and port C.

Figure 2: "Connection of 7-segments display"

To avoid displaying the consecutive hexadecimal digits too quickly, an appropriate delay

period needs to be inserted before sending the subsequent digit to the 7-segment display. This

can be accomplished by writing a time delay loop as follows:

Example:

To display the following sequence on the 7-segment display connected to PORTA (1, 2, … , 9)

.MODEL SMALL

.CODE

MOV DX, 0FF13H

MOV AL, 80H

OUT DX, AL

MOV DX, 0FF10H

MOV AL, 1

DISPLAY:

OUT DX, AL

 CALL DELAY

INC AL

CMP AL, 10

JNE DISPLAY

JMP FINISH

DELAY PROC

MOV CX, 0FFFFH

L1: LOOP L1

RET

DELAY ENDP

FINISH:

END

 48

Hashemite University
Faculty of Engineering and Technology

Computer Engineering Department

Experiment 7

I/O Applications: Dynamic Display

1.1 Objectives:
1. Implement wider applications on the I/O ports of the Microprocessor.

2. Understand the display principle of dot matrix LEDs module of EDS-8809.

3. Understand the principle of data's shift.

 .

1.3 Equipments:
 Personal computer with MASM software installed on it.

 MTS-8088 kit.

 EDS-8809.

 50 pins IDC flat cable

 RS232 serial cable.

1.4 Theoretical background:

First: Dynamic display
We see the advertisement signs in streets, which display moving photos and text

messages with animation. In this experiment we will implement a similar idea in which we will

display a string of characters on the EDS-8809 dot matrix LEDs. This practical application will

make use of I/O ports of the microprocessor.

We have the architecture of the dot matrix display is shown below in Figure1

 49

Figure1: The architecture of the dot matrix display

7.4 How to output the data?

First we have to change the dip switch to be enabled to output data to the dot

matrix display, as shown in Figure2.

Figure2: The dip switch

The following example shows how to set the control register to make the ports behave

as output ports:

Example :

Write instructions to enable the first row with 8 LEDs ON port A

MOV DX, FF12 ; select port C

MOV AL, 10h ; select row1 (second row)

OUT DX, AL

MOV DX, FF10 ; select port A

MOV AL, FF ; write value FF to port A

OUT DX, AL

 50

Hashemite University
Faculty of Engineering and Technology

Computer Engineering Department

Experiment 8

LCD & Keypad Interrupts

1.1 Objectives:

 To study and practice the use of various types of software interrupts.

 To use interrupts to write a simple and real application.

1.2 Equipments and Materials:

 MTS-8088 Kit.

1.3 Overview

MTS-8088 provides several I/O drivers to handle I/O devices; these programs can be called

by application programs to perform I/O. The I/O drivers provides by the EGC-8088 are

accessed through interrupt requests.

The routines we need to use in our lab are:

 INT81H The keyboard driver.

 INT84H The LCD driver.

 INT85H Return to the system monitor.

Each of these software interrupt instructions require certain parameters to function properly.

The functions provided by each I/O driver and their parameters are described in detail in the

following sections.

1.3.1 The Keyboard Driver: INT81H

This software provides the following functions:

AH=0: Read a character from the key board.

AH=1: Read a command line from the keyboard

AH=2: Read the keyboard status.

 51

AH=0: Read a character from the key board.

The driver only returns the scan code of the keystroke and its ASCII code to the calling

program when a key is pressed.

AL: The ASCII code of the keystroke.

AH: The scan code of the keystroke.

AH=1: Read a command line from the keyboard.

When AH=1, the CPU reads the keystrokes until <CR> is pressed. If the backspace key is

pressed, the last input character will be erased from the input data buffer. If a control character

is typed, it is ignored. The maximum number of keystrokes is 40 characters.

ES:DI points to the starting address of the data input buffer.

AH=2: Read the keyboard status.

When AH=2, the CPU reads the keyboard status. this means that the driver only indicates

whether there is a keystroke; it doesn’t read the key. The value of AL holds the keyboard

status:

AL=0: key is pressed

AL=FF: No key is pressed.

1.3.2: The LCD driver: INT84H.

The LCD is the main display device for the MTS=8088. The LCD driver writes a character to

the current cursor position and advances the cursor forward one column.

AL: character ASCII code to be displayed.

1.3.3: Return to the system BIOS:INT85H

This driver is used to return the program to the system BIOS. The user can use by executing

INT85H.

 52

Hashemite University
Faculty of Engineering and Technology

Computer Engineering Department

Experiment 9

Design and conduct an experiment

1. Objectives:

 Design and Conduct an Experiment to design a project using software or hardware tools

existing on the lab.

 The ability to interpret and analyze given situation and plan solutions for it.

 The ability to choose the appropriate tools and instruments that suit the desired job.

 The ability to use the chosen tools and instruments to achieve the goals of the experiment.

2. Student proposal

You have to submit a proposal before starting your experiment. Your proposal will describe the

objective or the goal of the experiment in addition to the proposed experimental set-up,

instruments, tools, governing equations, etc.

Remember that your work does not based on the existing well-defined experimental

procedure (manual).

You have to develop a new technique in the lab, so that you can conduct a new experiment to achieve

the goal. In addition, you have to report the results. Students can use any of lab equipment, tools,

instrument to setup their own experiments.

The design of an experiment can be integrated in the lab through different approaches:

 Design-build-test approach.

 Modifying an existing experimental setup.

 Utilizing instrumentations from other experiment to study a certain phenomenon.

3. Deliverables:

 Each group must deliver a report written using a word processor. The final report should include:

 Objectives: Statement of what you are going to achieve.

 Designing experiments: develop a methodology which will produce high quality data that can be

used to evaluate specific process or parameter.

 Experimental setup: the apparatus, devices, and instruments used to conduct the experiment

should be clearly specified [figures or photos may be added].

 Theoretical background: the theory related to the experiment, including all assumptions and

equations.

 53

 Conduct the experiment: clear procedure should be specified.

 Experimental results: represent all data.

 Analyze and interpret data: develop, if you can, a mathematical model or computer simulation

to correlate or interpret experimental results.

 Discussion and conclusions: list and discuss several possible reasons for deviations between

predicted and measured results from an experiment.

 54

Appendix A

Communicating with MTS-8088 KIT

Objective
This Appendix will help you to know how to communicate with the 8088 MTS kit, how

to download assembly programs from PC to KIT and how to upload it.

Introduction
Although the BGC-8088 MICROENGINEER is small and simple device, it contains all

the hardware elements of a computer. In particular, it provides RS-232 interface hardware

circuit and software driver for communication with the outside world. Here we present 2 built-

in commands for communication with the BGC-8088.

Procedure
Step 1:Prepare the assembly code

a) Write the assembly code in a text document then save it as .ASM file.

b) Assemble the source code using MASM/L command as follow:

i) Suppose we have Try.asm file saved in the following directory: (E:\8086).

ii) Open DOS from Run cmd, and then go to the path E:\8086.

(See figure 1).

iii) Use MASM/L instruction to assemble the source file Try.ASM into a machine

language object file Try.OBJ

Figure 1: change directory & assemble a source file

Note: MASM checks the source file for syntax errors. If it finds any, a short description of

the errors will be displayed with the line number of each.

Now the files Try.OBJ and Try.LST will be created.

Before feeding the ".OBJ" file into LINK, all syntax errors produced by the assembler must

be corrected.

 55

The ".lst" file which is optional is very useful to the programmer because it lists all the

opcodes and offset addresses as well as errors that MASM detected.

c) LINK program with MASM version 6.11 take one or more object files and combine

them into a single executable file (.EXE file). (See figure 2)

Figure 2: Link .OBJ file

Now the files Try.EXE and Try.MAP will be created.

The ".MAP" file which is optional gives the name of each segment, where it starts, where it

stops, and its size in bytes.

d) Now convert the Execution file Try.EXE into binary file Try.BIN.

(See figure 3)

Figure 3: EXE2BIN command

Step 2: Establish the connections

a) You need to connect a serial wire with COM1 or COM2 ports of the PC and the other

end with the MTS-8088 KIT.

b) Now power ON the KIT.

c) Now open the data transfer program. (See figure 4).

Figure 4

d) The welcome Screen will appear for

a small period.

 56

e) Then the settings screen will appear, you have to choose the type of the kit and the

COM port you are connected with. (See figure 5)

 Figure 5: Settings

f) Now the following screen will appear to choose the .BIN file which you want to

download it. (see figure 6)

Figure 6

g) Now in the kit use the keyboard to enter the L command.

If you want to store data at a memory location other than 0100:0000, the starting

address must be indicated, <enter> must be pressed to get the BGC-8088 ready for

receiving data.

When it is ready for receiving data the following information is displayed.

DOWNLOAD....

h) Now press the Download button in the other side (PC), the transmition is started, after

completion the total number of bytes transferred is displayed on the LCD of the KIT

and on the PC. (see figure 7)

 57

Figure 7

If these massages displayed, then the download was successful.

i) After downloading a program the user may use the G or T command to execute the

program.

If the program results are not as expected, the program can be modified easily on the PC

and downloaded a gain.

This interface allows the user to program in assembly on the PC, and to test that

program easily on the BGC-8088 MICROENGINEER, this is much easier than using

the A command to write programs for the BGC-8088 Kit.

