—

P,
W

Chapter 1:
An Overview of Computers and
Programming Languages

C++ PROGRAMMING

* In this chapter, you will study:

— Processing a C++ Program

— Programming with the Problem Analysis—Coding—
Execution Cycle

Introduction

* Without software, the computer is useless
e Software is developed with programming languages
— C++is a programming language

e C++ suited for a wide variety of programming tasks

Processing a C++ Program

#include <iostream>

using namespace std;

int main ()

{
cout << "My first C++ program." << endl;
return 0;

}

Sample Run:
My first C++ program.

Processing a C++ Program (cont’d.)

C++ Program

Step 1

Step 2

—! Step 3

Step 4

Step 5

Step b

FIGURE 1-3 Processing a C++ program

Processing a C++ Program (cont’d.)

* To execute a C++ program:
— Use an editor to create a source program in C++

— Preprocessor directives begin with # and are processed by
the preprocessor

— Use the compiler to:
* Check that the program obeys the language rules
* Translate into machine language (object program)

Processing a C++ Program (cont’d.)

* To execute a C++ program (cont'd.):

— Linker:

* Combines object program with other programs provided by the
SDK to create executable code

e Library: contains prewritten code you can use

— Loader:

* Loads executable program into main memory

— The last step is to execute the program

e Some IDEs do all this with a Build or Rebuild
command

Programming with the Problem

Analysis—Coding—Execution Cycle

e Algorithm: Pblen

— Step-by-step problem-solving l

process F

— Solution achieved in finite F
amount of time Proprocess

* Programming is a process of o

problem solving t o
F

FIGURE 1-4 FProblem analysis—coding—execution cycle _

The Problem Analysis—Coding—

Execution Cycle (cont’d.)

e Step 1: Analyze the problem

— Thoroughly understand the problem and all requirements
* Does program require user interaction?

* Does program manipulate data?
* What is the output?

— If the problem is complex, divide it into subproblems

* Analyze and design algorithms for each subproblem

— Check the correctness of algorithm

e Can test using sample data
* Some mathematical analysis might be required

The Problem Analysis—Coding—

Execution Cycle (cont’d.)

e Step 2: Implement the algorithm
— Implement the algorithm in code

— Verify that the algorithm works

— Once the algorithm is designed and correctness verified,
Write the equivalent code in high-level language

— Enter the program using text editor

10

The Problem Analysis—Coding—

Execution Cycle (cont’d.)

* Step 3: Maintenance

— Use and modify the program if the problem domain
changes

— Run code through compiler
— If compiler generates errors

* Look at code and remove errors
* Run code again through compiler

— If there are no syntax errors

* Compiler generates equivalent machine code

— Linker links machine code with system resources

11

The Problem Analysis—Coding—

Execution Cycle (cont’d.)

* Once compiled and linked, loader can place program
into main memory for execution

* The final step is to execute the program

 Compiler guarantees that the program follows the
rules of the language

— Does not guarantee that the program will run correctly

12

Example 1-1

e Design an algorithm to find the perimeter and area
of a rectangle

* The perimeter and area of the rectangle are given by
the following formulas:

perimeter = 2 * (length + width)
area = length * width

13

Example 1-1 (cont’d.)

* Algorithm:
— Get length of the rectangle
— Get width of the rectangle
— Find the perimeter using the following equation:
perimeter = 2 * (length + width)
— Find the area using the following equation:

area = length * width

14

Example 1-3

e Design an algorithm to calculates the monthly
paycheck of a salesperson at a local department

store.
payCheck = baseSalary + bonus + additionalBonus

 Data:

— base salary

— The number of years that the salesperson has been with
the company

— The total sales made by the salesperson for that month

15

Example 1-3 (cont’d.)

* Suppose noOfServiceYears denotes the number of years that
the salesperson has been with the store

* Suppose bonus denotes the bonus.

* Algorithm to calculate the bonus

1f (noOfServiceYears 1s less than or equal to five)
bonus = 10 * noOfServiceYears

otherwise

bonus = 20 * noOfServiceYears

16

Example 1-3 (cont’d.)

* Suppose totalSales denotes the total sales made by the
salesperson for the month

« Suppose additionalBonus denotes the additional bonus.

e Algorithm to calculate additional bonus
1f (totalSales i1s less than 5000)
additionalBonus = 0
otherwise
1f (totalSales 1s greater than or equal to 5000 and
totalSales i1s less than 10000)
additionalBonus = totalSales (0.03)
otherwise

additionalBonus = totalSales (0.00)
17

Example 1-3 (cont’d.)

* The algorithm to calculate a salesperson’s monthly
paycheck:

A S

6.

Get baseSalary.

Get noOfServiceYears.

Calculate bonus using calculate bonus algorithm
Get totalSales.

Calculate additionalBonus using the algorithm to
calculate additional bonus

Calculate payCheck using the equation:

payCheck = baseSalary + bonus + additionalBonus

18

Example 1-5

e (Calculate each student’s grade

— 10 students in a class; each student has taken five tests;
each test is worth 100 points

* Design algorithms to:
— Calculate the grade for each student and class average
— Find the average test score
— Determine the grade

 Data: students’ names; test scores

19

Example 1-5 (cont’d.)

* Algorithm to determine the average test score:
— Get the five test scores

— Add the five test scores
e Suppose sum stands for the sum of the test scores

— Suppose average stands for the average test score:

e average = sum / 5;

20

Example 1-5 (cont’d.)

e Algorithm to determine the grade:

1if average is greater than or equal to 90
grade = A
otherwise
1f average 1s greater than or equal to 80 and less than 90
grade = B
otherwise
1f average 1s greater than or equal to 70 and less than 80
grade = C
otherwise
1if average 1s greater than or equal to 60 and less than 70
grade = D
otherwise
grade = F

21

Example 1-5 (cont’d.)

* Main algorithm is as follows:
— totalAverage =0;

— Repeat the following for each student:
e Get student’s name

* Use the algorithm to find the average test score
* Use the algorithm to find the grade

* Update totalAverage by adding current student’s average test
score

— Determine the class average as follows:

e classAverage = totalAverage / 10

22

Refer to text book and read
examples 1-2, and 1-4

23

Compiling C++ Code

Self Study Slides

C++ PROGRAMMING:

Some examples on C++ IDEs

e Online IDEs
— https://www.codechef.com/ide

— https://www.onlinegdb.com/

— https://www.jdoodle.com/online-compiler-c++

e Offline IDEs

— Microsoft visual studio (will be explained in this slides)
— Eclipse

— Code::Blocks

— Codelite

https://www.codechef.com/ide
https://www.onlinegdb.com/
https://www.jdoodle.com/online-compiler-c

Microsoft visual studio 2015 home

screen

N Start Page - Microsoft Visual Studio Y & | Quick Launch (Ctrl+Q) Pl = A X
Tools Bar
2
8 ¥ Team Explorer - Connect s v B X
=3
& Q © @ ¥ & |SearchWork Items (Ctrl+ P~
Connect | Offline Y;
Visual Studio Get started with Windows app development Kiaoags Connediions =
4 Hosted Service Providers
“ Visual Studio Team Services
Quick Starts E 1 Your first app Microsoft Corporation
+ Ready to create your first Windows app? Our tutorial helps you target all Windows ¢ Services to help you ship high quality software. On time,
from a single project, in the language you prefer. every time. Focus on your code. We'll simplify the rest.
Connect... Get started for free @
|/I Desngn and Ul 4 Local Git Repositories
User interface basics, design principles, layout guidelines, templates, and more. New v | Add « | Clone » | View Options v
Add or clone a Git repository to get started.
l | Debug
=W/ Use the Visual Studio Debugger to deploy and debug your app on a variety of Winc
10 devices.

Create new project

Publish your app
Get your app into the Store and explore the features in the new Windows Dev Cent:
dashboard like beta testing, analytic reports, and more.

B

Solution Explorer Team Explorer = Class View

Before you create your first C++ project in Visual Studio, you

need to install Visual C++ 2015 Tools for Windows Desktop:

M Start Page - Microsoft Visual Studio Y & |Quick Launch (Ctrl+Q) P - 8 x
File Edit View Debug Team Tools Analyze Window Help
7 ’L'S - & dﬁ - - » Attach.. - B9 _

Cloud Explorer s w JUX ~ Solution Explorer i > 3x
& Mi y
= Microsoft Azure e A R e e e b e S

Resource Types ~ @& d New Project ? X

Search Installed Templates (Crl+E) O =

Search for resources 4 b Recent NET Framework4.5.2 ~ Sortby: Default b
» [Storage Accounts 4 |nstalled

x0q|oo] sai0jdxg ;ARG

Visual C++ 2015 tools and libraries for
Windows Desktop, which includes the
compiler, the Universal CRT and the
Windows 8.1 SDK.

“ (S5 Install Visual C+-+ 2015 Tools for Windows Desktop Visual Co+ fE=pERls
4 Templates
4 Visual C# @*0 Install Windows XP support for C++ Visual C++
b Windows
Web
Android
Cloud
b QuickStarts
Extensibility
i0S
LightSwitch
Office/SharePoint
Silverlight
Test
WCF
Workflow
b Visual Basic
Visual F#
b
SQL Server
b TypeScript
Puthnn v
b Online Click here to go online and find templates.

8

MNarme: <Enter_name>

Projects Browse...

Solution name: <Enter_name> [w] Create directory for solution
[] Add to source control

[oc [concel]

Location: c\u

1s\jingju\documentsivisual studi

Actions Properties

Keep page open after project
loads

What do you like about this taol? ¥ Show page on startup

What don't you like or feel is mis... Solution... | Team Exp... Class View

To create your HelloWorld project => File ->new-

>project, you can choose the Win32 Console Application
template, Name your project and click “ok”

n Start Page - Microsoft Visual Studio YA & Quicklaunch (Cti+Q) P - B x
File Edit View Debug Team Tools Analyze Window Help
ie0-o|B-RE|9-C- b Atach. ~| B .
§ Cloud Explorer oo v X ~ Solution Explorer : v 1 x
9‘ -
= Micr r +
‘E Microsoft Azure Nicrnvuar what'c nowr in Entarnrica 2018
5
% | ResourceTypes ~ 2 (] NewProject ? %
= Search for resource:
g [L= for e P Recent .NET Framework 452 ~ Sort by: Default - Search Installed Templates (Ctrl+E) P~
T
2 4 @ (loca) 4 Installed 44 =
i icati Type: Visual C++
b (@ Data Lake Analytic - Bl Win32 Console Application Visual C++ ype:
» B Storage Accounts 4 Templates . A pryjcc} for creating a Win32 console
b Visual C& Win32 Project Visual o+ application
b Visual Basic
g
Visual F# K] Empty Project Visual C++
4 Visual C++
Windows Install Windows XP support for C++ Visual C++
ATL
CLR Makefile Project Visual C++
General
MFC
Test
Win32
Cross Platform
Extensibility
SQL Server
b TypeScript
Python
b Azure Data Lake
b JavaScript
Cosmos SCOPE
Garne -
b Online Click here to go online and find templates.
Name || FPRTIRTY rv: ‘
Location: ci\users\jingju\documentsivisual studio 2015\Projects -
Actions. Properties Solution name: HelloWorld Create directory for solution
[] Add to source control
TT T
Getting Started with the iOS 10
Notification Framework
What do you like about this tool? i0s 170 includes some s'\gnificapt changes to
) o notifications for developers, with the addition of a
What don't you like or feel is mis... brand new framework for dealing with notifications t... w | Solution... | Team Exp... Class View

When this window appears click next

Dq Start Page - Microsoft Visual Studio

File Edit View Debug Team Tools Test Analyze Window Help
B-awd 2

Start Page ® X

P Attach.. ~ 5 _

Visual Studio

%0g|00] J210|dx3 ;ARG

Start
New Project...
Open Project...

Open from Source Control...

Recent
2ndExam
LinkedList
ArrayList
ExamCode
averloadina
Output

Show output from:

Output | Error List

Sta;

ple
tog

Win32 Application Wizard - HelloWorld ?

]

Overview

Application Settings

Welcome to the Win32 Application Wizard

These are the current project settings:
o Console application

Click Finish from any window to accept the current settings.

After you create the project, see the project's readme. txt file for information about the
project features and files that are generated.

ous || Next> || Finish || Cancel

Y

B

&7 | Quick Launch (Ctrl+Q) Pl = @ x
ManarA'

Solution Explorer wiow, X

y

Solution Explorer | Team Explorer Class View

Choose Empty project and click

finish

M Start Page - Microsoft Visual Studio Y & | QuickLlaunch (Ctrl+Q) P o B x
File Edit View Debug Team Tools Test Analyze Window Help ManarA ~
-0 B-O WP D--Q - P Attach.. ~ ¥ _
§ > Solution Explorer s X
'é, Win32 Application Wizard - HelloWorld ? eon|F
3 D
5 . .
] Vlsual StUdIO i Application Settings
e
'g" Gef
E Cri
= Se
Start Dis Overview Application type: Add common header files for:
- Wi applicati A
New Project.. Application Settings gc_m:::s h::n i
onsole applica: [
Open Project... Oou 0
Open from Source Control... N 0 ;taticlibrary
Stal Additional options:
ple Empty project
Recent tog | Export symbols
IndExam ecompiled header
: : Security Development Lifecydle (SDL)
LinkedList checks
ArrayList
ExamCode
averloadina d | Selution Explorer | Team Explorer Class View
Output i
Show output from: :
<Previous || Next> Fnsh || cancel

Output Error List

window, right click on

source files and choose to add new item as follows

B¢ HelloWorld - Micresoft Visual Studio ¥ &' | Quick Launch (Ctr+Q) P - & x
File Edit View Project Build Debug Team Tools Test Analyze Window Help Manara ~ [

~ -2 W - - Debug ~ x8B - P Local Windows Debugger - ¢ ; - =
= = \:l =
v
'2" er
m
o @ o-ca@ £
b
o Search Solution Explorer (Ctrl+;) P~
o
&7 Selution 'HelloWorld' (1 project)
4 [&] HelloWorld
b =B References
I'm External Dependencies
501 Header Files
| Resource Files
=
Add %Y Mew ltem.. Ctrl+Shift+A
g Class Wizard... Ctrl+Shift+ X *a Existing ltem... Shift+Alt+ A
Scope to This %5 Mew Filter
B Mew Solution Explorer View s Class...
¥ cut Ctrl+X s Resource..
[Copy Ctrl+C
Paste Ctrl+V
X Delete Del
Rename F2
Error List = 58 88 88 58 = 5 :
roperties
Entire Solution - 1 0Warnings @) 0 Messages IntelliSense Only - E
7 Code Description = Project File Line Suppression State

Output | Error List

Solution Explorer | Team Explorer Class View

Select C++ File

w HelloWorld - Microsoft Visual Studio

File Edit View Project Build Debug Team Tools Test Analyze Window Help

1ai0)dxg Jarag

colB- e

Error List
Entire Solution

7 Code

Output | Error List

- e

Description <

= L ~ | Debug ~||x86

click add

~ P Local Windows Debugger ~ 5

, give it a name and

¥ & | Quick Launch (Ctrl+Q) P o B x

ManarA -

] O B | Y AW =~&
Add New Item - HelloWorld ? x
4 Installed Sort by: Default - Search Installed Templates (Ctrl+E) P
i - s
“ VE“:|§++ D C++ File (.cpp) Visual C++ Type: Visual C++ F 2|
ode Creates a file containing C++ source code _(Ctr\+,‘] o
o D‘H Header File (h Visual C rld’ (1 project)
Fimermras h eader File (.h) isual C++ proj
Web
Utility pendencies
Property Sheets £
Graphics les
e |
Click here to go conline and find templates.
Name: helloWorld.cpp
Location: Ci\Users\Mustafa-Lenovo\Documents\Visual Studio 2015\Projects\HelloWerld\HelloWorld' - Browse..
[add || cancel

Solution Explorer | Team Explorer Class View

4 Pub

Write your code in

the .cpp file and click

on the green triangle to run your program

B HelloWorld - Microsoft Visual Studio Y &' QuickLaunch (Ctri+Q) P e @ x
File Edit View Project Build Debug Team Tools Test Analyze Window Help Manard ~
B2 @9 = Debug =~ xB6 - Local Windows Debugger = 57 - =
v
'2‘7 ~ Solution Explorer
m
= [HelloWorld - (Global Scope) - - A m-sa@m o ’E
5 . .
2 1 #lr_'ClUde <iostream> Search Solution Explorer (Ctrl+;) P
L 2 using namespace std;) _
3 &1 Solution 'HelloWorld' (1 project)
. . 4 [%] HelloWorld
4 Eint main()} =B References
5 1 b IF External Dependencies
5} cout << "Hello World! " << endl; 5 Header Files
7 return @; 57 Resource Files
2 ¥ 4 .| Source Files
=1 | P+ helloWorld.cpp
-
100 % -
Error List -
Entire Selution - it 0Warnings () 0 Messages IntelliSense Only - Search Error List P
7 Code Description = Project File Line Suppression State

Qutput | Error List

Solution Explorer | Team Explorer Class View

This window wiill

appear

helloWorld.cpp & X

Fl HelloWerld - (Global Scope) -
1 #include <iostream>
2 using namespace std;
3
4 =int main()
5 i
6 cout << "Hello World! " << endl;
7 return ©;
8 1
g B C\WINDOWS tem32\cmd.exe

Hello World!
Press any key to continue .

100% -~

Output

Show output from: Build

== LU LI P Lih UL UUE VIR L
1> Touching "DebugiHellokWor
1>

1»Build succeeded.

1>

1:>Time Elapsed 88:88:81.54
========== Build: 1 succeeded, @ failed, @ up-to-date, @ skipped ==========

T Solution Explorer =

- it ©®-5
Y
Search Solution Explorer

& Selution 'HelloWor
4 [%] HelloWorld
p =B References
b Im External Dep
Header Files

7 Resource Fil
1 Snurera Fileg

— | R

™

| Bl A

Chapter 2:
Basic Elements of C++

C++ PROGRAMMING:

Outlines

* In thls chapter, you will study:

A Quick Look at a C++ Program

— The Basics of a C++ Program (comments, Special Symbols, Keywords and
identifiers)

— Data Types

— Data Types and Variables

— Arithmetic Operators, Operator Precedence, and Expressions

— Type Conversion (Casting)

— string Type

— Variables, Assignment Statements, and Input Statements

— Increment and Decrement Operators

— Output statements

— Preprocessor Directives

— Creating a C++ Program

— Debugging: Understanding and Fixing Syntax Errors

— Program Style and Form

Introduction

* Computer program

— Sequence of statements whose objective is to accomplish
a task

* Programming
— Process of planning and creating a program

* Real-world analogy: a recipe for cooking

First C++ Program

OWoo~Jowm b wpMhBE

//First C++ program
#include <iostream>
using namespace std;

int main()
" {
cout<<"Welcome to Computer Programming Course";
return @;

Comments

e Comments are for the reader, not the compiler

* Two types:
— Single line: begin with //
// This is a C++ program.
// Welcome to C++ Programming.

— Multiple line: enclosed between /* and */
/%
You can include comments that can

occupy several lines.

*/

Preprocessor Directives

C++ has a small number of operations

Many functions and symbols needed to run a C++
program are provided as collection of libraries

Every library has a name and is referred to by a
header file

Preprocessor directives are commands supplied to
the preprocessor program

All preprocessor commands begin with #
No semicolon at the end of these commands

Preprocessor Directives (cont’d.)

e Syntax to include a header file:

<headerFileName>

* For example:

#include <iostream>

— Causes the preprocessor to include the header file
iostreamin the program

* Preprocessor commands are processed before the
program goes through the compiler

namespace and Using cin and
cout in a Program

e cin and cout are declared in the header file
iostream, but within std namespace

e Touse cin and cout in a program, use the
following two statements:

#include <iostream>

usling namespace std;

Main Function

A C++ program is a collection of functions, one of
which is the function main

The first line of the function main is called the
heading of the function:

— int main ()

The statements enclosed between the curly braces
{ and } form the body of the function

The program execution starts from the main
function

Output

 The syntax of cout and << is:

cout << expression or manipulator << expression or manipulator...;

— Called an output statement

* The stream insertion operator is <<

e Expression evaluated and its value is printed at the
current cursor position on the screen

10

Output (cont’d.)

* A manipulator is used to format the output

— Example: endl causes insertion point to move to
beginning of next line

Consider the following statements. The output is shown to the right of each statement.

Vi & 1o -

o)

9

Statement

cout
cout
cout
cout
cout
cout
cout
cout
cout

<<
<<
<<
<<
<<
<<
<<
<<
<<

29 / 4 << endl;

"Hello there." << endl;

12 << endl;

"4 + 7" << endl;

4 + 7 << endl;

'A' << endl;

"4 + 7T =" << 4 + 7 << endl;
2 + 3 *% 5 << endl;

"Hello \nthere." << endl;

Output

9
Hello there.
12

4 + 7

11

A

4 + 7 =11
17

Hello

there.

11

Output (cont’d.)

* The new line

characteris '\n'

— May appear anywhere in the string

cout <<
cout <<
Output:

"Hello there.";
"My name 1s James.";

Hello there.My name 1s James.

cout <<
cout <<
Output :

"Hello there.\n";
"My name 1s James.";

Hello there.
My name 1s James.

12

Output (cont’d.)

TABLE 2-4 Commonly Used Escape Sequences

\n
\t
\b

\r

\\
\0
\n

Newline
Tab
Backspace

Return

Backslash
Single quotation

Double quotation

Cursor moves to the beginning of the next line
Cursor moves to the next tab stop
Cursor moves one space to the left

Cursor moves to the beginning of the current line (not
the next line)

Backslash is printed
Single quotation mark is printed
Double quotation mark is printed

13

Output(cont’d) -

Example

1 #include <iostream>
2 uslng namespace std;

3

4 int main()

5-4

cout<<"abc\ndef"<<endl;
cout<<"abc\tdef"<<endl;
cout<<"abc\bdef"<<endl;
cout<<"abc\rdef"<<endl;
cout<<"abc\\def"<<endl;
cout<<"abc\ 'def"<<endl;
cout<<"abc\"def"<<endl;
return @;

//abc def
/ /abdef

//def
//abc\def
//abc'def
//abc"def

14

Special Symbols

Token: the smallest individual unit of a program
written in any language

C++ tokens include special symbols, Keywords, and
identifiers.

Special symbols in C++ include:
— Punctuators(e.g. [] () {},;: ™ #).

— Operators(arithmetical operators, Relational operators, Logical

operators, Unary operators, Assignment operators, Conditional
operators, Comma operator).

15

Reserved Words (Keywords)

* Reserved word symbols (or keywords):
— Cannot be redefined within program

— Cannot be used for anything other than their intended use
Examples:

— 1nt

— float
— double
— char

— const
— void

— return

16

Whitespaces

* Every C++ program contains whitespaces
— Include blanks, tabs, and newline characters

* Used to separate special symbols, reserved words,
and identifiers

* Proper utilization of whitespaces is important

— Can be used to make the program more readable

17

Identifiers

|dentifier: the name of something [such as variables,
type, template, class ,or function] that appears in a
program(]
— Consists of letters, digits, and the underscore character ()
— Must begin with a letter or underscore

C++ is case sensitive

— NUMBER is not the same as number
Two predefined identifiers are cout and cin

Unlike reserved words, predefined identifiers may be
redefined, but it is not a good idea

18

Identifiers (cont'd.)

e |dentifier restrictions:

Do not use C++ keywords.

Never start your identifier with a digit (humber) always start it with

alphabet or underscore.

Do not use white spaces, use underscores instead.
Do not use special symbols such as #, $,+,=,-,! etc.

* Legal identifiersin C++: first, conversion ,payrate,
counterl TABLE 2-1 Examples of Illegal Identifiers

lliegal Identifier
employee Salary
Hello!

one +two

2nd

Description

There can be no space between employee and Salary.
The exclamation mark cannot be used in an identifier.

The symbol + cannot be used in an identifier.

An identifier cannot begin with a digit.

19

Data Types

e Data type: set of values together with a set of
operations

e C++ data types fall into three categories:
— Simple data type
— Structured data type
— Pointers

20

Simple Data Types

 Three categories of simple data
— Integral: integers (numbers without a decimal)

e Can be further categorized:

— char, short, 1int, long, bool, unsigned char,
unsigned short, unsigned int, unsigned long

— Floating-point: decimal numbers

— Enumeration type: user-defined data type

21

Simple Data Types (cont’d.)

TABLE 2-2 Values and Memory Allocation for Three Simple Dz

ata Types
Data Type Values Storage (in bytes)
int -2147483648 t0 2147483647 4
300 true and false 1
char -128to0 127 1

e Different compilers may allow different ranges of
values

22

int Data Type

e Examples:
-0728
0
718
+763

* Cannot use a comma within an integer

— Commas are only used for separating items in a list

23

bool Data Type

* bool type
— Two values: true and false
— Manipulate logical (Boolean) expressions

e true and false

— Logical values

* bool, true, and false

— Reserved word

— Any none zero value is considered as true.

* bool x=-5; // x is true
* booly=10; //yis true
* boolw =0; // w is false

24

char Data Type

The smallest integral data type

Used for single characters: letters, digits, and special

symbols

Each character is enclosed in single quotes
_'A', 'aV, 'OV, '*1, V_I_', V$V, '&'

A blank space is a character

— Written '

', with a space left between the single quotes

25

char Data Type (cont’d.)

e Different character data sets exist

e ASCIl: American Standard Code for Information

Interchange

— Each of 128 values in ASCII code set represents a different
character

— Characters have a predefined ordering based on the ASCI|
numeric value

* Collating sequence: ordering of characters based on
the character set code

26

ASCII Table

Code | Char | Code | Char | Code | Char | Code | Char | Code | Char | Code Char
32 |[space]| 48 0 64 (@ 80 P 96) 112 P
33 I 49 1 65 A 81 Q 97 a 113 q
34 " 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C a3 S 99 c 115 S
36 3 52 4 68 D 84 T 100 d 116 t
37 %o 53 B 69 E 85 U 101 e 117 u
38 & 54 G 70 F 86 \ 102 f 118 v
39 ' 55 7 71 G a7 W 103 g 119 W
40 { 0B g ie H 88 A 104 h 120 X
41 } 57 9 73 | 89 Y 105 i 121 y
42 ' 28 : 74 J 90 Z 106 | 122 z
43 + 59 : 75 K &1 [107 k 123 {
44 60 < 76 L 92 \ 108 I 124 |
45 - 61 = 77 M 893] 109 m 125 1
46 . 62 > 78 N 94 A 110 n 126 ~
47 ! 63 7 79 O 95 111 0 127 | [backspace]

27

Floating-Point Data Types

e C++ uses scientific notation to represent real
numbers (floating-point notation)

TABLE 2-3 Examples of Decimal Numbers in Scientific and C++ Floating-Point Notations

Decimal Number Scientific Notation C++ Floating-Point Notation
75.924 7.5924 * 107! 7.592400E1

0.18 1.8 * 107 1.800000E-1
0.0000453 4.53 * 107° 4.530000E-5

-1.482 -1.482 * 10° -1.482000E0

7800.0 7.8 * 10° 7.800000E3

28

Floating-Point Data Types (cont’d.)

e float:represents any real number
— Range: -3.4E+38 to 3.4E+38 (four bytes)

e double:represents any real number
— Range: -1.7E+308 to 1.7E+308 (eight bytes)

* Minimum and maximum values of data types are
system dependent

29

Floating-Point Data Types (cont’d.)

* Maximum number of significant digits (decimal
places) for f1oat values: 6 or 7

 Maximum number of significant digits for double:
15

* Precision: maximum number of significant digits

— Float values are called single precision

— Double values are called double precision

30

Variables

Variable: memory location whose content may
change during execution

Data must be loaded into main memory before it can
be manipulated

Storing data in memory is a two-step process:

— Instruct computer to allocate memory (define a variable)

— Include statements to put data into memory (set its value)

31

Variables (cont’d.)

* To declare a variable, must specify the data type it will store
— determines the size and layout of the variable's memory
— The range of values that can be stored within that memory
— The set of operations that can be applied to the variable.

* Syntax to declare a variable:

dataType ldentifier, identifier, . . .;

e 212

Consider the following statements:

double amountDue;
int counter;

char ch;

int x, ¥;

string name;

32

Putting Data into Variables

* Ways to place data into a variable:
— Use C++'s assighnment statement
— Use input (read) statements

33

Assighment Statement

The assignment statement takes the form:
variable = expression;

Expression is evaluated and its value is assigned to
the variable on the left side

A variable is said to be initialized the first time a
value is placed into it

In C++, = is called the assighment operator

34

Assignment Statement (cont’d.)

Suppose you have the following vaniable declarations:

int numl, num2;
double sale;
char first;
string str;

Now consider the following assignment statements:

numl = 4;

num2 = 4 * 5 - 11;

sale = 0.02 * 1000;

first = 'D';

str = "It is a sunny day.";

35

Assignment Statement (cont’d.)

Suppose that numl, num2, and num3 are int variables and the following statements are

executed in sequence.

1. numl =18;

2. numl =numl + 27;
3. num2 = numl;

4. num3 =num2 / 5;
5. num3 =num3 / 4;

Values of the Variables Explanation
Before Statement 1 | G - e
numl num3
After Statement 1 | I8N
numl numz2 num3
= numl + 27 = 18 + 27 = 45.
After Statement 2 | NS9SS - - This value is assigned to num1, which
numl num2 num3 replaces the old value of numl.
After Statement 3 45 Copy the value of numl into num2.
numl numz2 num3
— num2 / 5 =45 / 5 = 9, This
After Statement 4 - value is asigned to num3. So num3
numl num?2 num3 =B
e num3 / 4 = 9 / 4 = 2, This
After Statement 5 2 value 15 assigned to num3, which
numl Aum? num3 replaces the old value of num3.

36

Declaring & Initializing Variables

* Not all types of variables are initialized automatically
e Variables can be initialized when declared:

int first=13, second=10;
char ch="'" ';

double x=12.6;
* All variables must be initialized before they are used

— But not necessarily during declaration

37

Allocating Memory with Constants
and Variables

 Named constant: memory location whose content can’t
change during execution

* Syntax to declare a named constant:

const dataType identifier = value;

* |[n C++, constis areserved word

Consider the following C++ statements:

const double CONVERSION = 2,54;
const int NO OF STUDENTS = 20;
const char BLANK = ' ';

38

A C++ Program (cont’d.)

//******************'k***‘k***************************************

// Given the length and width of a rectangle, this C++ program »

// computes and outputs the perimeter and area of the rectangle. e
//**

#include <iostream>

using namespace std;

int main()

{

double
double
double
double

length;
width;
area;
perimeter;

\

\
Comments

Variable declarations. A statement such as
double length;

= instructs the system to allocate memory
space and name it length.

cout << "Program to compute and output the perimeter and "
<< "area of a rectangle." << endl;

length

= 6.0

Assignment statement. This statement instructs the system

* *=—to store 6.0 in the memory space length.

39

A C++ Program (cont’d.)

width = 4.0;

perimeter = 2 * (length + width);
Assignment statement.

area = length * width; «—— This statement instructs the system to evaluate
the expression length * width and store
the result in the memory space area.

cout << "Length = " << length << endl; Qutput statements. An
cout << "Width = " << width << endl; <— output statement
cout << "Perimeter = " << perimeter << endl; instructs the system to
cout << "Area = " << area << endl;] display results.

return 0;

40

A C++ Program (cont’d.)

 Sample run:

Program to compute and output the perimeter and area of a rectangle.
Length = 6

Width = 4

Perimeter = 20

Area = 24

41

Input (Read) Statement

cin is used with >> to gather input

cin >> wvariable >> wvariable ...:

This is called an input (read) statement

The stream extraction operator is >>

For example, if miles is a double variable

cln >> miles;

— Causes computer to get a value of type double and
places it in the variablemiles

42

Input (Read) Statement (cont’d.)

e Using more than one variable in cin allows more
than one value to be read at a time
« Example:if feet and 1inches are variables of type
int, this statement:
cin >> feet >> 1nches;

— Inputs two integers from the keyboard
— Places them in variables feet and inches respectively

43

Example 2- 18

#include <iostream>
#include <string>

using namespace std;

int maini()

{

string firstName;
string lastName;
int age;

double weight;

cout << "Enter first name, last name, age, "
<< "and weight, separated by spaces.™
<< endl;

cin >» firstName >> lastName;
cin >> age >> welght;

cout << "Mame: " << firstMHame << " "
<< lastMName << endl;

cout << "Age: " << age << endl;
cout << "Weight: " << weight << endl;

return 0;

//Line
//Line
//Line
//Line

//Line
[/ /Lline
//Line
//Line

[/ /Line
//Lline

//Line

[- VI 5 O

h

11

Arithmetic Operators, Operator
Precedence, and Expressions

e C++ arithmetic operators:
— + addition
— - subtraction
— * multiplication
— / division
— % modulus (or remainder) operator
* +, -, % and /can be used with integral and floating-
point data types

* Use % only with integral data types

45

Arithmetic Operators, Operator
Precedence, and Expressions (cont’d.)

Arithmetic

. X Result Description
Expression

In the division 5 / 2, the quotient is 2 and the remainder
9i [2 2 is 1. Therefore, 5 / 2 with the integral operands evaluates to
the quotient, which is 2.

14 / 7 2 In the division 14 / 7, the quotient is 2.

In the division 34 / 5, the quotient is 6 and the remainder
34 % 5 4 Is 4. Therefore, 34 % 5 evaluates to the remainder,

which is 4.
4% 6 4 In the division 4 / 6, the quotient is 0 and the remainder is

4. Therefore, 4 % 6 evaluates to the remainder, which is 4.

46

Arithmetic Operators, Operator

Precedence, and Expressions (cont’d.)

Given length in inches, we write a program that detenmines and outputs the equivalent
length in feet and (remaimning) inches. Now there are 12 inches in a foot. Therefore, 100
mnches equaks 8 feet and 4 inches; similarly, 55 inches equals 4 feet and 7 inches. Note
that 100 / 12=8 and 100 % 12 = 4; similarly, 55 /12 = 4 and 55 % 12 = 7. From these
examples, 1t follows that we can effectively use the operators / and % to accomplish our
task. The desired program i as follows:

// Given length in inches, this program cutputs the egquivalent
// length in feet and remaining inch(es).

#include <iostream>
using namespace std;

int main()

{

int inches; //variable to store total inches
inches = 100; //store 100 in the variable inches

cout << inches << " inch(es) = "; //output the value of
//inches and the equal sign

cout << inches / 12 << " feet (foot) and "; //output maximum
//number of feet (foot)

cout << inches % 12 << " inch(es)" << endl; //output
//remaining inches
return 0;

a7

Arithmetic Operators, Operator
Precedence, and Expressions (cont’d.)

 When you use / with integral data types, the integral result is
truncated (no rounding).(5/2 = 2)

 When you use / with floating-point data types returns a
floating point valueli.e. the fraction is kept] For example, 5.0 /
2=25,5/2.0=25,and5.0/2.0=2.5.

 Arithmetic expressions: contain values and arithmetic
operators

* Operands: the number of values on which the operators will
work

* QOperators can be unary (one operand) or binary (two
operands)

48

Order of Precedence

All operations inside of () are evaluated first

*,/, and % are at the same level of precedence and
are evaluated next

+ and — have the same level of precedence and are
evaluated last

When operators are on the same level
— Performed from left to right (associativity)

3 7 -6+ 2 *5 / 4 4+ 6means
(((3 *7) —6) + ((2*5) /4)) +6

49

Expressions

* Integral expression: all operands are integers

— Yields an integral result
— Example: 2 + 3 * 5

* Floating-point expression: all operands are floating-
point
— Yields a floating-point result
— Example: 12.8 * 17.5 - 34.50

50

Mixed Expressions

Mixed expression:

— Has operands of different data types
— Contains integers and floating-point

Examples of mixed expressions:

2 + 3.5

6 / 4 + 3.9

5.4 * 2 - 13.6 + 18 / 2
13.0/2+1

Remember that % (modulus which finds the remainder) is
applied for integer values only. So, 9%4 = 1, but 9%2.5 -2
Syntax Error.

51

Mixed Expressions (cont’d.)

Evaluation rules:
— If operator has same types of operands

* Evaluated according to the type of the operands

— If operator has both types of operands
* Integer is changed to floating-point
* Operator is evaluated
* Result is floating-point

— Entire expression is evaluated according to precedence
rules

52

Saving and Using the Value of an
Expression

* To save the value of an expression:
— Declare a variable of the appropriate data type

— Assign the value of the expression to the variable that was
declared
* Use the assignment statement
* Wherever the value of the expression is needed, use
the variable holding the value

53

Saving and Using the Value of an
Expression (cont’d)

Suppose that you have the following declaration:

ant a; by ic,;: az
ant x, y;

Further suppose that you want to evaluate the expressions -b + (b”* - 4ac) and
-b - (b® - 4ac) and assign the values of these expressions to x and y, respectively.
Because the expression b? - 4ac appears in both expressions, you can first calculate
the value of this expression and save its value in d. You can then use the value of d
to evaluate the expressions, as shown by the following statements:

ad=b* b =4"%a" %
X = =b + d;
y =-b - d;

54

Type Conversion (Casting)

* Implicit type conversion: when value of one type is
automatically changed to another type temporarily
[done by the compiler]

 Examples:

bool valuel = 10; // the compiler will
implicitly convert 10 to true

int value2 =-13.7; // the compiler will
implicitly convert -13.7 1nto -13.

e Cast operator: provides explicit type conversion
[coded explicitly by the programmer]

static cast<dataTypeName> (expression)

55

Type Conversion (cont’d.)

Expression

static cast<int>(7.9)
static_cast<int> (3.3)
static_cast<double> (25)
static cast<double> (5 +3)
static_cast<double> (15) /2

static cast<double> (15/2)
static cast<int> (7.8 +

static cast<double> (15) /2)

static cast<int> (7.8 +
static cast<double> (15/2))

Evaluates to

7

3

25.0

=static cast<double> (8) =8.0

=15.0/2

(because static cast<double> (15) =15.0)
=15.0/2.0=7.5

= static cast<double> (7) (because 15/2=7)
= 7.0

= static cast<int>(7.8+7.5)
static_cast<int> (15.3)
15

static cast<int> (7.8 + 7.0)
static cast<int> (14.8)
14

56

Increment and Decrement
Operators

* |Increment operator: increase variable by 1
— Pre-increment: ++variable
— Post-increment: variable++

 Decrement operator: decrease variable by 1
— Pre-decrement: —-variable

— Post-decrement: variable—

* What is the difference between the following?

X
|
X
|

= 37 = 37
y = t++X; y = X++;

Increment and Decrement
Operators Example 2-20

Suppose a and b are int vanables and
a = 5;
b=2+ (++ta);

The first statement assigns 5 to a. To execute the second statement, first the expression
2 + (++a) 1s evaluated. Because the pre-increment operator 1s applied to a, first the value
of a 15 incremented to 6. Then 2 15 added to 6 to get 8, which is then assigned to b.
Therefore, after the second statement executes, a 1s 6 and b 15 8.

On the other hand, after the execution of the following statements:

a = b;
b= 2 + (a++);

the value of a 15 & while the value of b 15 7.

58

string Type

Programmer-defined type supplied in ANSI/ISO
Standard C++ library

Sequence of zero or more characters enclosed in
double quotation marks

Null (or empty): a string with no characters

Each character has a relative position in the string

— Position of first characteris O

Length of a string is number of characters in it
— Example: length of "William Jacob" is 13
— Position of character ‘W’ is O

— Position of character ‘) is 8 5

Using the string Data Type in a
Program

* To use the string type, you need to access its
definition from the header file string

* Include the following preprocessor directive:
#include <string>

Input the string Type

An input stream variable (cin) and >> operator can
read a string into a variable of the data type string

Extraction operator

— Skips any leading whitespace characters
— Reading stops at a whitespace character

The function getline

— Reads until end of the current line

getline (istreamVar, strVar);

How To print the content of a string variable?

Input the string Type (Cont’d)

string name;
cin >> name: //ahmad ali

//the value stored in name is ahmad only

string name;
getline (cin, name) ; //ahmad ali

//the value stored in name 1is ahmad ali

62

Output the string Type

e Example:

cout << name;

— Outputs the content of name on the screen

— << continues to write the contents of name until it finds
the null character

— If name does not contain the null character, then strange
output may occur

e << continues to output data from memory adjacent to name until
a '\0'is found

63

Creating a C++ Program

C++ program has two parts:
— Preprocessor directives

— The program

Preprocessor directives and program statements
constitute C++ source code (.cpp)

Compiler generates object code (.obj)

Executable code is produced and saved in a file with
the file extension .exe

Creating a C++ Program (cont’d.)

A C++ program contains two types of statements:
— Declaration statements: declare things, such as variables

— Executable statements: perform calculations, manipulate
data, create output, accept input, etc.

The Basics of a C++ Program

* Function (or subprogram): collection of statements;
when executed, accomplishes something

— May be predefined or standard

e Syntax rules: rules that specify which statements
(instructions) are legal or valid

 Semantic rules: determine the meaning of the
instructions Programming language: a set of rules,
symbols, and special words

66

Debugging: Understanding and Fixing
Syntax Errors

e Compile a program
— Compiler will identify the syntax errors

— Specifies the line numbers where the errors occur
ExampleZ Syntax Errors.cpp

c:\chapter 2 source
code\example? syntax errors.cpp(9) : error
C2146: syntax error

missing ';' before 1dentifier 'num'

c:\chapter 2 source
code\example?2 syntax errors.cpp(ll) : error
C2065: 'tempNum'

undeclared identifier

Syntax

e Syntax rules: indicate what is legal and what is not
legal

e Errors in syntax are found in compilation

int x; //Line 1
int vy //Line 2: error
double z; //Line 3

vy = W + X; //Line 4: error

Use of Blanks

* |In C++, you use one or more blanks to separate
numbers when data is input

* Blanks are also used to separate reserved words and
identifiers from each other and from other symbols

* Blanks must never appear within a reserved word or
identifier

Use of Semicolons, Brackets, and
Commas

e All C++ statements end with a semicolon
— Also called a statement terminator

 {and } are not C++ statements
— Can be regarded as delimiters

e Commas separate items in a list

Semantics

* Semantics: set of rules that gives meaning to a
language

— Possible to remove all syntax errors in a program and still
not have it run

— Even if it runs, it may still not do what you meant it to do
e Ex:2 + 3 * 5and (2 + 3) * 5

are both syntactically correct expressions, but have
different meanings

Naming ldentifiers

e |dentifiers can be self-documenting:
— CENTIMETERS PER INCH

 Avoid run-together words :

— annualsale

— Solution:
e Capitalizing the beginning of each new word: annualSale
* Inserting an underscore just before a new word: annual sale

Prompt Lines

* Prompt lines: executable statements that inform the
user what to do

cout << "Please enter a number between 1 and 10 and "
<< "press the return key" << endl;

cin >> num;

* Always include prompt lines when input is needed
from users

Documentation

A well-documented program is easier to understand
and modify

* You use comments to document programs

e Comments should appear in a program to:

— Explain the purpose of the program
— ldentify who wrote it

— Explain the purpose of particular statements

Form and Style

* Consider two ways of declaring variables:
— Method 1
int feet, inch;
double x, v;

— Method 2
int feet,inch;double x,vy;

 Both are correct; however, the second is hard to read

Chapter 3:
Input/ Output

C++ PROGRAMMING:

Outline

* In this chapter, you will study:
— |/O Streams and Standard |/O Devices
— Input Failure
— Using Predefined Functions in a Program

|/O Streams and Standard 1/O
Devices

* |/O: sequence of bytes (stream of bytes) from source
to destination

— Bytes are usually characters, unless program requires
other types of information

— Stream: sequence of characters from source to destination

— Input stream: sequence of characters from an input device
to the computer

— QOutput stream: sequence of characters from the computer
to an output device

/O Streams and Standard 1/O Devices
(cont’d.)

e Use 1ostream header file to receive data from
keyboard and send output to the screen

— Contains definitions of two data types:
* istream:input stream
* ostream: output stream

— Has two variables:
e cin:stands for common input
e cout: stands for common output

/O Streams and Standard 1/O Devices
(cont’d.)

Variable declaration is similar to:
— 1stream cin;

— OsStream cout;

* Touse cin and cout, the preprocessor directive
#include <iostream> must be used

Input stream variables: type istream

Output stream variables: type ostream

cin and the Extraction Operator
>>

* The syntax of an input statement using cin and the
extraction operator >> is:

cin >> variable 2> wariable...:

* The extraction operator >> is binary

— Left-side operand is an input stream variable
 Example: cin

— Right-side operand is a variable

cin and the Extraction Operator >>
(cont’d.)

* No difference between a single cin with multiple
variables and multiple cin statements with one

variable
 When scanning, >> skips all whitespace
— Blanks and certain nonprintable characters
e >> distinguishes between character 2 and number 2

by the right-side operand of >>
— If type char or int (or double), the 2 is treated as a
character or as a number 2

cin and the Extraction Operator >>
(cont’d.)

TABLE 3-1 Valid Input for a Variable of the Simple Data Type

Data Type of a Valid Input for a
char One printable character except the blank
int An integer, possibly preceded by a + or = sign

A decimal number, possibly preceded by a + or = sign. If the actual
double data input is an integer, the input is converted to a decimal number
with the zero decimal part.

* Entering a char valueintoan int or double
variable causes serious errors, called input failure

cin and the Extraction Operator >>
(cont’d.)

 When reading data into a char variable

— >> skips leading whitespace, finds and stores only the next
character

— Reading stops after a single character

e Toread dataintoan int or double variable

— >> skips leading whitespace, reads + or - sign (if any),
reads the digits (including decimal)

— Reading stops on whitespace non-digit character

cin and the Extraction Operator >>
(cont’d.)

Suppose you have the following variable declarations:

int a, b;
double z;
char ch;

The following statements show how the extraction operator >> works.

Statement
1 c¢in >>
2 c¢in >>
3 ¢in >>
4 c¢in >>
5 c¢in >>
6 Cin >>
7 c¢in >>

ch;
ch;

ay
ay

Zy
Zy
z >>

ay

Input

A
AB

48

46.

74
39
65

35

+35

.78 38

Value Stored in Memory

ch = 'A'"

ch = 'A', 'B' isheld for
later input

a = 48

a = 46, .35 isheld for

later input

z = 74.35 is
z = 39.0

z = 65.78, a = 38

cin and the Extraction Operator >>
(cont’d.)

Suppose you have the following variable declarations:

int a;
double z;
char ch;

The following statements show how the extraction operator >> works.

Statement
1 c¢cin >>
2 c¢in >>
3 c¢in >>
4 c¢cin >>

ch >>

ch >>

ch >>

ch >>

Z;

Z;

Z;

Z;

Input
57 A 26.9

57 A
26.9

57
A
26.9

57A26.9

Value Stored in Memory

a =57, ch = 'A',
z = 26.9
a =57, ch = "A",
z = 26.9
a =57, ch = 'A",
zZ = 26.9
a =57, ch = 'A",

z = 26.9

cin and the Extraction Operator >>
(cont’d.)

Suppose you have the following variable declarations:
int a, b;

double z;

char ch, chl, ch2;

The following statements show how the extraction operator >> works.

Statement Input Value Stored in Memory
1 e¢in >> z >> ch >> a; 36.78B34 z = 36.78, ch = '"B',
a = 34
2 ¢in >> z >> ch >> a; 36.78 z = 36.78, ch = 'B',
B34 a = 34
3 cin >> a >> b >> z; 11 34 a =11, b = 34,
) computer waits for the next
number
4 cin >> a >> z; 78.49 a="178, z = 0.49
5 c¢in >> ch >> a; 256 ch = "'2", a = 56
6 cin >> a >> ch; 256 a = 256, computer waits for

the input value for ch
7 c¢in >> chl >> ch2; A B chl = "A', ch2 = 'B'

Input Failure

Things can go wrong during execution

If input data does not match corresponding
variables, program may run into problems

Trying to read a letter into an int or double
variable will result in an input failure

If an error occurs when reading data

— Input stream enters the fail state

Input Failure (cont’d)

EXAMPLE 3-8

//Input Failure program

#include <iostream>
#include <string>

using namespace std;

int main()

{

string name; //Line 1
int age = 0; //Line 2
int weight = 0; //Line 3
double height = 0.0; //Line 4

cout << "Line 5: Enter name, age, weight, and "

<< "height: "; //Line 5
cin >> name >> age >> weight >> height; //Line 6
cout << endl; //Line 7
cout << "Line B: MName: " << name << endl; //Line B
cout << "Line 9: Age: " << age << endl; //Line 9
cout << "Line 10: Weight: " << weight << endl; //Line 10
cout << "Line 11: Height: " << height << endl; //Line 11

return 0; //Line 12

Input Failure (cont’d)

Sample Run 1

Line 5: Enter name,

Line
Line
Line
Line

8: Name: Sam
9: Age: 35
10: Weight:
11: Height:

Sample Run 2

Line 5: Enter name,

Line
Line
Line
Line

8: Name: Sam
9: Age: 35
10: Weight:
11: Height:

0
0

0
0

age,

age,

weight,

weight,

and height:

and height

L]
=

Sam 35 g56 6.2

Sam 35.0

156 6.2

Using Predefined Functions in a
Program

Function (subprogram): set of instructions

— When activated, it accomplishes a task
main executes when a program is run
Other functions execute only when called
C++ includes a wealth of functions

— Predefined functions are organized as a collection of
libraries called header files

Using Predefined Functions in a
Program (cont’d.)

* Header file may contain several functions

* To use a predefined function, you need the name of
the appropriate header file

— You also need to know:
* Function name
 Number of parameters required
* Type of each parameter
 What the function is going to do

Using Predefined Functions in a
Program (cont’d.)

* To use pow (power), include cmath

— Two numeric parameters
— Syntax: pow (x,y) = xY
« x and y are the arguments or parameters

— Inpow (2, 3), the parameters are 2 and 3

Using Predefined Functions in a

Program (cont’d.)

finclude <iocstream>
finclude <ocmath>
finclude <string-
using namsspace stdr

const double PI = 3. 1416;

int main()

doiible sphereRadiusg
double sphereVolimer
double pointlX, pointl¥;
douible point2X, point2¥;
doiible distanocer

string strr

cout << "Line 7: Enter the radius of the spheoe:
cin *» sphereRadiusy
cout << endlr

sphereVolme = (4 f 3] * PI ¥ pow(spereRadius,

cout << "Line 1l: The wolwme of the sphere is: ™
<< sphergVoliume << endl << endly

cout << "Line l1Z: Enter the coordinates of two ®
<< "points in the X-¥ plane: ";

cin > pointl¥ > pointl¥ >> pointdd >> point2¥r

cout =< endls

[
d

3

fiLine

FiLine
FiLine
F L e

i LI il Ll P e

0o =d

12

13
14

19

Using Predefined Functions in a
Program (cont’d.)

distance = sgrt (pow(pointZ{ - pointld, 2Z)
+ pow(pointZ¥ - pointl¥, 2] FiLine

L

L

cout << "Line l6: The distance between the points *
<< " (" << pointl¥ << ", " << pointl¥ << ") and "
< " (" << pointdX{ << ", " << pointd¥ << ") im: ®
<« distance << endl << endl; FiLine

]

=d

str = "Programming with C+"%; FiLine 1

cout << "Line l8: The mmber of characters, ®
< "including blanks, inm ™" << str << "\" is: "

<< str.length{] << endl; JfLire 18

return 0 JlLina 19

Chapter 4:
Control Structures | (Selection)

C++ PROGRAMMING:

* |In this chapter, you will study :
— Control Structures

— Relational Operators

— Relational Operators and the string Type

— Logical (Boolean) Operators and Logical Expressions
— Selection:ifand if...else

— switch Structures

Control Structures

A computer can proceed:
— In sequence
— Selectively (branch): making a choice
— Repetitively (iteratively): looping
— By calling a function
e Two most common control structures:
— Selection
— Repetition

Control Structures (cont’d.)

®
.

statement]

—false —— true — ‘<
statement? —true -»

Y Y I
statement? statementl false
\

-®-

-
e
i
o

statementN i
a. Sequence b. Selection c. Repetition

FIGURE 4-1 Flow of execution

Relational Operators

e Conditional statements: only executed if certain
conditions are met

e Condition: represented by a logical (Boolean)
expression that evaluates to a logical (Boolean) value
of trueor false

* Relational operators:
— Allow comparisons
— Require two operands (binary)
— Evaluateto trueor false

Relational Operators (cont’d.)

TABLE 4-1 Relational Operators in C++

== equal to

!= not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

Relational Operators and Simple

Data Types

* Relational operators can be used with all three
simple data types:

EXAMPLE 4-1

Expression Meaning Value
8 < 15 8 5 less than 15 true
6 = 6 6 1 not equal o & false
2.5 > 5.8 2.5 15 greater than 5.8 false

5.9 <= 7.5 5.9 is less than or equal to 7.5 true

Comparing Characters

* Expression of char values with relational operators

— Result depends on machine’s collating sequence
— ASCII character set

* Logical (Boolean) expressions
— Expressionssuchas4 < 6and 'R' > 'T!

— Returns an integer value of 1 if the logical expression
evaluates to true

— Returns an integer value of 0 otherwise

Relational Operators and the

string Type

* Relational operators can be applied to strings

— Strings are compared character by character, starting with
the first character

— Comparison continues until either a mismatch is found or
all characters are found equal

— If two strings of different lengths are compared and the
comparison is equal to the last character of the shorter
string

* The shorter string is less than the larger string

Relational Operators and the

string Type (cont’d.)

e Suppose we have the following declarations:

string strl = "Hello";
string str2 = "H1i";
string str3 = "Air";
string str4 = "Bill";

string str4 = "Big";

10

Relational Operators and the

string Type (cont’d.)

Expression

Value /Explanation

strl < str2

true

strl = "Hello" and str2 = "Hi". The first characters
of strl and str2 are the same, but the second character 'e'
of strl is less than the second character "1 " of str2.
Therefore, strl < str2 is true.

strl > "Hen"

false
strl = "Hello". The first two characters of strl and
"Hen"™ are the same, but the third character "1"' of strl is

less than the third character "n' of "Hen". Therefore,
strl > "Hen" 1s false.

str3 < "An"

true

str3 = "Air". The first characters of str3 and "An" are
the same, but the second character "1 " of "Air" is less than
the second character "'n"' of "An". Therefore, str3 < "An"
1s true.

11

Relational Operators and the

string Type (cont’d.)

strl == "hello"

false

strl = "Hello". The first character "H" of strl is less
than the first character "h' of "hello"™ because the ASCII
value of "H" is 72, and the ASCII value of "h"' 1s 104,
Therefore, strl == "hello" is false.

str3 <= str4d

true

str3 = "Air" and str4d = "Bill". The first character
"A'" of str3 is less than the first character "B' of str4.

Therefore, str3 <= str4 is true.

str2 > strid

true

str2 = "Hi" and strd = "Bill". The first character
"H' of str2 is greater than the first character "B' of str4.

Therefore, str2 > strd is true.

12

Relational Operators and the

string Type (cont’d.)

Expression Value/Explanation

strd >= "Billy" false

strd = "Bill"™. It has four characters, and "Billy™ has
five characters. Therefore, str4 is the shorter string. All four
characters of str4 are the same as the corresponding first
four characters of "Billy", and "Billy"™ is the larger
string. Therefore, str4 >= "Billy" is false.

str5 <= "Bigger" true

str5 = "Big". It has three characters, and "Bigger"
has six characters. Therefore, str5 1s the shorter string.
All three characters of str5 are the same as the
corresponding first three characters of "Bigger",

and "Bigger" is the larger string. Therefore,
str5 <= "Bigger" 1s true.

13

Logical (Boolean) Operators and

Logical Expressions

* Logical (Boolean) operators: enable you to combine
logical expressions

TABLE 4-2 Logical (Boolean) Operators in C++

! not
&& and

| | or

14

Logical (Boolean) Operators and

Logical Expressions (cont’d.)

TABLE 4-3 The ! (Not) Operator

true (nonzero) false (0)

false (0) true (1)
Expression Value Explanation
I('A' > 'B') true Because 'A' > 'B'isfalse, ! ('A' > 'B') strue.
1(6 <= 7) false Because 6 <= 7 1s true, ! (6 <= 7) 15 false.

15

Logical (Boolean) Operators and

Logical Expressions (cont’d.)

TABLE 44 The && (And) Operator

true (nonzero) true (nonzero) true (1)
true (nonzero) false (0) false (0)
false (0) true (nonzero) false (0)
false (0) false (0) false (0)
Expression Value Explanation
(14 >= 5) && ('A' < 'B') true Because (14 >= 5) 1s true, ('A' <

'B') 1s true and true && true is
true, the expression evaluates to true.
(24 >= 33) && ('A' < 'B') false g (24 >= 35) is false, ('A’
<"B'") 15 true, and false && true s
false, the expression evaluates to false.

16

Logical (Boolean) Operators and

Logical Expressions (cont’d.)

TABLE 45 The | | (Or) Operator

true (nonzero) true (nonzero) true (1)

troe (nonzero) false (0) true (1)

false (0) true (nonzero) true (1)

false (0) false (0) false (0)
Expression Value Explanation
(14>=3) || ("A" > "B") true Because {14 »>= 5) istrue, ("A" >

'B'") is false, and true || £alse is

true, the expression evaluates to troe.
(24>=35) || (A" > "B') false Because (24 »>= 35) is false, (A" >

'B') is false, and £false || false is

false, the expression evalmtes to false.
(AT <="3") || {(T!=7) true Becanse {"A' <= 'a') & true,

(7 !'= 7) is false and true | | false

is true, the expresion evaluates to true. 17

Order of Precedence

e Relational and logical operators are evaluated from
left to right

— The associativity is left to right

* Parentheses can override precedence

18

Order of Precedence (cont’d.)

TABLE 4-6 Precedence of Operators

!, +, = (unary operators) first
1% second
T third
<, <=, >=, > fourth
==, |= fifth
&& sixth

| seventh
= (assignment operator) last

19

Order of Precedence (cont’d.)

EXAMPLE 4-6

Suppose you have the following declarations:

bool found = true;

int age = 20;

double hours = 45.30;
double overTime = 15.00;
int count = 20;

char ch = "B';

20

Order of Precedence (cont’d.)

Expression Value / Explanation

! found false

Because found 1s true, ! found s false.

hours > 40.00 true

Because hours 15 45.30 and 45.30 > 40.00 s
true, the expression hours > 40.00 evaluates to
true.

'age false
age 1s 20, which 1s nonzero, so age 1s true.
Therefore, !age 1s false.

!found && (age >= 18) false

!found s false;age > 181520 > 18 1s true.
Therefore, ! found && (age >= 18) is false &&

true, which evaluatesto false.
! (found && (age >= 18)) false

Now, found && (age >= 18) » true && true,

which evaluates to true. Therefore, ! (found &&
(age >= 18)) 1s !true, which evaluates to false.

21

Order of Precedence (cont’d.)

Expression Value / Explanation
hours + overTime <= 75.00 true

Becauwsehours + overTimes 45.30 + 15.00 =
60.30and 60.30 <= 75,00 s true, it follows that
hours + overTime <= 75.00 evaluates to true.

(count >= 0) && true

(count <= 100) Now, count is 20. Because 20 >= 0 is true,

count >= 01is true. Ako, 20 <= 100 1s true,so
count <= 100 i1s true. Therefore, (count >=
0) && (count <= 100) 1s true && true,

which evaluates to true.
('A' <= ch && ch <= '2") true

Here, ch 1s "B'. Because "A' <= 'B' 15 true,
'A' <= ch evaluates to true. Ako, because "B
= 'Z"' 1s true, ch <= '2' evaluates to true.

Therefore, ('A' <= ch && ch <= '2"') 1s true
&& true, which evaluates to true.

22

Examples using logical operators (assumea=5and b
=2):
l(a > 2) - false

0) && (b >=1) > true
b) && (b >=1) - false
o) || (b <=1) = true

(a >
(a <
(a <

23

The 1nt Data Type and Logical

(Boolean) Expressions

* Earlier versions of C++ did not provide built-in data
types that had Boolean values

* Logical expressions evaluate to either 1 or O

— Logical expression value was stored in a variable of the
data type int

 Can use the int data type to manipulate logical
(Boolean) expressions

24

The bool Data Type and Logical

(Boolean) Expressions

 The data type bool has logical (Boolean) values
true and false

e bool, true,and false are reserved words
* The identifier true has the value 1
* The identifier false has the value 0

25

Selection: ifand if. . .else

e ifandif...else statements can be usedto
create:
— One-way selection
— Two-way selection
— Multiple selections

26

One-Way Selection

 One-way selection syntax:

if (expression)
statement

e Statement is executed if the value of the expression
IS true

e Statement is bypassed if the value is false;
program goes to the next statement

* Expression iscalled a decision maker

27

One-Way Selection (cont’d.)

&
!

— IR statement

false

Y

.<

FIGURE 4-2 One-way selection

28

One-Way Selection Example

EXAMPLE 4-8

//Program to compute and coutput the penalty on an unpaid
//ecredit card balance. The program assumes that the interest
//rate on the unpaid balance is 1.5% per month.

#include <iostream> //Line 1
#include <iomanip> f/Lline 2
using namespace std; J//Line 3
const double INTEREST FATE = 0.015; J/line 4
int main () //line 5
{ //Line &
double creditCardBalance; //Line 7
double payment; //Line 8
double balance; f/Line 9
double penalty = 0.0; J//Line 10
cout << fixed << showpoint << setprecision(2); f/Line 11

One-Way Selection Example

cout << "Line 12: Enter credit card balance: ";
cin >> creditCardBalance;

cout <<

endl;

cout << "Line 15: Enter the payment: ";
cin >> payment;

cout <<

endl;

balance = creditCardBalance - payment;

if (balance >
penalty =

cout <<
<<

cout <<
<

"Line
endl;
"Line
L] next

return 0;

0)
balance * INTEREST PRATE;

21: The balance is: $" << balance

22: The penalty to be added to your "
month bill is: $" << penalty << endl;

//Line
//Line
//Line
//Line
//Line
//Line
//Line
f/Line
//Line
[/Line
//Line

[/ /Line
[/Line

12
13
14
15
lé
17
18
19
20
21
22
23
24

30

Two-Way Selection

 Two-way selection syntax:

if (expression)
statementl
aelse

statement2

* If expressionis true, statementl is executed;
otherwise, statement?2 is executed

— statementl and statement?2 are any C++ statements

31

Two-Way Selection (cont’d.)

8
;

r false — true —l

\ .- |
.

FIGURE 4-3 Two-way selection

32

Two-Way Selection Example

cxeie <+ | [

Consider the following statements:

if (hours > 40.0) //Line 1
wages = 40.0 * rate +

1.5 * rate * (hours - 40.0); [/Llina 2
else J//Line 3
wages = hours * rate; [/ /Line 4

33

Two-Way Selection Example

EXAMPLE 4-12

The tollowing statements show an example of a syntax error:

if (hours > 40.0); f/Line 1
wages = 40.0 * rate +

1.5 * rate * (hours - 40.0); //Line 2

else J/Line 3

wages = hours * rate; J/line 4

34

Two-Way Selection Example

|EHHHHHIEIHIIHI

Consider the following statements:

if (score >= &0) //Line 1
cout << "Passing"™ << endl; J/Line 2
cout << "Failing"™ << endl; J/Line 3

35

Compound (Block of) Statements

 Compound statement (block of statements):

{
statement 1

statement 2

statement_n

}

A compound statement functions like a single
statement

36

Compound (Block of) Statements

(cont’d.)

1f (age > 18)

cout << "Eligible to vote." << endl;
cout << "No longer a minor." << endl;

}

else

{
cout << "Not eligible to vote." << endl;
cout << "Still a minor." << endl;

37

Multiple Selections: Nested i f

e Nesting: one control statement is located within

another
e An else is associated with the most recent i £ that

has not been paired with an else

38

Multiple Selections: Nested i f

(cont’d.)

EXAMPLE 4-16

Assume that score is a variable of type int. Based on the value of score, the following
code outputs the grade:

if (score >= 90)

cout << "The grade is A." << endl;
else if (score >= 80)

cout << "The grade is B." << endl;
else if (score >= 70)

cout << "The grade is C." << endl;
else if (score >= 60)

cout << "The grade is D." << endl;
else

cout << "The grade is F." << endl;

39

Multiple Selections: Nested i f
(cont’d.)

EXAMPLE 4-19

Assume that all variables are properly declared, and consider the following statements:

if (gender == "M')
if (age < 21)
policyRate

alse
policyRate
else if (gender ==
if (age < 21)
policyRate

aelse
policyRate

= 0.05;

= 0.035;
P

= 0.04;

= 0.03;

//Line
/ /Line
/ /Line
J//Line
/ /Line
/ /Line
/ /Line
/ /Line
/ /Line
/ /Line

H oD 00 =] gy Un ol L b

0

In this code, the else in Line 4 1s paired with the 1 £ in Line 2. Note that for the else in
Line 4, the most recent incomplete 1 £ 1s the 1 £ in Line 2. The else in Line 6 1s paired
with the if in Line 1. The else in Line 9 15 paired with the if in Line 7. Once again,
the indentation does not determine the pairing, but it commumcates the painng,.

40

Example using nested if

#include <iostream?>
using namespace std;
lint main()

1
int x = 6, yv = 2;
if (x > y)
cout << "x 1s greater than y\n";
else if (v > x)
cout << "y is greater than x\n";
else
cout << "x and y are equall\n®;
return @;
B

The output of this program is :
X is greater than vy.

If we assign the values of x & y as
follow: int X = 2; inty = 6;

then the output is:

y is greater than x.

If we assign the values of x & y as
follow: int x = 2;inty = 2;

then the output is:

x and y are equal.

41

Comparing 1f..else Statements

with a Series of i £ Statements

a. if (month == 1) f/Line 1
cout << "January™ << endl; /fline 2
alse if (month = 2) f/Line 3
cout << "February"™ << endl; //Line 4
alse if (month = 3) ffLinea 5§
cout << "March"™ << endl; ffLine 6
else if (month = 4) ffLine 7
cout << "April™ << endl; //Line 8
else if (month = 5) ffLine 9
cout << "May" << endl; //Line 10
alse if (month =— &) ffLine 11
cout << "Juna™ << endl; f/Lina 12

42

Comparing 1 f£.. else Statements

with if Statements (cont’d.)

b. if (month == 1}

cout << "January"™ << endl;
if (month == 2}

cout << "February"™ << endl;
if {(month == 3}

cout << "March™ << endl;
if (month == 4)

cout << "April® << endl;
1f (month == 5)

cout << "May"™ << endl;
if {(month == 6)

cout << "June® << endl;

43

Short-Circuit Evaluation

e Short-circuit evaluation: evaluation of a logical
expression stops as soon as the value of the
expression is known

44

Short-Circuit Evaluation

‘HHIHHI!!H'HIEII

Consider the followmng expressions:

lage >= 21} |l (& == B) //Line 1
(grade == 'A') && (x >= T) /fLine 2

For the expression 1in Line 1, suppose that the value of age 15 25. Because (25 >=21) =
true and the logical operator used in the expression i | |, the expression evaluates to true.
Due to short-arcut evaluanon, the computer does not evaluate the expression (x == 5).
Simulady, for the expression in Line 2, suppose that the value of grade 15 'B'. Because
("B' = 'A") 1s false and the logical operator used in the expression 1s &&, the expression
evaluates to false. The computer does not evaluate (x >= 7).

45

Comparing Floating-Point Numbers

for Equality: A Precaution

 Comparison of floating-point numbers for equality
may not behave as you would expect

— Example:

e 1.0 == 3.0/7.0 + 2.0/7.0 + 2.0/7.0 evaluatesto
false

« Why? 3.0/7.0 + 2.0/7.0 + 2.0/7.0 =
0.99999999999999989

e Solution: use a tolerance value
— Example: 1f fabs(x - y) < 0.000001

46

Associativity of Relational

Operators: A Precaution

#include <iostream>
using namespace std;
int main()

{

int num;

cout << "Enter an integer: ";
cin >> num;
cout << endl;

if (0 <= num <= 10)
cout << num << " is within 0 and 10." << endl;

else
cout << num << " is not within 0 and 10." << endl;

return 0;

47

Associativity of Relational

Operators: A Precaution (cont’d.)

0 <= num <= 10 =0 <= 5<= 10

(Because relational operators

= (0 <= 5) <= 10 are evaluated from left to right)

(Because 0 <= 515 true, 0 <=

il 5 evaluates to 1)
=1 (true)
* num = 20
0 <= num <= 10 =0 <= 20 <= 10

(Because relational operators are

= (0 <= 20) <= 10 evaluated from left to right)

(Because 0 <= 20 is true, 0

=1 <= 10 <= 20 evaluates to 1)

=1 (true)

48

Avoiding Bugs by Avoiding Partially

Understood Concepts and Techniques

* Must use concepts and techniques correctly
— Otherwise solution will be either incorrect or deficient

* If you do not understand a concept or technique
completely
— Don’t use it
— Save yourself an enormous amount of debugging time

49

Input Failure and the 1 £

Statement

If input stream enters a fail state

— All subsequent input statements associated with that
stream are ignored

— Program continues to execute
— May produce erroneous results

Can use i f statements to check status of input
stream

If stream enters the fail state, include instructions
that stop program execution

50

Confusion Between the Equality

(==) and Assignment (=) Operators

 C++ allows you to use any expression that can be
evaluated to either true or false as an expression
in the if statement:
if (x = 5)

cout << "The wvalue 1is five." << endl;

 The appearance of = in place of == resembles a si/ent
Killer

— It is not a syntax error
— Itis a logical error

51

Conditional Operator (?:)

* Conditional operator (? :)

— Ternary operator: takes 3 arguments

* Syntax for the conditional operator:

expressionl ? expressionZ : expression3

* Ifexpressionlis true, the result of the
conditional expression is expression?

— Otherwise, the result is expression3

e Example:max = (a >= b) ? a : b;

52

Conditional Operator (?:)

Examples

Conditional Operator

Equivalent if else

Output

int A =15, B = 2;
cout << (A>B ? A : B)
<< " is greater \n";

int A = 15, B = 2;
if (A>B)

else
cout<<B<<<< " 1is greater\n";

cout << A << " is greater \n%;

15 is greater

int x, y = 15;
x = (y < 10) ? 100 : -40;

cout << "value of x: " < x ;

int x, y = 15;
if (y < 10)
x=100;
else
x= -40;
cout << "value of x: " << x;

value of x: -
40

53

Conditional Operator (?:)

Examples

Conditional Operator

Equivalent if else

Output

int n;

cout << "Enter a number : ";
cin >> n;

(n$ 2 == 0) ? cout << n K

“:Even number\n"
“:0dd number\n";

cout << n <L

int n;
cout << "Enter a number : ";
cin >> n;
if(n%s 2 == 0)

cout<<n<<“ :Even number\n"
else

cout<<n<<“ :0dd number\n";

.
’

54

switch Structures

e switch structure: alternate

toi1f-else switch (expression)
{
1 I : case valuel:
. §w1tch (mtggral) expression “statenenta:
is evaluated first

case value2

* Value of the expression determines -%La-&smentsz
which corresponding action is taken

* Expression is sometimes . N——
called the selector statementsn

o _AI
default
statements

}

55

switch Structures (cont’d.)

@
!

expression

case valuel true — EEEICUENS! break

false
< - EEm -
false
|
false
case valuen true — I EIENEIIN] break
faise
‘ FIGURE 4-4 switch statement

| 56

switch Structures (cont’d.)

One or more statements may follow a case label

Braces are not needed to turn multiple
statements into a single compound statement

When a case value is matched, all statements
after it execute until a break is encountered

The break statement may or may not appear
after each statement

switch, case, break,and default are
reserved words

57

switch Structures (ex. 4-21)

switch (grade)

{

case "A':
cout << "The grade point is 4.0.%;
break ;

case "B';
cout << "The grade peoint is 3.0.%;
break ;

case "'C';
cout << "The grade point is 2.0.";
break ;

case "D
cout << "The grade point is 1.0.";
break ;

case "F';
cout << "The grade point is 0.0.";
break ;

defaunlt:
cout << "The grade is inwvalid.™;

}
58

switch Structures (ex. 4-23)

switch (score f 10)
{

case 0

cage 1:

cage 2:

case 3:

case 4:
cage 5
grade = 'F';
break ;
cage 6!
grade = 'D';
break ;
cage 7:
grade = 'C';
brealk ;
case 8:
grade = 'B';
brealk :
case 9:
cage 103
grade = 'A";
break ;
default:
cout << "Invalid test score." << endl;
} 59

Switch statement

int 1, n;

cin >> 1;

switch (1)

1

case ©:

case 1: n = 18;
break;

case 2: n = 500;
break;

default:n = 8;
break;

¥

cout << n << endl;

Equivalent nested if else

int i, n;
cin >> 1;

if (i ==9 || 1 ==1)

n = 16;
else if (1 == 2)
n = 508;
else
n = 8;

cout << n << endl;

60

Avoiding Bugs: Revisited

* To output results correctly

— Consider whether the switch structure must include a
break statement after each cout statement

61

Programming Example

e Refer to page number 233 in text book and study
"Cable Company Billing” example

62

—

S \ L

Chapter 5:
Control Structures Il (Repetition)

C++ PROGRAMMING:

Objectives

* |n this chapter, you will study:
— Why s Repetition Needed?
— while Looping (Repetition) Structure
— for Looping (Repetition) Structure
—do...while Looping (Repetition) Structure
— break and continue Statements
— Nested Control Structures
— Debugging loops

Why Is Repetition Needed?

* Repetition allows efficient use of variables

* Caninput, add, and average multiple numbers
using a limited number of variables

* For example, to add five numbers:

— Declare a variable for each number, input the
numbers and add the variables together

— Create a loop that reads a number into a variable
and adds it to a variable that contains the sum of
the numbers

while Looping (Repetition)

Structure

e Syntax of the while statement:

while (expression)
statement

* statement can be simple or compound

* expression acts as a decision maker and is
usually a logical expression

e statement is called the body of the loop

 The parentheses are part of the syntax

while Looping (Repetition)

Structure (cont’d.)

— e statement

|
false

l

FIGURE 5-1 while loop

while Looping (Repetition)

Structure (cont’d.)

EXAMPLE 5-1

Consider the following C++ program segment: (Assume that i i1s an int vanable.)

i=20; //Line 1
while (1 <= 20) //Line 2
{
cout << 4 <MW " //Line 3
i=41i+5; //Line 4
}

cout << endl;
Sample Run:
0 510 15 20

while Looping (Repetition)

Structure (cont’d.)

* iin Example 5-1is called the loop control
variable (LCV)

* |nfinite loop: continues to execute endlessly

— Avoided by including statements in loop body that
assure the exit condition is eventually false

while Looping (Repetition)

Structure (cont’d.)

EXAMPLE 5-2

Consider the following C++ program segment:

i= 20; //Line 1
while (i < 20) //Line 2
{
cout << 1 << " »; //Line 3
i=1i+5; //Line 4
}
cout << endl; //Line 5

It is easy to overlook the difference between this example and Example 5-1. In this example, in
Line 1, i is setto 20. Because i is 20, the expression i < 20 in the while statement (Line 2)
evaluates to false. Because initally the loop entry conditon, i < 20, is false, the body of
the while loop never executes. Hence, no values are output, and the value of i remains 20.

Case 1: Counter-Controlled while

Loops

* When you know exactly how many times the
statements need to be executed
— Use a counter-controlled while loop

counter = 0; //initialize the loop control variable

while (counter < N) //test the loop control variable
{

counter++; //update the loop control variable

Case 1: Counter-Controlled while
Loops (Ex. 5-3)

e 10 Students at a local middle school volunteered to sell fresh
baked cookies to raise funds to increase the number of
computers for the computer lab. Each student reported the
number of boxes he/she sold. We will write a program that
will do the following:

— Ask each student about the total number of boxes of cookies he/she
sold

— Output the total number of boxes of cookies sold
— Output the total revenue generated by selling the cookies
— Output the average number of boxes sold by each student

* Assume the cost of each box of cookies = 5S.

10

Case 2: Sentinel-Controlled

while Loops

 Sentinel variable is tested in the condition
* Loop ends when sentinel is encountered

cin >> wvariable; //initialize the loop control variable

while (variable != sentinel) //test the loop control variable

{

cin >> variable; //update the loop control variable

11

Example 5-5: Telephone Digits

 Example 5-5 provides an example of a

sentinel-controlled loop

 The program converts uppercase letters to
their corresponding telephone digit

0
1

N

(ABC
kzj‘

)

(" GHI "\
3

(" TKL
2

N/
B
VAN

(o

(PORS

(TUV)

)

SE
(e

-
-

Case 3: Flag-Controlled while

Loops

 Flag-controlled while loop: usesabool
variable to control the loop

//initialize the loop control variable

found = false;

while (!found) //test the loop control variable

{

if (expression)
found = true; //update the loop control variable

13

Number Guessing Game

 Example 5-6 implements a number guessing
game using a flag-controlled while loop

* Uses the function rand of the header file
cstdlib to generate a random number

— rand () returns an int value between 0 and
32767

— To convert to an integer >= 0 and < 100:
e rand () % 100

Number Guessing Game

#include <iostream>

#include <cstdlib>
#include <ctime>

using namespace std;
int maini()

{
J/declare the wariables

int num; [/ /wariable to store the random
S fnumber
int guess; f/variable to store the number

//guessed by the user
bool isGuessed; /J/boolean wvariable to control

//the loop

srand (time(0)); //Line 1
num = rand() % 100; //Line 2
isGuessed = false; Jf/Line 3
while (!isGuessed) //Line 4
{ f/Line 5

cout << "Enter an integer greater"

<< "™ than or equal to 0 and "
<< "less than 100: "; //Line 6
cin »> guess; //Line 7

cout << endl; //Line 8

Number Guessing Game

if (guess == num) f/Line 9
{ //Line 10
cout << "You guessed the correct "
<< "pnumber." << endl; f//Line 11
isGuessed = true; f//Line 12
} //Line 13
else 1f (guess < num) [/ /Line 14

cout << "Your guess is lower than the "
<< "number.\n Guess again!"
<< endl; [/Line 15
else f/Line 16
cout << "Your guess is higher than "
| << "the number.\n Guess again!"™
<< endl; //Line 17
} //end while //Line 18

return 0;

More on Expressions in while

Statements
* The expressionin a while statement can be
complex
— Example:

while ((noOfGuesses < 5) && (!isGuessed))
{

}

Programming Example: Fibonacci

Number

* Consider the following sequence of numbers:
—-1,1, 2, 3,5, 8, 13, 21, 34,
e Called the Fibonacci sequence

* Given the first two numbers of the sequence
(say, al and a2)

— n™" number a,, n >= 3, of this sequence is given by:
an = an-.Z t an-Z

Programming Example: Fibonacci

Number (cont’d.)

* Fibonacci sequence

— n" Fibonacci number

—a,=1

—a; =1

— Determine the 7" number a,, n >=3

Programming Example: Fibonacci

Number (cont’d.)

* Suppose a,=6and a,=3

—az=a,+a,=6+3=9

—a,=az+a,=9+6=15
* Write a program that determines the nth
Fibonacci number, given the first two numbers

Programming Example: Input and

Output

* |nput: first two Fibonacci numbers and the
desired Fibonacci number

e Qutput: nt" Fibonacci number

Programming Example: Problem

Analysis and Algorithm Design

* Algorithm:

— Get the first two Fibonacci numbers

— Get the desired Fibonacci number
* Get the position, n, of the number in the sequence

— Calculate the next Fibonacci number
* Add the previous two elements of the sequence

— Repeat Step 3 until the " Fibonacci number is
found

— Output the n" Fibonacci number

Programming Example: Variables

int previousl; //variable to store the first Fibonacci number
int previous2; //variable to store the second Fibonacci number

int current; //variable to store the current
//Fibonacci number
int counter; //loop control variable

int nthFibonacci; //variable to store the desired
//Fibonacci number

Programming Example: Main

Algorithm

Prompt the user for the first two numbers—
thatis, previousl and previous?2

Read (input) the first two numbers into
previousl and previous?

Output the first two Fibonacci numbers

Prompt the user for the position of the
desired Fibonacci number

Programming Example: Main

Algorithm (cont’d.)

* Read the position of the desired Fibonacci
number into nthFibonacci

—1f (nthFibonacci == 1)
The desired Fibonacci number is the first Fibonacci

number; copy the value of previousl into
current

—else if (nthFibonacci == 2)

The desired Fibonacci number is the second

Fibonacci number; copy the value of previous?
into current

Programming Example: Main

Algorithm (cont’d.)

— e] se calculate the desired Fibonacci number as
follows:

e Start by determining the third Fibonacci number

* |nitialize counter to 3 to keep track of the calculated
Fibonacci numbers.

e Calculate the next Fibonacci number, as follows:
current = previous2 + previousl;

Programming Example: Main

Algorithm (cont’d.)

— (cont’d.)
* Assign the value of previous2 topreviousl

* Assign the value of current toprevious?2
* Increment counter
* Repeat until Fibonacci number is calculated:

while (counter <= nthFibonacci)

{

current = previous2 + previousl;
previousl = previous?Z;
previous2 = current;

counter++;

Programming Example: Main

Algorithm (cont’d.)

* Qutputthe nthFibonacci number, which
IS current

for Looping (Repetition)

Structure

e for loop: called a counted or indexed for
loop

e Syntax of the for statement:

for (initial statement; loop condition; update statement)
statement

* Theinitial statement, loop
condition, and update statement are
called for loop control statements

for Looping (Repetition)

Structure (cont’d.)
@
|
stateent
— true — I EICEEN stl;[t)g;t: ot

I
false

:
@

l FIGURES5-2 for loop

for Looping (Repetition)

Structure (cont’d.)

EXAMPLE 5-9

The following for loop prints the first 10 nonnegative integers:

for (1 = 0; 1 < 10; i++)
cout << 1 <« " ";
cout << endl;

The initial statement, i = 0;, initalizes the int variable i to 0. Next, the loop
condition, i < 10, is evaluated. Because 0 < 10 is true, the print statement executes and
outputs (. The update statement, i++, then executes, which sets the value of i to 1.
Once again, the loop condition is evaluated, which is stll true, and so on. When i
becomes 10, the loop condition evaluates to false, the for loop terminates, and
the statement following the for loop executes.

for Looping (Repetition)

Structure (cont’d.)

EXAMPLE 5-10

1. The following for loop outputs Hello! and a star (on separate lines)
five times:

for (1 = 1; 1 <= 5; i++)

{
cout << "Hello!" << endl;
cout << ™" << endl;

}

Consider the following for loop:

1o

for (1 = 1; 1 <= 5; i++)
cout << "Hello!" << endl;
cout << ™" << endl;

This loop outputs Hello! five times and the star only once.

for Looping (Repetition)

Structure (cont’d.)

* The following is a semantic error:

The following for loop executes five empty statements:

for (1 = 0; 1 < 5; i++); //Line 1
cout << "*" << endl; //Line 2

The semicolon at the end of the for statement (before the output statement, Line 1)
terminates the for loop. The action of this for loop is empty, that is, null.

* The following is a legal (but infinite) for loop:
for (;7)

cout << "Hello" << endl;

for Looping (Repetition)

Structure (cont’d.)

EXAMPLE 5-12

You can count backward using a for loop if the for loop control expressions are set correcdy.
For example, consider the following for loop:

for (1 = 10; i >= 1; i--)
cout <<€ " "<« 1
cout << endl;

The output is:

10 98 7654321

In this for loop, the vanable i is initialized to 10. After each iteration of the loop, i is
decremented by 1. The loop continues to execute as long as i >= 1.

for Looping (Repetition)

Structure (cont’d.)

exaneie 5o I

You can increment (or decrement) the loop control variable by any fixed number. In the
following for loop, the variable is initialized to 1; at the end of the for loop, i is
incremented by 2. This for loop outputs the first 10 positive odd integers.

for (i =1; 1 <=20; 1 =1 + 2)
cout << " " << i;
cout << endl;

do..while Looping (Repetition)

Structure

 Syntaxofado...while loop:

do

statement
while (expression);

* The statement executes first, and then the
expression is evaluated

— As long as expression is true, loop continues

* To avoid an infinite loop, body must contain a
statement that makes the expression false

do..while Looping (Repetition)

Structure (cont’d.)

* The statement can be simple or compound
* Loop always iterates at least once

do..while Looping (Repetition)

Structure (cont’d.)

T

statement |a

|

expression — true —

false

Y

FIGURE 5-3 do...while loop I

do..while Looping (Repetition)

Structure (cont’d.)

EXAMPLE 5-18

i=20;

do

{
cout €< L << " "
i=13i+5;

}

while (i <= 20);

The output of this code is:

0 510 15 20

After 20 is output, the statement:
- O B

changes the value of i to 25 and so i <= 20 becomes false, which halts the loop.

do..while Looping (Repetition)

Structure (cont’d.)

EXAMPLE 5-19

Consider the following two loops:

a. 1= 11;
while (i <= 10)

{
Cout < 1% W N
i=1i+5;

}

cout << endl;

b. i=11;

do

{
COout €L <%0
i=31i+25;

}

while (i <= 10);
cout << endl;

In (a), the while loop produces nothing. In (b), the do...while loop outputs the
number 11 and also changes the value of i to 16.

Choosing the Right Looping

Structure

* All three loops have their place in C++

— If you know or can determine in advance the
number of repetitions needed, the for loop is

the correct choice

— |f you do not know and cannot determine in
advance the number of repetitions needed, and it
could be zero, use a while loop

— If you do not know and cannot determine in
advance the number of repetitions needed, and it
is at least one, usea do...while loop

break and continue

Statements

e break and continue alter the flow of
control

* break statement is used for two purposes:

— To exit early from a loop
e Can eliminate the use of certain (flag) variables

— To skip the remainder of a switch structure

e After break executes, the program continues
with the first statement after the structure

break and continue

Statements (cont’d.)

e continueisusedinwhile, for, and
do..while structures

* When executed in a loop

— It skips remaining statements and proceeds with
the next iteration of the loop

Using break and continue

example

sum = 0;
isNegative = false;

cin >> num;

while (cin && !isNegative)
{
if (num < 0) J/if num is negative, terminate the loop
[/ /after this iteration

{
cout << "Negative number found in the data." << endl;
isNegative = true;
}
else
{
sum = sum + num;
cin >> num;
}

44

Using break and continue

example

sum = 0;
cin >» num;

while (cin)

{
if (num < 0) //if num is negative, terminate the loop

{
cout << "Negative number found in the data." << endl;

break;
}

sum = sum + num;
cin >> num;

45

Using break and continue

example

sum = 0;
cein >> num;
while (cin)

{
if (num < 0)

{
cout << "Negative number found in the data." << endl;

cin >> num;
continue;

}

sum = sum + num;
cin »>> num;

46

Nested Control Structures

* To create the following pattern:

* We can use the following code:
for (i = 1; 1 <= 5 ; i++)
{
for (7 = 1; J <= 1i; Jj++)
cout << "x*x'";

cout << endl;

Nested Control Structures (cont’d.)

 What is the result if we replace the first for
statement with this?

for (1 = 5;, 1 >= 1; 1--)
e Answer:

* k Kk k%
* Kk kX
* Kk %

* %

Nested Control Structures (cont’d.)

* Write the pseudocode to create the following
multiplication table:

2 3 4 5 6 7 8 9 10
4 & 8 10 12 14 16 18 20
& 9 12 15 18 21 24 27 30
8 12 16 20 24 28 32 36 40
10 15 20 25 30 35 40 45 30

49

Debugging Loops

* Loops are harder to debug than sequence and
selection structures
* Use loop invariant

— Set of statements that remains true each time the
loop body is executed

 Most common error associated with loops is
off-by-one

Chapter 6:
User-Defined Functions

C++ PROGRAMMING:

In this chapter, you will study:

— Predefined Functions

— User-Defined Functions

— Value-Returning Functions

— Void Functions

— Value Parameters

— Reference Variables as Parameters

— Value and Reference Parameters and Memory
Allocation

In this chapter, you will also study:

— Reference Parameters and Value-Returning
Functions

— Scope of an ldentifier

— Global Variables, Named Constants, and Side
Effects

— Static and Automatic Variables
— Function Overloading: An Introduction
— Functions with Default Parameters

Introduction

* Functions are often called modules

* They are like miniature programs that can be
combined to form larger programs

* They allow complicated programs to be divided
into manageable pieces

Predefined Functions

* In C++, a function is similar to that of a
function in algebra
— It has a name
— |t does some computation
* Some of the predefined mathematical
functions are:
sgrt (x)
pow (X, V)
floor (x)

Predefined Functions (cont'd.)

* Predefined functions are organized into
separate libraries

— |/O functions are in 1ostream header

— Math functions are in cmath header

* To use predefined functions, you must include
the header file using an include statement

e See Table 6-1 in the text for some common
predefined functions

Predefined Functions (cont'd.)

Returns the absolute value int int
of its argument: abs (-7) =7 (double) (double)

abs (x) <cmath>

Returns the smallest whole
ceil (x) <cmath> number that is not less than double double
X: ceil(56.34) = 57.0

Returns 1 (true) if x is a
lowercase letter; otherwise,

islower (x) <cctype> sl EaTse int int
islower ('h') is 1 (true)
Returns 1 (true) if x is an

isupper(x) <cctype> uppercase letter; otherwise, int int

it returns O (false);
isupper ('K') is 1 (true)

Returns x¥; if x is negative, y
pow (x, V) <cmath> must be a whole number: double double
pow(0.16, 0.5) =0.4

Returns the nonnegative
square ro_ot of x; x must be double double
nonnegative: sqrt (4.0) =

2.0 7

sgrt (x) <cmath>

User-Defined Functions

e Value-returning functions: have a return type

— Return a value of a specific data type using the
return statement

e Void functions: do not have a return type
— Do not use a return statement to return a value

Value-Returning Functions

* To use these functions, you must:

— Include the appropriate header file in your
program using the include statement

— Know the following items:
 Name of the function
* Number of parameters, if any
* Data type of each parameter

* Data type of the value returned: called the type of the
function

Value-Returning Functions
(cont’d.)

* Can use the value returned by a value-
returning function by:
— Saving it for further calculation
— Using it in some calculation
— Printing it

* A value-returning function is used in an
assignment or in an output statement

10

Value-Returning Functions

(cont’d.)

 Heading (or function header): first line of the
function
— Example: int abs (int number)

 Formal parameter: variable declared in the
heading

— Example: number
e Actual parameter: variable or expression

listed in a call to a function

— Example: x = pow (u, v)
11

Syntax: Value-Returning Function

* Syntax:

functionType functionName (formal parameter list)

{

statements

}

e functionType is also called the data type
or return type

12

Syntax: Formal Parameter List

| dataType identifier) datalype identifier, ...

Function return type Function name Formal parameter

o

Function heading —[int abs(int number) _
B l | < Formal parameter list

1f (number < 0)
Function body number = -number;

return number;

}

FIGURE 6-1 Various parts of the function abs=

13

Function Call

e Syntax to call a value-returning function:

functionName (actual parameter 1ist}‘

14

Syntax: Actual Parameter List

e Syntax of the actual parameter list:

expression or variable, expression or variable, ...

* Formal parameter list can be empty:

functionType functionName ()

* A call to a value-returning function with an
empty formal parameter list is:

functionName ()

15

return Statement

* Function returns its value via the return
statement
— It passes this value outside the function

16

Syntax: return Statement

* Syntax:

return expr;

* InC++, return is a reserved word

* When a return statement executes
— Function immediately terminates

— Control goes back to the caller

* When a return statement executes in the
function main, the program terminates

17

Syntax: return Statement

(cont’d.)

Function Function Formal
return type name parameters

Function l l N

— double larger (double x, double %)

heading

{ o
double max; Formal parameters list
if (x >= ;)\Local variable

Function max = Xj
body else
max = Y; Function return value

return max;

}

— FIGURE 6-2 Various parts of the function larger
18

Example 6-2

Mow that the funcion larger i witten, the following C++ code illustrates how to use it:

double cne = 13.00;
double two = 36.53;
dounble maxMNum;

Consider the following stitements:

cout << "The larger of 5 and 6 is " << larger (5, &}
<< endl; JfLine 1

cout << "The larger of " << one << " and " << two
<< " jg " << larger (one, two) << endl; /fLine 2

cout << "The larger of " << one << " and 2% is "
<< larger (one, 29) << endl: /fLine 3

maxtum = larger(38.45, 56.78); f/Line 4

19

Syntax: return Statement

(cont’d.)

* |n a function call, you specify only the actual
parameter, not its data type.

* The following statements contain incorrect
calls to the function 1arger and would
result in syntax errors
x = larger(int one, 29); f/illegal

v = larger (int one, int 29); f/illegal
cout << larger(int one, int two); f/fillegal

20

Syntax: return Statement

(cont’d.)

* Once a function is written, you can use it
anywhere in the program. Even as a
parameter to another function

double compareThree (double x, double y, double z)

{
return larger(x, larger (v, 2));

¥

21

Function Prototype

* Function prototype: function heading without
the body of the function

* Syntax:

functionType functionName (parameter list);

* Not necessary to specify the variable name in
the parameter list

* Data type of each parameter must be
specified

22

Function Prototype Example

double larger (double x, double ¥);
double compareThree (double x, double y, double Zz);

int main()
{
double one, two; f/Line

cout << "Line 2: The larger of 5 and 10 is "

<< larger (5, 10) << endl; [/ /Line
cout << "Line 3: Enter two numbers: "; / /Line
cin >> one >» two; f/Line
cout << endl; [/Line

cout << "Line 6: The larger of " << one
<< " and " << two << " is "
<< larger (one, two) << endl; [/Line

n b (W

23

Function Prototype Example

(cont’d)

cout << "Line 7: The largest of 43.48, 34.00, "
<< "and 12.65 is "
<< compareThree (43.48, 34.00, 12.65)
<< endl; J//Line 7

return 0;

}

double larger (double x, double ¥)

{
double max;

if (x >= y)
max = x;
else
max = ¥;

return max;

}

double compareThree (double x, double ¥y, double z)

{
return larger (x, larger(y, z)); 24
}

Value-Returning Functions: Some

Peculiarities

int secret(int x)
{
if (x > 5) f/Line 1

reaturn 2 * x; [/ /Line 2

A correct defimtion of the function secret 1is:

int secret(int x)

{
if (x > 5) //Line 1
return 2 * x; //Line 2
return x; //Line 3

25

Value-Returning Functions: Some

Peculiarities (cont’d.)

return x, y; //only the value of y will be returned

int funcRetl ()
{

int x = 45;

return 23, x; //only the value of x is returned

}
int funcRet2(int z)
{ int a = 2;
int b = 3;
} return 2 * a + b, z + b; //only the value of z + b is returned

26

EXAMPLE 6-4 (ROLLING A PAIR OF

DICE)

* write the function rol1Dice that takes as a
parameter the desired sum of the numbers to
be rolled and returns the number of times
the dice are rolled to roll the desired sum.

27

EXAMPLE 6-4 (ROLLING A PAIR OF

DICE) (cont’'d)

int rollDice (int num)
{

int diel;

int die2;

int sum;

int rollCount = 0;

srand (time(0));

do

{
diel = rand() % 6 + 1;

die2 = rand() % 6 + 1;
sum = diel + dieZ;
rollCount++;

}

while (sum != num);

return rollCount;
} 28

More Examples of Value-Returning

Functions

* For more examples refer to text
book page 352

29

Flow of Execution

* Execution always begins at the first statement
in the function main

e Other functions are executed only when
called

* Function prototypes appear before any
function definition
— Compiler translates these first

 Compiler can then correctly translate a
function call

30

Flow of Execution (cont’d.)

 Function call transfers control to the first
statement in the body of the called function

* When the end of a called function is executed,
control is passed back to the point immediately
following the function call

— Function’s returned value replaces the function
call statement

31

Void Functions

* User-defined void functions can be placed
either before or after the function main

* |f user-defined void functions are placed after
the function main

— The function prototype must be placed before the
function main

* Void function does not have a return type

— return statement without any value is typically
used to exit the function early

Void Functions (cont’d.)

* Formal parameters are optional

A call to a void function is a stand-alone
statement

* Void function definition syntax:

void functionName (formal parameter list)

{
}

statements

33

Void Functions (cont’d.)

* Formal parameter list syntax:

* Function call syntax:

functionName (actual parameter list)

e Actual parameter list syntax:
expression or variable, expression or variable, ...

34

Void Functions (cont’d.)

* Value parameter: a formal parameter that
receives a copy of the content of
corresponding actual parameter

* Reference parameter: a formal parameter
that receives the location (memory address
(&)) of the corresponding actual parameter

35

Example 6-8

N Value parameters
Funl:!lnn_._ vold areaAndPerimeter (double length, double width,
heading double& area, double& perimeter)

{
Function body

area = length * width;
perimeter = 2 * (length + width); Reference parameters

FIGURE 6-4 Various parts of the function areahndPerimeter

* For more examples refer to text book page
366

36

Value Parameters

* |f a formal parameter is a value parameter:

— The value of the corresponding actual parameter
is copied into it

— Formal parameter has its own copy of the data
* During program execution

— Formal parameter manipulates the data stored in
Its own memory space

37

Value Parameters Example

volid funcValueParam (int num);
int main()
{
int number = 6; f/Line 1
cout << "Line 2: Before calling the function "
<< "funcValueParam, number = " << number
<< endl; S /Line 2
funcValueParam(number) ; f/Line 3
cout << "Line 4:; After calling the function "
<< "funcValueParam, number = " << number
<< endl; //Line 4

return 0;

38

Value Parameters Example

(cont’d)

volid funcValueParam(int num)

{

cout << "Line 5: In the function funcValueParam,

<< "before changing, num = " << num
<< endl; f/Line 5

num = 15; [/ /Line 6

cout << "Line 7: In the function funcValueParam, "
<< "after changing, num = " << num
<< endl; //Line 7

39

Reference Variables as

Parameters

* |f a formal parameter is a reference
parameter

— |t receives the memory address of the
corresponding actual parameter

* During program execution to manipulate data

— Changes to formal parameter will change the
corresponding actual parameter

40

Reference Variables as Parameters

(cont'd.)

* Reference parameters are useful in three
situations:
— Returning more than one value
— Changing the actual parameter

— When passing the address would save memory
space and time

41

Example 6-12 (Calculate Grade)

 Write a program that takes a course score (a value between O
and 100) and determines a student’s course grade. This program
has three functions: main, getScore, and printGrade, as follows:

* main

— Get the course score.
— Print the course grade.

* getScore
— Prompt the user for the input.
— Get the input.
— Print the course score.

* printGrade

— Calculate the course grade.

— Print the course grade. 25

Example 6-12 (Calculate Grade)

(cont’d)

void getScore (int& score);
void printGrade (int score);

int main()

{

int courseScore;
cout << "Line 1: Based on the course score, ‘\n"
<< " this program computes the "
<< "course grade." << endl;
getScore(courseScore);

printGrade (courseScore);

return 0;

f/Line 1
[/Line 2

f/Line 3

43

Example 6-12 (Calculate Grade)

(cont’d)

void getScore (int& score)
{

cout << "Line 4: Enter course score: "; [//Line 4
cin >> score; //Line 5
cout << endl << "Line 6: Course score is "

<< score << endl; //Line 6

}

void printGrade (int cScore)

{
cout << "Line 7: Your grade for the course is "; //Line 7

if (cScore >= 90) //Line 8
cout << "A." << endl;
else if (cScore >= BO)
cout << "B." << endl;
else if (cScore >= 70)
cout << "C."™ << endl;
else if (cScore >= &0)
cout << "D." << endl;
else
cout << "F."™ << endl;

Value and Reference Parameters and

Memory Allocation

e When a function is called

— Memory for its formal parameters and its local
variables is allocated in the function data area

* For a value parameter, the actual parameter’s
value is copied into the formal parameter’s
memory cell

— Changes to the formal parameter do not affect
the actual parameter’s value

45

Value and Reference Parameters and

Memory Allocation (cont’d.)

* For areference parameter, the actual
parameter’s address passes to the formal
parameter

* Both formal and actual parameters refer to the
same memory location

e During execution, changes made to the formal
parameter’s value permanently change the actual
parameter’s value

46

Example 6-14

void addFirst (int& first, int& second);
void doubleFirst(int one, int two);
void squareFirst(int& ref, int wval);

int main{()
{
int num = 5;

cout << "Line 1: Inside main: num = " << num

<< endl; J//Line 1
addFirst (num, num); //Line 2
cout << "Line 3: Inside main after addFirst:"

<< " pnum = " << num << endl; [/ /Line 3
doubleFirst (num, num); //Line 4
cout << "Line 5: Inside main after "

<< "doubleFirst: num = "™ << num << endl; J//Line 5
squareFirst (num, num); //Line 6
cout << "Line 7: Inside main after "

<< "sgquareFirst: num = " << num << endl; //Line 7

return 0;

Example 6-14 (Cont’d)

void addFirst (int& first, int& second)

{

cout << "Line B: Inside addFirst: first = "

<< first << ", second = " << second << endl; //Line B8

first = first + 2;

cout << "Line 10: Inside addFirst: first =
<< first << ", second = " << second <<

second = second * 2;

cout << "Line 12: Inside addFirst: first =
<< first << ", second = " << second <<

endl ;

endl ;

//Line 9

//Line 10

//Line 11

//fLine 12

48

Example 6-14 (Cont’d)

double larger (double x, double v);
double compareThree (double x, double y, double z);

int main()
{

double one, two; J/Line 1
cout << "Line 2: The larger of 5 and 10 is "

<< larger (5, 10) << endl; f/line 2
cout << "Line 3: Enter two numbers: "; //Line 3
cin »>> one >> two; f/Line 4
cout << endl; J/Line 5

cout << "Line 6: The larger of " << one
<< "™ and " << two << " is "
<< larger (one, two) << endl; f/Line &

49

Example 6-14 (Cont’d)

void squareFirst(int& ref, int wval)
{

cout << "Line 18: Inside squareFirst: ref = "
<< ref << ", val = " << val << endl;
ref = ref * ref;

cout << "Line 20: Inside squareFirst: ref = "
<< ref << ", val = " << wval << endl;

val = val + 2;

cout << "Line 22: Inside squareFirst: ref = "
<< ref << ", val = " << wval << endl;

J /Line

//Line

[/Line

J /Line

[/ [Line

18

19

20

21

22

50

Reference Parameters and Value-

Returning Functions

e Can also use reference parameters in a value-
returning function

— Not recommended

e By definition, a value-returning function
returns a single value via return statement

e |If a function needs to return more than one
value, change it to a void function and use
reference parameters to return the values

51

Scope of an lIdentifier

Scope of an identifier: where in the program
the identifier is accessible

Local identifier: identifiers declared within a
function (or block)

Global identifier: identifiers declared outside
of every function definition

C++ does not allow nested functions

— Definition of one function cannot be included in
the body of another function

52

Scope of an Identifier (cont’d.)

* Rules when an identifier is accessed:

— Global identifiers are accessible by a function or
block if:
* Declared before function definition
* Function name different from identifier
* Parameters to the function have different names
* All local identifiers have different names

53

Scope of an Identifier (cont’d.)

* Rules when an identifier is accessed (cont’d.):

— Nested block

* |dentifier accessible from declaration to end of block in
which it is declared

 Within nested blocks if no identifier with same name
exists

— Scope of function name similar to scope of
identifier declared outside any block
* i.e., function name scope = global variable scope

54

Scope of an Identifier (cont’d.)

 Some compilers initialize global variables to
default values

* Scope resolution operator in C++is : :

* By using the scope resolution operator

— A global variable declared before the definition of

a function (or block) can be accessed by the
function (or block)

— Even if the function (or block) has an identifier
with the same name as the global variable

55

Scope of an Identifier (cont’d.)

* To access a global variable declared after the
definition of a function, the function must not
contain any identifier with the same name

— Reserved word extern indicates that a global
variable has been declared elsewhere

56

Scope of an Identifier Example

const double RATE = 10.50;

int z;

double t;

void one(int x, char y);

void two(int a, int b, char x);

void three(int one, double y, int z);

int maini()

{
int num, first;
double x, ¥, 2;
char name, last;

return 0;

}

vold one(int x, char y)

{

Scope of an Identifier Example

(Cont’d)

int w;

void two(int a, int b, char Xx)

{
int count;

}

void three(int one, double y, int z)

{
char ch;

int a;

[/ /Block four
{

int x;
char a;

} //end Block four

} ' 58

Global Variables, Named

Constants, and Side Effects

* Using global variables causes side effects

* A function that uses global variables is not
independent

 |f more than one function uses the same
global variable:
— Can be difficult to debug problems with it

— Problems caused in one area of the program may
appear to be from another area

 Global named constants have no side effects

59

Global Variables Example

int t;

void funOne (int& a);

int main()

{ t = 15; J//Line 1

cout << "Line 2: In main: £t = " << t << endl; //Line 2

cout << "Line 4: In main after funOne: "
return 0; //Line 5

60

Global Variables Example (cont’d)

void funOne (int& a)

{

cout <<
<<
a =a +
cout <<
o
t=tr +
cout <<
o

"Line 6: In funOne:
" and t = " << t <<

12;
"Line B8: In funOne:
"and t = " << t <<

13;

"Line 10: In funOne:

"and £t = " << t <<

a-ll {{a

endl;

a-ll {{a

endl;

a-
endl;

L 1] {{ a

[/Line
[/Line
[/Line

[[Line

[/Line

10

61

Static and Automatic Variables

* Automatic variable: memory is allocated at
block entry and deallocated at block exit

— By default, variables declared within a block are
automatic variables

e Static variable: memory remains allocated as
long as the program executes

— Global variables declared outside of any block are
static variables

62

Static and Automatic Variables

(cont’d.)

e Can declare a static variable within a block by
using the reserved word static

* Syntax:

static dataType identifier;

e Static variables declared within a block are
local to the block

— Have same scope as any other local identifier in
that block

63

Static and Automatic Variables

Example

void test ()

{
static int x = 0;
int v = 10;

X =x + 2;
y =y + 1;

cout << "Inside test x = " << x << " and y = "
<< y << endl;

int main()

int count:;

for (count = 1; count <= 5; count++)
test();

raturn 0;

Debugging:

Using Drivers and Stubs

* Driver program: separate program used to

test a function

 When results calculated by one function are
needed in another function, use a function
stub

* Function stub: a function that is not fully
coded

65

Function Overloading:

An Introduction

* |n a C++ program, several functions can have
the same name

* Function overloading: creating several
functions with the same name

* Function signature: the name and formal
parameter list of the function

— Does not include the return type of the function

66

Function Overloading (cont’d.)

e Two functions are said to have different
formal parameter lists if both functions have
either:

— A different number of formal parameters

— If the number of formal parameters is the same,
but the data type of the formal parameters differs
in at least one position

e Qverloaded functions must have different
function signatures

67

Function Overloading (cont’d.)

int largerInt(int x, int y);

char largerChar (char first, char second);

double largerDouble(double u, double v);

string largerString(string first, string second);

int larger(int %, int y);

char larger (char first, char second);
double larger(double u, double v);

string larger(string first, string second);

68

Function Overloading (cont’d.)

* The parameter list supplied in a call to an
overloaded function determines which
function is executed

69

Functions with Default

Parameters

* In a function call, the number of actual and
formal parameters must be the same

— C++ relaxes this condition for functions with
default parameters

e Can specify the value of a default parameter
in the function prototype

* |f you do not specify the value for a default
parameter when calling the function, the
default value is used

70

Functions with Default

Parameters (cont’d.)

All default parameters must be the rightmost
parameters of the function

If a default parameter value is not specified:
— You must omit all of the arguments to its right

Default values can be constants, global
variables, or function calls

Cannot assign a constant value as a default
value to a reference parameter

71

Functions with Default

Parameters (cont’d.)

Consider the following function prototype:

void funcExp(int %, int y, double t, char z = 'A', int u = &7,
char v = "G'", double w = 78.34);

Suppose you have the following statements:

int a, b;
char ch;
double d;

The tollowing tunction calls are legal:

1. funcExp(a, b, d);
2. funcExpl(a, 15, 34.6, "B', B7, ch);
3. funcExp(b, a, 14.56, "D");

The tollowing function calls are 1llegal:

1. funcExp(a, 15, 34.6, 46.7);

2. funcExp (b, 25, 48.76, "D', 4567, 78.34); 79

Recursive Function

Recursive Function is the function that call it self
General formula

volid recursion () {
recursion(); /* function calls itself */

}

int main () {
recursion () ;

}

Recursive functions are very useful in solving many
mathematical problems, e.g. calculating the
factorial of a number, generating Fibonacci series

73

Recursive Function (cont’d)

* |ncorrect use of recursive functions might lead to
infinite loop

* To avoid infinite running of recursive function, there
are two properties that a recursive function must
have -

— Base criteria — There must be at least one base criteria or

condition, such that, when this condition is met the
function stops calling itself recursively.

— Progressive approach — The recursive calls should
progress in such a way that each time a recursive call is
made it comes closer to the base criteria.

74

Recursive Function (Number

factorial Example)

int factorial(int 1) {

if(i <= 1)
return 1;
return 1 * factorial(i - 1);
}
int main () {
int 1 = 5;

cout<<"Factorial of "<< 1<<" 1s "< factorial(i);
return 0;

75

Recursive Function (Number

factorial Example)

int fibonacci (int 1) {
1if(1 == 0)
return 0O;
1if(1 == 1)
return 1;
return fibonacci(i-1) + fibonacci(i-2);

int main () {
int 1i;
for (1 = 0; 1 < 10; i++)
{
cout<< fibonacci (1) <<endl;

}

return 0;

76

Recursive Function (is Palindrome

Example)

bool isPalindrome (1nt start, int end, string str) {
if (start - end >= 0)
return true;
if(str[start] != str[end])
return false;
return isPalindrome (start+l,end-1,str);

}

int main () {

string str = "nursesrun";
cout<<isPalindrome (0, str.length()-1,str)<<endl;
str = "abccba";
cout<<isPalindrome (0, str.length()-1,str)<<endl;
str = "abccdba";

cout<<isPalindrome (0, str.length()-1,str)<<endl;

77

Arrays as Parameters to Functions

* Arrays are passed by reference only

* Do not use symbol & when declaring an array
as a formal parameter

* Size of the array is usually omitted
— If provided, it is ignored by the compiler

e Example:

volid funcArrayAsParam(int 1listOnel],
double listTwol[])

78

Arrays as Parameters to Functions

) 4
(cont’d)
vold 1nitialize(int list([], 1nt listSize)

{

int count;

for (count = 0; count < listSize; count++)
list[count] = 0O;

79

Constant Arrays

as Formal Parameters

e Can prevent a function from changing the
actual parameter when passed by reference

— Use const in the declaration of the formal
parameter

 Example:

void example(int x[], const int y[], int sizeX, int sizeY)

80

Constant Arrays

as Formal Parameters Example

void initializeArray(int list[], int listSize)

1
int index;
for (index = 8; index < listSize; index++)
list[index] = 8;
¥

void fillArray(int list[], int listSize)
1

int index;
for (index = 8; index < listSize; index++)
cin »» list[index];

3l

Constant Arrays

as Formal Parameters Example (cont’d)

vold printArray(const int list[], int listSize)

1
int index;
for (index = 8; index < listSize; index++)
cout << list[index] << " ";
¥

int sumArray(const int list[], int listSize)

int index;

int sum = 8;

for (index = 8; index < listSize; index++)
sum = sum + list[index];

return sum;

} 82

Constant Arrays

as Formal Parameters Example

int indexLargestElement(const int list[], int listSize)

1
int index;
int maxIndex = 8;
for (index = 1; index < listSize; index++)
if (list[maxIndex] < list[index])
maxIndex = index;
return maxIndex;
¥

vold copyArray(int 1ist1[], int src, int list2[],
int tar, int numOfElements)

{ for (int index = src; index < src + numOfElements; index++)
i
list2[index] = listl[tar];
tar++;
¥

Functions Cannot Return a Value

of the Type Array

e C++ does not allow functions to return a
value of type array

84

Passing Two-Dimensional Arrays

as Parameters to Functions

 Two-dimensional arrays are passed by
reference as parameters to a function

— Base address is passed to formal parameter

 Two-dimensional arrays are stored in row
order

* When declaring a two-dimensional array as a
formal parameter, can omit size of first
dimension, but not the second

85

Passing Two-Dimensional Arrays as

Parameters to Functions (cont’d)

Suppose we have the following declaration:

const int NUMBER OF ROWS = 6;
const int NUMBER OF COLUMNS = 5;

Consider the following definition of the function printMatrix:

void printMatrix (int matrix[] [NUMBER OF COLUMNS],
int noOfRows)

{

int row, col;
for (row = 0; row < noOfRows; row+t++)

{
for (col = 0; col < NUMBER OF COLUMNS; col++)

cout << setw(5) << matrix[row][col] << " ";

cout << endl;

86

Chapter 8
Arrays and Strings

C++ PROGRAMMING:

* |n this chapter, you will study:
— Arrays

— Searching an Array for a Specific Item
— C-Strings (Character Arrays)

— Parallel Arrays

— Two- and Multidimensional Arrays

Introduction

* Simple data type: variables of these types can
store only one value at a time

e Structured data type: a data type in which
each data item is a collection of other data
items

Array: a collection of a fixed number of
components, all of the same data type

One-dimensional array: components are
arranged in a list form

Syntax for declaring a one-dimensional array:

dataType arrayName[intExpl];

intExp: any constant expression that
evaluates to a positive integer

Example 8-1

e The statement:

int num[5];

* declares an array num of five components.
Each component is of type int. The
components are num[0], num[1] numo
numl[2], num[3], and num[4]. num[1]

num[2]
num[3]

num[4]

Accessing Array Components

* General syntax:

arrayName[indexExp]

* indexExp: called the index

— An expression with a nonnegative integer value

* Value of the index is the position of the item
in the array

* []:array subscripting operator

— Array index always starts at O

Accessing Array Components

(cont’d.)

int 1ist[10];

(o] (1] (2] (3] [4] [5] [e] [7] [8] I[¢9]

FIGURE B-3 Array 1list

list[5] = 34;

[0] [1] [2] [3] [4] [5] (6] (7] [8] (9]

list

FIGURE 8-4 Array 1ist after execution of the statement 1ist[5]= 34;

Accessing Array Components

4
(cont’d.)
list[3] = 10;
list[6] = 35;
list[5] = 1list[3] + list[6];

(0] [1] [2] [3] [4] [5] [6] [7] I[8] (9]
l i g t 1N ~r-

FIGUREB-5 Array 1ist after execution of the statements 11st[3]= 10;, 1ist[6]= 35;, and
list[5] = 1ist[3] + 1list[6];

Processing One-Dimensional

Arrays

* Basic operations on a one-dimensional array:
— Initializing
— Inputting data
— Outputting data stored in an array
— Finding the largest and/or smallest element

* Each operation requires ability to step
through elements of the array

— Easily accomplished by a loop

Processing One-Dimensional

Arrays (cont’d.)

e Given the declaration:
int 1ist[100]; //array of size 100

int 1,

e Usea for Ioop to access array elements:
for (1 = 0; 1 < 100, 1i++) //Line 1
cin >> list[i]; //Line 2

10

Example 8-3

* Write the required code to do the following:

1. Define an array sales of 10 components of
type double.

double sales[10];

* initializes every component of the array
sales t0 0.0

for (int index = 0; i1index < 10; i1ndex++)
sales[index] = 0.0;

11

Example 8-3 (cont’d)

3. Reading data from user into an array:

for (index = 0; 1ndex < 10; i1ndex++)
cin >> sales[index];

4 . Printing an array

for (index = 0; 1ndex < 10; i1ndex++)
cout << sales|[index] << " ",

12

Example 8-3 (cont’d)

5. Finding the sum and average of an array

double sum = 0;
for (index = 0; 1ndex < 10; 1index++)
sum = sum + sales|[index];

double average = sum / 10;

13

Example 8-3 (cont’d)

6. Largest elementin the array:

double maxIndex = 0;
for (index = 1; i1ndex < 10; 1ndex++)
1f (sales[maxIndex] < sales|[i1ndex])
maxIndex = 1ndex;
largestSale = sales[maxIndex];

14

Array Index Out of Bounds

* Index of an array is in bounds if the index is
>=0 and <= ARRAY SIZE-1

— Otherwise, the index is out of bounds

* |[n C++, there is no guard against indices that
are out of bounds

15

Array Initialization During

Declaration

* Arrays can be initialized during declaration
— Values are placed between curly braces

— Size determined by the number of initial values in
the braces

 Example:

double sales|[] = {12.25, 32.50, 16.90,
23, 45.68};

16

Partial Initialization of Arrays

During Declaration

e The statement:
int 1ist[10] = {0};

— Declares an array of 10 components and initializes
all of them to zero

e The statement:
int 1ist[10] = {8, 5, 12};

— Declares an array of 10 components and initializes
list[0] t08,1ist[1]t05,1ist[2] to 12

— All other components are initialized to O

17

Some Restrictions on Array

Processing

 Aggregate operation: any operation that manipulates the

entire array as a single unit is Not allowed on arrays in C++
e Example:

int myList[5] = {0, 4, 8, 12, 16}; //Line 1
int yourList[5]; //Line 2

yourList = myList; //illegal
cin >> yourList; //illegal
e Solution:

for (int index = 0; index < 5; index ++)
yourList[index] = myList[index];
18

Base Address of an Array and

Array in Computer Memory

e Base address of an array: address (memory

location) of the first array component

 Example:

— If 1ist is a one-dimensional array, its base
address is the address of 1ist [0]

* When an array is passed as a parameter, the
base address of the actual array is passed to
the formal parameter

19

Base Address of an Array and

Array in Computer Memory

What 1s the output of Memory
. addresses
the followiling ’//
statements? direcs o
s 1000 -——— .
st 0] 1001 myList [0]
t << LList —_ ﬂg
Ccou myLl1Sty mylist [1] DO 1004 < Address of
I 1005 myList [1]
—
if (mYLlSt <= YOurLiSt) myList [2] D 1008 P.-[IHFESSIIJT
S 1009 myList [2]
{ I 1010
myList [3] S 0} < Addressof
e 1013 myList [3]
¥ I 1014
list 4] o 101t < Addressof
MUSHIAT S 1o myList [4]
I 1018
I 1019
- 20

Other Ways to Declare Arrays

 Examples:

const int NO OF STUDENTS = 20;
int testScores[NO OF STUDENTS];

const int SIZE = 50; //Line 1
typedef double 1ist[SIZE]; //Line 2
list yourList; //Line 3
list myList; //Line 4

21

Searching an Array

for a Specific Item

e Sequential search (or linear search):

— Searching a list for a given item, starting from the
first array element

— Compare each element in the array with value
being searched for

— Continue the search until item is found or no
more data is left in the list

22

Pseudocode for Searching an

Array for a Specific Item

int segSearch{const int list[], int listlLength, int searchItem)
1
int loc = 8;
bool found = false;
while (loc < listlength &% !found)
if (list[leoc] == searchItem)
found = true;
else
loc++;
if (found)
return loc;
else
return -1;

23

Selection Sort

* Selection sort: rearrange the list by selecting
an element and moving it to its proper
position

* Steps:
— Find the smallest element in the unsorted portion
of the list

— Move it to the top of the unsorted portion by
swapping with the element currently there

— Start again with the rest of the list

24

Selection Sort (cont’d.)

list
A [0
"
unsorted
list unsorted
list
A4 [7] smallest v

(a)

FIGURE 8-10 Elements of 1ist during the first iteration

25

Selection Sort (cont’d.)

vold selectionSort(int list[], int length)
1
int index;
int smallestIndex;
int location;
int temp;
for (index = @; index < length - 1; index++)
1
smallestIndex = index;
for (location = index + 1; location < length; location++)
if (list[location] < list[smallestIndex])
smallestIndex = location;

temp = list[smallestIndex];
list[smallestIndex] = list[index];
list[index] = temp;

C-Strings (Character Arrays)

e Character array: an array whose components
are of type char

e C-strings are null-terminated (' \0 ')
character arrays

 Example:
— '"A" is the character A
— "A" is the C-string A

— "A" represents two characters, 'A"' and '\0"

27

C-Strings (Character Arrays)

(cont’d.)

 Example:
char namel[l6];

* Since C-strings are null terminated and name

has 16 components, the largest string it can
store has 15 characters

* |f you store a string whose length is less than
the array size, the last components are
unused

28

C-Strings (Character Arrays)

(cont’d.)

e Size of an array can be omitted if the array is
initialized during declaration

 Example:

char name[] = "John";

— Declares an array of length 5 and stores the C-
string "John" in it

e Useful string manipulation functions

— strcpy, strcmp, and strlen

29

C-Strings (Character Arrays)

(cont’d.)

TABLE 8-1 strcpy, stremp, and strlen Functions

Function Effect

Copies the string =2 Into the string variable =1

strecpy(sl, s2)
The length of 51 should be at least as large as s2

Returns avalue< 0 If =1 I1s less than =2
strcmp(sl, s2) Returns 0 If =1 and =2 are the same

Returns a value > 0 if s1 is greater than s2

Returns the length of the string s, excluding the null

strlen(s) character

30

String Comparison

* C-strings are compared character by character
using the collating sequence of the system
— Use the function strcmp

* |f using the ASCII character set:
— "Air" < "Boat"
— "Air" < "An"
— "Bill" < "Billy"
— "Hello" < "hello"

31

String Comparison Example

Suppose you have the following statements:

char studentName[21];
char myname[l6];
char yourname[l6];

The following statements shjpw how string funcoons work:

Statement Effect
strcpy (myname, "John Robinson"); myname = "John Robinson"
strlen("John Robinson"™); Returns 13, the length of the string

"John Robinson"

32

String Comparison Example

int len;

(cont’d)

len = strlen("Sunny Day");

strepy (yourname, "Lisa Miller");
strcpy (studentName, yourname);

stremp ("Bill",

II‘LiBaII‘] ;

strcpy (yourname, "Kathy Brown");

strcpy (myname,
stremp (myname,

"Mark G. Clark");
yourname) ;

Stores 9 into len

yourname = "Lisa Miller"
studentName="LisaMiller"

Returns avalue < 0

yourname = "Kathy Brown"
myname = "Mark G. Clark"
Returns avalue > 0

33

Reading and Writing Strings

* Most rules for arrays also apply to C-strings
(which are character arrays)

* Aggregate operations, such as assignment and
comparison, are not allowed on arrays

 C++ does allow aggregate operations for the
input and output of C-strings

34

 Example:

cin >> name;

— Stores the next input C-string into name
* To read strings with blanks, use get function:

cin.get(str, mtl);

— Stores the next m characters into str but the
newline character is not stored in str

— If input string has fewer than m characters, reading
stops at the newline character

35

String Output

 Example:
cout << name;
— Outputs the content of name on the screen

— << continues to write the contents of name until it
finds the null character

— If name does not contain the null character, then
strange output may occur

e << continues to output data from memory adjacent to
name untila '\0"' is found

36

Parallel Arrays

 Two (or more) arrays are called parallel if their
corresponding components hold related

information

 Example: 23456 A
int studentId[50]; ggg%g E
char courseGrade[50]; 927733 B

11892 D

37

Two- and Multidimensional Arrays

e Two-dimensional array: collection of a fixed

number of components (of the same type)
arranged in two dimensions

— Sometimes called matrices or tables
* Declaration syntax:

dataType arrayName[intExpl][intExp2];

— intExpl and intExp2 are expressions with

positive integer values specifying the number of
rows and columns in the array

38

Accessing Array Components

e Accessing components in a two-dimensional
array:

arrayName[indexExpl][indexExp2]

— Where indexExpl and indexExp2 are
expressions with positive integer values, and
specify the row and column position

 Example:
sales[5][3] = 25.75;

39

Accessing Array Components
(cont’d.)

sales [5] [3]

FIGURE B-14 sales[5][3]

Two-Dimensional Array

Initialization During Declaration

 Two-dimensional arrays can be initialized
when they are declared:

— Elements of each row are enclosed within braces
and separated by commas

— All rows are enclosed within braces

— For number arrays, unspecified elements are set
to0

41

Two-Dimensional Array

Initialization During Declaration

int board[4]1[3]1 = {{2, 3, 1},
{15, 25, 13},
{20, 4, 7},
{11, 18, 14}};

board

0 1]
(0]
(1]
2] I

2]
3]

42

Processing Two-Dimensional

Arrays

 Ways to process a two-dimensional array:
— Process entire array
— Row processing: process a single row at a time

— Column processing: process a single column at a
time

e Each row and each column of a two-
dimensional array is a one-dimensional array

— To process, use algorithms similar to processing
one-dimensional arrays

43

Initialization

Examples:

— To initialize row number 4 (fifth row) to O:

row = 4;
for (col = 0; col < NUMBER OF COLUMNS; col++)
matrix[row][col] = 0;

— To initialize the entire matrix to O:

for (row = 0; row < NUMBER OF ROWS; row++)
for (col = 0; col < NUMBER.OF _COLUMNS; col++)
matrix[row][col] = 0;

44

* Use a nested loop to output the components

of a two dimensional array:
for (row = 0; row < NUMBER OF ROWS; row++)
{

for (col = 0; col < NUMBER OF COLUMNS; col++)
cout << setw(b) << matrix[row][col] << " ";

cout << endl;

45

Examples:

— To input into row number 4 (fifth row):
row = 4;
for (col = 0; col < NUMBER OF COLUMNS; col++)
cin >> matrix[row][col];
— To input data into each component of matrix:
for (row = 0; row < NUMBER OF ROWS; row++)

for (col = 0; col < NUMBER.OF _COLUMNS; col++)
cin >> matrlx[row][col]r

46

Sum by Row

 Example:

— To find the sum of row number 4:

sum 0;
row 4;

for (col = 0; col < NUMBER OF COLUMNS; col++)
sum = sum + matrix[row][col];

47

Sum by Column

 Example:
— To find the sum of each individual column:

//Sum of each individual column
for (col = 0; col < NUMBER OF COLUMNS; col++)

{
sum = 0;
for (row = 0; row < NUMBER OF ROWS; row++)
sum = sum + matrix[row][col];

cout << "Sum of column " << col + 1 << " = " << sum
<< endl;

48

Largest Element in Each Row

and Each Column

 Example:

— To find the largest element in each row:

//Largest element in each row
for (row = 0; row < NUMBER OF ROWS; row++)
{
largest = matrix[row][0]; //Assume that the first element

//of the row is the largest.
for (col = 1; col < NUMBER OF COLUMNS; col++)
if (largest < matrix[row][col])
largest = matrix[row][col];

cout << "The largest element in row " << row + 1 << " ="
<< largest << endl;

49

Arrays of Strings

e Strings in C++ can be manipulated using either
the data type string or character arrays (C-
strings)

* On some compilers, the data type string

may not be available in Standard C++ (i.e.,
non-ANSI/ISO Standard C++)

50

Arrays of Strings and the

string Type
* To declare an array of 100 components of
type string:
string 1list[100];
e Basic operations, such as assignment,

comparison, and input/output, can be
performed on values of the string type

* The datain 1ist can be processed just like
any one-dimensional array

51

Arrays of Strings and C-Strings

(Character Arrays)

char 1list[100][16];
strcpy(list[1l], "Snow White");

list
ist(o] [HHHNEEENEENEEEN
istt1] |51 1l el G I R IR e O D

isti2) NN
sl | | [

isti40] I HHHEEEEEEEEEEEEN
el [| | [[[T

gl [(| [[[L[]
ist99] I HIENEEEEEEEEEEER

52

Arrays of Strings and C-Strings

(Character Arrays)

* The following for loop is used to read and
store string in each row:
for (j = 0; jJ < 100; J++)
cin.get(list[j], 16);
* The following for loop outputs the string in
each row:
for (3 = 0; j < 100; J++)
cout << 1list[]j] << endl;

53

