
Chapter 1:
An Overview of Computers and

Programming Languages

Outlines

• In this chapter, you will study:

– Processing a C++ Program

– Programming with the Problem Analysis–Coding–
Execution Cycle

2

Introduction

• Without software, the computer is useless

• Software is developed with programming languages

– C++ is a programming language

• C++ suited for a wide variety of programming tasks

3

Processing a C++ Program

#include <iostream>

using namespace std;

int main()

{

cout << "My first C++ program." << endl;

return 0;

}

Sample Run:
My first C++ program.

4

Processing a C++ Program (cont’d.)

5

Processing a C++ Program (cont’d.)

• To execute a C++ program:
– Use an editor to create a source program in C++

– Preprocessor directives begin with # and are processed by
the preprocessor

– Use the compiler to:
• Check that the program obeys the language rules

• Translate into machine language (object program)

6

Processing a C++ Program (cont’d.)

• To execute a C++ program (cont'd.):

– Linker:
• Combines object program with other programs provided by the

SDK to create executable code

• Library: contains prewritten code you can use

– Loader:
• Loads executable program into main memory

– The last step is to execute the program

• Some IDEs do all this with a Build or Rebuild
command

7

Programming with the Problem
Analysis–Coding–Execution Cycle

• Algorithm:

– Step-by-step problem-solving
process

– Solution achieved in finite
amount of time

• Programming is a process of
problem solving

8

The Problem Analysis–Coding–
Execution Cycle (cont’d.)

• Step 1: Analyze the problem

– Thoroughly understand the problem and all requirements
• Does program require user interaction?

• Does program manipulate data?

• What is the output?

– If the problem is complex, divide it into subproblems

• Analyze and design algorithms for each subproblem

– Check the correctness of algorithm

• Can test using sample data

• Some mathematical analysis might be required

9

The Problem Analysis–Coding–
Execution Cycle (cont’d.)

• Step 2: Implement the algorithm

– Implement the algorithm in code

– Verify that the algorithm works

– Once the algorithm is designed and correctness verified,
Write the equivalent code in high-level language

– Enter the program using text editor

10

The Problem Analysis–Coding–
Execution Cycle (cont’d.)

• Step 3: Maintenance

– Use and modify the program if the problem domain
changes

– Run code through compiler

– If compiler generates errors
• Look at code and remove errors

• Run code again through compiler

– If there are no syntax errors
• Compiler generates equivalent machine code

– Linker links machine code with system resources

11

The Problem Analysis–Coding–
Execution Cycle (cont’d.)

• Once compiled and linked, loader can place program
into main memory for execution

• The final step is to execute the program

• Compiler guarantees that the program follows the
rules of the language

– Does not guarantee that the program will run correctly

12

Example 1-1

• Design an algorithm to find the perimeter and area
of a rectangle

• The perimeter and area of the rectangle are given by
the following formulas:

perimeter = 2 * (length + width)

area = length * width

13

Example 1-1 (cont’d.)

• Algorithm:

– Get length of the rectangle

– Get width of the rectangle

– Find the perimeter using the following equation:

perimeter = 2 * (length + width)

– Find the area using the following equation:

area = length * width

14

Example 1-3

• Design an algorithm to calculates the monthly
paycheck of a salesperson at a local department
store.
payCheck = baseSalary + bonus + additionalBonus

• Data:

– base salary

– The number of years that the salesperson has been with
the company

– The total sales made by the salesperson for that month

15

Example 1-3 (cont’d.)

• Suppose noOfServiceYears denotes the number of years that
the salesperson has been with the store

• Suppose bonus denotes the bonus.

• Algorithm to calculate the bonus
if (noOfServiceYears is less than or equal to five)

bonus = 10 * noOfServiceYears

otherwise

bonus = 20 * noOfServiceYears

16

Example 1-3 (cont’d.)

• Suppose totalSales denotes the total sales made by the
salesperson for the month

• Suppose additionalBonus denotes the additional bonus.

• Algorithm to calculate additional bonus
if (totalSales is less than 5000)

additionalBonus = 0

otherwise

if (totalSales is greater than or equal to 5000 and

totalSales is less than 10000)

additionalBonus = totalSales (0.03)

otherwise

additionalBonus = totalSales (0.06)

17

Example 1-3 (cont’d.)

• The algorithm to calculate a salesperson’s monthly
paycheck:

1. Get baseSalary.

2. Get noOfServiceYears.

3. Calculate bonus using calculate bonus algorithm

4. Get totalSales.

5. Calculate additionalBonus using the algorithm to
calculate additional bonus

6. Calculate payCheck using the equation:

payCheck = baseSalary + bonus + additionalBonus

18

Example 1-5

• Calculate each student’s grade

– 10 students in a class; each student has taken five tests;
each test is worth 100 points

• Design algorithms to:

– Calculate the grade for each student and class average

– Find the average test score

– Determine the grade

• Data: students’ names; test scores

19

Example 1-5 (cont’d.)

• Algorithm to determine the average test score:

– Get the five test scores

– Add the five test scores
• Suppose sum stands for the sum of the test scores

– Suppose average stands for the average test score:
• average = sum / 5;

20

Example 1-5 (cont’d.)

• Algorithm to determine the grade:
if average is greater than or equal to 90

grade = A

otherwise

if average is greater than or equal to 80 and less than 90

grade = B

otherwise

if average is greater than or equal to 70 and less than 80

grade = C

otherwise

if average is greater than or equal to 60 and less than 70

grade = D

otherwise

grade = F

21

Example 1-5 (cont’d.)

• Main algorithm is as follows:
– totalAverage = 0;

– Repeat the following for each student:
• Get student’s name

• Use the algorithm to find the average test score

• Use the algorithm to find the grade

• Update totalAverage by adding current student’s average test
score

– Determine the class average as follows:
• classAverage = totalAverage / 10

22

23

Refer to text book and read
examples 1-2, and 1-4

Compiling C++ Code

Self Study Slides

Some examples on C++ IDEs

• Online IDEs

– https://www.codechef.com/ide

– https://www.onlinegdb.com/

– https://www.jdoodle.com/online-compiler-c++

• Offline IDEs

– Microsoft visual studio (will be explained in this slides)

– Eclipse

– Code::Blocks

– CodeLite

https://www.codechef.com/ide
https://www.onlinegdb.com/
https://www.jdoodle.com/online-compiler-c

Microsoft visual studio 2015 home
screen

Before you create your first C++ project in Visual Studio, you
need to install Visual C++ 2015 Tools for Windows Desktop:

To create your HelloWorld project => File ->new-
>project, you can choose the Win32 Console Application

template, Name your project and click “ok”

When this window appears click next

Choose Empty project and click
finish

From solution explorer window, right click on
source files and choose to add new item as follows

Select C++ File, give it a name and
click add

Write your code in the .cpp file and click
on the green triangle to run your program

This window will appear

Chapter 2:
Basic Elements of C++

Outlines

• In this chapter, you will study:
– A Quick Look at a C++ Program
– The Basics of a C++ Program (comments, Special Symbols, Keywords and

identifiers)
– Data Types
– Data Types and Variables
– Arithmetic Operators, Operator Precedence, and Expressions
– Type Conversion (Casting)
– string Type
– Variables, Assignment Statements, and Input Statements
– Increment and Decrement Operators
– Output statements
– Preprocessor Directives
– Creating a C++ Program
– Debugging: Understanding and Fixing Syntax Errors
– Program Style and Form

2

Introduction

• Computer program

– Sequence of statements whose objective is to accomplish
a task

• Programming

– Process of planning and creating a program

• Real-world analogy: a recipe for cooking

3

First C++ Program

4

Comments

• Comments are for the reader, not the compiler

• Two types:
– Single line: begin with //

// This is a C++ program.

// Welcome to C++ Programming.

– Multiple line: enclosed between /* and */
/*

You can include comments that can

occupy several lines.

*/

5

Preprocessor Directives

• C++ has a small number of operations

• Many functions and symbols needed to run a C++
program are provided as collection of libraries

• Every library has a name and is referred to by a
header file

• Preprocessor directives are commands supplied to
the preprocessor program

• All preprocessor commands begin with #

• No semicolon at the end of these commands

6

Preprocessor Directives (cont’d.)

• Syntax to include a header file:

• For example:

#include <iostream>

– Causes the preprocessor to include the header file
iostream in the program

• Preprocessor commands are processed before the
program goes through the compiler

7

namespace and Using cin and
cout in a Program

• cin and cout are declared in the header file
iostream, but within std namespace

• To use cin and cout in a program, use the
following two statements:

#include <iostream>

using namespace std;

8

Main Function

• A C++ program is a collection of functions, one of
which is the function main

• The first line of the function main is called the
heading of the function:
– int main()

• The statements enclosed between the curly braces
{ and } form the body of the function

• The program execution starts from the main
function

9

Output

• The syntax of cout and << is:

– Called an output statement

• The stream insertion operator is <<

• Expression evaluated and its value is printed at the
current cursor position on the screen

10

Output (cont’d.)

• A manipulator is used to format the output
– Example: endl causes insertion point to move to

beginning of next line

11

Output (cont’d.)

• The new line character is '\n'
– May appear anywhere in the string

cout << "Hello there.";

cout << "My name is James.";

Output:

Hello there.My name is James.

cout << "Hello there.\n";

cout << "My name is James.";

Output :

Hello there.

My name is James.

12

Output (cont’d.)

13

Output(cont’d) - Example

14

Special Symbols

• Token: the smallest individual unit of a program
written in any language

• C++ tokens include special symbols, Keywords, and
identifiers.

• Special symbols in C++ include:
– Punctuators(e.g. [] () {} , ; : * #).

– Operators(arithmetical operators, Relational operators, Logical
operators, Unary operators, Assignment operators, Conditional
operators, Comma operator).

15

Reserved Words (Keywords)

• Reserved word symbols (or keywords):

– Cannot be redefined within program

– Cannot be used for anything other than their intended use

Examples:
– int

– float

– double

– char

– const

– void

– return

16

Whitespaces

• Every C++ program contains whitespaces

– Include blanks, tabs, and newline characters

• Used to separate special symbols, reserved words,
and identifiers

• Proper utilization of whitespaces is important

– Can be used to make the program more readable

17

Identifiers

• Identifier: the name of something [such as variables,
type, template, class ,or function] that appears in a
program[]

– Consists of letters, digits, and the underscore character (_)

– Must begin with a letter or underscore

• C++ is case sensitive

– NUMBER is not the same as number

• Two predefined identifiers are cout and cin

• Unlike reserved words, predefined identifiers may be
redefined, but it is not a good idea

18

Identifiers (cont'd.)

• Identifier restrictions:
– Do not use C++ keywords.
– Never start your identifier with a digit (number) always start it with

alphabet or underscore.
– Do not use white spaces, use underscores instead.
– Do not use special symbols such as #, $,+,=,-,! etc.

• Legal identifiers in C++: first, conversion ,payrate,
counter1

19

Data Types

• Data type: set of values together with a set of
operations

• C++ data types fall into three categories:

– Simple data type

– Structured data type

– Pointers

20

Simple Data Types

• Three categories of simple data

– Integral: integers (numbers without a decimal)
• Can be further categorized:

– char, short, int, long, bool, unsigned char,

unsigned short, unsigned int, unsigned long

– Floating-point: decimal numbers

– Enumeration type: user-defined data type

21

Simple Data Types (cont’d.)

• Different compilers may allow different ranges of
values

22

int Data Type

• Examples:
-6728

0

78

+763

• Cannot use a comma within an integer

– Commas are only used for separating items in a list

23

bool Data Type

• bool type

– Two values: true and false

– Manipulate logical (Boolean) expressions

• true and false

– Logical values

• bool, true, and false

– Reserved word

– Any none zero value is considered as true.
• bool x = -5; // x is true

• bool y = 10; // y is true

• bool w = 0; // w is false
24

char Data Type

• The smallest integral data type

• Used for single characters: letters, digits, and special
symbols

• Each character is enclosed in single quotes
– 'A', 'a', '0', '*', '+', '$', '&'

• A blank space is a character
– Written ' ', with a space left between the single quotes

25

char Data Type (cont’d.)

• Different character data sets exist

• ASCII: American Standard Code for Information
Interchange

– Each of 128 values in ASCII code set represents a different
character

– Characters have a predefined ordering based on the ASCII
numeric value

• Collating sequence: ordering of characters based on
the character set code

26

ASCII Table

27

Floating-Point Data Types

• C++ uses scientific notation to represent real
numbers (floating-point notation)

28

Floating-Point Data Types (cont’d.)

• float: represents any real number

– Range: -3.4E+38 to 3.4E+38 (four bytes)

• double: represents any real number

– Range: -1.7E+308 to 1.7E+308 (eight bytes)

• Minimum and maximum values of data types are
system dependent

29

Floating-Point Data Types (cont’d.)

• Maximum number of significant digits (decimal
places) for float values: 6 or 7

• Maximum number of significant digits for double:
15

• Precision: maximum number of significant digits

– Float values are called single precision

– Double values are called double precision

30

Variables

• Variable: memory location whose content may
change during execution

• Data must be loaded into main memory before it can
be manipulated

• Storing data in memory is a two-step process:

– Instruct computer to allocate memory (define a variable)

– Include statements to put data into memory (set its value)

31

Variables (cont’d.)

• To declare a variable, must specify the data type it will store
– determines the size and layout of the variable's memory

– The range of values that can be stored within that memory

– The set of operations that can be applied to the variable.

• Syntax to declare a variable:

32

Putting Data into Variables

• Ways to place data into a variable:

– Use C++’s assignment statement

– Use input (read) statements

33

Assignment Statement

• The assignment statement takes the form:

• Expression is evaluated and its value is assigned to
the variable on the left side

• A variable is said to be initialized the first time a
value is placed into it

• In C++, = is called the assignment operator

34

Assignment Statement (cont’d.)

35

Assignment Statement (cont’d.)

36

Declaring & Initializing Variables

• Not all types of variables are initialized automatically

• Variables can be initialized when declared:
int first=13, second=10;

char ch=' ';

double x=12.6;

• All variables must be initialized before they are used

– But not necessarily during declaration

37

Allocating Memory with Constants
and Variables

• Named constant: memory location whose content can’t
change during execution

• Syntax to declare a named constant:

• In C++, const is a reserved word

38

A C++ Program (cont’d.)

39

A C++ Program (cont’d.)

40

A C++ Program (cont’d.)

• Sample run:

41

Input (Read) Statement

• cin is used with >> to gather input

• This is called an input (read) statement

• The stream extraction operator is >>

• For example, if miles is a double variable

cin >> miles;

– Causes computer to get a value of type double and
places it in the variable miles

42

Input (Read) Statement (cont’d.)

• Using more than one variable in cin allows more
than one value to be read at a time

• Example: if feet and inches are variables of type
int, this statement:

cin >> feet >> inches;

– Inputs two integers from the keyboard

– Places them in variables feet and inches respectively

43

Example 2- 18

44

Arithmetic Operators, Operator
Precedence, and Expressions

• C++ arithmetic operators:

– + addition

– - subtraction

– * multiplication

– / division

– % modulus (or remainder) operator

• +, -, *, and / can be used with integral and floating-
point data types

• Use % only with integral data types

45

Arithmetic Operators, Operator
Precedence, and Expressions (cont’d.)

46

Arithmetic Operators, Operator
Precedence, and Expressions (cont’d.)

47

Arithmetic Operators, Operator
Precedence, and Expressions (cont’d.)
• When you use / with integral data types, the integral result is

truncated (no rounding).(5/2 = 2)

• When you use / with floating-point data types returns a
floating point value[i.e. the fraction is kept] For example, 5.0 /
2 = 2.5, 5 / 2.0 = 2.5, and 5.0 / 2.0 = 2.5.

• Arithmetic expressions: contain values and arithmetic
operators

• Operands: the number of values on which the operators will
work

• Operators can be unary (one operand) or binary (two
operands)

48

Order of Precedence

• All operations inside of () are evaluated first

• *, /, and % are at the same level of precedence and
are evaluated next

• + and – have the same level of precedence and are
evaluated last

• When operators are on the same level
– Performed from left to right (associativity)

• 3 * 7 - 6 + 2 * 5 / 4 + 6 means
(((3 * 7) – 6) + ((2 * 5) / 4)) + 6

49

Expressions

• Integral expression: all operands are integers

– Yields an integral result

– Example: 2 + 3 * 5

• Floating-point expression: all operands are floating-
point

– Yields a floating-point result

– Example: 12.8 * 17.5 - 34.50

50

Mixed Expressions

• Mixed expression:

– Has operands of different data types

– Contains integers and floating-point

• Examples of mixed expressions:
2 + 3.5

6 / 4 + 3.9

5.4 * 2 – 13.6 + 18 / 2

13.0 / 2 + 1

• Remember that % (modulus which finds the remainder) is
applied for integer values only. So, 9%4 = 1, but 9%2.5 →
Syntax Error.

51

Mixed Expressions (cont’d.)

• Evaluation rules:

– If operator has same types of operands
• Evaluated according to the type of the operands

– If operator has both types of operands
• Integer is changed to floating-point

• Operator is evaluated

• Result is floating-point

– Entire expression is evaluated according to precedence
rules

52

Saving and Using the Value of an
Expression

• To save the value of an expression:

– Declare a variable of the appropriate data type

– Assign the value of the expression to the variable that was
declared
• Use the assignment statement

• Wherever the value of the expression is needed, use
the variable holding the value

53

Saving and Using the Value of an
Expression (cont’d)

54

Type Conversion (Casting)

• Implicit type conversion: when value of one type is
automatically changed to another type temporarily
[done by the compiler]

• Examples:
bool value1 = 10; // the compiler will
implicitly convert 10 to true

int value2 =-13.7; // the compiler will
implicitly convert -13.7 into -13.

• Cast operator: provides explicit type conversion
[coded explicitly by the programmer]
static_cast<dataTypeName>(expression)

55

Type Conversion (cont’d.)

56

Increment and Decrement
Operators

• Increment operator: increase variable by 1
– Pre-increment: ++variable

– Post-increment: variable++

• Decrement operator: decrease variable by 1
– Pre-decrement: --variable

– Post-decrement: variable—

• What is the difference between the following?

x = 5;

y = ++x;

x = 5;

y = x++;

57

Increment and Decrement
Operators Example 2-20

58

string Type

• Programmer-defined type supplied in ANSI/ISO
Standard C++ library

• Sequence of zero or more characters enclosed in
double quotation marks

• Null (or empty): a string with no characters

• Each character has a relative position in the string

– Position of first character is 0

• Length of a string is number of characters in it
– Example: length of "William Jacob" is 13

– Position of character ‘W’ is 0

– Position of character ‘J’ is 8
59

Using the string Data Type in a
Program

• To use the string type, you need to access its
definition from the header file string

• Include the following preprocessor directive:

#include <string>

60

Input the string Type

• An input stream variable (cin) and >> operator can
read a string into a variable of the data type string

• Extraction operator

– Skips any leading whitespace characters

– Reading stops at a whitespace character

• The function getline

– Reads until end of the current line

• How To print the content of a string variable?

61

Input the string Type (Cont’d)

string name;

cin >> name; //ahmad ali

//the value stored in name is ahmad only

string name;

getline(cin,name); //ahmad ali

//the value stored in name is ahmad ali

62

Output the string Type

• Example:

cout << name;

– Outputs the content of name on the screen

– << continues to write the contents of name until it finds
the null character

– If name does not contain the null character, then strange
output may occur
• << continues to output data from memory adjacent to name until

a '\0' is found

63

Creating a C++ Program

• C++ program has two parts:

– Preprocessor directives

– The program

• Preprocessor directives and program statements
constitute C++ source code (.cpp)

• Compiler generates object code (.obj)

• Executable code is produced and saved in a file with
the file extension .exe

64

Creating a C++ Program (cont’d.)

• A C++ program contains two types of statements:

– Declaration statements: declare things, such as variables

– Executable statements: perform calculations, manipulate
data, create output, accept input, etc.

65

The Basics of a C++ Program

• Function (or subprogram): collection of statements;
when executed, accomplishes something

– May be predefined or standard

• Syntax rules: rules that specify which statements
(instructions) are legal or valid

• Semantic rules: determine the meaning of the
instructions Programming language: a set of rules,
symbols, and special words

66

Debugging: Understanding and Fixing
Syntax Errors

• Compile a program

– Compiler will identify the syntax errors

– Specifies the line numbers where the errors occur

Example2_Syntax_Errors.cpp

c:\chapter 2 source

code\example2_syntax_errors.cpp(9) : error

C2146: syntax error :

missing ';' before identifier 'num'

c:\chapter 2 source

code\example2_syntax_errors.cpp(11) : error

C2065: 'tempNum' :

undeclared identifier

67

Syntax

• Syntax rules: indicate what is legal and what is not
legal

• Errors in syntax are found in compilation
int x; //Line 1

int y //Line 2: error

double z; //Line 3

y = w + x; //Line 4: error

68

Use of Blanks

• In C++, you use one or more blanks to separate
numbers when data is input

• Blanks are also used to separate reserved words and
identifiers from each other and from other symbols

• Blanks must never appear within a reserved word or
identifier

69

Use of Semicolons, Brackets, and
Commas

• All C++ statements end with a semicolon

– Also called a statement terminator

• { and } are not C++ statements

– Can be regarded as delimiters

• Commas separate items in a list

70

Semantics

• Semantics: set of rules that gives meaning to a
language

– Possible to remove all syntax errors in a program and still
not have it run

– Even if it runs, it may still not do what you meant it to do

• Ex: 2 + 3 * 5 and (2 + 3) * 5

are both syntactically correct expressions, but have
different meanings

71

Naming Identifiers

• Identifiers can be self-documenting:
– CENTIMETERS_PER_INCH

• Avoid run-together words :
– annualsale

– Solution:
• Capitalizing the beginning of each new word: annualSale

• Inserting an underscore just before a new word: annual_sale

72

Prompt Lines

• Prompt lines: executable statements that inform the
user what to do

cout << "Please enter a number between 1 and 10 and "

<< "press the return key" << endl;

cin >> num;

• Always include prompt lines when input is needed
from users

73

Documentation

• A well-documented program is easier to understand
and modify

• You use comments to document programs

• Comments should appear in a program to:

– Explain the purpose of the program

– Identify who wrote it

– Explain the purpose of particular statements

74

Form and Style

• Consider two ways of declaring variables:

– Method 1

int feet, inch;

double x, y;

– Method 2

int feet,inch;double x,y;

• Both are correct; however, the second is hard to read

75

Chapter 3:
Input/ Output

Outline

• In this chapter, you will study:

– I/O Streams and Standard I/O Devices

– Input Failure

– Using Predefined Functions in a Program

2

I/O Streams and Standard I/O
Devices

• I/O: sequence of bytes (stream of bytes) from source
to destination

– Bytes are usually characters, unless program requires
other types of information

– Stream: sequence of characters from source to destination

– Input stream: sequence of characters from an input device
to the computer

– Output stream: sequence of characters from the computer
to an output device

3

I/O Streams and Standard I/O Devices
(cont’d.)

• Use iostream header file to receive data from
keyboard and send output to the screen

– Contains definitions of two data types:
• istream: input stream

• ostream: output stream

– Has two variables:
• cin: stands for common input

• cout: stands for common output

4

I/O Streams and Standard I/O Devices
(cont’d.)

• Variable declaration is similar to:
– istream cin;

– ostream cout;

• To use cin and cout, the preprocessor directive
#include <iostream> must be used

• Input stream variables: type istream

• Output stream variables: type ostream

5

cin and the Extraction Operator
>>

• The syntax of an input statement using cin and the
extraction operator >> is:

• The extraction operator >> is binary

– Left-side operand is an input stream variable
• Example: cin

– Right-side operand is a variable

6

cin and the Extraction Operator >>
(cont’d.)

• No difference between a single cin with multiple
variables and multiple cin statements with one
variable

• When scanning, >> skips all whitespace

– Blanks and certain nonprintable characters

• >> distinguishes between character 2 and number 2
by the right-side operand of >>

– If type char or int (or double), the 2 is treated as a
character or as a number 2

7

cin and the Extraction Operator >>
(cont’d.)

• Entering a char value into an int or double
variable causes serious errors, called input failure

8

cin and the Extraction Operator >>
(cont’d.)

• When reading data into a char variable

– >> skips leading whitespace, finds and stores only the next
character

– Reading stops after a single character

• To read data into an int or double variable

– >> skips leading whitespace, reads + or - sign (if any),
reads the digits (including decimal)

– Reading stops on whitespace non-digit character

9

10

cin and the Extraction Operator >>
(cont’d.)

cin and the Extraction Operator >>
(cont’d.)

11

cin and the Extraction Operator >>
(cont’d.)

12

Input Failure

• Things can go wrong during execution

• If input data does not match corresponding
variables, program may run into problems

• Trying to read a letter into an int or double
variable will result in an input failure

• If an error occurs when reading data

– Input stream enters the fail state

13
C++ Programming: From Problem Analysis to Program Design, Sixth Edition

Input Failure (cont’d)

14
C++ Programming: From Problem Analysis to Program Design, Sixth Edition

Input Failure (cont’d)

15
C++ Programming: From Problem Analysis to Program Design, Sixth Edition

Using Predefined Functions in a
Program

• Function (subprogram): set of instructions

– When activated, it accomplishes a task

• main executes when a program is run

• Other functions execute only when called

• C++ includes a wealth of functions

– Predefined functions are organized as a collection of
libraries called header files

16

Using Predefined Functions in a
Program (cont’d.)

• Header file may contain several functions

• To use a predefined function, you need the name of
the appropriate header file

– You also need to know:
• Function name

• Number of parameters required

• Type of each parameter

• What the function is going to do

17

Using Predefined Functions in a
Program (cont’d.)

• To use pow (power), include cmath

– Two numeric parameters

– Syntax: pow(x,y) = xy

• x and y are the arguments or parameters

– In pow(2,3), the parameters are 2 and 3

18

Using Predefined Functions in a
Program (cont’d.)

19

Using Predefined Functions in a
Program (cont’d.)

20

Chapter 4:
Control Structures I (Selection)

Outline

• In this chapter, you will study :

– Control Structures

– Relational Operators

– Relational Operators and the string Type

– Logical (Boolean) Operators and Logical Expressions

– Selection: if and if...else

– switch Structures

2

Control Structures

• A computer can proceed:

– In sequence

– Selectively (branch): making a choice

– Repetitively (iteratively): looping

– By calling a function

• Two most common control structures:

– Selection

– Repetition

3

Control Structures (cont’d.)

4

Relational Operators

• Conditional statements: only executed if certain
conditions are met

• Condition: represented by a logical (Boolean)
expression that evaluates to a logical (Boolean) value
of true or false

• Relational operators:

– Allow comparisons

– Require two operands (binary)

– Evaluate to true or false

5

Relational Operators (cont’d.)

6

Relational Operators and Simple
Data Types

• Relational operators can be used with all three
simple data types:

7

Comparing Characters

• Expression of char values with relational operators

– Result depends on machine’s collating sequence

– ASCII character set

• Logical (Boolean) expressions
– Expressions such as 4 < 6 and 'R' > 'T’

– Returns an integer value of 1 if the logical expression
evaluates to true

– Returns an integer value of 0 otherwise

8

Relational Operators and the
string Type

• Relational operators can be applied to strings

– Strings are compared character by character, starting with
the first character

– Comparison continues until either a mismatch is found or
all characters are found equal

– If two strings of different lengths are compared and the
comparison is equal to the last character of the shorter
string
• The shorter string is less than the larger string

9

Relational Operators and the
string Type (cont’d.)

• Suppose we have the following declarations:
string str1 = "Hello";

string str2 = "Hi";

string str3 = "Air";

string str4 = "Bill";

string str4 = "Big";

10

Relational Operators and the
string Type (cont’d.)

11

Relational Operators and the
string Type (cont’d.)

12

Relational Operators and the
string Type (cont’d.)

13

Logical (Boolean) Operators and
Logical Expressions

• Logical (Boolean) operators: enable you to combine
logical expressions

14

Logical (Boolean) Operators and
Logical Expressions (cont’d.)

15

Logical (Boolean) Operators and
Logical Expressions (cont’d.)

16

Logical (Boolean) Operators and
Logical Expressions (cont’d.)

17

Order of Precedence

• Relational and logical operators are evaluated from
left to right

– The associativity is left to right

• Parentheses can override precedence

18

Order of Precedence (cont’d.)

19

Order of Precedence (cont’d.)

20

Order of Precedence (cont’d.)

21

Order of Precedence (cont’d.)

22

Example

• Examples using logical operators (assume a = 5 and b
= 2):

• !(a > 2) → false

• (a > b) && (b >= 1) → true

• (a < b) && (b >=1) → false

• (a < b) || (b <= 1) → true

23

The int Data Type and Logical
(Boolean) Expressions

• Earlier versions of C++ did not provide built-in data
types that had Boolean values

• Logical expressions evaluate to either 1 or 0

– Logical expression value was stored in a variable of the
data type int

• Can use the int data type to manipulate logical
(Boolean) expressions

24

The bool Data Type and Logical
(Boolean) Expressions

• The data type bool has logical (Boolean) values
true and false

• bool, true, and false are reserved words

• The identifier true has the value 1

• The identifier false has the value 0

25

Selection: if and if...else

• if and if...else statements can be used to
create:

– One-way selection

– Two-way selection

– Multiple selections

26

One-Way Selection

• One-way selection syntax:

• Statement is executed if the value of the expression
is true

• Statement is bypassed if the value is false;
program goes to the next statement

• Expression is called a decision maker

27

One-Way Selection (cont’d.)

28

One-Way Selection Example

29

One-Way Selection Example

30

Two-Way Selection

• Two-way selection syntax:

• If expression is true, statement1 is executed;
otherwise, statement2 is executed

– statement1 and statement2 are any C++ statements

31

Two-Way Selection (cont’d.)

32

Two-Way Selection Example

33

Two-Way Selection Example

34

Two-Way Selection Example

35

Compound (Block of) Statements

• Compound statement (block of statements):

• A compound statement functions like a single
statement

36

Compound (Block of) Statements
(cont’d.)

if (age > 18)

{

cout << "Eligible to vote." << endl;

cout << "No longer a minor." << endl;

}

else

{

cout << "Not eligible to vote." << endl;

cout << "Still a minor." << endl;

}

37

Multiple Selections: Nested if

• Nesting: one control statement is located within
another

• An else is associated with the most recent if that
has not been paired with an else

38

Multiple Selections: Nested if
(cont’d.)

39

Multiple Selections: Nested if
(cont’d.)

40

Example using nested if

41

The output of this program is :

x is greater than y.

If we assign the values of x & y as

follow: int x = 2; int y = 6;
then the output is:

y is greater than x.

If we assign the values of x & y as

follow: int x = 2; int y = 2;

then the output is:

x and y are equal.

Comparing if…else Statements
with a Series of if Statements

42

Comparing if…else Statements
with if Statements (cont’d.)

43

Short-Circuit Evaluation

• Short-circuit evaluation: evaluation of a logical
expression stops as soon as the value of the
expression is known

44

Short-Circuit Evaluation

45

Comparing Floating-Point Numbers

for Equality: A Precaution
• Comparison of floating-point numbers for equality

may not behave as you would expect

– Example:
• 1.0 == 3.0/7.0 + 2.0/7.0 + 2.0/7.0 evaluates to
false

• Why? 3.0/7.0 + 2.0/7.0 + 2.0/7.0 =
0.99999999999999989

• Solution: use a tolerance value
– Example: if fabs(x – y) < 0.000001

46

Associativity of Relational
Operators: A Precaution

47

Associativity of Relational
Operators: A Precaution (cont’d.)

• num = 5

• num = 20

48

Avoiding Bugs by Avoiding Partially
Understood Concepts and Techniques

• Must use concepts and techniques correctly

– Otherwise solution will be either incorrect or deficient

• If you do not understand a concept or technique
completely

– Don’t use it

– Save yourself an enormous amount of debugging time

49

Input Failure and the if
Statement

• If input stream enters a fail state

– All subsequent input statements associated with that
stream are ignored

– Program continues to execute

– May produce erroneous results

• Can use if statements to check status of input
stream

• If stream enters the fail state, include instructions
that stop program execution

50

Confusion Between the Equality
(==) and Assignment (=) Operators
• C++ allows you to use any expression that can be

evaluated to either true or false as an expression
in the if statement:
if (x = 5)

cout << "The value is five." << endl;

• The appearance of = in place of == resembles a silent
killer
– It is not a syntax error

– It is a logical error

51

Conditional Operator (?:)

• Conditional operator (?:)

– Ternary operator: takes 3 arguments

• Syntax for the conditional operator:
expression1 ? expression2 : expression3

• If expression1 is true, the result of the
conditional expression is expression2

– Otherwise, the result is expression3

• Example: max = (a >= b) ? a : b;

52

Conditional Operator (?:)
Examples

53

Conditional Operator Equivalent if else Output

int A = 15, B = 2;

cout << (A > B ? A : B)

<< " is greater \n";

int A = 15, B = 2;

if(A>B)

cout << A << " is greater \n“;

else

cout<<B<<<< " is greater\n";

15 is greater

int x, y = 15;

x = (y < 10) ? 100 : -40;

cout << "value of x: " << x ;

int x, y = 15;

if (y < 10)

x=100;

else

x= -40;

cout << "value of x: " << x;

value of x: -

40

Conditional Operator (?:)
Examples

54

Conditional Operator Equivalent if else Output

int n;

cout << "Enter a number : ";

cin >> n;

(n% 2 == 0) ? cout << n <<

“:Even number\n" : cout << n <<

“:Odd number\n";

int n;

cout << "Enter a number : ";

cin >> n;

if(n% 2 == 0)

cout<<n<<“ :Even number\n" ;

else

cout<<n<<“ :Odd number\n";

switch Structures

• switch structure: alternate
to if-else

• switch (integral) expression
is evaluated first

• Value of the expression determines
which corresponding action is taken

• Expression is sometimes
called the selector

55

56

switch Structures (cont’d.)

switch Structures (cont’d.)

• One or more statements may follow a case label

• Braces are not needed to turn multiple
statements into a single compound statement

• When a case value is matched, all statements
after it execute until a break is encountered

• The break statement may or may not appear
after each statement

• switch, case, break, and default are
reserved words

57

58

switch Structures (ex. 4-21)

59

switch Structures (ex. 4-23)

Switch statement Equivalent nested if else

60

Avoiding Bugs: Revisited

• To output results correctly
– Consider whether the switch structure must include a
break statement after each cout statement

61

Programming Example

• Refer to page number 233 in text book and study
"Cable Company Billing” example

62

Chapter 5:
Control Structures II (Repetition)

Objectives

• In this chapter, you will study:

– Why Is Repetition Needed?

– while Looping (Repetition) Structure

– for Looping (Repetition) Structure

– do...while Looping (Repetition) Structure

– break and continue Statements

– Nested Control Structures

– Debugging loops

2

Why Is Repetition Needed?

• Repetition allows efficient use of variables

• Can input, add, and average multiple numbers
using a limited number of variables

• For example, to add five numbers:

– Declare a variable for each number, input the
numbers and add the variables together

– Create a loop that reads a number into a variable
and adds it to a variable that contains the sum of
the numbers

3

while Looping (Repetition)
Structure

• Syntax of the while statement:

• statement can be simple or compound

• expression acts as a decision maker and is
usually a logical expression

• statement is called the body of the loop

• The parentheses are part of the syntax

4

while Looping (Repetition)
Structure (cont’d.)

5

while Looping (Repetition)
Structure (cont’d.)

6

while Looping (Repetition)
Structure (cont’d.)

• i in Example 5-1 is called the loop control
variable (LCV)

• Infinite loop: continues to execute endlessly

– Avoided by including statements in loop body that
assure the exit condition is eventually false

7

while Looping (Repetition)
Structure (cont’d.)

8

Case 1: Counter-Controlled while
Loops

• When you know exactly how many times the
statements need to be executed

– Use a counter-controlled while loop

9

Case 1: Counter-Controlled while
Loops (Ex. 5-3)

• 10 Students at a local middle school volunteered to sell fresh
baked cookies to raise funds to increase the number of
computers for the computer lab. Each student reported the
number of boxes he/she sold. We will write a program that
will do the following:
– Ask each student about the total number of boxes of cookies he/she

sold

– Output the total number of boxes of cookies sold

– Output the total revenue generated by selling the cookies

– Output the average number of boxes sold by each student

• Assume the cost of each box of cookies = 5$.

10

Case 2: Sentinel-Controlled
while Loops

• Sentinel variable is tested in the condition

• Loop ends when sentinel is encountered

11

Example 5-5: Telephone Digits

• Example 5-5 provides an example of a
sentinel-controlled loop

• The program converts uppercase letters to
their corresponding telephone digit

12

Case 3: Flag-Controlled while
Loops

• Flag-controlled while loop: uses a bool
variable to control the loop

13

Number Guessing Game

• Example 5-6 implements a number guessing
game using a flag-controlled while loop

• Uses the function rand of the header file
cstdlib to generate a random number

– rand() returns an int value between 0 and
32767

– To convert to an integer >= 0 and < 100:
• rand() % 100

14

Number Guessing Game

15

Number Guessing Game

16

More on Expressions in while
Statements

• The expression in a while statement can be
complex

– Example:
while ((noOfGuesses < 5) && (!isGuessed))

{

. . .

}

17

Programming Example: Fibonacci
Number

• Consider the following sequence of numbers:

– 1, 1, 2, 3, 5, 8, 13, 21, 34,

• Called the Fibonacci sequence

• Given the first two numbers of the sequence
(say, a1 and a2)

– nth number an, n >= 3, of this sequence is given by:
an = an-1 + an-2

18

Programming Example: Fibonacci
Number (cont’d.)

• Fibonacci sequence

– nth Fibonacci number

– a2 = 1

– a1 = 1

– Determine the nth number an, n >= 3

19

Programming Example: Fibonacci
Number (cont’d.)

• Suppose a2 = 6 and a1 = 3

– a3 = a2 + a1 = 6 + 3 = 9

– a4 = a3 + a2 = 9 + 6 = 15

• Write a program that determines the nth

Fibonacci number, given the first two numbers

20

Programming Example: Input and
Output

• Input: first two Fibonacci numbers and the
desired Fibonacci number

• Output: nth Fibonacci number

21

Programming Example: Problem
Analysis and Algorithm Design

• Algorithm:

– Get the first two Fibonacci numbers

– Get the desired Fibonacci number

• Get the position, n, of the number in the sequence

– Calculate the next Fibonacci number

• Add the previous two elements of the sequence

– Repeat Step 3 until the nth Fibonacci number is
found

– Output the nth Fibonacci number

22

Programming Example: Variables

23

Programming Example: Main
Algorithm

• Prompt the user for the first two numbers—
that is, previous1 and previous2

• Read (input) the first two numbers into
previous1 and previous2

• Output the first two Fibonacci numbers

• Prompt the user for the position of the
desired Fibonacci number

24

Programming Example: Main
Algorithm (cont’d.)

• Read the position of the desired Fibonacci
number into nthFibonacci

– if (nthFibonacci == 1)

The desired Fibonacci number is the first Fibonacci
number; copy the value of previous1 into
current

– else if (nthFibonacci == 2)

The desired Fibonacci number is the second
Fibonacci number; copy the value of previous2
into current

25

Programming Example: Main
Algorithm (cont’d.)

– else calculate the desired Fibonacci number as
follows:

• Start by determining the third Fibonacci number

• Initialize counter to 3 to keep track of the calculated
Fibonacci numbers.

• Calculate the next Fibonacci number, as follows:
current = previous2 + previous1;

26

Programming Example: Main
Algorithm (cont’d.)

– (cont’d.)
• Assign the value of previous2 to previous1

• Assign the value of current to previous2

• Increment counter

• Repeat until Fibonacci number is calculated:
while (counter <= nthFibonacci)

{

current = previous2 + previous1;

previous1 = previous2;

previous2 = current;

counter++;

}

27

Programming Example: Main
Algorithm (cont’d.)

• Output the nthFibonacci number, which
is current

28

for Looping (Repetition)
Structure

• for loop: called a counted or indexed for
loop

• Syntax of the for statement:

• The initial statement, loop
condition, and update statement are
called for loop control statements

29

for Looping (Repetition)
Structure (cont’d.)

30

for Looping (Repetition)
Structure (cont’d.)

31

for Looping (Repetition)
Structure (cont’d.)

32

for Looping (Repetition)
Structure (cont’d.)

• The following is a semantic error:

• The following is a legal (but infinite) for loop:
for (;;)

cout << "Hello" << endl;

33

for Looping (Repetition)
Structure (cont’d.)

34

for Looping (Repetition)
Structure (cont’d.)

35

do…while Looping (Repetition)
Structure

• Syntax of a do...while loop:

• The statement executes first, and then the
expression is evaluated

– As long as expression is true, loop continues

• To avoid an infinite loop, body must contain a
statement that makes the expression false

36

do…while Looping (Repetition)
Structure (cont’d.)

• The statement can be simple or compound

• Loop always iterates at least once

37

do…while Looping (Repetition)
Structure (cont’d.)

38

do…while Looping (Repetition)
Structure (cont’d.)

39

do…while Looping (Repetition)
Structure (cont’d.)

40

Choosing the Right Looping
Structure

• All three loops have their place in C++

– If you know or can determine in advance the
number of repetitions needed, the for loop is
the correct choice

– If you do not know and cannot determine in
advance the number of repetitions needed, and it
could be zero, use a while loop

– If you do not know and cannot determine in
advance the number of repetitions needed, and it
is at least one, use a do...while loop

41

break and continue
Statements

• break and continue alter the flow of
control

• break statement is used for two purposes:

– To exit early from a loop

• Can eliminate the use of certain (flag) variables

– To skip the remainder of a switch structure

• After break executes, the program continues
with the first statement after the structure

42

break and continue
Statements (cont’d.)

• continue is used in while, for, and
do…while structures

• When executed in a loop

– It skips remaining statements and proceeds with
the next iteration of the loop

43

Using break and continue
example

44

Using break and continue
example

45

Using break and continue
example

46

Nested Control Structures

• To create the following pattern:
*

**

• We can use the following code:
for (i = 1; i <= 5 ; i++)

{

for (j = 1; j <= i; j++)

cout << "*";

cout << endl;

}

47

Nested Control Structures (cont’d.)

• What is the result if we replace the first for
statement with this?

for (i = 5; i >= 1; i--)

• Answer:

**

*

48

Nested Control Structures (cont’d.)

• Write the pseudocode to create the following
multiplication table:

49

Debugging Loops

• Loops are harder to debug than sequence and
selection structures

• Use loop invariant

– Set of statements that remains true each time the
loop body is executed

• Most common error associated with loops is
off-by-one

50

Chapter 6:
User-Defined Functions

Outline

In this chapter, you will study:

– Predefined Functions

– User-Defined Functions

– Value-Returning Functions

– Void Functions

– Value Parameters

– Reference Variables as Parameters

– Value and Reference Parameters and Memory
Allocation

2

Outline

In this chapter, you will also study:

– Reference Parameters and Value-Returning
Functions

– Scope of an Identifier

– Global Variables, Named Constants, and Side
Effects

– Static and Automatic Variables

– Function Overloading: An Introduction

– Functions with Default Parameters

3

Introduction

• Functions are often called modules

• They are like miniature programs that can be
combined to form larger programs

• They allow complicated programs to be divided
into manageable pieces

4

Predefined Functions

• In C++, a function is similar to that of a
function in algebra

– It has a name

– It does some computation

• Some of the predefined mathematical
functions are:
sqrt(x)

pow(x, y)

floor(x)

5

Predefined Functions (cont'd.)

• Predefined functions are organized into
separate libraries
– I/O functions are in iostream header

– Math functions are in cmath header

• To use predefined functions, you must include
the header file using an include statement

• See Table 6-1 in the text for some common
predefined functions

6

Predefined Functions (cont'd.)

7

User-Defined Functions

• Value-returning functions: have a return type

– Return a value of a specific data type using the
return statement

• Void functions: do not have a return type
– Do not use a return statement to return a value

8

Value-Returning Functions

• To use these functions, you must:

– Include the appropriate header file in your
program using the include statement

– Know the following items:
• Name of the function

• Number of parameters, if any

• Data type of each parameter

• Data type of the value returned: called the type of the
function

9

Value-Returning Functions
(cont’d.)

• Can use the value returned by a value-
returning function by:
– Saving it for further calculation

– Using it in some calculation

– Printing it

• A value-returning function is used in an
assignment or in an output statement

10

Value-Returning Functions
(cont’d.)

• Heading (or function header): first line of the
function
– Example: int abs(int number)

• Formal parameter: variable declared in the
heading
– Example: number

• Actual parameter: variable or expression
listed in a call to a function
– Example: x = pow(u, v)

11

Syntax: Value-Returning Function

• Syntax:

• functionType is also called the data type
or return type

12

Syntax: Formal Parameter List

13

Function Call

• Syntax to call a value-returning function:

14

Syntax: Actual Parameter List

• Syntax of the actual parameter list:

• Formal parameter list can be empty:

• A call to a value-returning function with an
empty formal parameter list is:

15

return Statement

• Function returns its value via the return
statement

– It passes this value outside the function

16

Syntax: return Statement

• Syntax:

• In C++, return is a reserved word

• When a return statement executes

– Function immediately terminates

– Control goes back to the caller

• When a return statement executes in the
function main, the program terminates

17

Syntax: return Statement
(cont’d.)

18

Example 6-2

19

Syntax: return Statement
(cont’d.)

• In a function call, you specify only the actual
parameter, not its data type.

• The following statements contain incorrect
calls to the function larger and would
result in syntax errors

20

Syntax: return Statement
(cont’d.)

• Once a function is written, you can use it
anywhere in the program. Even as a
parameter to another function

21

Function Prototype

• Function prototype: function heading without
the body of the function

• Syntax:

• Not necessary to specify the variable name in
the parameter list

• Data type of each parameter must be
specified

22

Function Prototype Example

23

Function Prototype Example
(cont’d)

24

Value-Returning Functions: Some
Peculiarities

25

Value-Returning Functions: Some
Peculiarities (cont’d.)

26

EXAMPLE 6-4 (ROLLING A PAIR OF
DICE)

• write the function rollDice that takes as a
parameter the desired sum of the numbers to
be rolled and returns the number of times
the dice are rolled to roll the desired sum.

27

EXAMPLE 6-4 (ROLLING A PAIR OF
DICE) (cont’d)

28

More Examples of Value-Returning
Functions

• For more examples refer to text
book page 352

29

Flow of Execution

• Execution always begins at the first statement
in the function main

• Other functions are executed only when
called

• Function prototypes appear before any
function definition

– Compiler translates these first

• Compiler can then correctly translate a
function call

30

Flow of Execution (cont’d.)

• Function call transfers control to the first
statement in the body of the called function

• When the end of a called function is executed,
control is passed back to the point immediately
following the function call

– Function’s returned value replaces the function
call statement

31

Void Functions

• User-defined void functions can be placed
either before or after the function main

• If user-defined void functions are placed after
the function main

– The function prototype must be placed before the
function main

• Void function does not have a return type
– return statement without any value is typically

used to exit the function early

Void Functions (cont’d.)

• Formal parameters are optional

• A call to a void function is a stand-alone
statement

• Void function definition syntax:

33

Void Functions (cont’d.)

• Formal parameter list syntax:

• Function call syntax:

• Actual parameter list syntax:

34

Void Functions (cont’d.)

• Value parameter: a formal parameter that
receives a copy of the content of
corresponding actual parameter

• Reference parameter: a formal parameter
that receives the location (memory address
(&)) of the corresponding actual parameter

35

Example 6-8

• For more examples refer to text book page
366

36

Value Parameters

• If a formal parameter is a value parameter:

– The value of the corresponding actual parameter
is copied into it

– Formal parameter has its own copy of the data

• During program execution

– Formal parameter manipulates the data stored in
its own memory space

37

Value Parameters Example

38

Value Parameters Example
(cont’d)

39

Reference Variables as
Parameters

• If a formal parameter is a reference
parameter

– It receives the memory address of the
corresponding actual parameter

• During program execution to manipulate data

– Changes to formal parameter will change the
corresponding actual parameter

40

Reference Variables as Parameters
(cont'd.)

• Reference parameters are useful in three
situations:

– Returning more than one value

– Changing the actual parameter

– When passing the address would save memory
space and time

41

Example 6-12 (Calculate Grade)

• Write a program that takes a course score (a value between 0
and 100) and determines a student’s course grade. This program
has three functions: main, getScore, and printGrade, as follows:

• main
– Get the course score.

– Print the course grade.

• getScore
– Prompt the user for the input.

– Get the input.

– Print the course score.

• printGrade
– Calculate the course grade.

– Print the course grade.
42

Example 6-12 (Calculate Grade)
(cont’d)

43

Example 6-12 (Calculate Grade)
(cont’d)

44

Value and Reference Parameters and
Memory Allocation

• When a function is called

– Memory for its formal parameters and its local
variables is allocated in the function data area

• For a value parameter, the actual parameter’s
value is copied into the formal parameter’s
memory cell

– Changes to the formal parameter do not affect
the actual parameter’s value

45

Value and Reference Parameters and
Memory Allocation (cont’d.)

• For a reference parameter, the actual
parameter’s address passes to the formal
parameter

• Both formal and actual parameters refer to the
same memory location

• During execution, changes made to the formal
parameter’s value permanently change the actual
parameter’s value

46

Example 6-14

47

Example 6-14 (Cont’d)

48

Example 6-14 (Cont’d)

49

Example 6-14 (Cont’d)

50

Reference Parameters and Value-
Returning Functions

• Can also use reference parameters in a value-
returning function

– Not recommended

• By definition, a value-returning function
returns a single value via return statement

• If a function needs to return more than one
value, change it to a void function and use
reference parameters to return the values

51

Scope of an Identifier

• Scope of an identifier: where in the program
the identifier is accessible

• Local identifier: identifiers declared within a
function (or block)

• Global identifier: identifiers declared outside
of every function definition

• C++ does not allow nested functions
– Definition of one function cannot be included in

the body of another function

52

Scope of an Identifier (cont’d.)

• Rules when an identifier is accessed:

– Global identifiers are accessible by a function or
block if:
• Declared before function definition

• Function name different from identifier

• Parameters to the function have different names

• All local identifiers have different names

53

Scope of an Identifier (cont’d.)

• Rules when an identifier is accessed (cont’d.):

– Nested block
• Identifier accessible from declaration to end of block in

which it is declared

• Within nested blocks if no identifier with same name
exists

– Scope of function name similar to scope of
identifier declared outside any block
• i.e., function name scope = global variable scope

54

Scope of an Identifier (cont’d.)

• Some compilers initialize global variables to
default values

• Scope resolution operator in C++ is ::

• By using the scope resolution operator
– A global variable declared before the definition of

a function (or block) can be accessed by the
function (or block)

– Even if the function (or block) has an identifier
with the same name as the global variable

55

Scope of an Identifier (cont’d.)

• To access a global variable declared after the
definition of a function, the function must not
contain any identifier with the same name
– Reserved word extern indicates that a global

variable has been declared elsewhere

56

Scope of an Identifier Example

57

Scope of an Identifier Example
(Cont’d)

58

Global Variables, Named
Constants, and Side Effects

• Using global variables causes side effects

• A function that uses global variables is not
independent

• If more than one function uses the same
global variable:
– Can be difficult to debug problems with it

– Problems caused in one area of the program may
appear to be from another area

• Global named constants have no side effects

59

Global Variables Example

60

Global Variables Example (cont’d)

61

Static and Automatic Variables

• Automatic variable: memory is allocated at
block entry and deallocated at block exit

– By default, variables declared within a block are
automatic variables

• Static variable: memory remains allocated as
long as the program executes

– Global variables declared outside of any block are
static variables

62

Static and Automatic Variables
(cont’d.)

• Can declare a static variable within a block by
using the reserved word static

• Syntax:

• Static variables declared within a block are
local to the block

– Have same scope as any other local identifier in
that block

63

Static and Automatic Variables
Example

64

Debugging:
Using Drivers and Stubs

• Driver program: separate program used to
test a function

• When results calculated by one function are
needed in another function, use a function
stub

• Function stub: a function that is not fully
coded

65

Function Overloading:
An Introduction

• In a C++ program, several functions can have
the same name

• Function overloading: creating several
functions with the same name

• Function signature: the name and formal
parameter list of the function

– Does not include the return type of the function

66

Function Overloading (cont’d.)

• Two functions are said to have different
formal parameter lists if both functions have
either:

– A different number of formal parameters

– If the number of formal parameters is the same,
but the data type of the formal parameters differs
in at least one position

• Overloaded functions must have different
function signatures

67

Function Overloading (cont’d.)

68

Function Overloading (cont’d.)

• The parameter list supplied in a call to an
overloaded function determines which
function is executed

69

Functions with Default
Parameters

• In a function call, the number of actual and
formal parameters must be the same
– C++ relaxes this condition for functions with

default parameters

• Can specify the value of a default parameter
in the function prototype

• If you do not specify the value for a default
parameter when calling the function, the
default value is used

70

Functions with Default
Parameters (cont’d.)

• All default parameters must be the rightmost
parameters of the function

• If a default parameter value is not specified:

– You must omit all of the arguments to its right

• Default values can be constants, global
variables, or function calls

• Cannot assign a constant value as a default
value to a reference parameter

71

Functions with Default
Parameters (cont’d.)

72

Recursive Function

• Recursive Function is the function that call it self

• General formula

• Recursive functions are very useful in solving many
mathematical problems, e.g. calculating the
factorial of a number, generating Fibonacci series

73

2/15/2019

void recursion() {

recursion(); /* function calls itself */

}

int main() {

recursion();

}

Recursive Function (cont’d)

• Incorrect use of recursive functions might lead to
infinite loop

• To avoid infinite running of recursive function, there
are two properties that a recursive function must
have −

– Base criteria − There must be at least one base criteria or
condition, such that, when this condition is met the
function stops calling itself recursively.

– Progressive approach − The recursive calls should
progress in such a way that each time a recursive call is
made it comes closer to the base criteria.

74

2/15/2019

Recursive Function (Number
factorial Example)

2/15/2019

75

int factorial(int i) {

if(i <= 1)

return 1;

return i * factorial(i - 1);

}

int main() {

int i = 5;

cout<<"Factorial of "<< i<<" is "<< factorial(i);

return 0;

}

Recursive Function (Number
factorial Example)

2/15/2019

76

int fibonacci(int i) {

if(i == 0)

return 0;

if(i == 1)

return 1;

return fibonacci(i-1) + fibonacci(i-2);

}

int main() {

int i;

for (i = 0; i < 10; i++)

{

cout<< fibonacci(i)<<endl;

}

return 0;

}

Recursive Function (is Palindrome
Example)

2/15/2019

77

bool isPalindrome(int start, int end, string str) {

if(start - end >= 0)

return true;

if(str[start] != str[end])

return false;

return isPalindrome(start+1,end-1,str);

}

int main(){

string str = "nursesrun";

cout<<isPalindrome(0,str.length()-1,str)<<endl;

str = "abccba";

cout<<isPalindrome(0,str.length()-1,str)<<endl;

str = "abccdba";

cout<<isPalindrome(0,str.length()-1,str)<<endl;

}

Arrays as Parameters to Functions

• Arrays are passed by reference only

• Do not use symbol & when declaring an array
as a formal parameter

• Size of the array is usually omitted

– If provided, it is ignored by the compiler

• Example:

78

void funcArrayAsParam(int listOne[],

double listTwo[])

Arrays as Parameters to Functions
(cont’d)

void initialize(int list[], int listSize)

{

int count;

for (count = 0; count < listSize; count++)

list[count] = 0;

}

79

Constant Arrays
as Formal Parameters

80

• Can prevent a function from changing the
actual parameter when passed by reference
– Use const in the declaration of the formal

parameter

• Example:

Constant Arrays
as Formal Parameters Example

81

Constant Arrays
as Formal Parameters Example (cont’d)

82

Constant Arrays
as Formal Parameters Example

(cont’d)

83

Functions Cannot Return a Value
of the Type Array

• C++ does not allow functions to return a
value of type array

84

Passing Two-Dimensional Arrays
as Parameters to Functions

• Two-dimensional arrays are passed by
reference as parameters to a function

– Base address is passed to formal parameter

• Two-dimensional arrays are stored in row
order

• When declaring a two-dimensional array as a
formal parameter, can omit size of first
dimension, but not the second

85

Passing Two-Dimensional Arrays as
Parameters to Functions (cont’d)

86

Chapter 8
Arrays and Strings

Outline

• In this chapter, you will study:

– Arrays

– Searching an Array for a Specific Item

– C-Strings (Character Arrays)

– Parallel Arrays

– Two- and Multidimensional Arrays

2

Introduction

• Simple data type: variables of these types can
store only one value at a time

• Structured data type: a data type in which
each data item is a collection of other data
items

3

Arrays

• Array: a collection of a fixed number of
components, all of the same data type

• One-dimensional array: components are
arranged in a list form

• Syntax for declaring a one-dimensional array:

• intExp: any constant expression that
evaluates to a positive integer

4

Example 8-1

• The statement:
int num[5];

• declares an array num of five components.
Each component is of type int. The
components are num[0], num[1] ,
num[2], num[3], and num[4].

5

Accessing Array Components

• General syntax:

• indexExp: called the index

– An expression with a nonnegative integer value

• Value of the index is the position of the item
in the array

• []: array subscripting operator

– Array index always starts at 0

6

Accessing Array Components
(cont’d.)

7

Accessing Array Components
(cont’d.)

8

Processing One-Dimensional
Arrays

• Basic operations on a one-dimensional array:

– Initializing

– Inputting data

– Outputting data stored in an array

– Finding the largest and/or smallest element

• Each operation requires ability to step
through elements of the array

– Easily accomplished by a loop

9

Processing One-Dimensional
Arrays (cont’d.)

• Given the declaration:
int list[100]; //array of size 100

int i;

• Use a for loop to access array elements:
for (i = 0; i < 100; i++) //Line 1

cin >> list[i]; //Line 2

10

Example 8-3

• Write the required code to do the following:

1. Define an array sales of 10 components of
type double.

• initializes every component of the array
sales to 0.0

11

double sales[10];

for (int index = 0; index < 10; index++)

sales[index] = 0.0;

Example 8-3 (cont’d)

3. Reading data from user into an array:

4. Printing an array

12

for (index = 0; index < 10; index++)

cin >> sales[index];

for (index = 0; index < 10; index++)

cout << sales[index] << " ";

Example 8-3 (cont’d)

5. Finding the sum and average of an array

13

double sum = 0;

for (index = 0; index < 10; index++)

sum = sum + sales[index];

double average = sum / 10;

Example 8-3 (cont’d)

6. Largest element in the array:

14

double maxIndex = 0;

for (index = 1; index < 10; index++)

if (sales[maxIndex] < sales[index])

maxIndex = index;

largestSale = sales[maxIndex];

Array Index Out of Bounds

• Index of an array is in bounds if the index is
>=0 and <= ARRAY_SIZE-1

– Otherwise, the index is out of bounds

• In C++, there is no guard against indices that
are out of bounds

15

Array Initialization During
Declaration

• Arrays can be initialized during declaration

– Values are placed between curly braces

– Size determined by the number of initial values in
the braces

• Example:
double sales[] = {12.25, 32.50, 16.90,

23, 45.68};

16

Partial Initialization of Arrays
During Declaration

• The statement:
int list[10] = {0};

– Declares an array of 10 components and initializes
all of them to zero

• The statement:
int list[10] = {8, 5, 12};

– Declares an array of 10 components and initializes
list[0] to 8, list[1] to 5, list[2] to 12

– All other components are initialized to 0

17

Some Restrictions on Array
Processing

• Aggregate operation: any operation that manipulates the
entire array as a single unit is Not allowed on arrays in C++

• Example:

• Solution:

18

Base Address of an Array and
Array in Computer Memory

• Base address of an array: address (memory
location) of the first array component

• Example:

– If list is a one-dimensional array, its base
address is the address of list[0]

• When an array is passed as a parameter, the
base address of the actual array is passed to
the formal parameter

19

Base Address of an Array and
Array in Computer Memory

20

What is the output of

the following

statements?

cout << myList;

if (myList <= yourList)

{

}

Other Ways to Declare Arrays

21

• Examples:

Searching an Array
for a Specific Item

• Sequential search (or linear search):

– Searching a list for a given item, starting from the
first array element

– Compare each element in the array with value
being searched for

– Continue the search until item is found or no
more data is left in the list

22

Pseudocode for Searching an
Array for a Specific Item

23

Selection Sort

• Selection sort: rearrange the list by selecting
an element and moving it to its proper
position

• Steps:

– Find the smallest element in the unsorted portion
of the list

– Move it to the top of the unsorted portion by
swapping with the element currently there

– Start again with the rest of the list

24

Selection Sort (cont’d.)

25

Selection Sort (cont’d.)

26

C-Strings (Character Arrays)

• Character array: an array whose components
are of type char

• C-strings are null-terminated ('\0‘)
character arrays

• Example:
– 'A' is the character A

– "A" is the C-string A

– "A" represents two characters, 'A' and '\0‘

27

C-Strings (Character Arrays)
(cont’d.)

• Example:

char name[16];

• Since C-strings are null terminated and name
has 16 components, the largest string it can
store has 15 characters

• If you store a string whose length is less than
the array size, the last components are
unused

28

C-Strings (Character Arrays)
(cont’d.)

• Size of an array can be omitted if the array is
initialized during declaration

• Example:
char name[] = "John";

– Declares an array of length 5 and stores the C-
string "John" in it

• Useful string manipulation functions
– strcpy, strcmp, and strlen

29

C-Strings (Character Arrays)
(cont’d.)

30

String Comparison

• C-strings are compared character by character
using the collating sequence of the system
– Use the function strcmp

• If using the ASCII character set:

– "Air" < "Boat"

– "Air" < "An"

– "Bill" < "Billy"

– "Hello" < "hello"

31

String Comparison Example

32

String Comparison Example
(cont’d)

33

Reading and Writing Strings

• Most rules for arrays also apply to C-strings
(which are character arrays)

• Aggregate operations, such as assignment and
comparison, are not allowed on arrays

• C++ does allow aggregate operations for the
input and output of C-strings

34

String Input

• Example:
cin >> name;

– Stores the next input C-string into name

• To read strings with blanks, use get function:

cin.get(str, m+1);

– Stores the next m characters into str but the
newline character is not stored in str

– If input string has fewer than m characters, reading
stops at the newline character

35

String Output

• Example:
cout << name;

– Outputs the content of name on the screen

– << continues to write the contents of name until it
finds the null character

– If name does not contain the null character, then
strange output may occur
• << continues to output data from memory adjacent to
name until a '\0' is found

36

Parallel Arrays

• Two (or more) arrays are called parallel if their
corresponding components hold related
information

• Example:
int studentId[50];

char courseGrade[50];

37

Two- and Multidimensional Arrays

• Two-dimensional array: collection of a fixed
number of components (of the same type)
arranged in two dimensions

– Sometimes called matrices or tables

• Declaration syntax:

– intExp1 and intExp2 are expressions with
positive integer values specifying the number of
rows and columns in the array

38

Accessing Array Components

• Accessing components in a two-dimensional
array:

– Where indexExp1 and indexExp2 are
expressions with positive integer values, and
specify the row and column position

• Example:
sales[5][3] = 25.75;

39

Accessing Array Components
(cont’d.)

40

Two-Dimensional Array
Initialization During Declaration

• Two-dimensional arrays can be initialized
when they are declared:

– Elements of each row are enclosed within braces
and separated by commas

– All rows are enclosed within braces

– For number arrays, unspecified elements are set
to 0

41

Two-Dimensional Array
Initialization During Declaration

42

Processing Two-Dimensional
Arrays

• Ways to process a two-dimensional array:

– Process entire array

– Row processing: process a single row at a time

– Column processing: process a single column at a
time

• Each row and each column of a two-
dimensional array is a one-dimensional array

– To process, use algorithms similar to processing
one-dimensional arrays

43

Initialization

• Examples:

– To initialize row number 4 (fifth row) to 0:

– To initialize the entire matrix to 0:

44

Print

• Use a nested loop to output the components
of a two dimensional array:

45

Input

• Examples:

– To input into row number 4 (fifth row):

– To input data into each component of matrix:

46

Sum by Row

• Example:

– To find the sum of row number 4:

47

Sum by Column

• Example:

– To find the sum of each individual column:

48

Largest Element in Each Row
and Each Column

49

• Example:

– To find the largest element in each row:

Arrays of Strings

• Strings in C++ can be manipulated using either
the data type string or character arrays (C-
strings)

• On some compilers, the data type string
may not be available in Standard C++ (i.e.,
non-ANSI/ISO Standard C++)

50

Arrays of Strings and the
string Type

• To declare an array of 100 components of
type string:
string list[100];

• Basic operations, such as assignment,
comparison, and input/output, can be
performed on values of the string type

• The data in list can be processed just like
any one-dimensional array

51

Arrays of Strings and C-Strings
(Character Arrays)

52

char list[100][16];

strcpy(list[1], "Snow White");

Arrays of Strings and C-Strings
(Character Arrays)

• The following for loop is used to read and
store string in each row:

for (j = 0; j < 100; j++)

cin.get(list[j], 16);

• The following for loop outputs the string in
each row:

for (j = 0; j < 100; j++)

cout << list[j] << endl;

53

