
1 FUNCTIONS AND MODELS

1.1 Four Ways to Represent a Function

1. The functions () = +
√
2−  and () = +

√
2−  give exactly the same output values for every input value, so 

and  are equal.

2. () =
2 − 

− 1 =
(− 1)
− 1 =  for − 1 6= 0, so  and  [where () = ] are not equal because (1) is undefined and

(1) = 1.

3. (a) The point (1 3) is on the graph of  , so (1) = 3.

(b) When  = −1,  is about −02, so (−1) ≈ −02.

(c) () = 1 is equivalent to  = 1When  = 1, we have  = 0 and  = 3.

(d) A reasonable estimate for  when  = 0 is  = −08.

(e) The domain of  consists of all -values on the graph of  . For this function, the domain is −2 ≤  ≤ 4, or [−2 4].
The range of  consists of all -values on the graph of  . For this function, the range is−1 ≤  ≤ 3, or [−1 3].

(f ) As  increases from −2 to 1,  increases from −1 to 3. Thus,  is increasing on the interval [−2 1].

4. (a) The point (−4−2) is on the graph of  , so (−4) = −2. The point (3 4) is on the graph of , so (3) = 4.

(b) We are looking for the values of  for which the -values are equal. The -values for  and  are equal at the points

(−2 1) and (2 2), so the desired values of  are −2 and 2.

(c) () = −1 is equivalent to  = −1. When  = −1, we have  = −3 and  = 4.

(d) As  increases from 0 to 4,  decreases from 3 to −1. Thus,  is decreasing on the interval [0 4].

(e) The domain of  consists of all -values on the graph of  . For this function, the domain is −4 ≤  ≤ 4, or [−4 4].
The range of  consists of all -values on the graph of  . For this function, the range is−2 ≤  ≤ 3, or [−2 3].

(f ) The domain of  is [−4 3] and the range is [05 4].

5. From Figure 1 in the text, the lowest point occurs at about ( ) = (12−85). The highest point occurs at about (17 115).
Thus, the range of the vertical ground acceleration is−85 ≤  ≤ 115. Written in interval notation, we get [−85 115].

6. Example 1: A car is driven at 60 mih for 2 hours. The distance 

traveled by the car is a function of the time . The domain of the

function is { | 0 ≤  ≤ 2}, where  is measured in hours. The range
of the function is { | 0 ≤  ≤ 120}, where  is measured in miles.
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10 ¤ CHAPTER 1 FUNCTIONS AND MODELS

Example 2: At a certain university, the number of students on

campus at any time on a particular day is a function of the time  after

midnight. The domain of the function is { | 0 ≤  ≤ 24}, where  is
measured in hours. The range of the function is { | 0 ≤  ≤ },
where is an integer and  is the largest number of students on

campus at once.

Example 3: A certain employee is paid $800 per hour and works a

maximum of 30 hours per week. The number of hours worked is

rounded down to the nearest quarter of an hour. This employee’s

gross weekly pay  is a function of the number of hours worked .

The domain of the function is [0 30] and the range of the function is

{0 200 400     23800 24000}.

240

pay

hours0.25 0.50 0.750 29.50 29.75 30

2
4

238
236

7. No, the curve is not the graph of a function because a vertical line intersects the curve more than once. Hence, the curve fails

the Vertical Line Test.

8. Yes, the curve is the graph of a function because it passes the Vertical Line Test. The domain is [−2 2] and the range
is [−1 2].

9. Yes, the curve is the graph of a function because it passes the Vertical Line Test. The domain is [−3 2] and the range
is [−3−2) ∪ [−1 3].

10. No, the curve is not the graph of a function since for  = 0, ±1, and ±2, there are infinitely many points on the curve.

11. (a) When  = 1950,  ≈ 138◦C, so the global average temperature in 1950 was about 138◦C.
(b) When  = 142◦C,  ≈ 1990.

(c) The global average temperature was smallest in 1910 (the year corresponding to the lowest point on the graph) and largest

in 2005 (the year corresponding to the highest point on the graph).

(d) When  = 1910,  ≈ 135◦C, and when  = 2005,  ≈ 145◦C. Thus, the range of  is about [135, 145].

12. (a) The ring width varies from near 0 mm to about 16 mm, so the range of the ring width function is approximately [0 16].

(b) According to the graph, the earth gradually cooled from 1550 to 1700, warmed into the late 1700s, cooled again into the

late 1800s, and has been steadily warming since then. In the mid-19th century, there was variation that could have been

associated with volcanic eruptions.

13. The water will cool down almost to freezing as the ice melts. Then, when

the ice has melted, the water will slowly warm up to room temperature.
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SECTION 1.1 FOUR WAYS TO REPRESENT A FUNCTION ¤ 11

14. Runner A won the race, reaching the finish line at 100 meters in about 15 seconds, followed by runner B with a time of about

19 seconds, and then by runner C who finished in around 23 seconds. B initially led the race, followed by C, and then A.

C then passed B to lead for a while. Then A passed first B, and then passed C to take the lead and finish first. Finally,

B passed C to finish in second place. All three runners completed the race.

15. (a) The power consumption at 6 AM is 500 MW which is obtained by reading the value of power  when  = 6 from the

graph. At 6 PM we read the value of  when  = 18 obtaining approximately 730 MW

(b) The minimum power consumption is determined by finding the time for the lowest point on the graph,  = 4 or 4 AM. The

maximum power consumption corresponds to the highest point on the graph, which occurs just before  = 12 or right

before noon. These times are reasonable, considering the power consumption schedules of most individuals and

businesses.

16. The summer solstice (the longest day of the year) is

around June 21, and the winter solstice (the shortest day)

is around December 22. (Exchange the dates for the

southern hemisphere.)

17. Of course, this graph depends strongly on the

geographical location!

18. The value of the car decreases fairly rapidly initially, then

somewhat less rapidly.

19. As the price increases, the amount sold decreases.

 

20. The temperature of the pie would increase rapidly, level

off to oven temperature, decrease rapidly, and then level

off to room temperature.

21.
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12 ¤ CHAPTER 1 FUNCTIONS AND MODELS

22. (a) (b)

(c) (d)

23. (a) (b) 9:00 AM corresponds to  = 9. When  = 9, the

temperature  is about 74◦F.

24. (a) (b) The blood alcohol concentration rises rapidly, then slowly

decreases to near zero. Note that the BAC in this exercise is

measured inmgmL, not percent.

25. () = 32 − + 2

(2) = 3(2)2 − 2 + 2 = 12− 2 + 2 = 12
(−2) = 3(−2)2 − (−2) + 2 = 12 + 2 + 2 = 16
() = 32 − + 2

(−) = 3(−)2 − (−) + 2 = 32 + + 2

(+ 1) = 3(+ 1)2 − (+ 1) + 2 = 3(2 + 2+ 1)− − 1 + 2 = 32 + 6+ 3− + 1 = 32 + 5+ 4

2() = 2 · () = 2(32 − + 2) = 62 − 2+ 4
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SECTION 1.1 FOUR WAYS TO REPRESENT A FUNCTION ¤ 13

(2) = 3(2)2 − (2) + 2 = 3(42)− 2+ 2 = 122 − 2+ 2
(2) = 3(2)2 − (2) + 2 = 3(4)− 2 + 2 = 34 − 2 + 2

[()]2 =

32 − + 2

2
=

32 − + 2


32 − + 2


= 94 − 33 + 62 − 33 + 2 − 2+ 62 − 2+ 4 = 94 − 63 + 132 − 4+ 4

(+ ) = 3(+ )2 − (+ ) + 2 = 3(2 + 2+ 2)− − + 2 = 32 + 6+ 32 − − + 2

26. A spherical balloon with radius  + 1 has volume  ( + 1) = 4
3
( + 1)3 = 4

3
(3 + 32 + 3 + 1). We wish to find the

amount of air needed to inflate the balloon from a radius of  to  + 1. Hence, we need to find the difference

 ( + 1)−  () = 4
3
(3 + 32 + 3 + 1)− 4

3
3 = 4

3
(32 + 3 + 1).

27. () = 4 + 3− 2, so (3 + ) = 4 + 3(3 + )− (3 + )2 = 4 + 9 + 3− (9 + 6+ 2) = 4− 3− 2,

and
(3 + )− (3)


=
(4− 3− 2)− 4


=

(−3− )


= −3− .

28. () = 3, so ( + ) = ( + )3 = 3 + 32 + 32 + 3,

and
(+ )− ()


=
(3 + 32+ 32 + 3)− 3


=

(32 + 3+ 2)


= 32 + 3+ 2.

29.
()− ()

− 
=

1


− 1


− 

=

− 


− 

=
− 

(− )
=
−1(− )

(− )
= − 1



30.
()− (1)

− 1 =

+ 3

+ 1
− 2

− 1 =

+ 3− 2(+ 1)
+ 1
− 1 =

+ 3− 2− 2
(+ 1)(− 1)

=
−+ 1

(+ 1)(− 1) =
−(− 1)

(+ 1)(− 1) = −
1

+ 1

31. () = (+ 4)(2 − 9) is defined for all  except when 0 = 2 − 9 ⇔ 0 = (+ 3)(− 3) ⇔  = −3 or 3, so the
domain is { ∈ R |  6= −3 3} = (−∞−3) ∪ (−3 3) ∪ (3∞).

32. () = (23 − 5)(2 + − 6) is defined for all  except when 0 = 2 + − 6 ⇔ 0 = (+ 3)(− 2) ⇔
 = −3 or 2, so the domain is { ∈ R |  6= −3 2} = (−∞−3) ∪ (−3 2) ∪ (2∞).

33. () = 3
√
2− 1 is defined for all real numbers. In fact 3


(), where () is a polynomial, is defined for all real numbers.

Thus, the domain is R or (−∞∞).

34. () =
√
3− −√2 +  is defined when 3−  ≥ 0 ⇔  ≤ 3 and 2 +  ≥ 0 ⇔  ≥ −2. Thus, the domain is

−2 ≤  ≤ 3, or [−2 3].

35. () = 1


4
√
2 − 5 is defined when 2 − 5  0 ⇔ (− 5)  0. Note that 2 − 5 6= 0 since that would result in

division by zero. The expression (− 5) is positive if   0 or   5. (See Appendix A for methods for solving

inequalities.) Thus, the domain is (−∞ 0) ∪ (5∞).
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14 ¤ CHAPTER 1 FUNCTIONS AND MODELS

36. () =
+ 1

1 +
1

+ 1

is defined when + 1 6= 0 [ 6= −1] and 1 + 1

+ 1
6= 0. Since 1 + 1

+ 1
= 0 ⇔

1

+ 1
= −1 ⇔ 1 = −− 1 ⇔  = −2, the domain is { |  6= −2,  6= −1} = (−∞−2)∪ (−2−1)∪ (−1∞).

37.  () =

2−√ is defined when  ≥ 0 and 2−√ ≥ 0. Since 2−√ ≥ 0 ⇔ 2 ≥ √ ⇔ √

 ≤ 2 ⇔
0 ≤  ≤ 4, the domain is [0 4].

38. () =
√
4− 2. Now  =

√
4− 2 ⇒ 2 = 4− 2 ⇔ 2 + 2 = 4, so

the graph is the top half of a circle of radius 2 with center at the origin. The domain

is

 | 4− 2 ≥ 0 =  | 4 ≥ 2


= { | 2 ≥ ||} = [−2 2]. From the graph,

the range is 0 ≤  ≤ 2, or [0 2].

39. The domain of () = 16− 24 is the set of all real numbers, denoted by R or
(−∞∞). The graph of f is a line with slope 16 and y-intercept −24.

40. Note that () =
2 − 1
+ 1

=
(+ 1)(− 1)

+ 1
= − 1 for + 1 6= 0, i.e.,  6= −1.

The domain of  is the set of all real numbers except −1. In interval notation, we
have (−∞−1) ∪ (−1∞). The graph of  is a line with slope 1, -intercept −1,
and a hole at  = −1.

41. () =


+ 2 if   0

1−  if  ≥ 0
(−3) = −3 + 2 = −1, (0) = 1− 0 = 1, and (2) = 1− 2 = −1.

42. () =


3− 1

2 if   2

2− 5 if  ≥ 2
(−3) = 3− 1

2
(−3) = 9

2
, (0) = 3− 1

2
(0) = 3,

and (2) = 2(2)− 5 = −1.

43. () =


+ 1 if  ≤ −1
2 if   −1

(−3) = −3 + 1 = −2, (0) = 02 = 0, and (2) = 22 = 4.
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SECTION 1.1 FOUR WAYS TO REPRESENT A FUNCTION ¤ 15

44. () =

−1 if  ≤ 1
7− 2 if   1

(−3) = −1, (0) = −1, and (2) = 7− 2(2) = 3.

45. || =

 if  ≥ 0
− if   0

so () = + || =

2 if  ≥ 0
0 if   0

Graph the line  = 2 for  ≥ 0 and graph  = 0 (the -axis) for   0

46. () = |+ 2|=

+ 2 if + 2 ≥ 0
−(+ 2) if + 2  0

=


+ 2 if  ≥ −2
−− 2 if   −2

47. () = |1− 3|=

1− 3 if 1− 3 ≥ 0
−(1− 3) if 1− 3  0

=


1− 3 if  ≤ 1

3

3− 1 if   1
3

48. ||=

 if  ≥ 0
− if   0

and

|+ 1| =

+ 1 if + 1 ≥ 0
−(+ 1) if + 1  0

=


+ 1 if  ≥ −1
−− 1 if   −1

so () = ||+ |+ 1| =


+ (+ 1) if  ≥ 0
−+ (+ 1) if −1 ≤   0

−+ (−− 1) if   −1
=


2+ 1 if  ≥ 0
1 if −1 ≤   0

−2− 1 if   −1
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16 ¤ CHAPTER 1 FUNCTIONS AND MODELS

49. To graph () =

 || if || ≤ 1
1 if ||  1 , graph  = || (Figure 16)

for −1 ≤  ≤ 1 and graph  = 1 for   1 and for   −1.

We could rewrite f as () =


1 if   −1
− if −1 ≤   0

 if 0 ≤  ≤ 1
1 if   1

.

50. () =
||− 1=  ||− 1 if ||− 1 ≥ 0

−(||− 1) if ||− 1  0

=

 ||− 1 if || ≥ 1
− ||+ 1 if ||  1

=


− 1 if || ≥ 1 and  ≥ 0
−− 1 if || ≥ 1 and   0

−+ 1 if ||  1 and  ≥ 0
−(−) + 1 if ||  1 and   0

=


− 1 if  ≥ 1
−− 1 if  ≤ −1
−+ 1 if 0 ≤   1

+ 1 if −1    0

51. Recall that the slope of a line between the two points (1 1) and (2 2) is =
2 − 1

2 − 1
and an equation of the line

connecting those two points is  − 1 = (− 1). The slope of the line segment joining the points (1−3) and (5 7) is
7− (−3)
5− 1 =

5

2
, so an equation is  − (−3) = 5

2
(− 1). The function is () = 5

2
− 11

2
, 1 ≤  ≤ 5.

52. The slope of the line segment joining the points (−5 10) and (7−10) is −10− 10
7− (−5) = −

5

3
, so an equation is

 − 10 = − 5
3
[− (−5)]. The function is () = − 5

3
+ 5

3
, −5 ≤  ≤ 7.

53. We need to solve the given equation for . + ( − 1)2 = 0 ⇔ ( − 1)2 = − ⇔  − 1 = ±√− ⇔
 = 1±√−. The expression with the positive radical represents the top half of the parabola, and the one with the negative
radical represents the bottom half. Hence, we want () = 1−√−. Note that the domain is  ≤ 0.

54. 2 + ( − 2)2 = 4 ⇔ ( − 2)2 = 4− 2 ⇔  − 2 = ±√4− 2 ⇔  = 2±√4− 2. The top half is given by

the function () = 2 +
√
4− 2, −2 ≤  ≤ 2.

55. For 0 ≤  ≤ 3, the graph is the line with slope −1 and -intercept 3, that is,  = −+ 3. For 3   ≤ 5, the graph is the line
with slope 2 passing through (3 0); that is,  − 0 = 2(− 3), or  = 2− 6. So the function is

() =

−+ 3 if 0 ≤  ≤ 3
2− 6 if 3   ≤ 5

56. For −4 ≤  ≤ −2, the graph is the line with slope − 3
2
passing through (−2 0); that is,  − 0 = − 3

2
[− (−2)], or

 = − 3
2
− 3. For−2    2, the graph is the top half of the circle with center (0 0) and radius 2. An equation of the circle
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SECTION 1.1 FOUR WAYS TO REPRESENT A FUNCTION ¤ 17

is 2 + 2 = 4, so an equation of the top half is  =
√
4− 2. For 2 ≤  ≤ 4, the graph is the line with slope 3

2 passing

through (2 0); that is,  − 0 = 3
2 (− 2), or  = 3

2− 3. So the function is

() =


− 3
2
− 3 if −4 ≤  ≤ −2

√
4− 2 if −2    2

3
2
− 3 if 2 ≤  ≤ 4

57. Let the length and width of the rectangle be  and . Then the perimeter is 2+ 2 = 20 and the area is  =  .

Solving the first equation for in terms of  gives =
20− 2
2

= 10−. Thus, () = (10−) = 10−2. Since

lengths are positive, the domain of  is 0    10. If we further restrict  to be larger than , then 5    10 would be

the domain.

58. Let the length and width of the rectangle be  and . Then the area is  = 16, so that = 16. The perimeter is

 = 2+ 2 , so  () = 2+ 2(16) = 2+ 32, and the domain of  is   0, since lengths must be positive

quantities. If we further restrict  to be larger than , then   4 would be the domain.

59. Let the length of a side of the equilateral triangle be . Then by the Pythagorean Theorem, the height  of the triangle satisfies

2 +

1
2

2
= 2, so that 2 = 2 − 1

4
2 = 3

4
2 and  =

√
3
2
. Using the formula for the area  of a triangle,

 = 1
2
(base)(height), we obtain () = 1

2
()
√

3
2


=
√
3
4
2, with domain   0.

60. Let the length, width, and height of the closed rectangular box be denoted by , , and, respectively. The length is twice

the width, so  = 2 . The volume  of the box is given by  = . Since  = 8, we have 8 = (2 ) ⇒

8 = 2 2 ⇒  =
8

2 2
=

4

 2
, and so = ( ) =

4

 2
.

61. Let each side of the base of the box have length , and let the height of the box be . Since the volume is 2, we know that

2 = 2, so that  = 22, and the surface area is  = 2 + 4. Thus, () = 2 + 4(22) = 2 + (8), with

domain   0.

62. The area of the window is  = + 1
2


1
2

2
= +

2

8
, where  is the height of the rectangular portion of the window.

The perimeter is  = 2+ + 1
2 = 30 ⇔ 2 = 30− − 1

2 ⇔  = 1
4 (60− 2− ). Thus,

() = 
60− 2− 

4
+

2

8
= 15− 1

2
2 − 

4 
2 + 

8 
2 = 15− 4

8
2 − 

8 
2 = 15− 2


 + 4

8


.

Since the lengths  and  must be positive quantities, we have   0 and   0. For   0, we have 2  0 ⇔

30− − 1
2
  0 ⇔ 60  2+  ⇔  

60

2 + 
. Hence, the domain of  is 0   

60

2 + 
.

63. The height of the box is  and the length and width are  = 20− 2, = 12− 2. Then  =  and so

 () = (20− 2)(12− 2)() = 4(10− )(6− )() = 4(60− 16+ 2) = 43 − 642 + 240.
The sides , , and  must be positive. Thus,   0 ⇔ 20− 2  0 ⇔   10;

  0 ⇔ 12− 2  0 ⇔   6; and   0. Combining these restrictions gives us the domain 0    6.
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18 ¤ CHAPTER 1 FUNCTIONS AND MODELS

64. We can summarize the monthly cost with a piecewise

defined function.

() =


35 if 0 ≤  ≤ 400
35 + 010(− 400) if   400

65. We can summarize the amount of the fine with a

piecewise defined function.

 () =


15(40− ) if 0 ≤   40

0 if 40 ≤  ≤ 65
15(− 65) if   65

66. For the first 1200 kWh, () = 10 + 006.

For usage over 1200 kWh, the cost is

() = 10 + 006(1200) + 007(− 1200) = 82 + 007(− 1200).
Thus,

() =


10 + 006 if 0 ≤  ≤ 1200
82 + 007(− 1200) if   1200

67. (a) (b) On $14,000, tax is assessed on $4000, and 10%($4000) = $400.

On $26,000, tax is assessed on $16,000, and

10%($10,000) + 15%($6000) = $1000 + $900 = $1900.

(c) As in part (b), there is $1000 tax assessed on $20,000 of income, so

the graph of  is a line segment from (10,000 0) to (20,000 1000).

The tax on $30,000 is $2500, so the graph of  for   20,000 is

the ray with initial point (20,000 1000) that passes through

(30,000 2500).

68. One example is the amount paid for cable or telephone system repair in the home, usually measured to the nearest quarter hour.

Another example is the amount paid by a student in tuition fees, if the fees vary according to the number of credits for which

the student has registered.

69.  is an odd function because its graph is symmetric about the origin.  is an even function because its graph is symmetric with

respect to the -axis.
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SECTION 1.1 FOUR WAYS TO REPRESENT A FUNCTION ¤ 19

70.  is not an even function since it is not symmetric with respect to the -axis.  is not an odd function since it is not symmetric

about the origin. Hence,  is neither even nor odd.  is an even function because its graph is symmetric with respect to the

-axis.

71. (a) Because an even function is symmetric with respect to the -axis, and the point (5 3) is on the graph of this even function,

the point (−5 3) must also be on its graph.

(b) Because an odd function is symmetric with respect to the origin, and the point (5 3) is on the graph of this odd function,

the point (−5−3) must also be on its graph.
72. (a) If  is even, we get the rest of the graph by reflecting

about the -axis.

(b) If  is odd, we get the rest of the graph by rotating

180◦ about the origin.

73. () =


2 + 1
.

(−) = −
(−)2 + 1 =

−
2 + 1

= − 

2 + 1
= −().

Since (−) = −(),  is an odd function.

74. () =
2

4 + 1
.

(−) = (−)2
(−)4 + 1 =

2

4 + 1
= ().

Since (−) = (),  is an even function.

75. () =


+ 1
, so (−) = −

−+ 1 =


− 1 .

Since this is neither () nor −(), the function  is
neither even nor odd.

76. () =  ||.
(−) = (−) |−| = (−) || = −( ||)

= −()
Since (−) = −(),  is an odd function.
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20 ¤ CHAPTER 1 FUNCTIONS AND MODELS

77. () = 1 + 32 − 4.

(−) = 1+3(−)2−(−)4 = 1+32−4 = ().

Since (−) = (),  is an even function.

78. () = 1 + 33 − 5, so

(−) = 1 + 3(−)3 − (−)5 = 1 + 3(−3)− (−5)
= 1− 33 + 5

Since this is neither () nor −(), the function  is
neither even nor odd.

79. (i) If  and  are both even functions, then (−) = () and (−) = (). Now

( + )(−) = (−) + (−) = () + () = ( + )(), so  +  is an even function.

(ii) If  and  are both odd functions, then (−) = −() and (−) = −(). Now
( + )(−) = (−) + (−) = −() + [−()] = −[() + ()] = −( + )(), so  +  is an odd function.

(iii) If  is an even function and  is an odd function, then ( + )(−) = (−)+ (−) = ()+ [−()] = ()− (),

which is not ( + )() nor −( + )(), so  +  is neither even nor odd. (Exception: if  is the zero function, then

 +  will be odd. If  is the zero function, then  +  will be even.)

80. (i) If  and  are both even functions, then (−) = () and (−) = (). Now

()(−) = (−)(−) = ()() = ()(), so  is an even function.

(ii) If  and  are both odd functions, then (−) = −() and (−) = −(). Now
()(−) = (−)(−) = [−()][−()] = ()() = ()(), so  is an even function.

(iii) If  is an even function and  is an odd function, then

()(−) = (−)(−) = ()[−()] = −[()()] = −()(), so  is an odd function.

1.2 Mathematical Models: A Catalog of Essential Functions

1. (a) () = log2  is a logarithmic function.

(b) () = 4
√
 is a root function with  = 4.

(c) () =
23

1− 2
is a rational function because it is a ratio of polynomials.

(d) () = 1− 11+ 2542 is a polynomial of degree 2 (also called a quadratic function).

(e) () = 5 is an exponential function.

(f ) () = sin  cos2 is a trigonometric function.
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SECTION 1.2 MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS ¤ 21

2. (a)  =  is an exponential function (notice that  is the exponent).

(b)  =  is a power function (notice that  is the base).

(c)  = 2(2− 3) = 22 − 5 is a polynomial of degree 5.

(d)  = tan − cos  is a trigonometric function.
(e)  = (1 + ) is a rational function because it is a ratio of polynomials.

(f )  =
√
3 − 1(1 + 3

√
) is an algebraic function because it involves polynomials and roots of polynomials.

3. We notice from the figure that  and  are even functions (symmetric with respect to the -axis) and that  is an odd function

(symmetric with respect to the origin). So (b)

 = 5


must be  . Since  is flatter than  near the origin, we must have

(c)

 = 8


matched with  and (a)


 = 2


matched with .

4. (a) The graph of  = 3 is a line (choice ).

(b)  = 3 is an exponential function (choice  ).

(c)  = 3 is an odd polynomial function or power function (choice  ).

(d)  = 3
√
 = 13 is a root function (choice ).

5. The denominator cannot equal 0, so 1− sin 6= 0 ⇔ sin 6= 1 ⇔  6= 
2 + 2. Thus, the domain of

() =
cos

1− sin is

 |  6= 

2
+ 2,  an integer


.

6. The denominator cannot equal 0, so 1− tan 6= 0 ⇔ tan 6= 1 ⇔  6= 
4
+ . The tangent function is not defined

if  6= 
2
+ . Thus, the domain of () =

1

1− tan is

 |  6= 

4
+ ,  6= 

2
+ ,  an integer


.

7. (a) An equation for the family of linear functions with slope 2

is  = () = 2+ , where  is the -intercept.

(b) (2) = 1 means that the point (2 1) is on the graph of  . We can use the

point-slope form of a line to obtain an equation for the family of linear

functions through the point (2 1).  − 1 = (− 2), which is equivalent
to  = + (1− 2) in slope-intercept form.

(c) To belong to both families, an equation must have slope = 2, so the equation in part (b),  = + (1− 2),
becomes  = 2− 3. It is the only function that belongs to both families.
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22 ¤ CHAPTER 1 FUNCTIONS AND MODELS

8. All members of the family of linear functions () = 1 +(+ 3) have

graphs that are lines passing through the point (−3 1).

9. All members of the family of linear functions () = −  have graphs

that are lines with slope −1. The -intercept is .

10. The vertex of the parabola on the left is (3 0), so an equation is  = (− 3)2 + 0. Since the point (4 2) is on the

parabola, we’ll substitute 4 for  and 2 for  to find . 2 = (4− 3)2 ⇒  = 2, so an equation is () = 2(− 3)2.

The -intercept of the parabola on the right is (0 1), so an equation is  = 2 + + 1. Since the points (−2 2) and
(1−25) are on the parabola, we’ll substitute −2 for  and 2 for  as well as 1 for  and −25 for  to obtain two equations
with the unknowns  and .

(−2 2): 2 = 4− 2+ 1 ⇒ 4− 2 = 1 (1)

(1−25): −25 = + + 1 ⇒ +  = −35 (2)

2 · (2) + (1) gives us 6 = −6 ⇒  = −1. From (2), −1 +  = −35 ⇒  = −25, so an equation
is () = −2 − 25+ 1.

11. Since (−1) = (0) = (2) = 0,  has zeros of −1, 0, and 2, so an equation for  is () = [− (−1)](− 0)(− 2),
or () = (+ 1)(− 2). Because (1) = 6, we’ll substitute 1 for  and 6 for ().
6 = (1)(2)(−1) ⇒ −2 = 6 ⇒  = −3, so an equation for  is () = −3(+ 1)(− 2).

12. (a) For  = 002+ 850, the slope is 002, which means that the average surface temperature of the world is increasing at a

rate of 002 ◦C per year. The  -intercept is 850, which represents the average surface temperature in ◦C in the year 1900.

(b)  = 2100− 1900 = 200 ⇒  = 002(200) + 850 = 1250 ◦C

13. (a)  = 200, so  = 00417(+ 1) = 00417(200)(+ 1) = 834+ 834. The slope is 834, which represents the

change in mg of the dosage for a child for each change of 1 year in age.

(b) For a newborn,  = 0, so  = 834 mg.
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SECTION 1.2 MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS ¤ 23

14. (a) (b) The slope of −4 means that for each increase of 1 dollar for a
rental space, the number of spaces rented decreases by 4. The

-intercept of 200 is the number of spaces that would be occupied

if there were no charge for each space. The -intercept of 50 is the

smallest rental fee that results in no spaces rented.

15. (a) (b) The slope of 9
5
means that  increases 9

5
degrees for each increase

of 1◦C. (Equivalently,  increases by 9 when  increases by 5

and  decreases by 9 when  decreases by 5.) The  -intercept of

32 is the Fahrenheit temperature corresponding to a Celsius

temperature of 0.

16. (a) Let  = distance traveled (in miles) and  = time elapsed (in hours). At

 = 0,  = 0 and at  = 50minutes = 50 · 1
60
= 5

6
h,  = 40. Thus we

have two points: (0 0) and

5
6
 40

, so =

40− 0
5
6
− 0 = 48 and so  = 48.

(b)

(c) The slope is 48 and represents the car’s speed in mih.

17. (a) Using in place of  and  in place of , we find the slope to be
2 − 1

2 −1
=

80− 70
173− 113 =

10

60
=
1

6
. So a linear

equation is  − 80 = 1
6
( − 173) ⇔  − 80 = 1

6
 − 173

6
⇔  = 1

6
 + 307

6


307
6
= 5116


.

(b) The slope of 1
6
means that the temperature in Fahrenheit degrees increases one-sixth as rapidly as the number of cricket

chirps per minute. Said differently, each increase of 6 cricket chirps per minute corresponds to an increase of 1◦F.

(c) When = 150, the temperature is given approximately by  = 1
6
(150) + 307

6
= 7616 ◦F ≈ 76 ◦F.

18. (a) Let  denote the number of chairs produced in one day and  the associated

cost. Using the points (100 2200) and (300 4800), we get the slope

4800−2200
300−100 = 2600

200
= 13. So  − 2200 = 13(− 100) ⇔

 = 13+ 900.

(b) The slope of the line in part (a) is 13 and it represents the cost (in dollars)

of producing each additional chair.

(c) The -intercept is 900 and it represents the fixed daily costs of operating

the factory.

19. (a) We are given
change in pressure

10 feet change in depth
=
434

10
= 0434. Using  for pressure and  for depth with the point

(  ) = (0 15), we have the slope-intercept form of the line,  = 0434+ 15.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



24 ¤ CHAPTER 1 FUNCTIONS AND MODELS

(b) When  = 100, then 100 = 0434+ 15 ⇔ 0434 = 85 ⇔  = 85
0434 ≈ 19585 feet. Thus, the pressure is

100 lbin2 at a depth of approximately 196 feet.

20. (a) Using  in place of  and  in place of , we find the slope to be
2 − 1

2 − 1
=
460− 380
800− 480 =

80

320
=
1

4
.

So a linear equation is  − 460 = 1
4
(− 800) ⇔  − 460 = 1

4
− 200 ⇔  = 1

4
+ 260.

(b) Letting  = 1500 we get  = 1
4 (1500) + 260 = 635.

The cost of driving 1500 miles is $635.

(c)

The slope of the line represents the cost per

mile, $025.

(d) The -intercept represents the fixed cost, $260.

(e) A linear function gives a suitable model in this situation because you

have fixed monthly costs such as insurance and car payments, as well

as costs that increase as you drive, such as gasoline, oil, and tires, and

the cost of these for each additional mile driven is a constant.

21. (a) The data appear to be periodic and a sine or cosine function would make the best model. A model of the form

() =  cos() +  seems appropriate.

(b) The data appear to be decreasing in a linear fashion. A model of the form () = +  seems appropriate.

22. (a) The data appear to be increasing exponentially. A model of the form () =  ·  or () =  ·  +  seems appropriate.

(b) The data appear to be decreasing similarly to the values of the reciprocal function. A model of the form () =  seems

appropriate.

Exercises 23– 28: Some values are given to many decimal places. These are the results given by several computer algebra systems— rounding is left

to the reader.

23. (a)

A linear model does seem appropriate.

(b) Using the points (4000 141) and (60,000 82), we obtain

 − 141 = 82− 141
60,000− 4000 (− 4000) or, equivalently,

 ≈ −0000105357+ 14521429.

(c) Using a computing device, we obtain the least squares regression line  = −00000997855+ 13950764.
The following commands and screens illustrate how to find the least squares regression line on a TI-84 Plus.
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SECTION 1.2 MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS ¤ 25

Enter the data into list one (L1) and list two (L2). Press to enter the editor.

Find the regession line and store it in Y1. Press .

Note from the last figure that the regression line has been stored in Y1 and that Plot1 has been turned on (Plot1 is

highlighted). You can turn on Plot1 from the Y= menu by placing the cursor on Plot1 and pressing or by

pressing .

Now press to produce a graph of the data and the regression

line. Note that choice 9 of the ZOOM menu automatically selects a window

that displays all of the data.

(d) When  = 25,000,  ≈ 11456; or about 115 per 100 population.

(e) When  = 80,000,  ≈ 5968; or about a 6% chance.

(f ) When  = 200,000,  is negative, so the model does not apply.

24. (a) (b)

Using a computing device, we obtain the least squares

regression line  = 4856− 22096.
(c) When  = 100◦F,  = 2647 ≈ 265 chirpsmin.
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26 ¤ CHAPTER 1 FUNCTIONS AND MODELS

25. (a) (b) Using a computing device, we obtain the regression line

 = 188074+ 8264974.

(c) When  = 53 cm,  ≈ 1823 cm.

26. (a) Using a computing device, we obtain the regression line  = 001879+ 030480.

(b) The regression line appears to be a suitable model for the data.

(c) The -intercept represents the percentage of laboratory rats that

develop lung tumors when not exposed to asbestos fibers.

27. (a) See the scatter plot in part (b). A linear model seems appropriate.

(b) Using a computing device, we obtain the regression line

 = 111664+ 60,18833.

(c) For 2002,  = 17 and  ≈ 79,171 thousands of barrels per day.
For 2012,  = 27 and  ≈ 90,338 thousands of barrels per day.

28. (a) See the scatter plot in part (b). A linear model seems appropriate.

(b) Using a computing device, we obtain the regression line

 = 033089+ 807321.

(c) For 2005,  = 5 and  ≈ 973 centskWh. For 2013,  = 13 and
 ≈ 1237 centskWh.

29. If  is the original distance from the source, then the illumination is () = −2 = 2. Moving halfway to the lamp gives

us an illumination of 

1
2

= 


1
2
−2

= (2)2 = 4(2), so the light is 4 times as bright.

30. (a) If  = 60, then  = 0703 ≈ 239, so you would expect to find 2 species of bats in that cave.

(b)  = 4 ⇒ 4 = 0703 ⇒ 40
7
= 310 ⇒  =


40
7

103 ≈ 3336, so we estimate the surface area of the cave
to be 334 m2.

31. (a) Using a computing device, we obtain a power function = , where  ≈ 31046 and  ≈ 0308.

(b) If  = 291, then =  ≈ 178, so you would expect to find 18 species of reptiles and amphibians on Dominica.

32. (a)  = 1000 431 227 1499 528 750
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SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS ¤ 27

(b) The power model in part (a) is approximately  = 15. Squaring both sides gives us  2 = 3, so the model matches

Kepler’s Third Law,  2 =  3.

1.3 New Functions from Old Functions

1. (a) If the graph of  is shifted 3 units upward, its equation becomes  = () + 3.

(b) If the graph of  is shifted 3 units downward, its equation becomes  = ()− 3.

(c) If the graph of  is shifted 3 units to the right, its equation becomes  = (− 3).

(d) If the graph of  is shifted 3 units to the left, its equation becomes  = (+ 3).

(e) If the graph of  is reflected about the -axis, its equation becomes  = −().

(f ) If the graph of  is reflected about the -axis, its equation becomes  = (−).

(g) If the graph of  is stretched vertically by a factor of 3, its equation becomes  = 3().

(h) If the graph of  is shrunk vertically by a factor of 3, its equation becomes  = 1
3
().

2. (a) To obtain the graph of  = () + 8 from the graph of  = (), shift the graph 8 units upward.

(b) To obtain the graph of  = (+ 8) from the graph of  = (), shift the graph 8 units to the left.

(c) To obtain the graph of  = 8() from the graph of  = (), stretch the graph vertically by a factor of 8.

(d) To obtain the graph of  = (8) from the graph of  = (), shrink the graph horizontally by a factor of 8.

(e) To obtain the graph of  = −()− 1 from the graph of  = (), first reflect the graph about the -axis, and then shift it

1 unit downward.

(f ) To obtain the graph of  = 8( 1
8
) from the graph of  = (), stretch the graph horizontally and vertically by a factor

of 8.

3. (a) (graph 3) The graph of  is shifted 4 units to the right and has equation  = (− 4).

(b) (graph 1) The graph of  is shifted 3 units upward and has equation  = () + 3.

(c) (graph 4) The graph of  is shrunk vertically by a factor of 3 and has equation  = 1
3
().

(d) (graph 5) The graph of  is shifted 4 units to the left and reflected about the -axis. Its equation is  = −(+ 4).
(e) (graph 2) The graph of  is shifted 6 units to the left and stretched vertically by a factor of 2. Its equation is

 = 2(+ 6).

4. (a)  = ()− 3: Shift the graph of  3 units down. (b)  = (+ 1): Shift the graph of  1 unit to the left.
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28 ¤ CHAPTER 1 FUNCTIONS AND MODELS

(c)  = 1
2(): Shrink the graph of  vertically by a

factor of 2.

(d)  = −(): Reflect the graph of  about the -axis.

5. (a) To graph  = (2) we shrink the graph of 

horizontally by a factor of 2.

The point (4−1) on the graph of  corresponds to the
point


1
2 · 4−1


= (2−1).

(b) To graph  = 

1
2


we stretch the graph of 

horizontally by a factor of 2.

The point (4−1) on the graph of  corresponds to the
point (2 · 4−1) = (8−1).

(c) To graph  = (−) we reflect the graph of  about
the -axis.

The point (4−1) on the graph of  corresponds to the
point (−1 · 4−1) = (−4−1).

(d) To graph  = −(−) we reflect the graph of  about
the -axis, then about the -axis.

The point (4−1) on the graph of  corresponds to the
point (−1 · 4−1 ·−1) = (−4 1).

6. The graph of  = () =
√
3− 2 has been shifted 2 units to the right and stretched vertically by a factor of 2.

Thus, a function describing the graph is

 = 2(− 2) = 23(− 2)− (− 2)2 = 23− 6− (2 − 4+ 4) = 2√−2 + 7− 10
7. The graph of  = () =

√
3− 2 has been shifted 4 units to the left, reflected about the -axis, and shifted downward

1 unit. Thus, a function describing the graph is

 = −1 ·  
reflect

about -axis

 (+ 4)  
shift

4 units left

− 1  
shift

1 unit left

This function can be written as

 = −(+ 4)− 1 = −3(+ 4)− (+ 4)2 − 1
= −3+ 12− (2 + 8+ 16)− 1 = −√−2 − 5− 4− 1
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SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS ¤ 29

8. (a) The graph of  = 2 sin can be obtained from the graph

of  = sin by stretching it vertically by a factor of 2.

(b) The graph of  = 1 +
√
 can be obtained from

the graph of  =
√
 by shifting it upward 1 unit.

9.  = −2: Start with the graph of  = 2

and reflect about the -axis.

10.  = (− 3)2: Start with the graph of

 = 2 and shift 3 units to the right.

11.  = 3 + 1: Start with the graph of

 = 3 and shift upward 1 unit.

12.  = 1− 1


= − 1


+ 1: Start with the graph of  =

1


, reflect about the -axis, and shift upward 1 unit.
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30 ¤ CHAPTER 1 FUNCTIONS AND MODELS

13.  = 2 cos 3: Start with the graph of  = cos, compress horizontally by a factor of 3, and then stretch vertically by a factor

of 2.

14.  = 2
√
+ 1: Start with the graph of  =

√
, shift 1 unit to the left, and then stretch vertically by a factor of 2.

15.  = 2 − 4+ 5 = (2 − 4+ 4) + 1 = (− 2)2 + 1: Start with the graph of  = 2, shift 2 units to the right, and then

shift upward 1 unit.

16.  = 1 + sin: Start with the graph of  = sin, compress horizontally by a factor of , and then shift upward 1 unit.

17.  = 2−√: Start with the graph of  = √, reflect about the -axis, and then shift 2 units upward.
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SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS ¤ 31

18.  = 3− 2 cos: Start with the graph of  = cos, stretch vertically by a factor of 2, reflect about the -axis, and then shift
3 units upward.

19.  = sin(2): Start with the graph of

 = sin and stretch horizontally by a

factor of 2.

20.  = ||− 2: Start with the graph of
 = || and shift 2 units downward.

21.  = |− 2|: Start with the graph of
 = || and shift 2 units to the right.

22.  = 1
4
tan(− 

4
): Start with the graph of  = tan, shift 

4
units to the right, and then compress vertically by a factor of 4.
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32 ¤ CHAPTER 1 FUNCTIONS AND MODELS

23.  = |√− 1|: Start with the graph of  = √, shift it 1 unit downward, and then reflect the portion of the graph below the
-axis about the -axis.

24.  = |cos|: Start with the graph of  = cos, shrink it horizontally by a factor of , and reflect all the parts of the graph
below the -axis about the -axis.

   

25. This is just like the solution to Example 4 except the amplitude of the curve (the 30◦N curve in Figure 9 on June 21) is

14− 12 = 2. So the function is () = 12 + 2 sin 2
365
(− 80). March 31 is the 90th day of the year, so the model gives

(90) ≈ 1234 h. The daylight time (5:51 AM to 6:18 PM) is 12 hours and 27 minutes, or 1245 h. The model value differs
from the actual value by 1245−1234

1245
≈ 0009, less than 1%.

26. Using a sine function to model the brightness of Delta Cephei as a function of time, we take its period to be 54 days, its

amplitude to be 035 (on the scale of magnitude), and its average magnitude to be 40. If we take  = 0 at a time of average

brightness, then the magnitude (brightness) as a function of time  in days can be modeled by the formula

() = 40 + 035 sin

2
54



.

27. The water depth() can be modeled by a cosine function with amplitude
12− 2
2

= 5 m, average magnitude
12 + 2

2
= 7 m,

and period 12 hours. High tide occurred at time 6:45 AM ( = 675 h), so the curve begins a cycle at time  = 675 h (shift

6.75 units to the right). Thus,() = 5 cos

2
12
(− 675)+ 7 = 5 cos 

6
(− 675)+ 7, where is in meters and  is the

number of hours after midnight.

28. The total volume of air  () in the lungs can be modeled by a sine function with amplitude
2500− 2000

2
= 250 mL, average

volume
2500 + 2000

2
= 2250 mL, and period 4 seconds. Thus,  () = 250 sin 2

4
+ 2250 = 250 sin 

2
+ 2250, where 

is inmL and  is in seconds.

29. (a) To obtain  = (||), the portion of the graph of  = () to the right of the -axis is reflected about the -axis.

(b)  = sin || (c)  =
||
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SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS ¤ 33

30. The most important features of the given graph are the -intercepts and the maximum

and minimum points. The graph of  = 1() has vertical asymptotes at the -values

where there are -intercepts on the graph of  = (). The maximum of 1 on the graph

of  = () corresponds to a minimum of 11 = 1 on  = 1(). Similarly, the

minimum on the graph of  = () corresponds to a maximum on the graph of

 = 1(). As the values of  get large (positively or negatively) on the graph of

 = (), the values of  get close to zero on the graph of  = 1().

31. () = 3 + 22; () = 32 − 1.  = R for both  and .

(a) ( + )() = (3 + 22) + (32 − 1) = 3 + 52 − 1,  = (−∞∞), or R.
(b) ( − )() = (3 + 22)− (32 − 1) = 3 − 2 + 1,  = R.

(c) ()() = (3 + 22)(32 − 1) = 35 + 64 − 3 − 22,  = R.

(d)







() =

3 + 22

32 − 1 ,  =


 |  6= ± 1√

3


since 32 − 1 6= 0.

32. () =
√
3− ,  = (−∞ 3]; () =

√
2 − 1,  = (−∞−1] ∪ [1∞).

(a) ( + )() =
√
3− +

√
2 − 1,  = (−∞−1] ∪ [1 3], which is the intersection of the domains of  and .

(b) ( − )() =
√
3− −√2 − 1,  = (−∞−1] ∪ [1 3].

(c) ()() =
√
3−  ·√2 − 1,  = (−∞−1] ∪ [1 3].

(d)







() =

√
3− √
2 − 1 ,  = (−∞−1) ∪ (1 3]. We must exclude  = ±1 since these values would make 


undefined.

33. () = 3+ 5; () = 2 + .  = R for both  and , and hence for their composites.

(a) ( ◦ )() = (()) = (2 + ) = 3(2 + ) + 5 = 32 + 3+ 5,  = R.

(b) ( ◦ )() = (()) = (3+ 5) = (3+ 5)2 + (3+ 5)

= 92 + 30+ 25 + 3+ 5 = 92 + 33+ 30,  = R

(c) ( ◦ ) = (()) = (3+ 5) = 3(3+ 5) + 5 = 9+ 15 + 5 = 9+ 20,  = R.

(d) ( ◦ )() = (()) = (2 + ) = (2 + )2 + (2 + )

= 4 + 23 + 2 + 2 +  = 4 + 23 + 22 + ,  = R

34. () = 3 − 2; () = 1− 4.  = R for both  and , and hence for their composites.

(a) ( ◦ )() = (()) = (1− 4) = (1− 4)3 − 2
= (1)3 − 3(1)2(4) + 3(1)(4)2 − (4)3 − 2 = 1− 12+ 482 − 643 − 2
= −1− 12+ 482 − 643  = R

(b) ( ◦ )() = (()) = (3 − 2) = 1− 4(3 − 2) = 1− 43 + 8 = 9− 43,  = R.
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34 ¤ CHAPTER 1 FUNCTIONS AND MODELS

(c) ( ◦ )() = (()) = (3 − 2) = (3 − 2)3 − 2
= (3)3 − 3(3)2(2) + 3(3)(2)2 − (2)3 − 2 = 9 − 66 + 123 − 10  = R

(d) ( ◦ )() = (()) = (1− 4) = 1− 4(1− 4) = 1− 4 + 16 = −3 + 16,  = R.

35. () =
√
+ 1, = { |  ≥ −1}; () = 4− 3,  = R.

(a) ( ◦ )() = (()) = (4 − 3) = (4− 3) + 1 = √4− 2
The domain of  ◦  is { | 4− 3 ≥ −1} = { | 4 ≥ 2} =  |  ≥ 1

2


=

1
2
∞.

(b) ( ◦ )() = (()) = (
√
+ 1 ) = 4

√
+ 1− 3

The domain of  ◦  is { |  is in the domain of  and () is in the domain of }. This is the domain of  , that is,
{ | + 1 ≥ 0} = { |  ≥ −1} = [−1∞).

(c) ( ◦ )() = (()) = (
√
+ 1 ) =

√
+ 1 + 1

For the domain, we need + 1 ≥ 0, which is equivalent to  ≥ −1, and√+ 1 ≥ −1, which is true for all real values
of . Thus, the domain of  ◦  is [−1∞).

(d) ( ◦ )() = (()) = (4− 3) = 4(4− 3)− 3 = 16− 12− 3 = 16− 15  = R.

36. () = sin; () = 2 + 1.  = R for both  and , and hence for their composites.

(a) ( ◦ )() = (()) = (2 + 1) = sin(2 + 1),  = R.

(b) ( ◦ ) = (()) = (sin) = (sin)2 + 1 = sin2 + 1,  = R.

(c) ( ◦ )() = (()) = (sin) = sin(sin),  = R.

(d) ( ◦ )() = (()) = (2 + 1) = (2 + 1)2 + 1 = 4 + 22 + 1 + 1 = 4 + 22 + 2,  = R.

37. () = +
1


,  = { |  6= 0}; () =

+ 1

+ 2
,  = { |  6= −2}

(a) ( ◦ )() = (()) = 


+ 1

+ 2


=

+ 1

+ 2
+

1
+ 1

+ 2

=
+ 1

+ 2
+

+ 2

+ 1

=
(+ 1)(+ 1) + (+ 2)(+ 2)

(+ 2)(+ 1)
=


2 + 2+ 1


+

2 + 4+ 4


(+ 2)(+ 1)

=
22 + 6+ 5

(+ 2)(+ 1)

Since () is not defined for  = −2 and (()) is not defined for  = −2 and  = −1,
the domain of ( ◦ )() is = { |  6= −2−1}.

(b) ( ◦ )() = (()) = 


+

1




=


+

1




+ 1

+
1




+ 2

=

2 + 1 + 


2 + 1 + 2



=
2 + + 1

2 + 2+ 1
=

2 + + 1

(+ 1)2

Since () is not defined for  = 0 and (()) is not defined for  = −1,
the domain of ( ◦ )() is = { |  6= −1 0}.
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SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS ¤ 35

(c) ( ◦ )() = (()) = 


+

1




=


+

1




+

1

+ 1


= +
1


+

1
2+1


= +
1


+



2 + 1

=
()


2 + 1


+ 1


2 + 1


+ ()

(2 + 1)
=

4 + 2 + 2 + 1 + 2

(2 + 1)

=
4 + 32 + 1

(2 + 1)
  = { |  6= 0}

(d) ( ◦ )() = (()) = 


+ 1

+ 2


=

+ 1

+ 2
+ 1

+ 1

+ 2
+ 2

=

+ 1 + 1(+ 2)

+ 2
+ 1 + 2(+ 2)

+ 2

=
+ 1 + + 2

+ 1 + 2+ 4
=
2+ 3

3+ 5

Since () is not defined for  = −2 and (()) is not defined for  = −5
3
,

the domain of ( ◦ )() is =

 |  6= −2− 5

3


.

38. () =


1 + 
,  = { |  6= −1}; () = sin 2,  = R.

(a) ( ◦ )() = (()) = (sin 2) =
sin 2

1 + sin 2

Domain: 1 + sin 2 6= 0 ⇒ sin 2 6= −1 ⇒ 2 6= 3

2
+ 2 ⇒  6= 3

4
+  [ an integer].

(b) ( ◦ )() = (()) = 




1 + 


= sin


2

1 + 


.

Domain: { |  6= −1}

(c) ( ◦ )() = (()) = 




1 + 


=



1 + 

1 +


1 + 

=




1 + 


· (1 + )

1 +


1 + 


· (1 + )

=


1 + + 
=



2+ 1

Since () is not defined for  = −1, and (()) is not defined for  = −1
2
,

the domain of ( ◦ )() is = { |  6= −1−1
2
}.

(d) ( ◦ )() = (()) = (sin 2) = sin(2 sin 2).

Domain: R

39. ( ◦  ◦ )() = ((())) = ((2)) = (sin(2)) = 3 sin(2)− 2

40. ( ◦  ◦ )() = ((())) = ((
√
)) = (2

√
) =

2√ − 4
41. ( ◦  ◦ )() = ((())) = ((3 + 2)) =  [(3 + 2)2]

= (6 + 43 + 4) =

(6 + 43 + 4)− 3 = √6 + 43 + 1

42. ( ◦  ◦ )() = ((())) = (( 3
√
 )) = 


3
√


3
√
− 1


= tan


3
√


3
√
− 1



43. Let () = 2+ 2 and () = 4. Then ( ◦ )() = (()) = (2+ 2 ) = (2+ 2)4 =  ().

44. Let () = cos and () = 2. Then ( ◦ )() = (()) = ( cos) = (cos)2 = cos2  =  ().
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36 ¤ CHAPTER 1 FUNCTIONS AND MODELS

45. Let () = 3
√
 and () =



1 + 
. Then ( ◦ )() = (()) = ( 3

√
 ) =

3
√


1 + 3
√

=  ().

46. Let () =


1 + 
and () = 3

√
. Then ( ◦ )() = (()) = 




1 + 


= 3




1 + 
= ().

47. Let () = 2 and () = sec  tan . Then ( ◦ )() = (()) = (2) = sec(2) tan(2) = ().

48. Let () = tan  and () =


1 + 
. Then ( ◦ )() = (()) = (tan ) =

tan 

1 + tan 
= ().

49. Let () =
√
, () =  − 1, and () = √. Then

( ◦  ◦ )() = ((())) = ((
√
)) = (

√
− 1) =

√
− 1 = ().

50. Let () = ||, () = 2 + , and () = 8
√
. Then

( ◦  ◦ )() = ((())) = ((||)) =  (2 + ||) = 8

2 + || = ().

51. Let () = cos , () = sin , and () = 2. Then

( ◦  ◦ )() = ((())) = ((cos )) = (sin(cos )) = [sin (cos )]2 = sin2(cos ) = ().

52. (a) ((1)) = (6) = 5 (b) ((1)) = (3) = 2

(c) ((1)) = (3) = 4 (d) ((1)) = (6) = 3

(e) ( ◦ )(3) = ((3)) = (4) = 1 (f ) ( ◦ )(6) = ((6)) = (3) = 4

53. (a) (2) = 5, because the point (2 5) is on the graph of . Thus, ((2)) = (5) = 4, because the point (5 4) is on the

graph of  .

(b) ((0)) = (0) = 3

(c) ( ◦ )(0) = ((0)) = (3) = 0

(d) ( ◦ )(6) = ((6)) = (6). This value is not defined, because there is no point on the graph of  that has

-coordinate 6.

(e) ( ◦ )(−2) = ((−2)) = (1) = 4

(f ) ( ◦ )(4) = ((4)) = (2) = −2

54. To find a particular value of (()), say for  = 0, we note from the graph that (0) ≈ 28 and (28) ≈ −05. Thus,
( (0)) ≈ (28) ≈ −05. The other values listed in the table were obtained in a similar fashion.

 () (())

−5 −02 −4
−4 12 −33
−3 22 −17
−2 28 −05
−1 3 −02

 () (())

0 28 −05
1 22 −17
2 12 −33
3 −02 −4
4 −19 −22
5 −41 19
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SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS ¤ 37

55. (a) Using the relationship distance = rate · time with the radius  as the distance, we have () = 60.

(b)  = 2 ⇒ ( ◦ )() = (()) = (60)2 = 36002. This formula gives us the extent of the rippled area

(in cm2) at any time .

56. (a) The radius  of the balloon is increasing at a rate of 2 cms, so () = (2 cms)( s) = 2 (in cm).

(b) Using  = 4
3
3, we get ( ◦ )() =  (()) =  (2) = 4

3
(2)3 = 32

3
3.

The result,  = 32
3
3, gives the volume of the balloon (in cm3) as a function of time (in s).

57. (a) From the figure, we have a right triangle with legs 6 and , and hypotenuse .

By the Pythagorean Theorem, 2 + 62 = 2 ⇒  = () =
√
 2 + 36.

(b) Using  = , we get  = (30 kmh)( hours) = 30 (in km). Thus,

 = () = 30.

(c) ( ◦ )() = (()) = (30) =

(30)2 + 36 =

√
9002 + 36. This function represents the distance between the

lighthouse and the ship as a function of the time elapsed since noon.

58. (a)  =  ⇒ () = 350

(b) There is a Pythagorean relationship involving the legs with lengths  and 1 and the hypotenuse with length :

2 + 12 = 2. Thus, () =
√
2 + 1.

(c) ( ◦ )() = (()) = (350) =

(350)2 + 1

59. (a)

() =


0 if   0

1 if  ≥ 0

(b)

 () =


0 if   0

120 if  ≥ 0 so  () = 120().

(c) Starting with the formula in part (b), we replace 120 with 240 to reflect the

different voltage. Also, because we are starting 5 units to the right of  = 0,

we replace  with − 5. Thus, the formula is  () = 240(− 5).

60. (a) () = ()

=


0 if   0

 if  ≥ 0

(b)  () =


0 if   0

2 if 0 ≤  ≤ 60
so  () = 2(),  ≤ 60.

(c)  () =


0 if   7

4 (− 7) if 7 ≤  ≤ 32
so  () = 4(− 7)(− 7),  ≤ 32.
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38 ¤ CHAPTER 1 FUNCTIONS AND MODELS

61. If () = 1 + 1 and () = 2 + 2, then

( ◦ )() = (()) = (2+ 2) = 1(2+ 2) + 1 = 12+12 + 1.

So  ◦  is a linear function with slope12.

62. If () = 104, then

( ◦)() = (()) = (104) = 104(104) = (104)2,

( ◦ ◦)() = (( ◦)()) = ((104)2) = 104(104)2 = (104)3, and

( ◦ ◦ ◦)() = (( ◦ ◦)()) = ((104)3) = 104(104)3= (104)4.

These compositions represent the amount of the investment after 2, 3, and 4 years.

Based on this pattern, when we compose  copies of , we get the formula ( ◦ ◦ · · · ◦)  
0s

() = (104).

63. (a) By examining the variable terms in  and , we deduce that we must square  to get the terms 42 and 4 in . If we let

() = 2 + , then ( ◦ )() = (()) = (2+ 1) = (2+ 1)2 +  = 42 + 4+ (1 + ). Since

() = 42 + 4+ 7, we must have 1 +  = 7. So  = 6 and () = 2 + 6.

(b) We need a function  so that (()) = 3(()) + 5 = (). But

() = 32 + 3+ 2 = 3(2 + ) + 2 = 3(2 + − 1) + 5, so we see that () = 2 + − 1.

64. We need a function  so that (()) = (+ 4) = () = 4− 1 = 4(+ 4)− 17. So we see that the function  must be
() = 4− 17.

65. We need to examine (−).
(−) = ( ◦ )(−) = ((−)) = (()) [because  is even] = ()

Because (−) = (),  is an even function.

66. (−) = ((−)) = (−()). At this point, we can’t simplify the expression, so we might try to find a counterexample to
show that  is not an odd function. Let () = , an odd function, and () = 2 + . Then () = 2 +  which is neither

even nor odd.

Now suppose  is an odd function. Then (−()) = −(()) = −(). Hence, (−) = −(), and so  is odd if
both  and  are odd.

Now suppose  is an even function. Then (−()) = (()) = (). Hence, (−) = (), and so  is even if  is

odd and  is even.

1.4 Exponential Functions

1. (a)
4−3

2−8
=
28

43
=

28

(22)3
=
28

26
= 28−6 = 22 = 4 (b)

1
3
√
4
=

1

43
= −43

2. (a) 843 = (813)4 = 24 = 16 (b) (32)3 =  · 33(2)3 = 27 · 6 = 277

3. (a) 8(2)4 = 8 · 244 = 1612 (b)
(63)4

25
=
64(3)4

25
=
129612

25
= 6487
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SECTION 1.4 EXPONENTIAL FUNCTIONS ¤ 39

4. (a)
2 · 3−1

+2
=

2+3−1

+2
=

5−1

+2
= 4−3

(b)



√


3
√


=

√

√


3
√

3
√

=

1214

1313
= (12−13)(14−13) = 16−112

5. (a) () = ,   0 (b) R (c) (0∞) (d) See Figures 4(c), 4(b), and 4(a), respectively.

6. (a) The number  is the value of  such that the slope of the tangent line at  = 0 on the graph of  =  is exactly 1.

(b)  ≈ 271828 (c) () = 

7. All of these graphs approach 0 as →−∞, all of them pass through the point
(0 1), and all of them are increasing and approach∞ as →∞. The larger the
base, the faster the function increases for   0, and the faster it approaches 0 as

→−∞.
Note: The notation “→∞” can be thought of as “ becomes large” at this point.
More details on this notation are given in Chapter 2.

8. The graph of − is the reflection of the graph of  about the -axis, and the

graph of 8− is the reflection of that of 8 about the -axis. The graph of 8

increases more quickly than that of  for   0, and approaches 0 faster

as →−∞.

9. The functions with bases greater than 1 (3 and 10) are increasing, while those

with bases less than 1


1
3


and


1
10


are decreasing. The graph of


1
3


is the

reflection of that of 3 about the -axis, and the graph of

1
10


is the reflection of

that of 10 about the -axis. The graph of 10 increases more quickly than that of

3 for   0, and approaches 0 faster as →−∞.

10. Each of the graphs approaches∞ as →−∞, and each approaches 0 as
→∞. The smaller the base, the faster the function grows as →−∞, and
the faster it approaches 0 as →∞.

11. We start with the graph of  = 4 (Figure 3) and shift it 1 unit

down to obtain the graph of  = 4 − 1.
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40 ¤ CHAPTER 1 FUNCTIONS AND MODELS

12. We start with the graph of  = (05)

(Figure 3) and shift it 1 unit to the right to

obtain the graph of  = (05)−1.

13. We start with the graph of  = 2

(Figure 16), reflect it about the -axis, and

then about the -axis (or just rotate 180◦ to

handle both reflections) to obtain the graph of

 = −2−. In each graph,  = 0 is the
horizontal asymptote.

 = 2  = 2−  = −2−

14. We start with the graph of  =  (Figure 16) and

reflect the portion of the graph in the first quadrant

about the -axis to obtain the graph of  = ||.

15. We start with the graph of  =  (Figure 16) and reflect about the -axis to get the graph of  = −. Then we compress

the graph vertically by a factor of 2 to obtain the graph of  = 1
2
− and then reflect about the -axis to get the graph of

 = − 1
2
−. Finally, we shift the graph upward one unit to get the graph of  = 1− 1

2
−.

16. We start with the graph of  =  (Figure 13) and reflect about the -axis to get the graph of  = −. Then shift the graph
upward one unit to get the graph of  = 1− . Finally, we stretch the graph vertically by a factor of 2 to obtain the graph of

 = 2(1− ).
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SECTION 1.4 EXPONENTIAL FUNCTIONS ¤ 41

17. (a) To find the equation of the graph that results from shifting the graph of  =  2 units downward, we subtract 2 from the

original function to get  =  − 2.

(b) To find the equation of the graph that results from shifting the graph of  =  2 units to the right, we replace  with − 2
in the original function to get  = (−2).

(c) To find the equation of the graph that results from reflecting the graph of  =  about the -axis, we multiply the original

function by −1 to get  = −.

(d) To find the equation of the graph that results from reflecting the graph of  =  about the -axis, we replace  with − in
the original function to get  = −.

(e) To find the equation of the graph that results from reflecting the graph of  =  about the -axis and then about the

-axis, we first multiply the original function by −1 (to get  = −) and then replace  with − in this equation to
get  = −−.

18. (a) This reflection consists of first reflecting the graph about the -axis (giving the graph with equation  = −)
and then shifting this graph 2 · 4 = 8 units upward. So the equation is  = − + 8.

(b) This reflection consists of first reflecting the graph about the -axis (giving the graph with equation  = −)

and then shifting this graph 2 · 2 = 4 units to the right. So the equation is  = −(−4).

19. (a) The denominator is zero when 1− 1−
2

= 0 ⇔ 1−
2

= 1 ⇔ 1− 2 = 0 ⇔  = ±1. Thus,

the function () =
1− 

2

1− 1−2
has domain { |  6= ±1} = (−∞−1) ∪ (−1 1) ∪ (1∞).

(b) The denominator is never equal to zero, so the function () =
1 + 

cos
has domain R, or (−∞∞).

20. (a) The function () =
√
10 − 100 has domain  | 10 − 100 ≥ 0 =  | 10 ≥ 102 = { |  ≥ 2} = [2∞).

(b) The sine and exponential functions have domain R, so () = sin( − 1) also has domain R.

21. Use  =  with the points (1 6) and (3 24). 6 = 1

 = 6




and 24 = 3 ⇒ 24 =


6




3 ⇒

4 = 2 ⇒  = 2 [since   0] and  = 6
2 = 3. The function is () = 3 · 2.

22. Use  =  with the points (−1 3) and 1 43. From the point (−1 3), we have 3 = −1, hence  = 3. Using this and

the point

1 43


, we get 4

3 = 1 ⇒ 4
3 = (3) ⇒ 4

9 = 2 ⇒  = 2
3 [since   0] and  = 3( 23 ) = 2. The

function is () = 2( 2
3
).

23. If () = 5, then
(+ )− ()


=
5+ − 5


=
55 − 5


=
5

5 − 1


= 5

5 − 1



.

24. Suppose the month is February. Your payment on the 28th day would be 228−1 = 227 = 134,217,728 cents, or

$1,342,177.28. Clearly, the second method of payment results in a larger amount for any month.

25. 2 ft = 24 in, (24) = 242 in = 576 in = 48 ft. (24) = 224 in = 224(12 · 5280) mi ≈ 265 mi
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42 ¤ CHAPTER 1 FUNCTIONS AND MODELS

26. We see from the graphs that for  less than about 18, () = 5  () = 5, and then near the point (18 171) the curves

intersect. Then ()  () from  ≈ 18 until  = 5. At (5 3125) there is another point of intersection, and for   5 we

see that ()  (). In fact,  increases much more rapidly than  beyond that point.

27. The graph of  finally surpasses that of  at  ≈ 358.

28. We graph  =  and  = 1,000,000,000 and determine where

 = 1× 109. This seems to be true at  ≈ 20723, so   1× 109

for   20723.

29. (a) (b) Using a graphing calculator, we obtain the exponential

curve () = 3689301(106614).

(c) Using the TRACE and zooming in, we find that the bacteria count

doubles from 37 to 74 in about 1087 hours.
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SECTION 1.4 EXPONENTIAL FUNCTIONS ¤ 43

30. (a) Three hours represents 6 doubling periods (one doubling period is 30 minutes). 500 · 26 = 32,000
(b) In  hours, there will be 2 doubling periods. The initial population is 500,

so the population  at time  is  = 500 · 22.
(c)  = 40

60
= 2

3
⇒  = 500 · 22(23) ≈ 1260

(d) We graph 1 = 500 · 22 and 2 = 100,000. The two curves intersect at
 ≈ 382, so the population reaches 100,000 in about 382 hours.

31. (a) Fifteen days represents 3 half-life periods (one half-life period is 5 days). 200

1
2

3
= 25 mg

(b) In  hours, there will be 5 half-life periods. The initial amount is 200 mg,

so the amount remaining after  days is  = 200

1
2

5
mg, or equivalently,

 = 200 · 2−5 mg.
(c)  = 3 weeks = 21 days ⇒  = 200 · 2−215 ≈ 109 mg
(d) We graph 1 = 200 · 2−5 and 2 = 1. The two curves intersect at

 ≈ 382, so the mass will be reduced to 1 mg in about 382 days.

32. (a) Sixty hours represents 4 half-life periods. 2 ·  1
2

4
= 1

8
g

(b) In  hours, there will be 15 half-life periods. The initial mass is 2 g,

so the mass  at time  is  = 2 ·  1
2

15
.

(c) 4 days = 4 · 24 = 96 hours.  = 96 ⇒  = 2 ·  1
2

9615 ≈ 0024 g
(d)  = 001 ⇒  ≈ 1147 hours

33. From the table, we see that  (1) = 76. In Figure 11, we estimate that  = 38 (half of 76) when  ≈ 45. This gives us a
half-life of 45− 1 = 35 days.

34. (a) The exponential decay model has the form () = 

1
2

15
, where  is the number of hours after midnight and () is

the BAC. When  = 0, () = 06, so 06 = 

1
2

0 ⇔  = 06. Thus, the model is () = 06

1
2

15
.

(b) From the graph, we estimate that the BAC is 008 mgmL when

 ≈ 44 hours. (Note that the legal limit is often 008%, which is not
008 mgmL)

35. Let  = 0 correspond to 1950 to get the model  = , where  ≈ 2614086 and  ≈ 101693. To estimate the population in

1993, let  = 43 to obtain  ≈ 5381 million. To predict the population in 2020, let  = 70 to obtain  ≈ 8466 million.

36. Let  = 0 correspond to 1900 to get the model  = , where  ≈ 808498 and  ≈ 101269. To estimate the population in

1925, let  = 25 to obtain  ≈ 111 million. To predict the population in 2020, let  = 120 to obtain  ≈ 367 million.
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44 ¤ CHAPTER 1 FUNCTIONS AND MODELS

37. From the graph, it appears that  is an odd function ( is undefined for  = 0).

To prove this, we must show that (−) = −().

(−) = 1− 1(−)

1 + 1(−)
=
1− (−1)

1 + (−1)
=
1− 1

1

1 +
1

1

· 
1

1
=

1 − 1
1 + 1

= −1− 1

1 + 1
= −()

so  is an odd function.

38. We’ll start with  = −1 and graph () = 1

1 + 
for  = 01, 1, and 5.

From the graph, we see that there is a horizontal asymptote  = 0 as →−∞
and a horizontal asymptote  = 1 as →∞. If  = 1, the y-intercept is


0 1

2


.

As  gets smaller (close to 0), the graph of  moves left. As  gets larger, the graph

of  moves right.

As  changes from−1 to 0, the graph of  is stretched horizontally. As 
changes through large negative values, the graph of  is compressed horizontally.

(This takes care of negatives values of .)

If  is positive, the graph of  is reflected through the y-axis.

Last, if  = 0, the graph of  is the horizontal line  = 1(1 + ).

1.5 Inverse Functions and Logarithms

1. (a) See Definition 1.

(b) It must pass the Horizontal Line Test.

2. (a) −1() =  ⇔ () =  for any  in . The domain of −1 is  and the range of −1 is .

(b) See the steps in (5).

(c) Reflect the graph of  about the line  = .

3.  is not one-to-one because 2 6= 6, but (2) = 20 = (6).

4.  is one-to-one because it never takes on the same value twice.

5. We could draw a horizontal line that intersects the graph in more than one point. Thus, by the Horizontal Line Test, the

function is not one-to-one.
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SECTION 1.5 INVERSE FUNCTIONS AND LOGARITHMS ¤ 45

6. No horizontal line intersects the graph more than once. Thus, by the Horizontal Line Test, the function is one-to-one.

7. No horizontal line intersects the graph more than once. Thus, by the Horizontal Line Test, the function is one-to-one.

8. We could draw a horizontal line that intersects the graph in more than one point. Thus, by the Horizontal Line Test, the

function is not one-to-one.

9. The graph of () = 2− 3 is a line with slope 2. It passes the Horizontal Line Test, so  is one-to-one.
Algebraic solution: If 1 6= 2, then 21 6= 22 ⇒ 21 − 3 6= 22 − 3 ⇒ (1) 6= (2), so  is one-to-one.

10. The graph of () = 4 − 16 is symmetric with respect to the -axis. Pick any -values equidistant from 0 to find two equal
function values. For example, (−1) = −15 and (1) = −15, so  is not one-to-one.

11. () = 1− sin. (0) = 1 and () = 1, so  is not one-to-one.

12. The graph of () = 3
√
 passes the Horizontal Line Test, so  is one-to-one.

13. A football will attain every height  up to its maximum height twice: once on the way up, and again on the way down.

Thus, even if 1 does not equal 2, (1) may equal (2), so  is not 1-1.

14.  is not 1-1 because eventually we all stop growing and therefore, there are two times at which we have the same height.

15. (a) Since  is 1-1, (6) = 17 ⇔ −1(17) = 6.

(b) Since  is 1-1, −1(3) = 2 ⇔ (2) = 3.

16. First, we must determine  such that () = 3. By inspection, we see that if  = 1, then (1) = 3. Since  is 1-1 ( is an

increasing function), it has an inverse, and −1(3) = 1. If  is a 1-1 function, then (−1()) = , so (−1(2)) = 2.

17. First, we must determine  such that () = 4. By inspection, we see that if  = 0, then () = 4. Since  is 1-1 ( is an

increasing function), it has an inverse, and −1(4) = 0.

18. (a)  is 1-1 because it passes the Horizontal Line Test.

(b) Domain of  = [−3 3] = Range of −1. Range of  = [−1 3] = Domain of −1.

(c) Since (0) = 2, −1(2) = 0.

(d) Since (−17) ≈ 0, −1(0) ≈ −17.

19. We solve  = 5
9
( − 32) for  : 9

5
 =  − 32 ⇒  = 9

5
 + 32. This gives us a formula for the inverse function, that

is, the Fahrenheit temperature  as a function of the Celsius temperature .  ≥ −45967 ⇒ 9
5 + 32 ≥ −45967 ⇒

9
5
 ≥ −49167 ⇒  ≥ −27315, the domain of the inverse function.

20.  =
0

1− 22
⇒ 1− 2

2
=

2
0

2
⇒ 2

2
= 1− 2

0

2
⇒ 2 = 2


1− 2

0

2


⇒  = 


1− 2

0

2
.

This formula gives us the speed  of the particle in terms of its mass, that is,  = −1().

21.  = () = 1 +
√
2 + 3 ( ≥ 1) ⇒  − 1 = √2 + 3 ⇒ ( − 1)2 = 2 + 3 ⇒ ( − 1)2 − 2 = 3 ⇒

 = 1
3
( − 1)2 − 2

3
. Interchange  and :  = 1

3
(− 1)2 − 2

3
. So −1() = 1

3
(− 1)2 − 2

3
. Note that the domain of −1

is  ≥ 1.
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46 ¤ CHAPTER 1 FUNCTIONS AND MODELS

22.  = () =
4− 1
2+ 3

⇒ (2+ 3) = 4− 1 ⇒ 2 + 3 = 4− 1 ⇒ 3 + 1 = 4− 2 ⇒

3 + 1 = (4− 2) ⇒  =
3 + 1

4− 2 . Interchange  and :  =
3+ 1

4− 2 . So 
−1() =

3+ 1

4− 2 .

23.  = () = 2−1 ⇒ ln  = 2− 1 ⇒ 1 + ln  = 2 ⇒  = 1
2 (1 + ln ).

Interchange  and :  = 1
2 (1 + ln). So 

−1() = 1
2 (1 + ln).

24.  = () = 2 −  ( ≥ 1
2
) ⇒  = 2 − + 1

4
− 1

4
⇒  = (− 1

2
)2 − 1

4
⇒

 + 1
4 = (− 1

2 )
2 ⇒ − 1

2 =

 + 1

4 ⇒  = 1
2 +


 + 1

4 . Interchange  and :  = 1
2 +


+ 1

4 . So

−1() = 1
2 +


+ 1

4 .

25.  = () = ln (+ 3) ⇒ + 3 =  ⇒  =  − 3. Interchange  and :  =  − 3. So −1() =  − 3.

26.  = () =
1− −

1 + −
⇒ (1 + −) = 1− − ⇒  + − = 1− − ⇒  +  =  − 1 [multiply

each term by ] ⇒  −  = − − 1 ⇒ ( − 1) = − − 1 ⇒  =
1 + 

1− 
⇒  = ln


1 + 

1− 


.

Interchange  and :  = ln


1 + 

1− 


. So −1() = ln


1 + 

1− 


.

27.  = () =
√
4+ 3 ( ≥ 0) ⇒ 2 = 4+ 3 ⇒  =

2 − 3
4

.

Interchange  and :  =
2 − 3
4

. So −1() =
2 − 3
4

( ≥ 0). From

the graph, we see that  and −1 are reflections about the line  = .

28.  = () = 1 + − ⇒ − =  − 1 ⇒ − = ln( − 1) ⇒
 = − ln( − 1). Interchange  and :  = − ln(− 1).

So −1() = − ln(− 1). From the graph, we see that  and −1 are
reflections about the line  = .

29. Reflect the graph of  about the line  = . The points (−1−2), (1−1),
(2 2), and (3 3) on  are reflected to (−2−1), (−1 1), (2 2), and (3 3)

on −1.
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SECTION 1.5 INVERSE FUNCTIONS AND LOGARITHMS ¤ 47

30. Reflect the graph of  about the line  = .

31. (a)  = () =
√
1− 2 (0 ≤  ≤ 1 and note that  ≥ 0) ⇒

2 = 1− 2 ⇒ 2 = 1− 2 ⇒  =

1− 2. So

−1() =
√
1− 2, 0 ≤  ≤ 1. We see that −1and  are the same

function.

(b) The graph of  is the portion of the circle 2 + 2 = 1 with 0 ≤  ≤ 1 and
0 ≤  ≤ 1 (quarter-circle in the first quadrant). The graph of  is symmetric
with respect to the line  = , so its reflection about  =  is itself, that is,

−1 =  .

32. (a)  = () = 3
√
1− 3 ⇒ 3 = 1− 3 ⇒ 3 = 1− 3 ⇒

 = 3

1− 3. So −1 () = 3

√
1− 3. We see that  and −1 are the

same function.

(b) The graph of  is symmetric with respect to the line  = , so its reflection

about  =  is itself, that is, −1 = .

33. (a) It is defined as the inverse of the exponential function with base , that is, log  =  ⇔  = .

(b) (0∞) (c) R (d) See Figure 11.

34. (a) The natural logarithm is the logarithm with base , denoted ln.

(b) The common logarithm is the logarithm with base 10, denoted log .

(c) See Figure 13.

35. (a) log2 32 = log2 2
5 = 5 by (7).

(b) log82 = log88
13 = 1

3
by (7).

Another method: Set the logarithm equal to  and change to an exponential equation.

log8 2 =  ⇔ 8 = 2 ⇔ (23) = 2 ⇔ 23 = 21 ⇔ 3 = 1 ⇔  = 1
3 .

36. (a) log5
1

125
= log5

1

53
= log5 5

−3 = −3 by (7).

(b) ln(12) = ln −2 = −2 by (9).

37. (a) log10 40 + log10 25 = log10 [(40)(25)] [by Law 1]

= log10 100

= log10 10
2 = 2 [by (7)]

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



48 ¤ CHAPTER 1 FUNCTIONS AND MODELS

(b) log 860− log8 3− log8 5 = log8 60
3 − log8 5 [by Law 2]

= log8 20− log8 5
= log8

20
5

[by Law 2]

= log8 4 = log8 8
23 = 2

3
[by (7)]

38. (a) − ln 2 =
1

ln 2
=
1

2
by (9). Or: − ln 2 =


ln 2

−1
= 2−1 =

1

2

(b) ln(ln 
3) = ln 3 [by (9)] = 3 by (9).

39. ln 10 + 2 ln 5 = ln 10 + ln 52 [by Law 3]

= ln [(10)(25)] [by Law 1]

= ln 250

40. ln + 2 ln − 3 ln = ln + ln 2 − ln  3 [by Law 3]

= ln 2 − ln  3 [by Law 1]

= ln
2

 3
[by Law 2]

41. 1
3
ln(+ 2)3 + 1

2


ln− ln(2 + 3+ 2)2= ln[(+ 2)3]13 + 1

2
ln



(2 + 3+ 2)2
[by Laws 3, 2]

= ln(+ 2) + ln

√


2 + 3+ 2
[by Law 3]

= ln
(+ 2)

√


(+ 1)(+ 2)
[by Law 1]

= ln

√


+ 1

Note that since ln is defined for   0, we have + 1, + 2, and 2 + 3+ 2 all positive, and hence their logarithms

are defined.

42. (a) log5 10 =
ln 10

ln 5
[by (10)] ≈ 1430677 (b) log3 57 =

ln 57

ln 3
[by (10)] ≈ 3680144

43. To graph these functions, we use log15  =
ln

ln 15
and log50  =

ln

ln 50
.

These graphs all approach−∞ as → 0+, and they all pass through the

point (1 0). Also, they are all increasing, and all approach∞ as →∞.
The functions with larger bases increase extremely slowly, and the ones with

smaller bases do so somewhat more quickly. The functions with large bases

approach the -axis more closely as → 0+.

44. We see that the graph of ln is the reflection of the graph of  about the

line  = , and that the graph of log10  is the reflection of the graph of 10


about the same line. The graph of 10 increases more quickly than that

of . Also note that log10 →∞ as →∞ more slowly than ln.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 1.5 INVERSE FUNCTIONS AND LOGARITHMS ¤ 49

45. 3 ft = 36 in, so we need  such that log2  = 36 ⇔  = 236 = 68,719,476,736. In miles, this is

68,719,476,736 in · 1 ft
12 in

· 1 mi
5280 ft

≈ 1,084,5877 mi.

46.

From the graphs, we see that () = 01  () = ln for approximately 0    306, and then ()  () for

306    343× 1015 (approximately). At that point, the graph of  finally surpasses the graph of  for good.
47. (a) Shift the graph of  = log10  five units to the left to

obtain the graph of  = log10(+5). Note the vertical

asymptote of  = −5.

 = log10   = log10(+ 5)

(b) Reflect the graph of  = ln about the -axis to obtain

the graph of  = − ln.

 = ln  = − ln

48. (a) Reflect the graph of  = ln about the -axis to obtain

the graph of  = ln (−).

 = ln  = ln (−)

(b) Reflect the portion of the graph of  = ln to the right

of the -axis about the -axis. The graph of  = ln ||
is that reflection in addition to the original portion.

 = ln  = ln ||
49. (a) The domain of () = ln+ 2 is   0 and the range is R.

(b)  = 0 ⇒ ln+ 2 = 0 ⇒ ln = −2 ⇒  = −2

(c) We shift the graph of  = ln two units upward.

50. (a) The domain of () = ln(− 1)− 1 is   1 and the range is R.

(b)  = 0 ⇒ ln(− 1)− 1 = 0 ⇒ ln(− 1) = 1 ⇒
− 1 = 1 ⇒  = + 1

(c) We shift the graph of  = ln one unit to the right and one unit downward.
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50 ¤ CHAPTER 1 FUNCTIONS AND MODELS

51. (a) 7−4 = 6 ⇔ 7− 4 = ln 6 ⇔ 7− ln 6 = 4 ⇔  = 1
4 (7− ln 6)

(b) ln(3− 10) = 2 ⇔ 3− 10 = 2 ⇔ 3 = 2 + 10 ⇔  = 1
3
(2 + 10)

52. (a) ln(2 − 1) = 3 ⇔ 2 − 1 = 3 ⇔ 2 = 1 + 3 ⇔  = ±√1 + 3.

(b) 2 − 3 + 2 = 0 ⇔ ( − 1)( − 2) = 0 ⇔  = 1 or  = 2 ⇔  = ln 1 or  = ln 2, so  = 0 or ln 2.

53. (a) 2−5 = 3 ⇔ log2 3 = − 5 ⇔  = 5 + log2 3.

Or: 2−5 = 3 ⇔ ln

2−5


= ln3 ⇔ (− 5) ln 2 = ln 3 ⇔ − 5 = ln 3

ln 2
⇔  = 5 +

ln 3

ln 2

(b) ln+ ln(− 1) = ln((− 1)) = 1 ⇔ (− 1) = 1 ⇔ 2 − −  = 0. The quadratic formula (with  = 1,

 = −1, and  = −) gives  = 1
2


1±√1 + 4, but we reject the negative root since the natural logarithm is not

defined for   0. So  = 1
2


1 +

√
1 + 4


.

54. (a) ln(ln) = 1 ⇔ ln(ln ) = 1 ⇔ ln = 1 =  ⇔ ln =  ⇔  = 

(b)  =  ⇔ ln  = ln[()] ⇔  = ln + ln  ⇔  = ln +  ⇔

−  = ln ⇔ (− ) = ln ⇔  =
ln

− 

55. (a) ln  0 ⇒   0 ⇒   1. Since the domain of () = ln is   0, the solution of the original inequality

is 0    1.

(b)   5 ⇒ ln   ln 5 ⇒   ln 5

56. (a) 1  3−1  2 ⇒ ln 1  3− 1  ln 2 ⇒ 0  3− 1  ln 2 ⇒ 1  3  1 + ln 2 ⇒
1
3
   1

3
(1 + ln 2)

(b) 1− 2 ln  3 ⇒ −2 ln  2 ⇒ ln  −1 ⇒   −1

57. (a) We must have  − 3  0 ⇔   3 ⇔   ln 3. Thus, the domain of () = ln( − 3) is (ln 3∞).

(b)  = ln( − 3) ⇒  =  − 3 ⇒  =  + 3 ⇒  = ln( + 3), so −1() = ln( + 3).

Now  + 3  0 ⇒   −3, which is true for any real , so the domain of −1 is R.

58. (a) By (9), ln 300 = 300 and ln(300) = 300.

(b) A calculator gives ln 300 = 300 and an error message for ln(300) since 300 is larger than most calculators can evaluate.

59. We see that the graph of  = () =
√
3 + 2 + + 1 is increasing, so  is 1-1.

Enter  =

3 + 2 +  + 1 and use your CAS to solve the equation for .

Using Derive, we get two (irrelevant) solutions involving imaginary expressions,

as well as one which can be simplified to the following:

 = −1() = − 3√4
6


3
√
 − 272 + 20− 3

√
 + 272 − 20 + 3

√
2


where = 3
√
3
√
274 − 402 + 16.

[continued]
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SECTION 1.5 INVERSE FUNCTIONS AND LOGARITHMS ¤ 51

Maple and Mathematica each give two complex expressions and one real expression, and the real expression is equivalent

to that given by Derive. For example, Maple’s expression simplifies to
1

6

23 − 8− 213

213
, where

 = 1082 + 12
√
48− 1202 + 814 − 80.

60. (a) If we use Derive, then solving  = 6 + 4 for  gives us six solutions of the form  = ±
√
3
3

√
 − 1, where

 ∈

−2 sin 

3
 2 sin




3
+



3


−2 cos




3
+



6


and  = sin−1


27− 2
2


. The inverse for  = 6 + 4

( ≥ 0) is  =
√
3
3

√
 − 1 with  = 2 sin




3
+



3


, but because the domain of  is


0 4

27


, this expression is only

valid for  ∈ 0 4
27


.

Happily, Maple gives us the rest of the solution! We solve  = 6 + 4 for  to get the two real solutions

±
√
6

6


13 (23 − 213 + 4)

13
, where  = 108+ 12

√
3

 (27− 4), and the inverse for  = 6 + 4 ( ≥ 0)

is the positive solution, whose domain is

4
27
∞.

Mathematica also gives two real solutions, equivalent to those of Maple.

The positive one is

√
6

6


3
√
413 + 2 3

√
2−13 − 2


, where

 = −2 + 27+ 3√3√√27− 4. Although this expression also has domain
4
27
∞, Mathematica is mysteriously able to plot the solution for all  ≥ 0.

(b)

61. (a)  = () = 100 · 23 ⇒ 

100
= 23 ⇒ log2

 

100


=



3
⇒  = 3 log2

 

100


. Using formula (10), we can

write this as  = −1() = 3 · ln(100)
ln 2

. This function tells us how long it will take to obtain  bacteria (given the

number ).

(b)  = 50,000 ⇒  = −1(50,000) = 3 · ln

50,000
100


ln 2

= 3


ln 500

ln 2


≈ 269 hours

62. (a)  = 0(1− −) ⇒ 

0
= 1− − ⇒ − = 1− 

0
⇒ − 


= ln


1− 

0


⇒

 = − ln(1−0). This gives us the time  necessary to obtain a given charge .

(b)  = 090 and  = 2 ⇒  = −2 ln (1− 0900) = −2 ln 01 ≈ 46 seconds.

63. (a) cos−1(−1) =  because cos = −1 and  is in the interval [0 ] (the range of cos−1).

(b) sin−1 (05) = 
6
because sin 

6
= 05 and 

6
is in the interval

−
2
 
2


(the range of sin−1).

64. (a) tan−1
√
3 = 

3
because tan 

3
=
√
3 and 

3
is in the interval

−
2
 
2


(the range of tan−1).

(b) arctan(−1) = −
4
because tan

−
4


= −1 and −

4
is in the interval

−
2
 
2


(the range of arctan).
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52 ¤ CHAPTER 1 FUNCTIONS AND MODELS

65. (a) csc−1
√
2 = 

4 because csc

4 =

√
2 and 

4 is in

0 2

 ∪  3
2


(the range of csc−1).

(b) arcsin 1 = 
2
because sin 

2
= 1 and 

2
is in

−
2
 
2


(the range of arcsin).

66. (a) sin−1(−1√2 ) = −
4
because sin

−
4


= −1√2 and −

4
is in

−
2
 
2


.

(b) cos−1
√
32

= 

6
because cos 

6
=
√
32 and 

6
is in [0 ].

67. (a) cot−1
−√3  = 5

6
because cot 5

6
= −√3 and 5

6
is in (0 ) (the range of cot−1).

(b) sec−1 2 = 
3
because sec 

3
= 2 and 

3
is in


0 

2

 ∪  3
2


(the range of sec−1).

68. (a) arcsin(sin(54)) = arcsin
−1√2  = −

4
because sin

−
4


= −1√2 and −

4
is in

−
2
 
2


.

(b) Let  = sin−1

5
13


[see the figure].

cos

2 sin−1


5
13


= cos 2 = cos2 − sin2

=

12
13

2 −  5
13

2
= 144

169
− 25

169
= 119

169

 

69. Let  = sin−1 . Then −
2
≤  ≤ 

2
⇒ cos  ≥ 0, so cos(sin−1 ) = cos  =


1− sin2  = √1− 2.

70. Let  = sin−1 . Then sin  = , so from the triangle (which

illustrates the case   0), we see that

tan(sin−1 ) = tan  =
√
1− 2

.

71. Let  = tan−1 . Then tan  = , so from the triangle (which

illustrates the case   0), we see that

sin(tan−1 ) = sin  =
√
1 + 2

.

72. Let  = arccos. Then cos  = , so from the triangle (which

illustrates the case   0), we see that

sin(2 arccos) = sin 2 = 2 sin  cos 

= 2(
√
1− 2 )() = 2

√
1− 2

73. The graph of sin−1  is the reflection of the graph of

sin about the line  = .
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SECTION 1.5 INVERSE FUNCTIONS AND LOGARITHMS ¤ 53

74. The graph of tan−1  is the reflection of the graph of

tan about the line  = .

75. () = sin−1(3+ 1).

Domain () = { | −1 ≤ 3+ 1 ≤ 1} = { | −2 ≤ 3 ≤ 0} =  | −2
3
≤  ≤ 0 = − 2

3
 0

.

Range () =

 | −

2
≤  ≤ 

2


=
−

2
 
2


.

76. (a) () = sin

sin−1 


Since one function undoes what the other one does, we get the

identity function,  = , on the restricted domain−1 ≤  ≤ 1.

(b) () = sin−1(sin)

This is similar to part (a), but with domain R.

Equations for  on intervals of the form−
2
+  

2
+ 


, for any integer , can be

found using () = (−1)+ (−1)+1.
The sine function is monotonic on each of these intervals, and hence, so is  (but in a linear fashion).

77. (a) If the point ( ) is on the graph of  = (), then the point (−  ) is that point shifted  units to the left. Since 

is 1-1, the point ( ) is on the graph of  = −1() and the point corresponding to (−  ) on the graph of  is

( − ) on the graph of −1. Thus, the curve’s reflection is shifted down the same number of units as the curve itself is

shifted to the left. So an expression for the inverse function is −1() = −1()− .

(b) If we compress (or stretch) a curve horizontally, the curve’s reflection in the line  =  is compressed (or stretched)

vertically by the same factor. Using this geometric principle, we see that the inverse of () = () can be expressed as

−1() = (1) −1().

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



54 ¤ CHAPTER 1 FUNCTIONS AND MODELS

1 Review

1. False. Let () = 2,  = −1, and  = 1. Then (+ ) = (−1 + 1)2 = 02 = 0, but
() + () = (−1)2 + 12 = 2 6= 0 = (+ ).

2. False. Let () = 2. Then (−2) = 4 = (2), but −2 6= 2.

3. False. Let () = 2. Then (3) = (3)2 = 92 and 3() = 32. So (3) 6= 3().

4. True. If 1  2 and  is a decreasing function, then the -values get smaller as we move from left to right.

Thus, (1)  (2).

5. True. See the Vertical Line Test.

6. False. Let () = 2 and () = 2. Then ( ◦ )() = (()) = (2) = (2)2 = 42 and

( ◦ )() = (()) = (2) = 22. So  ◦  6=  ◦  .

7. False. Let () = 3. Then  is one-to-one and −1() = 3
√
. But 1() = 13, which is not equal to −1().

8. True. We can divide by  since  6= 0 for every .

9. True. The function ln is an increasing function on (0∞).

10. False. Let  = . Then (ln)6 = (ln )6 = 16 = 1, but 6 ln = 6 ln  = 6 · 1 = 6 6= 1 = (ln)6. What is true, however,

is that ln(6) = 6 ln for   0.

11. False. Let  = 2 and  = . Then
ln

ln 
=
ln 2

ln 
=
2 ln 

ln 
= 2 and ln




= ln

2


= ln  = 1, so in general the statement

is false. What is true, however, is that ln 

= ln− ln .

12. False. It is true that tan 3
4
= −1, but since the range of tan−1 is −

2
 
2


, we must have tan−1 (−1) = −

4
.

13. False. For example, tan−1 20 is defined; sin−1 20 and cos−1 20 are not.

14. False. For example, if  = −3, then(−3)2 = √9 = 3, not−3.

1. (a) When  = 2,  ≈ 27. Thus, (2) ≈ 27.
(b) () = 3 ⇒  ≈ 23, 56
(c) The domain of  is −6 ≤  ≤ 6, or [−6 6].
(d) The range of  is −4 ≤  ≤ 4, or [−4 4].

(e)  is increasing on [−4 4], that is, on −4 ≤  ≤ 4.

(f )  is not one-to-one since it fails the Horizontal Line Test.

(g)  is odd since its graph is symmetric about the origin.
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CHAPTER 1 REVIEW ¤ 55

2. (a) When  = 2,  = 3. Thus, (2) = 3.

(b)  is one-to-one because it passes the Horizontal Line Test.

(c) When  = 2,  ≈ 02. So −1(2) ≈ 02.
(d) The range of  is [−1 35], which is the same as the domain of −1.
(e) We reflect the graph of  through the line  =  to obtain the graph of −1.

 

3. () = 2 − 2+ 3, so (+ ) = (+ )2 − 2(+ ) + 3 = 2 + 2+ 2 − 2− 2+ 3, and
(+ )− ()


=
(2 + 2+ 2 − 2− 2+ 3)− (2 − 2+ 3)


=

(2+ − 2)


= 2+ − 2.

4. There will be some yield with no fertilizer, increasing yields with increasing

fertilizer use, a leveling-off of yields at some point, and disaster with too

much fertilizer use.

5. () = 2(3− 1). Domain: 3− 1 6= 0 ⇒ 3 6= 1 ⇒  6= 1
3
.  =

−∞ 1
3

 ∪  1
3
∞

Range: all reals except 0 ( = 0 is the horizontal asymptote for  .)

 = (−∞ 0) ∪ (0∞)

6. () =
√
16− 4. Domain: 16− 4 ≥ 0 ⇒ 4 ≤ 16 ⇒ || ≤ 4

√
16 ⇒ || ≤ 2.  = [−2 2]

Range:  ≥ 0 and  ≤ √16 ⇒ 0 ≤  ≤ 4.
 = [0 4]

7. () = ln(+ 6). Domain: + 6  0 ⇒   −6.  = (−6∞)
Range: + 6  0, so ln(+ 6) takes on all real numbers and, hence, the range is R.

 = (−∞∞)

8.  =  () = 3 + cos 2. Domain: R.  = (−∞∞)
Range: −1 ≤ cos 2 ≤ 1 ⇒ 2 ≤ 3 + cos 2 ≤ 4 ⇒ 2 ≤  ≤ 4.

 = [2 4]

9. (a) To obtain the graph of  = () + 8, we shift the graph of  = () up 8 units.

(b) To obtain the graph of  = (+ 8), we shift the graph of  = () left 8 units.

(c) To obtain the graph of  = 1 + 2(), we stretch the graph of  = () vertically by a factor of 2, and then shift the

resulting graph 1 unit upward.

(d) To obtain the graph of  = (− 2)− 2, we shift the graph of  = () right 2 units (for the “−2” inside the
parentheses), and then shift the resulting graph 2 units downward.

(e) To obtain the graph of  = −(), we reflect the graph of  = () about the -axis.

(f ) To obtain the graph of  = −1(), we reflect the graph of  = () about the line  =  (assuming  is one–to-one).
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56 ¤ CHAPTER 1 FUNCTIONS AND MODELS

10. (a) To obtain the graph of  = (− 8), we shift the
graph of  = () right 8 units.

(b) To obtain the graph of  = −(), we reflect the graph
of  = () about the -axis.

(c) To obtain the graph of  = 2− (), we reflect the

graph of  = () about the -axis, and then shift the

resulting graph 2 units upward.

(d) To obtain the graph of  = 1
2
()− 1, we shrink the

graph of  = () by a factor of 2, and then shift the

resulting graph 1 unit downward.

(e) To obtain the graph of  = −1(), we reflect the

graph of  = () about the line  = .

(f ) To obtain the graph of  = −1(+ 3), we reflect the

graph of  = () about the line  =  [see part (e)],

and then shift the resulting graph left 3 units.

11.  = (− 2)3: Start with the graph of  = 3 and shift

2 units to the right.

12.  = 2
√
: Start with the graph of  =

√
 and stretch

vertically by a factor of 2.
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CHAPTER 1 REVIEW ¤ 57

13.  = 2 − 2+ 2 = (2 − 2+ 1) + 1 = (− 1)2 + 1: Start with the graph of  = 2, shift 1 unit to the right, and shift

1 unit upward.

14.  = ln(+ 1): Start with the graph of  = ln and shift

left 1 unit.

15. () = − cos 2: Start with the graph of  = cos, shrink horizontally by a factor of 2, and reflect about the -axis.

16. () =

 − if   0

 − 1 if  ≥ 0
On (−∞ 0), graph  = − (the line with slope −1 and -intercept 0)
with open endpoint (0 0).

On [0∞), graph  =  − 1 (the graph of  =  shifted 1 unit downward)

with closed endpoint (0 0).

17. (a) The terms of  are a mixture of odd and even powers of , so  is neither even nor odd.

(b) The terms of  are all odd powers of , so  is odd.

(c) (−) = −(−)
2
= −

2
= (), so  is even.

(d) (−) = 1 + sin(−) = 1− sin. Now (−) 6= () and (−) 6= −(), so  is neither even nor odd.

18. For the line segment from (−2 2) to (−1 0), the slope is 0− 2
−1 + 2 = −2, and an equation is  − 0 = −2(+ 1) or,

equivalently,  = −2− 2. The circle has equation 2 + 2 = 1; the top half has equation  =
√
1− 2 (we have solved for

positive ). Thus, () =

−2− 2 if −2 ≤  ≤ −1
√
1− 2 if −1   ≤ 1

19. () = ln,  = (0∞); () = 2 − 9,  = R.

(a) ( ◦ )() = (()) = (2 − 9) = ln(2 − 9).
Domain: 2 − 9  0 ⇒ 2  9 ⇒ ||  3 ⇒  ∈ (−∞−3) ∪ (3∞)
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58 ¤ CHAPTER 1 FUNCTIONS AND MODELS

(b) ( ◦ )() = (()) = (ln) = (ln)2 − 9. Domain:   0, or (0∞)

(c) ( ◦ )() = (()) = (ln) = ln(ln). Domain: ln  0 ⇒   0 = 1, or (1∞)

(d) ( ◦ )() = (()) = (2 − 9) = (2 − 9)2 − 9. Domain:  ∈ R, or (−∞∞)

20. Let () = +
√
, () =

√
, and () = 1. Then ( ◦  ◦ )() = 1

+
√

=  ().

21. Many models appear to be plausible. Your choice depends on whether you

think medical advances will keep increasing life expectancy, or if there is

bound to be a natural leveling-off of life expectancy. A linear model,

 = 02493− 4234818, gives us an estimate of 776 years for the
year 2010.

22. (a) Let  denote the number of toaster ovens produced in one week and

 the associated cost. Using the points (1000 9000) and

(1500 12,000), we get an equation of a line:

 − 9000 = 12,000− 9000
1500− 1000 (− 1000) ⇒

 = 6 (− 1000) + 9000 ⇒  = 6+ 3000.

(b) The slope of 6 means that each additional toaster oven produced adds $6 to the weekly production cost.

(c) The -intercept of 3000 represents the overhead cost—the cost incurred without producing anything.

23. We need to know the value of  such that () = 2+ ln = 2. Since  = 1 gives us  = 2, −1(2) = 1.

24.  =
+ 1

2+ 1
. Interchanging  and  gives us  =

 + 1

2 + 1
⇒ 2 +  =  + 1 ⇒ 2 −  = 1−  ⇒

(2− 1) = 1−  ⇒  =
1− 

2− 1 = −1().

25. (a) 2 ln 3 = (ln 3)2 = 32 = 9

(b) log10 25 + log10 4 = log10(25 · 4) = log10 100 = log10 102 = 2

(c) tan

arcsin 1

2


= tan 

6 =
1√
3

(d) Let  = cos−1 4
5
, so cos  = 4

5
. Then sin


cos−1


4
5


= sin  =

√
1− cos2  =


1−  4

5

2
=


9
25
= 3

5
.

26. (a)  = 5 ⇒  = ln 5

(b) ln = 2 ⇒  = 2

(c) 


= 2 ⇒  = ln 2 ⇒  = ln(ln 2)

(d) tan−1  = 1 ⇒ tan tan−1  = tan 1 ⇒  = tan 1 (≈ 15574)

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



CHAPTER 1 REVIEW ¤ 59

27. (a) After 4 days, 12 gram remains; after 8 days,
1
4 g; after 12 days,

1
8 g; after 16 days,

1
16 g.

(b) (4) =
1

2
,(8) =

1

22
,(12) =

1

23
,(16) =

1

24
. From the pattern, we see that() =

1

24
, or 2−4.

(c)  = 2−4 ⇒ log2 = −4 ⇒  = −4 log2; this is the time elapsed when there are grams of 100Pd.

(d)  = 001 ⇒  = −4 log2 001 = −4

ln 001

ln 2


≈ 266 days

28. (a) The population would reach 900 in about 44 years.

(b)  =
100,000

100 + 900−
⇒ 100 + 900− = 100,000⇒ 900− = 100,000− 100 ⇒

− =
100,000− 100

900
⇒ − = ln


1000− 

9


⇒  = − ln


1000− 

9


, or ln


9

1000− 


;

this is the time required for the population to reach a given number  .

(c)  = 900 ⇒  = ln


9 · 900

1000− 900

= ln 81 ≈ 44 years, as in part (a).
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PRINCIPLES OF PROBLEM SOLVING

1. By using the area formula for a triangle, 1
2
(base) (height), in two ways, we see that

1
2
(4)() = 1

2
()(), so  =

4


. Since 42 + 2 = 2,  =

√
2 − 16, and

 =
4
√
2 − 16


.

2. Refer to Example 1, where we obtained  =
 2 − 100
2

. The 100 came from

4 times the area of the triangle. In this case, the area of the triangle is

1
2
()(12) = 6. Thus,  =

 2 − 4 (6)
2

⇒ 2 =  2 − 24 ⇒

2+ 24 =  2 ⇒  (2 + 24) =  2 ⇒  =
 2

2 + 24
.

3. |2− 1| =

2− 1 if  ≥ 1

2

1− 2 if   1
2

and |+ 5| =

+ 5 if  ≥ −5
−− 5 if   −5

Therefore, we consider the three cases   −5, −5 ≤   1
2
, and  ≥ 1

2
.

If   −5, we must have 1− 2− (−− 5) = 3 ⇔  = 3, which is false, since we are considering   −5.
If −5 ≤   1

2
, we must have 1− 2− (+ 5) = 3 ⇔  = − 7

3
.

If  ≥ 1
2
, we must have 2− 1− (+ 5) = 3 ⇔  = 9.

So the two solutions of the equation are  = −7
3
and  = 9.

4. |− 1| =

− 1 if  ≥ 1
1−  if   1

and |− 3| =

− 3 if  ≥ 3
3−  if   3

Therefore, we consider the three cases   1, 1 ≤   3, and  ≥ 3.
If   1, we must have 1− − (3−  ) ≥ 5 ⇔ 0 ≥ 7, which is false.
If 1 ≤   3, we must have − 1− (3− ) ≥ 5 ⇔  ≥ 9

2
, which is false because   3.

If  ≥ 3, we must have − 1− (− 3) ≥ 5 ⇔ 2 ≥ 5, which is false.
All three cases lead to falsehoods, so the inequality has no solution.

5. () =
2 − 4 ||+ 3. If  ≥ 0, then () = 2 − 4+ 3 = |(− 1)(− 3)|.

Case (i): If 0   ≤ 1, then () = 2 − 4+ 3.
Case (ii): If 1   ≤ 3, then () = −(2 − 4+ 3) = −2 + 4− 3.
Case (iii): If   3, then () = 2 − 4+ 3.

This enables us to sketch the graph for  ≥ 0. Then we use the fact that  is an even
function to reflect this part of the graph about the -axis to obtain the entire graph. Or, we

could consider also the cases   −3, −3 ≤   −1, and −1 ≤   0.
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62 ¤ PRINCIPLES OF PROBLEM SOLVING

6. () =
2 − 1− 2 − 4.

2 − 1 = 2 − 1 if || ≥ 1
1− 2 if ||  1

and
2 − 4 = 2 − 4 if || ≥ 2

4− 2 if ||  2
So for 0 ≤ ||  1, () = 1− 2 − (4− 2) = −3, for
1 ≤ ||  2, () = 2 − 1− (4− 2) = 22 − 5, and for
|| ≥ 2, () = 2 − 1− (2 − 4) = 3

7. Remember that || =  if  ≥ 0 and that || = − if   0. Thus,

+ || =

2 if  ≥ 0
0 if   0

and  + || =

2 if  ≥ 0
0 if   0

We will consider the equation + || =  + || in four cases.
(1)  ≥ 0  ≥ 0

2 = 2

 = 

(2)  ≥ 0,   0
2 = 0

 = 0

(3)   0,  ≥ 0
0 = 2

0 = 

(4)   0   0
0 = 0

Case 1 gives us the line  =  with nonnegative  and .

Case 2 gives us the portion of the -axis with  negative.

Case 3 gives us the portion of the -axis with  negative.

Case 4 gives us the entire third quadrant.

8. |− |+ ||− || ≤ 2 [call this inequality ()]

Case (i):  ≥  ≥ 0. Then () ⇔ −  + −  ≤ 2 ⇔ −  ≤ 1 ⇔  ≥ − 1.
Case (ii):  ≥  ≥ 0. Then () ⇔  − + −  ≤ 2 ⇔ 0 ≤ 2 (true).
Case (iii):  ≥ 0 and  ≤ 0. Then () ⇔ −  + +  ≤ 2 ⇔ 2 ≤ 2 ⇔  ≤ 1.
Case (iv):  ≤ 0 and  ≥ 0. Then () ⇔  − − −  ≤ 2 ⇔ −2 ≤ 2 ⇔  ≥ −1.
Case (v):  ≤  ≤ 0. Then () ⇔ −  − +  ≤ 2 ⇔ 0 ≤ 2 (true).
Case (vi):  ≤  ≤ 0. Then () ⇔  − − +  ≤ 2 ⇔  −  ≤ 1 ⇔  ≤ + 1.

Note: Instead of considering cases (iv), (v), and (vi), we could have noted that

the region is unchanged if  and  are replaced by − and −, so the region is
symmetric about the origin. Therefore, we need only draw cases (i), (ii), and

(iii), and rotate through 180◦ about the origin.

9. (a) To sketch the graph of

() = max { 1}, we first graph
() =  and () = 1 on the same

coordinate axes. Then create the graph of

 by plotting the largest -value of  and 

for every value of .
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PRINCIPLES OF PROBLEM SOLVING ¤ 63

(b)

 

(c)

On the TI-84 Plus, max is found under LIST, then under MATH. To graph () = max

2 2 +  2− 


, use

Y = max(2max(2 +  2− )).

10. (a) Ifmax { 2} = 1, then either  = 1 and 2 ≤ 1
  ≤ 1 and 2 = 1. Thus, we obtain the set of

points such that  = 1 and  ≤ 1
2
[a vertical line

with highest point (1 12 )

  ≤ 1 and  = 1

2
a horizontal line with rightmost point (1 1

2 )

.

(b) The graph ofmax{ 2} = 1 is shown in part (a), and
the graph ofmax{ 2} = −1 can be found in a
similar manner. The inequalities in

−1 ≤ max{ 2} ≤ 1 give us all the points on or
inside the boundaries.

(c) max{ 2} = 1 ⇔
 = 1 and 2 ≤ 1 [−1 ≤  ≤ 1]
  ≤ 1 and 2 = 1 [ = ±1].

11. (log2 3)(log3 4)(log4 5) · · · (log31 32) =

ln 3

ln 2


ln 4

ln 3


ln 5

ln 4


· · ·

ln 32

ln 31


=
ln32

ln 2
=
ln 25

ln 2
=
5 ln 2

ln 2
= 5
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64 ¤ PRINCIPLES OF PROBLEM SOLVING

12. (a) (−) = ln

−+


(−)2 + 1


= ln


−+√2 + 1 · −−

√
2 + 1

−−√2 + 1


= ln


2 − 2 + 1
−−√2 + 1


= ln

 −1
−−√2 + 1


= ln


1

+
√
2 + 1


= ln 1− ln+√2 + 1  = − ln+√2 − 1  = −()

(b)  = ln

+

√
2 + 1


. Interchanging  and , we get  = ln


 +


2 + 1


⇒  =  +


2 + 1 ⇒

 −  =

2 + 1 ⇒ 2 − 2 + 2 = 2 + 1 ⇒ 2 − 1 = 2 ⇒  =

2 − 1
2

= −1()

13. ln

2 − 2− 2 ≤ 0 ⇒ 2 − 2− 2 ≤ 0 = 1 ⇒ 2 − 2− 3 ≤ 0 ⇒ (− 3)(+ 1) ≤ 0 ⇒  ∈ [−1 3].

Since the argument must be positive, 2 − 2− 2  0 ⇒ 
− 1−√3 − 1 +√3   0 ⇒

 ∈ −∞ 1−√3  ∪ 1 +√3∞. The intersection of these intervals is −1 1−√3  ∪ 1 +√3 3.
14. Assume that log2 5 is rational. Then log2 5 =  for natural numbers and . Changing to exponential form gives us

2 = 5 and then raising both sides to the th power gives 2 = 5. But 2 is even and 5 is odd. We have arrived at a

contradiction, so we conclude that our hypothesis, that log2 5 is rational, is false. Thus, log2 5 is irrational.

15. Let  be the distance traveled on each half of the trip. Let 1 and 2 be the times taken for the first and second halves of the trip.

For the first half of the trip we have 1 = 30 and for the second half we have 2 = 60. Thus, the average speed for the

entire trip is
total distance
total time

=
2

1 + 2
=

2


30
+



60

· 60
60
=

120

2+ 
=
120

3
= 40. The average speed for the entire trip

is 40 mih.

16. Let () = sin, () = , and () = . Then the left-hand side of the equation is

[ ◦ ( + )]() = sin( + ) = sin 2 = 2 sin cos; and the right-hand side is

( ◦ )() + ( ◦ )() = sin+ sin = 2 sin. The two sides are not equal, so the given statement is false.

17. Let  be the statement that 7 − 1 is divisible by 6
• 1 is true because 71 − 1 = 6 is divisible by 6.
• Assume  is true, that is, 7 − 1 is divisible by 6. In other words, 7 − 1 = 6 for some positive integer. Then

7+1 − 1 = 7 · 7− 1 = (6+ 1) · 7− 1 = 42+ 6 = 6(7+ 1), which is divisible by 6, so +1 is true.

• Therefore, by mathematical induction, 7 − 1 is divisible by 6 for every positive integer .

18. Let  be the statement that 1 + 3 + 5 + · · ·+ (2− 1) = 2.

• 1 is true because [2(1)− 1] = 1 = 12.
• Assume  is true, that is, 1 + 3 + 5 + · · ·+ (2 − 1) = 2. Then

1 + 3 + 5 + · · ·+ (2 − 1) + [2( + 1)− 1] = 1 + 3 + 5 + · · ·+ (2 − 1) + (2 + 1) = 2 + (2 + 1) = ( + 1)2

which shows that +1 is true.

• Therefore, by mathematical induction, 1 + 3 + 5 + · · ·+ (2− 1) = 2 for every positive integer .
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PRINCIPLES OF PROBLEM SOLVING ¤ 65

19. 0() = 2 and +1() = 0(()) for  = 0 1 2   .

1() = 0(0()) = 0

2

=

2
2
= 4, 2() = 0(1()) = 0(

4) = (4)2 = 8,

3() = 0(2()) = 0(
8) = (8)2 = 16,   . Thus, a general formula is () = 2

+1

.

20. (a) 0() = 1(2− ) and +1 = 0 ◦  for  = 0 1 2   .

1() = 0


1

2− 


=

1

2− 1

2− 

=
2− 

2(2− )− 1 =
2− 

3− 2 ,

2() = 0


2− 

3− 2

=

1

2− 2− 

3− 2
=

3− 2
2(3− 2)− (2− )

=
3− 2
4− 3 ,

3() = 0


3− 2
4− 3


=

1

2− 3− 2
4− 3

=
4− 3

2(4− 3)− (3− 2) =
4− 3
5− 4   

Thus, we conjecture that the general formula is () =
+ 1− 

+ 2− (+ 1) .

To prove this, we use the Principle of Mathematical Induction. We have already verified that  is true for  = 1.

Assume that the formula is true for  = ; that is, () =
 + 1− 

 + 2− ( + 1) . Then

+1() = (0 ◦ )() = 0(()) = 0


 + 1− 

 + 2− ( + 1)

=

1

2−  + 1− 

 + 2− ( + 1)

=
 + 2− ( + 1)

2 [ + 2− ( + 1)]− ( + 1− )
=

 + 2− ( + 1)
 + 3− ( + 2)

This shows that the formula for  is true for  =  + 1. Therefore, by mathematical induction, the formula is true for all

positive integers .

(b) From the graph, we can make several observations:

• The values at each fixed  =  keep increasing as  increases.

• The vertical asymptote gets closer to  = 1 as  increases.
• The horizontal asymptote gets closer to  = 1
as  increases.

• The -intercept for +1 is the value of the
vertical asymptote for .

• The -intercept for  is the value of the
horizontal asymptote for +1.
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66 ¤ PRINCIPLES OF PROBLEM SOLVING
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2 LIMITS AND DERIVATIVES

2.1 The Tangent and Velocity Problems

1. (a) Using  (15 250), we construct the following table:

  slope = 

5 (5 694) 694−250
5−15 = −444

10
= −444

10 (10 444) 444−250
10−15 = −194

5
= −388

20 (20 111) 111−250
20−15 = −139

5
= −278

25 (25 28) 28−250
25−15 = −222

10 = −222

30 (30 0) 0−250
30−15 = −250

15 = −166

(b) Using the values of  that correspond to the points

closest to  ( = 10 and  = 20), we have

−388 + (−278)
2

= −333

(c) From the graph, we can estimate the slope of the

tangent line at  to be −300
9 = −333.

2. (a) Slope = 2948− 2530
42− 36 = 418

6 ≈ 6967 (b) Slope = 2948− 2661
42− 38 = 287

4 = 7175

(c) Slope = 2948− 2806
42− 40 = 142

2
= 71 (d) Slope = 3080− 2948

44− 42 = 132
2 = 66

From the data, we see that the patient’s heart rate is decreasing from 71 to 66 heartbeatsminute after 42 minutes.

After being stable for a while, the patient’s heart rate is dropping.

3. (a)  =
1

1− 
,  (2−1)

 ( 1(1− )) 

(i) 15 (15−2) 2

(ii) 19 (19−1111 111) 1111 111

(iii) 199 (199−1010 101) 1010 101

(iv) 1999 (1999−1001 001) 1001 001

(v) 25 (25−0666 667) 0666 667

(vi) 21 (21−0909 091) 0909 091

(vii) 201 (201−0990 099) 0990 099

(viii) 2001 (2001−0999 001) 0999 001

(b) The slope appears to be 1.

(c) Using  = 1, an equation of the tangent line to the

curve at  (2−1) is  − (−1) = 1(− 2), or

 = − 3.
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68 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

4. (a)  = cos,  (05 0)

  

(i) 0 (0 1) −2
(ii) 04 (04 0309017) −3090170

(iii) 049 (049 0031411) −3141076
(iv) 0499 (0499 0003142) −3141587
(v) 1 (1−1) −2

(vi) 06 (06−0309017) −3090170
(vii) 051 (051−0031411) −3141076

(viii) 0501 (0501−0003142) −3141587

(b) The slope appears to be−.

(c)  − 0 = −(− 05) or  = −+ 1
2
.

(d)

5. (a)  = () = 40− 162. At  = 2,  = 40(2)− 16(2)2 = 16. The average velocity between times 2 and 2 +  is

ave =
(2 + )− (2)

(2 + )− 2 =


40(2 + )− 16(2 + )2

− 16


=
−24− 162


= −24− 16, if  6= 0.

(i) [2 25]:  = 05, ave = −32 fts (ii) [2 21]:  = 01, ave = −256 fts

(iii) [2 205]:  = 005, ave = −248 fts (iv) [2 201]:  = 001, ave = −2416 fts

(b) The instantaneous velocity when  = 2 ( approaches 0) is−24 fts.

6. (a)  = () = 10− 1862. At  = 1,  = 10(1)− 186(1)2 = 814. The average velocity between times 1 and 1 +  is

ave =
(1 + )− (1)

(1 + )− 1 =


10(1 + )− 186(1 + )2

− 814


=
628− 1862


= 628− 186, if  6= 0.

(i) [1 2]:  = 1, ave = 442 ms (ii) [1 15]:  = 05, ave = 535 ms

(iii) [1 11]:  = 01, ave = 6094 ms (iv) [1 101]:  = 001, ave = 62614 ms

(v) [1 1001]:  = 0001, ave = 627814 ms

(b) The instantaneous velocity when  = 1 ( approaches 0) is 628 ms.

7. (a) (i) On the interval [2 4] , ave =
(4)− (2)

4− 2 =
792− 206

2
= 293 fts.

(ii) On the interval [3 4] , ave =
(4)− (3)

4− 3 =
792− 465

1
= 327 fts.

(iii) On the interval [4 5] , ave =
(5)− (4)

5− 4 =
1248− 792

1
= 456 fts.

(iv) On the interval [4 6] , ave =
(6)− (4)

6− 4 =
1767− 792

2
= 4875 fts.
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SECTION 2.1 THE TANGENT AND VELOCITY PROBLEMS ¤ 69

(b) Using the points (2 16) and (5 105) from the approximate

tangent line, the instantaneous velocity at  = 3 is about

105− 16
5− 2 =

89

3
≈ 297 fts.

8. (a) (i)  = () = 2 sin+ 3cos. On the interval [1 2], ave =
(2)− (1)

2− 1 =
3− (−3)

1
= 6 cms.

(ii) On the interval [1 11], ave =
(11)− (1)

11− 1 ≈ −3471− (−3)
01

= −471 cms.

(iii) On the interval [1 101], ave =
(101)− (1)

101− 1 ≈ −30613− (−3)
001

= −613 cms.

(iv) On the interval [1 1001], ave =
(1001)− (1)

1001− 1 ≈ −300627− (−3)
0001

= −627 cms.

(b) The instantaneous velocity of the particle when  = 1 appears to be about−63 cms.

9. (a) For the curve  = sin(10) and the point  (1 0):

  

2 (2 0) 0

15 (15 08660) 17321

14 (14−04339) −10847
13 (13−08230) −27433
12 (12 08660) 43301

11 (11−02817) −28173

  

05 (05 0) 0

06 (06 08660) −21651
07 (07 07818) −26061
08 (08 1) −5
09 (09−03420) 34202

As  approaches 1, the slopes do not appear to be approaching any particular value.

(b) We see that problems with estimation are caused by the frequent

oscillations of the graph. The tangent is so steep at  that we need to

take -values much closer to 1 in order to get accurate estimates of

its slope.

(c) If we choose  = 1001, then the point  is (1001−00314) and  ≈ −313794. If  = 0999, then  is

(0999 00314) and  = −314422. The average of these slopes is −314108. So we estimate that the slope of the

tangent line at  is about−314.
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70 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

2.2 The Limit of a Function

1. As  approaches 2, () approaches 5. [Or, the values of () can be made as close to 5 as we like by taking  sufficiently

close to 2 (but  6= 2).] Yes, the graph could have a hole at (2 5) and be defined such that (2) = 3.

2. As  approaches 1 from the left, () approaches 3; and as  approaches 1 from the right, () approaches 7. No, the limit

does not exist because the left- and right-hand limits are different.

3. (a) lim
→−3

() =∞ means that the values of () can be made arbitrarily large (as large as we please) by taking 

sufficiently close to −3 (but not equal to−3).

(b) lim
→4+

() = −∞ means that the values of () can be made arbitrarily large negative by taking  sufficiently close to 4

through values larger than 4.

4. (a) As  approaches 2 from the left, the values of () approach 3, so lim
→2−

() = 3.

(b) As  approaches 2 from the right, the values of () approach 1, so lim
→2+

() = 1.

(c) lim
→2

() does not exist since the left-hand limit does not equal the right-hand limit.

(d) When  = 2,  = 3, so (2) = 3.

(e) As  approaches 4, the values of () approach 4, so lim
→4

() = 4.

(f ) There is no value of () when  = 4, so (4) does not exist.

5. (a) As  approaches 1, the values of () approach 2, so lim
→1

() = 2.

(b) As  approaches 3 from the left, the values of () approach 1, so lim
→3−

() = 1.

(c) As  approaches 3 from the right, the values of () approach 4, so lim
→3+

() = 4.

(d) lim
→3

() does not exist since the left-hand limit does not equal the right-hand limit.

(e) When  = 3,  = 3, so (3) = 3.

6. (a) () approaches 4 as  approaches −3 from the left, so lim
→−3−

() = 4.

(b) () approaches 4 as  approaches −3 from the right, so lim
→−3+

() = 4.

(c) lim
→−3

() = 4 because the limits in part (a) and part (b) are equal.

(d) (−3) is not defined, so it doesn’t exist.

(e) () approaches 1 as  approaches 0 from the left, so lim
→0−

() = 1.

(f ) () approaches −1 as  approaches 0 from the right, so lim
→0+

() = −1.

(g) lim
→0

() does not exist because the limits in part (e) and part (f ) are not equal.

(h) (0) = 1 since the point (0 1) is on the graph of .

(i) Since lim
→2−

() = 2 and lim
→2+

() = 2, we have lim
→2

() = 2.

( j) (2) is not defined, so it doesn’t exist.
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SECTION 2.2 THE LIMIT OF A FUNCTION ¤ 71

(k) () approaches 3 as  approaches 5 from the right, so lim
→5+

() = 3.

(l) () does not approach any one number as  approaches 5 from the left, so lim
→5−

() does not exist.

7. (a) lim
→0−

() = −1 (b) lim
→0+

() = −2

(c) lim
→0

() does not exist because the limits in part (a) and part (b) are not equal.

(d) lim
→2−

() = 2 (e) lim
→2+

() = 0

(f ) lim
→2

() does not exist because the limits in part (d) and part (e) are not equal.

(g) (2) = 1 (h) lim
→4

() = 3

8. (a) lim
→−3

() =∞ (b) lim
→2

() does not exist. (c) lim
→2−

() = −∞

(d) lim
→2+

() =∞ (e) lim
→−1

() = −∞

(f ) The equations of the vertical asymptotes are  = −3,  = −1 and  = 2.

9. (a) lim
→−7

() = −∞ (b) lim
→−3

() =∞ (c) lim
→0

() =∞

(d) lim
→6−

() = −∞ (e) lim
→6+

() =∞

(f ) The equations of the vertical asymptotes are  = −7,  = −3,  = 0, and  = 6.

10. lim
→12−

() = 150 mg and lim
→12

+
() = 300 mg. These limits show that there is an abrupt change in the amount of drug in

the patient’s bloodstream at  = 12 h. The left-hand limit represents the amount of the drug just before the fourth injection.

The right-hand limit represents the amount of the drug just after the fourth injection.

11. From the graph of

() =


1 +  if   −1
2 if −1 ≤   1

2−  if  ≥ 1
,

we see that lim
→

() exists for all  except  = −1. Notice that the

right and left limits are different at  = −1.

12. From the graph of

() =


1 + sin if   0

cos if 0 ≤  ≤ 

sin if   

,

we see that lim
→

() exists for all  except  = . Notice that the

right and left limits are different at  = .
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72 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

13. (a) lim
→0−

() = 1

(b) lim
→0+

() = 0

(c) lim
→0

() does not exist because the limits

in part (a) and part (b) are not equal.

14. (a) lim
→0−

() = −1

(b) lim
→0+

() = 1

(c) lim
→0

() does not exist because the limits

in part (a) and part (b) are not equal.

15. lim
→0−

() = −1, lim
→0+

() = 2, (0) = 1 16. lim
→0

() = 1, lim
→3−

() = −2, lim
→3+

() = 2,

(0) = −1, (3) = 1

17. lim
→3+

() = 4, lim
→3−

() = 2, lim
→−2

() = 2,

(3) = 3, (−2) = 1

18. lim
→0−

() = 2, lim
→0+

() = 0, lim
→4−

() = 3,

lim
→4+

() = 0, (0) = 2, (4) = 1

19. For () =
2 − 3
2 − 9 :

 ()

31 0508 197

305 0504 132

301 0500 832

3001 0500 083

30001 0500 008

 ()

29 0491 525

295 0495 798

299 0499 165

2999 0499 917

29999 0499 992

It appears that lim
→3

2 − 3
2 − 9 =

1

2
.
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SECTION 2.2 THE LIMIT OF A FUNCTION ¤ 73

20. For () =
2 − 3
2 − 9 :

 ()

−25 −5
−29 −29
−295 −59
−299 −299
−2999 −2999
−29999 −29,999

 ()

−35 7

−31 31

−305 61

−301 301

−3001 3001

−30001 30,001

It appears that lim
→−3+

() = −∞ and that

lim
→−3−

() =∞, so lim
→−3

2 − 3
2 − 9 does not exist.

21. For () =
5 − 1


:

 ()

05 22364 988

01 6487 213

001 5127 110

0001 5012 521

00001 5001 250

 ()

−05 1835 830

−01 3934 693

−001 4877 058

−0001 4987 521

−00001 4998 750

It appears that lim
→0

5 − 1


= 5.

22. For () =
(2 + )5 − 32


:

 ()

05 131312 500

01 88410 100

001 80804 010

0001 80080 040

00001 80008 000

 ()

−05 48812 500

−01 72390 100

−001 79203 990

−0001 79920 040

−00001 79992 000

It appears that lim
→0

(2 + )5 − 32


= 80.

23. For () =
ln− ln 4
− 4 :

 ()

39 0253 178

399 0250 313

3999 0250 031

39999 0250 003

 ()

41 0246 926

401 0249 688

4001 0249 969

40001 0249 997

It appears that lim
→4

() = 025. The graph confirms that result.

24. For () =
1 + 9

1 + 15
:

 ()

−11 0427 397

−101 0582 008

−1001 0598 200

−10001 0599 820

 ()

−09 0771 405

−099 0617 992

−0999 0601 800

−09999 0600 180

It appears that lim
→−1

() = 06. The graph confirms that result.
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74 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

25. For () =
sin 3

tan 2
:

 ()

±01 1457 847

±001 1499 575

±0001 1499 996

±00001 1500 000

It appears that lim
→0

sin 3

tan 2
= 15.

The graph confirms that result.

26. For () =
5 − 1


:

 ()

01 1746 189

001 1622 459

0001 1610 734

00001 1609 567

 ()

−01 1486 601

−001 1596 556

−0001 1608 143

−00001 1609 308

It appears that lim
→0

() ≈ 16094. The graph confirms that result.

27. For () = :

 ()

01 0794 328

001 0954 993

0001 0993 116

00001 0999 079

It appears that lim
→0+

() = 1.

The graph confirms that result.

28. For () = 2 ln:

 ()

01 −0023 026
001 −0000 461
0001 −0000 007
00001 −0000 000

It appears that lim
→0+

() = 0.

The graph confirms that result.

29. (a) From the graphs, it seems that lim
→0

cos 2− cos
2

= −15. (b)
 ()

±01 −1493 759
±001 −1499 938
±0001 −1499 999
±00001 −1500 000
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SECTION 2.2 THE LIMIT OF A FUNCTION ¤ 75

30. (a) From the graphs, it seems that lim
→0

sin

sin
= 032. (b)

 ()

±01 0323 068

±001 0318 357

±0001 0318 310

±00001 0318 310

Later we will be able to show that

the exact value is
1


.

31. lim
→5+

+ 1

− 5 =∞ since the numerator is positive and the denominator approaches 0 from the positive side as → 5+.

32. lim
→5−

+ 1

− 5 = −∞ since the numerator is positive and the denominator approaches 0 from the negative side as → 5−.

33. lim
→1

2− 

(− 1)2 =∞ since the numerator is positive and the denominator approaches 0 through positive values as → 1.

34. lim
→3−

√


(− 3)5 = −∞ since the numerator is positive and the denominator approaches 0 from the negative side as → 3−.

35. Let  = 2 − 9. Then as → 3+, → 0+, and lim
→3+

ln(2 − 9) = lim
→0+

ln  = −∞ by (5).

36. lim
→0+

ln(sin) = −∞ since sin→ 0+ as → 0+.

37. lim
→(2)+

1


sec = −∞ since

1


is positive and sec→−∞ as → (2)+.

38. lim
→−

cot = lim
→−

cos

sin
= −∞ since the numerator is negative and the denominator approaches 0 through positive values

as → −.

39. lim
→2−

 csc = lim
→2−



sin
= −∞ since the numerator is positive and the denominator approaches 0 through negative

values as → 2−.

40. lim
→2−

2 − 2
2 − 4+ 4 = lim

→2−
(− 2)
(− 2)2 = lim

→2−


− 2 = −∞ since the numerator is positive and the denominator

approaches 0 through negative values as → 2−.

41. lim
→2+

2 − 2− 8
2 − 5+ 6 = lim

→2+

(− 4)(+ 2)
(− 3)(− 2) =∞ since the numerator is negative and the denominator approaches 0 through

negative values as → 2+.

42. lim
→0+


1


− ln


=∞ since

1


→∞ and ln→ −∞ as → 0+.

43. lim
→0

(ln2 − −2) = −∞ since ln2 →−∞ and −2 →∞ as → 0.
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76 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

44. (a) The denominator of  =
2 + 1

3− 22 =
2 + 1

(3− 2) is equal to zero when

 = 0 and  = 3
2

(and the numerator is not), so  = 0 and  = 15 are

vertical asymptotes of the function.

(b)

45. (a) () =
1

3 − 1 .

From these calculations, it seems that

lim
→1−

() = −∞ and lim
→1+

() =∞.

 ()

05 −114
09 −369
099 −337
0999 −3337
09999 −33337
099999 −33,3337

 ()

15 042

11 302

101 330

1001 3330

10001 33330

100001 33,3333

(b) If  is slightly smaller than 1, then 3 − 1 will be a negative number close to 0, and the reciprocal of 3 − 1, that is, (),

will be a negative number with large absolute value. So lim
→1−

() = −∞.

If  is slightly larger than 1, then 3 − 1 will be a small positive number, and its reciprocal, (), will be a large positive

number. So lim
→1+

() =∞.

(c) It appears from the graph of  that

lim
→1−

() = −∞ and lim
→1+

() =∞.

46. (a) From the graphs, it seems that lim
→0

tan 4


= 4. (b)

 ()

±01 4227 932

±001 4002 135

±0001 4000 021

±00001 4000 000

47. (a) Let () = (1 + )1.

 ()

−0001 271964

−00001 271842

−000001 271830

−0000001 271828

0000001 271828

000001 271827

00001 271815

0001 271692

It appears that lim
→0

(1 + )1 ≈ 271828, which is approximately .

In Section 3.6 we will see that the value of the limit is exactly .

(b)
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SECTION 2.2 THE LIMIT OF A FUNCTION ¤ 77

48. (a)

No, because the calculator-produced graph of () =  + ln |− 4| looks like an exponential function, but the graph of 

has an infinite discontinuity at  = 4. A second graph, obtained by increasing the numpoints option in Maple, begins to

reveal the discontinuity at  = 4.

(b) There isn’t a single graph that shows all the features of  . Several graphs are needed since  looks like ln |− 4| for large

negative values of  and like  for   5, but yet has the infinite discontiuity at  = 4.

A hand-drawn graph, though distorted, might be better at revealing the main

features of this function.

49. For () = 2 − (21000):
(a)

 ()

1 0998 000

08 0638 259

06 0358 484

04 0158 680

02 0038 851

01 0008 928

005 0001 465

It appears that lim
→0

() = 0.

(b)
 ()

004 0000 572

002 −0000 614
001 −0000 907
0005 −0000 978
0003 −0000 993
0001 −0001 000

It appears that lim
→0

() = −0001.

50. For () =
tan− 

3
:

(a)
 ()

10 0557 407 73

05 0370 419 92

01 0334 672 09

005 0333 667 00

001 0333 346 67

0005 0333 336 67

(b) It seems that lim
→0

() = 1
3

.
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78 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

(c)
 ()

0001 0333 333 50

00005 0333 333 44

00001 0333 330 00

000005 0333 336 00

000001 0333 000 00

0000001 0000 000 00

Here the values will vary from one

calculator to another. Every calculator will

eventually give false values.

(d) As in part (c), when we take a small enough viewing rectangle we get incorrect output.

51. No matter how many times we zoom in toward the origin, the graphs of () = sin() appear to consist of almost-vertical

lines. This indicates more and more frequent oscillations as → 0.

52. (a) For any positive integer , if  =
1


, then () = tan

1


= tan() = 0. (Remember that the tangent function has

period .)
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SECTION 2.3 CALCULATING LIMITS USING THE LIMIT LAWS ¤ 79

(b) For any nonnegative number , if  =
4

(4+ 1)
, then

() = tan
1


= tan

(4+ 1)

4
= tan


4

4
+



4


= tan


 +



4


= tan



4
= 1

(c) From part (a), () = 0 infinitely often as → 0. From part (b), () = 1 infinitely often as → 0. Thus, lim
→0

tan
1



does not exist since () does not get close to a fixed number as → 0.

53. There appear to be vertical asymptotes of the curve  = tan(2 sin) at  ≈ ±090
and  ≈ ±224. To find the exact equations of these asymptotes, we note that the

graph of the tangent function has vertical asymptotes at  = 
2 + . Thus, we

must have 2 sin = 
2
+ , or equivalently, sin = 

4
+ 

2
. Since

−1 ≤ sin ≤ 1, we must have sin = ±
4 and so  = ± sin−1 

4 (corresponding

to  ≈ ±090). Just as 150◦ is the reference angle for 30◦,  − sin−1 
4 is the

reference angle for sin−1 
4

. So  = ± − sin−1 
4


are also equations of

vertical asymptotes (corresponding to  ≈ ±224).

54. lim
→−

 = lim
→−

0
1− 22

. As  → −,

1− 22 → 0+, and →∞.

55. (a) Let  =
3 − 1√
− 1 .

From the table and the graph, we guess

that the limit of  as  approaches 1 is 6.

 

099 5925 31

0999 5992 50

09999 5999 25

101 6075 31

1001 6007 50

10001 6000 75

(b) We need to have 55 
3 − 1√
− 1  65. From the graph we obtain the approximate points of intersection  (09314 55)

and (10649 65). Now 1− 09314 = 00686 and 10649− 1 = 00649, so by requiring that  be within 00649 of 1,

we ensure that  is within 05 of 6.

2.3 Calculating Limits Using the Limit Laws

1. (a) lim
→2

[() + 5()] = lim
→2

() + lim
→2

[5()] [Limit Law 1]

= lim
→2

() + 5 lim
→2

() [Limit Law 3]

= 4 + 5(−2) = −6

(b) lim
→2

[()]3 =

lim
→2

()
3

[Limit Law 6]

= (−2)3 = −8
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80 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

(c) lim
→2


() =


lim
→2

() [Limit Law 11]

=
√
4 = 2

(d) lim
→2

3()

()
=
lim
→2

[3()]

lim
→2

()
[Limit Law 5]

=
3 lim
→2

()

lim
→2

()
[Limit Law 3]

=
3(4)

−2 = −6

(e) Because the limit of the denominator is 0, we can’t use Limit Law 5. The given limit, lim
→2

()

()
, does not exist because the

denominator approaches 0 while the numerator approaches a nonzero number.

(f) lim
→2

()()

()
=
lim
→2

[()()]

lim
→2

()
[Limit Law 5]

=
lim
→2

() · lim
→2

()

lim
→2

()
[Limit Law 4]

=
−2 · 0
4

= 0

2. (a) lim
→2

[() + ()] = lim
→2

() + lim
→2

() [Limit Law 1]

= −1 + 2
= 1

(b) lim
→0

() exists, but lim
→0

() does not exist, so we cannot apply Limit Law 2 to lim
→0

[()− ()].

The limit does not exist.

(c) lim
→−1

[() ()] = lim
→−1

() · lim
→−1

() [Limit Law 4]

= 1 · 2
= 2

(d) lim
→3

() = 1, but lim
→3

() = 0, so we cannot apply Limit Law 5 to lim
→3

()

()
. The limit does not exist.

Note: lim
→3−

()

()
=∞ since ()→ 0+ as → 3− and lim

→3+

()

()
= −∞ since ()→ 0−as → 3+.

Therefore, the limit does not exist, even as an infinite limit.

(e) lim
→2


2()


= lim

→2
2 · lim

→2
() [Limit Law 4]

= 22 · (−1)
= −4

(f) (−1) + lim
→−1

() is undefined since (−1) is

not defined.

3. lim
→3

(53 − 32 + − 6) = lim
→3

(53)− lim
→3

(32) + lim
→3

− lim
→3

6 [Limit Laws 2 and 1]

= 5 lim
→3

3 − 3 lim
→3

2 + lim
→3

− lim
→3

6 [3]

= 5(33)− 3(32) + 3− 6 [9, 8, and 7]

= 105

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 2.3 CALCULATING LIMITS USING THE LIMIT LAWS ¤ 81

4. lim
→−1

(4 − 3)(2 + 5+ 3) = lim
→−1

(4 − 3) lim
→−1

(2 + 5+ 3) [Limit Law 4]

=


lim
→−1

4 − lim
→−1

3


lim
→−1

2 + lim
→−1

5+ lim
→−1

3


[2, 1]

=


lim
→−1

4 − 3 lim
→−1




lim
→−1

2 + 5 lim
→−1

+ lim
→−1

3


[3]

= (1 + 3)(1− 5 + 3) [9, 8, and 7]

= 4(−1) = −4

5. lim
→−2

4 − 2
22 − 3+ 2 =

lim
→−2

(4 − 2)
lim
→−2

(22 − 3+ 2) [Limit Law 5]

=
lim
→−2

4 − lim
→−2

2

2 lim
→−2

2 − 3 lim
→−2

+ lim
→−2

2
[1, 2, and 3]

=
16− 2

2(4)− 3(−2) + 2 [9, 7, and 8]

=
14

16
=
7

8

6. lim
→−2

√
4 + 3+ 6 =


lim

→−2
(4 + 3+ 6) [11]

=

lim

→−2
4 + 3 lim

→−2
+ lim

→−2
6 [1, 2, and 3]

=

(−2)4 + 3 (−2) + 6 [9, 8, and 7]

=
√
16− 6 + 6 = √16 = 4

7. lim
→8

(1 + 3
√
 ) (2− 62 + 3) = lim

→8
(1 + 3

√
 ) · lim

→8
(2− 62 + 3) [Limit Law 4]

=

lim
→8

1 + lim
→8

3
√


·

lim
→8

2− 6 lim
→8

2 + lim
→8

3


[1, 2, and 3]

=

1 + 3

√
8
 · 2− 6 · 82 + 83 [7, 10, 9]

= (3)(130) = 390

8. lim
→2


2 − 2

3 − 3+ 5
2
=


lim
→2

2 − 2
3 − 3+ 5

2
[Limit Law 6]

=

 lim
→2

(2 − 2)
lim
→2

(3 − 3+ 5)

2 [5]

=

 lim
→2

2 − lim
→2

2

lim
→2

3 − 3 lim
→2

+ lim
→2

5

2 [1, 2, and 3]

=


4− 2

8− 3(2) + 5
2

[9, 7, and 8]

=


2

7

2
=
4

49
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82 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

9. lim
→2


22 + 1

3− 2 =

lim
→2

22 + 1

3− 2 [Limit Law 11]

=

 lim
→2

(22 + 1)

lim
→2

(3− 2) [5]

=

2 lim
→2

2 + lim
→2

1

3 lim
→2

− lim
→2

2
[1, 2, and 3]

=


2(2)2 + 1

3(2)− 2 =


9

4
=
3

2
[9, 8, and 7]

10. (a) The left-hand side of the equation is not defined for  = 2, but the right-hand side is.

(b) Since the equation holds for all  6= 2, it follows that both sides of the equation approach the same limit as → 2, just as

in Example 3. Remember that in finding lim
→

(), we never consider  = .

11. lim
→5

2 − 6+ 5
− 5 = lim

→5

(− 5)(− 1)
− 5 = lim

→5
(− 1) = 5− 1 = 4

12. lim
→−3

2 + 3

2 − − 12 = lim
→−3

(+ 3)

(− 4)(+ 3) = lim
→−3



− 4 =
−3

−3− 4 =
3

7

13. lim
→5

2 − 5+ 6
− 5 does not exist since − 5→ 0, but 2 − 5+ 6→ 6 as → 5.

14. lim
→4

2 + 3

2 − − 12 = lim
→4

(+ 3)

(− 4)(+ 3) = lim
→4



− 4 . The last limit does not exist since lim
→4−



− 4 = −∞ and

lim
→4+



− 4 =∞.

15. lim
→−3

2 − 9
22 + 7+ 3

= lim
→−3

(+ 3)(− 3)
(2+ 1)(+ 3)

= lim
→−3

− 3
2+ 1

=
−3− 3
2(−3) + 1 =

−6
−5 =

6

5

16. lim
→−1

22 + 3+ 1

2 − 2− 3 = lim
→−1

(2+ 1)(+ 1)

(− 3)(+ 1) = lim
→−1

2+ 1

− 3 =
2(−1) + 1
−1− 3 =

−1
−4 =

1

4

17. lim
→0

(−5 + )2 − 25


= lim
→0

(25− 10+ 2)− 25


= lim
→0

−10+ 2


= lim

→0

(−10 + )


= lim

→0
(−10 + ) = −10

18. lim
→0

(2 + )3 − 8


= lim
→0


8 + 12+ 62 + 3

− 8


= lim
→0

12+ 62 + 3



= lim
→0


12 + 6+ 2


= 12 + 0 + 0 = 12

19. By the formula for the sum of cubes, we have

lim
→−2

+ 2

3 + 8
= lim

→−2
+ 2

(+ 2)(2 − 2+ 4) = lim
→−2

1

2 − 2+ 4 =
1

4 + 4 + 4
=
1

12
.
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SECTION 2.3 CALCULATING LIMITS USING THE LIMIT LAWS ¤ 83

20. We use the difference of squares in the numerator and the difference of cubes in the denominator.

lim
→1

4 − 1
3 − 1 = lim

→1

(2 − 1)(2 + 1)
(− 1)(2 + + 1)

= lim
→1

(− 1)(+ 1)(2 + 1)
(− 1)(2 + + 1)

= lim
→1

(+ 1)(2 + 1)

2 + + 1
=
2(2)

3
=
4

3

21. lim
→0

√
9 + − 3


= lim

→0

√
9 + − 3


·
√
9 + + 3√
9 + + 3

= lim
→0

√
9 + 

2 − 32

√
9 + + 3

 = lim
→0

(9 + )− 9

√
9 + + 3


= lim

→0




√
9 + + 3

 = lim
→0

1√
9 + + 3

=
1

3 + 3
=
1

6

22. lim
→2

√
4+ 1− 3
− 2 = lim

→2

√
4+ 1− 3
− 2 ·

√
4+ 1 + 3√
4+ 1 + 3

= lim
→2

√
4+ 1

2 − 32
(− 2)√4+ 1+ 3

= lim
→2

4+ 1− 9
(− 2)√4+ 1 + 3 = lim

→2

4(− 2)
(− 2)√4+ 1 + 3

= lim
→2

4√
4+ 1 + 3

=
4√
9 + 3

=
2

3

23. lim
→3

1


− 1

3
− 3 = lim

→3

1


− 1

3
− 3 · 3

3
= lim

→3

3− 

3(− 3) = lim
→3

−1
3

= −1
9

24. lim
→0

(3 + )−1 − 3−1


= lim
→0

1

3 + 
− 1

3


= lim
→0

3− (3 + )

(3 + )3
= lim

→0

−
(3 + )3

= lim
→0


− 1

3(3 + )


= − 1

lim
→0

[3(3 + )]
= − 1

3(3 + 0)
= −1

9

25. lim
→0

√
1 + −√1− 


= lim

→0

√
1 + −√1− 


·
√
1 + +

√
1− √

1 + +
√
1− 

= lim
→0

√
1 + 

2 − √1− 
2


√
1 + +

√
1− 


= lim

→0

(1 + )− (1− )


√
1 + +

√
1− 

 = lim
→0

2


√
1 + +

√
1− 

 = lim
→0

2√
1 + +

√
1− 

=
2√

1 +
√
1
=
2

2
= 1

26. lim
→0


1


− 1

2 + 


= lim

→0


1


− 1

(+ 1)


= lim

→0

+ 1− 1
(+ 1)

= lim
→0

1

+ 1
=

1

0 + 1
= 1

27. lim
→16

4−√
16− 2

= lim
→16

(4−√ )(4 +√ )
(16− 2)(4 +

√
 )

= lim
→16

16− 

(16− )(4 +
√
 )

= lim
→16

1

(4 +
√
 )

=
1

16

4 +

√
16
 = 1

16(8)
=

1

128

28. lim
→2

2 − 4+ 4
4 − 32 − 4 = lim

→2

(− 2)2
(2 − 4)(2 + 1) = lim

→2

(− 2)2
(+ 2)(− 2)(2 + 1)

= lim
→2

− 2
(+ 2)(2 + 1)

=
0

4 · 5 = 0
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84 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

29. lim
→0


1


√
1 + 

− 1




= lim

→0

1−√1 + 


√
1 + 

= lim
→0


1−√1 + 


1 +

√
1 + 



√
+ 1


1 +

√
1 + 

 = lim
→0

−

√
1 + 


1 +

√
1 + 


= lim

→0

−1√
1 + 


1 +

√
1 + 

 = −1√
1 + 0


1 +

√
1 + 0

 = −1
2

30. lim
→−4

√
2 + 9− 5
+ 4

= lim
→−4

√
2 + 9− 5√2 + 9 + 5
(+ 4)

√
2 + 9+ 5

 = lim
→−4

(2 + 9)− 25
(+ 4)

√
2 + 9 + 5


= lim

→−4
2 − 16

(+ 4)
√

2 + 9 + 5
 = lim

→−4
(+ 4)(− 4)

(+ 4)
√

2 + 9 + 5


= lim
→−4

− 4√
2 + 9 + 5

=
−4− 4√
16 + 9 + 5

=
−8
5 + 5

= −4
5

31. lim
→0

(+ )3 − 3


= lim

→0

(3 + 32+ 32 + 3)− 3


= lim

→0

32+ 32 + 3



= lim
→0

(32 + 3+ 2)


= lim

→0
(32 + 3+ 2) = 32

32. lim
→0

1

(+ )2
− 1

2


= lim

→0

2 − (+ )2

(+ )22


= lim

→0

2 − (2 + 2+ 2)

2(+ )2
= lim

→0

−(2+ )

2(+ )2

= lim
→0

−(2+ )

2(+ )2
=

−2
2 · 2 = −

2

3

33. (a)

lim
→0

√
1 + 3− 1 ≈

2

3

(b)
 ()

−0001 0666 166 3

−0000 1 0666 616 7

−0000 01 0666 661 7

−0000 001 0666 666 2

0000 001 0666 667 2

0000 01 0666 671 7

0000 1 0666 716 7

0001 0667 166 3

The limit appears to be
2

3
.

(c) lim
→0


√

1 + 3− 1 ·
√
1 + 3+ 1√
1 + 3+ 1


= lim

→0


√
1 + 3+ 1


(1 + 3)− 1 = lim

→0


√
1 + 3+ 1


3

=
1

3
lim
→0

√
1 + 3+ 1


[Limit Law 3]

=
1

3


lim
→0

(1 + 3) + lim
→0

1


[1 and 11]

=
1

3


lim
→0

1 + 3 lim
→0

+ 1


[1, 3, and 7]

=
1

3

√
1 + 3 · 0 + 1 [7 and 8]

=
1

3
(1 + 1) =

2

3
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SECTION 2.3 CALCULATING LIMITS USING THE LIMIT LAWS ¤ 85

34. (a)

lim
→0

√
3 + −√3


≈ 029

(b)
 ()

−0001 0288 699 2

−0000 1 0288 677 5

−0000 01 0288 675 4

−0000 001 0288 675 2

0000 001 0288 675 1

0000 01 0288 674 9

0000 1 0288 672 7

0001 0288 651 1

The limit appears to be approximately 02887.

(c) lim
→0

√
3 + −√3


·
√
3 + +

√
3√

3 + +
√
3


= lim

→0

(3 + )− 3

√
3 + +

√
3
 = lim

→0

1√
3 + +

√
3

=
lim
→0

1

lim
→0

√
3 + + lim

→0

√
3

[Limit Laws 5 and 1]

=
1

lim
→0

(3 + ) +
√
3

[7 and 11]

=
1√

3 + 0 +
√
3

[1, 7, and 8]

=
1

2
√
3

35. Let () = −2, () = 2 cos 20 and () = 2. Then

−1 ≤ cos 20 ≤ 1 ⇒ −2 ≤ 2 cos 20 ≤ 2 ⇒ () ≤ () ≤ ().

So since lim
→0

() = lim
→0

() = 0, by the Squeeze Theorem we have

lim
→0

() = 0.

36. Let () = −√3 + 2, () =
√
3 + 2 sin(), and () =

√
3 + 2. Then

−1 ≤ sin() ≤ 1 ⇒ −√3 + 2 ≤ √3 + 2 sin() ≤ √3 + 2 ⇒
() ≤ () ≤ (). So since lim

→0
() = lim

→0
() = 0, by the Squeeze Theorem

we have lim
→0

() = 0.

37. We have lim
→4

(4− 9) = 4(4)− 9 = 7 and lim
→4


2 − 4+ 7 = 42 − 4(4) + 7 = 7. Since 4− 9 ≤ () ≤ 2 − 4+ 7

for  ≥ 0, lim
→4

() = 7 by the Squeeze Theorem.

38. We have lim
→1

(2) = 2(1) = 2 and lim
→1

(4 − 2 + 2) = 14 − 12 + 2 = 2. Since 2 ≤ () ≤ 4 − 2 + 2 for all ,

lim
→1

() = 2 by the Squeeze Theorem.

39. −1 ≤ cos(2) ≤ 1 ⇒ −4 ≤ 4 cos(2) ≤ 4. Since lim
→0

−4 = 0 and lim
→0

4 = 0, we have

lim
→0


4 cos(2)


= 0 by the Squeeze Theorem.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



86 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

40. −1 ≤ sin() ≤ 1 ⇒ −1 ≤ sin() ≤ 1 ⇒ √
/ ≤ √ sin() ≤ √. Since lim

→0+
(
√
/) = 0 and

lim
→0+

(
√
 ) = 0, we have lim

→0+

√
 sin()


= 0 by the Squeeze Theorem.

41. |− 3| =

− 3 if − 3 ≥ 0
−(− 3) if − 3  0

=


− 3 if  ≥ 3
3−  if   3

Thus, lim
→3+

(2+ |− 3|) = lim
→3+

(2+ − 3) = lim
→3+

(3− 3) = 3(3)− 3 = 6 and

lim
→3−

(2+ |− 3|) = lim
→3−

(2+ 3− ) = lim
→3−

(+ 3) = 3 + 3 = 6. Since the left and right limits are equal,

lim
→3

(2+ |− 3|) = 6.

42. |+ 6| =

+ 6 if + 6 ≥ 0
−(+ 6) if + 6  0

=


+ 6 if  ≥ −6
−(+ 6) if   −6

We’ll look at the one-sided limits.

lim
→−6+

2+ 12

|+ 6| = lim
→−6+

2(+ 6)

+ 6
= 2 and lim

→−6−
2+ 12

|+ 6| = lim
→−6−

2(+ 6)

−(+ 6) = −2

The left and right limits are different, so lim
→−6

2+ 12

|+ 6| does not exist.

43.
23 − 2

 = 2(2− 1) = 2 · |2− 1| = 2 |2− 1|

|2− 1| =

2− 1 if 2− 1 ≥ 0
−(2− 1) if 2− 1  0 =


2− 1 if  ≥ 05
−(2− 1) if   05

So
23 − 2

 = 2[−(2− 1)] for   05.

Thus, lim
→05−

2− 1
|23 − 2| = lim

→05−
2− 1

2[−(2− 1)] = lim
→05−

−1
2

=
−1
(05)2

=
−1
025

= −4.

44. Since || = − for   0, we have lim
→−2

2− ||
2 + 

= lim
→−2

2− (−)
2 + 

= lim
→−2

2 + 

2 + 
= lim

→−2
1 = 1.

45. Since || = − for   0, we have lim
→0−


1


− 1

||

= lim

→0−


1


− 1

−

= lim

→0−
2


, which does not exist since the

denominator approaches 0 and the numerator does not.

46. Since || =  for   0, we have lim
→0+


1


− 1

||

= lim

→0+


1


− 1




= lim

→0+
0 = 0.

47. (a) (b) (i) Since sgn = 1 for   0, lim
→0+

sgn = lim
→0+

1 = 1.

(ii) Since sgn = −1 for   0, lim
→0−

sgn  = lim
→0−

−1 = −1.

(iii) Since lim
→0−

sgn 6= lim
→0+

sgn, lim
→0

sgn does not exist.

(iv) Since |sgn| = 1 for  6= 0, lim
→0

|sgn| = lim
→0

1 = 1.
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SECTION 2.3 CALCULATING LIMITS USING THE LIMIT LAWS ¤ 87

48. (a) () = sgn(sin) =


−1 if sin  0

0 if sin = 0

1 if sin  0

(i) lim
→0+

() = lim
→0+

sgn(sin) = 1 since sin is positive for small positive values of .

(ii) lim
→0−

() = lim
→0−

sgn(sin) = −1 since sin is negative for small negative values of .

(iii) lim
→0

() does not exist since lim
→0+

() 6= lim
→0−

().

(iv) lim
→+

() = lim
→+

sgn(sin) = −1 since sin is negative for values of  slightly greater than .

(v) lim
→−

() = lim
→−

sgn(sin) = 1 since sin is positive for values of  slightly less than .

(vi) lim
→

() does not exist since lim
→+

() 6= lim
→−

().

(b) The sine function changes sign at every integer multiple of , so the

signum function equals 1 on one side and−1 on the other side of ,

 an integer. Thus, lim
→

() does not exist for  = ,  an integer.

(c)

49. (a) (i) lim
→2+

() = lim
→2+

2 + − 6
|− 2| = lim

→2+

(+ 3)(− 2)
|− 2|

= lim
→2+

(+ 3)(− 2)
− 2 [since − 2  0 if → 2+]

= lim
→2+

(+ 3) = 5

(ii) The solution is similar to the solution in part (i), but now |− 2| = 2−  since − 2  0 if → 2−.

Thus, lim
→2−

() = lim
→2−

−(+ 3) = −5.

(b) Since the right-hand and left-hand limits of  at  = 2

are not equal, lim
→2

() does not exist.

(c)

50. (a) () =


2 + 1 if   1

(− 2)2 if  ≥ 1

lim
→1−

() = lim
→1−

(2 + 1) = 12 + 1 = 2, lim
→1+

() = lim
→1+

(− 2)2 = (−1)2 = 1

(b) Since the right-hand and left-hand limits of  at  = 1

are not equal, lim
→1

() does not exist.

(c)
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88 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

51. For the lim
→2

() to exist, the one-sided limits at  = 2 must be equal. lim
→2−

() = lim
→2−


4− 1

2 

= 4− 1 = 3 and

lim
→2+

() = lim
→2+

√
+  =

√
2 + . Now 3 =

√
2 +  ⇒ 9 = 2 +  ⇔  = 7.

52. (a) (i) lim
→1−

() = lim
→1−

 = 1

(ii) lim
→1+

() = lim
→1+

(2− 2) = 2− 12 = 1. Since lim
→1−

() = 1 and lim
→1+

() = 1, we have lim
→1

() = 1.

Note that the fact (1) = 3 does not affect the value of the limit.

(iii) When  = 1, () = 3, so (1) = 3.

(iv) lim
→2−

() = lim
→2−

(2− 2) = 2− 22 = 2− 4 = −2

(v) lim
→2+

() = lim
→2+

(− 3) = 2− 3 = −1

(vi) lim
→2

() does not exist since lim
→2−

() 6= lim
→2+

().

(b)

() =


 if   1

3 if  = 1

2− 2 if 1   ≤ 2
− 3 if   2

53. (a) (i) [[]] = −2 for −2 ≤   −1, so lim
→−2+

[[]] = lim
→−2+

(−2) = −2

(ii) [[]] = −3 for −3 ≤   −2, so lim
→−2−

[[]] = lim
→−2−

(−3) = −3.

The right and left limits are different, so lim
→−2

[[]] does not exist.

(iii) [[]] = −3 for −3 ≤   −2, so lim
→−24

[[]] = lim
→−24

(−3) = −3.

(b) (i) [[]] = − 1 for − 1 ≤   , so lim
→−

[[]] = lim
→−

(− 1) = − 1.

(ii) [[]] =  for  ≤   + 1, so lim
→+

[[]] = lim
→+

 = .

(c) lim
→

[[]] exists ⇔  is not an integer.

54. (a) See the graph of  = cos.

Since−1 ≤ cos  0 on [−−2), we have  = () = [[cos]] = −1
on [−−2).
Since 0 ≤ cos  1 on [−2 0) ∪ (0 2], we have () = 0

on [−2 0) ∪ (0 2].
Since −1 ≤ cos  0 on (2 ], we have () = −1 on (2 ].

Note that (0) = 1.
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SECTION 2.3 CALCULATING LIMITS USING THE LIMIT LAWS ¤ 89

(b) (i) lim
→0−

() = 0 and lim
→0+

() = 0, so lim
→0

() = 0.

(ii) As → (2)−, ()→ 0, so lim
→(2)−

() = 0.

(iii) As → (2)+, ()→−1, so lim
→(2)+

() = −1.

(iv) Since the answers in parts (ii) and (iii) are not equal, lim
→2

() does not exist.

(c) lim
→

() exists for all  in the open interval (− ) except  = −2 and  = 2.

55. The graph of () = [[]] + [[−]] is the same as the graph of () = −1 with holes at each integer, since () = 0 for any

integer . Thus, lim
→2−

() = −1 and lim
→2+

 () = −1, so lim
→2

() = −1. However,

(2) = [[2]] + [[−2]] = 2 + (−2) = 0, so lim
→2

() 6= (2).

56. lim
→−


0


1− 2

2


= 0

√
1− 1 = 0. As the velocity approaches the speed of light, the length approaches 0.

A left-hand limit is necessary since  is not defined for   .

57. Since () is a polynomial, () = 0 + 1+ 2
2 + · · ·+ 

. Thus, by the Limit Laws,

lim
→

() = lim
→


0 + 1+ 2

2 + · · ·+ 


= 0 + 1 lim

→
+ 2 lim

→
2 + · · ·+  lim

→


= 0 + 1+ 2
2 + · · ·+ 

 = ()

Thus, for any polynomial , lim
→

() = ().

58. Let () =
()

()
where () and () are any polynomials, and suppose that () 6= 0. Then

lim
→

() = lim
→

()

()
=
lim
→

()

lim
→

 ()
[Limit Law 5] =

()

()
[Exercise 57] = ().

59. lim
→1

[()− 8] = lim
→1


()− 8
− 1 · (− 1)


= lim

→1

()− 8
− 1 · lim

→1
(− 1) = 10 · 0 = 0.

Thus, lim
→1

() = lim
→1

{[()− 8] + 8} = lim
→1

[()− 8] + lim
→1

8 = 0 + 8 = 8.

Note: The value of lim
→1

()− 8
− 1 does not affect the answer since it’s multiplied by 0. What’s important is that

lim
→1

()− 8
− 1 exists.

60. (a) lim
→0

() = lim
→0


()

2
· 2


= lim

→0

()

2
· lim
→0

2 = 5 · 0 = 0

(b) lim
→0

()


= lim

→0


()

2
· 

= lim

→0

()

2
· lim
→0

 = 5 · 0 = 0

61. Observe that 0 ≤ () ≤ 2 for all , and lim
→0

0 = 0 = lim
→0

2. So, by the Squeeze Theorem, lim
→0

() = 0.
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90 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

62. Let () = [[]] and () = −[[]]. Then lim
→3

() and lim
→3

() do not exist [Example 10]

but lim
→3

[() + ()] = lim
→3

([[]]− [[]]) = lim
→3

0 = 0.

63. Let () = () and () = 1−(), where  is the Heaviside function defined in Exercise 1.3.59.

Thus, either  or  is 0 for any value of . Then lim
→0

() and lim
→0

() do not exist, but lim
→0

[()()] = lim
→0

0 = 0.

64. lim
→2

√
6− − 2√
3− − 1 = lim

→2

√
6− − 2√
3− − 1 ·

√
6− + 2√
6− + 2

·
√
3− + 1√
3− + 1



= lim
→2

√
6− 

2 − 22√
3− 

2 − 12 ·
√
3− + 1√
6− + 2


= lim

→2


6− − 4
3− − 1 ·

√
3− + 1√
6− + 2



= lim
→2

(2− )
√
3− + 1


(2− )

√
6− + 2

 = lim
→2

√
3− + 1√
6− + 2

=
1

2

65. Since the denominator approaches 0 as → −2, the limit will exist only if the numerator also approaches

0 as  → −2. In order for this to happen, we need lim
→−2


32 + + + 3


= 0 ⇔

3(−2)2 + (−2) + + 3 = 0 ⇔ 12− 2+ + 3 = 0 ⇔  = 15. With  = 15, the limit becomes

lim
→−2

32 + 15+ 18

2 + − 2 = lim
→−2

3(+ 2)(+ 3)

(− 1)(+ 2) = lim
→−2

3(+ 3)

− 1 =
3(−2 + 3)
−2− 1 =

3

−3 = −1.

66. Solution 1: First, we find the coordinates of  and  as functions of . Then we can find the equation of the line determined

by these two points, and thus find the -intercept (the point ), and take the limit as → 0. The coordinates of  are (0 ).

The point  is the point of intersection of the two circles 2 + 2 = 2 and (− 1)2 + 2 = 1. Eliminating  from these

equations, we get 2 − 2 = 1− (− 1)2 ⇔ 2 = 1+2− 1 ⇔  = 1
2
2. Substituting back into the equation of the

shrinking circle to find the -coordinate, we get

1
2
2
2
+ 2 = 2 ⇔ 2 = 2


1− 1

4
2
 ⇔  = 


1− 1

4
2

(the positive -value). So the coordinates of  are

1
2
2 


1− 1

4
2


. The equation of the line joining  and  is thus

 −  =


1− 1

4
2 − 

1
2
2 − 0 (− 0). We set  = 0 in order to find the -intercept, and get

 = −
1
2
2




1− 1
4
2 − 1

 = − 1
2
2


1− 1
4
2 + 1


1− 1

4
2 − 1 = 2


1− 1

4
2 + 1



Now we take the limit as → 0+: lim
→0+

 = lim
→0+

2


1− 1
4

2 + 1

= lim

→0+
2
√
1 + 1


= 4.

So the limiting position of  is the point (4 0).

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 2.4 THE PRECISE DEFINITION OF A LIMIT ¤ 91

Solution 2: We add a few lines to the diagram, as shown. Note that

∠ = 90◦ (subtended by diameter ). So ∠ = 90◦ = ∠

(subtended by diameter  ). It follows that ∠ = ∠. Also

∠ = 90◦ − ∠ = ∠ . Since4 is isosceles, so is

4, implying that  = . As the circle 2 shrinks, the point 

plainly approaches the origin, so the point  must approach a point twice

as far from the origin as  , that is, the point (4 0), as above.

2.4 The Precise Definition of a Limit

1. If |()− 1|  02, then −02  ()− 1  02 ⇒ 08  ()  12. From the graph, we see that the last inequality is

true if 07    11, so we can choose  = min {1− 07 11− 1} = min {03 01} = 01 (or any smaller positive

number).

2. If |()− 2|  05, then −05  ()− 2  05 ⇒ 15  ()  25. From the graph, we see that the last inequality is

true if 26    38, so we can take  = min {3− 26 38− 3} = min {04 08} = 04 (or any smaller positive number).

Note that  6= 3.

3. The leftmost question mark is the solution of
√
 = 16 and the rightmost,

√
 = 24. So the values are 162 = 256 and

242 = 576. On the left side, we need |− 4|  |256− 4| = 144. On the right side, we need |− 4|  |576− 4| = 176.

To satisfy both conditions, we need the more restrictive condition to hold — namely, |− 4|  144. Thus, we can choose

 = 144, or any smaller positive number.

4. The leftmost question mark is the positive solution of 2 = 1
2 , that is,  = 1√

2
, and the rightmost question mark is the positive

solution of 2 = 3
2

, that is,  =


3
2

. On the left side, we need |− 1| 
 1√

2
− 1
 ≈ 0292 (rounding down to be safe). On

the right side, we need |− 1| 
3

2
− 1
 ≈ 0224. The more restrictive of these two conditions must apply, so we choose

 = 0224 (or any smaller positive number).

5. From the graph, we find that  = tan = 08 when  ≈ 0675, so


4
− 1 ≈ 0675 ⇒ 1 ≈ 

4
− 0675 ≈ 01106. Also,  = tan = 12

when  ≈ 0876, so 
4 + 2 ≈ 0876 ⇒ 2 = 0876− 

4 ≈ 00906.

Thus, we choose  = 00906 (or any smaller positive number) since this is

the smaller of 1 and 2.

6. From the graph, we find that  = 2(2 + 4) = 03 when  = 2
3 , so

1− 1 =
2
3
⇒ 1 =

1
3

. Also,  = 2(2 + 4) = 05 when  = 2, so

1 + 2 = 2 ⇒ 2 = 1. Thus, we choose  = 1
3 (or any smaller positive

number) since this is the smaller of 1 and 2.
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92 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

7. From the graph with  = 02, we find that  = 3 − 3+ 4 = 58 when

 ≈ 19774, so 2− 1 ≈ 19774 ⇒ 1 ≈ 00226. Also,

 = 3 − 3+ 4 = 62 when  ≈ 2022, so 2 + 2 ≈ 20219 ⇒
2 ≈ 00219. Thus, we choose  = 00219 (or any smaller positive

number) since this is the smaller of 1 and 2.

For  = 01, we get 1 ≈ 00112 and 2 ≈ 00110, so we choose

 = 0011 (or any smaller positive number).

8. From the graph with  = 05, we find that  = (2 − 1) = 15 when

 ≈ −0303, so 1 ≈ 0303. Also,  = (2 − 1) = 25 when

 ≈ 0215, so 2 ≈ 0215. Thus, we choose  = 0215 (or any smaller

positive number) since this is the smaller of 1 and 2.

For  = 01, we get 1 ≈ 0052 and 2 ≈ 0048, so we choose

 = 0048 (or any smaller positive number).

9. (a)

The first graph of  =
1

ln(− 1) shows a vertical asymptote at  = 2. The second graph shows that  = 100 when

 ≈ 201 (more accurately, 201005). Thus, we choose  = 001 (or any smaller positive number).

(b) From part (a), we see that as  gets closer to 2 from the right,  increases without bound. In symbols,

lim
→2+

1

ln(− 1) =∞.

10. We graph  = csc2 and  = 500. The graphs intersect at  ≈ 3186, so

we choose  = 3186−  ≈ 0044. Thus, if 0  |− |  0044, then

csc2  500. Similarly, for  = 1000, we get  = 3173−  ≈ 0031.

11. (a)  = 2 and  = 1000 cm2 ⇒ 2 = 1000 ⇒ 2 = 1000


⇒  =


1000


(  0) ≈ 178412 cm.

(b) |− 1000| ≤ 5 ⇒ −5 ≤ 2 − 1000 ≤ 5 ⇒ 1000− 5 ≤ 2 ≤ 1000 + 5 ⇒
995

≤  ≤


1005


⇒ 177966 ≤  ≤ 178858.


1000

−


995

≈ 004466 and


1005

−


1000

≈ 004455. So

if the machinist gets the radius within 00445 cm of 178412, the area will be within 5 cm2 of 1000.
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SECTION 2.4 THE PRECISE DEFINITION OF A LIMIT ¤ 93

(c)  is the radius, () is the area,  is the target radius given in part (a),  is the target area (1000),  is the tolerance in the

area (5), and  is the tolerance in the radius given in part (b).

12. (a)  = 012 + 2155 + 20 and  = 200 ⇒

012 + 2155 + 20 = 200 ⇒ [by the quadratic formula or

from the graph]  ≈ 330 watts (  0)

(b) From the graph, 199 ≤  ≤ 201 ⇒ 3289    3311.

(c)  is the input power, () is the temperature,  is the target input power given in part (a),  is the target temperature (200),

 is the tolerance in the temperature (1), and  is the tolerance in the power input in watts indicated in part (b) (011 watts).

13. (a) |4− 8| = 4 |− 2|  01 ⇔ |− 2|  01

4
, so  =

01

4
= 0025.

(b) |4− 8| = 4 |− 2|  001 ⇔ |− 2|  001

4
, so  =

001

4
= 00025.

14. |(5− 7)− 3| = |5− 10| = |5(− 2)| = 5 |− 2|. We must have |()− |  , so 5 |− 2|   ⇔
|− 2|  5. Thus, choose  = 5. For  = 01,  = 002; for  = 005,  = 001; for  = 001,  = 0002.

15. Given   0, we need   0 such that if 0  |− 3|  , then(1 + 1
3)− 2

  . But
(1 + 1

3)− 2
   ⇔  1

3− 1
   ⇔ 1

3

 |− 3|   ⇔ |− 3|  3. So if we choose  = 3, then

0  |− 3|   ⇒ (1 + 1
3
)− 2  . Thus, lim

→3
(1 + 1

3
) = 2 by

the definition of a limit.

16. Given   0, we need   0 such that if 0  |− 4|  , then

|(2− 5)− 3|  . But |(2− 5)− 3|   ⇔ |2− 8|   ⇔
|2| |− 4|   ⇔ |− 4|  2. So if we choose  = 2, then

0  |− 4|   ⇒ |(2− 5)− 3|  . Thus, lim
→4

(2− 5) = 3 by the

definition of a limit.

17. Given   0, we need   0 such that if 0  |− (−3)|  , then

|(1− 4)− 13|  . But |(1− 4)− 13|   ⇔

|−4− 12|   ⇔ |−4| |+ 3|   ⇔ |− (−3)|  4. So if

we choose  = 4, then 0  |− (−3)|   ⇒ |(1− 4)− 13|  .

Thus, lim
→−3

(1− 4) = 13 by the definition of a limit.

x
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94 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

18. Given   0, we need   0 such that if 0  |− (−2)|  , then

|(3+ 5)− (−1)|  . But |(3+ 5)− (−1)|   ⇔
|3+ 6|   ⇔ |3| |+ 2|   ⇔ |+ 2|  3. So if we choose

 = 3, then 0  |+ 2|   ⇒ |(3+ 5)− (−1)|  . Thus,

lim
→−2

(3+ 5) = −1 by the definition of a limit.

19. Given   0, we need   0 such that if 0  |− 1|  , then

2 + 43
− 2
  . But

2 + 43
− 2
   ⇔

4− 43

   ⇔  4
3

 |− 1|   ⇔ |− 1|  3
4
. So if we choose  = 3

4
, then 0  |− 1|   ⇒

2 + 43
− 2
  . Thus, lim

→1

2 + 4

3
= 2 by the definition of a limit.

20. Given   0, we need   0 such that if 0  |− 10|  , then
3− 4

5
− (−5)  . But

3− 4
5
− (−5)   ⇔8− 4

5
   ⇔ −4

5

 |− 10|   ⇔ |− 10|  5
4. So if we choose  = 5

4, then 0  |− 10|   ⇒3− 4
5− (−5)

  . Thus, lim
→10

(3− 4
5) = −5 by the definition of a limit.

21. Given   0, we need   0 such that if 0  |− 4|  , then

2 − 2− 8− 4 − 6
   ⇔

 (− 4)(+ 2)− 4 − 6
   ⇔ |+ 2− 6|   [ 6= 4] ⇔ |− 4|  . So choose  = . Then

0  |− 4|   ⇒ |− 4|   ⇒ |+ 2− 6|   ⇒
 (− 4)(+ 2)− 4 − 6

   [ 6= 4] ⇒
2 − 2− 8− 4 − 6

  . By the definition of a limit, lim
→4

2 − 2− 8
− 4 = 6.

22. Given   0, we need   0 such that if 0  |+ 15|  , then

9− 423 + 2
− 6
   ⇔

 (3 + 2)(3− 2)3 + 2
− 6
   ⇔ |3− 2− 6|   [ 6= −15] ⇔ |−2− 3|   ⇔ |−2| |+ 15|   ⇔

|+ 15|  2. So choose  = 2. Then 0  |+ 15|   ⇒ |+ 15|  2 ⇒ |−2| |+ 15|   ⇒

|−2− 3|   ⇒ |3− 2− 6|   ⇒
 (3 + 2)(3− 2)3 + 2

− 6
   [ 6= −15] ⇒

9− 423 + 2
− 6
  .

By the definition of a limit, lim
→−15

9− 42
3 + 2

= 6.

23. Given   0, we need   0 such that if 0  |− |  , then |− |  . So  =  will work.
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SECTION 2.4 THE PRECISE DEFINITION OF A LIMIT ¤ 95

24. Given   0, we need   0 such that if 0  |− |  , then |− |  . But |− | = 0, so this will be true no matter

what  we pick.

25. Given   0, we need   0 such that if 0  |− 0|  , then
2 − 0   ⇔ 2   ⇔ ||  √. Take  =

√
.

Then 0  |− 0|   ⇒ 2 − 0  . Thus, lim
→0

2 = 0 by the definition of a limit.

26. Given   0, we need   0 such that if 0  |− 0|  , then
3 − 0   ⇔ ||3   ⇔ ||  3

√
. Take  = 3

√
.

Then 0  |− 0|   ⇒ 3 − 0  3 = . Thus, lim
→0

3 = 0 by the definition of a limit.

27. Given   0, we need   0 such that if 0  |− 0|  , then
||− 0  . But

|| = ||. So this is true if we pick  = .

Thus, lim
→0

|| = 0 by the definition of a limit.

28. Given   0, we need   0 such that if 0  − (−6)  , then
 8√6 + − 0  . But

 8√6 + − 0   ⇔
8
√
6 +    ⇔ 6 +   8 ⇔ − (−6)  8. So if we choose  = 8, then 0  − (−6)   ⇒ 8√6 + − 0  . Thus, lim

→−6+
8
√
6 +  = 0 by the definition of a right-hand limit.

29. Given   0, we need   0 such that if 0  |− 2|  , then
2 − 4+ 5− 1   ⇔ 2 − 4+ 4   ⇔(− 2)2  . So take  =

√
. Then 0  |− 2|   ⇔ |− 2|  √ ⇔ (− 2)2  . Thus,

lim
→2


2 − 4+ 5 = 1 by the definition of a limit.

30. Given   0, we need   0 such that if 0  |− 2|  , then
(2 + 2− 7)− 1  . But

(2 + 2− 7)− 1   ⇔2 + 2− 8   ⇔ |+ 4| |− 2|  . Thus our goal is to make |− 2| small enough so that its product with |+ 4|

is less than . Suppose we first require that |− 2|  1. Then −1  − 2  1 ⇒ 1    3 ⇒ 5  + 4  7 ⇒
|+ 4|  7, and this gives us 7 |− 2|   ⇒ |− 2|  7. Choose  = min {1 7}. Then if 0  |− 2|  , we

have |− 2|  7 and |+ 4|  7, so
(2 + 2− 7)− 1 = |(+ 4)(− 2)| = |+ 4| |− 2|  7(7) = , as

desired. Thus, lim
→2

(2 + 2− 7) = 1 by the definition of a limit.

31. Given   0, we need   0 such that if 0  |− (−2)|  , then
2 − 1− 3   or upon simplifying we need2 − 4   whenever 0  |+ 2|  . Notice that if |+ 2|  1, then −1  + 2  1 ⇒ −5  − 2  −3 ⇒

|− 2|  5. So take  = min {5 1}. Then 0  |+ 2|   ⇒ |− 2|  5 and |+ 2|  5, so2 − 1− 3 = |(+ 2)(− 2)| = |+ 2| |− 2|  (5)(5) = . Thus, by the definition of a limit, lim
→−2

(2 − 1) = 3.

32. Given   0, we need   0 such that if 0  |− 2|  , then
3 − 8  . Now

3 − 8 = (− 2)2 + 2+ 4.
If |− 2|  1, that is, 1    3, then 2 + 2 + 4  32 + 2(3) + 4 = 19 and so3 − 8 = |− 2| 2 + 2+ 4  19 |− 2|. So if we take  = min


1 

19


, then 0  |− 2|   ⇒3 − 8 = |− 2| 2 + 2+ 4  

19
· 19 = . Thus, by the definition of a limit, lim

→2
3 = 8.
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96 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

33. Given   0, we let  = min

2 8


. If 0  |− 3|  , then |− 3|  2 ⇒ −2  − 3  2 ⇒

4  + 3  8 ⇒ |+ 3|  8. Also |− 3|  
8

, so
2 − 9 = |+ 3| |− 3|  8 · 

8
= . Thus, lim

→3
2 = 9.

34. From the figure, our choices for  are 1 = 3−
√
9−  and

2 =
√
9 + − 3. The largest possible choice for  is the minimum

value of {1 2}; that is,  = min{1 2} = 2 =
√
9 + − 3.

35. (a) The points of intersection in the graph are (1 26) and (2 34)

with 1 ≈ 0891 and 2 ≈ 1093. Thus, we can take  to be the

smaller of 1− 1 and 2 − 1. So  = 2 − 1 ≈ 0093.

(b) Solving 3 + + 1 = 3 +  gives us two nonreal complex roots and one real root, which is

() =


216 + 108+ 12

√
336 + 324+ 812

23 − 12
6

216 + 108+ 12

√
336 + 324+ 812

13 . Thus,  = ()− 1.

(c) If  = 04, then () ≈ 1093 272 342 and  = ()− 1 ≈ 0093, which agrees with our answer in part (a).

36. 1. Guessing a value for  Let   0 be given. We have to find a number   0 such that

 1 − 1

2

   whenever

0  |− 2|  . But

 1 − 1

2

 = 2− 

2

 = |− 2|
|2|  . We find a positive constant  such that

1

|2|   ⇒

|− 2|
|2|   |− 2| and we can make  |− 2|   by taking |− 2|  


= . We restrict  to lie in the interval

|− 2|  1 ⇒ 1    3 so 1 
1



1

3
⇒ 1

6

1

2

1

2
⇒ 1

|2| 
1

2
. So  =

1

2
is suitable. Thus, we should

choose  = min {1 2}.

2. Showing that  works Given   0 we let  = min {1 2}. If 0  |− 2|  , then |− 2|  1 ⇒ 1    3 ⇒
1

|2| 
1

2
(as in part 1). Also |− 2|  2, so

 1 − 1

2

 = |− 2|
|2| 

1

2
· 2 = . This shows that lim

→2
(1) = 1

2
.

37. 1. Guessing a value for  Given   0, we must find   0 such that |√−√|   whenever 0  |− |  . But

|√−√| = |− |√
+

√

  (from the hint). Now if we can find a positive constant  such that

√
+

√
   then
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SECTION 2.4 THE PRECISE DEFINITION OF A LIMIT ¤ 97

|− |√
+

√


|− |


 , and we take |− |  . We can find this number by restricting  to lie in some interval

centered at . If |− |  1
2
, then − 1

2
  −   1

2
 ⇒ 1

2
    3

2
 ⇒ √

+
√
 


1
2
+

√
, and so

 =


1
2+

√
 is a suitable choice for the constant. So |− | 


1
2+

√


. This suggests that we let

 = min

1
2



1
2
+

√





.

2. Showing that  works Given   0, we let  = min

1
2



1
2
+

√





. If 0  |− |  , then

|− |  1
2
 ⇒ √

+
√
 


1
2
+

√
 (as in part 1). Also |− | 


1
2
+

√


, so

|√−√ | = |− |√
+

√




2 +

√




2 +
√

 = . Therefore, lim

→

√
 =

√
 by the definition of a limit.

38. Suppose that lim
→0

() = . Given  = 1
2

, there exists   0 such that 0  ||   ⇒ |()− |  1
2
⇔

− 1
2
 ()  + 1

2
. For 0    , () = 1, so 1  + 1

2
⇒   1

2
. For −    0, () = 0,

so − 1
2
 0 ⇒   1

2
. This contradicts   1

2
. Therefore, lim

→0
() does not exist.

39. Suppose that lim
→0

() = . Given  = 1
2 , there exists   0 such that 0  ||   ⇒ |()− |  1

2 . Take any rational

number  with 0  ||  . Then () = 0, so |0− |  1
2

, so  ≤ ||  1
2

. Now take any irrational number  with

0  ||  . Then () = 1, so |1− |  1
2

. Hence, 1−   1
2

, so   1
2

. This contradicts   1
2

, so lim
→0

() does not

exist.

40. First suppose that lim
→

() = . Then, given   0 there exists   0 so that 0  |− |   ⇒ |()− |  .

Then −      ⇒ 0  |− |   so |()− |  . Thus, lim
→−

() = . Also     +  ⇒

0  |− |   so |()− |  . Hence, lim
→+

() = .

Now suppose lim
→−

() =  = lim
→+

(). Let   0 be given. Since lim
→−

() = , there exists 1  0 so that

− 1     ⇒ |()− |  . Since lim
→+

() = , there exists 2  0 so that     + 2 ⇒

|()− |  . Let  be the smaller of 1 and 2. Then 0  |− |   ⇒ − 1     or     + 2 so

|()− |  . Hence, lim
→

() = . So we have proved that lim
→

() =  ⇔ lim
→−

() =  = lim
→+

().

41.
1

(+ 3)4
 10,000 ⇔ (+ 3)4 

1

10,000
⇔ |+ 3|  1

4
√
10,000

⇔ |− (−3)|  1

10

42. Given   0, we need   0 such that 0  |+ 3|   ⇒ 1(+ 3)4   . Now
1

(+ 3)4
  ⇔

(+ 3)4 
1


⇔ |+ 3|  1

4
√


. So take  =
1

4
√


. Then 0  |+ 3|   =
1

4
√


⇒ 1

(+ 3)4
  , so

lim
→−3

1

(+ 3)4
=∞.
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98 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

43. Given   0 we need   0 so that ln   whenever 0    ; that is,  = ln    whenever 0    . This

suggests that we take  =  . If 0     , then ln  ln  = . By the definition of a limit, lim
→0+

ln = −∞.

44. (a) Let  be given. Since lim
→

() =∞, there exists 1  0 such that 0  |− |  1 ⇒ ()   + 1− . Since

lim
→

() = , there exists 2  0 such that 0  |− |  2 ⇒ |()− |  1 ⇒ ()  − 1. Let  be the

smaller of 1 and 2. Then 0  |− |   ⇒ () + ()  ( + 1− ) + (− 1) = . Thus,

lim
→

[() + ()] =∞.

(b) Let   0 be given. Since lim
→

() =   0, there exists 1  0 such that 0  |− |  1 ⇒
|()− |  2 ⇒ ()  2. Since lim

→
() =∞, there exists 2  0 such that 0  |− |  2 ⇒

()  2. Let  = min {1 2}. Then 0  |− |   ⇒ () () 
2





2
= , so lim

→
() () =∞.

(c) Let   0 be given. Since lim
→

() =   0, there exists 1  0 such that 0  |− |  1 ⇒
|()− |  −2 ⇒ ()  2. Since lim

→
() =∞, there exists 2  0 such that 0  |− |  2 ⇒

()  2. (Note that   0 and   0 ⇒ 2  0.) Let  = min {1 2}. Then 0  |− |   ⇒

()  2 ⇒ () () 
2


· 
2
=  , so lim

→
() () = −∞.

2.5 Continuity

1. From Definition 1, lim
→4

() = (4).

2. The graph of  has no hole, jump, or vertical asymptote.

3. (a)  is discontinuous at −4 since (−4) is not defined and at −2, 2, and 4 since the limit does not exist (the left and right

limits are not the same).

(b)  is continuous from the left at −2 since lim
→−2−

() = (−2).  is continuous from the right at 2 and 4 since

lim
→2+

() = (2) and lim
→4+

() = (4). It is continuous from neither side at −4 since (−4) is undefined.

4. From the graph of , we see that  is continuous on the intervals [−3−2), (−2−1), (−1 0], (0 1), and (1 3].

5. The graph of  = () must have a discontinuity at

 = 2 and must show that lim
→2+

() = (2).

6. The graph of  = () must have discontinuities

at  = −1 and  = 4. It must show that

lim
→−1−

() = (−1) and lim
→4+

() = (4).
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SECTION 2.5 CONTINUITY ¤ 99

7. The graph of  = () must have a removable

discontinuity (a hole) at  = 3 and a jump discontinuity

at  = 5.

8. The graph of  = () must have a discontinuity

at  = −2 with lim
→−2−

() 6= (−2) and

lim
→−2+

() 6= (−2). It must also show that

lim
→2−

() = (2) and lim
→2+

() 6= (2).

9. (a) The toll is $7 between 7:00 AM and 10:00 AM and between 4:00 PM and 7:00 PM.

(b) The function  has jump discontinuities at  = 7, 10, 16, and 19. Their

significance to someone who uses the road is that, because of the sudden jumps in

the toll, they may want to avoid the higher rates between  = 7 and  = 10 and

between  = 16 and  = 19 if feasible.

10. (a) Continuous; at the location in question, the temperature changes smoothly as time passes, without any instantaneous jumps

from one temperature to another.

(b) Continuous; the temperature at a specific time changes smoothly as the distance due west from New York City increases,

without any instantaneous jumps.

(c) Discontinuous; as the distance due west from New York City increases, the altitude above sea level may jump from one

height to another without going through all of the intermediate values — at a cliff, for example.

(d) Discontinuous; as the distance traveled increases, the cost of the ride jumps in small increments.

(e) Discontinuous; when the lights are switched on (or off ), the current suddenly changes between 0 and some nonzero value,

without passing through all of the intermediate values. This is debatable, though, depending on your definition of current.

11. lim
→−1

() = lim
→−1


+ 23

4
=


lim
→−1

+ 2 lim
→−1

3
4
=
−1 + 2(−1)34 = (−3)4 = 81 = (−1).

By the definition of continuity,  is continuous at  = −1.

12. lim
→2

() = lim
→2

2 + 5

2+ 1
=
lim
→2

(2 + 5)

lim
→2

(2+ 1)
=
lim
→2

2 + 5 lim
→2



2 lim
→2

+ lim
→2

1
=
22 + 5(2)

2(2) + 1
=
14

5
= (2).

By the definition of continuity,  is continuous at  = 2.
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100 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

13. lim
→1

() = lim
→1

2
√
32 + 1 = 2 lim

→1

√
32 + 1 = 2


lim
→1

(32 + 1) = 2

3 lim
→1

2 + lim
→1

1

= 2

3(1)2 + 1 = 2

√
4 = 4 = (1)

By the definition of continuity,  is continuous at  = 1.

14. lim
→2

() = lim
→2


34 − 5+ 3

√
2 + 4


= 3 lim

→2
4 − 5 lim

→2
+ 3


lim
→2

(2 + 4)

= 3(2)4 − 5(2) + 3
√
22 + 4 = 48− 10 + 2 = 40 = (2)

By the definition of continuity,  is continuous at  = 2.

15. For   4, we have

lim
→

() = lim
→

(+
√
− 4 ) = lim

→
+ lim

→

√
− 4 [Limit Law 1]

= +

lim
→

− lim
→

4 [8, 11, and 2]

= +
√
− 4 [8 and 7]

= ()

So  is continuous at  =  for every  in (4∞). Also, lim
→4+

() = 4 = (4), so  is continuous from the right at 4.

Thus,  is continuous on [4∞).

16. For   −2, we have

lim
→

() = lim
→

− 1
3+ 6

=
lim
→

(− 1)
lim
→

(3+ 6)
[Limit Law 5]

=
lim
→

− lim
→

1

3 lim
→

+ lim
→

6
[2 1 and 3]

=
− 1
3+ 6

[8 and 7]

Thus,  is continuous at  =  for every  in (−∞−2); that is,  is continuous on (−∞−2).

17. () =
1

+ 2
is discontinuous at  = −2 because (−2) is undefined.

18. () =


1

+ 2
if  6= −2

1 if  = −2
Here (−2) = 1, but lim

→−2−
() = −∞ and lim

→−2+
() =∞,

so lim
→−2

() does not exist and  is discontinuous at −2.
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SECTION 2.5 CONTINUITY ¤ 101

19. () =


+ 3 if  ≤ −1
2 if   −1

lim
→−1−

() = lim
→−1−

(+ 3) = −1 + 3 = 2 and

lim
→−1+

() = lim
→−1+

2 = 2−1 = 1
2

. Since the left-hand and the

right-hand limits of  at −1 are not equal, lim
→−1

() does not exist, and

 is discontinuous at −1.

20. () =


2 − 

2 − 1 if  6= 1
1 if  = 1

lim
→1

() = lim
→1

2 − 

2 − 1 = lim
→1

(− 1)
(+ 1)(− 1) = lim

→1



+ 1
=
1

2
,

but (1) = 1, so  is discontinous at 1

21. () =


cos if   0

0 if  = 0

1− 2 if   0

lim
→0

() = 1, but (0) = 0 6= 1, so  is discontinuous at 0.

22. () =


22 − 5− 3

− 3 if  6= 3
6 if  = 3

lim
→3

() = lim
→3

22 − 5− 3
− 3 = lim

→3

(2+ 1)(− 3)
− 3 = lim

→3
(2+ 1) = 7,

but (3) = 6, so  is discontinuous at 3.

23. () =
2 − − 2

− 2 =
(− 2)(+ 1)

− 2 = + 1 for  6= 2. Since lim
→2

() = 2 + 1 = 3, define (2) = 3. Then  is

continuous at 2.

24. () =
3 − 8
2 − 4 =

(− 2)(2 + 2+ 4)
(− 2)(+ 2) =

2 + 2+ 4

+ 2
for  6= 2. Since lim

→2
() =

4 + 4 + 4

2 + 2
= 3, define (2) = 3.

Then  is continuous at 2.

25.  () =
22 − − 1

2 + 1
is a rational function, so it is continuous on its domain, (−∞∞), by Theorem 5(b).

26. () =
2 + 1

22 − − 1 =
2 + 1

(2+ 1)(− 1) is a rational function, so it is continuous on its domain,

−∞− 1
2

 ∪ − 1
2
 1
 ∪ (1∞), by Theorem 5(b).
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102 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

27. 3 − 2 = 0 ⇒ 3 = 2 ⇒  = 3
√
2, so () =

3
√
− 2

3 − 2 has domain
−∞

3
√
2
 ∪  3

√
2∞. Now 3 − 2 is

continuous everywhere by Theorem 5(a) and 3
√
− 2 is continuous everywhere by Theorems 5(a), 7, and 9. Thus,  is

continuous on its domain by part 5 of Theorem 4.

28. The domain of () =
sin 

2 + cos
is (−∞∞) since the denominator is never 0 [cos ≥ −1 ⇒ 2 + cos ≥ 1]. By

Theorems 7 and 9, sin  and cos are continuous on R. By part 1 of Theorem 4, 2 + cos is continuous on R and by part 5

of Theorem 4,  is continuous on R.

29. By Theorem 5(a), the polynomial 1 + 2 is continuous on R. By Theorem 7, the inverse trigonometric function arcsin is

continuous on its domain, [−1 1]. By Theorem 9, () = arcsin(1 + 2) is continuous on its domain, which is

{ | −1 ≤ 1 + 2 ≤ 1} = { | −2 ≤ 2 ≤ 0} = { | −1 ≤  ≤ 0} = [−1 0].

30. By Theorem 7, the trigonometric function tan is continuous on its domain,

 |  6= 

2
+ 


. By Theorems 5(a), 7, and 9,

the composite function
√
4− 2 is continuous on its domain [−2 2]. By part 5 of Theorem 4, () =

tan√
4− 2

is

continuous on its domain, (−2−2) ∪ (−2 2) ∪ (2 2).

31. () =


1 +

1


=


+ 1


is defined when

+ 1


≥ 0 ⇒ +1 ≥ 0 and   0 or +1 ≤ 0 and   0 ⇒   0

or  ≤ −1, so  has domain (−∞−1] ∪ (0∞).  is the composite of a root function and a rational function, so it is

continuous at every number in its domain by Theorems 7 and 9.

32. By Theorems 7 and 9, the composite function −
2

is continuous on R. By part 1 of Theorem 4, 1 + −
2

is continuous on R.

By Theorem 7, the inverse trigonometric function tan−1 is continuous on its domain, R. By Theorem 9, the composite

function () = tan−1

1 + −

2


is continuous on its domain, R.

33. The function  =
1

1 + 1
is discontinuous at  = 0 because the

left- and right-hand limits at  = 0 are different.

34. The function  = tan2  is discontinuous at  = 
2 + , where  is

any integer. The function  = ln

tan2 


is also discontinuous

where tan2  is 0, that is, at  = . So  = ln

tan2 


is

discontinuous at  = 
2
,  any integer.
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SECTION 2.5 CONTINUITY ¤ 103

35. Because  is continuous on R and
√
20− 2 is continuous on its domain, −√20 ≤  ≤ √20, the product

() = 
√
20− 2 is continuous on −√20 ≤  ≤ √20. The number 2 is in that domain, so  is continuous at 2, and

lim
→2

() = (2) = 2
√
16 = 8.

36. Because  is continuous on R, sin is continuous on R, and + sin is continuous on R, the composite function

() = sin(+ sin) is continuous on R, so lim
→

() = () = sin( + sin) = sin = 0.

37. The function () = ln


5− 2

1 + 


is continuous throughout its domain because it is the composite of a logarithm function

and a rational function. For the domain of  , we must have
5− 2

1 + 
 0, so the numerator and denominator must have the

same sign, that is, the domain is (−∞−√5 ] ∪ (−1√5 ]. The number 1 is in that domain, so  is continuous at 1, and

lim
→1

() = (1) = ln
5− 1
1 + 1

= ln 2.

38. The function () = 3
√
2−2−4 is continuous throughout its domain because it is the composite of an exponential function,

a root function, and a polynomial. Its domain is
 | 2 − 2− 4 ≥ 0=  | 2 − 2+ 1 ≥ 5 =  | (− 1)2 ≥ 5

=


 |− 1| ≥ √5  = (−∞ 1−√5 ] ∪ [1 +√5∞)

The number 4 is in that domain, so  is continuous at 4, and lim
→4

() = (4) = 3
√
16−8−4 = 32 = 9.

39. () =


1− 2 if  ≤ 1
ln if   1

By Theorem 5, since () equals the polynomial 1− 2 on (−∞ 1],  is continuous on (−∞ 1].

By Theorem 7, since () equals the logarithm function ln on (1∞),  is continuous on (1∞).
At  = 1, lim

→1−
() = lim

→1−
(1− 2) = 1− 12 = 0 and lim

→1+
() = lim

→1+
ln = ln 1 = 0. Thus, lim

→1
() exists and

equals 0. Also, (1) = 1− 12 = 0. Thus,  is continuous at  = 1. We conclude that  is continuous on (−∞∞).

40. () =


sin if   4

cos if  ≥ 4

By Theorem 7, the trigonometric functions are continuous. Since () = sin on (−∞ 4) and () = cos on

(4∞),  is continuous on (−∞ 4) ∪ (4∞) lim
→(4)−

() = lim
→(4)−

sin = sin 
4 = 1

√
2 since the sine

function is continuous at 4 Similarly, lim
→(4)+

() = lim
→(4)+

cos = 1
√
2 by continuity of the cosine function

at 4. Thus, lim
→(4)

() exists and equals 1
√
2, which agrees with the value (4). Therefore,  is continuous at 4,

so  is continuous on (−∞∞).
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104 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

41. () =


2 if   −1
 if − 1 ≤   1

1 if  ≥ 1

 is continuous on (−∞−1), (−1 1), and (1∞), where it is a polynomial,

a polynomial, and a rational function, respectively.

Now lim
→−1−

() = lim
→−1−

2 = 1 and lim
→−1+

() = lim
→−1+

 = −1,

so  is discontinuous at −1. Since (−1) = −1,  is continuous from the right at −1. Also, lim
→1−

() = lim
→1−

 = 1 and

lim
→1+

() = lim
→1+

1


= 1 = (1), so  is continuous at 1.

42. () =


2 if  ≤ 1
3−  if 1   ≤ 4
√
 if   4

 is continuous on (−∞ 1), (1 4), and (4∞), where it is an exponential,

a polynomial, and a root function, respectively.

Now lim
→1−

() = lim
→1−

2 = 2 and lim
→1+

() = lim
→1+

(3− ) = 2. Since (1) = 2 we have continuity at 1. Also,

lim
→4−

() = lim
→4−

(3− ) = −1 = (4) and lim
→4+

() = lim
→4+

√
 = 2, so  is discontinuous at 4, but it is continuous

from the left at 4.

43. () =


+ 2 if   0

 if 0 ≤  ≤ 1
2−  if   1

 is continuous on (−∞ 0) and (1∞) since on each of these intervals

it is a polynomial; it is continuous on (0 1) since it is an exponential.

Now lim
→0−

() = lim
→0−

(+ 2) = 2 and lim
→0+

() = lim
→0+

 = 1, so  is discontinuous at 0. Since (0) = 1,  is

continuous from the right at 0. Also lim
→1−

() = lim
→1−

 =  and lim
→1+

() = lim
→1+

(2− ) = 1, so  is discontinuous

at 1. Since (1) = ,  is continuous from the left at 1.

44. By Theorem 5, each piece of  is continuous on its domain. We need to check for continuity at  = .

lim
→−

 () = lim
→−



3
=



2
and lim

→+
 () = lim

→+



2
=



2
, so lim

→
 () =



2
. Since  () =



2
,

 is continuous at . Therefore,  is a continuous function of .

45. () =


2 + 2 if   2

3 −  if  ≥ 2
 is continuous on (−∞ 2) and (2∞). Now lim

→2−
() = lim

→2−


2 + 2


= 4+ 4 and
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SECTION 2.5 CONTINUITY ¤ 105

lim
→2+

() = lim
→2+


3 − 


= 8− 2. So  is continuous ⇔ 4+4 = 8− 2 ⇔ 6 = 4 ⇔  = 2

3 . Thus, for 

to be continuous on (−∞∞),  = 2
3

.

46. () =


2 − 4
− 2 if   2

2 − + 3 if 2 ≤   3

2− +  if  ≥ 3

At  = 2: lim
→2−

() = lim
→2−

2 − 4
− 2 = lim

→2−
(+ 2)(− 2)

− 2 = lim
→2−

(+ 2) = 2 + 2 = 4

lim
→2+

() = lim
→2+

(2 − + 3) = 4− 2+ 3

We must have 4− 2+ 3 = 4, or 4− 2 = 1 (1).

At  = 3: lim
→3−

() = lim
→3−

(2 − + 3) = 9− 3+ 3

lim
→3+

() = lim
→3+

(2− + ) = 6− + 

We must have 9− 3+ 3 = 6− + , or 10− 4 = 3 (2).

Now solve the system of equations by adding −2 times equation (1) to equation (2).

−8+ 4= −2
10− 4= 3
2 = 1

So  = 1
2 . Substituting 1

2 for  in (1) gives us −2 = −1, so  = 1
2 as well. Thus, for  to be continuous on (−∞∞),

 =  = 1
2 .

47. If  and  are continuous and (2) = 6, then lim
→2

[3() + () ()] = 36 ⇒

3 lim
→2

() + lim
→2

() · lim
→2

() = 36 ⇒ 3(2) + (2) · 6 = 36 ⇒ 9(2) = 36 ⇒ (2) = 4.

48. (a) () =
1


and () =

1

2
, so ( ◦ )() = (()) = (12) = 1 (12) = 2.

(b) The domain of  ◦  is the set of numbers  in the domain of  (all nonzero reals) such that () is in the domain of  (also

all nonzero reals). Thus, the domain is




  6= 0 and
1

2
6= 0


= { |  6= 0} or (−∞ 0) ∪ (0∞). Since  ◦  is

the composite of two rational functions, it is continuous throughout its domain; that is, everywhere except  = 0.

49. (a) () =
4 − 1
− 1 =

(2 + 1)(2 − 1)
− 1 =

(2 + 1)(+ 1)(− 1)
− 1 = (2 + 1)(+ 1) [or 3 + 2 + + 1]

for  6= 1. The discontinuity is removable and () = 3 + 2 + + 1 agrees with  for  6= 1 and is continuous on R.

(b) () =
3 − 2 − 2

− 2 =
(2 − − 2)

− 2 =
(− 2)(+ 1)

− 2 = (+ 1) [or 2 + ] for  6= 2. The discontinuity

is removable and () = 2 +  agrees with  for  6= 2 and is continuous on R.

(c) lim
→−

() = lim
→−

[[sin]] = lim
→−

0 = 0 and lim
→+

() = lim
→+

[[sin]] = lim
→+

(−1) = −1, so lim
→

() does not

exist. The discontinuity at  =  is a jump discontinuity.
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106 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

50.

 does not satisfy the conclusion of the

Intermediate Value Theorem.

 does satisfy the conclusion of the

Intermediate Value Theorem.

51. () = 2 + 10 sin is continuous on the interval [31 32], (31) ≈ 957, and (32) ≈ 1030. Since 957  1000  1030,

there is a number c in (31 32) such that () = 1000 by the Intermediate Value Theorem. Note: There is also a number c in

(−32−31) such that () = 1000

52. Suppose that (3)  6. By the Intermediate Value Theorem applied to the continuous function  on the closed interval [2 3],

the fact that (2) = 8  6 and (3)  6 implies that there is a number  in (2 3) such that () = 6. This contradicts the fact

that the only solutions of the equation () = 6 are  = 1 and  = 4. Hence, our supposition that (3)  6 was incorrect. It

follows that (3) ≥ 6. But (3) 6= 6 because the only solutions of () = 6 are  = 1 and  = 4. Therefore, (3)  6.

53. () = 4 + − 3 is continuous on the interval [1 2] (1) = −1, and (2) = 15. Since −1  0  15, there is a number 

in (1 2) such that () = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation 4 + − 3 = 0 in the

interval (1 2)

54. The equation ln = −√ is equivalent to the equation ln− +
√
 = 0. () = ln− +

√
 is continuous on the

interval [2 3], (2) = ln 2− 2 +√2 ≈ 0107, and (3) = ln 3− 3 +√3 ≈ −0169. Since (2)  0  (3), there is a

number  in (2 3) such that () = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation

ln− +
√
 = 0, or ln = −√, in the interval (2 3).

55. The equation  = 3− 2 is equivalent to the equation  + 2− 3 = 0. () =  + 2− 3 is continuous on the interval

[0 1], (0) = −2, and (1) = − 1 ≈ 172. Since−2  0  − 1, there is a number  in (0 1) such that () = 0 by the

Intermediate Value Theorem. Thus, there is a root of the equation  + 2− 3 = 0, or  = 3− 2, in the interval (0 1).

56. The equation sin = 2 −  is equivalent to the equation sin− 2 +  = 0. () = sin− 2 +  is continuous on the

interval [1 2] (1) = sin 1 ≈ 084, and (2) = sin 2− 2 ≈ −109. Since sin 1  0  sin 2− 2, there is a number  in

(1 2) such that () = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation sin− 2 +  = 0, or

sin = 2 − , in the interval (1 2).

57. (a) () = cos− 3 is continuous on the interval [0 1], (0) = 1  0, and (1) = cos 1− 1 ≈ −046  0. Since

1  0  −046, there is a number  in (0 1) such that () = 0 by the Intermediate Value Theorem. Thus, there is a root

of the equation cos− 3 = 0, or cos = 3, in the interval (0 1).
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SECTION 2.5 CONTINUITY ¤ 107

(b) (086) ≈ 0016  0 and (087) ≈ −0014  0, so there is a root between 086 and 087, that is, in the interval

(086 087).

58. (a) () = ln− 3 + 2 is continuous on the interval [1 2], (1) = −1  0, and (2) = ln 2 + 1 ≈ 17  0. Since

−1  0  17, there is a number  in (1 2) such that () = 0 by the Intermediate Value Theorem. Thus, there is a root of

the equation ln− 3 + 2 = 0, or ln = 3− 2, in the interval (1 2).

(b) (134) ≈ −003  0 and (135) ≈ 00001  0, so there is a root between 134 and 135 that is, in the

interval (134 135).

59. (a) Let () = 100−100 − 0012 Then (0) = 100  0 and

(100) = 100−1 − 100 ≈ −632  0. So by the Intermediate

Value Theorem, there is a number  in (0 100) such that () = 0.

This implies that 100−100 = 0012.

(b) Using the intersect feature of the graphing device, we find that the

root of the equation is  = 70347, correct to three decimal places.

60. (a) Let () = arctan+ − 1. Then (0) = −1  0 and

(1) = 
4
 0. So by the Intermediate Value Theorem, there is a

number  in (0 1) such that () = 0. This implies that

arctan  = 1− .

(b) Using the intersect feature of the graphing device, we find that the

root of the equation is  = 0520, correct to three decimal places.

61. Let () = sin3. Then  is continuous on [1 2] since  is the composite of the sine function and the cubing function, both

of which are continuous on R. The zeros of the sine are at , so we note that 0  1    3
2
  2  8  3, and that the

pertinent cube roots are related by 1  3


3
2
 [call this value ]  2. [By observation, we might notice that  = 3

√
 and

 = 3
√
2 are zeros of  .]

Now (1) = sin 1  0, () = sin 3
2
 = −1  0, and (2) = sin 8  0. Applying the Intermediate Value Theorem on

[1 ] and then on [ 2], we see there are numbers  and  in (1 ) and ( 2) such that () = () = 0. Thus,  has at

least two -intercepts in (1 2).

62. Let () = 2 − 3 + 1. Then  is continuous on (0 2] since  is a rational function whose domain is (0∞). By

inspection, we see that 

1
4


= 17

16
 0, (1) = −1  0, and (2) = 3

2
 0. Appling the Intermediate Value Theorem on

1
4
 1


and then on [1 2], we see there are numbers  and  in

1
4
 1


and (1 2) such that () = () = 0. Thus,  has at

least two -intercepts in (0 2).
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108 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

63. (⇒) If  is continuous at , then by Theorem 8 with () = + , we have

lim
→0

(+ ) = 

lim
→0

(+ )

= ().

(⇐) Let   0. Since lim
→0

(+ ) = (), there exists   0 such that 0  ||   ⇒

|(+ )− ()|  . So if 0  |− |  , then |()− ()| = |(+ (− ))− ()|  .

Thus, lim
→

() = () and so  is continuous at .

64. lim
→0

sin(+ ) = lim
→0

(sin  cos+ cos  sin) = lim
→0

(sin  cos) + lim
→0

(cos  sin)

=

lim
→0

sin 

lim
→0

cos

+

lim
→0

cos 

lim
→0

sin

= (sin )(1) + (cos )(0) = sin

65. As in the previous exercise, we must show that lim
→0

cos(+ ) = cos  to prove that the cosine function is continuous.

lim
→0

cos(+ ) = lim
→0

(cos  cos− sin  sin) = lim
→0

(cos  cos)− lim
→0

(sin  sin)

=

lim
→0

cos 

lim
→0

cos

−

lim
→0

sin 

lim
→0

sin

= (cos )(1)− (sin )(0) = cos 

66. (a) Since  is continuous at , lim
→

() = (). Thus, using the Constant Multiple Law of Limits, we have

lim
→

( )() = lim
→

() =  lim
→

() = () = ( )(). Therefore,  is continuous at .

(b) Since  and  are continuous at , lim
→

() = () and lim
→

() = (). Since () 6= 0, we can use the Quotient Law

of Limits: lim
→







() = lim

→

()

()
=
lim
→

()

lim
→

()
=

()

()
=







(). Thus,




is continuous at .

67. () =


0 if  is rational

1 if  is irrational
is continuous nowhere. For, given any number  and any   0, the interval (−  + )

contains both infinitely many rational and infinitely many irrational numbers. Since () = 0 or 1, there are infinitely many

numbers  with 0  |− |   and |()− ()| = 1. Thus, lim
→

() 6= (). [In fact, lim
→

() does not even exist.]

68. () =


0 if  is rational

 if  is irrational
is continuous at 0. To see why, note that − || ≤ () ≤ ||, so by the Squeeze Theorem

lim
→0

() = 0 = (0). But  is continuous nowhere else. For if  6= 0 and   0, the interval (−  + ) contains both

infinitely many rational and infinitely many irrational numbers. Since () = 0 or , there are infinitely many numbers  with

0  |− |   and |()− ()|  || 2. Thus, lim
→

() 6= ().

69. If there is such a number, it satisfies the equation 3 +1 =  ⇔ 3 − +1 = 0. Let the left-hand side of this equation be

called (). Now (−2) = −5  0, and (−1) = 1  0. Note also that () is a polynomial, and thus continuous. So by the

Intermediate Value Theorem, there is a number  between −2 and −1 such that () = 0, so that  = 3 + 1.

70.


3 + 22 − 1 +


3 + − 2 = 0 ⇒ (3 + − 2) + (3 + 22 − 1) = 0. Let () denote the left side of the last

equation. Since  is continuous on [−1 1], (−1) = −4  0, and (1) = 2  0, there exists a  in (−1 1) such that
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SECTION 2.6 LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES ¤ 109

() = 0 by the Intermediate Value Theorem. Note that the only root of either denominator that is in (−1 1) is

(−1 +√5 )2 = , but () = (3
√
5− 9)2 6= 0. Thus,  is not a root of either denominator, so () = 0 ⇒

 =  is a root of the given equation.

71. () = 4 sin(1) is continuous on (−∞ 0) ∪ (0∞) since it is the product of a polynomial and a composite of a

trigonometric function and a rational function. Now since −1 ≤ sin(1) ≤ 1, we have−4 ≤ 4 sin(1) ≤ 4. Because

lim
→0

(−4) = 0 and lim
→0

4 = 0, the Squeeze Theorem gives us lim
→0

(4 sin(1)) = 0, which equals (0). Thus,  is

continuous at 0 and, hence, on (−∞∞).

72. (a) lim
→0+

 () = 0 and lim
→0−

 () = 0, so lim
→0

 () = 0, which is  (0), and hence  is continuous at  =  if  = 0. For

  0, lim
→

 () = lim
→

 =  =  (). For   0, lim
→

 () = lim
→

(−) = − =  (). Thus,  is continuous at

 = ; that is, continuous everywhere.

(b) Assume that  is continuous on the interval . Then for  ∈ , lim
→

|()| =
 lim
→

()
 = |()| by Theorem 8. (If  is

an endpoint of , use the appropriate one-sided limit.) So | | is continuous on .

(c) No, the converse is false. For example, the function () =


1 if  ≥ 0
−1 if   0

is not continuous at  = 0, but |()| = 1 is

continuous on R.

73. Define () to be the monk’s distance from the monastery, as a function of time  (in hours), on the first day, and define ()

to be his distance from the monastery, as a function of time, on the second day. Let  be the distance from the monastery to

the top of the mountain. From the given information we know that (0) = 0, (12) = , (0) =  and (12) = 0. Now

consider the function − , which is clearly continuous. We calculate that (− )(0) = − and (− )(12) = .

So by the Intermediate Value Theorem, there must be some time 0 between 0 and 12 such that (− )(0) = 0 ⇔
(0) = (0). So at time 0 after 7:00 AM, the monk will be at the same place on both days.

2.6 Limits at Infinity; Horizontal Asymptotes

1. (a) As  becomes large, the values of () approach 5.

(b) As  becomes large negative, the values of () approach 3.

2. (a) The graph of a function can intersect a

vertical asymptote in the sense that it can

meet but not cross it.

The graph of a function can intersect a horizontal asymptote.

It can even intersect its horizontal asymptote an infinite

number of times.
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110 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

(b) The graph of a function can have 0, 1, or 2 horizontal asymptotes. Representative examples are shown.

No horizontal asymptote One horizontal asymptote Two horizontal asymptotes

3. (a) lim
→∞

() = −2 (b) lim
→−∞

() = 2 (c) lim
→1

() =∞

(d) lim
→3

() = −∞ (e) Vertical:  = 1,  = 3; horizontal:  = −2,  = 2

4. (a) lim
→∞

() = 2 (b) lim
→−∞

() = −1 (c) lim
→0

() = −∞

(d) lim
→2−

() = −∞ (e) lim
→2+

() =∞ (f ) Vertical:  = 0,  = 2;

horizontal:  = −1,  = 2

5. lim
→0

() = −∞,

lim
→−∞

() = 5,

lim
→∞

() = −5

6. lim
→2

() =∞, lim
→−2+

() =∞,

lim
→−2−

() = −∞, lim
→−∞

() = 0,

lim
→∞

() = 0, (0) = 0

7. lim
→2

() = −∞, lim
→∞

() =∞,

lim
→−∞

() = 0, lim
→0+

() =∞,

lim
→0−

() = −∞

8. lim
→∞

() = 3,

lim
→2−

() =∞,

lim
→2+

() = −∞,

 is odd

9. (0) = 3, lim
→0−

() = 4,

lim
→0+

() = 2,

lim
→−∞

() = −∞, lim
→4−

() = −∞,

lim
→4+

() =∞, lim
→∞

() = 3

10. lim
→3

() = −∞, lim
→∞

() = 2,

(0) = 0,  is even
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SECTION 2.6 LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES ¤ 111

11. If () = 22, then a calculator gives (0) = 0, (1) = 05, (2) = 1, (3) = 1125, (4) = 1, (5) = 078125,

(6) = 05625, (7) = 03828125, (8) = 025, (9) = 0158203125, (10) = 009765625, (20) ≈ 000038147,

(50) ≈ 22204× 10−12, (100) ≈ 78886× 10−27. It appears that lim
→∞


22


= 0.

12. (a) From a graph of () = (1− 2) in a window of [0 10,000] by [0 02], we estimate that lim
→∞

() = 014

(to two decimal places.)

(b)
 ()

10,000 0135 308

100,000 0135 333
1,000,000 0135 335

From the table, we estimate that lim
→∞

() = 01353 (to four decimal places.)

13. lim
→∞

22 − 7
52 + − 3 = lim

→∞
(22 − 7)2

(52 + − 3)2
[Divide both the numerator and denominator by 2

(the highest power of  that appears in the denominator)]

=
lim
→∞

(2− 72)
lim
→∞

(5 + 1− 32) [Limit Law 5]

=
lim
→∞

2− lim
→∞

(72)

lim
→∞

5 + lim
→∞

(1)− lim
→∞

(32)
[Limit Laws 1 and 2]

=
2− 7 lim

→∞
(12)

5 + lim
→∞

(1)− 3 lim
→∞

(12)
[Limit Laws 7 and 3]

=
2− 7(0)

5 + 0 + 3(0)
[Theorem 2.6.5]

=
2

5

14. lim
→∞


93 + 8− 4
3− 5+ 3

=


lim
→∞

93 + 8− 4
3− 5+ 3

[Limit Law 11]

=


lim
→∞

9 + 82 − 43
33 − 52 + 1 [Divide by 3]

=

 lim
→∞

(9 + 82 − 43)
lim
→∞

(33 − 52 + 1) [Limit Law 5]

=

 lim
→∞

9 + lim
→∞

(82)− lim
→∞

(43)

lim
→∞

(33)− lim
→∞

(52) + lim
→∞

1
[Limit Laws 1 and 2]

=

9 + 8 lim
→∞

(12)− 4 lim
→∞

(13)

3 lim
→∞

(13)− 5 lim
→∞

(12) + 1
[Limit Laws 7 and 3]

=


9 + 8(0)− 4(0)
3(0)− 5(0) + 1 [Theorem 2.6.5]

=


9

1
=
√
9 = 3
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112 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

15. lim
→∞

3− 2
2+ 1

= lim
→∞

(3− 2)
(2+ 1)

= lim
→∞

3− 2
2 + 1

=
lim
→∞

3− 2 lim
→∞

1

lim
→∞

2 + lim
→∞

1
=
3− 2(0)
2 + 0

=
3

2

16. lim
→∞

1− 2

3 − + 1
= lim

→∞
(1− 2)3

(3 − + 1)3
= lim

→∞
13 − 1

1− 12 + 13

=
lim
→∞

13 − lim
→∞

1

lim
→∞

1− lim
→∞

12 + lim
→∞

13
=

0− 0
1− 0 + 0 = 0

17. lim
→−∞

− 2
2 + 1

= lim
→−∞

(− 2)2
(2 + 1)2

= lim
→−∞

1− 22
1 + 12

=
lim

→−∞
1− 2 lim

→−∞
12

lim
→−∞

1 + lim
→−∞

12
=
0− 2(0)
1 + 0

= 0

18. lim
→−∞

43 + 62 − 2
23 − 4+ 5 = lim

→−∞
(43 + 62 − 2)3
(23 − 4+ 5)3 = lim

→−∞
4 + 6− 23
2− 42 + 53 =

4 + 0− 0
2− 0 + 0 = 2

19. lim
→∞

√
+ 2

2− 2
= lim

→∞
(
√
+ 2)2

(2− 2)2
= lim

→∞
132 + 1

2− 1 =
0 + 1

0− 1 = −1

20. lim
→∞

− 
√


232 + 3− 5 = lim
→∞


− 

√


32

(232 + 3− 5) 32 = lim
→∞

112 − 1
2 + 312 − 532 =

0− 1
2 + 0− 0 = −

1

2

21. lim
→∞

(22 + 1)2

(− 1)2(2 + )
= lim

→∞
(22 + 1)24

[(− 1)2(2 + )]4
= lim

→∞
[(22 + 1)2]2

[(2 − 2+ 1)2][(2 + )2]

= lim
→∞

(2 + 12)2

(1− 2+ 12)(1 + 1) =
(2 + 0)2

(1− 0 + 0)(1 + 0) = 4

22. lim
→∞

2√
4 + 1

= lim
→∞

22√
4 + 12

= lim
→∞

1
(4 + 1)4

[since 2 =
√
4 for   0]

= lim
→∞

1
1 + 14

=
1√
1 + 0

= 1

23. lim
→∞

√
1 + 46

2− 3
= lim

→∞

√
1 + 463

(2− 3)3
=

lim
→∞


(1 + 46)6

lim
→∞

(23 − 1) [since 3 =
√
6 for   0]

=
lim
→∞


16 + 4

lim
→∞

(23)− lim
→∞

1
=


lim
→∞

(16) + lim
→∞

4

0− 1

=

√
0 + 4

−1 =
2

−1 = −2

24. lim
→−∞

√
1 + 46

2− 3
= lim

→−∞

√
1 + 463

(2− 3)3
=

lim
→−∞

−(1 + 46)6
lim

→−∞
(23 − 1) [since 3 = −√6 for   0]

=
lim

→−∞
−16 + 4

2 lim
→−∞

(13)− lim
→−∞

1
=

− lim
→−∞

(16) + lim
→−∞

4

2(0)− 1

=
−√0 + 4
−1 =

−2
−1 = 2
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SECTION 2.6 LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES ¤ 113

25. lim
→∞

√
+ 32

4− 1 = lim
→∞

√
+ 32

(4− 1) =
lim
→∞


(+ 32)2

lim
→∞

(4− 1) [since  =
√
2 for   0]

=
lim
→∞


1+ 3

lim
→∞

4− lim
→∞

(1)
=


lim
→∞

(1) + lim
→∞

3

4− 0 =

√
0 + 3

4
=

√
3

4

26. lim
→∞

+ 32

4− 1 = lim
→∞

(+ 32)

(4− 1) = lim
→∞

1 + 3

4− 1
=∞ since 1 + 3→∞ and 4− 1→ 4 as →∞.

27. lim
→∞

√
92 + − 3 = lim

→∞

√
92 + − 3√92 + + 3


√
92 + + 3

= lim
→∞

√
92 + 

2 − (3)2√
92 + + 3

= lim
→∞


92 + 

− 92√
92 + + 3

= lim
→∞

√
92 + + 3

· 1
1

= lim
→∞


922 + 2 + 3

= lim
→∞

1
9 + 1+ 3

=
1√
9 + 3

=
1

3 + 3
=
1

6

28. lim
→−∞

√
42 + 3+ 2


= lim

→−∞
√
42 + 3+ 2

 √42 + 3− 2√
42 + 3− 2


= lim

→−∞


42 + 3

− (2)2√
42 + 3− 2 = lim

→−∞
3√

42 + 3− 2
= lim

→−∞
3√

42 + 3− 2  = lim
→−∞

3

−4 + 3− 2 [since  = −√2 for   0]

=
3

−√4 + 0− 2 = −
3

4

29. lim
→∞

√
2 + −√2 + 


= lim

→∞

√
2 + −√2 + 

 √
2 + +

√
2 + 


√
2 + +

√
2 + 

= lim
→∞

(2 + )− (2 + )√
2 + +

√
2 + 

= lim
→∞

[(− )]√
2 + +

√
2 + 



√
2

= lim
→∞

− 
1 + +


1 + 

=
− √

1 + 0 +
√
1 + 0

=
− 

2

30. For   0,
√
2 + 1 

√
2 = . So as →∞, we have

√
2 + 1→∞, that is, lim

→∞
√
2 + 1 =∞.

31. lim
→∞

4 − 32 + 

3 − + 2
= lim

→∞
(4 − 32 + )3

(3 − + 2)3


divide by the highest power

of  in the denominator


= lim

→∞
− 3+ 12
1− 12 + 23 =∞

since the numerator increases without bound and the denominator approaches 1 as →∞.

32. lim
→∞

(− + 2cos 3) does not exist. lim
→∞

− = 0, but lim
→∞

(2 cos 3) does not exist because the values of 2 cos 3

oscillate between the values of −2 and 2 infinitely often, so the given limit does not exist.
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114 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

33. lim
→−∞

(2 + 27) = lim
→−∞

7

1

5
+ 2


[factor out the largest power of ] = −∞ because 7 → −∞ and

15 + 2→ 2 as →−∞.

Or: lim
→−∞


2 + 27


= lim

→−∞
2

1 + 25


= −∞.

34. lim
→−∞

1 + 6

4 + 1
= lim

→−∞
(1 + 6)4

(4 + 1)4


divide by the highest power

of  in the denominator


= lim

→−∞
14 + 2

1 + 14
=∞

since the numerator increases without bound and the denominator approaches 1 as →−∞.

35. Let  = . As →∞, →∞. lim
→∞

arctan() = lim
→∞

arctan  = 
2

by (3).

36. Divide numerator and denominator by 3: lim
→∞

3 − −3

3 + −3
= lim

→∞
1− −6

1 + −6
=
1− 0
1 + 0

= 1

37. lim
→∞

1− 

1 + 2
= lim

→∞
(1− )

(1 + 2)
= lim

→∞
1 − 1
1 + 2

=
0− 1
0 + 2

= −1
2

38. Since 0 ≤ sin2  ≤ 1, we have 0 ≤ sin2 

2 + 1
≤ 1

2 + 1
. We know that lim

→∞
0 = 0 and lim

→∞
1

2 + 1
= 0, so by the Squeeze

Theorem, lim
→∞

sin2 

2 + 1
= 0.

39. Since −1 ≤ cos ≤ 1 and −2  0, we have −−2 ≤ −2 cos ≤ −2. We know that lim
→∞

(−−2) = 0 and

lim
→∞


−2


= 0, so by the Squeeze Theorem, lim

→∞
(−2 cos) = 0.

40. Let  = ln. As → 0+, →−∞. lim
→0+

tan−1(ln) = lim
→−∞

tan−1  = −
2

by (4).

41. lim
→∞

[ln(1 + 2)− ln(1 + )] = lim
→∞

ln
1 + 2

1 + 
= ln


lim
→∞

1 + 2

1 + 


= ln


lim
→∞

1

+ 

1

+ 1


=∞, since the limit in

parentheses is∞.

42. lim
→∞

[ln(2 + )− ln(1 + )] = lim
→∞

ln


2 + 

1 + 


= lim

→∞
ln


2+ 1

1+ 1


= ln

1

1
= ln 1 = 0

43. (a) (i) lim
→0+

() = lim
→0+



ln
= 0 since → 0+ and ln→−∞ as → 0+.

(ii) lim
→1−

() = lim
→1−



ln
= −∞ since → 1 and ln→ 0− as → 1−.

(iii) lim
→1+

() = lim
→1+



ln
=∞ since → 1 and ln→ 0+ as → 1+.

(b)
 ()

10,000 10857

100,000 86859

1,000,000 72,3824
It appears that lim

→∞
() =∞.

(c)
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SECTION 2.6 LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES ¤ 115

44. (a) lim
→∞

() = lim
→∞


2


− 1

ln


= 0

since
2


→ 0 and

1

ln
→ 0 as →∞.

(e)

(b) lim
→0+

() = lim
→0+


2


− 1

ln


=∞

since
2


→∞ and

1

ln
→ 0 as → 0+.

(c) lim
→1−

() = lim
→1−


2


− 1

ln


=∞ since

2


→ 2 and

1

ln
→−∞ as → 1−.

(d) lim
→1+

() = lim
→1+


2


− 1

ln


= −∞ since

2


→ 2 and

1

ln
→∞ as → 1+.

45. (a)

From the graph of () =
√
2 + + 1 + , we

estimate the value of lim
→−∞

() to be −05.

(b)
 ()

−10,000 −0499 962 5
−100,000 −0499 996 2
−1,000,000 −0499 999 6

From the table, we estimate the limit to be−05.

(c) lim
→−∞

√
2 + + 1 + 


= lim

→−∞
√

2 + + 1+ 
√2 + + 1− √

2 + + 1− 


= lim

→−∞


2 + + 1

− 2√
2 + + 1− 

= lim
→−∞

(+ 1)(1)√
2 + + 1− 


(1)

= lim
→−∞

1 + (1)

−1 + (1) + (12)− 1
=

1 + 0

−√1 + 0 + 0− 1 = −
1

2

Note that for   0, we have
√
2 = || = −, so when we divide the radical by , with   0, we get

1



√
2 + + 1 = − 1√

2

√
2 + + 1 = −1 + (1) + (12).

46. (a)

From the graph of

() =
√
32 + 8+ 6−√32 + 3+ 1, we estimate

(to one decimal place) the value of lim
→∞

() to be 14.

(b)
 ()

10,000 1443 39

100,000 1443 38

1,000,000 1443 38

From the table, we estimate (to four decimal

places) the limit to be 14434.
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116 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

(c) lim
→∞

() = lim
→∞

√
32 + 8+ 6−√32 + 3+ 1 √32 + 8+ 6 +√32 + 3+ 1 √

32 + 8+ 6 +
√
32 + 3+ 1

= lim
→∞


32 + 8+ 6

− 32 + 3+ 1√
32 + 8+ 6 +

√
32 + 3+ 1

= lim
→∞

(5+ 5)(1)√
32 + 8+ 6 +

√
32 + 3+ 1


(1)

= lim
→∞

5 + 5
3 + 8+ 62 +


3 + 3+ 12

=
5√

3 +
√
3
=

5

2
√
3
=
5
√
3

6
≈ 1443376

47. lim
→±∞

5 + 4

+ 3
= lim

→±∞
(5 + 4)

(+ 3)
= lim

→±∞
5+ 4

1 + 3
=
0 + 4

1 + 0
= 4, so

 = 4 is a horizontal asymptote.  = () =
5 + 4

+ 3
, so lim

→−3+
() = −∞

since 5 + 4→−7 and + 3→ 0+ as → −3+. Thus,  = −3 is a vertical

asymptote. The graph confirms our work.

48. lim
→±∞

22 + 1

32 + 2− 1 = lim
→±∞

(22 + 1)2

(32 + 2− 1)2

= lim
→±∞

2 + 12

3 + 2− 12 =
2

3

so  =
2

3
is a horizontal asymptote.  = () =

22 + 1

32 + 2− 1 =
22 + 1

(3− 1)(+ 1) .

The denominator is zero when  = 1
3

and −1, but the numerator is nonzero, so  = 1
3

and  = −1 are vertical asymptotes.

The graph confirms our work.

49. lim
→±∞

22 + − 1
2 + − 2 = lim

→±∞

22 + − 1
2

2 + − 2
2

= lim
→±∞

2 +
1


− 1

2

1 +
1


− 2

2

=

lim
→±∞


2 +

1


− 1

2


lim

→±∞


1 +

1


− 2

2



=
lim

→±∞
2 + lim

→±∞
1


− lim

→±∞
1

2

lim
→±∞

1 + lim
→±∞

1


− 2 lim

→±∞
1

2

=
2 + 0− 0
1 + 0− 2(0) = 2, so  = 2 is a horizontal asymptote.

 = () =
22 + − 1
2 + − 2 =

(2− 1)(+ 1)
(+ 2)(− 1) , so lim

→−2−
() =∞,

lim
→−2+

() = −∞, lim
→1−

() = −∞, and lim
→1+

() =∞. Thus,  = −2

and  = 1 are vertical asymptotes. The graph confirms our work.

50. lim
→±∞

1 + 4

2 − 4
= lim

→±∞

1 + 4

4

2 − 4

4

= lim
→±∞

1

4
+ 1

1

2
− 1

=

lim
→±∞


1

4
+ 1


lim

→±∞


1

2
− 1
 =

lim
→±∞

1

4
+ lim

→±∞
1

lim
→±∞

1

2
− lim

→±∞
1

=
0 + 1

0− 1 = −1, so  = −1 is a horizontal asymptote.
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SECTION 2.6 LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES ¤ 117

 = () =
1 + 4

2 − 4
=

1 + 4

2(1− 2)
=

1 + 4

2(1 + )(1− )
. The denominator is

zero when  = 0, −1, and 1, but the numerator is nonzero, so  = 0,  = −1, and

 = 1 are vertical asymptotes. Notice that as → 0, the numerator and

denominator are both positive, so lim
→0

() =∞. The graph confirms our work.

51.  = () =
3 − 

2 − 6+ 5 =
(2 − 1)

(− 1)(− 5) =
(+ 1)(− 1)
(− 1)(− 5) =

(+ 1)

− 5 = () for  6= 1.

The graph of  is the same as the graph of  with the exception of a hole in the

graph of  at  = 1. By long division, () =
2 + 

− 5 = + 6 +
30

− 5 .

As → ±∞, ()→ ±∞, so there is no horizontal asymptote. The denominator

of  is zero when  = 5. lim
→5−

() = −∞ and lim
→5+

() =∞, so  = 5 is a

vertical asymptote. The graph confirms our work.

52. lim
→∞

2

 − 5 = lim
→∞

2

 − 5 ·
1

1
= lim

→∞
2

1− (5) =
2

1− 0 = 2, so  = 2 is a horizontal asymptote.

lim
→−∞

2

 − 5 =
2(0)

0− 5 = 0, so  = 0 is a horizontal asymptote. The denominator is zero (and the numerator isn’t)

when  − 5 = 0 ⇒  = 5 ⇒  = ln 5.

lim
→(ln 5)+

2

 − 5 =∞ since the numerator approaches 10 and the denominator

approaches 0 through positive values as → (ln 5)+. Similarly,

lim
→(ln 5)−

2

 − 5 = −∞. Thus,  = ln 5 is a vertical asymptote. The graph

confirms our work.

53. From the graph, it appears  = 1 is a horizontal asymptote.

lim
→±∞

33 + 5002

3 + 5002 + 100+ 2000
= lim

→±∞

33 + 5002

3

3 + 5002 + 100+ 2000

3

= lim
→±∞

3 + (500)

1 + (500) + (1002) + (20003)

=
3 + 0

1 + 0 + 0 + 0
= 3, so  = 3 is a horizontal asymptote.

The discrepancy can be explained by the choice of the viewing window. Try

[−100,000 100,000] by [−1 4] to get a graph that lends credibility to our

calculation that  = 3 is a horizontal asymptote.
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118 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

54. (a)

From the graph, it appears at first that there is only one horizontal asymptote, at  ≈ 0 and a vertical asymptote at

 ≈ 17. However, if we graph the function with a wider and shorter viewing rectangle, we see that in fact there seem to be

two horizontal asymptotes: one at  ≈ 05 and one at  ≈ −05. So we estimate that

lim
→∞

√
22 + 1

3− 5 ≈ 05 and lim
→−∞

√
22 + 1

3− 5 ≈ −05

(b) (1000) ≈ 04722 and (10,000) ≈ 04715, so we estimate that lim
→∞

√
22 + 1

3− 5 ≈ 047.

(−1000) ≈ −04706 and (−10,000) ≈ −04713, so we estimate that lim
→−∞

√
22 + 1

3− 5 ≈ −047.

(c) lim
→∞

√
22 + 1

3− 5 = lim
→∞


2 + 12

3− 5 [since
√
2 =  for   0] =

√
2

3
≈ 0471404.

For   0, we have
√
2 = || = −, so when we divide the numerator by , with   0, we

get
1



√
22 + 1 = − 1√

2

√
22 + 1 = −2 + 12. Therefore,

lim
→−∞

√
22 + 1

3− 5 = lim
→−∞

−2 + 12
3− 5 = −

√
2

3
≈ −0471404.

55. Divide the numerator and the denominator by the highest power of  in ().

(a) If deg  deg, then the numerator → 0 but the denominator doesn’t. So lim
→∞

[ ()()] = 0.

(b) If deg  deg, then the numerator → ±∞ but the denominator doesn’t, so lim
→∞

[ ()()] = ±∞

(depending on the ratio of the leading coefficients of  and ).

56.

(i)  = 0 (ii)   0 ( odd) (iii)   0 ( even) (iv)   0 ( odd) (v)   0 ( even)

From these sketches we see that

(a) lim
→0+

 =


1 if  = 0

0 if   0

∞ if   0

(b) lim
→0−

 =


1 if  = 0

0 if   0

−∞ if   0,  odd

∞ if   0,  even
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SECTION 2.6 LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES ¤ 119

(c) lim
→∞

 =


1 if  = 0

∞ if   0

0 if   0

(d) lim
→−∞

 =


1 if  = 0

−∞ if   0,  odd

∞ if   0,  even

0 if   0

57. Let’s look for a rational function.

(1) lim
→±∞

() = 0 ⇒ degree of numerator  degree of denominator

(2) lim
→0

() = −∞ ⇒ there is a factor of 2 in the denominator (not just , since that would produce a sign

change at  = 0), and the function is negative near  = 0.

(3) lim
→3−

() =∞ and lim
→3+

() = −∞ ⇒ vertical asymptote at  = 3; there is a factor of (− 3) in the

denominator.

(4) (2) = 0 ⇒ 2 is an -intercept; there is at least one factor of (− 2) in the numerator.

Combining all of this information and putting in a negative sign to give us the desired left- and right-hand limits gives us

() =
2− 

2(− 3) as one possibility.

58. Since the function has vertical asymptotes  = 1 and  = 3, the denominator of the rational function we are looking for must

have factors (− 1) and (− 3). Because the horizontal asymptote is  = 1, the degree of the numerator must equal the

degree of the denominator, and the ratio of the leading coefficients must be 1. One possibility is () =
2

(− 1)(− 3) .

59. (a) We must first find the function  . Since  has a vertical asymptote  = 4 and -intercept  = 1, − 4 is a factor of the

denominator and − 1 is a factor of the numerator. There is a removable discontinuity at  = −1, so − (−1) = +1 is

a factor of both the numerator and denominator. Thus,  now looks like this: () =
(− 1)(+ 1)
(− 4)(+ 1) , where  is still to

be determined. Then lim
→−1

() = lim
→−1

(− 1)(+ 1)
(− 4)(+ 1) = lim

→−1
(− 1)
− 4 =

(−1− 1)
(−1− 4) =

2

5
, so

2

5
 = 2, and

 = 5. Thus () =
5(− 1)(+ 1)
(− 4)(+ 1) is a ratio of quadratic functions satisfying all the given conditions and

(0) =
5(−1)(1)
(−4)(1) =

5

4
.

(b) lim
→∞

() = 5 lim
→∞

2 − 1
2 − 3− 4 = 5 lim→∞

(22)− (12)
(22)− (32)− (42) = 5

1− 0
1− 0− 0 = 5(1) = 5

60.  = () = 23 − 4 = 3(2− ). The -intercept is (0) = 0. The

-intercepts are 0 and 2. There are sign changes at 0 and 2 (odd exponents on 

and 2− ). As →∞, ()→−∞ because 3 →∞ and 2− → −∞. As

→−∞, ()→−∞ because 3 →−∞ and 2− →∞. Note that the graph

of  near  = 0 flattens out (looks like  = 3).
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120 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

61.  = () = 4 − 6 = 4(1− 2) = 4(1 + )(1− ). The -intercept is

(0) = 0. The -intercepts are 0, −1, and 1 [found by solving () = 0 for ].

Since 4  0 for  6= 0,  doesn’t change sign at  = 0. The function does change

sign at  = −1 and  = 1. As → ±∞, () = 4(1− 2) approaches−∞
because 4 →∞ and (1− 2)→−∞.

62.  = () = 3(+ 2)2(− 1). The -intercept is (0) = 0. The -intercepts

are 0, −2, and 1. There are sign changes at 0 and 1 (odd exponents on  and

− 1). There is no sign change at −2. Also, ()→∞ as →∞ because all

three factors are large. And ()→∞ as →−∞ because 3 →−∞,

(+2)2 →∞, and (− 1)→−∞. Note that the graph of  at  = 0 flattens out

(looks like  = −3).

63.  = () = (3− )(1 + )2(1− )4. The -intercept is (0) = 3(1)2(1)4 = 3.

The -intercepts are 3, −1, and 1. There is a sign change at 3, but not at −1 and 1.

When  is large positive, 3−  is negative and the other factors are positive, so

lim
→∞

() = −∞. When  is large negative, 3−  is positive, so

lim
→−∞

() =∞.

64.  = () = 2(2 − 1)2(+ 2) = 2(+ 1)2(− 1)2(+ 2). The

-intercept is (0) = 0. The -intercepts are 0, −1, 1 and −2. There is a sign

change at −2, but not at 0, −1, and 1. When  is large positive, all the factors are

positive, so lim
→∞

() =∞. When  is large negative, only + 2 is negative, so

lim
→−∞

() = −∞.

65. (a) Since −1 ≤ sin ≤ 1 for all  − 1

≤ sin


≤ 1


for   0. As →∞, −1→ 0 and 1→ 0, so by the Squeeze

Theorem, (sin)→ 0. Thus, lim
→∞

sin


= 0.

(b) From part (a), the horizontal asymptote is  = 0. The function

 = (sin) crosses the horizontal asymptote whenever sin = 0;

that is, at  =  for every integer . Thus, the graph crosses the

asymptote an infinite number of times.

66. (a) In both viewing rectangles,

lim
→∞

 () = lim
→∞

() =∞ and

lim
→−∞

 () = lim
→−∞

() = −∞.

In the larger viewing rectangle,  and 

become less distinguishable.
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SECTION 2.6 LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES ¤ 121

(b) lim
→∞

 ()

()
= lim

→∞
35 − 53 + 2

35
= lim

→∞


1− 5

3
· 1
2
+
2

3
· 1
4


= 1− 5

3
(0) + 2

3
(0) = 1 ⇒

 and  have the same end behavior.

67. lim
→∞

5
√
√

− 1 ·
1
√


1
√

= lim

→∞
5

1− (1) =
5√
1− 0 = 5 and

lim
→∞

10 − 21
2

· 1


1
= lim

→∞
10− (21)

2
=
10− 0
2

= 5. Since
10 − 21
2

 () 
5
√
√

− 1 ,

we have lim
→∞

() = 5 by the Squeeze Theorem.

68. (a) After  minutes, 25 liters of brine with 30 g of salt per liter has been pumped into the tank, so it contains

(5000 + 25) liters of water and 25 · 30 = 750 grams of salt. Therefore, the salt concentration at time  will be

() =
750

5000 + 25
=

30

200 + 

g
L

.

(b) lim
→∞

() = lim
→∞

30

200 + 
= lim

→∞
30

200+ 
=

30

0 + 1
= 30. So the salt concentration approaches that of the brine

being pumped into the tank.

69. (a) lim
→∞

() = lim
→∞

∗

1− −

∗
= ∗(1− 0) = ∗

(b) We graph () = 1− −98 and () = 099∗, or in this case,

() = 099. Using an intersect feature or zooming in on the point of

intersection, we find that  ≈ 047 s.

70. (a)  = −10 and  = 01 intersect at 1 ≈ 2303.

If   1, then −10  01.

(b) −10  01 ⇒ −10  ln 01 ⇒
  −10 ln 1

10
= −10 ln 10−1 = 10 ln 10 ≈ 2303

71. Let () =
32 + 1

22 + + 1
and () = |()− 15|. Note that

lim
→∞

() = 3
2

and lim
→∞

() = 0. We are interested in finding the

-value at which ()  005. From the graph, we find that  ≈ 14804,

so we choose  = 15 (or any larger number).

72. We want to find a value of  such that    ⇒
 1− 3√

2 + 1
− (−3)

  , or equivalently,

−3−  
1− 3√
2 + 1

 −3 + . When  = 01, we graph  = () =
1− 3√
2 + 1

,  = −31, and  = −29. From the graph,
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122 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

we find that () = −29 at about  = 11283, so we choose  = 12 (or any larger number). Similarly for  = 005, we find

that () = −295 at about  = 21379, so we choose  = 22 (or any larger number).

73. We want a value of  such that    ⇒
 1− 3√

2 + 1
− 3
  , or equivalently, 3−  

1− 3√
2 + 1

 3 + . When  = 01,

we graph  = () =
1− 3√
2 + 1

,  = 31, and  = 29. From the graph, we find that () = 31 at about  = −8092, so we

choose  = −9 (or any lesser number). Similarly for  = 005, we find that () = 305 at about  = −18338, so we

choose  = −19 (or any lesser number).

74. We want to find a value of  such that    ⇒ √
 ln  100.

We graph  = () =
√
 ln and  = 100. From the graph, we find

that () = 100 at about  = 1382773, so we choose  = 1383 (or

any larger number).

75. (a) 12  00001 ⇔ 2  100001 = 10 000 ⇔   100 (  0)

(b) If   0 is given, then 12   ⇔ 2  1 ⇔   1
√
. Let  = 1

√
.

Then    ⇒  
1√

⇒

 12 − 0
 = 1

2
 , so lim

→∞
1

2
= 0.

76. (a) 1
√
  00001 ⇔ √

  100001 = 104 ⇔   108

(b) If   0 is given, then 1
√
   ⇔ √

  1 ⇔   12. Let  = 12.

Then    ⇒  
1

2
⇒

 1√ − 0
 = 1√


 , so lim

→∞
1√

= 0.

77. For   0, |1− 0| = −1. If   0 is given, then −1   ⇔   −1.

Take  = −1. Then    ⇒   −1 ⇒ |(1)− 0| = −1  , so lim
→−∞

(1) = 0.

78. Given   0, we need   0 such that    ⇒ 3   . Now 3   ⇔  
3
√
 , so take  = 3

√
 . Then

   = 3
√
 ⇒ 3   , so lim

→∞
3 =∞.
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SECTION 2.7 DERIVATIVES AND RATES OF CHANGE ¤ 123

79. Given   0, we need   0 such that    ⇒    . Now    ⇔   ln , so take

 = max(1 ln). (This ensures that   0.) Then    = max(1 ln) ⇒   max() ≥ ,

so lim
→∞

 =∞.

80. Definition Let  be a function defined on some interval (−∞ ). Then lim
→−∞

() = −∞ means that for every negative

number  there is a corresponding negative number  such that ()   whenever    . Now we use the definition to

prove that lim
→−∞


1 + 3


= −∞. Given a negative number  , we need a negative number  such that    ⇒

1 + 3   . Now 1 + 3   ⇔ 3   − 1 ⇔   3
√
 − 1. Thus, we take  = 3

√
 − 1 and find that

   ⇒ 1 + 3   . This proves that lim
→−∞


1 + 3


= −∞.

81. (a) Suppose that lim
→∞

() = . Then for every   0 there is a corresponding positive number  such that |()− |  

whenever    . If  = 1, then    ⇔ 0  1  1 ⇔ 0    1 . Thus, for every   0 there is a

corresponding   0 (namely 1) such that |(1)− |   whenever 0    . This proves that

lim
→0+

(1) =  = lim
→∞

().

Now suppose that lim
→−∞

() = . Then for every   0 there is a corresponding negative number  such that

|()− |   whenever    . If  = 1, then    ⇔ 1  1  0 ⇔ 1    0. Thus, for every

  0 there is a corresponding   0 (namely −1) such that |(1)− |   whenever −    0. This proves that

lim
→0−

(1) =  = lim
→−∞

().

(b) lim
→0+

 sin
1


= lim

→0+
 sin

1


[let  = ]

= lim
→∞

1


sin  [part (a) with  = 1]

= lim
→∞

sin


[let  = ]

= 0 [by Exercise 65]

2.7 Derivatives and Rates of Change

1. (a) This is just the slope of the line through two points:  =
∆

∆
=

()− (3)

− 3 .

(b) This is the limit of the slope of the secant line  as  approaches  :  = lim
→3

()− (3)

− 3 .

2. The curve looks more like a line as the viewing rectangle gets smaller.
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124 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

3. (a) (i) Using Definition 1 with () = 4− 2 and  (1 3),

= lim
→

()− ()

− 
= lim

→1

(4− 2)− 3
− 1 = lim

→1

−(2 − 4+ 3)
− 1 = lim

→1

−(− 1)(− 3)
− 1

= lim
→1

(3− ) = 3− 1 = 2

(ii) Using Equation 2 with () = 4− 2 and  (1 3),

= lim
→0

(+ )− ()


= lim

→0

(1 + )− (1)


= lim

→0


4(1 + )− (1 + )2

− 3


= lim
→0

4 + 4− 1− 2− 2 − 3


= lim
→0

−2 + 2


= lim
→0

(−+ 2)


= lim
→0

(−+ 2) = 2

(b) An equation of the tangent line is  − () =  0()(− ) ⇒  − (1) =  0(1)(− 1) ⇒  − 3 = 2(− 1),
or  = 2+ 1.

(c) The graph of  = 2+ 1 is tangent to the graph of  = 4− 2 at the

point (1 3). Now zoom in toward the point (1 3) until the parabola and

the tangent line are indistiguishable.

4. (a) (i) Using Definition 1 with () = − 3 and  (1 0),

= lim
→1

()− 0
− 1 = lim

→1

− 3

− 1 = lim
→1

(1− 2)

− 1 = lim
→1

(1 + )(1− )

− 1
= lim

→1
[−(1 + )] = −1(2) = −2

(ii) Using Equation 2 with () = − 3 and  (1 0),

= lim
→0

(+ )− ()


= lim

→0

(1 + )− (1)


= lim

→0


(1 + )− (1 + )3

− 0


= lim
→0

1 + − (1 + 3+ 32 + 3)


= lim

→0

−3 − 32 − 2


= lim
→0

(−2 − 3− 2)


= lim
→0

(−2 − 3− 2) = −2

(b) An equation of the tangent line is  − () =  0()(− ) ⇒  − (1) =  0(1)(− 1) ⇒  − 0 = −2(− 1),
or  = −2+ 2.

(c) The graph of  = −2+ 2 is tangent to the graph of  = − 3 at the

point (1 0). Now zoom in toward the point (1 0) until the cubic and the

tangent line are indistinguishable.
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SECTION 2.7 DERIVATIVES AND RATES OF CHANGE ¤ 125

5. Using (1) with () = 4− 32 and  (2−4) [we could also use (2)],

= lim
→

()− ()

− 
= lim

→2


4− 32− (−4)

− 2 = lim
→2

−32 + 4+ 4
− 2

= lim
→2

(−3− 2)(− 2)
− 2 = lim

→2
(−3− 2) = −3(2)− 2 = −8

Tangent line:  − (−4) = −8(− 2) ⇔  + 4 = −8+ 16 ⇔  = −8+ 12.

6. Using (2) with () = 3 − 3+ 1 and  (2 3),

= lim
→0

(+ )− ()


= lim

→0

 (2 + )− (2)


= lim

→0

(2 + )3 − 3(2 + ) + 1− 3


= lim
→0

8 + 12+ 62 + 3 − 6− 3− 2


= lim
→0

9+ 62 + 3


= lim

→0

(9 + 6+ 2)



= lim
→0

(9 + 6+ 2) = 9

Tangent line:  − 3 = 9(− 2) ⇔  − 3 = 9− 18 ⇔  = 9− 15

7. Using (1),  = lim
→1

√
−√1
− 1 = lim

→1

(
√
− 1)(√+ 1)

(− 1)(√+ 1) = lim
→1

− 1
(− 1)(√+ 1) = lim

→1

1√
+ 1

=
1

2
.

Tangent line:  − 1 = 1
2
(− 1) ⇔  = 1

2
+ 1

2

8. Using (1) with () =
2+ 1

+ 2
and  (1 1),

= lim
→

()− ()

− 
= lim

→1

2+ 1

+ 2
− 1

− 1 = lim
→1

2+ 1− (+ 2)
+ 2
− 1 = lim

→1

− 1
(− 1)(+ 2)

= lim
→1

1

+ 2
=

1

1 + 2
=
1

3

Tangent line:  − 1 = 1
3
(− 1) ⇔  − 1 = 1

3
− 1

3
⇔  = 1

3
+ 2

3

9. (a) Using (2) with  = () = 3 + 42 − 23,

= lim
→0

(+ )− ()


= lim

→0

3 + 4(+ )2 − 2(+ )3 − (3 + 42 − 23)


= lim
→0

3 + 4(2 + 2+ 2)− 2(3 + 32+ 32 + 3)− 3− 42 + 23


= lim
→0

3 + 42 + 8+ 42 − 23 − 62− 62 − 23 − 3− 42 + 23


= lim
→0

8+ 42 − 62− 62 − 23


= lim
→0

(8+ 4− 62 − 6− 22)


= lim
→0

(8+ 4− 62 − 6− 22) = 8− 62

(b) At (1 5):  = 8(1)− 6(1)2 = 2, so an equation of the tangent line

is  − 5 = 2(− 1) ⇔  = 2+ 3.

At (2 3):  = 8(2)− 6(2)2 = −8, so an equation of the tangent

line is  − 3 = −8(− 2) ⇔  = −8+ 19.

(c)
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126 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

10. (a) Using (1),

 = lim
→

1√

− 1√



− 
= lim

→

√
−√√


− 
= lim

→

(
√
−√ ) (√+√ )√
 (− ) (

√
+

√
 )

= lim
→

− √
 (− ) (

√
+

√
 )

= lim
→

−1√
 (

√
+

√
 )

=
−1√

2 (2
√
 )

= − 1

232
or −1

2
−32 [  0]

(b) At (1 1):  = − 1
2

, so an equation of the tangent line

is  − 1 = − 1
2
(− 1) ⇔  = −1

2
+ 3

2
.

At

4 1

2


:  = − 1

16
, so an equation of the tangent line

is  − 1
2 = − 1

16 (− 4) ⇔  = − 1
16+

3
4 .

(c)

11. (a) The particle is moving to the right when  is increasing; that is, on the intervals (0 1) and (4 6). The particle is moving to

the left when  is decreasing; that is, on the interval (2 3). The particle is standing still when  is constant; that is, on the

intervals (1 2) and (3 4).

(b) The velocity of the particle is equal to the slope of the tangent line of the

graph. Note that there is no slope at the corner points on the graph. On the

interval (0 1) the slope is
3− 0
1− 0 = 3. On the interval (2 3), the slope is

1− 3
3− 2 = −2. On the interval (4 6), the slope is

3− 1
6− 4 = 1.

12. (a) Runner A runs the entire 100-meter race at the same velocity since the slope of the position function is constant.

Runner B starts the race at a slower velocity than runner A, but finishes the race at a faster velocity.

(b) The distance between the runners is the greatest at the time when the largest vertical line segment fits between the two

graphs—this appears to be somewhere between 9 and 10 seconds.

(c) The runners had the same velocity when the slopes of their respective position functions are equal—this also appears to be

at about 95 s. Note that the answers for parts (b) and (c) must be the same for these graphs because as soon as the velocity

for runner B overtakes the velocity for runner A, the distance between the runners starts to decrease.

13. Let () = 40− 162.

(2) = lim
→2

()− (2)

− 2 = lim
→2


40− 162− 16

− 2 = lim
→2

−162 + 40− 16
− 2 = lim

→2

−822 − 5+ 2
− 2

= lim
→2

−8(− 2)(2− 1)
− 2 = −8 lim

→2
(2− 1) = −8(3) = −24

Thus, the instantaneous velocity when  = 2 is −24 fts.
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SECTION 2.7 DERIVATIVES AND RATES OF CHANGE ¤ 127

14. (a) Let () = 10− 1862.

(1) = lim
→0

(1 + )−(1)


= lim

→0


10(1 + )− 186(1 + )2

− (10− 186)


= lim
→0

10 + 10− 186(1 + 2+ 2)− 10 + 186


= lim
→0

10 + 10− 186− 372− 1862 − 10 + 186


= lim
→0

628− 1862


= lim
→0

(628− 186) = 628

The velocity of the rock after one second is 628 ms.

(b) () = lim
→0

(+ )−()


= lim

→0


10(+ )− 186(+ )2

− (10− 1862)


= lim
→0

10+ 10− 186(2 + 2+ 2)− 10+ 1862


= lim
→0

10+ 10− 1862 − 372− 1862 − 10+ 1862


= lim
→0

10− 372− 1862


= lim
→0

(10− 372− 186)


= lim
→0

(10− 372− 186) = 10− 372

The velocity of the rock when  =  is (10− 372) ms

(c) The rock will hit the surface when  = 0 ⇔ 10− 1862 = 0 ⇔ (10− 186) = 0 ⇔  = 0 or 186 = 10.

The rock hits the surface when  = 10186 ≈ 54 s.

(d) The velocity of the rock when it hits the surface is 

10
186


= 10− 372 10

186


= 10− 20 = −10 ms.

15. () = lim
→0

(+ )− ()


= lim

→0

1

(+ )2
− 1

2


= lim

→0

2 − (+ )2

2(+ )2


= lim

→0

2 − (2 + 2+ 2)

2(+ )2

= lim
→0

−(2+ 2)

2(+ )2
= lim

→0

−(2+ )

2(+ )2
= lim

→0

−(2+ )

2(+ )2
=

−2
2 · 2 =

−2
3

ms

So  (1) =
−2
13

= −2 ms, (2) =
−2
23

= −1
4

ms, and (3) =
−2
33

= − 2

27
ms.

16. (a) The average velocity between times  and +  is

(+ )− ()

(+ )− 
=

1
2 (+ )2 − 6(+ ) + 23−  12 2 − 6+ 23



=
1
2
2 + + 1

2
2 − 6− 6+ 23− 1

2
2 + 6− 23



=
+ 1

2
2 − 6


=


+ 1

2
− 6


=

+ 1

2
− 6 fts

(i) [4 8]:  = 4,  = 8− 4 = 4, so the average velocity is 4 + 1
2 (4)− 6 = 0 fts.

(ii) [6 8]:  = 6,  = 8− 6 = 2, so the average velocity is 6 + 1
2 (2)− 6 = 1 fts.

(iii) [8 10]:  = 8,  = 10− 8 = 2, so the average velocity is 8 + 1
2
(2)− 6 = 3 fts.

(iv) [8 12]:  = 8,  = 12− 8 = 4, so the average velocity is 8 + 1
2
(4)− 6 = 4 fts.
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128 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

(b) () = lim
→0

(+ )− ()


= lim

→0


+ 1

2
− 6

= − 6, so (8) = 2 fts.

(c)

17. 0(0) is the only negative value. The slope at  = 4 is smaller than the slope at  = 2 and both are smaller than the slope

at  = −2. Thus, 0(0)  0  0(4)  0(2)  0(−2).

18. (a) On [20 60]:
(60)− (20)

60− 20 =
700− 300

40
=
400

40
= 10

(b) Pick any interval that has the same -value at its endpoints. [0 57] is such an interval since (0) = 600 and (57) = 600.

(c) On [40 60]:
(60)− (40)

60− 40 =
700− 200

20
=
500

20
= 25

On [40 70]:
(70)− (40)

70− 40 =
900− 200

30
=
700

30
= 23 1

3

Since 25  23 13 , the average rate of change on [40 60] is larger.

(d)
(40)− (10)

40− 10 =
200− 400

30
=
−200
30

= −6 2
3

This value represents the slope of the line segment from (10 (10)) to (40 (40)).

19. (a) The tangent line at  = 50 appears to pass through the points (43 200) and (60 640), so

 0(50) ≈ 640− 200
60− 43 =

440

17
≈ 26.

(b) The tangent line at  = 10 is steeper than the tangent line at  = 30, so it is larger in magnitude, but less in numerical

value, that is,  0(10)   0(30).

(c) The slope of the tangent line at  = 60,  0(60), is greater than the slope of the line through (40 (40)) and (80 (80)).

So yes,  0(60) 
(80)− (40)

80− 40 .

20. Since (5) = −3, the point (5−3) is on the graph of . Since 0(5) = 4, the slope of the tangent line at  = 5 is 4.

Using the point-slope form of a line gives us  − (−3) = 4(− 5), or  = 4− 23.

21. For the tangent line  = 4− 5: when  = 2,  = 4(2)− 5 = 3 and its slope is 4 (the coefficient of ). At the point of

tangency, these values are shared with the curve  = (); that is, (2) = 3 and  0(2) = 4.

22. Since (4 3) is on  = (), (4) = 3. The slope of the tangent line between (0 2) and (4 3) is 1
4

, so  0(4) = 1
4

.
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SECTION 2.7 DERIVATIVES AND RATES OF CHANGE ¤ 129

23. We begin by drawing a curve through the origin with a

slope of 3 to satisfy (0) = 0 and  0(0) = 3. Since

 0(1) = 0, we will round off our figure so that there is

a horizontal tangent directly over  = 1. Last, we

make sure that the curve has a slope of −1 as we pass

over  = 2. Two of the many possibilities are shown.

24. We begin by drawing a curve through the origin with a slope of 1 to satisfy

(0) = 0 and 0(0) = 1. We round off our figure at  = 1 to satisfy 0(1) = 0,

and then pass through (2 0) with slope−1 to satisfy (2) = 0 and 0(2) = −1.

We round the figure at  = 3 to satisfy 0(3) = 0, and then pass through (4 0)

with slope 1 to satisfy (4) = 0 and 0(4) = 1 Finally we extend the curve on

both ends to satisfy lim
→∞

() =∞ and lim
→−∞

() = −∞.

25. We begin by drawing a curve through (0 1) with a slope of 1 to satisfy (0) = 1

and 0(0) = 1. We round off our figure at  = −2 to satisfy 0(−2) = 0. As

→−5+,  →∞, so we draw a vertical asymptote at  = −5. As → 5−,

 → 3, so we draw a dot at (5 3) [the dot could be open or closed].

26. We begin by drawing an odd function (symmetric with respect to the origin)

through the origin with slope−2 to satisfy  0(0) = −2. Now draw a curve starting

at  = 1 and increasing without bound as → 2− since lim
→2−

() =∞. Lastly,

reflect the last curve through the origin (rotate 180◦) since  is an odd function.

27. Using (4) with () = 32 − 3 and  = 1,

 0(1) = lim
→0

(1 + )− (1)


= lim

→0

[3(1 + )2 − (1 + )3]− 2


= lim
→0

(3 + 6+ 32)− (1 + 3+ 32 + 3)− 2


= lim
→0

3− 3


= lim

→0

(3− 2)



= lim
→0

(3− 2) = 3− 0 = 3

Tangent line:  − 2 = 3(− 1) ⇔  − 2 = 3− 3 ⇔  = 3− 1
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130 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

28. Using (5) with () = 4 − 2 and  = 1,

0(1) = lim
→1

()− (1)

− 1 = lim
→1

(4 − 2)− (−1)
− 1 = lim

→1

4 − 1
− 1 = lim

→1

(2 + 1)(2 − 1)
− 1

= lim
→1

(2 + 1)(+ 1)(− 1)
− 1 = lim

→1
[(2 + 1)(+ 1)] = 2(2) = 4

Tangent line:  − (−1) = 4(− 1) ⇔  + 1 = 4− 4 ⇔  = 4− 5

29. (a) Using (4) with  () = 5(1 + 2) and the point (2 2), we have

 0(2) = lim
→0

 (2 + )−  (2)


= lim

→0

5(2 + )

1 + (2 + )2
− 2



= lim
→0

5+ 10

2 + 4+ 5
− 2


= lim

→0

5+ 10− 2(2 + 4+ 5)
2 + 4+ 5



= lim
→0

−22 − 3
(2 + 4+ 5)

= lim
→0

(−2− 3)
(2 + 4+ 5)

= lim
→0

−2− 3
2 + 4+ 5

=
−3
5

So an equation of the tangent line at (2 2) is  − 2 = −3
5
(− 2) or  = − 3

5
+ 16

5
.

(b)

30. (a) Using (4) with () = 42 − 3, we have

0() = lim
→0

(+ )−()


= lim

→0

[4(+ )2 − (+ )3]− (42 − 3)



= lim
→0

42 + 8+ 42 − (3 + 32+ 32 + 3)− 42 + 3



= lim
→0

8+ 42 − 32− 32 − 3


= lim

→0

(8+ 4− 32 − 3− 2)



= lim
→0

(8+ 4− 32 − 3− 2) = 8− 32

At the point (2 8), 0(2) = 16− 12 = 4, and an equation of the

tangent line is  − 8 = 4(− 2), or  = 4. At the point (3 9),

0(3) = 24− 27 = −3, and an equation of the tangent line is

 − 9 = −3(− 3), or  = −3+ 18

(b)

31. Use (4) with () = 32 − 4+ 1.

 0() = lim
→0

(+ )− ()


= lim

→0

[3(+ )2 − 4(+ ) + 1]− (32 − 4+ 1)]


= lim
→0

32 + 6+ 32 − 4− 4+ 1− 32 + 4− 1


= lim
→0

6+ 32 − 4


= lim
→0

(6+ 3− 4)


= lim
→0

(6+ 3− 4) = 6− 4
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SECTION 2.7 DERIVATIVES AND RATES OF CHANGE ¤ 131

32. Use (4) with () = 23 + .

 0() = lim
→0

(+ )− ()


= lim

→0

[2(+ )3 + (+ )]− (23 + )



= lim
→0

23 + 62+ 62 + 23 + + − 23 − 


= lim

→0

62+ 62 + 23 + 



= lim
→0

(62 + 6+ 22 + 1)


= lim

→0
(62 + 6+ 22 + 1) = 62 + 1

33. Use (4) with () = (2+ 1)(+ 3).

 0() = lim
→0

(+ )− ()


= lim

→0

2(+ ) + 1

(+ ) + 3
− 2+ 1

+ 3



= lim
→0

(2+ 2+ 1)(+ 3)− (2+ 1)(+ + 3)

(+ + 3)(+ 3)

= lim
→0

(22 + 6+ 2+ 6+ + 3)− (22 + 2+ 6+ + + 3)

(+ + 3)(+ 3)

= lim
→0

5

(+ + 3)(+ 3)
= lim

→0

5

(+ + 3)(+ 3)
=

5

(+ 3)2

34. Use (4) with () = −2 = 12.

 0() = lim
→0

(+ )− ()


= lim

→0

1

(+ )2
− 1

2


= lim

→0

2 − (+ )2

2(+ )2



= lim
→0

2 − (2 + 2+ 2)

2(+ )2
= lim

→0

−2− 2

2(+ )2
= lim

→0

(−2− )

2(+ )2

= lim
→0

−2− 

2(+ )2
=

−2
2(2)

=
−2
3

35. Use (4) with () =
√
1− 2.

 0() = lim
→0

(+ )− ()


= lim

→0


1− 2(+ )−√1− 2



= lim
→0


1− 2(+ )−√1− 2


·

1− 2(+ ) +

√
1− 2

1− 2(+ ) +
√
1− 2

= lim
→0


1− 2(+ )

2
− √1− 2 2




1− 2(+ ) +
√
1− 2

 = lim
→0

(1− 2− 2)− (1− 2)



1− 2(+ ) +
√
1− 2


= lim

→0

−2



1− 2(+ ) +
√
1− 2

 = lim
→0

−2
1− 2(+ ) +

√
1− 2

=
−2√

1− 2+√1− 2 =
−2

2
√
1− 2 =

−1√
1− 2
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132 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

36. Use (4) with () =
4√
1− 

.

 0() = lim
→0

(+ )− ()


= lim

→0

4
1− (+ )

− 4√
1− 



= 4 lim
→0

√
1− −√1− − √
1− − 

√
1− 


= 4 lim

→0

√
1− −√1− − 


√
1− − 

√
1− 

= 4 lim
→0

√
1− −√1− − 


√
1− − 

√
1− 

·
√
1− +

√
1− − √

1− +
√
1− − 

= 4 lim
→0

(
√
1− )2 − (√1− − )2


√
1− − 

√
1− (

√
1− +

√
1− − )

= 4 lim
→0

(1− )− (1− − )


√
1− − 

√
1− (

√
1− +

√
1− − )

= 4 lim
→0




√
1− − 

√
1− (

√
1− +

√
1− − )

= 4 lim
→0

1√
1− − 

√
1− (

√
1− +

√
1− − )

= 4 · 1√
1− 

√
1− (

√
1− +

√
1− )

=
4

(1− )(2
√
1− )

=
2

(1− )1(1− )12
=

2

(1− )32

37. By (4), lim
→0

√
9 + − 3


=  0(9), where () =

√
 and  = 9.

38. By (4), lim
→0

−2+ − −2


=  0(−2), where () =  and  = −2.

39. By Equation 5, lim
→2

6 − 64
− 2 =  0(2), where () = 6 and  = 2.

40. By Equation 5, lim
→14

1


− 4

− 1

4

=  0(4), where () =
1


and  =

1

4
.

41. By (4), lim
→0

cos( + ) + 1


=  0(), where () = cos and  = .

Or: By (4), lim
→0

cos( + ) + 1


=  0(0), where () = cos( + ) and  = 0.

42. By Equation 5, lim
→6

sin  − 1
2

 − 

6

=  0

6


, where () = sin  and  =



6
.

43. (4) =  0(4) = lim
→0

(4 + )− (4)


= lim

→0


80(4 + )− 6(4 + )2

− 80(4)− 6(4)2


= lim
→0

(320 + 80− 96− 48− 62)− (320− 96)


= lim
→0

32− 62


= lim
→0

(32− 6)


= lim
→0

(32− 6) = 32 m/s

The speed when  = 4 is |32| = 32 ms.
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SECTION 2.7 DERIVATIVES AND RATES OF CHANGE ¤ 133

44. (4) =  0(4) = lim
→0

(4 + )− (4)


= lim

→0


10 +

45

4 + + 1


−

10 +

45

4 + 1




= lim
→0

45

5 + 
− 9



= lim
→0

45− 9(5 + )

(5 + )
= lim

→0

−9
(5 + )

= lim
→0

−9
5 + 

= −9
5

m/s.

The speed when  = 4 is
−9

5

 = 9
5
ms.

45. The sketch shows the graph for a room temperature of 72◦ and a refrigerator

temperature of 38◦. The initial rate of change is greater in magnitude than the

rate of change after an hour.

46. The slope of the tangent (that is, the rate of change of temperature with respect

to time) at  = 1 h seems to be about
75 − 168

132 − 0
≈ −07 ◦Fmin.

47. (a) (i) [10 20]:
(2)−(1)

2− 1 =
018− 033

1
= −015 mg/mL

h

(ii) [15 20]:
(2)−(15)

2− 15 =
018− 024

05
=
−006
05

= −012 mg/mL
h

(iii) [20 25]:
(25)− (2)

25− 2 =
012− 018

05
=
−006
05

= −012 mg/mL
h

(iv) [20 30]:
(3)−(2)

3− 2 =
007− 018

1
= −011 mg/mL

h

(b) We estimate the instantaneous rate of change at  = 2 by averaging the average rates of change for [15 20] and [20 25]:

−012 + (−012)
2

= −012 mg/mL
h

. After 2 hours, the BAC is decreasing at a rate of 012 (mgmL)h.

48. (a) (i) [2006 2008]:
(2008)−(2006)

2008− 2006 =
16,680− 12,440

2
=
4240

2
= 2120 locationsyear

(ii) [2008 2010]:
(2010)−(2008)

2010− 2008 =
16,858− 16,680

2
=
178

2
= 89 locationsyear.

The rate of growth decreased over the period from 2006 to 2010.

(b) [2010 2012]:
(2012)−(2010)

2012− 2010 =
18,066− 16,858

2
=
1208

2
= 604 locationsyear.

Using that value and the value from part (a)(ii), we have
89 + 604

2
=
693

2
= 3465 locationsyear.
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134 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

(c) The tangent segment has endpoints (2008 16,250) and (2012 17,500).

An estimate of the instantaneous rate of growth in 2010 is

17,500− 16,250
2012− 2008 =

1250

4
= 3125 locations/year.

49. (a) [1990 2005]:
84,077− 66,533
2005− 1990 =

17,544
15

= 11696 thousands of barrels per day per year. This means that oil

consumption rose by an average of 11696 thousands of barrels per day each year from 1990 to 2005.

(b) [1995 2000]:
76,784− 70,099
2000− 1995 =

6685

5
= 1337

[2000 2005]:
84,077− 76,784
2005− 2000 =

7293

5
= 14586

An estimate of the instantaneous rate of change in 2000 is 1
2
(1337 + 14586) = 13978 thousands of barrels

per day per year.

50. (a) (i) [4 11]:
 (11)−  (4)

11− 4 =
94− 53

7
=
−436
7

≈ −623 RNA copiesmL
day

(ii) [8 11]:
 (11)−  (8)

11− 8 =
94− 18

3
=
−86
3

≈ −287 RNA copiesmL
day

(iii) [11 15]:
 (15)−  (11)

15− 11 =
52− 94

4
=
−42
4

= −105 RNA copiesmL
day

(iv) [11 22]:
 (22)−  (11)

22− 11 =
36− 94
11

=
−58
11

≈ −053 RNA copiesmL
day

(b) An estimate of  0(11) is the average of the answers from part (a)(ii) and (iii).

 0(11) ≈ 1
2
[−287 + (−105)] = −196 RNA copiesmL

day
.

 0(11) measures the instantaneous rate of change of patient 303’s viral load 11 days after ABT-538 treatment began.

51. (a) (i)
∆

∆
=

(105)− (100)

105− 100 =
660125− 6500

5
= $2025unit.

(ii)
∆

∆
=

(101)− (100)

101− 100 =
652005− 6500

1
= $2005unit.

(b)
(100 + )−(100)


=


5000 + 10(100 + ) + 005(100 + )2

− 6500


=
20+ 0052



= 20 + 005,  6= 0

So the instantaneous rate of change is lim
→0

(100 + )− (100)


= lim

→0
(20 + 005) = $20unit.
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SECTION 2.7 DERIVATIVES AND RATES OF CHANGE ¤ 135

52. ∆ =  (+ )−  () = 100,000


1− + 

60

2
− 100,000


1− 

60

2
= 100,000


1− + 

30
+
(+ )2

3600


−

1− 

30
+

2

3600


= 100,000


− 

30
+
2

3600
+

2

3600


=
100,000
3600

 (−120 + 2+ ) =
250

9
 (−120 + 2+ )

Dividing ∆ by  and then letting → 0, we see that the instantaneous rate of change is 500
9
(− 60) galmin.

 Flow rate (galmin) Water remaining  () (gal)

0 −33333 100 000

10 −27777 69 4444

20 −22222 44 4444

30 −16666 25 000

40 −11111 11 1111

50 − 5555 2 7777

60 0 0

The magnitude of the flow rate is greatest at the beginning and gradually decreases to 0.

53. (a)  0() is the rate of change of the production cost with respect to the number of ounces of gold produced. Its units are

dollars per ounce.

(b) After 800 ounces of gold have been produced, the rate at which the production cost is increasing is $17ounce. So the cost

of producing the 800th (or 801st) ounce is about $17.

(c) In the short term, the values of  0() will decrease because more efficient use is made of start-up costs as  increases. But

eventually  0() might increase due to large-scale operations.

54. (a)  0(5) is the rate of growth of the bacteria population when  = 5 hours. Its units are bacteria per hour.

(b) With unlimited space and nutrients,  0 should increase as  increases; so  0(5)   0(10). If the supply of nutrients is

limited, the growth rate slows down at some point in time, and the opposite may be true.

55. (a) 0(58) is the rate at which the daily heating cost changes with respect to temperature when the outside temperature is

58 ◦F. The units are dollars ◦F.

(b) If the outside temperature increases, the building should require less heating, so we would expect 0(58) to be negative.

56. (a)  0(8) is the rate of change of the quantity of coffee sold with respect to the price per pound when the price is $8 per pound.

The units for  0(8) are pounds(dollarspound).

(b)  0(8) is negative since the quantity of coffee sold will decrease as the price charged for it increases. People are generally

less willing to buy a product when its price increases.

57. (a)  0( ) is the rate at which the oxygen solubility changes with respect to the water temperature. Its units are (mgL)◦C.

(b) For  = 16◦C, it appears that the tangent line to the curve goes through the points (0 14) and (32 6). So

0(16) ≈ 6− 14
32− 0 = −

8

32
= −025 (mgL)◦C. This means that as the temperature increases past 16◦C, the oxygen

solubility is decreasing at a rate of 025 (mgL)◦C.
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136 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

58. (a)  0( ) is the rate of change of the maximum sustainable speed of Coho salmon with respect to the temperature. Its units

are (cms)◦C.

(b) For  = 15◦C, it appears the tangent line to the curve goes through the points (10 25) and (20 32). So

0(15) ≈ 32− 25
20− 10 = 07 (cms)◦C. This tells us that at  = 15◦C, the maximum sustainable speed of Coho salmon is

changing at a rate of 0.7 (cms)◦C. In a similar fashion for  = 25◦C, we can use the points (20 35) and (25 25) to

obtain 0(25) ≈ 25− 35
25− 20 = −2 (cms)◦C. As it gets warmer than 20◦C, the maximum sustainable speed decreases

rapidly.

59. Since () =  sin(1) when  6= 0 and (0) = 0, we have

 0(0) = lim
→0

(0 + )− (0)


= lim

→0

 sin(1)− 0


= lim
→0

sin(1). This limit does not exist since sin(1) takes the

values −1 and 1 on any interval containing 0. (Compare with Example 2.2.4.)

60. Since () = 2 sin(1) when  6= 0 and (0) = 0, we have

 0(0) = lim
→0

(0 + )− (0)


= lim

→0

2 sin(1)− 0


= lim
→0

 sin(1). Since −1 ≤ sin 1

≤ 1, we have

− || ≤ || sin 1

≤ || ⇒ − || ≤  sin

1


≤ ||. Because lim

→0
(− ||) = 0 and lim

→0
|| = 0, we know that

lim
→0


 sin

1




= 0 by the Squeeze Theorem. Thus,  0(0) = 0.

61. (a) The slope at the origin appears to be 1.

(b) The slope at the origin still appears to be 1.

(c) Yes, the slope at the origin now appears to be 0.
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SECTION 2.8 THE DERIVATIVE AS A FUNCTION ¤ 137

2.8 The Derivative as a Function

1. It appears that  is an odd function, so  0 will be an even function—that

is,  0(−) =  0().

(a)  0(−3) ≈ −02
(b)  0(−2) ≈ 0 (c)  0(−1) ≈ 1 (d)  0(0) ≈ 2
(e)  0(1) ≈ 1 (f)  0(2) ≈ 0 (g)  0(3) ≈ −02

2. Your answers may vary depending on your estimates.

(a) Note: By estimating the slopes of tangent lines on the

graph of  , it appears that  0(0) ≈ 6.

(b)  0(1) ≈ 0
(c)  0(2) ≈ −15 (d)  0(3) ≈ −13 (e)  0(4) ≈ −08
(f)  0(5) ≈ −03 (g)  0(6) ≈ 0 (h)  0(7) ≈ 02

3. (a)0= II, since from left to right, the slopes of the tangents to graph (a) start out negative, become 0, then positive, then 0, then

negative again. The actual function values in graph II follow the same pattern.

(b)0= IV, since from left to right, the slopes of the tangents to graph (b) start out at a fixed positive quantity, then suddenly

become negative, then positive again. The discontinuities in graph IV indicate sudden changes in the slopes of the tangents.

(c)0= I, since the slopes of the tangents to graph (c) are negative for   0 and positive for   0, as are the function values of

graph I.

(d)0= III, since from left to right, the slopes of the tangents to graph (d) are positive, then 0, then negative, then 0, then

positive, then 0, then negative again, and the function values in graph III follow the same pattern.

Hints for Exercises 4 –11: First plot -intercepts on the graph of  0 for any horizontal tangents on the graph of  . Look for any corners on the graph

of — there will be a discontinuity on the graph of  0. On any interval where  has a tangent with positive (or negative) slope, the graph of  0 will be

positive (or negative). If the graph of the function is linear, the graph of  0 will be a horizontal line.

4. 5.
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138 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

6. 7.

9. 9.

10. 11.
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SECTION 2.8 THE DERIVATIVE AS A FUNCTION ¤ 139

12. The slopes of the tangent lines on the graph of  =  () are always

positive, so the -values of  =  0() are always positive. These values start

out relatively small and keep increasing, reaching a maximum at about

 = 6. Then the -values of  =  0() decrease and get close to zero. The

graph of  0 tells us that the yeast culture grows most rapidly after 6 hours

and then the growth rate declines.

13. (a) 0() is the instantaneous rate of change of percentage

of full capacity with respect to elapsed time in hours.

(b) The graph of 0() tells us that the rate of change of

percentage of full capacity is decreasing and

approaching 0.

14. (a)  0() is the instantaneous rate of change of fuel

economy with respect to speed.

(b) Graphs will vary depending on estimates of  0, but

will change from positive to negative at about  = 50.  

(c) To save on gas, drive at the speed where  is a

maximum and  0 is 0, which is about 50 mih.

15. It appears that there are horizontal tangents on the graph of  for  = 1963

and  = 1971. Thus, there are zeros for those values of  on the graph of

 0. The derivative is negative for the years 1963 to 1971.

16. See Figure 3.3.1.

17.

The slope at 0 appears to be 1 and the slope at 1 appears

to be 27. As  decreases, the slope gets closer to 0. Since

the graphs are so similar, we might guess that  0() = .
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140 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

18.

As  increases toward 1,  0() decreases from very large

numbers to 1. As  becomes large,  0() gets closer to 0.

As a guess,  0() = 12 or  0() = 1 makes sense.

19. (a) By zooming in, we estimate that  0(0) = 0,  0

1
2


= 1,  0(1) = 2,

and  0(2) = 4.

(b) By symmetry,  0(−) = − 0(). So  0
− 1

2


= −1,  0(−1) = −2,

and  0(−2) = −4.

(c) It appears that  0() is twice the value of , so we guess that  0() = 2.

(d)  0() = lim
→0

(+ )− ()


= lim

→0

(+ )2 − 2



= lim
→0


2 + 2+ 2

− 2


= lim

→0

2+ 2


= lim

→0

(2+ )


= lim

→0
(2+ ) = 2

20. (a) By zooming in, we estimate that  0(0) = 0,  0

1
2

 ≈ 075,  0(1) ≈ 3,  0(2) ≈ 12, and  0(3) ≈ 27.

(b) By symmetry,  0(−) =  0(). So  0
−1

2

 ≈ 075,  0(−1) ≈ 3,  0(−2) ≈ 12, and  0(−3) ≈ 27.

(c) (d) Since  0(0) = 0, it appears that  0 may have the form  0() = 2.

Using  0(1) = 3, we have  = 3, so  0() = 32.

(e)  0() = lim
→0

(+ )− ()


= lim

→0

(+ )3 − 3


= lim

→0

(3 + 32+ 32 + 3)− 3



= lim
→0

32+ 32 + 3


= lim

→0

(32 + 3+ 2)


= lim

→0
(32 + 3+ 2) = 32
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SECTION 2.8 THE DERIVATIVE AS A FUNCTION ¤ 141

21.  0() = lim
→0

(+ )− ()


= lim

→0

[3(+ )− 8]− (3− 8)


= lim
→0

3+ 3− 8− 3+ 8


= lim
→0

3


= lim

→0
3 = 3

Domain of  = domain of  0 = R.

22.  0() = lim
→0

(+ )− ()


= lim

→0

[(+ ) + ]− (+ )


= lim

→0

++ −− 



= lim
→0




= lim

→0
 = 

Domain of  = domain of  0 = R.

23.  0() = lim
→0

(+ )− ()


= lim

→0


25(+ )2 + 6(+ )

− 252 + 6


= lim
→0

25(2 + 2+ 2) + 6+ 6− 252 − 6


= lim
→0

252 + 5+ 252 + 6− 252


= lim
→0

5+ 252 + 6


= lim

→0

 (5+ 25+ 6)


= lim

→0
(5+ 25+ 6)

= 5+ 6

Domain of  = domain of  0 = R.

24.  0() = lim
→0

(+ )− ()


= lim

→0


4 + 8(+ )− 5(+ )2

− (4 + 8− 52)


= lim
→0

4 + 8+ 8− 5(2 + 2+ 2)− 4− 8+ 52


= lim
→0

8− 52 − 10− 52 + 52


= lim
→0

8− 10− 52


= lim
→0

(8− 10− 5)


= lim
→0

(8− 10− 5)

= 8− 10
Domain of  = domain of  0 = R.

25.  0() = lim
→0

(+ )− ()


= lim

→0

[(+ )2 − 2(+ )3]− (2 − 23)


= lim
→0

2 + 2+ 2 − 23 − 62− 62 − 23 − 2 + 23



= lim
→0

2+ 2 − 62− 62 − 23


= lim
→0

(2+ − 62 − 6− 22)


= lim
→0

(2+ − 62 − 6− 22) = 2− 62

Domain of  = domain of  0 = R.

26. 0() = lim
→0

(+ )− ()


= lim

→0

1√
+ 

− 1√



= lim

→0

√
−√+ √
+ 

√



= lim

→0

√
−√+ 


√
+ 

√

·
√
+

√
+ √

+
√
+ 


= lim

→0

− (+ )


√
+ 

√

√

+
√
+ 

 = lim
→0

−

√
+ 

√

√

+
√
+ 

 = lim
→0

−1√
+ 

√

√

+
√
+ 


=

−1√

√

√

+
√

 = −1



2
√

 = − 1

232

Domain of  = domain of 0 = (0∞).
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142 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

27. 0() = lim
→0

(+ )− ()


= lim

→0


9− (+ )−√9− 




9− (+ ) +

√
9− 

9− (+ ) +
√
9− 



= lim
→0

[9− (+ )]− (9− )




9− (+ ) +
√
9− 

 = lim
→0

−


9− (+ ) +

√
9− 


= lim

→0

−1
9− (+ ) +

√
9− 

=
−1

2
√
9− 

Domain of  = (−∞ 9], domain of 0 = (−∞ 9).

28.  0() = lim
→0

(+ )− ()


= lim

→0

(+ )2 − 1
2(+ )− 3 −

2 − 1
2− 3



= lim
→0

[(+ )2 − 1](2− 3)− [2(+ )− 3](2 − 1)
[2(+ )− 3](2− 3)



= lim
→0

(2 + 2+ 2 − 1)(2− 3)− (2+ 2− 3)(2 − 1)
[2(+ )− 3](2− 3)

= lim
→0

(23 + 42+ 22 − 2− 32 − 6− 32 + 3)− (23 + 22− 32 − 2− 2+ 3)
(2+ 2− 3)(2− 3)

= lim
→0

42+ 22 − 6− 32 − 22+ 2
(2+ 2− 3)(2− 3) = lim

→0

(22 + 2− 6− 3+ 2)
(2+ 2− 3)(2− 3)

= lim
→0

22 + 2− 6− 3+ 2
(2+ 2− 3)(2− 3) =

22 − 6+ 2
(2− 3)2

Domain of  = domain of  0 = (−∞ 3
2
) ∪ ( 3

2
∞).

29. 0() = lim
→0

(+ )−()


= lim

→0

1− 2(+ )

3 + (+ )
− 1− 2
3 + 



= lim
→0

[1− 2(+ )](3 + )− [3 + (+ )](1− 2)
[3 + (+ )](3 + )



= lim
→0

3 + − 6− 22 − 6− 2− (3− 6+ − 22 + − 2)
[3 + (+ )](3 + )

= lim
→0

−6− 

(3 + + )(3 + )

= lim
→0

−7
(3 + + )(3 + )

= lim
→0

−7
(3 + + )(3 + )

=
−7

(3 + )2

Domain of  = domain of 0 = (−∞−3) ∪ (−3∞).

30.  0() = lim
→0

(+ )− ()


= lim

→0

(+ )32 − 32


= lim

→0

[(+ )32 − 32][(+ )32 + 32]

 [(+ )32 + 32]

= lim
→0

(+ )3 − 3

[(+ )32 + 32]
= lim

→0

3 + 32+ 32 + 3 − 3

[(+ )32 + 32]
= lim

→0



32 + 3+ 2


[(+ )32 + 32]

= lim
→0

32 + 3+ 2

(+ )32 + 32
=

32

232
= 3

2
12

Domain of  = domain of  0 = [0∞). Strictly speaking, the domain of  0 is (0∞) because the limit that defines  0(0) does

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 2.8 THE DERIVATIVE AS A FUNCTION ¤ 143

not exist (as a two-sided limit). But the right-hand derivative (in the sense of Exercise 64) does exist at 0, so in that sense one

could regard the domain of  0 to be [0∞).

31.  0() = lim
→0

(+ )− ()


= lim

→0

(+ )4 − 4


= lim

→0


4 + 43+ 622 + 43 + 4

− 4



= lim
→0

43+ 622 + 43 + 4


= lim

→0


43 + 62+ 42 + 3


= 43

Domain of  = domain of  0 = R.

32. (a)

(b) Note that the third graph in part (a) has small negative values for its slope,  0; but as → 6−,  0 → −∞.

See the graph in part (d).

(c)  0() = lim
→0

(+ )− ()



= lim
→0


6− (+ )−√6− 




6− (+ ) +

√
6− 

6− (+ ) +
√
6− 



= lim
→0

[6− (+ )]− (6− )



6− (+ ) +

√
6− 

 = lim
→0

−

√
6− − +

√
6− 


= lim

→0

−1√
6− − +

√
6− 

=
−1

2
√
6− 

Domain of  = (−∞ 6], domain of  0 = (−∞ 6).

(d)

33. (a)  0() = lim
→0

(+ )− ()


= lim

→0

[(+ )4 + 2(+ )]− (4 + 2)


= lim
→0

4 + 43+ 622 + 43 + 4 + 2+ 2− 4 − 2


= lim
→0

43+ 622 + 43 + 4 + 2


= lim

→0

(43 + 62+ 42 + 3 + 2)



= lim
→0

(43 + 62+ 42 + 3 + 2) = 43 + 2

(b) Notice that  0() = 0 when  has a horizontal tangent,  0() is

positive when the tangents have positive slope, and  0() is

negative when the tangents have negative slope.
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144 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

34. (a)  0() = lim
→0

(+ )− ()


= lim

→0

[(+ ) + 1(+ )]− (+ 1)


= lim
→0

(+ )2 + 1

+ 
− 2 + 1





= lim
→0

[(+ )2 + 1]− (+ )(2 + 1)

(+ )
= lim

→0

(3 + 22 + 2 + )− (3 + + 2 + )

(+ )

= lim
→0

2 + 2 − 

(+ )
= lim

→0

(2 + − 1)
(+ )

= lim
→0

2 + − 1
(+ )

=
2 − 1
2

, or 1− 1

2

(b) Notice that  0() = 0 when  has a horizontal tangent,  0() is

positive when the tangents have positive slope, and  0() is

negative when the tangents have negative slope. Both functions

are discontinuous at  = 0.

35. (a)  0() is the rate at which the unemployment rate is changing with respect to time. Its units are percent unemployed

per year.

(b) To find  0(), we use lim
→0

(+ )− ()


≈ (+ )− ()


for small values of .

For 2003:  0(2003) ≈ (2004)− (2003)

2004− 2003 =
55− 60

1
= −05

For 2004: We estimate  0(2004) by using  = −1 and  = 1, and then average the two results to obtain a final estimate.

 = −1 ⇒  0(2004) ≈ (2003)− (2004)

2003− 2004 =
60− 55
−1 = −05;

 = 1 ⇒  0(2004) ≈ (2005)− (2004)

2005− 2004 =
51− 55

1
= −04.

So we estimate that  0(2004) ≈ 1
2 [−05 + (−04)] = −045.

 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

 0() −050 −045 −045 −025 060 235 190 −020 −075 −080

36. (a)  0() is the rate at which the number of minimally invasive cosmetic surgery procedures performed in the United States is

changing with respect to time. Its units are thousands of surgeries per year.

(b) To find  0(), we use lim
→0

(+ )−()


≈ (+ )−()


for small values of .

For 2000:  0(2000) ≈ (2002)−(2000)

2002− 2000 =
4897− 5500

2
= −3015

For 2002: We estimate  0(2002) by using  = −2 and  = 2, and then average the two results to obtain a final estimate.

 = −2 ⇒  0(2002) ≈ (2000)−(2002)

2000− 2002 =
5500− 4897

−2 = −3015

 = 2 ⇒  0(2002) ≈ (2004)−(2002)

2004− 2002 =
7470− 4897

2
= 12865

So we estimate that  0(2002) ≈ 1
2
[−3015 + 12865] = 4925.

 2000 2002 2004 2006 2008 2010 2012

 0() −3015 4925 106025 85675 60575 5345 737
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SECTION 2.8 THE DERIVATIVE AS A FUNCTION ¤ 145

(c) (d) We could get more accurate values

for  0() by obtaining data for

more values of .

37. As in Exercise 35, we use one-sided difference quotients for the

first and last values, and average two difference quotients for all

other values.

 14 21 28 35 42 49

() 41 54 64 72 78 83

0() 13
7

23
14

18
14

14
14

11
14

5
7

38. As in Exercise 35, we use one-sided difference quotients for the

first and last values, and average two difference quotients for all

other values. The units for  0() are grams per degree (g◦C).

 155 177 200 224 244

 () 372 310 198 97 −98
 0() −282 −387 −453 −673 −975

39. (a)  is the rate at which the percentage of the city’s electrical power produced by solar panels changes with respect to

time , measured in percentage points per year.

(b) 2 years after January 1, 2000 (January 1, 2002), the percentage of electrical power produced by solar panels was increasing

at a rate of 3.5 percentage points per year.

40.  is the rate at which the number of people who travel by car to another state for a vacation changes with respect to the

price of gasoline. If the price of gasoline goes up, we would expect fewer people to travel, so we would expect  to be

negative.

41.  is not differentiable at  = −4, because the graph has a corner there, and at  = 0, because there is a discontinuity there.

42.  is not differentiable at  = −1, because there is a discontinuity there, and at  = 2, because the graph has a corner there.

43.  is not differentiable at  = 1, because  is not defined there, and at  = 5, because the graph has a vertical tangent there.

44.  is not differentiable at  = −2 and  = 3, because the graph has corners there, and at  = 1, because there is a discontinuity

there.
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146 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

45. As we zoom in toward (−1 0), the curve appears more and more like a straight

line, so () = +
|| is differentiable at  = −1. But no matter how much

we zoom in toward the origin, the curve doesn’t straighten out—we can’t

eliminate the sharp point (a cusp). So  is not differentiable at  = 0.

46. As we zoom in toward (0 1), the curve appears more and more like a straight

line, so  is differentiable at  = 0. But no matter how much we zoom in toward

(1 0) or (−1 0), the curve doesn’t straighten out—we can’t eliminate the sharp

point (a cusp). So  is not differentiable at  = ±1.

47. Call the curve with the positive -intercept  and the other curve . Notice that  has a maximum (horizontal tangent) at

 = 0, but  6= 0, so  cannot be the derivative of . Also notice that where  is positive,  is increasing. Thus,  =  and

 =  0. Now  0(−1) is negative since  0 is below the -axis there and  00(1) is positive since  is concave upward at  = 1.

Therefore,  00(1) is greater than  0(−1).

48. Call the curve with the smallest positive -intercept  and the other curve . Notice that where  is positive in the first

quadrant,  is increasing. Thus,  =  and  =  0. Now  0(−1) is positive since  0 is above the -axis there and  00(1)

appears to be zero since  has an inflection point at  = 1. Therefore,  0(1) is greater than  00(−1).

49.  =  ,  =  0,  =  00. We can see this because where  has a horizontal tangent,  = 0, and where  has a horizontal tangent,

 = 0. We can immediately see that  can be neither  nor  0, since at the points where  has a horizontal tangent, neither 

nor  is equal to 0.

50. Where  has horizontal tangents, only  is 0, so 0 = .  has negative tangents for   0 and  is the only graph that is

negative for   0, so 0 = .  has positive tangents on R (except at  = 0), and the only graph that is positive on the same

domain is , so 0 = . We conclude that  =  ,  =  0,  =  00, and  =  000.

51. We can immediately see that  is the graph of the acceleration function, since at the points where  has a horizontal tangent,

neither  nor  is equal to 0. Next, we note that  = 0 at the point where  has a horizontal tangent, so  must be the graph of

the velocity function, and hence, 0 = . We conclude that  is the graph of the position function.

52.  must be the jerk since none of the graphs are 0 at its high and low points.  is 0 where  has a maximum, so 0 = .  is 0

where  has a maximum, so 0 = . We conclude that  is the position function,  is the velocity,  is the acceleration, and  is

the jerk.

53.  0() = lim
→0

(+ )− ()


= lim

→0

[3(+ )2 + 2(+ ) + 1]− (32 + 2+ 1)


= lim
→0

(32 + 6+ 32 + 2+ 2+ 1)− (32 + 2+ 1)


= lim
→0

6+ 32 + 2



= lim
→0

(6+ 3+ 2)


= lim

→0
(6+ 3+ 2) = 6+ 2
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SECTION 2.8 THE DERIVATIVE AS A FUNCTION ¤ 147

 00() = lim
→0

 0(+ )−  0()


= lim
→0

[6(+ ) + 2]− (6+ 2)


= lim
→0

(6+ 6+ 2)− (6+ 2)


= lim
→0

6


= lim

→0
6 = 6

We see from the graph that our answers are reasonable because the graph of

 0 is that of a linear function and the graph of  00 is that of a constant

function.

54.  0() = lim
→0

(+ )− ()


= lim

→0

[(+ )3 − 3(+ )]− (3 − 3)


= lim
→0

(3 + 32+ 32 + 3 − 3− 3)− (3 − 3)


= lim
→0

32+ 32 + 3 − 3


= lim
→0

(32 + 3+ 2 − 3)


= lim
→0

(32 + 3+ 2 − 3) = 32 − 3

 00() = lim
→0

 0(+ )−  0()


= lim
→0

[3(+ )2 − 3]− (32 − 3)


= lim
→0

(32 + 6+ 32 − 3)− (32 − 3)


= lim
→0

6+ 32


= lim

→0

(6+ 3)


= lim

→0
(6+ 3) = 6

We see from the graph that our answers are reasonable because the graph of

 0 is that of an even function ( is an odd function) and the graph of  00 is

that of an odd function. Furthermore,  0 = 0 when  has a horizontal

tangent and  00 = 0 when  0 has a horizontal tangent.

55.  0() = lim
→0

(+ )− ()


= lim

→0


2(+ )2 − (+ )3

− (22 − 3)



= lim
→0

(4+ 2− 32 − 3− 2)


= lim

→0
(4+ 2− 32 − 3− 2) = 4− 32

 00() = lim
→0

 0(+ )−  0()


= lim
→0


4(+ )− 3(+ )2

− (4− 32)


= lim
→0

(4− 6− 3)


= lim
→0

(4− 6− 3) = 4− 6

 000() = lim
→0

 00(+ )−  00()


= lim
→0

[4− 6(+ )]− (4− 6)


= lim
→0

−6


= lim
→0

(−6) = −6

 (4)() = lim
→0

 000(+ )−  000()


= lim
→0

−6− (−6)


= lim
→0

0


= lim

→0
(0) = 0

The graphs are consistent with the geometric interpretations of the

derivatives because  0 has zeros where  has a local minimum and a local

maximum,  00 has a zero where  0 has a local maximum, and  000 is a

constant function equal to the slope of  00.
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148 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

56. (a) Since we estimate the velocity to be a maximum

at  = 10, the acceleration is 0 at  = 10.

(b) Drawing a tangent line at  = 10 on the graph of ,  appears to decrease by 10 fts2 over a period of 20 s.

So at  = 10 s, the jerk is approximately −1020 = −05 (fts2)s or fts3.

57. (a) Note that we have factored −  as the difference of two cubes in the third step.

 0() = lim
→

()− ()

− 
= lim

→

13 − 13

− 
= lim

→

13 − 13

(13 − 13)(23 + 1313 + 23)

= lim
→

1

23 + 1313 + 23
=

1

323
or 1

3
−23

(b)  0(0) = lim
→0

(0 + )− (0)


= lim

→0

3
√
− 0


= lim
→0

1

23
. This function increases without bound, so the limit does not

exist, and therefore  0(0) does not exist.

(c) lim
→0

| 0()| = lim
→0

1

323
=∞ and  is continuous at  = 0 (root function), so  has a vertical tangent at  = 0.

58. (a) 0(0) = lim
→0

()− (0)

− 0 = lim
→0

23 − 0


= lim
→0

1

13
, which does not exist.

(b) 0() = lim
→

()− ()

− 
= lim

→

23 − 23

− 
= lim

→

(13 − 13)(13 + 13)

(13 − 13)(23 + 1313 + 23)

= lim
→

13 + 13

23 + 1313 + 23
=
213

323
=

2

313
or 2

3
−13

(c) () = 23 is continuous at  = 0 and

lim
→0

|0()| = lim
→0

2

3 ||13
=∞. This shows that

 has a vertical tangent line at  = 0.

(d)

59. () = |− 6| =

− 6 if − 6 ≥ 6
−(− 6) if − 6  0 =


− 6 if  ≥ 6
6−  if   6

So the right-hand limit is lim
→6+

()− (6)

− 6 = lim
→6+

|− 6|− 0
− 6 = lim

→6+

− 6
− 6 = lim

→6+
1 = 1, and the left-hand limit

is lim
→6−

()− (6)

− 6 = lim
→6−

|− 6|− 0
− 6 = lim

→6−
6− 

− 6 = lim
→6−

(−1) = −1. Since these limits are not equal,

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 2.8 THE DERIVATIVE AS A FUNCTION ¤ 149

 0(6) = lim
→6

()− (6)

− 6 does not exist and  is not differentiable at 6.

However, a formula for  0 is  0() =


1 if   6

−1 if   6

Another way of writing the formula is  0() =
− 6
|− 6| .

60. () = [[]] is not continuous at any integer , so  is not differentiable

at  by the contrapositive of Theorem 4. If  is not an integer, then 

is constant on an open interval containing , so  0() = 0. Thus,

 0() = 0,  not an integer.

61. (a) () =  || =

2 if  ≥ 0
−2 if   0

(b) Since () = 2 for  ≥ 0, we have  0() = 2 for   0.

[See Exercise 19(d).] Similarly, since () = −2 for   0,

we have  0() = −2 for   0. At  = 0, we have

 0(0) = lim
→0

()− (0)

− 0 = lim
→0

 ||


= lim
→0

|| = 0

So  is differentiable at 0. Thus,  is differentiable for all .

(c) From part (b), we have  0() =


2 if  ≥ 0
−2 if   0


= 2 ||.

62. (a) || =

 if  ≥ 0
− if   0

so () = + || =

2 if  ≥ 0
0 if   0

.

Graph the line  = 2 for  ≥ 0 and graph  = 0 (the x-axis) for   0.

(b)  is not differentiable at  = 0 because the graph has a corner there, but

is differentiable at all other values; that is,  is differentiable on (−∞ 0) ∪ (0∞).

(c) () =


2 if  ≥ 0
0 if   0

⇒ 0() =


2 if   0

0 if   0

Another way of writing the formula is 0() = 1 + sgn for  6= 0.

63. (a) If  is even, then

 0(−) = lim
→0

(−+ )− (−)


= lim
→0

 [−(− )]− (−)


= lim
→0

(− )− ()


= − lim

→0

(− )− ()

− [let ∆ = −]

= − lim
∆→0

(+∆)− ()

∆
= − 0()

Therefore,  0 is odd.
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150 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

(b) If  is odd, then

 0(−) = lim
→0

(−+ )− (−)


= lim
→0

 [−(− )]− (−)


= lim
→0

−(− ) + ()


= lim

→0

(− )− ()

− [let ∆ = −]

= lim
∆→0

(+∆)− ()

∆
=  0()

Therefore,  0 is even.

64. (a)  0−(4) = lim
→0−

(4 + )− (4)


= lim

→0−
5− (4 + )− 1



= lim
→0−

−

= −1

and

 0+(4) = lim
→0+

(4 + )− (4)


= lim

→0+

1

5− (4 + )
− 1



= lim
→0+

1− (1− )

(1− )
= lim

→0+

1

1− 
= 1

(b)

(c) () =


0 if  ≤ 0
5−  if 0    4

1(5− ) if  ≥ 4

At 4 we have lim
→4−

() = lim
→4−

(5− ) = 1 and lim
→4+

() = lim
→4+

1

5− 
= 1, so lim

→4
() = 1 = (4) and  is

continuous at 4. Since (5) is not defined,  is discontinuous at 5. These expressions show that  is continuous on the

intervals (−∞ 0), (0 4), (4 5) and (5∞). Since lim
→0+

() = lim
→0+

(5− ) = 5 6= 0 = lim
→0−

(), lim
→0

() does

not exist, so  is discontinuous (and therefore not differentiable) at 0.

(d) From (a),  is not differentiable at 4 since  0−(4) 6=  0+(4), and from (c),  is not differentiable at 0 or 5.

65. These graphs are idealizations conveying the spirit of the problem. In reality, changes in speed are not instantaneous, so the

graph in (a) would not have corners and the graph in (b) would be continuous.

(a) (b)

66. (a)
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CHAPTER 2 REVIEW ¤ 151

(b) The initial temperature of the water is close to room temperature because of

the water that was in the pipes. When the water from the hot water tank

starts coming out,  is large and positive as  increases to the

temperature of the water in the tank. In the next phase,  = 0 as the

water comes out at a constant, high temperature. After some time, 

becomes small and negative as the contents of the hot water tank are

exhausted. Finally, when the hot water has run out,  is once again 0 as

the water maintains its (cold) temperature.

(c)

67. In the right triangle in the diagram, let ∆ be the side opposite angle  and ∆

the side adjacent to angle . Then the slope of the tangent line 

is  = ∆∆ = tan. Note that 0    
2 . We know (see Exercise 19)

that the derivative of () = 2 is  0() = 2. So the slope of the tangent to

the curve at the point (1 1) is 2. Thus,  is the angle between 0 and 
2 whose

tangent is 2; that is,  = tan−1 2 ≈ 63◦.

2 Review

1. False. Limit Law 2 applies only if the individual limits exist (these don’t).

2. False. Limit Law 5 cannot be applied if the limit of the denominator is 0 (it is).

3. True. Limit Law 5 applies.

4. False.
2 − 9
− 3 is not defined when  = 3, but + 3 is.

5. True. lim
→3

2 − 9
− 3 = lim

→3

(+ 3)(− 3)
(− 3) = lim

→3
(+ 3)

6. True. The limit doesn’t exist since ()() doesn’t approach any real number as  approaches 5.

(The denominator approaches 0 and the numerator doesn’t.)

7. False. Consider lim
→5

(− 5)
− 5 or lim

→5

sin(− 5)
− 5 . The first limit exists and is equal to 5. By Example 2.2.3, we know that

the latter limit exists (and it is equal to 1).

8. False. If () = 1, () = −1, and  = 0, then lim
→0

() does not exist, lim
→0

() does not exist, but

lim
→0

[() + ()] = lim
→0

0 = 0 exists.

9. True. Suppose that lim
→

[() + ()] exists. Now lim
→

() exists and lim
→

() does not exist, but

lim
→

() = lim
→

{[() + ()]− ()} = lim
→

[() + ()]− lim
→

() [by Limit Law 2], which exists, and

we have a contradiction. Thus, lim
→

[() + ()] does not exist.
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152 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

10. False. Consider lim
→6

[()()] = lim
→6


(− 6) 1

− 6


. It exists (its value is 1) but (6) = 0 and (6) does not exist,

so (6)(6) 6= 1.

11. True. A polynomial is continuous everywhere, so lim
→

() exists and is equal to ().

12. False. Consider lim
→0

[()− ()] = lim
→0


1

2
− 1

4


. This limit is −∞ (not 0), but each of the individual functions

approaches∞.

13. True. See Figure 2.6.8.

14. False. Consider () = sin for  ≥ 0. lim
→∞

() 6= ±∞ and  has no horizontal asymptote.

15. False. Consider () =


1(− 1) if  6= 1
2 if  = 1

16. False. The function  must be continuous in order to use the Intermediate Value Theorem. For example, let

() =


1 if 0 ≤   3

−1 if  = 3
There is no number  ∈ [0 3] with () = 0.

17. True. Use Theorem 2.5.8 with  = 2,  = 5, and () = 42 − 11. Note that (4) = 3 is not needed.

18. True. Use the Intermediate Value Theorem with  = −1,  = 1, and  = , since 3    4.

19. True, by the definition of a limit with  = 1.

20. False. For example, let () =


2 + 1 if  6= 0
2 if  = 0

Then ()  1 for all , but lim
→0

() = lim
→0


2 + 1


= 1.

21. False. See the note after Theorem 2.8.4.

22. True.  0() exists ⇒  is differentiable at  ⇒  is continuous at  ⇒ lim
→

() = ().

23. False.
 2

2
is the second derivative while






2
is the first derivative squared. For example, if  = ,

then
 2

2
= 0, but






2
= 1.

24. True. () = 10 − 102 + 5 is continuous on the interval [0 2], (0) = 5, (1) = −4, and (2) = 989. Since

−4  0  5, there is a number  in (0 1) such that () = 0 by the Intermediate Value Theorem. Thus, there is a

root of the equation 10 − 102 + 5 = 0 in the interval (0 1). Similarly, there is a root in (1 2).

25. True. See Exercise 2.5.72(b).

26. False See Exercise 2.5.72(b).
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1. (a) (i) lim
→2+

() = 3 (ii) lim
→−3+

() = 0

(iii) lim
→−3

() does not exist since the left and right limits are not equal. (The left limit is −2.)

(iv) lim
→4

() = 2

(v) lim
→0

() =∞ (vi) lim
→2−

() = −∞

(vii) lim
→∞

() = 4 (viii) lim
→−∞

() = −1

(b) The equations of the horizontal asymptotes are  = −1 and  = 4.

(c) The equations of the vertical asymptotes are  = 0 and  = 2.

(d)  is discontinuous at  = −3, 0, 2, and 4. The discontinuities are jump, infinite, infinite, and removable, respectively.

2. lim
→−∞

() = −2, lim
→∞

() = 0, lim
→−3

() =∞,

lim
→3−

() = −∞, lim
→3+

() = 2,

 is continuous from the right at 3
 

3. Since the exponential function is continuous, lim
→1


3− = 1−1 = 0 = 1.

4. Since rational functions are continuous, lim
→3

2 − 9
2 + 2− 3 =

32 − 9
32 + 2(3)− 3 =

0

12
= 0.

5. lim
→−3

2 − 9
2 + 2− 3 = lim

→−3
(+ 3)(− 3)
(+ 3)(− 1) = lim

→−3
− 3
− 1 =

−3− 3
−3− 1 =

−6
−4 =

3

2

6. lim
→1+

2 − 9
2 + 2− 3 = −∞ since 2 + 2− 3→ 0+ as → 1+ and

2 − 9
2 + 2− 3  0 for 1    3.

7. lim
→0

(− 1)3 + 1


= lim
→0


3 − 32 + 3− 1+ 1


= lim

→0

3 − 32 + 3


= lim
→0


2 − 3+ 3 = 3

Another solution: Factor the numerator as a sum of two cubes and then simplify.

lim
→0

(− 1)3 + 1


= lim
→0

(− 1)3 + 13


= lim
→0

[(− 1) + 1] (− 1)2 − 1(− 1) + 12


= lim
→0


(− 1)2 − + 2


= 1− 0 + 2 = 3

8. lim
→2

2 − 4
3 − 8 = lim

→2

(+ 2)(− 2)
(− 2)(2 + 2+ 4) = lim

→2

+ 2

2 + 2+ 4
=

2 + 2

4 + 4 + 4
=
4

12
=
1

3

9. lim
→9

√


( − 9)4 =∞ since ( − 9)4 → 0+ as → 9 and
√


( − 9)4  0 for  6= 9.
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10. lim
→4+

4− 

|4− | = lim
→4+

4− 

−(4− )
= lim

→4+

1

−1 = −1

11. lim
→1

4 − 1
3 + 52 − 6 = lim

→1

(2 + 1)(2 − 1)
(2 + 5− 6) = lim

→1

(2 + 1)(+ 1)(− 1)
(+ 6)(− 1) = lim

→1

(2 + 1)(+ 1)

(+ 6)
=
2(2)

1(7)
=
4

7

12. lim
→3

√
+ 6− 

3 − 32 = lim
→3

√
+ 6− 

2(− 3) ·
√
+ 6 + √
+ 6 + 


= lim

→3

(
√
+ 6 )2 − 2

2(− 3)√+ 6 + 


= lim
→3

+ 6− 2

2(− 3) √+ 6 + 
 = lim

→3

−(2 − − 6)
2(− 3) √+ 6 + 

 = lim
→3

−(− 3)(+ 2)
2(− 3)√+ 6 + 


= lim

→3

−(+ 2)
2
√

+ 6 + 
 = − 5

9(3 + 3)
= − 5

54

13. Since  is positive,
√
2 = || = . Thus,

lim
→∞

√
2 − 9
2− 6 = lim

→∞

√
2 − 9√2
(2− 6) = lim

→∞


1− 92
2− 6 =

√
1− 0
2− 0 =

1

2

14. Since  is negative,
√
2 = || = −. Thus,

lim
→−∞

√
2 − 9
2− 6 = lim

→−∞

√
2 − 9√2

(2− 6)(−) = lim
→−∞


1− 92
−2 + 6 =

√
1− 0

−2 + 0 = −
1

2

15. Let  = sin. Then as → −, sin→ 0+, so → 0+. Thus, lim
→−

ln(sin) = lim
→0+

ln  = −∞.

16. lim
→−∞

1− 22 − 4

5 + − 34 = lim
→−∞

(1− 22 − 4)4

(5 + − 34)4 = lim
→−∞

14 − 22 − 1
54 + 13 − 3 =

0− 0− 1
0 + 0− 3 =

−1
−3 =

1

3

17. lim
→∞

√
2 + 4+ 1− 


= lim

→∞

√
2 + 4+ 1− 

1
·
√
2 + 4+ 1 + √
2 + 4+ 1 + 


= lim

→∞
(2 + 4+ 1)− 2√
2 + 4+ 1 + 

= lim
→∞

(4+ 1)

(
√
2 + 4+ 1 + )


divide by  =

√
2 for   0


= lim

→∞
4 + 1

1 + 4+ 12 + 1
=

4 + 0√
1 + 0 + 0 + 1

=
4

2
= 2

18. Let  = − 2 = (1− ). Then as →∞, →−∞, and lim
→∞

−
2

= lim
→−∞

 = 0.

19. Let  = 1. Then as → 0+, →∞ , and lim
→0+

tan−1(1) = lim
→∞

tan−1  =


2
.

20. lim
→1


1

− 1 +
1

2 − 3+ 2

= lim

→1


1

− 1 +
1

(− 1)(− 2)

= lim

→1


− 2

(− 1)(− 2) +
1

(− 1)(− 2)


= lim
→1


− 1

(− 1)(− 2)

= lim

→1

1

− 2 =
1

1− 2 = −1
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CHAPTER 2 REVIEW ¤ 155

21. From the graph of  =

cos2 


2, it appears that  = 0 is the horizontal

asymptote and  = 0 is the vertical asymptote. Now 0 ≤ (cos)2 ≤ 1 ⇒
0

2
≤ cos2 

2
≤ 1

2
⇒ 0 ≤ cos2 

2
≤ 1

2
. But lim

→±∞
0 = 0 and

lim
→±∞

1

2
= 0, so by the Squeeze Theorem, lim

→±∞
cos2 

2
= 0.

Thus,  = 0 is the horizontal asymptote. lim
→0

cos2 

2
=∞ because cos2 → 1 and 2 → 0+ as → 0, so  = 0 is the

vertical asymptote.

22. From the graph of  = () =
√
2 + + 1−√2 − , it appears that there are 2 horizontal asymptotes and possibly 2

vertical asymptotes. To obtain a different form for  , let’s multiply and divide it by its conjugate.

1() =
√

2 + + 1−√2 − 
 √2 + + 1 +

√
2 − √

2 + + 1 +
√
2 − 

=
(2 + + 1)− (2 − )√
2 + + 1 +

√
2 − 

=
2+ 1√

2 + + 1 +
√
2 − 

Now

lim
→∞

1() = lim
→∞

2+ 1√
2 + + 1 +

√
2 − 

= lim
→∞

2 + (1)
1 + (1) + (12) +


1− (1) [since

√
2 =  for   0]

=
2

1 + 1
= 1,

so  = 1 is a horizontal asymptote. For   0, we have
√
2 = || = −, so when we divide the denominator by ,

with   0, we get

√
2 + + 1 +

√
2 − 


= −

√
2 + + 1 +

√
2 − √

2
= −


1 +

1


+
1

2
+


1− 1





Therefore,

lim
→−∞

1() = lim
→−∞

2+ 1√
2 + + 1 +

√
2 − 

= lim
→∞

2 + (1)

−

1 + (1) + (12) +


1− (1)


=

2

−(1 + 1) = −1

so  = −1 is a horizontal asymptote.

The domain of  is (−∞ 0] ∪ [1∞). As → 0−,  ()→ 1, so

 = 0 is not a vertical asymptote. As → 1+, ()→√
3, so  = 1

is not a vertical asymptote and hence there are no vertical asymptotes.
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156 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

23. Since 2− 1 ≤ () ≤ 2 for 0    3 and lim
→1

(2− 1) = 1 = lim
→1

2, we have lim
→1

() = 1 by the Squeeze Theorem.

24. Let () = −2, () = 2 cos

12


and () = 2. Then since

cos12 ≤ 1 for  6= 0, we have

 () ≤ () ≤ () for  6= 0, and so lim
→0

() = lim
→0

() = 0 ⇒ lim
→0

() = 0 by the Squeeze Theorem.

25. Given   0, we need   0 such that if 0  |− 2|  , then |(14− 5)− 4|  . But |(14− 5)− 4|   ⇔
|−5+ 10|   ⇔ |−5| |− 2|   ⇔ |− 2|  5. So if we choose  = 5, then 0  |− 2|   ⇒
|(14− 5)− 4|  . Thus, lim

→2
(14− 5) = 4 by the definition of a limit.

26. Given   0 we must find   0 so that if 0  |− 0|  , then | 3√− 0|  . Now | 3√− 0| = | 3√|   ⇒

|| = | 3√|3  3. So take  = 3. Then 0  |− 0| = ||  3 ⇒ | 3√− 0| = | 3√| = 3
||  3

√
3 = .

Therefore, by the definition of a limit, lim
→0

3
√
 = 0.

27. Given   0, we need   0 so that if 0  |− 2|  , then
2 − 3− (−2)  . First, note that if |− 2|  1, then

−1  − 2  1, so 0  − 1  2 ⇒ |− 1|  2. Now let  = min {2 1}. Then 0  |− 2|   ⇒2 − 3− (−2) = |(− 2)(− 1)| = |− 2| |− 1|  (2)(2) = .

Thus, lim
→2

(2 − 3) = −2 by the definition of a limit.

28. Given   0, we need   0 such that if 0  − 4  , then 2
√
− 4   . This is true ⇔ √

− 4  2 ⇔

− 4  42. So if we choose  = 42, then 0  − 4   ⇒ 2
√
− 4   . So by the definition of a limit,

lim
→4+


2
√
− 4  =∞.

29. (a) () =
√− if   0, () = 3−  if 0 ≤   3, () = (− 3)2 if   3.

(i) lim
→0+

() = lim
→0+

(3− ) = 3 (ii) lim
→0−

() = lim
→0−

√− = 0

(iii) Because of (i) and (ii), lim
→0

() does not exist. (iv) lim
→3−

() = lim
→3−

(3− ) = 0

(v) lim
→3+

() = lim
→3+

(− 3)2 = 0 (vi) Because of (iv) and (v), lim
→3

() = 0.

(b)  is discontinuous at 0 since lim
→0

() does not exist.

 is discontinuous at 3 since (3) does not exist.

(c)

30. (a) () = 2− 2 if 0 ≤  ≤ 2, () = 2−  if 2   ≤ 3, () = − 4 if 3    4, () =  if  ≥ 4.

Therefore, lim
→2−

() = lim
→2−


2− 2


= 0 and lim

→2+
() = lim

→2+
(2− ) = 0. Thus, lim

→2
() = 0 =  (2),

so  is continuous at 2. lim
→3−

() = lim
→3−

(2− ) = −1 and lim
→3+

() = lim
→3+

(− 4) = −1. Thus,
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CHAPTER 2 REVIEW ¤ 157

lim
→3

() = −1 = (3), so  is continuous at 3.

lim
→4−

() = lim
→4−

(− 4) = 0 and lim
→4+

() = lim
→4+

 = .

Thus, lim
→4

() does not exist, so  is discontinuous at 4. But

lim
→4+

() =  = (4), so  is continuous from the right at 4.

(b)

31. sin and  are continuous on R by Theorem 2.5.7. Since  is continuous on R, sin is continuous on R by Theorem 2.5.9.

Lastly,  is continuous on R since it’s a polynomial and the product sin  is continuous on its domain R by Theorem 2.5.4.

32. 2 − 9 is continuous on R since it is a polynomial and
√
 is continuous on [0∞) by Theorem 2.5.7, so the composition

√
2 − 9 is continuous on


 | 2 − 9 ≥ 0 = (−∞−3] ∪ [3∞) by Theorem 2.5.9. Note that 2 − 2 6= 0 on this set and

so the quotient function () =

√
2 − 9
2 − 2 is continuous on its domain, (−∞−3] ∪ [3∞) by Theorem 2.5.4.

33. () = 5 − 3 + 3− 5 is continuous on the interval [1 2], (1) = −2, and (2) = 25. Since −2  0  25, there is a

number  in (1 2) such that () = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation

5 − 3 + 3− 5 = 0 in the interval (1 2).

34. () = cos
√
−  + 2 is continuous on the interval [0 1], (0) = 2, and (1) ≈ −02. Since −02  0  2, there is a

number  in (0 1) such that () = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation

cos
√
−  + 2 = 0, or cos

√
 =  − 2, in the interval (0 1).

35. (a) The slope of the tangent line at (2 1) is

lim
→2

()− (2)

− 2 = lim
→2

9− 22 − 1
− 2 = lim

→2

8− 22
− 2 = lim

→2

−2(2 − 4)
− 2 = lim

→2

−2(− 2)(+ 2)
− 2

= lim
→2

[−2(+ 2)] = −2 · 4 = −8

(b) An equation of this tangent line is  − 1 = −8(− 2) or  = −8+ 17.

36. For a general point with -coordinate , we have

= lim
→

2(1− 3)− 2(1− 3)
− 

= lim
→

2(1− 3)− 2(1− 3)
(1− 3)(1− 3)(− )

= lim
→

6(− )

(1− 3)(1− 3)(− )

= lim
→

6

(1− 3)(1− 3) =
6

(1− 3)2

For  = 0,  = 6 and (0) = 2, so an equation of the tangent line is  − 2 = 6(− 0) or  = 6+ 2 For  = −1,  = 3
8

and (−1) = 1
2

, so an equation of the tangent line is  − 1
2
= 3

8
(+ 1) or  = 3

8
+ 7

8
.

37. (a)  = () = 1 + 2+ 24. The average velocity over the time interval [1 1 + ] is

ave =
(1 + )− (1)

(1 + )− 1 =
1 + 2(1 + ) + (1 + )2


4− 134


=
10+ 2

4
=
10 + 

4

[continued]
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158 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

So for the following intervals the average velocities are:

(i) [1 3]:  = 2, ave = (10 + 2)4 = 3 ms (ii) [1 2]:  = 1, ave = (10 + 1)4 = 275 ms

(iii) [1 15]:  = 05, ave = (10 + 05)4 = 2625 ms (iv) [1 11]:  = 01, ave = (10 + 01)4 = 2525 ms

(b) When  = 1, the instantaneous velocity is lim
→0

(1 + )− (1)


= lim

→0

10 + 

4
=
10

4
= 25 ms.

38. (a) When  increases from 200 in3 to 250 in3, we have ∆ = 250− 200 = 50 in3, and since  = 800 ,

∆ =  (250)−  (200) =
800

250
− 800

200
= 32− 4 = −08 lbin2. So the average rate of change

is
∆

∆
=
−08
50

= −0016 lbin2

in3
.

(b) Since  = 800 , the instantaneous rate of change of  with respect to  is

lim
→0

∆

∆
= lim

→0

 ( + )−  ( )


= lim

→0

800( + )− 800


= lim
→0

800 [ − ( + )]

( + )

= lim
→0

−800
( + )

= −800
 2

which is inversely proportional to the square of  .

39. (a)  0(2) = lim
→2

()− (2)

− 2 = lim
→2

3 − 2− 4
− 2

= lim
→2

(− 2)(2 + 2+ 2)
− 2 = lim

→2
(2 + 2+ 2) = 10

(c)

(b)  − 4 = 10(− 2) or  = 10− 16

40. 26 = 64, so () = 6 and  = 2.

41. (a)  0() is the rate at which the total cost changes with respect to the interest rate. Its units are dollars(percent per year).

(b) The total cost of paying off the loan is increasing by $1200(percent per year) as the interest rate reaches 10%. So if the

interest rate goes up from 10% to 11%, the cost goes up approximately $1200.

(c) As  increases,  increases. So  0() will always be positive.

42. 43. 44.
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CHAPTER 2 REVIEW ¤ 159

45. (a)  0() = lim
→0

(+ )− ()


= lim

→0


3− 5(+ )−√3− 5




3− 5(+ ) +

√
3− 5

3− 5(+ ) +
√
3− 5

= lim
→0

[3− 5(+ )]− (3− 5)



3− 5(+ ) +
√
3− 5

 = lim
→0

−5
3− 5(+ ) +

√
3− 5 =

−5
2
√
3− 5

(b) Domain of  : (the radicand must be nonnegative) 3− 5 ≥ 0 ⇒
5 ≤ 3 ⇒  ∈ −∞ 3

5


Domain of  0: exclude 3

5 because it makes the denominator zero;

 ∈ −∞ 3
5


(c) Our answer to part (a) is reasonable because  0() is always negative and

 is always decreasing.

46. (a) As → ±∞, () = (4− )(3 + )→−1, so there is a horizontal

asymptote at  = −1. As →−3+, ()→∞, and as →−3−,

()→−∞. Thus, there is a vertical asymptote at  = −3.

(b) Note that  is decreasing on (−∞−3) and (−3∞), so  0 is negative on

those intervals. As → ±∞,  0 → 0. As →−3− and as →−3+,

 0 → −∞.

(c)  0() = lim
→0

(+ )− ()


= lim

→0

4− (+ )

3 + (+ )
− 4− 

3 + 


= lim

→0

(3 + ) [4− (+ )]− (4− ) [3 + (+ )]

 [3 + (+ )] (3 + )

= lim
→0

(12− 3− 3+ 4− 2 − )− (12 + 4+ 4− 3− 2 − )

[3 + (+ )](3 + )

= lim
→0

−7
 [3 + (+ )] (3 + )

= lim
→0

−7
[3 + (+ )] (3 + )

= − 7

(3 + )2

(d) The graphing device confirms our graph in part (b).

47.  is not differentiable: at  = −4 because  is not continuous, at  = −1 because  has a corner, at  = 2 because  is not

continuous, and at  = 5 because  has a vertical tangent.

48. The graph of  has tangent lines with positive slope for   0 and negative slope for   0, and the values of  fit this pattern,

so  must be the graph of the derivative of the function for . The graph of  has horizontal tangent lines to the left and right of

the -axis and  has zeros at these points. Hence,  is the graph of the derivative of the function for . Therefore,  is the graph

of  ,  is the graph of  0, and  is the graph of  00.
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160 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

49. Domain: (−∞ 0) ∪ (0∞); lim
→0−

() = 1; lim
→0+

() = 0;

 0()  0 for all  in the domain; lim
→−∞

 0() = 0; lim
→∞

 0() = 1

50. (a)  0() is the rate at which the percentage of Americans under the age of 18 is changing with respect to time. Its units are

percent per year (%yr).

(b) To find  0(), we use lim
→0

 (+ )−  ()


≈  (+ )−  ()


for small values of .

For 1950:  0(1950) ≈  (1960)−  (1950)

1960− 1950 =
357− 311

10
= 046

For 1960: We estimate  0(1960) by using  = −10 and  = 10, and then average the two results to obtain a

final estimate.

 = −10 ⇒  0(1960) ≈  (1950)−  (1960)

1950− 1960 =
311− 357
−10 = 046

 = 10 ⇒  0(1960) ≈  (1970)−  (1960)

1970− 1960 =
340− 357

10
= −017

So we estimate that  0(1960) ≈ 1
2
[046 + (−017)] = 0145.

 1950 1960 1970 1980 1990 2000 2010

 0() 0460 0145 −0385 −0415 −0115 −0085 −0170

(c)

(d) We could get more accurate values for  0() by obtaining data for the mid-decade years 1955, 1965, 1975, 1985, 1995, and

2005.

51. 0() is the rate at which the number of US $20 bills in circulation is changing with respect to time. Its units are billions of

bills per year. We use a symmetric difference quotient to estimate 0(2000).

0(2000) ≈ (2005)−(1995)

2005− 1995 =
577− 421

10
= 0156 billions of bills per year (or 156 million bills per year).
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CHAPTER 2 REVIEW ¤ 161

52. (a) Drawing slope triangles, we obtain the following estimates:  0(1950) ≈ 11
10 = 011,  0(1965) ≈ −16

10 = −016,

and  0(1987) ≈ 02
10
= 002.

(b) The rate of change of the average number of children born to each woman was increasing by 011 in 1950, decreasing

by 016 in 1965, and increasing by 002 in 1987.

(c) There are many possible reasons:

• In the baby-boom era (post-WWII), there was optimism about the economy and family size was rising.

• In the baby-bust era, there was less economic optimism, and it was considered less socially responsible to have a

large family.

• In the baby-boomlet era, there was increased economic optimism and a return to more conservative attitudes.

53. |()| ≤ () ⇔ −() ≤ () ≤ () and lim
→

() = 0 = lim
→

−().

Thus, by the Squeeze Theorem, lim
→

() = 0.

54. (a) Note that  is an even function since () = (−). Now for any integer ,

[[]] + [[−]] = −  = 0, and for any real number  which is not an integer,

[[]] + [[−]] = [[]] + (− [[]]− 1) = −1. So lim
→

() exists (and is equal to −1)

for all values of .

(b)  is discontinuous at all integers.
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PROBLEMS PLUS

1. Let  = 6
√
, so  = 6. Then → 1 as → 1, so

lim
→1

3
√
− 1√
− 1 = lim

→1

2 − 1
3 − 1 = lim

→1

(− 1)(+ 1)
(− 1) (2 + + 1)

= lim
→1

+ 1

2 + + 1
=

1 + 1

12 + 1 + 1
=
2

3
.

Another method:Multiply both the numerator and the denominator by (
√
+ 1)


3
√
2 + 3

√
+ 1


.

2. First rationalize the numerator: lim
→0

√
+ − 2


·
√
+ + 2√
+ + 2

= lim
→0

+ − 4

√

+ + 2
 . Now since the denominator

approaches 0 as → 0, the limit will exist only if the numerator also approaches 0 as → 0. So we require that

(0) + − 4 = 0 ⇒  = 4. So the equation becomes lim
→0

√
+ 4 + 2

= 1 ⇒ √
4 + 2

= 1 ⇒  = 4.

Therefore,  =  = 4.

3. For − 1
2
   1

2
, we have 2− 1  0 and 2+ 1  0, so |2− 1| = −(2− 1) and |2+ 1| = 2+ 1.

Therefore, lim
→0

|2− 1|− |2+ 1|


= lim
→0

−(2− 1)− (2+ 1)


= lim
→0

−4


= lim
→0

(−4) = −4.

4. Let  be the midpoint of  , so the coordinates of  are

1
2
 1

2
2


since the coordinates of  are

 2


. Let  = (0 ).

Since the slope  =
2


= ,  = − 1


(negative reciprocal). But  =

1
2
2 − 
1
2− 0

=
2 − 2


, so we conclude that

−1 = 2 − 2 ⇒ 2 = 2 + 1 ⇒  = 1
2
2 + 1

2
. As → 0, → 1

2
 and the limiting position of  is


0 1

2


.

5. (a) For 0    1, [[]] = 0, so
[[]]


= 0, and lim

→0+

[[]]


= 0. For −1    0, [[]] = −1, so

[[]]


=
−1


, and

lim
→0−

[[]]


= lim

→0−

−1



=∞. Since the one-sided limits are not equal, lim

→0

[[]]


does not exist.

(b) For   0, 1− 1 ≤ [[1]] ≤ 1 ⇒ (1− 1) ≤ [[1]] ≤ (1) ⇒ 1−  ≤ [[1]] ≤ 1.

As → 0+, 1− → 1, so by the Squeeze Theorem, lim
→0+

[[1]] = 1.

For   0, 1− 1 ≤ [[1]] ≤ 1 ⇒ (1− 1) ≥ [[1]] ≥ (1) ⇒ 1−  ≥ [[1]] ≥ 1.

As → 0−, 1− → 1, so by the Squeeze Theorem, lim
→0−

[[1]] = 1.

Since the one-sided limits are equal, lim
→0

[[1]] = 1.
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164 ¤ CHAPTER 2 PROBLEMS PLUS

6. (a) [[]]2 + [[]]2 = 1. Since [[]]2 and [[]]2 are positive integers or 0, there are

only 4 cases:

Case (i): [[]] = 1, [[]] = 0 ⇒1 ≤   2 and 0 ≤   1

Case (ii): [[]] = −1, [[]] = 0⇒−1 ≤   0 and 0 ≤   1

Case (iii):[[]] = 0, [[]] = 1 ⇒0 ≤   1 and 1 ≤   2

Case (iv): [[]] = 0, [[]] = −1⇒0 ≤   1 and −1 ≤   0

(b) [[]]2 − [[]]2 = 3. The only integral solution of 2 −2 = 3 is  = ±2
and  = ±1. So the graph is

{( ) | [[]] = ±2, [[]] = ±1} =

( )

 2 ≤  ≤ 3 or −2 ≤   1

1 ≤   2 or −1 ≤   0


.

(c) [[+ ]]2 = 1 ⇒ [[+ ]] = ±1 ⇒ 1 ≤ +   2

or −1 ≤ +   0

(d) For  ≤   +1, [[]] = . Then [[]] + [[]] = 1 ⇒ [[]] = 1−  ⇒
1−  ≤   2− . Choosing integer values for  produces the graph.

7.  is continuous on (−∞ ) and (∞). To make  continuous on R, we must have continuity at . Thus,

lim
→+

() = lim
→−

() ⇒ lim
→+

2 = lim
→−

(+ 1) ⇒ 2 = + 1 ⇒ 2 − − 1 = 0 ⇒

[by the quadratic formula]  =

1±√5 2 ≈ 1618 or −0618.

8. (a) Here are a few possibilities:

(b) The “obstacle” is the line  =  (see diagram). Any intersection of the graph of  with the line  =  constitutes a fixed

point, and if the graph of the function does not cross the line somewhere in (0 1), then it must either start at (0 0)

(in which case 0 is a fixed point) or finish at (1 1) (in which case 1 is a fixed point).
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CHAPTER 2 PROBLEMS PLUS ¤ 165

(c) Consider the function  () = ()− , where  is any continuous function with domain [0 1] and range in [0 1]. We

shall prove that  has a fixed point. Now if (0) = 0 then we are done:  has a fixed point (the number 0), which is what

we are trying to prove. So assume (0) 6= 0. For the same reason we can assume that (1) 6= 1. Then  (0) = (0)  0

and  (1) = (1)− 1  0. So by the Intermediate Value Theorem, there exists some number  in the interval (0 1) such

that  () = ()−  = 0. So () = , and therefore  has a fixed point.

9.


lim
→

[() + ()] = 2

lim
→

[()− ()] = 1
⇒


lim
→

() + lim
→

() = 2 (1)

lim
→

()− lim
→

() = 1 (2)

Adding equations (1) and (2) gives us 2 lim
→

() = 3 ⇒ lim
→

() = 3
2

. From equation (1), lim
→

() = 1
2

. Thus,

lim
→

[() ()] = lim
→

() · lim
→

() = 3
2
· 1
2
= 3

4
.

10. (a) Solution 1: We introduce a coordinate system and drop a perpendicular

from  , as shown. We see from ∠ that tan 2 =


1− 
, and from

∠ that tan  =  . Using the double-angle formula for tangents,

we get


1− 
= tan2 =

2 tan 

1− tan2  =
2( )

1− ()2 . After a bit of

simplification, this becomes
1

1− 
=

2

2 − 2
⇔ 2 =  (3− 2).

As the altitude  decreases in length, the point  will approach the -axis, that is,  → 0, so the limiting location of 

must be one of the roots of the equation (3− 2) = 0. Obviously it is not  = 0 (the point  can never be to the left of

the altitude  , which it would have to be in order to approach 0) so it must be 3− 2 = 0, that is,  = 2
3

.

Solution 2: We add a few lines to the original diagram, as shown. Now note

that ∠ = ∠ (alternate angles;  k  by symmetry) and

similarly ∠ = ∠. So ∆ and ∆ are isosceles, and

the line segments ,  and  are all of equal length. As | |→ 0,

 and  approach points on the base, and the point  is seen to approach a

position two-thirds of the way between  and , as above.

(b) The equation 2 = (3− 2) calculated in part (a) is the equation of

the curve traced out by  . Now as | |→∞, 2 → 
2

, → 
4

,

→ 1, and since tan  = ,  → 1. Thus,  only traces out the

part of the curve with 0 ≤   1.
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166 ¤ CHAPTER 2 PROBLEMS PLUS

11. (a) Consider () =  (+ 180◦)−  (). Fix any number . If () = 0, we are done: Temperature at  =Temperature

at + 180◦. If ()  0, then (+ 180◦) =  (+ 360◦)−  (+ 180◦) =  ()−  (+ 180◦) = −()  0.

Also,  is continuous since temperature varies continuously. So, by the Intermediate Value Theorem,  has a zero on the

interval [ + 180◦]. If ()  0, then a similar argument applies.

(b) Yes. The same argument applies.

(c) The same argument applies for quantities that vary continuously, such as barometric pressure. But one could argue that

altitude above sea level is sometimes discontinuous, so the result might not always hold for that quantity.

12. 0() = lim
→0

(+ )− ()


= lim

→0

(+ )(+ )− ()


= lim

→0


(+ )−  ()


+

(+ )




=  lim

→0

(+ )− ()


+ lim

→0
(+ ) =  0() + ()

because  is differentiable and therefore continuous.

13. (a) Put  = 0 and  = 0 in the equation: (0 + 0) = (0) + (0) + 02 · 0 + 0 · 02 ⇒ (0) = 2(0).

Subtracting (0) from each side of this equation gives (0) = 0.

(b)  0(0) = lim
→0

(0 + )− (0)


= lim

→0


(0) + () + 02+ 02

− (0)


= lim

→0

()


= lim

→0

()


= 1

(c)  0() = lim
→0

(+ )− ()


= lim

→0


() + () + 2+ 2

− ()


= lim

→0

() + 2+ 2



= lim
→0


()


+ 2 + 


= 1+ 2

14. We are given that |()| ≤ 2 for all . In particular, |(0)| ≤ 0, but || ≥ 0 for all . The only conclusion is

that (0) = 0. Now

()− (0)

− 0
 = ()

 = |()|
|| ≤ 2

|| =
2
|| = || ⇒ −|| ≤ ()− (0)

− 0 ≤ ||.

But lim
→0

(−||) = 0 = lim
→0

||, so by the Squeeze Theorem, lim
→0

()− (0)

− 0 = 0. So by the definition of a derivative,

 is differentiable at 0 and, furthermore,  0(0) = 0.
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3 DIFFERENTIATION RULES

3.1 Derivatives of Polynomials and Exponential Functions

1. (a)  is the number such that lim
→0

 − 1


= 1.

(b)


27 − 1



−0001 09928

−00001 09932

0001 09937

00001 09933


28 − 1



−0001 10291

−00001 10296

0001 10301

00001 10297

From the tables (to two decimal places),

lim
→0

27 − 1


= 099 and lim
→0

28 − 1


= 103.

Since 099  1  103, 27    28.

2. (a) The function value at  = 0 is 1 and the slope at  = 0 is 1.

(b) () =  is an exponential function and () =  is a power function.



() =  and




() = −1.

(c) () =  grows more rapidly than () =  when  is large.

3. () = 240 is a constant function, so its derivative is 0, that is,  0() = 0.

4. () = 5 is a constant function, so its derivative is 0, that is,  0() = 0.

5. () = 52+ 23 ⇒  0() = 52(1) + 0 = 52

6. () = 7
4
2 − 3+ 12 ⇒ 0() = 7

4
(2)− 3(1) + 0 = 7

2
− 3

7. () = 23 − 32 − 4 ⇒  0() = 2(32)− 3(2)− 4(1) = 62 − 6− 4

8. () = 145 − 252 + 67 ⇒  0() = 14(54)− 25(2) + 0 = 74 − 5

9. () = 2(1− 2) = 2 − 23 ⇒ 0() = 2− 2(32) = 2− 62

10. () = (3− 1)(+ 2) = 32 + 5− 2 ⇒ 0() = 3(2) + 5(1)− 0 = 6+ 5

11. () = 2−34 ⇒ 0() = 2

− 3
4
−74


= − 3

2
−74

12. () = −6 ⇒ 0() = (−6−7) = −6−7

13.  () =
5

3
= 5−3 ⇒  0() = 5(−3−4) = −15−4 = −15

4

14.  = 53 − 23 ⇒ 0 = 5
3

23 − 2
3
−13
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168 ¤ CHAPTER 3 DIFFERENTIATION RULES

15. () = (3+ 1)2 = 92 + 6+ 1 ⇒ 0() = 9(2) + 6(1) + 0 = 18+ 6

16. () = 4
√
− 4 = 14 − 4 ⇒ 0() = 1

4
−34 − 4() = 1

4
−34 − 4

17. () =
√
−  = 12 −  ⇒ 0() = 1

2
−12 − 1 or 1

2
√

− 1

18.  = 3
√
 (2 + ) = 213 + 43 ⇒ 0 = 2


1
3
−23


+ 4

3
13 = 2

3
−23 + 4

3
13 or

2

3
3
√
2
+
4

3
3
√


19.  = 3 +
4
3
√

= 3 + 4−13 ⇒ 0 = 3() + 4(− 1

3
)−43 = 3 − 4

3
−43

20. () = 42 ⇒ 0() = 4(2) = 8

21. () = 3 +2 +  ⇒ 0() = (32) +(2) +(1) = 32 + 2+

22.  =

√
+ 

2
=

√


2
+



2
= 12−2 + 1−2 = −32 + −1 ⇒ 0 = − 3

2
−52 + (−1−2) = − 3

2
−52 − −2

23.  =
2 + 4+ 3√


= 32 + 412 + 3−12 ⇒

0 = 3
2
12 + 4


1
2


−12 + 3

− 1
2


−32 = 3

2

√
+

2√

− 3

2
√



note that 32 = 22 · 12 = 

√



The last expression can be written as
32

2
√

+

4

2
√

− 3

2
√

=
32 + 4− 3
2
√


.

24. () =
√
5+

√
7


=
√
5 12 +

√
7 −1 ⇒ 0() =

√
5

1
2 
−12


+
√
7
−1−2 = √

5

2
√

−
√
7

2

25. () = 24 + 24 ⇒ 0() = 2414 + 0 = 2414

26. () =  +  ⇒ 0() =  + −1

27. () =

1 + −1

2
= 1 + 2−1 + −2 ⇒ 0() = 0 + 2(−1−2) + (−2−3) = −2−2 − 2−3

28.  () =
+ + 2

2
=



2
+



2
+

2

2
= −2 + −1 +  ⇒

 0() = (−2−3) +(−1−2) + 0 = −2−3 −−2 = −2
3
− 

2
or −2+

3

29. () =
3
√
 − 2


=

3
√



− 2


= −23 − 2 ⇒  0() = −2

3
−53 − 2

30. () =
1 + 162

(4)3
=
1 + 162

643
= 1

64 
−3 + 1

4 
−1 ⇒

0() = 1
64
(−3−4) + 1

4
(−1−2) = − 3

64
−4 − 1

4
−2 or − 3

644
− 1

42

31.  =


10
+ = −10 + ⇒ 0 = −10−11 + = −10

11
+

32.  = +1 + 1 = 1 + 1 =  ·  + 1 ⇒ 0 =  ·  = +1
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SECTION 3.1 DERIVATIVES OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS ¤ 169

33.  = 23 − 2 + 2 ⇒ 0 = 62 − 2. At (1 3), 0 = 6(1)2 − 2(1) = 4 and an equation of the tangent line is
 − 3 = 4(− 1) or  = 4− 1.

34.  = 2 +  ⇒ 0 = 2 + 1. At (0 2), 0 = 20 + 1 = 3 and an equation of the tangent line is  − 2 = 3(− 0) or
 = 3+ 2.

35.  = +
2


= + 2−1 ⇒ 0 = 1− 2−2. At (2 3), 0 = 1− 2(2)−2 = 1

2
and an equation of the tangent line is

 − 3 = 1
2
(− 2) or  = 1

2
+ 2.

36.  = 4
√
−  = 14 −  ⇒ 0 = 1

4
−34 − 1 = 1

4
4
√
3
− 1. At (1 0), 0 = 1

4
− 1 = −3

4
and an equation of the tangent

line is  − 0 = − 3
4
(− 1) or  = − 3

4
+ 3

4
.

37.  = 4 + 2 ⇒ 0 = 43 + 2. At (0 2), 0 = 2 and an equation of the tangent line is  − 2 = 2(− 0)
or  = 2+ 2. The slope of the normal line is − 1

2
(the negative reciprocal of 2) and an equation of the normal line is

 − 2 = − 1
2
(− 0) or  = − 1

2
+ 2.

38. 2 = 3 ⇒  = 32 [since  and  are positive at (1 1)] ⇒ 0 = 3
2
12. At (1 1), 0 = 3

2
and an equation of the

tangent line is  − 1 = 3
2
(− 1) or  = 3

2
− 1

2
. The slope of the normal line is − 2

3


the negative reciprocal of 3

2


and an

equation of the normal line is  − 1 = − 2
3
(− 1) or  = − 2

3
+ 5

3
.

39.  = 32 − 3 ⇒ 0 = 6− 32.

At (1 2), 0 = 6− 3 = 3, so an equation of the tangent line is
 − 2 = 3(− 1) or  = 3− 1.

40.  = −
√
 ⇒ 0 = 1− 1

2
−12 = 1− 1

2
√

.

At (1 0), 0 = 1
2 , so an equation of the tangent line is

 − 0 = 1
2 (− 1) or  = 1

2− 1
2 .

41. () = 4 − 23 + 2 ⇒  0() = 43 − 62 + 2
Note that  0() = 0 when  has a horizontal tangent,  0 is positive

when  is increasing, and  0 is negative when  is decreasing.
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170 ¤ CHAPTER 3 DIFFERENTIATION RULES

42. () = 5 − 23 + − 1 ⇒  0() = 54 − 62 + 1
Note that  0() = 0 when  has a horizontal tangent,  0 is positive

when  is increasing, and  0 is negative when  is decreasing.

43. (a) (b) From the graph in part (a), it appears that  0 is zero at 1 ≈ −125, 2 ≈ 05,
and 3 ≈ 3. The slopes are negative (so  0 is negative) on (−∞ 1) and

(2 3). The slopes are positive (so  0 is positive) on (1 2) and (3∞).

(c) () = 4 − 33 − 62 + 7+ 30 ⇒

 0() = 43 − 92 − 12+ 7

44. (a) (b) From the graph in part (a), it appears that  0 is zero at 1 ≈ 02 and 2 ≈ 28.
The slopes are positive (so  0 is positive) on (−∞ 1) and (2∞). The slopes
are negative (so  0 is negative) on (1 2).

(c) () =  − 32 ⇒ 0() =  − 6

45. () = 00015 − 0023 ⇒  0() = 00054 − 0062 ⇒  00() = 0023 − 012
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SECTION 3.1 DERIVATIVES OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS ¤ 171

46. () =
√
 +

3
√
 ⇒  0() = 1

2
−12 + 1

3
−23 ⇒  00() = − 1

4
−32 − 2

9
−53

47. () = 2− 534 ⇒  0() = 2− 15
4
−14 ⇒  00() = 15

16
−54

Note that  0 is negative when  is decreasing and positive when  is

increasing.  00 is always positive since  0 is always increasing.

48. () =  − 3 ⇒  0() =  − 32 ⇒  00() =  − 6

Note that  0() = 0 when  has a horizontal tangent and that  00() = 0

when  0 has a horizontal tangent.

49. (a)  = 3 − 3 ⇒ () = 0() = 32 − 3 ⇒ () = 0() = 6

(b) (2) = 6(2) = 12 ms2

(c) () = 32 − 3 = 0 when 2 = 1, that is,  = 1 [ ≥ 0] and (1) = 6 ms2.

50. (a)  = 4 − 23 + 2 −  ⇒
() = 0() = 43 − 62 + 2− 1 ⇒

() = 0() = 122 − 12+ 2

(c)

(b) (1) = 12(1)2 − 12(1) + 2 = 2m s2

51.  = 001553 − 03722 + 395+ 121 ⇒ 


= 004652 − 0744+ 395, so






=12

= 00465(12)2 − 0744(12) + 395 = 1718. The derivative is the instantaneous rate of change of the length of an

Alaskan rockfish with respect to its age when its age is 12 years.

52. () = 08820842 ⇒ 0() = 0882(0842−0158) = 0742644−0158, so

0(100) = 0742644(100)−0158 ≈ 036. The derivative is the instantaneous rate of change of the number of tree species with
respect to area. Its units are number of species per square meter.

53. (a)  =



and  = 50 when  = 0106, so  =  = 50(0106) = 53. Thus,  =

53


and  =

53


.

(b)  = 53−1 ⇒ 


= 53(−1−2) = −53

 2
. When  = 50,




= − 53

502
= −000212. The derivative is the

instantaneous rate of change of the volume with respect to the pressure at 25 ◦C. Its units arem3kPa.

54. (a)  =  2 +  + , where  ≈ −0275428,  ≈ 1974853, and  ≈ −27355234.
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172 ¤ CHAPTER 3 DIFFERENTIATION RULES

(b)



= 2 + . When  = 30,




≈ 32, and when  = 40, 


≈ −23. The derivative is the instantaneous rate of

change of tire life with respect to pressure. Its units are (thousands of miles)(lbin2). When



is positive, tire life is

increasing, and when



 0, tire life is decreasing.

55. The curve  = 23 + 32 − 12+ 1 has a horizontal tangent when 0 = 62 + 6− 12 = 0 ⇔ 6(2 + − 2) = 0 ⇔
6(+ 2)(− 1) = 0 ⇔  = −2 or  = 1. The points on the curve are (−2 21) and (1−6).

56. () =  − 2 ⇒  0() =  − 2.  0() = 0 ⇒  = 2 ⇒  = ln 2, so  has a horizontal tangent when

 = ln 2

57.  = 2 + 3+ 53 ⇒ 0 = 2 + 3 + 152. Since 2  0 and 152 ≥ 0, we must have 0  0 + 3 + 0 = 3, so no
tangent line can have slope 2.

58.  = 4 + 1 ⇒ 0 = 43. The slope of the line 32−  = 15 (or  = 32− 15) is 32, so the slope of any line parallel to

it is also 32. Thus, 0 = 32 ⇔ 43 = 32 ⇔ 3 = 8 ⇔  = 2, which is the -coordinate of the point on the curve

at which the slope is 32. The -coordinate is 24 + 1 = 17, so an equation of the tangent line is  − 17 = 32(− 2) or
 = 32− 47.

59. The slope of the line 3−  = 15 (or  = 3− 15) is 3, so the slope of both tangent lines to the curve is 3.

 = 3 − 32 + 3− 3 ⇒ 0 = 32 − 6+ 3 = 3(2 − 2+ 1) = 3(− 1)2. Thus, 3(− 1)2 = 3 ⇒

(− 1)2 = 1 ⇒ − 1 = ±1 ⇒  = 0 or 2, which are the -coordinates at which the tangent lines have slope 3. The

points on the curve are (0−3) and (2−1), so the tangent line equations are  − (−3) = 3(− 0) or  = 3− 3 and
 − (−1) = 3(− 2) or  = 3− 7.

60. The slope of  = 1 + 2 − 3 is given by = 0 = 2 − 3.

The slope of 3−  = 5 ⇔  = 3− 5 is 3.

 = 3 ⇒ 2 − 3 = 3 ⇒  = 3 ⇒  = ln 3.

This occurs at the point (ln 3 7− 3 ln 3) ≈ (11 37).

61. The slope of  =
√
 is given by  = 1

2
−12 =

1

2
√

. The slope of 2+  = 1 (or  = −2+ 1) is −2, so the desired

normal line must have slope −2, and hence, the tangent line to the curve must have slope 1
2
. This occurs if

1

2
√

=
1

2
⇒

√
 = 1 ⇒  = 1. When  = 1,  =

√
1 = 1, and an equation of the normal line is  − 1 = −2(− 1) or

 = −2+ 3.
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SECTION 3.1 DERIVATIVES OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS ¤ 173

62.  = () = 2 − 1 ⇒  0() = 2. So  0(−1) = −2, and the slope of the
normal line is 1

2
. The equation of the normal line at (−1 0) is

 − 0 = 1
2
[− (−1)] or  = 1

2
+ 1

2
. Substituting this into the equation of the

parabola, we obtain 1
2+

1
2 = 2 − 1 ⇔ + 1 = 22 − 2 ⇔

22 − − 3 = 0 ⇔ (2− 3)(+ 1) = 0 ⇔  = 3
2
or −1. Substituting 3

2

into the equation of the normal line gives us  = 5
4
. Thus, the second point of

intersection is

3
2
 5
4


, as shown in the sketch.

63. Let

 2


be a point on the parabola at which the tangent line passes

through the point (0−4). The tangent line has slope 2 and equation

 − (−4) = 2(− 0) ⇔  = 2− 4. Since  2 also lies on the
line, 2 = 2()− 4, or 2 = 4. So  = ±2 and the points are (2 4)
and (−2 4).

64. (a) If  = 2 + , then 0 = 2+ 1. If the point at which a tangent meets the parabola is

 2 + 


, then the slope of the

tangent is 2+ 1. But since it passes through (2−3), the slope must also be ∆

∆
=

2 + + 3

− 2 .

Therefore, 2+ 1 =
2 + + 3

− 2 . Solving this equation for  we get 2 + + 3 = 22 − 3− 2 ⇔

2 − 4− 5 = (− 5)(+ 1) = 0 ⇔  = 5 or −1. If  = −1, the point is (−1 0) and the slope is −1, so the
equation is  − 0 = (−1)(+ 1) or  = −− 1. If  = 5, the point is (5 30) and the slope is 11, so the equation is
 − 30 = 11(− 5) or  = 11− 25.

(b) As in part (a), but using the point (2 7), we get the equation

2+ 1 =
2 + − 7

− 2 ⇒ 22 − 3− 2 = 2 + − 7 ⇔ 2 − 4+ 5 = 0.

The last equation has no real solution (discriminant = −16  0), so there is no line
through the point (2 7) that is tangent to the parabola. The diagram shows that the

point (2 7) is “inside” the parabola, but tangent lines to the parabola do not pass

through points inside the parabola.

65.  0() = lim
→0

(+ )− ()


= lim

→0

1

+ 
− 1




= lim

→0

− (+ )

(+ )
= lim

→0

−
(+ )

= lim
→0

−1
(+ )

= − 1

2

66. (a) () =  ⇒  0() = −1 ⇒  00() = (− 1)−2 ⇒ · · · ⇒

 ()() = (− 1)(− 2) · · · 2 · 1− = !

(b) () = −1 ⇒  0() = (−1)−2 ⇒  00() = (−1)(−2)−3 ⇒ · · · ⇒

 ()() = (−1)(−2)(−3) · · · (−)−(+1) = (−1)!−(+1) or (−1)
 !

+1
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174 ¤ CHAPTER 3 DIFFERENTIATION RULES

67. Let  () = 2 + + . Then  0() = 2+  and  00() = 2.  00(2) = 2 ⇒ 2 = 2 ⇒  = 1.

 0(2) = 3 ⇒ 2(1)(2) +  = 3 ⇒ 4 +  = 3 ⇒  = −1.
 (2) = 5 ⇒ 1(2)2 + (−1)(2) +  = 5 ⇒ 2 +  = 5 ⇒  = 3. So  () = 2 − + 3.

68.  = 2 ++  ⇒ 0 = 2+ ⇒ 00 = 2. We substitute these expressions into the equation

00 + 0 − 2 = 2 to get

(2) + (2+)− 2(2 ++) = 2

2+ 2+ − 22 − 2− 2 = 2

(−2)2 + (2− 2)+ (2+ − 2) = (1)2 + (0)+ (0)

The coefficients of 2 on each side must be equal, so −2 = 1 ⇒  = − 1
2 . Similarly, 2− 2 = 0 ⇒

 =  = − 1
2
and 2+ − 2 = 0 ⇒ −1− 1

2
− 2 = 0 ⇒  = −3

4
.

69.  = () = 3 + 2 + +  ⇒  0() = 32 + 2+ . The point (−2 6) is on  , so (−2) = 6 ⇒
−8+ 4− 2+  = 6 (1). The point (2 0) is on  , so (2) = 0 ⇒ 8+ 4+ 2+  = 0 (2). Since there are

horizontal tangents at (−2 6) and (2 0),  0(±2) = 0.  0(−2) = 0 ⇒ 12− 4+  = 0 (3) and  0(2) = 0 ⇒
12+ 4+  = 0 (4). Subtracting equation (3) from (4) gives 8 = 0 ⇒  = 0. Adding (1) and (2) gives 8+ 2 = 6,

so  = 3 since  = 0. From (3) we have  = −12, so (2) becomes 8+ 4(0) + 2(−12) + 3 = 0 ⇒ 3 = 16 ⇒
 = 3

16 . Now  = −12 = −12 316 = − 9
4 and the desired cubic function is  =

3
16

3 − 9
4+ 3.

70.  = 2 + +  ⇒ 0() = 2+ . The parabola has slope 4 at  = 1 and slope −8 at  = −1, so 0(1) = 4 ⇒
2+  = 4 (1) and 0(−1) = −8 ⇒ −2+  = −8 (2). Adding (1) and (2) gives us 2 = −4 ⇔  = −2. From
(1), 2− 2 = 4 ⇔  = 3. Thus, the equation of the parabola is  = 32 − 2+ . Since it passes through the point

(2 15), we have 15 = 3(2)2 − 2(2) +  ⇒  = 7, so the equation is  = 32 − 2+ 7.

71. () =


2 + 1 if   1

+ 1 if  ≥ 1
Calculate the left- and right-hand derivatives as defined in Exercise 2.8.64:

 0−(1) = lim
→0−

(1 + )− (1)


= lim

→0−
[(1 + )2 + 1]− (1 + 1)


= lim

→0−
2 + 2


= lim

→0−
(+ 2) = 2 and

 0+(1) = lim
→0+

(1 + )− (1)


= lim

→0+

[(1 + ) + 1]− (1 + 1)


= lim
→0+




= lim

→0+
1 = 1.

Since the left and right limits are different,

lim
→0

(1 + )− (1)


does not exist, that is,  0(1)

does not exist. Therefore,  is not differentiable at 1.
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SECTION 3.1 DERIVATIVES OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS ¤ 175

72. () =


2 if  ≤ 0
2− 2 if 0    2

2−  if  ≥ 2

Investigate the left- and right-hand derivatives at  = 0 and  = 2:

0−(0) = lim
→0−

(0 + )− (0)


= lim

→0−
2− 2(0)


= 2 and

0+(0) = lim
→0+

(0 + )− (0)


= lim

→0+

(2− 2)− 2(0)


= lim
→0+

(2− ) = 2, so  is differentiable at  = 0.

0−(2) = lim
→0−

(2 + )− (2)


= lim

→0−
2(2 + )− (2 + )2 − (2− 2)


= lim

→0−
−2− 2


= lim

→0−
(−2− ) = −2

and

0+(2) = lim
→0+

(2 + )− (2)


= lim

→0+

[2− (2 + )]− (2− 2)


= lim
→0+

−

= lim

→0+
(−1) = −1,

so  is not differentiable at  = 2. Thus, a formula for 0 is

0() =


2 if  ≤ 0
2− 2 if 0    2

−1 if   2

73. (a) Note that 2 − 9  0 for 2  9 ⇔ ||  3 ⇔ −3    3. So

() =


2 − 9 if  ≤ −3
−2 + 9 if −3    3

2 − 9 if  ≥ 3
⇒  0() =


2 if   −3
−2 if −3    3

2 if   3

=


2 if ||  3
−2 if ||  3

To show that  0(3) does not exist we investigate lim
→0

(3 + )− (3)


by computing the left- and right-hand derivatives

defined in Exercise 2.8.64.

 0−(3) = lim
→0−

(3 + )− (3)


= lim

→0−
[−(3 + )2 + 9]− 0


= lim

→0−
(−6− ) = −6 and

 0+(3) = lim
→0+

(3 + )− (3)


= lim

→0+


(3 + )2 − 9− 0


= lim

→0+

6+ 2


= lim

→0+
(6 + ) = 6.

Since the left and right limits are different,

lim
→0

(3 + )− (3)


does not exist, that is,  0(3)

does not exist. Similarly,  0(−3) does not exist.
Therefore,  is not differentiable at 3 or at −3.

(b)
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176 ¤ CHAPTER 3 DIFFERENTIATION RULES

74. If  ≥ 1, then () = |− 1|+ |+ 2| = − 1 + + 2 = 2+ 1.

If −2    1, then () = −(− 1) + + 2 = 3.

If  ≤ −2, then () = −(− 1)− (+ 2) = −2− 1. Therefore,

() =


−2− 1 if  ≤ −2
3 if −2    1

2+ 1 if  ≥ 1
⇒ 0() =


−2 if   −2
0 if −2    1

2 if   1

To see that 0(1) = lim
→1

()− (1)

− 1 does not exist,

observe that lim
→1−

()− (1)

− 1 = lim
→1−

3− 3
3− 1 = 0 but

lim
→1+

()− (1)

− 1 = lim
→1+

2− 2
− 1 = 2. Similarly,

0(−2) does not exist.

75. Substituting  = 1 and  = 1 into  = 2 +  gives us +  = 1 (1). The slope of the tangent line  = 3− 2 is 3 and the
slope of the tangent to the parabola at ( ) is 0 = 2+ . At  = 1, 0 = 3 ⇒ 3 = 2+  (2). Subtracting (1) from

(2) gives us 2 =  and it follows that  = −1. The parabola has equation  = 22 − .

76.  = 4 + 3 + 2 + +  ⇒ (0) = . Since the tangent line  = 2+ 1 is equal to 1 at  = 0, we must

have  = 1. 0 = 43 + 32 + 2+  ⇒ 0(0) = . Since the slope of the tangent line  = 2+ 1 at  = 0 is 2, we

must have  = 2. Now (1) = 1+ + + +  = + + 4 and the tangent line  = 2− 3 at  = 1 has -coordinate−1,
so + + 4 = −1 or +  = −5 (1). Also, 0(1) = 4 + 3+ 2+  = 3+ 2+ 6 and the slope of the tangent line

 = 2− 3 at  = 1 is −3, so 3+ 2+ 6 = −3 or 3+ 2 = −9 (2). Adding −2 times (1) to (2) gives us  = 1 and
hence,  = −6. The curve has equation  = 4 + 3 − 62 + 2+ 1.

77.  = () = 2 ⇒  0() = 2. So the slope of the tangent to the parabola at  = 2 is = 2(2) = 4. The slope

of the given line, 2+  =  ⇔  = −2+ , is seen to be −2, so we must have 4 = −2 ⇔  = − 1
2
. So when

 = 2, the point in question has -coordinate − 1
2
· 22 = −2. Now we simply require that the given line, whose equation is

2+  = , pass through the point (2−2): 2(2) + (−2) =  ⇔  = 2. So we must have  = − 1
2
and  = 2.

78. The slope of the curve  = 
√
 is 0 =



2
√

and the slope of the tangent line  = 3

2+ 6 is
3
2 . These must be equal at the

point of tangency

 

√


, so



2
√

=
3

2
⇒  = 3

√
. The -coordinates must be equal at  = , so


√
 = 3

2
+ 6 ⇒


3
√

√

 = 3
2
+ 6 ⇒ 3 = 3

2
+ 6 ⇒ 3

2
 = 6 ⇒  = 4. Since  = 3

√
, we have

 = 3
√
4 = 6.

79. The line  = 2+ 3 has slope 2. The parabola  = 2 ⇒ 0 = 2 has slope 2 at  = . Equating slopes gives us

2 = 2, or  = 1. Equating -coordinates at  =  gives us 2 = 2+ 3 ⇔ () = 2+ 3 ⇔ 1 = 2+ 3 ⇔

 = −3. Thus,  = 1


= −1

3
.
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SECTION 3.1 DERIVATIVES OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS ¤ 177

80. () = 2 + +  ⇒  0() = 2+ . The slope of the tangent line at  =  is 2+ , the slope of the tangent line

at  =  is 2 + , and the average of those slopes is
(2+ ) + (2 + )

2
= +  + . The midpoint of the interval

[ ] is
+ 

2
and the slope of the tangent line at the midpoint is 2

+ 

2


+  = (+ ) + . This is equal to

+  + , as required.

81.  is clearly differentiable for   2 and for   2. For   2,  0() = 2, so  0−(2) = 4. For   2,  0() = , so

 0+(2) = . For  to be differentiable at  = 2, we need 4 =  0−(2) =  0+(2) = . So () = 4+ . We must also have

continuity at  = 2, so 4 = (2) = lim
→2+

() = lim
→2+

(4+ ) = 8 + . Hence,  = −4.

82. (a)  =  ⇒  =



. Let  =









. The slope of the tangent line at  =  is 0() = − 

2
. Its equation is

 − 


= − 

2
(− ) or  = − 

2
+

2


, so its -intercept is

2


. Setting  = 0 gives  = 2, so the -intercept is 2.

The midpoint of the line segment joining


0
2




and (2 0) is









=  .

(b) We know the - and -intercepts of the tangent line from part (a), so the area of the triangle bounded by the axes and the

tangent is 1
2
(base)(height) = 1

2
 = 1

2
(2)(2) = 2, a constant.

83. Solution 1: Let () = 1000. Then, by the definition of a derivative,  0(1) = lim
→1

()− (1)

− 1 = lim
→1

1000 − 1
− 1 .

But this is just the limit we want to find, and we know (from the Power Rule) that  0() = 1000999, so

 0(1) = 1000(1)999 = 1000. So lim
→1

1000 − 1
− 1 = 1000.

Solution 2: Note that (1000 − 1) = (− 1)(999 + 998 + 997 + · · ·+ 2 + + 1). So

lim
→1

1000 − 1
− 1 = lim

→1

(− 1)(999 + 998 + 997 + · · ·+ 2 + + 1)

− 1 = lim
→1

(999 + 998 + 997 + · · ·+ 2 + + 1)

= 1 + 1 + 1 + · · ·+ 1 + 1 + 1   = 1000, as above.
1000 ones

84. In order for the two tangents to intersect on the -axis, the points of tangency must be at

equal distances from the -axis, since the parabola  = 2 is symmetric about the -axis.

Say the points of tangency are

 2


and

− 2, for some   0. Then since the
derivative of  = 2 is  = 2, the left-hand tangent has slope −2 and equation

 − 2 = −2(+ ), or  = −2− 2, and similarly the right-hand tangent line has

equation  − 2 = 2(− ), or  = 2− 2. So the two lines intersect at

0−2. Now if the lines are perpendicular,

then the product of their slopes is−1, so (−2)(2) = −1 ⇔ 2 = 1
4 ⇔  = 1

2 . So the lines intersect at

0− 1

4


.
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178 ¤ CHAPTER 3 DIFFERENTIATION RULES

85.  = 2 ⇒ 0 = 2, so the slope of a tangent line at the point ( 2) is 0 = 2 and the slope of a normal line is −1(2),

for  6= 0. The slope of the normal line through the points ( 2) and (0 ) is 
2 − 

− 0 , so
2 − 


= − 1

2
⇒

2 −  = − 1
2
⇒ 2 = − 1

2
. The last equation has two solutions if   1

2
, one solution if  = 1

2
, and no solution if

  1
2 . Since the -axis is normal to  = 2 regardless of the value of  (this is the case for  = 0), we have three normal lines

if   1
2
and one normal line if  ≤ 1

2
.

86. From the sketch, it appears that there may be a line that is tangent to both

curves. The slope of the line through the points  ( 2) and

( 2 − 2+ 2) is 
2 − 2+ 2− 2

− 
. The slope of the tangent line at 

is 2 [0 = 2] and at  is 2− 2 [0 = 2− 2]. All three slopes are
equal, so 2 = 2− 2 ⇔  = − 1.

Also, 2− 2 = 2 − 2+ 2− 2

− 
⇒ 2− 2 = 2 − 2+ 2− (− 1)2

− (− 1) ⇒ 2− 2 = 2 − 2+ 2− 2 +2− 1 ⇒

2 = 3 ⇒  = 3
2 and  =

3
2 − 1 = 1

2 . Thus, an equation of the tangent line at  is  −

1
2

2
= 2


1
2


− 1

2


or

 = − 1
4
.

APPLIED PROJECT Building a Better Roller Coaster

1. (a) () = 2 + +  ⇒  0() = 2+ .

The origin is at  : (0) = 0 ⇒  = 0

The slope of the ascent is 08:  0(0) = 08 ⇒  = 08

The slope of the drop is −16:  0(100) = −16 ⇒ 200+  = −16

(b)  = 08, so 200+  = −16 ⇒ 200+ 08 = −16 ⇒ 200 = −24 ⇒  = − 24
200

= −0012.

Thus, () = −00122 + 08.

(c) Since 1 passes through the origin with slope 08, it has equation  = 08.

The horizontal distance between  and  is 100, so the -coordinate at is

(100) = −0012(100)2 + 08(100) = −40. Since 2 passes through the

point (100−40) and has slope−16, it has equation  + 40 = −16(− 100)
or  = −16+ 120.

(d) The difference in elevation between  (0 0) and(100−40) is 0− (−40) = 40 feet.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



APPLIED PROJECT BUILDING A BETTER ROLLER COASTER ¤ 179

2. (a)
Interval Function First Derivative Second Derivative

(−∞ 0) 1() = 08 01() = 08 001 () = 0

[0 10) () = 3 + 2 ++  0() = 32 + 2+ 00() = 6+ 2

[10 90] () = 2 + +  0() = 2+  00() = 2

(90 100] () = 3 + 2 + +  0() = 32 + 2+  00() = 6+ 2

(100∞) 2() = −16+ 120 02() = −16 002 () = 0

There are 4 values of  (0, 10, 90, and 100) for which we must make sure the function values are equal, the first derivative

values are equal, and the second derivative values are equal. The third column in the following table contains the value of

each side of the condition— these are found after solving the system in part (b).

At  = Condition Value Resulting Equation

0 (0) = 1(0) 0  = 0

0(0) = 01(0)
4
5

 = 08

00(0) = 001 (0) 0 2 = 0

10 (10) = (10) 68
9 1000 + 100 + 10+  = 100+ 10+ 

0(10) = 0(10) 2
3 300 + 20+ = 20+ 

00(10) = 00(10) − 2
75 60 + 2 = 2

90 (90) = (90) − 220
9 729,000+ 8100 + 90 +  = 8100+ 90+ 

0(90) = 0(90) − 22
15 24,300+ 180 +  = 180+ 

00(90) = 00(90) − 2
75 540+ 2 = 2

100 (100) = 2(100) −40 1,000,000+ 10,000 + 100 +  = −40
0(100) = 02(100) − 8

5 30,000+ 200 +  = −16
00(100) = 002 (100) 0 600+ 2 = 0

(b) We can arrange our work in a 12× 12 matrix as follows.

           constant

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 08

0 0 0 0 2 0 0 0 0 0 0 0

−100 −10 −1 1000 100 10 1 0 0 0 0 0

−20 −1 0 300 20 1 0 0 0 0 0 0

−2 0 0 60 2 0 0 0 0 0 0 0

−8100 −90 −1 0 0 0 0 729,000 8100 90 1 0

−180 −1 0 0 0 0 0 24,300 180 1 0 0

−2 0 0 0 0 0 0 540 2 0 0 0

0 0 0 0 0 0 0 1,000,000 10,000 100 1 −40
0 0 0 0 0 0 0 30,000 200 1 0 −16
0 0 0 0 0 0 0 600 2 0 0 0

Solving the system gives us the formulas for , , and .

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



180 ¤ CHAPTER 3 DIFFERENTIATION RULES

 = −0013 = − 1
75

 = 093 = 14
15

 = −04 = − 4
9

 () = − 1
75

2 + 14
15− 4

9

 = −00004 = − 1
2250

 = 0

 = 08 = 4
5

 = 0

 () = − 1
2250

3 + 4
5

 = 00004 = 1
2250

 = −013 = − 2
15

 = 1173 = 176
15

 = −3244 = −2920
9

() = 1
2250

3 − 2
15
2 + 176

15
− 2920

9

(c) Graph of 1, , , , and 2: The graph of the five functions as a piecewise-defined function:

This is the piecewise-defined function assignment on a

TI-83/4 Plus calculator, where Y2 = 1, Y6 = , Y5 = ,

Y7 = , and Y3 = 2.

A comparison of the graphs in part 1(c) and part 2(c):

3.2 The Product and Quotient Rules

1. Product Rule: () = (1 + 22)(− 2) ⇒

 0() = (1 + 22)(1− 2) + (− 2)(4) = 1− 2+ 22 − 43 + 42 − 43 = 1− 2+ 62 − 83.

Multiplying first: () = (1 + 22)(− 2) = − 2 + 23 − 24 ⇒  0() = 1− 2+ 62 − 83 (equivalent).

2. Quotient Rule:  () =
4 − 53 +√

2
=

4 − 53 + 12

2
⇒

 0() =
2(43 − 152 + 1

2
−12)− (4 − 53 + 12)(2)

(2)2
=
45 − 154 + 1

2
32 − 25 + 104 − 232

4

=
25 − 54 − 3

2
32

4
= 2− 5− 3

2
−52

Simplifying first:  () =
4 − 53 + √

2
= 2 − 5+ −32 ⇒  0() = 2− 5− 3

2
−52 (equivalent).

For this problem, simplifying first seems to be the better method.
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SECTION 3.2 THE PRODUCT AND QUOTIENT RULES ¤ 181

3. By the Product Rule, () = (32 − 5) ⇒
 0() = (32 − 5)()0 + (32 − 5)0 = (32 − 5) + (6− 5)

= [(32 − 5) + (6− 5)] = (32 + − 5)

4. By the Product Rule, () = (+ 2
√
 )  ⇒

0() = (+ 2
√
 )()0 + (+ 2

√
 )

0
= (+ 2

√
 ) + 


1 + 2 · 1

2
−12


= 


(+ 2

√
 ) +


1 + 1

√


= 


+ 2

√
+ 1 + 1

√



5. By the Quotient Rule,  =



⇒ 0 =

(1)− ()

()2
=

(1− )

()2
=
1− 


.

6. By the Quotient Rule,  =


1− 
⇒ 0 =

(1− ) − (−)
(1− )2

=
 − 2 + 2

(1− )2
=



(1− )2
.

The notations
PR⇒ and

QR⇒ indicate the use of the Product and Quotient Rules, respectively.

7. () =
1 + 2

3− 4
QR⇒ 0() =

(3− 4)(2)− (1 + 2)(−4)
(3− 4)2 =

6− 8+ 4 + 8
(3− 4)2 =

10

(3− 4)2

8. () =
2 − 2
2+ 1

QR⇒ 0() =
(2+ 1)(2)− (2 − 2)(2)

(2+ 1)2
=
42 + 2− 22 + 4

(2+ 1)2
=
22 + 2+ 4

(2+ 1)2

9. () = ( − √ )( + √ ) PR⇒

0() = (−√ )

1 +

1

2
√



+ (+

√
 )


1− 1

2
√



= + 1

2

√
−√− 1

2
+ − 1

2

√
+

√
− 1

2
= 2− 1.

An easier method is to simplify first and then differentiate as follows:

() = (−√ )(+√ ) = 2 − (√ )2 = 2 −  ⇒ 0() = 2− 1

10. () = (3 − 2)(−4 + −2)
PR⇒

 0() = (3 − 2)(−4−5 − 2−3) + (−4 + −2)(32 − 2)
= −4−2 − 20 + 8−4 + 4−2 + 3−2 − 2−4 + 30 − 2−2 = 1 + −2 + 6−4

11.  () =


1

2
− 3

4


( + 53) = (−2 − 3−4)( + 53) PR⇒

 0() = (−2 − 3−4)(1 + 152) + ( + 53)(−2−3 + 12−5)

= (−2 + 15− 3−4 − 45−2) + (−2−2 + 12−4 − 10 + 60−2)

= 5 + 14−2 + 9−4 or 5 + 142 + 94

12. () = (1− )( + )
PR⇒

 0() = (1− )(1 + ) + ( + )(−) = 12 − ()2 −  − ()2 = 1−  − 22
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182 ¤ CHAPTER 3 DIFFERENTIATION RULES

13.  =
2 + 1

3 − 1
QR⇒

0 =
(3 − 1)(2)− (2 + 1)(32)

(3 − 1)2 =


(3 − 1)(2)− (2 + 1)(3)

(3 − 1)2 =
(23 − 2− 33 − 3)

(3 − 1)2 =
(−3 − 3− 2)

(3 − 1)2

14.  =

√


2 + 

QR⇒

0 =
(2 + )


1

2
√



−√ (1)

(2 + )2
=

1√

+

√


2
−√

(2 + )2
=

2 + − 2
2
√


(2 + )2
=

2− 

2
√
(2 + )2

15.  =
3 + 3

2 − 4+ 3
QR⇒

0 =
(2 − 4+ 3)(32 + 3)− (3 + 3)(2− 4)

(2 − 4+ 3)2

=
34 + 32 − 123 − 12+ 92 + 9− (24 − 43 + 62 − 12)

(2 − 4+ 3)2 =
4 − 83 + 62 + 9
(2 − 4+ 3)2

16.  =
1

3 + 22 − 1
QR⇒ 0 =

(3 + 22 − 1)(0)− 1(32 + 4)
(3 + 22 − 1)2 = − 32 + 4

(3 + 22 − 1)2

17.  = (+ 
√
 ) = (+ 32)

PR⇒ 0 = 

1 + 3

2
12

+ (+ 32) = 


1 + 3

2

√
+ + 

√



18. () =


+ 
QR⇒ 0() =

(+ )()− ()()
(+ )2

=
 + 2 − 2

(+ )2
=



(+ )2

19.  =
−√
2

=


2
−
√


2
= −1 − −32 ⇒ 0 = −−2 + 3

2
−52 =

−1
2
+

3

252
=
3− 2√
252

20.  = (2 + )
√


PR⇒

0 = (2 + )


1

2
√



+
√
 (2 + ) =

2

2
√

+



2
√

+ 2

√
 +

√
 

=
2 +  + 42 + 2

2
√


=
52 +  + 2

2
√


21. () =
3
√


− 3
QR⇒

 0() =
(− 3)


1
3
−23


− 13(1)

(− 3)2 =
1
3
13 − −23 − 13

(− 3)2 =
− 2
3
13 − −23

(− 3)2 =

−2
323

− 3

323

(− 3)2 =
−2− 3

323(− 3)2

22.  () =
4 + 


QR⇒

 0() =
(1)− (4 + )( + (1))

()2
=

 − 4 − 4 − 2 − 

22

=
−4 − 4 − 2

22
=
−(2 + 4+ 4)

22
= − (+ 2)

2

2
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SECTION 3.2 THE PRODUCT AND QUOTIENT RULES ¤ 183

23. () =
2

2 + 
QR⇒

 0() =
(2 + )


2 + (2)

− 2(2+ )

(2 + )2
=

4 + 23 + 22 + 22 − 23 − 22

(2 + )2

=
4 + 22

(2 + )2
=

(3 + 2)

(2 + )2

24.  () =


2 +3
=



+ 2
QR⇒

 0() =
(+2)(0)−( + 2)

(+ 2)2
=
−( + 2)
()2( +)2

= −( + 2)

2( + )2

25. () =


+ 
⇒  0() =

(+ )(1)− (1− 2)
+





2 =
+ − + 

2 + 



2 =
2

(2 + )2

2

· 
2

2
=

2

(2 + )2

26. () =
+ 

+ 
⇒  0() =

(+ )()− (+ )()

(+ )2
=

+ − − 

(+ )2
=

− 

(+ )2

27. () = (3 + 1)
PR⇒

 0() = (3 + 1) + (32) = 

(3 + 1) + 32


= (3 + 32 + 1)

PR⇒

 00() = (32 + 6) + (3 + 32 + 1) = 

(32 + 6) + (3 + 32 + 1)


= (3 + 62 + 6+ 1)

28. () =
√
 

PR⇒  0() =
√
  + 


1

2
√



=

√
+

1

2
√



 =

2+ 1

2
√


.

Using the Product Rule and  0() =

12 + 1

2
−12


, we get

 00() =

12 + 1

2
−12


 + 


1
2
−12 − 1

4
−32


=

12 + −12 − 1

4
−32


 =

42 + 4− 1
432



29. () =
2

1 + 
QR⇒  0() =

(1 + )(2)− 2()

(1 + )2
=

[(1 + )2− ]

(1 + )2
=

(2 + 2 − )

(1 + )2
.

Using the Quotient and Product Rules and  0() =
2+ 2 − 2

(1 + )2
, we get

 00() =
(1 + )2


2 + 2( + )− (2 + 2)− (2+ 2 − 2) [(1 + ) + (1 + )]

[(1 + )2]2

=
(1 + )


(1 + )(2 + 2 + 2 − 2 − 2)− (2+ 2 − 2)(2)


(1 + )4

=
(1 + )(2 + 2 − 2)− 4 − 42 + 222

(1 + )3

=
2 + 2 − 2 + 2 + 22 − 22 − 4 − 42 + 222

(1 + )3

=
2 + 4 − 2 − 4 + 22 + 22 − 42

(1 + )3
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184 ¤ CHAPTER 3 DIFFERENTIATION RULES

30. () =


2 − 1 ⇒  0() =
(2 − 1)(1)− (2)

(2 − 1)2 =
2 − 1− 22
(2 − 1)2 =

−2 − 1
(2 − 1)2 ⇒

 00() =
(2 − 1)2(−2)− (−2 − 1)(4 − 22 + 1)0

[(2 − 1)2]2 =
(2 − 1)2(−2) + (2 + 1)(43 − 4)

(2 − 1)4

=
(2 − 1)2(−2) + (2 + 1)(4)(2 − 1)

(2 − 1)4 =
(2 − 1)[(2 − 1)(−2) + (2 + 1)(4)]

(2 − 1)4

=
−23 + 2+ 43 + 4

(2 − 1)3 =
23 + 6

(2 − 1)3

31.  =
2 − 1

2 + + 1
⇒

0 =
(2 + + 1)(2)− (2 − 1)(2+ 1)

(2 + + 1)2
=
23 + 22 + 2− 23 − 2 + 2+ 1

(2 + + 1)2
=

2 + 4+ 1

(2 + + 1)2
.

At (1 0), 0 =
6

32
=
2

3
, and an equation of the tangent line is  − 0 = 2

3
(− 1), or  = 2

3
− 2

3
.

32.  =
1 + 

1 + 
⇒ 0 =

(1 + )(1)− (1 + )

(1 + )2
=
1 +  −  − 

(1 + )2
=

1− 

(1 + )2
.

At

0 1

2


, 0 =

1

(1 + 1)2
=
1

4
, and an equation of the tangent line is  − 1

2
= 1

4
(− 0) or  = 1

4
+ 1

2
.

33.  = 2 ⇒ 0 = 2( ·  +  · 1) = 2(+ 1).

At (0 0), 0 = 20(0 + 1) = 2 · 1 · 1 = 2, and an equation of the tangent line is  − 0 = 2(− 0), or  = 2. The slope of

the normal line is− 1
2
, so an equation of the normal line is  − 0 = − 1

2
(− 0), or  = − 1

2
.

34.  =
2

2 + 1
⇒ 0 =

(2 + 1)(2)− 2(2)
(2 + 1)2

=
2− 22
(2 + 1)2

. At (1 1), 0 = 0, and an equation of the tangent line is

 − 1 = 0(− 1), or  = 1. The slope of the normal line is undefined, so an equation of the normal line is  = 1.

35. (a)  = () =
1

1 + 2
⇒

 0() =
(1 + 2)(0)− 1(2)

(1 + 2)2
=

−2
(1 + 2)2

. So the slope of the

tangent line at the point
−1 1

2


is  0(−1) = 2

22
= 1

2
and its

equation is  − 1
2
= 1

2
(+ 1) or  = 1

2
+ 1.

(b)

36. (a)  = () =


1 + 2
⇒

 0() =
(1 + 2)1− (2)

(1 + 2)2
=

1− 2

(1 + 2)2
. So the slope of the

tangent line at the point (3 03) is  0(3) = −8
100

and its equation is

 − 03 = −008(− 3) or  = −008+ 054.

(b)
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SECTION 3.2 THE PRODUCT AND QUOTIENT RULES ¤ 185

37. (a) () = (3 − ) ⇒  0() = (3 − ) + (32 − 1) = (3 + 32 − − 1)

(b)  0 = 0 when  has a horizontal tangent line,  0 is negative when  is

decreasing, and  0 is positive when  is increasing.

38. (a) () =


22 + + 1
⇒

 0() =
(22 + + 1) − (4+ 1)

(22 + + 1)2
=

(22 + + 1− 4− 1)
(22 + + 1)2

=
(22 − 3)
(22 + + 1)2

(b)  0 = 0 when  has a horizontal tangent line,  0 is negative when  is

decreasing, and  0 is positive when  is increasing.

39. (a) () =
2 − 1
2 + 1

⇒

 0() =
(2 + 1)(2)− (2 − 1)(2)

(2 + 1)2
=
(2)[(2 + 1)− (2 − 1)]

(2 + 1)2
=

(2)(2)

(2 + 1)2
=

4

(2 + 1)2
⇒

 00() =
(2 + 1)2(4)− 4(4 + 22 + 1)0

[(2 + 1)2]2
=
4(2 + 1)2 − 4(43 + 4)

(2 + 1)4

=
4(2 + 1)2 − 162(2 + 1)

(2 + 1)4
=
4(2 + 1)[(2 + 1)− 42]

(2 + 1)4
=
4(1− 32)
(2 + 1)3

(b)  0 = 0 when  has a horizontal tangent and  00 = 0 when  0 has a

horizontal tangent.  0 is negative when  is decreasing and positive when 

is increasing.  00 is negative when  0 is decreasing and positive when  0 is

increasing.  00 is negative when  is concave down and positive when  is

concave up.

40. (a) () = (2 − 1) ⇒  0() = (2 − 1) + (2) = (2 + 2− 1) ⇒
 00() = (2+ 2) + (2 + 2− 1) = (2 + 4+ 1)

(b) We can see that our answers are plausible, since  has horizontal tangents

where  0() = 0, and  0 has horizontal tangents where  00() = 0.
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186 ¤ CHAPTER 3 DIFFERENTIATION RULES

41. () =
2

1 + 
⇒  0() =

(1 + )(2)− 2(1)

(1 + )2
=
2+ 22 − 2

(1 + )2
=

2 + 2

2 + 2+ 1
⇒

 00() =
(2 + 2+ 1)(2+ 2)− (2 + 2)(2+ 2)

(2 + 2+ 1)2
=
(2+ 2)(2 + 2+ 1− 2 − 2)

[(+ 1)2]2

=
2(+ 1)(1)

(+ 1)4
=

2

(+ 1)3
,

so  00(1) =
2

(1 + 1)3
=
2

8
=
1

4
.

42. () =



⇒ 0() =

 · 1−  · 
()2

=
(1− )

()2
=
1− 


⇒

00() =
 · (−1)− (1− )

()2
=

[−1− (1− )]

()2
=

− 2


⇒

000() =
 · 1− (− 2)

()2
=

[1− (− 2)]
()2

=
3− 


⇒

(4)() =
 · (−1)− (3− )

()2
=

[−1− (3− )]

()2
=

− 4


.

The pattern suggests that ()() =
(− )(−1)


. (We could use mathematical induction to prove this formula.)

43. We are given that (5) = 1,  0(5) = 6, (5) = −3, and 0(5) = 2.
(a) ()0(5) = (5)0(5) + (5) 0(5) = (1)(2) + (−3)(6) = 2− 18 = −16

(b)






0
(5) =

(5) 0(5)− (5)0(5)
[(5)]2

=
(−3)(6)− (1)(2)

(−3)2 = −20
9

(c)






0
(5) =

(5)0(5)− (5) 0(5)
[(5)]2

=
(1)(2)− (−3)(6)

(1)2
= 20

44. We are given that (4) = 2, (4) = 5,  0(4) = 6, and 0(4) = −3.

(a) () = 3() + 8() ⇒ 0() = 3 0() + 80(), so

0(4) = 3 0(4) + 80(4) = 3(6) + 8(−3) = 18− 24 = −6.
(b) () = () () ⇒ 0() = () 0() + ()  0(), so

0(4) = (4) 0(4) + (4)  0(4) = 2(−3) + 5(6) = −6 + 30 = 24.

(c) () =
()

()
⇒ 0() =

()  0()− () 0()
[()]2

, so

0(4) =
(4)  0(4)− (4) 0(4)

[(4)]2
=
5(6)− 2(−3)

52
=
30 + 6

25
=
36

25
.

(d) () =
()

() + ()
⇒

0(4) =
[(4) + (4)] 0(4)− (4) [ 0(4) + 0(4)]

[(4) + (4)]2
=
(2 + 5) (−3)− 5 [6 + (−3)]

(2 + 5)2
=
−21− 15

72
= −36

49
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SECTION 3.2 THE PRODUCT AND QUOTIENT RULES ¤ 187

45. () = () ⇒  0() = 0() + () = [0() + ()].  0(0) = 0[0(0) + (0)] = 1(5 + 2) = 7

46.





()




=

0()− () · 1
2

⇒ 




()




=2

=
20(2)− (2)

22
=
2(−3)− (4)

4
=
−10
4

= −25

47. () = () ⇒ 0() =  0() + () · 1. Now (3) = 3(3) = 3 · 4 = 12 and
0(3) = 3 0(3) + (3) = 3(−2) + 4 = −2. Thus, an equation of the tangent line to the graph of  at the point where  = 3
is  − 12 = −2(− 3), or  = −2+ 18.

48.  0() = 2() ⇒  00() = 2 0() + () · 2. Now  0(2) = 22(2) = 4(10) = 40, so

 00(2) = 22(40) + 10(4) = 200.

49. (a) From the graphs of  and , we obtain the following values: (1) = 2 since the point (1 2) is on the graph of  ;

(1) = 1 since the point (1 1) is on the graph of ;  0(1) = 2 since the slope of the line segment between (0 0) and

(2 4) is
4− 0
2− 0 = 2; 

0(1) = −1 since the slope of the line segment between (−2 4) and (2 0) is 0− 4
2− (−2) = −1.

Now () = ()(), so 0(1) = (1)0(1) + (1)  0(1) = 2 · (−1) + 1 · 2 = 0.

(b) () = ()(), so 0(5) =
(5) 0(5)− (5)0(5)

[(5)]2
=
2
− 1

3

− 3 · 2
3

22
=
− 8
3

4
= −2

3

50. (a)  () =  ()(), so  0(2) =  (2)0(2) +(2) 0(2) = 3 · 2
4
+ 2 · 0 = 3

2


(b) () =  ()(), so0(7) =
(7) 0(7)−  (7)0(7)

[(7)]2
=
1 · 1

4
− 5 · −2

3


12

=
1

4
+
10

3
=
43

12

51. (a)  = () ⇒ 0 = 0() + () · 1 = 0() + ()

(b)  =


()
⇒ 0 =

() · 1− 0()
[()]2

=
()− 0()
[()]2

(c)  =
()


⇒ 0 =

0()− () · 1
()2

=
0()− ()

2

52. (a)  = 2() ⇒ 0 = 2 0() + ()(2)

(b)  =
()

2
⇒ 0 =

2 0()− ()(2)

(2)2
=

 0()− 2()
3

(c)  =
2

()
⇒ 0 =

()(2)− 2 0()
[()]2

(d)  =
1 + ()√


⇒

0 =

√
 [ 0() + ()]− [1 + ()]

1

2
√


(
√
 )

2

=
32 0() + 12()− 1

2
−12 − 1

2
12()


· 2

12

212
=

() + 22 0()− 1
232

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



188 ¤ CHAPTER 3 DIFFERENTIATION RULES

53. If  = () =


+ 1
, then  0() =

(+ 1)(1)− (1)

(+ 1)2
=

1

(+ 1)2
. When  = , the equation of the tangent line is

 − 

+ 1
=

1

(+ 1)2
(− ). This line passes through (1 2) when 2− 

+ 1
=

1

(+ 1)2
(1− ) ⇔

2(+ 1)2 − (+ 1) = 1−  ⇔ 22 + 4+ 2− 2 − − 1 +  = 0 ⇔ 2 + 4+ 1 = 0.

The quadratic formula gives the roots of this equation as  =
−4±42 − 4(1)(1)

2(1)
=
−4±√12

2
= −2±√3,

so there are two such tangent lines. Since


−2±√3 = −2±√3

−2±√3 + 1 =
−2±√3
−1±√3 ·

−1∓√3
−1∓√3

=
2± 2√3∓√3− 3

1− 3 =
−1±√3
−2 =

1∓√3
2

,

the lines touch the curve at 

−2 +√3 1−

√
3

2


≈ (−027−037)

and 

−2−√3 1+

√
3

2


≈ (−373 137).

54.  =
− 1
+ 1

⇒ 0 =
(+ 1)(1)− (− 1)(1)

(+ 1)2
=

2

(+ 1)2
. If the tangent intersects

the curve when  = , then its slope is 2(+ 1)2. But if the tangent is parallel to

− 2 = 2, that is,  = 1
2
− 1, then its slope is 1

2
. Thus,

2

(+ 1)2
=
1

2
⇒

(+ 1)2 = 4 ⇒ + 1 = ±2 ⇒  = 1 or −3. When  = 1,  = 0 and the
equation of the tangent is  − 0 = 1

2
(− 1) or  = 1

2
− 1

2
. When  = −3,  = 2 and

the equation of the tangent is  − 2 = 1
2
(+ 3) or  = 1

2
+ 7

2
.

55.  =



⇒ 0 =

 0 − 0

2
. For () = − 33 + 55,  0() = 1− 92 + 254,

and for () = 1 + 33 + 66 + 99, 0() = 92 + 365 + 818.

Thus, 0(0) =
(0) 0(0)− (0)0(0)

[(0)]2
=
1 · 1− 0 · 0

12
=
1

1
= 1.

56.  =



⇒ 0 =

 0 − 0

2
. For () = 1 + + 2 + ,  0() = 1 + 2+  + ,

and for () = 1− + 2 − , 0() = −1 + 2−  − .

Thus, 0(0) =
(0) 0(0)− (0)0(0)

[(0)]2
=
1 · 2− 1 · (−2)

12
=
4

1
= 4.

57. If  () denotes the population at time  and () the average annual income, then  () =  ()() is the total personal

income. The rate at which  () is rising is given by  0() =  ()0() +() 0() ⇒
 0(1999) =  (1999)0(1999) +(1999) 0(1999) = (961,400)($1400yr) + ($30,593)(9200yr)

= $1,345,960,000yr + $281,455,600yr = $1,627,415,600yr

So the total personal income was rising by about $1.627 billion per year in 1999.
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SECTION 3.2 THE PRODUCT AND QUOTIENT RULES ¤ 189

The term  ()0() ≈ $1.346 billion represents the portion of the rate of change of total income due to the existing
population’s increasing income. The term () 0() ≈ $281 million represents the portion of the rate of change of total
income due to increasing population.

58. (a) (20) = 10,000 means that when the price of the fabric is $20yard, 10,000 yards will be sold.

 0(20) = −350 means that as the price of the fabric increases past $20yard, the amount of fabric which will be sold is
decreasing at a rate of 350 yards per (dollar per yard).

(b) () = () ⇒ 0() =  0() + () · 1 ⇒ 0(20) = 20 0(20) + (20) · 1 = 20(−350) + 10,000 = 3000.
This means that as the price of the fabric increases past $20yard, the total revenue is increasing at $3000($yard). Note

that the Product Rule indicates that we will lose $7000($yard) due to selling less fabric, but this loss is more than made

up for by the additional revenue due to the increase in price.

59.  =
014[S]

0015 + [S]
⇒ 

[S]
=
(0015 + [S])(014)− (014[S])(1)

(0015 + [S])2
=

00021

(0015 + [S])2
.

[S] represents the rate of change of the rate of an enzymatic reaction with respect to the concentration of a substrate S.

60. () = ()() ⇒ 0() = () 0() +() 0(), so

0(4) = (4) 0(4) +(4) 0(4) = 820(014) + 12(50) = 1748 gweek.

61. (a) ()0 = [()]0 = ()0+ ()0 = ( 0 + 0)+ ()0 =  0+ 0+ 0

(b) Putting  =  =  in part (a), we have



[()]3 = ()0 =  0 +  0 +  0 = 3 0 = 3[()]2 0().

(c)



(3) =




()3 = 3()2 = 32 = 33

62. (a) We use the Product Rule repeatedly:  =  ⇒  0 =  0 + 0 ⇒
 00 = ( 00 +  00) + ( 00 + 00) =  00 + 2 00 + 00.

(b)  000 =  000 +  000 + 2 ( 000 +  000) +  000 + 000 =  000 + 3 000 + 3 000 + 000 ⇒
 (4) =  (4) +  0000 + 3 ( 0000 +  0000) + 3 ( 0000 +  0000) +  0000 + (4)

=  (4) + 4 0000 + 6 0000 + 4 0000 + (4)

(c) By analogy with the Binomial Theorem, we make the guess:

 () =  () +  (−1)0 +




2


 (−2)00 + · · ·+







 (−)() + · · ·+  0(−1) + (),

where







=

!

! (− )!
=

(− 1)(− 2) · · · (−  + 1)

!
.
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190 ¤ CHAPTER 3 DIFFERENTIATION RULES

63. For () = 2,  0() = 2 + (2) = (2 + 2). Similarly, we have

 00() = (2 + 4+ 2)

 000() = (2 + 6+ 6)

 (4)() = (2 + 8+ 12)

 (5)() = (2 + 10+ 20)

It appears that the coefficient of  in the quadratic term increases by 2 with each differentiation. The pattern for the

constant terms seems to be 0 = 1 · 0, 2 = 2 · 1, 6 = 3 · 2, 12 = 4 · 3, 20 = 5 · 4. So a reasonable guess is that

 ()() = [2 + 2+ (− 1)].

Proof: Let  be the statement that  ()() = [2 + 2+ (− 1)].
1. 1 is true because  0() = (2 + 2).

2. Assume that  is true; that is,  ()() = [2 + 2+ ( − 1)]. Then

 (+1)() =





 ()()


= (2+ 2) + [2 + 2+ ( − 1)]

= [2 + (2 + 2)+ (2 + )] = [2 + 2( + 1)+ ( + 1)]

This shows that +1 is true.

3. Therefore, by mathematical induction,  is true for all ; that is,  ()() = [2 + 2+ (− 1)] for every
positive integer .

64. (a)





1

()


=

() · 


(1)− 1 · 


[()]

[()]2
[Quotient Rule] =

() · 0− 1 · 0()
[()]2

=
0− 0()
[()]2

= − 0()
[()]2

(b)





1

3 + 22 − 1

= −


3 + 22 − 10
(3 + 22 − 1)2 = −

32 + 4

(3 + 22 − 1)2

(c)



(−) =






1




= − (

)0

()2
[by the Reciprocal Rule] = −−1

2
= −−1−2 = −−−1

3.3 Derivatives of Trigonometric Functions

1. () = 2 sin
PR⇒  0() = 2 cos+ (sin)(2) = 2 cos+ 2 sin

2. () =  cos+ 2 tan ⇒  0() = (− sin) + (cos)(1) + 2 sec2  = cos−  sin+ 2 sec2 

3. () =  cos ⇒  0() = (− sin) + (cos) = (cos− sin)

4.  = 2 sec− csc ⇒ 0 = 2(sec tan)− (− csc cot) = 2 sec tan+ csc cot

5.  = sec  tan  ⇒ 0 = sec  (sec2 ) + tan  (sec  tan ) = sec  (sec2  + tan2 ). Using the identity

1 + tan2  = sec2 , we can write alternative forms of the answer as sec  (1 + 2 tan2 ) or sec  (2 sec2  − 1).

6. () = (tan  − ) ⇒ 0() = (sec2  − 1) + (tan  − ) = (sec2  − 1 + tan  − )
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SECTION 3.3 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS ¤ 191

7.  =  cos + 2 sin  ⇒ 0 = (− sin ) + 2(cos ) + sin  (2) = − sin + ( cos + 2 sin )

8. () =
cot 


⇒  0() =

(− csc2 )− (cot )
()2

=
(− csc2 − cot )

()2
= −csc

2 + cot 



9.  =


2− tan ⇒ 0 =
(2− tan)(1)− (− sec2 )

(2− tan)2 =
2− tan+  sec2 

(2− tan)2

10.  = sin  cos  ⇒ 0 = sin (− sin ) + cos (cos ) = cos2  − sin2  [or cos 2]

11. () =
sin 

1 + cos 
⇒

 0() =
(1 + cos ) cos  − (sin )(− sin )

(1 + cos )2
=
cos  + cos2  + sin2 

(1 + cos )2
=

cos  + 1

(1 + cos )2
=

1

1 + cos 

12.  =
cos

1− sin ⇒

0 =
(1− sin)(− sin)− cos(− cos)

(1− sin)2 =
− sin+ sin2 + cos2 

(1− sin)2 =
− sin+ 1
(1− sin)2 =

1

1− sin

13.  =
 sin 

1 + 
⇒

0 =
(1 + )( cos + sin )−  sin (1)

(1 + )2
=

 cos + sin + 2 cos +  sin −  sin 

(1 + )2
=
(2 + ) cos + sin 

(1 + )2

14.  =
sin 

1 + tan 
⇒

0 =
(1 + tan ) cos − (sin ) sec2 

(1 + tan )2
=
cos + sin − sin 

cos2 
(1 + tan )2

=
cos + sin − tan  sec 

(1 + tan )2

15. Using Exercise 3.2.61(a) , () =  cos  sin  ⇒
 0() = 1 cos  sin  + (− sin ) sin  +  cos (cos ) = cos  sin  −  sin2  +  cos2 

= sin  cos  + (cos2  − sin2 ) = 1
2
sin 2 +  cos 2 [using double-angle formulas]

16. Using Exercise 3.2.61(a), () =  cot  ⇒
 0() = 1 cot +  cot + (− csc2 ) = (cot +  cot −  csc2 )

17.



(csc) =






1

sin


=
(sin)(0)− 1(cos)

sin2 
=
− cos
sin2 

= − 1

sin
· cos
sin

= − csc cot

18.



(sec) =






1

cos


=
(cos)(0)− 1(− sin)

cos2 
=
sin

cos2 
=

1

cos
· sin
cos

= sec tan

19.



(cot) =





cos
sin


=
(sin)(− sin)− (cos)(cos)

sin2 
= −sin

2 + cos2 

sin2 
= − 1

sin2 
= − csc2 
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192 ¤ CHAPTER 3 DIFFERENTIATION RULES

20. () = cos ⇒

 0() = lim
→0

(+ )− ()


= lim

→0

cos (+ )− cos


= lim
→0

cos cos− sin sin− cos


= lim
→0


cos

cos− 1


− sin sin



= cos lim

→0

cos− 1


− sin lim
→0

sin



= (cos)(0)− (sin)(1) = − sin

21.  = sin+ cos ⇒ 0 = cos− sin, so 0(0) = cos 0− sin 0 = 1− 0 = 1. An equation of the tangent line to the
curve  = sin+ cos at the point (0 1) is  − 1 = 1(− 0) or  = + 1.

22.  =  cos ⇒ 0 = (− sin) + (cos) = (cos− sin) ⇒ the slope of the tangent line at (0 1) is

0(cos 0− sin 0) = 1(1− 0) = 1 and an equation is  − 1 = 1(− 0) or  = + 1.

23.  = cos− sin ⇒ 0 = − sin− cos, so 0() = − sin − cos = 0− (−1) = 1. An equation of the tangent

line to the curve  = cos− sin at the point (−1) is  − (−1) = 1(− ) or  = −  − 1.

24.  = + tan ⇒ 0 = 1 + sec2 , so 0() = 1 + (−1)2 = 2. An equation of the tangent line to the curve

 = + tan at the point ( ) is  −  = 2(− ) or  = 2− .

25. (a)  = 2 sin ⇒ 0 = 2( cos+ sin · 1). At


2  


,

0 = 2


2
cos 

2
+ sin 

2


= 2(0 + 1) = 2, and an equation of the

tangent line is  −  = 2

− 

2


, or  = 2.

(b)

26. (a)  = 3+ 6cos ⇒ 0 = 3− 6 sin. At 
3
  + 3


,

0 = 3− 6 sin 
3
= 3− 6

√
3
2
= 3− 3√3, and an equation of the

tangent line is  − ( + 3) = 3− 3√3 − 
3


, or

 =

3− 3√3 + 3 + 

√
3.

(b)

27. (a) () = sec−  ⇒  0() = sec tan− 1
(b)

Note that  0 = 0 where  has a minimum. Also note that  0 is negative

when  is decreasing and  0 is positive when  is increasing.

28. (a) () =  cos ⇒  0() = (− sin) + (cos)  = (cos− sin) ⇒

 00() = (− sin− cos) + (cos− sin)  = (− sin− cos+ cos− sin) = −2 sin
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SECTION 3.3 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS ¤ 193

(b)

Note that  0 = 0 where  has a minimum and  00 = 0 where  0 has a

minimum. Also note that  0 is negative when  is decreasing and  00 is

negative when  0 is decreasing.

29. () =  sin  ⇒ 0() =  (cos ) + (sin ) · 1 =  cos  + sin  ⇒
 00() =  (− sin ) + (cos ) · 1 + cos  = − sin  + 2cos 

30. () = sec  ⇒  0() = sec  tan  ⇒  00() = (sec ) sec2 + (tan ) sec  tan  = sec3 + sec  tan2 , so

 00


4


=
√
2
3
+
√
2(1)2 = 2

√
2 +

√
2 = 3

√
2.

31. (a) () =
tan− 1
sec

⇒

 0() =
sec(sec2 )− (tan− 1)(sec tan)

(sec)2
=
sec(sec2 − tan2 + tan)

sec 2 
=
1 + tan

sec

(b) () =
tan− 1
sec

=

sin

cos
− 1

1

cos

=

sin− cos
cos
1

cos

= sin− cos ⇒  0() = cos− (− sin) = cos+ sin

(c) From part (a),  0() =
1 + tan

sec
=

1

sec
+
tan

sec
= cos+ sin, which is the expression for  0() in part (b).

32. (a) () = () sin ⇒ 0() = () cos + sin ·  0(), so

0(3 ) = (3 ) cos

3 + sin


3 ·  0(3 ) = 4 · 12 +

√
3
2 · (−2) = 2−√3

(b) () =
cos

()
⇒ 0() =

() · (− sin)− cos ·  0()
[()]2

, so

0(
3
) =

(
3
) · (− sin 

3
)− cos 

3
·  0(

3
)




3

2 =
4

−
√
3
2


−  1

2


(−2)

42
=
−2√3 + 1

16
=
1− 2√3
16

33. () = + 2 sin has a horizontal tangent when  0() = 0 ⇔ 1 + 2 cos = 0 ⇔ cos = − 1
2
⇔

 = 2
3
+ 2 or 4

3
+ 2, where  is an integer. Note that 4

3
and 2

3
are ±

3
units from . This allows us to write the

solutions in the more compact equivalent form (2+ 1) ± 
3
,  an integer.

34. () =  cos has a horizontal tangent when  0() = 0.  0() = (− sin) + (cos) = (cos− sin).
 0() = 0 ⇔ cos− sin = 0 ⇔ cos = sin ⇔ tan = 1 ⇔  = 

4 + ,  an integer.

35. (a) () = 8 sin  ⇒ () = 0() = 8 cos  ⇒ () = 00() = −8 sin 

(b) The mass at time  = 2
3
has position 


2
3


= 8 sin 2

3
= 8

√
3
2


= 4
√
3, velocity 


2
3


= 8cos 2

3
= 8

− 1
2


= −4,

and acceleration 

2
3


= −8 sin 2

3
= −8

√
3
2


= −4√3. Since  2

3


 0, the particle is moving to the left.
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194 ¤ CHAPTER 3 DIFFERENTIATION RULES

36. (a) () = 2 cos + 3 sin  ⇒ () = −2 sin + 3cos  ⇒
() = −2 cos − 3 sin 

(b)

(c)  = 0 ⇒ 2 ≈ 255. So the mass passes through the equilibrium

position for the first time when  ≈ 255 s.

(d)  = 0 ⇒ 1 ≈ 098, (1) ≈ 361 cm. So the mass travels

a maximum of about 36 cm (upward and downward) from its equilibrium position.

(e) The speed || is greatest when  = 0, that is, when  = 2 + ,  a positive integer.

37. From the diagram we can see that sin  = 10 ⇔  = 10 sin . We want to find the rate

of change of  with respect to , that is, . Taking the derivative of  = 10 sin , we get

 = 10(cos ). So when  = 
3
, 

= 10 cos 

3
= 10


1
2


= 5 ftrad.

38. (a)  =


 sin  + cos 
⇒ 


=
( sin  + cos )(0)−  ( cos  − sin )

( sin  + cos )2
=

 (sin  −  cos )

( sin  + cos )2

(b)



= 0 ⇔  (sin  −  cos ) = 0 ⇔ sin  =  cos  ⇔ tan  =  ⇔  = tan−1 

(c) From the graph of  =
06(50)

06 sin  + cos 
for 0 ≤  ≤ 1, we see that




= 0 ⇒  ≈ 054. Checking this with part (b) and  = 06, we

calculate  = tan−1 06 ≈ 054. So the value from the graph is consistent
with the value in part (b).

39. lim
→0

sin 5

3
= lim

→0

5

3


sin 5

5


=
5

3
lim
→0

sin 5

5
=
5

3
lim
→0

sin 


[ = 5] =

5

3
· 1 = 5

3

40. lim
→0

sin

sin
= lim

→0

sin


· 

sin
· 1

= lim

→0

sin


· lim
→0



sin 
· 1


[ = ]

= 1 · lim
→0

1
sin 



· 1

= 1 · 1 · 1


=
1



41. lim
→0

tan 6

sin 2
= lim

→0


sin 6


· 1

cos 6
· 

sin 2


= lim

→0

6 sin 6

6
· lim
→0

1

cos 6
· lim
→0

2

2 sin 2

= 6 lim
→0

sin 6

6
· lim
→0

1

cos 6
· 1
2
lim
→0

2

sin 2
= 6(1) · 1

1
· 1
2
(1) = 3

42. lim
→0

cos  − 1
sin 

= lim
→0

cos  − 1

sin 



=
lim
→0

cos  − 1


lim
→0

sin 



=
0

1
= 0
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SECTION 3.3 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS ¤ 195

43. lim
→0

sin 3

53 − 4 = lim
→0


sin 3

3
· 3

52 − 4

= lim

→0

sin 3

3
· lim
→0

3

52 − 4 = 1 ·

3

−4

= −3

4

44. lim
→0

sin 3 sin 5

2
= lim

→0


3 sin 3

3
· 5 sin 5

5


= lim

→0

3 sin 3

3
· lim
→0

5 sin 5

5

= 3 lim
→0

sin 3

3
· 5 lim

→0

sin 5

5
= 3(1) · 5(1) = 15

45. Divide numerator and denominator by . (sin  also works.)

lim
→0

sin 

 + tan 
= lim

→0

sin 



1 +
sin 


· 1

cos 

=
lim
→0

sin 



1 + lim
→0

sin 


lim
→0

1

cos 

=
1

1 + 1 · 1 =
1

2

46. lim
→0

csc sin(sin) = lim
→0

sin(sin)

sin
= lim

→0

sin 


[As → 0,  = sin→ 0.] = 1

47. lim
→0

cos  − 1
22

= lim
→0

cos  − 1
22

· cos  + 1
cos  + 1

= lim
→0

cos2  − 1
22(cos  + 1)

= lim
→0

− sin2 
22(cos  + 1)

= −1
2
lim
→0

sin 


· sin 


· 1

cos  + 1
= −1

2
lim
→0

sin 


· lim
→0

sin 


· lim
→0

1

cos  + 1

= −1
2
· 1 · 1 · 1

1 + 1
= −1

4

48. lim
→0

sin(2)


= lim

→0


 · sin(

2)

 · 

= lim

→0
 · lim

→0

sin(2)

2
= 0 · lim

→0+

sin 




where  = 2


= 0 · 1 = 0

49. lim
→4

1− tan
sin− cos = lim

→4


1− sin

cos


· cos

(sin− cos) · cos = lim
→4

cos− sin
(sin− cos) cos = lim

→4

−1
cos

=
−1
1
√
2
= −√2

50. lim
→1

sin(− 1)
2 + − 2 = lim

→1

sin(− 1)
(+ 2)(− 1) = lim

→1

1

+ 2
lim
→1

sin(− 1)
− 1 = 1

3 · 1 = 1
3

51.



(sin) = cos ⇒ 2

2
(sin) = − sin ⇒ 3

3
(sin) = − cos ⇒ 4

4
(sin) = sin.

The derivatives of sin occur in a cycle of four. Since 99 = 4(24) + 3, we have
99

99
(sin) =

3

3
(sin) = − cos.

52. Let () =  sin and () = sin, so () = (). Then  0() = () + 0(),

 00() = 0() + 0() + 00() = 20() + 00(),

 000() = 200() + 00() + 000() = 300() + 000() · · ·   ()() = (−1)() + ()().

Since 34 = 4(8) + 2, we have (34)() = (2)() =
2

2
(sin) = − sin and (35)() = − cos.

Thus,
35

35
( sin) = 35(34)() + (35)() = −35 sin−  cos.
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196 ¤ CHAPTER 3 DIFFERENTIATION RULES

53.  =  sin+ cos ⇒ 0 =  cos− sin ⇒ 00 = − sin− cos. Substituting these

expressions for , 0, and 00 into the given differential equation 00 + 0 − 2 = sin gives us
(− sin− cos) + ( cos− sin)− 2( sin+ cos) = sin ⇔
−3 sin− sin+ cos− 3 cos = sin ⇔ (−3−) sin+ (− 3) cos = 1 sin, so we must have
−3− = 1 and − 3 = 0 (since 0 is the coefficient of cos on the right side). Solving for  and , we add the first

equation to three times the second to get  = − 1
10
and  = − 3

10
.

54. (a) Let  =
1


. Then as →∞, → 0+, and lim

→∞
 sin

1


= lim

→0+

1


sin  = lim

→0

sin 


= 1.

(b) Since −1 ≤ sin (1) ≤ 1, we have (as illustrated in the figure)
− || ≤  sin (1) ≤ ||. We know that lim

→0
(||) = 0 and

lim
→0

(− ||) = 0; so by the Squeeze Theorem, lim
→0

 sin (1) = 0.

(c)

55. (a)



tan =





sin

cos
⇒ sec2  =

cos cos− sin (− sin)
cos2 

=
cos2 + sin2 

cos2 
. So sec2  =

1

cos2 
.

(b)



sec =





1

cos
⇒ sec tan =

(cos)(0)− 1(− sin)
cos2 

. So sec tan =
sin

cos2 
.

(c)



(sin+ cos) =





1 + cot

csc
⇒

cos− sin = csc (− csc2 )− (1 + cot)(− csc cot)
csc2 

=
csc [− csc2 + (1 + cot) cot]

csc2 

=
− csc2 + cot2 + cot

csc
=
−1 + cot
csc

So cos− sin = cot− 1
csc

.

56. We get the following formulas for  and  in terms of :

sin


2
=



10
⇒  = 10 sin



2
and cos



2
=



10
⇒  = 10 cos



2

Now () = 1
2
2 and () = 1

2
(2) = . So

lim
→0+

()

()
= lim

→0+

1
2
2


= 1

2
 lim
→0+




= 1

2
 lim
→0+

10 sin(2)

10 cos(2)

= 1
2
 lim
→0+

tan(2) = 0
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SECTION 3.4 THE CHAIN RULE ¤ 197

57. By the definition of radian measure,  = , where  is the radius of the circle. By drawing the bisector of the angle , we can

see that sin


2
=

2


⇒  = 2 sin



2
. So lim

→0+




= lim

→0+



2 sin(2)
= lim

→0+

2 · (2)
2 sin(2)

= lim
→0

2

sin(2)
= 1.

[This is just the reciprocal of the limit lim
→0

sin 

= 1 combined with the fact that as → 0, 

2
→ 0 also]

58. (a) It appears that () =
√

1− cos 2 has a jump discontinuity at  = 0.

(b) Using the identity cos 2 = 1− sin2, we have √
1− cos 2 =


1− (1− 2 sin2 ) =

√
2 sin2

=
√

2 |sin| .

Thus, lim
→0−

√
1− cos 2 = lim

→0−
√

2 |sin| =
1√
2
lim

→0−


−(sin)

= − 1√
2
lim
→0−

1

sin
= − 1√

2
· 1
1
= −

√
2

2

Evaluating lim
→0+

() is similar, but | sin| = +sin, so we get 1
2

√
2. These values appear to be reasonable values for

the graph, so they confirm our answer to part (a).

Another method: Multiply numerator and denominator by
√
1 + cos 2.

3.4 The Chain Rule

1. Let  = () = 1 + 4 and  = () = 3
√
. Then




=








= ( 1

3
−23)(4) =

4

3 3

(1 + 4)2

.

2. Let  = () = 23 + 5 and  = () = 4. Then



=








= (43)(62) = 242(23 + 5)3.

3. Let  = () =  and  = () = tan. Then



=








= (sec2 )() =  sec2 .

4. Let  = () = cot and  = () = sin. Then



=








= (cos)(− csc2 ) = − cos(cot) csc2 .

5. Let  = () =
√
 and  = () = . Then




=








= ()


1
2
−12


= 

√
 · 1

2
√

=


√


2
√

.

6. Let  = () = 2−  and  = () =
√
. Then




=








= ( 1

2
−12)(−) = − 

2
√
2− 

.

7.  () = (56 + 23)4 ⇒  0() = 4(56 + 23)3 · 


(56 + 23) = 4(56 + 23)3(305 + 62).

We can factor as follows: 4(3)3(53 + 2)362(53 + 1) = 2411(53 + 2)3(53 + 1)
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198 ¤ CHAPTER 3 DIFFERENTIATION RULES

8.  () = (1 + + 2)99 ⇒  0() = 99(1 + + 2)98 · 




1 + + 2


= 99(1 + + 2)98(1 + 2)

9. () =
√
5+ 1 = (5+ 1)12 ⇒  0() = 1

2
(5+ 1)−12(5) =

5

2
√
5+ 1

10. () =
1

3
√
2 − 1 = (

2 − 1)−13 ⇒  0() = −1
3
(2 − 1)−43(2) = −2

3(2 − 1)43

11. () = cos(2) ⇒  0() = − sin(2) · 


(2) = − sin(2) · (2) = −2 sin(2)

12. () = cos2  = (cos )2 ⇒ 0() = 2 (cos )1 (− sin ) = −2 sin  cos  = − sin 2

13.  = 2−3 ⇒ 0 = 2−3(−3) + −3(2) = −3(−32 + 2) = −3(2− 3)

14. () =  sin ⇒  0() = (cos) ·  + (sin) · 1 =  cos+ sin

15. () =  sin  ⇒  0() = (cos ) · + (sin ) ·  = ( cos +  sin )

16. () = 
2− ⇒ 0() = 

2−(2− 1)

17. () = (2− 3)4(2 + + 1)5 ⇒
 0() = (2− 3)4 · 5(2 + + 1)4(2+ 1) + (2 + + 1)5 · 4(2− 3)3 · 2

= (2− 3)3(2 + + 1)4[(2− 3) · 5(2+ 1) + (2 + + 1) · 8]
= (2− 3)3(2 + + 1)4(202 − 20− 15 + 82 + 8+ 8) = (2− 3)3(2 + + 1)4(282 − 12− 7)

18. () = (2 + 1)3(2 + 2)6 ⇒
0() = (2 + 1)3 · 6(2 + 2)5 · 2+ (2 + 2)6 · 3(2 + 1)2 · 2

= 6(2 + 1)2(2 + 2)5[2(2 + 1) + (2 + 2)] = 6(2 + 1)2(2 + 2)5(32 + 4)

19. () = (+ 1)23(22 − 1)3 ⇒
0() = (+ 1)23 · 3(22 − 1)2 · 4+ (22 − 1)3 · 2

3
(+ 1)−13 = 2

3
(+ 1)−13(22 − 1)2[18(+ 1) + (22 − 1)]

= 2
3 (+ 1)

−13(22 − 1)2(202 + 18− 1)

20.  () = (3− 1)4(2+ 1)−3 ⇒
 0() = (3− 1)4(−3)(2+ 1)−4(2) + (2+ 1)−3 · 4(3− 1)3(3)

= 6(3− 1)3(2+ 1)−4[−(3− 1) + 2(2+ 1)] = 6(3− 1)3(2+ 1)−4(+ 3)

21.  =




+ 1
=




+ 1

12
⇒

0 =
1

2




+ 1

−12







+ 1


=
1

2

−12

(+ 1)−12
(+ 1)(1)− (1)

(+ 1)2

=
1

2

(+ 1)12

12
1

(+ 1)2
=

1

2
√
(+ 1)32
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SECTION 3.4 THE CHAIN RULE ¤ 199

22.  =


+

1



5
⇒ 0 = 5


+

1



4





+

1




= 5


+

1



4
1− 1

2


.

Another form of the answer is
5(2 + 1)4(2 − 1)

6
.

23.  = tan  ⇒ 0 = tan 



(tan ) = (sec2 )tan 

24. Using Formula 5 and the Chain Rule, () = 2
3 ⇒  0() = 2

3

ln 2



(3) = 3(ln 2)22

3

.

25. () =


3 − 1
3 + 1

8
⇒

0() = 8

3 − 1
3 + 1

7




3 − 1
3 + 1

= 8


3 − 17
(3 + 1)7

(3 + 1)(32)− (3 − 1)(32)
(3 + 1)2

= 8
(3 − 1)7
(3 + 1)7

32[(3 + 1)− (3 − 1)]
(3 + 1)2

= 8
(3 − 1)7
(3 + 1)7

32(2)

(3 + 1)2
=
482(3 − 1)7
(3 + 1)9

26. () =


1 + sin 

1 + cos 
=


1 + sin 

1 + cos 

12
⇒

0() =
1

2


1 + sin 

1 + cos 

−12
(1 + cos ) cos − (1 + sin )(− sin )

(1 + cos )2

=
1

2

(1 + sin )−12

(1 + cos )−12
cos + cos2 + sin + sin2 

(1 + cos )2
=

cos + sin + 1

2
√
1 + sin  (1 + cos )32

27. Using Formula 5 and the Chain Rule, () = 102
√
 ⇒

0() = 102
√
 ln 10






2
√


= 102

√
 ln 10


2 · 1

2
−12


=
(ln 10) 102

√


√


28. () = (−1) ⇒  0() = (−1)






 − 1 = (−1)
( − 1)(1)− (1)

( − 1)2 = − (−1)

( − 1)2

29. () =
(2 − 1)3
(2 + 1)5

⇒

0() =
(2 + 1)5 · 3(2 − 1)2(2)− (2 − 1)3 · 5(2 + 1)4(2)

[(2 + 1)5]2
=
2(2 + 1)4(2 − 1)2[3(2 + 1)− 5(2 − 1)]

(2 + 1)10

=
2(2 − 1)2(62 + 3 − 52 + 5)

(2 + 1)6
=
2(2 − 1)2(2 + 3 + 5)

(2 + 1)6

30. () = tan2() = [tan()]2 ⇒

 0() = 2 [tan()]1



tan() = 2 tan() sec2() ·  = 2 tan() sec2()

31. By (9),  () =  sin 2 ⇒
 0() =  sin 2( sin 2)0 =  sin 2( · 2 cos 2+ sin 2 · 1) =  sin 2(2 cos 2+ sin 2)
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200 ¤ CHAPTER 3 DIFFERENTIATION RULES

32.  () =
2√
3 + 1

⇒

 0() =
(3 + 1)12(2)− 2 · 12 (3 + 1)−12(32)√

3 + 1
2 =

(3 + 1)−12

2(3 + 1)− 3

2
3


(3 + 1)1

=


1
2
3 + 2


(3 + 1)32

=
(3 + 4)

2(3 + 1)32

33. Using Formula 5 and the Chain Rule, () = 4 ⇒

0() = 4 (ln 4)












= −1


= 4 (ln 4)

−−2 = − (ln 4) 4
2

34. () =


4 + 1

2 + 1

5
⇒

 0() = 5

4 + 1

2 + 1

4
(2 + 1)(43)− (4 + 1)(2)

(2 + 1)2
=
5(4 + 1)42[22(2 + 1)− (4 + 1)]

(2 + 1)4(2 + 1)2

=
10(4 + 1)4(4 + 22 − 1)

(2 + 1)6

35.  = cos


1− 2

1 + 2


⇒

0 = − sin

1− 2

1 + 2


· 




1− 2

1 + 2


= − sin


1− 2

1 + 2


· (1 + 2)(−22)− (1− 2)(22)

(1 + 2)2

= − sin

1− 2

1 + 2


· −2

2

(1 + 2) + (1− 2)


(1 + 2)2

= − sin

1− 2

1 + 2


· −2

2(2)

(1 + 2)2
=

42

(1 + 2)2
· sin


1− 2

1 + 2



36.  = 2−1 ⇒ 0 = 2−1

1

2


+ −1(2) = −1 + 2−1 = −1(1 + 2)

37.  = cot2(sin ) = [cot(sin )]2 ⇒

0 = 2[cot(sin )] · 


[cot(sin )] = 2 cot(sin ) · [− csc2(sin ) · cos ] = −2 cos  cot(sin ) csc2(sin )

38.  =
√
1 + −2 ⇒ 0 = 1

2


1 + −2

−12 

−2−2+ −2


=

−2(−2+ 1)
2
√
1 + −2

39. () = tan(sec(cos )) ⇒

 0() = sec2(sec(cos ))



sec(cos ) = sec2(sec(cos ))[sec(cos ) tan(cos )]




cos 

= − sec2(sec(cos )) sec(cos ) tan(cos ) sin 

40.  = sin 2 + sin(2) ⇒

0 = sin 2



sin 2+ cos(2)




2 = sin 2(cos 2) · 2 + cos(2) 2 · 2

= 2 cos 2 sin 2 + 22 cos(2)
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SECTION 3.4 THE CHAIN RULE ¤ 201

41. () = sin2

sin

2

=

sin

sin

2
2

⇒

 0() = 2

sin

sin

2

· 

sin

sin

2

= 2 sin


sin

2

· cos


sin

2

· 


sin
2

= 2 sin

sin

2

cos

sin

2

· sin2 · 


sin2  = 2 sin


sin

2

cos

sin

2

sin

2 · 2 sin  cos 

= 4 sin

sin

2

cos

sin

2

sin

2 sin  cos 

42.  =


+


+

√
 ⇒ 0 = 1

2


+


+

√

−12

1 + 1
2


+

√

−12

1 + 1
2
−12


43. () = (2 + ) ⇒

0() = (2 + )−1 · 


(2 + ) = (2 + )−1 · 2(ln ) ·  = 22(ln )(2 + )−1

44.  = 23
4 ⇒

0 = 23
4

(ln 2)



34



= 23
4

(ln 2) 34


(ln 3)



4 = 23

4

(ln 2) 34


(ln 3) 4(ln 4) = (ln 2)(ln 3)(ln 4)434


23
4

45.  = cos

sin(tan) = cos(sin(tan))12 ⇒

0 = − sin(sin(tan))12 · 


(sin(tan))12 = − sin(sin(tan))12 · 1

2
(sin(tan))−12 · 


(sin(tan))

=
− sinsin(tan)
2

sin(tan)

· cos(tan) · 


tan =

− sinsin(tan)
2

sin(tan)

· cos(tan) · sec2() · 

=
− cos(tan) sec2() sinsin(tan)

2

sin(tan)

46.  =

+ (+ sin2 )3

4 ⇒ 0 = 4

+ (+ sin2 )3

3 · 1 + 3(+ sin2 )2 · (1 + 2 sin cos)
47.  = cos(sin 3) ⇒ 0 = − sin(sin 3) · (cos 3) · 3 = −3 cos 3 sin(sin 3) ⇒

00 = −3 [(cos 3) cos(sin 3)(cos 3) · 3 + sin(sin 3)(− sin 3) · 3] = −9 cos2(3) cos(sin 3) + 9(sin 3) sin(sin 3)

48.  =
1

(1 + tan)2
= (1 + tan)−2 ⇒ 0 = −2(1 + tan)−3 sec2  = −2 sec2 

(1 + tan)3
.

Using the Product Rule with 0 =
−2(1 + tan)−3 (sec)2, we get

00 = −2(1 + tan)−3 · 2(sec)(sec tan) + (sec)2 · 6(1 + tan)−4 sec2 

= 2 sec2  (1 + tan)−4
−2(1 + tan) tan+ 3 sec2  

2 is the lesser exponent for sec
and−4 for (1 + tan)


= 2 sec2  (1 + tan)−4

−2 tan− 2 tan2 + 3(tan2 + 1)
=
2 sec2 


tan2 − 2 tan+ 3
(1 + tan)4

49.  =
√
1− sec  ⇒ 0 = 1

2
(1− sec )−12(− sec  tan ) = − sec  tan 

2
√
1− sec  .

Using the Product Rule with 0 =
− 1

2
sec  tan 


(1− sec )−12, we get
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202 ¤ CHAPTER 3 DIFFERENTIATION RULES

00 =
− 1

2 sec  tan 
− 1

2 (1− sec )−32(− sec  tan )

+ (1− sec )−12 − 1

2


[sec  sec2 + tan  sec  tan ].

Now factor out −1
2
sec (1− sec )−32. Note that − 3

2
is the lesser exponent on (1− sec ). Continuing,

00 = −1
2
sec  (1− sec )−32  1

2
sec  tan2 + (1− sec )(sec2 + tan2 )

= − 1
2
sec  (1− sec )−32  1

2
sec  tan2 + sec2 + tan2 − sec3 − sec  tan2 

= − 1
2
sec  (1− sec )−32 −1

2
sec  (sec2 − 1) + sec2 + (sec2 − 1)− sec3 

= − 1
2 sec  (1− sec )−32

− 3
2 sec

3 + 2 sec2 + 1
2 sec − 1


= sec  (1− sec )−32  3

4
sec3 − sec2 − 1

4
sec + 1

2


=
sec  (3 sec3 − 4 sec2 − sec + 2)

4(1− sec )32

There are many other correct forms of 00, such as 00 =
sec  (3 sec + 2)

√
1− sec 

4
. We chose to find a factored form with

only secants in the final form.

50.  = 
 ⇒ 0 = 

 · ()0 = 
 ·  ⇒

00 = 
 · ()0 +  ·




0
= 

 ·  +  ·  ·  = 
 · (1 + ) or 

+(1 + )

51.  = 2 ⇒ 0 = 2 ln 2. At (0 1), 0 = 20 ln 2 = ln 2, and an equation of the tangent line is  − 1 = (ln 2)(− 0)
or  = (ln 2)+ 1.

52.  =
√
1 + 3 = (1 + 3)12 ⇒ 0 = 1

2 (1 + 3)−12 · 32 = 32

2
√
1 + 3

. At (2 3), 0 =
3 · 4
2
√
9
= 2, and an equation of

the tangent line is  − 3 = 2(− 2), or  = 2− 1.

53.  = sin(sin) ⇒ 0 = cos(sin) · cos. At ( 0), 0 = cos(sin) · cos = cos(0) · (−1) = 1(−1) = −1, and an
equation of the tangent line is  − 0 = −1(− ), or  = −+ .

54.  = −
2 ⇒ 0 = −

2

(−2) + −
2

(1) = −
2

(−22 + 1). At (0 0), 0 = 0(1) = 1, and an equation of the

tangent line is  − 0 = 1(− 0) or  = .

55. (a)  =
2

1 + −
⇒ 0 =

(1 + −)(0)− 2(−−)
(1 + −)2

=
2−

(1 + −)2
.

At (0 1), 0 =
20

(1 + 0)2
=

2(1)

(1 + 1)2
=
2

22
=
1

2
. So an equation of the

tangent line is  − 1 = 1
2
(− 0) or  = 1

2
+ 1.

(b)

56. (a) For   0, || = , and  = () =
√
2− 2

⇒

 0() =

√
2− 2 (1)− 


1
2


(2− 2)−12(−2)√

2− 2
2 · (2− 2)12

(2− 2)12

=
(2− 2) + 2

(2− 2)32
=

2

(2− 2)32

So at (1 1), the slope of the tangent line is  0(1) = 2 and its equation is  − 1 = 2(− 1) or  = 2− 1.

(b)
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SECTION 3.4 THE CHAIN RULE ¤ 203

57. (a) () = 
√
2− 2 = (2 − 2)12 ⇒

 0() =  · 1
2
(2− 2)−12(−2) + (2− 2)12 · 1 = (2− 2)−12

−2 + (2− 2)

=
2− 22√
2− 2

(b)  0 = 0 when  has a horizontal tangent line,  0 is negative when  is

decreasing, and  0 is positive when  is increasing.

58. (a) From the graph of  , we see that there are 5 horizontal tangents, so there

must be 5 zeros on the graph of  0. From the symmetry of the graph of  ,

we must have the graph of  0 as high at  = 0 as it is low at  = . The

intervals of increase and decrease as well as the signs of  0 are indicated in

the figure.

(b) () = sin(+ sin 2) ⇒

 0() = cos(+sin 2) · 

(+sin 2) = cos(+sin 2)(1+2 cos 2)

59. For the tangent line to be horizontal,  0() = 0. () = 2 sin+ sin2  ⇒  0() = 2 cos+ 2 sin cos = 0 ⇔
2 cos(1 + sin) = 0 ⇔ cos = 0 or sin = −1, so  = 

2
+ 2 or 3

2
+ 2, where  is any integer. Now




2


= 3 and 


3
2


= −1, so the points on the curve with a horizontal tangent are 

2 + 2 3

and


3
2 + 2−1


,

where  is any integer.

60.  =
√
1 + 2 ⇒ 0 = 1

2
(1 + 2)−12 · 2 = 1√

1 + 2
. The line 6+ 2 = 1


or  = −3+ 1

2


has slope −3, so the

tangent line perpendicular to it must have slope 1
3
. Thus,

1

3
=

1√
1 + 2

⇔ √
1 + 2 = 3 ⇒ 1 + 2 = 9 ⇔

2 = 8 ⇔  = 4. When  = 4,  =

1 + 2(4) = 3, so the point is (4 3).

61.  () = (()) ⇒  0() =  0(()) · 0(), so  0(5) =  0((5)) · 0(5) =  0(−2) · 6 = 4 · 6 = 24.
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204 ¤ CHAPTER 3 DIFFERENTIATION RULES

62. () =

4 + 3() ⇒ 0() = 1

2 (4 + 3())
−12 · 3 0(), so

0(1) = 1
2 (4 + 3(1))

−12 · 3 0(1) = 1
2 (4 + 3 · 7)−12 · 3 · 4 = 6√

25
= 6

5 .

63. (a) () = (()) ⇒ 0() =  0(()) · 0(), so 0(1) =  0((1)) · 0(1) =  0(2) · 6 = 5 · 6 = 30.

(b) () = (()) ⇒ 0() = 0(()) ·  0(), so0(1) = 0((1)) ·  0(1) = 0(3) · 4 = 9 · 4 = 36.

64. (a)  () = (()) ⇒  0() =  0(()) ·  0(), so  0(2) =  0((2)) ·  0(2) =  0(1) · 5 = 4 · 5 = 20.

(b) () = (()) ⇒ 0() = 0(()) · 0(), so 0(3) = 0((3)) · 0(3) = 0(2) · 9 = 7 · 9 = 63.

65. (a) () = (()) ⇒ 0() =  0(())0(). So 0(1) =  0((1))0(1) =  0(3)0(1). To find  0(3), note that  is

linear from (2 4) to (6 3), so its slope is
3− 4
6− 2 = −

1

4
. To find 0(1), note that  is linear from (0 6) to (2 0), so its slope

is
0− 6
2− 0 = −3. Thus, 

0(3)0(1) =
− 1

4


(−3) = 3

4
.

(b) () = (()) ⇒ 0() = 0(()) 0(). So 0(1) = 0((1)) 0(1) = 0(2) 0(1), which does not exist since

0(2) does not exist.

(c) () = (()) ⇒ 0() = 0(())0(). So 0(1) = 0((1))0(1) = 0(3)0(1). To find 0(3), note that  is

linear from (2 0) to (5 2), so its slope is
2− 0
5− 2 =

2

3
. Thus, 0(3)0(1) =


2
3


(−3) = −2.

66. (a) () = (()) ⇒ 0() =  0(()) 0(). So 0(2) =  0((2)) 0(2) =  0(1) 0(2) ≈ (−1)(−1) = 1.

(b) () = (2) ⇒ 0() =  0(2) · 




2

=  0(2)(2). So 0(2) =  0(2 2)(2 · 2) = 4 0(4) ≈ 4(2) = 8.

67. The point (3 2) is on the graph of  , so (3) = 2. The tangent line at (3 2) has slope
∆

∆
=
−4
6
= −2

3
.

() =

() ⇒ 0() = 1

2 [()]
−12 ·  0() ⇒

0(3) = 1
2
[(3)]−12 ·  0(3) = 1

2
(2)−12(− 2

3
) = − 1

3
√
2
or − 1

6

√
2.

68. (a)  () = () ⇒  0() =  0()



() =  0()−1

(b) () = [()] ⇒ 0() =  [()]−1  0()

69. (a)  () = () ⇒  0() =  0()



() =  0()

(b) () = () ⇒ 0() = ()



() = () 0()

70. (a) () =  + () ⇒ 0() =  · +  0() ⇒ 0(0) = 0 · +  0(0) = + 5.

0() =  +  0() ⇒ 00() =  · +  00() ⇒ 00(0) = 20 +  00(0) = 2 − 2.

(b) () = () ⇒ 0() =  0() + () ·  ⇒ 0(0) = 0 0(0) + (0) · 0 = 5 + 3.
An equation of the tangent line to the graph of  at the point (0 (0)) = (0 (0)) = (0 3) is

 − 3 = (5 + 3)(− 0) or  = (5 + 3)+ 3.
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SECTION 3.4 THE CHAIN RULE ¤ 205

71. () = ((())) ⇒ 0() =  0((())) · 0(()) · 0(), so
0(1) =  0(((1))) · 0((1)) · 0(1) =  0((2)) · 0(2) · 4 =  0(3) · 5 · 4 = 6 · 5 · 4 = 120

72. () = (2) ⇒  0() = 0(2) 2+ (2) · 1 = 220(2) + (2) ⇒
 00() = 2200(2) 2+ 0(2) 4+ 0(2) 2 = 4300(2) + 40(2) + 20(2) = 60(2) + 4300(2)

73.  () = (3(4())) ⇒

 0() =  0(3(4())) · 


(3(4())) =  0(3(4())) · 3 0(4()) · 


(4())

=  0(3(4())) · 3 0(4()) · 4 0(), so

 0(0) =  0(3(4(0))) · 3 0(4(0)) · 4 0(0) =  0(3(4 · 0)) · 3 0(4 · 0) · 4 · 2 =  0(3 · 0) · 3 · 2 · 4 · 2 = 2 · 3 · 2 · 4 · 2 = 96.

74.  () = ((())) ⇒

 0() =  0((())) · 


((())) =  0((())) ·


 ·  0(()) · 


(()) + (()) · 1


=  0((())) · [ 0(()) · ( 0() + () · 1) + (())] , so

 0(1) =  0(((1))) · [ 0((1)) · ( 0(1) + (1)) + ((1))] =  0((2)) · [ 0(2) · (4 + 2) + (2)]

=  0(3) · [5 · 6 + 3] = 6 · 33 = 198.

75.  = 2( cos 3+ sin 3) ⇒

0 = 2(−3 sin 3+ 3 cos 3) + ( cos 3+ sin 3) · 22

= 2(−3 sin 3+ 3 cos 3+ 2 cos 3+ 2 sin 3)
= 2[(2+ 3) cos 3+ (2 − 3) sin 3] ⇒

00 = 2[−3(2+ 3) sin 3+ 3(2 − 3) cos 3] + [(2+ 3) cos 3+ (2 − 3) sin 3] · 22

= 2{[−3(2+ 3) + 2(2 − 3)] sin 3+ [3(2 − 3) + 2(2+ 3)] cos 3}
= 2[(−12− 5) sin 3+ (−5+ 12) cos 3]

Substitute the expressions for , 0, and 00 in 00 − 40 + 13 to get
00 − 40 + 13 = 2[(−12− 5) sin 3+ (−5+ 12) cos 3]

− 42[(2+ 3) cos 3+ (2 − 3) sin 3] + 132( cos 3+ sin 3)

= 2[(−12− 5 − 8 + 12+ 13) sin 3+ (−5+ 12 − 8− 12 + 13) cos 3]
= 2[(0) sin 3+ (0) cos 3] = 0

Thus, the function  satisfies the differential equation 00 − 40 + 13 = 0.

76.  =  ⇒ 0 =  ⇒ 00 = 2. Substituting , 0, and 00 into 00 − 40 +  = 0 gives us

2 − 4 +  = 0 ⇒ (2 − 4 + 1) = 0. Since  6= 0, we must have

2 − 4 + 1 = 0 ⇒  =
4±√16− 4

2
= 2±√3.
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206 ¤ CHAPTER 3 DIFFERENTIATION RULES

77. The use of,2,   , is just a derivative notation (see text page 159). In general,(2) = 2 0(2),

2(2) = 4 00(2),   , (2) = 2 ()(2). Since () = cos and 50 = 4(12) + 2, we have

 (50)() =  (2)() = − cos, so50 cos 2 = −250 cos 2.

78. () = −,  0() = − − − = (1− )−,  00() = −− + (1− )(−−) = (− 2)−. Similarly,

 000() = (3− )−,  (4)() = (− 4)−,   ,  (1000)() = (− 1000)−.

79. () = 10 + 1
4
sin(10) ⇒ the velocity after  seconds is () = 0() = 1

4
cos(10)(10) = 5

2
cos(10) cms.

80. (a)  =  cos(+ ) ⇒ velocity = 0 = − sin(+ ).

(b) If  6= 0 and  6= 0, then 0 = 0 ⇔ sin(+ ) = 0 ⇔ +  =  ⇔  =
 − 


,  an integer.

81. (a) () = 40 + 035 sin
2

54
⇒ 


=


035 cos

2

54


2

54


=
07

54
cos

2

54
=
7

54
cos

2

54

(b) At  = 1,



=
7

54
cos

2

54
≈ 016.

82. () = 12 + 28 sin

2
365
(− 80) ⇒ 0() = 28 cos


2
365
(− 80) 2

365


.

On March 21,  = 80, and 0(80) ≈ 00482 hours per day. On May 21,  = 141, and 0(141) ≈ 002398, which is
approximately one-half of 0(80).

83. () = 2−15 sin 2 ⇒
() = 0() = 2[−15(cos 2)(2) + (sin 2)−15(−15)] = 2−15(2 cos 2− 15 sin 2)

84. (a) lim
→∞

() = lim
→∞

1

1 + −
=

1

1 +  · 0 = 1, since   0 ⇒ −→ −∞ ⇒ − → 0.

(b) () = (1 + −)−1 ⇒ 


= −(1 + −)−2(−−) = −

(1 + −)2

(c)
From the graph of () = (1 + 10−05)−1, it seems that () = 08

(indicating that 80% of the population has heard the rumor) when

 ≈ 74 hours.

85. (a) Use () =  with  = 00225 and  = −00467 to get 0() = ( · +  · 1) = (+ 1).

0(10) = 00225(0533)−0467 ≈ 00075, so the BAC was increasing at approximately 00075 (mgmL)min after
10 minutes.
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SECTION 3.4 THE CHAIN RULE ¤ 207

(b) A half an hour later gives us  = 10 + 30 = 40. 0(40) = 00225(−0868)−1868 ≈ −00030, so the BAC was
decreasing at approximately 00030 (mgmL)min after 40 minutes.

86.  () = (143653) · (101395) ⇒  0() = (143653) · (101395)(ln 101395). The units for  0() are millions of

people per year. The rates of increase for 1920, 1950, and 2000 are  0(20) ≈ 2625,  0(50) ≈ 3978, and  0(100) ≈ 7953,
respectively.

87. By the Chain Rule, () =



=








=




() = ()




. The derivative  is the rate of change of the velocity

with respect to time (in other words, the acceleration) whereas the derivative  is the rate of change of the velocity with

respect to the displacement.

88. (a) The derivative  represents the rate of change of the volume with respect to the radius and the derivative 

represents the rate of change of the volume with respect to time.

(b) Since  =
4

3
3,




=








= 42




.

89. (a) Using a calculator or CAS, we obtain the model =  with  ≈ 1000124369 and  ≈ 0000045145933.

(b) Use 0() =  ln  (from Formula 5) with the values of  and  from part (a) to get 0(004) ≈ −67063 A.

The result of Example 2.1.2 was−670 A.

90. (a)  =  with  = 4502714× 10−20 and  = 1029953851,
where  is measured in thousands of people. The fit appears to be very good.

(b) For 1800: 1 =
5308− 3929
1800− 1790 = 1379,2 =

7240− 5308
1810− 1800 = 1932.

So  0(1800) ≈ (1 +2)2 = 16555 thousand peopleyear.

For 1850: 1 =
23,192− 17,063
1850− 1840 = 6129,2 =

31,443− 23,192
1860− 1850 = 8251.

So  0(1850) ≈ (1 +2)2 = 719 thousand peopleyear.

(c) Using  0() =  ln  (from Formula 7) with the values of  and  from part (a), we get  0(1800) ≈ 15685 and
 0(1850) ≈ 68607. These estimates are somewhat less than the ones in part (b).

(d)  (1870) ≈ 41,94656. The difference of 34 million people is most likely due to the Civil War (1861–1865).

91. (a) Derive gives 0() =
45(− 2)8
(2+ 1)10

without simplifying. With either Maple or Mathematica, we first get

0() = 9
(− 2)8
(2+ 1)9

− 18 (− 2)
9

(2+ 1)10
, and the simplification command results in the expression given by Derive.

(b) Derive gives 0 = 2(3 − + 1)3(2+ 1)4(173 + 62 − 9+ 3) without simplifying. With either Maple or
Mathematica, we first get 0 = 10(2+ 1)4(3 − + 1)4 + 4(2+ 1)5(3 − + 1)3(32 − 1). If we use
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208 ¤ CHAPTER 3 DIFFERENTIATION RULES

Mathematica’s Factor or Simplify, or Maple’s factor, we get the above expression, but Maple’s simplify gives

the polynomial expansion instead. For locating horizontal tangents, the factored form is the most helpful.

92. (a) () =


4 − + 1

4 + + 1

12
. Derive gives  0() =

(34 − 1)


4 − + 1

4 + + 1
(4 + + 1)(4 − + 1)

whereas either Maple or Mathematica

give  0 () =
34 − 1

4 − + 1

4 + + 1
(4 + + 1)2

after simplification.

(b)  0() = 0 ⇔ 34 − 1 = 0 ⇔  = ± 4


1
3
≈ ±07598.

(c) Yes.  0() = 0 where  has horizontal tangents.  0 has two maxima and

one minimum where  has inflection points.

93. (a) If  is even, then () = (−). Using the Chain Rule to differentiate this equation, we get

 0() =  0(−) 


(−) = − 0(−). Thus,  0(−) = − 0(), so  0 is odd.

(b) If  is odd, then () = −(−). Differentiating this equation, we get  0() = − 0(−)(−1) =  0(−), so  0 is
even.

94.


()

()

0
=

() [()]−1

0
=  0() [()]−1 + (−1) [()]−2 0()()

=
 0()
()

− ()0()
[()]2

=
 0()()− ()0()

[()]2

This is an alternative derivation of the formula in the Quotient Rule. But part of the purpose of the Quotient Rule is to show

that if  and  are differentiable, so is . The proof in Section 3.2 does that; this one doesn’t.

95. (a)



(sin  cos) =  sin−1  cos cos+ sin  (− sin) [Product Rule]

=  sin−1  (cos cos− sin sin) [factor out  sin−1 ]

=  sin−1  cos(+ ) [Addition Formula for cosine]

=  sin−1  cos[(+ 1)] [factor out ]

(b)



(cos  cos) =  cos−1  (− sin) cos+ cos  (− sin) [Product Rule]

= − cos−1  (cos sin+ sin cos) [factor out − cos−1 ]
= − cos−1  sin(+ ) [Addition Formula for sine]

= − cos−1  sin[(+ 1)] [factor out ]

96. “The rate of change of 5 with respect to  is eighty times the rate of change of  with respect to ” ⇔



5 = 80




⇔ 54




= 80




⇔ 54 = 80 (Note that  6= 0 since the curve never has a

horizontal tangent) ⇔ 4 = 16 ⇔  = 2 (since   0 for all )
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APPLIED PROJECT WHERE SHOULD A PILOT START DESCENT? ¤ 209

97. Since ◦ =



180


 rad, we have




(sin ◦) =






sin 

180


= 

180
cos 

180
 = 

180
cos ◦.

98. (a) () = || = √2 = (2)12 ⇒  0() = 1
2
(2)−12(2) = 

√
2 =  || for  6= 0.

 is not differentiable at  = 0.

(b) () = |sin| =
√
sin2  ⇒

 0() = 1
2 (sin

2 )−122 sin cos =
sin

|sin| cos

=


cos if sin  0

− cos if sin  0

 is not differentiable when  = ,  an integer.

(c) () = sin || = sin√2 ⇒

0() = cos || · 

|| =


|| cos =

cos if   0

− cos if   0

 is not differentiable at 0.

99. The Chain Rule says that



=








, so

2

2
=











=















=















+















[Product Rule]

=




















+





2

2
=

2

2






2
+





2

2

100. From Exercise 99,
2

2
=

2

2






2
+





2

2
⇒

3

3
=





2

2
=






2

2






2
+










2

2



=







2

2






2
+











2
2

2
+












2

2
+







2

2






=







2

2











2
+ 2





2

2
2

2
+

















2

2


+

3

3




=
3

3






3
+ 3





2

2
2

2
+





3

3

APPLIED PROJECT Where Should a Pilot Start Descent?

1. Condition (i) will hold if and only if all of the following four conditions hold:

()  (0) = 0

()  0(0) = 0 (for a smooth landing)

()  0() = 0 (since the plane is cruising horizontally when it begins its descent)

()  () = .
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210 ¤ CHAPTER 3 DIFFERENTIATION RULES

First of all, condition  implies that  (0) =  = 0, so  () = 3 + 2 +  ⇒  0() = 32 + 2+ . But

 0(0) =  = 0 by condition . So  0() = 32 + 2 =  (3+ 2). Now by condition , 3+ 2 = 0 ⇒  = −2
3
.

Therefore,  () = −2
3
3 + 2. Setting  () =  for condition , we get  () = −2

3
3 + 2 =  ⇒

−2
3
2 + 2 =  ⇒ 1

3
2 =  ⇒  =

3

2
⇒  = −2

3
. So  =  () = −2

3
3 +

3

2
2.

2. By condition (ii),



= − for all , so  () = − . Condition (iii) states that

22

 ≤ . By the Chain Rule,

we have



=








= −2

3


32

 

+
3

2
(2)




=
62

3
− 6

2
(for  ≤ ) ⇒

2

2
=
6

3
(2)




− 6

2



= −12

2

3
+

62

2
. In particular, when  = 0,  =  and so

2

2


=0

= −12
2

3
+

62

2
= −6

2

2
. Thus,

22


=0

=
62

2
≤ . (This condition also follows from taking  = 0.)

3. We substitute  = 860 mih2,  = 35,000 ft× 1 mi
5280 ft

, and  = 300 mih into the result of part (b):

6

35,000 · 1

5280


(300)2

2
≤ 860 ⇒  ≥ 300


6 · 35,000
5280 · 860 ≈ 645 miles.

4. Substituting the values of  and  in Problem 3 into

 () = −2
3

3 +
3

2
2 gives us  () = 3 + 2,

where  ≈ −4937× 10−5 and  ≈ 478× 10−3.

3.5 Implicit Differentiation

1. (a)



(92 − 2) =




(1) ⇒ 18− 2 0 = 0 ⇒ 2 0 = 18 ⇒ 0 =

9



(b) 92 − 2 = 1 ⇒ 2 = 92 − 1 ⇒  = ±√92 − 1, so 0 = ±1
2
(92 − 1)−12(18) = ± 9√

92 − 1 .

(c) From part (a), 0 =
9


=

9

±√92 − 1 , which agrees with part (b).

2. (a)



(22 + + ) =




(1) ⇒ 4+ 1 + 0 +  · 1 = 0 ⇒ 0 = −4−  − 1 ⇒ 0 = −4+  + 1



(b) 22 + +  = 1 ⇒  = 1− 22 −  ⇒  =
1


− 2− 1, so 0 = − 1

2
− 2

(c) From part (a),

0 = −4+  + 1


= −4− 1


 − 1


= −4− 1




1


− 2− 1− 1




= −4− 1

2
+ 2 +

1


− 1


= − 1

2
− 2, which

agrees with part (b).
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SECTION 3.5 IMPLICIT DIFFERENTIATION ¤ 211

3. (a)




√
+

√


=




(1) ⇒ 1

2
−12 +

1

2
−120 = 0 ⇒ 1

2
√

0 = − 1

2
√


⇒ 0 = −
√
√


(b)
√
+

√
 = 1 ⇒ √

 = 1−√ ⇒  = (1−√ )2 ⇒  = 1 − 2√+ , so

0 = −2 · 1
2
−12 + 1 = 1− 1√


.

(c) From part (a), 0 = −
√
√

= −1−

√
√


[from part (b)] = − 1√


+ 1, which agrees with part (b).

4. (a)





2


− 1




=




(4) ⇒ −2−2 + −20 = 0 ⇒ 1

2
0 =

2

2
⇒ 0 =

22

2

(b)
2


− 1


= 4 ⇒ 1


=
2


− 4 ⇒ 1


=
2− 4


⇒  =



2− 4 , so

0 =
(2− 4)(1)− (−4)

(2− 4)2 =
2

(2− 4)2

or

1

2(1− 2)2

.

(c) From part (a), 0 =
22

2
=

2




2− 4
2

2
[from part (b)] =

22

2(2− 4)2 =
2

(2− 4)2 , which agrees with part (b).

5.



(2 − 4 + 2) =




(4) ⇒ 2− 4[0 + (1)] + 2 0 = 0 ⇒ 2 0 − 40 = 4 − 2 ⇒

0( − 2) = 2 −  ⇒ 0 =
2 − 

 − 2

6.



(22 +  − 2) =




(2) ⇒ 4+ 0 + (1)− 2 0 = 0 ⇒ 0 − 2 0 = −4−  ⇒

(− 2)0 = −4−  ⇒ 0 =
−4− 

− 2

7.



(4 + 22 + 3) =




(5) ⇒ 43 + 2 · 2 0 + 2 · 2+320 = 0 ⇒ 22 0 +320 = −43 − 22 ⇒

(22 + 32)0 = −43 − 22 ⇒ 0 =
−43 − 22
22 + 32

= −2(2
2 + 2)

(22 + 3)

8.



(3 − 2 + 3) =




(1) ⇒ 32 −  · 2 0 − 2 · 1 + 320 = 0 ⇒ 320 − 2  0 = 2 − 32 ⇒

(32 − 2) 0 = 2 − 32 ⇒ 0 =
2 − 32
32 − 2 =

2 − 32
(3 − 2)

9.





2

+ 


=




(2 + 1) ⇒ (+ )(2)− 2(1 + 0)

(+ )2
= 2 0 ⇒

22 + 2 − 2 − 2 0 = 2(+ )2 0 ⇒ 2 + 2 = 2(+ )2 0 + 2 0 ⇒

(+ 2) = [2(2 + 2 + 2) + 2] 0 ⇒ 0 =
(+ 2)

22 + 42 + 23 + 2

Or: Start by clearing fractions and then differentiate implicitly.

10.



() =




(− ) ⇒  0 +  · 1 = 1− 0 ⇒  0 + 0 = 1−  ⇒ 0( + 1) = 1−  ⇒

0 =
1− 

 + 1
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212 ¤ CHAPTER 3 DIFFERENTIATION RULES

11.



( cos) =




(2 + 2) ⇒ (− sin) + cos · 0 = 2+ 2 0 ⇒ cos · 0 − 2 0 = 2+  sin ⇒

0(cos− 2) = 2+  sin ⇒ 0 =
2+  sin

cos− 2

12.



cos() =




(1 + sin ) ⇒ − sin()(0 +  · 1) = cos  · 0 ⇒ −0 sin()− cos  · 0 =  sin() ⇒

0[− sin()− cos ] =  sin() ⇒ 0 =
 sin()

− sin()− cos  = −
 sin()

 sin() + cos 

13.




√
+  =






4 + 4

 ⇒ 1
2
(+ )−12 (1 + 0) = 43 + 430 ⇒

1

2
√
+ 

+
1

2
√
+ 

0 = 43 + 430 ⇒ 1

2
√
+ 

− 43 = 430 − 1

2
√
+ 

0 ⇒

1− 83√+ 

2
√
+ 

=
83
√
+  − 1

2
√
+ 

0 ⇒ 0 =
1− 83√+ 

83
√
+  − 1

14.



( sin) =




(+ ) ⇒  cos+ sin · 0 = 1 + 0 +  · 1 ⇒

 sin · 0 − 0 = 1 +  −  cos ⇒ 0( sin− ) = 1 +  −  cos ⇒ 0 =
1 +  −  cos

 sin− 

15.



() =




( − ) ⇒  · 









= 1 − 0 ⇒

 ·  · 1−  · 0
2

= 1− 0 ⇒  · 1

− 

2
· 0 = 1− 0 ⇒ 0 − 

2
· 0 = 1− 


⇒

0

1− 

2


=

 − 


⇒ 0 =

 − 



2 − 

2

=
( − )

2 − 

16.



() =






2 + 2 ⇒ 0 + (1) = 1

2


2 + 2

−12
(2+ 2 0) ⇒

0 +  =


2 + 2
+


2 + 2

0 ⇒ 0 − 
2 + 2

0 =


2 + 2
−  ⇒



2 + 2 − 
2 + 2

0 =
− 


2 + 2

2 + 2
⇒ 0 =

− 

2 + 2



2 + 2 − 

17.



tan−1(2) =




(+ 2) ⇒ 1

1 + (2)2
(20 +  · 2) = 1 +  · 2 0 + 2 · 1 ⇒

2

1 + 42
0 − 2 0 = 1 + 2 − 2

1 + 42
⇒ 0


2

1 + 42
− 2


= 1 + 2 − 2

1 + 42
⇒

0 =
1+ 2 − 2

1 + 42

2

1 + 42
− 2

or 0 =
1 + 42 + 2 + 44 − 2

2 − 2 − 253
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18.



( sin  +  sin) =




(1) ⇒  cos  · 0 + sin  · 1 +  cos+ sin · 0 = 0 ⇒

 cos  · 0 + sin · 0 = − sin  −  cos ⇒ 0( cos  + sin) = − sin  −  cos ⇒ 0 =
− sin  −  cos

 cos  + sin

19.



sin() =




cos(+ ) ⇒ cos() · (0 +  · 1) = − sin(+ ) · (1 + 0) ⇒

 cos() 0 +  cos() = − sin(+ )− 0 sin(+ ) ⇒
 cos() 0 + 0 sin(+ ) = − cos()− sin(+ ) ⇒

[ cos() + sin(+ )] 0 = −1 [ cos() + sin(+ )] ⇒ 0 = − cos() + sin(+ )

 cos() + sin(+ )

20. tan(− ) =


1 + 2
⇒ (1 + 2) tan(− ) =  ⇒ (1 + 2) sec2(− ) · (1− 0) + tan(− ) · 2 = 0 ⇒

(1 + 2) sec2( − ) − (1 + 2) sec2( − ) · 0 + 2 tan(− ) = 0 ⇒

(1 + 2) sec2( − ) + 2 tan( − ) =

1 + (1 + 2) sec2(− )

 · 0 ⇒

0 =
(1 + 2) sec2(− ) + 2 tan(− )

1 + (1 + 2) sec2(− )

21.





() + 2[()]3


=




(10) ⇒  0() + 2 · 3[()]2 ·  0() + [()]3 · 2 = 0. If  = 1, we have

 0(1) + 12 · 3[(1)]2 ·  0(1) + [(1)]3 · 2(1) = 0 ⇒  0(1) + 1 · 3 · 22 ·  0(1) + 23 · 2 = 0 ⇒

 0(1) + 12 0(1) = −16 ⇒ 13 0(1) = −16 ⇒  0(1) = −16
13
.

22.



[() +  sin ()] =




(2) ⇒ 0() +  cos () · 0() + sin () · 1 = 2. If  = 0, we have

0(0) + 0 + sin (0) = 2(0) ⇒ 0(0) + sin 0 = 0 ⇒ 0(0) + 0 = 0 ⇒ 0(0) = 0.

23.



(42 − 3 + 23) =




(0) ⇒ 4 · 2 + 2 · 43 0 − (3 · 1 +  · 32 0) + 2( · 32 + 3 · 0) = 0 ⇒

432 0 − 32 0 + 23 0 = −24 + 3 − 62 ⇒ (432 − 32 + 23)0 = −24 + 3 − 62 ⇒

0 =



=
−24 + 3 − 62
432 − 32 + 23

24.



( sec) =




( tan ) ⇒  · sec tan · 0 + sec · 1 =  · sec2  + tan  · 0 ⇒

 sec tan · 0 − tan  · 0 =  sec2  − sec ⇒ ( sec tan− tan )0 =  sec2  − sec ⇒

0 =



=

 sec2  − sec
 sec tan− tan 

25.  sin 2 =  cos 2 ⇒  · cos 2 · 2 + sin 2 · 0 = (− sin 2 · 20) + cos(2) · 1 ⇒
sin 2 · 0 + 2 sin 2 · 0 = −2 cos 2+ cos 2 ⇒ 0(sin 2+ 2 sin 2) = −2 cos 2+ cos 2 ⇒
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214 ¤ CHAPTER 3 DIFFERENTIATION RULES

0 =
−2 cos 2+ cos 2
sin 2+ 2 sin 2

. When  = 
2
and  = 

4
, we have 0 =

(−2)(−1) + 0
0 +  · 1 =

2


=
1

2
, so an equation of the

tangent line is  − 
4
= 1

2
(− 

2
), or  = 1

2
.

26. sin(+ ) = 2− 2 ⇒ cos(+ ) · (1 + 0) = 2− 20 ⇒ cos(+ ) · 0 + 20 = 2− cos(+ ) ⇒

0[cos(+ ) + 2] = 2− cos(+ ) ⇒ 0 =
2− cos(+ )

cos(+ ) + 2
. When  =  and  = , we have 0 =

2− 1
1 + 2

=
1

3
, so

an equation of the tangent line is  −  = 1
3
(− ), or  = 1

3
+ 2

3
.

27. 2 − − 2 = 1 ⇒ 2− (0 +  · 1)− 2 0 = 0 ⇒ 2− 0 − − 2 0 = 0 ⇒ 2−  = 0 +2 0 ⇒

2−  = (+ 2) 0 ⇒ 0 =
2− 

+ 2
. When  = 2 and  = 1, we have 0 =

4− 1
2 + 2

=
3

4
, so an equation of the tangent

line is  − 1 = 3
4
(− 2), or  = 3

4
− 1

2
.

28. 2 + 2 + 42 = 12 ⇒ 2+ 20 + 2 + 8 0 = 0 ⇒ 2 0 + 8 0 = −2− 2 ⇒

(+ 4) 0 = −−  ⇒ 0 = − + 

+ 4
. When  = 2 and  = 1, we have 0 = −2 + 1

2 + 4
= −1

2
, so an equation of the

tangent line is  − 1 = − 1
2
(− 2) or  = − 1

2
+ 2.

29. 2 + 2 = (22 + 22 − )2 ⇒ 2+ 2 0 = 2(22 + 22 − )(4+ 4 0 − 1). When  = 0 and  = 1
2
, we have

0 + 0 = 2( 1
2
)(20 − 1) ⇒ 0 = 20 − 1 ⇒ 0 = 1, so an equation of the tangent line is  − 1

2
= 1(− 0)

or  = + 1
2
.

30. 23 + 23 = 4 ⇒ 2
3
−13 + 2

3
−130 = 0 ⇒ 1

3
√

+

0

3


= 0 ⇒ 0 = −

3



3
√

. When  = −3√3

and  = 1, we have 0 = − 1−3√3 13 = −
−3√3 23
−3√3 =

3

3
√
3
=

1√
3
, so an equation of the tangent line is

 − 1 = 1√
3


+ 3

√
3

or  = 1√

3
+ 4.

31. 2(2 + 2)2 = 25(2 − 2) ⇒ 4(2 + 2)(2 + 2 0) = 25(2− 2 0) ⇒

4(+  0)(2 + 2) = 25(−  0) ⇒ 4 0(2 + 2) + 250 = 25− 4(2 + 2) ⇒

0 =
25− 4(2 + 2)

25 + 4(2 + 2)
. When  = 3 and  = 1, we have 0 = 75− 120

25+40
= − 45

65
= − 9

13
,

so an equation of the tangent line is  − 1 = − 9
13
(− 3) or  = − 9

13
+ 40

13
.

32. 2(2 − 4) = 2(2 − 5) ⇒ 4 − 42 = 4 − 52 ⇒ 43 0 − 8 0 = 43 − 10.
When  = 0 and  = −2, we have−320 + 160 = 0 ⇒ −160 = 0 ⇒ 0 = 0, so an equation of the tangent line is

 + 2 = 0(− 0) or  = −2.
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33. (a) 2 = 54 − 2 ⇒ 2 0 = 5(43)− 2 ⇒ 0 =
103 − 


.

So at the point (1 2) we have 0 =
10(1)3 − 1

2
=
9

2
, and an equation

of the tangent line is  − 2 = 9
2 (− 1) or  = 9

2− 5
2 .

(b)

34. (a) 2 = 3 + 32 ⇒ 2 0 = 32 + 3(2) ⇒ 0 =
32 + 6

2
. So at the point (1−2) we have

0 =
3(1)2 + 6(1)

2(−2) = −9
4
, and an equation of the tangent line is  + 2 = −9

4 (− 1) or  = − 9
4+

1
4 .

(b) The curve has a horizontal tangent where 0 = 0 ⇔
32 + 6 = 0 ⇔ 3(+ 2) = 0 ⇔  = 0 or  = −2.
But note that at  = 0,  = 0 also, so the derivative does not exist.

At  = −2, 2 = (−2)3 + 3(−2)2 = −8 + 12 = 4, so  = ±2.
So the two points at which the curve has a horizontal tangent are

(−2−2) and (−2 2).

(c)

35. 2 + 42 = 4 ⇒ 2 + 8 0 = 0 ⇒ 0 = −(4) ⇒

00 = −1
4

 · 1−  · 0
2

= −1
4

 − [−(4)]
2

= −1
4

42 + 2

43
= −1

4

4

43


since  and  must satisfy the
original equation 2 + 42 = 4



Thus, 00 = − 1

43
.

36. 2 +  + 2 = 3 ⇒ 2+ 0 +  + 2 0 = 0 ⇒ (+ 2)0 = −2−  ⇒ 0 =
−2− 

+ 2
.

Differentiating 2+ 0 +  + 2 0 = 0 to find 00 gives 2 + 00 + 0 + 0 + 2 00 + 200 = 0 ⇒

(+ 2) 00 = −2− 20 − 2(0)2 = −2

1− 2+ 

+ 2
+


2+ 

+ 2

2
⇒

00 = − 2

+ 2


(+ 2)2 − (2+ )(+ 2) + (2+ )2

(+ 2)2



= − 2

(+ 2)3
(2 + 4 + 42 − 22 − 4 −  − 22 + 42 + 4 + 2)

= − 2

(+ 2)3
(32 + 3 + 32) = − 2

(+ 2)3
(9)


since  and  must satisfy the

original equation 2 +  + 2 = 3



Thus, 00 = − 18

(+ 2)3
.
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216 ¤ CHAPTER 3 DIFFERENTIATION RULES

37. sin  + cos = 1 ⇒ cos  · 0 − sin = 0 ⇒ 0 =
sin

cos 
⇒

00 =
cos  cos− sin(− sin ) 0

(cos )2
=
cos  cos+ sin sin (sin cos )

cos2 

=
cos2  cos+ sin2  sin 

cos2  cos 
=
cos2  cos+ sin2  sin 

cos3 

Using sin  + cos = 1, the expression for 00 can be simplified to 00 = (cos2 + sin ) cos3 

38. 3 − 3 = 7 ⇒ 32 − 320 = 0 ⇒ 0 =
2

2
⇒

00 =
2(2)− 2(2 0)

(2)2
=
2[ − (22)]

4
=
2( − 32)

3
=
2(3 − 3)

32
=
2(−7)
5

=
−14
5

39. If  = 0 in  +  = , then we get 0 +  = , so  = 1 and the point where  = 0 is (0 1). Differentiating implicitly

with respect to  gives us 0 +  · 1 + 0 = 0. Substituting 0 for  and 1 for  gives us

0 + 1 + 0 = 0 ⇒ 0 = −1 ⇒ 0 = −1. Differentiating 0 +  + 0 = 0 implicitly with respect to  gives

us 00 + 0 · 1 + 0 + 00 + 0 · 0 = 0. Now substitute 0 for , 1 for , and −1 for 0.

0 +


−1



+


−1



+ 00 +


−1



()


−1



= 0 ⇒ −2


+ 00 +

1


= 0 ⇒ 00 =

1


⇒ 00 =

1

2
.

40. If  = 1 in 2 + + 3 = 1, then we get 1+ + 3 = 1 ⇒ 3 +  = 0 ⇒ (2 +1) ⇒  = 0, so the point

where  = 1 is (1 0). Differentiating implicitly with respect to  gives us 2+ 0 +  · 1 + 32 · 0 = 0. Substituting 1 for
 and 0 for  gives us 2+ 0 +0+ 0 = 0 ⇒ 0 = −2. Differentiating 2+ 0 + +320 = 0 implicitly with respect

to  gives us 2 + 00 + 0 · 1 + 0 + 3(200 + 0 · 20) = 0. Now substitute 1 for , 0 for , and −2 for 0.
2 + 00 + (−2) + (−2) + 3(0 + 0) = 0 ⇒ 00 = 2. Differentiating 2 + 00 + 20 + 3200 + 6(0)2 = 0 implicitly

with respect to  gives us 000 + 00 · 1 + 200 + 3(2000 + 00 · 20) + 6[ · 2000 + (0)20] = 0. Now substitute 1 for ,
0 for , −2 for 0, and 2 for 00. 000 + 2 + 4 + 3(0 + 0) + 6[0 + (−8)] = 0 ⇒ 000 = −2− 4 + 48 = 42.

41. (a) There are eight points with horizontal tangents: four at  ≈ 157735 and
four at  ≈ 042265.

(b) 0 =
32 − 6+ 2

2(23 − 32 −  + 1)
⇒ 0 = −1 at (0 1) and 0 = 1

3 at (0 2).

Equations of the tangent lines are  = −+ 1 and  = 1
3
+ 2.

(c) 0 = 0 ⇒ 32 − 6+ 2 = 0 ⇒  = 1± 1
3

√
3

(d) By multiplying the right side of the equation by − 3, we obtain the first
graph. By modifying the equation in other ways, we can generate the other

graphs.

(2 − 1)( − 2)
= (− 1)(− 2)(− 3)

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 3.5 IMPLICIT DIFFERENTIATION ¤ 217

(2 − 4)( − 2)
= (− 1)(− 2)

( + 1)(2 − 1)( − 2)
= (− 1)(− 2)

( + 1)(2 − 1)( − 2)
= (− 1)(− 2)

( + 1)(2 − 1)( − 2)
= (− 1)(− 2)

(2 + 1)( − 2)
= (2 − 1)(− 2)

( + 1)(2 − 2)
= (− 1)(2 − 2)

42. (a) (b)



(23 + 2 − 5) =




(4 − 23 + 2) ⇒

620 + 2 0 − 540 = 43 − 62 + 2 ⇒

0 =
2(22 − 3+ 1)
62 + 2 − 54 =

2(2− 1)(− 1)
(6 + 2− 53) . From the graph and the

values for which 0 = 0, we speculate that there are 9 points with horizontal

tangents: 3 at  = 0, 3 at  = 1
2 , and 3 at  = 1. The three horizontal

tangents along the top of the wagon are hard to find, but by limiting the

-range of the graph (to [16 17], for example) they are distinguishable.

43. From Exercise 31, a tangent to the lemniscate will be horizontal if 0 = 0 ⇒ 25− 4(2 + 2) = 0 ⇒
[25− 4(2 + 2)] = 0 ⇒ 2 + 2 = 25

4
(1). (Note that when  is 0,  is also 0, and there is no horizontal tangent

at the origin.) Substituting 25
4
for 2 + 2 in the equation of the lemniscate, 2(2 + 2)2 = 25(2 − 2), we get

2 − 2 = 25
8 (2). Solving (1) and (2), we have 2 = 75

16 and 
2 = 25

16 , so the four points are

± 5

√
3

4 ± 5
4


.

44.
2

2
+

2

2
= 1 ⇒ 2

2
+
20

2
= 0 ⇒ 0 = − 2

2
⇒ an equation of the tangent line at (0 0) is

 − 0 =
−20
20

(− 0). Multiplying both sides by
0

2
gives

0

2
− 20

2
= −0

2
+

20
2
. Since (0 0) lies on the ellipse,

we have
0

2
+

0

2
=

20
2
+

20
2
= 1.
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218 ¤ CHAPTER 3 DIFFERENTIATION RULES

45.
2

2
− 2

2
= 1 ⇒ 2

2
− 20

2
= 0 ⇒ 0 =

2

2
⇒ an equation of the tangent line at (0 0) is

 − 0 =
20

20
(− 0). Multiplying both sides by

0

2
gives

0

2
− 20

2
=

0

2
− 20

2
. Since (0 0) lies on the hyperbola,

we have
0

2
− 0

2
=

20
2
− 20

2
= 1.

46.
√
+


 =

√
 ⇒ 1

2
√

+

0

2


= 0 ⇒ 0 = −


√


⇒ an equation of the tangent line at (0 0)

is  − 0 = −

0√
0
(− 0). Now  = 0 ⇒  = 0 −


0√
0
(−0) = 0 +

√
0

0, so the -intercept is

0 +
√
0

0. And  = 0 ⇒ −0 = −


0√
0
(− 0) ⇒ − 0 =

0
√
0
0

⇒

 = 0 +
√
0

0, so the -intercept is 0 +

√
0

0. The sum of the intercepts is

0 +
√
0

0


+

0 +

√
0

0


= 0 + 2

√
0

0 + 0 =

√
0 +


0

2
=
√


2
= .

47. If the circle has radius , its equation is 2 + 2 = 2 ⇒ 2+ 20 = 0 ⇒ 0 = −


, so the slope of the tangent line

at  (0 0) is−0

0
. The negative reciprocal of that slope is

−1
−00 =

0

0
, which is the slope of  , so the tangent line at

 is perpendicular to the radius  .

48.  =  ⇒ −10 = −1 ⇒ 0 =
−1

−1
=

−1


=
−1


=




()−1

49.  = (tan−1 )2 ⇒ 0 = 2(tan−1 )1 · 


(tan−1 ) = 2 tan−1  · 1

1 + 2
=
2 tan−1 
1 + 2

50.  = tan−1(2) ⇒ 0 =
1

1 + (2)2
· 


(2) =

1

1 + 4
· 2 = 2

1 + 4

51.  = sin−1(2 + 1) ⇒

0 =
1

1− (2+ 1)2 ·



(2+ 1) =

1
1− (42 + 4+ 1) · 2 =

2√−42 − 4 =
1√−2 − 

52. () = arccos
√
 ⇒ 0() = − 1

1− (√ )2




√
 = − 1√

1− 


1

2
−12


= − 1

2
√

√
1− 

53.  () =  sec−1(3) PR⇒

 0() =  · 1

3

(3)2 − 1




(3) + sec−1(3) · 1 = (32)

3
√
6 − 1 + sec

−1(3) =
3√

6 − 1 + sec
−1(3)
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SECTION 3.5 IMPLICIT DIFFERENTIATION ¤ 219

54.  = tan−1

−√2 + 1  ⇒

0 =
1

1 +

−√2 + 1 2


1− √

2 + 1


=

1

1 + 2 − 2√2 + 1 + 2 + 1

√
2 + 1− √
2 + 1



=

√
2 + 1− 

2

1 + 2 − 

√
2 + 1

√
2 + 1

=

√
2 + 1− 

2
√

2 + 1 (1 + 2)− (2 + 1)
 = √

2 + 1− 

2

(1 + 2)

√
2 + 1− 


=

1

2(1 + 2)

55. () = cot−1() + cot−1(1) ⇒

0() = − 1

1 + 2
− 1

1 + (1)2
· 


1


= − 1

1 + 2
− 2

2 + 1
·

− 1
2


= − 1

1 + 2
+

1

2 + 1
= 0.

Note that this makes sense because () =


2
for   0 and () =

3

2
for   0.

56. () = arcsin(1) ⇒

0() =
1

1− (1)2




1


=

1
1− 12


− 1
2


= − 1

1− 12
1√
4

= − 1√
4 − 2

= − 1
2(2 − 1) = −

1

|  |√2 − 1

57.  =  sin−1 +
√
1− 2 ⇒

0 =  · 1√
1− 2

+ (sin−1 )(1) +
1

2
(1− 2)−12(−2) = √

1− 2
+ sin−1 − √

1− 2
= sin−1 

58.  = cos−1(sin−1 ) ⇒ 0 = − 1
1− (sin−1 )2

· 

sin−1  = − 1

1− (sin−1 )2
· 1√
1− 2

59.  = arccos


+  cos

+  cos


⇒

0 = − 1
1−


+  cos

+  cos

2 (+  cos)(− sin)− (+  cos)(− sin)
(+  cos)2

=
1√

2 + 2 cos2 − 2 − 2 cos2 

(2 − 2) sin

|+  cos|

=
1√

2 − 2
√
1− cos2 

(2 − 2) sin

|+  cos| =

√
2 − 2

|+  cos|
sin

|sin|

But 0 ≤  ≤ , so |sin| = sin. Also     0 ⇒  cos ≥ −  −, so +  cos  0.

Thus 0 =

√
2 − 2

+  cos
.
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220 ¤ CHAPTER 3 DIFFERENTIATION RULES

60.  = arctan


1− 

1 + 
= arctan


1− 

1 + 

12
⇒

0 =
1

1 +


1− 

1 + 

2 · 




1− 

1 + 

12
=

1

1 +
1− 

1 + 

· 1
2


1− 

1 + 

−12
· (1 + )(−1)− (1− )(1)

(1 + )2

=
1

1 + 

1 + 
+
1− 

1 + 

· 1
2


1 + 

1− 

12
· −2
(1 + )2

=
1 + 

2
· 1
2
· (1 + )12

(1− )12
· −2
(1 + )2

=
−1

2(1− )12(1 + )12
=

−1
2
√
1− 2

61. () =
√
1− 2 arcsin ⇒  0() =

√
1− 2 · 1√

1− 2
+ arcsin · 1

2


1− 2

−12
(−2) = 1−  arcsin√

1− 2

Note that  0 = 0 where the graph of  has a horizontal tangent. Also note

that  0 is negative when  is decreasing and  0 is positive when  is

increasing.

62. () = arctan(2 − ) ⇒  0() =
1

1 + (2 − )2
· 


(2 − ) =

2− 1
1 + (2 − )2

Note that  0 = 0 where the graph of  has a horizontal tangent. Also note

that  0 is negative when  is decreasing and  0 is positive when  is

increasing.

63. Let  = cos−1 . Then cos  =  and 0 ≤  ≤  ⇒ − sin  


= 1 ⇒




= − 1

sin 
= − 1

1− cos2  = −
1√
1− 2

. [Note that sin  ≥ 0 for 0 ≤  ≤ .]

64. (a) Let  = sec−1 . Then sec  =  and  ∈ 0 2  ∪  32 . Differentiate with respect to : sec  tan 




= 1 ⇒




=

1

sec  tan 
=

1

sec 

sec2  − 1 =

1


√
2 − 1 . Note that tan

2  = sec2  − 1 ⇒ tan  =

sec2  − 1

since tan   0 when 0    
2
or     3

2
.

(b)  = sec−1  ⇒ sec  =  ⇒ sec  tan 



= 1 ⇒ 


=

1

sec  tan 
. Now tan2  = sec2  − 1 = 2 − 1,

so tan  = ±√2 − 1. For  ∈ 0 
2


,  ≥ 1, so sec  =  = || and tan  ≥ 0 ⇒




=

1


√
2 − 1 =

1

||√2 − 1 . For  ∈


2
 

,  ≤ −1, so || = − and tan  = −√2 − 1 ⇒




=

1

sec  tan 
=

1


−√2 − 1  = 1

(−)√2 − 1 =
1

||√2 − 1 .
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65. 2 + 2 = 2 is a circle with center  and +  = 0 is a line through  [assume 

and  are not both zero]. 2 + 2 = 2 ⇒ 2+ 20 = 0 ⇒ 0 = −, so the

slope of the tangent line at 0 (0 0) is −00. The slope of the line 0 is 00,

which is the negative reciprocal of −00. Hence, the curves are orthogonal, and the

families of curves are orthogonal trajectories of each other.

66. The circles 2 + 2 =  and 2 + 2 =  intersect at the origin where the tangents are vertical and horizontal [assume 

and  are both nonzero]. If (0 0) is the other point of intersection, then 20 + 20 = 0 (1) and 20 + 20 = 0 (2).

Now 2 + 2 =  ⇒ 2+ 20 =  ⇒ 0 =
− 2
2

and 2 + 2 =  ⇒

2+ 20 = 0 ⇒ 0 =
2

− 2 . Thus, the curves are orthogonal at (0 0) ⇔

− 20
20

= −− 20
20

⇔ 20 − 420 = 420 − 20 ⇔ 0 + 0 = 2(
2
0 + 20),

which is true by (1) and (2).

67.  = 2 ⇒ 0 = 2 and 2 + 22 =  [assume   0] ⇒ 2+ 40 = 0 ⇒

20 = − ⇒ 0 = − 

2()
= − 

2(2)
= − 1

2
, so the curves are orthogonal if

 6= 0. If  = 0, then the horizontal line  = 2 = 0 intersects 2 + 22 =  orthogonally

at

±√ 0


, since the ellipse 2 + 22 =  has vertical tangents at those two points.

68.  = 3 ⇒ 0 = 32 and 2 + 32 =  [assume   0] ⇒ 2+ 60 = 0 ⇒

30 = − ⇒ 0 = − 

3()
= − 

3(3)
= − 1

32
, so the curves are orthogonal if

 6= 0. If  = 0, then the horizontal line  = 3 = 0 intesects 2 + 32 =  orthogonally

at

±√ 0


, since the ellipse 2 + 32 =  has vertical tangents at those two points.

69. Since 2  2, we are assured that there are four points of intersection.

(1) 
2

2
+

2

2
= 1 ⇒ 2

2
+
20

2
= 0 ⇒ 0

2
= − 

2
⇒

0 = 1 = −2

2
.

(2) 
2

2
− 2

2
= 1 ⇒ 2

2
− 20

2
= 0 ⇒ 0

2
=



2
⇒

0 = 2 =
2

2
.

Now12 = −2

2
· 

2

2
= − 22

22
· 

2

2
(3). Subtracting equations, (1) − (2), gives us 

2

2
+

2

2
− 2

2
+

2

2
= 0 ⇒
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222 ¤ CHAPTER 3 DIFFERENTIATION RULES

2

2
+

2

2
=

2

2
− 2

2
⇒ 22 + 22

22
=

22 − 22

22
⇒ 2(2 +2)

22
=

2(2 −2)

22
(4). Since

2 − 2 = 2 +2, we have 2 −2 = 2 +2. Thus, equation (4) becomes 2

22
=

2

22
⇒ 2

2
=

22

22
, and

substituting for
2

2
in equation (3) gives us12 = − 22

22
· 

22

22
= −1. Hence, the ellipse and hyperbola are orthogonal

trajectories.

70.  = (+ )−1 ⇒ 0 = −(+ )−2 and  = (+ )13 ⇒ 0 = 1
3(+ )−23, so the curves are othogonal if the

product of the slopes is −1, that is, −1
(+ )2

· 

3(+ )23
= −1 ⇒  = 3(+ )2(+ )23 ⇒

 = 3


1



2 


2
[since 2 = (+ )−2 and 2 = 2(+ )23] ⇒  = 3


1

2


⇒ 3 = 3 ⇒  = 3

√
3.

71. (a)


 +

2

 2


( − ) =  ⇒  − +

2


− 3

 2
=  ⇒




( − + 2 −1 − 3 −2) =




( ) ⇒

 0 +  · 1− − 2 −2 ·  0 + 23 −3 ·  0 = 0 ⇒  0( − 2 −2 + 23 −3) = −  ⇒

 0 =
− 

 − 2 −2 + 23 −3
or




=

 3(−  )

 3 − 2 + 23

(b) Using the last expression for  from part (a), we get




=

(10 L)3[(1 mole)(004267 Lmole)− 10 L](25 atm)(10 L)3 − (1 mole)2(3592 L2- atm mole2)(10 L)
+ 2(1 mole)3(3592 L2- atm mole2)(004267 L mole)


=

−995733 L4
2464386541 L3- atm

≈ −404 L atm

72. (a) 2 +  + 2 + 1 = 0 ⇒ 2+ 0 +  · 1 + 20 + 0 = 0 ⇒ 0(+ 2) = −2−  ⇒ 0 =
−2− 

+ 2

(b) Plotting the curve in part (a) gives us an empty graph, that is, there are no points that satisfy the equation. If there were any

points that satisfied the equation, then  and  would have opposite signs; otherwise, all the terms are positive and their

sum can not equal 0. 2+ + 2 +1 = 0 ⇒ 2 +2+ 2 − +1 = 0 ⇒ (+ )2 = − 1. The left
side of the last equation is nonnegative, but the right side is at most −1, so that proves there are no points that satisfy the
equation.

Another solution: 2 +  + 2 + 1 = 1
2
2 +  + 1

2
2 + 1

2
2 + 1

2
2 + 1 = 1

2
(2 + 2 + 2) + 1

2
(2 + 2) + 1

= 1
2
(+ )2 + 1

2
(2 + 2) + 1 ≥ 1

Another solution: Regarding 2 +  + 2 + 1 = 0 as a quadratic in , the discriminant is 2 − 4(2 + 1) = −32 − 4.
This is negative, so there are no real solutions.

(c) The expression for 0 in part (a) is meaningless; that is, since the equation in part (a) has no solution, it does not implicitly

define a function  of , and therefore it is meaningless to consider 0.
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73. To find the points at which the ellipse 2 −  + 2 = 3 crosses the -axis, let  = 0 and solve for .

 = 0 ⇒ 2 − (0) + 02 = 3 ⇔  = ±√3. So the graph of the ellipse crosses the -axis at the points ±√3 0.
Using implicit differentiation to find 0, we get 2− 0 −  + 20 = 0 ⇒ 0(2 − ) =  − 2 ⇔ 0 =

 − 2
2 − 

.

So 0 at
√
3 0

is
0− 2√3
2(0)−√3 = 2 and 

0 at
−√3 0 is 0 + 2√3

2(0) +
√
3
= 2. Thus, the tangent lines at these points are parallel.

74. (a) We use implicit differentiation to find 0 =
 − 2
2 − 

as in Exercise 73. The slope

of the tangent line at (−1 1) is =
1− 2(−1)
2(1)− (−1) =

3

3
= 1, so the slope of the

normal line is − 1

= −1, and its equation is  − 1 = −1(+ 1) ⇔

 = −. Substituting − for  in the equation of the ellipse, we get
2 − (−) + (−)2 = 3 ⇒ 32 = 3 ⇔  = ±1. So the normal line
must intersect the ellipse again at  = 1, and since the equation of the line is

 = −, the other point of intersection must be (1−1).

(b)

75. 22 +  = 2 ⇒ 2 · 20 + 2 · 2+  · 0 +  · 1 = 0 ⇔ 0(22 + ) = −22 −  ⇔

0 = −2
2 + 

22 + 
. So −2

2 + 

22 + 
= −1 ⇔ 22 +  = 22 +  ⇔ (2 + 1) = (2 + 1) ⇔

(2 + 1)− (2 + 1) = 0 ⇔ (2 + 1)( − ) = 0 ⇔  = −1
2
or  = . But  = − 1

2
⇒

22 +  = 1
4 − 1

2 6= 2, so we must have  = . Then 22 +  = 2 ⇒ 4 + 2 = 2 ⇔ 4 + 2 − 2 = 0 ⇔

(2 + 2)(2 − 1) = 0. So 2 = −2, which is impossible, or 2 = 1 ⇔  = ±1. Since  = , the points on the curve

where the tangent line has a slope of−1 are (−1−1) and (1 1).

76. 2 + 42 = 36 ⇒ 2+ 80 = 0 ⇒ 0 = − 

4
. Let ( ) be a point on 2 + 42 = 36 whose tangent line passes

through (12 3). The tangent line is then  − 3 = − 

4
(− 12), so − 3 = − 

4
(− 12). Multiplying both sides by 4

gives 42 − 12 = −2 + 12, so 42 + 2 = 12(+ ). But 42 + 2 = 36, so 36 = 12(+ ) ⇒ +  = 3 ⇒
 = 3− . Substituting 3−  for  into 2 + 42 = 36 gives 2 + 4(3− )2 = 36 ⇔ 2 + 36− 24+ 42 = 36 ⇔
52 − 24 = 0 ⇔ (5− 24) = 0, so  = 0 or  = 24

5 . If  = 0,  = 3− 0 = 3, and if  = 24
5 ,  = 3− 24

5 = − 9
5 .

So the two points on the ellipse are (0 3) and

24
5 − 9

5


. Using

 − 3 = − 

4
(− 12) with ( ) = (0 3) gives us the tangent line

 − 3 = 0 or  = 3. With ( ) =  24
5
− 9

5


, we have

 − 3 = − 245
4(−95) (− 12) ⇔  − 3 = 2

3 (− 12) ⇔  = 2
3− 5.

A graph of the ellipse and the tangent lines confirms our results.
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224 ¤ CHAPTER 3 DIFFERENTIATION RULES

77. (a) If  = −1(), then () = . Differentiating implicitly with respect to  and remembering that  is a function of ,

we get  0()



= 1, so




=

1

 0()
⇒ 

−1
0
() =

1

 0(−1())
.

(b) (4) = 5 ⇒ −1(5) = 4. By part (a),

−1

0
(5) =

1

 0(−1(5))
=

1

 0(4)
= 1


2
3


= 3

2 .

78. (a) Assume   . Since  is an increasing function,   , and hence, +   + ; that is, ()  ()

So () = +  is an increasing function and therefore one-to-one.

(b) −1(1) =  ⇔ () = 1, so we need to find  such that () = 1. By inspection, we see that (0) = 0 + 0 = 1, so

 = 0, and hence, −1(1) = 0.

(c) (−1)0(1) =
1

 0(−1(1))
=

1

 0(0)
[by part (b)]. Now () = +  ⇒  0() = 1 + , so  0(0) = 1 + 0 = 2.

Thus, (−1)0(1) = 1
2
.

79. (a)  = () and 00 + 0 +  = 0 ⇒  00() +  0() + () = 0. If  = 0, we have 0 +  0(0) + 0 = 0,

so  0(0) = 0.

(b) Differentiating 00 + 0 +  = 0 implicitly, we get 000 + 00 · 1 + 00 + 0 +  · 1 = 0 ⇒
000 + 200 + 0 +  = 0, so  000() + 2 00() +  0() + () = 0. If  = 0, we have

0 + 2 00(0) + 0 + 1 [(0) = 1 is given] = 0 ⇒ 2 00(0) = −1 ⇒  00(0) = − 1
2 .

80. 2 + 42 = 5 ⇒ 2+ 4(20) = 0 ⇒ 0 = − 

4
. Now let  be the height of the lamp, and let ( ) be the point of

tangency of the line passing through the points (3 ) and (−5 0). This line has slope (− 0)[3− (−5)] = 1
8
. But the

slope of the tangent line through the point ( ) can be expressed as 0 = − 

4
, or as

− 0
− (−5) =



+ 5
[since the line

passes through (−5 0) and ( )], so − 

4
=



+ 5
⇔ 42 = −2 − 5 ⇔ 2 + 42 = −5. But 2 + 42 = 5

[since ( ) is on the ellipse], so 5 = −5 ⇔  = −1. Then 42 = −2 − 5 = −1− 5(−1) = 4 ⇒  = 1, since the

point is on the top half of the ellipse. So


8
=



+ 5
=

1

−1 + 5 =
1

4
⇒  = 2. So the lamp is located 2 units above the

-axis.

LABORATORY PROJECT Families of Implicit Curves

1. (a) There appear to be nine points of intersection. The “inner four” near the origin are about (±02−09) and (±03−11).
The “outer five” are about (20−89), (−28−88), (−75−77), (−78−47), and (−80 15).
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LABORATORY PROJECT FAMILIES OF IMPLICIT CURVES ¤ 225

(b) We see from the graphs with  = 5 and  = 10, and for other values of , that the curves change shape but the nine points

of intersection are the same.

2. (a) If  = 0, the graph is the unit circle. As  increases, the graph looks more diamondlike and then more crosslike (see the

graph for  ≥ 0).
For −1    0 (see the graph), there are four hyperboliclike branches as well as an ellipticlike curve bounded by

|| ≤ 1 and || ≤ 1 for values of  close to 0. As  gets closer to −1, the branches and the curve become more rectangular,
approaching the lines || = 1 and || = 1.
For  = −1, we get the lines  = ±1 and  = ±1. As  decreases, we get four test-tubelike curves (see the graph)

that are bounded by || = 1 and || = 1, and get thinner as || gets larger.

 ≥ 0 −1    0  ≤ −1

(b) The curve for  = −1 is described in part (a). When  = −1, we get 2 + 2 − 22 = 1 ⇔
0 = 22 − 2 − 2 + 1 ⇔ 0 = (2 − 1)(2 − 1) ⇔  = ±1 or  = ±1, which algebraically proves that the
graph consists of the stated lines.

(c)



(2 + 2 + 22) =




(1) ⇒ 2+ 2 0 + (2 · 2 0 + 2 · 2) = 0 ⇒

2 0 + 22 0 = −2− 22 ⇒ 2(1 + 2)0 = −2(1 + 2) ⇒ 0 = −(1 + 2)

(1 + 2)
.

For  = −1, 0 = −(1− 2)

(1− 2)
= −(1 + )(1− )

(1 + )(1− )
, so 0 = 0 when  = ±1 or  = 0 (which leads to  = ±1)

and 0 is undefined when  = ±1 or  = 0 (which leads to  = ±1). Since the graph consists of the lines  = ±1 and
 = ±1, the slope at any point on the graph is undefined or 0, which is consistent with the expression found for 0.
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226 ¤ CHAPTER 3 DIFFERENTIATION RULES

3.6 Derivatives of Logarithmic Functions

1. The differentiation formula for logarithmic functions,



(log ) =

1

 ln 
, is simplest when  =  because ln  = 1.

2. () =  ln−  ⇒  0() =  · 1

+ (ln) · 1− 1 = 1 + ln− 1 = ln

3. () = sin(ln) ⇒  0() = cos(ln) · 


ln = cos(ln) · 1


=
cos(ln)



4. () = ln(sin2 ) = ln(sin)2 = 2 ln |sin| ⇒  0() = 2 · 1

sin
· cos = 2 cot

5. () = ln
1


⇒  0() =

1

1






1




= 


− 1

2


= − 1


.

Another solution: () = ln
1


= ln 1− ln = − ln ⇒  0() = − 1


.

6.  =
1

ln
= (ln)−1 ⇒ 0 = −1(ln)−2 · 1


=

−1
(ln)2

7. () = log10 (1 + cos) ⇒  0() =
1

(1 + cos) ln 10




(1 + cos) =

− sin
(1 + cos) ln 10

8. () = log10
√
 ⇒  0() =

1√
 ln 10





√
 =

1√
 ln 10

1

2
√

=

1

2(ln 10)

Or: () = log10
√
 = log10 

12 = 1
2 log10  ⇒  0() =

1

2

1

 ln 10
=

1

2 (ln 10)

9. () = ln(−2) = ln+ ln −2 = ln− 2 ⇒ 0() =
1


− 2

10. () =
√
1 + ln  ⇒ 0() = 1

2
(1 + ln )−12




(1 + ln ) =

1

2
√
1 + ln 

· 1

=

1

2
√
1 + ln 

11.  () = (ln )2 sin  ⇒  0() = (ln )2 cos + sin  · 2 ln  · 1

= ln 


ln  cos +

2 sin 





12. () = ln

+

√
2 − 1  ⇒ 0() =

1

+
√
2 − 1


1 +

√
2 − 1


=

1

+
√
2 − 1 ·

√
2 − 1 + √
2 − 1 =

1√
2 − 1

13. () = ln
(2 + 1)5

2 + 1
= ln(2 + 1)5 − ln(2 + 1)12 = 5 ln(2 + 1)− 1

2
ln(2 + 1) ⇒

0() = 5 · 1

2 + 1
· 2− 1

2
· 1

2 + 1
· 2 = 10

2 + 1
− 

2 + 1


or

82 −  + 10

(2 + 1)(2 + 1)



14.  () =
ln 

1− 
⇒  0() =

(1− )(1)− (ln )(−1)
(1− )2

· 

=
1−  +  ln 

(1− )2

15.  () = ln ln  ⇒  0() =
1

ln 




ln  =

1

ln 
· 1

=

1

 ln 
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SECTION 3.6 DERIVATIVES OF LOGARITHMIC FUNCTIONS ¤ 227

16.  = ln
1 + − 3

 ⇒ 0 =
1

1 + − 3



(1 + − 3) =

1− 32
1 + − 3

17.  () = 2 log2  ⇒  0() = 2
1

 ln 2
+ log2  · 2 ln 2 = 2


1

 ln 2
+ log2  (ln 2)


.

Note that log2  (ln 2) =
ln 

ln 2
(ln 2) = ln  by the change of base theorem. Thus,  0() = 2


1

 ln 2
+ ln 


.

18.  = ln(csc − cot) ⇒

0 =
1

csc− cot



(csc− cot) = 1

csc− cot (− csc cot+ csc
2 ) =

csc(csc− cot)
csc− cot = csc

19.  = ln(− + −) = ln(−(1 + )) = ln(−) + ln(1 + ) = −+ ln(1 + ) ⇒

0 = −1 + 1

1 + 
=
−1− + 1

1 + 
= − 

1 + 

20. () = ln


2 − 2

2 + 2
= ln


2 − 2

2 + 2

12
=
1

2
ln


2 − 2

2 + 2


= 1

2
ln(2 − 2)− 1

2
ln(2 + 2) ⇒

0() =
1

2
· 1

2 − 2
· (−2)− 1

2
· 1

2 + 2
· (2) = 

2 − 2
− 

2 + 2
=

(2 + 2)− (2 − 2)

(2 − 2)(2 + 2)

=
3 + 2 − 3 + 2

(2 − 2)(2 + 2)
=

22

4 − 4

21.  = tan [ln(+ )] ⇒ 0 = sec2[ln(+ )] · 1

+ 
·  = sec2[ln(+ )]



+ 

22.  = log2( log5 ) ⇒

0 =
1

( log5 )(ln 2)




( log5 ) =

1

( log5 )(ln 2)


 · 1

 ln 5
+ log5 


=

1

( log5 )(ln 5)(ln 2)
+

1

(ln 2)
.

Note that log5 (ln 5) =
ln

ln 5
(ln 5) = ln by the change of base theorem. Thus, 0 =

1

 ln ln 2
+

1

 ln 2
=

1 + ln

 ln ln 2
.

23.  =
√
 ln ⇒ 0 =

√
 · 1


+ (ln)

1

2
√

=
2 + ln

2
√


⇒

00 =
2
√
 (1)− (2 + ln)(1√ )

(2
√
 )2

=
2
√
− (2 + ln)(1√ )

4
=
2− (2 + ln)√

(4)
= − ln

4
√


24.  =
ln

1 + ln
⇒ 0 =

(1 + ln)(1)− (ln)(1)
(1 + ln)2

=
1

(1 + ln)2
⇒

00 = −



[(1 + ln)2]

[(1 + ln)2]2
[Reciprocal Rule] = − · 2(1 + ln) · (1) + (1 + ln)2

2(1 + ln)4

= − (1 + ln)[2 + (1 + ln)]
2(1 + ln)4

= − 3 + ln

2(1 + ln)3

25.  = ln |sec| ⇒ 0 =
1

sec




sec =

1

sec
sec tan = tan ⇒ 00 = sec2 
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228 ¤ CHAPTER 3 DIFFERENTIATION RULES

26.  = ln(1 + ln) ⇒ 0 =
1

1 + ln
· 1

=

1

(1 + ln)
⇒

00 = −



[(1 + ln)]

[(1 + ln)]2
[Reciprocal Rule] = −(1) + (1 + ln)(1)

2(1 + ln)2
= − 1 + 1 + ln

2(1 + ln)2
= − 2 + ln

2(1 + ln)2

27. () =


1− ln(− 1) ⇒

 0() =
[1− ln(− 1)] · 1−  · −1

− 1
[1− ln(− 1)]2 =

(− 1)[1− ln(− 1)] + 

− 1
[1− ln(− 1)]2 =

− 1− (− 1) ln(− 1) + 

(− 1)[1− ln(− 1)]2

=
2− 1− (− 1) ln(− 1)
(− 1)[1− ln(− 1)]2

Dom() = { | − 1  0 and 1− ln(− 1) 6= 0} = { |   1 and ln(− 1) 6= 1}
=

 |   1 and − 1 6= 1


= { |   1 and  6= 1 + } = (1 1 + ) ∪ (1 + ∞)

28. () =
√
2 + ln = (2 + ln)12 ⇒  0() =

1

2
(2 + ln)−12 · 1


=

1

2
√
2 + ln

Dom() = { | 2 + ln ≥ 0} = { | ln ≥ −2} = { |  ≥ −2} = [−2∞).

29. () = ln(2 − 2) ⇒  0() =
1

2 − 2 (2− 2) =
2(− 1)
(− 2) .

Dom() = { | (− 2)  0} = (−∞ 0) ∪ (2∞).

30. () = ln ln ln ⇒  0() =
1

ln ln
· 1

ln
· 1

.

Dom() = { | ln ln  0} = { | ln  1} = { |   } = (∞).

31. () = ln(+ ln) ⇒  0() =
1

+ ln




(+ ln) =

1

+ ln


1 +

1




.

Substitute 1 for  to get  0(1) =
1

1 + ln 1


1 +

1

1


=

1

1 + 0
(1 + 1) = 1 · 2 = 2.

32. () = cos(ln2) ⇒  0() = − sin(ln2) 


ln2 = − sin(ln2) 1

2
(2) = −2 sin(ln

2)


.

Substitute 1 for  to get  0(1) = −2 sin(ln 1
2)

1
= −2 sin 0 = 0.

33.  = ln(2 − 3+ 1) ⇒ 0 =
1

2 − 3+ 1 · (2− 3) ⇒ 0(3) = 1
1
· 3 = 3, so an equation of a tangent line at

(3 0) is  − 0 = 3(− 3), or  = 3− 9.

34.  = 2 ln ⇒ 0 = 2 · 1

+ (ln)(2) ⇒ 0(1) = 1 + 0 = 1 , so an equation of a tangent line at (1 0) is

 − 0 = 1(− 1), or  = − 1.
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SECTION 3.6 DERIVATIVES OF LOGARITHMIC FUNCTIONS ¤ 229

35. () = sin+ ln ⇒  0() = cos+ 1.

This is reasonable, because the graph shows that  increases when  0 is

positive, and  0() = 0 when  has a horizontal tangent.

36.  =
ln


⇒ 0 =

(1)− ln
2

=
1− ln

2
.

0(1) =
1− 0
12

= 1 and 0() =
1− 1
2

= 0 ⇒ equations of tangent

lines are  − 0 = 1(− 1) or  = − 1 and  − 1 = 0(− )

or  = 1.

37. () =  + ln(cos) ⇒  0() =  +
1

cos
· (− sin) =  − tan.

 0(
4
) = 6 ⇒ − tan 

4
= 6 ⇒ − 1 = 6 ⇒  = 7.

38. () = log(3
2 − 2) ⇒  0() =

1

(32 − 2) ln · 6.

 0(1) = 3 ⇒ 1

ln 
· 6 = 3 ⇒ 2 = ln  ⇒  = 2.

39.  = (2 + 2)2(4 + 4)4 ⇒ ln  = ln[(2 + 2)2(4 + 4)4] ⇒ ln  = 2 ln(2 + 2) + 4 ln(4 + 4) ⇒
1


0 = 2 · 1

2 + 2
· 2+ 4 · 1

4 + 4
· 43 ⇒ 0 = 


4

2 + 2
+

163

4 + 4


⇒

0 = (2 + 2)2(4 + 4)4


4

2 + 2
+

163

4 + 4



40.  =
− cos2 
2 + + 1

⇒ ln  = ln
− cos2 
2 + + 1

⇒

ln  = ln − + ln | cos |2 − ln(2 + + 1) = −+ 2 ln | cos | − ln(2 + + 1) ⇒
1


0 = −1 + 2 · 1

cos
(− sin)− 1

2 + + 1
(2+ 1) ⇒ 0 = 


−1− 2 tan− 2+ 1

2 + + 1


⇒

0 = − − cos2 
2 + + 1


1 + 2 tan+

2+ 1

2 + + 1



41.  =


− 1
4 + 1

⇒ ln  = ln


− 1
4 + 1

12
⇒ ln  =

1

2
ln(− 1)− 1

2
ln(4 + 1) ⇒

1


0 =

1

2

1

− 1 −
1

2

1

4 + 1
· 43 ⇒ 0 = 


1

2(− 1) −
23

4 + 1


⇒ 0 =


− 1
4 + 1


1

2− 2 −
23

4 + 1



42.  =
√
 

2−(+ 1)23 ⇒ ln  = ln

12

2−(+ 1)23

⇒

ln  = 1
2 ln+ (

2 − ) + 2
3 ln(+ 1) ⇒ 1


0 =

1

2
· 1

+ 2− 1 + 2

3
· 1

+ 1
⇒

0 = 


1

2
+ 2− 1 + 2

3+ 3


⇒ 0 =

√
 

2−(+ 1)23

1

2
+ 2− 1 + 2

3+ 3


c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



230 ¤ CHAPTER 3 DIFFERENTIATION RULES

43.  =  ⇒ ln  = ln ⇒ ln  =  ln ⇒ 0 = (1) + (ln) · 1 ⇒ 0 = (1 + ln) ⇒
0 = (1 + ln)

44.  = cos  ⇒ ln  = lncos  ⇒ ln  = cos ln ⇒ 1


0 = cos · 1


+ ln · (− sin) ⇒

0 = 
cos


− ln sin


⇒ 0 = cos 

cos


− ln sin


45.  =  sin  ⇒ ln  = ln sin ⇒ ln  = sin ln ⇒ 0


= (sin) · 1


+ (ln)(cos) ⇒

0 = 


sin


+ ln cos


⇒ 0 =  sin 


sin


+ ln cos



46.  =
√
  ⇒ ln  = ln

√
  ⇒ ln  =  ln12 ⇒ ln  = 1

2
 ln ⇒ 1


0 =

1

2
 · 1


+ ln · 1

2
⇒

0 = 

1
2
+ 1

2
ln

 ⇒ 0 = 1
2

√
 (1 + ln)

47.  = (cos) ⇒ ln  = ln(cos) ⇒ ln  =  ln cos ⇒ 1


0 =  · 1

cos
· (− sin) + ln cos · 1 ⇒

0 = 


ln cos−  sin

cos


⇒ 0 = (cos)(ln cos−  tan)

48.  = (sin)ln  ⇒ ln  = ln(sin)ln ⇒ ln  = ln · ln sin ⇒ 1


0 = ln · 1

sin
· cos+ ln sin · 1


⇒

0 = 


ln · cos

sin
+
ln sin




⇒ 0 = (sin)ln


ln cot+

ln sin





49.  = (tan)1 ⇒ ln  = ln(tan)1 ⇒ ln  =
1


ln tan ⇒

1


0 =

1


· 1

tan
· sec2 + ln tan ·


− 1

2


⇒ 0 = 


sec2 

 tan
− ln tan

2


⇒

0 = (tan)1

sec2 

 tan
− ln tan

2


or 0 = (tan)1 · 1




csc sec− ln tan





50.  = (ln)cos  ⇒ ln  = cos ln(ln) ⇒ 0


= cos · 1

ln
· 1

+ (ln ln)(− sin) ⇒

0 = (ln)cos 
 cos
 ln

− sin ln ln


51.  = ln(2 + 2) ⇒ 0 =
1

2 + 2



(2 + 2) ⇒ 0 =

2+ 20

2 + 2
⇒ 20 + 20 = 2+ 20 ⇒

20 + 20 − 20 = 2 ⇒ (2 + 2 − 2)0 = 2 ⇒ 0 =
2

2 + 2 − 2

52.  =  ⇒  ln =  ln  ⇒  · 1

+ (ln) · 0 =  · 1


· 0 + ln  ⇒ 0 ln− 


0 = ln  − 


⇒

0 =
ln  − 

ln− 
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SECTION 3.7 RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES ¤ 231

53. () = ln(− 1) ⇒  0() =
1

(− 1) = (− 1)
−1 ⇒  00() = −(− 1)−2 ⇒  000 () = 2(− 1)−3 ⇒

 (4)() = −2 · 3(− 1)−4 ⇒ · · · ⇒  ()() = (−1)−1 · 2 · 3 · 4 · · · · · (− 1)(− 1)− = (−1)−1 (− 1)!
(− 1)

54.  = 8 ln, so9 = 80 = 8(87 ln+ 7). But the eighth derivative of 7 is 0, so we now have

8(87 ln) = 7(8 · 76 ln+ 86) = 7(8 · 76 ln) = 6(8 · 7 · 65 ln) = · · · = (8!0 ln) = 8!

55. If () = ln (1 + ), then  0() =
1

1 + 
, so  0(0) = 1.

Thus, lim
→0

ln(1 + )


= lim

→0

()


= lim

→0

()− (0)

− 0 =  0(0) = 1.

56. Let  = . Then  = , and as  → ∞,  → ∞.

Therefore, lim
→∞


1 +






= lim

→∞


1 +

1





=


lim
→∞


1 +

1




=  by Equation 6.

3.7 Rates of Change in the Natural and Social Sciences

1. (a)  = () = 3 − 82 + 24 (in feet) ⇒ () =  0() = 32 − 16+ 24 (in fts)

(b) (1) = 3(1)2 − 16(1) + 24 = 11 fts

(c) The particle is at rest when () = 0. 32 − 16+ 24 = 0 ⇒ −(−16)±(−16)2 − 4(3)(24)
2(3)

=
16±√−32

6
.

The negative discriminant indicates that  is never 0 and that the particle never rests.

(d) From parts (b) and (c), we see that ()  0 for all , so the particle is always moving in the positive direction.

(e) The total distance traveled during the first 6 seconds

(since the particle doesn’t change direction) is

(6)− (0) = 72− 0 = 72 ft.

(f )

(g) () = 32 − 16+ 24 ⇒
() = 0() = 6− 16 (in (fts)s or fts2).
(1) = 6(1)− 16 = −10 fts2

(h)

(i) The particle is speeding up when  and  have the same sign.  is always positive and  is positive when 6− 16  0 ⇒
  8

3
, so the particle is speeding up when   8

3
. It is slowing down when  and  have opposite signs; that is, when

0 ≤   8
3
.

2. (a)  = () =
9

2 + 9
(in feet) ⇒ () =  0() =

(2 + 9)(9)− 9(2)
(2 + 9)2

=
−92 + 81
(2 + 9)2

=
−9(2 − 9)
(2 + 9)2

(in fts)

(b) (1) =
−9(1− 9)
(1 + 9)2

=
72

100
= 072 fts
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232 ¤ CHAPTER 3 DIFFERENTIATION RULES

(c) The particle is at rest when () = 0.
−9(2 − 9)
(2 + 9)2

= 0 ⇔ 2 − 9 = 0 ⇒  = 3 s [since  ≥ 0].

(d) The particle is moving in the positive direction when ()  0.

−9(2 − 9)
(2 + 9)2

 0 ⇒ −9(2 − 9)  0 ⇒ 2 − 9  0 ⇒ 2  9 ⇒ 0 ≤   3.

(e) Since the particle is moving in the positve direction and in

the negative direction, we need to calculate the distance

traveled in the intervals [0 3] and[3 6], respectively.

|(3)− (0)| =  2718 − 0 = 3
2

|(6)− (3)| =  5445 − 27
18

 = 3
10

The total distance is 3
2
+ 3

10
= 9

5
or 18 ft.

(f )

(g) () = −9 2 − 9
(2 + 9)2

⇒

() = 0() = −9 (
2 + 9)2(2)− (2 − 9)2(2 + 9)(2)

[(2 + 9)2]2
= −9 2(

2 + 9)[(2 + 9)− 2(2 − 9)]
(2 + 9)4

=
18(2 − 27)
(2 + 9)3

.

(1) =
18(−26)
103

= −0468 fts2

(h)

(i) The particle is speeding up when  and  have the same sign.  is negative for 0   
√
27 [≈ 52], so from the figure in

part (h), we see that  and  are both negative for 3    3
√
3. The particle is slowing down when  and  have opposite

signs. This occurs when 0    3 and when   3
√
3.

3. (a)  = () = sin(2) (in feet) ⇒ () =  0() = cos(2) · (2) = 
2 cos(2) (in fts)

(b) (1) = 
2
cos 

2
= 

2
(0) = 0 fts

(c) The particle is at rest when () = 0. 
2
cos 

2
 = 0 ⇔ cos 

2
 = 0 ⇔ 

2
 = 

2
+  ⇔  = 1 + 2, where 

is a nonnegative integer since  ≥ 0.

(d) The particle is moving in the positive direction when ()  0. From part (c), we see that  changes sign at every positive

odd integer.  is positive when 0    1, 3    5, 7    9, and so on.

(e)  changes sign at  = 1, 3, and 5 in the interval [0 6]. The total distance traveled during the first 6 seconds is

|(1)− (0)|+ |(3)− (1)|+ |(5)− (3)|+ |(6)− (5)|= |1− 0|+ |−1− 1|+ |1− (−1)|+ |0− 1|
= 1 + 2 + 2 + 1 = 6 ft
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SECTION 3.7 RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES ¤ 233

(f ) (g) () = 
2 cos(2) ⇒

() = 0() = 
2 [− sin(2) · (2)]

= (−24) sin(2) fts2

(1) = (−24) sin(2) = −24 fts2

(h) (i) The particle is speeding up when  and  have the same sign. From

the figure in part (h), we see that  and  are both positive when

3    4 and both negative when 1    2 and 5    6. Thus,

the particle is speeding up when 1    2, 3    4, and

5    6. The particle is slowing down when  and  have

opposite signs; that is, when 0    1, 2    3, and 4    5.

4. (a)  = () = 2− (in feet) ⇒ () =  0() = 2(−−) + −(2) = −(−+ 2) (in fts)

(b) (1) = (1)−1(−1 + 2) = 1 fts

(c) The particle is at rest when () = 0. () = 0 ⇔  = 0 or 2 s.

(d) The particle is moving in the positive direction when ()  0 ⇔ −(−+ 2)  0 ⇔ (−+ 2)  0 ⇔
0    2.

(e)  changes sign at  = 2 in the interval [0 6]. The total distance traveled during the first 6 seconds is

|(2)− (0)|+ |(6)− (2)|= 4−2 − 0+ 36−6 − 4−2 = 4−2 + 4−2 − 36−6
= 8−2 − 36−6 ≈ 099 ft

(f )

(g) () = (2− 2)− ⇒

() = 0() = (2− 2)(−−) + −(2− 2)
= −

−(2− 2) + (2− 2)
= −(2 − 4+ 2) fts2

(1) = −1(1− 4 + 2) = −1 fts2

(h)

(i) () = 0 ⇔ 2 − 4+ 2 = 0 [− 6= 0] ⇔  =
4±√8
2

= 2±√2 [≈ 06 and 34]. The particle is speeding

up when  and  have the same sign. Using the previous information and the figure in part (h), we see that  and  are both

positive when 0    2−√2 and both negative when 2    2 +
√
2. The particle is slowing down when  and  have

opposite signs. This occurs when 2−√2    2 and   2 +
√
2.
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234 ¤ CHAPTER 3 DIFFERENTIATION RULES

5. (a) From the figure, the velocity  is positive on the interval (0 2) and negative on the interval (2 3). The acceleration  is

positive (negative) when the slope of the tangent line is positive (negative), so the acceleration is positive on the interval

(0 1), and negative on the interval (1 3). The particle is speeding up when  and  have the same sign, that is, on the

interval (0 1) when   0 and   0, and on the interval (2 3) when   0 and   0. The particle is slowing down

when  and  have opposite signs, that is, on the interval (1 2) when   0 and   0.

(b)   0 on (0 3) and   0 on (3 4).   0 on (1 2) and   0 on (0 1) and (2 4). The particle is speeding up on (1 2)

[  0,   0] and on (3 4) [  0,   0]. The particle is slowing down on (0 1) and (2 3) [  0,   0].

6. (a) The velocity  is positive when  is increasing, that is, on the intervals (0 1) and (3 4); and it is negative when  is

decreasing, that is, on the interval (1 3). The acceleration  is positive when the graph of  is concave upward ( is

increasing), that is, on the interval (2 4); and it is negative when the graph of  is concave downward ( is decreasing), that

is, on the interval (0 2). The particle is speeding up on the interval (1 2) [  0,   0] and on (3 4) [  0,   0].

The particle is slowing down on the interval (0 1) [  0,   0] and on (2 3) [  0,   0].

(b) The velocity  is positive on (3 4) and negative on (0 3). The acceleration  is positive on (0 1) and (2 4) and negative

on (1 2). The particle is speeding up on the interval (1 2) [  0,   0] and on (3 4) [  0,   0]. The particle is

slowing down on the interval (0 1) [  0,   0] and on (2 3) [  0,   0].

7. (a) () = 2 + 245− 492 ⇒ () = 0() = 245− 98. The velocity after 2 s is (2) = 245− 98(2) = 49 ms
and after 4 s is (4) = 245− 98(4) = −147 ms.

(b) The projectile reaches its maximum height when the velocity is zero. () = 0 ⇔ 245− 98 = 0 ⇔

 =
245

98
= 25 s.

(c) The maximum height occurs when  = 25. (25) = 2 + 245(25)− 49(25)2 = 32625 m 
or 32 5

8
m

.

(d) The projectile hits the ground when  = 0 ⇔ 2 + 245− 492 = 0 ⇔

 =
−245±2452 − 4(−49)(2)

2(−49) ⇒  =  ≈ 508 s [since  ≥ 0]

(e) The projectile hits the ground when  =  . Its velocity is ( ) = 245− 98 ≈ −253 ms [downward].

8. (a) At maximum height the velocity of the ball is 0 fts. () = 0() = 80− 32 = 0 ⇔ 32 = 80 ⇔  = 5
2
.

So the maximum height is 

5
2


= 80


5
2

− 16 5
2

2
= 200− 100 = 100 ft.

(b) () = 80− 162 = 96 ⇔ 162 − 80+ 96 = 0 ⇔ 16(2 − 5+ 6) = 0 ⇔ 16(− 3)(− 2) = 0.
So the ball has a height of 96 ft on the way up at  = 2 and on the way down at  = 3. At these times the velocities are

(2) = 80− 32(2) = 16 fts and (3) = 80− 32(3) = −16 fts, respectively.

9. (a) () = 15− 1862 ⇒ () = 0() = 15− 372. The velocity after 2 s is (2) = 15− 372(2) = 756 ms.

(b) 25 =  ⇔ 1862 − 15+ 25 = 0 ⇔  =
15±152 − 4(186)(25)

2(186)
⇔  = 1 ≈ 235 or  = 2 ≈ 571.

The velocities are (1) = 15− 3721 ≈ 624 ms [upward] and (2) = 15− 3722 ≈ −624 ms [downward].
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SECTION 3.7 RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES ¤ 235

10. (a) () = 4 − 43 − 202 + 20 ⇒ () = 0() = 43 − 122 − 40+ 20.  = 20 ⇔
43 − 122 − 40+ 20 = 20 ⇔ 43 − 122 − 40 = 0 ⇔ 4(2 − 3− 10) = 0 ⇔
4(− 5)(+ 2) = 0 ⇔  = 0 s or 5 s [for  ≥ 0].

(b) () = 0() = 122 − 24− 40.  = 0 ⇔ 122 − 24− 40 = 0 ⇔ 4(32 − 6− 10) = 0 ⇔

 =
6±62 − 4(3)(−10)

2(3)
= 1± 1

3

√
39 ≈ 308 s [for  ≥ 0]. At this time, the acceleration changes from negative to

positive and the velocity attains its minimum value.

11. (a) () = 2 ⇒ 0() = 2. 0(15) = 30 mm2mm is the rate at which

the area is increasing with respect to the side length as  reaches 15 mm.

(b) The perimeter is  () = 4, so 0() = 2 = 1
2
(4) = 1

2
 (). The

figure suggests that if∆ is small, then the change in the area of the square

is approximately half of its perimeter (2 of the 4 sides) times∆. From the

figure,∆ = 2 (∆) + (∆)2. If∆ is small, then∆ ≈ 2 (∆) and

so∆∆ ≈ 2.

12. (a)  () = 3 ⇒ 


= 32.






=3

= 3(3)2 = 27 mm3mm is the

rate at which the volume is increasing as  increases past 3 mm.

(b) The surface area is () = 62, so  0() = 32 = 1
2
(62) = 1

2
().

The figure suggests that if∆ is small, then the change in the volume of the

cube is approximately half of its surface area (the area of 3 of the 6 faces)

times∆. From the figure,∆ = 32(∆) + 3(∆)2 + (∆)3.

If∆ is small, then∆ ≈ 32(∆) and so∆∆ ≈ 32.

13. (a) Using () = 2, we find that the average rate of change is:

(i)
(3)−(2)

3− 2 =
9 − 4
1

= 5 (ii)
(25)−(2)

25− 2 =
625 − 4

05
= 45

(iii)
(21)−(2)

21− 2 =
441 − 4

01
= 41

(b) () = 2 ⇒ 0() = 2, so 0(2) = 4.

(c) The circumference is () = 2 = 0(). The figure suggests that if∆ is small,

then the change in the area of the circle (a ring around the outside) is approximately

equal to its circumference times∆. Straightening out this ring gives us a shape that

is approximately rectangular with length 2 and width∆, so∆ ≈ 2(∆).

Algebraically,∆ = (+∆)−() = (+∆)2 − 2 = 2(∆) + (∆)2.

So we see that if∆ is small, then∆ ≈ 2(∆) and therefore,∆∆ ≈ 2.
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236 ¤ CHAPTER 3 DIFFERENTIATION RULES

14. After  seconds the radius is  = 60, so the area is () = (60)2 = 36002 ⇒ 0() = 7200 ⇒
(a) 0(1) = 7200 cm2s (b) 0(3) = 21 600 cm2s (c) 0(5) = 36,000 cm2s

As time goes by, the area grows at an increasing rate. In fact, the rate of change is linear with respect to time.

15. () = 42 ⇒ 0() = 8 ⇒
(a) 0(1) = 8 ft2ft (b) 0(2) = 16 ft2ft (c) 0(3) = 24 ft2ft

As the radius increases, the surface area grows at an increasing rate. In fact, the rate of change is linear with respect to the

radius.

16. (a) Using  () = 4
3
3, we find that the average rate of change is:

(i)
 (8)−  (5)

8− 5 =
4
3
(512)− 4

3
(125)

3
= 172 m3m

(ii)
 (6)−  (5)

6− 5 =
4
3
(216)− 4

3
(125)

1
= 1213 m3m

(iii)
 (51)−  (5)

51− 5 =
4
3
(51)3 − 4

3
(5)3

01
= 102013 m3m

(b)  0() = 42, so  0(5) = 100 m3m.

(c)  () = 4
3

3 ⇒  0() = 42 = (). By analogy with Exercise 13(c), we can say that the change in the volume

of the spherical shell,∆ , is approximately equal to its thickness,∆, times the surface area of the inner sphere. Thus,

∆ ≈ 42(∆) and so∆∆ ≈ 42.

17. The mass is () = 32, so the linear density at  is () =  0() = 6.

(a) (1) = 6 kgm (b) (2) = 12 kgm (c) (3) = 18 kgm

Since  is an increasing function, the density will be the highest at the right end of the rod and lowest at the left end.

18. () = 5000

1− 1

40

2 ⇒  0() = 5000 · 21− 1

40

− 1

40


= −2501− 1

40



(a)  0(5) = −2501− 5
40


= −21875 galmin (b)  0(10) = −2501− 10

40


= −1875 galmin

(c)  0(20) = −2501− 20
40


= −125 galmin (d)  0(40) = −2501− 40

40


= 0 galmin

The water is flowing out the fastest at the beginning—when  = 0,  0() = −250 galmin. The water is flowing out the
slowest at the end—when  = 40,  0() = 0. As the tank empties, the water flows out more slowly.

19. The quantity of charge is () = 3 − 22 + 6+ 2, so the current is0() = 32 − 4+ 6.
(a) 0(05) = 3(05)2 − 4(05) + 6 = 475 A (b) 0(1) = 3(1)2 − 4(1) + 6 = 5 A
The current is lowest when0 has a minimum. 00() = 6− 4  0 when   2

3 . So the current decreases when  
2
3 and

increases when   2
3
. Thus, the current is lowest at  = 2

3
s.

20. (a)  =


2
= ()−2 ⇒ 


= −2()−3 = −2

3
, which is the rate of change of the force with

respect to the distance between the bodies. The minus sign indicates that as the distance  between the bodies increases,

the magnitude of the force  exerted by the body of mass on the body of mass is decreasing.
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SECTION 3.7 RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES ¤ 237

(b) Given  0(20,000) = −2, find  0(10,000). −2 = −2

20,0003
⇒  = 20,0003.

 0(10 000) = −2(20,000
3)

10,0003
= −2 · 23 = −16 Nkm

21. With = 0


1− 2

2

−12
,

 =



() = 




() + 




() = 0


1− 2

2

−12
· +  ·0


−1
2


1− 2

2

−32
−2
2





()

= 0


1− 2

2

−32
· 

1− 2

2


+

2

2


=

0

(1− 22)32

Note that we factored out (1− 22)−32 since −32 was the lesser exponent. Also note that 

() = .

22. (a) () = 7 + 5 cos[0503(− 675)] ⇒ 0() = −5 sin[0503(− 675)](0503) = −2515 sin[0503(− 675)].
At 3:00 AM,  = 3, and0(3) = −2515 sin[0503(−375)] ≈ 239 mh (rising).

(b) At 6:00 AM,  = 6, and0(6) = −2515 sin[0503(−075)] ≈ 093 mh (rising).

(c) At 9:00 AM,  = 9, and0(9) = −2515 sin[0503(225)] ≈ −228 mh (falling).

(d) At noon,  = 12, and0(12) = −2515 sin[0503(525)] ≈ −121 mh (falling).

23. (a) To find the rate of change of volume with respect to pressure, we first solve for  in terms of  .

 =  ⇒  =



⇒ 


= − 

 2
.

(b) From the formula for  in part (a), we see that as  increases, the absolute value of  decreases.

Thus, the volume is decreasing more rapidly at the beginning.

(c)  = − 1





= − 1




− 

 2


=



( )
=




=
1



24. (a) [C] =
2

+ 1
⇒ rate of reaction =

[C]


=
(+ 1)(2)− (2)()

(+ 1)2
=

2(+ 1− )

(+ 1)2
=

2

(+ 1)2

(b) If  = [C], then −  = − 2

+ 1
=

2+ − 2

+ 1
=



+ 1
.

So (− )2 = 




+ 1

2
=

2

(+ 1)2
=

[C]


[from part (a)] =



.

(c) As →∞, [C] = 2

+ 1
=

(2)

(+ 1)
=

2

 + (1)
→ 2


=  molesL.

(d) As →∞, [C]


=
2

(+ 1)2
→ 0.

(e) As  increases, nearly all of the reactants A and B are converted into product C. In practical terms, the reaction virtually

stops.
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238 ¤ CHAPTER 3 DIFFERENTIATION RULES

25. In Example 6, the population function was  = 2 0. Since we are tripling instead of doubling and the initial population is

400, the population function is () = 400 · 3. The rate of growth is 0() = 400 · 3 · ln 3, so the rate of growth after

25 hours is 0(25) = 400 · 325 · ln 3 ≈ 6850 bacteriahour

26.  = () =


1 + −07
⇒ 0 = − · −07(−07)

(1 + −07)2
[Reciprocal Rule]. When  = 0,  = 20 and 0 = 12.

(0) = 20 ⇒ 20 =


1 + 
⇒  = 20(1 + ).  0(0) = 12 ⇒ 12 =

07

(1 + )2
⇒ 12 =

07(20)(1 + )

(1 + )2
⇒

12

14
=



1 + 
⇒ 6(1 + ) = 7 ⇒ 6 + 6 = 7 ⇒  = 6 and  = 20(1 + 6) = 140. For the long run, we let 

increase without bound. lim
→∞

() = lim
→∞

140

1 + 6−07
=

140

1 + 6 · 0 = 140, indicating that the yeast population stabilizes

at 140 cells.

27. (a) 1920: 1 =
1860 − 1750

1920 − 1910
=
110

10
= 11,2 =

2070 − 1860

1930 − 1920
=
210

10
= 21,

(1 +2)/ 2 = (11 + 21)2 = 16 millionyear

1980: 1 =
4450 − 3710

1980 − 1970
=
740

10
= 74,2 =

5280 − 4450

1990 − 1980
=
830

10
= 83,

(1 +2)/ 2 = (74 + 83)2 = 785 millionyear

(b)  () = 3 + 2 + +  (in millions of people), where  ≈ −0000 284 900 3,  ≈ 0522 433 122 43,
 ≈ −6395 641 396, and  ≈ 1720586 081.

(c)  () = 3 + 2 + +  ⇒  0() = 32 + 2+  (in millions of people per year)

(d) 1920 corresponds to  = 20 and  0(20) ≈ 1416 millionyear. 1980 corresponds to  = 80 and

 0(80) ≈ 7172 millionyear. These estimates are smaller than the estimates in part (a).

(e) () =  (where  = 143653× 109 and  = 101395) ⇒  0() =  ln  (in millions of people per year)

(f )  0(20) ≈ 2625 millionyear [much larger than the estimates in part (a) and (d)].

 0(80) ≈ 6028 millionyear [much smaller than the estimates in parts (a) and (d)].

(g)  0(85) ≈ 7624 millionyear and  0(85) ≈ 6461 millionyear. The first estimate is probably more accurate.

28. (a) () = 4 + 3 + 2 + + , where  ≈ −1199 781× 10−6,  ≈ 9545 853× 103,  ≈ −28478 550,

 ≈ 37,757105 467, and  ≈ −1877 031× 107.

(b) () = 4 + 3 + 2 + +  ⇒ 0() = 43 + 32 + 2+ .

(c) Part (b) gives 0(1990) ≈ 0106 years of age per year.
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SECTION 3.7 RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES ¤ 239

(d)

29. (a) Using  =


4
(2 − 2) with  = 001,  = 3,  = 3000, and  = 0027, we have  as a function of :

() =
3000

4(0027)3
(0012 − 2). (0) = 0925 cms, (0005) = 0694 cms, (001) = 0.

(b) () =


4
(2 − 2) ⇒ 0() =



4
(−2) = −

2
. When  = 3,  = 3000, and  = 0027, we have

0() = − 3000

2(0027)3
. 0(0) = 0, 0(0005) = −92592 (cms)cm, and 0(001) = −185185 (cms)cm.

(c) The velocity is greatest where  = 0 (at the center) and the velocity is changing most where  =  = 001 cm

(at the edge).

30. (a) (i)  =
1

2





=


1

2







−1 ⇒ 


= −


1

2







−2 = − 1

22






(ii)  =
1

2





=


1

2
√



 12 ⇒ 


=
1

2


1

2
√



−12 =

1

4
√


(iii)  =
1

2





=

√


2


−12 ⇒ 


= −1

2

√


2


−32 = −

√


432

(b) Note: Illustrating tangent lines on the generic figures may help to explain the results.

(i)



 0 and  is decreasing ⇒  is increasing ⇒ higher note

(ii)



 0 and  is increasing ⇒  is increasing ⇒ higher note

(iii)



 0 and  is increasing ⇒  is decreasing ⇒ lower note
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240 ¤ CHAPTER 3 DIFFERENTIATION RULES

31. (a) () = 2000+3+0012+000023 ⇒ 0() = 0+3(1)+ 001(2) + 00002(32) = 3+ 002+000062

(b) 0(100) = 3+ 002(100) + 00006(100)2 = 3+ 2+ 6 = $11pair. 0(100) is the rate at which the cost is increasing as

the 100th pair of jeans is produced. It predicts the (approximate) cost of the 101st pair.

(c) The cost of manufacturing the 101st pair of jeans is

(101)− (100) = 26110702− 2600 = 110702 ≈ $1107. This is close to the marginal cost from part (b).

32. (a) () = 84 + 016 − 000062 + 00000033 ⇒ 0() = 016− 00012 + 00000092, and
0(100) = 016− 00012(100) + 0000009(100)2 = 013. This is the rate at which the cost is increasing as the 100th
item is produced.

(b) The actual cost of producing the 101st item is (101)− (100) = 9713030299− 97 ≈ $013

33. (a) () =
()


⇒ 0() =

0()− () · 1
2

=
0()− ()

2
.

0()  0 ⇒ () is increasing; that is, the average productivity increases as the size of the workforce increases.

(b) 0() is greater than the average productivity ⇒ 0()  () ⇒ 0() 
()


⇒ 0()  () ⇒

0()− ()  0 ⇒ 0()− ()

2
 0 ⇒ 0()  0.

34. (a)  =



=
(1 + 404)(96−06)− (40 + 2404)(16−06)

(1 + 404)2

=
96−06 + 384−02 − 64−06 − 384−02

(1 + 404)2
= − 544−06

(1 + 404)2

(b) At low levels of brightness,  is quite large [(0) = 40] and is quickly

decreasing, that is,  is negative with large absolute value. This is to be

expected: at low levels of brightness, the eye is more sensitive to slight

changes than it is at higher levels of brightness.

35.  = ln


3+

√
9 2 − 8
2


= ln


3+

√
9 2 − 8 − ln 2 ⇒




=

1

3+
√
9 2 − 8






3+

√
9 2 − 8 − 0 = 3 + 1

2
(9 2 − 8)−12(18− 8)
3+

√
9 2 − 8

=

3 +
9− 4√
9 2 − 8

3+
√
9 2 − 8 =

3
√
9 2 − 8+ 9− 4√

9 2 − 8 3+√9 2 − 8  .
This derivative represents the rate of change of duration of dialysis required with respect to the initial urea concentration.

36. () = 2
√
 ⇒  0() = 2 · 12 ()−12 · =

√


=





.  0() is the rate of change of the wave speed with

respect to the reproductive rate.
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SECTION 3.8 EXPONENTIAL GROWTH AND DECAY ¤ 241

37.  =  ⇒  =



=



(10)(00821)
=

1

0821
( ). Using the Product Rule, we have




=

1

0821
[ () 0() +  () 0()] =

1

0821
[(8)(−015) + (10)(010)] ≈ −02436 Kmin.

38. (a) If  = 0, the population is stable (it is constant).

(b)



= 0 ⇒  = 0


1− 




 ⇒ 

0
= 1− 


⇒ 


= 1− 

0
⇒  = 


1− 

0


.

If  = 10,000, 0 = 5% = 005, and  = 4% = 004, then  = 10,000

1− 4

5


= 2000.

(c) If  = 005, then  = 10,000

1− 5

5


= 0. There is no stable population.

39. (a) If the populations are stable, then the growth rates are neither positive nor negative; that is,



= 0 and




= 0.

(b) “The caribou go extinct” means that the population is zero, or mathematically,  = 0.

(c) We have the equations



=  −  and




= − +  . Let  =  = 0,  = 005,  = 0001,

 = 005, and  = 00001 to obtain 005 − 0001 = 0 (1) and −005 + 00001 = 0 (2). Adding 10 times

(2) to (1) eliminates the  -terms and gives us 005 − 05 = 0 ⇒  = 10 . Substituting  = 10 into (1)

results in 005(10 )− 0001(10 ) = 0 ⇔ 05 − 001 2 = 0 ⇔ 50 − 2 = 0 ⇔

 (50− ) = 0 ⇔  = 0 or 50. Since  = 10 ,  = 0 or 500. Thus, the population pairs ( ) that lead to

stable populations are (0 0) and (500 50). So it is possible for the two species to live in harmony.

3.8 Exponential Growth and Decay

1. The relative growth rate is
1






= 07944, so




= 07944 and, by Theorem 2,  () =  (0)07944 = 207944.

Thus,  (6) = 207944(6) ≈ 23499 or about 235 members.

2. (a) By Theorem 2,  () =  (0) = 50. In 20 minutes

1
3
hour


, there are 100 cells, so 


1
3


= 503 = 100 ⇒

3 = 2 ⇒ 3 = ln 2 ⇒  = 3 ln 2 = ln(23) = ln 8.

(b)  () = 50(ln 8) = 50 · 8

(c)  (6) = 50 · 86 = 50 · 218 = 13,107,200 cells

(d)



=  ⇒  0(6) =  (6) = (ln 8) (6) ≈ 27,255,656 cellsh

(e)  () = 106 ⇔ 50 · 8 = 1,000,000 ⇔ 8 = 20,000 ⇔  ln 8 = ln 20,000 ⇔  =
ln 20,000
ln 8

≈ 476 h

3. (a) By Theorem 2,  () =  (0) = 100. Now  (1) = 100(1) = 420 ⇒  = 420
100

⇒  = ln 42.

So  () = 100(ln 42) = 100(42).

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



242 ¤ CHAPTER 3 DIFFERENTIATION RULES

(b)  (3) = 100(42)3 = 74088 ≈ 7409 bacteria

(c)  =  ⇒  0(3) =  ·  (3) = (ln 42)100(42)3 [from part (a)] ≈ 10,632 bacteriah
(d)  () = 100(42) = 10,000 ⇒ (42) = 100 ⇒  = (ln 100)(ln 42) ≈ 32 hours

4. (a) () = (0) ⇒ (2) = (0)2 = 400 and (6) = (0)6 = 25,600. Dividing these equations, we get

62 = 25,600400 ⇒ 4 = 64 ⇒ 4 = ln 26 = 6 ln 2 ⇒  = 3
2
ln 2 ≈ 10397, about 104% per hour.

(b) 400 = (0)2 ⇒ (0) = 4002 ⇒ (0) = 4003 ln 2 = 400

ln 2

3
= 40023 = 50.

(c) () = (0) = 50(32)(ln 2) = 50(ln 2)(32) ⇒ () = 50(2)15

(d) (45) = 50(2)15(45) = 50(2)675 ≈ 5382 bacteria

(e)



=  =


3

2
ln 2


(50(2)675) ≈ 5596 bacteriah

(f ) () = 50,000 ⇒ 50,000 = 50(2)15 ⇒ 1000 = (2)1.5 ⇒ ln 1000 = 1.5 ln 2 ⇒

 =
ln 1000

1.5 ln 2
≈ 6.64 h

5. (a) Let the population (in millions) in the year  be  (). Since the initial time is the year 1750, we substitute − 1750 for  in
Theorem 2, so the exponential model gives  () =  (1750)(−1750). Then  (1800) = 980 = 790(1800−1750) ⇒
980
790

= (50) ⇒ ln 980
790

= 50 ⇒  = 1
50
ln 980

790
≈ 00043104. So with this model, we have

 (1900) = 790(1900−1750) ≈ 1508 million, and  (1950) = 790(1950−1750) ≈ 1871 million. Both of these
estimates are much too low.

(b) In this case, the exponential model gives  () =  (1850)(−1850) ⇒  (1900) = 1650 = 1260(1900−1850) ⇒
ln 1650

1260 = (50) ⇒  = 1
50 ln

1650
1260 ≈ 0005393. So with this model, we estimate

 (1950) = 1260(1950−1850) ≈ 2161 million. This is still too low, but closer than the estimate of  (1950) in part (a).

(c) The exponential model gives  () =  (1900)(−1900) ⇒  (1950) = 2560 = 1650(1950−1900) ⇒
ln 2560

1650
= (50) ⇒  = 1

50
ln 2560

1650
≈ 0008785. With this model, we estimate

 (2000) = 1650(2000−1900) ≈ 3972 million. This is much too low. The discrepancy is explained by the fact that the
world birth rate (average yearly number of births per person) is about the same as always, whereas the mortality rate

(especially the infant mortality rate) is much lower, owing mostly to advances in medical science and to the wars in the first

part of the twentieth century. The exponential model assumes, among other things, that the birth and mortality rates will

remain constant.

6. (a) Let  () be the population (in millions) in the year . Since the initial time is the year 1950, we substitute − 1950 for  in
Theorem 2, and find that the exponential model gives  () =  (1950)(−1950) ⇒
 (1960) = 100 = 83(1960−1950) ⇒ 100

83
= 10 ⇒  = 1

10
ln 100

83
≈ 00186. With this model, we estimate

 (1980) = 83(1980−1950) = 8330 ≈ 145 million, which is an underestimate of the actual population of 150 million.
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SECTION 3.8 EXPONENTIAL GROWTH AND DECAY ¤ 243

(b) As in part (a),  () =  (1960)(−1960) ⇒  (1980) = 150 = 10020 ⇒ 20 = ln 150
100 ⇒

 = 1
20
ln 3

2
≈ 00203. Thus,  (2000) = 10040 = 225 million, which is an overestimate of the actual population

of 214 million.

(c) As in part (a),  () =  (1980)(−1980) ⇒  (2000) = 214 = 15020 ⇒ 20 = ln 214
150

⇒
 = 1

20
ln 214

150
≈ 00178. Thus,  (2010) = 15030 ≈ 256, which is an overestimate of the actual population of

243 million.

(d)  (2020) = 150(2020−1980) ≈ 305 million. This estimate will probably be an overestimate since this model gave us an
overestimate in part (c) — indicating that  is too large. Creating a model with more recent data would likely result in an

improved estimate.

7. (a) If  = [N2O5] then by Theorem 2,



= −00005 ⇒ () = (0)−00005 = −00005.

(b) () = −00005 = 09 ⇒ −00005 = 09 ⇒ −00005 = ln 09 ⇒  = −2000 ln 09 ≈ 211 s

8. (a) The mass remaining after  days is () = (0)  = 50. Since the half-life is 28 days, (28) = 5028 = 25 ⇒
28 = 1

2 ⇒ 28 = ln 1
2 ⇒  = −(ln 2)28, so () = 50−(ln 2)28 = 50 · 2−28.

(b) (40) = 50 · 2−4028 ≈ 186mg (d)

(c) () = 2 ⇒ 2 = 50 · 2−28 ⇒ 2
50
= 2−28 ⇒

(−28) ln 2 = ln 1
25

⇒  =
−28 ln 1

25


 ln 2 ≈ 130 days

9. (a) If () is the mass (in mg) remaining after  years, then () = (0) = 100.

(30) = 10030 = 1
2
(100) ⇒ 30 = 1

2
⇒  = −(ln 2)30 ⇒ () = 100−(ln 2)30 = 100 · 2−30

(b) (100) = 100 · 2−10030 ≈ 992 mg

(c) 100−(ln 2)30 = 1 ⇒ −(ln 2)30 = ln 1
100 ⇒  = −30 ln 001ln 2 ≈ 1993 years

10. (a) If () is the mass after  days and (0) = , then () = .

(1) =  = 0945 ⇒  = 0945 ⇒  = ln 0945.

Then (ln 0945) = 1
2
 ⇔ ln (ln 0945) = ln 1

2
⇔ (ln 0945) = ln 1

2
⇔  = − ln 2

ln 0945
≈ 1225 years.

(b) (ln 0945) = 020 ⇔ (ln 0945) = ln 1
5 ⇔  = − ln 5

ln 0945 ≈ 2845 years

11. Let () be the level of radioactivity. Thus, () = (0)− and  is determined by using the half-life:

(5730) = 1
2(0) ⇒ (0)−(5730) = 1

2(0) ⇒ −5730 = 1
2 ⇒ −5730 = ln 1

2 ⇒  = − ln
1
2

5730
=
ln 2

5730
.

If 74% of the 14C remains, then we know that () = 074(0) ⇒ 074 = −(ln 2)5730 ⇒ ln 074 = −  ln 2

5730
⇒

 = −5730(ln 074)
ln 2

≈ 2489 ≈ 2500 years.
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244 ¤ CHAPTER 3 DIFFERENTIATION RULES

12. From Exercise 11, we have the model () = (0)− with  = (ln 2)5730. Thus,

(68,000,000) = (0)−68000000 ≈ (0) · 0 = 0. There would be an undetectable amount of 14C remaining for a
68-million-year-old dinosaur.

Now let () = 01% (0), so 0001(0) = (0)− ⇒ 0001 = − ⇒ ln 0001 = − ⇒

 =
ln 0001

− =
ln 0001

−(ln 2)5730 ≈ 57,104, which is the maximum age of a fossil that we could date using
14C.

13. Let  measure time since a dinosaur died in millions of years, and let () be the amount of 40K in the dinosaur’s bones at

time . Then () = (0)− and  is determined by the half-life: (1250) = 1
2(0) ⇒ (0)−(1250) = 1

2(0) ⇒

−1250 = 1
2
⇒ −1250 = ln 1

2
⇒  = − ln

1
2

1250
=
ln 2

1250
. To determine if a dinosaur dating of 68 million years is

possible, we find that (68) = (0)−(68) ≈ 0963(0), indicating that about 96% of the 40K is remaining, which is

clearly detectable. To determine the maximum age of a fossil by using 40K, we solve () = 01%(0) for .

(0)− = 0001(0) ⇔ − = 0001 ⇔ − = ln 0001 ⇔  =
ln 0001

−(ln 2)1250 ≈ 12,457 million, or

12457 billion years.

14. From the information given, we know that



= 2 ⇒  = 2 by Theorem 2. To calculate  we use the point (0 5):

5 = 2(0) ⇒  = 5. Thus, the equation of the curve is  = 52.

15. (a) Using Newton’s Law of Cooling,



= ( − ), we have




= ( − 75). Now let  =  − 75, so

(0) =  (0)− 75 = 185− 75 = 110, so  is a solution of the initial-value problem  =  with (0) = 110 and by

Theorem 2 we have () = (0) = 110.

(30) = 11030 = 150− 75 ⇒ 30 = 75
110

= 15
22

⇒  = 1
30
ln 15

22
, so () = 110

1
30
 ln( 1522 ) and

(45) = 110
45
30 ln(

15
22 ) ≈ 62◦F. Thus,  (45) ≈ 62 + 75 = 137◦F.

(b)  () = 100 ⇒ () = 25. () = 110
1
30
 ln( 1522 ) = 25 ⇒ 

1
30
 ln( 1522 ) = 25

110
⇒ 1

30
 ln 15

22
= ln 25

110
⇒

 =
30 ln 25

110

ln 15
22

≈ 116 min.

16. Let  () be the temperature of the body  hours after 1:30 PM. Then  (0) = 325 and  (1) = 303. Using Newton’s Law of

Cooling,



= ( − ), we have




= ( − 20). Now let  =  − 20, so (0) =  (0)− 20 = 325− 20 = 125,

so  is a solution to the initial value problem  =  with (0) = 125 and by Theorem 2 we have

() = (0) = 125.

(1) = 303− 20 ⇒ 103 = 125(1) ⇒  = 103
12.5 ⇒  = ln 103

12.5 . The murder occurred when
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SECTION 3.8 EXPONENTIAL GROWTH AND DECAY ¤ 245

() = 37− 20 ⇒ 12.5 = 17 ⇒  = 17
12.5 ⇒  = ln 17

12.5 ⇒  =

ln 17

12.5


 ln 103

12.5 ≈ −1588 h
≈ −95 minutes. Thus, the murder took place about 95 minutes before 1:30 PM, or 11:55 AM.

17.



= ( − 20). Letting  =  − 20, we get 


= , so () = (0). (0) =  (0)− 20 = 5− 20 = −15, so

(25) = (0)25 = −1525, and (25) =  (25)− 20 = 10− 20 = −10, so −1525 = −10 ⇒ 25 = 2
3
. Thus,

25 = ln

2
3


and  = 1

25 ln

2
3


, so () = (0) = −15(125) ln(23). More simply, 25 = 2

3 ⇒  =

2
3

125 ⇒

 =

2
3

25 ⇒ () = −15 ·  2
3

25
.

(a)  (50) = 20 + (50) = 20− 15 ·  2
3

5025
= 20− 15 ·  2

3

2
= 20− 20

3
= 133̄ ◦C

(b) 15 =  () = 20 + () = 20− 15 ·  2
3

25 ⇒ 15 ·  2
3

25
= 5 ⇒ 

2
3

25
= 1

3
⇒

(25) ln

2
3


= ln


1
3

 ⇒  = 25 ln

1
3


ln

2
3

 ≈ 6774 min.
18.




= ( − 20). Let  =  − 20. Then 


= , so () = (0) (0) =  (0)− 20 = 95− 20 = 75,

so () = 75. When  () = 70,



= −1◦Cmin. Equivalently, 


= −1 when () = 50. Thus,

−1 = 


= () = 50 and 50 = () = 75. The first relation implies  = −150, so the second relation says

50 = 75−50. Thus, −50 = 2
3
⇒ −50 = ln 2

3

 ⇒  = −50 ln 2
3

 ≈ 2027 min.
19. (a) Let  () be the pressure at altitude . Then  =  ⇒  () =  (0) = 1013.

 (1000) = 10131000 = 8714 ⇒ 1000 = ln

8714
1013

 ⇒  = 1
1000 ln


8714
1013

 ⇒

 () = 1013 
1

1000
 ln( 87141013 ), so  (3000) = 10133 ln(

8714
1013 ) ≈ 645 kPa.

(b)  (6187) = 1013 
6187
1000

ln( 87141013 ) ≈ 399 kPa

20. (a) Using  = 0


1 +






with 0 = 1000,  = 008, and  = 3, we have:

(i) Annually:  = 1;  = 1000

1 + 008

1

1·3
= $125971

(ii) Quarterly:  = 4;  = 1000

1 + 008

4

4·3
= $126824

(iii) Monthly:  = 12;  = 1000

1 + 008

12

12·3
= $127024

(iv) Weekly:  = 52  = 1000

1 + 008

52

52·3
= $127101

(v) Daily:  = 365;  = 1000

1 + 008

365

365·3
= $127122

(vi) Hourly:  = 365 · 24;  = 1000

1 + 008

365 · 24
365·24·3

= $127125

(vii) Continuously:  = 1000(008)3 = $127125

(b)

010(3) = $134986,

008(3) = $127125, and

006(3) = $119722.
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246 ¤ CHAPTER 3 DIFFERENTIATION RULES

21. (a) Using  = 0


1 +






with 0 = 3000,  = 005, and  = 5, we have:

(i) Annually:  = 1;  = 3000

1 + 005

1

1·5
= $382884

(ii) Semiannually:  = 2;  = 3000

1 + 005

2

2·5
= $384025

(iii) Monthly:  = 12;  = 3000

1 + 005

12

12·5
= $385008

(iv) Weekly:  = 52;  = 3000

1 + 005

52

52·5
= $385161

(v) Daily:  = 365;  = 3000

1 + 005

365

365·5
= $385201

(vi) Continuously:  = 3000(005)5 = $385208

(b)  = 005 and (0) = 3000.

22. (a) 0
006 = 20 ⇔ 006 = 2 ⇔ 006 = ln 2 ⇔  = 50

3 ln 2 ≈ 1155, so the investment will

double in about 1155 years.

(b) The annual interest rate in  = 0(1 + ) is . From part (a), we have  = 0
006. These amounts must be equal,

so (1 + ) = 006 ⇒ 1 +  = 006 ⇒  = 006 − 1 ≈ 00618 = 618%, which is the equivalent annual
interest rate.

APPLIED PROJECT Controlling Red Blood Cell Loss During Surgery

1. Let () be the volume of RBCs (in liters) at time  (in hours). Since the total volume of blood is 5 L, the concentration of

RBCs is 5. The patient bleeds 2 L of blood in 4 hours, so




= −2

4
· 
5
= − 1

10


From Section 3.8, we know that  =  has solution () = (0). In this case, (0) = 45% of 5 = 9
4
and

 = − 1
10
, so () = 9

4
−10. At the end of the operation, the volume of RBCs is (4) = 9

4
−04 ≈ 151 L.

2. Let  be the volume of blood that is extracted and replaced with saline solution. Let () be the volume of RBCs with the

ANH procedure. Then (0) is 45% of (5−  ), or 9
20
(5−  ), and hence () =

9
20
(5−  )−10. We want

(4) ≥ 25% of 5 ⇔ 9
20
(5−  )−04 ≥ 5

4
⇔ 5−  ≥ 25

9
04 ⇔  ≤ 5− 25

9
04 ≈ 086 L. To maximize the

effect of the ANH procedure, the surgeon should remove 086 L of blood and replace it with saline solution.

3. The RBC loss without the ANH procedure is(0)−(4) = 9
4 − 9

4
−04 ≈ 074 L. The RBC loss with the ANH procedure is

(0)−(4) =
9
20
(5−  )− 9

20
(5−  )−04 = 9

20
(5−  )(1− −04). Now let  = 5− 25

9
04 [from Problem 2] to

get (0)−(4) =
9
20


5− 5− 25

9
04


(1− 04) = 9

20
· 25
9
04(1− 04) = 5

4
(04 − 1) ≈ 061 L. Thus, the ANH

procedure reduces the RBC loss by about 074− 061 = 013 L (about 44 fluid ounces).

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 3.9 RELATED RATES ¤ 247

3.9 Related Rates

1.  = 3 ⇒ 


=








= 32





2. (a)  = 2 ⇒ 


=








= 2




(b)




= 2




= 2(30 m)(1 ms) = 60 m2s

3. Let  denote the side of a square. The square’s area  is given by  = 2. Differentiating with respect to  gives us




= 2




. When  = 16,  = 4. Substitution 4 for  and 6 for




gives us




= 2(4)(6) = 48 cm2s.

4.  =  ⇒ 


=  · 


+ · 


= 20(3) + 10(8) = 140 cm2s.

5.  = 2 = (5)2 = 25 ⇒ 


= 25




⇒ 3 = 25




⇒ 


=

3

25
mmin.

6.  = 4
3

3 ⇒ 


= 4

3 · 32



⇒ 


= 4


1
2 · 80

2
(4) = 25,600 mm3s.

7.  = 42 ⇒ 


= 4 · 2 


⇒ 


= 4 · 2 · 8 · 2 = 128 cm2min.

8. (a)  = 1
2
 sin  ⇒ 


= 1

2
 cos 




= 1

2
(2)(3)


cos 

3


(02) = 3


1
2


(02) = 03 cm2min.

(b)  = 1
2
 sin  ⇒




=
1

2



 cos 




+ sin 






= 1

2
(2)

3

cos 

3


(02) +


sin 

3


(15)


= 3


1
2


(02) + 1

2

√
3

3
2


= 03 + 3

4

√
3 cm2/min [≈ 16]

(c)  = 1
2
 sin  ⇒




=
1

2





 sin  + 




sin  +  cos 






[by Exercise 3.2.61(a)]

= 1
2


(25)(3)


1
2

√
3

+ (2)(15)


1
2

√
3

+ (2)(3)


1
2


(02)


=

15
8

√
3 + 3

4

√
3 + 03


=

21
8

√
3 + 03


cm2min [≈ 485]

Note how this answer relates to the answer in part (a) [ changing] and part (b) [ and  changing].

9. (a)  =
√
2+ 1 and




= 3 ⇒ 


=








=
1

2
(2+ 1)−12 · 2 · 3 = 3√

2+ 1
. When  = 4,




=

3√
9
= 1.

(b)  =
√
2+ 1 ⇒ 2 = 2+ 1 ⇒ 2 = 2 − 1 ⇒  = 1

2
2 − 1

2
and




= 5 ⇒




=








=  · 5 = 5. When  = 12,  = √25 = 5, so 


= 5(5) = 25.

10. (a)



(42 + 92) =




(36) ⇒ 8




+ 18




= 0 ⇒ 4




+ 9




= 0 ⇒

4(2)



+ 9


2

3

√
5


1

3


= 0 ⇒ 8




= −2√5 ⇒ 


= −1

4

√
5
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248 ¤ CHAPTER 3 DIFFERENTIATION RULES

(b) 4



+ 9




= 0 ⇒ 4(−2)(3) + 9


2

3

√
5





= 0 ⇒ 6

√
5



= 24 ⇒ 


=

4√
5

11.



(2 + 2 + 2) =




(9) ⇒ 2




+ 2




+ 2




= 0 ⇒ 




+ 




+ 




= 0.

If



= 5,




= 4 and (  ) = (2 2 1), then 2(5) + 2(4) + 1




= 0 ⇒ 


= −18.

12.



() =




(8) ⇒ 




+ 




= 0. If




= −3 cms and ( ) = (4 2), then 4(−3) + 2 


= 0 ⇒




= 6. Thus, the -coordinate is increasing at a rate of 6 cms.

13. (a) Given: a plane flying horizontally at an altitude of 1 mi and a speed of 500 mih passes directly over a radar station.

If we let  be time (in hours) and  be the horizontal distance traveled by the plane (in mi), then we are given

that  = 500 mih.

(b) Unknown: the rate at which the distance from the plane to the station is increasing

when it is 2 mi from the station. If we let  be the distance from the plane to the station,

then we want to find  when  = 2 mi.

(c)

(d) By the Pythagorean Theorem, 2 = 2 + 1 ⇒ 2 () = 2 ().

(e)



=








=




(500). Since 2 = 2 + 1, when  = 2,  =

√
3, so




=

√
3

2
(500) = 250

√
3 ≈ 433 mih.

14. (a) Given: the rate of decrease of the surface area is 1 cm2min. If we let  be

time (in minutes) and  be the surface area (in cm2), then we are given that

 = −1 cm2s.

(c)

(b) Unknown: the rate of decrease of the diameter when the diameter is 10 cm.

If we let  be the diameter, then we want to find  when  = 10 cm.

(d) If the radius is  and the diameter  = 2, then  = 1
2
 and

 = 42 = 4

1
2

2
= 2 ⇒ 


=








= 2




.

(e) −1 = 


= 2




⇒ 


= − 1

2
. When  = 10,




= − 1

20
. So the rate of decrease is

1

20
cmmin.

15. (a) Given: a man 6 ft tall walks away from a street light mounted on a 15-ft-tall pole at a rate of 5 fts. If we let  be time (in s)

and  be the distance from the pole to the man (in ft), then we are given that  = 5 fts.

(b) Unknown: the rate at which the tip of his shadow is moving when he is 40 ft

from the pole. If we let  be the distance from the man to the tip of his

shadow (in ft), then we want to find



(+ ) when  = 40 ft.

(c)
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SECTION 3.9 RELATED RATES ¤ 249

(d) By similar triangles,
15

6
=

+ 


⇒ 15 = 6+ 6 ⇒ 9 = 6 ⇒  = 2

3.

(e) The tip of the shadow moves at a rate of



(+ ) =






+

2

3



=
5

3




= 5

3
(5) = 25

3
fts.

16. (a) Given: at noon, ship A is 150 km west of ship B; ship A is sailing east at 35 kmh, and ship B is sailing north at 25 kmh.

If we let  be time (in hours),  be the distance traveled by ship A (in km), and  be the distance traveled by ship B (in km),

then we are given that  = 35 kmh and  = 25 kmh.

(b) Unknown: the rate at which the distance between the ships is changing at

4:00 PM. If we let  be the distance between the ships, then we want to find

 when  = 4 h.

(c)

(d) 2 = (150− )2 + 2 ⇒ 2



= 2(150− )


−




+ 2





(e) At 4:00 PM,  = 4(35) = 140 and  = 4(25) = 100 ⇒  =

(150− 140)2 + 1002 = √10,100.

So



=
1




(− 150) 


+ 






=
−10(35) + 100(25)√

10,100
=

215√
101

≈ 214 kmh.

17. We are given that



= 60 mih and




= 25 mih. 2 = 2 + 2 ⇒

2



= 2




+ 2




⇒ 




= 




+ 




⇒ 


=
1








+ 






.

After 2 hours,  = 2 (60) = 120 and  = 2 (25) = 50 ⇒  =
√
1202 + 502 = 130,

so



=
1








+ 






=
120(60) + 50(25)

130
= 65 mih.

18. We are given that



= 16 ms. By similar triangles,



12
=
2


⇒  =

24


⇒




= −24

2



= −24

2
(16). When  = 8,




= −24(16)

64
= −06 ms, so the shadow

is decreasing at a rate of 06 ms.

19. We are given that



= 4 fts and




= 5 fts. 2 = (+ )2 + 5002 ⇒

2



= 2(+ )





+






. 15 minutes after the woman starts, we have

 = (4 fts)(20 min)(60 smin) = 4800 ft and  = 5 · 15 · 60 = 4500 ⇒
 =


(4800 + 4500)2 + 5002 =

√
86,740,000, so




=

+ 







+






=
4800 + 4500√
86,740,000

(4 + 5) =
837√
8674

≈ 899 fts
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250 ¤ CHAPTER 3 DIFFERENTIATION RULES

20. We are given that



= 24 fts.

(a) 2 = (90− )2 + 902 ⇒ 2



= 2(90− )


−




. When  = 45,

 =
√
452 + 902 = 45

√
5, so




=
90− 




−




=

45

45
√
5
(−24) = − 24√

5
,

so the distance from second base is decreasing at a rate of 24√
5
≈ 107 fts.

(b) Due to the symmetric nature of the problem in part (a), we expect to get the same answer—and we do.

2 = 2 + 902 ⇒ 2



= 2




. When  = 45,  = 45

√
5, so




=

45

45
√
5
(24) =

24√
5
≈ 107 fts.

21.  = 1
2, where  is the base and  is the altitude. We are given that




= 1 cmmin and




= 2 cm2min. Using the

Product Rule, we have



=
1

2






+ 






. When  = 10 and  = 100, we have 100 = 1

2
(10) ⇒ 1

2
 = 10 ⇒

 = 20, so 2 =
1

2


20 · 1 + 10 




⇒ 4 = 20 + 10




⇒ 


=
4− 20
10

= −16 cmmin.

22. Given



= −1 ms, find 


when  = 8 m. 2 = 2 + 1 ⇒ 2




= 2




⇒




=








= −


. When  = 8,  =

√
65, so




= −

√
65

8
. Thus, the boat approaches

the dock at

√
65

8
≈ 101 ms.

23. We are given that



= 35 kmh and




= 25 kmh. 2 = (+ )2 + 1002 ⇒

2



= 2(+ )





+






. At 4:00 PM,  = 4(35) = 140 and  = 4(25) = 100 ⇒

 =

(140 + 100)2 + 1002 =

√
67,600 = 260, so




=

+ 







+






=
140 + 100

260
(35 + 25) =

720

13
≈ 554 kmh.

24. The distance  of the particle to the origin is given by  =

2 + 2, so 2 = 2 + [2 sin(2)]2 ⇒

2



= 2




+ 4 · 2 sin


2


cos

2


· 
2




⇒ 




= 




+ 2 sin


2


cos

2

 


. When

( ) =


1

3
 1


,  =


1

3

2
+ 12 =


10

9
=
1

3

√
10, so

1

3

√
10




=
1

3

√
10 + 2 sin



6
cos



6
·√10 ⇒

1

3




=
1

3
+ 2


1

2


1

2

√
3


⇒ 


= 1 +

3
√
3

2
cms.
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SECTION 3.9 RELATED RATES ¤ 251

25. If  = the rate at which water is pumped in, then



=  − 10,000, where

 = 1
3
2 is the volume at time . By similar triangles,



2
=



6
⇒  =

1

3
 ⇒

 = 1
3

1
3
2
 = 

27
3 ⇒ 


=



9
2




. When  = 200 cm,




= 20 cmmin, so  − 10,000 = 

9
(200)2(20) ⇒  = 10,000 +

800,000
9

 ≈ 289,253 cm3min.

26. By similar triangles,
3

1
=




, so  = 3. The trough has volume

 = 1
2(10) = 5(3) = 15

2 ⇒ 12 =



= 30




⇒ 


=
2

5
.

When  = 1
2
,



=

2

5 · 12
=
4

5
ftmin.

27. The figure is labeled in meters. The area  of a trapezoid is

1
2
(base1+ base2)(height), and the volume  of the 10-meter-long trough is 10.

Thus, the volume of the trapezoid with height  is  = (10) 1
2
[03 + (03 + 2)].

By similar triangles,



=
025

05
=
1

2
, so 2 =  ⇒  = 5(06 + ) = 3+ 52.

Now



=








⇒ 02 = (3 + 10)




⇒ 


=

02

3 + 10
. When  = 03,




=

02

3 + 10(03)
=
02

6
mmin =

1

30
mmin or

10

3
cmmin.

28. The figure is drawn without the top 3 feet.

 = 1
2
(+ 12)(20) = 10(+ 12) and, from similar triangles,




=
6

6
and




=
16

6
=
8

3
, so  = + 12 +  = + 12 +

8

3
= 12 +

11

3
.

Thus,  = 10


24 +

11

3


 = 240+

1102

3
and so 08 =




=


240 +

220

3






.

When  = 5,



=

08

240 + 5(2203)
=

3

2275
≈ 000132 ftmin.

29. We are given that



= 30 ft3min.  =

1

3
2 =

1

3





2

2
 =

3

12
⇒




=








⇒ 30 =

2

4




⇒ 


=
120

2
.

When  = 10 ft,



=
120

102
=

6

5
≈ 038 ftmin.
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252 ¤ CHAPTER 3 DIFFERENTIATION RULES

30. We are given  = 8 fts. cot  =


100
⇒  = 100 cot  ⇒




= −100 csc2  


⇒ 


= − sin

2 

100
· 8. When  = 200, sin  = 100

200
=
1

2
⇒




= − (12)

2

100
· 8 = − 1

50
rads. The angle is decreasing at a rate of 1

50 rads.

31. The area  of an equilateral triangle with side  is given by  = 1
4

√
3 2.




= 1

4

√
3 · 2 


= 1

4

√
3 · 2(30)(10) = 150√3 cm2min.

32. cos  =


10
⇒ − sin  


=
1

10




. From Example 2,




= 1 and

when  = 6,  = 8, so sin  =
8

10
.

Thus, − 8

10




=
1

10
(1) ⇒ 


= −1

8
rads.

33. From the figure and given information, we have 2 + 2 = 2,



= −015m s, and




= 02m s when  = 3m. Differentiating implicitly with respect to , we get

2 + 2 = 2 ⇒ 2



+ 2




= 0 ⇒ 




= −


. Substituting the given

information gives us (−015) = −3(02) ⇒  = 4m. Thus, 32 + 42 = 2 ⇒
2 = 25 ⇒  = 5m.

34. According to the model in Example 2,



= −






→−∞ as  → 0, which doesn’t make physical sense. For example, the

model predicts that for sufficiently small , the tip of the ladder moves at a speed greater than the speed of light. Therefore the

model is not appropriate for small values of . What actually happens is that the tip of the ladder leaves the wall at some point

in its descent. For a discussion of the true situation see the article “The Falling Ladder Paradox” by Paul Scholten and Andrew

Simoson in The College Mathematics Journal, 27, (1), January 1996, pages 49–54. Also see “On Mathematical and Physical

Ladders” by M. Freeman and P. Palffy-Muhoray in the American Journal of Physics, 53 (3), March 1985, pages 276–277.

35. The area  of a sector of a circle with radius  and angle  is given by  = 1
2
2. Here  is constant and  varies, so




=
1

2
2




. The minute hand rotates through 360◦ = 2 radians each hour, so




=
1

2
2(2) = 2 cm2h. This

answer makes sense because the minute hand sweeps through the full area of a circle, 2, each hour.
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SECTION 3.9 RELATED RATES ¤ 253

36. The volume of a hemisphere is 23
3, so the volume of a hemispherical basin of radius 30 cm is 23(30)

3 = 18,000 cm3.

If the basin is half full, then  = 

2 − 1

3
3
 ⇒ 9000 = 


302 − 1

3
3
 ⇒ 1

3
3 − 302 + 9000 = 0 ⇒

 =  ≈ 1958 [from a graph or numerical rootfinder; the other two solutions are less than 0 and greater than 30].

 = 

302 − 1

3
3
 ⇒ 


= 


60




− 2






⇒


2
L

min


1000

cm3

L


= (60− 2)




⇒




=

2000

(60 −2)
≈ 0804 cmmin.

37. Differentiating both sides of  =  with respect to  and using the Product Rule gives us 



+ 




= 0 ⇒




= −






. When  = 600,  = 150 and




= 20, so we have




= −600

150
(20) = −80. Thus, the volume is

decreasing at a rate of 80 cm3min.

38.  14 =  ⇒  · 14 04 


+  14 


= 0 ⇒ 


= −  14

 · 14 04




= − 

14




.

When  = 400,  = 80 and



= −10, so we have 


= − 400

14(80)
(−10) = 250

7
. Thus, the volume is increasing at a

rate of 2507 ≈ 36 cm3min.

39. With 1 = 80 and 2 = 100,
1


=

1

1
+

1

2
=
1

80
+

1

100
=
180

8000
=

9

400
, so  =

400

9
. Differentiating

1


=

1

1
+

1

2

with respect to , we have − 1

2




= − 1

2
1

1


− 1

2
2

2


⇒ 


= 2


1

2
1

1


+

1

2
2

2




. When 1 = 80 and

2 = 100,



=
4002

92


1

802
(03) +

1

1002
(02)


=
107

810
≈ 0132 Ωs.

40. We want to find



when  = 18 using  = 0007 23 and = 012253.




=












=

0007 · 2

3
−13


(012 · 253 · 153)


20− 15
10,000,000


=

0007 · 2

3
(012 · 18 253)−13


012 · 253 · 18153 5

107


≈ 1045× 10−8 gyr

41. We are given  = 2◦min = 
90
radmin. By the Law of Cosines,

2 = 122 + 152 − 2(12)(15) cos  = 369− 360 cos  ⇒

2



= 360 sin 




⇒ 


=
180 sin 






. When  = 60◦,

 =
√
369− 360 cos 60◦ = √189 = 3√21, so 


=
180 sin 60◦

3
√
21



90
=


√
3

3
√
21
=

√
7

21
≈ 0396 mmin.
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254 ¤ CHAPTER 3 DIFFERENTIATION RULES

42. Using for the origin, we are given



= −2 fts and need to find 


when  = −5.

Using the Pythagorean Theorem twice, we have
√
2 + 122 +


2 + 122 = 39,

the total length of the rope. Differentiating with respect to , we get

√
2 + 122




+


2 + 122




= 0, so




= −


2 + 122


√
2 + 122




.

Now when  = −5, 39 =(−5)2 + 122 +2 + 122 = 13 +

2 + 122 ⇔ 

2 + 122 = 26, and

 =
√
262 − 122 = √532. So when  = −5, 


= − (−5)(26)√

532 (13)
(−2) = − 10√

133
≈ −087 fts.

So cart  is moving towards  at about 087 fts.

43. (a) By the Pythagorean Theorem, 40002 + 2 = 2. Differentiating with respect to ,

we obtain 2



= 2




. We know that




= 600 fts, so when  = 3000 ft,

 =
√
40002 + 30002 =

√
25,000,000 = 5000 ft

and



=








=
3000

5000
(600) =

1800

5
= 360 fts.

(b) Here tan  =


4000
⇒ 


(tan ) =





 

4000


⇒ sec2 




=

1

4000




⇒ 


=
cos2 

4000




. When

 = 3000 ft,



= 600 fts,  = 5000 and cos  =

4000


=
4000

5000
=
4

5
, so




=
(45)2

4000
(600) = 0096 rads.

44. We are given that



= 4(2) = 8 radmin.  = 3 tan  ⇒




= 3 sec2




. When  = 1, tan  = 1

3
, so sec2 = 1 +


1
3

2
= 10

9

and



= 3

10
9


(8) = 80

3
 ≈ 838 kmmin.

45. cot  =


5
⇒ − csc2  


=
1

5




⇒ −


csc



3

2−

6


=
1

5




⇒




=
5

6


2√
3

2
=
10

9
 kmmin [≈ 130 mih]

46. We are given that



=
2 rad

2 min
=  radmin By the Pythagorean Theorem, when

 = 6,  = 8, so sin  = 6
10 and cos  =

8
10 . From the figure, sin  =



10
⇒

 = 10 sin , so



= 10 cos 




= 10


8

10


 = 8 mmin.
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SECTION 3.9 RELATED RATES ¤ 255

47. We are given that



= 300 kmh. By the Law of Cosines,

2 = 2 + 12 − 2(1)() cos 120◦ = 2 + 1− 2− 1
2


= 2 + + 1, so

2



= 2




+




⇒ 


=
2+ 1

2




. After 1 minute,  = 300

60 = 5 km ⇒

 =
√
52 + 5+ 1 =

√
31 km ⇒ 


=
2(5) + 1

2
√
31

(300) =
1650√
31
≈ 296 kmh.

48. We are given that



= 3 mih and




= 2 mih. By the Law of Cosines,

2 = 2 + 2 − 2 cos 45◦ = 2 + 2 −√2 ⇒

2



= 2




+ 2




−√2 


−√2  


. After 15 minutes


= 1

4 h

,

we have  = 3
4
and  = 2

4
= 1

2
⇒ 2 =


3
4

2
+

2
4

2 −√2 3
4


2
4

 ⇒  =


13− 6√2
4

and




=

2
13− 6√2


2

3
4


3 + 2


1
2


2−√2 3

4


2−√2 1

2


3

=

2
13− 6√2

13− 6√2
2

=

13− 6√2 ≈ 2125 mih.

49. Let the distance between the runner and the friend be . Then by the Law of Cosines,

2 = 2002 +1002 − 2 · 200 · 100 · cos  = 50,000− 40,000 cos  (). Differentiating

implicitly with respect to , we obtain 2



= −40,000(− sin ) 


. Now if is the

distance run when the angle is  radians, then by the formula for the length of an arc

on a circle,  = , we have = 100, so  =
1

100
 ⇒ 


=

1

100




=

7

100
. To substitute into the expression for




, we must know sin  at the time when  = 200, which we find from (): 2002 = 50,000− 40,000 cos  ⇔

cos  = 1
4 ⇒ sin  =


1−  142 = √

15
4 . Substituting, we get 2(200)




= 40,000

√
15
4


7
100

 ⇒

 = 7
√
15
4

≈ 678 ms. Whether the distance between them is increasing or decreasing depends on the direction in which
the runner is running.

50. The hour hand of a clock goes around once every 12 hours or, in radians per hour,

2
12
= 

6
radh. The minute hand goes around once an hour, or at the rate of 2 radh.

So the angle  between them (measuring clockwise from the minute hand to the hour

hand) is changing at the rate of  = 
6
− 2 = − 11

6
radh. Now, to relate  to ,

we use the Law of Cosines: 2 = 42 + 82 − 2 · 4 · 8 · cos  = 80− 64 cos  ().

Differentiating implicitly with respect to , we get 2



= −64(− sin )


. At 1:00, the angle between the two hands is
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256 ¤ CHAPTER 3 DIFFERENTIATION RULES

one-twelfth of the circle, that is, 212 =

6 radians. We use () to find  at 1:00:  =


80− 64 cos 6 =


80− 32√3.

Substituting, we get 2



= 64 sin



6


−11
6


⇒ 


=
64

1
2

−11
6


2

80− 32√3

= − 88

3

80− 32√3

≈ −186.

So at 1:00, the distance between the tips of the hands is decreasing at a rate of 186 mmh ≈ 0005 mms.

3.10 Linear Approximations and Differentials

1. () = 3 − 2 + 3 ⇒  0() = 32 − 2, so (−2) = −9 and  0(−2) = 16. Thus,
() = (−2) +  0(−2)(− (−2)) = −9 + 16(+ 2) = 16+ 23.

2. () = sin ⇒  0() = cos, so 


6


= 1

2
and  0



6


= 1

2

√
3. Thus,

() = 


6


+  0



6


− 

6


= 1

2
+ 1

2

√
3

− 

6


= 1

2

√
3+ 1

2
− 1

12

√
3.

3. () =
√
 ⇒  0() = 1

2
−12 = 1(2

√
 ), so (4) = 2 and  0(4) = 1

4
. Thus,

() = (4) +  0(4)(− 4) = 2 + 1
4
(− 4) = 2 + 1

4
− 1 = 1

4
+ 1.

4. () = 2 ⇒  0() = 2 ln 2, so (0) = 1 and  0(0) = ln 2. Thus, () = (0) +  0(0)(− 0) = 1 + (ln 2).

5. () =
√
1−  ⇒  0() =

−1
2
√
1− 

, so (0) = 1 and  0(0) = − 1
2
.

Therefore,
√
1−  = () ≈ (0) +  0(0)(− 0) = 1 + −1

2


(− 0) = 1− 1

2
.

So
√
09 =

√
1− 01 ≈ 1− 1

2
(01) = 095

and
√
099 =

√
1− 001 ≈ 1− 1

2 (001) = 0995.

6. () = 3
√
1 +  = (1 + )13 ⇒ 0() = 1

3
(1 + )−23, so (0) = 1 and

0(0) = 1
3
. Therefore, 3

√
1 +  = () ≈ (0) + 0(0)(− 0) = 1 + 1

3
.

So 3
√
095 = 3


1 + (−005) ≈ 1 + 1

3
(−005) = 0983,

and 3
√
11 = 3

√
1 + 01 ≈ 1 + 1

3 (01) = 103.

7. () = ln(1 + ) ⇒  0() =
1

1 + 
, so (0) = 0 and  0(0) = 1.

Thus, () ≈ (0) +  0(0)(− 0) = 0 + 1() = . We need

ln(1 + )− 01    ln(1 + ) + 01, which is true when

−0383    0516.

8. () = (1 + )−3 ⇒  0() = −3(1 + )−4, so (0) = 1 and

 0(0) = −3. Thus, () ≈ (0) +  0(0)(− 0) = 1− 3. We need
(1 + )−3 − 01  1− 3  (1 + )−3 + 01, which is true when

−0116    0144.
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SECTION 3.10 LINEAR APPROXIMATIONS AND DIFFERENTIALS ¤ 257

9. () = 4
√
1 + 2 ⇒  0() = 1

4 (1 + 2)
−34(2) = 1

2 (1 + 2)
−34, so

(0) = 1 and  0(0) = 1
2
. Thus, () ≈ (0) +  0(0)(− 0) = 1 + 1

2
.

We need 4
√
1 + 2− 01  1 + 1

2
  4

√
1 + 2+ 01, which is true when

−0368    0677.

10. () =  cos ⇒  0() = (− sin) + (cos) = (cos− sin),
so (0) = 1 and  0(0) = 1. Thus, () ≈ (0) +  0(0)(− 0) = 1 + .

We need  cos− 01  1 +    cos+ 01, which is true when

−0762    0607.

11. (a) The differential  is defined in terms of  by the equation  =  0() . For  = () = −4,

 0() = −4(−4) + −4 · 1 = −4(−4+ 1), so  = (1− 4)−4.

(b) For  = () =
√
1− 4,  0() = 1

2
(1− 4)−12(−43) = − 23√

1− 4
, so  = − 23√

1− 4
.

12. (a) For  = () =
1 + 2

1 + 3
,  0() =

(1 + 3)(2)− (1 + 2)(3)
(1 + 3)2

=
−1

(1 + 3)2
, so  =

−1
(1 + 3)2

.

(b) For  = () = 2 sin 2,  0() = 2(cos 2)(2) + (sin 2)(2), so  = 2( cos 2 + sin 2) .

13. (a) For  = () = tan
√
,  0() = sec2

√
 · 1
2
−12 =

sec2
√


2
√

, so  =

sec2
√


2
√


.

(b) For  = () =
1− 2

1 + 2
,

 0() =
(1 + 2)(−2)− (1− 2)(2)

(1 + 2)2
=
−2[(1 + 2) + (1− 2)]

(1 + 2)2
=

−2(2)
(1 + 2)2

=
−4

(1 + 2)2
,

so  =
−4

(1 + 2)2
.

14. (a) For  = () = ln(sin ),  0() =
1

sin 
cos  = cot , so  = cot  .

(b) For  = () =


1− 
,  0() =

(1− ) − (−)
(1− )2

=
[(1− )− (−)]

(1− )2
=



(1− )2
, so

 =


(1− )2
.

15. (a)  = 10 ⇒  = 10 · 1
10
 = 1

10
10

(b)  = 0 and  = 01 ⇒  = 1
10
010(01) = 001.

16. (a)  = cos  ⇒  = −sin  ·   = − sin

(b)  = 1
3
and  = −002 ⇒  = − sin 

3
(−002) = 

√
32

(002) = 001

√
3 ≈ 0054.
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258 ¤ CHAPTER 3 DIFFERENTIATION RULES

17. (a)  =
√
3 + 2 ⇒  =

1

2
(3 + 2)−12(2)  =

√
3 + 2



(b)  = 1 and  = −01 ⇒  =
1√
3 + 12

(−01) = 1

2
(−01) = −005.

18. (a)  =
+ 1

− 1 ⇒  =
(− 1)(1)− (+ 1)(1)

(− 1)2  =
−2

(− 1)2 

(b)  = 2 and  = 005 ⇒  =
−2

(2− 1)2 (005) = −2(005) = −01.

19.  = () = 2 − 4,  = 3, ∆ = 05 ⇒
∆ = (35)− (3) = −175− (−3) = 125
 =  0()  = (2− 4)  = (6− 4)(05) = 1

20.  = () = − 3,  = 0, ∆ = −03 ⇒
∆ = (−03)− (0) = −0273− 0 = −0273

 =  0()  = (1− 32)  = (1− 0)(−03) = −03

21.  = () =
√
− 2,  = 3, ∆ = 08 ⇒

∆ = (38)− (3) =
√
18− 1 ≈ 034

 =  0()  =
1

2
√
− 2  =

1

2(1)
(08) = 04

22.  = () = ,  = 0, ∆ = 05 ⇒

∆ = (05)− (0) =
√
− 1 [≈ 065]

 =   = 0(05) = 05

23. To estimate (1999)4, we’ll find the linearization of () = 4 at  = 2. Since  0() = 43, (2) = 16, and

 0(2) = 32, we have () = 16 + 32(− 2). Thus, 4 ≈ 16 + 32(− 2) when  is near 2, so

(1999)4 ≈ 16 + 32(1999− 2) = 16− 0032 = 15968.
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SECTION 3.10 LINEAR APPROXIMATIONS AND DIFFERENTIALS ¤ 259

24.  = () = 1 ⇒  = −12 . When  = 4 and  = 0002,  = − 1
16 (0002) = − 1

8000 , so

1
4002 ≈ (4) +  = 1

4 − 1
8000 =

1999
8000 = 0249875.

25.  = () = 3
√
 ⇒  = 1

3
−23 . When  = 1000 and  = 1,  = 1

3
(1000)−23(1) = 1

300
, so

3
√
1001 = (1001) ≈ (1000) +  = 10 + 1

300
= 10003 ≈ 10003.

26.  = () =
√
 ⇒  = 1

2
−12 . When  = 100 and  = 05,  = 1

2
(100)−12


1
2


= 1

40
, so

√
1005 = (1005) ≈ (100) +  = 10 + 1

40 = 10025.

27.  = () =  ⇒  =  . When  = 0 and  = 01,  = 0(01) = 01, so

01 = (01) ≈ (0) +  = 1 + 01 = 11.

28.  = () = cos ⇒  = −sin. When  = 30◦ [6] and  = −1◦ [−180],
 =

− sin 
6

 − 
180


= − 1

2

− 
180


= 

360
, so cos 29◦ = (29◦) ≈ (30◦) +  = 1

2

√
3 + 

360
≈ 0875.

29.  = () = sec ⇒  0() = sec tan, so (0) = 1 and  0(0) = 1 · 0 = 0. The linear approximation of  at 0 is
(0) +  0(0)(− 0) = 1 + 0() = 1. Since 008 is close to 0, approximating sec 008 with 1 is reasonable.

30.  = () =
√
 ⇒  0() = 1(2

√
 ), so (4) = 2 and  0(4) = 1

4
. The linear approximation of  at 4 is

(4) +  0(4)(− 4) = 2+ 1
4
(− 4). Now (402) =

√
402 ≈ 2+ 1

4
(002) = 2+ 0005 = 2005, so the approximation is

reasonable.

31.  = () = 1 ⇒  0() = −12, so (10) = 01 and  0(10) = −001. The linear approximation of  at 10 is
(10) +  0(10)(− 10) = 01− 001(− 10). Now (998) = 1998 ≈ 01− 001(−002) = 01 + 00002 = 01002,
so the approximation is reasonable.

32. (a) () = ( − 1)2 ⇒  0() = 2( − 1), so (0) = 1 and  0(0) = −2.
Thus, () ≈  () = (0) +  0(0)(− 0) = 1− 2.

() = −2 ⇒ 0() = −2−2, so (0) = 1 and 0(0) = −2.
Thus, () ≈ () = (0) + 0(0)(− 0) = 1− 2.

() = 1 + ln(1 − 2) ⇒ 0() =
−2

1− 2 , so (0) = 1 and 0(0) = −2.

Thus, () ≈ () = (0) + 0(0)(− 0) = 1− 2.

Notice that  =  = . This happens because  , , and  have the same function values and the same derivative

values at  = 0.

(b) The linear approximation appears to be the best for the function  since it is

closer to  for a larger domain than it is to  and . The approximation

looks worst for  since  moves away from  faster than  and  do.
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260 ¤ CHAPTER 3 DIFFERENTIATION RULES

33. (a) If  is the edge length, then  = 3 ⇒  = 32 . When  = 30 and  = 01,  = 3(30)2(01) = 270, so the

maximum possible error in computing the volume of the cube is about 270 cm3. The relative error is calculated by dividing

the change in  ,∆ , by  . We approximate∆ with  .

Relative error =
∆


≈ 


=
32 

3
= 3




= 3


01

30


= 001.

Percentage error = relative error× 100% = 001× 100% = 1%.

(b)  = 62 ⇒  = 12. When  = 30 and  = 01,  = 12(30)(01) = 36, so the maximum possible error in

computing the surface area of the cube is about 36 cm2.

Relative error =
∆


≈ 


=
12

62
= 2




= 2


01

30


= 0006.

Percentage error = relative error× 100% = 0006× 100% = 06%.

34. (a)  = 2 ⇒  = 2 . When  = 24 and  = 02,  = 2(24)(02) = 96, so the maximum possible error

in the calculated area of the disk is about 96 ≈ 30 cm2.

(b) Relative error =
∆


≈ 


=
2 

2
=
2 


=
2(02)

24
=
02

12
=
1

60
= 0016.

Percentage error = relative error×100% = 0016× 100% = 16%.

35. (a) For a sphere of radius , the circumference is  = 2 and the surface area is  = 42, so

 =


2
⇒  = 4




2

2
=

2


⇒  =

2


 . When  = 84 and  = 05,  =

2


(84)(05) =

84


,

so the maximum error is about
84


≈ 27 cm2. Relative error ≈ 


=
84

842
=
1

84
≈ 0012 = 12%

(b)  =
4

3
3 =

4

3





2

3
=

3

62
⇒  =

1

22
2 . When  = 84 and  = 05,

 =
1

22
(84)2(05) =

1764

2
, so the maximum error is about

1764

2
≈ 179 cm3.

The relative error is approximately



=

17642

(84)3(62)
=
1

56
≈ 0018 = 18%.

36. For a hemispherical dome,  = 2
3
3 ⇒  = 22 . When  = 1

2
(50) = 25 m and  = 005 cm = 00005 m,

 = 2(25)2(00005) = 5
8
, so the amount of paint needed is about 5

8
≈ 2 m3.

37. (a)  = 2 ⇒ ∆ ≈  = 2 = 2∆

(b) The error is

∆ −  = [( +∆)2− 2]− 2∆ = 2+ 2∆ + (∆)2− 2− 2∆ = (∆)2.
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SECTION 3.10 LINEAR APPROXIMATIONS AND DIFFERENTIALS ¤ 261

38. (a) sin  =
20


⇒  = 20 csc  ⇒

= 20(− csc  cot )  = −20 csc 30◦ cot 30◦ (±1◦)

= −20(2)√3 ± 

180


= ±2

√
3

9


So the maximum error is about ± 2
9

√
3 ≈ ±121 cm.

(b) The relative error is
∆


≈ 


=
± 2
9

√
3

20(2)
= ±

√
3

180
 ≈ ±003, so the percentage error is approximately±3%.

39.  =  ⇒  =



⇒  = − 

2
. The relative error in calculating  is

∆


≈ 


=
−(2) 


= −


.

Hence, the relative error in calculating  is approximately the same (in magnitude) as the relative error in .

40.  = 4 ⇒  = 43  ⇒ 


=
43 

4
= 4







. Thus, the relative change in  is about 4 times the

relative change in . So a 5% increase in the radius corresponds to a 20% increase in blood flow.

41. (a)  =



 = 0  = 0 (b) () =




()  = 




 =  

(c) (+ ) =



(+ )  =





+






 =




+




 = + 

(d) () =



()  =






+ 






 = 




+ 




 =  +  

(e) 




=









 =





− 




2

 =




− 






2
=

 − 

2

(f )  () =



()  = −1 

42. (a) () = sin ⇒  0() = cos, so (0) = 0 and  0(0) = 1. Thus, () ≈ (0)+  0(0)(− 0) = 0+1(− 0) = .

(b)

[continued]
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262 ¤ CHAPTER 3 DIFFERENTIATION RULES

We want to know the values of  for which  =  approximates  = sin with less than a 2% difference; that is, the

values of  for which− sinsin

  002 ⇔ −002  − sin
sin

 002 ⇔

−002 sin  − sin  002 sin if sin  0

−002 sin  − sin  002 sin if sin  0
⇔


098 sin    102 sin if sin  0

102 sin    098 sin if sin  0

In the first figure, we see that the graphs are very close to each other near  = 0. Changing the viewing rectangle

and using an intersect feature (see the second figure) we find that  =  intersects  = 102 sin at  ≈ 0344.

By symmetry, they also intersect at  ≈ −0344 (see the third figure). Converting 0344 radians to degrees, we get

0344

180◦



≈ 197◦ ≈ 20◦, which verifies the statement.

43. (a) The graph shows that  0(1) = 2, so () = (1) +  0(1)(− 1) = 5 + 2(− 1) = 2+ 3.

(09) ≈ (09) = 48 and (11) ≈ (11) = 52.

(b) From the graph, we see that  0() is positive and decreasing. This means that the slopes of the tangent lines are positive,

but the tangents are becoming less steep. So the tangent lines lie above the curve. Thus, the estimates in part (a) are too

large.

44. (a) 0() =
√
2 + 5 ⇒ 0(2) =

√
9 = 3. (195) ≈ (2) + 0(2)(195− 2) = −4 + 3(−005) = −415.

(205) ≈ (2) + 0(2)(205− 2) = −4 + 3(005) = −385.

(b) The formula 0() =
√
2 + 5 shows that 0() is positive and increasing. This means that the slopes of the tangent lines

are positive and the tangents are getting steeper. So the tangent lines lie below the graph of . Hence, the estimates in

part (a) are too small.

LABORATORY PROJECT Taylor Polynomials

1. We first write the functions described in conditions (i), (ii), and (iii):

 () = ++ 2 () = cos

 0() =  + 2  0() = − sin
 00() = 2  00() = − cos

So, taking  = 0, our three conditions become

 (0) = (0):  = cos 0 = 1

 0(0) =  0(0):  = − sin 0 = 0
 00(0) =  00(0): 2 = − cos 0 = −1 ⇒  = −1

2

The desired quadratic function is  () = 1− 1
2
2, so the quadratic approximation is cos ≈ 1− 1

2
2.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



LABORATORY PROJECT TAYLOR POLYNOMIALS ¤ 263

The figure shows a graph of the cosine function together with its linear

approximation () = 1 and quadratic approximation  () = 1− 1
2
2

near 0. You can see that the quadratic approximation is much better than the

linear one.

2. Accuracy to within 01 means that
cos− 1− 1

2
2
  01 ⇔ −01  cos− 1− 1

2
2

 01 ⇔

01 

1− 1

2
2
− cos  −0.1 ⇔ cos+01  1− 1

2
2  cos− 01 ⇔ cos− 01  1− 1

2
2  cos+01.

From the figure we see that this is true between  and . Zooming in or

using an intersect feature, we find that the -coordinates of  and  are

about ±126. Thus, the approximation cos ≈ 1− 1
2
2 is accurate to

within 01 when −126    126.

3. If  () = +(− ) +(− )2, then  0() =  + 2(− ) and  00() = 2. Applying the conditions (i), (ii),

and (iii), we get

 () = ():  = ()

 0() =  0():  =  0()

 00() =  00(): 2 =  00() ⇒  = 1
2
 00()

Thus,  () = +(− ) +(− )2 can be written in the form  () = () +  0()(− ) + 1
2
 00()(− )2.

4. From Example 3.10.1, we have (1) = 2,  0(1) = 1
4
, and  0() = 1

2
(+ 3)−12.

So  00() = − 1
4
(+ 3)−32 ⇒  00(1) = − 1

32
.

From Problem 3, the quadratic approximation  () is
√
+ 3 ≈ (1)+  0(1)(− 1)+ 1

2
 00(1)(− 1)2 = 2+ 1

4
(− 1)− 1

64
(− 1)2.

The figure shows the function () =
√
+ 3 together with its linear

approximation () = 1
4
+ 7

4
and its quadratic approximation  (). You can see that  () is a better approximation than

() and this is borne out by the numerical values in the following chart.

from () actual value from  ()
√
398 19950 199499373    199499375√
405 20125 201246118    201246094√
42 20500 204939015    204937500

5. () = 0 + 1(− ) + 2(− )2 + 3(− )3 + · · ·+ (− ). If we put  =  in this equation,

then all terms after the first are 0 and we get () = 0. Now we differentiate () and obtain

 0() = 1 + 22(− ) + 33(− )2 + 44(− )3 + · · ·+ (− )−1. Substituting  =  gives  0() = 1.

Differentiating again, we have  00 () = 22 + 2 · 33(− ) + 3 · 44(− 2) + · · ·+ (− 1)(− )−2 and so
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264 ¤ CHAPTER 3 DIFFERENTIATION RULES

 00 () = 22. Continuing in this manner, we get 
000
 () = 2 · 33+2 · 3 · 44(− ) + · · ·+(− 2)(− 1)(− )−3

and  000 () = 2 · 33. By now we see the pattern. If we continue to differentiate and substitute  = , we obtain


(4)
 () = 2 · 3 · 44 and in general, for any integer  between 1 and ,  () () = 2 · 3 · 4 · 5 · · · · ·  = !  ⇒

 =

()
 ()

!
. Because we want  and  to have the same derivatives at , we require that  =

 ()()

!
for

 = 1 2     .

6. () = () +  0()(− ) +
 00()
2!

(− )2 + · · ·+  ()()

!
(− ). To compute the coefficients in this equation we

need to calculate the derivatives of  at 0:

() = cos (0) = cos 0 = 1

 0() = − sin  0(0) = − sin 0 = 0
 00() = − cos  00(0) = −1
 000() = sin  000(0) = 0

 (4)() = cos  (4)(0) = 1

We see that the derivatives repeat in a cycle of length 4, so  (5)(0) = 0,  (6)(0) = −1,  (7)(0) = 0, and  (8)(0) = 1.

From the original expression for (), with  = 8 and  = 0, we have

8() = (0) +  0(0)(− 0) +  00(0)
2!

(− 0)2 +  000(0)
3!

(− 0)3 + · · ·+  (8)(0)

8!
(− 0)8

= 1 + 0 · + −1
2!

2 + 0 · 3 + 1

4!
4 + 0 · 5 + −1

6!
6 + 0 · 7 + 1

8!
8 = 1− 2

2!
+

4

4!
− 6

6!
+

8

8!

and the desired approximation is cos ≈ 1− 2

2!
+

4

4!
− 6

6!
+

8

8!
. The Taylor polynomials 2, 4, and 6 consist of the

initial terms of 8 up through degree 2, 4, and 6, respectively. Therefore, 2() = 1− 2

2!
, 4() = 1− 2

2!
+

4

4!
, and

6() = 1− 2

2!
+

4

4!
− 6

6!
. We graph 2, 4, 6, 8, and  :

Notice that 2() is a good approximation to cos

near 0, 4() is a good approximation on a larger

interval, 6() is a better approximation, and

8() is better still. Each successive Taylor

polynomial is a good approximation on a larger

interval than the previous one.
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SECTION 3.11 HYPERBOLIC FUNCTIONS ¤ 265

3.11 Hyperbolic Functions

1. (a) sinh 0 = 1
2 (

0 − −0) = 0 (b) cosh 0 = 1
2 (

0 + −0) = 1
2 (1 + 1) = 1

2. (a) tanh 0 =
(0 − −0)2
(0 + −0)2

= 0 (b) tanh1 =
1 − −1

1 + −1
=

2 − 1
2 + 1

≈ 076159

3. (a) cosh(ln 5) = 1
2
(ln 5 + −ln 5) = 1

2


5 + (ln 5)−1


= 1

2
(5 + 5−1) = 1

2


5 + 1

5


= 13

5

(b) cosh 5 = 1
2
(5 + −5) ≈ 7420995

4. (a) sinh 4 = 1
2
(4 − −4) ≈ 2728992

(b) sinh(ln 4) = 1
2
(ln 4 − −ln 4) = 1

2


4− (ln 4)−1 = 1

2
(4− 4−1) = 1

2


4− 1

4


= 15

8

5. (a) sech 0 =
1

cosh 0
=
1

1
= 1 (b) cosh−1 1 = 0 because cosh 0 = 1.

6. (a) sinh 1 = 1
2 (

1 − −1) ≈ 117520

(b) Using Equation 3, we have sinh−1 1 = ln

1 +

√
12 + 1


= ln


1 +

√
2
 ≈ 088137.

7. sinh(−) = 1
2 [

− − −(−)] = 1
2 (

− − ) = − 1
2 (

− − ) = − sinh

8. cosh(−) = 1
2 [

− + −(−)] = 1
2 (

− + ) = 1
2 (

 + −) = cosh

9. cosh+ sinh = 1
2
( + −) + 1

2
( − −) = 1

2
(2) = 

10. cosh− sinh = 1
2
( + −)− 1

2
( − −) = 1

2
(2−) = −

11. sinh cosh  + cosh sinh  =

1
2 (

 − −)

1
2 (

 + −)

+

1
2 (

 + −)

1
2 (

 − −)


= 1
4 [(

+ + − − −+ − −−) + (+ − − + −+ − −−)]

= 1
4
(2+ − 2−−) = 1

2
[+ − −(+)] = sinh(+ )

12. cosh cosh  + sinh sinh  =

1
2 (

 + −)

1
2 (

 + −)

+

1
2 (

 − −)

1
2 (

 − −)


= 1
4


(+ + − + −+ + −−) + (+ − − − −+ + −−)


= 1

4
(2+ + 2−−) = 1

2


+ + −(+)


= cosh(+ )

13. Divide both sides of the identity cosh2 − sinh2  = 1 by sinh2 :
cosh2 

sinh2 
− sinh2 

sinh2 
=

1

sinh2 
⇔ coth2 − 1 = csch2 .

14. tanh(+ ) =
sinh(+ )

cosh(+ )
=
sinh cosh  + cosh sinh 

cosh cosh  + sinh sinh 
=

sinh cosh 

cosh cosh 
+
cosh sinh 

cosh cosh 
cosh cosh 

cosh  cosh 
+
sinh sinh 

cosh cosh 

=
tanh+ tanh 

1 + tanh tanh 

15. Putting  =  in the result from Exercise 11, we have

sinh 2 = sinh(+ ) = sinh cosh+ cosh sinh = 2 sinh cosh.
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266 ¤ CHAPTER 3 DIFFERENTIATION RULES

16. Putting  =  in the result from Exercise 12, we have

cosh 2 = cosh(+ ) = cosh cosh+ sinh sinh = cosh2 + sinh2 .

17. tanh(ln) =
sinh(ln)

cosh(ln)
=
(ln  − − ln)2

(ln  + − ln)2
=

− (ln )−1
+ (ln )−1

=
− −1

+ −1
=

− 1
+ 1

=
(2 − 1)
(2 + 1)

=
2 − 1
2 + 1

18.
1 + tanh

1− tanh =
1 + (sinh) cosh

1− (sinh)  cosh =
cosh+ sinh

cosh− sinh 
=

1
2
( + −) + 1

2
( − −)

1
2
( + −)− 1

2
( − −)

=


−
= 2

Or: Using the results of Exercises 9 and 10,
cosh+ sinh

cosh− sinh =


−
= 2

19. By Exercise 9, (cosh+ sinh) = () =  = cosh+ sinh.

20. coth =
1

tanh
⇒ coth =

1

tanh
=

1

1213
=
13

12
.

sech2  = 1− tanh2  = 1−  12
13

2
= 25

169
⇒ sech = 5

13
[sech, like cosh, is positive].

cosh =
1

sech
⇒ cosh =

1

513
=
13

5
.

tanh =
sinh

cosh
⇒ sinh = tanh cosh ⇒ sinh =

12

13
· 13
5
=
12

5
.

csch =
1

sinh
⇒ csch =

1

125
=
5

12
.

21. sech =
1

cosh
⇒ sech =

1

53
=
3

5
.

cosh2 − sinh2  = 1 ⇒ sinh2  = cosh2 − 1 =  5
3

2 − 1 = 16
9

⇒ sinh = 4
3
[because   0].

csch =
1

sinh
⇒ csch =

1

43
=
3

4
.

tanh =
sinh

cosh
⇒ tanh =

43

53
=
4

5
.

coth =
1

tanh
⇒ coth =

1

45
=
5

4
.

22. (a)

23. (a) lim
→∞

tanh = lim
→∞

 − −

 + −
· 
−

−
= lim

→∞
1− −2

1 + −2
=
1− 0
1 + 0

= 1

(b) lim
→−∞

tanh = lim
→−∞

 − −

 + −
· 




= lim

→−∞
2 − 1
2 + 1

=
0− 1
0 + 1

= −1
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SECTION 3.11 HYPERBOLIC FUNCTIONS ¤ 267

(c) lim
→∞

sinh = lim
→∞

 − −

2
=∞

(d) lim
→−∞

sinh = lim
→−∞

 − −

2
= −∞

(e) lim
→∞

sech = lim
→∞

2

 + −
= 0

(f ) lim
→∞

coth = lim
→∞

 + −

 − −
· 
−

−
= lim

→∞
1 + −2

1− −2
=
1 + 0

1− 0 = 1 [Or: Use part (a)]

(g) lim
→0+

coth = lim
→0+

cosh

sinh
=∞, since sinh→ 0 through positive values and cosh→ 1.

(h) lim
→0−

coth = lim
→0−

cosh

sinh
= −∞, since sinh→ 0 through negative values and cosh→ 1.

(i) lim
→−∞

csch = lim
→−∞

2

 − −
= 0

(j) lim
→∞

sinh


= lim

→∞
 − −

2
= lim

→∞
1− −2

2
=
1− 0
2

=
1

2

24. (a)



(cosh) =






1
2
( + −)


= 1

2
( − −) = sinh

(b)



(tanh) =






sinh

cosh


=
cosh cosh− sinh sinh

cosh2 
=
cosh2 − sinh2 

cosh2 
=

1

cosh2 
= sech2 

(c)



(csch) =






1

sinh


= − cosh

sinh2 
= − 1

sinh
· cosh
sinh

= − csch coth

(d)



(sech) =






1

cosh


= − sinh

cosh2 
= − 1

cosh
· sinh
cosh

= − sech tanh

(e)



(coth) =






cosh

sinh


=
sinh sinh− cosh cosh

sinh2 
=
sinh2 − cosh2 

sinh2 
= − 1

sinh2 
= − csch2 

25. Let  = sinh−1 . Then sinh  =  and, by Example 1(a), cosh2  − sinh2  = 1 ⇒ [with cosh   0]

cosh  =

1 + sinh2  =

√
1 + 2. So by Exercise 9,  = sinh  + cosh  = +

√
1 + 2 ⇒  = ln


+

√
1 + 2


.

26. Let  = cosh−1 . Then cosh  =  and  ≥ 0, so sinh  =

cosh2  − 1 = √2 − 1. So, by Exercise 9,

 = cosh  + sinh  = +
√
2 − 1 ⇒  = ln


+

√
2 − 1 .

Another method:Write  = cosh  = 1
2


 + −


and solve a quadratic, as in Example 3.

27. (a) Let  = tanh−1 . Then  = tanh  =
sinh 

cosh 
=
( − −)2
( + −)2

· 



=

2 − 1
2 + 1

⇒ 2 +  = 2 − 1 ⇒

1+  = 2 − 2 ⇒ 1+  = 2(1− ) ⇒ 2 =
1 + 

1− 
⇒ 2 = ln


1 + 

1− 


⇒  = 1

2
ln


1 + 

1− 


.
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268 ¤ CHAPTER 3 DIFFERENTIATION RULES

(b) Let  = tanh−1 . Then  = tanh , so from Exercise 18 we have

2 =
1 + tanh 

1− tanh  =
1 + 

1− 
⇒ 2 = ln


1 + 

1− 


⇒  = 1

2
ln


1 + 

1− 


.

28. (a) (i)  = csch−1  ⇔ csch  =  ( 6= 0)
(ii) We sketch the graph of csch−1 by reflecting the graph of csch (see Exercise 22)

about the line  = .

(iii) Let  = csch−1 . Then  = csch  =
2

 − −
⇒  − − = 2 ⇒

()2 − 2 −  = 0 ⇒  =
1±√2 + 1


. But   0, so for   0,

 =
1 +

√
2 + 1


and for   0,  =

1−√2 + 1


. Thus, csch−1  = ln

1


+

√
2 + 1

||

.

(b) (i)  = sech−1  ⇔ sech  =  and   0

(ii) We sketch the graph of sech−1 by reflecting the graph of sech (see Exercise 22)

about the line  = .

(iii) Let  = sech−1 , so  = sech  =
2

 + −
⇒  + − = 2 ⇒

 ()2 − 2 +  = 0 ⇔  =
1±√1− 2


. But   0 ⇒   1.

This rules out the minus sign because
1−√1− 2


 1 ⇔ 1−√1− 2   ⇔ 1−  

√
1− 2 ⇔

1− 2+ 2  1− 2 ⇔ 2   ⇔   1, but  = sech  ≤ 1.

Thus,  =
1+

√
1− 2


⇒ sech−1  = ln


1 +

√
1− 2




.

(c) (i)  = coth−1  ⇔ coth  = 

(ii) We sketch the graph of coth−1 by reflecting the graph of coth (see Exercise 22)

about the line  = .

(iii) Let  = coth−1 . Then  = coth  =
 + −

 − −
⇒

 − − =  + − ⇒ (− 1) = (+ 1)− ⇒ 2 =
+ 1

− 1 ⇒

2 = ln
+ 1

− 1 ⇒ coth−1  =
1

2
ln

+ 1

− 1

29. (a) Let  = cosh−1 . Then cosh  =  and  ≥ 0 ⇒ sinh 



= 1 ⇒




=

1

sinh 
=

1
cosh2  − 1

=
1√

2 − 1 [since sinh  ≥ 0 for  ≥ 0]. Or: Use Formula 4.

(b) Let  = tanh−1 . Then tanh  =  ⇒ sech2 



= 1 ⇒ 


=

1

sech2
=

1

1− tanh2  =
1

1− 2
.

Or: Use Formula 5.
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SECTION 3.11 HYPERBOLIC FUNCTIONS ¤ 269

(c) Let  = csch−1 . Then csch  =  ⇒ − csch  coth  


= 1 ⇒ 


= − 1

csch  coth 
. By Exercise 13,

coth  = ±

csch2  + 1 = ±√2 + 1. If   0, then coth   0, so coth  =

√
2 + 1. If   0, then coth   0,

so coth  = −√2 + 1. In either case we have 


= − 1

csch  coth 
= − 1

||√2 + 1 .

(d) Let  = sech−1 . Then sech  =  ⇒ − sech  tanh  


= 1 ⇒




= − 1

sech  tanh 
= − 1

sech 

1− sech2

= − 1


√
1− 2

. [Note that   0 and so tanh   0.]

(e) Let  = coth−1 . Then coth  =  ⇒ − csch2  


= 1 ⇒ 


= − 1

csch2 
=

1

1− coth2  =
1

1− 2

by Exercise 13.

30. () =  cosh
PR⇒  0() =  sinh+ (cosh) = (sinh+ cosh), or, using Exercise 9, () = 2.

31. () = tanh
√
 ⇒  0() = sech2

√






√
 = sech2

√



1

2
√



=
sech2

√


2
√


32. () = sinh2  = (sinh)2 ⇒ 0() = 2(sinh)1



(sinh) = 2 sinh cosh, or, using Exercise 15, sinh 2.

33. () = sinh(2) ⇒ 0() = cosh(2)



(2) = 2 cosh(2)

34.  () = ln(sinh ) ⇒  0() =
1

sinh 




sinh  =

1

sinh 
cosh  = coth 

35. () = sinh(ln ) ⇒ 0() = cosh(ln )



ln  =

1

2


ln  + − ln 

1



=
1

2


+

1




=
1

2


2 + 1




=

2 + 1

22

Or: () = sinh(ln ) =
1

2
(ln  − − ln ) =

1

2


− 1




⇒ 0() =

1

2


1 +

1

2


=

2 + 1

22

36.  = sech(1 + ln sech)
PR⇒

0 = sech



(1 + ln sech) + (1 + ln sech)




sech

= sech

−sech tanh
sech


+ (1 + ln sech)(−sech tanh)

= −sech tanh [1 + (1 + ln sech)] = −sech tanh (2 + ln sech)

37.  = cosh 3 ⇒ 0 = cosh 3 · sinh 3 · 3 = 3cosh 3 sinh 3

38. () =
1 + sinh 

1− sinh 
QR⇒

 0() =
(1− sinh ) cosh − (1 + sinh )(− cosh )

(1− sinh )2 =
cosh − sinh  cosh + cosh + sinh  cosh 

(1− sinh )2

=
2 cosh 

(1− sinh )2
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270 ¤ CHAPTER 3 DIFFERENTIATION RULES

39. () =  coth
√
2 + 1

PR⇒

0() = 

− csch2√2 + 1


1
2
(2 + 1)−12 · 2


+

coth

√
2 + 1


(1) = coth

√
2 + 1− 2√

2 + 1
csch2

√
2 + 1

40.  = sinh−1(tan) ⇒ 0 =
1

1 + (tan)2



(tan) =

sec2 √
sec2 

=
| sec2  |
| sec | =| sec |

41.  = cosh−1
√
 ⇒ 0 =

1
(
√
 )

2 − 1



(
√
 ) =

1√
− 1

1

2
√

=

1

2

(− 1)

42.  =  tanh−1  + ln
√
1− 2 =  tanh−1  + 1

2
ln(1 − 2) ⇒

0 = tanh−1 +


1− 2
+
1

2


1

1− 2


(−2) = tanh−1 

43.  =  sinh−1(3) − √9 + 2 ⇒

0 = sinh−1

3


+ 

13
1 + (3)2

− 2

2
√
9 + 2

= sinh−1

3


+

√
9 + 2

− √
9 + 2

= sinh−1

3



44.  = sech−1(−) ⇒ 0 = − 1

−

1− (−)2




(−) = − 1

−
√
1− −2

(−−) = 1√
1− −2

45.  = coth−1(sec) ⇒

0 =
1

1− (sec)2



(sec) =

sec tan

1− sec2  =
sec tan

1− (tan2 + 1) =
sec tan

− tan2 

= − sec
tan

= − 1 cos

sin cos
= − 1

sin
= − csc

46.
1 + tanh

1− tanh =
1 + (sinh) cosh

1− (sinh) cosh =
cosh+ sinh

cosh− sinh =


−
[by Exercises 9 and 10] = 2, so

4


1 + tanh

1− tanh =
4
√
2 = 2. Thus,




4


1 + tanh

1− tanh =



(2) =

1

2
2.

47.



arctan(tanh) =

1

1 + (tanh)2



(tanh) =

sech2 

1 + tanh2 
=

1 cosh2 

1 + (sinh2 ) cosh2 

=
1

cosh2 + sinh2 
=

1

cosh 2
[by Exercise 16] = sech 2

48. (a) Let  = 003291765. A graph of the central curve,

 = () = 21149− 2096 cosh, is shown.

(b) (0) = 21149− 2096 cosh 0 = 21149− 2096(1) = 19053 m

(c)  = 100 ⇒ 100 = 21149− 2096 cosh  ⇒

2096 cosh  = 11149 ⇒ cosh  =
11149

2096
⇒

 = ± cosh−1 11149
2096

⇒  = ±1

cosh−1

11149

2096
≈ ±7156 m. The points are approximately (±7156 100).
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SECTION 3.11 HYPERBOLIC FUNCTIONS ¤ 271

(d) () = 21149 − 2096 cosh  ⇒  0() = −2096 sinh  · .

 0

±1

cosh−1

11149

2096


= −2096 sinh





±1

cosh−1

11149

2096


= −2096 sinh


± cosh−1 11149

2096


≈ ∓36.

So the slope at (7156 100) is about −36 and the slope at (−7156 100) is about 36.

49. As the depth  of the water gets large, the fraction
2


gets large, and from Figure 3 or Exercise 23(a), tanh


2





approaches 1. Thus,  =




2
tanh


2




≈




2
(1) =




2
.

50. For  =  cosh() with   0, we have the -intercept equal to .

As  increases, the graph flattens.

51. (a)  = 20 cosh(20)− 15 ⇒ 0 = 20 sinh(20) · 1
20
= sinh(20). Since the right pole is positioned at  = 7,

we have 0(7) = sinh 7
20
≈ 03572.

(b) If  is the angle between the tangent line and the -axis, then tan = slope of the line = sinh 7
20
, so

 = tan−1

sinh 7

20

 ≈ 0343 rad ≈ 1966◦. Thus, the angle between the line and the pole is  = 90◦ −  ≈ 7034◦.

52. We differentiate the function twice, then substitute into the differential equation:  =



cosh




⇒




=




sinh




 


= sinh




⇒ 2

2
= cosh




 


=




cosh




. We evaluate the two sides

separately: LHS =
2

2
=




cosh




and RHS =






1 +






2
=






1 + sinh2




=




cosh




,

by the identity proved in Example 1(a).

53. (a) From Exercise 52, the shape of the cable is given by  = () =



cosh





. The shape is symmetric about the

-axis, so the lowest point is (0 (0)) =


0






and the poles are at  = ±100. We want to find  when the lowest

point is 60 m, so



= 60 ⇒  = 60 = (60 m)(2 kgm)(98 ms2) = 1176

kg-m
s2

, or 1176N (newtons).

The height of each pole is (100) =



cosh


 · 100




= 60 cosh


100

60


≈ 16450 m.

(b) If the tension is doubled from  to 2 , then the low point is doubled since



= 60 ⇒ 2


= 120. The height of the

poles is now (100) =
2


cosh


 · 100
2


= 120 cosh


100

120


≈ 16413 m, just a slight decrease.
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272 ¤ CHAPTER 3 DIFFERENTIATION RULES

54. (a) lim
→∞

() = lim
→∞





tanh










=





lim
→∞

tanh










=





· 1


as →∞,



→∞


=






(b) Belly-to-earth:  = 98,  = 0515, = 60, so the terminal velocity is


60(98)

0515
≈ 3379 ms.

Feet-first:  = 98,  = 0067, = 60, so the terminal velocity is


60(98)

0067
≈ 9368 ms.

55. (a)  =  sinh +  cosh ⇒ 0 =  cosh + sinh ⇒
00 = 2 sinh+2 cosh = 2( sinh+ cosh) = 2

(b) From part (a), a solution of 00 = 9 is () =  sinh 3+ cosh 3. So −4 = (0) =  sinh 0 + cosh 0 = , so

 = −4. Now 0() = 3 cosh 3− 12 sinh 3 ⇒ 6 = 0(0) = 3 ⇒  = 2, so  = 2 sinh 3− 4 cosh 3.

56. cosh = cosh[ln(sec  + tan )] =
1

2


ln(sec +tan ) + − ln(sec +tan )


=
1

2


sec  + tan  +

1

sec  + tan 


=
1

2


sec  + tan  +

sec  − tan 
(sec  + tan )(sec  − tan )


=
1

2


sec  + tan  +

sec  − tan 
sec2  − tan2 


= 1

2
(sec  + tan  + sec  − tan ) = sec 

57. The tangent to  = cosh has slope 1 when 0 = sinh = 1 ⇒  = sinh−1 1 = ln

1 +

√
2

, by Equation 3.

Since sinh = 1 and  = cosh =

1 + sinh2 , we have cosh =

√
2. The point is


ln

1 +

√
2

,
√
2

.

58. () = tanh( sin), where  is a positive integer. Note that (+ 2) = (); that is,  is periodic with period 2.

Also, from Figure 3, −1  tanh  1, so we can choose a viewing rectangle of [0 2]× [−1 1]. From the graph, we see
that () becomes more rectangular looking as  increases. As  becomes

large, the graph of  approaches the graph of  = 1 on the intervals

(2 (2 + 1)) and  = −1 on the intervals ((2 − 1) 2).

59. If  + − =  cosh(+ ) [or  sinh(+ )], then

 + − = 
2


+ ± −−


= 

2


 ± −−


=


2


 ± 

2
−


−. Comparing coefficients of 

and −, we have  = 
2
 (1) and  = ±

2
− (2). We need to find  and . Dividing equation (1) by equation (2)

gives us 
 = ±2 ⇒ () 2 = ln

±


 ⇒  = 1
2 ln

±



. Solving equations (1) and (2) for  gives us

 =
2


and  = ± 

2
, so

2


= ± 

2
⇒ 2 = ±4 ⇒  = 2

√±.

() If 

 0, we use the + sign and obtain a cosh function, whereas if 


 0, we use the − sign and obtain a sinh

function.

In summary, if  and  have the same sign, we have  + − = 2
√
 cosh


+ 1

2 ln




, whereas, if  and  have the

opposite sign, then  + − = 2
√− sinh+ 1

2 ln
−




.
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3 Review

1. True. This is the Sum Rule.

2. False. See the warning before the Product Rule.

3. True. This is the Chain Rule.

4. True.





() =




[()]12 =

1

2
[()]−12  0() =

 0()

2

()

5. False.



(
√
 ) =  0(

√
 ) · 1

2
−12 =

 0(
√
 )

2
√

, which is not

 0()
2
√

.

6. False.  = 2 is a constant, so 0 = 0, not 2.

7. False.



(10) = 10 ln 10, which is not equal to 10−1.

8. False. ln 10 is a constant, so its derivative,



(ln 10), is 0, not 1

10
.

9. True.



(tan2 ) = 2 tan sec2 , and




(sec2 ) = 2 sec (sec tan) = 2 tan sec2 .

Or:



(sec2 ) =




(1 + tan2 ) =




(tan2 ).

10. False. () =
2 + 

 = 2 +  for  ≥ 0 or  ≤ −1 and 2 + 
 = −(2 + ) for −1    0.

So  0() = 2+ 1 for   0 or   −1 and  0() = −(2+ 1) for −1    0. But |2+ 1| = 2+ 1
for  ≥ − 1

2
and |2+ 1| = −2− 1 for   − 1

2
.

11. True. If () = 
 + −1−1 + · · ·+ 1+ 0, then 0() = 

−1 + (− 1)−1−2 + · · ·+ 1, which is

a polynomial.

12. True. () = (6 − 4)5 is a polynomial of degree 30, so its 31st derivative,  (31)(), is 0.

13. True. If () =
()

()
, then 0() =

()0()− ()0()
[()]2

, which is a quotient of polynomials, that is, a rational

function.

14. False. A tangent line to the parabola  = 2 has slope  = 2, so at (−2 4) the slope of the tangent is 2(−2) = −4
and an equation of the tangent line is  − 4 = −4(+ 2). [The given equation,  − 4 = 2(+ 2), is not even
linear!]

15. True. () = 5 ⇒ 0() = 54 ⇒ 0(2) = 5(2)4 = 80, and by the definition of the derivative,

lim
→2

()− (2)

− 2 = 0(2) = 5(2)4 = 80.
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274 ¤ CHAPTER 3 DIFFERENTIATION RULES

1.  = (2 + 3)4 ⇒ 0 = 4(2 + 3)3(2+ 32) = 4(2)3(1 + )3(2 + 3) = 47(+ 1)3(3+ 2)

2.  =
1√

− 1

5
√
3
= −12 − −35 ⇒ 0 = −1

2
−32 +

3

5
−85 or

3

5
5
√
3
− 1

2
√

or

1

10
−85(−5110 + 6)

3.  =
2 − + 2√


= 32 − 12 + 2−12 ⇒ 0 =

3

2
12 − 1

2
−12 − −32 =

3

2

√
− 1

2
√

− 1√

3

4.  =
tan

1 + cos
⇒ 0 =

(1 + cos) sec2 − tan(− sin)
(1 + cos)2

=
(1 + cos) sec2 + tan sin

(1 + cos)2

5.  = 2 sin ⇒ 0 = 2(cos) + (sin)(2) = ( cos+ 2 sin)

6.  =  cos−1  ⇒ 0 = 


− 1√

1− 2


+ (cos−1 )(1) = cos−1 − √

1− 2

7.  =
4 − 1
4 + 1

⇒ 0 =
(4 + 1)43 − (4 − 1)43

(4 + 1)2
=
43[(4 + 1)− (4 − 1)]

(4 + 1)2
=

83

(4 + 1)2

8.



() =




( sin) ⇒ 0 +  · 1 =  cos+ sin · 0 ⇒ 0 − sin · 0 =  cos−  ⇒

( − sin)0 =  cos−  ⇒ 0 =
 cos− 

 − sin

9.  = ln( ln) ⇒ 0 =
1

 ln
( ln)0 =

1

 ln


 · 1


+ ln · 1


=
1 + ln

 ln

Another method:  = ln( ln) = ln+ ln ln ⇒ 0 =
1


+

1

ln
· 1

=
ln+ 1

 ln

10.  =  cos ⇒
0 = (cos)0 + cos ()0 = (− sin · ) + cos ( ·) = ( cos−  sin)

11.  =
√
 cos

√
 ⇒

0 =
√


cos
√

0
+ cos

√

√


0
=
√


− sin

√


1
2
−12


+ cos

√


1
2
−12


= 1

2
−12


−
√
 sin

√
+ cos

√


=
cos
√
−

√
 sin

√


2
√


12.  = (arcsin 2)2 ⇒ 0 = 2(arcsin 2) · (arcsin 2)0 = 2arcsin 2 · 1
1− (2)2 · 2 =

4 arcsin 2√
1− 42

13.  =
1

2
⇒ 0 =

2(1)0 − 1

2
0

(2)2
=

2(1)(−12)− 1(2)

4
=
−1(1 + 2)

4

14.  = ln sec ⇒ 0 =
1

sec




(sec) =

1

sec
(sec tan) = tan
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15.



( +  cos ) =




(2) ⇒ 0 + (− sin  · 0) + cos  · 1 = 20 +  · 2 ⇒

0 −  sin  · 0 − 20 = 2 − cos  ⇒ (1−  sin  − 2)0 = 2 − cos  ⇒ 0 =
2 − cos 

1−  sin  − 2

16.  =


− 1

2 + + 1

4
⇒

0 = 4


− 1
2 + + 1

3





− 1

2 + + 1


= 4


− 1

2 + + 1

3
(2 + + 1)(1)− (− 1)(2+ 1)

(2 + + 1)2

=
4(− 1)3

(2 + + 1)3
2 + + 1− 22 + + 1

(2 + + 1)2
=
4(− 1)3(−2 + 2+ 2)

(2 + + 1)5

17.  =
√
arctan ⇒ 0 =

1

2
(arctan)−12




(arctan) =

1

2
√
arctan (1 + 2)

18.  = cot(csc) ⇒ 0 = − csc2(csc) 


(csc) = − csc2(csc) · (− csc  cot ) = csc2(csc) csc cot

19.  = tan




1 + 2


⇒

0 = sec2




1 + 2









1 + 2


= sec2




1 + 2


· (1 + 2)(1)− (2)

(1 + 2)2
=

1− 2

(1 + 2)2
sec2




1 + 2



20.  =  sec  ⇒ 0 =  sec



( sec) =  sec( sec tan+ sec · 1) = sec sec( tan+ 1)

21.  = 3 ln  ⇒ 0 = 3 ln (ln 3)



( ln) = 3 ln(ln 3)


 · 1


+ ln · 1


= 3 ln (ln 3)(1 + ln)

22.  = sec(1 + 2) ⇒ 0 = 2 sec(1 + 2) tan(1 + 2)

23.  = (1− −1)−1 ⇒
0 = −1(1− −1)−2[−(−1−2)] = −(1− 1)−2−2 = −((− 1))−2−2 = −(− 1)−2

24.  =
1

3

+

√

=

+

√

−13 ⇒ 0 = − 1

3


+

√

−43

1 +
1

2
√




25. sin() = 2 −  ⇒ cos()(0 +  · 1) = 2− 0 ⇒  cos()0 + 0 = 2−  cos() ⇒

0[ cos() + 1] = 2−  cos() ⇒ 0 =
2−  cos()

 cos() + 1

26.  =

sin
√
 ⇒ 0 = 1

2


sin
√

−12

cos
√

 1

2
√



=

cos
√


4

 sin

√


27.  = log5(1 + 2) ⇒ 0 =
1

(1 + 2) ln 5




(1 + 2) =

2

(1 + 2) ln 5

28.  = (cos) ⇒ ln  = ln(cos) =  ln cos ⇒ 0


=  · 1

cos
· (− sin) + ln cos · 1 ⇒

0 = (cos)(ln cos−  tan)
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276 ¤ CHAPTER 3 DIFFERENTIATION RULES

29.  = ln sin− 1
2 sin

2  ⇒ 0 =
1

sin
· cos− 1

2 · 2 sin · cos = cot− sin cos

30.  =
(2 + 1)4

(2+ 1)3(3− 1)5 ⇒

ln  = ln
(2 + 1)4

(2+ 1)3(3− 1)5 = ln(
2 + 1)4 − ln[(2+ 1)3(3− 1)5] = 4 ln(2 + 1)− [ln(2+ 1)3 + ln(3− 1)5]

= 4 ln(2 + 1)− 3 ln(2+ 1)− 5 ln(3− 1) ⇒

0


= 4 · 1

2 + 1
· 2− 3 · 1

2+ 1
· 2− 5 · 1

3− 1 · 3 ⇒ 0 =
(2 + 1)4

(2+ 1)3(3− 1)5


8

2 + 1
− 6

2+ 1
− 15

3− 1

.

[The answer could be simplified to 0 = − (
2 + 56+ 9)(2 + 1)3

(2+ 1)4(3− 1)6 , but this is unnecessary.]

31.  =  tan−1(4) ⇒ 0 =  · 1

1 + (4)2
· 4 + tan−1(4) · 1 = 4

1 + 162
+ tan−1(4)

32.  = cos + cos( ) ⇒ 0 = cos(− sin) + [− sin( ) ·  ] = − sincos  −   sin( )

33.  = ln |sec 5+ tan 5| ⇒

0 =
1

sec 5+ tan 5
(sec 5 tan 5 · 5 + sec2 5 · 5) = 5 sec 5 (tan 5+ sec 5)

sec 5+ tan 5
= 5 sec 5

34.  = 10 tan ⇒ 0 = 10 tan · ln 10 · sec2  ·  = (ln 10)10 tan sec2 

35.  = cot(32 + 5) ⇒ 0 = − csc2(32 + 5)(6) = −6 csc2(32 + 5)

36.  =

 ln(4) ⇒

0 =
1

2
[ ln(4)]−12




[ ln(4)] =

1

2

 ln(4)

·

1 · ln(4) +  · 1

4
· 43


=

1

2

 ln(4)

· [ln(4) + 4] = ln(4) + 4

2

 ln(4)

Or: Since y is only defined for   0, we can write  =
√
 · 4 ln  = 2

√
 ln . Then

0 = 2 · 1

2
√
 ln 

·

1 · ln +  · 1




=
ln + 1√
 ln 

. This agrees with our first answer since

ln(4) + 4

2

 ln(4)

=
4 ln + 4

2
√
 · 4 ln  =

4(ln + 1)

2 · 2√ ln  =
ln + 1√
 ln 

.

37.  = sin

tan

√
1 + 3

 ⇒ 0 = cos

tan

√
1 + 3


sec2

√
1 + 3


32


2
√
1 + 3


38.  = arctan


arcsin

√


⇒ 0 =

1

1 +

arcsin

√

2 · 1√

1− 
· 1

2
√


39.  = tan2(sin ) = [tan(sin )]2 ⇒ 0 = 2[tan(sin )] · sec2(sin ) · cos 

40.  =  − 1 ⇒ 0 +  = 0 ⇒  = 0 − 0 ⇒ 0 = (1− )
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41.  =

√
+ 1 (2− )5

(+ 3)7
⇒ ln  = 1

2 ln(+1)+ 5 ln(2− )− 7 ln(+3) ⇒ 0


=

1

2(+ 1)
+

−5
2− 

− 7

+ 3
⇒

0 =
√
+ 1 (2− )5

(+ 3)7


1

2(+ 1)
− 5

2− 
− 7

+ 3


or 0 =

(2− )4(32 − 55− 52)
2
√
+ 1 (+ 3)8

.

42.  =
(+ )4

4 + 4
⇒ 0 =

(4 + 4)(4)(+ )3 − (+ )4(43)

(4 + 4)2
=
4(+ )3(4 − 3)

(4 + 4)2

43.  =  sinh(2) ⇒ 0 =  cosh(2) · 2+ sinh(2) · 1 = 22 cosh(2) + sinh(2)

44.  = (sin) ⇒ 0 = ( cos− sin)2

45.  = ln(cosh 3) ⇒ 0 = (1 cosh 3)(sinh 3)(3) = 3 tanh 3

46.  = ln

2 − 42+ 5

 = ln 2 − 4− ln |2+ 5| ⇒ 0 =
2

2 − 4 −
2

2+ 5
or

2(+ 1)(+ 4)

(+ 2)(− 2)(2+ 5)

47.  = cosh−1(sinh) ⇒ 0 =
1

(sinh)2 − 1 · cosh =
cosh
sinh2 − 1

48.  =  tanh−1
√
 ⇒ 0 = tanh−1

√
+ 

1

1−
√


2 1

2
√

= tanh−1

√
+

√


2(1− )

49.  = cos


√
tan 3


⇒

0 = − sin


√
tan 3


·


√
tan 3

0
= − sin



√
tan 3



√
tan 3 · 1

2
(tan 3)−12 · sec2(3) · 3

=
−3 sin



√
tan 3



√
tan 3 sec2(3)

2
√
tan 3

50.  = sin2

cos
√
sin


=

sin

cos
√
sin

2
⇒

0 = 2

sin

cos
√
sin


sin

cos
√
sin

0
= 2 sin


cos
√
sin


cos

cos
√
sin


cos
√
sin

0
= 2 sin


cos
√
sin


cos

cos
√
sin


− sin√sin

√
sin

0
= −2 sin


cos
√
sin


cos

cos
√
sin


sin
√
sin · 1

2
(sin)−12(sin)0

=
− sin


cos
√
sin


cos

cos
√
sin


sin
√
sin

√
sin

· cos · 

=
− sin


cos
√
sin


cos

cos
√
sin


sin
√
sin cos

√
sin

51. () =
√
4+ 1 ⇒  0() = 1

2 (4 + 1)
−12 · 4 = 2(4 + 1)−12 ⇒

 00() = 2(− 1
2
)(4+ 1)−32 · 4 = −4(4+ 1)32, so  00(2) = −4932 = − 4

27
.
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278 ¤ CHAPTER 3 DIFFERENTIATION RULES

52. () =  sin  ⇒ 0() =  cos  + sin  · 1 ⇒ 00() = (− sin ) + cos  · 1 + cos  = 2 cos  −  sin ,

so 00(6) = 2 cos(6)− (6) sin(6) = 2 √32− (6)(12) = √3− 12.

53. 6 + 6 = 1 ⇒ 65 + 650 = 0 ⇒ 0 = −55 ⇒

00 = −5(54)− 5(540)
(5)2

= −5
44


 − (−55)
10

= −5
4

(6 + 6)5


6

= −5
4

11

54. () = (2− )−1 ⇒  0() = (2− )−2 ⇒  00() = 2(2− )−3 ⇒  000() = 2 · 3(2− )−4 ⇒

 (4)() = 2 · 3 · 4(2− )−5. In general,  ()() = 2 · 3 · 4 · · · · · (2− )−(+1) =
!

(2− )(+1)
.

55. We first show it is true for  = 1: () =  ⇒  0() =  +  = (+ 1). We now assume it is true

for  = :  ()() = (+ ). With this assumption, we must show it is true for  =  + 1:

 (+1)() =





 ()()


=




[(+ )] = (+ ) +  = [(+ ) + 1] = [+ ( + 1)].

Therefore,  ()() = (+ ) by mathematical induction.

56. lim
→0

3

tan3 2
= lim

→0

3 cos3 2

sin3 2
= lim

→0
cos3 2 · 1

8
sin3 2

(2)3

= lim
→0

cos3 2

8


lim
→0

sin 2

2

3 = 1

8 · 13 =
1

8

57.  = 4 sin2  ⇒ 0 = 4 · 2 sin cos. At


6
 1

, 0 = 8 · 1

2
·
√
3
2
= 2

√
3, so an equation of the tangent line

is  − 1 = 2√3 − 
6


, or  = 2

√
3+ 1− 

√
33.

58.  =
2 − 1
2 + 1

⇒ 0 =
(2 + 1)(2)− (2 − 1)(2)

(2 + 1)2
=

4

(2 + 1)2
.

At (0−1), 0 = 0, so an equation of the tangent line is  + 1 = 0(− 0), or  = −1.

59.  =
√
1 + 4 sin ⇒ 0 = 1

2
(1 + 4 sin)−12 · 4 cos = 2cos√

1 + 4 sin
.

At (0 1), 0 =
2√
1
= 2, so an equation of the tangent line is  − 1 = 2(− 0), or  = 2+ 1.

60. 2 + 4 + 2 = 13 ⇒ 2+ 4(0 +  · 1) + 20 = 0 ⇒ + 20 + 2 + 0 = 0 ⇒

20 + 0 = −− 2 ⇒ 0(2+ ) = −− 2 ⇒ 0 =
−− 2
2+ 

.

At (2 1), 0 =
−2− 2
4 + 1

= −4
5
, so an equation of the tangent line is  − 1 = − 4

5
(− 2), or  = − 4

5
+ 13

5
.

The slope of the normal line is 5
4
, so an equation of the normal line is  − 1 = 5

4
(− 2), or  = 5

4
− 3

2
.

61.  = (2 + )− ⇒ 0 = (2 + )(−−) + − · 1 = −[−(2 + ) + 1] = −(−− 1).
At (0 2), 0 = 1(−1) = −1, so an equation of the tangent line is  − 2 = −1(− 0), or  = −+ 2.
The slope of the normal line is 1, so an equation of the normal line is  − 2 = 1(− 0), or  = + 2.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



CHAPTER 3 REVIEW ¤ 279

62. () = sin  ⇒  0() = [sin(cos)] + sin(1) = sin ( cos+ 1). As a check on our work, we notice from the

graphs that  0()  0 when  is increasing. Also, we see in the larger viewing rectangle a certain similarity in the graphs of 

and  0: the sizes of the oscillations of  and  0 are linked.

63. (a) () = 
√
5−  ⇒

 0() = 


1

2
(5− )−12(−1)


+
√
5−  =

−
2
√
5− 

+
√
5−  · 2

√
5− 

2
√
5− 

=
−

2
√
5− 

+
2(5− )

2
√
5− 

=
−+ 10− 2
2
√
5− 

=
10− 3
2
√
5− 

(b) At (1 2):  0(1) = 7
4
.

So an equation of the tangent line is  − 2 = 7
4
(− 1) or  = 7

4
+ 1

4
.

At (4 4):  0(4) = − 2
2 = −1.

So an equation of the tangent line is  − 4 = −1(− 4) or  = −+ 8.

(c)

(d) The graphs look reasonable, since  0 is positive where  has tangents with

positive slope, and  0 is negative where  has tangents with negative slope.

64. (a) () = 4− tan ⇒  0() = 4− sec2  ⇒  00() = −2 sec (sec tan) = −2 sec2  tan.

(b) We can see that our answers are reasonable, since the graph of  0 is 0 where

 has a horizontal tangent, and the graph of  0 is positive where  has

tangents with positive slope and negative where  has tangents with

negative slope. The same correspondence holds between the graphs of  0

and  00.

65.  = sin+ cos ⇒ 0 = cos− sin = 0 ⇔ cos = sin and 0 ≤  ≤ 2 ⇔  = 
4 or

5
4 , so the points

are


4 
√
2

and


5
4 −

√
2

.

66. 2 + 22 = 1 ⇒ 2+ 40 = 0 ⇒ 0 = −(2) = 1 ⇔  = −2. Since the points lie on the ellipse,

we have (−2)2 + 22 = 1 ⇒ 62 = 1 ⇒  = ± 1√
6
. The points are


− 2√

6
 1√

6


and


2√
6
− 1√

6


.
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280 ¤ CHAPTER 3 DIFFERENTIATION RULES

67. () = (− )(− )(− ) ⇒  0() = (− )(− ) + (− )(− ) + (− )(− ).

So
 0()
()

=
(− )(− ) + (− )(− ) + (− )(− )

(− )(− )(− )
=

1

− 
+

1

− 
+

1

− 
.

Or: () = (− )(− )(− ) ⇒ ln |()| = ln |− |+ ln |− |+ ln |− | ⇒
 0()
()

=
1

− 
+

1

− 
+

1

− 

68. (a) cos 2 = cos2 − sin2  ⇒ −2 sin 2 = −2 cos sin− 2 sin cos ⇔ sin 2 = 2 sin cos

(b) sin(+ ) = sin cos + cos sin  ⇒ cos(+ ) = cos cos − sin sin .

69. (a) () = () + () ⇒ 0() =  0() + 0() ⇒ 0(1) =  0(1) + 0(1) = 3 + 1 = 4

(b)  () = () () ⇒  0() = () 0() + ()  0() ⇒
 0(2) = (2) 0(2) + (2) 0(2) = 1(4) + 1(2) = 4 + 2 = 6

(c) () =
()

()
⇒ 0() =

()  0()− () 0()
[()]2

⇒

0(1) =
(1)  0(1)− (1) 0(1)

[(1)]2
=
3(3)− 2(1)

32
=
9− 2
9

=
7

9

(d) () = (()) ⇒ 0() =  0(()) 0() ⇒ 0(2) =  0((2)) 0(2) =  0(1) · 4 = 3 · 4 = 12

70. (a)  () = () () ⇒  0() = () 0() + ()  0() ⇒

 0(2) = (2) 0(2) + (2)  0(2) = (1)

6−0
3−0


+ (4)


0−3
3−0


= (1)(2) + (4)(−1) = 2− 4 = −2

(b) () =
()

()
⇒ 0() =

()  0()− () 0()
[()]2

⇒

0(2) =
(2)  0(2)− (2) 0(2)

[(2)]2
=
(4)(−1)− (1)(2)

42
=
−6
16

= −3
8

(c) () = (()) ⇒ 0() =  0(())0() ⇒

0(2) =  0((2))0(2) =  0(4)0(2) =

6−0
5−3


(2) = (3)(2) = 6

71. () = 2() ⇒  0() = 20() + ()(2) = [0() + 2()]

72. () = (2) ⇒  0() = 0(2)(2) = 20(2)

73. () = [ ()]2 ⇒  0() = 2[ ()] · 0() = 2() 0()

74. () = (()) ⇒  0() = 0(()) 0()

75. () = () ⇒  0() = 0() 

76. () = () ⇒  0() = ()0()

77. () = ln |()| ⇒  0() =
1

()
0() =

0()
()
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CHAPTER 3 REVIEW ¤ 281

78. () = (ln) ⇒  0() = 0(ln) · 1

=

0(ln)


79. () =
() ()

() + ()
⇒

0() =
[() + ()] [() 0() + ()  0()]− () () [ 0() + 0()]

[() + ()]2

=
[()]2 0() + () ()  0() + () () 0() + [ ()]2  0()− () ()  0()− () () 0()

[() + ()]2

=
 0() [ ()]2 + 0() [()]2

[() + ()]2

80. () =


()

()
⇒ 0() =

 0() ()− () 0()

2

()() [()]2

=
 0() ()− () 0()

2[()]32

()

81. Using the Chain Rule repeatedly, () = ((sin 4)) ⇒

0() =  0((sin 4)) · 


((sin 4)) =  0((sin 4)) · 0(sin 4) · 


(sin 4) =  0((sin 4))0(sin 4)(cos 4)(4).

82. (a) (b) The average rate of change is larger on [2 3].

(c) The instantaneous rate of change (the slope of the tangent) is larger at  = 2.

(d) () = − 2 sin ⇒  0() = 1− 2 cos,
so  0(2) = 1− 2 cos 2 ≈ 18323 and  0(5) = 1− 2 cos 5 ≈ 04327.
So  0(2)   0(5), as predicted in part (c).

83.  = [ln(+ 4)]2 ⇒ 0 = 2[ln(+ 4)]1 · 1

+ 4
· 1 = 2 ln(+ 4)

+ 4
and 0 = 0 ⇔ ln(+ 4) = 0 ⇔

+ 4 = 0 ⇒ + 4 = 1 ⇔  = −3, so the tangent is horizontal at the point (−3 0).

84. (a) The line − 4 = 1 has slope 1
4
. A tangent to  =  has slope 1

4
when 0 =  = 1

4
⇒  = ln 1

4
= − ln 4.

Since  = , the -coordinate is 1
4
and the point of tangency is

− ln 4 1
4


. Thus, an equation of the tangent line

is  − 1
4
= 1

4
(+ ln 4) or  = 1

4
+ 1

4
(ln 4 + 1).

(b) The slope of the tangent at the point ( ) is





= 

= . Thus, an equation of the tangent line is

 −  = (− ). We substitute  = 0,  = 0 into this equation, since we want the line to pass through the origin:

0−  = (0− ) ⇔ − = (−) ⇔  = 1. So an equation of the tangent line at the point ( ) = (1 )

is  −  = (− 1) or  = .

85.  = () = 2 + +  ⇒  0() = 2+ . We know that  0(−1) = 6 and  0(5) = −2, so −2+  = 6 and

10+  = −2. Subtracting the first equation from the second gives 12 = −8 ⇒  = − 2
3
. Substituting − 2

3
for  in the

first equation gives  = 14
3
. Now (1) = 4 ⇒ 4 = + + , so  = 4 + 2

3
− 14

3
= 0 and hence, () = −2

3
2 + 14

3
.
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282 ¤ CHAPTER 3 DIFFERENTIATION RULES

86. (a) lim
→∞

() = lim
→∞

[(− − −)] =  lim
→∞

(− − −) = (0− 0) = 0 because −→ −∞ and −→ −∞

as →∞.

(b) () = (− − −) ⇒  0() = (−(−)− −(−)) = (−− + −)

(c)  0() = 0 ⇔ − = − ⇔ 


= (−+) ⇔ ln




= (− ) ⇔  =

ln()

− 

87. () = − cos(+ ) ⇒

() = 0() = {− [− sin(+ )] + cos(+ )(−−)} = −− [ sin(+ ) +  cos(+ )] ⇒

() = 0() = −{−[2 cos(+ )−  sin(+ )] + [ sin(+ ) +  cos(+ )](−−)}
= −−[2 cos(+ )−  sin(+ )−  sin(+ )− 2 cos(+ )]

= −−[(2 − 2) cos(+ )− 2 sin(+ )] = −[(2 − 2) cos(+ ) + 2 sin(+ )]

88. (a)  =
√
2 + 2 2 ⇒ () = 0 =


1

2
√
2 + 2 2


22 = 2

√
2 + 2 2 ⇒

() = 0() =
2
√
2 + 2 2 − 2


2

√
2 + 2 2


2 + 2 2

=
22

(2 + 2 2)32

(b) ()  0 for   0, so the particle always moves in the positive direction.

89. (a)  = 3 − 12+ 3 ⇒ () = 0 = 32 − 12 ⇒ () = 0() = 6

(b) () = 3(2 − 4)  0 when   2, so it moves upward when   2 and downward when 0 ≤   2.

(c) Distance upward = (3)− (2) = −6− (−13) = 7,
Distance downward = (0)− (2) = 3− (−13) = 16. Total distance = 7 + 16 = 23.

(d) (e) The particle is speeding up when  and  have the same sign, that is,

when   2. The particle is slowing down when  and  have opposite

signs; that is, when 0    2.

90. (a)  = 1
3

2 ⇒  = 1
3

2 [ constant]

(b)  = 1
3
2 ⇒  = 2

3
 [ constant]

91. The linear density  is the rate of change of mass with respect to length .

 = 

1 +

√


= + 32 ⇒  =  = 1 + 3

2

√
, so the linear density when  = 4 is 1 + 3

2

√
4 = 4 kgm.

92. (a) () = 920 + 2− 0022 + 0000073 ⇒  0() = 2− 004+ 0000212

(b)  0(100) = 2− 4 + 21 = $010unit. This value represents the rate at which costs are increasing as the hundredth unit is
produced, and is the approximate cost of producing the 101st unit.

(c) The cost of producing the 101st item is (101)−(100) = 99010107− 990 = $010107, slightly larger than  0(100).
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CHAPTER 3 REVIEW ¤ 283

93. (a) () = (0) = 200 ⇒ (05) = 20005 = 360 ⇒ 05 = 18 ⇒ 05 = ln 18 ⇒
 = 2 ln 18 = ln(18)2 = ln 324 ⇒ () = 200(ln 324) = 200(324)

(b) (4) = 200(324)4 ≈ 22,040 bacteria

(c) 0() = 200(324) · ln 324, so 0(4) = 200(324)4 · ln 324 ≈ 25,910 bacteria per hour

(d) 200(324) = 10,000 ⇒ (324) = 50 ⇒  ln 324 = ln 50 ⇒  = ln 50 ln 324 ≈ 333 hours

94. (a) If () is the mass remaining after  years, then () = (0) = 100. (524) = 100524 = 1
2
· 100 ⇒

524 = 1
2
⇒ 524 = − ln 2 ⇒  = − 1

524
ln 2 ⇒ () = 100−(ln 2)524 = 100 · 2−524. Thus,

(20) = 100 · 2−20524 ≈ 71 mg.

(b) 100 · 2−524 = 1 ⇒ 2−524 =
1

100
⇒ − 

524
ln 2 = ln

1

100
⇒  = 524

ln 100

ln 2
≈ 348 years

95. (a) 0() = −() ⇒ () = (0)− by Theorem 3.8.2. But (0) = 0, so () = 0
−.

(b) (30) = 1
2
0 since the concentration is reduced by half. Thus, 120 = 0

−30 ⇒ ln 1
2
= −30 ⇒

 = − 1
30
ln 1

2
= 1

30
ln 2. Since 10% of the original concentration remains if 90% is eliminated, we want the value of 

such that () = 1
10
0. Therefore, 1

10
0 = 0

−(ln 2)30 ⇒ ln 01 = −(ln 2)30 ⇒  = − 30
ln 2

ln 01 ≈ 100 h.

96. (a) If  = − 20, (0) = 80 ⇒ (0) = 80− 20 = 60, and the initial-value problem is  =  with (0) = 60.

So the solution is () = 60. Now (05) = 60(05) = 60− 20 ⇒ 05 = 40
60
= 2

3
⇒  = 2 ln 2

3
= ln 4

9
,

so () = 60(ln 49) = 60( 4
9
). Thus, (1) = 60( 4

9
)1 = 80

3
= 26 2

3
◦C and (1) = 46 2

3
◦C.

(b) () = 40 ⇒ () = 20. () = 60


4

9


= 20 ⇒


4

9


=
1

3
⇒  ln

4

9
= ln

1

3
⇒  =

ln 1
3

ln 4
9

≈ 135 h

or 813 min.

97. If  = edge length, then  = 3 ⇒  = 32  = 10 ⇒  = 10(32) and  = 62 ⇒
 = (12)  = 12[10(32)] = 40. When  = 30,  = 40

30
= 4

3
cm2min.

98. Given  = 2, find  when  = 5.  = 1
3

2 and, from similar

triangles,



=
3

10
⇒  =



3


3

10

2
 =

3

100
3, so

2 =



=
9

100
2




⇒ 


=

200

92
=

200

9 (5)2
=

8

9
cms

when  = 5.

99. Given  = 5 and  = 15, find . 2 = 2 + 2 ⇒

2



= 2




+ 2




⇒ 


=
1


(15+ 5). When  = 3,

 = 45 + 3(5) = 60 and  = 15(3) = 45 ⇒  =
√
452 + 602 = 75,

so



=
1

75
[15(45) + 5(60)] = 13 fts.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



284 ¤ CHAPTER 3 DIFFERENTIATION RULES

100. We are given  = 30 fts. By similar triangles,



=

4√
241

⇒

 =
4√
241

, so



=

4√
241




=

120√
241

≈ 77 fts.

101. We are given  = −025 radh. tan  = 400 ⇒

 = 400 cot  ⇒ 


= −400 csc2  


. When  = 

6 ,




= −400(2)2(−025) = 400 fth.

102. (a) () =
√
25− 2 ⇒  0() =

−2
2
√
25− 2

= −(25− 2)−12.

So the linear approximation to () near 3

is () ≈ (3) +  0(3)(− 3) = 4− 3
4 (− 3).

(b)

(c) For the required accuracy, we want
√
25− 2 − 01  4− 3

4
(− 3) and

4− 3
4
(− 3)  √25− 2 + 01. From the graph, it appears that these both

hold for 224    366.

103. (a) () = 3
√
1 + 3 = (1 + 3)13 ⇒  0() = (1 + 3)−23, so the linearization of  at  = 0 is

() = (0) +  0(0)(− 0) = 113 + 1−23 = 1 + . Thus, 3
√
1 + 3 ≈ 1 +  ⇒

3
√
103 = 3


1 + 3(001) ≈ 1 + (001) = 101.

(b) The linear approximation is 3
√
1 + 3 ≈ 1 + , so for the required accuracy

we want 3
√
1 + 3− 01  1 +   3

√
1 + 3+ 01. From the graph,

it appears that this is true when −0235    0401.

104.  = 3 − 22 + 1 ⇒  = (32 − 4) . When  = 2 and  = 02,  = 3(2)2 − 4(2)(02) = 08.
105.  = 2 + 1

2

1
2
2
=

1 + 

8


2 ⇒  =


2 + 

4


. When  = 60

and  = 01,  =

2 + 

4


60(01) = 12 + 3

2
, so the maximum error is

approximately 12 + 3
2 ≈ 167 cm2.
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106. lim
→1

17 − 1
− 1 =





17

=1

= 17(1)16 = 17

107. lim
→0

4
√
16 + − 2


=






4
√



=16

=
1

4
−34


=16

=
1

4

4
√
16
3 = 1

32

108. lim
→3

cos  − 05
 − 3

=





cos 


=3

= − sin 
3
= −

√
3

2

109. lim
→0

√
1 + tan−√1 + sin

3
= lim

→0

√
1 + tan−√1 + sin √1 + tan+√1 + sin 

3
√
1 + tan+

√
1 + sin


= lim

→0

(1 + tan)− (1 + sin)
3
√
1 + tan+

√
1 + sin

 = lim
→0

sin (1 cos− 1)
3
√
1 + tan+

√
1 + sin

 · cos
cos

= lim
→0

sin (1− cos)
3
√
1 + tan+

√
1 + sin


cos

· 1 + cos
1 + cos

= lim
→0

sin · sin2 
3
√
1 + tan+

√
1 + sin


cos (1 + cos)

=


lim
→0

sin



3
lim
→0

1√
1 + tan+

√
1 + sin


cos (1 + cos)

= 13 · 1√
1 +

√
1
 · 1 · (1 + 1) = 1

4

110. Differentiating the first given equation implicitly with respect to  and using the Chain Rule, we obtain (()) =  ⇒

 0(()) 0() = 1 ⇒ 0() =
1

 0(())
. Using the second given equation to expand the denominator of this expression

gives 0() =
1

1 + [(())]2
. But the first given equation states that (()) = , so 0() =

1

1 + 2
.

111.



[(2)] = 2 ⇒  0(2) · 2 = 2 ⇒  0(2) = 1

2
2. Let  = 2. Then  0() = 1

2


1
2 
2
= 1

8 
2, so  0() = 1

8
2.

112. Let ( ) be on the curve, that is, 23 + 23 = 23. Now 23 + 23 = 23 ⇒ 2
3
−13 + 2

3
−13




= 0, so




= −13

13
= −




13
, so at ( ) the slope of the tangent line is−()13 and an equation of the tangent line is

 −  = −()13(− ) or  = −()13+ (+ 2313). Setting  = 0, we find that the -intercept is

1323 +  = 13(23 + 23) = 1323 and setting  = 0 we find that the -intercept is

+ 2313 = 13(23 + 23) = 1323. So the length of the tangent line between these two points is
(1323)2 + (1323)2 =

√
2343 + 2343 =


(23 + 23)43

=
√
2343 =

√
2 =  = constant
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PROBLEMS PLUS

1. Let  be the -coordinate of . Since the derivative of  = 1− 2 is 0 = −2, the slope at  is−2. But since the triangle
is equilateral,  =

√
31, so the slope at  is −√3. Therefore, we must have that −2 = −√3 ⇒  =

√
3
2
.

Thus, the point has coordinates

√
3
2  1−

√
3
2

2
=
√

3
2  14


and by symmetry,  has coordinates


−
√
3
2  14


.

2.  = 3 − 3+ 4 ⇒ 0 = 32 − 3, and  = 3(2 − ) ⇒ 0 = 6− 3.
The slopes of the tangents of the two curves are equal when 32 − 3 = 6− 3;
that is, when  = 0 or 2. At  = 0, both tangents have slope −3, but the curves do
not intersect. At  = 2, both tangents have slope 9 and the curves intersect at

(2 6). So there is a common tangent line at (2 6),  = 9− 12.

3.

 

We must show that  (in the figure) is halfway between  and , that is,

 = (+ )2. For the parabola  = 2 + + , the slope of the tangent line is

given by 0 = 2+ . An equation of the tangent line at  =  is

 − (2 + + ) = (2+ )(− ). Solving for  gives us

 = (2+ )− 22 − + (2 + + )

or  = (2+ )+ − 2 (1)

Similarly, an equation of the tangent line at  =  is

 = (2 + )+ − 2 (2)

We can eliminate  and solve for  by subtracting equation (1) from equation (2).

[(2 + )− (2+ )]− 2 + 2 = 0

(2 − 2)= 2 − 2

2( − )= (2 − 2)

=
( + )( − )

2( − )
=

+ 

2

Thus, the -coordinate of the point of intersection of the two tangent lines, namely , is (+ )2.

4. We could differentiate and then simplify or we can simplify and then differentiate. The latter seems to be the simpler method.

sin2 

1 + cot
+

cos2 

1 + tan
=

sin2 

1 +
cos

sin

· sin
sin

+
cos2 

1 +
sin

cos

· cos
cos

=
sin3 

sin+ cos
+

cos3 

cos+ sin

=
sin3 + cos3 

sin+ cos
[factor sum of cubes] =

(sin+ cos)(sin2 − sin cos+ cos2 )
sin+ cos

= sin2 − sin cos+ cos2  = 1− sin cos = 1− 1
2
(2 sin cos) = 1− 1

2
sin 2

Thus,





sin2 

1 + cot
+

cos2 

1 + tan


=






1− 1

2
sin 2


= − 1

2
cos 2 · 2 = − cos 2.
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5. Using  0() = lim
→

()− ()

− 
, we recognize the given expression, () = lim

→

sec − sec
− 

, as 0()

with () = sec. Now  0(4 ) = 00(4 ), so we will find 
00(). 0() = sec tan ⇒

00() = sec sec2 + tan sec tan = sec(sec2 + tan2 ), so 00(
4
) =

√
2(
√
2
2
+ 12) =

√
2(2 + 1) = 3

√
2.

6. Using  0(0) = lim
→0

()− (0)

− 0 , we see that for the given equation, lim
→0

3
√
+ − 2


=
5

12
, we have () = 3

√
+ ,

(0) = 2, and  0(0) = 5
12 . Now (0) = 2 ⇔ 3

√
 = 2 ⇔  = 8. Also  0() = 1

3 (+ )−23 · , so  0(0) = 5
12

⇔ 1
3
(8)−23 ·  = 5

12
⇔ 1

3
( 1
4
) = 5

12
⇔  = 5.

7. Let  = tan−1 . Then tan  = , so from the triangle we see that

sin(tan−1 ) = sin  =
√
1 + 2

Using this fact we have that

sin(tan−1(sinh)) =
sinh
1 + sinh2 

=
sinh

cosh
= tanh.

Hence, sin−1(tanh) = sin−1(sin(tan−1(sinh))) = tan−1(sinh).

8. We find the equation of the parabola by substituting the point (−100 100), at which the car is situated, into the general

equation  = 2: 100 = (−100)2 ⇒  = 1
100
. Now we find the equation of a tangent to the parabola at the point

(0 0). We can show that 0 = (2) = 1
100
(2) = 1

50
, so an equation of the tangent is  − 0 =

1
50
0(− 0).

Since the point (0 0) is on the parabola, we must have 0 = 1
100

2
0, so our equation of the tangent can be simplified to

 = 1
100

20 +
1
50
0(− 0). We want the statue to be located on the tangent line, so we substitute its coordinates (100 50)

into this equation: 50 = 1
100

20 +
1
50
0(100− 0) ⇒ 20 − 2000 + 5000 = 0 ⇒

0 =
1
2


200±2002 − 4(5000)  ⇒ 0 = 100± 50

√
2. But 0  100, so the car’s headlights illuminate the statue

when it is located at the point

100− 50√2 150− 100√2  ≈ (293 86), that is, about 293 m east and 86 m north of

the origin.

9. We use mathematical induction. Let  be the statement that



(sin4 + cos4 ) = 4−1 cos(4+ 2).

1 is true because




(sin4 + cos4 ) = 4 sin3  cos− 4 cos3  sin = 4 sin cos sin2 − cos2 

= −4 sin cos cos 2 = −2 sin 2 cos 2 = − sin 4 = sin(−4)
= cos



2 − (−4)


= cos



2 + 4


= 4−1 cos


4+ 

2


when  = 1

[continued]
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CHAPTER 3 PROBLEMS PLUS ¤ 289

Now assume  is true, that is,





sin4 + cos4 


= 4−1 cos


4+  

2


. Then

+1

+1
(sin4 + cos4 ) =









(sin4 + cos4 )


=






4−1 cos


4+  

2


= −4−1 sin4+  

2

 · 




4+  

2


= −4 sin4+  

2


= 4 sin

−4−  
2


= 4 cos



2
− −4−  

2


= 4 cos


4+ ( + 1) 

2


which shows that +1 is true.

Therefore,



(sin4 + cos4 ) = 4−1 cos


4+ 

2


for every positive integer , by mathematical induction.

Another proof: First write

sin4 + cos4  = (sin2 + cos2 )2 − 2 sin2  cos2  = 1− 1
2
sin2 2 = 1− 1

4
(1− cos 4) = 3

4
+ 1

4
cos 4

Then we have



(sin4 + cos4 ) =






3

4
+
1

4
cos 4


=
1

4
· 4 cos


4+ 



2


= 4−1 cos


4+ 



2


.

10. lim
→

()− ()√
−

√


= lim
→


()− ()√

−
√

·
√
+

√
√

+
√



= lim

→


()− ()

− 
·
√

+
√



= lim
→

()− ()

− 
· lim
→

√
+

√


=  0() ·

√
+

√


= 2

√
  0()

11. We must find a value 0 such that the normal lines to the parabola  = 2 at  = ±0 intersect at a point one unit from the

points
±0 20. The normals to  = 2 at  = ±0 have slopes− 1

±20 and pass through
±0 20 respectively, so the

normals have the equations  − 20 = − 1

20
(− 0) and  − 20 =

1

20
(+ 0). The common -intercept is 20 +

1

2
.

We want to find the value of 0 for which the distance from

0 20 +

1
2


to

0 

2
0


equals 1. The square of the distance is

(0 − 0)2 +

20 −


20 +

1
2

2
= 20 +

1
4 = 1 ⇔ 0 = ±

√
3
2 . For these values of 0, the -intercept is 

2
0 +

1
2 =

5
4 , so

the center of the circle is at

0 5

4


.

Another solution: Let the center of the circle be (0 ). Then the equation of the circle is 2 + ( − )2 = 1.

Solving with the equation of the parabola,  = 2, we get 2 + (2 − )2 = 1 ⇔ 2 + 4 − 22 + 2 = 1 ⇔

4 + (1− 2)2 + 2 − 1 = 0. The parabola and the circle will be tangent to each other when this quadratic equation in 2

has equal roots; that is, when the discriminant is 0. Thus, (1− 2)2 − 4(2 − 1) = 0 ⇔

1− 4+ 42 − 42 + 4 = 0 ⇔ 4 = 5, so  = 5
4
. The center of the circle is


0 5

4


.
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290 ¤ CHAPTER 3 PROBLEMS PLUS

12. See the figure. The parabolas  = 42 and  = + 22 intersect each other

at right angles at the point ( ) if and only if ( ) satisfies both equations

and the tangent lines at ( ) are perpendicular.  = 42 ⇒ 0 = 8

and  = + 22 ⇒ 1 = 4 0 ⇒ 0 =
1

4
, so at ( ) we must

have 8 = − 1

1(4)
⇒ 8 = −4 ⇒  = −2. Since ( ) is on both parabolas, we have (1)  = 42 and (2)

 = + 22. Substituting −2 for  in (1) gives us −2 = 42 ⇒ 42 + 2 = 0 ⇒ 2(2+ 1) = 0 ⇒  = 0 or

 = − 1
2 .

If  = 0, then  = 0 and  = 0, and the tangent lines at (0 0) are  = 0 and  = 0.

If  = − 1
2
, then  = −2−1

2


= 1 and −1

2
= + 2(1)2 ⇒  = −5

2
, and the tangent lines at

−1
2
 1

are

 − 1 = −4+ 1
2


[or  = −4− 1] and  − 1 = 1

4


+ 1

2

 
or  = 1

4
+ 9

8


.

13. See the figure. Clearly, the line  = 2 is tangent to both circles at the point

(0 2). We’ll look for a tangent line  through the points ( ) and ( ), and if

such a line exists, then its reflection through the -axis is another such line. The

slope of  is the same at ( ) and ( ). Find those slopes: 2 + 2 = 4 ⇒

2+ 2 0 = 0 ⇒ 0 = −




= −




and 2 + ( − 3)2 = 1 ⇒

2+ 2( − 3)0 = 0 ⇒ 0 = − 

 − 3

= − 

− 3

.

Now an equation for  can be written using either point-slope pair, so we get −  = −


(− )


or  = −


+

2


+ 



and  −  = − 

− 3(− )


or  = − 

− 3 +
2

− 3 + 


. The slopes are equal, so −


= − 

− 3 ⇔

− 3 = 


. Since ( ) is a solution of 2 + ( − 3)2 = 1 we have 2 + (− 3)2 = 1, so 2 +






2
= 1 ⇒

22 + 22 = 2 ⇒ 2(2 + 2) = 2 ⇒ 42 = 2 [since ( ) is a solution of 2 + 2 = 4] ⇒  = 2.

Now − 3 = 


⇒  = 3 +



2
, so  = 3 +



2
. The -intercepts are equal, so

2


+  =

2

− 3 +  ⇔

2


+  =

(2)2

2
+


3 +



2


⇔


2


+  =

2

2
+ 3 +



2


(2) ⇔ 22 + 22 = 2 + 6+ 2 ⇔

2 + 2 = 6 ⇔ 4 = 6 ⇔  = 2
3
. It follows that  = 3 +



2
=
10

3
, 2 = 4− 2 = 4− 4

9
= 32

9
⇒  = 4

3

√
2,

and 2 = 1− (− 3)2 = 1−  1
3

2
= 8

9
⇒  = 2

3

√
2. Thus,  has equation  − 2

3
= − (43)

√
2

23


− 4

3

√
2


⇔

 − 2
3
= −2√2 − 4

3

√
2
 ⇔  = −2√2+ 6. Its reflection has equation  = 2√2+ 6.

[continued]
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CHAPTER 3 PROBLEMS PLUS ¤ 291

In summary, there are three lines tangent to both circles:  = 2 touches at (0 2),  touches at

4
3

√
2 23


and


2
3

√
2 103


,

and its reflection through the -axis touches at
− 4

3

√
2 2

3


and

− 2
3

√
2 10

3


.

14. () =
46 + 45 + 2

1 + 
=

45(+ 1) + 2

+ 1
=

45(+ 1)

+ 1
+

2

+ 1
= 45 + 2(+ 1)−1, so

 (46)() = (45)(46) + 2

(+ 1)−1

(46)
. The forty-sixth derivative of any forty-fifth degree polynomial is 0, so

(45)46 = 0. Thus,  (46)() = 2

(−1)(−2)(−3) · · · (−46)(+ 1)−47 = 2(46!)(+ 1)−47 and  (46)(3) = 2(46!)(4)−47

or (46!)2−93.

15. We can assume without loss of generality that  = 0 at time  = 0, so that  = 12 rad. [The angular velocity of the wheel

is 360 rpm = 360 · (2 rad)(60 s) = 12 rads.] Then the position of  as a function of time is

 = (40 cos  40 sin ) = (40 cos 12 40 sin 12), so sin =


12 m
=
40 sin 

120
=
sin 

3
=
1

3
sin 12.

(a) Differentiating the expression for sin, we get cos · 

=
1

3
· 12 · cos 12 = 4 cos . When  = 

3
, we have

sin =
1

3
sin  =

√
3

6
, so cos =


1−

√
3

6

2
=


11

12
and




=
4 cos 

3

cos
=

2
1112

=
4
√
3√

11
≈ 656 rads.

(b) By the Law of Cosines, | |2 = ||2 + | |2 − 2 || | | cos  ⇒

1202 = 402 + | |2 − 2 · 40 | | cos  ⇒ | |2 − (80 cos ) | |− 12,800 = 0 ⇒

| | = 1
2


80 cos  ±√6400 cos2  + 51,200  = 40 cos  ± 40√cos2  + 8 = 40cos  +√8 + cos2   cm

[since | |  0]. As a check, note that | | = 160 cm when  = 0 and | | = 80√2 cm when  = 
2
.

(c) By part (b), the -coordinate of  is given by  = 40

cos  +

√
8 + cos2 


, so




=








= 40


− sin  − 2 cos  sin 

2
√
8 + cos2 


· 12 = −480 sin 


1 +

cos √
8 + cos2 


cms.

In particular,  = 0 cms when  = 0 and  = −480 cms when  = 
2
.

16. The equation of 1 is  − 21 = 21(− 1) = 21− 221 or  = 21− 21.

The equation of 2 is  = 22− 22. Solving for the point of intersection, we

get 2(1 − 2) = 21 − 22 ⇒  = 1
2
(1 + 2). Therefore, the coordinates

of  are

1
2
(1 + 2) 12


. So if the point of contact of  is


 2


, then

1 is

1
2
(+ 1) 1


and2 is


1
2
(+ 2) 2


. Therefore,

|1|2 = 1
4
(− 2)

2 + 21(− 2)
2 = (− 2)

2 1
4
+ 21


and

|1|2 = 1
4
(1 − 2)

2 + 21(1 − 2)
2 = (1 − 2)

2 1
4
+ 21


.

So
|1|2
|1|2

=
(− 2)

2

(1 − 2)
2 , and similarly

|2|2
|2|2

=
(1 − )2

(1 − 2)
2 . Finally,

|1|
|1| +

|2|
|2| =

− 2

1 − 2
+

1 − 

1 − 2
= 1.
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292 ¤ CHAPTER 3 PROBLEMS PLUS

17. Consider the statement that



( sin ) =  sin( + ). For  = 1,




( sin ) =  sin +  cos , and

 sin(+ ) = [sin  cos  + cos  sin ] = 




sin +




cos 


=  sin +  cos 

since tan  =



⇒ sin  =




and cos  =




. So the statement is true for  = 1.

Assume it is true for  = . Then

+1

+1
( sin ) =






 sin(+ )


=  sin(+ ) +  cos(+ )

= [ sin(+ ) +  cos(+ )]

But

sin[+ ( + 1)] = sin[(+ ) + ] = sin(+ ) cos  + sin  cos(+ ) = 

sin(+ ) + 


cos(+ ).

Hence,  sin(+ ) +  cos(+ ) =  sin[+ ( + 1)]. So

+1

+1
( sin ) = [ sin(+)+ cos(+)] = [ sin(+(+1))] = +1[sin(+(+1))].

Therefore, the statement is true for all  by mathematical induction.

18. We recognize this limit as the definition of the derivative of the function () = sin at  = , since it is of the form

lim
→

()− ()

− 
. Therefore, the limit is equal to  0() = (cos)sin = −1 · 0 = −1.

19. It seems from the figure that as  approaches the point (0 2) from the right,  →∞ and  → 2+. As  approaches the

point (3 0) from the left, it appears that  → 3+ and  →∞. So we guess that  ∈ (3∞) and  ∈ (2∞). It is
more difficult to estimate the range of values for  and  . We might perhaps guess that  ∈ (0 3),
and  ∈ (−∞ 0) or (−2 0).
In order to actually solve the problem, we implicitly differentiate the equation of the ellipse to find the equation of the

tangent line:
2

9
+

2

4
= 1 ⇒ 2

9
+
2

4
0 = 0, so 0 = −4

9




. So at the point (0 0) on the ellipse, an equation of the

tangent line is  − 0 = −4
9

0

0
(− 0) or 40+ 90 = 420 + 9

2
0 . This can be written as

0

9
+

0

4
=

20
9
+

20
4
= 1,

because (0 0) lies on the ellipse. So an equation of the tangent line is
0

9
+

0

4
= 1.

Therefore, the -intercept  for the tangent line is given by
0

9
= 1 ⇔  =

9

0
, and the -intercept  is given

by
0

4
= 1 ⇔  =

4

0
.
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CHAPTER 3 PROBLEMS PLUS ¤ 293

So as 0 takes on all values in (0 3),  takes on all values in (3∞), and as 0 takes on all values in (0 2),  takes on

all values in (2∞). At the point (0 0) on the ellipse, the slope of the normal line is − 1

0(0 0)
=
9

4

0

0
, and its

equation is  − 0 =
9

4

0

0
(− 0). So the -intercept  for the normal line is given by 0− 0 =

9

4

0

0
( − 0) ⇒

 = −40
9
+ 0 =

50
9
, and the -intercept  is given by  − 0 =

9

4

0

0
(0− 0) ⇒  = −90

4
+ 0 = −50

4
.

So as 0 takes on all values in (0 3),  takes on all values in

0 5

3


, and as 0 takes on all values in (0 2),  takes on

all values in
− 5

2  0

.

20. lim
→0

sin(3 + )2 − sin 9


=  0(3) where () = sin2. Now  0() = (cos2)(2), so  0(3) = 6 cos 9.

21. (a) If the two lines 1 and 2 have slopes1 and2 and angles of

inclination 1 and 2, then1 = tan 1 and2 = tan 2. The triangle

in the figure shows that 1 + + (180◦ − 2) = 180
◦ and so

 = 2 − 1. Therefore, using the identity for tan(− ), we have

tan = tan(2 − 1) =
tan2 − tan1
1 + tan2 tan1

and so tan  =
2 −1

1 +12
.

(b) (i) The parabolas intersect when 2 = (− 2)2 ⇒  = 1. If  = 2, then 0 = 2, so the slope of the tangent

to  = 2 at (1 1) is1 = 2(1) = 2. If  = (− 2)2, then 0 = 2(− 2), so the slope of the tangent to

 = (− 2)2 at (1 1) is2 = 2(1− 2) = −2. Therefore, tan = 2 −1

1 +12
=

−2− 2
1 + 2(−2) =

4

3
and

so  = tan−1

4
3

 ≈ 53◦ [or 127◦].
(ii) 2 − 2 = 3 and 2 − 4+ 2 + 3 = 0 intersect when 2 − 4+ (2 − 3) + 3 = 0 ⇔ 2(− 2) = 0 ⇒

 = 0 or 2, but 0 is extraneous. If  = 2, then  = ±1. If 2 − 2 = 3 then 2− 20 = 0 ⇒ 0 =  and

2 − 4+ 2 + 3 = 0 ⇒ 2− 4 + 20 = 0 ⇒ 0 =
2− 


. At (2 1) the slopes are1 = 2 and

2 = 0, so tan = 0− 2
1+ 2 · 0 = −2 ⇒  ≈ 117◦. At (2−1) the slopes are1 = −2 and2 = 0

so tan =
0− (−2)
1 + (−2)(0) = 2 ⇒  ≈ 63◦ [or 117◦].

22. 2 = 4 ⇒ 20 = 4 ⇒ 0 = 2 ⇒ slope of tangent at  (1 1) is1 = 21. The slope of  is

2 =
1

1 − 
, so by the formula from Problem 19(a),

tan =

1

1 − 
− 2

1

1 +


2

1


1

1 − 

 · 1 (1 − )

1 (1 − )
=

21 − 2(1 − )

1(1 − ) + 21
=
41 − 21 + 22
11 − 1 + 21

=
2(+ 1)

1(+ 1)
=
2

1
= slope of tangent at  = tan

Since 0 ≤ ,  ≤ 
2
, this proves that  = .
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294 ¤ CHAPTER 3 PROBLEMS PLUS

23. Since ∠ = ∠ = , the triangle is isosceles, so

|| = || = . By the Law of Cosines, 2 = 2 + 2 − 2 cos . Hence,

2 cos  = 2, so  =
2

2 cos 
=



2 cos 
. Note that as  → 0+, → 0+ (since

sin  = ), and hence → 

2 cos 0
=



2
. Thus, as  is taken closer and closer

to the -axis, the point  approaches the midpoint of the radius .

24. lim
→0

()

()
= lim

→0

()− 0
()− 0 = lim

→0

()− (0)

()− (0)
= lim

→0

()− (0)

− 0
()− (0)

− 0
=
lim
→0

()− (0)

− 0
lim
→0

()− (0)

− 0
=

 0(0)
0(0)

25. lim
→0

sin(+ 2)− 2 sin(+ ) + sin 

2

= lim
→0

sin  cos 2+ cos  sin 2− 2 sin  cos− 2 cos  sin+ sin 
2

= lim
→0

sin  (cos 2− 2 cos+ 1) + cos (sin 2− 2 sin)
2

= lim
→0

sin  (2 cos2 − 1− 2 cos+ 1) + cos  (2 sin cos− 2 sin)
2

= lim
→0

sin  (2 cos)(cos− 1) + cos  (2 sin)(cos− 1)
2

= lim
→0

2(cos− 1)[sin cos+ cos  sin](cos+ 1)
2(cos+ 1)

= lim
→0

−2 sin2  [sin(+ )]

2(cos+ 1)
= −2 lim

→0


sin



2
· sin(+ )

cos+ 1
= −2(1)2 sin(+ 0)

cos 0 + 1
= − sin 

26. (a) () = (− 2)(− 6) = 3 − 82 + 12 ⇒

 0() = 32 − 16+ 12. The average of the first pair of zeros is
(0 + 2)2 = 1. At  = 1, the slope of the tangent line is  0(1) = −1, so an
equation of the tangent line has the form  = −1+ . Since (1) = 5, we

have 5 = −1 +  ⇒  = 6 and the tangent has equation  = −+ 6.

Similarly, at  =
0 + 6

2
= 3,  = −9+ 18; at  = 2 + 6

2
= 4,  = −4. From the graph, we see that each tangent line

drawn at the average of two zeros intersects the graph of  at the third zero.

(b) A CAS gives  0() = (− )(− ) + (− )(− ) + (− )(− ) or

 0() = 32 − 2(+ + )+ + + . Using the Simplify command, we get

 0

+ 

2


= − (− )2

4
and 


+ 

2


= − (− )2

8
(+ − 2), so an equation of the tangent line at  = + 

2
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CHAPTER 3 PROBLEMS PLUS ¤ 295

is  = − (− )2

4


− + 

2


− (− )2

8
(+ − 2). To find the -intercept, let  = 0 and use the Solve

command. The result is  = 

Using Derive, we can begin by authoring the expression (− )(− )(− ). Now load the utility file

DifferentiationApplications. Next we author tangent (#1  (+ )2)—this is the command to find an

equation of the tangent line of the function in #1 whose independent variable is  at the -value (+ )2. We then

simplify that expression and obtain the equation  = #4. The form in expression #4 makes it easy to see that the

-intercept is the third zero, namely . In a similar fashion we see that  is the -intercept for the tangent line at (+ )2

and  is the -intercept for the tangent line at (+ )2.

27. Let () = 2 and () = 
√
 [  0]. From the graphs of  and ,

we see that  will intersect  exactly once when  and  share a tangent

line. Thus, we must have  =  and  0 = 0 at  = .

() = () ⇒ 2 = 
√
 ()

and  0() = 0() ⇒ 22 =


2
√


⇒ 2 =


4
√

.

So we must have 
√
 =



4
√


⇒
√


2
=



4
⇒  = 1

4
. From (), 2(14) = 


14 ⇒

 = 212 = 2
√
 ≈ 3297.

28. We see that at  = 0, () =  = 1 +  = 1, so if  =  is to lie above  = 1 + ,

the two curves must just touch at (0 1), that is, we must have  0(0) = 1. [To see this

analytically, note that  ≥ 1 +  ⇒  − 1 ≥  ⇒  − 1


≥ 1 for   0, so

 0(0) = lim
→0+

 − 1


≥ 1. Similarly, for   0,  − 1 ≥  ⇒  − 1


≤ 1, so

 0(0) = lim
→0−

 − 1


≤ 1.

[continued]
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296 ¤ CHAPTER 3 PROBLEMS PLUS

Since 1 ≤  0(0) ≤ 1, we must have  0(0) = 1.] But  0() =  ln  ⇒  0(0) = ln, so we have ln  = 1 ⇔  = .

Another method: The inequality certainly holds for  ≤ −1, so consider   −1,  6= 0. Then  ≥ 1 +  ⇒

 ≥ (1 + )1 for   0 ⇒  ≥ lim
→0+

(1 + )1 = , by Equation 3.6.5. Also,  ≥ 1 +  ⇒  ≤ (1 + )1

for   0 ⇒  ≤ lim
→0−

(1 + )1 = . So since  ≤  ≤ , we must have  = .

29.  =
√

2 − 1 −
2√

2 − 1 arctan
sin

+
√
2 − 1 + cos . Let  = +

√
2 − 1. Then

0 =
1√

2 − 1 −
2√

2 − 1 ·
1

1 + sin2 ( + cos)2
· cos( + cos) + sin

2 

( + cos)2

=
1√

2 − 1 −
2√

2 − 1 ·
 cos+ cos2 + sin2 

( + cos)2 + sin2 
=

1√
2 − 1 −

2√
2 − 1 ·

 cos+ 1

2 + 2 cos+ 1

=
2 + 2 cos+ 1− 2 cos− 2√

2 − 1 (2 + 2 cos+ 1) =
2 − 1√

2 − 1 (2 + 2 cos+ 1)

But 2 = 22 + 2
√
2 − 1− 1 = 2+√2 − 1 − 1 = 2 − 1, so 2 + 1 = 2, and 2 − 1 = 2( − 1).

So 0 =
2( − 1)√

2 − 1 (2 + 2 cos) =
 − 1√

2 − 1 (+ cos) . But  − 1 = 2 + 
√
2 − 1− 1 = 

√
2 − 1,

so 0 = 1(+ cos).

30. Suppose that  = +  is a tangent line to the ellipse. Then it intersects the ellipse at only one point, so the discriminant

of the equation
2

2
+
(+ )2

2
= 1 ⇔ (2 + 22)2 + 22+ 22 − 22 = 0 must be 0; that is,

0 = (22)2 − 4(2 + 22)(22 − 22) = 4422 − 4222 + 424 − 4422 + 4422

= 422(22 + 2 − 2)

Therefore, 22 + 2 − 2 = 0.

Now if a point ( ) lies on the line  = + , then  =  −, so from above,

0 = 22 + 2 − ( −)2 = (2 − 2)2 + 2+ 2 − 2 ⇔ 2 +
2

2 − 2
+

2 − 2

2 − 2
= 0.

(a) Suppose that the two tangent lines from the point ( ) to the ellipse

have slopes and
1


. Then and

1


are roots of the equation

2 +
2

2 − 2
 +

2 − 2

2 − 2
= 0. This implies that ( −)


 − 1




= 0 ⇔

2 −

+

1




 +


1




= 0, so equating the constant terms in the two

quadratic equations, we get
2 − 2

2 − 2
= 


1




= 1, and hence 2 − 2 = 2 − 2. So ( ) lies on the

hyperbola 2 − 2 = 2 − 2.
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CHAPTER 3 PROBLEMS PLUS ¤ 297

(b) If the two tangent lines from the point ( ) to the ellipse have slopes

and − 1


, then and − 1


are roots of the quadratic equation, and so

( −)


 +

1




= 0, and equating the constant terms as in part (a), we get

2 − 2

2 − 2
= −1, and hence 2 − 2 = 2 − 2. So the point ( ) lies on the

circle 2 + 2 = 2 + 2.

31.  = 4 − 22 −  ⇒ 0 = 43 − 4− 1. The equation of the tangent line at  =  is

 − (4 − 22 − ) = (43 − 4− 1)(− ) or  = (43 − 4− 1)+ (−34 + 22) and similarly for  = . So if at

 =  and  =  we have the same tangent line, then 43 − 4− 1 = 43 − 4− 1 and−34 +22 = −34 +22. The first

equation gives 3 − 3 = −  ⇒ (− )(2 + + 2) = (− ). Assuming  6= , we have 1 = 2 + + 2.

The second equation gives 3(4 − 4) = 2(2 − 2) ⇒ 3(2 − 2)(2 + 2) = 2(2 − 2) which is true if  = −.

Substituting into 1 = 2 + + 2 gives 1 = 2 − 2 + 2 ⇒  = ±1 so that  = 1 and  = −1 or vice versa. Thus,
the points (1−2) and (−1 0) have a common tangent line.
As long as there are only two such points, we are done. So we show that these are in fact the only two such points.

Suppose that 2 − 2 6= 0. Then 3(2 − 2)(2 + 2) = 2(2 − 2) gives 3(2 + 2) = 2 or 2 + 2 = 2
3
.

Thus,  = (2 + + 2)− (2 + 2) = 1− 2

3
=
1

3
, so  =

1

3
. Hence, 2 +

1

92
=
2

3
, so 94 + 1 = 62 ⇒

0 = 94 − 62 + 1 = (32 − 1)2. So 32 − 1 = 0 ⇒ 2 =
1

3
⇒ 2 =

1

92
=
1

3
= 2, contradicting our assumption

that 2 6= 2.

32. Suppose that the normal lines at the three points

1 

2
1


,

2 

2
2


, and


3 

2
3


intersect at a common point. Now if one of

the  is 0 (suppose 1 = 0) then by symmetry 2 = −3, so 1 + 2 + 3 = 0. So we can assume that none of the  is 0.

The slope of the tangent line at

 

2



is 2, so the slope of the normal line is − 1

2
and its equation is

 − 2 = − 1

2
(− ). We solve for the -coordinate of the intersection of the normal lines from


1 

2
1


and


2 

2
2


:

 = 21 − 1

21
(− 1) = 22 − 1

22
(− 2) ⇒ 


1

22
− 1

21


= 22 − 21 ⇒




1 − 2

212


= (−1 − 2)(1 + 2) ⇔  = −212(1 + 2) (1). Similarly, solving for the -coordinate of the

intersections of the normal lines from

1 

2
1


and


3 

2
3


gives  = −213(1 + 3) (2).

Equating (1) and (2) gives 2(1 + 2) = 3(1 + 3) ⇔ 1(2 − 3) = 23 − 22 = −(2 + 3)(2 − 3) ⇔
1 = −(2 + 3) ⇔ 1 + 2 + 3 = 0.
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298 ¤ CHAPTER 3 PROBLEMS PLUS

33. Because of the periodic nature of the lattice points, it suffices to consider the points in the 5× 2 grid shown. We can see that

the minimum value of  occurs when there is a line with slope 2
5
which touches the circle centered at (3 1) and the circles

centered at (0 0) and (5 2).

To find  , the point at which the line is tangent to the circle at (0 0), we simultaneously solve 2 + 2 = 2 and

 = − 5
2
 ⇒ 2 + 25

4
2 = 2 ⇒ 2 = 4

29
2 ⇒  = 2√

29
,  = − 5√

29
. To find, we either use symmetry or

solve (− 3)2 + (− 1)2 = 2 and − 1 = − 5
2
(− 3). As above, we get  = 3− 2√

29
,  = 1+ 5√

29
. Now the slope of

the line  is 2
5 , so =

1 + 5√
29
 −


− 5√

29



3− 2√
29
 − 2√

29


=
1 + 10√

29


3− 4√
29


=

√
29 + 10

3
√
29− 4 =

2

5
⇒

5
√
29 + 50 = 6

√
29− 8 ⇔ 58 =

√
29 ⇔  =

√
29
58
. So the minimum value of  for which any line with slope 2

5

intersects circles with radius  centered at the lattice points on the plane is  =
√
29
58
≈ 0093.

34. Assume the axes of the cone and the cylinder are parallel. Let denote the initial

height of the water. When the cone has been dropping for  seconds, the water level has

risen  centimeters, so the tip of the cone is + 1 centimeters below the water line.

We want to find  when +  =  (when the cone is completely submerged).

Using similar triangles,
1

+ 
=




⇒ 1 =




(+ ).

volume of water and cone at time  = original volume of water + volume of submerged part of cone

2( + ) = 2 + 1
3
21(+ )

2 + 2 = 2 + 1
3

2

2
(+ )3

322 = 2(+ )3

Differentiating implicitly with respect to  gives us 322 


= 2


3(+ )2




+ 3(+ )2






⇒




=

2(+ )2

22 − 2(+ )2
⇒ 




+ =

=
22

22 − 22
=

2

2 − 2
. Thus, the water level is rising at a rate of

2

2 − 2
cms at the instant the cone is completely submerged.
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CHAPTER 3 PROBLEMS PLUS ¤ 299

35. By similar triangles,


5
=



16
⇒  =

5

16
. The volume of the cone is

 = 1
3
2 = 1

3



5

16

2
 =

25

768
3, so




=
25

256
2




. Now the rate of

change of the volume is also equal to the difference of what is being added

(2 cm3min) and what is oozing out (, where  is the area of the cone and 

is a proportionality constant). Thus,



= 2− .

Equating the two expressions for



and substituting  = 10,




= −03,  = 5(10)

16
=
25

8
, and

√
281

=
10

16
⇔

 =
5

8

√
281, we get

25

256
(10)2(−03) = 2− 

25

8
· 5
8

√
281 ⇔ 125

√
281

64
= 2 +

750

256
. Solving for  gives us

 =
256 + 375

250
√
281

. To maintain a certain height, the rate of oozing, , must equal the rate of the liquid being poured in;

that is,



= 0. Thus, the rate at which we should pour the liquid into the container is

 =
256 + 375

250
√
281

·  · 25
8
· 5
√
281

8
=
256 + 375

128
≈ 11204 cm3min
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4 APPLICATIONS OF DIFFERENTIATION

4.1 Maximum and Minimum Values

1. A function  has an absolute minimum at  =  if () is the smallest function value on the entire domain of  , whereas

 has a local minimum at  if () is the smallest function value when  is near .

2. (a) The Extreme Value Theorem

(b) See the Closed Interval Method.

3. Absolute maximum at , absolute minimum at , local maximum at , local minima at  and , neither a maximum nor a

minimum at  and .

4. Absolute maximum at ; absolute minimum at ; local maxima at  and ; local minimum at ; neither a maximum nor a

minimum at  and .

5. Absolute maximum value is (4) = 5; there is no absolute minimum value; local maximum values are (4) = 5 and

(6) = 4; local minimum values are (2) = 2 and (1) = (5) = 3.

6. There is no absolute maximum value; absolute minimum value is (4) = 1; local maximum values are (3) = 4 and

(6) = 3; local minimum values are (2) = 2 and (4) = 1.

7. Absolute maximum at 5, absolute minimum at 2,

local maximum at 3, local minima at 2 and 4

8. Absolute maximum at 4, absolute minimum at 5,

local maximum at 2, local minimum at 3

9. Absolute minimum at 3, absolute maximum at 4,

local maximum at 2

10. Absolute maximum at 2, absolute minimum at 5,

4 is a critial number but there is no local maximum or

minimum there.
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2 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

11. (a) (b) (c)

12. (a) Note that a local maximum cannot

occur at an endpoint.

(b)

Note: By the Extreme Value Theorem,  must not be continuous.

13. (a) Note: By the Extreme Value Theorem,

 must not be continuous; because if it

were, it would attain an absolute

minimum.

(b)

14. (a) (b)

15. () = 1
2
(3− 1),  ≤ 3. Absolute maximum

(3) = 4; no local maximum. No absolute or local

minimum.

16. () = 2− 1
3
,  ≥ −2. Absolute maximum

(−2) = 8
3

; no local maximum. No absolute or local

minimum.
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SECTION 4.1 MAXIMUM AND MINIMUM VALUES ¤ 3

17. () = 1,  ≥ 1. Absolute maximum (1) = 1;

no local maximum. No absolute or local minimum.

18. () = 1, 1    3. No absolute or local maximum.

No absolute or local minimum.

19. () = sin, 0 ≤   2. No absolute or local

maximum. Absolute minimum (0) = 0; no local

minimum.

20. () = sin, 0   ≤ 2. Absolute maximum




2


= 1; no local maximum. No absolute or local

minimum.

21. () = sin, −2 ≤  ≤ 2. Absolute maximum




2


= 1; no local maximum. Absolute minimum


−

2


= −1; no local minimum.

22. () = cos , − 3
2
≤  ≤ 3

2
. Absolute and local

maximum (0) = 1; absolute and local minima

 (±−1).

 

23. () = ln, 0   ≤ 2. Absolute maximum

(2) = ln 2 ≈ 069; no local maximum. No absolute

or local minimum.

24. () =|  |. No absolute or local maximum. Absolute

and local minimum (0) = 0.
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4 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

25. () = 1−√. Absolute maximum (0) = 1;

no local maximum. No absolute or local minimum.

26. () = . No absolute or local maximum or

minimum value.

27. () =


2 if −1 ≤  ≤ 0

2− 3 if 0   ≤ 1

No absolute or local maximum.

Absolute minimum (1) = −1; no local minimum.

28. () =


2+ 1 if 0 ≤   1

4− 2 if 1 ≤  ≤ 3

No absolute or local maximum.

Absolute minimum (3) = −2; no local minimum.

29. () = 4 + 1
3
− 1

2
2 ⇒  0() = 1

3
− .  0() = 0 ⇒  = 1

3
. This is the only critical number.

30. () = 3 + 62 − 15 ⇒  0() = 32 + 12− 15 = 3(2 + 4− 5) = 3(+ 5)(− 1).

 0() = 0 ⇒  = −5, 1. These are the only critical numbers.

31. () = 23 − 32 − 36 ⇒  0() = 62 − 6− 36 = 6(2 − − 6) = 6( + 2)(− 3).

 0() = 0 ⇔  = −2, 3. These are the only critical numbers.

32. () = 23 + 2 + 2 ⇒  0() = 62 + 2+ 2 = 2(32 +  + 1). Using the quadratic formula,  0() = 0 ⇔

 =
−1±√−11

6
. Since the discrimininant, −11, is negative, there are no real soutions, and hence, there are no critical

numbers.

33. () = 4 + 3 + 2 + 1 ⇒ 0() = 43 + 32 + 2 = (42 + 3 + 2). Using the quadratic formula, we see that

42 + 3+ 2 = 0 has no real solution (its discriminant is negative), so 0() = 0 only if  = 0. Hence, the only critical number

is 0.

34. () = |3− 4| =


3− 4 if 3− 4 ≥ 0

−(3− 4) if 3− 4  0
=


3− 4 if  ≥ 4

3

4− 3 if   4
3

0() =


3 if   4

3

−3 if   4
3

and 0() does not exist at  = 4
3

, so  = 4
3

is a critical number.
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SECTION 4.1 MAXIMUM AND MINIMUM VALUES ¤ 5

35. () =
 − 1

2 −  + 1
⇒

0() =
(2 −  + 1)(1)− ( − 1)(2 − 1)

(2 −  + 1)2
=

2 −  + 1− (22 − 3 + 1)

(2 −  + 1)2
=

−2 + 2

(2 −  + 1)2
=

(2− )

(2 −  + 1)2
.

0() = 0 ⇒  = 0, 2. The expression 2 −  + 1 is never equal to 0, so 0() exists for all real numbers.

The critical numbers are 0 and 2.

36. () =
− 1

2 + 4
⇒ 0() =

(2 + 4)(1)− (− 1)(2)

(2 + 4)2
=

2 + 4− 22 + 2

(2 + 4)2
=
−2 + 2+ 4

(2 + 4)2
.

0() = 0 ⇒  =
−2±√4 + 16

−2
= 1±√5. The critical numbers are 1±√5. [0() exists for all real numbers.]

37. () = 34 − 214 ⇒ 0() = 3
4
−14 − 2

4
−34 = 1

4
−34(312 − 2) =

3
√
− 2

4
4
√
3

.

0() = 0 ⇒ 3
√
 = 2 ⇒ √

 = 2
3
⇒  = 4

9
. 0() does not exist at  = 0, so the critical numbers are 0 and 4

9
.

38. () = 3
√

4− 2 = (4− 2)13 ⇒ 0() = 1
3
(4− 2)−23(−2) =

−2

3(4− 2)23
. 0() = 0 ⇒  = 0.

0(±2) do not exist. Thus, the three critical numbers are−2, 0, and 2.

39.  () = 45(− 4)2 ⇒
 0() = 45 · 2(− 4) + (− 4)2 · 4

5
−15 = 1

5
−15(− 4)[5 ·  · 2 + (− 4) · 4]

=
(− 4)(14− 16)

515
=

2(− 4)(7− 8)

515

 0() = 0 ⇒  = 4, 8
7

.  0(0) does not exist. Thus, the three critical numbers are 0, 8
7

, and 4.

40. () = 4 − tan  ⇒ 0() = 4− sec2 . 0() = 0 ⇒ sec2  = 4 ⇒ sec  = ±2 ⇒ cos  = ± 1
2
⇒

 = 
3

+ 2, 5
3

+ 2, 2
3

+ 2, and 4
3

+ 2 are critical numbers.

Note: The values of  that make 0() undefined are not in the domain of .

41. () = 2 cos  + sin2  ⇒  0() = −2 sin  + 2 sin  cos .  0() = 0 ⇒ 2 sin  (cos  − 1) = 0 ⇒ sin  = 0

or cos  = 1 ⇒  =  [ an integer] or  = 2. The solutions  =  include the solutions  = 2, so the critical

numbers are  = .

42. () = 3− arcsin  ⇒ 0() = 3− 1√
1− 2

. 0() = 0 ⇒ 3 =
1√

1− 2
⇒ √

1− 2 = 1
3
⇒

1− 2 = 1
9
⇒ 2 = 8

9
⇒  = ±2

3

√
2 ≈ ±094, both in the domain of , which is [−1 1].

43. () = 2−3 ⇒  0() = 2(−3−3) + −3(2) = −3(−3+ 2).  0() = 0 ⇒  = 0, 2
3

[−3 is never equal to 0].  0() always exists, so the critical numbers are 0 and 2
3

.

44. () = −2 ln ⇒  0() = −2(1) + (ln)(−2−3) = −3 − 2−3 ln = −3(1− 2 ln) =
1− 2 ln

3
.

 0() = 0 ⇒ 1− 2 ln = 0 ⇒ ln = 1
2
⇒  = 12 ≈ 165.  0(0) does not exist, but 0 is not in the domain

of  , so the only critical number is
√
.
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6 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

45. The graph of  0() = 5−01|| sin− 1 has 10 zeros and exists

everywhere, so  has 10 critical numbers.

46. A graph of  0() =
100 cos2 

10 + 2
− 1 is shown. There are 7 zeros

between 0 and 10, and 7 more zeros since  0 is an even function.

 0 exists everywhere, so  has 14 critical numbers.

47. () = 12 + 4− 2, [0 5].  0() = 4− 2 = 0 ⇔  = 2. (0) = 12, (2) = 16, and (5) = 7.

So (2) = 16 is the absolute maximum value and (5) = 7 is the absolute minimum value.

48. () = 5 + 54− 23, [0 4].  0() = 54− 62 = 6(9− 2) = 6(3 + )(3− ) = 0 ⇔  = −3, 3. (0) = 5,

(3) = 113, and (4) = 93. So (3) = 113 is the absolute maximum value and (0) = 5 is the absolute minimum value.

49. () = 23 − 32 − 12 + 1, [−2 3].  0() = 62 − 6− 12 = 6(2 − − 2) = 6(− 2)( + 1) = 0 ⇔
 = 2−1. (−2) = −3, (−1) = 8, (2) = −19, and (3) = −8. So (−1) = 8 is the absolute maximum value and

(2) = −19 is the absolute minimum value.

50. 3 − 62 + 5, [−3 5].  0() = 32 − 12 = 3(− 4) = 0 ⇔  = 0, 4. (−3) = −76, (0) = 5, (4) = −27,

and (5) = −20. So (0) = 5 is the absolute maximum value and (−3) = −76 is the absolute minimum value.

51. () = 34 − 43 − 122 + 1, [−2 3].  0() = 123 − 122 − 24 = 12(2 − − 2) = 12(+ 1)(− 2) = 0 ⇔
 = −1, 0, 2. (−2) = 33, (−1) = −4, (0) = 1, (2) = −31, and (3) = 28. So (−2) = 33 is the absolute maximum

value and (2) = −31 is the absolute minimum value.

52. () = (2 − 4)3, [−2 3].  0() = 3(2 − 4)2(2) = 6( + 2)2(− 2)2 = 0 ⇔  = −2, 0, 2. (±2) = 0,

(0) = −64, and (3) = 53 = 125. So (3) = 125 is the absolute maximum value and (0) = −64 is the absolute

minimum value.

53. () = +
1


, [02 4].  0() = 1− 1

2
=

2 − 1

2
=

( + 1)(− 1)

2
= 0 ⇔  = ±1, but  = −1 is not in the given

interval, [02 4].  0() does not exist when  = 0, but 0 is not in the given interval, so 1 is the only critical nuumber.

(02) = 52, (1) = 2, and (4) = 425. So (02) = 52 is the absolute maximum value and (1) = 2 is the absolute

minimum value.

54. () =


2 − + 1
, [0 3].

 0() =
(2 − + 1)− (2− 1)

(2 − + 1)2
=

2 − + 1− 22 + 

(2 − + 1)2
=

1− 2

(2 −  + 1)2
=

(1 + )(1− )

(2 − + 1)2
= 0 ⇔
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SECTION 4.1 MAXIMUM AND MINIMUM VALUES ¤ 7

 = ±1, but  = −1 is not in the given interval, [0 3]. (0) = 0, (1) = 1, and (3) = 3
7

. So (1) = 1 is the absolute

maximum value and (0) = 0 is the absolute minimum value.

55. () = − 3
√
, [−1 4].  0() = 1− 1

3
−23 = 1− 1

323
.  0() = 0 ⇔ 1 =

1

323
⇔ 23 =

1

3
⇔

 = ±


1

3

32

= ±


1

27
= ± 1

3
√

3
= ±

√
3

9
.  0() does not exist when  = 0. (−1) = 0, (0) = 0,



 −1

3
√

3


=
−1

3
√

3
− −1√

3
=
−1 + 3

3
√

3
=

2
√

3

9
≈ 03849, 


1

3
√

3


=

1

3
√

3
− 1√

3
= −2

√
3

9
, and

(4) = 4− 3
√

4 ≈ 2413. So (4) = 4− 3
√

4 is the absolute maximum value and 

√
3

9


= −2

√
3

9
is the absolute

minimum value.

56. () =

√


1 + 2
, [0 2].  0() =

(1 + 2)(1(2
√
 ))−√ (2)

(1 + 2)2
=

(1 + 2)− 2
√

√
 (2)

2
√
 (1 + 2)2

=
1− 32

2
√
 (1 + 2)2

.

 0() = 0 ⇔ 1− 32 = 0 ⇔ 2 =
1

3
⇔  = ± 1√

3
, but  = − 1√

3
is not in the given interval, [0 2].  0() does

not exist when  = 0, which is an endpoint. (0) = 0, 


1√
3


=

1
4
√

3

1 + 13
=

3−14

43
=

334

4
≈ 0570, and

(2) =

√
2

5
≈ 0283. So 


1√
3


=

334

4
is the absolute maximum value and (0) = 0 is the absolute minimum value.

57. () = 2 cos  + sin 2, [0, 2].

 0() = −2 sin  + cos 2 · 2 = −2 sin + 2(1− 2 sin2 ) = −2(2 sin2  + sin − 1) = −2(2 sin − 1)(sin  + 1).

 0() = 0 ⇒ sin  = 1
2

or sin  = −1 ⇒  = 
6

. (0) = 2, (
6
) =

√
3 + 1

2

√
3 = 3

2

√
3 ≈ 260, and (

2
) = 0.

So (
6
) = 3

2

√
3 is the absolute maximum value and (

2
) = 0 is the absolute minimum value.

58. () = + cot(2), [4 74].  0() = 1− csc2(2) · 1
2

.

 0() = 0 ⇒ 1
2

csc2(2) = 1 ⇒ csc2(2) = 2 ⇒ csc(2) = ±√2 ⇒ 1
2
 = 

4
or 1

2
 = 3

4

4
≤  ≤ 7

4
⇒ 

8
≤ 1

2
 ≤ 7

8
and csc(2) 6= −√2 in the last interval

 ⇒  = 
2

or  = 3
2

.




4


= 

4
+ cot 

8
≈ 320, 



2


= 

2
+ cot 

4
= 

2
+ 1 ≈ 257, 


3
2


= 3

2
+ cot 3

2
= 3

2
− 1 ≈ 371, and




7
4


= 7

4
+ cot 7

8
≈ 308. So 


3
2


= 3

2
− 1 is the absolute maximum value and 



2


= 

2
+ 1 is the absolute

minimum value.

59. () = −2 ln,


1
2
 4

.  0() = −2 · 1


+ (ln)(−2−3) = −3 − 2−3 ln = −3(1− 2 ln) =

1− 2 ln

3
.

 0() = 0 ⇔ 1− 2 ln = 0 ⇔ 2 ln = 1 ⇔ ln = 1
2
⇔  = 12 ≈ 165.  0() does not exist

when  = 0, which is not in the given interval,


1
2
 4

. 


1
2


=

ln 12

(12)2
=

ln 1− ln 2

14
= −4 ln 2 ≈ −2773,
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8 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION



12


=

ln 12

(12)2
=

12


=

1

2
≈ 0184, and (4) =

ln 4

42
=

ln 4

16
≈ 0087. So (12) =

1

2
is the absolute maximum

value and 


1
2


= −4 ln 2 is the absolute minimum value.

60. () = 2, [−3 1].  0() = 2


1
2


+ 2(1) = 2


1
2
+ 1


.  0() = 0 ⇔ 1

2
 + 1 = 0 ⇔  = −2.

(−3) = −3−32 ≈ −0669, (−2) = −2−1 ≈ −0736, and (1) = 12 ≈ 1649. So (1) = 12 is the absolute

maximum value and (−2) = −2 is the absolute minimum value.

61. () = ln(2 + + 1), [−1 1].  0() =
1

2 + + 1
· (2 + 1) = 0 ⇔  = − 1

2
. Since 2 + + 1  0 for all , the

domain of  and  0 is R. (−1) = ln 1 = 0, 
−1

2


= ln 3

4
≈ −029, and (1) = ln 3 ≈ 110. So (1) = ln 3 ≈ 110 is

the absolute maximum value and 
−1

2


= ln 3

4
≈ −029 is the absolute minimum value.

62. () = − 2 tan−1 , [0 4].  0() = 1− 2 · 1

1 + 2
= 0 ⇔ 1 =

2

1 + 2
⇔ 1 + 2 = 2 ⇔ 2 = 1 ⇔

 = ±1. (0) = 0, (1) = 1− 
2
≈ −057, and (4) = 4− 2 tan−1 4 ≈ 1 35. So (4) = 4− 2 tan−1 4 is the absolute

maximum value and (1) = 1− 
2

is the absolute minimum value.

63. () = (1− ), 0 ≤  ≤ 1,   0,   0.

 0() =  · (1− )−1(−1) + (1− ) · −1 = −1(1− )−1[ · (−1) + (1− ) · ]

= −1(1− )−1(− − )

At the endpoints, we have (0) = (1) = 0 [the minimum value of  ]. In the interval (0 1),  0() = 0 ⇔  =


+ 







+ 


=




+ 


1− 

+ 


=



(+ )


+ − 

+ 


=



(+ )
· 

(+ )
=



(+ )
+

.

So 




+ 


=



(+ )
+

is the absolute maximum value.

64. The graph of () =
1 + 5− 3

 indicates that  0() = 0 at  ≈ ±13 and

that  0() does not exist at  ≈ −21, −02, and 23. Those five values of 

are the critical numbers of  .

65. (a) From the graph, it appears that the absolute maximum value is about

(−077) = 219, and the absolute minimum value is about (077) = 181.
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SECTION 4.1 MAXIMUM AND MINIMUM VALUES ¤ 9

(b) () = 5 − 3 + 2 ⇒  0() = 54 − 32 = 2(52 − 3). So  0() = 0 ⇒  = 0, ±


3
5

.



−


3
5


=

−


3
5

5
−

−


3
5

3
+ 2 = −  3

5

23
5

+ 3
5


3
5

+ 2

=


3
5
− 9

25


3
5

+ 2 = 6
25


3
5

+ 2 (maximum)

and similarly, 


3
5


= − 6

25


3
5

+ 2 (minimum).

66. (a) From the graph, it appears that the absolute maximum value

is about (1) = 285, and the absolute minimum value is about

(023) = 189.

(b) () =  + −2 ⇒  0() =  − 2−2 = −2(3 − 2). So  0() = 0 ⇔ 3 = 2 ⇔ 3 = ln 2 ⇔

 = 1
3

ln 2 [≈ 023]. 


1
3

ln 2


= (ln 2)13 + (ln 2)−23 = 213 + 2−23 [≈ 189], the minimum value.

(1) = 1 + −2 [≈ 285], the maximum.

67. (a) From the graph, it appears that the absolute maximum value is about

(075) = 032, and the absolute minimum value is (0) = (1) = 0;

that is, at both endpoints.

(b) () = 
√
− 2 ⇒  0() =  · 1− 2

2
√
− 2

+
√
− 2 =

(− 22) + (2− 22)

2
√
− 2

=
3− 42

2
√
− 2

.

So  0() = 0 ⇒ 3− 42 = 0 ⇒ (3− 4) = 0 ⇒  = 0 or 3
4

.

(0) = (1) = 0 (minimum), and 


3
4


= 3

4


3
4
−  3

4

2
= 3

4


3
16

= 3
√

3
16

(maximum).

68. (a) From the graph, it appears that the absolute maximum value is about

(−2) = −117, and the absolute minimum value is about

(−052) = −226.

(b) () = − 2 cos ⇒  0() = 1 + 2 sin. So  0() = 0 ⇒ sin = − 1
2
⇒  = −

6
on [−2 0].

(−2) = −2− 2 cos(−2) (maximum) and 
−

6


= −

6
− 2 cos

−
6


= −

6
− 2
√

3
2


= −

6
−√3 (minimum).

69. Let  = 135 and  = −2802. Then () =  ⇒ 0() = ( · +  · 1) = ( + 1). 0() = 0 ⇔

 + 1 = 0 ⇔  = −1


≈ 036 h. (0) = 0, (−1) = −


−1 = − 


≈ 0177, and (3) = 33 ≈ 00009. The

maximum average BAC during the first three hours is about 0177 mgmL and it occurs at approximately 036 h (214 min).
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10 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

70. () = 8(−04 − −06) ⇒ 0() = 8(−04−04 + 06−06). 0() = 0 ⇔ 06−06 = 04−04 ⇔
06
04

= −04+06 ⇔ 3
2

= 02 ⇔ 02 = ln 3
2
⇔  = 5 ln 3

2
≈ 2027 h. (0) = 8(1− 1) = 0,



5 ln 3

2


= 8(−2 ln 32 − −3 ln 32) = 8


3
2

−2 −  3
2

−3


= 8


4
9
− 8

27


= 32

27
≈ 1185, and

(12) = 8(−48 − −72) ≈ 0060. The maximum concentration of the antibiotic during the first 12 hours is 32
27

gmL.

71. The density is defined as  =
mass

volume
=

1000

 ( )
(in gcm3). But a critical point of  will also be a critical point of 

[since



= −1000 −2 


and  is never 0], and  is easier to differentiate than .

 ( ) = 99987− 006426 + 00085043 2 − 00000679 3 ⇒  0( ) = −006426 + 00170086 − 00002037 2.

Setting this equal to 0 and using the quadratic formula to find  , we get

 =
−00170086±√001700862 − 4 · 00002037 · 006426

2(−00002037)
≈ 39665◦C or 795318◦C. Since we are only interested

in the region 0◦C ≤  ≤ 30◦C, we check the density  at the endpoints and at 39665◦C: (0) ≈ 1000

99987
≈ 100013;

(30) ≈ 1000

10037628
≈ 099625; (39665) ≈ 1000

9997447
≈ 1000255. So water has its maximum density at

about 39665◦C.

72.  =


 sin  + cos 
⇒ 


=

( sin  + cos )(0)−  ( cos  − sin )

( sin  + cos )
2

=
− ( cos  − sin )

( sin  + cos )
2

.

So



= 0 ⇒  cos  − sin  = 0 ⇒  =

sin 

cos 
= tan . Substituting tan  for  in  gives us

 =
(tan )

(tan ) sin  + cos 
=

 tan 

sin2 

cos 
+ cos 

=
 tan  cos 

sin2  + cos2 
=

 sin 

1
=  sin .

If tan  = , then sin  =


2 + 1
(see the figure), so  =


2 + 1

 .

We compare this with the value of  at the endpoints:  (0) =  and 


2


=  .

Now because


2 + 1
≤ 1 and


2 + 1

≤ , we have that


2 + 1
 is less than or equal to each of  (0) and 



2


.

Hence,


2 + 1
 is the absolute minimum value of  (), and it occurs when tan  = .

73. () = 0014413 − 041772 + 2703+ 10601 ⇒ 0() = 0043232 − 08354 + 2703. Use the quadratic formula

to solve 0() = 0.  =
08354±


(08354)2 − 4(004323)(2703)

2(004323)
≈ 41 or 152. For 0 ≤  ≤ 12, we have

(0) = 10601, (41) ≈ 10652, and (12) ≈ 10573. Thus, the water level was highest during 2012 about 41 months

after January 1.
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SECTION 4.1 MAXIMUM AND MINIMUM VALUES ¤ 11

74. (a) The equation of the graph in the figure is

() = 0001463 − 0115532 + 2498169− 2126872.

(b) () = 0() = 0004382 − 023106 + 2498169 ⇒

0() = 000876− 023106.

0() = 0 ⇒ 1 = 023106
000876

≈ 264. (0) ≈ 2498, (1) ≈ 2193,

and (125) ≈ 6454.

The maximum acceleration is about 645 fts2 and the minimum acceleration is about 2193 fts2.

75. (a) () = (0 − )2 = 0
2 − 3 ⇒ 0() = 20 − 32. 0() = 0 ⇒ (20 − 3) = 0 ⇒

 = 0 or 2
3
0 (but 0 is not in the interval). Evaluating  at 1

2
0, 2

3
0, and 0, we get 


1
2
0


= 1
8
3

0 , 


2
3
0


= 4
27
3

0 ,

and (0) = 0. Since 4
27

 1
8

,  attains its maximum value at  = 2
3
0. This supports the statement in the text.

(b) From part (a), the maximum value of  is 4
27
3

0 . (c)

76. () = 2 + (− 5)3 ⇒ 0() = 3(− 5)2 ⇒ 0(5) = 0, so 5 is a critical number. But (5) = 2 and  takes on

values  2 and values  2 in any open interval containing 5, so  does not have a local maximum or minimum at 5.

77. () = 101 + 51 +  + 1 ⇒  0() = 101100 + 5150 + 1 ≥ 1 for all , so  0() = 0 has no solution. Thus, ()

has no critical number, so () can have no local maximum or minimum.

78. Suppose that  has a minimum value at , so () ≥ () for all  near . Then () = −() ≤ −() = () for all 

near , so () has a maximum value at .

79. If  has a local minimum at , then () = −() has a local maximum at , so 0() = 0 by the case of Fermat’s Theorem

proved in the text. Thus,  0() = −0() = 0.

80. (a) () = 3 + 2 +  + ,  6= 0. So  0() = 32 + 2+  is a quadratic and hence has either 2, 1, or 0 real roots,

so () has either 2, 1 or 0 critical numbers.

Case (i) [2 critical numbers]: () = 3 − 3 ⇒
 0() = 32 − 3, so  = −1, 1

are critical numbers.
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12 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

Case (ii) [1 critical number]: () = 3 ⇒
 0() = 32, so  = 0

is the only critical number.

Case (iii) [no critical number]: () = 3 + 3 ⇒
 0() = 32 + 3,

so there is no critical number.

(b) Since there are at most two critical numbers, it can have at most two local extreme values and by (i) this can occur. By (iii)

it can have no local extreme value. However, if there is only one critical number, then there is no local extreme value.

APPLIED PROJECT The Calculus of Rainbows

1. From Snell’s Law, we have sin =  sin ≈ 4
3

sin ⇔  ≈ arcsin


3
4

sin

. We substitute this into

() =  + 2− 4 =  + 2− 4 arcsin


3
4

sin

, and then differentiate to find the minimum:

0() = 2− 4

1−  3

4
sin

2−12
3
4

cos


= 2− 3 cos
1− 9

16
sin2 

. This is 0 when
3 cos

1− 9
16

sin2 
= 2 ⇔

9
4

cos2  = 1− 9
16

sin2  ⇔ 9
4

cos2  = 1− 9
16


1− cos2 

 ⇔ 27
16

cos2  = 7
16

⇔ cos =


7
27

⇔

 = arccos


7
27
≈ 594◦, and so the local minimum is (594◦) ≈ 24 radians ≈ 138◦.

To see that this is an absolute minimum, we check the endpoints, which in this case are  = 0 and  = 
2

:

(0) =  radians = 180◦, and 


2

 ≈ 166◦.

Another method: We first calculate



: sin = 4

3
sin ⇔ cos = 4

3
cos




⇔ 


=

3

4

cos

cos
, so since

0() = 2− 4



= 0 ⇔ 


=

1

2
, the minimum occurs when 3 cos = 2cos. Now we square both sides and

substitute sin = 4
3

sin, leading to the same result.

2. If we repeat Problem 1 with  in place of 4
3

, we get () =  + 2− 4 arcsin


1


sin


⇒

0() = 2− 4 cos




1−


sin



2
, which is 0 when

2 cos


=


1−


sin



2

⇔


2 cos



2

= 1−


sin



2

⇔

4 cos2  = 2 − sin2  ⇔ 3 cos2  = 2 − 1 ⇔  = arccos


2 − 1

3
. So for  ≈ 13318 (red light) the minimum
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APPLIED PROJECT THE CALCULUS OF RAINBOWS ¤ 13

occurs at 1 ≈ 1038 radians, and so the rainbow angle is about  −(1) ≈ 423◦. For  ≈ 13435 (violet light) the

minimum occurs at 2 ≈ 1026 radians, and so the rainbow angle is about  −(2) ≈ 406◦.

Another method: As in Problem 1, we can instead find 0() in terms of



, and then substitute




=

cos

 cos
.

3. At each reflection or refraction, the light is bent in a counterclockwise direction: the bend at  is − , the bend at  is

 − 2, the bend at  is again  − 2, and the bend at  is  − . So the total bend is

() = 2(− ) + 2( − 2) = 2− 6 + 2, as required. We substitute  = arcsin


sin




and differentiate, to get

0() = 2− 6 cos




1−


sin



2
, which is 0 when

3 cos


=


1−


sin



2

⇔ 9 cos2  = 2 − sin2  ⇔

8 cos2  = 2 − 1 ⇔ cos =


1
8
(2 − 1). If  = 4

3
, then the minimum occurs at

1 = arccos


(43)

2 − 1

8
≈ 1254 radians. Thus, the minimum

counterclockwise rotation is (1) ≈ 231◦, which is equivalent to a

clockwise rotation of 360◦ − 231◦ = 129◦ (see the figure). So the rainbow

angle for the secondary rainbow is about 180◦ − 129◦ = 51◦, as required.

In general, the rainbow angle for the secondary rainbow is

 − [2 −()] = ()− .

4. In the primary rainbow, the rainbow angle gets smaller as  gets larger, as we found in Problem 2, so the colors appear from

top to bottom in order of increasing . But in the secondary rainbow, the rainbow angle gets larger as  gets larger. To see this,

we find the minimum deviations for red light and for violet light in the secondary rainbow. For  ≈ 13318 (red light) the

minimum occurs at 1 ≈ arccos


133182 − 1

8
≈ 1255 radians, and so the rainbow angle is (1)−  ≈ 506◦. For

 ≈ 13435 (violet light) the minimum occurs at 2 ≈ arccos


134352 − 1

8
≈ 1248 radians, and so the rainbow angle is

(2)−  ≈ 536◦. Consequently, the rainbow angle is larger for colors with higher indices of refraction, and the colors

appear from bottom to top in order of increasing , the reverse of their order in the primary rainbow.

Note that our calculations above also explain why the secondary rainbow is more spread out than the primary rainbow: in

the primary rainbow, the difference between rainbow angles for red and violet light is about 17◦, whereas in the secondary

rainbow it is about 3◦.
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14 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

4.2 The Mean Value Theorem

1. (1)  is continuous on the closed interval [0 8] .

(2)  is differentiable on the open interval (0 8) .

(3)  (0) = 3 and (8) = 3

Thus,  statisfies the hypotheses of Rolle’s Theorem. The numbers  = 1 and  = 5 satisfy the conclusion of Rolle’s Theorem

since  0(1) =  0(5) = 0.

2. The possible graphs fall into two general categories: (1) Not continuous and therefore not differentiable, (2) Continuous, but

not differentiable.

In either case, there is no number  such that  0() = 0.

3. (a) (1)  is continuous on the closed interval [0 8] .

(2)  is differentiable on the open interval (0 8) .

(b) 0() =
(8)− (0)

8− 0
=

4− 1

8
=

3

8
.

It appears that 0() = 3
8
when  ≈ 22 and 64.

(c) 0() =
(6)− (2)

6− 2
=

1− 3

4
= −1

2
.

It appears that 0() = − 1
2
when  ≈ 37 and 55.

4. The function shown in the figure is continuous on [0 8] [but not

differentiable on (0 8)] with (0) = 1 and (8) = 4. The line

passing through the two points has slope 3
8
. There is no number  in

(0 8) such that  0() = 3
8
.

5. () = 22 − 4+ 5, [−1 3].  is a polynomial, so it’s continuous and differentiable on R, and hence, continuous

on [−1 3] and differentiable on (−1 3). Since (−1) = 11 and (3) = 11,  satisfies all the hypotheses of Rolle’s
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SECTION 4.2 THE MEAN VALUE THEOREM ¤ 15

Theorem.  0() = 4− 4 and  0() = 0 ⇔ 4− 4 = 0 ⇔  = 1.  = 1 is in the interval (−1 3), so 1 satisfies the

conclusion of Rolle’s Theorem.

6. () = 3 − 22 − 4+ 2, [−2 2].  is a polynomial, so it’s continuous and differentiable on R, and hence, continuous on

[−2 2] and differentiable on (−2 2). Since (−2) = −6 and (2) = −6,  satisfies all the hypotheses of Rolle’s Theorem.

 0() = 32 − 4− 4 and  0() = 0 ⇔ (3+ 2)(− 2) = 0 ⇔  = −2
3

or 2.  = − 2
3

is in the open interval

(−2 2) (but 2 isn’t), so only − 2
3

satisfies the conclusion of Rolle’s Theorem.

7. () = sin (2), [2 32].  , being the composite of the sine function and the polynomial 2, is continuous and

differentiable on R, so it is continuous on [2 32] and differentiable on (2 32). Also, 


2


= 1

2

√
2 = 


3
2


.

 0() = 0 ⇔ 1
2

cos(2) = 0 ⇔ cos(2) = 0 ⇔ 2 = 
2

+  ⇔  =  + 2,  an integer.

Only  =  is in (2 32), so  satisfies the conclusion of Rolle’s Theorem.

8. () =  + 1,


1
2
 2

.  0() = 1− 12 =

2 − 1

2
.  is a rational function that is continuous on its domain,

(−∞ 0) ∪ (0∞), so it is continuous on


1
2
 2

.  0 has the same domain and is differentiable on


1
2
 2

. Also,




1
2


= 5

2
= (2).  0() = 0 ⇔ 2 − 1

2
= 0 ⇔ 2 − 1 = 0 ⇔  = ±1. Only 1 is in


1
2
 2

 so 1 satisfies the

conclusion of Rolle’s Theorem.

9. () = 1− 23. (−1) = 1− (−1)23 = 1− 1 = 0 = (1).  0() = − 2
3
−13, so  0() = 0 has no solution. This

does not contradict Rolle’s Theorem, since  0(0) does not exist, and so  is not differentiable on (−1 1).

10. () = tan. (0) = tan 0 = 0 = tan = ().  0() = sec2  ≥ 1, so  0() = 0 has no solution. This does not

contradict Rolle’s Theorem, since  0


2


does not exist, and so  is not differentiable on (0 ). (Also, () is not continuous

on [0 ].)

11. () = 22 − 3 + 1, [0 2].  is continuous on [0 2] and differentiable on (0 2) since polynomials are continuous and

differentiable on R.  0() =
()− ()

− 
⇔ 4− 3 =

(2)− (0)

2− 0
=

3− 1

2
= 1 ⇔ 4 = 4 ⇔  = 1, which

is in (0 2)

12. () = 3 − 3+ 2, [−2 2].  is continuous on [−2 2] and differentiable on (−2 2) since polynomials are continuous and

differentiable on R.  0() =
()− ()

− 
⇔ 32 − 3 =

(2)− (−2)

2− (−2)
=

4− 0

4
= 1 ⇔ 32 = 4 ⇔

2 =
4

3
⇔  = ± 2√

3
, which are both in (−2 2).

13. () = ln, [1 4].  is continuous and differentiable on (0∞), so  is continuous on [1 4] and differentiable on (1 4).

 0() =
()− ()

− 
⇔ 1


=

(4)− (1)

4− 1
=

ln 4− 0

3
=

ln 4

3
⇔  =

3

ln 4
≈ 216, which is in (1 4).
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16 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

14. () =
1


, [1 3].  is continuous and differentiable on (−∞ 0) ∪ (0∞), so  is continous on [1 3] and differentiable

on (1 3).  0() =
()− ()

− 
⇔ − 1

2
=

(3)− (1)

3− 1
=

1
3
− 1

2
= −1

3
⇔ 2 = 3 ⇔  = ±√3, but only

√
3

is in (1 3).

15. () =
√
, [0 4].  0() =

(4)− (0)

4− 0
⇔ 1

2
√


=
2− 0

4
⇔

1

2
√


=
1

2
⇔ √

 = 1 ⇔  = 1. The secant line and the tangent line

are parallel.

16. () = −, [0 2].  0() =
(2)− (0)

2− 0
⇔ −− =

−2 − 1

2
⇔

− =
1− −2

2
⇔ − = ln

1− −2

2
⇔

 = − ln
1− −2

2
≈ 08386. The secant line and the tangent line are

parallel.

17. () = (− 3)
−2 ⇒  0() = −2 (− 3)

−3. (4)− (1) =  0()(4− 1) ⇒ 1

12
− 1

(−2)2
=

−2

(− 3)3
· 3 ⇒

3

4
=

−6

(− 3)3
⇒ (− 3)3 = −8 ⇒ − 3 = −2 ⇒  = 1, which is not in the open interval (1 4). This does not

contradict the Mean Value Theorem since  is not continuous at  = 3.

18. () = 2− |2− 1| =


2− (2− 1) if 2− 1 ≥ 0

2− [−(2− 1)] if 2− 1  0
=


3− 2 if  ≥ 1

2

1 + 2 if   1
2

⇒  0() =


−2 if   1

2

2 if   1
2

(3)− (0) =  0()(3− 0) ⇒ −3− 1 =  0() · 3 ⇒  0() = − 4
3

[not ± 2]. This does not contradict the Mean

Value Theorem since  is not differentiable at  = 1
2

.

19. Let () = 2+ cos. Then (−) = −2 − 1  0 and (0) = 1  0. Since  is the sum of the polynomial 2 and the

trignometric function cos,  is continuous and differentiable for all . By the Intermediate Value Theorem, there is a number

 in (− 0) such that () = 0. Thus, the given equation has at least one real root. If the equation has distinct real roots  and

 with   , then () = () = 0. Since  is continuous on [ ] and differentiable on ( ), Rolle’s Theorem implies that

there is a number  in ( ) such that  0() = 0. But  0() = 2− sin   0 since sin  ≤ 1. This contradiction shows that the

given equation can’t have two distinct real roots, so it has exactly one root.

20. Let () = 3 + . Then (−1) = −1 + 1  0 and (0) = 1  0. Since  is the sum of a polynomial and the natural

exponential function,  is continous and differentiable for all . By the Intermediate Value Theorem, there is a number  in

(−1 0) such that () = 0. Thus, the given equation has at least one real root. If the equation has distinct real roots  and 
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SECTION 4.2 THE MEAN VALUE THEOREM ¤ 17

with   , then () = () = 0. Since  is continuous on [ ] and differentiable on ( ), Rolle’s Theorem implies that

there is a number  in ( ) such that  0() = 0. But  0() = 32 +   0. This contradiction shows that the given equation

can’t have two distinct real roots, so it has exactly one root.

21. Let () = 3 − 15+  for  in [−2 2]. If  has two real roots  and  in [−2 2], with   , then () = () = 0. Since

the polynomial  is continuous on [ ] and differentiable on ( ), Rolle’s Theorem implies that there is a number  in ( )

such that  0() = 0. Now  0() = 32 − 15. Since  is in ( ), which is contained in [−2 2], we have ||  2, so 2  4.

It follows that 32 − 15  3 · 4− 15 = −3  0. This contradicts  0() = 0, so the given equation can’t have two real roots

in [−2 2]. Hence, it has at most one real root in [−2 2].

22. () = 4 + 4 + . Suppose that () = 0 has three distinct real roots , ,  where     . Then

() = () = () = 0. By Rolle’s Theorem there are numbers 1 and 2 with   1   and   2  

and 0 =  0(1) =  0(2), so  0() = 0 must have at least two real solutions. However

0 =  0() = 43 + 4 = 4(3 + 1) = 4(+ 1)(2 − + 1) has as its only real solution  = −1. Thus, () can have at

most two real roots.

23. (a) Suppose that a cubic polynomial  () has roots 1  2  3  4, so  (1) =  (2) =  (3) =  (4).

By Rolle’s Theorem there are numbers 1, 2, 3 with 1  1  2, 2  2  3 and 3  3  4 and

 0(1) =  0(2) =  0(3) = 0. Thus, the second-degree polynomial  0() has three distinct real roots, which is

impossible.

(b) We prove by induction that a polynomial of degree  has at most  real roots. This is certainly true for  = 1. Suppose

that the result is true for all polynomials of degree  and let  () be a polynomial of degree + 1. Suppose that  () has

more than + 1 real roots, say 1  2  3  · · ·  +1  +2. Then  (1) =  (2) = · · · =  (+2) = 0.

By Rolle’s Theorem there are real numbers 1     +1 with 1  1  2     +1  +1  +2 and

 0(1) = · · · =  0(+1) = 0. Thus, the th degree polynomial  0() has at least + 1 roots. This contradiction shows

that  () has at most + 1 real roots.

24. (a) Suppose that () = () = 0 where   . By Rolle’s Theorem applied to  on [ ] there is a number  such that

     and  0() = 0.

(b) Suppose that () = () = () = 0 where     . By Rolle’s Theorem applied to () on [ ] and [ ] there are

numbers      and      with  0() = 0 and  0() = 0. By Rolle’s Theorem applied to  0() on [ ] there is a

number  with      such that  00() = 0.

(c) Suppose that  is  times differentiable on R and has + 1 distinct real roots. Then  () has at least one real root.

25. By the Mean Value Theorem, (4)− (1) =  0()(4− 1) for some  ∈ (1 4). But for every  ∈ (1 4) we have

 0() ≥ 2. Putting  0() ≥ 2 into the above equation and substituting (1) = 10, we get

(4) = (1) +  0()(4− 1) = 10 + 3 0() ≥ 10 + 3 · 2 = 16. So the smallest possible value of (4) is 16.
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18 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

26. If 3 ≤  0() ≤ 5 for all , then by the Mean Value Theorem, (8)− (2) =  0() · (8− 2) for some  in [2 8].

( is differentiable for all , so, in particular,  is differentiable on (2 8) and continuous on [2 8]. Thus, the hypotheses

of the Mean Value Theorem are satisfied.) Since (8)− (2) = 6 0() and 3 ≤  0() ≤ 5, it follows that

6 · 3 ≤ 6 0() ≤ 6 · 5 ⇒ 18 ≤ (8)− (2) ≤ 30

27. Suppose that such a function  exists. By the Mean Value Theorem there is a number 0    2 with

 0() =
(2)− (0)

2− 0
=

5

2
. But this is impossible since  0() ≤ 2  5

2
for all , so no such function can exist.

28. Let  =  − . Note that since () = (), () = ()− () = 0. Then since  and  are continuous on [ ] and

differentiable on ( ), so is , and thus  satisfies the assumptions of the Mean Value Theorem. Therefore, there is

a number  with      such that () = ()− () = 0()(− ). Since 0()  0, 0()(− )  0, so

()− () = ()  0 and hence ()  ().

29. Consider the function () = sin, which is continuous and differentiable on R. Let  be a number such that 0    2.

Then  is continuous on [0 ] and differentiable on (0 ). By the Mean Value Theorem, there is a number  in (0 ) such that

()− (0) =  0()(− 0); that is, sin − 0 = (cos )(). Now cos   1 for 0    2, so sin   1 ·  = . We took 

to be an arbitrary number in (0 2), so sin   for all  satisfying 0    2.

30.  satisfies the conditions for the Mean Value Theorem, so we use this theorem on the interval [− ]: ()− (−)
− (−) =  0()

for some  ∈ (− ). But since  is odd, (−) = −(). Substituting this into the above equation, we get

() + ()

2
=  0() ⇒ ()


=  0().

31. Let () = sin and let   . Then () is continuous on [ ] and differentiable on ( ). By the Mean Value Theorem,

there is a number  ∈ ( ) with sin − sin  = ()− () =  0()(− ) = (cos )(− ). Thus,

|sin − sin | ≤ |cos | |− | ≤ |− |. If   , then |sin − sin | = |sin − sin| ≤ |− | = |− |. If  = , both

sides of the inequality are 0.

32. Suppose that  0() = . Let () = , so 0() = . Then, by Corollary 7, () = () + , where  is a constant, so

() = + .

33. For   0, () = (), so  0() = 0(). For   0,  0() = (1)0 = −12 and 0() = (1 + 1)0 = −12, so

again  0() = 0(). However, the domain of () is not an interval [it is (−∞ 0) ∪ (0∞)] so we cannot conclude that

 −  is constant (in fact it is not).

34. Let () = 2 sin−1 − cos−1(1− 22). Then  0() =
2√

1− 2
− 4

1− (1− 22)2
=

2√
1− 2

− 4

2
√

1− 2
= 0

[since  ≥ 0]. Thus,  0() = 0 for all  ∈ (0 1). Thus, () =  on (0 1). To find , let  = 05. Thus,

2 sin−1(05)− cos−1(05) = 2


6

− 
3

= 0 = . We conclude that () = 0 for  in (0 1). By continuity of  , () = 0

on [0 1]. Therefore, we see that () = 2 sin−1 − cos−1(1− 22) = 0 ⇒ 2 sin−1  = cos−1(1− 22).
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SECTION 4.3 HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH ¤ 19

35. Let () = arcsin


− 1

 + 1


− 2 arctan

√
 + 

2
. Note that the domain of  is [0∞). Thus,

 0() =
1

1−

− 1

+ 1

2

(+ 1)− (− 1)

(+ 1)
2

− 2

1 + 
· 1

2
√


=
1√

 (+ 1)
− 1√

 (+ 1)
= 0.

Then () =  on (0∞) by Theorem 5. By continuity of  , () =  on [0∞). To find , we let  = 0 ⇒
arcsin(−1)− 2 arctan(0) + 

2
=  ⇒ −

2
− 0 + 

2
= 0 = . Thus, () = 0 ⇒

arcsin


− 1

+ 1


= 2arctan

√
− 

2
.

36. Let () be the velocity of the car  hours after 2:00 PM. Then
(16)− (0)

16− 0
=

50− 30

16
= 120. By the Mean Value

Theorem, there is a number  such that 0    1
6

with 0() = 120. Since 0() is the acceleration at time , the acceleration

 hours after 2:00 PM is exactly 120 mih
2.

37. Let () and () be the position functions of the two runners and let () = ()− (). By hypothesis,

(0) = (0)− (0) = 0 and () = ()− () = 0, where  is the finishing time. Then by the Mean Value Theorem,

there is a time , with 0    , such that  0() =
()− (0)

− 0
. But () = (0) = 0, so  0() = 0. Since

 0() = 0()− 0() = 0, we have 0() = 0(). So at time , both runners have the same speed 0() = 0().

38. Assume that  is differentiable (and hence continuous) on R and that  0() 6= 1 for all . Suppose  has more than one fixed

point. Then there are numbers  and  such that   , () = , and () = . Applying the Mean Value Theorem to the

function  on [ ], we find that there is a number  in ( ) such that  0() =
()− ()

− 
. But then  0() =

− 

− 
= 1,

contradicting our assumption that  0() 6= 1 for every real number . This shows that our supposition was wrong, that is, that

 cannot have more than one fixed point.

4.3 How Derivatives Affect the Shape of a Graph

1. (a)  is increasing on (1 3) and (4 6). (b)  is decreasing on (0 1) and (3 4).

(c)  is concave upward on (0 2). (d)  is concave downward on (2 4) and (4 6).

(e) The point of inflection is (2 3).

2. (a)  is increasing on (0 1) and (3 7). (b)  is decreasing on (1 3).

(c)  is concave upward on (2 4) and (5 7). (d)  is concave downward on (0 2) and (4 5).

(e) The points of inflection are (2 2), (4 3), and (5 4).

3. (a) Use the Increasing/Decreasing (I/D) Test. (b) Use the Concavity Test.

(c) At any value of  where the concavity changes, we have an inflection point at ( ()).

4. (a) See the First Derivative Test.

(b) See the Second Derivative Test and the note that precedes Example 7.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



20 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

5. (a) Since  0()  0 on (1 5),  is increasing on this interval. Since  0()  0 on (0 1) and (5 6),  is decreasing on these

intervals.

(b) Since  0() = 0 at  = 1 and  0 changes from negative to positive there,  changes from decreasing to increasing and has

a local minimum at  = 1. Since  0() = 0 at  = 5 and  0 changes from positive to negative there,  changes from

increasing to decreasing and has a local maximum at  = 5.

6. (a)  0()  0 and  is increasing on (0 1) and (5 7).  0()  0 and  is decreasing on (1 5) and (7 8).

(b) Since  0() = 0 at  = 1 and  = 7 and  0 changes from positive to negative at both values,  changes from increasing to

decreasing and has local maxima at  = 1 and  = 7. Since  0() = 0 at  = 5 and  0 changes from negative to positive

there,  changes from decreasing to increasing and has a local minimum at  = 5.

7. (a) There is an IP at  = 3 because the graph of  changes from CD to CU there. There is an IP at  = 5 because the graph

of  changes from CU to CD there.

(b) There is an IP at  = 2 and at  = 6 because  0() has a maximum value there, and so  00() changes from positive to

negative there. There is an IP at  = 4 because  0() has a minimum value there and so  00() changes from negative to

positive there.

(c) There is an inflection point at  = 1 because  00() changes from negative to positive there, and so the graph of  changes

from concave downward to concave upward. There is an inflection point at  = 7 because  00() changes from positive to

negative there, and so the graph of  changes from concave upward to concave downward.

8. (a)  is increasing when  0 is positive. This happens on the intervals (0 4) and (6 8).

(b)  has a local maximum where it changes from increasing to decreasing, that is, where  0 changes from positive to negative

(at  = 4 and  = 8). Similarly,  has a local minimum where  0 changes from negative to positive (at  = 6).

(c)  is concave upward where  0 is increasing (hence  00 is positive). This happens on (0 1), (2 3), and (5 7). Similarly,

 is concave downward where  0 is decreasing, that is, on (1 2), (3 5), and (7 9).

(d)  has an inflection point where the concavity changes. This happens at  = 1, 2, 3, 5, and 7.

9. (a) () = 3 − 32 − 9+ 4 ⇒  0() = 32 − 6− 9 = 3(2 − 2− 3) = 3(+ 1)(− 3).

Interval + 1 − 3  0() 

  −1 − − + increasing on (−∞−1)

−1    3 + − − decreasing on (−1 3)

  3 + + + increasing on (3∞)

(b)  changes from increasing to decreasing at  = −1 and from decreasing to increasing at  = 3. Thus, (−1) = 9 is a

local maximum value and (3) = −23 is a local minimum vlaue.

(c)  00() = 6− 6 = 6(− 1).  00()  0 ⇔   1 and  00()  0 ⇔   1. Thus,  is concave upward on

(1∞) and concave downward on (−∞ 1). There is an inflection point at (1−7).
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SECTION 4.3 HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH ¤ 21

10. (a) () = 23 − 92 + 12− 3 ⇒  0() = 62 − 18+ 12 = 6(2 − 3+ 2) = 6(− 1)(− 2).

Interval − 1 − 2  0() 

  1 − − + increasing on (−∞ 1)

1    2 + − − decreasing on (1 2)

  2 + + + increasing on (2∞)

(b)  changes from increasing to decreasing at  = 1 and from decreasing to increasing at  = 2. Thus, (1) = 2 is a local

maximum value and (2) = 1 is a local minimum value.

(c)  00() = 12− 18 = 12

− 3

2


.  00()  0 ⇔   3

2
and  00()  0 ⇔   3

2
. Thus,  is concave upward

on


3
2
∞ and concave downward on

−∞ 3
2


. There is an inflection point at


3
2
 3

2


.

11. (a) () = 4 − 22 + 3 ⇒  0() = 43 − 4 = 4

2 − 1


= 4( + 1)(− 1).

Interval + 1  − 1  0() 

  −1 − − − − decreasing on (−∞−1)

−1    0 + − − + increasing on (−1 0)

0    1 + + − − decreasing on (0 1)

  1 + + + + increasing on (1∞)

(b)  changes from increasing to decreasing at  = 0 and from decreasing to increasing at  = −1 and  = 1. Thus,

(0) = 3 is a local maximum value and (±1) = 2 are local minimum values.

(c)  00() = 122 − 4 = 12

2 − 1

3


= 12


+ 1

√
3

− 1

√
3

.  00()  0 ⇔   −1

√
3 or   1

√
3 and

 00()  0 ⇔ −1
√

3    1
√

3. Thus,  is concave upward on
−∞−√33


and

√
33∞ and concave

downward on
−√33

√
33

. There are inflection points at

±√33 22
9


.

12. (a) () =


2 + 1
⇒  0() =

(2 + 1)(1)− (2)

(2 + 1)2
=

1− 2

(2 + 1)2
= − (+ 1)(− 1)

(2 + 1)2
. Thus,  0()  0 if

( + 1)(− 1)  0 ⇔ −1    1, and  0()  0 if   −1 or   1. So  is increasing on (−1 1) and  is

decreasing on (−∞−1) and (1∞).

(b)  changes from decreasing to increasing at  = −1 and from increasing to decreasing at  = 1. Thus, (−1) = − 1
2

is a

local minimum value and (1) = 1
2

is a local maximum value.

(c)  00() =
(2 + 1)2(−2)− (1− 2)[2(2 + 1)(2)]

[(2 + 1)2]2
=

(2 + 1)(−2)[(2 + 1) + 2(1− 2)]

(2 + 1)4
=

2(2 − 3)

(2 + 1)3
.

 00()  0 ⇔ −√3    0 or  
√

3, and  00()  0 ⇔   −√3 or 0   
√

3. Thus,  is concave

upward on
−√3 0


and

√
3∞ and concave downward on

−∞−√3


and

0
√

3

. There are inflection points at−√3−√34


, (0 0), and

√
3
√

34

.
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22 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

13. (a) () = sin + cos, 0 ≤  ≤ 2.  0() = cos− sin = 0 ⇒ cos = sin ⇒ 1 =
sin

cos
⇒

tan = 1 ⇒  = 
4

or 5
4

. Thus,  0()  0 ⇔ cos− sin  0 ⇔ cos  sin ⇔ 0    
4

or

5
4
   2 and  0()  0 ⇔ cos  sin ⇔ 

4
   5

4
. So  is increasing on


0 

4


and


5
4
 2


and 

is decreasing on


4
 5

4


.

(b)  changes from increasing to decreasing at  = 
4

and from decreasing to increasing at  = 5
4

. Thus, 


4


=
√

2 is a

local maximum value and 


5
4


= −√2 is a local minimum value.

(c)  00() = − sin− cos = 0 ⇒ − sin = cos ⇒ tan = −1 ⇒  = 3
4

or 7
4

. Divide the interval

(0 2) into subintervals with these numbers as endpoints and complete a second derivative chart.

Interval  00() = − sin− cos Concavity
0 3

4


 00


2


= −1  0 downward

3
4
 7

4


 00() = 1  0 upward

7
4
 2


 00


11
6


= 1

2
− 1

2

√
3  0 downward

There are inflection points at


3
4
 0


and


7
4
 0

.

14. (a) () = cos2 − 2 sin, 0 ≤  ≤ 2.  0() = −2 cos sin− 2 cos = −2 cos (1 + sin). Note that

1 + sin ≥ 0 [since sin ≥ −1], with equality ⇔ sin = −1 ⇔  = 3
2

[since 0 ≤  ≤ 2] ⇒
cos = 0. Thus,  0()  0 ⇔ cos  0 ⇔ 

2
   3

2
and  0()  0 ⇔ cos  0 ⇔ 0    

2

or 3
2
   2. Thus,  is increasing on



2
 3

2


and  is decreasing on


0 

2


and


3
2
 2


.

(b)  changes from decreasing to increasing at  = 
2

and from increasing to decreasing at  = 3
2

. Thus, 


2


= −2 is a

local minimum value and 


3
2


= 2 is a local maximum value.

(c)  00() = 2 sin (1 + sin)− 2 cos2  = 2 sin+ 2 sin2 − 2(1− sin2 )

= 4 sin2  + 2 sin− 2 = 2(2 sin− 1)(sin + 1)

so  00()  0 ⇔ sin  1
2
⇔ 

6
   5

6
, and  00()  0 ⇔ sin  1

2
and sin 6= −1 ⇔

0    
6

or 5
6
   3

2
or 3

2
   2 Thus,  is concave upward on



6
 5

6


and concave downward on


0 

6


,

5
6
 3

2


, and


3
2
 2


. There are inflection points at



6
− 1

4


and


5
6
− 1

4


.

15. (a) () = 2 + − ⇒  0() = 22 − −.  0()  0 ⇔ 22  − ⇔ 3  1
2
⇔ 3  ln 1

2
⇔

  1
3
(ln 1− ln 2) ⇔   − 1

3
ln 2 [≈ −023] and  0()  0 if   − 1

3
ln 2. So  is increasing on

− 1
3

ln 2∞
and  is decreasing on

−∞− 1
3

ln 2

.

(b)  changes from decreasing to increasing at  = − 1
3

ln 2. Thus,


− 1

3
ln 2


= 

ln 3


12


= 2 ln 3
√

12 + − ln 3
√

12 = ln
3
√

14 + ln
3√

2 = 3


14 +
3
√

2 = 2−23 + 213 [≈ 189]

is a local minimum value.

(c)  00() = 42 + −  0 [the sum of two positive terms]. Thus,  is concave upward on (−∞∞) and there is no

point of inflection.
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SECTION 4.3 HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH ¤ 23

16. (a) () = 2 ln ⇒  0() = 2(1) + (ln)(2) =  + 2 ln = (1 + 2 ln). The domain of  is (0∞), so

the sign of  0 is determined solely by the factor 1 + 2 ln.  0()  0 ⇔ ln  −1
2
⇔   −12 [≈ 061]

and  0()  0 ⇔ 0    −12. So  is increasing on (−12∞) and  is decreasing on (0 −12).

(b)  changes from decreasing to increasing at  = −12. Thus, (−12) = (−12)2 ln(−12) = −1(−12) = −1(2)

[≈ −018] is a local minimum value.

(c)  0() = (1 + 2 ln) ⇒  00() = (2) + (1 + 2 ln) · 1 = 2 + 1 + 2 ln = 3 + 2 ln.  00()  0 ⇔

3 + 2 ln  0 ⇔ ln  −32 ⇔   −32 [≈ 022]. Thus,  is concave upward on (−32∞) and  is

concave downward on (0 −32). (−32) = (−32)2 ln −32 = −3(−32) = −3(23) [≈ −007]. There is a

point of inflection at

−32 (−32)


=

−32−3(23)


.

17. (a) () = 2 − − ln ⇒  0() = 2− 1− 1


=

22 − − 1


=

(2+ 1)(− 1)


. Thus,  0()  0 if   1

[note that   0] and  0()  0 if 0    1. So  is increasing on (1∞) and  is decreasing on (0 1).

(b)  changes from decreasing to increasing at  = 1. Thus, (1) = 0 is a local minimum value.

(c)  00() = 2 + 12  0 for all , so  is concave upward on (0∞). There is no inflection point.

18. (a) () = 4− ⇒  0() = 4(−−) + −(43) = 3−(−+ 4). Thus,  0()  0 if 0    4 and  0()  0

if   0 or   4. So  is increasing on (0 4) and decreasing on (−∞ 0) and (4∞).

(b)  changes from decreasing to increasing at  = 0 and from increasing to decreasing at  = 4. Thus, (0) = 0 is a local

minimum value and (4) = 2564 is a local maximum value.

(c)  0() = −(−4 + 43) ⇒

 00() = −(−43 + 122) + (−4 + 43)(−−) = −[(−43 + 122)− (−4 + 43)]

= −(4 − 83 + 122) = 2−(2 − 8+ 12) = 2−(− 2)(− 6)

 00()  0 ⇔   2 [excluding 0] or   6 and  00()  0 ⇔ 2    6. Thus,  is concave upward on

(−∞ 2) and (6∞) and  is concave downward on (2 6). There are inflection points at (2 16−2) and (6 1296−6).

19. () = 1 + 32 − 23 ⇒  0() = 6− 62 = 6(1− ).

First Derivative Test:  0()  0 ⇒ 0    1 and  0()  0 ⇒   0 or   1. Since  0 changes from negative

to positive at  = 0, (0) = 1 is a local minimum value; and since  0 changes from positive to negative at  = 1, (1) = 2 is

a local maximum value.

Second Derivative Test:  00() = 6− 12.  0() = 0 ⇔  = 0 1.  00(0) = 6  0 ⇒ (0) = 1 is a local

minimum value.  00(1) = −6  0 ⇒ (1) = 2 is a local maximum value.

Preference: For this function, the two tests are equally easy.
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24 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

20. () =
2

− 1
⇒  0() =

(− 1)(2)− 2(1)

(− 1)2
=

2 − 2

(− 1)2
=

(− 2)

(− 1)2
.

First Derivative Test:  0()  0 ⇒   0 or   2 and  0()  0 ⇒ 0    1 or 1    2. Since  0 changes

from positive to negative at  = 0, (0) = 0 is a local maximum value; and since  0 changes from negative to positive at

 = 2, (2) = 4 is a local minimum value.

Second Derivative Test:

 00() =
(− 1)2(2− 2)− (2 − 2)2(− 1)

[(− 1)2]2
=

2(− 1)[(− 1)2 − (2 − 2)]

(− 1)4
=

2

(− 1)3
.

 0() = 0 ⇔  = 0 2.  00(0) = −2  0 ⇒ (0) = 0 is a local maximum value.  00(2) = 2  0 ⇒ (2) = 4 is a

local minimum value.

Preference: Since calculating the second derivative is fairly difficult, the First Derivative Test is easier to use for this

function.

21. () =
√
− 4

√
 ⇒  0() =

1

2
−12 − 1

4
−34 =

1

4
−34(214 − 1) =

2 4
√
− 1

4
4
√
3

First Derivative Test: 2 4
√
− 1  0 ⇒   1

16
, so  0()  0 ⇒   1

16
and  0()  0 ⇒ 0    1

16
.

Since  0 changes from negative to positive at  = 1
16

, ( 1
16

) = 1
4
− 1

2
= −1

4
is a local minimum value.

Second Derivative Test:  00() = −1

4
−32 +

3

16
−74 = − 1

4
√
3

+
3

16
4
√
7

.

 0() = 0 ⇔  = 1
16

.  00


1
16


= −16 + 24 = 8  0 ⇒ 


1
16


= − 1

4
is a local minimum value.

Preference: The First Derivative Test may be slightly easier to apply in this case.

22. (a) () = 4(− 1)3 ⇒  0() = 4 · 3(− 1)2 +(− 1)3 · 43 = 3(− 1)2 [3+ 4(− 1)] = 3(− 1)2(7− 4)

The critical numbers are 0, 1, and 4
7

.

(b)  00() = 32(− 1)2(7− 4) + 3 · 2(− 1)(7− 4) + 3(− 1)2 · 7
= 2(− 1) [3(− 1)(7− 4) + 2(7− 4) + 7(− 1)]

Now  00(0) =  00(1) = 0, so the Second Derivative Test gives no information for  = 0 or  = 1.

 00


4
7


=


4
7

2 4
7
− 1


0 + 0 + 7


4
7


4
7
− 1


=


4
7

2−3
7


(4)
− 3

7


 0, so there is a local minimum at  = 4

7
.

(c)  0 is positive on (−∞ 0), negative on

0 4

7


, positive on


4
7
 1

, and positive on (1∞). So  has a local maximum at

 = 0, a local minimum at  = 4
7

, and no local maximum or minimum at  = 1.

23. (a) By the Second Derivative Test, if  0(2) = 0 and  00(2) = −5  0,  has a local maximum at  = 2.

(b) If  0(6) = 0, we know that  has a horizontal tangent at  = 6. Knowing that  00(6) = 0 does not provide any additional

information since the Second Derivative Test fails. For example, the first and second derivatives of  = (− 6)4,

 = −(− 6)4, and  = (− 6)3 all equal zero for  = 6, but the first has a local minimum at  = 6, the second has a

local maximum at  = 6, and the third has an inflection point at  = 6.
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SECTION 4.3 HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH ¤ 25

24. (a)  0()  0 and  00()  0 for all 

The function must be always decreasing (since the first derivative is always

negative) and concave downward (since the second derivative is always

negative).

(b)  0()  0 and  00()  0 for all 

The function must be always increasing (since the first derivative is always

positive) and concave upward (since the second derivative is always

positive).

25. (a)  0()  0 and  00()  0 for all 

The function must be always increasing (since the first derivative is always

positive) and concave downward (since the second derivative is always

negative).

(b)  0()  0 and  00()  0 for all 

The function must be always decreasing (since the first derivative is always

negative) and concave upward (since the second derivative is always

positive).

26. Vertical asymptote  = 0

 0()  0 if   −2 ⇒  is increasing on (−∞−2).

 0()  0 if   −2 ( 6= 0) ⇒  is decreasing on (−2 0) and (0∞).

 00()  0 if   0 ⇒  is concave downward on (−∞ 0).

 00()  0 if   0 ⇒  is concave upward on (0∞).

27.  0(0) =  0(2) =  0(4) = 0 ⇒ horizontal tangents at  = 0, 2, 4.

 0()  0 if   0 or 2    4 ⇒  is increasing on (−∞ 0) and (2 4).

 0()  0 if 0    2 or   4 ⇒  is decreasing on (0 2) and (4∞).

 00()  0 if 1    3 ⇒  is concave upward on (1 3).

 00()  0 if   1 or   3 ⇒  is concave downward on (−∞ 1)

and (3∞). There are inflection points when  = 1 and 3.
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26 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

28.  0()  0 for all  6= 1 ⇒  is increasing on (−∞ 1) and (1∞).

Vertical asymptote  = 1

 00()  0 if   1 or   3 ⇒  is concave upward on (−∞ 1) and (3∞).

 00()  0 if 1    3 ⇒  is concave downward on (1 3).

There is an inflection point at  = 3.

29.  0(5) = 0 ⇒ horizontal tangent at  = 5.

 0()  0 when   5 ⇒  is decreasing on (−∞ 5).

 0()  0 when   5 ⇒  is increasing on (5∞).

 00(2) = 0,  00(8) = 0,  00()  0 when   2 or   8,

 00()  0 for 2    8 ⇒  is concave upward on (2 8) and concave downward on (−∞ 2) and (8∞).

There are inflection points at  = 2 and  = 8.

lim
→∞

() = 3, lim
→−∞

() = 3 ⇒  = 3 is a horizontal asymptote.

30.  0(0) =  0(4) = 0 ⇒ horizontal tangents at  = 0 and 4.

 0() = 1 if   −1 ⇒  is a line with slope 1 on (−∞−1).

 0()  0 if 0    2 ⇒  is increasing on (0 2).

 0()  0 if −1    0 or 2    4 or   4 ⇒  is decreasing on (−1 0),

(2 4), and (4∞).

lim
→2−

 0() =∞ ⇒  0 increases without bound as → 2−.

lim
→2+

 0() = −∞ ⇒  0 decreases without bound as → 2+.

 00()  0 if −1    2 or 2    4 ⇒  is concave upward on (−1 2) and (2 4).

 00()  0 if   4 ⇒  is concave downward on (4∞).

31.  0()  0 if  6= 2 ⇒  is increasing on (−∞ 2) and (2∞).

 00()  0 if   2 ⇒  is concave upward on (−∞ 2).

 00()  0 if   2 ⇒  is concave downward on (2∞).

 has inflection point (2 5) ⇒  changes concavity at the point (2 5).

lim
→∞

() = 8 ⇒  has a horizontal asymptote of  = 8 as →∞.

lim
→−∞

() = 0 ⇒  has a horizontal asymptote of  = 0 as →−∞.
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SECTION 4.3 HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH ¤ 27

32. (a) (3) = 2 ⇒ the point (3 2) is on the graph of  .  0(3) = 1
2
⇒ the slope of

the tangent line at (3 2) is 1
2

.  0()  0 for all  ⇒  is increasing on R.

 00()  0 for all  ⇒  is concave downward on R. A possible graph for 

is shown.

(b) The tangent line at (3 2) has equation  − 2 = 1
2
(− 3), or  = 1

2
 + 1

2
, and -intercept −1. Since  is concave

downward on R,  is below the -axis at  = −1, and hence changes sign at least once. Since  is increasing on R,

it changes sign at most once. Thus, it changes sign exactly once and there is one solution of the equation () = 0.

(c)  00  0 ⇒  0 is decreasing. Since  0(3) = 1
2

,  0(2) must be greater than 1
2

, so no, it is not possible that  0(2) = 1
3

.

33. (a) Intuitively, since  is continuous, increasing, and concave upward for   2, it cannot have an absolute maximum. For a

proof, we appeal to the MVT. Let  =   2. Then by the MVT, ()− (2) =  0()(− 2) for some  such that

2    . So () = (2) +  0()(− 2) where (2) is positive since ()  0 for all  and  0() is positive since

 0()  0 for   2. Thus, as →∞, ()→∞, and no absolute maximum exists.

(b) Yes, the local minimum at  = 2 can be an absolute minimum.

(c) Here ()→ 0 as →−∞, but  does not achieve an absolute minimum.

34. (a)



 0 ( is increasing) and

2

2
 0 ( is concave upward) at point .

(b)



 0 ( is decreasing) and

2

2
 0 ( is concave downward) at point .

(c)



 0 ( is decreasing) and

2

2
 0 ( is concave upward) at point .

Note: At ,



 0 and

2

2
 0. At ,




= 0 and

2

2
≤ 0.

35. (a)  is increasing where  0 is positive, that is, on (0 2), (4 6), and (8∞); and decreasing where  0 is negative, that is, on

(2 4) and (6 8).

(b)  has local maxima where  0 changes from positive to negative, at  = 2 and at  = 6, and local minima where  0 changes

from negative to positive, at  = 4 and at  = 8.
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28 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

(c)  is concave upward (CU) where  0 is increasing, that is, on (3 6) and (6∞), and concave downward (CD) where  0 is

decreasing, that is, on (0 3).

(d) There is a point of inflection where  changes from

being CD to being CU, that is, at  = 3.

(e)

36. (a)  is increasing where  0 is positive, on (1 6) and (8∞), and decreasing where  0 is negative, on (0 1) and (6 8).

(b)  has a local maximum where  0 changes from positive to negative, at  = 6, and local minima where  0 changes from

negative to positive, at  = 1 and at  = 8.

(c)  is concave upward where  0 is increasing, that is, on (0 2), (3 5), and (7∞), and concave downward where  0 is

decreasing, that is, on (2 3) and (5 7).

(d) There are points of inflection where  changes its

direction of concavity, at  = 2,  = 3,  = 5 and

 = 7.

(e)

37. (a) () = 3 − 12 + 2 ⇒  0() = 32 − 12 = 3(2 − 4) = 3(+ 2)(− 2).  0()  0 ⇔   −2 or   2

and  0()  0 ⇔ −2    2. So  is increasing on (−∞−2) and (2∞) and  is decreasing on (−2 2).

(b)  changes from increasing to decreasing at  = −2, so (−2) = 18 is a local maximum value.  changes from decreasing

to increasing at  = 2, so (2) = −14 is a local minimum value.

(c)  00() = 6.  00() = 0 ⇔  = 0.  00()  0 on (0∞) and

 00()  0 on (−∞ 0). So  is concave upward on (0∞) and  is

concave downward on (−∞ 0). There is an inflection point at (0 2).

(d)

38. (a) () = 36 + 32 − 23 ⇒  0() = 36 + 6− 62 = −6(2 − − 6) = −6( + 2)(− 3).  0()  0 ⇔

−2    3 and  0()  0 ⇔   −2 or   3. So  is increasing on (−2 3) and  is decreasing on (−∞−2)

and (3∞).

(b)  changes from increasing to decreasing at  = 3, so (3) = 81 is a local maximum value.  changes from decreasing to

increasing at  = −2, so (−2) = −44 is a local minimum value.
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SECTION 4.3 HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH ¤ 29

(c)  00() = 6− 12.  00() = 0 ⇔  = 1
2

.  00()  0 on
−∞ 1

2


and  00()  0 on


1
2
∞. So  is CU on

−∞ 1
2


and  is CD on

1
2
∞. There is an inflection point at


1
2
 37

2


.

(d)

39. (a) () = 1
2
4 − 42 + 3 ⇒  0() = 23 − 8 = 2(2 − 4) = 2( + 2)(− 2).  0()  0 ⇔ −2    0

or   2, and  0()  0 ⇔   −2 or 0    2. So  is increasing on (−2 0) and (2∞) and  is decreasing on

(−∞−2) and (0 2).

(b)  changes from increasing to decreasing at  = 0, so (0) = 3 is a local maximum value.

 changes from decreasing to increasing at  = ±2, so (±2) = −5 is a local minimum value.

(c)  00() = 62 − 8 = 6

2 − 4

3


= 6


 + 2√

3


− 2√

3


.

 00() = 0 ⇔  = ± 2√
3

.  00()  0 on

−∞− 2√

3


and


2√
3
∞


and  00()  0 on

− 2√

3
 2√

3


. So  is CU on


−∞− 2√

3


and

2√
3
∞


, and  is CD on

− 2√

3
 2√

3


. There are inflection points at

± 2√
3
− 13

9


.

(d)

40. (a) () = 200 + 83 + 4 ⇒ 0() = 242 + 43 = 42(6 + ) = 0 when  = −6 and when  = 0.

0()  0 ⇔   −6 [ 6= 0] and 0()  0 ⇔   −6, so  is decreasing on (−∞−6) and  is increasing

on (−6∞), with a horizontal tangent at  = 0.

(b) (−6) = −232 is a local minimum value. There is no local maximum value. (d)

(c) 00() = 48+ 122 = 12(4 + ) = 0 when  = −4 and when  = 0.

00()  0 ⇔   −4 or   0 and 00()  0 ⇔ −4    0, so  is

CU on (−∞−4) and (0∞), and  is CD on (−4 0). There are inflection

points at (−4−56) and (0 200).

41. (a) () = (+ 1)5 − 5− 2 ⇒ 0() = 5(+ 1)4 − 5. 0() = 0 ⇔ 5(+ 1)4 = 5 ⇔ ( + 1)4 = 1 ⇒

( + 1)2 = 1 ⇒ + 1 = 1 or + 1 = −1 ⇒  = 0 or  = −2. 0()  0 ⇔   −2 or   0 and

0()  0 ⇔ −2    0. So  is increasing on (−∞−2) and (0∞) and  is decreasing on (−2 0).
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30 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

(b) (−2) = 7 is a local maximum value and (0) = −1 is a local minimum value. (d)

(c) 00() = 20(+ 1)3 = 0 ⇔  = −1. 00()  0 ⇔   −1 and

00()  0 ⇔   −1, so  is CU on (−1∞) and  is CD on (−∞−1).

There is a point of inflection at (−1 (−1)) = (−1 3).

42. (a) () = 53 − 35 ⇒ 0() = 152 − 154 = 152(1− 2) = 152(1 + )(1− ). 0()  0 ⇔

−1    0 and 0    1 [note that 0(0) = 0] and 0()  0 ⇔   −1 or   1. So  is increasing on (−1 1)

and  is decreasing on (−∞−1) and (1∞).

(b)  changes from decreasing to increasing at  = −1, so (−1) = −2 is a local minimum value.  changes from increasing

to decreasing at  = 1, so (1) = 2 is a local maximum value.

(c) 00() = 30− 603 = 30(1− 22). 00() = 0 ⇔  = 0 or

1− 22 = 0 ⇔  = 0 or  = ±1
√

2. 00()  0 on
−∞−1

√
2


and
0 1

√
2

, and 00()  0 on

−1
√

2 0


and

1
√

2∞. So  is CU on−∞−1
√

2


and

0 1

√
2

, and  is CD on

−1
√

2 0


and

1
√

2∞.
There are inflection points at

−1
√

2−7

4
√

2


, (0 0), and

1
√

2 7

4
√

2


.

(d)

43. (a)  () = 
√

6−  ⇒

 0() =  · 1
2
(6− )−12(−1) + (6− )12(1) = 1

2
(6− )−12[−+ 2(6− )] =

−3+ 12

2
√

6− 
.

 0()  0 ⇔ −3+ 12  0 ⇔   4 and  0()  0 ⇔ 4    6. So  is increasing on (−∞ 4) and  is

decreasing on (4 6).

(b)  changes from increasing to decreasing at  = 4, so  (4) = 4
√

2 is a local maximum value. There is no local minimum

value.

(c)  0() = − 3
2
(− 4)(6− )−12 ⇒

 00() = − 3
2


(− 4)


− 1

2
(6− )−32(−1)


+ (6− )−12(1)


= −3

2
· 1

2
(6− )−32[(− 4) + 2(6− )] =

3(− 8)

4(6− )32

 00()  0 on (−∞ 6), so  is CD on (−∞ 6). There is no inflection point.

(d)

44. (a) () = 523 − 253 ⇒ 0() = 10
3
−13 − 10

3
23 = 10

3
−13(1− ) =

10(1− )

313
.

0()  0 ⇔ 0    1 and 0()  0 ⇔   0 or   1. So  is increasing on (0 1) and  is decreasing on

(−∞ 0) and (1∞).
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SECTION 4.3 HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH ¤ 31

(b)  changes from decreasing to increasing at  = 0, so (0) = 0 is a local minimum value.  changes from increasing to

decreasing at  = 1, so (1) = 3 is a local maximum value. Note that the First Derivative Test applies at  = 0 even

though 0 is not defined at  = 0, since  is continuous at 0.

(c) 00() = −10
9
−43 − 20

9
−13 = − 10

9
−43(1 + 2). 00()  0 ⇔

  − 1
2

and 00()  0 ⇔ − 1
2
   0 or   0. So  is CU on−∞− 1

2


and  is CD on

− 1
2
 0


and (0∞). The only change in concavity

occurs at  = − 1
2

, so there is an inflection point at
−1

2
 6

3
√

4

.

(d)

45. (a) () = 13(+ 4) = 43 + 413 ⇒  0() = 4
3
13 + 4

3
−23 = 4

3
−23(+ 1) =

4(+ 1)

3
3
√
2

.  0()  0 if

−1    0 or   0 and  0()  0 for   −1, so  is increasing on (−1∞) and  is decreasing on (−∞−1).

(b) (−1) = −3 is a local minimum value. (d)

(c) 00() = 4
9
−23 − 8

9
−53 = 4

9
−53(− 2) =

4(− 2)

9
3
√
5

.

00()  0 for 0    2 and 00()  0 for   0 and   2, so  is

concave downward on (0 2) and concave upward on (−∞ 0) and (2∞).

There are inflection points at (0 0) and

2 6

3
√

2
 ≈ (2 756).

46. (a) () = ln(2 + 9) ⇒  0() =
1

2 + 9
· 2 =

2

2 + 9
.  0()  0 ⇔ 2  0 ⇔   0 and  0()  0 ⇔

  0. So  is increasing on (0∞) and  is decreasing on (−∞ 0).

(b)  changes from decreasing to increasing at  = 0, so (0) = ln 9 is a

local minimum value. There is no local maximum value.

(d)

(c)  00() =
(2 + 9) · 2− 2(2)

(2 + 9)2
=

18− 22

(2 + 9)2
=
−2(+ 3)(− 3)

(2 + 9)2
.

 00() = 0 ⇔  = ±3.  00()  0 on (−3 3) and  00()  0 on

(−∞−3) and (3∞). So  is CU on (−3 3), and  is CD on (−∞−3)

and (3∞). There are inflection points at (±3 ln 18).

47. (a) () = 2 cos  + cos2 , 0 ≤  ≤ 2 ⇒  0() = −2 sin  + 2cos  (− sin ) = −2 sin  (1 + cos ).

 0() = 0 ⇔  = 0  and 2.  0()  0 ⇔     2 and  0()  0 ⇔ 0    . So  is increasing

on ( 2) and  is decreasing on (0 ).

(b) () = −1 is a local minimum value.
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32 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

(c)  0() = −2 sin  (1 + cos ) ⇒
 00() = −2 sin  (− sin ) + (1 + cos )(−2 cos ) = 2 sin2  − 2 cos  − 2 cos2 

= 2(1− cos2 )− 2 cos  − 2 cos2  = −4 cos2  − 2 cos  + 2

= −2(2 cos2  + cos  − 1) = −2(2 cos  − 1)(cos  + 1)

Since −2(cos  + 1)  0 [for  6= ],  00()  0 ⇒ 2 cos  − 1  0 ⇒ cos   1
2
⇒ 

3
   5

3
and

 00()  0 ⇒ cos   1
2
⇒ 0    

3
or 5

3
   2. So  is CU on



3
 5

3


and  is CD on


0 

3


and

5
3
 2


. There are points of inflection at



3
 


3


=


3
 5

4


and


5
3
 


5
3


=


5
3
 5

4


.

(d)

48. (a) () = − sin, 0 ≤  ≤ 4 ⇒ 0() = 1− cos. 0() = 0 ⇔ cos = 1 ⇔  = 0, 2, and 4.

0()  0 ⇔ cos  1, which is true for all  except integer multiples of 2, so  is increasing on (0 4)

since 0(2) = 0.

(b) There is no local maximum or minimum. (c)

(d) 00() = sin. 00()  0 if 0     or 2    3, and 00()  0 if

    2 or 3    4. So  is CU on (0 ) and (2 3), and  is CD

on ( 2) and (3 4). There are inflection points at ( ), (2 2), and

(3 3).

49. () = 1 +
1


− 1

2
has domain (−∞ 0) ∪ (0∞).

(a) lim
→±∞


1 +

1


− 1

2


= 1, so  = 1 is a HA. lim

→0+


1 +

1


− 1

2


= lim

→0+


2 + − 1

2


= −∞ since

(2 + − 1)→−1 and 2 → 0 as → 0+ [a similar argument can be made for → 0−], so  = 0 is a VA.

(b)  0() = − 1

2
+

2

3
= − 1

3
(− 2).  0() = 0 ⇔  = 2.  0()  0 ⇔ 0    2 and  0()  0 ⇔   0

or   2. So  is increasing on (0 2) and  is decreasing on (−∞ 0) and (2∞).

(c)  changes from increasing to decreasing at  = 2, so (2) = 5
4

is a local

maximum value. There is no local minimum value.

(e)

(d)  00() =
2

3
− 6

4
=

2

4
(− 3).  00() = 0 ⇔  = 3.  00()  0 ⇔

  3 and  00()  0 ⇔   0 or 0    3. So  is CU on (3∞) and 

is CD on (−∞ 0) and (0 3). There is an inflection point at

3 11

9


.
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SECTION 4.3 HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH ¤ 33

50. () =
2 − 4

2 + 4
has domain R.

(a) lim
→±∞

2 − 4

2 + 4
= lim

→±∞
1− 42

1 + 42
=

1

1
= 1, so  = 1 is a HA. There is no vertical asymptote.

(b)  0() =
(2 + 4)(2)− (2 − 4)(2)

(2 + 4)2
=

2[(2 + 4)− (2 − 4)]

(2 + 4)2
=

16

(2 + 4)2
.  0()  0 ⇔   0 and

 0()  0 ⇔   0. So  is increasing on (0∞) and  is decreasing on (−∞ 0).

(c)  changes from decreasing to increasing at  = 0, so (0) = −1 is a local minimum value.

(d)  00() =
(2 + 4)2(16)− 16 · 2(2 + 4)(2)

[(2 + 4)2]2
=

16(2 + 4)[(2 + 4)− 42]

(2 + 4)4
=

16(4− 32)

(2 + 4)3
.

 00() = 0 ⇔  = ±2
√

3.  00()  0 ⇔ −2
√

3    2
√

3

and  00()  0 ⇔   −2
√

3 or   2
√

3. So  is CU on−2
√

3 2
√

3


and  is CD on
−∞−2

√
3


and

2
√

3∞.
There are inflection points at

±2
√

3− 1
2


.

(e)

51. (a) lim
→−∞

√
2 + 1− 


= ∞ and

lim
→∞

√
2 + 1− 


= lim

→∞

√
2 + 1− 

 √2 + 1 + √
2 + 1 + 

= lim
→∞

1√
2 + 1 + 

= 0, so  = 0 is a HA.

(b) () =
√
2 + 1−  ⇒  0() =

√
2 + 1

− 1. Since
√

2 + 1
 1 for all ,  0()  0, so  is decreasing on R.

(c) No minimum or maximum

(d)  00() =
(2 + 1)12(1)−  · 1

2
(2 + 1)−12(2)√

2 + 1
2

=

(2 + 1)12 − 2

(2 + 1)12

2 + 1
=

(2 + 1)− 2

(2 + 1)32
=

1

(2 + 1)32
 0,

so  is CU on R. No IP

(e)

52. () =


1− 
has domain { | 1−  6= 0} = { |  6= 1} = { |  6= 0}.

(a) lim
→∞



1− 
= lim

→∞


(1− )
= lim

→∞
1

1 − 1
=

1

0− 1
= −1, so  = −1 is a HA.

lim
→−∞



1− 
=

0

1− 0
= 0, so  = 0 is a HA. lim

→0+



1− 
= −∞ and lim

→0−



1− 
=∞, so  = 0 is a VA.

(b)  0() =
(1− ) − (−)

(1− )2
=

[(1− ) + ]

(1− )2
=



(1− )2
.  0()  0 for  6= 0, so  is increasing on

(−∞ 0) and (0∞).

(c) There is no local maximum or minimum.
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34 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

(d)  00() =
(1− )2 −  · 2(1− )(−)

[(1− )2]2

=
(1− )[(1− ) + 2]

(1− )4
=

( + 1)

(1− )3

 00()  0 ⇔ (1− )3  0 ⇔   1 ⇔   0 and

 00()  0 ⇔   0. So  is CU on (−∞ 0) and  is CD on (0∞).

There is no inflection point.

(e)

53. (a) lim
→±∞

−
2

= lim
→±∞

1


2 = 0, so  = 0 is a HA. There is no VA.

(b) () = −
2 ⇒  0() = −

2

(−2).  0() = 0 ⇔  = 0.  0()  0 ⇔   0 and  0()  0 ⇔
  0. So  is increasing on (−∞ 0) and  is decreasing on (0∞).

(c)  changes from increasing to decreasing at  = 0, so (0) = 1 is a local maximum value. There is no local minimum

value.

(d)  00() = −
2

(−2) + (−2)−
2

(−2) = −2−
2

(1− 22).

 00() = 0 ⇔ 2 = 1
2
⇔  = ±1

√
2.  00()  0 ⇔

  −1
√

2 or   1
√

2 and  00()  0 ⇔ −1
√

2    1
√

2. So

 is CU on
−∞−1

√
2


and

1
√

2∞, and  is CD on
−1

√
2 1

√
2

.

There are inflection points at

±1

√
2 −12


.

(e)

54. () = − 1
6
2 − 2

3
ln has domain (0∞).

(a) lim
→0+


− 1

6
2 − 2

3
ln


=∞ since ln→ −∞ as → 0+, so  = 0 is a VA. There is no HA.

(b)  0() = 1− 1

3
− 2

3
=

3− 2 − 2

3
=
−(2 − 3+ 2)

3
=
−(− 1)(− 2)

3
.  0()  0 ⇔

(− 1)(− 2)  0 ⇔ 1    2 and  0()  0 ⇔ 0    1 or   2. So  is increasing on (1 2) and

 is decreasing on (0 1) and (2∞).

(c)  changes from decreasing to increasing at  = 1, so (1) = 5
6

is a local minimum value.  changes from increasing to

decreasing at  = 2, so (2) = 4
3
− 2

3
ln 2 ≈ 087 is a local maximum value.

(d)  00() = −1

3
+

2

32
=

2− 2

32
.  00()  0 ⇔ 0   

√
2 and

 00()  0 ⇔  
√

2. So  is CU on

0
√

2


and  is CD on√
2∞. There is an inflection point at

√
2
√

2− 1
3
− 1

3
ln 2

.

(e)
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SECTION 4.3 HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH ¤ 35

55. () = ln(1− ln) is defined when   0 (so that ln is defined) and 1− ln  0 [so that ln(1− ln) is defined].

The second condition is equivalent to 1  ln ⇔    so  has domain (0 ).

(a) As → 0+ ln→ −∞ so 1− ln→∞ and () →∞ As → − ln→ 1− so 1− ln→ 0+ and

()→−∞. Thus,  = 0 and  =  are vertical asymptotes. There is no horizontal asymptote.

(b)  0() =
1

1− ln


− 1




= − 1

(1− ln)
 0 on (0 )  Thus,  is decreasing on its domain, (0 ) 

(c)  0() 6= 0 on (0 )  so  has no local maximum or minimum value. (e)

(d)  00() = −− [(1− ln)]
0

[(1− ln)]
2

=
(−1) + (1− ln)

2(1− ln)2

= − ln

2(1− ln)2

so  00()  0 ⇔ ln  0 ⇔ 0    1 Thus,  is CU on (0 1)

and CD on (1 )  There is an inflection point at (1 0) 

56. (a) lim
→∞

arctan = 
2

, so lim
→∞

arctan  = 2 [≈ 481], so  = 2 is a HA.

lim
→−∞

arctan  = −2 [≈ 021], so  = −2 is a HA. No VA.

(b) () = arctan ⇒  0() = arctan .
1

1 + 2
 0 for all . Thus,  is increasing on R.

(c) There is no local maximum or minimum.

(d)  00() = arctan 
 −2

(1 + 2)2


+

1

1 + 2
· arctan · 1

1 + 2

=
arctan

(1 + 2)2
(−2 + 1)

 00()  0 ⇔ −2+ 1  0 ⇔   1
2

and  00()  0 ⇔
  1

2
, so  is CU on

−∞ 1
2


and  is CD on


1
2
∞. There is an

inflection point at


1
2
 


1
2


=


1
2
 arctan(12)


≈  1

2
 159


.

(e)

57. The nonnegative factors (+ 1)2 and (− 6)4 do not affect the sign of  0() = (+ 1)2(− 3)5(− 6)4.

So  0()  0 ⇒ (− 3)5  0 ⇒ − 3  0 ⇒   3. Thus,  is increasing on the interval (3∞).

58.  = () = 3 − 32+ 23,   0. The -intercept is (0) = 23. 0 = 32 − 32 = 3(2 − 2) = 3(+ )(− ).

The critical numbers are− and .  0  0 on (− ), so  is decreasing on (− ) and  is increasing on (−∞−) and

(∞). (−) = 43 is a local maximum value and () = 0 is a local minimum value. Since () = 0,  is an -intercept,

and −  is a factor of  . Synthetically dividing  = 3 − 32 + 23 by −  gives us the following result:

 = 3 − 32+ 23 = (− )(2 + − 22) = (− )(− )( + 2) = (− )2(+ 2), which tells us
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36 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

that the only -intercepts are −2 and . 0 = 32 − 32 ⇒ 00 = 6, so 00  0

on (0∞) and 00  0 on (−∞ 0). This tells us that  is CU on (0∞) and CD on

(−∞ 0). There is an inflection point at (0 23). The graph illustrates these features.

What the curves in the family have in common is that they are all CD on (−∞ 0),

CU on (0∞), and have the same basic shape. But as  increases, the four key points

shown in the figure move further away from the origin.

59. (a) From the graph, we get an estimate of (1) ≈ 141 as a local maximum

value, and no local minimum value.

() =
+ 1√
2 + 1

⇒  0() =
1− 

(2 + 1)
32

.

 0() = 0 ⇔  = 1. (1) = 2√
2

=
√

2 is the exact value.

(b) From the graph in part (a),  increases most rapidly somewhere between  = − 1
2

and  = − 1
4

. To find the exact value,

we need to find the maximum value of  0, which we can do by finding the critical numbers of  0.

 00() =
22 − 3− 1

(2 + 1)
52

= 0 ⇔  =
3±√17

4
.  =

3 +
√

17

4
corresponds to the minimum value of  0.

The maximum value of  0 occurs at  = 3−√17
4

≈ −028.

60. (a) Tracing the graph gives us estimates of (0) = 0 for a local minimum value

and (2) = 054 for a local maximum value.

() = 2− ⇒  0() = −(2− )  0() = 0 ⇔  = 0 or 2.

(0) = 0 and (2) = 4−2 are the exact values.

(b) From the graph in part (a),  increases most rapidly around  = 3
4

. To find the exact value, we need to find the maximum

value of  0, which we can do by finding the critical numbers of  0.  00() = −

2 − 4+ 2


= 0 ⇒

 = 2±√2.  = 2 +
√

2 corresponds to the minimum value of  0. The maximum value of  0 is at
2−√2


2−√2

2
−2+

√
2

≈ (059 019).

61. () = sin 2+ sin 4 ⇒  0() = 2 cos 2+ 4 cos 4 ⇒  00() = −4 sin 2− 16 sin 4

(a) From the graph of  , it seems that  is CD on (0 08), CU on (08 16), CD on

(16 23), and CU on (23 ). The inflection points appear to be at (08 07),

(16 0), and (23−07).
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SECTION 4.3 HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH ¤ 37

(b) From the graph of  00 (and zooming in near the zeros), it seems that  is CD on

(0 085), CU on (085 157), CD on (157 229), and CU on (229 ).

Refined estimates of the inflection points are (085 074), (157 0), and

(229−074).

62. () = (− 1)2(+ 1)3 ⇒

 0() = (− 1)23(+ 1)2 + (+ 1)32(− 1)

= (− 1)(+ 1)2 [3(− 1) + 2(+ 1)] = (− 1)(+ 1)2(5− 1) ⇒

 00() = (1)( + 1)2(5− 1) + (− 1)(2)(+ 1)(5− 1) + (− 1)(+ 1)2(5)

= (+ 1)[(+ 1)(5− 1) + 2(− 1)(5− 1) + 5(− 1)(+ 1)]

= (+ 1)[52 + 4− 1 + 102 − 12+ 2 + 52 − 5]

= (+ 1)(202 − 8− 4) = 4(+ 1)(52 − 2− 1)

(a) From the graph of  , it seems that  is CD on (−∞−1), CU on (−1−03),

CD on (−03 07), and CU on (07∞). The inflection points appear to be at

(−1 0), (−03 06), and (07 05).

(b) From the graph of  00 (and zooming in near the zeros), it seems that  is CD on

(−1 0), CU on (−1−029), CD on (−029 069), and CU on (069∞).

Refined estimates of the inflection points are (−1 0), (−029 060), and

(069 046).

63. () =
4 + 3 + 1√
2 + + 1

. In Maple, we define  and then use the command

plot(diff(diff(f,x),x),x=-2..2);. In Mathematica, we define 

and then use Plot[Dt[Dt[f,x],x],{x,-2,2}]. We see that  00  0 for

  −06 and   00 [≈ 003] and  00  0 for −06    00. So  is CU

on (−∞−06) and (00∞) and CD on (−06 00).

64. () =
2 tan−1 

1 + 3
. It appears that  00 is positive (and thus  is concave

upward) on (−∞−1), (0 07), and (25∞); and  00 is negative (and thus  is

concave downward) on (−1 0) and (07 25).
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38 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

65. (a) The rate of increase of the population is initially very small, then gets larger until it reaches a maximum at about

 = 8 hours, and decreases toward 0 as the population begins to level off.

(b) The rate of increase has its maximum value at  = 8 hours.

(c) The population function is concave upward on (0 8) and concave downward on (8 18).

(d) At  = 8, the population is about 350, so the inflection point is about (8 350).

66. If () is the average SAT score as a function of time , then 0()  0 (since the SAT scores are declining) and 00()  0

(since the rate of decrease of the scores is increasing—becoming less negative).

67. If () is the size of the national deficit as a function of time , then at the time of the speech 0()  0 (since the deficit is

increasing), and 00()  0 (since the rate of increase of the deficit is decreasing).

68. (a) I’m very unhappy. It’s uncomfortably hot and  0(3) = 2 indicates that the

temperature is increasing, and  00(3) = 4 indicates that the rate of increase

is increasing. (The temperature is rapidly getting warmer.)

(b) I’m still unhappy, but not as unhappy as in part (a). It’s uncomfortably hot

and  0(3) = 2 indicates that the temperature is increasing, but  00(3) = −4

indicates that the rate of increase is decreasing. (The temperature is slowly

getting warmer.)

(c) I’m somewhat happy. It’s uncomfortably hot and  0(3) = −2 indicates that

the temperature is decreasing, but  00(3) = 4 indicates that the rate of

change is increasing. (The rate of change is negative but it’s becoming less

negative. The temperature is slowly getting cooler.)

(d) I’m very happy. It’s uncomfortably hot and  0(3) = −2 indicates that the

temperature is decreasing, and  00(3) = −4 indicates that the rate of change

is decreasing, that is, becoming more negative. (The temperature is rapidly

getting cooler.)

69. Most students learn more in the third hour of studying than in the eighth hour, so (3)−(2) is larger than (8)−(7).

In other words, as you begin studying for a test, the rate of knowledge gain is large and then starts to taper off, so 0()

decreases and the graph of  is concave downward.
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SECTION 4.3 HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH ¤ 39

70. At first the depth increases slowly because the base of the mug is wide.

But as the mug narrows, the coffee rises more quickly. Thus, the depth

 increases at an increasing rate and its graph is concave upward. The

rate of increase of  has a maximum where the mug is narrowest; that is,

when the mug is half full. It is there that the inflection point (IP) occurs.

Then the rate of increase of  starts to decrease as the mug widens and

the graph becomes concave down.

71. () = − with  = 001,  = 4, and  = 007. We will find the

zeros of  00 for () = −.

 0() = (−−) + −(−1) = −(− + −1)

 00() = −(−−1 + (− 1)−2) + (− + −1)(−−)

= −2−[− + (− 1) + 22 − ]

= −2−(22 − 2 + 2 − )

Using the given values of  and  gives us  00() = 2−007(000492 − 056 + 12). So 00() = 001 00() and its zeros

are  = 0 and the solutions of 000492 − 056 + 12 = 0, which are 1 = 200
7
≈ 2857 and 2 = 600

7
≈ 8571.

At 1 minutes, the rate of increase of the level of medication in the bloodstream is at its greatest and at 2 minutes, the rate of

decrease is the greatest.

72. (a) As ||→∞,  = −2(22)→−∞, and  → 0. The HA is  = 0. Since  takes on its maximum value at  = 0, so

does . Showing this result using derivatives, we have () = −
2(22) ⇒  0() = −

2(22)(−2).

 0() = 0 ⇔  = 0. Because  0 changes from positive to negative at  = 0, (0) = 1 is a local maximum. For

inflection points, we find  00() = − 1

2


−

2(22) · 1 + −
2(22)(−2)


=
−1

2
−

2(22)(1− 22).

 00() = 0 ⇔ 2 = 2 ⇔  = ±.  00()  0 ⇔ 2  2 ⇔ −    .

So  is CD on (− ) and CU on (−∞−) and (∞). IP at (± −12).

(b) Since we have IP at  = ±, the inflection points move away from the -axis as  increases.

(c) From the graph, we see that as  increases, the graph tends to spread out and

there is more area between the curve and the -axis.

73. () = 3 + 2 + +  ⇒  0() = 32 + 2+ .

We are given that (1) = 0 and (−2) = 3, so (1) = + + +  = 0 and

(−2) = −8+ 4− 2+  = 3. Also  0(1) = 3+ 2+  = 0 and

 0(−2) = 12− 4+  = 0 by Fermat’s Theorem. Solving these four equations, we get

 = 2
9

,  = 1
3

,  = −4
3

,  = 7
9

, so the function is () = 1
9


23 + 32 − 12+ 7


.
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40 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

74. () = 
2 ⇒  0() = 




2 · 2+ 
2 · 1


= 

2

(22 + 1). For (2) = 1 to be a maximum value, we

must have  0(2) = 0. (2) = 1 ⇒ 1 = 24 and  0(2) = 0 ⇒ 0 = (8+ 1)4. So 8+ 1 = 0 [ 6= 0] ⇒

 = − 1
8

and now 1 = 2−12 ⇒  =
√
/2.

75. (a) () = 3 + 2 +  ⇒  0() = 32 + 2+ .  has the local minimum value − 2
9

√
3 at  = 1

√
3, so

 0( 1√
3
) = 0 ⇒ 1 + 2√

3
+  = 0 (1) and ( 1√

3
) = − 2

9

√
3 ⇒ 1

9

√
3 + 1

3
+ 1

3

√
3 = − 2

9

√
3 (2).

Rewrite the system of equations as

2
3

√
3 +  = −1 (3)

1
3
 + 1

3

√
3 = −1

3

√
3 (4)

and then multiplying (4) by −2
√

3 gives us the system

2
3

√
3 +  = −1

−2
3

√
3 − 2 = 2

Adding the equations gives us − = 1 ⇒  = −1. Substituting −1 for  into (3) gives us

2
3

√
3− 1 = −1 ⇒ 2

3

√
3 = 0 ⇒  = 0. Thus, () = 3 − .

(b) To find the smallest slope, we want to find the minimum of the slope function,  0, so we’ll find the critical

numbers of  0. () = 3 −  ⇒  0() = 32 − 1 ⇒  00() = 6.  00() = 0 ⇔  = 0.

At  = 0,  = 0,  0() = −1, and  00 changes from negative to positive. Thus, we have a minimum for  0 and

 − 0 = −1(− 0), or  = −, is the tangent line that has the smallest slope.

76. The original equation can be written as (2 + ) +  = 0. Call this (1). Since (2 25) is on this curve, we have

(4 + )


5
2


+ 2 = 0, or 20 + 5+ 4 = 0. Let’s rewrite that as 4+ 5 = −20 and call it (A). Differentiating (1) gives

(after regrouping) (2 + )0 = −(2 + ). Call this (2). Differentiating again gives (2 + )00 + (2)0 = −20 − 2,

or (2 + )00 + 40 + 2 = 0. Call this (3). At (2 25), equations (2) and (3) say that (4 + )0 = −(10 + ) and

(4 + )00 + 80 + 5 = 0. If (2 25) is an inflection point, then 00 = 0 there, so the second condition becomes 80 + 5 = 0,

or 0 = − 5
8

. Substituting in the first condition, we get −(4 + ) 5
8

= −(10 + ), or 20 + 5 = 80 + 8, which simplifies to

−8+ 5 = 60. Call this (B). Subtracting (B) from (A) yields 12 = −80, so  = − 20
3

. Substituting that value in (A) gives

− 80
3

+ 5 = −20 = −60
3

, so 5 = 20
3

and  = 4
3

. Thus far we’ve shown that IF the curve has an inflection point at (2 25),

then  = − 20
3

and  = 4
3

.

To prove the converse, suppose that  = −20
3

and  = 4
3

. Then by (1), (2), and (3), our curve satisfies

and


2 + 4

3


 = 20

3
 (4)

2 + 4
3


0 = −2 + 20

3
(5)

2 + 4
3


00 + 40 + 2 = 0. (6)

Multiply (6) by

2 + 4

3


and substitute from (4) and (5) to obtain


2 + 4

3

2
00 + 4

−2 + 20
3


+ 2


20
3



= 0, or
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SECTION 4.3 HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH ¤ 41
2 + 4

3

2
00 − 82 + 40 = 0. Now multiply by (2 + ) again and substitute from the first equation to obtain

2 + 4
3

3
00 − 82


20
3



+ 40

2 + 4

3


= 0, or


2 + 4

3

3
00 − 40

3
(3 − 4) = 0. The coefficient of 00 is positive, so

the sign of 00 is the same as the sign of 40
3

(3 − 4), which is a positive multiple of (+ 2)(− 2). It is clear from this

expression that 00 changes sign at  = 0,  = −2, and  = 2, so the curve changes its direction of concavity at those values

of . By (4), the corresponding -values are 0, −25, and 25, respectively. Thus when  = − 20
3

and  = 4
3

, the curve has

inflection points, not only at (2 25), but also at (0 0) and (−2−25).

77.  =
1 + 

1 + 2
⇒ 0 =

(1 + 2)(1)− (1 + )(2)

(1 + 2)2
=

1− 2− 2

(1 + 2)2
⇒

00 =
(1 + 2)2(−2− 2)− (1− 2− 2) · 2(1 + 2)(2)

[(1 + 2)2]2
=

2(1 + 2)[(1 + 2)(−1− )− (1− 2− 2)(2)]

(1 + 2)4

=
2(−1− − 2 − 3 − 2+ 42 + 23)

(1 + 2)3
=

2(3 + 32 − 3− 1)

(1 + 2)3
=

2(− 1)(2 + 4 + 1)

(1 + 2)3

So 00 = 0 ⇒  = 1, −2±√3. Let  = −2−√3,  = −2 +
√

3, and  = 1 We can show that () = 1
4


1−√3


,

() = 1
4


1 +

√
3

, and () = 1. To show that these three points of inflection lie on one straight line, we’ll show that the

slopes  and  are equal.

 =
()− ()

− 
=

1− 1
4


1−√3


1− −2−√3

 =
3
4

+ 1
4

√
3

3 +
√

3
=

1

4

 =
()− ()

− 
=

1− 1
4


1 +

√
3


1− −2 +
√

3
 =

3
4
− 1

4

√
3

3−√3
=

1

4

78.  = () = − sin ⇒ 0 = − cos+ sin(−−) = −(cos− sin) ⇒
00 = −(− sin− cos) + (cos− sin)(−−) = −(− sin− cos− cos + sin) = −(−2 cos).

So 00 = 0 ⇒ cos = 0 ⇒  = 
2

+ . At these values of ,  has points of inflection and since

sin


2

+ 


= ±1, we get  = ±−, so  intersects the other curves at its inflection points.

Let () = − and () = −−, so that 0() = −− and 0() = −. Now

 0


2

+ 


= −(2+)

cos


2

+ 
− sin



2

+ 


= −−(2+) sin


2

+ 

. If  is odd, then

 0


2

+ 


= −(2+) = 0


2

+ 

. If  is even, then  0



2

+ 


= −−(2+) = 0


2

+ 

.

Thus, at  = 
2

+ ,  has the same slope as either  or  and hence,  and  touch  at its inflection points.

79.  =  sin ⇒ 0 =  cos+ sin ⇒ 00 = − sin+ 2 cos. 00 = 0 ⇒ 2 cos =  sin [which is ] ⇒
(2 cos)2 = ( sin)2 ⇒ 4 cos2  = 2 sin2  ⇒ 4 cos2  = 2(1− cos2 ) ⇒ 4 cos2 + 2 cos2  = 2 ⇒
cos2 (4 + 2) = 2 ⇒ 4 cos2 (2 + 4) = 42 ⇒ 2(2 + 4) = 42 since  = 2 cos when 00 = 0.

80. (a) We will make use of the converse of the Concavity Test (along with the stated assumptions); that is, if  is concave upward

on , then  00  0 on . If  and  are CU on , then  00  0 and 00  0 on , so ( + )
00

=  00 + 00  0 on  ⇒
 +  is CU on .
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42 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

(b) Since  is positive and CU on ,   0 and  00  0 on . So  () = [ ()]2 ⇒ 0 = 2 0 ⇒

00 = 2 0 0 + 2 00 = 2 ( 0)2 + 2 00  0 ⇒  is CU on .

81. (a) Since  and  are positive, increasing, and CU on  with  00 and 00 never equal to 0, we have   0,  0 ≥ 0,  00  0,

  0, 0 ≥ 0, 00  0 on . Then ()0 =  0 + 0 ⇒ ()00 =  00 + 2 00 + 00 ≥  00 + 00  0 on  ⇒
 is CU on .

(b) In part (a), if  and  are both decreasing instead of increasing, then  0 ≤ 0 and 0 ≤ 0 on , so we still have 2 00 ≥ 0

on . Thus, ()00 =  00 + 2 00 + 00 ≥  00 + 00  0 on  ⇒  is CU on  as in part (a).

(c) Suppose  is increasing and  is decreasing [with  and  positive and CU]. Then  0 ≥ 0 and 0 ≤ 0 on , so 2 00 ≤ 0

on  and the argument in parts (a) and (b) fails.

Example 1.  = (0∞), () = 3, () = 1. Then ()() = 2, so ()0() = 2 and

()00() = 2  0 on . Thus,  is CU on .

Example 2.  = (0∞), () = 4
√
, () = 1. Then ()() = 4

√
, so ()0() = 2

√
 and

()00() = −1
√
3  0 on . Thus,  is CD on .

Example 3.  = (0∞), () = 2, () = 1. Thus, ()() = , so  is linear on .

82. Since  and  are CU on (−∞∞),  00  0 and 00  0 on (−∞∞). () = (()) ⇒
0() =  0(()) 0() ⇒ 00() =  00(()) 0() 0() +  0(()) 00() =  00(())[0()]2 +  0(()) 00()  0

if  0  0. So  is CU if  is increasing.

83. () = tan−  ⇒  0() = sec2 − 1  0 for 0    
2

since sec2   1 for 0    
2

. So  is increasing

on

0 

2


. Thus, ()  (0) = 0 for 0    

2
⇒ tan−   0 ⇒ tan   for 0    

2
.

84. (a) Let () =  − 1− . Now (0) = 0 − 1 = 0, and for  ≥ 0, we have  0() =  − 1 ≥ 0. Now, since (0) = 0

and  is increasing on [0∞), () ≥ 0 for  ≥ 0 ⇒  − 1−  ≥ 0 ⇒  ≥ 1 + .

(b) Let () =  − 1− − 1
2
2. Thus,  0() =  − 1− , which is positive for  ≥ 0 by part (a). Thus, () is

increasing on (0∞), so on that interval, 0 = (0) ≤ () =  − 1− − 1
2
2 ⇒  ≥ 1 + + 1

2
2.

(c) By part (a), the result holds for  = 1. Suppose that  ≥ 1 +  +
2

2!
+ · · ·+ 

!
for  ≥ 0.

Let () =  − 1− − 2

2!
− · · ·− 

!
− +1

( + 1)!
. Then  0() =  − 1− − · · ·− 

!
≥ 0 by assumption. Hence,

() is increasing on (0∞). So 0 ≤  implies that 0 = (0) ≤ () =  − 1− − · · ·− 

!
− +1

( + 1)!
, and hence

 ≥ 1 +  + · · ·+ 

!
+

+1

( + 1)!
for  ≥ 0. Therefore, for  ≥ 0,  ≥ 1 + +

2

2!
+ · · ·+ 

!
for every positive

integer , by mathematical induction.
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SECTION 4.3 HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH ¤ 43

85. Let the cubic function be () = 3 + 2 + +  ⇒  0() = 32 + 2+  ⇒  00() = 6+ 2.

So  is CU when 6+ 2  0 ⇔   −(3), CD when   −(3), and so the only point of inflection occurs

when  = −(3). If the graph has three -intercepts 1, 2 and 3, then the expression for () must factor as

() = (− 1)(− 2)(− 3). Multiplying these factors together gives us

() = [3 − (1 + 2 + 3)
2 + (12 + 13 + 23)− 123]

Equating the coefficients of the 2-terms for the two forms of  gives us  = −(1 + 2 + 3). Hence, the -coordinate of

the point of inflection is− 

3
= −−(1 + 2 + 3)

3
=

1 + 2 + 3

3
.

86.  () = 4 + 3 + 2 ⇒  0() = 43 + 32 + 2 ⇒  00() = 122 + 6 + 2. The graph of  00() is a

parabola. If  00() has two roots, then it changes sign twice and so has two inflection points. This happens when the

discriminant of  00() is positive, that is, (6)
2 − 4 · 12 · 2  0 ⇔ 362 − 96  0 ⇔ ||  2

√
6

3
≈ 163 If

362 − 96 = 0 ⇔  = ±2
√

6
3

,  00() is 0 at one point, but there is still no inflection point since  00() never changes

sign, and if 362 − 96  0 ⇔ ||  2
√

6
3

, then  00() never changes sign, and so there is no inflection point.

 = 6  = 3  = 18

 = 2
√

6
3

 = 0  = −2

For large positive , the graph of  has two inflection points and a large dip to the left of the -axis. As  decreases, the graph

of  becomes flatter for   0, and eventually the dip rises above the -axis, and then disappears entirely, along with the

inflection points. As  continues to decrease, the dip and the inflection points reappear, to the right of the origin.

87. By hypothesis  =  0 is differentiable on an open interval containing . Since ( ()) is a point of inflection, the concavity

changes at  = , so  00() changes signs at  = . Hence, by the First Derivative Test,  0 has a local extremum at  = .

Thus, by Fermat’s Theorem  00() = 0.

88. () = 4 ⇒  0() = 43 ⇒  00() = 122 ⇒  00(0) = 0. For   0,  00()  0, so  is CU on (−∞ 0);

for   0,  00()  0, so  is also CU on (0∞). Since  does not change concavity at 0, (0 0) is not an inflection point.
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44 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

89. Using the fact that || =
√
2, we have that () =  || = 

√
2 ⇒ 0() =

√
2 +

√
2 = 2

√
2 = 2 || ⇒

00() = 2

2
−12

=
2

||  0 for   0 and 00()  0 for   0, so (0 0) is an inflection point. But 00(0) does not

exist.

90. There must exist some interval containing  on which  000 is positive, since  000() is positive and  000 is continuous. On this

interval,  00 is increasing (since  000 is positive), so  00 = ( 0)0 changes from negative to positive at . So by the First

Derivative Test,  0 has a local minimum at  =  and thus cannot change sign there, so  has no maximum or minimum at .

But since  00 changes from negative to positive at ,  has a point of inflection at  (it changes from concave down to

concave up).

91. Suppose that  is differentiable on an interval  and  0()  0 for all  in  except  = . To show that  is increasing on ,

let 1, 2 be two numbers in  with 1  2.

Case 1 1  2  . Let  be the interval { ∈  |   }. By applying the Increasing/Decreasing Test to 

on  , we see that  is increasing on  , so (1)  (2).

Case 2   1  2. Apply the Increasing/Decreasing Test to  on  = { ∈  |   }.

Case 3 1  2 = . Apply the proof of the Increasing/Decreasing Test, using the Mean Value Theorem (MVT)

on the interval [1 2] and noting that the MVT does not require  to be differentiable at the endpoints

of [1 2].

Case 4  = 1  2. Same proof as in Case 3.

Case 5 1    2. By Cases 3 and 4,  is increasing on [1 ] and on [ 2], so (1)  ()  (2).

In all cases, we have shown that (1)  (2). Since 1, 2 were any numbers in  with 1  2, we have shown that  is

increasing on .

92. () =  +
1

2 + 3
⇒  0() = − 2

(2 + 3)2
.  0()  0 ⇔  

2

(2 + 3)2
[call this ()].

Now  0 is positive (and hence  increasing) if   , so we’ll find the maximum value of .

0() =
(2 + 3)2 · 2− 2 · 2(2 + 3) · 2

[(2 + 3)2]2
=

2(2 + 3)[(2 + 3)− 42]

(2 + 3)4
=

2(3− 32)

(2 + 3)3
=

6(1 + )(1− )

(2 + 3)3
.

0() = 0 ⇔  = ±1. 0()  0 on (0 1) and 0()  0 on (1∞), so  is increasing on (0 1) and decreasing on

(1∞), and hence  has a maximum value on (0∞) of (1) = 2
16

= 1
8

. Also since () ≤ 0 if  ≤ 0, the maximum value

of  on (−∞∞) is 1
8

. Thus, when   1
8

,  is increasing. When  = 1
8

,  0()  0 on (−∞ 1) and (1∞), and hence  is

increasing on these intervals. Since  is continuous, we may conclude that  is also increasing on (−∞∞) if  = 1
8

.

Therefore,  is increasing on (−∞∞) if  ≥ 1
8

.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 4.4 INDETERMINATE FORMS AND L’HOSPITAL’S RULE ¤ 45

93. (a) () = 4 sin
1


⇒  0() = 4 cos

1




− 1

2


+ sin

1


(43) = 43 sin

1


− 2 cos

1


.

() = 4


2 + sin

1




= 24 + () ⇒ 0() = 83 +  0().

() = 4


−2 + sin

1




= −24 + () ⇒ 0() = −83 +  0().

It is given that (0) = 0, so  0(0) = lim
→0

()− (0)

− 0
= lim

→0

4 sin
1


− 0


= lim

→0
3 sin

1


. Since

−
3
 ≤ 3 sin

1


≤
3
 and lim

→0

3
 = 0, we see that  0(0) = 0 by the Squeeze Theorem. Also,

0(0) = 8(0)3 +  0(0) = 0 and 0(0) = −8(0)3 +  0(0) = 0, so 0 is a critical number of  , , and .

For 2 =
1

2
[ a nonzero integer], sin

1

2

= sin 2 = 0 and cos
1

2

= cos 2 = 1, so  0(2) = −2
2  0.

For 2+1 =
1

(2+ 1)
, sin

1

2+1

= sin(2 + 1) = 0 and cos
1

2+1

= cos(2 + 1) = −1, so

 0(2+1) = 2
2+1  0. Thus,  0 changes sign infinitely often on both sides of 0.

Next, 0(2) = 83
2 +  0(2) = 83

2 − 2
2 = 2

2(82 − 1)  0 for 2  1
8

, but

0(2+1) = 83
2+1 + 2

2+1 = 2
2+1(82+1 + 1)  0 for 2+1  − 1

8
, so 0 changes sign infinitely often on both

sides of 0.

Last, 0(2) = −83
2 +  0(2) = −83

2 − 2
2 = −2

2(82 + 1)  0 for 2  − 1
8

and

0(2+1) = −83
2+1 + 2

2+1 = 2
2+1(−82+1 + 1)  0 for 2+1 

1
8

, so 0 changes sign infinitely often on both

sides of 0.

(b) (0) = 0 and since sin
1


and hence 4 sin

1


is both positive and negative inifinitely often on both sides of 0, and

arbitrarily close to 0,  has neither a local maximum nor a local minimum at 0.

Since 2 + sin
1


≥ 1, () = 4


2 + sin

1




 0 for  6= 0, so (0) = 0 is a local minimum.

Since −2 + sin
1


≤ −1, () = 4


−2 + sin

1




 0 for  6= 0, so (0) = 0 is a local maximum.

4.4 Indeterminate Forms and l'Hospital's Rule

Note: The use of l’Hospital’s Rule is indicated by an H above the equal sign:
H
=

1. (a) lim
→

()

()
is an indeterminate form of type

0

0
.

(b) lim
→

()

()
= 0 because the numerator approaches 0 while the denominator becomes large.

(c) lim
→

()

()
= 0 because the numerator approaches a finite number while the denominator becomes large.
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46 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

(d) If lim
→

() =∞ and ()→ 0 through positive values, then lim
→

()

()
=∞. [For example, take  = 0, () = 12,

and () = 2.] If ()→ 0 through negative values, then lim
→

()

()
= −∞. [For example, take  = 0, () = 12,

and () = −2.] If ()→ 0 through both positive and negative values, then the limit might not exist. [For example,

take  = 0, () = 12, and () = .]

(e) lim
→

()

()
is an indeterminate form of type

∞
∞ .

2. (a) lim
→

[()()] is an indeterminate form of type 0 ·∞.

(b) When  is near , () is large and () is near 1, so ()() is large. Thus, lim
→

[()()] =∞.

(c) When  is near , () and () are both large, so ()() is large. Thus, lim
→

[()()] =∞.

3. (a) When  is near , () is near 0 and () is large, so ()− () is large negative. Thus, lim
→

[()− ()] = −∞.

(b) lim
→

[ ()− ()] is an indeterminate form of type∞−∞.

(c) When  is near , () and () are both large, so () + () is large. Thus, lim
→

[() + ()] =∞.

4. (a) lim
→

[()]
() is an indeterminate form of type 00.

(b) If  = [()]
(), then ln  = () ln (). When  is near , () →∞ and ln () → −∞, so ln  → −∞.

Therefore, lim
→

[()]
()

= lim
→

 = lim
→

ln  = 0, provided  is defined.

(c) lim
→

[()]
() is an indeterminate form of type 1∞.

(d) lim
→

[ ()]
() is an indeterminate form of type∞0.

(e) If  = [ ()]
(), then ln  = () ln (). When  is near , ()→∞ and ln ()→∞, so ln  →∞. Therefore,

lim
→

[ ()]
()

= lim
→

 = lim
→

ln  =∞.

(f ) lim
→

()

() = lim

→
[()]

1() is an indeterminate form of type∞0.

5. From the graphs of  and , we see that lim
→2

() = 0 and lim
→2

() = 0, so l’Hospital’s Rule applies.

lim
→2

()

()
= lim

→2

 0()

0()
=

lim
→2

 0()

lim
→2

0()
=

 0(2)
0(2)

=
18
4
5

=
9

4

6. From the graphs of  and , we see that lim
→2

() = 0 and lim
→2

() = 0, so l’Hospital’s Rule applies.

lim
→2

()

()
= lim

→2

 0()

0()
=

lim
→2

 0()

lim
→2

0()
=

 0(2)
0(2)

=
15

−1
= −3

2
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SECTION 4.4 INDETERMINATE FORMS AND L’HOSPITAL’S RULE ¤ 47

7.  and  =  − 1 are differentiable and 0 =  6= 0 on an open interval that contains 0. lim
→0

() = 0 and lim
→0

() = 0,

so we have the indeterminate form 0
0

and can apply l’Hospital’s Rule.

lim
→0

()

 − 1

H
= lim

→0

 0()


=

1

1
= 1

Note that lim
→0

 0() = 1 since the graph of  has the same slope as the line  =  at  = 0.

8. This limit has the form 0
0

. lim
→3

− 3

2 − 9
= lim

→3

− 3

( + 3)(− 3)
= lim

→3

1

+ 3
=

1

3 + 3
=

1

6

Note: Alternatively, we could apply l’Hospital’s Rule.

9. This limit has the form 0
0

. lim
→4

2 − 2− 8

− 4
= lim

→4

(− 4)(+ 2)

− 4
= lim

→4
(+ 2) = 4 + 2 = 6

Note: Alternatively, we could apply l’Hospital’s Rule.

10. This limit has the form 0
0

. lim
→−2

3 + 8

+ 2

H
= lim

→−2

32

1
= 3(−2)2 = 12

Note: Alternatively, we could factor and simplify.

11. This limit has the form 0
0

. lim
→1

3 − 22 + 1

3 − 1

H
= lim

→1

32 − 4

32
= −1

3

Note: Alternatively, we could factor and simplify.

12. This limit has the form 0
0

. lim
→12

62 + 5− 4

42 + 16− 9

H
= lim

→12

12+ 5

8+ 16
=

6 + 5

4 + 16
=

11

20

Note: Alternatively, we could factor and simplify.

13. This limit has the form 0
0

. lim
→(2)+

cos

1− sin

H
= lim

→(2)+

− sin

− cos
= lim

→(2)+
tan = −∞.

14. This limit has the form 0
0

. lim
→0

tan 3

sin 2

H
= lim

→0

3 sec2 3

2 cos 2
=

3(1)2

2(1)
=

3

2

15. This limit has the form 0
0

. lim
→0

2 − 1

sin 

H
= lim

→0

22

cos 
=

2(1)

1
= 2

16. This limit has the form 0
0

. lim
→0

2

1− cos

H
= lim

→0

2

sin
= lim

→0

2

(sin)
=

2

1
= 2

17. This limit has the form 0
0

. lim
→2

1− sin 

1 + cos 2

H
= lim

→2

− cos 

−2 sin 2

H
= lim

→2

sin 

−4 cos 2
=

1

4

18. The limit can be evaluated by substituting  for . lim
→

1 + cos 

1− cos 
=

1 + (−1)

1− (−1)
=

0

2
= 0

19. This limit has the form ∞
∞ . lim

→∞
ln√


H
= lim

→∞
1

1
2
−12

= lim
→∞

2√


= 0

20. This limit has the form ∞
∞ . lim

→∞
+ 2

1− 22

H
= lim

→∞
1 + 2

−4

H
= lim

→∞
2

−4
= −1

2
.3

A better method is to divide the numerator and the denominator by 2: lim
→∞

+ 2

1− 22
= lim

→∞

1


+ 1

1

2
− 2

=
0 + 1

0− 2
= −1

2
.
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48 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

21. lim
→0+

[(ln)] = −∞ since ln→ −∞ as → 0+ and dividing by small values of  just increases the magnitude of the

quotient (ln). L’Hospital’s Rule does not apply.

22. This limit has the form ∞
∞ . lim

→∞
ln
√


2
= lim

→∞

1
2

ln

2

H
= lim

→∞
=

1

2
2

= lim
→∞

1

42
= 0

23. This limit has the form 0
0

. lim
→1

8 − 1

5 − 1

H
= lim

→1

87

54
=

8

5
lim
→1

3 =
8

5
(1) =

8

5

24. This limit has the form 0
0

. lim
→0

8 − 5



H
= lim

→0

8 ln 8− 5 ln 5

1
= ln 8− ln 5 = ln

8

5

25. This limit has the form 0
0

.

lim
→0

√
1 + 2−√1− 4



H
= lim

→0

1
2
(1 + 2)−12 · 2− 1

2
(1− 4)−12(−4)

1

= lim
→0


1√

1 + 2
+

2√
1− 4


=

1√
1

+
2√
1

= 3

26. This limit has the form ∞
∞ .

lim
→∞

10

3

H
= lim

→∞
10 · 1

10

32

H
= 1

30
lim
→∞

10 · 1
10

2

H
= 1

600
lim
→∞

10 · 1
10

1
= 1

6000
lim
→∞

10 =∞

27. This limit has the form 0
0

. lim
→0

 − 1− 

2

H
= lim

→0

 − 1

2

H
= lim

→0



2
=

1

2

28. This limit has the form 0
0

. lim
→0

sinh− 

3

H
= lim

→0

cosh− 1

32

H
= lim

→0

sinh

6

H
= lim

→0

cosh

6
=

1

6

29. This limit has the form 0
0

. lim
→0

tanh

tan

H
= lim

→0

sech 2

sec2 
=

sech2 0

sec2 0
=

1

1
= 1

30. This limit has the form 0
0

.

lim
→0

− sin

− tan

H
= lim

→0

1− cos

1− sec2 

H
= lim

→0

−(− sin)

−2 sec (sec tan)
= −1

2
lim
→0

sin
cos

sin


sec2 

= − 1
2

lim
→0

cos3  = −1
2
(1)3 = − 1

2

Another method is to write the limit as lim
→0

1− sin



1− tan



.

31. This limit has the form 0
0

. lim
→0

sin−1 



H
= lim

→0

1
√

1− 2

1
= lim

→0

1√
1− 2

=
1

1
= 1

32. This limit has the form ∞
∞ . lim

→∞
(ln)2



H
= lim

→∞
2(ln)(1)

1
= 2 lim

→∞
ln



H
= 2 lim

→∞
1

1
= 2(0) = 0

33. This limit has the form 0
0

. lim
→0

3

3 − 1

H
= lim

→0

3 ln 3 + 3

3 ln 3
= lim

→0

3( ln 3 + 1)

3 ln 3
= lim

→0

 ln 3 + 1

ln 3
=

1

ln 3

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 4.4 INDETERMINATE FORMS AND L’HOSPITAL’S RULE ¤ 49

34. This limit has the form 0
0

.

lim
→0

cos− cos

2

H
= lim

→0

− sin+  sin

2

H
= lim

→0

−2 cos+ 2 cos

2
= 1

2


2 −2


35. This limit can be evaluated by substituting 0 for . lim

→0

ln(1 + )

cos+  − 1
=

ln 1

1 + 1− 1
=

0

1
= 0

36. This limit has the form 0
0

. lim
→1

 sin(− 1)

22 − − 1

H
= lim

→1

 cos(− 1) + sin(− 1)

4− 1
=

cos 0

4− 1
=

1

3

37. This limit has the form 0
∞ , so l’Hospital’s Rule doesn’t apply. As → 0+, arctan(2) → 0 and ln→ −∞, so

lim
→0+

arctan(2)

ln
= 0.

38. lim
→0+

 − 1

ln+ − 1
. From Example 9, lim

→0+
 = 1, so lim

→0+
( − 1) = 0. As → 0+, ln→ −∞, so

ln+ − 1→−∞ as → 0+. Thus, lim
→0+

 − 1

ln+ − 1
= 0.

39. This limit has the form 0
0

. lim
→1

 − 1

 − 1
[for  6= 0]

H
= lim

→1

−1

−1
=

(1)

(1)
=





40. This limit has the form 0
0

. lim
→0

 − − − 2

− sin

H
= lim

→0

 + − − 2

1− cos

H
= lim

→0

 − −

sin

H
= lim

→0

 + −

cos
=

1 + 1

1
= 2

41. This limit has the form 0
0

. lim
→0

cos− 1 + 1
2
2

4

H
= lim

→0

− sin+ 

43

H
= lim

→0

− cos+ 1

122

H
= lim

→0

sin

24

H
= lim

→0

cos

24
=

1

24

42. This limit has the form ∞
∞ .

lim
→+

cos ln(− )

ln( − )
= lim

→+
cos lim

→+

ln(− )

ln( − )

H
= cos  lim

→+

1

− 
1

 − 
· 

= cos  lim
→+

1


· lim
→+

 − 

− 

H
= cos  · 1


lim

→+



1
= cos  · 1


·  = cos 

43. This limit has the form∞ · 0. We’ll change it to the form 0
0

.

lim
→∞

 sin() = lim
→∞

sin()

1

H
= lim

→∞
cos()(−2)

−12
=  lim

→∞
cos() = (1) = 

44. This limit has the form ∞ · 0. We’ll change it to the form ∞
∞ .

lim
→∞

√
−2 = lim

→∞

√


2
H
= lim

→∞

1
2
−12

1
2
2

= lim
→∞

1√
 2

= 0

45. This limit has the form 0 ·∞. We’ll change it to the form 0
0

. lim
→0

sin 5 csc 3 = lim
→0

sin 5

sin 3

H
= lim

→0

5 cos 5

3 cos 3
=

5 · 1
3 · 1 =

5

3

46. This limit has the form (−∞) · 0.

lim
→−∞

 ln


1− 1




= lim

→−∞

ln


1− 1




1



H
= lim

→−∞

1

1− 1
· 1

2

− 1

2

= lim
→−∞

−1

1− 1



=
−1

1
= −1
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50 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

47. This limit has the form∞ · 0. lim
→∞

3−
2

= lim
→∞

3


2

H
= lim

→∞
32

2
2 = lim

→∞
3

2
2

H
= lim

→∞
3

4
2 = 0

48. This limit has the form∞ · 0. lim
→∞

32 sin(1) = lim
→∞

12 · sin(1)

1
= lim

→0+

1√


sin 


[where  = 1] =∞

since as → 0+,
1√

→∞ and

sin 


→ 1.

49. This limit has the form 0 · (−∞).

lim
→1+

ln tan(2) = lim
→1+

ln

cot(2)

H
= lim

→1+

1

(−2) csc2(2)
=

1

(−2)(1)2 = − 2



50. This limit has the form 0 ·∞. lim
→(2)−

cos sec 5 = lim
→(2)−

cos

cos 5

H
= lim

→(2)−

− sin

−5 sin 5
=
−1

−5
=

1

5

51. This limit has the form∞−∞.

lim
→1




− 1
− 1

ln


= lim

→1

 ln− (− 1)

(− 1) ln

H
= lim

→1

(1) + ln− 1

(− 1)(1) + ln
= lim

→1

ln

1− (1) + ln

H
= lim

→1

1

12 + 1
· 

2

2
= lim

→1



1 + 
=

1

1 + 1
=

1

2

52. This limit has the form∞−∞. lim
→0

(csc− cot) = lim
→0


1

sin
− cos

sin


= lim

→0

1− cos

sin

H
= lim

→0

sin

cos
= 0

53. This limit has the form∞−∞.

lim
→0+


1


− 1

 − 1


= lim

→0+

 − 1− 

( − 1)

H
= lim

→0+

 − 1

 +  − 1

H
= lim

→0+



 +  + 
=

1

0 + 1 + 1
=

1

2

54. This limit has the form∞−∞.

lim
→0+


1


− 1

tan−1 


= lim

→0+

tan−1 − 

 tan−1 

H
= lim

→0+

1(1 + 2)− 1

(1 + 2) + tan−1 
= lim

→0+

1− (1 + 2)

+ (1 + 2) tan−1 

= lim
→0+

−2

+ (1 + 2) tan−1 

H
= lim

→0+

−2

1 + (1 + 2)(1(1 + 2)) + (tan−1 )(2)

= lim
→0+

−2

2 + 2 tan−1 
=

0

2 + 0
= 0

55. The limit has the form∞−∞ and we will change the form to a product by factoring out .

lim
→∞

(− ln) = lim
→∞




1− ln




=∞ since lim

→∞
ln



H
= lim

→∞
1

1
= 0.

56. This limit has the form∞−∞.

lim
→1+

[ln(7 − 1)− ln(5 − 1)] = lim
→1+

ln
7 − 1

5 − 1
= ln lim

→1+

7 − 1

5 − 1

H
= ln lim

→1+

76

54
= ln

7

5

57.  = 
√
 ⇒ ln  =

√
 ln, so

lim
→0+

ln  = lim
→0+

√
 ln = lim

→0+

ln

−12

H
= lim

→0+

1

− 1
2
−32

= −2 lim
→0+

√
 = 0 ⇒

lim
→0+


√
 = lim

→0+
ln  = 0 = 1.
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SECTION 4.4 INDETERMINATE FORMS AND L’HOSPITAL’S RULE ¤ 51

58.  = (tan 2) ⇒ ln  =  · ln tan 2, so

lim
→0+

ln  = lim
→0+

 · ln tan 2 = lim
→0+

ln tan 2

1

H
= lim

→0+

(1 tan 2)(2 sec2 2)

−12
= lim

→0+

−22 cos 2

sin 2 cos2 2

= lim
→0+

2

sin 2
· lim
→0+

−
cos 2

= 1 · 0 = 0 ⇒

lim
→0+

(tan 2) = lim
→0+

ln  = 0 = 1.

59.  = (1− 2)1 ⇒ ln  =
1


ln(1− 2), so lim

→0
ln  = lim

→0

ln(1− 2)



H
= lim

→0

−2(1− 2)

1
= −2 ⇒

lim
→0

(1− 2)1 = lim
→0

ln  = −2.

60.  =

1 +






⇒ ln  =  ln


1 +






, so

lim
→∞

ln  = lim
→∞

 ln(1 + )

1

H
= lim

→∞




1

1 + 


− 

2


−12

= lim
→∞



1 + 
=  ⇒

lim
→∞


1 +






= lim

→∞
ln  = .

61.  = 1(1−) ⇒ ln  =
1

1− 
ln, so lim

→1+
ln  = lim

→1+

1

1− 
ln = lim

→1+

ln

1− 

H
= lim

→1+

1

−1
= −1 ⇒

lim
→1+

1(1−) = lim
→1+

ln  = −1 =
1


.

62.  = (ln 2)(1 + ln ) ⇒ ln  =
ln 2

1 + ln
ln ⇒

lim
→∞

ln  = lim
→∞

(ln 2)(ln)

1 + ln

H
= lim

→∞
(ln 2)(1)

1
= lim

→∞
ln 2 = ln 2, so lim

→∞
(ln 2)(1 + ln ) = lim

→∞
ln  = ln 2 = 2.

63.  = 1 ⇒ ln  = (1) ln ⇒ lim
→∞

ln  = lim
→∞

ln



H
= lim

→∞
1

1
= 0 ⇒

lim
→∞

1 = lim
→∞

ln  = 0 = 1

64.  = 
− ⇒ ln  = − ln ⇒ lim

→∞
ln  = lim

→∞
ln


H
= lim

→∞
1


= lim

→∞
1


= 0 ⇒

lim
→∞


−

= lim
→∞

ln  = 0 = 1

65.  = (4 + 1)cot  ⇒ ln  = cot ln(4 + 1), so lim
→0+

ln  = lim
→0+

ln(4+ 1)

tan

H
= lim

→0+

4

4 + 1

sec2 
= 4 ⇒

lim
→0+

(4 + 1)cot = lim
→0+

ln  = 4.

66.  = (2− )tan(2) ⇒ ln  = tan


2


ln(2− ) ⇒

lim
→1

ln  = lim
→1


tan


2


ln(2− )


= lim

→1

ln (2− )

cot


2

 H
= lim

→1

1

2− 
(−1)

−csc2


2


· 

2

=
2


lim
→1

sin2


2


2− 

=
2


· 12

1
=

2


⇒ lim

→1
(2− )tan(2) = lim

→1
ln  = (2)
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52 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

67.  = (1 + sin 3)1 ⇒ ln  =
1


ln(1 + sin 3) ⇒

lim
→0+

ln  = lim
→0+

ln(1 + sin 3)



H
= lim

→0+

[1(1 + sin 3)] · 3 cos 3

1
= lim

→0+

3 cos 3

1 + sin 3
=

3 · 1
1 + 0

= 3 ⇒

lim
→0+

(1 + sin 3)1 = lim
→0+

ln  = 3

68.  =


2− 3

2+ 5

2+1

⇒ ln  = (2 + 1) ln


2− 3

2+ 5


⇒

lim
→∞

ln  = lim
→∞

ln(2− 3)− ln(2+ 5)

1(2+ 1)

H
= lim

→∞
2(2− 3)− 2(2+ 5)

−2(2 + 1)2
= lim

→∞
−8(2 + 1)2

(2− 3)(2+ 5)

= lim
→∞

−8(2 + 1)2

(2− 3)(2 + 5)
= −8 ⇒ lim

→∞


2− 3

2+ 5

2+1

= −8

69. From the graph, if  = 500,  ≈ 736. The limit has the form 1∞.

Now  =


1 +

2




⇒ ln  =  ln


1 +

2




⇒

lim
→∞

ln  = lim
→∞

ln(1 + 2)

1

H
= lim

→∞

1

1 + 2


− 2

2


−12

= 2 lim
→∞

1

1 + 2
= 2(1) = 2 ⇒

lim
→∞


1 +

2




= lim

→∞
ln  = 2 [≈ 739]

70. From the graph, as → 0,  ≈ 055. The limit has the form 0
0

.

lim
→0

5 − 4

3 − 2
H
= lim

→0

5 ln 5− 4 ln 4

3 ln 3− 2 ln 2
=

ln 5− ln 4

ln 3− ln 2
=

ln 5
4

ln 3
2

[≈ 055]

71. From the graph, it appears that lim
→0

()

()
= lim

→0

 0()

0()
= 025

We calculate lim
→0

()

()
= lim

→0

 − 1

3 + 4

H
= lim

→0



32 + 4
=

1

4
.

72. From the graph, it appears that lim
→0

()

()
= lim

→0

 0()

0()
= 4. We calculate

lim
→0

()

()
= lim

→0

2 sin

sec− 1

H
= lim

→0

2( cos+ sin)

sec tan

H
= lim

→0

2(− sin+ cos+ cos)

sec(sec2 ) + tan(sec tan)
=

4

1
= 4
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SECTION 4.4 INDETERMINATE FORMS AND L’HOSPITAL’S RULE ¤ 53

73. lim
→∞




H
= lim

→∞


−1

H
= lim

→∞


(− 1)−2

H
= · · · H

= lim
→∞



!
=∞

74. This limit has the form ∞
∞ . lim

→∞
ln


H
= lim

→∞
1

−1
= lim

→∞
1


= 0 since   0.

75. lim
→∞

√
2 + 1

H
= lim

→∞
1

1
2
(2 + 1)−12(2)

= lim
→∞

√
2 + 1


. Repeated applications of l’Hospital’s Rule result in the

original limit or the limit of the reciprocal of the function. Another method is to try dividing the numerator and denominator

by : lim
→∞

√
2 + 1

= lim
→∞


22 + 12

= lim
→∞

1
1 + 12

=
1

1
= 1

76. lim
→(2)−

sec

tan

H
= lim

→(2)−

sec tan

sec2 
= lim

→(2)−

tan

sec
. Repeated applications of l’Hospital’s Rule result in the

original limit or the limit of the reciprocal of the function. Another method is to simplify first:

lim
→(2)−

sec

tan
= lim

→(2)−

1cos

sincos
= lim

→(2)−

1

sin
=

1

1
= 1

77. () =  −  ⇒  0() =  −  = 0 ⇔  =  ⇔  = ln ,   0.  00() =   0, so  is CU on

(−∞∞). lim
→∞

( − ) = lim
→∞








− 


= 1. Now lim

→∞




H
= lim

→∞


1
=∞, so 1 =∞, regardless

of the value of . For  = lim
→−∞

( − ),  → 0, so  is determined

by −. If   0, −→∞, and  =∞. If   0, −→−∞, and

 = −∞. Thus,  has an absolute minimum for   0. As  increases, the

minimum points (ln  −  ln ), get farther away from the origin.

78. (a) lim
→∞

 = lim
→∞






1− −


=




lim
→∞


1− −


=




(1− 0) [because −→−∞ as →∞]

=



, which is the speed the object approaches as time goes on, the so-called limiting velocity.

(b) lim
→0+

 = lim
→0+




(1− −) =  lim

→0+

1− −


[form is 0

0
]

H
=  lim

→0+

(−−) · (−)

1
=




lim
→0+

− = (1) = 

The velocity of a falling object in a vacuum is directly proportional to the amount of time it falls.

79. First we will find lim
→∞


1 +






, which is of the form 1∞.  =


1 +






⇒ ln  =  ln


1 +






, so

lim
→∞

ln  = lim
→∞

 ln

1 +






=  lim

→∞
ln(1 + )

1

H
=  lim

→∞

−2


(1 + )(−12)
=  lim

→∞


1 + 
=  ⇒

lim
→∞

 = . Thus, as →∞,  = 0


1 +






→ 0

.

80. (a)  = 3,  = 005 ⇒  =
1− 10−

2

2 ln 10
=

1− 10−045

045 ln 10
≈ 062, or about 62%.
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54 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

(b)  = 2,  = 005 ⇒  =
1− 10−02

02 ln 10
≈ 080, or about 80%.

Yes, it makes sense. Since measured brightness decreases with light entering farther from the center of the pupil, a smaller

pupil radius means that the average brightness measurements are higher than when including light entering at larger radii.

(c) lim
→0+

 = lim
→0+

1− 10−
2

2 ln 10

H
= lim

→0+

−10−
2

(ln 10)(−2)

2(ln 10)
= lim

→0+

1

10
2

= 1, or 100%.

We might expect that 100% of the brightness is sensed at the very center of the pupil, so a limit of 1 would make sense in

this context if the radius  could approach 0. This result isn’t physically possible because there are limitations on how

small the pupil can shrink.

81. (a) lim
→∞

 () = lim
→∞



1 +−
=



1 + · 0 = 

It is to be expected that a population that is growing will eventually reach the maximum population size that can be

supported.

(b) lim
→∞

 () = lim
→∞



1 +
 − 0

0

−
= lim

→∞


1 +




0

− 1


−

H
= lim

→∞
1

1

0

−
= 0



0
 is an exponential function.

82. (a) lim
→+

 = lim
→+


−
 


2
ln
 



= −2 lim

→+


1



2

ln
 



= −2 · 1

2
· ln 1 = − · 0 = 0

As the insulation of a metal cable becomes thinner, the velocity of an electrical impulse in the cable approaches zero.

(b) lim
→0+

 = lim
→0+


−
 


2
ln
 



= − 

2
lim
→0+


2 ln

 



[form is 0 ·∞]

= − 

2
lim
→0+

ln
 



1

2

[form is∞∞]
H
= − 

2
lim
→0+




· 1


−2

3

= − 

2
lim
→0+


−2

2


= 0

As the radius of the metal cable approaches zero, the velocity of an electrical impulse in the cable approaches zero.

83. We see that both numerator and denominator approach 0, so we can use l’Hospital’s Rule:

lim
→

√
23− 4 −  3

√


− 4
√
3

H
= lim

→

1
2
(23− 4)−12(23 − 43)− 


1
3


()−232

− 1
4
(3)−34(32)

=
1
2
(23− 4)−12(23 − 43)− 1

3
3(2)−23

− 1
4
(3)−34(32)

=
(4)−12(−3)− 1

3
3(3)−23

− 3
4
3(4)−34

=
−− 1

3


− 3
4

= 4
3


4
3



= 16
9


84. Let the radius of the circle be . We see that () is the area of the whole figure (a sector of the circle with radius 1), minus

the area of 4. But the area of the sector of the circle is 1
2
2 (see Reference Page 1), and the area of the triangle is

1
2
 || = 1

2
( sin ) = 1

2
2 sin . So we have () = 1

2
2 − 1

2
2 sin  = 1

2
2( − sin ). Now by elementary
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SECTION 4.4 INDETERMINATE FORMS AND L’HOSPITAL’S RULE ¤ 55

trigonometry, () = 1
2
|| || = 1

2
( − ||) || = 1

2
( −  cos )( sin ) = 1

2
2(1− cos ) sin .

So the limit we want is

lim
→0+

()

()
= lim

→0+

1
2
2( − sin )

1
2
2(1− cos ) sin 

H
= lim

→0+

1− cos 

(1− cos ) cos  + sin  (sin )

= lim
→0+

1− cos 

cos  − cos2  + sin2 

H
= lim

→0+

sin 

− sin  − 2 cos  (− sin ) + 2 sin  (cos )

= lim
→0+

sin 

− sin  + 4 sin  cos 
= lim

→0+

1

−1 + 4 cos 
=

1

−1 + 4 cos 0
=

1

3

85. The limit,  = lim
→∞


− 2 ln


1 + 




= lim

→∞


− 2 ln


1


+ 1


. Let  = 1, so as →∞, → 0+.

 = lim
→0+


1


− 1

2
ln( + 1)


= lim

→0+

− ln(+ 1)

2
H
= lim

→0+

1− 1

 + 1

2
= lim

→0+

(+ 1)

2
= lim

→0+

1

2 (+ 1)
=

1

2

Note: Starting the solution by factoring out  or 2 leads to a more complicated solution.

86.  = [()]() ⇒ ln  = () ln (). Since  is a positive function, ln () is defined. Now

lim
→

ln  = lim
→

() ln () = −∞ since lim
→

() =∞ and lim
→

() = 0 ⇒ lim
→

ln () = −∞. Thus, if  = ln ,

lim
→

 = lim
→−∞

 = 0. Note that the limit, lim
→

() ln (), is not of the form∞ · 0.

87. Since (2) = 0, the given limit has the form 0
0

.

lim
→0

(2 + 3) + (2 + 5)



H
= lim

→0

 0(2 + 3) · 3 +  0(2 + 5) · 5
1

=  0(2) · 3 +  0(2) · 5 = 8 0(2) = 8 · 7 = 56

88.  = lim
→0


sin 2

3
+ +



2


= lim

→0

sin 2+ 3 + 

3

H
= lim

→0

2 cos 2 + 32 + 

32
. As → 0, 32 → 0, and

(2 cos 2 + 32 + ) →  + 2, so the last limit exists only if  + 2 = 0, that is,  = −2. Thus,

lim
→0

2 cos 2+ 32 − 2

32

H
= lim

→0

−4 sin 2+ 6

6

H
= lim

→0

−8 cos 2 + 6

6
=

6− 8

6
, which is equal to 0 if and only

if  = 4
3

. Hence,  = 0 if and only if  = −2 and  = 4
3

.

89. Since lim
→0

[(+ )− (− )] = ()− () = 0 ( is differentiable and hence continuous) and lim
→0

2 = 0, we use

l’Hospital’s Rule:

lim
→0

(+ )− (− )

2

H
= lim

→0

 0(+ )(1)−  0(− )(−1)

2
=

 0() +  0()

2
=

2 0()

2
=  0()

(+ )− (− )

2
is the slope of the secant line between

(−  (− )) and (+  (+ )). As → 0, this line gets closer

to the tangent line and its slope approaches  0().
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56 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

90. Since lim
→0

[(+ )− 2() + (− )] = ()− 2() + () = 0 [ is differentiable and hence continuous]

and lim
→0

2 = 0, we can apply l’Hospital’s Rule:

lim
→0

(+ )− 2() + (− )

2

H
= lim

→0

 0(+ )−  0(− )

2
=  00()

At the last step, we have applied the result of Exercise 89 to  0().

91. (a) We show that lim
→0

()


= 0 for every integer  ≥ 0. Let  =

1

2
. Then

lim
→0

()

2
= lim

→0

−12

(2)
 = lim

→∞



H
= lim

→∞
−1


H
= · · · H

= lim
→∞

!


= 0 ⇒

lim
→0

()


= lim

→0


()

2
= lim

→0
 lim

→0

()

2
= 0. Thus,  0(0) = lim

→0

()− (0)

− 0
= lim

→0

()


= 0.

(b) Using the Chain Rule and the Quotient Rule we see that  ()() exists for  6= 0. In fact, we prove by induction that for

each  ≥ 0, there is a polynomial  and a non-negative integer  with  ()() = ()() for  6= 0. This is

true for  = 0; suppose it is true for the th derivative. Then  0() = ()(23), so

 (+1)() =

 [0() () + ()  0()]− 

−1() ()

−2

=

0() + ()(23)− 

−1()

()−2

=

+30() + 2()− 

+2 ()

()−(2+3)

which has the desired form.

Now we show by induction that  () (0) = 0 for all . By part (a),  0(0) = 0. Suppose that  ()(0) = 0. Then

 (+1)(0) = lim
→0

 ()()−  ()(0)

− 0
= lim

→0

 ()()


= lim

→0

() ()


= lim

→0

() ()

+1

= lim
→0

() lim
→0

()

+1
= (0) · 0 = 0

92. (a) For  to be continuous, we need lim
→0

() = (0) = 1. We note that for  6= 0, ln () = ln || =  ln ||.

So lim
→0

ln () = lim
→0

 ln || = lim
→0

ln ||
1

H
= lim

→0

1

−12
= 0. Therefore, lim

→0
() = lim

→0
ln () = 0 = 1.

So  is continuous at 0.

(b) From the graphs, it appears that  is differentiable at 0.
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SECTION 4.5 SUMMARY OF CURVE SKETCHING ¤ 57

(c) To find  0, we use logarithmic differentiation: ln () =  ln || ⇒  0()

()
= 


1




+ ln || ⇒

 0() = ()(1 + ln ||) = ||(1 + ln ||),  6= 0. Now  0() → −∞ as → 0 [since || → 1 and

(1 + ln ||)→−∞], so the curve has a vertical tangent at (0 1) and is therefore not differentiable there.

The fact cannot be seen in the graphs in part (b) because ln ||→−∞ very slowly as → 0.

4.5 Summary of Curve Sketching

1.  = () = 3 + 32 = 2(+ 3) A.  is a polynomial, so  = R.

B. -intercept = (0) = 0, -intercepts are 0 and −3 C. No symmetry

D. No asympote E.  0() = 32 + 6 = 3(+ 2)  0 ⇔   −2 or

  0, so  is increasing on (−∞−2) and (0∞), and decreasing on (−2 0).

F. Local maximum value (−2) = 4, local minimum value (0) = 0

G.  00() = 6 + 6 = 6( + 1)  0 ⇔   −1, so  is CU on (−1∞) and

CD on (−∞−1). IP at (−1 2)

H.

2.  = () = 2 + 32 − 3 A.  = R B. -intercept = (0) = 2 C. No

symmetry D. No asymptote E.  0() = 6− 32 = 3(2− )  0 ⇔
0    2, so  is increasing on (0 2) and decreasing on (−∞ 0) and (2∞).

F. Local maximum value (2) = 6, local minimum value (0) = 2

G.  00() = 6− 6 = 6(1− )  0 ⇔   1, so  is CU on (−∞ 1) and

CD on (1∞). IP at (1 4)

H.

3.  = () = 4 − 4 = (3 − 4) A.  = R B. -intercepts are 0 and 3
√

4,

-intercept = (0) = 0 C. No symmetry D. No asymptote

E.  0() = 43 − 4 = 4(3 − 1) = 4(− 1)(2 +  + 1)  0 ⇔   1, so

 is increasing on (1∞) and decreasing on (−∞ 1). F. Local minimum value

(1) = −3, no local maximum G.  00() = 122  0 for all , so  is CU on

(−∞∞). No IP

H.

4.  = () = 4 − 82 + 8 A.  = R B. -intercept (0) = 8; -intercepts: () = 0 ⇒ [by the quadratic formula]

 = ±


4± 2
√

2 ≈ ±261±108 C. (−) = (), so  is even and symmetric about the -axis D. No asymptote

E.  0() = 43 − 16 = 4(2 − 4) = 4(+ 2)(− 2)  0 ⇔ −2    0 or   2, so  is increasing on (−2 0)

and (2∞), and  is decreasing on (−∞−2) and (0 2).

F. Local maximum value (0) = 8, local minimum values (±2) = −8

G.  00() = 122 − 16 = 4(32 − 4)  0 ⇒ ||  2
√

3 [≈115], so  is

CU on
−∞−2

√
3


and

2
√

3∞, and  is CD on
−2

√
3 2

√
3

.

IP at
±2

√
3− 8

9



H.
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58 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

5.  = () = (− 4)3 A.  = R B. -intercepts are 0 and 4, -intercept (0) = 0 C. No symmetry

D. No asymptote

E.  0() =  · 3(− 4)2 + (− 4)3 · 1 = (− 4)2[3+ (− 4)]

= (− 4)2(4− 4) = 4(− 1)(− 4)2  0 ⇔
  1, so  is increasing on (1∞) and decreasing on (−∞ 1).

F. Local minimum value (1) = −27, no local maximum value

G.  00() = 4[(− 1) · 2(− 4) + (− 4)2 · 1] = 4(− 4)[2(− 1) + (− 4)]

= 4(− 4)(3− 6) = 12(− 4)(− 2)  0 ⇔

H.

 

2    4, so  is CD on (2 4) and CU on (−∞ 2) and (4∞). IPs at (2−16) and (4 0)

6.  = () = 5 − 5 = (4 − 5) A.  = R B. -intercepts ± 4
√

5 and 0, -intercept = (0) = 0

C. (−) = −(), so  is odd; the curve is symmetric about the origin. D. No asymptote

E.  0() = 54 − 5 = 5(4 − 1) = 5(2 − 1)(2 + 1)

= 5( + 1)(− 1)(2 + 1)  0 ⇔
  −1 or   1, so  is increasing on (−∞−1) and (1∞), and  is decreasing

on (−1 1). F. Local maximum value (−1) = 4, local minimum value

(1) = −4 G.  00() = 203  0 ⇔   0, so  is CU on (0∞) and CD

on (−∞ 0). IP at (0 0)

H.

7.  = () = 1
5
5 − 8

3
3 + 16 = 


1
5
4 − 8

3
2 + 16


A.  = R B. -intercept 0, -intercept = (0) = 0

C. (−) = −(), so  is odd; the curve is symmetric about the origin. D. No asymptote

E.  0() = 4 − 82 + 16 = (2 − 4)2 = (+ 2)2(− 2)2  0 for all 

except ±2, so  is increasing on R. F. There is no local maximum or

minimum value.

G.  00() = 43 − 16 = 4(2 − 4) = 4( + 2)(− 2)  0 ⇔
−2    0 or   2, so  is CU on (−2 0) and (2∞), and  is CD on

(−∞−2) and (0 2). IP at
−2− 256

15


, (0 0), and


2 256

15



H.

8.  = () = (4− 2)5 A.  = R B. -intercept: (0) = 45 = 1024; -intercepts: ±2 C. (−) = () ⇒
 is even; the curve is symmetric about the y-axis. D. No asymptote E.  0() = 5(4− 2)4(−2) = −10(4− 2)4,

so for  6= ±2 we have  0()  0 ⇔   0 and  0()  0 ⇔   0. Thus,  is increasing on (−∞ 0) and

decreasing on (0∞). F. Local maximum value (0) = 1024

G.  00() = −10 · 4(4− 2)3(−2) + (4− 2)4(−10)

= −10(4− 2)3[−82 + 4− 2] = −10(4− 2)3(4− 92)

so  00() = 0 ⇔  = ±2± 2
3

.  00()  0 ⇔ −2    − 2
3

and

2
3
   2 and  00()  0 ⇔   −2, −2

3
   2

3
, and   2, so  is

CU on (−∞ 2),
− 2

3
 2

3


, and (2∞), and CD on

−2−2
3


and


2
3
 2

.

IP at (±2 0) and

± 2

3



32
9

5 ≈ (±067 56825)

H.
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SECTION 4.5 SUMMARY OF CURVE SKETCHING ¤ 59

9.  = () = (− 1) A.  = { |  6= 1} = (−∞ 1) ∪ (1∞) B. -intercept = 0, -intercept = (0) = 0

C. No symmetry D. lim
→±∞



− 1
= 1, so  = 1 is a HA. lim

→1−



− 1
= −∞, lim

→1+



− 1
=∞, so  = 1 is a VA.

E.  0() =
(− 1)− 

(− 1)2
=

−1

(− 1)2
 0 for  6= 1, so  is

decreasing on (−∞ 1) and (1∞)  F. No extreme values

G.  00() =
2

(− 1)3
 0 ⇔   1, so  is CU on (1∞) and

CD on (−∞ 1). No IP

H.

10.  = () =
2 + 5

25− 2
=

( + 5)

(5 + )(5− )
=



5− 
for  6= −5. There is a hole in the graph at

−5−1
2


.

A.  = { |  6= ±5} = (−∞−5) ∪ (−5 5) ∪ (5∞) B. -intercept = 0, -intercept = (0) = 0 C. No symmetry

D. lim
→±∞



5− 
= −1, so  = −1 is a HA. lim

→5−



5− 
=∞, lim

→5+



5− 
= −∞, so  = 5 is a VA.

E.  0() =
(5− )(1)− (−1)

(5− )2
=

5

(5− )2
 0 for all  in , so  is

increasing on (−∞−5), (−5 5), and (5∞). F. No extrema

G.  0() = 5(5− )−2 ⇒

 00() = −10(5− )−3(−1) =
10

(5− )3
 0 ⇔   5, so  is CU on

(−∞−5) and (−5 5), and  is CD on (5∞). No IP

H.

11.  = () =
− 2

2− 3+ 2
=

(1− )

(1− )(2− )
=



2− 
for  6= 1. There is a hole in the graph at (1 1).

A.  = { |  6= 1 2} = (−∞ 1) ∪ (1 2) ∪ (2∞) B. -intercept = 0, -intercept = (0) = 0 C. No symmetry

D. lim
→±∞



2− 
= −1, so  = −1 is a HA. lim

→2−



2− 
=∞, lim

→2+



2− 
= −∞, so  = 2 is a VA.

E.  0() =
(2− )(1)− (−1)

(2− )2
=

2

(2− )2
 0 [ 6= 1 2], so  is

increasing on (−∞ 1), (1 2), and (2∞). F. No extrema

G.  0() = 2(2− )−2 ⇒

 00() = −4(2− )−3(−1) =
4

(2− )3
 0 ⇔   2, so  is CU on

(−∞ 1) and (1 2), and  is CD on (2∞). No IP

H.

12.  = () = 1 +
1


+

1

2
=

2 + + 1

2
A.  = (−∞ 0) ∪ (0∞) B. -intercept: none [ 6= 0];

-intercepts: () = 0 ⇔ 2 + + 1 = 0, there is no real solution, and hence, no -intercept C. No symmetry

D. lim
→±∞


1 +

1


+

1

2


= 1, so  = 1 is a HA. lim

→0
() =∞, so  = 0 is a VA. E.  0() = − 1

2
− 2

3
=
−− 2

3
.

 0()  0 ⇔ −2    0 and  0()  0 ⇔   −2 or   0, so  is increasing on (−2 0) and decreasing
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60 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

on (−∞−2) and (0∞). F. Local minimum value (−2) = 3
4

; no local

maximum G.  00() =
2

3
+

6

4
=

2+ 6

4
.  00()  0 ⇔   −3 and

 00()  0 ⇔ −3    0 and   0, so  is CD on (−∞−3) and CU on

(−3 0) and (0∞). IP at
−3 7

9



H.

13.  = () =


2 − 4
=



(+ 2)(− 2)
A.  = (−∞−2) ∪ (−2 2) ∪ (2∞) B. -intercept = 0,

-intercept = (0) = 0 C. (−) = −(), so  is odd; the graph is symmetric about the origin.

D. lim
→2+



2 − 4
= ∞, lim

→2−
() = −∞, lim

→−2+
() = ∞, lim

→−2−
() = −∞, so  = ±2 are VAs.

lim
→±∞



2 − 4
= 0, so  = 0 is a HA. E.  0() =

(2 − 4)(1)− (2)

(2 − 4)2
= − 2 + 4

(2 − 4)2
 0 for all  in , so  is

decreasing on (−∞−2), (−2 2), and (2∞).

F. No local extrema

G.  00() = − (2 − 4)2(2)− (2 + 4)2(2 − 4)(2)

[(2 − 4)2]2

= −2(2 − 4)[(2 − 4)− 2(2 + 4)]

(2 − 4)4

= −2(−2 − 12)

(2 − 4)3
=

2(2 + 12)

(+ 2)3(− 2)3
.

 00()  0 if   −2 or 0    2, so  is CD on (−∞−2) and (0 2), and CU

on (−2 0) and (2∞). IP at (0 0)

H.

14.  = () =
1

2 − 4
=

1

(+ 2)(− 2)
A.  = (−∞−2) ∪ (−2 2) ∪ (2∞) B. No -intercept,

-intercept = (0) = − 1
4

C. (−) = (), so  is even; the graph is symmetric about the -axis.

D. lim
→2+

1

2 − 4
=∞, lim

→2−
() = −∞, lim

→−2+
() = −∞, lim

→−2−
() =∞, so  = ±2 are VAs. lim

→±∞
() = 0,

so  = 0 is a HA. E.  0() = − 2

(2 − 4)2
[Reciprocal Rule]  0 if   0 and  is in , so  is increasing on

(−∞−2) and (−2 0).  is decreasing on (0 2) and (2∞).

F. Local maximum value (0) = − 1
4

, no local minimum value

G.  00() =
(2 − 4)2(−2)− (−2)2(2 − 4)(2)

[(2 − 4)2]
2

=
−2(2 − 4)


(2 − 4)− 42


(2 − 4)4

=
−2(−32 − 4)

(2 − 4)3
=

2(32 + 4)

(2 − 4)3

 00()  0 ⇔ −2    2, so  is CD on (−2 2) and CU on (−∞−2)

and (2∞). No IP

H.
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SECTION 4.5 SUMMARY OF CURVE SKETCHING ¤ 61

15.  = () =
2

2 + 3
=

(2 + 3)− 3

2 + 3
= 1− 3

2 + 3
A.  = R B. -intercept: (0) = 0;

-intercepts: () = 0 ⇔  = 0 C. (−) = (), so  is even; the graph is symmetric about the -axis.

D. lim
→±∞

2

2 + 3
= 1, so  = 1 is a HA. No VA. E. Using the Reciprocal Rule,  0() = −3 · −2

(2 + 3)2
=

6

(2 + 3)2
.

 0()  0 ⇔   0 and  0()  0 ⇔   0, so  is decreasing on (−∞ 0) and increasing on (0∞).

F. Local minimum value (0) = 0, no local maximum.

G.  00() =
(2 + 3)2 · 6− 6 · 2(2 + 3) · 2

[(2 + 3)2]2

=
6(2 + 3)[(2 + 3)− 42]

(2 + 3)4
=

6(3− 32)

(2 + 3)3
=
−18( + 1)(− 1)

(2 + 3)3

 00() is negative on (−∞−1) and (1∞) and positive on (−1 1),

so  is CD on (−∞−1) and (1∞) and CU on (−1 1). IP at
±1 1

4



H.

16.  = () =
(− 1)2

2 + 1
≥ 0 with equality ⇔  = 1. A.  = R B. -intercept = (0) = 1; -intercept 1 C. No

symmetry D. lim
→±∞

() = lim
→±∞

2 − 2 + 1

2 + 1
= lim

→±∞
1− 2+ 12

1 + 12
= 1, so  = 1 is a HA. No VA

E.  0() =
(2 + 1)2(− 1)− (− 1)2(2)

(2 + 1)2
=

2(− 1)

(2 + 1)− (− 1)


(2 + 1)2

=
2(− 1)( + 1)

(2 + 1)2
 0 ⇔

−1    1, so  is decreasing on (−1 1) and increasing on (−∞−1) and (1∞) F. Local maximum value (−1) = 2,

local minimum value (1) = 0

G.  00() =
(2 + 1)2(4)− (22 − 2)2(2 + 1)(2)

[(2 + 1)2]
2

=
4(2 + 1)


(2 + 1)− (22 − 2)


(2 + 1)4

=
4(3− 2)

(2 + 1)3
.

 00()  0 ⇔   −√3 or 0   
√

3, so  is CU on
−∞−√3


and


0
√

3

, and  is CD on

−√3 0


and
√

3∞.

±√3


= 1

4

√
3∓ 1

2
= 1

4


4∓ 2

√
3


= 1∓ 1
2

√
3 [≈ 013 187], so

there are IPs at
−√3 1 + 1

2

√
3

, (0 1), and

√
3 1− 1

2

√
3

. Note that

the graph is symmetric about the point (0 1).

H.

17.  = () =
− 1

2
A.  = { |  6= 0} = (−∞ 0) ∪ (0∞) B. No -intercept; -intercept: () = 0 ⇔  = 1

C. No symmetry D. lim
→±∞

− 1

2
= 0, so  = 0 is a HA. lim

→0

− 1

2
= −∞, so  = 0 is a VA.

E.  0() =
2 · 1− (− 1) · 2

(2)2
=
−2 + 2

4
=
−(− 2)

3
, so  0()  0 ⇔ 0    2 and  0()  0 ⇔
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62 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

  0 or   2. Thus,  is increasing on (0 2) and decreasing on (−∞ 0)

and (2∞). F. No local minimum, local maximum value (2) = 1
4

.

G.  00() =
3 · (−1)− [−(− 2)] · 32

(3)2
=

23 − 62

6
=

2(− 3)

4
.

 00() is negative on (−∞ 0) and (0 3) and positive on (3∞), so  is CD

on (−∞ 0) and (0 3) and CU on (3∞). IP at

3 2

9



H.

18.  = () =


3 − 1
A.  = (−∞ 1) ∪ (1∞) B. -intercept: (0) = 0; -intercept: () = 0 ⇔  = 0

C. No symmetry D. lim
→±∞



3 − 1
= 0, so  = 0 is a HA. lim

→1−
() = −∞ and lim

→1+
() =∞, so  = 1 is a VA.

E.  0() =
(3 − 1)(1)− (32)

(3 − 1)2
=
−23 − 1

(3 − 1)2
.  0() = 0 ⇒  = − 3


12.  0()  0 ⇔   − 3


12 and

 0()  0 ⇔ − 3


12    1 and   1, so  is increasing on

−∞− 3


12


and decreasing on


− 3


12 1


and (1∞). F. Local maximum value 

− 3


12


= 2
3
3


12; no local minimum

G.  00() =
(3 − 1)2(−62)− (−23 − 1)2(3 − 1)(32)

[(3 − 1)2]2

=
−62(3 − 1)[(3 − 1)− (23 + 1)]

(3 − 1)4
=

62(3 + 2)

(3 − 1)3


 00()  0 ⇔   − 3
√

2 and   1,  00()  0 ⇔ − 3
√

2    0 and

0    1, so  is CU on
−∞− 3

√
2


and (1∞) and CD on
− 3
√

2 1

.

IP at
− 3
√

2 1
3

3
√

2


H.

19.  = () =
3

3 + 1
=

3

(+ 1)(2 − + 1)
A.  = (−∞−1) ∪ (−1∞) B. -intercept: (0) = 0; -intercept:

() = 0 ⇔  = 0 C. No symmetry D. lim
→±∞

3

3 + 1
=

1

1 + 13
= 1, so  = 1 is a HA. lim

→−1−
() =∞ and

lim
→−1+

() = −∞, so  = −1 is a VA. E.  0() =
(3 + 1)(32)− 3(32)

(3 + 1)2
=

32

(3 + 1)2
.  0()  0 for  6= −1

(not in the domain) and  6= 0 ( 0 = 0), so  is increasing on (−∞−1), (−1 0), and (0∞), and furthermore, by Exercise

4.3.91,  is increasing on (−∞−1), and (−1∞). F. No local extrema

G.  00() =
(3 + 1)2(6)− 32[2(3 + 1)(32)]

[(3 + 1)2]2

=
(3 + 1)(6)[(3 + 1)− 33]

(3 + 1)4
=

6(1− 23)

(3 + 1)3

 00()  0 ⇔   −1 or 0    3


1
2

[≈ 079], so  is CU on (−∞−1) and
0 3


1
2


and CD on (−1 0) and


3


1
2
∞


. There are IPs at (0 0) and


3


1
2
 1

3


.

H.
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SECTION 4.5 SUMMARY OF CURVE SKETCHING ¤ 63

20.  = () =
3

− 2
= 2 + 2+ 4 +

8

− 2
[by long division] A.  = (−∞ 2) ∪ (2∞) B. -intercept = 0,

-intercept = (0) = 0 C. No symmetry D. lim
→2−

3

− 2
= −∞ and lim

→2+

3

− 2
=∞, so  = 2 is a VA.

There are no horizontal or slant asymptotes. Note: Since lim
→±∞

8

− 2
= 0, the parabola  = 2 + 2+ 4 is approached

asymptotically as → ±∞.

E.  0() =
(− 2)(32)− 3(1)

(− 2)2
=

2[3(− 2)− ]

(− 2)2
=

2(2− 6)

(− 2)2
=

22(− 3)

(− 2)2
 0 ⇔   3 and

 0()  0 ⇔   0 or 0    2 or 2    3, so  is increasing on (3∞) and  is decreasing on (−∞ 2) and (2 3).

F. Local minimum value (3) = 27, no local maximum value G.  0() = 2
3 − 32

(− 2)2
⇒

 00() = 2
(− 2)2(32 − 6)− (3 − 32)2(− 2)

[(− 2)2]2

= 2
(− 2)[(− 2)(3− 6)− (2 − 3)2]

(− 2)4

=
2(32 − 12 + 12− 22 + 6)

(− 2)3

=
2(2 − 6+ 12)

(− 2)3
 0 ⇔

H.

  0 or   2, so  is CU on (−∞ 0) and (2∞), and  is CD on (0 2). IP at (0 0)

21.  = () = (− 3)
√
 = 32 − 312 A.  = [0∞) B. -intercepts: 0 3; -intercept = (0) = 0 C. No

symmetry D. No asymptote E.  0() = 3
2
12 − 3

2
−12 = 3

2
−12(− 1) =

3(− 1)

2
√


 0 ⇔   1,

so  is increasing on (1∞) and decreasing on (0 1).

F. Local minimum value (1) = −2, no local maximum value

G.  00() = 3
4
−12 + 3

4
−32 = 3

4
−32(+ 1) =

3(+ 1)

432
 0 for   0,

so  is CU on (0∞). No IP

H.

22.  = () = (− 4) 3
√
 = 43 − 413 A.  = R B. -intercept = (0) = 0; -intercepts: 0 and 4

C. No symmetry D. No asymptote

E.  0() = 4
3
13 − 4

3
−23 = 4

3
−23(− 1) =

4(− 1)

323
.  0()  0 ⇔

  1, so  is increasing on (1∞) and  is decreasing on (−∞ 1).

F. Local minimum value (1) = −3

G.  00() = 4
9
−23 + 8

9
−53 = 4

9
−53(+ 2) =

4(+ 2)

953
.

 00()  0 ⇔ −2    0, so  is CD on (−2 0), and  is CU on (−∞−2)

and (0∞). There are IPs at
−2 6

3
√

2


and (0 0).

H.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



64 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

23.  = () =
√
2 + − 2 =


(+ 2)(− 1) A.  = { | (+ 2)(− 1) ≥ 0} = (−∞−2] ∪ [1∞)

B. -intercept: none; -intercepts: −2 and 1 C. No symmetry D. No asymptote

E.  0() = 1
2
(2 + − 2)−12(2+ 1) =

2+ 1

2
√
2 + − 2

,  0() = 0 if  = − 1
2

, but −1
2

is not in the domain.

 0()  0 ⇒   −1
2

and  0()  0 ⇒   − 1
2

, so (considering the domain)  is increasing on (1∞) and

 is decreasing on (−∞−2). F. No local extrema

G.  00() =
2(2 + − 2)12(2)− (2+ 1) · 2 · 1

2
(2 + − 2)−12(2+ 1)

2
√
2 + − 2

2
=

(2 + − 2)−12

4(2 + − 2)− (42 + 4+ 1)


4(2 + − 2)

=
−9

4(2 + − 2)32
 0

so  is CD on (−∞−2) and (1∞). No IP

H.

24.  = () =
√
2 + −  =


(+ 1)−  A.  = (−∞−1] ∪ [0∞) B. -intercept: (0) = 0;

-intercepts: () = 0 ⇒ √
2 +  =  ⇒ 2 +  = 2 ⇒  = 0 C. No symmetry

D. lim
→∞

() = lim
→∞

√
2 + − 

 √2 +  + √
2 +  + 

= lim
→∞

2 + − 2

√
2 +  + 

= lim
→∞

√
2 + + 




= lim
→∞

1
1 + 1+ 1

=
1

2
, so  = 1

2
is a HA. No VA

E.  0() = 1
2
(2 + )−12(2+ 1)− 1 =

2+ 1

2
√
2 + 

− 1  0 ⇔ 2+ 1  2
√
2 +  ⇔

+ 1
2



 + 1

2

2 − 1
4

. Keep in mind that the domain excludes the interval (−1 0). When + 1
2

is positive (for  ≥ 0),

the last inequality is true since the value of the radical is less than + 1
2

. When  + 1
2

is negative (for  ≤ −1), the last

inequality is false since the value of the radical is positive. So  is increasing on (0∞) and decreasing on (−∞−1).

F. No local extrema

G.  00() =
2(2 + )12(2)− (2+ 1) · 2 · 1

2
(2 + )−12(2+ 1)

2
√
2 + 

2
=

(2 + )−12[4(2 + )− (2+ 1)2]

4(2 + )
=

−1

4(2 + )32


 00()  0 when it is defined, so  is CD on (−∞−1) and (0∞). No IP

H.

25.  = () = 
√
2 + 1 A.  = R B. -intercept: (0) = 0; -intercepts: () = 0 ⇒  = 0

C. (−) = −(), so  is odd; the graph is symmetric about the origin.

D. lim
→∞

() = lim
→∞

√
2 + 1

= lim
→∞

√
2 + 1

= lim
→∞

√
2 + 1

√
2

= lim
→∞

1
1 + 12

=
1√

1 + 0
= 1
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SECTION 4.5 SUMMARY OF CURVE SKETCHING ¤ 65

and

lim
→−∞

() = lim
→−∞

√
2 + 1

= lim
→−∞

√
2 + 1

= lim
→−∞


√
2 + 1


−
√
2

 = lim
→−∞

1

−


1 + 12

=
1

−√1 + 0
= −1 so  = ±1 are HA. No VA

E.  0() =

√
2 + 1−  · 2

2
√
2 + 1

[(2 + 1)12]2
=

2 + 1− 2

(2 + 1)
32

=
1

(2 + 1)
32

 0 for all , so  is increasing on R.

F. No extreme values

G.  00() = − 3
2
(2 + 1)−52 · 2 =

−3

(2 + 1)52
, so  00()  0 for   0

and  00()  0 for   0. Thus,  is CU on (−∞ 0) and CD on (0∞).

IP at (0 0)

H.

26.  = () = 
√

2− 2 A.  =
−√2

√
2


B. -intercept: (0) = 0; -intercepts: () = 0 ⇒

 = 0, ±√2. C. (−) = −(), so  is odd; the graph is symmetric about the origin. D. No asymptote

E.  0() =  · −√
2− 2

+
√

2− 2 =
−2 + 2− 2

√
2− 2

=
2(1 + )(1− )√

2− 2
.  0() is negative for −√2    −1

and 1   
√

2, and positive for −1    1, so  is decreasing on
−√2−1


and


1
√

2


and increasing on (−1 1).

F. Local minimum value (−1) = −1, local maximum value (1) = 1.

G.  00() =

√
2− 2(−4)− (2− 22)

−√
2− 2

[(2− 2)12]2

=
(2− 2)(−4) + (2− 22)

(2− 2)32
=

23 − 6

(2− 2)32
=

2(2 − 3)

(2− 2)32

Since 2 − 3  0 for  in
−√2

√
2

,  00()  0 for −√2    0 and

 00()  0 for 0   
√

2. Thus,  is CU on
−√2 0


and CD on


0
√

2

.

The only IP is (0 0).

H.

27.  = () =
√

1− 2 A.  = { | || ≤ 1,  6= 0} = [−1 0) ∪ (0 1] B. -intercepts ±1, no -intercept

C. (−) = −(), so the curve is symmetric about (0 0)  D. lim
→0+

√
1− 2


=∞, lim

→0−

√
1− 2


= −∞,

so  = 0 is a VA. E.  0() =

−2
√

1− 2
−√1− 2

2
= − 1

2
√

1− 2
 0, so  is decreasing

on (−1 0) and (0 1). F. No extreme values

G.  00() =
2− 32

3(1− 2)
32

 0 ⇔ −1    −


2
3

or 0   


2
3

, so

 is CU on

−1−


2
3


and


0


2
3


and CD on


−


2
3
 0


and


2
3
 1


.

IP at

±


2
3
± 1√

2



H.
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66 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

28.  = () = 
√
2 − 1 A.  = (−∞−1) ∪ (1∞) B. No intercepts C. (−) = −(), so  is odd;

the graph is symmetric about the origin. D. lim
→∞

√
2 − 1

= 1 and lim
→−∞

√
2 − 1

= −1, so  = ±1 are HA.

lim
→1+

() = +∞ and lim
→−1−

() = −∞, so  = ±1 are VA.

E.  0() =

√
2 − 1−  · √

2 − 1

[(2 − 1)12]2
=

2 − 1− 2

(2 − 1)32
=

−1

(2 − 1)32
 0, so  is decreasing on (−∞−1) and (1∞).

F. No extreme values

G.  00() = (−1)
−3

2


(2 − 1)−52 · 2 =

3

(2 − 1)52
.

 00()  0 on (−∞−1) and  00()  0 on (1∞), so  is CD on (−∞−1)

and CU on (1∞). No IP

H.

29.  = () = − 313 A.  = R B. -intercept: (0) = 0; -intercepts: () = 0 ⇒  = 313 ⇒

3 = 27 ⇒ 3 − 27 = 0 ⇒ (2 − 27) = 0 ⇒  = 0, ±3
√

3 C. (−) = −(), so  is odd;

the graph is symmetric about the origin. D. No asymptote E.  0() = 1− −23 = 1− 1

23
=

23 − 1

23
.

 0()  0 when ||  1 and  0()  0 when 0  ||  1, so  is increasing on (−∞−1) and (1∞), and

decreasing on (−1 0) and (0 1) [hence decreasing on (−1 1) since  is

continuous on (−1 1)]. F. Local maximum value (−1) = 2, local minimum

value (1) = −2 G.  00() = 2
3
−53  0 when   0 and  00()  0

when   0, so  is CD on (−∞ 0) and CU on (0∞). IP at (0 0)

H.

30.  = () = 53 − 523 = 23(− 5) A.  = R B. -intercepts 0, 5; -intercept 0 C. No symmetry

D. lim
→±∞

23(− 5) = ±∞, so there is no asymptote E.  0() = 5
3
23 − 10

3
−13 = 5

3
−13(− 2)  0 ⇔

  0 or   2, so  is increasing on (−∞ 0), (2∞) and

decreasing on (0 2).

F. Local maximum value (0) = 0, local minimum value (2) = −3
3
√

4

G.  00() = 10
9
−13 + 10

9
−43 = 10

9
−43(+ 1)  0 ⇔   −1, so

 is CU on (−1 0) and (0∞), CD on (−∞−1). IP at (−1−6)

H.

31.  = () = 3
√
2 − 1 A.  = R B. -intercept: (0) = −1; -intercepts: () = 0 ⇔ 2 − 1 = 0 ⇔

 = ±1 C. (−) = (), so the curve is symmetric about the -axis D. No asymptote

E.  0() = 1
3
(2 − 1)−23(2) =

2

3 3


(2 − 1)2
.  0()  0 ⇔   0 and  0()  0 ⇔   0, so  is

increasing on (0∞) and decreasing on (−∞ 0). F. Local minimum value (0) = −1
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SECTION 4.5 SUMMARY OF CURVE SKETCHING ¤ 67

G.  00() =
2

3
· (2 − 1)23(1)−  · 2

3
(2 − 1)−13(2)

[(2 − 1)23]2

=
2

9
· (2 − 1)−13[3(2 − 1)− 42]

(2 − 1)43
= − 2(2 + 3)

9(2 − 1)53

 00()  0 ⇔ −1    1 and  00()  0 ⇔   −1 or   1, so

 is CU on (−1 1) and  is CD on (−∞−1) and (1∞). IP at (±1 0)

H.

32.  = () = 3
√
3 + 1 A.  = R B. -intercept: (0) = 1; -intercept: () = 0 ⇔ 3 + 1 = 0 ⇒  = −1

C. No symmetry D. No asymptote E.  0() = 1
3
(3 + 1)−23(32) =

2

3


(3 + 1)2
.  0()  0 if   −1,

−1    0, and   0, so  is increasing on R. F. No local extrema

G.  00() =
(3 + 1)23(2)− 2 · 2

3
(3 + 1)−13(32)

[(3 + 1)23]2

=
(3 + 1)−13[2(3 + 1)− 23]

(3 + 1)43
=

2

(3 + 1)53

 00()  0 ⇔   −1 or   0 and  00()  0 ⇔ −1    0, so  is

CU on (−∞−1) and (0∞) and CD on (−1 0). IP at (−1 0) and (0 1)

H.

33.  = () = sin3  A.  = R B. -intercepts: () = 0 ⇔  = ,  an integer; -intercept = (0) = 0

C. (−) = −(), so  is odd and the curve is symmetric about the origin. Also, (+ 2) = (), so  is periodic

with period 2, and we determine E–G for 0 ≤  ≤ . Since  is odd, we can reflect the graph of  on [0 ] about the

origin to obtain the graph of  on [− ], and then since  has period 2, we can extend the graph of  for all real numbers.

D. No asymptote E.  0() = 3 sin2  cos  0 ⇔ cos  0 and sin 6= 0 ⇔ 0    
2

, so  is increasing on
0 

2


and  is decreasing on



2
 

. F. Local maximum value 



2


= 1


local minimum value 

−
2


= −1


G.  00() = 3 sin2  (− sin) + 3 cos (2 sin cos) = 3 sin (2 cos2 − sin2 )

= 3 sin [2(1− sin2 )− sin2 ] = 3 sin(2− 3 sin2 )  0 ⇔

sin  0 and sin2   2
3
⇔ 0     and 0  sin 


2
3
⇔ 0    sin−1


2
3


let  = sin−1


2
3


or

 −     , so  is CU on (0 ) and ( −  ), and  is CD on (  − ). There are inflection points at  = 0, , ,

and  =  − .

H.
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68 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

34.  = () = + cos A.  = R B. -intercept: (0) = 1; the -intercept is about −074 and can be found using

Newton’s method C. No symmetry D. No asymptote E.  0() = 1− sin  0 except for  = 
2

+ 2,

so  is increasing on R. F. No local extrema

G.  00() = − cos.  00()  0 ⇒ − cos  0 ⇒ cos  0 ⇒
 is in



2

+ 2 3
2

+ 2


and  00()  0 ⇒

 is in
−

2
+ 2 

2
+ 2


, so  is CU on



2

+ 2 3
2

+ 2


and CD on−
2

+ 2 
2

+ 2

. IP at



2

+  


2

+ 


=


2

+  
2

+ 


[on the line  = ]

H.

35.  = () =  tan, −
2
   

2
A.  =

−
2
 

2


B. Intercepts are 0 C. (−) = (), so the curve is

symmetric about the -axis. D. lim
→(2)−

 tan =∞ and lim
→−(2)+

 tan =∞, so  = 
2

and  = −
2

are VA.

E.  0() = tan+  sec2   0 ⇔ 0    
2

, so  increases on

0 

2


and decreases on

−
2
 0

. F. Absolute and local minimum value (0) = 0.

G. 00 = 2 sec2 + 2 tan sec2   0 for −
2
   

2
, so  is

CU on
−

2
 

2


. No IP

H.

36.  = () = 2− tan, −
2
   

2
A.  =

−
2
 

2


B. -intercept: (0) = 0; -intercepts: () = 0 ⇔

2 = tan ⇔  = 0 or  ≈ ±117 C. (−) = −(), so  is odd; the graph is symmetric about the origin.

D. lim
→(−2)+

(2− tan) =∞ and lim
→(2)−

(2− tan) = −∞, so  = ±
2

are VA. No HA.

E.  0() = 2− sec2   0 ⇔ |sec|  √2 and  0()  0 ⇔ |sec|  √2, so  is decreasing on
−

2
−

4


,

increasing on
−

4
 

4


, and decreasing again on



4
 

2


F. Local maximum value 



4


= 

2
− 1,

local minimum value 
−

4


= −

2
+ 1

G.  00() = −2 sec · sec tan = −2 tan sec2  = −2 tan(tan2 + 1)

so  00()  0 ⇔ tan  0 ⇔ −
2
   0, and  00()  0 ⇔

tan  0 ⇔ 0    
2

. Thus,  is CU on
−

2
 0


and CD on

0 

2


.

IP at (0 0)

H.

37.  = () = sin+
√

3 cos, −2 ≤  ≤ 2 A.  = [−2 2] B. -intercept: (0) =
√

3; -intercepts:

() = 0 ⇔ sin = −√3 cos ⇔ tan = −√3 ⇔  = − 4
3
 −

3
 2

3
 or 5

3
C.  is periodic with period

2. D. No asymptote E.  0() = cos−√3 sin.  0() = 0 ⇔ cos =
√

3 sin ⇔ tan =
1√
3

⇔

 = − 11
6

, −5
6

, 
6

, or 7
6

.  0()  0 ⇔ − 11
6

   − 5
6

or 
6
   7

6
, so  is decreasing on

− 11
6
− 5

6
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SECTION 4.5 SUMMARY OF CURVE SKETCHING ¤ 69

and


6
 7

6


, and  is increasing on

−2− 11
6


,
− 5

6
 

6


, and


7
6
 2


. F. Local maximum value


− 11

6


= 



6


= 1

2
+
√

3


1
2

√
3


= 2, local minimum value 
− 5

6


= 


7
6


= − 1

2
+
√

3
−1

2

√
3


= −2

G.  00() = − sin−√3 cos.  00() = 0 ⇔ sin = −√3 cos ⇔

tan = − 1√
3

⇔  = −4
3

, −
3

, 2
3

, or 5
3

.  00()  0 ⇔

− 4
3
   −

3
or 2

3
   5

3
, so  is CU on

−4
3
−

3


and


2
3
 5

3


, and

 is CD on
−2− 4

3


,
−

3
 2

3


, and


5
3
 2


. There are IPs at

−4
3
 0

,−

3
 0

,


2
3
 0

, and


5
3
 0

.

H.

38.  = () = csc− 2 sin, 0     A.  = (0 ) B. No -intercept; -intercept: () = 0 ⇔
csc = 2 sin ⇔ 1

2
= sin2  ⇔ sin = ± 1

2

√
2 ⇔  = 

4
or 3

4
C. No symmetry

D. lim
→0+

() = ∞ and lim
→−

() = ∞, so  = 0 and  =  are VAs.

E.  0() = − csc cot− 2 cos = − cos

sin2 
− 2 cos = − cos


1

sin2 
+ 2


.  0()  0 when − cos  0 ⇔

cos  0 ⇔ 
2
   , so  0 is increasing on



2
 

, and  is

decreasing on

0 

2


. F. Local minimum value 



2


= −1

G.  00() = (− csc)(− csc2 ) + (cot)(csc cot) + 2 sin

=
1 + cos2 + 2 sin4 

sin3 

 00 has the same sign as sin, which is positive on (0 ), so  is CU on (0 ).

No IP

H.

39.  = () =
sin

1 + cos

 when
cos 6= 1

=
sin

1 + cos
· 1− cos

1− cos
=

sin (1− cos)

sin2 
=

1− cos

sin
= csc− cot


A. The domain of  is the set of all real numbers except odd integer multiples of ; that is, all reals except (2+ 1), where

 is an integer. B. -intercept: (0) = 0; -intercepts:  = 2,  an integer. C. (−) = −(), so  is an odd

function; the graph is symmetric about the origin and has period 2. D. When  is an odd integer,

lim
→()−

() = ∞ and lim
→()+

() = −∞, so  =  is a VA for each odd integer . No HA.

E.  0() =
(1 + cos) · cos− sin(− sin)

(1 + cos)2
=

1 + cos

(1 + cos)2
=

1

1 + cos
.  0()  0 for all  except odd multiples of

, so  is increasing on ((2 − 1) (2 + 1)) for each integer . F. No extreme values

G.  00() =
sin

(1 + cos)2
 0 ⇒ sin  0 ⇒

 ∈ (2 (2 + 1)) and  00()  0 on ((2 − 1) 2) for each

integer .  is CU on (2 (2 + 1)) and CD on ((2 − 1) 2)

for each integer .  has IPs at (2 0) for each integer .

H.
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70 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

40.  = () =
sin

2 + cos
A.  = R B. -intercept: (0) = 0; -intercepts: () = 0 ⇔ sin = 0 ⇔  = 

C. (−) = −(), so the curve is symmetric about the origin.  is periodic with period 2, so we determine E–G for

0 ≤  ≤ 2. D. No asymptote

E.  0() =
(2 + cos) cos− sin(− sin)

(2 + cos)2
=

2cos+ cos2 + sin2 

(2 + cos)2
=

2cos+ 1

(2 + cos)2
.

 0()  0 ⇔ 2 cos+ 1  0 ⇔ cos  −1
2
⇔  is in


0 2

3


or


4
3
 2


, so  is increasing

on

0 2

3


and


4
3
 2


, and  is decreasing on


2
3
 4

3


.

F. Local maximum value 


2
3


=

√
32

2− (12)
=

√
3

3
and local minimum value 


4
3


=

−√32

2− (12)
= −

√
3

3

G.  00() =
(2 + cos)2(−2 sin)− (2 cos+ 1)2(2 + cos)(− sin)

[(2 + cos)2]2

=
−2 sin (2 + cos)[(2 + cos)− (2 cos+ 1)]

(2 + cos)4
=
−2 sin (1− cos)

(2 + cos)3

 00()  0 ⇔ −2 sin  0 ⇔ sin  0 ⇔  is in ( 2) [ is CU] and  00()  0 ⇔

 is in (0 ) [ is CD]. The inflection points are (0 0), ( 0), and (2 0).

H.

41.  = () = arctan() A.  = R B. -intercept = (0) = arctan 1 = 
4

. ()  0 so there are no -intercepts.

C. No symmetry D. lim
→−∞

arctan() = 0 and lim
→∞

arctan() = 
2

, so  = 0 and  = 
2

are HAs. No VA

E.  0() =
1

1 + ()2



 =



1 + 2
 0, so  is increasing on (−∞∞). F. No local extrema

G.  00() =
(1 + 2) − (22)

(1 + 2)2
=

[(1 + 2)− 22]

(1 + 2)2

=
(1− 2)

(1 + 2)2
 0 ⇔

1− 2  0 ⇔ 2  1 ⇔ 2  0 ⇔   0, so  is CU on

(−∞ 0) and CD on (0∞). IP at

0 

4



H.

42.  = () = (1− ) A.  = R B. -intercept 1, -intercept = (0) = 1 C. No symmetry

D. lim
→−∞

1− 

−

form ∞

∞
 H

= lim
→−∞

−1

−− = 0, so  = 0 is a HA. No VA

E.  0() = (1− ) + (−1) = [(1− ) + (−1)] = −  0 ⇔   0, so  is increasing on (−∞ 0)
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SECTION 4.5 SUMMARY OF CURVE SKETCHING ¤ 71

and decreasing on (0∞).

F. Local maximum value (0) = 1, no local minimum value

G.  00() = − + (−1) = (−− 1) = −(+ 1)  0 ⇔
  −1, so  is CU on (−∞−1) and CD on (−1∞). IP at (−1 2)

H.

43.  = 1(1 + −) A.  = R B. No -intercept; -intercept = (0) = 1
2
 C. No symmetry

D. lim
→∞

1(1 + −) = 1
1+ 0

= 1 and lim
→−∞

1(1 + −) = 0 since lim
→−∞

− =∞, so  has horizontal asymptotes

 = 0 and  = 1. E.  0() = −(1 + −)−2(−−) = −(1 + −)2. This is positive for all , so  is increasing on R.

F. No extreme values G.  00() =
(1 + −)2(−−)− −(2)(1 + −)(−−)

(1 + −)4
=

−(− − 1)

(1 + −)3

The second factor in the numerator is negative for   0 and positive for   0,

and the other factors are always positive, so  is CU on (−∞, 0) and CD

on (0∞). IP at

0, 1

2


H.

44.  = () = − sin, 0 ≤  ≤ 2 A.  = R B. -intercept: (0) = 0; -intercepts: () = 0 ⇔ sin = 0 ⇔

 = 0, , and 2. C. No symmetry D. No asymptote E.  0() = − cos+ sin (−−) = − (cos− sin).

 0() = 0 ⇔ cos = sin ⇔  = 
4

, 5
4

.  0()  0 if  is in

0 

4


or


5
4
 2


[  is increasing] and

 0()  0 if  is in


4
 5

4


[  is decreasing]. F. Local maximum value 



4


and local minimum value 


5
4


G.  00() = −(− sin− cos) + (cos− sin)(−−) = −(−2 cos).  00()  0 ⇔ −2 cos  0 ⇔

cos  0 ⇒  is in


2
 3

2


[ is CU] and  00()  0 ⇔

cos  0 ⇒  is in

0 

2


or


3
2
 2


[ is CD].

IP at


2

+  


2

+ 


H.

45.  = () =
1


+ ln A.  = (0∞) [same as ln] B. No -intercept; no -intercept

1


and ln are both positive on 


C. No symmetry. D. lim

→0+
() =∞, so  = 0 is a VA.

E.  0() = − 1

2
+

1


=

− 1

2
.  0()  0 for   1, so  is increasing on

(1∞) and  is decreasing on (0 1).

F. Local minimum value (1) = 1 G.  00() =
2

3
− 1

2
=

2− 

3
.

 00()  0 for 0    2, so  is CU on (0 2), and  is CD on (2∞).

IP at

2 1

2
+ ln 2



H.
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72 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

46.  = () = 2 −  A.  = R B. -intercept: (0) = 0; -intercepts: () = 0 ⇒ 2 =  ⇒  = 1 ⇒
 = 0 C. No symmetry D. lim

→−∞
2 −  = 0, so  = 0 is a HA. No VA. E.  0() = 22 −  = (2 − 1),

so  0()  0 ⇔   1
2
⇔   ln 1

2
= − ln 2 and  0()  0 ⇔

  1
2
⇔   ln 1

2
, so  is decreasing on

−∞ ln 1
2


and increasing on


ln 1

2
∞.

F. Local minimum value 

ln 1

2


= 2 ln(12) − ln(12) =


1
2

2 − 1
2

= − 1
4

G.  00() = 42 −  = (4 − 1), so  00()  0 ⇔   1
4
⇔

  ln 1
4

and  00()  0 ⇔   ln 1
4

. Thus,  is CD on
−∞ ln 1

4


and

CU on

ln 1

4
∞. IP at


ln 1

4



1
4

2 − 1
4


=

ln 1

4
− 3

16



H.

47.  = () = (1 + )−2 =
1

(1 + )2
A.  = R B. -intercept: (0) = 1

4
. -intercepts: none [since ()  0]

C. No symmetry D. lim
→∞

() = 0 and lim
→−∞

() = 1, so  = 0 and  = 1 are HA; no VA

E.  0() = −2(1 + )−3 =
−2

(1 + )3
 0, so  is decreasing on R F. No local extrema

G.  00() = (1 + )−3(−2) + (−2)(−3)(1 + )−4

= −2(1 + )−4[(1 + )− 3] =
−2(1− 2)

(1 + )4


 00()  0 ⇔ 1− 2  0 ⇔   1
2
⇔   ln 1

2
and

 00()  0 ⇔   ln 1
2

, so  is CU on

ln 1

2
∞ and CD on

−∞ ln 1
2


.

IP at

ln 1

2
 4

9



H.

48.  = () = 2 A.  = (−∞ 0)∪ (0∞) B. No intercept C. No symmetry D. lim
→−∞



2
= 0, so  = 0 is HA.

lim
→0



2
=∞, so  = 0 is a VA. E.  0() =

2 − (2)

(2)2
=

(− 2)

4
=

(− 2)

3
 0 ⇔   0 or   2,

so  is increasing on (−∞ 0) and (2∞), and  is decreasing on (0 2).

F. Local minimum value (2) = 24 ≈ 185, no local maximum value

G.  00() =
3[(1) + (− 2)]− (− 2)(32)

(3)2

=
2[(− 1)− 3(− 2)]

6
=

(2 − 4+ 6)

4
 0

for all  in the domain of  ; that is,  is CU on (−∞ 0) and (0∞). No IP

H.

49.  = () = ln(sin)

A.  = { in R | sin  0} =
∞

=−∞
(2 (2+ 1)) = · · · ∪ (−4−3) ∪ (−2−) ∪ (0 ) ∪ (2 3) ∪ · · ·
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SECTION 4.5 SUMMARY OF CURVE SKETCHING ¤ 73

B. No -intercept; -intercepts: () = 0 ⇔ ln(sin) = 0 ⇔ sin = 0 = 1 ⇔  = 2 + 
2

for each

integer . C.  is periodic with period 2. D. lim
→(2)+

() = −∞ and lim
→[(2+1)]−

() = −∞, so the lines

 =  are VAs for all integers . E.  0() =
cos

sin
= cot, so  0()  0 when 2    2 + 

2
for each

integer , and  0()  0 when 2 + 
2
   (2+ 1). Thus,  is increasing on


2 2 + 

2


and

decreasing on

2 + 

2
 (2+ 1)


for each integer .

F. Local maximum values 

2 + 

2


= 0, no local minimum.

G.  00() = − csc2   0, so  is CD on (2 (2+ 1)) for

each integer  No IP

H.

50.  = () = ln(1 + 3) A. 1 + 3  0 ⇔ 3  −1 ⇔   −1, so  = (−1∞). B. -intercept:

(0) = ln 1 = 0; -intercept: () = 0 ⇔ ln(1 + 3) = 0 ⇔ 1 + 3 = 0 ⇔ 3 = 0 ⇔  = 0 C. No

symmetry. D. lim
→−1+

() = −∞, so  = −1 is a VA E.  0() =
32

1 + 3
.  0()  0 on (−1 0) and (0∞)

[ 0() = 0 at  = 0], so by Exercise 4.3.91,  is increasing on (−1∞). F. No extreme values

G.  00() =
(1 + 3)(6)− 32(32)

(1 + 3)2

=
3[2(1 + 3)− 33]

(1 + 3)2
=

3(2− 3)

(1 + 3)2

 00()  0 ⇔ 0   
3
√

2, so  is CU on

0

3
√

2


and  is CD on (−1 0)

and

3
√

2∞. IP at (0 0) and

3
√

2 ln 3


H.

51.  = () = −1 A.  = (−∞ 0) ∪ (0∞) B. No intercept C. No symmetry

D. lim
→0−

−1

1

H
= lim

→0−

−1(12)

−12
= − lim

→0−
−1 = −∞, so  = 0 is a VA. Also, lim

→0+
−1 = 0, so the graph

approaches the origin as → 0+. E.  0() = −1


1

2


+ −1(1) = −1


1


+ 1


=

 + 1

1
 0 ⇔

  −1 or   0, so  is increasing on (−∞−1) and (0∞), and  is decreasing on (−1 0).

F. Local maximum value (−1) = −, no local minimum value

G.  0() = −1


1


+ 1


⇒

 00() = −1


− 1

2


+


1


+ 1


−1


1

2


=

1

2
−1


−1 +


1


+ 1


=

1

31
 0 ⇔

  0, so  is CU on (0∞) and CD on (−∞ 0). No IP

H.
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74 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

52.  = () =
ln

2
A.  = (0∞) B. -intercept: none; -intercept: () = 0 ⇔ ln = 0 ⇔  = 1

C. No symmetry D. lim
→0+

() = −∞, so  = 0 is a VA; lim
→∞

ln

2

H
= lim

→∞
1

2
= 0, so  = 0 is a HA.

E.  0() =
2(1)− (ln)(2)

(2)2
=

(1− 2 ln)

4
=

1− 2 ln

3
.  0()  0 ⇔ 1− 2 ln  0 ⇔ ln  1

2
⇒

0    12 and  0()  0 ⇒   12, so  is increasing on

0
√



and decreasing on
√

∞


.

F. Local maximum value (12) =
12


=

1

2

G.  00() =
3(−2)− (1− 2 ln)(32)

(3)2

=
2[−2− 3(1− 2 ln)]

6
=
−5 + 6 ln

4

 00()  0 ⇔ −5 + 6 ln  0 ⇔ ln  5
6
⇒   56 [  is CU]

and  00()  0 ⇔ 0    56 [  is CD]. IP at (56 5(653))

H.

53.  = () = arctan A.  = R B. -intercept: (0) = 0 = 1; no -intercept since arctan is positive for all .

C. No symmetry D. lim
→−∞

() = −2 [≈ 021], so  = −2 is a HA. lim
→∞

() = 2 [≈ 481], so  = 2 is a

HA. E.  0() = arctan


1

1 + 2


.  0()  0 for all , so  is increasing on R. F. No local extrema

G.  00() =

(1 + 2)arctan


1

1 + 2


− arctan (2)

(1 + 2)2

=
arctan (1− 2)

(1 + 2)2

 00()  0 for   1
2

, so  is CU on
−∞ 1

2


and  is CD on


1
2
∞.

IP at


1
2
 arctan 12


≈ (05 159)

H.

 

54.  = () = tan−1


− 1

+ 1


A.  = { |  6= −1} B. -intercept = 1, -intercept = (0) = tan−1(−1) = −

4

C. No symmetry D. lim
→±∞

tan−1


− 1

+ 1


= lim

→±∞
tan−1


1− 1

1 + 1


= tan−1 1 = 

4
, so  = 

4
is a HA.

Also lim
→−1+

tan−1


− 1

+ 1


= −

2
and lim

→−1−
tan−1


− 1

 + 1


=



2
.

E.  0() =
1

1 + [(− 1)( + 1)]2
(+ 1)− (− 1)

(+ 1)2
=

2

( + 1)2 + (− 1)2
=

1

2 + 1
 0,

so  is increasing on (−∞−1) and (−1∞)  F. No extreme values

G.  00 () = −2

2 + 1

2
 0 ⇔   0, so  is CU on (−∞−1)

and (−1 0), and CD on (0∞). IP at

0−

4


H.
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SECTION 4.5 SUMMARY OF CURVE SKETCHING ¤ 75

55.  = () =
0

1− 22
. The m-intercept is (0) = 0. There are no -intercepts. lim

→−
() =∞, so  =  is a VA.

 0() = −1
2
0(1− 22)−32(−22) =

0

2(1− 22)32
=

0

2(2 − 2)32

3

=
0

(2 − 2)32
 0, so  is

increasing on (0 ). There are no local extreme values.

 00() =
(2 − 2)32(0)−0 · 3

2
(2 − 2)12(−2)

[(2 − 2)32]2

=
0(

2 − 2)12[(2 − 2) + 32]

(2 − 2)3
=

0(
2 + 22)

(2 − 2)52
 0,

so  is CU on (0 ). There are no inflection points.

56. Let  = 2
0

4 and  = 22, so the equation can be written as  = () =

+ 2 =


2 + 

2
=


2 + 


.

lim
→0+


2 + 


=∞, so  = 0 is a VA.

lim
→∞


2 + 


= lim

→∞


2 + 


= lim

→∞


+ 2

1
=
√
, so  =

√
 = 0

2 is a HA.

 0() =
 · 1

2
(2 + )−12(2)− (2 + )12(1)

2
=

(2 + )−12[2 − (2 + )]

2
=

−
2

2 + 

 0,

so  is decreasing on (0∞). Using the Reciprocal Rule,

 00() =  · 
2 · 1

2
(2 + )−12(2) + (2 + )12(2)

2

2 + 

2

=
(2 + )−12[2 + 2(2 + )]

2

2 + 

2
=

(32 + 2)

3(2 + )32
 0,

so  is CU on (0∞). There are no extrema or inflection points. The graph

shows that as  decreases, the energy increases and as  increases, the energy

decreases. For large wavelengths, the energy is very close to the energy at rest.

57. (a) () =
1

2
⇒ 1

2
=

1

1 + −
⇔ 1 + − = 2 ⇔ − = 1 ⇔ − =

1


⇔

ln − = ln −1 ⇔ − = − ln  ⇔  =
ln 


, which is when half the population will have heard the rumor.

(b) The rate of spread is given by 0() =
−

(1 + −)2
. To find the greatest rate of spread, we’ll apply the First Derivative

Test to 0() [not ()].

[0()]0 = 00() =
(1 + −)2(−2−)− − · 2(1 + −)(−−)

[(1 + −)2]2

=
(1 + −)(−−)[(1 + −)− 2−]

(1 + −)4
=
−−()(1− −)

(1 + −)3
=

2−(− − 1)

(1 + −)3
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76 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

00()  0 ⇔ −  1 ⇔ −  ln −1 ⇔  
ln 


, so 0() is increasing for  

ln 


and 0() is

decreasing for  
ln 


. Thus, 0(), the rate of spread of the rumor, is greatest at the same time,

ln 


, as when half the

population [by part (a)] has heard it.

(c) (0) =
1

1 + 
and lim

→∞
() = 1. The graph is shown

with  = 4 and  = 1
2

.

58. () = (− − −), where   0 and     0. (0) = (1− 1) = 0 is the only intercept. lim
→∞

() = 0, so

 = 0 is a HA. 0() = (−− + −)  0 ⇔ −  − ⇔ − 



⇔ (−) 




⇔

(− )  ln



⇔  

ln()

− 
or

ln()

− 
[call this value ].  is increasing for    and decreasing for   , so

() is a local maximum [and absolute] value. 00() = (2− − 2−)  0 ⇔ 2−  2− ⇔

− 
2

2
⇔ (−) 






2

⇔ (− )  ln






2

⇔  
2 ln()

− 
= 2, so  is CU on (2∞) and

CD on (0 2). The inflection point is (2(2)). For the graph shown,

 = 1,  = 1,  = 2,  = ln 2, () = 1
4

, and (2) = 3
16

. The graph tells

us that when the drug is injected into the bloodstream, its concentration rises

rapidly to a maximum at time , then falls, reaching its maximum rate of

decrease at time 2, then continues to decrease more and more slowly,

approaching 0 as →∞.

59.  = − 

24
4 +



12
3 − 2

24
2 = − 

24
2

2 − 2+ 2


=
−
24

2(− )2 = 2(− )2

where  = − 

24
is a negative constant and 0 ≤  ≤ . We sketch

() = 2(− )2 for  = −1. (0) = () = 0.

 0() = 2[2(− )] + (− )2(2) = 2(− )[+ (− )] = 2(− )(2− ). So for 0    ,

 0()  0 ⇔ (− )(2− )  0 [since   0] ⇔ 2     and  0()  0 ⇔ 0    2.

Thus,  is increasing on (2 ) and decreasing on (0 2), and there is a local and absolute

minimum at the point (2 (2)) =

2 416


.  0() = 2[(− )(2− )] ⇒

 00() = 2[1(− )(2− ) + (1)(2− ) + (− )(2)] = 2(62 − 6 + 2) = 0 ⇔

 =
6±

√
122

12
= 1

2
±

√
3

6
, and these are the -coordinates of the two inflection points.
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SECTION 4.5 SUMMARY OF CURVE SKETCHING ¤ 77

60.  () = − 

2
+



(− 2)
2

, where   0 and 0    2. For 0    2, − 2  0, so

 0() =
2

3
− 2

(− 2)
3
 0 and  is increasing. lim

→0+
 () = −∞ and

lim
→2−

 () =∞, so  = 0 and  = 2 are vertical asymptotes. Notice that when the

middle particle is at  = 1, the net force acting on it is 0. When   1, the net force is

positive, meaning that it acts to the right. And if the particle approaches  = 2, the force

on it rapidly becomes very large. When   1, the net force is negative, so it acts to the

left. If the particle approaches 0, the force becomes very large to the left.

61.  =
2 + 1

 + 1
. Long division gives us: − 1

+ 1 2 + 1

2 + 

−  + 1

− − 1

2

Thus,  = () =
2 + 1

+ 1
= − 1 +

2

+ 1
and ()− (− 1) =

2

+ 1
=

2



1 +
1



[for  6= 0] → 0 as → ±∞.

So the line  = − 1 is a slant asymptote (SA).

62.  =
43 − 102 − 11+ 1

2 − 3
. Long division gives us: 4 + 2

2 − 3 43 − 102 − 11 + 1

43 − 122

22 − 11

22 − 6

−5 + 1

Thus,  = () =
43 − 102 − 11 + 1

2 − 3
= 4 + 2 +

−5+ 1

2 − 3
and ()− (4+ 2) =

−5+ 1

2 − 3
=
− 5


+

1

2

1− 3



[for  6= 0] → 0
1

= 0 as → ±∞. So the line  = 4+ 2 is a slant asymptote (SA).

63.  =
23 − 52 + 3

2 − − 2
. Long division gives us: 2− 3

2 − − 2 23 − 52 + 3

23 − 22 − 4

−32 + 7

−32 + 3+ 6

4− 6

Thus,  = () =
23 − 52 + 3

2 − − 2
= 2− 3 +

4− 6

2 − − 2
and ()− (2− 3) =

4− 6

2 − − 2
=

4


− 6

2

1− 1


− 1

2

[for  6= 0] → 0
1

= 0 as → ±∞. So the line  = 2− 3 is a slant asymptote (SA).
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78 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

64.  =
−64 + 23 + 3

23 − 
. Long division gives us: −3+ 1

23 −  −64 + 23 + 3

−64 + 32

23 − 32

23 − 

−32 + + 3

Thus,  = () =
−64 + 23 + 3

23 − 
= −3 + 1 +

−32 + + 3

23 − 
and

()− (−3 + 1) =
−32 + + 3

23 − 
=
− 3


+

1

2
+

3

3

2− 1

2

[for  6= 0] → 0
2

= 0 as → ±∞. So the line  = −3+ 1

is a slant asymptote (SA).

65.  = () =
2

− 1
= + 1 +

1

− 1
A.  = (−∞ 1) ∪ (1∞) B. -intercept: () = 0 ⇔  = 0;

-intercept: (0) = 0 C. No symmetry D. lim
→1−

() = −∞ and lim
→1+

() =∞, so  = 1 is a VA.

lim
→±∞

[()− (+ 1)] = lim
→±∞

1

− 1
= 0, so the line  = + 1 is a SA.

E.  0() = 1− 1

(− 1)2
=

(− 1)2 − 1

(− 1)2
=

2 − 2

(− 1)2
=

(− 2)

(− 1)2
 0 for

  0 or   2, so  is increasing on (−∞ 0) and (2∞), and  is decreasing

on (0 1) and (1 2). F. Local maximum value (0) = 0, local minimum value

(2) = 4 G.  00() =
2

(− 1)3
 0 for   1, so  is CU on (1∞) and 

is CD on (−∞ 1). No IP

H.

66.  = () =
1 + 5− 22

− 2
= −2+ 1 +

3

− 2
A.  = (−∞ 2) ∪ (2∞) B. -intercepts: () = 0 ⇔

1 + 5− 22 = 0 ⇒  =
−5±√33

−4
⇒  ≈ −019, 269; -intercept: (0) = − 1

2
C. No symmetry

D. lim
→2−

() = −∞ and lim
→2+

() =∞, so  = 2 is a VA. lim
→±∞

[()− (−2+ 1)] = lim
→±∞

3

− 2
= 0, so

 = −2+ 1 is a SA.

E.  0() = −2− 3

(− 2)2
=
−2(2 − 4 + 4)− 3

(− 2)2

=
−22 + 8− 11

(− 2)2
 0

for  6= 2, so  is decreasing on (−∞ 2) and (2∞). F. No local extrema

G.  00() =
6

(− 2)3
 0 for   2, so  is CU on (2∞) and CD on (−∞ 2).

No IP

H.
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SECTION 4.5 SUMMARY OF CURVE SKETCHING ¤ 79

67.  = () =
3 + 4

2
=  +

4

2
A.  = (−∞ 0) ∪ (0∞) B. -intercept: () = 0 ⇔  = − 3

√
4; no -intercept

C. No symmetry D. lim
→0

() =∞, so  = 0 is a VA. lim
→±∞

[()− ] = lim
→±∞

4

2
= 0, so  =  is a SA.

E.  0() = 1− 8

3
=

3 − 8

3
 0 for   0 or   2, so  is increasing on

(−∞ 0) and (2∞), and  is decreasing on (0 2). F. Local minimum value

(2) = 3, no local maximum value G.  00() =
24

4
 0 for  6= 0, so  is CU

on (−∞ 0) and (0∞). No IP

H.

68.  = () =
3

(+ 1)2
= − 2 +

3+ 2

(+ 1)2
A.  = (−∞−1) ∪ (−1∞) B. -intercept: 0; -intercept: (0) = 0

C. No symmetry D. lim
→−1−

() = −∞ and lim
→−1+

() = −∞, so  = −1 is a VA.

lim
→±∞

[()− (− 2)] = lim
→±∞

3 + 2

( + 1)2
= 0, so  = − 2 is a SA.

E.  0() =
( + 1)2(32)− 3 · 2(+ 1)

[( + 1)2]2
=

2(+ 1)[3(+ 1)− 2]

(+ 1)4
=

2(+ 3)

(+ 1)3
 0 ⇔   −3 or

  −1 [ 6= 0], so  is increasing on (−∞−3) and (−1∞), and  is decreasing on (−3−1).

F. Local maximum value (−3) = − 27
4

, no local minimum

G.  00() =
( + 1)3(32 + 6)− (3 + 32) · 3(+ 1)2

[(+ 1)3]2

=
3( + 1)2[(+ 1)(+ 2)− (2 + 3)]

(+ 1)6

=
3(2 + 3+ 2− 2 − 3)

(+ 1)4
=

6

(+ 1)4
 0 ⇔

  0, so  is CU on (0∞) and  is CD on (−∞−1) and (−1 0). IP at (0 0)

H.

69.  = () = 1 + 1
2
 + − A.  = R B. -intercept = (0) = 2, no -intercept [see part F] C. No symmetry

D. No VA or HA. lim
→∞


()− 1 + 1

2



= lim
→∞

− = 0, so  = 1 + 1
2
 is a SA. E.  0() = 1

2
− −  0 ⇔

1
2
 − ⇔ −  ln 1

2
⇔   − ln 2−1 ⇔   ln 2, so  is increasing on (ln 2∞) and decreasing

on (−∞ ln 2). F. Local and absolute minimum value

(ln 2) = 1 + 1
2

ln 2 + − ln 2 = 1 + 1
2

ln 2 + (ln 2)−1

= 1 + 1
2

ln 2 + 1
2

= 3
2

+ 1
2

ln 2 ≈ 185,

no local maximum value G.  00() = −  0 for all , so  is CU

on (−∞∞). No IP

H.
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80 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

70.  = () = 1−  + 1+3 A.  = R B. -intercept = (0) = 1 + , no -intercept [see part F]

C. No symmetry D. No VA or HA lim
→−∞

[()− (1− )] = lim
→−∞

1+3 = 0, so  = 1−  is a SA.

E.  0() = −1 + 1
3
1+3  0 ⇔ 1

3
1+3  1 ⇔ 1+3  3 ⇔ 1 +



3
 ln 3 ⇔ 

3
 ln 3− 1 ⇔

  3(ln 3− 1) ≈ 03, so  isincreasing on (3 ln 3− 3∞) and decreasing

on (−∞ 3 ln 3− 3). F. Local and absolute minimum value

(3 ln 3−3) = 1− (3 ln 3−3)+1+ln 3−1 = 4−3 ln 3+3 = 7−3 ln 3 ≈ 37,

no local maximum value G.  00() = 1
9
1+3  0 for all , so  is CU

on (−∞∞). No IP

H.

71.  = () = − tan−1 ,  0() = 1− 1

1 + 2
=

1 + 2 − 1

1 + 2
=

2

1 + 2
,

 00() =
(1 + 2)(2)− 2(2)

(1 + 2)2
=

2(1 + 2 − 2)

(1 + 2)2
=

2

(1 + 2)2
.

lim
→∞


()− − 

2


= lim

→∞



2
− tan−1 


= 

2
− 

2
= 0, so  = − 

2
is a SA.

Also, lim
→−∞


()− + 

2


= lim

→−∞

−
2
− tan−1 


= −

2
− −

2


= 0,

so  = + 
2

is also a SA.  0() ≥ 0 for all , with equality ⇔  = 0, so  is

increasing on R.  00() has the same sign as , so  is CD on (−∞ 0) and CU on

(0∞). (−) = −(), so  is an odd function; its graph is symmetric about the

origin.  has no local extreme values. Its only IP is at (0 0).

72.  = () =
√
2 + 4 =


(+ 4). (+ 4) ≥ 0 ⇔  ≤ −4 or  ≥ 0, so  = (−∞−4] ∪ [0∞).

y-intercept: (0) = 0; x-intercepts: () = 0 ⇒  = −4, 0.

√
2 + 4∓ ( + 2) =

√
2 + 4∓ (+ 2)

1
·
√
2 + 4± (+ 2)√
2 + 4± (+ 2)

=
(2 + 4)− (2 + 4+ 4)√

2 + 4± ( + 2)

=
−4√

2 + 4± (+ 2)

so lim
→±∞

[()∓ ( + 2)] = 0. Thus, the graph of  approaches the slant asymptote  = + 2 as →∞ and it approaches

the slant asymptote  = −( + 2) as →−∞.  0() =
 + 2√
2 + 4

, so  0()  0 for   −4 and  0()  0 for   0;

that is,  is decreasing on (−∞−4) and increasing on (0∞). There are no local

extreme values.  0() = (+ 2)(2 + 4)−12 ⇒

 00() = (+ 2) · − 1
2


(2 + 4)−32 · (2+ 4) + (2 + 4)−12

= (2 + 4)−32
−(+ 2)2 + (2 + 4)


= −4(2 + 4)−32  0 on 

so  is CD on (−∞−4) and (0∞). No IP
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SECTION 4.5 SUMMARY OF CURVE SKETCHING ¤ 81

73.
2

2
− 2

2
= 1 ⇒  = ± 



√
2 − 2. Now

lim
→∞






√
2 − 2 − 





=




· lim
→∞

√
2 − 2 − 

 √2 − 2 + √
2 − 2 + 

=



· lim
→∞

−2

√
2 − 2 + 

= 0,

which shows that  =



 is a slant asymptote. Similarly,

lim
→∞


− 



√
2 − 2 −


− 





= − 


· lim
→∞

−2

√
2 − 2 + 

= 0, so  = − 


 is a slant asymptote.

74. ()− 2 =
3 + 1


− 2 =

3 + 1− 3


=

1


, and lim

→±∞
1


= 0 Therefore, lim

→±∞
[()− 2] = 0,

and so the graph of  is asymptotic to that of  = 2. For purposes of differentiation, we will use () = 2 + 1

A.  = { |  6= 0} B. No -intercept; to find the -intercept, we set  = 0 ⇔  = −1

C. No symmetry D. lim
→0+

3 + 1


=∞ and lim

→0−

3 + 1


= −∞,

so  = 0 is a vertical asymptote. Also, the graph is asymptotic to the parabola

 = 2, as shown above. E.  0() = 2− 12  0 ⇔   1
3√

2
, so 

is increasing on


1
3
√

2
∞


and decreasing on (−∞ 0) and


0

1
3
√

2


.

F. Local minimum value 


1
3
√

2


=

3
3
√

3

2
, no local maximum

G.  00() = 2 + 23  0 ⇔   −1 or   0, so  is CU on

(−∞−1) and (0∞), and CD on (−1 0). IP at (−1 0)

H. y

x21 0

75. lim
→±∞


()− 3


= lim

→±∞
4 + 1


− 4


= lim

→±∞
1


= 0, so the graph of  is asymptotic to that of  = 3

A.  = { |  6= 0} B. No intercept C.  is symmetric about the origin. D. lim
→0−


3 +

1




= −∞ and

lim
→0+


3 +

1




=∞, so  = 0 is a vertical asymptote, and as shown above, the graph of  is asymptotic to that of  = 3.

E.  0() = 32 − 12  0 ⇔ 4  1
3
⇔ ||  1

4√
3

, so  is increasing on


−∞− 1

4
√

3


and


1
4
√

3
∞


and

decreasing on


− 1

4
√

3
 0


and


0

1
4
√

3


. F. Local maximum value




− 1

4
√

3


= −4 · 3−54, local minimum value 


1
4
√

3


= 4 · 3−54

G.  00() = 6 + 23  0 ⇔   0, so  is CU on (0∞) and CD

on (−∞ 0). No IP

H.
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82 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

76. () = sin + −. lim
→∞

[()− sin] = lim
→∞

− = 0, so the graph of

 is asymptotic to the graph of sin as →∞. lim
→−∞

− =∞, whereas

|sin| ≤ 1, so for large negative , the graph of  looks like the graph of −.

4.6 Graphing with Calculus and Calculators

1. () = 5 − 54 − 3 + 282 − 2 ⇒  0() = 54 − 203 − 32 + 56− 2 ⇒  00() = 203 − 602 − 6+ 56.

() = 0 ⇔  = 0 or  ≈ −209, 007;  0() = 0 ⇔  ≈ −150, 004, 262, 284;  00() = 0 ⇔  ≈ −089,

115, 274.

From the graphs of  0, we estimate that  0  0 and that  is decreasing on (−150 004) and (262 284), and that  0  0

and  is increasing on (−∞−150), (004 262), and (284∞) with local minimum values (004) ≈ −004 and

(284) ≈ 5673 and local maximum values (−150) ≈ 3647 and (262) ≈ 5683.

From the graph of  00, we estimate that  00  0 and that  is CU on (−089 115)

and (274∞), and that  00  0 and  is CD on (−∞−089) and (115 274).

There are inflection points at about (−089 2090), (115 2657), and (274 5678).

2. () = −26 + 55 + 1403 − 1102 ⇒  0() = −125 + 254 + 4202 − 220 ⇒
 00() = −604 + 1003 + 840− 220. () = 0 ⇔  = 0 or  ≈ 077, 493;  0() = 0 ⇔  = 0 or
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SECTION 4.6 GRAPHING WITH CALCULUS AND CALCULATORS ¤ 83

 ≈ 052, 399;  00() = 0 ⇔  ≈ 026, 305.

From the graphs of  0, we estimate that  0  0 and that  is increasing on (−∞ 0) and (052 399), and that  0  0 and that

 is decreasing on (0 052) and (399∞).  has local maximum values (0) = 0 and (399) ≈ 412820, and  has local

minimum value (052) ≈ −991. From the graph of  00, we estimate that  00  0 and  is CU on (026 305), and that

 00  0 and  is CD on (−∞ 026) and (305∞). There are inflection points at about (026−497) and (305 264946).

3. () = 6 − 55 + 253 − 62 − 48 ⇒
 0() = 65 − 254 + 752 − 12− 48 ⇒
 00() = 304 − 1003 + 150− 12. () = 0 ⇔  = 0 or  ≈ 320;

 0() = 0 ⇔  ≈ −131, −084, 106, 250, 275;  00() = 0 ⇔
 ≈ −110, 008, 172, 264.

From the graph of  0, we estimate that  is decreasing on (−∞−131), increasing

on (−131−084), decreasing on (−084 106), increasing on (106 250),

decreasing on (250 275), and increasing on (275∞).  has local minimum

values (−131) ≈ 2072, (106) ≈ −3312, and (275) ≈ −1133.  has

local maximum values (−084) ≈ 2371 and (250) ≈ −1102.

From the graph of  00, we estimate that  is CU on (−∞−110), CD on

(−110 008), CU on (008 172), CD on (172 264), and CU on (264∞). There

are inflection points at about (−110 2209), (008−388), (172−2253), and

(264−1118).
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84 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

4. () =
4 − 3 − 8

2 − − 6
⇒  0() =

2(5 − 24 − 113 + 92 + 8− 4)

(2 − − 6)
2

⇒

 00() =
2(6 − 35 − 154 + 413 + 1742 − 84− 56

(2 − − 6)
3

. () = 0 ⇔  ≈ −148 or  = 2;  0() = 0 ⇔

 ≈ −274, −081, 041, 108, 406;  00() = 0 ⇔  ≈ −039, 079. The VAs are  = −2 and  = 3.

From the graphs of  0, we estimate that  is decreasing on (−∞−274), increasing on (−274−2), increasing on

(−2−081), decreasing on (−081 041), increasing on (041 108), decreasing on (108 3), decreasing on (3 406), and

increasing on (406∞).  has local minimum values (−274) ≈ 1623, (041) ≈ 129, and (406) ≈ 3063.

 has local maximum values (−081) ≈ 155 and (108) ≈ 134.

From the graphs of  00, we estimate that  is CU on (−∞−2), CD on (−2−039), CU on (−039 079), CD on

(079 3), and CU on (3∞). There are inflection points at about (−039 145) and (079 131).

5. () =


3 + 2 + 1
⇒  0() = − 23 + 2 − 1

(3 + 2 + 1)2
⇒  00() =

2(34 + 33 + 2 − 6− 3)

(3 + 2 + 1)3

From the graph of  , we see that there is a VA at  ≈ −147. From the graph of  0, we estimate that  is increasing on

(−∞−147), increasing on (−147 066), and decreasing on (066∞), with local maximum value (066) ≈ 038.

From the graph of  00, we estimate that  is CU on (−∞−147), CD on (−147−049), CU on (−049 0), CD on

(0 110), and CU on (110∞). There is an inflection point at (0 0) and at about (−049−044) and (110 031).

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 4.6 GRAPHING WITH CALCULUS AND CALCULATORS ¤ 85

6. () = 6 sin− 2, −5 ≤  ≤ 3 ⇒  0() = 6 cos− 2 ⇒  00() = −6 sin− 2

From the graph of  0, which has two negative zeros, we estimate that  is increasing on (−5−294), decreasing on

(−294−266), increasing on (−266 117), and decreasing on (117 3), with local maximum values (−294) ≈ −984

and (117) ≈ 416, and local minimum value (−266) ≈ −985.

From the graph of  00, we estimate that  is CD on (−5−280), CU on (−280−034), and CD on (−034 3). There are

inflection points at about (−280−985) and (−034−212).

7. () = 6 sin+ cot, − ≤  ≤  ⇒  0() = 6 cos− csc2 ⇒  00() = −6 sin+ 2csc2 cot

From the graph of  , we see that there are VAs at  = 0 and  = ±.  is an odd function, so its graph is symmetric about

the origin. From the graph of  0, we estimate that  is decreasing on (−−140), increasing on (−140−044), decreasing

on (−044 0), decreasing on (0 044), increasing on (044 140), and decreasing on (140 ), with local minimum values

(−140) ≈ −609 and (044) ≈ 468, and local maximum values (−044) ≈ −468 and (140) ≈ 609.

From the graph of  00, we estimate that  is CU on (−−077), CD on (−077 0), CU on (0 077), and CD on

(077 ). There are IPs at about (−077−522) and (077 522).

8. () =  − 01864 ⇒  0() =  − 07443 ⇒  00() =  − 22322

From the graph of  0, which has two positive zeros, we estimate that  is increasing on (−∞ 2973), decreasing on

(2973 3027), and increasing on (3027∞), with local maximum value (2973) ≈ 501958 and local minimum value

(3027) ≈ 501949.

From the graph of  00, we estimate that  is CD on (−∞−052), CU on (−052 125), CD on (125 300), and CU

on (300∞). There are inflection points at about (−052 058), (125 304) and (300 501954).
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86 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

9. () = 1 +
1


+

8

2
+

1

3
⇒  0() = − 1

2
− 16

3
− 3

4
= − 1

4
(2 + 16 + 3) ⇒

 00() =
2

3
+

48

4
+

12

5
=

2

5
(2 + 24+ 6).

From the graphs, it appears that  increases on (−158−02) and decreases on (−∞−158), (−02 0), and (0∞); that 

has a local minimum value of (−158) ≈ 097 and a local maximum value of (−02) ≈ 72; that  is CD on (−∞−24)

and (−025 0) and is CU on (−24−025) and (0∞); and that  has IPs at (−24 097) and (−025 60).

To find the exact values, note that  0 = 0 ⇒  =
−16±√256− 12

2
= −8±√61 [≈ −019 and −1581].

 0 is positive ( is increasing) on
−8−√61−8 +

√
61


and  0 is negative ( is decreasing) on
−∞−8−√61


,

−8 +
√

61 0

, and (0∞).  00 = 0 ⇒  =

−24±√576− 24

2
= −12±√138 [≈ −025 and −2375].  00 is

positive ( is CU) on
−12−√138−12 +

√
138


and (0∞) and  00 is negative ( is CD) on

−∞−12−√138


and
−12 +

√
138 0


.

10. () =
1

8
− 

4
[ = 2× 108] ⇒

 0() = − 8

9
+

4

5
= − 4

9
(2− 4) ⇒

 00() =
72

10
− 20

6
=

4

10
(18− 54).

From the graph, it appears that  increases on (−001 0) and (001∞) and decreases on (−∞−001) and (0 001);

that  has a local minimum value of (±001) = −1016; and that  is CU on (−0012 0) and (0 0012) and  is CD

on (−∞−0012) and (0012∞).

To find the exact values, note that  0 = 0 ⇒ 4 = 2

⇒ ± 4


2


= ± 1
100

[ = 2× 108].  0 is positive

( is increasing) on (−001 0) and (001∞) and  0 is negative ( is decreasing) on (−∞−001) and (0 001).

 00 = 0 ⇒ 4 =
18

5
⇒  = ± 4


18

5
= ± 1

100
4
√

18 [≈ ±00116].  00 is positive ( is CU) on
− 1

100

4
√

18 0


and

0 1

100

4
√

18


and  00 is negative ( is CD) on
−∞− 1

100

4
√

18


and


1
100

4
√

18∞.
11. (a) () = 2 ln. The domain of  is (0∞).

(b) lim
→0+

2 ln = lim
→0+

ln

12

H
= lim

→0+

1

−23
= lim

→0+


−2

2


= 0.

There is a hole at (0 0).
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SECTION 4.6 GRAPHING WITH CALCULUS AND CALCULATORS ¤ 87

(c) It appears that there is an IP at about (02−006) and a local minimum at (06−018). () = 2 ln ⇒

 0() = 2(1) + (ln)(2) = (2 ln + 1)  0 ⇔ ln  − 1
2
⇔   −12, so  is increasing on

1
√
∞


, decreasing on


0 1

√



. By the FDT, 

1
√



= −1(2) is a local minimum value. This point is

approximately (06065−01839), which agrees with our estimate.

 00() = (2) + (2 ln + 1) = 2 ln+ 3  0 ⇔ ln  − 3
2
⇔   −32, so  is CU on (−32∞)

and CD on (0 −32). IP is (−32−3(23)) ≈ (02231−00747).

12. (a) () = 1. The domain of  is (−∞ 0) ∪ (0∞).

(b) lim
→0+

1 = lim
→0+

1

1

H
= lim

→0+

1
−12


−12

= lim
→0+

1 =∞,

so  = 0 is a VA.

Also lim
→0−

1 = 0 since 1→ −∞ ⇒ 1 → 0.

(c) It appears that there is a local minimum at (1 27). There are no IP and  is CD on (−∞ 0) and CU on (0∞).

() = 1 ⇒  0() = 1

− 1

2


+ 1 = 1


1− 1




 0 ⇔ 1


 1 ⇔   0 or   1,

so  is increasing on (−∞ 0) and (1∞), and decreasing on (0 1). By the FDT, (1) =  is a local minimum value,

which agrees with our estimate.

 00() = 1(12) + (1− 1)1(−12) = (12)(1− 1 + 1) = 13  0 ⇔   0, so  is

CU on (0,∞) and CD on (−∞ 0). No IP

13. () =
(+ 4)(− 3)2

4(− 1)
has VA at  = 0 and at  = 1 since lim

→0
() = −∞,

lim
→1−

() = −∞ and lim
→1+

() =∞.

() =

 + 4


· (− 3)2

2

4

3
· (− 1)


dividing numerator

and denominator by 3


=

(1 + 4)(1− 3)2

(− 1)
→ 0

as → ±∞, so  is asymptotic to the -axis.

Since  is undefined at  = 0, it has no -intercept. () = 0 ⇒ (+ 4)(− 3)2 = 0 ⇒  = −4 or  = 3, so  has

-intercepts−4 and 3. Note, however, that the graph of  is only tangent to the -axis and does not cross it at  = 3, since  is

positive as → 3− and as → 3+.

From these graphs, it appears that  has three maximum values and one minimum value. The maximum values are
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88 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

approximately (−56) = 00182, (082) = −2815 and (52) = 00145 and we know (since the graph is tangent to the

-axis at  = 3) that the minimum value is (3) = 0.

14. () =
(2+ 3)2(− 2)5

3(− 5)2
has VAs at  = 0 and  = 5 since lim

→0−
() =∞,

lim
→0+

() = −∞, and lim
→5

() =∞. No HA since lim
→±∞

() =∞.

Since  is undefined at  = 0, it has no -intercept.

() = 0 ⇔ (2+ 3)
2
(− 2)

5
= 0 ⇔  = − 3

2
or  = 2, so 

has -intercepts at − 3
2

and 2. Note, however, that the graph of  is only tangent to

the -axis and does not cross it at  = −3
2

, since  is positive as → − 3
2

−
and

as → −3
2

+
. There is a local minimum value of 

−3
2


= 0.

The only “mystery” feature is the local minimum to the right of the VA

 = 5. From the graph, we see that (798) ≈ 609 is a local minimum

value.

15. () =
2(+ 1)3

(− 2)2(− 4)4
⇒  0() = −(+ 1)2(3 + 182 − 44− 16)

(− 2)3(− 4)5
[from CAS].

From the graphs of  0, it seems that the critical points which indicate extrema occur at  ≈ −20, −03, and 25, as estimated

in Example 3. (There is another critical point at  = −1, but the sign of  0 does not change there.) We differentiate again,

obtaining  00() = 2
(+ 1)(6 + 365 + 64 − 6283 + 6842 + 672+ 64)

(− 2)4(− 4)6
.

From the graphs of  00, it appears that  is CU on (−353−50), (−1−05), (−01 2), (2 4) and (4∞) and CD

on (−∞−353), (−50−1) and (−05−01). We check back on the graphs of  to find the -coordinates of the

inflection points, and find that these points are approximately (−353−0015), (−50−0005), (−1 0), (−05 000001),

and (−01 00000066).
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SECTION 4.6 GRAPHING WITH CALCULUS AND CALCULATORS ¤ 89

16. From a CAS,

and

 0() =
2(− 2)4(2 + 3)(23 − 142 − 10− 45)

4(− 5)3

 00() =
2(− 2)3(46 − 565 + 2164 + 4603 + 8052 + 1710+ 5400)

5(− 5)4

From Exercise 14 and  0() above, we know that the zeros of  0 are −15, 2,

and 798. From the graph of  0, we conclude that  is decreasing on (−∞−15),

increasing on (−15 0) and (0 5), decreasing on (5 798), and increasing

on (798∞).

From  00(), we know that  = 2 is a zero, and the graph of  00 shows us that

 = 2 is the only zero of  00. Thus,  is CU on (−∞ 0), CD on (0 2), CU on

(2 5), and CU on (5∞).

17. () =
3 + 52 + 1

4 + 3 − 2 + 2
. From a CAS,  0() =

−(5 + 104 + 63 + 42 − 3− 22)

(4 + 3 − 2 + 2)2
and

 00() =
2(9 + 158 + 187 + 216 − 95 − 1354 − 763 + 212 + 6 + 22)

(4 + 3 − 2 + 2)3

The first graph of  shows that  = 0 is a HA. As →∞, ()→ 0 through positive values. As →−∞, it is not clear if

()→ 0 through positive or negative values. The second graph of  shows that  has an -intercept near−5, and will have a

local minimum and inflection point to the left of−5.

From the two graphs of  0, we see that  0 has four zeros. We conclude that  is decreasing on (−∞−941), increasing on

(−941−129), decreasing on (−129 0), increasing on (0 105), and decreasing on (105∞). We have local minimum

values (−941) ≈ −0056 and (0) = 05, and local maximum values (−129) ≈ 749 and (105) ≈ 235.

[continued]
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90 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

From the two graphs of  00, we see that  00 has five zeros. We conclude that  is CD on (−∞−1381), CU on

(−1381−155), CD on (−155−103), CU on (−103 060), CD on (060 148), and CU on (148∞). There are five

inflection points: (−1381−005), (−155 564), (−103 539), (060 152), and (148 193).

18.  = () =
23

1 +  + 4
. From a CAS, 0 = − 104 + − 2

313(4 + + 1)2
and 00 =

2(658 − 145 − 804 + 22 − 8− 1)

943(4 + + 1)3

 0() does not exist at  = 0 and  0() = 0 ⇔  ≈ −072 and 061, so  is increasing on (−∞−072), decreasing on

(−072 0), increasing on (0 061), and decreasing on (061∞). There is a local maximum value of (−072) ≈ 146 and a

local minimum value of (061) ≈ 041.  00() does not exist at  = 0 and  00() = 0 ⇔  ≈ −097, −046, −012,

and 111, so  is CU on (−∞−097), CD on (−097−046), CU on (−046−012), CD on (−012 0), CD on (0 111),

and CU on (111∞). There are inflection points at (−097 108), (−046 101), (−012 028), and (111 029).

19.  = () =
√
+ 5 sin,  ≤ 20.

From a CAS, 0 =
5cos+ 1

2
√
+ 5 sin

and 00 = −10 cos+ 25 sin2 + 10 sin + 26

4( + 5 sin)32
.

We’ll start with a graph of () = + 5 sin. Note that () =

() is only defined if () ≥ 0. () = 0 ⇔  = 0

or  ≈ −491, −410, 410, and 491. Thus, the domain of  is [−491−410] ∪ [0 410] ∪ [491 20].
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SECTION 4.6 GRAPHING WITH CALCULUS AND CALCULATORS ¤ 91

From the expression for 0, we see that 0 = 0 ⇔ 5 cos+ 1 = 0 ⇒ 1 = cos−1
−1

5

 ≈ 177 and

2 = 2 − 1 ≈ −451 (not in the domain of  ). The leftmost zero of  0 is 1 − 2 ≈ −451. Moving to the right, the

zeros of  0 are 1, 1 + 2, 2 + 2, 1 + 4, and 2 + 4. Thus,  is increasing on (−491−451), decreasing on

(−451−410), increasing on (0 177), decreasing on (177 410), increasing on (491 806), decreasing on (806 1079),

increasing on (1079 1434), decreasing on (1434 1708), and increasing on (1708 20). The local maximum values are

(−451) ≈ 062, (177) ≈ 258, (806) ≈ 360, and (1434) ≈ 439. The local minimum values are (1079) ≈ 243

and (1708) ≈ 349.

 is CD on (−491−410), (0 410), (491 960), CU on (960 1225),

CD on (1225 1581), CU on (1581 1865), and CD on (1865 20). There are

inflection points at (960 295), (1225 327), (1581 391), and (1865 420).

20.  = () = − tan−1 2. From a CAS, 0 =
4 − 2+ 1

4 + 1
and 00 =

2(34 − 1)

(4 + 1)2
. 0 = 0 ⇔  ≈ 054 or  = 1.

00 = 0 ⇔  ≈ ±076.

From the graphs of  and  0, we estimate that  is increasing on (−∞ 054), decreasing on (054 1), and increasing on

(1∞).  has local maximum value (054) ≈ 026 and local minimum value (1) ≈ 021.

From the graph of  00, we estimate that  is CU on (−∞−076), CD on (−076 076), and CU on (076∞). There are

inflection points at about (−076−128) and (076 024).

21.  = () =
1− 1

1 + 1
. From a CAS, 0 =

21

2(1 + 1)2
and 00 =

−21(1− 1 + 2+ 21)

4(1 + 1)3
.

 is an odd function defined on (−∞ 0) ∪ (0∞). Its graph has no x- or y-intercepts. Since lim
→±∞

() = 0, the x-axis

is a HA.  0()  0 for  6= 0, so  is increasing on (−∞ 0) and (0∞). It has no local extreme values.

 00() = 0 for  ≈ ±0417, so  is CU on (−∞−0417), CD on (−0417 0), CU on (0 0417), and CD on (0417∞).

 has IPs at (−0417 0834) and (0417−0834).

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



92 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

22.  = () =
3

3 + 2 sin
. From a CAS, 0 = − 6 cos

(3 + 2 sin)2
and 00 =

6(2 sin2 + 4cos2 + 3 sin)

(3 + 2 sin)3
. Since  is

periodic with period 2, we’ll restrict our attention to the interval [0 2). 0 = 0 ⇔ 6 cos = 0 ⇔  = 
2

or 3
2

.

00 = 0 ⇔  ≈ 416 or 527.

From the graphs of  and  0, we conclude that  is decreasing on

0 

2


, increasing on



2
 3

2


, and decreasing on


3
2
 2


.

 has local minimum value 


2


= 3

5
and local maximum value 


3
2


= 3.

From the graph of  00, we conclude that  is CU on (0 416), CD on (416 527), and CU on (527 2). There are

inflection points at about (416 231) and (527 231).

23. () =
1− cos(4)

8
≥ 0.  is an even function, so its graph is symmetric with respect to the -axis. The first graph shows

that  levels off at  = 1
2

for ||  07. It also shows that  then drops to the -axis. Your graphing utility may show some

severe oscillations near the origin, but there are none. See the discussion in Section 2.2 after Example 2, as well as “Lies My

Calculator and Computer Told Me” on the website.

The second graph indicates that as || increases,  has progressively smaller humps.

24. () =  + ln |− 4|. The first graph shows the big picture of  but conceals hidden behavior.

The second graph shows that for large negative values of ,  looks like () = ln ||. It also shows a minimum value and

a point of inflection.

The third graph hints at the vertical asymptote that we know exists at  = 4 because lim
→4

( + ln |− 4|) = −∞.

A graphing calculator is unable to show much of the dip of the curve toward the vertical asymptote because of limited

resolution. A computer can show more if we restrict ourselves to a narrow interval around  = 4. See the solution to

Exercise 2.2.48 for a hand-drawn graph of this function.
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SECTION 4.6 GRAPHING WITH CALCULUS AND CALCULATORS ¤ 93

25. (a) () = 1

(b) Recall that  =  ln . lim
→0+

1 = lim
→0+

(1) ln . As → 0+,
ln


→ −∞, so 1 = (1) ln → 0. This

indicates that there is a hole at (0 0). As →∞, we have the indeterminate form∞0. lim
→∞

1 = lim
→∞

(1) ln ,

but lim
→∞

ln



H
= lim

→∞
1

1
= 0, so lim

→∞
1 = 0 = 1. This indicates that  = 1 is a HA.

(c) Estimated maximum: (272 145). No estimated minimum. We use logarithmic differentiation to find any critical

numbers.  = 1 ⇒ ln  =
1


lnx ⇒ 0


=

1


· 1


+ (ln)


− 1

2


⇒ 0 = 1


1− ln

2


= 0 ⇒

ln = 1 ⇒  = . For 0    , 0  0 and for   , 0  0, so () = 1 is a local maximum value. This

point is approximately (27183 14447), which agrees with our estimate.

(d) From the graph, we see that  00() = 0 at  ≈ 058 and  ≈ 437. Since  00

changes sign at these values, they are -coordinates of inflection points.

26. (a) () = (sin)sin is continuous where sin  0, that is, on intervals

of the form (2 (2+ 1)), so we have graphed  on (0 ).

(b)  = (sin)sin  ⇒ ln  = sin ln sin, so

lim
→0+

ln  = lim
→0+

sin ln sin = lim
→0+

ln sin

csc

H
= lim

→0+

cot

− csc cot

= lim
→0+

(− sin) = 0 ⇒ lim
→0+

 = 0 = 1

(c) It appears that we have a local maximum at (157 1) and local minima at (038 069) and (276 069).

 = (sin)sin  ⇒ ln  = sin ln sin ⇒ 0


= (sin)

cos

sin


+ (ln sin) cos = cos (1 + ln sin) ⇒

0 = (sin)sin (cos)(1 + ln sin). 0 = 0 ⇒ cos = 0 or ln sin = −1 ⇒ 2 = 
2

or sin = −1.

On (0 ), sin = −1 ⇒ 1 = sin−1(−1) and 3 =  − sin−1(−1). Approximating these points gives us

(1 (1)) ≈ (03767 06922), (2 (2)) ≈ (15708 1), and (3 (3)) ≈ (27649 06922). The approximations

confirm our estimates.
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94 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

(d) From the graph, we see that  00() = 0 at  ≈ 094 and  ≈ 220.

Since  00 changes sign at these values, they are x-coordinates of inflection

points.

27.

From the graph of () = sin(+ sin 3) in the viewing rectangle [0 ] by [−12 12], it looks like  has two maxima

and two minima. If we calculate and graph  0() = [cos(+ sin 3)] (1 + 3 cos 3) on [0 2], we see that the graph of  0

appears to be almost tangent to the -axis at about  = 07. The graph of

 00 = − [sin(+ sin 3)] (1 + 3 cos 3)2 + cos(+ sin 3)(−9 sin 3)

is even more interesting near this -value: it seems to just touch the -axis.

If we zoom in on this place on the graph of  00, we see that  00 actually does cross the axis twice near  = 065,

indicating a change in concavity for a very short interval. If we look at the graph of  0 on the same interval, we see that it

changes sign three times near  = 065, indicating that what we had thought was a broad extremum at about  = 07 actually

consists of three extrema (two maxima and a minimum). These maximum values are roughly (059) = 1 and (068) = 1,

and the minimum value is roughly (064) = 099996. There are also a maximum value of about (196) = 1 and minimum

values of about (146) = 049 and (273) = −051. The points of inflection on (0 ) are about (061 099998),

(066 099998), (117 072), (175 077), and (228 034). On ( 2), they are about (401−034), (454−077),

(511−072), (562−099998), and (567−099998). There are also IP at (0 0) and ( 0). Note that the function is odd

and periodic with period 2, and it is also rotationally symmetric about all points of the form ((2+ 1) 0),  an integer.
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SECTION 4.6 GRAPHING WITH CALCULUS AND CALCULATORS ¤ 95

28. () = 3 +  = (2 + ) ⇒  0() = 32 +  ⇒  00() = 6

 = −6  = 0  = 6

-intercepts: When  ≥ 0, 0 is the only -intercept. When   0, the -intercepts are 0 and ±√−.
-intercept = (0) = 0.  is odd, so the graph is symmetric with respect to the origin.  00()  0 for   0 and

 00()  0 for   0, so  is CD on (−∞ 0) and CU on (0∞)  The origin is the only inflection point.

If   0, then  0()  0 for all , so  is increasing and has no local maximum or minimum.

If  = 0, then  0() ≥ 0 with equality at  = 0, so again  is increasing and has no local maximum or minimum.

If   0, then  0() = 3[2 − (−3)] = 3

+


−3


−


−3


, so  0 ()  0 on


−∞−


−3


and


−3∞


;  0 ()  0 on


−

−3


−3


. It follows that



−

−3


= − 2

3


−3 is a local maximum value and




−3


= 2
3


−3 is a local minimum value. As  decreases

(toward more negative values), the local maximum and minimum move

further apart.

There is no absolute maximum or minimum value. The only transitional

value of  corresponding to a change in character of the graph is  = 0.

29. () = 2 + 6+  ⇒  0() = 2+ 6− 2 ⇒  00() = 2 + 23

c = 0: The graph is the parabola  = 2 + 6, which has -intercepts −6 and 0, vertex (−3−9), and opens upward.

c 6= 0: The parabola  = 2 + 6 is an asymptote that the graph of  approaches as → ±∞. The -axis is a vertical

asymptote.

c  0: The -intercepts are found by solving () = 0 ⇔ 3 + 62 +  = () = 0. Now 0() = 0 ⇔  = −4

or 0, and  (  ) has a local maximum at  = −4. (−4) = 32 + , so if   −32, the maximum is negative and there are

no negative -intercepts; if  = −32, the maximum is 0 and there is one negative -intercept; if −32    0, the maximum

is positive and there are two negative -intercepts. In all cases, there is one positive -intercept.

As  → 0−, the local minimum point moves down and right, approaching (−3−9). [Note that since

 0() =
23 + 62 − 

2
, Descartes’ Rule of Signs implies that  0 has no positive roots and one negative root when   0.

 00() =
2(3 + )

3
 0 at that negative root, so that critical point yields a local minimum value. This tells us that there are no

local maximums when   0.]  0()  0 for   0, so  is increasing on (0∞). From  00() =
2(3 + )

3
, we see that 
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96 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

has an inflection point at

3
√− 6 3

√− . This inflection point moves down and left, approaching the origin as → 0−.

 is CU on (−∞ 0), CD on

0 3
√− , and CU on


3
√−∞.

c  0: The inflection point

3
√− 6 3

√−  is now in the third quadrant and moves up and right, approaching the origin as

→ 0+.  is CU on
−∞ 3

√− , CD on

3
√− 0, and CU on (0∞).  has a local minimum point in the first

quadrant. It moves down and left, approaching the origin as → 0+.  0() = 0 ⇔ 23 + 62 −  = () = 0. Now

0() = 0 ⇔  = −2 or 0, and  (not  ) has a local maximum at  = −2. (−2) = 8− , so  = 8 makes () = 0,

and hence,  0() = 0. When   8,  0()  0 and  is decreasing on (−∞ 0). For 0    8, there is a local minimum that

moves toward (−3−9) and a local maximum that moves toward the origin as  decreases.

 ≤ 0  ≥ 0

30. With  = 0 in  = () = 
√
2 − 2, the graph of  is just the point (0 0). Since (−)2 = 2, we only

consider   0. Since (−) = −(), the graph is symmetric about the origin. The domain of  is found by

solving 2 − 2 ≥ 0 ⇔ 2 ≤ 2 ⇔ || ≤ , which gives us [− ].

 0() =  · 1
2
(2 − 2)−12(−2) + (2 − 2)12(1) = (2 − 2)−12[−2 + (2 − 2)] =

2 − 22

√
2 − 2

.

 0()  0 ⇔ 2 − 22  0 ⇔ 2  22 ⇔ ||  
√

2, so  is increasing on−√2 
√

2


and decreasing on
−−√2


and



√

2 

. There is a local minimum value of


−√2


=
−√2


2 − 22 =

−√2


√

2


= −22 and a local maximum value of 


√

2


= 22.

 00() =
(2 − 2)12(−4)− (2 − 22) 1

2


2 − 2

−12
(−2)

[(2 − 2)12]2

=
(2 − 2)−12[(2 − 2)(−4) + (2 − 22)]

(2 − 2)1
=

2

22 − 32


(2 − 2)32

,

so  00() = 0 ⇔  = 0 or  = ±


3
2
, but only 0 is in the domain of  .

 00()  0 for 0     and  00()  0 for −    0, so  is CD on (0 )

and CU on (− 0). There is an IP at (0 0). So as || gets larger, the maximum and

minimum values increase in magnitude. The value of  does not affect the

concavity of  .
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SECTION 4.6 GRAPHING WITH CALCULUS AND CALCULATORS ¤ 97

31. () =  + −.  = 0 ⇒ − = − ⇒  = −2 ⇒ 2 = ln(−) ⇒  = 1
2

ln(−)

 0() =  − −.  0 = 0 ⇒ − =  ⇒  = 2 ⇒ 2 = ln  ⇒  = 1
2

ln .

 00() =  + − = ().

The only transitional value of  is 0. As  increases from −∞ to 0, 1
2

ln(−) is both the the -intercept and inflection point,

and this decreases from∞ to −∞. Also  0  0, so  is increasing. When  = 0, () =  0() =  00() = ,  is positive,

increasing, and concave upward. As  increases from 0 to∞, the absolute minimum occurs at  = 1
2

ln , which increases

from −∞ to∞. Also,  =  00  0, so  is positive and concave upward. The

value of the -intercept is (0) = 1 +  and this increases as  increases from

−∞ to∞.

Note: The minimum point


1
2

ln  2
√



can be parameterized by  = 1
2

ln ,

 = 2
√
, and after eliminating the parameter , we see that the minimum point

lies on the graph of  = 2.

32. We see that if  ≤ 0, () = ln(2 + ) is only defined for 2  − ⇒ ||  √−, and

lim
→√−+

() = lim
→−√−−

() = −∞, since ln  → −∞ as  → 0. Thus, for   0, there are vertical asymptotes at

 = ±√, and as  decreases (that is, || increases), the asymptotes get further apart. For  = 0, lim
→0

() = −∞, so there is

a vertical asymptote at  = 0. If   0, there are no asymptotes. To find the extrema and inflection points, we differentiate:

() = ln(2 + ) ⇒  0() =
1

2 + 
(2), so by the First Derivative Test there is a local and absolute minimum at

 = 0. Differentiating again, we get  00() =
1

2 + 
(2) + 2

−(2 + )−2(2)


=
2(− 2)

(2 + )2
.

Now if  ≤ 0,  00 is always negative, so  is concave down on both of the intervals

on which it is defined. If   0, then  00 changes sign when  = 2 ⇔

 = ±
√
. So for   0 there are inflection points at  = ±

√
, and as  increases,

the inflection points get further apart.

33. Note that  = 0 is a transitional value at which the graph consists of the -axis. Also, we can see that if we substitute − for ,

the function () =


1 + 22
will be reflected in the -axis, so we investigate only positive values of  (except  = −1, as a

demonstration of this reflective property). Also,  is an odd function. lim
→±∞

() = 0, so  = 0 is a horizontal asymptote

for all . We calculate  0() =
(1 + 22)− (22)

(1 + 22)2
= − (22 − 1)

(1 + 22)2
.  0() = 0 ⇔ 22 − 1 = 0 ⇔

[continued]
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98 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

 = ±1. So there is an absolute maximum value of (1) = 1
2

and an absolute minimum value of (−1) = − 1
2

.

These extrema have the same value regardless of , but the maximum points move closer to the -axis as  increases.

 00() =
(−23)(1 + 22)2 − (−32 + )[2(1 + 22)(22)]

(1 + 22)4

=
(−23)(1 + 22) + (32 − )(42)

(1 + 22)3
=

23(22 − 3)

(1 + 22)3

 00() = 0 ⇔  = 0 or ±√3, so there are inflection points at (0 0) and

at
±√3±√34


. Again, the -coordinate of the inflection points does not depend on , but as  increases, both inflection

points approach the -axis.

34. () =
sin

+ cos
⇒  0() =

1 +  cos

cos2  + 2 cos + 2
⇒  00() =

sin( cos− 2 + 2)

cos3 + 3 cos2 + 32 cos+ 3
. Notice that

 is an odd function and has period 2. We will graph  for 0 ≤  ≤ 2.

|c|≤ 1: See the first figure.  has VAs when the denominator is zero, that is, at

 = cos−1(−) and  = 2 − cos−1(−). So for  = −1, there are VAs at

 = 0 and  = 2, and as  increases, they move closer to  = , which is the

single VA when  = 1. Note that if  = 0, then () = tan. There are no

extreme points (on the entire domain) and inflection points occur at

multiples of .

c  1: See the second figure.  0() = 0 ⇔  = cos−1

−1




or

 = 2 − cos−1

−1




. The VA disappears and there is now a local maximum

and a local minimum. As → 1+, the coordinates of the local maximum

approach  and∞, and the coordinates of the local minimum approach 

and −∞.

As →∞, the graph of  looks like a graph of  = sin that is vertically compressed, and the local maximum and local

minimum approach


2
 0


and


3
2
 0

, respectively.

 00() = 0 ⇔ sin = 0 (IPs at  = ) or  cos− 2 + 2 = 0. The second condition is true if cos =
2 − 2



[ 6= 0]. The last equation has two solutions if−1 
2 − 2


 1 ⇒ −  2 − 2   ⇒ −  2 − 2 and

2 − 2   ⇒ 2 + − 2  0 and 2 − − 2  0 ⇒ (+ 2) (− 1)  0 and (− 2) (+ 1)  0 ⇒ − 1  0

[continued]

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 4.6 GRAPHING WITH CALCULUS AND CALCULATORS ¤ 99

[since   1] and − 2  0 ⇒   1 and   2. Thus, for 1    2, we have 2 nontrivial IPs at  = cos−1


2 − 2





and  = 2 − cos−1


2 − 2




.

c  −1: See the third figure. The VAs for  = −1 at  = 0 and  = 2 in the

first figure disappear and we now have a local minimum and a local maximum.

As →−1+, the coordinates of the local minimum approach 0 and −∞, and

the coordinates of the local maximum approach 2 and∞. As →−∞, the

graph of  looks like a graph of  = sin that is vertically compressed, and the

local minimum and local maximum approach


2
 0


and


3
2
 0

, respectively. As above, we have two nontrivial IPs

for −2    −1.

35. () = + sin ⇒  0() = + cos ⇒  00() = − sin

(−) = −(), so  is an odd function and its graph is symmetric with respect to the origin.

() = 0 ⇔ sin = −, so 0 is always an -intercept.

 0() = 0 ⇔ cos = −, so there is no critical number when ||  1. If || ≤ 1, then there are infinitely

many critical numbers. If 1 is the unique solution of cos = − in the interval [0 ], then the critical numbers are 2± 1,

where  ranges over the integers. (Special cases: When  = −1, 1 = 0; when  = 0,  = 
2

; and when  = 1, 1 = .)

 00()  0 ⇔ sin  0, so  is CD on intervals of the form (2 (2+ 1)).  is CU on intervals of the form

((2− 1) 2). The inflection points of  are the points ( ), where  is an integer.

If  ≥ 1, then  0() ≥ 0 for all , so  is increasing and has no extremum. If  ≤ −1, then  0() ≤ 0 for all , so  is

decreasing and has no extremum. If ||  1, then  0()  0 ⇔ cos  − ⇔  is in an interval of the form

(2 − 1 2 + 1) for some integer . These are the intervals on which  is increasing. Similarly, we

find that  is decreasing on the intervals of the form (2 + 1 2(+ 1) − 1). Thus,  has local maxima at the points

2 + 1, where  has the values (2 + 1) + sin1 = (2 + 1) +
√

1− 2, and  has local minima at the points

2 − 1, where we have (2 − 1) = (2 − 1)− sin1 = (2 − 1)−
√

1− 2.

The transitional values of  are −1 and 1. The inflection points move vertically, but not horizontally, when  changes.

When || ≥ 1, there is no extremum. For ||  1, the maxima are spaced

2 apart horizontally, as are the minima. The horizontal spacing between

maxima and adjacent minima is regular (and equals ) when  = 0, but

the horizontal space between a local maximum and the nearest local

minimum shrinks as || approaches 1.
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100 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

36. For () = (− − −),  affects only vertical stretching, so we let  = 1. From the first figure, we notice that the

graphs all pass through the origin, approach the -axis as  increases, and approach −∞ as → −∞. Next we let  = 2 and

produce the second figure.

Here, as  increases, the slope of the tangent at the origin increases and the local maximum value increases.

() = −2 − − ⇒  0() = − − 2−2.  0(0) = − 2, which increases as  increases.

 0() = 0 ⇒ − = 2−2 ⇒ 

2
= (−2) ⇒ ln



2
= (− 2) ⇒  = 1 =

ln − ln 2

− 2
, which decreases as

 increases (the maximum is getting closer to the -axis). (1) =
(− 2)22(−2)

1+2(−2)
. We can show that this value increases as 

increases by considering it to be a function of  and graphing its derivative with respect to , which is always positive.

37. If   0, then lim
→−∞

() = lim
→−∞

− = lim
→−∞




H
= lim

→−∞
1


= 0, and lim

→∞
() =∞.

If   0, then lim
→−∞

() = −∞, and lim
→∞

()
H
= lim

→∞
1


= 0.

If  = 0, then () = , so lim
→±∞

() = ±∞, respectively.

So we see that  = 0 is a transitional value. We now exclude the case  = 0, since we know how the function behaves

in that case. To find the maxima and minima of  , we differentiate: () = − ⇒

 0() = (−−) + − = (1− )−. This is 0 when 1−  = 0 ⇔  = 1. If   0 then this

represents a minimum value of (1) = 1(), since  0() changes from negative to positive at  = 1;

and if   0, it represents a maximum value. As || increases, the maximum or

minimum point gets closer to the origin. To find the inflection points, we

differentiate again:  0() = −(1− ) ⇒
 00() = −(−) + (1− )(−−) = (− 2)−. This changes sign

when − 2 = 0 ⇔  = 2. So as || increases, the points of inflection get

closer to the origin.

38. For  = 0, there is no inflection point; the curve is CU everywhere. If  increases, the curve simply becomes steeper, and there

are still no inflection points. If  starts at 0 and decreases, a slight upward bulge appears near  = 0, so that there are two

inflection points for any   0. This can be seen algebraically by calculating the second derivative:
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SECTION 4.6 GRAPHING WITH CALCULUS AND CALCULATORS ¤ 101

() = 4 + 2 +  ⇒  0() = 43 + 2 + 1 ⇒  00() = 122 + 2. Thus,  00()  0 when   0. For   0,

there are inflection points when  = ±

− 1

6
. For  = 0, the graph has one critical number, at the absolute minimum

somewhere around  = −06. As  increases, the number of critical points does not change. If  instead decreases from 0, we

see that the graph eventually sprouts another local minimum, to the right of the origin, somewhere between  = 1 and  = 2.

Consequently, there is also a maximum near  = 0.

After a bit of experimentation, we find that at  = −15, there appear to be two critical numbers: the absolute minimum at

about  = −1, and a horizontal tangent with no extremum at about  = 05. For any  smaller than this there will be

3 critical points, as shown in the graphs with  = −3 and with  = −5.

To prove this algebraically, we calculate  0() = 43 + 2+ 1. Now if

we substitute our value of  = −15, the formula for  0() becomes

43 − 3+ 1 = (+ 1)(2− 1)2. This has a double root at  = 1
2

, indicating

that the function has two critical points:  = −1 and  = 1
2

, just as we had

guessed from the graph.

39. (a) () = 4 − 22 + 1. For  = 0, () = −22 + 1, a parabola whose vertex, (0 1), is the absolute maximum. For

  0, () = 4 − 22 + 1 opens upward with two minimum points. As → 0, the minimum points spread apart and

move downward; they are below the -axis for 0    1 and above for   1. For   0, the graph opens downward, and

has an absolute maximum at  = 0 and no local minimum.

(b)  0() = 43 − 4 = 4(2 − 1) [ 6= 0]. If  ≤ 0, 0 is the only critical number.

 00() = 122 − 4, so  00(0) = −4 and there is a local maximum at

(0 (0)) = (0 1), which lies on  = 1− 2. If   0, the critical

numbers are 0 and ±1
√
. As before, there is a local maximum at

(0 (0)) = (0 1), which lies on  = 1− 2.

 00

±1

√



= 12− 4 = 8  0, so there is a local minimum at

 = ±1
√
. Here 


±1

√



= (12)− 2+ 1 = −1+ 1.

But

±1

√
−1+ 1


lies on  = 1− 2 since 1−


±1

√

2

= 1− 1.

40. (a) () = 23 + 2 + 2 ⇒  0() = 62 + 2+ 2 = 2(32 + + 1).  0() = 0 ⇔  =
−±√2 − 12

6
.

So  has critical points ⇔ 2 − 12 ≥ 0 ⇔ || ≥ 2
√

3. For  = ±2
√

3,  0() ≥ 0 on (−∞∞), so  0 does not

change signs at −6, and there is no extremum. If 2 − 12  0, then  0 changes from positive to negative at

 =
−−√2 − 12

6
and from negative to positive at  =

−+
√
2 − 12

6
. So  has a local maximum at

 =
−−√2 − 12

6
and a local minimum at  =

−+
√
2 − 12

6
.
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102 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

(b) Let 0 be a critical number for (). Then  0(0) = 0 ⇒

32
0 + 0 + 1 = 0 ⇔  =

−1− 32
0

0

. Now

(0) = 23
0 + 2

0 + 20 = 23
0 + 2

0

−1− 32
0

0


+ 20

= 23
0 − 0 − 33

0 + 20 = 0 − 3
0

So the point is (0 0) =

0 0 − 3

0


; that is, the point lies

on the curve  = − 3.

4.7 Optimization Problems

1. (a)
First Number Second Number Product

1 22 22

2 21 42

3 20 60

4 19 76

5 18 90

6 17 102

7 16 112

8 15 120

9 14 126

10 13 130

11 12 132

We needn’t consider pairs where the first number is larger

than the second, since we can just interchange the numbers

in such cases. The answer appears to be 11 and 12, but we

have considered only integers in the table.

(b) Call the two numbers  and . Then  +  = 23, so  = 23− . Call the product  . Then

 =  = (23− ) = 23− 2, so we wish to maximize the function  () = 23− 2. Since  0() = 23− 2,

we see that  0() = 0 ⇔  = 23
2

= 115. Thus, the maximum value of  is  (115) = (115)
2

= 13225 and it

occurs when  =  = 115.

Or: Note that  00() = −2  0 for all , so  is everywhere concave downward and the local maximum at  = 115

must be an absolute maximum.

2. The two numbers are + 100 and . Minimize () = (+ 100) = 2 + 100.  0() = 2+ 100 = 0 ⇒  = −50.

Since  00() = 2  0, there is an absolute minimum at  = −50. The two numbers are 50 and −50.

3. The two numbers are  and
100


, where   0. Minimize () = +

100


.  0() = 1− 100

2
=

2 − 100

2
. The critical

number is  = 10. Since  0()  0 for 0    10 and  0()  0 for   10, there is an absolute minimum at  = 10.

The numbers are 10 and 10.
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SECTION 4.7 OPTIMIZATION PROBLEMS ¤ 103

4. Call the two numbers  and . Then  +  = 16, so  = 16− . Call the sum of their squares . Then

 = 2 + 2 = 2 + (16− )2 ⇒ 0 = 2+ 2(16− )(−1) = 2− 32 + 2 = 4− 32. 0 = 0 ⇒  = 8.

Since 0()  0 for 0    8 and 0()  0 for   8, there is an absolute minimum at  = 8 Thus,  = 16− 8 = 8

and  = 82 + 82 = 128.

5. Let the vertical distance be given by () = (+ 2)− 2, −1 ≤  ≤ 2.

0() = 1− 2 = 0 ⇔  = 1
2

. (−1) = 0, 


1
2


= 9

4
, and (2) = 0, so

there is an absolute maximum at  = 1
2

. The maximum distance is




1
2


= 1

2
+ 2− 1

4
= 9

4
.

6. Let the vertical distance be given by

() = (2 + 1)− (− 2) = 22 − + 1. 0() = 4− 1 = 0 ⇔
 = 1

4
. 0()  0 for   1

4
and 0()  0 for   1

4
, so there is an absolute

minimum at  = 1
4

. The minimum distance is 


1
4


= 1

8
− 1

4
+ 1 = 7

8
.

7. If the rectangle has dimensions  and , then its perimeter is 2 + 2 = 100 m, so  = 50− . Thus, the area is

 =  = (50− ). We wish to maximize the function () = (50− ) = 50− 2, where 0    50. Since

0() = 50− 2 = −2(− 25), 0()  0 for 0    25 and 0()  0 for 25    50. Thus,  has an absolute

maximum at  = 25, and (25) = 252 = 625 m2. The dimensions of the rectangle that maximize its area are  =  = 25 m.

(The rectangle is a square.)

8. If the rectangle has dimensions  and , then its area is  = 1000 m2, so  = 1000. The perimeter

 = 2 + 2 = 2 + 2000. We wish to minimize the function  () = 2 + 2000 for   0.

 0() = 2− 20002 = (22)(2 − 1000), so the only critical number in the domain of  is  =
√

1000.

 00() = 40003  0, so  is concave upward throughout its domain and 
√

1000


= 4
√

1000 is an absolute minimum

value. The dimensions of the rectangle with minimal perimeter are  =  =
√

1000 = 10
√

10 m. (The rectangle is a square.)

9. We need to maximize  for  ≥ 0.  () =


1 +2
⇒

 0() =
(1 +2) − (2)

(1 +2)2
=

(1−2)

(1 +2)2
=

(1 +)(1−)

(1 +2)2
.  0()  0 for 0    1 and  0()  0

for   1. Thus,  has an absolute maximum of  (1) = 1
2
 at  = 1.

10. We need to maximize  for  ≥ 0.  () =
100

2 +  + 4
⇒

 0() =
(2 +  + 4)(100)− 100(2 + 1)

(2 +  + 4)2
=

100(2 +  + 4− 22 − )

(2 +  + 4)2
=
−100(2 − 4)

(2 +  + 4)2
=
−100( + 2)( − 2)

(2 +  + 4)2
.

 0()  0 for 0    2 and  0()  0 for   2. Thus,  has an absolute maximum of  (2) = 20 at  = 2.
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104 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

11. (a)

The areas of the three figures are 12,500, 12,500, and 9000 ft2. There appears to be a maximum area of at least 12,500 ft2.

(b) Let  denote the length of each of two sides and three dividers.

Let  denote the length of the other two sides.

(c) Area  = length×width =  · 
(d) Length of fencing = 750 ⇒ 5 + 2 = 750

(e) 5+ 2 = 750 ⇒  = 375− 5
2
 ⇒ () =


375− 5

2


 = 375− 5

2
2

(f ) 0() = 375− 5 = 0 ⇒  = 75. Since 00() = −5  0 there is an absolute maximum when  = 75. Then

 = 375
2

= 1875. The largest area is 75


375
2


= 14,0625 ft2. These values of  and  are between the values in the first

and second figures in part (a). Our original estimate was low.

12. (a)

The volumes of the resulting boxes are 1, 16875, and 2 ft3. There appears to be a maximum volume of at least 2 ft3.

(b) Let  denote the length of the side of the square being cut out. Let 

denote the length of the base.

(c) Volume  = length× width× height ⇒  =  ·  ·  = 2

(d) Length of cardboard = 3 ⇒ +  +  = 3 ⇒  + 2 = 3

(e)  + 2 = 3 ⇒  = 3− 2 ⇒  () = (3− 2)2

(f )  () = (3 − 2)2 ⇒
 0() =  · 2(3− 2)(−2) + (3− 2)2 · 1 = (3− 2)[−4+ (3− 2)] = (3− 2)(−6+ 3),

so the critical numbers are = 3
2

and  = 1
2

. Now 0 ≤  ≤ 3
2

and  (0) = 


3
2


= 0, so the maximum is




1
2


=


1
2


(2)2 = 2 ft3, which is the value found from our third figure in part (a).

13.  = 15× 106, so  = 15× 106. Minimize the amount of fencing, which is

3+ 2 = 3+ 2(15× 106) = 3+ 3× 106 =  ().

 0() = 3− 3× 1062 = 3(2 − 106)2. The critical number is  = 103 and

 0()  0 for 0    103 and  0()  0 if   103, so the absolute minimum

occurs when  = 103 and  = 15× 103.

The field should be 1000 feet by 1500 feet with the middle fence parallel to the short side of the field.
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SECTION 4.7 OPTIMIZATION PROBLEMS ¤ 105

14. Let  be the length of the base of the box and  the height. The volume is 32,000 = 2 ⇒  = 32,0002.

The surface area of the open box is  = 2 + 4 = 2 + 4(32,0002) = 2 + 4(32,000).

So 0() = 2− 4(32,000)2 = 2

3 − 64,000


2 = 0 ⇔  = 3

√
64,000 = 40. This gives an absolute minimum

since 0()  0 if 0    40 and 0()  0 if   40. The box should be 40× 40× 20.

15. Let  be the length of the base of the box and  the height. The surface area is 1200 = 2 + 4 ⇒  = (1200− 2)(4).

The volume is  = 2 = 2(1200− 2)4 = 300− 34 ⇒  0() = 300− 3
4
2.

 0() = 0 ⇒ 300 = 3
4
2 ⇒ 2 = 400 ⇒  =

√
400 = 20. Since  0()  0 for 0    20 and  0()  0 for

  20, there is an absolute maximum when  = 20 by the First Derivative Test for Absolute Extreme Values (see page 328).

If  = 20, then  = (1200− 202)(4 · 20) = 10, so the largest possible volume is 2 = (20)2(10) = 4000 cm3.

16.  =  ⇒ 10 = (2)() = 22, so  = 52.

The cost is 10(22) + 6[2(2) + 2()] = 202 + 36, so

() = 202 + 36

52


= 202 + 180.

0() = 40 − 1802 = (403 − 180)2 = 40

3 − 9

2


2 ⇒  = 3


9
2

is the critical number. There is an

absolute minimum for  when  = 3


9
2

since 0()  0 for 0    3


9
2

and 0()  0 for   3


9
2

. The minimum

cost is 


3


9
2


= 20


3


9
2

2
+

180
3


92
≈ $16354.

17.  =  ⇒ 10 = (2)() = 22, so  = 52.

The cost is 10(22) + 6[2(2) + 2()] + 6(22) = 322 + 36, so

() = 322 + 36(52) = 322 + 180.

0() = 64 − 1802 = (643 − 180)2 = 4(163 − 45)2 ⇒  = 3


45
16

is the critical number. There is an

absolute minimum for  when  = 3


45
16

since 0()  0 for 0    3


45
16

and 0()  0 for   3


45
16

. The minimum

cost is 


3


45
16


= 32


3


45
16

2
+

180
3


4516
≈ $19128.

18. See the figure. The fencing cost $20 per linear foot to install and the cost of the

fencing on the west side will be split with the neighbor, so the farmer’s cost  will

be  = 1
2
(20) + 20 + 20 = 20 + 30. The area  will be maximized when

 = 5000, so 5000 = 20 + 30 ⇔ 20 = 5000− 30 ⇔

 = 250− 3
2
. Now  =  = 


250− 3

2



= 250− 3
2
2 ⇒ 0 = 250− 3. 0 = 0 ⇔  = 250

3
and since

00 = −3  0, we have a maximum for  when  = 250
3

ft and  = 250− 3
2


250
3


= 125 ft. [The maximum area is

125


250
3


= 10,4166 ft2.]
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106 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

19. See the figure. The fencing cost $20 per linear foot to install and the cost of the

fencing on the west side will be split with the neighbor, so the farmer’s cost  will

be  = 1
2
(20) + 20 + 20 = 20 + 30. The area  to be enclosed is

8000 ft2, so  =  = 8000 ⇒  =
8000


.

Now  = 20 + 30 = 20


8000




+ 30 =

160,000


+ 30 ⇒ 0 = −160,000
2

+ 30. 0 = 0 ⇔

30 =
160,000

2
⇔ 2 =

16,000
3

⇒  =


16,000

3
= 40


10

3
=

40

3

√
30. Since 00 =

320,000
3

 0 [for   0],

we have a minimum for  when  =
40

3

√
30 ft and  =

8000


=

8000

40
· 3√

30
·
√

30√
30

= 20
√

30 ft. [The minimum cost is

20(20
√

30 ) + 30


40
3

√
30


= 800
√

30 ≈ $438178.]

20. (a) Let the rectangle have sides  and  and area , so  =  or  = . The problem is to minimize the

perimeter = 2 + 2 = 2+ 2 =  (). Now  0() = 2− 22 = 2

2 −


2. So the critical number is

 =
√
. Since  0()  0 for 0   

√
 and  0()  0 for  

√
, there is an absolute minimum at  =

√
.

The sides of the rectangle are
√
 and 

√
 =

√
, so the rectangle is a square.

(b) Let  be the perimeter and  and  the lengths of the sides, so  = 2 + 2 ⇒ 2 = − 2 ⇒  = 1
2
− .

The area is () = 


1
2
− 


= 1

2
− 2. Now 0() = 0 ⇒ 1

2
− 2 = 0 ⇒ 2 = 1

2
 ⇒  = 1

4
. Since

00() = −2  0, there is an absolute maximum for  when  = 1
4
 by the Second Derivative Test. The sides of the

rectangle are 1
4
 and 1

2
− 1

4
 = 1

4
, so the rectangle is a square.

21. The distance  from the origin (0 0) to a point ( 2+ 3) on the line is given by  =


(− 0)2 + (2+ 3− 0)2 and the

square of the distance is  = 2 = 2 + (2+ 3)2. 0 = 2+ 2(2 + 3)2 = 10 + 12 and 0 = 0 ⇔  = − 6
5

. Now

00 = 10  0, so we know that  has a minimum at  = −6
5

. Thus, the -value is 2
− 6

5


+ 3 = 3

5
and the point is

− 6
5
 3

5


.

22. The distance  from the point (3 0) to a point (
√
 ) on the curve is given by  =


(− 3)2 + (

√
− 0)

2 and the square

of the distance is  = 2 = (− 3)2 + . 0 = 2(− 3) + 1 = 2− 5 and 0 = 0 ⇔  = 5
2

. Now 00 = 2  0, so we

know that  has a minimum at  = 5
2

. Thus, the -value is


5
2

and the point is


5
2



5
2


.

23. From the figure, we see that there are two points that are farthest away from

(1 0). The distance  from  to an arbitrary point  ( ) on the ellipse is

 =


(− 1)2 + ( − 0)2 and the square of the distance is

 =  2 = 2 − 2+ 1 + 2 = 2 − 2+ 1 + (4− 42) = −32 − 2+ 5.

0 = −6− 2 and 0 = 0 ⇒  = − 1
3

. Now 00 = −6  0, so we know

that  has a maximum at  = − 1
3

. Since −1 ≤  ≤ 1, (−1) = 4,
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SECTION 4.7 OPTIMIZATION PROBLEMS ¤ 107


− 1

3


= 16

3
, and (1) = 0, we see that the maximum distance is


16
3

. The corresponding -values are

 = ±


4− 4
− 1

3

2
= ±


32
9

= ± 4
3

√
2 ≈ ±189. The points are

−1
3
± 4

3

√
2

.

24. The distance  from the point (4 2) to a point ( sin) on the curve is given by  =


(− 4)2 + (sin− 2)2 and the

square of the distance is  = 2 = (− 4)2 + (sin− 2)2. 0 = 2(− 4) + 2(sin− 2) cos. Using a calculator, it is

clear that  has a minimum between 0 and 5, and from a graph of 0, we find that 0 = 0 ⇒  ≈ 265, so the point is

about (265 047).

25. The area of the rectangle is (2)(2) = 4. Also 2 = 2 + 2 so

 =
√
2 − 2, so the area is () = 4

√
2 − 2. Now

0() = 4

√
2 − 2 − 2

√
2 − 2


= 4

2 − 22

√
2 − 2

. The critical number is

 = 1√
2
. Clearly this gives a maximum.

 =


2 −


1√
2

2

=


1
2
2 = 1√

2
 = , which tells us that the rectangle is a square. The dimensions are 2 =

√
2 

and 2 =
√

2 .

26. The area of the rectangle is (2)(2) = 4. Now
2

2
+

2

2
= 1 gives

 =




√
2 − 2, so we maximize () = 4





√
2 − 2.

0() =
4




 · 1

2
(2 − 2)−12(−2) + (2 − 2)12 · 1


=

4


(2 − 2−12[−2 + 2 − 2] =

4


√
2 − 2

[2 − 22]

So the critical number is  = 1√
2
, and this clearly gives a maximum. Then  = 1√

2
, so the maximum area

is 4


1√
2



1√
2



= 2.

27. The height  of the equilateral triangle with sides of length  is
√

3
2

,

since 2 + (2)2 = 2 ⇒ 2 = 2 − 1
4
2 = 3

4
2 ⇒

 =
√

3
2
. Using similar triangles,

√
3

2
− 


=

√
3

2


2
=
√

3 ⇒
√

3 =
√

3
2
−  ⇒  =

√
3

2
−√3 ⇒  =

√
3

2
(− 2).

[continued]
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108 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

The area of the inscribed rectangle is () = (2) =
√

3(− 2) =
√

3− 2
√

32, where 0 ≤  ≤ 2. Now

0 = 0() =
√

3− 4
√

3 ⇒  =
√

3


4
√

3


= 4. Since (0) = (2) = 0, the maximum occurs when

 = 4, and  =
√

3
2
−

√
3

4
 =

√
3

4
, so the dimensions are 2 and

√
3

4
.

28. The area  of a trapezoid is given by  = 1
2
( + ). From the diagram,

 = ,  = 2, and  = 2, so  = 1
2
(2 + 2) = (1 + ). Since it’s easier to

substitute for 2, we’ll let  = 2 = 2(1 + )2 = (1− 2)(1 + )2. Now

 0 = (1− 2)2(1 + ) + (1 + )2(−2) = −2(1 + )[−(1− 2) + (1 + )]

= −2(1 + )(22 + − 1) = −2(1 + )(2− 1)(+ 1)

 0 = 0 ⇔  = −1 or  = 1
2

.  0  0 if   1
2

and  0  0 if   1
2

, so we get a maximum at  = 1
2

[ = −1 gives us

 = 0]. Thus,  =


1−  1

2

2
=
√

3
2

and the maximum area is  = (1 + ) =
√

3
2


1 + 1

2


= 3

√
3

4
.

29. The area of the triangle is

() = 1
2
(2)( + ) = ( + ) =

√
2 − 2( + ). Then

0 = 0() = 
−2

2
√
2 − 2

+
√
2 − 2 + 

−2

2
√
2 − 2

= − 2 + √
2 − 2

+
√
2 − 2 ⇒

2 + √
2 − 2

=
√
2 − 2 ⇒ 2 +  = 2 − 2 ⇒ 0 = 22 + − 2 = (2− )(+ ) ⇒

 = 1
2
 or  = −. Now () = 0 = (−) ⇒ the maximum occurs where  = 1

2
, so the triangle has

height  + 1
2
 = 3

2
 and base 2


2 −  1

2

2

= 2


3
4
2 =

√
3 .

30. From the figure, we have 2 + 2 = 2 ⇒  =
√
2 − 2. The area of the isosceles

triangle is  = 1
2
(2) =  = 

√
2 − 2 with 0 ≤  ≤ . Now

0 =  · 1
2
(2 − 2)−12(−2) + (2 − 2)12(1)

= (2 − 2)−12[−2 + (2 − 2)] =
2 − 22

√
2 − 2

0 = 0 ⇔ 2 = 1
2
2 ⇒  = 

√
2. Since (0) = 0, () = 0, and (

√
2 ) = (

√
2 )

22 = 1

2
2, we see that

 = 
√

2 gives us the maximum area and the length of the base is 2 = 2(
√

2 ) =
√

2. Note that the triangle has sides ,

, and
√

2 , which form a right triangle, with the right angle between the two sides of equal length.

31. The cylinder has volume  = 2(2). Also 2 + 2 = 2 ⇒ 2 = 2 − 2, so

 () = (2 − 2)(2) = 2(2− 3), where 0 ≤  ≤ .

 0() = 2

2 − 32


= 0 ⇒  = 

√
3. Now  (0) =  () = 0, so there is a

maximum when  = 
√

3 and 


√

3


= (2 − 23)

2
√

3


= 43

3
√

3

.
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SECTION 4.7 OPTIMIZATION PROBLEMS ¤ 109

32. By similar triangles,  = , so  = . The volume of the cylinder is

2(− ) = 2 − ()3 =  (). Now

 0() = 2− (3)2 = (2− 3).

So  0() = 0 ⇒  = 0 or  = 2
3
. The maximum clearly occurs when

 = 2
3
 and then the volume is

2 − ()3 = 2(1− ) = 


2
3

2


1− 2

3


= 4

27
2.

33. The cylinder has surface area

2(area of the base) + (lateral surface area) = 2(radius)2 + 2(radius)(height)

= 22 + 2(2)

Now 2 + 2 = 2 ⇒ 2 = 2 − 2 ⇒  =
√
2 − 2, so the surface area is

() = 2(2 − 2) + 4
√
2 − 2 0 ≤  ≤ 

= 22 − 22 + 4


√
2 − 2


Thus, 0() = 0− 4+ 4


 · 1

2
(2 − 2)−12(−2) + (2 − 2)12 · 1


= 4


−− 2

√
2 − 2

+
√
2 − 2


= 4 · −

√
2 − 2 − 2 + 2 − 2

√
2 − 2

0() = 0 ⇒ 
√
2 − 2 = 2 − 22 () ⇒ 


√
2 − 2

2
= (2 − 22)2 ⇒

2(2 − 2) = 4 − 422 + 44 ⇒ 22 − 4 = 4 − 422 + 44 ⇒ 54 − 522 + 4 = 0.

This is a quadratic equation in 2. By the quadratic formula, 2 = 5±√5
10

2, but we reject the root with the + sign since it

doesn’t satisfy (). [The right side is negative and the left side is positive.] So  =


5−√5

10
. Since (0) = () = 0, the

maximum surface area occurs at the critical number and 2 = 5−√5
10

2 ⇒ 2 = 2 − 5−√5
10

2 = 5 +
√

5
10

2 ⇒
the surface area is

2


5 +
√

5
10


2 + 4


5−√5

10


5 +

√
5

10
2 = 2


2 · 5+

√
5

10
+ 4


(5−

√
5)(5+

√
5)

10


= 2


5+
√

5
5

+ 2
√

20
5


= 2


5+
√

5+ 2·2√5
5


= 2


5+ 5

√
5

5


= 2


1 +

√
5


.

34. Perimeter = 30 ⇒ 2 + + 


2


= 30 ⇒

 =
1

2


30− − 

2


= 15− 

2
− 

4
. The area is the area of the rectangle plus the area of

the semicircle, or  + 1
2



2

2
, so () = 


15− 

2
− 

4


+ 1

8
2 = 15− 1

2
2 − 

8
2.

0() = 15− 1 + 
4


 = 0 ⇒  =

15

1 + 4
=

60

4 + 
. 00() = −


1 +



4


 0, so this gives a maximum.

The dimensions are  =
60

4 + 
ft and  = 15− 30

4 + 
− 15

4 + 
=

60 + 15 − 30− 15

4 + 
=

30

4 + 
ft, so the height of the

rectangle is half the base.
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110 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

35.  = 384 ⇒  = 384. Total area is

() = (8 + )(12 + 384) = 12(40 + + 256), so

0() = 12(1− 2562) = 0 ⇒  = 16. There is an absolute minimum

when  = 16 since 0()  0 for 0    16 and 0()  0 for   16.

When  = 16,  = 38416 = 24, so the dimensions are 24 cm and 36 cm.

36.  = 180, so  = 180. The printed area is

(− 2)( − 3) = (− 2)(180− 3) = 186− 3− 360 = ().

0() = −3 + 3602 = 0 when 2 = 120 ⇒  = 2
√

30. This gives an absolute

maximum since 0()  0 for 0    2
√

30 and 0()  0 for   2
√

30. When

 = 2
√

30,  = 180(2
√

30 ), so the dimensions are 2
√

30 in. and 90
√

30 in.

37. Let  be the length of the wire used for the square. The total area is

() =


4

2
+

1

2


10− 

3

√
3

2


10− 

3


= 1

16
2 +

√
3

36
(10− )2, 0 ≤  ≤ 10

0() = 1
8
−

√
3

18
(10− ) = 0 ⇔ 9

72
+ 4

√
3

72
− 40

√
3

72
= 0 ⇔  = 40

√
3

9 + 4
√

3
.

Now (0) =
√

3
36


100 ≈ 481, (10) = 100

16
= 625 and 


40
√

3

9+ 4
√

3


≈ 272, so

(a) The maximum area occurs when  = 10 m, and all the wire is used for the square.

(b) The minimum area occurs when  = 40
√

3

9 + 4
√

3
≈ 435 m.

38. Total area is () =


4

2
+ 


10− 

2

2

=
2

16
+

(10− )2

4
, 0 ≤  ≤ 10.

0() =


8
− 10− 

2
=


1

2
+

1

8


− 5


= 0 ⇒  = 40(4 + ).

(0) = 25 ≈ 796, (10) = 625, and (40(4 + )) ≈ 35, so the maximum

occurs when  = 0 m and the minimum occurs when  = 40(4 + ) m.

39. From the figure, the perimeter of the slice is 2 +  = 32, so  =
32− 2


. The area

 of the slice is  = 1
2
2 = 1

2
2


32− 2




= (16− ) = 16 − 2 for

0 ≤  ≤ 16. 0() = 16− 2, so 0 = 0 when  = 8. Since (0) = 0, (16) = 0,

and (8) = 64 in.2, the largest piece comes from a pizza with radius 8 in and

diameter 16 in Note that  = 2 radians ≈ 1146◦, which is about 32% of the whole

pizza.
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SECTION 4.7 OPTIMIZATION PROBLEMS ¤ 111

40.

 

 = 8 csc  + 4 sec , 0    
2

,



= −8 csc  cot  + 4 sec  tan  = 0 when

sec  tan  = 2csc  cot  ⇔ tan3  = 2 ⇔ tan  =
3
√

2 ⇔  = tan−1 3
√

2.

  0 when 0    tan−1 3
√

2,   0 when tan−1 3
√

2    
2

, so  has

an absolute minimum when  = tan−1 3
√

2, and the shortest ladder has length

 = 8

√
1 + 2 23

213
+ 4

√
1 + 2 23 ≈ 1665 ft.

Another method: Minimize 2 = 2 + (4 + )
2, where



4 + 
=

8


.

41. 2 + 2 = 2 ⇒  = 
3
2 = 

3
(2 − 2) = 

3
(2− 3).

 0() = 
3
(2 − 32) = 0 when  = 1√

3
. This gives an absolute maximum, since

 0()  0 for 0    1√
3
 and  0()  0 for   1√

3
. The maximum volume is




1√
3



= 
3


1√
3
3 − 1

3
√

3
3


= 2

9
√

3
3.

42. The volume and surface area of a cone with radius  and height  are given by  = 1
3
2 and  = 

√
2 + 2.

We’ll minimize  = 2 subject to  = 27.  = 27 ⇒ 1
3
2 = 27 ⇒ 2 =

81


(1).

 = 22(2 + 2) = 2


81




81


+ 2


=

812

2
+ 81, so 0 = 0 ⇒ −2 · 812

3
+ 81 = 0 ⇒

81 =
2 · 812

3
⇒ 3 =

162


⇒  = 3


162


= 3 3


6


≈ 3722. From (1), 2 =

81


=

81

 · 3 3


6
=

27
3
√

62
⇒

 =
3
√

3
6
√

62
≈ 2632. 00 = 6 · 8124  0, so  and hence  has an absolute minimum at these values of  and .

43. By similar triangles,



=

 − 


(1). The volume of the inner cone is  = 1

3
2,

so we’ll solve (1) for .



=  −  ⇒

 =  − 


=

−


=




(− ) (2).

Thus, () =


3
2 · 


(− ) =



3
(2 − 3) ⇒

 0() =


3
(2 − 32) =



3
(2− 3).

 0() = 0 ⇒  = 0 or 2 = 3 ⇒  = 2
3
 and from (2),  =






− 2

3



=





1
3



= 1
3
.

 0() changes from positive to negative at  = 2
3
, so the inner cone has a maximum volume of

 = 1
3
2 = 1

3



2
3

2 1

3



= 4
27
· 1

3
2, which is approximately 15% of the volume of the larger cone.
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112 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

44. We need to minimize  for 0 ≤   2.  () =


 sin  + cos 
⇒  0() =

− ( cos  − sin )

( sin  + cos )
2

[by the

Reciprocal Rule].  0()  0 ⇒  cos  − sin   0 ⇒  cos   sin  ⇒   tan  ⇒   tan−1 .

So  is decreasing on

0 tan−1 


and increasing on


tan−1  

2


. Thus,  attains its minimum value at  = tan−1 .

This maximum value is  (tan−1 ) =

2 + 1

.

45.  () =
2

(+ )2
⇒

 0() =
(+ )2 ·2 −2 · 2(+ )

[(+ )2]2
=

(2 + 2 + 2)2 − 222 − 22

( + )4

=
22 −22

( + )4
=

2(2 −2)

(+ )4
=

2( +)( −)

( + )4
=

2( −)

(+ )3

 0() = 0 ⇒  =  ⇒  () =
2

( + )2
=

2

42
=

2

4
.

The expression for  0() shows that  0()  0 for    and  0()  0 for   . Thus, the maximum value of the

power is 2(4), and this occurs when  = .

46. (a) () =
3

 − 
⇒ 0() = 

( − )32 − 3

( − )2
= 0 when

23 = 32 ⇒ 2 = 3 ⇒  = 3
2
.

The First Derivative Test shows that this value of  gives the minimum

value of .

(b)

47.  = 6− 3
2
2 cot  + 32

√
3

2
csc 

(a)



= 3

2
2 csc2  − 32

√
3

2
csc  cot  or 3

2
2 csc 


csc  −√3 cot 


.

(b)



= 0 when csc  −√3 cot  = 0 ⇒ 1

sin 
−√3

cos 

sin 
= 0 ⇒ cos  = 1√

3
. The First Derivative Test shows

that the minimum surface area occurs when  = cos−1


1√
3


≈ 55◦.

(c) If cos  = 1√
3

, then cot  = 1√
2

and csc  =
√

3√
2

, so the surface area is

 = 6− 3
2
2 1√

2
+ 32

√
3

2

√
3√
2

= 6− 3

2
√

2
2 + 9

2
√

2
2

= 6+ 6

2
√

2
2 = 6


+ 1

2
√

2



48. Let  be the time, in hours, after 2:00 PM. The position of the boat heading south

at time  is (0−20). The position of the boat heading east at time  is

(−15 + 15 0). If () is the distance between the boats at time , we

minimize () = [()]2 = 2022 + 152(− 1)2.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 4.7 OPTIMIZATION PROBLEMS ¤ 113

 0() = 800+ 450(− 1) = 1250− 450 = 0 when  = 450
1250

= 036 h.

036 h× 60 min
h = 216 min = 21 min 36 s. Since  00()  0, this gives a minimum, so the boats are closest together

at 2:21:36 PM.

49. Here  () =

√
2 + 25

6
+

5− 

8
, 0 ≤  ≤ 5 ⇒  0() =



6
√
2 + 25

− 1

8
= 0 ⇔ 8 = 6

√
2 + 25 ⇔

162 = 9(2 + 25) ⇔  = 15√
7

. But 15√
7
 5, so  has no critical number. Since  (0) ≈ 146 and  (5) ≈ 118, he

should row directly to .

50. In isosceles triangle , ∠ = 180◦ −  − , so ∠ = 2. The distance rowed is

4 cos  while the distance walked is the length of arc  = 2(2) = 4. The time taken

is given by  () =
4 cos 

2
+

4

4
= 2 cos  + , 0 ≤  ≤ 

2
.

 0() = −2 sin  + 1 = 0 ⇔ sin  = 1
2
⇒  = 

6
.

Check the value of  at  = 
6

and at the endpoints of the domain of  ; that is,  = 0 and  = 
2

.

 (0) = 2, 


6


=
√

3 + 
6
≈ 226, and 



2


= 

2
≈ 157. Therefore, the minimum value of  is 

2
when  = 

2
; that is,

the woman should walk all the way. Note that  00() = −2 cos   0 for 0 ≤   
2

, so  = 
6

gives a maximum time.

51. There are (6− ) km over land and
√
2 + 4 km under the river.

We need to minimize the cost  (measured in $100,000) of the pipeline.

() = (6− )(4) +
√

2 + 4

(8) ⇒

0() = −4 + 8 · 1
2
(2 + 4)−12(2) = −4 +

8√
2 + 4

.

0() = 0 ⇒ 4 =
8√
2 + 4

⇒ √
2 + 4 = 2 ⇒ 2 + 4 = 42 ⇒ 4 = 32 ⇒ 2 = 4

3
⇒

 = 2
√

3 [0 ≤  ≤ 6]. Compare the costs for  = 0, 2
√

3, and 6. (0) = 24 + 16 = 40,



2
√

3


= 24− 8
√

3 + 32
√

3 = 24 + 24
√

3 ≈ 379, and (6) = 0 + 8
√

40 ≈ 506. So the minimum cost is about

$379 million when  is 6− 2
√

3 ≈ 485 km east of the refinery.

52. The distance from the refinery to  is now


(6− )2 + 12 =
√
2 − 12+ 37.

Thus, () = 4
√
2 − 12+ 37 + 8

√
2 + 4 ⇒

0() = 4 · 1
2
(2 − 12+ 37)−12(2− 12) + 8 · 1

2
(2 + 4)−12(2) =

4(− 6)√
2 − 12+ 37

+
8√
2 + 4

.

0() = 0 ⇒  ≈ 112 [from a graph of 0 or a numerical rootfinder]. (0) ≈ 403, (112) ≈ 383, and

(6) ≈ 546. So the minimum cost is slightly higher (than in the previous exercise) at about $383 million when  is

approximately 488 km from the point on the bank 1 km south of the refinery.
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114 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

53. The total illumination is () =
3

2
+



(10− )2
, 0    10. Then

0() =
−6

3
+

2

(10− )3
= 0 ⇒ 6(10− )3 = 23 ⇒

3(10− )3 = 3 ⇒ 3
√

3 (10− ) =  ⇒ 10
3
√

3− 3
√

3 =  ⇒ 10
3
√

3 =  +
3
√

3 ⇒

10
3
√

3 =

1 +

3
√

3

 ⇒  =

10
3
√

3

1 +
3
√

3
≈ 59 ft. This gives a minimum since  00()  0 for 0    10.

54. The line with slope  (where   0) through (3 5) has equation  − 5 = (− 3) or

 = + (5− 3). The -intercept is 5− 3 and the -intercept is−5+ 3. So the

triangle has area () = 1
2
(5− 3)(−5+ 3) = 15− 25(2)− 9

2
. Now

0() =
25

22
− 9

2
= 0 ⇔ 2 = 25

9
⇒  = − 5

3
(since   0).

00() = − 25

3
 0, so there is an absolute minimum when  = − 5

3
. Thus, an equation of the line is  − 5 = − 5

3
(− 3)

or  = − 5
3
+ 10.

55. Every line segment in the first quadrant passing through ( ) with endpoints on the -

and -axes satisfies an equation of the form  −  = (− ), where   0. By setting

 = 0 and then  = 0, we find its endpoints, (0 − ) and 

− 


 0

. The

distance  from  to  is given by  =


[

− 



− 0]2 + [0− (− )]2.

It follows that the square of the length of the line segment, as a function of , is given by

() =


− 



2

+ (− )2 = 2 − 2


+

2

2
+ 22 − 2+ 2. Thus,

0() =
2

2
− 22

3
+ 22− 2 =

2

3
(− 2 + 24 − 3)

=
2

3
[(− ) + 3(− )] =

2

3
(− )(+ 3)

Thus, 0() = 0 ⇔  =  or  = − 3





. Since   0 and   0,  must equal− 3





. Since
2

3
 0, we see

that 0()  0 for   − 3





and 0()  0 for   − 3





. Thus,  has its absolute minimum value when  = − 3





.

That value is




− 3






=


+  3





2

+


− 3




− 

2

=

+

3
√
2

2
+


3
√
2+ 

2
= 2 + 24323 + 2343 + 4323 + 22343 + 2 = 2 + 34323 + 32343 + 2

The last expression is of the form 3 + 32 + 32 + 3 [= ( + )3] with  = 23 and  = 23,

so we can write it as (23 + 23)3 and the shortest such line segment has length
√
 = (23 + 23)32.

56.  = 1 + 403 − 35 ⇒ 0 = 1202 − 154, so the tangent line to the curve at  =  has slope () = 1202 − 154.

Now 0() = 240− 603 = −60(2 − 4) = −60(+ 2)(− 2), so 0()  0 for   −2, and 0    2, and

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 4.7 OPTIMIZATION PROBLEMS ¤ 115

0()  0 for −2    0 and   2. Thus,  is increasing on (−∞−2), decreasing on (−2 0), increasing on (0 2), and

decreasing on (2∞)  Clearly, ()→ −∞ as → ±∞, so the maximum value of () must be one of the two local

maxima, (−2) or (2). But both (−2) and (2) equal 120 · 22 − 15 · 24 = 480− 240 = 240. So 240 is the largest

slope, and it occurs at the points (−2−223) and (2 225). Note:  = 0 corresponds to a local minimum of .

57.  =
3


⇒ 0 = − 3

2
, so an equation of the tangent line at the point ( 3


) is

 − 3


= − 3

2
(− ), or  = − 3

2
 +

6


. The -intercept [ = 0] is 6. The

-intercept [ = 0] is 2. The distance  of the line segment that has endpoints at the

intercepts is  =


(2− 0)2 + (0− 6)2. Let  = 2, so  = 42 +
36

2
⇒

0 = 8− 72

3
. 0 = 0 ⇔ 72

3
= 8 ⇔ 4 = 9 ⇔ 2 = 3 ⇒  =

√
3.

00 = 8 +
216

4
 0, so there is an absolute minimum at  =

√
3 Thus,  = 4(3) + 36

3
= 12 + 12 = 24 and

hence,  =
√

24 = 2
√

6.

58.  = 4− 2 ⇒ 0 = −2, so an equation of the tangent line at ( 4− 2) is

 − (4− 2) = −2(− ), or  = −2+ 2 + 4. The -intercept [ = 0]

is 2 + 4. The -intercept [ = 0] is
2 + 4

2
. The area  of the triangle is

 =
1

2
(base)(height) =

1

2
· 

2 + 4

2
(2+4) =

1

4

4 + 82 + 16


=

1

4


3 + 8+

16




.

0 = 0 ⇒ 1

4


32 + 8− 16

2


= 0 ⇒ 34 + 82 − 16 = 0 ⇒

(32 − 4)(2 + 4) = 0 ⇒ 2 =
4

3
⇒  =

2√
3

. 00 =
1

4


6+

32

3


 0, so there is an absolute minimum at

 =
2√
3

. Thus,  =
1

2
· 43 + 4

2(2
√

3)


4

3
+ 4


=

1

2
· 4
√

3

3
· 16

3
=

32

9

√
3.

59. (a) If () =
()


, then, by the Quotient Rule, we have 0() =

0()−()

2
. Now 0() = 0 when

0()− () = 0 and this gives 0() =
()


= (). Therefore, the marginal cost equals the average cost.

(b) (i) () = 16,000 + 200 + 432, (1000) = 16,000 + 200,000 + 40,000
√

10 ≈ 216,000 + 126,491, so

(1000) ≈ $342,491. () = () =
16,000


+ 200 + 412, (1000) ≈ $34249unit. 0() = 200 + 612,

0(1000) = 200 + 60
√

10 ≈ $38974unit.

(ii) We must have 0() = () ⇔ 200 + 612 =
16,000


+ 200 + 412 ⇔ 232 = 16,000 ⇔

 = (8,000)23 = 400 units. To check that this is a minimum, we calculate

0() =
−16,000

2
+

2√


=
2

2
(32 − 8000). This is negative for   (8000)23 = 400, zero at  = 400,
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116 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

and positive for   400, so  is decreasing on (0 400) and increasing on (400∞). Thus,  has an absolute minimum

at  = 400. [Note: 00() is not positive for all   0.]

(iii) The minimum average cost is (400) = 40 + 200 + 80 = $320unit.

60. (a) The total profit is  () = ()− (). In order to maximize profit we look for the critical numbers of  , that is, the

numbers where the marginal profit is 0. But if  0() = 0()−0() = 0, then 0() = 0(). Therefore, if the profit

is a maximum, then the marginal revenue equals the marginal cost.

(b) () = 16,000 + 500− 162 + 00043, () = 1700− 7. Then () = () = 1700− 72. If the profit is

maximum, then 0() = 0() ⇔ 1700− 14 = 500− 32+ 00122 ⇔ 00122 + 108− 1200 = 0 ⇔

2 + 900− 100,000 = 0 ⇔ ( + 1000)(− 100) = 0 ⇔  = 100 (since   0). The profit is maximized if

 00()  0, but since  00() = 00()− 00(), we can just check the condition 00()  00(). Now

00() = −14  −32 + 0024 = 00() for   0, so there is a maximum at  = 100.

61. (a) We are given that the demand function  is linear and (27,000) = 10, (33,000) = 8, so the slope is

10− 8
27,000− 33,000 = − 1

3000
and an equation of the line is  − 10 =

− 1
3000


(− 27,000) ⇒

 = () = − 1
3000

+ 19 = 19− (3000).

(b) The revenue is () = () = 19− (23000) ⇒ 0() = 19− (1500) = 0 when  = 28,500. Since

00() = −11500  0, the maximum revenue occurs when  = 28,500 ⇒ the price is (28,500) = $950.

62. (a) Let () be the demand function. Then () is linear and  = () passes through (20 10) and (18 11), so the slope is

− 1
2

and an equation of the line is  − 10 = −1
2
(− 20) ⇔  = − 1

2
+ 20. Thus, the demand is () = − 1

2
+ 20

and the revenue is () = () = − 1
2
2 + 20.

(b) The cost is () = 6, so the profit is  () = ()− () = − 1
2
2 + 14. Then 0 =  0() = − + 14 ⇒

 = 14. Since  00() = −1  0, the selling price for maximum profit is (14) = − 1
2
(14) + 20 = $13.

63. (a) As in Example 6, we see that the demand function  is linear. We are given that (1200) = 350 and deduce that

(1280) = 340, since a $10 reduction in price increases sales by 80 per week. The slope for  is
340− 350

1280− 1200
= −1

8
, so

an equation is − 350 = − 1
8
(− 1200) or () = − 1

8
+ 500, where  ≥ 1200.

(b) () =  () = − 1
8
2 + 500. 0() = − 1

4
+ 500 = 0 when  = 4(500) = 2000. (2000) = 250, so the price

should be set at $250 to maximize revenue.

(c) () = 35,000 + 120 ⇒  () = ()−() = − 1
8
2 + 500− 35,000− 120 = − 1

8
2 + 380− 35,000.

 0() = − 1
4
+ 380 = 0 when  = 4(380) = 1520. (1520) = 310, so the price should be set at $310 to maximize

profit.
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SECTION 4.7 OPTIMIZATION PROBLEMS ¤ 117

64. Let  denote the number of operating wells. Then the amount of daily oil production for each well is

240− 8( − 16) = 368− 8, where  ≥ 16. The total daily oil production  for all wells is given by

 () = (368− 8) = 368 − 82. Now  0() = 368− 16 and  0() = 0 ⇔  = 368
16

= 23.

 00() = −16  0, so the daily production is maximized when the company adds 23− 16 = 7 wells.

65. Here 2 = 2 + 24, so 2 = 2 − 24. The area is  = 1
2


2 − 24.

Let the perimeter be , so 2+  =  or  = (− )2 ⇒

() = 1
2



(− )24− 24 = 

2 − 24. Now

0() =


2 − 2

4
− 4

2 − 2
=

−3+ 2

4

2 − 2

.

Therefore, 0() = 0 ⇒ −3+ 2 = 0 ⇒  = 3. Since 0()  0 for   3 and 0()  0 for   3, there

is an absolute maximum when  = 3. But then 2+ 3 = , so  = 3 ⇒  =  ⇒ the triangle is equilateral.

66. From Exercise 51, with  replacing 8 for the “under river” cost (measured in $100,000), we see that 0() = 0 ⇔

4
√
2 + 4 =  ⇔ 162 + 64 = 22 ⇔ 64 = (2 − 16)2 ⇔  =

8√
2 − 16

. Also from Exercise 51, we

have () = (6− )4 +
√
2 + 4. We now compare costs for using the minimum distance possible under the river

[ = 0] and using the critical number above. (0) = 24 + 2 and




8√

2 − 16


= 24− 32√

2 − 16
+


64

2 − 16
+ 4 = 24− 32√

2 − 16
+


42

2 − 16


= 24− 32√
2 − 16

+
22

√
2 − 16

= 24 +
2(2 − 16)√
2 − 16

= 24 + 2
√
2 − 16

Since
√
2 − 16  , we see that 


8√

2 − 16


 (0) for any cost , so the minimum distance possible for the

“under river” portion of the pipeline should never be used.

67. (a) Using implicit differentiation,
2

2
+

2

2
= 1 ⇒ 2

2
+

2 0

2
= 0 ⇒

2 0

2
= −2

2
⇒ 0 = − 2

2
. At ( ), 0 = − 2

2
, and an equation of the

tangent line is  −  = − 2

2
(− ) ⇔  = − 2

2
+

22

2
+  ⇔

 = − 2

2
+

22 + 22

2
. The last term is the -intercept, but not the term we

want, namely 2. Since ( ) is on the ellipse, we know
2

2
+

2

2
= 1. To use that relationship we must divide 22 in

the -intercept by 22, so divide all terms by 22.
(22 + 22)22

(2)22
=

22 + 22

2
=

1

2
=

2


. So the

tangent line has equation  = − 2

2
+

2


. Let  = 0 and solve for  to find that -intercept:

2

2
 =

2


⇔

 =
22

2
=

2


.
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118 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

(b) The portion of the tangent line cut off by the coordinate axes is the distance between the intercepts,

2 0


and


0 2


:


2



2

+


−2



2

=


4

2
+

4

2
. To eliminate  or , we turn to the relationship

2

2
+

2

2
= 1 ⇔

2

2
= 1− 2

2
⇔ 2 = 2 − 22

2
⇔ 2 =

2(2 − 2)

2
. Now substitute for 2 and use the square  of the

distance. () =
4

2
+

42

2(2 − 2)
=

4

2
+

22

2 − 2
for 0    . Note that as → 0 or → , ()→∞,

so the minimum value of  must occur at a critical number. Now 0() = −24

3
+

222

(2 − 2)2
and 0() = 0 ⇔

24

3
=

222

(2 − 2)2
⇔ 2(2 − 2)2 = 24 ⇒ (2 − 2) = 2 ⇔ 3 = (+ )2 ⇔ 2 =

3

+ 
.

Substitute for 2 in ():

4

3

+ 

+
22

2 − 3

+ 

=
4(+ )

3
+

22(+ )

2(+ )− 3
=

(+ )

1
+

22(+ )

2

= (+ ) + (+ ) = (+ )(+ ) = (+ )2

Taking the square root gives us the desired minimum length of + .

(c) The triangle formed by the tangent line and the coordinate axes has area  =
1

2


2




2




. As in part (b), we’ll use the

square of the area and substitute for 2.  =
44

422
=

442

422(2 − 2)
=

62

42(2 − 2)
. Minimizing  (and hence )

is equivalent to maximizing 2(2 − 2). Let () = 2(2 − 2) = 22 − 4 for 0    . As in part (b), the

minimum value of  must occur at a critical number. Now  0() = 22− 43 = 2(2 − 22).  0() = 0 ⇒

2 = 22 ⇒  = 
√

2 [  0]. Substitute for 2 in ():
62

4


2

2


2 − 2

2

 =
62

4
= 22 = ()2. Taking

the square root gives us the desired minimum area of .

68. See the figure. The area is given by

() = 1
2


2
√
2 − 2


+ 1

2


2
√
2 − 2

√
2 + 2 − 2


=
√
2 − 2


+

√
2 + 2 − 2


for 0 ≤  ≤ . Now

0() =
√
2 − 2


1 +

√
2 + 2 − 2


+

+

√
2 + 2 − 2

 −√
2 − 2

= 0 ⇔
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SECTION 4.7 OPTIMIZATION PROBLEMS ¤ 119

√
2 − 2


+

√
2 + 2 − 2


=
√
2 − 2


+

√
2 + 2 − 2

√
2 + 2 − 2


.

Except for the trivial case where  = 0,  =  and () = 0, we have +
√
2 + 2 − 2  0. Hence, cancelling this

factor gives
√

2 − 2
=

√
2 − 2

√
2 + 2 − 2

⇒ 
√
2 + 2 − 2 = 2 − 2 ⇒

2(2 + 2 − 2) = 4 − 222 + 4 ⇒ 2(2 − 2) = 4 − 222 ⇒ 2(2 + 2) = 4 ⇒  =
2

√
2 + 2

.

Now we must check the value of  at this point as well as at the endpoints of the domain to see which gives the maximum

value. (0) = 
√
2 − 2, () = 0 and




2

√
2 + 2


=


2 −


2

√
2 + 2

2

 2

√
2 + 2

+


2

√
2 + 2

2

+ 2 − 2


=

√
2 + 2


2

√
2 + 2

+
2√

2 + 2


=

(2 + 2)

2 + 2
= 

Since  ≥ √2 − 2, 

2
√
2 + 2

 ≥  (0). So there is an absolute maximum when  =
2

√
2 + 2

. In this case the

horizontal piece should be
2√
2 + 2

and the vertical piece should be
2 + 2√
2 + 2

=
√
2 + 2.

69. Note that || = | |+ || ⇒ 5 = + || ⇒ || = 5− .

Using the Pythagorean Theorem for ∆ and ∆ gives us

() = | |+ | |+ | | = +


(5− )2 + 22 +


(5− )2 + 32

= +
√
2 − 10 + 29 +

√
2 − 10+ 34 ⇒

0() = 1 +
− 5√

2 − 10+ 29
+

− 5√
2 − 10+ 34

. From the graphs of 

and 0, it seems that the minimum value of  is about (359) = 935 m.

70. We note that since  is the consumption in gallons per hour, and  is the velocity in miles per hour, then




=

gallonshour
mileshour

=
gallons

mile
gives us the consumption in gallons per mile, that is, the quantity . To find the minimum,

we calculate



=





 



=





− 




2

=




− 

2
.

This is 0 when 



−  = 0 ⇔ 


=




. This implies that the tangent line

of () passes through the origin, and this occurs when  ≈ 53 mih. Note that

the slope of the secant line through the origin and a point ( ()) on the graph

is equal to (), and it is intuitively clear that  is minimized in the case where

the secant is in fact a tangent.
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120 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

71. The total time is

 () = (time from  to ) + (time from  to )

=

√
2 + 2

1

+


2 + (− )2

2

, 0    

 0() =


1

√
2 + 2

− − 

2


2 + (− )2

=
sin 1

1

− sin 2

2

The minimum occurs when  0() = 0 ⇒ sin 1

1

=
sin 2

2

.

[Note:  00()  0]

72. If  = | |, we minimize (1) = ||+ || =  csc 1 +  csc 2.

Differentiating with respect to 1, and setting


1

equal to 0, we get



1

= 0 = − csc 1 cot 1 −  csc 2 cot 2
2

1

.

So we need to find an expression for
2

1

. We can do this by observing that | | = constant =  cot 1 +  cot 2.

Differentiating this equation implicitly with respect to 1, we get − csc2 1 −  csc2 2
2

1

= 0 ⇒

2

1

= − csc2 1

 csc2 2

. We substitute this into the expression for


1

to get

− csc 1 cot 1 −  csc 2 cot 2


− csc2 1

 csc2 2


= 0 ⇔ − csc 1 cot 1 + 

csc2 1 cot 2

csc 2

= 0 ⇔

cot 1 csc 2 = csc 1 cot 2 ⇔ cot 1

csc 1

=
cot 2

csc 2

⇔ cos 1 = cos 2. Since 1 and 2 are both acute, we

have 1 = 2.

73. 2 = 2 + 2, but triangles  and  are similar, so

8 = 

4
√
− 4

 ⇒  = 2
√
− 4. Thus, we minimize

() = 2 = 2 + 42(− 4) = 3(− 4), 4   ≤ 8.

 0() =
(− 4)(32)− 3

(− 4)2
=

2[3(− 4)− ]

(− 4)2
=

22(− 6)

(− 4)2
= 0

when  = 6.  0()  0 when   6,  0()  0 when   6, so the minimum

occurs when  = 6 in.

74. Paradoxically, we solve this maximum problem by solving a minimum problem.

Let  be the length of the line  going from wall to wall touching the inner

corner . As → 0 or → 
2

, we have →∞ and there will be an angle that

makes  a minimum. A pipe of this length will just fit around the corner.
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SECTION 4.7 OPTIMIZATION PROBLEMS ¤ 121

From the diagram,  = 1 + 2 = 9csc  + 6 sec  ⇒  = −9 csc  cot  + 6 sec  tan  = 0 when

6 sec  tan  = 9 csc  cot  ⇔ tan3  = 9
6

= 15 ⇔ tan  =
3
√

15. Then sec2  = 1 +


3
2

23
and

csc2  = 1 +


3
2

−23
, so the longest pipe has length  = 9


1 +


3
2

−23
12

+ 6

1 +


3
2

2312 ≈ 2107 ft.

Or, use  = tan−1

3
√

15
 ≈ 0853 ⇒  = 9csc  + 6 sec  ≈ 2107 ft.

75.  = ( + )−  = arctan
3

1
− arctan



1
⇒ 0 =

3

1 + 92
− 1

1 + 2
.

0 = 0 ⇒ 3

1 + 92
=

1

1 + 2
⇒ 3 + 32 = 1 + 92 ⇒ 2 = 62 ⇒

2 = 1
3
⇒  = 1

√
3. Thus,

 = arctan 3
√

3− arctan 1
√

3 = 
3
− 

6
= 

6
.

76. We maximize the cross-sectional area

() = 10+ 2


1
2



= 10+  = 10(10 sin ) + (10 cos )(10 sin )

= 100(sin  + sin  cos ), 0 ≤  ≤ 
2

0() = 100(cos  + cos2  − sin2 ) = 100(cos  + 2 cos2  − 1)

= 100(2 cos  − 1)(cos  + 1) = 0 when cos  = 1
2

⇔  = 
3

[ cos  6= −1 since 0 ≤  ≤ 
2

.]

Now (0) = 0, 


2


= 100 and 



3


= 75

√
3 ≈ 1299, so the maximum occurs when  = 

3
.

77. From the figure, tan =
5


and tan =

2

3− 
. Since

+  +  = 180◦ = ,  =  − tan−1


5




− tan−1


2

3− 


⇒




= − 1

1 +


5



2


− 5

2


− 1

1 +


2

3− 

2


2

(3− )2



=
2

2 + 25
· 5

2
− (3− )2

(3− )2 + 4
· 2

(3− )2
.

Now



= 0 ⇒ 5

2 + 25
=

2

2 − 6+ 13
⇒ 22 + 50 = 52 − 30+ 65 ⇒

32 − 30 + 15 = 0 ⇒ 2 − 10+ 5 = 0 ⇒  = 5± 2
√

5. We reject the root with the + sign, since it is

larger than 3.   0 for   5− 2
√

5 and   0 for   5− 2
√

5, so  is maximized when

| | =  = 5− 2
√

5 ≈ 053.
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122 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

78. Let  be the distance from the observer to the wall. Then, from the given figure,

 = tan−1


+ 




− tan−1







,   0 ⇒




=

1

1 + [(+ )]2


−+ 

2


− 1

1 + ()2


− 

2


= − + 

2 + (+ )2
+



2 + 2

=
[2 + (+ )2]− (+ )(2 + 2)

[2 + (+ )2](2 + 2)
=

2+ 2 − 2

[2 + (+ )2](2 + 2)
= 0 ⇔

2 = 2+ 2 ⇔ 2 = + 2 ⇔  =

(+ ). Since   0 for all  


(+ ) and   0

for all  

(+ ), the absolute maximum occurs when  =


(+ ).

79. In the small triangle with sides  and  and hypotenuse  , sin  =



and

cos  =



. In the triangle with sides  and  and hypotenuse , sin  =




and

cos  =



. Thus,  =  sin ,  =  cos ,  =  sin , and  =  cos , so the

area of the circumscribed rectangle is

() = (+ )(+ ) = ( sin  +  cos )( cos  +  sin )

=  2 sin  cos  + sin2  +  cos2  + 2 sin  cos 

=  sin2  +  cos2  + (2 + 2) sin  cos 

=  (sin2  + cos2 ) + (2 + 2) · 1
2
· 2 sin  cos  =  + 1

2
(2 + 2) sin 2, 0 ≤  ≤ 

2

This expression shows, without calculus, that the maximum value of () occurs when sin 2 = 1 ⇔ 2 = 
2
⇒

 = 
4

. So the maximum area is 


4


=  + 1

2
(2 + 2) = 1

2
(2 + 2 + 2) = 1

2
(+ )2.

80. (a) Let  be the point such that  = ||. From the figure, sin  =


|| ⇒ || =  csc  and

cos  =
||
|| =

− ||
|| ⇒ || = (− ||) sec . Eliminating || gives

(− ||) sec  =  csc  ⇒  cot  = − || ⇒ || = −  cot . The total resistance is

() = 
||
4
1

+ 
||
4
2

= 


−  cot 

4
1

+
 csc 

4
2


.

(b) 0() = 


 csc2 

4
1

−  csc  cot 

4
2


=  csc 


csc 

4
1

− cot 

4
2


.

0() = 0 ⇔ csc 

4
1

=
cot 

4
2

⇔ 4
2

4
1

=
cot 

csc 
= cos .

0()  0 ⇔ csc 

4
1


cot 

4
2

⇒ cos  
42
4
1

and 0()  0 when cos  
4
2

4
1

, so there is an absolute minimum

when cos  = 4
2


4
1 .

(c) When 2 = 2
3
1, we have cos  =


2
3

4
, so  = cos−1


2
3

4 ≈ 79◦.
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SECTION 4.7 OPTIMIZATION PROBLEMS ¤ 123

81. (a) If  = energykm over land, then energykm over water = 14.

So the total energy is  = 14
√

25 + 2 + (13− ), 0 ≤  ≤ 13,

and so



=

14

(25 + 2)
12

− .

Set



= 0: 14 = (25 + 2)12 ⇒ 1962 = 2 + 25 ⇒ 0962 = 25 ⇒  = 5√

096
≈ 51.

Testing against the value of  at the endpoints: (0) = 14(5) + 13 = 20, (51) ≈ 179, (13) ≈ 195.

Thus, to minimize energy, the bird should fly to a point about 51 km from .

(b) If  is large, the bird would fly to a point  that is closer to  than to  to minimize the energy used flying over water.

If  is small, the bird would fly to a point  that is closer to  than to  to minimize the distance of the flight.

 = 
√

25 + 2 + (13− ) ⇒ 


=

√
25 + 2

−  = 0 when



=

√
25 + 2


. By the same sort of

argument as in part (a), this ratio will give the minimal expenditure of energy if the bird heads for the point  km from .

(c) For flight direct to ,  = 13, so from part (b),  =

√
25 + 132

13
≈ 107. There is no value of  for which the bird

should fly directly to . But note that lim
→0+

() =∞, so if the point at which  is a minimum is close to , then

 is large.

(d) Assuming that the birds instinctively choose the path that minimizes the energy expenditure, we can use the equation for

 = 0 from part (a) with 14 = ,  = 4, and  = 1: (4) = 1 · (25 + 42)12 ⇒  =
√

414 ≈ 16.

82. (a) () ∝ strength of source

(distance from source)2
. Adding the intensities from the left and right lightbulbs,

() =


2 + 2
+



(10− )
2
+ 2

=


2 + 2
+



2 − 20+ 100 + 2
.

(b) The magnitude of the constant  won’t affect the location of the point of maximum intensity, so for convenience we take

 = 1.  0() = − 2

(2 + 2)2
− 2(− 10)

(2 − 20 + 100 + 2)2
.

Substituting  = 5 into the equations for ()and  0(), we get

5() =
1

2 + 25
+

1

2 − 20 + 125
and  05() = − 2

(2 + 25)2
− 2(− 10)

(2 − 20+ 125)2

From the graphs, it appears that 5() has a

minimum at  = 5 m.
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124 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

(c) Substituting  = 10 into the equations for () and  0() gives

10() =
1

2 + 100
+

1

2 − 20 + 200
and  010() = − 2

(2 + 100)
2
− 2 (− 10)

(2 − 20+ 200)
2

From the graphs, it seems that for  = 10, the

intensity is minimized at the endpoints, that is,

 = 0 and  = 10. The midpoint is now the

most brightly lit point!

(d) From the first figures in parts (b) and (c), we see that the minimal illumination changes from the midpoint ( = 5 with

 = 5) to the endpoints ( = 0 and  = 10 with  = 10).

So we try  = 6 (see the first figure) and we see that the minimum value still occurs at  = 5. Next, we let  = 8 (see the

second figure) and we see that the minimum value occurs at the endpoints. It appears that for some value of  between 6

and 8, we must have minima at both the midpoint and the endpoints, that is, (5) must equal (0). To find this value of ,

we solve (0) = (5) (with  = 1):

1

2
+

1

100 + 2
=

1

25 + 2
+

1

25 + 2
=

2

25 + 2
⇒ (25 + 2)(100 + 2) + 2(25 + 2) = 22(100 + 2) ⇒

2500 + 1252 + 4 + 252 + 4 = 2002 + 24 ⇒ 2500 = 502 ⇒ 2 = 50 ⇒  = 5
√

2 ≈ 7071

[for 0 ≤  ≤ 10]. The third figure, a graph of (0)− (5) with  independent, confirms that (0)− (5) = 0, that is,

(0) = (5), when  = 5
√

2. Thus, the point of minimal illumination changes abruptly from the midpoint to the

endpoints when  = 5
√

2.

APPLIED PROJECT The Shape of a Can

1. In this case, the amount of metal used in the making of each top or bottom is (2)
2

= 42. So the quantity we want to

minimize is  = 2 + 2(42). But  = 2 ⇔  = 2. Substituting this expression for  in  gives

 = 2 + 82. Differentiating  with respect to , we get  = −22 + 16 = 0 ⇒

163 = 2 = 22 ⇔ 


=

8


≈ 255. This gives a minimum because

2

2
= 16 +

4

3
 0.
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APPLIED PROJECT THE SHAPE OF A CAN ¤ 125

2. We need to find the area of metal used up by each end, that is, the area of each

hexagon. We subdivide the hexagon into six congruent triangles, each sharing one

side ( in the diagram) with the hexagon. We calculate the length of

 = 2 tan 
6

= 2√
3
, so the area of each triangle is 1

2
 = 1√

3
2, and the total

area of the hexagon is 6 · 1√
3
2 = 2

√
3 2. So the quantity we want to minimize

is  = 2+ 2 · 2√3 2. Substituting for  as in Problem 1 and differentiating, we get



= −2

2
+ 8

√
3 .

Setting this equal to 0, we get 8
√

3 3 = 2 = 22 ⇒ 


=

4
√

3


≈ 221. Again this minimizes  because

2

2
= 8

√
3 +

4

3
 0.

3. Let  = 4
√

3 2 + 2 +  (4 + ) = 4
√

3 2 + 2




2


+ 


4 +



2


. Then




= 8

√
3  − 2

2
+ 4 − 2

3
. Setting this equal to 0, dividing by 2 and substituting



2
=  and



3
=




in the second and fourth terms respectively, we get 0 = 4

√
3  −  + 2 − 


⇔




2 − 




= − 4

√
3  ⇒ 



2 − 

 − 4
√

3
= 1. We now multiply by

3
√



, noting that

3
√







=

3




3
=

3





,

and get
3
√



=

3





· 2 − 

 − 4
√

3
.

4. Let 3
√
  =  and  =  so that  () = 3

√
 · 2 − 

− 4
√

3
. We see from

the graph of  that when the ratio 3
√
  is large; that is, either the volume of

the can is large or the cost of joining (proportional to ) is small, the optimum

value of  is about 221, but when 3
√
  is small, indicating small volume

or expensive joining, the optimum value of  is larger. (The part of the graph for 3
√
   0 has no physical meaning, but

confirms the location of the asymptote.)

5. Our conclusion is usually true in practice. But there are exceptions, such as cans of tuna, which may have to do with the shape

of a reasonable slice of tuna. And for a comfortable grip on a soda or beer can, the geometry of the human hand is a restriction

on the radius. Other possible considerations are packaging, transportation and stocking constraints, aesthetic appeal and other

marketing concerns. Also, there may be better models than ours which prescribe a differently shaped can in special

circumstances.
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126 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

APPLIED PROJECT Planes and Birds: Minimizing Energy

1.  () = 3 +
2


⇒  0() = 32 − 2

2
  0() = 0 ⇔ 32 =

2

2
⇔ 4 =

2

3
⇒

 =
4


2

3
.  00() = 6 +

22

3
 0, so the speed that minimizes the required power is  =


2

3

14

.

2. () =
 ()


= 2 +

2

2
⇒ 0() = 2 − 22

3
. 0() = 0 ⇔ 2 =

22

3
⇔ 4 =

2


⇒

 =
4


2


. 00() = 2+

62

4
 0, so the speed that minimizes the energy needed to propel the plane is

 =


2



14

.

3.



=


2



14


2

3

14
=

 2


2

3


14

= 314 ≈ 1316. Thus,  ≈ 1316  , so the speed for minimum energy is about

316% greater (faster) than the speed for minimum power.

4. Since  is the fraction of flying time spent in flapping mode, 1−  is the fraction of time spent in folded mode. The average

power  is the weighted average of flap and fold, so

= flap + (1− )fold = 


( +) 3 +

()2




+ (1− )

3

= 
3 + 

3 + 
22

2
+

3 − 
3 = 

3 + 
3 +

22



5.  () = 
3 + 

3 +
22


⇒ 

0
() = 

3 − 22

2
. 

0
() = 0 ⇔ 

3 =
22

2
⇔

2 =
22

4
⇒  =



2






. Since 
00
() =

222

3
 0, this critical number, call it  , gives an absolute

minimum for the average power. If the bird flies slowly, then  is smaller and   increases, and the bird spends a larger

fraction of its flying time flapping. If the bird flies faster and faster, then  is larger and   decreases, and the bird spends a

smaller fraction of its flying time flapping, while still minimizing average power.

6. () =
 ()


⇒ 

0
() =

1



0
(), so 

0
() = 0 ⇔ 

0
() = 0. The value of  that minimizes  is the same value

of  that minimizes  , namely  =


2






.
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SECTION 4.8 NEWTON’S METHOD ¤ 127

4.8 Newton's Method

1. (a) The tangent line at 1 = 6 intersects the -axis at  ≈ 73, so 2 = 73. The

tangent line at  = 73 intersects the -axis at  ≈ 68, so 3 ≈ 68.

(b) 1 = 8 would be a better first approximation because the tangent line at  = 8 intersects the -axis closer to  than does

the first approximation 1 = 6.

2. The tangent line at 1 = 1 intersects the -axis at  ≈ 35, so 2 = 35.

The tangent line at  = 35 intersects the -axis at  ≈ 28, so 3 = 28.

3. Since the tangent line  = 9− 2 is tangent to the curve  = () at the point (2 5), we have 1 = 2, (1) = 5, and

 0(1) = −2 [the slope of the tangent line]. Thus, by Equation 2,

2 = 1 − (1)

 0(1)
= 2− 5

−2
=

9

2

Note that geometrically 9
2

represents the -intercept of the tangent line  = 9− 2.

4. (a)

If 1 = 0, then 2 is negative, and 3 is even more

negative. The sequence of approximations does not

converge, that is, Newton’s method fails.

(b)

If 1 = 1, the tangent line is horizontal and Newton’s

method fails.

(c)

If 1 = 3, then 2 = 1 and we have the same situation

as in part (b). Newton’s method fails again.

(d)

If 1 = 4, the tangent line is horizontal and Newton’s

method fails.
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128 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

(e) If 1 = 5, then 2 is greater than 6, 3 gets closer to 6, and

the sequence of approximations converges to 6. Newton’s

method succeeds!

5. The initial approximations 1 =  , and  will work, resulting in a second approximation closer to the origin, and lead to the

root of the equation () = 0, namely,  = 0. The initial approximation 1 =  will not work because it will result in

successive approximations farther and farther from the origin.

6. () = 23 − 32 + 2 ⇒  0() = 62 − 6, so +1 =  − 23
 − 32

 + 2

62
 − 6

. Now 1 = −1 ⇒

2 = −1 − 2(−1)3 − 3(−1)2 + 2

6(−1)2 − 6(−1)
= −1 − −3

12
= −3

4
⇒

3 = −3

4
− 2

− 3
4

3 − 3
− 3

4

2
+ 2

6
− 3

4

2 − 6
− 3

4

 = −3

4
− −1732

638
= −43

63
≈ −06825.

7. () =
2


− 2 + 1 ⇒  0() = − 2

2
− 2, so +1 =  − 2 − 2

 + 1

−22
 − 2

. Now 1 = 2 ⇒

2 = 2− 1− 4 + 1

−12− 4
= 2− −2

−92
=

14

9
⇒ 3 =

14

9
− 2 (149)− (149)

2
+ 1

−2 (149)
2 − 2 (149)

≈ 15215.

8. () = 7 + 4 ⇒  0() = 76, so +1 =  − 7
 + 4

76


. Now 1 = −1 ⇒

2 = −1− (−1)7 + 4

7(−1)6
= −1− 3

7
= −10

7
⇒ 3 = −10

7
−
− 10

7

7
+ 4

7
− 10

7

6 ≈ −12917.

9. () = 3 + + 3 ⇒  0() = 32 + 1, so +1 =  − 3
 +  + 3

32
 + 1



Now 1 = −1 ⇒

2 = −1− (−1)3 + (−1) + 3

3(−1)2 + 1
= −1− −1− 1 + 3

3 + 1
= −1− 1

4
= −125.

Newton’s method follows the tangent line at (−1 1) down to its intersection with

the -axis at (−125 0), giving the second approximation 2 = −125.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 4.8 NEWTON’S METHOD ¤ 129

10. () = 4 − − 1 ⇒  0() = 43 − 1, so +1 =  − 4
 −  − 1

43
 − 1

.

Now 1 = 1 ⇒ 2 = 1− 14 − 1− 1

4 · 13 − 1
= 1− −1

3
=

4

3
. Newton’s method

follows the tangent line at (1−1) up to its intersection with the -axis at


4
3
 0

,

giving the second approximation 2 = 4
3

.

11. To approximate  =
4
√

75 (so that 4 = 75), we can take () = 4 − 75. So  0() = 43, and thus,

+1 =  − 4
 − 75

43


. Since 4
√

81 = 3 and 81 is reasonably close to 75, we’ll use 1 = 3. We need to find approximations

until they agree to eight decimal places. 1 = 3 ⇒ 2 = 294, 3 ≈ 294283228, 4 ≈ 294283096 ≈ 5. So

4
√

75 ≈ 294283096, to eight decimal places.

To use Newton’s method on a calculator, assign  to Y1 and  0 to Y2. Then store 1 in X and enter X−Y1Y2 → X to

get 2 and further approximations (repeatedly press ENTER).

12. () = 8 − 500 ⇒  0() = 87, so +1 =  − 8
 − 500

87


. Since 8
√

256 = 2 and 256 is reasonably close to 500,

we’ll use 1 = 2. We need to find approximations until they agree to eight decimal places. 1 = 2 ⇒ 2 ≈ 223828125,

3 ≈ 218055972, 4 ≈ 217461675, 5 ≈ 217455928 ≈ 6. So 8
√

500 ≈ 217455928, to eight decimal places.

13. (a) Let () = 34 − 83 + 2. The polynomial  is continuous on [2 3], (2) = −14  0, and (3) = 29  0, so by the

Intermediate Value Theorem, there is a number  in (2 3) such that () = 0. In other words, the equation

34 − 83 + 2 = 0 has a root in [2 3].

(b)  0() = 123 − 242 ⇒ +1 =  − 34
 − 83

 + 2

123
 − 242



. Taking 1 = 25, we get 2 = 2655, 3 ≈ 2630725,

4 ≈ 2630021, 5 ≈ 2630020 ≈ 6. To six decimal places, the root is 2630020. Note that taking 1 = 2 is not allowed

since  0(2) = 0.

14. (a) Let () = −25 + 94 − 73 − 11. The polynomial  is continuous on [3 4], (3) = 21  0, and (4) = −236  0,

so by the Intermediate Value Theorem, there is a number  in (3 4) such that () = 0. In other words, the equation

−25 + 94 − 73 − 11 = 0 has a root in [3 4].

(b)  0() = −104 + 363 − 212 − 11. +1 =  − −25
 + 94

 − 73
 − 11

−104
 + 363

 − 212
 − 11

. Taking 1 = 35, we get

2 ≈ 3329174, 3 = 3278706, 4 ≈ 3274501, and 5 ≈ 3274473 ≈ 6. To six decimal places, the root is 3274473.

15.  = 4− 2, so () =  − 4 + 2 ⇒ +1 =  −  − 4 + 2


 + 2
.

From the figure, the negative root of  = 4− 2 is near −2.

1 = −2 ⇒ 2 ≈ −1964981, 3 ≈ −1964636 ≈ 4. So the negative

root is−1964636, to six decimal places.
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130 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

16. 3 sin = , so () = 3 sin−  ⇒  0() = 3 cos− 1 ⇒

+1 =  − 3 sin − 

3 cos − 1
. From the figure, the positive root of

3 sin =  is near 2. 1 = 2 ⇒ 2 ≈ 2323732, 3 ≈ 2279595,

4 ≈ 2278863 ≈ 5. So the positive root is 2278863, to six decimal places.

17. From the graph, we see that there appear to be points of intersection near

 = −4,  = −2, and  = 1. Solving 3 cos = + 1 is the same as solving

() = 3 cos− − 1 = 0.  0() = −3 sin− 1, so

+1 =  − 3 cos −  − 1

−3 sin − 1
.

1 = −4 1 = −2 1 = 1

2 ≈ −3682281 2 ≈ −1856218 2 ≈ 0892438

3 ≈ −3638960 3 ≈ −1862356 3 ≈ 0889473

4 ≈ −3637959 4 ≈ −1862365 ≈ 5 4 ≈ 0889470 ≈ 5

5 ≈ −3637958 ≈ 6

To six decimal places, the roots of the equation are−3637958, −1862365, and 0889470.

18. From the graph, we see that there appear to be points of intersection near

 = −05 and  = 2. Solving
√
+ 1 = 2 −  is the same as solving

() =
√
+ 1− 2 +  = 0.  0() =

1

2
√
+ 1

− 2+ 1, so

+1 =  −
√
 + 1− 2

 + 
1

2
√
 + 1

− 2 + 1

.

1 = −05 1 = 2

2 ≈ −0484155 2 ≈ 1901174

3 ≈ −0484028 ≈ 4 3 ≈ 1897186

4 ≈ 1897179 ≈ 5

To six decimal places, the roots of the equation are−0484028 and 0897179.
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SECTION 4.8 NEWTON’S METHOD ¤ 131

19. From the figure, we see that the graphs intersect between −2 and −1 and

between 0 and 1. Solving 2 = 2− 2 is the same as solving

() = 2 − 2 + 2 = 0.  0() = 2 ln 2 + 2, so

+1 =  − 2 − 2 + 2


2 ln 2 + 2
.

1 = −1 1 = 1

2 ≈ −1302402 2 ≈ 0704692

3 ≈ −1258636 3 ≈ 0654915

4 ≈ −1257692 4 ≈ 0653484

5 ≈ −1257691 ≈ 6 5 ≈ 0653483 ≈ 6

To six decimal places, the roots of the equation are −1257691 and 0653483.

20. From the figure, we see that the graphs intersect between 0 and 1 and between 3

and 4. Solving ln =
1

− 3
is the same as solving () = ln− 1

− 3
= 0.

 0() =
1


+

1

(− 3)2
, so +1 =  − ln − 1( − 3)

(1) + 1( − 3)2
.

1 = 1 1 = 4

2 ≈ 06 2 ≈ 3690965

3 ≈ 0651166 3 ≈ 3750726

4 ≈ 0653057 4 ≈ 3755672

5 ≈ 0653060 ≈ 6 5 ≈ 3755701 ≈ 6

To six decimal places, the roots of the equation are 0653060 and 3755701.

21. From the figure, we see that the graphs intersect at 0 and at  = ± , where

 ≈ 1. [Both functions are odd, so the roots are negatives of each other.]

Solving 3 = tan−1  is the same as solving () = 3 − tan−1  = 0.

 0() = 32 − 1

1 + 2
, so +1 =  − 3

 − tan−1 

32
 − 1

1 + 2


.

Now 1 = 1 ⇒ 2 ≈ 0914159, 3 ≈ 0902251, 4 ≈ 0902026, 5 ≈ 0902025 ≈ 6. To six decimal places, the

nonzero roots of the equation are ±0902025.
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132 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

22. From the graph, we see that there appear to be points of intersection near

 = −1 and  = 2. Solving sin = 2 − 2 is the same as solving

() = sin− 2 + 2 = 0.  0() = cos− 2, so

+1 =  − sin − 2
 + 2

cos − 2
.

1 = −1 1 = 2

2 ≈ −1062406 2 ≈ 1753019

3 ≈ −1061550 ≈ 4 3 ≈ 1728710

4 ≈ 1728466 ≈ 5

To six decimal places, the roots of the equation are−1061550 and 1728466.

23. () = −27 − 54 + 93 + 5 ⇒  0() = −146 − 203 + 272 ⇒

+1 =  − −27
 − 54

 + 93
 + 5

−146
 − 203

 + 272


.

From the graph of  , there appear to be roots near −17, −07, and 13.

1 = −17 1 = −07 1 = 13

2 = −1693255 2 ≈ −074756345 2 = 1268776

3 ≈ −169312035 3 ≈ −074467752 3 ≈ 126589387

4 ≈ −169312029 ≈ 5 4 ≈ −074466668 ≈ 5 4 ≈ 126587094 ≈ 5

To eight decimal places, the roots of the equation are−169312029, −074466668, and 126587094.

24. () = 5 − 34 + 3 − 2 − + 6 ⇒
 0() = 54 − 123 + 32 − 2− 1 ⇒

+1 =  − 5
 − 34

 + 3
 − 2

 −  + 6

54
 − 123

 + 32
 − 2 − 1

. From the graph of  , there

appear to be roots near−1, 13, and 27.

1 = −1

2 ≈ −104761905

3 ≈ −104451724

4 ≈ −104450307 ≈ 5

1 = 13

2 ≈ 133313045

3 ≈ 133258330

4 ≈ 133258316 ≈ 5

1 = 27

2 ≈ 270556135

3 ≈ 270551210

4 ≈ 270551209 ≈ 5

To eight decimal places, the roots of the equation are−104450307, 133258316, and 270551209.
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SECTION 4.8 NEWTON’S METHOD ¤ 133

25. Solving


2 + 1
=
√

1−  is the same as solving

() =


2 + 1
−√1−  = 0.  0() =

1− 2

(2 + 1)2
+

1

2
√

1− 
⇒

+1 =  −


2
 + 1

−√1− 

1− 2


(2
 + 1)

2
+

1

2
√

1− 

.

From the graph, we see that the curves intersect at about 08. 1 = 08 ⇒ 2 ≈ 076757581, 3 ≈ 076682610,

4 ≈ 076682579 ≈ 5. To eight decimal places, the root of the equation is 076682579.

26. Solving cos(2 − ) = 4 is the same as solving

() = cos(2 − )− 4 = 0.  0() = −(2− 1) sin(2 − )− 43 ⇒

+1 =  − cos(2
 − )− 4



−(2 − 1) sin(2
 − )− 43



. From the equations

 = cos(2 − ) and  = 4 and the graph, we deduce that one root of the

equation cos(2 − ) = 4 is  = 1. We also see that the graphs intersect at

approximately  = −07. 1 = −07 ⇒ 2 ≈ −073654354, 3 ≈ −073486274, 4 ≈ −073485910 ≈ 5.

To eight decimal places, one root of the equation is −073485910; the other root is 1.

27. Solving 4−
2

sin = 2 − + 1 is the same as solving

() = 4−
2

sin− 2 + − 1 = 0.

 0() = 4−
2

(cos− 2 sin)− 2+ 1 ⇒

+1 =  − 4−
2
 sin − 2

 +  − 1

4−2 (cos − 2 sin)− 2 + 1
.

From the figure, we see that the graphs intersect at approximately  = 02 and  = 11.

1 = 02

2 ≈ 021883273

3 ≈ 021916357

4 ≈ 021916368 ≈ 5

1 = 11

2 ≈ 108432830

3 ≈ 108422462 ≈ 4

To eight decimal places, the roots of the equation are 021916368 and 108422462.
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134 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

28. Solving ln(2 + 2) =
3√
2 + 1

is the same as solving

() = ln(2 + 2)− 3√
2 + 1

= 0.

 0() =
2

2 + 2
− (2 + 1)12(3)− (3) 1

2
(2 + 1)−12(2)

[(2 + 1)12]2

=
2

2 + 2
− (2 + 1)−12[3(2 + 1)− 32]

(2 + 1)1

=
2

2 + 2
− 3

(2 + 1)32
⇒ +1 =  −

ln(2
 + 2)− 3√

2
 + 1

2

2
 + 2

− 3

(2
 + 1)32

.

From the figure, we see that the graphs intersect at approximately  = 02 and  = 4.

1 = 02 1 = 4

2 ≈ 024733161 2 ≈ 404993412

3 ≈ 024852333 3 ≈ 405010983

4 ≈ 024852414 ≈ 5 4 ≈ 405010984 ≈ 5

To eight decimal places, the roots of the equation are 024852414 and 405010984.

29. (a) () = 2 −  ⇒  0() = 2, so Newton’s method gives

+1 =  − 2
 − 

2
=  − 1

2
 +



2
=

1

2
 +



2
=

1

2


 +






.

(b) Using (a) with  = 1000 and 1 =
√

900 = 30, we get 2 ≈ 31666667, 3 ≈ 31622807, and 4 ≈ 31622777 ≈ 5.

So
√

1000 ≈ 31622777.

30. (a) () =
1


−  ⇒  0() = − 1

2
, so +1 =  − 1 − 

−12


=  +  − 2
 = 2 − 2

.

(b) Using (a) with  = 16894 and 1 = 1
2

= 05, we get 2 = 05754, 3 ≈ 0588485, and 4 ≈ 0588789 ≈ 5.

So 116984 ≈ 0588789.

31. () = 3 − 3+ 6 ⇒  0() = 32 − 3. If 1 = 1, then  0(1) = 0 and the tangent line used for approximating 2 is

horizontal. Attempting to find 2 results in trying to divide by zero.

32. 3 −  = 1 ⇔ 3 − − 1 = 0. () = 3 − − 1 ⇒  0() = 32 − 1, so +1 =  − 3
 −  − 1

32
 − 1

.

(a) 1 = 1, 2 = 15, 3 ≈ 1347826, 4 ≈ 1325200, 5 ≈ 1324718 ≈ 6

(b) 1 = 06, 2 = 179, 3 ≈ 11946802, 4 ≈ 7985520, 5 ≈ 5356909, 6 ≈ 3624996, 7 ≈ 2505589,

8 ≈ 1820129, 9 ≈ 1461044, 10 ≈ 1339323, 11 ≈ 1324913, 12 ≈ 1324718 ≈ 13

(c) 1 = 057, 2 ≈ −54165455, 3 ≈ −36114293, 4 ≈ −24082094, 5 ≈ −16063387, 6 ≈ −10721483,

7 ≈ −7165534, 8 ≈ −4801704, 9 ≈ −3233425, 10 ≈ −2193674, 11 ≈ −1496867, 12 ≈ −0997546,

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 

Kathi
Text Box
4.8.28:  changed the last term in last line of display

Kathi
Rectangle



SECTION 4.8 NEWTON’S METHOD ¤ 135

13 ≈ −0496305, 14 ≈ −2894162, 15 ≈ −1967962, 16 ≈ −1341355, 17 ≈ −0870187, 18 ≈ −0249949,

19 ≈ −1192219, 20 ≈ −0731952, 21 ≈ 0355213, 22 ≈ −1753322, 23 ≈ −1189420, 24 ≈ −0729123,

25 ≈ 0377844, 26 ≈ −1937872, 27 ≈ −1320350, 28 ≈ −0851919, 29 ≈ −0200959, 30 ≈ −1119386,

31 ≈ −0654291, 32 ≈ 1547010, 33 ≈ 1360051, 34 ≈ 1325828, 35 ≈ 1324719, 36 ≈ 1324718 ≈ 37.

(d) From the figure, we see that the tangent line corresponding to 1 = 1 results

in a sequence of approximations that converges quite quickly (5 ≈ 6).

The tangent line corresponding to 1 = 06 is close to being horizontal, so

2 is quite far from the root. But the sequence still converges — just a little

more slowly (12 ≈ 13). Lastly, the tangent line corresponding to

1 = 057 is very nearly horizontal, 2 is farther away from the root, and

the sequence takes more iterations to converge (36 ≈ 37)

33. For () = 13,  0() = 1
3
−23 and

+1 =  − ()

 0()
=  − 

13


1
3

−23


=  − 3 = −2.

Therefore, each successive approximation becomes twice as large as the

previous one in absolute value, so the sequence of approximations fails to

converge to the root, which is 0. In the figure, we have 1 = 05,

2 = −2(05) = −1, and 3 = −2(−1) = 2.

34. According to Newton’s Method, for   0,

+1 =  −
√


1

2
√


 =  − 2 = − and for   0,

+1 =  − −√− 

1

2
√−

 =  − [−2(−)] = −. So we can see that

after choosing any value 1 the subsequent values will alternate between −1

and 1 and never approach the root.

35. (a) () = 6 − 4 + 33 − 2 ⇒  0() = 65 − 43 + 92 − 2 ⇒
 00() = 304 − 122 + 18. To find the critical numbers of  , we’ll find the

zeros of  0. From the graph of  0, it appears there are zeros at approximately

 = −13, −04, and 05. Try 1 = −13 ⇒

2 = 1 −  0(1)

 00(1)
≈ −1293344 ⇒ 3 ≈ −1293227 ≈ 4.

Now try 1 = −04 ⇒ 2 ≈ −0443755 ⇒ 3 ≈ −0441735 ⇒ 4 ≈ −0441731 ≈ 5. Finally try

1 = 05 ⇒ 2 ≈ 0507937 ⇒ 3 ≈ 0507854 ≈ 4. Therefore,  = −1293227, −0441731, and 0507854 are

all the critical numbers correct to six decimal places.
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136 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

(b) There are two critical numbers where  0 changes from negative to positive, so  changes from decreasing to increasing.

(−1293227) ≈ −20212 and (0507854) ≈ −06721, so −20212 is the absolute minimum value of  correct to four

decimal places.

36. () =  cos ⇒  0() = cos−  sin.  0() exists for all , so to find

the maximum of  , we can examine the zeros of  0. From the graph of  0, we

see that a good choice for 1 is 1 = 09. Use () = cos−  sin and

0() = −2 sin−  cos to obtain 2 ≈ 0860781, 3 ≈ 0860334 ≈ 4.

Now we have (0) = 0, () = −, and (0860334) ≈ 0561096, so

0561096 is the absolute maximum value of  correct to six decimal places.

37.  = 2 sin ⇒ 0 = 2 cos+ (sin)(2) ⇒
00 = 2(− sin) + (cos)(2) + (sin)(2) + 2 cos

= −2 sin+ 4 cos+ 2 sin ⇒

000 = −2 cos+ (sin)(−2) + 4(− sin) + (cos)(4) + 2 cos

= −2 cos− 6 sin + 6 cos.

From the graph of  = 2 sin, we see that  = 15 is a reasonable guess for the -coordinate of the inflection point. Using

Newton’s method with () = 00 and 0() = 000, we get 1 = 15 ⇒ 2 ≈ 1520092, 3 ≈ 1519855 ≈ 4.

The inflection point is about (1519855 2306964).

38. () = − sin ⇒  0() = − cos. At  = , the slope of the tangent

line is  0() = − cos . The line through the origin and ( ()) is

 =
− sin − 0

− 0
. If this line is to be tangent to  at  = , then its slope

must equal  0(). Thus,
− sin 


= − cos  ⇒ tan  = .

To solve this equation using Newton’s method, let () = tan− , 0() = sec2 − 1, and +1 =  − tan − 

sec2  − 1

with 1 = 45 (estimated from the figure). 2 ≈ 4493614, 3 ≈ 4493410, 4 ≈ 4493409 ≈ 5. Thus, the slope of the

line that has the largest slope is  0(5) ≈ 0217234.

39. We need to minimize the distance from (0 0) to an arbitrary point ( ) on the

curve  = (− 1)
2.  =


2 + 2 ⇒

() =

2 + [(− 1)2]2 =


2 + (− 1)4. When 0 = 0,  will be

minimized and equivalently,  = 2 will be minimized, so we will use Newton’s

method with  = 0 and  0 = 00.
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SECTION 4.8 NEWTON’S METHOD ¤ 137

() = 2 + 4(− 1)3 ⇒  0() = 2 + 12(− 1)2, so +1 =  − 2 + 4( − 1)3

2 + 12( − 1)2
. Try 1 = 05 ⇒

2 = 04, 3 ≈ 0410127, 4 ≈ 0410245 ≈ 5. Now (0410245) ≈ 0537841 is the minimum distance and the point on

the parabola is (0410245 0347810), correct to six decimal places.

40. Let the radius of the circle be . Using  = , we have 5 =  and so  = 5. From the Law of Cosines we get

42 = 2 + 2 − 2 ·  ·  · cos  ⇔ 16 = 22(1− cos ) = 2(5)
2
(1− cos ). Multiplying by 2 gives

162 = 50(1− cos ), so we take () = 162 + 50 cos  − 50 and  0() = 32 − 50 sin . The formula

for Newton’s method is +1 =  − 162
 + 50 cos  − 50

32 − 50 sin 
. From the graph

of  , we can use 1 = 22, giving us 2 ≈ 22662, 3 ≈ 22622 ≈ 4. So

correct to four decimal places, the angle is 22622 radians ≈ 130◦.

41. In this case,  = 18,000,  = 375, and  = 5(12) = 60. So the formula  =



[1− (1 + )−] becomes

18,000 =
375


[1− (1 + )−60] ⇔ 48 = 1− (1 + )−60 [multiply each term by (1 + )60] ⇔

48(1 + )60 − (1 + )60 + 1 = 0. Let the LHS be called (), so that

 0() = 48(60)(1 + )59 + 48(1 + )60 − 60(1 + )59

= 12(1 + )59[4(60) + 4(1 + )− 5] = 12(1 + )59(244− 1)

+1 =  − 48(1 + )60 − (1 + )60 + 1

12(1 + )59(244 − 1)
. An interest rate of 1% per month seems like a reasonable estimate for

 = . So let 1 = 1% = 001, and we get 2 ≈ 00082202, 3 ≈ 00076802, 4 ≈ 00076291, 5 ≈ 00076286 ≈ 6.

Thus, the dealer is charging a monthly interest rate of 076286% (or 955% per year, compounded monthly).

42. (a) () = 5 − (2 + )4 + (1 + 2)3 − (1− )2 + 2(1− )+  − 1 ⇒

0() = 54 − 4(2 + )3 + 3(1 + 2)2 − 2(1 − ) + 2(1 − ). So we use

+1 =  − 5
 − (2 + )4

 + (1 + 2)3
 − (1− )2

 + 2(1− ) +  − 1

54
 − 4(2 + )3

 + 3(1 + 2)2
 − 2(1− ) + 2(1− )

.

We substitute in the value  ≈ 304042× 10−6 in order to evaluate the approximations numerically. The libration point

1 is slightly less than 1 AU from the sun, so we take 1 = 095 as our first approximation, and get 2 ≈ 096682,

3 ≈ 097770, 4 ≈ 098451, 5 ≈ 098830, 6 ≈ 098976, 7 ≈ 098998, 8 ≈ 098999 ≈ 9. So, to five decimal

places, 1 is located 098999 AU from the sun (or 001001 AU from the earth).

(b) In this case we use Newton’s method with the function

() − 22 = 5 − (2 + )4 + (1 + 2)3 − (1 + )2 + 2(1 − ) +  − 1 ⇒
()− 22

0
= 54 − 4(2 + )3 + 3(1 + 2)2 − 2(1 + )+ 2(1− ). So
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138 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

+1 =  − 5
 − (2 + )4

 + (1 + 2)3
 − (1 + )2

 + 2(1− ) +  − 1

54
 − 4(2 + )3

 + 3(1 + 2)2
 − 2(1 + ) + 2(1− )

. Again, we substitute

 ≈ 304042× 10−6. 2 is slightly more than 1 AU from the sun and, judging from the result of part (a), probably less

than 002 AU from earth. So we take 1 = 102 and get 2 ≈ 101422, 3 ≈ 101118, 4 ≈ 101018,

5 ≈ 101008 ≈ 6. So, to five decimal places, 2 is located 101008 AU from the sun (or 001008 AU from the earth).

4.9 Antiderivatives

1. () = 4+ 7 = 41 + 7 ⇒  () = 4
1+1

1 + 1
+ 7+ = 22 + 7+ 

Check:  0() = 2(2) + 7 + 0 = 4+ 7 = ()

2. () = 2 − 3+ 2 ⇒  () =
3

3
− 3

2

2
+ 2+  = 1

3
3 − 3

2
2 + 2+ 

Check:  0() = 1
3
(32)− 3

2
(2) + 2 + 0 = 2 − 3+ 2 = ()

3. () = 23 − 2
3
2 + 5 ⇒  () = 2

3+1

3 + 1
− 2

3

2+1

2 + 1
+ 5

1+1

1 + 1
= 1

2
4 − 2

9
3 + 5

2
2 + 

Check:  0() = 1
2
(43)− 2

9
(32) + 5

2
(2) + 0 = 23 − 2

3
2 + 5 = ()

4. () = 65 − 84 − 92 ⇒  () = 6
6

6
− 8

5

5
− 9

3

3
+  = 6 − 8

5
5 − 33 + 

5. () = (12+ 8) = 122 + 8 ⇒  () = 12
3

3
+ 8

2

2
+ = 43 + 42 + 

6. () = (− 5)2 = 2 − 10+ 25 ⇒  () =
3

3
− 10

2

2
+ 25+  = 1

3
3 − 52 + 25+ 

7. () = 725 + 8−45 ⇒  () = 7


5
7
75


+ 8(515) + = 575 + 4015 + 

8. () = 34 − 2
√

2−1 ⇒  () =
44

44
− 2



√

2

√
2


+  =

5

22
44 −√2

√
2 +

9. () =
√

2 is a constant function, so  () =
√

2+.

10. () = 2 is a constant function, so  () = 2+.

11. () = 3
√
− 2 3

√
 = 312 − 213 ⇒  () = 3


2
3
32


− 2


3
4
43


+ = 232 − 3

2
43 + 

12. () =
3
√
2 + 

√
 = 23 + 32 ⇒  () = 3

5
53 + 2

5
52 + 

13. () =
1

5
− 2


=

1

5
− 2


1




has domain (−∞ 0) ∪ (0∞), so  () =


1
5
− 2 ln ||+ 1 if   0

1
5
− 2 ln ||+ 2 if   0

See Example 1(b) for a similar problem.
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SECTION 4.9 ANTIDERIVATIVES ¤ 139

14. () =
34 − 3 + 62

4
= 3− 1


+

6

2
has domain (−∞ 0) ∪ (0∞), so  () =


3− ln ||− 6


+ 1 if   0

3− ln ||− 6


+ 2 if   0

See Example 1(b) for a similar problem.

15. () =
1 + + 2√


= −12 + 12 + 32 ⇒ () = 212 + 2

3
32 + 2

5
52 + 

16. () = sec  tan  − 2 ⇒ () = sec  − 2 +  on the interval

 − 

2
  + 

2


.

17. () = 2 sin  − sec2  ⇒ () = −2 cos  − tan  +  on the interval

 − 

2
  + 

2


.

18. () = 2 cos  − 3√
1− 2

⇒ () = 2 sin  − 3 sin−1  +

19. () = 2 + 4 sinh ⇒  () =
2

ln 2
+ 4 cosh+

20. () = 1 + 2 sin+ 3
√
 = 1 + 2 sin+ 3−12 ⇒  () = − 2 cos+ 3

12

12
+ = − 2 cos+ 6

√
 +

21. () =
24 + 43 − 

3
,   0; () = 2+ 4− −2 ⇒

 () = 2
2

2
+ 4− −2+1

−2 + 1
+  = 2 + 4+

1


+,   0

22. () =
22 + 5

2 + 1
=

2(2 + 1) + 3

2 + 1
= 2 +

3

2 + 1
⇒  () = 2+ 3 tan−1  +

23. () = 54 − 25 ⇒  () = 5 · 
5

5
− 2 · 

6

6
+ = 5 − 1

3
6 + .

 (0) = 4 ⇒ 05 − 1
3
· 06 +  = 4 ⇒  = 4, so  () = 5 − 1

3
6 + 4.

The graph confirms our answer since () = 0 when  has a local maximum,  is

positive when  is increasing, and  is negative when  is decreasing.

24. () = 4− 3

1 + 2

−1
= 4− 3

1 + 2
⇒  () = 4− 3 tan−1 + .

 (1) = 0 ⇒ 4− 3


4


+ = 0 ⇒  = 3

4
− 4, so

 () = 4− 3 tan−1 + 3
4
− 4. Note that  is positive and  is increasing on R.

Also,  has smaller values where the slopes of the tangent lines of  are smaller.

25.  00() = 203 − 122 + 6 ⇒  0() = 20


4

4


− 12


3

3


+ 6


2

2


+  = 54 − 43 + 32 +  ⇒

() = 5


5

5


− 4


4

4


+ 3


3

3


++ = 5 − 4 + 3 + +
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140 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

26.  00() = 6 − 44 +  + 1 ⇒  0() = 1
7
7 − 4

5
5 + 1

2
2 +  +  ⇒

() = 1
56
8 − 2

15
6 + 1

6
3 + 1

2
2 + +

27.  00() = 2+ 3 ⇒  0() = 2 + 3 +  ⇒ () = 1
3
3 + 3 ++

28.  00() = 12 = −2 ⇒  0() =

−1+ 1 if   0

−1+ 2 if   0
⇒ () =

− ln(−) + 1 +1 if   0

− ln +2+2 if   0

29.  000() = 12 + sin  ⇒  00() = 12− cos  + 1 ⇒  0() = 62 − sin  + 1 +  ⇒

() = 23 + cos  +2 ++, where  = 1
2
1.

30.  000() =
√
− 2 cos  = 12 − 2 cos  ⇒  00() = 2

3
32 − 2 sin +1 ⇒  0() = 4

15
52 + 2 cos +1+ ⇒

() = 8
105

72 + 2 sin + 2 + +, where  = 1
2
1.

31.  0() = 1 + 3
√
 ⇒ () = + 3


2
3
32


+  =  + 232 + . (4) = 4 + 2(8) +  and (4) = 25 ⇒

20 + = 25 ⇒  = 5, so () =  + 232 + 5.

32.  0() = 54 − 32 + 4 ⇒ () = 5 − 3 + 4+. (−1) = −1 + 1− 4 +  and (−1) = 2 ⇒

−4 +  = 2 ⇒  = 6, so () = 5 − 3 + 4+ 6.

33.  0() =
4

1 + 2
⇒ () = 4 arctan  + . (1) = 4


4


+  and (1) = 0 ⇒  +  = 0 ⇒  = −,

so () = 4 arctan − .

34.  0() =  +
1

3
,   0 ⇒ () =

1

2
2 − 1

22
+ . (1) =

1

2
− 1

2
+  and (1) = 6 ⇒  = 6, so

() =
1

2
2 − 1

22
+ 6.

35.  0() = 523 ⇒ () = 5


3
5
53


+ = 353 +.

(8) = 3 · 32 +  and (8) = 21 ⇒ 96 +  = 21 ⇒  = −75, so () = 353 − 75.

36.  0() =
+ 1√


= 12 + −12 ⇒ () = 2

3
32 + 212 +. (1) = 2

3
+ 2 +  = 8

3
+  and (1) = 5 ⇒

 = 5− 8
3

= 7
3
 so () = 2

3
32 + 2

√
+ 7

3
.

37.  0() = sec (sec  + tan ) = sec2 + sec  tan , −
2
   

2
⇒ () = tan  + sec  + . 



4


= 1 +

√
2 +

and 


4


= −1 ⇒ 1 +

√
2 + = −1 ⇒  = −2−√2, so () = tan + sec − 2−√2.

Note: The fact that  is defined and continuous on
−

2
 

2


means that we have only one constant of integration.
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SECTION 4.9 ANTIDERIVATIVES ¤ 141

38.  0() = 3 − 3


⇒ () =


3 ln 3− 3 ln(−) + if   0

3 ln 3− 3 ln + if   0

(−1) =
1

3 ln 3
− 3 ln 1 + and (−1) = 1 ⇒  = 1− 1

3 ln 3
.

(1) =
3

ln 3
− 3 ln 1 + and (1) = 2 ⇒  = 2− 3

ln 3
.

Thus, () =


3 ln 3− 3 ln(−) + 1− 1(3 ln 3) if   0

3 ln 3− 3 ln + 2− 3 ln 3 if   0

39.  00() = −2 + 12− 122 ⇒  0() = −2+ 62 − 43 + .  0(0) =  and  0(0) = 12 ⇒  = 12, so

 0() = −2+ 62 − 43 + 12 and hence, () = −2 + 23 − 4 + 12+. (0) =  and (0) = 4 ⇒  = 4,

so () = −2 + 23 − 4 + 12+ 4.

40.  00() = 83 + 5 ⇒  0() = 24 + 5 + .  0(1) = 2 + 5 +  and  0(1) = 8 ⇒  = 1, so

 0() = 24 + 5+ 1. () = 2
5
5 + 5

2
2 + +. (1) = 2

5
+ 5

2
+ 1 + =  + 39

10
and (1) = 0 ⇒  = − 39

10
,

so () = 2
5
5 + 5

2
2 + − 39

10
.

41.  00() = sin  + cos  ⇒  0() = − cos  + sin  + .  0(0) = −1 +  and  0(0) = 4 ⇒  = 5, so

 0() = − cos  + sin  + 5 and hence, () = − sin  − cos  + 5 +. (0) = −1 + and (0) = 3 ⇒  = 4,

so () = − sin  − cos  + 5 + 4.

42.  00() = 2 +
1

2
= 2 + −2,   0 ⇒  0() = 1

3
3 − 1


+ .  0(1) = 1

3
− 1 + and  0(1) = 2 ⇒

 − 2
3

= 2 ⇒  = 8
3

, so  0() = 1
3
3 − 1


+ 8

3
and hence, () = 1

12
4 − ln  + 8

3
 +. (2) = 4

3
− ln 2 + 16

3
+

and (2) = 3 ⇒ 20
3
− ln 2 + = 3 ⇒  = ln 2− 11

3
, so () = 1

12
4 − ln + 8

3
 + ln 2− 11

3
.

43.  00() = 4 + 6+ 242 ⇒  0() = 4 + 32 + 83 +  ⇒ () = 22 + 3 + 24 + +. (0) =  and

(0) = 3 ⇒  = 3, so () = 22 + 3 + 24 +  + 3. (1) = 8 +  and (1) = 10 ⇒  = 2,

so () = 22 + 3 + 24 + 2+ 3.

44.  00() = 3 + sinh ⇒  0() = 1
4
4 + cosh + ⇒ () = 1

20
5 + sinh+ +. (0) =  and

(0) = 1 ⇒  = 1, so () = 1
20
5 + sinh+ + 1. (2) = 32

20
+ sinh 2 + 2 + 1 and (2) = 26 ⇒

sinh 2 + 2 = 0 ⇒  = − 1
2

sinh 2, so () = 1
20
5 + sinh− 1

2
(sinh 2)+ 1.

45.  00() =  − 2 sin ⇒  0() =  + 2 cos+  ⇒ () =  + 2 sin+ +.

(0) = 1 + 0 + and (0) = 3 ⇒  = 2, so () =  + 2 sin+ + 2 


2


= 2 + 2 + 

2
 + 2 and




2


= 0 ⇒ 2 + 4 + 

2
 = 0 ⇒ 

2
 = −2 − 4 ⇒  = − 2


(2 + 4), so

() =  + 2 sin+− 2

(2 + 4)+ 2.
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142 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

46.  00() = 3
√
− cos  = 13 − cos  ⇒  0() = 3

4
43 − sin  +  ⇒ () = 9

28
73 + cos +  +.

(0) = 0 + 1 + 0 + and (0) = 2 ⇒  = 1, so () = 9
28
73 + cos ++ 1. (1) = 9

28
+ cos 1 + + 1 and

(1) = 2 ⇒  = 2− 9
28
− cos 1− 1 = 19

28
− cos 1, so () = 9

28
73 + cos  +


19
28
− cos 1


 + 1.

47.  00() = −2,   0 ⇒  0() = −1+  ⇒ () = − ln ||+  + = − ln+  + [since   0].

(1) = 0 ⇒  + = 0 and (2) = 0 ⇒ − ln 2 + 2 + = 0 ⇒ − ln 2 + 2 − = 0 [since  = −] ⇒

− ln 2 + = 0 ⇒  = ln 2 and  = − ln 2. So () = − ln+ (ln 2)− ln 2.

48.  000() = cos ⇒  00() = sin + .  00(0) =  and  00(0) = 3 ⇒  = 3.  00() = sin + 3 ⇒

 0() = − cos + 3 + .  0(0) = −1 + and  0(0) = 2 ⇒  = 3.  0() = − cos + 3 + 3 ⇒

() = − sin + 3
2
2 + 3+. (0) =  and (0) = 1 ⇒  = 1. Thus, () = − sin+ 3

2
2 + 3+ 1.

49. “The slope of its tangent line at ( ()) is 3− 4” means that  0() = 3− 4, so () = 3− 22 +.

“The graph of  passes through the point (2 5)” means that (2) = 5, but (2) = 3(2)− 2(2)2 +, so 5 = 6− 8 + ⇒

 = 7. Thus, () = 3− 22 + 7 and (1) = 3− 2 + 7 = 8.

50.  0() = 3 ⇒ () = 1
4
4 + .  +  = 0 ⇒  = − ⇒  = −1. Now  =  0() ⇒ −1 = 3 ⇒

 = −1 ⇒  = 1 (from the equation of the tangent line), so (−1 1) is a point on the graph of  . From  ,

1 = 1
4
(−1)4 +  ⇒  = 3

4
. Therefore, the function is () = 1

4
4 + 3

4
.

51.  is the antiderivative of  . For small ,  is negative, so the graph of its antiderivative must be decreasing. But both  and 

are increasing for small , so only  can be  ’s antiderivative. Also,  is positive where  is increasing, which supports our

conclusion.

52. We know right away that  cannot be  ’s antiderivative, since the slope of  is not zero at the -value where  = 0. Now  is

positive when  is increasing and negative when  is decreasing, so  is the antiderivative of  .

53. The graph of  must start at (0 1). Where the given graph,  = (), has a

local minimum or maximum, the graph of  will have an inflection point.

Where  is negative (positive),  is decreasing (increasing).

Where  changes from negative to positive,  will have a minimum.

Where  changes from positive to negative,  will have a maximum.

Where  is decreasing (increasing),  is concave downward (upward).
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SECTION 4.9 ANTIDERIVATIVES ¤ 143

54. Where  is positive (negative),  is increasing (decreasing).

Where  is increasing (decreasing),  is concave upward (downward).

Where  is horizontal (a steady velocity),  is linear.

55.

 0() =


2 if 0 ≤   1

1 if 1    2

−1 if 2    3

⇒ () =


2 + if 0 ≤   1

+ if 1    2

−+ if 2    3

(0) = −1 ⇒ 2(0) + = −1 ⇒  = −1. Starting at the point

(0−1) and moving to the right on a line with slope 2 gets us to the point (1 1).

The slope for 1    2 is 1, so we get to the point (2 2). Here we have used the fact that  is continuous. We can include the

point  = 1 on either the first or the second part of  . The line connecting (1 1) to (2 2) is  = , so  = 0. The slope for

2    3 is −1, so we get to (3 1). (2) = 2 ⇒ −2 + = 2 ⇒  = 4. Thus,

() =


2− 1 if 0 ≤  ≤ 1

 if 1    2

−+ 4 if 2 ≤   3

Note that  0() does not exist at  = 1, 2, or 3.

56. (a)

(b) Since  (0) = 1, we can start our graph at (0 1).  has a minimum at about

 = 05, so its derivative is zero there.  is decreasing on (0 05), so its

derivative is negative and hence,  is CD on (0 05) and has an IP at

 ≈ 05. On (05 22),  is negative and increasing ( 0 is positive), so  is

decreasing and CU. On (22∞),  is positive and increasing, so  is

increasing and CU.
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144 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

(c) () = 2− 3
√
 ⇒  () = 2 − 3 · 2

3
32 +.

 (0) =  and  (0) = 1 ⇒  = 1, so  () = 2 − 232 + 1.

(d)

57. () =
sin

1 + 2
, −2 ≤  ≤ 2

Note that the graph of  is one of an odd function, so the graph of  will

be one of an even function.

58. () =
√
4 − 22 + 2− 2, −3 ≤  ≤ 3

Note that the graph of  is one of an even

function, so the graph of  will be one of an

odd function.

59. () = 0() = sin − cos  ⇒ () = − cos − sin  + . (0) = −1 +  and (0) = 0 ⇒  = 1, so

() = − cos − sin  + 1.

60. () = 0() = 2 − 3
√
 = 2 − 312 ⇒ () = 1

3
3 − 232 + . (4) = 64

3
− 16 +  and (4) = 8 ⇒

 = 8− 64
3

+ 16 = 8
3

, so () = 1
3
3 − 232 + 8

3
.

61. () = 0() = 2 + 1 ⇒ () = 2 +  + . (0) =  and (0) = −2 ⇒  = −2, so () = 2 + − 2 and

() = 1
3
3 + 1

2
2 − 2 +. (0) =  and (0) = 3 ⇒  = 3, so () = 1

3
3 + 1

2
2 − 2+ 3.

62. () = 0() = 3 cos − 2 sin  ⇒ () = 3 sin  + 2cos  + . (0) = 2 +  and (0) = 4 ⇒  = 2, so

() = 3 sin  + 2 cos  + 2 and () = −3 cos  + 2 sin  + 2 +. (0) = −3 +  and (0) = 0 ⇒  = 3,

so () = −3 cos + 2 sin  + 2 + 3.

63. () = 0() = 10 sin  + 3cos  ⇒ () = −10 cos  + 3 sin  +  ⇒ () = −10 sin − 3 cos  +  +.

(0) = −3 +  = 0 and (2) = −3 + 2 +  = 12 ⇒  = 3 and  = 6


. Thus,

() = −10 sin − 3 cos  + 6

 + 3.
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SECTION 4.9 ANTIDERIVATIVES ¤ 145

64. () = 2 − 4 + 6 ⇒ () = 1
3
3 − 22 + 6 +  ⇒ () = 1

12
4 − 2

3
3 + 32 +  +. (0) =  and

(0) = 0 ⇒  = 0. (1) = 29
12

+ and (1) = 20 ⇒  = 211
12

. Thus, () = 1
12
4 − 2

3
3 + 32 + 211

12
.

65. (a) We first observe that since the stone is dropped 450 m above the ground, (0) = 0 and (0) = 450.

0() = () = −98 ⇒ () = −98 + . Now (0) = 0 ⇒  = 0, so () = −98 ⇒
() = −492 +. Last, (0) = 450 ⇒  = 450 ⇒ () = 450− 492.

(b) The stone reaches the ground when () = 0. 450− 492 = 0 ⇒ 2 = 45049 ⇒ 1 =


45049 ≈ 958 s.

(c) The velocity with which the stone strikes the ground is (1) = −98


45049 ≈ −939 ms.

(d) This is just reworking parts (a) and (b) with (0) = −5. Using () = −98 +, (0) = −5 ⇒ 0 +  = −5 ⇒
() = −98− 5. So () = −492 − 5 + and (0) = 450 ⇒  = 450 ⇒ () = −492 − 5 + 450.

Solving () = 0 by using the quadratic formula gives us  =

5±√8845


(−98) ⇒ 1 ≈ 909 s.

66. 0() = () =  ⇒ () =  +  and 0 = (0) =  ⇒ () = + 0 ⇒
() = 1

2
2 + 0+ ⇒ 0 = (0) =  ⇒ () = 1

2
2 + 0 + 0

67. By Exercise 66 with  = −98, () = −492 + 0 + 0 and () = 0 () = −98 + 0. So

[()]
2

= (−98+ 0)
2

= (98)
2
2 − 1960 + 2

0 = 2
0 + 96042 − 1960 = 2

0 − 196
−492 + 0


.

But −492 + 0 is just () without the 0 term; that is, ()− 0. Thus, [()]
2

= 2
0 − 196 [()− 0].

68. For the first ball, 1() = −162 + 48+ 432 from Example 7. For the second ball, () = −32 ⇒ () = −32+, but

(1) = −32(1) +  = 24 ⇒  = 56, so () = −32 + 56 ⇒ () = −162 + 56 + , but

(1) = −16(1)2 + 56(1) + = 432 ⇒  = 392, and 2() = −162 + 56 + 392. The balls pass each other

when 1() = 2() ⇒ −162 + 48+ 432 = −162 + 56 + 392 ⇔ 8 = 40 ⇔  = 5 s.

Another solution: From Exercise 66, we have 1() = −162 + 48 + 432 and 2() = −162 + 24 + 432.

We now want to solve 1() = 2(− 1) ⇒ −162 + 48 + 432 = −16(− 1)2 + 24(− 1) + 432 ⇒
48 = 32− 16 + 24− 24 ⇒ 40 = 8 ⇒  = 5 s.

69. Using Exercise 66 with  = −32, 0 = 0, and 0 =  (the height of the cliff ), we know that the height at time  is

() = −162 + . () = 0() = −32 and () = −120 ⇒ −32 = −120 ⇒  = 375, so

0 = (375) = −16(375)2 +  ⇒  = 16(375)2 = 225 ft.

70. (a) 00 = (− ) + 1
2
(− )2 ⇒ 0 = − 1

2
(− )2 − 1

6
(− )3 +  ⇒

 = 1
6
(− )3 + 1

24
(− )4 +  +. Since the left end of the board is fixed, we must have  = 0 = 0

when  = 0. Thus, 0 = − 1
2
2 − 1

6
3 +  and 0 = 1

6
3 + 1

24
4 + . It follows that

 = 1
6
(− )3 + 1

24
(− )4 +


1
2
2 + 1

6
3


−  1

6
3 + 1

24
4


and

() =  =
1




1
6
(− )3 + 1

24
(− )4 +


1
2
2 + 1

6
3


−  1

6
3 + 1

24
4
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146 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

(b) ()  0, so the end of the board is a distance approximately −() below the horizontal. From our result in (a), we

calculate

−() =
−1




1
2
3 + 1

6
4 − 1

6
3 − 1

24
4


=
−1




1
3
3 + 1

8
4


= −3






3
+



8


Note: This is positive because  is negative.

71. Marginal cost = 192− 0002 = 0() ⇒ () = 192− 00012 +. But (1) = 192− 0001 + = 562 ⇒
 = 560081. Therefore, () = 192− 00012 + 560081 ⇒ (100) = 742081, so the cost of producing

100 items is $74208.

72. Let the mass, measured from one end, be (). Then (0) = 0 and  =



= −12 ⇒ () = 212 +  and

(0) =  = 0, so () = 2
√
. Thus, the mass of the 100-centimeter rod is (100) = 2

√
100 = 20 g.

73. Taking the upward direction to be positive we have that for 0 ≤  ≤ 10 (using the subscript 1 to refer to 0 ≤  ≤ 10),

1() = − (9− 09) = 01() ⇒ 1() = −9+ 0452 + 0, but 1(0) = 0 = −10 ⇒
1() = −9 + 0452 − 10 = 01() ⇒ 1() = − 9

2
2 + 0153 − 10 + 0. But 1(0) = 500 = 0 ⇒

1() = − 9
2
2 + 0153 − 10 + 500. 1(10) = −450 + 150− 100 + 500 = 100, so it takes

more than 10 seconds for the raindrop to fall. Now for   10, () = 0 = 0() ⇒
() = constant = 1(10) = −9(10) + 045(10)2 − 10 = −55 ⇒ () = −55.

At 55 ms, it will take 10055 ≈ 18 s to fall the last 100 m. Hence, the total time is 10 + 100
55

= 130
11
≈ 118 s.

74. 0() = () = −22. The initial velocity is 50 mih = 50 · 5280
3600

= 220
3

fts, so () = −22+ 220
3

.

The car stops when () = 0 ⇔  = 220
3 · 22 = 10

3
. Since () = −112 + 220

3
, the distance covered is




10
3


= −11


10
3

2
+ 220

3
· 10

3
= 1100

9
= 1222 ft.

75. () = , the initial velocity is 30 mih = 30 · 5280
3600

= 44 fts, and the final velocity (after 5 seconds) is

50 mih = 50 · 5280
3600

= 220
3

fts. So () =  +  and (0) = 44 ⇒  = 44. Thus, () =  + 44 ⇒

(5) = 5 + 44. But (5) = 220
3

, so 5 + 44 = 220
3

⇒ 5 = 88
3

⇒  = 88
15
≈ 587 fts2.

76. () = −16 ⇒ () = −16 + 0 where 0 is the car’s speed (in fts) when the brakes were applied. The car stops when

−16 + 0 = 0 ⇔  = 1
16
0. Now () = 1

2
(−16)2 + 0 = −82 + 0. The car travels 200 ft in the time that it takes

to stop, so 


1
16
0


= 200 ⇒ 200 = −8


1
16
0

2
+ 0


1
16
0


= 1

32
2
0 ⇒ 2

0 = 32 · 200 = 6400 ⇒

0 = 80 fts [5454 mih].

77. Let the acceleration be () =  kmh2. We have (0) = 100 kmh and we can take the initial position (0) to be 0.

We want the time  for which () = 0 to satisfy ()  008 km. In general, 0() = () = , so () =  + ,

where  = (0) = 100. Now 0() = () = + 100, so () = 1
2
2 + 100 +, where  = (0) = 0.
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SECTION 4.9 ANTIDERIVATIVES ¤ 147

Thus, () = 1
2
2 + 100. Since ( ) = 0, we have  + 100 = 0 or  = −100, so

( ) =
1

2



−100



2

+ 100


−100




= 10,000


1

2
− 1




= −5,000


. The condition ( ) must satisfy is

−5,000


 008 ⇒ −5,000
008

  [ is negative] ⇒   −62,500 kmh2, or equivalently,

  − 3125
648

≈ −482 ms2.

78. (a) For 0 ≤  ≤ 3 we have () = 60 ⇒ () = 302 +  ⇒ (0) = 0 =  ⇒ () = 302, so

() = 103 + ⇒ (0) = 0 =  ⇒ () = 103. Note that (3) = 270 and (3) = 270.

For 3   ≤ 17: () = − = −32 fts ⇒ () = −32(− 3) +  ⇒ (3) = 270 =  ⇒
() = −32(− 3) + 270 ⇒ () = −16(− 3)2 + 270(− 3) +  ⇒ (3) = 270 =  ⇒
() = −16(− 3)2 + 270(− 3) + 270. Note that (17) = −178 and (17) = 914.

For 17   ≤ 22: The velocity increases linearly from−178 fts to −18 fts during this period, so

∆

∆
=
−18− (−178)

22− 17
=

160

5
= 32. Thus, () = 32(− 17)− 178 ⇒

() = 16(− 17)2 − 178(− 17) + 914 and (22) = 424 ft.

For   22: () = −18 ⇒ () = −18(− 22) + . But (22) = 424 =  ⇒ () = −18(− 22) + 424.

Therefore, until the rocket lands, we have

() =


302 if 0 ≤  ≤ 3

−32 (− 3) + 270 if 3   ≤ 17

32(− 17)− 178 if 17   ≤ 22

−18 if   22

and

() =


103 if 0 ≤  ≤ 3

−16(− 3)2 + 270(− 3) + 270 if 3   ≤ 17

16(− 17)2 − 178 (− 17) + 914 if 17   ≤ 22

−18(− 22) + 424 if   22

(b) To find the maximum height, set () on 3   ≤ 17 equal to 0. −32(− 3) + 270 = 0 ⇒ 1 = 114375 s and the

maximum height is (1) = −16(1 − 3)
2
+ 270(1 − 3) + 270 = 14090625 ft.

(c) To find the time to land, set () = −18(− 22) + 424 = 0. Then − 22 = 424
18

= 235, so  ≈ 456 s.
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148 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

79. (a) First note that 90 mih = 90× 5280
3600

fts = 132 fts. Then () = 4 fts2 ⇒ () = 4 + , but (0) = 0 ⇒

 = 0. Now 4 = 132 when  = 132
4

= 33 s, so it takes 33 s to reach 132 fts. Therefore, taking (0) = 0, we have

() = 22, 0 ≤  ≤ 33. So (33) = 2178 ft. 15 minutes = 15(60) = 900 s, so for 33   ≤ 933 we have

() = 132 fts ⇒ (933) = 132(900) + 2178 = 120,978 ft = 229125 mi.

(b) As in part (a), the train accelerates for 33 s and travels 2178 ft while doing so. Similarly, it decelerates for 33 s and travels

2178 ft at the end of its trip. During the remaining 900− 66 = 834 s it travels at 132 fts, so the distance traveled is

132 · 834 = 110,088 ft. Thus, the total distance is 2178 + 110,088 + 2178 = 114,444 ft = 21675 mi.

(c) 45 mi = 45(5280) = 237,600 ft. Subtract 2(2178) to take care of the speeding up and slowing down, and we have

233,244 ft at 132 fts for a trip of 233,244132 = 1767 s at 90 mih. The total time is

1767 + 2(33) = 1833 s = 30 min 33 s = 3055 min.

(d) 375(60) = 2250 s. 2250− 2(33) = 2184 s at maximum speed. 2184(132) + 2(2178) = 292,644 total feet or

292,6445280 = 55425 mi.

4 Review

1. False. For example, take () = 3, then  0() = 32 and  0(0) = 0, but (0) = 0 is not a maximum or minimum;

(0 0) is an inflection point.

2. False. For example, () = || has an absolute minimum at 0, but  0(0) does not exist.

3. False. For example, () =  is continuous on (0 1) but attains neither a maximum nor a minimum value on (0 1).

Don’t confuse this with  being continuous on the closed interval [ ], which would make the statement true.

4. True. By the Mean Value Theorem,  0() =
(1)− (−1)

1− (−1)
=

0

2
= 0. Note that ||  1 ⇔  ∈ (−1 1).

5. True. This is an example of part (b) of the I/D Test.

6. False. For example, the curve  = () = 1 has no inflection points but  00() = 0 for all .

7. False.  0() = 0() ⇒ () = () +. For example, if () = + 2 and () = + 1, then  0() = 0() = 1,

but () 6= ().

8. False. Assume there is a function  such that (1) = −2 and (3) = 0. Then by the Mean Value Theorem there exists a

number  ∈ (1 3) such that  0() =
(3)− (1)

3− 1
=

0− (−2)

2
= 1. But  0()  1 for all , a contradiction.

9. True. The graph of one such function is sketched.
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10. False. At any point ( ()), we know that  0()  0. So since the tangent line at ( ()) is not horizontal, it must cross

the -axis—at  = , say. But since  00()  0 for all , the graph of  must lie above all of its tangents;

in particular, ()  0. But this is a contradiction, since we are given that ()  0 for all .

11. True. Let 1  2 where 1 2 ∈ . Then (1)  (2) and (1)  (2) [since  and  are increasing on  ],

so ( + )(1) = (1) + (1)  (2) + (2) = ( + )(2).

12. False. () =  and () = 2 are both increasing on (0 1), but ()− () = − is not increasing on (0 1).

13. False. Take () =  and () = − 1. Then both  and  are increasing on (0 1). But () () = (− 1) is not

increasing on (0 1).

14. True. Let 1  2 where 1 2 ∈ . Then 0  (1)  (2) and 0  (1)  (2) [since  and  are both positive

and increasing]. Hence, (1) (1)  (2) (1)  (2) (2). So  is increasing on .

15. True. Let 1 2 ∈  and 1  2. Then (1)  (2) [ is increasing] ⇒ 1

(1)


1

(2)
[ is positive] ⇒

(1)  (2) ⇒ () = 1() is decreasing on .

16. False. If  is even, then () = (−). Using the Chain Rule to differentiate this equation, we get

 0() =  0(−)



(−) = − 0(−). Thus,  0(−) = − 0(), so  0 is odd.

17. True. If  is periodic, then there is a number  such that (+ ) = () for all . Differentiating gives

 0() =  0(+ ) · (+ )0 =  0(+ ) · 1 =  0( + ), so  0 is periodic.

18. False. The most general antiderivative of () = −2 is  () = −1+ 1 for   0 and  () = −1 +2

for   0 [see Example 4.9.1(b)].

19. True. By the Mean Value Theorem, there exists a number  in (0 1) such that (1)− (0) =  0()(1− 0) =  0().

Since  0() is nonzero, (1)− (0) 6= 0, so (1) 6= (0).

20. False. Let () = 1 +
1


and () = . Then lim

→∞
() = 1 and lim

→∞
() =∞, but

lim
→∞

[()]() = lim
→∞


1 +

1




= , not 1.

21. False. lim
→0




=

lim
→0



lim
→0


=

0

1
= 0, not 1.

1. () = 3 − 92 + 24− 2, [0 5].  0() = 32 − 18 + 24 = 3(2 − 6+ 8) = 3(− 2)(− 4).  0() = 0 ⇔
 = 2 or  = 4.  0()  0 for 0    2,  0()  0 for 2    4, and  0()  0 for 4    5, so (2) = 18 is a local

maximum value and (4) = 14 is a local minimum value. Checking the endpoints, we find (0) = −2 and (5) = 18. Thus,

(0) = −2 is the absolute minimum value and (2) = (5) = 18 is the absolute maximum value.
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150 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

2. () = 
√

1− , [−1 1].  0() =  · 1
2
(1− )−12(−1) + (1− )12(1) = (1− )−12

− 1
2
+ (1− )


=

1− 3
2
√

1− 
.

 0() = 0 ⇒  = 2
3

.  0() does not exist ⇔  = 1.  0()  0 for −1    2
3

and  0()  0 for 2
3
   1, so




2
3


= 2

3


1
3

= 2
9

√
3 [≈038] is a local maximum value. Checking the endpoints, we find (−1) = −√2 and (1) = 0.

Thus, (−1) = −√2 is the absolute minimum value and 


2
3


= 2

9

√
3 is the absolute maximum value.

3. () =
3− 4

2 + 1
, [−2 2].  0() =

(2 + 1)(3)− (3− 4)(2)

(2 + 1)2
=
−(32 − 8− 3)

(2 + 1)2
=
−(3 + 1)(− 3)

(2 + 1)2
.

 0() = 0 ⇒  = −1
3

or  = 3, but 3 is not in the interval.  0()  0 for −1
3
   2 and  0()  0 for

−2    −1
3

, so 
− 1

3


= −5

109
= − 9

2
is a local minimum value. Checking the endpoints, we find (−2) = −2 and

(2) = 2
5

. Thus, 
− 1

3


= − 9

2
is the absolute minimum value and (2) = 2

5
is the absolute maximum value.

4. () =
√
2 + + 1, [−2 1].  0() = 1

2
(2 +  + 1)−12(2 + 1) =

2 + 1

2
√
2 +  + 1

.  0() = 0 ⇒  = −1

2
.

 0()  0 for − 1
2
   1 and  0()  0 for −2    − 1

2
, so 

− 1
2


=
√

32 is a local minimum value. Checking the

endpoints, we find (−2) = (1) =
√

3. Thus, 
− 1

2


=
√

32 is the absolute minimum value and (−2) = (1) =
√

3 is

the absolute maximum value.

5. () = + 2 cos, [− ].  0() = 1− 2 sin.  0() = 0 ⇒ sin = 1
2
⇒  = 

6
, 5

6
.  0()  0 for− 

6


and


5
6
 

, and  0()  0 for



6
 5

6


, so 



6


= 

6
+
√

3 ≈ 226 is a local maximum value and




5
6


= 5

6
−√3 ≈ 089 is a local minimum value. Checking the endpoints, we find (−) = − − 2 ≈ −514 and

() =  − 2 ≈ 114. Thus, (−) = − − 2 is the absolute minimum value and 


6


= 

6
+
√

3 is the absolute

maximum value.

6. () = 2−, [−1 3].  0() = 2(−−) + −(2) = −(− + 2).  0() = 0 ⇒  = 0 or  = 2.

 0()  0 for 0    2 and  0()  0 for −1    0 and 2    3, so (0) = 0 is a local minimum value and

(2) = 4−2 ≈ 054 is a local maximum value. Checking the endpoints, we find (−1) =  ≈ 272 and

(3) = 9−3 ≈ 045. Thus, (0) = 0 is the absolute minimum value and (−1) =  is the absolute maximum value.

7. This limit has the form 0
0

. lim
→0

 − 1

tan

H
= lim

→0



sec2 
=

1

1
= 1

8. This limit has the form 0
0

. lim
→0

tan 4

+ sin 2

H
= lim

→0

4 sec2 4

1 + 2 cos 2
=

4(1)

1 + 2(1)
=

4

3

9. This limit has the form 0
0

. lim
→0

2 − −2

ln(+ 1)

H
= lim

→0

22 + 2−2

1(+ 1)
=

2 + 2

1
= 4

10. This limit has the form ∞
∞ . lim

→∞
2 − −2

ln(+ 1)

H
= lim

→∞
22 + 2−2

1(+ 1)
= lim

→∞
2(+ 1)(2 + −2) =∞

since 2(+ 1)→∞ and (2 + −2)→∞ as →∞.
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CHAPTER 4 REVIEW ¤ 151

11. This limit has the form∞ · 0.

lim
→−∞

(2 − 3)2 = lim
→−∞

2 − 3

−2

∞
∞ form

 H
= lim

→−∞
2− 32

−2−2

∞
∞ form


H
= lim

→−∞
2− 6

4−2

∞
∞ form

 H
= lim

→−∞
−6

−8−2
= 0

12. This limit has the form 0 ·∞. lim
→−

(− ) csc = lim
→−

− 

sin


0
0

form
 H

= lim
→−

1

cos
=

1

−1
= −1

13. This limit has the form∞−∞.

lim
→1+




− 1
− 1

ln


= lim

→1+


 ln− + 1

(− 1) ln


H
= lim

→1+

 · (1) + ln− 1

(− 1) · (1) + ln
= lim

→1+

ln

1− 1+ ln

H
= lim

→1+

1

12 + 1
=

1

1 + 1
=

1

2

14.  = (tan)cos  ⇒ ln  = cos ln tan, so

lim
→(2)−

ln  = lim
→(2)−

ln tan

sec

H
= lim

→(2)−

(1 tan) sec2 

sec tan
= lim

→(2)−

sec

tan2 
= lim

→(2)−

cos

sin2 
=

0

12
= 0,

so lim
→(2)−

(tan)cos = lim
→(2)−

ln  = 0 = 1.

15. (0) = 0,  0(−2) =  0(1) =  0(9) = 0, lim
→∞

() = 0, lim
→6

() = −∞,

 0()  0 on (−∞−2), (1 6), and (9∞),  0()  0 on (−2 1) and (6 9),

 00()  0 on (−∞ 0) and (12∞),  00()  0 on (0 6) and (6 12)

16. For 0    1,  0() = 2, so () = 2 +. Since (0) = 0,

() = 2 on [0 1]. For 1    3,  0() = −1, so () = −+.

1 = (1) = −1 + ⇒  = 2, so () = 2− . For   3,  0() = 1,

so () =  +. −1 = (3) = 3 + ⇒  = −4, so () = − 4.

Since  is even, its graph is symmetric about the -axis.

17.  is odd,  0()  0 for 0    2,  0()  0 for   2,

 00()  0 for 0    3,  00()  0 for   3, lim→∞ () = −2

18. (a) Using the Test for Monotonic Functions we know that  is increasing on (−2 0) and (4∞) because  0  0 on (−2 0)

and (4∞), and that  is decreasing on (−∞−2) and (0 4) because  0  0 on (−∞−2) and (0 4).

(b) Using the First Derivative Test, we know that  has a local maximum at  = 0 because  0 changes from positive to

negative at  = 0, and that  has a local minimum at  = 4 because  0 changes from negative to positive at  = 4.
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152 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

(c) (d)

19.  = () = 2− 2− 3 A.  = R B. -intercept: (0) = 2.

The -intercept (approximately 0770917) can be found using Newton’s

Method. C. No symmetry D. No asymptote

E.  0() = −2− 32 = −(32 + 2)  0, so  is decreasing on R.

F. No extreme value G.  00() = −6  0 on (0∞) and  00()  0 on

(−∞ 0), so  is CD on (0∞) and CU on (−∞ 0). There is an IP at (0 2).

H.

20.  = () = −23 − 32 + 12+ 5 A.  = R B. -intercept: (0) = 5; -intercept: () = 0 ⇔
 ≈ −315, −039, 204 C. No symmetry D. No asymptote

E.  0() = −62 − 6+ 12 = −6(2 + − 2) = −6(+ 2)(− 1).

 0()  0 for −2    1, so  is increasing on (−2 1) and decreasing on

(−∞−2) and (1∞). F. Local minimum value (−2) = −15, local

maximum value (1) = 12 G.  00() = −12− 6 = −12

+ 1

2


.

 00()  0 for   − 1
2

, so  is CU on
−∞−1

2


and CD on

− 1
2
∞. There

is an IP at
− 1

2
− 3

2


.

H.

21.  = () = 34 − 43 + 2 A.  = R B. -intercept: (0) = 2; no -intercept C. No symmetry D. No asymptote

E.  0() = 123 − 122 = 122(− 1).  0()  0 for   1, so  is

increasing on (1∞) and decreasing on (−∞ 1). F.  0() does not change

sign at  = 0, so there is no local extremum there. (1) = 1 is a local minimum

value. G.  00() = 362 − 24 = 12(3− 2).  00()  0 for 0    2
3

,

so  is CD on

0 2

3


and  is CU on (−∞ 0) and


2
3
∞. There are inflection

points at (0 2) and


2
3
 38

27


.

H.

 

22.  = () =


1− 2
A.  = (−∞−1) ∪ (−1 1) ∪ (1∞) B. -intercept: (0) = 0; -intercept: 0

C. (−) = −(), so  is odd and the graph is symmetric about the origin. D. lim
→±∞



1− 2
= 0, so  = 0 is a HA.

lim
→−1−



1− 2
= ∞ and lim

→−1+



1− 2
= −∞, so  = −1 is a VA. Similarly, lim

→1−



1− 2
= ∞ and

lim
→1+



1− 2
= −∞, so  = 1 is a VA. E.  0() =

(1− 2)(1)− (−2)

(1− 2)2
=

1 + 2

(1− 2)2
 0 for  6= ±1, so  is
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CHAPTER 4 REVIEW ¤ 153

increasing on (−∞−1), (−1 1), and (1∞). F. No local extrema

G.  00() =
(1− 2)2(2)− (1 + 2)2(1− 2)(−2)

[(1− 2)2]2

=
2(1− 2)[(1− 2) + 2(1 + 2)]

(1− 2)4
=

2(3 + 2)

(1− 2)3

 00()  0 for   −1 and 0    1, and  00()  0 for −1    0 and

  1, so  is CU on (−∞−1) and (0 1), and  is CD on (−1 0) and (1∞).

(0 0) is an IP.

H.

23.  = () =
1

(− 3)2
A.  = { |  6= 0 3} = (−∞ 0) ∪ (0 3) ∪ (3∞) B. No intercepts. C. No symmetry.

D. lim
→±∞

1

(− 3)2
= 0, so  = 0 is a HA. lim

→0+

1

(− 3)2
=∞, lim

→0−

1

(− 3)2
= −∞, lim

→3

1

(− 3)2
=∞,

so  = 0 and  = 3 are VA. E.  0() = − (− 3)2 + 2(− 3)

2(− 3)4
=

3(1− )

2(− 3)3
⇒  0()  0 ⇔ 1    3,

so  is increasing on (1 3) and decreasing on (−∞ 0), (0 1), and (3∞).

F. Local minimum value (1) = 1
4

G.  00() =
6(22 − 4+ 3)

3(− 3)4
.

Note that 22 − 4+ 3  0 for all  since it has negative discriminant.

So  00()  0 ⇔   0 ⇒  is CU on (0 3) and (3∞) and

CD on (−∞ 0). No IP

H.

24.  = () =
1

2
− 1

(− 2)2
A.  = { |  6= 0 2} B. -intercept: none; -intercept: () = 0 ⇒

1

2
=

1

(− 2)2
⇔ (− 2)2 = 2 ⇔ 2 − 4 + 4 = 2 ⇔ 4 = 4 ⇔  = 1 C. No symmetry

D. lim
→0

() = ∞ and lim
→2

() = −∞, so  = 0 and  = 2 are VA; lim
→±∞

() = 0, so  = 0 is a HA

E.  0() = − 2

3
+

2

(− 2)3
 0 ⇒ −(− 2)3 + 3

3(− 2)3
 0 ⇔ −3 + 62 − 12+ 8 + 3

3(− 2)3
 0 ⇔

2(32 − 6+ 4)

3(− 2)3
 0. The numerator is positive (the discriminant of the quadratic is negative), so  0()  0 if   0 or

  2, and hence,  is increasing on (−∞ 0) and (2∞) and decreasing on (0 2).

F. No local extreme values G.  00() =
6

4
− 6

(− 2)4
 0 ⇒

(− 2)4 − 4

4(− 2)4
 0 ⇔ 4 − 83 + 242 − 32+ 16− 4

4(− 2)4
 0 ⇔

−8(3 − 32 + 4− 2)

4(− 2)4
 0 ⇔ −8(− 1)(2 − 2 + 2)

4(− 2)4
 0. So  00 is

positive for   1 [ 6= 0] and negative for   1 [ 6= 2]. Thus,  is CU on

(−∞ 0) and (0 1) and  is CD on (1 2) and (2∞). IP at (1 0)

H.
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154 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

25.  = () =
(− 1)3

2
=

3 − 32 + 3− 1

2
= − 3 +

3− 1

2
A.  = { |  6= 0} = (−∞ 0) ∪ (0∞)

B. -intercept: none; -intercept: () = 0 ⇔  = 1 C. No symmetry D. lim
→0−

(− 1)3

2
= −∞ and

lim
→0+

() = −∞, so  = 0 is a VA. ()− (− 3) =
3− 1

2
→ 0 as → ±∞, so  = − 3 is a SA.

E.  0() =
2 · 3(− 1)2 − (− 1)3(2)

(2)2
=

(− 1)2[3− 2(− 1)]

4
=

(− 1)2(+ 2)

3
.  0()  0 for −2    0,

so  is increasing on (−∞−2), decreasing on (−2 0), and increasing on (0∞).

F. Local maximum value (−2) = −27
4

G. () = − 3 +
3


− 1

2
⇒

 0() = 1− 3

2
+

2

3
⇒  00() =

6

3
− 6

4
=

6− 6

4
=

6(− 1)

4
.

 00()  0 for   1, so  is CD on (−∞ 0) and (0 1), and  is CU on (1∞).

There is an inflection point at (1 0).

H.

26.  = () =
√

1−  +
√

1 +  A. 1−  ≥ 0 and 1 +  ≥ 0 ⇒  ≤ 1 and  ≥ −1, so  = [−1 1].

B. -intercept: (0) = 1 + 1 = 2; no -intercept because ()  0 for all .

C. (−) = (), so the curve is symmetric about the -axis D. No asymptote

E.  0() = 1
2
(1− )−12(−1) + 1

2
(1 + )−12 =

−1

2
√

1− 
+

1

2
√

1 + 
=
−√1 + +

√
1− 

2
√

1− 
√

1 + 
 0 ⇒

−√1 + +
√

1−   0 ⇒ √
1−  

√
1 +  ⇒ 1−   1 +  ⇒ −2  0 ⇒   0, so  0()  0 for

−1    0 and  0()  0 for 0    1. Thus,  is increasing on (−1 0)

and decreasing on (0 1). F. Local maximum value (0) = 2

G.  00() = − 1
2

− 1
2


(1− )−32(−1) + 1

2

− 1
2


(1 + )−32

=
−1

4(1− )32
+

−1

4(1 + )32
 0

for all  in the domain, so  is CD on (−1 1). No IP

H.

27.  = () = 
√

2 +  A.  = [−2∞) B. -intercept: (0) = 0; -intercepts: −2 and 0 C. No symmetry

D. No asymptote E.  0() =


2
√

2 + 
+
√

2 +  =
1

2
√

2 + 
[+ 2(2 + )] =

3+ 4

2
√

2 + 
= 0 when  = − 4

3
, so  is

decreasing on
−2− 4

3


and increasing on

−4
3
∞. F. Local minimum value 

−4
3


= − 4

3


2
3

= − 4
√

6
9
≈ −109,

no local maximum

G.  00() =

2
√

2 +  · 3− (3+ 4)
1√

2 + 

4(2 + )
=

6(2 + )− (3+ 4)

4(2 + )32

=
3+ 8

4(2 + )32

 00()  0 for   −2, so  is CU on (−2∞). No IP

H.
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CHAPTER 4 REVIEW ¤ 155

28.  = () = 23(− 3)2 A.  =R B. -intercept: (0) = 0; -intercepts: () = 0 ⇔  = 0, 3

C. No symmetry D. No asymptote

E.  0() = 23 · 2(− 3) + (− 3)2 · 2
3
−13 = 2

3
−13(− 3)[3+ (− 3)] = 2

3
−13(− 3)(4− 3).

 0()  0 ⇔ 0    3
4

or   3, so  is decreasing on (−∞ 0), increasing on

0 3

4


, decreasing on


3
4
 3

, and

increasing on (3∞). F. Local minimum value (0) = (3) = 0; local maximum value




3
4


=


3
4

23 − 9
4

2
= 81

16
3


9
16

= 81
32

3


9
2

[≈ 418]

G.  0() =


2
3
−13


(42 − 15+ 9) ⇒

 00() =


2
3
−13


(8− 15) + (42 − 15+ 9)


− 2

9
−43


= 2

9
−43[3(8− 15)− (42 − 15+ 9)]

= 2
9
−43(202 − 30− 9)

 00() = 0 ⇔  ≈ −026 or 176.  00() does not exist at  = 0.

 is CU on (−∞−026), CD on (−026 0), CD on (0 176), and CU on

(176∞). There are inflection points at (−026 428) and (176 225).

H.

29.  = () =  sin, − ≤  ≤  A.  = [− ] B. -intercept: (0) = 0; () = 0 ⇔ sin = 0 ⇒
 = − 0 . C. No symmetry D. No asymptote E.  0() =  cos+ sin ·  = (cos+ sin).

 0() = 0 ⇔ − cos = sin ⇔ −1 = tan ⇒  = −
4
 3

4
.  0()  0 for −

4
   3

4
and  0()  0

for −    −
4

and 3
4
   , so  is increasing on

−
4
 3

4


and  is decreasing on

−−
4


and


3
4
 

.

F. Local minimum value 
−

4


= (−√22)−4 ≈ −032 and

local maximum value 


3
4


=
√

22

34 ≈ 746

G.  00() = (− sin+ cos) + (cos + sin) = (2 cos)  0 ⇒
−

2
   

2
and  00()  0 ⇒ −    −

2
and 

2
   , so  is

CU on
−

2
 

2


, and  is CD on

−−
2


and



2
 

. There are inflection

points at

−

2
−−2


and



2
 2


.

H.

30.  = () = 4− tan, −
2
   

2
A.  =

−
2
 

2


. B. -intercept = (0) = 0 C. (−) = −(), so the

curve is symmetric about (0 0)  D. lim
→2−

(4− tan) = −∞, lim
→−2+

(4− tan) =∞, so  = 
2

and  = −
2

are VA. E.  0() = 4− sec2   0 ⇔ sec  2 ⇔ cos  1
2
⇔ −

3
   

3
, so  is increasing on−

3
 

3


and decreasing on

−
2
−

3


and



3
 

2


 F. 



3


= 4

3
−√3 is

a local maximum value, 
−

3


=
√

3− 4
3

is a local minimum value.

G.  00() = −2 sec2  tan  0 ⇔ tan  0 ⇔ −
2
   0,

so  is CU on
−

2
 0


and CD on

0 

2


. IP at (0 0)

H.
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156 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

31.  = () = sin−1(1) A.  = { | −1 ≤ 1 ≤ 1} = (−∞−1] ∪ [1∞)  B. No intercept

C. (−) = −(), symmetric about the origin D. lim
→±∞

sin−1(1) = sin−1 (0) = 0, so  = 0 is a HA.

E.  0() =
1

1− (1)2


− 1

2


=

−1√
4 − 2

 0, so  is decreasing on (−∞−1) and (1∞) 

F. No local extreme value, but (1) = 
2

is the absolute maximum value

and (−1) = −
2

is the absolute minimum value.

G.  00() =
43 − 2

2(4 − 2)
32

=


22 − 1


(4 − 2)

32
 0 for   1 and  00()  0

for   −1, so  is CU on (1∞) and CD on (−∞−1). No IP

H.

32.  = () = 2−
2

A.  = R B. -intercept 1; no -intercept C. No symmetry D. lim
→±∞

2−
2

= 0, so  = 0

is a HA. E.  = () = 2−
2 ⇒  0() = 2(1− )2−

2

 0 ⇔   1, so  is increasing on (−∞ 1) and

decreasing on (1∞). F. (1) =  is a local and absolute maximum value.

G.  00() = 2

22 − 4 + 1


2−

2

= 0 ⇔  = 1±
√

2
2

.

 00()  0 ⇔   1−
√

2
2

or   1 +
√

2
2

, so  is CU on

−∞ 1−

√
2

2


and


1 +

√
2

2
∞


, and CD on

1−

√
2

2
 1 +

√
2

2


. IP at


1±

√
2

2

√



H.

33.  = () = (− 2)− A.  = R B. -intercept: (0) = −2; -intercept: () = 0 ⇔  = 2

C. No symmetry D. lim
→∞

− 2


H
= lim

→∞
1


= 0, so  = 0 is a HA. No VA

E.  0() = (− 2)(−−) + −(1) = −[−(− 2) + 1] = (3− )−.

 0()  0 for   3, so  is increasing on (−∞ 3) and decreasing on (3∞).

F. Local maximum value (3) = −3, no local minimum value

G.  00() = (3− )(−−) + −(−1) = −[−(3− ) + (−1)]

= (− 4)−  0

for   4, so  is CU on (4∞) and CD on (−∞ 4). IP at (4 2−4)

H.

34.  = () =  + ln(2 + 1) A.  = R B. -intercept: (0) = 0 + ln 1 = 0; -intercept: () = 0 ⇔
ln(2 + 1) = − ⇔ 2 + 1 = − ⇒  = 0 since the graphs of  = 2 + 1 and  = − intersect only at  = 0.

C. No symmetry D. No asymptote E.  0() = 1 +
2

2 + 1
=

2 + 2+ 1

2 + 1
=

(+ 1)2

2 + 1
.  0()  0 if  6= −1 and

 is increasing on R. F. No local extreme values

G.  00() =
(2 + 1)2− 2(2)

(2 + 1)2
=

2[(2 + 1)− 22]

(2 + 1)2
=

2(1− 2)

(2 + 1)2
.

 00()  0 ⇔ −1    1 and  00()  0 ⇔   −1 or   1, so  is

CU on (−1 1) and  is CD on (−∞−1) and (1∞). IP at (−1−1 + ln 2)

and (1 1 + ln 2)

H.
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CHAPTER 4 REVIEW ¤ 157

35. () =
2 − 1

3
⇒  0() =

3(2)− 2 − 1

32

6
=

3− 2

4
⇒

 00() =
4(−2)− 3− 2


43

8
=

22 − 12

5

Estimates: From the graphs of  0 and  00, it appears that  is increasing on

(−173 0) and (0 173) and decreasing on (−∞−173) and (173∞);

 has a local maximum of about (173) = 038 and a local minimum of about

(−17) = −038;  is CU on (−245 0) and (245∞), and CD on

(−∞−245) and (0 245); and  has inflection points at about

(−245−034) and (245 034).

Exact: Now  0() =
3− 2

4
is positive for 0  2  3, that is,  is increasing

on
−√3 0


and


0
√

3

; and  0() is negative (and so  is decreasing) on−∞−√3


and

√
3∞.  0() = 0 when  = ±√3.

 0 goes from positive to negative at  =
√

3, so  has a local maximum of


√

3


=
(
√

3 )
2− 1

(
√

3 )
3 = 2

√
3

9
; and since  is odd, we know that maxima on the

interval (0∞) correspond to minima on (−∞ 0), so  has a local minimum of


−√3


= − 2

√
3

9
. Also,  00() =

22 − 12

5
is positive (so  is CU) on−√6 0


and

√
6∞, and negative (so  is CD) on

−∞−√6


and
0
√

6

. There are IP at

√
6 5

√
6

36


and


−√6− 5

√
6

36


.

36. () =
3 + 1

6 + 1
⇒  0() = −32(6 + 23 − 1)

(6 + 1)2
⇒  00() =

6(212 + 79 − 96 − 53 + 1)

(6 + 1)3
.

() = 0 ⇔  = −1.  0() = 0 ⇔  = 0 or  ≈ −134, 075.  00() = 0 ⇔  = 0 or  ≈ −164, −082, 054,

109. From the graphs of  and  0, it appears that  is decreasing on (−∞−134), increasing on (−134 075), and

decreasing on (075∞).  has a local minimum value of (−134) ≈ −021 and a local maximum value of (075) ≈ 121.

From the graphs of  and  00, it appears that  is CD on (−∞−164), CU on (−164−082), CD on (−082 0), CU on

(0 054), CD on (054 109) and CU on (109∞). There are inflection points at about (−164−017), (−082 034),

(054 113), (109 086) and at (0 1).
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158 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

37. () = 36 − 55 + 4 − 53 − 22 + 2 ⇒  0() = 185 − 254 + 43 − 152 − 4 ⇒
 00() = 904 − 1003 + 122 − 30− 4

From the graphs of  0 and  00, it appears that  is increasing on (−023 0) and (162∞) and decreasing on (−∞−023)

and (0 162);  has a local maximum of (0) = 2 and local minima of about (−023) = 196 and (162) = −192;

 is CU on (−∞−012) and (124∞) and CD on (−012 124); and  has inflection points at about (−012 198) and

(124−121).

38. () = 2 + 65 sin, −5 ≤  ≤ 5 ⇒  0() = 2 + 65 cos ⇒  00() = 2− 65 sin. () = 0 ⇔
 ≈ −225 and  = 0;  0() = 0 ⇔  ≈ −119, 240, 324;  00() = 0 ⇔  ≈ −345, 031, 283.

From the graphs of  0 and  00, it appears that  is decreasing on (−5−119) and (240 324) and increasing on

(−119 240) and (324 5);  has a local maximum of about (240) = 1015 and local minima of about

(−119) = −462 and (324) = 986;  is CU on (−345 031) and

(283 5) and CD on (−5−345) and (031 283); and  has inflection points

at about (−345 1393), (031 210), and (283 1000).

39. From the graph, we estimate the points of inflection to be about (±082 022).

() = −12 ⇒  0() = 2−3−12 ⇒

 00() = 2[−3(2−3)−12 + −12(−3−4)] = 2−6−12

2− 32


.

This is 0 when 2− 32 = 0 ⇔  = ±


2
3

, so the inflection points

are

±


2
3
 −32


.
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CHAPTER 4 REVIEW ¤ 159

40. (a) (b) () =
1

1 + 1
.

lim
→∞

() =
1

1 + 1
=

1

2
, lim
→−∞

() =
1

1 + 1
=

1

2
,

as → 0+, 1→∞, so 1 →∞ ⇒ lim
→0+

() = 0,

as → 0−, 1→−∞, so 1 → 0 ⇒ lim
→0−

() =
1

1 + 0
= 1

(c) From the graph of  , estimates for the IP are (−04 09) and (04 008).

(d)  00() = −1[1(2− 1) + 2 + 1]

4(1 + 1)3

(e) From the graph, we see that  00 changes sign at  = ±0417

( = 0 is not in the domain of  ). IP are approximately (0417 0083)

and (−0417 0917).

41. () =
cos2 √

2 + + 1
, − ≤  ≤  ⇒  0() = −cos [(2+ 1) cos+ 4(2 + + 1) sin]

2(2 + + 1)32
⇒

 00() = − (84 + 163 + 162 + 8+ 9) cos2 − 8(2 + + 1)(2+ 1) sin cos− 8(2 +  + 1)2 sin2 

4(2 + + 1)52

() = 0 ⇔  = ±
2

;  0() = 0 ⇔  ≈ −296, −157, −018, 157, 301;

 00() = 0 ⇔  ≈ −216, −075, 046, and 221.

The -coordinates of the maximum points are the values at which  0 changes from positive to negative, that is, −296,

−018, and 301. The -coordinates of the minimum points are the values at which  0 changes from negative to positive, that

is, −157 and 157. The -coordinates of the inflection points are the values at which  00 changes sign, that is, −216, −075,

046, and 221.

42. () = −01 ln(2 − 1) ⇒  0() =
−01


(2 − 1) ln(2 − 1)− 20


10(1− 2)

⇒

 00() =
−01


(2 − 1)2 ln(2 − 1)− 40(3 + 52 − + 5)


100(2 − 1)2

.

The domain of  is (−∞−1) ∪ (1∞). () = 0 ⇔  = ±√2;  0() = 0 ⇔  ≈ 587;

 00() = 0 ⇔  ≈ −431 and 1174.
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160 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

 0 changes from positive to negative at  ≈ 587, so 587 is the -coordinate of the maximum point. There is no minimum

point. The -coordinates of the inflection points are the values at which  00 changes sign, that is, −431 and 1174.

43. The family of functions () = ln(sin+ ) all have the same period and all

have maximum values at  = 
2

+ 2. Since the domain of ln is (0∞),  has

a graph only if sin +  0 somewhere. Since −1 ≤ sin ≤ 1, this happens

if   −1, that is,  has no graph if  ≤ −1. Similarly, if   1, then

sin+   0 and  is continuous on (−∞∞). As  increases, the graph of

 is shifted vertically upward and flattens out. If −1   ≤ 1,  is defined where sin +   0 ⇔
sin  − ⇔ sin−1(−)     − sin−1(−). Since the period is 2, the domain of  is
2 + sin−1(−) (2+ 1) − sin−1(−)


,  an integer.

44. We exclude the case  = 0, since in that case () = 0 for all . To find the maxima and minima, we differentiate:

() = −
2 ⇒  0() = 


−

2

(−2) + −
2

(1)


= −
2

(−22 + 1)

This is 0 where −22 + 1 = 0 ⇔  = ±1
√

2. So if   0, there are two maxima or minima, whose -coordinates

approach 0 as  increases. The negative root gives a minimum and the positive root gives a maximum, by the First Derivative

Test. By substituting back into the equation, we see that 
±1

√
2


= 
±1

√
2

−(±1

√
2 )

2

= ±

2. So as 

increases, the extreme points become more pronounced. Note that if   0, then lim
→±∞

() = 0. If   0, then there are no

extreme values, and lim
→±∞

() = ∓∞.

To find the points of inflection, we differentiate again:  0() = −
2−22 + 1

 ⇒

 00() = 

−

2

(−4) + (−22 + 1)(−2−
2

)


= −22−
2

(3− 22). This is 0 at  = 0 and where

3− 22 = 0 ⇔  = ±


3(2) ⇒ IP at

±


3(2)±


32 −32


. If   0 there are three inflection points,

and as  increases, the -coordinates of the nonzero inflection points approach 0. If   0, there is only one inflection point,

the origin.
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CHAPTER 4 REVIEW ¤ 161

45. Let () = 3+ 2cos+ 5. Then (0) = 7  0 and (−) = −3 − 2 + 5 = −3 + 3 = −3( − 1)  0 and since  is

continuous on R (hence on [− 0]), the Intermediate Value Theorem assures us that there is at least one zero of  in [− 0].
Now  0() = 3− 2 sin  0 implies that  is increasing on R, so there is exactly one zero of  , and hence, exactly one real

root of the equation 3+ 2cos+ 5 = 0.

46. By the Mean Value Theorem,  0() =
(4)− (0)

4− 0
⇔ 4 0() = (4)− 1 for some  with 0    4. Since

2 ≤  0() ≤ 5, we have 4(2) ≤ 4 0() ≤ 4(5) ⇔ 4(2) ≤ (4)− 1 ≤ 4(5) ⇔ 8 ≤ (4)− 1 ≤ 20 ⇔
9 ≤ (4) ≤ 21.

47. Since  is continuous on [32 33] and differentiable on (32 33), then by the Mean Value Theorem there exists a number  in

(32 33) such that  0() = 1
5
−45 =

5
√

33− 5
√

32

33− 32
=

5
√

33− 2, but 1
5
−45  0 ⇒ 5

√
33− 2  0 ⇒ 5

√
33  2. Also

 0 is decreasing, so that  0()   0(32) = 1
5
(32)−45 = 00125 ⇒ 00125   0() =

5
√

33− 2 ⇒ 5
√

33  20125.

Therefore, 2 
5
√

33  20125.

48. Since the point (1 3) is on the curve  = 3 + 2, we have 3 = (1)3 + (1)2 ⇒ 3 = +  (1).

0 = 32 + 2 ⇒ 00 = 6+ 2. 00 = 0 [for inflection points] ⇔  =
−2

6
= − 

3
. Since we want  = 1,

1 = − 

3
⇒  = −3. Combining with (1) gives us 3 = − 3 ⇔ 3 = −2 ⇔  = −3

2
. Hence,

 = −3
− 3

2


= 9

2
and the curve is  = − 3

2
3 + 9

2
2.

49. (a) () = (2) ⇒ 0() = 2 0(2) by the Chain Rule. Since  0()  0 for all  6= 0, we must have  0(2)  0 for

 6= 0, so 0() = 0 ⇔  = 0. Now 0() changes sign (from negative to positive) at  = 0, since one of its factors,

 0(2), is positive for all , and its other factor, 2, changes from negative to positive at this point, so by the First

Derivative Test,  has a local and absolute minimum at  = 0.

(b) 0() = 2 0(2) ⇒ 00() = 2[ 00(2)(2) +  0(2)] = 42 00(2) + 2 0(2) by the Product Rule and the Chain

Rule. But 2  0 for all  6= 0,  00(2)  0 [since  is CU for   0], and  0(2)  0 for all  6= 0, so since all of its

factors are positive, 00()  0 for  6= 0. Whether 00(0) is positive or 0 doesn’t matter [since the sign of 00 does not

change there];  is concave upward on R.

50. Call the two integers  and . Then + 4 = 1000, so  = 1000− 4. Their product is  =  = (1000− 4), so our

problem is to maximize the function  () = 1000 − 42, where 0    250 and  is an integer.  0() = 1000− 8, so

 0() = 0 ⇔  = 125.  00() = −8  0, so  (125) = 62,500 is an absolute maximum. Since the optimal  turned

out to be an integer, we have found the desired pair of numbers, namely  = 1000− 4(125) = 500 and  = 125.

51. If  = 0, the line is vertical and the distance from  = −


to (1 1) is

1 +




 =
|1 +1 +|√

2 +2
, so assume

 6= 0. The square of the distance from (1 1) to the line is () = (− 1)
2
+ ( − 1)

2 where + +  = 0, so
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162 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

we minimize () = (− 1)
2

+


−


− 


− 1

2

⇒  0() = 2 (− 1) + 2


−


− 


− 1


−




.

 0() = 0 ⇒  =
21 −1 −

2 +2
and this gives a minimum since  00() = 2


1 +

2

2


 0. Substituting

this value of  into () and simplifying gives () =
(1 +1 + )

2

2 +2
, so the minimum distance is


() =

|1 +1 + |√
2 +2

.

52. On the hyperbola  = 8, if () is the distance from the point ( ) = ( 8) to the point (3 0), then

[()]
2

= (− 3)
2

+ 642 = ().  0() = 2(− 3)− 1283 = 0 ⇒ 4 − 33 − 64 = 0 ⇒
(− 4)


3 + 2 + 4+ 16


= 0 ⇒  = 4 since the solution must have   0. Then  = 8

4
= 2, so the point is (4 2).

53. By similar triangles,



=

√
2 − 2

, so the area of the triangle is

() = 1
2
(2) =  =

2

√
2 − 2

⇒

0() =
2

√
2 − 2− 2(− )

√
2 − 2

2 − 2
=

2 (− 3)

(2 − 2)
32

= 0

when  = 3

0()  0 when 2    3, 0()  0 when   3. So  = 3 gives a minimum and (3) =
(92)√

3 
= 3

√
3 2.

54. The volume of the cone is  = 1
3
2( + ) = 1

3
(2 − 2)( + ), − ≤  ≤ .

 0() = 
3
[(2 − 2) (1) + ( + )(−2)] = 

3
[( + )( − − 2)]

= 
3
( + )( − 3) = 0 when  = − or  = 3.

Now  () = 0 =  (−), so the maximum occurs at  = 3 and the volume is


 

3


=



3


2 − 2

9


4

3


=

323

81
.

55. We minimize () = ||+ ||+ || = 2
√
2 + 16 + (5− ),

0 ≤  ≤ 5. 0() = 2
√

2 + 16 − 1 = 0 ⇔ 2 =
√
2 + 16 ⇔

42 = 2 + 16 ⇔  = 4√
3

. (0) = 13, 


4√
3


≈ 119, (5) ≈ 128, so the

minimum occurs when  = 4√
3
≈ 23.

56. If || = 2, the last part of () changes from (5− ) to (2− ) with

0 ≤  ≤ 2. But we still get 0() = 0 ⇔  = 4√
3

, which isn’t in the interval

[0 2]. Now (0) = 10 and (2) = 2
√

20 = 4
√

5 ≈ 89. The minimum occurs

when  = .
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CHAPTER 4 REVIEW ¤ 163

57.  = 





+




⇒ 


=



2


() + ()


1


− 

2


= 0 ⇔ 1


=



2
⇔ 2 = 2 ⇔  = .

This gives the minimum velocity since 0  0 for 0     and 0  0 for   .

58. We minimize the surface area  = 2 + 2+ 1
2
(42) = 32 + 2.

Solving  = 2+ 2
3
3 for , we get  =

 − 2
3
3

2
=



2
− 2

3
, so

() = 32 + 2




2
− 2

3



= 5

3
2 +

2


.

0() = −2

2
+ 10

3
 =

10
3
3 − 2

2
= 0 ⇔ 10

3
3 = 2 ⇔ 3 =

3

5
⇔  =

3


3

5
.

This gives an absolute minimum since 0()  0 for 0   
3


3

5
and 0()  0 for   3


3

5
. Thus,

 =
 − 2

3
 · 3

5

 3


(3 )2

(5)2

=


 − 2

5


3


(5)2

 3


(3 )2
=

3 3


(5)2

5 3


(3 )2
=

3


3

5
= 

59. Let  denote the number of $1 decreases in ticket price. Then the ticket price is $12− $1(), and the average attendance is

11,000 + 1000(). Now the revenue per game is

() = (price per person)× (number of people per game)

= (12− )(11,000 + 1000) = −10002 + 1000+ 132,000

for 0 ≤  ≤ 4 [since the seating capacity is 15,000] ⇒ 0() = −2000 + 1000 = 0 ⇔  = 05. This is a

maximum since 00() = −2000  0 for all . Now we must check the value of () = (12− )(11,000 + 1000) at

 = 05 and at the endpoints of the domain to see which value of  gives the maximum value of .

(0) = (12)(11,000) = 132,000, (05) = (115)(11,500) = 132,250, and (4) = (8)(15,000) = 120,000. Thus, the

maximum revenue of $132,250 per game occurs when the average attendance is 11,500 and the ticket price is $1150.

60. (a) () = 1800 + 25− 022 + 00013 and

() = () = 482− 0032.

The profit is maximized when 0() = 0().

From the figure, we estimate that the tangents are parallel when  ≈ 160.

(b) 0() = 25− 04+ 00032 and 0() = 482− 006. 0() = 0() ⇒ 00032 − 034− 232 = 0 ⇒

1 ≈ 1613 (  0). 00() = −006 and 00() = −04 + 0006, so 00(1) = −006  00(1) ≈ 057 ⇒
profit is maximized by producing 161 units.
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164 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

(c) () =
()


=

1800


+ 25− 02+ 00012 is the average cost. Since

the average cost is minimized when the marginal cost equals the average

cost, we graph () and 0() and estimate the point of intersection.

From the figure, 0() = () ⇔  ≈ 144.

61. () = 5 − 4 + 32 − 3− 2 ⇒  0() = 54 − 43 + 6− 3, so +1 =  − 5
 − 4

 + 32
 − 3 − 2

54
 − 43

 + 6 − 3
.

Now 1 = 1 ⇒ 2 = 15 ⇒ 3 ≈ 1343860 ⇒ 4 ≈ 1300320 ⇒ 5 ≈ 1297396 ⇒
6 ≈ 1297383 ≈ 7, so the root in [1 2] is 1297383, to six decimal places.

62. Graphing  = sin and  = 2 − 3+ 1 shows that there are two roots,

one about 03 and the other about 28. () = sin− 2 + 3− 1 ⇒

 0() = cos− 2+ 3 ⇒ +1 =  − sin − 2
 + 3 − 1

cos − 2 + 3
.

Now 1 = 03 ⇒ 2 ≈ 0268552 ⇒ 3 ≈ 0268881 ≈ 4 and

1 = 28 ⇒ 2 ≈ 2770354 ⇒ 3 ≈ 2770058 ≈ 4, so to six

decimal places, the roots are 0268881 and 2770058.

63. () = cos + − 2 ⇒  0() = − sin + 1− 2.  0() exists for all

, so to find the maximum of  , we can examine the zeros of  0.

From the graph of  0, we see that a good choice for 1 is 1 = 03.

Use () = − sin  + 1− 2 and 0() = − cos − 2 to obtain

2 ≈ 033535293, 3 ≈ 033541803 ≈ 4. Since  00() = − cos − 2  0

for all , (033541803) ≈ 116718557 is the absolute maximum.

64.  = () =  sin, 0 ≤  ≤ 2. A.  = [0 2] B. -intercept: (0) = 0; -intercepts: () = 0 ⇔  = 0 or

sin = 0 ⇔  = 0, , or 2. C. There is no symmetry on , but if  is defined for all real numbers , then  is an even

function. D. No asymptote E.  0() =  cos+ sin. To find critical numbers in (0 2), we graph  0 and see that there

are two critical numbers, about 2 and 49. To find them more precisely, we use Newton’s method, setting

() =  0() =  cos + sin, so that 0() =  00() = 2 cos−  sin and +1 =  −  cos + sin

2 cos −  sin
.

1 = 2 ⇒ 2 ≈ 2029048, 3 ≈ 2028758 ≈ 4 and 1 = 49 ⇒ 2 ≈ 4913214, 3 ≈ 4913180 ≈ 4, so the

critical numbers, to six decimal places, are 1 = 2028758 and 2 = 4913180. By checking sample values of  0 in (0 1),

(1 2), and (2 2), we see that  is increasing on (0 1), decreasing on (1 2), and increasing on (2 2). F. Local

maximum value (1) ≈ 1819706, local minimum value (2) ≈ −4814470. G.  00() = 2 cos−  sin. To find

points where  00() = 0, we graph  00 and find that  00() = 0 at about 1 and 36. To find the values more precisely,
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CHAPTER 4 REVIEW ¤ 165

we use Newton’s method. Set () =  00() = 2 cos−  sin. Then 0() = −3 sin−  cos, so

+1 =  − 2 cos −  sin

−3 sin −  cos
. 1 = 1 ⇒ 2 ≈ 1078028, 3 ≈ 1076874 ≈ 4 and 1 = 36 ⇒

2 ≈ 3643996 3 ≈ 3643597 ≈ 4, so the zeros of  00, to six decimal places, are 3 = 1076874 and 4 = 3643597.

By checking sample values of  00 in (0 3), (3 4), and (4 2), we see that 

is CU on (0 3)  CD on (3 4), and CU on (4 2).  has inflection points at

(3 (3) ≈ 0948166) and (4 (4) ≈ −1753240).

H.

65. () = 4
√
− 62 + 3 = 412 − 62 + 3 ⇒  () = 4


2
3
32


− 6


1
3
3


+ 3+  = 8
3
32 − 23 + 3 +

66. () =
1


+

1

2 + 1
⇒ () =


ln+ tan−1 +1 if   0

ln(−) + tan−1 + 2 if   0

67. () = 2 sin − 3 ⇒  () = −2 cos − 3 + 

68. () = −3 + cosh ⇒  () =

−1(22) + sinh+ 1 if   0

−1(22) + sinh+ 2 if   0

69.  0() = 2− 3 sin  ⇒ () = 2 + 3cos  +.

(0) = 3 + and (0) = 5 ⇒  = 2, so () = 2 + 3cos + 2.

70.  0() =
2 +

√



= + −12 ⇒ () = 1

2
2 + 212 +.

(1) = 1
2

+ 2 +  and (1) = 3 ⇒  = 1
2

, so () = 1
2
2 + 2

√
+ 1

2
.

71.  00() = 1− 6 + 482 ⇒  0() = − 32 + 163 + .  0(0) =  and  0(0) = 2 ⇒  = 2, so

 0() = − 32 + 163 + 2 and hence, () = 1
2
2 − 3 + 44 + 2+.

(0) =  and (0) = 1 ⇒  = 1, so () = 1
2
2 − 3 + 44 + 2+ 1.

72.  00() = 53 + 62 + 2 ⇒  0() = 5
4
4 + 23 + 2 + ⇒ () = 1

4
5 + 1

2
4 + 2 + +. Now (0) = 

and (0) = 3, so  = 3. Also, (1) = 1
4

+ 1
2

+ 1 +  + 3 =  + 19
4

and (1) = −2, so  + 19
4

= −2 ⇒  = −27
4

.

Thus, () = 1
4
5 + 1

2
4 + 2 − 27

4
+ 3.

73. () = 0() = 2− 1

1 + 2
⇒ () = 2 − tan−1  + .

(0) = 0− 0 +  =  and (0) = 1 ⇒  = 1, so () = 2 − tan−1  + 1.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



166 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

74. () = 0() = sin + 3cos  ⇒ () = − cos  + 3 sin  +.

(0) = −1 + 0 + and (0) = 2 ⇒  = 3, so () = − cos  + 3 sin  + 3 and () = − sin − 3 cos + 3+.

(0) = −3 + and (0) = 0 ⇒  = 3, and () = − sin − 3 cos + 3+ 3.

75. (a) Since  is 0 just to the left of the -axis, we must have a minimum of  at the same place since we are increasing through

(0 0) on  . There must be a local maximum to the left of  = −3, since  changes from positive to negative there.

(b) () = 01 + sin ⇒
 () = 01 − cos +.  (0) = 0 ⇒
01− 1 +  = 0 ⇒  = 09, so

 () = 01 − cos + 09.

(c)

76. () = 4 + 3 + 2 ⇒  0() = 43 + 32 + 2. This is 0 when 

42 + 3 + 2


= 0 ⇔  = 0

or 42 + 3 + 2 = 0. Using the quadratic formula, we find that the roots of this last equation are  =
−3±√9− 32

8
.

Now if 9− 32  0 ⇔   9
32

, then (0 0) is the only critical point, a minimum. If  = 9
32

, then there are two critical

points (a minimum at  = 0, and a horizontal tangent with no maximum or minimum at  = − 3
8

) and if   9
32

, then there are

three critical points except when  = 0, in which case the root with the + sign coincides with the critical point at  = 0. For

0    9
32

, there is a minimum at  = −3

8
−
√

9− 32

8
, a maximum at  = −3

8
+

√
9− 32

8
, and a minimum at  = 0.

For  = 0, there is a minimum at  = − 3
4

and a horizontal tangent with no extremum at  = 0, and for   0, there is a

maximum at  = 0, and there are minima at  = −3

8
±
√

9− 32

8
. Now we calculate  00() = 122 + 6+ 2.

The roots of this equation are  =
−6±√36− 4 · 12 · 2

24
. So if 36− 96 ≤ 0 ⇔  ≥ 3

8
, then there is no inflection

point. If   3
8

, then there are two inflection points at  = −1

4
±
√

9− 24

12
.

[continued]
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CHAPTER 4 REVIEW ¤ 167

Value of  No. of CP No. of IP

  0 3 2

 = 0 2 2

0    9
32

3 2

 = 9
32

2 2

9
32

   3
8

1 2

 ≥ 3
8

1 0

77. Choosing the positive direction to be upward, we have () = −98 ⇒ () = −98 + 0, but (0) = 0 = 0 ⇒
() = −98 = 0() ⇒ () = −492 + 0, but (0) = 0 = 500 ⇒ () = −492 + 500. When  = 0,

−492 + 500 = 0 ⇒ 1 =


500
49
≈ 101 ⇒ (1) = −98


500
49
≈ −98995 ms. Since the canister has been

designed to withstand an impact velocity of 100 ms, the canister will not burst.

78. Let () and () be the position functions for cars  and  and let () = ()− (). Since  passed  twice, there

must be three values of  such that () = 0. Then by three applications of Rolle’s Theorem (see Exercise 4.2.22), there is a

number  such that  00() = 0. So 00() = 00(); that is,  and  had equal accelerations at  = . We assume that  is

continuous on [0  ] and twice differentiable on (0  ), where  is the total time of the race.

79. (a) The cross-sectional area of the rectangular beam is

 = 2 · 2 = 4 = 4
√

100− 2, 0 ≤  ≤ 10, so




= 4


1
2


(100− 2)−12(−2) + (100− 2)12 · 4

=
−42

(100− 2)12
+ 4(100− 2)12 =

4[−2 +

100− 2


]

(100− 2)12
.




= 0 when −2 +


100− 2


= 0 ⇒ 2 = 50 ⇒  =

√
50 ≈ 707 ⇒  =


100− √50

2
=
√

50.

Since (0) = (10) = 0, the rectangle of maximum area is a square.

(b) The cross-sectional area of each rectangular plank (shaded in the figure) is

 = 2

 −√50


= 2

√
100− 2 −√50


, 0 ≤  ≤ √50, so




= 2

√
100− 2 −√50


+ 2


1
2


(100− 2)−12(−2)

= 2(100− 2)12 − 2
√

50− 22

(100− 2)12

Set



= 0: (100− 2)−√50 (100− 2)12 − 2 = 0 ⇒ 100− 22 =

√
50 (100− 2)12 ⇒

10,000− 4002 + 44 = 50(100− 2) ⇒ 44 − 3502 + 5000 = 0 ⇒ 24 − 1752 + 2500 = 0 ⇒

2 =
175±√10,625

4
≈ 6952 or 1798 ⇒  ≈ 834 or 424. But 834 

√
50, so 1 ≈ 424 ⇒

 −√50 =


100− 2
1 −

√
50 ≈ 199. Each plank should have dimensions about 8 1

2
inches by 2 inches.
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168 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

(c) From the figure in part (a), the width is 2 and the depth is 2, so the strength is

 = (2)(2)2 = 82 = 8(100− 2) = 800− 83, 0 ≤  ≤ 10.  = 800 − 242 = 0 when

242 = 800 ⇒ 2 = 100
3

⇒  = 10√
3
⇒  =


200
3

= 10
√

2√
3

=
√

2. Since (0) = (10) = 0, the

maximum strength occurs when  = 10√
3

. The dimensions should be 20√
3
≈ 1155 inches by 20

√
2√

3
≈ 1633 inches.

80. (a)  = (tan )− 

22 cos2 
2. The parabola intersects the line when

(tan) = (tan )− 

22 cos2 
2 ⇒

 =
(tan  − tan)22 cos2 


⇒

() =


cos
=


sin 

cos 
− sin

cos


22 cos2 

 cos
=


sin 

cos 
− sin

cos


(cos  cos)

22 cos 

 cos2 

= (sin  cos− sin cos )
22 cos 

 cos2 
= sin( − )

22 cos 

 cos2 

(b) 0() =
22

 cos2 
[cos  · cos( − ) + sin( − )(− sin )] =

22

 cos2 
cos[ + ( − )]

=
22

 cos2 
cos(2 − ) = 0

when cos(2 − ) = 0 ⇒ 2 −  = 
2
⇒  =

2 + 

2
=



4
+



2
. The First Derivative Test shows that this

gives a maximum value for (). [This could be done without calculus by applying the formula for sin cos  to ().]

(c) Replacing  by − in part (a), we get () =
22 cos  sin( + )

 cos2 
.

Proceeding as in part (b), or simply by replacing  by − in the result of

part (b), we see that () is maximized when  =


4
− 

2
.

81. lim
→0+

 () = lim
→0+


 + −

 − −
− 1





= lim
→0+



 + −

− 1

 − −


( − −)

= lim
→0+

 +− −  + −

 −−

form is 0

0


H
= lim

→0+

 +  · 1 +
−−+ − · 1−  +

−−
 +  · 1− [(−−) + − · 1]

= lim
→0+

 −−

 +  +− − −
= lim

→0+

 − −

 +



+ − − −



[divide by ]

=
0

2 + 
, where  = lim

→0+

 − −




form is 0

0

 H
= lim

→0+

 + −

1
=

1 + 1

1
= 2

Thus, lim
→0+

 () =
0

2 + 2
= 0.
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CHAPTER 4 REVIEW ¤ 169

82. lim
→0+

() = lim
→0+





ln cosh







=  lim

→0+

ln cosh
√



[let  = ()]

H
=  lim

→0+

1

cosh
√


(sinh
√
 )

 √


2
√



1

=

√


2
lim
→0+

tanh
√
√



H
=


√


2
lim
→0+

sech2
√

√

 

2
√



1 (2
√
 )

=


2
lim
→0+

sech2
√
 =



2
(1)2 =



2
=



2

83. We first show that


1 + 2
 tan−1  for   0. Let () = tan−1 − 

1 + 2
. Then

 0() =
1

1 + 2
− 1(1 + 2)− (2)

(1 + 2)2
=

(1 + 2)− (1− 2)

(1 + 2)2
=

22

(1 + 2)2
 0 for   0. So () is increasing

on (0∞). Hence, 0   ⇒ 0 = (0)  () = tan−1 − 

1 + 2
. So



1 + 2
 tan−1  for 0  . We next show

that tan−1    for   0. Let () = − tan−1 . Then 0() = 1− 1

1 + 2
=

2

1 + 2
 0. Hence, () is increasing

on (0∞). So for 0  , 0 = (0)  () = − tan−1 . Hence, tan−1    for   0, and we conclude that



1 + 2
 tan−1    for   0.

84. If  0()  0 for all ,  00()  0 for ||  1,  00()  0 for ||  1, and

lim
→±∞

[() + ] = 0, then  is decreasing everywhere, concave up on

(−∞−1) and (1∞), concave down on (−1 1), and approaches the line

 = − as → ±∞. An example of such a graph is sketched.

85. (a)  =
 cos 

2
=

()

2
= 



3
= 

√
402 + 2

3 = 


(1600 + 2)32
⇒




= 

(1600 + 2)32 −  3
2
(1600 + 2)12 · 2

[(1600 + 2)32]2
=

(1600 + 2)12(1600 + 2 − 32)

(1600 + 2)3

=
(1600− 22)

(1600 + 2)52
[ is the constant of proportionality]

Set  = 0: 1600− 22 = 0 ⇒ 2 = 800 ⇒  =
√

800 = 20
√

2. By the First Derivative Test,  has a local

maximum at  = 20
√

2 ≈ 28 ft.

(b)




= 4 fts

 =
 cos 

2
=

[(− 4)]

2
=

(− 4)

3

=
(− 4)

[(− 4)2 + 2]
32

= (− 4)

(− 4)

2
+ 2

−32

[continued]
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170 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION




=




· 


= (− 4)
− 3

2


(− 4)

2
+ 2

−52 · 2 · 


= (− 4)(−3)

(− 4)2 + 2

−52 · 4 =
−12(− 4)

[(− 4)2 + 2]
52






= 40

= − 480(− 4)

[(− 4)2 + 1600]
52

86. (a)  0() is the rate of change of the volume of the water with respect to time. 0() is the rate of change of the height of the

water with respect to time. Since the volume and the height are increasing,  0() and 0() are positive.

(b)  0() is constant, so  00() is zero (the slope of a constant function is 0).

(c) At first, the height  of the water increases quickly because the tank is narrow. But as the sphere widens, the rate of

increase of the height slows down, reaching a minimum at  = 2. Thus, the height is increasing at a decreasing rate on

(0 2), so its graph is concave downward and 00(1)  0. As the sphere narrows for   2, the rate of increase of the

height begins to increase, and the graph of  is concave upward. Therefore, 00(2) = 0 and 00(3)  0.
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PROBLEMS PLUS

1. Let  = () = −
2

. The area of the rectangle under the curve from− to  is () = 2−
2

where  ≥ 0. We maximize

(): 0() = 2−
2 − 42−

2

= 2−
2

1− 22


= 0 ⇒  = 1√
2
. This gives a maximum since 0()  0

for 0 ≤   1√
2
and 0()  0 for   1√

2
. We next determine the points of inflection of (). Notice that

 0() = −2−
2

= −(). So  00() = −0() and hence,  00()  0 for − 1√
2
   1√

2
and  00()  0 for   − 1√

2

and   1√
2
. So () changes concavity at  = ± 1√

2
, and the two vertices of the rectangle of largest area are at the inflection

points.

2. Let () = sin− cos on [0 2] since  has period 2.  0() = cos + sin = 0 ⇔ cos = − sin ⇔

tan = −1 ⇔  = 3
4
or 7

4
. Evaluating  at its critical numbers and endpoints, we get (0) = −1, 


3
4


=
√

2,




7
4


= −√2, and (2) = −1. So  has absolute maximum value

√
2 and absolute minimum value −√2. Thus,

−√2 ≤ sin− cos ≤ √2 ⇒ |sin− cos| ≤ √2.

3. () has the form (), so it will have an absolute maximum (minimum) where  has an absolute maximum (minimum).

() = 10|− 2|− 2 =


10(− 2)− 2 if − 2  0

10[−(− 2)]− 2 if − 2  0
=

−2 + 10− 20 if   2

−2 − 10+ 20 if   2
⇒

0() =

−2+ 10 if   2

−2− 10 if   2

0() = 0 if  = −5 or  = 5, and 0(2) does not exist, so the critical numbers of  are −5, 2, and 5. Since 00() = −2 for

all  6= 2,  is concave downward on (−∞ 2) and (2∞), and  will attain its absolute maximum at one of the critical

numbers. Since (−5) = 45, (2) = −4, and (5) = 5, we see that (−5) = 45 is the absolute maximum value of  . Also,

lim
→∞

() = −∞, so lim
→∞

() = lim
→∞

() = 0 But ()  0 for all , so there is no absolute minimum value of  .

4. 22

4− 2


4− 2


= 2


4− 2


2

4− 2


= ()(), where () = 2


4− 2


. We will show that 0 ≤ () ≤ 4

for || ≤ 2, which gives 0 ≤ ()() ≤ 16 for || ≤ 2 and || ≤ 2.

() = 42 − 4 ⇒  0() = 8− 43 = 4

2− 2


= 0 ⇒  = 0 or ±√2.

(0) = 0, 
±√2


= 2(4− 2) = 4, and (2) = 0. So 0 is the absolute minimum value of () on [−2 2] and 4 is the

absolute maximum value of () on [−2 2]. We conclude that 0 ≤ () ≤ 4 for || ≤ 2 and hence, 0 ≤ ()() ≤ 42 or

0 ≤ 2

4− 2


2

4− 2

 ≤ 16.
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172 ¤ CHAPTER 4 PROBLEMS PLUS

5.  =
sin


⇒ 0 =

 cos− sin

2
⇒ 00 =

−2 sin− 2 cos+ 2 sin

3
. If ( ) is an inflection point,

then 00 = 0 ⇒ (2 − 2) sin = 2 cos ⇒ (2 − 2)2 sin2  = 42 cos2  ⇒

(2− 2)2 sin2  = 42(1− sin2 ) ⇒ (4− 42 + 4) sin2  = 42 − 42 sin2  ⇒

(4 + 4) sin2  = 42 ⇒ (4 + 4)
sin2 

2
= 4 ⇒ 2(4 + 4) = 4 since  =

sin


.

6. Let 

 1− 2


be the point of contact. The equation of the tangent line at  is  − 1− 2


= (−2)(− ) ⇒

 − 1 + 2 = −2 + 22 ⇒  = −2+ 2 + 1. To find the -intercept, put  = 0: 2 = 2 + 1 ⇒

 =
2 + 1

2
. To find the -intercept, put  = 0:  = 2 + 1. Therefore, the area of the triangle is

1

2


2 + 1

2


2 + 1


=


2 + 1

2
4

. Therefore, we minimize the function () =


2 + 1

2
4

,   0.

0() =
(4)2


2 + 1


(2)− 2 + 1

2
(4)

162
=


2 + 1


[42 − 2 + 1


]

42
=


2 + 1


32 − 1


42

.

0() = 0 when 32 − 1 = 0 ⇒  = 1√
3
. 0()  0 for   1√

3
, 0()  0 for   1√

3
. So by the First Derivative

Test, there is an absolute minimum when  = 1√
3
. The required point is


1√
3
 2

3


and the corresponding minimum area

is 


1√
3


= 4

√
3

9
.

7. Let  = lim
→0

2 + sin + sin + sin 

32 + 54 + 76
. Now  has the indeterminate form of type 0

0
, so we can apply l’Hospital’s

Rule.  = lim
→0

2+  cos +  cos +  cos 

6+ 203 + 425
. The denominator approaches 0 as → 0, so the numerator must also

approach 0 (because the limit exists). But the numerator approaches 0 + + + , so + +  = 0. Apply l’Hospital’s Rule

again.  = lim
→0

2− 2 sin − 2 sin −  2 sin 

6 + 602 + 2104
=

2− 0

6 + 0
=

2

6
, which must equal 8.

2

6
= 8 ⇒  = 24. Thus, + + +  = + (+ + ) = 24 + 0 = 24.

8. We first present some preliminary results that we will invoke when calculating the limit.

(1) If  = (1 + ), then ln  =  ln(1 + ), and lim
→0+

ln  = lim
→0+

 ln(1 + ) = 0. Thus, lim
→0+

(1 + ) = 0 = 1.

(2) If  = (1 + ), then ln  =  ln(1 + ), and implicitly differentiating gives us
0


=  · 

1 + 
+ ln(1 + ) ⇒

0 = 




1 + 
+ ln(1 + )


. Thus,  = (1 + ) ⇒ 0 = (1 + )




1 + 
+ ln(1 + )


.

(3) If  =


1 + 
, then 0 =

(1 + )− ()

(1 + )2
=

+ 2− 2

(1 + )2
=



(1 + )2
.
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CHAPTER 4 PROBLEMS PLUS ¤ 173

lim
→∞

(+ 2)1 − 1

(+ 3)1 − 1
= lim

→∞
1[(1 + 2)1 − 1]

1[(1 + 3)1 − 1]
[factor out 1]

= lim
→∞

(1 + 2)1 − 1

(1 + 3)1 − 1

= lim
→0+

(1 + 2) − 1

(1 + 3) − 1
[let  = 1, form 00 by (1)]

H
= lim

→0+

(1 + 2)


2

1 + 2
+ ln(1 + 2)


(1 + 3)


3

1 + 3
+ ln(1 + 3)

 [by (2)]

= lim
→0+

(1 + 2)

(1 + 3)
· lim
→0+

2

1 + 2
+ ln(1 + 2)

3

1 + 3
+ ln(1 + 3)

=
1

1
· lim
→0+

2

1 + 2
+ ln(1 + 2)

3

1 + 3
+ ln(1 + 3)

[by (1), now form 00]

H
= lim

→0+

2

(1 + 2)2
+

2

1 + 2

3

(1 + 3)2
+

3

1 + 3

[by (3)]

=
2 + 2

3 + 3
=

4

6
=

2

3

9. Differentiating 2 +  + 2 = 12 implicitly with respect to  gives 2 +  + 



+ 2




= 0, so




= −2+ 

+ 2
.

At a highest or lowest point,



= 0 ⇔  = −2. Substituting −2 for  in the original equation gives

2 + (−2) + (−2)2 = 12, so 32 = 12 and  = ±2. If  = 2, then  = −2 = −4, and if  = −2 then  = 4. Thus,

the highest and lowest points are (−2 4) and (2−4).

10. Case (i) (first graph): For +  ≥ 0, that is,  ≥ −, |+ | = +  ≤  ⇒  ≤  − .

Note that  =  −  is always above the line  = − and that  = − is a slant asymptote.

Case (ii) (second graph): For  +   0, that is,   −, |+ | = −−  ≤  ⇒  ≥ −− .

Note that −−  is always below the line  = − and  = − is a slant asymptote.

Putting the two pieces together gives the third graph.
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174 ¤ CHAPTER 4 PROBLEMS PLUS

11. (a)  = 2 ⇒ 0 = 2, so the slope of the tangent line at  ( 2) is 2 and the slope of the normal line is − 1

2
for

 6= 0. An equation of the normal line is  − 2 = − 1

2
(− ). Substitute 2 for  to find the -coordinates of the two

points of intersection of the parabola and the normal line. 2 − 2 = − 

2
+

1

2
⇔ 2 +


1

2


− 1

2
− 2 = 0. We

know that  is a root of this quadratic equation, so −  is a factor, and we have (− )


+

1

2
+ 


= 0, and hence,

 = −− 1

2
is the -coordinate of the point . We want to minimize the -coordinate of , which is


−− 1

2

2

= 2 + 1 +
1

42
= (). Now 0() = 2− 1

23
=

44 − 1

23
=

(22 + 1)(22 − 1)

23
= 0 ⇒

 =
1√
2
for   0. Since 00() = 2 +

3

24
 0, we see that  =

1√
2
gives us the minimum value of the

-coordinate of .

(b) The square  of the distance from  ( 2) to


−− 1

2



−− 1

2

2
is given by

 =


−− 1

2
− 

2
+


−− 1

2

2
− 2

2

=


−2− 1

2

2
+


2 + 1 +

1

42


− 2

2

=


42 + 2 +

1

42


+


1 +

1

42

2
=


42 + 2 +

1

42


+ 1 +

2

42
+

1

164

= 42 + 3 +
3

42
+

1

164

0 = 8− 6

43
− 4

165
= 8− 3

23
− 1

45
=

326 − 62 − 1

45
=

(22 − 1)(42 + 1)2

45
. The only real positive zero of

the equation 0 = 0 is  =
1√
2
. Since 00 = 8 +

9

24
+

5

46
 0,  =

1√
2
corresponds to the shortest possible length of

the line segment .

12.  = 3 +  ⇒ 0 = 32 +  ⇒ 00 = 6+ . The curve will have

inflection points when 00 changes sign. 00 = 0 ⇒ −6 = , so 00 will change

sign when the line  = −6 intersects the curve  =  (but is not tangent to it).

Note that if  = 0, the curve is just  = , which has no inflection point.

The first figure shows that for   0,  = −6 will intersect  =  once, so

 = 3 +  will have one inflection point.

[continued]
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CHAPTER 4 PROBLEMS PLUS ¤ 175

The second figure shows that for   0, the line  = −6 can intersect the curve

 =  in two points (two inflection points), be tangent to it (no inflection point), or not

intersect it (no inflection point). The tangent line at ( ) has slope , but from the

diagram we see that the slope is



. So




=  ⇒  = 1. Thus, the slope is .

The line  = −6 must have slope greater than , so −6   ⇒   −6.

Therefore, the curve  = 3 +  will have one inflection point if   0 and two inflection points if   −6.

13.  is tangent to the unit circle at To find the slope of  at, use implicit

differentiation. 2 + 2 = 1 ⇒ 2+ 2 0 = 0 ⇒  0 = − ⇒ 0 = −


.

Thus, the tangent line at( ) has equation  = −


+ . At,  =  and  = ,

so  = −


() +  ⇒  = +

2


=

2 + 2


=

1


, and hence  =

1


.

Since 2 + 2 = 1,  =
√

1− 2 =


1− 12 =


2 − 1

2
=

√
2 − 1


, and now we have

both  and  in terms of . At ,  = −1 so −1 = −


 +  ⇒ 


 =  + 1 ⇒

 =



(+ 1) =

1√
2 − 1

(+ 1) =
+ 1

(+ 1)(− 1)
=


+ 1

− 1
, and  has coordinates


+ 1

− 1
−1


. Let  be

the square of the distance from  to . Then () =


0−


+ 1

− 1

2

+ (+ 1)2 =
+ 1

− 1
+ ( + 1)2 ⇒

0() =
(− 1)(1)− (+ 1)(1)

(− 1)2
+ 2(+ 1) =

−2 + 2(+ 1)(− 1)2

(− 1)2

=
−2 + 2(3 − 2 − + 1)

(− 1)2
=

23 − 22 − 2

(− 1)2
=

2(2 − − 1)

(− 1)2

Using the quadratic formula, we find that the solutions of 2 − − 1 = 0 are  =
1±√5

2
, so 1 =

1 +
√

5

2
(the “golden

mean”) since   0. For 1    1, 0()  0, and for   1, 0()  0, so 1 minimizes .

Note: The minimum length of the equal sides is

(1) = · · · =


11 + 5

√
5

2
≈ 333 and the corresponding length of the

third side is 2


1 + 1

1 − 1
= · · · = 2


2 +

√
5 ≈ 412, so the triangle is not equilateral.

Another method: In ∆, cos  =
+ 1


, so  =

+ 1

cos 
. In ∆, sin  =

1


, so

cos  =


1− sin2  =


1− 12 =
1



√
2 − 1. Thus  =

+ 1

(1)
√
2 − 1

=
(+ 1)√
2 − 1

= (). Now find the

minimum of  .
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176 ¤ CHAPTER 4 PROBLEMS PLUS

14. To sketch the region

( ) | 2 ≤ |− | ≤ 2 + 2


, we consider two cases.

Case 1:  ≥  This is the case in which ( ) lies on or below the line  = . The double inequality becomes

2 ≤ −  ≤ 2 + 2. The right-hand inequality holds if and only if 2 − + 2 +  ≥ 0 ⇔
− 1

2

2
+

 + 1

2

2 ≥ 1
2
⇔ ( ) lies on or outside the circle with radius 1√

2
centered at


1
2
− 1

2


.

The left-hand inequality holds if and only if 2 − +  ≤ 0 ⇔  − 1
2
 + 1

2
 ≤ 0 ⇔

 + 1
2


 − 1

2

 ≤ −1
4
⇔ ( ) lies on or below the hyperbola


 + 1

2


 − 1

2


= − 1

4
, which passes through the

origin and approaches the lines  = 1
2
and  = − 1

2
asymptotically.

Case 2:  ≥  This is the case in which ( ) lies on or above the line  = . The double inequality becomes

2 ≤  −  ≤ 2 + 2. The right-hand inequality holds if and only if 2 +  + 2 −  ≥ 0 ⇔
 + 1

2

2
+

 − 1

2

2 ≥ 1
2
⇔ ( ) lies on or outside the circle of radius 1√

2
centered at

− 1
2
 1

2


. The left-hand

inequality holds if and only if 2 + −  ≤ 0 ⇔  + 1
2
− 1

2
 ≤ 0 ⇔ 

− 1
2


 + 1

2

 ≤ − 1
4
⇔ ( ) lies

on or above the left-hand branch of the hyperbola

− 1

2


 + 1

2


= −1

4
, which passes through the origin and approaches the

lines  = − 1
2
and  = 1

2
asymptotically. Therefore, the region of interest consists of the points on or above the left branch of

the hyperbola

− 1

2


 + 1

2


= − 1

4
that are on or outside the circle

 + 1
2

2
+

 − 1

2

2
= 1

2
, together with the points on or below the right

branch of the hyperbola

 + 1

2


 − 1

2


= − 1

4
that are on or outside the circle

− 1
2

2
+

 + 1

2

2
= 1

2
. Note that the inequalities are unchanged when 

and  are interchanged, so the region is symmetric about the line  = . So we

need only have analyzed case 1 and then reflected that region about the line

 = , instead of considering case 2.

15.  =

1 

2
1


and  =


2 

2
2


, where 1 and 2 are the solutions of the quadratic equation 2 = + . Let  =


 2


and set 1 = (1 0), 1 = (2 0), and 1 = ( 0). Let () denote the area of triangle . Then () can be expressed

in terms of the areas of three trapezoids as follows:

() = area (11)− area (11)− area (11)

= 1
2


2

1 + 2
2


(2 − 1)− 1

2


2

1 + 2

(− 1)− 1

2


2 + 2

2


(2 − )

After expanding and canceling terms, we get

() = 1
2


2

2
1 − 1

2
2 − 2

1 + 1
2 − 2

2 + 2
2


= 1

2


2

1(2 − ) + 2
2(− 1) + 2(1 − 2)


 0() = 1

2

−2
1 + 2

2 + 2(1 − 2)

.  00() = 1

2
[2(1 − 2)] = 1 − 2  0 since 2  1.

 0() = 0 ⇒ 2(1 − 2) = 2
1 − 2

2 ⇒  = 1
2
(1 + 2).
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CHAPTER 4 PROBLEMS PLUS ¤ 177

( ) = 1
2


2

1


1
2
(2 − 1)


+ 2

2


1
2
(2 − 1)


+ 1

4
(1 + 2)

2
(1 − 2)


= 1

2


1
2
(2 − 1)


2

1 + 2
2

− 1
4
(2 − 1)(1 + 2)

2


= 1
8
(2 − 1)


2

2

1 + 2
2

− 2
1 + 212 + 2

2


= 1

8
(2 − 1)


2

1 − 212 + 2
2


= 1

8
(2 − 1)(1 − 2)

2
= 1

8
(2 − 1)(2 − 1)

2
= 1

8
(2 − 1)

3

To put this in terms of and , we solve the system  = 2
1 and  = 1 + , giving us 2

1 −1 −  = 0 ⇒

1 = 1
2


−√2 + 4


. Similarly, 2 = 1

2


+

√
2 + 4


. The area is then 1

8
(2 − 1)

3
= 1

8

√
2 + 4

3
,

and is attained at the point 

  

2



= 


1
2
 1

4
2

.

Note: Another way to get an expression for () is to use the formula for an area of a triangle in terms of the coordinates of

the vertices: () = 1
2


2

2
1 − 1

2
2


+

1

2 − 2
1


+

2

2 − 2
2

.

16. Let  = ||,  = | | as shown. The areaA of the∆ isA = 1
2
. We

need to find a relationship between  and , so that we can take the derivative

A and then find the maximum and minimum areas. Now let 0 be the point

on which  ends up after the fold has been performed, and let  be the intersection

of 0 and  . Note that 0 is perpendicular to  since we are reflecting 

through the line  to get to 0, and that | | = |0| for the same reason.
But |0| = 1, since 0 is a radius of the circle. Since | |+ |0| = |0|, we have | | = 1

2
. Another way to express

the area of the triangle isA = 1
2
| | | | = 1

2


2 + 2


1
2


= 1

4


2 + 2. Equating the two expressions forA, we get

1
2
 = 1

4


2 + 2 ⇒ 422 = 2 + 2 ⇒ 2


42 − 1


= 2 ⇒  = 

√
42 − 1.

(Note that we could also have derived this result from the similarity of40 and40; that is,

|0 |
|| =

|0 |
|0| ⇒

1
2

2 −  1
2

2 =



⇒  =

1
2
√

42 − 1 2
=

√
42 − 1

.) Now we can substitute for  and

calculate
A


: A =
1

2

2

√
42 − 1

⇒ A


=
1

2

√
42 − 1 (2)− 2


1
2


42 − 1

−12
(8)

42 − 1


. This is 0 when

2
√

42 − 1− 43

42 − 1

−12
= 0 ⇔ 2


42 − 1

−12 
42 − 1

− 22


= 0 ⇒ 
42 − 1

− 22 = 0

(  0) ⇔ 22 = 1 ⇒  = 1√
2
. So this is one possible value for an extremum. We must also test the endpoints of the

interval over which  ranges. The largest value that  can attain is 1, and the smallest value of  occurs when  = 1 ⇔
1 = 

√
42 − 1 ⇔ 2 = 42 − 1 ⇔ 32 = 1 ⇔  = 1√

3
. This will give the same value ofA as will

 = 1, since the geometric situation is the same (reflected through the line  = ). We calculate

A


1√
2


=

1

2


1
√

2
2

4

1
√

2
2 − 1

=
1

4
= 025, and A(1) =

1

2

12
4(1)2 − 1

=
1

2
√

3
≈ 029. So the maximum area is

A(1) = A


1√
3


= 1

2
√

3
and the minimum area isA


1√
2


= 1

4
.

[continued]
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178 ¤ CHAPTER 4 PROBLEMS PLUS

Another method: Use the angle  (see diagram above) as a variable:

A = 1
2
 = 1

2


1
2

sec 


1
2

csc 


=
1

8 sin  cos 
=

1

4 sin 2
. A is minimized when sin 2 is maximal, that is, when

sin 2 = 1 ⇒ 2 = 
2
⇒  = 

4
. Also note that 0 =  = 1

2
sec  ≤ 1 ⇒ sec  ≤ 2 ⇒

cos  ≥ 1
2
⇒  ≤ 

3
, and similarly, 0 =  = 1

2
csc  ≤ 1 ⇒ csc  ≤ 2 ⇒ sin  ≤ 1

2
⇒  ≥ 

6
.

As above, we find thatA is maximized at these endpoints: A
6


=

1

4 sin 
3

=
1

2
√

3
=

1

4 sin 2
3

= A
3


;

and minimized at  = 
4
: A

4


=

1

4 sin 
2

=
1

4
.

17. Suppose that the curve  =  intersects the line  = . Then 0 = 0 for some 0  0, and hence  = 
10
0 . We find the

maximum value of () = 1,   0, because if  is larger than the maximum value of this function, then the curve  = 

does not intersect the line  = . 0() = (1) ln 


− 1

2
ln +

1


· 1




= 1


1

2


(1− ln). This is 0 only where

 = , and for 0    ,  0()  0, while for   ,  0()  0, so  has an absolute maximum of () = 1. So if

 =  intersects  = , we must have 0   ≤ 1. Conversely, suppose that 0   ≤ 1. Then  ≤ , so the graph of

 =  lies below or touches the graph of  =  at  = . Also 0 = 1  0, so the graph of  =  lies above that of  = 

at  = 0. Therefore, by the Intermediate Value Theorem, the graphs of  =  and  =  must intersect somewhere between

 = 0 and  = .

18. If  = lim
→∞


+ 

− 


, then  has the indeterminate form 1∞, so

ln = lim
→∞

ln


+ 

− 


= lim

→∞
 ln


+ 

− 


= lim

→∞
ln(+ )− ln(− )

1

H
= lim

→∞

1

+ 
− 1

− 

−12

= lim
→∞


(− )− (+ )

( + )(− )
· −

2

1


= lim

→∞
22

2 − 2
= lim

→∞
2

1− 22
= 2

Hence, ln = 2, so  = 2. From the original equation, we want  = 1 ⇒ 2 = 1 ⇒  = 1
2
.

19. Note that (0) = 0, so for  6= 0,

()− (0)

− 0

 =

()



 =
|()|
|| ≤ | sin|

|| =
sin


.

Therefore, | 0(0)| =
 lim→0

()− (0)

− 0

 = lim
→0

()− (0)

− 0

 ≤ lim
→0

sin


= 1.

But () = 1 sin+ 2 sin 2+ · · ·+  sin ⇒  0() = 1 cos+ 22 cos 2+ · · ·+  cos, so

| 0(0)| = |1 + 22 + · · ·+ | ≤ 1.

Another solution: We are given that


=1  sin 
 ≤ | sin|. So for  close to 0, and  6= 0, we have 

=1


sin 

sin

 ≤ 1 ⇒ lim
→0

 
=1


sin 

sin

 ≤ 1 ⇒
 
=1

 lim
→0

sin 

sin

 ≤ 1. But by l’Hospital’s Rule,

lim
→0

sin 

sin
= lim

→0

 cos 

cos
= , so

 
=1



 ≤ 1.
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CHAPTER 4 PROBLEMS PLUS ¤ 179

20. Let the circle have radius , so | | = || = , where  is the center of the circle. Now ∠ has measure 1
2
, and

∠ is a right angle, so tan 1
2
 =

||


and the area of4 is 1
2
| | || = 1

2
2 tan 1

2
. The area of the sector cut

by  and  is 1
2
2


1
2



= 1
4
2. Let  be the intersection of  and . Then sin 1

2
 =

||


and cos 1
2
 =

||


, and

the area of4 is 1
2
|| || = 1

2


 cos 1

2


 sin 1

2



= 1
2
2 sin 1

2
 cos 1

2
 = 1

4
2 sin .

So () = 2


1
2
2 tan 1

2
 − 1

4
2


= 2

tan 1

2
 − 1

2


and () = 2


1
4
2 − 1

4
2 sin 


= 1

2
2( − sin ). Thus,

lim
→0+

()

()
= lim

→0+

1
2
2( − sin )

2

tan 1

2
 − 1

2

 = lim

→0+

 − sin 

2

tan 1

2
 − 1

2

 H

= lim
→0+

1− cos 

2


1
2

sec2 1
2
 − 1

2


= lim

→0+

1− cos 

sec2 1
2
 − 1

= lim
→0+

1− cos 

tan2 1
2


H
= lim

→0+

sin 

2

tan 1

2



sec2 1
2



1
2

= lim
→0+

sin  cos3 1
2


sin 1
2


= lim
→0+


2 sin 1

2
 cos 1

2


cos3 1

2


sin 1
2


= 2 lim
→0+

cos4


1
2



= 2(1)4 = 2

21. (a) Distance = rate× time, so time = distancerate. 1 =


1
, 2 =

2 ||
1

+
||
2

=
2 sec 

1
+

 − 2 tan 

2
,

3 =
2

2 + 2/4

1
=

√
42 +2

1
.

(b)
2


=

2

1
· sec  tan  − 2

2
sec2  = 0 when 2 sec 


1

1
tan  − 1

2
sec 


= 0 ⇒

1

1

sin 

cos 
− 1

2

1

cos 
= 0 ⇒ sin 

1 cos 
=

1

2 cos 
⇒ sin  =

1

2
. The First Derivative Test shows that this gives

a minimum.

(c) Using part (a) with = 1 and 1 = 026, we have 1 =


1
⇒ 1 = 1

026
≈ 385 kms. 3 =

√
42 +2

1
⇒

42 +2 =  2
3 

2
1 ⇒  = 1

2


 2

3
2
1 −2 = 1

2


(034)2(1026)2 − 12 ≈ 042 km. To find 2, we use sin  =

1

2

from part (b) and 2 =
2 sec 

1
+

 − 2 tan 

2
from part (a). From the figure,

sin  =
1

2
⇒ sec  =

2
22 − 21

and tan  =
1

22 − 21
, so

2 =
22

1

22 − 21

+


22 − 21 − 21

2

22 − 21

. Using the values for 2 [given as 0.32],

, 1, and we can graph Y1 = 2 and Y2 =
22

1

22 − 21

+


22 − 21 − 21

2

22 − 21

and find their intersection points.

Doing so gives us 2 ≈ 410 and 766, but if 2 = 410, then  = arcsin(12) ≈ 696◦, which implies that point  is to

the left of point  in the diagram. So 2 = 766 kms.
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180 ¤ CHAPTER 4 PROBLEMS PLUS

22. A straight line intersects the curve  = () = 4 + 3 + 122 − 5+ 2 in four distinct points if and only if the graph of 

has two inflection points.  0() = 43 + 32 + 24− 5 and  00() = 122 + 6+ 24.

 00() = 0 ⇔  =
−6±


(6)2 − 4(12)(24)

2(12)
. There are two distinct roots for  00() = 0 (and hence two inflection

points) if and only if the discriminant is positive; that is, 362 − 1152  0 ⇔ 2  32 ⇔ ||  √32. Thus, the desired

values of  are   −4
√

2 or   4
√

2.

23. Let  = | | and  = | | as shown in the figure.
Since  = | |+ ||, || = − . Now

||= | |+ || = + − 

√
2 − 2 + −


(− )2 + 2

=
√
2 − 2 + −


(− )2 +

√
2 − 2

2
=
√
2 − 2 + −√2 − 2+ 2 + 2 − 2

Let () =
√
2 − 2 + −√2 + 2 − 2.

 0() = 1
2


2 − 2

−12
(−2)− 1

2


2 + 2 − 2

−12
(−2) =

−√
2 − 2

+
√

2 + 2 − 2
.

 0() = 0 ⇒ √
2 − 2

=
√

2 + 2 − 2
⇒ 2

2 − 2
=

2

2 + 2 − 2
⇒

22 + 22 − 23 = 22 − 22 ⇒ 0 = 23 − 222 − 22 + 22 ⇒
0 = 22(− )− 2


2 − 2

 ⇒ 0 = 22(− )− 2( + )(− ) ⇒ 0 = (− )

22 − 2(+ )


But     , so  6= . Thus, we solve 22 − 2− 2 = 0 for :

 =
−−2

±(−2)2 − 4(2)(−2)

2(2)
=

2 ±√4 + 822

4
. Because

√
4 + 822  2, the “negative” can be

discarded. Thus,  =
2 +

√
2
√
2 + 82

4
=

2 + 
√
2 + 82

4
[  0] =



4


 +

√
2 + 82


. The maximum

value of || occurs at this value of .

24.

Let  =  denote the distance from the center  of the base to the midpoint of a side of the base.
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CHAPTER 4 PROBLEMS PLUS ¤ 181

Since∆ is similar to∆,



=


(− 2)

⇒  =


(− 2)
= 

√
√

− 2
.

Let  denote one-half the length of a side of the base. The area of the base is

 = 8(area of∆) = 8


1
2



= 4

 tan 

4


= 42.

The volume of the pyramid is  = 1
3
 = 1

3


42

 =

4

3




√
√

− 2

2

 = 4
3
2 2

− 2
, with domain   2.

Now



=

4

3
2 · (− 2)(2)− 2(1)

(− 2)2
=

4

3
2 

2 − 4

(− 2)2
=

4

3
2 (− 4)

(− 2)2

and
2

2
=

4

3
2 · (− 2)2(2− 4)− 2 − 4


(2)(− 2)(1)

[(− 2)2]
2

=
4

3
2 · 2(− 2)


2 − 4 + 42

− 2 − 4


(− 2)
2

=
8

3
2 · 42

(− 2)3
=

32

3
4 · 1

(− 2)3
.

The first derivative is equal to zero for  = 4 and the second derivative is positive for   2, so the volume of the pyramid

is minimized when  = 4.

To extend our solution to a regular -gon, we make the following changes:

(1) the number of sides of the base is 

(2) the number of triangles in the base is 2

(3) ∠ =




(4)  =  tan




We then obtain the following results:  = 2 tan



,  =

2

3
· tan





· 2

− 2
,



=

2

3
· tan





· (− 4)

(− 2)2
,

and
2

2
=

84

3
· tan





· 1

(− 2)3
. Notice that the answer,  = 4, is independent of the number of sides of the base

of the polygon!

25.  = 4
3
3 ⇒ 


= 42 


. But




is proportional to the surface area, so




=  · 42 for some constant .

Therefore, 42 


=  · 42 ⇔ 


=  = constant. An antiderivative of  with respect to  is , so  =  + .

When  = 0, the radius  must equal the original radius 0, so  = 0, and  =  + 0. To find  we use the fact that

when  = 3,  = 3 + 0 and  = 1
2
0 ⇒ 4

3
(3 + 0)

3
= 1

2
· 4

3
3

0 ⇒ (3 + 0)
3

= 1
2
3
0 ⇒

3 + 0 = 1

3√
2
0 ⇒  = 1

3
0


1

3√
2
− 1


. Since  =  + 0,  = 1

3
0


1

3√
2
− 1


 + 0. When the snowball

has melted completely we have  = 0 ⇒ 1
3
0


1

3√
2
− 1


 + 0 = 0 which gives  =

3
3
√

2
3
√

2− 1
. Hence, it takes

3
3
√

2
3
√

2− 1
− 3 =

3
3
√

2− 1
≈ 11 h 33 min longer.
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182 ¤ CHAPTER 4 PROBLEMS PLUS

26. By ignoring the bottom hemisphere of the initial spherical bubble, we can rephrase the problem as follows: Prove that the

maximum height of a stack of  hemispherical bubbles is
√
 if the radius of the bottom hemisphere is 1. We proceed by

induction. The case  = 1 is obvious since
√

1 is the height of the first hemisphere. Suppose the assertion is true for  = 

and let’s suppose we have  + 1 hemispherical bubbles forming a stack of maximum height. Suppose the second hemisphere

(counting from the bottom) has radius  Then by our induction hypothesis (scaled to the setting of a bottom hemisphere of

radius ), the height of the stack formed by the top  bubbles is
√
 . (If it were shorter, then the total stack of  + 1 bubbles

wouldn’t have maximum height.)

The height of the whole stack is() =
√
  +

√
1− 2. (See the figure.)

We want to choose  so as to maximize(). Note that 0    1.

We calculate0() =
√
 − √

1− 2
and00() =

−1

(1− 2)32
.

0() = 0 ⇔ 2 = (1− 2) ⇔ ( + 1)2 =  ⇔  =




 + 1
.

This is the only critical number in (0 1) and it represents a local maximum

(hence an absolute maximum) since00()  0 on (0 1). When  =




 + 1
,

() =
√


√
√

 + 1
+


1− 

 + 1
=

√
 + 1

+
1√
 + 1

=
√
 + 1. Thus, the assertion is true for  =  + 1 when

it is true for  = . By induction, it is true for all positive integers .

Note: In general, a maximally tall stack of  hemispherical bubbles consists of bubbles with radii

1


− 1





− 2


    


2





1
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5 INTEGRALS

5.1 Areas and Distances

1. (a) Since  is decreasing , we can obtain a lower estimate by using right endpoints. We are instructed to use five rectangles, so

 = 5.

5 =
5
=1

()∆


∆ =

− 


=

10− 0

5
= 2


= (1) · 2 + (2) · 2 + (3) · 2 + (4) · 2 + (5) · 2
= 2[(2) + (4) + (6) + (8) + (10)]

≈ 2(32 + 18 + 08 + 02 + 0)

= 2(6) = 12

Since  is decreasing , we can obtain an upper estimate by using left endpoints.

5 =
5

=1

(−1)∆

= (0) · 2 + (1) · 2 + (2) · 2 + (3) · 2 + (4) · 2
= 2[(0) + (2) + (4) + (6) + (8)]

≈ 2(5 + 32 + 18 + 08 + 02)

= 2(11) = 22

(b) 10 =
10
=1

()∆

∆ = 10− 0

10
= 1


= 1[(1) + (2) + · · ·+ (10)]

= (1) + (2) + · · ·+ (10)

≈ 4 + 32 + 25 + 18 + 13 + 08 + 05 + 02 + 01 + 0

= 144

10 =
10
=1

(−1)∆

= (0) + (1) + · · ·+ (9)

= 10 + 1 · (0)− 1 · (10)


add leftmost upper rectangle,

subtract rightmost lower rectangle


= 144 + 5− 0

= 194
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2 ¤ CHAPTER 5 INTEGRALS

2. (a) (i) 6 =
6

=1

(−1)∆ [∆ = 12− 0
6

= 2]

= 2[(0) + (1) + (2) + (3) + (4) + (5)]

= 2[(0) + (2) + (4) + (6) + (8) + (10)]

≈ 2(9 + 88 + 82 + 73 + 59 + 41)

= 2(433) = 866

(ii) 6 = 6 + 2 · (12)− 2 · (0)

≈ 866 + 2(1)− 2(9) = 706

[Add area of rightmost lower rectangle

and subtract area of leftmost upper rectangle.]

(iii) 6 =
6

=1

()∆

= 2[(1) + (3) + (5) + (7) + (9) + (11)]

≈ 2(89 + 85 + 78 + 66 + 51 + 28)

= 2(397) = 794

(b) Since  is decreasing, we obtain an overestimate by using left endpoints; that is, 6.

(c) Since  is decreasing, we obtain an underestimate by using right endpoints; that is, 6.

(d) 6 gives the best estimate, since the area of each rectangle appears to be closer to the true area than the overestimates and

underestimates in 6 and 6.

3. (a) 4 =
4
=1

()∆


∆ =

2− 1

4
=

1

4


=


4

=1

()


∆

= [(1) + (2) + (3) + (4)] ∆

=


1

54
+

1

64
+

1

74
+

1

84


1

4
=


4
5

+ 2
3

+ 4
7

+ 1
2


1
4
≈ 06345

Since  is decreasing on [1 2], an underestimate is obtained by using the

right endpoint approximation, 4.

(b) 4 =
4

=1

(−1)∆ =


4

=1

(−1)


∆

= [(0) + (1) + (2) + (3)] ∆

=


1

1
+

1

54
+

1

64
+

1

74


1

4
=

1 + 4

5
+ 2

3
+ 4

7


1
4
≈ 07595

4 is an overestimate. Alternatively, we could just add the area of the

leftmost upper rectangle and subtract the area of the rightmost lower

rectangle; that is, 4 = 4 + (1) · 1
4
− (2) · 1

4
.
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SECTION 5.1 AREAS AND DISTANCES ¤ 3

4. (a) 4 =
4
=1

() ∆


∆ =

2− 0

4
=



8


=


4

=1

()


∆

= [(1) + (2) + (3) + (4)] ∆

=

sin 

8
+ sin 2

8
+ sin 3

8
+ sin 4

8



8

≈ 11835

Since  is increasing on

0 

2


, 4 is an overestimate.

(b) 4 =
4

=1

(−1) ∆ =


4

=1

(−1)


∆

= [(0) + (1) + (2) + (3)] ∆

=

sin 0 + sin 

8
+ sin 2

8
+ sin 3

8



8

≈ 07908

Since  is increasing on

0 

2


, 4 is an underestimate.

5. (a) () = 1 + 2 and∆ =
2− (−1)

3
= 1 ⇒

3 = 1 · (0) + 1 · (1) + 1 · (2) = 1 · 1 + 1 · 2 + 1 · 5 = 8.

∆ =
2− (−1)

6
= 05 ⇒

6 = 05[(−05) + (0) + (05) + (1) + (15) + (2)]

= 05(125 + 1 + 125 + 2 + 325 + 5)

= 05(1375) = 6875

(b) 3 = 1 · (−1) + 1 · (0) + 1 · (1) = 1 · 2 + 1 · 1 + 1 · 2 = 5

6 = 05[(−1) + (−05) + (0) + (05) + (1) + (15)]

= 05(2 + 125 + 1 + 125 + 2 + 325)

= 05(1075) = 5375

(c) 3 = 1 · (−05) + 1 · (05) + 1 · (15)

= 1 · 125 + 1 · 125 + 1 · 325 = 575

6 = 05[(−075) + (−025) + (025)

+ (075) + (125) + (175)]

= 05(15625 + 10625 + 10625 + 15625 + 25625 + 40625)

= 05(11875) = 59375

(d) 6 appears to be the best estimate.
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4 ¤ CHAPTER 5 INTEGRALS

6. (a)

(b) () = − 2 ln and∆ =
5− 1

4
= 1 ⇒

(i) 4 = 1 · (2) + 1 · (3) + 1 · (4) + 1 · (5)

= (2− 2 ln 2) + (3− 2 ln 3) + (4− 2 ln 4) + (5− 2 ln 5)

≈ 4425

(ii) 4 = 1 · (15) + 1 · (25) + 1 · (35) + 1 · (45)

= (15− 2 ln 15) + (25− 2 ln 25)

+ (35− 2 ln 35) + (45− 2 ln 45)

≈ 3843

(c) (i) 8 = 1
2
[(15) + (2) + · · ·+ (5)]

= 1
2
[(15− 2 ln 15) + (2− 2 ln 2) + · · ·+ (5− 2 ln 5)]

≈ 4134

(ii) 8 = 1
2
[(125) + (175) + · · ·+ (475)]

= 1
2
[(125− 2 ln 125) + (175− 2 ln 175) + · · ·

+ (475− 2 ln 475)]

≈ 3889

7. () = 2 + sin, 0 ≤  ≤ ,∆ = .

 = 2: The maximum values of  on both subintervals occur at  = 
2
, so

upper sum = 


2

 · 
2

+ 


2

 · 
2

= 3 · 
2

+ 3 · 
2

= 3 ≈ 942.2

The minimum values of  on the subintervals occur at  = 0 and

 = , so

lower sum = (0) · 
2

+ () · 
2

= 2 · 
2

+ 2 · 
2

= 2 ≈ 628.
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SECTION 5.1 AREAS AND DISTANCES ¤ 5

 = 4: upper sum =




4


+ 



2


+ 



2


+ 


3
4



4


=


2 + 1
2

√
2


+ (2 + 1) + (2 + 1) +

2 + 1

2

√
2



4


=

10 +

√
2



4

 ≈ 896

lower sum =

(0) + 



4


+ 


3
4


+ ()



4


=

(2 + 0) +


2 + 1

2

√
2


+

2 + 1

2

√
2


+ (2 + 0)



4


=

8 +

√
2



4

 ≈ 739

 = 8: upper sum =




8


+ 



4


+ 


3
8


+ 



2


+ 



2


+ 


5
8


+ 


3
4


+ 


7
8



8


≈ 865

lower sum =

(0) + 



8


+ 



4


+ 


3
8


+ 


5
8


+ 


3
4


+ 


7
8


+ ()



8


≈ 786

8. () = 1 + 2, −1 ≤  ≤ 1,∆ = 2.

 = 3: upper sum =

(−1) + 


1
3


+ (1)


2
3


=

2 + 10

9
+ 2


2
3


= 92

27
≈ 341

lower sum =


− 1

3


+ (0) + 


1
3


2
3


=


10
9

+ 1 + 10
9


2
3


= 58

27
≈ 215

 = 4: upper sum =

(−1) + 

− 1
2


+ 


1
2


+ (1)


2
4


=

2 + 5

4
+ 5

4
+ 2


1
2


= 13

4
= 325

lower sum =


− 1

2


+ (0) + (0) + 


1
2


2
4


=


5
4

+ 1 + 1 + 5
4


1
2


= 9

4
= 225

9. Here is one possible algorithm (ordered sequence of operations) for calculating the sums:

1 Let SUM = 0, X_MIN = 0, X_MAX = 1, N = 10 (depending on which sum we are calculating),

DELTA_X = (X_MAX - X_MIN)/N, and RIGHT_ENDPOINT = X_MIN + DELTA_X.

2 Repeat steps 2a, 2b in sequence until RIGHT_ENDPOINT  X_MAX.

2a Add (RIGHT_ENDPOINT)^4 to SUM.

Add DELTA_X to RIGHT_ENDPOINT.

At the end of this procedure, (DELTA_X)·(SUM) is equal to the answer we are looking for. We find that

10 =
1

10

10
=1




10

4

≈ 02533, 30 =
1

30

30
=1




30

4

≈ 02170, 50 =
1

50

50
=1




50

4

≈ 02101 and
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6 ¤ CHAPTER 5 INTEGRALS

100 =
1

100

100
=1




100

4

≈ 02050. It appears that the exact area is 02. The following display shows the program

SUMRIGHT and its output from a TI-83/4 Plus calculator. To generalize the program, we have input (rather than

assign) values for Xmin, Xmax, and N. Also, the function, 4, is assigned to Y1, enabling us to evaluate any right sum

merely by changing Y1 and running the program.

10. We can use the algorithm from Exercise 9 with X_MIN = 0, X_MAX = 2, and cos(RIGHT_ENDPOINT) instead of

(RIGHT_ENDPOINT)^4 in step 2a. We find that 10 =
2

10

10
=1

cos




20


≈ 09194, 30 =

2

30

30
=1

cos




60


≈ 09736,

and 50 =
2

50

50
=1

cos




100


≈ 09842, and 100 =

2

100

100
=1

cos




200


≈ 09921. It appears that the exact area is 1.

11. In Maple, we have to perform a number of steps before getting a numerical answer. After loading the student package

[command: with(student);] we use the command

left_sum:=leftsum(1/(xˆ2+1),x=0..1,10 [or 30, or 50]); which gives us the expression in summation

notation. To get a numerical approximation to the sum, we use evalf(left_sum);. Mathematica does not have a special

command for these sums, so we must type them in manually. For example, the first left sum is given by

(1/10)*Sum[1/(((i-1)/10)ˆ2+1)],{i,1,10}], and we use the N command on the resulting output to get a

numerical approximation.

In Derive, we use the LEFT_RIEMANN command to get the left sums, but must define the right sums ourselves.

(We can define a new function using LEFT_RIEMANN with  ranging from 1 to  instead of from 0 to − 1.)

(a) With () =
1

2 + 1
, 0 ≤  ≤ 1, the left sums are of the form  =

1




=1

1
−1


2
+ 1

. Specifically, 10 ≈ 08100,

30 ≈ 07937, and 50 ≈ 07904. The right sums are of the form  =
1




=1

1



2
+ 1

. Specifically, 10 ≈ 07600,

30 ≈ 07770, and 50 ≈ 07804.
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SECTION 5.1 AREAS AND DISTANCES ¤ 7

(b) In Maple, we use the leftbox (with the same arguments as left_sum) and rightbox commands to generate the

graphs.

left endpoints,  = 10 left endpoints,  = 30 left endpoints,  = 50

right endpoints,  = 10 right endpoints,  = 30 right endpoints,  = 50

(c) We know that since  = 1(2 + 1) is a decreasing function on (0 1), all of the left sums are larger than the actual area,

and all of the right sums are smaller than the actual area. Since the left sum with  = 50 is about 07904  0791 and the

right sum with  = 50 is about 07804  0780, we conclude that 0780  50  exact area  50  0791, so the

exact area is between 0780 and 0791.

12. See the solution to Exercise 11 for the CAS commands for evaluating the sums.

(a) With () = ln, 1 ≤  ≤ 4, the left sums are of the form  =
3




=1

ln


1 +

3(− 1)




. In particular, 10 ≈ 23316,

30 ≈ 24752, and 50 ≈ 25034. The right sums are of the form  =
3




=1

ln


1 +

3




. In particular,

10 ≈ 27475, 30 ≈ 26139, and 50 ≈ 25865.

(b) In Maple, we use the leftbox (with the same arguments as left_sum) and rightbox commands to generate the

graphs.

left endpoints,  = 10 left endpoints,  = 30 left endpoints,  = 50

right endpoints,  = 10 right endpoints,  = 30 right endpoints,  = 50
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8 ¤ CHAPTER 5 INTEGRALS

(c) We know that since  = ln is an increasing function on (1 4), all of the left sums are smaller than the actual area, and all

of the right sums are larger than the actual area. Since the left sum with  = 50 is about 2503  250 and the right sum

with  = 50 is about 2587  259, we conclude that 250  50  exact area  50  259, so the exact area is

between 250 and 259.

13. Since  is an increasing function, 6 will give us a lower estimate and 6 will give us an upper estimate.

6 = (0 fts)(05 s) + (62)(05) + (108)(05) + (149)(05) + (181)(05) + (194)(05) = 05(694) = 347 ft

6 = 05(62 + 108 + 149 + 181 + 194 + 202) = 05(896) = 448 ft

14. (a) The velocities are given with units mih, so we must convert the 10-second intervals to hours:

10 seconds =
10 seconds

3600 secondsh
=

1

360
h

distance≈ 6 = (1829 mih)


1
360

h


+ (1680)


1
360


+ (1066)


1

360


+ (998)


1

360


+ (1245)


1

360


+ (1761)


1

360


=

8579

360
≈ 2383 miles

(b) Distance ≈ 6 =


1
360


(1680 + 1066 + 998 + 1245 + 1761 + 1756) =

8506

360
≈ 2363 miles

(c) The velocity is neither increasing nor decreasing on the given interval, so the estimates in parts (a) and (b) are neither

upper nor lower estimates.

15. Lower estimate for oil leakage: 5 = (76 + 68 + 62 + 57 + 53)(2) = (316)(2) = 632 L.

Upper estimate for oil leakage: 5 = (87 + 76 + 68 + 62 + 57)(2) = (35)(2) = 70 L.

16. We can find an upper estimate by using the final velocity for each time interval. Thus, the distance  traveled after 62 seconds

can be approximated by

 =
6
=1

() ∆ = (185 fts)(10 s) + 319 · 5 + 447 · 5 + 742 · 12 + 1325 · 27 + 1445 · 3 = 54,694 ft

17. For a decreasing function, using left endpoints gives us an overestimate and using right endpoints results in an underestimate.

We will use6 to get an estimate. ∆ = 1, so

6 = 1[(05) + (15) + (25) + (35) + (45) + (55)] ≈ 55 + 40 + 28 + 18 + 10 + 4 = 155 ft

For a very rough check on the above calculation, we can draw a line from (0 70) to (6 0) and calculate the area of the

triangle: 1
2
(70)(6) = 210. This is clearly an overestimate, so our midpoint estimate of 155 is reasonable.

18. For an increasing function, using left endpoints gives us an underestimate and using right endpoints results in an overestimate.

We will use6 to get an estimate. ∆ = 30− 0
6

= 5 s = 5
3600

h = 1
720

h.

6 = 1
720

[(25) + (75) + (125) + (175) + (225) + (275)]

= 1
720

(3125 + 66 + 88 + 1035 + 11375 + 11925) = 1
720

(52175) ≈ 0725 km

For a very rough check on the above calculation, we can draw a line from (0 0) to (30 120) and calculate the area of the

triangle: 1
2
(30)(120) = 1800. Divide by 3600 to get 05, which is clearly an underestimate, making our midpoint estimate of

0725 seem reasonable. Of course, answers will vary due to different readings of the graph.
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SECTION 5.1 AREAS AND DISTANCES ¤ 9

19. () = −(− 21)( + 1) and∆ = 12− 0
6

= 2

6 = 2 · (1) + 2 · (3) + 2 · (5) + 2 · (7) + 2 · (9) + 2 · (11)

= 2 · 40 + 2 · 216 + 2 · 480 + 2 · 784 + 2 · 1080 + 2 · 1320
= 7840 (infected cellsmL) · days

Thus, the total amount of infection needed to develop symptoms of measles is about 7840 infected cells per mL of blood

plasma.

20. (a) Use∆ = 14 days. The number of people who died of SARS in Singapore between March 1 and May 24, 2003, using left

endpoints is

6 = 14(00079 + 00638 + 01944 + 04435 + 05620 + 04630) = 14(17346) = 242844 ≈ 24 people

Using right endpoints,

6 = 14(00638 + 01944 + 04435 + 05620 + 04630 + 02897) = 14(20164) = 282296 ≈ 28 people

(b) Let  be the number of days since March 1, 2003, () be the number of deaths per day on day , and the graph of  = ()

be a reasonable continuous function on the interval [0 84]. Then the number of SARS deaths from  =  to  =  is

approximately equal to the area under the curve  = () from  =  to  = .

21. () =
2

2 + 1
, 1 ≤  ≤ 3. ∆ = (3− 1) = 2 and  = 1 + ∆ = 1 + 2.

 = lim
→∞

 = lim
→∞


=1

()∆ = lim
→∞


=1

2(1 + 2)

(1 + 2)2 + 1
· 2


.

22. () = 2 +
√

1 + 2, 4 ≤  ≤ 7. ∆ = (7− 4) = 3 and  = 4 + ∆ = 4 + 3.

 = lim
→∞

 = lim
→∞


=1

()∆ = lim
→∞


=1


(4 + 3)2 +


1 + 2(4 + 3)


· 3


.

23. () =
√

sin, 0 ≤  ≤ . ∆ = ( − 0) =  and  = 0 + ∆ = .

 = lim
→∞

 = lim
→∞


=1

()∆ = lim
→∞


=1


sin() · 


.

24. lim
→∞


=1

3




1 +

3


can be interpreted as the area of the region lying under the graph of  =

√
1 +  on the interval [0 3],

since for  =
√

1 +  on [0 3] with∆ =
3− 0


=

3


,  = 0 + ∆ =

3


, and ∗ = , the expression for the area is

 = lim
→∞


=1

(∗ )∆ = lim
→∞


=1


1 +

3



3


. Note that this answer is not unique. We could use  =

√
 on [1 4] or,

in general,  =
√
−  on [+ 1 + 4], where  is any real number.

25. lim
→∞


=1



4
tan



4
can be interpreted as the area of the region lying under the graph of  = tan on the interval


0 

4


,

since for  = tan on

0 

4


with∆ =

4− 0


=



4
,  = 0 + ∆ =



4
, and ∗ = , the expression for the area is

 = lim
→∞


=1

 (∗ )∆ = lim
→∞


=1

tan




4




4
. Note that this answer is not unique, since the expression for the area is

the same for the function  = tan(− ) on the interval

  + 

4


, where  is any integer.
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10 ¤ CHAPTER 5 INTEGRALS

26. (a) ∆ =
1− 0


=

1


and  = 0 + ∆ =




.  = lim

→∞
 = lim

→∞


=1

()∆ = lim
→∞


=1






3

· 1


.

(b) lim
→∞


=1

3

3
· 1


= lim

→∞
1

4


=1

3 = lim
→∞

1

4


(+ 1)

2

2
= lim

→∞
(+ 1)

2

42
=

1

4
lim
→∞


1 +

1



2

=
1

4

27. (a) Since  is an increasing function,  is an underestimate of  [lower sum] and  is an overestimate of  [upper sum].

Thus, , , and  are related by the inequality     .

(b)  = (1)∆+ (2)∆ + · · ·+ ()∆

 = (0)∆+ (1)∆ + · · ·+ (−1)∆

 −  = ()∆− (0)∆

= ∆[()− (0)]

=
− 


[()− ()]

In the diagram,  −  is the sum of the areas of the shaded rectangles. By sliding the shaded rectangles to the left so

that they stack on top of the leftmost shaded rectangle, we form a rectangle of height ()− () and width
− 


.

(c)   , so  −   − ; that is,  − 
− 


[()− ()].

28.  − 
− 


[()− ()] =

3− 1


[(3)− (1)] =

2


(3 − )

Solving
2


(3 − )  00001 for  gives us 2(3 − )  00001 ⇒  

2(3 − )

00001
⇒   347 3451. Thus,

a value of  that assures us that  −  00001 is  = 347 346. [This is not the least value of .]

29. (a)  = () = 5. ∆ =
2− 0


=

2


and  = 0 + ∆ =

2


.

 = lim
→∞

 = lim
→∞


=1

()∆ = lim
→∞


=1


2



5

· 2


= lim

→∞


=1

325

5
· 2


= lim

→∞
64

6


=1

5.

(b)

=1

5
CAS
=

2(+ 1)2

22 + 2− 1


12

(c) lim
→∞

64

6
· 

2(+ 1)2

22 + 2− 1


12

=
64

12
lim
→∞


2 + 2+ 1


22 + 2− 1


2 · 2

=
16

3
lim
→∞


1 +

2


+

1

2


2 +

2


− 1

2


= 16

3
· 1 · 2 = 32

3

30. From Example 3(a), we have  = lim
→∞

2




=1

−2. Using a CAS,

=1

−2 =
−2


2 − 1


2 − 1

and

lim
→∞

2


· 
−2

2 − 1


2 − 1

= −2

2 − 1

 ≈ 08647, whereas the estimate from Example 3(b) using10 was 08632.
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SECTION 5.2 THE DEFINITE INTEGRAL ¤ 11

31.  = () = cos. ∆ =
− 0


=




and  = 0 + ∆ =




.

= lim
→∞

 = lim
→∞


=1

()∆ = lim
→∞


=1

cos







· 


CAS
= lim

→∞

 sin





1

2
+ 1


2 sin




2

 − 

2

 CAS
= sin 

If  = 
2
, then  = sin 

2
= 1.

32. (a) The diagram shows one of the  congruent triangles,4, with central angle

2.  is the center of the circle and  is one of the sides of the polygon.

Radius  is drawn so as to bisect ∠. It follows that  intersects  at

right angles and bisects . Thus,4 is divided into two right triangles with

legs of length 1
2
() =  sin() and  cos(). 4 has area

2 · 1
2
[ sin()][ cos()] = 2 sin() cos() = 1

2
2 sin(2),

so  =  · area(4) = 1
2
2 sin(2).

(b) To use Equation 3.3.2, lim
→0

sin 


= 1, we need to have the same expression in the denominator as we have in the argument

of the sine function—in this case, 2.

lim
→∞

 = lim
→∞

1
2
2 sin(2) = lim

→∞
1
2
2 sin(2)

2
· 2


= lim

→∞
sin(2)

2
2. Let  =

2


.

Then as →∞, → 0, so lim
→∞

sin(2)

2
2 = lim

→0

sin 


2 = (1)2 = 2.

5.2 The Definite Integral

1. () = − 1, −6 ≤  ≤ 4. ∆ =
− 


=

4− (−6)

5
= 2.

Since we are using right endpoints, ∗ = .

5 =
5

=1

() ∆

= (∆)[(1) + (2) + (3) + (4) + (5) + (6)]

= 2[(−4) + (−2) + (0) + (2) + (4)]

= 2[−5 + (−3) + (−1) + 1 + 3]

= 2(−5) = −10

The Riemann sum represents the sum of the areas of the two rectangles above the -axis minus the sum of the areas of the

three rectangles below the -axis; that is, the net area of the rectangles with respect to the -axis.
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12 ¤ CHAPTER 5 INTEGRALS

2. () = cos, 0 ≤  ≤ 3
4
. ∆ =

− 


=

34− 0

6
=



8
.

Since we are using left endpoints, ∗ = −1.

6 =
6
=1

(−1)∆

= (∆)[(0) + (1) + (2) + (3) + (4) + (5)]

= 
8
[(0) + 



8


+ 


2
8


+ 


3
8


+ 


4
8


+ 


5
8


]

≈ 1033186

The Riemann sum represents the sum of the areas of the four rectangles above the -axis minus the area of the rectangle below

the -axis; that is, the net area of the rectangles with respect to the -axis. A sixth rectangle is degenerate, with height 0, and

has no area.

3. () = 2 − 4, 0 ≤  ≤ 3. ∆ =
− 


=

3− 0

6
=

1

2
.

Since we are using midpoints, ∗ =  = 1
2
(−1 + ).

6 =
6
=1

() ∆

= (∆)[(1) + (2) + (3) + (4) + (5) + (6)]

= 1
2





1
4


+ 


3
4


+ 


5
4


+ 


7
4


+ 


9
4


+ 


11
4


= 1

2

− 63
16
− 55

16
− 39

16
− 15

16
+ 17

16
+ 57

16


= 1

2

− 98
16


= − 49

16

The Riemann sum represents the sum of the areas of the two rectangles above the -axis minus the sum of the areas of the four

rectangles below the -axis; that is, the net area of the rectangles with respect to the -axis.

4. (a) () =
1


, 1 ≤  ≤ 2. ∆ =

− 


=

2− 1

4
=

1

4
.

Since we are using right endpoints, ∗ = .

4 =
4
=1

() ∆

= (∆)[(1) + (2) + (3) + (4)]

= 1
4
[


5
4


+ 


6
4


+ 


7
4


+ 


8
4


]

= 1
4


4
5

+ 2
3

+ 4
7

+ 1
2


≈ 0634524

The Riemann sum represents the sum of the areas of the four rectangles.

(b) Since we are using midpoints, ∗ =  = 1
2
(−1 + ).

4 =
4

=1

() ∆

= (∆)[(1) + (2) + (3) + (4)]

= 1
4





9
8


+ 


11
8


+ 


13
8


+ 


15
8


= 1

4


8
9

+ 8
11

+ 8
13

+ 8
15


≈ 0691220

The Riemann sum represents the sum of the areas of the four rectangles.
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SECTION 5.2 THE DEFINITE INTEGRAL ¤ 13

5. (a)
 10

0

()  ≈ 5 = [(2) + (4) + (6) + (8) + (10)]∆

= [−1 + 0 + (−2) + 2 + 4](2) = 3(2) = 6

(b)
 10

0

()  ≈ 5 = [(0) + (2) + (4) + (6) + (8)]∆

= [3 + (−1) + 0 + (−2) + 2](2) = 2(2) = 4

(c)
 10

0

()  ≈5 = [(1) + (3) + (5) + (7) + (9)]∆

= [0 + (−1) + (−1) + 0 + 3](2) = 1(2) = 2

6. (a)
 4

−2

()  ≈ 6 = [(−1) + (0) + (1) + (2) + (3) + (4)]∆

=
−3

2
+ 0 + 3

2
+ 1

2
+ (−1) + 1

2


(1) = 0

(b)
 4

−2

()  ≈ 6 = [(−2) + (−1) + (0) + (1) + (2) + (3)]∆

=

0 +

−3
2


+ 0 + 3

2
+ 1

2
+ (−1)


(1) = − 1

2

(c)
 4

−2

()  ≈6 =


−3

2


+ 
− 1

2


+ 


1
2


+ 


3
2


+ 


5
2


+ 


7
2


∆

=
−1 + (−1) + 1 + 1 + 0 +

− 1
2


(1) = −1

2

7. Since  is increasing, 5 ≤
 30

10
()  ≤ 5.

Lower estimate = 5 =
5
=1

(−1)∆ = 4[(10) + (14) + (18) + (22) + (26)]

= 4[−12 + (−6) + (−2) + 1 + 3] = 4(−16) = −64

Upper estimate = 5 =
5

=1

()∆ = 4[(14) + (18) + (22) + (26) + (30)]

= 4[−6 + (−2) + 1 + 3 + 8] = 4(4) = 16

8. (a) Using the right endpoints to approximate
 9

3
() , we have

3
=1

()∆ = 2[(5) + (7) + (9)] = 2 (−06 + 09 + 18) = 42.

Since  is increasing, using right endpoints gives an overestimate.

(b) Using the left endpoints to approximate
 9

3
() , we have

3
=1

(−1)∆ = 2[(3) + (5) + (7)] = 2 (−34− 06 + 09) = −62.

Since  is increasing, using left endpoints gives an underestimate.

(c) Using the midpoint of each interval to approximate
 9

3
() , we have

3
=1

()∆ = 2[(4) + (6) + (8)] = 2 (−21 + 03 + 14) = −08.

We cannot say anything about the midpoint estimate compared to the exact value of the integral.
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14 ¤ CHAPTER 5 INTEGRALS

9. ∆ = (8− 0)4 = 2, so the endpoints are 0, 2, 4, 6, and 8, and the midpoints are 1, 3, 5, and 7. The Midpoint Rule gives 8

0
sin
√
 ≈

4
=1

(̄)∆ = 2

sin
√

1 + sin
√

3 + sin
√

5 + sin
√

7
 ≈ 2(30910) = 61820.

10. ∆ = (1− 0)5 = 1
5
, so the endpoints are 0, 1

5
, 2

5
, 3

5
, 4

5
, and 1, and the midpoints are 1

10
, 3

10
, 5

10
, 7

10
, and 9

10
. The Midpoint

Rule gives 1

0


3 + 1 ≈

5
=1

(̄)∆ = 1
5


1
10

3
+ 1 +


3
10

3
+ 1 +


5
10

3
+ 1 +


7
10

3
+ 1 +


9
10

3
+ 1


≈ 11097

11. ∆ = (2− 0)5 = 2
5
, so the endpoints are 0, 2

5
, 4

5
, 6

5
, 8

5
, and 2, and the midpoints are 1

5
, 3

5
, 5

5
, 7

5
and 9

5
. The Midpoint Rule

gives 2

0



 + 1
 ≈

5
=1

(̄)∆ =
2

5

 1
5

1
5

+ 1
+

3
5

3
5

+ 1
+

5
5

5
5

+ 1
+

7
5

7
5

+ 1
+

9
5

9
5

+ 1


=

2

5


127

56


=

127

140
≈ 09071.

12. ∆ = ( − 0)4 = 
4
, so the endpoints are 

4
, 2

4
, 3

4
, and 4

4
, and the midpoints are 

8
, 3

8
, 5

8
, and 7

8
. The Midpoint Rule

gives  

0

 sin
2
 ≈

5
=1

(̄)∆ =


4




8
sin

2 

8
+

3

8
sin

2 3

8
+

5

8
sin

2 5

8
+

7

8
sin

2 7

8


≈ 24674

13. In Maple 14, use the commands with(Student[Calculus1]) and

ReimannSum(x/(x+1),0..2,partition=5,method=midpoint,output=plot). In some older versions of

Maple, use with(student) to load the sum and box commands, then m:=middlesum(x/(x+1),x=0..2), which

gives us the sum in summation notation, then M:=evalf(m) to get the numerical approximation, and finally

middlebox(x/(x+1),x=0..2) to generate the graph. The values obtained for  = 5, 10, and 20 are 09071, 09029, and

09018, respectively.

14. For () = ( + 1) on [0 2], we calculate 100 ≈ 089469 and 100 ≈ 090802. Since  is increasing on [0 2], 100 is

an underestimate of
 2

0



 + 1
 and 100 is an overestimate. Thus, 08946 

 2

0



+ 1
  09081

15. We’ll create the table of values to approximate
 
0

sin by using the

program in the solution to Exercise 5.1.9 with Y1 = sin, Xmin = 0,

Xmax = , and  = 5, 10, 50, and 100.

The values of  appear to be approaching 2.

 

5 1933766

10 1983524

50 1999342

100 1999836
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SECTION 5.2 THE DEFINITE INTEGRAL ¤ 15

16.
 2

0
−

2

 with  = 5, 10, 50, and 100.

  

5 1077467 0684794

10 0980007 0783670

50 0901705 0862438

100 0891896 0872262

The value of the integral lies between 0872 and 0892. Note that

() = −
2

is decreasing on (0 2). We cannot make a similar statement

for
 2

−1
−

2

 since  is increasing on (−1 0).

17. On [0 1], lim
→∞


=1



1 + 
∆ =

 1

0



1 + 
.

18. On [2 5], lim
→∞


=1




1 + 3
 ∆ =

 5

2

√

1 + 3 .

19. On [2 7], lim
→∞


=1

[5(∗ )
3 − 4∗ ]∆ =

 7

2
(53 − 4) .

20. On [1 3], lim
→∞


=1

∗
(∗ )2 + 4

∆ =

 3

1



2 + 4
.

21. Note that∆ =
5− 2


=

3


and  = 2 + ∆ = 2 +

3


. 5

2

(4− 2) = lim
→∞


=1

()∆ = lim
→∞


=1




2 +

3




3


= lim

→∞
3




=1


4− 2


2 +

3





= lim
→∞

3




=1


−6




= lim

→∞
3




− 6





=1

 = lim
→∞


−18

2


(+ 1)

2



= lim
→∞


−18

2


+ 1




= −9 lim

→∞


1 +

1




= −9(1) = −9

22. Note that∆ =
4− 1


=

3


and  = 1 + ∆ = 1 +

3


.

 4

1

(
2 − 4+ 2) = lim

→∞


=1

()∆ = lim
→∞


=1




1 +

3




3


= lim

→∞
3




=1


1 +

3



2

− 4


1 +

3




+ 2



= lim
→∞

3




=1


1 +

6


+

92

2
− 4− 12


+ 2


= lim

→∞
3




=1


92

2
− 6


− 1



= lim
→∞

3




9

2


=1

2 − 6




=1

−

=1

1



= lim
→∞


27

3

(+ 1)(2+ 1)

6
− 18

2

(+ 1)

2
− 3


· (1)



= lim
→∞


9

2

(+ 1)(2+ 1)

2
− 9

+ 1


− 3


= lim

→∞


9

2

+ 1



2+ 1


− 9


1 +

1




− 3



= lim
→∞


9

2


1 +

1




2 +

1




− 9


1 +

1




− 3


=

9

2
(1)(2)− 9(1)− 3 = −3
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16 ¤ CHAPTER 5 INTEGRALS

23. Note that∆ =
0− (−2)


=

2


and  = −2 + ∆ = −2 +

2


. 0

−2

(
2
+ ) = lim

→∞


=1

()∆ = lim
→∞


=1




−2 +

2




2


= lim

→∞
2




=1


−2 +

2



2

+


−2 +

2





= lim
→∞

2




=1


4− 8


+

42

2
− 2 +

2




= lim

→∞
2




=1


42

2
− 6


+ 2



= lim
→∞

2




4

2


=1

2 − 6




=1

+

=1

2


= lim

→∞


8

3

(+ 1)(2+ 1)

6
− 12

2

(+ 1)

2
+

2


· (2)



= lim
→∞


4

3

(+ 1)(2+ 1)

2
− 6

+ 1


+ 4


= lim

→∞


4

3

+ 1



2+ 1


− 6


1 +

1




+ 4



= lim
→∞


4

3


1 +

1




2 +

1




− 6


1 +

1




+ 4


=

4

3
(1)(2)− 6(1) + 4 =

2

3

24. Note that∆ =
2− 0


=

2


and  = 0 + ∆ =

2


. 2

0

(2− 
3
) = lim

→∞


=1

()∆ = lim
→∞


=1




2




2


= lim

→∞
2




=1


2


2




−


2



3


= lim
→∞

2




=1


4


− 83

3


= lim

→∞
2




4




=1

− 8

3


=1

3


= lim
→∞


8

2

(+ 1)

2
− 16

4


(+ 1)

2

2
= lim

→∞


4
+ 1


− 4

(+ 1)2

2



= lim
→∞


4


1 +

1




− 4

+ 1



+ 1




= lim

→∞


4


1 +

1




− 4


1 +

1




1 +

1




= 4(1)− 4(1)(1) = 0

25. Note that∆ =
1− 0


=

1


and  = 0 + ∆ =




. 1

0

(
3 − 3

2
) = lim

→∞


=1

()∆ = lim
→∞


=1









∆ = lim

→∞


=1






3

− 3






2


1



= lim
→∞

1




=1


3

3
− 32

2


= lim

→∞
1




1

3


=1

3 − 3

2


=1

2


= lim
→∞


1

4


(+ 1)

2

2
− 3

3

(+ 1)(2+ 1)

6


= lim

→∞


1

4

+ 1



+ 1


− 1

2

+ 1



2+ 1





= lim
→∞


1

4


1 +

1




1 +

1




− 1

2


1 +

1




2 +

1




=

1

4
(1)(1)− 1

2
(1)(2) = −3

4

26. (a) ∆ = (4− 0)8 = 05 and ∗ =  = 05. 4

0
(2 − 3)  ≈

8
=1

(∗ )∆

= 05


052 − 3(05)

+

102 − 3(10)


+ · · ·

+

352 − 3(35)


+

402 − 3(40)


= 1

2

− 5
4
− 2− 9

4
− 2− 5

4
+ 0 + 7

4
+ 4


= −15

(b)
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SECTION 5.2 THE DEFINITE INTEGRAL ¤ 17

(c)
 4

0

(
2 − 3)  = lim

→∞


=1


4



2

− 3


4




4





= lim
→∞

4




16

2


=1

2 − 12




=1





= lim
→∞


64

3
· (+ 1)(2+ 1)

6
− 48

2
· (+ 1)

2


= lim

→∞


32

3


1 +

1




2 +

1




− 24


1 +

1




= 32

3
· 2− 24 = −8

3

(d)
 4

0
(2 − 3)  = 1 −2, where 1

is the area marked + and 2 is the area

marked −.

27.
 



 = lim
→∞

− 




=1


+

− 





= lim

→∞


(− )




=1

1 +
(− )2

2


=1





= lim
→∞


(− )


+

(− )2

2
· (+ 1)

2


=  (− ) + lim

→∞
(− )

2

2


1 +

1




= (− ) + 1

2
(− )2 = (− )


+ 1

2
− 1

2



= (− ) 1
2
(+ ) = 1

2


2 − 2


28.
 




2
 = lim

→∞
− 




=1


+

− 




2
= lim

→∞
− 




=1


2 + 2

− 


+

(− )
2

2
2


= lim
→∞


(− )

3

3


=1

2 +
2 (− )

2

2


=1

+
2 (− )




=1

1



= lim
→∞


(− )

3

3

 (+ 1) (2+ 1)

6
+

2 (− )
2

2

 (+ 1)

2
+

2 (− )






= lim
→∞


(− )

3

6
· 1 ·


1 +

1




2 +

1




+  (− )

2 · 1 ·


1 +
1




+ 2 (− )



=
(− )

3

3
+  (− )

2
+ 2 (− ) =

3 − 32 + 32− 3

3
+ 2 − 22+ 3 + 2− 3

=
3

3
− 3

3
− 2 + 2+ 2 − 2 =

3 − 3

3

29. () =
√

4 + 2,  = 1,  = 3, and∆ =
3− 1


=

2


. Using Theorem 4, we get ∗ =  = 1 +  ∆ = 1 +

2


, so

 3

1


4 + 2  = lim

→∞
 = lim

→∞


=1


4 +


1 +

2



2

· 2


.

30. () = 2 +
1


,  = 2,  = 5, and∆ =

5− 2


=

3


. Using Theorem 4, we get ∗ =  = 2 +  ∆ = 2 +

3


, so

 5

2




2
+

1




 = lim

→∞
 = lim

→∞


=1

2 +
3



2

+
1

2 +
3



 · 3


.

31. ∆ = ( − 0) =  and ∗ =  = . 

0

sin 5 = lim
→∞


=1

(sin 5)




= lim

→∞


=1


sin

5








CAS
=  lim

→∞
1


cot


5

2


CAS
= 


2

5


=

2

5
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18 ¤ CHAPTER 5 INTEGRALS

32. ∆ = (10− 2) = 8 and ∗ =  = 2 + 8. 10

2


6
 = lim

→∞


=1


2 +

8



6
8




= 8 lim

→∞
1




=1


2 +

8



6

CAS
= 8 lim

→∞
1


· 64


58,5936 + 164,0525 + 131,2084 − 27,7762 + 2048


215

CAS
= 8


1,249,984

7


=

9,999,872
7

≈ 1,428,5531

33. (a) Think of
 2

0
()  as the area of a trapezoid with bases 1 and 3 and height 2. The area of a trapezoid is = 1

2
(+),

so
 2

0
()  = 1

2
(1 + 3)2 = 4.

(b)
 5

0
()  =

 2

0
() 

trapezoid

+
 3

2
() 

rectangle

+
 5

3
() 

triangle

= 1
2
(1 + 3)2 + 3 · 1 + 1

2
· 2 · 3 = 4 + 3 + 3 = 10

(c)
 7

5
()  is the negative of the area of the triangle with base 2 and height 3.

 7

5
()  = − 1

2
· 2 · 3 = −3.

(d)
 9

7
()  is the negative of the area of a trapezoid with bases 3 and 2 and height 2, so it equals

− 1
2
( + ) = − 1

2
(3 + 2)2 = −5. Thus, 9

0
()  =

 5

0
()  +

 7

5
() +

 9

7
()  = 10 + (−3) + (−5) = 2.

34. (a)
 2

0
()  = 1

2
· 4 · 2 = 4 [area of a triangle]

(b)
 6

2
()  = − 1

2
(2)2 = −2 [negative of the area of a semicircle]

(c)
 7

6
()  = 1

2
· 1 · 1 = 1

2
[area of a triangle] 7

0
()  =

 2

0
() +

 6

2
() +

 7

6
()  = 4− 2 + 1

2
= 45− 2

35.
 2

−1
(1− )  can be interpreted as the difference of the areas of the two

shaded triangles; that is, 1
2
(2)(2)− 1

2
(1)(1) = 2− 1

2
= 3

2
.

36.
 9

0


1
3
− 2


 can be interpreted as the difference of the areas of the two

shaded triangles; that is, −1
2
(6)(2) + 1

2
(3)(1) = −6 + 3

2
= −9

2
.
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SECTION 5.2 THE DEFINITE INTEGRAL ¤ 19

37.
 0

−3


1 +

√
9− 2


 can be interpreted as the area under the graph of

() = 1 +
√

9− 2 between  = −3 and  = 0. This is equal to one-quarter

the area of the circle with radius 3, plus the area of the rectangle, so 0

−3


1 +

√
9− 2


 = 1

4
 · 32 + 1 · 3 = 3 + 9

4
.

38.
 5

−5


−√25− 2


 =

 5

−5
−  5

−5

√
25− 2 . By

symmetry, the value of the first integral is 0 since the shaded

area above the -axis equals the shaded area below the -axis.

The second integral can be interpreted as one half the area of a

circle with radius 5; that is, 1
2
(5)2 = 25

2
. Thus, the value of

the original integral is 0− 25
2
 = − 25

2
.

39.
 3

−4

 1
2

  can be interpreted as the sum of the areas of the two shaded

triangles; that is, 1
2
(4)(2) + 1

2
(3)


3
2


= 4 + 9

4
= 25

4
.

40.
 1

0
|2− 1|  can be interpreted as the sum of the areas of the two shaded

triangles; that is, 2


1
2


1
2


(1) = 1

2
.

41.
 1

1

√
1 + 4  = 0 since the limits of integration are equal.

42.
 0


sin4   = −  

0
sin4   [because we reversed the limits of integration]

= −  
0

sin4   [we can use any letter without changing the value of the integral]

= −3
8
 [given value]

43.
 1

0
(5− 62)  =

 1

0
5 − 6

 1

0
2  = 5(1− 0)− 6


1
3


= 5− 2 = 3

44.
 3

1
(2 − 1)  = 2

 3

1
 −  3

1
1  = 2(3 − )− 1(3− 1) = 23 − 2− 2

45.
 3

1
+ 2  =

 3

1
 · 2  = 2

 3

1
  = 2(3 − ) = 5 − 3

46.
 2
0

(2 cos− 5)  =
 2
0

2 cos−  2
0

5 = 2
 2
0

cos− 5
 2
0



= 2(1)− 5
(2)2 − 02

2
= 2− 52

8

47.
 2

−2
() +

 5

2
() − −1

−2
()  =

 5

−2
()  +

 −2

−1
()  [by Property 5 and reversing limits]

=
 5

−1
()  [Property 5]
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20 ¤ CHAPTER 5 INTEGRALS

48.
 4

2
() +

 8

4
()  =

 8

2
() , so

 8

4
()  =

 8

2
() −  4

2
()  = 73− 59 = 14.

49.
 9

0
[2() + 3()]  = 2

 9

0
() + 3

 9

0
()  = 2(37) + 3(16) = 122

50. If () =


3 for   3

 for  ≥ 3
, then

 5

0
()  can be interpreted as the area of the shaded

region, which consists of a 5-by-3 rectangle surmounted by an isosceles right triangle

whose legs have length 2. Thus,
 5

0
()  = 5(3) + 1

2
(2)(2) = 17.

51.
 3

0
()  is clearly less than −1 and has the smallest value. The slope of the tangent line of  at  = 1,  0(1), has a value

between −1 and 0, so it has the next smallest value. The largest value is
 8

3
() , followed by

 8

4
() , which has a

value about 1 unit less than
 8

3
() . Still positive, but with a smaller value than

 8

4
() , is

 8

0
() . Ordering these

quantities from smallest to largest gives us 3

0
()    0(1) 

 8

0
()  

 8

4
()  

 8

3
()  or B  E A D  C

52.  (0) =
 0

2
()  = −  2

0
() , so  (0) is negative, and similarly, so is  (1).  (3) and  (4) are negative since they

represent negatives of areas below the -axis. Since  (2) =
 2

2
()  = 0 is the only non-negative value, choice C is the

largest.

53.  =
 2

−4
[() + 2+ 5]  =

 2

−4
() + 2

 2

−4
+

 2

−4
5  = 1 + 22 + 3

1 = −3 [area below -axis] + 3− 3 = −3

2 = − 1
2
(4)(4) [area of triangle, see figure] + 1

2
(2)(2)

= −8 + 2 = −6

3 = 5[2− (−4)] = 5(6) = 30

Thus,  = −3 + 2(−6) + 30 = 15.

54. Using Integral Comparison Property 8, ≤ () ≤  ⇒ (2− 0) ≤  2

0
()  ≤ (2− 0) ⇒

2 ≤  2

0
()  ≤ 2 .

55. 2 − 4+ 4 = (− 2)2 ≥ 0 on [0 4], so
 4

0
(2 − 4 + 4)  ≥ 0 [Property 6].

56. 2 ≤  on [0 1]  so
√

1 + 2 ≤ √1 +  on [0 1]. Hence,
 1

0

√
1 + 2  ≤  1

0

√
1 +   [Property 7].

57. If −1 ≤  ≤ 1, then 0 ≤ 2 ≤ 1 and 1 ≤ 1 + 2 ≤ 2, so 1 ≤ √1 + 2 ≤ √2 and

1[1− (−1)] ≤  1

−1

√
1 + 2  ≤ √2 [1− (−1)] [Property 8]; that is, 2 ≤  1

−1

√
1 + 2  ≤ 2

√
2.

58. If


6
≤  ≤ 

3
, then

1

2
≤ sin ≤

√
3

2


sin is increasing on



6
 

3


, so

1

2


3
− 

6


≤
 3

6

sin  ≤
√

3

2


3
− 

6


[Property 8]; that is,



12
≤
 3

6

sin  ≤
√

3

12
.
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SECTION 5.2 THE DEFINITE INTEGRAL ¤ 21

59. If 0 ≤  ≤ 1, then 0 ≤ 3 ≤ 1, so 0(1− 0) ≤  1

0
3  ≤ 1(1− 0) [Property 8]; that is, 0 ≤  1

0
3  ≤ 1.

60. If 0 ≤  ≤ 3, then 4 ≤ + 4 ≤ 7 and
1

7
≤ 1

+ 4
≤ 1

4
, so

1

7
(3− 0) ≤

 3

0

1

+ 4
 ≤ 1

4
(3− 0) [Property 8]; that is,

3

7
≤
 3

0

1

+ 4
 ≤ 3

4
.

61. If 
4
≤  ≤ 

3
, then 1 ≤ tan ≤ √3, so 1



3
− 

4

 ≤  3
4

tan ≤ √3


3
− 

4


or 

12
≤  3

4
tan ≤ 

12

√
3.

62. Let () = 3 − 3+ 3 for 0 ≤  ≤ 2. Then  0() = 32 − 3 = 3(+ 1)(− 1), so  is decreasing on (0 1) and

increasing on (1 2).  has the absolute minimum value (1) = 1. Since (0) = 3 and (2) = 5, the absolute maximum

value of  is (2) = 5. Thus, 1 ≤ 3 − 3 + 3 ≤ 5 for  in [0 2]. It follows from Property 8 that

1 · (2− 0) ≤  2

0


3 − 3+ 3


 ≤ 5 · (2− 0); that is, 2 ≤  2

0


3 − 3+ 3


 ≤ 10.

63. The only critical number of () = − on [0 2] is  = 1. Since (0) = 0, (1) = −1 ≈ 0368, and

(2) = 2−2 ≈ 0271, we know that the absolute minimum value of  on [0 2] is 0, and the absolute maximum is −1. By

Property 8 0 ≤ − ≤ −1 for 0 ≤  ≤ 2 ⇒ 0(2− 0) ≤  2

0
−  ≤ −1(2− 0) ⇒ 0 ≤  2

0
−  ≤ 2.

64. Let () = − 2 sin for  ≤  ≤ 2. Then  0() = 1− 2 cos and  0() = 0 ⇒ cos = 1
2
⇒  = 5

3
.

 has the absolute maximum value 


5
3


= 5

3
− 2 sin 5

3
= 5

3
+
√

3 ≈ 697 since () =  and (2) = 2 are both

smaller than 697. Thus,  ≤ () ≤ 5
3

+
√

3 ⇒ (2 − ) ≤  2


()  ≤  5

3
+
√

3

(2 − ); that is,

2 ≤  2


(− 2 sin)  ≤ 5

3
2 +

√
3.

65.
√
4 + 1 ≥

√
4 = 2, so

 3

1

√
4 + 1  ≥  3

1
2  = 1

3


33 − 13


= 26

3
.

66. 0 ≤ sin ≤ 1 for 0 ≤  ≤ 
2
, so  sin ≤  ⇒  2

0
 sin ≤  2

0
 = 1

2



2

2 − 02


= 2

8
.

67. sin 
√
   for 1 ≤  ≤ 2 and arctan is an increasing function, so arctan(sin)  arctan

√
  arctan, and hence, 2

1
arctan(sin)  

 2

1
arctan

√
  

 2

1
arctan . Thus,

 2

1
arctan  has the largest value.

68. 2 
√
 for 0   ≤ 05 and cosine is a decreasing function on [0 05], so cos(2)  cos

√
, and hence, 05

0
cos(2)  

 05

0
cos
√
 . Thus,

 05

0
cos(2)  is larger.

69. Using right endpoints as in the proof of Property 2, we calculate 

()  = lim

→∞


=1

()∆ = lim
→∞



=1

()∆ =  lim
→∞


=1

()∆ = 
 

() .

70. (a) Since − |()| ≤ () ≤ |()|, it follows from Property 7 that

−  

|()|  ≤  


()  ≤  


|()|  ⇒

 

() 

 ≤  

|()| 

Note that the definite integral is a real number, and so the following property applies: − ≤  ≤  ⇒ || ≤  for all

real numbers  and nonnegative numbers .
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22 ¤ CHAPTER 5 INTEGRALS

(b)
 2

0
() sin 2

 ≤  2

0
|() sin 2|  [by part (a)] =

 2

0
|()| |sin 2|  ≤  2

0
|()|  by Property 7

since |sin 2| ≤ 1 ⇒ |()| |sin 2| ≤ |()|.

71. Suppose that  is integrable on [0 1]  that is, lim
→∞


=1

(∗ )∆ exists for any choice of ∗ in [−1 ]. Let n denote a

positive integer and divide the interval [0 1] into n equal subintervals


0

1




,


1



2




,  ,


− 1


 1


. If we choose ∗ to be

a rational number in the ith subinterval, then we obtain the Riemann sum

=1

(∗ ) · 1


= 0, so

lim
→∞


=1

(∗ ) · 1


= lim

→∞
0 = 0. Now suppose we choose ∗ to be an irrational number. Then we get


=1

(∗ ) · 1


=


=1

1 · 1


=  · 1


= 1 for each , so lim

→∞


=1

(∗ ) · 1


= lim

→∞
1 = 1. Since the value of

lim
→∞


=1

(∗ )∆ depends on the choice of the sample points ∗ , the limit does not exist, and  is not integrable on [0 1].

72. Partition the interval [0 1] into n equal subintervals and choose ∗1 =
1

2
. Then with () =

1


,


=1

(∗ )∆ ≥ (∗1)∆ =
1

12
· 1


=  Thus,


=1

(∗ )∆ can be made arbitrarily large and hence,  is not integrable

on [0 1].

73. lim
→∞


=1

4

5
= lim

→∞


=1

4

4
· 1


= lim

→∞


=1






4
1


. At this point, we need to recognize the limit as being of the form

lim
→∞


=1

()∆, where∆ = (1− 0) = 1,  = 0 + ∆ = , and () = 4. Thus, the definite integral

is
 1

0
4 .

74. lim
→∞

1




=1

1

1 + ()2
= lim

→∞


=1

1

1 + ()2
· 1


= lim

→∞


=1

()∆, where ∆ = (1− 0) = 1,

 = 0 + ∆ = , and () =
1

1 + 2
. Thus, the definite integral is

 1

0



1 + 2
.

75. Choose  = 1 +



and ∗ =

√
−1 =


1 +

− 1




1 +






. Then

 2

1
−2 = lim

→∞
1




=1

1
1 + − 1




1 + 



 = lim
→∞



=1

1

(+ − 1)(+ )

= lim
→∞



=1


1

+ − 1
− 1

+ 


[by the hint] = lim

→∞



−1
=0

1

+ 
−


=1

1

+ 



= lim
→∞




1


+

1

+ 1
+ · · ·+ 1

2− 1


−


1

+ 1
+ · · ·+ 1

2− 1
+

1

2


= lim

→∞



1


− 1

2


= lim

→∞


1− 1

2


= 1

2
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DISCOVERY PROJECT AREA FUNCTIONS ¤ 23

DISCOVERY PROJECT Area Functions

1. (a)

Area of trapezoid = 1
2
(1 + 2) = 1

2
(3 + 7)2

= 10 square units

Or:

Area of rectangle + area of triangle

=  + 1
2
 = (2)(3) + 1

2
(2)(4) = 10 square units

(b)

As in part (a),

() = 1
2
[3 + (2+ 1)](− 1) = 1

2
(2+ 4)(− 1)

= ( + 2)(− 1) = 2 + − 2 square units

(c) 0() = 2+ 1. This is the -coordinate of the point ( 2+ 1) on the given line.

2. (a) (b) () =
 
−1


1 + 2


 =

 
−1

1  +
 
−1

2  [Property 2]

= 1[− (−1)] +
3 − (−1)

3

3


Property 1 and

Exercise 5.2.28


= + 1 + 1

3
3 + 1

3

= 1
3
3 + + 4

3

(c) 0() = 2 + 1. This is the -coordinate of the point

 1 + 2


on the given curve.

(d)

(+ )−() is the area

under the curve  = 1 + 2

from  =  to  = + .

(e)

An approximating rectangle is shown in the figure.

It has height 1 + 2, width , and area (1 + 2), so

( + )−() ≈ (1 + 2) ⇒ (+ )−()


≈ 1 + 2.
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24 ¤ CHAPTER 5 INTEGRALS

(f ) Part (e) says that the average rate of change of  is approximately 1 + 2. As  approaches 0, the quotient approaches the

instantaneous rate of change—namely, 0(). So the result of part (c), 0() = 2 + 1, is geometrically plausible.

3. (a) () = cos(2) (b) () starts to decrease at that value of  where cos

2

changes from

positive to negative; that is, at about  = 125.

(c) () =
 
0

cos(2) . Using an integration command, we find that

(0) = 0, (02) ≈ 0200, (04) ≈ 0399, (06) ≈ 0592,

(08) ≈ 0768, (10) ≈ 0905, (12) ≈ 0974, (14) ≈ 0950,

(16) ≈ 0826, (18) ≈ 0635, and (20) ≈ 0461.

(d) We sketch the graph of 0 using the method of Example 1 in Section 2.8.

The graphs of 0() and () look alike, so we guess that 0() = ().

4. In Problems 1 and 2, we showed that if () =
 

() , then 0() = (), for the functions () = 2 + 1 and

() = 1 + 2. In Problem 3 we guessed that the same is true for () = cos(2), based on visual evidence. So we conjecture

that 0() = () for any continuous function  . This turns out to be true and is proved in Section 5.3 (the Fundamental

Theorem of Calculus).

5.3 The Fundamental Theorem of Calculus

1. One process undoes what the other one does. The precise version of this statement is given by the Fundamental Theorem of

Calculus. See the statement of this theorem and the paragraph that follows it on page 398.

2. (a) () =
 
0
() , so (0) =

 0

0
()  = 0.

(1) =
 1

0
()  = 1

2
· 1 · 1 [area of triangle] = 1

2
.

(2) =
 2

0
()  =

 1

0
() +

 2

1
()  [below the t-axis]

= 1
2
− 1

2
· 1 · 1 = 0.

(3) = (2) +
 3

2
()  = 0− 1

2
· 1 · 1 = − 1

2
.

(4) = (3) +
 4

3
()  = − 1

2
+ 1

2
· 1 · 1 = 0.

(5) = (4) +
 5

4
()  = 0 + 15 = 15.

(6) = (5) +
 6

5
()  = 15 + 25 = 4.
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SECTION 5.3 THE FUNDAMENTAL THEOREM OF CALCULUS ¤ 25

(b) (7) = (6) +
 7

6
()  ≈ 4 + 22 [estimate from the graph] = 62. (d)

(c) The answers from part (a) and part (b) indicate that  has a minimum at

 = 3 and a maximum at  = 7. This makes sense from the graph of 

since we are subtracting area on 1    3 and adding area on 3    7.

3. (a) () =
 
0
() .

(0) =
 0

0
()  = 0

(1) =
 1

0
()  = 1 · 2 = 2 [rectangle],

(2) =
 2

0
()  =

 1

0
() +

 2

1
()  = (1) +

 2

1
() 

= 2 + 1 · 2 + 1
2
· 1 · 2 = 5 [rectangle plus triangle],

(3) =
 3

0
()  = (2) +

 3

2
()  = 5 + 1

2
· 1 · 4 = 7,

(6) = (3) +
 6

3
()  [the integral is negative since  lies under the -axis]

= 7 +
−  1

2
· 2 · 2 + 1 · 2 = 7− 4 = 3

(b)  is increasing on (0 3) because as  increases from 0 to 3, we keep

adding more area.

(d)

(c)  has a maximum value when we start subtracting area; that is,

at  = 3.

4. (a) () =
 
0
() , so (0) = 0 since the limits of integration are equal and (6) = 0 since the areas above and below the

-axis are equal.

(b) (1) is the area under the curve from 0 to 1, which includes two unit squares and about 80% to 90% of a third unit square,

so (1) ≈ 28. Similarly, (2) ≈ 49 and (3) ≈ 57. Now (3)− (2) ≈ 08, so (4) ≈ (3)− 08 ≈ 49 by the

symmetry of  about  = 3. Likewise, (5) ≈ 28.

(c) As we go from  = 0 to  = 3, we are adding area, so  increases on the interval (0 3).

(d)  increases on (0 3) and decreases on (3 6) [where we are subtracting area], so  has a maximum value at  = 3.

(e) A graph of  must have a maximum at  = 3, be symmetric about  = 3,

and have zeros at  = 0 and  = 6.

(f ) If we sketch the graph of 0 by estimating slopes on the graph of  (as in Section 2.8), we get a graph that looks like  (as

indicated by FTC1).
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26 ¤ CHAPTER 5 INTEGRALS

5. (a) By FTC1 with () = 2 and  = 1, () =
 
1
2  ⇒

0() = () = 2.

(b) Using FTC2, () =
 
1
2  =


1
3
3

1

= 1
3
3 − 1

3
⇒ 0() = 2.

6. (a) By FTC1 with () = 2 +sin  and  = 0, () =
 
0

(2 + sin )  ⇒
0() = () = 2 + sin.

(b) Using FTC2,

() =
 
0

(2 + sin )  = [2− cos ]


0 = (2− cos)− (0− 1)

= 2− cos+ 1 ⇒
0() = 2− (− sin) + 0 = 2 + sin

7. () =
√
+ 3 and () =

 
0

√
 + 3 , so by FTC1, 0() = () =

√
+ 3.

8. () = ln(1 + 2) and () =
 
1

ln(1 + 2) , so by FTC1, 0() = () = ln(1 + 2).

9. () = (− 2)8 and () =
 
5
(− 2)8 , so by FTC1, 0() = () = (− 2)8.

10. () =

√


+ 1
and () =

 

0

√


+ 1
, so by FTC1, 0() = () =

√


+ 1
.

11.  () =

 0



√
1 + sec   = −

 

0

√
1 + sec   ⇒  0() = − 



 

0

√
1 + sec   = −√1 + sec

12. () =

 2




3
sin   = −

 

2


3
sin   ⇒ 0() = − 



 

2


3
sin   = −3 sin 

13. Let  = . Then



= . Also,




=








, so

0() =




 

1

ln   =




 

1

ln   · 


= ln



= (ln 


) ·  = 

.

14. Let  =
√
. Then




=

1

2
√

. Also,




=








, so

0() =




 √


1

2

4 + 1
 =





 

1

2

4 + 1
 · 


=

2

4 + 1




=



2 + 1

1

2
√


=

√


2(2 + 1)
.

15. Let  = 3+ 2. Then



= 3. Also,




=








, so

0 =




 3+2

1



1 + 3
 =





 

1



1 + 3
 · 


=



1 + 3




=

3+ 2

1 + (3+ 2)3
· 3 =

3(3 + 2)

1 + (3+ 2)3

16. Let  = 4. Then



= 43. Also,




=








, so

0 =




 4

0

cos
2
  =





 

0

cos
2
  · 


= cos

2




= cos

2
(

4
) · 43.
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SECTION 5.3 THE FUNDAMENTAL THEOREM OF CALCULUS ¤ 27

17. Let  =
√
. Then




=

1

2
√

. Also,




=








, so

0 =




 4

√


 tan   = − 



 √


4

 tan   · 


= − tan



= −√ tan

√
 · 1

2
√


= −1

2
tan

√


18. Let  = sin. Then



= cos. Also,




=








, so

0 =




 1

sin


1 + 2  =





 1




1 + 2  · 


= − 



 

1


1 + 2  · 



= −√1 + 2 cos = −


1 + sin2 cos

19.
 3

1
(2 + 2− 4)  =


1
3
3 + 2 − 4

3
1

= (9 + 9− 12)−  1
3

+ 1− 4


= 6 + 8
3

= 26
3

20.
 1

−1
100  =


1

101
101

1
−1

= 1
101
− − 1

101


= 2

101

21.
 2

0
( 4
5
3 − 3

4
2 + 2

5
)  =


1
5
4 − 1

4
3 + 1

5
2
2
0

=


16
5
− 2 + 4

5

− 0 = 2

22.
 1

0
(1− 83 + 167)  =


 − 24 + 28

1
0

= (1− 2 + 2)− 0 = 1

23.

 9

1

√
 =

 9

1


12

 =


32

32

9
1

= 2
3




32
9
1

= 2
3
(9

32 − 1
32

) = 2
3
(27− 1) = 52

3

24.

 8

1


−23

 =


13

13

8
1

= 3



13
8
1

= 3(8
13 − 1

13
) = 3(2− 1) = 3

25.
 

6

sin   =

− cos 


6

= − cos − − cos 
6


= −(−1)−


−
√

32


= 1 +
√

32

26.
 5

−5
  =



5
−5

= 5− (−5) = 10

27.

 1

0

(+ 2)(− 3)  =

 1

0

(
2 − − 6)  =


1
3


3 − 1
2


2 − 6
1
0

=


1
3
− 1

2
− 6
− 0 = − 37

6

28.
 4

0

(4− )
√
  =

 4

0

(4− )
12

 =

 4

0

(4
12 − 

32
)  =


8
3

32 − 2

5

52
4
0

= 8
3
(8)− 2

5
(32) = 320−192

15
= 128

15

29.
 4

1

2 + 2

√


 =

 4

1


2√


+
2

√



 =

 4

1

(2
−12

+ 
32

) 

=

412 + 2

5
52

4
1

=

4(2) + 2

5
(32)

− 4 + 2
5


= 8 + 64

5
− 4− 2

5
= 82

5

30.
 2

−1
(3− 2)(+ 1)  =

 2

−1
(32 + − 2)  =


3 + 1

2
2 − 2

2
−1

= (8 + 2− 4)− −1 + 1
2

+ 2


= 6− 3
2

= 9
2

31.

 2

6

csc  cot   =

− csc 

2
6

=
− csc 

2

− − csc 
6


= −1− (−2) = 1

32.

 3

4

csc
2
  =


− cot 

3
4

=

− cot



3


−

− cot



4


= − 1√

3
− (−1) = 1− 1√

3
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28 ¤ CHAPTER 5 INTEGRALS

33.
 1

0
(1 + )3  =

 1

0
(1 + 3 + 32 + 3)  =


 + 3

2
2 + 3 + 1

4
4
1
0

=

1 + 3

2
+ 1 + 1

4

− 0 = 15
4

34.
 3

0

(2 sin− 

)  =


−2 cos− 


3
0

= (−2 cos 3− 
3
)− (−2− 1) = 3− 2 cos 3− 

3

35.
 2

1

3 + 36

4
=

 2

1


1


+ 3

2


 =


ln ||+ 

3
2
1

= (ln 2 + 8)− (ln 1 + 1) = ln 2 + 7

36.

 18

1


3


 =

 18

1

√
3
−12

 =
√

3

2

12
18
1

= 2
√

3(18
12 − 1

12
) = 2

√
3(3
√

2− 1)

37.

 1

0

(

+ 


)  =


+1

+ 1
+ 



1
0

=


1

+ 1
+ 


− (0 + 1) =

1

+ 1
+ − 1

38.
 1

0
cosh   =


sinh 

1
0

= sinh 1− sinh 0 = sinh 1

or 1

2
(− −1)


39.

 √
3

1
√

3

8

1 + 2
 =


8 arctan

√3

1
√

3
= 8


3
− 

6


= 8


6


=

4

3

40.
 3

1

3 − 22 − 

2
 =

 3

1


 − 2− 1




 =


1
2

2 − 2 − ln ||3

1
=


9
2
− 6− ln 3

−  1
2
− 2− 0


= − ln 3

41.

 4

0

2

 =


1

ln 2
2


4
0

=
16

ln 2
− 1

ln 2
=

15

ln 2

42.
 1

√
2

12

4√
1− 2

 =

4 arcsin

1√2

12
= 4


4
− 

6


= 4

 

12


=



3

43. If () =


sin if 0 ≤   2

cos if 2 ≤  ≤ 
then

 
0
()  =

 2
0

sin+
 
2

cos =
− cos

2
0

+

sin


2

= − cos 
2

+ cos 0 + sin − sin 
2

= −0 + 1 + 0− 1 = 0

Note that  is integrable by Theorem 3 in Section 5.2.

44. If () =


2 if − 2 ≤  ≤ 0

4− 2 if 0   ≤ 2
then

 2

−2
()  =

 0

−2
2  +

 2

0
(4− 2)  =


2
0
−2

+

4− 1

3
3
2
0

= [0− (−4)] +


16
3
− 0


= 28
3

Note that  is integrable by Theorem 3 in Section 5.2.

45. Area =

 4

0

√
  =

 4

0


12

 =


2
3
32

4
0

= 2
3
(8)− 0 = 16

3
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SECTION 5.3 THE FUNDAMENTAL THEOREM OF CALCULUS ¤ 29

46. Area =

 1

0


3
 =


1
4
4
1
0

= 1
4
− 0 = 1

4

47. Area =

 2

−2

(4− 
2
)  =


4− 1

3
3
2
−2

=

8− 8

3

− −8 + 8
3


= 32

3

48. Area =

 2

0

(2− 
2
)  =


2 − 1

3
3
2
0

=

4− 8

3

− 0 = 4
3

49. From the graph, it appears that the area is about 60. The actual area is 27

0
13 =


3
4
43

27
0

= 3
4
· 81− 0 = 243

4
= 6075. This is 3

4
of the

area of the viewing rectangle.

50. From the graph, it appears that the area is about 1
3
. The actual area is 6

1


−4

 =


−3

−3

6
1

=

 −1

33

6
1

= − 1

3 · 216 +
1

3
=

215

648
≈ 03318.

51. It appears that the area under the graph is about 2
3
of the area of the viewing

rectangle, or about 2
3
 ≈ 21. The actual area is 

0
sin = [− cos]



0 = (− cos)− (− cos 0) = − (−1) + 1 = 2.

52. Splitting up the region as shown, we estimate that the area under the graph

is 
3

+ 1
4


3 · 

3

 ≈ 18. The actual area is 3
0

sec2  = [tan]
3

0 =
√

3− 0 =
√

3 ≈ 173.
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30 ¤ CHAPTER 5 INTEGRALS

53.
 2

−1
3  =


1
4
4
2
−1

= 4− 1
4

= 15
4

= 375

54.
 2

6
cos =


sin

2
6

= 0− 1
2

= − 1
2

55. () = −4 is not continuous on the interval [−2 1], so FTC2 cannot be applied. In fact,  has an infinite discontinuity at

 = 0, so
 1

−2
−4  does not exist.

56. () =
4

3
is not continuous on the interval [−1 2], so FTC2 cannot be applied. In fact,  has an infinite discontinuity at

 = 0, so
 2

−1

4

3
 does not exist.

57. () = sec  tan  is not continuous on the interval [3 ], so FTC2 cannot be applied. In fact,  has an infinite

discontinuity at  = 2, so
 
3

sec  tan   does not exist.

58. () = sec2  is not continuous on the interval [0 ], so FTC2 cannot be applied. In fact,  has an infinite discontinuity at

 = 2, so
 
0

sec2  does not exist.

59. () =

 3

2

2 − 1

2 + 1
 =

 0

2

2 − 1

2 + 1
 +

 3

0

2 − 1

2 + 1
 = −

 2

0

2 − 1

2 + 1
 +

 3

0

2 − 1

2 + 1
 ⇒

0() = − (2)2 − 1

(2)2 + 1
· 


(2) +

(3)2 − 1

(3)2 + 1
· 


(3) = −2 · 42 − 1

42 + 1
+ 3 · 92 − 1

92 + 1

60. () =

 1+2

1−2

 sin   =

 0

1−2

 sin   +

 1+2

0

 sin   = −
 1−2

0

 sin   +

 1+2

0

 sin   ⇒

0() = −(1− 2) sin(1− 2) · 


(1− 2) + (1 + 2) sin(1 + 2) · 


(1 + 2)

= 2(1− 2) sin(1− 2) + 2(1 + 2) sin(1 + 2)

61.  () =

 2




2
 =

 0




2
+

 2

0


2
 = −

 

0


2
 +

 2

0


2
 ⇒

 0() = −2 + (
2)2 · 


(2) = −2 + 2

4
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SECTION 5.3 THE FUNDAMENTAL THEOREM OF CALCULUS ¤ 31

62.  () =

 2

√


arctan   =

 0

√


arctan   +

 2

0

arctan   = −
 √



0

arctan   +

 2

0

arctan   ⇒

 0() = − arctan
√
 · 


(
√
 ) + arctan 2 · 


(2) = − 1

2
√


arctan
√
+ 2arctan 2

63.  =

 sin

cos 

ln(1 + 2)  =

 0

cos

ln(1 + 2)  +

 sin

0

ln(1 + 2) 

= −
 cos 

0

ln(1 + 2)  +

 sin 

0

ln(1 + 2)  ⇒

0 = − ln(1 + 2 cos) · 


cos+ ln(1 + 2 sin) · 


sin = sin ln(1 + 2 cos) + cos ln(1 + 2 sin)

64. () =

 

0

(1− 
2
)
2
 is increasing when  0() = (1− 2)

2

is positive.

Since 
2

 0,  0()  0 ⇔ 1− 2  0 ⇔ ||  1, so  is increasing on (−1 1).

65.  =

 

0

2

2 +  + 2
 ⇒ 0 =

2

2 + + 2
⇒

00 =
(2 + + 2)(2)− 2(2+ 1)

(2 + + 2)2
=

23 + 22 + 4− 23 − 2

(2 +  + 2)2
=

2 + 4

(2 + + 2)2
=

(+ 4)

(2 + + 2)2
.

The curve  is concave downward when 00  0; that is, on the interval (−4 0).

66. If  () =
 
1
() , then by FTC1,  0() = (), and also,  00() =  0().  is concave downward where  00 is

negative; that is, where  0 is negative. The given graph shows that  is decreasing ( 0  0) on the interval (−1 1).

67.  () =
 
2

2

 ⇒  0() = 
2

, so the slope at  = 2 is 2
2

= 4. The -coordinate of the point on  at  = 2 is

 (2) =
 2

2

2

 = 0 since the limits are equal. An equation of the tangent line is  − 0 = 4(− 2), or  = 4− 24.

68. () =
 
3
()  ⇒ 0() = (). Since () =

 sin 

0

√
1 + 2 , 00() =  0() =


1 + sin2 · cos ,

so 00(
6
) =


1 + sin2(

6
) · cos 

6
=


1 + ( 1
2
)2 ·

√
3

2
=
√

5
2
·
√

3
2

=
√

15
4
.

69. By FTC2,
 4

1
 0()  = (4)− (1), so 17 = (4)− 12 ⇒ (4) = 17 + 12 = 29.

70. (a) erf() =
2√


 

0


−2

 ⇒
 

0


−2

 =

√


2
erf() By Property 5 of definite integrals in Section 5.2,

 
0
−

2

 =
 
0
−

2

 +
 

−

2

, so 




−2

 =

 

0


−2

−
 

0


−2

 =

√


2
erf()−

√


2
erf() = 1

2

√
 [erf()− erf()].

(b)  = 
2

erf() ⇒ 0 = 2
2

erf() + 
2

erf 0() = 2 + 
2 · 2√


−

2

[by FTC1] = 2 +
2√

.

71. (a) The Fresnel function () =
 
0

sin


2
2

 has local maximum values where 0 = 0() = sin



2
2

and

0 changes from positive to negative. For   0, this happens when 
2
2 = (2− 1) [odd multiples of ] ⇔
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32 ¤ CHAPTER 5 INTEGRALS

2 = 2(2− 1) ⇔  =
√

4− 2,  any positive integer. For   0, 0 changes from positive to negative where


2
2 = 2 [even multiples of ] ⇔ 2 = 4 ⇔  = −2

√
. 0 does not change sign at  = 0.

(b)  is concave upward on those intervals where 00()  0. Differentiating our expression for 0(), we get

00() = cos


2
2


2
2



=  cos


2
2

. For   0, 00()  0 where cos(

2
2)  0 ⇔ 0  

2
2  

2
or

2− 1
2


  

2
2 


2+ 1

2


,  any integer ⇔ 0    1 or

√
4− 1   

√
4+ 1,  any positive integer.

For   0, 00()  0 where cos(
2
2)  0 ⇔ 

2− 3
2


  

2
2 


2− 1

2


,  any integer ⇔

4− 3  2  4− 1 ⇔ √
4− 3  ||  √4− 1 ⇒ √

4− 3  − 
√

4− 1 ⇒

−√4− 3    −√4− 1, so the intervals of upward concavity for   0 are
−√4− 1−√4− 3


,  any

positive integer. To summarize:  is concave upward on the intervals (0 1),
−√3−1


,
√

3
√

5

,
−√7−√5


,√

7 3

,    .

(c) In Maple, we use plot({int(sin(Pi*tˆ2/2),t=0..x),0.2},x=0..2);. Note that

Maple recognizes the Fresnel function, calling it FresnelS(x). In Mathematica, we use

Plot[{Integrate[Sin[Pi*tˆ2/2],{t,0,x}],0.2},{x,0,2}]. In Derive, we load the utility file

FRESNEL and plot FRESNEL_SIN(x). From the graphs, we see that
 
0

sin


2
2

 = 02 at  ≈ 074.

72. (a) In Maple, we should start by setting si:=int(sin(t)/t,t=0..x);. In

Mathematica, the command is si=Integrate[Sin[t]/t,{t,0,x}].

Note that both systems recognize this function; Maple calls it Si(x) and

Mathematica calls it SinIntegral[x]. In Maple, the command to generate

the graph is plot(si,x=-4*Pi..4*Pi);. In Mathematica, it is

Plot[si,{x,-4*Pi,4*Pi}]. In Derive, we load the utility file EXP_INT and plot SI(x).

(b) Si() has local maximum values where Si0() changes from positive to negative, passing through 0. From the

Fundamental Theorem we know that Si0() =




 

0

sin 


 =

sin


, so we must have sin = 0 for a maximum, and

for   0 we must have  = (2− 1),  any positive integer, for Si0 to be changing from positive to negative at .

For   0, we must have  = 2,  any positive integer, for a maximum, since the denominator of Si0() is negative

for   0. Thus, the local maxima occur at  = , −2, 3, −4, 5, −6,    .
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SECTION 5.3 THE FUNDAMENTAL THEOREM OF CALCULUS ¤ 33

(c) To find the first inflection point, we solve Si00() =
cos


− sin

2
= 0. We can see from the graph that the first inflection

point lies somewhere between  = 3 and  = 5. Using a rootfinder gives the value  ≈ 44934. To find the -coordinate

of the inflection point, we evaluate Si(44934) ≈ 16556. So the coordinates of the first inflection point to the right of the

origin are about (44934 16556). Alternatively, we could graph 00() and estimate the first positive -value at which it

changes sign.

(d) It seems from the graph that the function has horizontal asymptotes at  ≈ 15, with lim
→±∞

Si() ≈ ±15 respectively.

Using the limit command, we get lim
→∞

Si() = 
2
. Since Si() is an odd function, lim

→−∞
Si() = −

2
. So Si() has the

horizontal asymptotes  = ±
2
.

(e) We use the fsolve command in Maple (or FindRoot in Mathematica) to find that the solution is  ≈ 11. Or, as in

Exercise 65(c), we graph  = Si() and  = 1 on the same screen to see where they intersect.

73. (a) By FTC1, 0() = (). So 0() = () = 0 at  = 1 3 5 7, and 9.  has local maxima at  = 1 and 5 (since  = 0

changes from positive to negative there) and local minima at  = 3 and 7. There is no local maximum or minimum at

 = 9, since  is not defined for   9.

(b) We can see from the graph that
 1

0
 

   3

1
 

   5

3
 

   7

5
 

   9

7
 

. So (1) =
 1

0
 

,
(5) =

 5

0
  = (1)−

 3

1
 

+  5

3
 

, and (9) =
 9

0
  = (5)−

 7

5
 

+  9

7
 

. Thus,
(1)  (5)  (9), and so the absolute maximum of () occurs at  = 9.

(c)  is concave downward on those intervals where 00  0. But 0() = (),

so 00() =  0(), which is negative on (approximately)


1
2
 2

, (4 6) and

(8 9). So  is concave downward on these intervals.

(d)

74. (a) By FTC1, 0() = (). So 0() = () = 0 at  = 2, 4, 6, 8, and 10.  has local maxima at  = 2 and 6 (since  = 0

changes from positive to negative there) and local minima at  = 4 and 8. There is no local maximum or minimum at

 = 10, since  is not defined for   10.

(b) We can see from the graph that
 2

0
 

   4

2
 

   6

4
 

   8

6
 

   10

8
 

. So (2) =
 2

0
 

,
(6) =

 6

0
  = (2)−

 4

2
 

+  6

4
 

, and (10) =
 10

0
  = (6)−

 8

6
 

+  10

8
 

. Thus,
(2)  (6)  (10), and so the absolute maximum of () occurs at  = 2.

(c)  is concave downward on those intervals where 00  0. But 0() = (),

so 00() =  0(), which is negative on (1 3), (5 7) and (9 10). So  is

concave downward on these intervals.

(d)
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34 ¤ CHAPTER 5 INTEGRALS

75. lim
→∞


=1


4

5
+



2


= lim

→∞


=1


4

4
+






1


= lim

→∞
1− 0




=1






4

+





=

 1

0

(
4
+ ) 

=


1
5
5 + 1

2
2
1
0

=


1
5

+ 1
2

− 0 = 7
10

76. lim
→∞

1




1


+


2


+ · · ·+







= lim

→∞
1− 0




=1





=

 1

0

√
 =


232

3

1
0

=
2

3
− 0 =

2

3

77. Suppose   0. Since  is continuous on [+  ], the Extreme Value Theorem says that there are numbers  and  in

[+  ] such that () =  and () =  , where and are the absolute minimum and maximum values of  on

[+  ]. By Property 8 of integrals,(−) ≤  
+

()  ≤(−); that is, ()(−) ≤ −  +


()  ≤ ()(−).

Since −  0, we can divide this inequality by −: () ≤ 1



 +



 ()  ≤ (). By Equation 2,

( + )− ()


=

1



 +



()  for  6= 0, and hence () ≤ (+ )− ()


≤ (), which is Equation 3 in the

case where   0.

78.




 ()

()

()  =




 

()

()  +

 ()



() 


[where  is in the domain of  ]

=





−
 ()



() 


+





 ()



() 


= −(()) 0() + (()) 0()

= (())0 ()− (()) 0()

79. (a) Let () =
√
 ⇒  0() = 1(2

√
 )  0 for   0 ⇒  is increasing on (0∞). If  ≥ 0, then 3 ≥ 0, so

1 + 3 ≥ 1 and since  is increasing, this means that 

1 + 3

 ≥ (1) ⇒ √
1 + 3 ≥ 1 for  ≥ 0. Next let

() = 2 −  ⇒ 0() = 2− 1 ⇒ 0()  0 when  ≥ 1. Thus,  is increasing on (1∞). And since (1) = 0,

() ≥ 0 when  ≥ 1. Now let  =
√

1 + 3, where  ≥ 0.
√

1 + 3 ≥ 1 (from above) ⇒  ≥ 1 ⇒ () ≥ 0 ⇒
1 + 3

−√1 + 3 ≥ 0 for  ≥ 0. Therefore, 1 ≤ √1 + 3 ≤ 1 + 3 for  ≥ 0.

(b) From part (a) and Property 7:
 1

0
1  ≤  1

0

√
1 + 3  ≤  1

0
(1 + 3)  ⇔


1
0
≤  1

0

√
1 + 3  ≤ + 1

4
4
1
0
⇔ 1 ≤  1

0

√
1 + 3  ≤ 1 + 1

4
= 125.

80. (a) For 0 ≤  ≤ 1 we have 2 ≤  Since () = cos is a decreasing function on [0 1], cos(2) ≥ cos

(b) 6  1 so by part (a), cos(2) ≥ cos on [0 6]. Thus, 6
0

cos(2)  ≥  6
0

cos =

sin

6
0

= sin(6)− sin 0 = 1
2
− 0 = 1

2
.

81. 0 
2

4 + 2 + 1


2

4
=

1

2
on [5 10], so

0 ≤
 10

5

2

4 + 2 + 1
 

 10

5

1

2
 =


− 1



10
5

= − 1

10
−

−1

5


=

1

10
= 01
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SECTION 5.3 THE FUNDAMENTAL THEOREM OF CALCULUS ¤ 35

82. (a) If   0, then () =
 
0
()  =

 
0

0  = 0.

If 0 ≤  ≤ 1, then () =
 
0
()  =

 
0
  =


1
2
2

0

= 1
2
2.

If 1   ≤ 2, then

() =
 
0
()  =

 1

0
()  +

 
1
()  = (1) +

 
1

(2− ) 

= 1
2
(1)2 +


2− 1

2
2

1

= 1
2

+

2− 1

2
2
− 2− 1

2


= 2− 1

2
2 − 1.

If   2, then () =
 
0
()  = (2) +

 
2

0  = 1 + 0 = 1. So

() =


0 if   0

1
2
2 if 0 ≤  ≤ 1

2− 1
2
2 − 1 if 1   ≤ 2

1 if   2

(b)

(c)  is not differentiable at its corners at  = 0, 1, and 2.  is differentiable on (−∞ 0), (0 1), (1 2) and (2∞).

 is differentiable on (−∞∞).

83. Using FTC1, we differentiate both sides of 6 +

 



()

2
 = 2

√
 to get

()

2
= 2

1

2
√


⇒ () = 32.

To find , we substitute  =  in the original equation to obtain 6 +

 



()

2
 = 2

√
 ⇒ 6 + 0 = 2

√
 ⇒

3 =
√
 ⇒  = 9.

84.  = 3 ⇒  
0
  = 3

 
0
  ⇒ []



0 = 3 []


0 ⇒  − 1 = 3( − 1) ⇒  = 3 − 2 ⇒
 = ln(3 − 2)

85. (a) Let  () =
 
0
() . Then, by FTC1,  0() = () = rate of depreciation, so  () represents the loss in value over the

interval [0 ].

(b) () =
1




+

 

0

() 


=

+  ()


represents the average expenditure per unit of  during the interval [0 ],

assuming that there has been only one overhaul during that time period. The company wants to minimize average

expenditure.

(c) () =
1




+

 

0

() 


. Using FTC1, we have 0() = − 1

2


+

 

0

() 


+

1


().

0() = 0 ⇒  () = +

 

0

()  ⇒ () =
1




+

 

0

() 


= ().

86. (a) () =
1



 

0

[() + ()] . Using FTC1 and the Product Rule, we have

0() =
1


[() + ()]− 1

2

 

0

[() + ()] . Set 0() = 0:
1


[() + ()]− 1

2

 

0

[() + ()]  = 0 ⇒

[() + ()]− 1



 

0

[() + ()]  = 0 ⇒ [() + ()]− () = 0 ⇒ () = () + ().
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36 ¤ CHAPTER 5 INTEGRALS

(b) For 0 ≤  ≤ 30, we have() =

 

0




15
− 

450



 =




15
− 

900

2


0

=


15
− 

900

2.

So() =  ⇒ 

15
− 

900
2 =  ⇒ 60− 2 = 900 ⇒ 2 − 60 + 900 = 0 ⇒

(− 30)
2

= 0 ⇒  = 30. So the length of time  is 30 months.

(c) () =
1



 

0




15
− 

450
+



12,900

2


 =

1






15
− 

900

2
+



38,700

3


0

=
1






15
− 

900
2 +



38,700
3


=


15
− 

900
 +



38,700
2 ⇒

0() = − 

900
+



19,350
 = 0 when

1

19,350
 =

1

900
⇒  = 215.

(215) =


15
− 

900
(215) +



38,700
(215)2 ≈ 005472 , (0) =



15
≈ 006667 , and

(30) =


15
− 

900
(30) +



38,700
(30)2 ≈ 005659 , so the absolute minimum is (215) ≈ 005472 .

(d) As in part (c), we have () =


15
− 

900
+



38,700
2, so () = () + () ⇔



15
− 

900
+



38,700
2 =



15
− 

450
+



12,900
2 ⇔

2


1

12,900
− 1

38,700


= 


1

450
− 1

900


⇔  =

1900

238,700
=

43

2
= 215.

This is the value of  that we obtained as the critical number of  in part (c), so we

have verified the result of (a) in this case.

5.4 Indefinite Integrals and the Net Change Theorem

1.





−
√

1 + 2


+ 


=






− (1 + 2)12


+


= − · 1

2
(1 + 2)−12(2)− (1 + 2)12 · 1

()2
+ 0

= − (1 + 2)−12

2 − (1 + 2)


2

= − −1

(1 + 2)122
=

1

2
√

1 + 2

2.





1

2
 +

1

4
sin 2 +


=

1

2
+

1

4
cos 2 · 2 + 0 =

1

2
+

1

2
cos 2

= 1
2

+ 1
2


2 cos2 − 1


= 1

2
+ cos2 − 1

2
= cos2 

3.



(tan− +) = sec2 − 1 + 0 = tan2 

4.





2

152
(3− 2)(+ )32 +


=

2

152


(3− 2) 3

2
(+ )12() + (+ )32(3) + 0


=

2

152
(3)(+ )12


(3− 2) 1

2
+ (+ )


=

2

5
(+ )12


5

2



= 

√
+ 
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SECTION 5.4 INDEFINITE INTEGRALS AND THE NET CHANGE THEOREM ¤ 37

5.


(
13

+ 7
25

)  =
1

23


23
+

7

35


35
+  =

1

23


23
+ 2

35
+

6.


4
√
5  =


54  = 4

9
94 +

7.
 

5 + 2
3
2 + 3

4
3

 = 5 + 2

3
· 1

3
3 + 3

4
· 1

4
4 +  = 5+ 2

9
3 + 3

16
4 + 

8.

(6 − 25 − 3 + 2

7
)  = 1

7
7 − 2 · 1

6
6 − 1

4
4 + 2

7
+ = 1

7
7 − 1

3
6 − 1

4
4 + 2

7
+

9.


(+ 4)(2+ 1)  =


(2

2
+ 9+ 4)  = 2

3

3
+ 9

2

2
+ 4+  =

2

3


3
+

9

2


2
+ 4+

10.
 √

(2 + 3 + 2) =

12(2 + 3+ 2)  =


(52 + 332 + 212) 

= 2
7
72 + 3 · 2

5
52 + 2 · 2

3
32 +  = 2

7
72 + 6

5
52 + 4

3
32 + 

11.


1 +
√
+ 


=

 
1


+

√



+






 =

 
1


+ 

−12
+ 1




= ln ||+ 212 + + = ln ||+ 2
√
+ +

12.
 


2

+ 1 +
1

2 + 1


 =

3

3
+ + tan

−1
+

13.

(sin + sinh)  = − cos+ cosh+ 

14.

 
1 + 



2

 =


1 + 2 + 2

2
 =


(
−2

+ 2
−1

+ 1)  = −−1
+ 2 ln ||+  + = −1


+ 2 ln ||+  + 

15.

(2 + tan2 )  =


[2 + (sec2  − 1)]  =


(1 + sec2 )  =  + tan  +

16.


sec  (sec  + tan )  =

(sec2 + sec  tan )  = tan + sec + 

17.


2

(1 + 5


)  =


(2

+ 2

 · 5)  =


(2

+ 10


)  =

2

ln 2
+

10

ln 10
+ 

18.


sin 2

sin
 =


2 sin cos

sin
 =


2 cos = 2 sin+ 

19.
 

cos+ 1
2


 = sin+ 1

4
2 +. The members of the family

in the figure correspond to  = −5, 0, 5, and 10.

20.

( − 22)  =  − 2

3
3 + The members of the family in the

figure correspond to  = −5, 0, 2, and 5.
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38 ¤ CHAPTER 5 INTEGRALS

21.
 3

−2
(2 − 3)  =


1
3
3 − 3

3
−2

= (9− 9)− − 8
3

+ 6


= 8
3
− 18

3
= −10

3

22.
 2

1
(43 − 32 + 2)  =


4 − 3 + 2

2
1

= (16− 8 + 4)− (1− 1 + 1) = 12− 1 = 11

23.
 0

−2


1
2
4 + 1

4
3 − 


 =


1
10
5 + 1

16
4 − 1

2
2
0
−2

= 0−  1
10

(−32) + 1
16

(16)− 1
2
(4)


= − − 16
5

+ 1− 2


= 21
5

24.
 3

0
(1 + 62 − 104)  =


 + 23 − 25

3
0

= (3 + 54− 486)− 0 = −429

25.
 2

0
(2− 3)(42 + 1)  =

 2

0
(83 − 122 + 2− 3)  =


24 − 43 + 2 − 3

2
0

= (32− 32 + 4− 6)− 0 = −2

26.
 1

−1
(1− )2 =

 1

−1
(1− 2+ 2)  =

 1

−1
(− 22 + 3)  =


1
2
2 − 2

3
3 + 1

4
4
1
−1

=


1
2
− 2

3
+ 1

4

−  1
2

+ 2
3

+ 1
4


= − 4

3

27.
 
0

(5 + 3 sin)  = [5 − 3 cos]


0 = [5 − 3(−1)]− [5(1)− 3(1)] = 5 + 1

28.
 2

1


1

2
− 4

3


 =

 2

1

(
−2 − 4

−3
)  =


−1

−1
− 4−2

−2

2
1

=


− 1


+

2

2

2
1

=


−1

2
+

1

2


− (−1 + 2) = −1

29.
 4

1


4 + 6√




 =

 4

1


4√


+
6√



 =

 4

1

(4
−12

+ 6
12

)  =

8

12
+ 4

32
4
1

= (16 + 32)− (8 + 4) = 36

30.
 1

0

4

1 + 2
 =


4 arctan 

1
0

= 4arctan 1− 4 arctan 0 = 4


4


− 4(0) = 

31.
 1

0



3
√
+

4
√


 =

 1

0
(43 + 54)  =


3
7
73 + 4

9
94

1
0

=


3
7

+ 4
9

− 0 = 55
63

32.

 4

1

√
 − 

2
 =

 4

1

√


2
− 

2


 =

 4

1

(
−32 − 

−1
)  =


−2

−12 − ln ||
4
1

=


− 2√


− ln ||

4
1

= (−1− ln 4)− (−2− ln 1) = 1− ln 4

33.
 2

1




2
− 2




 =


1

4


2 − 2 ln ||
2
1

= (1− 2 ln 2)−


1

4
− 2 ln 1


=

3

4
− 2 ln 2

34.

 1

0

(5− 5

)  =


5

2


2 − 5

ln 5

1
0

=


5

2
− 5

ln 5


−


0− 1

ln 5


=

5

2
− 4

ln 5

35.
 1

0

(
10

+ 10

)  =


11

11
+

10

ln 10

1
0

=


1

11
+

10

ln 10


−


0 +
1

ln 10


=

1

11
+

9

ln 10

36.

 4

0

sec  tan   =

sec 

4
0

= sec


4
− sec 0 =

√
2− 1

37.
 4

0

1 + cos2 

cos2 
 =

 4

0


1

cos2 
+

cos2 

cos2 


 =

 4

0

(sec
2
 + 1) 

=

tan  + 

4
0

=

tan 

4
+ 

4

− (0 + 0) = 1 + 
4
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SECTION 5.4 INDEFINITE INTEGRALS AND THE NET CHANGE THEOREM ¤ 39

38.

 3

0

sin  + sin  tan2 

sec2 
 =

 3

0

sin  (1 + tan2 )

sec2 
 =

 3

0

sin  sec2 

sec2 
 =

 3

0

sin  

=
− cos 

3
0

= − 1
2
− (−1) = 1

2

39.
 8

1

2 + 
3
√
2

 =

 8

1


2

23
+



23


 =

 8

1

(2
−23

+ 
13

)  =

2 · 313 + 3

4

43
8
1

= (12 + 12)− 6 + 3
4


= 69

4

40.
 10

−10

2

sinh + cosh
 =

 10

−10

2

 − −

2
+

 + −

2

 =

 10

−10

2


 =

 10

−10

2  =

2
10
−10

= 20− (−20) = 40

41.

 √
32

0

√
1− 2

=

arcsin 

√32

0
= arcsin

√
32

− arcsin 0 =



3
− 0 =



3

42.
 2

1

(− 1)3

2
=

 2

1

3 − 32 + 3− 1

2
 =

 2

1


− 3 +

3


− 1

2


 =


1
2


2 − 3+ 3 ln ||+ 1



2
1

=

2− 6 + 3 ln 2 + 1

2

−  1
2
− 3 + 0 + 1


= 3 ln 2− 2

43.
 1

√
3

0

2 − 1

4 − 1
=

 1
√

3

0

2 − 1

(2 + 1)(2 − 1)
 =

 1
√

3

0

1

2 + 1
 =


arctan 

1√3

0
= arctan


1
√

3

− arctan 0

= 
6
− 0 = 

6

44. |2− 1| =


2− 1 if 2− 1 ≥ 0

−(2− 1) if 2− 1  0
=


2− 1 if  ≥ 1

2

1− 2 if   1
2

Thus,
 2

0
|2− 1| =

 12

0
(1− 2) +

 2

12
(2− 1)  =


− 2

12
0

+

2 − 

2
12

= ( 1
2
− 1

4
)− 0 + (4− 2)− ( 1

4
− 1

2
) = 1

4
+ 2− (− 1

4
) = 5

2

45.
 2

−1
(− 2 ||)  =

 0

−1
[− 2(−)] +

 2

0
[− 2()]  =

 0

−1
3+

 2

0
(−)  = 3


1
2
2
0
−1
−  1

2
2
2
0

= 3

0− 1

2

− (2− 0) = −7
2

= −35

46.
 32

0
|sin|  =

 
0

sin+
 32


(− sin)  =

− cos

0

+

cos

32


= [1− (−1)] + [0− (−1)] = 2 + 1 = 3

47. The graph shows that  = 1− 2− 54 has -intercepts at

 =  ≈ −086 and at  =  ≈ 042. So the area of the region that lies

under the curve and above the -axis is 

(1− 2− 54) =


− 2 − 5




= (− 2 − 5)− (− 2 − 5) ≈ 136

48. The graph shows that  = (2 + 1)−1 − 4 has -intercepts at

 =  ≈ −087 and at  =  ≈ 087. So the area of the region that lies

under the curve and above the -axis is 



(2 + 1)−1 − 4


=


tan−1 − 1

5
5



=

tan−1 − 1

5
5
− tan−1 − 1

5
5


≈ 123
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40 ¤ CHAPTER 5 INTEGRALS

49.  =
 2

0


2 − 2


 =


2 − 1

3
3
2
0

=

4− 8

3

− 0 = 4
3

50.  =
4
√
 ⇒  = 4, so  =

 1

0
4  =


1
5
5
1
0

= 1
5
.

51. If 0() is the rate of change of weight in pounds per year, then () represents the weight in pounds of the child at age . We

know from the Net Change Theorem that
 10

5
0()  = (10)−(5), so the integral represents the increase in the child’s

weight (in pounds) between the ages of 5 and 10.

52.
 

()  =

 

0()  = ()−() by the Net Change Theorem, so it represents the change in the charge from time

 =  to  = .

53. Since () is the rate at which oil leaks, we can write () = − 0(), where  () is the volume of oil at time . [Note that the

minus sign is needed because  is decreasing, so  0() is negative, but () is positive.] Thus, by the Net Change Theorem, 120

0
()  = −  120

0
 0()  = − [ (120)−  (0)] =  (0)−  (120), which is the number of gallons of oil that leaked

from the tank in the first two hours (120 minutes).

54. By the Net Change Theorem,
 15

0
0()  = (15)− (0) = (15)− 100 represents the increase in the bee population in

15 weeks. So 100 +
 15

0
0()  = (15) represents the total bee population after 15 weeks.

55. By the Net Change Theorem,
 5000

1000
0()  = (5000)−(1000), so it represents the increase in revenue when

production is increased from 1000 units to 5000 units.

56. The slope of the trail is the rate of change of the elevation , so () = 0(). By the Net Change Theorem, 5

3
()  =

 5

3
0()  = (5)−(3) is the change in the elevation  between  = 3 miles and  = 5 miles from the

start of the trail.

57. In general, the unit of measurement for
 

()  is the product of the unit for () and the unit for . Since () is

measured in newtons and  is measured in meters, the units for
 100

0
()  are newton-meters (or joules). (A newton-meter

is abbreviated N·m.)

58. The units for () are pounds per foot and the units for  are feet, so the units for  are pounds per foot per foot, denoted

(lbft)ft. The unit of measurement for
 8

2
()  is the product of pounds per foot and feet; that is, pounds.

59. (a) Displacement =
 3

0
(3− 5)  =


3
2
2 − 5

3
0

= 27
2
− 15 = −3

2
m

(b) Distance traveled =
 3

0
|3− 5|  =

 53

0
(5− 3) +

 3

53
(3− 5) 

=

5− 3

2
2
53
0

+


3
2
2 − 5

3
53

= 25
3
− 3

2
· 25

9
+ 27

2
− 15−  3

2
· 25

9
− 25

3


= 41

6
m

60. (a) Displacement =
 4

2
(2 − 2− 3)  =


1
3
3 − 2 − 3

4
2

=


64
3
− 16− 12

−  8
3
− 4− 6


= 2

3
m

(b) () = 2 − 2− 3 = (+ 1)(− 3), so ()  0 for −1    3, but on the interval [2 4], ()  0 for 2 ≤   3.

Distance traveled =
 4

2

2 − 2− 3
  =

 3

2
−(2 − 2− 3)  +

 4

3
(2 − 2− 3) 

=
− 1

3
3 + 2 + 3

3
2

+


1
3
3 − 2 − 3

4
3

= (−9 + 9 + 9)− − 8
3

+ 4 + 6


+


64
3
− 16− 12

− (9− 9− 9) = 4 m
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SECTION 5.4 INDEFINITE INTEGRALS AND THE NET CHANGE THEOREM ¤ 41

61. (a) 0() = () = + 4 ⇒ () = 1
2
2 + 4+  ⇒ (0) =  = 5 ⇒ () = 1

2
2 + 4+ 5 ms

(b) Distance traveled =
 10

0
|()|  =

 10

0

 1
2
2 + 4 + 5

  =
 10

0


1
2
2 + 4+ 5


 =


1
6
3 + 22 + 5

10
0

= 500
3

+ 200 + 50 = 416 2
3
m

62. (a) 0() = () = 2+ 3 ⇒ () = 2 + 3+  ⇒ (0) =  = −4 ⇒ () = 2 + 3− 4

(b) Distance traveled =
 3

0

2 + 3− 4
  =

 3

0
|( + 4)(− 1)|  =

 1

0

−2 − 3 + 4

+

 3

1


2 + 3− 4




=
− 1

3
3 − 3

2
2 + 4

1
0

+


1
3
3 + 3

2
2 − 4

3
1

=
− 1

3
− 3

2
+ 4


+

9 + 27

2
− 12

−  1
3

+ 3
2
− 4


= 89
6
m

63. Since0() = (), =
 4

0
()  =

 4

0


9 + 2

√


 =


9+ 4

3
32

4
0

= 36 + 32
3
− 0 = 140

3
= 46 2

3
kg.

64. By the Net Change Theorem, the amount of water that flows from the tank during the first 10 minutes is 10

0
()  =

 10

0
(200− 4)  =


200− 22

10
0

= (2000− 200)− 0 = 1800 liters.

65. Let  be the position of the car. We know from Equation 2 that (100)− (0) =
 100

0
() . We use the Midpoint Rule for

0 ≤  ≤ 100 with  = 5. Note that the length of each of the five time intervals is 20 seconds = 20
3600

hour = 1
180

hour.

So the distance traveled is 100

0
()  ≈ 1

180
[(10) + (30) + (50) + (70) + (90)] = 1

180
(38 + 58 + 51 + 53 + 47) = 247

180
≈ 14 miles.

66. (a) By the Net Change Theorem, the total amount spewed into the atmosphere is (6)−(0) =
 6

0
()  = (6) since

(0) = 0. The rate () is positive, so is an increasing function. Thus, an upper estimate for(6) is 6 and a lower

estimate for(6) is 6. ∆ =
− 


=

6− 0

6
= 1.

6 =
6

=1

()∆ = 10 + 24 + 36 + 46 + 54 + 60 = 230 tonnes.

6 =
6
=1

(−1)∆ = 6 + (0)− (6) = 230 + 2− 60 = 172 tonnes.

(b) ∆ =
− 


=

6− 0

3
= 2. (6) ≈3 = 2[(1) + (3) + (5)] = 2(10 + 36 + 54) = 2(100) = 200 tonnes.

67. From the Net Change Theorem, the increase in cost if the production level is raised from 2000 yards to 4000 yards is

(4000)− (2000) =
 4000

2000
0() . 4000

2000


0
() =

 4000

2000

(3− 001+ 0000006
2
)  =


3− 0005

2
+ 0000002

3
4000
2000

= 60,000− 2,000 = $58,000

68. By the Net Change Theorem, the amount of water after four days is

25,000 +
 4

0
()  ≈ 25,000 +4 = 25,000 + 4− 0

4
[(05) + (15) + (25) + (35)]

≈ 25,000 + [1500 + 1770 + 740 + (−690)] = 28,320 liters
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42 ¤ CHAPTER 5 INTEGRALS

69. To use the Midpoint Rule, we’ll use the midpoint of each of three 2-second intervals.

(6)− (0) =
 6

0
()  ≈ [(1) + (3) + (5)]

6− 0

3
≈ (06 + 10 + 93)(2) = 398 fts

70. Use the midpoint of each of four 2-day intervals. Let  = 0 correspond to July 18 and note that the inf low rate, (), is in ft3s.

Amount of water =
 8

0
()  ≈ [(1) + (3) + (5) + (7)]

8− 0

4
≈ [6401 + 4249 + 3821 + 2628](2) = 34,198.

Now multiply by the number of seconds in a day, 24 · 602, to get 2,954,707,200 ft3.

71. Let  () denote the bacteria population at time  (in hours). By the Net Change Theorem,

 (1)−  (0) =

 1

0


0
()  =

 1

0

(1000 · 2)  =


1000

2

ln 2

1
0

=
1000

ln 2
(2

1 − 2
0
) =

1000

ln 2
≈ 1443

Thus, the population after one hour is 4000 + 1443 = 5443.

72. Let() denote the number of megabits transmitted at time  (in hours) [note that() is measured in megabits/second]. By

the Net Change Theorem and the Midpoint Rule,

(8)−(0) =
 8

0
3600()  ≈ 3600 · 8−0

4
[(1) +(3) +(5) +(7)]

≈ 7200(032 + 050 + 056 + 083) = 7200(221) = 15,912 megabits

73. Power is the rate of change of energy with respect to time; that is,  () = 0(). By the Net Change Theorem and the

Midpoint Rule,

(24)−(0) =

 24

0

 ()  ≈ 24− 0

12
[ (1) +  (3) +  (5) + · · ·+  (21) +  (23)]

≈ 2(16,900 + 16,400 + 17,000 + 19,800 + 20,700 + 21,200

+ 20,500 + 20,500 + 21,700 + 22,300 + 21,700 + 18,900)

= 2(237,600) = 475,200

Thus, the energy used on that day was approximately 4.75× 105 megawatt-hours.

74. (a) From Exercise 4.1.74(a), () = 0001463 − 0115532 + 2498169− 2126872.

(b) (125)− (0) =
 125

0
()  =


00003654 − 0038513 + 124908452 − 2126872

125
0
≈ 206,407 ft

5.5 The Substitution Rule

1. Let  = 2. Then  = 2  and  = 1
2
, so


cos 2  =


cos


1
2



= 1
2

sin+  = 1
2

sin 2+ .

2. Let  = −2. Then  = −2 and  = −1
2
, so


−

2

 =


− 1

2



= − 1
2
 + = − 1

2
−

2

+.

3. Let  = 3 + 1. Then  = 32  and 2  = 1
3
, so


2

3 + 1  =

 √



1
3



=
1

3

32

32
+ =

1

3
· 2

3


32
+ = 2

9
(

3
+ 1)

32
+ .

4. Let  = sin . Then  = cos  , so


sin2  cos   =

2  = 1

3
3 +  = 1

3
sin3  +.
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SECTION 5.5 THE SUBSTITUTION RULE ¤ 43

5. Let  = 4 − 5. Then  = 43  and 3  = 1
4
, so

3

4 − 5
 =


1




1

4



=

1

4
ln ||+  =

1

4
ln
4 − 5

+.

6. Let  = 2+ 1. Then  = 2  and  = 1
2
, so

 √
2 + 1  =

 √



1
2



= 1
2
· 2

3
32 + = 1

3
(2+ 1)32 + .

7. Let  = 1− 2. Then  = −2 and  = −1
2
, so


√

1− 2  =
 √


−1

2



= −1
2
· 2

3
32 +  = − 1

3
(1− 2)32 +.

8. Let  = 3. Then  = 32  and 2  = 1
3
, so


2

3

 =




1
3



= 1
3
 +  = 1

3


3

+.

9. Let  = 1 − 2. Then  = −2  and  = − 1
2
, so

(1− 2)9  =

9
−1

2



= −1
2
· 1

10
10 +  = − 1

20
(1− 2)10 + .

10. Let  = 1 + cos . Then  = − sin   and sin   = −, so
sin 

√
1 + cos   =

 √
 (−) = − 2

3
32 +  = − 2

3
(1 + cos )32 + .

11. Let  = 
2
. Then  = 

2
 and  = 2


, so


cos


2


 =


cos


2




= 2


sin+ = 2


sin


2



+ .

12. Let  = 2. Then  = 2  and  = 1
2
, so


sec2 2  =


sec2 


1
2



= 1
2

tan+ = 1
2

tan 2 + .

13. Let  = 5 − 3. Then  = −3  and  = − 1
3
, so



5− 3
=


1



− 1
3



= − 1
3

ln ||+ = − 1
3

ln |5− 3|+.

14. Let  = 4 − 3. Then  = −32  and 2  = − 1
3
, so

2(4− 3)23  =

23

− 1
3



= −1
3
· 3

5
53 +  = − 1

5
(4− 3)53 +.

15. Let  = cos . Then  = − sin   and sin   = −, so
cos3  sin   =


3(−) = − 1

4
4 +  = − 1

4
cos4  +.

16. Let  = −5. Then  = −5  and  = − 1
5
, so


−5  =



− 1

5



= − 1
5
 + = − 1

5
−5 + .

17. Let  = 1 − . Then  = −  and   = −, so


(1− )2
 =


1

2
(−) = −



−2

 = −(−−1
) + =

1


+  =

1

1− 
+ .

18. Let  =
√
. Then  =

1

2
√

 and 2  =

1√

, so


sin
√
√


 =


sin (2 ) = −2 cos+ = −2 cos

√
+.

19. Let  = 3 + 3. Then  = (3 + 32)  = 3( + 2) , so
+ 2

√
3+ 3

 =

 1
3


12
=

1

3



−12

 = 1
3
· 212

+ = 2
3


3+ 3 +.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



44 ¤ CHAPTER 5 INTEGRALS

20. Let  = 3 + 1. Then  = 32  and 1
3
 = 2  + , so

2

3 + 1
 =


1




1
3



= 1
3

ln ||+  = 1
3

ln |3
+ 1|+.

21. Let  = ln. Then  =



, so


(ln)

2


 =


2  = 1

3
3 +  = 1

3
(ln)3 + .

22. Let  = cos. Then  = − sin and − = sin, so
sin sin(cos)  =


sin (−) = (− cos)(−1) + = cos(cos) +.

23. Let  = tan . Then  = sec2  , so


sec2  tan3   =

3  = 1

4
4 +  = 1

4
tan4  + .

24. Let  =  + 2. Then  =  and  =  − 2, so

√
+ 2  =


(− 2)

√
 =


(32 − 212)  = 2

5
52 − 2 · 2

3
32 +  = 2

5
( + 2)52 − 4

3
(+ 2)32 +.

25. Let  = 1 + . Then  =  , so


√

1 +   =
 √

 = 2
3
32 + = 2

3
(1 + )32 + .

Or: Let  =
√

1 + . Then 2 = 1 +  and 2 =  , so

√

1 +   =

 · 2 = 2

3
3 +  = 2

3
(1 + )32 +.

26. Let  =  + . Then  =   and  = (1) , so


+ 
=


(1) 


=

1




1


 =

1


ln ||+  =

1


ln |+ |+ .

27. Let  = 3 + 3. Then  = (32 + 3)  and 1
3
 = (2 + 1) , so

(2 + 1)(3 + 3)4  =

4 ( 1

3
) = 1

3
· 1

5
5 +  = 1

15
(3 + 3)5 +.

28. Let  = cos . Then  = − sin   and sin   = −, so  cos  sin   =

 (−) = − +  = −cos  + .

29. Let  = 5. Then  = 5 ln 5  and 5  =
1

ln 5
, so

5

sin(5


)  =


sin


1

ln 5



= − 1

ln 5
cos+ = − 1

ln 5
cos(5


) + .

30. Let  = tan. Then  = sec2 , so
sec2 

tan2 
 =


1

2
 =



−2

 = −1
−1

+ = − 1

tan
+  = − cot +.

Or:


sec2 

tan2 
 =

 
1

cos2 
· cos2 

sin2 


 =


csc

2
 = − cot +

31. Let  = arctan. Then  =
1

2 + 1
, so


(arctan)2

2 + 1
 =




2
 = 1

3


3
+  = 1

3
(arctan)

3
+.

32. Let  = 2 + 4. Then  = 2 and  = 1
2
, so



2 + 4
 =


1




1

2



=

1

2
ln ||+  =

1

2
ln
2

+ 4
+ =

1

2
ln(

2
+ 4) +  [since 2 + 4  0].
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SECTION 5.5 THE SUBSTITUTION RULE ¤ 45

33. Let  = 1 + 5. Then  = 5  and  = 1
5
, so

cos(1 + 5)  =


cos


1
5



= 1
5

sin+ = 1
5

sin(1 + 5) +.

34. Let  =



. Then  = − 

2
 and

1

2
 = − 1


, so

cos()

2
 =


cos


− 1





= − 1


sin+  = − 1


sin




+

35. Let  = cot. Then  = − csc2  and csc2  = −, so √
cot csc

2
 =

 √
 (−) = −32

32
+ = − 2

3
(cot)

32
+ .

36. Let  = 2 + 3. Then  = 2 ln 2  and 2  =
1

ln 2
, so

2

2 + 3
 =


1




1

ln 2



=

1

ln 2
ln ||+ =

1

ln 2
ln(2


+ 3) + .

37. Let  = sinh. Then  = cosh, so


sinh2  cosh =

2  = 1

3
3 +  = 1

3
sinh3+ .

38. Let  = 1 + tan . Then  = sec2  , so


cos2 
√

1 + tan 
=


sec2  √
1 + tan 

=


√


=



−12

 =
12

12
+ = 2

√
1 + tan + .

39.


sin 2

1 + cos2 
 = 2


sin cos

1 + cos2 
 = 2. Let  = cos. Then  = − sin, so

2 = −2




1 + 2
= −2 · 1

2
ln(1 + 

2
) +  = − ln(1 + 

2
) + = − ln(1 + cos

2
) + .

Or: Let  = 1 + cos2 .

40. Let  = cos. Then  = − sin and sin = −, so
sin

1 + cos2 
 =

 −
1 + 2

= − tan
−1

+  = − tan
−1

(cos) +.

41.


cot =


cos

sin
. Let  = sin. Then  = cos, so


cot =


1


 = ln ||+  = ln |sin|+ .

42. Let  = ln . Then  =
1


, so


cos(ln )


 =


cos = sin+  = sin(ln ) + .

43. Let  = sin−1 . Then  =
1√

1− 2
, so


√

1− 2 sin−1 
=


1


 = ln ||+ = ln

sin−1

+.

44. Let  = 2. Then  = 2, so




1 + 4
 =

 1
2


1 + 2
= 1

2
tan

−1
+  = 1

2
tan

−1
(

2
) +.

45. Let  = 1 + 2. Then  = 2, so
1 + 

1 + 2
 =


1

1 + 2
+




1 + 2
 = tan

−1
 +

 1
2



= tan

−1
+ 1

2
ln||+

= tan−1 + 1
2

ln
1 + 2

+  = tan−1  + 1
2

ln

1 + 2


+  [since 1 + 2  0].
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46 ¤ CHAPTER 5 INTEGRALS

46. Let  = 2 + . Then  = ,  = − 2, and 2 = (− 2)2, so
2
√

2 + =

(− 2)2

√
 =


(2 − 4+ 4)12  =


(52 − 432 + 412) 

= 2
7
72 − 8

5
52 + 8

3
32 +  = 2

7
(2 + )72 − 8

5
(2 + )52 + 8

3
(2 + )32 +

47. Let  = 2+ 5. Then  = 2  and  = 1
2
(− 5), so

(2+ 5)8 =


1
2
(− 5)8 ( 1

2
) = 1

4


(9 − 58) 

= 1
4
( 1
10
10 − 5

9
9) + = 1

40
(2 + 5)10 − 5

36
(2+ 5)9 + 

48. Let  = 2 + 1 [so 2 = − 1]. Then  = 2 and  = 1
2
, so

3
√
2 + 1 =


2
√
2 + 1 =


(− 1)

√



1
2



= 1
2


(32 − 12) 

= 1
2


2
5
52 − 2

3
32


+ = 1

5
(2 + 1)52 − 1

3
(2 + 1)32 +.

Or: Let  =
√
2 + 1. Then 2 = 2 + 1 ⇒ 2 = 2 ⇒  = , so

3
√
2 + 1 =


2
√
2 + 1 =


(2 − 1) ·  =


(4 − 2) 

= 1
5
5 − 1

3
3 + = 1

5
(2 + 1)52 − 1

3
(2 + 1)32 + .

Note: This answer can be written as 1
15

√
2 + 1(34 + 2 − 2) + .

49. () = (2 − 1)3.  = 2 − 1 ⇒  = 2 so
(2 − 1)3  =


3


1
2



= 1
8
4 +  = 1

8
(2 − 1)4 + 

Where  is positive (negative),  is increasing (decreasing). Where 

changes from negative to positive (positive to negative),  has a local

minimum (maximum).

50. () = tan2  sec2 .  = tan  ⇒  = sec2  , so


tan2  sec2   =


2  = 1

3
3 + = 1

3
tan3  + 

Note that  is positive and  is increasing. At  = 0,  = 0 and  has a

horizontal tangent.

51. () = cos  sin.  = cos ⇒  = − sin, so
cos  sin =


 (−) = − + = −cos  + 

Note that at  = ,  changes from positive to negative and  has a local

maximum. Also, both  and  are periodic with period 2, so at  = 0 and

at  = 2,  changes from negative to positive and  has a local minimum.
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SECTION 5.5 THE SUBSTITUTION RULE ¤ 47

52. () = sin cos4.  = cos ⇒  = − sin, so
sin cos4 =


4 (−) = − 1

5
5 +  = − 1

5
cos5 +

Note that at  = ,  changes from positive to negative and  has a local

maximum. Also, both  and  are periodic with period 2, so at  = 0 and

at  = 2,  changes from negative to positive and  has a local minimum.

53. Let  = 
2
, so  = 

2
. When  = 0,  = 0; when  = 1,  = 

2
. Thus, 1

0
cos(2)  =

 2
0

cos


2




= 2


[sin]
2

0
= 2




sin 

2
− sin 0


= 2


(1− 0) = 2



54. Let  = 3− 1, so  = 3 . When  = 0,  = −1; when  = 1,  = 2. Thus, 1

0
(3− 1)50  =

 2

−1
50


1
3



= 1
3


1
51
51
2
−1

= 1
153


251 − (−1)51


= 1

153
(251 + 1)

55. Let  = 1 + 7, so  = 7 . When  = 0,  = 1; when  = 1,  = 8. Thus, 1

0

3
√

1 + 7 =

 8

1


13

( 1
7
) = 1

7


3
4


43
8
1

= 3
28

(8
43 − 1

43
) = 3

28
(16− 1) = 45

28

56. Let  = 5 + 1, so  = 5 . When  = 0,  = 1; when  = 3,  = 16. Thus, 3

0



5+ 1
=

 16

1

1




1

5



=

1

5


ln ||

16
1

=
1

5
(ln 16− ln 1) =

1

5
ln 16.

57. Let  = cos , so  = − sin  . When  = 0,  = 1; when  = 
6
,  =

√
32. Thus, 6

0

sin 

cos2 
 =

 √
32

1

1

2
(−) =


1



√32

1

=
2√
3
− 1.

58. Let  = 1
2
, so  = 1

2
. When  = 

3
,  = 

6
; when  = 2

3
,  = 

3
. Thus, 23

3

csc
2


1
2


=

 3

6

csc
2
 (2 ) = 2


− cot

3
6

= −2

cot



3
− cot



6


= −2


1√
3
−√3


= −2


1
3

√
3−√3


= 4

3

√
3

59. Let  = 1, so  = −12 . When  = 1,  = 1; when  = 2,  = 1
2
. Thus, 2

1

1

2
 =

 12

1




(−) = − 12
1

= −(
12 − ) = −

√
.

60. Let  = −2, so  = −2. When  = 0,  = 0; when  = 1,  = −1. Thus, 1

0
−

2

 =
 −1

0

−1

2



= −1
2



−1

0
= − 1

2


−1 − 0


= 1

2
(1− 1).

61.
 4
−4(

3 + 4 tan)  = 0 by Theorem 7(b), since () = 3 + 4 tan is an odd function.

62. Let  = sin, so  = cos. When  = 0,  = 0; when  = 
2
,  = 1. Thus, 2

0
cos sin(sin)  =

 1

0
sin =

− cos
1
0

= −(cos 1− 1) = 1− cos 1.
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48 ¤ CHAPTER 5 INTEGRALS

63. Let  = 1 + 2, so  = 2 . When  = 0,  = 1; when  = 13,  = 27. Thus, 13

0



3


(1 + 2)

2
=

 27

1


−23


1
2



=


1
2
· 313

27
1

= 3
2
(3− 1) = 3.

64. Assume   0. Let  = 2 − 2, so  = −2. When  = 0,  = 2; when  = ,  = 0. Thus,

 
0

√
2 − 2  =

 0

2
12

− 1
2



= 1
2

 2
0

12  = 1
2
·


2
3
32

2
0

= 1
3
3.

65. Let  = 2 + 2, so  = 2 and  = 1
2
. When  = 0,  = 2; when  = ,  = 22. Thus, 

0



2 + 2  =

 22

2


12


1
2



= 1
2


2
3


32
22
2

=


1
3


32
22
2

= 1
3


(2

2
)
32 − (

2
)
32


= 1
3


2
√

2− 1


3

66.
 3
−3 

4 sin = 0 by Theorem 7(b), since () = 4 sin is an odd function.

67. Let  = − 1, so + 1 =  and  = . When  = 1,  = 0; when  = 2,  = 1. Thus, 2

1


√
− 1  =

 1

0

(+ 1)
√
 =

 1

0

(
32

+ 
12

)  =


2
5


52
+ 2

3


32
1
0

= 2
5

+ 2
3

= 16
15
.

68. Let  = 1 + 2, so  = 1
2
(− 1) and  = 2 . When  = 0,  = 1; when  = 4,  = 9. Thus, 4

0

√
1 + 2

=

 9

1

1
2
(− 1)√





2
= 1

4

 9

1

(
12 − 

−12
)  = 1

4


2
3


32 − 2
12
9
1

= 1
4
· 2

3




32 − 3
12
9
1

= 1
6
[(27− 9)− (1− 3)] = 20

6
= 10

3

69. Let  = ln, so  =



. When  = ,  = 1; when  = 4;  = 4. Thus,

 4






√

ln
=

 4

1


−12

 = 2



12
4
1

= 2(2− 1) = 2.

70. Let  = (− 1)2, so  = 2(− 1) . When  = 0,  = 1; when  = 2,  = 1. Thus, 2

0

(− 1)
(−1)2

 =

 1

1





1
2



= 0 since the limits are equal.

71. Let  =  + , so  = ( + 1) . When  = 0,  = 1; when  = 1,  = + 1. Thus, 1

0

 + 1

 + 
 =

 +1

1

1


 =


ln ||

+1

1
= ln |+ 1|− ln |1| = ln(+ 1).

72. Let  =
2


− , so  =

2


. When  = 0  = −; when  =



2
,  =  − . Thus,

 2

0

sin


2


− 


=

 −

−
sin




2



=



2

− cos
−
− = − 

2
[cos( − )− cos(−)]

= − 

2
(− cos− cos) = − 

2
(−2 cos) =




cos
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SECTION 5.5 THE SUBSTITUTION RULE ¤ 49

73. Let  = 1 +
√
, so  =

1

2
√

 ⇒ 2

√
 =  ⇒ 2(− 1)  = . When  = 0,  = 1; when  = 1,

 = 2. Thus,  1

0



(1 +
√
 )4

=

 2

1

1

4
· [2(− 1) ] = 2

 2

1


1

3
− 1

4


 = 2


− 1

22
+

1

33

2
1

= 2
− 1

8
+ 1

24

− −1
2

+ 1
3


= 2


1
12


= 1

6

74. If () = sin 3
√
, then (−) = sin 3

√− = sin(− 3
√
 ) = − sin 3

√
 = −(), so  is an odd function. Now

 =
 3

−2
sin 3
√
 =

 2

−2
sin 3
√
 +

 3

2
sin 3
√
 = 1 + 2. 1 = 0 by Theorem 7(b). To estimate 2, note that

2 ≤  ≤ 3 ⇒ 3
√

2 ≤ 3
√
 ≤ 3

√
3 [≈ 144] ⇒ 0 ≤ 3

√
 ≤ 

2
[≈ 157] ⇒ sin 0 ≤ sin 3

√
 ≤ sin 

2
[since sine is

increasing on this interval] ⇒ 0 ≤ sin 3
√
 ≤ 1. By comparison property 8, 0(3− 2) ≤ 2 ≤ 1(3− 2) ⇒

0 ≤ 2 ≤ 1 ⇒ 0 ≤  ≤ 1.

75. From the graph, it appears that the area under the curve is about

1 +

a little more than 1

2
· 1 · 07, or about 14. The exact area is given by

 =
 1

0

√
2+ 1 . Let  = 2+ 1, so  = 2 . The limits change to

2 · 0 + 1 = 1 and 2 · 1 + 1 = 3, and

 =
 3

1

√



1
2



= 1
2


2
3
32

3
1

= 1
3


3
√

3− 1


=
√

3− 1
3
≈ 1399.

76. From the graph, it appears that the area under the curve is almost 1
2
·  · 26,

or about 4. The exact area is given by

 =
 
0

(2 sin− sin 2)  = −2

cos


0
−  

0
sin 2

= −2(−1− 1)− 0 = 4

Note:
 
0

sin 2 = 0 since it is clear from the graph of  = sin 2 that
 
2

sin 2 = −  2
0

sin 2.

77. First write the integral as a sum of two integrals:

 =
 2

−2
(+ 3)

√
4− 2  = 1 + 2 =

 2

−2

√

4− 2 +
 2

−2
3
√

4− 2 . 1 = 0 by Theorem 7(b), since

() = 
√

4− 2 is an odd function and we are integrating from  = −2 to  = 2. We interpret 2 as three times the area of

a semicircle with radius 2, so  = 0 + 3 · 1
2


 · 22


= 6.

78. Let  = 2. Then  = 2 and the limits are unchanged (02 = 0 and 12 = 1), so

 =
 1

0

√

1− 4  = 1
2

 1

0

√
1− 2 . But this integral can be interpreted as the area of a quarter-circle with radius 1.

So  = 1
2
· 1

4


 · 12


= 1

8
.
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50 ¤ CHAPTER 5 INTEGRALS

79. First Figure Let  =
√
, so  = 2 and  = 2. When  = 0,  = 0; when  = 1,  = 1. Thus,

1 =
 1

0

√
  =

 1

0
(2) = 2

 1

0
 .

Second Figure 2 =
 1

0
2  = 2

 1

0
 .

Third Figure Let  = sin, so  = cos. When  = 0,  = 0; when  = 
2
,  = 1. Thus,

3 =
 2
0

sin  sin 2 =
 2
0

sin (2 sin cos)  =
 1

0
(2) = 2

 1

0
 .

Since 1 = 2 = 3, all three areas are equal.

80. Let  =


12
. Then  =



12
 and

 24

0

() =

 24

0


85− 018 cos




12


 =

 2

0

(85− 018 cos)


12





=

12




85− 018 sin

2
0

=
12


[(85 · 2 − 0)− (0− 0)] = 2040 kcal

81. The rate is measured in liters per minute. Integrating from  = 0 minutes to  = 60 minutes will give us the total amount of oil

that leaks out (in liters) during the first hour. 60

0
() =

 60

0
100−001  [ = −001,  = −001]

= 100
 −06

0
(−100 ) = −10,000



−06

0
= −10,000(−06 − 1) ≈ 45119 ≈ 4512 liters

82. Let () =  with  = 450268 and  = 112567, and () = population after  hours. Since () = 0(), 3

0
()  = (3)− (0) is the total change in the population after three hours. Since we start with 400 bacteria, the

population will be

(3) = 400 +
 3

0
()  = 400 +

 3

0
  = 400 +







3
0

= 400 +





3 − 1


≈ 400 + 11,313 = 11,713 bacteria

83. The volume of inhaled air in the lungs at time  is

 () =

 

0

()  =

 

0

1

2
sin


2

5



 =

 25

0

1

2
sin 


5

2


 
substitute  = 2

5
,  = 2

5



=
5

4

− cos 
25
0

=
5

4


− cos


2

5



+ 1


=

5

4


1− cos


2

5



liters

84. The rate is measured in kilograms per year. Integrating from  = 0 years (2000) to  = 20 years (2020) will give us the net

change in biomass from 2000 to 2020. 20

0

60,000−06

(1 + 5−06)2
=

 1+5−12

6

60,000
2

− 1
3

 

 = 1 + 5−06
 = −3−06



=


20,000


1+5−12

6

=
20,000

1 + 5−12
− 20,000

6
≈ 16,666

Thus, the predicted biomass for the year 2020 is approximately 25,000 + 16,666 = 41,666 kg.
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SECTION 5.5 THE SUBSTITUTION RULE ¤ 51

85.
 30

0

() =

 30

0




0

−
 = 0

 −30

1

(−)


 = − 
 = − 


− 


= 0


−
−30
1

= 0(−−30 + 1)

The integral
 30

0
()  represents the total amount of urea removed from the blood in the first 30 minutes of dialysis.

86. Number of calculators = (4)− (2) =
 4

2
5000


1− 100( + 10)−2




= 5000

 + 100( + 10)−1

4
2

= 5000


4 + 100
14

− 2 + 100
12

 ≈ 4048

87. Let  = 2. Then  = 2 , so
 2

0
(2)  =

 4

0
()


1
2



= 1
2

 4

0
()  = 1

2
(10) = 5.

88. Let  = 2. Then  = 2, so
 3

0
(2)  =

 9

0
()


1
2



= 1
2

 9

0
()  = 1

2
(4) = 2.

89. Let  = −. Then  = −, so 

(−)  =

 −
− ()(−) =

 −
− ()  =

−
− () 

From the diagram, we see that the equality follows from the fact that we are

reflecting the graph of  , and the limits of integration, about the -axis.

90. Let  = + . Then  = , so 

(+ )  =

 +
+

()  =
 +
+

() 

From the diagram, we see that the equality follows from the fact that we are

translating the graph of  , and the limits of integration, by a distance .

91. Let  = 1− . Then  = 1−  and  = −, so 1

0
(1− )  =

 0

1
(1− )


(−) =

 1

0
(1− )  =

 1

0
(1− ) .

92. Let  =  − . Then  = −. When  = ,  = 0 and when  = 0,  = . So 
0
(sin) = −  0


( − ) (sin( − ))  =

 
0

( − ) (sin) 

= 
 
0
(sin) −  

0
 (sin)  = 

 
0
(sin) −  

0
 (sin)  ⇒

2
 
0
(sin)  = 

 
0
(sin)  ⇒  

0
(sin)  = 

2

 
0
(sin) .

93.
 sin

1 + cos2 
=  · sin

2− sin2 
=  (sin), where () =



2− 2
. By Exercise 92,

 

0

 sin

1 + cos2 
 =

 

0

 (sin)  =


2

 

0

(sin)  =


2

 

0

sin

1 + cos2 


Let  = cos. Then  = − sin. When  = ,  = −1 and when  = 0,  = 1. So



2

 

0

sin

1 + cos2 
 = −

2

 −1

1



1 + 2
=



2

 1

−1



1 + 2
=



2


tan

−1

1
−1

=


2
[tan−1 1− tan−1(−1)] =



2


4
−

−

4


=

2

4
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52 ¤ CHAPTER 5 INTEGRALS

94. (a)
 2
0

(cos) =
 2
0



sin


2
− 





 = 

2
− ,  = −

=
 0

2
(sin)(−) =

 2
0

(sin)  =
 2
0

(sin) 

Continuity of  is needed in order to apply the substitution rule for definite integrals.

(b) In part (a), take () = 2, so
 2
0

cos2  =
 2
0

sin2 . Now 2
0

cos2 +
 2
0

sin2  =
 2
0

(cos2 + sin2 )  =
 2
0

1  =


2
0

= 
2
,

so 2
 2
0

cos2  = 
2
⇒  2

0
cos2  = 

4


=
 2
0

sin2 

.

5 Review

1. True by Property 2 of the Integral in Section 5.2.

2. False. Try  = 0,  = 2, () = () = 1 as a counterexample.

3. True by Property 3 of the Integral in Section 5.2.

4. False. You can’t take a variable outside the integral sign. For example, using () = 1 on [0 1], 1

0
 ()  =

 1

0
 =


1
2
2
1
0

= 1
2
(a constant) while 

 1

0
1  =  []

1

0 =  · 1 =  (a variable).

5. False. For example, let () = 2. Then
 1

0

√
2  =

 1

0
 = 1

2
, but

 1

0
2  =


1
3

= 1√
3
.

6. True by the Net Change Theorem.

7. True by Comparison Property 7 of the Integral in Section 5.2.

8. False. For example, let  = 0,  = 1, () = 3, () = . ()  () for each  in (0 1), but  0() = 0  1 = 0()

for  ∈ (0 1).

9. True. The integrand is an odd function that is continuous on [−1 1].

10. True.
 5

−5


2 + + 


 =

 5

−5


2 + 


+

 5

−5
 

= 2
 5

0


2 + 


+ 0 [because 2 +  is even and  is odd]

11. False. For example, the function  = || is continuous on R, but has no derivative at  = 0.

12. True by FTC1.

13. True by Property 5 of Integrals.

14. False. For example,
 1

0


− 1

2


 =


1
2
2 − 1

2

1
0

=


1
2
− 1

2

− (0− 0) = 0, but () = − 1
2
6= 0.
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CHAPTER 5 REVIEW ¤ 53

15. False.
 

()  is a constant, so





 

() 


= 0, not () [unless () = 0]. Compare the given statement

carefully with FTC1, in which the upper limit in the integral is .

16. False. See the paragraph before Note 4 and Figure 4 in Section 5.2, and notice that  = − 3  0 for 1   ≤ 2.

17. False. The function () = 14 is not bounded on the interval [−2 1]. It has an infinite discontinuity at  = 0, so it is

not integrable on the interval. (If the integral were to exist, a positive value would be expected, by Comparison

Property 6 of Integrals.)

18. False. For example, if () =


1 if 0 ≤  ≤ 1

0 if −1 ≤   0
then  has a jump discontinuity at 0, but

 1

−1
()  exists and is

equal to 1.

1. (a) 6 =
6

=1

(−1)∆ [∆ = 6− 0
6

= 1]

= (0) · 1 + (1) · 1 + (2) · 1 + (3) · 1 + (4) · 1 + (5) · 1

≈ 2 + 35 + 4 + 2 + (−1) + (−25) = 8

The Riemann sum represents the sum of the areas of the four rectangles

above the -axis minus the sum of the areas of the two rectangles below the

-axis.

(b) 6 =
6
=1

()∆ [∆ = 6− 0
6

= 1]

= (1) · 1 + (2) · 1 + (3) · 1 + (4) · 1 + (5) · 1 + (6) · 1
= (05) + (15) + (25) + (35) + (45) + (55)

≈ 3 + 39 + 34 + 03 + (−2) + (−29) = 57

The Riemann sum represents the sum of the areas of the four rectangles

above the -axis minus the sum of the areas of the two rectangles below the

-axis.

2. (a) () = 2 −  and∆ = 2− 0
4

= 05 ⇒

4 = 05(05) + 05(1) + 05(15) + 05(2)

= 05(−025 + 0 + 075 + 2) = 125

The Riemann sum represents the sum of the areas of the two rectangles

above the x-axis minus the area of the rectangle below the x-axis. (The

second rectangle vanishes.)
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54 ¤ CHAPTER 5 INTEGRALS

(b)
 2

0


2 − 


 = lim

→∞


=1

() ∆ [∆ = 2 and  = 2]

= lim
→∞


=1


42

2
− 2




2




= lim

→∞
2




4

2


=1

2 − 2




=1




= lim

→∞


8

3
· (+ 1)(2+ 1)

6
− 4

2
· (+ 1)

2


= lim

→∞


4

3
· + 1


· 2+ 1


− 2 · + 1




= lim

→∞


4

3


1 +

1




2 +

1




− 2


1 +

1




= 4

3
· 1 · 2− 2 · 1 = 2

3

(c)
 2

0


2 − 


 =


1
3
3 − 1

2
2
2
0

=


8
3
− 2


= 2
3

(d)
 2

0


2 − 


 = 1 −2, where 1 and 2 are the areas shown in the

diagram.

3.
 1

0


+

√
1− 2


 =

 1

0
 +

 1

0

√
1− 2  = 1 + 2.

1 can be interpreted as the area of the triangle shown in the figure

and 2 can be interpreted as the area of the quarter-circle.

Area = 1
2
(1)(1) + 1

4
()(1)2 = 1

2
+ 

4
.

4. On [0 ], lim
→∞


=1

sin∆ =
 
0

sin = [− cos]


0 = − (−1)− (−1) = 2.

5.
 6

0
()  =

 4

0
() +

 6

4
()  ⇒ 10 = 7 +

 6

4
()  ⇒  6

4
()  = 10− 7 = 3

6. (a)
 5

1
(+ 25)  = lim

→∞


=1

()∆


∆ =

5− 1


=

4


,  = 1 +

4





= lim
→∞


=1


1 +

4




+ 2


1 +

4



5

· 4



CAS
= lim

→∞
13054 + 31263 + 20802 − 256

3
· 4



= 5220

(b)
 5

1
(+ 25)  =


1
2
2 + 2

6
6
5
1

=


25
2

+ 15,625
3

−  1
2

+ 1
3


= 12 + 5208 = 5220

7. First note that either  or  must be the graph of
 
0
() , since

 0

0
()  = 0, and (0) 6= 0. Now notice that   0 when 

is increasing, and that   0 when  is increasing. It follows that  is the graph of (),  is the graph of  0(), and  is the

graph of
 
0
() .
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8. (a) By the Net Change Theorem (FTC2),
 1

0







arctan


 =



arctan 

1
0

= 
4 − 1

(b)




 1

0


arctan 

 = 0 since this is the derivative of a constant.

(c) By FTC1,




 

0


arctan 

 = 
arctan .

9. (4) =
 4

0
()  =

 1

0
()  +

 2

1
() +

 3

2
() +

 4

3
() 

= −1
2
· 1 · 2


area of triangle,
below -axis


+ 1

2
· 1 · 2 + 1 · 2 + 1

2
· 1 · 2 = 3

By FTC1, 0() = (), so 0(4) = (4) = 0.

10. () =
 
0
()  ⇒ 0() = () [by FTC1] ⇒ 00() =  0(), so 00(4) =  0(4) = −2, which is the slope of

the line segment at  = 4.

11.
 2

1


83 + 32


 =


8 · 1

4
4 + 3 · 1

3
3
2
1

=

24 + 3

2
1

=

2 · 24 + 23

− (2 + 1) = 40− 3 = 37

12.
 

0




4 − 8+ 7

 =


1
5


5 − 4
2
+ 7


0

=


1
5


5 − 4
2
+ 7

− 0 = 1
5


5 − 4
2
+ 7

13.
 1

0


1− 9


 =


− 1

10
10
1
0

=

1− 1

10

− 0 = 9
10

14. Let  = 1− , so  = − and  = −. When  = 0,  = 1; when  = 1,  = 0. Thus, 1

0
(1− )9  =

 0

1
9(−) =

 1

0
9  = 1

10


10
1
0

= 1
10

(1− 0) = 1
10
.

15.

 9

1

√
− 22


 =

 9

1

(
−12 − 2)  =


2

12 − 
2
9
1

= (6− 81)− (2− 1) = −76

16.
 1

0
( 4
√
+ 1)

2
 =

 1

0
(12 + 214 + 1)  =


2
3
32 + 8

5
54 + 

1
0

=


2
3

+ 8
5

+ 1
− 0 = 49

15

17. Let  = 2 + 1, so  = 2  and   = 1
2
. When  = 0,  = 1; when  = 1,  = 2. Thus, 1

0
(2 + 1)5  =

 2

1
5


1
2



= 1
2


1
6
6
2
1

= 1
12

(64− 1) = 63
12

= 21
4
.

18. Let  = 1 + 3, so  = 32  and 2  = 1
3
. When  = 0,  = 1; when  = 2,  = 9. Thus, 2

0
2


1 + 3  =
 9

1
12


1
3



= 1
3


2
3
32

9
1

= 2
9
(27− 1) = 52

9
.

19.
 5

1



(− 4)2
does not exist because the function () =

1

(− 4)2
has an infinite discontinuity at  = 4;

that is,  is discontinuous on the interval [1 5].

20. Let  = 3, so  = 3 . When  = 0,  = 1; when  = 1,  = 3. Thus, 1

0

sin(3)  =

 3

0

sin


1

3



=

1

3

− cos
3
0

= − 1

3
(−1− 1) =

2

3
.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



56 ¤ CHAPTER 5 INTEGRALS

21. Let  = 3, so  = 32 . When  = 0,  = 0; when  = 1,  = 1. Thus, 1

0
2 cos(3)  =

 1

0
cos


1
3



= 1
3


sin

1
0

= 1
3
(sin 1− 0) = 1

3
sin 1.

22.

 1

−1

sin

1 + 2
 = 0 by Theorem 5.5.7(b), since () =

sin

1 + 2
is an odd function.

23.

 4

−4

4 tan 

2 + cos 
 = 0 by Theorem 5.5.7(b), since () =

4 tan 

2 + cos 
is an odd function.

24. Let  = , so  =  When  = 0  = 1; when  = 1  = . Thus, 1

0



1 + 2
 =

 

1

1

1 + 2
 =


arctan


1

= arctan − arctan 1 = arctan − 
4
.

25.
 

1− 



2

 =

 
1


− 1

2

 =

 
1

2
− 2


+ 1


 = − 1


− 2 ln ||+ +

26.

 10

1



2 − 4
 does not exist because the function () =



2 − 4
has an infinite discontinuity at  = 2;

that is,  is discontinuous on the interval [1 10].

27. Let  = 2 + 4. Then  = (2 + 4)  = 2( + 2) , so
+ 2√
2 + 4

 =



−12


1
2



= 1
2
· 212

+ =
√
+ =


2 + 4+ .

28. Let  = 1 + cot. Then  = − csc2 , so


csc2 

1 + cot
 =


1


(−) = − ln ||+  = − ln |1 + cot|+.

29. Let  = sin. Then  =  cos , so


sin cos  =




1




= 1

· 1

2
2 + = 1

2
(sin)2 +.

30. Let  = cos. Then  = − sin, so


sin cos(cos)  = −  cos = − sin+  = − sin(cos) + .

31. Let  =
√
. Then  =



2
√

, so



√


√

 = 2




 = 2


+  = 2

√


+ .

32. Let  = ln. Then  =
1


, so


sin(ln)


 =


sin = − cos+  = − cos(ln) +.

33. Let  = ln(cos). Then  =
− sin

cos
 = − tan, so

tan ln(cos)  = −   = − 1
2
2 +  = − 1

2
[ln(cos)]

2
+ .

34. Let  = 2. Then  = 2, so


√
1− 4

 =
1

2


√

1− 2
= 1

2
sin
−1
+  = 1

2
sin
−1



2


+ .

35. Let  = 1 + 4. Then  = 43 , so


3

1 + 4
 =

1

4


1


 = 1

4
ln||+ = 1

4
ln

1 + 

4


+ .

36. Let  = 1 + 4. Then  = 4 , so


sinh(1 + 4)  = 1
4


sinh = 1

4
cosh+ = 1

4
cosh(1 + 4) +.
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CHAPTER 5 REVIEW ¤ 57

37. Let  = 1 + sec . Then  = sec  tan  , so
sec  tan 

1 + sec 
 =


1

1 + sec 
(sec  tan  ) =


1


 = ln ||+ = ln |1 + sec |+.

38. Let  = 1 + tan , so  = sec2  . When  = 0,  = 1; when  = 
4
,  = 2. Thus, 4

0
(1 + tan )3 sec2   =

 2

1
3  =


1
4
4
2
1

= 1
4


24 − 14


= 1

4
(16− 1) = 15

4
.

39. Since 2 − 4  0 for 0 ≤   2 and 2 − 4  0 for 2   ≤ 3, we have
2 − 4

 = −(2 − 4) = 4− 2 for 0 ≤   2 and2 − 4
 = 2 − 4 for 2   ≤ 3. Thus, 3

0

2 − 4
  =

 2

0

(4− 
2
) +

 3

2

(
2 − 4)  =


4− 3

3

2
0

+


3

3
− 4

3
2

=

8− 8

3

− 0 + (9− 12)−  8
3
− 8


= 16
3
− 3 + 16

3
= 32

3
− 9

3
= 23

3

40. Since
√
− 1  0 for 0 ≤   1 and

√
− 1  0 for 1   ≤ 4, we have

√− 1
 = −

√
− 1


= 1−√

for 0 ≤   1 and
√− 1

 =
√
− 1 for 1   ≤ 4. Thus, 4

0

√− 1
  =

 1

0


1−

√


+

 4

1

√
− 1


 =


− 2

3


32
1
0
+


2
3


32 − 
4
1

=

1− 2

3

− 0 +


16
3
− 4
−  2

3
− 1


= 1
3

+ 16
3
− 4 + 1

3
= 6− 4 = 2

41. Let  = 1 + sin. Then  = cos, so
cos√
1 + sin

=

−12  = 212 +  = 2

√
1 + sin+ .

42. Let  = 2 + 1. Then 2 = − 1 and  = 1
2
, so

3

√
2 + 1

=


(− 1)√




1
2



=
1

2


(

12 − 
−12

) 

= 1
2


2
3
32 − 212


+ = 1

3
(2 + 1)32 − (2 + 1)12 +

= 1
3
(2 + 1)12


(2 + 1)− 3


+  = 1

3

√
2 + 1 (2 − 2) + 

43. From the graph, it appears that the area under the curve  = 
√
 between  = 0

and  = 4 is somewhat less than half the area of an 8× 4 rectangle, so perhaps

about 13 or 14. To find the exact value, we evaluate 4

0

√
 =

 4

0
32  =


2
5
52

4
0

= 2
5
(4)52 = 64

5
= 128.
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58 ¤ CHAPTER 5 INTEGRALS

44. From the graph, it seems as though
 2

0
cos2  sin is equal to 0. To evaluate

the integral, let  = cos ⇒  = − sin. Thus,  =
 1

1
2 (−) = 0.

45.  () =

 

0

2

1 + 3
 ⇒  0() =





 

0

2

1 + 3
 =

2

1 + 3

46.  () =

 1



√
+ sin   = −

 

1

√
 + sin   ⇒  0() = − 



 

1

√
 + sin   = −√+ sin

47. Let  = 4. Then



= 43. Also,




=








, so

0() =




 4

0

cos(
2
)  =





 

0

cos(
2
)  · 


= cos(

2
)



= 4

3
cos(

8
).

48. Let  = sin Then



= cos Also,




=








 so

0() =




 sin 

1

1− 2

1 + 4
 =





 

1

1− 2

1 + 4
 · 


=

1− 2

1 + 4
· 


=
1− sin2 

1 + sin4 
· cos =

cos3 

1 + sin4 

49.  =

 

√





 =

 1

√





 +

 

1




 = −

 √


1




 +

 

1




 ⇒




= − 



 √


1







+





 

1







. Let  =

√
. Then





 √


1




 =





 

1




 =





 

1










=




· 1

2
√


=

√


√

· 1

2
√


=

√


2
,

so



= −

√


2
+




=

2 − 
√


2
.

50.  =
 3+1

2
sin

4

 =

 0

2
sin

4

 +

 3+1

0
sin

4

 =

 3+1

0
sin

4

−  2

0
sin

4

 ⇒

0 = sin

(3+ 1)

4
 · 


(3+ 1)− sin


(2)4

 · 


(2) = 3 sin


(3 + 1)

4
− 2 sin


(2)

4


51. If 1 ≤  ≤ 3, then
√

12 + 3 ≤ √2 + 3 ≤ √32 + 3 ⇒ 2 ≤ √2 + 3 ≤ 2
√

3, so

2(3− 1) ≤  3

1

√
2 + 3  ≤ 2

√
3(3− 1); that is, 4 ≤  3

1

√
2 + 3  ≤ 4

√
3.

52. If 3 ≤  ≤ 5, then 4 ≤ + 1 ≤ 6 and
1

6
≤ 1

+ 1
≤ 1

4
, so

1

6
(5− 3) ≤

 5

3

1

+ 1
 ≤ 1

4
(5− 3);

that is,
1

3
≤
 5

3

1

+ 1
 ≤ 1

2
.

53. 0 ≤  ≤ 1 ⇒ 0 ≤ cos ≤ 1 ⇒ 2 cos ≤ 2 ⇒  1

0
2 cos ≤  1

0
2  = 1

3


3
1
0

= 1
3

[Property 7].
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CHAPTER 5 REVIEW ¤ 59

54. On the interval

4



2


,  is increasing and sin is decreasing, so

sin


is decreasing. Therefore, the largest value of

sin


on


4



2


is

sin(4)

4
=

√
22

4
=

2
√

2


. By Property 8 with =

2
√

2


we get

 2

4

sin


 ≤ 2

√
2




2
− 

4


=

√
2

2
.

55. cos ≤ 1 ⇒  cos ≤  ⇒  1

0
 cos ≤  1

0
  = []

1

0
= − 1

56. For 0 ≤  ≤ 1, 0 ≤ sin−1  ≤ 
2
, so

 1

0
 sin−1  ≤  1

0



2


 =



4
2
1
0

= 
4
.

57. ∆ = (3− 0)6 = 1
2
, so the endpoints are 0, 1

2
, 1, 3

2
, 2, 5

2
, and 3, and the midpoints are 1

4
, 3

4
, 5

4
, 7

4
, 9

4
, and 11

4
.

The Midpoint Rule gives 3

0
sin(3)  ≈

6
=1

()∆ = 1
2


sin


1
4

3
+ sin


3
4

3
+ sin


5
4

3
+ sin


7
4

3
+ sin


9
4

3
+ sin


11
4

3
≈ 0280981.

58. (a) Displacement =
 5

0


2 − 


 =


1
3
3 − 1

2
2
5
0

= 125
3
− 25

2
= 175

6
= 2916 meters

(b) Distance traveled =
 5

0

2 − 
  =

 5

0
|(− 1)|  =

 1

0


− 2


+

 5

1


2 − 




=

1
2
2 − 1

3
3
1
0
+


1
3
3 − 1

2
2
5
1

= 1
2
− 1

3
− 0 +


125
3
− 25

2

−  1
3
− 1

2


= 177

6
= 295 meters

59. Note that () = 0(), where () = the number of barrels of oil consumed up to time . So, by the Net Change Theorem, 8

0
()  = (8)− (0) represents the number of barrels of oil consumed from Jan. 1, 2000, through Jan. 1, 2008.

60. Distance covered =
 50

0
()  ≈5 = 50− 0

5
[(05) + (15) + (25) + (35) + (45)]

= 1(467 + 886 + 1022 + 1067 + 1081) = 4523 m

61. We use the Midpoint Rule with  = 6 and∆ = 24− 0
6

= 4. The increase in the bee population was 24

0
()  ≈6 = 4[(2) + (6) + (10) + (14) + (18) + (22)]

≈ 4[50 + 1000 + 7000 + 8550 + 1350 + 150] = 4(18,100) = 72,400

62. 1 = 1
2
 = 1

2
(2)(2) = 2, 2 = 1

2
 = 1

2
(1)(1) = 1

2
, and since

 = −√1− 2 for 0 ≤  ≤ 1 represents a quarter-circle with radius 1,

3 = 1
4
2 = 1

4
(1)2 = 

4
. So 1

−3
()  = 1 −2 −3 = 2− 1

2
− 

4
= 1

4
(6− )

63. Let  = 2 sin . Then  = 2cos   and when  = 0,  = 0; when  = 
2
,  = 2. Thus, 2

0
(2 sin ) cos   =

 2

0
()


1
2



= 1
2

 2

0
()  = 1

2

 2

0
()  = 1

2
(6) = 3.

64. (a)  is increasing on those intervals where 0 is positive. By the Fundamental Theorem of Calculus,

0() =




 
0

cos


2
2




= cos


2
2

. This is positive when 

2
2 is in the interval


2− 1

2




2+ 1

2




,

 any integer. This implies that

2− 1

2


  

2
2 


2+ 1

2


 ⇔ 0 ≤ ||  1 or

√
4− 1  ||  √4+ 1,

 any positive integer. So  is increasing on the intervals (−1 1),
√

3
√

5

,
−√5−√3


,
√

7 3

,
−3−√7


,    .
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60 ¤ CHAPTER 5 INTEGRALS

(b)  is concave upward on those intervals where 00  0. We differentiate 0 to find 00: 0() = cos


2
2
 ⇒

00() = − sin


2
2



2
· 2 = − sin



2
2

. For   0, this is positive where (2− 1)  

2
2  2,  any

positive integer ⇔


2(2− 1)    2
√
,  any positive integer. Since there is a factor of − in 00, the intervals

of upward concavity for   0 are

−


2(2+ 1)−2
√


,  any nonnegative integer. That is,  is concave upward on−√2 0


,
√

2 2

,
−√6−2


,
√

6 2
√

2

,    .

(c) From the graphs, we can determine

that
 
0

cos


2
2

 = 07 at

 ≈ 076 and  ≈ 122.

(d) The graphs of () and () have similar shapes, except that ’s flattens out

near the origin, while ’s does not. Note that for   0,  is increasing

where  is concave up, and  is decreasing where  is concave down.

Similarly,  is increasing where  is concave down, and  is decreasing

where  is concave up. For   0, these relationships are reversed; that is, 

is increasing where  is concave down, and  is increasing where  is

concave up. See Example 5.3.3 and Exercise 5.3.65 for a discussion of ().

65. Area under the curve  = sinh  between  = 0 and  = 1 is equal to 1 ⇒ 1

0
sinh   = 1 ⇒ 1




cosh 

1
0

= 1 ⇒ 1

(cosh − 1) = 1 ⇒

cosh − 1 =  ⇒ cosh  = + 1. From the graph, we get  = 0 and

 ≈ 16161, but  = 0 isn’t a solution for this problem since the curve

 = sinh  becomes  = 0 and the area under it is 0. Thus,  ≈ 16161.

66. Both numerator and denominator approach 0 as → 0, so we use l’Hospital’s Rule. (Note that we are differentiating with

respect to , since that is the quantity which is changing.) We also use FTC1:

lim
→0

 ( ) = lim
→0


 
0
−(−)2(4)


√

4

H
= lim

→0

−(−)2(4)
√

4
=

−
2(4)

√
4

67. Using FTC1, we differentiate both sides of the given equation,
 
1
()  = (− 1)2 +

 
1
−() , and get

() = 2 + 2(− 1)2 + −() ⇒ ()(1− −) = 2 + 2(− 1)2 ⇒ () =
2(2− 1)

1− −
.

68. The second derivative is the derivative of the first derivative, so we’ll apply the Net Change Theorem with  = 0 2

1
00()  =

 2

1
(0)0()  = 0(2)− 0(1) = 5− 2 = 3. The other information is unnecessary.
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CHAPTER 5 REVIEW ¤ 61

69. Let  = () and  =  0() . So 2
 

() 0()  = 2

 ()

()
 =


2
()

()
= [()]

2 − [()]
2.

70. Let  () =

 

2


1 + 3 . Then  0(2) = lim

→0

 (2 + )−  (2)


= lim

→0

1



 2+

2


1 + 3 , and  0() =

√
1 + 3, so

lim
→0

1



 2+

2


1 + 3  = 

0
(2) =


1 + 23 =

√
9 = 3.

71. Let  = 1− . Then  = −, so  1

0
(1− )  =

 0

1
()(−) =

 1

0
()  =

 1

0
() .

72. lim
→∞

1




1



9

+


2



9

+


3



9

+ · · ·+



9
= lim

→∞
1− 0




=1






9

=

 1

0


9
 =


10

10

1
0

=
1

10

The limit is based on Riemann sums using right endpoints and subintervals of equal length.

73. The shaded region has area
 1

0
()  = 1

3
. The integral

 1

0
−1() 

gives the area of the unshaded region, which we know to be 1− 1
3

= 2
3
.

So
 1

0
−1()  = 2

3
.
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PROBLEMS PLUS

1. Differentiating both sides of the equation  sin =
 2
0

()  (using FTC1 and the Chain Rule for the right side) gives

sin +  cos = 2(2). Letting  = 2 so that (2) = (4), we obtain sin 2 + 2 cos 2 = 4(4), so

(4) = 1
4
(0 + 2 · 1) = 

2
.

2. The area  under the curve  = + 1 from  =  to  = + 15 is given by () =

 +15




+

1






To find the minimum value of  we’ll differentiate  using FTC1 and set the derivative equal to 0.

0() =




 +15




+

1






=




 1




+

1




+





 +15

1


+

1






= − 



 

1


 +

1




 +





 +15

1


+

1






= −

+

1




+


+ 15 +

1

+ 15


= 15 +

1

+ 15
− 1



0() = 0 ⇔ 15 +
1

+ 15
− 1


= 0 ⇔ 15( + 15) + − ( + 15) = 0 ⇔

152 + 225− 15 = 0

multiply by 4

3

 ⇔ 22 + 3− 2 = 0 ⇔ (2− 1)(+ 2) = 0 ⇔  = 1
2
or

 = −2 Since   0,  = 1
2
 00() = − 1

(+ 15)
2

+
1

2
 0, so




1
2


=

 2

12


+

1




 =


1
2


2
+ ln ||

2
12

= (2 + ln 2)−  1
8
− ln 2


= 15

8
+ 2 ln 2 is the minimum value of .

3. For  =
 4

0
(−2)4 , let  = − 2 so that  = + 2 and  = . Then

 =
 2

−2
(+ 2)

4

 =
 2

−2


4

+
 2

−2
2

4

 = 0 [by 5.5.7(b)] +2
 4

0
(−2)4  = 2.

4. (a) From the graph of () =
2− 2

3
, it appears that the areas

are equal; that is, the area enclosed is independent of .

(b) We first find the x-intercepts of the curve, to determine the limits of integration:  = 0 ⇔ 2− 2 = 0 ⇔  = 0

or  = 2. Now we integrate the function between these limits to find the enclosed area:

 =

 2

0

2− 2

3
 =

1

3




2 − 1
3


3
2
0

=
1

3


(2)

2 − 1
3
(2)

3


=
1

3


4

3 − 8
3

3


= 4
3
, a constant.
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66 ¤ CHAPTER 5 PROBLEMS PLUS

(c) The vertices of the family of parabolas seem to determine a

branch of a hyperbola.

(d) For a particular , the vertex is the point where the maximum occurs. We have seen that the x-intercepts are 0 and 2, so by

symmetry, the maximum occurs at  = , and its value is
2()− 2

3
=

1


. So we are interested in the curve consisting of

all points of the form




1




,   0. This is the part of the hyperbola  = 1 lying in the first quadrant.

5. () =

 ()

0

1√
1 + 3

, where () =

 cos 

0

[1 + sin(
2
)] . Using FTC1 and the Chain Rule (twice) we have

 0() =
1

1 + [()]3
0() =

1
1 + [()]3

[1 + sin(cos2 )](− sin). Now 


2


=

 0

0

[1 + sin(
2
)]  = 0, so

 0


2


=

1√
1 + 0

(1 + sin 0)(−1) = 1 · 1 · (−1) = −1.

6. If () =
 
0
2 sin(2)  = 2

 
0

sin(2) , then  0() = 2 sin(2) + 2
 
0

sin(2) , by the Product Rule and FTC1.

7. By l’Hospital’s Rule and the Fundamental Theorem, using the notation exp() =  ,

lim
→0

 
0

(1− tan 2)1 



H
= lim

→0

(1− tan 2)1

1
= exp


lim
→0

ln(1− tan 2)




H
= exp


lim
→0

−2 sec2 2

1− tan 2


= exp

−2 · 12

1− 0


= −2

8. The area () =
 
0

sin(2) , and the area () = 1
2
 sin(2). Since lim

→0+
() = 0 = lim

→0+
(), we can use

l’Hospital’s Rule:

lim
→0+

()

()

H
= lim

→0+

sin(2)
1
2

sin(2) + 1
2
[2 cos(2)]

[by FTC1 and the Product Rule]

H
= lim

→0+

2 cos(2)

 cos(2)− 23 sin(2) + 2 cos(2)
= lim

→0+

2 cos(2)

3 cos(2)− 22 sin(2)
=

2

3− 0
=

2

3

9. () = 2 + − 2 = (−+ 2)(+ 1) = 0 ⇔  = 2 or  = −1. () ≥ 0 for  ∈ [−1 2] and ()  0 everywhere

else. The integral
 

(2 + − 2)  has a maximum on the interval where the integrand is positive, which is [−1 2]. So

 = −1,  = 2. (Any larger interval gives a smaller integral since ()  0 outside [−1 2]. Any smaller interval also gives a

smaller integral since () ≥ 0 in [−1 2].)

10. This sum can be interpreted as a Riemann sum, with the right endpoints of the subintervals as sample

points and with  = 0,  = 10,000, and () =
√
. So we approximate

10,000
=1

√
 ≈ lim

→∞
10,000



=1


10,000


=
 10000

0

√
 =


2
3
32

10,000
0

= 2
3
(1,000,000) ≈ 666,667.
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CHAPTER 5 PROBLEMS PLUS ¤ 67

Alternate method: We can use graphical methods as follows:

From the figure we see that
 
−1

√
 

√
 

 +1



√
, so

 10,000
0

√
 

10000
=1

√
 

 10001

1

√
. Since

 √
 = 2

3
32 +, we get

 10,000
0

√
 = 666,6666 and 10001

1

√
 = 2

3
[(10,001)32 − 1] ≈ 666,766.

Hence, 666,6666 
10000
=1

√
  666,766. We can estimate the sum by averaging these bounds:

10,000
=1

≈ 666,6666 + 666,766
2

≈ 666,716. The actual value is about 666,71646.

11. (a) We can split the integral
 
0

[[]]  into the sum

=1

 
−1

[[]] 

. But on each of the intervals [− 1 ) of integration,

[[]] is a constant function, namely − 1. So the ith integral in the sum is equal to (− 1)[− (− 1)] = (− 1). So the

original integral is equal to

=1

(− 1) =
−1
=1

 =
(− 1)

2
.

(b) We can write
 


[[]]  =
 
0

[[]] −  
0

[[]] .

Now
 
0

[[]]  =
 [[]]

0
[[]]  +

 
[[]]

[[]] . The first of these integrals is equal to 1
2
([[]]− 1) [[]],

by part (a), and since [[]] = [[]] on [[[]]  ], the second integral is just [[]] ( − [[]]). So 
0

[[]]  = 1
2
([[]]− 1) [[]] + [[]] (− [[]]) = 1

2
[[]] (2− [[]]− 1) and similarly

 
0

[[]]  = 1
2

[[]] (2− [[]]− 1).

Therefore,
 


[[]]  = 1
2

[[]] (2− [[]]− 1)− 1
2

[[]] (2− [[]]− 1).

12. By FTC1,




 

0

 sin 

1


1 + 4 


 =

 sin 

1


1 + 4 . Again using FTC1,

2

2

 

0

 sin 

1


1 + 4 


 =





 sin 

1


1 + 4  =


1 + sin4  cos.

13. Let () =

 

0

 ()  =


+



2

2
+



3

3
+



4

4


0

= +


2


2
+



3


3
+



4


4. Then(0) = 0, and(1) = 0 by the

given condition, +


2
+



3
+



4
= 0. Also,0() =  () = + + 2 + 3 by FTC1. By Rolle’s Theorem, applied to

 on [0 1], there is a number  in (0 1) such that 0() = 0, that is, such that  () = 0. Thus, the equation  () = 0 has a

root between 0 and 1.

More generally, if  () = 0 + 1 + 2
2 + · · ·+ 

 and if 0 +
1

2
+

2

3
+ · · ·+ 

+ 1
= 0 then the equation

 () = 0 has a root between 0 and 1 The proof is the same as before:

Let () =

 

0

 ()  = 0+
1

2


2
+

2

3


3
+ · · ·+ 

+ 1

. Then(0) = (1) = 0 and 0() =  (). By

Rolle’s Theorem applied to on [0 1], there is a number  in (0 1) such that 0() = 0, that is, such that  () = 0.
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68 ¤ CHAPTER 5 PROBLEMS PLUS

14. Let  be the distance between the center of the disk and the surface of the liquid.

The wetted circular region has area 2 − 2 while the unexposed wetted region

(shaded in the diagram) has area 2
 


√
2 − 2 , so the exposed wetted region

has area () = 2 − 2 − 2
 


√
2 − 2 , 0 ≤  ≤ . By FTC1, we have

0() = −2+ 2
√
2 − 2.

Now 0()  0 ⇒ −2 + 2
√
2 − 2  0 ⇒ √

2 − 2   ⇒ 2 − 2  22 ⇒

2  22 + 2 ⇒ 2  2(2 + 1) ⇒ 2 
2

2 + 1
⇒  

√
2 + 1

, and we’ll call this value *.

Since 0()  0 for 0    * and 0()  0 for *   , we have an absolute maximum when  = *.

15. Note that




 

0

 

0

() 





=

 

0

()  by FTC1, while





 

0

()(− ) 


=








 

0

() 


− 



 

0

()


=
 
0
() + ()− () =

 
0
() 

Hence,
 
0
()(− )  =

 
0

 
0
() 


+. Setting  = 0 gives  = 0.

16. The parabola  = 4− 2 and the line  = + 2 intersect when

4− 2 = + 2 ⇔ 2 + − 2 = 0 ⇔ (+ 2)(− 1) = 0 ⇔
 = −2 or 1. So the point A is (−2 0) and B is (1 3). The slope of the line

 = + 2 is 1 and the slope of the parabola  = 4− 2 at -coordinate  is

−2. These slopes are equal when  = − 1
2
, so the point C is

− 1
2
 15

4


.

The area 1 of the parabolic segment is the area under the parabola from

 = −2 to  = 1, minus the area under the line  = + 2 from −2 to 1. Thus,

1 =
 1

−2
(4− 2) −  1

−2
(+ 2)  =


4− 1

3
3
1
−2
−  1

2
2 + 2

1
−2

=


4− 1
3

− −8 + 8
3

−  1
2

+ 2
− (2− 4)


= 9− 9

2
= 9

2


The area 2 of the inscribed triangle is the area under the line segment AC plus the area under the line segment CB minus

the area under the line segment AB. The line through A and C has slope
154− 0

−12 + 2
=

5

2
and equation  − 0 = 5

2
(+ 2), or

 = 5
2
 + 5. The line through C and B has slope

3− 154

1 + 12
= −1

2
and equation  − 3 = − 1

2
(− 1), or  = − 1

2
 + 7

2
.

Thus,

2 =

 −12

−2


5
2
+ 5


+

 1

−12

− 1
2
+ 7

2


−

 1

−2

(+ 2)  =


5
4


2
+ 5

−12

−2
+
−1

4


2
+ 7

2

1
−12

− 9
2

=


5
16
− 5

2

− (5− 10)

+
−1

4
+ 7

2

− − 1
16
− 7

4

− 9
2

= 45
16

+ 81
16
− 72

16
= 54

16
= 27

8

Archimedes’ result states that 1 = 4
3
2 which is verified in this case since 4

3
· 27

8
= 9

2
.
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CHAPTER 5 PROBLEMS PLUS ¤ 69

17. Let  be the nonzero -intercept so that the parabola has equation () = (− ),

or  = 2 − , where   0. The area  under the parabola is

=
 
0
(− )  = 

 
0

(2 − )  = 


1
3
3 − 1

2
2

0

= 


1
3
3 − 1

2
3


= − 1
6
3

The point ( ) is on the parabola, so () =  ⇒  = (− ) ⇒

 =


(− )
. Substituting for  in  gives () = − 

6
· 3

− 
⇒

0() = − 

6
· (− )(32)− 3(−1)

(− )2
= − 

6
· 

2[3(− ) + ]

(− )2
= −2(3− 2)

6(− )2

Now 0 = 0 ⇒  = 3
2
. Since 0()  0 for     3

2
 and 0()  0 for   3

2
, so  has an absolute

minimum when  = 3
2
. Substituting for  in  gives us  =





− 3

2

 = − 2

2
, so () = − 2

2


− 3

2


, or

() = −2

2
2 +

3


. Note that the vertex of the parabola is


3
4
 9

8


and the minimal area under the parabola

is 


3
2



= 9
8
.

18. We restrict our attention to the triangle shown. A point in this triangle is

closer to the side shown than to any other side, so if we find the area of

the region  consisting of all points in the triangle that are closer to the

center than to that side, we can multiply this area by 4 to find the total

area. We find the equation of the set of points which are equidistant

from the center and the side: the distance of the point ( ) from the

side is 1− , and its distance from the center is

2 + 2.

So the distances are equal if

2 + 2 = 1−  ⇔ 2 + 2 = 1− 2 + 2 ⇔  = 1

2
(1− 2). Note that the area

we are interested in is equal to the area of a triangle plus a crescent-shaped area. To find these areas, we have to find the

-coordinate  of the horizontal line separating them. From the diagram, 1−  =
√

2 ⇔  = 1

1 +
√

2
=
√

2− 1.

We calculate the areas in terms of , and substitute afterward.

The area of the triangle is 1
2
(2)() = 2, and the area of the crescent-shaped section is 

−


1
2
(1− 2)− 


 = 2

 
0


1
2
− − 1

2
2

 = 2


1
2
− 


− 1

6
3

0

= − 22 − 1
3
3.

So the area of the whole region is

4

− 22 − 1

3
3


+ 2

= 4


1− − 1

3
2


= 4
√

2− 1


1− √2− 1
− 1

3

√
2− 1

2
= 4

√
2− 1


1− 1

3

√
2


= 4
3


4
√

2− 5
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70 ¤ CHAPTER 5 PROBLEMS PLUS

19. lim
→∞


1√


√
+ 1

+
1√


√
+ 2

+ · · ·+ 1√

√
+ 



= lim
→∞

1






+ 1
+




+ 2
+ · · ·+




+ 



= lim
→∞

1




1

1 + 1
+

1
1 + 2

+ · · ·+ 1√
1 + 1



= lim
→∞

1




=1








 
where () =

1√
1 + 



=

 1

0

1√
1 + 

 =

2
√

1 + 
1
0

= 2
√

2− 1


20. Note that the graphs of (− )
2 and [(− )− 2]

2 intersect when |− | = |− − 2| ⇔
−  = − − 2 ⇔  = + 1. The integration will proceed differently depending on the value of .

Case 1: −2 ≤   −1

In this case, () = (− − 2)
2 for  ∈ [0 1], so

() =
 1

0
(− − 2)2  = 1

3


(− − 2)3

1
0

= 1
3


(−− 1)

3 − (−− 2)
3


= 1
3
(32 + 9+ 7) = 2 + 3+ 7

3
=

+ 3

2

2
+ 1

12

This is a parabola; its maximum value for

−2 ≤   −1 is  (−2) = 1
3
, and its minimum

value is 
− 3

2


= 1

12
.

Case 2: −1 ≤   0

In this case, () =

(− )
2 if 0 ≤  ≤ + 1

(− − 2)
2 if + 1   ≤ 1

Therefore,

() =
 1

0
()  =

 +1

0
(− )2 +

 1

+1
(− − 2)2 

= 1
3


(− )

3
+1

0
+ 1

3


(− − 2)

3
1
+1

= 1
3


1 + 3 + (−− 1)

3 − (−1)


= −2 − + 1
3

= − + 1
2

2
+ 7

12

Again, this is a parabola, whose maximum value

for −1 ≤   0 is 
− 1

2


= 7

12
, and whose

minimum value on this -interval is (−1) = 1
3
.
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CHAPTER 5 PROBLEMS PLUS ¤ 71

Case 3: 0 ≤  ≤ 2

In this case, () = (− )
2 for  ∈ [0 1], so

() =
 1

0
(− )2  = 1

3


(− )3

1
0

= 1
3


(1− )3 − (−)3

= 2 − + 1
3

=

− 1

2

2
+ 1

12

This parabola has a maximum value of (2) = 7
3

and a minimum value of 


1
2


= 1

12
.

We conclude that () has an absolute maximum value of (2) = 7
3
, and absolute minimum values of 

−3
2


= 


1
2


= 1

12
.
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6 APPLICATIONS OF INTEGRATION

6.1 Areas Between Curves

1.  =

 =8

=1

(  − )  =

 8

1


3
√
− 1




 =


3

4


43 − ln ||
8

1

= (12− ln 8)−


3

4
− ln 1


=

45

4
− ln 8

2.  =

 1

0



 − 

2

 =



 − 1

2

2
1
0

=

− 1

2

− 1− 1

2


= 1

2
− 1

2
= 1

2
(− 1)

3. =

 =1

=−1

( − )  =

 1

−1



 − (

2 − 2)

 =

 1

−1



 − 

2
+ 2



=

 − 1

3
3 + 2

1
−1

=

1 − 1

3
+ 2
− −1 + 1

3
− 2


= − 1


+

10

3

4.  =

 3

0


(2 − 

2
)− (

2 − 4)

 =

 3

0

(−2
2
+ 6)  =

− 2
3

3
+ 3

2
3
0

= (−18 + 27)− 0 = 9

5. =

 1

−1



 − (

2 − 1)

 =



 − 1

3


3
+ 

1
−1

= (− 1
3

+ 1)− (−1 + 1
3
− 1) = − 1


+ 4

3

6.  =

 

2

(− sin)  =


2

2
+ cos


2

=


2

2
− 1


−

2

8
+ 0



=
32

8
− 1

7. The curves intersect when (− 2)2 =  ⇔ 2 − 4+ 4 =  ⇔ 2 − 5+ 4 = 0 ⇔
(− 1)(− 4) = 0 ⇔  = 1 or 4.

 =

 4

1

[− (− 2)
2
]  =

 4

1

(−2
+ 5− 4) 

=
− 1

3
3 + 5

2
2 − 4

4
1

=
− 64

3
+ 40− 16

− − 1
3

+ 5
2
− 4


= 9
2
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2 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

8. The curves intesect when 2 − 4 = 2 ⇒ 2 − 6 = 0 ⇒ (− 6) = 0 ⇒  = 0 or 6.

 =
 6

0
[2− (2 − 4)] 

=
 6

0
(6− 2)  =


32 − 1

3
3
6
0

=

3(6)2 − 1

3
(6)3

− (0− 0)

= 108− 72 = 36

 

9. =

 2

1


1


− 1

2


 =


ln+

1



2
1

=

ln 2 + 1

2

− (ln 1 + 1)

= ln 2− 1
2
≈ 019

10. By observation,  = sin and  = 2 intersect at (0 0) and (2 1) for  ≥ 0.

 =

 2

0


sin− 2




 =


− cos− 1




2

2
0

=

0− 

4


− (−1) = 1− 

4

11. The curves intersect when 1− 2 = 2 − 1 ⇔ 2 = 22 ⇔ 2 = 1 ⇔  = ±1.

 =

 1

−1


(1− 

2
)− (

2 − 1)



=

 1

−1

2(1− 
2
) 

= 2 · 2
 1

0

(1− 
2
) 

= 4

 − 1

3
3
1
0

= 4

1− 1

3


= 8

3

12. 4+ 2 = 12 ⇔ ( + 6)(− 2) = 0 ⇔
 = −6 or  = 2, so  = −6 or  = 2 and

=

 2

−6

− 1
4

2
+ 3
− 




=
− 1

12
3 − 1

2
2 + 3

2
−6

=
− 2

3
− 2 + 6

− (18− 18− 18)

= 22− 2
3

= 64
3
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SECTION 6.1 AREAS BETWEEN CURVES ¤ 3

13. 12− 2 = 2 − 6 ⇔ 22 = 18 ⇔
2 = 9 ⇔  = ±3, so

=

 3

−3


(12− 

2
)− (

2 − 6)



= 2

 3

0


18− 2

2

 [by symmetry]

= 2

18− 2

3
3
3
0

= 2 [(54− 18)− 0]

= 2(36) = 72

14. 2 = 4− 2 ⇔ 22 − 4 = 0 ⇔ 2(− 2) = 0

⇔  = 0 or 2, so

=

 2

0


(4− 

2
)− 

2

 =

 2

0

(4− 2
2
) 

=

22 − 2

3
3
2
0

= 8− 16
3

= 8
3

15. The curves intersect when 8 cos = sec2  ⇒ 8 cos3  = 1 ⇒ cos3  = 1
8
⇒ cos = 1

2
⇒

 = 
3
for 0    

2
. By symmetry,

= 2

 3

0

(8 cos− sec
2
) 

= 2

8 sin− tan

3
0

= 2

8 ·

√
3

2
−√3


= 2


3
√

3


= 6
√

3

16. =

 2

0

[(2− cos)− cos] 

=

 2

0

(2− 2 cos) 

=

2− 2 sin

2
0

= (4 − 0)− 0 = 4

17. 22 = 4 + 2 ⇔ 2 = 4 ⇔  = ±2, so

=

 2

−2


(4 + 

2
)− 2

2



= 2

 2

0

(4− 
2
)  [by symmetry]

= 2

4 − 1

3
3
2
0

= 2

8− 8

3


= 32

3
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4 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

18. The curves intersect when
√
− 1 = − 1 ⇒

− 1 = 2 − 2+ 1 ⇔ 0 = 2 − 3+ 2 ⇔
0 = (− 1)(− 2) ⇔  = 1 or 2.

 =

 2

1

√
− 1− (− 1)




=


2
3
(− 1)32 − 1

2
(− 1)2

2
1

=


2
3
− 1

2

− (0− 0) = 1
6

19. By inspection, the curves intersect at  = ± 1
2
.

 =

 12

−12

[cos− (4
2 − 1)] 

= 2

 12

0

(cos− 4
2
+ 1)  [by symmetry]

= 2


1


sin− 4
3
3 + 

12
0

= 2


1

− 1

6
+ 1

2

− 0


= 2


1


+ 1
3


= 2


+ 2

3

20.  =
√

2−  ⇒ 2 = 2−  ⇔  = 2− 2, so the curves

intersect when 4 = 2− 2 ⇔ 4 + 2 − 2 = 0 ⇔
(2 + 2)(2 − 1) = 0 ⇔  = 1 [since  ≥ 0].

=

 1

0

[(2− 
2
)− 

4
)]  =


2 − 1

3

3 − 1

5

5
1
0

=

2− 1

3
− 1

5

− 0 = 22
15

21. The curves intersect when tan = 2 sin (on [−3 3]) ⇔ sin = 2 sin cos ⇔
2 sin cos− sin = 0 ⇔ sin (2 cos− 1) = 0 ⇔ sin = 0 or cos = 1

2
⇔  = 0 or  = ±

3
.

= 2

 3

0

(2 sin− tan)  [by symmetry]

= 2

−2 cos− ln |sec|

3
0

= 2 [(−1− ln 2)− (−2− 0)]

= 2(1− ln 2) = 2− 2 ln 2

22. The curves intersect when 3 =  ⇔ 3 −  = 0 ⇔
(2 − 1) = 0 ⇔ (+ 1)(− 1) = 0 ⇔
 = 0 or  = ±1.

= 2

 1

0

(− 
3
)  [by symmetry]

= 2


1
2
2 − 1

4
4
1
0

= 2


1
2
− 1

4


= 1

2
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SECTION 6.1 AREAS BETWEEN CURVES ¤ 5

23. The curves intersect when 3
√

2 = 1
8
2 ⇔ 2 =

1

(23)3
6 ⇔ 210 = 6 ⇔ 6 − 210 = 0 ⇔

(5 − 210) = 0 ⇔  = 0 or 5 = 210 ⇔  = 0 or  = 22 = 4, so for 0 ≤  ≤ 6,

=

 4

0


3
√

2− 1
8


2

+

 6

4


1
8


2 − 3
√

2

 =


3
4

3
√

2
43 − 1

24


3
4
0

+


1
24


3 − 3
4

3
√

2
43
6
4

=


3
4

3
√

2 · 4 3
√

4− 64
24

− (0− 0) +


216
24
− 3

4

3
√

2 · 6 3
√

6
−  64

24
− 3

4

3
√

2 · 4 3
√

4


= 6− 8
3

+ 9− 9
2

3
√

12− 8
3

+ 6 = 47
3
− 9

2

3
√

12

24. The curves intersect when cos = 1− cos (on [0 ]) ⇔ 2 cos = 1 ⇔ cos = 1
2
⇔  = 

3
.

=

 3

0

[cos− (1− cos)] +

 

3

[(1− cos)− cos] 

=

 3

0

(2 cos− 1)  +

 

3

(1− 2 cos) 

=

2 sin− 

3
0

+

− 2 sin


3

=
√

3− 

3


− 0 + ( − 0)−


3
−√3


= 2

√
3 +



3

25. By inspection, we see that the curves intersect at  = ±1 and that the area

of the region enclosed by the curves is twice the area enclosed in the first

quadrant.

= 2

 1

0

[(2− )− 
4
]  = 2


2− 1

2


2 − 1
5


5
1
0

= 2


2− 1
2
− 1

5

− 0


= 2


13
10


= 13

5
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6 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

26. sinh = − ⇔ 1
2
( − −) = − ⇔ 1

2
 = 3

2
− ⇔

2 = 3 ⇔ 2 = ln 3 ⇔  = 1
2

ln 3 (or ln
√

3 ).

=

 ln
√

3

0

(
− − sinh) +

 2

ln
√

3

(sinh− 
−

) 

=

−− − cosh

ln√3

0
+

cosh + −

2
ln
√

3

=


− 1√

3
− 2√

3


− (−1− 1) + (cosh 2 + −2)−


2√
3

+
1√
3


= −2

√
3 + 2 + cosh 2 + −2, or 2− 2

√
3 + 1

2
2 + 3

2
−2

27. 1 =  ⇔ 1 = 2 ⇔  = ±1 and 1 = 1
4
 ⇔

4 = 2 ⇔  = ±2, so for   0,

=

 1

0


− 1

4



 +

 2

1


1


− 1

4





=

 1

0


3

4



+

 2

1


1


− 1

4





=


3
8
2
1
0
+

ln ||− 1

8
2
2
1

= 3
8

+

ln 2− 1

2

− 0− 1
8


= ln 2

28. 1
4
2 = − + 3 ⇔ 2 + 4− 12 = 0 ⇔ ( + 6)(− 2) = 0 ⇔  = −6 or 2 and 22 = − + 3 ⇔

22 + − 3 = 0 ⇔ (2+ 3)(− 1) = 0 ⇔  = − 3
2
or 1, so for  ≥ 0,

=

 1

0


2

2 − 1
4


2

+

 2

1


(−+ 3)− 1

4


2



=

 1

0

7
4


2
+

 2

1

− 1
4


2 −  + 3



=


7
12
3
1
0
+
− 1

12
3 − 1

2
2 + 3

2
1

= 7
12

+
−2

3
− 2 + 6

− − 1
12
− 1

2
+ 3


= 3
2

29. (a) Total area = 12 + 27 = 39.

(b) () ≤ () for 0 ≤  ≤ 2 and () ≥ () for 2 ≤  ≤ 5, so 5

0
[()− ()] =

 2

0
[()− ()] +

 5

2
[()− ()]  = −  2

0
[()− ()] +

 5

2
[()− ()] 

= −(12) + 27 = 15

30.
√

1 + 2
=

√
9− 2

⇔  = 0 or
√

1 + 2 =
√

9− 2 ⇒

1 + 2 = 9− 2 ⇒ 22 = 8 ⇒ 2 = 4 ⇒  = 2 ( ≥ 0).

=

 2

0


√

1 + 2
− √

9− 2


 =


1 + 2 +


9− 2

2
0

= (
√

5 +
√

5)− (1 + 3) = 2
√

5− 4
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SECTION 6.1 AREAS BETWEEN CURVES ¤ 7

31.


1 + 2
=

2

1 + 3
⇔ + 4 = 2 + 4 ⇔  = 2 ⇔

0 = 2 −  ⇔ 0 = (− 1) ⇔  = 0 or  = 1.

=

 1

0




1 + 2
− 2

1 + 3


 =


1
2

ln(1 + 
2
)− 1

3
ln(1 + 

3
)
1
0

=


1
2

ln 2− 1
3

ln 2
− (0− 0) = 1

6
ln 2

32.
ln


=

(ln)2


⇔ ln = (ln)2 ⇔ 0 = (ln)2 − ln ⇔

0 = ln(ln− 1) ⇔ ln = 0 or 1 ⇔  = 0 or 1 [1 or ]

=

 

1


ln


− (ln)2




 =


1
2
(ln)

2 − 1
3
(ln)

3

1

=


1
2
− 1

3

− (0− 0) = 1
6

33. An equation of the line through (0 0) and (3 1) is  = 1
3
; through (0 0) and (1 2) is  = 2;

through (3 1) and (1 2) is  = − 1
2
+ 5

2
.

=

 1

0


2− 1

3


+

 3

1

− 1
2
+ 5

2

− 1
3




=

 1

0

5
3
+

 3

1

−5
6
+ 5

2


 =


5
6


2
1
0
+
− 5

12


2
+ 5

2

3
1

= 5
6

+
−15

4
+ 15

2

− − 5
12

+ 5
2


= 5

2

34. An equation of the line through (2 0) and (0 2) is  = − + 2; through (2 0) and (−1 1) is  = − 1
3
+ 2

3
;

through (0 2) and (−1 1) is  = + 2.

=

 0

−1


(+ 2)− − 1

3
+ 2

3


+

 2

0


(−+ 2)− − 1

3
+ 2

3




=

 0

−1


4
3
 + 4

3


 +

 2

0

−2
3
+ 4

3




=


2
3
2 + 4

3

0
−1

+
− 1

3
2 + 4

3

2
0

= 0−  2
3
− 4

3


+
− 4

3
+ 8

3

− 0 = 2

35. The curves intersect when sin = cos 2 (on [0 2]) ⇔ sin = 1− 2 sin2  ⇔ 2 sin2 + sin− 1 = 0 ⇔
(2 sin− 1)(sin+ 1) = 0 ⇒ sin = 1

2
⇒  = 

6
.

=

 2

0

|sin− cos 2| 

=

 6

0

(cos 2− sin) +

 2

6

(sin− cos 2) 

=


1
2

sin 2 + cos
6
0

+
− cos− 1

2
sin 2

2
6

=


1
4

√
3 + 1

2

√
3
− (0 + 1) + (0− 0)− − 1

2

√
3− 1

4

√
3


= 3
2

√
3− 1
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8 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

36. =

 1

−1

|3 − 2
|  =

 0

−1

(2
 − 3


) +

 1

0

(3
 − 2


) 

=


2

ln2
− 3

ln3

0
−1

+


3

ln 3
− 2

ln 2

1
0

=


1

ln 2
− 1

ln 3


−


1

2 ln 2
− 1

3 ln 3


+


3

ln 3
− 2

ln 2


−


1

ln 3
− 1

ln 2


=

2− 1− 4 + 2

2 ln 2
+
−3 + 1 + 9− 3

3 ln 3
=

4

3 ln 3
− 1

2 ln 2

37. From the graph, we see that the curves intersect at  = 0 and  =  ≈ 0896, with

 sin(2)  4 on (0 ). So the area  of the region bounded by the curves is

=

 

0


 sin(

2
)− 

4

 =

−1
2

cos(
2
)− 1

5


5

0

= − 1
2

cos(2)− 1
5
5 + 1

2
≈ 0037

38. From the graph, we see that the curves intersect (with  ≥ 0) at  = 0 and

 = , where  ≈ 1052, with (2 + 1)2  5 −  on (0 ). The area

of the region bounded by the curves is

=

 

0




(2 + 1)2
− (

5 − )


 =


−1

2
· 1

2 + 1
− 1

6


6
+

1

2


2


0

≈ 059

39. From the graph, we see that the curves intersect at

 =  ≈ −111  =  ≈ 125 and  =  ≈ 286 with

3 − 3+ 4  32 − 2 on ( ) and 32 − 2  3 − 3+ 4

on ( ). So the area of the region bounded by the curves is

=

 




(

3 − 3+ 4)− (3
2 − 2)


+

 




(3

2 − 2)− (
3 − 3+ 4)




=

 



(
3 − 3

2 −  + 4) +

 



(−3
+ 3

2
+ − 4) 

=


1
4
4 − 3 − 1

2
2 + 4




+
−1

4
4 + 3 + 1

2
2 − 4



≈ 838

40. From the graph, we see that the curves intersect at  =  ≈ 029 and

 =  ≈ 608.  = 2
√
 is the upper curve, so the area of the region bounded by

the curves is

 ≈
 




2
√
− 13



 =


4
3


32 − 1

ln 13
13






≈ 511
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SECTION 6.1 AREAS BETWEEN CURVES ¤ 9

41. Graph Y1=2/(1+xˆ4) and Y2=xˆ2. We see that Y1  Y2 on (−1 1), so the

area is given by
 1

−1


2

1 + 4
− 

2


. Evaluate the integral with a

command such as fnInt(Y1-Y2,x,-1,1) to get 280123 to five decimal

places.

Another method: Graph () = Y1=2/(1+xˆ4)-xˆ2 and from the graph

evaluate

()  from−1 to 1.

42. The curves intersect at  = ±1.

 =

 1

−1

(
1−2 − 

4
)  ≈ 366016

43. The curves intersect at  = 0 and  =  ≈ 0749363.

 =

 

0

√
− tan

2


 ≈ 025142

44. The curves intersect at  =  ≈ −1911917,  =  ≈ −1223676, and

 =  ≈ 0607946.

=

 




(+ 2 sin

4
)− cos


 +

 




cos− (+ 2 sin

4
)



≈ 170413

45. As the figure illustrates, the curves  =  and  = 5 − 63 + 4

enclose a four-part region symmetric about the origin (since

5 − 63 + 4 and  are odd functions of ). The curves intersect

at values of  where 5 − 63 + 4 = ; that is, where

(4 − 62 + 3) = 0. That happens at  = 0 and where

2 =
6±√36− 12

2
= 3±√6; that is, at  = −


3 +

√
6, −


3−√6, 0,


3−√6, and


3 +

√
6. The exact area is

2

 √3+
√

6

0

(5 − 6
3
+ 4)− 

  = 2

 √3+
√

6

0

5 − 6
3
+ 3

 
= 2

 √3−√6

0

(
5 − 6

3
+ 3)  + 2

 √3+
√

6

√
3−√6

(−5
+ 6

3 − 3) 

CAS
= 12

√
6− 9
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10 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

46. The inequality  ≥ 22 describes the region that lies on, or to the right of,

the parabola  = 22. The inequality  ≤ 1− || describes the region

that lies on, or to the left of, the curve  = 1− || =


1−  if  ≥ 0

1 +  if   0
.

So the given region is the shaded region that lies between the curves.

The graphs of  = 1 −  and  = 22 intersect when 1 −  = 22 ⇔
22 +  − 1 = 0 ⇔ (2 − 1)( + 1) = 0 ⇒  = 1

2
[for  ≥ 0]. By symmetry,

 = 2
 12

0


(1− )− 22


 = 2

− 2
3
3 − 1

2
2 + 

12
0

= 2
− 1

12
− 1

8
+ 1

2

− 0


= 2


7
24


= 7

12
.

47. 1 second = 1
3600

hour, so 10 s = 1
360

h. With the given data, we can take  = 5 to use the Midpoint Rule.

∆ =
1360−0

5
= 1

1800
, so

distance Kelly − distance Chris =
 1360

0
 −  1360

0
  =

 1360

0
( − ) 

≈5 = 1
1800

[( − )(1) + ( − )(3) + ( − )(5)

+ ( − )(7) + ( − )(9)]

= 1
1800

[(22− 20) + (52− 46) + (71− 62) + (86− 75) + (98− 86)]

= 1
1800

(2 + 6 + 9 + 11 + 12) = 1
1800

(40) = 1
45

mile, or 117 1
3
feet

48. If  = distance from left end of pool and  = () = width at , then the Midpoint Rule with  = 4 and

∆ =
− 


=

8 · 2− 0

4
= 4 gives Area =

 16

0
 ≈ 4(62 + 68 + 50 + 48) = 4(228) = 912 m2.

49. Let () denote the height of the wing at  cm from the left end.

 ≈5 =
200− 0

5
[(20) + (60) + (100) + (140) + (180)]

= 40(203 + 290 + 273 + 205 + 87) = 40(1058) = 4232 cm2

50. For 0 ≤  ≤ 10, ()  (), so the area between the curves is given by 10

0

[()− ()]  =

 10

0

(2200
0024 − 1460

0018
)  =


2200

0024

0024 − 1460

0018

0018

10
0

=


275,000

3
024 − 730,000

9
018


−


275,000
3

− 730,000
9


≈ 8868 people

This area A represents the increase in population over a 10-year period.

51. (a) From Example 5(a), the infectiousness concentration is 1210 cellsmL. () = 1210 ⇔ 09() = 1210 ⇔
09(−)(− 21)( + 1) = 1210. Using a calculator to solve the last equation for   0 gives us two solutions with the

lesser being  = 3 ≈ 1126 days, or the 12th day.

(b) From Example 5(b), the slope of the line through 1 and 2 is −23. From part (a), 3 = (3 1210). An equation of the

line through 3 that is parallel to 12 is − 1210 = −23(− 3), or = −23+ 233 + 1210. Using a calculator, we
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SECTION 6.1 AREAS BETWEEN CURVES ¤ 11

find that this line intersects  at  = 4 ≈ 1718, or the 18th day. So in the patient with some immunity, the infection lasts

about 2 days less than in the patient without immunity.

(c) The level of infectiousness for this patient is the area between the graph of  and the line in part (b). This area is 4

3


()− (−23+ 233 + 1210)


≈

 1718

1126

(−09
3
+ 18

2
+ 419− 146894) 

=

−02254 + 63 + 20952 − 146894

1718
1126

≈ 706

52. From the figure, ()  () for 0 ≤  ≤ 2. The area between the curves is given by 2

0
[()− ()] =

 2

0
[(0172 − 05 + 11)− (0733 − 22 +  + 06)] 

=

 2

0

(−073
3
+ 217

2 − 15+ 05) 

=


−073

4
4 +

217

3
3 − 0752 + 05

2
0

= −292 +
1736

3
− 3 + 1− 0 = 086 ≈ 087

Thus, about 0.87 more inches of rain fell at the second location than at the first during the first two hours of the storm.

53. We know that the area under curve  between  = 0 and  =  is
 
0
()  = (), where () is the velocity of car A

and A is its displacement. Similarly, the area under curve between  = 0 and  =  is
 
0
B()  = B().

(a) After one minute, the area under curve  is greater than the area under curve . So car A is ahead after one minute.

(b) The area of the shaded region has numerical value A(1)− B(1), which is the distance by which A is ahead of B after

1 minute.

(c) After two minutes, car B is traveling faster than car A and has gained some ground, but the area under curve  from  = 0

to  = 2 is still greater than the corresponding area for curve , so car A is still ahead.

(d) From the graph, it appears that the area between curves  and  for 0 ≤  ≤ 1 (when car A is going faster), which

corresponds to the distance by which car A is ahead, seems to be about 3 squares. Therefore, the cars will be side by side

at the time  where the area between the curves for 1 ≤  ≤  (when car B is going faster) is the same as the area for

0 ≤  ≤ 1. From the graph, it appears that this time is  ≈ 22. So the cars are side by side when  ≈ 22 minutes.

54. The area under 0() from  = 50 to  = 100 represents the change in revenue, and the area under 0() from  = 50

to  = 100 represents the change in cost. The shaded region represents the difference between these two values; that is, the

increase in profit as the production level increases from 50 units to 100 units. We use the Midpoint Rule with  = 5

and∆ = 10:

5 = ∆{[0(55)− 0(55)] + [0(65)− 0(65)] + [0(75)− 0(75)] + [0(85)−0(85)] + [0(95)−0(95)]}
≈ 10(240− 085 + 220− 090 + 200− 100 + 180− 110 + 170− 120)

= 10(505) = 505 thousand dollars

Using1 would give us 50(2− 1) = 50 thousand dollars.
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12 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

55. To graph this function, we must first express it as a combination of explicit

functions of ; namely,  = ±√+ 3. We can see from the graph that the loop

extends from  = −3 to  = 0, and that by symmetry, the area we seek is just

twice the area under the top half of the curve on this interval, the equation of the

top half being  = −√+ 3. So the area is  = 2
 0

−3

−√+ 3

. We

substitute  = + 3, so  =  and the limits change to 0 and 3, and we get

= −2
 3

0
[(− 3)

√
 ]  = −2

 3

0
(32 − 312) 

= −2


2
5
52 − 232

3
0

= −2


2
5


32
√

3
− 2


3
√

3


= 24
5

√
3

56. We start by finding the equation of the tangent line to  = 2 at the point (1 1):

0 = 2, so the slope of the tangent is 2(1) = 2, and its equation is

 − 1 = 2(− 1), or  = 2− 1. We would need two integrals to integrate with

respect to , but only one to integrate with respect to .

=
 1

0


1
2
( + 1)−√   =


1
4
2 + 1

2
 − 2

3
32

1
0

= 1
4

+ 1
2
− 2

3
= 1

12

57. By the symmetry of the problem, we consider only the first quadrant, where

 = 2 ⇒  =

. We are looking for a number  such that 

0


  =

 4




  ⇒ 2

3


32


0

= 2
3


32

4

⇒

32 = 432 − 32 ⇒ 232 = 8 ⇒ 32 = 4 ⇒  = 423 ≈ 252.

58. (a) We want to choose  so that 

1

1

2
 =

 4



1

2
 ⇒

−1




1

=

−1



4


⇒ −1


+ 1 = −1

4
+

1


⇒ 5

4
=

2


⇒  =

8

5
.

(b) The area under the curve  = 12 from  = 1 to  = 4 is 3
4
[take  = 4 in the first integral in part (a)]. Now the line

 =  must intersect the curve  = 1
√
 and not the line  = 4, since the area under the line  = 142 from  = 1 to

 = 4 is only 3
16
, which is less than half of 3

4
. We want to choose  so that the upper area in the diagram is half of the total

area under the curve  = 12 from  = 1 to  = 4. This implies that 1




1
√
 − 1


 = 1

2
· 3

4
⇒ 

2
√
 − 

1


= 3
8
⇒ 1− 2

√
+  = 3

8
⇒

− 2
√
+ 5

8
= 0. Letting  =

√
, we get 2 − 2+ 5

8
= 0 ⇒

82 − 16+ 5 = 0. Thus,  = 16±√256− 160

16
= 1±

√
6

4
. But  =

√
  1 ⇒

 = 1−
√

6
4

⇒  = 2 = 1 + 3
8
−
√

6
2

= 1
8


11− 4

√
6
 ≈ 01503.
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SECTION 6.1 AREAS BETWEEN CURVES ¤ 13

59. We first assume that   0, since  can be replaced by − in both equations without changing the graphs, and if  = 0 the

curves do not enclose a region. We see from the graph that the enclosed area lies between  = − and  = , and by

symmetry, it is equal to four times the area in the first quadrant. The enclosed area is

 = 4
 
0

(2 − 2)  = 4

2− 1

3
3

0

= 4

3 − 1

3
3


= 4


2
3
3


= 8
3
3

So  = 576 ⇔ 8
3
3 = 576 ⇔ 3 = 216 ⇔  =

3
√

216 = 6.

Note that  = −6 is another solution, since the graphs are the same.

60. It appears from the diagram that the curves  = cos and  = cos(− )

intersect halfway between 0 and , namely, when  = 2. We can verify that

this is indeed true by noting that cos(2− ) = cos(−2) = cos(2). The

point where cos(− ) crosses the -axis is  = 
2

+ . So we require that 2
0

[cos− cos(− )]  = −  
2+

cos(− )  [the negative sign on

the RHS is needed since the second area is beneath the -axis] ⇔ [sin− sin (− )]
2

0 = − [sin (− )]


2+ ⇒

[sin(2)− sin(−2)]− [− sin(−)] = − sin( − ) + sin



2

+ 
− 

 ⇔ 2 sin(2)− sin  = − sin + 1.

[Here we have used the oddness of the sine function, and the fact that sin( − ) = sin ]. So 2 sin(2) = 1 ⇔

sin(2) = 1
2

⇔ 2 = 
6
⇔  = 

3
.

61. The curve and the line will determine a region when they intersect at two or

more points. So we solve the equation (2 + 1) =  ⇒
 = (2 +) ⇒ (2 +)−  = 0 ⇒
(2 +− 1) = 0 ⇒  = 0 or 2 +− 1 = 0 ⇒

 = 0 or 2 =
1−


⇒  = 0 or  = ±


1


− 1. Note that if = 1, this has only the solution  = 0, and no region

is determined. But if 1− 1  0 ⇔ 1  1 ⇔ 0    1, then there are two solutions. [Another way of seeing

this is to observe that the slope of the tangent to  = (2 + 1) at the origin is 0(0) = 1 and therefore we must have

0    1.] Note that we cannot just integrate between the positive and negative roots, since the curve and the line cross at

the origin. Since and (2 + 1) are both odd functions, the total area is twice the area between the curves on the interval
0


1− 1

. So the total area enclosed is

2

 √1−1

0




2 + 1
−


= 2


1
2

ln(2 + 1)− 1
2
2

√1−1

0
= [ln(1− 1 + 1)−(1− 1)]− (ln 1− 0)

= ln(1)− 1 + = − ln− 1
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14 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

APPLIED PROJECT The Gini Index

1. (a)  =
area between  and  = 

area under  = 
=

 1

0
[− ()] 

1
2

= 2

 1

0

[− ()] 

(b) For a perfectly egalitarian society, () = , so  = 2
 1

0
[− ]  = 0. For a perfectly totalitarian society,

() =


1 if  = 1

0 if 0 ≤   1
so  = 2

 1

0

(− 0)  = 2


1
2


2
1
0

= 2


1
2


= 1.

2. (a) The richest 20% of the population in 2010 received 1− (08) = 1− 0498 = 0502, or 502%, of the total US income.

(b) A quadratic model has the form() = 2 + + . Rounding to

six decimal places, we get  = 1305 357,  = −0371 357, and

 = 0026 714. The quadratic model appears to be a reasonable fit,

but note that (0) 6= 0 and is both decreasing and increasing.

(c)  = 2

 1

0

[−()]  ≈ 04477

3.
() = 2 +  + 

Year    Gini

1970 1117 411 −0152 411 0013 321 03808

1980 1149 554 −0189 696 0016 179 03910

1990 1216 071 −0268 214 0020 714 04161

2000 1280 804 −0345 232 0025 821 04397

The Gini index has risen

steadily from 1970 to 2010.

The trend is toward a less

egalitarian society.

4. Using Maple’s PowerFit or TI’s PwrReg command and omitting the

point (0 0) gives us  () = 0845 4462050 379 and a Gini index

2
 1

0
[−  ()]  ≈ 04457. Note that the power function is nearly

quadratic.

1

1.1

_0.1

1.1_0.1 0.2 10.60.4 0.8
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SECTION 6.2 VOLUMES ¤ 15

6.2 Volumes

1. A cross-section is a disk with radius + 1, so its area is

() = (+ 1)2 = (2 + 2+ 1).

 =
 2

0
()  =

 2

0
(2 + 2+ 1) 

= 


1
3
3 + 2 + 

2
0

= 


8
3

+ 4 + 2


= 26
3

2. A cross-section is a disk with radius
1


, so

its area is () = 


1



2

= −2.

 =
 4

1
()  =

 4

1
−2 

= 

− −1

4
1

= 
− 1

4
+ 1


= 3
4

3. A cross-section is a disk with radius
√
− 1, so its area is () = 

√
− 1

2
= (− 1).

 =

 5

1

()  =

 5

1

(− 1)  = 

1
2


2 − 
5
1

= 


25
2
− 5
−  1

2
− 1


= 8

4. A cross-section is a disk with radius , so

its area is () = ()2 = 2

 =

 1

−1

()  =

 1

−1


2


= 


1
2
2
1
−1

= 
2
(2 − −2)
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16 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

5. A cross-section is a disk with radius 2

, so its

area is () = 

2


2
.

 =

 9

0

()  =

 9

0



2


2
 = 4

 9

0

 

= 4


1
2
2
9
0

= 2(81) = 162

6. A cross-section is a disk with radius 1
2
2, so its

area is () = 


1
2
2
2

= 1
4
4.

 =

 4

0

()  =

 4

0




1
4

4



= 
4


1
5
5
4
0

= 
20

(45)

= 256
5

7. A cross-section is a washer (annulus) with inner

radius 3 and outer radius , so its area is

() = ()2 − (3)2 = (2 − 6).

 =

 1

0

()  =

 1

0

(
2 − 

6
) 

= 


1
3
3 − 1

7
7
1
0

= 


1
3
− 1

7


= 4

21


8. A cross-section is a washer (annulus) with inner radius

2 and outer radius 6− 2, so its area is

() = [(6− 2)2 − 22] = (4 − 122 + 32).

 =

 2

−2

()  = 2

 2

0

(
4 − 12

2
+ 32) 

= 2


1
5
5 − 43 + 32

2
0

= 2


32
5
− 32 + 64


= 2


192
5


= 384

5

9. A cross-section is a washer with inner radius 2

and outer radius 2, so its area is

() = (2)2 − (2)2 = (42 − 4).

 =

 2

0

()  = 

 2

0

(4
2 − 

4
) 

= 


4
3
3 − 1

5
5
2
0

= 


32
3
− 32

5


= 64

15
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SECTION 6.2 VOLUMES ¤ 17

10. A cross-section is a washer with inner radius 4 and

outer radius 2− 2, so its area is

() = (2−2)2−(4)2 = (4−42 +4−8).

 =

 1

−1

()  = 2

 1

0

(4− 4
2

+ 
4 − 

8
) 

= 2

4 − 4

3
3 + 1

5
5 − 1

9
8
1
0

= 2

4− 4

3
+ 1

5
− 1

9


= 2


124
45


= 248

45

11. A cross-section is a washer with inner radius 1−√ and outer radius 1− 2, so its area is

() = 

(1− 2)2 − (1−√ )

2


= 

(1− 22 + 4)− (1− 2

√
+ )


= 


4 − 22 + 2

√
− 


.

 =
 1

0
()  =

 1

0
(4 − 22 + 212 − ) 

= 


1
5
5 − 2

3
3 + 4

3
32 − 1

2
2
1
0

= 


1
5
− 2

3
+ 4

3
− 1

2


= 11

30


12. A cross-section is a washer with inner radius 1− (−3) = 4 and outer radius 3 − (−3) = 3 + 3, so its area is

() = (3 + 3)2 − (4)2 = (6 + 63 − 7).

 =

 2

1

()  =

 2

1

(
6

+ 6
3 − 7) 

= 


1
7
7 + 3

2
4 − 7

2
1

= 


128
7

+ 24− 14
−  1

7
+ 3

2
− 7


= 471
14

13. A cross-section is a washer with inner radius (1 + sec)− 1 = sec and outer radius 3− 1 = 2, so its area is

() = 

22 − (sec)2


= (4− sec2 ).

 =

 3

−3
()  =

 3

−3
(4− sec

2
) 

= 2

 3

0

(4− sec
2
)  [by symmetry]

= 2

4− tan

3
0

= 2


4
3
−√3

− 0


= 2


4
3
−√3
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18 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

14. A cross-section is a washer with inner radius sin− (−1) and outer radius cos− (−1), so its area is

() = 

(cos+ 1)2 − (sin+ 1)2


= (cos2 + 2cos− sin2 − 2 sin)

= (cos 2+ 2cos− 2 sin).

 =
 4
0

()  =
 4
0

(cos 2+ 2cos− 2 sin) 

= 


1
2

sin 2+ 2 sin+ 2 cos
4
0

= 


1
2

+
√

2 +
√

2
− (0 + 0 + 2)


=

2
√

2− 3
2




15. A cross-section is a washer with inner radius 2− 1 and outer radius 2− 3
√
, so its area is

() = 

(2− 3

√
 )2 − (2− 1)2


= 


4− 4 3

√
 + 3


2 − 1


.

 =

 1

0

()  =

 1

0

(3− 4
13

+ 
23

)  = 

3 − 3

43
+ 3

5

23
1
0

= 

3− 3 + 3

5


= 3

5
.

16. For 0 ≤   1
2
, a cross-section is a washer with inner radius 1− (−1) and outer radius 2− (−1), so its area is

() = (32 − 22) = 5. For 1
2
≤  ≤ 1, a cross-section is a washer with inner radius 1− (−1) and outer radius

1 − (−1), so its area is () = 

(1 + 1)2 − (2)2


= (12 + 2 + 1− 4).

 =

 12

0

5  +

 1

12




1

2
+

2


− 3


 = 5



12
0

+ 


−1


+ 2 ln  − 3

1
12

= 5


1
2
− 0


+ 

(−1 + 0− 3)− −2 + 2 ln 1

2
− 3

2


= 5

2
 + 

− 1
2

+ 2 ln 2


= (2 + 2 ln 2) = 2(1 + ln 2)
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SECTION 6.2 VOLUMES ¤ 19

17. From the symmetry of the curves, we see they intersect at  = 1
2
and so 2 = 1

2
⇔  = ±


1
2
. A cross-section is a

washer with inner radius 3− (1− 2) and outer radius 3− 2, so its area is

() = 

(3− 2)2 − (2 + 2)2


= 


(9− 62 + 4)− (4 + 42 + 4)


= (5− 102).

 =

 √12

−
√

12

() 

= 2

 √12

0

5(1− 2
2
)  [by symmetry]

= 10

 − 2

3
3
√22

0
= 10

√
2

2
−
√

2
6


= 10

√
2

3


= 10

3

√
2

18. For 0 ≤   2, a cross-section is an annulus with inner radius 2− 1 and outer radius 4− 1, the area of which is

1() = (4− 1)
2 − (2− 1)

2. For 2 ≤  ≤ 4, a cross-section is an annulus with inner radius  − 1 and outer

radius 4− 1, the area of which is 2() = (4− 1)
2 − ( − 1)

2.

 =
 4

0
()  = 

 2

0


(4− 1)2 − (2− 1)2


 + 

 4

2


(4− 1)2 − ( − 1)2




= 

8
2
0
+ 

 4

2
(8 + 2 − 2) 

= 16 + 

8 + 2 − 1

3
3
4
2

= 16 + 


32 + 16− 64
3

− 16 + 4− 8
3


= 76

3


19. R1 about OA (the line  = 0):

 =

 1

0

()  =

 1

0

()
2
 = 


1
3


3
1
0

= 1
3


20. R1 about OC (the line  = 0):

 =

 1

0

()  =

 1

0

(1
2 − 

2
)  = 


 − 1

3

3
1
0

= 

1− 1

3


= 2

3


21. R1 about AB (the line  = 1):

 =

 1

0

()  =

 1

0

(1− )
2
 = 

 1

0

(1− 2 + 
2
)  = 


 − 

2
+ 1

3

3
1
0

= 1
3


22. R1 about BC (the line  = 1):

 =

 1

0

()  =

 1

0

[(1− 0)
2 − (1− )

2
]  = 

 1

0

[1− (1− 2+ 
2
)] 

= 

 1

0

(−2
+ 2)  = 

− 1
3


3
+ 

2
1
0

= 
− 1

3
+ 1


= 2
3
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20 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

23. R2 about OA (the line  = 0):

 =

 1

0

()  =

 1

0



1
2 −  4

√

2

 = 

 1

0

(1− 
12

)  = 

− 2

3


32
1
0

= 

1− 2

3


= 1

3


24. R2 about OC (the line  = 0):

 =

 1

0

()  =

 1

0

[(
4
)
2
]  = 

 1

0


8
 = 


1
9

9
1
0

= 1
9


25. R2 about AB (the line  = 1):

 =

 1

0

()  =

 1

0

[1
2 − (1− 

4
)
2
]  = 

 1

0

[1− (1− 2
4
+ 

8
)] 

= 

 1

0

(2
4 − 

8
)  = 


2
5

5 − 1

9

9
1
0

= 


2
5
− 1

9


= 13

45


26. R2 about BC (the line  = 1):

 =

 1

0

()  =

 1

0

(1− 4
√
 )

2
 = 

 1

0

(1− 2
14

+ 
12

) 

= 

− 8

5
54 + 2

3
32

1
0

= 

1− 8

5
+ 2

3


= 1

15


27. R3 about OA (the line  = 0):

 =

 1

0

()  =

 1

0




4
√

2 − 

2

 = 

 1

0

(
12 − 

2
)  = 


2
3


32 − 1
3


3
1
0

= 


2
3
− 1

3


= 1

3


Note: Let R = R1 ∪ R2 ∪ R3. If we rotate R about any of the segments , , , or , we obtain a right circular

cylinder of height 1 and radius 1. Its volume is 2 = (1)2 · 1 = . As a check for Exercises 19, 23, and 27, we can add the

answers, and that sum must equal . Thus, 1
3
 + 1

3
 + 1

3
 = .

28. R3 about OC (the line  = 0):

 =

 1

0

()  =

 1

0

[
2 − (

4
)
2
]  = 

 1

0

(
2 − 

8
)  = 


1
3

3 − 1

9

9
1
0

= 


1
3
− 1

9


= 2

9


Note: See the note in Exercise 27. For Exercises 20, 24, and 28, we have 2
3
 + 1

9
 + 2

9
 = .

29. R3 about AB (the line  = 1):

 =

 1

0

()  =

 1

0

[(1− 
4
)
2 − (1− )

2
]  = 

 1

0

[(1− 2
4

+ 
8
)− (1− 2 + 

2
)] 

= 

 1

0

(
8 − 2

4 − 
2
+ 2)  = 


1
9

9 − 2

5

5 − 1

3

3

+ 
2
1
0

= 


1
9
− 2

5
− 1

3
+ 1


= 17
45


Note: See the note in Exercise 27. For Exercises 21, 25, and 29, we have 1
3
 + 13

45
 + 17

45
 = .
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SECTION 6.2 VOLUMES ¤ 21

30. R3 about BC (the line  = 1):

 =

 1

0

()  =

 1

0

[(1− )
2 − 1− 4

√

2

]  = 

 1

0

[(1− 2+ 
2
)− (1− 2

14
+ 

12
)] 

= 

 1

0

(
2 − 2− 

12
+ 2

14
)  = 


1
3


3 − 
2 − 2

3


32
+ 8

5


54
1
0

= 


1
3
− 1− 2

3
+ 8

5


= 4

15


Note: See the note in Exercise 27. For Exercises 22, 26, and 30, we have 2
3
 + 1

15
 + 4

15
 = .

31. (a) About the -axis:

 =

 1

−1

(
−2

)
2
 = 2

 1

0


−22

 [by symmetry]

≈ 375825

(b) About  = −1:

 =

 1

−1



[
−2 − (−1)]

2 − [0− (−1)]
2



= 2

 1

0

[(
−2

+ 1)
2 − 1]  = 2

 1

0

(
−22

+ 2
−2

) 

≈ 1314312

32. (a) About the -axis:

 =

 2

−2
(cos

2
)

2
 = 2

 2

0

cos
4
 [by symmetry]

≈ 370110

(b) About  = 1:

 =

 2

−2
[(1− 0)

2 − (1− cos
2
)

2
] 

= 2

 2

0

[1− (1− 2 cos
2
+ cos

4
)] 

= 2

 2

0

(2 cos
2
− cos

4
)  ≈ 616850

33. (a) About  = 2:

2 + 42 = 4 ⇒ 42 = 4− 2 ⇒ 2 = 1− 24 ⇒
 = ±


1− 24

 =

 2

−2




2−


−


1− 24
2

−

2−


1− 24

2



= 2

 2

0

8


1− 24  ≈ 78.95684
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22 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

(b) About  = 2:

2 + 42 = 4 ⇒ 2 = 4− 42 ⇒  = ±


4− 42

 =

 1

−1




2−


−


4− 42

2
−

2−


4− 42

2



= 2

 1

0

8


4− 42  ≈ 7895684

[Notice that this is the same approximation as in part (a). This can be explained by Pappus’s Theorem in Section 8.3.]

34. (a) About the -axis:

 = 2 and 2 + 2 = 1 ⇒ 2 + 4 = 1 ⇒ 4 + 2 − 1 = 0 ⇒

2 =
−1 +

√
5

2
≈ 0618 ⇒  = ± = ±


−1 +

√
5

2
≈ ±0786.

 =

 

−



1− 2

2

− (
2
)
2


 = 2

 

0

(1− 
2 − 

4
) 

≈ 354459

(b) About the -axis:

 =

 2

0

 (
√
 )

2
 +

 1

2



1− 2

2



= 

 2

0

  + 

 1

2
(1− 

2
)  ≈ 099998

35.  = ln(6 + 2) and  =
√

3− 3 intersect at  =  ≈ −4091,

 =  ≈ −1467, and  =  ≈ 1091.

 = 

 




ln(

6
+ 2)

2 − 3− 3

2

+ 

 




3− 3

2

− ln(
6
+ 2)

2
 ≈ 89023

36.  = 1 + −
3

and  = arctan2 intersect at  =  ≈ −0570

and  =  ≈ 1391.

 = 

 




1 + 

−3
2
− (arctan

2
)
2


 ≈ 6923
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SECTION 6.2 VOLUMES ¤ 23

37. = 

 

0


sin

2
− (−1)

2 − [0− (−1)]
2



CAS
= 11

8
2

38.  = 

 2

0


(3− )

2 − (3− 
1−2

)
2



CAS
= 

−22 + 24− 142
3



39. 
 
0

sin = 
 
0

√
sin

2

 describes the volume of solid obtained by rotating the region

R=

( ) | 0 ≤  ≤ , 0 ≤  ≤ √sin


of the -plane about the -axis.

40. 
 1

−1
(1− 2)2  describes the volume of the solid obtained by rotating the region

R= {( ) | −1 ≤  ≤ 1, 0 ≤  ≤ 1− 2} of the -plane about the -axis.

41. 
 1

0
(4 − 8)  = 

 1

0


(2)2 − (4)2


 describes the volume of the solid obtained by rotating the region

R =

( ) | 0 ≤  ≤ 1 4 ≤  ≤ 2


of the -plane about the -axis.

42. 
 4

1
[32 − (3−√ )

2
 describes the volume of the solid obtained by rotating the region

R = {( ) | 1 ≤  ≤ 4 3−√ ≤  ≤ 3} of the -plane about the -axis.

43. There are 10 subintervals over the 15-cm length, so we’ll use  = 102 = 5 for the Midpoint Rule.

 =
 15

0
()  ≈5 = 15−0

5
[(15) +(45) +(75) +(105) +(135)]

= 3(18 + 79 + 106 + 128 + 39) = 3 · 370 = 1110 cm3

44.  =
 10

0
()  ≈5 = 10−0

5
[(1) +(3) +(5) +(7) +(9)]

= 2(065 + 061 + 059 + 055 + 050) = 2(290) = 580 m3

45. (a)  =
 10

2
 [()]

2
 ≈  10− 2

4


[(3)]

2
+ [(5)]

2
+ [(7)]

2
+ [(9)]

2


≈ 2

(15)2 + (22)2 + (38)2 + (31)2


≈ 196 units3

(b)  =
 4

0


(outer radius)2 − (inner radius)2




≈  4− 0
4


(99)2 − (22)2


+

(97)2 − (30)2


+

(93)2 − (56)2


+

(87)2 − (65)2


≈ 838 units3
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24 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

46. (a)  =

 1

−1





3
+ 

2
+ + 


1− 2

2


CAS
=

4

52 + 18+ 3


32 + 14+ 7(2 + 52)




315

(b)  = (−0063 + 0042 + 01 + 054)
√

1− 2 is graphed in the

figure. Substitute  = −006,  = 004,  = 01, and  = 054 in the

answer for part (a) to get 
CAS
=

3769

9375
≈ 1263.

47. We’ll form a right circular cone with height  and base radius  by

revolving the line  = 

 about the -axis.

 = 

 

0

 


2

 = 

 

0

2

2


2
 = 

2

2


1

3


3


0

= 
2

2


1

3
3


=

1

3
2

Another solution: Revolve  = − 


 +  about the -axis.

 = 

 

0


− 


 + 

2


∗
= 

 

0


2

2

2 − 22


 + 

2




= 


2

32
3 − 2


2 + 2


0

= 


1
3
2− 2+ 2


= 1

3
2

∗Or use substitution with  =  − 


 and  = − 


 to get



 0




2


−





= − 




1

3


3

0


= − 




−1

3

3


=

1

3


2
.

48.  = 

 

0


− − 




2


= 

 

0




2 − 2(− )


 +


− 



2


2




= 


2 − (− )


2 +

1

3


− 



2
3


0

= 

2−(− )+ 1

3
(− )2


= 1

3


3 + (2 − 2 + 2)


= 1

3
(2 + + 2)

Another solution:



=

 − 


by similar triangles. Therefore, = −  ⇒  = (− ) ⇒
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SECTION 6.2 VOLUMES ¤ 25

 =


− 
. Now

 = 1
3
2 − 1

3
2( − ) [by Exercise 47]

= 1
3
2 

− 
− 1

3
2



− 


 −  =




=



(− )


=

1

3


3 − 3

− 
= 1

3


2 + + 2


= 1

3


2 + 2 +


(2) (2)


 = 1

3


1 +2 +

√
12




where 1 and 2 are the areas of the bases of the frustum. (See Exercise 50 for a related result.)

49. 2 + 2 = 2 ⇔ 2 = 2 − 2

 = 

 

−



2 − 

2

 = 



2
 − 3

3


−

= 



3 − 3

3


−


2
( − )− ( − )

3

3


= 


2
3
3 − 1

3
( − )


32 − ( − )

2


= 1
3


23 − ( − )


32 − 2 − 2+ 2


= 1

3


23 − ( − )


22 + 2− 2


= 1

3


23 − 23 − 22+ 2 + 22+ 22 − 3


= 1

3


32 − 3


= 1

3
2(3 − ), or, equivalently, 2


 − 

3



50. An equation of the line is  =
∆

∆
 + (-intercept) =

2− 2

− 0
 +



2
=

− 

2
 +



2
.

 =

 

0

()  =

 

0

(2)
2


=

 

0


2


− 

2
 +



2

2
 =

 

0


− 


 + 

2


=

 

0


(− )

2

2

2
+

2(− )


 + 

2




=


(− )

2

32
3 +

(− )


2 + 2


0

= 1
3
(− )2+ (− )+ 2 = 1

3


2 − 2+ 2 + 3




= 1
3


2 + + 2




[Note that this can be written as 1
3


1 +2 +

√
12


, as in Exercise 48.]

If  = , we get a rectangular solid with volume 2. If  = 0, we get a square pyramid with volume 1
3
2.
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26 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

51. For a cross-section at height , we see from similar triangles that
2

2
=

− 


, so  = 


1− 




.

Similarly, for cross-sections having 2 as their base and  replacing ,  = 2

1− 




. So

 =

 

0

()  =

 

0




1− 




2

1− 






=

 

0

2
2

1− 



2

 = 2
2

 

0


1− 2


+

2

2




= 22

 − 2


+

3

32


0

= 22

− + 1

3



= 2
3
2 [ = 1

3
 where  is the area of the base, as with any pyramid.]

52. Consider the triangle consisting of two vertices of the base and the center of the base. This triangle is similar to the

corresponding triangle at a height , so  =  ⇒  = . Also by similar triangles,  = (− )⇒
 = (− ). These two equations imply that  = (1− ), and

since the cross-section is an equilateral triangle, it has area

() =
1

2
·  ·

√
3

2
 =

2(1− )
2

4

√
3, so

 =

 

0

()  =
2
√

3

4

 

0


1− 



2



=
2
√

3

4


−

3


1− 



3

0

= −
√

3

12

2
(−1) =

√
3

12

2


53. A cross-section at height  is a triangle similar to the base, so we’ll multiply the legs of the base triangle, 3 and 4, by a

proportionality factor of (5− )5. Thus, the triangle at height  has area

() =
1

2
· 3


5− 

5


· 4


5− 

5


= 6


1− 

5

2

, so

 =

 5

0

()  = 6

 5

0


1− 

5

2

 = 6

 0

1


2
(−5 )


 = 1− 5,

 = − 1
5



= −30


1
3
3
0
1

= −30
− 1

3


= 10 cm3

54. A cross-section is shaded in the diagram.

() = (2)2 =

2
√
2 − 2

2
, so

 =
 
− ()  = 2

 
0

4(2 − 2) 

= 8

2− 1

3
3

0

= 8


2
3
3


= 16
3
3
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SECTION 6.2 VOLUMES ¤ 27

55. If  is a leg of the isosceles right triangle and 2 is the hypotenuse,

then 2 + 2 = (2)
2 ⇒ 22 = 42 ⇒ 2 = 22.

 =
 2

−2
()  = 2

 2

0
()  = 2

 2

0

1
2
()()  = 2

 2

0
2 

= 2
 2

0

1
4
(36− 92)  = 9

2

 2

0
(4− 2) 

= 9
2


4− 1

3
3
2
0

= 9
2


8− 8

3


= 24

56. The cross-section of the base corresponding to the coordinate  has length  = 1−  The corresponding equilateral triangle

with side  has area () = 2
√

3

4


= (1− )

2

√
3

4


 Therefore,

 =

 1

0

()  =

 1

0

(1− )
2

√
3

4




=

√
3

4

 1

0

(1− 2 + 
2
)  =

√
3

4


 − 

2
+ 1

3

3
1
0

=

√
3

4


1

3


=

√
3

12

Or:
 1

0

(1− )
2

√
3

4


 =

√
3

4

 0

1


2
(−) [ = 1− ] =

√
3

4


1

3
3

1
0

=

√
3

12

57. The cross-section of the base corresponding to the coordinate  has length

 = 1− . The corresponding square with side  has area

() = 2 = (1− )2 = 1− 2 + 2. Therefore,

 =

 1

0

()  =

 1

0

(1− 2+ 
2
) 

=

− 2 + 1

3
3
1
0

=

1− 1 + 1

3

− 0 = 1
3

Or:
 1

0

(1− )
2
 =

 0

1


2
(−) [ = 1− ] =


1
3
3
1
0

= 1
3

58. The cross-section of the base corresponding to the coordinate  has length

2 = 2
√

1− .

 = 1− 2 ⇔  = ±√1− 


The corresponding square

with side  has area  () = 2 =

2
√

1− 
2

= 4(1− ). Therefore,

 =
 1

0
()  =

 1

0
4(1− )  = 4


 − 1

2
2
1
0

= 4


1− 1
2

− 0


= 2.

59. The cross-section of the base  corresponding to the coordinate  has length 1− 2. The height  also has length 1− 2,

so the corresponding isosceles triangle has area () = 1
2
 = 1

2
(1− 2)2. Therefore,

 =

 1

−1

()  =

 1

−1

1
2
(1− 

2
)
2


= 2 · 1
2

 1

0

(1− 2
2
+ 

4
)  [by symmetry]

=

− 2

3
3 + 1

5
5
1
0

=

1− 2

3
+ 1

5

− 0 = 8
15
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28 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

60. The cross-section of the base corresponding to the coordinate  has length 2 = 2
√

2− . [ = 2− 2 ⇔
 = ±√2−  ] The corresponding cross-section of the solid 

is a quarter-circle with radius 2
√

2−  and area

() = 1
4
(2

√
2−  )2 = (2− ). Therefore,

 =

 2

0

()  =

 2

0

(2− ) 

= 

2 − 1

2
2
2
0

= (4− 2) = 2

61. The cross-section of  at coordinate , −1 ≤  ≤ 1, is a circle

centered at the point

 1

2
(1− 2)


with radius 1

2
(1− 2).

The area of the cross-section is

() = 


1
2
(1− 2)

2
= 

4
(1− 22 + 4)

The volume of  is

 =

 1

−1

()  = 2

 1

0


4
(1− 2

2
+ 

4
)  = 

2


− 2

3


3
+ 1

5


5
1
0

= 
2


1− 2

3
+ 1

5


= 

2


8
15


= 4

15

62. (a) =
 
− ()  = 2

 
0
()  = 2

 
0

1
2


2
√
2 − 2


 = 2

 
0

√
2 − 2 

(b) Observe that the integral represents one quarter of the area of a circle of radius , so  = 2 · 1
4
2 = 1

2
2.

63. (a) The torus is obtained by rotating the circle (−)2 + 2 = 2 about

the -axis. Solving for , we see that the right half of the circle is given by

 = +

2 − 2 = () and the left half by  = −


2 − 2 = ().

So

 = 
 
−

[()]

2 − [()]
2



= 2
 
0


2 + 2


2 − 2 + 2 − 2


−

2 − 2


2 − 2 + 2 − 2




= 2
 
0

4

2 − 2  = 8

 
0


2 − 2 

(b) Observe that the integral represents a quarter of the area of a circle with radius , so

8
 
0


2 − 2  = 8 · 1

4
2 = 222.

64. The cross-sections perpendicular to the -axis in Figure 17 are rectangles. The rectangle corresponding to the coordinate  has

a base of length 2


16− 2 in the -plane and a height of 1√
3
, since ∠ = 30◦ and || = 1√

3
||. Thus,

() = 2√
3



16− 2 and

 =
 4

0
()  = 2√

3

 4

0


16− 2   = 2√

3

 0

16
12

− 1
2



[Put  = 16− 2, so  = −2 ]

= 1√
3

 16

0
12  = 1√

3

2
3


32

16
0

= 2

3
√

3
(64) = 128

3
√

3
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SECTION 6.2 VOLUMES ¤ 29

65. (a) Volume(1) =
 
0
()  = Volume(2) since the cross-sectional area () at height  is the same for both solids.

(b) By Cavalieri’s Principle, the volume of the cylinder in the figure is the same as that of a right circular cylinder with radius 

and height , that is, 2.

66. Each cross-section of the solid  in a plane perpendicular to the

-axis is a square (since the edges of the cut lie on the

cylinders, which are perpendicular). One-quarter of this square

and one-eighth of  are shown. The area of this quarter-square

is ||2 = 2 − 2. Therefore, () = 4(2 − 2) and the

volume of  is

 =
 
− ()  = 4

 
−(

2 − 2) 

= 8(2 − 2)  = 8

2− 1

3
3

0

= 16
3
3

67. The volume is obtained by rotating the area common to two circles of radius , as

shown. The volume of the right half is

right = 
 2
0

2  = 
 2
0


2 −  1

2
 + 

2


= 

2− 1

3


1
2
 + 

32
0

= 


1
2
3 − 1

3
3
− 0− 1

24
3


= 5
24
3

So by symmetry, the total volume is twice this, or 5
12
3.

Another solution: We observe that the volume is the twice the volume of a cap of a sphere, so we can use the formula from

Exercise 49 with  = 1
2
:  = 2 · 1

3
2(3 − ) = 2

3



1
2

2

3 − 1
2



= 5
12
3.

68. We consider two cases: one in which the ball is not completely submerged and the other in which it is.

Case 1: 0 ≤  ≤ 10 The ball will not be completely submerged, and so a cross-section of the water parallel to the surface

will be the shaded area shown in the first diagram. We can find the area of the cross-section at height  above the bottom of the

bowl by using the Pythagorean Theorem: 2 = 152 − (15− )
2 and 2 = 52 − (− 5)

2, so () = 

2 − 2


= 20.

The volume of water when it has depth  is then  () =
 
0
()  =

 
0

20 =

102


0

= 102 cm3,

0 ≤  ≤ 10.

Case 2: 10   ≤ 15 In this case we can find the volume by simply subtracting the volume displaced by the ball from

the total volume inside the bowl underneath the surface of the water. The total volume underneath the surface is just the

volume of a cap of the bowl, so we use the formula from

Exercise 49: cap() = 1
3
2(45− ). The volume of

the small sphere is ball = 4
3
(5)3 = 500

3
, so the total

volume is cap − ball = 1
3
(452 − 3 − 500) cm3.
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30 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

69. Take the -axis to be the axis of the cylindrical hole of radius .

A quarter of the cross-section through  perpendicular to the

-axis, is the rectangle shown. Using the Pythagorean Theorem

twice, we see that the dimensions of this rectangle are

 =

2 − 2 and  =


2 − 2, so

1
4
() =  =


2 − 2


2 − 2, and

 =
 
− ()  =

 
− 4


2 − 2


2 − 2  = 8

 
0


2 − 2


2 − 2 

70. The line  =  intersects the semicircle  =
√
2 − 2 when  =

√
2 − 2 ⇒ 2 = 2 − 2 ⇒

2 = 2 − 2 ⇒  = ±√2 − 2. Rotating the shaded region about the -axis gives us

=

 √2−2

−
√
2−2




2 − 2

2

− 
2


 = 2

 √2−2

0

(
2 − 

2 − 
2
)  [by symmetry]

= 2

 √2−2

0




2 − 
2
− 

2

 = 2




2 − 
2

− 1

3


3
√2−2

0

= 2

2 − 2

32 − 1
3


2 − 2

32
= 2 · 2

3


2 − 2

32
= 4

3


2 − 2

32
Our answer makes sense in limiting cases. As → 0,  → 4

3
3, which is the volume of the full sphere. As → ,

 → 0, which makes sense because the hole’s radius is approaching that of the sphere.

71. (a) The radius of the barrel is the same at each end by symmetry, since the

function  = − 2 is even. Since the barrel is obtained by rotating

the graph of the function  about the -axis, this radius is equal to the

value of  at  = 1
2
, which is − 


1
2

2

= −  = .

(b) The barrel is symmetric about the -axis, so its volume is twice the volume of that part of the barrel for   0. Also, the

barrel is a volume of rotation, so

 = 2

 2

0


2
 = 2

 2

0


− 

2
2
 = 2




2
− 2

3


3
+ 1

5

2


5
2
0

= 2


1
2
2− 1

12
3 + 1

160
25


[continued]
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SECTION 6.3 VOLUMES BY CYLINDRICAL SHELLS ¤ 31

Trying to make this look more like the expression we want, we rewrite it as  = 1
3


22 +


2 − 1

2
2 + 3

80
24


.

But 2 − 1
2
2 + 3

80
24 =


− 1

4
2
2 − 1

40
24 = (− )

2 − 2
5


1
4
2
2

= 2 − 2
5
2.

Substituting this back into  , we see that  = 1
3


22 + 2 − 2

5
 2

, as required.

72. It suffices to consider the case where R is bounded by the curves  = () and  = () for  ≤  ≤ , where () ≤ ()

for all  in [ ], since other regions can be decomposed into subregions of this type. We are concerned with the volume

obtained when R is rotated about the line  = −, which is equal to

2 = 
 



[() + ]

2 − [() + ]
2



= 
 



[()]

2 − [()]
2

+ 2

 


[()− ()]  = 1 + 2

6.3 Volumes by Cylindrical Shells

1. If we were to use the “washer” method, we would first have to locate the

local maximum point ( ) of  = (− 1)
2 using the methods of

Chapter 4. Then we would have to solve the equation  = (− 1)
2

for  in terms of  to obtain the functions  = 1() and  = 2()

shown in the first figure. This step would be difficult because it involves

the cubic formula. Finally we would find the volume using

 = 
 
0


[1()]

2 − [2()]
2

.

Using shells, we find that a typical approximating shell has radius , so its circumference is 2. Its height is , that is,

(− 1)2. So the total volume is

 =

 1

0

2

(− 1)

2

 = 2

 1

0




4 − 2
3
+ 

2

 = 2


5

5
− 2

4

4
+

3

3

1
0

=


15

2. A typical cylindrical shell has circumference 2 and height sin(2).

 =
√
0

2 sin(2) . Let  = 2. Then  = 2, so

 = 
 
0

sin = [− cos]


0
= [1− (−1)] = 2. For slicing, we

would first have to locate the local maximum point ( ) of  = sin(2)

using the methods of Chapter 4. Then we would have to solve the equation

 = sin

2

for  in terms of  to obtain the functions  = 1() and

 = 2() shown in the second figure. Finally we would find the volume

using  = 
 
0


[1()]

2 − [2()]
2

. Using shells is definitely

preferable to slicing.
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32 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

3.  =

 1

0

2 3
√
 = 2

 1

0


43



= 2


3
7
73

1
0

= 2


3
7


= 6

7


4.  =

 2

1

2 · 3
 = 2

 2

1


4


= 2


1
5
5
2
1

= 2


32
5
− 1

5


= 62

5


5.  =
 1

0
2−

2

. Let  = 2.

Thus,  = 2, so

 = 
 1

0
−  = 

−−1
0

= (1− 1).

6. 4− 2 =  ⇔ 0 = 2 − 3 ⇔ 0 = (− 3) ⇔  = 0 or 3.

 =

 3

0

2[(4− 
2
)− ] 

= 2

 3

0

(−3
+ 3

2
) 

= 2
−1

4
4 + 3

3
0

= 2
− 81

4
+ 27


= 2


27
4


= 27

2


7. 2 = 6− 22 ⇔ 32 − 6 = 0 ⇔ 3(− 2) = 0 ⇔  = 0 or 2.

 =

 2

0

2[(6− 2
2
)− 

2
] 

= 2

 2

0

(−3
3

+ 6
2
) 

= 2
− 3

4
4 + 23

2
0

= 2 (−12 + 16) = 8
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SECTION 6.3 VOLUMES BY CYLINDRICAL SHELLS ¤ 33

8. By slicing:

 =
 1

0




2

− (2)2

 = 

 1

0
( − 4) 

= 


1
2
2 − 1

5
5
1
0

= 


1
2
− 1

5


= 3

10


By cylindrical shells:

 =
 1

0
2

√
− 2


 = 2

 1

0
(32 − 3)  = 2


2
5
52 − 1

4
4
1
0

= 2


2
5
− 1

4


= 2


3
20


= 3

10


9.  = 1 ⇒  = 1

. The shell has radius ,

circumference 2, and height 1, so

 =

 3

1

2


1






= 2

 3

1

 = 2


3
1

= 2(3− 1) = 4

10.  =
√
 ⇒  = 2. The shell has radius ,

circumference 2, and height 2, so

 =

 2

0

2(
2
)  = 2

 2

0


3


= 2


1
4
4
2
0

= 2(4) = 8

11.  = 32 ⇒  = 23. The shell has radius

, circumference 2, and height 23, so

 =

 8

0

2(
23

)  = 2

 8

0


53



= 2


3
8
83

8
0

= 2 · 3
8
· 256 = 192

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



34 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

12. The shell has radius , circumference 2, and

height −32 + 12 − 9, so

 =
 3

1
2(−32 + 12 − 9) 

= 2
 3

1
(−33 + 122 − 9) 

= −6
 3

1
(3 − 42 + 3) 

= −6


1
4
4 − 4

3
3 + 3

2
2
3
1

= −6


81
4
− 36 + 27

2

−  1
4
− 4

3
+ 3

2


= −6

−8
3


= 16

13. The shell has radius , circumference 2, and height

2− 1 + ( − 2)
2


= 1− ( − 2)
2

= 1− 2 − 4 + 4


= −2 + 4 − 3, so

 =
 3

1
2(−2 + 4 − 3) 

= 2
 3

1
(−3 + 42 − 3) 

= 2
− 1

4
4 + 4

3
3 − 3

2
2
3
1

= 2
− 81

4
+ 36− 27

2

− − 1
4

+ 4
3
− 3

2


= 2


8
3


= 16

3


14. The curves intersect when 4−  = 2 − 4 + 4 ⇔
0 = 2 − 3 ⇔ 0 = ( − 3) ⇔  = 0 or 3.

The shell has radius , circumference 2, and height

(4− )− (2 − 4 + 4) = −2 + 3, so

 =
 3

0
2(−2 + 3)  = 2

 3

0
(32 − 3) 

= 2

3 − 1

4
4
3
0

= 2

27− 81

4


= 2


27
4


= 27

2

15. The shell has radius 3− , circumference

2(3− ), and height 8− 3.

 =
 2

0
2(3− )(8− 3) 

= 2
 2

0
(4 − 33 − 8+ 24) 

= 2


1
5
5 − 3

4
4 − 42 + 24

2
0

= 2


32
5
− 12− 16 + 48


= 2


132
5


= 264

5
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SECTION 6.3 VOLUMES BY CYLINDRICAL SHELLS ¤ 35

16. The shell has radius − (−1) = + 1, circumference 2(+ 1), and height 4− 2.

 =
 2

0
2(+ 1)(4− 2) 

= 4
 2

0
(+ 1)(2− ) 

= 4
 2

0
(−2 + + 2) 

= 4
− 1

3
3 + 1

2
2 + 2

2
0

= 4
− 8

3
+ 2 + 4


= 4


10
3


= 40

3

17. The shell has radius − 1, circumference 2(− 1), and height (4− 2)− 3 = −2 + 4− 3.

=
 3

1
2(− 1)(−2 + 4− 3) 

= 2
 3

1
(−3 + 52 − 7+ 3) 

= 2
−1

4
4 + 5

3
3 − 7

2
2 + 3

3
1

= 2
− 81

4
+ 45− 63

2
+ 9
− −1

4
+ 5

3
− 7

2
+ 3


= 2


4
3


= 8

3


18. The shell has radius 5− , circumference 2(5− ), and height
√
− 1

2
.

 =
 4

0
2(5− )

√
− 1

2


 = 2

 4

0
(512 − 5

2
− 32 + 1

2
2) 

= 2


10
3
32 − 5

4
2 − 2

5
52 + 1

6
3
4
0

= 2


80
3
− 20− 64

5
+ 32

3


= 2


68
15


= 136

15

19. The shell has radius 2− , circumference 2(2− ), and height 2− 22.

 =
 1

0
2(2− )(2− 22) 

= 4
 1

0
(2− )(1− 2) 

= 4
 1

0
(3 − 22 −  + 2) 

= 4


1
4
4 − 2

3
3 − 1

2
2 + 2

1
0

= 4


1
4
− 2

3
− 1

2
+ 2


= 4


13
12


= 13

3
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36 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

20. The shell has radius  − (−2) =  + 2, circumference 2( + 2), and height (2 + 1)− 22 = 1− 2.

 =
 1

−1
2( + 2)(1− 2) 

= 2
 1

−1
(−3 − 22 +  + 2) 

= 4
 1

0
(−22 + 2)  [by Theorem 5.5.7]

= 8
 1

0
(1− 2)  = 8


 − 1

3
3
1
0

= 8

1− 1

3


= 8


2
3


= 16

3

21. (a)  = 2

 2

0

(
−

)  = 2

 2

0


2

−



(b)  ≈ 406300

22. (a)  = 2

 4

0


2
− 


tan

(b)  ≈ 225323

23. (a)  = 2

 2

−2
( − )[cos

4
− (− cos

4
)] 

= 4

 2

−2
( − ) cos

4


[or 82
 2
0

cos4  using Theorem 5.5.7]

(b)  ≈ 4650942

24. (a)  =
2

1 + 3
⇒ + 4 = 2 ⇒ 4 −  = 0 ⇒

(3 − 1) = 0 ⇒ (− 1)(2 + + 1) = 0 ⇒  = 0 or 1

 = 2

 1

0

[− (−1)]


2

1 + 3
− 




(b)  ≈ 236164
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SECTION 6.3 VOLUMES BY CYLINDRICAL SHELLS ¤ 37

25. (a)  =
 
0

2(4− )
√

sin   (b)  ≈ 3657476

26. (a)  =
 3

−3
2(5− )


4−


2 + 7


 (b)  ≈ 16302712

27.  =
 1

0
2

√
1 + 3 . Let () = 

√
1 + 3.

Then the Midpoint Rule with  = 5 gives 1

0
() ≈ 1−0

5
[(01) + (03) + (05) + (07) + (09)]

≈ 02(29290)

Multiplying by 2 gives  ≈ 368.

28.  =
 10

0
2() . Let () = (), where the values of  are obtained from the graph.

Using the Midpoint Rule with  = 5 gives 10

0

() ≈ 10−0
5

[(1) + (3) + (5) + (7) + (9)]

= 2[1(1) + 3(3) + 5(5) + 7(7) + 9(9)]

= 2[1(4− 2) + 3(5− 1) + 5(4− 1) + 7(4− 2) + 9(4− 2)]

= 2(2 + 12 + 15 + 14 + 18) = 2(61) = 122

Multiplying by 2 gives  ≈ 244 ≈ 7665.

29.
 3

0
25  = 2

 3

0
(4) . The solid is obtained by rotating the region 0 ≤  ≤ 4, 0 ≤  ≤ 3 about the y-axis using

cylindrical shells.

30.
 3

1
2 ln  . The solid is obtained by rotating the region 0 ≤  ≤ ln , 1 ≤  ≤ 3 about the -axis using cylindrical shells.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



38 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

31. 2

 4

1

 + 2

2
 = 2

 4

1

( + 2)


1

2


. The solid is obtained by rotating the region 0 ≤  ≤ 12, 1 ≤  ≤ 4 about

the line  = −2 using cylindrical shells.

32.
 1

0
2(2− )(3 − 2) . The solid is obtained by rotating the region 2 ≤  ≤ 3, 0 ≤  ≤ 1 about the line  = 2 using

cylindrical shells.

33. From the graph, the curves intersect at  = 0 and  =  ≈ 2175, with



2 + 1
 2 − 2 on the interval (0 ). So the volume of the solid

obtained by rotating the region about the -axis is

 = 2

 

0






2 + 1
− (

2 − 2)


 ≈ 14450

34. From the graph, the curves intersect at  =  ≈ 0906 and  =  ≈ 2715,

with sin   2 − 4+ 5 on the interval ( ). So the volume of the solid

obtained by rotating the region about the -axis is

 = 2
 



sin − (2 − 4 + 5)


 ≈ 21253

35.  = 2

 2

0



2
− 


sin

2
− sin

4




CAS
= 1

32
3

36.  = 2
 
0


[− (−1)](3 sin)




CAS
= 2(4 + 3 − 122 − 6 + 48)

= 25 + 24 − 243 − 122 + 96

37. Use shells:

 =
 4

2
2(−2 + 6− 8)  = 2

 4

2
(−3 + 62 − 8) 

= 2
− 1

4
4 + 23 − 42

4
2

= 2[(−64 + 128− 64)− (−4 + 16− 16)]

= 2(4) = 8
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SECTION 6.3 VOLUMES BY CYLINDRICAL SHELLS ¤ 39

38. Use disks:

 =
 4

2
(−2 + 6− 8)2 

= 
 4

2
(4 − 123 + 522 − 96+ 64) 

= 

1
5
5 − 34 + 52

3
3 − 482 + 64

4
2

= 


512
15
− 496

15


= 16

15


39. Use washers: 2 − 2 = 1 ⇒  = ±√2 ± 1

 =

 √
3

−√3




(2− 0)

2 −


2 + 1− 0
2



= 2

 √
3

0

[4− (
2
+ 1)]  [by symmetry]

= 2

 √
3

0

(3− 
2
)  = 2


3− 1

3


3
√3

0

= 2

3
√

3−√3


= 4
√

3

40. Use disks: 2 − 2 = 1 ⇒  = ±

2 − 1

 = 

 2

1


2 − 1

2

 = 

 2

1

(
2 − 1) 

= 


1
3
3 − 

2
1

= 


8
3
− 2
−  1

3
− 1


= 4
3


41. Use disks: 2 + ( − 1)2 = 1 ⇔  = ±


1− ( − 1)2

 = 

 2

0


1− ( − 1)2

2
 = 

 2

0

(2 − 
2
) 

= 

2 − 1

3
3
2
0

= 

4− 8

3


= 4

3


42. Use shells:

 =
 5

1
2( − 1)[4− ( − 3)2] 

= 2
 5

1
( − 1)(−2 + 6 − 5) 

= 2
 5

1
(−3 + 72 − 11 + 5) 

= 2
−1

4
4 + 7

3
3 − 11

2
2 + 5

5
1

= 2


275
12
− 19

12


= 128

3
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40 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

43.  + 1 = ( − 1)2 ⇔  + 1 = 2 − 2 + 1 ⇔ 0 = 2 − 3 ⇔
0 = ( − 3) ⇔  = 0 or 3.

Use disks:

 = 

 3

0


[( + 1)− (−1)]

2 − [( − 1)
2 − (−1)]

2



= 

 3

0

[( + 2)
2 − (

2 − 2 + 2)
2
] 

= 

 3

0

[(
2
+ 4 + 4)− (

4 − 4
3
+ 8

2 − 8 + 4)]  = 

 3

0

(−4
+ 4

3 − 7
2

+ 12) 

= 
−1

5
5 + 4 − 7

3
3 + 62

3
0

= 
− 243

5
+ 81− 63 + 54


= 117

5


44. Use cylindrical shells to find the volume  .

 =
 1

0
2(− )(2)  = 4

 1

0
(− 2) 

= 4


1
2
2 − 1

3
3
1
0

= 4


1
2
− 1

3


Now solve for  in terms of  :

 = 4


1
2
− 1

3

 ⇔ 

4
=

1

2
− 1

3
⇔ 1

2
 =



4
+

1

3
⇔

 =


2
+

2

3

45. Use shells:

= 2
 
0

2
√
2 − 2  = −2

 
0
(2 − 2)12(−2) 

=

−2 · 2

3
(2 − 2)32


0

= −4
3
(0− 3) = 4

3
3

 

46.  =
 +

− 2 · 2

2 − (−)2 

=
 
− 4(+)

√
2 − 2  [let  = −]

= 4
 
−
√
2 − 2 + 4

 
− 

√
2 − 2 

The first integral is the area of a semicircle of radius , that is, 1
2
2,

and the second is zero since the integrand is an odd function. Thus,

 = 4


1
2
2


+ 4 · 0 = 222.

47.  = 2

 

0




−


+ 


 = 2

 

0


−2


+ 




= 2


−3

3
+

2

2


0

= 2
2

6
=

2

3
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SECTION 6.4 WORK ¤ 41

48. By symmetry, the volume of a napkin ring obtained by drilling a hole of

radius  through a sphere with radius  is twice the volume obtained by

rotating the area above the -axis and below the curve  =
√
2 − 2

(the equation of the top half of the cross-section of the sphere), between

 =  and  = , about the -axis. This volume is equal to

2

 outer radius

inner radius
2 = 2 · 2

 





2 − 2  = 4


− 1

3




2 − 
2
32


= 4

3
(

2 − 
2
)
32

But by the Pythagorean Theorem, 2 − 2 =


1
2

2
, so the volume of the napkin ring is 4

3



1
2

3

= 1
6
3, which is

independent of both  and ; that is, the amount of wood in a napkin ring of height  is the same regardless of the size of the

sphere used. Note that most of this calculation has been done already, but with more difficulty, in Exercise 6.2.70.

Another solution: The height of the missing cap is the radius of the sphere minus half the height of the cut-out cylinder, that is,

− 1
2
. Using Exercise 6.2.49,

napkin ring = sphere − cylinder − 2cap = 4
3
3 − 2− 2 · 

3


− 1

2

2

3− − 1
2



= 1
6
3

6.4 Work

1. (a) The work done by the gorilla in lifting its weight of 360 pounds to a height of 20 feet

is =  = (360 lb)(20 ft) = 7200 ft-lb.

(b) The amount of time it takes the gorilla to climb the tree doesn’t change the amount of work done, so the

work done is still 7200 ft-lb.

2.  =  = () = [(200 kg)(98 ms2)](3 m) = (1960 N)(3 m) = 5880 J

3.  =
 

()  =

 10

1
5−2  = 5


−−1

10
1

= 5
− 1

10
+ 1


= 45 ft-lb

4.  =
 2

1
cos


1
3


 = 3




sin


1
3

2

1
= 3



√
3

2
−
√

3
2


= 0 N·m = 0 J.

Interpretation: From  = 1 to  = 3
2
, the force does work equal to

 32

1
cos


1
3


 = 3




1−

√
3

2


J in accelerating the

particle and increasing its kinetic energy. From  = 3
2
to  = 2, the force opposes the motion of the particle, decreasing its

kinetic energy. This is negative work, equal in magnitude but opposite in sign to the work done from  = 1 to  = 3
2
.

5. The force function is given by  () (in newtons) and the work (in joules) is the area under the curve, given by 8

0
 ()  =

 4

0
 ()  +

 8

4
 ()  = 1

2
(4)(30) + (4)(30) = 180 J.

6.  =
 20

4
()  ≈4 = ∆[(6) + (10) + (14) + (18)] = 20−4

4
[58 + 88 + 82 + 52] = 4(28) = 112 J

7. According to Hooke’s Law, the force required to maintain a spring stretched  units beyond its natural length (or compressed

 units less than its natural length) is proportional to , that is, () = . Here, the amount stretched is 4 in. = 1
3

ft and
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42 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

the force is 10 lb. Thus, 10 = 


1
3

 ⇒  = 30 lbft, and () = 30. The work done in stretching the spring from its

natural length to 6 in. = 1
2

ft beyond its natural length is =
 12

0
30 =


152

12
0

= 15
4
ft-lb.

8. According to Hooke’s Law, the force required to maintain a spring stretched  units beyond its natural length (or compressed

 units less than its natural length) is proportional to , that is, () = . Here, the amount compressed is

40− 30 = 10 cm = 01 m and the force is 60 N. Thus, 60 = (01) ⇒  = 600 Nm, and () = 600. The work

required to compress the spring 01 m is =
 01

0
600 =


3002

01
0

= 300(001) = 3 N-m (or J). The work required

to compress the spring 40− 25 = 15 cm = 015 m is =
 015

0
600 =


3002

015
0

= 300(00225) = 675 J.

9. (a) If
 012

0
  = 2 J, then 2 =


1
2
2

012
0

= 1
2
(00144) = 00072 and  = 2

00072
= 2500

9
≈ 27778 Nm.

Thus, the work needed to stretch the spring from 35 cm to 40 cm is 010

005
2500

9
 =


1250

9
2
110
120

= 1250
9


1

100
− 1

400


= 25

24
≈ 104 J.

(b) () = , so 30 = 2500
9

 and  = 270
2500

m = 108 cm

10. If 12 =
 1

0
  =


1
2
2

1
0

= 1
2
, then  = 24 lbft and the work required is 34

0
24 =


122

34
0

= 12 · 9
16

= 27
4

= 675 ft-lb.

11. The distance from 20 cm to 30 cm is 01 m, so with () = , we get1 =
 01

0
  = 


1
2
2
01
0

= 1
200

.

Now2 =
 02

01
  = 


1
2
2
02
01

= 


4
200
− 1

200


= 3

200
. Thus,2 = 31.

12. Let  be the natural length of the spring in meters. Then

6 =
 012−
010−   =


1
2
2

012−
010− = 1

2


(012− )

2 − (010− )
2

and

10 =
 014−
012−  =


1
2
2

014−
012− = 1

2


(014− )

2 − (012− )
2

.

Simplifying gives us 12 = (00044− 004) and 20 = (00052− 004). Subtracting the first equation from the second

gives 8 = 00008, so  = 10,000. Now the second equation becomes 20 = 52− 400, so  = 32
400

m = 8 cm.

In Exercises 13 – 22,  is the number of subintervals of length ∆, and ∗ is a sample point in the th subinterval [−1 ].

13. (a) The portion of the rope from  ft to ( +∆) ft below the top of the building weighs 1
2
∆ lb and must be lifted ∗ ft,

so its contribution to the total work is 1
2
∗ ∆ ft-lb. The total work is

 = lim
→∞


=1

1
2
∗ ∆ =

 50

0
1
2
 =


1
4
2
50
0

= 2500
4

= 625 ft-lb

Notice that the exact height of the building does not matter (as long as it is more than 50 ft).

(b) When half the rope is pulled to the top of the building, the work to lift the top half of the rope is

1 =
 25

0
1
2
 =


1
4
2
25
0

= 625
4

ft-lb. The bottom half of the rope is lifted 25 ft and the work needed to accomplish
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SECTION 6.4 WORK ¤ 43

that is2 =
 50

25

1
2
· 25 = 25

2



50
25

= 625
2

ft-lb. The total work done in pulling half the rope to the top of the building

is = 1 +2 = 625
2

+ 625
4

= 3
4
· 625 = 1875

4
ft-lb.

14. (a) The 60 ft cable weighs 180 lb, or 3 lbft. If we divide the cable into  equal parts of length∆ = 60 ft, then for large

, all points in the th part are lifted by approximately the same amount. Choose a representative distance from the winch

in the th part of the cable, say ∗ . If 
∗
  25 ft, then the th part has to be lifted roughly ∗ ft. If ∗ ≥ 25 ft, then the th

part has to be lifted 25 ft. The th part weighs (3 lbft)(∆ ft) = 3∆ lb, so the work done in lifting it is (3∆)∗ if

∗  25 ft and (3∆)(25) = 75∆ if ∗ ≥ 25 ft. The work of lifting the top 25 ft of the cable is

1 = lim
→∞

1
=1

3∗ ∆ =
 25

0
3 =


3
2
2
25
0

= 3
2
(625) = 9375 ft-lb. Here 1 represents the number of

parts of the cable in the top 25 ft. The work of lifting the bottom 35 ft of the cable is

2 = lim
→∞

2
=1

75∆ =
 60

25
75  = 75(60− 25) = 2625 ft-lb, where 2 represents the number of small parts in the

bottom 35 feet of the cable. The total work done is = 1 +2 = 9375 + 2625 = 35625 ft-lb.

(b) Once  feet of cable have been wound up by the winch, there is (60− ) ft of cable still hanging from the winch. That

portion of the cable weighs 3(60− ) lb. Lifting it∆ feet requires 3(60− )∆ ft-lb of work. Thus, the total work

needed to lift the cable 25 ft is =
 25

0
3(60− )  =


180− 3

2
2
25
0

= 4500− 9375 = 35625 ft-lb.

15. The work needed to lift the cable is lim
→∞



=1 2∗ ∆ =
 500

0
2 =


2
500
0

= 250,000 ft-lb. The work needed to lift

the coal is 800 lb · 500 ft = 400,000 ft-lb. Thus, the total work required is 250,000 + 400,000 = 650,000 ft-lb.

16. Assumptions:

1. After lifting, the chain is L-shaped, with 4 m of the chain lying along the ground.

2. The chain slides effortlessly and without friction along the ground while its end is lifted.

3. The weight density of the chain is constant throughout its length and therefore equals (8 kgm)(98 ms2) = 784 Nm.

The part of the chain  m from the lifted end is raised 6−  m if 0 ≤  ≤ 6 m, and it is lifted 0 m if   6 m.

Thus, the work needed is

 = lim
→∞


=1

(6− ∗ ) · 784∆ =
 6

0
(6− )784  = 784


6− 1

2
2
6
0

= (784)(18) = 14112 J

17. At a height of  meters (0 ≤  ≤ 12), the mass of the rope is (08 kgm)(12−  m) = (96− 08) kg and the mass of the

water is


36
12

kgm

(12−  m) = (36− 3) kg. The mass of the bucket is 10 kg, so the total mass is

(96− 08) + (36− 3) + 10 = (556− 38) kg, and hence, the total force is 98(556− 38) N. The work needed to lift

the bucket∆ m through the th subinterval of [0 12] is 98(556− 38∗ )∆, so the total work is

 = lim
→∞


=1

98(556− 38∗ )∆ =
 12

0
(98)(556− 38)  = 98


556− 192

12
0

= 98(3936) ≈ 3857 J
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44 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

18. The work needed to lift the bucket itself is 4 lb · 80 ft = 320 ft-lb. At time  (in seconds) the bucket is ∗ = 2 ft above its

original 80 ft depth, but it now holds only (40− 02) lb of water. In terms of distance, the bucket holds

40− 02


1
2
∗


lb

of water when it is ∗ ft above its original 80 ft depth. Moving this amount of water a distance∆ requires
40− 1

10
∗

∆ ft-lb of work. Thus, the work needed to lift the water is

 = lim
→∞


=1


40− 1

10
∗

∆ =

 80

0


40− 1

10


 =


40− 1

20
2
80
0

= (3200− 320) ft-lb

Adding the work of lifting the bucket gives a total of 3200 ft-lb of work.

19. The chain’s weight density is
25 lb
10 ft

= 25 lbft. The part of the chain  ft below the ceiling (for 5 ≤  ≤ 10) has to be lifted

2(− 5) ft, so the work needed to lift the th subinterval of the chain is 2(∗ − 5)(25∆). The total work needed is

 = lim
→∞


=1

2(∗ − 5)(25)∆ =
 10

5
[2(− 5)(25)]  = 5

 10

5
(− 5) 

= 5


1
2
2 − 5

10
5

= 5

(50− 50)−  25

2
− 25


= 5


25
2


= 625 ft-lb

20. A horizontal cylindrical slice of water ∆ ft thick has a volume of 2 =  · 122 ·∆ ft3 and weighs about
625 lbft3


144∆ ft3


= 9000∆ lb. If the slice lies ∗ ft below the edge of the pool (where 1 ≤ ∗ ≤ 5), then the

work needed to pump it out is about 9000∗ ∆. Thus,

 = lim
→∞


=1

9000∗ ∆ =
 5

1
9000 =


45002

5
1

= 4500(25− 1) = 108,000 ft-lb

21. A “slice” of water∆ m thick and lying at a depth of ∗ m (where 0 ≤ ∗ ≤ 1
2
) has volume (2× 1×∆) m3, a mass of

2000∆ kg, weighs about (98)(2000∆) = 19,600∆ N, and thus requires about 19,600∗ ∆ J of work for its removal.

So = lim
→∞


=1

19,600∗ ∆ =
 12

0
19,600 =


98002

12
0

= 2450 J.

22. We use a vertical coodinate  measured from the center of the water tank.

The top and bottom of the tank have coordinates  = −12 ft and  = 12 ft,

respectively.

A thin horizontal slice of water at coordinate  is a disk of radius
√

122 − 2 as shown in the figure. The disk has area 2 = (122 − 2),

so if the slice has thickness∆, the slice has volume (122 − 2)∆ and

weight 625(122 − 2)∆. The work needed to raise this water from

ground level (coordinate 72) to coordinate , a distance of (72− ) ft, is

625(122 − 2)(72− )∆ ft-lb. The total work needed to fill the tank is
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SECTION 6.4 WORK ¤ 45

approximated by a Riemann sum

=1

625[(122 − (∗ )
2)](72− ∗ )∆. Thus, the total work is

 = lim
→∞


=1

625[(122 − (∗ )
2)](72− ∗ )∆ =

 12

−12
625(122 − 2)(72− ) 

= 625
 12

−12
[72(12

2 − 
2
)  

even function

− (12
2 − 

2
)  

odd function

]  = 625(2)
 12

0
72(122 − 2)  [by Theorem 5.5.7]

= 125(72)

122− 1

3
3
12
0

= 9000

123 − 1

3
· 123


= 9000


2
3
· 123


= 10,368,000 ft-lb

The 15 horsepower pump does 15(550) = 825 ft-lb of work per second. To fill the tank, it will take

10,368,000 ft-lb
825 ft-lbs

≈ 39,481 s ≈ 1097 hours.

23. A rectangular “slice” of water∆ m thick and lying  m above the bottom has width  m and volume 8∆ m3. It weighs

about (98× 1000)(8∆) N, and must be lifted (5− ) m by the pump, so the work needed is about

(98× 103)(5− )(8∆) J. The total work required is

 ≈  3

0
(98× 103)(5− )8 = (98× 103)

 3

0
(40− 82)  = (98× 103)


202 − 8

3
3
3
0

= (98× 103)(180− 72) = (98× 103)(108) = 10584× 103 ≈ 106× 106 J

24. Let  measure depth (in meters) below the center of the spherical tank, so that  = −3 at the top of the tank and  = −4 at the

spigot. A horizontal disk-shaped “slice” of water∆ m thick and lying at coordinate  has radius


9− 2 m and volume

2∆ = (9− 2)∆ m3. It weighs about (98× 1000)(9− 2)∆ N and must be lifted ( + 4) m by the pump, so the

work needed to pump it out is about (98× 103)( + 4)(9− 2)∆ J. The total work required is

 ≈  3

−3
(98× 103)( + 4)(9− 2)  = (98× 103)

 3

−3
[(9− 2) + 4(9− 2)] 

= (98× 103)(2)(4)
 3

0
(9− 2)  [by Theorem 5.5.7]

= (784× 103)

9 − 1

3
3
3
0

= (784× 103)(18) = 1,411,200 ≈ 443× 106 J

25. Let measure depth (in feet) below the spout at the top of the tank. A horizontal

disk-shaped “slice” of water∆ ft thick and lying at coordinate  has radius

3
8
(16− ) ft () and volume 2∆ =  · 9

64
(16− )2 ∆ ft3. It weighs

about (625) 9
64

(16− )2 ∆ lb and must be lifted  ft by the pump, so the

work needed to pump it out is about (625) 9
64

(16− )2 ∆ ft-lb. The total

work required is

 ≈  8

0
(625) 9

64
(16− )2  = (625) 9

64

 8

0
(256− 32 + 2) 

= (625) 9
64

 8

0
(256− 322 + 3)  = (625) 9

64


1282 − 32

3
3 + 1

4
4
8
0

= (625)
9

64


11,264

3


= 33,000 ≈ 104× 105 ft-lb

() From similar triangles,


8− 
=
3

8
.

So  = 3 +  = 3 + 3
8
(8− )

=
3(8)

8
+
3

8
(8− )

= 3
8
(16− )
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46 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

26. Let  measure the distance (in feet) above the bottom of the tank. A

horizontal “slice” of water∆ ft thick and lying at coordinate  has

volume 10(2)∆ ft3. It weighs about (625)20∆ lb and must be

lifted (6− ) ft by the pump, so the work needed to pump it out is about

(625)(6− )20∆ ft-lb. The total work required is

 ≈  6

0
(625)(6− )20 = 1250

 6

0
(6− 2)  = 1250


32 − 1

3
3
6
0

= 1250(36) = 45,000 ft-lb.

27. If only 47× 105 J of work is done, then only the water above a certain level (call

it ) will be pumped out. So we use the same formula as in Exercise 23, except that

the work is fixed, and we are trying to find the lower limit of integration:

47× 105 ≈  3


(98× 103)(5− )8 =


98× 103


202 − 8

3
3
3

⇔

47
98

× 102 ≈ 48 =

20 · 32 − 8

3
· 33
− 202 − 8

3
3
 ⇔

23 − 152 + 45 = 0. To find the solution of this equation, we plot 23 − 152 + 45 between  = 0 and  = 3.

We see that the equation is satisfied for  ≈ 20. So the depth of water remaining in the tank is about 20 m.

28. The only changes needed in the solution for Exercise 24 are: (1) change the lower limit from−3 to 0 and (2) change 1000

to 900.

 ≈  3

0
(98× 900)( + 4)(9− 2)  = (98× 900)

 3

0
(9 − 3 + 36− 42) 

= (98× 900)


9
2
2 − 1

4
4 + 36 − 4

3
3
3
0

= (98× 900)(9225) = 813,645

≈ 256× 106 J [about 58% of the work in Exercise 24]

29.  = 2, so  is a function of  and  can also be regarded as a function of . If 1 = 21 and 2 = 22, then

 =

 2

1

 ()  =

 2

1


2
 ( ())  =

 2

1

 ( ())  () [Let  () = 
2
, so  () = 

2
.]

=

 2

1

 ( )  by the Substitution Rule.

30. 160 lbin2 = 160 · 144 lbft2, 100 in3 = 100
1728

ft3, and 800 in3 = 800
1728

ft3.

 =  14 = (160 · 144) 100
1728

14
= 23,040


25
432

14 ≈ 4265. Therefore,  ≈ 4265 −14 and

 =

 8001728

1001728

4265
−14

 = 4265


1
−04


−04

2554
25432

= (4265)(25)


432
25

04 −  54
25

04 ≈ 188× 10
3 ft-lb.

31. (a)  =

 2

1

()  =

 2

1

(()) () 


 = ()

 = () 



=

 2

1

() ()  =

 2

1




 = ()

 = () 


=

1
2
2

2
1

= 1
2
2

2 − 1
2
2

1
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SECTION 6.4 WORK ¤ 47

(b) The mass of the bowling ball is
12 lb

32 fts
2

=
3

8
slug. Converting 20 mih to fts

2 gives us

20 mi

h
· 5280 ft

1 mi
· 1 h

3600 s2
=

88

3
fts

2. From part (a) with 1 = 0 and 2 = 88
3
, the work required to hurl the bowling ball

is = 1
2
· 3

8


88
3

2 − 1
2
· 3

8
(0)2 = 484

3
= 1613 ft-lb.

32. The work required to move the 800 kg roller coaster car is

 =
 60

0
(572 + 15)  =


193 + 0752

60
0

= 410,400 + 2700 = 413,100 J.

Using Exercise 31(a) with 1 = 0, we get = 1
2
2

2 ⇒ 2 =


2


=


2(413,100)

800
≈ 3214 ms.

33. (a)  =

 



 ()  =

 




12

2
 = 12

−1






= 12


1


− 1





(b) By part (a), = 


1


− 1

 + 1,000,000


where = mass of the earth in kg,  = radius of the earth in m,

and = mass of satellite in kg. (Note that 1000 km = 1,000,000 m.) Thus,

 = (667× 10−11)(598× 1024)(1000)×


1

637× 106
− 1

737× 106


≈ 850× 109 J

34. (a) Assume the pyramid has smooth sides. From the figure for

0 ≤  ≤ 378, an equation for the side is  = −481
378

+ 481 ⇔
 = − 378

481
( − 481). The horizontal length of a cross-section is

2 and the area of a cross-section is

 = (2)2 = 42 = 4
3782

4812
( − 481)2. A slice of thickness

∆ at height  has volume∆ = ∆ ft3 and weight

150∆ lb, so the work needed to build the pyramid was

1 =

 481

0

150 · 4 3782

4812
( − 481)

2
 = 600

3782

4812

 481

0

(
3 − 2 · 4812

+ 481
2
) 

= 600
3782

4812


1

4
4 − 2 · 481

3
3 +

4812

2
2

481
0

= 600
3782

4812


4814

4
− 2 · 4814

3
+

4814

2



= 600
3782

4812

4814

12
= 50 · 3782 · 4812 ≈ 1653× 1012 ft-lb

(b) Work done = 2 =
10 h
day

· 340 days
year

· 20 yr
1 laborer

· 200 ft-lb
hour

= 136× 107 ft-lb
laborer

. Dividing1 by2

gives us about 121,536 laborers.
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48 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

6.5 Average Value of a Function

1. ave = 1
−

 

()  = 1

2− (−1)

 2

−1
(32 + 8)  = 1

3
[3 + 42]2−1 = 1

3
[(8 + 16)− (−1 + 4)] = 7

2. ave = 1
−

 

()  = 1

4− 0

 4

0

√
 = 1

4


2
3
32

4
0

= 1
4


2
3
· 8 = 4

3

3. ave =
1

− 

 



()  =
1

2− (−2)
 2

−2
3 cos =

3 · 2


 2

0

cos [by Theorem 5.5.7]

= 6



sin

2
0

= 6

(1− 0) = 6



4. ave =
1

− 

 



()  =
1

3− 1

 3

1

√
3 + 2

 = 1
2


(3 + 

2
)
12
3
1

= 1
2


2
√

3− 2


=
√

3− 1

5. ave = 1
−

 

()  = 1

2− 0

 2
0

sin  cos   = 2

[sin ]

2
0 = 2


(− 1)

6. ave =
1

− 

 



()  =
1

1− (−1)

 1

−1

2

(3 + 3)2
 =

1

2

 4

2

1

2


1

3


 
 = 3 + 3

 = 32 



=
1

6


− 1



4
2

=
1

6


−1

4
+

1

2


=

1

24

7. ave = 1
−

 

()  = 1

− 0

 
0

cos4  sin = 1


−1

1
4(−) [ = cos,  = − sin ]

= 1


 1

−1
4  = 1


· 2  1

0
4  [by Theorem 5.5.7] = 2




1
5
5
1
0

= 2
5

8. ave =
1

− 

 



()  =
1

5− 1

 5

1

ln


 =

1

4

 ln 5

0

 


 = ln

 = 1 


= 1

4


1
2
2
ln 5

0
= 1

8
(ln 5)2

9. (a) ave =
1

5 − 2

 5

2

(− 3)
2
 =

1

3


1

3
(− 3)

3

5
2

= 1
9


23 − (−1)3


= 1

9
(8 + 1) = 1

(c)

(b) () = ave ⇔ (− 3)2 = 1 ⇔
− 3 = ±1 ⇔  = 2 or 4

10. (a) ave =
1

3− 1

 3

1

1


 = 1

2


ln ||

3
1

= 1
2
(ln 3− ln 1) = 1

2
ln 3

(c)

(b) () = ave ⇔ 1


= 1
2

ln 3 ⇔  = 2 ln 3 ≈ 1820
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SECTION 6.5 AVERAGE VALUE OF A FUNCTION ¤ 49

11. (a) ave =
1

 − 0

 

0

(2 sin− sin 2) 

= 1


−2 cos+ 1
2

cos 2

0

= 1



2 + 1

2

− −2 + 1
2


= 4



(c)

(b) () = ave ⇔ 2 sin − sin 2 = 4


⇔
 = 1 ≈ 1238 or  = 2 ≈ 2808

12. (a) ave = 1
2− 0

 2

0
2−

2



= 1
2


−−2

2
0

= 1
2
(−−4 + 1)

(c)

(b) () = ave ⇔ 2−
2

= 1
2
(1− −4) ⇔

 = 1 ≈ 0263 or  = 2 ≈ 1287

13.  is continuous on [1 3], so by the Mean Value Theorem for Integrals there exists a number  in [1 3] such that 3

1
()  = ()(3− 1) ⇒ 8 = 2(); that is, there is a number  such that () = 8

2
= 4.

14. The requirement is that
1

− 0

 

0

()  = 3. The LHS of this equation is equal to

1



 

0


2 + 6− 3

2

 =

1




2+ 3

2 − 
3

0

= 2 + 3− 
2, so we solve the equation 2 + 3− 2 = 3 ⇔

2 − 3+ 1 = 0 ⇔  =
3±


(−3)2 − 4 · 1 · 1

2 · 1 =
3±√5

2
. Both roots are valid since they are positive.

15. Use geometric interpretations to find the values of the integrals. 8

0
() =

 1

0
()  +

 2

1
() +

 3

2
()  +

 4

3
() +

 6

4
() +

 7

6
() +

 8

7
() 

= − 1
2

+ 1
2

+ 1
2

+ 1 + 4 + 3
2

+ 2 = 9

Thus, the average value of  on [0 8] = ave = 1
8− 0

 8

0
()  = 1

8
(9) = 9

8
.

16. (a) ave = 1
12− 0

 12

0
()  = 1

12
. Use the Midpoint Rule with  = 3 and∆ = 12−0

3
= 4 to estimate .

 ≈3 = 4[(2) + (6) + (10)] = 4[21 + 50 + 66] = 4(137) = 548. Thus, ave ≈ 1
12

(548) = 45 2
3
kmh.

(b) Estimating from the graph, () = 45 2
3
when  ≈ 52 s.

17. Let  = 0 and  = 12 correspond to 9 AM and 9 PM, respectively.

ave = 1
12− 0

 12

0


50 + 14 sin 1

12


 = 1

12


50− 14 · 12


cos 1

12

12
0

= 1
12


50 · 12 + 14 · 12


+ 14 · 12




=

50 + 28



 ◦F ≈ 59◦F

18. ave =
1

− 0

 

0

()  =
1



 

0



4
(

2 − 
2
)  =



4




2
 − 1

3

3

0

=


4


2
3




3
=

2

6


Since () is decreasing on (0 ], max = (0) =
2

4
. Thus, ave = 2

3
max.
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50 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

19. ave =
1

8

 8

0

12√
+ 1

 =
3

2

 8

0

(+ 1)
−12

 =

3
√
 + 1

8
0

= 9− 3 = 6 kgm

20. (a) Similar to Example 3.8.3, we have  = 20◦C and hence



= ( − 20). Let  =  − 20, so that

(0) =  (0)− 20 = 95− 20 = 75. Now  satisfies (3.8.2), so  = 75. We are given that  (30) = 61, so

(30) = 61− 20 = 41 and 41 = 75(30) ⇒ 41
75

= 30 ⇒ 30 = ln 41
75

⇒  = 1
30

ln 41
75
≈ −0020131.

Thus,  () = 20 + 75−, where  = − ≈ 002.

(b) ave = 1
30− 0

 30

0
 ()  = 1

30

 30

0
(20 + 75−)  = 1

30


20− 75


−

30
0

= 1
30


600− 75


−30

− 0− 75



= 1

30


600− 75


· 41

75
+ 75




= 1

30


600 + 34




= 20 + 34

30
≈ 763◦C

21. ave = 1
50−0

 50

0
 ()  = 1

50

 50

0
2560  [with  = 0017185]

=
2560

50


1



50
0

=
2560

50
(50 − 1) ≈ 4056 million, or about 4 billion people

22.  = 1
2
2 ⇒  =


2 [since  ≥ 0]. Now  =  =  = 


2 =

√
2 ⇒ 2 = 2 ⇒  =

2

2
.

We see that  can be regarded as a function of  or of :  =  () =  and  = () =
√

2. Note that  =  ( ) =  .

Displacement can be viewed as a function of :  = () = 1
2
2; also () =

2

2
=

[ ()]2

2
. When  =  , these two

formulas for () imply that 
2( ) =  ( ) =  =  = 2


1
2
 2


 = 2( ) ()

The average of the velocities with respect to time  during the interval [0  ] is

-ave = ave =
1

 − 0

 

0

 ()  =
1


[( )− (0)] [by FTC] =

( )


[since (0) = 0] =

1

2
 [by ()]

But the average of the velocities with respect to displacement  during the corresponding displacement interval

[(0) ( )] = [0 ( )] is

-ave = ave =
1

( )− 0

 ( )

0

()  =
1

( )

 ( )

0


2  =

√
2

( )

 ( )

0


12



=

√
2

( )
· 2

3


32

( )

0
=

2

3
·
√

2

( )
·

( )

32
=

2

3


2( ) =

2

3
 [by ()]

23. ave = 1
5

 5

0
 ()  = 1

5

 5

0

5
4


1− cos


2
5


 = 1

4

 5

0


1− cos


2
5




= 1
4


− 5

2
sin


2
5

5

0
= 1

4
[(5− 0)− 0] = 5

4
≈ 04 L

24. ave = 1
− 

 

() 

 1
− 

(area of trapezoid  )

= 1
− 

(area of rectangle  )

= 1
− 




+ 

2

 · (− )


= 

+ 

2
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APPLIED PROJECT CALCULUS AND BASEBALL ¤ 51

25. Let  () =
 

()  for  in [ ]. Then  is continuous on [ ] and differentiable on ( ), so by the Mean Value

Theorem there is a number  in ( ) such that  ()−  () =  0()(− ). But  0() = () by the Fundamental

Theorem of Calculus. Therefore,
 

() − 0 = ()(− ).

26. ave [ ] =
1

− 

 



()  =
1

− 

 



() +
1

− 

 



() 

=
− 

− 


1

− 

 



() 


+

− 

− 


1

− 

 



() 


=

− 

− 
ave [ ] +

− 

− 
ave [ ]

APPLIED PROJECT Calculus and Baseball

1. (a)  =  = 



, so by the Substitution Rule we have

 1

0

 ()  =

 1

0









 = 

 1

0

 =


1
0

= 1 −0 = (1)− (0)

(b) (i) We have 1 = 110 mih =
110(5280)

3600
fts = 1613 fts, 0 = −90 mih = −132 fts, and the mass of the

baseball is =



=

516

32
= 5

512
. So the change in momentum is

(1)− (0) = 1 −0 = 5
512

[1613− (−132)] ≈ 286 slug-fts.

(ii) From part (a) and part (b)(i), we have
 0001

0
 ()  = (0001)− (0) ≈ 286, so the average force over the

interval [0 0001] is 1
0001

 0001

0
 ()  ≈ 1

0001
(286) = 2860 lb.

2. (a)  =

 1

0

 () , where  () = 



= 








= 




and so, by the Substitution Rule,

 =

 1

0

 ()  =

 1

0





 =

 (1)

(0)

  =


1
2


2
1
0

= 1
2


2
1 − 1

2


2
0

(b) From part (b)(i), 90 mih = 132 fts. Assume 0 = (0) = 0 and 1 = (1) = 132 fts [note that 1 is the point of

release of the baseball].  = 5
512

, so the work done is = 1
2
2

1 − 1
2
2

0 = 1
2
· 5

512
· (132)2 ≈ 85 ft-lb.

3. (a) Here we have a differential equation of the form  = , so by Theorem 3.8.2, the solution is () = (0).

In this case  = − 1
10

and (0) = 100 fts, so () = 100−10. We are interested in the time  that the ball takes to travel

280 ft, so we find the distance function

() =
 
0
()  =

 
0

100−10  = 100

−10−10


0

= −1000(−10 − 1) = 1000(1− −10)

Now we set () = 280 and solve for : 280 = 1000(1− −10) ⇒ 1− −10 = 7
25

⇒

− 1
10
 = ln


1− 7

25

 ⇒  ≈ 3285 seconds.
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52 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

(b) Let  be the distance of the shortstop from home plate. We calculate the time for the ball to reach home plate as a function

of , then differentiate with respect to  to find the value of  which corresponds to the minimum time. The total time that

it takes the ball to reach home is the sum of the times of the two throws, plus the relay time


1
2
s

. The distance from the

fielder to the shortstop is 280− , so to find the time 1 taken by the first throw, we solve the equation

1(1) = 280−  ⇔ 1− −110 =
280− 

1000
⇔ 1 = −10 ln

720 + 

1000
. We find the time 2 taken by the second

throw if the shortstop throws with velocity , since we see that this velocity varies in the rest of the problem. We use

 = −10 and isolate 2 in the equation (2) = 10(1− −210) =  ⇔ −210 = 1− 

10
⇔

2 = −10 ln
10 − 

10
, so the total time is () =

1

2
− 10


ln

720 + 

1000
+ ln

10 − 

10


.

To find the minimum, we differentiate:



= −10


1

720 + 
− 1

10 − 


, which changes from negative to positive

when 720 +  = 10 −  ⇔  = 5 − 360. By the First Derivative Test,  has a minimum at this distance from the

shortstop to home plate. So if the shortstop throws at  = 105 fts from a point  = 5(105)− 360 = 165 ft from home

plate, the minimum time is 105(165) = 1
2
− 10


ln 720 +165

1000
+ ln 1050− 165

1050

 ≈ 3431 seconds. This is longer than the

time taken in part (a), so in this case the manager should encourage a direct throw. If  = 115 fts, then  = 215 ft from

home, and the minimum time is 115(215) = 1
2
− 10


ln 720 +215

1000
+ ln 1150− 215

1150

 ≈ 3242 seconds. This is less than the

time taken in part (a), so in this case, the manager should encourage a relayed throw.

(c) In general, the minimum time is (5 − 360) =
1

2
− 10


ln

360 + 5

1000
+ ln

360 + 5

10


=

1

2
− 10 ln

( + 72)
2

400
.

We want to find out when this is about 3285 seconds, the same time as the

direct throw. From the graph, we estimate that this is the case for

 ≈ 1128 fts. So if the shortstop can throw the ball with this velocity,

then a relayed throw takes the same time as a direct throw.

APPLIED PROJECT Where to Sit at the Movies

1. |  | = 9 +  cos, | | = 35− (4 +  sin) = 31−  sin, and

|| = (4 +  sin)− 10 =  sin− 6. So using the Pythagorean Theorem,

we have |  | =

|  |2 + | |2 =


(9 +  cos)

2
+ (31−  sin)

2
= ,

and | | =

|  |2 + ||2 =


(9 +  cos)

2
+ ( sin− 6)

2
= .

Using the Law of Cosines on4  , we get 252 = 2 + 2 − 2 cos  ⇔ cos  =
2 + 2 − 625

2
⇔

 = arccos


2 + 2 − 625

2


, as required.
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CHAPTER 6 REVIEW ¤ 53

2. From the graph of , it appears that the value of  which maximizes  is

 ≈ 825 ft. Assuming that the first row is at  = 0, the row closest to this

value of  is the fourth row, at  = 9 ft, and from the graph, the viewing

angle in this row seems to be about 085 radians, or about 49◦.

3. With a CAS, we type in the definition of , substitute in the proper values of  and  in terms of  and  = 20◦ = 
9
radians,

and then use the differentiation command to find the derivative. We use a numerical rootfinder and find that the root of the

equation  = 0 is  ≈ 8253062, as approximated in Problem 2.

4. From the graph in Problem 2, it seems that the average value of the function on the interval [0 60] is about 06. We can use a

CAS to approximate 1
60

 60

0
()  ≈ 0625 ≈ 36◦. (The calculation is much faster if we reduce the number of digits of

accuracy required.) The minimum value is (60) ≈ 038 and, from Problem 2, the maximum value is about 085.

6 Review

1. The curves intersect when 2 = 4− 2 ⇔ 22 − 4 = 0 ⇔
2(− 2) = 0 ⇔  = 0 or 2.

=
 2

0


(4− 2)− 2


 =

 2

0
(4− 22) 

=

22 − 2

3
3
2
0

=


8− 16
3

− 0


= 8
3

2. The line  = − 2 intersects the curve  =
√
 at (4 2) and it intersects

the curve  = − 3
√
 at (1−1).

=
 1

0
[
√
− (− 3

√
)] +

 4

1
[
√
− (− 2)] 

=


2
3
32 + 3

4
43

1
0
+


2
3
32 − 1

2
2 + 2

4
1

=


2
3

+ 3
4

− 0 +


16
3
− 8 + 8

−  2
3
− 1

2
+ 2


= 16
3

+ 3
4
− 3

2
= 55

12

Or, integrating with respect to :  =
 0

−1
[( + 2)− (−3)]  +

 2

0
[( + 2)− 2] 

3. If  ≥ 0, then | | = , and the graphs intersect when  = 1− 22 ⇔ 22 + − 1 = 0 ⇔ (2− 1)(+ 1) = 0 ⇔
 = 1

2
or −1, but −1  0. By symmetry, we can double the area from  = 0 to  = 1

2
.

= 2
 12

0


(1− 22)− 


 = 2

 12

0
(−22 − + 1) 

= 2
−2

3
3 − 1

2
2 + 

12
0

= 2
− 1

12
− 1

8
+ 1

2

− 0


= 2


7
24


= 7

12
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54 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

4. 2 + 3 = − ⇔ 2 + 4 = 0 ⇔ ( + 4) = 0 ⇔
 = 0 or −4.

 =
 0

−4

− − (2 + 3)

 =

 0

−4
(−2 − 4) 

=
− 1

3
3 − 22

0
−4

= 0−  64
3
− 32


= 32

3

5.  =

 2

0


sin


2


− (

2 − 2)



=


− 2


cos


2


− 1

3
3 + 2

2
0

=


2

− 8

3
+ 4
− − 2


− 0 + 0


= 4

3
+ 4



6.  =
 1

0

√
− 2


+

 2

1


2 −

√




=


2
3
32 − 1

3
3
1
0

+


1
3
3 − 2

3
32

2
1

=


2
3
− 1

3

− 0

+


8
3
− 4

3

√
2
−  1

3
− 2

3


= 10

3
− 4

3

√
2

7. Using washers with inner radius 2 and outer radius 2, we have

 = 
 2

0


(2)2 − (2)2


 = 

 2

0
(42 − 4) 

= 


4
3
3 − 1

5
5
2
0

= 


32
3
− 32

5


= 32 · 2

15
= 64

15


8. 1 + 2 =  + 3 ⇔ 2 −  − 2 = 0 ⇔ ( − 2)( + 1) = 0 ⇔
 = 2 or −1.

 = 
 2

−1


( + 3)2 − (1 + 2)2


 = 

 2

−1
(2 + 6 + 9− 1− 22 − 4) 

= 
 2

−1
(8 + 6 − 2 − 4)  = 


8 + 32 − 1

3
3 − 1

5
5
2
−1

= 


16 + 12− 8
3
− 32

5

− −8 + 3 + 1
3

+ 1
5


= 


33− 9

3
− 33

5


= 117

5
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CHAPTER 6 REVIEW ¤ 55

9.  = 
 3

−3


(9− 2)− (−1)

2 − [0− (−1)]
2



= 2
 3

0


(10− 2)2 − 1


 = 2

 3

0
(100− 202 + 4 − 1) 

= 2
 3

0
(99− 202 + 4)  = 2


99 − 20

3
3 + 1

5
5
3
0

= 2

297− 180 + 243

5


= 1656

5


10.  = 
 2

−2


(9− 2)− (−1)

2 − (2 + 1)− (−1)
2



= 
 2

−2


(10− 2)2 − (2 + 2)2




= 2
 2

0
(96− 242)  = 48

 2

0
(4− 2) 

= 48

4− 1

3
3
2
0

= 48

8− 8

3


= 256

11. The graph of 2 − 2 = 2 is a hyperbola with right and left branches.

Solving for  gives us 2 = 2 − 2 ⇒  = ±√2 − 2.

We’ll use shells and the height of each shell is
√
2 − 2 − −√2 − 2


= 2

√
2 − 2.

The volume is  =
 +


2 · 2√2 − 2 . To evaluate, let  = 2 − 2,

so  = 2 and  = 1
2
. When  = ,  = 0, and when  = + ,

 = (+ )2 − 2 = 2 + 2+ 2 − 2 = 2+ 2.

Thus,  = 4

 2+2

0

√



1

2



= 2


2

3


32

2+2

0

=
4

3


2+ 

2
32

.

12. A shell has radius , circumference 2, and height tan− .

 =
 3
0

2 (tan− ) 

13. A shell has radius 
2
− , circumference 2



2
− 


, and height cos2 − 1

4
.

 = cos2  intersects  = 1
4
when cos2  = 1

4
⇔

cos = ± 1
2

[ || ≤ 2] ⇔  = ±
3
.

 =

 3

−3
2


2
− 


cos

2
− 1

4
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56 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

14. A washer has outer radius 2− 2 and inner radius 2−
√
.

 =

 1

0




(2− 

2
)
2 −


2−

√

2



15. (a) A cross-section is a washer with inner radius 2 and outer radius .

 =
 1

0


()2 − (2)2


 =

 1

0
(2 − 4)  = 


1
3
3 − 1

5
5
1
0

= 


1
3
− 1

5


= 2

15


(b) A cross-section is a washer with inner radius  and outer radius

.

 =
 1

0




2

− 2


 =

 1

0
( − 2)  = 


1
2
2 − 1

3
3
1
0

= 


1
2
− 1

3


= 

6

(c) A cross-section is a washer with inner radius 2−  and outer radius 2− 2.

 =
 1

0


(2− 2)2 − (2− )2


 =

 1

0
(4 − 52 + 4)  = 


1
5
5 − 5

3
3 + 22

1
0

= 


1
5
− 5

3
+ 2


= 8
15


16. (a)  =
 1

0
(2− 2 − 3)  =


2 − 1

3
3 − 1

4
4
1
0

= 1− 1
3
− 1

4
= 5

12

(b) A cross-section is a washer with inner radius 3 and outer radius 2− 2, so its area is (2− 2)2 − (3)2.

 =
 1

0
()  =

 1

0
[(2− 2)2 − (3)2]  =

 1

0
(42 − 43 + 4 − 6) 

= 


4
3
3 − 4 + 1

5
5 − 1

7
7
1
0

= 


4
3
− 1 + 1

5
− 1

7


= 41

105


(c) Using the method of cylindrical shells,

 =
 1

0
2(2− 2 − 3)  =

 1

0
2(22 − 3 − 4)  = 2


2
3
3 − 1

4
4 − 1

5
5
1
0

= 2


2
3
− 1

4
− 1

5


= 13

30
.

17. (a) Using the Midpoint Rule on [0 1] with () = tan(2) and  = 4, we estimate

 =
 1

0
tan(2)  ≈ 1

4


tan


1
8

2
+ tan


3
8

2
+ tan


5
8

2
+ tan


7
8

2 ≈ 1
4
(153) ≈ 038

(b) Using the Midpoint Rule on [0 1] with () =  tan2(2) (for disks) and  = 4, we estimate

 =
 1

0
()  ≈ 1

4


tan2


1
8

2
+ tan2


3
8

2
+ tan2


5
8

2
+ tan2


7
8

2 ≈ 
4
(1114) ≈ 087

18. (a) From the graph, we see that the curves intersect at  = 0 and at

 =  ≈ 075, with 1− 2  6 − + 1 on (0 ).

(b) The area of R is  =
 
0


(1− 2)− (6 − + 1)


 =

− 1
3
3 − 1

7
7 + 1

2
2

0
≈ 012.
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CHAPTER 6 REVIEW ¤ 57

(c) Using washers, the volume generated when R is rotated about the -axis is

 = 
 
0

[(1− 2)2 − (6 − + 1)2]  = 
 
0

(−12 + 27 − 26 + 4 − 32 + 2) 

= 
− 1

13
13 + 1

4
8 − 2

7
7 + 1

5
5 − 3 + 2


0
≈ 054

(d) Using shells, the volume generated when R is rotated about the -axis is

 =
 
0

2[(1− 2)− (6 − + 1)]  = 2
 
0

(−3 − 7 + 2)  = 2
− 1

4
4 − 1

8
8 + 1

3
3

0
≈ 031.

19.
 2
0

2 cos =
 2
0

(2) cos

The solid is obtained by rotating the region R =

( ) | 0 ≤  ≤ 

2
 0 ≤  ≤ cos


about the -axis.

20.
 2
0

2 cos2  =
 2
0


√

2 cos
2



The solid is obtained by rotating the region R =

( ) | 0 ≤  ≤ 

2
 0 ≤  ≤ √2 cos


about the -axis.

21.
 
0
(2− sin)2 

The solid is obtained by rotating the region R = {( ) | 0 ≤  ≤  0 ≤  ≤ 2− sin} about the -axis.

22.
 4

0
2(6− )(4 − 2) 

The solid is obtained by rotating the region R =

( ) | 0 ≤  ≤ 4 − 2 0 ≤  ≤ 4


about the line  = 6.

23. Take the base to be the disk 2 + 2 ≤ 9. Then  =
 3

−3
() , where (0) is the area of the isosceles right triangle

whose hypotenuse lies along the line  = 0 in the -plane. The length of the hypotenuse is 2
√

9− 2 and the length of

each leg is
√

2
√

9− 2. () = 1
2

√
2
√

9− 2
2

= 9− 2, so

 = 2
 3

0
()  = 2

 3

0
(9− 2)  = 2


9− 1

3
3
3
0

= 2(27− 9) = 36

24.  =
 1

−1
()  = 2

 1

0
()  = 2

 1

0


(2− 2)− 2

2
 = 2

 1

0


2(1− 2)

2


= 8
 1

0
(1− 22 + 4)  = 8


− 2

3
3 + 1

5
5
1
0

= 8

1− 2

3
+ 1

5


= 64

15

25. Equilateral triangles with sides measuring 1
4
 meters have height 1

4
 sin 60◦ =

√
3

8
. Therefore,

() = 1
2
· 1

4
 ·

√
3

8
 =

√
3

64
2.  =

 20

0
()  =

√
3

64

 20

0
2  =

√
3

64


1
3
3
20
0

= 8000
√

3
64 · 3 = 125

√
3

3
m3.

26. (a) By the symmetry of the problem, we consider only the solid to the right of the origin. The semicircular cross-sections

perpendicular to the -axis have radius 1− , so () = 1
2
(1− )2. Now we can calculate

 = 2
 1

0
()  = 2

 1

0

1
2
(1− )2  =

 1

0
(1− )2  = −

3


(1− )

3
1
0

= 
3
.

(b) Cut the solid with a plane perpendicular to the -axis and passing through the -axis. Fold the half of the solid in the

region  ≤ 0 under the -plane so that the point (−1 0) comes around and touches the point (1 0). The resulting solid is

a right circular cone of radius 1 with vertex at (  ) = (1 0 0) and with its base in the -plane, centered at the origin.

The volume of this cone is 1
3
2 = 1

3
 · 12 · 1 = 

3
.
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58 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

27. () =  ⇒ 30 N = (15− 12) cm ⇒  = 10 Ncm = 1000 Nm. 20 cm− 12 cm = 008 m ⇒

 =
 008

0
  = 1000

 008

0
 = 500


2
008
0

= 500(008)2 = 32 N·m = 32 J.

28. The work needed to raise the elevator alone is 1600 lb× 30 ft = 48,000 ft-lb. The work needed to raise the bottom

170 ft of cable is 170 ft× 10 lbft× 30 ft = 51,000 ft-lb. The work needed to raise the top 30 ft of cable is 30

0
10 =


52

30
0

= 5 · 900 = 4500 ft-lb. Adding these, we see that the total work needed is

48,000 + 51,000 + 4,500 = 103,500 ft-lb.

29. (a) The parabola has equation  = 2 with vertex at the origin and passing through

(4 4). 4 =  · 42 ⇒  = 1
4
⇒  = 1

4
2 ⇒ 2 = 4 ⇒

 = 2

. Each circular disk has radius 2


 and is moved 4−  ft.

 =
 4

0


2


2

625(4− )  = 250
 4

0
(4− ) 

= 250

2

2 − 1
3

3
4
0

= 250

32− 64

3


= 8000

3
≈ 8378 ft-lb

(b) In part (a) we knew the final water level (0) but not the amount of work done. Here

we use the same equation, except with the work fixed, and the lower limit of

integration (that is, the final water level—call it ) unknown:  = 4000 ⇔

250

22 − 1

3
3
4


= 4000 ⇔ 16


=


32− 64
3

− 22 − 1
3
3
 ⇔

3 − 62 + 32− 48


= 0. We graph the function () = 3 − 62 + 32− 48


on the interval [0 4] to see where it is 0. From the graph, () = 0 for  ≈ 21.

So the depth of water remaining is about 21 ft.

30. A horizontal slice of cooking oil∆ m thick has a volume of 2 =  · 22 ·∆ m3, a mass of 920(4∆) kg,

weighs about (98)(3680∆) = 36,064∆ N, and thus requires about 36,064∗∆ J

of work for its removal (where 3 ≤ ∗ ≤ 6). The total work needed to empty the tank is

 = lim
→∞


=1

36,064∗ ∆ =
 6

3
36,064 = 36,064


1
2
2
6
3

= 18,032(36− 9) = 486,864 ≈ 153× 106 J.

31. ave =
1

− 

 



()  =
1

4− 0

 4

0

sec
2
  =

4




tan 

4
0

=
4


(1− 0) =

4



32. (a) ave =
1

− 

 



()  =
1

4− 1

 4

1

1√



= 1
3

 4

1


−12

 = 1
3


2
√

4
1

= 2
3
(2− 1) = 2

3

(c)

(b) () = ave ⇔ 1√


=
2

3
⇔ √

 =
3

2
⇔  =

9

4
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CHAPTER 6 REVIEW ¤ 59

33. lim
→0

ave = lim
→0

1

(+ )− 

 +



()  = lim
→0

 ( + )−  ()


, where  () =

 

() . But we recognize this

limit as being  0() by the definition of a derivative. Therefore, lim
→0

ave =  0() = () by FTC1.

34. (a) R1 is the region below the graph of  = 2 and above the -axis between  = 0 and  = , and R2 is the region

to the left of the graph of  =

 and to the right of the -axis between  = 0 and  = 2. So the area of R1 is

1 =
 
0
2  =


1
3
3

0

= 1
3
3, and the area of R2 is 2 =

 2
0


  =


2
3
32

2
0

= 2
3
3. So there is no

solution to 1 = 2 for  6= 0.

(b) Using disks, we calculate the volume of rotation of R1 about the -axis to be 1 = 
 
0
(2)2  = 1

5
5.

Using cylindrical shells, we calculate the volume of rotation of R1 about the -axis to be

1 = 2
 
0
(2)  = 2


1
4
4

0

= 1
2
4. So 1 = 1 ⇔ 1

5
5 = 1

2
4 ⇔ 2 = 5 ⇔  = 5

2
.

So the volumes of rotation about the - and -axes are the same for  = 5
2
.

(c) We use cylindrical shells to calculate the volume of rotation of R2 about the -axis:

R2 = 2

 2

0






 = 2


2
5

52
2
0

= 4
5


5. We already know the volume of rotation of R1 about the -axis

from part (b), and R1 = R2 ⇔ 1
5
5 = 4

5
5, which has no solution for  6= 0.

(d) We use disks to calculate the volume of rotation of R2 about the -axis: R2 = 
 2
0



2

 = 


1
2
2
2
0

= 1
2
4.

We know the volume of rotation of R1 about the -axis from part (b), and R1 = R2 ⇔ 1
2
4 = 1

2
4. But this

equation is true for all , so the volumes of rotation about the -axis are equal for all values of .
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PROBLEMS PLUS

1. (a) The area under the graph of  from 0 to  is equal to
 
0
() , so the requirement is that

 
0
()  = 3 for all . We

differentiate both sides of this equation with respect to  (with the help of FTC1) to get () = 32. This function is

positive and continuous, as required.

(b) The volume generated from  = 0 to  =  is
 
0
[()]

2
. Hence, we are given that 2 =

 
0
[()]

2
 for all

  0. Differentiating both sides of this equation with respect to  using the Fundamental Theorem of Calculus gives

2 = [()]
2 ⇒ () =


2, since  is positive. Therefore, () =


2.

2. The total area of the region bounded by the parabola  = − 2 = (1− )

and the -axis is
 1

0
(− 2)  =


1
2
2 − 1

3
3
1
0

= 1
6
. Let the slope of the

line we are looking for be. Then the area above this line but below the

parabola is
 
0


(− 2)−


, where  is the -coordinate of the point

of intersection of the line and the parabola. We find the point of intersection

by solving the equation − 2 =  ⇔ 1−  =  ⇔  = 1−. So the value of  is 1−, and 1−
0


(− 2)−


=

 1−
0


(1−)− 2


 =


1
2
(1−)2 − 1

3
3
1−
0

= 1
2
(1−)(1−)2 − 1

3
(1−)3 = 1

6
(1−)3

We want this to be half of 1
6
, so 1

6
(1−)3 = 1

12
⇔ (1−)3 = 6

12
⇔ 1− = 3


1
2
⇔  = 1− 1

3√
2
. So the

slope of the required line is 1− 1
3√

2
≈ 0206.

3. Let  and  be the -coordinates of the points where the line intersects the

curve. From the figure, 1 = 2 ⇒
 
0


− 8− 273


=

 



8− 273

− 




− 4

2
+ 27

4


4

0

=

4

2 − 27
4


4 − 



− 4
2
+ 27

4

4
=

4

2 − 27
4

4 − 

− 42 − 27
4

4 − 


0 = 4

2 − 27
4

4 −  = 4

2 − 27
4

4 − 


8− 27

3


= 4
2 − 27

4

4 − 8

2
+ 27

4
= 81

4

4 − 4

2

= 
2


81
4

2 − 4


So for   0, 2 = 16

81
⇒  = 4

9
. Thus,  = 8− 273 = 8


4
9

− 27


64
729


= 32

9
− 64

27
= 32

27
.
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62 ¤ CHAPTER 6 PROBLEMS PLUS

4. (a) Take slices perpendicular to the line through the center  of the bottom of the glass and the point  where the top surface

of the water meets the bottom of the glass.

A typical rectangular cross-section  units above the axis of the glass has width 2 || = 2

2 − 2 and length

 = || = 

2
( − ). [Triangles  and  are similar, so




=
||
|| =

 − 

2
.] Thus,

 =

 

−
2

2 − 2 · 

2
( − )  = 

 

−


1− 




2 − 2 

= 

 

−


2 − 2  − 



 

−


2 − 2 

=  · 
2

2
− 


· 0


the first integral is the area of a semicircle of radius r,

and the second has an odd integrand


=

2

2

(b) Slice parallel to the plane through the axis of the glass and the point of contact  . (This is the plane determined by  , ,

and  in the figure.)  is a typical trapezoidal slice. With respect to an -axis with origin at  as shown, if  and 

have -coordinate , then | | = 2
√
2 − 2. Projecting the trapezoid  onto the plane of the triangle

 (call the projection 0 0 0 0), we see that | | = 2, | | = 2
√
2 − 2, and

| 0 | = | 0| = 1
2
(| |− | |) =  −√2 − 2.

By similar triangles,
|  |
| 0 | =

||
| | , so | | =


 −√2 − 2

 · 
2
. In the same way, we find that

|  |
| 0 | =

||
| | , so |  | = | 0 | · 

2
= (| |− | 0|) · 

2
=

 +

√
2 − 2

 · 
2
. The

area () of the trapezoid  is 1
2
| | · (| |+ |  |); that is,

() = 1
2
· 2√2 − 2 ·


 −√2 − 2

 · 
2

+

 +

√
2 − 2

 · 
2


= 

√
2 − 2. Thus,

 =

 

−
()  = 

 

−


2 − 2  =  · 

2

2
=

2

2
.
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CHAPTER 6 PROBLEMS PLUS ¤ 63

(c) See the computation of  in part (a) or part (b).

(d) The volume of the water is exactly half the volume of the cylindrical glass, so  = 1
2
2.

(e) Choose -, -, and -axes as shown in the figure. Then

slices perpendicular to the -axis are triangular, slices

perpendicular to the -axis are rectangular, and slices

perpendicular to the -axis are segments of circles.

Using triangular slices, we find that the area () of

a typical slice  , where  has -coordinate , is given by

() = 1
2
|| · | | = 1

2
|| ·





||


=



2
||2 =



2


2 − 2


. Thus,

 =

 

−
()  =



2

 

−
(

2 − 
2
)  =





 

−
(

2 − 
2
)  =







2
− 3

3


0

=





3 − 3

3


=




· 2

3
3 = 2

3
2 [This is 2(3) ≈ 021 of the volume of the glass.]

5. (a)  = 2( − 3) = 1
3
2(3 − ). See the solution to Exercise 6.2.49.

(b) The smaller segment has height  = 1 −  and so by part (a) its volume is

 = 1
3
(1− )2 [3(1)− (1− )] = 1

3
(− 1)2( + 2). This volume must be 1

3
of the total volume of the sphere,

which is 4
3
(1)3. So 1

3
(− 1)2(+ 2) = 1

3


4
3

 ⇒ (2 − 2+ 1)(+ 2) = 4

3
⇒ 3 − 3+ 2 = 4

3
⇒

33 − 9 + 2 = 0. Using Newton’s method with () = 33 − 9 + 2,  0() = 92 − 9, we get

+1 =  − 33
 − 9 + 2

92
 − 9

. Taking 1 = 0, we get 2 ≈ 02222, and 3 ≈ 02261 ≈ 4, so, correct to four decimal

places,  ≈ 02261.

(c) With  = 05 and  = 075, the equation 3 − 32 + 43 = 0 becomes 3 − 3(05)2 + 4(05)3(075) = 0 ⇒

3 − 3
2
2 + 4


1
8


3
4

= 0 ⇒ 83 − 122 + 3 = 0. We use Newton’s method with () = 83 − 122 + 3,

 0() = 242 − 24, so +1 =  − 83
 − 122

 + 3

242
 − 24

. Take 1 = 05. Then 2 ≈ 06667, and 3 ≈ 06736 ≈ 4.

So to four decimal places the depth is 06736 m.

(d) (i) From part (a) with  = 5 in., the volume of water in the bowl is

 = 1
3
2(3 − ) = 1

3
2(15− ) = 52 − 1

3
3. We are given that




= 02 in3s and we want to find





when  = 3. Now



= 10




− 2 


, so




=

02

(10− 2)
. When  = 3, we have




=

02

(10 · 3− 32)
=

1

105
≈ 0003 ins.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



64 ¤ CHAPTER 6 PROBLEMS PLUS

(ii) From part (a), the volume of water required to fill the bowl from the instant that the water is 4 in. deep is

 = 1
2
· 4

3
(5)3 − 1

3
(4)2(15− 4) = 2

3
· 125− 16

3
· 11 = 74

3
. To find the time required to fill the bowl we divide

this volume by the rate: Time =
743

02
= 370

3
≈ 387 s ≈ 65 min.

6. (a) The volume above the surface is
 −
0

()  =
 −
− ()  −  0

−() . So the proportion of volume above the

surface is

 −
0

()  −
− () 

=

 −
− ()  −  0

−()  −
− () 

. Now by Archimedes’ Principle, we have  =  ⇒


 0

−()  = 0
 −
− () , so

 0

−()  =

0

 −
− () . Therefore, −

0
()  −

− () 
=

 −
− ()  − 0

 −
− ()  −

− () 
=

 − 0


, so the percentage of volume above the surface

is 100


 − 0




%.

(b) For an iceberg, the percentage of volume above the surface is 100


1030− 917
1030


% ≈ 11%.

(c) No, the water does not overflow. Let  be the volume of the ice cube, and let  be the volume of the water which results

from the melting. Then by the formula derived in part (a), the volume of ice above the surface of the water is
( − 0)


, so the volume below the surface is  −


( − 0)


 = (0 ). Now the mass of the ice

cube is the same as the mass of the water which is created when it melts, namely = 0 =  ⇒

 = (0 ). So when the ice cube melts, the volume of the resulting water is the same as the underwater volume of

the ice cube, and so the water does not overflow.

(d) The figure shows the instant when the height of the exposed part of the ball is .

Using the formula in Problem 5(a) with  = 04 and  = 08− , we see that the

volume of the submerged part of the sphere is 1
3
(08− )2[12− (08− )], so

its weight is 1000 · 1
3
2(12− ), where  = 08− . Then the work done to

submerge the sphere is

 =
 08

0
 1000

3
2(12− )  =  1000

3

 08

0
(122 − 3) 

=  1000
3



043 − 1

4
4
08
0

=  1000
3

(02048− 01024) = 98 1000
3

(01024) ≈ 105× 103 J

7. We are given that the rate of change of the volume of water is



= −(), where  is some positive constant and () is

the area of the surface when the water has depth . Now we are concerned with the rate of change of the depth of the water

with respect to time, that is,



. But by the Chain Rule,




=








, so the first equation can be written








= −() (). Also, we know that the total volume of water up to a depth  is  () =

 
0
() , where () is
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CHAPTER 6 PROBLEMS PLUS ¤ 65

the area of a cross-section of the water at a depth . Differentiating this equation with respect to , we get  = ().

Substituting this into equation , we get ()() = −() ⇒  = −, a constant.

8. A typical sphere of radius  is shown in the figure. We wish to maximize the shaded

volume  , which can be thought of as the volume of a hemisphere of radius  minus

the volume of the spherical cap with height  = 1−√1− 2 and radius 1.

 = 1
2
· 4

3
3 − 1

3


1−√1− 2

2 
3(1)− 1−√1− 2


[by Problem 5(a)]

= 1
3


23 − 2− 2

√
1− 2 − 2


2 +

√
1− 2


= 1

3


23 − 2 +


2 + 2

√
1− 2


 0 = 1

3



62 +


2 + 2


(−)√

1− 2
+
√

1− 2(2)


= 1

3



62
√

1− 2 − 

2 + 2


+ 2


1− 2


√

1− 2



= 1
3



62
√

1− 2 − 33√
1− 2


=

2

2
√

1− 2 − 


√
1− 2

 0() = 0 ⇔ 2
√

1− 2 =  ⇔ 4− 42 = 2 ⇔ 2 = 4
5
⇔  = 2√

5
≈ 089.

Since  0()  0 for 0    2√
5
and  0()  0 for 2√

5
   1, we know that  attains a maximum at  = 2√

5
.

9. We must find expressions for the areas  and , and then set them equal and see what this says about the curve . If

 =

 22


, then area  is just

 
0

(22 − 2)  =
 
0
2  = 1

3
3. To find area , we use  as the variable of

integration. So we find the equation of the middle curve as a function of :  = 22 ⇔  =

2, since we are

concerned with the first quadrant only. We can express area  as

 22

0


2− ()


 =


4

3
(2)

32

22
0

−
 22

0

()  =
4

3

3 −

 22

0

() 

where () is the function with graph . Setting  = , we get 1
3
3 = 4

3
3 −  22

0
()  ⇔  22

0
()  = 3.

Now we differentiate this equation with respect to  using the Chain Rule and the Fundamental Theorem:

(22)(4) = 32 ⇒ () = 3
4


2, where  = 22. Now we can solve for :  = 3

4


2 ⇒

2 = 9
16

(2) ⇒  = 32
9
2.

10. We want to find the volume of that part of the sphere which is below the surface

of the water. As we can see from the diagram, this region is a cap of a sphere

with radius  and height  + . If we can find an expression for  in terms of ,

 and , then we can determine the volume of the region [see Problem 5(a)],

and then differentiate with respect to  to find the maximum. We see that

sin  =


− 
⇔ −  =



sin 
⇔  = −  csc .

[continued]
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66 ¤ CHAPTER 6 PROBLEMS PLUS

Now we can use the formula from Problem 5(a) to find the volume of water displaced:

 = 1
3
2(3 − ) = 1

3
( + )2 [3 − ( + )] = 1

3
( + −  csc )2(2 − +  csc )

= 
3
[(1− csc ) + ]2[(2 + csc )− ]

Now we differentiate with respect to :

 = 
3


[(1− csc ) + ]2(2 + csc ) + 2[(1− csc ) + ](1− csc )[(2 + csc )− ]


= 

3
[(1− csc ) + ]([(1− csc ) + ](2 + csc ) + 2(1− csc )[(2 + csc )− ])

= 
3
[(1− csc ) + ](3(2 + csc )(1− csc ) + [(2 + csc )− 2(1− csc )])

= 
3
[(1− csc ) + ][3(2 + csc )(1− csc ) + 3 csc ]

This is 0 when  =


csc  − 1
and when  =

 csc 

(csc  + 2)(csc  − 1)
. Now since 




csc  − 1


= 0 (the first factor

vanishes; this corresponds to  = −), the maximum volume of water is displaced when  =
 csc 

(csc  − 1)(csc  + 2)
.

(Our intuition tells us that a maximum value does exist, and it must occur at a critical number.) Multiplying numerator and

denominator by sin2 , we get an alternative form of the answer:  =
 sin 

sin  + cos 2
.

11. (a) Stacking disks along the -axis gives us  =
 
0
 [()]

2
.

(b) Using the Chain Rule,



=




· 


=  [()]
2 


.

(c) 
√
 = [()]

2 


. Set




= : [()]

2
 = 

√
 ⇒ [()]

2
=





√
 ⇒ () =





14; that

is, () =





14. The advantage of having




=  is that the markings on the container are equally spaced.

12. (a) We first use the cylindrical shell method to express the volume  in terms of , , and :

 =

 

0

2  =

 

0

2


+

22

2


 = 2

 

0


+

23

2




= 2


2

2
+

24

8


0

= 2


2

2
+

24

8


= 2 +

24

4
⇒

 =
 − 24


(4)

2
=

4 − 24

42
.

(b) The surface touches the bottom when  = 0 ⇒ 4 − 24 = 0 ⇒ 2 =
4

4
⇒  =

2
√
√
2

.

To spill over the top, ()   ⇔

 +
22

2
=

4 − 24

42
+

22

2
=

4

42
− 22

42
+

22

2

=


2
− 22

4
+

22

2
=



2
+

22

4
⇔

22

4
 − 

2
=

2− 

2
⇔ 2 

4

2− 


4

. So for spillage, the angular speed should

be  
2

(2−  )

2
√


.
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CHAPTER 6 PROBLEMS PLUS ¤ 67

(c) (i) Here we have  = 2,  = 7,  = 7− 5 = 2. When  = 1,  = 7− 4 = 3. Therefore, 3 = 2 +
2 · 12

2 · 32 ⇒

1 =
2

2 · 32 ⇒ 2 = 64 ⇒  = 8 rads.  = (2)(2)2 +
 · 82 · 24

4
= 8 + 8 = 16 ft2.

(ii) At the wall,  = 2, so  = 2 +
82 · 22

2 · 32 = 6 and the surface is 7− 6 = 1 ft below the top of the tank.

13. The cubic polynomial passes through the origin, so let its equation be

 = 3 + 2 + . The curves intersect when 3 + 2 +  = 2 ⇔

3 + ( − 1)2 +  = 0. Call the left side (). Since () = () = 0

another form of  is

() = (− )(− ) = [2 − (+ )+ ]

= [3 − (+ )2 + ]

Since the two areas are equal, we must have
 
0
()  = −  


()  ⇒

[ ()]


0 = [ ()]



⇒  ()−  (0) =  ()−  () ⇒  (0) =  (), where  is an antiderivative of  .

Now  () =

()  =


[3 − (+ )2 + ]  = 


1
4
4 − 1

3
(+ )3 + 1

2
2


+ , so

 (0) =  () ⇒  = 


1
4
4 − 1

3
(+ )3 + 1

2
3

+  ⇒ 0 = 


1
4
4 − 1

3
(+ )3 + 1

2
3
 ⇒

0 = 3− 4(+ ) + 6 [multiply by 12(3),  6= 0] ⇒ 0 = 3− 4− 4+ 6 ⇒  = 2.

Hence,  is twice the value of .

14. (a) Place the round flat tortilla on an -coordinate system as shown in

the first figure. An equation of the circle is 2 + 2 = 42 and the

height of a cross-section is 2
√

16− 2.

Now look at a cross-section with central angle  as shown in the

second figure ( is the radius of the circular cylinder). The filled area

() is equal to the area 1() of the sector minus the area 2()

of the triangle.

() = 1()−2() = 1
2
2 − 1

2
2 sin  [area formulas from trigonometry]

= 1
2
()− 1

2
2 sin





[arc length  =  ⇒  = ]

= 1
2
 · 2√16− 2 − 1

2
2 sin


2
√

16− 2




[ = 2

√
16− 2 ]

= 
√

16− 2 − 1
2
2 sin


2



√
16− 2


(  )

Note that the central angle  will be small near the ends of the tortilla; that is, when || ≈ 4. But near the center of
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68 ¤ CHAPTER 6 PROBLEMS PLUS

the tortilla (when || ≈ 0), the central angle  may exceed 180◦. Thus, the sine of  will be negative and the second

term in () will be positive (actually adding area to the area of the sector). The volume of the taco can be found by

integrating the cross-sectional areas from  = −4 to  = 4. Thus,

 () =

 4

−4

()  =

 4

−4





16− 2 − 1
2

2
sin


2




16− 2




(b) To find the value of  that maximizes the volume of the taco, we can define

the function

 () =

 4

−4





16− 2 − 1
2

2
sin


2




16− 2




The figure shows a graph of  =  () and  =  0(). The maximum

volume of about 52.94 occurs when  ≈ 22912.

15. We assume that  lies in the region of positive . Since  = 3 is an odd

function, this assumption will not affect the result of the calculation. Let

 =

 3


. The slope of the tangent to the curve  = 3 at  is 32, and so

the equation of the tangent is  − 3 = 32(− ) ⇔  = 32− 23.

We solve this simultaneously with  = 3 to find the other point of intersection:

3 = 32− 23 ⇔ (− )2(+ 2) = 0. So =
−2−83


is

the other point of intersection. The equation of the tangent at  is

 − (−83) = 122[− (−2)] ⇔  = 122+ 163. By symmetry,

this tangent will intersect the curve again at  = −2(−2) = 4. The curve lies above the first tangent, and

below the second, so we are looking for a relationship between  =
 
−2


3 − (32− 23)


 and

 =
 4

−2


(122 + 163)− 3


. We calculate  =


1
4
4 − 3

2
22 + 23


−2

= 3
4
4 − (−64) = 27

4
4, and

 =

622 + 163− 1

4
4
4
−2

= 964 − (−124) = 1084. We see that  = 16 = 24. This is because our

calculation of area  was essentially the same as that of area , with  replaced by −2, so if we replace  with −2 in our

expression for , we get 27
4

(−2)4 = 1084 = .
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7 TECHNIQUES OF INTEGRATION

7.1 Integration by Parts

1. Let  = ,  = 2  ⇒  = ,  = 1
2
2. Then by Equation 2,

2  = 1
2
2 −  1

2
2  = 1

2
2 − 1

4
2 + .

2. Let  = ln,  =
√
 ⇒  =

1


,  = 2

3
32. Then by Equation 2, √

 ln = 2
3


32
ln−


2
3


32 · 1


 = 2

3


32
ln−


2
3


12
 = 2

3


32
ln− 4

9


32
+.

Note: A mnemonic device which is helpful for selecting  when using integration by parts is the LIATE principle of precedence for :

Logarithmic

Inverse trigonometric

Algebraic

Trigonometric

Exponential

If the integrand has several factors, then we try to choose among them a  which appears as high as possible on the list. For example, in

2 

the integrand is 2, which is the product of an algebraic function () and an exponential function (2). Since Algebraic appears before Exponential,

we choose  = . Sometimes the integration turns out to be similar regardless of the selection of  and , but it is advisable to refer to LIATE when in

doubt.

3. Let  = ,  = cos 5 ⇒  = ,  = 1
5

sin 5. Then by Equation 2,
 cos 5 = 1

5
 sin 5−  1

5
sin 5 = 1

5
 sin 5+ 1

25
cos 5+.

4. Let  = ,  = 02 ⇒  = ,  = 1
02

02 . Then by Equation 2,
02 = 502 −  502 = 502 − 2502 + .

5. Let  = ,  = −3 ⇒  = ,  = − 1
3
−3. Then by Equation 2,

−3 = − 1
3
−3 −  − 1

3
−3 = − 1

3
−3 + 1

3


−3 = − 1

3
−3 − 1

9
−3 +.

6. Let  = − 1,  = sin ⇒  = ,  = − 1


cos. Then by Equation 2,
(− 1) sin= − 1


(− 1) cos−


− 1


cos = − 1


(− 1) cos+

1




cos

= − 1


(− 1) cos+

1

2
sin +

7. First let  = 2 + 2,  = cos ⇒  = (2+ 2) ,  = sin. Then by Equation 2,

 =

(2 + 2) cos = (2 + 2) sin−  (2+ 2) sin. Next let  = 2+ 2,  = sin ⇒  = 2 ,

 = − cos, so

(2 + 2) sin = −(2 + 2) cos−  −2 cos = −(2 + 2) cos + 2 sin. Thus,

 = (2 + 2) sin+ (2+ 2) cos− 2 sin+.
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2 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION

8. First let  = 2,  = sin  ⇒  = 2 ,  = − 1


cos. Then by Equation 2,

 =

2 sin  = − 1


2 cos−  − 2


 cos . Next let  = ,  = cos  ⇒  = ,

 =
1


sin, so


 cos  =

1


 sin−


1


sin  =

1


 sin +

1

2
cos. Thus,

 = − 1


2 cos +

2




1


 sin +

1

2
cos


+ = − 1


2 cos +

2

2
 sin +

2

3
cos+ .

9. Let  = cos−1 ,  =  ⇒  =
−1√
1− 2

,  = . Then by Equation 2,


cos

−1
=  cos−1 −

 −√
1− 2

 =  cos
−1

−


1√



1

2


 
 = 1− 2,
 = −2 


=  cos−1 − 1

2
· 212 +  =  cos−1 −√1− 2 +

10. Let  = ln
√
,  =  ⇒  =

1√

· 1

2
√

 =

1

2
,  = . Then by Equation 2,


ln
√
 =  ln

√
−


 · 1

2
 =  ln

√
−


1

2
 =  ln

√
− 1

2
 +.

Note: We could start by using ln
√
 = 1

2
ln.

11. Let  = ln ,  = 4  ⇒  =
1


,  =

1

5
5. Then by Equation 2,


4
ln   =

1

5

5
ln −


1

5

5 · 1


 =

1

5

5
ln −


1

5

4
 =

1

5

5
ln − 1

25

5

+.

12. Let  = tan−1 2,  =  ⇒  =
2

1 + 42
,  = . Then by Equation 2,


tan

−1
2  =  tan−1 2 −


2

1 + 42
 =  tan

−1
2 −


1




1

4


 
 = 1 + 42,
 = 8 


=  tan−1 2 − 1

4
ln ||+  =  tan−1 2 − 1

4
ln(1 + 42) + 

13. Let  = ,  = csc2   ⇒  = ,  = − cot . Then by Equation 2,
 csc

2
 = − cot −


− cot   = − cot +


cos 

sin 
 = − cot  +


1





 = sin ,
 = cos  


= − cot  + ln ||+  = − cot + ln |sin |+

14. Let  = ,  = cosh  ⇒  = ,  =
1


sinh . Then by Equation 2,

 cosh  =
1


 sinh −


1


sinh   =

1


 sinh − 1

2
cosh+ .

15. First let  = (ln)
2,  =  ⇒  = 2 ln · 1


,  = . Then by Equation 2,

 =

(ln)2  = (ln)2 − 2


 ln · 1


 = (ln)2 − 2


ln. Next let  = ln,  =  ⇒

 = 1,  =  to get


ln =  ln−   · (1)  =  ln−   =  ln−  + 1. Thus,

 = (ln)2 − 2( ln−  +1) = (ln)2 − 2 ln+ 2+ , where  = −21.
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16.




10
 =


 10

−
. Let  = ,  = 10−  ⇒  = ,  =

−10−

ln 10
. Then by Equation 2,


 10

−
 =

− 10−

ln 10
−
 −10−

ln 10
 =

−
10 ln 10

− 10−

(ln 10)(ln 10)
+ = − 

10 ln 10
− 1

10(ln 10)2
+ .

17. First let  = sin 3,  = 2  ⇒  = 3cos 3 ,  = 1
2
2. Then

 =

2 sin 3  = 1

2
2 sin 3 − 3

2


2 cos 3 . Next let  = cos 3,  = 2  ⇒  = −3 sin 3 ,

 = 1
2
2 to get


2 cos 3  = 1

2
2 cos 3 + 3

2


2 sin 3 . Substituting in the previous formula gives

 = 1
2
2 sin 3 − 3

4
2 cos 3 − 9

4


2 sin 3  = 1

2
2 sin 3 − 3

4
2 cos 3 − 9

4
 ⇒

13
4
 = 1

2
2 sin 3 − 3

4
2 cos 3 + 1. Hence,  = 1

13
2(2 sin 3 − 3 cos 3) + , where  = 4

13
1.

18. First let  = −,  = cos 2  ⇒  = −− ,  = 1
2

sin 2. Then

 =

− cos 2  = 1

2
− sin 2 −  1

2
sin 2

−−  = 1
2
− sin 2 + 1

2


− sin 2 .

Next let  = −,  = sin 2  ⇒  = −− ,  = − 1
2

cos 2, so
− sin 2  = − 1

2
− cos 2 −  − 1

2


cos 2

−−  = − 1
2
− cos 2 − 1

2


− cos 2 .

So  = 1
2
− sin 2 + 1

2

− 1
2
− cos 2

− 1
2



= 1
2
− sin 2 − 1

4
− cos 2 − 1

4
 ⇒

5
4
 = 1

2
− sin 2− 1

4
− cos 2+1 ⇒  = 4

5


1
2
− sin 2 − 1

4
− cos 2 +1


= 2

5
− sin 2− 1

5
− cos 2+.

19. First let  = 3,  =  ⇒  = 32,  =  . Then 1 =

3 = 3 − 3


2. Next let 1 = 2,

1 =  ⇒ 1 = 2 , 1 =  . Then 2 = 2 − 2

. Finally, let 2 = , 2 =  ⇒ 2 = ,

2 =  . Then

 =  −   =  −  + 1. Substituting in the expression for 2, we get

2 = 2 − 2( −  + 1) = 2 − 2 + 2 − 21. Substituting the last expression for 2 into 1 gives

1 = 3 − 3(2 − 2 + 2 − 21) = 3 − 32 + 6 − 6 + , where  = 61.

20.

 tan2  =


(sec2 − 1)  =


 sec2 −  . Let  = ,  = sec2  ⇒  = ,  = tan.

Then by Equation 2,

 sec2  =  tan−  tan =  tan− ln |sec|, and thus,

 tan2  =  tan− ln |sec|− 1
2
2 +.

21. Let  = 2,  =
1

(1 + 2)2
 ⇒  = ( · 22 + 2 · 1)  = 2(2+ 1) ,  = − 1

2(1 + 2)
.

Then by Equation 2,
2

(1 + 2)2
 = − 2

2(1 + 2)
+

1

2


2(2+ 1)

1 + 2
 = − 2

2(1 + 2)
+

1

2



2
 = − 2

2(1 + 2)
+

1

4

2

+ .

The answer could be written as
2

4(2+ 1)
+ .

22. First let  = (arcsin)2,  =  ⇒  = 2arcsin · 1√
1− 2

,  = . Then

 =


(arcsin)

2
 = (arcsin)

2 − 2


 arcsin√

1− 2
. To simplify the last integral, let  = arcsin [ = sin ], so
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4 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION

 =
1√

1− 2
, and


 arcsin√

1− 2
 =


 sin  . To evaluate just the last integral, now let  = ,  = sin   ⇒

 = ,  = − cos . Thus,
 sin  = − cos  +


cos   = − cos + sin  +

= − arcsin ·
√

1− 2

1
+  +1 [refer to the figure]

Returning to , we get  = (arcsin)2 + 2
√

1− 2 arcsin− 2+ ,

where  = −21.

23. Let  = ,  = cos ⇒  = ,  = 1


sin. By (6), 12

0

 cos=


1


 sin

12
0

−
 12

0

1


sin =

1

2
− 0− 1




− 1


cos

12
0

=
1

2
+

1

2
(0− 1) =

1

2
− 1

2
or

 − 2

22

24. First let  = 2 + 1,  = −  ⇒  = 2,  = −−. By (6), 1

0
(2 + 1)−  =

−(2 + 1)−
1
0
+
 1

0
2−  = −2−1 + 1 + 2

 1

0
− .

Next let  = ,  = −  ⇒  = ,  = −−. By (6) again, 1

0
−  =

−−1
0

+
 1

0
−  = −−1 +

−−1
0

= −−1 − −1 + 1 = −2−1 + 1. So 1

0
(2 + 1)−  = −2−1 + 1 + 2(−2−1 + 1) = −2−1 + 1− 4−1 + 2 = −6−1 + 3.

25. Let  = ,  = sinh   ⇒  = ,  = cosh . By (6), 2

0
 sinh   =


 cosh 

2
0
−  2

0
cosh   = 2 cosh 2− 0−


sinh 

2
0

= 2cosh 2− sinh 2.

26. Let  = ln,  = 2  ⇒  =
1


,  = 1

3
3. By (6), 2

1
2 ln =


1
3
3 ln

2
1
−  2

1
1
3
2  = 8

3
ln 2− 0−  1

9
3
2
1

= 8
3

ln 2−  8
9
− 1

9


= 8

3
ln 2− 7

9
.

27. Let  = ln,  =
1

2
 ⇒  =

1


,  = − 1


. By (6), 5

1

ln

2
 =


− 1


ln

5

1

−
 5

1

− 1

2
 = − 1

5
ln 5− 0−


1



5
1

= − 1
5

ln 5−  1
5
− 1


= 4
5
− 1

5
ln 5.

28. First let  = 2,  = sin 2  ⇒  = 2 ,  = − 1
2

cos 2. By (6), 2

0
2 sin 2  =

− 1
2
2 cos 2

2
0

+
 2

0
 cos 2  = −22 +

 2

0
 cos 2 . Next let  = ,  = cos 2  ⇒

 = ,  = 1
2

sin 2. By (6) again, 2

0
 cos 2  =


1
2
 sin 2

2
0
−  2

0
1
2

sin 2  = 0− − 1
4

cos 2
2
0

= 1
4
− 1

4
= 0. Thus,

 2

0
2 sin 2  = −22.

29. sin 2 = 2 sin cos, so
 
0
 sin cos = 1

2

 
0
 sin 2. Let  = ,  = sin 2 ⇒  = ,

 = − 1
2

cos 2. By (6), 1
2

 
0
 sin 2 = 1

2

− 1
2
 cos 2


0
− 1

2

 
0
− 1

2
cos 2 = − 1

4
 − 0 + 1

4


1
2

sin 2

0

= −

4
.
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30. Let  = arctan(1),  =  ⇒  =
1

1 + (1)2
· −1

2
 =

−
2 + 1

,  = . By (6),

 √
3

1

arctan


1




 =


 arctan


1



√3

1

+

 √
3

1



2 + 1
=
√

3


6
− 1 · 

4
+

1

2


ln(

2
+ 1)

√3

1

=

√

3

6
− 

4
+

1

2
(ln 4− ln 2) =


√

3

6
− 

4
+

1

2
ln

4

2
=


√

3

6
− 

4
+

1

2
ln 2

31. Let  =  ,  = −  ⇒  =  ,  = −− . By (6), 5

1




 =

 5

1


−

 =

−

−
5
1
−
 5

1

−−  = −5
−5

+ 
−1 −



−
5
1

= −5−5 + −1 − (−5 − −1) = 2−1 − 6−5

32. Let  = (ln)
2,  = −3  ⇒  =

2 ln


  = − 1

2
−2. By (6),

 =

 2

1

(ln)
2

3
 =


− (ln)

2

22

2
1

+

 2

1

ln

3
. Now let  = ln,  = −3  ⇒  =

1


,  = − 1

2
−2.

Then 2

1

ln

3
 =


− ln

22

2
1

+ 1
2

 2

1


−3
 = − 1

8
ln 2 + 0 + 1

2

− 1

22

2
1

= − 1
8

ln 2 + 1
2

− 1
8

+ 1
2


= 3

16
− 1

8
ln 2.

Thus  =
− 1

8
(ln 2)

2
+ 0


+


3
16
− 1

8
ln 2


= − 1
8

(ln 2)
2 − 1

8
ln 2 + 3

16
.

33. Let  = ln(cos),  = sin ⇒  =
1

cos
(− sin) ,  = − cos. By (6),

 3
0

sin ln(cos) =

− cos ln(cos)

3
0

−  3
0

sin = − 1
2

ln 1
2
− 0−


− cos

3
0

= − 1
2

ln 1
2

+


1
2
− 1


= 1
2

ln 2− 1
2

34. Let  = 2,  =
√

4 + 2
 ⇒  = 2 ,  =

√
4 + 2. By (6),

 1

0

3

√
4 + 2

 =

2
√

4 + 2

1
0
− 2

 1

0




4 + 2  =
√

5− 2
3


(4 + 

2
)
32
1
0

=
√

5− 2
3
(5)32 + 2

3
(8) =

√
5

1− 10

3


+ 16

3
= 16

3
− 7

3

√
5

35. Let  = (ln)2,  = 4  ⇒  = 2
ln


,  =

5

5
. By (6),

 2

1


4
(ln)

2
 =


5

5
(ln)

2

2
1

− 2

 2

1

4

5
ln = 32

5
(ln 2)

2 − 0− 2

 2

1

4

5
ln.

Let  = ln,  =
4

5
 ⇒  =

1


,  =

5

25
.

Then
 2

1

4

5
ln =


5

25
ln

2
1

−
 2

1

4

25
 = 32

25
ln 2− 0−


5

125

2
1

= 32
25

ln 2−  32
125
− 1

125


.

So
 2

1
4(ln)2  = 32

5
(ln 2)2 − 2


32
25

ln 2− 31
125


= 32

5
(ln 2)2 − 64

25
ln 2 + 62

125
.
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6 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION

36. Let  = sin( − ),  =   ⇒  = − cos( − ) ,  = . Then

 =
 
0
 sin(− )  =


 sin(− )


0
+
 
0
 cos(− )  =  sin 0− 0 sin  + 1. For 1, let  = cos(− ),

 =   ⇒  = sin(− ) ,  = . So 1 =

 cos(− )


0
−  

0
 sin(− )  =  cos 0− 0 cos − .

Thus,  = − sin +  − cos −  ⇒ 2 =  − cos − sin  ⇒  = 1
2
( − cos − sin ).

37. Let  =
√
, so that 2 =  and 2  = . Thus,



√
  =


(2) . Now use parts with  = ,  =  ,  = ,

and  =  to get 2

  = 2  − 2


  = 2  − 2 + = 2

√
 
√
 − 2

√
 + .

38. Let  = ln, so that  =  and   = . Thus,


cos(ln)  =


cos  ·   = . Now use parts with  = cos ,

 =  ,  = − sin  , and  =  to get

 cos   =  cos −  − sin   =  cos  +


 sin  . Now

use parts with  = sin ,  =  ,  = cos  , and  =  to get
 sin   =  sin −   cos  . Thus,  =  cos  +  sin −  ⇒ 2 =  cos  +  sin  ⇒

 = 1
2
 cos  + 1

2
 sin  +  = 1

2
 cos(ln) + 1

2
 sin(ln) +.

39. Let  = 2, so that  = 2 . Thus,
 √



√
/2


3
cos


2

 =

 √


√
/2


2
cos


2
 · 1

2
(2 ) = 1

2

 

/2
 cos. Now use

parts with  = ,  = cos,  = ,  = sin to get

1
2

 

/2
 cos= 1

2


 sin


/2
−
 

/2
sin


= 1

2


 sin+ cos


/2

= 1
2
( sin + cos)− 1

2



2

sin 
2

+ cos 
2


= 1

2
( · 0− 1)− 1

2



2
· 1 + 0


= − 1

2
− 

4

40. Let  = cos , so that  = − sin  . Thus, 
0
cos  sin 2  =

 
0
cos (2 sin  cos )  =

−1

1
 · 2 (−) = 2

 1

−1
 . Now use parts with  = ,

 =  ,  = ,  =  to get

2
 1

−1
  = 2




1
−1
−  1

−1
 


= 2


1 + −1 −   1−1


= 2(+ −1 − [1 − −1]) = 2(2−1) = 4.

41. Let  = 1 +  so that  = . Thus,

 ln(1 + )  =


( − 1) ln  . Now use parts with  = ln   = ( − 1) ,

 = 1

,  = 1

2
2 −  to get
( − 1) ln   =


1
2
2 − 


ln  −   1

2
 − 1


 = 1

2
( − 2) ln  − 1

4
2 +  +

= 1
2
(1 + )(− 1) ln(1 + )− 1

4
(1 + )2 + 1 + + ,

which can be written as 1
2
(2 − 1) ln(1 + )− 1

4
2 + 1

2
+ 3

4
+.

42. Let  = ln, so that  =
1


. Thus,


arcsin(ln)


 =


arcsin  . Now use

parts with  = arcsin ,  = ,  =
1

1− 2
, and  =  to get


arcsin   =  arcsin  −




1− 2
 =  arcsin  +


1− 2 + = (ln) arcsin(ln) +


1− (ln)2 + .
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43. Let  = ,  = −2  ⇒  = ,  = − 1
2
−2. Then

−2  = − 1
2
−2 +


1
2
−2  = − 1

2
−2 − 1

4
−2 + . We

see from the graph that this is reasonable, since  has a minimum where 

changes from negative to positive. Also,  increases where  is positive and

 decreases where  is negative.

44. Let  = ln,  = 32  ⇒  = 1

,  = 2

5
52. Then

32 ln= 2
5
52 ln− 2

5


32  = 2

5
52 ln−  2

5

2
52 +

= 2
5
52 ln− 4

25
52 + 

We see from the graph that this is reasonable, since  has a minimum where

 changes from negative to positive.

45. Let  = 1
2
2,  = 2

√
1 + 2  ⇒  = ,  = 2

3
(1 + 2)32.

Then
3
√

1 + 2 = 1
2
2


2
3
(1 + 2)32


− 2

3


(1 + 2)32

= 1
3
2(1 + 2)32 − 2

3
· 2

5
· 1

2
(1 + 2)52 +

= 1
3
2(1 + 2)32 − 2

15
(1 + 2)52 + 

We see from the graph that this is reasonable, since  increases where  is positive and  decreases where  is negative.

Note also that  is an odd function and  is an even function.

Another method: Use substitution with  = 1 + 2 to get 1
5
(1 + 2)52 − 1

3
(1 + 2)32 +.

46. First let  = 2,  = sin 2 ⇒  = 2,  = − 1
2

cos 2.

Then  =

2 sin 2 = − 1

2
2 cos 2+


 cos 2.

Next let  = ,  = cos 2 ⇒  = ,  = 1
2

sin 2, so
 cos 2 = 1

2
 sin 2−  1

2
sin 2 = 1

2
 sin 2+ 1

4
cos 2+ .

Thus,  = − 1
2
2 cos 2 + 1

2
 sin 2 + 1

4
cos 2+.

We see from the graph that this is reasonable, since  increases where  is positive and  decreases where  is negative.

Note also that  is an odd function and  is an even function.

47. (a) Take  = 2 in Example 6 to get


sin
2
 = −1

2
cos sin+

1

2


1  =



2
− sin 2

4
+ .

(b)


sin4  = − 1
4

cos sin3 + 3
4


sin2  = − 1

4
cos sin3 + 3

8
− 3

16
sin 2+ .

48. (a) Let  = cos−1 ,  = cos ⇒  = −(− 1) cos−2  sin,  = sin in (2):
cos  = cos−1  sin+ (− 1)


cos−2  sin2 

= cos−1  sin+ (− 1)


cos−2  (1− cos2 )

= cos−1  sin+ (− 1)


cos−2 − (− 1)


cos  [continued]
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8 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION

Rearranging terms gives 


cos  = cos−1  sin + ( − 1)


cos−2  or
cos


 =

1


cos

−1
 sin+

− 1




cos

−2


(b) Take  = 2 in part (a) to get


cos2  = 1
2

cos sin+ 1
2


1  =



2
+

sin 2

4
+.

(c)


cos4  = 1
4

cos3  sin+ 3
4


cos2  = 1

4
cos3  sin+ 3

8
+ 3

16
sin 2+ 

49. (a) From Example 6,


sin

 = − 1


cos sin

−1
+

− 1




sin

−2
. Using (6),

 2

0

sin

=


−cos sin−1 



2
0

+
− 1



 2

0

sin
−2



= (0− 0) +
− 1



 2

0

sin
−2

 =
− 1



 2

0

sin
−2



(b) Using  = 3 in part (a), we have
 2
0

sin3  = 2
3

 2
0

sin =
− 2

3
cos

2
0

= 2
3
.

Using  = 5 in part (a), we have
 2
0

sin5  = 4
5

 2
0

sin3  = 4
5
· 2

3
= 8

15
.

(c) The formula holds for  = 1 (that is, 2 + 1 = 3) by (b). Assume it holds for some  ≥ 1. Then 2

0

sin
2+1

 =
2 · 4 · 6 · · · · · (2)

3 · 5 · 7 · · · · · (2 + 1)
. By Example 6,

 2

0

sin
2+3

=
2 + 2

2 + 3

 2

0

sin
2+1

 =
2 + 2

2 + 3
· 2 · 4 · 6 · · · · · (2)
3 · 5 · 7 · · · · · (2 + 1)

=
2 · 4 · 6 · · · · · (2)[2 ( + 1)]

3 · 5 · 7 · · · · · (2 + 1)[2 ( + 1) + 1]
,

so the formula holds for  =  + 1. By induction, the formula holds for all  ≥ 1.

50. Using Exercise 49(a), we see that the formula holds for  = 1, because
 2
0

sin2  = 1
2

 2
0

1  = 1
2



2
0

= 1
2
· 

2
.

Now assume it holds for some  ≥ 1. Then
 2

0

sin
2
 =

1 · 3 · 5 · · · · · (2 − 1)

2 · 4 · 6 · · · · · (2)


2
. By Exercise 49(a),

 2

0

sin
2(+1)

 =
2 + 1

2 + 2

 2

0

sin
2
 =

2 + 1

2 + 2
· 1 · 3 · 5 · · · · · (2 − 1)

2 · 4 · 6 · · · · · (2)


2

=
1 · 3 · 5 · · · · · (2 − 1)(2 + 1)

2 · 4 · 6 · · · · · (2)(2 + 2)
· 

2
,

so the formula holds for  =  + 1. By induction, the formula holds for all  ≥ 1.

51. Let  = (ln),  =  ⇒  = (ln)−1(),  = . By Equation 2,
(ln)  = (ln) −  (ln)−1() = (ln) − 


(ln)−1 .

52. Let  = ,  =   ⇒  = −1 ,  = . By Equation 2,

  =  − 


−1 .
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SECTION 7.1 INTEGRATION BY PARTS ¤ 9

53.


tan =


tan−2  tan2  =


tan−2  (sec2 − 1)  =


tan−2  sec2 −  tan−2 

=  −  tan−2 .

Let  = tan−2 ,  = sec2  ⇒  = (− 2) tan−3  sec2 ,  = tan. Then, by Equation 2,

 = tan−1 − (− 2)


tan−2  sec2 

1 = tan−1 − (− 2)

(− 1) = tan−1 

 =
tan−1 

− 1

Returning to the original integral,


tan  =
tan−1 

− 1
−  tan−2 .

54. Let  = sec−2 ,  = sec2  ⇒  = (− 2) sec−3  sec tan,  = tan. Then, by Equation 2,
sec = tan sec−2 − (− 2)


sec−2  tan2 

= tan sec−2 − (− 2)


sec−2  (sec2 − 1) 

= tan sec−2 − (− 2)


sec + (− 2)


sec−2 

so (− 1)


sec  = tan sec−2  + (− 2)


sec−2 . If  − 1 6= 0, then
sec


 =

tan sec−2 

− 1
+

− 2

− 1


sec

−2
.

55. By repeated applications of the reduction formula in Exercise 51,
(ln)3 =  (ln)

3 − 3

(ln)2  = (ln)3 − 3


(ln)2 − 2


(ln)1 


=  (ln)

3 − 3(ln)2 + 6

(ln)1 − 1


(ln)0 


=  (ln)

3 − 3(ln)2 + 6 ln− 6


1  =  (ln)
3 − 3(ln)2 + 6 ln− 6 +

56. By repeated applications of the reduction formula in Exercise 52,
4 = 4 − 4


3  = 4 − 4


3 − 3


2 


= 4 − 43 + 12


2 − 2


1 


= 4 − 43 + 122 − 24


1 −  0 


= 4 − 43 + 122 − 24+ 24 +


or (4 − 43 + 122 − 24 + 24) +


57. The curves  = 2 ln and  = 4 ln intersect when 2 ln = 4 ln ⇔

2 ln− 4 ln = 0 ⇔ (2 − 4) ln = 0 ⇔
 = 1 or 2 [since   0]. For 1    2, 4 ln  2 ln Thus,

area =
 2

1
(4 ln− 2 ln)  =

 2

1
[(4− 2) ln] . Let  = ln,

 = (4− 2)  ⇒  = 1

,  = 4− 1

3
3. Then

area =

(ln)


4− 1

3
3
2

1
−
 2

1


4− 1

3


3
 1




 = (ln 2)


16
3

− 0−
 2

1


4− 1

3


2



= 16
3

ln 2− 4− 1
9
3
2
1

= 16
3

ln 2−  64
9
− 35

9


= 16

3
ln 2− 29

9

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



10 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION

58. The curves  = 2− and  = − intersect when 2− = − ⇔
2 −  = 0 ⇔ (− 1) = 0 ⇔  = 0 or 1.

For 0    1, −  2−. Thus,

area =
 1

0
(− − 2−)  =

 1

0
(− 2)− . Let  = − 2,

 = − ⇒  = (1− 2) ,  = −−. Then

area =

(− 2)(−−)1

0
−  1

0
[−−(1− 2)]  = 0 +

 1

0
(1− 2)− .

Now let  = 1− 2,  = − ⇒  = −2 ,  = −−. Now
area =


(1− 2)(−−)1

0
−  1

0
2−  = −1 + 1− −2−

1
0

= −1 + 1 + 2(−1 − 1) = 3−1 − 1.

59. The curves  = arcsin


1
2


and  = 2− 2 intersect at

 =  ≈ −175119 and  =  ≈ 117210. From the figure, the area

bounded by the curves is given by

 =
 

[(2− 2)− arcsin


1
2


]  =


2− 1

3
3


−  


arcsin


1
2


.

Let  = arcsin


1
2


,  =  ⇒  =

1
1−  1

2

2 · 1

2
,  = .

Then

=


2− 1

3
3




−


 arcsin


1

2





−
 





2


1− 1
4
2




=

2− 1

3
3 −  arcsin


1
2

− 2


1− 1

4
2



≈ 399926

60. The curves  =  ln(+ 1) and  = 3− 2 intersect at  = 0 and

 =  ≈ 192627. From the figure, the area bounded by the curves is given

by

 =
 
0

[(3−2)− ln(+1)]  =


3
2
2 − 1

3
3

0
− 

0
 ln(+1) .

Let  = ln(+ 1),  =  ⇒  =
1

 + 1
,  = 1

2
2. Then

=


3

2
2 − 1

3
3


0

−


1

2
2 ln( + 1)


0

− 1

2

 

0

2

+ 1




=


3

2
2 − 1

3
3


0

−

1

2
2 ln(+ 1)


0

+
1

2

 

0


− 1 +

1

+ 1




=


3
2
2 − 1

3
3 − 1

2
2 ln(+ 1) + 1

4
2 − 1

2
+ 1

2
ln |+ 1|

0
≈ 169260

61. Volume =
 1

0
2 cos(2) . Let  = ,  = cos(2)  ⇒  = ,  = 2


sin(2).

 = 2


2


 sin


2

1
0

− 2 · 2



 1

0

sin


2


 = 2


2


− 0


− 4


− 2


cos


2

1
0

= 4 +
8


(0− 1) = 4− 8


.

62. Volume =
 1

0
2( − −)  = 2

 1

0
( − −)  = 2

 1

0
 −  1

0
− 


[both integrals by parts]

= 2

( − )− −− − −

 1
0

= 2[2− 0] = 4
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SECTION 7.1 INTEGRATION BY PARTS ¤ 11

63. Volume =
 0

−1
2(1− )− . Let  = 1− ,  = −  ⇒  = − ,  = −−.

 = 2

(1− )(−−)0−1

− 2
 0

−1
−  = 2


(− 1)(−) + −

0
−1

= 2

−

0
−1

= 2(0 + ) = 2.

64.  =  ⇔  = ln . Volume =
 3

1
2 ln  . Let  = ln ,  =   ⇒  =

1


,  = 1

2
2.

 = 2


1
2
2 ln 

3
1
− 2

 3

1

1
2
  = 2


1
2
2 ln  − 1

4
2
3
1

= 2


9
2

ln 3− 9
4

− 0− 1
4


= 2


9
2

ln 3− 2


= (9 ln 3− 4)

65. (a) Use shells about the -axis:

 =

 2

1

2 ln


 = ln,  =  

 = 1

,  = 1

2
2


= 2


1
2
2 ln

2
1
−  2

1

1
2



= 2


(2 ln 2− 0)−  1

4
2
2
1


= 2


2 ln 2− 3

4


(b) Use disks about the -axis:

 =

 2

1

(ln)
2



 = (ln)2,  = 

 = 2 ln · 1

,  = 



= 


(ln)2

2
1
−
 2

1

2 ln

 
 = ln,  = 

 = 1

,  = 


= 


2(ln 2)2 − 2


 ln

2
1
−  2

1



= 


2(ln 2)2 − 4 ln 2 + 2



2
1


= [2(ln 2)2 − 4 ln 2 + 2] = 2[(ln 2)2 − 2 ln 2 + 1]

66. ave =
1

− 

 



()  =
1

4− 0

 4

0

 sec
2



 = ,  = sec2  

 = ,  = tan



=
4




 tan

4
0

−
 4

0

tan


=

4






4
−

ln |sec|

4
0


=

4




4
− ln

√
2


= 1− 4


ln
√

2 or 1− 2


ln 2

67. () =

 

0

sin


1
2


2

 ⇒


()  =

  

0

sin


1
2


2




.

Let  =

 

0

sin


1
2


2

 = (),  =  ⇒  = sin


1
2
2


,  = . Thus,


() = ()−


 sin


1
2


2

 = ()−


sin 


1


 

 = 1
2
2

 =  


= () + 1


cos  + = () + 1


cos


1
2
2


+

68. The rocket will have height =
 60

0
()  after 60 seconds.

 =

 60

0


−−  ln


− 




 = − 1

2

2
60
0
− 

 60

0

ln(− ) −
 60

0

ln


= −(1800) + (ln)(60)− 

 60

0
ln(− ) 

Let  = ln(− ),  =  ⇒  =
1

− 
(−) ,  = . Then
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12 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION 60

0

ln(− ) =

 ln(− )

60
0

+

 60

0



− 
 = 60 ln(− 60) +

 60

0


−1 +



− 




= 60 ln(− 60) +

−− 


ln(− )

60
0

= 60 ln(− 60)− 60− 


ln(− 60) +




ln

So = −1800 + 60 ln− 60 ln(− 60) + 60 +



 ln(− 60)− 


 ln. Substituting  = 98,

 = 30,000,  = 160, and  = 3000 gives us ≈ 14,844 m.

69. Since ()  0 for all , the desired distance is () =
 
0
()  =

 
0
2− .

First let  = 2,  = −  ⇒  = 2,  = −−. Then () =
−2−


0

+ 2
 
0
− .

Next let  = ,  = −  ⇒  = ,  = −−. Then

() = −2− + 2
−−

0
+
 
0
− 


= −2− + 2


−− + 0 +

−−
0


= −2− + 2(−− − − + 1) = −2− − 2− − 2− + 2 = 2− −(2 + 2+ 2) meters

70. Suppose (0) = (0) = 0 and let  = (),  = 00()  ⇒  =  0() ,  = 0().

Then
 
0
() 00()  =


() 0()


0
−  

0
 0() 0()  = () 0()−  

0
 0() 0() .

Now let  =  0(),  = 0()  ⇒  =  00()  and  = (), so 
0
 0() 0()  =


 0() ()


0
−  

0
 00() ()  =  0() ()−  

0
 00() () .

Combining the two results, we get
 
0
() 00()  = () 0()−  0() () +

 
0
 00() () .

71. For  =
 4

1
 00() , let  = ,  =  00()  ⇒  = ,  =  0(). Then

 =

 0()

4
1
−  4

1
 0()  = 4 0(4)− 1 ·  0(1)− [(4)− (1)] = 4 · 3− 1 · 5− (7− 2) = 12− 5− 5 = 2.

We used the fact that  00 is continuous to guarantee that  exists.

72. (a) Take () =  and 0() = 1 in Equation 1.

(b) By part (a),
 

()  = ()−  ()−  


  0() . Now let  = () , so that  = () and  =  0() .

Then
 

 0()  =

 ()

()
() . The result follows.

(c) Part (b) says that the area of region  is

= () − () −  ()

()
() 

= (area of rectangle ) − (area of rectangle ) − (area of region)
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SECTION 7.1 INTEGRATION BY PARTS ¤ 13

(d) We have () = ln, so −1() = , and since  = −1, we have () =  . By part (b), 

1

ln =  ln − 1 ln 1−
 ln 

ln 1



 = −

 1

0



 = −   1

0
= − (− 1) = 1.

73. Using the formula for volumes of rotation and the figure, we see that

Volume =
 
0
2  −  

0
2  −  


[()]

2
 = 2− 2−  


[()]

2
. Let  = (),

which gives  =  0()  and () = , so that  = 2− 2 − 
 

2 0() .

Now integrate by parts with  = 2, and  =  0()  ⇒  = 2,  = (), and 

2  0()  =


2 ()



−  


2 ()  = 2 ()− 2 ()−  


2() , but () =  and () =  ⇒

 = 2− 2− 

2− 2−  


2() 


=
 


2 () .

74. (a) We note that for 0 ≤  ≤ 
2
, 0 ≤ sin ≤ 1, so sin2+2  ≤ sin2+1  ≤ sin2 . So by the second Comparison Property

of the Integral, 2+2 ≤ 2+1 ≤ 2.

(b) Substituting directly into the result from Exercise 50, we get

2+2

2
=

1 · 3 · 5 · · · · · [2(+ 1)− 1]

2 · 4 · 6 · · · · · [2(+ 1)]



2

1 · 3 · 5 · · · · · (2− 1)

2 · 4 · 6 · · · · · (2)



2

=
2(+ 1)− 1

2(+ 1)
=

2+ 1

2+ 2

(c) We divide the result from part (a) by 2. The inequalities are preserved since 2 is positive:
2+2

2
≤ 2+1

2
≤ 2

2
.

Now from part (b), the left term is equal to
2+ 1

2+ 2
, so the expression becomes

2+ 1

2+ 2
≤ 2+1

2
≤ 1. Now

lim
→∞

2+ 1

2+ 2
= lim

→∞
1 = 1, so by the Squeeze Theorem, lim

→∞
2+1

2
= 1.

(d) We substitute the results from Exercises 49 and 50 into the result from part (c):

1 = lim
→∞

2+1

2
= lim

→∞

2 · 4 · 6 · · · · · (2)

3 · 5 · 7 · · · · · (2+ 1)

1 · 3 · 5 · · · · · (2− 1)

2 · 4 · 6 · · · · · (2)



2

= lim
→∞


2 · 4 · 6 · · · · · (2)

3 · 5 · 7 · · · · · (2+ 1)


2 · 4 · 6 · · · · · (2)

1 · 3 · 5 · · · · · (2− 1)


2





= lim
→∞

2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· · · · · 2

2− 1
· 2

2+ 1
· 2


[rearrange terms]

Multiplying both sides by 
2
gives us the Wallis product:



2
=

2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· · · ·

(e) The area of the th rectangle is . At the 2th step, the area is increased from 2− 1 to 2 by multiplying the width by

2

2− 1
, and at the (2+ 1)th step, the area is increased from 2 to 2+ 1 by multiplying the height by

2+ 1

2
. These

two steps multiply the ratio of width to height by
2

2− 1
and

1

(2+ 1)(2)
=

2

2+ 1
respectively. So, by part (d), the

limiting ratio is
2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· · · · = 

2
.
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14 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION

7.2 Trigonometric Integrals

The symbols
s
= and

c
= indicate the use of the substitutions { = sin  = cos} and { = cos  = − sin}, respectively.

1.


sin2  cos3 =


sin2  cos2  cos =


sin2  (1− sin2 ) cos

s
=

2(1− 2)  =


(2 − 4)  = 1

3
3 − 1

5
5 +  = 1

3
sin3 − 1

5
sin5 + 

2.


sin3  cos4   =


sin2  cos4  sin   =

(1− cos2 ) cos4  sin  

c
=

(1− 2)4(−) =


(6 − 4)  = 1

7
7 − 1

5
5 +  = 1

7
cos7  − 1

5
cos5  +

3.
 2
0

sin7  cos5   =
 2
0

sin7  cos4  cos   =
 2
0

sin7  (1− sin2 )2 cos  

s
=
 1

0
7(1− 2)2  =

 1

0
7(1− 22 + 4)  =

 1

0
(7 − 29 + 11) 

=


1

8
8 − 1

5
10 +

1

12
12

1
0

=


1

8
− 1

5
+

1

12


− 0 =

15− 24 + 10

120
=

1

120

4.
 2
0

sin5 =
 2
0

sin4  sin =
 2
0

(1− cos2 )2 sin
c
=
 0

1
(1− 2)2(−)

=

 1

0

(1− 2
2
+ 

4
)  =


− 2

3


3
+

1

5


5

1
0

=


1− 2

3
+

1

5


− 0 =

15− 10 + 3

15
=

8

15

5.


sin5(2) cos2(2) =


sin4(2) cos2(2) sin(2)  =

[1− cos2(2)]2 cos2(2) sin(2) 

=

(1− 2)2 2

− 1
2



[ = cos(2),  = −2 sin(2) ]

= − 1
2


(4 − 22 + 1)2  = − 1

2


(6 − 24 + 2) 

= − 1
2


1
7
7 − 2

5
5 + 1

3
3


+  = − 1
14

cos7(2) + 1
5

cos5(2)− 1
6

cos3(2) +

6.

 cos5(2) =


 cos4(2) cos(2)  =


[1− sin2(2)]2 cos(2) 

=


1
2
(1− 2)2 


 = sin(2),  = 2 cos(2) 


= 1

2


(4 − 22 + 1)  = 1

2
( 1
5
5 − 2

3
3 + ) +  = 1

10
sin5(2)− 1

3
sin3(2) + 1

2
sin(2) +

7.
 2
0

cos2   =
 2
0

1
2
(1 + cos 2)  [half-angle identity]

= 1
2


 + 1

2
sin 2

2
0

= 1
2



2

+ 0
− (0 + 0)


= 

4

8.
 2

0
sin2


1
3


 =

 2

0

1
2


1− cos


2 · 1

3


 [half-angle identity]

=
1

2


 − 3

2
sin


2

3


2
0

=
1

2


2 − 3

2


−
√

3

2


− 0


=  +

3

8

√
3

9.
 
0

cos4(2) =
 
0

[cos2(2)]2  =
 
0


1
2
(1 + cos(2 · 2))2  [half-angle identity]

= 1
4

 
0

[1 + 2 cos 4 + cos2(4)]  = 1
4

 
0

[1 + 2 cos 4 + 1
2
(1 + cos 8)] 

= 1
4

 
0


3
2

+ 2cos 4 + 1
2

cos 8

 = 1

4


3
2
 + 1

2
sin 4+ 1

16
sin 8


0

= 1
4


3
2
 + 0 + 0

− 0


= 3
8


10.
 
0

sin2  cos4  = 1
4

 
0

(4 sin2  cos2 ) cos2   = 1
4

 
0

(2 sin  cos )2 1
2
(1 + cos 2) 

= 1
8

 
0

(sin 2)2(1 + cos 2)  = 1
8

 
0

(sin2 2+ sin2 2 cos 2) 

= 1
8

 
0

sin2 2  + 1
8

 
0

sin2 2 cos 2  = 1
8

 
0

1
2
(1− cos 4) + 1

8


1
3
· 1

2
sin3 2


0

= 1
16


− 1

4
sin 4


0

+ 1
8
(0− 0) = 1

16
[( − 0)− 0] = 

16
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11.
 2
0

sin2  cos2  =
 2
0

1
4
(4 sin2  cos2 )  =

 2
0

1
4
(2 sin cos)2 = 1

4

 2
0

sin2 2

= 1
4

 2
0

1
2
(1− cos 4)  = 1

8

 2
0

(1− cos 4)  = 1
8


− 1

4
sin 4

2
0

= 1
8



2


= 

16

12.
 2
0

(2− sin )2  =
 2
0

(4− 4 sin  + sin2 )  =
 2
0


4− 4 sin  + 1

2
(1− cos 2)




=
 2
0


9
2
− 4 sin  − 1

2
cos 2


 =


9
2
 + 4cos  − 1

4
sin 2

2
0

=


9
4

+ 0− 0
− (0 + 4− 0) = 9

4
 − 4

13.
 √

cos  sin3   =
 √

cos  sin2  sin   =

(cos )12(1− cos2 ) sin  

c
=

12(1− 2) (−) =


(52 − 12) 

= 2
7
72 − 2

3
32 +  = 2

7
(cos )72 − 2

3
(cos )32 + 

14.


sin2(1)

2
=


sin

2
 (−)


 =

1


,  = − 1

2



= −


1

2
(1− cos 2)  = −1

2


− 1

2
sin 2


+ = − 1

2
+

1

4
sin


2




+

15.


cot cos
2
=


cos

sin
(1− sin

2
) 

s
=


1− 2


 =

 
1


− 


 = ln ||− 1

2


2
+  = ln |sin|− 1

2
sin

2
+

16.


tan
2
 cos

3
=


sin2 

cos2 
cos

3
 =


sin

2
 cos

s
=




2
 = 1

3


3
+  = 1

3
sin

3
 +

17.


sin2  sin 2 =


sin2  (2 sin cos) 
s
=


23  = 1
2
4 +  = 1

2
sin4 + 

18.


sin cos


1
2


=


sin

2 · 1

2


cos


1
2


 =


2 sin


1
2


cos2


1
2




=


22 (−2 ) [ = cos

1
2


,  = − 1

2
sin

1
2


]

= − 4
3
3 + = − 4

3
cos3


1
2



+

19.

 sin2  =





1
2
(1− cos 2)


 = 1

2


(−  cos 2)  = 1

2


 − 1

2


 cos 2 

= 1
2


1
2
2
− 1

2


1
2
 sin 2−  1

2
sin 2 

 
 = ,  = cos 2 

 = ,  = 1
2
sin 2


= 1

4
2 − 1

4
 sin 2 + 1

2

− 1
4

cos 2


+  = 1
4
2 − 1

4
 sin 2− 1

8
cos 2+ 

20.  =

 sin3 . First, evaluate

sin3  =

(1− cos2 ) sin

c
=

(1− 2)(−) =


(2 − 1)  = 1

3
3 − +1 = 1

3
cos3 − cos+ 1.

Now for , let  = ,  = sin3  ⇒  = ,  = 1
3

cos3 − cos, so

 = 1
3
 cos3 −  cos−   1

3
cos3 − cos


 = 1

3
 cos3 −  cos− 1

3


cos3 + sin

= 1
3
 cos3 −  cos− 1

3
(sin− 1

3
sin3 ) + sin+  [by Example 1]

= 1
3
 cos3 −  cos+ 2

3
sin+ 1

9
sin3 + 

21.


tan sec3 =


tan sec sec2  =

2  [ = sec,  = sec tan ]

= 1
3
3 +  = 1

3
sec3 + 
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16 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION

22.


tan2  sec4   =


tan2  sec2  sec2   =


tan2  (tan2  + 1) sec2  

=

2(2 + 1)  [ = tan ,  = sec2  ]

=

(4 + 2)  = 1

5
5 + 1

3
3 +  = 1

5
tan5  + 1

3
tan3  +

23.


tan2  =

(sec2 − 1)  = tan−  +

24.

(tan2  + tan4 ) =


tan2  (1 + tan2 )  =


tan2  sec2  =


2  [ = tan,  = sec2  ]

= 1
3
3 + = 1

3
tan3 + 

25. Let  = tan. Then  = sec2, so
tan4 sec6=


tan4 sec4 (sec2) =


tan4(1 + tan2)2 (sec2)

=

4(1 + 2)2  =


(8 + 26 + 4) 

= 1
9
9 + 2

7
7 + 1

5
5 +  = 1

9
tan9 + 2

7
tan7+ 1

5
tan5+ 

26.
 4
0

sec6  tan6   =
 4
0

tan6  sec4  sec2   =
 4
0

tan6 (1 + tan2 )2 sec2  

=
 1

0
6(1 + 2)2 


 = tan ,
 = sec2  


=
 1

0
6(4 + 22 + 1)  =

 1

0
(10 + 28 + 6) 

=


1
11
11 + 2

9
9 + 1

7
7
1
0

= 1
11

+ 2
9

+ 1
7

= 63 +154 +99
693

= 316
693

27.


tan3  sec =


tan2  sec tan =

(sec2 − 1) sec tan

=

(2 − 1)  [ = sec,  = sec tan] = 1

3
3 − + = 1

3
sec3 − sec+ 

28. Let  = sec, so  = sec tan. Thus,
tan5 sec3=


tan4 sec2 (sec tan)  =


(sec2− 1)2 sec2 (sec tan)

=

(2 − 1)22  =


(6 − 24 + 2) 

= 1
7
7 − 2

5
5 + 1

3
3 +  = 1

7
sec7 − 2

5
sec5 + 1

3
sec3 + 

29.


tan3  sec6 =


tan3  sec4  sec2  =


tan3  (1 + tan2 )2 sec2 

=

3(1 + 2)2 


 = tan,
 = sec2  


=

3(4 + 22 + 1)  =


(7 + 25 + 3) 

= 1
8
8 + 1

3
6 + 1

4
4 + = 1

8
tan8 + 1

3
tan6 + 1

4
tan4 +

30.
 4
0

tan4  =
 4
0

tan2  (sec2 − 1)  =
 4
0

tan2  sec2  −  4
0

tan2  

=
 1

0
2  [ = tan ] −  4

0
(sec2 − 1)  =


1
3
3
1
0
−

tan − 

4
0

= 1
3
− 1− 

4

− 0


= 
4
− 2

3

31.


tan5  =

(sec2 − 1)2 tan =


sec4  tan− 2


sec2  tan+


tan

=


sec3  sec tan− 2


tan sec2 +


tan

= 1
4

sec4 − tan2 + ln |sec|+  [or 1
4

sec4 − sec2 + ln |sec|+  ]
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SECTION 7.2 TRIGONOMETRIC INTEGRALS ¤ 17

32.


tan2  sec =

(sec2 − 1) sec =


sec3 −  sec

= 1
2
(sec tan+ ln |sec+ tan|)− ln |sec+ tan|+  [by Example 8 and (1)]

= 1
2
(sec tan− ln |sec+ tan|) + 

33. Let  =   = sec tan ⇒  =   = sec. Then
 sec tan =  sec−  sec =  sec− ln |sec+ tan|+ .

34.


sin

cos3 
 =


sin

cos
· 1

cos2 
=


tan sec

2
 =





 = tan,  = sec

2



= 1

2
2 + = 1

2
tan2 +

Alternate solution: Let  = cos to get 1
2

sec2 +.

35.
 2
6

cot2  =
 2
6

(csc2 − 1)  =
− cot− 

2
6

=

0− 

2

− −√3− 
6


=
√

3− 
3

36.
 2

4

cot
3
 =

 2

4

cot (csc
2
− 1)  =

 2

4

cot csc
2
−

 2

4

cos

sin


=

− 1

2
cot2 − ln |sin|

2
4

= (0− ln 1)−

− 1

2
− ln 1√

2


= 1

2
+ ln 1√

2
= 1

2
(1− ln 2)

37.
 2
4

cot5  csc3 =
 2
4

cot4  csc2  csc cot =
 2
4

(csc2 − 1)2 csc2  csc cot

=

 1

√
2

(
2 − 1)

2


2
(−) [ = csc,  = − csc cot]

=

 √
2

1

(
6 − 2

4
+ 

2
)  =


1
7


7 − 2
5


5
+ 1

3


3
√2

1
=


8
7

√
2− 8

5

√
2 + 2

3

√
2

−  1

7
− 2

5
+ 1

3


=

120− 168 + 70

105

√
2− 15− 42 + 35

105
=

22

105

√
2− 8

105

38.
 2
4

csc4  cot4   =
 2
4

cot4  csc2  csc2   =
 2
4

cot4  (cot2  + 1) csc2  

=
 0

1
4(2 + 1) (−)


 = cot ,
 = − csc2  


=
 1

0
(6 + 4) 

=


1
7
7 + 1

5
5
1
0

= 1
7

+ 1
5

= 12
35

39.  =


csc =


csc (csc− cot)

csc− cot
 =

 − csc cot + csc2 

csc− cot
. Let  = csc− cot ⇒

 = (− csc cot+ csc2 ) . Then  =

 = ln || = ln |csc− cot|+ .

40. Let  = csc,  = csc2 . Then  = − csc cot,  = − cot ⇒
csc3 = − csc cot−  csc cot2  = − csc cot−  csc (csc2 − 1) 

= − csc cot +


csc−  csc3 

Solving for


csc3  and using Exercise 39, we get
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18 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION
csc3  = − 1

2
csc cot+ 1

2


csc = − 1

2
csc cot+ 1

2
ln |csc− cot|+ . Thus,

 3
6

csc3 =

− 1

2
csc cot+ 1

2
ln |csc− cot|

3
6

= − 1
2
· 2√

3
· 1√

3
+ 1

2
ln
 2√

3
− 1√

3

+ 1
2
· 2 ·√3− 1

2
ln
2−√3


= − 1

3
+
√

3 + 1
2

ln 1√
3
− 1

2
ln

2−√3

 ≈ 17825

41.


sin 8 cos 5
2a
=


1
2
[sin(8− 5) + sin(8+ 5)]  = 1

2


(sin 3+ sin 13) 

= 1
2
(− 1

3
cos 3− 1

13
cos 13) + = − 1

6
cos 3− 1

26
cos 13+ 

42.


sin 2 sin 6 
2b
=


1
2
[cos(2 − 6)− cos(2 + 6)] 

= 1
2


[cos(−4)− cos 8]  = 1

2


(cos 4 − cos 8) 

= 1
2


1
4

sin 4 − 1
8

sin 8


+  = 1
8

sin 4 − 1
16

sin 8 + 

43.
 2
0

cos 5 cos 10 
2c
=
 2
0

1
2
[cos(5− 10) + cos(5+ 10)] 

= 1
2

 2
0

[cos(−5) + cos 15]  = 1
2

 2
0

(cos 5+ cos 15) 

= 1
2


1
5

sin 5 + 1
15

sin 15
2
0

= 1
2


1
5
− 1

15


= 1

15

44.


sin sec

5
=


sin

cos5 


c
=


1

5
(−) =

1

44
+ =

1

4 cos4 
+  = 1

4
sec

4
+ 

45.
 6
0

√
1 + cos 2=

 6
0


1 + (2 cos2 − 1)  =

 6
0

√
2 cos2  =

√
2
 6
0

√
cos2 

=
√

2
 6
0

|cos|  =
√

2
 6
0

cos [since cos   0 for 0 ≤  ≤ 6]

=
√

2

sin

6
0

=
√

2


1
2
− 0


= 1
2

√
2

46.
 4
0

√
1− cos 4  =

 4
0


1− (1− 2 sin2(2))  =

 4
0


2 sin2(2)  =

√
2
 4
0


sin2(2) 

=
√

2
 4
0

|sin 2|  =
√

2
 4
0

sin 2  [since sin 2 ≥ 0 for 0 ≤  ≤ 4]

=
√

2
− 1

2
cos 2

4
0

= − 1
2

√
2 (0− 1) = 1

2

√
2

47.


1− tan2 

sec2 
 =

 
cos

2
− sin

2


 =


cos 2 = 1

2
sin 2+

48.




cos− 1
=


1

cos− 1
· cos+ 1

cos+ 1
 =


cos+ 1

cos2 − 1
 =


cos+ 1

− sin2 


=
 − cot csc− csc2 


 = csc + cot+

49.

 tan2 =


(sec2 − 1)  =


 sec2 −  

=  tan−  tan− 1
2
2


 = ,  = sec2  

 = ,  = tan


=  tan− ln |sec|− 1

2
2 + 
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50. Let  = tan7 ,  = sec tan ⇒  = 7 tan6  sec2 ,  = sec. Then
tan8  sec =


tan7  · sec tan = tan7  sec−  7 tan6  sec2  sec

= tan7  sec− 7


tan6  (tan2 + 1) sec

= tan7  sec− 7


tan8  sec− 7


tan6  sec.

Thus, 8


tan8  sec = tan7  sec − 7


tan6  sec and 4

0

tan
8
 sec =

1

8


tan7  sec

4
0

− 7

8

 4

0

tan
6
 sec =

√
2

8
− 7

8
.

In Exercises 51–54, let () denote the integrand and  () its antiderivative (with  = 0).

51. Let  = 2, so that  = 2. Then
 sin2(2) =


sin2 


1
2



= 1
2


1
2
(1− cos 2) 

= 1
4


− 1

2
sin 2


+ = 1

4
− 1

4


1
2
· 2 sin cos


+ 

= 1
4
2 − 1

4
sin(2) cos(2) + 

We see from the graph that this is reasonable, since  increases where  is positive and  decreases where  is negative.

Note also that  is an odd function and  is an even function.

52.


sin5  cos3 =


sin5  cos2  cos

=


sin5  (1− sin2 ) cos

s
=

5(1− 2)  =


(5 − 7) 

= 1
6

sin6 − 1
8

sin8  +

We see from the graph that this is reasonable, since  increases where  is

positive and  decreases where  is negative. Note also that  is an odd

function and  is an even function.

53.


sin 3 sin 6 =


1
2
[cos(3− 6)− cos(3+ 6)] 

= 1
2


(cos 3− cos 9) 

= 1
6

sin 3− 1
18

sin 9+ 

Notice that () = 0 whenever  has a horizontal tangent.

54.


sec4


1
2


 =

 
tan2 

2
+ 1

sec2 

2


=

(2 + 1) 2 


 = tan 

2
,  = 1

2
sec2 

2



= 2
3
3 + 2+  = 2

3
tan3 

2
+ 2 tan 

2
+ 

Notice that  is increasing and  is positive on the intervals on which they

are defined. Also,  has no horizontal tangent and  is never zero.
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20 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION

55. ave = 1
2

 
− sin2  cos3  = 1

2

 
− sin2  (1− sin2 ) cos

= 1
2

 0

0
2(1− 2)  [where  = sin] = 0

56. (a) Let  = cos. Then  = − sin ⇒ 
sin cos =


(−) = − 1

2
2 + = − 1

2
cos2 +1.

(b) Let  = sin. Then  = cos ⇒ 
sin cos =


 = 1

2
2 +  = 1

2
sin2 + 2.

(c)


sin cos =


1
2

sin 2 = − 1
4

cos 2+ 3

(d) Let  = sin,  = cos. Then  = cos,  = sin, so


sin cos = sin2 −  sin cos,

by Equation 7.1.2, so


sin cos = 1
2

sin2 + 4.

Using cos2  = 1− sin2  and cos 2 = 1− 2 sin2 , we see that the answers differ only by a constant.

57. =
 
0

(sin2 − sin3 )  =
 
0


1
2
(1− cos 2)− sin (1− cos2 )




=
 
0


1
2
− 1

2
cos 2


+

−1

1
(1− 2) 


 = cos ,
 = − sin 


=


1
2
− 1

4
sin 2


0

+ 2
 1

0
(2 − 1) 

=


1
2
 − 0

− (0− 0) + 2


1
3
3 − 

1
0

= 1
2
 + 2


1
3
− 1


= 1
2
 − 4

3

58. =
 4
0

(tan− tan2 )  =
 4
0

(tan− sec2 + 1) 

=

ln |sec|− tan+ 

4
0

=

ln
√

2− 1 + 
4

− (ln 1− 0 + 0)

= ln
√

2− 1 + 
4

59. It seems from the graph that
 2

0
cos3  = 0, since the area below the

-axis and above the graph looks about equal to the area above the axis and

below the graph. By Example 1, the integral is

sin− 1

3
sin3 

2
0

= 0.

Note that due to symmetry, the integral of any odd power of sin or cos

between limits which differ by 2 ( any integer) is 0.

60. It seems from the graph that
 2

0
sin 2 cos 5 = 0, since each bulge

above the -axis seems to have a corresponding depression below the

-axis. To evaluate the integral, we use a trigonometric identity: 1

0
sin 2 cos 5= 1

2

 2

0
[sin(2− 5) + sin(2 + 5)] 

= 1
2

 2

0
[sin(−3) + sin 7] 

= 1
2


1
3

cos(−3)− 1
7

cos 7
2
0

= 1
2


1
3

(1− 1)− 1
7

(1− 1)


= 0
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61. Using disks,  =
 
2

 sin2  = 
 
2

1
2
(1− cos 2)  = 


1
2
− 1

4
sin 2


2

= 


2
− 0− 

4
+ 0


= 2

4

62. Using disks,

 =
 
0
(sin2 )2  = 2

 2
0


1
2
(1− cos 2)

2


= 
2

 2
0

(1− 2 cos 2+ cos2 2) 

= 
2

 2
0


1− 2 cos 2+ 1

2
(1− cos 4)




= 
2

 2
0


3
2
− 2 cos 2− 1

2
cos 4


 = 

2


3
2
− sin 2+ 1

8
sin 4

2
0

= 
2


3
4
− 0 + 0

− (0− 0 + 0)


= 3
8
2

63. Using washers,

 =
 4
0



(1− sin)

2 − (1− cos)
2



= 
 4
0


(1− 2 sin+ sin2 )− (1− 2 cos+ cos2 )




= 
 4
0

(2 cos− 2 sin + sin2 − cos2 ) 

= 
 4
0

(2 cos− 2 sin− cos 2)  = 

2 sin+ 2cos− 1

2
sin 2

4
0

= 
√

2 +
√

2− 1
2

− (0 + 2− 0)


= 

2
√

2− 5
2


64. Using washers,

 =
 3
0



[sec− (−1)]2 − [cos− (−1)]2




= 
 3
0

[(sec2 + 2 sec+ 1)− (cos2 + 2cos+ 1)] 

= 
 3
0


sec2  + 2 sec− 1

2
(1 + cos 2)− 2 cos




= 

tan + 2 ln |sec+ tan|− 1

2
− 1

4
sin 2− 2 sin

3
0

= 
√

3 + 2 ln

2 +

√
3
− 

6
− 1

8

√
3−√3

− 0


= 2 ln

2 +

√
3
− 1

6
2 − 1

8

√

3

65.  = () =
 
0

sin cos2 . Let  = cos ⇒  = − sin. Then

 = − 1


 cos

1
2 = − 1




1
3
3
cos
1

= 1
3

(1− cos3 ).

66. (a) We want to calculate the square root of the average value of [()]
2

= [155 sin(120)]
2

= 1552 sin2(120). First,

we calculate the average value itself, by integrating [()]
2 over one cycle (between  = 0 and  = 1

60
, since there are

60 cycles per second) and dividing by


1
60
− 0

:

[()]
2

ave = 1
160

 160

0
[1552 sin2(120)]  = 60 · 1552

 160

0
1
2
[1− cos(240)] 

= 60 · 1552


1
2


− 1

240
sin(240)

160
0

= 60 · 1552


1
2


1
60
− 0
− (0− 0)


= 1552

2

The RMS value is just the square root of this quantity, which is 155√
2
≈ 110 V.
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(b) 220 =


[()]

2

ave ⇒

2202 = [()]
2

ave
= 1

160

 160

0
2 sin2(120)  = 602

 160

0

1
2
[1− cos(240)] 

= 302

− 1

240
sin(240)

160
0

= 302


1
60
− 0
− (0− 0)


= 1

2
2

Thus, 2202 = 1
2
2 ⇒  = 220

√
2 ≈ 311 V.

67. Just note that the integrand is odd [(−) = −()].

Or: If 6= , calculate 

−
sin cos =

 

−
1
2
[sin(− )+ sin(+ )]  = 1

2


−cos(− )

− 
− cos(+ )

+ 


−

= 0

If = , then the first term in each set of brackets is zero.

68.
 
− sin sin =

 
−

1
2
[cos(− )− cos(+ )] .

If 6= , this is equal to
1

2


sin(− )

− 
− sin(+ )

+ 


−

= 0.

If = , we get
 
−

1
2
[1− cos(+ )]  =


1
2


− −


sin(+ )

2(+ )


−

=  − 0 = .

69.
 
− cos cos =

 
−

1
2
[cos(− )+ cos(+ )] .

If 6= , this is equal to
1

2


sin(− )

− 
+

sin(+ )

+ 


−

= 0.

If = , we get
 
−

1
2
[1 + cos(+ )]  =


1
2


− +


sin(+ )

2(+ )


−

=  + 0 = .

70.
1



 

−
() sin =

1



 

−



=1

 sin


sin


 =


=1





 

−
sin sin. By Exercise 68, every

term is zero except theth one, and that term is



·  = .

7.3 Trigonometric Substitution

1. Let  = 2 sin , where−2 ≤  ≤ 2. Then  = 2cos   and
√

4− 2 =


4− 4 sin2 =
√

4 cos2 = 2 |cos | = 2cos .

Thus,




2
√

4− 2
=


2 cos 

4 sin2(2 cos )
 =

1

4


csc

2
 

= −1

4
cot  +  = −

√
4− 2

4
+ [see figure]

2. Let  = 2 tan , where −
2
   

2
. Then  = 2 sec2   and

√
2 + 4 =

√
4 tan2  + 4 =


4(tan2  + 1) =

√
4 sec2  = 2 |sec |

= 2 sec  for the relevant values of .

[continued]
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3

√
2 + 4

=


8 tan3 

2 sec 
2 sec

2
  = 8


tan

2
 sec  tan  

= 8

(sec2  − 1) sec  tan   = 8


(2 − 1)  [ = sec ]

= 8


1

3
3 − 


+  =

8

3
sec3  − 8 sec  + =

8

3

√
2 + 4

2

3

− 8

√
2 + 4

2


+

= 1
3
(2 + 4)32 − 4

√
2 + 4 + 

3. Let  = 2 sec , where 0 ≤   
2
or  ≤   3

2
. Then  = 2 sec  tan   and

√
2 − 4 =

√
4 sec2  − 4 =


4(sec2  − 1)

=
√

4 tan2  = 2 |tan | = 2 tan  for the relevant values of  √
2 − 4


=


2 tan 

2 sec 
2 sec  tan   = 2


tan

2
 

= 2


(sec

2
 − 1)  = 2 (tan  − ) + = 2

√
2 − 4

2
− sec

−1


2


+ 

=
√
2 − 4− 2 sec−1


2


+ 

4. Let  = 3 sin , where−2 ≤  ≤ 2. Then  = 3 cos  

and
√

9− 2 =


9− 9 sin2  =
√

9 cos2  = 3 |cos | = 3 cos .
2

√
9− 2

=


9 sin2 

3 cos 
3 cos   = 9


sin

2
 

= 9


1
2
(1− cos 2)  = 9

2


 − 1

2
sin 2


+ = 9

2
 − 9

4
(2 sin  cos ) +

=
9

2
sin−1


3


− 9

2
· 
3
·
√

9− 2

3
+  =

9

2
sin−1


3


− 1

2

√

9− 2 + 

5. Let  = sec , where 0 ≤  ≤ 
2
or  ≤   3

2
. Then  = sec  tan  

and
√
2 − 1 =

√
sec2  − 1 =

√
tan2  = |tan | = tan  for the relevant

values of , so √
2 − 1

4
=


tan 

sec4 
sec  tan   =


tan

2
 cos

3
 

=


sin

2
 cos  

s
=




2
 = 1

3


3
+  = 1

3
sin

3
 +

=
1

3

√
2 − 1



3

+  =
1

3

(2 − 1)32

3
+ 

6. Let  = 36− 2, so  = −2. When  = 0,  = 36; when  = 3,  = 27. Thus, 3

0

√
36− 2

 =

 27

36

1√



−1

2



= −1

2


2
√

27
36

= −
√

27−
√

36


= 6− 3
√

3

[continued]
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24 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION

Another method: Let  = 6 sin , so  = 6 cos  ,  = 0 ⇒  = 0, and  = 3 ⇒  = 
6
. Then 3

0

√
36− 2

=

 6

0

6 sin 
36(1− sin2 )

6 cos   =

 6

0

6 sin 

6 cos 
6 cos   = 6

 6

0

sin  

= 6

− cos 

6
0

= 6

−
√

3
2

+ 1


= 6− 3
√

3

7. Let  =  tan , where   0 and −
2
   

2
. Then  =  sec2  ,  = 0 ⇒  = 0, and  =  ⇒  = 

4
.

Thus, 

0



(2 + 2)32
=

 4

0

 sec2  

[2(1 + tan2 )]
32

=

 4

0

 sec2  

3 sec3 
=

1

2

 4

0

cos  

=
1

2

√
2

2
− 0


=

1√
22

.

=
1

2


sin 

4
0

8. Let  = 4 sec , where 0 ≤   
2
or  ≤   3

2
. Then  = 4 sec  tan   and

√
2 − 16 =

√
16 sec2  − 16 =

√
16 tan2  = 4 tan  for the relevant

values of , so


2
√
2 − 16

=


4 sec  tan  

16 sec2  · 4 tan 
=

1

16


1

sec 
 =

1

16


cos  

=
1

16
sin  +  =

1

16

√
2 − 16


+  =

√
2 − 16

16
+

9. Let  = sec , so  = sec  tan  ,  = 2 ⇒  = 
3
, and

 = 3 ⇒  = sec−1 3. Then 3

2



(2 − 1)32
=

 sec−1 3

3

sec  tan  

tan3 
=

 sec−1 3

3

cos 

sin2 


s
=

 √
83

√
32

1

2
 =


− 1



√83

√
32

=
−3√

8
+

2√
3

= −3

4

√
2 +

2

3

√
3

10. Let  = 2
3

sin , so  = 2
3

cos  ,  = 0 ⇒  = 0, and  = 2
3
⇒

 = 
2
. Thus, 23

0


4− 92 =

 2

0


4− 9 · 4

9
sin2 

2

3
cos  

=

 2

0

2 cos  · 2

3
cos   =

4

3

 2

0

cos
2
 

=
4

3

 2

0

1

2
(1 + cos 2)  =

2

3


 +

1

2
sin 2

2
0

=
2

3


2

+ 0

− (0 + 0)


=



3

11.
 12

0

√

1− 42 =
 0

1
12

− 1
8

 

 = 1− 42,
 = −8 


= 1

8


2
3
32

1
0

= 1
12

(1− 0) = 1
12
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12. Let  = 2 tan , so  = 2 sec2  ,  = 0 ⇒  = 0, and  = 2 ⇒  = 
4
. Thus, 2

0

√
4 + 2

=

 4

0

2 sec2  √
4 + 4 tan2 

=

 4

0

2 sec2  

2 sec 
=

 4

0

sec   =

ln |sec  + tan |

4
0

= ln
√2 + 1

− ln |1 + 0| = ln(
√

2 + 1)

13. Let  = 3 sec , where 0 ≤   
2
or  ≤   3

2
. Then

 = 3 sec  tan   and
√
2 − 9 = 3 tan , so √

2 − 9

3
 =


3 tan 

27 sec3 
3 sec  tan   =

1

3


tan2 

sec2 


= 1
3


sin2   = 1

3


1
2
(1− cos 2)  = 1

6
 − 1

12
sin 2 + = 1

6
 − 1

6
sin  cos  + 

=
1

6
sec−1


3


− 1

6

√
2 − 9



3


+ =

1

6
sec−1


3


−
√
2 − 9

22
+ 

14. Let  = tan , so  = sec2  ,  = 0 ⇒  = 0, and  = 1 ⇒  = 
4
. Then 1

0



(2 + 1)2
=

 4

0

sec2  

(tan2  + 1)2
=

 4

0

sec2  

(sec2 )2

=

 4

0

cos
2
  =

 4

0

1

2
(1 + cos 2) 

= 1
2


 + 1

2
sin 2

4
0

= 1
2


(

4
+ 1

2
)− 0


= 

8
+ 1

4

15. Let  =  sin ,  =  cos  ,  = 0 ⇒  = 0 and  =  ⇒  = 
2
. Then 

0
2
√
2 − 2 =

 2
0

2 sin2  ( cos )  cos   = 4
 2
0

sin2  cos2  

= 4

 2

0


1
2
(2 sin  cos )

2
 =

4

4

 2

0

sin
2
2  =

4

4

 2

0

1
2
(1− cos 4) 

=
4

8


 − 1

4
sin 4

2
0

=
4

8


2
− 0

− 0


=


16
4

16. Let  = 1
3

sec , so  = 1
3

sec  tan  ,  =
√

23 ⇒  = 
4
,  = 2

3
⇒  = 

3
. Then 23

√
23



5
√

92 − 1
=

 3

4

1
3

sec  tan  
1
3

5
sec5  tan 

= 3
4

 3

4

cos
4
  = 81

 3

4


1
2
(1 + cos 2)

2


= 81
4

 3
4

(1 + 2 cos 2 + cos2 2)  = 81
4

 3
4


1 + 2 cos 2 + 1

2
(1 + cos 4)




= 81
4

 3
4


3
2

+ 2 cos 2 + 1
2

cos 4

 = 81

4


3
2
 + sin 2 + 1

8
sin 4

3
4

= 81
4



2

+
√

3
2
−
√

3
16


−  3

8
+ 1 + 0


= 81

4



8

+ 7
16

√
3− 1



17. Let  = 2 − 7, so  = 2. Then


√
2 − 7

 =
1

2


1√

 = 1

2
· 2√+ =


2 − 7 + .
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18. Let  =  sec , so ()2 = 2 sec2  ⇒

()2 − 2 = 2 sec2  − 2 = 2(sec2  − 1) = 2 tan2 .

So


()2 − 2 =  tan ,  =



sec  tan  , and




[()2 − 2]
32

=

 


sec  tan 

3 tan3 
 =

1

2


sec 

tan2 


=
1

2

 cos 

sin2 
 =

1

2


csc  cot  

= − 1

2
csc  +  = − 1

2


()2 − 2
+

= − 

2


()2 − 2
+

19. Let  = tan , where−
2
   

2
. Then  = sec2  

and
√

1 + 2 = sec , so √
1 + 2


 =


sec 

tan 
sec

2
  =


sec 

tan 
(1 + tan

2
) 

=

(csc  + sec  tan ) 

= ln |csc  − cot |+ sec  + [by Exercise 7.2.39]

= ln

√1 + 2


− 1



+ √
1 + 2

1
+ = ln

√1 + 2 − 1



+√1 + 2 + 

20. Let  = 1 + 2, so  = 2. Then
√

1 + 2
 =


1√



1

2



=

1

2



−12

 =
1

2
· 212

+  =


1 + 2 +

21. Let  = 3
5

sin , so  = 3
5

cos  ,  = 0 ⇒  = 0, and  = 06 ⇒  = 
2
. Then

 06

0

2

√
9− 252

=

 2

0


3
5

2
sin2 

3 cos 


3
5

cos  


= 9
125

 2

0

sin
2
 

= 9
125

 2
0

1
2
(1− cos 2)  = 9

250


 − 1

2
sin 2

2
0

= 9
250



2
− 0
− 0


= 9

500


22. Let  = tan , where−
2
   

2
. Then  = sec2  ,

√
2 + 1 = sec  and  = 0 ⇒  = 0,  = 1 ⇒  = 

4
, so 1

0

√
2 + 1 =

 4
0

sec  sec2   =
 4
0

sec3  

= 1
2


sec  tan  + ln |sec  + tan |

4
0

[by Example 7.2.8]

= 1
2

√
2 · 1 + ln


1 +

√
2
− 0− ln(1 + 0)


= 1

2

√
2 + ln


1 +

√
2
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23.


√

2 + 2+ 5
=




(+ 1)2 + 4
=


2 sec2  √
4 tan2  + 4


+ 1 = 2 tan ,
 = 2 sec2  



=


2 sec2  

2 sec 
=


sec   = ln |sec  + tan |+1

= ln

√2 + 2+ 5

2
+

+ 1

2

+ 1,

or ln
√2 + 2 + 5 + + 1

+, where  = 1 − ln 2.

24.

 1

0


− 2 =

 1

0


1
4
− 2 − + 1

4


 =

 1

0


1
4
− − 1

2

2


=

 2

−2


1
4
− 1

4
sin2  1

2
cos  


− 1

2
= 1

2
sin ,

 = 1
2
cos  


= 2

 2

0

1
2

cos  1
2

cos   = 1
2

 2

0

cos
2
  = 1

2

 2

0

1
2
(1 + cos 2) 

= 1
4


 + 1

2
sin 2

2
0

= 1
4



2


= 

8

25.

2
√

3 + 2− 2 =

2


4− (2 + 2+ 1)  =

2


22 − (− 1)2 

=

(1 + 2 sin )2

√
4 cos2  2 cos  


− 1 = 2 sin ,

 = 2cos  


=

(1 + 4 sin  + 4 sin2 ) 4 cos2  

= 4

(cos2  + 4 sin  cos2  + 4 sin2  cos2 ) 

= 4


1
2
(1 + cos 2)  + 4


4 sin  cos2   + 4


(2 sin  cos )2 

= 2

(1 + cos 2)  + 16


sin  cos2   + 4


sin2 2 

= 2

 + 1

2
sin 2


+ 16

− 1
3

cos3 


+ 4


1
2
(1− cos 4) 

= 2 + sin 2 − 16
3

cos3  + 2

 − 1

4
sin 4


+ 

= 4 − 1
2

sin 4 + sin 2 − 16
3

cos3  +

= 4 − 1
2
(2 sin 2 cos 2) + sin 2 − 16

3
cos3  + 

= 4 + sin 2(1− cos 2)− 16
3

cos3  +

= 4 + (2 sin  cos )(2 sin2 )− 16
3

cos3  +

= 4 + 4 sin3  cos  − 16
3

cos3  + 

= 4 sin−1


− 1

2


+ 4


− 1

2

3 √
3 + 2− 2

2
− 16

3

(3 + 2− 2)32

23
+ 

= 4 sin−1


− 1

2


+

1

4
(− 1)3

√
3 + 2− 2 − 2

3
(3 + 2− 2)32 +

26. 3 + 4− 42 = −(42 − 4+ 1) + 4 = 22 − (2− 1)2.

Let 2− 1 = 2 sin , so 2  = 2 cos   and
√

3 + 4− 42 = 2cos .

Then
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28 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION
2

(3 + 4− 42)32
=

 
1
2
(1 + 2 sin )

2
(2 cos )3

cos  

=
1

32


1 + 4 sin  + 4 sin2 

cos2 
 =

1

32


(sec

2
 + 4 tan  sec  + 4 tan

2
) 

= 1
32


[sec2  + 4 tan  sec  + 4(sec2  − 1)] 

= 1
32


(5 sec2  + 4 tan  sec  − 4)  = 1

32
(5 tan  + 4 sec  − 4) +

=
1

32


5 · 2− 1√

3 + 4− 42
+ 4 · 2√

3 + 4− 42
− 4 · sin−1


2− 1

2


+

=
10+ 3

32
√

3 + 4− 42
− 1

8
sin−1


2− 1

2


+

27. 2 + 2 = (2 + 2+ 1)− 1 = ( + 1)2 − 1. Let + 1 = 1 sec ,

so  = sec  tan   and
√
2 + 2 = tan . Then √

2 + 2=


tan  (sec  tan  ) =


tan2  sec  

=

(sec2  − 1) sec   =


sec3   −  sec  

= 1
2

sec  tan  + 1
2

ln |sec  + tan |− ln |sec  + tan |+ 

= 1
2

sec  tan  − 1
2

ln |sec  + tan |+  = 1
2
(+ 1)

√
2 + 2− 1

2
ln
+ 1 +

√
2 + 2

+

28. 2 − 2+ 2 = (2 − 2+ 1) + 1 = (− 1)2 + 1. Let − 1 = 1 tan ,

so  = sec2   and
√
2 − 2 + 2 = sec . Then

2 + 1

(2 − 2+ 2)2
=


(tan  + 1)2 + 1

sec4 
sec

2
 

=


tan2  + 2 tan  + 2

sec2 


=

(sin2  + 2 sin  cos  + 2cos2 )  =


(1 + 2 sin  cos  + cos2 ) 

=
 

1 + 2 sin  cos  + 1
2
(1 + cos 2)


 =

 
3
2

+ 2 sin  cos  + 1
2

cos 2



= 3
2
 + sin2  + 1

4
sin 2 + = 3

2
 + sin2  + 1

2
sin  cos  +

=
3

2
tan−1


− 1

1


+

(− 1)
2

2 − 2+ 2
+

1

2

− 1√
2 − 2+ 2

1√
2 − 2+ 2

+ 

=
3

2
tan−1(− 1) +

2(2 − 2 + 1) + − 1

2(2 − 2+ 2)
+  =

3

2
tan−1(− 1) +

22 − 3+ 1

2(2 − 2+ 2)
+ 

We can write the answer as

3

2
tan−1(− 1) +

(22 − 4+ 4) + − 3

2(2 − 2+ 2)
+  =

3

2
tan−1(− 1) + 1 +

− 3

2(2 − 2+ 2)
+ 

=
3

2
tan−1(− 1) +

− 3

2(2 − 2+ 2)
+ 1, where 1 = 1 + 
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29. Let  = 2,  = 2. Then

√

1− 4  =
 √

1− 2


1
2



= 1
2


cos  · cos  


where  = sin ,  = cos  ,

and
√
1− 2 = cos 


= 1

2


1
2
(1 + cos 2)  = 1

4
 + 1

8
sin 2 +  = 1

4
 + 1

4
sin  cos  +

= 1
4

sin−1 + 1
4

√

1− 2 +  = 1
4

sin−1(2) + 1
4
2
√

1− 4 +

30. Let  = sin ,  = cos  . Then 2

0

cos 
1 + sin2 

 =

 1

0

1√
1 + 2

 =

 4

0

1

sec 
sec

2
 


where  = tan  ,  = sec2  ,

and
√
1 + 2 = sec 



=
 4
0

sec   =

ln |sec  + tan |

4
0

[by (1) in Section 7.2]

= ln
√

2 + 1
− ln(1 + 0) = ln

√
2 + 1


31. (a) Let  =  tan , where−

2
   

2
. Then

√
2 + 2 =  sec  and

√
2 + 2

=


 sec2  

 sec 
=


sec   = ln|sec  + tan |+1 = ln

√2 + 2


+





+ 1

= ln

+

√
2 + 2


+  where  = 1 − ln ||

(b) Let  =  sinh , so that  =  cosh   and
√
2 + 2 =  cosh . Then

√
2 + 2

=


 cosh  

 cosh 
=  + = sinh

−1 


+.

32. (a) Let  =  tan , −
2
   

2
. Then

 =


2

(2 + 2)
32

 =


2 tan2 

3 sec3 
 sec

2
  =


tan2 

sec 
 =


sec2  − 1

sec 


=


(sec  − cos )  = ln |sec  + tan |− sin  + 

= ln

√2 + 2


+





− √
2 + 2

+ = ln

+

√
2 + 2

− √
2 + 2

+ 1

(b) Let  =  sinh . Then

 =


2 sinh2 

3 cosh3 
 cosh   =


tanh2   =


(1− sech2 )  = − tanh + 

= sinh−1 


− √

2 + 2
+ 

33. The average value of () =
√
2 − 1 on the interval [1 7] is

1

7− 1

 7

1

√
2 − 1


 =

1

6

 

0

tan 

sec 
· sec  tan  


where  = sec ,  = sec  tan  ,√

2 − 1 = tan , and  = sec−1 7


= 1

6

 
0

tan2   = 1
6

 
0

(sec2  − 1)  = 1
6


tan  − 


0

= 1
6
(tan− ) = 1

6

√
48− sec−1 7
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34. 92 − 42 = 36 ⇒  = ± 3
2

√
2 − 4 ⇒

area = 2
 3

2

3
2

√
2 − 4  = 3

 3

2

√
2 − 4 

= 3
 
0

2 tan  2 sec  tan  

 where  = 2 sec ,

 = 2 sec  tan  ,

 = sec−1


3
2




= 12
 
0


sec2  − 1


sec   = 12

 
0


sec3  − sec 




= 12


1
2
(sec  tan  + ln |sec  + tan |)− ln |sec  + tan |

0

= 6

sec  tan  − ln |sec  + tan |


0

= 6


3
√

5
4
− ln


3
2

+
√

5
2


= 9

√
5

2
− 6 ln


3 +

√
5

2


35. Area of4 = 1

2
( cos )( sin ) = 1

2
2 sin  cos . Area of region  =

 
 cos 

√
2 − 2 .

Let  =  cos ⇒  = − sin for  ≤  ≤ 
2
. Then we obtain √

2 − 2 =

 sin (− sin)  = −2


sin2  = − 1

2
2(− sin cos) +

= − 1
2
2 cos−1() + 1

2

√
2 − 2 +

so area of region = 1
2

−2 cos−1() + 
√
2 − 2


 cos 

= 1
2


0− (−2 +  cos   sin )


= 1

2
2 − 1

2
2 sin  cos 

and thus, (area of sector ) = (area of4) + (area of region ) = 1
2
2.

36. Let  =
√

2 sec , where 0 ≤   
2
or  ≤   3

2
, so  =

√
2 sec  tan  . Then



4
√
2 − 2

=

 √
2 sec  tan  

4 sec4 
√

2 tan 

= 1
4


cos3   = 1

4

 
1− sin2 


cos  

= 1
4


sin  − 1

3
sin3 


+  [substitute  =sin ]

=
1

4

√
2 − 2


−

2 − 2

32
33


+ 

From the graph, it appears that our answer is reasonable. [Notice that () is large when  increases rapidly and small

when  levels out.]

37. Use disks about the -axis:

 =

 3

0




9

2 + 9

2

 = 81

 3

0

1

(2 + 9)
2


Let  = 3 tan , so  = 3 sec2  ,  = 0 ⇒  = 0 and

 = 3 ⇒  = 
4
. Thus,

 = 81

 4

0

1

(9 sec2 )2
3 sec

2
  = 3

 4

0

cos
2
  = 3

 4

0

1

2
(1 + cos 2) 

= 3
2


 + 1

2
sin 2

4
0

= 3
2



4

+ 1
2

− 0


= 3
8
2 + 3

4
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38. Use shells about  = 1:

 =
 1

0
2(1− )

√
1− 2 

= 2
 1

0

√

1− 2 − 2
 1

0
2
√

1− 2  = 21 − 22

For 1, let  = 1− 2, so  = −2, and

1 =
 0

1

√

− 1

2



= 1
2

 1

0
12  = 1

2


2
3
32

1
0

= 1
2


2
3


= 1

3
.

For 2, let  = sin , so  = cos  , and

2 =
 2
0

sin2 
√

cos2  cos   =
 2
0

sin2  cos2   =
 2
0

1
4
(2 sin  cos )2 

= 1
4

 2
0

sin2 2  = 1
4

 2
0

1
2
(1− cos 2)  = 1

8


 − 1

2
sin 2

2
0

= 1
8



2


= 

16

Thus,  = 2


1
3

− 2


16


= 2

3
 − 1

8
2.

39. (a) Let  =  sin ,  =  cos  ,  = 0 ⇒  = 0 and  =  ⇒
 = sin−1(). Then 

0


2 − 2 =

 sin−1()

0

 cos  ( cos  ) = 
2

 sin−1()

0

cos
2
 

=
2

2

 sin−1()

0

(1 + cos 2)  =
2

2


 + 1

2
sin 2

sin−1()
0

=
2

2


 + sin  cos 

sin−1()
0

=
2

2


sin−1





+




·
√
2 − 2




− 0


= 1

2
2 sin−1() + 1

2

√
2 − 2

(b) The integral
 
0

√
2 − 2  represents the area under the curve  =

√
2 − 2 between the vertical lines  = 0 and  = .

The figure shows that this area consists of a triangular region and a sector of the circle 2 + 2 = 2. The triangular region

has base  and height
√
2 − 2, so its area is 1

2

√
2 − 2. The sector has area 1

2
2 = 1

2
2 sin−1().

40. The curves intersect when 2 +


1
2
2
2

= 8 ⇔ 2 + 1
4
4 = 8 ⇔ 4 + 42 − 32 = 0 ⇔

(2 + 8)(2 − 4) = 0 ⇔  = ±2. The area inside the circle and above the parabola is given by

1 =
 2

−2

√
8− 2 − 1

2
2

 = 2

 2

0

√
8− 2 − 2

 2

0

1
2
2 

= 2


1
2
(8) sin−1


2√
8


+ 1

2
(2)
√

8− 22 − 1
2


1
3
3
2
0


[by Exercise 39]

= 8 sin−1


1√
2


+ 2
√

4− 8
3

= 8


4


+ 4− 8

3
= 2 + 4

3

Since the area of the disk is 
√

8
2

= 8, the area inside the circle and

below the parabola ia 2 = 8 − 2 + 4
3


= 6 − 4

3
.
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41. We use cylindrical shells and assume that   . 2 = 2 − ( − )2 ⇒  = ±

2 − ( −)2,

so () = 2

2 − ( −)2 and

 =
 +

− 2 · 2

2 − ( −)2  =

 
− 4(+)

√
2 − 2  [where  =  −]

= 4
 
− 

√
2 − 2 + 4

 
−
√
2 − 2 


where  =  sin  ,  =  cos  

in the second integral


= 4


− 1

3
(2 − 2)32


−

+ 4
 2
−2 

2 cos2   = − 4
3

(0− 0) + 42
 2
−2 cos2  

= 22
 2
−2(1 + cos 2)  = 22


 + 1

2
sin 2

2
−2 = 222

Another method: Use washers instead of shells, so  = 8
 
0


2 − 2  as in Exercise 6.2.63(a), but evaluate the

integral using  =  sin .

42. Let  =  tan , so that  =  sec2   and
√
2 + 2 =  sec .

( ) =

 −

−



40(2 + 2)
32

 =


40

 2

1

1

( sec )
3
 sec

2
 

=


40

 2

1

1

sec 
 =



40

 2

1

cos   =


40


sin 

2
1

=


40


√

2 + 2

−
−

=


40


− 

(− )2 + 2
+

√
2 + 2



43. Let the equation of the large circle be 2 + 2 = 2. Then the equation of

the small circle is 2 + ( − )
2

= 2, where  =
√
2 − 2 is the distance

between the centers of the circles. The desired area is

 =
 
−

+

√
2 − 2

−√2 − 2



= 2
 
0


+

√
2 − 2 −√2 − 2




= 2
 
0
  + 2

 
0

√
2 − 2 − 2

 
0

√
2 − 2 

The first integral is just 2 = 2
√
2 − 2. The second integral represents the area of a quarter-circle of radius , so its value

is 1
4
2. To evaluate the other integral, note that √

2 − 2  =

2 cos2   [ =  sin ,  =  cos  ] =


1
2
2


(1 + cos 2) 

= 1
2
2

 + 1

2
sin 2


+  = 1

2
2( + sin  cos ) +

=
2

2
arcsin





+

2

2




√2 − 2


+ =

2

2
arcsin





+



2

√
2 − 2 + 

Thus, the desired area is

 = 2
√
2 − 2 + 2


1
4
2

− 2 arcsin() + 
√
2 − 2


0

= 2
√
2 − 2 + 1

2
2 − 2 arcsin() + 

√
2 − 2


= 

√
2 − 2 + 

2
2 −2 arcsin()
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44. Note that the circular cross-sections of the tank are the same everywhere, so the

percentage of the total capacity that is being used is equal to the percentage of any

cross-section that is under water. The underwater area is

= 2
 2

−5


25− 2 

=

25 arcsin(5) + 


25− 2

2
−5

[substitute  = 5 sin ]

= 25 arcsin 2
5

+ 2
√

21 + 25
2
 ≈ 5872 ft2

so the fraction of the total capacity in use is


(5)2
≈ 5872

25
≈ 0748 or 748%.

7.4 Integration of Rational Functions by Partial Fractions

1. (a)
4 + 

(1 + 2)(3− )
=



1 + 2
+



3− 

(b)
1− 

3 + 4
=

1− 

3(1 + )
=




+



2
+



3
+



1 + 

2. (a)
− 6

2 + − 6
=

− 6

(+ 3)(− 2)
=



+ 3
+



− 2

(b)
2

2 + + 6
=

(2 + + 6)− (+ 6)

2 +  + 6
= 1− + 6

2 + + 6

Notice that 2 +  + 6 can’t be factored because its discriminant is 2 − 4 = −23  0.

3. (a)
1

2 + 4
=

1

2(1 + 2)
=




+



2
+

+

1 + 2

(b)
3 + 1

3 − 32 + 2
=

(3 − 32 + 2) + 32 − 2+ 1

3 − 32 + 2
= 1 +

32 − 2+ 1

(2 − 3+ 2)
[or use long division]

= 1 +
32 − 2+ 1

(− 1)(− 2)
= 1 +




+



− 1
+



− 2

4. (a)
4 − 23 + 2 + 2− 1

2 − 2+ 1
=

2(2 − 2+ 1) + 2− 1

2 − 2+ 1
= 2 +

2− 1

(− 1)2
[or use long division]

= 2 +


− 1
+



(− 1)2

(b)
2 − 1

3 + 2 + 
=

2 − 1

(2 + + 1)
=




+

+ 

2 + + 1

5. (a)
6

2 − 4
= 4 + 42 + 16 +

64

( + 2)(− 2)
[by long division]

= 4 + 42 + 16 +


+ 2
+



− 2

(b)
4

(2 − + 1)(2 + 2)2
=

 +

2 − + 1
+

+

2 + 2
+

+ 

(2 + 2)2
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6. (a)
6 + 1

6 + 3
=

(6 + 3)− 3 + 1

6 + 3
= 1+

−3 + 1

3(3 + 1)
= 1+

−3 + 1

3( + 1)(2 −  + 1)
= 1+




+


2
+


3
+



 + 1
+

+ 

2 −  + 1

(b)
5 + 1

(2 − )(4 + 22 + 1)
=

5 + 1

(− 1)(2 + 1)2
=




+



− 1
+

+

2 + 1
+

+ 

(2 + 1)2

7.


4

− 1
 =

 


3
+ 

2
+ + 1 +

1

− 1


 [by division] =

1

4
4 +

1

3
3 +

1

2
2 +  + ln |− 1|+

8.


3− 2

+ 1
 =

 
3− 5

 + 1


 = 3− 5 ln | + 1|+

9.
5+ 1

(2+ 1)(− 1)
=



2+ 1
+



− 1
. Multiply both sides by (2+ 1)(− 1) to get 5+ 1 = (− 1) +(2+ 1) ⇒

5+ 1 = −+ 2+ ⇒ 5+ 1 = (+ 2) + (−+).

The coefficients of  must be equal and the constant terms are also equal, so  + 2 = 5 and

− +  = 1. Adding these equations gives us 3 = 6 ⇔  = 2, and hence,  = 1. Thus,
5+ 1

(2+ 1)(− 1)
 =

 
1

2+ 1
+

2

− 1


 = 1

2
ln |2+ 1|+ 2 ln |− 1|+.

Another method: Substituting 1 for  in the equation 5 + 1 = (− 1) +(2 + 1) gives 6 = 3 ⇔  = 2.

Substituting − 1
2
for  gives − 3

2
= − 3

2
 ⇔  = 1.

10.


( + 4)(2 − 1)
=



 + 4
+



2 − 1
. Multiply both sides by ( + 4)(2 − 1) to get  = (2 − 1) +( + 4) ⇒

 = 2 −+ + 4 ⇒  = (2+) + (−+ 4). The coefficients of  must be equal and the constant terms

are also equal, so 2+ = 1 and −+ 4 = 0. Adding 2 times the second equation and the first equation gives us

9 = 1 ⇔  = 1
9
and hence,  = 4

9
. Thus,

 

( + 4)(2 − 1)
=

  4
9

 + 4
+

1
9

2 − 1


 =

4

9
ln | + 4|+ 1

9
· 1

2
ln |2 − 1|+

= 4
9

ln | + 4|+ 1
18

ln |2 − 1|+

Another method: Substituting 1
2
for  in the equation  = (2 − 1) +( + 4) gives 1

2
= 9

2
 ⇔  = 1

9
.

Substituting −4 for  gives −4 = −9 ⇔  = 4
9
.

11.
2

22 + 3+ 1
=

2

(2+ 1)(+ 1)
=



2+ 1
+



+ 1
. Multiply both sides by (2 + 1)( + 1) to get

2 = (+ 1) +(2+ 1). The coefficients of  must be equal and the constant terms are also equal, so + 2 = 0 and

+ = 2. Subtracting the second equation from the first gives  = −2, and hence,  = 4. Thus, 1

0

2

22 + 3+ 1
 =

 1

0


4

2+ 1
− 2

+ 1


 =


4

2
ln |2+ 1|− 2 ln |+ 1|

1
0

= (2 ln 3− 2 ln 2)− 0 = 2 ln
3

2
.

Another method: Substituting −1 for  in the equation 2 = (+ 1) +(2+ 1) gives 2 = − ⇔  = −2.

Substituting −1
2
for  gives 2 = 1

2
 ⇔  = 4.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



SECTION 7.4 INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS ¤ 35

12.
− 4

2 − 5+ 6
=



− 2
+



− 3
. Multiply both sides by (− 2)(− 3) to get − 4 = (− 3) + (− 2) ⇒

− 4 = − 3+− 2 ⇒ − 4 = (+)+ (−3− 2).

The coefficients of  must be equal and the constant terms are also equal, so+ = 1 and −3− 2 = −4.

Adding twice the first equation to the second gives us − = −2 ⇔  = 2, and hence,  = −1.Thus, 1

0

− 4

2 − 5+ 6
=

 1

0


2

− 2
− 1

− 3


 = [2 ln |− 2|− ln |− 3|]10

= (0− ln 2)− (2 ln 2− ln 3) = −3 ln 2 + ln 3 [or ln 3
8
]

Another method: Substituting 3 for  in the equation − 4 = (− 3) +(− 2) gives −1 = . Substituting 2 for 

gives −2 = − ⇔  = 2.

13.




2 − 
 =




(− )
 =




− 
 =  ln |− |+ 

14. If  6= ,
1

(+ )(+ )
=

1

− 


1

+ 
− 1

 + 


, so if  6= , then




(+ )(+ )
=

1

− 
(ln |+ |− ln |+ |) +  =

1

− 
ln

+ 

 + 

+ 

If  = , then




(+ )2
= − 1

 + 
+.

15.
3 − 4+ 1

2 − 3+ 2
=  + 3 +

3− 5

(− 1)(− 2)
. Write

3− 5

(− 1)(− 2)
=



− 1
+



− 2
. Multiplying

both sides by (− 1)(− 2) gives 3− 5 = (− 2) + (− 1). Substituting 2 for 

gives 1 = . Substituting 1 for  gives −2 = − ⇔  = 2. Thus, 0

−1

3 − 4 + 1

2 − 3 + 2
=

 0

−1


+ 3 +

2

− 1
+

1

− 2


 =


1
2


2
+ 3+ 2 ln |− 1|+ ln |− 2|

0
−1

= (0 + 0 + 0 + ln 2)−  1
2
− 3 + 2 ln 2 + ln 3


= 5

2
− ln 2− ln 3, or 5

2
− ln 6

16.
3 + 42 + − 1

3 + 2
= 1 +

32 + − 1

2(+ 1)
. Write

32 + − 1

2( + 1)
=




+



2
+



+ 1
. Multiplying both sides by 2(+ 1)

gives 32 + − 1 = (+ 1) +(+ 1) +2. Substituting 0 for  gives −1 = . Substituting−1 for  gives 1 = .

Equating coefficients of 2 gives 3 = + = + 1, so  = 2. Thus,

 2

1

3 + 42 + − 1

3 + 2
=

 2

1


1 +

2


− 1

2
+

1

+ 1


 =


+ 2 ln ||+ 1


+ ln | + 1|

2
1

=

2 + 2 ln 2 + 1

2
+ ln 3

− (1 + 0 + 1 + ln 2) = 1
2

+ ln 2 + ln 3, or 1
2

+ ln 6.

17.
42 − 7 − 12

( + 2)( − 3)
=




+



 + 2
+



 − 3
⇒ 42 − 7 − 12 = ( + 2)( − 3) +( − 3) + ( + 2). Setting

 = 0 gives −12 = −6, so  = 2. Setting  = −2 gives 18 = 10, so  = 9
5
. Setting  = 3 gives 3 = 15, so  = 1

5
.
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Now  2

1

42 − 7 − 12

( + 2)( − 3)
 =

 2

1


2


+

95

 + 2
+

15

 − 3


 =


2 ln ||+ 9

5
ln | + 2|+ 1

5
ln | − 3| 2

1

= 2 ln 2 + 9
5

ln 4 + 1
5

ln 1− 2 ln 1− 9
5

ln 3− 1
5

ln 2

= 2 ln 2 + 18
5

ln 2− 1
5

ln 2− 9
5

ln 3 = 27
5

ln 2− 9
5

ln 3 = 9
5
(3 ln 2− ln 3) = 9

5
ln 8

3

18.
32 + 6+ 2

2 + 3+ 2
= 3 +

−3− 4

(+ 1)(+ 2)
. Write

−3− 4

(+ 1)(+ 2)
=



+ 1
+



+ 2
. Multiplying both sides by (+ 1)(+ 2)

gives −3− 4 = (+ 2) +(+ 1). Substituting −2 for  gives 2 = − ⇔  = −2. Substituting −1 for  gives

−1 = . Thus, 2

1

32 + 6 + 2

2 + 3+ 2
=

 2

1


3− 1

+ 1
− 2

 + 2


 =


3− ln | + 1|− 2 ln |+ 2|

2
1

= (6− ln 3− 2 ln 4)− (3− ln 2− 2 ln 3) = 3 + ln 2 + ln 3− 2 ln 4, or 3 + ln 3
8

19.
2 + + 1

(+ 1)2(+ 2)
=



+ 1
+



( + 1)2
+



 + 2
. Multiplying both sides by ( + 1)2( + 2) gives

2 +  + 1 = ( + 1)(+ 2) +(+ 2) +( + 1)2. Substituting −1 for  gives 1 =  Substituting −2 for  gives

3 = . Equating coefficients of 2 gives 1 = +  = + 3, so  = −2. Thus, 1

0

2 + + 1

( + 1)2(+ 2)
=

 1

0

 −2

+ 1
+

1

(+ 1)2
+

3

+ 2


 =


−2 ln | + 1|− 1

 + 1
+ 3 ln |+ 2|

1

0

=
−2 ln 2− 1

2
+ 3 ln 3

− (0− 1 + 3 ln 2) = 1
2
− 5 ln 2 + 3 ln 3, or 1

2
+ ln 27

32

20.
(3− 5)

(3− 1)(− 1)2
=



3− 1
+



− 1
+



(− 1)2
. Multiplying both sides by (3− 1)(− 1)2 gives

(3− 5) = (− 1)2 + (− 1)(3− 1) + (3− 1). Substituting 1 for  gives −2 = 2 ⇔  = −1.

Substituting 1
3
for  gives 4

9
= 4

9
 ⇔  = 1. Substituting 0 for  gives 0 = + −  = 1 + + 1, so  = −2.

Thus, 3

2

(3− 5)

(3− 1)(− 1)2
=

 3

2


1

3− 1
− 2

− 1
− 1

(− 1)2


 =


1

3
ln |3− 1|− 2 ln |− 1|+ 1

− 1

3
2

=


1
3

ln 8− 2 ln 2 + 1
2

−  1
3

ln 5− 0 + 1


= − ln 2− 1
3

ln 5− 1
2

21.
1

(2 − 1)2
=

1

(+ 1)2(− 1)2
=



 + 1
+



( + 1)2
+



− 1
+



(− 1)2
. Multiplying both sides by ( + 1)2(− 1)2 gives

1 = ( + 1)(− 1)2 +(− 1)2 + (− 1)( + 1)2 +( + 1)2. Substituting 1 for  gives 1 = 4 ⇔  = 1
4
.

Substituting −1 for  gives 1 = 4 ⇔  = 1
4
. Substituting 0 for  gives 1 = + −  + = + 1

4
−  + 1

4
, so

1
2

= − . Equating coefficients of 3 gives 0 = +. Adding the last two equations gives 2 = 1
2
⇔  = 1

4
, and so

 = − 1
4
. Thus,



(2 − 1)2
=

 
14

+ 1
+

14

(+ 1)2
− 14

− 1
+

14

(− 1)2




=
1

4


ln | + 1|− 1

+ 1
− ln |− 1|− 1

− 1


+, or

1

4


ln

 + 1

− 1

+ 2

1− 2


+
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22.


4 + 92 + + 2

2 + 9
=

 


2
+

+ 2

2 + 9


 =

 


2
+



2 + 9
+

2

2 + 9




=
1

3
3 +

1

2
ln(2 + 9) +

2

3
tan−1 

3
+ 

23.
10

(− 1)(2 + 9)
=



− 1
+

+

2 + 9
. Multiply both sides by (− 1)


2 + 9


to get

10 = 

2 + 9


+ (+ )(− 1) (). Substituting 1 for  gives 10 = 10 ⇔  = 1. Substituting 0 for  gives

10 = 9−  ⇒  = 9(1)− 10 = −1. The coefficients of the 2-terms in () must be equal, so 0 = + ⇒
 = −1 Thus,

10

(− 1)(2 + 9)
 =

 
1

− 1
+
−− 1

2 + 9


 =

 
1

− 1
− 

2 + 9
− 1

2 + 9




= ln|− 1|− 1
2

ln(2 + 9)− 1
3

tan−1


3


+ 

In the second term we used the substitution  = 2 + 9 and in the last term we used Formula 10.

24.
2 − + 6

3 + 3
=

2 −  + 6

(2 + 3)
=




+

 +

2 + 3
. Multiply by 


2 + 3


to get 2 − + 6 = 


2 + 3


+ ( + ).

Substituting 0 for  gives 6 = 3 ⇔  = 2. The coefficients of the 2-terms must be equal, so 1 = +  ⇒
 = 1− 2 = −1. The coefficients of the -terms must be equal, so −1 = . Thus,

2 −  + 6

3 + 3
 =

 
2


+
−− 1

2 + 3


 =

 
2


− 

2 + 3
− 1

2 + 3




= 2 ln ||− 1

2
ln

2 + 3

− 1√
3

tan−1 √
3

+ 

25.
4

3 + 2 + + 1
=

4

2( + 1) + 1(+ 1)
=

4

(+ 1)(2 + 1)
=



+ 1
+

+

2 + 1
. Multiply both sides by

( + 1)(2 + 1) to get 4 = (2 + 1) + ( + )( + 1) ⇔ 4 = 2 ++2 + +  +  ⇔

4 = (+)2 + ( + )+ (+). Comparing coefficients gives us the following system of equations:

+ = 0 (1)  + = 4 (2) +  = 0 (3)

Subtracting equation (1) from equation (2) gives us −+  = 4, and adding that equation to equation (3) gives us

2 = 4 ⇔  = 2, and hence  = −2 and  = 2. Thus,
4

3 + 2 + + 1
=

  −2

+ 1
+

2+ 2

2 + 1


 =

  −2

+ 1
+

2

2 + 1
+

2

2 + 1




= −2 ln |+ 1|+ ln(2 + 1) + 2 tan−1 + 

26.


2 + + 1

(2 + 1)2
=


2 + 1

(2 + 1)2
 +




(2 + 1)2
 =


1

2 + 1
+

1

2


1

2



 = 

2
+ 1,  = 2


= tan−1  +

1

2


− 1




+  = tan−1 − 1

2(2 + 1)
+ 
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27.
3 + 4 + 3

4 + 52 + 4
=

3 + 4+ 3

(2 + 1)(2 + 4)
=

+

2 + 1
+

+

2 + 4
. Multiply both sides by (2 + 1)(2 + 4)

to get 3 + 4 + 3 = ( + )(2 + 4) + ( + )(2 + 1) ⇔
3 + 4 + 3 = 3 + 2 + 4 + 4 + 3 + 2 +  +  ⇔
3 + 4+ 3 = (+ )3 + ( +)2 + (4+)+ (4 +). Comparing coefficients gives us the following system

of equations:

+  = 1 (1)  + = 0 (2) 4+  = 4 (3) 4 + = 3 (4)

Subtracting equation (1) from equation (3) gives us  = 1 and hence,  = 0. Subtracting equation (2) from equation (4) gives

us  = 1 and hence, = −1. Thus,
3 + 4+ 3

4 + 52 + 4
=

 
 + 1

2 + 1
+

−1

2 + 4


 =

 


2 + 1
+

1

2 + 1
− 1

2 + 4




=
1

2
ln(2 + 1) + tan−1 − 1

2
tan−1


2


+

28.
3 + 6− 2

4 + 62
=

3 + 6− 2

2(2 + 6)
=




+



2
+

+

2 + 6
. Multiply both sides by 2(2 + 6) to get

3 + 6− 2 = (2 + 6) +(2 + 6) + (+)2 ⇔
3 + 6− 2 = 3 + 6 +2 + 6 + 3 +2 ⇔ 3 + 6− 2 = (+ )3 + ( +)2 + 6 + 6.

Substituting 0 for  gives −2 = 6 ⇔  = − 1
3
. Equating coefficients of 2 gives 0 =  +, so = 1

3
. Equating

coefficients of  gives 6 = 6 ⇔  = 1. Equating coefficients of 3 gives 1 = +, so  = 0. Thus,
3 + 6− 2

4 + 62
 =

 
1


+
−13

2
+

13

2 + 6


 = ln ||+ 1

3
+

1

3
√

6
tan

−1


√
6


+ .

29.


+ 4

2 + 2+ 5
 =


+ 1

2 + 2 + 5
+


3

2 + 2+ 5
 =

1

2


(2 + 2) 

2 + 2 + 5
+


3 

(+ 1)2 + 4

=
1

2
ln
2 + 2 + 5

+ 3


2 

4(2 + 1)


where + 1 = 2,

and  = 2 


=

1

2
ln(2 + 2 + 5) +

3

2
tan−1 + =

1

2
ln(2 + 2+ 5) +

3

2
tan−1


+ 1

2


+ 

30.
3 − 22 + 2− 5

4 + 42 + 3
=

3 − 22 + 2− 5

(2 + 1)(2 + 3)
=

 +

2 + 1
+

+

2 + 3
. Multiply both sides by (2 + 1)(2 + 3) to get

3 − 22 + 2− 5 = (+)(2 + 3) + (+)(2 + 1) ⇔
3 − 22 + 2− 5 = 3 + 2 + 3 + 3 + 3 + 2 +  +  ⇔
3 − 22 + 2− 5 = (+ )3 + ( +)2 + (3+) + (3 +). Comparing coefficients gives us the following

system of equations:

+  = 1 (1)  + = −2 (2) 3+  = 2 (3) 3 + = −5 (4)

Subtracting equation (1) from equation (3) gives us 2 = 1 ⇔  = 1
2
, and hence,  = 1

2
. Subtracting equation (2) from

equation (4) gives us 2 = −3 ⇔  = − 3
2
, and hence, = − 1

2
.
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Thus,
3 − 22 + 2− 5

4 + 42 + 3
=

  1
2
− 3

2

2 + 1
+

1
2
− 1

2

2 + 3


 =

  1
2


2 + 1
−

3
2

2 + 1
+

1
2


2 + 3
−

1
2

2 + 3




= 1
4

ln(2 + 1)− 3
2

tan−1 + 1
4

ln(2 + 3)− 1

2
√

3
tan−1


√
3


+ 

31.
1

3 − 1
=

1

(− 1)(2 + + 1)
=



− 1
+

+ 

2 + + 1
⇒ 1 = 


2 + + 1


+ (+ )(− 1).

Take  = 1 to get  = 1
3
. Equating coefficients of 2 and then comparing the constant terms, we get 0 = 1

3
+, 1 = 1

3
−,

so  = − 1
3
,  = − 2

3
⇒


1

3 − 1
=

 1
3

− 1
+

 − 1
3
− 2

3

2 + + 1
 = 1

3
ln |− 1|− 1

3


 + 2

2 +  + 1


= 1
3

ln |− 1|− 1

3


 + 12

2 + + 1
− 1

3


(32) 

(+ 12)
2
+ 34

= 1
3

ln |− 1|− 1
6

ln

2 + + 1

− 1
2


2√
3


tan−1


+ 1

2√
3


2


+

= 1
3

ln |− 1|− 1
6

ln(2 + + 1)− 1√
3

tan−1


1√
3
(2 + 1)


+

32.
 1

0



2 + 4+ 13
 =

 1

0

1
2
(2 + 4)

2 + 4+ 13
− 2

 1

0



(+ 2)2 + 9

=
1

2

 18

13




− 2

 1

23

3 

92 + 9


where  = 2 + 4+ 13,  = (2+ 4) ,

+ 2 = 3, and  = 3 


= 1

2


ln 

18
13
− 2

3


tan−1 

1
23

= 1
2

ln 18
13
− 2

3



4
− tan−1


2
3


= 1

2
ln 18

13
− 

6
+ 2

3
tan−1


2
3


33. Let  = 4 + 42 + 3 so that  = (43 + 8)  = 4(3 + 2) ,  = 0 ⇒  = 3, and  = 1 ⇒  = 8.

Then
 1

0

3 + 2

4 + 42 + 3
 =

 8

3

1




1

4



=

1

4


ln || 8

3
=

1

4
(ln 8− ln 3) =

1

4
ln

8

3
.

34.
5 + − 1

3 + 1
= 2 +

−2 + − 1

3 + 1
= 2 +

−2 + − 1

(+ 1)(2 − + 1)
= 2 +

−1

+ 1
, so


5 + − 1

3 + 1
 =

 


2 − 1

+ 1


 =

1

3


3 − ln |+ 1|+

35.
54 + 72 + + 2

(2 + 1)2
=




+

+ 

2 + 1
+

+

(2 + 1)2
. Multiply by (2 + 1)2 to get

54 + 72 + + 2 = (2 + 1)2 + (+)(2 + 1) + (+) ⇔
54 + 72 +  + 2 = (4 + 22 + 1) + (2 + )(2 + 1) + 2 +  ⇔
54 + 72 +  + 2 = 4 + 22 +  + 4 + 3 + 2 +  + 2 +  ⇔
54 + 72 + + 2 = (+)4 + 3 + (2+ +)2 + ( +)+. Equating coefficients gives us  = 0,
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 = 2,  +  = 5 ⇒  = 3,  +  = 1 ⇒  = 1, and 2+  +  = 7 ⇒  = 0. Thus,
54 + 72 + + 2

(2 + 1)2
 =

 
2


+

3

2 + 1
+

1

(2 + 1)2


 =  Now




(2 + 1)2
=


sec2  

(tan2  + 1)2


 = tan ,
 = sec2  


=


sec2 

sec4 
 =


cos

2
  =


1
2
(1 + cos 2) 

= 1
2
 + 1

4
sin 2 + = 1

2
 + 1

2
sin  cos  + 

=
1

2
tan−1 +

1

2

√
2 + 1

1√
2 + 1

+

Therefore,  = 2 ln ||+ 3
2

ln(2 + 1) + 1
2

tan−1 +


2(2 + 1)
+.

36. Let  = 5 + 53 + 5, so that  = (54 + 152 + 5) = 5(4 + 32 + 1). Then
4 + 32 + 1

5 + 53 + 5
 =


1




1

5



=

1

5
ln ||+  =

1

5
ln
5

+ 5
3
+ 5

+

37.
2 − 3+ 7

(2 − 4 + 6)2
=

+

2 − 4+ 6
+

+

(2 − 4+ 6)2
⇒ 2 − 3 + 7 = ( +)(2 − 4+ 6) +  + ⇒

2 − 3+ 7 = 3 + (−4+)2 + (6− 4 +)+ (6 +). So  = 0, −4+ = 1 ⇒  = 1,

6− 4 +  = −3 ⇒  = 1, 6 + = 7 ⇒  = 1. Thus,

 =


2 − 3+ 7

(2 − 4 + 6)2
 =

 
1

2 − 4+ 6
+

+ 1

(2 − 4 + 6)2




=


1

(− 2)2 + 2
+


− 2

(2 − 4+ 6)2
+


3

(2 − 4+ 6)2


= 1 + 2 + 3.

1 =


1

(− 2)2 +
√

2
2  =

1√
2

tan
−1


− 2√

2


+ 1

2 =
1

2


2− 4

(2 − 4+ 6)2
 = 1

2


1

2
 = 1

2


− 1




+2 = − 1

2(2 − 4 + 6)
+2

3 = 3


1

(− 2)2 +
√

2
22  = 3


1

[2(tan2  + 1)]2

√
2 sec

2
 


− 2 = √2 tan ,
 =

√
2 sec2  



=
3
√

2

4


sec2 

sec4 
 =

3
√

2

4


cos

2
  =

3
√

2

4


1
2
(1 + cos 2) 

=
3
√

2

8


 + 1

2
sin 2


+3 =

3
√

2

8
tan−1


− 2√

2


+

3
√

2

8


1
2
· 2 sin  cos 


+3

=
3
√

2

8
tan−1


− 2√

2


+

3
√

2

8
· − 2√

2 − 4+ 6
·

√
2√

2 − 4+ 6
+3

=
3
√

2

8
tan−1


− 2√

2


+

3(− 2)

4(2 − 4 + 6)
+3
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So  = 1 + 2 + 3 [ = 1 +2 + 3]

=
1√
2

tan−1


− 2√

2


+

−1

2(2 − 4+ 6)
+

3
√

2

8
tan−1


− 2√

2


+

3(− 2)

4(2 − 4+ 6)
+ 

=


4
√

2

8
+

3
√

2

8


tan−1


− 2√

2


+

3(− 2)− 2

4(2 − 4+ 6)
+  =

7
√

2

8
tan−1


− 2√

2


+

3− 8

4(2 − 4+ 6)
+ 

38.
3 + 22 + 3− 2

(2 + 2+ 2)2
=

+

2 + 2 + 2
+

 +

(2 + 2+ 2)2
⇒

3 + 22 + 3− 2 = (+)(2 + 2 + 2) + + ⇒

3 + 22 + 3− 2 = 3 + (2+)2 + (2+ 2 +) + 2 +.

So  = 1, 2+ = 2 ⇒  = 0, 2+ 2 +  = 3 ⇒  = 1, and 2 + = −2 ⇒  = −2. Thus,

 =


3 + 22 + 3− 2

(2 + 2 + 2)2
 =

 


2 + 2+ 2
+

− 2

(2 + 2+ 2)2




=


 + 1

2 + 2+ 2
 +

 −1

2 + 2+ 2
+


+ 1

(2 + 2+ 2)2
+

 −3

(2 + 2+ 2)2


= 1 + 2 + 3 + 4.

1 =


+ 1

2 + 2+ 2
 =


1




1

2


 
 = 2 + 2+ 2,

 = 2(+ 1) 


=

1

2
ln
2

+ 2+ 2
+ 1

2 = −


1

(+ 1)2 + 1
 = −1

1
tan

−1


+ 1

1


+2 = − tan

−1
(+ 1) + 2

3 =


+ 1

(2 + 2+ 2)2
 =


1

2


1

2



= − 1

2
+3 = − 1

2(2 + 2 + 2)
+3

4 = −3


1

[(+ 1)2 + 1]2
 = −3


1

(tan2  + 1)2
sec

2
 


+ 1 = 1 tan ,

 = sec2  


= −3


1

sec2 
 = −3


cos

2
  = −3

2


(1 + cos 2) 

= − 3
2


 + 1

2
sin 2


+4 = − 3

2
 − 3

2


1
2
· 2 sin  cos 


+4

= −3

2
tan−1


 + 1

1


− 3

2
· + 1√

2 + 2+ 2
· 1√

2 + 2+ 2
+4

= −3

2
tan−1(+ 1)− 3(+ 1)

2(2 + 2 + 2)
+4

So  = 1 + 2 + 3 + 4 [ = 1 +2 + 3 +4]

=
1

2
ln(2 + 2+ 2)− tan−1(+ 1)− 1

2(2 + 2+ 2)
− 3

2
tan−1(+ 1)− 3(+ 1)

2(2 + 2+ 2)
+ 

=
1

2
ln(2 + 2+ 2)− 5

2
tan−1(+ 1)− 3+ 4

2(2 + 2+ 2)
+ 

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



42 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION

39.





√
− 1

=


2

(2 + 1)



 =
√
− 1,  = 2 + 1

2 = − 1,  = 2


= 2


1

2 + 1
 = 2 tan

−1
+  = 2 tan

−1
√
− 1 + 

40. Let  =
√
+ 3, so 2 =  + 3 and 2 = . Then



2
√
+ 3 + 

=


2

2+ (2 − 3)
=


2

2 + 2− 3
 =


2

(+ 3)(− 1)
. Now

2

(+ 3)(− 1)
=



+ 3
+



− 1
⇒ 2 = (− 1) + (+ 3). Setting  = 1 gives 2 = 4, so  = 1

2
.

Setting  = −3 gives −6 = −4, so  = 3
2
. Thus,

2

(+ 3)(− 1)
=

  3
2

+ 3
+

1
2

− 1



= 3

2
ln |+ 3|+ 1

2
ln |− 1|+  = 3

2
ln
√

 + 3 + 3


+ 1
2

ln
√+ 3− 1

+ 

41. Let  =
√
, so 2 =  and 2 = . Then




2 + 
√


=


2

4 + 3
=


2 

3 + 2
=


2 

2(+ 1)
.

2

2(+ 1)
=




+



2
+



+ 1
⇒ 2 = (+ 1) +(+ 1) + 2. Setting  = 0 gives  = 2. Setting  = −1

gives  = 2. Equating coefficients of 2, we get 0 = +, so  = −2. Thus,
2 

2(+ 1)
=

 −2


+

2

2
+

2

+ 1


 = −2 ln ||− 2


+2 ln |+ 1|+ = −2 ln

√
− 2√


+2 ln

√
+ 1


+.

42. Let  = 3
√
. Then  = 3,  = 32  ⇒ 1

0

1

1 + 3
√

 =

 1

0

32 

1 + 
=

 1

0


3− 3 +

3

1 + 


 =


3
2


2 − 3+ 3 ln(1 + )
1
0

= 3

ln 2− 1

2


.

43. Let  = 3
√
2 + 1. Then 2 = 3 − 1, 2 = 32  ⇒

3 
3
√
2 + 1

=


(3 − 1) 3

2
2 


=

3

2


(

4 − ) 

= 3
10
5 − 3

4
2 +  = 3

10
(2 + 1)53 − 3

4
(2 + 1)23 +

44.




(1 +
√
 )2

=


2(− 1)

2



 = 1 +

√
,

 = (− 1)2,  = 2(− 1) 


= 2

 
1


− 1

2


 = 2 ln ||+ 2


+  = 2 ln(1 +

√
 ) +

2

1 +
√


+ 

45. If we were to substitute  =
√
, then the square root would disappear but a cube root would remain. On the other hand, the

substitution  =
3
√
 would eliminate the cube root but leave a square root. We can eliminate both roots by means of the

substitution  =
6
√
. (Note that 6 is the least common multiple of 2 and 3.)

Let  =
6
√
. Then  = 6, so  = 65  and

√
 = 3, 3

√
 = 2. Thus,
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√

− 3
√


=


65 

3 − 2
= 6


5

2(− 1)
 = 6


3

− 1


= 6

 


2
+ + 1 +

1

− 1


 [by long division]

= 6


1
3
3 + 1

2
2 + + ln |− 1|+ = 2

√
+ 3

3
√
+ 6

6
√
+ 6 ln

 6√− 1
+ 

46. Let  =


1 +
√
, so that 2 = 1 +

√
,  = (2 − 1)2, and  = 2(2 − 1) · 2 = 4(2 − 1) . Then 

1 +
√



 =




(2 − 1)2
· 4(

2 − 1)  =


42

2 − 1
 =

 
4 +

4

2 − 1


. Now

4

2 − 1
=



+ 1
+



− 1
⇒ 4 = (− 1) +(+ 1). Setting  = 1 gives 4 = 2, so  = 2. Setting  = −1 gives

4 = −2, so  = −2. Thus, 
4 +

4

2 − 1


=

 
4− 2

+ 1
+

2

− 1


 = 4− 2 ln |+ 1|+ 2 ln |− 1|+ 

= 4


1 +
√
− 2 ln


1 +

√
+ 1


+ 2 ln


1 +

√
− 1


+

47. Let  = . Then  = ln,  =



⇒


2 

2 + 3 + 2
=


2 ()

2 + 3+ 2
=




(+ 1)(+ 2)
=

  −1

+ 1
+

2

+ 2




= 2 ln |+ 2|− ln |+ 1|+  = ln
( + 2)2

 + 1
+

48. Let  = cos, so that  = − sin. Then


sin

cos2 − 3 cos
 =


1

2 − 3
(−) =

 −1

(− 3)
.

−1

(− 3)
=




+



− 3
⇒ −1 = (− 3) +. Setting  = 3 gives  = − 1

3
. Setting  = 0 gives  = 1

3
.

Thus,
 −1

(− 3)
 =

  1
3


−

1
3

− 3


 =

1

3
ln ||− 1

3
ln |− 3|+  = 1

3
ln |cos|− 1

3
ln |cos− 3|+ .

49. Let  = tan , so that  = sec2  . Then


sec2 

tan2  + 3 tan  + 2
 =


1

2 + 3+ 2
 =


1

(+ 1)(+ 2)
.

Now
1

(+ 1)(+ 2)
=



+ 1
+



+ 2
⇒ 1 = ( + 2) + ( + 1).

Setting  = −2 gives 1 = −, so  = −1. Setting  = −1 gives 1 = .

Thus,


1

(+ 1)(+ 2)
 =

 
1

+ 1
− 1

+ 2


 = ln |+ 1|− ln |+ 2|+ = ln |tan  + 1|− ln |tan  + 2|+.

50. Let  = , so that  =  . Then




( − 2)(2 + 1)
 =


1

(− 2)(2 + 1)
. Now

1

(− 2)(2 + 1)
=



− 2
+

+ 

2 + 1
⇒ 1 = (2 + 1) + (+ )(− 2). Setting  = 2 gives 1 = 5, so  = 1

5
.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



44 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION

Setting  = 0 gives 1 = 1
5
− 2, so  = − 2

5
. Comparing coefficients of 2 gives 0 = 1

5
+, so  = − 1

5
. Thus,

1

(− 2)(2 + 1)
=

  1
5

− 2
+
− 1

5
− 2

5

2 + 1


 = 1

5


1

− 2
− 1

5




2 + 1
− 2

5


1

2 + 1


= 1
5

ln |− 2|− 1
5
· 1

2
ln
2 + 1

− 2
5

tan−1 +

= 1
5

ln | − 2|− 1
10

ln(2 + 1)− 2
5

tan−1  +

51. Let  = , so that  =   and  =



. Then




1 + 
=




(1 + )
.

1

(+ 1)
=




+



+ 1
⇒

1 = ( + 1) + . Setting  = −1 gives  = −1. Setting  = 0 gives  = 1. Thus,


(+ 1)
=

 
1


− 1

+ 1


 = ln ||− ln |+ 1|+  = ln 

 − ln(


+ 1) +  = − ln(


+ 1) + .

52. Let  = sinh , so that  = cosh  . Then


cosh 

sinh2  + sinh4 
 =


1

2 + 4
 =


1

2(2 + 1)
.

1

2(2 + 1)
=




+



2
+

+

2 + 1
⇒ 1 = (2 + 1) +(2 + 1) + (+)2. Setting  = 0 gives  = 1.

Comparing coefficients of 2, we get 0 =  +, so = −1. Comparing coefficients of , we get 0 = . Comparing

coefficients of 3, we get 0 = + , so  = 0. Thus,
1

2(2 + 1)
=

 
1

2
− 1

2 + 1


 = − 1


− tan

−1
+ = − 1

sinh 
− tan

−1
(sinh ) +

= − csch − tan−1(sinh ) + 

53. Let  = ln(2 −  + 2),  = . Then  =
2− 1

2 − + 2
,  = , and (by integration by parts)


ln(

2 − + 2)  =  ln(2 − + 2)−


22 − 

2 − + 2
 =  ln(

2 − + 2)−
 

2 +
− 4

2 −  + 2




=  ln(2 − + 2)− 2−
 1

2
(2− 1)

2 −  + 2
+

7

2




(− 1
2
)2 + 7

4

=  ln(2 − + 2)− 2− 1

2
ln(2 − + 2) +

7

2

 √
7

2


7
4
(2 + 1)

 where − 1
2
=
√
7
2
,

 =
√
7
2
,

(− 1
2
)2 + 7

4
= 7

4
(2 + 1)


= (− 1

2
) ln(2 − + 2)− 2 +

√
7 tan−1 +

= (− 1
2
) ln(2 − + 2)− 2 +

√
7 tan−1 2− 1√

7
+

54. Let  = tan−1 ,  =  ⇒  = (1 + 2),  = 1
2
2.

Then


 tan
−1

 = 1
2


2
tan

−1
− 1

2


2

1 + 2
. To evaluate the last integral, use long division or observe that


2

1 + 2
 =


(1 + 2)− 1

1 + 2
 =


1 −


1

1 + 2
 = − tan

−1
 + 1. So

 tan−1  = 1
2
2 tan−1 − 1

2
(− tan−1 + 1) = 1

2
(2 tan−1 + tan−1 − ) + .
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55. From the graph, we see that the integral will be negative, and we guess

that the area is about the same as that of a rectangle with width 2 and

height 03, so we estimate the integral to be −(2 · 03) = −06. Now

1

2 − 2− 3
=

1

(− 3)(+ 1)
=



− 3
+



+ 1
⇔

1 = (+)+− 3, so  = − and − 3 = 1 ⇔  = 1
4

and  = − 1
4
, so the integral becomes

 2

0



2 − 2− 3
=

1

4

 2

0



− 3
− 1

4

 2

0



+ 1
=

1

4


ln |− 3|− ln |+ 1|

2
0

=
1

4


ln

− 3

+ 1

 2
0

= 1
4


ln 1

3
− ln 3


= − 1

2
ln 3 ≈ −055

56.  = 0:




2 + 
=




2
= − 1


+ 

  0:




2 + 
=




2 + (
√
 )2

=
1√


tan
−1


√



+ 

  0:




2 + 
=




2 − (−) =




2 − √− 2 =
1

2
√− ln

−√−+
√−

+  [by Example 3]

57.




2 − 2
=




(− 1)2 − 1
=




2 − 1
[put  = − 1]

=
1

2
ln

− 1

+ 1

+  [by Equation 6] =
1

2
ln

− 2



+

58.


(2+ 1) 

42 + 12− 7
=

1

4


(8 + 12) 

42 + 12− 7
−


2 

(2+ 3)2 − 16

= 1
4

ln
42 + 12− 7

−  

2 − 16
[put  = 2+ 3]

= 1
4

ln
42 + 12− 7

− 1
8

ln |(− 4)(+ 4)|+ [by Equation 6]

= 1
4

ln
42 + 12− 7

− 1
8

ln |(2− 1)(2+ 7)|+

59. (a) If  = tan


2


, then



2
= tan−1 . The figure gives

cos


2


=

1√
1 + 2

and sin


2


=

√
1 + 2

.

(b) cos = cos

2 · 

2


= 2cos2


2


− 1

= 2


1√

1 + 2

2

− 1 =
2

1 + 2
− 1 =

1− 2

1 + 2

(c)


2
= arctan  ⇒  = 2arctan  ⇒  =

2

1 + 2
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60. Let  = tan(2). Then, by using the expressions in Exercise 59 we have


1− cos
=


2 (1 + 2)

1− (1− 2)(1 + 2)
=


2 

(1 + 2)− (1− 2)
=


2 

22
=


1

2


= −1


+  = − 1

tan(2)
+  = − cot(2) +

Another method:




1− cos
=

 
1

1− cos
· 1 + cos

1 + cos


 =


1 + cos

1− cos2 
 =


1 + cos

sin2 


=

 
1

sin2 
+

cos

sin2 


 =


(csc

2
+ csc cot)  = − cot− csc+ 

61. Let  = tan(2). Then, using the expressions in Exercise 59, we have
1

3 sin− 4 cos
=


1

3


2

1 + 2


− 4


1− 2

1 + 2

 2 

1 + 2
= 2




3(2)− 4(1− 2)
=




22 + 3− 2

=




(2− 1)( + 2)
=

 
2

5

1

2− 1
− 1

5

1

+ 2


 [using partial fractions]

= 1
5


ln |2− 1|− ln | + 2|


+  =

1

5
ln

2− 1

+ 2

+  =
1

5
ln

2 tan (2)− 1

tan (2) + 2

+

62. Let  = tan(2). Then, by Exercise 59, 2

3



1 + sin− cos
=

 1

1
√

3

2 (1 + 2)

1 + 2(1 + 2)− (1− 2)(1 + 2)
=

 1

1
√

3

2 

1 + 2 + 2− 1 + 2

=

 1

1
√

3


1


− 1

+ 1


 =


ln − ln( + 1)

1
1
√

3
= ln

1

2
− ln

1√
3 + 1

= ln

√
3 + 1

2

63. Let  = tan (2). Then, by Exercise 59,

 2

0

sin 2

2 + cos
=

 2

0

2 sin cos

2 + cos
 =

 1

0

2 · 2

1 + 2
· 1− 2

1 + 2

2 +
1− 2

1 + 2

2

1 + 2
 =

 1

0

8(1− 2)

(1 + 2)2

2(1 + 2) + (1− 2)


=

 1

0

8 · 1− 2

(2 + 3)(2 + 1)2
 = 

If we now let  = 2, then
1− 2

(2 + 3)(2 + 1)2
=

1− 

(+ 3)(+ 1)2
=



+ 3
+



+ 1
+



(+ 1)2
⇒

1−  = (+ 1)2 +(+ 3)(+ 1) +(+ 3). Set  = −1 to get 2 = 2, so  = 1. Set  = −3 to get 4 = 4, so

 = 1. Set  = 0 to get 1 = 1 + 3 + 3, so  = −1. So

 =

 1

0


8

2 + 3
− 8

2 + 1
+

8

(2 + 1)
2


 =


4 ln(

2
+ 3)− 4 ln(

2
+ 1)− 4

2 + 1

1
0

= (4 ln 4− 4 ln 2− 2)− (4 ln 3− 0− 4) = 8 ln 2− 4 ln 2− 4 ln 3 + 2 = 4 ln 2
3

+ 2

64.
1

3 + 
=

1

(2 + 1)
=




+

+ 

2 + 1
⇒ 1 = (2 + 1) + ( + ). Set  = 0 to get 1 = . So

1 = (1 +)2 ++ 1 ⇒  + 1 = 0 [ = −1] and  = 0. Thus, the area is
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1

1

3 + 
=

 2

1


1


− 

2 + 1


 =


ln ||− 1

2
ln
2

+ 1
2

1
=

ln 2− 1

2
ln 5
− 0− 1

2
ln 2


= 3
2

ln 2− 1
2

ln 5

or 1

2
ln 8

5


65. By long division,

2 + 1

3− 2
= −1 +

3 + 1

3− 2
. Now

3+ 1

3− 2
=

3+ 1

(3− )
=




+



3− 
⇒ 3+ 1 = (3− ) +. Set  = 3 to get 10 = 3, so  = 10

3
. Set  = 0 to

get 1 = 3, so  = 1
3
. Thus, the area is 2

1

2 + 1

3− 2
=

 2

1


−1 +

1
3


+

10
3

3− 


 =

−+ 1
3

ln ||− 10
3

ln |3− |2
1

=
−2 + 1

3
ln 2− 0

− −1 + 0− 10
3

ln 2


= −1 + 11
3

ln 2

66. (a) We use disks, so the volume is  = 

 1

0


1

2 + 3+ 2

2
 = 

 1

0



( + 1)2(+ 2)2
. To evaluate the integral,

we use partial fractions:
1

(+ 1)2( + 2)2
=



+ 1
+



( + 1)2
+



+ 2
+



(+ 2)2
⇒

1 = (+ 1)(+ 2)2 +( + 2)2 + (+ 1)2(+ 2) +( + 1)2. We set  = −1, giving  = 1, then set

 = −2, giving  = 1. Now equating coefficients of 3 gives  = −, and then equating constants gives
1 = 4+ 4 + 2(−) + 1 ⇒  = −2 ⇒  = 2. So the expression becomes

 = 

 1

0

 −2

+ 1
+

1

(+ 1)
2

+
2

(+ 2)
+

1

(+ 2)
2


 = 


2 ln

+ 2

+ 1

− 1

+ 1
− 1

+ 2

1
0

= 


2 ln 3
2
− 1

2
− 1

3

− 2 ln 2− 1− 1
2


= 


2 ln

32

2
+ 2

3


= 


2
3

+ ln 9
16


(b) In this case, we use cylindrical shells, so the volume is  = 2

 1

0



2 + 3+ 2
= 2

 1

0



(+ 1)(+ 2)
. We use

partial fractions to simplify the integrand:


(+ 1)(+ 2)
=



+ 1
+



+ 2
⇒  = (+)+ 2+. So

+ = 1 and 2+ = 0 ⇒  = −1 and  = 2. So the volume is

2

 1

0

 −1

+ 1
+

2

 + 2


= 2


− ln | + 1|+ 2 ln |+ 2|

1
0

= 2(− ln 2 + 2 ln 3 + ln 1− 2 ln 2) = 2(2 ln 3− 3 ln 2) = 2 ln 9
8

67.  =


 + 

 [( − 1) − ]
 =


 + 

 (01 − )
 [ = 11]. Now

 + 

 (01 − )
=




+



01 − 
⇒

 +  = (01 − ) + . Substituting 0 for  gives  = − ⇒  = −1. Substituting 10 for  gives

11 = 10 ⇒  = 11
10
. Thus,  =

 −1


+

1110

01 − 


 ⇒  = − ln + 11 ln(01 − ) +.

When  = 0,  = 10,000 and  = 900, so 0 = − ln 10,000 + 11 ln(1000− 900) + ⇒
 = ln 10,000− 11 ln 100 [= ln 10−18 ≈ −4145].

Therefore,  = − ln + 11 ln


1
10
 − 900


+ ln 10,000− 11 ln 100 ⇒  = ln

10,000


+ 11 ln
 − 9000

1000
.
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68. If we subtract and add 22, we get

4 + 1 = 4 + 22 + 1− 22 =

2 + 1

2 − 22 =

2 + 1

2 − √2
2

=

(2 + 1)−√2


2 + 1


+
√

2


=

2 −√2+ 1


2 +

√
2+ 1


So we can decompose

1

4 + 1
=

+

2 +
√

2+ 1
+

+

2 −√2+ 1
⇒

1 = ( +)

2 −√2+ 1


+ ( +)


2 +

√
2+ 1


. Setting the constant terms equal gives  + = 1, then

from the coefficients of 3 we get +  = 0. Now from the coefficients of  we get +  + ( −)
√

2 = 0 ⇔

[(1−)−]
√

2 = 0 ⇒  = 1
2
⇒  = 1

2
, and finally, from the coefficients of 2 we get

√
2 ( −) + + = 0 ⇒  − = − 1√

2
⇒  = −

√
2

4
and  =

√
2

4
. So we rewrite the integrand, splitting the

terms into forms which we know how to integrate:

1

4 + 1
=

√
2

4
 + 1

2

2 +
√

2 + 1
+

−
√

2
4
+ 1

2

2 −√2+ 1
=

1

4
√

2


2+ 2

√
2

2 +
√

2+ 1
− 2− 2

√
2

2 −√2+ 1



=

√
2

8


2+

√
2

2 +
√

2+ 1
− 2−√2

2 −√2+ 1


+

1

4

 1
+ 1√

2

2

+ 1
2

+
1

− 1√
2

2

+ 1
2


Now we integrate:




4 + 1
=

√
2

8
ln


2 +

√
2+ 1

2 −√2+ 1


+

√
2

4


tan

−1
√

2+ 1


+ tan
−1
√

2− 1


+ .

69. (a) In Maple, we define (), and then use convert(f,parfrac,x); to obtain

() =
24,1104879

5+ 2
− 668323

2+ 1
− 943880,155

3− 7
+

(22,098+ 48,935)260,015
2 +  + 5

In Mathematica, we use the command Apart, and in Derive, we use Expand.

(b)


()  = 24,110
4879

· 1
5

ln|5+ 2|− 668
323

· 1
2

ln|2+ 1|− 9438
80,155 · 1

3
ln |3− 7|

+
1

260,015


22,098


 + 1

2


+ 37,886

+ 1
2

2
+ 19

4

 +

= 24,110
4879

· 1
5

ln|5+ 2|− 668
323

· 1
2

ln|2+ 1|− 9438
80,155 · 1

3
ln|3− 7|

+ 1
260,015


22,098 · 1

2
ln

2 + + 5


+ 37,886 ·


4
19

tan−1


1√
194


+ 1

2


+ 

= 4822
4879

ln|5 + 2|− 334
323

ln|2+ 1|− 3146
80,155 ln|3− 7|+ 11,049

260,015 ln

2 + + 5


+ 75,772

260,015
√

19
tan−1


1√
19

(2+ 1)


+

Using a CAS, we get

4822 ln(5+ 2)

4879
− 334 ln(2 + 1)

323
− 3146 ln(3− 7)

80,155

+
11,049 ln(2 + + 5)

260,015
+

3988
√

19

260,015
tan−1

√
19

19
(2+ 1)


The main difference in this answer is that the absolute value signs and the constant of integration have been omitted. Also,

the fractions have been reduced and the denominators rationalized.
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70. (a) In Maple, we define (), and then use convert(f,parfrac,x); to get

() =
58281815

(5− 2)
2
− 59,09619,965

5− 2
+

2(2843+ 816)3993

22 + 1
+

(313− 251)363

(22 + 1)
2

.

In Mathematica, we use the command Apart, and in Derive, we use Expand.

(b) As we saw in Exercise 69, computer algebra systems omit the absolute

value signs in


(1)  = ln||. So we use the CAS to integrate the
expression in part (a) and add the necessary absolute value signs and

constant of integration to get
()  =− 5828

9075(5− 2)
− 59,096 ln|5− 2|

99,825
+

2843 ln

22 + 1


7986

+
503

15,972

√
2 tan−1

√
2
− 1

2904

1004 + 626

22 + 1
+

(c) From the graph, we see that  goes from negative to positive at  ≈ −078, then back to negative at  ≈ 08, and finally

back to positive at  = 1. Also, lim→04 () =∞. So we see (by the First Derivative Test) that

()  has minima

at  ≈ −078 and  = 1, and a maximum at  ≈ 080, and that

()  is unbounded as → 04. Note also that just to

the right of  = 04,  has large values, so

()  increases rapidly, but slows down as  drops toward 0.

()  decreases from about 08 to 1, then increases slowly since  stays small and positive.

71.
4(1− )4

1 + 2
=

4(1− 4 + 62 − 43 + 4)

1 + 2
=

8 − 47 + 66 − 45 + 4

1 + 2
= 6 − 45 + 54 − 42 + 4− 4

1 + 2
, so

 1

0

4(1− )4

1 + 2
 =


1

7


7 − 2

3


6
+ 

5 − 4

3


3
+ 4− 4 tan

−1


1
0

=


1

7
− 2

3
+ 1− 4

3
+ 4− 4 · 

4


− 0 =

22

7
− .

72. (a) Let  = (2 + 2)−,  =  ⇒  = −(2 + 2)−−1 2,  = .

 =




(2 + 2)
=



(2 + 2)
−
 −22

(2 + 2)+1
 [by parts]

=


(2 + 2)
+ 2


(2 + 2)− 2

(2 + 2)+1


=


(2 + 2)
+ 2




(2 + 2)
− 2

2




(2 + 2)+1

Recognizing the last two integrals as  and +1, we can solve for +1 in terms of .

22+1 =


(2 + 2)
+ 2 −  ⇒ +1 =



22(2 + 2)
+

2− 1

22
 ⇒

 =


22(− 1)(2 + 2)−1
+

2− 3

22(− 1)
−1 [decrease -values by 1], which is the desired result.

(b) Using part (a) with  = 1 and  = 2, we get


(2 + 1)2
=



2(2 + 1)
+

1

2




2 + 1
=



2(2 + 1)
+

1

2
tan

−1
+ 

Using part (a) with  = 1 and  = 3, we get
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(2 + 1)3
=



2(2)(2 + 1)2
+

3

2(2)




(2 + 1)2
=



4(2 + 1)2
+

3

4




2(2 + 1)
+

1

2
tan

−1



+ 

=


4(2 + 1)2
+

3

8(2 + 1)
+

3

8
tan−1 + 

73. There are only finitely many values of  where () = 0 (assuming that  is not the zero polynomial). At all other values of

,  ()() = ()(), so  () = (). In other words, the values of  and  agree at all except perhaps finitely

many values of . By continuity of  and , the polynomials  and must agree at those values of  too.

More explicitly: if  is a value of  such that () = 0, then() 6= 0 for all  sufficiently close to . Thus,

 () = lim
→

 () [by continuity of  ]

= lim
→

() [whenever() 6= 0]

= () [by continuity of ]

74. Let () = 2 +  + . We calculate the partial fraction decomposition of
()

2(+ 1)3
. Since (0) = 1, we must have

 = 1, so
()

2(+ 1)3
=

2 +  + 1

2( + 1)3
=




+



2
+



+ 1
+



(+ 1)2
+



(+ 1)3
. Now in order for the integral not to

contain any logarithms (that is, in order for it to be a rational function), we must have  =  = 0, so

2 + + 1 = (+ 1)3 +2( + 1) +2. Equating constant terms gives  = 1, then equating coefficients of 

gives 3 =  ⇒  = 3. This is the quantity we are looking for, since  0(0) = 

75. If  6= 0 and  is a positive integer, then () =
1

(− )
=

1


+

2

2
+ · · ·+ 


+



− 
. Multiply both sides by

(− ) to get 1 = 1
−1(− ) +2

−2(− ) + · · ·+(− ) +. Let  =  in the last equation to get

1 =  ⇒  = 1. So

()− 

− 
=

1

(− )
− 1

(− )
=

 − 

(− )
= −  − 

(− )

= − (− )(−1 + −2+ −32 + · · ·+ −2 + −1)

(− )

= −

−1


+

−2


+

−32


+ · · ·+ −2


+

−1




= − 1


− 1

−12
− 1

−23
− · · ·− 1

2−1
− 1



Thus, () =
1

(− )
= − 1


− 1

−12
− · · ·− 1


+

1

(− )
.

7.5 Strategy for Integration

1. Let  = 1 − sin. Then  = − cos ⇒
cos

1− sin
 =


1


(−) = − ln ||+  = − ln |1− sin|+ = − ln(1− sin) +
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2. Let  = 3 + 1. Then  = 3  ⇒ 1

0

(3 + 1)
√

2
 =

 4

1


√

2


1

3



=

1

3


1√

2 + 1

√

2+1

4

1

=
1

3
√

2 + 1
4√2+1 − 1



3. Let  = ln ,  =
√
  ⇒  =

1


,  =

2

3
32. Then

 4

1

√
 ln   =


2

3

32

ln 

4
1

−
 4

1

2

3

12

 =
2

3
·8 ln 4−0−


4

9

32

4
1

=
16

3
(2 ln 2)−


4

9
· 8− 4

9


=

32

3
ln 2− 28

9

4.


sin3 

cos
=


sin2  sin

cos
 =


(1− cos2 ) sin

cos
 =


1− 2


(−)


 = cos 

 = − sin 


=
 

− 1



 = 1

2
2 − ln ||+  = 1

2
cos2 − ln |cos|+

5. Let  = 2. Then  = 2  ⇒


4 + 2
 =


1

2 + 2


1

2



=

1

2

1√
2

tan
−1


√
2


+  [by Formula 17] =

1

2
√

2
tan−1


2√
2


+

6. Let  = 2+ 1. Then  = 2  ⇒ 1

0



(2 + 1)3
=

 3

1

(− 1)2

3


1

2



=

1

4

 3

1


1

2
− 1

3


 =

1

4


− 1


+

1

22

3
1

= 1
4

− 1
3

+ 1
18

− −1 + 1
2


= 1

4


2
9


= 1

18

7. Let  = arctan . Then  =


1 + 2
⇒

 1

−1

arctan 

1 + 2
 =

 4

−4


 =




4
−4 = 

4 − 
−4.

8.

 sin  cos  =


 · 1

2
(2 sin  cos )  = 1

2


 sin 2 

= 1
2

− 1
2
 cos 2−  − 1

2
cos 2 

 
 = ,  = sin 2 

 = ,  = − 1
2
cos 2


= − 1

4
 cos 2+ 1

4


cos 2  = − 1

4
 cos 2 + 1

8
sin 2+ 

9.
 + 2

2 + 3− 4
=

+ 2

(+ 4)(− 1)
=



+ 4
+



− 1
. Multiply by (+ 4)(− 1) to get + 2 = (− 1) +(+ 4).

Substituting 1 for  gives 3 = 5 ⇔  = 3
5
. Substituting −4 for  gives −2 = −5 ⇔  = 2

5
. Thus, 4

2

+ 2

2 + 3− 4
=

 4

2


25

+ 4
+

35

− 1


 =


2

5
ln |+ 4|+ 3

5
ln |− 1|

4
2

=


2
5

ln 8 + 3
5

ln 3
−  2

5
ln 6 + 0


= 2

5
(3 ln 2) + 3

5
ln 3− 2

5
(ln 2 + ln 3)

= 4
5

ln 2 + 1
5

ln 3, or 1
5

ln 48

10. Let  =
1


,  =

cos(1)

2
⇒  = − 1

2
,  = − sin


1




. Then


cos(1)

3
 = − 1


sin


1




−


1

2
sin


1




 = − 1


sin


1




− cos


1




+.
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11. Let  = sec , where 0 ≤  ≤ 
2
or  ≤   3

2
. Then  = sec  tan   and

√
2 − 1 =

√
sec2  − 1 =

√
tan2  = |tan | = tan  for the relevant values of , so

1

3
√
2 − 1

=


sec  tan 

sec3  tan 
 =


cos

2
  =


1
2
(1 + cos 2) 

= 1
2
 + 1

4
sin 2 +  = 1

2
 + 1

2
sin  cos  + 

=
1

2
sec−1  +

1

2

√
2 − 1



1


+  =

1

2
sec−1 +

√
2 − 1

22
+ 

12.
2− 3

3 + 3
=

2− 3

(2 + 3)
=




+

+ 

2 + 3
. Multiply by (2 + 3) to get 2− 3 = (2 + 3) + ( + ) ⇔

2− 3 = (+)2 +  + 3. Equating coefficients gives us  = 2, 3 = −3 ⇔  = −1, and + = 0, so

 = 1. Thus, 
2− 3

3 + 3
=

 −1


+

+ 2

2 + 3


 =

 
− 1


+



2 + 3
+

2

2 + 3




= − ln ||+ 1

2
ln(2 + 3) +

2√
3

tan−1


√
3


+ 

13.


sin5  cos4  =


sin4  cos4  sin   =

(sin2 )2 cos4  sin  

=

(1− cos2 )2 cos4  sin   =


(1− 2)24 (−) [ = cos ,  = − sin  ]

=

(−4 + 26 − 8)  = − 1

5
5 + 2

7
7 − 1

9
9 +  = − 1

5
cos5  + 2

7
cos7 − 1

9
cos9 + 

14. Let  = ln(1 + 2),  =  ⇒  =
2

1 + 2
,  = . Then


ln(1 + 

2
) =  ln(1 + 2)−


22

1 + 2
 =  ln(1 + 

2
)− 2


(2 + 1)− 1

1 + 2


=  ln(1 + 2)− 2

 
1− 1

1 + 2


 =  ln(1 + 

2
)− 2 + 2 tan

−1
+ 

15. Let  = ,  = sec tan ⇒  = ,  = sec. Then
 sec tan =  sec−  sec =  sec− ln |sec+ tan|+.

16.
 √

22

0

2

√
1− 2

 =

 4

0

sin2 

cos 
cos  


 = sin ,

 = cos  


=
 4
0

1
2
(1− cos 2)  = 1

2


 − 1

2
sin 2

4
0

= 1
2



4
− 1

2

− (0− 0)


= 
8
− 1

4

17.
 
0
 cos2  =

 
0



1
2
(1 + cos 2)


 = 1

2

 
0
  + 1

2

 
0
 cos 2 

= 1
2


1
2
2

0

+ 1
2


1
2
 sin 2


0
− 1

2

 
0

1
2

sin 2 


 = ,  = cos 2 

 = ,  = 1
2
sin 2


= 1

4
2 + 0− 1

4

− 1
2

cos 2

0

= 1
4
2 + 1

8
(1− 1) = 1

4
2
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18. Let  =
√
. Then  =

1

2
√

 ⇒

 4

1


√


√

 =

 2

1




(2 ) = 2



2
1

= 2(
2 − ).

19. Let  = . Then

+



 =




  =

  =  +  = 



+ .

20. Since 2 is a constant,

2  = 2+ .

21. Let  =
√
, so that 2 =  and 2  = . Then


arctan

√
 =


arctan  (2 ) = . Now use parts with

 = arctan ,  = 2  ⇒  =
1

1 + 2
,  = 2. Thus,

 = 2 arctan −


2

1 + 2
 = 

2
arctan −

 
1− 1

1 + 2


 = 

2
arctan − + arctan + 

=  arctan
√
−

√
+ arctan

√
+ 


or ( + 1) arctan

√
−

√
+


22. Let  = 1 + (ln)2, so that  =

2 ln


. Then

ln




1 + (ln)2
 =

1

2


1√

 =

1

2


2
√



+ =


1 + (ln)2 + .

23. Let  = 1 +
√
. Then  = ( − 1)2,  = 2( − 1)  ⇒ 1

0


1 +

√

8

 =
 2

1
8 · 2(− 1)  = 2

 2

1
(9 − 8)  =


1
5
10 − 2 · 1

9
9
2
1

= 1024
5
− 1024

9
− 1

5
+ 2

9
= 4097

45
.

24.

(1 + tan)2 sec=


(1 + 2 tan+ tan2 ) sec

=

[sec+ 2 sec tan+ (sec2 − 1) sec]  =


(2 sec tan+ sec3 ) 

= 2 sec+ 1
2
(sec tan+ ln |sec + tan|+ ) [by Example 7.2.8]

25.

 1

0

1 + 12

1 + 3
=

 1

0

(12 + 4)− 3

3 + 1
 =

 1

0


4− 3

3+ 1


 =


4− ln |3 + 1|

1
0

= (4− ln 4)− (0− 0) = 4− ln 4

26.
32 + 1

3 + 2 + + 1
=

32 + 1

(2 + 1)(+ 1)
=



+ 1
+

+ 

2 + 1
. Multiply by ( + 1)(2 + 1) to get

32 + 1 = (2 + 1) + (+ )(+ 1) ⇔ 32 + 1 = (+)2 + ( +) + (+). Substituting −1 for 

gives 4 = 2 ⇔  = 2. Equating coefficients of 2 gives 3 = + = 2 + ⇔  = 1. Equating coefficients of 

gives 0 =  +  = 1 + ⇔  = −1. Thus, 1

0

32 + 1

3 + 2 + + 1
=

 1

0


2

+ 1
+

− 1

2 + 1


 =

 1

0


2

 + 1
+



2 + 1
− 1

2 + 1




=

2 ln |+ 1|+ 1

2
ln(2 + 1)− tan−1 

1
0

= (2 ln 2 + 1
2

ln 2− 
4
)− (0 + 0− 0)

= 5
2

ln 2− 
4

27. Let  = 1 + , so that  =   = (− 1) . Then


1

1 + 
 =


1


· 

− 1
=


1

(− 1)
 = . Now

1

(− 1)
=




+



− 1
⇒ 1 = (− 1) +. Set  = 1 to get 1 = . Set  = 0 to get 1 = −, so  = −1.
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Thus,  =

 −1


+

1

− 1


 = − ln ||+ ln |− 1|+ = − ln(1 + 


) + ln 


+  = − ln(1 + 


) +.

Another method: Multiply numerator and denominator by − and let  = − + 1. This gives the answer in the

form − ln(− + 1) + .

28.


sin
√
  =


sin · 2


 [ =

√
, 2 = , 2 =  ] = 2




 sin

= 2

[− cos+ sin] + [integration by parts] = − 2



√
 cos

√
 + 2


sin
√
 +

= −2





cos
√
 + 2


sin
√
 +

29. Use integration by parts with  = ln

 +

√
2 − 1


,  =  ⇒

 =
1

+
√
2 − 1


1 +

√
2 − 1


 =

1

 +
√
2 − 1

√
2 − 1 + √
2 − 1


 =

1√
2 − 1

,  = . Then
ln

+


2 − 1


 =  ln


+


2 − 1


−


√
2 − 1

 =  ln

+


2 − 1


−

2 − 1 +.

30. | − 1| =

 − 1 if  − 1 ≥ 0

−( − 1) if  − 1  0
=


 − 1 if  ≥ 0

1−  if   0

Thus,
 2

−1
| − 1| =

 0

−1
(1− ) +

 2

0
( − 1)  =


− 

0
−1

+

 − 

2
0

= (0− 1)− (−1− −1) + (2 − 2)− (1− 0) = 2 + −1 − 3

31. As in Example 5,

 
1 + 

1− 
 =

 √
1 + √
1− 

·
√

1 + √
1 + 

 =


1 + √
1− 2

 =


√

1− 2
+


√
1− 2

= sin
−1

−


1− 2 +.

Another method: Substitute  =


(1 + )(1− ).

32.
 3

1

3

2
=

 1

3



− 1

3

 

 = 3,
 = −32 


= − 1

3



1
3

= − 1
3
(− 3) = 1

3
(3 − )

33. 3− 2− 2 = −(2 + 2+ 1) + 4 = 4− (+ 1)2. Let + 1 = 2 sin ,

where −
2
≤  ≤ 

2
. Then  = 2cos   and √

3− 2− 2  =
 

4− ( + 1)2  =
 

4− 4 sin2  2 cos  

= 4


cos2   = 2

(1 + cos 2) 

= 2 + sin 2 +  = 2 + 2 sin  cos  +

= 2 sin−1


+ 1

2


+ 2 · + 1

2
·
√

3− 2− 2

2
+ 

= 2 sin−1


+ 1

2


+

+ 1

2

√
3− 2− 2 +
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34.

 2

4

1 + 4 cot

4− cot
 =

 2

4


(1 + 4 cos sin)

(4− cos sin)
· sin

sin


 =

 2

4

sin+ 4cos

4 sin− cos


=

 4

3
√

2

1





 = 4 sin− cos,
 = (4 cos+ sin) 



=

ln ||

4
3
√

2
= ln 4− ln

3√
2

= ln
4

3
√

2
= ln


4

3

√
2



35. The integrand is an odd function, so
 2

−2



1 + cos2 
 = 0 [by 5.5.7(b)].

36.


1 + sin

1 + cos
=


(1 + sin)(1− cos)

(1 + cos)(1− cos)
 =


1− cos+ sin− sin cos

sin2 


=

 
csc

2
− cos

sin2 
+ csc− cos

sin




s
= − cot+

1

sin
+ ln |csc− cot|− ln |sin|+  [by Exercise 7.2.39]

The answer can be written as
1− cos

sin
− ln(1 + cos) + .

37. Let  = tan . Then  = sec2   ⇒  4
0

tan3  sec2   =
 1

0
3  =


1
4
4
1
0

= 1
4
.

38.
 3

6

sin  cot 

sec 
 =

 3

6

cos
2
  =

1

2

 3

6

(1 + cos 2)  =
1

2


 +

1

2
sin 2

3
6

=
1

2




3
+

√
3

4


−



6
+

√
3

4


=

1

2


6


=



12

39. Let  = sec , so that  = sec  tan  . Then


sec  tan 

sec2  − sec 
 =


1

2 − 
 =


1

(− 1)
 = . Now

1

(− 1)
=




+



− 1
⇒ 1 = (− 1) +. Set  = 1 to get 1 = . Set  = 0 to get 1 = −, so  = −1.

Thus,  =

 −1


+

1

− 1


 = − ln ||+ ln |− 1|+ = ln |sec  − 1|− ln |sec |+  [or ln |1− cos |+ ].

40. Using product formula 2(a) in Section 7.2, sin 6 cos 3 = 1
2
[sin(6− 3) + sin(6 + 3)] = 1

2
(sin 3+ sin 9). Thus, 

0
sin 6 cos 3=

 
0

1
2
(sin 3+ sin 9)  = 1

2


− 1

3
cos 3− 1

9
cos 9


0

= 1
2


1
3

+ 1
9

− − 1
3
− 1

9


= 1

2


4
9

+ 4
9


= 4

9

41. Let  = ,  = tan2   =

sec2  − 1


 ⇒  =  and  = tan  − . So

 tan2   = (tan  − )−  (tan  − )  =  tan  − 2 − ln |sec |+ 1
2
2 +

=  tan  − 1
2
2 − ln |sec |+ 
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42. Let  = tan−1 ,  =
1

2
 ⇒  =

1

1 + 2
,  = − 1


. Then

 =


tan−1 

2
 = − 1


tan

−1
−

 
− 1

(1 + 2)


 = − 1


tan

−1
+

 



+

 +

1 + 2




1

(1 + 2)
=




+

+ 

1 + 2
⇒ 1 = (1 + 2) + (+ ) ⇒ 1 = (+)2 + +, so  = 0,  = 1,

and + = 0 ⇒  = −1. Thus,

 = − 1


tan−1 +

 
1


− 

1 + 2


 = − 1


tan

−1
+ ln ||− 1

2
ln
1 + 

2
+ 

= − tan−1 


+ ln

 √
2 + 1

+ 

Or: Let  = tan , so that  = sec2  . Then


tan−1 

2
 =




tan2 
sec

2
  =


 csc

2
  = . Now use parts

with  = ,  = csc2   ⇒  = ,  = − cot . Thus,

 = − cot  −  (− cot )  = − cot  + ln |sin |+

= − tan−1  · 1


+ ln

 √
2 + 1

+ = − tan−1 


+ ln

 √
2 + 1

+

43. Let  =
√
 so that  =

1

2
√

. Then

 √


1 + 3
=




1 + 6
(2) = 2


2

1 + (3)2
 = 2


1

1 + 2


1

3


 
 = 3

 = 32 


= 2

3
tan−1  + = 2

3
tan−1 3 + = 2

3
tan−1(32) + 

Another method: Let  = 32 so that 2 = 3 and  = 3
2
12  ⇒

√
 = 2

3
. Then √



1 + 3
 =

 2
3

1 + 2
 =

2

3
tan

−1
+ =

2

3
tan

−1
(

32
) +.

44. Let  =
√

1 + . Then 2 = 1 + , 2 =   = (2 − 1) , and  =
2

2 − 1
, so

 √
1 +   =


 · 2

2 − 1
 =


22

2 − 1
 =

 
2 +

2

2 − 1


 =

 
2 +

1

− 1
− 1

+ 1




= 2+ ln |− 1|− ln |+ 1|+ = 2
√

1 +  + ln
√

1 +  − 1
− ln

√
1 +  + 1


+ 

45. Let  = 3. Then  = 32  ⇒  =

5−

3

 = 1
3


− . Now integrate by parts with  = ,  = − :

 = − 1
3
− + 1

3


−  = − 1

3
− − 1

3
− + = − 1

3
−

3

(3 + 1) +.

46. Use integration by parts with  = (− 1),  =
1

2
 ⇒  = [(− 1) + ]  =  ,  = − 1


. Then


(− 1)

2
 = (− 1)




− 1




−

−  = − +




+ 


+  =




+ .
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47. Let  = − 1, so that  = . Then
3(− 1)−4 =


(+ 1)3−4  =


(3 + 32 + 3+ 1)−4  =


(−1 + 3−2 + 3−3 + −4) 

= ln ||− 3−1 − 3
2
−2 − 1

3
−3 +  = ln |− 1|− 3(− 1)−1 − 3

2
(− 1)−2 − 1

3
(− 1)−3 + 

48. Let  =
√

1− 2, so 2 = 1− 2, and 2 = −2. Then
 1

0



2−√1− 2  =
 0

1

√
2−  (−).

Now let  =
√

2− , so 2 = 2− , and 2  = −. Thus, 0

1

√
2−  (−) =

 √
2

1

(2− 
2
) (2 ) =

 √
2

1

(4
2 − 2

4
)  =


4
3

3 − 2

5

5
√2

1

=


8
3

√
2− 8

5

√
2
−  4

3
− 2

5


= 16

15

√
2− 14

15

49. Let  =
√

4+ 1 ⇒ 2 = 4+ 1 ⇒ 2 = 4  ⇒  = 1
2
. So


1


√

4 + 1
=

 1
2


1
4
(2 − 1)

= 2




2 − 1
= 2


1
2


ln

− 1

+ 1

+  [by Formula 19]

= ln

√4 + 1− 1√
4 + 1 + 1

+

50. As in Exercise 49, let  =
√

4 + 1. Then




2
√

4+ 1
=

 1
2


1
4
(2 − 1)

2


= 8




(2 − 1)
2
. Now

1

(2 − 1)
2

=
1

(+ 1)2(− 1)2
=



+ 1
+



(+ 1)2
+



− 1
+



(− 1)2
⇒

1 = (+ 1)(− 1)2 +(− 1)2 +(− 1)(+ 1)2 +(+ 1)2.  = 1 ⇒  = 1
4
,  = −1 ⇒  = 1

4
.

Equating coefficients of 3 gives  +  = 0, and equating coefficients of 1 gives 1 = +  −  + ⇒

1 = + 1
4
−  + 1

4
⇒ 1

2
= − . So  = 1

4
and  = − 1

4
. Therefore,




2
√

4+ 1
= 8

 
14

+ 1
+

14

(+ 1)2
+
−14

− 1
+

14

(− 1)2




=

 
2

+ 1
+ 2(+ 1)

−2 − 2

− 1
+ 2(− 1)

−2




= 2 ln |+ 1|− 2

+ 1
− 2 ln |− 1|− 2

− 1
+ 

= 2 ln
√

4 + 1 + 1
− 2√

4 + 1 + 1
− 2 ln

√4 + 1− 1
− 2√

4+ 1− 1
+ 

51. Let 2 = tan  ⇒  = 1
2

tan ,  = 1
2

sec2  ,
√

42 + 1 = sec , so





√

42 + 1
=

 1
2

sec2  
1
2

tan  sec 
=


sec 

tan 
 =


csc  

= − ln |csc  + cot |+  [or ln |csc  − cot |+]

= − ln

√42 + 1

2
+

1

2

+


or ln

√42 + 1

2
− 1

2

+
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52. Let  = 2. Then  = 2 ⇒


(4 + 1)
=




2(4 + 1)
=

1

2




(2 + 1)
=

1

2

 
1


− 

2 + 1


 = 1

2
ln ||− 1

4
ln(

2
+ 1) + 

= 1
2

ln(2)− 1
4

ln(4 + 1) +  = 1
4


ln(4)− ln(4 + 1)


+  =

1

4
ln


4

4 + 1


+ 

Or: Write  =


3 

4(4 + 1)
and let  = 4.

53.



2
sinh() =

1




2
cosh()− 2




 cosh() 


 = 2,

 = 2 

 = sinh() ,

 = 1

cosh()



=
1


2 cosh()− 2




1

 sinh()− 1




sinh() 

 
 = ,

 = 

 = cosh() ,

 = 1

sinh()


=

1


2 cosh()− 2

2
 sinh() +

2

3
cosh() +

54.


(+ sin)
2
 =

 
2 + 2 sin + sin2 


 = 1

3
3 + 2(sin−  cos) + 1

2
(− sin cos) +

= 1
3
3 + 1

2
+ 2 sin− 1

2
sin cos− 2 cos+ 

55. Let  =
√
, so that  = 2 and  = 2. Then




+ 
√


=


2

2 + 2 ·  =


2

(1 + )
 = .

Now
2

(1 + )
=




+



1 + 
⇒ 2 = (1 + ) +. Set  = −1 to get 2 = −, so  = −2. Set  = 0 to get 2 = .

Thus,  =

 
2


− 2

1 + 


 = 2 ln ||− 2 ln |1 + |+  = 2 ln

√
− 2 ln


1 +

√



+ .

56. Let  =
√
, so that  = 2 and  = 2. Then

√
+ 

√


=


2

+ 2 ·  =


2

1 + 2
 = 2 tan

−1
+  = 2 tan

−1
√
+ .

57. Let  = 3
√
+ . Then  = 3 −  ⇒

 3
√
+  =


(3 − ) · 32  = 3


(6 − 3)  = 3

7
7 − 3

4
4 + = 3

7
(+ )73 − 3

4
(+ )43 +

58. Let  =
√
2 − 1. Then  =



√
2 − 1


, 2 − 1 = 2,  =

√
2 + 1, so

 =


 ln√
2 − 1

 =


ln

2 + 1  = 1

2


ln(

2
+ 1) . Now use parts with  = ln(2 + 1),  = :

 = 1
2
 ln

2 + 1

−  2

2 + 1
 = 1

2
 ln


2

+ 1
−  

1− 1

2 + 1




= 1
2
 ln

2 + 1

−  + tan−1 +  =
√
2 − 1 ln−√2 − 1 + tan−1

√
2 − 1 +

Another method: First integrate by parts with  = ln,  =


√
2 − 1


 and then use substitution

 = sec  or  =
√
2 − 1


.
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59.
1

4 − 16
=

1

(2 − 4)(2 + 4)
=

1

(− 2)(+ 2)(2 + 4)
=



− 2
+



+ 2
+

+

2 + 4
. Multiply by

(− 2)(+ 2)(2 + 4) to get 1 = (+ 2)(2 + 4) +(− 2)(2 + 4) + (+)(− 2)(+ 2). Substituting 2 for 

gives 1 = 32 ⇔  = 1
32
. Substituting −2 for  gives 1 = −32 ⇔  = − 1

32
. Equating coefficients of 3 gives

0 = + +  = 1
32
− 1

32
+ , so  = 0. Equating constant terms gives 1 = 8− 8 − 4 = 1

4
+ 1

4
− 4, so

1
2

= −4 ⇔  = − 1
8
. Thus,



4 − 16
=

 
132

− 2
− 132

 + 2
− 18

2 + 4


 =

1

32
ln |− 2|− 1

32
ln |+ 2|− 1

8
· 1

2
tan

−1


2


+ 

=
1

32
ln

− 2

+ 2

− 1

16
tan−1


2


+

60. Let 2 = sec , so that 2  = sec  tan  . Then




2
√

42 − 1
=

 1
2

sec  tan  
1
4

sec2 
√

sec2  − 1
=


2 tan  

sec  tan 

= 2


cos   = 2 sin  +

= 2 ·
√

42 − 1

2
+  =

√
42 − 1


+ 

61.




1 + cos 
=

 
1

1 + cos 
· 1− cos 

1− cos 


 =


1− cos 

1− cos2 
 =


1− cos 

sin2 
 =

 
1

sin2 
− cos 

sin2 




=

(csc2  − cot  csc )  = − cot  + csc  +

Another method: Use the substitutions in Exercise 7.4.59.


1 + cos 
=


2(1 + 2) 

1 + (1− 2)(1 + 2)
=


2 

(1 + 2) + (1− 2)
=


 =  + = tan




2


+ 

62.




1 + cos2 
=


(1 cos2 ) 

(1 + cos2 ) cos2 
=


sec2 

sec2  + 1
 =


sec2 

tan2  + 2
 =


1

2 + 2



 = tan 

 = sec2  


=


1

2 +
√

2
2  =

1√
2

tan
−1


√
2


+  =

1√
2

tan
−1


tan √

2


+

63. Let  =
√
 so that  =

1

2
√

 ⇒  = 2

√
 = 2 . Then

 √
 
√

 =





(2 ) =


2

2





 = 22,

 = 4 

 =  ,

 = 



= 22 −


4




 = 4,

 = 4 

 =  ,

 = 


= 22 − 4 −  4 


= 22 − 4 + 4 + 

= 2(2 − 2 + 2) +  = 2

− 2

√
+ 2



√
 + 
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64. Let  =
√
 + 1, so that  = ( − 1)2 and  = 2( − 1) . Then

1√
+ 1

 =


2(− 1) √


=


(2

12−2
−12

)  =
4

3


32−4
12

+ =
4

3

√
+ 1


32−4

√
+ 1+.

65. Let  = cos2 , so that  = 2 cos (− sin) . Then


sin 2

1 + cos4 
 =


2 sin cos

1 + (cos2 )2
 =


1

1 + 2
(−) = − tan

−1
+  = − tan

−1
(cos

2
) + .

66. Let  = tan. Then

 3

4

ln(tan ) 

sin cos
=

 3

4

ln(tan )

tan
sec

2
 =

 √
3

1

ln


 =


1
2
(ln)

2
√3

1
= 1

2


ln
√

3
2

= 1
8
(ln 3)

2.

67.


√

+ 1 +
√


=

 
1√

+ 1 +
√

·
√
+ 1−

√


√
+ 1−

√



 =

 
+ 1−

√




= 2
3


( + 1)32 − 32


+

68.


2

6 + 33 + 2
 =


2 

(3 + 1)(3 + 2)
=

 1
3


(+ 1)(+ 2)


 = 3

 = 32 


.

Now
1

(+ 1)(+ 2)
=



+ 1
+



+ 2
⇒ 1 = (+ 2) +(+ 1). Setting  = −2 gives  = −1. Setting  = −1

gives  = 1. Thus,

1

3




(+ 1)(+ 2)
=

1

3

 
1

+ 1
− 1

+ 2


 =

1

3
ln |+ 1|− 1

3
ln |+ 2|+

= 1
3

ln
3 + 1

− 1
3

ln
3 + 2

+ 

69. Let  = tan , so that  = sec2  ,  =
√

3 ⇒  = 
3
, and  = 1 ⇒  = 

4
. Then

 √
3

1

√
1 + 2

2
=

 3

4

sec 

tan2 
sec

2
  =

 3

4

sec  (tan2  + 1)

tan2 
 =

 3

4


sec  tan2 

tan2 
+

sec 

tan2 




=

 3

4

(sec  + csc  cot )  =

ln |sec  + tan |− csc 

3
4

=

ln
2 +

√
3
− 2√

3


− ln √2 + 1

−√2


=
√

2− 2√
3

+ ln

2 +

√
3
− ln


1 +

√
2


70. Let  = . Then  = ln,  =  ⇒


1 + 2 − −
=




1 + 2− 1
=




22 + − 1
=

 
23

2− 1
− 13

+ 1




= 1
3

ln|2− 1|− 1
3

ln |+ 1|+ = 1
3

ln|(2 − 1)( + 1)|+ 
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71. Let  = . Then  = ln,  =  ⇒
2

1 + 
=


2

1 + 




=




1 + 
 =

 
1− 1

1 + 


 = − ln|1 + |+  = 

 − ln(1 + 

) + .

72. Use parts with  = ln(+ 1),  = 2:
ln(+ 1)

2
= − 1


ln( + 1) +




( + 1)
= − 1


ln(+ 1) +

 
1


− 1

+ 1




= − 1


ln( + 1) + ln ||− ln(+ 1) +  = −


1 +

1




ln(+ 1) + ln ||+ 

73. Let  = arcsin, so that  =
1√

1− 2
 and  = sin . Then


+ arcsin√

1− 2
=


(sin  + )  = − cos  + 1

2

2
+ 

= −√1− 2 + 1
2
(arcsin)2 + 

74.


4 + 10

2
 =

 
4

2
+

10

2


 =


(2


+ 5

)  =

2

ln 2
+

5

ln 5
+ 

75.




 ln− 
=




(ln− 1)
=







 = ln− 1,
 = (1) 


= ln ||+ = ln |ln− 1|+ 

76.


2

√
2 + 1

=


tan2 

sec 
sec

2
 


 = tan ,
 = sec2  


=


tan2  sec   =

(sec2  − 1) sec  

=

(sec3  − sec ) 

= 1
2
(sec  tan  + ln |sec  + tan |)− ln |sec  + tan |+ [by (1) and Example 7.2.8]

= 1
2
(sec  tan  − ln |sec  + tan |) +  = 1

2



√
2 + 1− ln(

√
2 + 1 + )


+ 

77. Let  =
√

1 + , so that 2 = 1 + , 2  =  ,  = 2 − 1, and  = ln(2 − 1). Then
√
1 + 

=


ln(2 − 1)


(2 ) = 2


[ln( + 1) + ln( − 1)] 

= 2[( + 1) ln( + 1)− ( + 1) + ( − 1) ln( − 1)− ( − 1)] +  [by Example 7.1.2]

= 2[ ln( + 1) + ln( + 1)−  − 1 +  ln( − 1)− ln( − 1)−  + 1] + 

= 2[(ln( + 1) + ln( − 1)) + ln( + 1)− ln( − 1)− 2] + 

= 2


 ln(2 − 1) + ln

 + 1

 − 1
− 2


+  = 2

√
1 +  ln() + ln

√
1 +  + 1√
1 +  − 1

− 2
√

1 + 


+

= 2
√

1 +  + 2 ln

√
1 +  + 1√
1 +  − 1

− 4
√

1 +  +  = 2(− 2)
√

1 +  + 2 ln

√
1 +  + 1√
1 +  − 1

+
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78.
1 + sin

1− sin
=

1 + sin

1− sin
· 1 + sin

1 + sin
=

1 + 2 sin+ sin2 

1− sin2 
=

1 + 2 sin + sin2 

cos2 
=

1

cos2 
+

2 sin

cos2 
+

sin2 

cos2 

= sec2 + 2 sec tan+ tan2  = sec2  + 2 sec tan+ sec2 − 1 = 2 sec2  + 2 sec tan− 1

Thus,


1 + sin

1− sin
 =


(2 sec

2
 + 2 sec tan− 1)  = 2 tan+ 2 sec− + 

79. Let  = ,  = sin2  cos ⇒  = ,  = 1
3

sin3 . Then
 sin2  cos = 1

3
 sin3 −  1

3
sin3  = 1

3
 sin3 − 1

3


(1− cos2 ) sin

=
1

3
 sin3  +

1

3


(1− 

2
) 


 = cos,

 = − sin 


= 1

3
 sin3 + 1

3
 − 1

9
3 + = 1

3
 sin3 + 1

3
cos− 1

9
cos3 + 

80.


sec cos 2

sin + sec
 =


sec cos 2

sin + sec
· 2 cos

2 cos
 =


2 cos 2

2 sin cos+ 2


=


2 cos 2

sin 2+ 2
 =


1





 = sin 2+ 2,

 = 2 cos 2 


= ln ||+  = ln |sin 2 + 2|+ = ln(sin 2+ 2) + 

81.

 √
1− sin=

 
1− sin

1
· 1 + sin

1 + sin
 =

 
1− sin2 

1 + sin


=

 
cos2 

1 + sin
 =


cos√
1 + sin

[assume cos  0]

=


√



 = 1 + sin

 = cos 


= 2
√
+  = 2

√
1 + sin+

Another method: Let  = sin so that  = cos =


1− sin2  =
√

1− 2 . Then √
1− sin =

 √
1− 


√

1− 2


=


1√

1 + 
 = 2

√
1 + + = 2

√
1 + sin+.

82.


sin cos

sin4 + cos4 
 =


sin cos

(sin2 )2 + (cos2 )2
 =


sin cos

(sin2 )2 + (1− sin2 )2


=


1

2 + (1− )2


1

2


 
 = sin2 ,

 = 2 sin cos 



=


1

42 − 4+ 2
 =


1

(42 − 4+ 1) + 1


=


1

(2− 1)2 + 1
 =

1

2


1

2 + 1



 = 2− 1,
 = 2 



= 1
2

tan−1  +  = 1
2

tan−1(2− 1) +  = 1
2

tan−1(2 sin2 − 1) + 
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Another solution:


sin cos

sin4  + cos4 
 =


(sin cos) cos4 

(sin4 + cos4 ) cos4 
 =


tan sec2 

tan4 + 1


=


1

2 + 1


1

2


 
 = tan2 ,

 = 2 tan sec2  


= 1

2
tan−1 +  = 1

2
tan−1(tan2 ) +

83. The function  = 2
2

does have an elementary antiderivative, so we’ll use this fact to help evaluate the integral.
(22 + 1)

2

 =


22
2

+



2

 =



2

2

 +




2



= 
2 −  2 +




2




 = ,

 = 

= 2
2
,

= 
2


= 

2

+ 

84. (a)
 2

1




 =

 ln 2

0










 = 

 = 


=

 ln 2

0



 =  (ln 2)

(b)
 3

2

1

ln
=

 ln 3

ln 2

1


(

)


 = ln

 =
1





=

 ln ln 3

ln ln 2










 = 

 =  



=

 0

ln ln 2



 +

 ln ln 3

0



 [note that ln ln 2  0]

=

 ln ln 3

0



 −

 ln ln 2

0



 =  (ln ln 3)−  (ln ln 2)

Another method: Substitute  = 


in the original integral.

7.6 Integration Using Tables and Computer Algebra Systems

Keep in mind that there are several ways to approach many of these exercises, and different methods can lead to different forms of the answer.

1.
 2

0

cos 5 cos 2
80
=


sin(5− 2)

2(5− 2)
+

sin(5 + 2)

2(5 + 2)

2
0


 = 5

 = 2


=


sin 3

6
+

sin 7

14

2
0

=


−1

6
− 1

14


− 0 =

−7− 3

42
= − 5

21

2.
 1

0


− 2 =

 1

0


2


1
2


− 2 

113
=


− 1

2

2


2


1
2


− 2 +


1
2

2
2

cos
−1

 1
2
− 
1
2

1

0

=


2− 1

4

√
− 2 +

1

8
cos−1(1− 2)

1
0

=


0 +

1

8
· 

−


0 +
1

8
· 0


=
1

8


3.
 2

1

√
42 − 3 = 1

2

 4

2


2 − √3

2



 = 2  = 2 


39
=

1

2




2


2 − √3

2 − √3
2

2
ln

+


2 − √3

2 
4

2

= 1
2


2
√

13− 3
2

ln

4 +

√
13
− 1

2


1− 3

2
ln 3


=
√

13− 3
4

ln

4 +

√
13
− 1

2
+ 3

4
ln 3
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4.

 1

0

tan
3


6


=

6



 6

0

tan
3
 [ = (6)  = (6) ]

69
=

6




1

2
tan2 + ln |cos|

6
0

=
6




1

2


1√
3

2

+ ln

√
3

2


− (0 + ln 1)


=

1


+

6


ln

√
3

2

5.
 8
0

arctan 2= 1
2

 4
0

arctan

 = 2  = 2 


89
=

1

2


 arctan− 1

2
ln(1 + 2)

4
0

=
1

2




4
arctan



4
− 1

2
ln


1 +

2

16


− 0


=



8
arctan



4
− 1

4
ln


1 +

2

16



6.
 2

0


2


4− 2 
31
=




8
(2

2 − 4)


4− 2 +
16

8
sin
−1


2

2
0

=

0 + 2 · 

2


− 0 = 

7.


cos

sin2 − 9
 =


1

2 − 9



 = sin

 = cos 


20
=

1

2(3)
ln

− 3

+ 3

+  =
1

6
ln

 sin− 3

sin + 3

+ 

8.




4− 2
 =


1

4− 2



 = ,
 =  


19
=

1

2(2)
ln

+ 2

− 2

+  =
1

4
ln

 + 2

 − 2

+ 

9.
 √

92 + 4

2
=

 √
2 + 4

29


1

3


 
 = 3,
 = 3 



= 3

 √
4 + 2

2


24
= 3


−
√

4 + 2


+ ln(+


4 + 2)


+ 

= −3
√

4 + 92

3
+ 3 ln(3+

√
4 + 92) +  = −

√
92 + 4


+ 3 ln(3 +

√
92 + 4) +

10. Let  =
√

2  and  =
√

3. Then  =
√

2  and 
22 − 3

2
 =

 √
2 − 2

1
2
2

√
2

=
√

2

 √
2 − 2

2


42
=
√

2


−
√
2 − 2


+ ln

+

2 − 2

+ 

=
√

2


−


22 − 3√
2 

+ ln
√2  +


22 − 3

+

= −


22 − 3


+
√

2 ln
√2  +


22 − 3

+ 

11.
 
0

cos6  
74
=


1
6

cos5  sin 

0

+ 5
6

 
0

cos4  
74
= 0 + 5

6


1
4

cos3  sin 

0

+ 3
4

 
0

cos2  


64
= 5

6


0 + 3

4


1
2
 + 1

4
sin 2


0


= 5

6
· 3

4
· 

2
= 5

16

12.


√

2 + 4 =
 √

2 + 2 ( 1
2
)


 = 2,
 = 2 


21
=

1

2




2

√
2 + 2 +

2

2
ln

+

√
2 + 2


+  =

2

4

√
2 + 4 +

1

2
ln(2 +

√
2 + 4 ) + 
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13.


arctan
√
√


=


arctan (2 )


 =
√
,

 = 1(2
√
) 


89
= 2


 arctan− 1

2
ln(1 + 2)


+  = 2

√
 arctan

√
− ln(1 + ) + 

14.
 
0
3 sin

84
=

−3 cos


0

+ 3
 
0
2 cos

85
= −3(−1) + 3


2 sin


0
− 2

 
0
 sin


= 3 − 6

 
0
 sin

84
= 3 − 6


− cos


0

+
 
0

cos


= 3 − 6[]− 6

sin


0

= 3 − 6

15.


coth(1)

2
 =


coth (−)


 = 1,
 = −12 


106
= − ln |sinh|+  = − ln |sinh(1)|+ 

16.


3√
2 − 1

=


2√
2 − 1

(

) =


2

√
2 − 1




 = ,
 =  


44
=



2

√
2 − 1 + 1

2
ln
+

√
2 − 1

+  = 1
2

√
2 − 1 + 1

2
ln

 +

√
2 − 1


+ 

17. Let  = 6 + 4 − 42 = 6− (42 − 4 + 1) + 1 = 7− (2 − 1)2,  = 2 − 1, and  =
√

7.

Then  = 2 − 2,  = 2 , and



6 + 4 − 42  =


√
  =


1
2
(+ 1)

√
2 − 2 1

2
 = 1

4



√
2 − 2 + 1

4

 √
2 − 2 

= 1
4

 √
2 − 2 − 1

8


(−2)

√
2 − 2 

30
=



8

√
2 − 2 +

2

8
sin−1





− 1

8

 √



 = 2 − 2,

 = −2 


=

2 − 1

8


6 + 4 − 42 +

7

8
sin−1 2 − 1√

7
− 1

8
· 2

3
32 + 

=
2 − 1

8


6 + 4 − 42 +

7

8
sin−1 2 − 1√

7
− 1

12
(6 + 4 − 42)32 +

This can be rewritten as
6 + 4 − 42


1

8
(2 − 1)− 1

12
(6 + 4 − 42)


+

7

8
sin−1 2 − 1√

7
+ 

=


1

3
2 − 1

12
 − 5

8


6 + 4 − 42 +

7

8
sin−1


2 − 1√

7


+

=
1

24
(82 − 2 − 15)


6 + 4 − 42 +

7

8
sin−1


2 − 1√

7


+

18.




23 − 32
=




2(−3 + 2)

50
= − 1

−3
+

2

(−3)2
ln

−3 + 2



+ =
1

3
+ 2

9
ln

2− 3



+

19. Let  = sin. Then  = cos, so
sin

2
 cos ln(sin)  =




2
ln

101
=

2+1

(2 + 1)2
[(2 + 1) ln− 1] +  = 1

9


3
(3 ln− 1) + 

= 1
9

sin3  [3 ln(sin)− 1] + 
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20. Let  = sin , so that  = cos  . Then
sin 2√
5− sin 

 =


2 sin  cos √

5− sin 
 = 2


√

5− 


55
= 2 · 2

3(−1)2
[−1− 2(5)]

√
5− + 

= 4
3
(−− 10)

√
5− + = − 4

3
(sin  + 10)

√
5− sin  + 

21. Let  =  and  =
√

3. Then  =   and


3− 2
 =




2 − 2

19
=

1

2
ln

+ 

− 

+  =
1

2
√

3
ln

 +
√

3

 −√3

+ .

22. Let  = 2 and  = 2. Then  = 2 and 2

0
3
√

42 − 4  = 1
2

 2

0
2


2 · 2 · 2 − (2)2 · 2 = 1
2

 4

0

√

2− 2 

114
=


22 − − 32

12

√
2− 2 +

3

4
cos−1

− 



4
0

=


22 − 2− 12

12

√
4− 2 +

8

4
cos−1


2− 

2

4
0

=


2 − − 6

6

√
4− 2 + 2cos−1


2− 

2

4
0

= [0 + 2 cos−1(−1)]− (0 + 2 cos−1 1) = 2 ·  − 2 · 0 = 2

23.


sec5 
77
= 1

4
tan sec3 + 3

4


sec3 

77
= 1

4
tan sec3  + 3

4


1
2

tan sec+ 1
2


sec


14
= 1

4
tan sec3 + 3

8
tan sec+ 3

8
ln|sec + tan|+ 

24.

3 arcsin(2) =


 arcsin


1
2

 

 = 2,
 = 2 


90
=

1

2


22 − 1

4
arcsin+


√

1− 2

4


+  =

24 − 1

8
arcsin(2) +

2
√

1− 4

8
+

25. Let  = ln and  = 2. Then  =  and 
4 + (ln)2


 =

 
2 + 2 

21
=



2


2 + 2 +

2

2
ln

+


2 + 2


+ 

= 1
2
(ln)


4 + (ln)2 + 2 ln


ln+


4 + (ln)2


+ 

26.

4− 

97
= −4− + 4


3− 

97
= −4− + 4

−3− + 3

2− 


97
= −(4 + 43)− + 12

−2− + 2

− 


96
= −(4 + 43 + 122)− + 24[(−− 1)−] + = −(4 + 43 + 122 + 24 + 24)− +

So
 1

0
4−  =

−(4 + 43 + 122 + 24+ 24)−
1
0

= −(1 + 4 + 12 + 24 + 24)−1 + 240 = 24− 65−1.

27.


cos−1(−2)

3
= −1

2


cos

−1



 = −2
 = −2−3 


88
= − 1

2


 cos−1 −√1− 2


+  = − 1

2
−2 cos−1(−2) + 1

2

√
1− −4 + 
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28.


√
1− 2

=


1√

1− 2






 
 = ,
 =  ,  = 


35
= −1

1
ln

1 +
√

1− 2



+  = − ln

1 +
√

1− 2



+ = − ln


1 +

√
1− 2




+

29. Let  = . Then  = ln,  = , so 
2 − 1  =

 √
2 − 1




41
=

2 − 1− cos

−1
(1) + =


2 − 1− cos

−1
(
−

) +.

30. Let  = − 3 and assume that  6= 0. Then  =  and


sin(− 3) =

1





(+3)

sin =
1



3


(1) sin

98
=

1


3

(1)

(1)2 + 12


1


sin− cos


+  =

1


3(1) 2

1 + 2


1


sin− cos


+ 

=
1

1 + 2
(+3)(sin−  cos) + =

1

1 + 2
 [sin(− 3)−  cos(− 3)] +

31.


4 √
10 − 2

=


4 

(5)2 − 2
=

1

5


√
2 − 2


= 5,
= 54 


43
= 1

5
ln
+

√
2 − 2

+  = 1
5

ln
5 +

√
10 − 2

+ 

32. Let  = tan  and  = 3. Then  = sec2   and
sec2  tan2 √

9− tan2 
 =


2

√
2 − 2


34
= −

2

√
2 − 2 +

2

2
sin−1





+ 

= −1

2
tan 

√
9− tan2  +

9

2
sin−1


tan 

3


+

33. Use disks about the -axis:

 =
 
0
(sin2 )2  = 

 
0

sin4 
73
= 

− 1
4

sin3  cos

0

+ 3
4

 
0

sin2 


63
= 


0 + 3

4


1
2
− 1

4
sin 2


0


= 


3
4


1
2
 − 0


= 3

8
2

34. Use shells about the -axis:

 =

 1

0

2 arcsin
90
= 2


22 − 1

4
sin
−1

+

√

1− 2

4

1
0

= 2


1

4
· 

2
+ 0


− 0


=

1

4


2

35. (a)





1

3


+ − 2

+ 
− 2 ln |+ |


+ 


=

1

3


+

2

(+ )2
− 2

(+ )



=
1

3


(+ )2 + 2 − (+ )2

(+ )
2



=
1

3


32

(+ )2


=

2

(+ )2
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(b) Let  = +  ⇒  =  . Note that  =
− 


and  =

1


.


2 

(+ )2
=

1

3


(− )2

2
 =

1

3


2 − 2 + 2

2
 =

1

3

 
1− 2


+

2

2




=
1

3


− 2 ln ||− 2




+  =

1

3


+ − 2

+ 
− 2 ln |+ |


+

36. (a)







8
(22 − 2)

√
2 − 2 +

4

8
sin−1 


+ 



=


8
(22 − 2)

−√
2 − 2

+
√
2 − 2


8
(4) + (22 − 2) 1

8


+

4

8

1
1− 22

= −2(22 − 2)

8
√
2 − 2

+
√
2 − 2


2

2
+

22 − 2

8


+

4

8
√
2 − 2

= 1
2
(2 − 2)−12


−2

4
(22 − 2) + 2(2 − 2) + 1

4
(2 − 2)(22 − 2) +

4

4


= 1

2
(2 − 2)−12[222 − 24] =

2(2 − 2)√
2 − 2

= 2
√
2 − 2

(b) Let  =  sin  ⇒  =  cos  . Then
2
√
2 − 2 =


2 sin2  


1− sin2   cos   = 4


sin2  cos2  

= 4


1
2
(1 + cos 2) 1

2
(1− cos 2)  = 1

4
4

(1− cos2 2) 

= 1
4
4
 

1− 1
2
(1 + cos 4)


 = 1

4
4


1
2
 − 1

8
sin 4


+ 

= 1
4
4


1
2
 − 1

8
· 2 sin 2 cos 2


+  = 1

4
4


1
2
 − 1

2
sin  cos (1− 2 sin2 )


+

=
4

8


sin−1 


− 



√
2 − 2




1− 22

2


+  =

4

8


sin−1 


− 



√
2 − 2



2 − 22

2


+ 

=


8
(22 − 2)

√
2 − 2 +

4

8
sin−1 


+ 

37. Maple and Mathematica both give


sec4  = 2
3

tan+ 1
3

tan sec2 , while Derive gives the second

term as
sin

3 cos3 
=

1

3

sin

cos

1

cos2 
=

1

3
tan sec2 . Using Formula 77, we get

sec4  = 1
3

tan sec2 + 2
3


sec2  = 1

3
tan sec2 + 2

3
tan+ .

38. Derive gives


csc5  =
3

8
ln

tan


2


− cos


3

8 sin2 
+

1

4 sin4 


and Maple gives

−1

4

cos

sin4 
− 3

8

cos

sin2 
+

3

8
ln(csc− cot). Using a half-angle identity for tangent, tan



2
=

1− cos

sin
, we have

ln tan


2
= ln

1− cos

sin
= ln


1

sin
− cos

sin


= ln(csc− cot), so those two answers are equivalent.

Mathematica gives

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



SECTION 7.6 INTEGRATION USING TABLES AND COMPUTER ALGEBRA SYSTEMS ¤ 69

 = − 3

32
csc2 

2
− 1

64
csc4 

2
− 3

8
log cos



2
+

3

8
log sin



2
+

3

32
sec2 

2
+

1

64
sec4 

2

=
3

8


log sin



2
− log cos



2


+

3

32


sec2 

2
− csc2 

2


+

1

64


sec4 

2
− csc4 

2


=

3

8
log

sin(2)

cos(2)
+

3

32


1

cos2(2)
− 1

sin2(2)


+

1

64


1

cos4(2)
− 1

sin4(2)



=
3

8
log tan



2
+

3

32


sin2(2)− cos2(2)

cos2(2) sin2(2)


+

1

64


sin4(2)− cos4(2)

cos4(2) sin4(2)



Now
sin2(2)− cos2(2)

cos2(2) sin2(2)
=

1− cos

2
− 1 + cos

2
1 + cos

2
· 1− cos

2

=
−2 cos

2
1− cos2 

4

=
−4 cos

sin2 

and
sin4(2)− cos4(2)

cos4(2) sin4(2)
=

sin2(2)− cos2(2)

cos2(2) sin2(2)

sin2(2) + cos2(2)

cos2(2) sin2(2)

=
−4 cos

sin2 

1

1 + cos

2
· 1− cos

2

= −4 cos

sin2 

4

1− cos2 
= −16 cos

sin4 

Returning to the expression for , we get

 =
3

8
log tan



2
+

3

32

−4 cos

sin2 


+

1

64

−16 cos

sin4 


=

3

8
log tan



2
− 3

8

cos

sin2 
− 1

4

cos

sin4 
,

so all are equivalent.

Now use Formula 78 to get
csc

5
=

−1

4
cot csc3 +

3

4


csc

3
 = −1

4

cos

sin

1

sin3 
+

3

4

−1

2
cot csc+

1

2


csc


= −1

4

cos

sin4 
− 3

8

cos

sin

1

sin
+

3

8


csc = −1

4

cos

sin4 
− 3

8

cos

sin2 
+

3

8
ln |csc− cot|+

39. Derive gives

2
√
2 + 4  = 1

4
(2 + 2)

√
2 + 4 − 2 ln

√
2 + 4 + 


. Maple gives

1
4
(2 + 4)32 − 1

2

√
2 + 4− 2 arcsinh


1
2


. Applying the command convert(%,ln); yields

1
4
(2 + 4)32 − 1

2

√
2 + 4− 2 ln


1
2
+ 1

2

√
2 + 4


= 1

4
(2 + 4)12


(2 + 4)− 2

− 2 ln

+

√
2 + 4


2


= 1
4
(2 + 2)

√
2 + 4− 2 ln

√
2 + 4 + 


+ 2 ln 2

Mathematica gives 1
4
(2 + 2)

√
3 + 2 − 2 arcsinh(2). Applying the TrigToExp and Simplify commands gives

1
4


(2 + 2)

√
4 + 2 − 8 log


1
2


 +

√
4 + 2


= 1

4
(2 + 2)

√
2 + 4− 2 ln


+

√
4 + 2


+ 2 ln 2, so all are

equivalent (without constant).

Now use Formula 22 to get


2


22 + 2 =


8
(22 + 22)

√
22 + 2 − 24

8
ln

+

√
22 + 2


+

=


8
(2)(2 + 2)

√
4 + 2 − 2 ln


+

√
4 + 2


+ 

= 1
4
(2 + 2)

√
2 + 4− 2 ln

√
2 + 4 + 


+ 
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40. Derive gives




(3 + 2)
= −−

2
+

3 ln(3 + 2)

4
− 3

4
, Maple gives

3

4
ln(3 + 2)− 1

2
− 3

4
ln(), and

Mathematica gives

−−

2
+

3

4
log(3 + 2−) = −−

2
+

3

4
log


3 + 2




= −−

2
+

3

4

ln(3 + 2)

ln 
= −−

2
+

3

4
ln(3 + 2)− 3

4
,

so all are equivalent. Now let  = , so  =   and  = . Then
1

(3 + 2)
=


1

(3+ 2)




=


1

2(2 + 3)


50
= − 1

2
+

3

22
ln

2 + 3



+

= − 1

2
+

3

4
ln(2 + 3)− 3

4
ln  + = − 1

2
+

3

4
ln(3 + 2)− 3

4
+ 

41. Derive and Maple give


cos
4
 =

sin cos3 

4
+

3 sin cos

8
+

3

8
, while Mathematica gives

3

8
+

1

4
sin(2) +

1

32
sin(4) =

3

8
+

1

4
(2 sin cos) +

1

32
(2 sin 2 cos 2)

=
3

8
+

1

2
sin cos+

1

16
[2 sin cos (2 cos2 − 1)]

=
3

8
+

1

2
sin cos+

1

4
sin cos3 − 1

8
sin cos,

so all are equivalent.

Using tables,
cos4 

74
= 1

4
cos3  sin+ 3

4


cos2 

64
= 1

4
cos3  sin+ 3

4


1
2
+ 1

4
sin 2


+ 

= 1
4

cos3  sin+ 3
8
+ 3

16
(2 sin cos) +  = 1

4
cos3  sin+ 3

8
+ 3

8
sin cos +

42. Derive gives



2


1− 2  =
arcsin

8
+


√

1− 2(22 − 1)

8
, Maple gives

−

4
(1− 2)32 +



8

√
1− 2 +

1

8
arcsin=



8
(1− 2)12[−2(1− 2) + 1] +

1

8
arcsin

=


8
(1− 2)12(22 − 1) +

1

8
arcsin

and Mathematica gives 1
8



√

1− 2(−1 + 22) + arcsin

, so all are equivalent.

Now use Formula 31 to get 


2


1− 2  =


8
(2

2 − 1)


1− 2 +
1

8
sin
−1

+ 

43. Maple gives


tan5  = 1
4

tan4 − 1
2

tan2  + 1
2

ln(1 + tan2 ), Mathematica gives
tan5  = 1

4
[−1− 2 cos(2)] sec4 − ln(cos), and Derive gives


tan5  = 1

4
tan4 − 1

2
tan2 − ln(cos).

These expressions are equivalent, and none includes absolute value bars or a constant of integration. Note that Mathematica’s

and Derive’s expressions suggest that the integral is undefined where cos  0, which is not the case. Using Formula 75,
tan5  = 1

5− 1
tan5−1 −  tan5−2  = 1

4
tan4 −  tan3 . Using Formula 69,

tan3  = 1
2

tan2 + ln |cos|+, so


tan5  = 1
4

tan4 − 1
2

tan2 − ln |cos|+ .
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44. Derive, Maple, and Mathematica all give


1
1 +

3
√

 =

2

5


3
√
+ 1


3

3
√
2 − 4

3
√
 + 8


. [Maple adds a

constant of − 16
5
.

We’ll change the form of the integral by letting  =

3
√
, so that 3 =  and 32  = . Then

1
1 +

3
√

=


32 √
1 + 

56
= 3


2

15(1)3


8(1)

2
+ 3(1)

2


2 − 4(1)(1)
 √

1 + 


+ 

= 2
5
(8 + 32 − 4)

√
1 + +  = 2

5


8 + 3

3
√
2 − 4

3
√



1 +
3
√
+

45. (a)  () =


()  =


1


√

1− 2


35
= −1

1
ln

1 +
√

1− 2



+  = − ln

1 +
√

1− 2



+ .

 has domain

 |  6= 0, 1− 2  0


= { |  6= 0, ||  1} = (−1 0) ∪ (0 1).  has the same domain.

(b) Derive gives  () = ln
√

1− 2 − 1
− ln and Mathematica gives  () = ln− ln


1 +

√
1− 2


.

Both are correct if you take absolute values of the logarithm arguments, and both would then have the

same domain. Maple gives  () = − arctanh

1
√

1− 2

. This function has domain


 ||  1−1  1

√
1− 2  1


=


 ||  1, 1

√
1− 2  1


=


 ||  1

√
1− 2  1


= ∅,

the empty set! If we apply the command convert(%,ln); to Maple’s answer, we get

−1

2
ln


1√

1− 2
+ 1


+

1

2
ln


1− 1√

1− 2


, which has the same domain, ∅.

46. None of Maple, Mathematica and Derive is able to evaluate

(1 + ln)


1 + ( ln)2 . However, if we let  =  ln,

then  = (1 + ln)  and the integral is simply
 √

1 + 2 , which any CAS can evaluate. The antiderivative is

1
2

ln

 ln +


1 + ( ln)2


+ 1

2
 ln


1 + ( ln)2 + .

DISCOVERY PROJECT Patterns in Integrals

1. (a) The CAS results are listed. Note that the absolute value symbols are missing, as is the familiar “+  ”.

(i)


1

(+ 2)(+ 3)
 = ln(+ 2)− ln(+ 3) (ii)


1

(+ 1)(+ 5)
 =

ln(+ 1)

4
− ln( + 5)

4

(iii)


1

(+ 2)(− 5)
 =

ln(− 5)

7
− ln(+ 2)

7
(iv)


1

(+ 2)2
 = − 1

+ 2

(b) If  6= , it appears that ln( + ) is divided by −  and ln( + ) is divided by − , so we guess that
1

(+ )(+ )
 =

ln(+ )

− 
+

ln(+ )

− 
+ . If  = , as in part (a)(iv), it appears that

1

(+ )2
 = − 1

 + 
+.

(c) The CAS verifies our guesses. Now
1

(+ )(+ )
=



+ 
+



+ 
⇒ 1 = (+ ) +(+ )

Setting  = − gives  = 1(− ) and setting  = − gives  = 1(− ). So
1

(+ )( + )
 =

 
1(− )

+ 
+

1(− )

+ 


 =

ln | + |
− 

+
ln |+ |
− 

+ 

[continued]
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and our guess for  6=  is correct. If  = , then
1

(+ )( + )
=

1

(+ )2
= (+ )

−2. Letting  = +  ⇒

 = , we have


(+ )
−2

 =



−2

 = − 1


+  = − 1

 + 
+, and our guess for  =  is also correct.

2. (a) (i)


sin cos 2 =
cos

2
− cos 3

6
(ii)


sin 3 cos 7 =
cos 4

8
− cos 10

20

(iii)


sin 8 cos 3 = −cos 11

22
− cos 5

10

(b) Looking at the sums and differences of  and  in part (a), we guess that
sin  cos   =

cos((− ))

2(− )
− cos((+ ))

2(+ )
+ 

Note that cos((− )) = cos((− )).

(c) The CAS verifies our guess. Again, we can prove that the guess is correct by differentiating:






cos((− ))

2(− )
− cos((+ ))

2(+ )


=

1

2(− )
[− sin((− ))](− )− 1

2(+ )
[− sin((+ ))](+ )

= 1
2

sin(− ) + 1
2

sin(+ )

= 1
2
(sin cos − cos  sin ) + 1

2
(sin  cos + cos  sin )

= sin  cos 

Our formula is valid for  6= .

3. (a) (i)


ln =  ln−  (ii)

 ln = 1

2
2 ln− 1

4
2

(iii)

2 ln = 1

3
3 ln− 1

9
3 (iv)


3 ln = 1

4
4 ln− 1

16
4

(v)

7 ln = 1

8
8 ln− 1

64
8

(b) We guess that

 ln =

1

+ 1
+1 ln− 1

(+ 1)
2
+1.

(c) Let  = ln,  =   ⇒  =



,  =

1

+ 1
+1. Then




ln =
1

+ 1

+1

ln− 1

+ 1




 =

1

+ 1

+1

ln− 1

+ 1
· 1

+ 1

+1,

which verifies our guess. We must have + 1 6= 0 ⇔  6= −1.

4. (a) (i)

  = (− 1) (ii)


2  = (2 − 2+ 2)

(iii)

3  = (3 − 32 + 6− 6) (iv)


4  = (4 − 43 + 122 − 24 + 24)

(v)

5  = 


5 − 54 + 203 − 602 + 120− 120


(b) Notice from part (a) that we can write

4  = (4 − 43 + 4 · 32 − 4 · 3 · 2+ 4 · 3 · 2 · 1)

and

5  = (5 − 54 + 5 · 43 − 5 · 4 · 32 + 5 · 4 · 3 · 2− 5 · 4 · 3 · 2 · 1)

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



SECTION 7.7 APPROXIMATE INTEGRATION ¤ 73

So we guess that
6  = (6 − 65 + 6 · 54 − 6 · 5 · 43 + 6 · 5 · 4 · 32 − 6 · 5 · 4 · 3 · 2 + 6 · 5 · 4 · 3 · 2 · 1)

= (6 − 65 + 304 − 1203 + 3602 − 720+ 720)

The CAS verifies our guess.

(c) From the results in part (a), as well as our prediction in part (b), we speculate that
  = 


 − −1 + (− 1)−2 − (− 1)(− 2)−3 + · · · ± !∓ !


= 


=0

(−1)−
!

!
.

(We have reversed the order of the polynomial’s terms.)

(d) Let  be the statement that

  = 


=0

(−1)−
!

!
.

1 is true by part (a)(i). Suppose  is true for some , and consider +1. Integrating by parts with  = +1,

 =   ⇒  = ( + 1) ,  = , we get


+1 = +1 − ( + 1)


  = +1 − ( + 1)





=0

(−1)−
!

!



= 

+1 − ( + 1)


=0

(−1)−
!

!



= 

+1 +


=0

(−1)−+1 ( + 1)!

!



= 
+1
=0

(−1)(+1)− ( + 1)!

!


This verifies  for  =  + 1. Thus, by mathematical induction,  is true for all , where  is a positive integer.

7.7 Approximate Integration

1. (a) ∆ = (− ) = (4− 0)2 = 2

2 =
2
=1

(−1)∆ = (0) · 2 + (1) · 2 = 2 [(0) + (2)] = 2(05 + 25) = 6

2 =
2

=1

()∆ = (1) · 2 + (2) · 2 = 2 [(2) + (4)] = 2(25 + 35) = 12

2 =
2
=1

()∆ = (1) · 2 + (2) · 2 = 2 [(1) + (3)] ≈ 2(16 + 32) = 96

(b) 2 is an underestimate, since the area under the small rectangles is less than

the area under the curve, and 2 is an overestimate, since the area under the

large rectangles is greater than the area under the curve. It appears that2

is an overestimate, though it is fairly close to . See the solution to

Exercise 47 for a proof of the fact that if  is concave down on [ ], then

the Midpoint Rule is an overestimate of
 

() .
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(c) 2 =


1
2
∆

[(0) + 2(1) + (2)] = 2

2
[(0) + 2(2) + (4)] = 05 + 2(25) + 35 = 9.

This approximation is an underestimate, since the graph is concave down. Thus, 2 = 9  . See the solution to

Exercise 47 for a general proof of this conclusion.

(d) For any , we will have         .

2. The diagram shows that 4  4 
 2

0
()   4, and it appears that

4 is a bit less than
 2

0
() . In fact, for any function that is concave

upward, it can be shown that    
 2

0
()     .

(a) Since 09540  08675  08632  07811, it follows that  = 09540,  = 08675, = 08632,

and  = 07811.

(b) Since 
 2

0
()   , we have 08632 

 2

0
()   08675.

3. () = cos

2

,∆ = 1− 0

4
= 1

4

(a) 4 = 1
4 · 2

(0) + 2


1
4


+ 2


2
4


+ 2


3
4


+ (1)

 ≈ 0895759

(b) 4 = 1
4





1
8


+ 


3
8


+ 


5
8


+ 


7
8

 ≈ 0908907

The graph shows that  is concave down on [0 1]. So 4 is an

underestimate and4 is an overestimate. We can conclude that

0895759 
 1

0
cos

2

  0908907.

4. (a) Since  is increasing on [0 1], 2 will underestimate  (since the area of

the darkest rectangle is less than the area under the curve), and 2 will

overestimate . Since  is concave upward on [0 1],2 will under-

estimate  and 2 will overestimate  (the area under the straight line

segments is greater than the area under the curve).

(b) For any , we will have         .

(c) 5 =
5
=1

(−1) ∆ = 1
5
[(00) + (02) + (04) + (06) + (08)] ≈ 01187

5 =
5

=1

() ∆ = 1
5
[(02) + (04) + (06) + (08) + (1)] ≈ 02146

5 =
5
=1

() ∆ = 1
5
[(01) + (03) + (05) + (07) + (09)] ≈ 01622

5 =


1
2
∆

[(0) + 2(02) + 2(04) + 2(06) + 2(08) + (1)] ≈ 01666

From the graph, it appears that the Midpoint Rule gives the best approximation. (This is in fact the case,

since  ≈ 016371405.)
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5. (a) () =


1 + 2
, ∆ =

− 


=

2 − 0

10
=

1

5

10 = 1
5





1
10


+ 


3
10


+ 


5
10


+ · · ·+ 


19
10

 ≈ 0806598

(b) 10 = 1
5 · 3

(0) + 4


1
5


+ 2


2
5


+ 4


3
5


+ 2


4
5


+ · · ·+ 4


9
5


+ (2)

 ≈ 0804779

Actual:  =

 2

0



1 + 2
 =


1
2

ln
1 + 

2
2

0
[ = 1 + 

2,  = 2]

= 1
2

ln 5− 1
2

ln 1 = 1
2

ln 5 ≈ 0804719

Errors:  = actual−10 =  −10 ≈ −0001879

 = actual− 10 =  − 10 ≈ −0000060

6. (a) () =  cos, ∆ =
− 


=

 − 0

4
=



4

4 = 
4





8


+ 


3
8


+ 


5
8


+ 


7
8

 ≈ −1945744

(b) 4 = 
4 · 3

(0) + 4



4


+ 2


2
4


+ 4


3
4


+ ()

 ≈ −1985611

Actual:  =
 
0
 cos =


 sin+ cos


0

[use parts with  =  and  = cos]

= (0 + (−1))− (0 + 1) = −2

Errors:  = actual−4 =  −4 ≈ −0054256

 = actual− 4 =  − 4 ≈ −0014389

7. () =
√
3 − 1,∆ =

− 


=

2− 1

10
=

1

10

(a) 10 = 1
10 · 2 [(1) + 2(11) + 2(12) + 2(13) + 2(14) + 2(15)

+ 2(16) + 2(17) + 2(18) + 2(19) + (2)]

≈ 1506361

(b) 10 = 1
10

[(105) + (115) + (125) + (135) + (145) + (155) + (165) + (175) + (185) + (195)]

≈ 1518362

(c) 10 = 1
10 · 3 [(1) + 4(11) + 2(12) + 4(13) + 2(14)

+ 4(15) + 2(16) + 4(17) + 2(18) + 4(19) + (2)]

≈ 1511519

8. () =
1

1 + 6
,∆ =

− 


=

2− 0

8
=

1

4

(a) 8 = 1
4 · 2 [(0) + 2(025) + 2(05) + 2(075) + 2(1) + 2(125) + 2(15) + 2(175) + (2)] ≈ 1040756

(b) 8 = 1
4
[(0125) + (0375) + (0625) + (0875) + (1125) + (1375) + (1625) + (1875)] ≈ 1041109

(c) 8 = 1
4 · 3 [(0) + 4(025) + 2(05) + 4(075) + 2(1) + 4(125) + 2(15) + 4(175) + (2)] ≈ 1042172

9. () =


1 + 2
,∆ =

− 


=

2− 0

10
=

1

5

(a) 10 = 1
5 · 2 [(0) + 2(02) + 2(04) + 2(06) + 2(08) + 2(1)

+ 2(12) + 2(14) + 2(16) + 2(18) + (2)]

≈ 2660833
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(b) 10 = 1
5
[(01) + (03) + (05) + (07) + (09) + (11) + (13) + (15) + (17) + (19)]

≈ 2664377

(c) 10 = 1
5 · 3 [(0) + 4(02) + 2(04) + 4(06) + 2(08)

+ 4(1) + 2(12) + 4(14) + 2(16) + 4(18) + (2)] ≈ 2663244

10. () = 3
√

1 + cos,∆ =
2− 0

4
= 

8

(a) 4 = 
8 · 2


(0) + 2



8


+ 2


2
8


+ 2


3
8


+ 



2


≈ 1838967

(b) 4 = 
8





16


+ 


3
16


+ 


5
16


+ 


7
16


≈ 1845390

(c) 4 = 
8 · 3


(0) + 4



8


+ 2


2
8


+ 4


3
8


+ 



2


≈ 1843245

11. () = 3 sin,∆ = 4− 0
8

= 1
2

(a) 8 = 1
2 · 2


(0) + 2


1
2


+ 2(1) + 2


3
2


+ 2(2) + 2


5
2


+ 2(3) + 2


7
2


+ (4)


≈ −7276910

(b) 8 = 1
2





1
4


+ 


3
4


+ 


5
4


+ 


7
4


+ 


9
4


+ 


11
4


+ 


13
4


+ 


15
4


≈ −4818251

(c) 8 = 1
2 · 3


(0) + 4


1
2


+ 2(1) + 4


3
2


+ 2(2) + 4


5
2


+ 2(3) + 4


7
2


+ (4)


≈ −5605350

12. () = 1,∆ = 3− 1
8

= 1
4

(a) 8 = 1
4 · 2


(1) + 2


5
4


+ 2


3
2


+ 2


7
4


+ 2(2) + 2


9
4


+ 2


5
2


+ 2


11
4


+ (3)


≈ 3534934

(b) 8 = 1
4





9
8


+ 


11
8


+ 


13
8


+ 


15
8


+ 


17
8


+ 


19
8


+ 


21
8


+ 


23
8


≈ 3515248

(c) 8 = 1
4 · 3


(1) + 4


5
4


+ 2


3
2


+ 4


7
4


+ 2(2) + 4


9
4


+ 2


5
2


+ 4


11
4


+ (3)


≈ 3522375

13. () =
√
 cos ,∆ = 4− 0

8
= 1

2

(a) 8 = 1
2 · 2


(0) + 2


1
2


+ 2(1) + 2


3
2


+ 2(2) + 2


5
2


+ 2(3) + 2


7
2


+ (4)


≈ −2364034

(b) 8 = 1
2





1
4


+ 


3
4


+ 


5
4


+ 


7
4


+ 


9
4


+ 


11
4


+ 


13
4


+ 


15
4


≈ −2310690

(c) 8 = 1
2 · 3


(0) + 4


1
2


+ 2(1) + 4


3
2


+ 2(2) + 4


5
2


+ 2(3) + 4


7
2


+ (4)


≈ −2346520

14. () =
1

ln 
,∆ =

3− 2

10
=

1

10

(a) 10 = 1
10 · 2{(2) + 2[(21) + (22) + · · ·+ (29)] + (3)} ≈ 1119061

(b) 10 = 1
10

[(205) + (215) + · · ·+ (285) + (295)] ≈ 1118107

(c) 10 = 1
10 · 3 [(2) + 4(21) + 2(22) + 4(23) + 2(24) + 4(25) + 2(26)

+ 4(27) + 2(28) + 4(29) + (3)] ≈ 1118428

15. () =
2

1 + 4
,∆ =

1− 0

10
=

1

10

(a) 10 = 1
10 · 2{(0) + 2[(01 + (02) + · · ·+ (09)] + (1)} ≈ 0243747

(b) 10 = 1
10

[(005) + (015) + · · ·+ (085) + (095)] ≈ 0243748

(c) 10 = 1
10 · 3 [(0) + 4(01) + 2(02) + 4(03) + 2(04) + 4(05) + 2(06)

+ 4(07) + 2(08) + 4(09) + (1)] ≈ 0243751

Note:
 1

0
()  ≈ 024374775. This is a rare case where the Trapezoidal and Midpoint Rules give better approximations

than Simpson’s Rule.
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16. () =
sin 


,∆ =

3− 1

4
=

1

2

(a) 4 = 1
2 · 2 [(1) + 2(15) + 2(2) + 2(25) + (3)] ≈ 0901645

(b) 4 = 1
2
[(125) + (175) + (225) + (275)] ≈ 0903031

(c) 4 = 1
2 · 3 [(1) + 4(15) + 2(2) + 4(25) + (3)] ≈ 0902558

17. () = ln(1 + ),∆ = 4− 0
8

= 1
2

(a) 8 = 1
2 · 2{(0) + 2[(05) + (1) + · · ·+ (3) + (35)] + (4)} ≈ 8814278

(b) 8 = 1
2
[(025) + (075) + · · ·+ (325) + (375)] ≈ 8799212

(c) 8 = 1
2 · 3 [(0) + 4(05) + 2(1) + 4(15) + 2(2) + 4(25) + 2(3) + 4(35) + (4)] ≈ 8804229

18. () =
√
+ 3,∆ = 1− 0

10
= 1

10

(a) 10 = 1
2 · 2{(0) + 2[(01) + (02) + · · ·+ (08) + (09)] + (1)} ≈ 0787092

(b) 10 = 1
2
[(005) + (015) + · · ·+ (085) + (095)] ≈ 0793821

(c) 10 = 1
2 · 3 [(0) + 4(01) + 2(02) + 4(03) + 2(04) + 4(05) + 2(06)

+ 4(07) + 2(08) + 4(09) + (1)]

≈ 0789915

19. () = cos(2),∆ = 1− 0
8

= 1
8

(a) 8 = 1
8 · 2

(0) + 2





1
8


+ 


2
8


+ · · ·+ 


7
8


+ (1)

 ≈ 0902333

8 = 1
8





1
16


+ 


3
16


+ 


5
16


+ · · ·+ 


15
16


= 0905620

(b) () = cos(2),  0() = −2 sin(2),  00() = −2 sin(2)− 42 cos(2). For 0 ≤  ≤ 1, sin and cos are positive,

so | 00()| = 2 sin(2) + 42 cos(2) ≤ 2 · 1 + 4 · 1 · 1 = 6 since sin(2) ≤ 1 and cos

2
 ≤ 1 for all ,

and 2 ≤ 1 for 0 ≤  ≤ 1. So for  = 8, we take = 6,  = 0, and  = 1 in Theorem 3, to get

| | ≤ 6 · 13(12 · 82) = 1
128

= 00078125 and | | ≤ 1
256

= 000390625. [A better estimate is obtained by noting

from a graph of  00 that | 00()| ≤ 4 for 0 ≤  ≤ 1.]

(c) Take = 6 [as in part (b)] in Theorem 3. | | ≤ (− )3

122
≤ 00001 ⇔ 6(1− 0)3

122
≤ 10−4 ⇔

1

22
≤ 1

104
⇔ 22 ≥ 104 ⇔ 2 ≥ 5000 ⇔  ≥ 71. Take  = 71 for . For  , again take = 6 in

Theorem 3 to get | | ≤ 10−4 ⇔ 42 ≥ 104 ⇔ 2 ≥ 2500 ⇔  ≥ 50. Take  = 50 for.

20. () = 1,∆ = 2− 1
10

= 1
10

(a) 10 = 1
10 · 2 [(1) + 2(11) + 2(12) + · · ·+ 2(19) + (2)] ≈ 2021976

10 = 1
10

[(105) + (115) + (125) + · · ·+ (195)] ≈ 2019102
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(b) () = 1,  0() = − 1

2
1,  00() =

2 + 1

4
1. Now  00 is decreasing on [1 2], so let  = 1 to take = 3.

| | ≤ 3(2− 1)3

12(10)2
=



400
≈ 0006796. | | ≤ | |

2
=



800
≈ 0003398.

(c) Take = 3 [as in part (b)] in Theorem 3. | | ≤ (− )3

122
≤ 00001 ⇔ 3(2− 1)3

122
≤ 10−4 ⇔



42
≤ 1

104
⇔ 2 ≥ 104

4
⇔  ≥ 83. Take  = 83 for . For  , again take = 3 in Theorem 3 to get

| | ≤ 10−4 ⇔ 2 ≥ 104

8
⇔  ≥ 59. Take  = 59 for.

21. () = sin,∆ = − 0
10

= 
10

(a) 10 = 
10 · 2


(0) + 2



10


+ 2


2
10


+ · · ·+ 2


9
10


+ ()

 ≈ 1983524

10 = 
10





20


+ 


3
20


+ 


5
20


+ · · ·+ 


19
20

 ≈ 2008248

10 = 
10 · 3


(0) + 4



10


+ 2


2
10


+ 4


3
10


+ · · ·+ 4


9
10


+ ()

 ≈ 2000110

Since  =
 
0

sin =
− cos


0

= 1− (−1) = 2,  =  − 10 ≈ 0016476,  =  −10 ≈ −0008248,

and  =  − 10 ≈ −0000110.

(b) () = sin ⇒
 ()()

 ≤ 1, so take = 1 for all error estimates.

| | ≤ (− )3

122
=

1( − 0)3

12(10)2
=

3

1200
≈ 0025839. | | ≤ | |

2
=

3

2400
≈ 0012919.

| | ≤ (− )5

1804
=

1( − 0)5

180(10)4
=

5

1,800,000
≈ 0000170.

The actual error is about 64% of the error estimate in all three cases.

(c) | | ≤ 000001 ⇔ 3

122
≤ 1

105
⇔ 2 ≥ 1053

12
⇒  ≥ 5083. Take  = 509 for .

| | ≤ 000001 ⇔ 3

242
≤ 1

105
⇔ 2 ≥ 1053

24
⇒  ≥ 3594. Take  = 360 for.

| | ≤ 000001 ⇔ 5

1804
≤ 1

105
⇔ 4 ≥ 1055

180
⇒  ≥ 203.

Take  = 22 for  (since  must be even).

22. From Example 7(b), we take = 76 to get | | ≤ 76(1)5

1804
≤ 000001 ⇒ 4 ≥ 76

180(000001)
⇒  ≥ 184.

Take  = 20 (since  must be even).

23. (a) Using a CAS, we differentiate () = cos  twice, and find that

 00() = cos (sin2 − cos). From the graph, we see that the maximum

value of | 00()| occurs at the endpoints of the interval [0 2].

Since  00(0) = −, we can use =  or = 28.

(b) A CAS gives10 ≈ 7954926518. (In Maple, use Student[Calculus1][RiemannSum] or

Student[Calculus1][ApproximateInt].)
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(c) Using Theorem 3 for the Midpoint Rule, with = , we get | | ≤ (2 − 0)3

24 · 102
≈ 0280945995.

With = 28, we get | | ≤ 28(2 − 0)3

24 · 102
= 0 289391916.

(d) A CAS gives  ≈ 7954926521.

(e) The actual error is only about 3× 10−9, much less than the estimate in part (c).

(f) We use the CAS to differentiate twice more, and then graph

 (4)() = cos (sin4 − 6 sin2  cos+ 3− 7 sin2 + cos).

From the graph, we see that the maximum value of
 (4)()

 occurs at the
endpoints of the interval [0 2]. Since  (4)(0) = 4, we can use = 4

or = 109.

(g) A CAS gives 10 ≈ 7953789422. (In Maple, use Student[Calculus1][ApproximateInt].)

(h) Using Theorem 4 with = 4, we get | | ≤ 4(2 − 0)5

180 · 104
≈ 0059153618.

With = 109, we get | | ≤ 109(2 − 0)5

180 · 104
≈ 0059299814.

(i) The actual error is about 7954926521− 7953789422 ≈ 000114. This is quite a bit smaller than the estimate in part (h),

though the difference is not nearly as great as it was in the case of the Midpoint Rule.

( j) To ensure that | | ≤ 00001, we use Theorem 4: | | ≤ 4(2)5

180 · 4
≤ 00001 ⇒ 4(2)5

180 · 00001 ≤ 4 ⇒

4 ≥ 5,915,362 ⇔  ≥ 493. So we must take  ≥ 50 to ensure that | − | ≤ 00001.

( = 109 leads to the same value of .)

24. (a) Using the CAS, we differentiate () =
√

4− 3 twice, and find

that  00() = − 94

4(4− 3)32
− 3

(4− 3)12
.

From the graph, we see that | 00()|  22 on [−1 1].

(b) A CAS gives10 ≈ 3995804152. (In Maple, use

Student[Calculus1][RiemannSum] or Student[Calculus1][ApproximateInt].)

(c) Using Theorem 3 for the Midpoint Rule, with = 22, we get | | ≤ 22 [1− (−1)]
3

24 · 102
≈ 000733.

(d) A CAS gives  ≈ 3995487677.

(e) The actual error is about −00003165, much less than the estimate in part (c).

(f) We use the CAS to differentiate twice more, and then graph

 (4)() =
9

16

2(6 − 2243 − 1280)

(4− 3)72
.

From the graph, we see that
 (4)()

  181 on [−1 1].

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



80 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION

(g) A CAS gives 10 ≈ 3995449790. (In Maple, use

Student[Calculus1][ApproximateInt].)

(h) Using Theorem 4 with = 181, we get | | ≤ 181 [1− (−1)]
5

180 · 104
≈ 0000322.

(i) The actual error is about 3995487677− 3995449790 ≈ 00000379. This is quite a bit smaller than the estimate in

part (h).

( j) To ensure that | | ≤ 00001, we use Theorem 4: | | ≤ 181(2)5

180 · 4
≤ 00001 ⇒ 181(2)5

180 · 00001 ≤ 4 ⇒

4 ≥ 32,178 ⇒  ≥ 134. So we must take  ≥ 14 to ensure that | − | ≤ 00001.

25.  =
 1

0
 = [(− 1)]

1

0
[parts or Formula 96] = 0− (−1) = 1, () = ,∆ = 1

 = 5: 5 = 1
5
[(0) + (02) + (04) + (06) + (08)] ≈ 0742943

5 = 1
5
[(02) + (04) + (06) + (08) + (1)] ≈ 1286599

5 = 1
5 · 2 [(0) + 2(02) + 2(04) + 2(06) + 2(08) + (1)] ≈ 1014771

5 = 1
5
[(01) + (03) + (05) + (07) + (09)] ≈ 0992621

 =  − 5 ≈ 1− 0742943 = 0257057

 ≈ 1− 1286599 = −0286599

 ≈ 1− 1014771 = −0014771

 ≈ 1− 0992621 = 0007379

 = 10: 10 = 1
10

[(0) + (01) + (02) + · · ·+ (09)] ≈ 0867782

10 = 1
10

[(01) + (02) + · · ·+ (09) + (1)] ≈ 1139610

10 = 1
10 · 2{(0) + 2[(01) + (02) + · · ·+ (09)] + (1)} ≈ 1003696

10 = 1
10

[(005) + (015) + · · ·+ (085) + (095)] ≈ 0998152

 =  − 10 ≈ 1− 0867782 = 0132218

 ≈ 1− 1139610 = −0139610

 ≈ 1− 1003696 = −0003696

 ≈ 1− 0998152 = 0001848

 = 20: 20 = 1
20

[(0) + (005) + (010) + · · ·+ (095)] ≈ 0932967

20 = 1
20

[(005) + (010) + · · ·+ (095) + (1)] ≈ 1068881

20 = 1
20 · 2{(0) + 2[(005) + (010) + · · ·+ (095)] + (1)} ≈ 1000924

20 = 1
20

[(0025) + (0075) + (0125) + · · ·+ (0975)] ≈ 0999538

 =  − 20 ≈ 1− 0932967 = 0067033

 ≈ 1− 1068881 = −0068881

 ≈ 1− 1000924 = −0000924

 ≈ 1− 0999538 = 0000462
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5 0742943 1286599 1014771 0992621

10 0867782 1139610 1003696 0998152

20 0932967 1068881 1000924 0999538

    

5 0257057 −0286599 −0014771 0007379

10 0132218 −0139610 −0003696 0001848

20 0067033 −0068881 −0000924 0000462

Observations:

1.  and  are always opposite in sign, as are  and  .

2. As  is doubled,  and  are decreased by about a factor of 2, and  and  are decreased by a factor of about 4.

3. The Midpoint approximation is about twice as accurate as the Trapezoidal approximation.

4. All the approximations become more accurate as the value of  increases.

5. The Midpoint and Trapezoidal approximations are much more accurate than the endpoint approximations.

26.  =

 2

1

1

2
 =


− 1



2
1

= −1

2
− (−1) =

1

2
 () =

1

2
∆ =

1



 = 5: 5 = 1
5
[(1) + (12) + (14) + (16) + (18)] ≈ 0580783

5 = 1
5
[(12) + (14) + (16) + (18) + (2)] ≈ 0430783

5 = 1
5 · 2 [(1) + 2(12) + 2(14) + 2(16) + 2(18) + (2)] ≈ 0505783

5 = 1
5
[(11) + (13) + (15) + (17) + (19)] ≈ 0497127

 =  − 5 ≈ 1
2
− 0580783 = −0080783

 ≈ 1
2
− 0430783 = 0069217

 ≈ 1
2
− 0505783 = −0005783

 ≈ 1
2
− 0497127 = 0002873

 = 10: 10 = 1
10

[(1) + (11) + (12) + · · ·+ (19)] ≈ 0538955

10 = 1
10

[(11) + (12) + · · ·+ (19) + (2)] ≈ 0463955

10 = 1
10 · 2{(1) + 2[(11) + (12) + · · ·+ (19)] + (2)} ≈ 0501455

10 = 1
10

[(105) + (115) + · · ·+ (185) + (195)] ≈ 0499274

 =  − 10 ≈ 1
2
− 0538955 = −0038955

 ≈ 1
2
− 0463955 = 0036049

 ≈ 1
2
− 0501455 = −0001455

 ≈ 1
2
− 0499274 = 0000726

 = 20: 20 = 1
20

[(1) + (105) + (110) + · · ·+ (195)] ≈ 0519114

20 = 1
20

[(105) + (110) + · · ·+ (195) + (2)] ≈ 0481614

20 = 1
20 · 2{(1) + 2[(105) + (110) + · · ·+ (195)] + (2)} ≈ 0500364

20 = 1
20

[(1025) + (1075) + (1125) + · · ·+ (1975)] ≈ 0499818
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 =  − 20 ≈ 1
2
− 0519114 = −0019114

 ≈ 1
2
− 0481614 = 0018386

 ≈ 1
2
− 0500364 = −0000364

 ≈ 1
2
− 0499818 = 0000182

    

5 0580783 0430783 0505783 0497127

10 0538955 0463955 0501455 0499274

20 0519114 0481614 0500364 0499818

    

5 −0080783 0069217 −0005783 0002873

10 −0038955 0036049 −0001455 0000726

20 −0019114 0018386 −0000364 0000182

Observations:

1.  and  are always opposite in sign, as are  and  .

2. As  is doubled,  and  are decreased by about a factor of 2, and  and  are decreased by a factor of about 4.

3. The Midpoint approximation is about twice as accurate as the Trapezoidal approximation.

4. All the approximations become more accurate as the value of  increases.

5. The Midpoint and Trapezoidal approximations are much more accurate than the endpoint approximations.

27.  =
 2

0
4  =


1
5
5
2
0

= 32
5
− 0 = 64, () = 4,∆ = 2− 0


= 2



 = 6: 6 = 2
6 · 2

(0) + 2





1
3


+ 


2
3


+ 


3
3


+ 


4
3


+ 


5
3


+ (2)

 ≈ 6695473

6 = 2
6





1
6


+ 


3
6


+ 


5
6


+ 


7
6


+ 


9
6


+ 


11
6

 ≈ 6252572

6 = 2
6 · 3

(0) + 4


1
3


+ 2


2
3


+ 4


3
3


+ 2


4
3


+ 4


5
3


+ (2)

 ≈ 6403292

 =  − 6 ≈ 64− 6695473 = −0295473

 ≈ 64− 6252572 = 0147428

 ≈ 64− 6403292 = −0003292

 = 12: 12 = 2
12 · 2


(0) + 2





1
6


+ 


2
6


+ 


3
6


+ · · ·+ 


11
6


+ (2)

 ≈ 6474023

6 = 2
12





1
12


+ 


3
12


+ 


5
12


+ · · ·+ 


23
12

 ≈ 6363008

6 = 2
12 · 3


(0) + 4


1
6


+ 2


2
6


+ 4


3
6


+ 2


4
6


+ · · ·+ 4


11
6


+ (2)

 ≈ 6400206

 =  − 12 ≈ 64− 6474023 = −0074023

 ≈ 64− 6363008 = 0036992

 ≈ 64− 6400206 = −0000206

   

6 6695473 6252572 6403292

12 6474023 6363008 6400206

   

6 −0295473 0147428 −0003292

12 −0074023 0036992 −0000206

Observations:

1.  and  are opposite in sign and decrease by a factor of about 4 as  is doubled.

2. The Simpson’s approximation is much more accurate than the Midpoint and Trapezoidal approximations, and  seems to

decrease by a factor of about 16 as  is doubled.
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28.  =

 4

1

1√

 =


2
√

4
1

= 4− 2 = 2, () =
1√

,∆ =

4− 1


=

3



 = 6: 6 = 3
6 · 2

(1) + 2





3
2


+ 


4
2


+ 


5
2


+ 


6
2


+ 


7
2


+ (4)

 ≈ 2008966

6 = 3
6





5
4


+ 


7
4


+ 


9
4


+ 


11
4


+ 


13
4


+ 


15
4

 ≈ 1995572

6 = 3
6 · 3

(1) + 4


3
2


+ 2


4
2


+ 4


5
2


+ 2


6
2


+ 4


7
2


+ (4)

 ≈ 2000469

 =  − 6 ≈ 2− 2008966 = −0008966,

 ≈ 2− 1995572 = 0004428,

 ≈ 2− 2000469 = −0000469

 = 12: 12 = 3
12 · 2


(1) + 2





5
4


+ 


6
4


+ 


7
4


+ · · ·+ 


15
4


+ (4)

 ≈ 2002269

12 = 3
12





9
8


+ 


11
8


+ 


13
8


+ · · ·+ 


31
8

 ≈ 1998869

12 = 3
12 · 3


(1) + 4


5
4


+ 2


6
4


+ 4


7
4


+ 2


8
4


+ · · ·+ 4


15
4


+ (4)

 ≈ 2000036

 =  − 12 ≈ 2− 2002269 = −0002269

 ≈ 2− 1998869 = 0001131

 ≈ 2− 2000036 = −0000036

   

6 2008966 1995572 2000469

12 2002269 1998869 2000036

   

6 −0008966 0004428 −0000469

12 −0002269 0001131 −0000036

Observations:

1.  and  are opposite in sign and decrease by a factor of about 4 as  is doubled.

2. The Simpson’s approximation is much more accurate than the Midpoint and Trapezoidal approximations, and  seems to

decrease by a factor of about 16 as  is doubled.

29. (a) ∆ = (− ) = (6− 0)6 = 1

6 = 1
2
[(0) + 2(1) + 2(2) + 2(3) + 2(4) + 2(5) + (6)]

≈ 1
2
[2 + 2(1) + 2(3) + 2(5) + 2(4) + 2(3) + 4] = 1

2
(38) = 19

(b) 6 = 1[(05) + (15) + (25) + (35) + (45) + (55)] ≈ 13 + 15 + 46 + 47 + 33 + 32 = 186

(c) 6 = 1
3
[(0) + 4(1) + 2(2) + 4(3) + 2(4) + 4(5) + (6)]

≈ 1
3
[2 + 4(1) + 2(3) + 4(5) + 2(4) + 4(3) + 4] = 1

3
(56) = 186

30. If  = distance from left end of pool and  = () = width at , then Simpson’s Rule with  = 8 and∆ = 2 gives

Area =
 16

0
 ≈ 2

3
[0 + 4(62) + 2(72) + 4(68) + 2(56) + 4(50) + 2(48) + 4(48) + 0] ≈ 84 m2.

31. (a)
 5

1
()  ≈4 = 5− 1

4
[(15) + (25) + (35) + (45)] = 1(29 + 36 + 40 + 39) = 144

(b) −2 ≤  00() ≤ 3 ⇒ | 00()| ≤ 3 ⇒  = 3, since | 00()| ≤ . The error estimate for the Midpoint Rule is

| | ≤ (− )3

242
=

3(5− 1)3

24(4)2
=

1

2
.
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32. (a)
 16

0
()  ≈ 8 = 16− 0

8 · 3 [(0) + 4(02) + 2(04) + 4(06) + 2(08) + 4(10) + 2(12) + 4(14) + (16)]

= 1
15

[121 + 4(116) + 2(113) + 4(111) + 2(117) + 4(122) + 2(126) + 4(130) + 132]

= 1
15

(2881) = 2881
150

≈ 192

(b) −5 ≤ (4)() ≤ 2 ⇒
(4)()

 ≤ 5 ⇒  = 5, since
(4)()

 ≤ . The error estimate for Simpson’s Rule is

| | ≤ (− )5

1804
=

5(16− 0)5

180(8)4
=

2

28,125
= 71× 10−5.

33. We use Simpson’s Rule with  = 12 and∆ = 24− 0
12

= 2.

12 = 2
3
[ (0) + 4 (2) + 2 (4) + 4 (6) + 2 (8) + 4 (10) + 2 (12)

+ 4 (14) + 2 (16) + 4 (18) + 2 (20) + 4 (22) +  (24)]

≈ 2
3
[ 666 + 4(654) + 2(644) + 4(617) + 2(673) + 4(721) + 2(749)

+ 4(774) + 2(791) + 4(754) + 2(756) + 4(714) + 675] = 2
3
(25503) = 17002.

Thus,
 24

0
 ()  ≈ 12 and ave = 1

24− 0

 24

0
 ()  ≈ 7084◦F.

34. We use Simpson’s Rule with  = 10 and∆ = 1
2
:

distance =
 5

0
()  ≈ 10 = 1

2 · 3 [(0) + 4(05) + 2(1) + · · ·+ 4(45) + (5)]

= 1
6
[0 + 4(467) + 2(734) + 4(886) + 2(973) + 4(1022)

+ 2(1051) + 4(1067) + 2(1076) + 4(1081) + 1081]

= 1
6
(26841) = 44735 m

35. By the Net Change Theorem, the increase in velocity is equal to
 6

0
() . We use Simpson’s Rule with  = 6 and

∆ = (6− 0)6 = 1 to estimate this integral: 6

0
()  ≈ 6 = 1

3
[(0) + 4(1) + 2(2) + 4(3) + 2(4) + 4(5) + (6)]

≈ 1
3
[0 + 4(05) + 2(41) + 4(98) + 2(129) + 4(95) + 0] = 1

3
(1132) = 3773 fts

36. By the Net Change Theorem, the total amount of water that leaked out during the first six hours is equal to
 6

0
() .

We use Simpson’s Rule with  = 6 and∆ = 6− 0
6

= 1 to estimate this integral: 6

0
()  ≈ 6 = 1

3
[(0) + 4(1) + 2(2) + 4(3) + 2(4) + 4(5) + (6)]

≈ 1
3
[4 + 4(3) + 2(24) + 4(19) + 2(14) + 4(11) + 1] = 1

3
(366) = 122 liters

37. By the Net Change Theorem, the energy used is equal to
 6

0
 () . We use Simpson’s Rule with  = 12 and

∆ = 6− 0
12

= 1
2
to estimate this integral: 6

0
 ()  ≈ 12 =

12

3
[ (0) + 4 (05) + 2 (1) + 4 (15) + 2 (2) + 4 (25) + 2 (3)

+ 4 (35) + 2 (4) + 4 (45) + 2 (5) + 4 (55) +  (6)]

= 1
6
[1814 + 4(1735) + 2(1686) + 4(1646) + 2(1637) + 4(1609) + 2(1604)

+ 4(1611) + 2(1621) + 4(1666) + 2(1745) + 4(1886) + 2052]

= 1
6
(61,064) = 10,1773 megawatt-hours
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38. By the Net Change Theorem, the total amount of data transmitted is equal to
 8

0
() × 3600 [since() is measured in

megabits per second and  is in hours]. We use Simpson’s Rule with  = 8 and∆ = (8− 0)8 = 1 to estimate this integral: 8

0
()  ≈ 8 = 1

3
[(0) + 4(1) + 2(2) + 4(3) + 2(4) + 4(5) + 2(6) + 4(7) +(8)]

≈ 1
3
[035 + 4(032) + 2(041) + 4(050) + 2(051) + 4(056) + 2(056) + 4(083) + 088]

= 1
3
(1303) = 4343

Now multiply by 3600 to obtain 15,636 megabits.

39. (a) Let  = () denote the curve. Using disks,  =
 10

2
[()]2  = 

 10

2
()  = 1.

Now use Simpson’s Rule to approximate 1:

1 ≈ 8 = 10− 2
3(8)

[(2) + 4(3) + 2(4) + 4(5) + 2(6) + 4(7) + (8)]

≈ 1
3
[02 + 4(15)2 + 2(19)2 + 4(22)2 + 2(30)2 + 4(38)2 + 2(40)2 + 4(31)2 + 02]

= 1
3
(18178)

Thus,  ≈  · 1
3
(18178) ≈ 1904 or 190 cubic units.

(b) Using cylindrical shells,  =
 10

2
2()  = 2

 10

2
()  = 21.

Now use Simpson’s Rule to approximate 1:

1 ≈ 8 = 10− 2
3(8)

[2(2) + 4 · 3(3) + 2 · 4(4) + 4 · 5(5) + 2 · 6(6)

+ 4 · 7(7) + 2 · 8(8) + 4 · 9(9) + 10(10)]

≈ 1
3
[2(0) + 12(15) + 8(19) + 20(22) + 12(30) + 28(38) + 16(40) + 36(31) + 10(0)]

= 1
3
(3952)

Thus,  ≈ 2 · 1
3
(3952) ≈ 8277 or 828 cubic units.

40. Work =
 18

0
()  ≈ 6 = 18− 0

6 · 3 [(0) + 4(3) + 2(6) + 4(9) + 2(12) + 4(15) + (18)]

= 1 · [98 + 4(91) + 2(85) + 4(80) + 2(77) + 4(75) + 74] = 148 joules

41. The curve is  = () = 1(1 + −). Using disks,  =
 10

0
[()]2  = 

 10

0
()  = 1. Now use Simpson’s

Rule to approximate 1:

1 ≈ 10 = 10− 0
10 · 3 [(0) + 4(1) + 2(2) + 4(3) + 2(4) + 4(5) + 2(6) + 4(7) + 2(8) + 4(9) + (10)]

≈ 880825

Thus,  ≈ 1 ≈ 277 or 28 cubic units.

42. Using Simpson’s Rule with  = 10,∆ =
2

10
,  = 1, 0 = 42

180
radians,  = 98 ms2, 2 = sin2


1
2
0


, and

() = 1


1− 2 sin2 , we get

 = 4






 2

0


1− 2 sin2 

≈ 4





10

= 4


1
98


2

10 · 3


(0) + 4



20


+ 2


2
20


+ · · ·+ 4


9
20


+ 



2

 ≈ 207665
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43. () =
2 sin2 

2
, where  =

 sin 


,  = 10,000,  = 10−4, and  = 6328× 10−9. So () =

(104)2 sin2 

2
,

where  =
(104)(10−4) sin 

6328× 10−9
. Now  = 10 and ∆ =

10−6 − (−10−6)

10
= 2× 10−7, so

10 = 2× 10−7[(−00000009) + (−00000007) + · · ·+ (00000009)] ≈ 594.

44. () = cos(),∆ = 20− 0
10

= 2 ⇒

10 = 2
2
{(0) + 2[(2) + (4) + · · ·+ (18)] + (20)} = 1[cos 0 + 2(cos 2 + cos 4 + · · ·+ cos 18) + cos 20]

= 1 + 2(1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1) + 1 = 20

The actual value is
 20

0
cos()  = 1




sin

20
0

= 1

(sin 20 − sin 0) = 0. The discrepancy is due to the fact that the

function is sampled only at points of the form 2, where its value is (2) = cos(2) = 1.

45. Consider the function  whose graph is shown. The area
 2

0
() 

is close to 2. The Trapezoidal Rule gives

2 = 2− 0
2 · 2 [(0) + 2(1) + (2)] = 1

2
[1 + 2 · 1 + 1] = 2.

The Midpoint Rule gives2 = 2− 0
2

[(05) + (15)] = 1[0 + 0] = 0,

so the Trapezoidal Rule is more accurate.

46. Consider the function () = |− 1|, 0 ≤  ≤ 2. The area
 2

0
()

is exactly 1. So is the right endpoint approximation:

2 = (1)∆+ (2)∆ = 0 · 1 + 1 · 1 = 1. But Simpson’s Rule

approximates  with the parabola  = (− 1)2, shown dashed, and

2 =
∆

3
[(0) + 4(1) + (2)] =

1

3
[1 + 4 · 0 + 1] =

2

3
.

47. Since the Trapezoidal and Midpoint approximations on the interval [ ] are the sums of the Trapezoidal and Midpoint

approximations on the subintervals [−1 ],  = 1 2     , we can focus our attention on one such interval. The condition

 00()  0 for  ≤  ≤  means that the graph of  is concave down as in Figure 5. In that figure,  is the area of the

trapezoid ,
 

()  is the area of the region , and is the area of the trapezoid , so

 
 

()   . In general, the condition  00  0 implies that the graph of  on [ ] lies above the chord joining the

points ( ()) and ( ()). Thus,
 

()   . Since is the area under a tangent to the graph, and since  00  0

implies that the tangent lies above the graph, we also have 
 

() . Thus,  

 

()   .

48. Let  be a polynomial of degree≤ 3; say () = 3 +2 +  +. It will suffice to show that Simpson’s estimate is

exact when there are two subintervals ( = 2), because for a larger even number of subintervals the sum of exact estimates is

exact. As in the derivation of Simpson’s Rule, we can assume that 0 = −, 1 = 0, and 2 = . Then Simpson’s

approximation is
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− () ≈ 1

3
[(−) + 4(0) + ()] = 1

3

−3 +2 − +


+ 4 +


3 +2 + +


= 1

3
[22 + 6] = 2

3
3 + 2

The exact value of the integral is 
−(

3 +2 + +) = 2
 
0

(2 +)  [by Theorem 5.5.7(a) and (b)]

= 2


1
3
3 +


0

= 2
3
3 + 2

Thus, Simpson’s Rule is exact.

49.  = 1
2
∆ [(0) + 2(1) + · · ·+ 2(−1) + ()] and

 = ∆ [(1) + (2) + · · ·+ (−1) + ()], where  = 1
2
(−1 + ). Now

2 = 1
2


1
2
∆

[(0) + 2(1) + 2(1) + 2(2) + 2(2) + · · ·+ 2(−1) + 2(−1) + 2() + ()] so

1
2
( +) = 1

2
 + 1

2


= 1
4
∆[(0) + 2(1) + · · ·+ 2(−1) + ()] + 1

4
∆[2(1) + 2(2) + · · ·+ 2(−1) + 2()]

= 2

50.  =
∆

2


(0) + 2

−1
=1

() + ()


and = ∆


=1




 − ∆

2


, so

1
3
 + 2

3
 = 1

3
( + 2) =

∆

3 · 2

(0) + 2

−1
=1

() + () + 4

=1




 − ∆

2



where∆ =
− 


. Let  =

− 

2
. Then∆ = 2, so

1
3
 + 2

3
 =



3


(0) + 2

−1
=1

() + () + 4

=1

( − )


= 1

3
[(0) + 4(1 − ) + 2(1) + 4(2 − )

+ 2(2) + · · ·+ 2(−1) + 4( − ) + ()]

Since 0 1 −  1 2 −  2     −1  −   are the subinterval endpoints for 2, and since  =
− 

2
is

the width of the subintervals for 2, the last expression for 1
3
 + 2

3
 is the usual expression for 2. Therefore,

1
3
 + 2

3
 = 2.

7.8 Improper Integrals

1. (a) Since  =


− 1
has an infinite discontinuity at  = 1,

 2

1



− 1
 is a Type 2 improper integral.

(b) Since
 ∞

0

1

1 + 3
 has an infinite interval of integration, it is an improper integral of Type 1.

(c) Since
 ∞

−∞


2

−2

 has an infinite interval of integration, it is an improper integral of Type 1.

(d) Since  = cot has an infinite discontinuity at  = 0,
 4
0

cot is a Type 2 improper integral.
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2. (a) Since  = tan is defined and continuous on

0 

4


,
 4
0

tan is proper.

(b) Since  = tan has an infinite discontinuity at  = 
2
,
 
0

tan is a Type 2 improper integral.

(c) Since  =
1

2 − − 2
=

1

(− 2)(+ 1)
has an infinite discontinuity at  = −1,

 1

−1



2 − − 2
is a Type 2 improper

integral.

(d) Since
∞
0

−
3

 has an infinite interval of integration, it is an improper integral of Type 1.

3. The area under the graph of  = 13 = −3 between  = 1 and  =  is

() =
 
1
−3  =

− 1
2
−2


1

= − 1
2
−2 − − 1

2


= 1

2
− 1


22

. So the area for 1 ≤  ≤ 10 is

(10) = 05− 0005 = 0495, the area for 1 ≤  ≤ 100 is (100) = 05− 000005 = 049995, and the area for

1 ≤  ≤ 1000 is (1000) = 05− 00000005 = 04999995. The total area under the curve for  ≥ 1 is

lim
→∞

() = lim
→∞


1
2
− 1(22)


= 1

2
.

4. (a)

(b) The area under the graph of  from  = 1 to  =  is

 () =
 
1
()  =

 
1
−11  =

− 1
01

−01

1

= −10(−01 − 1) = 10(1− −01)

and the area under the graph of  is

() =
 
1
()  =

 
1
−09  =


1

01
01


1

= 10(01 − 1).

  () ()

10 206 259

100 369 585

104 602 1512

106 749 2981

1010 9 90

1020 99 990

(c) The total area under the graph of  is lim
→∞

 () = lim
→∞

10(1− −01) = 10.

The total area under the graph of  does not exist, since lim
→∞

() = lim
→∞

10(01 − 1) =∞.

5.

 ∞

3

1

(− 2)32
 = lim

→∞

 

3

(− 2)
−32

 = lim
→∞


−2 (− 2)

−12

3

[ = − 2,  = ]

= lim
→∞

 −2√
− 2

+
2√
1


= 0 + 2 = 2. Convergent

6.
 ∞

0

1
4
√

1 + 
 = lim

→∞

 

0

(1 + )
−14

 = lim
→∞


4
3
(1 + )

34

0

[ = 1 + ,  = ]

= lim
→∞


4
3
(1 + )34 − 4

3


=∞. Divergent
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7.
 0

−∞

1

3− 4
 = lim

→−∞

 0



1

3− 4
 = lim

→−∞


− 1

4
ln |3− 4|

0


= lim
→−∞


− 1

4
ln 3 + 1

4
ln |3− 4|


= ∞

Divergent

8.
 ∞

1

1

(2+ 1)3
 = lim

→∞

 

1

1

(2+ 1)3
 = lim

→∞


− 1

4(2+ 1)2


1

= lim
→∞


− 1

4(2+ 1)2
+

1

36


= 0 +

1

36
.

Convergent

9.
∞
2

−5  = lim
→∞

 
2
−5  = lim

→∞

− 1
5
−5


2

= lim
→∞

− 1
5
−5 + 1

5
−10


= 0 + 1

5
−10 = 1

5
−10. Convergent

10.
 0

−∞
2

 = lim

→−∞

 0



2

 = lim

→−∞


2

ln 2

0


= lim
→−∞


1

ln 2
− 2

ln 2


=

1

ln 2
− 0 =

1

ln 2
. Convergent

11.

 ∞

0

2

√
1 + 3

 = lim
→∞

 

0

2

√
1 + 3

 = lim
→∞


2

3


1 + 3


0

= lim
→∞


2
3


1 + 3 − 2

3


=∞. Divergent

12.  =
∞
−∞(3 − 32)  = 1 + 2 =

 0

−∞(3 − 32)  +
∞
0

(3 − 32) , but

1 = lim
→−∞


1
4
4 − 3

0


= lim
→−∞

(3 − 1
4
4) = −∞. Since 1 is divergent,  is divergent,

and there is no need to evaluate 2. Divergent

13.
∞
−∞ −

2

 =
 0

−∞ −
2

+
∞
0

−
2

.

 0

−∞ −
2

 = lim
→−∞

− 1
2


−

2
0


= lim
→−∞

− 1
2


1− −

2


= − 1
2
· 1 = − 1

2
, and

∞
0

−
2

 = lim
→∞

− 1
2


−

2

0

= lim
→∞

− 1
2


−

2 − 1


= − 1
2
· (−1) = 1

2
.

Therefore,
∞
−∞ −

2

 = − 1
2

+ 1
2

= 0. Convergent

14.
 ∞

1

−1

2
 = lim

→∞

 

1

−1

2
 = lim

→∞



−1


1

= lim
→∞

(
−1 − 

−1
) = 1− 1


. Convergent

15.
∞
0

sin2  = lim
→∞

 
0

1
2
(1− cos 2)  = lim

→∞


1
2


− 1

2
sin 2


0

= lim
→∞


1
2


− 1

2
sin 2

− 0


=∞.

Divergent

16.
∞
0

sin  cos   = lim
→∞

 
0

sin  cos   = lim
→∞


−cos 


0

= lim
→∞

(−cos  + )

This limit does not exist since cos  oscillates in value between−1 and 1, so cos  oscillates in value

between −1 and 1. Divergent

17.

 ∞

1

1

2 + 
= lim

→∞

 

1

1

(+ 1)
 = lim

→∞

 

1


1


− 1

+ 1


 [partial fractions]

= lim
→∞


ln ||− ln | + 1|


1

= lim
→∞


ln

 

+ 1

 
1

= lim
→∞


ln



+ 1
− ln

1

2


= 0− ln

1

2
= ln 2.

Convergent
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18.
 ∞

2



2 + 2 − 3
= lim

→∞

 

2



( + 3)( − 1)
= lim

→∞

 

2

 − 1
4

 + 3
+

1
4

 − 1


 = lim

→∞


− 1

4
ln | + 3|+ 1

4
ln | − 1|


2

=
1

4
lim
→∞


ln

 − 1

 + 3


2

=
1

4
lim
→∞


ln

− 1

+ 3
− ln

1

5


=

1

4
(0 + ln 5) =

1

4
ln 5. Convergent

19.
 0

−∞ 2  = lim
→−∞

 0


2  = lim

→−∞


1
2
2 − 1

4
2
0



integration by parts with
 = ,  = 2 


= lim

→−∞


0− 1

4

−  1
2
2 − 1

4
2


= − 1
4
− 0 + 0 [by l’Hospital’s Rule] = − 1

4
. Convergent

20.
∞
2

−3  = lim
→∞

 
2
−3  = lim

→∞

− 1
3
−3 − 1

9
−3


2


integration by parts with
 = ,  = −3 


= lim

→∞

− 1
3
−3 − 1

9
−3

− − 2
3
−6 − 1

9
−6


= 0− 0 + 7

9
−6 [by l’Hospital’s Rule] = 7

9
−6.

Convergent

21.

 ∞

1

ln


 = lim

→∞


(ln)

2

2


1


by substitution with

 = ln,  = 


= lim

→∞
(ln )

2

2
=∞. Divergent

22.
 ∞

1

ln

2
= lim

→∞

 

1

ln

2
 = lim

→∞


− ln


− 1




1


integration by parts with

 = ln,  = (12) 



= lim
→∞


− ln 


− 1


+ 1


H
= lim

→∞


−1

1


− lim

→∞
1


+ lim

→∞
1 = 0− 0 + 1 = 1. Convergent

23.

 0

−∞



4 + 4
 = lim

→−∞

 0





4 + 4
 = lim

→−∞
1

2


1

2
tan

−1


2

2

0



 = 2,
 = 2 



= lim
→−∞


0− 1

4
tan−1


2

2


= −1

4


2


= −

8
. Convergent

24.

 ∞



1

(ln)2
= lim

→∞

 



1

(ln)2
 = lim

→∞


− 1

ln





 = ln,
 = (1) 



= lim
→∞


− 1

ln 
+ 1


= 0 + 1 = 1. Convergent

25.
 ∞

0


−√

 = lim
→∞

 

0


−√

 = lim
→∞

 √


0


−

(2)


 =
√
,

 = 1(2
√
 ) 



= lim
→∞

−2−
√
0

+

 √


0

2
−



 
 = 2,  = − 
 = 2 ,  = −−



= lim
→∞


−2
√
 −

√
 +

−2−
√
0


= lim

→∞

−2
√



√

− 2


√


+ 2


= 0− 0 + 2 = 2.

Convergent

Note: lim
→∞

√



√


H
= lim

→∞
2
√


2
√
 
√


= lim
→∞

1


√


= 0

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



SECTION 7.8 IMPROPER INTEGRALS ¤ 91

26.
 ∞

1

√
+ 

√

= lim

→∞

 

1

√
 (1 + )

= lim
→∞

 √


1

1

(1 + 2)
(2)


 =
√
,

 = 1(2
√
 ) 


= lim

→∞

 √


1

2

1 + 2
 = lim

→∞


2 tan

−1

√
1

= lim
→∞

2(tan
−1
√
− tan

−1
1)

= 2(
2
− 

4
) = 

2
. Convergent

27.
 1

0

1


 = lim

→0+

 1



1


 = lim

→0+


ln ||

1


= lim
→0+

(− ln ) =∞. Divergent

28.
 5

0

1
3
√

5− 
= lim

→5−

 

0

(5− )
−13

 = lim
→5−


− 3

2
(5− )

23

0

= lim
→5−


− 3

2
[(5− )

23 − 5
23

]


= 3
2
523 Convergent

29.

 14

−2


4
√
+ 2

= lim
→−2+

 14



(+ 2)
−14

 = lim
→−2+


4

3
(+ 2)

34

14


=
4

3
lim

→−2+


16

34 − (+ 2)
34


= 4
3
(8− 0) = 32

3
. Convergent

30.
 2

−1



( + 1)2
= lim

→−1+

 2





(+ 1)2
 = lim

→−1+

 2




1

+ 1
− 1

(+ 1)2


 [partial fractions]

= lim
→−1+


ln |+ 1|+ 1

+ 1

2


= lim
→−1+


ln 3 +

1

3
−


ln( + 1) +
1

 + 1


= −∞. Divergent

Note: To justify the last step, lim
→−1+


ln( + 1) +

1

 + 1


= lim

→0+


ln+

1



 
substitute
 for + 1


= lim

→0+

 ln + 1


=∞

since lim
→0+

( ln) = lim
→0+

ln

1

H
= lim

→0+

1

−12
= lim

→0+
(−) = 0.

31.
 3

−2



4
=

 0

−2



4
+

 3

0



4
, but

 0

−2



4
= lim

→0−


−−3

3


−2

= lim
→0−


− 1

33
− 1

24


=∞. Divergent

32.
 1

0

√
1− 2

= lim
→1−

 

0

√
1− 2

= lim
→1−


sin
−1



0

= lim
→1−

sin
−1

 =


2
. Convergent

33. There is an infinite discontinuity at  = 1.
 9

0

1
3
√
− 1

 =

 1

0

(− 1)
−13

+

 9

1

(− 1)
−13

.

Here
 1

0
(− 1)−13  = lim

→1−

 
0
(− 1)−13  = lim

→1−


3
2
(− 1)23


0

= lim
→1−


3
2
(− 1)23 − 3

2


= − 3

2

and
 9

1
(− 1)−13  = lim

→1+

 9


(− 1)−13  = lim

→1+


3
2
(− 1)23

9


= lim
→1+


6− 3

2
(− 1)23


= 6. Thus,

 9

0

1
3
√
− 1

 = −3

2
+ 6 =

9

2
. Convergent

34. There is an infinite discontinuity at  = 2. 2

0



 − 2
 = lim

→2−

 

0


1 +

2

 − 2


 = lim

→2−


 + 2 ln | − 2|


0

= lim
→2−

( + 2 ln |− 2|− 2 ln 2) = −∞, so

 2

0



 − 2
 diverges, and hence,

 5

0



 − 2
 diverges. Divergent
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35.
 2
0

tan2   = lim
→(2)−

 
0

tan2   = lim
→(2)−

 
0
(sec2  − 1)  = lim

→(2)−


tan  − 


0

= lim
→(2)−

(tan − ) =∞ since tan →∞ as → 
2
−. Divergent

36.

 4

0



2 − − 2
=

 4

0



(− 2)(+ 1)
=

 2

0



(− 2)(+ 1)
+

 4

2



(− 2)(+ 1)

Considering only
 2

0



(− 2)(+ 1)
and using partial fractions, we have

 2

0



(− 2)(+ 1)
= lim

→2−

 

0

 1
3

− 2
−

1
3

 + 1


 = lim

→2−


1
3

ln |− 2|− 1
3

ln |+ 1|

0

= lim
→2−


1
3

ln |− 2|− 1
3

ln |+ 1|− 1
3

ln 2 + 0


= −∞ since ln |− 2|→−∞ as → 2−.

Thus,
 2

0



2 − − 2
is divergent, and hence,

 4

0



2 − − 2
is divergent as well.

37.
 1

0
 ln   = lim

→0+

 1


 ln   = lim

→0+


1
2
2 ln  − 1

4
2
1



 = ln ,  =  

 = (1) ,  = 1
2
2


= lim

→0+


0− 1

4

−  1
2
2 ln − 1

4
2


= − 1
4
− 0 = − 1

4

since lim
→0+

2 ln  = lim
→0+

ln 

12
H
= lim

→0+

1

−23
= lim

→0+
(− 1

2
2) = 0. Convergent

38.
 2

0

cos √
sin 

 = lim
→0+

 2



cos √
sin 

 = lim
→0+


2
√

sin 
2



 = sin ,
 = cos  


= lim

→0+
(2− 2

√
sin  ) = 2− 0 = 2. Convergent

39.
 0

−1

1

3
= lim

→0−

 

−1

1



1 · 1

2
 = lim

→0−

 1

−1




(−)


 = 1,
 = −2



= lim
→0−


(− 1)

−1

1


use parts

or Formula 96


= lim

→0−


−2−1 −


1


− 1


1


= −2


− lim

→−∞
(− 1) [ = 1] = −2


− lim

→−∞
− 1

−
H
= −2


− lim

→−∞
1

−−

= −2


− 0 = −2


. Convergent

40.
 1

0

1

3
= lim

→0+

 1



1



1 · 1

2
 = lim

→0+

 1

1




(−)


 = 1,
 = −2



= lim
→0+


(− 1)

1
1


use parts

or Formula 96


= lim

→0+


1


− 1


1 − 0


= lim

→∞
(− 1) [ = 1] =∞. Divergent
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41. Area =
∞
1

−  = lim
→∞

 
1
−  = lim

→∞


−−


1

= lim
→∞

(−− + −1) = 0 + −1 = 1

42. Area =
 0

−∞   = lim
→−∞

 0


  = lim

→−∞



0


= lim
→−∞

(0 − ) = 1− 0 = 1

43. Area =

 ∞

1

1

3 + 
 = lim

→∞

 

1

1

(2 + 1)


= lim
→∞

 

1


1


− 

2 + 1


 [partial fractions]

= lim
→∞


ln ||− 1

2
ln
2 + 1


1

= lim
→∞


ln

√
2 + 1


1

= lim
→∞


ln

√
2 + 1

− ln
1√
2


= ln 1− ln 2−12 =

1

2
ln 2

44. Area =
∞
0

−  = lim
→∞

 
0
− 

= lim
→∞


−− − −


0

[use parts wtih  =  and  = − ]

= lim
→∞


(−− − −)− (−1)


= 0 [use l’Hospital’s Rule] − 0 + 1 = 1

45. Area =
 2
0

sec2  = lim
→(2)−

 
0

sec2  = lim
→(2)−


tan


0

= lim
→(2)−

(tan − 0) =∞

Infinite area

46. Area =

 0

−2

1√
+ 2

 = lim
→−2+

 0



1√
+ 2

 = lim
→−2+


2
√
+ 2

0


= lim
→−2+


2
√

2− 2
√
 + 2


= 2

√
2− 0 = 2

√
2
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47. (a)


 
1
() 

2 0447453

5 0577101

10 0621306

100 0668479

1000 0672957

10,000 0673407

() =
sin2 

2
.

It appears that the integral is convergent.

(b) −1 ≤ sin ≤ 1 ⇒ 0 ≤ sin2  ≤ 1 ⇒ 0 ≤ sin2 

2
≤ 1

2
. Since

 ∞

1

1

2
 is convergent

[Equation 2 with  = 2  1],
 ∞

1

sin2 

2
 is convergent by the Comparison Theorem.

(c) Since
∞
1

()  is finite and the area under () is less than the area under ()

on any interval [1 ],
∞
1

()  must be finite; that is, the integral is convergent.

48. (a)


 
2
()

5 3830327

10 6801200

100 23328769

1000 69023361

10,000 208124560

() =
1√
− 1

.

It appears that the integral is divergent.

(b) For  ≥ 2,
√
 

√
− 1 ⇒ 1√




1√
− 1

. Since
 ∞

2

1√

 is divergent [Equation 2 with  = 1

2
≤ 1], ∞

2

1√
− 1

 is divergent by the Comparison Theorem.

(c) Since
∞
2

()  is infinite and the area under () is greater than the area under

() on any interval [2 ],
∞
2

()  must be infinite; that is, the integral is

divergent.

49. For   0,


3 + 1




3
=

1

2
.
 ∞

1

1

2
 is convergent by Equation 2 with  = 2  1, so

 ∞

1



3 + 1
 is convergent

by the Comparison Theorem.
 1

0



3 + 1
 is a constant, so

 ∞

0



3 + 1
 =

 1

0



3 + 1
+

 ∞

1



3 + 1
 is also

convergent.
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50. For  ≥ 1,
1 + sin2 √


≥ 1√


.
 ∞

1

1√

 is divergent by Equation 2 with  = 1

2
≤ 1, so

 ∞

1

1 + sin2 √


 is divergent

by the Comparison Theorem.

51. For   1, () =
+ 1√
4 − 


+ 1√
4




2
=

1


, so

 ∞

2

()  diverges by comparison with
 ∞

2

1


, which diverges

by Equation 2 with  = 1 ≤ 1. Thus,
∞
1

()  =
 2

1
() +

∞
2

()  also diverges.

52. For  ≥ 0, arctan 


2
 2, so

arctan

2 + 


2

2 + 


2


= 2−. Now

 =

 ∞

0

2
−

 = lim
→∞

 

0

2
−

 = lim
→∞

−2
−

0
= lim

→∞


− 2


+ 2


= 2, so  is convergent, and by comparison,

 ∞

0

arctan

2 + 
 is convergent.

53. For 0   ≤ 1,
sec2 


√



1

32
. Now

 =

 1

0


−32

 = lim
→0+

 1




−32

 = lim
→0+


− 2

−12
1


= lim
→0+


−2 +

2√



=∞, so  is divergent, and by

comparison,
 1

0

sec2 


√

is divergent.

54. For 0   ≤ 1,
sin2 √


≤ 1√


. Now

 =

 

0

1√

 = lim

→0+

 




−12

 = lim
→0+


2

12



= lim
→0+


2 − 2

√



= 2 − 0 = 2, so  is convergent, and by

comparison,
 

0

sin2 √


 is convergent.

55.
 ∞

0

√
 (1 + )

=

 1

0

√
 (1 + )

+

 ∞

1

√
 (1 + )

= lim
→0+

 1



√
 (1 + )

+ lim
→∞

 

1

√
 (1 + )

. Now


√

 (1 + )
=


2

(1 + 2)


 =
√
,  = 2 ,

 = 2


= 2




1 + 2
= 2 tan

−1
+ = 2 tan

−1√
+ , so

 ∞

0

√
 (1 + )

= lim
→0+


2 tan−1√ 1


+ lim

→∞


2 tan−1√ 

1

= lim
→0+


2


4

− 2 tan−1
√


+ lim

→∞


2 tan−1

√
− 2



4


= 

2
− 0 + 2



2

− 
2

= .

56.

 ∞

2




√
2 − 4

=

 3

2




√
2 − 4

+

 ∞

3




√
2 − 4

= lim
→2+

 3






√
2 − 4

+ lim
→∞

 

3




√
2 − 4

. Now





√
2 − 4

=


2 sec  tan  

2 sec  2 tan 


 = 2 sec , where

0 ≤   2 or  ≤   32


= 1

2
 + = 1

2
sec−1


1
2



+, so

 ∞

2




√
2 − 4

= lim
→2+


1
2

sec
−1


1
2

3

+ lim

→∞


1
2

sec
−1


1
2



3
= 1

2
sec

−1


3
2

− 0 + 1
2



2

− 1
2

sec
−1


3
2


= 

4
.
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57. If  = 1, then
 1

0




= lim

→0+

 1






= lim

→0+
[ln]

1


=∞. Divergent

If  6= 1, then
 1

0




= lim

→0+

 1






[note that the integral is not improper if   0]

= lim
→0+


−+1

−+ 1

1


= lim
→0+

1

1− 


1− 1

−1



If   1, then − 1  0, so
1

−1
→∞ as → 0+, and the integral diverges.

If   1, then − 1  0, so
1

−1
→ 0 as → 0+ and

 1

0




=

1

1− 


lim
→0+


1− 

1−
=

1

1− 
.

Thus, the integral converges if and only if   1, and in that case its value is
1

1− 
.

58. Let  = ln. Then  =  ⇒
 ∞





 (ln)
 =

 ∞

1




. By Example 4, this converges to

1

− 1
if   1

and diverges otherwise.

59. First suppose  = −1. Then 1

0



ln =

 1

0

ln


 = lim

→0+

 1



ln


 = lim

→0+


1
2
(ln)

2
1


= − 1
2

lim
→0+

(ln )
2

= −∞, so the

integral diverges. Now suppose  6= −1. Then integration by parts gives


ln =

+1

+ 1
ln−




+ 1
 =

+1

+ 1
ln− +1

(+ 1)2
+ . If   −1, then  + 1  0, so

 1

0



ln = lim

→0+


+1

 + 1
ln− +1

(+ 1)2

1


=
−1

(+ 1)
2
−


1

+ 1


lim
→0+



+1


ln − 1

+ 1


=∞.

If   −1, then + 1  0 and

 1

0
 ln=

−1

(+ 1)2
−


1

+ 1


lim
→0+

ln − 1(+ 1)

−(+1)

H
=

−1

( + 1)2
−


1

+ 1


lim
→0+

1

−(+ 1)−(+2)

=
−1

(+ 1)2
+

1

(+ 1)2
lim
→0+

+1 =
−1

( + 1)2

Thus, the integral converges to− 1

( + 1)2
if   −1 and diverges otherwise.

60. (a)  = 0:
 ∞

0




−

 = lim
→∞

 

0


−

 = lim
→∞

−−
0

= lim
→∞

−− + 1


= 0 + 1 = 1

 = 1:
 ∞

0




−

 = lim
→∞

 

0


−

. To evaluate



−

, we’ll use integration by parts

with  = ,  = −  ⇒  = ,  = −−.

So



−

 = −− −

−−  = −− − 

−
+  = (−− 1)

−
+ and

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



SECTION 7.8 IMPROPER INTEGRALS ¤ 97

lim
→∞

 

0


−

 = lim
→∞


(−− 1)−


0

= lim
→∞


(−− 1)− + 1


= lim

→∞

− − − − + 1


= 0− 0 + 1 [use l’Hospital’s Rule] = 1

 = 2:
 ∞

0




−

 = lim
→∞

 

0


2

−

. To evaluate



2

−

, we could use integration by parts

again or Formula 97. Thus,

lim
→∞

 

0


2

−

 = lim
→∞

−2−

0

+ 2 lim
→∞

 

0


−



= 0 + 0 + 2(1) [use l’Hospital’s Rule and the result for  = 1] = 2

 = 3:
 ∞

0




−

 = lim
→∞

 

0


3

−


97
= lim

→∞

−3

−

0
+ 3 lim

→∞

 

0


2

−



= 0 + 0 + 3(2) [use l’Hospital’s Rule and the result for  = 2] = 6

(b) For  = 1, 2, and 3, we have
∞
0

−  = 1, 2, and 6. The values for the integral are equal to the factorials for ,

so we guess
∞
0

−  = !.

(c) Suppose that
∞
0

−  = ! for some positive integer . Then
∞
0

+1−  = lim
→∞

 
0
+1− .

To evaluate

+1− , we use parts with  = +1,  = −  ⇒  = ( + 1) ,  = −−.

So

+1− = −+1− −  −( + 1)−  = −+1− + ( + 1)


−  and

lim
→∞

 
0
+1−  = lim

→∞

−+1−

0

+ ( + 1) lim
→∞

 
0
− 

= lim
→∞

−+1− + 0

+ ( + 1)! = 0 + 0 + ( + 1)! = ( + 1)!,

so the formula holds for  + 1. By induction, the formula holds for all positive integers. (Since 0! = 1, the formula holds

for  = 0, too.)

61. (a)  =
∞
−∞  =

 0

−∞  +
∞
0

, and
∞
0

 = lim
→∞

 
0
 = lim

→∞


1
2
2

0

= lim
→∞


1
2
2 − 0


=∞,

so  is divergent.

(b)
 
−  =


1
2
2

− = 1

2
2 − 1

2
2 = 0, so lim

→∞

 
−  = 0. Therefore,

∞
−∞  6= lim

→∞

 
− .

62. Let  =


2
so that  =

4√

32

 ∞

0


3

−2

. Let  denote the integral and use parts to integrate . Let  = 2,

 = −
2

 ⇒  = 2 ,  = − 1

2
−

2

:

 = lim
→∞


− 1

2
2−

2


0

+
1



 ∞

0


−2



0 = − 1

2
lim
→∞



2

−2


+

1


lim
→∞


− 1

2

−2


H
= − 1

2
· 0− 1

22
(0− 1) =

1

22

Thus,  =
4√

32 · 1

22
=

2

()12
=

2

[ (2 )]
12

=
2
√

2
√
√


=


8


.
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63. Volume =

 ∞

1




1



2

 =  lim
→∞

 

1



2
=  lim

→∞


− 1




1

=  lim
→∞


1− 1




=  ∞.

64. Work =

 ∞





2
 = lim

→∞

 





2
 = lim

→∞


−1






=  lim
→∞

−1


+

1




=




, where

 = mass of the earth = 598× 1024 kg, = mass of satellite = 103 kg,  = radius of the earth = 637× 106 m, and

 = gravitational constant = 667× 10−11 N·m2kg.

Therefore, Work =
667× 10−11 · 598× 1024 · 103

637× 106
≈ 626× 1010 J.

65. Work =

 ∞



  = lim
→∞

 





2
 = lim

→∞



1


− 1




=




. The initial kinetic energy provides the work,

so 1
2
2

0 =



⇒ 0 =


2


.

66. () =

 



2√
2 − 2

()  and () = 1
2
(− )2 ⇒

() = lim
→+

 



(− )2√
2 − 2

 = lim
→+

 



3 − 22 +2√
2 − 2



= lim
→+

 



3 √
2 − 2

− 2

 



2 √
2 − 2

+
2

 



 √
2 − 2


= lim

→+


1 − 22 +23


= 

For 1: Let  =
√
2 − 2 ⇒ 2 = 2 − 2, 2 = 2 + 2, 2  = 2, so, omitting limits and constant of

integration,

1 =


(2 + 2)


 =


(

2
+ 

2
)  = 1

3


3
+ 

2
 = 1

3
(

2
+ 3

2
)

= 1
3

√
2 − 2 (2 − 2 + 32) = 1

3

√
2 − 2 (2 + 22)

For 2: Using Formula 44, 2 =


2

√
2 − 2 +

2

2
ln
 +

√
2 − 2

.
For 3: Let  = 2 − 2 ⇒  = 2 . Then 3 =

1

2


√


= 1
2
· 2√ =


2 − 2.

Thus,

= lim
→+


1
3

√
2 − 2 (2 + 22)− 2




2

√
2 − 2 +

2

2
ln
 +

√
2 − 2

 +2
√
2 − 2




= lim
→+


1
3

√
2 − 2(2 + 22)− 2




2

√
2 − 2 +

2

2
ln
+

√
2 − 2

 +2
√
2 − 2


− lim

→+


1
3

√
2 − 2


2 + 22

− 2




2

√
2 − 2 +

2

2
ln
 +

√
2 − 2

 +2
√
2 − 2


=


1
3

√
2 − 2 (2 + 22)−2 ln

+
√
2 − 2

 − −2 ln ||
= 1

3

√
2 − 2 (2 + 22)−2 ln


+

√
2 − 2




67. We would expect a small percentage of bulbs to burn out in the first few hundred hours, most of the bulbs to burn out after

close to 700 hours, and a few overachievers to burn on and on.
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(a) (b) () =  0() is the rate at which the fraction  () of burnt-out bulbs increases

as  increases. This could be interpreted as a fractional burnout rate.

(c)
∞
0

()  = lim
→∞

 () = 1, since all of the bulbs will eventually burn out.

68.  =

 ∞

0



 = lim

→∞


1

2
(− 1) 




0

[Formula 96, or parts] = lim
→∞


1


 − 1

2


−

− 1

2


.

Since   0 the first two terms approach 0 (you can verify that the first term does so with l’Hospital’s Rule), so the limit is

equal to 12. Thus, = − = −12


= −1 = −1(−0000121) ≈ 82645 years.

69.  =

 ∞

0

(1− −)



−

 =



lim
→∞

 

0



− − 

(−−)



=



lim
→∞


1

− − − 1

− − 
(−−)


0

=



lim
→∞


1

− +
1

( + )(+)
−


1

− +
1

 + 



=





1


− 1

 + 


=






 + − 

( + )


=



( + )

70.
 ∞

0

() = lim
→∞

 

0




0 

−
 =




0 lim

→∞


−

−

0

=



0


−




lim
→∞



− − 1


= −0(0− 1) = 0∞

0
()  represents the total amount of urea removed from the blood if dialysis is continued indefinitely. The fact that∞

0
()  = 0 means that, in the limit, as →∞, all the urea in the blood at time  = 0 is removed. The calculation says

nothing about how rapidly that limit is approached.

71.  =

 ∞



1

2 + 1
 = lim

→∞

 



1

2 + 1
 = lim

→∞


tan

−1




= lim
→∞


tan

−1
− tan

−1



= 
2
− tan

−1
.

  0001 ⇒ 
2
− tan−1   0001 ⇒ tan−1   

2
− 0001 ⇒   tan



2
− 0001

 ≈ 1000.

72. () = −
2

and∆ = 4− 0
8

= 1
2
. 4

0
()  ≈ 8 = 1

2 · 3 [(0) + 4(05) + 2(1) + · · ·+ 2(3) + 4(35) + (4)] ≈ 1
6
(531717808) ≈ 08862

Now   4 ⇒ − ·   − · 4 ⇒ −
2

 −4 ⇒ ∞
4

−
2

 
∞
4

−4 .∞
4

−4  = lim
→∞

− 1
4
−4


4

= − 1
4


0− −16


= 1(416) ≈ 00000000281  00000001, as desired.

73. (a)  () =

 ∞

0

()
−

 =

 ∞

0


−

 = lim
→∞


−−




0

= lim
→∞


−

− +
1




. This converges to

1


only if   0.

Therefore  () =
1


with domain { |   0}.
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(b)  () =

 ∞

0

()
−

 =

 ∞

0




−

 = lim
→∞

 

0


(1−)

 = lim
→∞


1

1− 

(1−)


0

= lim
→∞


(1−)

1− 
− 1

1− 


This converges only if 1−   0 ⇒   1, in which case  () =

1

− 1
with domain { |   1}.

(c)  () =
∞
0

()−  = lim
→∞

 
0
− . Use integration by parts: let  = ,  = −  ⇒  = ,

 = −−


. Then  () = lim

→∞


− 


− − 1

2
−


0

= lim
→∞

 −


− 1

2
+ 0 +

1

2


=

1

2
only if   0.

Therefore,  () =
1

2
and the domain of  is { |   0}.

74. 0 ≤ () ≤ ⇒ 0 ≤ ()− ≤− for  ≥ 0. Now use the Comparison Theorem: ∞

0




−

 = lim
→∞



 

0


(−)

 =  · lim
→∞


1

− 

(−)


0

=  · lim
→∞

1

− 



(−) − 1


This is convergent only when −   0 ⇒   . Therefore, by the Comparison Theorem,  () =

∞
0

() −  is

also convergent for   .

75. () =
∞
0

 0()− . Integrate by parts with  = −,  =  0()  ⇒  = −−,  = ():

() = lim
→∞


()−


0

+ 
∞
0

()−  = lim
→∞

()− − (0) +  ()

But 0 ≤ () ≤ ⇒ 0 ≤ ()− ≤− and lim
→∞

(−) = 0 for   . So by the Squeeze Theorem,

lim
→∞

()− = 0 for    ⇒ () = 0− (0) +  () =  ()− (0) for   .

76. Assume without loss of generality that   . Then 
−∞ () +

∞


() = lim
→−∞

 

() + lim

→∞

 

() 

= lim
→−∞

 

() + lim

→∞

 

()  +

 

() 


= lim

→−∞

 

() +

 

()  + lim

→∞

 

() 

= lim
→−∞

 

() +

 

() 


+
∞


() 

= lim
→−∞

 

() +

∞


()  =
 
−∞ ()  +

∞


() 

77. We use integration by parts: let  = ,  = −
2

 ⇒  = ,  = − 1
2
−

2

. So

 ∞

0


2

−2

 = lim
→∞


−1

2

−2


0

+
1

2

 ∞

0


−2

 = lim
→∞


− 

2
2


+

1

2

 ∞

0


−2

 =
1

2

 ∞

0


−2



(The limit is 0 by l’Hospital’s Rule.)
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78.
∞
0

−
2

 is the area under the curve  = −
2

for 0 ≤  ∞ and 0   ≤ 1. Solving  = −
2

for , we get

 = −
2 ⇒ ln  = −2 ⇒ − ln  = 2 ⇒  = ±√− ln . Since  is positive, choose  =

√− ln , and

the area is represented by
 1

0

√− ln  . Therefore, each integral represents the same area, so the integrals are equal.

79. For the first part of the integral, let  = 2 tan  ⇒  = 2 sec2  .
1√

2 + 4
 =


2 sec2 

2 sec 
 =


sec   = ln |sec  + tan |.

From the figure, tan  =


2
, and sec  =

√
2 + 4

2
. So

 =

 ∞

0


1√

2 + 4
− 

 + 2


 = lim

→∞


ln

√2 + 4

2
+



2

−  ln|+ 2|

0

= lim
→∞


ln

√
2 + 4 + 

2
− ln(+ 2)− (ln 1−  ln 2)



= lim
→∞


ln

√
2 + 4 + 

2 ( + 2)



+ ln 2


= ln


lim
→∞

+
√
2 + 4

( + 2)



+ ln2−1

Now  = lim
→∞

 +
√
2 + 4

(+ 2)


H
= lim

→∞
1 + 

√
2 + 4

 (+ 2)
−1

=
2

 lim
→∞

( + 2)
−1

.

If   1,  =∞ and  diverges.

If  = 1,  = 2 and  converges to ln 2 + ln 20 = ln 2.

If   1,  = 0 and  diverges to −∞.

80.  =

 ∞

0




2 + 1
− 

3+ 1


 = lim

→∞


1
2

ln(2 + 1)− 1
3
 ln(3+ 1)


0

= lim
→∞


ln(2 + 1)12 − ln(3+ 1)3


= lim

→∞


ln

(2 + 1)12

(3 + 1)3


= ln


lim
→∞

√
2 + 1

(3 + 1)3


For  ≤ 0, the integral diverges. For   0, we have

 = lim
→∞

√
2 + 1

(3+ 1)3
H
= lim

→∞

√

2 + 1

(3 + 1)(3)−1
=

1


lim
→∞

1

(3+ 1)(3)−1

For 3  1 ⇔   3,  =∞ and  diverges.

For  = 3,  = 1
3
and  = ln 1

3
.

For   3,  = 0 and  diverges to −∞.

81. No,  =
∞
0

()  must be divergent. Since lim
→∞

() = 1, there must exist an such that if  ≥  , then () ≥ 1
2
.

Thus,  = 1 + 2 =
 
0

()  +
∞


() , where 1 is an ordinary definite integral that has a finite value, and 2 is

improper and diverges by comparison with the divergent integral
∞


1
2
.

82. As in Exercise 55, we let  =

 ∞

0



1 + 
 = 1 + 2, where 1 =

 1

0



1 + 
 and 2 =

 ∞

1



1 + 
. We will

show that 1 converges for   −1 and 2 converges for   + 1, so that  converges when   −1 and   + 1.

[continued]
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1 is improper only when   0. When 0 ≤  ≤ 1, we have
1

1 + 
≤ 1 ⇒ 1

−(1 + )
≤ 1

−
. The integral

 1

0

1

−
 converges for −  1 [or   −1] by Exercise 57, so by the Comparison Theorem,

 1

0

1

−(1 + )


converges for−1    0. 1 is not improper when  ≥ 0, so it has a finite real value in that case. Therefore, 1 has a finite

real value (converges) when   −1.

2 is always improper. When  ≥ 1,


1 + 
=

1

−(1 + )
=

1

− + −


1

−
. By (2),

 ∞

1

1

−
 converges

for −   1 (or   + 1), so by the Comparison Theorem,
 ∞

1



1 + 
 converges for   + 1.

Thus,  converges if   −1 and   + 1.

7 Review

1. False. Since the numerator has a higher degree than the denominator,


2 + 4


2 − 4

= +
8

2 − 4
= +



+ 2
+



− 2
.

2. True. In fact,  = −1,  =  = 1.

3. False. It can be put in the form



+



2
+



− 4
.

4. False. The form is



+

+ 

2 + 4
.

5. False. This is an improper integral, since the denominator vanishes at  = 1. 4

0



2 − 1
 =

 1

0



2 − 1
+

 4

1



2 − 1
 and

 1

0



2 − 1
 = lim

→1−

 

0



2 − 1
 = lim

→1−


1
2

ln
2 − 1

 
0

= lim
→1−

1
2

ln
2 − 1

 =∞
So the integral diverges.

6. True by Theorem 7.8.2 with  =
√

2  1.

7. False. See Exercise 61 in Section 7.8.

8. False. For example, with  = 1 the Trapezoidal Rule is much more accurate

than the Midpoint Rule for the function in the diagram.

9. (a) True. See the end of Section 7.5.

(b) False. Examples include the functions () = 
2

, () = sin(2), and () =
sin


.
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10. True. If  is continuous on [0∞), then
 1

0
()  is finite. Since

∞
1

()  is finite, so is∞
0

() =
 1

0
()+

∞
1

() .

11. False. If () = 1, then  is continuous and decreasing on [1∞) with lim
→∞

() = 0, but
∞
1

() is divergent.

12. True.
∞


[() + ()]  = lim
→∞

 


[() + ()]  = lim
→∞

 

()  +

 

() 


= lim

→∞

 

() + lim

→∞

 

() 


since both limits
in the sum exist


=
∞


()  +
∞


() 

Since the two integrals are finite, so is their sum.

13. False. Take () = 1 for all  and () = −1 for all . Then
∞


()  =∞ [divergent]

and
∞


()  = −∞ [divergent], but
∞


[() + ()]  = 0 [convergent].

14. False.
∞
0

()  could converge or diverge. For example, if () = 1, then
∞
0

()  diverges if () = 1 and

converges if () = 0.

1.

 2

1

(+ 1)2


=

 2

1

2 + 2+ 1


 =

 2

1


+ 2 +

1




 =


1

2


2
+ 2 + ln ||

2
1

= (2 + 4 + ln 2)−  1
2

+ 2 + 0


= 7
2

+ ln 2

2.

 2

1



(+ 1)2
=

 3

2

− 1

2



 = + 1

 = 


=

 3

2


1


− 1

2


 =


ln ||+ 1



3
2

=


ln 3 +

1

3


−


ln 2 +
1

2


= ln

3

2
− 1

6

3.


sin

sec
=


cos 

sin
 =







 = sin,
 = cos 


=  +  = sin + 

4.
 6

0

 sin 2 =
− 1

2
 cos 2

6
0

−
 6

0

− 1
2

cos 2




 = ,  = sin 2

 = ,  = − 1
2
cos 2


= (− 

12
· 1

2
)− (0) +


1
4

sin 2
6
0

= − 
24

+ 1
8

√
3

5.




22 + 3 + 1
=


1

(2 + 1)(+ 1)
 =

 
2

2 + 1
− 1

 + 1


 [partial fractions] = ln |2 + 1|− ln |+ 1|+

6.

 2

1


5
ln=


1
6
6 ln

2
1
−
 2

1

1
6


5



 = ln,  = 5 

 = 1

,  = 1

6
6


= 64

6
ln 2− 0−  1

36
6
2
1

= 32
3

ln 2−  64
36
− 1

36


= 32

3
ln 2− 7

4

7.
 2
0

sin3  cos2   =
 2
0

(1− cos2 ) cos2  sin   =
 0

1
(1− 2)2 (−)


 = cos ,
 = − sin  


=
 1

0
(2 − 4)  =


1
3
3 − 1

5
5
1
0

=


1
3
− 1

5

− 0 = 2
15
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8. Let  =
√
 − 1, so that 2 =  − 1, 2 =  , and  = 2 + 1. Then

1√
 − 1

 =


1



2

2 + 1
= 2


1

2 + 1
 = 2 tan

−1
+  = 2 tan

−1
√
 − 1 + .

9. Let  = ln ,  = . Then


sin(ln )


 =


sin = − cos+ = − cos(ln ) +.

10. Let  = arctan,  = (1 + 2). Then 1

0

√
arctan

1 + 2
 =

 4

0

√
 =

2

3


32

4
0

=
2

3


32

432
− 0


=

2

3
· 1

8
32 =

1

12
32.

11. Let  = sec . Then 2

1

√
2 − 1


 =

 3

0

tan 

sec 
sec  tan   =

 3

0

tan
2
  =

 3

0

(sec
2
 − 1)  =


tan  − 

3
0

=
√

3− 
3
.

12.


2

1 + 4
=


1

1 + 2


1
2

 

 = 2

 = 22 


= 1

2
tan−1 +  = 1

2
tan−1 2 + 

13. Let  = 3
√
. Then 3 =  and 32  = , so



3√  =


 · 32  = 3. To evaluate , let  = 2,

 =   ⇒  = 2,  = , so  =

2  = 2 −  2 . Now let  = ,  =   ⇒

 = ,  = . Thus,  = 2 − 2

 −   


= 2 − 2 + 2 + 1, and hence

3 = 3(2 − 2 + 2) + = 3
3√(23 − 213 + 2) + .

14.


2 + 2

+ 2
 =

 
− 2 +

6

 + 2


 = 1

2


2 − 2 + 6 ln |+ 2|+ 

15.
− 1

2 + 2
=

− 1

(+ 2)
=




+



+ 2
⇒ − 1 = ( + 2) +. Set  = −2 to get−3 = −2, so  = 3

2
. Set  = 0

to get −1 = 2, so  = − 1
2
. Thus,


− 1

2 + 2
 =

 − 1
2


+

3
2

+ 2


 = − 1

2
ln ||+ 3

2
ln |+ 2|+ .

16.


sec6 

tan2 
 =


(tan2  + 1)2 sec2 

tan2 



= tan ,
= − sec2  


=


(2 + 1)2

2
 =


4 + 22 + 1

2


=

 


2
+ 2 +

1

2


 =

3

3
+ 2− 1


+  = 1

3
tan

3
 + 2 tan  − cot  + 

17.

 cosh=  sinh−  sinh


 = ,  = cosh 

 = ,  = sinh


=  sinh− cosh+ 

18.
2 + 8− 3

3 + 32
=

2 + 8− 3

2( + 3)
=




+



2
+



 + 3
⇒ 2 + 8− 3 = (+ 3) +(+ 3) + 2.

Taking  = 0, we get −3 = 3, so  = −1. Taking  = −3, we get −18 = 9, so  = −2.
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Taking  = 1, we get 6 = 4 + 4 +  = 4− 4 − 2, so 4 = 12 and  = 3. Now
2 + 8− 3

3 + 32
 =

 
3


− 1

2
− 2

+ 3


 = 3 ln ||+ 1


− 2 ln |+ 3|+ .

19.


+ 1

92 + 6+ 5
 =


+ 1

(92 + 6+ 1) + 4
 =


+ 1

(3+ 1)2 + 4



= 3+ 1,
= 3 



=

 
1
3
(− 1)


+ 1

2 + 4


1

3



=

1

3
· 1

3


(− 1) + 3

2 + 4


=
1

9




2 + 4
+

1

9


2

2 + 22
 =

1

9
· 1

2
ln(

2
+ 4) +

2

9
· 1

2
tan

−1


1

2



+ 

= 1
18

ln(92 + 6+ 5) + 1
9

tan−1


1
2
(3 + 1)


+

20.


tan5  sec3   =


tan4  sec2  sec  tan   =

(sec2  − 1)2 sec2  sec  tan  


 = sec ,
 = sec  tan  


=

(2 − 1)22  =


(6 − 24 + 2) 

= 1
7
7 − 2

5
5 + 1

3
3 + = 1

7
sec7  − 2

5
sec5  + 1

3
sec3  + 

21.


√

2 − 4
=




(2 − 4+ 4)− 4
=




(− 2)
2 − 22

=


2 sec  tan  

2 tan 


− 2 = 2 sec ,

 = 2 sec  tan  


=


sec   = ln |sec  + tan |+ 1

= ln

− 2

2
+

√
2 − 4

2

+1

= ln
− 2 +

√
2 − 4

+, where  = 1 − ln 2

22.


cos
√
 =


2 cos


 =
√
,

2 = , 2  = 



= 2 sin−  2 sin


 = ,  = cos 

 = ,  = sin


= 2 sin+ 2 cos+  = 2

√
 sin

√
 + 2cos

√
 +

23. Let  = tan , so that  = sec2  . Then



√
2 + 1

=


sec2  

tan  sec 
=


sec 

tan 


=


csc   = ln |csc  − cot |+

= ln

√2 + 1


− 1



+ = ln

√2 + 1− 1



+
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24. Let  = cos,  =   ⇒  = − sin,  = : (∗)  =

 cos =  cos +


 sin.

To integrate

 sin, let  = sin,  =   ⇒  = cos,  = . Then

 sin =  sin−   cos =  sin− . By substitution in (∗),  =  cos +  sin−  ⇒

2 = (cos+ sin) ⇒  = 1
2
(cos + sin) + .

25.
33 − 2 + 6− 4

(2 + 1)(2 + 2)
=

+

2 + 1
+

 +

2 + 2
⇒ 33 − 2 + 6− 4 = (+)


2 + 2


+ ( +)


2 + 1


.

Equating the coefficients gives + = 3,  + = −1, 2+  = 6, and 2 + = −4 ⇒
 = 3,  = 0,  = −3, and = 2. Now

33 − 2 + 6− 4

(2 + 1)(2 + 2)
 = 3


− 1

2 + 1
+ 2




2 + 2
=

3

2
ln



2
+ 1
− 3 tan

−1
+

√
2 tan

−1


√
2


+.

26.

 sin cos=


1
2
 sin 2


 = 1

2
,

 = 1
2


 = sin 2 ,
 = − 1

2
cos 2


= − 1

4
 cos 2 +


1
4

cos 2 = − 1
4
 cos 2+ 1

8
sin 2+

27.
 2
0

cos3  sin 2 =
 2
0

cos3  (2 sin cos)  =
 2
0

2 cos4  sin =
− 2

5
cos5 

2
0

= 2
5

28. Let  = 3
√
. Then  = 3,  = 32 ⇒

3
√
+ 1

3
√
− 1

=


+ 1

− 1
3

2
 = 3

 


2
+ 2+ 2 +

2

− 1




= 3 + 32 + 6+ 6 ln |− 1|+  = + 323 + 6 3
√
+ 6 ln | 3√− 1|+ 

29. The integrand is an odd function, so
 3

−3



1 + ||  = 0 [by 5.5.7(b)].

30. Let  = −,  = −− . Then



√

1− −2
=


− 

1− (−)2
=

 −√
1− 2

= − sin
−1

+ = − sin
−1

(
−

) + .

31. Let  =
√
 − 1. Then 2 =  − 1 and 2 =  . Also,  + 8 = 2 + 9. Thus,

 ln 10

0


√
 − 1

 + 8
 =

 3

0

 · 2
2 + 9

= 2

 3

0

2

2 + 9
 = 2

 3

0


1− 9

2 + 9




= 2


− 9

3
tan−1


3

3
0

= 2

(3− 3 tan−1 1)− 0


= 2


3− 3 · 

4


= 6− 3

2

32.
 4

0

 sin

cos3 
 =

 4

0

 tan sec
2



 = ,
 = 

 = tan sec2  ,
 = 1

2
tan2 



=

2

tan2 
4
0

− 1

2

 4

0

tan
2
 =



8
· 12 − 0− 1

2

 4

0

(sec
2
− 1) 

=


8
− 1

2


tan− 

4
0

=


8
− 1

2


1− 

4


=



4
− 1

2
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33. Let  = 2 sin  ⇒ 
4− 2

32
= (2 cos )

3,  = 2 cos  , so
2

(4− 2)
32

=


4 sin2 

8 cos3 
2 cos   =


tan

2
  =

 
sec

2
 − 1




= tan  −  + =
√

4− 2
− sin−1


2


+ 

34. Integrate by parts twice, first with  = (arcsin)2,  = :

 =


(arcsin)

2
 = (arcsin)

2 −


2 arcsin


√

1− 2



Now let  = arcsin,  =
√

1− 2
 ⇒  =

1√
1− 2

,  = −√1− 2. So

 = (arcsin)2 − 2

arcsin

−√1− 2


+




= (arcsin)2 + 2
√

1− 2 arcsin− 2+

35.


1√
+ 32

 =




 (1 +
√
 )

=


√




1 +
√


  = 1 +
√
,

 =


2
√


 =


2 √


=


2
−12



= 4
√
+ = 4


1 +

√
+ 

36.


1− tan 

1 + tan 
 =

 cos 

cos 
− sin 

cos 
cos 

cos 
+

sin 

cos 

 =


cos  − sin 

cos  + sin 
 = ln |cos  + sin |+ 

37.

(cos+ sin)2 cos 2=

 
cos2 + 2 sin cos+ sin2 


cos 2 =


(1 + sin 2) cos 2

=


cos 2 + 1
2


sin 4 = 1

2
sin 2− 1

8
cos 4+ 

Or:

(cos+ sin)2 cos 2=


(cos+ sin)2(cos2 − sin2 ) 

=

(cos+ sin)3(cos− sin)  = 1

4
(cos+ sin)4 + 1

38.


2
√


√

=


2 (2 )


 =
√


 = 1(2
√
) 


= 2 · 2

ln 2
+ =

2
√
+1

ln 2
+

39. We’ll integrate  =


2

(1 + 2)2
 by parts with  = 2 and  =



(1 + 2)2
. Then  = ( · 22 + 2 · 1) 

and  = −1

2
· 1

1 + 2
, so

 = −1

2
· 2

1 + 2
−
 

−1

2
· 

2(2 + 1)

1 + 2


 = − 2

4+ 2
+

1

2
· 1

2

2

+ = 
2


1

4
− 

4+ 2


+ 

Thus,
 12

0

2

(1 + 2)2
 =



2


1

4
− 

4+ 2

12
0

= 


1

4
− 1

8


− 1


1

4
− 0


=

1

8
− 1

4
.
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40.
 3

4

√
tan 

sin 2
 =

 3

4


sin 
cos 

2 sin  cos 
 =

 3

4

1

2
(sin )

−12
(cos )

−32
 =

 3

4

1

2


sin 

cos 

−12

(cos )
−2


=

 3

4

1

2
(tan )

−12
sec

2
  =

√
tan 

3
4

=
√

3−√1 =
4
√

3− 1

41.
 ∞

1

1

(2+ 1)
3
 = lim

→∞

 

1

1

(2 + 1)3
 = lim

→∞

 

1

1
2
(2+ 1)

−3
2  = lim

→∞


− 1

4(2+ 1)2


1

= −1

4
lim
→∞


1

(2 + 1)
2
− 1

9


= −1

4


0− 1

9


=

1

36

42.
 ∞

1

ln

4
= lim

→∞

 

1

ln

4



 = ln,
 = 

 = 4,
 = −1(33)



= lim
→∞


− ln

33


1

+

 

1

1

34
 = lim

→∞


− ln 

33
+ 0 +

 −1

93


1


H
= lim

→∞


− 1

93
+

−1

93
+

1

9


= 0 + 0 + 1

9
= 1

9

43.




 ln


 = ln,
 = 


=





= ln ||+ = ln |ln|+  so

 ∞

2



 ln
= lim

→∞

 

2



 ln
= lim

→∞


ln |ln|


2

= lim
→∞

[ln(ln )− ln(ln 2)] =∞, so the integral is divergent.

44. Let  =
√
 − 2. Then  = 2 + 2 and  = 2, so


 √
 − 2

=

 
2 + 2


2


= 2

 


2
+ 2

 = 2


1
3


3
+ 2


+

Thus,
 6

2

 √
 − 2

= lim
→2+

 6



 √
 − 2

= lim
→2+


2
3
( − 2)

32
+ 4


 − 2

6


= lim
→2+


16
3

+ 8− 2
3
(− 2)32 − 4

√
− 2


= 40

3
.

45.

 4

0

ln√

 = lim

→0+

 4



ln√




= lim

→0+


2
√
 ln− 4

√

4


= lim
→0+


(2 · 2 ln 4− 4 · 2)− 2√ ln − 4

√

 

= (4 ln 4− 8)− (0− 0) = 4 ln 4− 8

() Let  = ln,  =
1√

 ⇒  =

1


,  = 2

√
. Then


ln√

 = 2

√
 ln− 2


√


= 2
√
 ln− 4

√
+ 

() lim
→0+


2
√
 ln 


= lim

→0+

2 ln 

−12

H
= lim

→0+

2

− 1
2
−32

= lim
→0+

−4
√



= 0
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46. Note that () = 1(2− 3) has an infinite discontinuity at  = 2
3
. Now

 23

0

1

2− 3
 = lim

→(23)−

 

0

1

2− 3
 = lim

→(23)−


− 1

3
ln |2− 3|


0

= − 1
3

lim
→(23)−


ln |2− 3|− ln 2


=∞

Since
 23

0

1

2− 3
 diverges, so does

 1

0

1

2− 3
.

47.

 1

0

− 1√


= lim
→0+

 1




√

− 1√




 = lim

→0+

 1



(
12 − 

−12
)  = lim

→0+


2
3


32 − 2
12
1


= lim
→0+


2
3
− 2
− 2

3
32 − 212


= − 4

3
− 0 = − 4

3

48.  =

 1

−1



2 − 2
=

 1

−1



(− 2)
=

 0

−1



(− 2)
+

 1

0



(− 2)
= 1 + 2. Now

1

(− 2)
=




+



− 2
⇒ 1 = (− 2) +. Set  = 2 to get 1 = 2, so  = 1

2
. Set  = 0 to get 1 = −2,

 = − 1
2
. Thus,

2 = lim
→0+

 1



− 1
2


+

1
2

− 2


 = lim

→0+

− 1
2

ln ||+ 1
2

ln |− 2|1


= lim
→0+


(0 + 0)− − 1

2
ln  + 1

2
ln |− 2|

= − 1
2

ln 2 + 1
2

lim
→0+

ln  = −∞.

Since 2 diverges,  is divergent.

49. Let  = 2+ 1. Then ∞

−∞



42 + 4+ 5
=

 ∞

−∞

1
2


2 + 4
= 1

2

 0

−∞



2 + 4
+ 1

2

 ∞

0



2 + 4

= 1
2

lim
→−∞


1
2

tan−1


1
2

0

+ 1

2
lim
→∞


1
2

tan−1


1
2



0
= 1

4


0− −

2


+ 1

4



2
− 0


= 
4
.

50.

 ∞

1

tan−1 

2
 = lim

→∞

 

1

tan−1 

2
. Integrate by parts:


tan−1 

2
=

− tan−1 


+


1





1 + 2
=
− tan−1 


+

 
1


− 

2 + 1




=
− tan−1 


+ ln ||− 1

2
ln(2 + 1) +  =

− tan−1 


+

1

2
ln

2

2 + 1
+

Thus,  ∞

1

tan−1 

2
= lim

→∞


− tan−1 


+

1

2
ln

2

2 + 1


1

= lim
→∞


− tan−1 


+

1

2
ln

2

2 + 1
+



4
− 1

2
ln

1

2


= 0 + 1

2
ln 1 + 

4
+ 1

2
ln 2 = 

4
+ 1

2
ln 2
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51. We first make the substitution  =  + 1, so ln(2 + 2 + 2) = ln

( + 1)2 + 1


= ln(2 + 1). Then we use parts

with  = ln(2 + 1),  = :


ln(

2
+ 1) =  ln(2 + 1)−


(2) 

2 + 1
=  ln(

2
+ 1)− 2


2 

2 + 1
=  ln(

2
+ 1)− 2

 
1− 1

2 + 1




=  ln(2 + 1)− 2 + 2arctan  + 

= (+ 1) ln(2 + 2+ 2)− 2+ 2arctan(+ 1) +, where =  − 2

[Alternatively, we could have integrated by parts immediately with

 = ln(2 + 2+ 2).] Notice from the graph that  = 0 where  has a

horizontal tangent. Also,  is always increasing, and  ≥ 0.

52. Let  = 2 + 1. Then 2 = − 1 and  = 1
2
, so

3

√
2 + 1

=


(− 1)√




1
2



=
1

2


(

12 − 
−12

) 

= 1
2


2
3
32 − 212


+ = 1

3
(2 + 1)32 − (2 + 1)12 +

= 1
3
(2 + 1)12


(2 + 1)− 3


+  = 1

3

√
2 + 1 (2 − 2) + 

53. From the graph, it seems as though
 2

0
cos2  sin3  is equal to 0.

To evaluate the integral, we write the integral as

 =
 2

0
cos2  (1− cos2 ) sin and let  = cos ⇒

 = − sin. Thus,  =
 1

1
2(1− 2)(−) = 0.

54. (a) To evaluate

5−2  by hand, we would integrate by parts repeatedly, always taking  = −2 and starting with

 = 5. Each time we would reduce the degree of the -factor by 1.

(b) To evaluate the integral using tables, we would use Formula 97 (which is

proved using integration by parts) until the exponent of  was reduced to 1,

and then we would use Formula 96.

(d)

(c)

5−2  = − 1

8
−2


45 + 104 + 203 + 302 + 30+ 15


+ 

55.
 √

42 − 4− 3 =
 

(2− 1)2 − 4 


 = 2− 1,
 = 2 


=
 √

2 − 22


1
2



39
=

1

2




2

√
2 − 22 − 22

2
ln
+

√
2 − 22

+  = 1
4

√
2 − 4− ln

+
√
2 − 4

+

= 1
4
(2− 1)

√
42 − 4− 3− ln

2− 1 +
√

42 − 4− 3
+
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56.


csc5  
78
= − 1

4
cot  csc3 + 3

4


csc3  

72
= − 1

4
cot  csc3 + 3

4

− 1
2

csc  cot  + 1
2

ln|csc − cot |+

= − 1
4

cot  csc3 − 3
8

csc  cot  + 3
8

ln|csc − cot |+

57. Let  = sin, so that  = cos. Then


cos


4 + sin2 =

 √
22 + 2 

21
=



2

√
22 + 2 +

22

2
ln

+

√
22 + 2


+ 

= 1
2

sin


4 + sin2  + 2 ln

sin +


4 + sin2 


+

58. Let  = sin. Then  = cos, so
cot√
1 + 2 sin

=





√

1 + 2

57 with
=1, =2

= ln

√1 + 2− 1√
1 + 2+ 1

+  = ln

√1 + 2 sin− 1√
1 + 2 sin+ 1

+

59. (a)





− 1



√
2 − 2 − sin−1





+


=

1

2

√
2 − 2 +

1√
2 − 2

− 1
1− 22

· 1



=

2 − 2

−12


1

2


2 − 2


+ 1− 1


=

√
2 − 2

2

(b) Let  =  sin  ⇒  =  cos  , 2 − 2 = 2

1− sin2 


= 2 cos2 . √

2 − 2

2
=


2 cos2 

2 sin2 
 =


1− sin2 

sin2 
 =


(csc

2
 − 1)  = − cot  −  +

= −
√
2 − 2


− sin−1





+

60. Work backward, and use integration by parts with  = −(−1) and  = (+ )−12  ⇒

 =
−(− 1) 


and  =

2



√
+ , to get




−1
√
+ 

=


  =  −


  =

2
√
+ 

−1
+

2(− 1)



 √
+ 




=
2
√
+ 

−1
+

2(− 1)




+ 


√
+ 



=
2
√
+ 

−1
+ 2(− 1)




−1
√
+ 

+
2(− 1)







√
+ 

Rearranging the equation gives
2(− 1)







√
+ 

= −2
√
+ 

−1
− (2− 3)




−1
√
+ 

⇒





√
+ 

=
−√+ 

(− 1)−1
− (2− 3)

2(− 1)




−1
√
+ 

61. For  ≥ 0,
∞
0

  = lim
→∞


+1(+ 1)


0

=∞. For   0,
∞
0

  =
 1

0
 +

∞
1

 . Both integrals are

improper. By (7.8.2), the second integral diverges if−1 ≤   0. By Exercise 7.8.57, the first integral diverges if  ≤ −1.

Thus,
∞
0

  is divergent for all values of .
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62.  =

 ∞

0




cos = lim
→∞

 

0




cos

99 with
=1
= lim

→∞




2 + 1
( cos+ sin)


0

= lim
→∞




2 + 1
( cos  + sin )− 1

2 + 1
()


=

1

2 + 1
lim
→∞


( cos  + sin )− 


.

For  ≥ 0, the limit does not exist due to oscillation. For   0, lim
→∞


( cos  + sin )


= 0 by the Squeeze Theorem,

because
( cos  + sin )

 ≤ (||+ 1), so  =
1

2 + 1
(−) = − 

2 + 1
.

63. () =
1

ln
,∆ =

− 


=

4− 2

10
=

1

5

(a) 10 = 1
5 · 2{(2) + 2[(22) + (24) + · · ·+ (38)] + (4)} ≈ 1925444

(b) 10 = 1
5
[(21) + (23) + (25) + · · ·+ (39)] ≈ 1920915

(c) 10 = 1
5 · 3 [(2) + 4(22) + 2(24) + · · ·+ 2(36) + 4(38) + (4)] ≈ 1922470

64. () =
√
 cos,∆ =

− 


=

4− 1

10
=

3

10

(a) 10 = 3
10 · 2{(1) + 2[(13) + (16) + · · ·+ (37)] + (4)} ≈ −2835151

(b) 10 = 3
10

[(115) + (145) + (175) + · · ·+ (385)] ≈ −2856809

(c) 10 = 3
10 · 3 [(1) + 4(13) + 2(16) + · · ·+ 2(34) + 4(37) + (4)] ≈ −2849672

65. () =
1

ln
⇒  0() = − 1

(ln)2
⇒  00() =

2 + ln

2(ln)3
=

2

2(ln)3
+

1

2(ln)2
. Note that each term of

 00() decreases on [2 4], so we’ll take =  00(2) ≈ 2022. | | ≤ (− )3

122
≈ 2022(4− 2)3

12(10)2
= 001348 and

| | ≤ (− )3

242
= 000674. | | ≤ 000001 ⇔ 2022(8)

122
≤ 1

105
⇔ 2 ≥ 105(2022)(8)

12
⇒  ≥ 3672.

Take  = 368 for . | | ≤ 000001 ⇔ 2 ≥ 105(2022)(8)

24
⇒  ≥ 2596. Take  = 260 for.

66.
 4

1




 ≈ 6 =

(4− 1)6

3
[(1) + 4(15) + 2(2) + 4(25) + 2(3) + 4(35) + (4)] ≈ 17739438

67. ∆ =


10
60
− 0


10 = 1
60
.

Distance traveled =
 10

0
  ≈ 10

= 1
60 · 3 [40 + 4(42) + 2(45) + 4(49) + 2(52) + 4(54) + 2(56) + 4(57) + 2(57) + 4(55) + 56]

= 1
180

(1544) = 857 mi

68. We use Simpson’s Rule with  = 6 and∆ = 24− 0
6

= 4:

Increase in bee population =
 24

0
()  ≈ 6

= 4
3
[(0) + 4(4) + 2(8) + 4(12) + 2(16) + 4(20) + (24)]

= 4
3
[0 + 4(300) + 2(3000) + 4(11,000) + 2(4000) + 4(400) + 0]

= 4
3
(60,800) ≈ 81,067 bees
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69. (a) () = sin(sin). A CAS gives

 (4)() = sin(sin)[cos4 + 7cos2 − 3]

+ cos(sin)

6 cos2  sin+ sin


From the graph, we see that

 (4)()
  38 for  ∈ [0 ].

(b) We use Simpson’s Rule with () = sin(sin) and∆ = 
10
: 

0
()  ≈ 

10 · 3

(0) + 4



10


+ 2


2
10


+ · · ·+ 4


9
10


+ ()

 ≈ 1786721

From part (a), we know that
 (4)()

  38 on [0 ], so we use Theorem 7.7.4 with = 38, and estimate the error

as | | ≤ 38( − 0)5

180(10)4
≈ 0000646.

(c) If we want the error to be less than 000001, we must have | | ≤ 385

1804
≤ 000001,

so 4 ≥ 385

180(000001)
≈ 646,0416 ⇒  ≥ 2835. Since  must be even for Simpson’s Rule, we must have  ≥ 30

to ensure the desired accuracy.

70. With an -axis in the normal position, at  = 7 we have  = 2 = 45 ⇒ (7) = 2
45
.

Using Simpson’s Rule with  = 4 and∆ = 7, we have

 =
 28

0
[()]

2
 ≈ 4 = 7

3


0 + 4


45
2

2
+ 2


53
2

2
+ 4


45
2

2
+ 0


= 7
3


21,818

4

 ≈ 4051 cm3.

71. (a)
2 + sin√


≥ 1√


for  in [1∞).

 ∞

1

1√

 is divergent by (7.8.2) with  =

1

2
≤ 1. Therefore,

 ∞

1

2 + sin√


 is

divergent by the Comparison Theorem.

(b)
1√

1 + 4


1√
4

=
1

2
for  in [1∞).

 ∞

1

1

2
 is convergent by (7.8.2) with  = 2  1. Therefore, ∞

1

1√
1 + 4

 is convergent by the Comparison Theorem.

72. The line  = 3 intersects the hyperbola 2 − 2 = 1 at two points on its upper branch, namely
−2

√
2 3

and


2
√

2 3

.

The desired area is

 =

 2
√

2

−2
√

2


3−


2 + 1


 = 2

 2
√

2

0


3−


2 + 1




21
= 2


3− 1

2


2 + 1− 1

2
ln

+


2 + 1

2√2

0

=

6− 

√
2 + 1− ln


+

√
2 + 1

2√2

0
= 12

√
2− 2

√
2 · 3− ln


2
√

2 + 3


= 6
√

2− ln

3 + 2

√
2


Another method:  = 2
 3

1


2 − 1  and use Formula 39.

73. For  in

0 

2


, 0 ≤ cos2  ≤ cos. For  in



2
 

, cos ≤ 0 ≤ cos2 . Thus,

area=
 2
0

(cos− cos2 ) +
 
2

(cos2 − cos) 

=

sin− 1

2
− 1

4
sin 2

2
0

+


1
2
+ 1

4
sin 2− sin


2

=


1− 
4

− 0

+


2
− 

4
− 1


= 2
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74. The curves  =
1

2±
√

are defined for  ≥ 0. For   0,

1

2−
√



1

2 +
√

. Thus, the required area is

 1

0


1

2−
√

− 1

2 +
√



=

 1

0


1

2− 
− 1

2 + 


2


 =





= 2

 1

0


− 

− 2
− 

+ 2




= 2

 1

0


−1− 2

− 2
− 1 +

2

+ 2


 = 2


2 ln

+ 2

− 2

− 2

1
0

= 4 ln 3− 4.

75. Using the formula for disks, the volume is

 =
 2
0

 [()]
2
 = 

 2
0

(cos2 )2  = 
 2
0


1
2
(1 + cos 2)

2


= 
4

 2
0

(1 + cos2 2+ 2cos 2)  = 
4

 2
0


1 + 1

2
(1 + cos 4) + 2 cos 2




= 
4


3
2
 + 1

2


1
4

sin 4


+ 2


1
2

sin 2
2

0
= 

4


3
4

+ 1
8
· 0 + 0

− 0


= 3
16
2

76. Using the formula for cylindrical shells, the volume is

 =
 2
0

2()  = 2
 2
0

 cos2  = 2
 2
0



1
2
(1 + cos 2)


 = 2


1
2



 2
0

(+  cos 2) 

= 


1
2
2
2
0

+




1
2

sin 2
2

0
−  2

0
1
2

sin 2
 

parts with  = ,
 = cos 2 


= 


1
2



2

2
+ 0− 1

2

− 1
2

cos 2
2
0


= 3

8
+ 

4
(−1− 1) = 1

8
(3 − 4)

77. By the Fundamental Theorem of Calculus,∞
0

 0()  = lim
→∞

 
0
 0()  = lim

→∞
[()− (0)] = lim

→∞
()− (0) = 0− (0) = −(0).

78. (a) (tan−1 )ave = lim
→∞

1

− 0

 

0

tan
−1


89
= lim

→∞


1




 tan

−1
− 1

2
ln(1 + 

2
)

0



= lim
→∞


1




 tan−1 − 1

2
ln(1 + 2)


= lim

→∞


tan−1 − ln


1 + 2


2



H
=



2
− lim

→∞
2(1 + 2)

2
=



2
− 0 =



2

(b) () ≥ 0 and
∞


()  is divergent ⇒ lim
→∞

 

()  =∞.

ave = lim
→∞

 

() 

− 


H
= lim

→∞
()

1
[by FTC1] = lim

→∞
(), if this limit exists.

(c) Suppose
∞


()  converges; that is, lim
→∞

 

()  =  ∞. Then

ave = lim
→∞


1

− 

 



() 


= lim

→∞
1

− 
· lim
→∞

 



()  = 0 ·  = 0.

(d) (sin)ave = lim
→∞

1



 

0

sin = lim
→∞


1



− cos

0


= lim

→∞


−cos 


+

1




= lim

→∞
1− cos 


= 0
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79. Let  = 1 ⇒  = 1 ⇒  = −(12) . ∞

0

ln

1 + 2
 =

 0

∞

ln (1)

1 + 12


−

2


=

 0

∞

− ln

2 + 1
(−) =

 0

∞

ln

1 + 2
 = −

 ∞

0

ln

1 + 2


Therefore,
 ∞

0

ln

1 + 2
 = −

 ∞

0

ln

1 + 2
 = 0.

80. If the distance between  and the point charge is , then the potential  at  is

 =  =

 

∞
  =

 

∞



402
 = lim

→∞


40


−1






=


40
lim
→∞


−1


+

1




= − 

40
.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



116 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



8 FURTHER APPLICATIONS OF INTEGRATION

8.1 Arc Length

1.  = 2− 5 ⇒  =
 3

−1


1 + ()2  =

 3

−1


1 + (2)2  =

√
5 [3− (−1)] = 4

√
5.

The arc length can be calculated using the distance formula, since the curve is a line segment, so

 = [distance from (−1−7) to (3 1)] =


[3− (−1)]2 + [1− (−7)]2 =
√

80 = 4
√

5

2. Using the arc length formula with  =
√

2− 2 ⇒ 


= − √

2− 2
, we get

=

 1

0


1 +






2

 =

 1

0


1 +

2

2− 2
 =

 1

0

√
2 √

2− 2
=
√

2

 1

0

√
2
2 − 2

=
√

2


sin−1


√
2

1
0

=
√

2


sin−1


1√
2


− sin−1 0


=
√

2


4
− 0


=
√

2 
4

The curve is a one-eighth of a circle with radius
√

2, so the length of the arc is 1
8


2 ·√2


=
√

2 
4
, as above.

3.  = sin ⇒  = cos ⇒ 1 + ()2 = 1 + cos2. So  =
 
0

√
1 + cos2 ≈ 38202.

4.  = − ⇒  = (−−) + −(1) = −(1− ) ⇒ 1 + ()2 = 1 + [−(1− )]2.

So  =
 2

0


1 + −2(1− )2  ≈ 21024.

5.  = − ln ⇒  = 1− 1 ⇒ 1 + ()2 = 1 + (1− 1)2. So  =
 4

1


1 + (1− 1)2  ≈ 34467.

6.  = 2 − 2 ⇒  = 2 − 2 ⇒ 1 + ()2 = 1 + (2 − 2)2. So  =
 2

0


1 + (2 − 2)2  ≈ 29579.

7.  =
√
 −  ⇒  = 1


2
√

− 1 ⇒ 1 + ()2 = 1 +


1

2
√

− 1

2

.

So  =

 4

1


1 +


1

2
√

− 1

2

 ≈ 36095.

8. 2 = ln ⇔  = 
2 ⇒  = 2

2 ⇒ 1 + ()2 = 1 + 422
2

.

So  =
 1

−1


1 + 422

2
 ≈ 42552.

9.  = 1 + 632 ⇒  = 912 ⇒ 1 + ()2 = 1 + 81.

So  =

 1

0

√
1 + 81 =

 82

1


12


1
81

   = 1 + 81,

 = 81 


= 1

81
· 2

3




32
82
1

= 2
243


82
√

82− 1



10. 362 = (2 − 4)3,  ≥ 0 ⇒  = 1
6
(2 − 4)32 ⇒  = 1

6
· 3

2
(2 − 4)12(2) = 1

2
(2 − 4)12 ⇒

1 + ()2 = 1 + 1
4
2(2 − 4) = 1

4
4 − 2 + 1 = 1

4
(4 − 42 + 4) =


1
2
(2 − 2)

2
. So

 =
 3

2


1
2
(2 − 2)

2
 =

 3

2

1
2
(2 − 2)  = 1

2


1
3
3 − 2

3
2

= 1
2


(9− 6)−  8

3
− 4


= 1
2


13
3


= 13

6
.
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2 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

11.  =
3

3
+

1

4
⇒ 0 = 2 − 1

42
⇒

1 + (0)2 = 1 +


4 − 1

2
+

1

164


= 4 +

1

2
+

1

164
=


2 +

1

42

2

. So

=

 2

1


1 + (0)2  =

 2

1

2
+

1

42

  =

 2

1




2
+

1

42




=


1

3
3 − 1

4

2
1

=


8

3
− 1

8


−


1

3
− 1

4


=

7

3
+

1

8
=

59

24

12.  =
4

8
+

1

42
⇒ 


= 1

2
3 − 1

2
−3 ⇒

1 + ()2 = 1 + 1
4
6 − 1

2
+ 1

4
−6 = 1

4
6 + 1

2
+ 1

4
−6 =


1
2
3 + 1

2
−3

2
. So

=
 2

1


1
2
3 + 1

2
−3

2
 =

 2

1


1
2
3 + 1

2
−3


 =


1
8
4 − 1

4
−2

2
1

=

2− 1

16

−  1
8
− 1

4


= 2 + 1

16
= 33

16
.

13.  = 1
3

√
 ( − 3) = 1

3
32 − 12 ⇒  = 1

2
12 − 1

2
−12 ⇒

1 + ()
2

= 1 + 1
4
 − 1

2
+ 1

4
−1 = 1

4
 + 1

2
+ 1

4
−1 =


1
2
12 + 1

2
−12

2
. So

 =
 9

1


1
2
12 + 1

2
−12


 = 1

2


2
3
32 + 212

9
1

= 1
2


2
3
· 27 + 2 · 3−  2

3
· 1 + 2 · 1

= 1
2


24− 8

3


= 1

2


64
3


= 32

3
.

14.  = ln(cos) ⇒  = −tan ⇒ 1 + ()2 = 1 + tan2  = sec2 . So

 =
 3
0

√
sec2  =

 3
0

sec =

ln |sec + tan| 3

0
= ln


2 +

√
3
− ln(1 + 0) = ln


2 +

√
3

.

15.  = ln(sec) ⇒ 


=

sec tan

sec
= tan ⇒ 1 +






2

= 1 + tan2  = sec2 , so

 =
 4
0

√
sec2  =

 4
0

|sec|  =
 4
0

sec =

ln(sec + tan)

4
0

= ln
√

2 + 1
− ln(1 + 0) = ln

√
2 + 1


16.  = 3 + 1

2
cosh 2 ⇒ 0 = sinh 2 ⇒ 1 + ()2 = 1 + sinh2(2) = cosh2(2). So

 =
 1

0


cosh2(2)  =

 1

0
cosh 2 =


1
2

sinh 2
1
0

= 1
2

sinh 2− 0 = 1
2

sinh 2.

17.  =
1

4
2 − 1

2
ln ⇒ 0 =

1

2
− 1

2
⇒ 1 + (0)2 = 1 +


1

4
2 − 1

2
+

1

42


=

1

4
2 +

1

2
+

1

42
=


1

2
+

1

2

2

.

So

=

 2

1


1 + (0)2  =

 2

1

12+
1

2

  =

 2

1


1

2
 +

1

2




=


1

4
2 +

1

2
ln ||

2
1

=


1 +

1

2
ln 2


−


1

4
+ 0


=

3

4
+

1

2
ln 2
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SECTION 8.1 ARC LENGTH ¤ 3

18.  =
√
− 2 + sin−1

√


⇒ 


=

1− 2

2
√
− 2

+
1

2
√

√

1− 
=

2− 2

2
√

√

1− 
=


1− 


⇒

1 +






2

= 1 +
1− 


=

1


. The curve has endpoints (0 0) and


1 

2


,

so  =
 1

0


1  = lim

→0+

 1




1 = lim

→0+


2
√

1


= lim
→0+


2
√

1− 2
√



= 2− 0 = 2.

19.  = ln(1 − 2) ⇒ 0 =
1

1− 2
· (−2) ⇒

1 +






2

= 1 +
42

(1− 2)2
=

1− 22 + 4 + 42

(1− 2)2
=

1 + 22 + 4

(1− 2)2
=

(1 + 2)2

(1− 2)2
⇒


1 +






2

=


1 + 2

1− 2

2

=
1 + 2

1− 2
= −1 +

2

1− 2
[by division] = −1 +

1

1 + 
+

1

1− 
[partial fractions].

So  =

 12

0


−1 +

1

1 + 
+

1

1− 


 =

−+ ln |1 + |− ln |1− | 12
0

=
− 1

2
+ ln 3

2
− ln 1

2

− 0 = ln 3− 1
2
.

20.  = 1− − ⇒ 0 = −(−−) = − ⇒ 1 + ()2 = 1 + −2. So

=

 2

0


1 + −2  =

 −2

1


1 + 2


− 1





[ = −]

23
=


ln

1 +
√

1 + 2



−√1 + 2

−2
1

[or substitute  = tan ]

= ln

1 +
√

1 + −4

−2

−√1 + −4 − ln

1 +
√

2

1

+√2

= ln

1 +

√
1 + −4

− ln −2 −√1 + −4 − ln

1 +

√
2


+
√

2

= ln

1 +

√
1 + −4


+ 2−√1 + −4 − ln


1 +

√
2


+
√

2

21.  = 1
2
2 ⇒  =  ⇒ 1 + ()2 = 1 + 2. So

=
 1

−1

√
1 + 2  = 2

 1

0

√
1 + 2  [by symmetry]

21
= 2



2

√
1 + 2 + 1

2
ln

+

√
1 + 2

1
0


or substitute
 = tan 


= 2


1
2

√
2 + 1

2
ln

1 +

√
2
− 0 + 1

2
ln 1


=
√

2 + ln

1 +

√
2


22. 2 = ( − 4)3 ⇒  = ( − 4)32 [for   0] ⇒  = 3
2
( − 4)12 ⇒

1 + ()2 = 1 + 9
4
( − 4) = 9

4
 − 8. So

=

 8

5


9
4
 − 8  =

 10

134

√



4
9

 

 = 9
4
 − 8,

 = 9
4



= 4

9


2
3


32
10
134

= 8
27


1032 −  13

4

32 
or 1

27


80
√

10− 13
√

13


23. From the figure, the length of the curve is slightly larger than the hypotenuse

of the triangle formed by the points (1 2), (1 12), and (2 12). This length

is about
√

102 + 12 ≈ 10, so we might estimate the length to be 10.

 = 2 + 3 ⇒ 0 = 2+ 32 ⇒ 1 + (0)2 = 1 + (2+ 32)2.

So  =
 2

1


1 + (2 + 32)2  ≈ 100556.
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4 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

24. From the figure, the length of the curve is slightly larger than the hypotenuse

of the triangle formed by the points (1 1),


2
 1

, and



2
 

2


. This length

is about



2

2
+


2
− 1
2 ≈ 17, so we might estimate the length to

be 17.  = + cos ⇒ 0 = 1− sin ⇒
1 + (0)2 = 1 + (1− sin)2. So

 =
 2
0


1 + (1− sin)2  ≈ 17294.

25.  =  sin ⇒  =  cos + (sin)(1) ⇒ 1 + ()2 = 1 + ( cos + sin)2. Let

() =


1 + ()2 =


1 + ( cos + sin)2. Then  =
 2

0
() . Since  = 10,∆ = 2− 0

10
= 

5
. Now

 ≈ 10 =
5

3


(0) + 4



5


+ 2


2
5


+ 4


3
5


+ 2


4
5


+ 4


5
5


+ 2


6
5


+ 4


7
5


+ 2


8
5


+ 4


9
5


+ (2)


≈ 15498085

The value of the integral produced by a calculator is 15374568 (to six decimal places).

26.  = 3
√
 ⇒  = 1

3
−23 ⇒  =

 6

1
() , where () =


1 + 1

9
−43.

Since  = 10,∆ = 6− 1
10

= 1
2
. Now

 ≈ 10 =
12

3
[(1) + 4(15) + 2(2) + 4(25) + 2(3) + 4(35) + 2(4)

+ 4(45) + 2(5) + 4(55) + (6)]

≈ 5074212

The value of the integral produced by a calculator is 5074094 (to six decimal places).

27.  = ln(1 + 3) ⇒  =
1

1 + 3
· 32 ⇒  =

 5

0
() , where () =


1 + 94(1 + 3)2.

Since  = 10,∆ = 5− 0
10

= 1
2
. Now

 ≈ 10 =
12

3
[(0) + 4(05) + 2(1) + 4(15) + 2(2) + 4(25) + 2(3)

+ 4(35) + 2(4) + 4(45) + (5)]

≈ 7094570

The value of the integral produced by a calculator is 7118819 (to six decimal places).

28.  = −
2 ⇒  = −

2

(−2) ⇒  =
 2

0
() , where () =


1 + 42−22 .

Since  = 10,∆ = 2− 0
10

= 1
5
. Now

 ≈ 10 =
15

3
[(0) + 4(02) + 2(04) + 4(06) + 2(08) + 4(1) + 2(12)

+ 4(14) + 2(16) + 4(18) + (2)]

≈ 2280559

The value of the integral produced by a calculator is 2280526 (to six decimal places).

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 8.1 ARC LENGTH ¤ 5

29. (a) Let () =  =  3
√

4−  with 0 ≤  ≤ 4.

(b) The polygon with one side is just the line segment joining the

points (0 (0)) = (0 0) and (4 (4)) = (4 0), and its

length 1 = 4.

The polygon with two sides joins the points (0 0),

(2 (2)) =

2 2

3
√

2

and (4 0). Its length

2 =


(2− 0)2 +


2

3
√

2− 0
2

+


(4− 2)2 +


0− 2

3
√

2
2

= 2
√

4 + 283 ≈ 643

Similarly, the inscribed polygonwith four sides joins the points (0 0),

1

3
√

3

,

2 2

3
√

2

, (3 3), and (4 0),

so its length

4 =


1 +


3
√

3
2

+


1 +


2

3
√

2− 3
√

3
2

+


1 +


3− 2

3
√

2
2

+
√

1 + 9 ≈ 750

(c) Using the arc length formula with



= 


1
3
(4− )−23(−1)


+ 3
√

4−  =
12− 4

3(4− )23
, the length of the curve is

 =

 4

0


1 +






2

 =

 4

0


1 +


12− 4

3(4− )23

2
.

(d) According to a calculator, the length of the curve is  ≈ 77988. The actual value is larger than any of the approximations

in part (b). This is always true, since any approximating straight line between two points on the curve is shorter than the

length of the curve between the two points.

30. (a) Let () =  = + sin with 0 ≤  ≤ 2.

(b) The polygon with one side is just the line segment joining the points (0 (0)) = (0 0) and (2 (2)) = (2 2), and

its length is


(2 − 0)2 + (2 − 0)2 = 2
√

2 ≈ 89.

[continued]
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6 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

The polygon with two sides joins the points (0 0), ( ()) = ( ), and

(2 2). Its length is
( − 0)2 + ( − 0)2 +


(2 − )2 + (2 − )2 =

√
2 +

√
2

= 2
√

2 ≈ 89

Note from the diagram that the two approximations are the same because the sides

of the two-sided polygon are in fact on the same line, since () =  = 1
2
(2).

The four-sided polygon joins the points (0 0),


2
 

2
+ 1

, ( ),


3
2
 3

2
− 1

, and (2 2), so its length is


2

2
+


2

+ 1
2

+



2

2
+


2
− 1
2

+



2

2
+


2
− 1
2

+



2

2
+


2

+ 1
2 ≈ 94

(c) Using the arc length formula with  = 1 + cos, the length of the curve is

 =
 2

0


1 + (1 + cos)2  =

 2

0

√
2 + 2 cos+ cos2 

(d) The calculator approximates the integral as 95076. The actual length is larger than the approximations in part (b).

31.  =  ⇒  =  ⇒ 1 + ()2 ⇒ 1 + 2 ⇒

=

 2

0


1 + 2  =

 2

1


1 + 2


1




 
 = 

 =  


23
=

√
1 + 2 − ln

1 +
√

1 + 2



 
2

1

=

√
1 + 4 − ln

1 +
√

1 + 4

2


−
√

2− ln
1 +

√
2

1


=
√

1 + 4 − ln(1 +
√

1 + 4 ) + 2−√2 + ln(1 +
√

2) ≈ 6788651

An equivalent answer from a CAS is

−√2 + arctanh(
√

22) +
√
4 + 1− arctanh(1

√
4 + 1 ).

32.  = 43 ⇒  = 4
3
13 ⇒ 1 + ()2 = 1 + 16

9
23 ⇒

 =
 1

0


1 + 16

9
23  =

 43

0

√
1 + 2 81

64
2 


 = 4

3
13,  = 4

9
−23 ,

 = 9
4
23  = 9

4
· 9
16
2  = 81

64
2 


22
= 81

64


1
8
(1 + 22)

√
1 + 2 − 1

8
ln

+

√
1 + 2

43
0

= 81
64


1
6


1 + 32

9


25
9
− 1

8
ln


4
3

+


25
9


= 81

64


1
6
· 41

9
· 5

3
− 1

8
ln 3


= 205
128
− 81

512
ln 3 ≈ 14277586

33. 23 = 1− 23 ⇒  = (1− 23)32 ⇒



= 3

2
(1− 23)12


− 2

3
−13


= −−13(1− 23)12 ⇒





2

= −23(1− 23) = −23 − 1. Thus

 = 4
 1

0


1 + (−23 − 1)  = 4

 1

0
−13  = 4 lim

→0+


3
2
23

1


= 6.
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SECTION 8.1 ARC LENGTH ¤ 7

34. (a)

(b)  = 23 ⇒ 1 +






2

= 1 +


2
3
−13

2

= 1 + 4
9
−23. So  =

 1

0


1 + 4

9
−23  [an improper integral].

 = 32 ⇒ 1 +






2

= 1 +


3
2
12

2

= 1 + 9
4
. So  =

 1

0


1 + 9

4
 .

The second integral equals 4
9
· 2

3


1 + 9

4

321

0
= 8

27


13
√

13
8

− 1


= 13
√

13− 8
27

.

The first integral can be evaluated as follows: 1

0


1 + 4

9
−23 = lim

→0+

 1



√
923 + 4

313
 = lim

→0+

 9

923

√
+ 4

18



 = 923

 = 6−13 



=

 9

0

√
+ 4

18
 =

1

18
·

2

3
(+ 4)

32

9
0

=
1

27
(13

32 − 4
32

) =
13
√

13 − 8

27

(c)  = length of the arc of this curve from (−1 1) to (8 4)

=

 1

0


1 +

9

4
  +

 4

0


1 +

9

4
  =

13
√

13− 8

27
+

8

27


1 +

9

4


32
4

0

[from part (b)]

=
13
√

13− 8

27
+

8

27


10
√

10− 1


=
13
√

13 + 80
√

10− 16

27

35.  = 232 ⇒ 0 = 312 ⇒ 1 + (0)2 = 1 + 9. The arc length function with starting point 0(1 2) is

() =
 
1

√
1 + 9  =


2
27

(1 + 9)32

1

= 2
27


(1 + 9)32 − 10

√
10

.

36. (a)  = () = ln(sin) ⇒ 0 =
1

sin
· cos = cot ⇒ 1 + (0)2 = 1 + cot2  = csc2  ⇒

1 + (0)2 =
√

csc2  = |csc|. Therefore,

() =
 
2


1 + [ 0()]2  =

 
2

csc   =

ln |csc − cos |


2

= ln |csc− cot|− ln |1− 0| = ln(csc− cot)

(b) Note that  is increasing on (0 ) and that  = 0 and  =  are

vertical asymptotes for both  and .

37.  = sin−1  +
√

1− 2 ⇒ 0 =
1√

1− 2
− √

1− 2
=

1− √
1− 2

⇒

1 + (0)2 = 1 +
(1− )2

1− 2
=

1− 2 + 1− 2+ 2

1− 2
=

2− 2

1− 2
=

2(1− )

(1 + )(1− )
=

2

1 + 
⇒
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8 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION


1 + (0)2 =


2

1 + 
. Thus, the arc length function with starting point (0 1) is given by

() =

 

0


1 + [ 0()]2  =

 

0


2

1 + 
 =

√
2

2
√

1 + 

0

= 2
√

2
√

1 + − 1

.

38. (a) () =
 



1 + [ 0()]2  and () =

 
0

√
3 + 5  ⇒ 1 + [ 0()]2 = 3 + 5 ⇒ [ 0()]2 = 3 + 4 ⇒

 0() =
√

3 + 4 [since  is increasing]. So () =

(3 + 4)12  = 2

3
· 1

3
(3 + 4)32 + and since  has

-intercept 2, (0) = 2
9
· 8 +  and (0) = 2 ⇒  = 2− 16

9
= 2

9
. Thus, () = 2

9
(3 + 4)32 + 2

9
.

(b) () =

 

0

√
3+ 5  =


2
9
(3 + 5)

32

0

= 2
9
(3+ 5)

32 − 2
9
(5)

32.

() = 3 ⇔ 2
9
(3 + 5)32 = 3 + 2

9
(5
√

5 ) ⇔ (3 + 5)32 = 27
2

+ 5
√

5 ⇔ 3+ 5 =


27
2

+ 5
√

5
23 ⇒

1 = 1
3


27
2

+ 5
√

5
23 − 5


. Thus, the point on the graph of  that is 3 units along the curve from the -intercept

is (1 (1)) ≈ (1159 4765).

39. () = 1
4
 + − ⇒  0() = 1

4
 − − ⇒

1 + [ 0()]2 = 1 +


1
4
 − −

2
= 1 + 1

16
2 − 1

2
+ −2 = 1

16
2 + 1

2
+ −2 =


1
4
 + −

2
= [()]2. The arc

length of the curve  = () on the interval [ ] is  =
 



1 + [ 0()]2  =

 



[()]2  =

 

() , which is

the area under the curve  = () on the interval [ ].

40.  = 150− 1
40

(− 50)2 ⇒ 0 = − 1
20

(− 50) ⇒ 1 + (0)2 = 1 + 1
202

(− 50)2, so the distance traveled by

the kite is

 =

 80

0


1 +

1

202
(− 50)2  =

 32

−52


1 + 2 (20 )


 = 1

20
(− 50),

 = 1
20




21
= 20


1
2

√

1 + 2 + 1
2

ln

+

√
1 + 2

32
−52

= 10


3
2


13
4

+ ln


3
2

+


13
4


+ 5

2


29
4
− ln


−5

2
+


29
4


= 15

2

√
13 + 25

2

√
29 + 10 ln


3 +

√
13

−5 +
√

29


≈ 1228 ft

41. The prey hits the ground when  = 0 ⇔ 180− 1
45
2 = 0 ⇔ 2 = 45 · 180 ⇒  =

√
8100 = 90,

since  must be positive. 0 = − 2
45
 ⇒ 1 + (0)2 = 1 + 4

452
2, so the distance traveled by the prey is

 =

 90

0


1 +

4

452
2  =

 4

0


1 + 2


45
2

 

 = 2
45
,

 = 2
45




21
= 45

2


1
2

√

1 + 2 + 1
2

ln

+

√
1 + 2

4
0
= 45

2


2
√

17 + 1
2

ln

4 +

√
17


= 45
√

17 + 45
4

ln

4 +

√
17
 ≈ 2091 m

42. Let  = −  cosh , where  = 21149,  = 2096, and  = 003291765. Then 0 = − sinh  ⇒

1 + (0)2 = 1 + 22 sinh2(). So  =
 912

−912


1 + 22 sinh2()  ≈ 451137 ≈ 451, to the nearest meter.
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SECTION 8.1 ARC LENGTH ¤ 9

43. The sine wave has amplitude 1 and period 14, since it goes through two periods in a distance of 28 in., so its equation is

 = 1 sin


2
14



= sin


7


. The width  of the flat metal sheet needed to make the panel is the arc length of the sine curve

from  = 0 to  = 28. We set up the integral to evaluate  using the arc length formula with 


= 

7
cos


7


:

 =
 28

0


1 +



7

cos


7

2

 = 2
 14

0


1 +



7

cos


7

2

. This integral would be very difficult to evaluate exactly,

so we use a CAS, and find that  ≈ 2936 inches.

44. (a)  =  +  cosh




 ⇒ 0 = sinh




 ⇒ 1 + (0)2 = 1 + sinh2





= cosh2






. So

 =
 
−


cosh2






 = 2

 
0

cosh





 = 2


 sinh






0

= 2 sinh





.

(b) At  = 0,  = + , so +  = 20. The poles are 50 ft apart, so  = 25, and

 = 51 ⇒ 51 = 2 sinh() [from part (a)]. From the figure, we see

that  = 51 intersects  = 2 sinh(25) at  ≈ 723843 for   0.

So  ≈ 723843 and the wire should be attached at a distance of

 = +  cosh(25) = 20− +  cosh(25) ≈ 2436 ft above the

ground.

45.  =
 
1

√
3 − 1  ⇒  =

√
3 − 1 [by FTC1] ⇒ 1 + ()2 = 1 +

√
3 − 1

2
= 3 ⇒

 =
 4

1

√
3  =

 4

1
32  = 2

5


52

4
1

= 2
5
(32− 1) = 62

5
= 124

46. By symmetry, the length of the curve in each quadrant is the same,

so we’ll find the length in the first quadrant and multiply by 4.

2 + 2 = 1 ⇒ 2 = 1− 2 ⇒  = (1− 2)1(2)

(in the first quadrant), so we use the arc length formula with




=

1

2
(1− 2)1(2)−1(−22−1) = −2−1(1− 2)1(2)−1

The total length is therefore

2 = 4

 1

0


1 + [−2−1(1− 2)1(2)−1]2  = 4

 1

0


1 + 2(2−1)(1− 2)1−2 

Now from the graph, we see that as  increases, the “corners” of these fat circles get closer to the points (±1±1) and

(±1∓1), and the “edges” of the fat circles approach the lines joining these four points. It seems plausible that as →∞, the

total length of the fat circle with  = 2 will approach the length of the perimeter of the square with sides of length 2. This is

supported by taking the limit as  →∞ of the equation of the fat circle in the first quadrant: lim
→∞

(1− 2)1(2) = 1

for 0 ≤   1. So we guess that lim
→∞

2 = 4 · 2 = 8.
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10 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

DISCOVERY PROJECT Arc Length Contest

For advice on how to run the contest and a list of student entries, see the article “Arc Length Contest” by Larry Riddle in The

College Mathematics Journal, Volume 29, No. 4, September 1998, pages 314–320.

8.2 Area of a Surface of Revolution

1. (a) (i)  = tan ⇒  = sec2  ⇒  =


1 + ()2  =
√

1 + sec4 . By (7), an integral for the

area of the surface obtained by rotating the curve about the -axis is  =


2  =
 3
0

2 tan
√

1 + sec4 .

(ii) By (8), an integral for the area of the surface obtained by rotating the curve about the -axis is

 =


2 =
 3
0

2
√

1 + sec4 .

(b) (i) 105017 (ii) 79353

2. (a) (i)  = −2 ⇒  = −2−3 ⇒  =


1 + ()2  =
√

1 + 4−6 .

By (7),  =


2  =
 2

1
2−2

√
1 + 4−6 .

(ii) By (8),  =


2 =
 2

1
2

√
1 + 4−6 .

(b) (i) 44566 (ii) 117299

3. (a) (i)  = −
2 ⇒  = −

2 · (−2) ⇒  =


1 + ()2  =


1 + 42−22 .

By (7),  =


2  =
 1

−1
2−

2


1 + 42−22 .

(ii) By (8),  =


2 =
 1

0
2


1 + 42−22  [symmetric about the y-axis]

(b) (i) 110753 (ii) 39603

4. (a) (i)  = ln(2 + 1) ⇒  =
2

2 + 1
⇒  =


1 + ()2  =


1 + 4(2 + 1)2 .

By (7),  =


2  =
 1

0
2


1 + 4(2 + 1)2 .

(ii) By (8),  =


2 =
 1

0
2 ln(2 + 1)


1 + 4(2 + 1)2 .

(b) (i) 42583 (ii) 56053

5. (a) (i)  =  + 3 ⇒  = 1 + 32 ⇒  =


1 + ()2  =


1 + (1 + 32)2 .

By (7),  =


2  =
 1

0
2


1 + (1 + 32)2 .

(ii) By (8) ,  =


2 =
 1

0
2( + 3)


1 + (1 + 32)2 .

(b) (i) 85302 (ii) 135134

6. (a) (i)  = tan−1  ⇒  = 1(1 + 2) ⇒  =


1 + ()2  =


1 + 1(1 + 2)2 .

By (7),  =


2  =
 2

0
2 tan−1 


1 + 1(1 + 2)2 .

(ii) By (8),  =


2 =
 2

0
2


1 + 1(1 + 2)2 .

(b) (i) 97956 (ii) 137209
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SECTION 8.2 AREA OF A SURFACE OF REVOLUTION ¤ 11

7.  = 3 ⇒ 0 = 32. So

 =
 2

0
2


1 + (0)2  = 2

 2

0
3
√

1 + 94  = 2
36

 145

1

√
 [ = 1 + 94,  = 363 ]

= 
18


2
3
32

145
1

= 
27


145

√
145− 1


8.  =

√
5−  ⇒ 0 = 1

2
(5− )−12(−1) = −1(2

√
5−  ). So

 =

 5

3

2


1 + (0)2  =

 5

3

2
√

5− 


1 +

1

4(5− )
 = 2

 5

3


5− + 1

4


= 2

 5

3


21
4
−  = 2

 14

94

√
 (−)


 = 21

4
− ,

 = −



= 2

 94

14


12

 = 2


2
3


32
94
14

= 4
3


27
8
− 1

8


= 13

3

9. 2 = + 1 ⇒  =
√
+ 1 (for 0 ≤  ≤ 3 and 1 ≤  ≤ 2) ⇒ 0 = 1(2

√
+ 1 ). So

 =

 3

0

2


1 + (0)2  = 2

 3

0

√
+ 1


1 +

1

4(+ 1)
 = 2

 3

0


+ 1 + 1

4


= 2

 3

0


+ 5

4
 = 2

 174

54

√



 = + 5

4


 = 



= 2


2
3
32

174
54

= 2 · 2

3


1732

8
− 532

8


=



6
(17
√

17− 5
√

5).

10.  =
√

1 +  ⇒ 0 = 1
2
(1 + )−12() =



2
√

1 + 
⇒


1 + (

0
)2 =


1 +

2

4(1 + )
=


4 + 4 + 2

4(1 + )
=


( + 2)2

4(1 + )
=

 + 2

2
√

1 + 
. So

 =

 1

0

2


1 + (0)2  = 2

 1

0

√
1 + 

 + 2

2
√

1 + 
 = 

 1

0

(


+ 2) 

= 

 + 2

1
0

= [(+ 2)− (1 + 0)] = (+ 1)

11.  = cos


1
2

 ⇒ 0 = −1

2
sin


1
2


. So

 =

 

0

2


1 + (0)2  = 2

 

0

cos


1
2



1 + 1
4

sin2


1
2




= 2

 1

0


1 + 1

4
2 (2 )


 = sin


1
2


,

 = 1
2
cos

1
2






= 2

 1

0


4 + 2 

21
= 2


2


4 + 2 + 2 ln


+


4 + 2

1
0

= 2


1
2

√
5 + 2 ln(1 +

√
5 )
− (0 + 2 ln 2)


= 

√
5 + 4 ln


1 +

√
5

2
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12 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

12.  =
3

6
+

1

2
⇒ 


=

2

2
− 1

22
⇒


1 +






2

=


4

4
+

1

2
+

1

44
=


2

2
+

1

22

2

=
2

2
+

1

22
⇒

 =

 1

12

2


3

6
+

1

2


2

2
+

1

22


 = 2

 1

12


5

12
+



12
+



4
+

1

43




= 2

 1

12


5

12
+



3
+

−3

4


 = 2


6

72
+

2

6
− −2

8

1
12

= 2


1
72

+ 1
6
− 1

8

−  1
64 · 72 + 1

24
− 1

2


= 2


263
512


= 263

256


13.  = 1
3
(2 + 2)32 ⇒  = 1

2
(2 + 2)12(2) = 


2 + 2 ⇒ 1 + ()2 = 1 + 2(2 + 2) = (2 + 1)2.

So  = 2
 2

1
(2 + 1)  = 2


1
4
4 + 1

2
2
2
1

= 2

4 + 2− 1

4
− 1

2


= 21

2
.

14.  = 1 + 22 ⇒ 1 + ()2 = 1 + (4)2 = 1 + 162.

So  = 2
 2

1



1 + 162  = 
16

 2

1
(162 + 1)1232  = 

16


2
3
(162 + 1)32

2
1

= 
24


65
√

65− 17
√

17

.

15.  = 1
3
32 ⇒ 0 = 1

2
12 ⇒ 1 + (0)2 = 1 + 1

4
. So

 =

 12

0

2


1 + (0)2  = 2

 12

0




1 + 1

4
 = 2

 12

0

 1
2

√
4 + 

= 

 16

4

(− 4)
√



 = + 4

 = 


= 

 16

4

(
32 − 4

12
)  = 


2
5


52 − 8
3


32
16
4

= 


2
5
· 1024− 8

3
· 64−  2

5
· 32− 8

3
· 8

= 


2
5
· 992− 8

3
· 56 = 


5952− 2240

15


= 3712

15

16. 23 + 23 = 1, 0 ≤  ≤ 1. The curve is symmetric about the -axis from  = −1 to  = 1, so we’ll use the

portion of the curve from  = 0 to  = 1. 23 = 1− 23 ⇒  = (1 − 23)32 ⇒

0 = 3
2
(1− 23)12


− 2

3
−13


= −

√
1− 23

13
⇒ 1 + (0)2 = 1 +

1− 23

23
=

23 + 1− 23

23
= −23. So

 =
 1

0
2


1 + (0)2  = 2

 1

0
(−13)  = 2

 1

0
23  = 2


3
5
53

1
0

= 2


3
5


= 6

5
.

17.  =

2 − 2 ⇒  = 1

2
(2 − 2)−12(−2) = −


2 − 2 ⇒

1 +






2

= 1 +
2

2 − 2
=

2 − 2

2 − 2
+

2

2 − 2
=

2

2 − 2
⇒

 =

 2

0

2

2 − 2


2 − 2

 = 2

 2

0

 = 2


2
0

= 2


2
− 0


= 2.

Note that this is 1
4
the surface area of a sphere of radius , and the length of the interval  = 0 to  = 2 is 1

4
the length of the

interval  = − to  = .
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SECTION 8.2 AREA OF A SURFACE OF REVOLUTION ¤ 13

18.  = 1
4
2 − 1

2
ln ⇒ 


=



2
− 1

2
⇒ 1 +






2

= 1 +
2

4
− 1

2
+

1

42
=

2

4
+

1

2
+

1

42
=




2
+

1

2

2

. So

 =

 2

1

2




2
+

1

2

2

 = 2

 2

1






2
+

1

2


 = 

 2

1

(
2
+ 1)  = 


1
3


3
+ 

2
1

= 


8
3

+ 2
−  1

3
+ 1


= 10
3


19.  = 1
5
5 ⇒  = 4 ⇒ 1 + ()2 = 1 + 8 ⇒  =

 5

0
2


1
5
5
√

1 + 8 .

Let () = 2
5
5

√
1 + 8. Since  = 10,∆ = 5− 0

10
= 1

2
. Then

 ≈ 10 =
12

3
[(0) + 4(05) + 2(1) + 4(15) + 2(2) + 4(25) + 2(3)

+ 4(35) + 2(4) + 4(45) + (5)]

≈ 1,230,507

The value of the integral produced by a calculator is approximately 1,227,192.

20.  = + 2 ⇒  = 1 + 2 ⇒ 1 + ()2 = 1 + (1 + 2)2 ⇒  =
 1

0
2(+ 2)


1 + (1 + 2)2 .

Let () = 2(+ 2)


1 + (1 + 2)2. Since  = 10,∆ = 1− 0
10

= 1
10
. Then

 ≈ 10 =
110

3
[(0) + 4(01) + 2(02) + 4(03) + 2(04) + 4(05) + 2(06)

+ 4(07) + 2(08) + 4(09) + (1)]

≈ 13649368

The value of the integral produced by a calculator is 13649370 (to six decimal places).

21.  =  ⇒  =  +  ⇒ 1 + ()2 = 1 + ( + )2 ⇒  =
 1

0
2


1 + ( + )2 .

Let () = 2


1 + ( + )2. Since  = 10,∆ = 1− 0
10

= 1
10
. Then

 ≈ 10 =
110

3
[(0) + 4(01) + 2(02) + 4(03) + 2(04) + 4(05) + 2(06)

+ 4(07) + 2(08) + 4(09) + (1)]

≈ 24145807

The value of the integral produced by a calculator is 24144251 (to six decimal places).

22.  =  ln ⇒  =  · 1


+ ln = 1 + ln ⇒ 1 + ()2 = 1 + (1 + ln)2 ⇒

 =
 2

1
2 ln


1 + (1 + ln)2 . Let () = 2 ln


1 + (1 + ln)2. Since  = 10,∆ = 2− 1

10
= 1

10
. Then

 ≈ 10 =
110

3
[(1) + 4(11) + 2(12) + 4(13) + 2(14) + 4(15) + 2(16)

+ 4(17) + 2(18) + 4(19) + (2)]

≈ 7248933

The value of the integral produced by a calculator is 7248934 (to six decimal places).
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14 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

23.  = 1 ⇒  =


1 + ()2  =


1 + (−12)2  =


1 + 14  ⇒

 =

 2

1

2 · 1




1 +

1

4
 = 2

 2

1

√
4 + 1

3
 = 2

 4

1

√
2 + 1

2


1
2



[ = 2,  = 2 ]

= 

 4

1

√
1 + 2

2


24
= 


−
√

1 + 2


+ ln


+


1 + 2

4
1

= 

−
√

17
4

+ ln

4 +

√
17


+
√

2
1
− ln


1 +

√
2


=


4


4 ln
√

17 + 4
− 4 ln

√
2 + 1

−√17 + 4
√

2


24.  =
√
2 + 1 ⇒ 


=

√
2 + 1

⇒  =


1 +






2

 =


1 +

2

2 + 1
 ⇒

 =

 3

0

2

2 + 1


1 +

2

2 + 1
 = 2

 3

0


22 + 1  = 2

√
2

 3

0


2 +


1√
2

2


21
= 2

√
2


1
2


2 + 1

2
+ 1

4
ln

+


2 + 1

2

3
0

= 2
√

2


3
2


9 + 1

2
+ 1

4
ln

3 +


9 + 1

2


− 1

4
ln 1√

2


= 2

√
2


3
2


19
2

+ 1
4

ln

3 +


19
2


+ 1

4
ln
√

2


= 2
√

2


3
2

√
19√
2

+ 1
4

ln

3
√

2 +
√

19


= 3
√

19 + √
2

ln

3
√

2 +
√

19


25.  = 3 and 0 ≤  ≤ 1 ⇒ 0 = 32 and 0 ≤  ≤ 1.

 =
 1

0
2


1 + (32)2  = 2

 3

0

√
1 + 2 1

6



 = 32,
 = 6 


= 

3

 3

0

√
1 + 2 

21
= [or use CAS] 

3


1
2

√

1 + 2 + 1
2

ln

+

√
1 + 2

3
0

= 
3


3
2

√
10 + 1

2
ln

3 +

√
10


= 
6


3
√

10 + ln

3 +

√
10


26.  = ln(+ 1), 0 ≤  ≤ 1.  =


1 +






2

 =


1 +


1

+ 1

2

, so

 =

 1

0

2


1 +

1

(+ 1)
2
 =

 2

1

2(− 1)


1 +

1

2
 [ = + 1,  = ]

= 2

 2

1



√
1 + 2


− 2

 2

1

√
1 + 2


 = 2

 2

1


1 + 2 − 2

 2

1

√
1 + 2




21, 23
= [or use CAS] 2


1
2

√

1 + 2 + 1
2

ln

+

√
1 + 2

2
1
− 2

√
1 + 2 − ln


1 +

√
1 + 2



2
1

= 2
√

5 + 1
2

ln

2 +

√
5
− 1

2

√
2− 1

2
ln

1 +

√
2
− 2

√
5− ln


1 +

√
5

2


−√2 + ln


1 +

√
2


= 2


1
2

ln

2 +

√
5


+ ln


1 +
√

5
2


+
√

2
2
− 3

2
ln

1 +

√
2


27.  = 2

 ∞

1




1 +






2

 = 2

 ∞

1

1




1 +

1

4
 = 2

 ∞

1

√
4 + 1

3
. Rather than trying to evaluate this

integral, note that
√
4 + 1 

√
4 = 2 for   0. Thus, if the area is finite,
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SECTION 8.2 AREA OF A SURFACE OF REVOLUTION ¤ 15

 = 2

 ∞

1

√
4 + 1

3
  2

 ∞

1

2

3
 = 2

 ∞

1

1


. But we know that this integral diverges, so the area 

is infinite.

28.  =
∞
0

2


1 + ()2  = 2
∞
0

−


1 + (−−)2  [ = −, 0 = −−].

Evaluate  =

−


1 + (−−)2  by using the substitution  = −−,  = − :

 =
 √

1 + 2 
21
= 1

2

√

1 + 2 + 1
2

ln

+

√
1 + 2


+ = 1

2
(−−)√1 + −2 + 1

2
ln
−− +

√
1 + −2


+ .

Returning to the surface area integral, we have

 = 2 lim
→∞

 
0
−


1 + (−−)2  = 2 lim

→∞


1
2
(−−)√1 + −2 + 1

2
ln
−− +

√
1 + −2


0

= 2 lim
→∞


1
2
(−−)√1 + −2 + 1

2
ln
−− +

√
1 + −2

−  1
2
(−1)

√
1 + 1 + 1

2
ln
−1 +

√
1 + 1


= 2


1
2
(0)
√

1 + 1
2

ln

0 +

√
1
− − 1

2

√
2 + 1

2
ln
−1 +

√
2


= 2

[0] + 1

2

√
2− ln

√
2− 1


= 

√
2− ln

√
2− 1


29. Since   0, the curve 32 = (− )2 only has points with  ≥ 0.

[32 ≥ 0 ⇒ (− )2 ≥ 0 ⇒  ≥ 0.]

The curve is symmetric about the x-axis (since the equation is unchanged

when  is replaced by −).  = 0 when  = 0 or , so the curve’s loop

extends from  = 0 to  = .




(32) =




[(− )2] ⇒ 6




=  · 2(− )(−1) + (− )2 ⇒ 


=

(− )[−2+ − ]

6
⇒






2

=
(− )2(− 3)2

3622
=

(− )2(− 3)2

362
· 3

(− )2


the last fraction

is 12


=

(− 3)2

12
⇒

1 +






2

= 1 +
2 − 6+ 92

12
=

12

12
+

2 − 6+ 92

12
=

2 + 6+ 92

12
=

(+ 3)2

12
for  6= 0.

(a)  =

 

=0

2  = 2

 

0

√
 (− )√

3
· + 3√

12
 = 2

 

0

(− )(+ 3)

6


=


3

 

0

(
2

+ 2− 3
2
)  =



3



2
+ 

2 − 
3

0

=


3
(

3
+ 

3 − 
3
) =



3
· 3

=
2

3
.

Note that we have rotated the top half of the loop about the x-axis. This generates the full surface.

(b) We must rotate the full loop about the -axis, so we get double the area obtained by rotating the top half of the loop:

 = 2 · 2
 

=0

 = 4

 

0


+ 3√

12
 =

4

2
√

3

 

0


12

(+ 3)  =
2√
3

 

0

(
12

+ 3
32

) 

=
2√
3


2

3
32 +

6

5
52


0

=
2
√

3

3
√



2

3
52 +

6

5
52


=

2
√

3

3


2

3
+

6

5


2 =

2
√

3

3


28

15


2

=
56

√
32

45
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16 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

30. In general, if the parabola  = 2, − ≤  ≤ , is rotated about the -axis, the surface area it generates is

2

 

0




1 + (2)2 = 2

 2

0



2


1 + 2

1

2



 = 2,
 = 2 


=



42

 2

0


1 + 

2
12

2

=


42


2
3


1 + 2

322
0

=


62


1 + 422

32 − 1


Here 2 = 10 ft and 2 = 2 ft, so  = 5 and  = 2
25
. Thus, the surface area is

 = 
6

625
4


1 + 4 · 4

625
· 2532 − 1


= 625

24


1 + 16

25

32 − 1


= 625
24


41
√

41
125

− 1


= 5
24


41
√

41− 125
 ≈ 9001 ft2.

31. (a)
2

2
+

2

2
= 1 ⇒  ()

2
= − 

2
⇒ 


= − 2

2
⇒

1 +






2

= 1 +
42

42
=

42 + 42

42
=

42 + 42

1− 22


42 (1− 22)

=
42 + 42 − 222

42 − 222

=
4 + 22 − 22

4 − 22
=

4 − 2 − 2

2

2(2 − 2)

The ellipsoid’s surface area is twice the area generated by rotating the first-quadrant portion of the ellipse about the -axis.

Thus,

 = 2

 

0

2


1 +






2

 = 4

 

0






2 − 2


4 − (2 − 2)2


√
2 − 2

 =
4

2

 

0


4 − (2 − 2)2 

=
4

2

 
√
2−2

0


4 − 2

√
2 − 2


 =
√
2 − 2 

 30
=

4

2
√
2 − 2




2


4 − 2 +

4

2
sin
−1
 

2

√2−2

0

=
4

2
√
2 − 2



√
2 − 2

2


4 − 2(2 − 2) +

4

2
sin−1

√
2 − 2




= 2

2 +
2 sin−1

√
2 − 2

√
2 − 2


(b)

2

2
+

2

2
= 1 ⇒  ()

2
= − 

2
⇒ 


= −2

2
⇒

1 +






2

= 1 +
42

42
=

42 + 42

42
=

42(1− 22) + 42

42(1− 22)
=

24 − 222 + 42

24 − 222

=
4 − 22 + 22

4 − 22
=

4 − (2 − 2)2

2(2 − 2)

The oblate spheroid’s surface area is twice the area generated by rotating the first-quadrant portion of the ellipse about the

-axis. Thus,

 = 2

 

0

2 


1 +






2

 = 4

 

0






2 − 2


4 − (2 − 2)2



2 − 2



=
4

2

 

0


4 − (2 − 2) 2  =

4

2

 

0


4 + (2 − 2) 2 


since   


=

4

2

 
√
2−2

0


4 + 2

√
2 − 2


 =
√
2 − 2 


21
=

4

2
√
2 − 2




2

√
4 + 2 +

4

2
ln

+

√
4 + 2

√2−2

0

[continued]
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SECTION 8.2 AREA OF A SURFACE OF REVOLUTION ¤ 17

=
4

2
√
2 − 2



√
2 − 2

2
() +

4

2
ln


√
2 − 2 + 

− 0 +
4

2
ln(2)


=

4

2
√
2 − 2


2
√
2 − 2

2
+

4

2
ln


√
2 − 2 + 

2


= 22 +

22√
2 − 2

ln

√
2 − 2 + 



32. The upper half of the torus is generated by rotating the curve (−)2 + 2 = 2,   0, about the -axis.





= −(−) ⇒ 1 +






2

= 1 +
(−)2

2
=

2 + (−)2

2
=

2

2 − (−)
2
. Thus,

 = 2
 +

− 2


1 +






2

 = 4

 +

−


2 − (−)2

 = 4

 

−

+√
2 − 2



 = −


= 4

 

−

√
2 − 2

+ 4

 

−

√
2 − 2

= 4 · 0 + 8

 

0

√
2 − 2


since the first integrand is odd

and the second is even


= 8


sin−1()


0

= 8


2


= 42

33. The analogue of (∗ ) in the derivation of (4) is now  − (∗ ), so

 = lim
→∞


=1

2[− (∗ )]


1 + [ 0(∗ )]2 ∆ =
 


2[− ()]


1 + [ 0()]2 .

34.  = 12 ⇒ 0 = 1
2
−12 ⇒ 1 + (0)2 = 1 + 14, so by Exercise 31,  =

 4

0
2

4−

√

 

1 + 1(4) .

Using a CAS, we get  = 2 ln
√

17 + 4


+ 
6


31
√

17 + 1
 ≈ 806095.

35. For the upper semicircle, () =
√
2 − 2,  0() = −√2 − 2. The surface area generated is

1 =

 

−
2

 −


2 − 2


1 +

2

2 − 2
 = 4

 

0


 −


2 − 2

 √
2 − 2



= 4

 

0


2√

2 − 2
− 




For the lower semicircle, () = −√2 − 2 and  0() =
√

2 − 2
, so 2 = 4

 

0


2√

2 − 2
+ 


.

Thus, the total area is  = 1 + 2 = 8

 

0


2√

2 − 2


 = 8



2
sin
−1




0

= 8
2


2


= 4

2

2.

36. (a) Rotate  =
√
2 − 2 with  ≤  ≤ +  about the -axis to generate a zone of a sphere.  =

√
2 − 2 ⇒

0 = 1
2
(2 − 2)−12(−2) ⇒  =


1 +

 −√
2 − 2

2

. The surface area is

 =

 +



2  = 2

 +




2 − 2


1 +

2

2 − 2


= 2

 +




2 − 2 + 2  = 2



+


= 2(+ − ) = 2
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18 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

(b) Rotate  =  with 0 ≤  ≤  about the -axis to generate a zone of a cylinder.  =  ⇒ 0 = 0 ⇒

 =
√

1 + 02  = . The surface area is  =
 
0

2  = 2
 
0
 = 2




0

= 2.

37.  = 2 + −2 ⇒ 0 = 1
2
2 − 1

2
−2 ⇒

1 + (0)2 = 1 +


1
2
2 − 1

2
−2

2
= 1 + 1

4
 − 1

2
+ 1

4
− = 1

4
 + 1

2
+ 1

4
− =


1
2
2 + 1

2
−2

2
. If we

rotate the curve about the -axis on the interval  ≤  ≤ , the resulting surface area is

 =
 


2


1 + (0)2  = 2
 

(2 + −2)


1
2
2 + 1

2
−2


 = 

 

(2 + −2)2 , which is the same

as the volume obtained by rotating the curve  about the -axis on the interval  ≤  ≤ , namely,  = 
 

2 .

38. Since () = () + , we have 0() =  0(). Thus,

 =
 


2()


1 + [0()]2  =
 


2[() + ]


1 + [ 0()]2 

=
 


2()


1 + [ 0()]2  + 2
 



1 + [ 0()]2  =  + 2

39. In the derivation of (4), we computed a typical contribution to the surface area to be 2
−1 + 

2
|−1|,

the area of a frustum of a cone. When () is not necessarily positive, the approximations  = () ≈ (∗ ) and

−1 = (−1) ≈ (∗ ) must be replaced by  = |()| ≈ |(∗ )| and −1 = |(−1)| ≈ |(∗ )|. Thus,

2
−1 + 

2
|−1| ≈ 2 |(∗ )|


1 + [ 0(∗ )]2 ∆. Continuing with the rest of the derivation as before,

we obtain  =
 


2 |()|


1 + [ 0()]2 .

DISCOVERY PROJECT Rotating on a Slant

1.

In the figure, the segment  lying above the interval [ −∆ ] along the tangent to  has length
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DISCOVERY PROJECT ROTATING ON A SLANT ¤ 19

∆ sec = ∆
√

1 + tan2  =


1 + [ 0()]2 ∆. The segment from ( ()) drawn perpendicular to the line

 = +  has length

() = [()− − ] cos =
()− − 

sec
=

()− − 
1 + tan2 

=
()− − √

1 +2

Also, cos( − ) =
∆

∆ sec
⇒

∆= ∆ sec cos( − ) = ∆
cos cos+ sin sin

cos
= ∆(cos + sin tan)

= ∆


1√

1 +2
+

√
1 +2

 0()


=

1 + 0()√
1 +2

∆

Thus, Area(R) = lim
→∞


=1

()∆ = lim
→∞


=1

()− − √
1 +2

· 1 + 0()√
1 +2

∆

=
1

1 +2

 



[()−− ][1 +
0
()] 

2. From Problem 1 with = 1, () = + sin,+  = − 2,  = 0, and  = 2,

Area=
1

1 + 12

 2

0
[+ sin− (− 2)] [1 + 1(1 + cos)]  = 1

2

 2

0
(sin+ 2)(2 + cos) 

= 1
2

 2

0
(2 sin+ sin cos+ 4 + 2 cos)  = 1

2

−2 cos+ 1
2

sin2 + 4+ 2 sin
2
0

= 1
2
[(−2 + 0 + 8 + 0)− (−2 + 0 + 0 + 0)] = 1

2
(8) = 4

3.  = lim
→∞


=1

[ ()]
2 ∆ = lim

→∞


=1




()− − √

1 +2

2
1 + 0()√

1 +2
∆

=


(1 +2)32

 

[()−− ]2[1 + 0()] 

4.  =


(1 + 12)
32

 2

0

(+ sin− + 2)
2
(1 + 1 + cos) 

=


2
√

2

 2

0

(sin+ 2)
2
(cos + 2)  =



2
√

2

 2

0


sin

2
+ 4 sin+ 4


(cos+ 2) 

=


2
√

2

 2

0


sin

2
 cos + 4 sin cos+ 4cos+ 2 sin

2
+ 8 sin + 8




=


2
√

2


1
3

sin3  + 2 sin2 + 4 sin+ − 1
2

sin 2− 8 cos+ 8
2
0

[since 2 sin2  = 1− cos 2]

=


2
√

2
[(2 − 8 + 16)− (−8)] =

9
√

2

2
2

5.  =

 



2()


1 + [ 0()]2  =
2√

1 +2

 



[()−− ]


1 + [ 0()]2 

6. From Problem 5 with () =
√
,  = 0,  = 4, = 1

2
, and  = 0,

 =
2

1 +


1
2


2

 4

0

√
− 1

2



1 +


1

2
√


2


CAS
=

√
5


ln
√

17 + 4


32
+

37
√

17

24
− 1

3


≈ 8554
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20 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

8.3 Applications to Physics and Engineering

1. The weight density of water is  = 625 lbft
3.

(a)  =  ≈ (625 lbft
3
)(3 ft) = 1875 lbft

2

(b)  =  ≈ (1875 lbft
2
)(5 ft)(2 ft) = 1875 lb. ( is the area of the bottom of the tank.)

(c) As in Example 1, the area of the th strip is 2 (∆) and the pressure is  = . Thus,

 =
 3

0
 · 2  ≈ (625)(2)

 3

0
 = 125


1
2
2
3
0

= 125


9
2


= 5625 lb.

2. (a)  =  = (820 kgm
3
)(98 ms

2
)(15 m) = 12,054 Pa ≈ 12 kPa

(b)  =  = (12,054 Pa)(8 m)(4 m) ≈ 386× 105 N ( is the area at the bottom of the tank.)

(c) The area of the th strip is 4(∆) and the pressure is  =  . Thus,

 =
 15

0
 · 4  = (820)(98) · 4  15

0
 = 32,144


1
2
2
32
0

= 16,072


9
4

 ≈ 362× 104 N.

In Exercises 3–9,  is the number of subintervals of length ∆ and ∗ is a sample point in the th subinterval [−1 ].

3. Set up a vertical x -axis as shown, with  = 0 at the water’s surface and  increasing in the

downward direction. Then the area of the th rectangular strip is 2∆ and the pressure on

the strip is ∗ (where  ≈ 625 lbft3). Thus, the hydrostatic force on the strip is

∗ · 2∆ and the total hydrostatic force ≈

=1

∗ · 2∆. The total force

x

xi*
iw 

2 ft

8 ft

=2 3

0

11

 = lim
→∞


=1

∗ · 2∆ =
 11

3
 · 2  = 2

 11

3
 = 2


1
2
2
11
3

= (121− 9) = 112 ≈ 7000 lb

4. Set up a vertical axis as shown. Then the area of the th rectangular strip is

2(∗ − 2)∆.


By similar triangles,



∗ − 2
=

10

5
, so  = 2(∗ − 2)


The pressure on the strip is ∗ , so the hydrostatic force on the strip

is ∗ · 2(∗ − 2)∆ and the total hydrostatic force on the

plate ≈

=1

∗ · 2(∗ − 2)∆. The total force

 = lim
→∞


=1

∗ · 2(∗ − 2)∆ =
 7

2
 · 2(− 2)  = 2

 7

2
(2 − 2) 

= 2


1
3
3 − 2

7
2

= 2


343
3
− 49

−  8
3
− 4


= 2


200
3


= 400

3
 ≈ 400

3
(625) = 83333 lb.

5. Set up a coordinate system as shown. Then the area of the th rectangular strip is

2


82 − (∗ )2 ∆. The pressure on the strip is  = (12− ∗ ), so the

hydrostatic force on the strip is (12− ∗ ) 2


64− (∗ )2 ∆ and the total

hydrostatic force on the plate ≈

=1

(12− ∗ ) 2


64− (∗ )2 ∆.
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SECTION 8.3 APPLICATIONS TO PHYSICS AND ENGINEERING ¤ 21

The total force  = lim
→∞


=1

(12− ∗ ) 2


64− (∗ )2 ∆ =
 8

−8
(12− ) 2


64− 2 

= 2 · 12  8

−8


64− 2  − 2

 8

−8



64− 2 .

The second integral is 0 because the integrand is an odd function. The first integral is the area of a semicircular disk with

radius 8. Thus,  = 24


1
2
(8)2


= 768 ≈ 768(1000)(98) ≈ 236× 107 N.

6. Set up a coordinate system as shown. Then the area of the th rectangular strip

is 2


62 − (∗ )2 ∆. The pressure on the strip is  = (4− ∗ ), so the

hydrostatic force on the strip is (4− ∗ ) 2


36− (∗ )2 ∆ and the

hydrostatic force on the plate ≈

=1

(4− ∗ ) 2


36− (∗ )2 ∆. The total

force  = lim
→∞


=1

(4− ∗ ) 2


36− (∗ )2 ∆ =
 4

0
(4− ) 2


36− 2  = 81 − 22.

1 =
 4

0


36− 2  =

 
0


36− 36 sin2  (6 cos  )


 = 6 sin 

 = 6 cos  

 = sin−1(23)



=
 
0

36 cos2   =
 
0

36 · 1
2
(1 + cos 2)  = 18


 + 1

2
sin 2


0

= 18

+ 1

2
sin 2


= 18(+ sin cos).

2 =
 4

0



36− 2  =
 20

36

√
 (− 1

2
)


 = 36− 2

 = −2 


= − 1

2


2
3
32

20
36

= −1
3
(2032 − 216) = 72− 40

3

√
5.

Thus,

 = 8 · 18(+ sin cos)− 2

72− 40

3

√
5


= 144

sin−1 2

3
+ 2

3

√
5

3


− 2


72− 40

3

√
5


= 

144 sin−1 2

3
+ 176

3

√
5− 144


≈ 904× 105 N [ = 1000,  ≈ 98].

7. Set up a vertical x-axis as shown. Then the area of the th rectangular strip is
2− 2√

3
∗


∆.


By similar triangles,



2
=

√
3− ∗√

3
, so  = 2− 2√

3
∗ .


The pressure on the strip is ∗ , so the hydrostatic force on the strip is

∗


2− 2√

3
∗


∆ and the hydrostatic force on the plate≈


=1

∗


2− 2√

3
∗


∆.

The total force

 = lim
→∞


=1

∗


2− 2√

3
∗


∆ =

 √
3

0




2− 2√

3



 = 

 √
3

0


2− 2√

3


2




= 


2 − 2

3
√

3
3

√3

0

=  [(3− 2)− 0] =  ≈ 1000 · 98 = 98× 103 N
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22 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

8. Set up a vertical -axis as shown. Then the area of the th rectangular strip

is 3∗ ∆.


By similar triangles,



∗
=

6

2
, so  = 3∗ .


The pressure on the strip is

(∗ + 4), so the hydrostatic force on the strip is (∗ + 4)3∗ ∆ and the hydrostatic

force on the plate ≈

=1

(∗ + 4)3∗ ∆. The total force

 = lim
→∞


=1

(∗ + 4) 3∗ ∆ =
 2

0
(+ 4) 3 = 3

 2

0
(2 + 4) 

= 3


1
3
3 + 22

2
0

= 3


8
3

+ 8


= 32 = 313,600 N [ = 1000,  ≈ 98]

9. Set up a vertical -axis as shown. Then the area of the th rectangular strip is

∆ =

4 + 2 · 2

3
∗

∆. The pressure on the strip is (∗ − 1), so the

hydrostatic force on the strip is (∗ − 1)

4 + 4

3
∗

∆ and the hydrostatic

force on the plate ≈

=1

(∗ − 1)

4 + 4

3
∗

∆. The total force

 = lim
→∞


=1

(∗ − 1)

4 + 4

3
∗

∆ =

 3

1
(− 1)


4 + 4

3


 = 

 3

1


4
3
2 + 8

3
− 4




= 


4
9
3 + 4

3
2 − 4

3
1

= 

(12 + 12− 12)−  4

9
+ 4

3
− 4


= 


128
9


≈ 889 lb [ ≈ 62.5]

10. Set up coordinate axes as shown in the figure. For the top half, the length

of the th strip is 2


√

2− ∗

and its area is 2



√

2− ∗

∆.

The pressure on this strip is approximately  = 


√

2− ∗

and so the

force on the strip is approximately 2


√

2− ∗
2
∆. The total force

1 = lim
→∞


=1

2


√
2
− ∗

2

∆ = 2

 
√

2

0


√
2
− 

2



= 2


−1

3


√
2
− 

3
√2

0

= −2

3



0−


√
2

3


=
2

3

3

2
√

2
=

√
23

6

For the bottom half, the length is 2


√

2 + ∗

and the total force is

2 = lim
→∞


=1

2


√
2

+ ∗


√
2
− ∗


∆ = 2

 0

−√2


2

2
− 

2


 = 2


1
2

2
 − 1

3

3
0
−√2

= 2


0−


−
√

2 3

4
+

√
23

12


= 2

√
2 3

6


=

2
√

2 3

6
[2 = 21]

Thus, the total force  = 1 + 2 =
3
√

23

6
=

√
23

2
.
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SECTION 8.3 APPLICATIONS TO PHYSICS AND ENGINEERING ¤ 23

11. Set up a vertical x-axis as shown. Then the area of the th rectangular strip is




(2− ∗ )∆.


By similar triangles,



2− ∗
=

2

2
, so  =




(2− ∗ )


The pressure on the strip is ∗ , so the hydrostatic force on the plate

≈

=1

∗



(2− ∗ )∆. The total force

 = lim
→∞


=1

∗



(2− ∗ )∆ = 





 
0
(2− )  =





 
0


2− 2




=





2 − 1

3
3

0

=





3 − 1

3
3


=





23

3


= 2

3
2

12. (a) The solution is similar to the solution for Example 2. The pressure on a strip is approximately  = 646(3− ∗ ) and the

total force is
 = lim

→∞


=1

646(3− ∗ )2


9− (∗ )2 ∆ = 1292
 3

−3
(3− )


9− 2 

= 1292 · 3  3

−3


9− 2  − 1292

 3

−3



9− 2 

= 3876 · 1
2
(3)2 − 0


the first integral is the area of a semicircular disk with radius 3 and

the second integral is 0 because the integrand is an odd function


= (17442) ≈ 5480 lb

(b) If the tank is half full, the surface of the milk is  = 0, so the pressure on a strip is approximately  = 646(0− ∗ ). The

upper limit of integration changes from 3 to 0 and the total force is

 = 1292
 0

−3
(0− )


9− 2  = 1292


1
3
(9− 2)32

0
−3

= 1292(9− 0) = 11628 lb

Note that this is about 21% of the force for a full tank.

13. By similar triangles,
8

4
√

3
=



∗
⇒  =

2∗√
3
. The area of the th

rectangular strip is
2∗√

3
∆ and the pressure on it is 


4
√

3− ∗

.

 =

 4
√

3

0



4
√

3− 
 2√

3
 = 8

 4
√

3

0

− 2√
3

 4
√

3

0


2


= 4

2
4√3

0
− 2

3
√

3


3
4√3

0
= 192 − 2

3
√

3
64 · 3√3 = 192 − 128 = 64

≈ 64(840)(98) ≈ 527× 105 N

14.  =
 2

0
(10− )2

√
4− 2 

= 20
 2

0

√
4− 2 − 

 2

0

√
4− 2 2

= 20 1
4
(22)− 

 4

0
12  [ = 4− 2,  = −2 ]

= 20 − 2
3


32

4
0

= 20 − 16
3
 = 


20 − 16

3


= (1000)(98)


20 − 16

3

 ≈ 563× 105 N
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24 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

15. (a) The top of the cube has depth  = 1 m− 20 cm = 80 cm = 08 m.

 =  ≈ (1000)(98)(08)(02)2 = 3136 ≈ 314 N

(b) The area of a strip is 02∆ and the pressure on it is ∗ .

 =
 1

08
(02)  = 02


1
2
2
1
08

= (02)(018) = 0036 = 0036(1000)(98) = 3528 ≈ 353 N

16. The height of the dam is  =
√

702 − 252 cos 30◦ = 15
√

19
√

3
2


.

The width of the trapezoid is  = 50 + 2.

By similar triangles,
25


=



− 
⇒  =

25


(− ). Thus,

 = 50 + 2 · 25


(− ) = 50 +

50


· − 50


·  = 50 + 50− 50


= 100− 50


.

From the small triangle in the second figure, cos 30◦ =
∆


⇒

 = ∆ sec 30◦ = 2∆
√

3.

 =

 

0




100− 50




2√
3
 =

200√
3

 

0

− 100


√

3

 

0


2


=
200√

3

2

2
− 100


√

3

3

3
=

2002

3
√

3
=

200(625)

3
√

3
· 12,825

4
≈ 771× 106 lb

17. (a) The area of a strip is 20∆ and the pressure on it is .

 =
 3

0
20  = 20


1
2
2
3
0

= 20 · 9
2

= 90

= 90(625) = 5625 lb ≈ 563× 103 lb

(b)  =
 9

0
20  = 20


1
2
2
9
0

= 20 · 81
2

= 810 = 810(625) = 50,625 lb ≈ 506× 104 lb.

(c) For the first 3 ft, the length of the side is constant at 40 ft. For 3   ≤ 9, we can use similar triangles to find the length :



40
=

9− 

6
⇒  = 40 · 9− 

6
.

 =
 3

0
40 +

 9

3
(40)

9− 

6
 = 40


1
2
2
3
0

+ 20
3

 9

3
(9− 2)  = 180 + 20

3



9
2
2 − 1

3
3
9
3

= 180 + 20
3



729
2
− 243

−  81
2
− 9


= 180 + 600 = 780 = 780(625) = 48,750 lb ≈ 488× 104 lb

(d) For any right triangle with hypotenuse on the bottom,

sin  =
∆

hypotenuse
⇒

hypotenuse = ∆ csc  = ∆

√
402 + 62

6
=

√
409

3
∆.

 =
 9

3
20

√
409
3

 = 1
3


20
√

409




1
2
2
9
3

= 1
3
· 10√409 (81− 9) ≈ 303,356 lb ≈ 303× 105 lb
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SECTION 8.3 APPLICATIONS TO PHYSICS AND ENGINEERING ¤ 25

18. Partition the interval [ ] by points  as usual and choose ∗ ∈ [−1 ] for each . The th horizontal strip of the

immersed plate is approximated by a rectangle of height∆ and width (∗ ), so its area is  ≈ (∗ )∆. For small

∆, the pressure  on the th strip is almost constant and  ≈ ∗ by Equation 1. The hydrostatic force  acting on the

th strip is  =  ≈ ∗(∗ )∆. Adding these forces and taking the limit as →∞, we obtain the hydrostatic

force on the immersed plate:

 = lim
→∞


=1

 = lim
→∞


=1

∗(∗ )∆ =
 

() 

19. From Exercise 18, we have  =
 

()  =

 94

70
64() . From the table, we see that∆ = 04, so using

Simpson’s Rule to estimate  , we get

 ≈ 64 04
3

[70(70) + 4(74)(74) + 2(78)(78) + 4(82)(82) + 2(86)(86) + 4(90)(90) + 94(94)]

= 256
3

[7(12) + 296(18) + 156(29) + 328(38) + 172(36) + 36(42) + 94(44)]

= 256
3

(48604) ≈ 4148 lb

20. (a) From Equation 8,  = 1


 

()  ⇒  =

 

()  ⇒  = 

 

()  ⇒

() =
 

 ()  =  by Exercise 18.

(b) For the figure in Exercise 10, let the coordinates of the centroid ( ) =


√

2 0

.

 = () = 
√
2
2 = 

√
2

2
2 =

√
2 3

2
.

21. The moment of the system about the origin is =
2

=1

 = 11 +22 = 6 · 10 + 9 · 30 = 330.

The mass of the system is =
2

=1

 = 1 +2 = 6 + 9 = 15.

The center of mass of the system is  =  = 330
15

= 22.

22. The moment is11 + 22 + 33 = 12(−3) + 15(2) + 20(8) = 154. The mass is

1 +2 +3 = 12 + 15 + 20 = 47. The center of mass is  =  = 154
47

.

23. The mass is =
3

=1

 = 4 + 2 + 4 = 10. The moment about the -axis is =
3
=1

 = 4(−3) + 2(1) + 4(5) = 10.

The moment about the -axis is =
3

=1

 = 4(2) + 2(−3) + 4(3) = 14. The center of mass is

( ) =











=


14

10

10

10


= (14 1).

24. The mass is =
4

=1

 = 5 + 4 + 3 + 6 = 18.

The moment about the -axis is =
4

=1

 = 5(2) + 4(5) + 3(2) + 6(−2) = 24.

[continued]
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26 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

The moment about the -axis is =
4

=1

 = 5(−4) + 4(0) + 3(3) + 6(1) = −5.

The center of mass is ( ) =











=

−5

18

24

18


=


− 5

18

4

3


.

25. The region in the figure is “right-heavy” and “bottom-heavy,” so we know that

  05 and   1, and we might guess that  = 07 and  = 07.

 =
 1

0
2 =


2
1
0

= 1− 0 = 1.

 = 1


 1

0
(2)  = 1

1


2
3
3
1
0

= 2
3


 = 1


 1

0

1
2
(2)

2
 = 1

1

 1

0
22  =


2
3
3
1
0

= 2
3
.

Thus, the centroid is ( ) =


2
3
 2

3


.

26. The region in the figure is “right-heavy” and “bottom-heavy,” so we know

that   2 and   1, and we might guess that  = 23 and  = 08.

 =
 4

0

√
 =


2
3
32

4
0

= 16
3
.

 = 1


 4

0
 (
√
 )  = 3

16

 4

0
32  = 3

16


2
5
52

4
0

= 3
40

(32− 0) = 12
5
.

 = 1


 4

0
1
2
(
√
 )

2
 = 3

16

 4

0
1
2
 = 3

32


1
2
2
4
0

= 3
64

(16− 0) = 3
4
.

Thus, the centroid is ( ) = (24 075).

27. The region in the figure is “right-heavy” and “bottom-heavy,” so we know

  05 and   1, and we might guess that  = 06 and  = 09.

 =
 1

0
  = []

1

0 = − 1.

 = 1


 1

0
  = 1

− 1
[ − ]

1

0 [by parts]

= 1
− 1

[0− (−1)] = 1
− 1

.

 = 1


 1

0

1
2
()

2
 = 1

− 1
· 1

4


2
1
0

= 1
4(− 1)


2 − 1


= + 1

4
.

Thus, the centroid is ( ) =


1
− 1

 +1
4


≈ (058 093).

28. Since the region in the figure is symmetric about the line  = 
2
, we

know that  = 
2
. The region is “bottom-heavy,” so we know that

  05, and we might guess that  = 04.

 =
 
0

sin =
− cos


0

= 1− (−1) = 2.

 = 1


 
0
 sin

82
= 1

2


sin−  cos


0

= 1
2
[(0 + )− (0− 0)] = 

2
.

 = 1


 
0

1
2
(sin)2  = 1

2
· 1

2

 
0

1
2
(1− cos 2)  = 1

8


− 1

2
sin 2


0

= 1
8
[( − 0)− (0− 0)] = 

8
≈ 039.

Thus, the centroid is ( ) = (
2
 

8
).
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SECTION 8.3 APPLICATIONS TO PHYSICS AND ENGINEERING ¤ 27

29.  =
 1

0
(12 − 2)  =


2
3
32 − 1

3
3
1
0

=


2
3
− 1

3

− 0 = 1
3
.

= 1


 1

0
(12 − 2)  = 3

 1

0
(32 − 3) 

= 3


2
5
52 − 1

4
4
1
0

= 3


2
5
− 1

4


= 3


3
20


= 9

20
.

 = 1


 1

0

1
2


(12)2 − (2)2


 = 3


1
2

  1

0
(− 4) 

= 3
2


1
2
2 − 1

5
5
1
0

= 3
2


1
2
− 1

5


= 3

2


3
10


= 9

20
.

Thus, the centroid is ( ) =


9
20
 9

20


.

30. The curves intersect when 2− 2 =  ⇔ 0 = 2 + − 2 ⇔
0 = ( + 2)(− 1) ⇔  = −2 or  = 1.

 =
 1

−2
(2− 2 − )  =


2− 1

3
3 − 1

2
2
1
−2

= 7
6
− − 10

3


= 9

2
.

= 1


 1

−2
(2− 2 − )  = 2

9

 1

−2
(2− 3 − 2) 

= 2
9


2 − 1

4
4 − 1

3
3
1
−2

= 2
9


5
12
− 8

3


= − 1

2
.

 = 1


 1

−2

1
2
[(2− 2)2 − 2]  = 2

9
· 1

2

 1

−2
(4− 52 + 4) 

= 1
9


4− 5

3
3 + 1

5
5
1
−2

= 1
9


38
15
− − 16

15


= 2

5
.

Thus, the centroid is ( ) = (− 1
2
 2

5
).

31.  =
 4
0

(cos− sin)  =

sin+ cos

4
0

=
√

2− 1.

 = −1
 4
0

(cos− sin) 

= −1

(sin+ cos) + cos− sin

4
0

[integration by parts]

= −1


4

√
2− 1


=

1
4

√

2− 1√
2− 1

.

 = −1
 4
0

1
2
(cos2 − sin2 )  = 1

2

 4
0

cos 2 = 1
4


sin 2

4
0

=
1

4
=

1

4
√

2− 1
 .

Thus, the centroid is ( ) =



√

2− 4

4
√

2− 1
  1

4
√

2− 1
 ≈ (027 060).

32. =
 1

0
3+

 2

1
(2− )  =


1
4
4
1
0
+

2− 1

2
2
2
1

= 1
4

+ (4− 2)− 2− 1
2


= 3

4
.

= 1


 1

0
(3) +

 2

1
(2− ) 


= 4

3

 1

0
4 +

 2

1
(2− 2) 


= 4

3


1
5
5
1
0
+

2 − 1

3
3
2
1


= 4

3


1
5

+

4− 8

3

− 1− 1
3


= 4

3


13
15


= 52

45
.

[continued]
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28 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

 = 1


 1

0

1
2
(3)2  +

 2

1

1
2
(2− )2 


= 2

3

 1

0
6+

 2

1
(− 2)2 


= 2

3


1
7
7
1
0

+


1
3
(− 2)3

2
1


= 2

3


1
7
− 0 + 0 + 1

3


= 2

3


10
21


= 20

63
.

Thus, the centroid is ( ) =


52
45
 20

63


.

33. The curves intersect when 2−  = 2 ⇔ 0 = 2 +  − 2 ⇔
0 = ( + 2)( − 1) ⇔  = −2 or  = 1.

 =
 1

−2
(2−  − 2)  =


2 − 1

2
2 − 1

3
3
1
−2

= 7
6
− − 10

3


= 9

2
.

= 1


 1

−2

1
2
[(2− )2 − (2)2]  = 2

9
· 1

2

 1

−2
(4− 4 + 2 − 4) 

= 1
9


4 − 22 + 1

3
3 − 1

5
5
1
−2

= 1
9


32
15
− − 184

15


= 8

5
.

 = 1


 1

−2
(2−  − 2)  = 2

9

 1

−2
(2 − 2 − 3) 

= 2
9


2 − 1

3
3 − 1

4
4
1
−2

= 2
9


5
12
− 8

3


= − 1

2
.

Thus, the centroid is ( ) = ( 8
5
− 1

2
).

34. An equation of the line is  = − 3
2
 + 3.  = 1

2
(2)(3) = 3, so =  = 4(3) = 12.

 = 
 2

0

1
2

−3
2
+ 3

2
 = 1

2

 2

0


9
4
2 − 9+ 9


 = 1

2
(4)

3
4
3 − 9

2
2 + 9

2
0

= 2(6− 18 + 18) = 12.

 = 
 2

0

− 3

2
+ 3


 = 

 2

0

−3
2
2 + 3


 = 4

− 1
2
3 + 3

2
2
2
0

= 4(−4 + 6) = 8.

 =



=

8

12
=

2

3
and  =




=

12

12
= 1. Thus, the center of mass is ( ) =


2
3
 1

. Since  is constant, the center of

mass is also the centroid.

35. The quarter-circle has equation  =
√

42 − 2 for 0 ≤  ≤ 4 and the line has equation  = −2.

 = 1
4
(4)2 + 2(4) = 4 + 8 = 4( + 2), so =  = 6 · 4( + 2) = 24( + 2).

 = 
 4

0

1
2

√
16− 2

2 − (−2)2

 = 1

2

 4

0
(16− 2 − 4)  = 1

2
(6)

12− 1

3
3
4
0

= 3

48− 64

3


= 80.

 = 
 4

0

√

16− 2 − (−2)

 = 

 4

0

√

16− 2 + 
 4

0
2 = 6


− 1

3
(16− 2)32

4
0
+ 6

2
4
0

= 6

0 + 64

3


+ 6(16) = 224.

 =



=

224

24( + 2)
=

28

3( + 2)
and  =




=

80

24( + 2)
=

10

3( + 2)
.

Thus, the center of mass is


28

3( + 2)


10

3( + 2)


≈ (182 065).

36. We’ll use  = 8, so∆ = − 


= 8− 0
8

= 1.

 =
 8

0
()  ≈ 10 = 1

3
[(0) + 4(1) + 2(2) + 4(3) + 2(4) + 4(5) + 2(6) + 4(7) + (8)]

≈ 1
3
[0 + 4(20) + 2(26) + 4(23) + 2(22) + 4(33) + 2(40) + 4(32) + 0]

= 1
3
(608) = 2026


or 304

15
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SECTION 8.3 APPLICATIONS TO PHYSICS AND ENGINEERING ¤ 29

Now
 8

0
 () ≈ 1

3
[0 · (0) + 4 · 1 · (1) + 2 · 2 · (2) + 4 · 3 · (3)

+ 2 · 4 · (4) + 4 · 5 · (5) + 2 · 6 · (6) + 4 · 7 · (7) + 8 · (8)]

≈ 1
3
[0 + 8 + 104 + 276 + 176 + 66 + 48 + 896 + 0]

= 1
3
(2672) = 8906


or 1336

15


, so  = 1



 8

0
()  ≈ 439.

Also,
 8

0
[()]2 ≈ 1

3
[02 + 4(20)2 + 2(26)2 + 4(23)2 + 2(22)2 + 4(33)2 + 2(40)2 + 4(32)2 + 02]

= 1
3
(17688) = 5896, so  = 1



 8

0

1
2
[()]2  ≈ 145.

Thus, the centroid is ( ) ≈ (44 15).

37. =
 1

−1
[(3 − )− (2 − 1)]  =

 1

−1
(1− 2) 


odd-degree terms

drop out


= 2

 1

0
(1− 2)  = 2


− 1

3
3
1
0

= 2


2
3


= 4

3
.

= 1


 1

−1
(3 − − 2 + 1)  = 3

4

 1

−1
(4 − 2 − 3 + ) 

= 3
4

 1

−1
(4 − 2)  = 3

4
· 2  1

0
(4 − 2) 

= 3
2


1
5
5 − 1

3
3
1
0

= 3
2

− 2
15


= − 1

5
.

  
            

 = 1


 1

−1
1
2
[(3 − )2 − (2 − 1)2]  = 3

4
· 1

2

 1

−1
(6 − 24 + 2 − 4 + 22 − 1) 

= 3
8
· 2  1

0
(6 − 34 + 32 − 1)  = 3

4


1
7
7 − 3

5
5 + 3 − 

1
0

= 3
4

− 16
35


= − 12

35
.

Thus, the centroid is ( ) =
− 1

5
− 12

35


.

38. The curves intersect at  =  ≈ −1315974 and  =  ≈ 053727445.

 =
 

[(2− 2)− ]  =


2− 1

3
3 − 



≈ 1452014.

= 1


 

(2− 2 − )  = 1




2 − 1

4
4 −  + 




≈ −0374293

 = 1


 


1
2
[(2− 2)2 − ()2]  = 1

2

 

(4− 42 + 4 − 2) 

= 1
2


4− 4

3
3 + 1

5
5 − 1

2
2


≈ 1218131

Thus, the centroid is ( ) ≈ (−037 122).

39. Choose - and -axes so that the base (one side of the triangle) lies along

the -axis with the other vertex along the positive -axis as shown. From

geometry, we know the medians intersect at a point 2
3
of the way from each

vertex (along the median) to the opposite side. The median from  goes to

the midpoint


1
2
(+ ) 0


of side , so the point of intersection of the

medians is


2
3
· 1

2
(+ ) 1

3



=


1
3
(+ ) 1

3


.

This can also be verified by finding the equations of two medians, and solving them simultaneously to find their point of

intersection. Now let us compute the location of the centroid of the triangle. The area is  = 1
2
(− ).

[continued]
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30 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

=
1



 0



 · 

(− ) +

 

0

 · 

(− ) 


=

1








 0



(− 
2
) +





 

0


− 

2





=





1

2
2 − 1

3
3

0


+





1

2
2 − 1

3
3


0

=





−1

2
3 +

1

3
3


+






1

2
3 − 1

3
3


=
2

 ( − )
· −

3

6
+

2

 ( − )
· 

3

6
=

1

3 ( − )
(2 − 2) =

 + 

3

and  =
1



 0



1

2





(− )

2

+

 

0

1

2





(− )

2





=
1




2

22

 0



(
2 − 2+ 

2
) +

2

22

 

0

(
2 − 2+ 

2
) 



=
1




2

22


2− 2 + 1

3
3
0


+
2

22


2− 2 + 1

3
3

0



=
1




2

22

−3 + 3 − 1
3
3


+
2

22


3 − 3 + 1

3
3


=
1




2

6
(−+ )


=

2

( − ) 
· (− )2

6
=



3

Thus, the centroid is ( ) =


+ 

3



3


, as claimed.

Remarks: Actually the computation of  is all that is needed. By considering each side of the triangle in turn to be the base,

we see that the centroid is 1
3
of the way from each side to the opposite vertex and must therefore be the intersection of the

medians.

The computation of  in this problem (and many others) can be

simplified by using horizontal rather than vertical approximating rectangles.

If the length of a thin rectangle at coordinate  is (), then its area is

()∆, its mass is ()∆, and its moment about the -axis is

∆ = ()∆. Thus,

 =

()  and  =


() 


=

1




() 

In this problem, () =
− 


(− ) by similar triangles, so

 =
1



 
0

− 


(− )  =

2

2

 
0
( − 2)  =

2

2


1
2
2 − 1

3
3

0

=
2

2
· 

3

6
=



3

Notice that only one integral is needed when this method is used.

40. The rectangle to the left of the -axis has centroid
− 1

2
 1

and area 2. The triangle to the right of the -axis has area 2 and

centroid


2
3
 2

3


[by Exercise 39, the centroid is two-thirds of the way from the vertex (0 0) to the point (1 1)].

 =



=

1



2
=1

 =
1

2 + 2


2
− 1

2


+ 2


2
3


= 1

4


1
3


= 1

12
.

 =



=

1



2
=1

 =
1

2 + 2


2(1) + 2


2
3


= 1

4


10
3


= 5

6
. Thus, the centroid is ( ) =


1
12
 5

6


.
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SECTION 8.3 APPLICATIONS TO PHYSICS AND ENGINEERING ¤ 31

41. Divide the lamina into two triangles and one rectangle with respective masses of 2, 2 and 4, so that the total mass is 8. Using

the result of Exercise 39, the triangles have centroids
−1 2

3


and


1 2

3


. The centroid of the rectangle (its center) is


0− 1

2


.

So, using Formulas 5 and 7, we have  =



=

1



3
=1

  = 1
8


2


2
3


+ 2


2
3


+ 4
− 1

2


= 1

8


2
3


= 1

12
, and  = 0,

since the lamina is symmetric about the line  = 0. Thus, the centroid is ( ) =

0 1

12


.

42. The parabola has equation  = 2 and passes through ( ),

so  = 2 ⇒  =


2
and hence,  =



2
2.

R1 has area 1 =

 

0



2


2
 =



2


1

3


3


0

=


2


3

3


=

1

3
.

Since R has area , R2 has area 2 = − 1
3
 = 2

3
.

For R1:

1 =
1

1

 

0






2


2


 =

3





2

 

0


3
 =

3

3


1

4


4


0

=
3

3


1

4

4


=

3

4


1 =
1

1

 

0

1

2




2


2

2

 =
3



2

24

 

0


4
 =

3

25


1

5


5


0

=
3

25


1

5

5


=

3

10


Thus, the centroid for R1 is (1 1) =


3
4
 3

10


.

For R2:

2 =
1

2

 

0




− 

2


2


 =

3

2

 

0




− 1

2


3


 =

3

2


1

2


2 − 1

42


4


0

=
3

2


2

2
− 2

4


=

3

2


2

4


=

3

8


2 =
1

2

 

0

1

2


()

2 −




2


2

2

 =

3

2

1

2

 

0


2


1− 1

4


4


 =

3

4


− 1

54


5


0

=
3

4


− 1

5



=

3

4


4

5


=

3

5


Thus, the centroid for R2 is (2 2) =


3
8
 3

5


. Note the relationships: 2 = 21, 1 = 22, 2 = 2 1.

43.
 

(+ ) () =

 

 () +

 

()  = 

 

 ()  + 

 

()  = + 

 

()  [by (8)]

= 
 

() + 

 

()  = (+ )

 

() 

44. A sphere can be generated by rotating a semicircle about its diameter. The center of mass travels a distance

2 = 2


4

3


[from Example 4] =

8

3
, so by the Theorem of Pappus, the volume of the sphere is

 =  =
2

2
· 8

3
=

4

3
3.
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32 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

45. A cone of height  and radius  can be generated by rotating a right triangle

about one of its legs as shown. By Exercise 39,  = 1
3
, so by the Theorem of

Pappus, the volume of the cone is

 =  =


1
2
· base · height

 · (2) = 1
2
 · 2  1

3



= 1
3
2.

46. From the symmetry in the figure,  = 4. So the distance traveled by the centroid

when rotating the triangle about the -axis is  = 2 · 4 = 8. The area of the

triangle is  = 1
2
 = 1

2
(2)(3) = 3. By the Theorem of Pappus, the volume of

the resulting solid is  = 3(8) = 24.

47. The curve  is the quarter-circle  =
√

16− 2, 0 ≤  ≤ 4. Its length  is 1
4
(2 · 4) = 2.

Now 0 = 1
2
(16− 2)−12(−2) =

−√
16− 2

⇒ 1 + (0)2 = 1 +
2

16− 2
=

16

16− 2
⇒

 =


1 + (0)2  =
4√

16− 2
 so

 =
1




 =

1

2

 4

0

4(16− 
2
)
−12

 =
4

2


−(16− 

2
)
12
4
0

=
2


(0 + 4) =

8


and

 =
1




  =

1

2

 4

0


16− 2 · 4√

16− 2
 =

4

2

 4

0

 =
2





4
0

=
2


(4− 0) =

8


. Thus, the centroid

is


8



8




. Note that the centroid does not lie on the curve, but does lie on the line  = , as expected, due to the symmetry

of the curve.

48. (a) From Exercise 47, we have  = (1)

  ⇔  =


 . The surface area is

 =


2  = 2

  = 2() = (2), which is the product of the arc length of  and the distance traveled by

the centroid of .

(b) From Exercise 47,  = 2 and  = 8

. By the Second Theorem of Pappus, the surface area is

 = (2) = 2(2 · 8

) = 32.

A geometric formula for the surface area of a half-sphere is  = 22. With  = 4, we get  = 32, which agrees with

our first answer.

49. The circle has arc length (circumference)  = 2. As in Example 7, the distance traveled by the centroid during a rotation is

 = 2. Therefore, by the Second Theorem of Pappus, the surface area is

 =  = (2)(2) = 42

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 8.3 APPLICATIONS TO PHYSICS AND ENGINEERING ¤ 33

50. (a) Let 0 ≤  ≤ 1. If   , then   ; that is, raising  to a larger

power produces a smaller number.

(b) Using Formulas 9 and the fact that the area of R is

 =
 1

0
( − )  =

1

+ 1
− 1

+ 1
=

− 

(+ 1)(+ 1)
, we get

=
(+ 1)(+ 1)

− 

 1

0
[ − ]  =

(+ 1)(+ 1)

− 

 1

0


+1 − +1




=
(+ 1)(+ 1)

− 


1

+ 2
− 1

+ 2


=

(+ 1)(+ 1)

(+ 2)(+ 2)

and

 =
(+ 1)(+ 1)

− 

 1

0
1
2


()

2 − ()
2

 =

(+ 1)(+ 1)

2(− )

 1

0


2 − 2




=
(+ 1)(+ 1)

2(− )


1

2+ 1
− 1

2+ 1


=

(+ 1)(+ 1)

(2+ 1)(2+ 1)

(c) If we take  = 3 and = 4, then

( ) =


4 · 5
5 · 6 

4 · 5
7 · 9


=


2

3

20

63



which lies outside R since


2
3

3
= 8

27
 20

63
. This is the simplest of many

possibilities.

51. Suppose the region lies between two curves  = () and  = () where () ≥ (), as illustrated in Figure 13.

Choose points  with  = 0  1  · · ·   =  and choose ∗ to be the midpoint of the th subinterval; that is,

∗ =  = 1
2
(−1 + ). Then the centroid of the th approximating rectangle  is its center  =




1
2
[() + ()]


.

Its area is [()− ()]∆, so its mass is

[()− ()]∆. Thus,() = [()− ()]∆ ·  =  [()− ()]∆ and

() = [()− ()]∆ · 1
2
[() + ()] =  · 1

2


()

2 − ()
2

∆. Summing over  and taking the limit

as →∞, we get = lim
→∞



 [()− ()]∆ = 

 

[()− ()]  and

 = lim
→∞



 · 1

2


()

2 − ()
2

∆ = 

 


1
2


()2 − ()2


.

Thus,  =



=




=

1



 



[()− ()]  and  =



=




=

1



 



1
2


()

2 − ()
2

.
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34 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

DISCOVERY PROJECT Complementary Coffee Cups

1. Cup A has volume  =
 
0
[()]2  and cup B has volume

 =
 
0
[ − ()]2  =

 
0
{2 − 2() + [()]2} 

=

2


0
− 2

 
0
()  +

 
0
[()]2  = 2− 21 + 

Thus,  =  ⇔ (− 21) = 0 ⇔  = 2(1); that is,  is twice the average value of  on the

interval [0 ].

2. From Problem 1,  =  ⇔  = 21 ⇔ 1 +2 = 21 ⇔ 2 = 1.

3. Let 1 and 2 denote the x-coordinates of the centroids of 1 and 2, respectively. By Pappus’s Theorem,

 = 211 and  = 2( − 2)2, so  =  ⇔ 11 = 2 − 22 ⇔ 2 = 11 + 22
()⇔

2 = 1
2
 (1 +2) ⇔ 1

2
2 = 1

2
1 ⇔ 2 = 1, as shown in Problem 2. [ () The sum of the moments of the

regions of areas 1 and 2 about the y-axis equals the moment of the entire -by- rectangle about the y-axis.]

So, since 1 +2 = , we have  =  ⇔ 1 = 2 ⇔ 1 = 1
2
(1 +2) ⇔ 1 = 1

2
() ⇔

 = 2 (1), as shown in Problem 1.

4. We’ll use a cup that is  = 8 cm high with a diameter of 6 cm on the top and the

bottom and symmetrically bulging to a diameter of 8 cm in the middle (all inside

dimensions).

For an equation, we’ll use a parabola with a vertex at (4 4); that is,

 = ( − 4)2 + 4. To find , use the point (3 0):

3 = (0− 4)2 + 4 ⇒ −1 = 16 ⇒  = − 1
16
. To find , we’ll use the

relationship in Problem 1, so we need 1.

1 =
 8

0

− 1
16

( − 4)2 + 4

 =

 4

−4

− 1
16
2 + 4





 =  − 4


= 2

 4

0

− 1
16
2 + 4


 = 2

− 1
48
3 + 4

4
0

= 2
− 4

3
+ 16


= 88

3


Thus,  = 2(1) = 2


883

8


= 22

3
.

So with  = 8 and curve  = − 1
16

( − 4)2 + 4, we have

 =
 8

0

− 1

16
( − 4)2 + 4

2
 = 

 4

−4

− 1
16
2 + 4

2



 =  − 4


= 2

 4

0


1

256
4 − 1

2
2 + 16




= 2


1
1280

5 − 1
6
3 + 16

4
0

= 2


4
5
− 32

3
+ 64


= 2


812
15


= 1624

15


This is approximately 340 cm3 or 115 fl oz. And with  = 22
3
, we know from Problem 1 that cup B holds the same amount.
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SECTION 8.4 APPLICATIONS TO ECONOMICS AND BIOLOGY ¤ 35

8.4 Applications to Economics and Biology

1. By the Net Change Theorem, (4000)− (0) =
 4000

0
0()  ⇒

(4000) = 18,000 +
 4000

0
(082− 0000 03+ 0000 000 0032) 

= 18,000 +

082− 0000 0152 + 0000 000 0013

4000
0

= 18,000 + 3104 = $21,104

2. By the Net Change Theorem,

(10,000)−(5000) =
 10,000
5000

0()  =
 10,000
5000

(48− 00012)  =

48− 000062

10,000
5000

= 420,000− 225,000 = $195,000

3. By the Net Change Theorem, (50)− (0) =
 50

0
(06 + 0008)  ⇒

(50) = 100 +

06+ 00042

50
0

= 100 + (40− 0) = 140, or $140,000. Similarly,

(100)− (50) =

06+ 00042

100
50

= 100− 40 = 60, or $60,000.

4. Consumer surplus=
 400

0
[()− (400)]  =

 400

0
[(2000− 46

√
 )− 1080] 

=
 400

0
(920− 46

√
 )  = 46

 400

0
(20− 12) 

= 46

20− 2

3
32

400
0

= 46

8000− 2

3
· 8000

= 46 · 1
3
· 8000 ≈ $122,66667

5. () = 10 ⇒ 450

+ 8
= 10 ⇒ + 8 = 45 ⇒  = 37.

Consumer surplus=

 37

0

[()− 10]  =

 37

0


450

+ 8
− 10




=

450 ln (+ 8)− 10

37
0

= (450 ln 45− 370)− 450 ln 8

= 450 ln


45
8

− 370 ≈ $40725

6. () = 3 + 0012.  = (10) = 3 + 1 = 4.

Producer surplus=
 10

0
[ − ()]  =

 10

0


4− 3− 0012




=

− 001

3


3
10
0
≈ 10− 333 = $667

7.  = () ⇒ 625 = 125 + 00022 ⇒ 500 = 1
500

2 ⇒ 2 = 5002 ⇒  = 500.

Producer surplus=
 500

0
[ − ()]  =

 500

0
[625− (125 + 00022)]  =

 500

0


500− 1

500
2



=

500− 1

1500
3
500
0

= 5002 − 1
1500

(5003) ≈ $166,66667
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36 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

8. (a) Demand curve () = supply curve () ⇔ 50− 1
20
 = 20 + 1

10
 ⇔ 30 = 3

20
 ⇔  = 200.

(200) = 50− 1
20

(200) = 40, so the market for this good is in equilibrium when the quantity is 200

and the price is $40.

(b) At equilibrium, the

Consumer surplus =
 200

0
[()− 40]  =

 200

0


50− 1

20
− 40




=

10− 1

40
2
200
0

= $1000

and the

Producer surplus =
 200

0
[40− ()]  =

 200

0


40− 20− 1

10




=

20− 1

20
2
200
0

= $2000

9. (a) Demand function () = supply function () ⇔ 2284− 18 = 27 + 574 ⇔ 171 = 45 ⇔

 = 19
5

[38 thousand]. (38) = 2284− 18(38) = 160. The market for the stereos is in equilibrium when the

quantity is 3800 and the price is $160.

(b) Consumer surplus =
 38

0
[()− 160]  =

 38

0
(2284− 18− 160)  =

 38

0
(684− 18) 

=

684− 92

38
0

= 684(38)− 9(38)2 = 12996

Producer surplus =
 38

0
[160− ()]  =

 38

0
[160− (27+ 574)]  =

 38

0
(1026− 27) 

=

1026− 1352

38
0

= 1026(38)− 135(38)2 = 19494

Thus, the maximum total surplus for the stereos is 12996 + 19494 = 3249, or $324,900.

10. () = () ⇔ 312−014 = 2602 ⇔ 312

26
=

02

−014
⇔ 12 = 034 ⇔ ln 12 = 034 ⇔

 =  =
ln 12

034
.  ≈ 73085 (in thousands) and () ≈ 1121465.

Consumer surplus =

0

[()− ()]  ≈
 73085

0
(312−014 − 1121465)  ≈ 607896

Producer surplus =

0

[()− ()]  ≈
 73085

0
(1121465− 2602)  ≈ 388896

Maximum total surplus ≈ 607896 + 388896 = 996792, or $996,792.

Note: Since () = (), the maximum total surplus could be found by calculating

0

[()− ()] .

11. () =
800,000−5000

+ 20,000
= 16 ⇒  = 1 ≈ 372704.

Consumer surplus =
 1
0

[()− 16]  ≈ $37,753

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 8.4 APPLICATIONS TO ECONOMICS AND BIOLOGY ¤ 37

12. The demand function is linear with slope −05
50

= − 1
100

and (500) = 10, so an equation is − 10 = − 1
100

(− 500) or

 = − 1
100

+ 15. A selling price of $8 implies that 8 = − 1
100

+ 15 ⇒ 1
100

 = 7 ⇒  = 700.

Consumer surplus =
 700

0

− 1
100

+ 15− 8

 =

− 1
200

2 + 7
700
0

= $2450.

13. (8)− (4) =
 8

4
 0()  =

 8

4

√
  =


2
3
32

8
4

= 2
3


16
√

2− 8
 ≈ $975 million

14. The total revenue  obtained in the first four years is

=
 4

0
()  =

 4

0
9000

√
1 + 2  =

 9

1
900012


1
2



[ = 1 + 2,  = 2 ]

= 4500


2
3
32

9
1

= 3000(27− 1) = $78,000

15. Future value =
 
0
() (−)  =

 6

0
8000004 0062(6−)  = 8000

 6

0
004 0372−0062 

= 8000
 6

0
0372−0022  = 80000372

 6

0
−0022  = 80000372


−0022

−0022

6

0

=
80000372

−0022
(−0132 − 1) ≈ $65,23048

16. Present value =
 
0
() −  =

 6

0
8000004 −0062  = 8000

 6

0
−0022  = 8000


−0022

−0022

6
0

=
8000

−0022
(−0132 − 1) ≈ $44,96691

17.  =

 




−

 = 


−+1

− + 1




=


1− 
(

1− − 
1−

).

Similarly,
 




1−

 = 


2−

2− 




=


2− 
(

2− − 
2−

).

Thus,  =
1



 




1−

 =
[(2− )](2− − 2−)
[(1− )](1− − 1−)

=
(1− )(2− − 2−)
(2− )(1− − 1−)

.

18. (9)− (5) =

 9

5

(2200 + 10
08

)  =


2200+

1008

08

9
5

=

2200

9
5
+ 25

2



08
9
5

= 2200(9− 5) + 125(72 − 4) ≈ 24,860

19.  =
4

8
=

(4000)(0008)4

8(0027)(2)
≈ 119× 10−4 cm3s

20. If the flux remains constant, then
0

4
0

8
=

4

8
⇒ 0

4
0 = 4 ⇒ 

0

=


0



4

.

 = 3
4
0 ⇒ 

0

=


0

3
4
0

4

⇒  = 0


4
3

4 ≈ 316050  30; that is, the blood pressure is more than tripled.
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38 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

21. From (3),  =
 

0
 () 

=
6

20
, where

 =

 10

0


−06

 =


1

(−06)
2

(−06− 1) 
−06

10
0


integrating
by parts


= 1

036
(−7−6 + 1)

Thus,  =
6(036)

20(1− 7−6)
=

0108

1− 7−6
≈ 01099 Ls or 6594 Lmin.

22. As in Example 2, we will estimate the cardiac output using Simpson’s Rule with∆ = (16− 0)8 = 2. 16

0
() ≈ 2

3
[(0) + 4(2) + 2(4) + 4(6) + 2(8) + 4(10) + 2(12) + 4(14) + (16)]

= 2
3
[0 + 4(41) + 2(89) + 4(85) + 2(67) + 4(43) + 2(25) + 4(12) + 02]

= 2
3
(1088) = 7253 mg · s/L

Therefore,  ≈ 

7253
=

55

7253
≈ 00758 Ls or 455 Lmin.

23. As in Example 2, we will estimate the cardiac output using Simpson’s Rule with∆ = (16− 0)8 = 2. 16

0
()  ≈ 2

3
[(0) + 4(2) + 2(4) + 4(6) + 2(8) + 4(10) + 2(12) + 4(14) + (16)]

≈ 2
3
[0 + 4(61) + 2(74) + 4(67) + 2(54) + 4(41) + 2(30) + 4(21) + 15]

= 2
3
(1091) = 7273 mg· sL

Therefore,  ≈ 

7273
=

7

7273
≈ 00962 Ls or 577 Lmin.

8.5 Probability

1. (a)
 40,000
30,000 ()  is the probability that a randomly chosen tire will have a lifetime between 30,000 and 40,000 miles.

(b)
∞
25,000 ()  is the probability that a randomly chosen tire will have a lifetime of at least 25,000 miles.

2. (a) The probability that you drive to school in less than 15 minutes is
 15

0
() .

(b) The probability that it takes you more than half an hour to get to school is
∞
30

() .

3. (a) In general, we must satisfy the two conditions that are mentioned before Example 1—namely, (1) () ≥ 0 for all , and

(2)
∞
−∞ ()  = 1. For 0 ≤  ≤ 1, () = 302(1− )2 ≥ 0 and () = 0 for all other values of , so () ≥ 0 for

all . Also,∞
−∞ () =

 1

0
302(1− )2  =

 1

0
302(1− 2+ 2)  =

 1

0
(302 − 603 + 304) 

=

103 − 154 + 65

1
0

= 10− 15 + 6 = 1

Therefore,  is a probability density function.

(b) 

 ≤ 1

3


=
 13

−∞ ()  =
 13

0
302(1− )2  =


103 − 154 + 65

13
0

= 10
27
− 15

81
+ 6

243
= 17

81
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SECTION 8.5 PROBABILITY ¤ 39

4. (a) In general, we must satisfy the two conditions that are mentioned before Example 1—namely, (1) () ≥ 0 for all , and

(2)
∞
−∞ ()  = 1. For () =

3−

(1 + 3−)2
, the numerator and denominator are both positive, so () ≥ 0 for all .

Also, ∞

−∞
() =

 0

−∞
() +

 ∞

0

()  = lim
→−∞

 0



3−

(1 + 3−)2
+ lim

→∞

 

0

3−

(1 + 3−)2


= lim
→−∞

 0

=

−
2

+ lim
→∞

 

=0

−
2


 = 1 + 3−
 = −3− 



= lim
→−∞


1



0
=

+ lim
→∞


1




=0

= lim
→−∞


1

1 + 3−

0


+ lim
→∞


1

1 + 3−


0

= lim
→−∞


1

1 + 3
− 1

1 + 3−


+ lim

→∞


1

1 + 3−
− 1

1 + 3


=

1

1 + 3
− 0 + 1− 1

1 + 3
= 1.

Therefore,  is a probability density function.

(b)  (3 ≤  ≤ 4) =

 4

3

()  =


1

1 + 3−

4
3

[from part (a)] =
1

1 + −1
− 1

1 + 1
≈ 0231

(c) The graph of  appears to be symmetric about the line  = 3, so the mean

appears to be 3. Similarly, half the area under the graph of  appears to lie

to the right of  = 3, so the median also appears to be 3.

5. (a) In general, we must satisfy the two conditions that are mentioned before Example 1—namely, (1) () ≥ 0 for all ,

and (2)
∞
−∞ ()  = 1. If  ≥ 0, then () ≥ 0, so condition (1) is satisfied. For condition (2), we see that ∞

−∞
()  =

 ∞

−∞



1 + 2
 and

Similarly,

 ∞

0



1 + 2
= lim

→∞

 

0



1 + 2
 =  lim

→∞


tan

−1


0

=  lim
→∞

tan
−1

 = 


2


 0

−∞



1 + 2
= 


2


, so

 ∞

−∞



1 + 2
 = 2


2


= .

Since  must equal 1, we must have  = 1 so that  is a probability density function.

(b)  (−1    1) =

 1

−1

1

1 + 2
 =

2



 1

0

1

1 + 2
 =

2




tan

−1

1
0

=
2




4
− 0


=
1

2

6. (a) For 0 ≤  ≤ 3, we have () = (3− 2), which is nonnegative if and only if  ≥ 0. Also,∞
−∞ ()  =

 3

0
(3− 2)  = 


3
2
2 − 1

3
3
3
0

= 


27
2
− 9


= 9
2
. Now 9

2
 = 1 ⇒  = 2

9
. Therefore,

 is a probability density function if and only if  = 2
9
.
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40 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

(b) Let  = 2
9
.

 (  1) =
∞
1

()  =
 3

1

2
9
(3− 2)  = 2

9


3
2
2 − 1

3
3
3
1

= 2
9


27
2
− 9
−  3

2
− 1

3


= 2

9


10
3


= 20

27
.

(c) The mean =
∞
−∞ ()  =

 3

0



2
9
(3− 2)


 = 2

9

 3

0
(32 − 3) 

= 2
9


3 − 1

4
4
3
0

= 2
9


27− 81

4


= 2

9


27
4


= 3

2
.

7. (a) In general, we must satisfy the two conditions that are mentioned before Example 1—namely, (1) () ≥ 0 for all ,

and (2)
∞
−∞ ()  = 1. Since () = 0 or () = 01, condition (1) is satisfied. For condition (2), we see that∞

−∞ ()  =
 10

0
01  =


1
10

10
0

= 1. Thus, () is a probability density function for the spinner’s values.

(b) Since all the numbers between 0 and 10 are equally likely to be selected, we expect the mean to be halfway between the

endpoints of the interval; that is,  = 5.

 =
∞
−∞ ()  =

 10

0
(01)  =


1
20
2
10
0

= 100
20

= 5, as expected.

8. (a) As in the preceding exercise, (1) () ≥ 0 and (2)
∞
−∞ ()  =

 10

0
()  = 1

2
(10)(02) [area of a triangle] = 1.

So () is a probability density function.

(b) (i)  (  3) =
 3

0
()  = 1

2
(3)(01) = 3

20
= 015

(ii) We first compute  (  8) and then subtract that value and our answer in (i) from 1 (the total probability).

 (  8) =
 10

8
()  = 1

2
(2)(01) = 2

20
= 010. So  (3 ≤  ≤ 8) = 1− 015− 010 = 075.

(c) We find equations of the lines from (0 0) to (6 02) and from (6 02) to (10 0), and find that

() =


1
30
 if 0 ≤   6

− 1
20
+ 1

2
if 6 ≤   10

0 otherwise

=
∞
−∞ ()  =

 6

0



1
30


+

 10

6

− 1

20
+ 1

2


 =


1
90
3
6
0

+
− 1

60
3 + 1

4
2
10
6

= 216
90

+
− 1000

60
+ 100

4

− −216
60

+ 36
4


= 16

3
= 53

9. We need to find so that
∞


()  = 1
2
⇒ lim

→∞

 


1
5
−5  = 1

2
⇒ lim

→∞


1
5
(−5)−5




= 1
2
⇒

(−1)(0− −5) = 1
2
⇒ −5 = 1

2
⇒ −5 = ln 1

2
⇒  = −5 ln 1

2
= 5 ln 2 ≈ 347 min.

10. (a)  = 1000 ⇒ () =


0 if   0

1
1000

−1000 if  ≥ 0

(i)  (0 ≤  ≤ 200) =
 200

0

1
1000

−1000  =

−−1000

200
0

= −−15 + 1 ≈ 0181

(ii)  (  800) =
∞
800

1
1000

−1000  = lim
→∞


−−1000


800

= 0 + −45 ≈ 0449

(b) We need to find so that
∞


()  = 1
2
⇒ lim

→∞

 


1
1000

−1000  = 1
2
⇒ lim

→∞


−−1000




= 1
2
⇒

0 + −1000 = 1
2
⇒ −1000 = ln 1

2
⇒  = −1000 ln 1

2
= 1000 ln 2 ≈ 6931 h.
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SECTION 8.5 PROBABILITY ¤ 41

11. (a) An exponential density function with  = 16 is () =


0 if   0

1
16

−16 if  ≥ 0
.

The probability that a customer waits less than a second is

 (  1) =
 1

0
()  =

 1

0

1
16

−16  =

−−16

1
0

= −−116 + 1 ≈ 0465.

(b) The probability that a customer waits more than 3 seconds is

 (  3) =
∞
3

()  = lim
→∞

 
3
()  = lim

→∞


−−16


3

= lim
→∞

(−−16 + −316) = −316 ≈ 0153.

Or: Calculate 1−  3

0
() .

(c) We want to find  such that  (  ) = 005. From part (b),  (  ) = −16. Solving −16 = 005 gives us

− 
16

= ln005 ⇒  = −16 ln 005 ≈ 479 seconds.

Or: Solve
 
0
()  = 095 for .

12. (a) We first find an antiderivative of () = 2 .

2


=

1


2  −


2


 





 = 2,  =  

 = 2 ,  = 1




=

1


2  − 2




1


  −


1






 
 = ,  =  

 = ,  = 1




=

1


2  − 2

2
  +

2

3
 + =

1




2 − 2


+

2

2


+

= −20−005(2 + 40 + 800) +  [with  = −005]

 (0 ≤  ≤ 48) =

 48

0

()  =
1

15,676

 48

0

()  =
1

15,676


−20

−005
(

2
+ 40 + 800)

48
0

=
−20

15,676
(5024−24 − 800) ≈ 0439.

(b)  (  36) =  (36   ≤ 150) =
1

15,676

 150

36
()  =

1

15,676


−20−005(2 + 40 + 800)

150
36

=
−20

15,676
(29,300−75 − 3536−18) ≈ 0725

13. (a) () =


1

1600
 if 0 ≤  ≤ 40

1
20
− 1

1600
 if 40   ≤ 80

0 otherwise

 (30 ≤  ≤ 60) =

 60

30

()  =

 40

30



1600
+

 60

40


1

20
− 

1600


 =


2

3200

40
30

+




20
− 2

3200

60
40

=


1600

3200
− 900

3200


+


60

20
− 3600

3200


−


40

20
− 1600

3200


= −1300

3200
+ 1 =

19

32

The probability that the amount of REM sleep is between 30 and 60 minutes is 19
32
≈ 594%.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



42 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

(b)  =

 ∞

−∞
 () =

 40

0






1600


+

 80

40




1

20
− 

1600


 =


3

4800

40
0

+


2

40
− 3

4800

80
40

=
64,000
4800

+


6400

40
− 512,000

4800


−


1600

40
− 64,000

4800


= −384,000

4800
+ 120 = 40

The mean amount of REM sleep is 40 minutes.

14. (a) With  = 69 and  = 28, we have  (65 ≤  ≤ 73) =

 73

65

1

28
√

2
exp


− (− 69)

2

2 · 282


 ≈ 0847

(using a calculator or computer to estimate the integral).

(b)  (  6 feet) =  (  72 inches) = 1−  (0 ≤  ≤ 72) ≈ 1− 0858 = 0142, so 142% of the adult male

population is more than 6 feet tall.

15.  ( ≥ 10) =

 ∞

10

1

42
√

2
exp


− (− 94)

2

2 · 422


. To avoid the improper integral we approximate it by the integral from

10 to 100. Thus,  ( ≥ 10) ≈
 100

10

1

42
√

2
exp


− (− 94)

2

2 · 422


 ≈ 0443 (using a calculator or computer to estimate

the integral), so about 44 percent of the households throw out at least 10 lb of paper a week.

Note: We can’t evaluate 1−  (0 ≤  ≤ 10) for this problem since a significant amount of area lies to the left of = 0.

16. (a)  (0 ≤  ≤ 480) =

 480

0

1

12
√

2
exp


− (− 500)

2

2 · 122


 ≈ 00478 (using a calculator or computer to estimate the

integral), so there is about a 478% chance that a particular box contains less than 480 g of cereal.

(b) We need to find  so that  (0 ≤   500) = 005. Using our calculator or computer to find  (0 ≤  ≤ 500) for

various values of , we find that if  = 51973,  = 005007; and if  = 51974,  = 004998. So a good target weight

is at least 51974 g.

17. (a)  (0 ≤  ≤ 100) =

 100

0

1

8
√

2
exp


− (− 112)2

2 · 82


 ≈ 00668 (using a calculator or computer to estimate the

integral), so there is about a 668% chance that a randomly chosen vehicle is traveling at a legal speed.

(b)  ( ≥ 125) =

 ∞

125

1

8
√

2
exp


− (− 112)2

2 · 82


 =

 ∞

125

() . In this case, we could use a calculator or computer

to estimate either
 300

125
()  or 1−  125

0
() . Both are approximately 00521, so about 521% of the motorists are

targeted.

18. () =
1


√

2
−(−)2(22) ⇒  0() =

1


√

2
−(−)2(22)−2(− )

22
=

−1

3
√

2
−(−)2(22)(− ) ⇒

 00() =
−1

3
√

2


−(−)2(22) · 1 + (− )−(−)2(22) −2(− )

22



=
−1

3
√

2
−(−)2(22)


1− (− )2

2


=

1

5
√

2
−(−)2(22)


(− )2 − 2


 00()  0 ⇒ (− )2 − 2  0 ⇒ |− |   ⇒ −  −    ⇒ −     +  and similarly,

 00()  0 ⇒   −  or   + . Thus,  changes concavity and has inflection points at  = ± .
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SECTION 8.5 PROBABILITY ¤ 43

19.  (− 2 ≤  ≤ + 2) =

 +2

−2

1


√

2
exp


− (− )

2

22


. Substituting  =

− 


and  =

1


 gives us

 2

−2

1


√

2

− 2/2

( ) =
1√
2

 2

−2


− 2/2

 ≈ 09545.

20. Let () =


0 if   0

− if  ≥ 0
where  = 1. By using parts, tables, or a CAS, we find that

(1):

  = (2)(− 1)

(2):

2  = (3)(22 − 2+ 2)

Now
2 =

∞
−∞(− )2()  =

 0

−∞(− )2() +
∞
0

(− )2() 

= 0 + lim
→∞


 
0
(− )2−  =  · lim

→∞

 
0


2− − 2− + 2−




Next we use (2) and (1) with  = − to get

2 =  lim
→∞


−−

3


22 + 2+ 2

− 2
−

2
(−− 1) + 2 

−

−

0

Using l’Hospital’s Rule several times, along with the fact that  = 1, we get

2 = 


0−


− 2

3
+

2


· 1

2
+

1

2
· 1

−


= 


1

3


=

1

2
⇒  =

1


= 

21. (a) First () =
4

3
0

2−20 ≥ 0 for  ≥ 0. Next,

 ∞

−∞
()  =

 ∞

0

4

3
0


2

−20  =

4

3
0

lim
→∞

 

0


2

−20 

By using parts, tables, or a CAS [or as in Exercise 20] , we find that

2  = (3)(22 − 2+ 2). ()

Next, we use () (with  = −20) and l’Hospital’s Rule to get
4

3
0


3
0

−8
(−2)


= 1. This satisfies the second condition for

a function to be a probability density function.

(b) Using l’Hospital’s Rule,
4

3
0

lim
→∞

2

20
=

4

3
0

lim
→∞

2

(20)20
=

2

2
0

lim
→∞

2

(20)20
= 0.

To find the maximum of , we differentiate:

0() =
4

3
0


2−20


− 2

0


+ −20(2)


=

4

3
0

−20(2)


− 

0

+ 1



0() = 0 ⇔  = 0 or 1 =


0

⇔  = 0 [0 ≈ 559× 10−11 m].

0() changes from positive to negative at  = 0, so () has its maximum value at  = 0.
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44 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

(c) It is fairly difficult to find a viewing rectangle, but knowing the maximum

value from part (b) helps.

(0) =
4

3
0

2
0
−200 =

4

0

−2 ≈ 9,684,098,979

With a maximum of nearly 10 billion and a total area under the curve of 1,

we know that the “hump” in the graph must be extremely narrow.

(d)  () =

 

0

4

3
0


2

−20  ⇒  (40) =

 40

0

4

3
0


2

−20 . Using () from part (a) [with  = −20],

 (40) =
4

3
0


−20

−83
0


4

2
0

2 +
4

0

+ 2

40
0

=
4

3
0


3
0

−8


[−8(64 + 16 + 2)− 1(2)] = − 1

2
(82−8 − 2)

= 1− 41−8 ≈ 0986

(e)  =

 ∞

−∞
()  =

4

3
0

lim
→∞

 

0


3

−20 . Integrating by parts three times or using a CAS, we find that




3


 =



4



3


3 − 3
2


2
+ 6− 6


. So with  = − 2

0

, we use l’Hospital’s Rule, and get

 =
4

3
0


−4

0

16
(−6)


= 3

2
0.

8 Review

1.  = 4(− 1)32 ⇒ 


= 6(− 1)12 ⇒ 1 +






2

= 1 + 36(− 1) = 36− 35. Thus,

=
 4

1

√
36− 35  =

 109

1

√
 ( 1

36
)


 = 36− 35,
 = 36 


= 1

36


2
3
32

109
1

= 1
54

(109
√

109− 1)

2.  = 2 ln

sin 1

2

 ⇒ 


= 2 · 1

sin


1
2

 · cos 1

2

 · 1

2
= cot


1
2

 ⇒ 1 +






2

= 1 + cot2


1
2



= csc2


1
2


.

Thus,

 =

 

3


csc2


1
2


 =

 

3

csc 1
2

  =

 

3

csc


1
2


 =

 2

6

csc (2 )


 = 1

2


 = 1
2




= 2

ln |csc− cot|

2
6

= 2

ln
csc 

2
− cot 

2

− ln
csc 

6
− cot 

6


= 2


ln |1− 0|− ln

2−√3
  = −2 ln


2−√3

 ≈ 263
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CHAPTER 8 REVIEW ¤ 45

3. 12 = 43 + 3−1 ⇒  = 1
3
3 + 1

4
−1 ⇒ 


= 2 − 1

4
−2 ⇒

1 +






2

= 1 + 4 − 1
2

+ 1
16
−4 = 4 + 1

2
+ 1

16
−4 = (2 + 1

4
−2)2. Thus,

=

 3

1


2 + 1

4
−2

2
 =

 3

1

2
+ 1

4

−2
  =

 3

1



2
+ 1

4

−2

 =


1
3

3 − 1

4

−1
3
1

= (9− 1
12

)− ( 1
3
− 1

4
) = 106

12
= 53

6

4. (a)  =
4

16
+

1

22
=

1

16
4 +

1

2
−2 ⇒ 


=

1

4
3 − −3 ⇒

1 + ()2 = 1 +


1
4
3 − −3

2
= 1 + 1

16
6 − 1

2
+ −6 = 1

16
6 + 1

2
+ −6 =


1
4
3 + −3

2
.

Thus,  =
 2

1


1
4
3 + −3


 =


1
16
4 − 1

2
−2

2
1

=

1− 1

8

−  1
16
− 1

2


= 21

16
.

(b)  =
 2

1
2


1
4
3 + −3


 = 2

 2

1


1
4
4 + −2


 = 2


1
20
5 − 1



2
1

= 2


32
20
− 1

2

−  1
20
− 1


= 2


8
5
− 1

2
− 1

20
+ 1


= 2


41
20


= 41

10


5. (a)  =
2

+ 1
⇒ 0 =

−2

(+ 1)2
⇒ 1 + (0)2 = 1 +

4

(+ 1)4
.

For 0 ≤  ≤ 3,  =
 3

0


1 + (0)2  =

 3

0


1 + 4( + 1)4  ≈ 35121.

(b) The area of the surface obtained by rotating  about the -axis is

 =

 3

0

2  = 2

 3

0

2

+ 1


1 + 4(+ 1)4  ≈ 221391.

(c) The area of the surface obtained by rotating  about the -axis is

 =
 3

0
2 = 2

 3

0



1 + 4( + 1)4  ≈ 298522.

6. (a)  = 2 ⇒ 1 + (0)2 = 1 + 42. Rotate about the -axis for 0 ≤  ≤ 1:

 =
 1

0
2

√
1 + 42  =

 5

1

4

√
 [ = 1 + 42] = 

6


32

5
1

= 
6
(532 − 1)

(b)  = 2 ⇒ 1 + (0)2 = 1 + 42. Rotate about the -axis for 0 ≤  ≤ 1:

 = 2
 1

0
2
√

1 + 42  = 2
 2

0

1
4
2
√

1 + 2 1
2
 [ = 2] = 

4

 2

0
2
√

1 + 2 

= 
4


1
8
(1 + 22)

√
1 + 2 − 1

8
ln
+

√
1 + 2

 2
0

[ = tan  or use Formula 22]

= 
4


1
4
(9)
√

5− 1
8

ln

2 +

√
5
− 0


= 

32


18
√

5− ln

2 +

√
5


7.  = sin ⇒ 0 = cos ⇒ 1 + (0)2 = 1 + cos2 . Let () =
√

1 + cos2 . Then

 =
 
0
() ≈ 10

=
(− 0)10

3


(0) + 4



10


+ 2


2
10


+ 4


3
10


+ 2


4
10


+ 4


5
10


+ 2


6
10


+ 4


7
10


+ 2


8
10


+ 4


9
10


+ ()


≈ 3820188
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46 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

8.  =
 
0

2  =
 
0

2 sin
√

1 + cos2 . Let () = 2 sin
√

1 + cos2 . Then

 =
 
0
() ≈ 10

=
(− 0)10

3


(0) + 4



10


+ 2


2
10


+ 4


3
10


+ 2


4
10


+ 4


5
10


+ 2


6
10


+ 4


7
10


+ 2


8
10


+ 4


9
10


+ ()


≈ 14426045

9.  =
 
1

√
− 1  ⇒  =

√
− 1 ⇒ 1 + ()2 = 1 +

√
− 1


=
√
.

Thus,  =
 16

1

√
 =

 16

1
14  = 4

5


54

16
1

= 4
5
(32− 1) = 124

5
.

10.  =
 16

1
2 = 2

 16

1
 · 14  = 2

 16

1
54  = 2 · 4

9


94

16
1

= 8
9

(512− 1) = 4088
9



11. As in Example 8.3.1,


2− 
=

1

2
⇒ 2 = 2−  and  = 2(15 + ) = 3 + 2 = 3 + 2−  = 5− .

Thus,  =
 2

0
(5− )  = 


5
2
2 − 1

3
3
2
0

= 

10− 8

3


= 22

3
 ≈ 458 lb [ ≈ 625 lbft3].

12.  =
 4

0
(4− )2


2
√


 = 4

 4

0
(412 − 32) 

= 4


8
3
32 − 2

5
52

4
0

= 4


64
3
− 64

5


= 256


1
3
− 1

5


= 512

15
 ≈ 21333 lb [ ≈ 625 lbft3]

13.  =
 4

0

√
− 1

2


 =


2
3
32 − 1

4
2
4
0

= 16
3
− 4 = 4

3

= 1


 4

0

√

− 1
2


 = 3

4

 4

0


32 − 1

2
2



= 3
4


2
5
52 − 1

6
3
4
0

= 3
4


64
5
− 64

6


= 3

4


64
30


= 8

5

 = 1


 4

0

1
2

√

2

−  1
2

2

 = 3
4

 4

0

1
2


− 1

4
2

 = 3

8


1
2
2 − 1

12
3
4
0

= 3
8


8− 16

3


= 3

8


8
3


= 1

Thus, the centroid is ( ) =


8
5
 1

.

14. From the symmetry of the region,  = 
2
.  =

 34

4
sin =

− cos
34
4

= 1√
2
−

− 1√

2


=
√

2

 =
1



 34

4

1
2

sin
2
 =

1



 34

4

1
4

(1− cos 2) 

=
1

4
√

2


− 1

2
sin 2

34
4

=
1

4
√

2


3
4
− 1

2
(−1)− 

4
+ 1

2
· 1 = 1

4
√

2



2

+ 1


Thus, the centroid is ( ) =


2
 1

4
√

2



2

+ 1
 ≈ (157 045).
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CHAPTER 8 REVIEW ¤ 47

15. The area of the triangular region is  = 1
2
(2)(4) = 4. An equation of the line is  = 1

2
 or  = 2.

 =
1



 2

0

1

2
[()]

2
 =

1

4

 2

0

1

2
(2)

2
 =

1

8

 2

0

4
2
 =

1

8


4

3

3

2
0

=
1

6
(8) =

4

3

 =
1



 2

0

 ()  =
1

4

 2

0

(2)  =
1

2

 2

0


2
 =

1

2


1

3

3

2
0

=
1

6
(8) =

4

3

The centroid of the region is


4

3

4

3


.

16. An equation of the line is  = 8− . An equation of the quarter-circle is  = −√82 − 2 with 0 ≤  ≤ 8. The area of the

region is  = 1
2
(8)(8) + 1

4
(8)2 = 32 + 16 = 16(2 + ).

=
1



 8

0

[()− ()]  =
1



 8

0



(8− ) +


64− 2




=
1



 8

0


8− 

2
+ (64− 

2
)
12

 =

1




4

2 − 1

3


3 − 1

3
(64− 

2
)
32

8
0

=
1




256− 512

3
− 0


−


0− 0− 512

3


=

256

16(2 + )
=

16

2 + 

 =
1



 8

0

1

2
{[()]

2 − [()]
2}  =

1

2

 8

0


(8− )

2 − (−


64− 2 )
2



=
1

2

 8

0


64− 16+ 

2 − (64− 
2
)

 =

1

2

 8

0

(2
2 − 16) 

=
1



 8

0

(
2 − 8)  =

1




1

3


3 − 4
2

8
0

=
1




512

3
− 256


=

1

16(2 + )


−256

3


= − 16

3(2 + )

The centroid of the region is


16

2 + 
− 16

3(2 + )


≈ (311−104).

17. The centroid of this circle, (1 0), travels a distance 2(1) when the lamina is rotated about the -axis. The area of the circle

is (1)2. So by the Theorem of Pappus,  = (2) = (1)22(1) = 22.

18. The semicircular region has an area of 1
2
2, and sweeps out a sphere of radius  when rotated about the -axis.

 = 0 because of symmetry about the line  = 0. And by the Theorem of Pappus,  = (2) ⇒
4
3
3 = 1

2
2(2) ⇒  = 4

3
. Thus, the centroid is ( ) =


0 4

3


.

19.  = 100 ⇒  = 2000− 01(100)− 001(100)2 = 1890

Consumer surplus =
 100

0
[()−  ]  =

 100

0


2000− 01− 0012 − 1890




=

110− 0052 − 001

3
3
100
0

= 11,000− 500− 10,000
3

≈ $716667
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48 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

20.
 24

0
()  ≈ 12 = 24− 0

12 · 3 [1(0) + 4(19) + 2(33) + 4(51) + 2(76) + 4(71) + 2(58)

+ 4(47) + 2(33) + 4(21) + 2(11) + 4(05) + 1(0)]

= 2
3
(1278) = 852 mg · sL

Therefore,  ≈ 852 = 6852 ≈ 00704 Ls or 4225 Lmin.

21. () =



20

sin


10



if 0 ≤  ≤ 10

0 if   0 or   10

(a) () ≥ 0 for all real numbers  and∞
−∞ ()  =

 10

0


20

sin


10


 = 

20
· 10


− cos


10

10

0
= 1

2
(− cos + cos 0) = 1

2
(1 + 1) = 1

Therefore,  is a probability density function.

(b)  (  4) =
 4

−∞ ()  =
 4

0


20

sin


10


 = 1

2

− cos


10

4

0
= 1

2

− cos 2
5

+ cos 0


≈ 1
2
(−0309017 + 1) ≈ 03455

(c)  =
∞
−∞ ()  =

 10

0

20
 sin



10




=
 
0


20
· 10

(sin)


10



 [ = 

10
,  = 

10
]

= 5


 
0
 sin

82
= 5


[sin−  cos]



0 = 5

[0− (−1)] = 5

This answer is expected because the graph of  is symmetric about the

line  = 5.

22.  (250 ≤  ≤ 280) =

 280

250

1


√

2

−(−)2(22)

 =

 280

250

1

15
√

2
exp

− (− 268)
2

2 · 152


 ≈ 0673.

Thus, the percentage of pregnancies that last between 250 and 280 days is about 673%.

23. (a) The probability density function is () =


0 if   0

1
8
−8 if  ≥ 0

 (0 ≤  ≤ 3) =
 3

0

1
8
−8  =


−−8

3
0

= −−38 + 1 ≈ 03127

(b)  (  10) =
∞
10

1
8
−8  = lim

→∞


−−8


10

= lim
→∞

(−−8 + −108) = 0 + −54 ≈ 02865

(c) We need to find such that  ( ≥ ) = 1
2
⇒ ∞



1
8
−8  = 1

2
⇒ lim

→∞


−−8




= 1
2
⇒

lim
→∞

(−−8 + −8) = 1
2
⇒ −8 = 1

2
⇒ −8 = ln 1

2
⇒  = −8 ln 1

2
= 8 ln 2 ≈ 555 minutes.
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PROBLEMS PLUS

1. 2 + 2 ≤ 4 ⇔ 2 + ( − 2)
2 ≤ 4, so  is part of a circle, as shown

in the diagram. The area of  is 1

0


4 − 2 

113
=

−2

2


4 − 2 + 2cos−1


2−
2

1
0

[ = 2]

= − 1
2

√
3 + 2 cos−1


1
2

− 2 cos−1 1

= −
√

3
2

+ 2


3

− 2(0) = 2
3
−
√

3
2

Another method (without calculus): Note that  = ∠ = 
3
, so the area is

(area of sector )− (area of4) = 1
2


22


3
− 1

2
(1)
√

3 = 2
3
−
√

3
2

2.  = ±√3 − 4 ⇒ The loop of the curve is symmetric about  = 0, and therefore  = 0. At each point 

where 0 ≤  ≤ 1, the lamina has a vertical length of
√
3 − 4 − −√3 − 4


= 2

√
3 − 4. Therefore,

 =

 1

0
 · 2√3 − 4  1

0
2
√
3 − 4 

=

 1

0

√
3 − 4  1

0

√
3 − 4 

. We evaluate the integrals separately:

 1

0

√
3 − 4 =

 1

0
52

√
1− 

=
 2
0

2 sin6  cos 


1− sin2  


sin  =

√
, cos   = (2

√
 ),

2 sin  cos   = 


=
 2
0

2 sin6  cos2   =
 2
0

2


1
2

(1− cos 2)
3 1

2
(1 + cos 2)

=
 2
0

1
8
(1− 2 cos 2 + 2cos3 2 − cos4 2) 

=
 2
0

1
8


1− 2 cos 2 + 2cos 2(1− sin2 2)− 1

4
(1 + cos 4)2




= 1
8


 − 1

3
sin3 2

2
0

− 1
32

 2
0


1 + 2 cos 4 + cos2 4




= 
16
− 1

32


 + 1

2
sin 4

2
0

− 1
64

 2
0

(1 + cos 8) 

= 
16
− 1

32


 + 1

2
sin 4

2
0

− 1
64

 2
0

(1 + cos 8) 

= 3
64
− 1

64


 + 1

8
sin 8

2
0

= 5
128 1

0

√
3 − 4 =

 1

0
32

√
1−  =

 2
0

2 sin4  cos 


1− sin2   [sin  =
√
 ]

=
 2
0

2 sin4  cos2   =
 2
0

2 · 1
4
(1− cos 2)2 · 1

2
(1 + cos 2) 

=
 2
0

1
4
(1− cos 2 − cos2 2 + cos3 2) 

=
 2
0

1
4


1− cos 2 − 1

2
(1 + cos 4) + cos 2(1− sin2 2)




= 1
4



2
− 1

8
sin 4 − 1

6
sin3 2

2
0

= 
16

Therefore,  =
5128

16
=

5

8
, and ( ) =


5
8
 0

.
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50 ¤ CHAPTER 8 PROBLEMS PLUS

3. (a) The two spherical zones, whose surface areas we will call 1 and 2, are

generated by rotation about the -axis of circular arcs, as indicated in the figure.

The arcs are the upper and lower portions of the circle 2 + 2 = 2 that are

obtained when the circle is cut with the line  = . The portion of the upper arc

in the first quadrant is sufficient to generate the upper spherical zone. That

portion of the arc can be described by the relation  =

2 − 2 for

 ≤  ≤ . Thus,  = −

2 − 2 and

 =


1 +






2

 =


1 +

2

2 − 2
 =


2

2 − 2
 =

 
2 − 2

From Formula 8.2.8 we have

1 =

 



2


1 +






2

 =

 



2

2 − 2

 
2 − 2

=

 



2  = 2( − )

Similarly, we can compute 2 =
 
− 2


1 + ()2  =

 
− 2  = 2( + ). Note that 1 + 2 = 42,

the surface area of the entire sphere.

(b)  = 3960 mi and  =  (sin 75◦) ≈ 3825 mi,

so the surface area of the Arctic Ocean is about

2(−) ≈ 2(3960)(135) ≈ 336×106 mi2.

(c) The area on the sphere lies between planes  = 1 and  = 2, where 2 − 1 = . Thus, we compute the surface area on

the sphere to be  =

 2

1

2


1 +






2

 =

 2

1

2  = 2(2 − 1) = 2.

This equals the lateral area of a cylinder of radius  and height , since such

a cylinder is obtained by rotating the line  =  about the -axis, so the

surface area of the cylinder between the planes  = 1 and  = 2 is

=

 2

1

2


1 +






2

 =

 2

1

2


1 + 02 

= 2
2
=1

= 2(2 − 1) = 2
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CHAPTER 8 PROBLEMS PLUS ¤ 51

(d)  = 2 sin 2345◦ ≈ 3152 mi, so the surface area of the

Torrid Zone is 2 ≈ 2(3960)(3152) ≈ 784× 107 mi2.

4. (a) Since the right triangles  and  are similar, we have
 +


=




⇒

 =
2

 +
. The surface area visible from  is  =

 


2


1 + ()

2
.

From 2 + 2 = 2, we get



(2 + 2) =




(2) ⇒ 2




+ 2 = 0 ⇒




= −


and 1 +






2

=
2 + 2

2
=

2

2
. Thus,

 =

 



2 · 

 = 2( − ) = 2


 − 2

 +


= 2

2


1− 

 +


= 2

2 · 

 +
=

22

 +
.

(b) Assume  ≥ . If a light is placed at point , at a distance  from

the center of the sphere of radius , then from part (a) we find that

the total illuminated area  on the two spheres is [with  + = 

and  + = − ].

() =
22(− )


+

22(− −)

− 
[ ≤  ≤ −].

()

2
= 2


1− 




+2


1− 

− 


,

so 0() = 0 ⇔ 0 = 2 · 

2
+ 2 · −

(− )
2
⇔ 3

2
=

3

(− )
2
⇔ (− )2

2
=

3

3
⇔





− 1

2

=






3

⇒ 


− 1 =






32

⇔ 


= 1 +






32

⇔  = ∗ =


1 + ()32
.

Now 0() = 2


3

2
− 3

(− )2


⇒ 00() = 2


−23

3
− 23

(− )3


and 00(∗)  0, so we have a

local maximum at  = ∗.

However, ∗ may not be an allowable value of —we must show that ∗ is between  and −.

(1) ∗ ≥  ⇔ 

1 + ()32
≥  ⇔  ≥  +




(2) ∗ ≤ − ⇔ 

1 + ()32
≤ − ⇔  ≤ − + 






32

−






32

⇔

+






32

≤ 






32

⇔  ≥ 

()32
+ = + 


, but

+ 

 ≤  + , and since    + [given], we conclude that ∗ ≤ −.

[continued]
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52 ¤ CHAPTER 8 PROBLEMS PLUS

Thus, from (1) and (2), ∗ is not an allowable value of  if    +

.

So  may have a maximum at  = , ∗, or −.

() =
22(−  −)

− 
and (−) =

22(−  −)

−

()  (−) ⇔ 2

− 


2

−
⇔ 2(−)  2(− ) ⇔ 2−3  2− 3 ⇔

2− 2  3 − 3 ⇔ (− )(+ )  (− )(2 + + 2) ⇔   (2 + + 2)( + ) ⇔
  [(+ )2 −](+ ) ⇔   + −(+ ). Now+ −(+ )  + , and we know that

  + , so we conclude that ()  (−).

In conclusion,  has an absolute maximum at  = ∗ provided  ≥  +

; otherwise,  has its maximum

at  = 

5. (a) Choose a vertical -axis pointing downward with its origin at the surface. In order to calculate the pressure at depth ,

consider  subintervals of the interval [0 ] by points  and choose a point ∗ ∈ [−1 ] for each . The thin layer of

water lying between depth −1 and depth  has a density of approximately (∗ ), so the weight of a piece of that layer

with unit cross-sectional area is (∗ )∆. The total weight of a column of water extending from the surface to depth 

(with unit cross-sectional area) would be approximately

=1

(∗ )∆. The estimate becomes exact if we take the limit

as →∞; weight (or force) per unit area at depth  is = lim
→∞


=1

(∗ )∆. In other words,  () =
 
0
() .

More generally, if we make no assumptions about the location of the origin, then  () = 0 +
 
0
() , where 0 is

the pressure at  = 0. Differentiating, we get  = ().

(b)  =
 
−  (+ ) · 2√2 − 2 

=
 
−


0 +

 +

0
0

 

· 2√2 − 2 

= 0

 
− 2

√
2 − 2 + 0

 
−


(+) − 1


· 2√2 − 2 

= (0 − 0)
 
− 2

√
2 − 2 + 0

 
− 

(+) · 2√2 − 2 

= (0 − 0)

2


+ 0

 
− 

 · 2√2 − 2 

6. The problem can be reduced to finding the line which minimizes the shaded

area in the diagram. An equation of the circle in the first quadrant is

 =


1− 2. So the shaded area is

 () =

 

0


1−


1− 2


 +

 1




1− 2 

=

 

0


1−


1− 2


 −

 

1


1− 2 

0() = 1−√1− 2 − √1− 2 [by FTC] = 1− 2
√

1− 2

0 = 0 ⇔ √
1− 2 = 1

2
⇒ 1− 2 = 1

4
⇒ 2 = 3

4
⇒  =

√
3

2
.
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CHAPTER 8 PROBLEMS PLUS ¤ 53

00() = −2 · 1
2
(1− 2)−12(−2) =

2√
1− 2

 0, so  =

√
3

2
gives a minimum value of .

Note: Another strategy is to use the angle  as the variable (see the diagram above) and show that

 =  + cos  − 
4
− 1

2
sin 2, which is minimized when  = 

6
.

7. To find the height of the pyramid, we use similar triangles. The first figure shows a cross-section of the pyramid passing

through the top and through two opposite corners of the square base. Now || = , since it is a radius of the sphere, which

has diameter 2 since it is tangent to the opposite sides of the square base. Also, || =  since4 is isosceles. So the

height is || = √2 + 2 =
√

2 .

We first observe that the shared volume is equal to half the volume of the sphere, minus the sum of the four equal volumes

(caps of the sphere) cut off by the triangular faces of the pyramid. See Exercise 6.2.49 for a derivation of the formula for the

volume of a cap of a sphere. To use the formula, we need to find the perpendicular distance  of each triangular face from the

surface of the sphere. We first find the distance  from the center of the sphere to one of the triangular faces. The third figure

shows a cross-section of the pyramid through the top and through the midpoints of opposite sides of the square base. From

similar triangles we find that




=
||
|| =

√
2 

2 +
√

2 
2 ⇒  =

√
2 2√
32

=

√
6

3


So  = −  = −
√

6
3
 = 3−√6

3
. So, using the formula  = 2( − 3) from Exercise 6.2.49 with  = , we find that

the volume of each of the caps is 


3−√6
3


2

− 3−√6
3 · 3 


= 15− 6

√
6

9
· 6 +

√
6

9
3 =


2
3
− 7

27

√
6

3. So, using our first

observation, the shared volume is  = 1
2


4
3
3
− 4


2
3
− 7

27

√
6

3 =


28
27

√
6− 2


3.

8. Orient the positive -axis as in the figure.

Suppose that the plate has height  and is symmetric

about the -axis. At depth  below the water

(2 ≤  ≤ 2 + ), let the width of the plate be 2().

Now each of the  horizontal strips has height 

and the th strip (1 ≤  ≤ ) goes from

 = 2 +


− 1




 to  = 2 +







. The hydrostatic force on the th strip is  () =

 2+()

2+[(−1)]

625[2()] .

[continued]
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54 ¤ CHAPTER 8 PROBLEMS PLUS

If we now let [2()] =  (a constant) so that () = (2), then

 () =

 2+()

2+[(−1)]

625  = 625


2+()

2+[(−1)]
= 625


2 +







−


2 +
− 1





= 625







So the hydrostatic force on the th strip is independent of , that is, the force on each strip is the same. So the plate can be

shaped as shown in the figure. (In fact, the required condition is satisfied whenever the plate has width  at depth , for

some constant . Many shapes are possible.)

9. We can assume that the cut is made along a vertical line  =   0, that the

disk’s boundary is the circle 2 + 2 = 1, and that the center of mass of the

smaller piece (to the right of  = ) is


1
2
 0

. We wish to find  to two

decimal places. We have
1

2
=  =

 1


 · 2√1− 2  1


2
√

1− 2 
. Evaluating the

numerator gives us − 1


(1− 2)12(−2)  = − 2

3


1− 2

321


= −2
3


0− 1−  2

32
= 2

3
(1−  2)32.

Using Formula 30 in the table of integrals, we find that the denominator is



√

1− 2 + sin−1
1


=

0 + 

2

− √1−  2 + sin−1

. Thus, we have

1

2
=  =

2
3
(1−  2)32


2
− 

√
1−  2 − sin−1

, or,

equivalently, 2
3
(1−  2)32 = 

4
− 1

2

√

1−  2 − 1
2

sin−1. Solving this equation numerically with a calculator or CAS, we

obtain  ≈ 0138173, or  = 014 m to two decimal places.

10. 1 = 30 ⇒ 1
2
 = 30 ⇒  = 60.

 = 6 ⇒ 1

2

 10

0

()  = 6 ⇒
 

0







+ 10− 


 +

 10



(10)  = 6(70) ⇒

 

0







2
+ 10− 


+ 10 · 1

2




2
10


= 420 ⇒




3
3 + 52 − 

2
2


0

+ 5(100− 2) = 420 ⇒ 1
3
2 + 52 − 1

2
2 + 500− 52 = 420 ⇒ 80 = 1

6
2 ⇒

480 = () ⇒ 480 = 60 ⇒  = 8. So  = 60
8

= 15
2
and an equation of the line is

 =
152

8
+


10− 15

2


=

15

16
+

5

2
. Now

 =
1

2

 10

0

1
2
[()]

2
 =

1

70 · 2

 8

0


15

16
+

5

2

2

+

 10

8

(10)
2




= 1
140

 8

0


225
256

2 + 75
16
+ 25

4


+ 100(10− 8)


= 1

140


225
768

3 + 75
32
2 + 25

4

8
0
+ 200


= 1

140
(150 + 150 + 50 + 200) = 550

140
= 55

14

[continued]
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CHAPTER 8 PROBLEMS PLUS ¤ 55

Another solution: Assume that the right triangle cut from the square has legs

 cm and  cm long as shown. The triangle has area 30 cm2, so 1
2
 = 30 and

 = 60. We place the square in the first quadrant of the -plane as shown, and

we let  , , and  denote the triangle, the remaining portion of the square, and

the full square, respectively. By symmetry, the centroid of  is (5 5). By

Exercise 8.3.39, the centroid of  is




3
 10− 

3


.

We are given that the centroid of  is (6 ), where  is to be determined. We take the density of the square to be 1, so that

areas can be used as masses. Then  has mass = 30,  has mass = 100, and  has mass =  − = 70. As

in Exercises 40 and 41 of Section 8.3, we view  as consisting of a mass at the centroid (   ) of  and a mass  at the

centroid ( ) of . Then  =
 +

 +

and  =
  +

 +

; that is, 5 =
30(3) + 70(6)

100

and 5 =
30(10− 3) + 70

100
.

Solving the first equation for , we get  = 8 cm. Since  = 60 cm2,

it follows that  = 60
8

= 75 cm. Now the second equation says that

70 = 200 + 10, so 7 = 20 +  = 55
2
and  = 55

14
= 39285714 cm.

The solution is depicted in the figure.

11. If  = , then  =
area under  =  sin 

area of rectangle
=

 
0
 sin  


=

[− cos ]


0


=
− (−1) + 1


=

2


.

If  = 2, then  =
area under  = 1

2
 sin 

area of rectangle
=

 
0

1
2
 sin  


=

[− cos ]


0

2
=

2

2
=

1


.

12. (a) The total set of possibilities can be identified with the rectangular

region R = {( ) | 0 ≤    0 ≤   }. Even when   ,

the needle intersects at least one line if and only if  ≤  sin . Let

R1 = {( ) | 0 ≤  ≤  sin  0 ≤   }. When  ≤ , R1 is

contained in R, but that is no longer true when   . Thus, the

probability that the needle intersects a line becomes

 =
area(R∩R1)

area(R)
=

area(R∩R1)



When   , the curve  =  sin  intersects the line  = 

twice—at

sin−1()  


and at


 − sin−1()  


. Set 1 = sin−1 () and 2 =  − 1. Then
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56 ¤ CHAPTER 8 PROBLEMS PLUS

area(R∩R1) =

 1

0

 sin   +

 2

1

 +

 

2

 sin  

= 2

 1

0

 sin   + (2 − 1) = 2
− cos 

1
0

+ ( − 21)

= 2(1− cos 1) + ( − 21)

= 2


1−

√
2 − 2




+ 


 − 2 sin−1







= 2− 2

√
2 − 2 + − 2 sin−1







We are told that  = 4 and  = 7, so area(R∩R1) = 14− 2

√
33 + 4 − 8 sin−1


4
7

 ≈ 1021128 and

 = 1
4

area(R∩R1) ≈ 0812588. (By comparison,  = 2

≈ 0636620 when  = , as shown in the solution to

Problem 11.)

(b) The needle intersects at least two lines when  +  ≤  sin ; that is, when

 ≤  sin  − . Set R2 = {( ) | 0 ≤  ≤  sin  −  0 ≤   }.
Then the probability that the needle intersects at least two lines is

2 =
area(R∩R2)

area(R)
=

area(R∩R2)



When  = 4 and  = 7, R2 is contained in R (see the figure). Thus,

2 =
1

4
area(R2) =

1

4

 −sin−1(47)

sin−1(47)
(7 sin  − 4)  = 1

4
· 2
 2

sin−1(47)
(7 sin  − 4) 

=
1

2

−7 cos  − 4
2
sin−1(47) =

1

2


0− 2 + 7

√
33

7
+ 4 sin−1


4
7


=

√
33 + 4 sin−1


4
7

− 2

2

≈ 0301497

(c) The needle intersects at least three lines when  + 2 ≤  sin : that is, when  ≤  sin  − 2. Set

R3 = {( ) | 0 ≤  ≤  sin  − 2 0 ≤   }. Then the probability that the needle intersects at least three lines is

3 =
area(R∩R3)

area(R)
=

area(R∩R3)


. (At this point, the generalization to ,  any positive integer, should be clear.)

Under the given assumption,

3 =
1


area(R3) =

1



 −sin−1(2)

sin−1(2)

( sin  − 2)  =
2



 2

sin−1(2)

( sin  − 2) 

=
2



− cos  − 2
2
sin−1(2)

=
2



−+
√
2 − 42 + 2 sin−1(2)


Note that the probability that a needle touches exactly one line is 1 − 2, the probability that it touches exactly two lines

is 2 − 3, and so on.
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CHAPTER 8 PROBLEMS PLUS ¤ 57

13. Solve for : 2 + ( +  + 1)2 = 1 ⇒ ( +  + 1)2 = 1− 2 ⇒  +  + 1 = ±√1− 2 ⇒

 = −− 1±√1− 2.

=

 1

−1


−− 1 +


1− 2


−

−− 1−


1− 2




=

 1

−1

2


1− 2  = 2


2

 
area of

semicircle


= 

 =
1



 1

−1

 · 2


1− 2  = 0 [odd integrand]

 =
1



 1

−1

1

2


−− 1 +


1− 2

2

−

−− 1−


1− 2

2

 =

1



 1

−1

1

2


−4


1− 2 − 4


1− 2




= − 2



 1

−1





1− 2 +


1− 2


 = − 2



 1

−1




1− 2 − 2



 1

−1


1− 2 

= − 2


(0) [odd integrand] − 2




2

 
area of

semicircle


= −1

Thus, as expected, the centroid is ( ) = (0−1). We might expect this result since the centroid of an ellipse is

located at its center.
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9 DIFFERENTIAL EQUATIONS

9.1 Modeling with Differential Equations

1.  = 2
3
 + −2 ⇒ 0 = 2

3
 − 2−2. To show that  is a solution of the differential equation, we will substitute the

expressions for  and 0 in the left-hand side of the equation and show that the left-hand side is equal to the right-hand side.

LHS= 0 + 2 = 2
3
 − 2−2 + 2


2
3
 + −2


= 2

3
 − 2−2 + 4

3
 + 2−2

= 6
3
 = 2 = RHS

2.  = − cos −  ⇒  = −(− sin ) + cos (−1)− 1 =  sin − cos − 1.

LHS= 



= ( sin − cos − 1) = 2 sin −  cos − 

= 2 sin +  = RHS,

so  is a solution of the differential equation. Also () = − cos −  = −(−1)−  =  −  = 0, so the initial

condition is satisfied.

3. (a)  =  ⇒ 0 =  ⇒ 00 = 2. Substituting these expressions into the differential equation

200 + 0 −  = 0, we get 22 +  −  = 0 ⇒ (22 +  − 1) = 0 ⇒
(2 − 1)( + 1) = 0 [since  is never zero] ⇒  = 1

2
or −1.

(b) Let 1 = 1
2
and 2 = −1, so we need to show that every member of the family of functions  = 2 + − is a

solution of the differential equation 200 + 0 −  = 0.

 = 2 + − ⇒ 0 = 1
2
2 − − ⇒ 00 = 1

4
2 + −.

LHS = 200 + 0 −  = 2


1
4
2 + −


+


1
2
2 − −


− (2 + −)

= 1
2
2 + 2− + 1

2
2 − − − 2 − −

=


1
2
+ 1

2
− 


2 + (2− − )−

= 0 = RHS

4. (a)  = cos  ⇒ 0 = − sin  ⇒ 00 = −2 cos . Substituting these expressions into the differential equation

400 = −25, we get 4(−2 cos ) = −25(cos ) ⇒ (25− 42) cos  = 0 [for all ] ⇒ 25− 42 = 0 ⇒
2 = 25

4
⇒  = ± 5

2
.

(b)  =  sin  + cos  ⇒ 0 =  cos − sin ⇒ 00 = −2 sin −2 cos .

The given differential equation 400 = −25 is equivalent to 400 + 25 = 0. Thus,

LHS = 400 + 25 = 4(−2 sin −2 cos ) + 25( sin  + cos )

= −42 sin − 42 cos + 25 sin+ 25 cos 

= (25− 42) sin + (25− 42) cos 

= 0 since 2 = 25
4
.
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5. (a)  = sin ⇒ 0 = cos ⇒ 00 = − sin.

LHS = 00 +  = − sin + sin = 0 6= sin, so  = sin is not a solution of the differential equation.

(b)  = cos ⇒ 0 = − sin ⇒ 00 = − cos.

LHS = 00 +  = − cos + cos = 0 6= sin, so  = cos is not a solution of the differential equation.

(c)  = 1
2
 sin ⇒ 0 = 1

2
( cos + sin) ⇒ 00 = 1

2
(− sin + cos + cos).

LHS = 00 +  = 1
2
(− sin + 2cos) + 1

2
 sin = cos 6= sin, so  = 1

2
 sin is not a solution of the

differential equation.

(d)  = −1
2
 cos ⇒ 0 = − 1

2
(− sin + cos) ⇒ 00 = − 1

2
(− cos− sin− sin).

LHS = 00 +  = − 1
2
(− cos− 2 sin) +

− 1
2
 cos


= sin = RHS, so  = − 1

2
 cos is a solution of the

differential equation.

6. (a)  =
ln+


⇒ 0 =

 · (1)− (ln+)

2
=

1− ln− 

2
.

LHS = 20 +  = 2 · 1− ln−

2
+  · ln+ 



= 1− ln−  + ln + = 1 = RHS, so  is a solution of the differential equation.

(b) A few notes about the graph of  = (ln+):

(1) There is a vertical asymptote of  = 0.

(2) There is a horizontal asymptote of  = 0.

(3)  = 0 ⇒ ln+  = 0 ⇒  = − ,

so there is an -intercept at − .

(4) 0 = 0 ⇒ ln = 1−  ⇒  = 1− ,

so there is a local maximum at  = 1− .

(c) (1) = 2 ⇒ 2 =
ln 1 +

1
⇒ 2 = , so the solution is  =

ln+ 2


[shown in part (b)].

(d) (2) = 1 ⇒ 1 =
ln 2 +

2
⇒ 2 + ln 2 + ⇒  = 2− ln 2, so the solution is  =

ln + 2− ln 2



[shown in part (b)].

7. (a) Since the derivative 0 = −2 is always negative (or 0 if  = 0), the function  must be decreasing (or equal to 0) on any

interval on which it is defined.

(b)  =
1

+ 
⇒ 0 = − 1

(+ )
2
. LHS = 0 = − 1

(+)
2

= −


1

 +

2

= −2 = RHS

(c)  = 0 is a solution of 0 = −2 that is not a member of the family in part (b).

(d) If () =
1

 +
, then (0) =

1

0 +
=

1


. Since (0) = 05,

1


=

1

2
⇒  = 2, so  =

1

+ 2
.
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SECTION 9.1 MODELING WITH DIFFERENTIAL EQUATIONS ¤ 805

8. (a) If  is close to 0, then 3 is close to 0, and hence, 0 is close to 0. Thus, the graph of  must have a tangent line that is

nearly horizontal. If  is large, then 3 is large, and the graph of  must have a tangent line that is nearly vertical.

(In both cases, we assume reasonable values for .)

(b)  = (− 2)−12 ⇒ 0 = (− 2)−32. RHS = 3 = [

− 2

−12
]3 = (− 2)−32 = 0 = LHS

(c) When  is close to 0, 0 is also close to 0.

As  gets larger, so does |0|.

(d) (0) = (− 0)
−12

= 1
√
 and (0) = 2 ⇒

√
 = 1

2
⇒  = 1

4
, so  =


1
4
− 2

−12
.

9. (a)



= 12


1− 

4200


. Now




 0 ⇒ 1− 

4200
 0 [assuming that   0] ⇒ 

4200
 1 ⇒

  4200 ⇒ the population is increasing for 0    4200.

(b)



 0 ⇒   4200

(c)



= 0 ⇒  = 4200 or  = 0

10. (a)



= −[2 − (1 + ) + ] = −( − )( − 1), so




= 0 ⇔  = 0, , or 1.

(b) With 0    1,  = −( − )( − 1)  0 ⇔   0 or     1, so  is increasing on (−∞ 0) and ( 1).

(c) With 0    1,  = −( − )( − 1)  0 ⇔ 0     or   1, so  is decreasing on (0 ) and (1∞).

11. (a) This function is increasing and also decreasing. But  = ( − 1)2 ≥ 0 for all , implying that the graph of the

solution of the differential equation cannot be decreasing on any interval.

(b) When  = 1,  = 0, but the graph does not have a horizontal tangent line.

12. The graph for this exercise is shown in the figure at the right.

A. 0 = 1 +   1 for points in the first quadrant, but we can

see that 0  0 for some points in the first quadrant.

B. 0 = −2 = 0 when  = 0, but we can see that 0  0 for  = 0.

Thus, equations A and B are incorrect, so the correct equation is C.

C. 0 = 1− 2 seems reasonable since:

(1) When  = 0, 0 could be 1.

(2) When   0, 0 could be greater than 1.

(3) Solving 0 = 1− 2 for  gives us  =
1− 0

2
. If 0 takes on small negative values, then as →∞,  → 0+,

as shown in the figure.
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13. (a) 0 = 1 + 2 + 2 ≥ 1 and 0 →∞ as →∞. The only curve satisfying these conditions is labeled III.

(b) 0 = −
2−2  0 if   0 and 0  0 if   0. The only curve with negative tangent slopes when   0 and positive

tangent slopes when   0 is labeled I.

(c) 0 =
1

1 + 
2+2

 0 and 0 → 0 as →∞. The only curve satisfying these conditions is labeled IV.

(d) 0 = sin() cos() = 0 if  = 0, which is the solution graph labeled II.

14. (a) The coffee cools most quickly as soon as it is removed from the heat source. The rate of cooling decreases toward 0 since

the coffee approaches room temperature.

(b)



= ( −), where  is a proportionality constant,  is the

temperature of the coffee, and  is the room temperature. The initial

condition is (0) = 95◦C. The answer and the model support each

other because as  approaches ,  approaches 0, so the model

seems appropriate.

(c)

15. (a)  increases most rapidly at the beginning, since there are usually many simple, easily-learned sub-skills associated with

learning a skill. As  increases, we would expect  to remain positive, but decrease. This is because as time

progresses, the only points left to learn are the more difficult ones.

(b)



= ( −  ) is always positive, so the level of performance 

is increasing. As  gets close to ,  gets close to 0; that is,

the performance levels off, as explained in part (a).

(c)

16. (a)



= (∞ − ). Assuming ∞  , we have   0 and

  0 for all .

(b)

17. If () = 


1− −

1−
=  − 

−1− for   0, where   0,   0, 0    1, and  = (1− ), then




= 


0− −

1− · 


(−1−)


= −−1− · (−)(1− )− =
(1− )


 

−1− =



( − ). The

equation for  indicates that as  increases,  approaches . The differential equation indicates that as  increases, the rate of

increase of  decreases steadily and approaches 0 as  approaches .
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9.2 Direction Fields and Euler's Method

1. (a) (b) It appears that the constant functions  = 05 and  = 15 are

equilibrium solutions. Note that these two values of  satisfy the

given differential equation 0 =  cos.

2. (a) (b) It appears that the constant functions  = 0,  = 2, and  = 4 are

equilibrium solutions. Note that these three values of  satisfy the

given differential equation 0 = tan


1
2


.

3. 0 = 2− . The slopes at each point are independent of , so the slopes are the same along each line parallel to the -axis.

Thus, III is the direction field for this equation. Note that for  = 2, 0 = 0.

4. 0 = (2− ) = 0 on the lines  = 0 and  = 2. Direction field I satisfies these conditions.

5. 0 = + − 1 = 0 on the line  = −+ 1. Direction field IV satisfies this condition. Notice also that on the line  = − we
have 0 = −1, which is true in IV.

6. 0 = sin sin  = 0 on the lines  = 0 and  = 0, and 0  0 for 0    , 0    . Direction field II satisfies these

conditions.

7. 8.

9.
  0 = 1

2


0 0 0

0 1 05

0 2 1

0 −3 −15

0 −2 −1

Note that for  = 0, 0 = 0. The three solution curves sketched go

through (0 0), (0 1), and (0−1).
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10.
  0 = −  + 1

−1 0 0

−1 −1 1

0 0 1

0 1 0

0 2 −1

0 −1 2

0 −2 3

1 0 2

1 1 1

Note that 0 = 0 for  = + 1 and that 0 = 1 for  = . For any

constant value of , 0 decreases as  increases and 0 increases as

 decreases. The three solution curves sketched go through (0 0),

(0 1), and (0−1).

11.
  0 =  − 2

−2 −2 2

−2 2 6

2 2 −2

2 −2 −6

Note that 0 = 0 for any point on the line  = 2. The slopes are

positive to the left of the line and negative to the right of the line. The

solution curve in the graph passes through (1 0).

12.
  0 =  − 2

2 3 2

−2 −3 2

±2 0 −4

0 0 0

2 2 0

0 =  − 2 = ( − ), so 0 = 0 for  = 0 and  = . The

slopes are positive only in the regions in quadrants I and III that are

bounded by  = 0 and  = . The solution curve in the graph passes

through (0 1).
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13.
  0 =  + 

0 ±2 ±2

1 ±2 ±4

−3 ±2 ∓4

Note that 0 = (+ 1) = 0 for any point on  = 0 or on  = −1.

The slopes are positive when the factors  and  + 1 have the same

sign and negative when they have opposite signs. The solution curve

in the graph passes through (0 1).

14.
  0 = + 2

−2 ±1 −1

−2 ±2 2

2 ±1 3

0 ±2 4

0 0 0

Note that 0 =  + 2 = 0 only on the parabola  = −2. The

slopes are positive “outside”  = −2 and negative “inside”

 = −2. The solution curve in the graph passes through (0 0).

15. 0 = 2 − 1
2
2 and (0) = 1.

In Maple, use the following commands to obtain a similar figure.

with(DETools):

ODE:=diff(y(x),x)=xˆ2*y(x)-(1/2)*y(x)ˆ2;

ivs:=[y(0)=1];

DEplot({ODE},y(x),x=-3..2,y=0..4,ivs,linecolor=black);

16. 0 = cos(+ ) and (0) = 1.

In Maple, use the following commands to obtain a similar figure.

with(DETools):

ODE:=diff(y(x),x)=cos(x+y(x));

ivs:=[y(0)=1];

DEplot({ODE},y(x),x=-1.5*Pi..1.5*Pi,y=-1.5*Pi..1.5*Pi,

ivs,linecolor=black);
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17. The direction field is for the differential equation 0 = 3 − 4.

 = lim
→∞

() exists for −2 ≤  ≤ 2;

 = ±2 for  = ±2 and  = 0 for −2    2.

For other values of ,  does not exist.

18. Note that when () = 0 on the graph in the text, we have 0 = () = 0; so we

get horizontal segments at  = ±1, ±2. We get segments with negative slopes only

for 1  ||  2. All other segments have positive slope. For the limiting behavior

of solutions:

• If (0)  2, then lim
→∞

 =∞ and lim
→−∞

 = 2.

• If 1  (0)  2, then lim
→∞

 = 1 and lim
→−∞

 = 2.

• If −1  (0)  1, then lim
→∞

 = 1 and lim
→−∞

 = −1.

• If −2  (0)  −1, then lim
→∞

 = −2 and lim
→−∞

 = −1.

• If   −2, then lim
→∞

 = −2 and lim
→−∞

 = −∞.

19. (a) 0 =  ( ) =  and (0) = 1 ⇒ 0 = 0, 0 = 1.

(i)  = 04 and 1 = 0 +  (0 0) ⇒ 1 = 1 + 04 · 1 = 14. 1 = 0 +  = 0 + 04 = 04,

so 1 =  (04) = 14.

(ii)  = 02 ⇒ 1 = 02 and 2 = 04, so we need to find 2.

1 = 0 +  (0 0) = 1 + 020 = 1 + 02 · 1 = 12,

2 = 1 +  (1 1) = 12 + 021 = 12 + 02 · 12 = 144.

(iii)  = 01 ⇒ 4 = 04, so we need to find 4. 1 = 0 +  (0 0) = 1 + 010 = 1 + 01 · 1 = 11,

2 = 1 +  (1 1) = 11 + 011 = 11 + 01 · 11 = 121,

3 = 2 +  (2 2) = 121 + 012 = 121 + 01 · 121 = 1331,

4 = 3 +  (3 3) = 1331 + 013 = 1331 + 01 · 1331 = 14641.

(b) We see that the estimates are underestimates since

they are all below the graph of  = .
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(c) (i) For  = 04: (exact value)− (approximate value) = 04 − 14 ≈ 00918

(ii) For  = 02: (exact value)− (approximate value) = 04 − 144 ≈ 00518

(iii) For  = 01: (exact value)− (approximate value) = 04 − 14641 ≈ 00277

Each time the step size is halved, the error estimate also appears to be halved (approximately).

20. As  increases, the slopes decrease and all of the

estimates are above the true values. Thus, all of

the estimates are overestimates.

21.  = 05, 0 = 1, 0 = 0, and  ( ) =  − 2.

Note that 1 = 0 +  = 1 + 05 = 15, 2 = 2, and 3 = 25.

1 = 0 +  (0 0) = 0 + 05 (1 0) = 05[0− 2(1)] = −1.

2 = 1 +  (1 1) = −1 + 05 (15−1) = −1 + 05[−1− 2(15)] = −3.

3 = 2 +  (2 2) = −3 + 05 (2−3) = −3 + 05[−3− 2(2)] = −65.

4 = 3 +  (3 3) = −65 + 05 (25−65) = −65 + 05[−65− 2(25)] = −1225.

22.  = 02, 0 = 0, 0 = 1, and  ( ) = 2 − 1
2
2. Note that 1 = 0 +  = 0 + 02 = 02, 2 = 04, 3 = 06,

4 = 08, and 5 = 1.

1 = 0 +  (0 0) = 1 + 02 (0 1) = 1 + 02

02(1)− 1

2
(1)2


= 1 + 02

− 1
2


= 09.

2 = 1 +  (1 1) = 09 + 02 (02 09) = 09 + 02

(02)2(09)− 1

2
(09)2


= 08262.

3 = 2 +  (2 2) = 08262 + 02 (04 08262) = 08262 + 02

(04)2(08262)− 1

2
(08262)2


= 0784377756.

4 = 3 +  (3 3) = 0784377756 + 02 (06 0784377756) ≈ 0779328108.

5 = 4 +  (4 4) ≈ 0779328108 + 02 (08 0779328108) ≈ 0818346876.

Thus, (1) ≈ 08183.

23.  = 01, 0 = 0, 0 = 1, and  ( ) =  + .

Note that 1 = 0 +  = 0 + 01 = 01, 2 = 02, 3 = 03, and 4 = 04.

1 = 0 +  (0 0) = 1 + 01 (0 1) = 1 + 01[1 + (0)(1)] = 11.

2 = 1 +  (1 1) = 11 + 01 (01 11) = 11 + 01[11 + (01)(11)] = 1221

3 = 2 +  (2 2) = 1221 + 01 (02 1221) = 1221 + 01[1221 + (02)(1221)] = 136752.

4 = 3 +  (3 3) = 136752 + 01 (03 136752) = 136752 + 01[136752 + (03)(136752)]

= 15452976.

5 = 4 +  (4 4) = 15452976 + 01 (04 15452976)

= 15452976 + 01[15452976 + (04)(15452976)] = 1761639264.

Thus, (05) ≈ 17616.
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24. (a)  = 02, 0 = 0, 0 = 0, and  ( ) = cos(+ ). Note that 1 = 0 +  = 0 + 02 = 02, 2 = 04, and 3 = 06.

1 = 0 +  (0 0) = 0 + 02 (0 0) = 02 cos(0 + 0) = 02(1) = 02.

2 = 1 +  (1 1) = 02 + 02 (02 02) = 02 + 02 cos(04) ≈ 03842121988.

3 = 2 +  (2 2) ≈ 03842 + 02 (04 03842) ≈ 05258011763.

Thus, (06) ≈ 05258.

(b) Now use  = 01. For 1 ≤  ≤ 6,  = 0.

1 = 0 +  (0 0) = 0 + 01 cos(0 + 0) = 01(1) = 01.

2 = 1 +  (1 1) = 01 + 01 cos(02) ≈ 01980.

3 = 2 +  (2 2) ≈ 01980 + 01 cos(03980) ≈ 02902.

4 = 3 +  (3 3) ≈ 02902 + 01 cos(05902) ≈ 03733.

5 = 4 +  (4 4) ≈ 03733 + 01 cos(07733) ≈ 04448.

6 = 5 +  (5 5) ≈ 04448 + 01 cos(09448) ≈ 05034.

Thus, (06) ≈ 05034.

25. (a)  + 32 = 62 ⇒ 0 = 62 − 32. Store this expression in Y1 and use the following simple program to

evaluate (1) for each part, using H =  = 1 and N = 1 for part (i), H = 01 and N = 10 for part (ii), and so forth.

→ H: 0→ X: 3→ Y:

For(I, 1, N): Y+ H×Y1 → Y: X+H→ X:

End(loop):

Display Y. [To see all iterations, include this statement in the loop.]

(i) H = 1, N = 1 ⇒ (1) = 3

(ii) H = 01, N = 10 ⇒ (1) ≈ 23928

(iii) H = 001, N = 100 ⇒ (1) ≈ 23701

(iv) H = 0001 N = 1000 ⇒ (1) ≈ 23681

(b)  = 2 + −
3 ⇒ 0 = −32−

3

LHS = 0 + 32 = −32−
3

+ 32

2 + −

3


= −32−
3

+ 62 + 32−
3

= 62 = RHS

(0) = 2 + −0 = 2 + 1 = 3

(c) The exact value of (1) is 2 + −13 = 2 + −1.

(i) For  = 1: (exact value)− (approximate value) = 2 + −1 − 3 ≈ −06321

(ii) For  = 01: (exact value)− (approximate value) = 2 + −1 − 23928 ≈ −00249

(iii) For  = 001: (exact value)− (approximate value) = 2 + −1 − 23701 ≈ −00022

(iv) For  = 0001: (exact value)− (approximate value) = 2 + −1 − 23681 ≈ −00002

In (ii)–(iv), it seems that when the step size is divided by 10, the error estimate is also divided by 10 (approximately).
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26. (a) We use the program from the solution to Exercise 25

with Y1 = 3 − 3, H = 001, and N = 2−0
001

= 200.

With (0 0) = (0 1), we get (2) ≈ 19000.

(b)

Notice from the graph that (2) ≈ 19, which serves as

a check on our calculation in part (a).

27. (a) 



+

1


 = () becomes 50 +

1

005
 = 60

or0 + 4 = 12.

(b) From the graph, it appears that the limiting value of the

charge  is about 3.

(c) If0 = 0, then 4 = 12 ⇒  = 3 is an

equilibrium solution.

(d)

(e) 0 + 4 = 12 ⇒ 0 = 12− 4. Now(0) = 0, so 0 = 0 and0 = 0.

1 = 0 +  (0 0) = 0 + 01(12− 4 · 0) = 12

2 = 1 +  (1 1) = 12 + 01(12− 4 · 12) = 192

3 = 2 +  (2 2) = 192 + 01(12− 4 · 192) = 2352

4 = 3 +  (3 3) = 2352 + 01(12− 4 · 2352) = 26112

5 = 4 +  (4 4) = 26112 + 01(12− 4 · 26112) = 276672

Thus, 5 = (05) ≈ 277 C.

28. (a) From Exercise 9.1.14, we have  = ( −). We are given that  = 20◦C and  = −1◦Cmin when

 = 70◦C. Thus, −1 = (70− 20) ⇒  = − 1
50

and the differential equation becomes  = − 1
50

( − 20).

(b) The limiting value of the temperature is 20◦C;

that is, the temperature of the room.
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(c) From part (a),  = − 1
50

( − 20). With 0 = 0, 0 = 95, and  = 2 min, we get

1 = 0 +  (0 0) = 95 + 2
− 1

50
(95− 20)


= 92

2 = 1 +  (1 1) = 92 + 2
− 1

50
(92− 20)


= 8912

3 = 2 +  (2 2) = 8912 + 2
− 1

50
(8912− 20)


= 863552

4 = 3 +  (3 3) = 863552 + 2
− 1

50
(863552− 20)


= 83700992

5 = 4 +  (4 4) = 83700992 + 2
− 1

50
(83700992− 20)


= 8115295232

Thus, (10) ≈ 8115◦C.

9.3 Separable Equations

1.



= 322 ⇒ 

2
= 32  [ 6= 0] ⇒ 

−2  =


32  ⇒ −−1 = 3 +  ⇒

−1


= 3 +  ⇒  =

−1

3 +
.  = 0 is also a solution.

2.



= 

√
 ⇒ √


=  [ 6= 0] ⇒ 

−12  =

 ⇒ 212 = 1

2
2 + ⇒

√
 = 1

4
2 + 1

2
 ⇒  =


1
4
2 +

2
, where  = 1

2
.  = 0 is also a solution.

3. 0 = 2 + 1 ⇒ 



= 2 + 1 ⇒   =

2 + 1


 [ 6= 0] ⇒


  =

 
 +

1




 ⇒

1
2
2 = 1

2
2 + ln ||+ ⇒ 2 = 2 + 2 ln ||+ 2 ⇒  = ±


2 + 2 ln ||+, where  = 2.

4. 0 +  = 0 ⇒ 


= − ⇒ −  = − ⇒ 

−  =
 − ⇒ −− = − 1

2
2 +  ⇒

− = 1
2
2 −  ⇒ − = ln


1
2
2 − 

 ⇒  = − ln


1
2
2 − 


5. ( − 1)0 = 2 + cos ⇒ ( − 1)




= 2 + cos ⇒ ( − 1)  = (2 + cos)  ⇒

( − 1)  =

(2 + cos)  ⇒  −  = 2+ sin+ . We cannot solve explicitly for .

6.



=

1 + 4

2 + 42
⇒ 


=

1 + 4

2(+ 4)
⇒ (+ 4)  =

1 + 4

2
 ⇒ 

(+ 4)  =

(−2 + 2)  ⇒

1

2
2 +

1

5
5 = −1


+

1

3
3 + . We cannot solve explicitly for .

7.



=

 sec 


2 ⇒  cos   = −

2

 ⇒ 
 cos   =


−

2

 ⇒

 sin  + cos  = − 1
2
−

2

+  [by parts]. We cannot solve explicitly for .

8.



=

2
√

1 +2

ln
⇒ ln

2
 = 

√
1 +2  ⇒


ln

2
 =


(1 + 

2
)
12

 ⇒

− ln


− 1


=

1

3
(1 +2)32 +  [by parts]. We cannot solve explicitly for.
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9.



= 2−  + 2 − 1 = (2 − 1) + 1(2 − 1) = ( + 1)(2 − 1) ⇒ 1

+ 1
 = (2 − 1)  ⇒


1

+ 1
 =


(

2 − 1)  ⇒ ln |+ 1| = 1
3
3 −  +  ⇒ |+ 1| = 

33−+ ⇒ + 1 = ±33− ⇒

 = 
33− − 1, where = ± . Since  = −1 is also a solution, can equal 0, and hence, can be any real number.

10.



+ +  = 0 ⇒ 


= − ⇒ 

−  = −    ⇒ −− = − +  ⇒ − =  −  ⇒

1


=  −  ⇒  =

1

 − 
⇒  = ln


1

 −


⇒  = − ln


 −


11.




=  ⇒ −  =  ⇒ 

−  =

 ⇒ −− = 1

2
2 +.

(0) = 0 ⇒ −−0 = 1
2
(0)2 +  ⇒  = −1, so −− = 1

2
2 − 1 ⇒ − = − 1

2
2 + 1 ⇒

− = ln

1− 1

2
2
 ⇒  = − ln


1− 1

2
2

.

12.



=

 sin


⇒   =  sin ⇒ 

  =

 sin ⇒ 1

2
2 = − cos + sin +  [by parts].

(0) = −1 ⇒ 1
2
(−1)2 = −0 cos 0 + sin 0 +  ⇒  = 1

2
, so 1

2
2 = − cos + sin + 1

2
⇒

2 = −2 cos+ 2 sin+ 1 ⇒  = −√−2 cos+ 2 sin+ 1 since (0) = −1  0.

13.



=

2 + sec2 

2
, (0) = −5.


2 =

 
2+ sec2 


 ⇒ 2 = 2 + tan + ,

where [(0)]
2

= 02 + tan 0 +  ⇒  = (−5)2 = 25. Therefore, 2 = 2 + tan  + 25, so  = ±√2 + tan + 25.

Since (0) = −5  0, we must have  = −√2 + tan + 25.

14.  + 32
√
2 + 1




= 0 ⇒ 32

√
2 + 1




= − ⇒ 32  =

−√
2 + 1

 ⇒


32  =

 −(2 + 1)−12  ⇒ 3 = −(2 + 1)12 + . (0) = 1 ⇒ 13 = −(02 + 1)12 +  ⇒

 = 2, so 3 = −(2 + 1)12 + 2 ⇒  = (2−√2 + 1)13.

15.  ln = 

1 +


3 + 2


0, (1) = 1.


 ln =

 
 + 


3 + 2


 ⇒ 1

2
2 ln−  1

2


[use parts with  = ln,  = ] = 1
2
2 + 1

3
(3 + 2)32 ⇒ 1

2
2 ln− 1

4
2 +  = 1

2
2 + 1

3
(3 + 2)32.

Now (1) = 1 ⇒ 0 − 1
4

+  = 1
2

+ 1
3
(4)32 ⇒  = 1

2
+ 8

3
+ 1

4
= 41

12
, so

1
2
2 ln− 1

4
2 + 41

12
= 1

2
2 + 1

3
(3 + 2)32. We do not solve explicitly for .

16.



=
√
 ⇒ 

√
 =

√
  ⇒ 

−12  =

12  ⇒ 2 12 = 2

3
32 +.

 (1) = 2 ⇒ 2
√

2 = 2
3

+  ⇒  = 2
√

2− 2
3
, so 2 12 = 2

3
32 + 2

√
2− 2

3
⇒

√
 = 1

3
32 +

√
2− 1

3
⇒

 =


1
3
32 +

√
2− 1

3

2
.
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17. 0 tan = + , 0    2 ⇒ 


=

+ 

tan
⇒ 

+ 
= cot [+  6= 0] ⇒




+ 
=


cos

sin
 ⇒ ln |+ | = ln |sin|+ ⇒ |+ | = ln|sin |+ = ln|sin| ·  =  |sin| ⇒

 +  =  sin, where = ± . (In our derivation, was nonzero, but we can restore the excluded case

 = − by allowing to be zero.) (3) =  ⇒ +  =  sin


3


⇒ 2 = 

√
3

2
⇒  =

4√
3
.

Thus, +  =
4√

3
sin and so  =

4√
3

sin− .

18.



= 2 ln  ⇒ 

2
=  ln   ⇒




2
=


 ln   ⇒ − 1


=  ln −


 

[by parts with  = ln ,  =  ] ⇒ − 1


=  ln −  +  ⇒  =

1

−  ln −
.

(1) = −1 ⇒ −1 =
1

 −  ln 1−
⇒  −  = 1 ⇒  =  + 1. Thus,  =

1

−  ln −  − 1
.

19.



=




⇒   =  ⇒ 

  =

 ⇒ 1

2
2 = 1

2
2 + . (0) = 2 ⇒ 1

2
(2)2 = 1

2
(0)2 + ⇒

 = 2, so 1
2
2 = 1

2
2 + 2 ⇒ 2 = 2 + 4 ⇒  =

√
2 + 4 since (0) = 2  0.

20.  0() =  ()−  ⇒ 


=  −  ⇒ 


= ( − 1) ⇒ 

 − 1
=  [ 6= 1] ⇒




 − 1
=


 ⇒ ln | − 1| = 1

2
2 + . (0) = 2 ⇒ ln |2− 1| = 1

2
(0)2 +  ⇒  = 0, so

ln | − 1| = 1
2
2 ⇒ | − 1| = 

22 ⇒  − 1 = 
22 [since (0) = 2] ⇒  = 

22 + 1.

21.  =  +  ⇒ 


() =




( + ) ⇒ 


= 1 +




, but




=  +  = , so




= 1 +  ⇒



1 + 
=  [ 6= −1] ⇒




1 + 
=


 ⇒ ln |1 + | =  +  ⇒ |1 + | = + ⇒

1 +  = ± ⇒  = ± − 1 ⇒ +  = ± − 1 ⇒  =  − − 1, where = ± 6= 0.

If  = −1, then −1 = +  ⇒  = −− 1, which is just  =  − − 1 with = 0. Thus, the general solution

is  =  − − 1, where ∈ R.

22. 0 =  +  ⇒ 0 = +  ⇒ 


=  +  . Also,  =  ⇒  =  ⇒ 


= 




+ ,

so  +  = 



+  ⇒ 


=




[ 6= 0] ⇒





=





⇒ −− = ln ||+  ⇒

− = − ln ||− ⇒ − = ln(− ln ||− ) ⇒  = − ln(− ln ||−) ⇒  = − ln(− ln ||− ).
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23. (a) 0 = 2


1− 2 ⇒ 


= 2


1− 2 ⇒ 

1− 2
= 2 ⇒



1− 2

=


2 ⇒

sin−1  = 2 + for −
2
≤ 2 +  ≤ 

2
.

(b) (0) = 0 ⇒ sin−1 0 = 02 + ⇒  = 0,

so sin−1  = 2 and  = sin(2) for −

2 ≤  ≤


2.

(c) For


1− 2 to be a real number, we must have −1 ≤  ≤ 1; that is, −1 ≤ (0) ≤ 1. Thus, the initial-value problem

0 = 2


1− 2, (0) = 2 does not have a solution.

24. −0 + cos = 0 ⇔ 
−  = −  cos ⇔ −− = − sin+ 1 ⇔  = − ln(sin+). The solution

is periodic, with period 2. Note that for   1, the domain of the solution is R, but for −1   ≤ 1 it is only defined on the

intervals where sin+   0, and it is meaningless for  ≤ −1, since then sin+  ≤ 0, and the logarithm is undefined.

For −1    1, the solution curve consists of concave-up pieces separated by intervals on which the solution is not defined

(where sin+  ≤ 0). For  = 1, the solution curve consists of concave-up pieces separated by vertical asymptotes at the

points where sin +  = 0 ⇔ sin = −1. For   1, the curve is continuous, and as  increases, the graph moves

downward, and the amplitude of the oscillations decreases.

25.



=

sin

sin 
, (0) =



2
. So


sin   =


sin ⇔ − cos  = − cos+  ⇔ cos  = cos−. From the

initial condition, we need cos 
2

= cos 0− ⇒ 0 = 1−  ⇒  = 1, so the

solution is cos  = cos− 1. Note that we cannot take cos−1 of both sides, since that

would unnecessarily restrict the solution to the case where −1 ≤ cos− 1 ⇔

0 ≤ cos, as cos−1 is defined only on [−1 1]. Instead we plot the graph using Maple’s

plots[implicitplot] or Mathematica’s Plot[Evaluate[· · ·]].
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26.



=


√
2 + 1


⇔ 

  =


√
2 + 1 . We use parts on the LHS with  = ,  =  , and on the RHS

we use the substitution  = 2 + 1, so  = 2. The equation becomes  −    = 1
2

 √
  ⇔

( − 1) = 1
3
(2 + 1)32 + , so we see that the curves are symmetric about the -axis. Every point ( ) in the plane lies

on one of the curves, namely the one for which  = ( − 1) − 1
3
(2 + 1)32. For example, along the -axis,

 = ( − 1) − 1
3
, so the origin lies on the curve with  = − 4

3
. We use Maple’s plots[implicitplot] command or

Plot[Evaluate[· · ·]] in Mathematica to plot the solution curves for various values of .

It seems that the transitional values of  are − 4
3
and − 1

3
 For   −4

3
, the graph consists of left and right branches. At

 = − 4
3
, the two branches become connected at the origin, and as  increases, the graph splits into top and bottom branches.

At  = − 1
3
, the bottom half disappears. As  increases further, the graph moves upward, but doesn’t change shape much.

27. (a) , (c) (b) 0 = 2 ⇒ 


= 2 ⇒



−2

 =


 ⇒

−−1 = +  ⇒ 1


= −−  ⇒

 =
1

 − 
, where = −.  = 0 is also a solution.
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28. (a) , (c) (b) 0 =  ⇒ 


=  ⇒





=


 ⇒

ln || = 1
2
2 + ⇒ || = 

22 + = 
22 ⇒

 = 
22, where = ± . Taking = 0 gives us the

solution  = 0.

29. The curves 2 + 22 = 2 form a family of ellipses with major axis on the -axis. Differentiating gives




(2 + 22) =




(2) ⇒ 2+ 40 = 0 ⇒ 40 = −2 ⇒ 0 =

−
2

. Thus, the slope of the tangent line

at any point ( ) on one of the ellipses is 0 =
−
2

, so the orthogonal trajectories

must satisfy 0 =
2


⇔ 


=

2


⇔ 


= 2 =




⇔




= 2





⇔ ln || = 2 ln ||+ 1 ⇔ ln || = ln ||2 + 1 ⇔

|| = ln
2+1 ⇔  = ±2 · 1 = 2. This is a family of parabolas.

30. The curves 2 = 3 form a family of power functions. Differentiating gives



(2) =




(3) ⇒ 20 = 32 ⇒

0 =
32

2
=

3(23)2

2
=

3

2
, the slope of the tangent line at ( ) on one of the curves. Thus, the orthogonal

trajectories must satisfy 0 = −2

3
⇔ 


= −2

3
⇔

3  = −2 ⇔ 
3  =

 −2 ⇔ 3
2
2 = −2 + 1 ⇔

32 = −22 + 2 ⇔ 22 + 32 = . This is a family of ellipses.

31. The curves  =  form a family of hyperbolas with asymptotes  = 0 and  = 0. Differentiating gives




() =











⇒ 0 = − 

2
⇒ 0 = −

2
[since  =  ⇒  = ] ⇒ 0 = −


. Thus, the slope

of the tangent line at any point ( ) on one of the hyperbolas is 0 = −,

so the orthogonal trajectories must satisfy 0 =  ⇔ 


=




⇔

  =  ⇔ 
  =


 ⇔ 1

2
2 = 1

2
2 + 1 ⇔

2 = 2 + 2 ⇔ 2 − 2 = . This is a family of hyperbolas with

asymptotes  = ±.

32. The curves  = 1( + ) form a family of hyperbolas with asymptotes  = − and  = 0. Differentiating gives




() =






1

+ 


⇒ 0 = − 1

(+ )2
⇒ 0 = −2 [since  = 1( + )]. Thus, the slope of the tangent
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line at any point ( ) on one of the hyperbolas is 0 = −2, so the

orthogonal trajectories must satisfy 0 = 12 ⇔ 


=

1

2
⇔

2  =  ⇔ 
2  =


 ⇔ 1

3
3 = + 1 ⇔

3 = 3+  ⇔  = (3+)13. This is a family of cube root

functions with vertical tangents on the -axis [ = 0].

33. () = 2 +

 

2

[− ()]  ⇒ 0() = − () [by FTC 1] ⇒ 


= (1− ) ⇒




1− 
=


 ⇒ − ln |1− | = 1

2
2 +. Letting  = 2 in the original integral equation

gives us (2) = 2 + 0 = 2. Thus,− ln |1− 2| = 1
2
(2)2 + ⇒ 0 = 2 + ⇒  = −2

Thus, − ln |1− | = 1
2
2 − 2 ⇒ ln |1− | = 2− 1

2
2 ⇒ |1− | = 2−22 ⇒

1−  = ±2−22 ⇒  = 1 + 2−22 [(2) = 2].

34. () = 2 +

 

1



()
,   0 ⇒ 0() =

1

()
⇒ 


=

1


⇒


  =


1


 ⇒

1
2
2 = ln + [  0]. Letting  = 1 in the original integral equation gives us (1) = 2 + 0 = 2.

Thus, 1
2
(2)2 = ln 1 +  ⇒  = 2. 1

2
2 = ln+ 2 ⇒ 2 = 2 ln+ 4 [ 0] ⇒  =

√
2 ln+ 4.

35. () = 4 +

 

0

2

()  ⇒ 0() = 2


() ⇒ 


= 2

√
 ⇒


√


=


2 ⇒

2
√
 = 2 + . Letting  = 0 in the original integral equation gives us (0) = 4 + 0 = 4.

Thus, 2
√

4 = 02 +  ⇒  = 4. 2
√
 = 2 + 4 ⇒ √

 = 1
2
2 + 2 ⇒  =


1
2
2 + 2

2
.

36. (2 + 1) 0() + [()]2 + 1 = 0 ⇒ (2 + 1)



+ 2 + 1 = 0 ⇒ 


=
−2 − 1

2 + 1
⇒



2 + 1
= −




2 + 1
⇒ arctan  = − arctan  +  ⇒ arctan + arctan  =  ⇒

tan(arctan  + arctan ) = tan ⇒ tan(arctan ) + tan(arctan )

1− tan(arctan ) tan(arctan )
= tan ⇒ + 

1− 
= tan =  ⇒

 +  =  −  ⇒  +  =  −  ⇒ (1 + ) =  −  ⇒ () =  =
 − 

1 + 
.

Since (3) = 2 =
 − 3

1 + 3
⇒ 2 + 6 =  − 3 ⇒ 5 = −5 ⇒  = −1 , we have  =

−1− 

1 + (−1)
=

+ 1

− 1
.

37. From Exercise 9.2.27,



= 12− 4 ⇔




12− 4
=


 ⇔ −1

4
ln|12− 4| =  +  ⇔

ln|12− 4| = −4− 4 ⇔ |12− 4| = −4−4 ⇔ 12− 4 = −4 [ = ±−4] ⇔
4 = 12−−4 ⇔  = 3−−4 [ = 4]. (0) = 0 ⇔ 0 = 3− ⇔  = 3 ⇔
() = 3− 3−4. As →∞, ()→ 3− 0 = 3 (the limiting value).
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38. From Exercise 9.2.28,



= − 1

50
( − 20) ⇔




 − 20
=

 − 1
50


 ⇔ ln| − 20| = − 1

50
 +  ⇔

 − 20 = −50 ⇔ () = −50 + 20. (0) = 95 ⇔ 95 =  + 20 ⇔  = 75 ⇔

() = 75−50 + 20.

39.



= ( −  ) ⇔




 −
=


(−)  ⇔ ln| − | = − +  ⇔ | − | = −+ ⇔

 − = − [ = ± ] ⇔  =  +−. If we assume that performance is at level 0 when  = 0, then

 (0) = 0 ⇔ 0 =  + ⇔  = − ⇔  () =  −−. lim
→∞

 () =  − · 0 =  .

40. (a)



= (− )(− ),  6= . Using partial fractions,

1

(− )(− )
=

1(− )

− 
− 1(− )

− 
, so




(− )(− )
=


  ⇒ 1

− 
(− ln |− |+ ln |− |) = +  ⇒ ln

 − 

− 

 = (− )(+ ).

The concentrations [A] = −  and [B] = −  cannot be negative, so
− 

− 
≥ 0 and

 − 

− 

 =
− 

− 
.

We now have ln


− 

− 


= (− )( + ). Since (0) = 0, we get ln







= (− ). Hence,

ln


− 

− 


= (− )+ ln







⇒ − 

− 
=




(−) ⇒  =

[(−) − 1]

(−)− 1
=

[(−) − 1]

(−) − 

moles
L

.

(b) If  = , then



= (− )2, so




(− )
2

=


  and

1

− 
=  +. Since (0) = 0, we get  =

1


.

Thus, −  =
1

 + 1
and  = − 

+ 1
=

2

 + 1

moles
L

. Suppose  = [C] = 2 when  = 20. Then

(20) = 2 ⇒ 

2
=

202

20 + 1
⇒ 402 = 202 +  ⇒ 202 =  ⇒  =

1

20
, so

 =
2(20)

1 + (20)
=

20

1 + 20
=



 + 20

moles
L

.

41. (a) If  = , then



= (− )(− )12 becomes




= (− )32 ⇒ (− )−32  =   ⇒


(− )−32  =


  ⇒ 2(− )−12 =  +  [by substitution] ⇒ 2

 + 
=
√
−  ⇒


2

+ 

2

= −  ⇒ () = − 4

( +)2
. The initial concentration of HBr is 0, so (0) = 0 ⇒

0 = − 4

2
⇒ 4

2
=  ⇒ 2 =

4


⇒  = 2

√
 [ is positive since +  = 2(− )−12  0].

Thus, () = − 4

(+ 2
√
 )

2
.
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(b)



= (− )(− )12 ⇒ 

(− )
√
− 

=   ⇒




(− )
√
− 

=


  ().

From the hint,  =
√
−  ⇒ 2 = −  ⇒ 2 = −, so


(− )
√
− 

=

 −2

[− (− 2)]
= −2




− + 2
= −2


√

− 
2

+ 2

17
= −2


1√
− 

tan−1 √
− 



So () becomes
−2√
− 

tan−1

√
− √
− 

=  + . Now (0) = 0 ⇒  =
−2√
− 

tan−1

√
√

− 
and we have

−2√
− 

tan−1

√
− √
− 

= − 2√
− 

tan−1

√
√

− 
⇒ 2√

− 


tan−1




− 
− tan−1


− 

− 


=  ⇒

() =
2


√
− 


tan−1




− 
− tan−1


− 

− 


.

42. If  =



, then




=

2

2
. The differential equation

2

2
+

2






= 0 can be written as




+

2


 = 0. Thus,




=
−2


⇒ 


= −2


 ⇒


1


 =


−2


 ⇒ ln|| = −2 ln||+ . Assuming  =   0

and   0, we have  = −2 ln + = ln 
−2
 = −2 [ = ] ⇒  =

1

2
 ⇒ 


=

1

2
 ⇒

 =
1

2
  ⇒


 =


1

2
  ⇒  () = −


+.

 (1) = 15 ⇒ 15 = − + (1) and  (2) = 25 ⇒ 25 = −1
2
 + (2).

Now solve for  and : −2(2) + (1) ⇒ −35 = −, so  = 35 and  = 20, and  () = −20 + 35.

43. (a)



=  −  ⇒ 


= −( − ) ⇒




 − 
=


− ⇒ (1) ln| − | = − +1 ⇒

ln| − | = − +2 ⇒ | − | = −+2 ⇒  −  = 3
− ⇒  = 3

− +  ⇒

() = 4
− + . (0) = 0 ⇒ 0 = 4 +  ⇒ 4 = 0 −  ⇒

() = (0 − )− + .

(b) If 0  , then 0 −   0 and the formula for () shows that () increases and lim
→∞

() = .

As  increases, the formula for () shows how the role of 0 steadily diminishes as that of  increases.

44. (a) Use 1 billion dollars as the -unit and 1 day as the -unit. Initially, there is $10 billion of old currency in circulation,

so all of the $50 million returned to the banks is old. At time , the amount of new currency is () billion dollars, so

10− () billion dollars of currency is old. The fraction of circulating money that is old is [10− ()]10, and the amount

of old currency being returned to the banks each day is
10− ()

10
005 billion dollars. This amount of new currency per

day is introduced into circulation, so



=

10− 

10
· 005 = 0005(10− ) billion dollars per day.
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(b)


10− 
= 0005  ⇒ −

10− 
= −0005  ⇒ ln(10− ) = −0005+  ⇒ 10−  = −0005,

where  =  ⇒ () = 10− −0005. From (0) = 0, we get  = 10, so () = 10(1− −0005).

(c) The new bills make up 90% of the circulating currency when () = 09 · 10 = 9 billion dollars.

9 = 10(1− −0005) ⇒ 09 = 1− −0005 ⇒ −0005 = 01 ⇒ −0005 = − ln 10 ⇒
 = 200 ln 10 ≈ 460517 days≈ 126 years.

45. (a) Let () be the amount of salt (in kg) after  minutes. Then (0) = 15. The amount of liquid in the tank is 1000 L at all

times, so the concentration at time  (in minutes) is ()1000 kgL and



= −


()

1000

kg
L


10

L
min


= −()

100

kg
min

.





= − 1

100


 ⇒ ln  = − 

100
+, and (0) = 15 ⇒ ln 15 = , so ln  = ln 15− 

100
.

It follows that ln
 

15


= − 

100
and



15
= −100, so  = 15−100 kg.

(b) After 20 minutes,  = 15−20100 = 15−02 ≈ 123 kg.

46. Let () be the amount of carbon dioxide in the room after  minutes. Then (0) = 00015(180) = 027 m3. The amount of

air in the room is 180 m3 at all times, so the percentage at time  (in mimutes) is ()180× 100, and the change in the

amount of carbon dioxide with respect to time is




= (00005)


2
m3

min


− ()

180


2
m3

min


= 0001− 

90
=

9− 100

9000

m3

min

Hence,




9− 100
=




9000
and − 1

100
ln |9− 100| = 1

9000
+ . Because (0) = 027, we have

− 1
100

ln 18 = , so − 1
100

ln |9− 100| = 1
9000

− 1
100

ln 18 ⇒ ln|9− 100| = − 1
90
 + ln 18 ⇒

ln |9− 100| = ln −90 + ln 18 ⇒ ln |9− 100| = ln(18−90), and |9− 100| = 18−90. Since  is continuous,

(0) = 027, and the right-hand side is never zero, we deduce that 9− 100 is always negative. Thus, |9− 100| = 100− 9

and we have 100 − 9 = 18−90 ⇒ 100 = 9 + 18−90 ⇒  = 009 + 018−90. The percentage of carbon

dioxide in the room is

() =


180
× 100 =

009 + 018−90

180
× 100 = (00005 + 0001−90)× 100 = 005 + 01−90

In the long run, we have lim
→∞

() = 005 + 01(0) = 005; that is, the amount of carbon dioxide approaches 005% as time

goes on.

47. Let () be the amount of alcohol in the vat after  minutes. Then (0) = 004(500) = 20 gal. The amount of beer in the vat

is 500 gallons at all times, so the percentage at time  (in minutes) is ()500× 100, and the change in the amount of alcohol

with respect to time  is



= rate in − rate out = 006


5
gal
min


− ()

500


5
gal
min


= 03− 

100
=

30− 

100

gal
min

.

Hence,




30− 
=




100
and − ln |30− | = 1

100
 +. Because (0) = 20, we have − ln 10 = , so
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− ln |30− | = 1
100

− ln 10 ⇒ ln |30− | = −100 + ln 10 ⇒ ln |30− | = ln −100 + ln 10 ⇒

ln |30− | = ln(10−100) ⇒ |30− | = 10−100. Since  is continuous, (0) = 20, and the right-hand side is

never zero, we deduce that 30−  is always positive. Thus, 30−  = 10−100 ⇒  = 30− 10−100. The

percentage of alcohol is () = ()500× 100 = ()5 = 6− 2−100. The percentage of alcohol after one hour is

(60) = 6− 2−60100 ≈ 49.

48. (a) If () is the amount of salt (in kg) after  minutes, then (0) = 0 and the total amount of liquid in the tank remains

constant at 1000 L.




=


005

kg
L


5

L
min


+


004

kg
L


10

L
min


−

()

1000

kg
L


15

L
min


= 025 + 040− 0015 = 065− 0015 =

130− 3

200

kg
min

Hence,




130− 3
=




200
and − 1

3
ln|130− 3| = 1

200
+ . Because (0) = 0, we have− 1

3
ln 130 = ,

so − 1
3

ln|130− 3| = 1
200

− 1
3

ln 130 ⇒ ln|130− 3| = − 3
200

 + ln 130 = ln(130−3200), and

|130− 3| = 130−3200. Since  is continuous, (0) = 0, and the right-hand side is never zero, we deduce that

130− 3 is always positive. Thus, 130− 3 = 130−3200 and  = 130
3

(1− −3200) kg.

(b) After one hour,  = 130
3

(1− −3·60200) = 130
3

(1− −09) ≈ 257 kg.

Note: As →∞, ()→ 130
3

= 43 1
3
kg.

49. Assume that the raindrop begins at rest, so that (0) = 0.  =  and ()
0
=  ⇒ 0 + 0 =  ⇒

0 + () =  ⇒ 0 +  =  ⇒ 


=  −  ⇒




 − 
=


 ⇒

− (1) ln| − | =  +  ⇒ ln | − | = −−  ⇒  −  = −. (0) = 0 ⇒  = .

So  =  − − ⇒  = ()(1− −). Since   0, as →∞, − → 0 and therefore, lim
→∞

() = .

50. (a) 



= − ⇒ 


= − 


 ⇒ ln || = − 


+ . Since (0) = 0, ln|0| = . Therefore,

ln

 0

 = − 


 ⇒

 0

 = − ⇒ () = ±0
−. The sign is + when  = 0, and we assume

 is continuous, so that the sign is + for all . Thus, () = 0
−.  = 0

− ⇒

() = −0


− +0.

From (0) = 0, we get 0 = −0


+ 0, so 0 = 0 +

0


and () = 0 +

0


(1− −).

The distance traveled from time 0 to time  is ()− 0, so the total distance traveled is lim
→∞

[()− 0] =
0


.

Note: In finding the limit, we use the fact that   0 to conclude that lim
→∞

− = 0.
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(b) 



= −2 ⇒ 

2
= − 


 ⇒ −1


= −


+ ⇒ 1


=




−. Since (0) = 0,

 = − 1

0

and
1


=




+

1

0

. Therefore, () =
1

+ 10

=
0

0+
.



=

0

0 +
⇒

() =





0 

0 +
=




ln|0 +|+ 

0. Since (0) = 0, we get 0 =



ln + 0 ⇒

0 = 0 − 


ln ⇒ () = 0 +




(ln|0 +|− ln) = 0 +




ln

0+



.
We can rewrite the formulas for () and () as () =

0

1 + (0)
and () = 0 +




ln

1 +
0




.
Remarks: This model of horizontal motion through a resistive medium was designed to handle the case in which 0  0.

Then the term −2 representing the resisting force causes the object to decelerate. The absolute value in the expression

for () is unnecessary (since , 0, and are all positive), and lim
→∞

() = ∞. In other words, the object travels

infinitely far. However, lim
→∞

() = 0. When 0  0, the term −2 increases the magnitude of the object’s negative

velocity. According to the formula for (), the position of the object approaches −∞ as  approaches(−0):

lim
→−(0)

() = −∞. Again the object travels infinitely far, but this time the feat is accomplished in a finite amount of

time. Notice also that lim
→−(0)

() = −∞ when 0  0, showing that the speed of the object increases without limit.

51. (a)
1

1

1


= 

1

2

2


⇒ 


(ln1) =




( ln2) ⇒





(ln1)  =





(ln


2)  ⇒

ln1 = ln

2 + ⇒ 1 = 

ln2 +
= 

ln2 
 ⇒ 1 = 


2 , where =  .

(b) From part (a) with 1 = , 2 =  , and  = 00794, we have  =  00794.

52. (a)



= (ln − ln ) ⇒ 


= − (ln − ln ) ⇒ 

 ln()
= −  ⇒




 ln()
=


−  ⇒


1


 =


− 


 = ln(),
 = (1 ) 


⇒ ln || = −+  ⇒

|| = − ⇒  = − [where  = ±] ⇒ ln() = − ⇒ 


= 

− ⇒

 = 
−

with  6= 0.

(b)  (0) = 1 ⇒ 1 = 
−(0) ⇒ 1 =  ⇒  = − , so  = −

−
= 

−− = (−−1).

53. (a) The rate of growth of the area is jointly proportional to

() and −(); that is, the rate is proportional to the

product of those two quantities. So for some constant ,  = 
√
 ( −). We are interested in the maximum of

the function  (when the tissue grows the fastest), so we differentiate, using the Chain Rule and then substituting for
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 from the differential equation:











= 

√
 (−1)




+ ( −) · 1

2
−12 




= 1

2
−12 


[−2+ ( −)]

= 1
2
−12



√
( −)


[ − 3] = 1

2
2( −)( − 3)

This is 0 when − = 0 [this situation never actually occurs, since the graph of () is asymptotic to the line  =  ,

as in the logistic model] and when − 3 = 0 ⇔ () = 3. This represents a maximum by the First Derivative

Test, since










goes from positive to negative when () = 3.

(b) From the CAS, we get () = 



√
 − 1


√
 + 1

2

. To get  in terms of the initial area 0 and the maximum area ,

we substitute  = 0 and  = 0 = (0): 0 = 


 − 1

 + 1

2

⇔ ( + 1)
√
0 = ( − 1)

√
 ⇔


√
0 +

√
0 = 

√
 −√ ⇔ √

 +
√
0 = 

√
 − 

√
0 ⇔

√
 +

√
0 = 

√
 −√0


⇔  =

√
 +

√
0√

 −√0

. [Notice that if 0 = 0, then  = 1.]

54. (a) According to the hint we use the Chain Rule: 



= 




· 


= 



= − 2

( +)2
⇒


  =

 −2 

(+)2
⇒ 2

2
=

2

+
+ . When  = 0,  = 0, so

2
0

2
=

2

0 +
+  ⇒

 = 1
2
2
0 −  ⇒ 1

2
2 − 1

2
2
0 =

2

+
− . Now at the top of its flight, the rocket’s velocity will be 0, and its

height will be  = . Solving for 0: − 1
2
2
0 =

2

+
−  ⇒ 2

0

2
= 


− 2

+ 
+

( + )

+ 


=



+ 
⇒

0 =


2

 + 
.

(b)  = lim
→∞

0 = lim
→∞


2

+ 
= lim

→∞


2

() + 1
=
√

2

(c)  =


2 · 32 fts2 · 3960 mi · 5280 ftmi ≈ 36,581 fts ≈ 693 mis

APPLIED PROJECT How Fast Does a Tank Drain?

1. (a)  = 2 ⇒ 


= 2 


[implicit differentiation] ⇒




=

1

2



=

1

2

−√2


=
1

22


− 1

12

2√
2 · 32

√



= − 1
72

√


(b)



= − 1

72

√
 ⇒ −12  = − 1

72
 ⇒ 2

√
 = − 1

72
 +.

(0) = 6 ⇒ 2
√

6 = 0 +  ⇒  = 2
√

6 ⇒ () =
− 1

144
+

√
6
2
.
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(c) We want to find  when  = 0, so we set  = 0 =
− 1

144
 +

√
6
2 ⇒  = 144

√
6 ≈ 5 min 53 s.

2. (a)



= 

√
 ⇒ −12  =   [ 6= 0] ⇒ 2

√
 =  + ⇒

() = 1
4
( +)2. Since (0) = 10 cm, the relation 2


() =  +

gives us 2
√

10 = . Also, (68) = 3 cm, so 2
√

3 = 68 + 2
√

10 and

 = −
√

10−√3

34
. Thus,

() =
1

4


2
√

10−
√

10−√3

34


2

≈ 10− 0133+ 0000442.

Here is a table of values of () correct to one decimal place.

 (in s) () (in cm)

10 87

20 75

30 64

40 54

50 45

60 36

(b) The answers to this part are to be obtained experimentally. See the article by Tom Farmer and Fred Gass, Physical

Demonstrations in the Calculus Classroom, College Mathematics Journal 1992, pp. 146–148.

3.  () = 2() = 100() ⇒ 


= 100 and




=








= 100




.

Diameter = 25 inches ⇒ radius = 125 inches = 5
4
· 1

12
foot = 5

48
foot. Thus,




= −√2 ⇒

100



= − 5

48

2√
2 · 32 = −25

288

√
 ⇒ 


= −

√


1152
⇒ 

−12  =
 − 1

1152
 ⇒

2
√
 = − 1

1152
 +  ⇒

√
 = − 1

2304
 +  ⇒ () =

− 1
2304

+ 
2
. The water pressure after  seconds is

625() lbft2, so the condition that the pressure be at least 2160 lbft2 for 10 minutes (600 seconds) is the condition

625 · (600) ≥ 2160; that is,

 − 600

2304

2 ≥ 2160
625

⇒
 − 25

96

 ≥ √3456 ⇒  ≥ 25
96

+
√

3456. Now (0) = 2,

so the height of the tank should be at least


25
96

+
√

3456
2 ≈ 3769 ft.

4. (a) If the radius of the circular cross-section at height  is , then the Pythagorean Theorem gives 2 = 22 − (2− )2 since

the radius of the tank is 2 m. So () = 2 = [4− (2− )2] = (4− 2). Thus, ()



= −√2 ⇒

(4− 2)



= −(001)2

√
2 · 10 ⇒ (4− 2)




= −00001

√
20.

(b) From part (a) we have (412 − 32)  =
−00001

√
20

 ⇒ 8

3
32 − 2

5
52 =

−00001
√

20

 + .

(0) = 2 ⇒ 8
3
(2)32 − 2

5
(2)52 =  ⇒  =


16
3
− 8

5

√
2 = 56

15

√
2. To find out how long it will take to drain all

the water we evaluate  when  = 0: 0 =
−00001

√
20

+  ⇒

 =


00001
√

20
=

56
√

215

00001
√

20
=

11,200
√

10

3
≈ 11,806 s ≈ 3 h 17 min
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APPLIED PROJECT Which Is Faster, Going Up or Coming Down?

1. 0 = − − ⇒ 



= − ( +) ⇒




 +
=


− 1


 ⇒

1


ln( +) = − 1


+  [ +  0]. At  = 0,  = 0, so  =

1


ln(0 +).

Thus,
1


ln( +) = − 1


 +

1


ln(0 +) ⇒ ln( +) = − 


+ ln(0 +) ⇒

 + = −(0 +) ⇒  = (0 +)− − ⇒ () =


0 +






− − 


.

2. () =

()  =

 
0 +







− − 




 =


0 +







−


−




− 


+ .

At  = 0,  = 0, so  =


0 +









. Thus,

() =


0 +









−

0 +









− − 


=


0 +











1− −


− 



3. () = 0 ⇒ 


=


0 +






− ⇒  =

0


+ 1 ⇒ 


= ln


0


+ 1


⇒

1 =



ln


 + 0




. With = 1, 0 = 20,  = 1

10
, and  = 98, we have 1 = 10 ln


118
98

 ≈ 186 s.

4. The figure shows the graph of  = 1180(1− −01)− 98. The zeros are

at  = 0 and 2 ≈ 384. Thus, 1 − 0 ≈ 186 and 2 − 1 ≈ 198. So the

time it takes to come down is about 012 s longer than the time it takes to go

up; hence, going up is faster.

5. (21) =


0 +









(1− −21)− 


· 21

=


0 +









1− (1)−2


− 


· 2


ln


0 +




Substituting  = 1 =

0


+ 1 =

0 +


(from Problem 3), we get

 (21) =


 · 







(1− −2)− 2

2
· 2 ln =

2

2


− 1


− 2 ln


. Now   0,  0, 1  0 ⇒

 = 1  0 = 1. () = − 1


− 2 ln ⇒  0() = 1 +

1

2
− 2


=

2 − 2+ 1

2
=

(− 1)
2

2
 0

for   1 ⇒ () is increasing for   1. Since (1) = 0, it follows that ()  0 for every   1. Therefore,

(21) =
2

2
() is positive, which means that the ball has not yet reached the ground at time 21. This tells us that the

time spent going up is always less than the time spent coming down, so ascent is faster.
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9.4 Models for Population Growth

1. (a) Comparing the given equation,



= 004


1− 




, to Equation 4,




= 


1− 




, we see that the carrying

capacity is = 1200 and the value of  is 004.

(b) By Equation 7, the solution of the equation is  () =


1 +−
, where  =

 − 0

0

. Since  (0) = 0 = 60, we have

 =
1200− 60

60
= 19, and hence,  () =

1200

1 + 19−004
.

(c) The population after 10 weeks is  (10) =
1200

1 + 19−004(10)
≈ 87.

2. (a)  = 002 − 000004 2 = 002 (1− 0002 ) = 002 (1− 500). Comparing to Equation 4,

 =  (1− ), we see that the carrying capacity is = 500 and the value of  is 002.

(b) By Equation 7, the solution of the equation is  () =


1 +−
, where  =

 − 0

0

. Since  (0) = 0 = 40, we have

 =
500− 40

40
= 115, and hence,  () =

500

1 + 115−002
.

(c) The population after 10 weeks is  (10) =
500

1 + 115−002(10)
≈ 48.

3. (a)  = 005 − 00005 2 = 005 (1− 001 ) = 005 (1− 100). Comparing to Equation 4,

 =  (1− ), we see that the carrying capacity is = 100 and the value of  is 005.

(b) The slopes close to 0 occur where  is near 0 or 100. The largest slopes appear to be on the line  = 50. The solutions

are increasing for 0  0  100 and decreasing for 0  100.

(c) All of the solutions approach  = 100 as  increases. As in

part (b), the solutions differ since for 0  0  100 they are

increasing, and for 0  100 they are decreasing. Also, some

have an IP and some don’t. It appears that the solutions which

have 0 = 20 and 0 = 40 have inflection points at  = 50.

(d) The equilibrium solutions are  = 0 (trivial solution) and  = 100. The increasing solutions move away from  = 0 and

all nonzero solutions approach  = 100 as →∞.

4. (a)  = 6000 and  = 00015 ⇒  = 00015 (1− 6000).

(b) All of the solution curves approach 6000 as →∞.
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(c) The curves with 0 = 1000 and 0 = 2000 appear to be

concave upward at first and then concave downward. The curve

with 0 = 4000 appears to be concave downward everywhere.

The curve with 0 = 8000 appears to be concave upward

everywhere. The inflection points are where the population

grows the fastest.

(d) See the solution to Exercise 9.2.25 for a possible program to calculate  (50). [In this case, we use X = 0, H = 1,

N = 50, Y1 = 00015(1− 6000), and Y = 1000.] We find that  (50) ≈ 1064.

(e) Using Equation 7 with = 6000,  = 00015, and 0 = 1000, we have  () =


1 +−
=

6000

1 +−00015
,

where  =
 − 0

0

=
6000− 1000

1000
= 5. Thus,  (50) =

6000

1 + 5−00015(50)
≈ 10641, which is extremely close to the

estimate obtained in part (d).

(f ) The curves are very similar.

5. (a)



= 


1− 




⇒ () =



1 +−
with  =

 − (0)

(0)
. With = 8× 107,  = 071, and

(0) = 2× 107, we get the model () =
8× 107

1 + 3−071
, so (1) =

8× 107

1 + 3−071
≈ 323× 107 kg.

(b) () = 4× 107 ⇒ 8× 107

1 + 3−071
= 4× 107 ⇒ 2 = 1 + 3−071 ⇒ −071 = 1

3
⇒

−071 = ln 1
3
⇒  =

ln 3

071
≈ 155 years

6. (a)



= 04 − 0001 2 = 04 (1− 00025 )


0001
04

= 00025


= 04


1− 

400

 
00025−1 = 400


Thus, by Equation 4,  = 04 and the carrying capacity is 400.

(b) Using the fact that  (0) = 50 and the formula for , we get

 0(0) =





=0

= 04(50)− 0001(50)2 = 20− 25 = 175.

(c) From Equation 7,  =
 − 0

0

=
400− 50

50
= 7, so  =

400

1 + 7−04
. The population reaches 50% of the carrying

capacity, 200, when 200 =
400

1 + 7−04
⇒ 1 + 7−04 = 2 ⇒ −04 = 1

7
⇒ −04 = ln 1

7
⇒

 =

ln 1

7


(−04) ≈ 486 years.
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7. Using (7),  =
 − 0

0

=
10,000− 1000

1000
= 9, so  () =

10,000
1 + 9−

.  (1) = 2500 ⇒ 2500 =
10,000

1 + 9−(1)
⇒

1 + 9− = 4 ⇒ 9− = 3 ⇒ − = 1
3

⇒ − = ln 1
3

⇒  = ln 3. After another three years,  = 4,

and  (4) =
10,000

1 + 9−(ln 3)4
=

10,000

1 + 9 (ln 3)
−4

=
10,000

1 + 9(3)−4
=

10,000
1 + 1

9

=
10,000

10
9

= 9000.

8. (a) From the graph, we estimate the carrying capacity for the yeast

population to be 680.

(b) An estimate of the initial relative growth rate is
1

0




=

1

18
· 39− 18

2− 0
=

7

12
= 0583.

(c) An exponential model is  () = 18712. A logistic model is  () =
680

1 +−712
, where  = 680− 18

18
= 331

9
.

(d)
Time in
Hours

Observed
Values

Exponential
Model

Logistic
Model

0 18 18 18

2 39 58 55

4 80 186 149

6 171 596 322

8 336 1914 505

10 509 6147 614

12 597 19,739 658

14 640 63,389 673

16 664 203,558 678

18 672 653,679 679

The exponential model is a poor fit for anything beyond the

first two observed values. The logistic model varies more for

the middle values than it does for the values at either end, but

provides a good general fit, as shown in the figure.

(e)  (7) =
680

1 + 331
9
−7(712)

≈ 420 yeast cells

9. (a) We will assume that the difference in birth and death rates is 20 million/year. Let  = 0 correspond to the year 2000. Thus,

 ≈
1






=

1

61 billion


20 million

year


=

1

305
, and




= 


1− 




=

1

305



1− 

20


with  in billions.

(b)  =
 − 0

0

=
20− 61

61
=

139

61
≈ 22787.  () =



1 +−
=

20

1 + 139
61

−305
, so

 (10) =
20

1 + 139
61

−10305
≈ 624 billion, which underestimates the actual 2010 population of 69 billion.

(c) The years 2100 and 2500 correspond to  = 100 and  = 500, respectively.  (100) =
20

1 + 139
61

−100305
≈ 757 billion

and  (500) =
20

1 + 139
61

−500305
≈ 1387 billion.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE

832 ¤ CHAPTER 9 DIFFERENTIAL EQUATIONS

10. (a) Let  = 0 correspond to the year 2000.  =
 − 0

0

=
800− 282

282
=

259

141
≈ 18369.

 () =


1 +−
=

800

1 + 259
141

−
with  in millions.

(b)  (10) = 309 ⇔ 800

1 + 259
141

−10
= 309 ⇔ 800

309
= 1 +

259

141
−10 ⇔ 491

309
=

259

141
−10 ⇔

491 · 141
309 · 259 = −10 ⇔ −10 = ln

491 · 47
103 · 259 ⇔  = − 1

10
ln

23,077
26,677

≈ 00145.

(c) The years 2100 and 2200 correspond to  = 100 and  = 200, respectively.  (100) =
800

1 + 259
141

−100
≈ 559 million and

 (200) =
800

1 + 259
141

−200
≈ 727 million.

(d)  () = 500 ⇔ 800

1 + 259
141

−
= 500 ⇔ 800

500
= 1 +

259

141
− ⇔ 3

5
=

259

141
− ⇔ 3 · 141

5 · 259 = − ⇔

− = ln
423

1295
⇔  = 10

ln(4231295)

ln(23,07726,677)
≈ 7718 years. Our logistic model predicts that the US population will

exceed 500 million in 7718 years; that is, in the year 2077.

11. (a) Our assumption is that



= (1− ), where  is the fraction of the population that has heard the rumor.

(b) Using the logistic equation (4),



= 


1− 




, we substitute  =




,  = , and




= 




,

to obtain



= ()(1− ) ⇔ 


= (1− ), our equation in part (a).

Now the solution to (4) is  () =


1 +−
, where  =

 − 0

0

.

We use the same substitution to obtain =


1 +
 −0

0

−
⇒  =

0

0 + (1− 0)−
.

Alternatively, we could use the same steps as outlined in the solution of Equation 4.

(c) Let  be the number of hours since 8 AM. Then 0 = (0) = 80
1000

= 008 and (4) = 1
2
, so

1

2
= (4) =

008

008 + 092−4
. Thus, 008 + 092−4 = 016, −4 = 008

092
= 2

23
, and − =


2
23

14
,

so  =
008

008 + 092(223)
4

=
2

2 + 23(223)
4

. Solving this equation for , we get

2 + 23


2

23

4
= 2 ⇒


2

23

4
=

2− 2

23
⇒


2

23

4
=

2

23
· 1− 


⇒


2

23

4−1

=
1− 


.

It follows that


4
− 1 =

ln[(1− )]

ln 2
23

, so  = 4


1 +

ln((1− ))

ln 2
23


.

When  = 09,
1− 


= 1

9
, so  = 4


1− ln 9

ln 2
23


≈ 76 h or 7 h 36 min. Thus, 90% of the population will have heard

the rumor by 3:36 PM.
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12. (a)  (0) = 0 = 400,  (1) = 1200 and = 10,000. From the solution to the logistic differential equation

 () =
0

0 + ( − 0)−
, we get  =

400 (10,000)
400 + (9600)−

=
10,000

1 + 24−
.  (1) = 1200 ⇒

1 + 24− = 100
12

⇒  = 288
88

⇒  = ln 36
11
. So  =

10,000
1 + 24− ln(3611)

=
10,000

1 + 24 · (1136) .

(b) 5000 =
10,000

1 + 24(1136)

⇒ 24


11
36


= 1 ⇒  ln 11

36
= ln 1

24
⇒  ≈ 268 years.

13. (a)



= 


1− 




⇒ 2

2
= 





− 1








+


1− 









= 






− 


+ 1− 





= 





1− 




1− 2




= 2


1− 




1− 2




(b)  grows fastest when  0 has a maximum, that is, when  00 = 0. From part (a),  00 = 0 ⇔  = 0,  =  ,

or  = 2. Since 0     , we see that  00 = 0 ⇔  = 2.

14. First we keep  constant (at 01, say) and change 0 in the function

 =
100

0 + (10− 0)−01
. (Notice that 0 is the  -intercept.) If 0 = 0,

the function is 0 everywhere. For 0  0  5, the curve has an inflection

point, which moves to the right as 0 decreases. If 5  0  10, the graph is

concave down everywhere. (We are considering only  ≥ 0.) If 0 = 10, the

function is the constant function  = 10, and if 0  10, the function decreases. For all 0 6= 0, lim
→∞

 = 10.

Now we instead keep 0 constant (at 0 = 1) and change  in the function

 =
10

1 + 9−
. It seems that as  increases, the graph approaches the line

 = 10 more and more quickly. (Note that the only difference in the shape of

the curves is in the horizontal scaling; if we choose suitable -scales, the

graphs all look the same.)

15. Following the hint, we choose  = 0 to correspond to 1960 and subtract

94,000 from each of the population figures. We then use a calculator to

obtain the models and add 94,000 to get the exponential function

() = 19097761(10796) + 94,000 and the logistic function

() =
33,0864394

1 + 123428−01657
+ 94,000.  is a reasonably accurate

model, while  is not, since an exponential model would only be used for the first few data points.
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16. Following the hint, we choose  = 0 to correspond to 1960 and subtract

3500 from each of the population figures. We then use a calculator to

obtain the models and add 3500 to get the exponential function

() = 1809934(10445) + 3500 and the logistic function

() =
13489650

1 + 62784−00721
+ 3500.  is a reasonably accurate

accurate model, while  is not, since an exponential model would only be used for the first few data points.

17. (a)



=  − = 


 − 




. Let  =  − 


, so




=




and the differential equation becomes




= .

The solution is  = 0
 ⇒  − 


=

0 − 




 ⇒  () =




+

0 − 




.

(b) Since   0, there will be an exponential expansion ⇔ 0 − 


 0 ⇔   0.

(c) The population will be constant if 0 − 


= 0 ⇔  = 0. It will decline if 0 − 


 0 ⇔   0.

(d) 0 = 8,000,000,  = −  = 0016, = 210,000 ⇒   0 (= 128,000), so by part (c), the population was

declining.

18. (a)



= 1+ ⇒ −1−  =   ⇒ −

− =  + . Since (0) = 0, we have  =
−0

− . Thus,

−

− =  +
−0

− , or 
− = −0 − . So  =

1

−0 − 
=

0
1− 0

and () =
0

(1− 0)
1

.

(b) ()→∞ as 1− 0→ 0, that is, as → 1

0
. Define  =

1

0
. Then lim

→−
() =∞.

(c) According to the data given, we have  = 001, (0) = 2, and (3) = 16, where the time  is given in months. Thus,

0 = 2 and 16 = (3) =
0

(1− 0 · 3)1
. Since  =

1

0
, we will solve for 0. 16 =

2

(1− 30)
100

⇒

1− 30 =


1
8

001
= 8−001 ⇒ 0 = 1

3


1− 8−001


. Thus, doomsday occurs when

 =  =
1

0
=

3

1− 8−001
≈ 14577 months or 1215 years.

19. (a) The term −15 represents a harvesting of fish at a constant rate—in this case, 15 fishweek. This is the rate at which fish

are caught.

(b) (c) From the graph in part (b), it appears that  () = 250 and  () = 750

are the equilibrium solutions. We confirm this analytically by solving the

equation  = 0 as follows: 008 (1− 1000)− 15 = 0 ⇒

008 − 000008 2 − 15 = 0 ⇒
−000008( 2 − 1000 + 187,500) = 0 ⇒
( − 250)( − 750) = 0 ⇒  = 250 or 750.
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(d) For 0  0  250,  () decreases to 0. For 0 = 250,  () remains

constant. For 250  0  750,  () increases and approaches 750.

For 0 = 750,  () remains constant. For 0  750,  () decreases

and approaches 750.

(e)



= 008


1− 

1000


− 15 ⇔ −100,000

8
· 


= (008 − 000008 2 − 15) ·

−100,000

8


⇔

−12,500



=  2 − 1000 + 187,500 ⇔ 

( − 250)( − 750)
= − 1

12,500
 ⇔

 −1500

 − 250
+

1500

 − 750


 = − 1

12,500
 ⇔

 
1

 − 250
− 1

 − 750


 = 1

25
 ⇔

ln| − 250|− ln| − 750| = 1
25
 + ⇔ ln

 − 250

 − 750

 = 1
25
+  ⇔

 − 250

 − 750

 = 25+ = 25 ⇔

 − 250

 − 750
= 25 ⇔  − 250 = 25 − 75025 ⇔  − 25 = 250− 75025 ⇔

 () =
250− 75025

1− 25
. If  = 0 and  = 200, then 200 =

250− 750

1− 
⇔ 200− 200 = 250− 750 ⇔

550 = 50 ⇔  = 1
11
. Similarly, if  = 0 and  = 300, then

 = − 1
9
. Simplifying  with these two values of  gives us

 () =
250(325 − 11)

25 − 11
and  () =

750(25 + 3)

25 + 9
.

20. (a)

 = 0  = 10  = 20

 = 21  = 25  = 30

(b) For 0 ≤  ≤ 20, there is at least one equilibrium solution. For   20, the population always dies out.
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(c)



= 008 − 000008 2 − .




= 0 ⇔  =

−008±


(008)2 − 4(−000008)(−)
2(−000008)

, which has at least

one solution when the discriminant is nonnegative ⇒ 00064− 000032 ≥ 0 ⇔  ≤ 20. For 0 ≤  ≤ 20, there is

at least one value of  such that  = 0 and hence, at least one equilibrium solution. For   20,   0 and the

population always dies out.

(d) The weekly catch should be less than 20 fish per week.

21. (a)



= ( )


1− 




1− 




. If     , then  = (+)(+)(+) = + ⇒  is increasing.

If 0    , then  = (+)(+)(−) = − ⇒  is decreasing.

(b)  = 008, = 1000, and = 200 ⇒



= 008


1− 

1000


1− 200




For 0  0  200, the population dies out. For 0 = 200, the population

is steady. For 200  0  1000, the population increases and approaches

1000. For 0  1000, the population decreases and approaches 1000.

The equilibrium solutions are  () = 200 and  () = 1000.

(c)



= 


1− 




1− 




= 


 − 




 −




=




( −  )( −) ⇔




( −  )( −)
=





. By partial fractions,

1

( −  )( −)
=



 − 
+



 −
, so

( −) +( −  ) = 1.

If  = ,  =
1

 −
; if  =  ,  =

1

 −
, so

1

 −

 
1

 − 
+

1

 −


 =





 ⇒

1

 −
(− ln | −  |+ ln | −|) =




 +  ⇒ 1

 −
ln

  −

 − 

 =



 +  ⇒

ln

  −

 − 

 = ( −)



+ 1 ⇔  −

 − 
= (−)() [ = ±1 ].

Let  = 0:
0 −

 − 0

= . So
 −

 − 
=

0 −

 − 0

(−)().

Solving for  , we get  () =
( − 0) +(0 −)(−)()

 − 0 + (0 −)(−)()
.

(d) If 0  , then 0 −  0. Let () be the numerator of the expression for  () in part (c). Then

(0) = 0( −)  0, and 0 −  0 ⇔ lim
→∞

(0 −)(−)() = −∞ ⇒ lim
→∞

() = −∞.

Since is continuous, there is a number  such that () = 0 and thus  () = 0. So the species will become extinct.

22. (a)



=  ln







 ⇒




 ln( )
=


 . Let  = ln







= ln − ln ⇒  = −


⇒


−


=  + ⇒ ln|| = −− ⇒ || = −(+) ⇒ |ln( )| = −(+) ⇒
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ln( ) = ±−(+). Letting  = 0, we get ln(0) = ±−, so

ln( ) = ±−− = ±−− = ln(0)
− ⇒  = ln(0)

− ⇒

 () = − ln(0)
−

,  6= 0.

(b) lim
→∞

 () = lim
→∞

− ln(0)
−

= − ln(0)·0 = 0 = 

(c) The graphs look very similar. For the Gompertz function,

 (40) ≈ 732, nearly the same as the logistic function. The Gompertz

function reaches  = 900 at  ≈ 617 and its value at  = 80 is about

959, so it doesn’t increase quite as fast as the logistic curve.

(d)



=  ln







 =  (ln − ln ) ⇒

2

2
= 





− 1








+ (ln − ln )






= 






−1 + ln







= [ ln( ) ][ln( )− 1] = 2 ln( ) [ln( )− 1]

Since 0     ,  00 = 0 ⇔ ln( ) = 1 ⇔  =  ⇔  = .  00  0 for 0    

and  00  0 for     , so  0 is a maximum (and  grows fastest) when  = .

Note: If    , then ln( )  0, so  00()  0.

23. (a)  =  cos(− ) ⇒ ( ) =  cos(− )  ⇒ 
( ) = 


cos(− )  ⇒

ln = () sin(− ) + . (Since this is a growth model,   0 and we can write ln instead of ln| |.) Since

 (0) = 0, we obtain ln0 = () sin(−) + = − () sin+ ⇒  = ln0 + () sin. Thus,

ln = () sin(− ) + ln0 + () sin, which we can rewrite as ln(0) = ()[sin(− ) + sin] or,

after exponentiation,  () = 0
()[sin(−)+sin].

(b) As  increases, the amplitude

increases, but the minimum value

stays the same.

As  increases, the amplitude and

the period decrease.

A change in  produces slight

adjustments in the phase shift and

amplitude.

 () oscillates between 0
()(1+sin) and 0

()(−1+sin) (the extreme values are attained when −  is an odd

multiple of 
2
), so lim

→∞
 () does not exist.
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24. (a)  =  cos2(− ) ⇒ ( ) =  cos2(− )  ⇒ 
( ) = 


cos2(− )  ⇒

ln = 


1 + cos(2(− ))

2
 =



2
 +



4
sin(2(− )) +. From  (0) = 0, we get

ln0 =


4
sin(−2) +  =  − 

4
sin 2, so  = ln0 +



4
sin 2 and

ln =


2
 +



4
sin(2( − )) + ln0 +



4
sin 2. Simplifying, we get

ln


0

=


2
+



4
[sin(2(− )) + sin 2] = (), or  () = 0

().

(b) An increase in  stretches the graph

of  vertically while maintaining

 (0) = 0.

An increase in  compresses the

graph of  horizontally—similar to

changing the period in Exercise 19.

As in Exercise 23, a change in  only

makes slight adjustments in the

growth of  , as shown in the figure.

 0() = 2 + [(4)][2 cos(2(− ))] = (2)[1 + cos(2(− ))] ≥ 0. Since  () = 0
(), we have

 0() = 0
0()() ≥ 0, with equality only when cos(2(− )) = −1; that is, when −  is an odd multiple of 

2
.

Therefore,  () is an increasing function on (0∞).  can also be written as  () = 0
2(4)[sin(2(−))+sin 2].

The second exponential oscillates between (4)(1+sin 2) and (4)(−1+sin 2), while the first one, 2, grows

without bound. So lim
→∞

 () =∞.

25. By Equation 7,  () =


1 +−
. By comparison, if  = (ln) and  = 1

2
(− ), then

1 + tanh = 1 +
 − −

 + −
=

 + −

 + −
+

 − −

 + −
=

2

 + −
· 
−

−
=

2

1 + −2

and −2 = −(−) = − = ln− = −, so

1
2


1 + tanh


1
2
(− )


=



2
[1 + tanh] =



2
· 2

1 + −2
=



1 + −2
=



1 +−
=  ().

9.5 Linear Equations

1. 0 + 
√
 = 2 is not linear since it cannot be put into the standard form (1), 0 +  ()  = ().

2. 0 −  =  tan ⇔ 0 + (− tan) =  is linear since it can be put into the standard form (1), 0 +  ()  = ().

3.  =  +
√




⇔ √

 0 −  = − ⇔ 0 − √

 = −√ is linear since it can be put into the standard form,

0 +  () = ().
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4.



+  cos = − ⇔ 0 +  cos = − is not linear since it cannot be put into the standard form

0 +  () = ().

5. Comparing the given equation, 0 +  = 1, with the general form, 0 +  ()  = (), we see that  () = 1 and the

integrating factor is () = 

 ()  = 


1  = . Multiplying the differential equation by () gives

0 +  =  ⇒ ()0 =  ⇒  =

  ⇒  =  +  ⇒ 


=




+




⇒

 = 1 +−.

6. 0 −  =  ⇔ 0 + (−1) =  ⇒  () = −1. () = 

 ()  = 

 −1  = −. Multiplying the

original differential equation by () gives −0 − − = 0 ⇒ (−)0 = 1 ⇒ − =


1  ⇒

− = +  ⇒  =
+ 

−
⇒  =  +.

7. 0 = −  ⇒ 0 +  =  (). () = 

 ()  = 


1  = . Multiplying the differential equation () by () gives

0 +  =  ⇒ ()0 =  ⇒  =

  ⇒  =  −  +  [by parts] ⇒

 = − 1 +− [divide by ].

8. 43 + 40 = sin3  ⇒ (4)0 = sin3  ⇒ 4 =


sin3  ⇒

4 =


sin (1− cos2 )  =

(1− 2)(−)


 = cos,
 = − sin 


=

(2 − 1)  = 1

3
3 − +  = 1

3
(2 − 3) +  = 1

3
cos (cos2 − 3) +  ⇒

 =
1

34
cos (cos2 − 3) +



4

9. Since  () is the derivative of the coefficient of 0 [ () = 1 and the coefficient is ], we can write the differential equation

0 +  =
√
 in the easily integrable form ()0 =

√
 ⇒  = 2

3
32 +  ⇒  = 2

3

√
+ .

10. 20 +  = 2
√
 ⇒ 0 +

1

2
 =

1√


[  0] ⇒  () =
1

2
.

() = 

 ()  = 


1(2)  = (12) ln|| = (ln )12 =

√
. Multiplying the differential equation by () gives

√
 0 +

1

2
√

 = 1 ⇒ (

√
 )0 = 1 ⇒ √

 =


1  ⇒ √
 = +  ⇒  =

+ √


.

11. 0 − 2 = 2 ⇒ 0 − 2


 =  ⇒  () = − 2


.

() = 

 ()  = 

−2  = −2 ln  [  0] = −2 =
1

2
. Multiplying the differential equation by () gives

1

2
0 − 2

3
 =

1


⇒


1

2


0
=

1


⇒ 1

2
 =


1


 ⇒ 1

2
 = ln+  ⇒  = 2(ln+ ).

12. 0 + 2 = 1 ⇒  () = 2. () = 

 ()  = 


2  = 

2

. Multiplying the differential equation by ()

gives 
2

0 + 2
2

 = 
2 ⇒




2


0

= 
2 ⇒ 

2

 =
 
0

2

 + [see page 507] ⇒

 = −
2  

0

2

 + −
2

.
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13. 2



+ 3 =

√
1 + 2 ⇒ 0 +

3


 =

√
1 + 2

2
⇒  () =

3


.

() = 


 ()  = 


3  = 3 ln  [  0] = 3. Multiplying by 3 gives 30 + 32 = 

√
1 + 2 ⇒

(3)0 = 
√

1 + 2 ⇒ 3 =


√

1 + 2  ⇒ 3 = 1
3
(1 + 2)32 +  ⇒  = 1

3
−3(1 + 2)32 + −3.

14.  ln 



+  =  ⇒ 


+

1

 ln 
 =



ln 
. () = 


( ln ) = ln(ln ) = ln . Multiplying by ln  gives

ln 



+

1


 =  ⇒ [(ln )]0 =  ⇒ (ln ) =  + ⇒  =

 + 

ln 
.

15. 20 + 2 = ln ⇒ (2)0 = ln ⇒ 2 =


ln ⇒ 2 =  ln− +  [by parts]. Since (1) = 2,

12(2) = 1 ln 1− 1 + ⇒ 2 = −1 + ⇒  = 3 so 2 =  ln− + 3, or  =
1


ln− 1


+

3

2
.

16. 3



+ 32 = cos  ⇒ (3)0 = cos  ⇒ 3 =


cos   ⇒ 3 = sin + . Since () = 0,

3(0) = sin +  ⇒  = 0, so 3 = sin , or  =
sin 

3
.

17. 



= 2 + 3 ⇒ 0 − 3


 =  (). () = 

 −3  = −3 ln|| = (ln||)−3 = −3 [  0] =
1

3
. Multiplying ()

by () gives
1

3
0 − 3

4
 =

1

2
⇒


1

3


0
=

1

2
⇒ 1

3
 =


1

2
 ⇒ 1

3
 = −1


+ . Since (2) = 4,

1

23
(4) = −1

2
+  ⇒  = 1, so

1

3
 = −1


+ 1, or  = −2 + 3.

18. 0 +  =  ln ⇒ ()0 =  ln ⇒  =

 ln ⇒  = 1

2
2 ln− 1

4
2 + 


by parts

with  = ln


⇒

 =
1

2
 ln− 1

4
+




. (1) = 0 ⇒ 0 = 0− 1

4
+  ⇒  =

1

4
, so  =

1

2
 ln− 1

4
+

1

4
.

19. 0 =  + 2 sin ⇒ 0 − 1


 =  sin. () = 


(−1)  = − ln  = ln

−1
=

1


.

Multiplying by
1


gives

1


0 − 1

2
 = sin ⇒


1




0
= sin ⇒ 1


 = − cos + ⇒  = − cos+ .

() = 0 ⇒ − · (−1) +  = 0 ⇒  = −1, so  = − cos− .

20. (2 + 1)



+ 3( − 1) = 0 ⇒ (2 + 1) 0 + 3 = 3 ⇒ 0 +

3

2 + 1
 =

3

2 + 1
.

() = 


3(2+1)  = (32) ln|2+1| =

ln(2+1)

32

= (2 + 1)32. Multiplying by (2 + 1)32 gives

(2 + 1)32 0 + 3(2 + 1)12  = 3(2 + 1)12 ⇒

(2 + 1)32

0
= 3(2 + 1)12 ⇒

(2 + 1)32  =


3(2 + 1)12  = (2 + 1)32 +  ⇒  = 1 + (2 + 1)−32. Since (0) = 2, we have

2 = 1 +(1) ⇒  = 1 and hence,  = 1 + (2 + 1)−32.
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21. 0 + 2 =  ⇒ 0 +
2


 =




.

() = 

(2)  = 2 ln|| =


ln||

2

= ||2 = 2.

Multiplying by () gives 2 0 + 2 =  ⇒ (2)0 =  ⇒
2 =


  = (− 1) + [by parts] ⇒

 = [(− 1) + ]2. The graphs for  = −5, −3, −1, 1, 3, 5, and 7 are

shown.  = 1 is a transitional value. For   1, there is an inflection point and

for   1, there is a local minimum. As || gets larger, the “branches” get
further from the origin.

22. 0 = 2 + 2 ⇔ 0 − 2 = 2 ⇔ 0 − 2


 = .

() = 
 −2  = −2 ln|| = (ln||)−2 = ||−2

=
1

2
. Multiplying by

() gives
1

2
0 − 2

3
 =

1


⇒


1

2


0
=

1


⇒ 1

2
 =


1


 ⇒

1

2
 = ln ||+ ⇒  = (ln ||+)2. For all values of , as ||→ 0,

 → 0, and as ||→∞,  →∞. As || increases from 0, the function decreases and attains an absolute minimum.

The inflection points, absolute minimums, and -intercepts all move farther from the origin as  decreases.

23. Setting  = 1−,



= (1− ) −




or




=



1− 




=

(1−)

1− 




. Then the Bernoulli differential equation

becomes
(1−)

1− 




+  ()1(1−) = ()(1−) or




+ (1− ) () = ()(1− ).

24. Here 0 +  = −2 ⇒ 0 +



= −2, so  = 2,  () =

1


and () = −1. Setting  = −1,  satisfies

0 − 1


 = 1. Then () = 


(−1) =

1


(for   0) and  = 


1


+ 


= (ln ||+). Thus,

 =
1

( + ln ||) .

25. Here 0 +
2


 =

3

2
, so  = 3,  () =

2


and() =

1

2
. Setting  = −2,  satisfies 0 − 4


= − 2

2
.

Then () = 

(−4)  = −4 and  = 4


− 2

6
+ 


= 4


2

55
+ 


= 4 +

2

5
.

Thus,  = ±

4 +

2

5

−12

.

26. 00 + 20 = 122 and  = 0 ⇒ 0 + 2 = 122 ⇒ 0 +
2


 = 12.

() = 

(2)  = 2 ln|| =


ln||

2

= ||2 = 2. Multiplying the last differential equation by 2 gives
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20 + 2 = 123 ⇒ (2)0 = 123 ⇒ 2 =


123  = 34 +  ⇒  = 32 + 2 ⇒

0 = 32 +2 ⇒  = 3 −  +.

27. (a) 2



+ 10 = 40 or




+ 5 = 20. Then the integrating factor is 


5  = 5. Multiplying the differential equation

by the integrating factor gives 5



+ 55 = 205 ⇒ (5)0 = 205 ⇒

() = −5


205  +


= 4 + −5. But 0 = (0) = 4 +, so () = 4− 4−5.

(b) (01) = 4− 4−05 ≈ 157 A

28. (a)



+ 20 = 40 sin 60, so the integrating factor is 20. Multiplying the differential equation by the integrating factor

gives 20



+ 2020 = 4020 sin 60 ⇒ (20)0 = 4020 sin 60 ⇒

() = −20


4020 sin 60  + 


= −20

4020


1

4000


(20 sin 60− 60 cos 60)


+−20

=
sin 60− 3 cos 60

5
+ −20

But 1 = (0) = −3
5

+ , so () =
sin 60− 3 cos 60 + 8−20

5
.

(b) (01) =
sin 6− 3 cos 6 + 8−2

5
≈ −042 A (c)

29. 5



+ 20 = 60 with (0) = 0 C. Then the integrating factor is 


4  = 4, and multiplying the differential

equation by the integrating factor gives 4



+ 44 = 124 ⇒ (4)0 = 124 ⇒

() = −4


124  +


= 3 + −4. But 0 = (0) = 3 +  so () = 3(1− −4) is the charge at time 

and  =  = 12−4 is the current at time .

30. 2



+ 100 = 10 sin 60 or




+ 50 = 5 sin 60. Then the integrating factor is 


50  = 50, and multiplying the

differential equation by the integrating factor gives 50



+ 5050 = 550 sin 60 ⇒ (50)0 = 550 sin 60 ⇒

() = −50


550 sin 60  +


= −50

550


1

6100


(50 sin 60− 60 cos 60)


+ −50

= 1
122

(5 sin 60− 6 cos 60) +−50

But 0 = (0) = − 6
122

+ so  = 3
61

and () =
5 sin 60− 6 cos 60

122
+

3−50

61
is the charge at time , while the current

is () =



=

150 cos 60+ 180 sin 60− 150−50

61
.
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31.



+  =  , so () = 


  = . Multiplying the differential equation

by () gives 



+  =  ⇒ ( )0 =  ⇒

 () = −


 +


=  + −,   0. Furthermore, it is

reasonable to assume that 0 ≤  (0) ≤ , so − ≤  ≤ 0.

32. Since  (0) = 0, we have  () = (1− −). If 1() is Jim’s learning curve, then 1(1) = 25 and 1(2) = 45. Hence,

25 = 1(1− −) and 45 = 1(1− −2), so 1− 251 = − or  = − ln


1− 25

1


= ln


1

1 − 25


. But

45 = 1(1− −2) so 45 = 1


1−


1 − 25

1

2

or 45 =

501 − 625

1

. Thus,1 = 125 is the maximum number of

units per hour Jim is capable of processing. Similarly, if 2() is Mark’s learning curve, then 2(1) = 35 and 2(2) = 50.

So  = ln


2

2 − 35


and 50 = 2


1−


2 − 35

2

2

or2 = 6125. Hence the maximum number of units per hour

for Mark is approximately 61. Another approach would be to use the midpoints of the intervals so that 1(05) = 25 and

1(15) = 45. Doing so gives us1 ≈ 526 and2 ≈ 518.

33. (0) = 0 kg. Salt is added at a rate of


04

kg
L


5

L
min


= 2

kg
min

 Since solution is drained from the tank at a rate of

3 Lmin, but salt solution is added at a rate of 5 Lmin, the tank, which starts out with 100 L of water, contains (100 + 2) L

of liquid after  min. Thus, the salt concentration at time  is
()

100 + 2

kg
L
. Salt therefore leaves the tank at a rate of


()

100 + 2

kg
L


3

L
min


=

3

100 + 2

kg
min

. Combining the rates at which salt enters and leaves the tank, we get




= 2− 3

100 + 2
. Rewriting this equation as




+


3

100 + 2


 = 2, we see that it is linear.

() = exp


3 

100 + 2


= exp


3
2

ln(100 + 2)


= (100 + 2)32

Multiplying the differential equation by () gives (100 + 2)32



+ 3(100 + 2)12 = 2(100 + 2)32 ⇒

[(100 + 2)32]0 = 2(100 + 2)32 ⇒ (100 + 2)32 = 2
5
(100 + 2)52 +  ⇒

 = 2
5
(100 + 2) + (100 + 2)−32. Now 0 = (0) = 2

5
(100) +  · 100−32 = 40 + 1

1000
 ⇒  = −40,000, so

 =


2
5
(100 + 2)− 40,000(100 + 2)−32


kg. From this solution (no pun intended), we calculate the salt concentration

at time  to be () =
()

100 + 2
=


−40,000

(100 + 2)
52

+
2

5


kg
L
. In particular, (20) =

−40,000
14052

+
2

5
≈ 02275

kg
L

and (20) = 2
5
(140)− 40,000(140)−32 ≈ 3185 kg.
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34. Let () denote the amount of chlorine in the tank at time  (in seconds). (0) = (005 gL) (400 L) = 20 g. The amount of

liquid in the tank at time  is (400− 6) L since 4 L of water enters the tank each second and 10 L of liquid leaves the tank

each second. Thus, the concentration of chlorine at time  is
()

400− 6

g
L
. Chlorine doesn’t enter the tank, but it leaves at a rate

of


()

400− 6

g
L


10

L
s


=

10 ()

400− 6

g
s

=
5 ()

200− 3

g
s
. Therefore,




= − 5

200− 3
⇒





=

 −5 

200− 3
⇒

ln  = 5
3

ln(200− 3) +  ⇒  = exp


5
3

ln(200− 3) + 


= (200− 3)53. Now 20 = (0) =  · 20053 ⇒

 =
20

20053
, so () = 20

(200− 3)53

20053
= 20(1− 0015)53 g for 0 ≤  ≤ 66 2

3
s, at which time the tank is empty.

35. (a)



+




 =  and () = 


()  = (), and multiplying the differential equation by

() gives () 


+

()


= () ⇒


()

0
= (). Hence,

() = −()


() +


= +−(). But the object is dropped from rest, so (0) = 0 and

 = −. Thus, the velocity at time  is () = ()[1− −()].

(b) lim
→∞

() = 

(c) () =

()  = ()[ + ()−()] + 1 where 1 = (0)−22.

(0) is the initial position, so (0) = 0 and () = ()[+ ()−()]−22.

36.  = ()(1− −) ⇒



=






0− − · 

2


+




(1− −) · 1 = −


− +




− 


−

=





1− − − 


−


⇒








= 1−


1 +






− = 1− 1 + 


= 1− 1 +


, where  =




≥ 0. Since   1 + for all  0,

it follows that   0 for   0. In other words, for all   0,  increases as increases.

37. (a)  =
1


⇒  =

1


⇒  0 = − 0

2
. Substituting into  0 =  (1− ) gives us − 0

2
= 

1




1− 1




⇒

0 = −


1− 1




⇒ 0 = − +




⇒ 0 +  =




().

(b) The integrating factor is 

  = . Multiplying () by  gives 0 +  =




⇒ ()0 =




 ⇒

 =







 ⇒  =

1


 +  ⇒  =

1


+ −. Since  =

1


, we have

 =
1

1


+−

⇒  =


1 +−
, which agrees with Equation 9.4.7,  =



1 +−
, when = .
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38. (a)  =
1


⇒  =

1


⇒  0 =

−0
2

. Substituting into



= ()


1− 

()


gives us

− 0

2
=

()




1− 1

()


⇒ 0 = −()


1− 1

()


⇒ 0 = −() +

()

()
⇒




+ () =

()

()
().

(b) The integrating factor is (), where() =
 
0
() , so that0() = (). Multiplying () by

() gives () 


+ ()() =

()()

()
⇒ (())0 =

0()()

()
⇒

() =

 

0

0()()

()
+ , so  =

1


=

() 

0

0()()

()
+ 

. Now suppose that is a constant. Then

 () =
() 

0
0()() + 

=
()

() + 
=



1 + −()
. If
∞
0

()  =∞ then lim
→∞

() =∞, so

lim
→∞

 () =


1 + lim
→∞

−()
=



1 +  · 0 =  .

(c) If  is constant, but varies, then() =  and we get  =

 

0



()
+ ⇒

() =

 

0



()
+ 


⇒ () = −

 

0



()
+

−. Suppose() has a limit as →∞,

say lim
→∞

() = . Then

lim
→∞

 () = lim
→∞

1

()
= lim

→∞
 

0



()
+

= lim
→∞





()
+ 0


l’Hospital’s

and FTC 1


= lim

→∞
() = .

9.6 Predator-Prey Systems

1. (a)  = −005+ 00001. If  = 0, we have  = −005, which indicates that in the absence of ,  declines at

a rate proportional to itself. So  represents the predator population and  represents the prey population. The growth of

the prey population, 01 (from  = 01 − 0005), is restricted only by encounters with predators (the term

−0005). The predator population increases only through the term 00001; that is, by encounters with the prey and

not through additional food sources.

(b)  = −0015 + 000008. If  = 0, we have  = −0015, which indicates that in the absence of ,  would

decline at a rate proportional to itself. So  represents the predator population and  represents the prey population. The

growth of the prey population, 02 (from  = 02− 000022 − 0006 = 02(1− 0001)− 0006), is

restricted by a carrying capacity of 1000 [from the term 1− 0001 = 1− 1000] and by encounters with predators (the

term −0006). The predator population increases only through the term 000008; that is, by encounters with the prey

and not through additional food sources.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE

846 ¤ CHAPTER 9 DIFFERENTIAL EQUATIONS

2. (a)  = 012− 000062 + 000001.  = 008 + 000004.

The  terms represent encounters between the two species  and . An increase in  makes  (the growth rate of )

larger due to the positive term 000001. An increase in  makes  (the growth rate of ) larger due to the positive

term 000004. Hence, the system describes a cooperation model.

(b)  = 015− 000022 − 00006 = 015(1− 750) − 00006.

 = 02 − 0000082 − 00002 = 02(1− 2500)− 00002.

The system shows that  and  have carrying capacities of 750 and 2500. An increase in  reduces the growth rate of  due

to the negative term −00002. An increase in  reduces the growth rate of  due to the negative term −00006.

Hence, the system describes a competition model.

3. (a) = 05− 00042 − 0001 = 05(1− 125)− 0001.

 = 04 − 00012 − 0002 = 04(1− 400)− 0002.

The system shows that  and  have carrying capacities of 125 and 400. An increase in  reduces the growth rate of  due

to the negative term−0002. An increase in  reduces the growth rate of  due to the negative term−0001. Hence

the system describes a competition model.

(b)  = 0 ⇒ (05− 0004− 0001) = 0 ⇒ (500− 4− ) = 0 (1) and  = 0 ⇒
(04− 0001 − 0002) = 0 ⇒ (400−  − 2) = 0 (2).

From (1) and (2), we get four equilibrium solutions.

(i)  = 0 and  = 0: If the populations are zero, there is no change.

(ii)  = 0 and 400−  − 2 = 0 ⇒  = 0 and  = 400: In the absence of an -population, the -population

stabilizes at 400.

(iii) 500− 4−  = 0 and  = 0 ⇒  = 125 and  = 0: In the absence of -population, the -population stabilizes

at 125.

(iv) 500− 4−  = 0 and 400− − 2 = 0 ⇒  = 500− 4 and  = 400− 2 ⇒ 500− 4 = 400− 2 ⇒
100 = 2 ⇒  = 50 and  = 300: A -population of 300 is just enough to support a constant -population of 50.

4. Let (),(), and () represent the populations of lynx, hares, and willows at time . Let the ’s and the ’s denote

positive constants, so that a plus sign means an increase and a minus sign means a decrease in the corresponding growth rate.

“In the absence of hares, the willow population will grow exponentially and the lynx population will decay exponentially”

gives us  = +1 and  = −2. “In the absence of lynx and willow, the hare population will decay

exponentially” gives us  = −3. “Lynx eat snowshoe hares and snowshoe hares eat woody plants like willows” gives

us encounters that lynx win, hares lose and win, and willows lose. In terms of growth rates, this means that  = +1,

 = −2 + 3 , and  = −4 . Putting this information together gives us the following system of

differential equations.

 =− 2 + 1

 =− 3 − 2 + 3

 = + 1 − 4
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5. (a) At  = 0, there are about 300 rabbits and 100 foxes. At  = 1, the number

of foxes reaches a minimum of about 20 while the number of rabbits is

about 1000. At  = 2, the number of rabbits reaches a maximum of about

2400, while the number of foxes rebounds to 100. At  = 3, the number of

rabbits decreases to about 1000 and the number of foxes reaches a

maximum of about 315. As  increases, the number of foxes decreases

greatly to 100, and the number of rabbits decreases to 300 (the initial

populations), and the cycle starts again.

(b)

6. (a) At  = 0, there are about 600 rabbits and 160 foxes. At  = 1, the number

of rabbits reaches a minimum of about 80 and the number of foxes is also

80. At  = 2, the number of foxes reaches a minimum of about 25 while

the number of rabbits rebounds to 1000. At  = 3, the number of foxes

has increased to 40 and the rabbit population has reached a maximum of

about 1750. The curve ends at  = 4, where the number of foxes has

increased to 65 and the number of rabbits has decreased to about 950.

(b)

7. 8.

9.



=
−002 + 000002

008− 0001
⇔ (008− 0001 ) = (−002 + 000002)  ⇔

008− 0001


 =

−002 + 000002


 ⇔

 
008


− 0001


 =

 
−002


+ 000002


 ⇔
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008 ln| |− 0001 = −002 ln||+ 000002 + ⇔ 008 ln + 002 ln = 0001 + 000002+ ⇔
ln

 008002


= 000002 + 0001 +  ⇔  008002 = 000002+0001+ ⇔

002 008 = 0000020001 ⇔ 002 008

0000020001
= . In general, if




=
− + 

− 
, then  =




.

10. (a)  and  are constant ⇒ 0 = 0 and 0 = 0 ⇒


0 = 2− 001

0 = −05+ 00001


⇒


0 = (2− 001)

0 = (−05 + 00001)

So either  =  = 0 or  = 2
001

= 200 and  = 05
00001

= 5000. The trivial solution  =  = 0 just says that if there

aren’t any aphids or ladybugs, then the populations will not change. The non-trivial solution,  = 200 and  = 5000,

indicates the population sizes needed so that there are no changes in either the number of aphids or the number of

ladybugs.

(b)



=




=
−05+ 00001

2− 001

(c) The solution curves (phase trajectories) are all closed curves

that have the equilibrium point (5000 200) inside them.

(d) At 0(1000 200),  = 0 and  = −80  0, so the

number of ladybugs is decreasing and hence, we are proceeding in a

counterclockwise direction. At 0, there aren’t enough aphids to

support the ladybug population, so the number of ladybugs

decreases and the number of aphids begins to increase. The ladybug

population reaches a minimum at 1(5000 100) while the aphid

population increases in a dramatic way, reaching its maximum at

2(14 250 200).

Meanwhile, the ladybug population is increasing from 1 to 3(5000 355), and as we pass through 2, the increasing

number of ladybugs starts to deplete the aphid population. At 3 the ladybugs reach a maximum population, and start to

decrease due to the reduced aphid population. Both populations then decrease until 0, where the cycle starts over again.

(e) Both graphs have the same period and the graph of 

peaks about a quarter of a cycle after the graph of .
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11. (a) Letting = 0 gives us  = 008(1− 00002).  = 0 ⇔  = 0 or 5000. Since   0 for

0    5000, we would expect the rabbit population to increase to 5000 for these values of . Since   0 for

  5000, we would expect the rabbit population to decrease to 5000 for these values of . Hence, in the absence of

wolves, we would expect the rabbit population to stabilize at 5000.

(b)  and are constant ⇒  0 = 0 and 0 = 0 ⇒
0 = 008(1− 00002)− 0001

0 = −002 + 000002


⇒


0 = [008(1− 00002)− 0001 ]

0 =  (−002 + 000002)

The second equation is true if = 0 or  = 002
000002

= 1000. If = 0 in the first equation, then either  = 0 or

 = 1
00002

= 5000 [as in part (a)]. If  = 1000, then 0 = 1000[008(1− 00002 · 1000)− 0001 ] ⇔

0 = 80(1− 02)− ⇔  = 64.

Case (i):  = 0,  = 0: both populations are zero

Case (ii):  = 0,  = 5000: see part (a)

Case (iii):  = 1000, = 64: the predator/prey interaction balances and the populations are stable.

(c) The populations of wolves and rabbits fluctuate around

64 and 1000, respectively, and eventually stabilize at

those values.

(d)

12. (a) If  = 0,  = 2 (1− 00001), so  = 0 ⇔  = 0 or  = 1
00001

= 10,000. Since   0 for

0    10,000, we expect the aphid population to increase to 10,000 for these values of . Since   0 for

  10,000, we expect the aphid population to decrease to 10,000 for these values of . Hence, in the absence of

ladybugs we expect the aphid population to stabilize at 10,000.

(b)  and  are constant ⇒ 0 = 0 and 0 = 0 ⇒
0 = 2(1− 00001)− 001

0 = −05+ 00001


⇒


0 = [2(1− 00001)− 001]

0 = (−05 + 00001)

The second equation is true if  = 0 or  = 05
00001

= 5000. If  = 0 in the first equation, then either  = 0 or

 = 1
00001

= 10,000. If  = 5000, then 0 = 5000[2(1− 00001 · 5000)− 001] ⇔

0 = 10,000(1− 05)− 50 ⇔ 50 = 5000 ⇔  = 100.

The equilibrium solutions are: (i)  = 0  = 0 (ii)  = 0  = 10,000 (iii)  = 5000  = 100

(c)



=




=

−05+ 00001

2(1− 00001)− 001
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(d) All of the phase trajectories spiral tightly around the

equilibrium solution (5000 100).

(e) At  = 0, the ladybug population decreases rapidly and

the aphid population decreases slightly before

beginning to increase. As the aphid population

continues to increase, the ladybug population reaches a

minimum at about (5000 75). The ladybug population

starts to increase and quickly stabilizes at 100, while

the aphid population stabilizes at 5000.

(f ) The graph of  peaks just after the graph of  has a

minimum.

9 Review

1. True. Since 4 ≥ 0, 0 = −1− 4  0 and the solutions are decreasing functions.

2. True. () =  =
ln


⇒ 0 =

1− ln

2
.

LHS = 20 +  = 2 · 1− ln

2
+  · ln


= (1− ln) + ln = 1 = RHS, so  =

ln


is a solution

of 20 +  = 1.

3. False. +  cannot be written in the form ()().

4. True. 0 = 3 − 2+ 6 − 1 = 6 − 2+ 3 − 1 = 2(3 − 1) + 1(3 − 1) = (2+ 1)(3 − 1), so 0 can

be written in the form ()(), and hence, is separable.
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5. True. 0 =  ⇒ 0 = − ⇒ 0 + (−−) = 0, which is of the form 0 +  ()  = (), so the

equation is linear.

6. False. 0 +  =  cannot be put in the form 0 +  ()  = (), so it is not linear.

7. True. By comparing



= 2


1− 

5


with the logistic differential equation (9.4.4), we see that the carrying

capacity is 5; that is, lim
→∞

 = 5.

1. (a) (b) lim
→∞

() appears to be finite for 0 ≤  ≤ 4. In fact

lim
→∞

() = 4 for  = 4, lim
→∞

() = 2 for 0    4, and

lim
→∞

() = 0 for  = 0. The equilibrium solutions are

() = 0, () = 2, and () = 4.

2. (a) We sketch the direction field and four solution curves, as shown.

Note that the slope 0 =  is not defined on the line  = 0.

(b) 0 =  ⇔   =  ⇔ 2 = 2 + . For  = 0, this is the pair of lines  = ±. For  6= 0, it is the

hyperbola 2 − 2 = −.

3. (a) We estimate that when  = 03,  = 08, so (03) ≈ 08.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE

852 ¤ CHAPTER 9 DIFFERENTIAL EQUATIONS

(b)  = 01, 0 = 0, 0 = 1 and  ( ) = 2 − 2. So  = −1 + 01

2
−1 − 2

−1


. Thus,

1 = 1 + 01

02 − 12


= 09, 2 = 09 + 01


012 − 092


= 082, 3 = 082 + 01


022 − 0822


= 075676.

This is close to our graphical estimate of (03) ≈ 08.

(c) The centers of the horizontal line segments of the direction field are located on the lines  =  and  = −.
When a solution curve crosses one of these lines, it has a local maximum or minimum.

4. (a)  = 02, 0 = 0, 0 = 1 and  ( ) = 22. We need 2.

1 = 1 + 02(2 · 0 · 12) = 1, 2 = 1 + 02(2 · 02 · 12) = 108 ≈ (04).

(b)  = 01 now, so 1 = 1 + 01(2 · 0 · 12) = 1, 2 = 1 + 01(2 · 01 · 12) = 102,

3 = 102 + 01(2 · 02 · 1022) ≈ 106162, 4 = 106162 + 01(2 · 03 · 1061622) ≈ 11292 ≈ (04).

(c) The equation is separable, so we write


2
= 2 ⇒




2
=


2 ⇔ −1


= 2 + , but (0) = 1, so

 = −1 and () =
1

1− 2
⇔ (04) =

1

1− 016
≈ 11905. From this we see that the approximation was greatly

improved by increasing the number of steps, but the approximations were still far off.

5. 0 = − sin −  cos ⇒ 0 + (cos)  = − sin (). This is a linear equation and the integrating factor is

() = 

cos   = sin . Multiplying () by sin  gives sin 0 + sin (cos)  =  ⇒ (sin )0 =  ⇒

sin   = 1
2
2 +  ⇒  =


1
2
2 +


− sin.

6.



= 1− + −  = 1(1− ) + (1− ) = (1 + )(1− ) ⇒ 

1 + 
= (1− )  ⇒



1 + 
=


(1− )  ⇒ ln|1 + | = − 1

2
2 +  ⇒ |1 + | = −

22+ ⇒

1 +  = ±−22 ·  ⇒  = −1 +−
22, where is any nonzero constant.

7. 2
2

0 = 2 + 3
√
 ⇒ 2

2 


= 2 + 3

√
 ⇒ 2

2

 =

2+ 3

√


 ⇒


2

2

 =
 

2+ 3
√


 ⇒ 

2

= 2 + 232 +  ⇒ 2 = ln(2 + 232 + ) ⇒

 = ±


ln(2 + 232 + )

8. 20 −  = 23−1 ⇒ 0 − 1

2
 = 2−1 (). This is a linear equation and the integrating factor is

() = 

(−12)  = 1. Multiplying () by 1 gives 1 0 − 1 · 1

2
 = 2 ⇒ (1 )0 = 2 ⇒

1  = 2 + ⇒  = −1(2 +).

9.



+ 2 =  ⇒ 


=  − 2 = (1− 2) ⇒





=


(1− 2)  ⇒ ln || = − 2 +  ⇒

|| = −
2+ = −

2

. Since (0) = 5, 5 = 0 = . Thus, () = 5−
2

.
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10. (1 + cos)0 = (1 + −) sin ⇒ 

1 + −
=

sin

1 + cos
⇒




1 + 1
=


sin

1 + cos
⇒

 

1 + 
=


sin

1 + cos
⇒ ln |1 + | = − ln |1 + cos|+  ⇒ ln(1 + ) = − ln(1 + cos) +  ⇒

1 +  = − ln(1+cos ) ·  ⇒  = − ln(1+cos) − 1 ⇒  = ln[− ln(1+cos ) − 1]. Since (0) = 0,

0 = ln[− ln 2 − 1] ⇒ 0 = 


1
2

− 1 ⇒  = 4. Thus, () = ln[4− ln(1+cos) − 1]. An equivalent form

is () = ln
3− cos

1 + cos
.

11. 0 −  =  ln ⇒ 0 − 1


 = ln. () = 


(−1)  = − ln|| =


ln||

−1

= ||−1
= 1 since the condition

(1) = 2 implies that we want a solution with   0. Multiplying the last differential equation by () gives

1


0 − 1

2
 =

1


ln ⇒


1




0
=

1


ln ⇒ 1


 =


ln


 ⇒ 1


 = 1

2
(ln)2 +  ⇒

 = 1
2
(ln)2 + . Now (1) = 2 ⇒ 2 = 0 + ⇒  = 2, so  = 1

2
(ln)2 + 2.

12. 0 = 32 ⇒ 


= 32 ⇒ −  = 32  ⇒

−  =


32  ⇒ −− = 3 + . Now (0) = 1 ⇒
−−1 = , so −− = 3 − −1 ⇒ − = −3 + −1 ⇒
− = ln(−3 + −1) ⇒  = − ln(−3 + −1). To find the domain,

solve −3 + −1  0 ⇒ 3  −1 ⇒   −13, so the domain is

(−∞ −13) and  = −13 [≈072] is a vertical asymptote.

13.



() =




() ⇒ 0 =  = , so the orthogonal trajectories must have 0 = −1


⇒ 


= −1


⇒

  = − ⇒ 
  = −   ⇒ 1

2
2 = −+ ⇒  =  − 1

2
2, which are parabolas with a horizontal axis.

14.



() =




() ⇒ 0 =  =  =

ln 


· , so the orthogonal trajectories must have 0 = − 

 ln 
⇒




= − 

 ln 
⇒  ln   = − ⇒ 

 ln   = −   ⇒ 1
2
2 ln  − 1

4
2 [parts with  = ln ,

 =  ] = −1
2
2 + 1 ⇒ 22 ln  − 2 =  − 22.

15. (a) Using (4) and (7) in Section 9.4, we see that for



= 01


1− 

2000


with  (0) = 100, we have  = 01,

 = 2000, 0 = 100, and  =
2000− 100

100
= 19. Thus, the solution of the initial-value problem is

 () =
2000

1 + 19−01
and  (20) =

2000

1 + 19−2
≈ 560.

(b)  = 1200 ⇔ 1200 =
2000

1 + 19−01
⇔ 1 + 19−01 =

2000

1200
⇔ 19−01 =

5

3
− 1 ⇔

−01 =


2
3


19 ⇔ −01 = ln 2

57
⇔  = −10 ln 2

57
≈ 335.
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16. (a) Let  = 0 correspond to the year 2000. An exponential model is  () = .  (0) = 61, so  () = 61.

 (10) = 6110 and  (10) = 69, so 6110 = 69 ⇔ 69

61
= 10 ⇒ 10 = ln

69

61
⇒

 =
1

10
ln

69

61
≈ 00123. Thus,  () = 61 and  (20) = 6120 ≈ 78. Our model predicts that the world population

in the year 2020 will be 78 billion.

(b)  () = 10 ⇔ 61 = 10 ⇔  =
10

61
⇔  = ln

10

61
⇔  = 10

ln(1061)

ln(6961)
≈ 4011 years. Our

exponential model predicts that the world population will exceed 10 billion in 4011 years; that is, in the year 2040.

(c)  =
 − 0

0

=
20− 61

61
=

139

61
and from part (a) ,  =

1

10
ln

69

61
, so  () =



1 +−
=

20

1 + 139
61

−
. Thus,

 (20) =
20

1 + 139
61

−20
≈ 72 billion, which is less than our prediction of 78 billion from the exponential model in

part (a).

(d)  () = 10 ⇔ 20

1 + 139
61

−
= 10 ⇔ 20

10
= 1 +

139

61
− ⇔ 1 =

139

61
− ⇔ 61

139
= − ⇔

ln
61

139
= − ⇔  = −10

ln(61139)

ln(6961)
≈ 6683 years. Our logistic model predicts that the world population will

exceed 10 billion in 6683 years; that is, in the year 2066, which is considerably later than our prediction of 2040 from the

exponential model in part (b).

17. (a)



∝ ∞ −  ⇒ 


= (∞ − ) ⇒




∞ − 
=


  ⇒ − ln |∞ − | =  +  ⇒

ln |∞ − | = −−  ⇒ |∞ − | = −− ⇒ ∞ −  = − ⇒  = ∞ −−.

At  = 0,  = (0) = ∞ − ⇒  = ∞ − (0) ⇒ () = ∞ − [∞ − (0)]−.

(b) ∞ = 53 cm, (0) = 10 cm, and  = 02 ⇒ () = 53− (53− 10)−02 = 53− 43−02.

18. Denote the amount of salt in the tank (in kg) by . (0) = 0 since initially there is only water in the tank.

The rate at which  increases is equal to the rate at which salt flows into the tank minus the rate at which it flows out.

That rate is



= 01

kg
L
× 10

L
min

− 

100

kg
L
× 10

L
min

= 1− 

10

kg
min

⇒




10− 
=


1

10
 ⇒

− ln |10− | = 1
10
+  ⇒ 10−  = −10. (0) = 0 ⇒ 10 =  ⇒  = 10(1− −10).

At  = 6 minutes,  = 10(1− −610) ≈ 4512 kg.

19. Let  represent the population and  the number of infected people. The rate of spread  is jointly proportional to  and

to  − , so for some constant ,



= ( − ) ⇒ () =

0

0 + ( − 0)−
[from the discussion of logistic

growth in Section 9.4].
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Now, measuring  in days, we substitute  = 7,  = 5000, 0 = 160 and (7) = 1200 to find :

1200 =
160 · 5000

160 + (5000− 160)−5000·7· ⇔ 3 =
2000

160 + 4840−35,000
⇔ 480 + 14,520−35,000 = 2000 ⇔

−35,000 =
2000− 480

14,520
⇔ −35,000 = ln

38

363
⇔  =

−1

35,000
ln

38

363
≈ 000006448. Next, let

 = 5000× 80% = 4000, and solve for : 4000 =
160 · 5000

160 + (5000− 160)−·5000·
⇔ 1 =

200

160 + 4840−5000
⇔

160 + 4840−5000 = 200 ⇔ −5000 =
200− 160

4840
⇔ −5000 = ln

1

121
⇔

 =
−1

5000
ln

1

121
=

1
1
7

ln 38
363

· ln 1

121
= 7 · ln 121

ln 363
38

≈ 14875. So it takes about 15 days for 80% of the population

to be infected.

20.
1






=








⇒ 


(ln) =




( ln) ⇒ ln =  ln +  ⇒

 =  ln+ = 

ln

 ⇒  = , where  =  is a positive constant.

21.



= −






 + 


⇒


 + 


 =

 
−




 ⇒

 
1 +






 = −




1  ⇒

+  ln = −


+. This equation gives a relationship between  and , but it is not possible to isolate  and express it in

terms of .

22.  = 04− 0002,  = −02 + 0000008

(a) The  terms represent encounters between the birds and the insects. Since the -population increases from these terms

and the -population decreases, we expect  to represent the birds and  the insects.

(b)  and  are constant ⇒ 0 = 0 and 0 = 0 ⇒
0 = 04− 0002

0 = −02 + 0000008


⇒


0 = 04(1− 0005)

0 = −02(1− 000004)
⇒  = 0 and  = 0 (zero populations)

or  = 1
0005

= 200 and  = 1
000004

= 25,000. The non-trivial solution represents the population sizes needed so that

there are no changes in either the number of birds or the number of insects.

(c)



=




=
−02 + 0000008

04− 0002

(d) At ( ) = (40,000 100),  = 8000  0, so as  increases we

are proceeding in a counterclockwise direction. The populations

increase to approximately (59,646 200), at which point the insect

population starts to decrease. The birds attain a maximum population

of about 380 when the insect population is 25,000. The populations

decrease to about (7370 200), at which point the insect population

starts to increase. The birds attain a minimum population of about 88

when the insect population is 25,000, and then the cycle repeats.
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(e)

Both graphs have the same period and the bird

population peaks about a quarter-cycle after the

insect population.

23. (a)  = 04(1− 0000005)− 0002,  = −02 + 0000008. If  = 0, then

 = 04(1− 0000005), so  = 0 ⇔  = 0 or  = 200,000, which shows that the insect population

increases logistically with a carrying capacity of 200,000. Since   0 for 0    200,000 and   0 for

  200,000, we expect the insect population to stabilize at 200,000.

(b)  and  are constant ⇒ 0 = 0 and 0 = 0 ⇒
0 = 04(1− 0000005)− 0002

0 = −02 + 0000008


⇒


0 = 04[(1− 0000005)− 0005]

0 = (−02 + 0000008)

The second equation is true if  = 0 or  = 02
0000008

= 25,000. If  = 0 in the first equation, then either  = 0

or  = 1
0000005

= 200,000. If  = 25,000, then 0 = 04(25,000)[(1− 0000005 · 25,000)− 0005] ⇒

0 = 10,000[(1− 0125)− 0005] ⇒ 0 = 8750− 50 ⇒  = 175.

Case (i):  = 0,  = 0: Zero populations

Case (ii):  = 0,  = 200,000: In the absence of birds, the insect population is always 200,000.

Case (iii):  = 25,000,  = 175: The predator/prey interaction balances and the populations are stable.

(c) The populations of the birds and insects fluctuate

around 175 and 25,000, respectively, and

eventually stabilize at those values.

(d)

24. First note that, in this question, “weighs” is used in the informal sense, so what we really require is Barbara’s

mass in kg as a function of . Barbara’s net intake of calories per day at time  (measured in days) is

() = 1600− 850− 15() = 750− 15(), where() is her mass at time . We are given that(0) = 60 kg and




=

()

10,000
, so




=

750− 15

10,000
=

150− 3

2000
=
−3(− 50)

2000
with(0) = 60. From




− 50
=

 −3 

2000
, we

get ln |− 50| = − 3
2000

 +. Since(0) = 60,  = ln 10. Now ln
|− 50|

10
= − 3

2000
, so |− 50| = 10−32000.

The quantity− 50 is continuous, initially positive, and the right-hand side is never zero. Thus,− 50 is positive for all ,

and() = 50 + 10−32000 kg. As →∞,()→ 50 kg. Thus, Barbara’s mass gradually settles down to 50 kg.
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1. We use the Fundamental Theorem of Calculus to differentiate the given equation:

[()]
2

= 100 +
 
0


[()]

2
+ [ 0()]2


 ⇒ 2() 0() = [()]

2
+ [ 0()]

2 ⇒

[()]
2
+ [ 0()]

2 − 2() 0() = 0 ⇒ [()−  0()]
2

= 0 ⇔ () =  0(). We can solve this as a separable

equation, or else use Theorem 9.4.2 with  = 1, which says that the solutions are () = . Now [(0)]
2

= 100, so

(0) =  = ±10, and hence () = ±10 are the only functions satisfying the given equation.

2. ()
0
=  00, where () = 

2 ⇒



2


0

= 2
2

0. Since the student’s mistake did not affect the answer,




2


0

= 
2

0 + 2
2

 = 2
2

0. So (2− 1)0 = 2, or
0


=

2

2− 1
= 1 +

1

2− 1
⇒

ln|()| = + 1
2

ln(2− 1) +  ⇒ () = 
√

2− 1.

3.  0() = lim
→0

(+ )− ()


= lim

→0

() [()− 1]


[since (+ ) = ()()]

= () lim
→0

()− 1


= () lim

→0

()− (0)

− 0
= () 0(0) = ()

Therefore,  0() = () for all  and from Theorem 9.4.2 we get () = .

Now (0) = 1 ⇒  = 1 ⇒ () = .

4.


() 




()


= −1 ⇒




()
=

−1
() 

⇒ 1

()
=

()
() 

2 [after differentiating] ⇒


()  = ±() [after taking square roots] ⇒ () = ± 0() [after differentiating again] ⇒  =  or

 = − by Theorem 9.4.2. Therefore, () =  or () = −, for all nonzero constants , are the functions

satisfying the original equation.

5. “The area under the graph of  from 0 to  is proportional to the ( + 1)st power of ()” translates to

 
0
()  = [()]+1 for some constant . By FTC1,





 

0

()  =





[()]

+1
 ⇒

() = ( + 1)[()] 0() ⇒ 1 = ( + 1)[()]−1 0() ⇒ 1 = ( + 1)−1 


⇒

(+ 1)−1  =  ⇒ 
(+ 1)−1  =


 ⇒ (+ 1)

1


 = + .

Now (0) = 0 ⇒ 0 = 0 + ⇒  = 0 and then (1) = 1 ⇒ (+ 1)
1


= 1 ⇒  =



+ 1
,

so  =  and  = () = 1.
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6. Let  = () be a curve that passes through the point ( 1) and whose

subtangents all have length . The tangent line at  =  has equation

 − () =  0()(− ). Assuming () 6= 0 and  0() 6= 0, it has

-intercept − ()

 0()
[let  = 0 and solve for ]. Thus, the length of the

subtangent is , so

−− ()

 0()

 =

 ()

 0()

 =  ⇒  0()
()

= ±1


.

Now
 0()

()
= ±1


⇒  0() = ±1


() ⇒ 


= ±1


 ⇒ 


= ±1


 ⇒


1


 = ±1




 ⇒

ln || = ±1


+. Since () = 1, ln 1 = ±1 + ⇒  = ∓1. Thus,  = ±∓1, or  = ±(−1). One curve is

an increasing exponential (as shown in the figure) and the other curve is its reflection about the line  = .

7. Let () denote the temperature of the peach pie  minutes after 5:00 PM and  the temperature of the room. Newton’s Law of

Cooling gives us  = ( −) Solving for  we get


 −
=   ⇒ ln| −| =  +  ⇒

| −| = + ⇒  − = ± ·  ⇒  =  + , where is a nonzero constant. We are given

temperatures at three times.

(0) = 100 ⇒ 100 =  + ⇒  = 100−

(10) = 80 ⇒ 80 = 10 + (1)

(20) = 65 ⇒ 65 = 20 + (2)

Substituting 100− for  in (1) and (2) gives us

−20 = 10 − (3) and −35 = 20 − (4)

Dividing (3) by (4) gives us
−20

−35
=



10 − 1


(20 − 1)

⇒ 4

7
=

10 − 1

20 − 1
⇒ 420 − 4 = 710 − 7 ⇒

420 − 710 + 3 = 0. This is a quadratic equation in 10.

410 − 3


10 − 1


= 0 ⇒ 10 = 3

4
or 1 ⇒

10 = ln 3
4
or ln 1 ⇒  = 1

10
ln 3

4
since  is a nonzero constant of proportionality. Substituting 3

4
for 10 in (3) gives us

−20 =  · 3
4
− ⇒ −20 = −1

4
 ⇒  = 80. Now  = 100− so  = 20◦C.

8. Let  be the number of hours before noon that it began to snow,  the time measured in hours after noon, and

 = () = distance traveled by the plow at time . Then  = speed of plow. Since the snow falls steadily, the height

at time  is () = (+ ), where  is a constant. We are given that the rate of removal is constant, say (in m3h).

If the width of the path is , then  = height×width× speed = ()× × 


= (+ )




. Thus,




=



 + 
,

where  =



is a constant. This is a separable equation.


 = 




 + 
⇒ () =  ln(+ ) +.

Put  = 0: 0 =  ln + ⇒  = − ln , so () =  ln( + )−  ln  =  ln(1 + ).

Put  = 1: 6000 =  ln(1 + 1) [ = 6 km].

Put  = 2: 9000 =  ln(1 + 2) [ = (6 + 3) km].
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Solve for :
ln(1 + 1)

6000
=

ln(1 + 2)

9000
⇒ 3 ln


1 +

1




= 2 ln


1 +

2




⇒


1 +

1



3

=


1 +

2



2

⇒

1 +
3


+

3

2
+

1

3
= 1 +

4


+

4

2
⇒ 1


+

1

2
− 1

3
= 0 ⇒ 2 + − 1 = 0 ⇒  = −1±√5

2
.

But   0, so  = −1 +
√

5
2

≈ 0618 h ≈ 37 min. The snow began to fall
√

5− 1
2

hours before noon; that is, at

about 11:23 AM.

9. (a) While running from ( 0) to ( ), the dog travels a distance

 =
 



1 + ()2  = − 




1 + ()2 , so




= −


1 + ()2. The dog and rabbit run at the same speed, so the

rabbit’s position when the dog has traveled a distance  is (0 ). Since the

dog runs straight for the rabbit,



=

− 

0− 
(see the figure).

Thus,  =  − 



⇒ 


=




−


2

2
+ 1






= − 2

2
. Equating the two expressions for





gives us 
2

2
=


1 +






2

, as claimed.

(b) Letting  =



, we obtain the differential equation 




=
√

1 + 2, or
√

1 + 2
=




. Integrating:

ln =


√

1 + 2

25
= ln


 +


1 + 2


+ . When  = ,  =  = 0, so ln = ln 1 + . Therefore,

 = ln, so ln = ln
√

1 + 2 + 


+ ln = ln


√

1 + 2 + 
 ⇒  = 

√
1 + 2 + 

 ⇒
√

1 + 2 =



−  ⇒ 1 + 2 =

 


2

− 2


+ 2 ⇒

 


2

− 2
 



− 1 = 0 ⇒

 =
()

2 − 1

2()
=

2 − 2

2
=



2
− 

2

1


[for   0]. Since  =




,  =

2

4
− 

2
ln+ 1.

Since  = 0 when  = , 0 =


4
− 

2
ln + 1 ⇒ 1 =



2
ln − 

4
. Thus,

 =
2

4
− 

2
ln +



2
ln− 

4
=

2 − 2

4
− 

2
ln
 





(c) As → 0+,  →∞, so the dog never catches the rabbit.

10. (a) If the dog runs twice as fast as the rabbit, then the rabbit’s position when the dog has traveled a distance  is (0 2).

Since the dog runs straight toward the rabbit, the tangent line to the dog’s path has slope



=

2− 

0− 
.

Thus,  = 2 − 2



⇒ 


= 2




−


2
2

2
+ 2






= −2

2

2
.

From Problem 9(a),



= −


1 +






2

, so 2
2

2
=


1 +






2

.

Letting  =



, we obtain the differential equation 2




=
√

1 + 2, or
2 √
1 + 2

=



. Integrating, we get
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ln =


2 √
1 + 2

= 2 ln


1 + 2 + 


+ . [See Problem 9(b).] When  = ,  =  = 0, so

ln = 2 ln 1 +  = . Thus,

ln = 2 ln
√

1 + 2 + 


+ ln = ln


√

1 + 2 + 
2 ⇒  = 

√
1 + 2 + 

2 ⇒

√
1 + 2 =





−  ⇒ 1 + 2 =




− 2





 + 2 ⇒ 2





 =




− 1 ⇒




=  =

1

2





− 1

2



=
1

2
√

12 −

√


2
−12 ⇒  =

1

3
√

32 −√12 +1.

When  = ,  = 0, so 0 =
1

3
√

32 −

√
12 + 1 =



3
− + 1 = 1 − 2

3
. Therefore, 1 = 2

3
 and

 =
32

3
√

−
√
12 + 2

3
. As → 0,  → 2

3
, so the dog catches the rabbit when the rabbit is at


0 2

3


.

(At that point, the dog has traveled a distance of 4
3
, twice as far as the rabbit has run.)

(b) As in the solutions to part (a) and Problem 9, we get  =



=

2

22
− 2

22
and hence  =

3

62
+

2

2
− 2

3
.

We want to minimize the distance from the dog at ( ) to the rabbit at (0 2). Now  = 1
2
 − 1

2




⇒

2 =  −  ⇒  − 2 =  = 


2

22
− 2

22


=

3

22
− 2

2
, so

 =


(− 0)2 + ( − 2)2 =


2 +


3

22
− 2

2

2

=


6

44
+

2

2
+

4

42
=


3

22
+

2

2

2

=
3

22
+

2

2

0 = 0 ⇔ 32

22
− 2

22
= 0 ⇔ 32

22
=

2

22
⇔ 4 =

4

3
⇔  =


4
√

3
,   0,   0.

Since00() =
3

2
+

2

3
 0 for all   0, we know that



4
√

3


=

( · 3−14)3

22
+

2

2 · 3−14)
=

2

334
is

the minimum value of, that is, the closest the dog gets to the rabbit. The positions at this distance are

Dog: ( ) =



4
√

3



5

374
− 2

3





=



4
√

3

5

4
√

3− 6

9




Rabbit: (0 2) =


0

8
4
√

3

9
− 2

3


=


0

8
4
√

3− 6

9




11. (a) We are given that  = 1
3
2,  = 60,000 ft3h, and  = 15 = 3

2
. So  = 1

3



3
2

2
 = 3

4
3 ⇒




= 3

4
 · 32 


= 9

4
2 


. Therefore,




=

4()

92
=

240,000
92

=
80,000
32

() ⇒
32  =


80,000  ⇒ 3 = 80,000+ . When  = 0,  = 60. Thus,  = 603 = 216,000, so
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3 = 80,000 + 216,000. Let  = 100. Then 1003 = 1,000,000 = 80,000 + 216,000 ⇒
80,000 = 784,000 ⇒  = 98, so the time required is 98 hours.

(b) The floor area of the silo is  =  · 2002 = 40,000 ft2, and the area of the base of the pile is

 = 2 = 


3
2

2

= 9
4
2. So the area of the floor which is not covered when  = 60 is

 − = 40,000 − 8100 = 31,900 ≈ 100,217 ft2. Now  = 9
4
2 ⇒  = 9

4
· 2 (),

and from () in part (a) we know that when  = 60,  = 80,000
3(60)2

= 200
27

fth. Therefore,

 = 9
4

(2)(60)


200
27


= 2000 ≈ 6283 ft2h.

(c) At  = 90 ft,  = 60,000 − 20,000 = 40,000 ft3h. From () in part (a),




=

4()

92
=

4(40,000)

92
=

160,000
92

⇒ 
92  =


160,000  ⇒ 33 = 160,000 +. When  = 0,

 = 90; therefore,  = 3 · 729,000 = 2,187,000. So 33 = 160,000 + 2,187,000. At the top,  = 100 ⇒

3(100)3 = 160,000 + 2,187,000 ⇒  = 813,000
160,000 ≈ 51. The pile reaches the top after about 51 h.

12. Let  ( ) be any first-quadrant point on the curve  = (). The tangent line at  has equation  −  =  0()(− ), or

equivalently,  =  + −, where =  0(). If (0 ) is the -intercept, then  = − . If ( 0) is the

-intercept, then  =
− 


= − 


. Since the tangent line is bisected at  , we know that || = ||; that is,

(− 0)2 + [− (− )]2 =


[− (− )]2 + (− 0)2. Squaring and simplifying gives us

2 + 22 = 22 + 2 ⇒ 22 + 24 = 2 + 22 ⇒ 24 +

2 − 2


2 − 2 = 0 ⇒

22 − 2

2 + 1


= 0 ⇒ 2 = 22. Since is the slope of the line from a positive -intercept to a positive

-intercept, must be negative. Since  and  are positive, we have = −, so we will solve the equivalent differential

equation



= −


⇒ 


= −


⇒





= −





⇒ ln  = − ln +  [   0] ⇒

 = − ln+ = ln 
−1 ·  = −1 · ⇒  = . Since the point (3 2) is on the curve, 3 = 2 ⇒  = 6

and the curve is  = 6 with   0.

13. Let  ( ) be any point on the curve. If is the slope of the tangent line at  , then = 0(), and an equation of the

normal line at  is  −  = − 1


(− ), or equivalently,  = − 1


+ +




. The -intercept is always 6, so

+



= 6 ⇒ 


= 6−  ⇒  =



6− 
. We will solve the equivalent differential equation




=



6− 
⇒

(6− )  =  ⇒


(6− )  =


 ⇒ 6 − 1

2
2 = 1

2
2 + ⇒ 12 − 2 = 2 +.

Since (3 2) is on the curve, 12(2)− 22 = 32 +  ⇒  = 11. So the curve is given by 12 − 2 = 2 + 11 ⇒

2 + 2 − 12 + 36 = −11 + 36 ⇒ 2 + ( − 6)2 = 25, a circle with center (0 6) and radius 5.
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14. Let  (0 0) be a point on the curve. Since the midpoint of the line segment determined by the normal line from (0 0) to

its intersection with the -axis has -coordinate 0, the -coordinate of the point of intersection with the -axis must be −0.

Hence, the normal line has slope
0 − 0

0 − (−0)
=

0

20

. So the tangent line has slope −20

0

. This gives the differential

equation 0 = −2


⇒   = −2 ⇒ 

  =

(−2)  ⇒ 1

2
2 = −2 +  ⇒ 2 + 1

2
2 = 

[  0]. This is a family of ellipses.

15. From the figure, slope  =



. If triangle  is isosceles, then slope

 must be−


, the negative of slope. This slope is also equal to  0(),

so we have



= −


⇒





= −





⇒

ln || = − ln ||+  ⇒ || = − ln||+ ⇒

|| = (ln||)−1 ⇒ || = 1

||
 ⇒  =




, 6= 0.
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10.1 Curves Defined by Parametric Equations

1.  = 1− 2,  = 2− 2, −1 ≤  ≤ 2

 −1 0 1 2

 0 1 0 −3

 −3 0 1 0

2.  = 3 + ,  = 2 + 2, −2 ≤  ≤ 2

 −2 −1 0 1 2

 −10 −2 0 2 10

 6 3 2 3 6

3.  =  + sin ,  = cos , − ≤  ≤ 

 − −2 0 2 

 − −2 + 1 0 2 + 1 

 −1 0 1 0 −1

4.  = − + ,  =  − , −2 ≤  ≤ 2

 −2 −1 0 1 2

 2 − 2

539

− 1

172

1 −1 + 1

137

−2 + 2

214

 −2 + 2

214

−1 + 1

137

1 − 1

172

2 − 2

539

5.  = 2− 1,  = 1
2
 + 1

(a)
 −4 −2 0 2 4

 −9 −5 −1 3 7

 −1 0 1 2 3

(b)  = 2− 1 ⇒ 2 =  + 1 ⇒  = 1
2
 + 1

2
, so

 = 1
2
+ 1 = 1

2


1
2
 + 1

2


+ 1 = 1

4
+ 1

4
+ 1 ⇒  = 1

4
 + 5

4
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6.  = 3+ 2,  = 2 + 3

(a)
 −4 −2 0 2 4

 −10 −4 2 8 14

 −5 −1 3 7 11

(b)  = 3+ 2 ⇒ 3 = − 2 ⇒  = 1
3
− 2

3
, so

 = 2+ 3 = 2


1
3
− 2

3


+ 3 = 2

3
− 4

3
+ 3 ⇒  = 2

3
 + 5

3

7.  = 2 − 3,  = + 2, −3 ≤  ≤ 3

(a)
 −3 −1 1 3

 6 −2 −2 6

 −1 1 3 5

(b)  =  + 2 ⇒  =  − 2, so

 = 2 − 3 = ( − 2)2 − 3 = 2 − 4 + 4− 3 ⇒
 = 2 − 4 + 1, −1 ≤  ≤ 5

8.  = sin ,  = 1− cos , 0 ≤  ≤ 2

(a)
 0 2  32 2

 0 1 0 −1 0

 0 1 2 1 0

(b)  = sin ,  = 1− cos  [or  − 1 = − cos ] ⇒

2 + ( − 1)2 = (sin )2 + (− cos )2 ⇒ 2 + ( − 1)2 = 1.

As  varies from 0 to 2, the circle with center (0 1) and radius 1 is traced out.

9.  =
√
,  = 1− 

(a)
 0 1 2 3 4

 0 1 1414 1732 2

 1 0 −1 −2 −3

(b)  =
√
 ⇒  = 2 ⇒  = 1−  = 1− 2. Since  ≥ 0,  ≥ 0.

So the curve is the right half of the parabola  = 1− 2.
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10.  = 2,  = 3

(a)
 −2 −1 0 1 2

 4 1 0 1 4

 −8 −1 0 1 8

(b)  = 3 ⇒  = 3

 ⇒  = 2 =


3


2

= 23.  ∈ R,  ∈ R,  ≥ 0.

11. (a)  = sin 1
2
,  = cos 1

2
, − ≤  ≤ .

2 + 2 = sin2 1
2
 + cos2 1

2
 = 1. For − ≤  ≤ 0, we have

−1 ≤  ≤ 0 and 0 ≤  ≤ 1. For 0   ≤ , we have 0   ≤ 1

and 1   ≥ 0. The graph is a semicircle.

(b)

12. (a)  = 1
2

cos ,  = 2 sin , 0 ≤  ≤ .

(2)2 +


1
2

2

= cos2  + sin2  = 1 ⇒ 42 + 1
4
2 = 1 ⇒

2

(12)2
+

2

22
= 1, which is an equation of an ellipse with

-intercepts ± 1
2
and -intercepts ±2. For 0 ≤  ≤ 2, we have

1
2
≥  ≥ 0 and 0 ≤  ≤ 2. For 2   ≤ , we have 0   ≥ − 1

2

and 2   ≥ 0. So the graph is the top half of the ellipse.

(b)

13. (a)  = sin   = csc , 0    
2
.  = csc  =

1

sin 
=

1


.

For 0    
2
, we have 0    1 and   1. Thus, the curve is

the portion of the hyperbola  = 1 with   1.

(b)

14. (a)  = −2 = ()−2 = −2 = 12 for   0 since  = . (b)
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15. (a)  = ln  ⇒  =  , so  = 2 = ()2 = 2 . (b)

16. (a)  =
√
 + 1 ⇒ 2 = + 1 ⇒  = 2 − 1.

 =
√
− 1 =


(2 − 1)− 1 =

√
2 − 2. The curve is the part of

the hyperbola 2 − 2 = 2 with  ≥ √2 and  ≥ 0.

(b)

17. (a)  = sinh ,  = cosh  ⇒ 2 − 2 = cosh2 − sinh2  = 1.

Since  = cosh  ≥ 1, we have the upper branch of the hyperbola

2 − 2 = 1.

(b)

18. (a)  = tan2 ,  = sec , −2    2.

1 + tan2  = sec2  ⇒ 1 +  = 2 ⇒  = 2 − 1. For

−2   ≤ 0, we have  ≥ 0 and  ≥ 1. For 0    2, we have

0   and 1  . Thus, the curve is the portion of the parabola  = 2 − 1

in the first quadrant. As  increases from −2 to 0, the point ( )

approaches (0 1) along the parabola. As  increases from 0 to 2, the

point ( ) retreats from (0 1) along the parabola.

(b)

19.  = 5 + 2 cos,  = 3 + 2 sin ⇒ cos =
− 5

2
, sin =

 − 3

2
. cos2() + sin2() = 1 ⇒


− 5

2

2

+


 − 3

2

2

= 1. The motion of the particle takes place on a circle centered at (5 3) with a radius 2. As  goes

from 1 to 2, the particle starts at the point (3 3) and moves counterclockwise along the circle


− 5

2

2

+


 − 3

2

2

= 1 to

(7 3) [one-half of a circle].

20.  = 2 + sin ,  = 1 + 3 cos  ⇒ sin  = − 2, cos  =
 − 1

3
. sin2  + cos2  = 1 ⇒ (− 2)2 +


 − 1

3

2

= 1.

The motion of the particle takes place on an ellipse centered at (2 1). As  goes from 2 to 2, the particle starts at the point

(3 1) and moves counterclockwise three-fourths of the way around the ellipse to (2 4).
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21.  = 5 sin ,  = 2cos  ⇒ sin  =


5
, cos  =



2
. sin2  + cos2  = 1 ⇒


5

2

+


2

2

= 1. The motion of the

particle takes place on an ellipse centered at (0 0). As  goes from− to 5, the particle starts at the point (0−2) and moves

clockwise around the ellipse 3 times.

22.  = cos2  = 1− sin2  = 1− 2. The motion of the particle takes place on the parabola  = 1− 2. As  goes from −2 to

−, the particle starts at the point (0 1), moves to (1 0), and goes back to (0 1). As  goes from − to 0, the particle moves

to (−1 0) and goes back to (0 1). The particle repeats this motion as  goes from 0 to 2.

23. We must have 1 ≤  ≤ 4 and 2 ≤  ≤ 3. So the graph of the curve must be contained in the rectangle [1 4] by [2 3].

24. (a) From the first graph, we have 1 ≤  ≤ 2. From the second graph, we have −1 ≤  ≤ 1 The only choice that satisfies

either of those conditions is III.

(b) From the first graph, the values of  cycle through the values from−2 to 2 four times. From the second graph, the values

of  cycle through the values from−2 to 2 six times. Choice I satisfies these conditions.

(c) From the first graph, the values of  cycle through the values from −2 to 2 three times. From the second graph, we have

0 ≤  ≤ 2. Choice IV satisfies these conditions.

(d) From the first graph, the values of  cycle through the values from−2 to 2 two times. From the second graph, the values of

 do the same thing. Choice II satisfies these conditions.

25. When  = −1, ( ) = (1 1). As  increases to 0,  and  both decrease to 0.

As  increases from 0 to 1,  increases from 0 to 1 and  decreases from 0 to

−1. As  increases beyond 1,  continues to increase and  continues to

decrease. For   −1,  and  are both positive and decreasing. We could

achieve greater accuracy by estimating - and -values for selected values of 

from the given graphs and plotting the corresponding points.

26. When  = −1, ( ) = (0 0). As  increases to 0,  increases from 0 to 1,

while  first decreases to −1 and then increases to 0. As  increases from 0 to 1,

 decreases from 1 to 0, while  first increases to 1 and then decreases to 0. We

could achieve greater accuracy by estimating - and -values for selected values

of  from the given graphs and plotting the corresponding points.

y

0
x1

_1

1

t=_1, 1 
(0, 0)

t=0 
(1, 0)

27. When  = −1, ( ) = (0 1). As  increases to 0,  increases from 0 to 1 and

 decreases from 1 to 0. As  increases from 0 to 1, the curve is retraced in the

opposite direction with  decreasing from 1 to 0 and  increasing from 0 to 1.

We could achieve greater accuracy by estimating - and -values for selected

values of  from the given graphs and plotting the corresponding points.
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28. (a)  = 4 −  + 1 = (4 + 1)−   0 [think of the graphs of  = 4 + 1 and  = ] and  = 2 ≥ 0, so these equations

are matched with graph V.

(b)  =
√
 ≥ 0.  = 2 − 2 = (− 2) is negative for 0    2, so these equations are matched with graph I.

(c)  = sin 2 has period 22 = . Note that

( + 2) = sin[ + 2 + sin 2( + 2)] = sin( + 2 + sin 2) = sin( + sin 2) = (), so  has period 2.

These equations match graph II since  cycles through the values −1 to 1 twice as  cycles through those values once.

(d)  = cos 5 has period 25 and  = sin 2 has period , so  will take on the values −1 to 1, and then 1 to −1, before 

takes on the values−1 to 1. Note that when  = 0, ( ) = (1 0). These equations are matched with graph VI

(e)  =  + sin 4,  = 2 + cos 3. As  becomes large,  and 2 become the dominant terms in the expressions for  and

, so the graph will look like the graph of  = 2, but with oscillations. These equations are matched with graph IV.

(f )  =
sin 2

4 + 2
,  =

cos 2

4 + 2
. As →∞,  and  both approach 0. These equations are matched with graph III.

29. Use  =  and  = − 2 sin with a -interval of [− ].

30. Use 1 = , 1 = 3 − 4 and 2 = 3 − 4, 2 =  with a -interval of

[−3 3]. There are 9 points of intersection; (0 0) is fairly obvious. The point

in quadrant I is approximately (22 22), and by symmetry, the point in

quadrant III is approximately (−22−22). The other six points are

approximately (∓19±05), (∓17±17), and (∓05±19).

31. (a)  = 1 + (2 − 1),  = 1 + (2 − 1), 0 ≤  ≤ 1. Clearly the curve passes through 1(1 1) when  = 0 and

through 2(2 2) when  = 1. For 0    1,  is strictly between 1 and 2 and  is strictly between 1 and 2. For

every value of ,  and  satisfy the relation  − 1 =
2 − 1

2 − 1

(− 1), which is the equation of the line through

1(1 1) and 2(2 2).

Finally, any point ( ) on that line satisfies
 − 1

2 − 1

=
− 1

2 − 1

; if we call that common value , then the given

parametric equations yield the point ( ); and any ( ) on the line between 1(1 1) and 2(2 2) yields a value of

 in [0 1]. So the given parametric equations exactly specify the line segment from 1(1 1) to 2(2 2).

(b)  = −2 + [3− (−2)] = −2 + 5 and  = 7 + (−1− 7) = 7− 8 for 0 ≤  ≤ 1.
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32. For the side of the triangle from  to , use (1 1) = (1 1) and (2 2) = (4 2).

Hence, the equations are

= 1 + (2 − 1)  = 1 + (4− 1)  = 1 + 3,

 = 1 + (2 − 1)  = 1 + (2− 1)  = 1 + .

Graphing  = 1 + 3 and  = 1 +  with 0 ≤  ≤ 1 gives us the side of the

triangle from  to . Similarly, for the side  we use  = 4− 3 and  = 2 + 3, and for the side  we use  = 1

and  = 1 + 4.

33. The circle 2 + ( − 1)2 = 4 has center (0 1) and radius 2, so by Example 4 it can be represented by  = 2cos ,

 = 1 + 2 sin , 0 ≤  ≤ 2. This representation gives us the circle with a counterclockwise orientation starting at (2 1).

(a) To get a clockwise orientation, we could change the equations to  = 2cos ,  = 1− 2 sin , 0 ≤  ≤ 2.

(b) To get three times around in the counterclockwise direction, we use the original equations  = 2 cos ,  = 1 + 2 sin  with

the domain expanded to 0 ≤  ≤ 6.

(c) To start at (0 3) using the original equations, we must have 1 = 0; that is, 2 cos  = 0. Hence,  = 
2
. So we use

 = 2cos ,  = 1 + 2 sin , 
2
≤  ≤ 3

2
.

Alternatively, if we want  to start at 0, we could change the equations of the curve. For example, we could use

 = −2 sin ,  = 1 + 2 cos , 0 ≤  ≤ .

34. (a) Let 22 = sin2  and 22 = cos2  to obtain  =  sin  and

 =  cos  with 0 ≤  ≤ 2 as possible parametric equations for the ellipse

22 + 22 = 1.

(b) The equations are  = 3 sin  and  =  cos  for  ∈ {1 2 4 8}.

(c) As  increases, the ellipse stretches vertically.

35. Big circle: It’s centered at (2 2) with a radius of 2, so by Example 4, parametric equations are

 = 2 + 2 cos   = 2 + 2 sin  0 ≤  ≤ 2

Small circles: They are centered at (1 3) and (3 3) with a radius of 01. By Example 4, parametric equations are

(left)  = 1 + 01 cos   = 3 + 01 sin  0 ≤  ≤ 2

and (right)  = 3 + 01 cos   = 3 + 01 sin  0 ≤  ≤ 2

Semicircle: It’s the lower half of a circle centered at (2 2) with radius 1. By Example 4, parametric equations are

 = 2 + 1 cos   = 2 + 1 sin   ≤  ≤ 2

To get all four graphs on the same screen with a typical graphing calculator, we need to change the last -interval to[0 2] in

order to match the others. We can do this by changing  to 05. This change gives us the upper half. There are several ways to

get the lower half—one is to change the “+” to a “−” in the -assignment, giving us

 = 2 + 1 cos(05)  = 2− 1 sin(05) 0 ≤  ≤ 2
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36. If you are using a calculator or computer that can overlay graphs (using multiple -intervals), the following is appropriate.

Left side:  = 1 and  goes from 15 to 4, so use

 = 1  =  15 ≤  ≤ 4

Right side:  = 10 and  goes from 15 to 4, so use

 = 10  =  15 ≤  ≤ 4

Bottom:  goes from 1 to 10 and  = 15, so use

 =   = 15 1 ≤  ≤ 10

Handle: It starts at (10 4) and ends at (13 7), so use

 = 10 +   = 4 +  0 ≤  ≤ 3

Left wheel: It’s centered at (3 1), has a radius of 1, and appears to go about 30◦ above the horizontal, so use

 = 3 + 1 cos   = 1 + 1 sin  5
6
≤  ≤ 13

6

Right wheel: Similar to the left wheel with center (8 1), so use

 = 8 + 1 cos   = 1 + 1 sin  5
6
≤  ≤ 13

6

If you are using a calculator or computer that cannot overlay graphs (using one -interval), the following is appropriate.

We’ll start by picking the -interval [0 25] since it easily matches the -values for the two sides. We now need to find

parametric equations for all graphs with 0 ≤  ≤ 25.

Left side:  = 1 and  goes from 15 to 4, so use

 = 1  = 15 +  0 ≤  ≤ 25

Right side:  = 10 and  goes from 15 to 4, so use

 = 10  = 15 +  0 ≤  ≤ 25

Bottom:  goes from 1 to 10 and  = 15, so use

 = 1 + 36  = 15 0 ≤  ≤ 25

To get the x-assignment, think of creating a linear function such that when  = 0,  = 1 and when  = 25,

 = 10. We can use the point-slope form of a line with (1 1) = (0 1) and (2 2) = (25 10).

− 1 =
10− 1

25− 0
(− 0) ⇒  = 1 + 36.

Handle: It starts at (10 4) and ends at (13 7), so use

 = 10 + 12  = 4 + 12 0 ≤  ≤ 25

(1 1) = (0 10) and (2 2) = (25 13) gives us − 10 =
13− 10

25− 0
(− 0) ⇒  = 10 + 12.

(1 1) = (0 4) and (2 2) = (25 7) gives us  − 4 =
7− 4

25− 0
(− 0) ⇒  = 4 + 12.
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Left wheel: It’s centered at (3 1), has a radius of 1, and appears to go about 30◦ above the horizontal, so use

 = 3 + 1 cos


8
15
+ 5

6


  = 1 + 1 sin


8
15
 + 5

6


 0 ≤  ≤ 25

(1 1) =

0 5

6


and (2 2) =


5
2
 13

6


gives us  − 5

6
=

13
6
− 5

6
5
2
− 0

(− 0) ⇒  = 5
6

+ 8
15
.

Right wheel: Similar to the left wheel with center (8 1), so use

 = 8 + 1 cos


8
15
+ 5

6


  = 1 + 1 sin


8
15
 + 5

6


 0 ≤  ≤ 25

37. (a)  = 3 ⇒  = 13, so  = 2 = 23.

We get the entire curve  = 23 traversed in a left to

right direction.

(b)  = 6 ⇒  = 16, so  = 4 = 46 = 23.

Since  = 6 ≥ 0, we only get the right half of the

curve  = 23.

(c)  = −3 = (−)3 [so − = 13],

 = −2 = (−)2 = (13)2 = 23.

If   0, then  and  are both larger than 1. If   0, then  and 

are between 0 and 1. Since   0 and   0, the curve never quite

reaches the origin.

38. (a)  = , so  = −2 = −2. We get the entire curve  = 12 traversed in a

left-to-right direction.

(b)  = cos ,  = sec2  =
1

cos2 
=

1

2
. Since sec  ≥ 1, we only get the

parts of the curve  = 12 with  ≥ 1. We get the first quadrant portion of

the curve when   0, that is, cos   0, and we get the second quadrant

portion of the curve when   0, that is, cos   0.

(c)  = ,  = −2 = ()−2 = −2. Since  and −2 are both positive, we

only get the first quadrant portion of the curve  = 12.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE

872 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

39. The case 
2
    is illustrated.  has coordinates ( ) as in Example 7,

and has coordinates (  +  cos( − )) = ( (1− cos ))

[since cos( − ) = cos cos+ sin sin = − cos], so  has

coordinates ( −  sin( − ) (1− cos )) = (( − sin ) (1− cos ))

[since sin( − ) = sin cos− cos sin = sin]. Again we have the

parametric equations  = ( − sin ),  = (1− cos ).

40. The first two diagrams depict the case     3
2
,   . As in Example 7,  has coordinates ( ). Now (in the second

diagram) has coordinates (  +  cos( − )) = (  −  cos ), so a typical point  of the trochoid has coordinates

( +  sin( − )  −  cos ). That is,  has coordinates ( ), where  =  −  sin  and  =  −  cos . When

 = , these equations agree with those of the cycloid.

41. It is apparent that  = || and  = | | = | |. From the diagram,

 = || =  cos  and  = | | =  sin . Thus, the parametric equations are

 =  cos  and  =  sin . To eliminate  we rearrange: sin  =  ⇒

sin2  = ()
2 and cos  =  ⇒ cos2  = ()

2. Adding the two

equations: sin2  + cos2  = 1 = 22 + 22. Thus, we have an ellipse.

42.  has coordinates ( cos   sin ). Since  is perpendicular to ,∆ is a right triangle and  has coordinates

( sec  0). It follows that  has coordinates ( sec   sin ). Thus, the parametric equations are  =  sec ,  =  sin .

43.  = (2 cot  2), so the -coordinate of  is  = 2 cot . Let  = (0 2).

Then ∠ is a right angle and ∠ = , so || = 2 sin  and

 = ((2 sin ) cos  (2 sin ) sin ). Thus, the -coordinate of 

is  = 2 sin2 .

44. (a) Let  be the angle of inclination of segment  . Then || = 2

cos 
.

Let  = (2 0). Then by use of right triangle  we see that || = 2 cos .

Now

| |= || = ||− ||

= 2


1

cos 
− cos 


= 2

1− cos2 

cos 
= 2

sin2 

cos 
= 2 sin  tan 

So  has coordinates  = 2 sin  tan  · cos  = 2 sin2  and  = 2 sin  tan  · sin  = 2 sin2  tan .

(b)
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45. (a) There are 2 points of intersection:

(−3 0) and approximately (−21 14).

(b) A collision point occurs when 1 = 2 and 1 = 2 for the same . So solve the equations:

3 sin  = −3 + cos  (1)

2 cos  = 1 + sin  (2)

From (2), sin  = 2cos − 1. Substituting into (1), we get 3(2 cos − 1) = −3 + cos  ⇒ 5 cos  = 0 () ⇒

cos  = 0 ⇒  = 
2
or 3

2
. We check that  = 3

2
satisfies (1) and (2) but  = 

2
does not. So the only collision point

occurs when  = 3
2
, and this gives the point (−3 0). [We could check our work by graphing 1 and 2 together as

functions of  and, on another plot, 1 and 2 as functions of . If we do so, we see that the only value of  for which both

pairs of graphs intersect is  = 3
2
.]

(c) The circle is centered at (3 1) instead of (−3 1). There are still 2 intersection points: (3 0) and (21 14), but there are

no collision points, since () in part (b) becomes 5 cos  = 6 ⇒ cos  = 6
5
 1.

46. (a) If  = 30◦ and 0 = 500 ms, then the equations become  = (500 cos 30◦) = 250
√

3 and

 = (500 sin 30◦)− 1
2
(98)2 = 250− 492.  = 0 when  = 0 (when the gun is fired) and again when

 = 250
49
≈ 51 s. Then  =


250

√
3


250
49

 ≈ 22,092 m, so the bullet hits the ground about 22 km from the gun.

The formula for  is quadratic in . To find the maximum -value, we will complete the square:

 = −49

2 − 250

49



= −49

2 − 250

49
+


125
49

2
+ 1252

49
= −49


− 125

49

2
+ 1252

49
≤ 1252

49

with equality when  = 125
49

s, so the maximum height attained is 1252

49
≈ 3189 m.

(b) As  (0◦    90◦) increases up to 45◦, the projectile attains a

greater height and a greater range. As  increases past 45◦, the

projectile attains a greater height, but its range decreases.

(c)  = (0 cos) ⇒  =


0 cos
.

 = (0 sin)− 1
2
2 ⇒  = (0 sin)



0 cos
− 

2




0 cos

2

= (tan)−




22
0 cos2 


2,

which is the equation of a parabola (quadratic in ).
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47.  = 2  = 3 − . We use a graphing device to produce the graphs for various values of  with − ≤  ≤ . Note that all

the members of the family are symmetric about the -axis. For   0, the graph does not cross itself, but for  = 0 it has a

cusp at (0 0) and for   0 the graph crosses itself at  = , so the loop grows larger as  increases.

48.  = 2− 43  = −2 + 34. We use a graphing device to produce the graphs for various values of  with − ≤  ≤ .

Note that all the members of the family are symmetric about the -axis. When   0, the graph resembles that of a polynomial

of even degree, but when  = 0 there is a corner at the origin, and when   0, the graph crosses itself at the origin, and has

two cusps below the -axis. The size of the “swallowtail” increases as  increases.

49.  =  +  cos   = +  sin    0. From the first figure, we see that

curves roughly follow the line  = , and they start having loops when 

is between 14 and 16. The loops increase in size as  increases.

While not required, the following is a solution to determine the exact values for which the curve has a loop,

that is, we seek the values of  for which there exist parameter values  and  such that    and

(+  cos   +  sin ) = (+  cos +  sin).

In the diagram at the left,  denotes the point ( ),  the point ( ),

and  the point (+  cos  +  sin ) = (+  cos +  sin).

Since  =  = , the triangle  is isosceles. Therefore its base

angles,  = ∠ and  = ∠ are equal. Since  = − 
4
and

 = 2 − 3
4
−  = 5

4
− , the relation  =  implies that

+  = 3
2
(1).
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Since  = distance(( ) ( )) =


2(− )2 =
√

2 (− ), we see that

cos =
1
2



=

(− )
√

2


, so −  =

√
2  cos, that is,

−  =
√

2  cos

− 

4


(2). Now cos


− 

4


= sin



2
− − 

4


= sin


3
4
− 

,

so we can rewrite (2) as −  =
√

2  sin


3
4
− 

(20). Subtracting (20) from (1) and

dividing by 2, we obtain  = 3
4
−
√

2
2
 sin


3
4
− 

, or 3

4
−  = √

2
sin


3
4
− 

(3).

Since   0 and   , it follows from (20) that sin


3
4
− 

 0. Thus from (3) we see that   3

4
. [We have

implicitly assumed that 0     by the way we drew our diagram, but we lost no generality by doing so since replacing 

by  + 2 merely increases  and  by 2. The curve’s basic shape repeats every time we change  by 2.] Solving for  in

(3), we get  =

√
2


3
4
− 


sin


3
4
− 
 . Write  = 3

4
− . Then  =

√
2 

sin 
, where   0. Now sin    for   0, so  

√
2.


As  → 0+, that is, as → 

3
4

−
, →√

2

.

50. Consider the curves  = sin  + sin,  = cos  + cos, where  is a positive integer. For  = 1, we get a circle of

radius 2 centered at the origin. For   1, we get a curve lying on or inside that circle that traces out − 1 loops as 

ranges from 0 to 2.

Note: 2 + 2 = (sin + sin)2 + (cos  + cos)2

= sin2  + 2 sin  sin+ sin2 + cos2  + 2cos  cos+ cos2 

= (sin2  + cos2 ) + (sin2  + cos2 ) + 2(cos  cos+ sin  sin)

= 1 + 1 + 2 cos(− ) = 2 + 2 cos((1− )) ≤ 4 = 22,

with equality for  = 1. This shows that each curve lies on or inside the curve for  = 1, which is a circle of radius 2 centered

at the origin.

 = 1  = 2  = 3  = 5

51. Note that all the Lissajous figures are symmetric about the -axis. The parameters  and  simply stretch the graph in the

- and -directions respectively. For  =  =  = 1 the graph is simply a circle with radius 1. For  = 2 the graph crosses
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itself at the origin and there are loops above and below the -axis. In general, the figures have − 1 points of intersection,

all of which are on the -axis, and a total of  closed loops.

 =  = 1  = 2  = 3

52.  = cos ,  = sin − sin . If  = 1, then  = 0, and the curve is simply the line segment from (−1 0) to (1 0). The

graphs are shown for  = 2 3 4 and 5.

It is easy to see that all the curves lie in the rectangle [−1 1] by [−2 2]. When  is an integer, ( + 2) = () and

(+ 2) = (), so the curve is closed. When  is a positive integer greater than 1, the curve intersects the x-axis + 1 times

and has  loops (one of which degenerates to a tangency at the origin when  is an odd integer of the form 4 + 1).

As  increases, the curve’s loops become thinner, but stay in the region bounded by the semicircles  = ±1 +
√

1− 2


and the line segments from (−1−1) to (−1 1) and from (1−1) to (1 1). This is true because

|| = |sin − sin | ≤ |sin |+ |sin | ≤ √1− 2 + 1. This curve appears to fill the entire region when  is very large, as

shown in the figure for  = 1000.
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When  is a fraction, we get a variety of shapes with multiple loops, but always within the same region. For some fractional

values, such as  = 2359, the curve again appears to fill the region.

LABORATORY PROJECT Running Circles Around Circles

1. The center of the smaller circle has coordinates ((− )cos  (− )sin ).

Arc  on circle  has length  since it is equal in length to arc 

(the smaller circle rolls without slipping against the larger.)

Thus, ∠ =



 and ∠ =




 − , so  has coordinates

= (− )cos  +  cos(∠ ) = (− )cos  +  cos


− 






and  = (− )sin  −  sin(∠ ) = (− )sin  −  sin


− 





.

2. With  = 1 and  a positive integer greater than 2, we obtain a hypocycloid of 

cusps. Shown in the figure is the graph for  = 4. Let  = 4 and  = 1. Using the

sum identities to expand cos 3 and sin 3, we obtain

= 3 cos  + cos 3 = 3cos  +

4 cos3  − 3 cos 


= 4 cos3 

and  = 3 sin  − sin 3 = 3 sin  − 3 sin  − 4 sin3 


= 4 sin3 .

3. The graphs at the right are obtained with  = 1 and

 = 1
2
, 1

3
, 1

4
, and 1

10
with −2 ≤  ≤ 2. We

conclude that as the denominator  increases, the graph

gets smaller, but maintains the basic shape shown.

[continued]
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Letting  = 2 and  = 3, 5, and 7 with −2 ≤  ≤ 2 gives us the following:

So if  is held constant and  varies, we get a graph with  cusps (assuming  is in lowest form). When  = + 1, we

obtain a hypocycloid of  cusps. As  increases, we must expand the range of  in order to get a closed curve. The following

graphs have  = 3
2
, 5

4
, and 11

10
.

4. If  = 1, the equations for the hypocycloid are

 = (− 1) cos  + cos ((− 1) )  = (− 1) sin  − sin ((− 1) )

which is a hypocycloid of  cusps (from Problem 2). In general, if   1, we get a figure with cusps on the “outside ring” and

if   1, the cusps are on the “inside ring”. In any case, as the values of  get larger, we get a figure that looks more and more

like a washer. If we were to graph the hypocycloid for all values of , every point on the washer would eventually be arbitrarily

close to a point on the curve.

 =
√

2, −10 ≤  ≤ 10  = − 2, 0 ≤  ≤ 446

5. The center of the smaller circle has coordinates ((+ ) cos  (+ ) sin ).

Arc  has length  (as in Problem 1), so that ∠ =



, ∠ =  − 


,

and ∠ =  − 


−  =  −


+ 




 since ∠ = .

Thus, the coordinates of  are

= (+ ) cos  +  cos


 − + 





= (+ ) cos  −  cos


+ 





and  = (+ ) sin  −  sin


 − + 





= (+ ) sin  −  sin


+ 





.
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6. Let  = 1 and the equations become

 = (+ 1) cos  − cos((+ 1))  = (+ 1) sin  − sin((+ 1))

If  = 1, we have a cardioid. If  is a positive

integer greater than 1, we get the graph of an

“-leafed clover”, with cusps that are  units

from the origin. (Some of the pairs of figures are

not to scale.)

 = 3, −2 ≤  ≤ 2  = 10, −2 ≤  ≤ 2

If  =  with  = 1, we obtain a figure that

does not increase in size and requires

− ≤  ≤  to be a closed curve traced

exactly once.

 = 1
4
, −4 ≤  ≤ 4  = 1

7
, −7 ≤  ≤ 7

Next, we keep  constant and let  vary. As 

increases, so does the size of the figure. There is

an -pointed star in the middle.

 = 2
5
, −5 ≤  ≤ 5  = 7

5
, −5 ≤  ≤ 5

Now if  = + 1 we obtain figures similar to the

previous ones, but the size of the figure does not

increase.

 = 4
3
, −3 ≤  ≤ 3  = 7

6
, −6 ≤  ≤ 6

If  is irrational, we get washers that increase in

size as  increases.

 =
√

2, 0 ≤  ≤ 200  = − 2, 0 ≤  ≤ 446
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10.2 Calculus with Parametric Curves

1.  =


1 + 
,  =

√
1 +  ⇒ 


=

1

2
(1 + )−12 =

1

2
√

1 + 
,



=

(1 + )(1)− (1)

(1 + )2
=

1

(1 + )2
, and




=




=

1(2
√

1 +  )

1(1 + )2
=

(1 + )2

2
√

1 + 
=

1

2
(1 + )32.

2.  = ,  =  + sin  ⇒ 


= 1 + cos ,




=  +  = (+ 1), and




=




=

1 + cos 

( + 1)
.

3.  = 3 + 1,  = 4 + ;  = −1.



= 43 + 1,




= 32, and




=




=

43 + 1

32
. When  = −1, ( ) = (0 0)

and  = −33 = −1, so an equation of the tangent to the curve at the point corresponding to  = −1 is

 − 0 = −1(− 0), or  = −.

4.  =
√
,  = 2 − 2;  = 4.




= 2− 2,




=

1

2
√

, and




=




= (2− 2)2

√
 = 4(− 1)

√
. When  = 4,

( ) = (2 8) and  = 4(3)(2) = 24, so an equation of the tangent to the curve at the point corresponding to  = 4 is

 − 8 = 24(− 2), or  = 24− 40.

5.  =  cos ,  =  sin ;  = .



=  cos  + sin ,




= (− sin ) + cos , and




=




=

 cos  + sin 

− sin  + cos 
.

When  = , ( ) = (− 0) and  = −(−1) = , so an equation of the tangent to the curve at the point

corresponding to  =  is  − 0 = [− (−)], or  = + 2.

6.  =  sin,  = 2;  = 0.



= 22,




= ( cos) + (sin) = ( cos + sin), and




=




=

22

( cos + sin)
=

2

 cos + sin
. When  = 0, ( ) = (0 1) and  = 2, so an equation

of the tangent to the curve at the point corresponding to  = 0 is  − 1 = 2

(− 0), or  = 2


 + 1.

7. (a)  = 1 + ln ,  = 2 + 2; (1 3).



= 2




=

1


 and




=




=

2

1
= 22. At (1 3),

 = 1 + ln  = 1 ⇒ ln  = 0 ⇒  = 1 and



= 2, so an equation of the tangent is  − 3 = 2(− 1),

or  = 2+ 1.

(b)  = 1 + ln  ⇒ ln  = − 1 ⇒  = −1, so  = 2 + 2 = (−1)2 + 2 = 2−2 + 2, and 0 = 2−2 · 2.

At (1 3), 0 = 2(1)−2 · 2 = 2, so an equation of the tangent is  − 3 = 2(− 1), or  = 2+ 1.

8. (a)  = 1 +
√
,  = 

2

; (2 ).



= 

2 · 2, 


=
1

2
√

, and




=




=

2
2

1

2
√

 = 432

2

. At (2 ),

 = 1 +
√
 = 2 ⇒ √

 = 1 ⇒  = 1 and



= 4, so an equation of the tangent is  −  = 4(− 2),

or  = 4− 7.
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(b)  = 1 +
√
 ⇒ √

 = − 1 ⇒  = (− 1)2, so  = 
2

= (−1)4 , and 0 = (−1)4 · 4(− 1)3.

At (2 ), 0 =  · 4 = 4, so an equation of the tangent is  −  = 4(− 2), or  = 4− 7.

9.  = 2 − ,  = 2 +  + 1; (0 3).



=




=

2 + 1

2− 1
. To find the

value of  corresponding to the point (0 3), solve  = 0 ⇒
2 −  = 0 ⇒ (− 1) = 0 ⇒  = 0 or  = 1. Only  = 1 gives

 = 3. With  = 1,  = 3, and an equation of the tangent is

 − 3 = 3(− 0), or  = 3 + 3.

10.  = sin,  = 2 + ; (0 2).



=




=

2 + 1

 cos
. To find the

value of  corresponding to the point (0 2), solve  = 2 ⇒
2 + − 2 = 0 ⇒ ( + 2)(− 1) = 0 ⇒  = −2 or  = 1.

Either value gives  = −3, so an equation of the tangent is

 − 2 = − 3

(− 0), or  = − 3


 + 2.

11.  = 2 + 1,  = 2 +  ⇒ 


=




=

2 + 1

2
= 1 +

1

2
⇒ 2

2
=













=
−1(22)

2
= − 1

43
.

The curve is CU when
2

2
 0, that is, when   0.

12.  = 3 + 1,  = 2 −  ⇒ 


=




=

2− 1

32
=

2

3
− 1

32
⇒

2

2
=













=
− 2

32
+

2

33

32
=

2− 2

33

32
=

2(1− )

95
. The curve is CU when

2

2
 0, that is, when 0    1.

13.  = ,  = − ⇒ 


=




=
−− + −


=

−(1− )


= −2(1 − ) ⇒

2

2
=













=
−2(−1) + (1− )(−2−2)


=

−2(−1− 2 + 2)


= −3(2− 3). The curve is CU when

2

2
 0, that is, when   3

2
.

14.  = 2 + 1,  =  − 1 ⇒ 


=




=



2
⇒ 2

2
=













=

2 −  · 2
(2)2

2
=

2(− 1)

(2)3
=

(− 1)

43
.

The curve is CU when
2

2
 0, that is, when   0 or   1.
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15.  = − ln ,  =  + ln  [note that   0] ⇒ 


=




=

1 + 1

1− 1
=

 + 1

− 1
⇒

2

2
=













=

(− 1)(1)− ( + 1)(1)

(− 1)2

(− 1)
=

−2

(− 1)3
. The curve is CU when

2

2
 0, that is, when 0    1.

16.  = cos ,  = sin 2, 0     ⇒ 


=




=

2cos 2

− sin 
⇒

2

2
=













=

(− sin )(−4 sin 2)− (2 cos 2)(− cos )

(− sin )2

− sin 
=

(sin )(8 sin  cos ) + [2(1− 2 sin2 )](cos )

(− sin ) sin2 

=
(cos )(8 sin2  + 2− 4 sin2 )

(− sin ) sin2 
= −cos 

sin 
· 4 sin2  + 2

sin2 
[ (− cot ) · positive expression]

The curve is CU when
2

2
 0, that is, when − cot   0 ⇔ cot   0 ⇔ 

2
   .

17.  = 3 − 3,  = 2 − 3.



= 2, so




= 0 ⇔  = 0 ⇔

( ) = (0−3).



= 32 − 3 = 3(+ 1)(− 1), so




= 0 ⇔

 = −1 or 1 ⇔ ( ) = (2−2) or (−2−2). The curve has a horizontal

tangent at (0−3) and vertical tangents at (2−2) and (−2−2).

18.  = 3 − 3,  = 3 − 32.



= 32 − 6 = 3(− 2), so




= 0 ⇔

 = 0 or 2 ⇔ ( ) = (0 0) or (2−4).



= 32 − 3 = 3(+ 1)(− 1),

so



= 0 ⇔  = −1 or 1 ⇔ ( ) = (2−4) or (−2−2). The curve

has horizontal tangents at (0 0) and (2−4), and vertical tangents at (2−4)

and (−2−2).

19.  = cos ,  = cos 3. The whole curve is traced out for 0 ≤  ≤ .




= −3 sin 3, so




= 0 ⇔ sin 3 = 0 ⇔ 3 = 0, , 2, or 3 ⇔

 = 0, 
3
, 2

3
, or  ⇔ ( ) = (1 1),


1
2
−1


,
− 1

2
 1

, or (−1−1).




= − sin , so




= 0 ⇔ sin  = 0 ⇔  = 0 or  ⇔

( ) = (1 1) or (−1−1). Both



and




equal 0 when  = 0 and .

 

To find the slope when  = 0, we find lim
→0




= lim

→0

−3 sin 3

− sin 

H
= lim

→0

−9 cos 3

− cos 
= 9, which is the same slope when  = .

Thus, the curve has horizontal tangents at


1
2
−1


and

− 1
2
 1

, and there are no vertical tangents.
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20.  = sin ,  = cos . The whole curve is traced out for 0 ≤   2.




= − sin  cos , so




=  ⇔ sin  = 0 ⇔  = 0 or  ⇔

( ) = (1 ) or (1 1).



= cos  sin , so




= 0 ⇔ cos  = 0 ⇔

 = 
2
or 3

2
⇔ ( ) = ( 1) or (1 1). The curve has horizontal tangents

at (1 ) and (1 1), and vertical tangents at ( 1) and (1 1).

21. From the graph, it appears that the rightmost point on the curve  = − 6,  = 

is about (06 2). To find the exact coordinates, we find the value of  for which the

graph has a vertical tangent, that is, 0 =  = 1− 65 ⇔  = 1
5
√

6.

Hence, the rightmost point is
1

5
√

6− 1

6

5
√

6

 1

5√
6


=

5 · 6−65 6

−15 ≈ (058 201).

22. From the graph, it appears that the lowest point and the leftmost point on the curve

 = 4 − 2,  =  + 4 are (15−05) and (−12 12), respectively. To find the

exact coordinates, we solve  = 0 (horizontal tangents) and  = 0

(vertical tangents).




= 0 ⇔ 1 + 43 = 0 ⇔  = − 1

3
√

4
, so the lowest point is

1
3
√

256
+

2
3
√

4
− 1

3
√

4
+

1
3
√

256


=


9

3
√

256
− 3

3
√

256


≈ (142−047).




= 0 ⇔ 43 − 2 = 0 ⇔  =

1
3
√

2
, so the leftmost point is

1
3
√

16
− 2

3
√

2


1
3
√

2
+

1
3
√

16


=


− 3

3
√

16


3
3
√

16


≈ (−119 119).

23. We graph the curve  = 4 − 23 − 22,  = 3 −  in the viewing rectangle [−2 11] by [−05 05]. This rectangle

corresponds approximately to  ∈ [−1 08].

We estimate that the curve has horizontal tangents at about (−1−04) and (−017 039) and vertical tangents at

about (0 0) and (−019 037). We calculate



=




=

32 − 1

43 − 62 − 4
. The horizontal tangents occur when

 = 32 − 1 = 0 ⇔  = ± 1√
3
, so both horizontal tangents are shown in our graph. The vertical tangents occur when
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 = 2(22− 3− 2) = 0 ⇔ 2(2+ 1)(− 2) = 0 ⇔  = 0,− 1
2
or 2. It seems that we have missed one vertical

tangent, and indeed if we plot the curve on the -interval [−12 22] we see that there is another vertical tangent at (−8 6).

24. We graph the curve  = 4 + 43 − 82,  = 22 −  in the viewing rectangle [−37 02] by [−02 14]. It appears that there

is a horizontal tangent at about (−04−01), and vertical tangents at about (−3 1) and (0 0).

We calculate



=




=

4− 1

43 + 122 − 16
, so there is a horizontal tangent where  = 4− 1 = 0 ⇔  = 1

4
.

This point (the lowest point) is shown in the first graph. There are vertical tangents where  = 43 + 122 − 16 = 0 ⇔
4(2 + 3− 4) = 0 ⇔ 4( + 4)(− 1) = 0. We have missed one vertical tangent corresponding to  = −4, and if we

plot the graph for  ∈ [−5 3], we see that the curve has another vertical tangent line at approximately (−128 36).

25.  = cos ,  = sin  cos .  = − sin ,

 = − sin2 + cos2  = cos 2. ( ) = (0 0) ⇔ cos  = 0 ⇔  is

an odd multiple of 
2
. When  = 

2
,  = −1 and  = −1, so  = 1.

When  = 3
2
,  = 1 and  = −1. So  = −1. Thus,  =  and

 = − are both tangent to the curve at (0 0).

26.  = −2 cos ,  = sin + sin 2. From the graph, it appears that the curve

crosses itself at the point (1 0). If this is true, then  = 1 ⇔
−2 cos  = 1 ⇔ cos  = − 1

2
⇔  = 2

3
or 4

3
for 0 ≤  ≤ 2.

Substituting either value of  into  gives  = 0, confirming that (1 0) is the

point where the curve crosses itself.



=




=

cos  + 2 cos 2

2 sin 
.

When  =
2

3
,



=
−12 + 2(−12)

2(
√

32)
=
−32√

3
= −

√
3

2
, so an equation of the tangent line is  − 0 = −

√
3

2
(− 1),

or  = −
√

3

2
+

√
3

2
. Similarly, when  =

4

3
, an equation of the tangent line is  =

√
3

2
−

√
3

2
.

27.  =  −  sin ,  =  −  cos .

(a)



=  −  cos ,




=  sin , so




=

 sin 

 −  cos 
.

(b) If 0    , then | cos | ≤   , so  −  cos  ≥  −   0. This shows that  never vanishes,

so the trochoid can have no vertical tangent if   .
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28.  =  cos3 ,  =  sin3 .

(a)



= −3 cos2  sin ,




= 3 sin2  cos , so




= − sin 

cos 
= − tan .

(b) The tangent is horizontal ⇔  = 0 ⇔ tan  = 0 ⇔  =  ⇔ ( ) = (± 0).
The tangent is vertical ⇔ cos  = 0 ⇔  is an odd multiple of 

2
⇔ ( ) = (0±) 

(c)  = ±1 ⇔ tan  = ±1 ⇔  is an odd multiple of 
4
⇔ ( ) =


±
√

2
4
±

√
2

4



[All sign choices are valid.]

29.  = 32 + 1,  = 3 − 1 ⇒ 


=




=

32

6
=



2
. The tangent line has slope

1

2
when



2
=

1

2
⇔  = 1, so the

point is (4 0).

30.  = 32 + 1,  = 23 + 1,



= 6,




= 62, so




=

62

6
=  [even where  = 0].

So at the point corresponding to parameter value , an equation of the tangent line is  − (23 + 1) = [− (32 + 1)].

If this line is to pass through (4 3), we must have 3− (23 + 1) = [4− (32 + 1)] ⇔ 23 − 2 = 33 − 3 ⇔
3 − 3 + 2 = 0 ⇔ (− 1)2( + 2) = 0 ⇔  = 1 or −2. Hence, the desired equations are  − 3 = − 4, or

 = − 1, tangent to the curve at (4 3), and  − (−15) = −2(− 13), or  = −2+ 11, tangent to the curve at (13−15).

31. By symmetry of the ellipse about the - and -axes,

= 4
 
0
  = 4

 0

2
 sin  (− sin )  = 4

 2
0

sin2   = 4
 2
0

1
2
(1− cos 2) 

= 2

 − 1

2
sin 2

2
0

= 2


2


= 

32. The curve  = 2 − 2 = (− 2),  =
√
 intersects the -axis when  = 0, that is, when

 = 0 and  = 2. The corresponding values of  are 0 and
√

2. The shaded area is given by =
√

2

=0

( − )  =

 =2

=0

[0− ()] 
0
()  = −

 2

0

(
2 − 2)


1

2
√




= −  2

0


1
2
32 − 12


 = −


1
5
52 − 2

3
32

2
0

= −


1
5
· 252 − 2

3
· 232


= −212


4
5
− 4

3


= −√2

− 8
15


= 8

15

√
2

33. The curve  = 3 + 1,  = 2− 2 = (2− ) intersects the -axis when  = 0, that

is, when  = 0 and  = 2. The corresponding values of  are 1 and 9. The shaded area

is given by =9

=1

( − ) =

 =2

=0

[()− 0]
0
()  =

 2

0

(2− 
2
)(3

2
) 

= 3
 2

0
(23 − 4)  = 3


1
2
4 − 1

5
5
2
0

= 3

8− 32

5


= 24

5
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34. By symmetry,  = 4
 
0
  = 4

 0

2
 sin3 (−3 cos2  sin )  = 122

 2
0

sin4  cos2  . Now
sin4  cos2   =


sin2 


1
4

sin2 2

 = 1

8


(1− cos 2) sin2 2 

= 1
8

 
1
2
(1− cos 4)− sin2 2 cos 2


 = 1

16
 − 1

64
sin 4 − 1

48
sin3 2 +

so
 2
0

sin4  cos2   =


1
16
 − 1

64
sin 4 − 1

48
sin3 2

2
0

= 
32
. Thus,  = 122



32


= 3

8
2.

35.  =  −  sin ,  =  −  cos .

 =
 2

0
  =

 2

0
( −  cos )( −  cos )  =

 2

0
(2 − 2 cos  + 2 cos2 ) 

=

2 − 2 sin  + 1

2
2

 + 1

2
sin 2

2
0

= 22 + 2

36. (a) By symmetry, the area of R is twice the area inside R above the -axis. The top half of the loop is described by

 = 2,  = 3 − 3, −√3 ≤  ≤ 0, so, using the Substitution Rule with  = 3 − 3 and  = 2 , we find that

area = 2
 3

0
  = 2

 −√3

0
(3 − 3)2  = 2

−√3

0
(24 − 62)  = 2


2
5
5 − 23

−√3

0

= 2


2
5
(−312)5 − 2(−312)3


= 2


2
5

−9
√

3
− 2

−3
√

3


= 24
5

√
3

(b) Here we use the formula for disks and use the Substitution Rule as in part (a):

volume = 
 3

0
2  = 

 −√3

0
(3 − 3)22  = 2

 −√3

0
(6 − 64 + 92)  = 2


1
8
8 − 6 + 9

4
4
−√3

0

= 2


1
8
(−312)8 − (−312)6 + 9

4
(−312)4


= 2


81
8
− 27 + 81

4


= 27

4


(c) By symmetry, the -coordinate of the centroid is 0. To find the -coordinate, we note that it is the same as the -coordinate

of the centroid of the top half of R, the area of which is 1
2
· 24

5

√
3 = 12

5

√
3. So, using Formula 8.3.8 with  = 12

5

√
3,

we get

= 5

12
√

3

 3

0
  = 5

12
√

3

−√3

0
2(3 − 3)2  = 5

6
√

3


1
7
7 − 3

5
5
−√3

0

= 5

6
√

3


1
7
(−312)7 − 3

5
(−312)5


= 5

6
√

3

−27
7

√
3 + 27

5

√
3


= 9
7

So the coordinates of the centroid of R are ( ) =


9
7
 0

.

37.  =  + −,  =  − −, 0 ≤  ≤ 2.  = 1 − − and  = 1 + −, so

()2 + ()2 = (1− −)2 + (1 + −)2 = 1− 2− + −2 + 1 + 2− + −2 = 2 + 2−2.

Thus,  =
 



()2 + ()2  =

 2

0

√
2 + 2−2  ≈ 31416.

38.  = 2 − ,  = 4, 1 ≤  ≤ 4  = 2 − 1 and  = 43, so

()2 + ()2 = (2− 1)2 + (43)2 = 42 − 4+ 1 + 166.

Thus,  =
 



()2 + ()2  =

 4

1

√
166 + 42 − 4+ 1  ≈ 2553756.

39.  = − 2 sin ,  = 1 − 2 cos , 0 ≤  ≤ 4.  = 1− 2 cos  and  = 2 sin , so

()2 + ()2 = (1− 2 cos )2 + (2 sin )2 = 1− 4 cos  + 4cos2  + 4 sin2  = 5− 4 cos .

Thus,  =
 



()2 + ()2  =

 4

0

√
5− 4 cos   ≈ 267298.
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40.  =  +
√
,  =  −√, 0 ≤  ≤ 1.




= 1 +

1

2
√

and




= 1 − 1

2
√

, so






2

+






2

=


1 +

1

2
√


2

+


1− 1

2
√


2

= 1 +
1√


+
1

4
+ 1− 1√


+

1

4
= 2 +

1

2
.

Thus,  =

 




()2 + ()2  =

 1

0


2 +

1

2
 = lim

→0+

 1




2 +

1

2
 ≈ 20915.

41.  = 1 + 32,  = 4 + 23, 0 ≤  ≤ 1.  = 6 and  = 62, so ()2 + ()2 = 362 + 364.

Thus,  =

 1

0


362 + 364  =

 1

0

6


1 + 2  = 6

 2

1

√



1
2



[ = 1 + 2,  = 2 ]

= 3


2
3
32

2
1

= 2(232 − 1) = 2

2
√

2− 1


42.  =  − ,  = 42, 0 ≤  ≤ 2.  =  − 1 and  = 22, so

()2 + ()2 = ( − 1)2 + (22)2 = 2 − 2 + 1 + 4 = 2 + 2 + 1 = ( + 1)2. Thus,

 =

 2

0


( + 1)2  =

 2

0

 + 1
  =

 2

0

(

+ 1)  =




+ 
2
0

= (
2
+ 2)− (1 + 0) = 

2
+ 1.

43.  =  sin ,  =  cos , 0 ≤  ≤ 1.



=  cos  + sin  and




= − sin + cos , so





2

+






2

= 2 cos2  + 2 sin  cos + sin2  + 2 sin2 − 2 sin  cos  + cos2 

= 2(cos2 + sin2 ) + sin2  + cos2  = 2 + 1.

Thus,  =
 1

0

√
2 + 1 

21
=


1
2

√
2 + 1 + 1

2
ln

+

√
2 + 1

1
0

= 1
2

√
2 + 1

2
ln

1 +

√
2

.

44.  = 3cos − cos 3,  = 3 sin − sin 3, 0 ≤  ≤ .



= −3 sin + 3 sin 3 and




= 3 cos − 3 cos 3, so





2

+






2

= 9 sin2 − 18 sin  sin 3+ 9 sin2(3) + 9 cos2 − 18 cos  cos 3 + 9cos2(3)

= 9(cos2 + sin2 )− 18(cos  cos 3 + sin  sin 3) + 9[cos2(3) + sin2(3)]

= 9(1)− 18 cos(− 3) + 9(1) = 18− 18 cos(−2) = 18(1− cos 2)

= 18[1− (1− 2 sin2 )] = 36 sin2 .

Thus,  =
 
0

√
36 sin2   = 6

 
0
|sin |  = 6

 
0

sin   = −6

cos 


0

= −6 (−1− 1) = 12.

45.  =  cos ,  =  sin , 0 ≤  ≤ .



2
+





2
= [(cos − sin )]2 + [(sin  + cos )]2

= ()2(cos2 − 2 cos  sin + sin2 )

+ ()2(sin2  + 2 sin  cos + cos2 

= 2(2 cos2 + 2 sin2 ) = 22

Thus,  =
 
0

√
22  =

 
0

√
2   =

√
2



0

=
√

2 ( − 1).
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46.  = cos  + ln(tan 1
2
),  = sin , 4 ≤  ≤ 34.




= − sin  +

1
2

sec2(2)

tan(2)
= − sin  +

1

2 sin(2) cos(2)
= − sin  +

1

sin 
and




= cos , so






2

+






2

= sin2 − 2 +
1

sin2 
+ cos2  = 1− 2 + csc2  = cot2 . Thus,

=
 34

4
|cot |  = 2

 2
4

cot  

= 2

ln |sin |

2
4

= 2


ln 1− ln

1√
2


= 2


0 + ln

√
2


= 2


1
2

ln 2


= ln 2.

47. The figure shows the curve  = sin + sin 15,  = cos  for 0 ≤  ≤ 4.

 = cos  + 15 cos 15 and  = − sin , so

()2 + ()2 = cos2 + 3cos  cos 15+ 225 cos2 15 + sin2 .

Thus,  =
 4

0

√
1 + 3 cos  cos 15 + 225 cos2 15  ≈ 167102.

48.  = 3− 3,  = 32.  = 3− 32 and  = 6, so




2

+






2

= (3− 32)2 + (6)2 = (3 + 32)2

and the length of the loop is given by

 =

 √
3

−√3

(3 + 3
2
)  = 2

 √
3

0

(3 + 3
2
)  = 2


3 + 

3
√3

0

= 2

3
√

3 + 3
√

3


= 12
√

3

49.  =  − ,  =  + , −6 ≤  ≤ 6.



2
+





2
= (1− )2 + (1 + )2 = (1− 2 + 2) + (1 + 2 + 2) = 2 + 22, so  =

 6

−6

√
2 + 22 .

Set () =
√

2 + 22. Then by Simpson’s Rule with  = 6 and ∆ =
6−(−6)

6
= 2, we get

 ≈ 2
3
[(−6) + 4(−4) + 2(−2) + 4(0) + 2(2) + 4(4) + (6)] ≈ 6123053.

50.  = 2 cot  ⇒  = −2 csc2  and  = 2 sin2  ⇒  = 4 sin  cos  = 2 sin 2.

So  =
 2
4


42 csc4  + 42 sin2 2  = 2

 2
4


csc4  + sin2 2 . Using Simpson’s Rule with

 = 4, ∆ =
2−4

4
= 

16
, and () =


csc4  + sin2 2, we get

 ≈ 2 · 4 = (2) 
16·3





4


+ 4


5
16


+ 2


3
8


+ 4


7
16


+ 



2

 ≈ 22605.

51.  = sin2 ,  = cos2 , 0 ≤  ≤ 3.

()2 + ()2 = (2 sin  cos )2 + (−2 cos  sin )2 = 8 sin2  cos2  = 2 sin2 2 ⇒
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Distance =
 3

0

√
2 |sin 2|  = 6

√
2
 2
0

sin 2  [by symmetry] = −3
√

2

cos 2

2
0

= −3
√

2 (−1− 1) = 6
√

2.

The full curve is traversed as  goes from 0 to 
2
, because the curve is the segment of  +  = 1 that lies in the first quadrant

(since ,  ≥ 0), and this segment is completely traversed as  goes from 0 to 
2
. Thus,  =

 2
0

sin 2  =
√

2, as above.

52.  = cos2 ,  = cos , 0 ≤  ≤ 4.




2
+





2
= (−2 cos  sin )2 + (− sin )2 = sin2  (4 cos2  + 1)

Distance =
 4

0
|sin |√4 cos2 + 1  = 4

 
0

sin 
√

4 cos2  + 1 

= −4
 −1

1

√
42 + 1  [ = cos ,  = − sin  ] = 4

 1

−1

√
42 + 1 

= 8
 1

0

√
42 + 1  = 8

 tan−1 2

0
sec  · 1

2
sec2   [2 = tan  2  = sec2  ]

= 4
 tan−1 2

0
sec3  

71
=

2 sec  tan  + 2 ln |sec  + tan |

tan−1 2

0
= 4

√
5 + 2 ln

√
5 + 2


Thus,  =

 
0
|sin |√4 cos2 + 1  =

√
5 + 1

2
ln
√

5 + 2

.

53.  =  sin ,  =  cos , 0 ≤  ≤ 2.



2
+





2
= ( cos )2 + (− sin )2 = 2 cos2  + 2 sin2  = 2(1− sin2 ) + 2 sin2 

= 2 − (2 − 2) sin2  = 2 − 2 sin2  = 2


1− 2

2
sin2 


= 2(1− 2 sin2 )

So  = 4
 2
0


2

1− 2 sin2 


 [by symmetry] = 4

 2
0


1− 2 sin2  .

54.  =  cos3 ,  =  sin3 .



2
+





2
= (−3 cos2  sin )2 + (3 sin2  cos )2

= 92 cos4  sin2  + 92 sin4  cos2 

= 92 sin2  cos2 (cos2  + sin2 ) = 92 sin2  cos2 .

The graph has four-fold symmetry and the curve in the first quadrant corresponds

to 0 ≤  ≤ 2. Thus,

 = 4
 2
0

3 sin  cos   [since   0 and sin  and cos  are positive for 0 ≤  ≤ 2]

= 12


1
2

sin2 
2
0

= 12


1
2
− 0


= 6

55. (a)  = 11 cos − 4 cos(112),  = 11 sin − 4 sin(112).

Notice that 0 ≤  ≤ 2 does not give the complete curve because

(0) 6= (2). In fact, we must take  ∈ [0 4] in order to obtain the

complete curve, since the first term in each of the parametric equations has

period 2 and the second has period 2
112

= 4
11
, and the least common

integer multiple of these two numbers is 4.
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(b) We use the CAS to find the derivatives  and , and then use Theorem 5 to find the arc length. Recent versions

of Maple express the integral
 4

0


()2 + ()2  as 88


2
√

2 

, where () is the elliptic integral 1

0

√
1− 22√
1− 2

 and  is the imaginary number
√−1.

Some earlier versions of Maple (as well as Mathematica) cannot do the integral exactly, so we use the command

evalf(Int(sqrt(diff(x,t)̂ 2+diff(y,t)̂ 2),t=0..4*Pi)); to estimate the length, and find that the arc

length is approximately 29403. Derive’s Para_arc_length function in the utility file Int_apps simplifies the

integral to 11
 4

0


−4 cos  cos


11
2

− 4 sin  sin


11
2


+ 5 .

56. (a) It appears that as →∞, ( )→ 
1
2
 1

2


, and as →−∞, ( )→ − 1

2
− 1

2


.

(b) By the Fundamental Theorem of Calculus,  = cos


2
2

and

 = sin


2
2

, so by Theorem 5, the length of the curve from the origin

to the point with parameter value  is

=
 
0





2
+





2
 =

 
0


cos2



2
2


+ sin2


2
2



=
 
0

1  =  [or − if   0]

We have used  as the dummy variable so as not to confuse it with the upper limit of integration.

57.  =  sin ,  =  cos , 0 ≤  ≤ 2.  =  cos  + sin  and  = − sin + cos , so

()2 + ()2 = 2 cos2 + 2 sin  cos + sin2  + 2 sin2 − 2 sin  cos  + cos2 

= 2(cos2 + sin2 ) + sin2 + cos2  = 2 + 1

 =


2  =
 2
0

2 cos 
√
2 + 1  ≈ 47394.

58.  = sin ,  = sin 2, 0 ≤  ≤ 2.  = cos  and  = 2cos 2, so ()2 + ()2 = cos2  + 4 cos2 2.

 =


2  =
 2
0

2 sin 2
√

cos2  + 4 cos2 2  ≈ 80285.

59.  =  + ,  = −, 0 ≤  ≤ 1.

 = 1 +  and  = −−, so ()2 + ()2 = (1 + )2 + (−−)2 = 1 + 2 + 2 + −2.

 =


2  =
 1

0
2−

√
1 + 2 + 2 + −2  ≈ 106705.

60.  = 2 − 3,  = + 4, 0 ≤  ≤ 1.

()2 + ()2 = (2− 32)2 + (1 + 43)2 = 42 − 123 + 94 + 1 + 83 + 166, so

 =


2  =
 1

0
2(+ 4)

√
166 + 94 − 43 + 42 + 1  ≈ 127176.
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61.  = 3,  = 2, 0 ≤  ≤ 1.




2
+





2
=

32
2

+ (2)
2

= 94 + 42.

 =

 1

0

2





2
+





2
 =

 1

0

2
2


94 + 42  = 2

 1

0


2

2(92 + 4) 

= 2

 13

4


− 4

9

√



1
18

 

 = 92 + 4, 2 = (− 4)9,
 = 18 , so   = 1

18



=

2

9 · 18
 13

4

(
32 − 4

12
) 

= 
81


2
5
52 − 8

3
32

13
4

= 
81
· 2

15


352 − 2032

13
4

= 2
1215


3 · 132

√
13− 20 · 13√13

− (3 · 32− 20 · 8) = 2
1215


247

√
13 + 64


62.  = 22 + 1,  = 8

√
, 1 ≤  ≤ 3.





2

+






2

=


4− 1

2

2

+


4√


2

= 162 − 8


+

1

4
+

16


= 162 +

8


+

1

4
=


4 +

1

2

2

.

 =

 3

1

2





2
+





2
 =

 3

1

2

8
√



4 +
1

2

2

 = 16

 3

1


12

(4+ 
−2

) 

= 16

 3

1

(4
32

+ 
−32

)  = 16


8
5

52 − 2

−12
3
1

= 16


72
5

√
3− 2

3

√
3

− ( 8

5
− 2)


= 16


206
15

√
3 + 6

15


= 32

15


103
√

3 + 3


63.  =  cos3 ,  =  sin3 , 0 ≤  ≤ 
2
.




2
+





2
= (−3 cos2  sin )2 + (3 sin2  cos )2 = 92 sin2  cos2 .

 =
 2
0

2 ·  sin3  · 3 sin  cos   = 62
 2
0

sin4  cos   = 6
5
2


sin5 

2
0

= 6
5
2

64.  = 2cos  − cos 2,  = 2 sin  − sin 2 ⇒



2
+





2
= (−2 sin  + 2 sin 2)2 + (2 cos  − 2 cos 2)2

= 4[(sin2  − 2 sin  sin 2 + sin2 2) + (cos2  − 2 cos  cos 2 + cos2 2)]

= 4[1 + 1− 2(cos 2 cos  + sin 2 sin )] = 8[1− cos(2 − )] = 8(1− cos )

We plot the graph with parameter interval [0 2], and see that we should only integrate

between 0 and . (If the interval [0 2] were taken, the surface of revolution would be

generated twice.) Also note that  = 2 sin  − sin 2 = 2 sin (1− cos ). So

 =
 
0

2 · 2 sin (1− cos ) 2
√

2
√

1− cos  

= 8
√

2
 
0

(1− cos )
32

sin   = 8
√

2
 2

0

√
3 


 = 1− cos 
 = sin  


= 8

√
2


2
5


52

2
0

= 16
5

√
2(252) = 128

5


65.  = 32,  = 23, 0 ≤  ≤ 5 ⇒ 



2
+





2
= (6)2 + (62)2 = 362(1 + 2) ⇒

 =
 5

0
2


()2 + ()2  =

 5

0
2(32)6

√
1 + 2  = 18

 5

0
2
√

1 + 2 2 

= 18
 26

1
(− 1)

√



 = 1 + 2

 = 2 


= 18

 26

1
(32 − 12)  = 18


2
5
52 − 2

3
32

26
1

= 18


2
5
· 676√26− 2

3
· 26√26

−  2
5
− 2

3


= 24

5


949

√
26 + 1
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66.  =  − ,  = 42, 0 ≤  ≤ 1.




2
+





2
= ( − 1)2 + (22)2 = 2 + 2 + 1 = ( + 1)2.

 =
 1

0
2( − )


( − 1)2 + (22)2  =

 1

0
2( − )( + 1)

= 2


1
2
2 +  − (− 1) − 1

2
2
1
0

= (2 + 2− 6)

67. If  0 is continuous and  0() 6= 0 for  ≤  ≤ , then either  0()  0 for all  in [ ] or  0()  0 for all  in [ ]. Thus, 

is monotonic (in fact, strictly increasing or strictly decreasing) on [ ]. It follows that  has an inverse. Set  =  ◦ −1,

that is, define  by  () = (−1()). Then  = () ⇒ −1() = , so  = () = (−1()) =  ().

68. By Formula 8.2.5 with  =  (),  =
 


2 ()


1 + [ 0()]2 . But by Formula 10.2.1,

1 + [ 0()]2 = 1 +






2

= 1 +






2

=
()2 + ()2

()2
. Using the Substitution Rule with  = (),

where  = () and  = (), we have


since  =








 =

 



2  (())


()2 + ()2

()2



 =

 



2






2

+






2

, which is Formula 10.2.6.

69. (a)  = tan−1







⇒ 


=




tan−1







=

1

1 + ()2












. But




=




=

̇

̇
⇒











=






̇

̇


=

̈̇− ̈̇

̇2
⇒ 


=

1

1 + (̇̇)2


̈̇− ̈̇

̇2


=

̇̈ − ̈̇

̇2 + ̇2
. Using the Chain Rule, and the

fact that  =

 

0





2
+





2
 ⇒ 


=





2
+





2
=

̇2 + ̇2

12
, we have that




=




=


̇̈ − ̈̇

̇2 + ̇2


1

(̇2 + ̇2)12
=

̇̈ − ̈̇

(̇2 + ̇2)32
. So  =


 =

 ̇̈ − ̈̇

(̇2 + ̇2)32

 =
|̇̈ − ̈̇|

(̇2 + ̇2)32
.

(b)  =  and  = () ⇒ ̇ = 1, ̈ = 0 and ̇ =



, ̈ =

2

2
.

So  =

1 · (22)− 0 · ()


[1 + ()2]32
=

22


[1 + ()2]32
.

70. (a)  = 2 ⇒ 


= 2 ⇒ 2

2
= 2. So  =

22


[1 + ()2]32
=

2

(1 + 42)32
, and at (1 1),

 =
2

532
=

2

5
√

5
.

(b) 0 =



= −3(1 + 42)−52(8) = 0 ⇔  = 0 ⇒  = 0. This is a maximum since 0  0 for   0 and

0  0 for   0. So the parabola  = 2 has maximum curvature at the origin.

71.  =  − sin  ⇒ ̇ = 1− cos  ⇒ ̈ = sin , and  = 1− cos  ⇒ ̇ = sin  ⇒ ̈ = cos . Therefore,

 =

cos  − cos2  − sin2 


[(1− cos )2 + sin2 ]32
=

cos  − (cos2  + sin2 )


(1− 2 cos  + cos2  + sin2 )32
=

|cos  − 1|
(2− 2 cos )32

. The top of the arch is
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characterized by a horizontal tangent, and from Example 2(b) in Section 10.2, the tangent is horizontal when  = (2− 1),

so take  = 1 and substitute  =  into the expression for :  =
|cos − 1|

(2− 2 cos)32
=

|−1− 1|
[2− 2(−1)]32

=
1

4
.

72. (a) Every straight line has parametrizations of the form  = + ,  = +, where ,  are arbitrary and ,  6= 0.

For example, a straight line passing through distinct points ( ) and ( ) can be described as the parametrized curve

 = + (− ),  = + (− ). Starting with  = + ,  =  +, we compute ̇ = , ̇ = , ̈ = ̈ = 0,

and  =
| · 0− · 0|
(2 +2)32

= 0.

(b) Parametric equations for a circle of radius  are  =  cos  and  =  sin . We can take the center to be the origin.

So ̇ = − sin  ⇒ ̈ = − cos  and ̇ =  cos  ⇒ ̈ = − sin . Therefore,

 =

2 sin2  + 2 cos2 


(2 sin2  + 2 cos2 )32
=

2

3
=

1


. And so for any  (and thus any point),  =

1


.

73. The coordinates of  are ( cos   sin ). Since  was unwound from

arc ,  has length . Also ∠ = ∠− ∠ = 1
2
 − ,

so  has coordinates  =  cos  +  cos


1
2
 − 


= (cos  +  sin ),

 =  sin  −  sin


1
2
 − 


= (sin  −  cos ).

74. If the cow walks with the rope taut, it traces out the portion of the

involute in Exercise 73 corresponding to the range 0 ≤  ≤ , arriving at

the point (− ) when  = . With the rope now fully extended, the

cow walks in a semicircle of radius , arriving at (−−). Finally,
the cow traces out another portion of the involute, namely the reflection

about the -axis of the initial involute path. (This corresponds to the

range− ≤  ≤ 0.) Referring to the figure, we see that the total grazing

area is 2(1 +3). 3 is one-quarter of the area of a circle of radius , so 3 = 1
4
()2 = 1

4
32. We will compute

1 +2 and then subtract 2 = 1
2
2 to obtain 1.

To find 1 +2, first note that the rightmost point of the involute is


2
 

. [To see this, note that  = 0 when

 = 0 or 
2
.  = 0 corresponds to the cusp at ( 0) and  = 

2
corresponds to



2
 

.] The leftmost point of the involute is

(− ). Thus, 1 +2 =
 2
=

 −  2
=0

  =
 0

=
 .

Now   = (sin  −  cos )  cos   = 2( sin  cos  − 2 cos2 ). Integrate:

(12)

  = − cos2  − 1

2


2 − 1


sin  cos  − 1

6
3 + 1

2
 + . This enables us to compute
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1 +2 = 2
− cos2  − 1

2
(2 − 1) sin  cos  − 1

6
3 + 1

2

0


= 2


0−


− − 3

6
+



2


= 2




2
+

3

6


Therefore, 1 = (1 +2)−2 = 1

6
32, so the grazing area is 2(1 +3) = 2


1
6
32 + 1

4
32


= 5

6
32.

LABORATORY PROJECT Bézier Curves

1. The parametric equations for a cubic Bézier curve are

 = 0(1− )3 + 31(1− )2 + 32
2(1− ) + 3

3

 = 0(1− )3 + 31(1− )2 + 32
2(1− ) + 3

3

where 0 ≤  ≤ 1. We are given the points 0(0 0) = (4 1), 1(1 1) = (28 48), 2(2 2) = (50 42), and

3(3 3) = (40 5). The curve is then given by

() = 4(1− )3 + 3 · 28(1− )2 + 3 · 502(1− ) + 403

() = 1(1− )3 + 3 · 48(1− )2 + 3 · 422(1− ) + 53

where 0 ≤  ≤ 1. The line segments are of the form  = 0 + (1 − 0),

 = 0 + (1 − 0):

01  = 4 + 24,  = 1 + 47

12  = 28 + 22,  = 48− 6

23  = 50− 10,  = 42− 37

2. It suffices to show that the slope of the tangent at 0 is the same as that of line segment 01, namely
1 − 0

1 − 0

.

We calculate the slope of the tangent to the Bézier curve:




=
−30(1− )2 + 31

−2(1− ) + (1− )2

+ 32

−2 + (2)(1− )

+ 33

2

−32
0(1− ) + 31[−2(1− ) + (1− )2] + 32[−2 + (2)(1− )] + 332

At point 0,  = 0, so the slope of the tangent is
−30 + 31

−30 + 31

=
1 − 0

1 − 0

. So the tangent to the curve at 0 passes

through 1. Similarly, the slope of the tangent at point 3 [where  = 1] is
−32 + 33

−32 + 33

=
3 − 2

3 − 2

, which is also the slope

of line 23.

3. It seems that if 1 were to the right of 2, a loop would appear.

We try setting 1 = (110 30), and the resulting curve does indeed have a loop.

4. Based on the behavior of the Bézier curve in Problems 1–3, we suspect that the

four control points should be in an exaggerated C shape. We try 0(10 12),

1(4 15), 2(4 5), and 3(10 8), and these produce a decent C. If you are using

a CAS, it may be necessary to instruct it to make the - and -scales the same so as

not to distort the figure (this is called a “constrained projection” in Maple.)
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5. We use the same 0 and 1 as in Problem 4, and use part of our C as the top of

an S. To prevent the center line from slanting up too much, we move 2 up to

(4 6) and 3 down and to the left, to (8 7). In order to have a smooth joint

between the top and bottom halves of the S (and a symmetric S), we determine

points 4, 5, and 6 by rotating points 2, 1, and 0 about the center of the

letter (point 3). The points are therefore 4(12 8), 5(12−1), and 6(6 2).

10.3 Polar Coordinates

1. (a)

1 

4


By adding 2 to 

4
, we obtain the point


1 9

4


, which satisfies the

  0 requirement. The direction opposite 
4
is 5

4
, so

−1 5
4


is a

point that satisfies the   0 requirement.

(b)
−2 3

2


 0:

−(−2) 3
2
− 


=

2 

2


 0:

−2 3
2

+ 2


=
−2 7

2



(c)

3−

3


 0:


3−

3
+ 2


=

3 5

3


 0:

−3−
3

+ 


=
−3 2

3



2. (a)

2 5

6


 0:


2 5

6
+ 2


=

2 17

6


 0:

−2 5
6
− 


=
−2−

6



(b)

1− 2

3


 0:


1− 2

3
+ 2


=

1 4

3


 0:

−1− 2
3

+ 


=
−1 

3



(c)
−1 5

4


 0:

−(−1) 5
4
− 


=

1 

4


 0:

−1 5
4
− 2


=
−1− 3

4
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3. (a)  = 2 cos 3
2

= 2(0) = 0 and  = 2 sin 3
2

= 2(−1) = −2 give us the

Cartesian coordinates (0−2).

(b)  =
√

2 cos


4
=
√

2


1√
2


= 1 and  =

√
2 sin



4
=
√

2


1√
2


= 1

give us the Cartesian coordinates (1 1).

(c)  = −1 cos

−

6


= −1

√
3

2


= −

√
3

2
and

 = −1 sin

−

6


= −1


−1

2


=

1

2
give us the Cartesian

coordinates


−
√

3

2

1

2


.

4. (a)  = 4 cos
4

3
= 4


−1

2


= −2 and

 = 4 sin
4

3
= 4


−
√

3

2


= −2

√
3 give us the Cartesian

coordinates
−2−2

√
3

.

(b)  = −2 cos
3

4
= −2


−
√

2

2


=
√

2 and

 = −2 sin
3

4
= −2

√
2

2


= −√2 give us the Cartesian

coordinates
√

2−√2

.

(c)  = −3 cos

−

3


= −3


1

2


= −3

2
and

 = −3 sin

−

3


= −3


−
√

3

2


=

3
√

3

2
give us the Cartesian

coordinates


−3

2

3
√

3

2


.

5. (a)  = −4 and  = 4 ⇒  =


(−4)2 + 42 = 4
√

2 and tan  = 4
−4

= −1 [ = −
4

+ ]. Since (−4 4) is in the

second quadrant, the polar coordinates are (i)

4
√

2 3
4


and (ii)

−4
√

2 7
4


.
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(b)  = 3 and  = 3
√

3 ⇒  =


32 +


3
√

3
2

=
√

9 + 27 = 6 and tan  =
3
√

3

3
=
√

3 [ = 
3

+ ].

Since

3 3
√

3

is in the first quadrant, the polar coordinates are (i)


6 

3


and (ii)

−6 4
3


.

6. (a)  =
√

3 and  = −1 ⇒  =

√
3
2

+ (−1)2 = 2 and tan  =
−1√

3
[ = −

6
+ ]. Since

√
3−1


is in the

fourth quadrant, the polar coordinates are (i)

2 11

6


and (ii)

−2 5
6


.

(b)  = −6 and  = 0 ⇒  =


(−6)2 + 02 = 6 and tan  = 0
−6

= 0 [ = ]. Since (−6 0) is on the negative

-axis, the polar coordinates are (i) (6 ) and (ii) (−6 0).

7.  ≥ 1. The curve  = 1 represents a circle with center

 and radius 1. So  ≥ 1 represents the region on or

outside the circle. Note that  can take on any value.

8. 0 ≤   2,  ≤  ≤ 32. This is the region inside the

circle  = 2 in the third quadrant.

9.  ≥ 0, 4 ≤  ≤ 34.

 =  represents a line through .

10. 1 ≤  ≤ 3, 6    56

11. 2    3, 5
3
≤  ≤ 7

3
12.  ≥ 1,  ≤  ≤ 2

13. Converting the polar coordinates

4 4

3


and


6 5

3


to Cartesian coordinates gives us


4 cos 4

3
 4 sin 4

3


=
−2−2

√
3


and

6 cos 5

3
 6 sin 5

3


=

3−3

√
3

. Now use the distance formula

=


(2 − 1)2 + (2 − 1)2 =


[3− (−2)]2 +

−3
√

3− −2
√

3
2

=


52 +

−√3
2

=
√

25 + 3 =
√

28 = 2
√

7
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14. The points (1 1) and (2 2) in Cartesian coordinates are (1 cos 1 1 sin 1) and (2 cos 2 2 sin 2), respectively.

The square of the distance between them is

(2 cos 2 − 1 cos 1)
2

+ (2 sin 2 − 1 sin 1)
2

=

2
2 cos2 2 − 212 cos 1 cos 2 + 2

1 cos2 1


+

2
2 sin2 2 − 212 sin 1 sin 2 + 21 sin2 1


= 2

1


sin2 1 + cos2 1


+ 22


sin2 2 + cos2 2

− 212(cos 1 cos 2 + sin 1 sin 2)

= 2
1 − 212 cos(1 − 2) + 2

2 ,

so the distance between them is

2
1 − 212 cos(1 − 2) + 2

2 .

15. 2 = 5 ⇔ 2 + 2 = 5, a circle of radius
√

5 centered at the origin.

16.  = 4 sec  ⇔ 

sec 
= 4 ⇔  cos  = 4 ⇔  = 4, a vertical line.

17.  = 5 cos  ⇒ 2 = 5 cos  ⇔ 2 + 2 = 5 ⇔ 2 − 5+ 25
4

+ 2 = 25
4

⇔ 
− 5

2

2
+ 2 = 25

4
,

a circle of radius 5
2
centered at


5
2
 0

. The first two equations are actually equivalent since 2 = 5 cos  ⇒

( − 5 cos ) = 0 ⇒  = 0 or  = 5 cos . But  = 5 cos  gives the point  = 0 (the pole) when  = 0. Thus, the

equation  = 5 cos  is equivalent to the compound condition ( = 0 or  = 5 cos ).

18.  =


3
⇒ tan  = tan



3
⇒ 


=
√

3 ⇔  =
√

3, a line through the origin.

19. 2 cos 2 = 1 ⇔ 2(cos2  − sin2 ) = 1 ⇔ ( cos )2 − ( sin )2 = 1 ⇔ 2 − 2 = 1, a hyperbola centered at

the origin with foci on the -axis.

20. 2 sin 2 = 1 ⇔ 2(2 sin  cos ) = 1 ⇔ 2( cos )( sin ) = 1 ⇔ 2 = 1 ⇔  = 1
2
, a hyperbola

centered at the origin with foci on the line  = .

21.  = 2 ⇔  sin  = 2 ⇔  =
2

sin 
⇔  = 2csc 

22.  =  ⇒ 


= 1 [ 6= 0] ⇒ tan  = 1 ⇒  = tan−1 1 ⇒  =



4
or  =

5

4
[either includes the pole]

23.  = 1 + 3 ⇔  sin  = 1 + 3 cos  ⇔  sin  − 3 cos  = 1 ⇔ (sin  − 3 cos ) = 1 ⇔

 =
1

sin  − 3 cos 

24. 42 =  ⇔ 4( sin )2 =  cos  ⇔ 42 sin2  −  cos  = 0 ⇔ (4 sin2  − cos ) = 0 ⇔  = 0 or

 =
cos 

4 sin2 
⇔  = 0 or  = 1

4
cot  csc .  = 0 is included in  = 1

4
cot  csc  when  = 

2
, so the curve is

represented by the single equation  = 1
4

cot  csc .

25. 2 + 2 = 2 ⇔ 2 = 2 cos  ⇔ 2 − 2 cos  = 0 ⇔ ( − 2 cos ) = 0 ⇔  = 0 or  = 2 cos .

 = 0 is included in  = 2 cos  when  = 
2

+ , so the curve is represented by the single equation  = 2 cos 
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26. 2 − 2 = 4 ⇔ ( cos )2 − ( sin )2 = 4 ⇔ 2 cos2  − 2 sin2  = 4 ⇔ 2(cos2  − sin2 ) = 4 ⇔
2 cos 2 = 4

27. (a) The description leads immediately to the polar equation  = 
6
, and the Cartesian equation  = tan



6


 = 1√

3
 is

slightly more difficult to derive.

(b) The easier description here is the Cartesian equation  = 3.

28. (a) Because its center is not at the origin, it is more easily described by its Cartesian equation, (− 2)2 + ( − 3)2 = 52.

(b) This circle is more easily given in polar coordinates:  = 4. The Cartesian equation is also simple: 2 + 2 = 16.

29.  = −2 sin 

30.  = 1− cos 

31.  = 2(1 + cos )

32.  = 1 + 2 cos 
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33.  = ,  ≥ 0

34.  = 2, −2 ≤  ≤ 2

35.  = 3 cos 3

36.  = − sin 5

37.  = 2 cos 4

38.  = 2 sin 6
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39.  = 1 + 3 cos 

40.  = 1 + 5 sin 

41. 2 = 9 sin 2

42. 2 = cos 4

43.  = 2 + sin 3
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44. 2 = 1 ⇔  = ±1
√
 for   0

45.  = sin(2)

46.  = cos(3)

47. For  = 0, , and 2,  has its minimum value of about 05. For  = 
2
and 3

2
,  attains its maximum value of 2.

We see that the graph has a similar shape for 0 ≤  ≤  and  ≤  ≤ 2.

48. The given graph has a maximum of 2 for  = 0, a minimum of 1 for  = 
4
,

and then a maximum of 2 for  = 
2
. This pattern is repeated 4 times for

0 ≤  ≤ 2.
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49.  =  cos  = (4 + 2 sec ) cos  = 4 cos  + 2. Now, →∞ ⇒

(4 + 2 sec )→∞ ⇒ → 

2

−
or → 

3
2

+
[since we need only

consider 0 ≤   2], so lim
→∞

 = lim
→2−

(4 cos  + 2) = 2. Also,

→ −∞ ⇒ (4 + 2 sec )→−∞ ⇒ → 

2

+
or → 

3
2

−
, so

lim
→−∞

 = lim
→2+

(4 cos  + 2) = 2. Therefore, lim
→±∞

 = 2 ⇒  = 2 is a vertical asymptote.

50.  =  sin  = 2 sin  − csc  sin  = 2 sin  − 1.

→∞ ⇒ (2− csc )→∞ ⇒
csc →−∞ ⇒ → + [since we need

only consider 0 ≤   2] and so

lim
→∞

 = lim
→+

2 sin  − 1 = −1.

Also  → −∞ ⇒ (2− csc ) → −∞ ⇒ csc  →∞ ⇒ → − and so lim
→−∞

 = lim
→−

2 sin  − 1 = −1.

Therefore lim
→±∞

 = −1 ⇒  = −1 is a horizontal asymptote.

51. To show that  = 1 is an asymptote we must prove lim
→±∞

 = 1.

 = () cos  = (sin  tan ) cos  = sin2 . Now, →∞ ⇒ sin  tan →∞ ⇒

→ 

2

−
, so lim

→∞
 = lim

→2−
sin2  = 1. Also, →−∞ ⇒ sin  tan →−∞ ⇒

→ 

2

+
, so lim

→−∞
 = lim

→2+
sin2  = 1. Therefore, lim

→±∞
 = 1 ⇒  = 1 is

a vertical asymptote. Also notice that  = sin2  ≥ 0 for all , and  = sin2  ≤ 1 for all . And  6= 1, since the curve is not

defined at odd multiples of 
2
. Therefore, the curve lies entirely within the vertical strip 0 ≤   1.

52. The equation is (2 + 2)3 = 422, but using polar coordinates we know that

2 + 2 = 2 and  =  cos  and  =  sin . Substituting into the given

equation: 6 = 42 cos2  2 sin2  ⇒ 2 = 4 cos2  sin2  ⇒

 = ±2 cos  sin  = ± sin 2.  = ± sin 2 is sketched at right.

53. (a) We see that the curve  = 1 +  sin  crosses itself at the origin, where  = 0 (in fact the inner loop corresponds to

negative -values,) so we solve the equation of the limaçon for  = 0 ⇔  sin  = −1 ⇔ sin  = −1. Now if

||  1, then this equation has no solution and hence there is no inner loop. But if   −1, then on the interval (0 2)

the equation has the two solutions  = sin−1(−1) and  =  − sin−1(−1), and if   1, the solutions are

 =  + sin−1(1) and  = 2 − sin−1(1). In each case,   0 for  between the two solutions, indicating a loop.

(b) For 0    1, the dimple (if it exists) is characterized by the fact that  has a local maximum at  = 3
2
. So we

determine for what -values
2

2
is negative at  = 3

2
, since by the Second Derivative Test this indicates a maximum:
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 =  sin  = sin  +  sin2  ⇒ 


= cos  + 2 sin  cos  = cos  +  sin 2 ⇒ 2

2
= − sin  + 2 cos 2.

At  = 3
2
, this is equal to −(−1) + 2(−1) = 1− 2, which is negative only for   1

2
. A similar argument shows that

for −1    0,  only has a local minimum at  = 
2
(indicating a dimple) for   −1

2
.

54. (a)  = ln , 1 ≤  ≤ 6.  increases as  increases and there are almost three full revolutions. The graph must be either III

or VI. As  increases,  grows slowly in VI and quickly in III. Since  = ln  grows slowly, its graph must be VI.

(b)  = 2, 0 ≤  ≤ 8. See part (a). This is graph III.

(c) The graph of  = cos 3 is a three-leaved rose, which is graph II.

(d) Since −1 ≤ cos 3 ≤ 1, 1 ≤ 2 + cos 3 ≤ 3, so  = 2 + cos 3 is never 0; that is, the curve never intersects the pole. The

graph must be I or IV. For 0 ≤  ≤ 2, the graph assumes its minimum -value of 1 three times, at  = 
3
, , and 5

3
, so it

must be graph IV.

(e)  = cos(2). For  = 0,  = 1, and as  increases to ,  decreases to 0. Only graph V satisfies those values.

(f )  = 2 + cos(32). As in part (d), this graph never intersects the pole, so it must be graph I.

55.  = 2 cos  ⇒  =  cos  = 2cos2 ,  =  sin  = 2 sin  cos  = sin 2 ⇒



=




=

2cos 2

2 · 2 cos (− sin )
=

cos 2

− sin 2
= − cot 2

When  =


3
,



= − cot


2 · 

3


= cot



3
=

1√
3
. [Another method: Use Equation 3.]

56.  = 2 + sin 3 ⇒  =  cos  = (2 + sin 3) cos ,  =  sin  = (2 + sin 3) sin  ⇒



=




=

(2 + sin 3) cos  + sin (3 cos 3)

(2 + sin 3)(− sin ) + cos (3 cos 3)

When  =


4
,



=


2 + sin 3

4


cos 

4
+ sin 

4


3 cos 3

4


2 + sin 3

4

− sin 
4


+ cos 

4


3 cos 3

4

 =


2 +

√
2

2

√
2

2
+
√

2
2
· 3

−
√

2
2



2 +

√
2

2


−
√

2
2


+
√

2
2
· 3

−
√

2
2


=

√
2 + 1

2
− 3

2

−√2− 1
2
− 3

2

=

√
2− 1

−√2− 2
, or, equivalently, 2− 3

2

√
2.

57.  = 1 ⇒  =  cos  = (cos ),  =  sin  = (sin ) ⇒




=




=

sin (−12) + (1) cos 

cos (−12)− (1) sin 
· 

2

2
=
− sin  +  cos 

− cos  −  sin 

When  = ,



=

−0 + (−1)

−(−1)− (0)
=
−
1

= −.

58.  = cos(3) ⇒  =  cos  = cos(3) cos ,  =  sin  = cos(3) sin  ⇒




=




=

cos(3) cos  + sin 
−1

3
sin(3)


cos(3) (− sin ) + cos 

−1
3

sin(3)


When  = ,



=

1
2

(−1) + (0)
−√36


1
2

(0) + (−1)
−√36

 =
−12√

36
= − 3√

3
= −√3.
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59.  = cos 2 ⇒  =  cos  = cos 2 cos ,  =  sin  = cos 2 sin  ⇒




=




=

cos 2 cos  + sin  (−2 sin 2)

cos 2 (− sin ) + cos  (−2 sin 2)

When  =


4
,



=

0
√

22


+
√

22

(−2)

0
−√22


+
√

22

(−2)

=
−√2

−√2
= 1.

60.  = 1 + 2 cos  ⇒  =  cos  = (1 + 2 cos ) cos ,  =  sin  = (1 + 2 cos ) sin  ⇒




=




=

(1 + 2 cos ) cos  + sin  (−2 sin )

(1 + 2 cos )(− sin ) + cos  (−2 sin )

When  =


3
,



=

2


1
2


+
√

32
−√3


2
−√32


+ 1

2

−√3
 · 2

2
=

2− 3

−2
√

3−√3
=

−1

−3
√

3
=

√
3

9
.

61.  = 3 cos  ⇒  =  cos  = 3cos  cos ,  =  sin  = 3 cos  sin  ⇒



= −3 sin2  + 3 cos2  = 3 cos 2 = 0 ⇒ 2 = 

2
or 3

2
⇔  = 

4
or 3

4
.

So the tangent is horizontal at


3√
2
 

4


and


− 3√

2
 3

4

 
same as


3√
2
−

4


.




= −6 sin  cos  = −3 sin 2 = 0 ⇒ 2 = 0 or  ⇔  = 0 or 
2
. So the tangent is vertical at (3 0) and


0 

2


.

62.  = 1− sin  ⇒  =  cos  = cos  (1− sin ),  =  sin  = sin  (1− sin ) ⇒



= sin  (− cos ) + (1− sin ) cos  = cos  (1− 2 sin ) = 0 ⇒ cos  = 0 or sin  = 1

2
⇒

 = 
6
, 

2
, 5

6
, or 3

2
⇒ horizontal tangent at


1
2
 

6


,


1
2
 5

6


, and


2 3

2


.




= cos  (− cos ) + (1− sin )(− sin ) = − cos2  − sin  + sin2  = 2 sin2  − sin  − 1

= (2 sin  + 1)(sin  − 1) = 0 ⇒

sin  = − 1
2
or 1 ⇒  = 7

6
, 11

6
, or 

2
⇒ vertical tangent at


3
2
 7

6





3
2
 11

6


, and


0 

2


.

Note that the tangent is vertical, not horizontal, when  = 
2
, since

lim
→(2)−




= lim

→(2)−

cos  (1− 2 sin )

(2 sin  + 1)(sin  − 1)
=∞ and lim

→(2)+




= −∞.

63.  = 1 + cos  ⇒  =  cos  = cos  (1 + cos ),  =  sin  = sin  (1 + cos ) ⇒



= (1 + cos ) cos  − sin2  = 2cos2  + cos  − 1 = (2 cos  − 1)(cos  + 1) = 0 ⇒ cos  = 1

2
or −1 ⇒

 = 
3
, , or 5

3
⇒ horizontal tangent at


3
2
 

3


, (0 ), and


3
2
 5

3


.




= −(1 + cos ) sin  − cos  sin  = − sin  (1 + 2 cos ) = 0 ⇒ sin  = 0 or cos  = −1
2
⇒

 = 0, , 2
3
, or 4

3
⇒ vertical tangent at (2 0),


1
2
 2

3


, and


1
2
 4

3


.

Note that the tangent is horizontal, not vertical when  = , since lim
→




= 0.

64.  =  ⇒  =  cos  =  cos ,  =  sin  =  sin  ⇒



=  sin  +  cos  = (sin  + cos ) = 0 ⇒ sin  = − cos  ⇒ tan  = −1 ⇒
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 = − 1
4
 +  [ any integer] ⇒ horizontal tangents at


(−14) 


− 1

4


.




=  cos  −  sin  =  (cos  − sin ) = 0 ⇒ sin  = cos  ⇒ tan  = 1 ⇒

 = 1
4
 +  [ any integer] ⇒ vertical tangents at


(+14), 


+ 1

4


.

65.  =  sin  +  cos  ⇒ 2 =  sin  +  cos  ⇒ 2 + 2 =  +  ⇒
2 −  +


1
2

2

+ 2 −  +


1
2

2

=


1
2

2

+


1
2

2 ⇒ 

− 1
2

2

+

 − 1

2

2

= 1
4
(2 + 2), and this is a circle

with center


1
2
 1

2


and radius 1

2

√
2 + 2.

66. These curves are circles which intersect at the origin and at


1√
2
 

4


. At the origin, the first circle has a horizontal

tangent and the second a vertical one, so the tangents are perpendicular here. For the first circle [ =  sin ],

 =  cos  sin  +  sin  cos  =  sin 2 =  at  = 
4
and  =  cos2  −  sin2  =  cos 2 = 0

at  = 
4
, so the tangent here is vertical. Similarly, for the second circle [ =  cos ],  =  cos 2 = 0 and

 = − sin 2 = − at  = 
4
, so the tangent is horizontal, and again the tangents are perpendicular.

67.  = 1 + 2 sin(2). The parameter interval is [0 4]. 68.  =


1− 08 sin2 . The parameter interval is [0 2].

69.  = sin  − 2 cos(4).

The parameter interval is [0 2].

70.  = |tan ||cot |.
The parameter interval [0 ] produces the heart-shaped valentine curve shown in the first window.

The complete curve, including the reflected heart, is produced by the parameter interval [0 2], but perhaps you’ll agree

that the first curve is more appropriate.
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71.  = 1 + cos999 . The parameter interval is [0 2]. 72.  = 2 + cos(94). The parameter interval is [0 8].

73. It appears that the graph of  = 1 + sin

 − 

6


is the same shape as

the graph of  = 1 + sin , but rotated counterclockwise about the

origin by 
6
. Similarly, the graph of  = 1 + sin


 − 

3


is rotated by


3
. In general, the graph of  = ( − ) is the same shape as that of

 = (), but rotated counterclockwise through  about the origin.

That is, for any point (0 0) on the curve  = (), the point

(0 0 + ) is on the curve  = ( − ), since 0 = (0) = ((0 + )− ).

74. From the graph, the highest points seem to have  ≈ 077. To find the exact

value, we solve  = 0.  =  sin  = sin  sin 2 ⇒
 = 2 sin  cos 2 + cos  sin 2

= 2 sin  (2 cos2  − 1) + cos  (2 sin  cos )

= 2 sin  (3 cos2  − 1)

In the first quadrant, this is 0 when cos  = 1√
3
⇔ sin  =


2
3
⇔

 = 2 sin2  cos  = 2 · 2
3
· 1√

3
= 4

9

√
3 ≈ 077.

75. Consider curves with polar equation  = 1 +  cos , where  is a real number. If  = 0, we get a circle of radius 1 centered at

the pole. For 0   ≤ 05, the curve gets slightly larger, moves right, and flattens out a bit on the left side. For 05    1,

the left side has a dimple shape. For  = 1, the dimple becomes a cusp. For   1, there is an internal loop. For  ≥ 0, the

rightmost point on the curve is (1 +  0). For   0, the curves are reflections through the vertical axis of the curves

with   0.

 = 025  = 075  = 1  = 2
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76. Consider the polar curves  = 1 + cos , where  is a positive integer. First, let

 be an even positive integer. The first figure shows that the curve has a peanut

shape for  = 2, but as  increases, the ends are squeezed. As  becomes large,

the curves look more and more like the unit circle, but with spikes to the points

(2 0) and (2 ).

The second figure shows  as a function of  in Cartesian coordinates for the same

values of . We can see that for large , the graph is similar to the graph of  = 1,

but with spikes to  = 2 for  = 0, , and 2. (Note that when 0  cos   1,

cos1000  is very small.)

Next, let  be an odd positive integer. The third figure shows that the curve is a

cardioid for  = 1, but as  increases, the heart shape becomes more pronounced.

As  becomes large, the curves again look more like the unit circle, but with an

outward spike to (2 0) and an inward spike to (0 ).

The fourth figure shows  as a function of  in Cartesian coordinates for the same

values of . We can see that for large , the graph is similar to the graph of  = 1,

but spikes to  = 2 for  = 0 and , and to  = 0 for  = .

77. tan = tan(− ) =
tan− tan 

1 + tan tan 
=




− tan 

1 +



tan 

=




− tan 

1 +



tan 

=




− 


tan 




+




tan 

=





sin  +  cos 


− tan 





cos  −  sin 






cos  −  sin 


+ tan 





sin  +  cos 

 =
 cos  +  · sin2 

cos 



cos  +




· sin2 

cos 

=
 cos2  +  sin2 




cos2  +




sin2 

=




78. (a)  =  ⇒  = , so by Exercise 77, tan =  = 1 ⇒
 = arctan 1 = 

4
.

(b) The Cartesian equation of the tangent line at (1 0) is  = − 1, and that of

the tangent line at (0 2) is  = 2 − .

(c) Let  be the tangent of the angle between the tangent and radial lines, that

is,  = tan. Then, by Exercise 77,  =



⇒ 


=

1


 ⇒

 =  (by Theorem 9.4.2).
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LABORATORY PROJECT Families of Polar Curves

1. (a)  = sin.

 = 2  = 3  = 4  = 5

From the graphs, it seems that when  is even, the number of loops in the curve (called a rose) is 2, and when  is odd,

the number of loops is simply . This is because in the case of  odd, every point on the graph is traversed twice, due to

the fact that

( + ) = sin[( + )] = sin cos + cos sin =


sin if  is even

− sin if  is odd

(b) The graph of  = |sin| has 2 loops whether  is odd or even, since ( + ) = ().

 = 2  = 3  = 4  = 5

2.  = 1 +  sin. We vary  while keeping  constant at 2. As  changes, the curves change in the same way as those in

Exercise 1: the number of loops increases. Note that if  is even, the smaller loops are outside the larger ones; if  is odd, they

are inside.

 = 2

 = 2  = 3  = 4  = 5
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Now we vary  while keeping  = 3. As  increases toward 0, the entire graph gets smaller (the graphs below are not to scale)

and the smaller loops shrink in relation to the large ones. At  = −1, the small loops disappear entirely, and for −1    1,

the graph is a simple, closed curve (at  = 0 it is a circle). As  continues to increase, the same changes are seen, but in reverse

order, since 1 + (−) sin = 1 +  sin( + ), so the graph for  = 0 is the same as that for  = −0, with a rotation
through . As →∞, the smaller loops get relatively closer in size to the large ones. Note that the distance between the

outermost points of corresponding inner and outer loops is always 2. Maple’s animate command (or Mathematica’s

Animate) is very useful for seeing the changes that occur as  varies.

 = 3

 = −4  = −14  = −1  = −08

 = −02  = 0  = 05  = 8

3.  =
1−  cos 

1 +  cos 
. We start with  = 0, since in this case the curve is simply the circle  = 1.

As  increases, the graph moves to the left, and its right side becomes flattened. As  increases through about 04, the right

side seems to grow a dimple, which upon closer investigation (with narrower -ranges) seems to appear at  ≈ 042 [the

actual value is
√

2− 1]. As → 1, this dimple becomes more pronounced, and the curve begins to stretch out horizontally,

until at  = 1 the denominator vanishes at  = , and the dimple becomes an actual cusp. For   1 we must choose our

parameter interval carefully, since  →∞ as 1 +  cos → 0 ⇔ → ± cos−1(−1). As  increases from 1, the curve

splits into two parts. The left part has a loop, which grows larger as  increases, and the right part grows broader vertically,

and its left tip develops a dimple when  ≈ 242 [actually,
√

2 + 1]. As  increases, the dimple grows more and more

pronounced. If   0, we get the same graph as we do for the corresponding positive -value, but with a rotation through 

about the pole, as happened when  was replaced with − in Exercise 2.
[continued]
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 = 0  = 03  = 041 || ≤ 05

 = 042,|| ≤ 05  = 09 || ≤ 05  = 1 || ≤ 01

 = 2

 = 241, | − | ≤ 02

 = 242, | − | ≤ 02

 = 4

4. Most graphing devices cannot plot implicit polar equations, so we must first find an explicit expression (or expressions) for 

in terms of , , and . We note that the given equation, 4 − 222 cos 2 + 4 − 4 = 0, is a quadratic in 2, so we use the

quadratic formula and find that

2 =
22 cos 2 ±


44 cos2 2 − 4(4 − 4)

2
= 2 cos 2 ±


4 − 4 sin2 2

so  = ±

2 cos 2 ±


4 − 4 sin2 2. So for each graph, we must plot four curves to be sure of plotting all the points

which satisfy the given equation. Note that all four functions have period .

We start with the case  =  = 1, and the resulting curve resembles the symbol for infinity. If we let  decrease, the curve

splits into two symmetric parts, and as  decreases further, the parts become smaller, further apart, and rounder. If instead we

let  increase from 1, the two lobes of the curve join together, and as  increases further they continue to merge, until at
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 ≈ 14, the graph no longer has dimples, and has an oval shape. As →∞, the oval becomes larger and rounder, since the

2 and 4 terms lose their significance. Note that the shape of the graph seems to depend only on the ratio , while the size

of the graph varies as  and  jointly increase.

( ) = (1 1) ( ) = (099 1) ( ) = (09 1)

( ) = (06 1) ( ) = (101 1) ( ) = (404 4)

( ) = (13 1)

( ) = (15 1) ( ) = (2 1) ( ) = (4 1)

10.4 Areas and Lengths in Polar Coordinates

1.  = −4, 2 ≤  ≤ .

 =

 

2

1
2

2
 =

 

2

1
2
(
−4

)
2
 =

 

2

1
2

−2

 = 1
2


−2

−2

2

= −1(
−2 − 

−4
) = 

−4 − 
−2

2.  = cos , 0 ≤  ≤ 6.

=

 6

0

1
2

2
 =

 6

0

1
2

cos
2
  = 1

2

 6

0

1
2
(1 + cos 2)  = 1

4


 + 1

2
sin 2

6
0

= 1
4



6

+ 1
2
· 1

2

√
3


= 
24

+ 1
16

√
3

3.  = sin  + cos , 0 ≤  ≤ .

=

 

0

1

2

2
 =

 

0

1

2
(sin  + cos )

2
 =

 

0

1

2
(sin

2
 + 2 sin  cos  + cos

2
)  =

 

0

1

2
(1 + sin 2) 

= 1
2


 − 1

2
cos 2


0

= 1
2


 − 1

2

− 0− 1
2


= 

2
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4.  = 1, 2 ≤  ≤ 2.

=

 2

2

1

2

2
 =

 2

2

1

2


1



2

 =

 2

2

1

2

−2

 =
1

2


−1



2
2

= 1
2

− 1
2

+ 2



= 1

2

− 1
2

+ 4
2


= 3

4

5. 2 = sin 2, 0 ≤  ≤ 2.

 =

 2

0

1
2

2
 =

 2

0

1
2

sin 2  =

− 1

4
cos 2

2
0

= −1
4
(cos − cos 0) = −1

4
(−1− 1) = 1

2

6.  = 2 + cos , 2 ≤  ≤ .

=

 

2

1
2

2
 =

 

2

1
2
(2 + cos )

2
 =

 

2

1
2
(4 + 4 cos  + cos

2
)  =

 

2

1
2
[4 + 4 cos  + 1

2
(1 + cos 2)] 

=

 

2


9
4

+ 2cos  + 1
4

cos 2

 =


9
4
 + 2 sin  + 1

8
sin 2


2

=


9
4

+ 0 + 0
−  9

8
+ 2 + 0


= 9

8
− 2

7.  = 4 + 3 sin , −
2
≤  ≤ 

2
.

=

 2

−2
1
2
((4 + 3 sin )

2
 = 1

2

 2

−2
(16 + 24 sin  + 9 sin

2
) 

= 1
2

 2

−2
(16 + 9 sin

2
)  [by Theorem 5.5.7(b) ]

= 1
2
· 2
 2

0


16 + 9 · 1

2
(1− cos 2)


 [by Theorem 5.5.7(a) ]

=

 2

0


41
2
− 9

2
cos 2


 =


41
2
 − 9

4
sin 2

2
0

=


41
4
− 0
− (0− 0) = 41

4

8.  =
√

ln , 1 ≤  ≤ 2.

=

 2

1

1
2

√
ln 

2

 =

 2

1

1
2

ln   =


1
2
 ln 

2
1
−
 2

1

1
2



 = ln ,  = 1

2


 = (1) ,  = 1
2



= [ ln(2)− 0]−


1
2

2
1

=  ln(2)−  + 1
2

9. The area is bounded by  = 2 sin  for  = 0 to  = .

=

 

0

1
2

2
 = 1

2

 

0

(2 sin )
2
 = 1

2

 

0

4 sin
2
 

= 2

 

0

1
2
(1− cos 2) =


 − 1

2
sin 2


0

= 

Also, note that this is a circle with radius 1, so its area is (1)2 = .

10. =

 2

0

1
2

2
 =

 2

0

1
2
(1− sin )

2


= 1
2

 2

0

(1− 2 sin  + sin
2
)  = 1

2

 2

0


1− 2 sin  + 1

2
(1− cos 2)




= 1
2

 2

0


3
2
− 2 sin  − 1

2
cos 2


 = 1

2


3
2
 + 2cos  − 1

4
sin 2

2
0

= 1
2
[(3 + 2)− (2)] = 3

2
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11. =

 2

0

1
2

2
 =

 2

0

1
2
(3 + 2 cos )

2
 = 1

2

 2

0

(9 + 12 cos  + 4cos
2
) 

= 1
2

 2

0


9 + 12 cos  + 4 · 1

2
(1 + cos 2)




= 1
2

 2

0

(11 + 12 cos  + 2cos 2)  = 1
2


11 + 12 sin  + sin 2

2
0

= 1
2
(22) = 11

12. =

 2

0

1
2

2
 =

 2

0

1
2
(2− cos )

2
 =

 2

0

1
2
(4− 4 cos  + cos

2
) 

=

 2

0

1
2


4− 4 cos  + 1

2
(1 + cos 2)


 =

 2

0


9
4
− 2 cos  + 1

4
cos 2




=


9
4
 − 2 sin  + 1

8
sin 2

2
0

=


9
2
− 0 + 0

− (0− 0 + 0) = 9
2

13. =

 2

0

1
2

2
 =

 2

0

1
2
(2 + sin 4)

2
 = 1

2

 2

0

(4 + 4 sin 4 + sin
2
4) 

= 1
2

 2

0


4 + 4 sin 4 + 1

2
(1− cos 8)




= 1
2

 2

0


9
2

+ 4 sin 4 − 1
2

cos 8

 = 1

2


9
2
 − cos 4 − 1

16
sin 8

2
0

= 1
2
[(9 − 1)− (−1)] = 9

2


14. =

 2

0

1
2

2
 =

 2

0

1
2
(3− 2 cos 4)

2
 = 1

2

 2

0

(9− 12 cos 4 + 4cos
2
4) 

= 1
2

 2

0


9− 12 cos 4 + 4 · 1

2
(1 + cos 8)




= 1
2

 2

0

(11− 12 cos 4 + 2 cos 8)  = 1
2


11 − 3 sin 4 + 1

4
sin 8

2
0

= 1
2
(22) = 11

15. =

 2

0

1
2

2
 =

 2

0

1
2


1 + cos2 5

2



= 1
2

 2

0

(1 + cos
2
5)  = 1

2

 2

0


1 + 1

2
(1 + cos 10)




= 1
2


3
2
 + 1

20
sin 10

2
0

= 1
2
(3) = 3

2
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16. =

 2

0

1
2

2
 =

 2

0

1
2
(1 + 5 sin 6)

2


= 1
2

 2

0

(1 + 10 sin 6 + 25 sin
2
6) 

= 1
2

 2

0


1 + 10 sin 6 + 25 · 1

2
(1− cos 12)




= 1
2

 2

0


27
2

+ 10 sin 6 − 25
2

cos 12

 = 1

2


27
2
 − 5

3
cos 6 − 25

24
sin 12

2
0

= 1
2


27 − 5

3

− −5
3


= 27

2


17. The curve passes through the pole when  = 0 ⇒ 4 cos 3 = 0 ⇒ cos 3 = 0 ⇒ 3 = 
2

+  ⇒

 = 
6

+ 
3
. The part of the shaded loop above the polar axis is traced out for

 = 0 to  = 6, so we’ll use −6 and 6 as our limits of integration.

=

 6

−6
1
2
(4 cos 3)

2
 = 2

 6

0

1
2
(16 cos

2
3) 

= 16

 6

0

1
2
(1 + cos 6)  = 8


 + 1

6
sin 6

6
0

= 8


6


= 4

3


18. The curve given by 2 = 4cos 2 passes through the pole when  = 0 ⇒ 4 cos 2 = 0 ⇒ cos 2 = 0 ⇒
2 = 

2
+  ⇒  = 

4
+ 

2
. The part of the shaded loop above the polar axis is traced out for  = 0 to  = 4,

so we’ll use −4 to 4 as our limits of integration.

=

 4

−4
1
2
(4 cos 2)  = 2

 4

0

2 cos 2  = 2

sin 2

4
0

= 2 sin 
2

= 2(1) = 2

19.  = 0 ⇒ sin 4 = 0 ⇒ 4 =  ⇒  = 
4
.

=

 4

0

1
2
(sin 4)

2
 = 1

2

 4

0

sin
2
4  = 1

2

 4

0

1
2
(1− cos 8) 

= 1
4


 − 1

8
sin 8

4
0

= 1
4



4


= 1

16


20.  = 0 ⇒ 2 sin 5 = 0 ⇒ sin 5 = 0 ⇒ 5 =  ⇒  = 
5
.

=

 5

0

1
2
(2 sin 5)

2
 = 1

2

 5

0

4 sin
2
5 

= 2

 5

0

1
2
(1− cos 10)  =


 − 1

10
sin 10

5
0

= 
5
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21. This is a limaçon, with inner loop traced

out between  = 7
6
and 11

6
[found by

solving  = 0].

= 2

 32

76

1
2
(1 + 2 sin )

2
 =

 32

76


1 + 4 sin  + 4 sin

2


 =

 32

76


1 + 4 sin  + 4 · 1

2
(1− cos 2)




=

 − 4 cos  + 2 − sin 2

32
76

=


9
2

−  7
2

+ 2
√

3−
√

3
2


=  − 3

√
3

2

22. To determine when the strophoid  = 2cos  − sec  passes through the pole, we solve

 = 0 ⇒ 2 cos  − 1

cos 
= 0 ⇒ 2 cos2  − 1 = 0 ⇒ cos2  =

1

2
⇒

cos  = ± 1√
2

⇒  = 
4
or  = 3

4
for 0 ≤  ≤  with  6= 

2
.

= 2

 4

0

1
2
(2 cos  − sec )

2
 =

 4

0

(4 cos
2
 − 4 + sec

2
) 

=

 4

0


4 · 1

2
(1 + cos 2)− 4 + sec

2


 =

 4

0

(−2 + 2 cos 2 + sec
2
) 

=
−2 + sin 2 + tan 

4
0

=
−

2
+ 1 + 1

− 0 = 2− 
2

23. 4 sin  = 2 ⇒ sin  = 1
2
⇒  = 

6
or 5

6
⇒

=

 56

6

1
2
[(4 sin )

2 − 2
2
]  = 2

 2

6

1
2
(16 sin

2
 − 4) 

=

 2

6


16 · 1

2
(1− cos 2)− 4


 =

 2

6

(4− 8 cos 2) 

=

4 − 4 sin 2

2
6

= (2 − 0)−  2
3
− 2
√

3


= 4
3

+ 2
√

3

24. 1− sin  = 1 ⇒ sin  = 0 ⇒  = 0 or  ⇒

=

 2



1
2


(1− sin )

2 − 1

 = 1

2

 2



(sin
2
 − 2 sin ) 

= 1
4

 2



(1− cos 2 − 4 sin )  = 1
4


 − 1

2
sin 2 + 4cos 

2


= 1
4
 + 2
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25. To find the area inside the leminiscate 2 = 8 cos 2 and outside the circle  = 2,

we first note that the two curves intersect when 2 = 8 cos 2 and  = 2,

that is, when cos 2 = 1
2
. For −   ≤ , cos 2 = 1

2
⇔ 2 = ±3

or ±53 ⇔  = ±6 or ±56. The figure shows that the desired area

is 4 times the area between the curves from 0 to 6. Thus,

= 4
 6
0


1
2
(8 cos 2)− 1

2
(2)2


 = 8

 6
0

(2 cos 2 − 1) 

= 8

sin 2 − 

6
0

= 8
√

32− 6


= 4
√

3− 43

26. 3 sin  = 1 + sin  ⇒ sin  = 1
2
⇒  = 

6
or 5

6
⇒

=

 56

6

1
2
[(3 sin )

2 − (1 + sin )
2
] 

= 2

 2

6

1
2
(9 sin

2
 − 1− 2 sin  − sin

2
) 

=

 2

6

(8 sin
2
 − 1− 2 sin ) 

=

 2

6


8 · 1

2
(1− cos 2)− 1− 2 sin 


 =

 2

6

(3− 4 cos 2 − 2 sin ) 

=

3 − 2 sin 2 + 2cos 

2
6

=


3
2
− 0 + 0

− 
2
−√3 +

√
3


= 

27. 3 cos  = 1 + cos  ⇔ cos  = 1
2
⇒  = 

3
or −

3
.

= 2
 3
0

1
2
[(3 cos )2 − (1 + cos )2] 

=
 3
0

(8 cos2  − 2 cos  − 1)  =
 3
0

[4(1 + cos 2)− 2 cos  − 1] 

=
 3
0

(3 + 4 cos 2 − 2 cos )  =

3 + 2 sin 2 − 2 sin 

3
0

=  +
√

3−√3 = 

28. 3 sin  = 2− sin  ⇒ 4 sin  = 2 ⇒ sin  = 1
2
⇒  = 

6
or 5

6
.

= 2
 2
6

1
2
[(3 sin )2 − (2− sin )2] 

=
 2
6

(9 sin2  − 4 + 4 sin  − sin2 ] 

=
 2
6

(8 sin2  + 4 sin  − 4) 

= 4
 2
6


2 · 1

2
(1− cos 2) + sin  − 1




= 4
 2
6

(sin  − cos 2)  = 4
−cos  − 1

2
sin 2

2
6

= 4

(0− 0)−


−
√

3
2
−
√

3
4


= 4


3
√

3
4


= 3

√
3
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29. 3 sin  = 3cos  ⇒ 3 sin 

3 cos 
= 1 ⇒ tan  = 1 ⇒  = 

4
⇒

= 2

 4

0

1
2
(3 sin )

2
 =

 4

0

9 sin
2
  =

 4

0

9 · 1
2
(1− cos 2) 

=

 4

0


9
2
− 9

2
cos 2


 =


9
2
 − 9

4
sin 2

4
0

=


9
8
− 9

4

− (0− 0)

= 9
8
− 9

4

30. = 4
 2
0

1
2
(1− cos )2  = 2

 2
0

(1− 2 cos  + cos2 ) 

= 2
 2
0


1− 2 cos  + 1

2
(1 + cos 2)




= 2
 2
0


3
2
− 2 cos  + 1

2
cos 2


 =

 2
0

(3− 4 cos  + cos 2) 

=

3 − 4 sin  + 1

2
sin 2

2
0

= 3
2
− 4

31. sin 2 = cos 2 ⇒ sin 2

cos 2
= 1 ⇒ tan 2 = 1 ⇒ 2 = 

4
⇒

 = 
8
⇒

= 8 · 2
 8

0

1
2

sin
2
2  = 8

 8

0

1
2
(1− cos 4) 

= 4

 − 1

4
sin 4

8
0

= 4


8
− 1

4
· 1 = 

2
− 1

32. 3 + 2 cos  = 3 + 2 sin  ⇒ cos  = sin  ⇒  = 
4
or 5

4
.

= 2
 54

4

1
2
(3 + 2 cos )2  =

 54

4
(9 + 12 cos  + 4cos2 ) 

=
 54

4


9 + 12 cos  + 4 · 1

2
(1 + cos 2)




=
 54

4
(11 + 12 cos  + 2cos 2)  =


11 + 12 sin  + sin 2

54
4

=


55
4
− 6

√
2 + 1

−  11
4

+ 6
√

2 + 1


= 11 − 12
√

2

33. From the figure, we see that the shaded region is 4 times the shaded region

from  = 0 to  = 4. 2 = 2 sin 2 and  = 1 ⇒
2 sin 2 = 12 ⇒ sin 2 = 1

2
⇒ 2 = 

6
⇒  = 

12
.

= 4

 12

0

1
2
(2 sin 2)  + 4

 4

12

1
2
(1)

2


=

 12

0

4 sin 2  +

 4

12

2  =

−2 cos 2

12
0

+

2
4
12

=
−√3 + 2


+


2
− 

6


= −√3 + 2 + 

3
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34. Let  = tan−1 (). Then

 =
 
0

1
2
( sin )2  +

 2


1
2
( cos )2 

= 1
4
2

 − 1

2
sin 2


0

+ 1
4
2

 + 1

2
sin 2

2


= 1
4
(2 − 2) + 1

8
2 − 1

4
(2 + 2)(sin cos)

= 1
4
(2 − 2) tan−1() + 1

8
2 − 1

4


35. The darker shaded region (from  = 0 to  = 23) represents 1
2
of the desired area plus 1

2
of the area of the inner loop.

From this area, we’ll subtract 1
2
of the area of the inner loop (the lighter shaded region from  = 23 to  = ), and then

double that difference to obtain the desired area.

 = 2
 23

0

1
2


1
2

+ cos 
2

 −  
23

1
2


1
2

+ cos 
2




=
 23

0


1
4

+ cos  + cos2 

 −  

23


1
4

+ cos  + cos2 



=
 23

0


1
4

+ cos  + 1
2
(1 + cos 2)




−  
23


1
4

+ cos  + 1
2
(1 + cos 2)




=




4
+ sin  +



2
+

sin 2

4

23
0

−



4
+ sin  +



2
+

sin 2

4


23

=


6

+
√

3
2

+ 
3
−
√

3
8


− 

4
+ 

2


+


6

+
√

3
2

+ 
3
−
√

3
8


= 

4
+ 3

4

√
3 = 1

4


 + 3

√
3


36.  = 0 ⇒ 1 + 2 cos 3 = 0 ⇒ cos 3 = − 1
2
⇒ 3 = 2

3
, 4

3
[for

0 ≤ 3 ≤ 2] ⇒  = 2
9
, 4

9
. The darker shaded region (from  = 0 to

 = 29) represents 1
2
of the desired area plus 1

2
of the area of the inner

loop. From this area, we’ll subtract 1
2
of the area of the inner loop (the lighter

shaded region from  = 29 to  = 3), and then double that difference to

obtain the desired area.

 = 2
 29

0

1
2
(1 + 2 cos 3)2  −  3

29

1
2
(1 + 2 cos 3)2 


Now 2 = (1 + 2 cos 3)2 = 1 + 4 cos 3 + 4 cos2 3 = 1 + 4 cos 3 + 4 · 1

2
(1 + cos 6)

= 1 + 4 cos 3 + 2 + 2 cos 6 = 3 + 4 cos 3 + 2 cos 6

and

2 = 3 + 4

3
sin 3 + 1

3
sin 6 + , so

 =

3 + 4

3
sin 3 + 1

3
sin 6

29
0

− 3 + 4
3

sin 3 + 1
3

sin 6
3
29

=


2
3

+ 4
3
·
√

3
2

+ 1
3
· −
√

3
2


− 0

−

( + 0 + 0)−


2
3

+ 4
3
·
√

3
2

+ 1
3
· −

√
3

2


= 4

3
+ 4

3

√
3− 1

3

√
3−  = 

3
+
√

3
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37. The pole is a point of intersection. sin  = 1− sin  ⇒ 2 sin  = 1 ⇒

sin  = 1
2
⇒  = 

6
or 5

6
. So the other points of intersection are

1
2
 

6


and


1
2
 5

6


.

38. The pole is a point of intersection. 1 + cos  = 1− sin  ⇒

cos  = − sin  ⇒ cos 

sin 
= −1 ⇒ cot  = −1 ⇒  = 3

4

or 7
4
. So the other points of intersection are


1− 1

2

√
2 3

4


and

1 + 1
2

√
2 7

4


.

39. 2 sin 2 = 1 ⇒ sin 2 = 1
2
⇒ 2 = 

6
, 5

6
, 13

6
, or 17

6
.

By symmetry, the eight points of intersection are given by

(1 ), where  = 
12
, 5

12
, 13

12
, and 17

12
, and

(−1 ), where  = 7
12
, 11

12
, 19

12
, and 23

12
.

[There are many ways to describe these points.]

40. Clearly the pole lies on both curves. sin 3 = cos 3 ⇒ tan 3 = 1 ⇒
3 = 

4
+  [ any integer] ⇒  = 

12
+ 

3
 ⇒

 = 
12
, 5

12
, or 3

4
, so the three remaining intersection points are

1√
2
 

12


,

− 1√

2
 5

12


, and


1√
2
 3

4


.

41. The pole is a point of intersection. sin  = sin 2 = 2 sin  cos  ⇔
sin  (1− 2 cos ) = 0 ⇔ sin  = 0 or cos  = 1

2
⇒

 = 0, , 
3
, or −

3
⇒ the other intersection points are

√
3

2
 

3


and

√
3

2
 2

3


[by symmetry].

42. Clearly the pole is a point of intersection. sin 2 = cos 2 ⇒
tan 2 = 1 ⇒ 2 = 

4
+ 2 [since sin 2 and cos 2 must be

positive in the equations] ⇒  = 
8

+  ⇒  = 
8
or 9

8
.

So the curves also intersect at


1
4√

2
 

8


and


1
4√

2
 9

8


.
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43.

From the first graph, we see that the pole is one point of intersection. By zooming in or using the cursor, we find the -values

of the intersection points to be  ≈ 088786 ≈ 089 and  −  ≈ 225. (The first of these values may be more easily

estimated by plotting  = 1 + sin and  = 2 in rectangular coordinates; see the second graph.) By symmetry, the total

area contained is twice the area contained in the first quadrant, that is,

= 2

 

0

1
2
(2)

2
 + 2

 2



1
2
(1 + sin )

2
 =

 

0

4
2
 +

 2




1 + 2 sin  + 1

2
(1− cos 2)




=


4
3
3

0

+

 − 2 cos  +


1
2
 − 1

4
sin 2

2


= 4
3
3 +



2

+ 
4

− − 2 cos+ 1
2
− 1

4
sin 2

 ≈ 34645

44. We need to find the shaded area  in the figure. The horizontal line

representing the front of the stage has equation  = 4 ⇔
 sin  = 4 ⇒  = 4 sin . This line intersects the curve

 = 8 + 8 sin  when 8 + 8 sin  =
4

sin 
⇒

8 sin  + 8 sin2  = 4 ⇒ 2 sin2  + 2 sin  − 1 = 0 ⇒

sin  =
−2±√4 + 8

4
=
−2± 2

√
3

4
=
−1 +

√
3

2
[the other value is less than−1] ⇒  = sin−1

√
3− 1

2


.

This angle is about 215◦ and is denoted by  in the figure.

= 2
 2


1
2
(8 + 8 sin )2  − 2

 2


1
2
(4 csc )2  = 64

 2


(1 + 2 sin  + sin2 )  − 16
 2


csc2  

= 64
 2



1 + 2 sin  + 1

2
− 1

2
cos 2


 + 16

 2


(− csc2 )  = 64


3
2
 − 2 cos  − 1

4
sin 2

2


+ 16

cot 

2


= 16

6 − 8 cos  − sin 2 + cot 




= 16[(3 − 0− 0 + 0)− (6− 8 cos− sin 2+ cot)]

= 48 − 96+ 128 cos+ 16 sin 2− 16 cot

From the figure, 2 +
√

3− 1
2

= 22 ⇒ 2 = 4− 3− 2
√

3 + 1
 ⇒

2 = 2
√

3 =
√

12, so  =


2
√

3 =
4
√

12. Using the trigonometric relationships

for a right triangle and the identity sin 2 = 2 sin cos, we continue:

= 48 − 96+ 128 ·
4
√

12

2
+ 16 · 2 ·

√
3− 1

2
·

4
√

12

2
− 16 ·

4
√

12√
3− 1

·
√

3 + 1√
3 + 1

= 48 − 96+ 64
4
√

12 + 8
4
√

12
√

3− 1
− 8

4
√

12
√

3 + 1


= 48 + 48
4
√

12− 96 sin−1

√
3− 1

2


≈ 20416 m2
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45. =

 




2 + ()2  =

 

0


(2 cos )2 + (−2 sin )2 

=

 

0


4(cos2  + sin2 )  =

 

0

√
4  =


2

0

= 2

As a check, note that the curve is a circle of radius 1, so its circumference is 2(1) = 2.

46. =

 




2 + ()2  =

 2

0


(5)2 + (5 ln 5)2  =

 2

0


52[1 + (ln 5)2] 

=


1 + (ln 5)2
 2

0

√
52  =


1 + (ln 5)2

 2

0

5

 =


1 + (ln 5)2


5

ln 5

2
0

=


1 + (ln 5)2


52

ln 5
− 1

ln 5


=


1 + (ln 5)2

ln 5
(52 − 1)

47.  =

 




2 + ()2  =

 2

0


(2)2 + (2)2  =

 2

0


4 + 42 

=

 2

0


2(2 + 4)  =

 2

0



2 + 4 

Now let  = 2 + 4, so that  = 2 

  = 1

2



and

 2

0



2 + 4  =

 42+4

4

1
2

√
 = 1

2
· 2

3




32
4(2+1)

4
= 1

3
[4

32
(

2
+ 1)

32 − 4
32

] = 8
3
[(

2
+ 1)

32 − 1]

48. =

 




2 + ()2  =

 2

0


[2(1 + cos )]2 + (−2 sin )2  =

 2

0


4 + 8 cos  + 4 cos2  + 4 sin2  

=

 2

0

√
8 + 8 cos   =

√
8

 2

0

√
1 + cos   =

√
8

 2

0


2 · 1

2
(1 + cos ) 

=
√

8

 2

0


2 cos2



2
 =

√
8
√

2

 2

0

cos 2
  = 4 · 2

 

0

cos


2
 [by symmetry]

= 8


2 sin



2


0

= 8(2) = 16

49. The curve  = cos4(4) is completely traced with 0 ≤  ≤ 4.

2 + ()2 = [cos4(4)]2 +

4 cos3(4) · (− sin(4)) · 1

4

2
= cos8(4) + cos6(4) sin2(4)

= cos6(4)[cos2(4) + sin2(4)] = cos6(4)

 =
 4

0


cos6(4)  =

 4

0

cos3(4) 
= 2

 2

0
cos3(4)  [since cos3(4) ≥ 0 for 0 ≤  ≤ 2] = 8

 2
0

cos3 

 = 1

4



= 8
 2
0

(1− sin2 ) cos = 8
 1

0
(1− 2) 


 = sin

 = cos


= 8


− 1

3
3
1
0

= 8

1− 1

3


= 16

3
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50. The curve  = cos2(2) is completely traced with 0 ≤  ≤ 2.

2 + ()2 = [cos2(2)]2 +

2 cos(2) · (− sin(2)) · 1

2

2
= cos4(2) + cos2 (2) sin2(2)

= cos2(2)[cos2(2) + sin2(2)]

= cos2(2)

 =
 2

0


cos2(2)  =

 2

0
|cos(2)|  = 2

 
0

cos(2)  [since cos(2) ≥ 0 for 0 ≤  ≤ ]

= 4
 2
0

cos

 = 1

2



= 4

sin

2
0

= 4(1− 0) = 4

51. One loop of the curve  = cos 2 is traced with −4 ≤  ≤ 4.

2 +






2

= cos2 2 + (−2 sin 2)2 = cos2 2 + 4 sin2 2 = 1 + 3 sin2 2 ⇒

 =

 4

−4


1 + 3 sin2 2  ≈ 24221.

52. 2 +






2

= tan2  + (sec2 )2 ⇒  =

 3

6


tan2  + sec4   ≈ 12789

53. The curve  = sin(6 sin ) is completely traced with 0 ≤  ≤ .  = sin(6 sin ) ⇒



= cos(6 sin ) · 6 cos , so 2 +






2

= sin2(6 sin ) + 36 cos2  cos2(6 sin ) ⇒

 =

 

0


sin2(6 sin ) + 36 cos2  cos2(6 sin )  ≈ 80091.

54. The curve  = sin(4) is completely traced with 0 ≤  ≤ 8.  = sin(4) ⇒ 


= 1

4
cos(4), so

2 +






2

= sin2(4) + 1
16

cos2(4) ⇒  =

 8

0


sin2(4) + 1

16
cos2(4)  ≈ 171568.

55. (a) From (10.2.6),
 =

 


2


()2 + ()2 

=
 


2

2 + ()2  [from the derivation of Equation 10.4.5]

=
 


2 sin 


2 + ()

2


(b) The curve 2 = cos 2 goes through the pole when cos 2 = 0 ⇒
2 = 

2
⇒  = 

4
. We’ll rotate the curve from  = 0 to  = 

4
and double

this value to obtain the total surface area generated.

2 = cos 2 ⇒ 2



= −2 sin 2 ⇒






2

=
sin2 2

2
=

sin2 2

cos 2
.

 = 2

 4

0

2
√

cos 2 sin 


cos 2 +


sin2 2


cos 2  = 4

 4

0

√
cos 2 sin 


cos2 2 + sin2 2

cos 2


= 4

 4

0

√
cos 2 sin 

1√
cos 2

 = 4

 4

0

sin   = 4
− cos 

4
0

= −4
√

2
2
− 1


= 2

2−

√
2


c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE

924 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

56. (a) Rotation around  = 
2
is the same as rotation around the -axis, that is,  =

 


2 where

 =


()2 + ()2  for a parametric equation, and for the special case of a polar equation,  =  cos  and

 =


()2 + ()2  =

2 + ()2  [see the derivation of Equation 10.4.5]. Therefore, for a polar

equation rotated around  = 
2
,  =

 


2 cos 

2 + ()2 .

(b) As in the solution for Exercise 55(b), we can double the surface area generated by rotating the curve from  = 0 to  = 
4

to obtain the total surface area.

 = 2

 4

0

2
√

cos 2 cos 


cos 2 + (sin2 2)cos 2  = 4

 4

0

√
cos 2 cos 


cos2 2 + sin2 2

cos 2


= 4

 4

0

√
cos 2 cos 

1√
cos 2

 = 4

 4

0

cos   = 4

sin 

4
0

= 4

√
2

2
− 0


= 2

√
2

10.5 Conic Sections

1. 2 = 6 and 2 = 4 ⇒ 4 = 6 ⇒  = 3
2
.

The vertex is (0 0), the focus is

0 3

2


, and the directrix

is  = − 3
2
.

2. 22 = 5 ⇒ 2 = 5
2
. 4 = 5

2
⇒  = 5

8
.

The vertex is (0 0), the focus is


5
8
 0

, and the directrix

is  = − 5
8
.

3. 2 = −2 ⇒ 2 = −2. 4 = −2 ⇒  = − 1
2
.

The vertex is (0 0), the focus is
− 1

2
 0

, and the

directrix is  = 1
2
.

4. 32 + 8 = 0 ⇒ 32 = −8 ⇒ 2 = − 8
3
.

4 = − 8
3
⇒  = − 2

3
. The vertex is (0 0), the focus

is

0− 2

3


, and the directrix is  = 2

3
.
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5. (+ 2)
2

= 8 ( − 3). 4 = 8, so  = 2. The vertex is

(−2 3), the focus is (−2 5), and the directrix is

 = 1.

6. ( − 2)2 = 2+ 1 = 2

 + 1

2


. 4 = 2, so  = 1

2
. The

vertex is
−1

2
 2

, the focus is (0 2), and the directrix is

 = −1.

7. 2 + 6 + 2+ 1 = 0 ⇔ 2 + 6 = −2− 1

⇔ 2 + 6 + 9 = −2 + 8 ⇔
( + 3)2 = −2(− 4). 4 = −2, so  = −1

2
.

The vertex is (4−3), the focus is


7
2
−3


, and the

directrix is  = 9
2
.

8. 22 − 16− 3 + 38 = 0 ⇔ 22 − 16 = 3 − 38

⇔ 2(2 − 8 + 16) = 3 − 38 + 32 ⇔
2(− 4)2 = 3 − 6 ⇔ (− 4)2 = 3

2
( − 2).

4 = 3
2
, so  = 3

8
. The vertex is (4 2), the focus is


4 19

8


,

and the directrix is  = 13
8
.

9. The equation has the form 2 = 4, where   0. Since the parabola passes through (−1 1), we have 12 = 4(−1), so

4 = −1 and an equation is 2 = − or  = −2. 4 = −1, so  = − 1
4
and the focus is

− 1
4
 0

while the directrix

is  = 1
4
.

10. The vertex is (2−2), so the equation is of the form (− 2)
2

= 4( + 2), where   0. The point (0 0) is on the parabola,

so 4 = 4(2) and 4 = 2. Thus, an equation is (− 2)
2

= 2( + 2). 4 = 2, so  = 1
2
and the focus is


2− 3

2


while the

directrix is  = − 5
2
.

11.
2

2
+

2

4
= 1 ⇒  =

√
4 = 2,  =

√
2,

 =
√
2 − 2 =

√
4− 2 =

√
2. The ellipse is centered

at (0 0), with vertices at (0±2). The foci are

0±√2


.

12.
2

36
+

2

8
= 1 ⇒  =

√
36 = 6,  =

√
8,

 =
√
2 − 2 =

√
36− 8 =

√
28 = 2

√
7. The ellipse is

centered at (0 0), with vertices at (±6 0). The foci are

(±2
√

7 0).
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13. 2 + 92 = 9 ⇔ 2

9
+

2

1
= 1 ⇒  =

√
9 = 3,

 =
√

1 = 1,  =
√
2 − 2 =

√
9− 1 =

√
8 = 2

√
2.

The ellipse is centered at (0 0), with vertices (±3 0).

The foci are (±2
√

2 0).

14. 1002 + 362 = 225 ⇔ 2

225
100

+
2

225
36

= 1 ⇔

2

9
4

+
2

25
4

= 1 ⇒  =


25
4

= 5
2
,  =


9
4

= 3
2
,

 =
√
2 − 2 =


25
4
− 9

4
= 2. The ellipse is centered

at (0 0), with vertices

0± 5

2


. The foci are (0±2).

15. 92 − 18 + 42 = 27 ⇔
9(2 − 2 + 1) + 42 = 27 + 9 ⇔

9(− 1)2 + 42 = 36 ⇔ (− 1)2

4
+

2

9
= 1 ⇒

 = 3,  = 2,  =
√

5 ⇒ center (1 0),

vertices (1±3), foci

1±√5



16. 2 + 32 + 2− 12 + 10 = 0 ⇔
2 + 2+ 1 + 3(2 − 4 + 4) = −10 + 1 + 12 ⇔

(+ 1)
2
+ 3( − 2)2 = 3 ⇔

(+ 1)
2

3
+

( − 2)2

1
= 1 ⇒  =

√
3,  = 1,

 =
√

2 ⇒ center (−1 2), vertices
−1±√3 2


,

foci
−1±√2 2



17. The center is (0 0),  = 3, and  = 2, so an equation is
2

4
+

2

9
= 1.  =

√
2 − 2 =

√
5, so the foci are


0±√5


.

18. The ellipse is centered at (2 1), with  = 3 and  = 2. An equation is
(− 2)

2

9
+

( − 1)
2

4
= 1.  =

√
2 − 2 =

√
5, so

the foci are

2±√5 1


.
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19.
2

25
− 2

9
= 1 ⇒  = 5,  = 3,  =

√
25 + 9 =

√
34 ⇒

center (0 0), vertices (0±5), foci

0±√34


, asymptotes  = ± 5

3
.

Note: It is helpful to draw a 2-by-2 rectangle whose center is the center of

the hyperbola. The asymptotes are the extended diagonals of the rectangle.

20.
2

36
− 2

64
= 1 ⇒  = 6,  = 8,  =

√
36 + 64 = 10 ⇒

center (0 0), vertices (±6 0), foci (±10 0), asymptotes  = ±8
6
 = ± 4

3


21. 2 − 2 = 100 ⇔ 2

100
− 2

100
= 1 ⇒  =  = 10,

 =
√

100 + 100 = 10
√

2 ⇒ center (0 0), vertices (±10 0),

foci
±10

√
2 0

, asymptotes  = ± 10

10
 = ±

  

22. 2 − 162 = 16 ⇔ 2

16
− 2

1
= 1 ⇒  = 4,  = 1,

 =
√

16 + 1 =
√

17 ⇒ center (0 0), vertices (0±4),

foci

0±√17


, asymptotes  = ±4

1
 = ±4

23. 2 − 2 + 2 = 2 ⇔ 2 − (2 − 2 + 1) = 2− 1 ⇔

2

1
− ( − 1)2

1
= 1 ⇒  =  = 1,  =

√
1 + 1 =

√
2 ⇒

center (0 1), vertices (±1 1), foci
±√2 1


,

asymptotes  − 1 = ± 1
1
 = ±.
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24. 92 − 42 − 36 − 8 = 4 ⇔
9(2 − 4 + 4)− 4(2 + 2+ 1) = 4 + 36− 4 ⇔

9( − 2)2 − 4(+ 1)2 = 36 ⇔ ( − 2)2

4
− (+ 1)2

9
= 1 ⇒

 = 2  = 3,  =
√

4 + 9 =
√

13 ⇒ center (−1 2), vertices

(−1 2± 2), foci
−1 2±√13


, asymptotes  − 2 = ± 2

3
(+ 1).

25. 42 = 2 + 4 ⇔ 42 − 2 = 4 ⇔ 2

1
− 2

4
= 1. This is an equation of a hyperbola with vertices (±1 0).

The foci are at
±√1 + 4 0


=
±√5 0


.

26. 42 =  + 4 ⇔ 2 = 1
4
( + 4). This is an equation of a parabola with 4 = 1

4
, so  = 1

16
. The vertex is (0−4) and the

focus is

0−4 + 1

16


=

0− 63

16


.

27. 2 = 4 − 22 ⇔ 2 + 22 − 4 = 0 ⇔ 2 + 2(2 − 2 + 1) = 2 ⇔ 2 + 2( − 1)2 = 2 ⇔
2

2
+

( − 1)2

1
= 1. This is an equation of an ellipse with vertices at

±√2 1

. The foci are at

±√2− 1 1


= (±1 1).

28. 2 − 2 = 2 − 2 ⇔ 2 − 2 + 2 = 2 ⇔ 2 − (2 − 2+ 1) = 2− 1 ⇔ 2

1
− (− 1)2

1
= 1. This is an

equation of a hyperbola with vertices (1±1). The foci are at

1±√1 + 1


=

1±√2


.

29. 32 − 6− 2 = 1 ⇔ 32 − 6 = 2 + 1 ⇔ 3(2 − 2 + 1) = 2 + 1 + 3 ⇔ 3(− 1)2 = 2 + 4 ⇔
(− 1)2 = 2

3
( + 2). This is an equation of a parabola with 4 = 2

3
, so  = 1

6
. The vertex is (1−2) and the focus is

1−2 + 1
6


=

1− 11

6


.

30. 2 − 2+ 22 − 8 + 7 = 0 ⇔ (2 − 2+ 1) + 2(2 − 4 + 4) = −7 + 1 + 8 ⇔ (− 1)2 + 2( − 2)2 = 2 ⇔
(− 1)2

2
+

( − 2)2

1
= 1. This is an equation of an ellipse with vertices at


1±√2 2


. The foci are at

1±√2− 1 2


= (1± 1 2).

31. The parabola with vertex (0 0) and focus (1 0) opens to the right and has  = 1, so its equation is 2 = 4, or 2 = 4.

32. The parabola with focus (0 0) and directrix  = 6 has vertex (0 3) and opens downward, so  = −3 and its equation is

(− 0)2 = 4( − 3), or 2 = −12( − 3).

33. The distance from the focus (−4 0) to the directrix  = 2 is 2− (−4) = 6, so the distance from the focus to the vertex is

1
2
(6) = 3 and the vertex is (−1 0). Since the focus is to the left of the vertex,  = −3. An equation is 2 = 4(+ 1) ⇒

2 = −12(+ 1).

34. The parabola with vertex (2 3) and focus (2−1) opens downward and has  = −1− 3 = −4, so its equation is

(− 2)2 = 4( − 3), or (− 2)2 = −16( − 3).
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35. The parabola with vertex (3−1) having a horizontal axis has equation [ − (−1)]2 = 4(− 3). Since it passes through

(−15 2), (2 + 1)2 = 4(−15− 3) ⇒ 9 = 4(−18) ⇒ 4 = − 1
2
. An equation is ( + 1)2 = − 1

2
(− 3).

36. The parabola with vertical axis and passing through (0 4) has equation  = 2 + + 4. It also passes through (1 3) and

(−2−6), so 
3 = + + 4

−6 = 4− 2+ 4
⇒

 −1 = + 

−10 = 4− 2
⇒

−1 = + 

−5 = 2− 

Adding the last two equations gives us 3 = −6, or  = −2. Since  +  = −1, we have  = 1, and an equation is

 = −22 + + 4.

37. The ellipse with foci (±2 0) and vertices (±5 0) has center (0 0) and a horizontal major axis, with  = 5 and  = 2,

so 2 = 2 − 2 = 25− 4 = 21. An equation is
2

25
+

2

21
= 1.

38. The ellipse with foci

0±√2


and vertices (0±2) has center (0 0) and a vertical major axis, with  = 2 and  =

√
2,

so 2 = 2 − 2 = 4− 2 = 2. An equation is
2

2
+

2

4
= 1.

39. Since the vertices are (0 0) and (0 8), the ellipse has center (0 4) with a vertical axis and  = 4. The foci at (0 2) and (0 6)

are 2 units from the center, so  = 2 and  =
√
2 − 2 =

√
42 − 22 =

√
12. An equation is

(− 0)2

2
+

( − 4)2

2
= 1 ⇒

2

12
+

( − 4)2

16
= 1.

40. Since the foci are (0−1) and (8−1), the ellipse has center (4−1) with a horizontal axis and  = 4.

The vertex (9−1) is 5 units from the center, so  = 5 and  =
√
2 − 2 =

√
52 − 42 =

√
9. An equation is

(− 4)2

2
+

( + 1)2

2
= 1 ⇒ (− 4)2

25
+

( + 1)2

9
= 1.

41. An equation of an ellipse with center (−1 4) and vertex (−1 0) is
(+ 1)2

2
+

( − 4)2

42
= 1. The focus (−1 6) is 2 units

from the center, so  = 2. Thus, 2 + 22 = 42 ⇒ 2 = 12, and the equation is
(+ 1)2

12
+

( − 4)2

16
= 1.

42. Foci 1(−4 0) and 2(4 0) ⇒  = 4 and an equation is
2

2
+

2

2
= 1. The ellipse passes through  (−4 18), so

2 = |1|+ |2| ⇒ 2 = 18 +


82 + (18)2 ⇒ 2 = 18 + 82 ⇒  = 5.

2 = 2 − 2 = 25− 16 = 9 and the equation is
2

25
+

2

9
= 1.

43. An equation of a hyperbola with vertices (±3 0) is
2

32
− 2

2
= 1. Foci (±5 0) ⇒  = 5 and 32 + 2 = 52 ⇒

2 = 25− 9 = 16, so the equation is
2

9
− 2

16
= 1.
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44. An equation of a hyperbola with vertices (0±2) is
2

22
− 2

2
= 1. Foci (0±5) ⇒  = 5 and 22 + 2 = 52 ⇒

2 = 25− 4 = 21, so the equation is
2

4
− 2

21
= 1.

45. The center of a hyperbola with vertices (−3−4) and (−3 6) is (−3 1), so  = 5 and an equation is

( − 1)2

52
− (+ 3)2

2
= 1. Foci (−3−7) and (−3 9) ⇒  = 8, so 52 + 2 = 82 ⇒ 2 = 64− 25 = 39 and the

equation is
( − 1)2

25
− (+ 3)2

39
= 1.

46. The center of a hyperbola with vertices (−1 2) and (7 2) is (3 2), so  = 4 and an equation is
(− 3)2

42
− ( − 2)2

2
= 1.

Foci (−2 2) and (8 2) ⇒  = 5, so 42 + 2 = 52 ⇒ 2 = 25− 16 = 9 and the equation is

(− 3)2

16
− ( − 2)2

9
= 1.

47. The center of a hyperbola with vertices (±3 0) is (0 0), so  = 3 and an equation is
2

32
− 2

2
= 1.

Asymptotes  = ±2 ⇒ 


= 2 ⇒  = 2(3) = 6 and the equation is

2

9
− 2

36
= 1.

48. The center of a hyperbola with foci (2 0) and (2 8) is (2 4), so  = 4 and an equation is
( − 4)2

2
− (− 2)2

2
= 1.

The asymptote  = 3 + 1
2
 has slope 1

2
, so




=

1

2
⇒  = 2 and 2 + 2 = 2 ⇒ 2 + (2)2 = 42 ⇒

52 = 16 ⇒ 2 = 16
5
and so 2 = 16− 16

5
= 64

5
. Thus, an equation is

( − 4)2

165
− (− 2)2

645
= 1.

49. In Figure 8, we see that the point on the ellipse closest to a focus is the closer vertex (which is a distance

−  from it) while the farthest point is the other vertex (at a distance of  + ). So for this lunar orbit,

(− ) + (+ ) = 2 = (1728 + 110) + (1728 + 314), or  = 1940; and (+ )− (− ) = 2 = 314− 110,

or  = 102. Thus, 2 = 2 − 2 = 3,753,196, and the equation is
2

3,763,600
+

2

3,753,196
= 1.

50. (a) Choose  to be the origin, with -axis through  and  . Then  is ( 0),  is ( 5), so substituting  into the

equation 2 = 4 gives 25 = 42 so  = 5
2
and 2 = 10.

(b)  = 11 ⇒  =
√

110 ⇒ || = 2
√

110

51. (a) Set up the coordinate system so that  is (−200 0) and  is (200 0).

||− || = (1200)(980) = 1,176,000 ft = 2450
11

mi = 2 ⇒  = 1225
11

, and  = 200 so

2 = 2 − 2 =
3,339,375

121
⇒ 1212

1,500,625
− 1212

3,339,375
= 1.
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(b) Due north of  ⇒  = 200 ⇒ (121)(200)2

1,500,625
− 1212

3,339,375
= 1 ⇒  =

133,575
539

≈ 248 mi

52. |1|− |2| = ±2 ⇔


(+ )2 + 2 −


(− )2 + 2 = ±2 ⇔
( + )2 + 2 =


(− )2 + 2 ± 2 ⇔ (+ )2 + 2 = (− )2 + 2 + 42 ± 4


(− )2 + 2 ⇔

4− 42 = ±4


(− )2 + 2 ⇔ 22 − 22 + 4 = 2(2 − 2 + 2 + 2) ⇔

(2 − 2)2 − 22 = 2(2 − 2) ⇔ 22 − 22 = 22 [where 2 = 2 − 2] ⇔ 2

2
− 2

2
= 1

53. The function whose graph is the upper branch of this hyperbola is concave upward. The function is

 = () = 


1 +

2

2
=





√
2 + 2, so 0 =




(2 + 2)−12 and

00 =





(2 + 2)−12 − 2(2 + 2)−32


= (2 + 2)−32  0 for all , and so  is concave upward.

54. We can follow exactly the same sequence of steps as in the derivation of Formula 4, except we use the points (1 1) and

(−1−1) in the distance formula (first equation of that derivation) so


(− 1)2 + ( − 1)2 +


( + 1)2 + ( + 1)2 = 4

will lead (after moving the second term to the right, squaring, and simplifying) to 2


(+ 1)2 + ( + 1)2 = +  + 4,

which, after squaring and simplifying again, leads to 32 − 2 + 32 = 8.

55. (a) If   16, then  − 16  0, and
2


+

2

 − 16
= 1 is an ellipse since it is the sum of two squares on the left side.

(b) If 0    16, then  − 16  0, and
2


+

2

 − 16
= 1 is a hyperbola since it is the difference of two squares on the

left side.

(c) If   0, then  − 16  0, and there is no curve since the left side is the sum of two negative terms, which cannot equal 1.

(d) In case (a), 2 = , 2 =  − 16, and 2 = 2 − 2 = 16, so the foci are at (±4 0). In case (b),  − 16  0, so 2 = ,

2 = 16− , and 2 = 2 + 2 = 16, and so again the foci are at (±4 0).

56. (a) 2 = 4 ⇒ 20 = 4 ⇒ 0 =
2


, so the tangent line is

 − 0 =
2

0

(− 0) ⇒ 0 − 2
0 = 2(− 0) ⇔

0 − 40 = 2− 20 ⇒ 0 = 2(+ 0).

(b) The -intercept is−0.

57. 2 = 4 ⇒ 2 = 40 ⇒ 0 =


2
, so the tangent line at (0 0) is  − 2

0

4
=

0

2
(− 0). This line passes

through the point (−) on the directrix, so −− 2
0

4
=

0

2
(− 0) ⇒ −42 − 2

0 = 20 − 22
0 ⇔
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2
0 − 20 − 42 = 0 ⇔ 2

0 − 20 + 2 = 2 + 42 ⇔
(0 − )2 = 2 + 42 ⇔ 0 = ±


2 + 42. The slopes of the tangent

lines at  = ±

2 + 42 are

±

2 + 42

2
, so the product of the two

slopes is

+

2 + 42

2
· −


2 + 42

2
=

2 − (2 + 42)

42
=
−42

42
= −1,

showing that the tangent lines are perpendicular.

58. Without a loss of generality, let the ellipse, hyperbola, and foci be as shown in the figure.

The curves intersect (eliminate 2) ⇒

2


2

2
− 2

2


+ 2


2

2
+

2

2


= 2 + 2 ⇒

22

2
+

22

2
= 2 + 2 ⇒ 2


2

2
+

2

2


= 2 + 2 ⇒

2 =
2 + 2

22 + 22

22

=
22(2 + 2)

22 + 22
.

Similarly, 2 =
22(2 −2)

22 + 22
.

Next we find the slopes of the tangent lines of the curves:
2

2
+

2

2
= 1 ⇒ 2

2
+

20

2
= 0 ⇒ 0

2
= − 

2
⇒

0 = − 2

2




and

2

2
− 2

2
= 1 ⇒ 2

2
− 20

2
= 0 ⇒ 0

2
=



2
⇒ 0 =

2

2




. The product of the slopes

at (0 0) is 0 0 = −222
0

222
0

= −
22


22(2 + 2)

22 + 22


22


22(2 −2)

22 + 22

 = −2 + 2

2 −2
. Since 2 − 2 = 2 and 2 +2 = 2,

we have 2 − 2 = 2 +2 ⇒ 2 −2 = 2 +2, so the product of the slopes is −1, and hence, the tangent lines at

each point of intersection are perpendicular.

59. 92 + 42 = 36 ⇔ 2

4
+

2

9
= 1. We use the parametrization  = 2 cos ,  = 3 sin , 0 ≤  ≤ 2. The circumference

is given by

=
 2

0


()2 + ()2  =

 2

0


(−2 sin )2 + (3 cos )2 

=
 2

0


4 sin2  + 9cos2   =

 2

0

√
4 + 5 cos2  

Now use Simpson’s Rule with  = 8,∆ =
2 − 0

8
=



4
, and () =

√
4 + 5 cos2  to get

 ≈ 8 =
4

3


(0) + 4



4


+ 2



2


+ 4


3
4


+ 2() + 4


5
4


+ 2


3
2


+ 4


7
4


+ (2)

 ≈ 159.

60. The length of the major axis is 2, so  = 1
2
(118× 1010) = 59× 109. The length of the minor axis is 2, so

 = 1
2
(114× 1010) = 57× 109. An equation of the ellipse is

2

2
+

2

2
= 1, or converting into parametric equations,

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE

SECTION 10.5 CONIC SECTIONS ¤ 933

 =  cos  and  =  sin . So

 = 4
 2
0


()2 + ()2  = 4

 2
0


2 sin2  + 2 cos2  

Using Simpson’s Rule with  = 10,∆ =
2− 0

10
= 

20
, and () =


2 sin2  + 2 cos2 , we get

 ≈ 4 · 10 = 4 · 
20 · 3


(0) + 4



20


+ 2


2
20


+ · · ·+ 2


8
20


+ 4


9
20


+ 



2

 ≈ 364× 1010 km

61.
2

2
− 2

2
= 1 ⇒ 2

2
=

2 − 2

2
⇒  = ± 



√
2 − 2.

= 2

 








2 − 2 

39
=

2






2


2 − 2 − 2

2
ln
 +


2 − 2

 


=






√
2 − 2 − 2 ln

+
√
2 − 2

+ 2 ln || 
Since 2 + 2 = 2 2 − 2 = 2, and

√
2 − 2 = .

=





− 2 ln(+ ) + 2 ln 


=






+ 2(ln − ln(+ ))


= 2+  ln[(+ )], where 2 = 2 + 2.

62. (a)
2

2
+

2

2
= 1 ⇒ 2

2
=

2 − 2

2
⇒  = ± 



√
2 − 2.

 =

 

−








2 − 2

2

 = 2
2

2

 

0

(
2 − 

2
) 

=
22

2


2− 1

3
3

0

=
22

2


23

3


=

4

3
2

(b)
2

2
+

2

2
= 1 ⇒ 2

2
=

2 − 2

2
⇒  = ±




2 − 2.

 =

 

−





2 − 2

2

 = 2
2

2

 

0

(
2 − 

2
) 

=
22

2


2 − 1

3
3

0

=
22

2


23

3


=

4

3
2

63. 92 + 42 = 36 ⇔ 2

4
+

2

9
= 1 ⇒  = 3,  = 2. By symmetry,  = 0. By Example 2 in Section 7.3, the area of the

top half of the ellipse is 1
2
() = 3. Solve 92 + 42 = 36 for  to get an equation for the top half of the ellipse:

92 + 42 = 36 ⇔ 42 = 36− 92 ⇔ 2 = 9
4
(4− 2) ⇒  = 3

2

√
4− 2. Now

 =
1



 



1

2
[()]

2
 =

1

3

 2

−2

1

2


3

2


4− 2

2

 =
3

8

 2

−2

(4− 
2
) 

=
3

8
· 2
 2

0

(4− 
2
)  =

3

4


4− 1

3


3

2
0

=
3

4


16

3


=

4



so the centroid is (0 4).
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64. (a) Consider the ellipse
2

2
+

2

2
= 1 with   , so that the major axis is the -axis. Let the ellipse be parametrized by

 =  cos ,  =  sin , 0 ≤  ≤ 2. Then




2

+






2

= 2 sin2  + 2 cos2  = 2(1− cos2 ) + 2 cos2  = 2 + (2 − 2) cos2  = 2 − 2 cos2 ,

where 2 = 2 − 2. Using symmetry and rotating the ellipse about the major axis gives us surface area

 =


2  = 2

 2

0

2( sin )

2 − 2 cos2   = 4

 0




2 − 2


−1




 
 =  cos 

 = − sin  



=
4



 

0


2 − 2 

30
=

4






2


2 − 2 +

2

2
sin
−1




0

=
2






2 − 2 + 

2
sin
−1
 



=

2




+ 2 sin−1

 



(b) As in part (a),





2

+






2

= 2 sin2  + 2 cos2  = 2 sin2  + 2(1− sin2 ) = 2 + (2 − 2) sin2  = 2 + 2 sin2 .

Rotating about the minor axis gives us

 =


2 = 2

 2

0

2( cos )

2 + 2 sin2   = 4

 

0


2 + 2


1




 
 =  sin 

 =  cos  


21
=

4






2

√
2 + 2 +

2

2
ln

+

√
2 + 2


0

=
2





√
2 + 2 + 2 ln


+

√
2 + 2

− 2 ln 


=
2




+ 2 ln

+ 





65. Differentiating implicitly,
2

2
+

2

2
= 1 ⇒ 2

2
+

20

2
= 0 ⇒ 0 = − 2

2
[ 6= 0]. Thus, the slope of the tangent

line at  is − 21

21

. The slope of 1 is
1

1 + 
and of 2 is

1

1 − 
. By the formula in Problem 21 on text page 273,

we have

tan=

1

1 + 
+

21

21

1− 211

21(1 + )

=
22

1 + 21(1 + )

21(1 + )− 211

=
22 + 21

211 + 21


using 221 + 221 = 22,

and 2 − 2 = 2



=
2

1 + 2


1(1 + 2)

=
2

1

and tan =

− 21

21

− 1

1 − 

1− 211

21(1 − )

=
−22

1 − 21(1 − )

21 (1 − )− 211

=
−22 + 21

211 − 21

=
2

1 − 2


1(1 − 2)

=
2

1

Thus,  = .

66. The slopes of the line segments 1 and 2 are
1

1 + 
and

1

1 − 
, where  is (1 1). Differentiating implicitly,

2

2
− 20

2
= 0 ⇒ 0 =

2

2
⇒ the slope of the tangent at  is

21

21

, so by the formula in Problem 21 on text
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page 273,

tan =

21

21

− 1

1 + 

1 +
211

21(1 + )

=
21(1 + )− 22

1

21(1 + ) + 211

=
2(1 + 2)

1(1 + 2)


using 21

2 − 21
2 = 1,

and 2 + 2 = 2


=

2

1

and tan =

− 21

21

+
1

1 − 

1 +
211

21(1 − )

=
−21(1 − ) + 22

1

21(1 − ) + 211

=
2(1 − 2)

1(1 − 2)
=

2

1

So  = .

10.6 Conic Sections in Polar Coordinates

1. The directrix  = 4 is to the right of the focus at the origin, so we use the form with “+  cos ” in the denominator.

(See Theorem 6 and Figure 2.) An equation of the ellipse is  =


1 +  cos 
=

1
2
· 4

1 + 1
2

cos 
=

4

2 + cos 
.

2. The directrix  = −3 is to the left of the focus at the origin, so we use the form with “−  cos ” in the denominator.

 = 1 for a parabola, so an equation is  =


1−  cos 
=

1 · 3
1− 1 cos 

=
3

1− cos 
.

3. The directrix  = 2 is above the focus at the origin, so we use the form with “+  sin ” in the denominator. An equation of

the hyperbola is  =


1 +  sin 
=

15(2)

1 + 15 sin 
=

6

2 + 3 sin 
.

4. The directrix  = 3 is to the right of the focus at the origin, so we use the form with “+  cos ” in the denominator. An

equation of the hyperbola is  =


1 +  cos 
=

3 · 3
1 + 3 cos 

=
9

1 + 3 cos 
.

5. The vertex (2 ) is to the left of the focus at the origin, so we use the form with “− cos ” in the denominator. An equation

of the ellipse is  =


1−  cos 
. Using eccentricity  =

2

3
with  =  and  = 2, we get 2 =

2
3


1− 2
3
(−1)

⇒

2 =
2

5
⇒  = 5, so we have  =

2
3
(5)

1− 2
3

cos 
=

10

3− 2 cos 
.

6. The directrix  = 4 csc  (equivalent to  sin  = 4 or  = 4) is above the focus at the origin, so we will use the form with

“+ sin ” in the denominator. The distance from the focus to the directrix is  = 4, so an equation of the ellipse is

 =


1 +  sin 
=

(06)(4)

1 + 06 sin 
· 5

5
=

12

5 + 3 sin 
.

7. The vertex

3 

2


is 3 units above the focus at the origin, so the directrix is 6 units above the focus ( = 6), and we use the

form “+ sin ” in the denominator.  = 1 for a parabola, so an equation is  =


1 +  sin 
=

1(6)

1 + 1 sin 
=

6

1 + sin 
.
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8. The directrix  = −2 sec  (equivalent to  cos  = −2 or  = −2) is left of the focus at the origin, so we will use the form

with “− cos ” in the denominator. The distance from the focus to the directrix is  = 2, so an equation of the hyperbola

is  =


1−  cos 
=

2(2)

1− 2 cos 
=

4

1− 2 cos 
.

9.  =
4

5− 4 sin 
· 15

15
=

45

1− 4
5

sin 
, where  = 4

5
and  = 4

5
⇒  = 1.

(a) Eccentricity=  = 4
5

(b) Since  = 4
5
 1, the conic is an ellipse.

(c) Since “−  sin ” appears in the denominator, the directrix is below the focus

at the origin,  = || = 1, so an equation of the directrix is  = −1.

(d) The vertices are

4 

2


and


4
9
 3

2


.

10.  =
1

2 + sin 
· 12

12
=

12

1 + 1
2

sin 
, where  =

1

2
and  =

1

2
⇒  = 1.

(a) Eccentricity=  =
1

2

(b) Since  =
1

2
 1, the conic is an ellipse.

(c) Since “+ sin ” appears in the denominator, the directrix is above the focus at

the origin,  = || = 1, so an equation of the directrix is  = 1.

(d) The vertices are


1
3
 

2


and


1 3

2


.

11.  =
2

3 + 3 sin 
· 13

13
=

23

1 + 1 sin 
, where  = 1 and  = 2

3
⇒  = 2

3
.

(a) Eccentricity=  = 1

(b) Since  = 1, the conic is a parabola.

(c) Since “+  sin ” appears in the denominator, the directrix is above the focus

at the origin.  = || = 2
3
, so an equation of the directrix is  = 2

3
.

(d) The vertex is at


1
3
 

2


, midway between the focus and directrix.

12.  =
5

2− 4 cos 
· 12

12
=

52

1− 2 cos 
, where  = 2 and  =

5

2
⇒  =

5

4
.

(a) Eccentricity=  = 2

(b) Since  = 2  1, the conic is a hyperbola.

(c) Since “− cos ” appears in the denominator, the directrix is to the left the

focus at the origin.  = || = 5
4
, so an equation of the directrix is  = −5

4
.

(d) The vertices are
−5

2
 0

and


5
6
 

, so the center is midway between them,

that is,


5
3
 

.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE

SECTION 10.6 CONIC SECTIONS IN POLAR COORDINATES ¤ 937

13.  =
9

6 + 2 cos 
· 16

16
=

32

1 + 1
3

cos 
, where  = 1

3
and  = 3

2
⇒  = 9

2
.

(a) Eccentricity=  = 1
3

(b) Since  = 1
3
 1, the conic is an ellipse.

(c) Since “+ cos  ” appears in the denominator, the directrix is to the right of

the focus at the origin.  = || = 9
2
, so an equation of the directrix is

 = 9
2
.

(d) The vertices are


9
8
 0

and


9
4
 

, so the center is midway between them,

that is,


9
16
 

.

14.  =
1

3− 3 sin 
· 13

13
=

13

1− 1 sin 
, where  = 1 and  =

1

3
⇒  =

1

3

(a) Eccentricity=  = 1

(b) Since  = 1, the conic is a parabola.

(c) Since “− sin ” appears in the denominator, the directrix is below the focus

at the origin,  = || = 1
3
, so an equation of the directrix is  = −1

3
.

(d) The vertex is at


1
6
 3

2


, midway between the focus and the directrix.

15.  =
3

4− 8 cos 
· 14

14
=

34

1− 2 cos 
, where  = 2 and  = 3

4
⇒  = 3

8
.

(a) Eccentricity=  = 2

(b) Since  = 2  1, the conic is a hyperbola.

(c) Since “− cos  ” appears in the denominator, the directrix is to the left of

the focus at the origin.  = || = 3
8
, so an equation of the directrix is

 = −3
8
.

(d) The vertices are
−3

4
 0

and


1
4
 

, so the center is midway between them,

that is,


1
2
 

.

16.  =
4

2 + 3 cos 
· 12

12
=

2

1 + 3
2

cos 
, where  =

3

2
and  = 2 ⇒  =

4

3
.

(a) Eccentricity=  =
3

2

(b) Since  =
3

2
 1, the conic is a hyperbola.

(c) Since “+ cos ” appears in the denominator, the directrix is to the right of

the focus at the origin.  = || = 4
3
, so an equation of the directrix is

 = 4
3
.

(d) The vertices are


4
5
 0

and (−4 ), so the center is midway between them,

that is,


8
5
 0

.
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17. (a)  =
1

1− 2 sin 
, where  = 2 and  = 1 ⇒  = 1

2
. The eccentricity

 = 2  1, so the conic is a hyperbola. Since “− sin  ” appears in the

denominator, the directrix is below the focus at the origin.  = || = 1
2
,

so an equation of the directrix is  = − 1
2
. The vertices are

−1 
2


and

1
3
 3

2


, so the center is midway between them, that is,


2
3
 3

2


.

(b) By the discussion that precedes Example 4, the equation

is  =
1

1− 2 sin

 − 3

4

 .

18.  =
4

5 + 6 cos 
=

45

1 + 6
5

cos 
, so  = 6

5
and  = 4

5
⇒  = 2

3
.

An equation of the directrix is  = 2
3
⇒  cos  = 2

3
⇒  =

2

3 cos 
.

If the hyperbola is rotated about its focus (the origin) through an angle 3,

its equation is the same as that of the original, with  replaced by  − 
3

(see Example 4), so  =
4

5 + 6 cos

 − 

3

 .
19. For   1 the curve is an ellipse. It is nearly circular when  is close to 0. As 

increases, the graph is stretched out to the right, and grows larger (that is, its

right-hand focus moves to the right while its left-hand focus remains at the

origin.) At  = 1, the curve becomes a parabola with focus at the origin.

20. (a) The value of  does not seem to affect the shape of the conic (a parabola) at

all, just its size, position, and orientation (for   0 it opens upward, for

  0 it opens downward).
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(b) We consider only positive values of . When 0    1, the conic is an

ellipse. As → 0+, the graph approaches perfect roundness and zero size.

As  increases, the ellipse becomes more elongated, until at  = 1 it turns

into a parabola. For   1, the conic is a hyperbola, which moves

downward and gets broader as  continues to increase.

 = 01

 = 05  = 09  = 1

 = 11  = 15  = 10

21. | | =  || ⇒  = [−  cos( − )] = (+  cos ) ⇒

(1−  cos ) =  ⇒  =


1−  cos 

22. | | =  || ⇒  = [−  sin ] ⇒ (1 +  sin ) =  ⇒

 =


1 +  sin 

23. | | =  || ⇒  = [−  sin( − )] = (+  sin ) ⇒

(1−  sin ) =  ⇒  =


1−  sin 
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24. The parabolas intersect at the two points where


1 + cos 
=



1− cos 
⇒ cos  =

− 

+ 
⇒  =

+ 

2
.

For the first parabola,



=

 sin 

(1 + cos )
2
, so




=

() sin  +  cos 

() cos  −  sin 
=

 sin2  +  cos (1 + cos )

 sin  cos  −  sin (1 + cos )
=

1 + cos 

− sin 

and similarly for the second,



=

1− cos 

sin 
=

sin 

1 + cos 
. Since the product of these slopes is−1, the parabolas intersect

at right angles.

25. We are given  = 0093 and  = 228× 108. By (7), we have

 =
(1− 2)

1 +  cos 
=

228× 108[1− (0093)2]

1 + 0093 cos 
≈ 226× 108

1 + 0093 cos 

26. We are given  = 0048 and 2 = 156× 109 ⇒  = 78× 108. By (7), we have

 =
(1− 2)

1 +  cos 
=

78× 108[1− (0048)2]

1 + 0048 cos 
≈ 778× 108

1 + 0048 cos 

27. Here 2 = length of major axis = 3618 AU ⇒  = 1809 AU and  = 097. By (7), the equation of the orbit is

 =
1809[1− (097)2]

1 + 097 cos 
≈ 107

1 + 097 cos 
. By (8), the maximum distance from the comet to the sun is

1809(1 + 097) ≈ 3564 AU or about 3314 billion miles.

28. Here 2 = length of major axis = 3565 AU ⇒  = 17825 AU and  = 09951. By (7), the equation of the orbit

is  =
17825[1− (09951)2]

1 + 09951 cos 
≈ 17426

1 + 09951 cos 
. By (8), the minimum distance from the comet to the sun is

17825(1− 09951) ≈ 08734 AU or about 81 million miles.

29. The minimum distance is at perihelion, where 46× 107 =  = (1− ) = (1− 0206) = (0794) ⇒
 = 46 × 1070794. So the maximum distance, which is at aphelion, is

 = (1 + ) =

46× 1070794


(1206) ≈ 70× 107 km.

30. At perihelion,  = (1− ) = 443× 109, and at aphelion,  = (1 + ) = 737× 109. Adding, we get 2 = 1180× 109,

so  = 590× 109 km. Therefore 1 +  = (1 + ) = 737
590

≈ 1249 and  ≈ 0249.

31. From Exercise 29, we have  = 0206 and (1− ) = 46× 107 km. Thus,  = 46× 1070794. From (7), we can write the

equation of Mercury’s orbit as  = 
1− 2

1 +  cos 
. So since




=

(1− 2) sin 

(1 +  cos )2
⇒

2 +






2

=
2(1− 2)2

(1 +  cos )2
+

2(1− 2)2 2 sin2 

(1 +  cos )4
=

2(1− 2)2

(1 +  cos )4
(1 + 2 cos  + 2)
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the length of the orbit is

 =

 2

0


2 + ()2  = (1− 

2
)

 2

0

√
1 + 2 + 2 cos 

(1 +  cos )2
 ≈ 36× 10

8 km

This seems reasonable, since Mercury’s orbit is nearly circular, and the circumference of a circle of radius 

is 2 ≈ 36× 108 km.

1. False. Consider the curve defined by  = () = (− 1)3 and  = () = (− 1)2. Then 0() = 2(− 1), so 0(1) = 0,

but its graph has a vertical tangent when  = 1. Note: The statement is true if  0(1) 6= 0 when 0(1) = 0.

2. False. If  = () and  = () are twice differentiable, then
2

2
=











=















.

3. False. For example, if () = cos  and () = sin  for 0 ≤  ≤ 4, then the curve is a circle of radius 1, hence its length

is 2, but
 4

0


[ 0()]2 + [0()]2  =

 4

0


(− sin )2 + (cos )2  =

 4

0
1  = 4, since as  increases

from 0 to 4, the circle is traversed twice.

4. False. If ( ) = (1 ), then ( ) = (−1 0), so tan−1() = tan−1 0 = 0 6= . The statement is true for points in

quadrants I and IV.

5. True. The curve  = 1− sin 2 is unchanged if we rotate it through 180◦ about  because

1− sin 2( + ) = 1− sin(2 + 2) = 1− sin 2. So it’s unchanged if we replace  by −. (See the discussion
after Example 8 in Section 10.3.) In other words, it’s the same curve as  = −(1− sin 2) = sin 2 − 1.

6. True. The polar equation  = 2, the Cartesian equation 2 + 2 = 4, and the parametric equations  = 2 sin 3,

 = 2cos 3 [0 ≤  ≤ 2] all describe the circle of radius 2 centered at the origin.

7. False. The first pair of equations gives the portion of the parabola  = 2 with  ≥ 0, whereas the second pair of equations

traces out the whole parabola  = 2.

8. True. 2 = 2 + 3 ⇔ ( − 1)
2

= 3+ 1 = 3

+ 1

3


= 4


3
4


+ 1

3


, which is the equation of a parabola with

vertex (− 1
3
 1) and focus

− 1
3

+ 3
4
 1

, opening to the right.

9. True. By rotating and translating the parabola, we can assume it has an equation of the form  = 2, where   0.

The tangent at the point

 2


is the line  − 2 = 2(− ); i.e.,  = 2− 2. This tangent meets

the parabola at the points

 2


where 2 = 2− 2. This equation is equivalent to 2 = 2− 2

[since   0]. But 2 = 2− 2 ⇔ 2 − 2+ 2 = 0 ⇔ (− )
2

= 0 ⇔  =  ⇔
 2


=

 2


. This shows that each tangent meets the parabola at exactly one point.
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10. True. Consider a hyperbola with focus at the origin, oriented so that its polar equation is  =


1 +  cos 
, where   1.

The directrix is  = , but along the hyperbola we have  =  cos  =
 cos 

1 +  cos 
= 


 cos 

1 +  cos 


6= .

10 Review

1.  = 2 + 4,  = 2− , −4 ≤  ≤ 1.  = 2− , so

 = (2− )
2
+ 4(2− ) = 4− 4 + 2 + 8− 4 = 2 − 8 + 12 ⇔

+ 4 = 2 − 8 + 16 = ( − 4)2. This is part of a parabola with vertex

(−4 4), opening to the right.

2.  = 1 + 2,  = .

 = 1 + 2 = 1 + ()2 = 1 + 2,   0.

3.  = sec  =
1

cos 
=

1


. Since 0 ≤  ≤ 2, 0   ≤ 1 and  ≥ 1.

This is part of the hyperbola  = 1.

4.  = 2cos ,  = 1 + sin , cos2  + sin2  = 1 ⇒
2

2

+ ( − 1)
2

= 1 ⇒ 2

4
+ ( − 1)

2
= 1. This is an ellipse,

centered at (0 1), with semimajor axis of length 2 and semiminor axis of

length 1.

5. Three different sets of parametric equations for the curve  =
√
 are

(i)  = ,  =
√


(ii)  = 4,  = 2

(iii)  = tan2 ,  = tan , 0 ≤   2

There are many other sets of equations that also give this curve.
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6. For   −1,   0 and   0 with  decreasing and  increasing. When

 = −1, ( ) = (0 0). When −1    0, we have −1    0 and

0    12. When  = 0, ( ) = (−1 0). When 0    1,

−1    0 and − 1
2
   0. When  = 1, ( ) = (0 0) again.

When   1, both  and  are positive and increasing.

7. (a) The Cartesian coordinates are  = 4cos 2
3

= 4
− 1

2


= −2 and

 = 4 sin 2
3

= 4
√

3
2


= 2

√
3, that is, the point

−2 2
√

3

.

(b) Given  = −3 and  = 3, we have  =


(−3)2 + 32 =
√

18 = 3
√

2. Also, tan  =



⇒ tan  =

3

−3
, and since

(−3 3) is in the second quadrant,  = 3
4
. Thus, one set of polar coordinates for (−3 3) is


3
√

2 3
4


, and two others are

3
√

2 11
4


and

−3
√

2 7
4


.

8. 1 ≤   2, 
6
≤  ≤ 5

6

9.  = 1 + sin . This cardioid is

symmetric about the  = 2

axis.

10.  = sin 4. This is an

eight-leaved rose.
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11.  = cos 3. This is a

three-leaved rose. The curve is

traced twice.

12.  = 3 + cos 3. The curve is

symmetric about the horizontal

axis.

13.  = 1 + cos 2. The curve is

symmetric about the pole and

both the horizontal and vertical

axes.

14.  = 2 cos (2)  The curve is

symmetric about the pole and

both the horizontal and vertical
axes.

15.  =
3

1 + 2 sin 
⇒  = 2  1, so the conic is a hyperbola.  = 3 ⇒

 = 3
2
and the form “+2 sin ” imply that the directrix is above the focus at

the origin and has equation  = 3
2
. The vertices are


1 

2


and

−3 3
2


.

16.  =
3

2− 2 cos 
· 12

12
=

32

1− 1 cos 
⇒  = 1, so the conic is a

parabola.  = 3
2
⇒  = 3

2
and the form “−2 cos ” imply that the

directrix is to the left of the focus at the origin and has equation  = − 3
2
.

The vertex is


3
4
 

.
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17. +  = 2 ⇔  cos  +  sin  = 2 ⇔ (cos  + sin ) = 2 ⇔  =
2

cos  + sin 

18. 2 + 2 = 2 ⇒ 2 = 2 ⇒  =
√

2. [ = −√2 gives the same curve.]

19.  = (sin ). As → ±∞,  → 0.

As → 0, → 1. In the first figure,

there are an infinite number of

-intercepts at  = ,  a nonzero

integer. These correspond to pole

points in the second figure.

20.  =
2

4− 3 cos 
=

12

1− 3
4

cos 
⇒  = 3

4
and  = 2

3
. The equation of

the directrix is  = − 2
3
⇒  = −2(3 cos ). To obtain the equation

of the rotated ellipse, we replace  in the original equation with  − 2
3
,

and get  =
2

4− 3 cos

 − 2

3

 .
21.  = ln ,  = 1 + 2;  = 1.




= 2 and




=

1


, so




=




=

2

1
= 22.

When  = 1, ( ) = (0 2) and  = 2.

22.  = 3 + 6 + 1,  = 2− 2;  = −1.



=




=

2− 2

32 + 6
. When  = −1, ( ) = (−6−3) and




=

4

9
.

23.  = − ⇒  =  sin  = − sin  and  =  cos  = − cos  ⇒



=




=




sin  +  cos 



cos  −  sin 
=
−− sin  + − cos 

−− cos  − − sin 
· −



− =
sin  − cos 

cos  + sin 
.

When  = ,



=

0− (−1)

−1 + 0
=

1

−1
= −1.

24.  = 3 + cos 3 ⇒ 


=




=




sin  +  cos 



cos  −  sin 
=
−3 sin 3 sin  + (3 + cos 3) cos 

−3 sin 3 cos  − (3 + cos 3) sin 
.

When  = 2,



=

(−3)(−1)(1) + (3 + 0) · 0
(−3)(−1)(0)− (3 + 0) · 1 =

3

−3
= −1.

25.  =  + sin ,  = − cos  ⇒ 


=




=

1 + sin 

1 + cos 
⇒

2

2
=













=

(1 + cos ) cos − (1 + sin )(− sin )

(1 + cos )2

1 + cos 
=

cos  + cos2 + sin  + sin2 

(1 + cos )3
=

1 + cos  + sin 

(1 + cos )3

26.  = 1 + 2,  = − 3.



= 1− 32 and




= 2, so




=




=

1− 32

2
= 1

2
−1 − 3

2
.

2

2
=

()


=
− 1

2
−2 − 3

2

2
= −1

4
−3 − 3

4
−1 = − 1

43


1 + 32


= −32 + 1

43
.
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27. We graph the curve  = 3 − 3,  = 2 + + 1 for −22 ≤  ≤ 12.

By zooming in or using a cursor, we find that the lowest point is about

(14 075). To find the exact values, we find the -value at which

 = 2 + 1 = 0 ⇔  = − 1
2
⇔ ( ) =


11
8
 3

4




28. We estimate the coordinates of the point of intersection to be (−2 3). In fact this is exact, since both  = −2 and  = 1 give

the point (−2 3). So the area enclosed by the loop is =1

=−2
 =

 1

−2
(2 +  + 1)(32 − 3)  =

 1

−2
(34 + 33 − 3− 3) 

=


3
5
5 + 3

4
4 − 3

2
2 − 3

1
−2

=


3
5

+ 3
4
− 3

2
− 3
− −96

5
+ 12− 6− (−6)


= 81

20

29.  = 2 cos −  cos 2 ⇒ 


= −2 sin + 2 sin 2 = 2 sin (2 cos − 1) = 0 ⇔

sin  = 0 or cos  = 1
2
⇒  = 0, 

3
, , or 5

3
.

 = 2 sin −  sin 2 ⇒ 


= 2 cos − 2 cos 2 = 2


1 + cos − 2 cos2 


= 2(1− cos )(1 + 2 cos ) = 0 ⇒

 = 0, 2
3
, or 4

3
.

Thus the graph has vertical tangents where  = 
3
,  and 5

3
, and horizontal tangents where  = 2

3
and 4

3
. To determine

what the slope is where  = 0, we use l’Hospital’s Rule to evaluate lim
→0




= 0, so there is a horizontal tangent there.

  

0  0


3

3
2


√
3

2


2
3

− 1
2
 3

√
3

2


 −3 0

4
3

− 1
2
 − 3

√
3

2


5
3

3
2
 −

√
3

2


30. From Exercise 29,  = 2 cos −  cos 2,  = 2 sin −  sin 2 ⇒
= 2

 0


(2 sin −  sin 2)(−2 sin + 2 sin 2)  = 42

 
0

(2 sin2 + sin2 2− 3 sin  sin 2) 

= 42
 
0


(1− cos 2) + 1

2
(1− cos 4)− 6 sin2  cos 


 = 42


− 1

2
sin 2+ 1

2
− 1

8
sin 4− 2 sin3 


0

= 42


3
2


 = 62

31. The curve 2 = 9 cos 5 has 10 “petals.” For instance, for − 
10
≤  ≤ 

10
, there are two petals, one with   0 and one

with   0.

 = 10
 10
−10

1
2
2  = 5

 10
−10 9 cos 5  = 5 · 9 · 2  10

0
cos 5  = 18


sin 5

10
0

= 18

32.  = 1− 3 sin . The inner loop is traced out as  goes from  = sin−1


1
3


to  − , so

=
 −


1
2
2  =

 2


(1− 3 sin )2  =
 2



1− 6 sin  + 9

2
(1− cos 2)




=

11
2
 + 6cos  − 9

4
sin 2

2


= 11
4
 − 11

2
sin−1


1
3

− 3
√

2
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33. The curves intersect when 4 cos  = 2 ⇒ cos  = 1
2
⇒  = ±

3

for − ≤  ≤ . The points of intersection are

2 

3


and


2−

3


.

34. The two curves clearly both contain the pole. For other points of intersection, cot  = 2cos( + 2) or

−2 cos(+  + 2), both of which reduce to cot  = 2cos  ⇔ cos  = 2 sin  cos  ⇔ cos (1− 2 sin ) = 0 ⇒
cos  = 0 or sin  = 1

2
⇒  = 

6
, 

2
, 5

6
or 3

2
⇒ intersection points are


0 

2


,
√

3 
6


, and

√
3 11

6


.

35. The curves intersect where 2 sin  = sin  + cos  ⇒
sin  = cos  ⇒  = 

4
, and also at the origin (at which  = 3

4

on the second curve).

=
 4
0

1
2
(2 sin )2  +

 34

4

1
2
(sin  + cos )2 

=
 4
0

(1− cos 2)  + 1
2

 34

4
(1 + sin 2) 

=

 − 1

2
sin 2

4
0

+


1
2
 − 1

4
cos 2

34
4

= 1
2
( − 1)

36.  = 2
 6
−2

1
2


(2 + cos 2)2 − (2 + sin )2




=
 6
−2


4 cos 2 + cos2 2 − 4 sin  − sin2 




=

2 sin 2 + 1

2
 + 1

8
sin 4 + 4 cos  − 1

2
 + 1

4
sin 2

6
−2

= 51
16

√
3

37.  = 32,  = 23.

=
 2

0


()2 + ()2  =

 2

0


(6)2 + (62)2  =

 2

0

√
362 + 364  =

 2

0

√
362

√
1 + 2 

=
 2

0
6 ||√1 + 2  = 6

 2

0

√

1 + 2  = 6
 5

1
12


1
2

 

 = 1 + 2,  = 2 


= 6 · 1
2
· 2

3


32

5
1

= 2(532 − 1) = 2

5
√

5− 1


38.  = 2 + 3,  = cosh 3 ⇒ ()2 + ()2 = 32 + (3 sinh 3)2 = 9(1 + sinh2 3) = 9 cosh2 3, so

 =
 1

0

√
9 cosh2 3  =

 1

0
|3 cosh 3|  =

 1

0
3 cosh 3  =


sinh 3

1
0

= sinh 3− sinh 0 = sinh 3.

39.  =
 2




2 + ()2  =

 2




(1)2 + (−12)2  =

 2




2 + 1

2


24
=


−

2 + 1


+ ln


 +


2 + 1

2



=

√
2 + 1


−
√

42 + 1

2
+ ln


2 +

√
42 + 1

 +
√
2 + 1



=
2
√
2 + 1−√42 + 1

2
+ ln


2 +

√
42 + 1

 +
√
2 + 1
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40.  =
 
0


2 + ()2  =

 
0


sin6


1
3



+ sin4


1
3


cos2


1
3




=
 
0

sin2


1
3


 =


1
2


 − 3

2
sin


2
3



0
= 1

2
 − 3

8

√
3

41.  = 4
√
,  =

3

3
+

1

22
, 1 ≤  ≤ 4 ⇒

 =
 4

1
2


()2 + ()2  =

 4

1
2


1
3
3 + 1

2
−2


2
√

2

+ (2 − −3)2 

= 2
 4

1


1
3
3 + 1

2
−2


(2 + −3)2  = 2
 4

1


1
3
5 + 5

6
+ 1

2
−5

 = 2


1
18
6 + 5

6
− 1

8
−4
4
1

= 471,295
1024



42.  = 2 + 3,  = cosh 3 ⇒ ()2 + ()2 = 32 + (3 sinh 3)2 = 9(1 + sinh2 3) = 9 cosh2 3, so

 =
 1

0
2  =

 1

0
2 cosh 3

√
9 cosh2 3  =

 1

0
2 cosh 3 |3 cosh 3|  =

 1

0
2 cosh 3 · 3 cosh 3 

= 6
 1

0
cosh2 3  = 6

 1

0
1
2
(1 + cosh 6)  = 3


 + 1

6
sinh 6

1
0

= 3

1 + 1

6
sinh 6


= 3 + 

2
sinh 6

43. For all  except −1, the curve is asymptotic to the line  = 1. For

  −1, the curve bulges to the right near  = 0. As  increases, the

bulge becomes smaller, until at  = −1 the curve is the straight line  = 1.

As  continues to increase, the curve bulges to the left, until at  = 0 there

is a cusp at the origin. For   0, there is a loop to the left of the origin,

whose size and roundness increase as  increases. Note that the -intercept

of the curve is always −

44. For  close to 0, the graph of  = |sin 2| consists of four thin petals. As  increases, the petals get wider, until as →∞,

each petal occupies almost its entire quarter-circle.

 = 001  = 01  = 1

 = 5  = 10  = 25
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45.
2

9
+

2

8
= 1 is an ellipse with center (0 0).

 = 3,  = 2
√

2,  = 1 ⇒
foci (±1 0), vertices (±3 0).

46. 42 − 2 = 16 ⇔ 2

4
− 2

16
= 1 is a hyperbola

with center (0 0), vertices (±2 0),  = 2,  = 4,

 =
√

16 + 4 = 2
√

5, foci
±2

√
5 0

and

asymptotes  = ±2.

47. 62 + − 36 + 55 = 0 ⇔
6(2 − 6 + 9) = −(+ 1) ⇔
( − 3)2 = −1

6
(+ 1), a parabola with vertex (−1 3),

opening to the left,  = − 1
24

⇒ focus
− 25

24
 3

and

directrix  = − 23
24
.

48. 252 + 42 + 50− 16 = 59 ⇔
25( + 1)2 + 4( − 2)2 = 100 ⇔
1
4
(+ 1)2 + 1

25
( − 2)2 = 1 is an ellipse centered at

(−1 2) with foci on the line  = −1, vertices (−1 7)

and (−1−3);  = 5,  = 2 ⇒  =
√

21 ⇒
foci

−1 2±√21

.

49. The ellipse with foci (±4 0) and vertices (±5 0) has center (0 0) and a horizontal major axis, with  = 5 and  = 4,

so 2 = 2 − 2 = 52 − 42 = 9. An equation is
2

25
+

2

9
= 1.

50. The distance from the focus (2 1) to the directrix  = −4 is 2− (−4) = 6, so the distance from the focus to the vertex

is 1
2
(6) = 3 and the vertex is (−1 1). Since the focus is to the right of the vertex,  = 3. An equation is

( − 1)2 = 4 · 3[− (−1)], or ( − 1)2 = 12(+ 1).

51. The center of a hyperbola with foci (0±4) is (0 0), so  = 4 and an equation is
2

2
− 2

2
= 1.

The asymptote  = 3 has slope 3, so



=

3

1
⇒  = 3 and 2 + 2 = 2 ⇒ (3)2 + 2 = 42 ⇒

102 = 16 ⇒ 2 = 8
5
and so 2 = 16− 8

5
= 72

5
. Thus, an equation is

2

725
− 2

85
= 1, or

52

72
− 52

8
= 1.

52. Center is (3 0), and  = 8
2

= 4,  = 2 ⇔  =
√

42 − 22 =
√

12 ⇒

an equation of the ellipse is
(− 3)

2

12
+

2

16
= 1.
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53. 2 +  = 100 ⇔ 2 = −( − 100) has its vertex at (0 100), so one of the vertices of the ellipse is (0 100). Another

form of the equation of a parabola is 2 = 4( − 100) so 4( − 100) = −( − 100) ⇒ 4 = −1 ⇒  = − 1
4
.

Therefore the shared focus is found at

0 399

4


so 2 = 399

4
− 0 ⇒  = 399

8
and the center of the ellipse is


0 399

8


. So

 = 100− 399
8

= 401
8

and 2 = 2 − 2 =
4012 − 3992

82
= 25. So the equation of the ellipse is

2

2
+


 − 399

8

2
2

= 1 ⇒

2

25
+


 − 399

8

2
401
8

2 = 1, or
2

25
+

(8 − 399)2

160,801
= 1.

54.
2

2
+

2

2
= 1 ⇒ 2

2
+

2

2



= 0 ⇒ 


= − 2

2




. Therefore




=  ⇔  = − 2

2




. Combining this

condition with
2

2
+

2

2
= 1, we find that  = ± 2√

22 + 2
. In other words, the two points on the ellipse where the

tangent has slope are


± 2√

22 + 2
∓ 2√

22 + 2


. The tangent lines at these points have the equations

 ± 2√
22 + 2

= 


∓ 2√

22 + 2


or  = ∓ 22

√
22 + 2

∓ 2√
22 + 2

= ∓√22 + 2.

55. Directrix  = 4 ⇒  = 4, so  = 1
3
⇒  =



1 +  cos 
=

4

3 + cos 
.

56. See the end of the proof of Theorem 10.6.1. If   1, then 1− 2  0 and Equations 10.6.4 become 2 =
22

(2 − 1)2
and

2 =
22

2 − 1
, so

2

2
= 2 − 1. The asymptotes  = ± 


 have slopes± 


= ±√2 − 1, so the angles they make with the

polar axis are ± tan−1
√

2 − 1


= cos−1(±1).

57. In polar coordinates, an equation for the circle is  = 2 sin . Thus, the coordinates of are  =  cos  = 2 sin  cos 

and  =  sin  = 2 sin2 . The coordinates of  are  = 2 cot  and  = 2. Since  is the midpoint of , we use the

midpoint formula to get  = (sin  cos  + cot ) and  = (1 + sin2 ).

58. (a) If ( ) lies on the curve, then there is some parameter value 1 such that
31

1 + 31
=  and

321
1 + 31

= . If 1 = 0,

the point is (0 0), which lies on the line  = . If 1 6= 0, then the point corresponding to  =
1

1
is given by

 =
3(11)

1 + (11)3
=

321
31 + 1

= ,  =
3(11)

2

1 + (11)3
=

31

31 + 1
= . So ( ) also lies on the curve. [Another way to see

this is to do part (e) first; the result is immediate.] The curve intersects the line  =  when
3

1 + 3
=

32

1 + 3
⇒

 = 2 ⇒  = 0 or 1, so the points are (0 0) and


3
2
 3

2


.
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(b)



=

(1 + 3)(6)− 32(32)

(1 + 3)2
=

6− 34

(1 + 3)2
= 0 when 6− 34 = 3(2− 3) = 0 ⇒  = 0 or  =

3
√

2, so there are

horizontal tangents at (0 0) and

3
√

2
3
√

4

. Using the symmetry from part (a), we see that there are vertical tangents at

(0 0) and

3
√

4
3
√

2

.

(c) Notice that as → −1+, we have → −∞ and  →∞. As → −1−, we have →∞ and  → −∞. Also

 − (−− 1) =  + + 1 =
3 + 32 + (1 + 3)

1 + 3
=

(+ 1)3

1 + 3
=

( + 1)2

2 −  + 1
→ 0 as → −1. So  = −− 1 is a

slant asymptote.

(d)



=

(1 + 3)(3)− 3(32)

(1 + 3)2
=

3− 63

(1 + 3)2
and from part (b) we have




=

6− 34

(1 + 3)2
. So




=




=

(2− 3)

1− 23
.

Also
2

2
=













=
2(1 + 3)4

3(1− 23)3
 0 ⇔  

1
3
√

2
.

So the curve is concave upward there and has a minimum point at (0 0)

and a maximum point at

3
√

2
3
√

4

. Using this together with the

information from parts (a), (b), and (c), we sketch the curve.

(e) 3 + 3 =


3

1 + 3

3

+


32

1 + 3

3

=
273 + 276

(1 + 3)3
=

273(1 + 3)

(1 + 3)3
=

273

(1 + 3)2

and 3 = 3


3

1 + 3


32

1 + 3


=

273

(1 + 3)2
, so 3 + 3 = 3.

(f ) We start with the equation from part (e) and substitute  =  cos ,  =  sin . Then 3 + 3 = 3 ⇒

3 cos3  + 3 sin3  = 32 cos  sin . For  6= 0, this gives  =
3cos  sin 

cos3  + sin3 
. Dividing numerator and denominator

by cos3 , we obtain  =

3


1

cos 


sin 

cos 

1 +
sin3 

cos3 

=
3 sec  tan 

1 + tan3 
.

(g) The loop corresponds to  ∈ 0 
2


, so its area is

=

 2

0

2

2
 =

1

2

 2

0


3 sec  tan 

1 + tan3 

2

 =
9

2

 2

0

sec2  tan2 

(1 + tan3 )2
 =

9

2

 ∞

0

2 

(1 + 3)2
[let  = tan ]

= lim
→∞

9
2

−1
3
(1 + 3)−1


0

= 3
2

(h) By symmetry, the area between the folium and the line  = −− 1 is equal to the enclosed area in the third quadrant,

plus twice the enclosed area in the fourth quadrant. The area in the third quadrant is 1
2
, and since  = −− 1 ⇒

 sin  = − cos  − 1 ⇒  = − 1

sin  + cos 
, the area in the fourth quadrant is

1

2

 −4

−2


− 1

sin  + cos 

2

−


3 sec  tan 

1 + tan3 

2



CAS
=

1

2
. Therefore, the total area is 1

2
+ 2


1
2


= 3

2
.
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PROBLEMS PLUS

1. See the figure. The circle with center (−1 0) and radius
√

2 has equation

(+ 1)2 + 2 = 2 and describes the circular arc from (0−1) to (0 1).

Converting the equation to polar coordinates gives us

( cos  + 1)2 + ( sin )2 = 2 ⇒
2 cos2  + 2 cos  + 1 + 2 sin2  = 2 ⇒
2(cos2  + sin2 ) + 2 cos  = 1 ⇒ 2 + 2 cos  = 1. Using the

quadratic formula to solve for  gives us

 =
−2 cos  ±√4 cos2  + 4

2
= − cos  +

√
cos2  + 1 for   0.

The darkest shaded region is 1
8
of the entire shaded region , so 1

8
 =

 4

0

1
2

2
 = 1

2

 4

0

(1− 2 cos )  ⇒

1
4
=

 4

0


1− 2 cos 


− cos  +


cos2  + 1


 =

 4

0


1 + 2 cos

2
 − 2 cos 


cos2  + 1




=

 4

0


1 + 2 · 1

2
(1 + cos 2)− 2 cos 


(1− sin2 ) + 1




=

 4

0

(2 + cos 2)  − 2

 4

0

cos 


2− sin2  

=

2 + 1

2
sin 2

4
0

− 2

 1
√

2

0


2− 2 


 = sin 

 = cos  


=




2
+

1

2


− (0 + 0)− 2




2

√
2− 2 + sin−1 √

2

1√2

0


Formula 30,
 =
√
2


=



2
+

1

2
− 2


1

2
√

2
·
√

3√
2

+


6


=



2
+

1

2
− 1

2

√
3− 

3
=



6
+

1

2
− 1

2

√
3.

Thus,  = 4




6
+

1

2
− 1

2

√
3


=

2

3
+ 2− 2

√
3.

2. (a) The curve 4 + 4 = 2 + 2 is symmetric about both axes and about the line  =  (since interchanging 

and  does not change the equation) so we need only consider  ≥  ≥ 0 to begin with. Implicit differentiation gives

43 + 430 = 2+ 20 ⇒ 0 =
(1− 22)

(22 − 1)
⇒ 0 = 0 when  = 0 and when  = ± 1√

2
. If  = 0, then

4 = 2 ⇒ 2(2 − 1) = 0 ⇒  = 0 or ±1. The point (0 0) can’t be a highest or lowest point because it is

isolated. [If −1    1 and −1    1, then 4  2 and 4  2 ⇒ 4 + 4  2 + 2, except for (0 0).]

If  = 1√
2
, then 2 = 1

2
, 4 = 1

4
, so 1

4
+ 4 = 1

2
+ 2 ⇒ 44 − 42 − 1 = 0 ⇒ 2 = 4±√16+16

8
= 1±√2

2
.

But 2  0, so 2 = 1 +
√

2
2

⇒  = ±


1
2


1 +

√
2

. Near the point (0 1), the denominator of 0 is positive and the

numerator changes from negative to positive as  increases through 0, so (0 1) is a local minimum point. At
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1√
2



1 +

√
2

2


, 0 changes from positive to negative, so that point gives a maximum. By symmetry, the highest points

on the curve are


± 1√

2



1 +

√
2

2


and the lowest points are


± 1√

2
−


1 +
√

2
2


.

(b) We use the information from part (a), together with symmetry with respect to the

axes and the lines  = ±, to sketch the curve.

(c) In polar coordinates, 4 + 4 = 2 + 2 becomes 4 cos4  + 4 sin4  = 2 or

2 =
1

cos4  + sin4 
. By the symmetry shown in part (b), the area enclosed by

the curve is  = 8

 4

0

1

2

2
 = 4

 4

0



cos4  + sin4 

CAS
=
√

2.

3. In terms of  and , we have  =  cos  = (1 +  sin ) cos  = cos  +  sin  cos  = cos  + 1
2
 sin 2 and

 =  sin  = (1 +  sin ) sin  = sin  +  sin2 . Now−1 ≤ sin  ≤ 1 ⇒ −1 ≤ sin  +  sin2  ≤ 1 +  ≤ 2, so

−1 ≤  ≤ 2. Furthermore,  = 2 when  = 1 and  = 
2
, while  = −1 for  = 0 and  = 3

2
. Therefore, we need a viewing

rectangle with −1 ≤  ≤ 2.

To find the -values, look at the equation  = cos  + 1
2
 sin 2 and use the fact that sin 2 ≥ 0 for 0 ≤  ≤ 

2
and

sin 2 ≤ 0 for −
2
≤  ≤ 0. [Because  = 1 +  sin  is symmetric about the -axis, we only need to consider

−
2
≤  ≤ 

2
.] So for −

2
≤  ≤ 0,  has a maximum value when  = 0 and then  = cos  has a maximum value

of 1 at  = 0. Thus, the maximum value of  must occur on

0 

2


with  = 1. Then  = cos  + 1

2
sin 2 ⇒




= − sin  + cos 2 = − sin  + 1− 2 sin2  ⇒ 


= −(2 sin  − 1)(sin  + 1) = 0 when sin  = −1 or 1
2

[but sin  6= −1 for 0 ≤  ≤ 
2
]. If sin  = 1

2
, then  = 

6
and

 = cos 
6

+ 1
2

sin 
3

= 3
4

√
3. Thus, the maximum value of  is 3

4

√
3, and,

by symmetry, the minimum value is − 3
4

√
3. Therefore, the smallest

viewing rectangle that contains every member of the family of polar curves

 = 1 +  sin , where 0 ≤  ≤ 1, is
−3

4

√
3 3

4

√
3
× [−1 2].

4. (a) Let us find the polar equation of the path of the bug that starts in the upper

right corner of the square. If the polar coordinates of this bug, at a

particular moment, are ( ), then the polar coordinates of the bug that it is

crawling toward must be

  + 

2


. (The next bug must be the same

distance from the origin and the angle between the lines joining the bugs to

the pole must be 
2
.) The Cartesian coordinates of the first bug are

( cos   sin ) and for the second bug we have

 =  cos

 + 

2


= − sin ,  =  sin


 + 

2


=  cos . So the slope of the line joining the bugs is
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 cos  −  sin 

− sin  −  cos 
=

sin  − cos 

sin  + cos 
. This must be equal to the slope of the tangent line at ( ), so by

Equation 10.3.3 we have
() sin  +  cos 

() cos  −  sin 
=

sin  − cos 

sin  + cos 
. Solving for




, we get




sin2  +




sin  cos  +  sin  cos  +  cos2  =




sin  cos  − 


cos2  −  sin2  +  sin  cos  ⇒






sin2  + cos2 


+ 

cos2  + sin2 


= 0 ⇒ 


= −. Solving this differential equation as a separable

equation (as in Section 9.3), or using Theorem 9.4.2 with  = −1, we get  = −. To determine  we use the fact that,

at its starting position,  = 
4
and  = 1√

2
, so 1√

2
 = −4 ⇒  = 1√

2
4. Therefore, a polar equation of the

bug’s path is  = 1√
2
4− or  = 1√

2
(4)− .

(b) The distance traveled by this bug is  =
∞
4


2 + ()2, where




=

√
2
4(−−) and so

2 + ()2 = 1
2
22−2 + 1

2
22−2 = 22−2 . Thus

=
∞
4

4−  = 4 lim
→∞

 
4

−  = 4 lim
→∞

−−
4

= 4 lim
→∞


−4 − −


= 4−4 = 

5. Without loss of generality, assume the hyperbola has equation
2

2
− 2

2
= 1. Use implicit differentiation to get

2

2
− 2 0

2
= 0, so 0 =

2

2
. The tangent line at the point ( ) on the hyperbola has equation  −  =

2

2
(− ).

The tangent line intersects the asymptote  =



 when




−  =

2

2
(− ) ⇒ − 22 = 2− 22 ⇒

− 2 = 22 − 22 ⇒  =
22 − 22

(− )
=

+ 


and the -value is





+ 


=

+ 


.

Similarly, the tangent line intersects  = − 


 at


− 



− 




. The midpoint of these intersection points is


1

2


+ 


+

− 





1

2


+ 


+

− 




=


1

2

2



1

2

2




= ( ), the point of tangency.

Note: If  = 0, then at (± 0), the tangent line is  = ±, and the points of intersection are clearly equidistant from the point

of tangency.

6. (a) Since the smaller circle rolls without slipping around , the amount of arc

traversed on  (2 in the figure) must equal the amount of arc of the smaller

circle that has been in contact with . Since the smaller circle has radius ,

it must have turned through an angle of 2 = 2. In addition to turning

through an angle 2, the little circle has rolled through an angle  against .

Thus,  has turned through an angle of 3 as shown in the figure. (If the little

circle had turned through an angle of 2 with its center pinned to the -axis,
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then  would have turned only 2 instead of 3. The movement of the little circle around  adds  to the angle.) From the

figure, we see that the center of the small circle has coordinates (3 cos  3 sin ). Thus,  has coordinates ( ), where

 =  cos 3 + 3 cos  and  =  sin 3 + 3 sin .

(b)

 = 1
5
  = 2

5
  = 3

5
  = 4

5


(c) The diagram gives an alternate description of

point  on the epitrochoid.  moves around

a circle of radius , and  rotates one-third as

fast with respect to at a distance of 3.

Place an equilateral triangle with sides of

length 3
√

3 so that its centroid is at  and

one vertex is at . (The distance from the centroid to a vertex is 1√
3
times the length of a side of the equilateral triangle.)

As  increases by 2
3
, the point travels once around the circle of radius , returning to its original position. At the

same time,  (and the rest of the triangle) rotate through an angle of 2
3
about , so  ’s position is occupied by another

vertex. In this way, we see that the epitrochoid traced out by  is simultaneously traced out by the other two vertices as

well. The whole equilateral triangle sits inside the epitrochoid (touching it only with its vertices) and each vertex traces out

the curve once while the centroid moves around the circle three times.

(d) We view the epitrochoid as being traced out in the same way as in part (c), by a rotor for which the distance from its center

to each vertex is 3, so it has radius 6. To show that the rotor fits inside the epitrochoid, it suffices to show that for any

position of the tracing point  , there are no points on the opposite side of the rotor which are outside the epitrochoid. But

the most likely case of intersection is when  is on the -axis, so as long as the diameter of the rotor

which is 3

√
3 

is

less than the distance between the -intercepts, the rotor will fit. The -intercepts occur when  = 
2
or  = 3

2
⇒

 = −+ 3 or  = − 3, so the distance between the intercepts is (−+ 3)− (− 3) = 6 − 2, and the rotor will

fit if 3
√

3  ≤ 6 − 2 ⇔ 2 ≤ 6 − 3
√

3  ⇔  ≤ 3
2


2 −√3


.
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11 INFINITE SEQUENCES AND SERIES

11.1 Sequences

1. (a) A sequence is an ordered list of numbers. It can also be defined as a function whose domain is the set of positive integers.

(b) The terms  approach 8 as  becomes large. In fact, we can make  as close to 8 as we like by taking  sufficiently

large.

(c) The terms  become large as  becomes large. In fact, we can make  as large as we like by taking  sufficiently large.

2. (a) From Definition 1, a convergent sequence is a sequence for which lim
→∞

 exists. Examples: {1}, {12}

(b) A divergent sequence is a sequence for which lim
→∞

 does not exist. Examples: {}, {sin}

3.  =
2

2+ 1
, so the sequence is


21

2(1) + 1


22

2(2) + 1


23

2(3) + 1


24

2(4) + 1


25

2(5) + 1
   


=


2

3

4

5

8

7

16

9

32

11
   


.

4.  =
2 − 1

2 + 1
, so the sequence is


1− 1

1 + 1

4− 1

4 + 1

9− 1

9 + 1

16− 1

16 + 1

25− 1

25 + 1
   


=


0

3

5


8

10

15

17

24

26
   


.

5.  =
(−1)−1

5
, so the sequence is


1

51

−1

52


1

53

−1

54


1

55
   


=


1

5
− 1

25


1

125
− 1

625


1

3125
   


.

6.  = cos


2
, so the sequence is


cos



2
 cos cos

3

2
 cos 2 cos

5

2
   


= {0−1 0 1 0   }.

7.  =
1

(+ 1)!
, so the sequence is


1

2!


1

3!


1

4!


1

5!


1

6!
   


=


1

2

1

6


1

24


1

120


1

720
   


.

8.  =
(−1)

! + 1
, so 1 =

(−1)11

1! + 1
=
−1

2
, and the sequence is−1

2


2

2 + 1

−3

6 + 1


4

24 + 1

−5

120 + 1
   


=


−1

2

2

3
−3

7


4

25
− 5

121
   


.

9. 1 = 1, +1 = 5 − 3. Each term is defined in terms of the preceding term. 2 = 51 − 3 = 5(1)− 3 = 2.

3 = 52 − 3 = 5(2)− 3 = 7. 4 = 53 − 3 = 5(7)− 3 = 32. 5 = 54 − 3 = 5(32)− 3 = 157.

The sequence is {1 2 7 32 157   }.

10. 1 = 6, +1 =



. 2 =

1

1
=

6

1
= 6. 3 =

2

2
=

6

2
= 3. 4 =

3

3
=

3

3
= 1. 5 =

4

4
=

1

4
.

The sequence is

6 6 3 1 1

4
   


.

11. 1 = 2, +1 =


1 + 
. 2 =

1

1 + 1

=
2

1 + 2
=

2

3
. 3 =

2

1 + 2

=
23

1 + 23
=

2

5
. 4 =

3

1 + 3

=
25

1 + 25
=

2

7
.

5 =
4

1 + 4

=
27

1 + 27
=

2

9
. The sequence is


2 2

3
 2

5
 2

7
 2

9
   


.
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12. 1 = 2, 2 = 1, +1 =  − −1. Each term is defined in term of the two preceding terms.

3 = 2 − 1 = 1− 2 = −1. 4 = 3 − 2 = −1− 1 = −2. 5 = 4 − 3 = −2− (−1) = −1.

6 = 5 − 4 = −1− (−2) = 1. The sequence is {2 1−1−2−1 1   }.

13.


1
2
, 1

4
, 1

6
, 1

8
, 1

10
,   


. The denominator is two times the number of the term, , so  =

1

2
.

14.

4, −1, 1

4
, − 1

16
, 1

64
,   


. The first term is 4 and each term is − 1

4
times the preceding one, so  = 4

− 1
4

−1
.

15.
−3 2− 4

3
 8

9
− 16

27
   


. The first term is −3 and each term is − 2

3
times the preceding one, so  = −3

− 2
3

−1
.

16. {5 8 11 14 17   }. Each term is larger than the preceding term by 3, so  = 1 + (− 1) = 5 + 3(− 1) = 3+ 2.

17.


1
2
− 4

3
 9

4
− 16

5
 25

6
   


. The numerator of the nth term is 2 and its denominator is + 1. Including the alternating signs,

we get  = (−1)+1 2

+ 1
.

18. {1 0−1 0 1 0−1 0   }. Two possibilities are  = sin


2
and  = cos

(− 1)

2
.

19.
  =

3

1 + 6

1 04286

2 04615

3 04737

4 04800

5 04839

6 04865

7 04884

8 04898

9 04909

10 04918

It appears that lim
→∞

 = 05.

lim
→∞

3

1 + 6
= lim

→∞
(3)

(1 + 6)
= lim

→∞
3

1+ 6
=

3

6
=

1

2

20.
  = 2 +

(−1)



1 10000

2 25000

3 16667

4 22500

5 18000

6 21667

7 18571

8 21250

9 18889

10 21000

It appears that lim
→∞

 = 2.

lim
→∞


2 +

(−1)




= lim

→∞
2 + lim

→∞
(−1)


= 2 + 0 = 2 since lim

→∞
1


= 0

and by Theorem 6, lim
→∞

(−1)


= 0.
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21.
  = 1 +

− 1
2


1 05000

2 12500

3 08750

4 10625

5 09688

6 10156

7 09922

8 10039

9 09980

10 10010

It appears that lim
→∞

 = 1.

lim
→∞


1 +

− 1
2


= lim

→∞
1 + lim

→∞

− 1
2


= 1 + 0 = 1 since

lim
→∞

− 1
2


= 0 by (9).

22.
  = 1 +

10

9

1 21111

2 22346

3 23717

4 25242

5 26935

6 28817

7 30908

8 33231

9 35812

10 38680

It appears that the sequence does not have a limit.

lim
→∞

10

9
= lim

→∞


10

9


, which diverges by (9) since 10

9
 1.

23.  =
3 + 52

+ 2
=

(3 + 52)2

(+ 2)2
=

5 + 32

1 + 1
, so  → 5 + 0

1 + 0
= 5 as →∞. Converges

24.  =
3 + 52

1 + 
=

(3 + 52)

(1 + )
=

3+ 5

1+ 1
, so  →∞ as →∞ since lim

→∞


3


+ 5


= ∞ and

lim
→∞


1


+ 1


= 0 + 1 = 1. Diverges

25.  =
4

3 − 2
=

43

(3 − 2)3
=



1− 2 /2
, so  → ∞ as  →∞ since lim

→∞
 = ∞ and

lim
→∞


1− 2

2


= 1− 0 = 1. Diverges

26.  = 2 + (086) → 2 + 0 = 2 as →∞ since lim
→∞

(086) = 0 by (9) with  = 086. Converges

27.  = 37− =
3

7
=


3

7


, so lim

→∞
 = 0 by (9) with  =

3

7
. Converges
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28.  =
3
√
√

+ 2
=

3
√

√


(
√
+ 2)

√


=
3

1 + 2
√

→ 3

1 + 0
= 3 as →∞. Converges

29. Because the natural exponential function is continuous at 0, Theorem 7 enables us to write

lim
→∞

 = lim
→∞

−1
√
 = 

lim
→∞(−1

√
)

= 0 = 1. Converges

30.  =
4

1 + 9
=

49

(1 + 9)9
=

(49)

(19) + 1
→ 0

0 + 1
= 0 as →∞ since lim

→∞


4

9


= 0 and

lim
→∞


1

9


= 0 by (9). Converges

31.  =


1 + 42

1 + 2
=


(1 + 42)2

(1 + 2)2
=


(12) + 4

(12) + 1
→√

4 = 2 as →∞ since lim
→∞

(12) = 0. Converges

32.  = cos




+ 1


= cos




(+ 1)


= cos




1 + 1


, so  → cos = −1 as →∞ since lim

→∞
1 = 0

Converges

33.  =
2

√
3 + 4

=
2
√
3

√
3 + 4

√
3

=

√


1 + 42
, so  →∞ as →∞ since lim

→∞
√
 = ∞ and

lim
→∞


1 + 42 = 1. Diverges

34. If  =
2

+ 2
, then lim

→∞
 = lim

→∞
(2)

(+ 2)
= lim

→∞
2

1 + 2
=

2

1
= 2. Since the natural exponential function is

continuous at 2, by Theorem 7, lim
→∞

2(+2) = lim→∞  = 2. Converges

35. lim
→∞

|| = lim
→∞

 (−1)

2
√


 =
1

2
lim
→∞

1

12
=

1

2
(0) = 0, so lim

→∞
 = 0 by (6). Converges

36. lim
→∞



+
√


= lim
→∞



(+
√
 )

= lim
→∞

1

1 + 1
√


=
1

1 + 0
= 1. Thus,  =

(−1)+1

+
√


has odd-numbered terms

that approach 1 and even-numbered terms that approach−1 as →∞, and hence, the sequence {} is divergent.

37.  =
(2− 1)!

(2+ 1)!
=

(2− 1)!

(2+ 1)(2)(2− 1)!
=

1

(2+ 1)(2)
→ 0 as →∞. Converges

38.  =
ln

ln 2
=

ln

ln 2 + ln
=

1
ln 2
ln

+ 1
→ 1

0 + 1
= 1 as →∞. Converges

39.  = sin. This sequence diverges since the terms don’t approach any particular real number as →∞. The terms take on

values between −1 and 1. Diverges

40.  =
tan−1 


. lim

→∞
tan−1  = lim

→∞
tan−1  =



2
by (3), so lim

→∞
 = 0. Converges

41.  = 2− =
2


. Since lim

→∞
2


H
= lim

→∞
2


H
= lim

→∞
2


= 0, it follows from Theorem 3 that lim

→∞
 = 0. Converges
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42.  = ln(+ 1)− ln = ln


+ 1




= ln


1 +

1




→ ln (1) = 0 as →∞ because ln is continuous. Converges

43. 0 ≤ cos2 

2
≤ 1

2
[since 0 ≤ cos2  ≤ 1], so since lim

→∞
1

2
= 0,


cos2 

2


converges to 0 by the Squeeze Theorem.

44.  =

√

21+3 = (21+3)1 = (2123)1 = 2123 = 8 · 21, so

lim
→∞

 = 8 lim
→∞

21 = 8 · 2lim→∞(1) = 8 · 20 = 8 by Theorem 7, since the function () = 2 is continuous at 0.

Converges

45.  =  sin(1) =
sin(1)

1
. Since lim

→∞
sin(1)

1
= lim

→0+

sin 


[where  = 1] = 1, it follows from Theorem 3

that {} converges to 1.

46.  = 2− cos. 0 ≤
cos

2

 ≤ 1

2
=


1

2


, so lim

→∞
|| = 0 by (9), and lim

→∞
 = 0 by (6) Converges

47.  =


1 +

2




⇒ ln  =  ln


1 +

2




, so

lim
→∞

ln  = lim
→∞

ln(1 + 2)

1

H
= lim

→∞


1

1 + 2


− 2

2


−12

= lim
→∞

2

1 + 2
= 2 ⇒

lim
→∞


1 +

2




= lim

→∞
ln  = 2, so by Theorem 3, lim

→∞


1 +

2




= 2. Converges

48.  = 1 ⇒ ln  =
1


ln, so lim

→∞
ln  = lim

→∞
ln



H
= lim

→∞
1

1
= lim

→∞
1


= 0 ⇒

lim
→∞

1 = lim
→∞

ln  = 0 = 1, so by Theorem 3, lim
→∞


√
 = 1. Converges

49.  = ln(22 + 1)− ln(2 + 1) = ln


22 + 1

2 + 1


= ln


2 + 12

1 + 12


→ ln 2 as →∞. Converges

50. lim
→∞

(ln)2



H
= lim

→∞
2(ln)(1)

1
= 2 lim

→∞
ln



H
= 2 lim

→∞
1

1
= 0, so by Theorem 3, lim

→∞
(ln)2


= 0. Converges

51.  = arctan(ln). Let () = arctan(ln). Then lim
→∞

() = 
2
since ln→∞ as →∞ and arctan is continuous.

Thus, lim
→∞

 = lim
→∞

() = 
2
. Converges

52.  = −√+ 1
√
+ 3 = −√2 + 4+ 3 =

−√2 + 4+ 3

1
· +

√
2 + 4+ 3

+
√
2 + 4+ 3

=
2 − (2 + 4+ 3)

+
√
2 + 4+ 3

=
−4− 3

+
√
2 + 4+ 3

=
(−4− 3)

+
√
2 + 4+ 3




=
−4− 3

1 +


1 + 4+ 32
,

so lim
→∞

 =
−4− 0

1 +
√

1 + 0 + 0
=
−4

2
= −2. Converges
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53. {0 1 0 0 1 0 0 0 1   } diverges since the sequence takes on only two values, 0 and 1, and never stays arbitrarily close to
either one (or any other value) for  sufficiently large.

54.


1
1
 1

3
 1

2
 1

4
 1

3
 1

5
 1

4
 1

6
   


. 2−1 =

1


and 2 =

1

+ 2
for all positive integers . lim

→∞
 = 0 since

lim
→∞

2−1 = lim
→∞

1


= 0 and lim

→∞
2 = lim

→∞
1

+ 2
= 0. For  sufficiently large,  can be made as close to 0

as we like. Converges

55.  =
!

2
=

1

2
· 2

2
· 3

2
· · · · · (− 1)

2
· 

2
≥ 1

2
· 

2
[for   1] =



4
→∞ as →∞, so {} diverges.

56. 0  || = 3

!
=

3

1
· 3

2
· 3

3
· · · · · 3

(− 1)
· 3


≤ 3

1
· 3

2
· 3


[for   2] =

27

2
→ 0 as →∞, so by the Squeeze

Theorem and Theorem 6, {(−3)!} converges to 0.

57. From the graph, it appears that the sequence {} =


(−1)



+ 1


is

divergent, since it oscillates between 1 and −1 (approximately). To prove this,

suppose that {} converges to . If  =


+ 1
, then {} converges to 1,

and lim
→∞




=



1
= . But




= (−1), so lim

→∞



does not exist. This

contradiction shows that {} diverges.

58. From the graph, it appears that the sequence converges to 0.

|| =
 sin

 =
|sin|
|| ≤ 1


, so lim

→∞
|| = 0. By (6), it follows that

lim
→∞

 = 0.

59. From the graph, it appears that the sequence converges to a number between

07 and 08.

 = arctan


2

2 + 4


= arctan


22

(2 + 4)2


= arctan


1

1 + 42


→

arctan 1 =


4
[≈ 0785] as →∞.

60. From the graph, it appears that the sequence converges to 5

5 =

√

5 ≤ 
√

3 + 5 ≤ 
√

5 + 5 =

√

2

√

5

=

√

2 · 5→ 5 as →∞


lim
→∞

2
1

= 2
0

= 1


Hence,  → 5 by the Squeeze Theorem.

[continued]
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Alternate solution: Let  = (3 + 5)
1. Then

lim
→∞

ln  = lim
→∞

ln (3 + 5)



H
= lim

→∞
3 ln 3 + 5 ln 5

3 + 5
= lim

→∞


3
5


ln 3 + ln 5
3
5


+ 1

= ln 5,

so lim
→∞

 = ln 5 = 5, and so


√

3 + 5

converges to 5.

61. From the graph, it appears that the sequence {} =


2 cos

1 + 2


is

divergent, since it oscillates between 1 and −1 (approximately). To

prove this, suppose that {} converges to . If  =
2

1 + 2
, then

{} converges to 1, and lim
→∞




=



1
= . But




= cos, so

lim
→∞




does not exist. This contradiction shows that {} diverges.

62.

From the graphs, it seems that the sequence diverges.  =
1 · 3 · 5 · · · · · (2− 1)

!
. We first prove by induction that

 ≥


3

2

−1

for all . This is clearly true for  = 1, so let  () be the statement that the above is true for . We must

show it is then true for + 1. +1 =  · 2+ 1

+ 1
≥


3

2

−1

· 2+ 1

+ 1
(induction hypothesis). But

2+ 1

+ 1
≥ 3

2

[since 2 (2+ 1) ≥ 3 (+ 1) ⇔ 4+ 2 ≥ 3+ 3 ⇔  ≥ 1], and so we get that +1 ≥


3
2

−1 · 3
2

=


3
2


which

is  (+ 1). Thus, we have proved our first assertion, so since


3
2

−1

diverges [by (9)], so does the given sequence {}.

63. From the graph, it appears that the sequence approaches 0.

0   =
1 · 3 · 5 · · · · · (2− 1)

(2)
 =

1

2
· 3

2
· 5

2
· · · · · 2− 1

2

≤ 1

2
· (1) · (1) · · · · · (1) =

1

2
→ 0 as →∞

So by the Squeeze Theorem,


1 · 3 · 5 · · · · · (2− 1)

(2)



converges to 0.
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64. (a) 1 = 1, +1 = 4−  for  ≥ 1. 1 = 1, 2 = 4− 1 = 4− 1 = 3, 3 = 4− 2 = 4− 3 = 1,

4 = 4− 3 = 4− 1 = 3, 5 = 4− 4 = 4− 3 = 1. Since the terms of the sequence alternate between 1 and 3,

the sequence is divergent.

(b) 1 = 2, 2 = 4− 1 = 4− 2 = 2, 3 = 4− 2 = 4− 2 = 2. Since all of the terms are 2, lim
→∞

 = 2 and hence, the

sequence is convergent.

65. (a)  = 1000(106) ⇒ 1 = 1060, 2 = 112360, 3 = 119102, 4 = 126248, and 5 = 133823.

(b) lim
→∞

 = 1000 lim
→∞

(106), so the sequence diverges by (9) with  = 106  1.

66. (a) Substitute 1 to 6 for  in  = 100


10025 − 1

00025
− 


to get 1 = $0, 2 = $025, 3 = $075, 4 = $150,

5 = $251, and 6 = $376.

(b) For two years, use 2 · 12 = 24 for  to get $7028.

67. (a) We are given that the initial population is 5000, so 0 = 5000. The number of catfish increases by 8% per month and is

decreased by 300 per month, so 1 = 0 + 8%0 − 300 = 1080 − 300, 2 = 1081 − 300, and so on. Thus,

 = 108−1 − 300.

(b) Using the recursive formula with 0 = 5000, we get 1 = 5100, 2 = 5208, 3 = 5325 (rounding any portion of a

catfish), 4 = 5451, 5 = 5587, and 6 = 5734, which is the number of catfish in the pond after six months.

68. +1 =


1
2
 if  is an even number

3 + 1 if  is an odd number
When 1 = 11, the first 40 terms are 11, 34, 17, 52, 26, 13, 40, 20, 10, 5,

16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4. When 1 = 25, the first 40 terms are 25, 76, 38,

19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4.

The famous Collatz conjecture is that this sequence always reaches 1, regardless of the starting point 1.

69. If || ≥ 1, then {} diverges by (9), so {} diverges also, since || =  || ≥ ||. If ||  1 then

lim
→∞

 = lim
→∞



−
H
= lim

→∞
1

(− ln ) −
= lim

→∞


− ln 
= 0, so lim

→∞
 = 0, and hence {} converges

whenever ||  1.

70. (a) Let lim
→∞

 = . By Definition 2, this means that for every   0 there is an integer  such that | − |  

whenever    . Thus, |+1 − |   whenever + 1   ⇔    − 1. It follows that lim
→∞

+1 =  and so

lim
→∞

 = lim
→∞

+1.

(b) If  = lim
→∞

 then lim
→∞

+1 =  also, so  must satisfy  = 1 (1 + ) ⇒ 2 +− 1 = 0 ⇒  = −1 +
√

5
2

(since  has to be nonnegative if it exists).
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71. Since {} is a decreasing sequence,   +1 for all  ≥ 1. Because all of its terms lie between 5 and 8, {} is a
bounded sequence. By the Monotonic Sequence Theorem, {} is convergent; that is, {} has a limit .  must be less than

8 since {} is decreasing, so 5 ≤   8.

72. Since {} = {cos} ≈ {054−042−099−065 028   }, the sequence is not monotonic. The sequence is bounded
since −1 ≤ cos ≤ 1 for all .

73.  =
1

2+ 3
is decreasing since +1 =

1

2(+ 1) + 3
=

1

2+ 5


1

2+ 3
=  for each  ≥ 1. The sequence is

bounded since 0   ≤ 1
5
for all  ≥ 1. Note that 1 = 1

5
.

74.   +1 ⇔ 1− 

2 + 


1− (+ 1)

2 + (+ 1)
⇔ 1− 

2 + 


−
+ 3

⇔ −2 − 2+ 3  −2 − 2 ⇔ 3  0, which

is true for all  ≥ 1, so {} is decreasing. Since 1 = 0 and lim
→∞

1− 

2 + 
= lim

→∞
1− 1

2+ 1
= −1, the sequence is bounded

(−1   ≤ 0).

75. The terms of  = (−1) alternate in sign, so the sequence is not monotonic. The first five terms are−1, 2, −3, 4, and −5.

Since lim
→∞

|| = lim
→∞

 =∞, the sequence is not bounded.

76. Since {} =


2 +

(−1)




=

1 2 1

2
 1 2

3
   


, the sequence is not monotonic. The sequence is bounded since

1 ≤  ≤ 5
2
for all .

77.  = 3− 2−. Let () = 3− 2−. Then  0() = 0− 2[(−−) + −] = 2−(− 1), which is positive for

  1, so  is increasing on (1∞). It follows that the sequence {} = {()} is increasing. The sequence is bounded

below by 1 = 3− 2−1 ≈ 226 and above by 3, so the sequence is bounded.

78.  = 3 − 3+ 3. Let () = 3 − 3 + 3. Then  0() = 32 − 3 = 3(2 − 1), which is positive for   1, so  is

increasing on (1∞). It follows that the sequence {} = {()} is increasing. The sequence is bounded below by 1 = 1,

but is not bounded above, so it is not bounded.

79. For

√
2,


2
√

2,


2


2
√

2,   


, 1 = 212, 2 = 234, 3 = 278,   , so  = 2(2−1)2 = 21−(12).

lim
→∞

 = lim
→∞

21−(12) = 21 = 2.

Alternate solution: Let  = lim
→∞

. (We could show the limit exists by showing that {} is bounded and increasing.)

Then  must satisfy  =
√

2 ·  ⇒ 2 = 2 ⇒ (− 2) = 0.  6= 0 since the sequence increases, so  = 2.

80. (a) Let  be the statement that +1 ≥  and  ≤ 3. 1 is obviously true. We will assume that  is true and

then show that as a consequence +1 must also be true. +2 ≥ +1 ⇔ √
2 + +1 ≥

√
2 +  ⇔

2 + +1 ≥ 2 +  ⇔ +1 ≥ , which is the induction hypothesis. +1 ≤ 3 ⇔ √
2 +  ≤ 3 ⇔
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2 +  ≤ 9 ⇔  ≤ 7, which is certainly true because we are assuming that  ≤ 3. So  is true for all , and so

1 ≤  ≤ 3 (showing that the sequence is bounded), and hence by the Monotonic Sequence Theorem, lim
→∞

 exists.

(b) If  = lim
→∞

, then lim
→∞

+1 =  also, so  =
√

2 +  ⇒ 2 = 2 +  ⇔ 2 − − 2 = 0 ⇔

(+ 1)(− 2) = 0 ⇔  = 2 [since  can’t be negative].

81. 1 = 1, +1 = 3− 1


. We show by induction that {} is increasing and bounded above by 3. Let  be the proposition

that +1   and 0    3. Clearly 1 is true. Assume that  is true. Then +1   ⇒ 1

+1


1


⇒

− 1

+1

 − 1


. Now +2 = 3− 1

+1

 3− 1


= +1 ⇔ +1. This proves that {} is increasing and bounded

above by 3, so 1 = 1    3, that is, {} is bounded, and hence convergent by the Monotonic Sequence Theorem.

If  = lim
→∞

, then lim
→∞

+1 =  also, so  must satisfy  = 3− 1 ⇒ 2 − 3+ 1 = 0 ⇒  = 3±√5
2

.

But   1, so  = 3 +
√

5
2

.

82. 1 = 2, +1 =
1

3− 
. We use induction. Let  be the statement that 0  +1 ≤  ≤ 2. Clearly 1 is true, since

2 = 1(3− 2) = 1. Now assume that  is true. Then +1 ≤  ⇒ −+1 ≥ − ⇒ 3− +1 ≥ 3−  ⇒

+2 =
1

3− +1

≤ 1

3− 
= +1. Also +2  0 [since 3− +1 is positive] and +1 ≤ 2 by the induction

hypothesis, so +1 is true. To find the limit, we use the fact that lim
→∞

 = lim
→∞

+1 ⇒  = 1
3−

⇒

2 − 3+ 1 = 0 ⇒  = 3±√5
2

. But  ≤ 2, so we must have  = 3−√5
2

.

83. (a) Let  be the number of rabbit pairs in the nth month. Clearly 1 = 1 = 2. In the nth month, each pair that is

2 or more months old (that is, −2 pairs) will produce a new pair to add to the −1 pairs already present. Thus,

 = −1 + −2, so that {} = {}, the Fibonacci sequence.

(b)  =
+1


⇒ −1 =



−1

=
−1 + −2

−1

= 1 +
−2

−1

= 1 +
1

−1 /−2

= 1 +
1

−2

. If  = lim
→∞

,

then  = lim
→∞

−1 and  = lim
→∞

−2, so  must satisfy  = 1 +
1


⇒ 2 − − 1 = 0 ⇒  = 1 +

√
5

2

[since  must be positive].

84. (a) If  is continuous, then () = 


lim
→∞




= lim

→∞
() = lim

→∞
+1 = lim

→∞
 =  by Exercise 70(a).

(b) By repeatedly pressing the cosine key on the calculator (that is, taking cosine of the previous answer) until the displayed

value stabilizes, we see that  ≈ 073909.
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85. (a) From the graph, it appears that the sequence


5

!



converges to 0, that is, lim
→∞

5

!
= 0.

(b)

From the first graph, it seems that the smallest possible value of corresponding to  = 01 is 9, since 5!  01

whenever  ≥ 10, but 959!  01. From the second graph, it seems that for  = 0001, the smallest possible value for

is 11 since 5!  0001 whenever  ≥ 12.

86. Let   0 and let be any positive integer larger than ln() ln ||. If    , then   ln() ln || ⇒  ln ||  ln 

[since ||  1 ⇒ ln ||  0] ⇒ ln(||)  ln  ⇒ ||   ⇒ | − 0|  , and so by Definition 2,

lim
→∞

 = 0.

87. Theorem 6: If lim
→∞

|| = 0 then lim
→∞

− || = 0, and since − || ≤  ≤ ||, we have that lim
→∞

 = 0 by the

Squeeze Theorem.

88. Theorem 7: If lim
→∞

 =  and the function  is continuous at , then lim
→∞

() = ().

Proof: We must show that, given a number   0, there is an integer such that |()− ()|   whenever    .

Suppose   0. Since  is continuous at , there is a number   0 such that |()− ()|   if |− |  . Since

lim
→∞

 = , there is an integer  such that | − |   if    . Suppose    . Then 0  | − |  , so

|()− ()|  .

89. To Prove: If lim
→∞

 = 0 and {} is bounded, then lim
→∞

() = 0.

Proof: Since {} is bounded, there is a positive number such that || ≤ and hence, || || ≤ || for

all  ≥ 1. Let   0 be given. Since lim
→∞

 = 0, there is an integer  such that | − 0|  


if    . Then

| − 0| = || = || || ≤ || = | − 0| 



· =  for all    . Since  was arbitrary,

lim
→∞

() = 0.
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90. (a)
+1 − +1

− 
=  + −1+ −22 + −33 + · · ·+ −1 + 

  + −1+ −22 + −33 + · · ·+ −1 +  = (+ 1)

(b) Since −   0, we have +1 − +1  ( + 1)(− ) ⇒ +1 − (+ 1)(− )  +1 ⇒
[(+ 1)− ]  +1.

(c) With this substitution, (+ 1)−  = 1, and so  =


1 +

1




 +1 =


1 +

1

+ 1

+1

.

(d) With this substitution, we get


1 +

1

2


1

2


 1 ⇒


1 +

1

2


 2 ⇒


1 +

1

2

2

 4.

(e)   2 since {} is increasing, so   2  4.

(f ) Since {} is increasing and bounded above by 4, 1 ≤  ≤ 4, and so {} is bounded and monotonic, and hence has a
limit by the Monotonic Sequence Theorem.

91. (a) First we show that   1  1  .

1 − 1 = + 
2
−
√
 = 1

2


− 2

√
+ 


= 1

2

√
−

√

2

 0 [since   ] ⇒ 1  1. Also

− 1 = − 1
2
(+ ) = 1

2
(− )  0 and − 1 = −

√
 =

√

√

−√

 0, so   1  1  . In the same

way we can show that 1  2  2  1 and so the given assertion is true for  = 1. Suppose it is true for  = , that is,

  +1  +1  . Then

+2 − +2 = 1
2
(+1 + +1)−


+1+1 = 1

2


+1 − 2


+1+1 + +1


= 1

2

√
+1 −


+1

2

 0,

+1 − +2 = +1 − 1
2
(+1 + +1) = 1

2
(+1 − +1)  0, and

+1 − +2 = +1 −

+1+1 =


+1


+1 −√+1


 0 ⇒ +1  +2  +2  +1,

so the assertion is true for  =  + 1. Thus, it is true for all  by mathematical induction.

(b) From part (a) we have     +1  +1    , which shows that both sequences, {} and {}, are
monotonic and bounded. So they are both convergent by the Monotonic Sequence Theorem.

(c) Let lim
→∞

 =  and lim
→∞

 = . Then lim
→∞

+1 = lim
→∞

 + 

2
⇒  =

+ 

2
⇒

2 = +  ⇒  = .

92. (a) Let   0. Since lim
→∞

2 = , there exists1 such that |2 − |   for   1. Since lim
→∞

2+1 = , there

exists2 such that |2+1 − |   for   2. Let = max {21 22 + 1} and let    . If  is even, then

 = 2 where  1, so | − | = |2 − |  . If  is odd, then  = 2 + 1, where  2, so

| − | = |2+1 − |  . Therefore lim
→∞

 = .

(b) 1 = 1, 2 = 1 + 1
1+ 1

= 3
2

= 15, 3 = 1 + 1
52

= 7
5

= 14, 4 = 1 + 1
125

= 17
12

= 1416,

5 = 1 + 1
2912

= 41
29
≈ 1413793, 6 = 1 + 1

7029
= 99

70
≈ 1414286, 7 = 1 + 1

16970
= 239

169
≈ 1414201,
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8 = 1 + 1
408169

= 577
408

≈ 1414216. Notice that 1  3  5  7 and 2  4  6  8. It appears that the

odd terms are increasing and the even terms are decreasing. Let’s prove that 2−2  2 and 2−1  2+1 by

mathematical induction. Suppose that 2−2  2. Then 1 + 2−2  1 + 2 ⇒ 1

1 + 2−2


1

1 + 2

⇒

1 +
1

1 + 2−2

 1 +
1

1 + 2

⇒ 2−1  2+1 ⇒ 1 + 2−1  1 + 2+1 ⇒

1

1 + 2−1


1

1 + 2+1

⇒ 1 +
1

1 + 2−1

 1 +
1

1 + 2+1

⇒ 2  2+2. We have thus shown, by

induction, that the odd terms are increasing and the even terms are decreasing. Also all terms lie between 1 and 2, so both

{} and {} are bounded monotonic sequences and are therefore convergent by the Monotonic Sequence Theorem. Let

lim
→∞

2 = . Then lim
→∞

2+2 =  also. We have

+2 = 1 +
1

1 + 1 + 1(1 + )
= 1 +

1

(3 + 2)(1 + )
=

4 + 3

3 + 2

so 2+2 =
4 + 32

3 + 22

. Taking limits of both sides, we get  =
4 + 3

3 + 2
⇒ 3+ 22 = 4 + 3 ⇒ 2 = 2 ⇒

 =
√

2 [since   0]. Thus, lim
→∞

2 =
√

2. Similarly we find that lim
→∞

2+1 =
√

2. So, by part (a),

lim
→∞

 =
√

2.

93. (a) Suppose {} converges to . Then +1 =


+ 
⇒ lim

→∞
+1 =

 lim
→∞



+ lim
→∞


⇒  =



+ 
⇒

2 +  =  ⇒ (+ − ) = 0 ⇒  = 0 or  = − .

(b) +1 =


+ 
=









1 +












 since 1 +




 1.

(c) By part (b), 1 







0, 2 







1 






2

0, 3 







2 






3

0, etc. In general,  







0,

so lim
→∞

 ≤ lim
→∞







· 0 = 0 since   .


By (7) lim

→∞
 = 0 if − 1    1. Here  =




∈ (0 1) .


(d) Let   . We first show, by induction, that if 0  − , then   −  and +1  .

For  = 0, we have 1 − 0 =
0

+ 0

− 0 =
0(− − 0)

+ 0

 0 since 0  − . So 1  0.

Now we suppose the assertion is true for  = , that is,   −  and +1  . Then

− − +1 = − − 

+ 
=

(− ) +  −  − 

+ 
=

(− − )

+ 
 0 because   − . So

+1  − . And +2 − +1 =
+1

+ +1

− +1 =
+1(− − +1)

+ +1

 0 since +1  − . Therefore,

+2  +1. Thus, the assertion is true for  =  + 1. It is therefore true for all  by mathematical induction.

A similar proof by induction shows that if 0  − , then   −  and {} is decreasing.
In either case the sequence {} is bounded and monotonic, so it is convergent by the Monotonic Sequence Theorem.

It then follows from part (a) that lim
→∞

 = − .
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LABORATORY PROJECT Logistic Sequences

1. To write such a program in Maple it is best to calculate all the points first and then graph them. One possible sequence of

commands [taking 0 = 1
2
and  = 15 for the difference equation] is

t:=’t’;p(0):=1/2;k:=1.5;

for j from 1 to 20 do p(j):=k*p(j-1)*(1-p(j-1)) od;

plot([seq([t,p(t)] t=0..20)],t=0..20,p=0..0.5,style=point);

In Mathematica, we can use the following program:

p[0]=1/2

k=1.5

p[j_]:=k*p[j-1]*(1-p[j-1])

P=Table[p[t],{t,20}]

ListPlot[P]

With 0 = 1
2
and  = 15:

     

0 05 7 03338465076 14 03333373303

1 0375 8 03335895255 15 03333353318

2 03515625 9 03334613309 16 03333343326

3 03419494629 10 03333973076 17 03333338329

4 03375300416 11 03333653143 18 03333335831

5 03354052689 12 03333493223 19 03333334582

6 03343628617 13 03333413274 20 03333333958

With 0 = 1
2
and  = 25:

     

0 05 7 06004164790 14 05999967417

1 0625 8 05997913269 15 06000016291

2 05859375 9 06001042277 16 05999991854

3 06065368651 10 05999478590 17 06000004073

4 05966247409 11 06000260637 18 05999997964

5 06016591486 12 05999869664 19 06000001018

6 05991635437 13 06000065164 20 05999999491

Both of these sequences seem to converge

the first to about 1

3
, the second to about 0.60


.
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With 0 = 7
8
and  = 15:

     

0 0875 7 03239166554 14 03332554829

1 01640625 8 03284919837 15 03332943990

2 02057189941 9 03308775005 16 03333138639

3 02450980344 10 03320963702 17 03333235980

4 02775374819 11 03327125567 18 03333284655

5 03007656421 12 03330223670 19 03333308994

6 03154585059 13 03331777051 20 03333321164

With 0 = 7
8
and  = 25:

     

0 0875 7 06016572368 14 05999869815

1 02734375 8 05991645155 15 06000065088

2 04966735840 9 06004159972 16 05999967455

3 06249723374 10 05997915688 17 06000016272

4 05859547872 11 06001041070 18 05999991864

5 06065294364 12 05999479194 19 06000004068

6 05966286980 13 06000260335 20 05999997966

The limit of the sequence seems to depend on , but not on 0.

2. With 0 = 7
8
and  = 32:

     

0 0875 7 05830728495 14 07990633827

1 035 8 07779164854 15 05137954979

2 0728 9 05528397669 16 07993909896

3 06336512 10 07910654689 17 05131681132

4 07428395416 11 05288988570 18 07994451225

5 06112926626 12 07973275394 19 05130643795

6 07603646184 13 05171082698 20 07994538304

It seems that eventually the terms fluctuate between two values (about 05 and 08 in this case).
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3. With 0 = 7
8
and  = 342:

     

0 0875 7 04523028596 14 08442074951

1 03740625 8 08472194412 15 04498025048

2 08007579316 9 04426802161 16 08463823232

3 05456427596 10 08437633929 17 04446659586

4 08478752457 11 04508474156 18 08445284520

5 04411212220 12 08467373602 19 04490464985

6 08431438501 13 04438243545 20 08461207931

With 0 = 7
8
and  = 345:

     

0 0875 7 04670259170 14 08403376122

1 037734375 8 08587488490 15 04628875685

2 08105962830 9 04184824586 16 08577482026

3 05296783241 10 08395743720 17 04209559716

4 08594612299 11 04646778983 18 08409445432

5 04167173034 12 08581956045 19 04614610237

6 08385707740 13 04198508858 20 08573758782

From the graphs above, it seems that for  between 34 and 35, the terms eventually fluctuate between four values. In the

graph below, the pattern followed by the terms is 0395 0832 0487 0869 0395   . Note that even for  = 342 (as in the

first graph), there are four distinct “branches”; even after 1000 terms, the first and third terms in the pattern differ by about

2× 10−9, while the first and fifth terms differ by only 2× 10−10. With 0 = 7
8
and  = 348:
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4.

0 = 05,  = 37 0 = 0501,  = 37

0 = 075,  = 39 0 = 0749,  = 39

0 = 05,  = 3999

From the graphs, it seems that if 0 is changed by 0001, the whole graph changes completely. (Note, however, that this might

be partially due to accumulated round-off error in the CAS. These graphs were generated by Maple with 100-digit accuracy,

and different degrees of accuracy give different graphs.) There seem to be some some fleeting patterns in these graphs, but on

the whole they are certainly very chaotic. As  increases, the graph spreads out vertically, with more extreme values close to 0

or 1.

11.2 Series

1. (a) A sequence is an ordered list of numbers whereas a series is the sum of a list of numbers.

(b) A series is convergent if the sequence of partial sums is a convergent sequence. A series is divergent if it is not convergent.

2.
∞
=1

 = 5 means that by adding sufficiently many terms of the series we can get as close as we like to the number 5.

In other words, it means that lim→∞  = 5, where  is the th partial sum, that is,

=1

.
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3.
∞
=1

 = lim
→∞

 = lim
→∞

[2− 3(08)] = lim
→∞

2− 3 lim
→∞

(08) = 2− 3(0) = 2

4.
∞
=1

 = lim
→∞

 = lim
→∞

2 − 1

42 + 1
= lim

→∞
(2 − 1)2

(42 + 1)2
= lim

→∞
1− 12

4 + 12
=

1− 0

4 + 0
=

1

4

5. For
∞
=1

1

4 + 2
,  =

1

4 + 2
. 1 = 1 =

1

14 + 12
=

1

2
= 05, 2 = 1 + 2 =

1

2
+

1

16 + 4
= 055,

3 = 2 + 3 ≈ 05611, 4 = 3 + 4 ≈ 05648, 5 = 4 + 5 ≈ 05663, 6 = 5 + 6 ≈ 05671,

7 = 6 + 7 ≈ 05675, and 8 = 7 + 8 ≈ 05677. It appears that the series is convergent.

6. For
∞
=1

1
3
√

,  =

1
3
√

. 1 = 1 =

1
3
√

1
= 1, 2 = 1 + 2 = 1 +

1
3
√

2
≈ 17937,

3 = 2 + 3 ≈ 24871, 4 = 3 + 4 ≈ 31170, 5 = 4 + 5 ≈ 37018, 6 = 5 + 6 ≈ 42521,

7 = 6 + 7 ≈ 47749, and 8 = 7 + 8 ≈ 52749. It appears that the series is divergent.

7. For
∞
=1

sin,  = sin. 1 = 1 = sin 1 ≈ 08415, 2 = 1 + 2 ≈ 17508,

3 = 2 + 3 ≈ 18919, 4 = 3 + 4 ≈ 11351, 5 = 4 + 5 ≈ 01762, 6 = 5 + 6 ≈ −01033,

7 = 6 + 7 ≈ 05537, and 8 = 7 + 8 ≈ 15431. It appears that the series is divergent.

8. For
∞
=1

(−1)−1

!
,  = (−1)−1 1

!
. 1 = 1 =

1

1!
= 1, 2 = 1 + 2 = 1− 1

2!
= 05,

3 = 2 + 3 = 05 +
1

3!
≈ 06667, 4 = 3 + 4 = 0625, 5 = 4 + 5 ≈ 06333, 6 = 5 + 6 ≈ 06319,

7 = 6 + 7 ≈ 06321, and 8 = 7 + 8 ≈ 06321. It appears that the series is convergent.

9.

 

1 −240000

2 −192000

3 −201600

4 −199680

5 −200064

6 −199987

7 −200003

8 −199999

9 −200000

10 −200000

From the graph and the table, it seems that the series converges to−2. In fact, it is a geometric

series with  = −24 and  = − 1
5
, so its sum is

∞
=1

12

(−5)
=

−24

1− − 1
5

 =
−24

12
= −2

Note that the dot corresponding to  = 1 is part of both {} and {}.

TI-86 Note: To graph {} and {}, set your calculator to Param mode and DrawDot mode. (DrawDot is under

GRAPH, MORE, FORMT (F3).) Now under E(t)= make the assignments: xt1=t, yt1=12/(-5)ˆt, xt2=t,

yt2=sum seq(yt1,t,1,t,1). (sum and seq are under LIST, OPS (F5), MORE.) Under WIND use

1,10,1,0,10,1,-3,1,1 to obtain a graph similar to the one above. Then use TRACE (F4) to see the values.
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10.

 

1 054030

2 012416

3 −086584

4 −151948

5 −123582

6 −027565

7 047825

8 033275

9 −057838

10 −141745

The series
∞
=1

cos diverges, since its terms do not approach 0.

11.
 

1 044721

2 115432

3 198637

4 288080

5 380927

6 475796

7 571948

8 668962

9 766581

10 864639

The series
∞
=1

√
2 + 4

diverges, since its terms do not approach 0.

12.
 

1 490000

2 833000

3 1073100

4 1241170

5 1358819

6 1441173

7 1498821

8 1539175

9 1567422

10 1587196

From the graph and the table, we see that the terms are getting smaller and may approach 0,

and that the series approaches a value near 16. The series is geometric with 1 = 49 and

 = 07, so its sum is
∞
=1

7+1

10
=

49

1− 07
=

49

03
= 163.
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13.
 

2 100000

3 133333

4 150000

5 160000

6 166667

7 171429

8 175000

9 177778

10 180000

11 181818

From the graph and the table, we see that the terms are getting smaller and may approach 0,

and that the series may approach a number near 2. Using partial fractions, we have


=2

2

2 − 
=


=2


2

− 1
− 2




=


2

1
− 2

2


+


2

2
− 2

3


+


2

3
− 2

4


+ · · ·+


2

 − 2
− 2

 − 1


+


2

 − 1
− 2




= 2− 2



As →∞, 2− 2


→ 2, so

∞
=2

2

2 − 
= 2.

14.

 

1 036205

2 051428

3 059407

4 064280

5 067557

6 069910

7 071680

8 073059

9 074164

10 075069

From the graph and the table, we see that the terms are getting smaller and may approach 0, and

that the series may approach a number near 1.


=1


sin

1


− sin

1

+ 1


=


sin 1− sin

1

2


+


sin

1

2
− sin

1

3


+ · · ·+


sin

1

 − 1
+ sin

1




+


sin

1


− sin

1

 + 1


= sin 1− sin

1

 + 1

As →∞, sin 1− sin
1

 + 1
→ sin 1− sin 0 = sin 1, so

∞
=1


sin

1


− sin

1

+ 1


= sin 1 ≈ 084147.
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15. (a) lim
→∞

 = lim
→∞

2

3+ 1
=

2

3
, so the sequence {} is convergent by (11.1.1).

(b) Since lim
→∞

 = 2
3
6= 0, the series

∞
=1

 is divergent by the Test for Divergence.

16. (a) Both

=1

 and

=1

 represent the sum of the first  terms of the sequence {}, that is, the th partial sum.

(b)

=1

 =  +  + · · ·+   
 terms

=  , which, in general, is not the same as

=1

 = 1 + 2 + · · ·+ .

17. 3− 4 + 16
3
− 64

9
+ · · · is a geometric series with ratio  = −4

3
. Since || = 4

3
 1, the series diverges.

18. 4 + 3 + 9
4

+ 27
16

+ · · · is a geometric series with ratio 3
4
. Since || = 3

4
 1, the series converges to



1− 
=

4

1− 34
= 16.

19. 10− 2 + 04− 008 + · · · is a geometric series with ratio − 2
10

= − 1
5
. Since || = 1

5
 1, the series converges to



1− 
=

10

1− (−15)
=

10

65
=

50

6
=

25

3
.

20. 2 + 05 + 0125 + 003125 + · · · is a geometric series with ratio  = 05
2

= 1
4
. Since || = 1

4
 1, the series converges

to


1− 
=

2

1− 14
=

2

34
=

8

3
.

21.
∞
=1

12 (0.73)−1 is a geometric series with first term  = 12 and ratio  = 073. Since || = 073  1, the series converges

to


1− 
=

12

1− 073
=

12

027
=

12(100)

27
=

400

9
.

22.
∞
=1

5


= 5

∞
=1


1




. The latter series is geometric with  =

1


and ratio  =

1


. Since || = 1


 1, it converges to

1

1− 1
=

1

 − 1
. Thus, the given series converges to 5


1

 − 1


=

5

 − 1
.

23.
∞
=1

(−3)
−1

4
=

1

4

∞
=1


−3

4

−1

. The latter series is geometric with  = 1 and ratio  = − 3
4
. Since || = 3

4
 1, it

converges to
1

1− (−34)
= 4

7
. Thus, the given series converges to


1
4


4
7


= 1

7
.

24.
∞
=0

3+1

(−2)
 = 3

∞
=0

−3
2


is a geometric series with ratio  = − 3

2
. Since || = 3

2
 1, the series diverges.

25.
∞
=1

2

6−1
=

∞
=1

(2)

66−1
= 6

∞
=1


2

6


is a geometric series with ratio  =

2

6
. Since || = 2

6
[≈ 123]  1, the series

diverges.
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26.
∞
=1

6 · 22−1

3
=

∞
=1

6(22) · 2−1

3
= 3

∞
=1


4

3


is a geometric series with ratio  =

4

3
. Since || = 4

3
 1, the series

diverges.

27.
1

3
+

1

6
+

1

9
+

1

12
+

1

15
+ · · · =

∞
=1

1

3
=

1

3

∞
=1

1


. This is a constant multiple of the divergent harmonic series, so

it diverges.

28. 1
3

+ 2
9

+ 1
27

+ 2
81

+ 1
243

+ 2
729

+ · · · = 
1
3

+ 1
27

+ 1
243

+ · · · +


2
9

+ 2
81

+ 2
729

+ · · · , which are both convergent
geometric series with sums

13

1− 19
=

3

8
and

29

1− 19
=

1

4
, so the original series converges and its sum is 3

8
+ 1

4
= 5

8
.

29.
∞
=1

2 + 

1− 2
diverges by the Test for Divergence since lim

→∞
 = lim

→∞
2 + 

1− 2
= lim

→∞
2+ 1

1− 2
= −1

2
6= 0.

30.
∞
=1

2

2 − 2 + 5
diverges by the Test for Divergence since lim

→∞
2

2 − 2 + 5
= lim

→∞
1

1− 2 + 52
= 1 6= 0.

31.
∞
=1

3+14− =

∞
=1

3 · 31

4
= 3

∞
=1


3

4


. The latter series is geometric with  =

3

4
and ratio  =

3

4
. Since || = 3

4
 1,

it converges to
34

1− 34
= 3. Thus, the given series converges to 3(3) = 9.

32.
∞
=1

[(−02) + (06)−1] =

∞
=1

(−02) +

∞
=1

(06)−1 [sum of two geometric series]

=
−02

1− (−02)
+

1

1− 06
= −1

6
+

5

2
=

7

3

33.
∞
=1

1

4 + −
diverges by the Test for Divergence since lim

→∞
1

4 + −
=

1

4 + 0
=

1

4
6= 0.

34.
∞
=1

2 + 4


diverges by the Test for Divergence since lim

→∞
2 + 4


= lim

→∞


2


+

4




≥ lim

→∞


4




= ∞

since
4


 1.

35.
∞
=1

(sin 100) is a geometric series with first term  = sin 100 [≈ −0506] and ratio  = sin 100. Since ||  1, the series

converges to
sin 100

1− sin 100
≈ −0336.

36.
∞
=1

1

1 +


2
3

 diverges by the Test for Divergence since lim
→∞

1

1 +


2
3

 =
1

1 + 0
= 1 6= 0.
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37.
∞
=1

ln


2 + 1

22 + 1


diverges by the Test for Divergence since

lim
→∞

 = lim
→∞

ln


2 + 1

22 + 1


= ln


lim
→∞

2 + 1

22 + 1


= ln 1

2
6= 0.

38.
∞
=0

(
√

2)− =

∞
=0


1√
2


is a geometric series with first term  =


1√
2

0

= 1 and ratio  =
1√
2
. Since ||  1, the

series converges to
1

1− 1
√

2
=

√
2√

2− 1
≈ 3414.

39.
∞
=1

arctan  diverges by the Test for Divergence since lim
→∞

 = lim
→∞

arctan = 
2
6= 0.

40.
∞
=1


3

5
+

2




diverges because

∞
=1

2


= 2

∞
=1

1


diverges. (If it converged, then

1

2
· 2

∞
=1

1


would also converge by

Theorem 8(i), but we know from Example 9 that the harmonic series
∞
=1

1


diverges.) If the given series converges, then the

difference
∞
=1


3

5
+

2




−

∞
=1

3

5
must converge (since

∞
=1

3

5
is a convergent geometric series) and equal

∞
=1

2


, but

we have just seen that
∞
=1

2


diverges, so the given series must also diverge.

41.
∞
=1

1


=

∞
=1


1




is a geometric series with first term  =

1


and ratio  =

1


. Since || = 1


 1, the series converges

to
1

1− 1
=

1

1− 1
· 


=
1

− 1
. By Example 8,

∞
=1

1

(+ 1)
= 1. Thus, by Theorem 8(ii),

∞
=1


1


+

1

(+ 1)


=

∞
=1

1


+

∞
=1

1

(+ 1)
=

1

− 1
+ 1 =

1

− 1
+

− 1

− 1
=



− 1
.

42.
∞
=1



2
diverges by the Test for Divergence since lim

→∞
 = lim

→∞


2
= lim

→∞


2

H
= lim

→∞


2

H
= lim

→∞


2
=∞ 6= 0.

43. Using partial fractions, the partial sums of the series
∞
=2

2

2 − 1
are

 =

=2

2

(− 1)(+ 1)
=


=2


1

− 1
− 1

+ 1



=


1− 1

3


+


1

2
− 1

4


+


1

3
− 1

5


+ · · ·+


1

− 3
− 1

− 1


+


1

− 2
− 1





This sum is a telescoping series and  = 1 +
1

2
− 1

− 1
− 1


.

Thus,
∞
=2

2

2 − 1
= lim

→∞
 = lim

→∞


1 +

1

2
− 1

− 1
− 1




=

3

2
.
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44. For the series
∞
=1

ln


+ 1
,

 = (ln 1− ln 2) + (ln 2− ln 3) + (ln 3− ln 4) + · · ·+ [ln− ln(+ 1)] = ln 1− ln(+ 1) = − ln(+ 1)

[telescoping series]

Thus, lim
→∞

 = −∞, so the series is divergent.

45. For the series
∞
=1

3

(+ 3)
,  =


=1

3

(+ 3)
=


=1


1


− 1

+ 3


[using partial fractions]. The latter sum is


1− 1

4


+


1
2
− 1

5


+


1
3
− 1

6


+


1
4
− 1

7


+ · · ·+


1

−3
− 1




+


1
−2

− 1
+ 1


+


1
−1

− 1
+2


+


1

− 1

+3


= 1 + 1

2
+ 1

3
− 1

+1
− 1

+ 2
− 1

+3
[telescoping series]

Thus,
∞
=1

3

(+ 3)
= lim

→∞
 = lim

→∞


1 + 1

2
+ 1

3
− 1

+1
− 1

+2
− 1

+3


= 1 + 1

2
+ 1

3
= 11

6
. Converges

46. For the series
∞
=4


1√

− 1√

+ 1



 =

=4


1√

− 1√

+ 1


=


1√
4
− 1√

5


+


1√
5
− 1√

6


+ · · ·+


1√

− 1√

+ 1


=

1√
4
− 1√

+ 1
[telescoping series]

Thus,
∞
=4


1√

− 1√

+ 1


= lim

→∞
 = lim

→∞


1√
4
− 1√

+ 1


=

1√
4
− 0 =

1

2
. Converges

47. For the series
∞
=1


1 − 1(+1)


,

 =

=1


1 − 1(+1)


= (1 − 12) + (12 − 13) + · · ·+


1 − 1(+1)


= − 1(+1)

[telescoping series]

Thus,
∞
=1


1 − 1(+1)


= lim

→∞
 = lim

→∞


− 1(+1)


= − 0 = − 1. Converges

48. Using partial fractions, the partial sums of the series
∞
=2

1

3 − 
are

 =

=2

1

(− 1)(+ 1)
=


=2


−1


+

12

− 1
+

12

+ 1


=

1

2


=2


1

− 1
− 2


+

1

+ 1



=
1

2


1

1
− 2

2
+

1

3


+


1

2
− 2

3
+

1

4


+


1

3
− 2

4
+

1

5


+


1

4
− 2

5
+

1

6


+ · · ·

+


1

− 3
− 2

− 2
+

1

− 1


+


1

− 2
− 2

− 1
+

1




+


1

− 1
− 2


+

1

+ 1


Note: In three consecutive expressions in parentheses, the 3rd term in the first expression plus
the 2nd term in the second expression plus the 1st term in the third expression sum to 0.

=
1

2


1

1
− 2

2
+

1

2
+

1


− 2


+

1

+ 1


=

1

4
− 1

2
+

1

2+ 2

Thus,
∞
=2

1

3 − 
= lim

→∞
 = lim

→∞


1

4
− 1

2
+

1

2+ 2


=

1

4
.
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49. (a) Many people would guess that   1, but note that  consists of an infinite number of 9s.

(b)  = 099999    =
9

10
+

9

100
+

9

1000
+

9

10,000
+ · · · =

∞
=1

9

10
, which is a geometric series with 1 = 09 and

 = 01. Its sum is
09

1− 01
=

09

09
= 1, that is,  = 1.

(c) The number 1 has two decimal representations, 100000    and 099999    .

(d) Except for 0, all rational numbers that have a terminating decimal representation can be written in more than one way. For

example, 05 can be written as 049999    as well as 050000    .

50. 1 = 1,  = (5− )−1 ⇒ 2 = (5− 2)1 = 3(1) = 3, 3 = (5− 3)2 = 2(3) = 6, 4 = (5− 4)3 = 1(6) = 6,

5 = (5− 5)4 = 0, and all succeeding terms equal 0. Thus,
∞
=1

 =
4

=1

 = 1 + 3 + 6 + 6 = 16.

51. 08 =
8

10
+

8

102
+ · · · is a geometric series with  =

8

10
and  =

1

10
. It converges to



1− 
=

810

1− 110
=

8

9
.

52. 046 =
46

100
+

46

1002
+ · · · is a geometric series with  =

46

100
and  =

1

100
. It converges to



1− 
=

46100

1− 1100
=

46

99
.

53. 2516 = 2 +
516

103
+

516

106
+ · · · . Now 516

103
+

516

106
+ · · · is a geometric series with  =

516

103
and  =

1

103
. It converges to



1− 
=

516103

1− 1103
=

516103

999103
=

516

999
. Thus, 2516 = 2 +

516

999
=

2514

999
=

838

333
.

54. 10135 = 101 +
35

103
+

35

105
+ · · · . Now 35

103
+

35

105
+ · · · is a geometric series with  =

35

103
and  =

1

102
. It converges

to


1− 
=

35103

1− 1102
=

35103

99102
=

35

990
. Thus, 10135 = 101 +

35

990
=

9999 + 35

990
=

10,034
990

=
5017

495
.

55. 1234567 = 1234 +
567

106
+

567

109
+ · · · . Now 567

106
+

567

109
+ · · · is a geometric series with  =

567

106
and

 =
1

103
. It converges to



1− 
=

567106

1− 1103
=

567106

999103
=

567

999,000
=

21

37,000
. Thus,

1234567 = 1234 +
21

37,000
=

1234

1000
+

21

37,000
=

45,658
37,000

+
21

37,000
=

45,679
37,000

.

56. 571358 = 5 +
71,358
105

+
71,358
1010

+ · · · . Now 71,358
105

+
71,358
1010

+ · · · is a geometric series with  =
71,358
105

and

 =
1

105
. It converges to



1− 
=

71,358105

1− 1105
=

71,358105

99,999105
=

71,358
99,999

=
23,786
33,333

. Thus,

571358 = 5 +
23,786
33,333

=
166,665
33,333

+
23,786
33,333

=
190,451
33,333

.
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57.
∞
=1

(−5) =
∞
=1

(−5) is a geometric series with  = −5, so the series converges ⇔ ||  1 ⇔

|−5|  1 ⇔ ||  1
5
, that is,− 1

5
   1

5
. In that case, the sum of the series is



1− 
=

−5

1− (−5)
=

−5

1 + 5
.

58.
∞
=1

( + 2) is a geometric series with  =  + 2, so the series converges ⇔ ||  1 ⇔ |+ 2|  1 ⇔

−1  + 2  1 ⇔ −3    −1. In that case, the sum of the series is


1− 
=

+ 2

1− (+ 2)
=

+ 2

−− 1
.

59.
∞
=0

(− 2)

3
=

∞
=0


− 2

3


is a geometric series with  =

− 2

3
, so the series converges ⇔ ||  1 ⇔

− 2

3

  1 ⇔ −1 
− 2

3
 1 ⇔ −3  − 2  3 ⇔ −1    5. In that case, the sum of the series is



1− 
=

1

1− − 2

3

=
1

3− (− 2)

3

=
3

5− 
.

60.
∞
=0

(−4)(− 5) =
∞
=0

[−4(− 5)]
 is a geometric series with  = −4(− 5), so the series converges ⇔

||  1 ⇔ |−4(− 5)|  1 ⇔ |− 5|  1
4
⇔ −1

4
 − 5  1

4
⇔ 19

4
   21

4
. In that case, the sum of

the series is


1− 
=

1

1− [−4(− 5)]
=

1

4− 19
.

61.
∞
=0

2


=

∞
=0


2




is a geometric series with  =

2


, so the series converges ⇔ ||  1 ⇔

 2
  1 ⇔

2  || ⇔   2 or   −2. In that case, the sum of the series is


1− 
=

1

1− 2
=



− 2
.

62.
∞
=0

sin 

3
=

∞
=0


sin

3


is a geometric series with  =

sin

3
, so the series converges ⇔ ||  1 ⇔

 sin3

  1 ⇔ |sin|  3, which is true for all . Thus, the sum of the series is


1− 
=

1

1− (sin)3
=

3

3− sin
.

63.
∞
=0

 =
∞
=0

()
 is a geometric series with  = , so the series converges ⇔ ||  1 ⇔ ||  1 ⇔

−1    1 ⇔ 0    1 ⇔   0. In that case, the sum of the series is


1− 
=

1

1− 
.

64. Because
1


→ 0 and ln is continuous, we have lim

→∞
ln


1 +

1




= ln 1 = 0.

We now show that the series
∞
=1

ln


1 +

1




=

∞
=1

ln


+ 1




=

∞
=1

[ln(+ 1)− ln] diverges.

 = (ln 2− ln 1) + (ln 3− ln 2) + · · ·+ (ln(+ 1)− ln) = ln(+ 1)− ln 1 = ln(+ 1)

As →∞,  = ln(+ 1)→∞, so the series diverges.
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65. After defining  , We use convert(f,parfrac); in Maple, Apart in Mathematica, or Expand Rational and

Simplify in Derive to find that the general term is
32 + 3+ 1

(2 + )3
=

1

3
− 1

(+ 1)3
. So the nth partial sum is

 =


=1


1

3
− 1

( + 1)3


=


1− 1

23


+


1

23
− 1

33


+ · · ·+


1

3
− 1

(+ 1)3


= 1− 1

(+ 1)3

The series converges to lim
→∞

 = 1. This can be confirmed by directly computing the sum using

sum(f,n=1..infinity); (in Maple), Sum[f,{n,1,Infinity}] (in Mathematica), or Calculus Sum

(from 1 to∞) and Simplify (in Derive).

66. See Exercise 65 for specific CAS commands.

1

5 − 53 + 4
=

1

24(− 2)
+

1

24(+ 2)
− 1

6(− 1)
− 1

6(+ 1)
+

1

4
. So the th partial sum is

 =
1

24


=3


1

 − 2
− 4

 − 1
+

6


− 4

 + 1
+

1

 + 2



=
1

24


1

1
− 4

2
+

6

3
− 4

4
+

1

5


+ · · ·+


1

− 2
− 4

− 1
+

6


− 4

+ 1
+

1

+ 2


The terms with denominator 5 or greater cancel, except for a few terms with  in the denominator. So as →∞,

 → 1

24


1

1
− 3

2
+

3

3
− 1

4


=

1

24


1

4


=

1

96
.

67. For  = 1, 1 = 0 since 1 = 0. For   1,

 =  − −1 =
− 1

+ 1
− (− 1)− 1

(− 1) + 1
=

(− 1)− (+ 1)(− 2)

(+ 1)
=

2

(+ 1)

Also,
∞
=1

 = lim
→∞

 = lim
→∞

1− 1

1 + 1
= 1.

68. 1 = 1 = 3− 1
2

= 5
2
. For  6= 1,

 =  − −1 =

3− 2−

− 3− (− 1)2−(−1)


= − 

2
+

− 1

2−1
· 2

2
=

2(− 1)

2
− 

2
=

− 2

2

Also,
∞
=1

 = lim
→∞

 = lim
→∞


3− 

2


= 3 because lim

→∞


2
H
= lim

→∞
1

2 ln 2
= 0.

69. (a) The quantity of the drug in the body after the first tablet is 100 mg. After the second tablet, there is 100 mg plus 20% of

the first 100-mg tablet; that is, 100 + 020(100) = 120 mg. After the third tablet, the quantity is 100 + 020(120) or,

equivalently, 100 + 100(020) + 100(020)2. Either expression gives us 124 mg.

(b) From part (a), we see that +1 = 100 + 020.

(c)  = 100 + 100(020)1 + 100(020)2 + · · ·+ 100(020)−1

=

=1

100(020)−1 [geometric with  = 100 and  = 020].

The quantity of the antibiotic that remains in the body in the long run is lim
→∞

 =
100

1− 020
=

100

45
= 125 mg.
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70. (a) The concentration of the drug after the first injection is 15 mgL. “Reduced by 90%” is the same as 10% remains, so the

concentration after the second injection is 15 + 010(15) = 165 mgL. The concentration after the third injection is

15 + 010(165), or, equivalently, 15 + 15(010) + 15(010)2. Either expression gives us 1665 mgL.

(b)  = 15 + 15(010)1 + 15(010)2 + · · ·+ 15(010)−1

=

=1

15(010)−1 [geometric with  = 15 and  = 010].

By (3),  =
15[1− (010)]

1− 010
=

15

09
[1− (010)] =

5

3
[1− (010)] mgL.

(c) The limiting value of the concentration is lim
→∞

 = lim
→∞

5
3
[1− (010)] = 5

3
(1− 0) = 5

3
mgL.

71. (a) The quantity of the drug in the body after the first tablet is 150 mg. After the second tablet, there is 150 mg plus 5%

of the first 150-mg tablet, that is, [150 + 150(005)] mg. After the third tablet, the quantity is

[150 + 150(005) + 150(005)2] = 157875 mg. After  tablets, the quantity (in mg) is

150 + 150(005) + · · ·+ 150(005)−1. We can use Formula 3 to write this as
150(1− 005)

1− 005
=

3000

19
(1− 005).

(b) The number of milligrams remaining in the body in the long run is lim
→∞


3000
19

(1− 005)


= 3000
19

(1− 0) ≈ 157895,

only 002 mg more than the amount after 3 tablets.

72. (a) The residual concentration just before the second injection is− ; before the third,− +−2 ; before the

(+ 1)st,− +−2 + · · ·+− . This sum is equal to
−


1− −


1− −

[Formula 3].

(b) The limiting pre-injection concentration is lim
→∞

−

1− −


1− −

=
− (1− 0)

1− −
· 




=



 − 1
.

(c)


 − 1
≥  ⇒  ≥ 


 − 1


, so the minimal dosage is = 


 − 1


.

73. (a) The first step in the chain occurs when the local government spends dollars. The people who receive it spend a

fraction  of those dollars, that is, dollars. Those who receive the dollars spend a fraction  of it, that is,

2 dollars. Continuing in this way, we see that the total spending after  transactions is

 =  ++2 + · · ·+–1 =
(1− )

1− 
by (3).

(b) lim
→∞

 = lim
→∞

(1− )

1− 
=



1− 
lim
→∞

(1− ) =


1− 


since 0    1 ⇒ lim

→∞
 = 0


=




[since +  = 1] =  [since  = 1]

If  = 08, then  = 1−  = 02 and the multiplier is  = 1 = 5.
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74. (a) Initially, the ball falls a distance, then rebounds a distance , falls , rebounds 2, falls 2, etc. The total

distance it travels is

 + 2 + 22 + 23 + · · · = 

1 + 2 + 22 + 23 + · · ·  = 


1 + 2


1 +  + 2 + · · · 

= 


1 + 2


1

1− 


= 


1 + 

1− 


meters

(b) From Example 3 in Section 2.1, we know that a ball falls 1
2
2 meters in  seconds, where  is the gravitational

acceleration. Thus, a ball falls  meters in  =


2 seconds. The total travel time in seconds is
2


+ 2


2


 + 2


2


2 + 2


2


3 + · · · =


2




1 + 2

√
 + 2

√


2
+ 2

√


3
+ · · ·


=


2




1 + 2

√


1 +

√
 +

√


2
+ · · ·


=


2




1 + 2

√



1

1−√


=


2



1 +
√


1−√

(c) It will help to make a chart of the time for each descent and each rebound of the ball, together with the velocity just before

and just after each bounce. Recall that the time in seconds needed to fall  meters is


2. The ball hits the ground with

velocity −


2 = −√2 (taking the upward direction to be positive) and rebounds with velocity




2 = 
√

2, taking time 


2 to reach the top of its bounce, where its velocity is 0. At that point,

its height is 2. All these results follow from the formulas for vertical motion with gravitational acceleration −:
2

2
= − ⇒  =




= 0 −  ⇒  = 0 + 0− 1

2
2.

number of
descent

time of
descent

speed before
bounce

speed after
bounce

time of
ascent

peak
height

1


2
√

2 
√

2 


2 2

2


22


22 


22 


22 4

3


24


24 


24 


24 6

· · · · · · · · · · · · · · · · · ·

The total travel time in seconds is
2


+ 


2


+ 


2


+ 2


2


+ 2


2


+ · · · =


2




1 + 2 + 22 + 23 + · · · 

=


2




1 + 2(1 +  + 2 + · · · )

=


2




1 + 2


1

1− 


=


2



1 + 

1− 

Another method: We could use part (b). At the top of the bounce, the height is 2 = , so
√
 =  and the result follows

from part (b).
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75.
∞
=2

(1 + )− is a geometric series with  = (1 + )
−2 and  = (1 + )

−1, so the series converges when

(1 + )
−1
  1 ⇔ |1 + |  1 ⇔ 1 +   1 or 1 +   −1 ⇔   0 or   −2. We calculate the sum of the

series and set it equal to 2:
(1 + )

−2

1− (1 + )
−1

= 2 ⇔


1

1 + 

2

= 2− 2


1

1 + 


⇔ 1 = 2(1 + )2 − 2(1 + ) ⇔

22 + 2− 1 = 0 ⇔  = −2±√12
4

= ±√3− 1
2

. However, the negative root is inadmissible because−2  −√3− 1
2

 0.

So  =
√

3− 1
2

.

76.
∞
=0

 =
∞
=0

() is a geometric series with  = ()0 = 1 and  = . If   1, it has sum
1

1− 
, so

1

1− 
= 10 ⇒

1
10

= 1−  ⇒  = 9
10

⇒  = ln 9
10
.

77.  = 1+
1
2
+

1
3
+···+ 1

 = 11213 · · · 1  (1 + 1)

1 + 1

2

 
1 + 1

3

 · · · 1 + 1



[  1 + ]

=
2

1

3

2

4

3
· · · + 1


= + 1

Thus,   + 1 and lim
→∞

 = ∞. Since {} is increasing, lim
→∞

 = ∞, implying that the harmonic series is

divergent.

78. The area between  = −1 and  =  for 0 ≤  ≤ 1 is 1

0

(
−1 − 


) =





− +1

+ 1

1
0

=
1


− 1

+ 1

=
(+ 1)− 

(+ 1)
=

1

(+ 1)

We can see from the diagram that as →∞, the sum of the areas

between the successive curves approaches the area of the unit square,

that is, 1. So
∞
=1

1

 (+ 1)
= 1.

79. Let  be the diameter of . We draw lines from the centers of the  to

the center of (or ), and using the Pythagorean Theorem, we can write

12 +

1− 1

2
1

2
=

1 + 1

2
1

2 ⇔

1 =

1 + 1

2
1

2 − 1− 1
2
1

2
= 21 [difference of squares] ⇒ 1 = 1

2
.

Similarly,

1 =

1 + 1

2
2

2 − 1− 1 − 1
2
2

2
= 22 + 21 − 2

1 − 12

= (2− 1)(1 + 2) ⇔
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2 =
1

2− 1

− 1 =
(1− 1)

2

2− 1

, 1 =

1 + 1

2
3

2 − 1− 1 − 2 − 1
2
3

2 ⇔ 3 =
[1− (1 + 2)]

2

2− (1 + 2)
, and in general,

+1 =


1−

=1 
2

2−

=1


. If we actually calculate 2 and 3 from the formulas above, we find that they are
1

6
=

1

2 · 3 and

1

12
=

1

3 · 4 respectively, so we suspect that in general,  =
1

(+ 1)
. To prove this, we use induction: Assume that for all

 ≤ ,  =
1

( + 1)
=

1


− 1

 + 1
. Then


=1

 = 1− 1

+ 1
=



+ 1
[telescoping sum]. Substituting this into our

formula for +1, we get +1 =


1− 

+ 1

2
2−




+ 1

 =

1

(+ 1)
2

+ 2

+ 1

=
1

(+ 1)(+ 2)
, and the induction is complete.

Now, we observe that the partial sums


=1  of the diameters of the circles approach 1 as →∞; that is,

∞
=1

 =
∞
=1

1

(+ 1)
= 1, which is what we wanted to prove.

80. || =  sin , || = || sin  =  sin2 , | | = || sin  =  sin3 ,    . Therefore,

||+ ||+ | |+ ||+ · · · = 
∞
=1

sin  = 


sin 

1− sin 


since this is a geometric series with  = sin 

and |sin |  1

because 0    

2


.

81. The series 1− 1 + 1− 1 + 1− 1 + · · · diverges (geometric series with  = −1) so we cannot say that

0 = 1− 1 + 1− 1 + 1− 1 + · · · .

82. If
∞
=1

 is convergent, then lim
→∞

 = 0 by Theorem 6, so lim
→∞

1


6= 0, and so

∞
=1

1


is divergent by the Test for

Divergence.

83.
∞

=1  = lim
→∞



=1  = lim
→∞




=1  =  lim
→∞



=1  = 
∞

=1 , which exists by hypothesis.

84. If


 were convergent, then


(1)() =


 would be also, by Theorem 8(i). But this is not the case, so




must diverge.

85. Suppose on the contrary that


( + ) converges. Then


( + ) and


 are convergent series. So by

Theorem 8(iii),


[( + )− ] would also be convergent. But


[( + )− ] =


, a contradiction, since
 is given to be divergent.

86. No. For example, take


 =


 and


 =


(−), which both diverge, yet


( + ) =


0, which converges

with sum 0.
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87. The partial sums {} form an increasing sequence, since  − −1 =   0 for all . Also, the sequence {} is bounded
since  ≤ 1000 for all . So by the Monotonic Sequence Theorem, the sequence of partial sums converges, that is, the series

 is convergent.

88. (a) RHS =
1

−1
− 1

+1

=
+1 − −1

2
−1+1

=
+1 − −1

−1+1

=
(−1 + )− −1

−1+1

=
1

−1+1

= LHS

(b)
∞
=2

1

−1+1

=
∞
=2


1

−1
− 1

+1


[from part (a)]

= lim
→∞


1

12

− 1

23


+


1

23

− 1

34


+


1

34

− 1

45


+ · · ·+


1

−1
− 1

+1


= lim

→∞


1

12

− 1

+1


=

1

12

− 0 =
1

1 · 1 = 1 because  →∞ as →∞.

(c)
∞
=2



−1+1

=
∞
=2




−1
− 

+1


[as above]

=
∞
=2


1

−1

− 1

+1



= lim
→∞


1

1

− 1

3


+


1

2

− 1

4


+


1

3

− 1

5


+


1

4

− 1

6


+ · · ·+


1

−1

− 1

+1



= lim
→∞


1

1

+
1

2

− 1


− 1

+1


= 1 + 1− 0− 0 = 2 because  →∞ as →∞.

89. (a) At the first step, only the interval


1
3
 2

3


(length 1

3
) is removed. At the second step, we remove the intervals


1
9
 2

9


and

7
9
 8

9


, which have a total length of 2 ·  1

3

2
. At the third step, we remove 22 intervals, each of length


1
3

3
. In general,

at the nth step we remove 2−1 intervals, each of length


1
3


, for a length of 2−1 ·  1

3


= 1

3


2
3

−1
. Thus, the total

length of all removed intervals is
∞
=1

1
3


2
3

−1
=

13

1− 23
= 1


geometric series with  = 1

3
and  = 2

3


. Notice that at

the th step, the leftmost interval that is removed is


1
3





2
3


, so we never remove 0, and 0 is in the Cantor set. Also,

the rightmost interval removed is

1−  2

3


 1−  1

3


, so 1 is never removed. Some other numbers in the Cantor set

are 1
3
, 2

3
, 1

9
, 2

9
, 7

9
, and 8

9
.

(b) The area removed at the first step is 1
9
; at the second step, 8 ·  1

9

2
; at the third step, (8)2 ·  1

9

3
. In general, the area

removed at the th step is (8)
−1


1
9


= 1

9


8
9

−1
, so the total area of all removed squares is

∞
=1

1

9


8

9

−1

=
19

1 − 89
= 1.
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90. (a)
1 1 2 4 1 1 1000

2 2 3 1 4 1000 1

3 15 25 25 25 5005 5005

4 175 275 175 325 75025 25075

5 1625 2625 2125 2875 625375 375625

6 16875 26875 19375 30625 687813 313188

7 165625 265625 203125 296875 656594 344406

8 167188 267188 198438 301563 672203 328797

9 166406 266406 200781 299219 664398 336602

10 166797 266797 199609 300391 668301 332699

11 166602 266602 200195 299805 666350 334650

12 166699 266699 199902 300098 667325 333675

The limits seem to be 5
3
, 8
3
, 2, 3, 667, and 334. Note that the limits appear to be “weighted” more toward 2. In general, we

guess that the limit is
1 + 22

3
.

(b) +1 −  = 1
2
( + −1)−  = −1

2
( − −1) = − 1

2


1
2
(−1 + −2)− −1


= − 1

2

−1
2
(−1 − −2)


= · · · = − 1

2

−1
(2 − 1)

Note that we have used the formula  = 1
2
(−1 + −2) a total of − 1 times in this calculation, once for each 

between 3 and + 1. Now we can write

 = 1 + (2 − 1) + (3 − 2) + · · ·+ (−1 − −2) + ( − −1)

= 1 +
−1
=1

(+1 − ) = 1 +
−1
=1

−1
2

−1
(2 − 1)

and so

lim
→∞

 = 1 + (2 − 1)
∞
=1

− 1
2

−1
= 1 + (2 − 1)


1

1 − (−12)


= 1 + 2

3
(2 − 1) =

1 + 22

3
.

91. (a) For
∞
=1



(+ 1)!
, 1 =

1

1 · 2 =
1

2
, 2 =

1

2
+

2

1 · 2 · 3 =
5

6
, 3 =

5

6
+

3

1 · 2 · 3 · 4 =
23

24
,

4 =
23

24
+

4

1 · 2 · 3 · 4 · 5 =
119

120
. The denominators are (+ 1)!, so a guess would be  =

(+ 1)!− 1

(+ 1)!
.

(b) For  = 1, 1 =
1

2
=

2!− 1

2!
, so the formula holds for  = 1. Assume  =

( + 1)!− 1

( + 1)!
. Then

+1 =
( + 1)!− 1

( + 1)!
+

 + 1

( + 2)!
=

( + 1)!− 1

( + 1)!
+

 + 1

( + 1)!( + 2)
=

( + 2)!− ( + 2) +  + 1

( + 2)!

=
( + 2)!− 1

( + 2)!

Thus, the formula is true for  =  + 1. So by induction, the guess is correct.

(c) lim
→∞

 = lim
→∞

(+ 1)!− 1

(+ 1)!
= lim

→∞


1− 1

(+ 1)!


= 1 and so

∞
=1



(+ 1)!
= 1.
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92. Let 1 = radius of the large circle, 2 = radius of next circle, and so on.

From the figure we have ∠ = 60◦ and cos 60◦ = 1 ||, so
|| = 21 and || = 22. Therefore, 21 = 1 + 2 + 22 ⇒
1 = 32. In general, we have +1 = 1

3
, so the total area is

= 2
1 + 32

2 + 32
3 + · · · = 2

1 + 322


1 +

1

32
+

1

34
+

1

36
+ · · ·


= 2

1 + 32
2 · 1

1 − 19
= 21 + 27

8
2

2

Since the sides of the triangle have length 1, || = 1
2
and tan 30◦ =

1

12
. Thus, 1 =

tan 30◦

2
=

1

2
√

3
⇒ 2 =

1

6
√

3
,

so  = 


1

2
√

3

2
+

27

8


1

6
√

3

2
=



12
+



32
=

11

96
. The area of the triangle is

√
3

4
, so the circles occupy about 831%

of the area of the triangle.

11.3 The Integral Test and Estimates of Sums

1. The picture shows that 2 =
1

213


 2

1

1

13
,

3 =
1

313


 3

2

1

13
, and so on, so

∞
=2

1

13


 ∞

1

1

13
. The

integral converges by (7.8.2) with  = 13  1, so the series converges.

2. From the first figure, we see that
 6

1
()  

5
=1

. From the second figure, we see that
6

=2

 
 6

1
() . Thus, we

have
6

=2

 
 6

1
()  

5
=1

.

3. The function () = −3 is continuous, positive, and decreasing on [1∞), so the Integral Test applies. ∞

1


−3

 = lim
→∞

 

1


−3

 = lim
→∞


−2

−2


1

= lim
→∞


− 1

22
+

1

2


=

1

2
.

Since this improper integral is convergent, the series
∞
=1

−3 is also convergent by the Integral Test.
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4. The function () = −03 is continuous, positive, and decreasing on [1∞), so the Integral Test applies. ∞

1


−03

 = lim
→∞

 

1


−03

 = lim
→∞


07

07


1

= lim
→∞


07

07
− 1

07


=∞.

Since this improper integral is divergent, the series
∞
=1

−03 is also divergent by the Integral Test.

5. The function () =
2

5− 1
is continuous, positive, and decreasing on [1∞), so the Integral Test applies.

 ∞

1

2

5− 1
 = lim

→∞

 

1

2

5− 1
 = lim

→∞


2

5
ln(5− 1)


1

= lim
→∞


2

5
ln(5− 1)− 2

5
ln 4


=∞.

Since this improper integral is divergent, the series
∞
=1

2

5− 1
is also divergent by the Integral Test.

6. The function () =
1

(3− 1)4
is continuous, positive, and decreasing on [1∞), so the Integral Test applies.

 ∞

1

1

(3− 1)4
 = lim

→∞

 

1

(3− 1)
−4

 = lim
→∞


1

(−3)3
(3− 1)

−3


1

= lim
→∞


− 1

9(3− 1)3
+

1

9 · 23


=

1

72
.

Since this improper integral is convergent, the series
∞
=1

1

(3− 1)4
is also convergent by the Integral Test.

7. The function () =


2 + 1
is continuous, positive, and decreasing on [1∞), so the Integral Test applies.

 ∞

1



2 + 1
 = lim

→∞

 

1



2 + 1
 = lim

→∞


1

2
ln(

2
+ 1)


1

=
1

2
lim
→∞

[ln(
2

+ 1)− ln 2] =∞. Since this improper

integral is divergent, the series
∞
=1



2 + 1
is also divergent by the Integral Test.

8. The function () = 2−
3

is continuous, positive, and decreasing () on [1∞), so the Integral Test applies. ∞

1


2

−3

 = lim
→∞

 

1


2

−3

 = lim
→∞


−1

3

−3


1

= −1

3
lim
→∞



−3 − 

−1


= −1

3


0− 1




=

1

3
.

Since this improper integral is convergent, the series
∞
=1

2−
3

is also convergent by the Integral Test.

():  0() = 2−
3

(−32) + −
3

(2) = −
3

(−33 + 2) =
(2− 33)


3  0 for   1

9.
∞
=1

1


√

2
is a -series with  =

√
2  1, so it converges by (1).

10.
∞
=3

−09999 =
∞
=3

1

09999
is a -series with  = 09999 ≤ 1, so it diverges by (1). The fact that the series begins with

 = 3 is irrelevant when determining convergence.

11. 1 +
1

8
+

1

27
+

1

64
+

1

125
+ · · · =

∞
=1

1

3
. This is a -series with  = 3  1, so it converges by (1).
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12.
1

5
+

1

7
+

1

9
+

1

11
+

1

13
+ · · · =

∞
=1

1

2+ 3
. The function () =

1

2+ 3
is continuous, positive, and decreasing on [1∞),

so the Integral Test applies. ∞

1

1

2+ 3
 = lim

→∞

 

1

1

2+ 3
 = lim

→∞


1
2

ln(2+ 3)

1

= lim
→∞


1
2

ln(2+ 3)− 1
2

ln 5


= ∞, so the series

∞
=1

1

2+ 3
diverges.

13.
1

3
+

1

7
+

1

11
+

1

15
+

1

19
+ · · · =

∞
=1

1

4− 1
. The function () =

1

4− 1
is continuous, positive, and decreasing on

[1∞), so the Integral Test applies. ∞

1

1

4− 1
 = lim

→∞

 

1

1

4− 1
 = lim

→∞


1
4

ln(4− 1)

1

= lim
→∞


1
4

ln(4− 1)− 1
4

ln 3


=∞, so the series

∞
=1

1

4− 1
diverges.

14. 1 +
1

2
√

2
+

1

3
√

3
+

1

4
√

4
+

1

5
√

5
+ · · · =

∞
=1

1


√


=
∞
=1

1

32
. This is a -series with  = 3

2
 1, so it converges by (1).

15.
∞
=1

√
+ 4

2
=

∞
=1

√


2
+

4

2


=

∞
=1

1

32
+

∞
=1

4

2
.

∞
=1

1

32
is a convergent -series with  = 3

2
 1.

∞
=1

4

2
= 4

∞
=1

1

2
is a constant multiple of a convergent -series with  = 2  1, so it converges. The sum of two

convergent series is convergent, so the original series is convergent.

16. The function () =

√


1 + 32
is continuous and positive on [1∞).

 0() =
(1 + 32)


1
2
−12


− 12


3
2
12


(1 + 32)2

=
1
2
−12 + 1

2
− 3

2


(1 + 32)2
=

1− 232

2
√
(1 + 32)2

 0 for  ≥ 1, so  is

decreasing on [1∞), and the Integral Test applies. ∞

1

√


1 + 32
= lim

→∞

 

1

√


1 + 32
 = lim

→∞


2
3

ln(1 + 
32

)

1


substitution

with  = 1 + 32


= lim

→∞


2
3

ln(1 + 32)− 2
3

ln 2


=∞,

so the series
∞
=1

√


1 + 32
diverges.

17. The function () =
1

2 + 4
is continuous, positive, and decreasing on [1∞), so we can apply the Integral Test.

 ∞

1

1

2 + 4
= lim

→∞

 

1

1

2 + 4
 = lim

→∞


1

2
tan

−1 

2


1

=
1

2
lim
→∞


tan

−1




2


− tan

−1


1

2


=

1

2




2
− tan−1


1

2


Therefore, the series

∞
=1

1

2 + 4
converges.
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18. The function () =
1

2 + 2+ 2
is continuous, positive, and decreasing on [1∞), so the Integral Test applies. ∞

1

1

2 + 2+ 2
= lim

→∞

 

1

1

(+ 1)2 + 1
 = lim

→∞


arctan(+ 1)


1

= lim
→∞

[arctan( + 1)− arctan 2] =


2
− arctan 2,

so the series
∞
=1

1

2 + 2+ 2
converges.

19. The function () =
3

4 + 4
is continuous and positive on [2∞), and is also decreasing since

 0() =
(4 + 4)(32)− 3(43)

(4 + 4)2
=

122 − 6

(4 + 4)2
=

2(12− 4)

(4 + 4)2
 0 for  

4
√

12 ≈ 186, so we can use the

Integral Test on [2∞). ∞

2

3

4 + 4
 = lim

→∞

 

2

3

4 + 4
 = lim

→∞


1
4

ln(
4

+ 4)

2

= lim
→∞


1
4

ln(
4
+ 4)− 1

4
ln 20


= ∞, so the series

∞
=2

3

4 + 4
diverges, and it follows that

∞
=1

3

4 + 4
diverges as well.

20. The function () =
3− 4

2 − 2
=

2


+

1

− 2
[by partial fractions] is continuous, positive, and decreasing on [3∞) since it

is the sum of two such functions, so we can apply the Integral Test. ∞

3

3− 4

2 − 
 = lim

→∞

 

3


2


+

1

− 2


 = lim

→∞


2 ln+ ln(− 2)


3

= lim
→∞

[2 ln  + ln(− 2)− 2 ln 3] =∞.

The integral is divergent, so the series
∞
=3

3− 4

2 − 
is divergent.

21. () =
1

 ln
is continuous and positive on [2∞), and also decreasing since  0() = − 1 + ln

2(ln)2
 0 for   2, so we can

use the Integral Test.
 ∞

2

1

 ln
 = lim

→∞
[ln(ln)]



2 = lim
→∞

[ln(ln )− ln(ln 2)] =∞, so the series
∞
=2

1

 ln
diverges.

22. The function () =
ln

2
is continuous and positive on [2∞), and also decreasing since

 0() =
2(1)− (ln)(2)

(2)2
=

− 2 ln

4
=

1− 2 ln

3
 0 for   12 ≈ 165, so we can use the Integral Test

on [2∞).  ∞

2

ln

2
= lim

→∞

 

2

ln

2
 = lim

→∞


− ln




2

+

 

2

1

2


 
by parts with

 = ln,  = (12) 



= lim
→∞


− ln 


+

ln 2

2
+


− 1




2


H
= lim

→∞


−1

1
+

ln 2

2
− 1


+

1

2


=

ln 2 + 1

2
,

so the series
∞
=2

ln

2
converges.
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23. The function () = − =



is continuous and positive on [1∞), and also decreasing since

 0() =
 · 1− 

()2
=

(1− )

()2
=

1− 


 0 for   1 [and (1)  (2)], so we can use the Integral Test on [1∞).

 ∞

1


−

= lim
→∞

 

1


−

 = lim
→∞


−−


1

+

 

1


−



 
by parts with

 = ,  = − 


= lim

→∞


−− + −1 +


−−


1


= lim

→∞


− 


+

1


− 1


+

1




H
= lim

→∞


− 1


+

1


− 0 +

1




=

2


,

so the series
∞
=1

− converges.

24. The function () = −
2

=



2 is continuous and positive on [1∞), and also decreasing since

 0() =


2 · 1− 
2 · 2

(
2
)2

=
1− 22


2  0 for  


1
2
≈ 07, so we can use the Integral Test on [1∞).

 ∞

1


−2

= lim
→∞

 

1


−2

 = lim
→∞


− 1

2

−2


1

= lim
→∞


− 1

2

−2

+ 1
2

−1


=
1

2
, so the series

∞
=1

−
2

converges.

25. The function () =
1

2 + 3
=

1

2
− 1


+

1

+ 1
[by partial fractions] is continuous, positive and decreasing on [1∞),

so the Integral Test applies. ∞

1

() = lim
→∞

 

1


1

2
− 1


+

1

+ 1


 = lim

→∞


− 1


− ln+ ln( + 1)


1

= lim
→∞


−1


+ ln

+ 1


+ 1− ln 2


= 0 + 0 + 1− ln 2

The integral converges, so the series
∞
=1

1

2 + 3
converges.

26. The function () =


4 + 1
is positive, continuous, and decreasing on [1∞). [Note that

 0() =
4 + 1− 44

(4 + 1)2
=

1− 34

(4 + 1)2
 0 on [1∞).] Thus, we can apply the Integral Test.

 ∞

1



4 + 1
 = lim

→∞

 

1

1
2
(2)

1 + (2)2
 = lim

→∞


1

2
tan

−1
(

2
)


1

=
1

2
lim
→∞

[tan
−1

(
2
)− tan

−1
1] =

1

2


2
− 

4


=



8

so the series
∞
=1



4 + 1
converges.

27. The function () =
cos√


is neither positive nor decreasing on [1∞), so the hypotheses of the Integral Test are not

satisfied for the series
∞
=1

cos√


.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE

SECTION 11.3 THE INTEGRAL TEST AND ESTIMATES OF SUMS ¤ 995

28. The function () =
cos2 

1 + 2
is not decreasing on [1∞), so the hypotheses of the Integral Test are not satisfied for the

series
∞
=1

cos2 

1 + 2
.

29. We have already shown (in Exercise 21) that when  = 1 the series
∞
=2

1

(ln)
diverges, so assume that  6= 1.

() =
1

(ln)
is continuous and positive on [2∞), and  0() = − + ln

2(ln)+1
 0 if   −, so that  is eventually

decreasing and we can use the Integral Test. ∞

2

1

(ln)
 = lim

→∞


(ln)1−

1− 


2

[for  6= 1] = lim
→∞


(ln )1−

1− 
− (ln 2)1−

1− 


This limit exists whenever 1−   0 ⇔   1, so the series converges for   1.

30. () =
1

 ln [ln(ln)]
is positive and continuous on [3∞). For  ≥ 0,  clearly decreases on [3∞); and for   0,

it can be verified that  is ultimately decreasing. Thus, we can apply the Integral Test.

 =

 ∞

3



 ln [ln(ln)]
= lim

→∞

 

3

[ln(ln)]−

 ln
 = lim

→∞


[ln(ln)]−+1

− + 1


3

[for  6= 1]

= lim
→∞


[ln(ln )]−+1

−+ 1
− [ln(ln 3)]−+1

− + 1


,

which exists whenever − + 1  0 ⇔   1. If  = 1, then  = lim
→∞


ln(ln(ln))


3

= ∞. Therefore,

∞
=3

1

 ln [ln(ln)]
converges for   1.

31. Clearly the series cannot converge if  ≥ − 1
2
, because then lim

→∞
(1 + 2) 6= 0. So assume   − 1

2
. Then

() = (1 + 2) is continuous, positive, and eventually decreasing on [1∞), and we can use the Integral Test. ∞

1

(1 + 
2
)

 = lim

→∞


1

2
· (1 + 2)+1

+ 1


1

=
1

2(+ 1)
lim
→∞

[(1 + 
2
)
+1 − 2

+1
].

This limit exists and is finite ⇔  + 1  0 ⇔   −1, so the series
∞
=1

(1 + 2) converges whenever   −1.

32. If  ≤ 0, lim
→∞

ln


=∞ and the series diverges, so assume   0. () =

ln


is positive and continuous and  0()  0

for   1, so  is eventually decreasing and we can use the Integral Test. Integration by parts gives ∞

1

ln


 = lim

→∞


1− [(1− ) ln− 1]

(1− )
2


1

(for  6= 1) =
1

(1− )
2


lim
→∞

1− [(1− ) ln − 1] + 1

, which exists

whenever 1−   0 ⇔   1. Thus,
∞
=1

ln


converges ⇔   1.
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33. Since this is a -series with  = , () is defined when   1. Unless specified otherwise, the domain of a function  is the

set of real numbers  such that the expression for () makes sense and defines a real number. So, in the case of a series, it’s

the set of real numbers  such that the series is convergent.

34. (a)
∞
=2

1

2
=

∞
=1

1

2
− 1

12
[subtract 1] =

2

6
− 1

(b)
∞
=3

1

(+ 1)2
=

∞
=4

1

2
=

∞
=1

1

2
−


1

12
+

1

22
+

1

32


=

2

6
− 49

36

(c)
∞
=1

1

(2)2
=

∞
=1

1

42
=

1

4

∞
=1

1

2
=

1

4


2

6


=

2

24

35. (a)
∞
=1


3



4

=
∞
=1

81

4
= 81

∞
=1

1

4
= 81


4

90


=

94

10

(b)
∞
=5

1

( − 2)4
=

1

34
+

1

44
+

1

54
+ · · · =

∞
=3

1

4
=

4

90
−


1

14
+

1

24


[subtract 1 and 2] =

4

90
− 17

16

36. (a) () = 14 is positive and continuous and  0() = −45 is negative for   0, and so the Integral Test applies.

∞
=1

1

4
≈ 10 =

1

14
+

1

24
+

1

34
+ · · ·+ 1

104
≈ 1082037.

10 ≤
 ∞

10

1

4
 = lim

→∞


1

−33


10

= lim
→∞


− 1

33
+

1

3 (10)
3


=

1

3000
, so the error is at most 00003.

(b) 10 +

 ∞

11

1

4
 ≤  ≤ 10 +

 ∞

10

1

4
 ⇒ 10 +

1

3(11)3
≤  ≤ 10 +

1

3(10)3
⇒

1082037 + 0000250 = 1082287 ≤  ≤ 1082037 + 0000333 = 1082370, so we get  ≈ 108233 with

error ≤ 000005.

(c) The estimate in part (b) is  ≈ 108233 with error≤ 000005. The exact value given in Exercise 35 is 490 ≈ 1082323.

The difference is less than 0.00001

(d)  ≤
 ∞



1

4
 =

1

33
. So   000001 ⇒ 1

33


1

105
⇒ 33  105 ⇒   3


(10)53 ≈ 322,

that is, for   32.

37. (a) () =
1

2
is positive and continuous and  0() = − 2

3
is negative for   0, and so the Integral Test applies.

∞
=1

1

2
≈ 10 =

1

12
+

1

22
+

1

32
+ · · ·+ 1

102
≈ 1549768.

10 ≤
 ∞

10

1

2
 = lim

→∞

−1




10

= lim
→∞


−1


+

1

10


=

1

10
, so the error is at most 01.
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(b) 10 +

 ∞

11

1

2
 ≤  ≤ 10 +

 ∞

10

1

2
 ⇒ 10 + 1

11
≤  ≤ 10 + 1

10
⇒

1549768 + 0090909 = 1640677 ≤  ≤ 1549768 + 01 = 1649768, so we get  ≈ 164522 (the average of 1640677

and 1649768) with error ≤ 0005 (the maximum of 1649768− 164522 and 164522− 1640677, rounded up).

(c) The estimate in part (b) is  ≈ 164522 with error ≤ 0005. The exact value given in Exercise 34 is 26 ≈ 1644934.

The difference is less than 00003.

(d)  ≤
 ∞



1

2
 =

1


. So   0001 if

1




1

1000
⇔   1000.

38. () = −2 is continuous, positive, and decreasing on [1∞), so the Integral Test applies. Using (2),

 ≤
 ∞




−2

= lim
→∞

− 1
2
−2




+

 



1
2

−2



 
using parts with

 = ,  = −2 


= lim

→∞

 −
22

+


22
− 1

42
+

1

42


H
= 0 +



22
− 0 +

1

42
=

2+ 1

42

To be correct to four decimal places, we want
2+ 1

42
≤ 5

105
. This inequality is true for  = 6.

6 =
6

=1



2
=

1

2
+

2

4
+

3

6
+

4

8
+

5

10
+

6

12
≈ 01810.

39. () = 1(2+ 1)6 is continuous, positive, and decreasing on [1∞), so the Integral Test applies. Using (2),

 ≤
 ∞



(2+ 1)
−6

 = lim
→∞

 −1

10(2 + 1)5




=
1

10(2+ 1)5
. To be correct to five decimal places, we want

1

10(2+ 1)5
≤ 5

106
⇔ (2+ 1)5 ≥ 20,000 ⇔  ≥ 1

2


5
√

20,000− 1
 ≈ 312, so use  = 4.

4 =
4

=1

1

(2+ 1)6
=

1

36
+

1

56
+

1

76
+

1

96
≈ 0001 446 ≈ 000145.

40. () =
1

(ln)2
is positive and continuous and  0() = − ln+ 2

2(ln)3
is negative for   1, so the Integral Test applies.

Using (2), we need 001 

 ∞





(ln)2
= lim

→∞

 −1

ln




=
1

ln
. This is true for   100, so we would have to add this

many terms to find the sum of the series
∞
=2

1

(ln)2
to within 001, which would be problematic because

100 ≈ 27× 1043.

41.
∞
=1

−1001 =
∞
=1

1

1001
is a convergent -series with  = 1001  1. Using (2), we get

 ≤
 ∞




−1001

 = lim
→∞


−0001

−0001




= −1000 lim
→∞


1

0001




= −1000


− 1

0001


=

1000

0001
. We want
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  0000 000 005 ⇔ 1000

0001
 5 × 10−9 ⇔ 0001 

1000

5× 10−9
⇔

 

2× 1011

1000
= 21000 × 1011,000 ≈ 107× 10301 × 1011,000 = 107× 1011,301.

42. (a) () =


ln



2

is continuous and positive for   1, and since  0() =
2 ln (1− ln)

3
 0 for   , we can apply

the Integral Test. Using a CAS, we get
 ∞

1


ln



2

 = 2, so the series
∞
=1


ln



2

also converges.

(b) Since the Integral Test applies, the error in  ≈  is  ≤
 ∞




ln



2

 =
(ln)

2
+ 2 ln+ 2


.

(c) By graphing the functions 1 =
(ln)

2
+ 2 ln+ 2


and 2 = 005, we see that 1  2 for  ≥ 1373.

(d) Using the CAS to sum the first 1373 terms, we get 1373 ≈ 194.

43. (a) From the figure, 2 + 3 + · · ·+  ≤
 
1
() , so with

() =
1


,
1

2
+

1

3
+

1

4
+ · · ·+ 1


≤
 

1

1


 = ln.

Thus,  = 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1


≤ 1 + ln.

(b) By part (a), 106 ≤ 1 + ln 106 ≈ 1482  15 and

109 ≤ 1 + ln 109 ≈ 2172  22.

44. (a) The sum of the areas of the  rectangles in the graph to the right is

1 +
1

2
+

1

3
+ · · ·+ 1


. Now

 +1

1




is less than this sum because

the rectangles extend above the curve  = 1, so +1

1

1


 = ln(+ 1)  1 +

1

2
+

1

3
+ · · ·+ 1


, and since

ln  ln(+ 1), 0  1 +
1

2
+

1

3
+ · · ·+ 1


− ln = .

(b) The area under () = 1 between  =  and  = + 1 is +1






= ln(+ 1)− ln, and this is clearly greater than the area of

the inscribed rectangle in the figure to the right


which is

1

+ 1


, so

 − +1 = [ln(+ 1)− ln]− 1

+ 1
 0, and so   +1, so {} is a decreasing sequence.

(c) We have shown that {} is decreasing and that   0 for all . Thus, 0   ≤ 1 = 1, so {} is a bounded monotonic
sequence, and hence converges by the Monotonic Sequence Theorem.
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45. ln =

ln 

ln
=

ln

ln 
= ln  =

1

− ln 
. This is a -series, which converges for all  such that − ln   1 ⇔

ln   −1 ⇔   −1 ⇔   1 [with   0].

46. For the series
∞
=1





− 1

+ 1


,

 =

=1





− 1

+ 1


=




1
− 1

2


+




2
− 1

3


+




3
− 1

4


+ · · ·+





− 1

+ 1



=


1
+

− 1

2
+

− 1

3
+

− 1

4
+ · · ·+ − 1


− 1

+ 1
= + (− 1)


1

2
+

1

3
+

1

4
+ · · ·+ 1




− 1

+ 1

Thus,
∞
=1





− 1

+ 1


= lim

→∞
 = lim

→∞


+ (− 1)


=2

1


− 1

+ 1


. Since a constant multiple of a divergent series

is divergent, the last limit exists only if − 1 = 0, so the original series converges only if  = 1.

11.4 The Comparison Tests

1. (a) We cannot say anything about


. If    for all  and


 is convergent, then


 could be convergent or

divergent. (See the note after Example 2.)

(b) If    for all , then


 is convergent. [This is part (i) of the Comparison Test.]

2. (a) If    for all , then


 is divergent. [This is part (ii) of the Comparison Test.]

(b) We cannot say anything about


. If    for all  and


 is divergent, then


 could be convergent or

divergent.

3.
1

3 + 8


1

3
for all  ≥ 1, so

∞
=1

1

3 + 8
converges by comparison with

∞
=1

1

3
, which converges because it is a -series

with  = 3  1.

4.
1√
− 1


1√

for all  ≥ 2, so

∞
=2

1√
− 1

diverges by comparison with
∞
=2

1√

, which diverges because it is a -series

with  = 1
2
≤ 1.

5.
+ 1


√






√


=
1√

for all  ≥ 1, so

∞
=1

+ 1


√

diverges by comparison with

∞
=1

1√

, which diverges because it is a

p-series with  = 1
2
≤ 1.

6.
− 1

3 + 1




3 + 1




3
=

1

2
for all  ≥ 1, so

∞
=1

− 1

3 + 1
converges by comparison with

∞
=1

1

2
, which converges

because it is a -series with  = 2  1.

7.
9

3 + 10


9

10
=


9

10


for all  ≥ 1.

∞
=1


9
10


is a convergent geometric series

|| = 9
10

 1

, so

∞
=1

9

3 + 10

converges by the Comparison Test.
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8.
6

5 − 1


6

5
=


6

5


for all  ≥ 1.

∞
=1


6
5


is a divergent geometric series

|| = 6
5
 1


, so

∞
=1

6

5 − 1
diverges by

the Comparison Test.

9.
ln 




1


for all k ≥ 3 [since ln   1 for  ≥ 3], so

∞
=3

ln 


diverges by comparison with

∞
=3

1


, which diverges because it

is a -series with  = 1 ≤ 1 (the harmonic series). Thus,
∞
=1

ln 


diverges since a finite number of terms doesn’t affect the

convergence or divergence of a series.

10.
 sin2 

1 + 3
≤ 

1 + 3




3
=

1

2
for all  ≥ 1, so

∞
=1

 sin2 

1 + 3
converges by comparison with

∞
=1

1

2
, which converges

because it is a -series with  = 2  1.

11.
3
√
√

3 + 4 + 3


3
√
√
3

=
13

32
=

1

76
for all  ≥ 1, so

∞
=1

3
√
√

3 + 4 + 3
converges by comparison with

∞
=1

1

76
,

which converges because it is a -series with  = 7
6
 1.

12.
(2 − 1)(2 − 1)

( + 1)(2 + 4)2


2(2)

(2)2
=

23

5
=

2

2
for all  ≥ 1, so

∞
=1

(2 − 1)(2 − 1)

( + 1)(2 + 4)2
converges by comparison with 2

∞
=1

1

2
,

which converges because it is a constant multiple of a -series with  = 2  1.

13.
1 + cos




2


for all  ≥ 1.

∞
=1

2


is a convergent geometric series (|| = 1


 1), so

∞
=1

1 + cos


converges by the

Comparison Test.

14.
1

3
√

34 + 1


1
3
√

34


1
3
√
4

=
1

43
for all  ≥ 1, so

∞
=1

1
3
√

34 + 1
converges by comparison with

∞
=1

1

43
, which

converges because it is a -series with  = 4
3
 1.

15.
4+1

3 − 2


4 · 4
3

= 4


4

3


for all  ≥ 1.

∞
=1

4


4

3


= 4

∞
=1


4

3


is a divergent geometric series

|| = 4
3
 1


, so

∞
=1

4+1

3 − 2
diverges by the Comparison Test.

16.
1


≤ 1

2
for all  ≥ 1, so

∞
=1

1


converges by comparison with

∞
=1

1

2
, which converges because it is a -series with

 = 2  1.

17. Use the Limit Comparison Test with  =
1√

2 + 1
and  =

1


:

lim
→∞




= lim

→∞
√

2 + 1
= lim

→∞
1

1 + (12)
= 1  0. Since the harmonic series

∞
=1

1


diverges, so does

∞
=1

1√
2 + 1

.
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18. Use the Limit Comparison Test with  =
2√
+ 2

and  =
1√

:

lim
→∞




= lim

→∞
2
√
√

+ 2
= lim

→∞
2

1 + 2
√


= 2  0. Since
∞
=1

1√

is a divergent -series [  = 1

2
≤ 1], the series

∞
=1

2√
+ 2

is also divergent.

19. Use the Limit Comparison Test with  =
+ 1

3 + 
and  =

1

2
:

lim
→∞




= lim

→∞
(+ 1)2

(2 + 1)
= lim

→∞
2 + 

2 + 1
= lim

→∞
1 + 1

1 + 12
= 1  0. Since

∞
=1

1

2
is a convergent -series

[ = 2  1], the series
∞
=1

+ 1

3 + 
also converges.

20. Use the Limit Comparison Test with  =
2 + + 1

4 + 2
and  =

1

2
:

lim
→∞




= lim

→∞
(2 + + 1)2

2(2 + 1)
= lim

→∞
2 + + 1

2 + 1
= lim

→∞
1 + 1+ 12

1 + 12
= 1  0. Since

∞
=1

1

2
is a convergent

-series [ = 2  1], the series
∞
=1

2 + + 1

4 + 2
also converges.

21. Use the Limit Comparison Test with  =

√
1 + 

2 + 
and  =

1√

:

lim
→∞




= lim

→∞

√
1 + 

√


2 + 
= lim

→∞

√
2 + 

√
2

(2 + )
= lim

→∞


1 + 1

2+ 1
= 1  0. Since

∞
=1

1√

is a divergent -series

[  = 1
2
≤ 1], the series

∞
=1

√
1 + 

2 + 
also diverges.

22. Use the Limit Comparison Test with  =
+ 2

(+ 1)3
and  =

1

2
:

lim
→∞




= lim

→∞
2(+ 2)

(+ 1)3
= lim

→∞
1 + 2


1 + 1



3 = 1  0. Since
∞
=3

1

2
is a convergent (partial) -series [ = 2  1],

the series
∞
=3

+ 2

(+ 1)3
also converges.

23. Use the Limit Comparison Test with  =
5 + 2

(1 + 2)2
and  =

1

3
:

lim
→∞




= lim

→∞
3(5 + 2)

(1 + 2)2
= lim

→∞
53 + 24

(1 + 2)2
· 14

1(2)2
= lim

→∞

5


+ 2
1

2
+ 1
2 = 2  0. Since

∞
=1

1

3
is a convergent

-series [ = 3  1], the series
∞
=1

5 + 2

(1 + 2)2
also converges.
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24.
+ 3

+ 2


3

+ 2


3

2 + 2
=

3

2 · 2 =
1

2


3

2


, so the series

∞
=1

+ 3

+ 2
diverges by comparison with

1

2

∞
=1


3

2


,

which is a constant multiple of a divergent geometric series [|| = 3
2
 1]. Or: Use the Limit Comparison Test with

 =
+ 3

+ 2
and  =


3

2


.

25.
 + 1

 + 1
≥  + 1

 + 
=

 + 1

( + 1)
=

1


for  ≥ 1, so the series

∞
=1

 + 1

 + 1
diverges by comparison with the divergent

harmonic series
∞
=1

1


. Or: Use the Limit Comparison Test with  =

 + 1

 + 1
and  =

1


.

26. If  =
1


√
2 − 1

and  =
1

2
, then

lim
→∞




= lim

→∞
2


√
2 − 1

= lim
→∞

√
2 − 1

= lim
→∞

1
1− 12

=
1

1
= 1  0, so

∞
=2

1


√
2 − 1

converges by the

Limit Comparison Test with the convergent series
∞
=2

1

2.

27. Use the Limit Comparison Test with  =


1 +

1



2

− and  = −: lim
→∞




= lim

→∞


1 +

1



2

= 1  0. Since

∞
=1

− =
∞
=1

1


is a convergent geometric series

|| = 1

 1


, the series

∞
=1


1 +

1



2

− also converges.

28.
1




1


for all  ≥ 1, so

∞
=1

1


diverges by comparison with the harmonic series

∞
=1

1


.

29. Clearly ! = (− 1)(− 2) · · · (3)(2) ≥ 2 · 2 · 2 · · · · · 2 · 2 = 2−1, so
1

!
≤ 1

2−1
.
∞
=1

1

2−1
is a convergent geometric

series
|| = 1

2
 1


, so

∞
=1

1

!
converges by the Comparison Test.

30.
!


=

1 · 2 · 3 · · · · · (− 1)

 ·  ·  · · · · ·  ·  ≤ 1


· 2


· 1 · 1 · · · · · 1 for  ≥ 2, so since

∞
=1

2

2
converges [ = 2  1],

∞
=1

!


converges

also by the Comparison Test.

31. Use the Limit Comparison Test with  = sin


1




and  =

1


. Then


 and


 are series with positive terms and

lim
→∞




= lim

→∞
sin(1)

1
= lim

→0

sin 


= 1  0. Since

∞
=1

 is the divergent harmonic series,

∞
=1

sin (1) also diverges. [Note that we could also use l’Hospital’s Rule to evaluate the limit:

lim
→∞

sin(1)

1

H
= lim

→∞
cos(1) · −12


−12

= lim
→∞

cos
1


= cos 0 = 1.]
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32. Use the Limit Comparison Test with  =
1

1+1
and  =

1


. lim
→∞




= lim

→∞


1+1
= lim

→∞
1

1
= 1


since lim

→∞
1 = 1 by l’Hospital’s Rule


, so

∞
=1

1


diverges [harmonic series] ⇒

∞
=1

1

1+1
diverges.

33.
10
=1

1

5 + 5
=

1

5 + 15
+

1

5 + 25
+

1

5 + 35
+ · · ·+ 1

5 + 105
≈ 019926. Now

1

5 + 5


1

5
, so the error is

10 ≤ 10 ≤
 ∞

10

1

5
 = lim

→∞

 

10


−5

 = lim
→∞

 −1

44


10

= lim
→∞

−1

44
+

1

40,000


=

1

40,000
= 0000 025.

34.
10
=1

1

4
=

11

14
+

12

24
+

13

34
+ · · ·+ 110

104
≈ 284748. Now

1

4
≤ 

4
for  ≥ 1, so the error is

10 ≤ 10 ≤
 ∞

10



4
 = lim

→∞

 

10


−4

 = lim
→∞

 −
33


10

= lim
→∞

−
33

+


3000


=



3000
≈ 0000 906.

35.
10
=1

5− cos2  =
cos2 1

5
+

cos2 2

52
+

cos2 3

53
+ · · ·+ cos2 10

510
≈ 007393. Now

cos2 

5
≤ 1

5
, so the error is

10 ≤ 10 ≤
 ∞

10

1

5
 = lim

→∞

 

10

5
−

 = lim
→∞


−5−

ln 5


10

= lim
→∞


−5−

ln 5
+

5−10

ln 5


=

1

510 ln 5
 64× 10

−8.

36.
10
=1

1

3 + 4
=

1

31 + 41
+

1

32 + 42
+

1

33 + 43
+ · · ·+ 1

310 + 410
≈ 019788. Now

1

3 + 4


1

3 + 3
=

1

2 · 3 , so the

error is

10 ≤ 10 ≤
 ∞

10

1

2 · 3 = lim
→∞

 

10

1

2
· 3−  = lim

→∞


−1

2

3−

ln 3


10

= lim
→∞


−1

2

3−

ln 3
+

1

2

3−10

ln 3


=

1

2 · 310 ln 3
 77× 10−6

37. Since


10
≤ 9

10
for each , and since

∞
=1

9

10
is a convergent geometric series

|| = 1
10

 1

, 0123    =

∞
=1



10

will always converge by the Comparison Test.

38. Clearly, if   0 then the series diverges, since lim
→∞

1

 ln
= ∞. If 0 ≤  ≤ 1, then  ln ≤  ln ⇒

1

 ln
≥ 1

 ln
and

∞
=2

1

 ln
diverges (Exercise 11.3.21), so

∞
=2

1

 ln
diverges. If   1, use the Limit Comparison

Test with  =
1

 ln
and  =

1


.
∞
=2

 converges, and lim
→∞




= lim

→∞
1

ln
= 0, so

∞
=2

1

 ln
also converges.

(Or use the Comparison Test, since  ln   for   .) In summary, the series converges if and only if   1.

39. Since


 converges, lim
→∞

 = 0, so there exists such that | − 0|  1 for all    ⇒ 0 ≤   1 for

all    ⇒ 0 ≤ 2
 ≤ . Since


 converges, so does


2
 by the Comparison Test.
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40. (a) Since lim
→∞

() = 0, there is a number  0 such that | − 0|  1 for all    , and so    since 

and  are positive. Thus, since


 converges, so does


 by the Comparison Test.

(b) (i) If  =
ln

3
and  =

1

2
, then lim

→∞



= lim

→∞
ln


= lim

→∞
ln



H
= lim

→∞
1

1
= 0, so

∞
=1

ln

3
converges by

part (a).

(ii) If  =
ln√


and  =
1


, then lim

→∞



= lim

→∞
ln√


= lim
→∞

ln√


H
= lim

→∞
1

1(2
√
)

= lim
→∞

2√


= 0. Now
 is a convergent geometric series with ratio  = 1 [ ||  1], so


 converges by part (a).

41. (a) Since lim
→∞




=∞, there is an integer such that




 1 whenever    . (Take = 1 in Definition 11.1.5.)

Then    whenever    and since


 is divergent,


 is also divergent by the Comparison Test.

(b) (i) If  =
1

ln
and  =

1


for  ≥ 2, then lim

→∞



= lim

→∞


ln
= lim

→∞


ln

H
= lim

→∞
1

1
= lim

→∞
 =∞,

so by part (a),
∞
=2

1

ln
is divergent.

(ii) If  =
ln


and  =

1


, then

∞
=1

 is the divergent harmonic series and lim
→∞




= lim

→∞
ln = lim

→∞
ln =∞,

so
∞
=1

 diverges by part (a).

42. Let  =
1

2
and  =

1


. Then lim

→∞



= lim

→∞
1


= 0, but


 diverges while


 converges.

43. lim
→∞

 = lim
→∞



1
, so we apply the Limit Comparison Test with  =

1


. Since lim

→∞
  0 we know that either both

series converge or both series diverge, and we also know that
∞
=1

1


diverges [-series with  = 1]. Therefore,


 must be

divergent.

44. First we observe that, by l’Hospital’s Rule, lim
→0

ln(1 + )


= lim

→0

1

1 + 
= 1. Also, if


 converges, then lim

→∞
 = 0 by

Theorem 11.2.6. Therefore, lim
→∞

ln(1 + )


= lim

→0

ln(1 + )


= 1  0. We are given that


 is convergent and   0.

Thus,


ln(1 + ) is convergent by the Limit Comparison Test.

45. Yes. Since


 is a convergent series with positive terms, lim
→∞

 = 0 by Theorem 11.2.6, and


 =


sin() is a

series with positive terms (for large enough ). We have lim
→∞




= lim

→∞
sin()


= 1  0 by Theorem 3.3.2. Thus,




is also convergent by the Limit Comparison Test.

46. Yes. Since


 converges, its terms approach 0 as →∞, so for some integer  ,  ≤ 1 for all  ≥  . But then∞
=1  =

−1

=1  +
∞

=  ≤
−1

=1  +
∞

= . The first term is a finite sum, and the second term

converges since
∞

=1  converges. So


 converges by the Comparison Test.
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11.5 Alternating Series

1. (a) An alternating series is a series whose terms are alternately positive and negative.

(b) An alternating series
∞
=1

 =
∞
=1

(−1)−1, where  = ||, converges if 0  +1 ≤  for all  and lim
→∞

 = 0.

(This is the Alternating Series Test.)

(c) The error involved in using the partial sum  as an approximation to the total sum  is the remainder = −  and the

size of the error is smaller than +1; that is, || ≤ +1. (This is the Alternating Series Estimation Theorem.)

2.
2

3
− 2

5
+

2

7
− 2

9
+

2

11
− · · · =

∞
=1

(−1)+1 2

2+ 1
. Now  =

2

2+ 1
 0, {} is decreasing, and lim

→∞
 = 0, so the

series converges by the Alternating Series Test.

3. −2

5
+

4

6
− 6

7
+

8

8
− 10

9
+ · · · =

∞
=1

(−1)
2

+ 4
. Now lim

→∞
 = lim

→∞
2

+ 4
= lim

→∞
2

1 + 4
=

2

1
6= 0. Since

lim
→∞

 6= 0 (in fact the limit does not exist), the series diverges by the Test for Divergence.

4.
1

ln 3
− 1

ln 4
+

1

ln 5
− 1

ln 6
+

1

ln 7
− · · · =

∞
=1

(−1)+1

ln(+ 2)
. Now  =

1

ln(+ 2)
 0, {} is decreasing, and lim

→∞
 = 0,

so the series converges by the Alternating Series Test.

5.
∞
=1

 =

∞
=1

(−1)−1

3 + 5
=

∞
=1

(−1)−1. Now  =
1

3 + 5
 0, {} is decreasing, and lim

→∞
 = 0, so the series

converges by the Alternating Series Test.

6.
∞
=0

 =

∞
=0

(−1)+1

√
+ 1

=

∞
=0

(−1)+1. Now  =
1√
+ 1

 0, {} is decreasing, and lim
→∞

 = 0, so the series

converges by the Alternating Series Test.

7.
∞
=1

 =
∞
=1

(−1)
3− 1

2+ 1
=

∞
=1

(−1). Now lim
→∞

 = lim
→∞

3− 1

2 + 1
=

3

2
6= 0. Since lim

→∞
 6= 0

(in fact the limit does not exist), the series diverges by the Test for Divergence.

8.
∞
=1

 =

∞
=1

(−1)
2

2 + + 1
=

∞
=1

(−1). Now lim
→∞

 = lim
→∞

2

2 + + 1
= lim

→∞
1

1 + 1+ 12
= 1 6= 0.

Since lim
→∞

 6= 0, the series diverges by the Test for Divergence.

9.
∞
=1

 =
∞
=1

(−1)− =
∞
=1

(−1). Now  =
1


 0, {} is decreasing, and lim

→∞
 = 0, so the series converges

by the Alternating Series Test.
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10.  =

√


2+ 3
 0 for  ≥ 1. {} is decreasing for  ≥ 2 since

 √


2+ 3

0
=

(2 + 3)


1
2
−12


− 12(2)

(2 + 3)2
=

1
2
−12[(2+ 3)− 4]

(2+ 3)2
=

3− 2

2
√
 (2 + 3)2

 0 for   3
2
.

Also, lim
→∞

 = lim
→∞

√

√


(2+ 3)
√


= lim
→∞

1

2
√
+ 3

√


= 0. Thus, the series
∞
=1

(−1)
√


2+ 3
converges by the

Alternating Series Test.

11.  =
2

3 + 4
 0 for  ≥ 1. {} is decreasing for  ≥ 2 since


2

3 + 4

0
=

(3 + 4)(2)− 2(32)

(3 + 4)2
=

(23 + 8− 33)

(3 + 4)2
=

(8− 3)

(3 + 4)2
 0 for   2. Also,

lim
→∞

 = lim
→∞

1

1 + 43
= 0. Thus, the series

∞
=1

(−1)+1 2

3 + 4
converges by the Alternating Series Test.

12.  = − =



 0 for  ≥ 1. {} is decreasing for  ≥ 1 since (−)0 = (−−) + − = −(1− )  0 for

  1. Also, lim
→∞

 = 0 since lim
→∞




H
= lim

→∞
1


= 0. Thus, the series

∞
=1

(−1)+1− converges by the Alternating

Series Test.

13. lim
→∞

 = lim
→∞

2 = 0 = 1, so lim
→∞

(−1)−12 does not exist. Thus, the series
∞
=1

(−1)−12 diverges by the

Test for Divergence.

14. lim
→∞

 = lim
→∞

arctan = 
2
, so lim

→∞
(−1)−1 arctan does not exist. Thus, the series

∞
=1

(−1)−1 arctan diverges

by the Test for Divergence.

15.  =
sin

+ 1

2




1 +
√


=
(−1)

1 +
√

. Now  =

1

1 +
√

 0 for  ≥ 0, {} is decreasing, and lim

→∞
 = 0, so the series

∞
=0

sin

+ 1

2




1 +
√


converges by the Alternating Series Test.

16.  =
 cos

2
= (−1)



2
= (−1). {} is decreasing for  ≥ 2 since

(2−)0 = (−2− ln 2) + 2− = 2−(1−  ln 2)  0 for  
1

ln 2
[≈14]. Also, lim

→∞
 = 0 since

lim
→∞



2
H
= lim

→∞
1

2 ln 2
= 0. Thus, the series

∞
=1

 cos

2
converges by the Alternating Series Test.

17.
∞
=1

(−1) sin




.  = sin





 0 for  ≥ 2 and sin





≥ sin




+ 1


, and lim

→∞
sin




= sin 0 = 0, so the

series converges by the Alternating Series Test.
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18.
∞
=1

(−1) cos




. lim
→∞

cos




= cos(0) = 1, so lim

→∞
(−1) cos





does not exist and the series diverges by the Test

for Divergence.

19.


!
=

 ·  · · · · · 
1 · 2 · · · · ·  ≥  ⇒ lim

→∞


!
=∞ ⇒ lim

→∞
(−1)




!
does not exist. So the series

∞
=1

(−1)


!
diverges

by the Test for Divergence.

20.  =

√
+ 1−√

1
·
√
+ 1 +

√
√

+ 1 +
√


=
(+ 1)− √
+ 1 +

√


=
1√

+ 1 +
√

 0 for  ≥ 1. {} is decreasing and

lim
→∞

 = 0, so the series
∞
=1

(−1)
√

+ 1−√  converges by the Alternating Series Test.
21. The graph gives us an estimate for the sum of the series

∞
=1

(−08)

!
of −055.

8 =
(08)

8!
≈ 0000 004, so

∞
=1

(−08)

!
≈ 7 =

7
=1

(−08)

!

≈ −08 + 032− 00853 + 001706− 0002 731 + 0000 364− 0000 042 ≈ −05507

Adding 8 to 7 does not change the fourth decimal place of 7, so the sum of the series, correct to four decimal places,

is−05507.

22. The graph gives us an estimate for the sum of the series

∞
=1

(−1)−1 

8
of 01.

6 =
6

86
≈ 0000 023, so

∞
=1

(−1)−1 

8
≈ 5 =

5
=1

(−1)−1 

8

≈ 0125− 003125 + 0005 859− 0000 977 + 0000 153 ≈ 00988

Adding 6 to 5 does not change the fourth decimal place of 5, so the sum of the series, correct to four decimal places,

is 00988.
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23. The series
∞
=1

(−1)+1

6
satisfies (i) of the Alternating Series Test because

1

(+ 1)6


1

6
and (ii) lim

→∞
1

6
= 0, so the

series is convergent. Now 5 =
1

56
= 0000064  000005 and 6 =

1

66
≈ 000002  000005, so by the Alternating Series

Estimation Theorem,  = 5. (That is, since the 6th term is less than the desired error, we need to add the first 5 terms to get the

sum to the desired accuracy.)

24. The series
∞
=1

(− 1
3
)


=

∞
=1

(−1)
1

3
satisfies (i) of the Alternating Series Test because

1

(+ 1)3+1


1

3
and

(ii) lim
→∞

1

3
= 0, so the series is convergent. Now 5 =

1

5 · 35
≈ 00008  00005 and 6 =

1

6 · 36
≈ 00002  00005,

so by the Alternating Series Estimation Theorem,  = 5. (That is, since the 6th term is less than the desired error, we need to

add the first 5 terms to get the sum to the desired accuracy.)

25. The series
∞
=1

(−1)−1

22
satisfies (i) of the Alternating Series Test because

1

(+ 1)22+1


1

22
and (ii) lim

→∞
1

22
= 0,

so the series is convergent. Now 5 =
1

5225
= 000125  00005 and 6 =

1

6226
≈ 00004  00005, so by the Alternating

Series Estimation Theorem,  = 5. (That is, since the 6th term is less than the desired error, we need to add the first 5 terms to

get the sum to the desired accuracy.)

26. The series
∞
=1


− 1




=

∞
=1

(−1)
1


satisfies (i) of the Alternating Series Test because

1

(+ 1)+1


1


and

(ii) lim
→∞

1


= 0, so the series is convergent. Now 5 =

1

55
= 000032  000005 and 6 =

1

66
≈ 000002  000005, so

by the Alternating Series Estimation Theorem,  = 5. (That is, since the 6th term is less than the desired error, we need to add

the first 5 terms to get the sum to the desired accuracy.)

27. 4 =
1

8!
=

1

40,320
≈ 0000 025, so

∞
=1

(−1)

(2)!
≈ 3 =

3
=1

(−1)

(2)!
= −1

2
+

1

24
− 1

720
≈ −0459 722

Adding 4 to 3 does not change the fourth decimal place of 3, so by the Alternating Series Estimation Theorem, the sum of

the series, correct to four decimal places, is −04597.

28.
∞
=1

(−1)+1

6
≈ 9 =

1

16
− 1

26
+

1

36
− 1

46
+

1

56
− 1

66
+

1

76
− 1

86
+

1

96
≈ 0985 552. Subtracting 10 = 1106 from 9

does not change the fourth decimal place of 9, so by the Alternating Series Estimation Theorem, the sum of the series, correct

to four decimal places, is 09856.

29.
∞
=1

(−1)−2 ≈ 5 = − 1

2
+

2

4
− 3

6
+

4

8
− 5

10
≈ −0105 025. Adding 6 = 612 ≈ 0000 037 to 5 does not

change the fourth decimal place of 5, so by the Alternating Series Estimation Theorem, the sum of the series, correct to four

decimal places, is −01050.
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30.
∞
=1

(−1)−1

4
≈ 6 =

1

4
− 1

2 · 42
+

1

3 · 43
− 1

4 · 44
+

1

5 · 45
− 1

6 · 46
≈ 0223136. Adding 7 =

1

7 · 47
≈ 0000 0087 to 6

does not change the fourth decimal place of 6, so by the Alternating Series Estimation Theorem, the sum of the series, correct

to four decimal places, is 02231.

31.
∞
=1

(−1)−1


= 1− 1

2
+

1

3
− 1

4
+ · · ·+ 1

49
− 1

50
+

1

51
− 1

52
+ · · · . The 50th partial sum of this series is an

underestimate, since
∞
=1

(−1)−1


= 50 +


1

51
− 1

52


+


1

53
− 1

54


+ · · · , and the terms in parentheses are all positive.

The result can be seen geometrically in Figure 1.

32. If   0,
1

(+ 1)
 ≤

1


({1} is decreasing) and lim

→∞
1


= 0, so the series converges by the Alternating Series Test.

If  ≤ 0, lim
→∞

(−1)
−1


does not exist, so the series diverges by the Test for Divergence. Thus,

∞
=1

(−1)
−1



converges ⇔   0.

33. Clearly  =
1

+ 
is decreasing and eventually positive and lim

→∞
 = 0 for any . So the series

∞
=1

(−1)

+ 
converges (by

the Alternating Series Test) for any  for which every  is defined, that is, +  6= 0 for  ≥ 1, or  is not a negative integer.

34. Let () =
(ln)




. Then  0() =

(ln)
−1

(− ln)

2
 0 if    so  is eventually decreasing for every . Clearly

lim
→∞

(ln)



= 0 if  ≤ 0, and if   0 we can apply l’Hospital’s Rule [[+ 1]] times to get a limit of 0 as well. So the series

∞
=2

(−1)−1 (ln)


converges for all  (by the Alternating Series Test).

35.


2 =


1(2)2 clearly converges (by comparison with the -series for  = 2). So suppose that


(−1)
−1



converges. Then by Theorem 11.2.8(ii), so does


(−1)−1 + 


= 2

1 + 1

3
+ 1

5
+ · · ·  = 2

 1

2− 1
. But this

diverges by comparison with the harmonic series, a contradiction. Therefore,


(−1)
−1

 must diverge. The Alternating

Series Test does not apply since {} is not decreasing.

36. (a) We will prove this by induction. Let  () be the proposition that 2 = 2 − .  (1) is the statement 2 = 2 − 1,

which is true since 1− 1
2

=

1 + 1

2

− 1. So suppose that  () is true. We will show that  (+ 1) must be true as a

consequence.

2+2 − +1 =


2 +

1

2+ 1
+

1

2+ 2


−

 +

1

+ 1


= (2 − ) +

1

2+ 1
− 1

2+ 2

= 2 +
1

2+ 1
− 1

2+ 2
= 2+2

which is  (+ 1), and proves that 2 = 2 −  for all .
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(b) We know that 2 − ln(2) →  and  − ln →  as  → ∞. So

2 = 2 −  = [2 − ln(2)] − ( − ln) + [ln(2) − ln], and

lim
→∞

2 =  −  + lim
→∞

[ln(2)− ln] = lim
→∞

(ln 2 + ln− ln) = ln 2.

11.6 Absolute Convergence and the Ratio and Root Tests

1. (a) Since lim
→∞

+1



 = 8  1, part (b) of the Ratio Test tells us that the series


 is divergent.

(b) Since lim
→∞

+1



 = 08  1, part (a) of the Ratio Test tells us that the series


 is absolutely convergent (and

therefore convergent).

(c) Since lim
→∞

+1



 = 1, the Ratio Test fails and the series


 might converge or it might diverge.

2.  =
1√

 0 for  ≥ 1, {} is decreasing for  ≥ 1, and lim

→∞
 = 0, so

∞
=1

(−1)−1

√


converges by the Alternating

Series Test. To determine absolute convergence, note that
∞
=1

1√

diverges because it is a -series with  = 1

2
≤ 1. Thus, the

series
∞
=1

(−1)−1

√


is conditionally convergent.

3.  =
1

5+ 1
 0 for  ≥ 0, {} is decreasing for  ≥ 0, and lim

→∞
 = 0, so

∞
=0

(−1)

5+ 1
converges by the Alternating

Series Test. To determine absolute convergence, choose  =
1


to get

lim
→∞




= lim

→∞
1

1(5+ 1)
= lim

→∞
5+ 1


= 5  0, so

∞
=1

1

5+ 1
diverges by the Limit Comparison Test with the

harmonic series. Thus, the series
∞
=0

(−1)

5+ 1
is conditionally convergent.

4. 0 
1

3 + 1


1

3
for  ≥ 1 and

∞
=1

1

3
is a convergent -series ( = 3  1), so

∞
=1

1

3 + 1
converges by comparison and

the series
∞
=1

(−1)

3 + 1
is absolutely convergent.

5. 0 

 sin2

  1

2
for  ≥ 1 and

∞
=1

1

2
is a convergent geometric series ( = 1

2
 1), so

∞
=1

 sin2

 converges by
comparison and the series

∞
=1

sin

2
is absolutely convergent.

6.  =


2 + 4
 0 for  ≥ 1, {} is decreasing for  ≥ 2, and lim

→∞
 = 0, so

∞
=1

(−1)−1 

2 + 4
converges by the

Alternating Series Test. To determine absolute convergence, choose  =
1


to get
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lim
→∞




= lim

→∞
1

(2 + 4)
= lim

→∞
2 + 4

2
= lim

→∞
1 + 42

1
= 1  0, so

∞
=1



2 + 4
diverges by the Limit

Comparison Test with the harmonic series. Thus, the series
∞
=1

(−1)−1 

2 + 4
is conditionally convergent.

7. lim
→∞

+1



 = lim
→∞

+ 1

5+1
· 5



 = lim
→∞

15 · + 1



 =
1

5
lim
→∞

1 + 1

1
=

1

5
(1) =

1

5
 1, so the series

∞
=1



5
is

absolutely convergent by the Ratio Test.

8. lim
→∞

+1



 = lim
→∞

 (−2)+1

(+ 1)2
· 2

(−2)

 = lim
→∞

(−2)
2

(+ 1)2

 = 2 lim
→∞

1

(1 + 1)2
= 2(1) = 2  1, so the series

∞
=1

(−2)

2
is divergent by the Ratio Test.

9. lim
→∞

+1



 = lim
→∞

 (−1)3+1

2+1(+ 1)3
· 23

(−1)−13

 = lim
→∞

−3

2


3

(+ 1)3

 =
3

2
lim
→∞

1

(1 + 1)3
=

3

2
(1) =

3

2
 1,

so the series
∞
=1

(−1)−1 3

23
is divergent by the Ratio Test.

10. lim
→∞

+1



= lim
→∞

 (−3)+1

[2(+ 1) + 1]!
· (2+ 1)!

(−3)

 = lim
→∞

(−3)
1

(2+ 3)(2+ 2)

 = 3 lim
→∞

1

(2+ 3)(2+ 2)

= 3(0) = 0  1

so the series
∞
=0

(−3)

(2+ 1)!
is absolutely convergent by the Ratio Test.

11. lim
→∞

+1



 = lim
→∞

 1

( + 1)!
· !

1

 = lim
→∞

1

 + 1
= 0  1, so the series

∞
=1

1

!
is absolutely convergent by the Ratio Test.

Since the terms of this series are positive, absolute convergence is the same as convergence.

12. lim
→∞

+1



 = lim
→∞

 ( + 1)−(+1)

−

 = lim
→∞


 + 1


· −1


=

1


lim
→∞

1 + 1

1
=

1


(1) =

1


 1, so the series

∞
=1

− is absolutely convergent by the Ratio Test. Since the terms of this series are positive, absolute convergence is the

same as convergence.

13. lim
→∞

+1



 = lim
→∞


10+1

(+ 2) 42+3
· (+ 1) 42+1

10


= lim

→∞


10

42
· + 1

+ 2


=

5

8
 1, so the series

∞
=1

10

(+ 1)42+1

is absolutely convergent by the Ratio Test. Since the terms of this series are positive, absolute convergence is the same as

convergence.

14. lim
→∞

+1



 = lim
→∞


(+ 1)!

100+1
· 100

!


= lim

→∞
+ 1

100
=∞, so the series

∞
=1

!

100
diverges by the Ratio Test.

15. lim
→∞

+1



 = lim
→∞

 (+ 1)+1

(−3)
· (−3)−1



 = lim
→∞

 −3
· + 1



 =


3
lim
→∞

1 + 1

1
=



3
(1) =



3
 1, so the

series
∞
=1



(−3)−1
diverges by the Ratio Test. Or: Since lim

→∞
|| =∞, the series diverges by the Test for Divergence.
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16. lim
→∞

+1



 = lim
→∞

 (+ 1)10

(−10)+2
· (−10)+1

10

 = lim
→∞

 1

−10


+ 1



10
 =

1

10
lim
→∞


1 +

1



10

=
1

10
(1) =

1

10
 1,

so the series
∞
=1

10

(−10)+1
is absolutely convergent by the Ratio Test.

17. lim
→∞

+1



 = lim
→∞

cos[(+ 1)3]

(+ 1)!
· !

cos(3)

 = lim
→∞

 cos[(+ 1)3]

(+ 1) cos(3)

 = lim
→∞



+ 1
= 0  1 (where

0   ≤ 2 for all positive integers ), so the series
∞
=1

cos(3)

!
is absolutely convergent by the Ratio Test.

18. lim
→∞

+1



 = lim
→∞

 (+ 1)!

(+ 1)+1
· 



!

 = lim
→∞

(+ 1)

(+ 1)+1
= lim

→∞


(+ 1)
 = lim

→∞
1

(1 + 1)
 =

1


 1, so the

series
∞
=1

!


is absolutely convergent by the Ratio Test.

19. lim
→∞

+1



= lim
→∞

 (+ 1)100100+1

(+ 1)!
· !

100100

 = lim
→∞

100

+ 1


+ 1



100

= lim
→∞

100

+ 1


1 +

1



100

= 0 · 1 = 0  1

so the series
∞
=1

100100

!
is absolutely convergent by the Ratio Test.

20. lim
→∞

+1



 = lim
→∞

 [2(+ 1)]!

[(+ 1)!]2
· (!)2

(2)!

 = lim
→∞

(2+ 2)(2+ 1)

(+ 1)(+ 1)
= lim

→∞
(2 + 2)(2 + 1)

(1 + 1)(1 + 1)
=

2 · 2
1 · 1 = 4  1,

so the series
∞
=1

(2)!

(!)2
diverges by the Ratio Test.

21. lim
→∞

+1



= lim
→∞

 (−1)(+ 1)!

1 · 3 · 5 · · · · · (2− 1)(2+ 1)
· 1 · 3 · 5 · · · · · (2− 1)

(−1)−1!

 = lim
→∞

+ 1

2+ 1

= lim
→∞

1 + 1

2 + 1
=

1

2
 1

so the series 1− 2!

1 · 3 +
3!

1 · 3 · 5 −
4!

1 · 3 · 5 · 7 + · · ·+ (−1)−1 !

1 · 3 · 5 · · · · · (2− 1)
+ · · · is absolutely convergent by

the Ratio Test.

22.
2

3
+

2 · 5
3 · 5 +

2 · 5 · 8
3 · 5 · 7 +

2 · 5 · 8 · 11
3 · 5 · 7 · 9 + · · · =

∞
=1

2 · 5 · 8 · 11 · · · · · (3− 1)

3 · 5 · 7 · 9 · · · · · (2+ 1)
.

lim
→∞

+1



= lim
→∞

2 · 5 · 8 · · · · · (3− 1)(3+ 2)

3 · 5 · 7 · · · · · (2+ 1)(2+ 3)
· 3 · 5 · 7 · · · · · (2+ 1)

2 · 5 · 8 · · · · · (3− 1)


= lim

→∞
3+ 2

2+ 3
= lim

→∞
3 + 2

2 + 3
=

3

2
 1

so the given series diverges by the Ratio Test.

23. lim
→∞

+1



 = lim
→∞

2 · 4 · 6 · · · · · (2)(2+ 2)

(+ 1)!
· !

2 · 4 · 6 · · · · · (2)

 = lim
→∞

2+ 2

+ 1
= lim

→∞
2(+ 1)

+ 1
= 2  1, so

the series
∞
=1

2 · 4 · 6 · · · · · (2)

!
diverges by the Ratio Test.
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24. lim
→∞

+1



 = lim
→∞

 2+1 (+ 1)!

5 · 8 · 11 · · · · · (3+ 2) (3+ 5)
· 5 · 8 · 11 · · · · · (3+ 2)

2!

 = lim
→∞

2(+ 1)

3+ 5
=

2

3
 1, so the

series
∞
=1

(−1)
2!

5 · 8 · 11 · · · · · (3+ 2)
is absolutely convergent by the Ratio Test.

25. lim
→∞



|| = lim

→∞
2 + 1

22 + 1
= lim

→∞
1 + 12

2 + 12
=

1

2
 1, so the series

∞
=1


2 + 1

22 + 1


is absolutely convergent by the

Root Test.

26. lim
→∞



|| = lim

→∞


 (−2)



 = lim
→∞

2


= 0  1, so the series

∞
=1

(−2)


is absolutely convergent by the Root Test.

27. lim
→∞



|| = lim

→∞


 (−1)−1

(ln)

 = lim
→∞

1

ln
= 0  1, so the series

∞
=2

(−1)−1

(ln)
is absolutely convergent by the Root

Test.

28. lim
→∞



||= lim

→∞



 −2

+ 1

5
 = lim

→∞
25 5

(+ 1)5
= 32 lim

→∞
1

+ 1



5
= 32 lim

→∞
1

(1 + 1)5

= 32(1) = 32  1,

so the series
∞
=1

 −2

+ 1

5

diverges by the Root Test.

29. lim
→∞



|| = lim

→∞



1 +

1



2
= lim

→∞


1 +

1




=   1 [by Equation 3.6.6], so the series

∞
=1


1 +

1



2
diverges by the Root Test.

30. lim
→∞



|| = lim

→∞


|(arctan)| = lim

→∞
arctan = 

2
 1, so the series

∞
=0

(arctan) diverges by the Root Test.

31.
∞
=2

(−1)

ln
converges by the Alternating Series Test since lim

→∞
1

ln
= 0 and


1

ln


is decreasing. Now ln  , so

1

ln


1


, and since

∞
=2

1


is the divergent (partial) harmonic series,

∞
=2

1

ln
diverges by the Comparison Test. Thus,

∞
=2

(−1)

ln
is conditionally convergent.

32. lim
→∞



|| = lim

→∞


 1− 

2 + 3

 = lim
→∞

− 1

3+ 2
= lim

→∞
1− 1

3 + 2
=

1

3
 1, so the series

∞
=1


1− 

2 + 3


is

absolutely convergent by the Root Test.

33. lim
→∞

+1



 = lim
→∞

 (−9)+1

(+ 1)10+2
· 10+1

(−9)

 = lim
→∞

 (−9)

10(+ 1)

 =
9

10
lim
→∞

1

1 + 1
=

9

10
(1) =

9

10
 1, so the

series
∞
=1

(−9)

10+1
is absolutely convergent by the Ratio Test.
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34. lim
→∞

+1



 = lim
→∞

 (+ 1)52+2

10+2
· 10+1

52

 = lim
→∞

52(+ 1)

10
=

5

2
lim
→∞


1 +

1




=

5

2
(1) =

5

2
 1, so the series

∞
=1

52

10+1
diverges by the Ratio Test. Or: Since lim

→∞
 =∞, the series diverges by the Test for Divergence.

35. lim
→∞



|| = lim

→∞


 

ln

 = lim
→∞



ln
= lim

→∞


ln

H
= lim

→∞
1

1
= lim

→∞
 =∞, so the series

∞
=2

 

ln


diverges by the Root Test.

36.

 sin(6)

1 + 
√


 ≤ 1

1 + 
√



1

32
, so the series

∞
=1

sin(6)

1 + 
√


converges by comparison with the convergent -series

∞
=1

1

32
( = 3

2
 1). It follows that the given series is absolutely convergent.

37.

 (−1) arctan

2

  2

2
, so since

∞
=1

2

2
=



2

∞
=1

1

2
converges ( = 2  1), the given series

∞
=1

(−1) arctan

2

converges absolutely by the Comparison Test.

38. The function () =
1

 ln
is continuous, positive, and decreasing on [2∞).

 ∞

2

1

 ln
 = lim

→∞

 

2

1

 ln
 = lim

→∞
[ln(ln)]



2 = lim
→∞

[(ln(ln )− ln(ln 2)] =∞, so the series
∞
=2

(−1)

 ln
diverges

by the Integral Test. Now {} =


1

 ln


with  ≥ 2 is a decreasing sequence of positive terms and lim

→∞
 = 0. Thus,

∞
=2

(−1)

 ln
converges by the Alternating Series Test. It follows that

∞
=2

(−1)

 ln
is conditionally convergent.

39. By the recursive definition, lim
→∞

+1



 = lim
→∞

5+ 1

4+ 3

 = 5

4
 1, so the series diverges by the Ratio Test.

40. By the recursive definition, lim
→∞

+1



 = lim
→∞

2 + cos√


 = 0  1, so the series converges absolutely by the Ratio Test.

41. The series
∞
=1

 cos


=

∞
=1

(−1)


, where   0 for  ≥ 1 and lim

→∞
 =

1

2
.

lim
→∞

+1



 = lim
→∞

 (−1)+1+1


+ 1
· 

(−1)

 = lim
→∞




+ 1
=

1

2
(1) =

1

2
 1, so the series

∞
=1

 cos


is

absolutely convergent by the Ratio Test.

42. lim
→∞

+1



= lim
→∞

 (−1)+1(+ 1)!

(+ 1)+112 · · · +1

· 
12 · · · 
(−1) !

 = lim
→∞

 (−1)(+ 1)

+1(+ 1)+1

 = lim
→∞



+1(+ 1)

= lim
→∞

1

+1




+ 1


= lim

→∞
1

+1


1

1 + 1


= lim

→∞
1

+1(1 + 1)
=

1
1
2


=
2


 1

so the series
∞
=1

(−1) !

123 · · ·  is absolutely convergent by the Ratio Test.
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43. (a) lim
→∞

1(+ 1)3

13

 = lim
→∞

3

(+ 1)
3

= lim
→∞

1

(1 + 1)
3

= 1. Inconclusive

(b) lim
→∞

 (+ 1)

2+1
· 2



 = lim
→∞

+ 1

2
= lim

→∞


1

2
+

1

2


=

1

2
. Conclusive (convergent)

(c) lim
→∞

 (−3)√
+ 1

·
√


(−3)−1

 = 3 lim
→∞




+ 1
= 3 lim

→∞


1

1 + 1
= 3. Conclusive (divergent)

(d) lim
→∞

 √
+ 1

1 + (+ 1)
2
· 1 + 2

√


 = lim
→∞


1 +

1


· 12 + 1

12 + (1 + 1)
2


= 1. Inconclusive

44. We use the Ratio Test:

lim
→∞

+1



 = lim
→∞

 [(+ 1)!]
2
/[(+ 1)]!

(!)
2
/()!

 = lim
→∞

 (+ 1)
2

[(+ 1)] [(+ 1)− 1] · · · [+ 1]


Now if  = 1, then this is equal to lim

→∞

 (+ 1)
2

(+ 1)

 = ∞, so the series diverges; if  = 2, the limit is

lim
→∞

 (+ 1)
2

(2+ 2)(2+ 1)

 =
1

4
 1, so the series converges, and if   2, then the highest power of  in the denominator is

larger than 2, and so the limit is 0, indicating convergence. So the series converges for  ≥ 2.

45. (a) lim
→∞

+1



 = lim
→∞

 +1

(+ 1)!
· !



 = lim
→∞

 

+ 1

 = || lim
→∞

1

+ 1
= || · 0 = 0  1, so by the Ratio Test the

series
∞
=0



!
converges for all .

(b) Since the series of part (a) always converges, we must have lim
→∞



!
= 0 by Theorem 11.2.6.

46. (a)  = +1 + +2 + +3 + +4 + · · · = +1


1 +

+2

+1

+
+3

+1

+
+4

+1

+ · · ·


= +1


1 +

+2

+1

+
+3

+2

+2

+1

+
+4

+3

+3

+2

+2

+1

+ · · ·


= +1(1 + +1 + +2+1 + +3+2+1 + · · · ) ()

≤ +1


1 + +1 + 2+1 + 3+1 + · · ·  [since {} is decreasing] =

+1

1− +1

(b) Note that since {} is increasing and  →  as →∞, we have    for all . So, starting with equation (),

 = +1(1 + +1 + +2+1 + +3+2+1 + · · · ) ≤ +1


1 + + 2 + 3 + · · ·  =

+1

1− 
.

47. (a) 5 =
5

=1

1

2
=

1

2
+

1

8
+

1

24
+

1

64
+

1

160
=

661

960
≈ 068854. Now the ratios

 =
+1


=

2

(+ 1)2+1
=



2(+ 1)
form an increasing sequence, since

+1 −  =
+ 1

2(+ 2)
− 

2(+ 1)
=

(+ 1)
2 − (+ 2)

2(+ 1)(+ 2)
=

1

2(+ 1)(+ 2)
 0. So by Exercise 46(b), the error

in using 5 is 5 ≤ 6

1− lim
→∞


=

1

6 · 26


1− 12

=
1

192
≈ 000521.
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(b) The error in using  as an approximation to the sum is  =
+1

1− 1
2

=
2

(+ 1)2+1
. We want   000005 ⇔

1

(+ 1)2
 000005 ⇔ (+ 1)2  20,000. To find such an  we can use trial and error or a graph. We calculate

(11 + 1)211 = 24,576, so 11 =
11
=1

1

2
≈ 0693109 is within 000005 of the actual sum.

48. 10 =
10
=1



2
=

1

2
+

2

4
+

3

8
+ · · ·+ 10

1024
≈ 1988. The ratios  =

+1


=

+ 1

2+1
· 2


=

+ 1

2
=

1

2


1 +

1




form a

decreasing sequence, and 11 =
11 + 1

2(11)
=

12

22
=

6

11
 1, so by Exercise 46(a), the error in using 10 to approximate the sum

of the series
∞
=1



2
is 10 ≤ 11

1− 11
=

11
2048

1− 6
11

=
121

10,240
≈ 00118.

49. (i) Following the hint, we get that ||   for  ≥  , and so since the geometric series
∞

=1 
 converges [0    1],

the series
∞

= || converges as well by the Comparison Test, and hence so does
∞

=1 ||, so
∞

=1  is absolutely

convergent.

(ii) If lim
→∞



|| =   1, then there is an integer such that 


||  1 for all  ≥  , so ||  1 for  ≥  . Thus,

lim
→∞

 6= 0, so
∞

=1  diverges by the Test for Divergence.

(iii) Consider
∞
=1

1


[diverges] and

∞
=1

1

2
[converges]. For each sum, lim

→∞


|| = 1, so the Root Test is inconclusive.

50. (a) lim
→∞

+1



= lim
→∞

 [4(+ 1)]! [1103 + 26,390(+ 1)]

[(+ 1)!]4 3964(+1)
· (!)4 3964

(4)! (1103 + 26,390)


= lim

→∞
(4+ 4)(4+ 3)(4+ 2)(4+ 1)(26,390+ 27,493)

(+ 1)4 3964 (26,390+ 1103)
=

44

3964
=

1

994
 1,

so by the Ratio Test, the series
∞
=0

(4)! (1103 + 26,390)

(!)4 3964
converges.

(b)
1


=

2
√

2

9801

∞
=0

(4)! (1103 + 26,390)

(!)4 3964

With the first term ( = 0),
1


≈ 2

√
2

9801
· 1103

1
⇒  ≈ 3141 592 73, so we get 6 correct decimal places of ,

which is 3141 592 653 589 793 238 to 18 decimal places.

With the second term ( = 1),
1


≈ 2

√
2

9801


1103

1
+

4! (1103 + 26,390)
3964


⇒  ≈ 3141 592 653 589 793 878, so

we get 15 correct decimal places of .
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51. (a) Since


 is absolutely convergent, and since
+


 ≤ || and
−  ≤ || (because +

 and − each equal

either  or 0), we conclude by the Comparison Test that both


+
 and


− must be absolutely convergent.

Or: Use Theorem 11.2.8.

(b) We will show by contradiction that both


+
 and


− must diverge. For suppose that


+
 converged. Then so

would


+
 − 1

2


by Theorem 11.2.8. But


+
 − 1

2



=


1
2

( + ||)− 1
2



= 1
2

 ||, which

diverges because


 is only conditionally convergent. Hence,


+
 can’t converge. Similarly, neither can


− .

52. Let


 be the rearranged series constructed in the hint. [This series can be constructed by virtue of the result of

Exercise 51(b).] This series will have partial sums  that oscillate in value back and forth across . Since lim
→∞

 = 0

(by Theorem 11.2.6), and since the size of the oscillations | − | is always less than || because of the way


 was

constructed, we have that


 = lim
→∞

 = .

53. Suppose that


 is conditionally convergent.

(a)


2 is divergent: Suppose


2 converges. Then lim
→∞

2 = 0 by Theorem 6 in Section 11.2, so there is an

integer   0 such that    ⇒ 2 ||  1. For    , we have ||  1

2
, so




|| converges by

comparison with the convergent -series



1

2
. In other words,


 converges absolutely, contradicting the

assumption that


 is conditionally convergent. This contradiction shows that


2 diverges.

Remark: The same argument shows that


 diverges for any   1.

(b)
∞
=2

(−1)

 ln
is conditionally convergent. It converges by the Alternating Series Test, but does not converge absolutely


by the Integral Test, since the function () =

1

 ln
is continuous, positive, and decreasing on [2∞) and

 ∞

2



 ln
= lim

→∞

 

2



 ln
= lim

→∞


ln(ln)


2

=∞

. Setting  =

(−1)

 ln
for  ≥ 2, we find that

∞
=2

 =
∞
=2

(−1)

ln
converges by the Alternating Series Test.

It is easy to find conditionally convergent series


 such that


 diverges. Two examples are
∞
=1

(−1)−1


and

∞
=1

(−1)−1

√


, both of which converge by the Alternating Series Test and fail to converge absolutely because
 || is a

-series with  ≤ 1. In both cases,


 diverges by the Test for Divergence.
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11.7 Strategy for Testing Series

1. Use the Limit Comparison Test with  =
2 − 1

3 + 1
and  =

1


:

lim
→∞




= lim

→∞
(2 − 1)

3 + 1
= lim

→∞
3 − 

3 + 1
= lim

→∞
1− 12

1 + 1 /3
= 1  0. Since

∞
=1

1


is the divergent harmonic series, the

series
∞
=1

2 − 1

3 + 1
also diverges.

2.
− 1

3 + 1




3 + 1




3
=

1

2
for  ≥ 1, so

∞
=1

− 1

3 + 1
converges by comparison with

∞
=1

1

2
, which converges because it

is a p-series with  = 2  1.

3.
∞
=1

(−1)
2 − 1

3 + 1
=

∞
=1

(−1). Now  =
2 − 1

3 + 1
 0 for  ≥ 2, {} is decreasing for  ≥ 2, and lim

→∞
 = 0, so

the series
∞
=1

(−1)
2 − 1

3 + 1
converges by the Alternating Series Test. By Exercise 1,

∞
=1

2 − 1

3 + 1
diverges, so the series

∞
=1

(−1)
2 − 1

3 + 1
is conditionally convergent.

4. lim
→∞

|| = lim
→∞

(−1)
2 − 1

2 + 1

 = lim
→∞

1− 12

1 + 12
= 1 6= 0, so the series

∞
=1

(−1)
2 − 1

2 + 1
diverges by the Test for

Divergence.


Note that lim

→∞
(−1)

2 − 1

2 + 1
does not exist.



5. lim
→∞



2

H
= lim

→∞


2

H
= lim

→∞


2
=∞, so lim

→∞


2
=∞. Thus, the series

∞
=1



2
diverges by the Test for Divergence.

6. lim
→∞



|| = lim

→∞



2

(1 + )3
= lim

→∞
2

(1 + )3
= lim

→∞
1

(1+ 1)3
=

0

1
= 0  1, so the series

∞
=1

2

(1 + )3

converges by the Root Test.

7. Let () =
1


√

ln
. Then  is positive, continuous, and decreasing on [2∞), so we can apply the Integral Test.

Since


1


√

ln



 = ln,

 = 


=



−12

 = 2
12

+  = 2
√

ln + , we find

 ∞

2




√

ln
= lim

→∞

 

2




√

ln
= lim

→∞


2
√

ln

2

= lim
→∞


2
√

ln − 2
√

ln 2


=∞. Since the integral diverges, the

given series
∞
=2

1


√

ln
diverges.

8. lim
→∞

+1



 = lim
→∞

 (+ 1)4

4+1
· 4

4

 = lim
→∞

(+ 1)4

44
=

1

4
lim
→∞


1 +

1



4

=
1

4
(1) =

1

4
 1, so the series

∞
=1

(−1)−1
4

4
is absolutely convergent (and therefore convergent) by the Ratio Test.
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9. lim
→∞

+1



 = lim
→∞

 2+2

(2+ 2)!
· (2)!

2

 = lim
→∞

2

(2+ 2)(2+ 1)
= 0  1, so the series

∞
=0

(−1)
2

(2)!
is absolutely

convergent (and therefore convergent) by the Ratio Test.

10. Let () = 2−
3

. Then  is continuous and positive on [1∞), and  0() =
(2− 33)


3  0 for  ≥ 1, so  is

decreasing on [1∞) as well, and we can apply the Integral Test.
∞
1

2−
3

 = lim
→∞


− 1

3
−

3

1

= 1
3
, so the integral

converges, and hence, the series converges.

11.
∞
=1


1

3
+

1

3


=

∞
=1

1

3
+

∞
=1


1

3


. The first series converges since it is a -series with  = 3  1 and the second

series converges since it is geometric with || = 1
3
 1. The sum of two convergent series is convergent.

12.
1


√
2 + 1


1


√
2

=
1

2
, so

∞
=1

1


√
2 + 1

converges by comparison with the convergent -series
∞
=1

1

2

(  = 2  1).

13. lim
→∞

+1



 = lim
→∞

3+1 (+ 1)
2

(+ 1)!
· !

32

 = lim
→∞

3(+ 1)2

(+ 1)2
= 3 lim

→∞
+ 1

2
= 0  1, so the series

∞
=1

32

!

converges by the Ratio Test.

14.

 sin 2

1 + 2

 ≤ 1

1 + 2


1

2
=


1

2


, so the series

∞
=1

 sin 2

1 + 2

 converges by comparison with the geometric series
∞
=1


1

2


with || = 1

2
 1. Thus, the series

∞
=1

sin 2

1 + 2
converges absolutely, implying convergence.

15.  =
2−13+1


=

22−1331


=

3

2


2 · 3



. By the Root Test, lim

→∞



6




= lim

→∞
6


= 0  1, so the series

∞
=1


6




converges. It follows from Theorem 8(i) in Section 11.2 that the given series,

∞
=1

2−13+1


=

∞
=1

3

2


6




,

also converges.

16. Use the Limit Comparison Test with  =

√
4 + 1

3 + 
and  =

1


:

lim
→∞




= lim

→∞

√
4 + 1

(2 + 1)
= lim

→∞

√
4 + 12

(2 + 1)2
= lim

→∞


1 + 14

1 + 12
= 1  0. Since

∞
=1

1


is the divergent harmonic

series, the series
∞
=1

√
4 + 1

3 + 
also diverges.

17. lim
→∞

+1



= lim
→∞

1 · 3 · 5 · · · · · (2− 1)(2+ 1)

2 · 5 · 8 · · · · · (3− 1)(3+ 2)
· 2 · 5 · 8 · · · · · (3− 1)

1 · 3 · 5 · · · · · (2− 1)

 = lim
→∞

2+ 1

3+ 2

= lim
→∞

2 + 1

3 + 2
=

2

3
 1

so the series
∞
=1

1 · 3 · 5 · · · · · (2− 1)

2 · 5 · 8 · · · · · (3− 1)
converges by the Ratio Test.
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18.  =
1√
− 1

for  ≥ 2. {} is a decreasing sequence of positive numbers and lim
→∞

 = 0, so
∞
=2

(−1)
−1

√
− 1

converges by

the Alternating Series Test.

19. Let () =
ln√

. Then  0() =

2− ln

232
 0 when ln  2 or   2, so

ln√

is decreasing for   2.

By l’Hospital’s Rule, lim
→∞

ln√


= lim
→∞

1

1

2
√

 = lim

→∞
2√


= 0, so the series
∞
=1

(−1)
ln√

converges by the

Alternating Series Test.

20.  =
3
√
 − 1

(
√
 + 1)


3
√


(
√
 + 1)


3
√



√


=
13

32
=

1

76
, so the series

∞
=1

3
√
 − 1

(
√
 + 1)

converges by comparison with the

convergent -series
∞
=1

1

76


 = 7

6
 1


.

21. lim
→∞

|| = lim
→∞

(−1) cos(12)
 = lim

→∞

cos(12)
 = cos 0 = 1, so the series

∞
=1

(−1) cos(12) diverges by the

Test for Divergence.

22. lim
→∞

|| = lim
→∞

 1

2 + sin 

 = lim
→∞

1

2 + sin 
, which does not exist (the terms vary between 1

3
and 1). Thus, the series

∞
=1

1

2 + sin 
diverges by the Test for Divergence.

23. Using the Limit Comparison Test with  = tan


1




and  =

1


, we have

lim
→∞




= lim

→∞
tan(1)

1
= lim

→∞
tan(1)

1

H
= lim

→∞
sec2(1) · (−12)

−12
= lim

→∞
sec2(1) = 12 = 1  0. Since

∞
=1

 is the divergent harmonic series,
∞
=1

 is also divergent.

24. lim
→∞

 = lim
→∞


 sin

1




= lim

→∞
sin(1)

1
= lim

→0+

sin


= 1 6= 0, so the series

∞
=1

 sin(1) diverges by the

Test for Divergence.

25. Use the Ratio Test. lim
→∞

+1



 = lim
→∞

 (+ 1)!

(+1)2
· 

2

!

 = lim
→∞

(+ 1)! · 2


2+2+1!
= lim

→∞
+ 1

2+1
= 0  1, so

∞
=1

!


2

converges.

26. lim
→∞

+1



 = lim
→∞

+1


= lim

→∞


2 + 2+ 2

5+1
· 5

2 + 1


= lim

→∞


1 + 2+ 22

1 + 12
· 1

5


=

1

5
 1, so

∞
=1

2 + 1

5

converges by the Ratio Test.

27.

 ∞

2

ln

2
 = lim

→∞


− ln


− 1




1

[using integration by parts]
H
= 1. So

∞
=1

ln

2
converges by the Integral Test, and since

 ln 

( + 1)
3


 ln 

3
=

ln 

2
, the given series

∞
=1

 ln 

( + 1)
3
converges by the Comparison Test.
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28. Since


1




is a decreasing sequence, 1 ≤ 11 =  for all  ≥ 1, and

∞
=1



2
converges ( = 2  1), so

∞
=1

1

2

converges by the Comparison Test. (Or use the Integral Test.)

29.
∞
=1

 =
∞
=1

(−1)
1

cosh
=

∞
=1

(−1) . Now  =
1

cosh
 0, {} is decreasing, and lim

→∞
 = 0, so the series

converges by the Alternating Series Test.

Or: Write
1

cosh
=

2

 + −


2


and

∞
=1

1


is a convergent geometric series, so

∞
=1

1

cosh
is convergent by the

Comparison Test. So
∞
=1

(−1)
1

cosh
is absolutely convergent and therefore convergent.

30. Let () =

√


+ 5
. Then () is continuous and positive on [1∞), and since  0() =

5− 

2
√
 (+ 5)

2
 0 for   5, () is

eventually decreasing, so we can use the Alternating Series Test. lim
→∞

√


+ 5
= lim

→∞
1

12 + 5−12
= 0, so the series

∞
=1

(−1) 
√


 + 5
converges.

31. lim
→∞

 = lim
→∞

5

3 + 4
= [divide by 4] lim

→∞
(54)

(34) + 1
=∞ since lim

→∞


3

4


= 0 and lim

→∞


5

4


=∞.

Thus,
∞
=1

5

3 + 4
diverges by the Test for Divergence.

32. lim
→∞



||= lim

→∞


 (!)

4

 = lim
→∞

!

4
= lim

→∞





· − 1


· − 2


· − 3


· (− 4)!



= lim
→∞


1− 1




1− 2




1− 3




(− 4)!


=∞,

so the series
∞
=1

(!)

4
diverges by the Root Test.

33. lim
→∞



|| = lim

→∞




+ 1

2
= lim

→∞
1

[(+ 1) ]
 =

1

lim
→∞

(1 + 1)
 =

1


 1, so the series

∞
=1




+ 1

2
converges by the Root Test.

34. 0 ≤  cos2  ≤ , so
1

+  cos2 
≥ 1

+ 
=

1

2
. Thus,

∞
=1

1

+  cos2 
diverges by comparison with

∞
=1

1

2
, which is

a constant multiple of the (divergent) harmonic series.

35.  =
1

1+1
=

1

 · 1
, so let  =

1


and use the Limit Comparison Test. lim

→∞



= lim

→∞
1

1
= 1  0

[see Exercise 4.4.63], so the series
∞
=1

1

1+1
diverges by comparison with the divergent harmonic series.
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36. Note that (ln)
ln

=

ln ln

ln
=

ln

ln ln
= ln ln and ln ln→∞ as →∞, so ln ln  2 for sufficiently

large . For these  we have (ln)
ln

 2, so
1

(ln)
ln


1

2
. Since

∞
=2

1

2
converges [ = 2  1], so does

∞
=2

1

(ln)
ln

by the Comparison Test.

37. lim
→∞



|| = lim

→∞
(21 − 1) = 1− 1 = 0  1, so the series

∞
=1



√

2− 1


converges by the Root Test.

38. Use the Limit Comparison Test with  =

√

2− 1 and  = 1. Then

lim
→∞




= lim

→∞
21 − 1

1
= lim

→∞
21 − 1

1

H
= lim

→∞
21 · ln 2 · (−12)

−12
= lim

→∞
(21 · ln 2) = 1 · ln 2 = ln 2  0.

So since
∞
=1

 diverges (harmonic series), so does
∞
=1



√

2− 1

.

Alternate solution: 
√

2− 1 =
1

2(−1) + 2(−2) + 2(−3) + · · ·+ 21 + 1
[rationalize the numerator] ≥ 1

2
,

and since
∞
=1

1

2
=

1

2

∞
=1

1


diverges (harmonic series), so does

∞
=1



√

2− 1

by the Comparison Test.

11.8 Power Series

1. A power series is a series of the form
∞

=0 
 = 0 + 1+ 2

2 + 3
3 + · · · , where  is a variable and the ’s are

constants called the coefficients of the series.

More generally, a series of the form
∞

=0 (− ) = 0 + 1(− ) + 2(− )2 + · · · is called a power series in
(− ) or a power series centered at  or a power series about , where  is a constant.

2. (a) Given the power series
∞

=0 (− ), the radius of convergence is:

(i) 0 if the series converges only when  = 

(ii) ∞ if the series converges for all , or

(iii) a positive number  such that the series converges if |− |   and diverges if |− |  .

In most cases,  can be found by using the Ratio Test.

(b) The interval of convergence of a power series is the interval that consists of all values of  for which the series converges.

Corresponding to the cases in part (a), the interval of convergence is: (i) the single point {}, (ii) all real numbers; that is,
the real number line (−∞∞), or (iii) an interval with endpoints − and + which can contain neither, either, or

both of the endpoints. In this case, we must test the series for convergence at each endpoint to determine the interval of

convergence.

3. If  = (−1), then

lim
→∞

+1



 = lim
→∞

 (−1)+1(+ 1)+1

(−1) 

 = lim
→∞

(−1)
+ 1




 = lim
→∞


1 +

1




||


= ||. By the Ratio Test, the

series
∞
=1

(−1) converges when ||  1, so the radius of convergence  = 1. Now we’ll check the endpoints, that is,

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE

SECTION 11.8 POWER SERIES ¤ 1023

 = ±1. Both series
∞
=1

(−1)(±1) =
∞
=1

(∓1) diverge by the Test for Divergence since lim
→∞

|(∓1)| =∞. Thus,

the interval of convergence is  = (−1 1).

4. If  =
(−1)

3
√


, then

lim
→∞

+1



 = lim
→∞

 (−1)+1+1

3
√
+ 1

·
3
√


(−1)

 = lim
→∞

 (−1) 3
√


3
√
+ 1

 = lim
→∞

3


1

1 + 1
|| = ||. By the Ratio Test,

the series
∞
=1

(−1)

3
√


converges when ||  1, so  = 1. When  = 1, the series
∞
=1

(−1)

3
√


converges by the Alternating

Series Test. When  = −1, the series
∞
=1

1
3
√

diverges since it is a -series


 = 1

3
≤ 1


. Thus, the interval of convergence

is (−1 1].

5. If  =


2− 1
, then lim

→∞

+1



 = lim
→∞

 +1

2+ 1
· 2− 1



 = lim
→∞


2− 1

2+ 1
||


= lim
→∞


2− 1

2 + 1
||


= ||. By

the Ratio Test, the series
∞
=1



2− 1
converges when ||  1, so  = 1. When  = 1, the series

∞
=1

1

2− 1
diverges by

comparison with
∞
=1

1

2
since

1

2− 1


1

2
and

1

2

∞
=1

1


diverges since it is a constant multiple of the harmonic series.

When  = −1, the series
∞
=1

(−1)

2− 1
converges by the Alternating Series Test. Thus, the interval of convergence is [−1 1).

6. If  =
(−1)

2
, then

lim
→∞

+1



 = lim
→∞

 (−1)+1+1

(+ 1)2
· 2

(−1)

 = lim
→∞

 (−1)2

(+ 1)2

 = lim
→∞




+ 1

2

||


= 12 · || = ||.

By the Ratio Test, the series
∞
=1

(−1)

2
converges when ||  1, so  = 1. When  = 1, the series

∞
=1

(−1)

2
converges

by the Alternating Series Test. When  = −1, the series
∞
=1

1

2
converges since it is a -series with  = 2  1. Thus, the

interval of convergence is [−1 1].

7. If  =


!
, then lim

→∞

+1



 = lim
→∞

 +1

(+ 1)!
· !



 = lim
→∞

 

+ 1

 = || lim
→∞

1

+ 1
= || · 0 = 0  1 for all real .

So, by the Ratio Test,  =∞ and  = (−∞∞).

8. Here the Root Test is easier. If  = , then lim
→∞



|| = lim

→∞
 || =∞ if  6= 0, so  = 0 and  = {0}.

9. If  =


4 4
, then

lim
→∞

+1



 = lim
→∞

 +1

(+ 1)4 4+1
· 

4 4



 = lim
→∞

 4

(+ 1)4
· 
4

 = lim
→∞




+ 1

4 ||
4

= 14 · ||
4

=
||
4
. By the

Ratio Test, the series
∞
=1



4 4
converges when

||
4

 1 ⇔ ||  4 , so  = 4. When  = 4, the series
∞
=1

1

4
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converges since it is a p-series ( = 4  1). When  = −4, the series
∞
=1

(−1)

4
converges by the Alternating Series Test.

Thus, the interval of convergence is [−4 4].

10. If  = 22, then lim
→∞

+1



 = lim
→∞

2+1(+ 1)2+1

22

 = lim
→∞

2


+ 1



2

|| = 2 ||. By the Ratio Test,

the series
∞
=1

22 converges when 2 ||  1 ⇔ ||  1
2
, so  = 1

2
. When  = ± 1

2
, both series

∞
=1

22
± 1

2


=

∞
=1

(±1)2 diverge by the Test for Divergence since lim
→∞

(±1)2
 = ∞. Thus, the interval of

convergence is
− 1

2
 1

2


.

11. If  =
(−1) 4√


, then lim

→∞

+1



 = lim
→∞

 (−1)+1 4+1 +1

√
+ 1

·
√


(−1) 4 

 = lim
→∞




+ 1
· 4 || = 4 ||.

By the Ratio Test, the series
∞
=1

(−1) 4√


 converges when 4 ||  1 ⇔ ||  1
4
, so  = 1

4
. When  = 1

4
, the series

∞
=1

(−1)√


converges by the Alternating Series Test. When  = − 1
4
, the series

∞
=1

1√

diverges since it is a p-series


 = 1

2
≤ 1


. Thus, the interval of convergence is

− 1
4
 1

4


.

12. If  =
∞
=1

(−1)−1

5
, then lim

→∞

+1



 = lim
→∞

 (−1)+1

(+ 1) 5+1
· 5

(−1)−1

 = lim
→∞




+ 1

 ||
5

= 1 · ||
5

=
||
5
.

By the Ratio Test, the series
∞
=1

(−1)−1

5
 converges when

||
5

 1 ⇔ ||  5, so  = 5. When  = 5, the series

∞
=1

(−1)−1


converges by the Alternating Series Test. When  = −5, the series

∞
=1

−1


diverges since it is a constant

multiple of the harmonic series. Thus, the interval of convergence is (−5 5].

13. If  =


2(2 + 1)
, then

lim
→∞

+1



= lim
→∞

 (+ 1)+1

2+1(2 + 2+ 2)
· 2(2 + 1)



 = lim
→∞

3 + 2 + + 1

3 + 22 + 2
· ||

2

= lim
→∞

1 + 1+ 12 + 13

1 + 2+ 22
· ||

2
=
||
2

By the Ratio Test, the series
∞
=1



2(2 + 1)
 converges when

||
2

 1 ⇔ ||  2, so  = 2. When  = 2 the series

∞
=1



2 + 1
diverges by the Limit Comparison Test with  =

1


. When  = −2, the series

∞
=1

(−1)

2 + 1
converges by the

Alternating Series Test. Thus, the interval of convergence is [−2 2).

14. If  =
2

!
, then lim

→∞

+1



 = lim
→∞

 2+2

(+ 1)!
· !

2

 = lim
→∞

2


+ 1
= 0  1 for all real  So, by the Ratio Test,

 =∞ and  = (−∞∞).
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15. If  =
(− 2)

2 + 1
, then lim

→∞

+1



 = lim
→∞

 (− 2)+1

(+ 1)2 + 1
· 2 + 1

(− 2)

 = |− 2| lim
→∞

2 + 1

(+ 1)2 + 1
= |− 2|. By the

Ratio Test, the series
∞
=0

(− 2)

2 + 1
converges when |− 2|  1 [ = 1] ⇔ −1  − 2  1 ⇔ 1    3. When

 = 1, the series
∞
=0

(−1)
1

2 + 1
converges by the Alternating Series Test; when  = 3, the series

∞
=0

1

2 + 1
converges by

comparison with the p-series
∞
=1

1

2
[ = 2  1]. Thus, the interval of convergence is  = [1 3].

16. If  =
(−1)

(2− 1)2
(− 1), then

lim
→∞

+1



 = lim
→∞

 (−1)+1(− 1)+1

(2+ 1) 2+1
· (2− 1) 2

(−1)(− 1)

 = lim
→∞

2− 1

2+ 1
· |− 1|

2
=
|− 1|

2
. By the Ratio Test, the

series
∞
=1

(−1)

(2− 1) 2
(− 1) converges when

|− 1|
2

 1 ⇔ |− 1|  2 [ = 2] ⇔ −2  − 1  2 ⇔

−1    3. When  = 3, the series
∞
=1

(−1)

2− 1
converges by the Alternating Series Test. When  = −1, the series

∞
=1

1

2− 1
diverges by the Limit Comparison Test with  =

1


. Thus, the interval of convergence is (−1 3].

17. If  =
(+ 2)

2 ln
, then lim

→∞

 (+ 2)+1

2+1 ln(+ 1)
· 2 ln

(+ 2)

 = lim
→∞

ln

ln(+ 1)
· | + 2|

2
=
|+ 2|

2
since

lim
→∞

ln

ln(+ 1)
= lim

→∞
ln

ln(+ 1)

H
= lim

→∞
1

1(+ 1)
= lim

→∞
 + 1


= lim

→∞


1 +

1




= 1. By the Ratio Test, the series

∞
=2

(+ 2)

2 ln
converges when

| + 2|
2

 1 ⇔ | + 2|  2 [ = 2] ⇔ −2  + 2  2 ⇔ −4    0.

When  = −4, the series
∞
=2

(−1)

ln
converges by the Alternating Series Test. When  = 0, the series

∞
=2

1

ln
diverges by

the Limit Comparison Test with  =
1


(or by comparison with the harmonic series). Thus, the interval of convergence is

[−4 0).

18. If  =

√


8
(+ 6), then

lim
→∞

+1



= lim
→∞

√+ 1 ( + 6)+1

8+1
· 8√

(+ 6)

 = lim
→∞


+ 1


· |+ 6|

8

= lim
→∞


1 +

1


· |+ 6|

8
=
| + 6|

8

By the Ratio Test, the series
∞
=1

√


8
( + 6) converges when

|+ 6|
8

 1 ⇔ |+ 6|  8 [ = 8] ⇔

−8   + 6  8 ⇔ −14    2. When  = 2, the series
∞
=1

√
 diverges by the Test for Divergence since

lim
→∞

|| = lim
→∞

√
 = ∞  0. Similarly, when  = −14, the series

∞
=1

(−1)
√
 diverges. Thus, the interval of

convergence is (−14 2).
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19. If  =
(− 2)




, then lim

→∞


|| = lim

→∞
|− 2|


= 0, so the series converges for all  (by the Root Test).

 =∞ and  = (−∞∞).

20. If  =
(2− 1)

5
√


, then

lim
→∞

+1



 = lim
→∞

 (2− 1)+1

5+1
√
+ 1

· 5
√


(2− 1)

 = lim
→∞

|2− 1|
5




+ 1
= lim

→∞
|2− 1|

5


1

1 + 1
=
|2− 1|

5
.

By the Ratio Test, the series
∞
=1

(2− 1)

5
√


converges when
|2− 1|

5
 1 ⇔ |2− 1|  5 ⇔

− 1
2

  5
2
⇔

− 5
2
 − 1

2
 5

2
⇔ −2    3, so  = 5

2
. When  = 3, the series

∞
=1

1√

is a divergent -series


 = 1

2
≤ 1


.

When  = −2, the series
∞
=1

(−1)√


converges by the Alternating Series Test. Thus, the interval of convergence

is  = [−2 3).

21.  =



(− ), where   0.

lim
→∞

+1



 = lim
→∞

(+ 1) |− |+1

+1
· 

 |− | = lim
→∞


1 +

1



 |− |


=
|− |


.

By the Ratio Test, the series converges when
|− |


 1 ⇔ |− |   [so  = ] ⇔ −  −    ⇔

−     + . When |− | = , lim
→∞

|| = lim
→∞

 =∞, so the series diverges. Thus,  = (−   + ).

22.  =


ln
(− ), where   0.

lim
→∞

+1



 = lim
→∞

+1(− )+1

ln(+ 1)
· ln

(− )

 = lim
→∞

ln

ln(+ 1)
·  |− | =  |− | since

lim
→∞

ln

ln(+ 1)
= lim

→∞
ln

ln(+ 1)

H
= lim

→∞
1

1( + 1)
= lim

→∞
 + 1



H
= lim

→∞
1

1
= 1. By the Ratio Test, the series

∞
=2



ln
(− ) converges when  |− |  1 ⇔ |− |  1


⇔ −1


 −  

1


⇔ − 1


   +

1


,

so  =
1


. When  = +

1


, the series

∞
=2

1

ln
diverges by comparison with the divergent -series

∞
=2

1


since

1

ln


1



for  ≥ 2. When  = − 1


, the series

∞
=2

(−1)

ln
converges by the Alternating Series Test. Thus, the interval of

convergence is  =


− 1


 +

1




.

23. If  = ! (2− 1), then lim
→∞

+1



 = lim
→∞

 (+ 1)! (2− 1)+1

!(2− 1)

 = lim
→∞

(+ 1) |2− 1|→∞ as →∞

for all  6= 1
2
. Since the series diverges for all  6= 1

2
,  = 0 and  =


1
2


.
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24.  =
2

2 · 4 · 6 · · · · · (2)
=

2

2!
=



2(− 1)!
, so

lim
→∞

+1



 = lim
→∞

(+ 1) ||+1

2+1!
· 2(− 1)!

 || = lim
→∞

+ 1

2

||
2

= 0. Thus, by the Ratio Test, the series converges for

all real  and we have  =∞ and  = (−∞∞).

25. If  =
(5− 4)

3
, then

lim
→∞

+1



= lim
→∞

 (5− 4)+1

(+ 1)3
· 3

(5− 4)

 = lim
→∞

|5− 4|




+ 1

3

= lim
→∞

|5− 4|


1

1 + 1

3

= |5− 4| · 1 = |5− 4|

By the Ratio Test,
∞
=1

(5− 4)

3
converges when |5− 4|  1 ⇔

− 4
5

  1
5
⇔ −1

5
 − 4

5
 1

5
⇔

3
5
   1, so  = 1

5
. When  = 1, the series

∞
=1

1

3
is a convergent -series ( = 3  1). When  = 3

5
, the series

∞
=1

(−1)

3
converges by the Alternating Series Test. Thus, the interval of convergence is  =


3
5
 1

.

26. If  =
2

 (ln)2
, then lim

→∞

+1



 = lim
→∞

 2+2

(+ 1)[ln(+ 1)]2
·  (ln)2

2

 =
2
 lim
→∞

 (ln)2

(+ 1)[ln(+ 1)]2
= 2.

By the Ratio Test, the series
∞
=2

2

 (ln)2
converges when 2  1 ⇔ ||  1, so  = 1. When  = ±1, 2 = 1, the

series
∞
=2

1

 (ln)2
converges by the Integral Test (see Exercise 11.3.22). Thus, the interval of convergence is  = [−1 1].

27. If  =


1 · 3 · 5 · · · · · (2− 1)
, then

lim
→∞

+1



 = lim
→∞

 +1

1 · 3 · 5 · · · · · (2− 1)(2+ 1)
· 1 · 3 · 5 · · · · · (2− 1)



 = lim
→∞

||
2+ 1

= 0  1. Thus, by

the Ratio Test, the series
∞
=1



1 · 3 · 5 · · · · · (2− 1)
converges for all real  and we have  =∞ and  = (−∞∞).

28. If  =
!

1 · 3 · 5 · · · · · (2− 1)
, then

lim
→∞

+1



 = lim
→∞

 (+ 1)!+1

1 · 3 · 5 · · · · · (2− 1)(2+ 1)
· 1 · 3 · 5 · · · · · (2− 1)

!

 = lim
→∞

(+ 1) ||
2+ 1

= 1
2
||.

By the Ratio Test, the series
∞
=1

 converges when 1
2
||  1 ⇒ ||  2 so  = 2. When  = ±2,

|| = ! 2

1 · 3 · 5 · · · · · (2− 1)
=

[1 · 2 · 3 · · · · · ] 2

[1 · 3 · 5 · · · · · (2− 1)]
=

2 · 4 · 6 · · · · · 2
1 · 3 · 5 · · · · · (2− 1)

 1, so both endpoint series

diverge by the Test for Divergence. Thus, the interval of convergence is  = (−2 2).

29. (a) We are given that the power series
∞

=0 
 is convergent for  = 4. So by Theorem 4, it must converge for at least

−4   ≤ 4. In particular, it converges when  = −2; that is,
∞

=0
(−2) is convergent.
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(b) It does not follow that
∞

=0 (−4) is necessarily convergent. [See the comments after Theorem 4 about convergence at

the endpoint of an interval. An example is  = (−1)(4).]

30. We are given that the power series
∞

=0


 is convergent for  = −4 and divergent when  = 6. So by Theorem 4 it

converges for at least−4 ≤   4 and diverges for at least  ≥ 6 and   −6. Therefore:

(a) It converges when  = 1; that is,


 is convergent.

(b) It diverges when  = 8; that is,


8 is divergent.

(c) It converges when  = −3; that is,


(−3) is convergent.

(d) It diverges when  = −9; that is,


(−9) =


(−1)9 is divergent.

31. If  =
(!)



()!
, then

lim
→∞

+1



= lim
→∞

[(+ 1)!]

()!

(!)

[(+ 1)]!

|| = lim
→∞

(+ 1)


(+ )(+  − 1) · · · (+ 2)(+ 1)
||

= lim
→∞


(+ 1)

(+ 1)

(+ 1)

(+ 2)
· · · (+ 1)

(+ )


||

= lim
→∞


+ 1

+ 1


lim
→∞


+ 1

+ 2


· · · lim

→∞


+ 1

+ 


||

=


1




||  1 ⇔ ||   for convergence, and the radius of convergence is  = 

32. (a) Note that the four intervals in parts (a)–(d) have midpoint = 1
2
(+ ) and radius of convergence  = 1

2
(− ). We also

know that the power series
∞
=0

 has interval of convergence (−1 1). To change the radius of convergence to , we can

change  to




. To shift the midpoint of the interval of convergence, we can replace  with −. Thus, a power

series whose interval of convergence is ( ) is
∞
=0

−




, where = 1

2
(+ ) and  = 1

2
( − ).

(b) Similar to Example 2, we know that
∞
=1




has interval of convergence [−1 1). By introducing the factor (−1)

in , the interval of convergence changes to (−1 1]. Now change the midpoint and radius as in part (a) to get

∞
=1

(−1)
1



−




as a power series whose interval of convergence is ( ].

(c) As in part (b),
∞
=1

1



−




is a power series whose interval of convergence is [ ).

(d) If we increase the exponent on  (to say,  = 2), in the power series in part (c), then when  = , the power series

∞
=1

1

2

−




will converge by comparison to the p-series with  = 2  1, and the interval of convergence will

be [ ].

33. No. If a power series is centered at , its interval of convergence is symmetric about . If a power series has an infinite radius

of convergence, then its interval of convergence must be (−∞∞), not [0∞).
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34. The partial sums of the series
∞

=0 
 definitely do not converge

to () = 1(1− ) for  ≥ 1, since  is undefined at  = 1 and

negative on (1∞), while all the partial sums are positive on this

interval. The partial sums also fail to converge to  for  ≤ −1,

since 0  ()  1 on this interval, while the partial sums are

either larger than 1 or less than 0. The partial sums seem to

converge to  on (−1 1). This graphical evidence is consistent

with what we know about geometric series: convergence for

||  1, divergence for || ≥ 1 (see Examples 2 and 7 in Section 11.2).

35. (a) If  =
(−1)


2+1

!(+ 1)! 22+1
, then

lim
→∞

+1



 = lim
→∞

 2+3

(+ 1)!(+ 2)! 22+3
· !(+ 1)! 22+1

2+1

 =


2

2

lim
→∞

1

(+ 1)(+ 2)
= 0 for all .

So 1() converges for all  and its domain is (−∞∞).

(b), (c) The initial terms of 1() up to  = 5 are 0 =


2
,

1 = −3

16
, 2 =

5

384
, 3 = − 7

18,432
, 4 =

9

1,474,560
,

and 5 = − 11

176,947,200
. The partial sums seem to

approximate 1() well near the origin, but as || increases,
we need to take a large number of terms to get a good

approximation.

36. (a) () = 1 +
∞
=1

, where  =
3

2 · 3 · 5 · 6 · · · · · (3− 1)(3)
, so lim

→∞

+1



 = ||3 lim
→∞

1

(3+ 2)(3+ 3)
= 0

for all , so the domain is R.

(b), (c) 0 = 1 has been omitted from the graph. The

partial sums seem to approximate () well

near the origin, but as || increases, we need to
take a large number of terms to get a good

approximation.

To plot , we must first define () for the CAS. Note that for  ≥ 1, the denominator of  is
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2 · 3 · 5 · 6 · · · · · (3− 1) · 3 =
(3)!

1 · 4 · 7 · · · · · (3− 2)
=

(3)!

=1
(3 − 2)

, so  =



=1
(3 − 2)

(3)!
3 and thus

() = 1 +
∞
=1



=1(3 − 2)

(3)!
3. Both Maple and Mathematica are able to plot  if we define it this way, and Derive

is able to produce a similar graph using a suitable partial sum of ().

Derive, Maple and Mathematica all have two initially known Airy functions, called AI·SERIES(z,m) and

BI·SERIES(z,m) from BESSEL.MTH in Derive and AiryAi and AiryBi in Maple and Mathematica (just Ai and

Bi in older versions of Maple). However, it is very difficult to solve for  in terms of the CAS’s Airy functions, although

in fact () =

√
3AiryAi() + AiryBi()√
3AiryAi(0) + AiryBi(0)

.

37. 2−1 = 1 + 2+ 2 + 23 + 4 + 25 + · · ·+ 2−2 + 22−1

= 1(1 + 2) + 2(1 + 2) + 4(1 + 2) + · · ·+ 2−2(1 + 2) = (1 + 2)(1 + 2 + 4 + · · ·+ 2−2)

= (1 + 2)
1− 2

1− 2
[by (11.2.3) with  = 2] → 1 + 2

1− 2
as →∞ by (11.2.4), when ||  1.

Also 2 = 2−1 + 2 → 1 + 2

1− 2
since 2 → 0 for ||  1. Therefore,  → 1 + 2

1− 2
since 2 and 2−1 both

approach
1 + 2

1− 2
as →∞. Thus, the interval of convergence is (−1 1) and () =

1 + 2

1− 2
.

38. 4−1 = 0 + 1 + 2
2 + 3

3 + 0
4 + 1

5 + 2
6 + 3

7 + · · ·+ 3
4−1

=

0 + 1+ 2

2 + 3
3
 

1 + 4 + 8 + · · ·+ 4−4
→ 0 + 1+ 2

2 + 3
3

1− 4
as →∞

[by (11.2.4) with  = 4] for
4
  1 ⇔ ||  1. Also 4, 4+1, 4+2 have the same limits (for example,

4 = 4−1 + 0
4and 4 → 0 for ||  1). So if at least one of 0, 1, 2, and 3 is nonzero, then the interval of

convergence is (−1 1) and () =
0 + 1+ 2

2 + 3
3

1− 4
.

39. We use the Root Test on the series



. We need lim

→∞


|| = || lim

→∞


|| =  ||  1 for convergence, or

||  1, so  = 1.

40. Suppose  6= 0. Applying the Ratio Test to the series


(− ), we find that

 = lim
→∞

+1



 = lim
→∞

+1(− )+1

(− )

 = lim
→∞

|− |
|+1| (∗) =

|− |
lim
→∞

|+1| (if lim
→∞

|+1| 6= 0), so the

series converges when
|− |

lim
→∞

|+1|  1 ⇔ |− |  lim
→∞

 

+1

. Thus,  = lim
→∞

 

+1

. If lim
→∞

 

+1

 = 0

and |− | 6= 0, then (∗) shows that  = ∞ and so the series diverges, and hence,  = 0. Thus, in all cases,

 = lim
→∞

 

+1

.
41. For 2    3,




 diverges and



 converges. By Exercise 11.2.85,


( + ) diverges. Since both series

converge for ||  2, the radius of convergence of


( + ) is 2.
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42. Since



 converges whenever ||  ,




2 =




2


converges whenever
2
   ⇔ || 

√
, so the

second series has radius of convergence
√
.

11.9 Representations of Functions as Power Series

1. If () =
∞
=0


 has radius of convergence 10, then  0() =

∞
=1


−1 also has radius of convergence 10 by

Theorem 2.

2. If () =
∞
=0


 converges on (−2 2), then


()  =  +

∞
=0



+ 1
+1 has the same radius of convergence

(by Theorem 2), but may not have the same interval of convergence—it may happen that the integrated series converges at an

endpoint (or both endpoints).

3. Our goal is to write the function in the form
1

1− 
, and then use Equation (1) to represent the function as a sum of a power

series. () =
1

1 + 
=

1

1− (−)
=

∞
=0

(−) =
∞
=0

(−1) with |−|  1 ⇔ ||  1, so  = 1 and  = (−1 1).

4. () =
5

1− 42
= 5


1

1− 42


= 5

∞
=0

(42) = 5
∞
=0

42. The series converges when
42

  1 ⇔

||2  1
4
⇔ ||  1

2
, so  = 1

2
and  =

− 1
2
 1

2


.

5. () =
2

3− 
=

2

3


1

1− 3


=

2

3

∞
=0


3


or, equivalently, 2

∞
=0

1

3+1
. The series converges when


3

  1,

that is, when ||  3, so  = 3 and  = (−3 3).

6. () =
4

2+ 3
=

4

3


1

1 + 23


=

4

3


1

1− (−23)


=

4

3

∞
=0


−2

3


or, equivalently,

∞
=0

(−1)
2+2

3+1
.

The series converges when

−2

3

  1, that is, when ||  3
2
, so  = 3

2
and  =

− 3
2
 3

2


.

7. () =
2

4 + 16
=

2

16


1

1 + 416


=

2

16


1

1− [−(2)]4


=

2

16

∞
=0


−


2

4
or, equivalently,

∞
=0

(−1) 4+2

24+4
.

The series converges when

−24
  1 ⇒


2

  1 ⇒ ||  2, so  = 2 and  = (−2 2).

8. () =


22 + 1
= 


1

1− (−22)


= 

∞
=0

(−22) or, equivalently,
∞
=0

(−1)22+1. The series converges when

−22
  1 ⇒

2
  1

2
⇒ ||  1√

2
, so  =

1√
2
and  =


− 1√

2


1√
2


.
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9. () =
− 1

+ 2
=

 + 2− 3

+ 2
= 1− 3

+ 2
= 1− 32

2 + 1
= 1− 3

2
· 1

1− (−2)

= 1− 3

2

∞
=0


−

2


= 1− 3

2
− 3

2

∞
=1


−

2


= −1

2
−

∞
=1

(−1) 3

2+1
.

The geometric series
∞
=0


−

2


converges when

−

2

  1 ⇔ ||  2, so  = 2 and  = (−2 2).

Alternatively, you could write () = 1− 3


1

 + 2


and use the series for

1

+ 2
found in Example 2.

10. () =


2 + 2
[  0] =



2


1

1− (−22)


=

1



∞
=0


−2

2


=

∞
=0

(−1)2

2+1
. The geometric series

∞
=0


−2

2


converges when

−2

2

  1 ⇔ ||  , so  =  and  = (− ).

11. () =
2− 4

2 − 4+ 3
=

2− 4

(− 1)(− 3)
=



− 1
+



− 3
⇒ 2− 4 = (− 3) +(− 1). Let  = 1 to get

−2 = −2 ⇔  = 1 and  = 3 to get 2 = 2 ⇔  = 1. Thus,

2− 4

2 − 4+ 3
=

1

− 1
+

1

− 3
=

−1

1− 
+

1

−3


1

1− (3)


= −

∞
=0

 − 1

3

∞
=0


3


=

∞
=0


−1− 1

3+1


.

We represented  as the sum of two geometric series; the first converges for  ∈ (−1 1) and the second converges for

 ∈ (−3 3). Thus, the sum converges for  ∈ (−1 1) = 

12. () =
2+ 3

2 + 3+ 2
=

2+ 3

(+ 1)( + 2)
=



+ 1
+



+ 2
⇒ 2+ 3 = (+ 2) +(+ 1). Let  = −1 to get 1 = 

and  = −2 to get −1 = − ⇔  = 1. Thus,

2+ 3

2 + 3+ 2
=

1

 + 1
+

1

+ 2
=

1

1− (−)
+

1

2


1

1− (−2)


=
∞
=0

(−) +
1

2

∞
=0


−

2


=

∞
=0


(−1)


1 +

1

2+1




We represented  as the sum of two geometric series; the first converges for  ∈ (−1 1) and the second converges for

 ∈ (−2 2). Thus, the sum converges for  ∈ (−1 1) = 

13. (a) () =
1

(1 + )
2

=




 −1

1 + 


= − 



 ∞
=0

(−1) 


[from Exercise 3]

=
∞
=1

(−1)+1−1 [from Theorem 2(i)] =
∞
=0

(−1)(+ 1) with  = 1.

In the last step, note that we decreased the initial value of the summation variable  by 1, and then increased each

occurrence of  in the term by 1 [also note that (−1)+2 = (−1)].

(b) () =
1

(1 + )
3

= −1

2






1

(1 + )
2


= −1

2





 ∞
=0

(−1)(+ 1)


[from part (a)]

= − 1
2

∞
=1

(−1)(+ 1)−1 = 1
2

∞
=0

(−1)(+ 2)(+ 1) with  = 1.

(c) () =
2

(1 + )3
= 2 · 1

(1 + )3
= 2 · 1

2

∞
=0

(−1)(+ 2)(+ 1) [from part (b)]

=
1

2

∞
=0

(−1)(+ 2)(+ 1)+2 [continued]
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To write the power series with  rather than +2, we will decrease each occurrence of  in the term by 2 and increase

the initial value of the summation variable by 2. This gives us
1

2

∞
=2

(−1)()(− 1) with  = 1.

14. (a)


1

1− 
 = − ln(1 − ) +  and


1

1− 
 =


(1 + + 

2
+ · · · )  =


+

2

2
+

3

3
+ · · ·


+  =

∞
=1




+  for ||  1.

So − ln(1− ) =
∞
=1




+ and letting  = 0 gives 0 = . Thus, () = ln(1− ) = −

∞
=1




with  = 1.

(b) () =  ln(1− ) = −
∞
=1




= −

∞
=1

+1


.

(c) Letting  =
1

2
gives ln

1

2
= −

∞
=1

(12)


⇒ ln 1− ln 2 = −

∞
=1

1

2
⇒ ln 2 =

∞
=1

1

2
.

15. () = ln(5− ) = −




5− 
= −1

5




1− 5
= −1

5

  ∞
=0


5


 =  − 1

5

∞
=0

+1

5(+ 1)
=  −

∞
=1



5

Putting  = 0, we get  = ln 5. The series converges for |5|  1 ⇔ ||  5, so  = 5.

16. () = 2 tan−1(3) = 2
∞
=0

(−1)
(3)2+1

2+ 1
[by Example 7] =

∞
=0

(−1)
6+3+2

2+ 1
=

∞
=0

(−1)
6+5

2+ 1
for

3
  1 ⇔ ||  1, so  = 1.

17. We know that
1

1 + 4
=

1

1− (−4)
=

∞
=0

(−4). Differentiating, we get

−4

(1 + 4)2
=

∞
=1

(−4)−1 =
∞
=0

(−4)+1(+ 1), so

() =


(1 + 4)2
=
−
4
· −4

(1 + 4)2
=
−
4

∞
=0

(−4)+1(+ 1) =
∞
=0

(−1)4(+ 1)+1

for |−4|  1 ⇔ ||  1
4
, so  = 1

4
.

18.
1

2− 
=

1

2(1− 2)
=

1

2

∞
=0


2


=

∞
=0

1

2+1
. Now






1

2− 


=





 ∞
=0

1

2+1



⇒

1

(2− )2
=

∞
=1

1

2+1
−1 and






1

(2− )2


=





 ∞
=1

1

2+1
−1


⇒

2

(2− )3
=

∞
=2

1

2+1
(− 1)−2 =

∞
=0

(+ 2)(+ 1)

2+3
.

Thus, () =




2− 

3

=
3

(2− )3
=

3

2
· 2

(2− )3
=

3

2

∞
=0

(+ 2)(+ 1)

2+3
 =

∞
=0

(+ 2)(+ 1)

2+4
+3

for

2

  1 ⇔ ||  2, so  = 2.
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19. By Example 5,
1

(1− )2
=

∞
=0

(+ 1). Thus,

() =
1 + 

(1− )2
=

1

(1− )2
+



(1− )2
=

∞
=0

(+ 1) +
∞
=0

(+ 1)+1

=
∞
=0

(+ 1) +
∞
=1

 [make the starting values equal]

= 1 +
∞
=1

[(+ 1) + ] = 1 +
∞
=1

(2+ 1) =
∞
=0

(2+ 1) with  = 1.

20. By Example 5,
1

(1− )2
=

∞
=0

( + 1), so






1

(1− )2


=





 ∞
=0

(+ 1)


⇒ 2

(1− )3
=

∞
=1

(+ 1)−1. Thus,

() =
2 + 

(1− )3
=

2

(1− )3
+



(1− )3
=

2

2
· 2

(1− )3
+



2
· 2

(1− )3

=
2

2

∞
=1

(+ 1)−1 +


2

∞
=1

(+ 1)−1 =
∞
=1

(+ 1)

2
+1 +

∞
=1

(+ 1)

2


=
∞
=2

(− 1)

2
 +

∞
=1

(+ 1)

2
 [make the exponents on  equal by changing an index]

=
∞
=2

2 − 

2
 + +

∞
=2

2 + 

2
 [make the starting values equal]

= +
∞
=2

2 =
∞
=1

2 with  = 1

21. () =
2

2 + 1
= 2


1

1− (−2)


= 2

∞
=0

(−2) =
∞
=0

(−1) 2+2. This series converges when
−2

  1 ⇔

2  1 ⇔ ||  1, so  = 1. The partial sums are 1 = 2,

2 = 1 − 4, 3 = 2 + 6, 4 = 3 − 8, 5 = 4 + 10,    .

Note that 1 corresponds to the first term of the infinite sum,

regardless of the value of the summation variable and the value of the

exponent. As  increases, () approximates  better on the

interval of convergence, which is (−1 1).

22. From Example 6, we have ln(1 + ) =
∞
=1

(−1)−1 



with ||  1, so() = ln(1 + 4) =

∞
=1

(−1)−1 
4


with4

  1 ⇔ ||  1 [ = 1]. The partial sums are 1 = 4, 2 = 1 − 1
2
8, 3 = 2 + 1

3
12, 4 = 3 − 1

4
16,

5 = 4 + 1
5
20,    . Note that 1 corresponds to the first term of

the infinite sum, regardless of the value of the summation variable

and the value of the exponent. As increases, () approximates

 better on the interval of convergence, which is [−1 1]. (When

 = ±1, the series is the convergent alternating harmonic series.)
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23. () = ln


1 + 

1− 


= ln(1 + )− ln(1− ) =




1 + 
+




1− 
=




1− (−)
+




1− 

=

  ∞
=0

(−1)




+
∞
=0





 =


[(1− + 

2 − 
3
+ 

4 − · · · ) + (1 + + 
2
+ 

3
+ 

4
+ · · · )] 

=


(2 + 2

2
+ 2

4
+ · · · )  =

 ∞
=0

2
2

 =  +
∞
=0

22+1

2+ 1

But (0) = ln 1
1

= 0, so  = 0 and we have () =
∞
=0

22+1

2+ 1
with  = 1. If  = ±1, then () = ±2

∞
=0

1

2+ 1
,

which both diverge by the Limit Comparison Test with  =
1


.

The partial sums are 1 =
2

1
, 2 = 1 +

23

3
, 3 = 2 +

25

5
,    .

As  increases, () approximates  better on the interval of

convergence, which is (−1 1).

24. () = tan−1(2) = 2




1 + 42
= 2

 ∞
=0

(−1)


4

2


 = 2

 ∞
=0

(−1)

4



2


=  + 2
∞
=0

(−1)42+1

2+ 1
=

∞
=0

(−1)22+12+1

2+ 1
[(0) = tan−1 0 = 0, so  = 0]

The series converges when
42

  1 ⇔ ||  1
2
, so  = 1

2
. If  = ± 1

2
, then () =

∞
=0

(−1)
1

2+ 1
and

() =
∞
=0

(−1)+1 1

2+ 1
, respectively. Both series converge by the Alternating Series Test. The partial sums are

1 =
2

1
, 2 = 1 − 233

3
, 3 = 2 +

255

5
,    .

As  increases, () approximates  better on the interval of convergence, which is
− 1

2
 1

2


.

25.


1− 8
=  · 1

1− 8
= 

∞
=0

(8) =
∞
=0

8+1 ⇒




1− 8
 =  +

∞
=0

8+2

8+ 2
. The series for

1

1− 8
converges

when
8  1 ⇔ ||  1, so  = 1 for that series and also the series for (1− 8). By Theorem 2, the series for


1− 8
 also has  = 1.
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26.


1 + 3
=  · 1

1− (−3) = 
∞
=0

(−3) =
∞
=0

(−1)3+1 ⇒




1 + 3
 =  +

∞
=0

(−1)
 3+2

3+ 2
. The series for

1

1 + 3
converges when

−3  1 ⇔ ||  1, so  = 1 for that series and also for the series


1 + 3
. By Theorem 2, the

series for




1 + 3
 also has  = 1.

27. From Example 6, ln(1 + ) =
∞
=1

(−1)−1 



for ||  1, so 2 ln(1 + ) =

∞
=1

(−1)−1 
+2


and




2
ln(1 + )  =  +

∞
=1

(−1)
−1 +3

(+ 3)
.  = 1 for the series for ln(1 + ), so  = 1 for the series representing

2 ln(1 + ) as well. By Theorem 2, the series for



2
ln(1 + )  also has  = 1.

28. From Example 7, tan−1  =
∞
=0

(−1)
2+1

2+ 1
for ||  1, so

tan−1 


=

∞
=0

(−1)
2

2+ 1
and


tan−1 


 =  +

∞
=0

(−1)
 2+1

(2+ 1)2
.  = 1 for the series for tan−1 , so  = 1 for the series representing

tan−1 


as well. By Theorem 2, the series for


tan−1 


 also has  = 1.

29.


1 + 3
= 


1

1− (−3)


= 

∞
=0

(−3) =
∞
=0

(−1)3+1 ⇒




1 + 3
 =

 ∞
=0

(−1)



3+1
 =  +

∞
=0

(−1)
 3+2

3+ 2
. Thus,

 =

 03

0



1 + 3
 =


2

2
− 5

5
+

8

8
− 11

11
+ · · ·

03
0

=
(03)2

2
− (03)5

5
+

(03)8

8
− (03)11

11
+ · · · .

The series is alternating, so if we use the first three terms, the error is at most (03)1111 ≈ 16× 10−7. So

 ≈ (03)22− (03)55 + (03)88 ≈ 0044 522 to six decimal places.

30. We substitute 2 for  in Example 7, and find that
arctan(2) =

 ∞
=0

(−1)
 (2)2+1

2+ 1
 =

 ∞
=0

(−1)
 2+1

22+1(2+ 1)


=  +
∞
=0

(−1)
2+2

22+1(2+ 1)(2+ 2)

Thus,

 =

 12

0

arctan(2) =


2

2(1)(2)
− 4

23(3)(4)
+

6

25(5)(6)
− 8

27(7)(8)
+

10

29(9)(10)
− · · ·

12
0

=
1

23(1)(2)
− 1

27(3)(4)
+

1

211(5)(6)
− 1

215(7)(8)
+

1

219(9)(10)
− · · ·

[continued]
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The series is alternating, so if we use four terms, the error is at most 1(219 · 90) ≈ 21× 10−8. So

 ≈ 1

16
− 1

1536
+

1

61,440
− 1

1,835,008
≈ 0061 865 to six decimal places.

Remark: The sum of the first three terms gives us the same answer to six decimal places, but the error is at most

11,835,008 ≈ 55× 10−7, slightly too large to guarantee the desired accuracy.

31. We substitute 2 for  in Example 6, and find that
 ln(1 + 

2
)  =



∞
=1

(−1)
−1 (2)


 =

 ∞
=1

(−1)
−1 

2+1


 =  +

∞
=1

(−1)
−1 2+2

(2+ 2)

Thus,

 ≈
 02

0

 ln(1 + 
2
)  =


4

1(4)
− 6

2(6)
+

8

3(8)
− 10

4(10)
+ · · ·

02
0

=
(02)4

4
− (02)6

12
+

(02)8

24
− (02)10

40
+ · · ·

The series is alternating, so if we use two terms, the error is at most (02)824 ≈ 11× 10−7. So

 ≈ (02)4

4
− (02)6

12
≈ 0000 395 to six decimal places.

32.
 03

0

2

1 + 4
 =

 03

0


2
∞
=0

(−1)



4
 =

∞
=0


(−1)4+3

4+ 3

03
0

=
∞
=0

(−1)


34+3

(4+ 3)104+3

=
33

3× 103
− 37

7× 107
+

311

11× 1011
− · · ·

The series is alternating, so if we use only two terms, the error is at most
311

11× 1011
≈ 0000 000 16. So, to six decimal

places,
 03

0

2

1 + 4
 ≈ 33

3× 103
− 37

7× 107
≈ 0008 969.

33. By Example 7, arctan = − 3

3
+

5

5
− 7

7
+ · · · , so arctan 02 = 02− (02)3

3
+

(02)5

5
− (02)7

7
+ · · · .

The series is alternating, so if we use three terms, the error is at most
(02)7

7
≈ 0000 002.

Thus, to five decimal places, arctan 02 ≈ 02− (02)3

3
+

(02)5

5
≈ 0197 40.

34. () =
∞
=0

(−1)2

(2)!
⇒  0() =

∞
=1

(−1)22−1

(2)!
[the first term disappears], so

 00() =
∞
=1

(−1)(2)(2− 1)2−2

(2)!
=

∞
=1

(−1)2(−1)

[2(− 1)]!
=

∞
=0

(−1)+12

(2)!
[substituting + 1 for ]

= −
∞
=0

(−1)2

(2)!
= −() ⇒  00() + () = 0.
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35. (a) 0() =
∞
=0

(−1)

2

22(!)2
  00() =

∞
=1

(−1)


22−1

22(!)2
, and  000 () =

∞
=1

(−1)


2(2− 1)2−2

22(!)2
, so

2 000 () +  00() + 20() =
∞
=1

(−1)


2(2− 1)2

22(!)2
+

∞
=1

(−1)


22

22(!)2
+

∞
=0

(−1)

2+2

22(!)2

=
∞
=1

(−1)


2(2− 1)2

22(!)2
+

∞
=1

(−1)


22

22(!)2
+

∞
=1

(−1)
−1

2

22−2 [(− 1)!]
2

=
∞
=1

(−1)


2(2− 1)2

22(!)2
+

∞
=1

(−1)


22

22(!)2
+

∞
=1

(−1)(−1)−12222

22(!)2

=
∞
=1

(−1)

2(2− 1) + 2− 222

22(!)2


2

=
∞
=1

(−1)

42 − 2+ 2− 42

22(!)2


2 = 0

(b)
 1

0

0()  =

 1

0

 ∞
=0

(−1)

2

22(!)2


 =

 1

0


1− 2

4
+

4

64
− 6

2304
+ · · ·




=


− 3

3 · 4 +
5

5 · 64 −
7

7 · 2304 + · · ·
1
0

= 1− 1

12
+

1

320
− 1

16,128
+ · · ·

Since 1
16,128 ≈ 0000062, it follows from The Alternating Series Estimation Theorem that, correct to three decimal places, 1

0
0()  ≈ 1− 1

12
+ 1

320
≈ 0920.

36. (a) 1() =
∞
=0

(−1)2+1

! (+ 1)! 22+1
,  01 () =

∞
=0

(−1)


(2+ 1)2

! (+ 1)! 22+1
, and  001 () =

∞
=1

(−1)


(2+ 1) (2)2−1

! (+ 1)! 22+1
.

2 001 () +  01() +

2 − 1


1()

=
∞
=1

(−1)


(2+ 1)(2)2+1

! (+ 1)! 22+1
+

∞
=0

(−1)


(2+ 1)2+1

! (+ 1)! 22+1

+
∞
=0

(−1)

2+3

! (+ 1)! 22+1
−

∞
=0

(−1)

2+1

! (+ 1)! 22+1

=
∞
=1

(−1)


(2+ 1)(2)2+1

! (+ 1)! 22+1
+

∞
=0

(−1)


(2+ 1)2+1

! (+ 1)! 22+1

−
∞
=1

(−1)

2+1

(− 1)!! 22−1
−

∞
=0

(−1)

2+1

! (+ 1)! 22+1


Replace  with − 1

in the third term



=


2
− 

2
+

∞
=1

(−1)



(2+ 1)(2) + (2+ 1)− ()(+ 1)22 − 1

! (+ 1)! 22+1


2+1 = 0

(b) 0() =
∞
=0

(−1)

2

22 (!)
2

⇒

 00() =
∞
=1

(−1)


(2)2−1

22 (!)
2

=
∞
=0

(−1)
+1

2(+ 1)2+1

22+2 [(+ 1)!]
2

[Replace  with + 1]

= −
∞
=0

(−1)

2+1

22+1(+ 1)!!
[cancel 2 and + 1; take−1 outside sum] = −1()
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37. (a) () =
∞
=0



!
⇒  0() =

∞
=1

−1

!
=

∞
=1

−1

(− 1)!
=

∞
=0



!
= ()

(b) By Theorem 9.4.2, the only solution to the differential equation () = () is () = , but (0) = 1,

so = 1 and () = .

Or: We could solve the equation () = () as a separable differential equation.

38.
|sin|
2

≤ 1

2
, so

∞
=1

sin

2
converges by the Comparison Test.






sin

2


=

cos


, so when  = 2

[ an integer],
∞
=1

 0() =
∞
=1

cos(2)


=

∞
=1

1


, which diverges [harmonic series].  00 () = − sin, so

∞
=1

 00 () = −
∞
=1

sin, which converges only if sin = 0, or  =  [ an integer].

39. If  =


2
, then by the Ratio Test, lim

→∞

+1



 = lim
→∞

 +1

(+ 1)2
· 

2



 = || lim
→∞




+ 1

2

= ||  1 for

convergence, so  = 1. When  = ±1,
∞
=1

2

 =
∞
=1

1

2
which is a convergent -series ( = 2  1), so the interval of

convergence for  is [−1 1]. By Theorem 2, the radii of convergence of  0 and  00 are both 1, so we need only check the

endpoints. () =
∞
=1



2
⇒  0() =

∞
=1

−1

2
=

∞
=0



+ 1
, and this series diverges for  = 1 (harmonic series)

and converges for  = −1 (Alternating Series Test), so the interval of convergence is [−1 1).  00() =
∞
=1

−1

+ 1
diverges

at both 1 and −1 (Test for Divergence) since lim
→∞



+ 1
= 1 6= 0, so its interval of convergence is (−1 1).

40. (a)
∞
=1

−1 =
∞
=0




 =





 ∞
=0




=





1

1− 


= − 1

(1− )2
(−1) =

1

(1− )2
, ||  1.

(b) (i)
∞
=1

 = 
∞
=1

−1 = 


1

(1− )2


[from part (a)] =



(1− )2
for ||  1.

(ii) Put  = 1
2
in (i):

∞
=1



2
=

∞
=1




1
2


=

12

(1− 12)2
= 2.

(c) (i)
∞
=2

(− 1) = 2
∞
=2

(− 1)−2 = 2 



 ∞
=1

−1


= 2 



1

(1− )2

= 2 2

(1− )3
=

22

(1− )3
for ||  1.

(ii) Put  = 1
2
in (i):

∞
=2

2 − 

2
=

∞
=2

(− 1)


1
2


=

2(12)2

(1− 12)3
= 4.

(iii) From (b)(ii) and (c)(ii), we have
∞
=1

2

2
=

∞
=1

2 − 

2
+

∞
=1



2
= 4 + 2 = 6.
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41. By Example 7, tan−1  =
∞
=0

(−1)
2+1

2+ 1
for ||  1. In particular, for  =

1√
3
, we

have


6
= tan−1


1√
3


=

∞
=0

(−1)

1
√

3
2+1

2+ 1
=

∞
=0

(−1)


1

3


1√
3

1

2+ 1
, so

 =
6√
3

∞
=0

(−1)

(2+ 1)3
= 2
√

3
∞
=0

(−1)

(2+ 1)3
.

42. (a)
 12

0



2 − + 1
=

 12

0



(− 12)2 + 34


− 1

2
=

√
3

2
,  =

2√
3


− 1

2


,  =

√
3

2




=

 0

−1
√

3

√
32



(34)(2 + 1)
=

2
√

3

3


tan

−1

0
−1

√
3

=
2√
3


0−


−

6


=



3
√

3

(b)
1

3 + 1
=

1

(+ 1)(2 − + 1)
⇒

1

2 − + 1
= (+ 1)


1

1 + 3


= (+ 1)

1

1− (−3)
= (+ 1)

∞
=0

(−1)3

=
∞
=0

(−1)3+1 +
∞
=0

(−1)3 for ||  1 ⇒




2 − + 1
=  +

∞
=0

(−1)
 3+2

3+ 2
+

∞
=0

(−1)
 3+1

3+ 1
for ||  1 ⇒

 12

0



2 − + 1
=

∞
=0

(−1)



1

4 · 8(3+ 2)
+

1

2 · 8(3+ 1)


=

1

4

∞
=0

(−1)

8


2

3+ 1
+

1

3+ 2


.

By part (a), this equals


3
√

3
, so  =

3
√

3

4

∞
=0

(−1)

8


2

3+ 1
+

1

3+ 2


.

11.10 Taylor and Maclaurin Series

1. Using Theorem 5 with
∞
=0

(− 5),  =
 ()()

!
, so 8 =

 (8)(5)

8!
.

2. (a) Using Equation 6, a power series expansion of  at 1 must have the form (1) +  0(1)(− 1) + · · · . Comparing to the
given series, 16− 08(− 1) + · · · , we must have  0(1) = −08. But from the graph,  0(1) is positive. Hence, the given

series is not the Taylor series of  centered at 1.

(b) A power series expansion of  at 2 must have the form (2) +  0(2)(− 2) + 1
2
 00(2)(− 2)2 + · · · . Comparing to the

given series, 28 + 05(− 2) + 15(− 2)2 − 01(− 2)3 + · · · , we must have 1
2
 00(2) = 15; that is,  00(2) is positive.

But from the graph,  is concave downward near  = 2, so  00(2) must be negative. Hence, the given series is not the

Taylor series of  centered at 2.

3. Since  ()(0) = (+ 1)!, Equation 7 gives the Maclaurin series

∞
=0

 ()(0)

!
 =

∞
=0

(+ 1)!

!
 =

∞
=0

(+ 1). Applying the Ratio Test with  = (+ 1) gives us
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lim
→∞

+1



 = lim
→∞

 (+ 2)+1

(+ 1)

 = || lim
→∞

+ 2

+ 1
= || · 1 = ||. For convergence, we must have ||  1, so the

radius of convergence  = 1.

4. Since  ()(4) =
(−1) !

3(+ 1)
, Equation 6 gives the Taylor series

∞
=0

 ()(4)

!
(− 4) =

∞
=0

(−1) !

3(+ 1)!
(− 4) =

∞
=0

(−1)

3(+ 1)
(− 4), which is the Taylor series for 

centered at 4. Apply the Ratio Test to find the radius of convergence .

lim
→∞

+1



= lim
→∞

 (−1)+1(− 4)+1

3+1(+ 2)
· 3(+ 1)

(−1)(− 4)

 = lim
→∞

 (−1)(− 4)(+ 1)

3(+ 2)


=

1

3
|− 4| lim

→∞
+ 1

+ 2
=

1

3
|− 4|

For convergence, 1
3
|− 4|  1 ⇔ |− 4|  3, so  = 3.

5.
  ()()  ()(0)

0  0

1 (+ 1) 1

2 (+ 2) 2

3 (+ 3) 3

4 (+ 4) 4

Using Equation 6 with  = 0 to 4 and  = 0, we get

4
=0

 ()(0)

!
(− 0) =

0

0!
0 +

1

1!
1 +

2

2!
2 +

3

3!
3 +

4

4!
4

= + 2 + 1
2
3 + 1

6
4

6.
  ()()  ()(2)

0
1

1 + 
1
3

1 − 1

(1 + )2
− 1

9

2
2

(1 + )3
2
27

3 − 6

(1 + )4
− 6

81

3
=0

 ()(2)

!
(− 2) =

1
3

0!
(− 2)0 −

1
9

1!
(− 2)1

+
2
27

2!
(− 2)2 −

6
81

3!
(− 2)3

= 1
3
− 1

9
(− 2) + 1

27
(− 2)2 − 1

81
(− 2)3

7.
  ()()  ()(8)

0 3
√
 2

1
1

323

1
12

2 − 2

953
− 2

288

3
10

2783

10
6912

3
=0

 ()(8)

!
(− 8) =

2

0!
(− 8)0 +

1
12

1!
(− 8)1

−
2

288

2!
(− 8)2 +

10
6912

3!
(− 8)3

= 2 + 1
12

(− 8)− 1
288

(− 8)2 + 5
20,736 (− 8)3
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8.
  ()()  ()(1)

0 ln 0

1 1 1

2 −12 −1

3 23 2

4 −64 −6

4
=0

 ()(1)

!
(− 1) =

0

0!
(− 1)0 +

1

1!
(− 1)1 − 1

2!
(− 1)2

+
2

3!
(− 1)3 − 6

4!
(− 1)4

= (− 1)− 1
2
(− 1)2 + 1

3
(− 1)3 − 1

4
(− 1)4

9.
  ()()  ()(6)

0 sin 12

1 cos
√

32

2 − sin −12

3 − cos −√32

3
=0

 ()(6)

!


− 

6


=

12

0!


− 

6

0
+

√
32

1!


− 

6

1
− 12

2!


− 

6

2
−
√

32

3!


− 

6

3
=

1

2
+

√
3

2


− 

6


− 1

4


− 

6

2
−
√

3

12


− 

6

3

10.
  ()()  ()(0)

0 cos2  1

1 −2 cos sin = − sin 2 0

2 −2 cos 2 −2

3 4 sin 2 0

4 8 cos 2 8

5 −16 sin 2 0

6 −32 cos 2 −32

6
=0

 ()(0)

!
(− 0) =

1

0!
0 − 2

2!
2 +

8

4!
4 − 32

6!
6

= 1− 2 + 1
3
4 − 2

45
6

11.
  ()()  ()(0)

0 (1− )−2 1

1 2(1− )−3 2

2 6(1− )−4 6

3 24(1− )−5 24

4 120(1− )−6 120

...
...

...

(1− )−2 = (0) +  0(0)+
 00(0)

2!
2 +

 000(0)
3!

3 +
 (4)(0)

4!
4 + · · ·

= 1 + 2+ 6
2
2 + 24

6
3 + 120

24
4 + · · ·

= 1 + 2+ 32 + 43 + 54 + · · · =
∞
=0

(+ 1)

lim
→∞

+1



 = lim
→∞

 (+ 2)+1

(+ 1)

 = || lim
→∞

+ 2

+ 1
= || (1) = ||  1

for convergence, so  = 1.
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12.
  ()()  ()(0)

0 ln(1 + ) 0

1 (1 + )
−1

1

2 − (1 + )
−2 −1

3 2(1 + )−3 2

4 −6(1 + )−4 −6

5 24(1 + )−5 24

...
...

...

ln(1 + ) = (0) +  0(0)+
 00(0)

2!
2

+
 000(0)

3!
3 +

 (4)(0)

4!
4 +

 (5)(0)

5!
5 + · · ·

= 0 + − 1
2
2 + 2

6
3 − 6

24
4 + 24

120
5 − · · ·

= − 2

2
+

3

3
− 4

4
+

5

5
− · · · =

∞
=1

(−1)
−1




lim
→∞

+1



 = lim
→∞

 +1

+ 1
· 



 = lim
→∞

||
1 + 1

= ||  1 for convergence,

so  = 1.

Notice that the answer agrees with the entry for ln(1 + ) in Table 1, but we obtained it by a different method. (Compare with

Example 11.9.6.)

13.
  ()()  ()(0)

0 cos 1

1 − sin 0

2 − cos −1

3 sin 0

4 cos 1

...
...

...

cos= (0) +  0(0) +
 00(0)

2!
2 +

 000(0)
3!

3 +
 (4)(0)

4!
4 + · · ·

= 1− 1

2!
2 +

1

4!
4 − · · ·

=
∞
=0

(−1)
2

(2)!
[Equal to (16).]

lim
→∞

+1



 = lim
→∞

 2+2

(2+ 2)!
· (2)!

2

 = lim
→∞

2

(2+ 2)(2+ 1)
= 0  1

for all , so  =∞.

14.
  ()()  ()(0)

0 −2 1

1 −2−2 −2

2 4−2 4

3 −8−2 −8

4 16−2 16

...
...

...

−2 =
∞
=0

 ()(0)

!
 =

∞
=0

(−2)

!
.

lim
→∞

+1



= lim
→∞

 (−2)+1+1

(+ 1)!
· !

(−2)

 = lim
→∞

2 ||
+ 1

= 0  1 for all , so  =∞

15.
  ()()  ()(0)

0 2 1

1 2(ln 2) ln 2

2 2(ln 2)2 (ln 2)2

3 2(ln 2)3 (ln 2)3

4 2(ln 2)4 (ln 2)4

...
...

...

2 =
∞
=0

 ()(0)

!
 =

∞
=0

(ln 2)

!
.

lim
→∞

+1



= lim
→∞

 (ln 2)+1+1

(+ 1)!
· !

(ln 2)


= lim

→∞
(ln 2) ||
+ 1

= 0  1 for all , so  =∞.
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16.
  ()()  ()(0)

0  cos 0

1 − sin+ cos 1

2 − cos− 2 sin 0

3  sin− 3 cos −3

4  cos+ 4 sin 0

5 − sin+ 5 cos 5

6 − cos− 6 sin 0

7  sin− 7 cos −7

...
...

...

 cos = (0) +  0(0)+
 00(0)

2!
2 +

 000(0)
3!

3 +
 (4)(0)

4!
4 + · · ·

= 0 + 1+ 0− 3

3!
3 + 0 +

5

5!
5 + 0− 7

7!
7 + · · ·

= − 1

2!
3 +

1

4!
5 − 1

6!
7 + · · ·

=
∞
=0

(−1)
 1

(2)!
2+1

lim
→∞

+1



= lim
→∞

 (−1)+12+3

(2+ 2)!
· (2)!

(−1)2+1


= lim

→∞
2

(2+ 2)(2+ 1)
= 0  1 for all , so  =∞.

17.
  ()()  ()(0)

0 sinh 0

1 cosh 1

2 sinh 0

3 cosh 1

4 sinh 0

...
...

...

 ()(0) =


0 if  is even

1 if  is odd
so sinh =

∞
=0

2+1

(2+ 1)!
.

Use the Ratio Test to find . If  =
2+1

(2+ 1)!
, then

lim
→∞

+1



= lim
→∞

 2+3

(2+ 3)!
· (2+ 1)!

2+1

 = 2 · lim
→∞

1

(2+ 3)(2+ 2)

= 0  1 for all , so  =∞.

18.
  ()()  ()(0)

0 cosh 1

1 sinh 0

2 cosh 1

3 sinh 0

...
...

...

 ()(0) =


1 if  is even

0 if  is odd
so cosh =

∞
=0

2

(2)!
.

Use the Ratio Test to find . If  =
2

(2)!
, then

lim
→∞

+1



= lim
→∞

 2+2

(2+ 2)!
· (2)!

2

 = 2 · lim
→∞

1

(2+ 2)(2+ 1)

= 0  1 for all , so  =∞

19.
  ()()  ()(2)

0 5 + 23 +  50

1 54 + 62 + 1 105

2 203 + 12 184

3 602 + 12 252

4 120 240

5 120 120

6 0 0

7 0 0

...
...

...

 ()() = 0 for  ≥ 6, so  has a finite expansion about  = 2.

() = 5 + 23 +  =
5

=0

 ()(2)

!
(− 2)

=
50

0!
(− 2)0 +

105

1!
(− 2)1 +

184

2!
(− 2)2 +

252

3!
(− 2)3

+
240

4!
(− 2)4 +

120

5!
(− 2)5

= 50 + 105(− 2) + 92(− 2)2 + 42(− 2)3

+ 10(− 2)4 + (− 2)5

A finite series converges for all  so  =∞
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20.
  ()()  ()(−2)

0 6 − 4 + 2 50

1 65 − 43 −160

2 304 − 122 432

3 1203 − 24 −912

4 3602 − 24 1416

5 720 −1440

6 720 720

7 0 0

8 0 0

...
...

...

 ()() = 0 for  ≥ 7, so  has a finite expansion about  = −2.

() = 6 − 4 + 2 =
6

=0

 ()(−2)

!
( + 2)

=
50

0!
(+ 2)0 − 160

1!
(+ 2)1 +

432

2!
(+ 2)2 − 912

3!
(+ 2)3

+
1416

4!
(+ 2)4 − 1440

5!
(+ 2)5 +

720

6!
(+ 2)6

= 50− 160( + 2) + 216(+ 2)2 − 152(+ 2)3 + 59( + 2)4 − 12(+ 2)5 + (+ 2)6

A finite series converges for all  so  =∞.

21.
  ()()  ()(2)

0 ln ln 2

1 1 12

2 −12 −122

3 23 223

4 −64 −624

5 245 2425

...
...

...

() = ln =
∞
=0

 ()(2)

!
(− 2)

=
ln 2

0!
(− 2)0 +

1

1! 21
(− 2)1 +

−1

2! 22
(− 2)2 +

2

3! 23
(− 2)3

+
−6

4! 24
(− 2)4 +

24

5! 25
(− 2)5 + · · ·

= ln2 +
∞
=1

(−1)+1 (− 1)!

! 2
(− 2)

= ln2 +
∞
=1

(−1)+1 1

 2
(− 2)

lim
→∞

+1



= lim
→∞

 (−1)+2(− 2)+1

(+ 1) 2+1
·  2

(−1)+1(− 2)

 = lim
→∞

 (−1)(− 2)

(+ 1)2

 = lim
→∞




+ 1

 |− 2|
2

=
|− 2|

2
 1 for convergence, so |− 2|  2 and  = 2.
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22.
  ()()  ()(−3)

0 1 −13

1 −12 −132

2 23 −233

3 −64 −634

4 245 −2435

...
...

...

() =
1


=

∞
=0

 ()(−3)

!
(+ 3)

=
−13

0!
(+ 3)0 +

−132

1!
( + 3)1 +

−233

2!
(+ 3)2

+
−634

3!
(+ 3)3 +

−2435

4!
(+ 3)4 + · · ·

=
∞
=0

−!3+1

!
(+ 3) = −

∞
=0

(+ 3)

3+1

lim
→∞

+1



 = lim
→∞

 (+ 3)+1

3+2
· 3+1

(+ 3)

 = lim
→∞

| + 3|
3

=
|+ 3|

3
 1 for convergence,

so |+ 3|  3 and  = 3.

23.
  ()()  ()(3)

0 2 6

1 22 26

2 222 46

3 232 86

4 242 166

...
...

...

() = 2 =
∞
=0

 ()(3)

!
(− 3)

=
6

0!
(− 3)0 +

26

1!
(− 3)1 +

46

2!
(− 3)2

+
86

3!
(− 3)3 +

166

4!
(− 3)4 + · · ·

=
∞
=0

26

!
(− 3)

lim
→∞

+1



 = lim
→∞

2+16(− 3)+1

(+ 1)!
· !

26(− 3)

 = lim
→∞

2 |− 3|
+ 1

= 0  1 for all , so  =∞.

24.
  ()()  ()(2)

0 cos 0

1 − sin −1

2 − cos 0

3 sin 1

4 cos 0

5 − sin −1

6 − cos 0

7 sin 1

...
...

...

() = cos =
∞
=0

 ()(2)

!


− 

2


=
−1

1!


− 

2

1
+

1

3!


− 

2

3
+
−1

5!


− 

2

5
+

1

7!


− 

2

7
+ · · ·

=
∞
=0

(−1)+1

(2+ 1)!


− 

2

2+1

lim
→∞

+1



= lim
→∞


(−1)+2


− 

2

2+3

(2+ 3)!
· (2+ 1)!

(−1)+1


− 

2

2+1


= lim

→∞


− 

2

2
(2+ 3)(2+ 2)

= 0  1 for all , so  =∞.
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25.
  ()()  ()()

0 sin 0

1 cos −1

2 − sin 0

3 − cos 1

4 sin 0

5 cos −1

6 − sin 0

7 − cos 1

...
...

...

() = sin =
∞
=0

 ()()

!
(− )

=
−1

1!
(− )1 +

1

3!
(− )3 +

−1

5!
(− )5 +

1

7!
(− )7 + · · ·

=
∞
=0

(−1)+1

(2+ 1)!
(− )2+1

lim
→∞

+1



= lim
→∞

 (−1)+2 (− )2+3

(2+ 3)!
· (2+ 1)!

(−1)+1 (− )2+1


= lim

→∞
(− )2

(2+ 3)(2+ 2)
= 0  1 for all , so  =∞.

26.
  ()()  ()(16)

0
√
 4

1 1
2
−12 1

2
· 1

4

2 − 1
4
−32 −1

4
· 1

43

3 3
8
−52 3

8
· 1

45

4 − 15
16
−72 −15

16
· 1

47

...
...

...

() =
√
 =

∞
=0

 ()(16)

!
(− 16)

=
4

0!
(− 16)0 +

1

2
· 1

4
· 1

1!
(− 16)1 − 1

4
· 1

43
· 1

2!
(− 16)2

+
3

8
· 1

45
· 1

3!
(− 16)3 − 15

16
· 1

47
· 1

4!
(− 16)4 + · · ·

= 4 +
1

8
(− 16) +

∞
=2

(−1)−1 1 · 3 · 5 · · · · · (2− 3)

242−1 !
(− 16)

= 4 +
1

8
(− 16) +

∞
=2

(−1)−1 1 · 3 · 5 · · · · · (2− 3)

25−2 !
(− 16)

lim
→∞

+1



= lim
→∞

 (−1) 1 · 3 · 5 · · · · · (2− 1)(− 16)+1

25+3(+ 1)!
· 25−2!

(−1)−1 1 · 3 · 5 · · · · · (2− 3)(− 16)


= lim

→∞
(2− 1) |− 16|

25(+ 1)
=
|− 16|

32
lim
→∞

2− 1

1 + 1
=
|− 16|

32
· 2

=
|− 16|

16
 1 for convergence, so |− 16|  16 and  = 16.

27. If () = cos, then  (+1)() = ± sin or ± cos. In each case,
 (+1)()

 ≤ 1, so by Formula 9 with  = 0 and

 = 1, |()| ≤ 1

(+ 1)!
||+1. Thus, |()|→ 0 as →∞ by Equation 10. So lim

→∞
() = 0 and, by Theorem

8, the series in Exercise 13 represents cos for all 

28. If () = sin, then  (+1)() = ± sin or ± cos. In each case,
 (+1)()

 ≤ 1, so by Formula 9 with  = 0 and

 = 1, |()| ≤ 1

(+ 1)!
|− |+1. Thus, |()|→ 0 as →∞ by Equation 10. So lim

→∞
() → 0 and, by

Theorem 8, the series in Exercise 25 represents sin for all 
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29. If () = sinh, then for all ,  (+1)() = cosh or sinh. Since |sinh|  |cosh| = cosh for all , we have (+1)()
 ≤ cosh for all . If  is any positive number and || ≤ , then

 (+1)()
 ≤ cosh ≤ cosh , so by

Formula 9 with  = 0 and = cosh , we have |()| ≤ cosh 

(+ 1)!
||+1. It follows that |()|→ 0 as →∞ for

|| ≤  (by Equation 10). But  was an arbitrary positive number. So by Theorem 8, the series represents sinh for all .

30. If () = cosh, then for all ,  (+1)() = cosh or sinh. Since |sinh|  |cosh| = cosh for all , we have (+1)()
 ≤ cosh for all . If  is any positive number and || ≤ , then

 (+1)()
 ≤ cosh ≤ cosh , so by

Formula 9 with  = 0 and = cosh , we have |()| ≤ cosh 

(+ 1)!
||+1. It follows that |()|→ 0 as →∞ for

|| ≤  (by Equation 10). But  was an arbitrary positive number. So by Theorem 8, the series represents cosh for all .

31. 4
√

1− = [1 + (−)]14 =
∞
=0


14




(−) = 1 + 1

4
(−) +

1
4

−3
4


2!

(−)2 +
1
4

−3
4

 − 7
4


3!

(−)3 + · · ·

= 1− 1

4
+

∞
=2

(−1)−1(−1) · [3 · 7 · · · · · (4− 5)]

4 · !


= 1− 1

4
−

∞
=2

3 · 7 · · · · · (4− 5)

4 · !


and |−|  1 ⇔ ||  1, so  = 1.

32. 3
√

8 + = 3


8

1 +



8


= 2


1 +



8

13
= 2

∞
=0


13




8



= 2


1 +

1

3


8


+

1
3

−2
3


2!


8

2
+

1
3

− 2
3

− 5
3


3!


8

3
+ · · ·



= 2


1 +

1

24
+

∞
=2

(−1)−1 · [2 · 5 · · · · · (3− 4)]

3 · 8 · !



= 2 +
1

12
 + 2

∞
=2

(−1)−1[2 · 5 · · · · · (3− 4)]

24 · !


and

8

  1 ⇔ ||  8, so  = 8.

33.
1

(2 + )
3

=
1

[2(1 + 2)]
3

=
1

8


1 +



2

−3

=
1

8

∞
=0


−3




2


. The binomial coefficient is


−3




=

(−3)(−4)(−5) · · · · · (−3− + 1)

!
=

(−3)(−4)(−5) · · · · · [−(+ 2)]

!

=
(−1)

 · 2 · 3 · 4 · 5 · · · · · (+ 1)(+ 2)

2 · !
=

(−1)(+ 1)(+ 2)

2

Thus,
1

(2 + )
3

=
1

8

∞
=0

(−1)(+ 1)(+ 2)

2



2
=

∞
=0

(−1)(+ 1)(+ 2)

2+4
for

2

  1 ⇔ ||  2, so  = 2.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE

SECTION 11.10 TAYLOR AND MACLAURIN SERIES ¤ 1049

34. (1 + )34 =
∞
=0


3
4




 = 1 +

3

4
+

3
4

− 1
4


2!

2 +
3
4

− 1
4

−5
4


3!

3 + · · ·

= 1 +
3

4
+

∞
=2

(−1)−1 · 3 · [1 · 5 · 9 · · · · · (4− 7)]

4 · !


for ||  1, so  = 1.

35. arctan =
∞
=0

(−1)
2+1

2+ 1
, so () = arctan(2) =

∞
=0

(−1)

2
2+1

2+ 1
=

∞
=0

(−1)
1

2+ 1
4+2,  = 1.

36. sin =
∞
=0

(−1)
2+1

(2+ 1)!
, so () = sin


4



=
∞
=0

(−1)


4

2+1

(2+ 1)!
=

∞
=0

(−1)
2+1

42+1(2+ 1)!
2+1,  =∞.

37. cos =
∞
=0

(−1)
2

(2)!
⇒ cos 2 =

∞
=0

(−1)
(2)2

(2)!
=

∞
=0

(−1)
222

(2)!
, so

() =  cos 2 =
∞
=0

(−1)
22

(2)!
2+1,  =∞.

38.  =
∞
=0



!
, so () = 3 − 2 =

∞
=0

(3)

!
−

∞
=0

(2)

!
=

∞
=0

3

!
−

∞
=0

2

!
=

∞
=0

3 − 2

!
,  =∞.

39. cos =
∞
=0

(−1)
2

(2)!
⇒ cos


1
2
2


=
∞
=0

(−1)


1
2
2
2

(2)!
=

∞
=0

(−1)
4

22 (2)!
, so

() =  cos


1
2
2


=
∞
=0

(−1)
1

22(2)!
4+1,  =∞.

40. ln(1 + ) =
∞
=1

(−1)−1 



⇒ ln(1 + 3) =

∞
=1

(−1)−1 
3


, so () = 2 ln(1 + 3) =

∞
=1

(−1)−1 
3+2


,

 = 1.

41. We must write the binomial in the form (1+ expression), so we’ll factor out a 4.

√
4 + 2

=


4(1 + 24)
=



2


1 + 24
=



2


1 +

2

4

−12

=


2

∞
=0


− 1

2




2

4



=


2


1 +

− 1
2

2

4
+

− 1
2

−3
2


2!


2

4

2

+

− 1
2

−3
2

−5
2


3!


2

4

3

+ · · ·


=


2
+



2

∞
=1

(−1)
1 · 3 · 5 · · · · · (2− 1)

2 · 4 · !
2

=


2
+

∞
=1

(−1)
1 · 3 · 5 · · · · · (2− 1)

! 23+1
2+1 and

2

4
 1 ⇔ ||

2
 1 ⇔ ||  2, so  = 2.
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42.
2

√
2 + 

=
2

2 (1 + 2)
=

2

√
2


1 +



2

−12

=
2

√
2

∞
=0


− 1

2




2



=
2

√
2


1 +

− 1
2


2


+

− 1
2

−3
2


2!


2

2

+

− 1
2

−3
2

−5
2


3!


2

3

+ · · ·


=
2

√
2

+
2

√
2

∞
=1

(−1)
1 · 3 · 5 · · · · · (2− 1)

! 22


=
2

√
2

+
∞
=1

(−1)
1 · 3 · 5 · · · · · (2− 1)

! 22+12
+2 and


2

  1 ⇔ ||  2, so  = 2.

43. sin2  =
1

2
(1− cos 2) =

1

2


1−

∞
=0

(−1)(2)2

(2)!


=

1

2


1− 1−

∞
=1

(−1)(2)2

(2)!


=

∞
=1

(−1)+122−12

(2)!
,

 =∞

44.
− sin

3
=

1

3


−

∞
=0

(−1)2+1

(2+ 1)!


=

1

3


− −

∞
=1

(−1)2+1

(2+ 1)!


=

1

3


−

∞
=0

(−1)+12+3

(2+ 3)!



=
1

3

∞
=0

(−1)2+3

(2+ 3)!
=

∞
=0

(−1)2

(2+ 3)!

and this series also gives the required value at  = 0 (namely 16);  =∞.

45. cos
(16)
=

∞
=0

(−1)
2

(2)!
⇒

() = cos(2) =
∞
=0

(−1)


(2)2

(2)!
=

∞
=0

(−1)4

(2)!

= 1− 1
2
4 + 1

24
8 − 1

720
12 + · · ·

The series for cos converges for all , so the same is true of the series for

(), that is,  =∞. Notice that, as  increases, () becomes a better

approximation to ().

46. ln(1 + ) =
∞
=1

(−1)−1 



⇒

() = ln(1 + 2) =
∞
=1

(−1)−1(2)


=

∞
=1

(−1)−12



= 2 − 1
2
4 + 1

3
6 − 1

4
8 + · · ·

The series for ln(1 + ) has  = 1 and
2
  1 ⇔ ||  1,

so the series for () also has  = 1. From the graphs of  and

the first few Taylor polynomials, we see that () provides a

closer fit to () near 0 as  increases.
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47. 
(11)
=

∞
=0



!
, so − =

∞
=0

(−)

!
=

∞
=0

(−1)


!
, so

() = − =
∞
=0

(−1)
1

!
+1

= − 2 + 1
2
3 − 1

6
4 + 1

24
5 − 1

120
6 + · · ·

=
∞
=1

(−1)−1 

(− 1)!

The series for  converges for all , so the same is true of the series

for (); that is,  =∞. From the graphs of  and the first few Taylor

polynomials, we see that () provides a closer fit to () near 0 as  increases.

48. From Table 1, tan−1  =
∞
=0

(−1)
2+1

2+ 1
, so

() = tan−1(3) =
∞
=0

(−1)
(3)2+1

2+ 1
=

∞
=0

(−1)
6+3

2+ 1

= 3 − 1
3
9 + 1

5
15 − 1

7
21 + · · ·

The series for tan−1  has  = 1 and
3
  1 ⇔ ||  1,

so the series for () also has  = 1. From the graphs of  and

the first few Taylor polynomials, we see that () provides a

closer fit to () near 0 as  increases.

49. 5◦ = 5◦
 

180◦


=



36
radians and cos =

∞
=0

(−1)
2

(2)!
= 1 − 2

2!
+

4

4!
− 6

6!
+ · · · , so

cos


36
= 1− (36)2

2!
+

(36)4

4!
− (36)6

6!
+ · · · . Now 1− (36)2

2!
≈ 099619 and adding

(36)4

4!
≈ 24× 10−6

does not affect the fifth decimal place, so cos 5◦ ≈ 099619 by the Alternating Series Estimation Theorem.

50. 110
√
 = −110 and  =

∞
=0



!
= 1 +  +

2

2!
+

3

3!
+ · · · , so

−110 = 1 − 1

10
+

(110)2

2!
− (110)3

3!
+

(110)4

4!
− (110)5

5!
+ · · · . Now

1− 1

10
+

(110)2

2!
− (110)3

3!
+

(110)4

4!
≈ 090484 and subtracting

(110)5

5!
≈ 83× 10−8 does not affect the fifth

decimal place, so −110 ≈ 090484 by the Alternating Series Estimation Theorem.

51. (a) 1
√

1− 2 =

1 +

−2
−12

= 1 +
− 1

2

−2


+

−1
2

−3
2


2!

−2
2

+

− 1
2

− 3
2

− 5
2


3!

−2
3

+ · · ·

= 1 +
∞
=1

1 · 3 · 5 · · · · · (2− 1)

2 · !
2

(b) sin−1  =


1√

1− 2
 =  + +

∞
=1

1 · 3 · 5 · · · · · (2− 1)

(2+ 1)2 · !


2+1

= +
∞
=1

1 · 3 · 5 · · · · · (2− 1)

(2+ 1)2 · !
2+1 since 0 = sin−1 0 = .
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52. (a) 1 4
√

1 +  = (1 + )−14 =
∞
=0


− 1

4




 = 1− 1

4
+

− 1
4

−5
4


2!

2 +

− 1
4

−5
4

 − 9
4


3!

3 + · · ·

= 1− 1

4
 +

∞
=2

(−1)
1 · 5 · 9 · · · · · (4− 3)

4 · !


(b) 1 4
√

1 +  = 1− 1
4
+ 5

32
2 − 15

128
3 + 195

2048
4 − · · · . 1 4

√
11 = 1 4

√
1 + 01, so let  = 01. The sum of the first four

terms is then 1− 1
4
(01) + 5

32
(01)2 − 15

128
(01)3 ≈ 0976. The fifth term is 195

2048
(01)4 ≈ 0000 009 5, which does not

affect the third decimal place of the sum, so we have 1
4
√

11 ≈ 0976. (Note that the third decimal place of the sum of the

first three terms is affected by the fourth term, so we need to use more than three terms for the sum.)

53.
√

1 + 3 = (1 + 3)12 =
∞
=0


1
2




(3) =

∞
=0


1
2




3 ⇒

 
1 + 3  =  +

∞
=0


1
2




3+1

3+ 1
,

with  = 1.

54. sin =
∞
=0

(−1)
2+1

(2+ 1)!
⇒ sin(2) =

∞
=0

(−1)
(2)2+1

(2+ 1)!
=

∞
=0

(−1)
4+2

(2+ 1)!
⇒

2 sin(2) =
∞
=0

(−1)
4+4

(2+ 1)!
⇒




2
sin(

2
)  =  +

∞
=0

(−1)
 4+5

(2+ 1)!(4+ 5)
, with  =∞.

55. cos
(16)
=

∞
=0

(−1)
2

(2)!
⇒ cos− 1 =

∞
=1

(−1)
2

(2)!
⇒ cos− 1


=

∞
=1

(−1)
2−1

(2)!
⇒


cos− 1


 =  +

∞
=1

(−1)
 2

2 · (2)!
, with  =∞.

56. arctan =
∞
=0

(−1)
2+1

2+ 1
⇒ arctan(2) =

∞
=0

(−1)
(2)2+1

2+ 1
=

∞
=0

(−1)
4+2

2+ 1
⇒


arctan(

2
)  =  +

∞
=0

(−1)
 4+3

(2+ 1)(4+ 3)
, with  = 1.

57. arctan =
∞
=0

(−1)
2+1

2+ 1
for ||  1, so 3 arctan =

∞
=0

(−1)
2+4

2+ 1
for ||  1 and




3
arctan =  +

∞
=0

(−1)
 2+5

(2+ 1)(2+ 5)
. Since 1

2
 1, we have

 12

0


3
arctan =

∞
=0

(−1)
 (12)2+5

(2+ 1)(2+ 5)
=

(12)5

1 · 5 − (12)7

3 · 7 +
(12)9

5 · 9 − (12)11

7 · 11 + · · · . Now

(12)5

1 · 5 − (12)7

3 · 7 +
(12)9

5 · 9 ≈ 00059 and subtracting
(12)11

7 · 11 ≈ 63× 10−6 does not affect the fourth decimal place,

so
 12

0
3 arctan ≈ 00059 by the Alternating Series Estimation Theorem.

58. sin =
∞
=0

(−1)
2+1

(2+ 1)!
for all , so sin(4) =

∞
=0

(−1)
8+4

(2+ 1)!
for all  and


sin(

4
)  =  +

∞
=0

(−1)
 8+5

(2+ 1)! (8+ 5)
. Thus,
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0

sin(
4
)  =

∞
=0

(−1)
 1

(2+ 1)! (8+ 5)
=

1

1! · 5 −
1

3! · 13 +
1

5! · 21 −
1

7! · 29 + · · · . Now

1

1! · 5 −
1

3! · 13 +
1

5! · 21 ≈ 01876 and subtracting
1

7! · 29 ≈ 684× 10−6 does not affect the fourth decimal place, so

 1

0
sin(4)  ≈ 01876 by the Alternating Series Estimation Theorem.

59.
√

1 + 4 = (1 + 4)12 =
∞
=0


1
2




(4), so

 
1 + 4  =  +

∞
=0


1
2




4+1

4+ 1
and hence, since 04  1,

we have

 =

 04

0


1 + 4  =

∞
=0


1
2




(04)4+1

4+ 1

= (1)
(04)1

0!
+

1
2

1!

(04)5

5
+

1
2

− 1
2


2!

(04)9

9
+

1
2

− 1
2

−3
2


3!

(04)13

13
+

1
2

− 1
2

− 3
2

− 5
2


4!

(04)17

17
+ · · ·

= 04 +
(04)5

10
− (04)9

72
+

(04)13

208
− 5(04)17

2176
+ · · ·

Now
(04)9

72
≈ 36× 10−6  5× 10−6, so by the Alternating Series Estimation Theorem,  ≈ 04 +

(04)5

10
≈ 040102

(correct to five decimal places).

60.
 05

0


2

−2

 =

 05

0

∞
=0

(−1)

2+2

!
 =

∞
=0


(−1)


2+3

!(2+ 3)

12
0

=
∞
=0

(−1)


!(2+ 3)22+3
and since the term

with  = 2 is
1

1792
 0001, we use

1
=0

(−1)


!(2+ 3)22+3
=

1

24
− 1

160
≈ 00354.

61. lim
→0

− ln(1 + )

2
= lim

→0

− (− 1
2
2 + 1

3
3 − 1

4
4 + 1

5
5 − · · · )

2
= lim

→0

1
2
2 − 1

3
3 + 1

4
4 − 1

5
5 + · · ·

2

= lim
→0

( 1
2
− 1

3
+ 1

4
2 − 1

5
3 + · · · ) = 1

2

since power series are continuous functions.

62. lim
→0

1− cos

1 + − 
= lim

→0

1− 1− 1
2!
2 + 1

4!
4 − 1

6!
6 + · · · 

1 + − 1 + + 1
2!
2 + 1

3!
3 + 1

4!
4 + 1

5!
5 + 1

6!
6 + · · · 

= lim
→0

1
2!
2 − 1

4!
4 + 1

6!
6 − · · ·

− 1
2!
2 − 1

3!
3 − 1

4!
4 − 1

5!
5 − 1

6!
6 − · · ·

= lim
→0

1
2!
− 1

4!
2 + 1

6!
4 − · · ·

− 1
2!
− 1

3!
− 1

4!
2 − 1

5!
3 − 1

6!
4 − · · · =

1
2
− 0

− 1
2
− 0

= −1

since power series are continuous functions.

63. lim
→0

sin− + 1
6
3

5
= lim

→0


− 1

3!
3 + 1

5!
5 − 1

7!
7 + · · · −  + 1

6
3

5

= lim
→0

1
5!
5 − 1

7!
7 + · · ·

5
= lim

→0


1

5!
− 2

7!
+

4

9!
− · · ·


=

1

5!
=

1

120

since power series are continuous functions.
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64. lim
→0

√
1 + − 1− 1

2


2
= lim

→0


1 + 1

2
− 1

8
2 + 1

16
3 − · · · − 1− 1

2


2
= lim

→0

− 1
8
2 + 1

16
3 − · · ·

2

= lim
→0

− 1
8

+ 1
16
− · · ·  = − 1

8
since power series are continuous functions.

65. lim
→0

3 − 3+ 3 tan−1 

5
= lim

→0

3 − 3+ 3

− 1

3
3 + 1

5
5 − 1

7
7 + · · · 

5

= lim
→0

3 − 3+ 3− 3 + 3
5
5 − 3

7
7 + · · ·

5
= lim

→0

3
5
5 − 3

7
7 + · · ·

5

= lim
→0


3
5
− 3

7
2 + · · ·  = 3

5
since power series are continuous functions.

66. lim
→0

tan− 

3
= lim

→0


+ 1

3
3 + 2

15
5 + · · · − 

3
= lim

→0

1
3
3 + 2

15
5 + · · ·

3
= lim

→0


1
3

+ 2
15
2 + · · ·  = 1

3

since power series are continuous functions.

67. From Equation 11, we have −
2

= 1− 2

1!
+

4

2!
− 6

3!
+ · · · and we know that cos = 1− 2

2!
+

4

4!
− · · · from

Equation 16. Therefore, −
2

cos =

1− 2 + 1

2
4 − · · · 1− 1

2
2 + 1

24
4 − · · · . Writing only the terms with

degree ≤ 4, we get −
2

cos = 1− 1
2
2 + 1

24
4 − 2 + 1

2
4 + 1

2
4 + · · · = 1− 3

2
2 + 25

24
4 + · · · .

68. sec =
1

cos

(16)
=

1

1− 1
2
2 + 1

24
4 − · · · .

1 + 1
2
2 + 5

24
4 + · · ·

1− 1
2
2 + 1

24
4 − · · · 1

1− 1
2
2 + 1

24
4 − · · ·

1
2
2 − 1

24
4 + · · ·

1
2
2 − 1

4
4 + · · ·

5
24
4 + · · ·

5
24
4 + · · ·

· · ·
From the long division above, sec = 1 + 1

2
2 + 5

24
4 + · · · .

69.


sin

(15)
=



− 1
6
3 + 1

120
5 − · · · .

1 + 1
6
2 + 7

360
4 + · · ·

− 1
6
3 + 1

120
5 − · · · 

− 1
6
3 + 1

120
5 − · · ·

1
6
3 − 1

120
5 + · · ·

1
6
3 − 1

36
5 + · · ·

7
360

5 + · · ·
7

360
5 + · · ·

· · ·
From the long division above,



sin
= 1 + 1

6
2 + 7

360
4 + · · · .
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70. From Table 1, we have  = 1 +


1!
+

2

2!
+

3

3!
+ · · · and that ln(1 + ) = − 2

2
+

3

3
− 4

4
+ · · · . Therefore,

 =  ln(1 + ) =


1 +



1!
+

2

2!
+

3

3!
+ · · ·


− 2

2
+

3

3
− 4

4
+ · · ·


. Writing only terms with degree ≤ 3,

we get  ln(1 + ) = − 1
2
2 + 1

3
3 + 2 − 1

2
3 + 1

2
3 + · · · = + 1

2
2 + 1

3
3 + · · · .

71.  = (arctan)2 =

− 1

3
3 + 1

5
5 − 1

7
7 + · · ·  − 1

3
3 + 1

5
5 − 1

7
7 + · · · . Writing only the terms with

degree ≤ 6, we get (arctan)2 = 2 − 1
3
4 + 1

5
6 − 1

3
4 + 1

9
6 + 1

5
6 + · · · = 2 − 2

3
4 + 23

45
6 + · · · .

72.  =  sin2  = ( sin) sin =

+ 2 + 1

3
3 + · · ·  − 1

6
3 + · · ·  [from Example 13]. Writing only the terms

with degree ≤ 4, we get  sin2  = 2 − 1
6
4 + 3 + 1

3
4 + · · · = 2 + 3 + 1

6
4 + · · · .

73.
∞
=0

(−1)
4

!
=

∞
=0

−4


!
= −

4

, by (11).

74.
∞
=0

(−1)

2

62(2)!
=

∞
=0

(−1)


6

2
(2)!

= cos 
6

=
√

3
2
, by (16).

75.
∞
=1

(−1)−1 3

5
=

∞
=1

(−1)−1 (35)


= ln


1 +

3

5


[from Table 1] = ln

8

5

76.
∞
=0

3

5 !
=

∞
=0

(35)


!
= 35, by (11).

77.
∞
=0

(−1)

2+1

42+1(2+ 1)!
=

∞
=0

(−1)



4

2+1

(2+ 1)!
= sin 

4
= 1√

2
, by (15).

78. 1− ln 2 +
(ln 2)

2

2!
− (ln 2)

3

3!
+ · · · =

∞
=0

(− ln 2)


!
= − ln 2 =


ln 2

−1
= 2−1 = 1

2
, by (11).

79. 3 +
9

2!
+

27

3!
+

81

4!
+ · · · = 31

1!
+

32

2!
+

33

3!
+

34

4!
+ · · · =

∞
=1

3

!
=

∞
=0

3

!
− 1 = 3 − 1, by (11).

80.
1

1 · 2 −
1

3 · 23
+

1

5 · 25
− 1

7 · 27
+ · · · =

∞
=0

(−1)
1

(2+ 1)22+1
=

∞
=0

(−1)
(12)2+1

2+ 1
= tan−1


1

2


[from Table 1]

81. If  is an th-degree polynomial, then ()() = 0 for   , so its Taylor series at  is () =

=0

()()

!
(− ).

Put −  = 1, so that  = + 1. Then (+ 1) =

=0

()()

!
.

This is true for any , so replace  by : (+ 1) =

=0

()()

!

82. The coefficient of 58 in the Maclaurin series of () = (1 + 3)30 is
 (58)(0)

58!
. But the binomial series for () is

(1 + 3)30 =
∞
=0


30




3, so it involves only powers of  that are multiples of 3 and therefore the coefficient of 58 is 0.

So  (58)(0) = 0.
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83. Assume that | 000()| ≤  , so  000() ≤  for  ≤  ≤  + . Now
 

 000()  ≤  


  ⇒

 00()−  00() ≤(− ) ⇒  00() ≤  00() +(− ). Thus,
 

 00()  ≤  


[ 00() +(− )]  ⇒

 0()−  0() ≤  00()(− ) + 1
2
(− )2 ⇒  0() ≤  0() +  00()(− ) + 1

2
(− )2 ⇒ 


 0()  ≤  




 0() +  00()(− ) + 1

2
(− )2


 ⇒

() − () ≤  0()( − ) + 1
2
 00()( − )2 + 1

6
( − )3. So

() − () −  0()( − ) − 1
2
 00()( − )2 ≤ 1

6
( − )3. But

2() = ()− 2() = ()− ()−  0()(− )− 1
2
 00()(− )2, so 2() ≤ 1

6
(− )3.

A similar argument using  000() ≥ − shows that 2() ≥ − 1
6
(− )3. So |2(2)| ≤ 1

6
 |− |3.

Although we have assumed that   , a similar calculation shows that this inequality is also true if   .

84. (a) () =


−12 if  6= 0

0 if  = 0
so  0(0) = lim

→0

()− (0)

− 0
= lim

→0

−12


= lim

→0

1

1
2 = lim

→0



21
2 = 0

(using l’Hospital’s Rule and simplifying in the penultimate step). Similarly, we can use the definition of the derivative and

l’Hospital’s Rule to show that  00(0) = 0,  (3)(0) = 0,   ,  ()(0) = 0, so that the Maclaurin series for  consists

entirely of zero terms. But since () 6= 0 except for  = 0, we see that  cannot equal its Maclaurin series except

at  = 0.

(b) From the graph, it seems that the function is extremely flat at the origin.

In fact, it could be said to be “infinitely flat” at  = 0, since all of its

derivatives are 0 there.

85. (a) () =
∞
=0







 ⇒ 0() =

∞
=1







−1, so

(1 + )0() = (1 + )
∞
=1







−1 =

∞
=1







−1 +

∞
=1









=
∞
=0




+ 1


(+ 1) +

∞
=0










Replace  with + 1

in the first series



=
∞
=0

(+ 1)
( − 1)( − 2) · · · ( − + 1)( − )

(+ 1)!
 +

∞
=0


()

( − 1)( − 2) · · · ( − + 1)

!




=
∞
=0

(+ 1)( − 1)( − 2) · · · ( − + 1)

(+ 1)!
[( − ) + ]

= 
∞
=0

( − 1)( − 2) · · · ( − + 1)

!
 = 

∞
=0







 = ()

Thus, 0() =
()

1 + 
.
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(b) () = (1 + )
−

() ⇒
0() = −(1 + )−−1() + (1 + )

−
0() [Product Rule]

= −(1 + )−−1() + (1 + )
− ()

1 + 
[from part (a)]

= −(1 + )−−1() + (1 + )−−1() = 0

(c) From part (b) we see that () must be constant for  ∈ (−1 1), so () = (0) = 1 for  ∈ (−1 1).

Thus, () = 1 = (1 + )
−

() ⇔ () = (1 + )
 for  ∈ (−1 1).

86. Using the binomial series to expand
√

1 +  as a power series as in Example 9, we get

√
1 +  = (1 + )12 = 1 +



2
+

∞
=2

(−1)−11 · 3 · 5 · · · · · (2− 3)

2 · !
, so


1− 2

12
= 1− 1

2
2 −

∞
=2

1 · 3 · 5 · · · · · (2− 3)

2 · !
2 and


1− 2 sin2  = 1− 1

2
2 sin2  −

∞
=2

1 · 3 · 5 · · · · · (2− 3)

2 · !
2 sin2 . Thus,

 = 4

 2

0


1− 2 sin2   = 4

 2

0


1− 1

2

2
sin

2
 −

∞
=2

1 · 3 · 5 · · · · · (2− 3)

2 · !

2

sin
2






= 4




2
− 2

2
1 −

∞
=2

1 · 3 · 5 · · · · · (2− 3)

!


2

2






where  =

 2

0

sin
2

  =
1 · 3 · 5 · · · · · (2− 1)

2 · 4 · 6 · · · · · 2


2
by Exercise 7.1.50.

= 4


2


1− 2

2
· 1

2
−

∞
=2

1 · 3 · 5 · · · · · (2− 3)

!


2

2


1 · 3 · 5 · · · · · (2− 1)

2 · 4 · 6 · · · · · 2


= 2


1− 2

4
−

∞
=2

2

2
· 12 · 32 · 52 · · · · · (2− 3)2(2− 1)

! · 2 · !



= 2


1− 2

4
−

∞
=2

2

4


1 · 3 · · · · · (2− 3)

!

2

(2− 1)



= 2


1− 2

4
− 34

64
− 56

256
− · · ·


=



128
(256− 642 − 124 − 56 − · · · )

LABORATORY PROJECT An Elusive Limit

1. () =
()

()
=

sin(tan)− tan(sin)

arcsin(arctan)− arctan(arcsin)

The table of function values were obtained using Maple with 10 digits of

precision. The results of this project will vary depending on the CAS and

precision level. It appears that as → 0+, ()→ 10
3
. Since  is an even

function, we have ()→ 10
3
as → 0.

 ()

1 11838

01 09821

001 20000

0001 33333

00001 33333
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2. The graph is inconclusive about the limit of  as → 0.

3. The limit has the indeterminate form 0
0
. Applying l’Hospital’s Rule, we obtain the form 0

0
six times. Finally, on the seventh

application we obtain lim
→0

(7)()

(7)()
=
−168

−168
= 1.

4. lim
→0

() = lim
→0

()

()

CAS
= lim

→0

− 1
30
7 − 29

756
9 + · · ·

− 1
30
7 + 13

756
9 + · · ·

= lim
→0

− 1
30
7 − 29

756
9 + · · · 7− 1

30
7 + 13

756
9 + · · · 7

= lim
→0

− 1
30
− 29

756
2 + · · ·

− 1
30

+ 13
756

2 + · · · =
− 1

30

− 1
30

= 1

Note that (7)() = (7)() = − 7!
30

= − 5040
30

= −168, which agrees with the result in Problem 3.

5. The limit command gives the result that lim
→0

() = 1.

6. The strange results (with only 10 digits of precision) must be due to the fact that the terms being subtracted in the numerator

and denominator are very close in value when || is small. Thus, the differences are imprecise (have few correct digits).

11.11 Applications of Taylor Polynomials

1. (a)
  ()()  ()(0) ()

0 sin 0 0

1 cos 1 

2 − sin 0 

3 − cos −1 − 1
6
3

4 sin 0 − 1
6
3

5 cos 1 − 1
6
3 + 1

120
5

Note: () =


=0

 ()(0)

!


(b)
  0() 1() = 2() 3() = 4() 5()


4

07071 0 07854 07047 07071


2

1 0 15708 09248 10045

 0 0 31416 −20261 05240

(c) As  increases, () is a good approximation to () on a larger and larger interval.
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2. (a)
  ()()  ()(0) ()

0 tan 0 0

1 sec2  1 

2 2 sec2  tan 0 

3 4 sec2  tan2 + 2 sec4  2 + 1
3
3

Note: () =


=0

 ()(0)

!
(b)

  0() 1() = 2() 3()


6

05774 0 05236 05714


4

1 0 07854 09469


3

17321 0 10472 14300

(c) As  increases, () is a good approximation to () on a larger and larger interval. Because the Taylor polynomials

are continuous, they cannot approximate the infinite discontinuities at  = ±2. They can only approximate tan

on (−2 2).

3.
  ()()  ()(1)

0  

1  

2  

3  

3() =
3

=0

 ()(1)

!
(− 1)

=


0!
(− 1)0 +



1!
(− 1)1 +



2!
(− 1)2 +



3!
(− 1)3

= + (− 1) + 1
2
(− 1)2 + 1

6
(− 1)3

4.
  ()()  ()(6)

0 sin 12

1 cos
√

32

2 − sin −12

3 − cos −√32

3() =
3

=0

 ()(6)

!


− 

6


=

12

0!


− 

6

0
+

√
32

1!


− 

6

1
− 12

2!


− 

6

2
+

√
32

3!


− 

6

3
=

1

2
+

√
3

2


− 

6


− 1

4


− 

6

2
−
√

3

12


− 

6

3
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5.
  ()()  ()(2)

0 cos 0

1 − sin −1

2 − cos 0

3 sin 1

3() =
3

=0

 ()(2)

!


− 

2


= −− 

2


+ 1

6


− 

2

3
6.

  ()()  ()(0)

0 − sin 0

1 −(cos− sin) 1

2 −2− cos −2

3 2−(cos+ sin) 2

3() =
3

=0

 ()(0)

!
 = − 2 + 1

3
3

7.
  ()()  ()(1)

0 ln 0

1 1 1

2 −12 −1

3 23 2

3() =
3

=0

 ()(1)

!
(− 1)

= 0 +
1

1!
(− 1) +

−1

2!
(− 1)2 +

2

3!
(− 1)3

= (− 1)− 1
2
(− 1)2 + 1

3
(− 1)3

8.
  ()()  ()(0)

0  cos 0

1 − sin + cos 1

2 − cos− 2 sin 0

3  sin− 3 cos −3

3() =
3

=0

 ()(0)

!


= 0 +
1

1!
+ 0 +

−3

3!
3 = − 1

2
3
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9.
  ()()  ()(0)

0 −2 0

1 (1− 2)−2 1

2 4(− 1)−2 −4

3 4(3− 2)−2 12

3() =
3

=0

 ()(0)

!
 = 0

1
· 1 + 1

1
1 + −4

2
2 + 12

6
3 = − 22 + 23

10.
  ()()  ()(1)

0 tan−1  
4

1
1

1 + 2

1
2

2
−2

(1 + 2)2
− 1

2

3
62 − 2

(1 + 2)3
1
2

3() =
3

=0

 ()(1)

!
(− 1) =



4
+

12

1
(− 1)1 +

−12

2
(− 1)2 +

12

6
(− 1)3

= 
4

+ 1
2
(− 1)− 1

4
(− 1)2 + 1

12
(− 1)3

11. You may be able to simply find the Taylor polynomials for

() = cot using your CAS. We will list the values of  ()(4)

for  = 0 to  = 5.

 0 1 2 3 4 5

 ()(4) 1 −2 4 −16 80 −512

5() =
5

=0

 ()(4)

!


− 

4


= 1− 2


− 

4


+ 2

− 

4

2 − 8
3


− 

4

3
+ 10

3


− 

4

4 − 64
15


− 

4

5
For  = 2 to  = 5, () is the polynomial consisting of all the terms up to and including the


− 

4


term

12. You may be able to simply find the Taylor polynomials for

() = 3
√

1 + 2 using your CAS. We will list the values of  ()(0)

for  = 0 to  = 5.

 0 1 2 3 4 5

 ()(0) 1 0 2
3

0 − 8
3

0

5() =
5

=0

 ()(0)

!
 = 1 + 1

3
2 − 1

9
4

For  = 2 to  = 5, () is the polynomial consisting of all the terms up to and including the  term.

Note that 2 = 3 and 4 = 5.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE

1062 ¤ CHAPTER 11 INFINITE SEQUENCES AND SERIES

13. (a)
  ()()  ()(1)

0 1 1

1 −12 −1

2 23 2

3 −64

() = 1 ≈ 2()

=
1

0!
(− 1)0 − 1

1!
(− 1)1 +

2

2!
(− 1)2

= 1− (− 1) + (− 1)2

(b) |2()| ≤ 

3!
|− 1|3, where |  000()| ≤ . Now 07 ≤  ≤ 13 ⇒ |− 1| ≤ 03 ⇒ |− 1|3 ≤ 0027.

Since |  000()| is decreasing on [07 13], we can take = |  000(07)| = 6(07)4, so

|2()| ≤ 6(07)4

6
(0027) = 0112 453 1.

(c) From the graph of |2()| =
 1 − 2()

, it seems that the error is less than
0038 571 on [07 13].

14. (a)
  ()()  ()(4)

0 −12 1
2

1 − 1
2
−32 − 1

16

2 3
4
−52 3

128

3 − 15
8
−72

() = −12 ≈ 2()

=
12

0!
(− 4)0 − 116

1!
(− 4)1 +

3128

2!
(− 4)2

= 1
2
− 1

16
(− 4) + 3

256
(− 4)2

(b) |2()| ≤ 

3!
|− 4|3, where |  000()| ≤ . Now 35 ≤  ≤ 45 ⇒ |− 4| ≤ 05 ⇒ |− 4|3 ≤ 0125.

Since |  000()| is decreasing on [35 45], we can take = |  000(35)| =
15

8(35)72
, so

|2()| ≤ 15

6 · 8(35)72 (0125) ≈ 0000 487.

(c) From the graph of |2()| =
−12 − 2()

, it seems that the error is less
than 0000 343 on [35 45].
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15.
  ()()  ()(1)

0 23 1

1 2
3
−13 2

3

2 − 2
9
−43 − 2

9

3 8
27
−73 8

27

4 − 56
81
−103

(a) () = 23 ≈ 3() = 1 + 2
3
(− 1)− 29

2!
(− 1)2 +

827

3!
(− 1)3

= 1 + 2
3
(− 1)− 1

9
(− 1)2 + 4

81
(− 1)3

(b) |3()| ≤ 

4!
|− 1|4, where

  (4)()
 ≤ . Now 08 ≤  ≤ 12 ⇒

|− 1| ≤ 02 ⇒ |− 1|4 ≤ 00016. Since
 (4)()

 is decreasing
on [08 12], we can take =

  (4)(08)
 = 56

81
(08)−103, so

|3()| ≤
56
81

(08)−103

24
(00016) ≈ 0000 096 97.

(c)

From the graph of |3()| =
23 − 3()

, it seems that the
error is less than 0000 053 3 on [08 12].

16.
  ()()  ()(6)

0 sin 12

1 cos
√

32

2 − sin −12

3 − cos −√32

4 sin 12

5 cos

(a) () = sin ≈ 4()

= 1
2

+
√

3
2


− 

6

− 1
4


− 

6

2 − √
3

12


− 

6

3
+ 1

48


− 

6

4

(b) |4()| ≤ 

5!

− 
6

5, where   (5)()
 ≤ . Now 0 ≤  ≤ 

3
⇒ −

6
≤ − 

6
≤ 

6
⇒

− 
6

 ≤ 
6
⇒− 

6

5 ≤ 
6

5
. Since

 (5)()
 is decreasing on 0 3 , we can take =

  (5)(0)
 = cos 0 = 1, so

|4()| ≤ 1

5!


6

5
≈ 0000 328.

(c)

From the graph of |4()| = |sin− 4()|, it seems that the

error is less than 0000 297 on

0 

3


.

17.
  ()()  ()(0)

0 sec 1

1 sec tan 0

2 sec (2 sec2 − 1) 1

3 sec tan (6 sec2 − 1)

(a) () = sec ≈ 2() = 1 + 1
2
2
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(b) |2()| ≤ 

3!
||3, where

  (3)()
 ≤ . Now −02 ≤  ≤ 02 ⇒ || ≤ 02 ⇒ ||3 ≤ (02)3.

 (3)() is an odd function and it is increasing on [0 02] since sec and tan are increasing on [0 02],

so
  (3)()

 ≤  (3)(02) ≈ 1085 158 892. Thus, |2()| ≤  (3)(02)

3!
(02)3 ≈ 0001 447.

(c)

From the graph of |2()| = |sec− 2()|, it seems that the

error is less than 0000 339 on [−02 02].

18.
  ()()  ()(1)

0 ln(1 + 2) ln 3

1 2(1 + 2) 2
3

2 −4(1 + 2)2 − 4
9

3 16(1 + 2)3 16
27

4 −96(1 + 2)4

(a) () = ln(1 + 2)≈ 3()

= ln 3 + 2
3
(− 1)− 49

2!
(− 1)2 +

1627

3!
(− 1)3

(b) |3()| ≤ 

4!
|− 1|4, where

 (4)()
 ≤ . Now 05 ≤  ≤ 15 ⇒

−05 ≤ − 1 ≤ 05 ⇒ |− 1| ≤ 05 ⇒ |− 1|4 ≤ 1
16
, and

letting  = 05 gives = 6, so |3()| ≤ 6

4!
· 1

16
=

1

64
= 0015 625.

(c)

From the graph of |3()| = |ln(1 + 2)− 3()|, it seems that the
error is less than 0005 on [05 15].

19.
  ()()  ()(0)

0 
2

1

1 
2

(2) 0

2 
2

(2 + 42) 2

3 
2

(12+ 83) 0

4 
2

(12 + 482 + 164)

(a) () = 
2 ≈ 3() = 1 +

2

2!
2 = 1 + 2

(b) |3()| ≤ 

4!
||4, where

 (4)()
 ≤ . Now 0 ≤  ≤ 01 ⇒

4 ≤ (01)
4, and letting  = 01 gives

|3()| ≤ 001 (12 + 048 + 00016)

24
(01)4 ≈ 000006.

(c)

From the graph of |3()| =
2 − 3()

, it appears that the
error is less than 0000 051 on [0 01].
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20.
  ()()  ()(1)

0  ln 0

1 ln + 1 1

2 1 1

3 −12 −1

4 23

(a) () =  ln ≈ 3() = (− 1) + 1
2
(− 1)2 − 1

6
(− 1)3

(b) |3()| ≤ 

4!
|− 1|4, where

  (4)()
 ≤ . Now 05 ≤  ≤ 15 ⇒

|− 1| ≤ 1
2
⇒ |− 1|4 ≤ 1

16
. Since

  (4)()
 is decreasing on

[05 15], we can take =
  (4)(05)

 = 2(05)3 = 16, so

|3()| ≤ 16
24

(116) = 1
24

= 00416.

(c)

From the graph of |3()| = | ln− 3()|, it seems that the error
is less than 00076 on [05 15].

21.
  ()()  ()(0)

0  sin 0

1 sin+  cos 0

2 2 cos−  sin 2

3 −3 sin−  cos 0

4 −4 cos+  sin −4

5 5 sin+  cos

(a) () =  sin ≈ 4() =
2

2!
(− 0)2 +

−4

4!
(− 0)4 = 2 − 1

6
4

(b) |4()| ≤ 

5!
||5, where

  (5)()
 ≤ . Now−1 ≤  ≤ 1 ⇒

|| ≤ 1, and a graph of  (5)() shows that
  (5)()

 ≤ 5 for −1 ≤  ≤ 1.

Thus, we can take = 5 and get |4()| ≤ 5

5!
· 15 =

1

24
= 00416.

(c)

From the graph of |4()| = | sin− 4()|, it seems that the
error is less than 00082 on [−1 1].

22.
  ()()  ()(0)

0 sinh 2 0

1 2 cosh 2 2

2 4 sinh 2 0

3 8 cosh 2 8

4 16 sinh 2 0

5 32 cosh 2 32

6 64 sinh 2

(a) () = sinh 2 ≈ 5() = 2+ 8
3!
3 + 32

5!
5 = 2+ 4

3
3 + 4

15
5

(b) |5()| ≤ 
6!
||6, where

  (6)()
 ≤ . For  in [−1 1], we have

|| ≤ 1. Since  (6)() is an increasing odd function on [−1 1], we see

that
  (6)()

 ≤  (6)(1) = 64 sinh 2 = 32(2 − −2) ≈ 232119,

so we can take = 23212 and get |5()| ≤ 23212
720

· 16 ≈ 03224.
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(c)

From the graph of |5()| = |sinh 2− 5()|, it seems that the
error is less than 0027 on [−1 1].

23. From Exercise 5, cos = − − 
2


+ 1

6


− 

2

3
+ 3(), where |3()| ≤ 

4!

− 
2

4 with (4)()
 = |cos| ≤  = 1. Now  = 80◦ = (90◦ − 10◦) =



2
− 

18


= 4

9
radians, so the error is3


4
9

 ≤ 1
24



18

4 ≈ 0000 039, which means our estimate would not be accurate to five decimal places. However,

3 = 4, so we can use
4


4
9

 ≤ 1
120



18

5 ≈ 0000 001. Therefore, to five decimal places,

cos 80◦ ≈ − − 
18


+ 1

6

− 
18

3 ≈ 017365.

24. From Exercise 16, sin = 1
2

+
√

3
2


− 

6

− 1
4


− 

6

2 − √
3

12


− 

6

3
+ 1

48


− 

6

4
+ 4(), where

|4()| ≤ 

5!

− 
6

5 with  (5)()
 = |cos| ≤ = 1. Now  = 38◦ = (30◦ + 8◦) =



6

+ 2
45


radians,

so the error is
4


38
180

 ≤ 1
120


2
45

5 ≈ 0000 000 44, which means our estimate will be accurate to five decimal places.

Therefore, to five decimal places, sin 38◦ = 1
2

+
√

3
2


2
45

− 1
4


2
45

2 − √
3

12


2
45

3
+ 1

48


2
45

4 ≈ 061566.

25. All derivatives of  are , so |()| ≤ 

(+ 1)!
||+1, where 0    01. Letting  = 01,

(01) ≤ 01

(+ 1)!
(01)+1  000001, and by trial and error we find that  = 3 satisfies this inequality since

3(01)  00000046. Thus, by adding the four terms of the Maclaurin series for  corresponding to  = 0, 1, 2, and 3,

we can estimate 01 to within 000001. (In fact, this sum is 110516 and 01 ≈ 110517.)

26. From Table 1 in Section 11.10, ln(1 + ) =
∞
=1

(−1)−1 



for ||  1. Thus, ln 14 = ln(1 + 04) =

∞
=1

(−1)−1 (04)


.

Since this is an alternating series, the error is less than the first neglected term by the Alternating Series Estimation Theorem,

and we find that |6| = (04)66 ≈ 00007  0001. So we need the first five (nonzero) terms of the Maclaurin series for the

desired accuracy. (In fact, this sum is approximately 033698 and ln 14 ≈ 033647.)

27. sin = − 1

3!
3 +

1

5!
5 − · · · . By the Alternating Series

Estimation Theorem, the error in the approximation

sin = − 1

3!
3 is less than

 15!5

  001 ⇔
5
  120(001) ⇔ ||  (12)

15 ≈ 1037. The curves

 = − 1
6
3 and  = sin− 001 intersect at  ≈ 1043, so

the graph confirms our estimate. Since both the sine function
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and the given approximation are odd functions, we need to check the estimate only for   0. Thus, the desired range of

values for  is −1037    1037.

28. cos = 1− 1

2!
2 +

1

4!
4 − 1

6!
6 + · · · . By the Alternating Series

Estimation Theorem, the error is less than

− 1

6!
6

  0005 ⇔

6  720(0005) ⇔ ||  (36)
16 ≈ 1238. The curves

 = 1− 1
2
2 + 1

24
4 and  = cos + 0005 intersect at  ≈ 1244,

so the graph confirms our estimate. Since both the cosine function

and the given approximation are even functions, we need to check

the estimate only for   0. Thus, the desired range of values for  is −1238    1238.

29. arctan = − 3

3
+

5

5
− 7

7
+ · · · . By the Alternating Series

Estimation Theorem, the error is less than
− 1

7
7
  005 ⇔7

  035 ⇔ ||  (035)17 ≈ 08607. The curves

 = − 1
3
3 + 1

5
5 and  = arctan+ 005 intersect at

 ≈ 09245, so the graph confirms our estimate. Since both the

arctangent function and the given approximation are odd functions,

we need to check the estimate only for   0. Thus, the desired

range of values for  is −086    086.

30. () =
∞
=0

 ()(4)

!
(− 4) =

∞
=0

(−1) !

3(+ 1)!
(− 4) =

∞
=0

(−1)

3(+ 1)
(− 4). Now

(5) =
∞
=0

(−1)

3(+ 1)
=

∞
=0

(−1) is the sum of an alternating series that satisfies (i) +1 ≤  and

(ii) lim
→∞

 = 0, so by the Alternating Series Estimation Theorem, |5(5)| = |(5)− 5(5)| ≤ 6, and

6 =
1

36(7)
=

1

5103
≈ 0000196  00002 ; that is, the fifth-degree Taylor polynomial approximates (5) with error less

than 00002.

31. Let () be the position function of the car, and for convenience set (0) = 0. The velocity of the car is () = 0() and the

acceleration is () = 00(), so the second degree Taylor polynomial is 2() = (0) + (0)+
(0)

2
2 = 20 + 2. We

estimate the distance traveled during the next second to be (1) ≈ 2(1) = 20 + 1 = 21 m. The function 2() would not be

accurate over a full minute, since the car could not possibly maintain an acceleration of 2 ms2 for that long (if it did, its final

speed would be 140 ms ≈ 313 mih!).
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32. (a)
 ()() ()(20)

0 20
(−20) 20

1 20
(−20) 20

2 220
(−20) 220

The linear approximation is

1() = (20) + 0(20)(− 20) = 20[1 + (− 20)]

The quadratic approximation is

2() = (20) + 0(20)(− 20) +
00(20)

2
(− 20)2

= 20


1 + (− 20) + 1

2
2(− 20)2


(b) (c)

From the graph, it seems that 1() is within 1% of (), that

is, 099() ≤ 1() ≤ 101(), for −14◦C ≤  ≤ 58◦C.

33.  =


2
− 

( + )2
=



2
− 

2(1 + )2
=



2


1−


1 +





−2

.

We use the Binomial Series to expand (1 + )−2:

 =


2


1−


1− 2







+

2 · 3
2!






2

− 2 · 3 · 4
3!






3

+ · · ·


=


2


2







− 3






2

+ 4






3

− · · ·


≈ 

2
· 2






= 2 · 1

3

when is much larger than ; that is, when  is far away from the dipole.

34. (a)
1


+

2


=

1




2


− 1




[Equation 1] where

 =

2 + ( +)2 − 2( +) cos and  =


2 + ( −)2 + 2( −) cos (2)

Using cos ≈ 1 gives

 =


2 + ( +)2 − 2( +) =


2 + 2 + 2 +2 − 2 − 22 =


2 = 

and similarly,  = . Thus, Equation 1 becomes
1


+

2


=

1




2


− 1




⇒ 1


+

2


=

2 − 1


.

(b) Using cos ≈ 1− 1
2
2 in (2) gives us

 =

2 + ( +)2 − 2( +)


1− 1

2
2


=

2 + 2 + 2 +2 − 2 +

2 − 22 +22 =

2 +

2 +22
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Anticipating that we will use the binomial series expansion (1 + ) ≈ 1 + , we can write the last expression for  as




1 + 2





+

2

2


and similarly,  = 


1− 2





− 2

2


. Thus, from Equation 1,

1


+

2


=

1




2


− 1




⇔ 1

−1
 + 2

−1
 =

2


· 

− 1


· 


⇔

1




1 + 2





+

2

2

−12

+
2




1− 2





− 2

2

−12

=
2




1− 2





− 2

2

−12

− 1




1 + 2





+

2

2

−12

Approximating the expressions for −1
 and −1

 by the first two terms in their binomial series, we get

1




1− 1

2
2





+

2

2


+

2




1 + 1

2
2





− 2

2



=
2




1 + 1

2
2





− 2

2


− 1




1− 1

2
2





+

2

2


⇔

1


− 1

2

2





+

2

2


+

2


+

2
2

2





− 2

2


=

2


+

2
2

2





− 2

2


− 1


+

1
2

2





+

2

2


⇔

1


+

2


=

2


− 1


+

1
2

2





+

2

2


+

1
2

2





+

2

2


+

2
2

2





− 2

2


− 2

2

2





− 2

2



=
2 − 1


+

1
2

2





+

2

2


1


+

1




+

2
2

2





− 2

2


1


− 1





=
2 − 1


+

1
22

2


1


+

1




1


+

1




+

2
22

2


1


− 1




1


− 1





=
2 − 1


+ 22


1

2


1


+

1



2

+
2

2


1


− 1



2


From Figure 8, we see that sin = . So if we approximate sin with , we get  =  and 2 = 22 and hence,

Equation 4, as desired.

35. (a) If the water is deep, then 2 is large, and we know that tanh→ 1 as →∞. So we can approximate

tanh(2) ≈ 1, and so 2 ≈ (2) ⇔  ≈

(2).

(b) From the table, the first term in the Maclaurin series of

tanh is , so if the water is shallow, we can approximate

tanh
2


≈ 2


, and so 2 ≈ 

2
· 2


⇔  ≈ √.

  ()()  ()(0)

0 tanh 0

1 sech2  1

2 −2 sech2  tanh 0

3 2 sech2  (3 tanh2 − 1) −2
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(c) Since tanh is an odd function, its Maclaurin series is alternating, so the error in the approximation

tanh
2


≈ 2


is less than the first neglected term, which is

| 000(0)|
3!


2



3

=
1

3


2



3

.

If   10, then
1

3


2



3


1

3


2 · 1

10

3

=
3

375
, so the error in the approximation 2 =  is less

than


2
· 3

375
≈ 00132.

36. First note that

2
√

2 +2 − 


= 2


√
2


1 +

2

2
− 



≈ 2





1 +

2

2
· 1

2
+ · · ·


− 

 
use the binomial series 1 + 1

2
+ · · · for√1 + 


= 2


+

2

2
+ · · ·


− 


≈ 2



since for large  the other terms are comparatively small. Now  = 2
√

2 +2 − 
 ≈ 

2


by the preceding

approximation.

37. (a)  is the length of the arc subtended by the angle , so  =  ⇒

 = . Now sec  = (+ ) ⇒  sec  = +  ⇒

 =  sec  − =  sec()−.

(b) First we’ll find a Taylor polynomial 4() for () = sec at  = 0.

  ()()  ()(0)

0 sec 1

1 sec tan 0

2 sec(2 tan2+ 1) 1

3 sec tan(6 tan2+ 5) 0

4 sec(24 tan4+ 28 tan2+ 5) 5

Thus, () = sec ≈ 4() = 1 + 1
2!

(− 0)2 + 5
4!

(− 0)4 = 1 + 1
2
2 + 5

24
4. By part (a),

 ≈ 


1 +

1

2






2

+
5

24






4

− =  +

1

2
 · 

2

2
+

5

24
 · 

4

4
− =

2

2
+

54

243
.

(c) Taking  = 100 km and  = 6370 km, the formula in part (a) says that

 =  sec()− = 6370 sec(1006370)− 6370 ≈ 0785 009 965 44 km.

The formula in part (b) says that  ≈ 2

2
+

54

243
=

1002

2 · 6370 +
5 · 1004

24 · 63703
≈ 0785 009 957 36 km.

The difference between these two results is only 0000 000 008 08 km, or 0000 008 08 m!
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38. (a) 4






 2

0


1− 2 sin2 

= 4






 2

0


1 +

−2
sin

2

−12



= 4






 2

0


1− 1

2

−2
sin

2



+
1
2
· 3

2

2!

−2
sin

2

2 − 1

2
· 3

2
· 5

2

3!

−2
sin

2

3

+ · · ·



= 4






 2

0


1 +


1

2




2
sin

2
+


1 · 3
2 · 4




4
sin

4
 +


1 · 3 · 5
2 · 4 · 6




6
sin

6
+ · · ·




= 4









2
+


1

2


1

2
· 

2


2 +


1 · 3
2 · 4


1 · 3
2 · 4 ·



2


4 +


1 · 3 · 5
2 · 4 · 6


1 · 3 · 5
2 · 4 · 6 ·



2


6 + · · ·


[split up the integral and use the result from Exercise 7.1.50]

= 2







1 +

12

22
2 +

12 · 32

22 · 42
4 +

12 · 32 · 52

22 · 42 · 62
6 + · · ·


(b) The first of the two inequalities is true because all of the terms in the series are positive. For the second,

 = 2







1 +

12

22
2 +

12 · 32

22 · 42
4 +

12 · 32 · 52

22 · 42 · 62
6 +

12 · 32 · 52 · 72

22 · 42 · 62 · 82
8 + · · ·



≤ 2







1 + 1

4
2 + 1

4
4 + 1

4
6 + 1

4
8 + · · · 

The terms in brackets (after the first) form a geometric series with  = 1
4
2 and  = 2 = sin2


1
2
0


 1.

So  ≤ 2







1 +

24

1− 2


= 2






4− 32

4− 42
.

(c) We substitute  = 1,  = 98, and  = sin(10◦2) ≈ 008716, and the inequality from part (b) becomes

201090 ≤  ≤ 201093, so  ≈ 20109. The estimate  ≈ 2

 ≈ 20071 differs by about 02%.

If 0 = 42◦, then  ≈ 035837 and the inequality becomes 207153 ≤  ≤ 208103, so  ≈ 20763.

The one-term estimate is the same, and the discrepancy between the two estimates increases to about 34%.

39. Using () = () +() with  = 1 and  = , we have () = 1() +1(), where 1 is the first-degree Taylor

polynomial of  at . Because  = , () = () +  0()( − ) +1(). But  is a root of  , so () = 0

and we have 0 = () +  0()( − ) +1(). Taking the first two terms to the left side gives us

 0()( − )− () = 1(). Dividing by  0(), we get  −  − ()

 0()
=

1()

 0()
. By the formula for Newton’s

method, the left side of the preceding equation is +1 − , so |+1 − | =
 1()

 0()

. Taylor’s Inequality gives us
|1()| ≤ | 00()|

2!
| − |2. Combining this inequality with the facts | 00()| ≤ and | 0()| ≥  gives us

|+1 − | ≤ 

2
| − |2.
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APPLIED PROJECT Radiation from the Stars

1. If we write () =
8−5

( ) − 1
=

−5

( ) − 1
, then as → 0+, it is of the form∞∞, and as →∞ it is of the form

00, so in either case we can use l’Hospital’s Rule. First of all,

lim
→∞

 ()
H
= lim

→∞

−5−6


− 

( )2
( )

= 5



lim
→∞

2−6

( )
= 5




lim
→∞

−4

( )
= 0

Also, lim
→0+

()
H
= 5




lim
→0+

−4

( )

H
= 5




lim
→0+

−4−5

− 

( )2
( )

= 20


2

2

lim
→0+

−3

( )

This is still indeterminate, but note that each time we use l’Hospital’s Rule, we gain a factor of  in the numerator, as well as a

constant factor, and the denominator is unchanged. So if we use l’Hospital’s Rule three more times, the exponent of  in the

numerator will become 0. That is, for some {}, all constant,

lim
→0+

()
H
= 1 lim

→0+

−3

( )

H
= 2 lim

→0+

−2

( )

H
= 3 lim

→0+

−1

( )

H
= 4 lim

→0+

1

( )
= 0

2. We expand the denominator of Planck’s Law using the Taylor series  = 1 +  +
2

2!
+

3

3!
+ · · · with  =




, and use

the fact that if  is large, then all subsequent terms in the Taylor expansion are very small compared to the first one, so we can

approximate using the Taylor polynomial 1:

() =
8−5

( ) − 1
=

8−5
1 +




+

1

2!






2

+
1

3!






3

+ · · ·

− 1

≈ 8−5
1 +






− 1

=
8

4

which is the Rayleigh-Jeans Law.

3. To convert to m, we substitute 106 for  in both laws. The first figure shows that the two laws are similar for large . The

second figure shows that the two laws are very different for short wavelengths (Planck’s Law gives a maximum at

 ≈ 051 m; the Rayleigh-Jeans Law gives no minimum or maximum.).

4. From the graph in Problem 3, () has a maximum under Planck’s Law at  ≈ 051m.
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5.

As  gets larger, the total area under the curve increases, as we would expect: the hotter the star, the more energy it emits.

Also, as  increases, the -value of the maximum decreases, so the higher the temperature, the shorter the peak wavelength

(and consequently the average wavelength) of light emitted. This is why Sirius is a blue star and Betelgeuse is a red star: most

of Sirius’s light is of a fairly short wavelength; that is, a higher frequency, toward the blue end of the spectrum, whereas most

of Betelgeuse’s light is of a lower frequency, toward the red end of the spectrum.

11 Review

1. False. See Note 2 after Theorem 11.2.6.

2. False. The series
∞
=1

− sin 1 =
∞
=1

1

sin 1
is a -series with  = sin 1 ≈ 084 ≤ 1, so the series diverges.

3. True. If lim
→∞

 = , then as →∞, 2+ 1→∞, so 2+1 → .

4. True by Theorem 11.8.4.

Or: Use the Comparison Test to show that


(−2) converges absolutely.

5. False. For example, take  = (−1)

(6).

6. True by Theorem 11.8.4.

7. False, since lim
→∞

+1



 = lim
→∞

 1

(+ 1)
3
· 

3

1

 = lim
→∞

 3

(+ 1)
3
· 13

13

 = lim
→∞

1

(1 + 1)
3

= 1.

8. True, since lim
→∞

+1



 = lim
→∞

 1

(+ 1)!
· !

1

 = lim
→∞

1

+ 1
= 0  1.

9. False. See the note after Example 11.4.2.

10. True, since
1


= −1and  =

∞
=0



!
, so −1 =

∞
=0

(−1)


!
.

11. True. See (9) in Section 11.1.

12. True, because if
 || is convergent, then so is


 by Theorem 11.6.3.

13. True. By Theorem 11.10.5 the coefficient of 3 is
 000(0)

3!
=

1

3
⇒  000(0) = 2.

Or: Use Theorem 11.9.2 to differentiate  three times.
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14. False. Let  =  and  = −. Then {} and {} are divergent, but  +  = 0, so { + } is convergent.

15. False. For example, let  =  = (−1)
. Then {} and {} are divergent, but  = 1, so {} is convergent.

16. True by the Monotonic Sequence Theorem, since {} is decreasing and 0   ≤ 1 for all  ⇒ {} is bounded.

17. True by Theorem 11.6.3. [


(−1)

 is absolutely convergent and hence convergent.]

18. True. lim
→∞

+1


 1 ⇒ 

 converges (Ratio Test) ⇒ lim
→∞

 = 0 [Theorem 11.2.6].

19. True. 099999    = 09 + 09(01)1 + 09(01)2 + 09(01)3 + · · · =
∞
=1

(09)(01)−1 =
09

1− 01
= 1 by the formula

for the sum of a geometric series [ = 1(1− )] with ratio  satisfying ||  1.

20. True. Since lim
→∞

 = 2, we know that lim
→∞

+3 = 2. Thus, lim
→∞

(+3 − ) = lim
→∞

+3 − lim
→∞

 = 2− 2 = 0.

21. True. A finite number of terms doesn’t affect convergence or divergence of a series.

22. False. Let  = (01) and  = (02). Then
∞
=1

 =
∞
=1

(01) =
01

1− 01
=

1

9
= ,

∞
=1

 =
∞
=1

(02) =
02

1− 02
=

1

4
= , and

∞
=1

 =
∞
=1

(002) =
002

1− 002
=

1

49
, but

 = 1
9
· 1

4
= 1

36
.

1.


2 + 3

1 + 23


converges since lim

→∞
2 + 3

1 + 23
= lim

→∞
23 + 1

13 + 2
=

1

2
.

2.  =
9+1

10
= 9 ·  9

10


, so lim

→∞
 = 9 lim

→∞


9
10


= 9 · 0 = 0 by (11.1.9).

3. lim
→∞

 = lim
→∞

3

1 + 2
= lim

→∞


12 + 1
=∞, so the sequence diverges.

4.  = cos(2), so  = 0 if  is odd and  = ±1 if  is even. As  increases,  keeps cycling through the values

0, 1, 0, −1, so the sequence {} is divergent.

5. || =
 sin

2 + 1

 ≤ 

2 + 1


1


, so ||→ 0 as →∞. Thus, lim

→∞
 = 0. The sequence {} is convergent.

6.  =
ln√

. Let () =

ln√

for   0. Then lim

→∞
() = lim

→∞
ln√


H
= lim

→∞
1

1(2
√
 )

= lim
→∞

2√


= 0.

Thus, by Theorem 11.1.3, {} converges and lim
→∞

 = 0.
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7.


1 +

3



4

is convergent. Let  =


1 +

3



4

. Then

lim
→∞

ln  = lim
→∞

4 ln(1 + 3) = lim
→∞

ln(1 + 3)

1(4)

H
= lim

→∞

1

1 + 3


− 3

2


−1(42)

= lim
→∞

12

1 + 3
= 12, so

lim
→∞

 = lim
→∞


1 +

3



4

= 12.

8.


(−10)

!


converges, since

10

!
=

10 · 10 · 10 · · · · · 10
1 · 2 · 3 · · · · · 10 · 10 · 10 · · · · · 10

11 · 12 · · · · ·  ≤ 1010


10

11

−10

→ 0 as →∞, so

lim
→∞

(−10)

!
= 0 [Squeeze Theorem]. Or: Use (11.10.10).

9. We use induction, hypothesizing that −1    2. Note first that 1  2 = 1
3

(1 + 4) = 5
3
 2, so the hypothesis holds

for  = 2. Now assume that −1    2. Then  = 1
3
(−1 + 4)  1

3
( + 4)  1

3
(2 + 4) = 2. So   +1  2,

and the induction is complete. To find the limit of the sequence, we note that  = lim
→∞

 = lim
→∞

+1 ⇒

 = 1
3
(+ 4) ⇒  = 2.

10. lim
→∞

4


H
= lim

→∞
43


H
= lim

→∞
122


H
= lim

→∞
24


H
= lim

→∞
24


= 0

Then we conclude from Theorem 11.1.3 that lim
→∞

4− = 0.

From the graph, it seems that 124−12  01, but 4−  01

whenever   12. So the smallest value of  corresponding to

 = 01 in the definition of the limit is = 12.

11.


3 + 1




3
=

1

2
, so

∞
=1



3 + 1
converges by the Comparison Test with the convergent -series

∞
=1

1

2
[  = 2  1].

12. Let  =
2 + 1

3 + 1
and  =

1


, so lim

→∞



= lim

→∞
3 + 

3 + 1
= lim

→∞
1 + 12

1 + 13
= 1  0.

Since
∞
=1

 is the divergent harmonic series,
∞
=1

 also diverges by the Limit Comparison Test.

13. lim
→∞

+1



 = lim
→∞


(+ 1)3

5+1
· 5

3


= lim

→∞


1 +

1



3

· 1

5
=

1

5
 1, so

∞
=1

3

5
converges by the Ratio Test.

14. Let  =
1√
+ 1

. Then  is positive for  ≥ 1, the sequence {} is decreasing, and lim
→∞

 = 0, so the series

∞
=1

(−1)


√
+ 1

converges by the Alternating Series Test.
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15. Let () =
1


√

ln
. Then  is continuous, positive, and decreasing on [2∞), so the Integral Test applies.

 ∞

2

() = lim
→∞

 

2

1


√

ln



 = ln,  =

1





= lim

→∞

 ln 

ln 2


−12

 = lim
→∞


2
√

ln 
ln 2

= lim
→∞


2
√

ln − 2
√

ln 2


=∞

so the series
∞
=2

1


√

ln
diverges.

16. lim
→∞



3+ 1
=

1

3
, so lim

→∞
ln




3+ 1


= ln 1

3
6= 0. Thus, the series

∞
=1

ln




3+ 1


diverges by the Test for

Divergence.

17. || =
 cos 3

1 + (12)

 ≤ 1

1 + (12)


1

(12)
=


5

6


, so

∞
=1

|| converges by comparison with the convergent geometric

series
∞
=1


5
6

 
 = 5

6
 1


. It follows that

∞
=1

 converges (by Theorem 11.6.3).

18. lim
→∞



|| = lim

→∞


 2

(1 + 22)

 = lim
→∞

2

1 + 22
= lim

→∞
1

12 + 2
=

1

2
 1, so

∞
=1

2

(1 + 22)
converges by the

Root Test.

19. lim
→∞

+1



 = lim
→∞

1 · 3 · 5 · · · · · (2− 1)(2+ 1)

5+1 (+ 1)!
· 5 !

1 · 3 · 5 · · · · · (2− 1)
= lim

→∞
2+ 1

5(+ 1)
=

2

5
 1, so the series

converges by the Ratio Test.

20.
∞
=1

(−5)
2

2 9
=

∞
=1

1

2


25

9


. Now lim

→∞

+1



 = lim
→∞

25+1

(+ 1)
2 · 9+1

· 
2 · 9
25

= lim
→∞

252

9(+ 1)2
=

25

9
 1,

so the series diverges by the Ratio Test.

21.  =

√


+ 1
 0, {} is decreasing, and lim

→∞
 = 0, so the series

∞
=1

(−1)−1

√


+ 1
converges by the Alternating

Series Test.

22. Use the Limit Comparison Test with  =

√
+ 1−√− 1


=

2


√

+ 1 +
√
− 1

 (rationalizing the numerator) and
 =

1

32
. lim
→∞




= lim

→∞
2
√
√

+ 1 +
√
− 1

= 1, so since
∞
=1

 converges

 = 3

2
 1


,
∞
=1

 converges also.

23. Consider the series of absolute values:
∞
=1

−13 is a p-series with  = 1
3
≤ 1 and is therefore divergent. But if we apply the

Alternating Series Test, we see that  =
1
3
√

 0, {} is decreasing, and lim

→∞
 = 0, so the series

∞
=1

(−1)−1 −13

converges. Thus,
∞
=1

(−1)−1 −13 is conditionally convergent.
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24.
∞
=1

(−1)
−1

−3
 =

∞
=1

−3 is a convergent p-series [ = 3  1]. Therefore,
∞
=1

(−1)
−1

−3 is absolutely convergent.

25.

+1



 =  (−1)+1(+ 2)3+1

22+3
· 22+1

(−1)(+ 1)3

 =
+ 2

+ 1
· 3

4
=

1 + (2)

1 + (1)
· 3

4
→ 3

4
 1 as →∞, so by the Ratio

Test,
∞
=1

(−1)(+ 1)3

22+1
is absolutely convergent.

26. lim
→∞

√


ln

H
= lim

→∞
1(2

√
 )

1
= lim

→∞

√


2
=∞. Therefore, lim

→∞
(−1)

√


ln
6= 0, so the given series is divergent by the

Test for Divergence.

27.
∞
=1

(−3)−1

23
=

∞
=1

(−3)−1

(23)
=

∞
=1

(−3)−1

8
=

1

8

∞
=1

(−3)−1

8−1
=

1

8

∞
=1


−3

8

−1

=
1

8


1

1− (−38)


=

1

8
· 8

11
=

1

11

28.
∞
=1

1

(+ 3)
=

∞
=1


1

3
− 1

3(+ 3)


[partial fractions].

 =

=1


1

3
− 1

3(+ 3)


=

1

3
+

1

6
+

1

9
− 1

3(+ 1)
− 1

3(+ 2)
− 1

3(+ 3)
(telescoping sum), so

∞
=1

1

(+ 3)
= lim

→∞
 =

1

3
+

1

6
+

1

9
=

11

18
.

29.
∞
=1

[tan−1(+ 1)− tan−1 ] = lim
→∞



= lim
→∞

[(tan−1 2− tan−1 1) + (tan−1 3− tan−1 2) + · · ·+ (tan−1(+ 1)− tan−1 )]

= lim
→∞

[tan−1(+ 1)− tan−1 1] = 
2
− 

4
= 

4

30.
∞
=0

(−1)

32 (2)!
=

∞
=0

(−1)
1

(2)!
· 



32
=

∞
=0

(−1)
1

(2)!
·
√



3

2

= cos

√


3


since cos =

∞
=0

(−1)
2

(2)!

for all .

31. 1− +
2

2!
− 3

3!
+

4

4!
− · · · =

∞
=0

(−1)


!
=

∞
=0

(−)
!

= − since  =
∞
=0



!
for all .

32. 417326 = 417 +
326

105
+

326

108
+ · · · = 417 +

326105

1− 1103
=

417

100
+

326

99,900
=

416,909
99,900

33. cosh =
1

2
( + −) =

1

2

 ∞
=0



!
+

∞
=0

(−)

!



=
1

2


1 + +

2

2!
+

3

3!
+

4

4!
+ · · ·


+


1− +

2

2!
− 3

3!
+

4

4!
− · · ·



=
1

2


2 + 2 · 

2

2!
+ 2 · 

4

4!
+ · · ·


= 1 +

1

2
2 +

∞
=2

2

(2)!
≥ 1 +

1

2
2 for all 
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34.
∞
=1

(ln) is a geometric series which converges whenever |ln|  1 ⇒ −1  ln  1 ⇒ −1    .

35.
∞
=1

(−1)+1

5
= 1− 1

32
+

1

243
− 1

1024
+

1

3125
− 1

7776
+

1

16,807
− 1

32,768
+ · · · .

Since 8 =
1

85
=

1

32,768
 0000031,

∞
=1

(−1)+1

5
≈

7
=1

(−1)+1

5
≈ 09721.

36. (a) 5 =
5

=1

1

6
= 1 +

1

26
+ · · ·+ 1

56
≈ 1017305. The series

∞
=1

1

6
converges by the Integral Test, so we estimate the

remainder 5 with (11.3.2): 5 ≤
 ∞

5



6
=


−−5

5

∞
5

=
5−5

5
= 0000064. So the error is at most 0000064.

(b) In general,  ≤
 ∞





6
=

1

55
. If we take  = 9, then 9 ≈ 101734 and 9 ≤ 1

5 · 95
≈ 34× 10−6.

So to five decimal places,
∞
=1

1

5
≈

9
=1

1

5
≈ 101734.

Another method: Use (11.3.3) instead of (11.3.2).

37.
∞
=1

1

2 + 5
≈

8
=1

1

2 + 5
≈ 018976224. To estimate the error, note that

1

2 + 5


1

5
, so the remainder term is

8 =
∞
=9

1

2 + 5


∞
=9

1

5
=

159

1− 15
= 64× 10−7


geometric series with  = 1

59
and  = 1

5


.

38. (a) lim
→∞

+1



 = lim
→∞

 (+ 1)
+1

[2(+ 1)]!
· (2)!



 = lim
→∞

(+ 1)(+ 1)1

(2+ 2)(2+ 1)
= lim

→∞


+ 1




1

2(2+ 1)

= lim
→∞


1 +

1




1

2(2+ 1)
=  · 0 = 0  1

so the series converges by the Ratio Test.

(b) The series in part (a) is convergent, so lim
→∞

 = lim
→∞



(2)!
= 0 by Theorem 11.2.6.

39. Use the Limit Comparison Test. lim
→∞



+ 1







 = lim
→∞

+ 1


= lim

→∞


1 +

1




= 1  0.

Since
 || is convergent, so is

+ 1






, by the Limit Comparison Test.
40. lim

→∞

+1



 = lim
→∞

 +1

(+ 1)
2
5+1

· 
25



 = lim
→∞

1

(1 + 1)
2

||
5

=
||
5
, so by the Ratio Test,

∞
=1

(−1)
 

2 5

converges when
||
5

 1 ⇔ ||  5, so  = 5. When  = −5, the series becomes the convergent -series
∞
=1

1

2
with

 = 2  1. When  = 5, the series becomes
∞
=1

(−1)


2
, which converges by the Alternating Series Test. Thus,  = [−5 5].
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41. lim
→∞

+1



 = lim
→∞

 |+ 2|+1

(+ 1) 4+1
·  4

| + 2|


= lim
→∞




+ 1

|+ 2|
4


=
|+ 2|

4
 1 ⇔ |+ 2|  4, so  = 4.

|+ 2|  4 ⇔ −4   + 2  4 ⇔ −6    2. If  = −6, then the series
∞
=1

(+ 2)

 4
becomes

∞
=1

(−4)


4
=

∞
=1

(−1)



, the alternating harmonic series, which converges by the Alternating Series Test. When  = 2, the

series becomes the harmonic series
∞
=1

1


, which diverges. Thus,  = [−6 2).

42. lim
→∞

+1



 = lim
→∞

2+1 (− 2)
+1

(+ 3)!
· (+ 2)!

2(− 2)


 = lim
→∞

2

+ 3
|− 2| = 0  1, so the series

∞
=1

2 (− 2)


(+ 2)!

converges for all .  =∞ and  = (−∞∞).

43. lim
→∞

+1



 = lim
→∞

2+1(− 3)
+1

√
+ 4

·
√
+ 3

2(− 3)


 = 2 |− 3| lim
→∞


+ 3

+ 4
= 2 |− 3|  1 ⇔ |− 3|  1

2
,

so  = 1
2
. |− 3|  1

2
⇔ −1

2
 − 3  1

2
⇔ 5

2
   7

2
. For  = 7

2
, the series

∞
=1

2(− 3)√
+ 3

becomes

∞
=0

1√
+ 3

=
∞
=3

1

12
, which diverges


 = 1

2
≤ 1


, but for  = 5

2
, we get

∞
=0

(−1)√
+ 3

, which is a convergent

alternating series, so  =


5
2
 7

2


.

44. lim
→∞

+1



 = lim
→∞

 (2+ 2)!+1

[(+ 1)!]
2

· (!)2

(2)!

 = lim
→∞

(2+ 2)(2+ 1)

(+ 1)(+ 1)
|| = 4 ||.

To converge, we must have 4 ||  1 ⇔ ||  1
4
, so  = 1

4
.

45.
  ()()  ()



6


0 sin 1

2

1 cos
√

3
2

2 − sin − 1
2

3 − cos −
√

3
2

4 sin 1
2

...
...

...

sin= 


6


+  0


6


− 

6


+

 00


6


2!


− 

6

2
+

 (3)


6


3!


− 

6

3

+
 (4)


6


4!


− 

6

4
+ · · ·

=
1

2


1− 1

2!


− 

6

2
+

1

4!


− 

6

4
− · · ·


+

√
3

2


− 

6


− 1

3!


− 

6

3
+ · · ·



=
1

2

∞
=0

(−1)
1

(2)!


− 

6

2
+

√
3

2

∞
=0

(−1)
1

(2+ 1)!


− 

6

2+1
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46.
  ()()  ()



3


0 cos 1

2

1 − sin −
√

3
2

2 − cos − 1
2

3 sin
√

3
2

4 cos 1
2

...
...

...

cos= 


3


+  0


3


− 

3


+

 00


3


2!


− 

3

2
+

 (3)


3


3!


− 

3

3
+

 (4)


3


4!


− 

3

4
+ · · ·

=
1

2


1− 1

2!


− 

3

2
+

1

4!


− 

3

4
− · · ·


+

√
3

2


−

− 

3


+

1

3!


− 

3

3
− · · ·



=
1

2

∞
=0

(−1)
1

(2)!


− 

3

2
+

√
3

2

∞
=0

(−1)+1 1

(2+ 1)!


− 

3

2+1

47.
1

1 + 
=

1

1− (−)
=

∞
=0

(−)


=
∞
=0

(−1)

 for ||  1 ⇒ 2

1 + 
=

∞
=0

(−1)

+2 with  = 1.

48. tan−1  =
∞
=0

(−1)
2+1

2+ 1
with interval of convergence [−1 1], so

tan−1(2) =
∞
=0

(−1)
(2)2+1

2+ 1
=

∞
=0

(−1)
4+2

2+ 1
, which converges when 2 ∈ [−1 1] ⇔  ∈ [−1 1].

Therefore,  = 1.

49.


1

4− 
 = − ln(4 − ) +  and

1

4− 
 =

1

4


1

1− 4
 =

1

4

 ∞
=0


4


 =

1

4

 ∞
=0



4
 =

1

4

∞
=0

+1

4(+ 1)
+. So

ln(4− ) = −1

4

∞
=0

+1

4(+ 1)
+  = −

∞
=0

+1

4+1(+ 1)
+ = −

∞
=1



4
+ . Putting  = 0, we get  = ln 4.

Thus, () = ln(4− ) = ln 4−
∞
=1



4
. The series converges for |4|  1 ⇔ ||  4, so  = 4.

Another solution:

ln(4− ) = ln[4(1− 4)] = ln 4 + ln(1− 4) = ln 4 + ln[1 + (−4)]

= ln 4 +
∞
=1

(−1)+1 (−4)


[from Table 1] = ln 4 +
∞
=1

(−1)2+1 

4
= ln 4−

∞
=1



4
.

50.  =
∞
=0



!
⇒ 2 =

∞
=0

(2)

!
⇒ 2 = 

∞
=0

2 

!
=

∞
=0

2 +1

!
,  =∞

51. sin =
∞
=0

(−1) 2+1

(2+ 1)!
⇒ sin(4) =

∞
=0

(−1) (4)2+1

(2+ 1)!
=

∞
=0

(−1) 8+4

(2+ 1)!
for all , so the radius of

convergence is∞.

52.  =
∞
=0



!
⇒ 10 = (ln 10) =

∞
=0

[(ln 10)]

!
=

∞
=0

(ln 10)

!
,  =∞
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53. () =
1

4
√

16− 
=

1
4


16(1− 16)
=

1
4
√

16

1− 1

16

14 = 1

2


1− 1

16

−14

=
1

2


1 +


−1

4


− 

16


+

− 1
4

−5
4


2!


− 

16

2

+

− 1
4

 − 5
4

 − 9
4


3!


− 

16

3
+ · · ·



=
1

2
+

∞
=1

1 · 5 · 9 · · · · · (4− 3)

2 · 4 · ! · 16  =
1

2
+

∞
=1

1 · 5 · 9 · · · · · (4− 3)

26+1 !


for
− 

16

  1 ⇔ ||  16, so  = 16.

54. (1− 3)
−5

=
∞
=0


−5




(−3)


= 1 + (−5)(−3) +

(−5)(−6)

2!
(−3)

2
+

(−5)(−6)(−7)

3!
(−3)

3
+ · · ·

= 1 +
∞
=1

5 · 6 · 7 · · · · · (+ 4) · 3 
!

for |−3|  1 ⇔ ||  1
3
, so  = 1

3
.

55.  =
∞
=0



!
, so




=

1



∞
=0



!
=

∞
=0

−1

!
= −1 +

∞
=1

−1

!
=

1


+

∞
=1

−1

!
and




 =  + ln ||+

∞
=1



 · !
.

56. (1 + 4)12 =
∞
=0


1
2




(4) = 1 +


1
2


4 +


1
2

−1
2


2!

(4)2 +


1
2

− 1
2

− 3
2


3!

(4)3 + · · ·

= 1 + 1
2
4 − 1

8
8 + 1

16
12 − · · ·

so
 1

0
(1 + 4)12  =


+ 1

10
5 − 1

72
9 + 1

208
13 − · · · 1

0
= 1 + 1

10
− 1

72
+ 1

208
− · · · .

This is an alternating series, so by the Alternating Series Test, the error in the approximation 1

0
(1 + 4)12  ≈ 1 + 1

10
− 1

72
≈ 1086 is less than 1

208
, sufficient for the desired accuracy.

Thus, correct to two decimal places,
 1

0
(1 + 4)12  ≈ 109.

57. (a)
  ()()  ()(1)

0 12 1

1 1
2
−12 1

2

2 − 1
4
−32 − 1

4

3 3
8
−52 3

8

4 − 15
16
−72 − 15

16

...
...

...

√
 ≈ 3() = 1 +

12

1!
(− 1)− 14

2!
(− 1)2 +

38

3!
(− 1)3

= 1 + 1
2
(− 1)− 1

8
(− 1)2 + 1

16
(− 1)3

(b)

(c) |3 ()| ≤ 

4!
|− 1|4, where

 (4) ()
 ≤  with  (4)() = − 15

16
−72. Now 09 ≤  ≤ 11 ⇒

−01 ≤ − 1 ≤ 01 ⇒ (− 1)
4 ≤ (01)

4, and letting  = 09 gives =
15

16(09)72
, so

|3()| ≤ 15

16(09)72 4!
(01)

4 ≈ 0000 005 648 ≈ 0000 006 = 6× 10−6.
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(d)

From the graph of |3()| = |√− 3()|, it appears that

the error is less than 5× 10−6 on [09 11].

58. (a)
  ()()  ()(0)

0 sec 1

1 sec tan 0

2 sec tan2 + sec3  1

3 sec tan3 + 5 sec3  tan 0

...
...

...

sec ≈ 2() = 1 + 1
2
2

(b)

(c) |2 ()| ≤ 

3!
||3, where

 (3)()
 ≤ with  (3)() = sec tan3 + 5 sec3  tan.

Now 0 ≤  ≤ 
6
⇒ 3 ≤ 

6

3
, and letting  = 

6
gives = 14

3
, so |2 ()| ≤ 14

3 · 6


6

3
≈ 0111648.

(d)

From the graph of |2()| = |sec− 2()|, it appears that

the error is less than 002 on

0 

6


.

59. sin =
∞
=0

(−1)
 2+1

(2+ 1)!
= − 3

3!
+

5

5!
− 7

7!
+ · · · , so sin−  = −3

3!
+

5

5!
− 7

7!
+ · · · and

sin− 

3
= − 1

3!
+

2

5!
− 4

7!
+ · · · . Thus, lim

→0

sin− 

3
= lim

→0


−1

6
+

2

120
− 4

5040
+ · · ·


= −1

6
.

60. (a)  =
2

(+ )2
=



(1 + )2
= 

∞
=0


−2









[binomial series]
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(b) We expand  = 

1− 2 () + 3 ()

2 − · · · .
This is an alternating series, so by the Alternating Series

Estimation Theorem, the error in the approximation  = 

is less than 2, so for accuracy within 1% we want 2

2( + )2

  001 ⇔ 2(+ )2

3
 001.

This inequality would be difficult to solve for , so we substitute  = 6,400 km and plot both sides of the inequality.

It appears that the approximation is accurate to within 1% for   31 km.

61. () =
∞
=0

 
 ⇒ (−) =

∞
=0

(−) =
∞
=0

(−1) 


(a) If  is an odd function, then (−) = −() ⇒
∞
=0

(−1)
 =

∞
=0

−. The coefficients of any power series

are uniquely determined (by Theorem 11.10.5), so (−1)

 = −.

If  is even, then (−1) = 1, so  = − ⇒ 2 = 0 ⇒  = 0. Thus, all even coefficients are 0, that is,

0 = 2 = 4 = · · · = 0.

(b) If  is even, then (−) = () ⇒
∞
=0

(−1)

 

 =
∞
=0

 
 ⇒ (−1)  = .

If  is odd, then (−1) = −1, so − =  ⇒ 2 = 0 ⇒  = 0. Thus, all odd coefficients are 0,

that is, 1 = 3 = 5 = · · · = 0.

62.  =
∞
=0



!
⇒ () = 

2

=
∞
=0

(2)

!
=

∞
=0

2

!
=

∞
=0

1

!
2. By Theorem 11.10.6 with  = 0, we also have

() =
∞
=0

 ()(0)

!
. Comparing coefficients for  = 2, we have

 (2)(0)

(2)!
=

1

!
⇒  (2)(0) =

(2)!

!
.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE

1084 ¤ CHAPTER 11 INFINITE SEQUENCES AND SERIES

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE
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1. It would be far too much work to compute 15 derivatives of  . The key idea is to remember that  ()(0) occurs in the

coefficient of  in the Maclaurin series of  . We start with the Maclaurin series for sin: sin = − 3

3!
+

5

5!
− · · · .

Then sin(3) = 3 − 9

3!
+

15

5!
− · · · , and so the coefficient of 15 is

 (15)(0)

15!
=

1

5!
. Therefore,

 (15)(0) =
15!

5!
= 6 · 7 · 8 · 9 · 10 · 11 · 12 · 13 · 14 · 15 = 10,897,286,400.

2. We use the problem-solving strategy of taking cases:

Case (i): If ||  1, then 0 ≤ 2  1, so lim
→∞

2 = 0 [see Example 11.1.11]

and () = lim
→∞

2 − 1

2 + 1
=

0− 1

0 + 1
= −1.[]

Case (ii): If || = 1, that is,  = ±1, then 2 = 1, so () = lim
→∞

2 − 1

2 + 1
= lim

→∞
1− 1

1 + 1
= 0.

Case (iii): If ||  1, then 2  1, so lim
→∞

2 =∞ and () = lim
→∞

2 − 1

2 + 1
= lim

→∞
1− (12)

1 + (12)
=

1− 0

1 + 0
= 1.

Thus, () =



1 if   −1

0 if  = −1

−1 if −1    1

0 if  = 1

1 if   1

The graph shows that  is continuous everywhere except at  = ±1.

3. (a) From Formula 14a in Appendix D, with  =  = , we get tan 2 =
2 tan 

1− tan2 
, so cot 2 =

1− tan2 

2 tan 
⇒

2 cot 2 =
1− tan2 

tan 
= cot  − tan . Replacing  by 1

2
, we get 2 cot = cot 1

2
− tan 1

2
, or

tan 1
2
 = cot 1

2
− 2 cot.

(b) From part (a) with


2−1
in place of , tan



2
= cot



2
− 2 cot



2−1
, so the th partial sum of

∞
=1

1

2
tan



2
is

 =
tan(2)

2
+

tan(4)

4
+

tan(8)

8
+ · · ·+ tan(2)

2

=


cot(2)

2
− cot


+


cot(4)

4
− cot(2)

2


+


cot(8)

8
− cot(4)

4


+ · · ·

+


cot(2)

2
− cot(2−1)

2−1


= − cot+

cot(2)

2
[telescoping sum]

Now
cot(2)

2
=

cos(2)

2 sin(2)
=

cos(2)


· 2

sin(2)
→ 1


· 1 =

1


as →∞ since 2 → 0
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for  6= 0. Therefore, if  6= 0 and  6=  where  is any integer, then

∞
=1

1

2
tan



2
= lim

→∞
 = lim

→∞


− cot+

1

2
cot



2


= − cot+

1



If  = 0, then all terms in the series are 0, so the sum is 0.

4. |2|2 = 2, |3|2 = 2 + 22, |4|2 = 2 + 22 +

22
2
, |5|2 = 2 + 22 +


22
2

+

23
2
,    ,

||2 = 2 + 22 +

22
2

+ · · ·+ (2−2)2 [for  ≥ 3] = 2 + (4 + 42 + 43 + · · ·+ 4−2)

= 2 +
4(4−2 − 1)

4− 1
[finite geometric sum with  = 4,  = 4] =

6

3
+

4−1 − 4

3
=

2

3
+

4−1

3

So tan∠+1 =
|+1|
|| =

2−1
2

3
+

4−1

3

=

√
4−1

2

3
+

4−1

3

=
1

2

3 · 4−1
+

1

3

→√
3 as →∞.

Thus, ∠+1 → 
3
as →∞.

5. (a) At each stage, each side is replaced by four shorter sides, each of length

1
3
of the side length at the preceding stage. Writing 0 and 0 for the

number of sides and the length of the side of the initial triangle, we

generate the table at right. In general, we have  = 3 · 4 and
 =


1
3


, so the length of the perimeter at the th stage of construction

is  =  = 3 · 4 ·  1
3


= 3 ·  4

3


.

0 = 3 0 = 1

1 = 3 · 4 1 = 13

2 = 3 · 42 2 = 132

3 = 3 · 43 3 = 133

...
...

(b)  =
4

3−1
= 4


4

3

−1

. Since 4
3
 1,  →∞ as →∞.

(c) The area of each of the small triangles added at a given stage is one-ninth of the area of the triangle added at the preceding

stage. Let  be the area of the original triangle. Then the area  of each of the small triangles added at stage  is

 =  · 1

9
=



9
. Since a small triangle is added to each side at every stage, it follows that the total area added to the

figure at the th stage is  = −1 ·  = 3 · 4−1 · 

9
=  · 4−1

32−1
. Then the total area enclosed by the snowflake

curve is  = +1 + 2 +3 + · · · = +  · 1

3
+  · 4

33
+  · 42

35
+  · 43

37
+ · · · . After the first term, this is a

geometric series with common ratio
4

9
, so  = +

3

1− 4
9

= +


3
· 9

5
=

8

5
. But the area of the original equilateral

triangle with side 1 is  =
1

2
· 1 · sin 

3
=

√
3

4
. So the area enclosed by the snowflake curve is

8

5
·
√

3

4
=

2
√

3

5
.

6. Let the series  = 1 + 1
2

+ 1
3

+ 1
4

+ 1
6

+ 1
8

+ 1
9

+ 1
12

+ · · · . Then every term in  is of the form
1

23
,,  ≥ 0, and

furthermore each term occurs only once. So we can write

 =
∞

=0

∞
=0

1

23
=

∞
=0

∞
=0

1

2
1

3
=

∞
=0

1

2

∞
=0

1

3
=

1

1− 1
2

· 1

1− 1
3

= 2 · 3
2

= 3
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7. (a) Let  = arctan and  = arctan . Then, from Formula 14b in Appendix D,

tan(− ) =
tan − tan 

1 + tan  tan 
=

tan(arctan)− tan(arctan )

1 + tan(arctan) tan(arctan )
=

− 

1 + 

Now arctan− arctan  = −  = arctan(tan(− )) = arctan
− 

1 + 
since−

2
 −   

2
.

(b) From part (a) we have

arctan 120
119
− arctan 1

239
= arctan

120
119
− 1

239

1 + 120
119

· 1
239

= arctan

28,561
28,441
28,561
28,441

= arctan 1 = 
4

(c) Replacing  by − in the formula of part (a), we get arctan+ arctan  = arctan
+ 

1− 
. So

4 arctan 1
5

= 2

arctan 1

5
+ arctan 1

5


= 2arctan

1
5

+ 1
5

1− 1
5
· 1

5

= 2arctan 5
12

= arctan 5
12

+ arctan 5
12

= arctan
5
12

+ 5
12

1− 5
12
· 5

12

= arctan 120
119

Thus, from part (b), we have 4 arctan 1
5
− arctan 1

239
= arctan 120

119
− arctan 1

239
= 

4
.

(d) From Example 7 in Section 11.9 we have arctan = − 3

3
+

5

5
− 7

7
+

9

9
− 11

11
+ · · · , so

arctan
1

5
=

1

5
− 1

3 · 53
+

1

5 · 55
− 1

7 · 57
+

1

9 · 59
− 1

11 · 511
+ · · ·

This is an alternating series and the size of the terms decreases to 0, so by the Alternating Series Estimation Theorem,

the sum lies between 5 and 6, that is, 0197395560  arctan 1
5
 0197395562.

(e) From the series in part (d) we get arctan
1

239
=

1

239
− 1

3 · 2393
+

1

5 · 2395
− · · · . The third term is less than

26× 10−13, so by the Alternating Series Estimation Theorem, we have, to nine decimal places,

arctan 1
239

≈ 2 ≈ 0004184076. Thus, 0004184075  arctan 1
239

 0004184077.

(f ) From part (c) we have  = 16 arctan 1
5
− 4 arctan 1

239
, so from parts (d) and (e) we have

16(0197395560) − 4(0004184077)    16(0197395562) − 4(0004184075) ⇒
3141592652    3141592692. So, to 7 decimal places,  ≈ 31415927.

8. (a) Let  = arccot and  = arccot  where 0  −   . Then

cot(− ) =
1

tan(− )
=

1 + tan  tan 

tan − tan 
=

1

cot 
· 1

cot 
+ 1

1

cot 
− 1

cot 

· cot  cot 

cot  cot 

=
1 + cot  cot 

cot − cot 
=

1 + cot(arccot) cot(arccot )

cot(arccot )− cot(arccot)
=

1 + 

 − 

Now arccot− arccot  = −  = arccot(cot(− )) = arccot
1 + 

 − 
since 0  −   .
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(b) From part (a), we want arccot(2 +  + 1) to equal arccot
1 + 

 − 
. Note that 1 +  = 2 +  + 1 ⇔

 = 2 +  = (+ 1), so if we let  = + 1 and  = , then  −  = 1. Therefore,

arccot(2 + + 1) = arccot(1 + (+ 1)) = arccot
1 + (+ 1)

(+ 1)− 
= arccot− arccot(+ 1)

Thus, we have a telescoping series with th partial sum

 = [arccot 0− arccot 1] + [arccot 1− arccot 2] + · · ·+ [arccot− arccot(+ 1)] = arccot 0− arccot(+ 1).

Thus,
∞
=0

arccot(2 + + 1) = lim
→∞

 = lim
→∞

[arccot 0− arccot(+ 1)] = 
2
− 0 = 

2
.

9. We want arctan


2

2


to equal arctan

− 

1 + 
. Note that 1 +  = 2 ⇔  = 2 − 1 = (+ 1)(− 1), so if we

let  =  + 1 and  = − 1, then −  = 2 and  6= −1. Thus, from Problem 7(a),

arctan


2

2


= arctan

− 

1 + 
= arctan− arctan  = arctan( + 1)− arctan(− 1). Therefore,


=1

arctan


2

2


=


=1

[arctan(+ 1)− arctan(− 1)]

=


=1

[arctan(+ 1)− arctan+ arctan− arctan(− 1)]

=


=1

[arctan(+ 1)− arctan] +


=1

[arctan− arctan(− 1)]

= [arctan( + 1)− arctan 1] + [arctan  − arctan 0] [since both sums are telescoping]

= arctan( + 1)− 
4

+ arctan  − 0

Now


=1

arctan


2

2


= lim

→0


=1

arctan


2

2


= lim

→∞


arctan( + 1)− 

4
+ arctan 


=



2
− 

4
+



2
=

3

4
.

Note: For all  ≥ 1, 0 ≤ arctan(− 1)  arctan(+ 1)  
2
, so −

2
 arctan(+ 1)− arctan(− 1)  

2
, and the

identity in Problem 7(a) holds.

10. Let’s first try the case  = 1: 0 + 1 = 0 ⇒ 1 = −0 ⇒

lim
→∞


0

√
+ 1

√
+ 1


= lim

→∞


0

√
− 0

√
+ 1


= 0 lim

→∞

√
−√+ 1

 √+
√
+ 1√

+
√
+ 1

= 0 lim
→∞

−1√
+

√
+ 1

= 0

In general we have 0 + 1 + · · ·+  = 0 ⇒  = −0 − 1 − · · ·− −1 ⇒

lim
→∞


0

√
+ 1

√
+ 1 + 2

√
+ 2 + · · ·+ 

√
+ 


= lim

→∞


0

√
+ 1

√
+ 1 + · · ·+ −1

√
+  − 1− 0

√
+  − 1

√
+  − · · ·− −1

√
+ 


= 0 lim

→∞

√
−√+ 


+ 1 lim

→∞

√
+ 1−√+ 


+ · · ·+ −1 lim

→∞

√
+  − 1−√+ 


Each of these limits is 0 by the same type of simplification as in the case  = 1. So we have

lim
→∞


0

√
+ 1

√
+ 1 + 2

√
+ 2 + · · ·+ 

√
+ 


= 0(0) + 1(0) + · · ·+ −1(0) = 0

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE

CHAPTER 11 PROBLEMS PLUS ¤ 1089

11. We start with the geometric series
∞
=0

 =
1

1− 
, ||  1, and differentiate:

∞
=1

−1 =




 ∞
=0




=





1

1− 


=

1

(1− )2
for ||  1 ⇒

∞
=1

 = 
∞
=1

−1 =


(1− )2

for ||  1. Differentiate again:

∞
=1

2−1 =






(1− )2
=

(1− )2 −  · 2(1− )(−1)

(1− )4
=

+ 1

(1− )3
⇒

∞
=1

2  =
2 + 

(1− )3
⇒

∞
=1

3−1 =




2 + 

(1− )3
=

(1− )3(2+ 1)− (2 + )3(1− )2(−1)

(1− )6
=

2 + 4 + 1

(1− )4
⇒

∞
=1

3 =
3 + 42 + 

(1− )4
, ||  1. The radius of convergence is 1 because that is the radius of convergence for the

geometric series we started with. If  = ±1, the series is


3(±1), which diverges by the Test For Divergence, so the

interval of convergence is (−1 1).

12. Place the -axis as shown and let the length of each book be . We want to

show that the center of mass of the system of  books lies above the table,

that is,   . The -coordinates of the centers of mass of the books are

1 =


2
, 2 =



2(− 1)
+



2
, 3 =



2(− 1)
+



2(− 2)
+



2
, and so on.

Each book has the same mass, so if there are  books, then

 =
1 +2 + · · ·+


=

1 + 2 + · · ·+ 



=
1






2
+




2(− 1)
+



2


+




2(− 1)
+



2(− 2)
+



2


+ · · ·

+




2(− 1)
+



2(− 2)
+ · · ·+ 

4
+



2
+



2


=






− 1

2(− 1)
+

− 2

2(− 2)
+ · · ·+ 2

4
+

1

2
+



2


=






(− 1)

1

2
+



2


=

2− 1

2
  

This shows that, no matter how many books are added according to the given scheme, the center of mass lies above the table.

It remains to observe that the series 1
2

+ 1
4

+ 1
6

+ 1
8

+ · · · = 1
2


(1) is divergent (harmonic series), so we can make the top

book extend as far as we like beyond the edge of the table if we add enough books.

13. ln


1− 1

2


= ln


2 − 1

2


= ln

(+ 1)(− 1)

2
= ln[(+ 1)(− 1)]− ln2

= ln(+ 1) + ln(− 1)− 2 ln = ln(− 1)− ln− ln+ ln(+ 1)

= ln
− 1


− [ln− ln(+ 1)] = ln

− 1


− ln



+ 1
.

Let  =


=2

ln


1− 1

2


=


=2


ln

− 1


− ln



+ 1


for  ≥ 2. Then
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 =


ln

1

2
− ln

2

3


+


ln

2

3
− ln

3

4


+ · · ·+


ln

 − 1


− ln



 + 1


= ln

1

2
− ln



 + 1
, so

∞
=2

ln


1− 1

2


= lim

→∞
 = lim

→∞


ln

1

2
− ln



 + 1


= ln

1

2
− ln 1 = ln 1− ln 2− ln 1 = − ln 2 (or ln 1

2
).

14. First notice that both series are absolutely convergent (p-series with   1.) Let the given expression be called . Then

 =
1 +

1

2
+

1

3
+

1

4
+ · · ·

1− 1

2
+

1

3
− 1

4
+ · · ·

=

1 +


2 · 1

2
− 1

2


+

1

3
+


2 · 1

4
− 1

4


+ · · ·

1− 1

2
+

1

3
− 1

4
+ · · ·

=


1− 1

2
+

1

3
− 1

4
+ · · ·


+


2 · 1

2
+ 2 · 1

4
+ 2 · 1

6
+ · · ·


1− 1

2
+

1

3
− 1

4
+ · · ·

= 1 +

2


1

2
+

1

4
+

1

6
+

1

8
+ · · ·


1− 1

2
+

1

3
− 1

4
+ · · ·

= 1 +

1

2−1


1 +

1

2
+

1

3
+

1

4
+ · · ·


1− 1

2
+

1

3
− 1

4
+ · · ·

= 1 + 21−

Therefore,  = 1 + 21− ⇔ − 21− = 1 ⇔ (1− 21−) = 1 ⇔  =
1

1− 21− .

15. If  is the length of a side of the equilateral triangle, then the area is  = 1
2
 ·

√
3

2
 =

√
3

4
2 and so 2 = 4√

3
.

Let  be the radius of one of the circles. When there are  rows of circles, the figure shows that

 =
√

3  +  + (− 2)(2) +  +
√

3  = 

2− 2 + 2

√
3

, so  =



2

+

√
3− 1

 .
The number of circles is 1 + 2 + · · ·+  =

(+ 1)

2
, and so the total area of the circles is

 =
(+ 1)

2
2 =

(+ 1)

2


2

4

+

√
3− 1

2
=

(+ 1)

2


4
√

3

4

+

√
3− 1

2 =
(+ 1)

+
√

3− 1
2 

2
√

3
⇒




=

(+ 1)
+

√
3− 1

2 

2
√

3

=
1 + 1

1 +
√

3− 1


2 

2
√

3
→ 

2
√

3
as →∞

16. Given 0 = 1 = 1 and  =
(− 1)(− 2)−1 − (− 3)−2

(− 1)
, we calculate the next few terms of the sequence:

2 =
1 · 0 · 1 − (−1)0

2 · 1 =
1

2
, 3 =

2 · 1 · 2 − 0 · 1

3 · 2 =
1

6
, 4 =

3 · 2 · 3 − 1 · 2

4 · 3 =
1

24
. It seems that  =

1

!
,

so we try to prove this by induction. The first step is done, so assume  =
1

!
and −1 =

1

( − 1)!
. Then
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+1 =
( − 1) − ( − 2)−1

( + 1)
=

( − 1)

!
−  − 2

( − 1)!

( + 1)
=

( − 1)− ( − 2)

[( + 1)()]( − 1)!
=

1

( + 1)!
and the induction is

complete. Therefore,
∞
=0

 =
∞
=0

1

!
= .

17. (a) The x-intercepts of the curve occur where sin = 0 ⇔  = ,

 an integer. So using the formula for disks (and either a CAS or

sin2  = 1
2
(1− cos 2) and Formula 99 to evaluate the integral),

the volume of the nth bead is

 = 
 
(−1)

(−10 sin)2  = 
 
(−1)

−5 sin2 

= 250
101

(−(−1)5 − −5)

(b) The total volume is


∞
0

−5 sin2  =
∞
=1

 = 250
101

∞
=1

[−(−1)5 − −5] = 250
101

[telescoping sum].

Another method: If the volume in part (a) has been written as  = 250
101

−5(5 − 1), then we recognize
∞
=1



as a geometric series with  = 250
101

(1− −5) and  = −5

18. (a) Since  is defined as the midpoint of −4−3,  = 1
2
(−4 + −3) for  ≥ 5. So we prove by induction that

1
2
 + +1 + +2 + +3 = 2. The case  = 1 is immediate, since 1

2
· 0 + 1 + 1 + 0 = 2. Assume that the result

holds for  =  − 1, that is, 1
2
−1 +  + +1 + +2 = 2. Then for  = ,

1
2
 + +1 + +2 + +3 = 1

2
 + +1 + +2 + 1

2
(+3−4 + +3−3) [by above]

= 1
2
−1 +  + +1 + +2 = 2 [by the induction hypothesis]

Similarly, for  ≥ 5,  = 1
2
(−4 + −3), so the same argument as above holds for , with 2 replaced by

1
2
1 + 2 + 3 + 4 = 1

2
· 1 + 1 + 0 + 0 = 3

2
. So 1

2
 + +1 + +2 + +3 = 3

2
for all .

(b) lim
→∞


1
2
 + +1 + +2 + +3


= 1

2
lim
→∞

 + lim
→∞

+1 + lim
→∞

+2 + lim
→∞

+3 = 2. Since all

the limits on the left hand side are the same, we get 7
2

lim
→∞

 = 2 ⇒ lim
→∞

 = 4
7
. In the same way,

7
2

lim
→∞

 = 3
2
⇒ lim

→∞
 = 3

7
, so  =


4
7
 3

7


.

19. By Table 1 in Section 11.10, tan−1  =
∞
=0

(−1)
2+1

2+ 1
for ||  1. In particular, for  =

1√
3
, we

have


6
= tan−1


1√
3


=

∞
=0

(−1)

1
√

3
2+1

2+ 1
=

∞
=0

(−1)


1

3


1√
3

1

2+ 1
, so

 =
6√
3

∞
=0

(−1)

(2+ 1)3
= 2
√

3
∞
=0

(−1)

(2+ 1)3
= 2
√

3


1 +

∞
=1

(−1)

(2+ 1)3


⇒

∞
=1

(−1)

(2+ 1)3
=



2
√

3
− 1.
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20. (a) Using  =  +  + 2 + · · · + −1 =
(1− )

1− 
,

1− + 2 − 3 + · · ·+ 2−2 − 2−1 =
1

1− (−)2


1− (−)

=
1− 2

1 + 
.

(b)
 1

0

(1 −  + 
2 − 

3
+ · · · + 

2−2 − 
2−1

)  =

 1

0

1− 2

1 + 
 ⇒


− 2

2
+

3

3
− 4

4
+ · · ·+ 2−1

2− 1
− 2

2

1
0

=

 1

0



1 + 
−
 1

0

2

1 + 
 ⇒

1− 1

2
+

1

3
− 1

4
+ · · ·+ 1

2− 1
− 1

2
=

 1

0



1 + 
−
 1

0

2

1 + 


(c) Since 1− 1

2
=

1

1 · 2 ,
1

3
− 1

4
=

1

3 · 4  · · · 
1

2− 1
− 1

2
=

1

(2− 1)(2)
, we see from part (b) that

1

1 · 2 +
1

3 · 4 + · · ·+ 1

(2− 1)(2)
−
 1

0



1 + 
= −

 1

0

2

1 + 
. Thus,

 1

1 · 2 +
1

3 · 4 + · · ·+ 1

(2− 1)(2)
−
 1

0



1 + 

 =

 1

0

2

1 + 
 

 1

0


2




since

2

1 + 
 2 for 0   ≤ 1


.

(d) Note that
 1

0



1 + 
=

ln(1 + )

1
0

= ln 2 and
 1

0


2

 =


2+1

2+ 1

1

0

=
1

2+ 1
. So part (c) becomes

 1

1 · 2 +
1

3 · 4 + · · ·+ 1

(2− 1)(2)
− ln 2

  1

2+ 1
. In other words, the th partial sum  of the given series

satisfies | − ln 2|  1

2+ 1
. Thus, lim

→∞
 = ln 2, that is,

1

1 · 2 +
1

3 · 4 +
1

5 · 6 +
1

7 · 8 + · · · = ln 2.

21. Let () denote the left-hand side of the equation 1 +


2!
+

2

4!
+

3

6!
+

4

8!
+ · · · = 0. If  ≥ 0, then () ≥ 1 and there are

no solutions of the equation. Note that (−2) = 1− 2

2!
+

4

4!
− 6

6!
+

8

8!
− · · · = cos. The solutions of cos = 0 for

  0 are given by  =


2
− , where  is a positive integer. Thus, the solutions of () = 0 are  = −


2
− 

2
, where

 is a positive integer.

22. Suppose the base of the first right triangle has length . Then by repeated use of the Pythagorean theorem, we find that the base

of the second right triangle has length
√

1 + 2, the base of the third right triangle has length
√

2 + 2, and in general, the nth

right triangle has base of length
√
− 1 + 2 and hypotenuse of length

√
+ 2. Thus,  = tan−1


1
√
− 1 + 2


and

∞
=1

 =
∞
=1

tan−1


1√

− 1 + 2


=

∞
=0

tan−1


1√

+ 2


. We wish to show that this series diverges.

First notice that the series
∞
=1

1√
+ 2

diverges by the Limit Comparison Test with the divergent p-series
∞
=1

1√



 = 1

2
≤ 1


since lim

→∞
1
√
+ 2

1
√


= lim
→∞

√
√

+ 2
= lim

→∞




+ 2
= lim

→∞


1

1 + 2
= 1  0. Thus,
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∞
=0

1√
+ 2

also diverges. Now
∞
=0

tan−1


1√

+ 2


diverges by the Limit Comparison Test with

∞
=0

1√
+ 2

since

lim
→∞

tan−1

1
√
+ 2


1
√
+ 2

= lim
→∞

tan−1

1
√
+ 2


1
√
 + 2

= lim
→∞

tan−1(1)

1


 =

√
+ 2


= lim

→0+

tan−1 




 = 1

 H
= lim

→0+

1(1 + 2)

1
= 1  0

Thus,
∞
=1

 is a divergent series.

23. Call the series . We group the terms according to the number of digits in their denominators:

 =


1
1

+ 1
2

+ · · ·+ 1
8

+ 1
9

  
1

+


1
11

+ · · ·+ 1
99

  
2

+


1
111

+ · · ·+ 1
999

  
3

+ · · ·

Now in the group , since we have 9 choices for each of the  digits in the denominator, there are 9 terms.

Furthermore, each term in  is less than 1

10−1 [except for the first term in 1]. So   9 · 1

10−1 = 9


9
10

−1
.

Now
∞
=1

9


9
10

−1
is a geometric series with  = 9 and  = 9

10
 1. Therefore, by the Comparison Test,

 =
∞
=1

 
∞
=1

9


9
10

−1
= 9

1− 910
= 90.

24. (a) Let () =


1− − 2
=

∞
=0


 = 0 + 1+ 2

2 + 3
3 + · · · . Then

 = (1− − 2)(0 + 1+ 2
2 + 3

3 + · · · )

 = 0 + 1+ 2
2 + 3

3 + 4
4 + 5

5 + · · ·
− 0− 1

2 − 2
3 − 3

4 − 4
5 − · · ·

− 0
2 − 1

3 − 2
4 − 3

5 − · · ·

 = 0 + (1 − 0) + (2 − 1 − 0)
2 + (3 − 2 − 1)

3 + · · ·

Comparing coefficients of powers of  gives us 0 = 0 and

1 − 0 = 1 ⇒ 1 = 0 + 1 = 1

2 − 1 − 0 = 0 ⇒ 2 = 1 + 0 = 1 + 0 = 1

3 − 2 − 1 = 0 ⇒ 3 = 2 + 1 = 1 + 1 = 2

In general, we have  = −1 + −2 for  ≥ 3. Each  is equal to the th Fibonacci number, that is,

∞
=0


 =

∞
=1


 =

∞
=1




(b) Completing the square on 2 + − 1 gives us
2 + +

1

4


− 1− 1

4
=


+

1

2

2

− 5

4
=


+

1

2

2

−
√

5

2

2

=


+

1

2
+

√
5

2


 +

1

2
−
√

5

2


=


+

1 +
√

5

2


 +

1−√5

2


[continued]
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So


1− − 2
=

−
2 + − 1

=
−

 + 1+
√

5
2


+ 1−√5

2

 . The factors in the denominator are linear,
so the partial fraction decomposition is

−
+ 1+

√
5

2


+ 1−√5

2

 =


 + 1+
√

5
2

+


+ 1−√5
2

−  = 

+ 1−√5

2


+


+ 1+

√
5

2



If  = −1+
√

5
2

, then −−1+
√

5
2

= 
√

5 ⇒  = 1−√5

2
√

5
.

If  = −1−√5
2

, then −−1−√5
2

= 
−√5

 ⇒  = 1+
√

5

−2
√

5
. Thus,



1− − 2
=

1 +
√

5

−2
√

5

+
1 +

√
5

2

+

1 − √5

2
√

5

+
1−√5

2

=

1 +
√

5

−2
√

5

 +
1 +

√
5

2

·
2

1 +
√

5
2

1 +
√

5

+

1 − √5

2
√

5

+
1 − √5

2

·
2

1 − √5
2

1 − √5

=
−1

√
5

1 +
2

1 +
√

5


+
1
√

5

1 +
2

1 − √5


= − 1√
5

∞
=0


− 2

1 +
√

5



+

1√
5

∞
=0


− 2

1−√5




=
1√
5

∞
=0

 −2

1−√5


−
 −2

1 +
√

5




=
1√
5

∞
=1


(−2)


1 +

√
5
 − (−2)


1−√5


1−√5


1 +

√
5



 [the  = 0 term is 0]

=
1√
5

∞
=1

 (−2)


1 +
√

5
 − 1−√5


(1− 5)





=
1√
5

∞
=1


1 +

√
5
 − 1−√5


2


 [(−4) = (−2) · 2]

From part (a), this series must equal
∞
=1


, so  =


1 +

√
5
 − 1−√5


2
√

5
, which is an explicit formula for

the nth Fibonacci number.

25.  = 1 +
3

3!
+

6

6!
+

9

9!
+ · · · ,  =  +

4

4!
+

7

7!
+

10

10!
+ · · · ,  =

2

2!
+

5

5!
+

8

8!
+ · · · .

Use the Ratio Test to show that the series for , , and  have positive radii of convergence (∞ in each case), so

Theorem 11.9.2 applies, and hence, we may differentiate each of these series:




=

32

3!
+

65

6!
+

98

9!
+ · · · = 2

2!
+

5

5!
+

8

8!
+ · · · = 

Similarly,



= 1 +

3

3!
+

6

6!
+

9

9!
+ · · · = , and




= +

4

4!
+

7

7!
+

10

10!
+ · · · = .

So 0 = , 0 = , and 0 = . Now differentiate the left-hand side of the desired equation:




(3 + 3 +3 − 3) = 320 + 320 + 320 − 3(0 + 0 + 0)

= 32 + 32+ 32 − 3(2 + 2 + 2) = 0 ⇒
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3 + 3 + 3 − 3 = . To find the value of the constant , we put  = 0 in the last equation and get

13 + 03 + 03 − 3(1 · 0 · 0) =  ⇒  = 1, so 3 + 3 +3 − 3 = 1.

26. To prove: If   1, then the nth partial sum  =

=1

1


of the harmonic series is not an integer.

Proof: Let 2 be the largest power of 2 that is less than or equal to  and let be the product of all the odd positive integers

that are less than or equal to . Suppose that  = , an integer. Then2 = 2. Since  ≥ 2, we have  ≥ 1, and

hence,2 is an even integer. We will show that2 is an odd integer, contradicting the equality2 = 2

and showing that the supposition that  is an integer must have been wrong.

2 = 2

=1

1


=


=1

2


. If 1 ≤  ≤  and  is odd, then




is an odd integer since  is one of the odd integers

that were multiplied together to form. Thus,
2


is an even integer in this case. If 1 ≤  ≤  and  is even, then we can

write  = 2, where 2 is the largest power of 2 dividing  and  is odd. If   , then
2


=

2

2
· 


= 2−



, which is

an even integer, the product of the even integer 2− and the odd integer



. If  = , then  = 1, since   1 =  ≥ 2 ⇒

 = 2 ≥ 2 · 2 = 2+1, contrary to the choice of 2 as the largest power of 2 that is less than or equal to . This shows that

 =  only when  = 2. In that case,
2


=  , an odd integer. Since

2


is an even integer for every  except 2 and

2


is an odd integer when  = 2, we see that2 is an odd integer. This concludes the proof.
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12 VECTORS AND THE GEOMETRY OF SPACE

12.1 Three-Dimensional Coordinate Systems

1. We start at the origin, which has coordinates (0 0 0). First we

move 4 units along the positive -axis, affecting only the

-coordinate, bringing us to the point (4 0 0). We then move

3 units straight downward, in the negative -direction. Thus

only the -coordinate is affected, and we arrive at (4 0−3).

2.

3. The distance from a point to the -plane is the absolute value of the -coordinate of the point. (2 4 6) has the -coordinate

with the smallest absolute value, so  is the point closest to the -plane. (−4 0−1) must lie in the -plane since the

distance from  to the -plane, given by the -coordinate of , is 0.

4. The projection of (2 3 5) onto the -plane is (2 3 0);

onto the -plane, (0 3 5); onto the -plane, (2 0 5).

The length of the diagonal of the box is the distance between

the origin and (2 3 5), given by


(2− 0)2 + (3− 0)2 + (5− 0)2 =

√
38 ≈ 616

5. In R2, the equation  = 4 represents a line parallel to

the -axis and 4 units to the right of it. In R3, the

equation  = 4 represents the set {(  ) |  = 4},
the set of all points whose -coordinate is 4. This is the

vertical plane that is parallel to the -plane and 4 units

in front of it.

6. In R3, the equation  = 3 represents a vertical plane that is parallel to the -plane and 3 units to the right of it. The equation

 = 5 represents a horizontal plane parallel to the -plane and 5 units above it. The pair of equations  = 3,  = 5 represents

the set of points that are simultaneously on both planes, or in other words, the line of intersection of the planes  = 3,  = 5.

[continued]
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2 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

This line can also be described as the set {( 3 5) |  ∈ R},
which is the set of all points in R3 whose -coordinate may

vary but whose - and -coordinates are fixed at 3 and 5,

respectively. Thus the line is parallel to the -axis and

intersects the -plane in the point (0 3 5).

7. The equation +  = 2 represents the set of all points in

R3 whose - and -coordinates have a sum of 2, or

equivalently where  = 2−  This is the set

{( 2−  ) |  ∈ R  ∈ R} which is a vertical plane
that intersects the -plane in the line  = 2− ,  = 0.

8. The equation 2 + 2 = 9 has no restrictions on , and the - and

-coordinates satisfy the equation for a circle of radius 3 with center the

origin. Thus the surface 2 + 2 = 9 in R3 consists of all possible vertical

circles (parallel to the -plane) 2 + 2 = 9,  = , and is therefore a

circular cylinder with radius 3 whose axis is the -axis.

9. We can find the lengths of the sides of the triangle by using the distance formula between pairs of vertices:

|| =


(7− 3)2 + [0− (−2)]2 + [1− (−3)]2 =
√

16 + 4 + 16 = 6

|| =


(1− 7)2 + (2− 0)2 + (1− 1)2 =
√

36 + 4 + 0 =
√

40 = 2
√

10

| | =


(3− 1)2 + (−2− 2)2 + (−3− 1)2 =
√

4 + 16 + 16 = 6

The longest side is, but the Pythagorean Theorem is not satisfied: ||2 + | |2 6= ||2. Thus  is not a right

triangle.  is isosceles, as two sides have the same length.

10. Compute the lengths of the sides of the triangle by using the distance formula between pairs of vertices:

|| =


(4− 2)2 + [1− (−1)]2 + (1− 0)2 =
√

4 + 4 + 1 = 3

|| =


(4− 4)2 + (−5− 1)2 + (4− 1)2 =
√

0 + 36 + 9 =
√

45 = 3
√

5

| | =


(2− 4)2 + [−1− (−5)]2 + (0− 4)2 =
√

4 + 16 + 16 = 6

Since the Pythagorean Theorem is satisfied by ||2 + | |2 = ||2,  is a right triangle.  is not isosceles, as

no two sides have the same length.
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SECTION 12.1 THREE-DIMENSIONAL COORDINATE SYSTEMS ¤ 3

11. (a) First we find the distances between points:

|| =


(3− 2)2 + (7− 4)2 + (−2− 2)2 =
√

26

|| =


(1− 3)2 + (3− 7)2 + [3− (−2)]2 =
√

45 = 3
√

5

|| =


(1− 2)2 + (3− 4)2 + (3− 2)2 =
√

3

In order for the points to lie on a straight line, the sum of the two shortest distances must be equal to the longest distance.

Since
√

26 +
√

3 6= 3
√

5, the three points do not lie on a straight line.

(b) First we find the distances between points:

|| =


(1− 0)2 + [−2− (−5)]2 + (4− 5)2 =
√

11

| | =


(3− 1)2 + [4− (−2)]2 + (2− 4)2 =
√

44 = 2
√

11

| | =


(3− 0)2 + [4− (−5)]2 + (2− 5)2 =
√

99 = 3
√

11

Since ||+ | | = | |, the three points lie on a straight line.

12. (a) The distance from a point to the -plane is the absolute value of the -coordinate of the point. Thus, the distance

is |6| = 6.

(b) Similarly, the distance to the -plane is the absolute value of the -coordinate of the point: |4| = 4.

(c) The distance to the -plane is the absolute value of the -coordinate of the point: |−2| = 2.

(d) The point on the -axis closest to (4−2 6) is the point (4 0 0). (Approach the -axis perpendicularly.)

The distance from (4−2 6) to the -axis is the distance between these two points:
(4− 4)2 + (−2− 0)2 + (6− 0)2 =

√
40 = 2

√
10 ≈ 632.

(e) The point on the -axis closest to (4−2 6) is (0−2 0). The distance between these points is
(4− 0)2 + [−2− (−2)]2 + (6− 0)2 =

√
52 = 2

√
13 ≈ 721.

(f ) The point on the -axis closest to (4−2 6) is (0 0 6). The distance between these points is
(4− 0)2 + (−2− 0)2 + (6− 6)2 =

√
20 = 2

√
5 ≈ 447.

13. An equation of the sphere with center (−3 2 5) and radius 4 is [− (−3)]
2

+ ( − 2)
2

+ ( − 5)
2

= 42 or

(+ 3)
2

+ ( − 2)
2
+ ( − 5)

2
= 16. The intersection of this sphere with the -plane is the set of points on the sphere

whose -coordinate is 0. Putting  = 0 into the equation, we have 9 + ( − 2)
2

+ ( − 5)
2

= 16  = 0 or

( − 2)
2
+ ( − 5)

2
= 7  = 0, which represents a circle in the -plane with center (0 2 5) and radius

√
7.

14. An equation of the sphere with center (2−6 4) and radius 5 is (− 2)
2

+ [ − (−6)]
2

+ ( − 4)
2

= 52 or

(− 2)
2

+ ( + 6)
2
+ ( − 4)

2
= 25. The intersection of this sphere with the -plane is the set of points on the sphere

whose -coordinate is 0. Putting  = 0 into the equation, we have (− 2)
2
+ ( + 6)

2
= 9  = 0 which represents a circle

in the -plane with center (2−6 0) and radius 3. To find the intersection with the -plane, we set  = 0:

(− 2)
2
+ ( − 4)

2
= −11. Since no points satisfy this equation, the sphere does not intersect the -plane. (Also note that

the distance from the center of the sphere to the -plane is greater than the radius of the sphere.) To find the intersection with

the -plane, we set  = 0: ( + 6)
2
+ ( − 4)

2
= 21  = 0, a circle in the -plane with center (0−6 4) and radius

√
21.
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4 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

15. The radius of the sphere is the distance between (4 3−1) and (3 8 1):  =


(3− 4)2 + (8− 3)2 + [1− (−1)]2 =
√

30.

Thus, an equation of the sphere is (− 3)
2

+ ( − 8)
2

+ ( − 1)
2

= 30.

16. If the sphere passes through the origin, the radius of the sphere must be the distance from the origin to the point (1 2 3):

 =


(1− 0)2 + (2− 0)2 + (3− 0)2 =
√

14. Then an equation of the sphere is (− 1)2 + ( − 2)2 + ( − 3)2 = 14.

17. Completing squares in the equation 2 + 2 + 2 − 2− 4 + 8 = 15 gives

(2− 2+ 1) + (2− 4+ 4) + (2 + 8+ 16) = 15 + 1 + 4 + 16 ⇒ (− 1)2 + (− 2)2 + (+ 4)2 = 36, which we

recognize as an equation of a sphere with center (1 2−4) and radius 6.

18. Completing squares in the equation gives (2 + 8+ 16) + (2 − 6 + 9) + (2 + 2 + 1) = −17 + 16 + 9 + 1 ⇒

(+ 4)2 + ( − 3)2 + ( + 1)
2

= 9, which we recognize as an equation of a sphere with center (−4 3−1) and radius 3.

19. Completing squares in the equation 22 − 8 + 22 + 22 + 24 = 1 gives

2(2 − 4 + 4) + 22 + 2(2 + 12 + 36) = 1 + 8 + 72 ⇒ 2(− 2)2 + 22 + 2( + 6)2 = 81 ⇒

(− 2)
2

+ 2 + ( + 6)2 = 81
2
, which we recognize as an equation of a sphere with center (2 0−6) and

radius


81
2

= 9
√

2.

20. Completing squares in the equation 32 + 32 − 6 + 32 − 12 = 10 gives

32 + 3(2 − 2 + 1) + 3(2 − 4 + 4) = 10 + 3 + 12 ⇒ 32 + 3( − 1)2 + 3( − 2)2 = 25 ⇒
2 + ( − 1)2 + ( − 2)2 = 25

3
, which we recognize as an equation of a sphere with center (0 1 2) and radius

25
3

= 5
√

3.

21. (a) If the midpoint of the line segment from 1(1 1 1) to 2(2 2 2) is  =
1 + 2

2

1 + 2

2

1 + 2

2


,

then the distances |1| and |2| are equal, and each is half of |12|. We verify that this is the case:

|12|=


(2 − 1)
2
+ (2 − 1)

2
+ (2 − 1)

2

|1|=


1
2
(1 + 2)− 1

2
+


1
2
(1 + 2)− 1

2
+


1
2
(1 + 2)− 1

2
=


1
2
2 − 1

2
1

2
+


1
2
2 − 1

2
1

2
+


1
2
2 − 1

2
1
2

=


1
2

2
(2 − 1)

2
+ (2 − 1)

2
+ (2 − 1)

2


= 1
2


(2 − 1)

2
+ (2 − 1)

2
+ (2 − 1)

2

= 1
2
|12|

|2|=


2 − 1
2
(1 + 2)

2
+

2 − 1

2
(1 + 2)

2
+

2 − 1

2
(1 + 2)

2
=


1
2
2 − 1

2
1

2
+


1
2
2 − 1

2
1

2
+


1
2
2 − 1

2
1
2

=


1
2

2
(2 − 1)

2
+ (2 − 1)

2
+ (2 − 1)

2


= 1
2


(2 − 1)

2
+ (2 − 1)

2
+ (2 − 1)

2
= 1

2
|12|

So is indeed the midpoint of 12.
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SECTION 12.1 THREE-DIMENSIONAL COORDINATE SYSTEMS ¤ 5

(b) By part (a), the midpoints of sides ,  and  are 1

− 1
2
 1 4


, 2


1 1

2
 5

and 3


5
2
 3

2
 4

. Then the lengths of

the medians are:

|2| =


02 +


1
2
− 2
2

+ (5− 3)
2

=


9
4

+ 4 =


25
4

= 5
2

|3|=


5
2

+ 2
2

+


3
2

2
+ (4− 5)

2
=


81
4

+ 9
4

+ 1 =


94
4

= 1
2

√
94

|1|=
−1

2
− 4
2

+ (1− 1)
2
+ (4− 5)

2
=


81
4

+ 1 = 1
2

√
85

22. By Exercise 21(a), the midpoint of the diameter (and thus the center of the sphere) is


5+1
2
 4+6

2


3+(−9)

2


= (3 5−3). The

radius is half the diameter, so  = 1
2


(1− 5)2 + (6− 4)2 + (−9− 3)2 = 1

2

√
164 =

√
41. Therefore an equation of the

sphere is (− 3)2 + ( − 5)2 + ( + 3)2 = 41.

23. (a) Since the sphere touches the -plane, its radius is the distance from its center, (2−3 6), to the -plane, namely 6.

Therefore  = 6 and an equation of the sphere is (− 2)2 + ( + 3)2 + ( − 6)2 = 62 = 36.

(b) The radius of this sphere is the distance from its center (2−3 6) to the -plane, which is 2. Therefore, an equation is

(− 2)2 + ( + 3)2 + ( − 6)2 = 4.

(c) Here the radius is the distance from the center (2−3 6) to the -plane, which is 3. Therefore, an equation is

(− 2)2 + ( + 3)2 + ( − 6)2 = 9.

24. The largest sphere contained in the first octant must have a radius equal to the minimum distance from the center (5 4 9) to

any of the three coordinate planes. The shortest such distance is to the -plane, a distance of 4. Thus an equation of the

sphere is (− 5)2 + ( − 4)2 + ( − 9)2 = 16.

25. The equation  = 5 represents a plane parallel to the -plane and 5 units in front of it.

26. The equation  = −2 represents a plane parallel to the -plane and 2 units to the left of it.

27. The inequality   8 represents a half-space consisting of all points to the left of the plane  = 8.

28. The inequality  ≥ −1 represents a half-space consisting of all points on or above the plane  = −1.

29. The inequality 0 ≤  ≤ 6 represents all points on or between the horizontal planes  = 0 (the -plane) and  = 6.

30. The equation 2 = 4 ⇔  = ±2 represents two vertical planes;  = 2 is parallel to the -plane, two units to the right

of it, and  = −2 is two units to the left of it.

31. Because  = −1, all points in the region must lie in the horizontal plane  = −1. In addition, 2 + 2 = 4, so the region

consists of all points that lie on a circle with radius 2 and center on the -axis that is contained in the plane  = −1.

32. Here 2 + 2 = 4 with no restrictions on , so a point in the region must lie on a circle of radius 2, center on the -axis, but it

could be in any horizontal plane  =  (parallel to the -plane). Thus the region consists of all possible circles 2 + 2 = 4,

 =  and is therefore a circular cylinder with radius 2 whose axis is the -axis.
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6 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

33. The equation 2 + 2 + 2 = 4 is equivalent to

2 + 2 + 2 = 2, so the region consists of those points whose distance

from the origin is 2. This is the set of all points on a sphere with radius 2 and center (0 0 0).

34. The inequality 2 + 2 + 2 ≤ 4 is equivalent to

2 + 2 + 2 ≤ 2, so the region consists of those points whose distance

from the origin is at most 2. This is the set of all points on or inside a sphere with radius 2 and center (0 0 0).

35. The inequalities 1 ≤ 2 + 2 + 2 ≤ 5 are equivalent to 1 ≤

2 + 2 + 2 ≤ √5, so the region consists of those points

whose distance from the origin is at least 1 and at most
√

5. This is the set of all points on or between spheres with radii 1 and
√

5 and centers (0 0 0).

36. The equation  =  represents a plane perpendicular to the -plane and intersecting the -plane in the line  = ,  = 0.

37. Here 2 + 2 ≤ 9 or equivalently
√
2 + 2 ≤ 3 which describes the set of all points in R3 whose distance from the -axis is

at most 3. Thus the inequality represents the region consisting of all points on or inside a circular cylinder of radius 3 with axis

the -axis.

38. The inequality 2 + 2 + 2  2 ⇔ 2 + 2 + ( − 1)2  1 is equivalent to

2 + 2 + ( − 1)2  1, so the region

consists of those points whose distance from the point (0 0 1) is greater than 1. This is the set of all points outside the sphere

with radius 1 and center (0 0 1).

39. This describes all points whose -coordinate is between 0 and 5, that is, 0    5.

40. For any point on or above the disk in the -plane with center the origin and radius 2 we have 2 + 2 ≤ 4. Also each point

lies on or between the planes  = 0 and  = 8, so the region is described by 2 + 2 ≤ 4, 0 ≤  ≤ 8.

41. This describes a region all of whose points have a distance to the origin which is greater than , but smaller than . So

inequalities describing the region are  

2 + 2 + 2  , or 2  2 + 2 + 2  2.

42. The solid sphere itself is represented by

2 + 2 + 2 ≤ 2. Since we want only the upper hemisphere, we restrict the

-coordinate to nonnegative values. Then inequalities describing the region are

2 + 2 + 2 ≤ 2,  ≥ 0, or

2 + 2 + 2 ≤ 4,  ≥ 0.

43. (a) To find the - and -coordinates of the point  , we project it onto 2

and project the resulting point onto the - and -axes. To find the

-coordinate, we project  onto either the -plane or the -plane

(using our knowledge of its - or -coordinate) and then project the

resulting point onto the -axis. (Or, we could draw a line parallel to

 from  to the -axis.) The coordinates of  are (2 1 4).

(b)  is the intersection of 1 and 2,  is directly below the

-intercept of 2, and  is directly above the -intercept of 2.
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SECTION 12.1 THREE-DIMENSIONAL COORDINATE SYSTEMS ¤ 7

44. Let  = (  ). Then 2 || = || ⇔ 4 ||2 = ||2 ⇔
4

(− 6)

2
+ ( − 2)

2
+ ( + 2)

2


= ( + 1)
2

+ ( − 5)
2

+ ( − 3)
2 ⇔

4

2 − 12+ 36

− 2 − 2+ 4

2 − 4 + 4

− 2 + 10 + 4

2 + 4 + 4

− 2 + 6 = 35 ⇔
32 − 50 + 32 − 6 + 32 + 22 = 35− 144− 16− 16 ⇔ 2 − 50

3
+ 2 − 2 + 2 + 22

3
 = − 141

3
.

By completing the square three times we get

− 25

3

2
+ ( − 1)

2
+

 + 11

3

2
= 332

9
, which is an equation of a sphere with

center


25
3
 1− 11

3


and radius

√
332
3

.

45. We need to find a set of points

 (  )

 | | = | |.
( + 1)2 + ( − 5)2 + ( − 3)2 =


(− 6)2 + ( − 2)2 + ( + 2)2 ⇒

(+ 1)
2

+ ( − 5) + ( − 3)
2

= (− 6)
2

+ ( − 2)
2

+ ( + 2)
2 ⇒

2 + 2+ 1 + 2 − 10 + 25 + 2 − 6 + 9 = 2 − 12+ 36 + 2 − 4 + 4 + 2 + 4 + 4 ⇒ 14− 6 − 10 = 9.

Thus the set of points is a plane perpendicular to the line segment joining  and  (since this plane must contain the

perpendicular bisector of the line segment ).

46. Completing the square three times in the first equation gives (+ 2)2 + ( − 1)2 + ( + 2)2 = 22, a sphere with center

(−2 1 2) and radius 2. The second equation is that of a sphere with center (0 0 0) and radius 2. The distance between the

centers of the spheres is


(−2− 0)2 + (1− 0)2 + (−2− 0)2 =
√

4 + 1 + 4 = 3. Since the spheres have the same radius,

the volume inside both spheres is symmetrical about the plane containing the circle of intersection of the spheres. The

distance from this plane to the center of the circles is 3
2
. So the region inside both

spheres consists of two caps of spheres of height  = 2− 3
2

= 1
2
. From

Exercise 5.2.49 [ET 6.2.49], the volume of a cap of a sphere is

 = 2

 − 1

3



= 


1
2

2
2− 1

3
· 1

2


= 11

24
. So the total volume is 2 · 11

24
= 11

12
.

47. The sphere 2 + 2 + 2 = 4 has center (0 0 0) and radius 2. Completing squares in 2 − 4+ 2 − 4 + 2 − 4 = −11

gives (2 − 4 + 4) + (2 − 4 + 4) + (2 − 4 + 4) = −11 + 4 + 4 + 4 ⇒ (− 2)2 + ( − 2)2 + ( − 2)2 = 1,

so this is the sphere with center (2 2 2) and radius 1. The (shortest) distance between the spheres is measured along

the line segment connecting their centers. The distance between (0 0 0) and (2 2 2) is
(2− 0)2 + (2− 0)2 + (2− 0)2 =

√
12 = 2

√
3, and subtracting the radius of each circle, the distance between the

spheres is 2
√

3− 2− 1 = 2
√

3− 3.

48. There are many different solids that fit the given description. However, any possible solid must have a circular horizontal

cross-section at its top or at its base. Here we illustrate a solid with a circular base in the -plane. (A circular cross-section at

the top results in an inverted version of the solid described below.) The vertical

cross-section through the center of the base that is parallel to the -plane must be a

square, and the vertical cross-section parallel to the -plane (perpendicular to the

square) through the center of the base must be a triangle with two vertices on the circle

and the third vertex at the center of the top side of the square. (See the figure.)

[continued]
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8 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

The solid can include any additional points that do not extend beyond these

three "silhouettes" when viewed from directions parallel to the coordinate

axes. One possibility shown here is to draw the circular base and the vertical

square first. Then draw a surface formed by line segments parallel to the

-plane that connect the top of the square to the circle.

Problem 8 in the Problems Plus section at the end of the chapter illustrates another possible solid.

12.2 Vectors

1. (a) The cost of a theater ticket is a scalar, because it has only magnitude.

(b) The current in a river is a vector, because it has both magnitude (the speed of the current) and direction at any given

location.

(c) If we assume that the initial path is linear, the initial flight path from Houston to Dallas is a vector, because it has both

magnitude (distance) and direction.

(d) The population of the world is a scalar, because it has only magnitude.

2. If the initial point of the vector h4 7i is placed at the origin, then

h4 7i is the position vector of the point (4 7).

3. Vectors are equal when they share the same length and direction (but not necessarily location). Using the symmetry of the

parallelogram as a guide, we see that
−→
 =

−−→
,

−−→
 =

−−→
,

−−→
 =

−−→
, and

−→
 =

−−→
.

4. (a) The initial point of
−−→
 is positioned at the terminal point of

−→
, so by the Triangle Law the sum

−→
 +

−−→
 is the vector

with initial point  and terminal point , namely
−→
.

(b) By the Triangle Law,
−−→
 +

−−→
 is the vector with initial point  and terminal point , namely

−−→
.

(c) First we consider
−−→
 −

−→
 as

−−→
 +


−
−→



. Then since −

−→
 has the same length as

−→
 but points in the opposite

direction, we have −
−→
 =

−→
 and so

−−→
 −

−→
 =

−−→
 +

−→
 =

−−→
.

(d) We use the Triangle Law twice:
−−→
 +

−→
+

−→
 =

−−→
 +

−→



+
−→
 =

−−→
+

−→
 =

−−→
.
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SECTION 12.2 VECTORS ¤ 9

5. (a) (b) (c)

(d) (e) (f )

6. (a) (b) (c)

(d) (e) (f )

7. Because the tail of d is the midpoint of  we have
−→
 = 2d, and by the Triangle Law,

a + 2d = b ⇒ 2d = b− a ⇒ d = 1
2
(b− a) = 1

2
b− 1

2
a. Again by the Triangle Law we have c + d = b so

c = b− d = b−  1
2
b− 1

2
a


= 1
2
a + 1

2
b.

8. We are given u + v + w = 0, so w = (−u) + (−v). (See the figure.)

Vectors −u, −v, and w form a right triangle, so from the Pythagorean Theorem

we have |−u|2 + |−v|2 = |w|2. But |−u| = |u| = 1 and |−v| = |v| = 1 so |w| =

|−u|2 + |−v|2 =

√
2.

9. a = h1− (−2) 2− 1i = h3 1i 10. a = h−3− (−5) 3− (−1)i = h2 4i

11. a = h2− 3 3− (−1)i = h−1 4i 12. a = h1− 3 0− 2i = h−2−2i
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10 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

13. a = h2− 0 3− 3−1− 1i = h2 0−2i 14. a = h3− 0 4− 6 4− (−1)i = h3−2 5i

15. h−1 4i+ h6−2i = h−1 + 6 4 + (−2)i = h5 2i 16. h3−1i+ h−1 5i = h3 + (−1)−1 + 5i = h2 4i

17. h3 0 1i+ h0 8 0i= h3 + 0 0 + 8 1 + 0i
= h3 8 1i

18. h1 3−2i+ h0 0 6i= h1 + 0 3 + 0−2 + 6i
= h1 3 4i

19. a + b = h−3 4i+ h9−1i = h−3 + 9 4 + (−1)i = h6 3i
4a + 2b = 4 h−3 4i+ 2 h9−1i = h−12 16i+ h18−2i = h6 14i

|a| =


(−3)2 + 42 =
√

25 = 5

|a− b| = |h−3− 9 4− (−1)i| = |h−12 5i| =


(−12)2 + 52 =
√

169 = 13

20. a + b = (5 i + 3 j) + (−i− 2 j) = 4 i + j

4a + 2b = 4 (5 i + 3 j) + 2 (−i− 2 j) = 20 i + 12 j− 2 i− 4 j = 18 i + 8 j

|a| = √52 + 32 =
√

34

|a− b| = |(5 i + 3 j)− (−i− 2 j)| = |6 i + 5 j| = √62 + 52 =
√

61

21. a + b = (4 i− 3 j + 2k) + (2 i− 4k) = 6 i− 3 j− 2k

4a + 2b = 4 (4 i− 3 j + 2k) + 2 (2 i− 4k) = 16 i− 12 j + 8k + 4 i− 8k = 20 i− 12 j

|a| =


42 + (−3)2 + 22 =
√

29

|a− b| = |(4 i− 3 j + 2k)− (2 i− 4k)| = |2 i− 3 j + 6k| =


22 + (−3)2 + 62 =
√

49 = 7
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SECTION 12.2 VECTORS ¤ 11

22. a + b = h8 + 5 1 + (−2)−4 + 1i = h13−1−3i
4a + 2b = 4 h8 1−4i+ 2 h5−2 1i = h32 4−16i+ h10−4 2i = h42 0−14i

|a| =


82 + 12 + (−4)2 =
√

81 = 9

|a− b| = |h8− 5 1− (−2)−4− 1i| = |h3 3−5i| =


32 + 32 + (−5)2 =
√

43

23. The vector h6−2i has length |h6−2i| =


62 + (−2)2 =
√

40 = 2
√

10, so by Equation 4 the unit vector with the same

direction is
1

2
√

10
h6−2i =


3√
10

− 1√
10


.

24. The vector −5 i + 3 j− k has length |−5 i + 3 j− k| =


(−5)2 + 32 + (−1)2 =
√

35, so by Equation 4 the unit vector

with the same direction is
1√
35

(−5 i + 3 j− k) = − 5√
35

i +
3√
35

j− 1√
35

k.

25. The vector 8 i− j + 4k has length |8 i− j + 4k| =


82 + (−1)2 + 42 =
√

81 = 9, so by Equation 4 the unit vector with

the same direction is 1
9
(8 i− j + 4k) = 8

9
i− 1

9
j + 4

9
k.

26. |h6 2−3i| =


62 + 22 + (−3)2 =
√

49 = 7, so a unit vector in the direction of h6 2−3i is u = 1
7
h6 2−3i.

A vector in the same direction but with length 4 is 4u = 4 · 1
7
h6 2−3i =


24
7
 8

7
− 12

7


.

27. From the figure, we see that tan  =

√
3

1
=
√

3 ⇒  = 60◦.

28.  From the figure we see that tan  = 6
8

= 3
4
, so  = tan−1


3
4

 ≈ 369◦.

29. From the figure, we see that the -component of v is

1 = |v| cos(3) = 4 · 1
2

= 2 and the -component is

2 = |v| sin(3) = 4 ·
√

3
2

= 2
√

3 Thus

v = h1 2i =

2 2

√
3

.
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12 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

30. From the figure, we see that the horizontal component of the

force F is |F| cos 38◦ = 50 cos 38◦ ≈ 394 N, and the

vertical component is |F| sin 38◦ = 50 sin 38◦ ≈ 308 N.

31. The velocity vector v makes an angle of 40◦ with the horizontal and

has magnitude equal to the speed at which the football was thrown.

From the figure, we see that the horizontal component of v is

|v| cos 40◦ = 60 cos 40◦ ≈ 4596 ft/s and the vertical component

is |v| sin 40◦ = 60 sin 40◦ ≈ 3857 ft/s.

32. The given force vectors can be expressed in terms of their horizontal and vertical components as

20 cos 45◦ i + 20 sin 45◦ j = 10
√

2 i + 10
√

2 j and 16 cos 30◦ i− 16 sin 30◦ j = 8
√

3 i− 8 j. The resultant force F

is the sum of these two vectors: F =

10
√

2 + 8
√

3

i +


10
√

2− 8

j ≈ 2800 i + 614 j. Then we have

|F| ≈


(2800)2 + (614)2 ≈ 287 lb and, letting  be the angle F makes with the positive -axis,

tan  =
10
√

2− 8

10
√

2 + 8
√

3
⇒  = tan−1


10
√

2− 8

10
√

2 + 8
√

3


≈ 124◦.

33. The given force vectors can be expressed in terms of their horizontal and vertical components as −300 i and

200 cos 60◦ i + 200 sin 60◦ j = 200


1
2


i + 200

√
3

2


j = 100 i + 100

√
3 j. The resultant force F is the sum of

these two vectors: F = (−300 + 100) i +

0 + 100

√
3

j = −200 i + 100

√
3 j. Then we have

|F| ≈


(−200)2 +

100

√
3
2

=
√

70,000 = 100
√

7 ≈ 2646 N. Let  be the angle F makes with the

positive -axis. Then tan  =
100

√
3

−200
= −

√
3

2
and the terminal point of F lies in the second quadrant, so

 = tan−1


−
√

3

2


+ 180◦ ≈ −409◦ + 180◦ = 1391◦.

34. Set up the coordinate axes so that north is the positive -direction, and east is the positive -direction. The wind is blowing

at 50 kmh from the direction N45◦W, so that its velocity vector is 50 kmh S45◦E, which can be written as

vwind = 50(cos 45◦i− sin 45◦j). With respect to the still air, the velocity vector of the plane is 250 kmh N60◦E, or

equivalently vplane = 250(cos 30◦i + sin 30◦j). The velocity of the plane relative to the ground is

v = vplane + vwind

= (250 cos 30◦ + 50 cos 45◦) i + (250 sin 30◦ − 50 sin 45◦) j

=

125

√
3 + 25

√
2

i +


125− 25

√
2

j

≈ 2519 i + 896 j

(See the figure.) The ground speed is |v| ≈


(2519)2 + (896)2 ≈ 267 kmh. The angle the velocity vector makes with the

-axis is  ≈ tan−1


896
2519

 ≈ 20◦. Therefore, the true course of the plane is about N(90− 20)◦E = N70◦E.
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SECTION 12.2 VECTORS ¤ 13

35. With respect to the water’s surface, the woman’s velocity is the vector sum of the velocity of the ship with respect

to the water, and the woman’s velocity with respect to the ship. If we let north be the positive -direction, then

v = h0 22i+ h−3 0i = h−3 22i. The woman’s speed is |v| = √9 + 484 ≈ 222 mih. The vector v makes an angle 

with the east, where  = tan−1


22
−3


≈ 98◦. Therefore, the woman’s direction is about N(98− 90)◦W = N8◦W.

36. LetT1 andT2 be the tension vectors corresponding to the support cables as

shown in the figure. In terms of vertical and horizontal components,

T1 = |T1| cos 60◦i + |T1| sin 60◦j =
1

2
|T1| i +

√
3

2
|T1| j

T2 = − |T2| cos 60◦i + |T2| sin 60◦j = −1

2
|T2| i +

√
3

2
|T2| j

The resultant of these tensions, T1 + T2, counterbalances the weight

w = −500 j. So T1 + T2 = −w = 500 j ⇒
1

2
|T1| i +

√
3

2
|T1| j


+


−1

2
|T2| i +

√
3

2
|T2| j


= 500 j.

Equating -components gives 1
2
|T1| i− 1

2
|T2| i = 0, so |T1| = |T2| (as we would expect from the symmetry of the

problem). Equating -components, we have

√
3

2
|T1| j +

√
3

2
|T2| j =

√
3 |T1| j = 500 j ⇒ |T1| = 500√

3
. Thus the

magnitude of each tension is |T1| = |T2| =
500√

3
≈ 28868 lb. The tension vectors are

T1 =
1

2
|T1| i +

√
3

2
|T1| j =

250√
3

i + 250 j ≈ 14434 i + 250 j and T2 = −250√
3

i + 250 j ≈ −14434 i + 250 j.

37. Call the two tension vectors T2 and T3, corresponding to the ropes of length 2 m and 3 m. In terms of vertical and horizontal

components,

T2 = − |T2| cos 50◦i + |T2| sin 50◦j (1) and T3 = |T3| cos 38◦i + |T3| sin 38◦j (2)

The resultant of these forces, T2 + T3, counterbalances the weight of the hoist (which is −350 j), so

T2 + T3 = 350 j ⇒
(− |T2| cos 50◦ + |T3| cos 38◦) i + (|T2| sin 50◦ + |T3| sin 38◦) j = 350 j. Equating components, we have

− |T2| cos 50◦ + |T3| cos 38◦ = 0 ⇒ |T2| = |T3| cos 38◦

cos 50◦
and

|T2| sin 50◦ + |T3| sin 38◦ = 350. Substituting the first equation into the second gives

|T3| cos 38◦

cos 50◦
sin 50◦ + |T3| sin 38◦ = 350 ⇒ |T3| (cos 38◦ tan 50◦ + sin 38◦) = 350, so the magnitudes of the

tensions are |T3| = 350

cos 38◦ tan 50◦ + sin 38◦
≈ 22511 N and |T2| = |T3| cos 38◦

cos 50◦
≈ 27597 N. Finally, from (1) and (2),

the tension vectors are T2 ≈ −17739 i + 21141 j and T3 ≈ 17739 i + 13859 j.
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14 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

38. We can consider the weight of the chain to be concentrated at its midpoint. The

forces acting on the chain then are the tension vectors T1, T2 in each end of the

chain and the weight w, as shown in the figure. We know |T1| = |T2| = 25 N

so, in terms of vertical and horizontal components, we have

T1 = −25 cos 37◦i + 25 sin 37◦j T2 = 25 cos 37◦i + 25 sin 37◦j

The resultant vector T1 + T2 of the tensions counterbalances the weight w giving T1 + T2 = −w Since w = − |w| j,
we have (−25 cos 37◦i + 25 sin 37◦j) + (25 cos 37◦i + 25 sin 37◦j) = |w| j ⇒ 50 sin 37◦j = |w| j ⇒

|w| = 50 sin 37◦ ≈ 301. So the weight is 301 N, and since  = , the mass is 301
98

≈ 307 kg.

39. (a) Set up coordinate axes so that the boatman is at the origin, the canal is

bordered by the -axis and the line  = 3, and the current flows in the

negative -direction. The boatman wants to reach the point (3 2). Let  be

the angle, measured from the positive -axis, in the direction he should

steer. (See the figure.)

 

In still water, the boat has velocity v = h13 sin  13 cos i and the velocity of the current is v h0−35i, so the true path
of the boat is determined by the velocity vector v = v + v = h13 sin  13 cos  − 35i. Let  be the time (in hours)
after the boat departs; then the position of the boat at time  is given by v and the boat crosses the canal when

v = h13 sin  13 cos  − 35i  = h3 2i. Thus 13(sin ) = 3 ⇒  =
3

13 sin 
and (13 cos  − 35)  = 2.

Substituting gives (13 cos  − 35)
3

13 sin 
= 2 ⇒ 39 cos  − 105 = 26 sin  (1). Squaring both sides, we have

1521 cos2  − 819 cos  + 11025 = 676 sin2  = 676

1− cos2 


2197 cos2  − 819 cos  − 56575 = 0

The quadratic formula gives

cos  =
819±


(−819)2 − 4(2197)(−56575)

2(2197)

=
819±√5,642,572

4394
≈ 072699 or − 035421

The acute value for  is approximately cos−1(072699) ≈ 434◦. Thus the boatman should steer in the direction that is

434◦ from the bank, toward upstream.

Alternate solution: We could solve (1) graphically by plotting  = 39 cos  − 105 and  = 26 sin  on a graphing device

and finding the appoximate intersection point (0757 1785). Thus  ≈ 0757 radians or equivalently 434◦.

(b) From part (a) we know the trip is completed when  =
3

13 sin 
. But  ≈ 434◦, so the time required is approximately

3

13 sin 434◦
≈ 0336 hours or 202 minutes.
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SECTION 12.2 VECTORS ¤ 15

40. Let v1, v2, and v3 be the force vectors where |v1| = 25, |v2| = 12, and |v3| = 4. Set up coordinate axes so that the object is

at the origin and v1, v2 lie in the -plane. We can position the vectors so that v1 = 25 i, v2 = 12 cos 100◦ i + 12 sin 100◦ j,

and v3 = 4k. The magnitude of a force that counterbalances the three given forces must match the magnitude of the resultant

force. We have v1 + v2 + v3 = (25 + 12 cos 100◦) i + 12 sin 100◦ j + 4k, so the counterbalancing force must have

magnitude |v1 + v2 + v3| =


(25 + 12 cos 100◦)2 + (12 sin 100◦)2 + 42 ≈ 261 N.

41. The slope of the tangent line to the graph of  = 2 at the point (2 4) is






=2

= 2


=2

= 4

and a parallel vector is i + 4 j which has length |i + 4 j| = √12 + 42 =
√

17, so unit vectors parallel to the tangent line

are ± 1√
17

(i + 4 j).

42. (a) The slope of the tangent line to the graph of  = 2 sin at the point (6 1) is






=6

= 2 cos


=6

= 2 ·
√

3

2
=
√

3

and a parallel vector is i +
√

3 j which has length
i +

√
3 j
 =


12 +

√
3
2

=
√

4 = 2, so unit vectors parallel to the

tangent line are ± 1
2


i +
√

3 j

.

(b) The slope of the tangent line is
√

3, so the slope of a line

perpendicular to the tangent line is− 1√
3
and a vector in this direction

is
√

3 i− j. Since
√3 i− j

 =

√
3
2

+ (−1)2 = 2, unit vectors

perpendicular to the tangent line are± 1
2

√
3 i− j


.

(c)

43. By the Triangle Law,
−→
 +

−−→
 =

−→
. Then

−→
 +

−−→
 +

−→
 =

−→
 +

−→
, but

−→
 +

−→
 =

−→
 +


−
−→



= 0.

So
−→
 +

−−→
 +

−→
 = 0.

44.
−→
 = 1

3

−→
 and

−−→
 = 2

3

−→
. c =

−→
+

−→
 = a + 1

3

−→
 ⇒

−→
 = 3 c− 3a. c =

−−→
 +

−−→
 =

−→
+ 2

3

−→
 ⇒

−→
 = 3

2
c− 3

2
b.
−→
 = −

−→
, so 3

2
c− 3

2
b = 3a− 3 c ⇔ c + 2 c = 2a + b ⇔ c = 2

3
a + 1

3
b.

45. (a), (b) (c) From the sketch, we estimate that  ≈ 13 and  ≈ 16.

(d) c = a + b ⇔ 7 = 3+ 2 and 1 = 2− .

Solving these equations gives  = 9
7
and  = 11

7
.
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16 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

46. Draw a, b, and c emanating from the origin. Extend a and b to form lines 

and , and draw lines 0 and 0 parallel to these two lines through the terminal

point of c. Since a and b are not parallel,  and 0 must meet (at  ), and 0

and  must also meet (at ). Now we see that
−−→
 +

−−→
 = c, so if

 =

−−→ 
|a|


or its negative, if a points in the direction opposite

−−→



and  =

−−→
|b| (or its negative, as in the diagram),

then c = a + b, as required.

Argument using components: Since a, b, and c all lie in the same plane, we can consider them to be vectors in two

dimensions. Let a = h1 2i, b = h1 2i, and c = h1 2i. We need 1 + 1 = 1 and 2 + 2 = 2. Multiplying

the first equation by 2 and the second by 1 and subtracting, we get  =
21 − 12

21 − 12

. Similarly  =
21 − 12

21 − 12

.

Since a 6= 0 and b 6= 0 and a is not a scalar multiple of b, the denominator is not zero.

47. |r− r0| is the distance between the points (  ) and (0 0 0), so the set of points is a sphere with radius 1 and

center (0 0 0).

Alternate method: |r− r0| = 1 ⇔


(− 0)2 + ( − 0)2 + ( − 0)2 = 1 ⇔
(− 0)

2 + ( − 0)
2 + ( − 0)

2 = 1, which is the equation of a sphere with radius 1 and center (0 0 0).

48. Let 1 and 2 be the points with position vectors r1 and r2 respectively. Then |r− r1|+ |r− r2| is the sum of the distances

from ( ) to 1 and 2. Since this sum is constant, the set of points ( ) represents an ellipse with foci 1 and 2. The

condition   |r1 − r2| assures us that the ellipse is not degenerate.

49. a + (b + c) = h1 2i+ (h1 2i+ h1 2i) = h1 2i+ h1 + 1 2 + 2i
= h1 + 1 + 1 2 + 2 + 2i = h(1 + 1) + 1 (2 + 2) + 2i
= h1 + 1 2 + 2i+ h1 2i = (h1 2i+ h1 2i) + h1 2i
= (a + b) + c

50. Algebraically: (a + b) =  (h1 2 3i+ h1 2 3i) =  h1 + 1 2 + 2 3 + 3i
= h (1 + 1)   (2 + 2)   (3 + 3)i = h1 + 1 2 + 2 3 + 3i
= h1 2 3i+ h1 2 3i = a + b

Geometrically:

According to the Triangle Law, if a =
−−→
 and b =

−→
, then

a + b =
−→
. Construct triangle  as shown so that

−→
 = a and

−→
 = b. (We have drawn the case where   1.) By the Triangle Law,
−→
 = a + b. But triangle  and triangle  are similar triangles

because b is parallel to b. Therefore,
−→
 and

−→
 are parallel and, in fact,

−→
 = 

−→
. Thus, a + b = (a + b).

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 12.3 THE DOT PRODUCT ¤ 17

51. Consider triangle , where and  are the midpoints of  and . We know that
−→
 +

−−→
 =

−→
 (1) and

−−→
 +

−−→
 =

−−→
 (2). However,

−−→
 = 1

2

−→
, and

−−→
 = 1

2

−−→
. Substituting these expressions for

−−→
 and

−−→
 into

(2) gives 1
2

−→
 + 1

2

−−→
 =

−−→
. Comparing this with (1) gives

−−→
 = 1

2

−→
. Therefore

−→
 and

−−→
 are parallel and−−→

 = 1
2

−→.
52. The question states that the light ray strikes all three mirrors, so it is not parallel to any of them and 1 6= 0, 2 6= 0 and

3 6= 0. Let b = h1 2 3i, as in the diagram. We can let |b| = |a|, since only its direction is important. Then
|2|
|b| = sin  =

|2|
|a| ⇒ |2| = |2|.

From the diagram 2 j and 2 j point in opposite directions,

so 2 = −2. || = ||, so

|3| = sin || = sin || = |3|, and
|1| = cos || = cos || = |1|.
3 k and 3 k have the same direction, as do 1 i and 1 i, so

b = h1−2 3i. When the ray hits the other mirrors, similar

arguments show that these reflections will reverse the signs of

the other two coordinates, so the final reflected ray will be

h−1−2−3i = −a, which is parallel to a.

12.3 The Dot Product

1. (a) a · b is a scalar, and the dot product is defined only for vectors, so (a · b) · c has no meaning.

(b) (a · b) c is a scalar multiple of a vector, so it does have meaning.

(c) Both |a| and b · c are scalars, so |a| (b · c) is an ordinary product of real numbers, and has meaning.

(d) Both a and b + c are vectors, so the dot product a · (b + c) has meaning.

(e) a · b is a scalar, but c is a vector, and so the two quantities cannot be added and a · b + c has no meaning.

(f ) |a| is a scalar, and the dot product is defined only for vectors, so |a| · (b + c) has no meaning.

2. a · b = h5−2i · h3 4i = (5)(3) + (−2)(4) = 15− 8 = 7

3. a · b = h15 04i · h−4 6i = (15)(−4) + (04)(6) = −6 + 24 = −36

4. a · b = h6−2 3i · h2 5−1i = (6)(2) + (−2) (5) + (3)(−1) = 12− 10− 3 = −1

5. a · b =

4 1 1

4

 · h6−3−8i = (4)(6) + (1)(−3) +


1
4


(−8) = 19

6. a · b = h− 2i · h2 −i = ()(2) + (−)() + (2)(−) = 2 −  − 2 = −
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18 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

7. a · b = (2 i + j) · (i− j + k) = (2)(1) + (1)(−1) + (0)(1) = 1

8. a · b = (3 i + 2 j− k) · (4 i + 5k) = (3)(4) + (2)(0) + (−1)(5) = 7

9. By Theorem 3, a · b = |a| |b| cos  = (7)(4 ) cos 30 ◦ = 28
√

3
2


= 14

√
3 ≈ 2425.

10. By Theorem 3, a · b = |a| |b| cos  = (80)(50) cos 3
4

= 4000

−
√

2
2


= −2000

√
2 ≈ −282843.

11. u v and w are all unit vectors, so the triangle is an equilateral triangle. Thus the angle between u and v is 60◦ and

u · v = |u| |v| cos 60◦ = (1)(1)


1
2


= 1

2
 If w is moved so it has the same initial point as u, we can see that the angle

between them is 120◦ and we have u ·w = |u| |w| cos 120◦ = (1)(1)
−1

2


= − 1

2
.

12. u is a unit vector, so w is also a unit vector, and |v| can be determined by examining the right triangle formed by u and v

Since the angle between u and v is 45◦, we have |v| = |u| cos 45◦ =
√

2
2
. Then u · v = |u| |v| cos 45◦ = (1)

√
2

2

√
2

2
= 1

2
.

Since u and w are orthogonal, u ·w = 0.

13. (a) i · j = h1 0 0i · h0 1 0i = (1)(0) + (0)(1) + (0)(0) = 0. Similarly, j · k = (0)(0) + (1)(0) + (0)(1) = 0 and

k · i = (0)(1) + (0)(0) + (1)(0) = 0.

Another method: Because i, j, and k are mutually perpendicular, the cosine factor in each dot product (see Theorem 3)

is cos 
2

= 0.

(b) By Property 1 of the dot product, i · i = |i|2 = 12 = 1 since i is a unit vector. Similarly, j · j = |j|2 = 1 and

k · k = |k|2 = 1.

14. The dot product A ·P is

h  i · h4 25 1i = (4) + (25) + (1)

= (number of hamburgers sold)(price per hamburger)

+ (number of hot dogs sold)(price per hot dog)

+ (number of soft drinks sold)(price per soft drink)

so it is equal to the vendor’s total revenue for that day.

15. |a| = √
42 + 32 = 5, |b| =


22 + (−1)2 =

√
5, and a · b = (4)(2) + (3)(−1) = 5. From Corollary 6, we have

cos  =
a · b
|a| |b| =

5

5 ·√5
=

1√
5
. So the angle between a and b is  = cos−1


1√
5


≈ 63◦.

16. |a| =


(−2)2 + 52 =
√

29, |b| = √52 + 122 = 13, and a · b = (−2) (5) + (5)(12) = 50. Using Corollary 6, we have

cos  =
a · b
|a| |b| =

50√
29 · 13 =

50

13
√

29
and the angle between a and b is  = cos−1


50

13
√

29


≈ 44◦.

17. |a| =


12 + (−4)2 + 12 =
√

18 = 3
√

2, |b| =


02 + 22 + (−2)2 =
√

8 = 2
√

2, and

a · b = (1)(0) + (−4)(2) + (1)(−2) = −10. From Corollary 6, we have cos  =
a · b
|a| |b| =

−10

3
√

2 · 2√2
= −10

12
= −5

6
and

the angle between a and b is  = cos−1
− 5

6

 ≈ 146◦.
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SECTION 12.3 THE DOT PRODUCT ¤ 19

18. |a| =


(−1)2 + 32 + 42 =
√

26, |b| = √
52 + 22 + 12 =

√
30, and a · b = (−1)(5) + (3)(2) + (4)(1) = 5.

Then cos  =
a · b
|a| |b| =

5√
26 ·√30

=
5√
780

=
5

2
√

195
and  = cos−1


5

2
√

195


≈ 80◦.

19. |a| =


42 + (−3)2 + 12 =
√

26, |b| =


22 + 02 + (−1)2 =
√

5, and a · b = (4)(2) + (−3)(0) + (1)(−1) = 7.

Then cos  =
a · b
|a| |b| =

7√
26 ·√5

=
7√
130

and  = cos−1


7√
130


≈ 52◦.

20. |a| =


82 + (−1)2 + 42 =
√

81 = 9, |b| = √02 + 42 + 22 =
√

20 = 2
√

5, and a · b = (8)(0) + (−1)(4) + (4)(2) = 4.

Then cos  =
a · b
|a| |b| =

4

9 · 2√5
=

2

9
√

5
and  = cos−1


2

9
√

5


≈ 84◦.

21. Let , , and  be the angles at vertices  , , and  respectively.

Then  is the angle between vectors
−−→
 and

−→
,  is the angle

between vectors
−−→
 and

−→
, and  is the angle between vectors

−→
 and

−→
.

  

Thus cos  =

−−→
 ·

−→
−−→ −→ =

h−2 3i · h1 4i
(−2)2 + 32

√
12 + 42

=
−2 + 12√
13
√

17
=

10√
221

and  = cos−1


10√
221


≈ 48◦. Similarly,

cos  =

−−→
 ·

−→
−−→  −→ =

h2−3i · h3 1i√
4 + 9

√
9 + 1

=
6− 3√
13
√

10
=

3√
130

so  = cos−1


3√
130


≈ 75◦ and

 ≈ 180◦ − (48◦+ 75◦) = 57◦.

Alternate solution: Apply the Law of Cosines three times as follows: cos  =

−→2 − −−→2 − −→2
2
−−→ −→ ,

cos  =

−→2 − −−→2 − −→2
2
−−→ −→ , and cos  =

−−→2 − −→2 − −→2
2
−→ −→ .

22. Let , , and  be the angles at vertices , , and . Then  is the angle

between vectors
−→
 and

−→
,  is the angle between vectors

−→
 and

−−→
,

and  is the angle between vectors
−→
 and

−−→
.

Thus cos  =

−→
 ·

−→
−→ −→ =

h2−2 1i · h0 3 4i
22 + (−2)2 + 12

√
02 + 32 + 42

=
0− 6 + 4

3 · 5 = − 2

15
and  = cos−1

− 2
15

 ≈ 98◦.

Similarly, cos  =

−→
 ·

−−→
−→ −−→ =

h−2 2−1i · h−2 5 3i√
4 + 4 + 1

√
4 + 25 + 9

=
4 + 10− 3

3 ·√38
=

11

3
√

38
so  = cos−1


11

3
√

38


≈ 54◦ and

 ≈ 180◦ − (98◦+ 54◦) = 28◦.

[continued]
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20 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

Alternate solution: Apply the Law of Cosines three times as follows:

cos  =

−−→2 − −→2 − −→2
2
−→ −→ cos  =

−→2 − −→2 − −−→2
2
−→ −−→ cos  =

−→2 − −→2 − −−→2
2
−→ −−→

23. (a) a · b = (9)(−2) + (3)(6) = 0, so a and b are orthogonal (and not parallel).

(b) a · b = (4)(3) + (5)(−1) + (−2)(5) = −3 6= 0, so a and b are not orthogonal. Also, since a is not a scalar multiple

of b, a and b are not parallel.

(c) a · b = (−8)(6) + (12)(−9) + (4)(−3) = −168 6= 0, so a and b are not orthogonal. Because a = −4
3
b, a and b are

parallel.

(d) a · b = (3)(5) + (−1)(9) + (3)(−2) = 0, so a and b are orthogonal (and not parallel).

24. (a) u · v = (−5)(3) + (4)(4) + (−2)(−1) = 3 6= 0, so u and v are not orthogonal. Also, u is not a scalar multiple of v,

so u and v are not parallel.

(b) u · v =(9)(−6) + (−6)(4) + (3)(−2) = −84 6= 0, so u and v are not orthogonal. Because u = −3
2
v, u and v are

parallel.

(c) u · v =()() + ()(0) + ()(−) = 2 + 0− 2 = 0, so u and v are orthogonal (and not parallel). (Note that if  = 0

then u = v = 0, and the zero vector is considered orthogonal to all vectors. Although in this case u and v are identical,

they are not considered parallel, as only nonzero vectors can be parallel.)

25.
−−→
 = h−1−3 2i,

−→
 = h4−2−1i, and

−−→
 ·

−→
 = −4 + 6− 2 = 0. Thus

−−→
 and

−→
 are orthogonal, so the angle of

the triangle at vertex  is a right angle.

26. By Theorem 3, vectors h2 1−1i and h1  0i meet at an angle of 45◦ when

h2 1−1i · h1  0i =
√

4 + 1 + 1
√

1 + 2 + 0 cos 45◦ or 2 + − 0 =
√

6
√

1 + 2 ·
√

2
2

⇔ 2 +  =
√

3
√

1 + 2.

Squaring both sides gives 4 + 4 + 2 = 3 + 32 ⇔ 22 − 4− 1 = 0. By the quadratic formula,

 =
−(−4)±


(−4)2 − 4(2)(−1)

2(2)
=

4±√24

4
=

4± 2
√

6

4
= 1±

√
6

2
. (You can verify that both values are valid.)

27. Let a = 1 i + 2 j + 3 k be a vector orthogonal to both i + j and i + k. Then a · (i + j) = 0 ⇔ 1 + 2 = 0 and

a · (i + k) = 0 ⇔ 1 + 3 = 0, so 1 = −2 = −3. Furthermore a is to be a unit vector, so 1 = 2
1 + 2

2 + 2
3 = 32

1

implies 1 = ± 1√
3
. Thus a = 1√

3
i− 1√

3
j− 1√

3
k and a = − 1√

3
i + 1√

3
j + 1√

3
k are two such unit vectors.

28. Let u = h i be a unit vector. By Theorem 3 we need u · v = |u| |v| cos 60◦ ⇔ 3+ 4 = (1)(5) 1
2
⇔

 = 5
8
− 3

4
. Since u is a unit vector, |u| = √

2 + 2 = 1 ⇔ 2 + 2 = 1 ⇔ 2 +


5
8
− 3

4

2

= 1 ⇔
25
16
2 − 15

16
+ 25

64
= 1 ⇔ 1002 − 60− 39 = 0 By the quadratic formula,

 =
−(−60)±


(−60)2 − 4(100)(−39)

2(100)
=

60±√19,200
200

=
3± 4

√
3

10
. If  =

3 + 4
√

3

10
then
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SECTION 12.3 THE DOT PRODUCT ¤ 21

 =
5

8
− 3

4


3 + 4

√
3

10


=

4− 3
√

3

10
, and if  =

3− 4
√

3

10
then  =

5

8
− 3

4


3− 4

√
3

10


=

4 + 3
√

3

10
. Thus the two

unit vectors are


3 + 4

√
3

10

4− 3

√
3

10


≈ h09928−01196i and


3− 4

√
3

10

4 + 3

√
3

10


≈ h−03928 09196i.

29. The line 2−  = 3 ⇔  = 2− 3 has slope 2, so a vector parallel to the line is a = h1 2i. The line 3 +  = 7 ⇔
 = −3 + 7 has slope −3, so a vector parallel to the line is b = h1−3i. The angle between the lines is the same as the
angle  between the vectors. Here we have a · b = (1)(1) + (2)(−3) = −5, |a| = √

12 + 22 =
√

5, and

|b| =


12 + (−3)2 =
√

10, so cos  =
a · b
|a| |b| =

−5√
5 ·√10

=
−5

5
√

2
= − 1√

2
or −

√
2

2
. Thus  = 135◦, and the

acute angle between the lines is 180◦ − 135◦ = 45◦.

30. The line  + 2 = 7 ⇔  = −1
2
+ 7

2
has slope − 1

2
, so a vector parallel to the line is a = h2−1i. The line

5−  = 2 ⇔  = 5− 2 has slope 5, so a vector parallel to the line is b = h1 5i. The lines meet at the same

angle  that the vectors meet at. Here we have a · b = (2)(1) + (−1)(5) = −3, |a| =


22 + (−1)2 =
√

5, and

|b| = √12 + 52 =
√

26, so cos  =
a · b
|a| |b| =

−3√
5 ·√26

=
−3√
130

and  = cos−1

 −3√
130


≈ 1053◦. The acute

angle between the lines is approximately 180◦ − 1053◦ = 747◦.

31. The curves  = 2 and  = 3 meet when 2 = 3 ⇔ 3 − 2 = 0 ⇔ 2(− 1) = 0 ⇔  = 0,  = 1. We have




2 = 2 and




3 = 32, so the tangent lines of both curves have slope 0 at  = 0. Thus the angle between the curves is

0◦ at the point (0 0). For  = 1,



2


=1

= 2 and



3


=1

= 3 so the tangent lines at the point (1 1) have slopes 2 and

3. Vectors parallel to the tangent lines are h1 2i and h1 3i, and the angle  between them is given by

cos  =
h1 2i · h1 3i
|h1 2i| |h1 3i| =

1 + 6√
5
√

10
=

7

5
√

2

Thus  = cos−1


7

5
√

2


≈ 81◦.

32. The curves  = sin and  = cos meet when sin = cos ⇔ tan = 1 ⇔  = 4 [0 ≤  ≤ 2]. Thus the

point of intersection is

4

√
22

. We have




sin


=4

= cos


=4

=

√
2

2
and




cos


=4

= − sin


=4

= −
√

2

2
, so the tangent lines at that point have slopes

√
2

2
and −

√
2

2
. Vectors parallel to

the tangent lines are


1

√
2

2


and


1−

√
2

2


, and the angle  between them is given by

cos  =


1
√

22
 · 1−√22

1√22
 1−√22

 =
1− 1

2
3
2


3
2

=
12

32
=

1

3

Thus  = cos−1


1
3

 ≈ 705◦.
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22 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

33. Since |h2 1 2i| = √4 + 1 + 4 =
√

9 = 3, using Equations 8 and 9 we have cos = 2
3
, cos = 1

3
, and cos  = 2

3
. The

direction angles are given by  = cos−1


2
3

 ≈ 48◦,  = cos−1


1
3

 ≈ 71◦, and  = cos−1


2
3


= 48◦.

34. Since |h6 3−2i| = √36 + 9 + 4 =
√

49 = 7, using Equations 8 and 9 we have cos = 6
7
, cos = 3

7
, and cos  = −2

7
.

The direction angles are given by  = cos−1


6
7

 ≈ 31◦,  = cos−1


3
7

 ≈ 65◦, and  = cos−1
− 2

7


= 107◦.

35. Since | i− 2 j− 3k| = √1 + 4 + 9 =
√

14, Equations 8 and 9 give cos = 1√
14
, cos = −2√

14
, and cos  = −3√

14
, while

 = cos−1


1√
14


≈ 74◦,  = cos−1


− 2√

14


≈ 122◦, and  = cos−1


− 3√

14


≈ 143◦.

36. Since
 1

2
i + j + k

 =


1
4

+ 1 + 1 =


9
4

= 3
2
, Equations 8 and 9 give cos =

12

32
= 1

3
, cos = cos  = 1

32
= 2

3
, while

 = cos−1


1
3

 ≈ 71◦ and  =  = cos−1


2
3

 ≈ 48◦.

37. |h  i| =
√
2 + 2 + 2 =

√
3 [since   0], so cos = cos = cos  =

√
3

=
1√
3
and

 =  =  = cos−1


1√
3


≈ 55◦.

38. Since cos2 + cos2  + cos2  = 1, cos2  = 1− cos2 − cos2  = 1− cos2


4

− cos2


3


= 1−

√
2

2

2
−  1

2

2
= 1

4
.

Thus cos  = ± 1
2
and  = 

3
or  = 2

3
.

39. |a| =


(−5)2 + 122 =
√

169 = 13. The scalar projection of b onto a is compa b =
a · b
|a| =

−5 · 4 + 12 · 6
13

= 4 and the

vector projection of b onto a is proja b =


a · b
|a|


a

|a| = 4 · 1
13
h−5 12i =

− 20
13
 48

13


.

40. |a| = √
12 + 42 =

√
17. The scalar projection of b onto a is compa b =

a · b
|a| =

1 · 2 + 4 · 3√
17

=
14√
17

and the vector

projection of b onto a is proja b =


a · b
|a|


a

|a| = 14√
17
· 1√

17
h1 4i =


14
17
 56

17


.

41. |a| =


42 + 72 + (−4)2 =
√

81 = 9 so the scalar projection of b onto a is

compab =
a · b
|a| =

(4)(3) + (7)(−1) + (−4)(1)

9
=

1

9
. The vector projection of b onto a is

projab =


a · b
|a|


a

|a| = 1
9
· 1

9
h4 7−4i = 1

81
h4 7−4i =


4
81
 7

81
− 4

81


.

42. |a| = √1 + 16 + 64 =
√

81 = 9 so the scalar projection of b onto a is compa b =
a · b
|a| = 1

9
(−12 + 4 + 16) = 8

9
, while

the vector projection of b onto a is proja b =


a · b
|a|


a

|a| = 8
9
· 1

9
h−1 4 8i = 8

81
h−1 4 8i =

− 8
81
 32

81
 64

81


.

43. |a| = √9 + 9 + 1 =
√

19 so the scalar projection of b onto a is compa b =
a · b
|a| =

6− 12− 1√
19

= − 7√
19

while the vector

projection of b onto a is proja b = − 7√
19

a

|a| = − 7√
19
· 1√

19
(3 i− 3 j + k) = − 7

19
(3 i− 3 j +k) = − 21

19
i + 21

19
j− 7

19
k.
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SECTION 12.3 THE DOT PRODUCT ¤ 23

44. |a| = √1 + 4 + 9 =
√

14 so the scalar projection of b onto a is compa b =
a · b
|a| =

5 + 0− 3√
14

=
2√
14

while the vector

projection of b onto a is proja b =
2√
14

a

|a| = 2√
14
· 1√

14
(i + 2 j + 3k) = 1

7
(i + 2 j + 3k) = 1

7
i + 2

7
j + 3

7
k.

45. (ortha b) · a = (b− proja b) · a = b · a− (proja b) · a = b · a− a · b
|a|2 a · a = b · a− a · b

|a|2 |a|2 = b · a− a · b = 0.

So they are orthogonal by (7).

46. Using the formula in Exercise 45 and the result of Exercise 40, we have

ortha b = b− proja b = h2 3i−  14
17
 56

17


=


20
17
− 5

17


.

47. compa b =
a · b
|a| = 2 ⇔ a · b = 2 |a| = 2

√
10. If b = h1 2 3i, then we need 31 + 02 − 13 = 2

√
10.

One possible solution is obtained by taking 1 = 0, 2 = 0, 3 = −2
√

10. In general, b =

  3− 2

√
10

, ,  ∈ R.

48. (a) compa b = compb a ⇔ a · b
|a| =

b · a
|b| ⇔ 1

|a| =
1

|b| or a · b = 0 ⇔ |b| = |a| or a · b = 0.

That is, if a and b are orthogonal or if they have the same length.

(b) proja b = projb a ⇔ a · b
|a|2 a =

b · a
|b|2 b ⇔ a · b = 0 or

a

|a|2 =
b

|b|2 .

But
a

|a|2 =
b

|b|2 ⇒ |a|
|a|2 =

|b|
|b|2 ⇒ |a| = |b|. Substituting this into the previous equation gives a = b.

So proja b = projb a ⇔ a and b are orthogonal, or they are equal.

49. The displacement vector isD = (6− 0) i + (12− 10) j + (20− 8)k = 6 i + 2 j + 12k so, by Equation 12, the work done is

 = F ·D = (8 i− 6 j + 9k) · (6 i + 2 j + 12k) = 48− 12 + 108 = 144 joules.

50. Here |D| = 1000 m, |F| = 1500 N, and  = 30◦. Thus

 = F ·D = |F| |D| cos  = (1500)(1000)
√

3
2


= 750,000

√
3 joules.

51. Here |D| = 80 ft, |F| = 30 lb, and  = 40◦. Thus

 = F ·D = |F| |D| cos  = (30)(80) cos 40◦ = 2400 cos 40◦ ≈ 1839 ft-lb.

52.  = F ·D = |F| |D| cos  = (400)(120) cos 36◦ ≈ 38,833 ft-lb
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24 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

53. First note that n = h i is perpendicular to the line, because if1 = (1 1) and 2 = (2 2) lie on the line, then

n ·
−−−→
12 = 2 − 1 + 2 − 1 = 0, since 2 + 2 = − = 1 + 1 from the equation of the line.

Let 2 = (2 2) lie on the line. Then the distance from 1 to the line is the absolute value of the scalar projection

of
−−−→
12 onto n. compn

−−−→
12


=
|n · h2 − 1 2 − 1i|

|n| =
|2 − 1 + 2 − 1|√

2 + 2
=
|1 + 1 + |√

2 + 2

since 2 + 2 = −. The required distance is |(3)(−2) + (−4)(3) + 5|
32 + (−4)2

=
13

5
.

54. (r− a) · (r− b) = 0 implies that the vectors r− a and r− b are orthogonal.

From the diagram (in which ,  and  are the terminal points of the vectors),

we see that this implies that  lies on a sphere whose diameter is the line from

 to . The center of this circle is the midpoint of , that is,

1
2
(a + b) =


1
2
(1 + 1) 

1
2
(2 + 2) 

1
2
(3 + 3)


, and its radius is

1
2
|a− b| = 1

2


(1 − 1)2 + (2 − 2)2 + (3 − 3)2.

Or: Expand the given equation, substitute r · r = 2 + 2 + 2 and complete the squares.

55. For convenience, consider the unit cube positioned so that its back left corner is at the origin, and its edges lie along the

coordinate axes. The diagonal of the cube that begins at the origin and ends at (1 1 1) has vector representation h1 1 1i.
The angle  between this vector and the vector of the edge which also begins at the origin and runs along the -axis [that is,

h1 0 0i] is given by cos  =
h1 1 1i · h1 0 0i
|h1 1 1i| |h1 0 0i| =

1√
3

⇒  = cos−1


1√
3


≈ 55◦.

56. Consider a cube with sides of unit length, wholly within the first octant and with edges along each of the three coordinate axes.

i + j + k and i + j are vector representations of a diagonal of the cube and a diagonal of one of its faces. If  is the angle

between these diagonals, then cos  =
(i + j + k) · (i + j)

|i + j + k| |i + j| =
1 + 1√
3
√

2
=


2

3
⇒  = cos−1


2
3
≈ 35◦.

57. Consider the H—C—H combination consisting of the sole carbon atom and the two hydrogen atoms that are at (1 0 0) and

(0 1 0) (or any H—C—H combination, for that matter). Vector representations of the line segments emanating from the

carbon atom and extending to these two hydrogen atoms are

1− 1

2
 0− 1

2
 0− 1

2


=


1
2
− 1

2
− 1

2


and

0− 1
2
 1− 1

2
 0− 1

2


=
− 1

2
 1

2
− 1

2


. The bond angle, , is therefore given by

cos  =


1
2
− 1

2
− 1

2

 · − 1
2
 1

2
− 1

2

 1
2
− 1

2
− 1

2

 − 1
2
 1

2
− 1

2

 =
− 1

4
− 1

4
+ 1

4
3
4


3
4

= −1

3
⇒  = cos−1

− 1
3

 ≈ 1095◦.

58. Let  be the angle between a and c and  be the angle between c and b. We need to show that  = . Now

cos =
a · c
|a| |c| =

a · |a|b + a · |b|a
|a| |c| =

|a|a · b + |a|2 |b|
|a| |c| =

a · b + |a| |b|
|c| . Similarly,
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SECTION 12.3 THE DOT PRODUCT ¤ 25

cos =
b · c
|b| |c| =

|a| |b|+ b · a
|c| . Thus cos = cos. However 0◦ ≤  ≤ 180◦ and 0◦ ≤  ≤ 180◦, so  =  and

c bisects the angle between a and b.

59. Let a = h1 2 3i and = h1 2 3i.
Property 2: a · b = h1 2 3i · h1 2 3i = 11 + 22 + 33

= 11 + 22 + 33 = h1 2 3i · h1 2 3i = b · a

Property 4: (a) · b = h1 2 3i · h1 2 3i = (1)1 + (2)2 + (3)3

=  (11 + 22 + 33) =  (a · b) = 1(1) + 2(2) + 3(3)

= h1 2 3i · h1 2 3i = a · (b)

Property 5: 0 · a = h0 0 0i · h1 2 3i = (0)(1) + (0)(2) + (0)(3) = 0

60. Let the figure be called quadrilateral . The diagonals can be represented by
−→
 and

−−→
.

−→
 =

−→
 +

−−→
 and

−−→
 =

−−→
 +

−−→
 =

−−→
 −

−−→
 =

−−→
 −

−→
 (Since opposite sides of the object are of the same length and parallel,

−→
 =

−−→
.) Thus

−→
 ·

−−→
 =

−→
 +

−−→



·
−−→
 −

−→



=
−→
 ·

−−→
 −

−→



+
−−→
 ·

−−→
 −

−→



=
−→
 ·

−−→
 −

−→2 +
−−→2 −−→ ·

−−→
 =

−−→2 − −→2
But

−→2 =
−−→2 because all sides of the quadrilateral are equal in length. Therefore−→ ·

−−→
 = 0, and since both of

these vectors are nonzero this tells us that the diagonals of the quadrilateral are perpendicular.

61. |a · b| =
 |a| |b| cos  = |a| |b| |cos |. Since |cos | ≤ 1, |a · b| = |a| |b| |cos | ≤ |a| |b|.

Note: We have equality in the case of cos  = ±1, so  = 0 or  = , thus equality when a and b are parallel.

62. (a) The Triangle Inequality states that the length of the longest side of

a triangle is less than or equal to the sum of the lengths of the two

shortest sides.

(b) |a + b|2 = (a + b) · (a + b) = (a · a) + 2(a · b) + (b · b) = |a|2 + 2(a · b) + |b|2

≤ |a|2 + 2 |a| |b|+ |b|2 [by the Cauchy-Schwartz Inequality]

= (|a|+ |b|)2

Thus, taking the square root of both sides, |a + b| ≤ |a|+ |b|.

63. (a) The Parallelogram Law states that the sum of the squares of the

lengths of the diagonals of a parallelogram equals the sum of the

squares of its (four) sides.
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26 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

(b) |a + b|2 = (a + b) · (a + b) = |a|2 + 2(a · b) + |b|2 and |a− b|2 = (a− b) · (a− b) = |a|2 − 2(a · b) + |b|2.
Adding these two equations gives |a + b|2 + |a− b|2 = 2 |a|2 + 2 |b|2.

64. If the vectors u + v and u− v are orthogonal then (u + v) · (u− v) = 0. But

(u + v) · (u− v) = (u + v) · u− (u + v) · v by Property 3 of the dot product

= u · u + v · u− u · v− v · v by Property 3

= |u|2 + u · v− u · v− |v|2 by Properties 1 and 2

= |u|2 − |v|2

Thus |u|2 − |v|2 = 0 ⇒ |u|2 = |v|2 ⇒ |u| = |v| [since |u|, |v| ≥ 0].

65. proja b · projb a =
a · b
|a|2 a · b · a|b|2 b =

a · b
|a|2 · b · a|b|2 (a · b) by Property 4 of the dot product

=
(a · b)

2

|a|2 |b|2 (a · b) =


a · b
|a| |b|

2

(a · b) by Property 2

= (cos )
2

(a · b) = (a · b) cos2  by Corollary 6

12.4 The Cross Product

1. a× b =


i j k

2 3 0

1 0 5

 =

 3 0

0 5

 i −
 2 0

1 5

 j +

 2 3

1 0

k
= (15− 0) i− (10− 0) j + (0− 3)k = 15 i− 10 j− 3k

Now (a× b) · a = h15−10−3i · h2 3 0i = 30 − 30 + 0 = 0 and

(a× b) · b = h15−10−3i · h1 0 5i = 15 + 0− 15 = 0, so a× b is orthogonal to both a and b.

2. a× b =


i j k

4 3 −2

2 −1 1

 =

 3 −2

−1 1

 i −
 4 −2

2 1

 j +

 4 3

2 −1

k
= (3− 2) i− [4− (−4)] j + (−4− 6)k = i− 8 j− 10k

Now (a× b) · a = h1−8−10i · h4 3−2i = 4 − 24 + 20 = 0 and

(a× b) · b = h1−8−10i · h2−1 1i = 2 + 8− 10 = 0, so a× b is orthogonal to both a and b.

3. a× b =


i j k

0 2 −4

−1 3 1

 =

 2 −4

3 1

 i −
 0 −4

−1 1

 j +

 0 2

−1 3

k
= [2− (−12)] i− (0− 4) j + [0− (−2)]k = 14 i + 4 j + 2k

Since (a× b) · a = (14 i + 4 j + 2k) · (2 j− 4k) = 0 + 8− 8 = 0, a× b is orthogonal to a.

Since (a× b) · b = (14 i + 4 j + 2k) · (−i + 3 j + k) = −14 + 12 + 2 = 0, a× b is orthogonal to b.
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SECTION 12.4 THE CROSS PRODUCT ¤ 27

4. a× b =


i j k

3 3 −3

3 −3 3

 =

 3 −3

−3 3

 i −
 3 −3

3 3

 j +

 3 3

3 −3

k
= (9− 9) i− [9− (−9)] j + (−9− 9)k = −18 j− 18k

Since (a× b) · a = (−18 j− 18k) · (3 i + 3 j− 3k) = 0− 54 + 54 = 0, a× b is orthogonal to a.

Since (a× b) · b = (−18 j− 18k) · (3 i− 3 j + 3k) = 0 + 54− 54 = 0, a× b is orthogonal to b.

5. a× b =


i j k

1
2

1
3

1
4

1 2 −3

 =


1
3

1
4

2 −3

 i −


1
2

1
4

1 −3

 j +


1
2

1
3

1 2

k
=
−1− 1

2


i− − 3

2
− 1

4


j +


1− 1

3


k = − 3

2
i + 7

4
j + 2

3
k

Since (a× b) · a =
−3

2
i + 7

4
j + 2

3
k
 ·  1

2
i + 1

3
j + 1

4
k


= − 3
4

+ 7
12

+ 1
6

= 0, a× b is orthogonal to a.

Since (a× b) · b =
− 3

2
i + 7

4
j + 2

3
k
 · (i + 2 j− 3k) = −3

2
+ 7

2
− 2 = 0, a× b is orthogonal to b.

6. a× b =


i j k

 cos  sin 

1 − sin  cos 

 =

 cos  sin 

− sin  cos 

 i −
  sin 

1 cos 

 j +

  cos 

1 − sin 

k
= [cos2 − (− sin2 )] i− ( cos − sin ) j + (− sin − cos )k = i + (sin −  cos ) j + (− sin − cos )k

Since

(a× b) · a = [ i + (sin −  cos ) j + (− sin − cos )k ] · ( i + cos  j + sin k)

= + sin  cos −  cos2 −  sin2 − sin  cos 

= − 

cos2 + sin2 


= 0

a× b is orthogonal to a.

Since

(a× b) · b = [ i + (sin −  cos ) j + (− sin − cos )k ] · (i− sin  j + cos k)

= 1− sin2  +  sin  cos −  sin  cos − cos2 

= 1− sin2 + cos2 


= 0

a× b is orthogonal to b.

7. a× b =


i j k

 1 1

2 2 1

 =

 1 1

2 1

 i −
  1

2 1

 j +

  1

2 2

k
= (1− ) i− (− ) j + (3 − 2)k = (1− ) i + (3 − 2)k

Since (a× b) · a =

1−  0 3 − 2

 · h 1 1i = − 2 + 0 + 2 −  = 0, a× b is orthogonal to a.

Since (a× b) · b =

1−  0 3 − 2

 · 2 2 1 = 2 − 3 + 0 + 3 − 2 = 0, a× b is orthogonal to b.
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28 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

8. a× b =


i j k

1 0 −2

0 1 1


=

 0 −2

1 1

 i −
 1 −2

0 1

 j +

 1 0

0 1

k
= 2 i− j + k

9. According to the discussion following Example 4, i× j = k, so (i× j)× k = k× k = 0 [by Example 2].

10. k× (i− 2 j) = k× i + k× (−2 j) by Property 3 of the cross product

= k× i + (−2) (k× j) by Property 2

= j + (−2)(−i) = 2 i + j by the discussion following Example 4

11. ( j− k)× (k− i) = ( j− k)× k + ( j− k)× (−i) by Property 3 of the cross product

= j× k + (−k)× k + j× (−i) + (−k)× (−i) by Property 4

= ( j× k) + (−1)(k× k) + (−1)( j× i) + (−1)2(k× i) by Property 2

= i + (−1)0 + (−1)(−k) + j = i + j + k by Example 2 and

the discussion following Example 4

12. (i + j)× (i− j) = (i + j)× i + (i + j)× (−j) by Property 3 of the cross product

= i× i + j× i + i× (−j) + j× (−j) by Property 4

= (i× i) + (j× i) + (−1)(i× j) + (−1)(j× j) by Property 2

= 0 + (−k) + (−1)k + (−1)0 = −2k by Example 2 and

the discussion following Example 4

13. (a) Since b× c is a vector, the dot product a · (b× c) is meaningful and is a scalar.

(b) b · c is a scalar, so a× (b · c) is meaningless, as the cross product is defined only for two vectors.

(c) Since b× c is a vector, the cross product a× (b× c) is meaningful and results in another vector.

(d) b · c is a scalar, so the dot product a · (b · c) is meaningless, as the dot product is defined only for two vectors.

(e) Since (a · b) and (c · d) are both scalars, the cross product (a · b)× (c · d) is meaningless.

(f ) a× b and c× d are both vectors, so the dot product (a× b) · (c× d) is meaningful and is a scalar.

14. Using Theorem 9, we have |u× v| = |u| |v| sin  = (4)(5) sin 45◦ = 20 ·
√

2

2
= 10

√
2. By the right-hand rule, u× v is

directed out of the page.
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SECTION 12.4 THE CROSS PRODUCT ¤ 29

15. If we sketch u and v starting from the same initial point, we see that the

angle between them is 60◦. Using Theorem 9, we have

|u× v| = |u| |v| sin  = (12)(16) sin 60◦ = 192 ·
√

3

2
= 96

√
3.

By the right-hand rule, u× v is directed into the page.

16. (a) |a× b| = |a| |b| sin  = 3 · 2 · sin 
2

= 6

(b) a× b is orthogonal to k, so it lies in the -plane, and its -coordinate is 0.

By the right-hand rule, its -component is negative and its -component

is positive.

17. a×b =


i j k

2 −1 3

4 2 1

 =

−1 3

2 1

 i −
 2 3

4 1

 j +

 2 −1

4 2

k = (−1−6) i−(2−12) j+[4−(−4)]k = −7 i+10 j+8k

b×a =


i j k

4 2 1

2 −1 3

 =

 2 1

−1 3

 i −
 4 1

2 3

 j +

 4 2

2 −1

k = [6− (−1)] i− (12−2) j+(−4−4)k = 7 i−10 j−8k

Notice a× b = −b× a here, as we know is always true by Property 1 of the cross product.

18. b× c =


i j k

2 1 −1

0 1 3

 =

 1 −1

1 3

 i −
 2 −1

0 3

 j +

 2 1

0 1

k = 4 i− 6 j + 2k so

a× (b× c) =


i j k

1 0 1

4 −6 2

 =

 0 1

−6 2

 i −
 1 1

4 2

 j +

 1 0

4 −6

k = 6 i + 2 j− 6k.

a× b =


i j k

1 0 1

2 1 −1

 =

0 1

1 −1

 i −
1 1

2 −1

 j +

1 0

2 1

k =− i + 3 j + k so

(a× b)× c =


i j k

−1 3 1

0 1 3

 =

 3 1

1 3

 i −
−1 1

0 3

 j +

−1 3

0 1

k = 8 i + 3 j− k.

Thus a× (b× c) 6= (a× b)× c.

19. By Theorem 8, the cross product of two vectors is orthogonal to both vectors. So we calculate

h3 2 1i × h−1 1 0i =


i j k

3 2 1

−1 1 0

 =

 2 1

1 0

 i −
 3 1

−1 0

 j +

 3 2

−1 1

k = −i− j + 5k.

So two unit vectors orthogonal to both given vectors are ± h−1−1 5i√
1 + 1 + 25

= ±h−1−1 5i
3
√

3
, that is,


− 1

3
√

3
− 1

3
√

3
 5

3
√

3


and


1

3
√

3
 1

3
√

3
− 5

3
√

3


.
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30 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

20. By Theorem 8, the cross product of two vectors is orthogonal to both vectors. So we calculate

(j− k)× (i + j) =


i j k

0 1 −1

1 1 0

 =

 1 −1

1 0

 i −
 0 −1

1 0

 j +

 0 1

1 1

k = i− j− k

Thus two unit vectors orthogonal to both given vectors are ± 1√
3
(i− j− k), that is, 1√

3
i− 1√

3
j− 1√

3
k and

− 1√
3
i + 1√

3
j + 1√

3
k.

21. Let a = h1 2 3i. Then

0× a =


i j k

0 0 0

1 2 3

 =

 0 0

2 3

 i −
 0 0

1 3

 j +

 0 0

1 2

k = 0,

a× 0 =


i j k

1 2 3

0 0 0

 =

 2 3

0 0

 i −
 1 3

0 0

 j +

 1 2

0 0

k = 0.

22. Let a = h1 2 3i and b = h1 2 3i.

(a× b) · b =

2 3

2 3

 
1 3

1 3

 
1 2

1 2



· h1 2 3i =

2 3

2 3

 1 −
1 3

1 3

 2 +

1 2

1 2

 3
= (231 − 321)− (132 − 312) + (123 − 213) = 0

23. a× b = h23 − 32 31 − 13 12 − 21i
= h(−1)(23 − 32)  (−1)(31 − 13)  (−1)(12 − 21)i
= − h23 − 32 31 − 13 12 − 21i = −b× a

24. a = h1 2 3i, so

(a)× b = h23 − 32 31 − 13 12 − 21i
= h23 − 32 31 − 13 12 − 21i = (a× b)

= h23 − 32 31 − 13 12 − 21i
= h2(3)− 3(2)  3(1)− 1(3)  1(2)− 2(1)i
= a× b

25. a× (b + c) = a× h1 + 1 2 + 2 3 + 3i
= h2(3 + 3)− 3(2 + 2) , 3(1 + 1)− 1(3 + 3) , 1(2 + 2)− 2(1 + 1)i
= h23 + 23 − 32 − 32, 31 + 31 − 13 − 13, 12 + 12 − 21 − 21i
= h(23 − 32) + (23 − 32) , (31 − 13) + (31 − 13) , (12 − 21) + (12 − 21)i
= h23 − 32 31 − 13 12 − 21i+ h23 − 32 31 − 13 12 − 21i
= (a× b) + (a× c)
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SECTION 12.4 THE CROSS PRODUCT ¤ 31

26. (a + b)× c = −c× (a + b) by Property 1 of the cross product

= −(c× a + c× b) by Property 3

= −(−a× c + (−b× c)) by Property 1

= a× c + b× c by Property 2

27. By plotting the vertices, we can see that the parallelogram is determined

by the vectors
−→
 = h2 3i and

−−→
 = h6−1i. We know that the area

of the parallelogram determined by two vectors is equal to the length of

the cross product of these vectors. In order to compute the cross product,

we consider the vector
−→
 as the three-dimensional vector h2 3 0i

(and similarly for
−−→
), and then the area of parallelogram  is

−→ ×
−−→


 =



i j k

2 3 0

6 −1 0


 = |(0− 0) i− (0− 0) j + (−2− 18)k| = |−20k| = 20

28. By plotting the vertices, we can see that the parallelogram is determined by

the vectors
−−→
 = h2 3 1i and

−→
 = h4 2 5i. Thus the area of

parallelogram  is

−−→×
−→

=



i j k

2 3 1

4 2 5


 = |(15− 2) i− (10− 4) j + (4− 12)k|

= |13 i− 6 j− 8k| = √169 + 36 + 64 =
√

269 ≈ 1640

29. (a) Because the plane through  , , and  contains the vectors
−−→
 and

−→
, a vector orthogonal to both of these vectors

(such as their cross product) is also orthogonal to the plane. Here
−−→
 = h−3 1 2i and

−→
 = h3 2 4i, so

−−→
×

−→
 = h(1)(4)− (2)(2) (2)(3)− (−3)(4) (−3)(2)− (1)(3)i = h0 18−9i

Therefore, h0 18−9i (or any nonzero scalar multiple thereof, such as h0 2−1i) is orthogonal to the plane through  ,,
and .

(b) Note that the area of the triangle determined by  , , and  is equal to half of the area of the

parallelogram determined by the three points. From part (a), the area of the parallelogram is−−→×
−→


 = |h0 18−9i| = √0 + 324 + 81 =
√

405 = 9
√

5, so the area of the triangle is 1
2
· 9√5 = 9

2

√
5.

30. (a)
−−→
 = h4 2 3i and

−→
 = h3 3 4i, so a vector orthogonal to the plane through  , , and  is

−−→
×

−→
 = h(2)(4)− (3)(3) (3)(3)− (4)(4) (4)(3)− (2)(3)i = h−1−7 6i (or any nonzero scalar mutiple

thereof).
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32 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

(b) The area of the parallelogram determined by
−−→
 and

−→
 is

−−→×
−→


 = |h−1−7 6i| = √1 + 49 + 36 =
√

86,

so the area of triangle  is 1
2

√
86.

31. (a)
−−→
 = h4 3−2i and

−→
 = h5 5 1i, so a vector orthogonal to the plane through  , , and  is

−−→
×

−→
 = h(3)(1)− (−2)(5) (−2)(5)− (4)(1) (4)(5)− (3)(5)i = h13−14 5i [or any scalar mutiple thereof ].

(b) The area of the parallelogram determined by
−−→
 and

−→
 is−−→×

−→


 = |h13−14 5i| =


132 + (−14)2 + 52 =
√

390, so the area of triangle  is 1
2

√
390.

32. (a)
−−→
 = h−3 1−2i and

−→
 = h1 4−7i, so a vector orthogonal to the plane through  , , and  is

−−→
×

−→
 = h(1)(−7)− (−2)(4) (−2)(1)− (−3)(−7) (−3) (4)− (1)(1)i = h1−23−13i [or any scalar multiple

thereof ].

(b) The area of the parallelogram determined by
−−→
 and

−→
 is−−→×

−→


 = |h1−23−13i| = √1 + 529 + 169 =
√

699, so the area of triangle  is 1
2

√
699.

33. By Equation 14, the volume of the parallelepiped determined by a, b, and c is the magnitude of their scalar triple product,

which is a · (b× c) =


1 2 3

−1 1 2

2 1 4

 = 1

 1 2

1 4

 − 2

−1 2

2 4

 + 3

−1 1

2 1

 = 1(4− 2)− 2(−4− 4) + 3(−1− 2) = 9.

Thus the volume of the parallelepiped is 9 cubic units.

34. a · (b× c) =


1 1 0

0 1 1

1 1 1

 = 1

 1 1

1 1

 − 1

 0 1

1 1

 + 0

 0 1

1 1

 = 0 + 1 + 0 = 1.

So the volume of the parallelepiped determined by a, b, and c is 1 cubic unit.

35. a =
−−→
 = h4 2 2i, b =

−→
 = h3 3−1i, and c =

−→
 = h5 5 1i.

a · (b× c) =


4 2 2

3 3 −1

5 5 1

 = 4

 3 −1

5 1

 − 2

 3 −1

5 1

 + 2

 3 3

5 5

 = 32− 16 + 0 = 16,

so the volume of the parallelepiped is 16 cubic units.

36. a =
−−→
 = h−4 2 4i, b =

−→
 = h2 1−2i and c =

−→
 = h−3 4 1i.

a · (b× c) =


−4 2 4

2 1 −2

−3 4 1

 = −4

 1−2

4 1

− 2

 2−2

−3 1

+ 4

 2 1

−3 4

 = −36 + 8 + 44 = 16, so the volume of the

parallelepiped is 16 cubic units.
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SECTION 12.4 THE CROSS PRODUCT ¤ 33

37. u · (v×w) =


1 5 −2

3 −1 0

5 9 −4

 = 1

−1 0

9 −4

− 5

 3 0

5 −4

+ (−2)

 3 −1

5 9

 = 4 + 60− 64 = 0, which says that the volume

of the parallelepiped determined by u, v and w is 0, and thus these three vectors are coplanar.

38. u =
−→
 = h2−4 4i, v =

−→
 = h4−1−2i and w =

−−→
 = h2 3−6i.

u · (v×w) =


2 −4 4

4 −1 −2

2 3 −6

 = 2

−1 −2

3 −6

− (−4)

 4 −2

2 −6

+ 4

 4 −1

2 3

 = 24− 80 + 56 = 0, so the volume of the

parallelepiped determined by u, v and w is 0, which says these vectors lie in the same plane. Therefore, their initial and

terminal points , ,  and also lie in the same plane.

39. Using the notation of the text, |r| = 018 m, |F| = 60 N, and the angle between r and F is  = 70◦ + 10◦ = 80◦.

(Move F so that both vectors start from the same point.) Then the magnitude of the torque is

| | = |r×F| = |r| |F| sin  = (018)(60) sin 80◦ = 108 sin 80◦ ≈ 106 N·m.

40. (a) The position vector from the point  to the handle is r = h1 2i and has magnitude |r| = √12 + 22 =
√

5 ft. Since the

force vector F is parallel to the -axis, the angle between r and F is  = tan−1


2
1

 ≈ 6343◦ and the magnitude of the

torque is | | = |r×F| = |r| |F| sin  ≈ √5

(20) sin 6343◦ ≈ 400 ft-lb. (Alternatively, we can observe that

sin  = 2√
5
, so |r| |F| sin  =

√
5 · 20 · 2√

5
= 40.)

(b) In this case r =
−−→
 = h06 06i, so |r| =


(06)2 + (06)2 =

√
072 and  = 45◦. The magnitude of the torque is

| | = |r| |F| sin  =
√

072

(20) sin 45◦ =

√
072


(20) ·

√
2

2
= 10

√
144 = 12 ft-lb.

41. Using the notation of the text, r = h0 03 0i (measuring in meters) and F has direction h0 3−4i. The angle  between them

can be determined by cos  =
h0 03 0i · h0 3−4i
|h0 03 0i| |h0 3−4i| ⇒ cos  =

09

(03)(5)
⇒ cos  = 06 ⇒

 = cos−1(06) ≈ 531◦. Then | | = |r| |F| sin  ⇒ 100 ≈ 03 |F| sin 531◦ ⇒ |F| ≈ 100

03 sin 531◦
≈ 417 N.

42. Since |u× v| = |u| |v| sin , 0 ≤  ≤ , |u× v| achieves its maximum value for sin  = 1 ⇒  = 
2
, in which case

|u× v| = |u| |v| = 15 The minimum value is zero, which occurs when sin  = 0 ⇒  = 0 or , so when u, v are

parallel. Thus, when u points in the same direction as v, so u = 3 j, |u× v| = 0. As u rotates counterclockwise, u× v is

directed in the negative -direction (by the right-hand rule) and the length increases until  = 
2
, in which case u = −3 i and

|u× v| = 15. As u rotates to the negative -axis, u× v remains pointed in the negative -direction and the length of u× v

decreases to 0 after which the direction of u× v reverses to point in the positive -direction and |u× v| increases. When

u = 3 i (so  = 
2
), |u× v| again reaches its maximum of 15, after which |u× v| decreases to 0 as u rotates to the positive

-axis.
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34 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

43. From Theorem 9 we have |a× b| = |a| |b| sin , where  is the angle between a and b, and from Theorem 12.3.3 we have

a · b = |a| |b| cos  ⇒ |a| |b| = a · b
cos 

. Substituting the second equation into the first gives |a× b| = a · b
cos 

sin , so

|a× b|
a · b = tan . Here |a× b| = |h1 2 2i| = √1 + 4 + 4 = 3, so tan  =

|a× b|
a · b =

3√
3

=
√

3 ⇒  = 60◦.

44. (a) Let v = h1 23i. Then

h1 2 1i × v =


i j k

1 2 1

1 2 3

 =

 2 1

2 3

 i −
 1 1

1 3

 j +

 1 2

1 2

k = (23 − 2) i− (3 − 1) j + (2 − 21)k.

If h1 2 1i × v = h3 1−5i then h23 − 2 1 − 3 2 − 21i = h3 1−5i ⇔ 23 − 2 = 3 (1), 1 − 3 = 1 (2),

and 2 − 21 = −5 (3). From (3) we have 2 = 21 − 5 and from (2) we have 3 = 1 − 1; substitution into (1) gives

2 (1 − 1)− (21 − 5) = 3 ⇒ 3 = 3, so this is a dependent system. If we let 1 =  then 2 = 2− 5 and

3 = − 1, so v is any vector of the form h 2− 5 − 1i.

(b) If h1 2 1i × v = h3 1 5i then 23 − 2 = 3 (1), 1 − 3 = 1 (2), and 2 − 21 = 5 (3). From (3) we have

2 = 21 + 5 and from (2) we have 3 = 1 − 1; substitution into (1) gives 2 (1 − 1)− (21 + 5) = 3 ⇒ −7 = 3,

so this is an inconsistent system and has no solution.

Alternatively, if we use matrices to solve the system we could show that the determinant is 0 (and hence the system has no

solution).

45. (a) The distance between a point and a line is the length of the perpendicular

from the point to the line, here
−→ = . But referring to triangle ,

 =
−→ =

−−→  sin  = |b| sin . But  is the angle between
−−→
 = b

and
−→
 = a. Thus by Theorem 9, sin  =

|a× b|
|a| |b|

and so  = |b| sin  =
|b| |a× b|
|a| |b| =

|a× b|
|a| .

(b) a =
−→
 = h−1−2−1i and b =

−−→
 = h1−5−7i. Then

a× b = h(−2)(−7)− (−1)(−5) (−1)(1)− (−1)(−7) (−1)(−5)− (−2)(1)i = h9−8 7i.

Thus the distance is  =
|a× b|
|a| = 1√

6

√
81 + 64 + 49 =


194
6

=


97
3
.

46. (a) The distance between a point and a plane is the length of the perpendicular from

the point to the plane, here
−→  = . But

−→
 is parallel to b× a (because

b× a is perpendicular to b and a) and  =
−→  = the absolute value of the

scalar projection of c along b× a, which is |c| |cos |. (Notice that this is the same
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SECTION 12.4 THE CROSS PRODUCT ¤ 35

setup as the development of the volume of a parallelepiped with  = |c| |cos |). Thus  = |c| |cos | =  = 

where  = |a× b|, the area of the base. So finally  =



=
|a · (b× c)|
|a× b| .

(b) a =
−→
 = h−1 2 0i, b =

−→
 = h−1 0 3i and c =

−−→
 = h1 1 4i. Then

a · (b× c) =


−1 2 0

−1 0 3

1 1 4

 = (−1)

 0 3

1 4

− 2

−1 3

1 4

+ 0 = 17

and a× b =


i j k

−1 2 0

−1 0 3

 =

 2 0

0 3

 i−
−1 0

−1 3

 j +

−1 2

−1 0

k = 6 i + 3 j + 2k

Thus  =
|a · (b× c)|
|a× b| =

17√
36 + 9 + 4

=
17

7
.

47. From Theorem 9 we have |a× b| = |a| |b| sin  so

|a× b|2 = |a|2 |b|2 sin2  = |a|2 |b|2 1− cos2 


= |a|2 |b|2 − (|a| |b| cos )2 = |a|2 |b|2 − (a · b)
2

by Theorem 12.3.3.

48. If a + b + c = 0 then b = − (a + c), so

a× b = a× [− (a + c)] = −[a× (a + c)] by Property 2 of the cross product (with  = −1)

= − [(a× a) + (a× c)] by Property 3

= − [0 + (a× c)] = −a× c by Example 2

= c× a by Property 1

Similarly, a = − (b + c) so

c× a = c× [− (b + c)] = −[c× (b + c)]

= − [(c× b) + (c× c)] = − [(c× b) + 0]

= −c× b = b× c

Thus a× b = b× c = c× a.

49. (a− b)× (a + b) = (a− b)× a + (a− b)× b by Property 3 of the cross product

= a× a + (−b)× a + a× b + (−b)× b by Property 4

= (a× a)− (b× a) + (a× b)− (b× b) by Property 2 (with  = −1)

= 0− (b× a) + (a× b)− 0 by Example 2

= (a× b) + (a× b) by Property 1

= 2(a× b)
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36 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

50. Let a = h1 2 3i, b = h1 2 3i and c = h1 2 3i, so b× c = h23 − 32 31 − 13 12 − 21i and

a× (b× c) = h2(12 − 21)− 3(31 − 13), 3(23 − 32)− 1(12 − 21),

1(31 − 13)− 2(23 − 32)i
= h212 − 221 − 331 + 313, 323 − 332 − 112 + 121

131 − 113 − 223 + 232i
= h(22 + 33)1 − (22 + 33)1, (11 + 33)2 − (11 + 33)2,

(11 + 22)3 − (11 + 22)3i

() = h(22 + 33)1 − (22 + 33)1 + 111 − 111,

(11 + 33)2 − (11 + 33)2 + 222 − 222,

(11 + 22)3 − (11 + 22)3 + 333 − 333i
= h(11 + 22 + 33)1 − (11 + 22 + 33)1,

(11 + 22 + 33)2 − (11 + 22 + 33)2,

(11 + 22 + 33)3 − (11 + 22 + 33)3i
= (11 + 22 + 33) h1 2 3i− (11 + 22 + 33) h1 2 3i
= (a · c)b− (a · b)c

() Here we look ahead to see what terms are still needed to arrive at the desired equation. By adding and subtracting the

same terms, we don’t change the value of the component.

51. a× (b× c) + b× (c× a) + c× (a× b)

= [(a · c)b− (a · b)c] + [(b · a)c− (b · c)a] + [(c · b)a− (c · a)b] by Exercise 50

= (a · c)b− (a · b)c + (a · b)c− (b · c)a + (b · c)a− (a · c)b = 0

52. Let c× d = v. Then

(a× b) · (c× d) = (a× b) · v = a · (b× v) by Property 5 of the cross product

= a · [b× (c× d)] = a · [(b · d)c− (b · c)d] by Exercise 50

= (b · d)(a · c)− (b · c)(a · d) by Properties 3 and 4 of the dot product

=

 a · c b · c
a · d b · d


53. (a) No. If a · b = a · c, then a · (b− c) = 0, so a is perpendicular to b− c, which can happen if b 6= c. For example,

let a = h1 1 1i, b = h1 0 0i and c = h0 1 0i.

(b) No. If a× b = a× c then a× (b− c) = 0, which implies that a is parallel to b− c, which of course can happen

if b 6= c.

(c) Yes. Since a · c = a · b, a is perpendicular to b− c, by part (a). From part (b), a is also parallel to b− c. Thus since

a 6= 0 but is both parallel and perpendicular to b− c, we have b− c = 0, so b = c.
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DISCOVERY PROJECT THE GEOMETRY OF A TETRAHEDRON ¤ 37

54. (a) k is perpendicular to v if  6=  by the definition of k and Theorem 8.

(b) k1 · v1 =
v2 × v3

v1 · (v2 × v3)
· v1 =

v1 · (v2 × v3)

v1 · (v2 × v3)
= 1

k2 · v2 =
v3 × v1

v1 · (v2 × v3)
· v2 =

v2 · (v3 × v1)

v1 · (v2 × v3)
=

(v2 × v3) · v1

v1 · (v2 × v3)
= 1 [by Property 5 of the cross product]

k3 · v3 =
(v1 × v2) · v3

v1 · (v2 × v3)
=

v1 · (v2 × v3)

v1 · (v2 × v3)
= 1 [by Property 5]

(c) k1 · (k2 × k3) = k1 ·


v3 × v1

v1 · (v2 × v3)
× v1 × v2

v1 · (v2 × v3)


=

k1

[v1 · (v2 × v3)]
2
· [(v3 × v1)× (v1 × v2)]

=
k1

[v1 · (v2 × v3)]
2
· ([(v3 × v1) · v2]v1 − [(v3 × v1) · v1]v2) [by Exercise 50]

But (v3 × v1) · v1 = 0 since v3 × v1 is orthogonal to v1, and

(v3 × v1) · v2 = v2 · (v3 × v1) = (v2 × v3) · v1 = v1 · (v2 × v3). Thus

k1 · (k2 × k3) =
k1

[v1 · (v2 × v3)]
2
· [v1 · (v2 × v3)]v1 =

k1 · v1

v1 · (v2 × v3)
=

1

v1 · (v2 × v3)
[by part (b)]

DISCOVERY PROJECT The Geometry of a Tetrahedron

1. Set up a coordinate system so that vertex  is at the origin,  = (0 1 0),  = (2 2 0),  = (3 3 3).

Then
−→
 = h0 1 0i,

−→
 = h2 2 0i,

−→
 = h3 3 3i,

−→
 = h−2 1 − 2 0i, and

−−→
 = h3 − 2 3 − 2 3i.

Let

v =
−→
×

−−→
 = (13 − 23) i + 23 j + (−23 − 31 + 32 + 21)k

Then v is an outward normal to the face opposite vertex . Similarly,

v =
−→
×

−→
 = 23 i− 23 j + (23 − 32)k, v =

−→
 ×

−→
 = −13 i + 31 k, and

v =
−→
×

−→
 = −21 k ⇒ v + v + v + v = 0. Now

|v |= area of the parallelogram determined by
−→
 and

−−→


= 2 (area of triangle  ) = 2|v1|

So v = 2v1, and similarly v = 2v2, v = 2v3, v = 2v4. Thus v1 + v2 + v3 + v4 = 0.

2. (a) Let  = (0 0 0),  = (1 1 1),  = (2 2 2),  = (3 3 3) be the four vertices. Then

Volume= 1
3
(distance from  to plane  )× (area of triangle  )

= 1
3

N ·
−→



|N| · 1
2

−→×
−→
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38 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

where N is a vector which is normal to the face  . Thus N =
−→
×

−→
 . Therefore

 =
 16−→×

−→



·
−→

 =

1

6



0 −  0 − 1 0 − 1

2 − 1 2 − 1 2 − 1

3 − 1 3 − 1 3 − 1




(b) Using the formula from part (a),  =
1

6



1− 1 1− 2 1− 3

1− 1 1− 2 2− 3

3− 1 −1− 2 2− 3


 =

1

6

2(1− 2)
 =

1

3
.

3. We define a vector v1 to have length equal to the area of the face opposite vertex  , so we can say |v1| = , and direction

perpendicular to the face and pointing outward, as in Problem 1. Similarly, we define v2, v3, and v4 so that |v2| = ,

|v3| = , and |v4| =  and with the analogous directions. From Problem 1, we know v1 + v2 + v3 + v4 = 0 ⇒

v4 = − (v1 + v2 + v3) ⇒ |v4| = |− (v1 + v2 + v3)| = |v1 + v2 + v3| ⇒ |v4|2 = |v1 + v2 + v3|2 ⇒

v4 · v4 = (v1 + v2 + v3) · (v1 + v2 + v3)

= v1 · v1 + v1 · v2 + v1 · v3 + v2 · v1 + v2 · v2 + v2 · v3 + v3 · v1 + v3 · v2 + v3 · v3

Since the vertex  is trirectangular, we know the three faces meeting at  are mutually perpendicular, so the vectors

v1, v2, v3 are also mutually perpendicular. Therefore, v · v = 0 for  6=  and ,  ∈ {1 2 3}. Thus we have

v4 · v4 = v1 · v1 + v2 · v2 + v3 · v3 ⇒ |v4|2 = |v1|2 + |v2|2 + |v3|2 ⇒ 2 = 2 +2 + 2.

Another method: We introduce a coordinate system, as shown. Recall that

the area of the parallelogram spanned by two vectors is equal to the length

of their cross product, so since

u× v = h−  0i × h− 0 i = h  i, we have

|u× v| =


()2 + ()2 + ()2, and therefore

2 =


1
2
|u× v|2 = 1

4
[()2 + ()2 + ()2]

=


1
2

2

+


1
2

2

+


1
2

2

= 2 +2 + 2.

A third method: We draw a line from  perpendicular to, as shown.

Now = 1
2
, so2 = 1

4
22. Substituting 2 = 2 + 2, we get

2 = 1
4
2

2 + 2


= 1

4
22 + 1

4
22. But  = 1

2
, so

2 = 1
4
22 +2. Now substituting 2 = 2 + 2 gives

2 = 1
4
22 + 1

4
22 +2 = 2 +2 +2.
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SECTION 12.5 EQUATIONS OF LINES AND PLANES ¤ 39

12.5 Equations of Lines and Planes

1. (a) True; each of the first two lines has a direction vector parallel to the direction vector of the third line, so these vectors are

each scalar multiples of the third direction vector. Then the first two direction vectors are also scalar multiples of each

other, so these vectors, and hence the two lines, are parallel.

(b) False; for example, the - and -axes are both perpendicular to the -axis, yet the - and -axes are not parallel.

(c) True; each of the first two planes has a normal vector parallel to the normal vector of the third plane, so these two normal

vectors are parallel to each other and the planes are parallel.

(d) False; for example, the - and -planes are not parallel, yet they are both perpendicular to the -plane.

(e) False; the - and -axes are not parallel, yet they are both parallel to the plane  = 1.

(f ) True; if each line is perpendicular to a plane, then the lines’ direction vectors are both parallel to a normal vector for the

plane. Thus, the direction vectors are parallel to each other and the lines are parallel.

(g) False; the planes  = 1 and  = 1 are not parallel, yet they are both parallel to the -axis.

(h) True; if each plane is perpendicular to a line, then any normal vector for each plane is parallel to a direction vector for the

line. Thus, the normal vectors are parallel to each other and the planes are parallel.

(i) True; see Figure 9 and the accompanying discussion.

( j) False; they can be skew, as in Example 3.

(k) True. Consider any normal vector for the plane and any direction vector for the line. If the normal vector is perpendicular

to the direction vector, the line and plane are parallel. Otherwise, the vectors meet at an angle , 0◦ ≤   90◦, and the

line will intersect the plane at an angle 90◦ − .

2. For this line, we have r0 = 6 i − 5 j + 2k and v = i + 3 j − 2
3
k, so a vector equation is

r = r0 + v = (6 i− 5 j + 2k) + 

i + 3 j− 2

3
k


= (6 + ) i + (−5 + 3) j +

2− 2

3


k and parametric equations are

 = 6 + ,  = −5 + 3,  = 2− 2
3
.

3. For this line, we have r0 = 2 i + 24 j + 35k and v = 3 i + 2 j− k, so a vector equation is

r = r0 + v = (2 i + 24 j + 35k) + (3 i + 2 j− k) = (2 + 3) i + (24 + 2) j + (35− )k and parametric equations are

 = 2 + 3,  = 24 + 2,  = 35− .

4. This line has the same direction as the given line, v = 2 i− 3 j + 9k. Here r0 = 14 j− 10k, so a vector equation is

r = (14 j− 10k) + (2 i− 3 j + 9k) = 2 i + (14− 3) j + (−10 + 9)k and parametric equations are  = 2,

 = 14− 3,  = −10 + 9.

5. A line perpendicular to the given plane has the same direction as a normal vector to the plane, such as

n = h1 3 1i. So r0 = i + 6k, and we can take v = i + 3 j + k. Then a vector equation is

r = (i + 6k) + (i + 3 j + k) = (1 + ) i + 3 j + (6 + )k, and parametric equations are  = 1 + ,  = 3,  = 6 + .
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40 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

6. The vector v = h4− 0 3− 0−1− 0i = h4 3−1i is parallel to the line. Letting 0 = (0 0 0), parametric equations are

 = 0 + 4 ·  = 4,  = 0 + 3 ·  = 3,  = 0 + (−1) ·  = −, while symmetric equations are 
4

=


3
=



−1
or



4
=



3
= −.

7. The vector v =

2− 0 1− 1

2
−3− 1


=

2 1

2
−4


is parallel to the line. Letting 0 = (2 1−3), parametric equations

are  = 2 + 2,  = 1 + 1
2
,  = −3− 4, while symmetric equations are

− 2

2
=

 − 1

12
=

 + 3

−4
or

− 2

2
= 2 − 2 =

 + 3

−4
.

8. v = h26− 1 12− 24 03− 46i = h16−12−43i, and letting 0 = (1 24 46), parametric equations are

 = 1 + 16,  = 24− 12,  = 46− 43, while symmetric equations are
− 1

16
=

 − 24

−12
=

 − 46

−43
.

9. v = h3− (−8)−2− 1 4− 4i = h11−3 0i, and letting 0 = (−8 1 4), parametric equations are  = −8 + 11,

 = 1− 3,  = 4 + 0 = 4, while symmetric equations are
+ 8

11
=

 − 1

−3
,  = 4. Notice here that the direction number

 = 0, so rather than writing
 − 4

0
in the symmetric equation we must write the equation  = 4 separately.

10. v = (i + j)× ( j + k) =


i j k

1 1 0

0 1 1

= i− j + k is the direction of the line perpendicular to both i + j and j + k.

With 0 = (2 1 0), parametric equations are  = 2 + ,  = 1− ,  =  and symmetric equations are − 2 =
 − 1

−1
= 

or − 2 = 1−  = .

11. The given line


2
=



3
=

 + 1

1
has direction v = h2 3 1i. Taking (−6 2 3) as 0, parametric equations are  = −6 + 2,

 = 2 + 3,  = 3 +  and symmetric equations are
+ 6

2
=

 − 2

3
=  − 3.

12. Setting  = 0 we see that (1 0 0) satisfies the equations of both planes, so they do in fact have a line of intersection.

The line is perpendicular to the normal vectors of both planes, so a direction vector for the line is

v = n1 × n2 = h1 2 3i × h1−1 1i = h5 2−3i. Taking the point (1 0 0) as 0, parametric equations are  = 1 + 5,

 = 2,  = −3, and symmetric equations are
− 1

5
=



2
=



−3
.

13. Direction vectors of the lines are v1 = h−2− (−4) 0− (−6)−3− 1i = h2 6−4i and

v2 = h5− 10 3− 18 14− 4i = h−5−15 10i, and since v2 = −5
2
v1, the direction vectors and thus the lines are parallel.

14. Direction vectors of the lines are v1 = h3−3 1i and v2 = h1−4−12i. Since v1 · v2 = 3 + 12− 12 6= 0, the vectors and

thus the lines are not perpendicular.
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SECTION 12.5 EQUATIONS OF LINES AND PLANES ¤ 41

15. (a) The line passes through the point (1−5 6) and a direction vector for the line is h−1 2−3i, so symmetric equations for

the line are
− 1

−1
=

 + 5

2
=

 − 6

−3
.

(b) The line intersects the -plane when  = 0, so we need
− 1

−1
=

 + 5

2
=

0− 6

−3
or

− 1

−1
= 2 ⇒  = −1,

 + 5

2
= 2 ⇒  = −1. Thus the point of intersection with the -plane is (−1−1 0). Similarly for the -plane,

we need  = 0 ⇒ 1 =
 + 5

2
=

 − 6

−3
⇒  = −3,  = 3. Thus the line intersects the -plane at (0−3 3). For

the -plane, we need  = 0 ⇒ − 1

−1
=

5

2
=

 − 6

−3
⇒  = − 3

2
,  = − 3

2
. So the line intersects the -plane

at
− 3

2
 0− 3

2


.

16. (a) A vector normal to the plane −  + 3 = 7 is n = h1−1 3i, and since the line is to be perpendicular to the plane, n is

also a direction vector for the line. Thus parametric equations of the line are  = 2 + ,  = 4− ,  = 6 + 3.

(b) On the -plane,  = 0. So  = 6 + 3 = 0 ⇒  = −2 in the parametric equations of the line, and therefore  = 0

and  = 6, giving the point of intersection (0 6 0). For the -plane,  = 0 so we get the same point of interesection:

(0 6 0). For the -plane,  = 0 which implies  = 4, so  = 6 and  = 18 and the point of intersection is (6 0 18).

17. From Equation 4, the line segment from r0 = 6 i− j + 9k to r1 = 7 i + 6 j has vector equation

r() = (1− ) r0 +  r1 = (1− )(6 i− j + 9k) + (7 i + 6 j)

= (6 i− j + 9k)− (6 i− j + 9k) + (7 i + 6 j)

= (6 i− j + 9k) + ( i + 7 j− 9k), 0 ≤  ≤ 1.

18. From Equation 4, the line segment from r0 = −2 i + 18 j + 31k to r1 = 11 i− 4 j + 48k has vector equation

r() = (1− ) r0 +  r1 = (1− )(−2 i + 18 j + 31k) + (11 i− 4 j + 48k)

= (−2 i + 18 j + 31k) + (13 i− 22 j + 17k), 0 ≤  ≤ 1.

The corresponding parametric equations are  = −2 + 13,  = 18− 22,  = 31 + 17, 0 ≤  ≤ 1.

19. Since the direction vectors h2−1 3i and h4−2 5i are not scalar multiples of each other, the lines aren’t parallel. For the
lines to intersect, we must be able to find one value of  and one value of  that produce the same point from the respective

parametric equations. Thus we need to satisfy the following three equations: 3 + 2 = 1 + 4, 4−  = 3− 2,

1 + 3 = 4 + 5. Solving the last two equations we get  = 1,  = 0 and checking, we see that these values don’t satisfy the

first equation. Thus the lines aren’t parallel and don’t intersect, so they must be skew lines.

20. Since the direction vectors are v1 = h−12 9−3i and v2 = h8−6 2i, we have v1 = − 3
2
v2 so the lines are parallel.

21. Since the direction vectors h1−2−3i and h1 3−7i aren’t scalar multiples of each other, the lines aren’t parallel. Parametric
equations of the lines are 1:  = 2 + ,  = 3− 2,  = 1− 3 and 2:  = 3 + ,  = −4 + 3,  = 2− 7. Thus, for the

lines to intersect, the three equations 2 +  = 3 + , 3− 2 = −4 + 3, and 1− 3 = 2− 7 must be satisfied simultaneously.

Solving the first two equations gives  = 2,  = 1 and checking, we see that these values do satisfy the third equation, so the

lines intersect when  = 2 and  = 1, that is, at the point (4−1−5).
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42 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

22. The direction vectors h1−1 3i and h2−2 7i are not parallel, so neither are the lines. Parametric equations for the lines are
1:  = ,  = 1− ,  = 2 + 3 and 2:  = 2 + 2,  = 3− 2,  = 7. Thus, for the lines to interesect, the three

equations  = 2 + 2, 1−  = 3− 2, and 2 + 3 = 7 must be satisfied simultaneously. Solving the last two equations gives

 = −10,  = −4 and checking, we see that these values don’t satisfy the first equation. Thus the lines aren’t parallel and

don’t intersect, so they must be skew.

23. Since the plane is perpendicular to the vector h1−2 5i, we can take h1−2 5i as a normal vector to the plane.
(0 0 0) is a point on the plane, so setting  = 1,  = −2,  = 5 and 0 = 0, 0 = 0, 0 = 0 in Equation 7 gives

1(− 0) + (−2)( − 0) + 5( − 0) = 0 or − 2 + 5 = 0 as an equation of the plane.

24. 2 i + j− k = h2 1−1i is a normal vector to the plane and (5 3 5) is a point on the plane, so setting  = 2,  = 1,  = −1

0 = 5, 0 = 3, 0 = 5 in Equation 7 gives 2(− 5) + 1(− 3) + (−1)(− 5) = 0 or 2+ −  = 8 as an equation of the

plane.

25. i + 4 j + k = h1 4 1i is a normal vector to the plane and −1 1
2
 3

is a point on the plane, so setting  = 1,  = 4,  = 1

0 = −1, 0 = 1
2
, 0 = 3 in Equation 7 gives 1[− (−1)] + 4


 − 1

2


+ 1( − 3) = 0 or + 4 +  = 4 as an equation of

the plane.

26. Since the line is perpendicular to the plane, its direction vector h3−1 4i is a normal vector to the plane. The point (2 0 1) is
on the plane, so an equation of the plane is 3(− 2) + (−1)( − 0) + 4( − 1) = 0 or 3−  + 4 = 10.

27. Since the two planes are parallel, they will have the same normal vectors. So we can take n = h5−1−1i, and an equation of
the plane is 5(− 1)− 1[ − (−1)]− 1[ − (−1)] = 0 or 5−  −  = 7.

28. Since the two planes are parallel, they will have the same normal vectors. A normal vector for the plane  =  +  or

 +  −  = 0 is n = h1 1−1i, and an equation of the desired plane is 1(− 3) + 1[ − (−2)]− 1( − 8) = 0 or

+  −  = −7.

29. Since the two planes are parallel, they will have the same normal vectors. So we can take n = h1 1 1i, and an equation of the

plane is 1(− 1) + 1

 − 1

2


+ 1


 − 1

3


= 0 or  +  +  = 11

6
or 6+ 6 + 6 = 11.

30. First, a normal vector for the plane 5 + 2 +  = 1 is n = h5 2 1i. A direction vector for the line is v = h1−1−3i, and
since n · v = 0 we know the line is perpendicular to n and hence parallel to the plane. Thus, there is a parallel plane which

contains the line. By putting  = 0, we know that the point (1 2 4) is on the line and hence the new plane. We can use the

same normal vector n = h5 2 1i, so an equation of the plane is 5(− 1) + 2( − 2) + 1( − 4) = 0 or 5+ 2 +  = 13.

31. The vector from (0 1 1) to (1 0 1), namely a = h1− 0 0− 1 1− 1i = h1−1 0i, and the vector from (0 1 1) to (1 1 0),

b = h1− 0 1− 1 0− 1i = h1 0−1i, both lie in the plane, so a× b is a normal vector to the plane. Thus, we can take

n = a× b = h(−1)((−1)− (0)(0) (0)(1)− (1)(−1) (1)(0)− (−1)(1)i = h1 1 1i. If 0 is the point (0 1 1), an

equation of the plane is 1(− 0) + 1( − 1) + 1( − 1) = 0 or  +  +  = 2.
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SECTION 12.5 EQUATIONS OF LINES AND PLANES ¤ 43

32. Here the vectors a = h3−2 1i and b = h1 1 1i lie in the plane, so
n = a× b = h(−2)(1)− (1)(1) (1)(1)− (3)(1) (3)(1)− (−2)(1)i = h−3−2 5i is a normal vector to the plane. We can

take the origin as 0, so an equation of the plane is −3(− 0)− 2( − 0) + 5( − 0) = 0 or −3− 2 + 5 = 0 or

3+ 2 − 5 = 0.

33. Here the vectors a = h3− 2−8− 1 6− 2i = h1−9 4i and b = h−2− 2−3− 1 1− 2i = h−4−4−1i lie in the
plane, so a normal vector to the plane is n = a× b = h9 + 16−16 + 1−4− 36i = h25−15−40i and an equation of the

plane is 25(− 2)− 15( − 1)− 40( − 2) = 0 or 25− 15 − 40 = −45 or 5− 3 − 8 = −9.

34. The vectors a = h−2− 3−2− 0 3− (−1)i = h−5−2 4i and b = h7− 3 1− 0−4− (−1)i = h4 1−3i lie in the

plane, so a normal vector to the plane is n = a× b = h6− 4 16− 15−5 + 8i = h2 1 3i and an equation of the plane is
2(− 3) + 1( − 0) + 3[ − (−1)] = 0 or 2+  + 3 = 3.

35. If we first find two nonparallel vectors in the plane, their cross product will be a normal vector to the plane. Since the given

line lies in the plane, its direction vector a = h−1 2−3i is one vector in the plane. We can verify that the given point

(3 5−1) does not lie on this line, so to find another nonparallel vector b which lies in the plane, we can pick any point on the

line and find a vector connecting the points. If we put  = 0, we see that (4−1 0) is on the line, so

b = h4− 3−1− 5 0− (−1)i = h1−6 1i and n = a× b = h2− 18−3 + 1 6− 2i = h−16−2 4i. Thus, an equation
of the plane is −16(− 3)− 2( − 5) + 4[ − (−1)] = 0 or −16− 2 + 4 = −62 or 8 +  − 2 = 31.

36. Since the line


3
=

 + 4

1
=



2
lies in the plane, its direction vector a = h3 1 2i is parallel to the plane. The point (0−4 0)

is on the line (put  = 0 in the corresponding parametric equations), and we can verify that the given point (6−1 3) in the

plane is not on the line. The vector connecting these two points, b = h6 3 3i, is therefore parallel to the plane, but not parallel
to a. Then a× b = h3− 6 12− 9 9− 6i = h−3 3 3i is a normal vector to the plane, and an equation of the plane is

−3(− 0) + 3[ − (−4)] + 3( − 0) = 0 or −3+ 3 + 3 = −12 or −  −  = 4.

37. Normal vectors for the given planes are n1 = h1 2 3i and n2 = h2−1 1i. A direction vector, then, for the line of

intersection is a = n1 × n2 = h2 + 3 6− 1−1− 4i = h5 5−5i, and a is parallel to the desired plane. Another vector

parallel to the plane is the vector connecting any point on the line of intersection to the given point (3 1 4) in the plane.

Setting  = 0, the equations of the planes reduce to + 2 = 1 and 2−  = −3 with simultaneous solution  = −1 and

 = 1. So a point on the line is (−1 1 0) and another vector parallel to the plane is b = h3− (−1) 1− 1 4− 0i = h4 0 4i.

Then a normal vector to the plane is n = a× b = h20− 0−20− 20 0− 20i = h20−40−20i. Equivalently, we can take
h1−2−1i as a normal vector, and an equation of the plane is 1(− 3)− 2( − 1)− 1( − 4) = 0 or − 2 −  = −3.

38. The points (0−2 5) and (−1 3 1) lie in the desired plane, so the vector v1 = h−1 5−4i connecting them is parallel to

the plane. The desired plane is perpendicular to the plane 2 = 5+ 4 or 5+ 4 − 2 = 0 and for perpendicular planes,
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44 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

a normal vector for one plane is parallel to the other plane, so v2 = h5 4−2i is also parallel to the desired plane.
A normal vector to the desired plane is n = v1 × v2 = h−10 + 16−20− 2−4− 25i = h6−22−29i.

Taking (0 0 0) = (0−2 5), the equation we are looking for is 6(− 0)− 22( + 2)− 29( − 5) = 0 or

6− 22 − 29 = −101.

39. If a plane is perpendicular to two other planes, its normal vector is perpendicular to the normal vectors of the other two planes.

Thus h2 1−2i × h1 0 3i = h3− 0−2− 6 0− 1i = h3−8−1i is a normal vector to the desired plane. The point

(1 5 1) lies on the plane, so an equation is 3(− 1)− 8( − 5)− ( − 1) = 0 or 3− 8 −  = −38.

40. n1 = h1 0−1i and n2 = h0 1 2i. Setting  = 0, it is easy to see that (1 3 0) is a point on the line of intersection of

−  = 1 and  + 2 = 3. The direction of this line is v1 = n1 × n2 = h1−2 1i. A second vector parallel to the desired

plane is v2 = h1 1−2i, since it is perpendicular to  +  − 2 = 1. Therefore, a normal of the plane in question is

n = v1 × v2 = h4− 1 1 + 2 1 + 2i = h3 3 3i, or we can use h1 1 1i. Taking (0 0 0) = (1 3 0), the equation we are

looking for is (− 1) + ( − 3) +  = 0 ⇔  +  +  = 4.

41. To find the -intercept we set  =  = 0 in the equation 2 + 5 +  = 10

and obtain 2 = 10 ⇒  = 5 so the -intercept is (5 0 0). When

 =  = 0 we get 5 = 10 ⇒  = 2, so the -intercept is (0 2 0).

Setting  =  = 0 gives  = 10, so the -intercept is (0 0 10) and we

graph the portion of the plane that lies in the first octant.

42. To find the -intercept we set  =  = 0 in the equation 3 +  + 2 = 6

and obtain 3 = 6 ⇒  = 2 so the -intercept is (2 0 0). When

 =  = 0 we get  = 6 so the -intercept is (0 6 0). Setting  =  = 0

gives 2 = 6 ⇒  = 3, so the -intercept is (0 0 3). The figure shows

the portion of the plane that lies in the first octant.

43. Setting  =  = 0 in the equation 6− 3 + 4 = 6 gives 6 = 6 ⇒
 = 1, when  =  = 0 we have −3 = 6 ⇒  = −2, and  =  = 0

implies 4 = 6 ⇒  = 3
2
, so the intercepts are (1 0 0), (0−2 0), and

(0 0 3
2
). The figure shows the portion of the plane cut off by the coordinate

planes.
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SECTION 12.5 EQUATIONS OF LINES AND PLANES ¤ 45

44. Setting  =  = 0 in the equation 6+ 5 − 3 = 15 gives 6 = 15 ⇒
 = 5

2
, when  =  = 0 we have 5 = 15 ⇒  = 3, and  =  = 0

implies −3 = 15 ⇒  = −5, so the intercepts are (5
2
 0 0), (0 3 0),

and (0 0−5). The figure shows the portion of the plane cut off by the

coordinate planes.

45. Substitute the parametric equations of the line into the equation of the plane:  + 2 −  = 7 ⇒
(2− 2) + 2(3)− (1 + ) = 7 ⇒ 3+ 1 = 7 ⇒  = 2. Therefore, the point of intersection of the line and the plane is

given by  = 2− 2(2) = −2,  = 3(2) = 6, and  = 1 + 2 = 3, that is, the point (−2 6 3).

46. Substitute the parametric equations of the line into the equation of the plane: 3(− 1)− (1 + 2) + 2(3− ) = 5 ⇒
− + 2 = 5 ⇒  = −3. Therefore, the point of intersection of the line and the plane is given by  = −3− 1 = −4,

 = 1 + 2(−3) = −5, and  = 3− (−3) = 6, that is, the point (−4−5 6).

47. Parametric equations for the line are  = 1
5
,  = 2,  = − 2 and substitution into the equation of the plane gives

10


1
5

− 7(2) + 3(− 2) + 24 = 0 ⇒ −9+ 18 = 0 ⇒  = 2. Thus  = 1

5
(2) = 2

5
,  = 2(2) = 4,  = 2− 2 = 0

and the point of intersection is


2
5
 4 0


.

48. A direction vector for the line through (−3 1 0) and (−1 5 6) is v = h2 4 6i and, taking 0 = (−3 1 0), parametric

equations for the line are  = −3 + 2,  = 1 + 4,  = 6. Substitution of the parametric equations into the equation of the

plane gives 2(−3 + 2) + (1 + 4)− (6) = −2 ⇒ 2− 5 = −2 ⇒  = 3
2
. Then  = −3 + 2


3
2


= 0,

 = 1 + 4


3
2


= 7, and  = 6


3
2


= 9, and the point of intersection is (0 7 9).

49. Setting  = 0, we see that (0 1 0) satisfies the equations of both planes, so that they do in fact have a line of intersection.

v = n1 × n2 = h1 1 1i × h1 0 1i = h1 0−1i is the direction of this line. Therefore, direction numbers of the intersecting
line are 1, 0, −1.

50. The angle between the two planes is the same as the angle between their normal vectors. The normal vectors of the

two planes are h1 1 1i and h1 2 3i. The cosine of the angle  between these two planes is

cos  =
h1 1 1i · h1 2 3i
|h1 1 1i| |h1 2 3i| =

1 + 2 + 3√
1 + 1 + 1

√
1 + 4 + 9

=
6√
42

=


6

7
.

51. Normal vectors for the planes are n1 = h1 4−3i and n2 = h−3 6 7i. The normals aren’t parallel (they are not scalar
multiples of each other), so neither are the planes. But n1 · n2 = −3 + 24− 21 = 0, so the normals, and thus the planes, are

perpendicular.

52. Normal vectors for the planes are n1 = h9−3 6i and n2 = h6−2 4i (the plane’s equation is 6− 2 + 4 = 0). Since

n1 = 3
2
n2, the normals, and thus the planes, are parallel.

53. Normal vectors for the planes are n1 = h1 2−1i and n2 = h2−2 1i. The normals are not parallel (they are not scalar
multiples of each other), so neither are the planes. Furthermore, n1 · n2 = 2− 4− 1 = −3 6= 0, so the planes aren’t
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46 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

perpendicular. The angle between the planes is the same as the angle between the normals, given by

cos  =
n1 · n2

|n1| |n2| =
−3√
6
√

9
= − 1√

6
⇒  = cos−1


− 1√

6


≈ 1141◦.

54. Normal vectors for the planes are n1 = h1−1 3i and n2 = h3 1−1i. The normals are not parallel, so neither are the planes.
Since n1 · n2 = 3− 1− 3 = −1 6= 0, the planes aren’t perpendicular. The angle between the planes is given by

cos  =
n1 · n2

|n1| |n2| =
−1√

11
√

11
= − 1

11
⇒  = cos−1

− 1
11

 ≈ 952◦.

55. The planes are 2− 3 −  = 0 and 4− 6 − 2 = 3 with normal vectors n1 = h2−3−1i and n2 = h4−6−2i. Since
n2 = 2n1, the normals, and thus the planes, are parallel.

56. The normals are n1 = h5 2 3i and n2 = h4−1−6i which are not scalar multiples of each other, so the planes aren’t
parallel. Since n1 · n2 = 20− 2− 18 = 0, the normals, and thus the planes, are perpendicular.

57. (a) To find a point on the line of intersection, set one of the variables equal to a constant, say  = 0. (This will fail if the line of

intersection does not cross the -plane; in that case, try setting  or  equal to 0.) The equations of the two planes reduce

to +  = 1 and  + 2 = 1. Solving these two equations gives  = 1,  = 0. Thus a point on the line is (1 0 0).

A vector v in the direction of this intersecting line is perpendicular to the normal vectors of both planes, so we can take

v = n1 × n2 = h1 1 1i × h1 2 2i = h2− 2 1− 2 2− 1i = h0−1 1i. By Equations 2, parametric equations for the
line are  = 1,  = −,  = .

(b) The angle between the planes satisfies cos  =
n1 · n2

|n1| |n2| =
1 + 2 + 2√

3
√

9
=

5

3
√

3
. Therefore  = cos−1


5

3
√

3


≈ 158◦.

58. (a) If we set  = 0 then the equations of the planes reduce to 3− 2 = 1 and 2+  = 3 and solving these two equations

gives  = 1,  = 1. Thus a point on the line of intersection is (1 1 0). A vector v in the direction of this intersecting line

is perpendicular to the normal vectors of both planes, so let v = n1 × n2 = h3−2 1i × h2 1−3i = h5 11 7i. By
Equations 2, parametric equations for the line are  = 1 + 5,  = 1 + 11,  = 7.

(b) cos  =
n1 · n2

|n1| |n2| =
6− 2− 3√

14
√

14
=

1

14
⇒  = cos−1


1
14

 ≈ 859◦.

59. Setting  = 0, the equations of the two planes become 5− 2 = 1 and 4 +  = 6. Solving these two equations gives

 = 1,  = 2 so a point on the line of intersection is (1 2 0). A vector v in the direction of this intersecting line is

perpendicular to the normal vectors of both planes. So we can use v = n1 × n2 = h5−2−2i × h4 1 1i = h0−13 13i or

equivalently we can take v = h0−1 1i, and symmetric equations for the line are  = 1,
 − 2

−1
=



1
or  = 1,  − 2 = −.

60. If we set  = 0 then the equations of the planes reduce to 2−  − 5 = 0 and 4 + 3 − 5 = 0 and solving these two

equations gives  = 2,  = −1. Thus a point on the line of intersection is (2−1 0). A vector v in the

direction of this intersecting line is perpendicular to the normal vectors of both planes, so take

v = n1 ×n2 = h2−1−1i × h4 3−1i = h4−2 10i or equivalently we can take v = h2−1 5i. Symmetric equations for

the line are
− 2

2
=

 + 1

−1
=



5
.
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SECTION 12.5 EQUATIONS OF LINES AND PLANES ¤ 47

61. The distance from a point (  ) to (1 0−2) is 1 =


(− 1)2 + 2 + ( + 2)2 and the distance from (  ) to

(3 4 0) is 2 =


(− 3)2 + ( − 4)2 + 2. The plane consists of all points (  ) where 1 = 2 ⇒  2
1 =  2

2 ⇔

(− 1)2 + 2 + ( + 2)2 = (− 3)2 + ( − 4)2 + 2 ⇔

2 − 2 + 2 + 2 + 4 + 5 = 2 − 6+ 2 − 8 + 2 + 25 ⇔ 4+ 8 + 4 = 20 so an equation for the plane is

4+ 8 + 4 = 20 or equivalently + 2 +  = 5.

Alternatively, you can argue that the segment joining points (1 0−2) and (3 4 0) is perpendicular to the plane and the plane

includes the midpoint of the segment.

62. The distance from a point (  ) to (2 5 5) is 1 =


(− 2)2 + ( − 5)2 + ( − 5)2 and the distance from (  )

to (−6 3 1) is 2 =


(+ 6)2 + ( − 3)2 + ( − 1)2. The plane consists of all points (  ) where 1 = 2 ⇒

 2
1 =  2

2 ⇔ (− 2)2 + ( − 5)2 + ( − 5)2 = (+ 6)2 + ( − 3)2 + ( − 1)2 ⇔

2 − 4 + 2 − 10 + 2 − 10 + 54 = 2 + 12+ 2 − 6 + 2 − 2 + 46 ⇔ 16+ 4 + 8 = 8 so an equation

for the plane is 16+ 4 + 8 = 8 or equivalently 4+  + 2 = 2.

63. The plane contains the points ( 0 0), (0  0) and (0 0 ). Thus the vectors a = h−  0i and b = h− 0 i lie in the

plane, and n = a× b = h− 0 0 +  0 + i = h  i is a normal vector to the plane. The equation of the plane is
therefore  +  +  = + 0 + 0 or +  +  = . Notice that if  6= 0,  6= 0 and  6= 0 then we can

rewrite the equation as



+




+




= 1. This is a good equation to remember!

64. (a) For the lines to intersect, we must be able to find one value of  and one value of  satisfying the three equations

1 +  = 2− , 1−  =  and 2 = 2. From the third we get  = 1, and putting this in the second gives  = 0. These values

of  and  do satisfy the first equation, so the lines intersect at the point 0 = (1 + 1 1− 1 2(1)) = (2 0 2).

(b) The direction vectors of the lines are h1−1 2i and h−1 1 0i, so a normal vector for the plane is

h−1 1 0i × h1−1 2i = h2 2 0i and it contains the point (2 0 2). Then an equation of the plane is
2(− 2) + 2( − 0) + 0( − 2) = 0 ⇔ +  = 2.

65. Two vectors which are perpendicular to the required line are the normal of the given plane, h1 1 1i, and a direction vector for
the given line, h1−1 2i. So a direction vector for the required line is h1 1 1i × h1−1 2i = h3−1−2i. Thus  is given

by h  i = h0 1 2i+ h3−1−2i, or in parametric form,  = 3,  = 1− ,  = 2− 2.

66. Let  be the given line. Then (1 1 0) is the point on  corresponding to  = 0.  is in the direction of a = h1−1 2i

and b = h−1 0 2i is the vector joining (1 1 0) and (0 1 2). Then

b− proja b = h−1 0 2i− h1−1 2i · h−1 0 2i
12 + (−1)2 + 22

h1−1 2i = h−1 0 2i− 1
2
h1−1 2i =

− 3
2
 1

2
 1

is a direction vector

for the required line. Thus 2
− 3

2
 1

2
 1


= h−3 1 2i is also a direction vector, and the line has parametric equations  = −3,

 = 1 + ,  = 2 + 2. (Notice that this is the same line as in Exercise 65.)
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48 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

67. Let  have normal vector n. Then n1 = h3 6−3i, n2 = h4−12 8i, n3 = h3−9 6i, n4 = h1 2−1i. Now n1 = 3n4,

so n1 and n4 are parallel, and hence 1 and 4 are parallel; similarly 2 and 3 are parallel because n2 = 4
3
n3. However, n1

and n2 are not parallel (so not all four planes are parallel). Notice that the point (2 0 0) lies on both 1 and 4, so these two

planes are identical. The point


5
4
 0 0


lies on 2 but not on 3, so these are different planes.

68. Let  have direction vector v. Rewrite the symmetric equations for 3 as
− 1

12
=

 − 1

−14
=

 + 1

1
; then v1 = h6−3 12i,

v2 = h2 1 4i, v3 =


1
2
− 1

4
 1

, and v4 = h4 2 8i. v1 = 12v3, so 1 and 3 are parallel. v4 = 2v2, so 2 and 4 are

parallel. (Note that 1 and 2 are not parallel.) 1 contains the point (1 1 5), but this point does not lie on 3, so they’re not

identical. (3 1 5) lies on 4 and also on 2 (for  = 1), so 2 and 4 are the same line.

69. Let  = (1 3 4) and  = (2 1 1), points on the line corresponding to  = 0 and  = 1. Let

 = (4 1−2). Then a =
−→
 = h1−2−3i, b =

−−→
 = h3−2−6i. The distance is

 =
|a× b|
|a| =

|h1−2−3i × h3−2−6i|
|h1−2−3i| =

|h6−3 4i|
|h1−2−3i| =


62 + (−3)2 + 42

12 + (−2)2 + (−3)2
=

√
61√
14

=


61

14
.

70. Let  = (0 6 3) and  = (2 4 4), points on the line corresponding to  = 0 and  = 1. Let

 = (0 1 3). Then a =
−→
 = h2−2 1i and b =

−−→
 = h0−5 0i. The distance is

 =
|a× b|
|a| =

|h2−2 1i × h0−5 0i|
|h2−2 1i| =

|h5 0−10i|
|h2−2 1i| =


52 + 02 + (−10)2
22 + (−2)2 + 12

=

√
125√
9

=
5
√

5

3
.

71. By Equation 9, the distance is =
|1 + 1 + 1 + |√

2 + 2 + 2
=
|3(1) + 2(−2) + 6(4)− 5|√

32 + 22 + 62
=

|18|√
49

=
18

7
.

72. By Equation 9, the distance is =
|1(−6)− 2(3)− 4(5)− 8|

12 + (−2)2 + (−4)2
=
|−40|√

21
=

40√
21

.

73. Put  =  = 0 in the equation of the first plane to get the point (2 0 0) on the plane. Because the planes are parallel, the

distance  between them is the distance from (2 0 0) to the second plane. By Equation 9,

 =
|4(2)− 6(0) + 2(0)− 3|

42 + (−6)2 + (2)2
=

5√
56

=
5

2
√

14
or

5
√

14

28
.

74. Put  =  = 0 in the equation of the first plane to get the point (0 0 0) on the plane. Because the planes are parallel the

distance between them is the distance from (0 0 0) to the second plane 3− 6 + 9 − 1 = 0. By Equation 9,

 =
|3(0)− 6(0) + 9(0)− 1|

32 + (−6)2 + 92
=

1√
126

=
1

3
√

14
.

75. The distance between two parallel planes is the same as the distance between a point on one of the planes and the other plane.

Let 0 = (0 0 0) be a point on the plane given by +  +  + 1 = 0. Then 0 + 0 + 0 + 1 = 0 and the
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SECTION 12.5 EQUATIONS OF LINES AND PLANES ¤ 49

distance between 0 and the plane given by  +  +  + 2 = 0 is, from Equation 9,

 =
|0 + 0 + 0 + 2|√

2 + 2 + 2
=

|−1 + 2|√
2 + 2 + 2

=
|1 − 2|√
2 + 2 + 2

.

76. The planes must have parallel normal vectors, so if +  +  +  = 0 is such a plane, then for some  6= 0,

h  i = h1 2−2i = h 2−2i. So this plane is given by the equation  + 2 − 2 +  = 0, where  = . By

Exercise 75, the distance between the planes is 2 =
|1− |

12 + 22 + (−2)2
⇔ 6 = |1− | ⇔  = 7 or −5. So the

desired planes have equations + 2 − 2 = 7 and + 2 − 2 = −5.

77. 1:  =  =  ⇒  =  (1). 2:  + 1 = 2 = 3 ⇒  + 1 = 2 (2). The solution of (1) and (2) is

 =  = −2. However, when  = −2,  =  ⇒  = −2, but  + 1 = 3 ⇒  = −3, a contradiction. Hence the

lines do not intersect. For 1, v1 = h1 1 1i, and for 2, v2 = h1 2 3i, so the lines are not parallel. Thus the lines are skew
lines. If two lines are skew, they can be viewed as lying in two parallel planes and so the distance between the skew lines

would be the same as the distance between these parallel planes. The common normal vector to the planes must be

perpendicular to both h1 1 1i and h1 2 3i, the direction vectors of the two lines. So set
n = h1 1 1i × h1 2 3i = h3− 2−3 + 1 2− 1i = h1−2 1i. From above, we know that (−2−2−2) and (−2−2−3)

are points of 1 and 2 respectively. So in the notation of Equation 8, 1(−2)− 2(−2) + 1(−2) + 1 = 0 ⇒ 1 = 0 and

1(−2)− 2(−2) + 1(−3) + 2 = 0 ⇒ 2 = 1.

By Exercise 75, the distance between these two skew lines is =
|0− 1|√
1 + 4 + 1

=
1√
6
.

Alternate solution (without reference to planes): A vector which is perpendicular to both of the lines is

n = h1 1 1i × h1 2 3i = h1−2 1i. Pick any point on each of the lines, say (−2−2−2) and (−2−2−3), and form the

vector b = h0 0 1i connecting the two points. The distance between the two skew lines is the absolute value of the scalar

projection of b along n, that is, =
|n · b|
|n| =

|1 · 0− 2 · 0 + 1 · 1|√
1 + 4 + 1

=
1√
6
.

78. First notice that if two lines are skew, they can be viewed as lying in two parallel planes and so the distance between the skew

lines would be the same as the distance between these parallel planes. The common normal vector to the planes must be

perpendicular to both v1 = h1 6 2i and v2 = h2 15 6i, the direction vectors of the two lines respectively. Thus set
n = v1 × v2 = h36− 30 4− 6 15− 12i = h6−2 3i. Setting  = 0 and  = 0 gives the points (1 1 0) and (1 5−2).

So in the notation of Equation 8, 6− 2 + 0 + 1 = 0 ⇒ 1 = −4 and 6− 10− 6 + 2 = 0 ⇒ 2 = 10.

Then by Exercise 75, the distance between the two skew lines is given by =
|−4− 10|√
36 + 4 + 9

=
14

7
= 2.

Alternate solution (without reference to planes): We already know that the direction vectors of the two lines are

v1 = h1 6 2i and v2 = h2 15 6i. Then n = v1 × v2 = h6−2 3i is perpendicular to both lines. Pick any point on
each of the lines, say (1 1 0) and (1 5−2), and form the vector b = h0 4−2i connecting the two points. Then the
distance between the two skew lines is the absolute value of the scalar projection of b along n, that is,

 =
|n · b|
|n| =

1√
36 + 4 + 9

|0− 8− 6| = 14

7
= 2.
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50 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

79. A direction vector for 1 is v1 = h2 0−1i and a direction vector for 2 is v2 = h3 2 2i. These vectors are not parallel so
neither are the lines. Parametric equations for the lines are 1:  = 2,  = 0,  = −, and 2:  = 1 + 3,  = −1 + 2,

 = 1 + 2. No values of  and  satisfy these equations simultaneously, so the lines don’t intersect and hence are skew. We

can view the lines as lying in two parallel planes; a common normal vector to the planes is n = v1 × v2 = h2−7 4i. Line

1 passes through the origin, so (0 0 0) lies on one of the planes, and (1−1 1) is a point on 2 and therefore on the other

plane. Equations of the planes then are 2− 7 + 4 = 0 and 2− 7 + 4 − 13 = 0, and by Exercise 75, the distance

between the two skew lines is =
|0− (−13)|√
4 + 49 + 16

=
13√
69

.

Alternate solution (without reference to planes): Direction vectors of the two lines are v1 = h2 0−1i and v2 = h3 2 2i.

Then n = v1 ×v2 = h2−7 4i is perpendicular to both lines. Pick any point on each of the lines, say (0 0 0) and (1−1 1),

and form the vector b = h1−1 1i connecting the two points. Then the distance between the two skew lines is the absolute

value of the scalar projection of b along n, that is, =
|n · b|
|n| =

|2 + 7 + 4|√
4 + 49 + 16

=
13√
69

.

80. A direction vector for the line 1 is v1 = h1 2 2i. A normal vector for the plane 1 is n1 = h1−1 2i. The vector from the

point (0 0 1) to (3 2−1), h3 2−2i, is parallel to the plane 2, as is the vector from (0 0 1) to (1 2 1), namely h1 2 0i.

Thus a normal vector for 2 is h3 2−2i × h1 2 0i = h4−2 4i, or we can use n2 = h2−1 2i, and a direction vector for

the line 2 of intersection of these planes is v2 = n1 × n2 = h1−1 2i × h2−1 2i = h0 2 1i. Notice that the point

(3 2−1) lies on both planes, so it also lies on 2. The lines are skew, so we can view them as lying in two parallel planes; a

common normal vector to the planes is n = v1 × v2 = h−2−1 2i. Line 1 passes through the point (1 2 6), so (1 2 6)

lies on one of the planes, and (3 2−1) is a point on 2 and therefore on the other plane. Equations of the planes then are

−2−  + 2 − 8 = 0 and −2−  + 2 + 10 = 0, and by Exercise 75, the distance between the lines is

 =
|−8− 10|√
4 + 1 + 4

=
18

3
= 6.

Alternatively, direction vectors for the lines are v1 = h1 2 2i and v2 = h0 2 1i, so n = v1 × v2 = h−2−1 2i is

perpendicular to both lines. Pick any point on each of the lines, say (1 2 6) and (3 2−1), and form the vector

b = h2 0−7i connecting the two points. Then the distance between the two skew lines is the absolute value of the scalar

projection of b along n, that is, =
|n · b|
|n| =

|−4 + 0− 14|√
4 + 1 + 4

=
18

3
= 6.

81. (a) A direction vector from tank A to tank B is h765− 325 675− 810 599− 561i = h440−135 38i. Taking tank A’s

position (325 810 561) as the initial point, parametric equations for the line of sight are  = 325 + 440,

 = 810− 135,  = 561 + 38 for 0 ≤  ≤ 1.
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LABORATORY PROJECT PUTTING 3D IN PERSPECTIVE ¤ 51

(b) We divide the line of sight into 5 equal segments, corresponding to∆ = 02, and compute the elevation from the

-component of the parametric equations in part (a):

  = 561 + 38 terrain elevation

0 5610

02 5686 549

04 5762 566

06 5838 586

08 5914 589

10 5990

Since the terrain is higher than the line of sight when  = 06, the tanks can’t see each other.

82. (a) The planes +  +  =  have normal vector h1 1 1i, so they are all
parallel. Their -, -, and -intercepts are all . When   0 their

intersection with the first octant is an equilateral triangle and when   0

their intersection with the octant diagonally opposite the first is an

equilateral triangle.

(b) The planes +  +  = 1 have -intercept 1, -intercept 1, and -intercept 1. The plane with  = 0 is parallel to the

-axis. As  gets larger, the planes get closer to the -plane.

(c) The planes  cos  +  cos  = 1 have normal vectors h0 cos  sin i, which are perpendicular to the -axis, and so the
planes are parallel to the -axis. We look at their intersection with the -plane. These are lines that are perpendicular to

hcos  sin i and pass through (cos  sin ), since cos2  + sin2  = 1. So these are the tangent lines to the unit circle.

Thus the family consists of all planes tangent to the circular cylinder with radius 1 and axis the -axis.

83. If  6= 0, then +  +  +  = 0 ⇒ (+ ) + ( − 0) + ( − 0) = 0 which by (7) is the scalar equation of the

plane through the point (− 0 0) with normal vector h  i. Similarly, if  6= 0 (or if  6= 0) the equation of the plane can

be rewritten as (− 0) + ( + ) + ( − 0) = 0 [or as (− 0) + ( − 0) + ( + ) = 0] which by (7) is the

scalar equation of a plane through the point (0− 0) [or the point (0 0−)] with normal vector h  i.

LABORATORY PROJECT Putting 3D in Perspective

1. If we view the screen from the camera’s location, the vertical clipping plane on the left passes through the points

(1000 0 0), (0−400 0), and (0−400 600). A vector from the first point to the second is v1 = h−1000−400 0i
and a vector from the first point to the third is v2 = h−1000−400 600i. A normal vector for the clipping plane is

v1 × v2 = −240,000 i + 600,000 j or −2 i + 5 j, and an equation for the plane is

−2(− 1000) + 5( − 0) + 0( − 0) = 0 ⇒ 2− 5 = 2000. By symmetry, the vertical clipping plane on the right is

given by 2+ 5 = 2000. The lower clipping plane is  = 0. The upper clipping plane passes through the points (1000 0 0),
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52 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

(0−400 600), and (0 400 600). Vectors from the first point to the second and third points are v1 = h−1000−400 600i
and v2 = h−1000 400 600i, and a normal vector for the plane is v1 × v2 = −480,000 i− 800,000k or 3 i + 5k. An

equation for the plane is 3(− 1000) + 0( − 0) + 5( − 0) = 0 ⇒ 3+ 5 = 3000.

A direction vector for the line  is v = h630 390 162i and taking 0 = (230−285 102), parametric equations

are  = 230 + 630,  = −285 + 390,  = 102 + 162.  intersects the left clipping plane when

2(230 + 630)− 5(−285 + 390) = 2000 ⇒  = − 1
6
. The corresponding point is (125−350 75).  intersects

the right clipping plane when 2(230 + 630) + 5(−285 + 390) = 2000 ⇒  = 593
642

. The corresponding point is

approximately (8119 752 2516), but this point is not contained within the viewing volume.  intersects the upper clipping

plane when 3(230 + 630) + 5(102 + 162) = 3000 ⇒  = 2
3
, corresponding to the point (650−25 210), and 

intersects the lower clipping plane when  = 0 ⇒ 102 + 162 = 0 ⇒  = − 17
27
. The corresponding point is

approximately (−1667−5306 0), which is not contained within the viewing volume. Thus  should be clipped at the

points (125−350 75) and (650−25 210).

2. A sight line from the camera at (1000 0 0) to the left endpoint (125−350 75) of the clipped line has direction

v = h−875−350 75i. Parametric equations are  = 1000− 875,  = −350,  = 75. This line intersects the screen

when  = 0 ⇒ 1000− 875 = 0 ⇒  = 8
7
, corresponding to the point


0−400 600

7


. Similarly, a sight line from

the camera to the right endpoint (650−25 210) of the clipped line has direction h−350−25 210i and parametric equations

are  = 1000− 350,  = −25,  = 210.  = 0 ⇒ 1000− 350 = 0 ⇒  = 20
7
, corresponding to the point

0−500
7
 600


. Thus the projection of the clipped line is the line segment between the points


0−400 600

7


and

0−500
7
 600


.

3. From Equation 12.5.4, equations for the four sides of the screen

are r1() = (1− )h0−400 0i+  h0−400 600i,
r2() = (1− )h0−400 600i+  h0 400 600i,
r3() = (1− )h0 400 0i+  h0 400 600i, and
r4() = (1− )h0−400 0i+  h0 400 0i. The clipped line
segment connects the points (125−350 75) and

(650−25 210), so an equation for the segment is

r5() = (1− )h125−350 75i+  h650−25 210i.
The projection of the clipped segment connects the points
0−400 600

7


and


0−500

7
 600


, so an equation is r6() = (1− )


0−400 600

7


+ 


0− 500

7
 600


.

The sight line on the left connects the points (1000 0 0) and

0−400 600

7


, so an equation is

r7() = (1− )h1000 0 0i+ 

0−400 600

7


. The other sight line connects (1000 0 0) to


0− 500

7
 600


, so an equation

is r8() = (1− )h1000 0 0i+ 

0− 500

7
 600


.
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SECTION 12.6 CYLINDERS AND QUADRIC SURFACES ¤ 53

4. The vector from (621−147 206) to (563 31 242), v1 = h−58 178 36i, lies in the plane of the rectangle, as does the
vector from (621−147 206) to (657−111 86), v2 = h36 36−120i. A normal vector for the plane is

v1 × v2 = h−1888−142−708i or h8 2 3i, and an equation of the plane is 8+ 2 + 3 = 5292. The line  intersects

this plane when 8(230 + 630) + 2(−285 + 390) + 3(102 + 162) = 5292 ⇒  = 1858
3153

≈ 0589. The corresponding

point is approximately (60125−5518 19746). Starting at this point, a portion of the line is hidden behind the rectangle.

The line becomes visible again at the left edge of the rectangle, specifically the edge between the points (621−147 206) and

(657−111 86). (This is most easily determined by graphing the rectangle and the line.) A plane through these two points

and the camera’s location, (1000 0 0), will clip the line at the point it becomes visible. Two vectors in this plane are

v1 = h−379−147 206i and v2 = h−343−111 86i. A normal vector for the plane is

v1 × v2 = h10224−38064−8352i and an equation of the plane is 213− 793 − 174 = 213,000.  intersects this plane

when 213(230 + 630)− 793(−285 + 390)− 174(102 + 162) = 213,000 ⇒  = 44,247
203,268 ≈ 02177. The

corresponding point is approximately (36714−20011 13726). Thus the portion of  that should be removed is the

segment between the points (60125−5518 19746) and (36714−20011 13726).

12.6 Cylinders and Quadric Surfaces

1. (a) In R2, the equation  = 2 represents a parabola.

(b) In R3, the equation  = 2 doesn’t involve , so any

horizontal plane with equation  =  intersects the graph

in a curve with equation  = 2. Thus, the surface is a

parabolic cylinder, made up of infinitely many shifted

copies of the same parabola. The rulings are parallel to

the -axis.

(c) In R3, the equation  = 2 also represents a parabolic

cylinder. Since  doesn’t appear, the graph is formed by

moving the parabola  = 2 in the direction of the -axis.

Thus, the rulings of the cylinder are parallel to the -axis.
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54 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

2. (a) (b) Since the equation  =  doesn’t

involve , horizontal traces are

copies of the curve  = . The

rulings are parallel to the -axis.

(c) The equation  =  doesn’t involve ,

so vertical traces in  =  (parallel to the

-plane) are copies of the curve  =  .

The rulings are parallel to the -axis.

3. Since  is missing from the equation, the vertical traces

2 + 2 = 1,  = , are copies of the same circle in

the plane  = . Thus the surface 2 + 2 = 1 is a

circular cylinder with rulings parallel to the -axis.

4. Since  is missing from the equation, the horizontal

traces 42 + 2 = 4,  = , are copies of the same

ellipse in the plane  = . Thus the surface

42 + 2 = 4 is an elliptic cylinder with rulings

parallel to the -axis.

5. Since  is missing, each vertical trace  = 1− 2,

 = , is a copy of the same parabola in the plane

 = . Thus the surface  = 1− 2 is a parabolic

cylinder with rulings parallel to the -axis.

.

6. Since  is missing, each vertical trace  = 2,  = ,

is a copy of the same parabola in the plane  = .

Thus the surface  = 2 is a parabolic cylinder with

rulings parallel to the -axis.
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SECTION 12.6 CYLINDERS AND QUADRIC SURFACES ¤ 55

7. Since  is missing, each horizontal trace  = 1,

 = , is a copy of the same hyperbola in the plane

 = . Thus the surface  = 1 is a hyperbolic

cylinder with rulings parallel to the -axis.

8. Since  is missing, each vertical trace  = sin ,

 = , is a copy of a sine curve in the plane  = .

Thus the surface  = sin  is a cylindrical surface with

rulings parallel to the -axis.

9. (a) The traces of 2 + 2 − 2 = 1 in  =  are 2 − 2 = 1− 2, a family of hyperbolas. (Note that the hyperbolas are

oriented differently for −1    1 than for   −1 or   1.) The traces in  =  are 2 − 2 = 1− 2, a similar

family of hyperbolas. The traces in  =  are 2 + 2 = 1 + 2, a family of circles. For  = 0, the trace in the

-plane, the circle is of radius 1. As || increases, so does the radius of the circle. This behavior, combined with the
hyperbolic vertical traces, gives the graph of the hyperboloid of one sheet in Table 1.

(b) The shape of the surface is unchanged, but the hyperboloid is

rotated so that its axis is the -axis. Traces in  =  are circles,

while traces in  =  and  =  are hyperbolas.

(c) Completing the square in  gives 2 + ( + 1)
2 − 2 = 1. The

surface is a hyperboloid identical to the one in part (a) but shifted

one unit in the negative -direction.
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56 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

10. (a) The traces of −2 − 2 + 2 = 1 in  =  are −2 + 2 = 1 + 2, a family of hyperbolas, as are the traces in  = ,

−2 + 2 = 1 + 2. The traces in  =  are 2 + 2 = 2 − 1, a family of circles for ||  1. As || increases, the radii

of the circles increase; the traces are empty for ||  1. This behavior, combined with the vertical traces, gives the graph of

the hyperboloid of two sheets in Table 1.

(b) The graph has the same shape as the hyperboloid in part (a) but is rotated

so that its axis is the -axis. Traces in  = , ||  1, are circles, while

traces in  =  and  =  are hyperbolas.

11. For  = 2 + 42, the traces in  =  are 2 + 42 = . When   0 we

have a family of ellipses. When  = 0 we have just a point at the origin, and

the trace is empty for   0. The traces in  =  are  = 42 + 2, a

family of parabolas opening in the positive -direction. Similarly, the traces

in  =  are  = 2 + 42, a family of parabolas opening in the positive

-direction. We recognize the graph as an elliptic paraboloid with axis the

-axis and vertex the origin.

12. 42 + 92 + 92 = 36. The traces in  =  are 92 + 92 = 36− 42 ⇔
2 + 2 = 4− 4

9
2, a family of circles for ||  3. (The traces are a single

point for || = 3 and are empty for ||  3.) The traces in  =  are

42 + 92 = 36− 92, a family of ellipses for ||  2. Similarly, the traces

in  =  are the ellipses 42 + 92 = 36− 92, ||  2. The graph is an

ellipsoid centered at the origin with intercepts  = ±3,  = ±2,  = ±2.

13. 2 = 42 + 2. The traces in  =  are the ellipses 42 + 2 = 2. The

traces in  =  are 2 − 2 = 42, hyperbolas for  6= 0 and two

intersecting lines if  = 0. Similarly, the traces in  =  are

2 − 42 = 2, hyperbolas for  6= 0 and two intersecting lines if  = 0.

We recognize the graph as an elliptic cone with axis the -axis and vertex

the origin.
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SECTION 12.6 CYLINDERS AND QUADRIC SURFACES ¤ 57

14. 2 − 42 − 2 = 4. The traces in  =  are the hyperbolas

2 − 2 = 4 + 42, and the traces in  =  are the hyperbolas

2 − 42 = 4 + 2. The traces in  =  are 42 + 2 = 2 − 4, a

family of ellipses for ||  2. (The traces are a single point for || = 2 and

are empty for ||  2.) The surface is a hyperboloid of two sheets with

axis the -axis.

15. 92 + 42 = 2 + 36. The traces in  =  are 92 + 42 = 2 + 36, a

family of ellipses. The traces in  =  are 42 − 2 = 9(4− 2), a family

of hyperbolas for || 6= 2 and two intersecting lines when || = 2. (Note

that the hyperbolas are oriented differently for ||  2 than for ||  2.)

The traces in  =  are 92 − 2 = 4(9− 2), a family of hyperbolas

when || 6= 3 (oriented differently for ||  3 than for ||  3) and two

intersecting lines when || = 3. We recognize the graph as a hyperboloid of

one sheet with axis the -axis.

16. 32 +  + 32 = 0. The traces in  =  are the parabolas  = −32 − 32

which open to the left (in the negative -direction). Traces in  =  are

32 + 32 = − ⇔ 2 + 2 = −

3
, a family of circles for   0.

(Traces are empty for   0 and a single point for  = 0.) Traces in  = 

are the parabolas  = −32 − 32 which open in the negative -direction.

The graph is a circular paraboloid with axis the -axis, opening in the

negative -direction, and vertex the origin.

17.
2

9
+

2

25
+

2

4
= 1. The traces in  =  are

2

25
+

2

4
= 1− 2

9
, a family

of ellipses for ||  3. (The traces are a single point for || = 3 and are

empty for ||  3.) The traces in  =  are the ellipses

2

9
+

2

4
= 1− 2

25
, ||  5, and the traces in  =  are the ellipses

2

9
+

2

25
= 1− 2

4
, ||  2. The surface is an ellipsoid centered at the

origin with intercepts  = ±3,  = ±5,  = ±2.
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58 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

18. 32 − 2 + 32 = 0. The traces in  =  are 2 − 32 = 32, a family of

hyperbolas for  6= 0 and two intersecting lines if  = 0. Traces in  = 

are the circles 32 + 32 = 2 ⇔ 2 + 2 = 1
3
2. The traces in  = 

are 2 − 32 = 32, hyperbolas for  6= 0 and two intersecting lines if

 = 0. We recognize the surface as a circular cone with axis the -axis and

vertex the origin.

19.  = 2 − 2. The traces in  =  are the parabolas  = 2 − 2, opening

in the positive -direction. The traces in  =  are  = 2 − 2, two

intersecting lines when  = 0 and a family of hyperbolas for  6= 0 (note

that the hyperbolas are oriented differently for   0 than for   0). The

traces in  =  are the parabolas  = 2 − 2 which open in the negative

-direction. Thus the surface is a hyperbolic paraboloid centered at (0 0 0).

20.  = 2 − 2. The traces in  =  are 2 − 2 = , two intersecting lines

when  = 0 and a family of hyperbolas for  6= 0 (oriented differently for

  0 than for   0). The traces in  =  are the parabolas

 = −2 + 2, opening in the negative -direction, and the traces in  = 

are the parabolas  = 2 − 2 which open in the positive -direction. The

graph is a hyperbolic paraboloid centered at (0 0 0).

21. This is the equation of an ellipsoid: 2 + 42 + 92 = 2 +
2

(12)
2

+
2

(13)
2

= 1, with -intercepts ±1, -intercepts± 1
2

and -intercepts± 1
3
. So the major axis is the -axis and the only possible graph is VII.

22. This is the equation of an ellipsoid: 92 + 42 + 2 =
2

(13)
2

+
2

(12)
2

+ 2 = 1, with -intercepts ±1
3
, -intercepts ±1

2

and -intercepts±1. So the major axis is the -axis and the only possible graph is IV.

23. This is the equation of a hyperboloid of one sheet, with  =  =  = 1. Since the coefficient of 2 is negative, the axis of the

hyperboloid is the -axis, hence the correct graph is II.

24. This is a hyperboloid of two sheets, with  =  =  = 1. This surface does not intersect the -plane at all, so the axis of the

hyperboloid is the -axis and the graph is III.

25. There are no real values of  and  that satisfy this equation for   0, so this surface does not extend to the left of the

-plane. The surface intersects the plane  =   0 in an ellipse. Notice that  occurs to the first power whereas  and 

occur to the second power. So the surface is an elliptic paraboloid with axis the -axis. Its graph is VI.

26. This is the equation of a cone with axis the -axis, so the graph is I.
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SECTION 12.6 CYLINDERS AND QUADRIC SURFACES ¤ 59

27. This surface is a cylinder because the variable  is missing from the equation. The intersection of the surface and the -plane

is an ellipse. So the graph is VIII.

28. This is the equation of a hyperbolic paraboloid. The trace in the -plane is the parabola  = 2. So the correct graph is V.

29. Vertical traces parallel to the -plane are circles centered at the origin whose radii increase as  decreases. (The trace in

 = 1 is just a single point and the graph suggests that traces in  =  are empty for   1.) The traces in vertical planes

parallel to the -plane are parabolas opening to the left that shift to the left as || increases. One surface that fits this
description is a circular paraboloid, opening to the left, with vertex (0 1 0).

30. The vertical traces parallel to the -plane are ellipses that are smallest in

the -plane and increase in size as || increases. One surface that fits this
description is a hyperboloid of one sheet with axis the -axis. The

horizontal traces in  =  (hyperbolas and intersecting lines) also fit this

surface, as shown in the figure.

31. 2 = 2 + 1
9
2 or 2 = 2 +

2

9
represents an elliptic

cone with vertex (0 0 0) and axis the -axis.

32. 42 −  + 22 = 0 or  =
2

14
+

2

12
or



4
= 2 +

2

2

represents an elliptic paraboloid with vertex (0 0 0) and

axis the -axis.
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60 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

33. 2 + 2 − 22 = 0 or 2 = 22 − 2 or  = 2 − 2

2

represents a hyperbolic paraboloid with center (0 0 0).

34. 2 = 2 + 42 + 4 or −2 + 2 − 42 = 4 or

−2

4
+

2

4
− 2 = 1 represents a hyperboloid of two

sheets with axis the -axis.

35. Completing squares in  and  gives
2 − 2+ 1


+

2 − 6 + 9

−  = 0 ⇔

(− 1)2 + ( − 3)2 −  = 0 or  = (− 1)2 + ( − 3)2, a circular

paraboloid opening upward with vertex (1 3 0) and axis the vertical line

 = 1,  = 3.

36. Completing squares in  and  gives

2 − 4+ 4

− 2 − 2 + 2 + 1


+ 3 = 0 + 4− 1 ⇔
(− 2)

2 − 2 − ( + 1)
2

= 0 or (− 2)
2

= 2 + ( + 1)
2, a circular

cone with vertex (2 0−1) and axis the horizontal line  = 0,  = −1.

37. Completing squares in  and  gives
2 − 4+ 4

− 2 +

2 − 2 + 1


= 0 + 4 + 1 ⇔

(− 2)
2 − 2 + ( − 1)

2
= 5 or

(− 2)2

5
− 2

5
+

( − 1)2

5
= 1, a

hyperboloid of one sheet with center (2 0 1) and axis the horizontal line

 = 2,  = 1.
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SECTION 12.6 CYLINDERS AND QUADRIC SURFACES ¤ 61

38. Completing squares in all three variables gives

4(2 − 6 + 9) + (2 − 8 + 16) + (2 + 4 + 4) = −55 + 36 + 16 + 4 ⇔

4 (− 3)
2

+ ( − 4)
2

+ ( + 2)
2

= 1 or

(− 3)
2

14
+ ( − 4)

2
+ ( + 2)

2
= 1, an ellipsoid with

center (3 4−2).

39. Solving the equation for  we get  = ±


1 + 42 + 2, so we plot separately  =


1 + 42 + 2 and

 = −


1 + 42 + 2.

To restrict the -range as in the second graph, we can use the option view=-4..4 in Maple’s plot3d command, or

PlotRange- {-4,4} in Mathematica’s Plot3D command.

40. We plot the surface  = 2 − 2.

41. Solving the equation for  we get  = ±


42 + 2, so we plot separately  =


42 + 2 and  = −


42 + 2.
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62 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

42. We plot the surface  = 2 − 6 + 42.

43. 44.

45. The curve  =
√
 is equivalent to  = 2,  ≥ 0. Rotating the curve about

the -axis creates a circular paraboloid with vertex at the origin, axis the

-axis, opening in the positive -direction. The trace in the -plane is

 = 2,  = 0, and the trace in the -plane is a parabola of the same

shape:  = 2,  = 0. An equation for the surface is  = 2 + 2.

46. Rotating the line  = 2 about the -axis creates a (right) circular cone with

vertex at the origin and axis the -axis. Traces in  =  ( 6= 0) are circles

with center (0 0 ) and radius  = 2 = 2, so an equation for the trace

is 2 + 2 = (2)
2,  = . Thus an equation for the surface is

2 + 2 = (2)
2 or 42 + 42 = 2.

47. Let  = (, , ) be an arbitrary point equidistant from (−1, 0, 0) and the plane  = 1. Then the distance from  to

(−1, 0, 0) is


( + 1)2 + 2 + 2 and the distance from  to the plane  = 1 is |− 1| 
√

12 = |− 1|

(by Equation 12.5.9). So |− 1| =


( + 1)2 + 2 + 2 ⇔ (− 1)2 = ( + 1)2 + 2 + 2 ⇔

2 − 2 + 1 = 2 + 2 + 1 + 2 + 2 ⇔ −4 = 2 + 2. Thus the collection of all such points  is a circular

paraboloid with vertex at the origin, axis the -axis, which opens in the negative -direction.
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SECTION 12.6 CYLINDERS AND QUADRIC SURFACES ¤ 63

48. Let  = (  ) be an arbitrary point whose distance from the -axis is twice its distance from the -plane. The distance

from  to the -axis is


(− )2 + 2 + 2 =

2 + 2 and the distance from  to the -plane ( = 0) is || 1 = ||.

Thus

2 + 2 = 2 || ⇔ 2 + 2 = 42 ⇔ 2 = (222) + (222). So the surface is a right circular cone with

vertex the origin and axis the -axis.

49. (a) An equation for an ellipsoid centered at the origin with intercepts  = ±,  = ±, and  = ± is 
2

2
+

2

2
+

2

2
= 1.

Here the poles of the model intersect the -axis at  = ±6356523 and the equator intersects the - and -axes at

 = ±6378137,  = ±6378137, so an equation is

2

(6378137)2
+

2

(6378137)2
+

2

(6356523)2
= 1

(b) Traces in  =  are the circles
2

(6378137)2
+

2

(6378137)2
= 1 − 2

(6356523)2
⇔

2 + 2 = (6378137)2 −


6378137

6356523

2

2.

(c) To identify the traces in  =  we substitute  =  into the equation of the ellipsoid:

2

(6378137)2
+

()2

(6378137)2
+

2

(6356523)2
= 1

(1 +2)2

(6378137)2
+

2

(6356523)2
= 1

2

(6378137)2(1 +2)
+

2

(6356523)2
= 1

As expected, this is a family of ellipses.

50. If we position the hyperboloid on coordinate axes so that it is centered at the origin with axis the -axis then its equation is

given by
2

2
+

2

2
− 2

2
= 1. Horizontal traces in  =  are

2

2
+

2

2
= 1 +

2

2
, a family of ellipses, but we know that the

traces are circles so we must have  = . The trace in  = 0 is
2

2
+

2

2
= 1 ⇔ 2 + 2 = 2 and since the minimum

radius of 100 m occurs there, we must have  = 100. The base of the tower is the trace in  = −500 given by

2

2
+

2

2
= 1 +

(−500)2

2
but  = 100 so the trace is 2 + 2 = 1002 + 50,0002 1

2
. We know the base is a circle of

radius 140, so we must have 1002 + 50,0002 1

2
= 1402 ⇒ 2 =

50,0002

1402 − 1002
=

781,250
3

and an equation for the

tower is
2

1002
+

2

1002
− 2

(781,250)3
= 1 or

2

10,000
+

2

10,000
− 32

781,250
= 1, −500 ≤  ≤ 500.

51. If (  ) satisfies  = 2 − 2, then  = 2 − 2. 1:  = + ,  = + ,  = + 2(− ),

2:  = + ,  = − ,  = − 2( + ). Substitute the parametric equations of 1 into the equation of the hyperbolic

paraboloid in order to find the points of intersection:  = 2 − 2 ⇒
+ 2(− ) = (+ )2 − (+ )2 = 2 − 2 + 2(− ) ⇒  = 2 − 2. As this is true for all values of ,
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64 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

1 lies on  = 2 − 2. Performing similar operations with 2 gives:  = 2 − 2 ⇒
− 2(+ ) = (− )2 − (+ )2 = 2 − 2 − 2(+ ) ⇒  = 2 − 2. This tells us that all of 2 also lies on

 = 2 − 2.

52. Any point on the curve of intersection must satisfy both 22 + 42 − 22 + 6 = 2 and 22 + 42 − 22 − 5 = 0.

Subtracting, we get 6+ 5 = 2, which is linear and therefore the equation of a plane. Thus the curve of intersection lies in

this plane.

53. The curve of intersection looks like a bent ellipse. The projection

of this curve onto the -plane is the set of points (  0) which

satisfy 2 + 2 = 1− 2 ⇔ 2 + 22 = 1 ⇔

2 +
2

1
√

2
2 = 1. This is an equation of an ellipse.

12 Review

1. This is false, as the dot product of two vectors is a scalar, not a vector.

2. False. For example, if u = i and v = −i then |u + v| = |0| = 0 but |u|+ |v| = 1 + 1 = 2.

3. False. For example, if u = i and v = j then |u · v| = |0| = 0 but |u| |v| = 1 · 1 = 1. In fact, by Theorem 12.3.3,

|u · v| =
|u| |v| cos .

4. False. For example, |i× i| = |0| = 0 (see Example 12.4.2) but |i| |i| = 1 · 1 = 1. In fact, by Theorem 12.4.9,

|u× v| = |u| |v| sin .

5. True, by Theorem 12.3.2, property 2.

6. False. Property 1 of Theorem 12.4.11 says that u× v = −v× u.

7. True. If  is the angle between u and v, then by Theorem 12.4.9, |u× v| = |u| |v| sin  = |v| |u| sin  = |v× u|.
(Or, by Theorem 12.4.11, |u× v| = |−v× u| = |−1| |v× u| = |v× u|.)

8. This is true by Theorem 12.3.2, property 4.

9. Theorem 12.4.11, property 2 tells us that this is true.

10. This is true by Theorem 12.4.11, property 4.

11. This is true by Theorem 12.4.11, property 5.

12. In general, this assertion is false; a counterexample is i× (i× j) 6= (i× i)× j. (See the paragraph preceding

Theorem 12.4.11.)

13. This is true because u× v is orthogonal to u (see Theorem 12.4.8), and the dot product of two orthogonal vectors is 0.
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CHAPTER 12 REVIEW ¤ 65

14. (u + v)× v = u× v + v× v [by Theorem 12.4.11, property 4]

= u× v + 0 [by Example 12.4.2]

= u× v, so this is true.

15. This is false. A normal vector to the plane is n = h6−2 4i. Because h3−1 2i = 1
2
n, the vector is parallel to n and hence

perpendicular to the plane.

16. This is false, because according to Equation 12.5.8, +  +  +  = 0 is the general equation of a plane.

17. This is false. In R2, 2 + 2 = 1 represents a circle, but

(  ) | 2 + 2 = 1


represents a three-dimensional surface,

namely, a circular cylinder with axis the -axis.

18. This is false. In R3 the graph of  = 2 is a parabolic cylinder (see Example 12.6.1). A paraboloid has an equation such as

 = 2 + 2.

19. False. For example, i · j = 0 but i 6= 0 and j 6= 0.

20. This is false. By Corollary 12.4.10, u× v = 0 for any nonzero parallel vectors u, v. For instance, i× i = 0.

21. This is true. If u and v are both nonzero, then by (7) in Section 12.3, u · v = 0 implies that u and v are orthogonal. But

u× v = 0 implies that u and v are parallel (see Corollary 12.4.10). Two nonzero vectors can’t be both parallel and

orthogonal, so at least one of u, v must be 0.

22. This is true. We know u · v = |u| |v| cos  where |u| ≥ 0, |v| ≥ 0, and |cos | ≤ 1, so |u · v| = |u| |v| |cos | ≤ |u| |v|.

1. (a) The radius of the sphere is the distance between the points (−1 2 1) and (6−2 3), namely,
[6− (−1)]2 + (−2− 2)2 + (3− 1)2 =

√
69. By the formula for an equation of a sphere (see page 835 [ET 795]),

an equation of the sphere with center (−1 2 1) and radius
√

69 is (+ 1)
2

+ ( − 2)
2

+ ( − 1)
2

= 69.

(b) The intersection of this sphere with the -plane is the set of points on the sphere whose -coordinate is 0. Putting  = 0

into the equation, we have ( − 2)2 + ( − 1)2 = 68  = 0 which represents a circle in the -plane with center (0 2 1)

and radius
√

68.

(c) Completing squares gives (− 4)2 + ( + 1)2 + ( + 3)2 = −1 + 16 + 1 + 9 = 25. Thus the sphere is centered at

(4−1−3) and has radius 5.

2. (a) (b)
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66 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

(c) (d)

3. u · v = |u| |v| cos 45◦ = (2)(3)
√

2
2

= 3
√

2. |u× v| = |u| |v| sin 45◦ = (2)(3)
√

2
2

= 3
√

2.

By the right-hand rule, u× v is directed out of the page.

4. (a) 2a + 3b = 2 i + 2 j− 4k + 9 i− 6 j + 3k = 11 i− 4 j− k

(b) |b| = √9 + 4 + 1 =
√

14

(c) a · b = (1)(3) + (1)(−2) + (−2)(1) = −1

(d) a× b =


i j k

1 1 −2

3 −2 1

 = (1− 4) i− (1 + 6) j + (−2− 3)k = −3 i− 7 j− 5k

(e) b× c =


i j k

3 −2 1

0 1 −5

 = 9 i + 15 j + 3k, |b× c| = 3
√

9 + 25 + 1 = 3
√

35

(f ) a · (b× c) =


1 1 −2

3 −2 1

0 1 −5

 =

−2 1

1 −5

 −
 3 1

0 −5

 − 2

 3 −2

0 1

 = 9 + 15− 6 = 18

(g) c× c = 0 for any c.

(h) From part (e),

a× (b× c) = a× (9 i + 15 j + 3k) =


i j k

1 1 −2

9 15 3


= (3 + 30) i− (3 + 18) j + (15− 9)k = 33 i− 21 j + 6k

(i) The scalar projection is compa b = |b| cos  = a · b |a| = − 1√
6
.

( j) The vector projection is proja b = − 1√
6


a

|a|


= − 1
6
(i + j− 2k).

(k) cos  =
a · b
|a| |b| =

−1√
6
√

14
=

−1

2
√

21
and  = cos−1

 −1

2
√

21


≈ 96◦.

5. For the two vectors to be orthogonal, we need h3 2 i · h2 4 i = 0 ⇔ (3)(2) + (2)(4) + ()() = 0 ⇔
2 + 6+ 8 = 0 ⇔ (+ 2)(+ 4) = 0 ⇔  = −2 or  = −4.
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CHAPTER 12 REVIEW ¤ 67

6. We know that the cross product of two vectors is orthogonal to both given vectors. So we calculate

( j + 2k)× (i− 2 j + 3k) = [3− (−4)] i− (0− 2) j + (0− 1)k = 7 i + 2 j− k.

Then two unit vectors orthogonal to both given vectors are ± 7 i + 2 j− k
72 + 22 + (−1)2

= ± 1

3
√

6
(7 i + 2 j− k),

that is, 7

3
√

6
i + 2

3
√

6
j− 1

3
√

6
k and − 7

3
√

6
i− 2

3
√

6
j + 1

3
√

6
k.

7. (a) (u× v) ·w = u · (v×w) = 2

(b) u · (w× v) = u · [− (v×w)] = −u · (v×w) = −2

(c) v · (u×w) = (v× u) ·w = − (u× v) ·w = −2

(d) (u× v) · v = u · (v× v) = u · 0 = 0

8. (a× b) · [(b× c)× (c× a)] = (a× b) · ([(b× c) · a] c− [(b× c) · c]a)

[by Property 6 of the cross product]

= (a× b) · [(b× c) · a] c = [a · (b× c)] (a× b) · c

= [a · (b× c)] [a · (b× c)] = [a · (b× c)]
2

9. For simplicity, consider a unit cube positioned with its back left corner at the origin. Vector representations of the diagonals

joining the points (0 0 0) to (1 1 1) and (1 0 0) to (0 1 1) are h1 1 1i and h−1 1 1i. Let  be the angle between these

two vectors. h1 1 1i · h−1 1 1i = −1 + 1 + 1 = 1 = |h1 1 1i| |h−1 1 1i| cos  = 3 cos  ⇒ cos  = 1
3
⇒

 = cos−1


1
3

 ≈ 71◦.

10.
−→
 = h1 3−1i,

−→
 = h−2 1 3i and

−−→
 = h−1 3 1i. By Equation 12.4.13,

−→
 ·

−→
 ×

−−→



=


1 3 −1

−2 1 3

−1 3 1

 =

 1 3

3 1

− 3

−2 3

−1 1

−
−2 1

−1 3

 = −8− 3 + 5 = −6.

The volume is
−→ ·

−→
 ×

−−→


 = 6 cubic units.

11.
−→
 = h1 0−1i,

−→
 = h0 4 3i, so

(a) a vector perpendicular to the plane is
−→
 ×

−→
 = h0 + 4−(3 + 0) 4− 0i = h4−3 4i.

(b) 1
2

−→ ×
−→


 = 1
2

√
16 + 9 + 16 =

√
41
2
.

12. D = 4 i + 3 j + 6k,  = F ·D = 12 + 15 + 60 = 87 J

13. Let 1 be the magnitude of the force directed 20◦ away from the direction of shore, and let 2 be the magnitude of the other

force. Separating these forces into components parallel to the direction of the resultant force and perpendicular to it gives

1 cos 20◦ + 2 cos 30◦ = 255 (1), and 1 sin 20◦ − 2 sin 30◦ = 0 ⇒ 1 = 2
sin 30◦

sin 20◦
(2). Substituting (2)

into (1) gives 2(sin 30◦ cot 20◦ + cos 30◦) = 255 ⇒ 2 ≈ 114 N. Substituting this into (2) gives 1 ≈ 166 N.
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68 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

14. | | = |r| |F| sin  = (040)(50) sin(90◦ − 30◦) ≈ 173 N·m.

15. The line has direction v = h−3 2 3i. Letting 0 = (4−1 2), parametric equations are

 = 4− 3,  = −1 + 2,  = 2 + 3.

16. A direction vector for the line is v = h3 2 1i, so parametric equations for the line are  = 1 + 3,  = 2,  = −1 + .

17. A direction vector for the line is a normal vector for the plane, n = h2−1 5i, and parametric equations for the line are
 = −2 + 2,  = 2− ,  = 4 + 5.

18. Since the two planes are parallel, they will have the same normal vectors. Then we can take n = h1 4−3i and an equation of
the plane is 1(− 2) + 4( − 1)− 3( − 0) = 0 or + 4 − 3 = 6.

19. Here the vectors a = h4− 3 0− (−1)  2− 1i = h1 1 1i and b = h6− 3 3− (−1) 1− 1i = h3 4 0i lie in the plane,
so n = a× b = h−4 3 1i is a normal vector to the plane and an equation of the plane is
−4(− 3) + 3( − (−1)) + 1( − 1) = 0 or −4+ 3 +  = −14.

20. If we first find two nonparallel vectors in the plane, their cross product will be a normal vector to the plane. Since the given

line lies in the plane, its direction vector a = h2−1 3i is one vector in the plane. We can verify that the given point (1 2−2)

does not lie on this line. The point (0 3 1) is on the line (obtained by putting  = 0) and hence in the plane, so the vector

b = h0− 1 3− 2 1− (−2)i = h−1 1 3i lies in the plane, and a normal vector is n = a× b = h−6−9 1i. Thus an
equation of the plane is −6(− 1)− 9( − 2) + ( + 2) = 0 or 6+ 9 −  = 26.

21. Substitution of the parametric equations into the equation of the plane gives 2−  +  = 2(2− )− (1 + 3) + 4 = 2 ⇒
−+ 3 = 2 ⇒  = 1. When  = 1, the parametric equations give  = 2− 1 = 1,  = 1 + 3 = 4 and  = 4. Therefore,

the point of intersection is (1 4 4).

22. Use the formula proven in Exercise 12.4.45(a). In the notation used in that exercise, a is just the direction of the line; that is,

a = h1−1 2i. A point on the line is (1 2−1) (setting  = 0), and therefore b = h1− 0 2− 0−1− 0i = h1 2−1i.

Hence  =
|a× b|
|a| =

|h1−1 2i × h1 2−1i|√
1 + 1 + 4

=
|h−3 3 3i|√

6
=


27

6
=

3√
2
.

23. Since the direction vectors h2 3 4i and h6−1 2i aren’t parallel, neither are the lines. For the lines to intersect, the three
equations 1 + 2 = −1 + 6, 2 + 3 = 3− , 3 + 4 = −5 + 2 must be satisfied simultaneously. Solving the first two

equations gives  = 1
5
,  = 2

5
and checking we see these values don’t satisfy the third equation. Thus the lines aren’t parallel

and they don’t intersect, so they must be skew.

24. (a) The normal vectors are h1 1−1i and h2−3 4i. Since these vectors aren’t parallel, neither are the planes parallel.

Also h1 1−1i · h2−3 4i = 2− 3− 4 = −5 6= 0 so the normal vectors, and thus the planes, are not perpendicular.

(b) cos  =
h1 1−1i · h2−3 4i√

3
√

29
= − 5√

87
and  = cos−1


− 5√

87


≈ 122◦ [or we can say ≈ 58◦].
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25. n1 = h1 0−1i and n2 = h0 1 2i. Setting  = 0, it is easy to see that (1 3 0) is a point on the line of intersection of

−  = 1 and  + 2 = 3. The direction of this line is v1 = n1 × n2 = h1−2 1i. A second vector parallel to the desired

plane is v2 = h1 1−2i, since it is perpendicular to +  − 2 = 1. Therefore, the normal of the plane in question is

n = v1 × v2 = h4− 1 1 + 2 1 + 2i = 3 h1 1 1i. Taking (0 0 0) = (1 3 0), the equation we are looking for is

(− 1) + ( − 3) +  = 0 ⇔  +  +  = 4.

26. (a) The vectors
−→
 = h−1− 2−1− 1 10− 1i = h−3−2 9i and −→ = h1− 2 3− 1−4− 1i = h−1 2−5i lie in the

plane, so n =
−→
 ×−→ = h−3−2 9i × h−1 2−5i = h−8−24−8i or equivalently h1 3 1i is a normal vector to

the plane. The point (2 1 1) lies on the plane so an equation of the plane is 1(− 2) + 3( − 1) + 1( − 1) = 0 or

+ 3 +  = 6.

(b) The line is perpendicular to the plane so it is parallel to a normal vector for the plane, namely h1 3 1i. If the line passes

through (−1−1 10) then symmetric equations are
− (−1)

1
=

 − (−1)

3
=

 − 10

1
or + 1 =

 + 1

3
=  − 10.

(c) Normal vectors for the two planes are n1 = h1 3 1i and n2 = h2−4−3i. The angle  between the planes is given by

cos  =
n1 · n2

|n1| |n2| =
h1 3 1i · h2−4−3i√

12 + 32 + 12


22 + (−4)2 + (−3)2
=

2− 12− 3√
11
√

29
= − 13√

319

Thus  = cos−1


− 13√

319


≈ 137◦ or 180◦ − 137◦ = 43◦.

(d) From part (c), the point (2 0 4) lies on the second plane, but notice that the point also satisfies the equation of the first

plane, so the point lies on the line of intersection of the planes. A vector v in the direction of this intersecting line is

perpendicular to the normal vectors of both planes, so take v = n1 × n2 = h1 3 1i × h2−4−3i = h−5 5−10i or
equivalently we can take v = h1−1 2i. Parametric equations for the line are  = 2 + ,  = −,  = 4 + 2.

27. By Exercise 12.5.75, =
|−2− (−24)|
32 + 12 + (−4)2

=
22√
26

.

28. The equation  = 3 represents a plane parallel to the

-plane and 3 units in front of it.

29. The equation  =  represents a plane perpendicular to

the -plane and intersecting the -plane in the line

 = ,  = 0.
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70 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

30. The equation  = 2 represents a parabolic cylinder

whose trace in the -plane is the -axis and which opens

to the right.

31. The equation 2 = 2 + 42 represents a (right elliptical)

cone with vertex at the origin and axis the -axis.

32. 4−  + 2 = 4 is a plane with intercepts

(1 0 0), (0−4 0), and (0 0 2).

33. An equivalent equation is −2 +
2

4
− 2 = 1, a

hyperboloid of two sheets with axis the -axis. For

||  2, traces parallel to the -plane are circles.

34. An equivalent equation is −2 + 2 + 2 = 1,

a hyperboloid of one sheet with axis the -axis.

35. Completing the square in  gives

42 + 4( − 1)2 + 2 = 4 or 2 + ( − 1)2 +
2

4
= 1,

an ellipsoid centered at (0 1 0).

36. Completing the square in  and  gives

 = ( − 1)2 + ( − 2)2, a circular paraboloid with

vertex (0 1 2) and axis the horizontal line  = 1,  = 2.
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CHAPTER 12 REVIEW ¤ 71

37. 42 + 2 = 16 ⇔ 2

4
+

2

16
= 1. The equation of the ellipsoid is

2

4
+

2

16
+

2

2
= 1, since the horizontal trace in the

plane  = 0 must be the original ellipse. The traces of the ellipsoid in the -plane must be circles since the surface is obtained

by rotation about the -axis. Therefore, 2 = 16 and the equation of the ellipsoid is
2

4
+

2

16
+

2

16
= 1 ⇔

42 + 2 + 2 = 16.

38. The distance from a point  (  ) to the plane  = 1 is | − 1|, so the given condition becomes

| − 1| = 2


(− 0)2 + ( + 1)2 + ( − 0)2 ⇒ | − 1| = 2

2 + ( + 1)2 + 2 ⇒

( − 1)2 = 42 + 4( + 1)2 + 42 ⇔ −3 = 42 + (32 + 10) + 42 ⇔
16
3

= 42 + 3

 + 5

3

2
+ 42 ⇒ 3

4
2 + 9

16


 + 5

3

2
+ 3

4
2 = 1.

This is the equation of an ellipsoid whose center is

0− 5

3
 0

.
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PROBLEMS PLUS

1. Since three-dimensional situations are often difficult to visualize and work with, let

us first try to find an analogous problem in two dimensions. The analogue of a cube

is a square and the analogue of a sphere is a circle. Thus a similar problem in two

dimensions is the following: if five circles with the same radius  are contained in a

square of side 1 m so that the circles touch each other and four of the circles touch

two sides of the square, find .

The diagonal of the square is
√

2. The diagonal is also 4 + 2. But  is the diagonal of a smaller square of side . Therefore

 =
√

2  ⇒ √
2 = 4 + 2 = 4 + 2

√
2  =


4 + 2

√
2

 ⇒  =

√
2

4 + 2
√

2
.

Let’s use these ideas to solve the original three-dimensional problem. The diagonal of the cube is
√

12 + 12 + 12 =
√

3.

The diagonal of the cube is also 4 + 2 where  is the diagonal of a smaller cube with edge . Therefore

 =
√
2 + 2 + 2 =

√
3  ⇒ √

3 = 4 + 2 = 4 + 2
√

3  =

4 + 2

√
3

. Thus  =

√
3

4 + 2
√

3
=

2
√

3 − 3

2
.

The radius of each ball is
√

3− 3
2


m.

2. Try an analogous problem in two dimensions. Consider a rectangle with

length  and width and find the area of  in terms of  and . Since 

contains , it has area

() =  + the area of two × 1 rectangles

+ the area of two 1× rectangles

+ the area of four quarter-circles of radius 1

as seen in the diagram. So () =  + 2+ 2 +  · 12.

Now in three dimensions, the volume of  is

 + 2(× × 1) + 2(1× ×) + 2(× 1×)

+ the volume of 4 quarter-cylinders with radius 1 and height

+ the volume of 4 quarter-cylinders with radius 1 and height 

+ the volume of 4 quarter-cylinders with radius 1 and height

+ the volume of 8 eighths of a sphere of radius 1

So

 () =  + 2 + 2 + 2 +  · 12 · +  · 12 · +  · 12 · + 4
3
 · 13

=  + 2( + + ) + (+ +) + 4
3
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74 ¤ CHAPTER 12 PROBLEMS PLUS

3. (a) We find the line of intersection  as in Example 12.5.7(b). Observe that the point (−1  ) lies on both planes. Now since

 lies in both planes, it is perpendicular to both of the normal vectors n1 and n2, and thus parallel to their cross product

n1 × n2 =


i j k

 1 1

1 − 

 =

2−2 + 1−2 − 1



So symmetric equations of  can be written as
+ 1

−2
=

 − 

2 − 1
=

 − 

2 + 1
, provided that  6= 0, ±1.

If  = 0, then the two planes are given by  +  = 0 and  = −1, so symmetric equations of  are  = −1,  = −.
If  = −1, then the two planes are given by−+  +  = −1 and +  +  = −1, and they intersect in the line  = 0,

 = − − 1. If  = 1, then the two planes are given by +  +  = 1 and −  +  = 1, and they intersect in the line

 = 0,  = 1− .

(b) If we set  =  in the symmetric equations and solve for  and  separately, we get  + 1 =
(− )(−2)

2 + 1
,

 −  =
(− )(2 − 1)

2 + 1
⇒  =

−2+ (2 − 1)

2 + 1
,  =

(2 − 1) + 2

2 + 1
. Eliminating  from these equations, we

have 2 + 2 = 2 + 1. So the curve traced out by  in the plane  =  is a circle with center at (0 0 ) and

radius
√
2 + 1.

(c) The area of a horizontal cross-section of the solid is () = (2 + 1), so  =
 1

0
() = 


1
3
3 + 

1
0

= 4
3
.

4. (a) We consider velocity vectors for the plane and the wind. Let v be the initial, intended

velocity for the plane and v the actual velocity relative to the ground. If w is the velocity

of the wind, v is the resultant, that is, the vector sum v + w as shown in the figure. We

know v = 180 j, and since the plane actually flew 80 km in 1
2
hour, |v| = 160. Thus

v = (160 cos 85◦) i + (160 sin 85◦) j ≈ 139 i + 1594 j. Finally, v + w = v , so

w = v − v ≈ 139 i− 206 j. Thus, the wind velocity is about 139 i− 206 j, and the

wind speed is |w| ≈


(139)2 + (−206)2 ≈ 249 kmh.

(b) Let v be the velocity the pilot should have taken. The pilot would need to head a little west of north to compensate

for the wind, so let  be the angle v makes with the north direction. Then we can write

v = h180 cos( + 90◦) 180 sin( + 90◦)i. With the effect of the wind, the actual velocity (with respect to the ground)

will be v + w, which we want to be due north. Equating horizontal components of the vectors, we must have

180 cos( + 90◦) + 160 cos 85◦ = 0 ⇒ cos( + 90◦) = −160
180

cos 85◦ ≈ −00775, so

 ≈ cos−1(−00775)− 90◦ ≈ 44◦. Thus the pilot should have headed about 44◦ west of north.
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CHAPTER 12 PROBLEMS PLUS ¤ 75

5. v3 = projv1v2 =
v1 · v2

|v1|2
v1 =

5

22
v1 so |v3| =

5

22
|v1| =

5

2
,

v4 = projv2v3 =
v2 · v3

|v2|2
v2 =

v2 · 5
22

v1

|v2|2
v2 =

5

22 · 32
(v1 · v2)v2 =

52

22 · 32
v2 ⇒ |v4| = 52

22 · 32
|v2| = 52

22 · 3 ,

v5 = projv3v4 =
v3 · v4

|v3|2
v3 =

5

22
v1 · 52

22 32
v2

5
2

2 
5

22
v1


=

52

24 · 32
(v1 · v2) v1 =

53

24 · 32
v1 ⇒

|v5| = 53

24 · 32
|v1| = 53

23 · 32
. Similarly, |v6| = 54

24 · 33
, |v7| = 55

25 · 34
, and in general, |v| = 5−2

2−2 · 3−3
= 3


5
6

−2
.

Thus

∞
=1

|v|= |v1|+ |v2|+
∞
=3

3


5
6

−2
= 2 + 3 +

∞
=1

3


5
6


= 5 +

∞
=1

5
2


5
6

−1
= 5 +

5
2

1− 5
6

[sum of a geometric series] = 5 + 15 = 20

6. Completing squares in the inequality 2 + 2 + 2  136 + 2(+ 2 + 3)

gives (− 1)2 + ( − 2)2 + ( − 3)2  150 which describes the set of all

points (  ) whose distance from the point  (1 2 3) is less than

√
150 = 5

√
6. The distance from  to (−1 1 4) is

√
4 + 1 + 1 =

√
6,

so the largest possible sphere that passes through  and satisfies the stated

conditions extends 5
√

6 units in the opposite direction, giving a diameter of

6
√

6. (See the figure.)

Thus the radius of the desired sphere is 3
√

6, and its center is 3
√

6 units from in the direction of  . A unit vector in this

direction is u = 1√
6
h2 1−1i, so starting at(−1 1 4) and following the vector 3

√
6u = h6 3−3i we arrive at the center

of the sphere, (5 4 1). An equation of the sphere then is (− 5)2 + ( − 4)2 + ( − 1)2 =

3
√

6
2

or (− 5)2 + ( − 4)2 + ( − 1)2 = 54.

7. (a) When  = , the block is not moving, so the sum of the forces on the block

must be 0, thus N + F + W = 0 This relationship is illustrated

geometrically in the figure. Since the vectors form a right triangle, we have

tan() =
|F|
|N| =




= .

(b) We place the block at the origin and sketch the force vectors acting on the block, including the additional horizontal force

H, with initial points at the origin. We then rotate this system so that F lies along the positive -axis and the inclined plane

is parallel to the -axis. (See the following figure.)
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76 ¤ CHAPTER 12 PROBLEMS PLUS

|F| is maximal, so |F| =  for   . Then the vectors, in terms of components parallel and perpendicular to the

inclined plane, are

N =  j F = () i

W = (− sin ) i + (− cos ) j H = (min cos ) i + (−min sin ) j

Equating components, we have

− sin  + min cos  = 0 ⇒ min cos  +  =  sin 

− cos  − min sin  = 0 ⇒ min sin  + cos  = 

(1)

(2)

(c) Since (2) is solved for , we substitute into (1):

min cos  + (min sin  + cos ) =  sin  ⇒
min cos  + min sin  =  sin  − cos  ⇒

min = 


sin  −  cos 

cos  +  sin 


= 


tan  − 

1 +  tan 



From part (a) we know  = tan , so this becomes min = 


tan  − tan 

1 + tan  tan 


and using a trigonometric identity,

this is tan( − ) as desired.

Note for  = , min =  tan 0 = 0, which makes sense since the block is at rest for , thus no additional force H

is necessary to prevent it from moving. As  increases, the factor tan( − ), and hence the value of min, increases

slowly for small values of  −  but much more rapidly as  −  becomes significant. This seems reasonable, as the

steeper the inclined plane, the less the horizontal components of the various forces affect the movement of the block, so we

would need a much larger magnitude of horizontal force to keep the block motionless. If we allow → 90◦, corresponding

to the inclined plane being placed vertically, the value of min is quite large; this is to be expected, as it takes a great

amount of horizontal force to keep an object from moving vertically. In fact, without friction (so  = 0), we would have

→ 90◦ ⇒ min →∞, and it would be impossible to keep the block from slipping.

(d) Since max is the largest value of  that keeps the block from slipping, the force of friction is keeping the block from

moving up the inclined plane; thus, F is directed down the plane. Our system of forces is similar to that in part (b), then,

except that we have F = −() i. (Note that |F| is again maximal.) Following our procedure in parts (b) and (c), we
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CHAPTER 12 PROBLEMS PLUS ¤ 77

equate components:

−− sin  + max cos  = 0 ⇒ max cos  −  =  sin 

− cos  − max sin  = 0 ⇒ max sin  + cos  = 

Then substituting,

max cos  − (max sin  + cos ) =  sin  ⇒

max cos  − max sin  =  sin  + cos  ⇒

max = 


sin  +  cos 

cos  −  sin 


= 


tan  + 
1−  tan 


= 


tan  + tan 

1− tan  tan 


=  tan( + )

We would expect max to increase as  increases, with similar behavior as we established for min, but with max values

always larger than min. We can see that this is the case if we graph max as a function of , as the curve is the graph of

min translated 2 to the left, so the equation does seem reasonable. Notice that the equation predicts max →∞ as

 → (90◦ − ). In fact, as max increases, the normal force increases as well. When (90◦ − ) ≤  ≤ 90◦, the

horizontal force is completely counteracted by the sum of the normal and frictional forces, so no part of the horizontal

force contributes to moving the block up the plane no matter how large its magnitude.

8. (a) The largest possible solid is achieved by starting with a circular cylinder of diameter 1 with axis the -axis and with a

height of 1. This is the largest solid that creates a square shadow with side length 1 in the -direction and a circular disk

shadow in the -direction. For convenience, we place the base of the

cylinder on the -plane so that it intersects the - and -axes at ±1
2
.

We then remove as little as possible from the solid that leaves an

isosceles triangle shadow in the -direction. This is achieved by

cutting the solid with planes parallel to the -axis that intersect the

-axis at 1 and the -axis at ±1
2
(see the figure).

To compute the volume of this solid, we take vertical slices parallel to the -plane. The equation of the base of the solid

is 2 + 2 = 1
4
, so a cross-section  units to the right of the origin is a rectangle with base 2


1
4
− 2. For 0 ≤  ≤ 1

2
,

the solid is cut off on top by the plane  = 1− 2, so the height of the rectangular cross-section is 1− 2 and the

cross-sectional area is () = 2


1
4
− 2 (1− 2). The volume of the right half of the solid is 12

0

2


1
4
− 2 (1− 2)  = 2

 12

0


1
4
− 2  − 4

 12

0




1
4
− 2 

= 2


1
4
area of a circle of radius 1

2

− 4

− 1

3


1
4
− 2

3212
0

= 2


1
4
·   1

2

2
+ 4

3


0−  1

4

32
= 

8
− 1

6

Thus the volume of the solid is 2


8
− 1

6


= 

4
− 1

3
≈ 045.
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78 ¤ CHAPTER 12 PROBLEMS PLUS

(b) There is not a smallest volume. We can remove portions of the solid from

part (a) to create smaller and smaller volumes as long as we leave the

“skeleton” shown in the figure intact (which has no volume at all and is not a

solid). Thus we can create solids with arbitrarily small volume.
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13 VECTOR FUNCTIONS

13.1 Vector Functions and Space Curves

1. The component functions ln( + 1),
√

9− 2
, and 2 are all defined when + 1  0 ⇒   −1 and 9− 2  0 ⇒

−3    3, so the domain of r is (−1 3).

2. The component functions cos , ln , and
1

− 2
are all defined when   0 and  6= 2, so the domain of r is (0 2) ∪ (2∞).

3. lim
→0

−3 = 0 = 1, lim
→0

2

sin2 
= lim

→0

1

sin2 

2

=
1

lim
→0

sin2 

2

=
1

lim
→0

sin 



2
=

1

12
= 1,

and lim
→0

cos 2 = cos 0 = 1. Thus

lim
→0


−3 i +

2

sin2 
j + cos 2k


=

lim
→0

−3

i +


lim
→0

2

sin2 


j +


lim
→0

cos 2

k = i + j + k.

4. lim
→1

2 − 

− 1
= lim

→1

 (− 1)

− 1
= lim

→1
 = 1, lim

→1

√
+ 8 = 3, lim

→1

sin

ln 
= lim

→1

 cos

1
= − [by l’Hospital’s Rule].

Thus the given limit equals i + 3 j−  k.

5. lim
→∞

1 + 2

1− 2
= lim

→∞
(12) + 1

(12)− 1
=

0 + 1

0− 1
= −1, lim

→∞
tan−1  = 

2
, lim
→∞

1− −2


= lim

→∞
1


− 1

2
= 0− 0 = 0. Thus

lim
→∞


1 + 2

1− 2
 tan−1 

1− −2




=
−1 

2
 0

.

6. lim
→∞

− = lim
→∞




= lim

→∞
1


= 0 [by l’Hospital’s Rule], lim

→∞
3 + 

23 − 1
= lim

→∞
1 + (12)

2− (13)
=

1 + 0

2− 0
=

1

2
,

and lim
→∞

 sin
1


= lim

→∞
sin(1)

1
= lim

→∞
cos(1)(−12)

−12
= lim

→∞
cos

1


= cos 0 = 1 [again by l’Hospital’s Rule].

Thus lim
→∞


−

3 + 

23 − 1
  sin

1




=

0 1

2
 1

.

7. The corresponding parametric equations for this curve are  = sin ,  = .

We can make a table of values, or we can eliminate the parameter:  =  ⇒
 = sin , with  ∈ R. By comparing different values of , we find the direction in
which  increases as indicated in the graph.
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314 ¤ CHAPTER 13 VECTOR FUNCTIONS

8. The corresponding parametric equations for this curve are  = 2 − 1,  = . We

can make a table of values, or we can eliminate the parameter:

 =  ⇒  = 2 − 1, with  ∈ R. Thus the curve is a parabola with vertex
(−1 0) that opens to the right. By comparing different values of , we find the

direction in which  increases as indicated in the graph.

9. The corresponding parametric equations are  = ,  = 2− ,  = 2, which are

parametric equations of a line through the point (0 2 0) and with direction vector

h1−1 2i.

10. The corresponding parametric equations are  = sin,  = ,  = cos.

Note that 2 + 2 = sin2 + cos2  = 1, so the curve lies on the circular

cylinder 2 + 2 = 1. A point (  ) on the curve lies directly to the left or

right of the point ( 0 ) which moves clockwise (when viewed from the left)

along the circle 2 + 2 = 1 in the -plane as  increases. Since  = , the

curve is a helix that spirals toward the right around the cylinder.

11. The corresponding parametric equations are  = 3,  = ,  = 2− 2.

Eliminating the parameter in  and  gives  = 2− 2. Because  = 3, the

curve is a parabola in the vertical plane  = 3 with vertex (3 0 2).

12. The corresponding parametric equations are  = 2 cos ,  = 2 sin ,

 = 1. Eliminating the parameter in  and  gives

2 + 2 = 4cos2 + 4 sin2  = 4(cos2  + sin2 ) = 4. Since  = 1, the

curve is a circle of radius 2 centered at (0 0 1) in the horizontal plane

 = 1.

13. The parametric equations are  = 2,  = 4,  = 6. These are positive

for  6= 0 and 0 when  = 0. So the curve lies entirely in the first octant.

The projection of the graph onto the -plane is  = 2,   0, a half parabola.

The projection onto the -plane is  = 3,   0, a half cubic, and the projection

onto the -plane is 3 = 2.
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SECTION 13.1 VECTOR FUNCTIONS AND SPACE CURVES ¤ 315

14. If  = cos ,  = − cos ,  = sin , then 2 + 2 = 1 and 2 + 2 = 1,

so the curve is contained in the intersection of circular cylinders along the

- and -axes. Furthermore,  = −, so the curve is an ellipse in the
plane  = −, centered at the origin.

15. The projection of the curve onto the -plane is given by r() = h sin  0i [we use 0 for the -component] whose graph

is the curve  = sin,  = 0. Similarly, the projection onto the -plane is r() = h 0 2 cos i, whose graph is the cosine
wave  = 2cos,  = 0, and the projection onto the -plane is r() = h0 sin  2 cos i whose graph is the ellipse
2 + 1

4
2 = 1,  = 0.

-plane -plane -plane

From the projection onto the -plane we see that the curve lies on an elliptical

cylinder with axis the -axis. The other two projections show that the curve

oscillates both vertically and horizontally as we move in the -direction,

suggesting that the curve is an elliptical helix that spirals along the cylinder.

16. The projection of the curve onto the -plane is given by r() = h  0i whose graph is the line  = ,  = 0.

The projection onto the -plane is r() =

 0 2


whose graph is the parabola  = 2,  = 0.

The projection onto the -plane is r() =

0  2


whose graph is the parabola  = 2,  = 0.

-plane -plane -plane [continued]
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316 ¤ CHAPTER 13 VECTOR FUNCTIONS

From the projection onto the -plane we see that the curve lies on the vertical

plane  = . The other two projections show that the curve is a parabola contained

in this plane.

17. Taking r0 = h2 0 0i and r1 = h6 2−2i, we have from Equation 12.5.4

r() = (1− ) r0 +  r1 = (1− ) h2 0 0i+  h6 2−2i, 0 ≤  ≤ 1 or r() = h2 + 4 2−2i, 0 ≤  ≤ 1.

Parametric equations are  = 2 + 4,  = 2,  = −2, 0 ≤  ≤ 1.

18. Taking r0 = h−1 2−2i and r1 = h−3 5 1i, we have from Equation 12.5.4

r() = (1− ) r0 +  r1 = (1− ) h−1 2−2i+  h−3 5 1i, 0 ≤  ≤ 1 or r() = h−1− 2 2 + 3−2 + 3i, 0 ≤  ≤ 1.

Parametric equations are  = −1− 2,  = 2 + 3,  = −2 + 3, 0 ≤  ≤ 1.

19. Taking r0 = h0−1 1i and r1 =


1
2
 1

3
 1

4


, we have

r() = (1− ) r0 +  r1 = (1− ) h0−1 1i+ 


1
2
 1

3
 1

4


, 0 ≤  ≤ 1 or r() =


1
2
−1 + 4

3
 1− 3

4


, 0 ≤  ≤ 1.

Parametric equations are  = 1
2
,  = −1 + 4

3
,  = 1− 3

4
, 0 ≤  ≤ 1.

20. Taking r0 = h  i and r1 = h i, we have
r() = (1− ) r0 +  r1 = (1− ) h  i+  h  i, 0 ≤  ≤ 1 or r() = h+ (− ) + ( − ) + ( − )i,
0 ≤  ≤ 1. Parametric equations are  = + (− ),  = + ( − ),  = + ( − ), 0 ≤  ≤ 1.

21.  =  cos ,  = ,  =  sin ,  ≥ 0. At any point (  ) on the curve, 2 + 2 = 2 cos2 + 2 sin2  = 2 = 2 so the

curve lies on the circular cone 2 + 2 = 2 with axis the -axis. Also notice that  ≥ 0; the graph is II.

22.  = cos ,  = sin ,  = 1(1 + 2). At any point on the curve we have 2 + 2 = cos2 + sin2  = 1, so the curve lies

on the circular cylinder 2 + 2 = 1 with axis the -axis. Notice that 0   ≤ 1 and  = 1 only for  = 0. A point (  )

on the curve lies directly above the point (  0), which moves counterclockwise around the unit circle in the -plane as 

increases, and  → 0 as → ±∞. The graph must be VI.

23.  = ,  = 1(1 + 2),  = 2. At any point on the curve we have  = 2, so the curve lies on a parabolic cylinder parallel

to the -axis. Notice that 0   ≤ 1 and  ≥ 0. Also the curve passes through (0 1 0) when  = 0 and  → 0,  →∞ as

→ ±∞, so the graph must be V.

24.  = cos ,  = sin ,  = cos 2. 2 + 2 = cos2  + sin2  = 1, so the curve lies on a circular cylinder with axis the

-axis. A point (  ) on the curve lies directly above or below (  0), which moves around the unit circle in the -plane

with period 2. At the same time, the -value of the point (  ) oscillates with a period of . So the curve repeats itself and

the graph is I.
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SECTION 13.1 VECTOR FUNCTIONS AND SPACE CURVES ¤ 317

25.  = cos 8,  = sin 8,  = 08,  ≥ 0. 2 + 2 = cos2 8 + sin2 8 = 1, so the curve lies on a circular cylinder with

axis the -axis. A point (  ) on the curve lies directly above the point (  0), which moves counterclockwise around the

unit circle in the -plane as  increases. The curve starts at (1 0 1), when  = 0, and  →∞ (at an increasing rate) as

→∞, so the graph is IV.

26.  = cos2 ,  = sin2 ,  = . +  = cos2  + sin2  = 1, so the curve lies in the vertical plane +  = 1.

 and  are periodic, both with period , and  increases as  increases, so the graph is III.

27. If  =  cos ,  =  sin ,  = , then 2 + 2 = 2 cos2  + 2 sin2  = 2 = 2,

so the curve lies on the cone 2 = 2 + 2. Since  = , the curve is a spiral on

this cone.

28. Here 2 = sin2  =  and 2 + 2 = sin2  + cos2  = 1, so the

curve is contained in the intersection of the parabolic cylinder

 = 2 with the circular cylinder 2 + 2 = 1. We get the complete

intersection for 0 ≤  ≤ 2.

29. Here  = 2,  = ,  = 2. Then  = 2 ⇒  =  = 2, so the curve lies on the cylinder  = 2. Also

 = 2 = , so the curve lies on the cylinder  = . Since  = 2 =


2

= 2, the curve also lies on the parabolic

cylinder  = 2.

30. Here  = 2,  = ln ,  = 1. The domain of r is (0∞), so  = 2 ⇒  =
√
 ⇒  = ln

√
. Thus one surface

containing the curve is the cylinder  = ln
√
 or  = ln12 = 1

2
ln. Also  = 1 = 1

√
, so the curve also lies on the

cylinder  = 1
√
 or  = 12,   0. Finally  = 1 ⇒  = 1 ⇒  = ln (1), so the curve also lies on the

cylinder  = ln(1) or  = ln −1 = − ln . Note that the surface  = ln() also contains the curve, since

ln() = ln(2 · 1) = ln  = .

31. Parametric equations for the curve are  = ,  = 0,  = 2− 2. Substituting into the equation of the paraboloid

gives 2− 2 = 2 ⇒ 2 = 22 ⇒  = 0, 1. Since r(0) = 0 and r(1) = i + k, the points of intersection

are (0 0 0) and (1 0 1).

32. Parametric equations for the helix are  = sin ,  = cos ,  = . Substituting into the equation of the sphere gives

sin2  + cos2  + 2 = 5 ⇒ 1 + 2 = 5 ⇒  = ±2. Since r(2) = hsin 2 cos 2 2i and
r(−2) = hsin(−2) cos(−2)−2i, the points of intersection are (sin 2 cos 2 2) ≈ (0909−0416 2) and

(sin(−2) cos(−2)−2) ≈ (−0909−0416−2).
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318 ¤ CHAPTER 13 VECTOR FUNCTIONS

33. r() = hcos  sin 2 sin  sin 2 cos 2i.
We include both a regular plot and a plot

showing a tube of radius 0.08 around the

curve.

34. r() =

 − 


35. r() =


sin 3 cos  1

4
 sin 3 sin 



36. r() = hcos(8 cos ) sin  sin(8 cos ) sin  cos i 37. r() = hcos 2 cos 3 cos 4i

38.  = sin ,  = sin 2,  = cos 4.

We graph the projections onto the coordinate planes.

-plane -plane -plane
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SECTION 13.1 VECTOR FUNCTIONS AND SPACE CURVES ¤ 319

From the projection onto the -plane we see that from above the curve appears to be shaped like a “figure eight.”

The curve can be visualized as this shape wrapped around an almost parabolic cylindrical surface, the profile of

which is visible in the projection onto the -plane.

39.  = (1 + cos 16) cos ,  = (1 + cos 16) sin ,  = 1 + cos 16. At any

point on the graph,

2 + 2 = (1 + cos 16)2 cos2  + (1 + cos 16)2 sin2 

= (1 + cos 16)2 = 2, so the graph lies on the cone 2 + 2 = 2.

From the graph at left, we see that this curve looks like the projection of a

leaved two-dimensional curve onto a cone.

40.  =
√

1− 025 cos2 10 cos ,  =
√

1− 025 cos2 10 sin ,

 = 05 cos 10. At any point on the graph,

2 + 2 + 2 = (1− 025 cos2 10) cos2 

+(1− 025 cos2 10) sin2  + 025 cos2 

= 1− 025 cos2 10 + 025 cos2 10 = 1,

so the graph lies on the sphere 2 + 2 + 2 = 1, and since  = 05 cos 10

the graph resembles a trigonometric curve with ten peaks projected onto the

sphere. We get the complete graph for 0 ≤  ≤ 2.

41. If  = −1, then  = 1,  = 4,  = 0, so the curve passes through the point (1 4 0). If  = 3, then  = 9,  = −8,  = 28,

so the curve passes through the point (9−8 28). For the point (4 7−6) to be on the curve, we require  = 1− 3 = 7 ⇒
 = −2 But then  = 1 + (−2)3 = −7 6= −6, so (4 7−6) is not on the curve.

42. The projection of the curve  of intersection onto the -plane is the circle 2 + 2 = 4,  = 0.

Then we can write  = 2 cos ,  = 2 sin , 0 ≤  ≤ 2. Since  also lies on the surface  = , we have

 =  = (2 cos )(2 sin ) = 4 cos  sin , or 2 sin(2). Then parametric equations for  are  = 2 cos ,  = 2 sin ,

 = 2 sin(2), 0 ≤  ≤ 2, and the corresponding vector function is r() = 2 cos  i + 2 sin  j + 2 sin(2)k, 0 ≤  ≤ 2.

43. Both equations are solved for , so we can substitute to eliminate :

2 + 2 = 1 +  ⇒ 2 + 2 = 1 + 2 + 2 ⇒

2 = 1 + 2 ⇒  = 1
2
(2 − 1). We can form parametric equations for the curve  of intersection by choosing a

parameter  = , then  = 1
2
(2 − 1) and  = 1 +  = 1 + 1

2
(2 − 1) = 1

2
(2 + 1). Thus a vector function representing 

is r() =  i + 1
2
(2 − 1) j + 1

2
(2 + 1)k.

44. The projection of the curve  of intersection onto the -plane is the parabola  = 2,  = 0. Then we can choose the

parameter  =  ⇒  = 2. Since  also lies on the surface  = 42 + 2, we have  = 42 + 2 = 42 + (2)2.

Then parametric equations for  are  = ,  = 2,  = 42 + 4, and the corresponding vector function

is r() =  i + 2 j + (42 + 4)k.
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320 ¤ CHAPTER 13 VECTOR FUNCTIONS

45. The projection of the curve  of intersection onto the -plane is the circle 2 + 2 = 1,  = 0, so we can write  = cos ,

 = sin , 0 ≤  ≤ 2. Since  also lies on the surface  = 2 − 2, we have  = 2 − 2 = cos2 − sin2  or cos 2.

Thus parametric equations for  are  = cos ,  = sin ,  = cos 2, 0 ≤  ≤ 2, and the corresponding vector function

is r() = cos  i + sin  j + cos 2k, 0 ≤  ≤ 2.

46. The projection of the curve  of intersection onto the -plane is the circle 2 + 2 = 1,  = 0, so we can write  = cos ,

 = sin , 0 ≤  ≤ 2.  also lies on the surface 2 + 2 + 42 = 4, and since  ≥ 0 we can write

 =
√

4− 2 − 42 =


4− cos2 − 4 sin2  =


4− cos2 − 4(1− cos2 ) =
√

3 cos2  =
√

3 | cos  |

Thus parametric equations for  are  = cos ,  =
√

3 | cos  |,  = sin , 0 ≤  ≤ 2, and the corresponding vector function

is r() = cos  i +
√

3 | cos  | j + sin k, 0 ≤  ≤ 2.

47.

 

The projection of the curve  of intersection onto the

-plane is the circle 2 + 2 = 4  = 0. Then we can write

 = 2 cos ,  = 2 sin , 0 ≤  ≤ 2. Since  also lies on

the surface  = 2, we have  = 2 = (2 cos )2 = 4cos2 .

Then parametric equations for  are  = 2cos ,  = 2 sin ,

 = 4 cos2 , 0 ≤  ≤ 2.

48.

 =  ⇒  = 2 ⇒ 42 = 16− 2 − 42 = 16− 2 − 44 ⇒  =


4−  1

2

2 − 4.

Note that  is positive because the intersection is with the top half of the ellipsoid. Hence the curve is given

by  = ,  = 2,  =


4− 1
4
2 − 4.

49. For the particles to collide, we require r1() = r2() ⇔ 
2 7− 12 2


=

4− 3 2 5− 6


. Equating components

gives 2 = 4− 3, 7− 12 = 2, and 2 = 5− 6. From the first equation, 2− 4+ 3 = 0 ⇔ (− 3)(− 1) = 0 so  = 1

or  = 3.  = 1 does not satisfy the other two equations, but  = 3 does. The particles collide when  = 3, at the

point (9 9 9).

50. The particles collide provided r1() = r2() ⇔ 
 2 3


= h1 + 2 1 + 6 1 + 14i. Equating components gives

 = 1 + 2, 2 = 1 + 6, and 3 = 1 + 14. The first equation gives  = −1, but this does not satisfy the other equations, so

the particles do not collide. For the paths to intersect, we need to find a value for  and a value for  where r1() = r2() ⇔
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SECTION 13.1 VECTOR FUNCTIONS AND SPACE CURVES ¤ 321
 2 3


= h1 + 2 1 + 6 1 + 14i. Equating components,  = 1 + 2, 2 = 1 + 6, and 3 = 1 + 14. Substituting the

first equation into the second gives (1 + 2)
2

= 1 + 6 ⇒ 42 − 2 = 0 ⇒ 2(2− 1) = 0 ⇒  = 0 or  = 1
2
.

From the first equation,  = 0 ⇒  = 1 and  = 1
2
⇒  = 2. Checking, we see that both pairs of values satisfy the

third equation. Thus the paths intersect twice, at the point (1 1 1) when  = 0 and  = 1, and at (2 4 8) when  = 1
2

and  = 2.

51. (a) We plot the parametric equations for 0 ≤  ≤ 2 in the first figure. We get a better idea of the shape of the curve if we plot

it simultaneously with the hyperboloid of one sheet from part (b), as shown in the second figure.

(b) Here  = 27
26

sin 8− 8
39

sin 18,  = − 27
26

cos 8 + 8
39

cos 18,  = 144
65

sin 5.

For any point on the curve,

2 + 2 =


27
26

sin 8− 8
39

sin 18
2

+
−27

26
cos 8+ 8

39
cos 18

2
= 272

262
sin2 8− 2 · 27·8

26·39 sin 8 sin 18+ 64

392
sin2 18

+ 272

262
cos2 8− 2 · 27·8

26·39 cos 8 cos 18 + 64
392

cos2 18

= 272

262


sin2 8+ cos2 8


+ 64

392


sin2 18 + cos2 18

− 72
169

(sin 8 sin 18 + cos 8 cos 18)

= 272

262
+ 64

392
− 72

169
cos (18− 8) = 272

262
+ 64

392
− 72

169
cos 10

using the trigonometric identities sin2  + cos2  = 1 and cos (− ) = cos cos  + sin sin . Also

2 = 1442

652
sin2 5, and the identity sin2  =

1− cos 2

2
gives 2 = 1442

652
· 1

2
[1− cos(2 · 5)] = 1442

2·652 − 1442

2·652 cos 10.

Then

144(2 + 2)− 252 = 144


272

262
+ 64

392
− 72

169
cos 10


− 25


1442

2·652 − 1442

2·652 cos 10


= 144


272

262
+ 64

392
− 25·144

2·652 − 72
169

cos 10+ 25·144
2·652 cos 10


= 144


272

262
+ 64

392
− 72

169
− 72

169
cos 10 + 72

169
cos 10


= 144


25
36


= 100

Thus the curve lies on the surface 144(2 + 2)− 252 = 100 or 1442 + 1442 − 252 = 100, a hyperboloid of one

sheet with axis the -axis.
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322 ¤ CHAPTER 13 VECTOR FUNCTIONS

52. The projection of the curve onto the -plane is given by the parametric equations  = (2 + cos 15) cos ,

 = (2 + cos 15) sin . If we convert to polar coordinates, we have

2 = 2 + 2 = [(2 + cos 15) cos ]2 + [(2 + cos 15) sin ]2 = (2 + cos 15)2(cos2  + sin2 ) = (2 + cos 15)2 ⇒

 = 2 + cos 15. Also, tan  =



=

(2 + cos 15) sin 

(2 + cos 15) cos 
= tan  ⇒  = .

Thus the polar equation of the curve is  = 2 + cos 15. At  = 0, we have

 = 3, and  decreases to 1 as  increases to 2
3
. For 2

3
≤  ≤ 4

3
, 

increases to 3;  decreases to 1 again at  = 2, increases to 3 at  = 8
3
,

decreases to 1 at  = 10
3
, and completes the closed curve by increasing

to 3 at  = 4. We sketch an approximate graph as shown in the figure.

We can determine how the curve passes over itself by investigating the maximum and minimum values of  for 0 ≤  ≤ 4.

Since  = sin 15,  is maximized where sin 15 = 1 ⇒ 15 = 
2
, 5

2
, or 9

2
⇒

 = 
3
, 5

3
, or 3.  is minimized where sin 15 = −1 ⇒

15 = 3
2
, 7

2
, or 11

2
⇒  = , 7

3
, or 11

3
. Note that these are

precisely the values for which cos 15 = 0 ⇒  = 2, and on the graph

of the projection, these six points appear to be at the three self-intersections

we see. Comparing the maximum and minimum values of  at these

intersections, we can determine where the curve passes over itself, as

indicated in the figure.

We show a computer-drawn graph of the curve from above, as well as views from the front and from the right side.

Top view Front view Side view

The top view graph shows a more accurate representation of the projection of the trefoil knot onto the -plane (the axes are

rotated 90◦). Notice the indentations the graph exhibits at the points corresponding to  = 1. Finally, we graph several

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 13.1 VECTOR FUNCTIONS AND SPACE CURVES ¤ 323

additional viewpoints of the trefoil knot, along with two plots showing a tube of radius 02 around the curve.

53. Let u() = h1() 2() 3()i and v() = h1() 2() 3()i. In each part of this problem the basic procedure is to use

Equation 1 and then analyze the individual component functions using the limit properties we have already developed for

real-valued functions.

(a) lim
→

u() + lim
→

v() =


lim
→

1() lim
→

2() lim
→

3()


+


lim
→

1() lim
→

2() lim
→

3()

and the limits of these

component functions must each exist since the vector functions both possess limits as → . Then adding the two vectors

and using the addition property of limits for real-valued functions, we have that

lim
→

u() + lim
→

v() =


lim
→

1() + lim
→

1() lim
→

2() + lim
→

2() lim
→

3() + lim
→

3()


=


lim
→

[1() + 1()]  lim
→

[2() + 2()]  lim
→

[3() + 3()]


= lim
→

h1() + 1() 2() + 2() 3() + 3()i [using (1) backward]

= lim
→

[u() + v()]

(b) lim
→

u() = lim
→

h1() 2() 3()i =


lim
→

1() lim
→

2() lim
→

3()


=

 lim
→

1()  lim
→

2()  lim
→

3()


= 


lim
→

1() lim
→

2() lim
→

3()


=  lim
→

h1() 2() 3()i =  lim
→

u()

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



324 ¤ CHAPTER 13 VECTOR FUNCTIONS

(c) lim
→

u() · lim
→

v() =


lim
→

1() lim
→

2() lim
→

3()

·


lim
→

1() lim
→

2() lim
→

3()


=

lim
→

1()
 

lim
→

1()


+

lim
→

2()
 

lim
→

2()


+

lim
→

3()
 

lim
→

3()


= lim
→

1()1() + lim
→

2()2() + lim
→

3()3()

= lim
→

[1()1() + 2()2() + 3()3()] = lim
→

[u() · v()]

(d) lim
→

u()× lim
→

v() =


lim
→

1() lim
→

2() lim
→

3()

×


lim
→

1() lim
→

2() lim
→

3()


=


lim
→

2()
 

lim
→

3()

−

lim
→

3()
 

lim
→

2()



lim
→

3()
 

lim
→

1()

−

lim
→

1()
 

lim
→

3()



lim
→

1()
 

lim
→

2()

−

lim
→

2()
 

lim
→

1()


=


lim
→

[2()3()− 3()2()]  lim
→

[3()1()− 1()3()] 

lim
→

[1()2()− 2()1()]


= lim
→

h2()3()− 3()2() 3 () 1()− 1()3() 1()2()− 2()1()i

= lim
→

[u()× v()]

54. Let r() = h ()   ()   ()i and b = h1 2 3i. If lim
→

r() = b, then lim
→

r() exists, so by (1),

b = lim
→

r() =


lim
→

() lim
→

() lim
→

()

. By the definition of equal vectors we have lim

→
() = 1, lim

→
() = 2

and lim
→

() = 3. But these are limits of real-valued functions, so by the definition of limits, for every   0 there exists

1  0, 2  0, 3  0 so that if 0  |− |  1 then |()− 1|  3, if 0  |− |  2 then |()− 2|  3, and

if 0  |− |  3 then |()− 3|  3. Letting  =minimum of {1 2 3}, then if 0  |− |   we have

|()− 1|+ |()− 2|+ |()− 3|  3 + 3 + 3 = . But

|r()− b|= |h()− 1 ()− 2 ()− 3i| =


(()− 1)2 + (()− 2)2 + (()− 3)2

≤


[()− 1]2 +


[()− 2]2 +


[()− 3]2 = |()− 1|+ |()− 2|+ |()− 3|

Thus for every   0 there exists   0 such that if 0  |− |   then

|r()− b| ≤ |()− 1|+ |()− 2|+ |()− 3|  . Conversely, suppose for every   0, there exists   0 such

that if 0  |− |   then |r()− b|   ⇔ |h()− 1 ()− 2 ()− 3i|   ⇔
[()− 1]2 + [()− 2]2 + [()− 3]2   ⇔ [()− 1]

2 + [()− 2]
2 + [()− 3]

2  2. But each term

on the left side of the last inequality is positive, so if 0  |− |  , then [()− 1]
2  2, [()− 2]

2  2 and

[()− 3]
2  2 or, taking the square root of both sides in each of the above, |()− 1|  , |()− 2|   and

|()− 3|  . And by definition of limits of real-valued functions we have lim
→

() = 1, lim
→

() = 2 and

lim
→

() = 3. But by (1), lim
→

r() =


lim
→

() lim
→

() lim
→

()

, so lim

→
r() = h1 2 3i = b.
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SECTION 13.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS ¤ 325

13.2 Derivatives and Integrals of Vector Functions

1. (a)

(b)
r(45)− r(4)

05
= 2[r(45)− r(4)], so we draw a vector in the same

direction but with twice the length of the vector r(45)− r(4).

r(42)− r(4)

02
= 5[r(42)− r(4)], so we draw a vector in the same

direction but with 5 times the length of the vector r(42)− r(4).

(c) By Definition 1, r0(4) = lim
→0

r(4 + )− r(4)


. T(4) =

r0(4)
|r0(4)| .

(d) T(4) is a unit vector in the same direction as r0(4), that is, parallel to the

tangent line to the curve at r(4) with length 1.

2. (a) The curve can be represented by the parametric equations  = 2,  = , 0 ≤  ≤ 2. Eliminating the parameter, we have

 = 2, 0 ≤  ≤ 2, a portion of which we graph here, along with the vectors r(1), r(11), and r(11)− r(1).
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326 ¤ CHAPTER 13 VECTOR FUNCTIONS

(b) Since r() =

2 


, we differentiate components, giving r0() = h2 1i, so r0(1) = h2 1i.

r(11)− r(1)

01
=
h121 11i− h1 1i

01
= 10 h021 01i = h21 1i.

As we can see from the graph, these vectors are very close in length and direction. r0(1) is defined to be

lim
→0

r(1 + )− r(1)


, and we recognize

r(11)− r(1)

01
as the expression after the limit sign with  = 01 Since  is

close to 0, we would expect
r(11)− r(1)

01
to be a vector close to r0(1).

3. r() =

− 2 2 + 1


,

r(−1) = h−3 2i.
Since (+ 2)2 = 2 =  − 1 ⇒
 = (+ 2)2 + 1, the curve is a

parabola.

(a), (c) (b) r0() = h1 2i,
r0(−1) = h1−2i

4. r() =

2 3


, r(1) = h1 1i.

Since  = 2 = (3)23 = 23,

the curve is the graph of  = 23.

(a), (c) (b) r0() =

2 32


,

r0(1) = h2 3i

5. r() = 2 i +  j, r(0) = i + j.

Since  = 2 = ()2 = 2, the

curve is part of a parabola. Note

that here   0,   0.

(a), (c) (b) r0() = 22 i +  j,

r0(0) = 2 i + j
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SECTION 13.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS ¤ 327

6. r() =  i + 2 j, r(0) = i.

Since  =  ⇔  = ln and

 = 2 = 2 ln, the curve is the

graph of  = 2 ln.

(a), (c) (b) r0() =  i + 2 j,

r0(0) = i + 2 j

7. r() = 4 sin  i− 2 cos  j, r(34) = 4(
√

22) i− 2(−√22) j = 2
√

2 i +
√

2 j.

Here (4)2 + (2)2 = sin2  + cos2  = 1, so the curve is the ellipse
2

16
+

2

4
= 1.

(a), (c) (b) r0() = 4 cos  i + 2 sin  j,

r0(34) = −2
√

2 i +
√

2 j.

8. r() = (cos + 1) i + (sin − 1) j, r(−3) =


1
2

+ 1

i +


−
√

3
2
− 1

j = 3

2
i +


−
√

3
2
− 1

j ≈ 15 i− 187 j.

Here (− 1)2 + ( + 1)2 = cos2  + sin2  = 1, so the curve is a circle of radius 1 with center (1−1).

(a), (c) (b) r0() = − sin  i + cos  j,

r0(−3) =
√

3
2

i + 1
2
j ≈ 087 i + 05 j

9. r() =
√

− 2 3 12
 ⇒

r0() =






√
− 2






[3] 






12


=


1
2
(− 2)−12 0−2−3


=


1

2
√
− 2

 0− 2

3



10. r() =

− − 3 ln 

 ⇒ r0() =
−− 1− 32 1


11. r() = 2 i + cos


2


j + sin2  k ⇒

r0() = 2 i +
− sin(2) · 2 j + (2 sin  · cos )k = 2 i− 2 sin(2) j + 2 sin  cos k

12. r() =
1

1 + 
i +



1 + 
j +

2

1 + 
k ⇒

r0() =
0− 1(1)

(1 + )2
i +

(1 + ) · 1− (1)

(1 + )2
j +

(1 + ) · 2− 2(1)

(1 + )2
k = − 1

(1 + )2
i +

1

(1 + )2
j +

2 + 2

(1 + )2
k

13. r() =  sin  i +  cos  j + sin  cos k ⇒

r0() = [ · cos + (sin ) · 1] i +

(− sin ) + (cos )


j + [(sin )(− sin ) + (cos )(cos )]k

= ( cos  + sin ) i +  (cos − sin ) j +

cos2 − sin2 


k

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



328 ¤ CHAPTER 13 VECTOR FUNCTIONS

14. r() = sin2  i +  j + cos2 k ⇒

r0() = [2(sin ) · (cos )()] i +

 · () +  · 1 j + [2(cos ) · (− sin )()]k

= 2 sin  cos  i +  (+ 1) j− 2 sin  cos k

15. r0() = 0 + b + 2 c = b + 2 c by Formulas 1 and 3 of Theorem 3.

16. To find r0(), we first expand r() = a× (b +  c) = (a× b) + 2(a× c), so r0() = a× b + 2(a× c).

17. r() =

2 − 2 1 + 3 1

3
3 + 1

2
2
 ⇒ r0() =


2− 2 3 2 + 

 ⇒ r0(2) = h2 3 6i.

So |r0(2)| = √22 + 32 + 62 =
√

49 = 7 and T(2) =
r0(2)
|r0(2)| = 1

7
h2 3 6i =


2
7
 3

7
 6

7


.

18. r() =

tan−1  22 8

 ⇒ r0() =

1(1 + 2) 42 8 + 8

 ⇒ r0(0) = h1 4 8i.

So |r0(0)| = √12 + 42 + 82 =
√

81 = 9 and T(0) =
r0(0)
|r0(0)| = 1

9
h1 4 8i =


1
9
 4

9
 8

9


.

19. r0() = − sin  i + 3 j + 4 cos 2k ⇒ r0(0) = 3 j + 4k. Thus

T(0) =
r0(0)
|r0(0)| =

1√
02 + 32 + 42

(3 j + 4k) = 1
5
(3 j + 4k) = 3

5
j + 4

5
k.

20. r0() = 2 sin  cos  i− 2 cos  sin  j + 2 tan  sec2 k ⇒

r0


4


= 2 ·

√
2

2
·
√

2
2

i− 2 ·
√

2
2
·
√

2
2

j + 2 · 1 · (√2)2 k = i− j + 4k and
r0

4

 =
√

1 + 1 + 16 =
√

18 = 3
√

2. Thus

T


4


=

r0


4

r0
4

 =
1

3
√

2
(i− j + 4k) =

1

3
√

2
i− 1

3
√

2
j +

4

3
√

2
k.

21. r() =

 2 3

 ⇒ r0() =

1 2 32


. Then r0(1) = h1 2 3i and |r0(1)| = √

12 + 22 + 32 =
√

14, so

T(1) =
r0(1)
|r0(1)| = 1√

14
h1 2 3i =


1√
14
 2√

14
 3√

14


. r00() = h0 2 6i, so

r0()× r00() =


i j k

1 2 32

0 2 6

 =

 2 32

2 6

 i −
 1 32

0 6

 j +

 1 2

0 2

k
= (122 − 62) i− (6− 0) j + (2− 0)k =


62−6 2


22. r() =


2 −2 2

 ⇒ r0() =

22−2−2 (2 + 1)2

 ⇒ r0(0) =

20−20 (0 + 1)0


= h2−2 1i

and |r0(0)| =


22 + (−2)2 + 12 = 3. Then T(0) =
r0 (0)
|r0 (0)| = 1

3
h2−2 1i =


2
3
− 2

3
 1

3


.

r00() =

42 4−2 (4 + 4)2

 ⇒ r00(0) =

40 40 (0 + 4)0


= h4 4 4i.

r0() · r00() =

22−2−2 (2 + 1)2

 · 42 4−2 (4+ 4)2


= (22)(42) + (−2−2)(4−2) + ((2 + 1)2)((4+ 4)2)

= 84 − 8−4 + (82 + 12 + 4)4 = (82 + 12 + 12)4 − 8−4
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SECTION 13.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS ¤ 329

23. The vector equation for the curve is r() =

2 + 1 4

√
 

2−

, so r0() =


2 2

√
 (2− 1)

2−

. The point (2 4 1)

corresponds to  = 1, so the tangent vector there is r0(1) = h2 2 1i. Thus, the tangent line goes through the point (2 4 1)
and is parallel to the vector h2 2 1i. Parametric equations are  = 2 + 2,  = 4 + 2,  = 1 + .

24. The vector equation for the curve is r() =

ln(+ 1)  cos 2 2


, so r0() =


1( + 1) cos 2− 2 sin 2 2 ln 2


. The

point (0 0 1) corresponds to  = 0, so the tangent vector there is r0(0) = h1 1 ln 2i. Thus, the tangent line goes through the

point (0 0 1) and is parallel to the vector h1 1 ln 2i. Parametric equations are  = 0 + 1 ·  = ,  = 0 + 1 ·  = ,

 = 1 + (ln 2).

25. The vector equation for the curve is r() =

− cos  − sin  −


, so

r0() =

−(− sin ) + (cos )(−−), − cos  + (sin )(−−), (−−)

=
−−(cos + sin ) −(cos − sin )−−

The point (1 0 1) corresponds to  = 0, so the tangent vector there is

r0(0) =
−0(cos 0 + sin 0) 0(cos 0− sin 0)−0 = h−1 1−1i. Thus, the tangent line is parallel to the vector

h−1 1−1i and parametric equations are  = 1 + (−1) = 1− ,  = 0 + 1 ·  = ,  = 1 + (−1) = 1− .

26. The vector equation for the curve is r() =
√

2 + 3 ln(2 + 3) 

, so r0() =



√
2 + 3 2(2 + 3) 1


. At (2 ln 4 1),

 = 1 and r0(1) =


1
2
 1

2
 1

. Thus, parametric equations of the tangent line are  = 2 + 1

2
,  = ln 4 + 1

2
,  = 1 + .

27. First we parametrize the curve  of intersection. The projection of  onto the -plane is contained in the circle

2 + 2 = 25,  = 0, so we can write  = 5 cos ,  = 5 sin .  also lies on the cylinder 2 + 2 = 20, and  ≥ 0

near the point (3 4 2), so we can write  =


20− 2 =


20− 25 sin2 . A vector equation then for  is

r() =

5 cos  5 sin 


20− 25 sin2 


⇒ r0() =


−5 sin  5 cos  1

2
(20− 25 sin2 )−12(−50 sin  cos )


.

The point (3 4 2) corresponds to  = cos−1


3
5


, so the tangent vector there is

r0

cos−1


3
5


=


−5


4
5


 5


3
5


 1

2


20− 25


4
5

2−12 −50


4
5


3
5


= h−4 3−6i.

The tangent line is parallel to this vector and passes through (3 4 2), so a vector equation for the line

is r() = (3− 4)i + (4 + 3)j + (2− 6)k.

28. r() =

2 cos  2 sin  

 ⇒ r0() =
−2 sin  2 cos  


. The tangent line to the curve is parallel to the plane when the

curve’s tangent vector is orthogonal to the plane’s normal vector. Thus we require
−2 sin  2 cos  

 · √3 1 0


= 0 ⇒

−2
√

3 sin  + 2cos  + 0 = 0 ⇒ tan  = 1√
3
⇒  = 

6
[since 0 ≤  ≤ ].

r


6


=
√

3 1 6

, so the point is (

√
3 1 6).
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330 ¤ CHAPTER 13 VECTOR FUNCTIONS

29. r() =

 − 2− 2

 ⇒ r0() =

1−− 2− 2


. At (0 1 0),

 = 0 and r0(0) = h1−1 2i. Thus, parametric equations of the tangent
line are  = ,  = 1− ,  = 2.

30. r() = h2 cos  2 sin  4 cos 2i,

r0() = h−2 sin  2 cos −8 sin 2i. At √3 1 2

,  = 

6
and

r0(
6
) =

−1
√

3−4
√

3

. Thus, parametric equations of the

tangent line are  =
√

3− ,  = 1 +
√

3 ,  = 2− 4
√

3 .

31. r() = h cos    sin i ⇒ r0() = hcos −  sin  1  cos  + sin i.

At (−  0),  =  and r0() = h−1 1−i. Thus, parametric equations
of the tangent line are  = − − ,  =  + ,  = −.

32. (a) The tangent line at  = 0 is the line through the point with position vector r(0) = hsin 0 2 sin 0 cos 0i = h0 0 1i, and in

the direction of the tangent vector, r0(0) = h cos 0 2 cos 0− sin 0i = h 2 0i. So an equation of the line is

h  i = r(0) +  r0(0) = h0 +  0 + 2 1i = h 2 1i.

r


1
2


=

sin 

2
 2 sin 

2
 cos 

2


= h1 2 0i ,

r0


1
2


=

 cos 

2
 2 cos 

2
− sin 

2


= h0 0−i .

So the equation of the second line is

h  i = h1 2 0i+  h0 0−i = h1 2−i.

The lines intersect where h 2 1i = h1 2−i,
so the point of intersection is (1 2 1).

(b)

33. The angle of intersection of the two curves is the angle between the two tangent vectors to the curves at the point of

intersection. Since r01() =

1 2 32


and  = 0 at (0 0 0), r01(0) = h1 0 0i is a tangent vector to r1 at (0 0 0). Similarly,
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SECTION 13.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS ¤ 331

r02() = hcos  2 cos 2 1i and since r2(0) = h0 0 0i, r02 (0) = h1 2 1i is a tangent vector to r2 at (0 0 0). If  is the angle

between these two tangent vectors, then cos  = 1√
1
√

6
h1 0 0i · h1 2 1i = 1√

6
and  = cos−1


1√
6


≈ 66◦.

34. To find the point of intersection, we must find the values of  and  which satisfy the following three equations simultaneously:

 = 3− , 1−  = − 2, 3 + 2 = 2. Solving the last two equations gives  = 1,  = 2 (check these in the first equation).

Thus the point of intersection is (1 0 4). To find the angle  of intersection, we proceed as in Exercise 33. The tangent

vectors to the respective curves at (1 0 4) are r01(1) = h1−1 2i and r02(2) = h−1 1 4i. So

cos  = 1√
6
√

18
(−1− 1 + 8) = 6

6
√

3
= 1√

3
and  = cos−1


1√
3


≈ 55◦.

Note: In Exercise 33, the curves intersect when the value of both parameters is zero. However, as seen in this exercise, it is not

necessary for the parameters to be of equal value at the point of intersection.

35.
 2

0
( i− 3 j + 35 k)  =

 2

0
 

i−

 2

0
3 


j +

 2

0
35 


k

=


1
2
2
2
0

i−  1
4
4
2
0

j +


1
2
6
2
0

k

= 1
2
(4− 0) i− 1

4
(16− 0) j + 1

2
(64− 0)k = 2 i− 4 j + 32k

36.

 4

1


2

32
i + ( + 1)

√
k

 =

 4

1
232 


i +

 4

1
(32 + 12) 


k

=


4
5
52

4
1

i +


2
5
52 + 2

3
32

4
1

k

= 4
5
(452 − 1) i +


2
5
(4)52 + 2

3
(4)32 − 2

5
− 2

3


k

= 4
5
(31) i +


2
5
(32) + 2

3
(8)− 2

5
− 2

3


k = 124

5
i + 256

15
k

37.

 1

0


1

+ 1
i +

1

2 + 1
j +



2 + 1
k


 =

 1

0

1

 + 1



i +

 1

0

1

2 + 1



j +

 1

0



2 + 1



k

= [ ln |+ 1| ]10 i +

tan−1 

1
0

j +


1
2

ln(2 + 1)
1
0

k

= (ln 2− ln 1) i + (
4
− 0) j + 1

2
(ln 2− ln 1)k = ln 2 i + 

4
j + 1

2
ln 2k

38.
 4
0

(sec  tan  i +  cos 2 j + sin2 2 cos 2k) 

=
 4

0
sec  tan  


i +

 4
0

 cos 2 

j +

 4
0

sin2 2 cos 2 

k

=

sec 

4
0

i +


1
2
 sin 2

4
0

−  4
0

1
2

sin 2 

j+


1
6

sin3 2
4
0

k

[For the -component, integrate by parts with  = ,  = cos 2 .]

= (sec 
4
− sec 0) i +



8

sin 
2
− 0− − 1

4
cos 2

4
0


j + 1

6


sin3 

2
− sin3 0


k

= (
√

2− 1) i +


8

+ 1
4

cos 
2
− 1

4
cos 0


j + 1

6
(1− 0)k = (

√
2− 1) i +



8
− 1

4


j + 1

6
k

39.

(sec2  i + (2 + 1)3 j + 2 ln k) =


sec2  


i +


(2 + 1)3 


j +


2 ln  


k

= tan  i + 1
8
(2 + 1)4 j +


1
3
3 ln − 1

9
3

k + C,

where C is a vector constant of integration. [For the -component, integrate by parts with  = ln ,  = 2 .]
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332 ¤ CHAPTER 13 VECTOR FUNCTIONS

40.
 


2

i +


1− 
j +

1√
1− 2

k


=




2



i +




1− 



j +


1√

1− 2



k

=


1
2
2 −  1

2
2 


i +

 
−1 +

1

1− 





j +


1√

1− 2



k

=


1
2
2 − 1

4
2

i + (−− ln | 1−  |) j + sin−1 k + C

41. r0() = 2 i + 32 j +
√
k ⇒ r() = 2 i + 3 j + 2

3
32 k + C, where C is a constant vector.

But i + j = r (1) = i + j + 2
3
k + C. Thus C = − 2

3
k and r() = 2 i + 3 j +


2
3
32 − 2

3


k.

42. r0() =  i +  j +  k ⇒ r() = 1
2
2 i +  j +


 − 


k + C. But i + j + k = r (0) = j− k + C.

ThusC = i + 2k and r() =


1
2
2 + 1


i +  j + ( −  + 2)k.

For Exercises 43–46, let u() = h1() 2() 3()i and v() = h1() 2() 3()i. In each of these exercises, the procedure is to apply

Theorem 2 so that the corresponding properties of derivatives of real-valued functions can be used.

43.



[u() + v()] =




h1() + 1() 2() + 2() 3() + 3()i

=





[1() + 1 ()] 




[2() + 2()] 




[3() + 3()]


= h01() + 01() 

0
2() + 02() 

0
3() + 03()i

= h01() 02 ()  03()i+ h01() 02() 03()i = u0() + v0()

44.



[()u()] =




h()1() ()2() ()3()i

=





[()1()] 




[()2()] 




[()3()]


= h 0()1() + ()01() 

0()2() + ()02() 
0()3() + ()03()i

=  0() h1() 2() 3()i+ () h01() 02() 03()i =  0()u() + ()u0()

45.



[u()× v()] =




h2()3()− 3()2() 3()1()− 1()3() 1()2()− 2()1()i

= h023() + 2()
0
3()− 03()2()− 3()

0
2()

03()1() + 3()
0
1 ()− 01()3()− 1()

0
3()

01()2() + 1()
0
2()− 02()1()− 2()

0
1()i

= h02()3()− 03()2 ()  03()1()− 01()3() 
0
1()2()− 02()1()i

+ h2()
0
3()− 3()

0
2() 3()

0
1 ()− 1()

0
3() 1()

0
2()− 2()

0
1()i

= u0()× v() + u()× v0()

Alternate solution: Let r() = u()× v(). Then

r(+ )− r() = [u( + )× v(+ )]− [u()× v()]

= [u( + )× v(+ )]− [u()× v()] + [u(+ )× v()]− [u(+ )× v()]

= u( + )× [v(+ )− v()] + [u(+ )− u()]× v()
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SECTION 13.2 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS ¤ 333

(Be careful of the order of the cross product.) Dividing through by  and taking the limit as → 0 we have

r0() = lim
→0

u( + )× [v( + )− v()]


+ lim

→0

[u( + )− u()]× v()


= u()× v0() + u0()× v()

by Exercise 13.1.53(a) and Definition 1.

46.



[u(())] =




h1(()) 2(()) 3(())i =





[1(())] 




[2(())] 




[3(())]


= h 0()01(())  0()02(())  0()03(())i =  0()u0()

47.



[u() · v()] = u0() · v() + u() · v0() [by Formula 4 of Theorem 3]

= hcos − sin  1i · h cos  sin i+ hsin  cos  i · h1− sin  cos i
=  cos − cos  sin + sin  + sin − cos  sin +  cos 

= 2 cos  + 2 sin − 2 cos  sin 

48.



[u()× v()] = u0()× v() + u()× v0() [by Formula 5 of Theorem 3]

= hcos − sin  1i × h cos  sin i+ hsin  cos  i × h1− sin  cos i
=
− sin2 − cos  − cos  sin  cos2 +  sin 


+

cos2  +  sin  − cos  sin − sin2 − cos 


=

cos2 − sin2 − cos  +  sin  2− 2 cos  sin  cos2 − sin2 − cos  +  sin 


49. By Formula 4 of Theorem 3,  0() = u0() · v() + u() · v0(), and v0() =


1 2 32


, so

 0(2) = u0(2) · v(2) + u(2) · v0(2) = h3 0 4i · h2 4 8i+ h1 2−1i · h1 4 12i = 6 + 0 + 32 + 1 + 8− 12 = 35.

50. By Formula 5 of Theorem 3, r0() = u0()× v() + u()× v0(), so

r0(2) = u0(2)× v(2) + u(2)× v0(2) = h3 0 4i × h2 4 8i+ h1 2−1i × h1 4 12i

= h−16−16 12i+ h28−13 2i = h12−29 14i

51. r() = a cos + b sin ⇒ r0() = −a sin+ b cos by Formulas 1 and 3 of Theorem 3. Then

r()× r0() = (a cos+ b sin)× (−a sin + b cos)

= (a cos+ b sin)× (−a sin) + (a cos + b sin)× (b cos)

[by Property 3 of Theorem 12.4.11]

= a cos× (−a sin) + b sin× (−a sin) + a cos× b cos + b sin× b cos

[by Property 4]

= (cos) (− sin) (a× a) + (sin) (− sin) (b× a) + (cos) ( cos) (a× b)

+ (sin) ( cos) (b× b) [by Property 2]

= 0 +

 sin2 


(a× b) +


 cos2 


(a× b) + 0 [by Property 1 and Example 12.4.2]

= 

sin2  + cos2 


(a× b) =  (a× b) =  a× b [by Property 2]
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334 ¤ CHAPTER 13 VECTOR FUNCTIONS

52. From Exercise 51, r0() = −a sin + b cos ⇒ r00() = −a2 cos− b2 sin. Then

r00() + 2r() =
−a2 cos− b2 sin


+ 2 (a cos + b sin)

= −a2 cos− b2 sin + a2 cos + b2 sin = 0

53.



[r()× r0()] = r0()× r0() + r()× r00() by Formula 5 of Theorem 3. But r0()× r0() = 0 (by Example 12.4.2).

Thus,



[r()× r0()] = r()× r00().

54.



(u() · [v ()×w()])= u0() · [v()×w()] + u() · 


[v()×w ()]

= u0() · [v()×w()] + u() · [v0()×w() + v()×w0()]

= u0() · [v()×w()] + u() · [v0()×w()] + u() · [v()×w0()]

= u0() · [v()×w()]− v0() · [u()×w()] + w0() · [u()× v()]

55.



|r()| = 


[r() · r()]12 = 1

2
[r() · r()]−12

[2r() · r0()] =
1

|r()| r() · r
0()

56. Since r() · r0() = 0, we have 0 = 2r() · r0() =



[r() · r()] =




|r()|2. Thus |r()|2, and so |r()|, is a constant,

and hence the curve lies on a sphere with center the origin.

57. Since u() = r() · [r0()× r00()],

u0() = r0() · [r0()× r00()] + r() · 


[r0()× r00()]

= 0 + r() · [r00()× r00() + r0()× r000()] [since r0() ⊥ r0()× r00()]

= r() · [r0()× r000()] [since r00()× r00() = 0]

58. The tangent vector r0() is defined as lim
→0

r( + )− r()


. Here we assume that this limit exists and r0() 6= 0; then we know

that this vector lies on the tangent line to the curve. As in Figure 1, let points  and have position vectors r() and r(+ ).

The vector r( + )− r() points from  to, so r( + )− r() =
−−→
. If   0 then    + , so lies “ahead”

of  on the curve. If  is sufficiently small (we can take  to be as small as we like since → 0) then
−−→
 approximates

the curve from  to  and hence points approximately in the direction of the curve as  increases. Since  is positive,

1



−−→
 =

r( + )− r()


points in the same direction. If   0, then    +  so lies “behind”  on the curve. For 

sufficiently small,
−−→
 approximates the curve but points in the direction of decreasing . However,  is negative, so

1



−−→
 =

r( + )− r()


points in the opposite direction, that is, in the direction of increasing . In both cases, the difference

quotient
r(+ )− r()


points in the direction of increasing . The tangent vector r0() is the limit of this difference quotient,

so it must also point in the direction of increasing .
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SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 335

13.3 Arc Length and Curvature

1. r() = h 3 cos  3 sin i ⇒ r0() = h1−3 sin  3 cos i ⇒

|r0()| =


12 + (−3 sin )2 + (3 cos )2 =


1 + 9(sin2  + cos2 ) =
√

10.

Then using Formula 3, we have  =
 5

−5
|r0()|  =

 5

−5

√
10  =

√
10 

5
−5

= 10
√

10.

2. r() =

2 2 1

3
3
 ⇒ r0() =


2 2 2

 ⇒

|r0()| =


22 + (2)2 + (2)2 =
√

4 + 42 + 4 =


(2 + 2)2 = 2 + 2 for 0 ≤  ≤ 1. Then using Formula 3, we have

 =
 1

0
|r0()|  =

 1

0
(2 + 2)  = 2+ 1

3
3
1
0

= 7
3
.

3. r() =
√

2  i + j + −k ⇒ r0() =
√

2 i + j− −k ⇒

|r0()| =
√

2
2

+ ()2 + (−−)2 =
√

2 + 2 + −2 =


( + −)2 =  + − [since  + −  0].

Then  =
 1

0
|r0()|  =

 1

0
( + −)  =


 − −

1
0

= − −1.

4. r() = cos  i + sin  j + ln cos k ⇒ r0() = − sin  i + cos  j +
− sin 

cos 
k = − sin  i + cos  j− tan k,

|r0()| =


(− sin )2 + cos2  + (− tan )2 =
√

1 + tan2  =
√

sec2  = |sec |. Since sec   0 for 0 ≤  ≤ 4, here we

can say |r0()| = sec . Then

=
 4
0

sec   =

ln |sec  + tan |

4
0

= ln
sec 

4
+ tan 

4

− ln |sec 0 + tan 0|

= ln
√2 + 1

− ln |1 + 0| = ln(
√

2 + 1)

5. r() = i + 2 j + 3 k ⇒ r0() = 2 j + 32 k ⇒ |r0()| = √
42 + 94 = 

√
4 + 92 [since  ≥ 0].

Then  =
 1

0
|r0()|  =

 1

0

√

4 + 92  = 1
18
· 2

3
(4 + 92)32

1
0

= 1
27

(1332 − 432) = 1
27

(1332 − 8).

6. r() = 2 i + 9 j + 432 k ⇒ r0() = 2 i + 9 j + 6
√
k ⇒

|r0()| = √
42 + 81 + 36 =


(2 + 9)2 = |2+ 9| = 2 + 9 [since 2 + 9 ≥ 0 for 1 ≤  ≤ 4]. Then

 =
 4

1
|r0()|  =

 4

1
(2 + 9)  =


2 + 9

4
1

= 52− 10 = 42.

7. r() =

2 3 4

 ⇒ r0() =

2 32 43

 ⇒ |r0()| =


(2)
2
+ (32)2 + (43)2 =

√
42 + 94 + 166, so

 =
 2

0
|r0()|  =

 2

0

√
42 + 94 + 166  ≈ 186833.

8. r() =

 − −

 ⇒ r0() =

1−− (1− )−

 ⇒

|r0()| =


12 + (−−)2 + [(1− )−]2 =


1 + −2 + (1− )2−2 =


1 + (2− 2 + 2)−2, so

 =
 3

1
|r0()|  =

 3

1


1 + (2 + 2+ 2)−2  ≈ 20454.
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336 ¤ CHAPTER 13 VECTOR FUNCTIONS

9. r() = hcos 2 sin 2i ⇒ r0() = h− sin 2 2 cos 2i ⇒ |r0()| =

2 sin2  + 4 + 42 cos2 2.

The point (1 0 0) corresponds to  = 0 and (1 4 0) corresponds to  = 2, so the length is

 =
 2

0
|r0()|  =

 2

0


2 sin2  + 4 + 42 cos2 2  ≈ 103311.

10. We plot two different views of the curve with parametric equations  = sin ,  = sin 2,  = sin 3. To help visualize the

curve, we also include a plot showing a tube of radius 007 around the curve.

The complete curve is given by the parameter interval [0 2] and we have r0() = hcos  2 cos 2 3 cos 3i ⇒

|r0()| = √cos2  + 4 cos2 2 + 9 cos2 3, so  =
 2

0
|r0()|  =

 2

0

√
cos2  + 4 cos2 2 + 9 cos2 3  ≈ 160264.

11. The projection of the curve  onto the -plane is the curve 2 = 2 or  = 1
2
2,  = 0. Then we can choose the parameter

 =  ⇒  = 1
2
2. Since  also lies on the surface 3 = , we have  = 1

3
 = 1

3
()( 1

2
2) = 1

6
3. Then parametric

equations for  are  = ,  = 1
2
2,  = 1

6
3 and the corresponding vector equation is r() =


 1

2
2 1

6
3

. The origin

corresponds to  = 0 and the point (6 18 36) corresponds to  = 6, so

=
 6

0
|r0()|  =

 6

0

1  1
2
2
  =

 6

0


12 + 2 +


1
2
2
2
 =

 6

0


1 + 2 + 1

4
4 

=
 6

0


(1 + 1

2
2)2  =

 6

0
(1 + 1

2
2)  =


 + 1

6
3
6
0

= 6 + 36 = 42

12. Let  be the curve of intersection. The projection of  onto the -plane is the ellipse 42 + 2 = 4 or 2 + 24 = 1,

 = 0. Then we can write  = cos ,  = 2 sin , 0 ≤  ≤ 2. Since  also lies on the plane +  +  = 2, we have

 = 2− −  = 2− cos − 2 sin . Then parametric equations for  are  = cos ,  = 2 sin ,  = 2− cos − 2 sin ,

0 ≤  ≤ 2, and the corresponding vector equation is r() = hcos  2 sin  2− cos − 2 sin i. Differentiating gives

r0() = h− sin  2 cos  sin − 2 cos i ⇒

|r0()| =


(− sin )2 + (2 cos )2 + (sin − 2 cos )2 =


2 sin2  + 8 cos2 − 4 sin  cos . The length of  is

 =
 2

0
|r0()|  =

 2

0


2 sin2  + 8 cos2 − 4 sin  cos   ≈ 135191.

13. (a) r() = (5− ) i + (4− 3) j + 3k ⇒ r0() = −i + 4 j + 3k and 


= |r0()| = √1 + 16 + 9 =
√

26. The point

 (4 1 3) corresponds to  = 1, so the arc length function from  is
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SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 337

() =
 
1
|r0()|  =

 
1

√
26  =

√
26


1

=
√

26 (− 1). Since  =
√

26 (− 1), we have  =
√
26

+ 1.

Substituting for  in the original equation, the reparametrization of the curve with respect to arc length is

r(()) =


5−


√
26

+ 1


i +


4


√
26

+ 1


− 3


j + 3


√
26

+ 1


k

=


4− √

26


i +


4√
26

+ 1


j +


3√
26

+ 3


k

(b) The point 4 units along the curve from  has position vector

r((4)) =


4− 4√

26


i +


4(4)√

26
+ 1


j +


3(4)√

26
+ 3


k, so the point is


4− 4√

26


16√
26

+ 1
12√
26

+ 3


.

14. (a) r() =  sin  i +  cos  j +
√

2  k ⇒ r0() =  (cos + sin ) i +  (cos − sin ) j +
√

2  k and




= |r0()| =


2(cos + sin )2 + 2(cos − sin )2 + 22

=

2

2(cos2  + sin2 ) + 2 cos  sin − 2 cos  sin + 2


=
√

42 = 2

The point 

0 1

√
2

corresponds to  = 0, so the arc length function from  is

() =
 
0
|r0()|  =

 
0

2  = 2|0 = 2( − 1). Since  = 2( − 1), we have  =


2
+ 1 ⇔

 = ln


1
2
+ 1


. Substituting for  in the original equation, the reparametrization of the curve with respect to arc length is

r(()) =


1
2
+ 1


sin

ln


1
2
+ 1


i +


1
2
+ 1


cos

ln


1
2
+ 1


j +

√
2

2
+

√
2

k.

(b) The point 4 units along the curve from  has position vector

r((4)) =


1
2
(4) + 1


sin

ln


1
2
(4) + 1


i +


1
2
(4) + 1


cos

ln


1
2
(4) + 1


j +

√
2

2
(4) +

√
2

k, so the point is


3 sin(ln 3) 3 cos(ln 3) 3

√
2

.

15. Here r() = h3 sin  4 3 cos i, so r0() = h3 cos  4−3 sin i and |r0()| =


9 cos2  + 16 + 9 sin2  =
√

25 = 5.

The point (0 0 3) corresponds to  = 0, so the arc length function beginning at (0 0 3) and measuring in the positive

direction is given by () =
 
0
|r0()|  =

 
0

5  = 5. () = 5 ⇒ 5 = 5 ⇒  = 1, thus your location after

moving 5 units along the curve is (3 sin 1 4 3 cos 1).

16. r() =


2

2 + 1
− 1


i +

2

2 + 1
j ⇒ r0() =

−4

(2 + 1)2
i +

−22 + 2

(2 + 1)2
j,




= |r0()| =

 −4

(2 + 1)2

2
+

−22 + 2

(2 + 1)2

2
=


44 + 82 + 4

(2 + 1)4
=


4(2 + 1)2

(2 + 1)4
=


4

(2 + 1)2
=

2

2 + 1
.

Since the initial point (1 0) corresponds to  = 0, the arc length function is

() =

 

0

r0()
  =

 

0

2

2 + 1
 = 2arctan . Then arctan  = 1

2
 ⇒  = tan 1

2
. Substituting, we have
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338 ¤ CHAPTER 13 VECTOR FUNCTIONS

r(()) =


2

tan2


1
2



+ 1
− 1


i +

2 tan


1
2



tan2


1
2



+ 1
j =

1− tan2


1
2



1 + tan2


1
2

 i +

2 tan


1
2



sec2


1
2

 j

=
1− tan2


1
2



sec2


1
2

 i + 2 tan


1
2


cos2


1
2


j =


cos2


1
2

− sin2


1
2



i + 2 sin


1
2


cos


1
2


j = cos  i + sin  j

With this parametrization, we recognize the function as representing the unit circle. Note here that the curve approaches, but

does not include, the point (−1 0), since cos  = −1 for  =  + 2 ( an integer) but then  = tan


1
2


is undefined.

17. (a) r() = h 3 cos  3 sin i ⇒ r0() = h1−3 sin  3 cos i ⇒ |r0()| =


1 + 9 sin2 + 9cos2  =
√

10.

Then T() =
r0()
|r0()| = 1√

10
h1−3 sin  3 cos i or


1√
10
− 3√

10
sin  3√

10
cos 


.

T0() = 1√
10
h0−3 cos −3 sin i ⇒ |T0()| = 1√

10


0 + 9 cos2  + 9 sin2  = 3√

10
. Thus

N() =
T0()
|T0()| =

1
√

10

3
√

10
h0−3 cos −3 sin i = h0− cos − sin i.

(b) () =
|T0()|
|r0()| =

3
√

10√
10

=
3

10

18. (a) r() =

2 sin −  cos  cos  +  sin 

 ⇒

r0() = h2 cos  +  sin − cos , −sin +  cos  + sin i = h2  sin   cos i ⇒

|r0()| =


42 + 2 sin2 + 2 cos2  =


42 + 2(cos2  + sin2 ) =
√

52 =
√

5  [since   0]. Then

T() =
r0()
|r0()| =

1√
5 

h2  sin   cos i = 1√
5
h2 sin  cos i. T0() = 1√

5
h0 cos − sin i ⇒

|T0 ()| = 1√
5


0 + cos2 + sin2  = 1√

5
. Thus N() =

T0()
|T0()| =

1
√

5

1
√

5
h0 cos − sin i = h0 cos − sin i.

(b) () =
|T0()|
|r0()| =

1
√

5√
5 

=
1

5

19. (a) r() =
√

2   −
 ⇒ r0() =

√
2 −− ⇒ |r0()| = √2 + 2 + −2 =


( + −)2 =  + −.

Then

T() =
r0()
|r0()| =

1

 + −
√

2 −− =
1

2 + 1

√
2  2−1

 
after multiplying by






and

T0() =
1

2 + 1

√
2  22 0

− 22

(2 + 1)
2

√
2  2−1


=

1

(2 + 1)2


(2 + 1)

√
2  22 0

− 22
√

2  2−1


=
1

(2 + 1)2

√
2 


1− 2


 22 22


Then

|T0()|= 1

(2 + 1)2


22(1− 22 + 4) + 44 + 44 =

1

(2 + 1)
2


22(1 + 22 + 4)

=
1

(2 + 1)2


22 (1 + 2)

2
=

√
2 (1 + 2)

(2 + 1)2
=

√
2 

2 + 1
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SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 339

Therefore

N() =
T0()
|T0()| =

2 + 1√
2 

1

(2 + 1)2

√
2 (1− 2) 22 22


=

1√
2 (2 + 1)

√
2 (1− 2) 22 22


=

1

2 + 1


1− 2

√
2 

√
2 


(b) () =
|T0()|
|r0()| =

√
2 

2 + 1
· 1

 + −
=

√
2 

3 + 2 + −
=

√
2 2

4 + 22 + 1
=

√
2 2

(2 + 1)2

20. (a) r() =

 1

2
2 2

 ⇒ r0() = h1  2i ⇒ |r0()| =
√

1 + 2 + 42 =
√

1 + 52. Then

T() =
r0()
|r0()| =

1√
1 + 52

h1  2i.

T0() =
−5

(1 + 52)32
h1  2i+

1√
1 + 52

h0 1 2i [by Formula 3 of Theorem 13.2.3]

=
1

(1 + 52)32

−5−52−102


+

0 1 + 52 2 + 102


=

1

(1 + 52)32
h−5 1 2i

|T0()| = 1

(1 + 52)32

√
252 + 1 + 4 =

1

(1 + 52)32

√
252 + 5 =

√
5
√

52 + 1

(1 + 52)32
=

√
5

1 + 52

Thus N() =
T0()
|T0()| =

1 + 52√
5

· 1

(1 + 52)32
h−5 1 2i =

1√
5 + 252

h−5 1 2i.

(b) () =
|T0()|
|r0()| =

√
5(1 + 52)√

1 + 52
=

√
5

(1 + 52)32

21. r() = 3 j + 2 k ⇒ r0() = 32 j + 2k, r00() = 6 j + 2k, |r0()| =


02 + (32)2 + (2)2 =
√

94 + 42,

r0()× r00() = −62 i, |r0()× r00()| = 62. Then () =
|r0()× r00()|

|r0()|3 =
62√

94 + 42
3 =

62

(94 + 42)32
.

22. r() =  i + 2 j +  k ⇒ r0() = i + 2 j +  k, r00() = 2 j +  k,

|r0()| =


12 + (2)2 + ()2 =
√

1 + 42 + 2, r0()× r00() = (2− 2) i −  j + 2k,

|r0()× r00()| =


[(2− 2)]2 + (−)2 + 22 =


(2− 2)22 + 2 + 4 =


(42 − 8 + 5)2 + 4.

Then () =
|r0()× r00()|

|r0()|3 =


(42 − 8 + 5)2 + 4√

1 + 42 + 2
3 =


(42 − 8 + 5)2 + 4

(1 + 42 + 2 )
32

.

23. r() =
√

6 2 i + 2 j + 23 k ⇒ r0() = 2
√

6  i + 2 j + 62 k, r00() = 2
√

6 i + 12k,

|r0()| =
√

242 + 4 + 364 =


4(94 + 62 + 1) =


4(32 + 1)2 = 2(32 + 1),

r0() × r00() = 24 i − 12
√

6 2 j − 4
√

6k,

|r0()× r00()| = √5762 + 8644 + 96 =


96(94 + 62 + 1) =


96(32 + 1)2 = 4
√

6 (32 + 1).

Then () =
|r0()× r00()|

|r0()|3 =
4
√

6 (32 + 1)

8(32 + 1)3
=

√
6

2(32 + 1)2
.
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340 ¤ CHAPTER 13 VECTOR FUNCTIONS

24. r() =

2 ln   ln 

 ⇒ r0() = h2 1 1 + ln i, r00() =

2−12 1


. The point (1 0 0) corresponds

to  = 1, and r0(1) = h2 1 1i, |r0(1)| = √
22 + 12 + 12 =

√
6, r00(1) = h2−1 1i, r0(1)× r00(1) = h2 0−4i,

|r0(1)× r00(1)| =


22 + 02 + (−4)2 =
√

20 = 2
√

5. Then (1) =
|r0(1)× r00(1)|

|r0(1)|3 =
2
√

5√
6
3 =

2
√

5

6
√

6
or

√
30

18
.

25. r() =

 2 3

 ⇒ r0() =

1 2 32


. The point (1 1 1) corresponds to  = 1, and r0(1) = h1 2 3i ⇒

|r0(1)| = √
1 + 4 + 9 =

√
14. r00() = h0 2 6i ⇒ r00(1) = h0 2 6i. r0(1)× r00(1) = h6−6 2i, so

|r0(1)× r00(1)| = √36 + 36 + 4 =
√

76. Then (1) =
|r0(1)× r00(1)|

|r0(1)|3 =

√
76√
14

3
=

1

7


19

14
.

26. Note that we get the complete curve for 0 ≤   2.

r() = hcos  sin  sin 5i ⇒ r0() = h− sin  cos  5 cos 5i,

r00() = h− cos − sin −25 sin 5i. The point (1 0 0)

corresponds to  = 0, and r0(0) = h0 1 5i ⇒

|r0(0)| = √02 + 12 + 52 =
√

26, r00(0) = h−1 0 0i,

r0(0)× r00(0) = h0−5 1i ⇒

|r0(0)× r00(0)| =


02 + (−5)2 + 12 =
√

26. The curvature at

the point (1 0 0) is (0) =
|r0(0)× r00(0)|

|r0(0)|3 =

√
26√
26
3 =

1

26
.

27. () = 4,  0() = 43,  00() = 122, () =
| 00()|

[1 + ( 0())2]32
=

122


[1 + (43)2]32
=

122

(1 + 166)32

28. () = tan,  0() = sec2 ,  00() = 2 sec · sec tan = 2 sec2  tan,

() =
| 00()|

[1 + ( 0())2]32
=

2 sec2  tan


[1 + (sec2 )2]32
=

2 sec2  |tan|
(1 + sec4 )32

29. () = ,  0() =  + ,  00() =  + 2,

() =
| 00()|

[1 + ( 0())2]32
=

| + 2|
[1 + ( + )2]32

=
|+ 2| 

[1 + ( + )2]32

30. 0 =
1


, 00 = − 1

2
,

() =
|00()|

1 + (0())
2
32 =

−1

2

 1

(1 + 12)32
=

1

2

(2)32

(2 + 1)32
=

||
(2 + 1)32

=


(2 + 1)32
[since   0].

To find the maximum curvature, we first find the critical numbers of ():

0() =
(2 + 1)32 − 


3
2


(2 + 1)12(2)

[(2 + 1)32]
2

=
(2 + 1)12[(2 + 1)− 32]

(2 + 1)3
=

1− 22

(2 + 1)52
;

0() = 0 ⇒ 1− 22 = 0, so the only critical number in the domain is  = 1√
2
. Since 0()  0 for 0    1√

2
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SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 341

and 0()  0 for   1√
2
, () attains its maximum at  = 1√

2
. Thus, the maximum curvature occurs at


1√
2
 ln 1√

2


.

Since lim
→∞



(2 + 1)32
= 0, () approaches 0 as →∞.

31. Since 0 = 00 = , the curvature is () =
|00()|

[1 + (0())2]
32

=


(1 + 2)32
= (1 + 2)−32.

To find the maximum curvature, we first find the critical numbers of ():

0() = (1 + 2)−32 + 
−3

2


(1 + 2)−52(22) = 

1 + 2 − 32

(1 + 2)52
= 

1− 22

(1 + 2)52
.

0() = 0 when 1− 22 = 0, so 2 = 1
2
or  = − 1

2
ln 2. And since 1− 22  0 for   − 1

2
ln 2 and 1− 22  0

for   − 1
2

ln 2, the maximum curvature is attained at the point

− 1

2
ln 2 (− ln 2)2


=

− 1

2
ln 2 1√

2


.

Since lim
→∞

(1 + 2)−32 = 0 () approaches 0 as →∞.

32. We can take the parabola as having its vertex at the origin and opening upward, so the equation is () = 2   0. Then by

Equation 11, () =
| 00()|

[1 + ( 0())2]32
=

|2|
[1 + (2)2]32

=
2

(1 + 422)32
, thus (0) = 2. We want (0) = 4, so

 = 2 and the equation is  = 22.

33. (a)  appears to be changing direction more quickly at  than, so we would expect the curvature to be greater at  .

(b) First we sketch approximate osculating circles at  and. Using the

axes scale as a guide, we measure the radius of the osculating circle

at  to be approximately 08 units, thus  =
1


⇒

 =
1


≈ 1

08
≈ 13. Similarly, we estimate the radius of the

osculating circle at to be 14 units, so  =
1


≈ 1

14
≈ 07.

34.  = 4 − 22 ⇒ 0 = 43 − 4, 00 = 122 − 4, and

() =
|00|

1 + (0)2
32 =

122 − 4


1 + (43 − 4)
2
32 . The graph of the

curvature here is what we would expect. The graph of  = 4 − 22

appears to be bending most sharply at the origin and near  = ±1.

35.  = −2 ⇒ 0 = −2−3, 00 = 6−4, and

() =
|00|

1 + (0)2
32 =

6−4


1 + (−2−3)
2
32 =

6

4 (1 + 4−6)
32

.

The appearance of the two humps in this graph is perhaps a little surprising, but it is

explained by the fact that  = −2 increases asymptotically at the origin from both

directions, and so its graph has very little bend there. [Note that (0) is undefined.]
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342 ¤ CHAPTER 13 VECTOR FUNCTIONS

36. r() = h− sin  1− cos  4 cos(2)i ⇒ r0() = h1− cos  sin −2 sin(2)i, r00() = hsin  cos − cos(2)i.

Using a CAS, r0()× r00() =
−2 sin3(2)− sin(2) sin  cos − 1


, |r0()× r00()| = √3− 4 cos  + cos 2 or

2
√

2 sin2(2), and |r0()| = 2
√

1− cos  or 2
√

2 |sin(2)|. (To compute cross products in Maple, use the

VectorCalculus or LinearAlgebra package and the CrossProduct(a,b) command. Here loading

the RealDomain package will give simpler results. In Mathematica, use Cross[a,b].)

Then () =
|r0()× r00()|

|r0()|3 =

√
3− 4 cos  + cos 2

8 (1− cos )
32

or
1

4
√

2− 2 cos 
or

1

8 |sin(2)| . We plot the space curve and its

curvature function for 0 ≤  ≤ 8 below.

The asymptotes in the graph of () correspond to the sharp cusps we see in the graph of r(). The space curve bends most

sharply as it approaches these cusps (mostly in the -direction) and bends most gradually between these, near its intersections

with the -plane, where  =  + 2 ( an integer). (The bending we see in the -direction on the curve near these points is

deceiving; most of the curvature occurs in the -direction.) The curvature graph has local minima at these values of .

37. r() =

 −

√
2
 ⇒ r0() =


( + 1)−−√2


, r00() =


(+ 2) − 0


. Then

r0()× r00() =
−√2−

√
2(+ 2) 2+ 3


, |r0()× r00()| =


2−2 + 2( + 2)22 + (2+ 3)2,

|r0()| =


( + 1)22 + −2 + 2, and () =
|r0()× r00()|

|r0()|3 =


2−2 + 2(+ 2)22 + (2+ 3)2

[(+ 1)22 + −2 + 2]
32

.

We plot the space curve and its curvature function for−5 ≤  ≤ 5 below.

From the graph of () we see that curvature is maximized for  = 0, so the curve bends most sharply at the point (0 1 0).

The curve bends more gradually as we move away from this point, becoming almost linear. This is reflected in the curvature

graph, where () becomes nearly 0 as || increases.
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SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 343

38. Notice that the curve  is highest for the same -values at which curve  is turning more sharply, and  is 0 or near 0 where  is

nearly straight. So,  must be the graph of  = (), and  is the graph of  = ().

39. Notice that the curve  has two inflection points at which the graph appears almost straight. We would expect the curvature to

be 0 or nearly 0 at these values, but the curve  isn’t near 0 there. Thus,  must be the graph of  = () rather than the graph

of curvature, and  is the graph of  = ().

40. (a) The complete curve is given by 0 ≤  ≤ 2. Curvature

appears to have a local (or absolute) maximum at 6

points. (Look at points where the curve appears to turn

more sharply.)

(b) Using a CAS, we find (after simplifying)

() =
3
√

2


(5 sin  + sin 5)2

(9 cos 6+ 2cos 4 + 11)32
. (To compute cross

products in Maple, use the VectorCalculus or

LinearAlgebra package and the

CrossProduct(a,b) command; in Mathematica, use

Cross[a,b].) The graph shows 6 local (or absolute)

maximum points for 0 ≤  ≤ 2, as observed in part (a).

41. Using a CAS, we find (after simplifying)

() =
6
√

4 cos2 − 12 cos  + 13

(17− 12 cos )32
. (To compute cross

products in Maple, use the VectorCalculus or

LinearAlgebra package and the CrossProduct(a,b)

command; in Mathematica, use Cross[a,b].) Curvature is

largest at integer multiples of 2.

42. Here r() = h()  ()i, r0() = h 0() 0()i, r00() = h 00() 00()i,

|r0()|3 =


( 0())2 + (0())2
3

= [( 0())2 + (0())2]32 = (̇2 + ̇2)32, and

|r0()× r00()| = |h0 0  0() 00()−  00() 0()i| = 
(̇̈ − ̈̇)2

12
= |̇̈ − ̇̈|. Thus () =

|̇̈ − ̇̈|
[̇2 + ̇2]32

.

43.  = 2 ⇒ ̇ = 2 ⇒ ̈ = 2,  = 3 ⇒ ̇ = 32 ⇒ ̈ = 6.

Then () =
|̇̈ − ̇̈|

[̇2 + ̇2]32
=

(2)(6)− (32)(2)


[(2)2 + (32)2]32
=

122 − 62


(42 + 94)32
=

62

(42 + 94)32
.
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344 ¤ CHAPTER 13 VECTOR FUNCTIONS

44.  =  cos ⇒ ̇ = − sin ⇒ ̈ = −2 cos,

 =  sin ⇒ ̇ =  cos ⇒ ̈ = −2 sin. Then

() =
|̇̈ − ̇̈|

[̇2 + ̇2]32
=

(− sin)(−2 sin)− ( cos)(−2 cos)


[(− sin)2 + ( cos)2]32

=

3 sin2 + 3 cos2 


(22 sin2 + 22 cos2 )32
=

3


(22 sin2 + 22 cos2 )32

45.  =  cos  ⇒ ̇ = (cos − sin ) ⇒ ̈ = (− sin − cos ) + (cos − sin ) = −2 sin ,

 =  sin  ⇒ ̇ = (cos + sin ) ⇒ ̈ = (− sin + cos ) + (cos  + sin ) = 2 cos . Then

() =
|̇̈ − ̇̈|

[̇2 + ̇2]32
=

(cos − sin )(2 cos )− (cos + sin )(−2 sin )


([(cos − sin )]2 + [(cos + sin )]2)
32

=

22(cos2 − sin  cos  + sin  cos + sin2 )


2(cos2 − 2 cos  sin + sin2  + cos2 + 2cos  sin + sin2 )
32 =

22(1)
[2(1 + 1)]

32
=

22

3(2)32
=

1√
2 

46. () = ,  0() = ,  00() = 2. Using Formula 11 we have

() =
| 00()|

[1 + ( 0())2]32
=

2
[1 + ()2]32

=
2

(1 + 22)32
so the curvature at  = 0 is

(0) =
2

(1 + 2)32
. To determine the maximum value for (0), let () =

2

(1 + 2)32
. Then

 0() =
2 · (1 + 2)32 − 2 · 3

2
(1 + 2)12(2)

[(1 + 2)32]2
=

(1 + 2)12

2(1 + 2)− 33


(1 + 2)3

=


2− 3


(1 + 2)52

. We have a critical

number when 2− 3 = 0 ⇒ (2− 2) = 0 ⇒  = 0 or  = ±√2.  0() is positive for   −√2, 0   
√

2

and negative elsewhere, so  achieves its maximum value when  =
√

2 or−√2. In either case, (0) =
2

332
, so the members

of the family with the largest value of (0) are () = 
√

2 and () = −
√

2.

47.

1 2

3
 1

corresponds to  = 1. T() =

r0()
|r0()| =


2 22 1


√

42 + 44 + 1
=


2 22 1


22 + 1

, so T(1) =


2
3
 2

3
 1

3


.

T0() = −4(22 + 1)−2

2 22 1


+ (22 + 1)−1 h2 4 0i [by Formula 3 of Theorem 13.2.3]

= (22 + 1)−2
−82 + 42 + 2−83 + 83 + 4−4


= 2(22 + 1)−2


1− 22 2−2


N() =

T0()
|T0()| =

2(22 + 1)−2

1− 22 2−2


2(22 + 1)−2


(1− 22)2 + (2)2 + (−2)2

=


1− 22 2−2


√

1− 42 + 44 + 82
=


1− 22 2−2


1 + 22

N(1) =
− 1

3
 2

3
− 2

3


and B(1) = T(1)×N(1) =

−4
9
− 2

9
− − 4

9
+ 1

9


 4

9
+ 2

9


=
− 2

3
 1

3
 2

3


.

48. (1 0 0) corresponds to  = 0. r() = hcos  sin  ln cos i, and in Exercise 4 we found that r0() = h− sin  cos − tan i

and |r0()| = |sec |. Here we can assume −
2
   

2
and then sec   0 ⇒ |r0()| = sec .
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SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 345

T() =
r0()
|r0()| =

h− sin  cos − tan i
sec 

=
− sin  cos  cos2 − sin 


and T(0) = h0 1 0i.

T0() = h−[(sin )(− sin ) + (cos )(cos )] 2(cos )(− sin )− cos i =

sin2 − cos2 −2 sin  cos − cos 


, so

N(0) =
T0(0)
|T0(0)| =

h−1 0−1i√
1 + 0 + 1

=
1√
2
h−1 0−1i =


− 1√

2
 0− 1√

2


.

Finally, B(0) = T(0)×N(0) = h0 1 0i ×

− 1√

2
 0− 1√

2


=

− 1√

2
 0 1√

2


.

49. r() = hsin 2− cos 2 4i ⇒ r0() = h2 cos 2 2 sin 2 4i. The point (0 1 2) corresponds to  = 2, and the

normal plane there has normal vector r0(2) = h−2 0 4i. An equation for the normal plane is

−2(− 0) + 0( − 1) + 4( − 2) = 0 or −2+ 4 = 8 or − 2 = −4.

T() =
r0()
|r0()| =

h2 cos 2 2 sin 2 4i
4 cos2 2 + 4 sin2 2 + 16

=
1

2
√

5
h2 cos 2 2 sin 2 4i =

1√
5
hcos 2 sin 2 2i ⇒

T0() = 1√
5
h−2 sin 2 2 cos 2 0i ⇒ |T0()| = 1√

5


4 sin2 2 + 4 cos2 2 = 2√

5
, and

N() =
T0()
|T0()| = h− sin 2 cos 2 0i. Then T(2) = 1√

5
h−1 0 2i, N(2) = h0−1 0i, and

B(2) = T(2)×N(2) = 1√
5
h2 0 1i. Since B(2) is normal to the osculating plane, so is h2 0 1i, and an

equation of the plane is 2(− 0) + 0( − 1) + 1( − 2) = 0 or 2+  = 2.

50. r() =

ln  2 2

 ⇒ r0() = h1 2 2i. The point (0 2 1) corresponds to  = 1, and the normal plane there has

normal vector r0(1) = h1 2 2i. An equation for the normal plane is 1(− 0) + 2( − 2) + 2( − 1) = 0 or

+ 2 + 2 = 6.

|r0()| =


12 + 4 + 42 =


[(1) + 2]2 = (1) + 2 [since   0] and then

T() =
r0()
|r0()| =

h1 2 2i
(1) + 2

=
1

1 + 22


1 2 22

 
after multiplying by






. By Formula 3 of Theorem 13.2.3,

T0() = − 4

(1 + 22)2


1 2 22


+

1

1 + 22
h0 2 4i

=
1

(1 + 22)2

−4−82 + 2(1 + 22)−83 + 4(1 + 22)


=
1

(1 + 22)2

−4 2− 42 4


Then

|T0()|= 1

(1 + 22)2


162 + (2− 42)2 + 162 =

1

(1 + 22)2

√
162 + 4 + 164

=
1

(1 + 22)2
· 2


(1 + 22)2 =
2

1 + 22

and N() =
T0()
|T0()| =

1

2(1 + 22)

−4 2− 42 4


=
1

1 + 22

−2 1− 22 2

.
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346 ¤ CHAPTER 13 VECTOR FUNCTIONS

ThusT(1) = 1
3
h1 2 2i, N(1) = 1

3
h−2−1 2i, andB(1) = T(1)×N(1) = 1

9
h6−6 3i is normal to the osculating plane.

We can take the parallel vector h2−2 1i as a normal vector for the plane, so an equation is

2(− 0)− 2( − 2) + 1( − 1) = 0 or 2− 2 +  = −3.

Note: Since r0(1) is parallel to T(1) and T0(1) is parallel to N(1), we could have taken r0(1)×T0(1) as a normal vector for

the plane.

51. The ellipse is given by the parametric equations  = 2cos ,  = 3 sin , so using the result from Exercise 42,

() =
|̇̈ − ̈̇|

[̇2 + ̇2]32
=
|(−2 sin )(−3 sin )− (3 cos )(−2 cos )|

(4 sin2  + 9 cos2 )32
=

6

(4 sin2 + 9cos2 )32
.

At (2 0),  = 0. Now (0) = 6
27

= 2
9
, so the radius of the osculating circle is

1(0) = 9
2
and its center is

−5
2
 0

. Its equation is therefore


+ 5

2

2
+ 2 = 81

4
.

At (0 3),  = 
2
, and 



2


= 6

8
= 3

4
. So the radius of the osculating circle is 4

3
and

its center is

0 5

3


. Hence its equation is 2 +


 − 5

3

2
= 16

9
.

52.  = 1
2
2 ⇒ 0 =  and 00 = 1, so Formula 11 gives () =

1

(1 + 2)32
. So the curvature at (0 0) is (0) = 1 and

the osculating circle has radius 1 and center (0 1), and hence equation 2 + ( − 1)2 = 1. The curvature at

1 1

2


is (1) =

1

(1 + 12)32
=

1

2
√

2
. The tangent line to the parabola at


1 1

2


has slope 1, so the normal line has slope −1. Thus the center of the

osculating circle lies in the direction of the unit vector

− 1√

2
 1√

2


.

The circle has radius 2
√

2, so its center has position vector
1 1

2


+ 2

√
2

− 1√

2
 1√

2


=
−1 5

2


. So the equation of the circle

is ( + 1)
2
+

 − 5

2

2
= 8.

53. Here r() =

3 3 4


, and r0() =


32 3 43


is normal to the normal plane for any . The given plane has normal vector

h6 6−8i, and the planes are parallel when their normal vectors are parallel. Thus we need to find a value for  where
32 3 43


=  h6 6−8i for some  6= 0. From the -component we see that  = 1

2
, and

32 3 43


= 1
2
h6 6−8i = h3 3−4i for  = −1. Thus the planes are parallel at the point (−1−3 1).

54. To find the osculating plane, we first calculate the unit tangent and normal vectors.

In Maple, we use the VectorCalculus package and set r:=tˆ3,3*t,tˆ4;. After differentiating, the

Normalize command converts the tangent vector to the unit tangent vector: T:=Normalize(diff(r,t));. After
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SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 347

simplifying, we find that T() =


32 3 43


√

166 + 94 + 9
. We use a similar procedure to compute the unit normal vector,

N:=Normalize(diff(T,t));. After simplifying, we have N() =

−(86 − 9)−33(3 + 82) 62(4 + 3)


2(46 + 362 + 9)(166 + 94 + 9)
. Then

we use the command B:=CrossProduct(T,N);. After simplification, we find that B() =


62−24−3


2(46 + 362 + 9)

.

In Mathematica, we define the vector function r={tˆ3,3*t,tˆ4} and use the command Dt to differentiate. We find

T() by dividing the result by its magnitude, computed using the Norm command. (You may wish to include the option

Element[t,Reals] to obtain simpler expressions.) N() is found similarly, and we use Cross[T,N] to find B().

Now B() is parallel to

62−24−3


, so if B() is parallel to h1 1 1i for some  6= 0 [since B(0) = 0], then

62−24−3


=  h1 1 1i for some value of . But then 62 = −24 = −3 which has no solution for  6= 0. So there is

no such osculating plane.

55. First we parametrize the curve of intersection. We can choose  = ; then  = 2 = 2 and  = 2 = 4, and the curve is

given by r() =

2  4


. r0() =


2 1 43


and the point (1 1 1) corresponds to  = 1, so r0(1) = h2 1 4i is a normal

vector for the normal plane. Thus an equation of the normal plane is

2(− 1) + 1( − 1) + 4( − 1) = 0 or 2 +  + 4 = 7. T() =
r0()
|r0()| =

1√
42 + 1 + 166


2 1 43


and

T0() = − 1
2
(42 + 1 + 166)−32(8 + 965)


2 1 43


+ (42 + 1 + 166)−12


2 0 122


. A normal vector for

the osculating plane is B(1) = T(1) ×N(1), but r0(1) = h2 1 4i is parallel to T(1) and

T0(1) = −1
2
(21)−32(104)h2 1 4i+ (21)−12h2 0 12i = 2

21
√

21
h−31−26 22i is parallel to N(1) as is h−31−26 22i,

so h2 1 4i × h−31−26 22i = h126−168−21i is normal to the osculating plane. Thus an equation for the osculating

plane is 126(− 1)− 168( − 1)− 21( − 1) = 0 or 6− 8 −  = −3.

56. r() =

 + 2 1−  1

2
2
 ⇒ r0() = h1−1 i, T() =

r0()
|r0()| =

1√
2 + 2

h1−1 i,

T0()= − 1
2
(2 + 2)−32(2)h1−1 i+ (2 + 2)−12 h0 0 1i

= −(2 + 2)−32

h1−1 i− (2 + 2)h0 0 1i = −1

(2+2)32
h−−2i

A normal vector for the osculating plane is B() = T()×N(), but r0() = h1−1 i is parallel to T() and h−−2i

is parallel to T0() and hence parallel to N(), so h1−1 i × h−−2i =

2 + 2 2 + 2 0


is normal to the

osculating plane for any . All such vectors are parallel to h1 1 0i, so at any point  + 2 1−  1
2
2

on the curve, an

equation for the osculating plane is 1[− ( + 2)] + 1[ − (1− )] + 0

 − 1

2
2


= 0 or  +  = 3. Because the osculating

plane at every point on the curve is the same, we can conclude that the curve itself lies in that same plane. In fact, we can

easily verify that the parametric equations of the curve satisfy  +  = 3.
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348 ¤ CHAPTER 13 VECTOR FUNCTIONS

57. r() =

 cos   sin  

 ⇒ r0() =

(cos − sin ) (cos  + sin ) 


so

|r0()|=

2(cos − sin )2 + 2(cos  + sin )2 + 2

=

2

2(cos2  + sin2 )− 2 cos  sin  + 2cos  sin  + 1


=
√

32 =
√

3 

and T() =
r0()
|r0()| =

1√
3 


(cos − sin ) (cos  + sin ) 


=

1√
3
hcos − sin  cos + sin  1i. The vector

k = h0 0 1i is parallel to the -axis, so for any , the angle  between T() and the -axis is given by

cos =
T() · k
|T()| |k| =

1√
3
hcos − sin  cos  + sin  1i · h0 0 1i

1√
3


(cos − sin )2 + (cos  + sin )2 + 1

√
1

=
1

2(cos2  + sin2 ) + 1
=

1√
3
. Thus the angle

is constant; specifically,  = cos−1(1
√

3) ≈ 547 ◦.

N() =
T0()
|T0()| =

(1
√

3 ) h− sin − cos − sin  + cos  0i
(1
√

3 )


2

sin2 + cos2 

 =
1√
2
h− sin − cos − sin  + cos  0i, and the angle 

made with the -axis is given by cos =
N() · k
|N()| |k| = 0, so  = 90 ◦.

B() = T()×N() = 1√
6
hsin − cos − sin − cos  2i and the angle  made with the -axis is given by

cos  =
B() · k
|B()| |k| =

1√
6
hsin − cos − sin − cos  2i · h0 0 1i

1√
6


(sin − cos )2 + (− sin − cos )2 + 4

√
1

=
2√
6

or equivalently

√
6

3
. Again the angle is

constant; specifically,  = cos−1(2
√

6) ≈ 353 ◦.

58. If vectors T and B lie in the rectifying plane thenN is a normal vector for the plane, as it is orthogonal to bothT and B. The

point
√

22
√

22 1

corresponds to  = 4, so we can takeT0(4) as a normal vector for the plane [since it is parallel to

N(4)]. r() = sin  i + cos  j + tan k ⇒ r0() = cos  i − sin  j + sec2 k and

|r0()| =


cos2  + sin2 + sec4  =
√

1 + sec4 . Then T() =
r0()
|r0()| =

1√
1 + sec4 


cos  i− sin  j + sec2 k


. By

Formula 3 of Theorem 13.2.3,

T0() = − 2 sec4  tan 

(1 + sec4 )32


cos  i− sin  j + sec2 k


+

1√
1 + sec4 

− sin  i− cos  j + 2 sec2  tan k

and

T0(4) = − 2(
√

2 )4(1)

[1 + (
√

2 )4]32

√
2

2
i−

√
2

2
j + (

√
2 )2 k


+

1
1 + (

√
2 )4


−
√

2

2
i−

√
2

2
j + 2(

√
2 )2(1)k



= − 8

5
√

5

√
2

2
i−

√
2

2
j + 2k


+

1√
5


−
√

2

2
i−

√
2

2
j + 4k


= −13

√
2

10
√

5
i +

3
√

2

10
√

5
j +

4

5
√

5
k

We can take the parallel vector −13
√

2 i + 3
√

2 j + 8k as a normal for the plane, so an equation for the plane is

−13
√

2

−

√
2

2


+ 3
√

2

 −

√
2

2


+ 8 ( − 1) = 0 or −13

√
2 + 3

√
2  + 8 = −2 or 13− 3 − 4

√
2  =

√
2.
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SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 349

59.  =

T
 =

T



 =
|T|


and N =
T

|T| , so N =

T
 TT
 

=
T


=

T


by the Chain Rule.

60. For a plane curve, T = |T| cos i + |T| sin j = cos i + sin j. Then

T


=


T









= (− sin i + cos j)







and

T
 = |− sin i + cos j|


 =


. Hence for a plane

curve, the curvature is  = ||.

61. (a) |B| = 1 ⇒ B ·B = 1 ⇒ 


(B ·B) = 0 ⇒ 2

B


·B = 0 ⇒ B


⊥ B

(b) B = T×N ⇒
B


=




(T×N) =




(T×N)

1


=




(T×N)

1

|r0()| = [(T0 ×N) + (T×N0)]
1

|r0()|

=


T0 × T0

|T0|


+ (T×N0)


1

|r0()| =
T×N0

|r0()| ⇒ B


⊥ T

(c) B = T×N ⇒ T ⊥ N, B ⊥ T and B ⊥ N. So B, T and N form an orthogonal set of vectors in the three-

dimensional space R3. From parts (a) and (b), B is perpendicular to both B and T, so B is parallel to N.

Therefore, B = −()N, where () is a scalar.

(d) Since B = T×N, T ⊥N and both T and N are unit vectors, B is a unit vector mutually perpendicular to bothT and

N. For a plane curve, T and N always lie in the plane of the curve, so that B is a constant unit vector always

perpendicular to the plane. Thus B = 0, but B = −()N and N 6= 0, so () = 0.

62. N = B×T ⇒
N


=




(B×T) =

B


×T + B× T


[by Formula 5 of Theorem 13.2.3]

= −N×T + B× N [by Formulas 3 and 1]

= − (N×T) +  (B×N) [by Property 2 of Theorem 12.4.11 ]

But B×N = B× (B×T) = (B ·T)B− (B ·B)T [by Property 6 of Theorem 12.4.11 ] = −T ⇒

N = (T×N)− T = −T +  B.

63. (a) r0 = 0T ⇒ r00 = 00T + 0T0 = 00T + 0
T


0 = 00T + (0)2 N by the first Serret-Frenet formula.

(b) Using part (a), we have

r0 × r00 = (0T)× [00T + (0)2 N]

= [(0T)× (00T)] +

(0T)× ((0)2 N)


[by Property 3 of Theorem 12.4.11 ]

= (000)(T×T) + (0)3(T×N) = 0 + (0)3 B = (0)3 B
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350 ¤ CHAPTER 13 VECTOR FUNCTIONS

(c) Using part (a), we have

r000 = [00T + (0)2 N]
0
= 000T + 00T0 + 0(0)2 N + 2000N + (0)2 N0

= 000T + 00
T


0 + 0(0)2 N + 2000N + (0)2

N


0

= 000T + 000N + 0(0)2 N + 2000N + (0)3(−T +  B) [by the second formula]

= [000 − 2(0)3]T + [3000 + 0(0)2]N + (0)3 B

(d) Using parts (b) and (c) and the facts that B ·T = 0, B ·N = 0, and B ·B = 1, we get

(r0 × r00) · r000
|r0 × r00|2 =

(0)3 B · [000 − 2(0)3]T + [3000 + 0(0)2]N + (0)3 B


|(0)3 B|2 =
(0)3(0)3

[(0)3]2
=  .

64. First we find the quantities required to compute :

r0() = h− sin   cos  i ⇒ r00() = h− cos − sin  0i ⇒ r000() = h sin − cos  0i

|r0()| =


(− sin )2 + ( cos )2 + 2 =
√
2 + 2

r0()× r00() =


i j k

− sin   cos  

− cos  − sin  0

 =  sin  i−  cos  j + 2 k

|r0()× r00()| =


( sin )2 + (− cos )2 + (2)2 =
√
22 + 4

(r0()× r00()) · r000() = ( sin )( sin ) + (− cos )(− cos ) + (2)(0) = 2

Then by Theorem 10, () =
|r0()× r00()|

|r0()|3 =

√
22 + 4√
2 + 2

3 =

√
2 + 2√

2 + 2
3 =



2 + 2
which is a constant.

From Exercise 63(d), the torsion  is given by  =
(r0 × r00) · r000
|r0 × r00|2 =

2√
22 + 4

2 =


2 + 2
which is also a constant.

65. r =

 1

2
2 1

3
3
 ⇒ r0 =


1  2


, r00 = h0 1 2i, r000 = h0 0 2i ⇒ r0 × r00 =


2−2 1

 ⇒

 =
(r0 × r00) · r000
|r0 × r00|2 =


2−2 1

 · h0 0 2i
4 + 42 + 1

=
2

4 + 42 + 1

66. r = hsinh  cosh  i ⇒ r0 = hcosh  sinh  1i, r00 = hsinh  cosh  0i, r000 = hcosh  sinh  0i ⇒

r0 × r00 =
− cosh  sinh  cosh2 − sinh2 


= h− cosh  sinh  1i ⇒

 =
|r0 × r00|
|r0|3 =

|h− cosh  sinh  1i|
|hcosh  sinh  1i|3 =


cosh2  + sinh2  + 1

cosh2 + sinh2 + 1
32 =

1

cosh2  + sinh2  + 1
=

1

2 cosh2 
,

 =
(r0 × r00) · r000
|r0 × r00|2 =

h− cosh  sinh  1i · hcosh  sinh  0i
cosh2  + sinh2  + 1

=
− cosh2 + sinh2 

2 cosh2 
=

−1

2 cosh2 

So at the point (0 1 0),  = 0, and  = 1
2
and  = − 1

2
.
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SECTION 13.4 MOTION IN SPACE: VELOCITY AND ACCELERATION ¤ 351

67. For one helix, the vector equation is r() = h10 cos  10 sin  34(2)i (measuring in angstroms), because the radius of each
helix is 10 angstroms, and  increases by 34 angstroms for each increase of 2 in . Using the arc length formula, letting  go

from 0 to 29× 108 × 2, we find the approximate length of each helix to be

=
 29×108×2

0
|r0()|  =

 29×108×2

0


(−10 sin )2 + (10 cos )2 +


34
2

2
 =


100 +


34
2

2


29×108×2

0

= 29× 108 × 2


100 +


34
2

2 ≈ 207× 1010 Å—more than two meters!

68. (a) For the function  () =


0 if   0

 () if 0    1

1 if  ≥ 1

to be continuous, we must have  (0) = 0 and  (1) = 1.

For  0 to be continuous, we must have  0(0) =  0(1) = 0. The curvature of the curve  =  () at the point (  ())

is () =
| 00()|

1 + [ 0()]
2
32 . For () to be continuous, we must have  00(0) =  00(1) = 0.

Write  () = 5 + 4 + 3 + 2 +  +  . Then  0() = 54 + 43 + 32 + 2 +  and

 00() = 203 + 122 + 6+ 2. Our six conditions are:

 (0) = 0 ⇒  = 0 (1)

 0(0) = 0 ⇒  = 0 (3)

 00(0) = 0 ⇒  = 0 (5)

 (1) = 1 ⇒ + + + + +  = 1 (2)

 0(1) = 0 ⇒ 5+ 4+ 3+ 2+  = 0 (4)

 00(1) = 0 ⇒ 20+ 12+ 6+ 2 = 0 (6)

From (1), (3), and (5), we have  =  =  = 0. Thus (2), (4) and (6) become (7) + +  = 1, (8) 5+ 4+ 3 = 0,

and (9) 10+ 6+ 3 = 0. Subtracting (8) from (9) gives (10) 5+ 2 = 0. Multiplying (7) by 3 and subtracting from

(8) gives (11) 2+  = −3. Multiplying (11) by 2 and subtracting from (10) gives  = 6. By (10),  = −15.

By (7),  = 10. Thus,  () = 65 − 154 + 103.

(b)

13.4 Motion in Space: Velocity and Acceleration

1. (a) If r() = () i +  () j + ()k is the position vector of the particle at time t, then the average velocity over the time

interval [0 1] is

vave =
r(1)− r(0)

1− 0
=

(45 i + 60 j + 30k)− (27 i + 98 j + 37k)

1
= 18 i− 38 j− 07k

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



352 ¤ CHAPTER 13 VECTOR FUNCTIONS

Similarly, over the other intervals we have

[05 1] : vave =
r(1)− r(05)

1− 05
=

(45 i + 60 j + 30k)− (35 i + 72 j + 33k)

05
= 20 i− 24 j− 06k

[1 2] : vave =
r(2)− r(1)

2− 1
=

(73 i + 78 j + 27k)− (45 i + 60 j + 30k)

1
= 28 i + 18 j− 03k

[1 15] : vave =
r(15)− r(1)

15− 1
=

(59 i + 64 j + 28k)− (45 i + 60 j + 30k)

05
= 28 i + 08 j− 04k

(b) We can estimate the velocity at  = 1 by averaging the average velocities over the time intervals [05 1] and [1 15]:

v(1) ≈ 1
2
[(2 i− 24 j− 06k) + (28 i + 08 j− 04k)] = 24 i− 08 j− 05k. Then the speed is

|v(1)| ≈


(24)2 + (−08)2 + (−05)2 ≈ 258.

2. (a) The average velocity over 2 ≤  ≤ 24 is

r(24)− r(2)

24− 2
= 25 [r(24)− r(2)], so we sketch a vector in the same

direction but 25 times the length of [r(24)− r(2)] .

(b) The average velocity over 15 ≤  ≤ 2 is

r(2)− r(15)

2− 15
= 2[r(2)− r(15)], so we sketch a vector in the

same direction but twice the length of [r(2)− r(15)].

(c) Using Equation 2 we have v(2) = lim
→0

r(2 + )− r(2)


.

(d) v(2) is tangent to the curve at r(2) and points in the direction of

increasing . Its length is the speed of the particle at  = 2. We can

estimate the speed by averaging the lengths of the vectors found in

parts (a) and (b) which represent the average speed over 2 ≤  ≤ 24 and

15 ≤  ≤ 2 respectively. Using the axes scale as a guide, we estimate the

vectors to have lengths 28 and 27. Thus, we estimate the speed at  = 2

to be |v(2)| ≈ 1
2
(28 + 27) = 275 and we draw the velocity vector v(2)

with this length.

3. r() =
− 1

2
2 

 ⇒ At  = 2:

v() = r0() = h− 1i v(2) = h−2 1i

a() = r00() = h−1 0i a(2) = h−1 0i

|v()| = √2 + 1

Notice that  = − 1
2
2, so the path is a parabola.
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SECTION 13.4 MOTION IN SPACE: VELOCITY AND ACCELERATION ¤ 353

4. r() =

2 12

 ⇒ At  = 1:

v() = r0() =

2−23


v(1) = h2−2i

a() = r00() =

2 64


a(1) = h2 6i

|v()| =


42 + 46 = 2

2 + 16

Notice that  = 1 and   0, so the path is part of the

hyperbola  = 1.

5. r() = 3 cos  i + 2 sin  j ⇒ At  = 3:

v() = −3 sin  i + 2 cos  j v


3


= − 3

√
3

2
i + j

a() = −3 cos  i− 2 sin  j a


3


= − 3

2
i−√3 j

|v()|=


9 sin2  + 4cos2  =


5 sin2  + 4 sin2 + 4cos2 

=


4 + 5 sin2 

Notice that 29 + 24 = sin2  + cos2  = 1, so the path is an ellipse.

6. r() =  i + 2 j ⇒ At  = 0:

v() =  i + 22 j v(0) = i + 2 j

a() =  i + 42 j a(0) = i + 4 j

|v()| = √2 + 44 = 
√

1 + 42

Notice that  = 2 =


2

= 2, so the particle travels along a parabola,

but  = , so   0.

7. r() =  i + 2 j + 2k ⇒ At  = 1:

v() = i + 2 j v(1) = i + 2 j

a() = 2 j a(1) = 2 j

|v()| = √1 + 42

Here  = ,  = 2 ⇒  = 2 and  = 2, so the path of the particle is a

parabola in the plane  = 2.

8. r() =  i + 2cos  j + sin k ⇒ At  = 0:

v() = i− 2 sin  j + cos k v(0) = i + k

a() = −2 cos  j− sin k a(0) = −2 j

|v()| =


1 + 4 sin2 + cos2  =


2 + 3 sin2 

Since 24 + 2 = 1,  = , the path of the particle is an elliptical helix

about the -axis.
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354 ¤ CHAPTER 13 VECTOR FUNCTIONS

9. r() =

2 +  2 −  3

 ⇒ v() = r0() =

2 + 1 2− 1 32


, a() = v0() = h2 2 6i,

|v()| =


(2 + 1)2 + (2− 1)2 + (32)2 =
√

94 + 82 + 2.

10. r() = h2 cos  3 2 sin i ⇒ v() = r0() = h−2 sin  3 2 cos i, a() = v0() = h−2 cos  0−2 sin i,

|v()| =


4 sin2  + 9 + 4 cos2  =
√

13.

11. r() =
√

2  i +  j + − k ⇒ v() = r0() =
√

2 i +  j− − k, a() = v0() =  j + − k,

|v()| = √2 + 2 + −2 =


( + −)2 =  + −.

12. r() = 2 i + 2 j + ln k ⇒ v() = r0() = 2 i + 2 j + (1)k, a() = v0() = 2 i− (12)k,

|v()| =


42 + 4 + (12) =


[2+ (1)]2 = |2 + (1)|.

13. r() = hcos  sin  i ⇒

v() = r0() = hcos  sin  i+  h− sin  cos  1i = hcos − sin  sin + cos   + 1i

a() = v0() = hcos − sin − sin − cos  sin  + cos + cos − sin   + 1 + 1i
= h−2 sin  2 cos   + 2i

|v()| = 


cos2  + sin2 − 2 cos  sin + sin2  + cos2  + 2 sin  cos  + 2 + 2 + 1

= 
√
2 + 2 + 3

14. r() =

2 sin −  cos  cos  +  sin 

 ⇒

v() = r0() = h2 cos − (− sin  + cos )− sin  +  cos + sin i = h2  sin   cos i,

a() = v0() = h2  cos  + sin − sin + cos i,

|v()| =


42 + 2 sin2  + 2 cos2  =
√

42 + 2 =
√

52 =
√

5  [since  ≥ 0].

15. a() = 2 i + 2k ⇒ v() =


a()  =

(2 i + 2k)  = 2 i + 2 k + C. Then v(0) = C but we were given that

v(0) = 3 i − j, so C = 3 i − j and v() = 2 i + 2 k + 3 i − j = (2 + 3) i − j + 2 k.

r() =


v()  =
 

(2 + 3) i− j + 2 k

 = (2 + 3) i−  j + 1

3
3 k + D. Here r(0) = D and we were given that

r(0) = j + k, so D = j + k and r() = (2 + 3) i + (1− ) j +


1
3
3 + 1


k.

16. a() = sin  i+2cos  j+6k ⇒ v() =


a()  =

(sin  i+2 cos  j+6k)  = − cos  i+2 sin  j+32 k + C.

Then v(0) = −i + C but we were given that v(0) = −k, so −i + C = −k ⇒ C = i− k

and v() = (1 − cos ) i + 2 sin  j + (32 − 1)k.

r() =


v()  =
 

(1− cos ) i + 2 sin  j + (32 − 1)k

 = (− sin ) i− 2 cos  j + (3 − )k + D. Here

r(0) = −2 j + D and we were given that r(0) = j − 4k, so D = 3 j − 4k and

r() = (− sin ) i + (3− 2 cos ) j + (3 − − 4)k.
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SECTION 13.4 MOTION IN SPACE: VELOCITY AND ACCELERATION ¤ 355

17. (a) a() = 2 i + sin  j + cos 2k ⇒
v() =


(2 i + sin  j + cos 2k)  = 2 i− cos  j + 1

2
sin 2k + C

and i = v (0) = −j + C, so C = i + j

and v() =

2 + 1


i + (1− cos ) j + 1

2
sin 2k.

r() =

[

2 + 1


i + (1− cos ) j + 1

2
sin 2k]

=


1
3
3 + 


i + (− sin ) j− 1

4
cos 2k + D

But j = r (0) = −1
4
k + D, so D = j + 1

4
k and r() =


1
3
3 + 


i + (− sin + 1) j +


1
4
− 1

4
cos 2


k.

(b)

18. (a) a() =  i +  j + − k ⇒
v () =

 
 i +  j + − k


 = 1

2
2 i +  j− − k + C

and k = v (0) = j− k + C, so C = −j + 2k

and v() = 1
2
2 i +


 − 1


j +


2− −


k.

r() =
 

1
2
2 i + ( − 1) j + (2− −)k




= 1
6
3 i + ( − ) j + (− + 2)k + D

But j + k = r(0) = j + k + D, so D = 0 and r() = 1
6
3 i + ( − ) j + (− + 2)k

(b)

19. r() =

2 5 2 − 16

 ⇒ v() = h2 5 2− 16i, |v()| = √42 + 25 + 42 − 64 + 256 =
√

82 − 64 + 281

and



|v()| = 1

2
(82 − 64+ 281)−12(16− 64). This is zero if and only if the numerator is zero, that is,

16− 64 = 0 or  = 4. Since



|v()|  0 for   4 and




|v()|  0 for   4, the minimum speed of

√
153 is attained

at  = 4 units of time.

20. Since r() = 3 i + 2 j + 3 k, a() = r00() = 6 i + 2 j + 6k. By Newton’s Second Law,

F() = a() = 6 i + 2 j + 6k is the required force.

21. |F()| = 20 N in the direction of the positive -axis, so F() = 20k. Also = 4 kg, r(0) = 0 and v(0) = i− j.

Since 20k = F() = 4a(), a() = 5k. Then v() = 5k + c1 where c1 = i− j so v() = i− j + 5k and the

speed is |v()| = √
1 + 1 + 252 =

√
252 + 2. Also r() =  i−  j + 5

2
2 k + c2 and 0 = r(0), so c2 = 0

and r() =  i−  j + 5
2
2 k.

22. The argument here is the same as that in Example 13.2.4 with r() replaced by v() and r0() replaced by a().

23. |v(0)| = 200 ms and, since the angle of elevation is 60◦, a unit vector in the direction of the velocity is

(cos 60◦)i + (sin 60◦)j = 1
2
i +

√
3

2
j. Thus v(0) = 200


1
2
i +

√
3

2
j


= 100 i + 100
√

3 j and if we set up the axes so that the

projectile starts at the origin, then r(0) = 0. Ignoring air resistance, the only force is that due to gravity, so

F() = a() = − j where  ≈ 98 ms2. Thus a() = −98 j and, integrating, we have v() = −98 j + C. But
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356 ¤ CHAPTER 13 VECTOR FUNCTIONS

100 i + 100
√

3 j = v(0) = C, so v() = 100 i +

100

√
3− 98


j and then (integrating again)

r() = 100  i +

100

√
3 − 492


j + D where 0 = r(0) = D. Thus the position function of the projectile is

r() = 100  i +

100

√
3 − 492


j.

(a) Parametric equations for the projectile are () = 100, () = 100
√

3 − 492. The projectile reaches the ground when

() = 0 (and   0) ⇒ 100
√

3 − 492 = 

100

√
3− 49


= 0 ⇒  = 100

√
3

49
≈ 353 s. So the range is




100
√

3
49


= 100


100
√

3
49


≈ 3535 m.

(b) The maximum height is reached when () has a critical number (or equivalently, when the vertical component

of velocity is 0): 0() = 0 ⇒ 100
√

3− 98 = 0 ⇒  = 100
√

3
98

≈ 177 s. Thus the maximum height is




100
√

3
98


= 100

√
3


100
√

3
98


− 49


100
√

3
98

2

≈ 1531 m.

(c) From part (a), impact occurs at  = 100
√

3
49

s. Thus, the velocity at impact is

v


100
√

3
49


= 100 i +


100

√
3− 98


100
√

3
49


j = 100 i − 100

√
3 j and the speed isv100

√
3

49

 =
√

10,000 + 30,000 = 200 ms.

24. As in Exercise 23, v() = 100 i +

100

√
3− 98


j and r() = 100  i +


100

√
3 − 492


j + D.

But r(0) = 100 j, so D = 100 j and r() = 100  i +

100 + 100

√
3 − 492


j.

(a)  = 0 ⇒ 100 + 100
√

3 − 492 = 0 or 492 − 100
√

3 − 100 = 0. From the quadratic formula we have

 =
100

√
3±


(−100

√
3 )2 − 4(49)(−100)

2(49)
=

100
√

3±√31,960
98

. Taking the positive -value gives

 = 100
√

3 +
√

31,960
98

≈ 359 s. Thus the range is  = 100 · 100
√

3 +
√

31,960
98

≈ 3592 m.

(b) The maximum height is attained when



= 0 ⇒ 100

√
3− 98 = 0 ⇒  = 100

√
3

98
≈ 177 s and the

maximum height is 100 + 100
√

3


100
√

3
98


− 49


100
√

3
98

2
≈ 1631 m.

Alternate solution: Because the projectile is fired in the same direction and with the same velocity as in Exercise 23,

but from a point 100 m higher, the maximum height reached is 100 m higher than that found in Exercise 23, that is,

1531 m+ 100 m = 1631 m.

(c) From part (a), impact occurs at  = 100
√

3 +
√

31,960
98

s. Thus the velocity at impact is

v


100
√

3 +
√

31,960
98


= 100 i +


100

√
3− 98


100
√

3 +
√

31,960
98


j = 100 i−√31,960 j and the speed is

|v| = √10,000 + 31,960 =
√

41,960 ≈ 205 ms.
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SECTION 13.4 MOTION IN SPACE: VELOCITY AND ACCELERATION ¤ 357

25. As in Example 5, r() = (0 cos 45◦) i +

(0 sin 45◦)− 1

2
2

j = 1

2


0

√
2  i +


0

√
2 − 2


j

. The ball lands when

 = 0 (and   0) ⇒  =
0

√
2


s. Now since it lands 90 m away, 90 =  = 1

2
0

√
2
0

√
2


or 2

0 = 90 and the initial

velocity is 0 =
√

90 ≈ 30 ms.

26. Let  be the angle of elevation. Here 0 = 400 ms and from Example 5, the horizontal distance traveled by the projectile is

 =
2
0 sin 2


. We want

4002 sin 2


= 3000 ⇒ sin 2 =

3000

4002
≈ 01838 ⇒ 2 ≈ sin−1(01838) ≈ 106◦ or

2 ≈ 180◦ − 106◦ = 1694◦. Thus two angles of elevation are  ≈ 53◦ and  ≈ 847◦.

27. As in Example 5, r() = (0 cos 36◦) i +

(0 sin 36◦)− 1

2
2

j and then

v() = r0() = (0 cos 36◦) i + [(0 sin 36◦)− ] j. The shell reaches its maximum height when the vertical component of

velocity is zero, so (0 sin 36◦)−  = 0 ⇒  =
0 sin 36◦


. The vertical height of the shell at that time is 1600 ft, so

(0 sin 36◦)


0 sin 36◦




− 1

2



0 sin 36◦



2

= 1600 ⇒

2
0 sin2 36◦




− 1

2


2
0 sin2 36◦




= 1600 ⇒

2
0 sin2 36◦

2
= 1600 ⇒ 2

0 =
1600(2)

sin2 36◦
⇒ 0 =


3200

sin2 36◦
≈


3200(32)

sin 36◦
≈ 544 fts.

28. Here 0 = 115 fts, the angle of elevation is  = 50◦, and if we place the origin at home plate, then r(0) = 3 j.

As in Example 5, we have r () = − 1
2
2 j + v0 + D where D = r(0) = 3 j and v0 = 0 cos i + 0 sin j,

so r() = (0 cos) i +

(0 sin)− 1

2
2 + 3


j. Thus, parametric equations for the trajectory of the ball are

 = (0 cos),  = (0 sin)− 1
2
2 + 3. The ball reaches the fence when  = 400 ⇒

(0 cos) = 400 ⇒  =
400

0 cos
=

400

115 cos 50◦
≈ 541 s. At this time, the height of the ball is

 = (0 sin)− 1
2
2 + 3 ≈ (115 sin 50◦)(541)− 1

2
(32)(541)2 + 3 ≈ 112 ft. Since the fence is 10 ft high, the ball

clears the fence.

29. Place the catapult at the origin and assume the catapult is 100 meters from the city, so the city lies between (100 0)

and (600 0). The initial speed is 0 = 80 ms and let  be the angle the catapult is set at. As in Example 5, the trajectory of

the catapulted rock is given by r () = (80 cos ) i +

(80 sin )− 492


j. The top of the near city wall is at (100 15),

which the rock will hit when (80 cos )  = 100 ⇒  =
5

4 cos 
and (80 sin )− 492 = 15 ⇒

80 sin  · 5

4 cos 
− 49


5

4 cos 

2

= 15 ⇒ 100 tan  − 765625 sec2  = 15. Replacing sec2  with tan2  + 1 gives

765625 tan2  − 100 tan  + 2265625 = 0. Using the quadratic formula, we have tan  ≈ 0230635, 128306 ⇒

 ≈ 130◦, 855◦. So for 130◦    855◦, the rock will land beyond the near city wall. The base of the far wall is
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358 ¤ CHAPTER 13 VECTOR FUNCTIONS

located at (600 0) which the rock hits if (80 cos ) = 600 ⇒  =
15

2 cos 
and (80 sin )− 492 = 0 ⇒

80 sin  · 15

2 cos 
− 49


15

2 cos 

2

= 0 ⇒ 600 tan  − 275625 sec2  = 0 ⇒

275625 tan2  − 600 tan  + 275625 = 0. Solutions are tan  ≈ 0658678, 151819 ⇒  ≈ 334◦, 566◦. Thus the

rock lands beyond the enclosed city ground for 334◦    566◦, and the angles that allow the rock to land on city ground

are 130◦    334◦, 566◦    855◦. If you consider that the rock can hit the far wall and bounce back into the city, we

calculate the angles that cause the rock to hit the top of the wall at (600 15): (80 cos ) = 600 ⇒  =
15

2 cos 
and

(80 sin )− 492 = 15 ⇒ 600 tan  − 275625 sec2  = 15 ⇒ 275625 tan2  − 600 tan  + 290625 = 0.

Solutions are tan  ≈ 0727506, 144936 ⇒  ≈ 360◦, 554◦, so the catapult should be set with angle  where

130◦    360◦, 554◦    855◦.

30. If we place the projectile at the origin then, as in Example 5, r() = (0 cos) i +

(0 sin)− 1

2
2

j and

v() = (0 cos) i + [(0 sin)− ] j. The maximum height is reached when the vertical component of velocity is zero, so

(0 sin)−  = 0 ⇒  =
0 sin


, and the corresponding height is the vertical component of the position function:

(0 sin)− 1
2
2 = (0 sin)


0 sin




− 1

2



0 sin



2

=
1

2
2
0 sin2 

Half that time is  =
0 sin

2
, when the height of the projectile is

(0 sin)− 1
2
2 = (0 sin)


0 sin

2


− 1

2



0 sin

2

2

=
1

2
2
0 sin2 − 1

8
2
0 sin2  =

3

8
2
0 sin2  =

3

4


1

2
2
0 sin2 


or three-quarters of the maximum height.

31. Here a() = −4 j− 32k so v() = −4 j− 32k + v0 = −4 j− 32k + 50 i + 80k = 50 i− 4 j + (80− 32)k and

r() = 50 i− 22 j + (80− 162)k (note that r0 = 0). The ball lands when the -component of r() is zero

and   0: 80− 162 = 16(5 − ) = 0 ⇒  = 5. The position of the ball then is

r(5) = 50(5) i− 2(5)2 j + [80(5)− 16(5)2]k = 250 i− 50 j or equivalently the point (250−50 0). This is a distance of
2502 + (−50)2 + 02 =

√
65,000 ≈ 255 ft from the origin at an angle of tan−1


50
250

 ≈ 113◦ from the eastern direction

toward the south. The speed of the ball is |v(5)| = |50 i− 20 j− 80k| =


502 + (−20)2 + (−80)2 =
√

9300 ≈ 964 ft/s.

32. Place the ball at the origin and consider j to be pointing in the northward direction with i pointing east and k pointing

upward. Force = mass × acceleration ⇒ acceleration = forcemass, so the wind applies a constant acceleration of

4 N08 kg = 5 ms2 in the easterly direction. Combined with the acceleration due to gravity, the acceleration acting on the
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SECTION 13.4 MOTION IN SPACE: VELOCITY AND ACCELERATION ¤ 359

ball is a() = 5 i− 98k. Then v() =


a()  = 5 i− 98k + C whereC is a constant vector.

We know v(0) = C = −30 cos 30◦ j + 30 sin 30◦ k = −15
√

3 j + 15k ⇒ C = −15
√

3 j + 15k and

v() = 5 i− 15
√

3 j + (15− 98)k. r() =


v()  = 252 i− 15
√

3  j +

15− 492


k + D but r(0) = D = 0

so r() = 252 i− 15
√

3  j +

15− 492


k. The ball lands when 15− 492 = 0 ⇒  = 0,  = 1549 ≈ 30612 s,

so the ball lands at approximately r(30612) ≈ 2343 i− 7953 j which is 82.9 m away in the direction S 16.4◦E. Its speed is

approximately |v(30612)| ≈
15306 i− 15

√
3 j− 15k

 ≈ 3368 ms.

33. (a) After  seconds, the boat will be 5 meters west of point . The velocity

of the water at that location is 3
400

(5)(40− 5) j. The velocity of the

boat in still water is 5 i so the resultant velocity of the boat is

v() = 5 i + 3
400

(5)(40− 5) j = 5i +


3
2
− 3

16
2

j. Integrating, we obtain

r() = 5 i +


3
4
2 − 1

16
3

j + C. If we place the origin at  (and consider j

to coincide with the northern direction) then r(0) = 0 ⇒ C = 0 and we have r() = 5 i +


3
4
2 − 1

16
3

j. The boat

reaches the east bank after 8 s, and it is located at r(8) = 5(8)i +


3
4
(8)2 − 1

16
(8)3


j = 40 i + 16 j. Thus the boat is 16 m

downstream.

(b) Let  be the angle north of east that the boat heads. Then the velocity of the boat in still water is given by

5(cos) i + 5(sin) j. At  seconds, the boat is 5(cos) meters from the west bank, at which point the velocity

of the water is 3
400

[5(cos)][40− 5(cos)] j. The resultant velocity of the boat is given by

v() = 5(cos) i +

5 sin+ 3

400
(5 cos)(40− 5 cos)


j = (5 cos) i +


5 sin+ 3

2
 cos− 3

16
2 cos2 


j.

Integrating, r() = (5 cos) i +

5 sin+ 3

4
2 cos− 1

16
3 cos2 


j (where we have again placed

the origin at ). The boat will reach the east bank when 5 cos = 40 ⇒  =
40

5 cos
=

8

cos
.

In order to land at point (40 0) we need 5 sin+ 3
4
2 cos− 1

16
3 cos2  = 0 ⇒

5


8

cos


sin+ 3

4


8

cos

2

cos− 1
16


8

cos

3

cos2  = 0 ⇒ 1

cos
(40 sin+ 48− 32) = 0 ⇒

40 sin+ 16 = 0 ⇒ sin = − 2
5
. Thus  = sin−1

− 2
5

 ≈ −236◦, so the boat should head 236◦ south of

east (upstream). The path does seem realistic. The boat initially heads

upstream to counteract the effect of the current. Near the center of the river,

the current is stronger and the boat is pushed downstream. When the boat

nears the eastern bank, the current is slower and the boat is able to progress

upstream to arrive at point .

34. As in Exercise 33(b), let  be the angle north of east that the boat heads, so the velocity of the boat in still water is given

by 5(cos) i + 5(sin) j. At  seconds, the boat is 5(cos) meters from the west bank, at which point the velocity
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360 ¤ CHAPTER 13 VECTOR FUNCTIONS

of the water is 3 sin(40) j = 3 sin[ · 5(cos)40] j = 3 sin


8
 cos


j. The resultant velocity of the boat

then is given by v() = 5(cos) i +

5 sin+ 3 sin



8
 cos


j. Integrating,

r () = (5 cos) i +


5 sin− 24

 cos
cos


8
 cos


j + C.

If we place the origin at  then r(0) = 0 ⇒ − 24

 cos
j + C = 0 ⇒ C =

24

 cos
j and

r() = (5 cos) i +


5 sin− 24

 cos
cos


8
 cos


+

24

 cos


j. The boat will reach the east bank when

5 cos = 40 ⇒  =
8

cos
. In order to land at point (40 0) we need

5 sin− 24

 cos
cos


8
 cos


+

24

 cos
= 0 ⇒

5


8

cos


sin− 24

 cos
cos




8


8

cos


cos


+

24

 cos
= 0 ⇒ 1

cos


40 sin− 24


cos +

24




= 0 ⇒

40 sin+
48


= 0 ⇒ sin = − 6

5
. Thus  = sin−1


− 6

5


≈ −225◦, so the boat should head 225◦ south of east.

35. If r0() = c× r() then r0() is perpendicular to both c and r(). Remember that r0() points in the direction of motion, so if

r0() is always perpendicular to c, the path of the particle must lie in a plane perpendicular to c. But r0() is also perpendicular

to the position vector r() which confines the path to a sphere centered at the origin. Considering both restrictions, the path

must be contained in a circle that lies in a plane perpendicular to c, and the circle is centered on a line through the origin in the

direction of c.

36. (a) From Equation 7 we have a = 0T + 2N. If a particle moves along a straight line, then  = 0 [see Section 13.3], so the

acceleration vector becomes a = 0T. Because the acceleration vector is a scalar multiple of the unit tangent vector, it is

parallel to the tangent vector.

(b) If the speed of the particle is constant, then 0 = 0 and Equation 7 gives a = 2N. Thus the acceleration vector is

parallel to the unit normal vector (which is perpendicular to the tangent vector and points in the direction that the curve is

turning).

37. r() = (2 + 1) i + 3 j ⇒ r0() = 2 i + 32 j,

|r0()| =


(2)2 + (32)2 =
√

42 + 94 = 
√

4 + 92 [since  ≥ 0], r00() = 2 i + 6 j, r0()× r00() = 62 k.

Then Equation 9 gives  =
r0() · r00()
|r0()| =

(2)(2) + (32)(6)


√

4 + 92
=

4+ 183


√

4 + 92
=

4 + 182√
4 + 92or by Equation 8,  = 0 =







√

4 + 92


=  · 1
2


4 + 92

−12
(18) +


4 + 92

12 · 1
=

4 + 92

−12 
92 + 4 + 92


= (4 + 182)

√
4 + 92


and Equation 10 gives  =

|r0()× r00()|
|r0()| =

62


√

4 + 92
=

6√
4 + 92

.
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SECTION 13.4 MOTION IN SPACE: VELOCITY AND ACCELERATION ¤ 361

38. r() = 22 i +


2
3
3 − 2


j ⇒ r0() = 4 i + (22 − 2) j,

|r0()| =


162 + (22 − 2)2 =
√

44 + 82 + 4 =


4 (2 + 1)

2
= 2(2 + 1),

r00() = 4 i + 4 j, r0() × r00() = (82 + 8)k. Then Equation 9 gives

 =
r0() · r00()
|r0()| =

(4)(4) + (22 − 2)(4)

2(2 + 1)
=

8(2 + 1)

2(2 + 1)
= 4


or by Equation 8,  = 0 =






2(2 + 1)


= 4



and Equation 10 gives  =
|r0()× r00()|

|r0()| =
8(2 + 1)

2(2 + 1)
= 4.

39. r() = cos  i + sin  j + k ⇒ r0() = − sin  i + cos  j + k, |r0()| =


sin2  + cos2 + 1 =
√

2,

r00() = − cos  i− sin  j, r0()× r00() = sin  i− cos  j + k.

Then  =
r0() · r00()
|r0()| =

sin  cos − sin  cos √
2

= 0 and  =
|r0()× r00()|

|r0()| =


sin2 + cos2  + 1√

2
=

√
2√
2

= 1.

40. r() =  i + 2 j + 2 k ⇒ r0() = i + 2 j + 22 k, |r0()| = √1 + 42 + 44 =


(1 + 22)2 = 1 + 22,

r00() = 2 j + 42 k, r0() × r00() = 43 i − 42 j + 2 k,

|r0()× r00()| =
√

166 + 164 + 42 =


42(22 + 1)2 = 2(22 + 1). Then

 =
r0() · r00()
|r0()| =

42 + 84

1 + 22
=

42(1 + 22)

1 + 22
= 42 and  =

|r0()× r00()|
|r0()| =

2(22 + 1)

1 + 22
= 2.

41. r() = ln  i + (2 + 3) j + 4
√
k ⇒ r0() = (1) i + (2 + 3) j + (2

√
 )k ⇒

r00() = (−12) i + 2 j − (132)k. The point (0 4 4) corresponds to  = 1, where

r0(1) = i + 5 j + 2k, r00(1) = −i + 2 j− k, and r0(1)× r00(1) = −9 i− j + 7k. Thus at the point (0 4 4),

 =
r0(1) · r00(1)
|r0(1)| =

−1 + 10− 2√
1 + 25 + 4

=
7√
30

and  =
|r0(1)× r00(1)|

|r0(1)| =

√
81 + 1 + 49√

30
=


131

30
.

42. r() = −1 i + −2 j + −3 k ⇒ r0() = −−2 i− 2−3 j− 3−4 k ⇒ r00() = 2−3 i + 6−4 j + 12−5 k. The

point (1 1 1) corresponds to  = 1, where r0(1) = −i− 2 j− 3k, r00(1) = 2 i + 6 j + 12k, and

r0(1)× r00(1) = −6 i + 6 j− 2k. Thus at the point (1 1 1),  =
r0(1) · r00(1)
|r0(1)| =

−2− 12− 36√
1 + 4 + 9

= − 50√
14

and

 =
|r0(1)× r00(1)|

|r0(1)| =

√
36 + 36 + 4√

14
=


76

14
=


38

7
.

43. The tangential component of a is the length of the projection of a onto T, so we sketch

the scalar projection of a in the tangential direction to the curve and estimate its length to

be 45 (using the fact that a has length 10 as a guide). Similarly, the normal component of

a is the length of the projection of a onto N, so we sketch the scalar projection of a in the

normal direction to the curve and estimate its length to be 90. Thus  ≈ 45 cms2 and

 ≈ 90 cms2.
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362 ¤ CHAPTER 13 VECTOR FUNCTIONS

44. L() =  r()× v() ⇒

L0() = [r0()× v() + r ()× v0()] [by Formula 5 of Theorem 13.2.3]

= [v()× v() + r()× v0()] = [0 + r()× a ()] =  ()

So if the torque is always 0, then L0() = 0 for all , and so L() is constant.

45. If the engines are turned off at time , then the spacecraft will continue to travel in the direction of v(), so we need a  such

that for some scalar   0, r() + v() = h6 4 9i. v() = r0() = i +
1


j +

8

(2 + 1)2
k ⇒

r() + v() =


3 +  +  2 + ln  +




 7− 4

2 + 1
+

8

(2 + 1)2


⇒ 3 +  +  = 6 ⇒  = 3− ,

so 7− 4

2 + 1
+

8(3− )

(2 + 1)2
= 9 ⇔ 24− 122 − 4

(2 + 1)2
= 2 ⇔ 4 + 82 − 12+ 3 = 0.

It is easily seen that  = 1 is a root of this polynomial. Also 2 + ln 1 +
3− 1

1
= 4, so  = 1 is the desired solution.

46. (a) 
v


=




v ⇔ v


=

1






v. Integrating both sides of this equation with respect to  gives 

0

v


 = v

 

0

1






 ⇒

 v()

v(0)

v = v

 ()

(0)




[Substitution Rule] ⇒

v()− v(0) = ln


()

(0)


v ⇒ v() = v(0)− ln


(0)

()


v.

(b) |v()| = 2 |v|, and |v(0)| = 0. Therefore, by part (a), 2 |v| =

− ln


(0)

()


v

 ⇒

2 |v| = ln


(0)

 ()


|v|.


Note: (0)  () so that ln


(0)

()


 0


⇒ () = −2(0).

Thus
(0)− −2(0)

(0)
= 1− −2 is the fraction of the initial mass that is burned as fuel.

APPLIED PROJECT Kepler's Laws

1. With r = ( cos ) i + ( sin ) j and h = k where   0,

(a) h = r× r0 = [( cos ) i + ( sin ) j]×


0 cos  −  sin 





i +


0 sin  +  cos 






j


=


0 cos  sin  + 2 cos2 




− 0 cos  sin  + 2 sin2 






k = 2 


k

(b) Since h = k,   0,  = |h|. But by part (a),  = |h| = 2 ().

(c) () = 1
2

 
0
|r|2  = 1

2

 
0
2 ()  in polar coordinates. Thus, by the Fundamental Theorem of Calculus,




=

2

2




.
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CHAPTER 13 REVIEW ¤ 363

(d)



=

2

2




=



2
= constant since h is a constant vector and  = |h|.

2. (a) Since  = 1
2
, a constant, () = 1

2
+ 1. But (0) = 0, so () = 1

2
. But ( ) = area of the ellipse = 

and ( ) = 1
2
 , so  = 2.

(b) 2( ) =  where  is the eccentricity of the ellipse. But  = (1− 2) or  = (1− 2) and 1− 2 = 22.

Hence 2( ) =  = 2.

(c)  2 =
422

2
= 4222



2
=

42


3.

3. From Problem 2,  2 =
42


3.  ≈ 36525 days× 24 · 602 seconds

day
≈ 31558× 107 seconds. Therefore

3 =
 2

42
≈ (667× 10−11)(199× 1030)(31558× 107)2

42
≈ 3348× 1033 m3 ⇒  ≈ 1496× 1011 m. Thus, the

length of the major axis of the earth’s orbit (that is, 2) is approximately 299× 1011 m = 299× 108 km.

4. We can adapt the equation  2
=

42


3 from Problem 2(c) with the earth at the center of the system, so  is the period of the

satellite’s orbit about the earth, is the mass of the earth, and  is the length of the semimajor axis of the satellite’s orbit

(measured from the earth’s center). Since we want the satellite to remain fixed above a particular point on the earth’s equator,

 must coincide with the period of the earth’s own rotation, so  = 24 h = 86,400 s. The mass of the earth is

 = 598× 1024 kg, so  =




2


42

13

≈

(86,400)2(667× 10−11)(598× 1024)

42

13
≈ 423× 107 m. If we

assume a circular orbit, the radius of the orbit is , and since the radius of the earth is 637× 106 m, the required altitude

above the earth’s surface for the satellite is 423× 107 − 637× 106 ≈ 359× 107 m, or 35,900 km.

13 Review

1. True. If we reparametrize the curve by replacing  = 3, we have r() =  i + 2 j + 3k, which is a line through the origin

with direction vector i + 2 j + 3k.

2. True. Parametric equations for the curve are  = 0,  = 2,  = 4, and since  = 4 we have  = 2 = (4)2 or

 = 1
16
2,  = 0. This is an equation of a parabola in the -plane.

3. False. The vector function represents a line, but the line does not pass through the origin; the -component is 0 only for  = 0

which corresponds to the point (0 3 0) not (0 0 0).

4. True. See Theorem 13.2.2.
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364 ¤ CHAPTER 13 VECTOR FUNCTIONS

5. False. By Formula 5 of Theorem 13.2.3,



[u()× v()] = u0()× v() + u()× v0().

6. False. For example, let r() = hcos  sin i. Then |r()| =


cos2  + sin2  = 1 ⇒ 


|r()| = 0, but

|r0()| = |h− sin  cos i| =


(− sin )2 + cos2  = 1.

7. False.  is the magnitude of the rate of change of the unit tangent vectorT with respect to arc length , not with respect to .

8. False. The binormal vector, by the definition given in Section 13.3, is B() = T()×N() = − [N()×T()].

9. True. At an inflection point where  is twice continuously differentiable we must have  00() = 0, and by Equation 13.3.11,

the curvature is 0 there.

10. True. From Equation 13.3.9 , () = 0 ⇔ |T0()| = 0 ⇔ T0() = 0 for all . But then T() = C, a constant vector,

which is true only for a straight line.

11. False. If r() is the position of a moving particle at time  and |r()| = 1 then the particle lies on the unit circle or the unit

sphere, but this does not mean that the speed |r0()| must be constant. As a counterexample, let r() =


√

1− 2

, then

r0() =

1−√1− 2


and |r()| = √2 + 1− 2 = 1 but |r0()| =


1 + 2(1− 2) = 1

√
1− 2 which is not

constant.

12. True. See Example 4 in Section 13.2 .

13. True. See the discussion preceding Example 7 in Section 13.3.

14. False. For example, r1() = h i and r2() = h2 2i both represent the same plane curve (the line  = ), but the tangent

vector r01() = h1 1i for all , while r02() = h2 2i. In fact, different parametrizations give parallel tangent vectors at a point,
but their magnitudes may differ.

1. (a) The corresponding parametric equations for the curve are  = ,

 = cos ,  = sin . Since 2 + 2 = 1, the curve is contained in a

circular cylinder with axis the -axis. Since  = , the curve is a helix.

(b) r() =  i + cos  j + sin k ⇒
r0() = i−  sin  j +  cos k ⇒
r00() = −2 cos  j− 2 sin k

2. (a) The expressions
√

2− , ( − 1), and ln( + 1) are all defined when 2−  ≥ 0 ⇒  ≤ 2,  6= 0,

and  + 1  0 ⇒   −1. Thus the domain of r is (−1 0) ∪ (0 2].

(b) lim
→0

r() =


lim
→0

√
2−  lim

→0

 − 1


 lim
→0

ln( + 1)


=

√
2− 0 lim

→0



1
 ln(0 + 1)


=
√

2 1 0


[using l’Hospital’s Rule in the -component]
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CHAPTER 13 REVIEW ¤ 365

(c) r0() =






√
2− 





 − 1






ln(+ 1)


=


− 1

2
√

2− 

 −  + 1

2


1

+ 1



3. The projection of the curve  of intersection onto the -plane is the circle 2 + 2 = 16  = 0. So we can write

 = 4 cos ,  = 4 sin , 0 ≤  ≤ 2. From the equation of the plane, we have  = 5−  = 5− 4 cos , so parametric

equations for  are  = 4cos ,  = 4 sin ,  = 5− 4 cos , 0 ≤  ≤ 2, and the corresponding vector function is

r() = 4 cos  i + 4 sin  j + (5− 4 cos )k, 0 ≤  ≤ 2.

4. The curve is given by r() = h2 sin  2 sin 2 2 sin 3i, so
r0() = h2 cos  4 cos 2 6 cos 3i. The point 1√3 2


corresponds to  = 

6

(or 
6

+ 2,  an integer), so the tangent vector there is r0(
6
) =

√
3 2 0


.

Then the tangent line has direction vector
√

3 2 0

and includes the point

1
√

3 2

, so parametric equations are  = 1 +

√
3 ,  =

√
3 + 2,  = 2.

5.
 1

0
(2 i +  cos  j + sin k)  =

 1

0
2 


i +

 1

0
 cos  


j +

 1

0
sin  


k

=


1
3
3
1
0

i +





sin 
1
0
−  1

0
1


sin  

j +

− 1


cos 
1
0

k

= 1
3
i +


1
2

cos 
1
0

j + 2


k = 1
3
i− 2

2
j + 2


k

where we integrated by parts in the -component.

6. (a)  intersects the -plane where  = 0 ⇒ 2− 1 = 0 ⇒  = 1
2
, so the point

is

2−  1

2

3
 0 ln 1

2


=


15
8
 0− ln 2


.

(b) The curve is given by r() =

2− 3 2− 1 ln 


, so r0() =

−32 2 1

. The point (1 1 0) corresponds to  = 1, so

the tangent vector there is r0(1) = h−3 2 1i. Then the tangent line has direction vector h−3 2 1i and includes the point

(1 1 0), so parametric equations are  = 1− 3,  = 1 + 2,  = .

(c) The normal plane has normal vector r0(1) = h−3 2 1i and equation −3(− 1) + 2(− 1) +  = 0 or 3− 2 −  = 1.

7. r() =

2 3 4

 ⇒ r0() =

2 32 43

 ⇒ |r0()| =
√

42 + 94 + 166 and

 =
 3

0
|r0()|  =

 3

0

√
42 + 94 + 166 . Using Simpson’s Rule with () =

√
42 + 94 + 166 and  = 6 we

have∆ = 3−0
6

= 1
2
and

≈ ∆
3


(0) + 4


1
2


+ 2(1) + 4


3
2


+ 2(2) + 4


5
2


+ (3)


= 1

6

√
0 + 0 + 0 + 4 ·


4


1
2

2
+ 9


1
2

4
+ 16


1
2

6
+ 2 ·


4(1)2 + 9(1)4 + 16(1)6

+ 4 ·


4


3
2

2
+ 9


3
2

4
+ 16


3
2

6
+ 2 ·


4(2)2 + 9(2)4 + 16(2)6

+ 4 ·


4


5
2

2
+ 9


5
2

4
+ 16


5
2

6
+


4(3)2 + 9(3)4 + 16(3)6


≈ 86631

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



366 ¤ CHAPTER 13 VECTOR FUNCTIONS

8. r0() =

312−2 sin 2 2 cos 2


, |r0()| =


9 + 4(sin2 2+ cos2 2) =

√
9+ 4.

Thus  =
 1

0

√
9+ 4  =

 13

4

1
9
12  = 1

9
· 2

3
32

13
4

= 2
27

(1332 − 8).

9. The angle of intersection of the two curves, , is the angle between their respective tangents at the point of intersection.

For both curves the point (1 0 0) occurs when  = 0.

r01() = − sin  i + cos  j + k ⇒ r01(0) = j + k and r02() = i + 2 j + 32 k ⇒ r02(0) = i.

r01(0) · r02(0) = (j + k) · i = 0. Therefore, the curves intersect in a right angle, that is,  = 90◦.

10. The parametric value corresponding to the point (1 0 1) is  = 0.

r0() =  i + (cos  + sin ) j + (cos − sin )k ⇒ |r0()| = 


1 + (cos  + sin )2 + (cos − sin )2 =
√

3 

and () =
 
0

√

3  =
√

3( − 1) ⇒  = ln

1 + 1√

3


.

Therefore, r(()) =

1 + 1√

3


i +


1 + 1√

3



sin ln

1 + 1√

3


j +


1 + 1√

3



cos ln

1 + 1√

3


k.

11. (a) r() =

sin3  cos3  sin2 

 ⇒ r0() =

3 sin2  cos −3 cos2  sin  2 sin  cos 


,

|r0()|=


9 sin4  cos2 + 9cos4  sin2  + 4 sin2  cos2 

=


sin2  cos2 

9 sin2  + 9cos2  + 4


=
√

13 sin  cos  [since 0 ≤  ≤ 2 ⇒ sin  cos  ≥ 0]

Then T() =
r0()
|r0()| =

1√
13 sin  cos 


3 sin2  cos −3 cos2  sin  2 sin  cos 


= 1√

13
h3 sin −3 cos  2i.

(b) T0() = 1√
13
h3 cos  3 sin  0i, |T0()| = 1√

13


9 cos2 + 9 sin2  + 0 = 3√

13
, and

N() =
T0()
|T0()| = 1

3
h3 cos  3 sin  0i = hcos  sin  0i.

(c) B() = T()×N() = 1√
13
h3 sin −3 cos  2i × hcos  sin  0i = 1√

13
h−2 sin  2 cos  3i

(d) () =
|T0()|
|r0()| =

3
√

13√
13 sin  cos 

=
3

13 sin  cos 
or 3

13
sec  csc 

12. Using Exercise 13.3.42, we have r0() = h−3 sin  4 cos i, r00() = h−3 cos −4 sin i,

|r0()|3 =


9 sin2  + 4 cos2 
3

and then

() =
|(−3 sin )(−4 sin )− (4 cos )(−3 cos )|

(9 sin2 + 16 cos2 )32
=

12

(9 sin2 + 16 cos2 )32
.

At (3 0),  = 0 and  (0) = 12(16)32 = 12
64

= 3
16
. At (0 4),  = 

2
and 



2


= 12932 = 12

27
= 4

9
.

13. 0 = 43, 00 = 122 and () =
|00|

[1 + (0)2]32
=

122


(1 + 166)32
, so (1) =

12

1732
.
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CHAPTER 13 REVIEW ¤ 367

14. () =

122 − 2


[1 + (43 − 2)2]32
⇒ (0) = 2.

So the osculating circle has radius 1
2
and center


0− 1

2


.

Thus its equation is 2 +

 + 1

2

2
= 1

4
.

15. r() = hsin 2  cos 2i ⇒ r0() = h2 cos 2 1−2 sin 2i ⇒ T() = 1√
5
h2 cos 2 1−2 sin 2i ⇒

T0() = 1√
5
h−4 sin 2 0−4 cos 2i ⇒ N() = h− sin 2 0− cos 2i. So N = N() = h0 0−1i and

B = T×N = 1√
5
h−1 2 0i. So a normal to the osculating plane is h−1 2 0i and an equation is

−1(− 0) + 2( − ) + 0( − 1) = 0 or − 2 + 2 = 0.

16. (a) The average velocity over [3 32] is given by

r(32)− r(3)

32− 3
= 5[r(32)− r(3)], so we draw a

vector with the same direction but 5 times the length

of the vector [r(32)− r(3)].

(b) v(3) = r0(3) = lim
→0

r(3 + )− r(3)



(c) T(3) =
r0(3)
|r0(3)| , a unit vector in the same direction as

r0(3), that is, parallel to the tangent line to the curve at

r(3), pointing in the direction corresponding to

increasing , and with length 1.

17. r() =  ln  i +  j + − k, v() = r0() = (1 + ln ) i + j− − k,

|v ()| =


(1 + ln )2 + 12 + (−−)2 =


2 + 2 ln + (ln )2 + −2, a() = v0() = 1

i + − k

18. r() = (22 − 3) i + 2 j ⇒ v() = r0() = 4 i + 2 j,

speed = |v()| = √162 + 4 = 2
√

42 + 1, and a() = v0() = r00() = 4 i.

At  = 1 we have r(1) = −i + 2 j, v(1) = 4 i + 2 j, a(1) = 4 i.

Notice that 2 =  ⇒  = 2 (2)
2 − 3 = 1

2
2 − 3, so the path is a

parabola.

19. v() =


a()  =

(6 i + 122 j− 6k)  = 32 i + 43 j− 32 k + C, but i− j + 3k = v(0) = 0 + C,

so C = i− j + 3k and v() = (32 + 1) i + (43 − 1) j + (3− 32)k

r() =


v()  = (3 + ) i + (4 − ) j + (3− 3)k + D.

But r(0) = 0 so D = 0 and r() = (3 + ) i + (4 − ) j + (3− 3)k.
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368 ¤ CHAPTER 13 VECTOR FUNCTIONS

20. We set up the axes so that the shot leaves the athlete’s hand 7 ft above the origin. Then we are given r(0) = 7j,

|v(0)| = 43 fts, and v(0) has direction given by a 45◦ angle of elevation. Then a unit vector in the direction of v(0) is

1√
2
(i + j) ⇒ v(0) = 43√

2
(i + j). Assuming air resistance is negligible, the only external force is due to gravity, so as in

Example 13.4.5 we have a = − j where here  ≈ 32 fts2. Since v0() = a(), we integrate, giving v() = − j + C

where C = v(0) = 43√
2
(i + j) ⇒ v () = 43√

2
i +


43√
2
− 


j. Since r0() = v() we integrate again, so

r() = 43√
2
 i +


43√
2
− 1

2
2

j + D. But D = r(0) = 7 j ⇒ r() = 43√

2
 i +


43√
2
− 1

2
2 + 7


j.

(a) At 2 seconds, the shot is at r(2) = 43√
2
(2) i +


43√
2
(2)− 1

2
(2)2 + 7


j ≈ 608 i + 38 j, so the shot is about 38 ft above

the ground, at a horizontal distance of 608 ft from the athlete.

(b) The shot reaches its maximum height when the vertical component of velocity is 0: 43√
2
−  = 0 ⇒

 =
43√
2 

≈ 095 s. Then r(095) ≈ 289 i + 214 j, so the maximum height is approximately 214 ft.

(c) The shot hits the ground when the vertical component of r() is 0, so 43√
2
− 1

2
2 + 7 = 0 ⇒

−162 + 43√
2
 + 7 = 0 ⇒  ≈ 211 s. r(211) ≈ 642 i− 008 j, thus the shot lands approximately 642 ft from the

athlete.

21. Example 13.4.5 showed that the maximum horizontal range is achieved with an angle of elevation of 45 ◦. In this case,

however, the projectile would hit the top of the tunnel using that angle. The horizontal range will be maximized with the

largest angle of elevation that keeps the projectile within a height of 30 m. From Example 13.4.5 we know that the position

function of the projectile is r() = (0 cos) i +

(0 sin)− 1

2
2

j and the velocity is

v() = r0() = (0 cos) i + [(0 sin)− ] j. The projectile achieves its maximum height when the vertical component of

velocity is zero, so (0 sin)−  = 0 ⇒  =
0 sin


. We want the vertical height of the projectile at that time to be

30 m: (0 sin)


0 sin




− 1

2



0 sin



2

= 30 ⇒


2
0 sin2 




− 1

2


2
0 sin2 




= 30 ⇒ 2

0 sin2 

2
= 30 ⇒ sin2  =

30(2)

2
0

=
60(98)

402
= 03675 ⇒

sin =
√

03675. Thus the desired angle of elevation is  = sin−1
√

03675 ≈ 373 ◦.

From the same example, the horizontal distance traveled is  =
2
0 sin 2


≈ 402 sin(746 ◦)

98
≈ 1574 m.

22. r0() = i + 2 j + 2k, r00() = 2k, |r0()| = √1 + 4 + 42 =
√

42 + 5.

Then  =
r0() · r00()
|r0()| =

4√
42 + 5

and  =
|r0()× r00()|

|r0()| =
|4 i− 2 j|√

42 + 5
=

2
√

5√
42 + 5

.
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CHAPTER 13 REVIEW ¤ 369

23. (a) Instead of proceeding directly, we use Formula 3 of Theorem 13.2.3: r() = R() ⇒

v = r0() = R() + R0() = cos i + sin j + v.

(b) Using the same method as in part (a) and starting with v = R() + R0(), we have

a = v0 = R0() + R0() + R00() = 2R0() + R00() = 2v + a.

(c) Here we have r() = − cos i + − sin j = − R(). So, as in parts (a) and (b),

v = r0() = − R0()− − R() = −[R0()−R()] ⇒

a = v0 = −[R00()−R0()]− −[R0()−R()] = −[R00()− 2R0() + R()]

= − a − 2− v + − R

Thus, the Coriolis acceleration (the sum of the “extra” terms not involving a) is −2− v + − R.

24. (a)  () =


1 if  ≤ 0
√

1− 2 if 0    1√
2√

2−  if  ≥ 1√
2

⇒  0() =


0 if   0

−√1− 2 if 0    1√
2

−1 if   1√
2

⇒

 00() =


0 if   0

−1(1− 2)32 if 0    1√
2

0 if   1√
2

since



[−(1− 2)−12] = −(1− 2)−12 − 2(1− 2)−32 = −(1− 2)−32.

Now lim
→0+

√
1− 2 = 1 =  (0) and lim

→(1
√

2)
−

√
1− 2 = 1√

2
= 


1√
2


, so  is continuous. Also, since

lim
→0+

 0() = 0 = lim
→0−

 0() and lim
→(1

√
2)
−
 0() = −1 = lim

→(1
√

2)
+
 0(),  0 is continuous. But

lim
→0+

 00() = −1 6= 0 = lim
→0−

 00(), so  00 is not continuous at  = 0. (The same is true at  = 1√
2
.)

So  does not have continuous curvature.

(b) Set  () = 5 + 4 + 3 + 2 + +  . The continuity conditions on  are  (0) = 0,  (1) = 1,  0(0) = 0 and

 0(1) = 1. Also the curvature must be continuous. For  ≤ 0 and  ≥ 1, () = 0; elsewhere

() =
| 00()|

(1 + [ 0()]2)32
, so we need  00(0) = 0 and  00(1) = 0.

The conditions  (0) =  0(0) =  00(0) = 0 imply that  =  =  = 0.

The other conditions imply that + +  = 1, 5+ 4+ 3 = 1, and

10+ 6+ 3 = 0. From these, we find that  = 3,  = −8, and  = 6.

Therefore  () = 35 − 84 + 63. Since there was no solution with

 = 0, this could not have been done with a polynomial of degree 4.
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PROBLEMS PLUS

1. (a) r() =  cos i + sin j ⇒ v = r0() = − sin i +  cos j, so r = (cos i + sin j) and

v = (− sin i + cos j). v · r = 2(− cos sin + sin cos) = 0, so v ⊥ r. Since r points along a

radius of the circle, and v ⊥ r, v is tangent to the circle. Because it is a velocity vector, v points in the direction of motion.

(b) In (a), we wrote v in the form u, where u is the unit vector − sin i + cos j. Clearly |v| =  |u| = . At

speed , the particle completes one revolution, a distance 2, in time  =
2


=

2


.

(c) a =
v


= −2 cos i− 2 sin j = −2(cos i + sin j), so a = −2r. This shows that a is proportional

to r and points in the opposite direction (toward the origin). Also, |a| = 2 |r| = 2. ≤

(d) By Newton’s Second Law (see Section 13.4), F = a, so |F| =  |a| = 2 =
 ()

2


=

 |v|2


.

2. (a) Dividing the equation |F| sin  =
2




by the equation |F| cos  = , we obtain tan  =

2



, so 2

 =  tan .

(b)  = 400 ft and  = 12◦, so  =
√
 tan  ≈ √400 · 32 · tan 12◦ ≈ 5216 fts ≈ 36 mih.

(c) We want to choose a new radius 1 for which the new rated speed is 3
2
of the old one:

√
1 tan 12◦ = 3

2

√
 tan 12◦.

Squaring, we get 1 tan 12◦ = 9
4
 tan 12◦, so 1 = 9

4
 = 9

4
(400) = 900 ft.

3. (a) The projectile reaches maximum height when 0 =



=




[(0 sin)− 1

2
2] = 0 sin− ; that is, when

 =
0 sin


and  = (0 sin)


0 sin




− 1

2



0 sin



2

=
2
0 sin2 

2
. This is the maximum height attained when

the projectile is fired with an angle of elevation . This maximum height is largest when  = 90◦. In that case, sin = 1

and the maximum height is
2
0

2
.

(b) Let  = 2
0


. We are asked to consider the parabola 2 + 2 −2 = 0 which can be rewritten as  = − 1

2
2 +



2
.

The points on or inside this parabola are those for which− ≤  ≤  and 0 ≤  ≤ −1

2
2 +



2
. When the projectile is

fired at angle of elevation , the points ( ) along its path satisfy the relations  = (0 cos)  and

 = (0 sin)− 1
2
2, where 0 ≤  ≤ (20 sin) (as in Example 13.4.5). Thus

|| ≤
0 cos


20 sin



 =

2
0


sin 2

 ≤ 2
0



 = ||. This shows that − ≤  ≤ .

For  in the specified range, we also have  = 

0 sin− 1

2



= 1
2



20 sin


− 


≥ 0 and
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372 ¤ CHAPTER 13 PROBLEMS PLUS

 = (0 sin)


0 cos
− 

2




0 cos

2

= (tan)− 

22
0 cos2 

2 = − 1

2 cos2 
2 + (tan). Thus

 −
−1

2
2 +



2


=

−1

2 cos2 
2 +

1

2
2 + (tan)− 

2

=
2

2


1− 1

cos2 


+ (tan)− 

2
=

2(1− sec2 ) + 2 (tan)−2

2

=
−(tan2 )2 + 2 (tan)−2

2
=
− [(tan)−]

2

2
≤ 0

We have shown that every target that can be hit by the projectile lies on or inside the parabola  = − 1

2
2 +



2
.

Now let ( ) be any point on or inside the parabola  = − 1

2
2 +



2
. Then− ≤  ≤  and 0 ≤  ≤ − 1

2
2 +



2
.

We seek an angle  such that ( ) lies in the path of the projectile; that is, we wish to find an angle  such that

 = − 1

2 cos2 
2 + (tan)  or equivalently  =

−1

2
(tan2 + 1)2 + (tan) . Rearranging this equation we get

2

2
tan2 −  tan+


2

2
+ 


= 0 or 2(tan)2 − 2(tan) + (2 + 2) = 0 () . This quadratic equation

for tan has real solutions exactly when the discriminant is nonnegative. Now 2 − 4 ≥ 0 ⇔
(−2)2 − 42(2 + 2) ≥ 0 ⇔ 42(2 − 2 − 2) ≥ 0 ⇔ −2 − 2 + 2 ≥ 0 ⇔

 ≤ 1

2
(2 − 2) ⇔  ≤ −1

2
2 +



2
. This condition is satisfied since ( ) is on or inside the parabola

 = − 1

2
2 +



2
. It follows that ( ) lies in the path of the projectile when tan satisfies (), that is, when

tan =
2±


42(2 − 2 − 2)

22
=

±√2 − 2− 2


.

(c) If the gun is pointed at a target with height  at a distance downrange, then

tan = . When the projectile reaches a distance downrange (remember

we are assuming that it doesn’t hit the ground first), we have =  = (0 cos),

so  =


0 cos
and  = (0 sin)− 1

2
2 =  tan− 2

22
0 cos2 

.

Meanwhile, the target, whose -coordinate is also , has fallen from height  to height

− 1
2
2 =  tan− 2

22
0 cos2 

. Thus the projectile hits the target.

4. (a) As in Problem 3, r() = (0 cos) i +

(0 sin)− 1

2
2

j, so  = (0 cos) and  = (0 sin)− 1

2
2. The

difference here is that the projectile travels until it reaches a point where   0 and  = −(tan ). (Here 0 ≤  ≤ 
2
.)

From the parametric equations, we obtain  =


0 cos
and  =

(0 sin)

0 cos
− 2

22
0 cos2 

= (tan)− 2

22
0 cos2 

.

Thus the projectile hits the inclined plane at the point where (tan)− 2

22
0 cos2 

= −(tan ). Since

2

22
0 cos2 

= (tan+ tan ) and   0, we must have


22
0 cos2 

= tan+ tan . It follows that
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CHAPTER 13 PROBLEMS PLUS ¤ 373

 =
22

0 cos2 


(tan+ tan ) and  =



0 cos
=

20 cos


(tan+ tan ). This means that the parametric

equations are defined for  in the interval


0

20 cos


(tan+ tan )


.

(b) The downhill range (that is, the distance to the projectile’s landing point as

measured along the inclined plane) is () =  sec , where  is the

coordinate of the landing point calculated in part (a). Thus

() =
22

0 cos2 


(tan+ tan ) sec  =

22
0




sin cos

cos 
+

cos2  sin 

cos2 



=
22

0 cos

 cos2 
(sin cos  + cos sin ) =

22
0 cos sin(+ )

 cos2 

() is maximized when

0 = 0() =
22

0

 cos2 
[− sin sin(+ ) + cos cos(+ )]

=
22

0

 cos2 
cos[(+ ) + ] =

22
0 cos(2+ )

 cos2 

This condition implies that cos(2+ ) = 0 ⇒ 2+  = 
2
⇒  = 1

2



2
− 

.

(c) The solution is similar to the solutions to parts (a) and (b). This time the projectile travels until it reaches a point where

  0 and  = (tan ). Since tan  = − tan(−), we obtain the solution from the previous one by replacing  with −.

The desired angle is  = 1
2



2

+ 

.

(d) As observed in part (c), firing the projectile up an inclined plane with angle of inclination  involves the same equations as

in parts (a) and (b) but with  replaced by −. So if  is the distance up an inclined plane, we know from part (b) that

 =
22

0 cos sin(− )

 cos2(−) ⇒ 2
0 =

 cos2 

2 cos sin(− )
. 2

0 is minimized (and hence 0 is minimized) with

respect to  when

0 =



(2

0) =
 cos2 

2
· −(cos cos (− )− sin sin (− ))

[cos sin(− )]2

=
− cos2 

2
· cos[+ (− )]

[cos sin(− )]2
=
− cos2 

2
· cos(2− )

[cos sin(− )]2

Since     
2
, this implies cos(2− ) = 0 ⇔ 2−  = 

2
⇒  = 1

2



2

+ 

. Thus the initial speed, and

hence the energy required, is minimized for  = 1
2



2

+ 

.

5. (a) a = − j ⇒ v = v0 −  j = 2 i−  j ⇒ s = s0 + 2 i− 1
2
2 j = 35 j + 2 i− 1

2
2 j ⇒

s = 2 i +

35− 1

2
2

j. Therefore  = 0 when  =


7 seconds. At that instant, the ball is 2


7 ≈ 094 ft to the

right of the table top. Its coordinates (relative to an origin on the floor directly under the table’s edge) are (094 0). At

impact, the velocity is v = 2 i−√7 j, so the speed is |v| = √4 + 7 ≈ 15 fts.
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374 ¤ CHAPTER 13 PROBLEMS PLUS

(b) The slope of the curve when  =


7


is



=




=
−
2

=
−


7

2
=
−√7

2
. Thus cot  =

√
7

2

and  ≈ 76◦.

(c) From (a), |v| = √
4 + 7. So the ball rebounds with speed 08

√
4 + 7 ≈ 1208 fts at angle of inclination

90◦ −  ≈ 823886◦. By Example 13.4.5, the horizontal distance traveled between bounces is  =
2
0 sin 2


, where

0 ≈ 1208 fts and  ≈ 823886◦. Therefore,  ≈ 1197 ft. So the ball strikes the floor at about

2


7 + 1197 ≈ 213 ft to the right of the table’s edge.

6. By the Fundamental Theorem of Calculus, r0() =

sin


1
2
2

 cos


1
2
2

, |r0()| = 1 and so T() = r0().

ThusT0() = 

cos


1
2
2

− sin


1
2
2


and the curvature is  = |T0()| =


()2(1) =  ||.

7. The trajectory of the projectile is given by r() = ( cos) i +

( sin)− 1

2
2

j, so

v() = r0() =  cos i + ( sin− ) j and

|v()|=


( cos)2 + ( sin− )2 =

2 − (2 sin)  + 22 =


2


2 − 2


(sin)  +

2

2



= 


− 


sin

2

+
2

2
− 2

2
sin2  = 


− 


sin

2

+
2

2
cos2 

The projectile hits the ground when ( sin)− 1
2
2 = 0 ⇒  = 2


sin, so the distance traveled by the projectile is

() =

 (2) sin

0

|v()|  =

 (2) sin

0




− 


sin

2

+
2

2
cos2 

= 

 − () sin

2


− 


sin

2

+





cos

2

+
[() cos]

2

2
ln

− 


sin+


− 


sin

2

+





cos

2

(2) sin

0

[using Formula 21 in the Table of Integrals]

=


2




sin





sin

2

+





cos

2

+





cos

2

ln




sin+





sin

2

+





cos

2


+




sin





sin

2

+





cos

2

−




cos

2

ln

−


sin+





sin

2

+





cos

2


=



2





sin · 


+

2

2
cos2  ln





sin+






+




sin · 


− 2

2
cos2  ln


−


sin+







=
2


sin+

2

2
cos2  ln


() sin+ 

− () sin+ 


=

2


sin+

2

2
cos2  ln


1 + sin

1− sin


We want to maximize () for 0 ≤  ≤ 2.
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CHAPTER 13 PROBLEMS PLUS ¤ 375

0() =
2


cos+

2

2


cos2  · 1− sin

1 + sin
· 2 cos

(1− sin)
2
− 2 cos sin ln


1 + sin

1− sin



=
2


cos+

2

2


cos2  · 2

cos
− 2 cos sin ln


1 + sin

1− sin



=
2


cos+

2


cos


1− sin ln


1 + sin

1− sin


=

2


cos


2− sin ln


1 + sin

1− sin



() has critical points for 0    2 when 0() = 0 ⇒ 2− sin ln


1 + sin

1 − sin


= 0 [since cos 6= 0].

Solving by graphing (or using a CAS) gives  ≈ 09855. Compare values at the critical point and the endpoints:

(0) = 0, (2) = 2, and (09855) ≈ 1202. Thus the distance traveled by the projectile is maximized

for  ≈ 09855 or ≈ 56◦.

8. As the cable is wrapped around the spool, think of the top or bottom of the

cable forming a helix of radius + . Let  be the vertical distance

between coils. Then, from similar triangles,

2√
2 − 42

=
2( +)


⇒ 22 = 2( +)2(2 − 42) ⇒

 =
2( +)
2( +)2 − 2

.

If we parametrize the helix by () = (+ ) cos , () = (+ ) sin , then we must have () = [(2)].

The length of one complete cycle is

=

 2

0


[0()]2 + [0()]2 + [0 ()]2  =

 2

0


(+ )2 +




2

2

 = 2


( + )2 +




2

2

= 2


( + )2 +

2(+ )2

2(+ )2 − 2
= 2(+ )


1 +

2

2(+ )2 − 2
=

22( + )2
2( + )2 − 2

The number of complete cycles is [[]], and so the shortest length along the spool is









=

2( + )
2(+ )2 − 2




2( + )2 − 2

22(+ )2



9. We can write the vector equation as r() = a2 + b+ c where a = h1 2 3i, b = h1 2 3i, and c = h1 2 3i.
Then r0() = 2a + b which says that each tangent vector is the sum of a scalar multiple of a and the vector b. Thus the

tangent vectors are all parallel to the plane determined by a and b so the curve must be parallel to this plane. [Here we assume

that a and b are nonparallel. Otherwise the tangent vectors are all parallel and the curve lies along a single line.] A normal

vector for the plane is a× b = h23 − 32 31 − 13 12 − 21i. The point (1, 2, 3) lies on the plane (when
 = 0), so an equation of the plane is

(23 − 32)(− 1) + (31 − 13)( − 2) + (12 − 21)( − 3) = 0

or

(23 − 32)+ (31 − 13) + (12 − 21) = 231 − 321 + 312 − 132 + 123 − 213

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



14 PARTIAL DERIVATIVES

14.1 Functions of Several Variables

1. (a) From Table 1, (−15 40) = −27, which means that if the temperature is−15◦C and the wind speed is 40 kmh, then the

air would feel equivalent to approximately−27◦C without wind.

(b) The question is asking: when the temperature is −20◦C, what wind speed gives a wind-chill index of −30◦C? From

Table 1, the speed is 20 kmh.

(c) The question is asking: when the wind speed is 20 kmh, what temperature gives a wind-chill index of −49◦C? From

Table 1, the temperature is−35◦C.

(d) The function = (−5 ) means that we fix  at −5 and allow  to vary, resulting in a function of one variable. In

other words, the function gives wind-chill index values for different wind speeds when the temperature is −5◦C. From

Table 1 (look at the row corresponding to  = −5), the function decreases and appears to approach a constant value as 

increases.

(e) The function = ( 50) means that we fix  at 50 and allow  to vary, again giving a function of one variable. In

other words, the function gives wind-chill index values for different temperatures when the wind speed is 50 kmh . From

Table 1 (look at the column corresponding to  = 50), the function increases almost linearly as  increases.

2. (a) From Table 3, (95 70) = 124, which means that when the actual temperature is 95◦F and the relative humidity is 70%,

the perceived air temperature is approximately 124◦F.

(b) Looking at the row corresponding to  = 90, we see that (90 ) = 100 when  = 60.

(c) Looking at the column corresponding to  = 50, we see that ( 50) = 88 when  = 85.

(d)  = (80 ) means that  is fixed at 80 and  is allowed to vary, resulting in a function of  that gives the humidex values

for different relative humidities when the actual temperature is 80◦F. Similarly,  = (100 ) is a function of one

variable that gives the humidex values for different relative humidities when the actual temperature is 100◦F. Looking at

the rows of the table corresponding to  = 80 and  = 100 we see that (80 ) increases at a relatively constant rate of

approximately 1◦F per 10% relative humidity, while (100 ) increases more quickly (at first with an average rate of

change of 5◦F per 10% relative humidity) and at an increasing rate (approximately 12◦F per 10% relative humidity for

larger values of ).

3.  (120 20) = 147(120)065(20)035 ≈ 942, so when the manufacturer invests $20 million in capital and 120,000 hours of

labor are completed yearly, the monetary value of the production is about $94.2 million.

4. If the amounts of labor and capital are both doubled, we replace  in the function with 2 2, giving

 (2 2) = 101(2)075(2)025 = 101(2075)(2025)075025 = (21)101075025 = 2 ()

Thus, the production is doubled. It is also true for the general case  () = 1−:

 (2 2) = (2)(2)1− = (2)(21−)1− = (2+1−)1− = 2 ().
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378 ¤ CHAPTER 14 PARTIAL DERIVATIVES

5. (a) (160 70) = 01091(160)0425(70)0725 ≈ 205, which means that the surface area of a person 70 inches (5 feet 10

inches) tall who weighs 160 pounds is approximately 20.5 square feet.

(b) Answers will vary depending on the height and weight of the reader.

6. We compare the values for the wind-chill index given by Table 1 with those given by the model function:

Modeled Wind-Chill Index Values ( )

The values given by the function appear to be fairly close (within 05) to the values in Table 1.

7. (a) According to Table 4, (40 15) = 25, which means that if a 40-knot wind has been blowing in the open sea for 15 hours,

it will create waves with estimated heights of 25 feet.

(b)  = (30 ) means we fix  at 30 and allow  to vary, resulting in a function of one variable. Thus here,  = (30 )

gives the wave heights produced by 30-knot winds blowing for  hours. From the table (look at the row corresponding to

 = 30), the function increases but at a declining rate as  increases. In fact, the function values appear to be approaching a

limiting value of approximately 19, which suggests that 30-knot winds cannot produce waves higher than about 19 feet.

(c)  = ( 30) means we fix  at 30, again giving a function of one variable. So,  = ( 30) gives the wave heights

produced by winds of speed  blowing for 30 hours. From the table (look at the column corresponding to  = 30), the

function appears to increase at an increasing rate, with no apparent limiting value. This suggests that faster winds (lasting

30 hours) always create higher waves.

8. (a) The cost of making  small boxes,  medium boxes, and  large boxes is  = (  ) = 8000 + 25+ 4 + 45

dollars.

(b) (3000 5000 4000) = 8000 + 25(3000) + 4(5000) + 45(4000) = 53,500 which means that it costs $53,500 to make

3000 small boxes, 5000 medium boxes, and 4000 large boxes.

(c) Because no partial boxes will be produced, each of , , and  must be a positive integer or zero.
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SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES ¤ 379

9. (a) (2−1) = cos(2 + 2(−1)) = cos(0) = 1

(b) + 2 is defined for all choices of values for  and  and the cosine function is defined for all input values, so the domain

of  is R2.

(c) The range of the cosine function is [−1 1] and + 2 generates all possible input values for the cosine function, so the

range of cos(+ 2) is [−1 1].

10. (a)  (3 1) = 1 +
√

4− 12 = 1 +
√

3

(b)


4− 2 is defined only when 4− 2 ≥ 0, or 2 ≤ 4 ⇔

−2 ≤  ≤ 2. So the domain of  is {( ) |−2 ≤  ≤ 2}.

(c) We know 0 ≤


4− 2 ≤ 2 so 1 ≤ 1 +


4− 2 ≤ 3. Thus the

range of  is [1 3].

11. (a) (1 1 1) =
√

1 +
√

1 +
√

1 + ln(4− 12 − 12 − 12) = 3 + ln 1 = 3

(b)
√
,
√
,
√
 are defined only when  ≥ 0,  ≥ 0,  ≥ 0, and ln(4− 2 − 2 − 2) is defined when

4− 2 − 2 − 2  0 ⇔ 2 + 2 + 2  4, thus the domain is
(  ) | 2 + 2 + 2  4  ≥ 0  ≥ 0  ≥ 0


, the portion of the interior of a sphere of radius 2, centered at the

origin, that is in the first octant.

12. (a) (1 2 3) = 13 · 22 · 3√10− 1− 2− 3 = 12
√

4 = 24

(b)  is defined only when 10− −  −  ≥ 0 ⇔  ≤ 10− − , so the domain is {(  ) |  ≤ 10− − }, the
points on or below the plane  +  +  = 10.

13.
√
− 2 is defined only when − 2 ≥ 0, or  ≥ 2, and

√
 − 1 is defined

only when  − 1 ≥ 0, or  ≥ 1. So the domain of  is

{( ) |  ≥ 2  ≥ 1}.

14. 4
√
− 3 is defined only when − 3 ≥ 0, or  ≥ 3. So the domain of 

is {( ) |  ≥ 3} or equivalently ( ) |  ≤ 1
3


.
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380 ¤ CHAPTER 14 PARTIAL DERIVATIVES

15. ln(9− 2 − 92) is defined only when

9− 2 − 92  0, or 1
9
2 + 2  1. So the domain of 

is

( )

 1
9
2 + 2  1


, the interior of an ellipse.

16.

2 + 2 − 4 is defined only when 2 + 2 − 4 ≥ 0

⇔ 2 + 2 ≥ 4. So the domain of  is
( ) | 2 + 2 ≥ 4


, the set of points on or outside a

circle of radius 2 centered at the origin.

17.  is not defined if  +  = 0 ⇔  = − (and
is defined otherwise). Thus the domain of  is

{( ) |  6= −}, the set of all points in R2 that are not

on the line  = −.

18. ln(2− ) is defined only when 2−   0, or   2. In

addition,  is not defined if 1− 2 − 2 = 0 ⇔
2 + 2 = 1. Thus the domain of  is
( ) |   2 2 + 2 6= 1


, the set of all points to

the left of the line  = 2 and not on the unit circle.

19.

 − 2 is defined only when  − 2 ≥ 0, or  ≥ 2.

In addition,  is not defined if 1− 2 = 0 ⇔
 = ±1. Thus the domain of  is
( ) |  ≥ 2  6= ±1


.

20. sin−1( + ) is defined only when −1 ≤ +  ≤ 1 ⇔
−1−  ≤  ≤ 1− . Thus the domain of  is

{( ) | −1−  ≤  ≤ 1− }, consisting of those
points on or between the parallel lines  = −1−  and

 = 1− .
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SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES ¤ 381

21.  is defined only when 4− 2 ≥ 0 ⇔ −2 ≤  ≤ 2

and 9− 2 ≥ 0 ⇔ −3 ≤  ≤ 3 and 1− 2 ≥ 0

⇔ −1 ≤  ≤ 1. Thus the domain of  is

{(  ) | −2 ≤  ≤ 2 −3 ≤  ≤ 3 −1 ≤  ≤ 1},
a solid rectangular box with vertices (±2±3±1)

(all combinations).

22.  is defined only when 16− 42 − 42 − 2  0 ⇒
2

4
+

2

4
+

2

16
 1. Thus,

 =


(  )

 2

4
+

2

4
+

2

16
 1


, that is, the points

inside the ellipsoid
2

4
+

2

4
+

2

16
= 1.

23. The graph of  has equation  = , a plane which

intersects the -plane in the line  = ,  = 0. The

portion of this plane in the first octant is shown.

24. The graph of  has equation  = 2, a parabolic cylinder.

25.  = 10− 4− 5 or 4 + 5 +  = 10, a plane with

intercepts 25, 2, and 10.

26.  = cos , a cylinder.
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382 ¤ CHAPTER 14 PARTIAL DERIVATIVES

27.  = sin, a cylinder. 28.  = 2− 2 − 2, a circular paraboloid opening

downward with vertex at (0 0 2).

29.  = 2 + 42 + 1, an elliptic paraboloid opening upward

with vertex at (0 0 1).

30.  =


42 + 2 so 42 + 2 = 2 and  ≥ 0, the top

half of an elliptic cone.

31.  =


4− 42 − 2 so 42 + 2 + 2 = 4 or 2 +
2

4
+

2

4
= 1

and  ≥ 0, the top half of an ellipsoid.

32. (a) ( ) =
1

1 + 2 + 2
. The trace in  = 0 is  =

1

1 + 2
, and the trace in  = 0 is  =

1

1 + 2
. The only possibility is

graph III. Notice also that the level curves of  are
1

1 + 2 + 2
=  ⇔ 2 + 2 =

1


− 1, a family of circles for

  1.

(b) ( ) =
1

1 + 22
. The trace in  = 0 is the horizontal line  = 1, and the trace in  = 0 is also  = 1. Both graphs I

and II have these traces; however, notice that here   0, so the graph is I.

(c) ( ) = ln(2 + 2). The trace in  = 0 is  = ln 2, and the trace in  = 0 is  = ln2. The level curves of  are

ln(2 + 2) =  ⇔ 2 + 2 = , a family of circles. In addition,  is large negative when 2 + 2 is small, so this is

graph IV.
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SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES ¤ 383

(d) ( ) = cos

2 + 2. The trace in  = 0 is  = cos


2 = cos || = cos , and the trace in  = 0 is

 = cos
√
2 = cos || = cos. Notice also that the level curve ( ) = 0 is cos


2 + 2 = 0 ⇔

2 + 2 =


2

+ 
2
, a family of circles, so this is graph V.

(e) ( ) = ||. The trace in  = 0 is  = 0, and the trace in  = 0 is  = 0, so it must be graph VI.

(f) ( ) = cos(). The trace in  = 0 is  = cos 0 = 1, and the trace in  = 0 is  = 1. As mentioned in part (b), these

traces match both graphs I and II. Here  can be negative, so the graph is II. (Also notice that the trace in  = 1 is

 = cos , and the trace in  = 1 is  = cos.)

33. The point (−3 3) lies between the level curves with -values 50 and 60. Since the point is a little closer to the level curve with

 = 60, we estimate that (−3 3) ≈ 56. The point (3−2) appears to be just about halfway between the level curves with

-values 30 and 40, so we estimate (3−2) ≈ 35. The graph rises as we approach the origin, gradually from above, steeply

from below.

34. (a)  (Chicago) lies between level curves with pressures 1012 and 1016 mb, and since  appears to be located about

one-fourth the distance from the 1012 mb isobar to the 1016 mb isobar, we estimate the pressure at Chicago to be about

1013 mb.  lies very close to a level curve with pressure 1012 mb so we estimate the pressure at Nashville to be

approximately 1012 mb.  appears to be just about halfway between level curves with pressures 1008 and 1012 mb, so we

estimate the pressure at San Francisco to be about 1010 mb.  lies close to a level curve with pressure 1016 mb but we

can’t see a level curve to its left so it is more difficult to make an accurate estimate. There are lower pressures to the right

of  and  is a short distance to the left of the level curve with pressure 1016 mb, so we might estimate that the pressure at

Vancouver is about 1017 mb.

(b) Winds are stronger where the isobars are closer together (see Figure 13), and the level curves are closer near  than at the

other locations, so the winds were strongest at San Francisco.

35. The point (160 10), corresponding to day 160 and a depth of 10 m, lies between the isothermals with temperature values

of 8 and 12◦C. Since the point appears to be located about three-fourths the distance from the 8◦C isothermal to the 12◦C

isothermal, we estimate the temperature at that point to be approximately 11◦C. The point (180 5) lies between the 16 and

20◦C isothermals, very close to the 20◦C level curve, so we estimate the temperature there to be about 195◦C.

36. If we start at the origin and move along the -axis, for example, the -values of a cone centered at the origin increase at a

constant rate, so we would expect its level curves to be equally spaced. A paraboloid with vertex the origin, on the other hand,

has -values which change slowly near the origin and more quickly as we move farther away. Thus, we would expect its level

curves near the origin to be spaced more widely apart than those farther from the origin. Therefore contour map I must

correspond to the paraboloid, and contour map II the cone.

37. Near , the level curves are very close together, indicating that the terrain is quite steep. At , the level curves are much

farther apart, so we would expect the terrain to be much less steep than near , perhaps almost flat.
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384 ¤ CHAPTER 14 PARTIAL DERIVATIVES

38.

39. The level curves of () =


2
are



2
=  ⇔  = 2 or

equivalently  =

 =

1√


√
 since  0,   0. We draw the

level curves for  = 185, 25, 30, and 40.

The shaded region corresponds to BMI values between 18.5 and 25,

those considered optimal. For a mass of 62 kg and a height of 152 cm

 

(1.52 m), the BMI is (62 152) =
62

1522
≈ 268, which is outside the optimal range.

40. From Exercise 39, the body mass index function is () = 2. The BMI for a person 200 cm (2.0 m, about 6 ft 7 in)

tall and with mass 80 kg (about 176 lb) is (80 20) = 80(20)2 = 20.

The level curve () = 20 ⇔  = 202 is shown in the graph.

A person 1.5 m tall (about 4 ft 11 in) has a BMI on the same level

curve if their mass is = 20(15)2 = 45 kg (about 99 lb), and a person

1.8 m (about 5 ft 11 in) tall would have mass = 20(18)2 = 648 kg

(about 143 lb). (See the graph.)

41. 42.
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SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES ¤ 385

43. 44.

45. The level curves are 2 − 2 = . When  = 0 the level

curve is the pair of lines  = ±, and when  6= 0 the

level curves are a family of hyperbolas (oriented

differently for   0 than for   0).

46. The level curves are  =  or  = . When  6= 0

the level curves are a family of hyperbolas. When  = 0

the level curve is the pair of lines  = 0,  = 0.

47. The level curves are
√
+  =  or  = −√+ , a

family of vertical translations of the graph of the root

function  = −√.

48. The level curves are ln(2 + 42) =  or 2 + 42 = ,

a family of ellipses.
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386 ¤ CHAPTER 14 PARTIAL DERIVATIVES

49. The level curves are  =  or  = −, a family of

exponential curves.

50. The level curves are  − arctan =  or

 = (arctan) + , a family of vertical translations of

the graph of the inverse tangent function  = arctan.

51. The level curves are 3

2 + 2 =  or 2 + 2 = 3

( ≥ 0), a family of circles centered at the origin with

radius 32.

52. For  6= 0 and ( ) 6= (0 0),  =


2 + 2
⇔

2 + 2 − 


= 0 ⇔ 2 +


 − 1

2

2
=

1

42
, a family

of circles with center

0 1

2


and radius 1

2
(without the

origin). If  = 0, the level curve is the -axis.

53. The contour map consists of the level curves  = 2 + 92, a family of

ellipses with major axis the -axis. (Or, if  = 0, the origin.)

The graph of ( ) is the surface  = 2 + 92, an elliptic paraboloid.

If we visualize lifting each ellipse  = 2 + 92 of the contour map to the plane

 = , we have horizontal traces that indicate the shape of the graph of  .
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SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES ¤ 387

54. The contour map consists of the level curves  =


36− 92 − 42 ⇒
92 + 42 = 36− 2,  ≥ 0, a family of ellipses with major axis the

-axis. (Or, if  = 6, the origin.)

The graph of ( ) is the surface  =


36− 92 − 42, or equivalently the upper half of the ellipsoid

92 + 42 + 2 = 36. If we visualize lifting each ellipse  =


36− 92 − 42 of the contour map to the plane  = ,

we have horizontal traces that indicate the shape of the graph of  .

55. The isothermals are given by  = 100(1 + 2 + 22) or

2 + 22 = (100− ) [0   ≤ 100], a family of ellipses.

56. The equipotential curves are  =


2 − 2 − 2
or

2 + 2 = 2 −
 


2

, a family of circles ( ≥ ).

Note: As →∞, the radius of the circle approaches .

57. ( ) = 2 − 3

The traces parallel to the -plane (such as the left-front trace in the graph above) are parabolas; those parallel to the -plane

(such as the right-front trace) are cubic curves. The surface is called a monkey saddle because a monkey sitting on the surface

near the origin has places for both legs and tail to rest.
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388 ¤ CHAPTER 14 PARTIAL DERIVATIVES

58. ( ) = 3 − 3

The traces parallel to either the

-plane or the -plane are cubic

curves.

59. ( ) = −(2+2)3

sin(2) + cos(2)



60. ( ) = cos cos 

The traces parallel to either the

- or -plane are cosine curves

with amplitudes that vary

from 0 to 1.

61.  = sin() (a) C (b) II

Reasons: This function is periodic in both  and , and the function is the same when  is interchanged with , so its graph is

symmetric about the plane  = . In addition, the function is 0 along the - and -axes. These conditions are satisfied only by

C and II.

62.  =  cos  (a) A (b) IV

Reasons: This function is periodic in  but not , a condition satisfied only by A and IV. Also, note that traces in  =  are

cosine curves with amplitude that increases as  increases.

63.  = sin(− ) (a) F (b) I

Reasons: This function is periodic in both  and  but is constant along the lines  = + , a condition satisfied only

by F and I.

64.  = sin− sin  (a) E (b) III

Reasons: This function is periodic in both  and , but unlike the function in Exercise 63, it is not constant along lines such as

 =  + , so the contour map is III. Also notice that traces in  =  are vertically shifted copies of the sine wave  = sin,

so the graph must be E.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES ¤ 389

65.  = (1− 2)(1− 2) (a) B (b) VI

Reasons: This function is 0 along the lines  = ±1 and  = ±1. The only contour map in which this could occur is VI. Also

note that the trace in the -plane is the parabola  = 1− 2 and the trace in the -plane is the parabola  = 1− 2, so the

graph is B.

66.  =
− 

1 + 2 + 2
(a) D (b) V

Reasons: This function is not periodic, ruling out the graphs in A, C, E, and F. Also, the values of  approach 0 as we use

points farther from the origin. The only graph that shows this behavior is D, which corresponds to V.

67.  = + 3 + 5 is a family of parallel planes with normal vector h1 3 5i.

68.  = 2 + 32 + 52 is a family of ellipsoids for   0 and the origin for  = 0.

69. Equations for the level surfaces are  = 2 + 2. For   0, we have a family of circular cylinders with axis the -axis and

radius
√
. When  = 0 the level surface is the -axis. (There are no level surfaces for   0.)

70. Equations for the level surfaces are 2 − 2 − 2 = . For  = 0, the equation becomes 2 + 2 = 2 and the surface is a

right circular cone with vertex the origin and axis the -axis. For   0, we have a family of hyperboloids of two sheets with

axis the -axis, and for   0, we have a family of hyperboloids of one sheet with axis the -axis.

71. (a) The graph of  is the graph of  shifted upward 2 units.

(b) The graph of  is the graph of  stretched vertically by a factor of 2.

(c) The graph of  is the graph of  reflected about the -plane.

(d) The graph of ( ) = −( ) + 2 is the graph of  reflected about the -plane and then shifted upward 2 units.

72. (a) The graph of  is the graph of  shifted 2 units in the positive -direction.

(b) The graph of  is the graph of  shifted 2 units in the negative -direction.

(c) The graph of  is the graph of  shifted 3 units in the negative -direction and 4 units in the positive -direction.

73. ( ) = 3− 4 − 42 − 10

Three-dimensional view Front view

[continued]
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390 ¤ CHAPTER 14 PARTIAL DERIVATIVES

It does appear that the function has a maximum value, at the higher of the two “hilltops.” From the front view graph, the

maximum value appears to be approximately 15. Both hilltops could be considered local maximum points, as the values of 

there are larger than at the neighboring points. There does not appear to be any local minimum point; although the valley shape

between the two peaks looks like a minimum of some kind, some neighboring points have lower function values.

74. ( ) = −
2−2

Three-dimensional view Front view

The function does have a maximum value, which it appears to achieve at two different points (the two “hilltops”). From the

front view graph, we can estimate the maximum value to be approximately 018. These same two points can also be

considered local maximum points. The two “valley bottoms” visible in the graph can be considered local minimum points, as

all the neighboring points give greater values of  .

75. ( ) =
+ 

2 + 2
. As both  and  become large, the function values

appear to approach 0, regardless of which direction is considered. As

( ) approaches the origin, the graph exhibits asymptotic behavior.

From some directions, ( )→∞, while in others ( )→−∞.

(These are the vertical spikes visible in the graph.) If the graph is

examined carefully, however, one can see that ( ) approaches 0

along the line  = −.

76. ( ) =


2 + 2
. The graph exhibits different limiting values as  and 

become large or as ( ) approaches the origin, depending on the direction

being examined. For example, although  is undefined at the origin, the

function values appear to be 1
2
along the line  = , regardless of the distance

from the origin. Along the line  = −, the value is always − 1
2
. Along the

axes, ( ) = 0 for all values of ( ) except the origin. Other directions,

heading toward the origin or away from the origin, give various limiting

values between − 1
2
and 1

2
.
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SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES ¤ 391

77. ( ) = 
2+2 . First, if  = 0, the graph is the cylindrical surface

 = 
2

(whose level curves are parallel lines). When   0, the vertical

trace above the -axis remains fixed while the sides of the surface in the

-direction “curl” upward, giving the graph a shape resembling an

elliptic paraboloid. The level curves of the surface are ellipses centered at

the origin.  = 0

For 0    1, the ellipses have major axis the -axis and the eccentricity increases as → 0.

 = 05 (level curves in increments of 1)

For  = 1 the level curves are circles centered at the origin.

 = 1 (level curves in increments of 1)

When   1, the level curves are ellipses with major axis the -axis, and the eccentricity increases as  increases.

 = 2 (level curves in increments of 4)

For values of   0, the sides of the surface in the -direction curl downward and approach the -plane (while the vertical

trace  = 0 remains fixed), giving a saddle-shaped appearance to the graph near the point (0 0 1). The level curves consist of
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392 ¤ CHAPTER 14 PARTIAL DERIVATIVES

a family of hyperbolas. As  decreases, the surface becomes flatter in the -direction and the surface’s approach to the curve in

the trace  = 0 becomes steeper, as the graphs demonstrate.

 = −05 (level curves in increments of 025)

 = −2 (level curves in increments of 025)

78. = (2 + 2)−
2−2 . There are only three basic shapes which can be obtained (the fourth and fifth graphs are the

reflections of the first and second ones in the -plane). Interchanging  and  rotates the graph by 90◦ about the -axis.

 = 1,  = 1

 = 2,  = 1  = 1,  = −1

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES ¤ 393

 = −1,  = −1  = −2,  = −1

If  and  are both positive ( 6= ), we see that the graph has two maximum points whose height increases as  and  increase.

If  and  have opposite signs, the graph has two maximum points and two minimum points, and if  and  are both negative,

the graph has one maximum point and two minimum points.

79.  = 2 + 2 + . When   −2, the surface intersects the plane  =  6= 0 in a hyperbola. (See the following graph.)

It intersects the plane  =  in the parabola  = (2 + )2, and the plane  = − in the parabola  = (2− )2. These

parabolas open in opposite directions, so the surface is a hyperbolic paraboloid.

When  = −2 the surface is  = 2 + 2 − 2 = (− )
2. So the surface is constant along each line −  = . That

is, the surface is a cylinder with axis −  = 0,  = 0. The shape of the cylinder is determined by its intersection with the

plane +  = 0, where  = 42, and hence the cylinder is parabolic with minima of 0 on the line  = .

 = −5,  = 2  = −10  = −2

When −2   ≤ 0,  ≥ 0 for all  and . If  and  have the same sign, then

2 + 2 +  ≥ 2 + 2 − 2 = (− )
2 ≥ 0. If they have opposite signs, then  ≥ 0. The intersection with the

surface and the plane  =   0 is an ellipse (see graph below). The intersection with the

surface and the planes  = 0 and  = 0 are parabolas  = 2 and  = 2 respectively, so the surface is an elliptic paraboloid.

When   0 the graphs have the same shape, but are reflected in the plane  = 0, because

2 + 2 +  = (−)
2

+ 2 + (−)(−). That is, the value of  is the same for  at ( ) as it is for − at (− ).
[continued]
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394 ¤ CHAPTER 14 PARTIAL DERIVATIVES

 = −1,  = 2  = 0  = 10

So the surface is an elliptic paraboloid for 0    2, a parabolic cylinder for  = 2, and a hyperbolic paraboloid for   2.

80. First, we graph ( ) =

2 + 2.

( ) =

2 + 2

Graphs of the other four functions follow.

( ) = 
√
2 + 2 ( ) = ln


2 + 2

( ) = sin


2 + 2


( ) =

1
2 + 2

Notice that each graph ( ) = 


2 + 2


exhibits radial symmetry about the -axis and the trace in the -plane for
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SECTION 14.2 LIMITS AND CONTINUITY ¤ 395

 ≥ 0 is the graph of  = (),  ≥ 0. This suggests that the graph of ( ) = 


2 + 2


is obtained from the graph

of  by graphing  = () in the -plane and rotating the curve about the -axis.

81. (a)  = 1− ⇒ 


= − ⇒ 


= 







⇒ ln




= ln










⇒

ln



= ln +  ln







(b) We list the values for ln() and ln() for the years 1899 –1922. (Historically, these values were rounded to

2 decimal places.)

Year  = ln()  = ln()

1899 0 0

1900 −002 −006

1901 −004 −002

1902 −004 0

1903 −007 −005

1904 −013 −012

1905 −018 −004

1906 −020 −007

1907 −023 −015

1908 −041 −038

1909 −033 −024

1910 −035 −027

Year  = ln()  = ln()

1911 −038 −034

1912 −038 −024

1913 −041 −025

1914 −047 −037

1915 −053 −034

1916 −049 −028

1917 −053 −039

1918 −060 −050

1919 −068 −057

1920 −074 −057

1921 −105 −085

1922 −098 −059

After entering the ( ) pairs into a calculator or CAS, the resulting least squares regression line through the points is

approximately  = 075136+ 001053, which we round to  = 075+ 001.

(c) Comparing the regression line from part (b) to the equation  = ln +  with  = ln() and  = ln(), we have

 = 075 and ln  = 001 ⇒  = 001 ≈ 101. Thus, the Cobb-Douglas production function is

 = 1− = 101075025.

14.2 Limits and Continuity

1. In general, we can’t say anything about (3 1)! lim
()→(31)

( ) = 6 means that the values of ( ) approach 6 as

( ) approaches, but is not equal to, (3 1). If  is continuous, we know that lim
()→()

( ) = ( ), so

lim
()→(31)

( ) = (3 1) = 6.

2. (a) The outdoor temperature as a function of longitude, latitude, and time is continuous. Small changes in longitude, latitude,

or time can produce only small changes in temperature, as the temperature doesn’t jump abruptly from one value to

another.
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396 ¤ CHAPTER 14 PARTIAL DERIVATIVES

(b) Elevation is not necessarily continuous. If we think of a cliff with a sudden drop-off, a very small change in longitude or

latitude can produce a comparatively large change in elevation, without all the intermediate values being attained.

Elevation can jump from one value to another.

(c) The cost of a taxi ride is usually discontinuous. The cost normally increases in jumps, so small changes in distance traveled

or time can produce a jump in cost. A graph of the function would show breaks in the surface.

3. We make a table of values of

( ) =
23 + 32 − 5

2− 
for a set

of ( ) points near the origin.

As the table shows, the values of ( ) seem to approach −25 as ( ) approaches the origin from a variety of different

directions. This suggests that lim
()→(00)

( ) = −25. Since  is a rational function, it is continuous on its domain.  is

defined at (0 0), so we can use direct substitution to establish that lim
()→(00)

( ) =
0203 + 0302 − 5

2− 0 · 0 = −5

2
, verifying

our guess.

4. We make a table of values of

( ) =
2

2 + 22
for a set of ( )

points near the origin.

It appears from the table that the values of ( ) are not approaching a single value as ( ) approaches the origin. For

verification, if we first approach (0 0) along the -axis, we have ( 0) = 0, so ( )→ 0. But if we approach (0 0) along

the line  = , ( ) =
22

2 + 22
=

2

3
( 6= 0), so ( )→ 2

3
. Since  approaches different values along different paths

to the origin, this limit does not exist.

5. ( ) = 23 − 42 is a polynomial, and hence continuous, so we can find the limit by direct substitution:

lim
()→(32)

( ) = (3 2) = (3)
2
(2)

3 − 4(2)
2

= 56.
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SECTION 14.2 LIMITS AND CONTINUITY ¤ 397

6. ( ) =
2 + 2

2 − 2
is a rational function and hence continuous on its domain.

(2−1) is in the domain of  , so  is continuous there and lim
()→(2−1)

( ) = (2−1) =
(2)2(−1) + (2)(−1)2

(2)2 − (−1)2
= −2

3
.

7. −  is a polynomial and therefore continuous. Since sin  is a continuous function, the composition sin(− ) is also

continuous. The function  is a polynomial, and hence continuous, and the product of continuous functions is continuous, so

( ) =  sin(− ) is a continuous function. Then lim
()→(2)

( ) = 

 

2


= 

2
sin

 − 

2


= 

2
sin 

2
= 

2
.

8. 2−  is a polynomial and therefore continuous. Since
√
 is continuous for  ≥ 0, the composition

√
2−  is continuous

where 2−  ≥ 0. The function  is continuous everywhere, so the composition ( ) = 
√

2− is a continuous function

for 2−  ≥ 0. If  = 3 and  = 2 then 2−  ≥ 0, so lim
()→(32)

( ) = (3 2) = 
√

2(3)−2 = 2.

9. ( ) = (4 − 42)(2 + 22). First approach (0 0) along the -axis. Then ( 0) = 42 = 2 for  6= 0, so

( )→ 0. Now approach (0 0) along the -axis. For  6= 0, (0 ) = −4222 = −2, so ( )→ −2. Since  has

two different limits along two different lines, the limit does not exist.

10. ( ) = (54 cos2 )(4 + 4). First approach (0 0) along the -axis. Then ( 0) = 04 = 0 for  6= 0, so

( )→ 0. Next approach (0 0) along the -axis. For  6= 0, (0 ) = 544 = 5, so ( )→ 5. Since  has two

different limits along two different lines, the limit does not exist.

11. ( ) = (2 sin2 )(4 + 4). On the -axis, ( 0) = 0 for  6= 0, so ( )→ 0 as ( ) → (0 0) along the

-axis. Approaching (0 0) along the line  = , ( ) =
2 sin2 

4 + 4
=

sin2 

22
=

1

2


sin



2

for  6= 0 and

lim
→0

sin


= 1, so ( )→ 1

2
. Since  has two different limits along two different lines, the limit does not exist.

12. ( ) =
 − 

(− 1)2 + 2
. On the -axis, ( 0) = 0(− 1)2 = 0 for  6= 1, so ( )→ 0 as ( )→ (1 0) along

the -axis. Approaching (1 0) along the line  = − 1, ( − 1) =
(− 1)− (− 1)

(− 1)2 + (− 1)2
=

(− 1)2

2(− 1)2
=

1

2
for  6= 1,

so ( )→ 1
2
along this line. Thus the limit does not exist.

13. ( ) =


2 + 2
. We can see that the limit along any line through (0 0) is 0, as well as along other paths through

(0 0) such as  = 2 and  = 2. So we suspect that the limit exists and equals 0; we use the Squeeze Theorem to prove our

assertion. Since || ≤

2 + 2, we have

||
2 + 2

≤ 1 and so 0 ≤
 

2 + 2

 ≤ ||. Now ||→ 0 as ( )→ (0 0),

so

 
2 + 2

→ 0 and hence lim
()→(00)

( ) = 0.
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398 ¤ CHAPTER 14 PARTIAL DERIVATIVES

14. ( ) =
3 − 3

2 +  + 2
=

(− )(2 +  + 2)

2 +  + 2
= −  for ( ) 6= (0 0). [Note that 2 +  + 2 = 0 only when

( ) = (0 0).] Thus lim
()→(00)

( ) = lim
()→(00)

(− ) = 0− 0 = 0.

15. Let ( ) =
2 cos 

2 + 4
. Then ( 0) = 0 for  6= 0, so ( ) → 0 as ( )→ (0 0) along the -axis. Approaching

(0 0) along the -axis or the line  =  also gives a limit of 0. But 

2 


=

22 cos 

(2)2 + 4
=

4 cos 

24
=

cos 

2
for  6= 0,

so ( )→ 1
2

cos 0 = 1
2
as ( )→ (0 0) along the parabola  = 2. Thus the limit doesn’t exist.

16. We can use the Squeeze Theorem to show that lim
()→(00)

4

4 + 4
= 0:

0 ≤ || 4

4 + 4
≤ || since 0 ≤ 4

4 + 4
≤ 1, and ||→ 0 as ( ) → (0 0), so

|| 4

4 + 4
→ 0 ⇒ 4

4 + 4
→ 0 as

( )→ (0 0).

17. lim
()→(00)

2 + 2
2 + 2 + 1− 1

= lim
()→(00)

2 + 2
2 + 2 + 1− 1

·

2 + 2 + 1 + 1
2 + 2 + 1 + 1

= lim
()→(00)


2 + 2


2 + 2 + 1 + 1


2 + 2

= lim
()→(00)


2 + 2 + 1 + 1


= 2

18. ( ) = 4(2 + 8). On the -axis, ( 0) = 0 for  6= 0, so ( ) → 0 as ( )→ (0 0) along the -axis.

Approaching (0 0) along the curve  = 4 gives (4 ) = 828 = 1
2
for  6= 0, so along this path ( )→ 1

2
as

( )→ (0 0). Thus the limit does not exist.

19. 
2

is a composition of continuous functions and hence continuous.  is a continuous function and tan  is continuous for

 6= 
2

+  ( an integer), so the composition tan() is continuous for  6= 
2

+ . Thus the product

(  ) = 
2

tan() is a continuous function for  6= 
2

+ . If  =  and  = 1
3
then  6= 

2
+ , so

lim
()→(013)

(  ) =  ( 0 13) = 0
2

tan( · 13) = 1 · tan(3) =
√

3.

20. (  ) =
 + 

2 + 2 + 2
. Then ( 0 0) = 02 = 0 for  6= 0, so as (  ) → (0 0 0) along the -axis,

(  ) → 0. But (  0) = 2(22) = 1
2
for  6= 0, so as (  ) → (0 0 0) along the line  = ,  = 0,

(  )→ 1
2
. Thus the limit doesn’t exist.

21. (  ) =
 + 2 + 2

2 + 2 + 4
. Then ( 0 0) = 02 = 0 for  6= 0, so as (  ) → (0 0 0) along the -axis,

(  ) → 0. But (  0) = 2(22) = 1
2
for  6= 0, so as (  ) → (0 0 0) along the line  = ,  = 0,

(  )→ 1
2
. Thus the limit doesn’t exist.
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SECTION 14.2 LIMITS AND CONTINUITY ¤ 399

22. We can use the Squeeze Theorem to show that lim
()→(000)

222

2 + 2 + 2
= 0:

0 ≤ 222

2 + 2 + 2
≤ 22 since 0 ≤ 2

2 + 2 + 2
≤ 1, and 22 → 0 as (  )→ (0 0 0), so

222

2 + 2 + 2
→ 0 as

(  )→ (0 0 0).

23. From the ridges on the graph, we see that as ( )→ (0 0) along the

lines under the two ridges, ( ) approaches different values. So the

limit does not exist.

24. From the graph, it appears that as we approach the origin along the lines

 = 0 or  = 0, the function is everywhere 0, whereas if we approach the

origin along a certain curve it has a constant value of about 1
2
. [In fact,

(3 ) = 6(26) = 1
2
for  6= 0, so ( )→ 1

2
as ( )→ (0 0)

along the curve  = 3.] Since the function approaches different values

depending on the path of approach, the limit does not exist.

25. ( ) = (( )) = (2+ 3 − 6)
2
+
√

2+ 3 − 6. Since  is a polynomial, it is continuous on R2 and  is

continuous on its domain { |  ≥ 0}. Thus  is continuous on its domain

{( ) | 2 + 3 − 6 ≥ 0} =

( ) |  ≥ − 2

3
+ 2


, which consists of all points on or above the line  = − 2

3
 + 2.

26. ( ) = (( )) =
1− 

1 + 22
+ ln


1− 

1 + 22


.  is a rational function, so it is continuous on its domain. Because

1 + 22  0, the domain of  is R2, so  is continuous everywhere.  is continuous on its domain { |   0}. Thus  is

continuous on its domain


( )

 1− 

1 + 22
 0


= {( ) |   1} which consists of all points between (but not on)

the two branches of the hyperbola  = 1.

27. From the graph, it appears that  is discontinuous along the line  = .

If we consider ( ) = 1(−) as a composition of functions,

( ) = 1(− ) is a rational function and therefore continuous except

where −  = 0 ⇔  = . Since the function () =  is continuous

everywhere, the composition (( )) = 1(−) = ( ) is

continuous except along the line  = , as we suspected.
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400 ¤ CHAPTER 14 PARTIAL DERIVATIVES

28. We can see a circular break in the graph, corresponding approximately to

the unit circle, where  is discontinuous. Since( ) =
1

1− 2 − 2
is

a rational function, it is continuous except where 1− 2 − 2 = 0 ⇔
2 + 2 = 1, confirming our observation that  is discontinuous on the

circle 2 + 2 = 1.

29. The functions  and 1 + − are continuous everywhere, and 1 + − is never zero, so  ( ) =


1 + −
is continuous

on its domain R2.

30.  ( ) = cos
√

1 + −  = (( )) where ( ) =
√

1 + − , continuous on its domain

{( ) | 1 + −  ≥ 0} = {( ) |  ≤ + 1}, and () = cos  is continuous everywhere. Thus  is continuous on its

domain {( ) |  ≤ + 1}.

31.  ( ) =
1 + 2 + 2

1− 2 − 2
is a rational function and thus is continuous on its domain


( ) | 1− 2 − 2 6= 0


=

( ) | 2 + 2 6= 1


.

32. The functions  +  and  − 1 are continuous everywhere, so( ) =
 + 

 − 1
is continuous except where

 − 1 = 0 ⇒  = 0 ⇒  = 0 or  = 0. Thus is continuous on its domain {( ) |  6= 0  6= 0}.

33.
√
 is continuous on its domain {( ) |  ≥ 0} and


1− 2 − 2 is continuous on its domain

( ) | 1− 2 − 2 ≥ 0


=

( ) | 2 + 2 ≤ 1


, so the sum( ) =

√
+


1− 2 − 2 is continuous for  ≥ 0

and 2 + 2 ≤ 1, that is,

( ) | 2 + 2 ≤ 1  ≥ 0


. This is the right half of the unit disk.

34. ( ) = ln(1 + − ) = (( )) where ( ) = 1 + − , a polynomial and hence continuous on R2,

and () = ln , continuous on its domain { |   0}. Thus  is continuous on its domain

{( ) | 1 + −   0} = {( ) |    + 1}, the region in R2 below the line  = + 1.

35. (  ) = ((  )) where (  ) = 2 + 2 + 2, a polynomial that is continuous

everywhere, and () = arcsin , continuous on [−1 1]. Thus  is continuous on its domain
(  ) | −1 ≤ 2 + 2 + 2 ≤ 1


=

(  ) | 2 + 2 + 2 ≤ 1


, so  is continuous on the unit ball.

36.

 − 2 is continuous on its domain


( ) |  − 2 ≥ 0


=

( ) |  ≥ 2


and ln  is continuous on its domain

{ |   0}, so the product (  ) =

 − 2 ln  is continuous for  ≥ 2 and   0, that is,

(  ) |  ≥ 2,   0

.
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SECTION 14.2 LIMITS AND CONTINUITY ¤ 401

37. ( ) =


23

22 + 2
if ( ) 6= (0 0)

1 if ( ) = (0 0)

The first piece of  is a rational function defined everywhere except at the

origin, so  is continuous on R2 except possibly at the origin. Since 2 ≤ 22 + 2, we have
23(22 + 2)

 ≤ 3
.

We know that
3
→ 0 as ( )→ (0 0). So, by the Squeeze Theorem, lim

()→(00)
( ) = lim

()→(00)

23

22 + 2
= 0.

But (0 0) = 1, so  is discontinuous at (0 0). Therefore,  is continuous on the set {( ) | ( ) 6= (0 0)}.

38. ( ) =




2 +  + 2
if ( ) 6= (0 0)

0 if ( ) = (0 0)

The first piece of  is a rational function defined everywhere except

at the origin, so  is continuous on R2 except possibly at the origin. ( 0) = 02 = 0 for  6= 0, so ( ) → 0 as

( ) → (0 0) along the -axis. But ( ) = 2(32) = 1
3
for  6= 0, so ( ) → 1

3
as ( ) → (0 0) along the

line  = . Thus lim
()→(00)

( ) doesn’t exist, so  is not continuous at (0 0) and the largest set on which  is continuous

is {( ) | ( ) 6= (0 0)}.

39. lim
()→(00)

3 + 3

2 + 2
= lim

→0+

( cos )3 + ( sin )3

2
= lim

→0+
( cos3  +  sin3 ) = 0

40. lim
()→(00)

(2 + 2) ln(2 + 2) = lim
→0+

2 ln 2 = lim
→0+

ln 2

12
= lim

→0+

(12)(2)

−23
[using l’Hospital’s Rule]

= lim
→0+

(−2) = 0

41. lim
()→(00)

−
2−2 − 1

2 + 2
= lim

→0+

−
2 − 1

2
= lim

→0+

−
2

(−2)

2
[using l’Hospital’s Rule]

= lim
→0+

−−2 = −0 = −1

42. lim
()→(00)

sin(2 + 2)

2 + 2
= lim

→0+

sin(2)

2
, which is an

indeterminate form of type 00. Using l’Hospital’s Rule, we get

lim
→0+

sin(2)

2

H
= lim

→0+

2 cos(2)

2
= lim

→0+
cos(2) = 1.

Or: Use the fact that lim
→0

sin 


= 1.

43. ( ) =


sin()


if ( ) 6= (0 0)

1 if ( ) = (0 0)

From the graph, it appears that  is continuous everywhere. We know

 is continuous on R2 and sin  is continuous everywhere, so

sin() is continuous on R2 and
sin()


is continuous on R2

[continued]
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402 ¤ CHAPTER 14 PARTIAL DERIVATIVES

except possibly where  = 0. To show that  is continuous at those points, consider any point ( ) in R2 where  = 0.

Because  is continuous,  →  = 0 as ( ) → ( ). If we let  = , then → 0 as ( ) → ( ) and

lim
()→()

sin()


= lim

→0

sin()


= 1 by Equation 2.4.2 [ET 3.3.2]. Thus lim

()→()
( ) = ( ) and  is continuous

on R2.

44. (a) ( ) =


0 if  ≤ 0 or  ≥ 4

1 if 0    4
Consider the path  = , 0    4. [The path does not pass through

(0 0) if  ≤ 0 except for the trivial case where = 0.] If ≤ 0 then () = 0. If  0 then

 = || = || || and ≥ 4 ⇔ || || ≥ 4 ⇔ 4

|| ≤ || ⇔ ||4− ≤ || whenever  is

defined. Then ≥ 4 ⇔ || ≤ ||1(4−) so () = 0 for || ≤ ||1(4−) and ( ) → 0 as

( )→ (0 0) along this path.

(b) If we approach (0 0) along the path  = 5,   0 then we have ( 5) = 1 for 0    1 because 0  5  4 there.

Thus ( ) → 1 as ( ) → (0 0) along this path, but in part (a) we found a limit of 0 along other paths, so

lim
()→(00)

( ) doesn’t exist and  is discontinuous at (0 0).

(c) First we show that  is discontinuous at any point ( 0) on the -axis. If we approach ( 0) along the path  = ,   0

then ( ) = 1 for 0    4, so ( )→ 1 as ( )→ ( 0) along this path. If we approach ( 0) along the path

 = ,   0 then ( ) = 0 since   0 and ( )→ 0 as ( )→ ( 0). Thus the limit does not exist and  is

discontinuous on the line  = 0.  is also discontinuous on the curve  = 4: For any point ( 4) on this curve,

approaching the point along the path  = ,   4 gives ( ) = 0 since   4, so ( )→ 0 as ( )→ ( 4).

But approaching the point along the path  = ,   4 gives ( ) = 1 for   0, so ( )→ 1 as ( )→ ( 4)

and the limit does not exist there.

45. Since |x− a|2 = |x|2 + |a|2 − 2 |x| |a| cos  ≥ |x|2 + |a|2 − 2 |x| |a| = (|x|− |a|)2, we have
|x|− |a| ≤ |x− a|. Let

  0 be given and set  = . Then if 0  |x− a|  ,
|x|− |a| ≤ |x− a|   = . Hence limx→a |x| = |a| and

 (x) = |x| is continuous on R.

46. Let   0 be given. We need to find   0 such that if 0  |x− a|   then | (x)−  (a)| = |c · x− c · a|  .

But |c · x− c · a| = |c · (x− a)| and |c · (x− a)| ≤ |c| |x− a| by Exercise 12.3.61 (the Cauchy-Schwartz Inequality). Set

 =  |c|. Then if 0  |x− a|  , | (x)−  (a)| = |c · x− c · a| ≤ |c| |x− a|  |c|  = |c| ( |c|) = . So  is

continuous on R.
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SECTION 14.3 PARTIAL DERIVATIVES ¤ 403

14.3 Partial Derivatives

1. (a)  represents the rate of change of  when we fix  and  and consider  as a function of the single variable , which

describes how quickly the temperature changes when longitude changes but latitude and time are constant. 

represents the rate of change of  when we fix  and  and consider  as a function of , which describes how quickly the

temperature changes when latitude changes but longitude and time are constant.  represents the rate of change of 

when we fix  and  and consider  as a function of , which describes how quickly the temperature changes over time for

a constant longitude and latitude.

(b) (158 21 9) represents the rate of change of temperature at longitude 158◦W, latitude 21◦N at 9:00 AM when only

longitude varies. Since the air is warmer to the west than to the east, increasing longitude results in an increased air

temperature, so we would expect (158 21 9) to be positive. (158 21 9) represents the rate of change of temperature

at the same time and location when only latitude varies. Since the air is warmer to the south and cooler to the north,

increasing latitude results in a decreased air temperature, so we would expect (158 21 9) to be negative. (158 21 9)

represents the rate of change of temperature at the same time and location when only time varies. Since typically air

temperature increases from the morning to the afternoon as the sun warms it, we would expect (158 21 9) to be

positive.

2. By Definition 4,  (92 60) = lim
→0

(92 +  60)− (92 60)


, which we can approximate by considering  = 2 and

 = −2 and using the values given in Table 1:  (92 60) ≈ (94 60)− (92 60)

2
=

111− 105

2
= 3,

 (92 60) ≈ (90 60)− (92 60)

−2
=

100− 105

−2
= 25. Averaging these values, we estimate  (92 60) to be

approximately 275. Thus, when the actual temperature is 92◦F and the relative humidity is 60%, the apparent temperature

rises by about 275◦F for every degree that the actual temperature rises.

Similarly, (92 60) = lim
→0

(92 60 + )− (92 60)


which we can approximate by considering  = 5 and  = −5:

(92 60) ≈ (92 65)− (92 60)

5
=

108− 105

5
= 06, (92 60) ≈ (92 55)− (92 60)

−5
=

103− 105

−5
= 04.

Averaging these values, we estimate (92 60) to be approximately 05. Thus, when the actual temperature is 92◦F and the

relative humidity is 60%, the apparent temperature rises by about 05◦F for every percent that the relative humidity increases.

3. (a) By Definition 4,  (−15 30) = lim
→0

(−15 +  30)− (−15 30)


, which we can approximate by considering  = 5

and  = −5 and using the values given in the table:

 (−15 30) ≈ (−10 30)− (−15 30)

5
=
−20− (−26)

5
=

6

5
= 12,

 (−15 30) ≈ (−20 30)− (−15 30)

−5
=
−33− (−26)

−5
=
−7

−5
= 14. Averaging these values, we estimate
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404 ¤ CHAPTER 14 PARTIAL DERIVATIVES

 (−15 30) to be approximately 13. Thus, when the actual temperature is −15◦C and the wind speed is 30 kmh, the

apparent temperature rises by about 13◦C for every degree that the actual temperature rises.

Similarly, (−15 30) = lim
→0

(−15 30 + )− (−15 30)


which we can approximate by considering  = 10

and  = −10: (−15 30) ≈ (−15 40)− (−15 30)

10
=
−27− (−26)

10
=
−1

10
= −01,

(−15 30) ≈ (−15 20)− (−15 30)

−10
=
−24− (−26)

−10
=

2

−10
= −02. Averaging these values, we estimate

(−15 30) to be approximately −015. Thus, when the actual temperature is −15◦C and the wind speed is 30 kmh, the

apparent temperature decreases by about 015◦C for every kmh that the wind speed increases.

(b) For a fixed wind speed , the values of the wind-chill index increase as temperature  increases (look at a column of

the table), so



is positive. For a fixed temperature  , the values of decrease (or remain constant) as  increases

(look at a row of the table), so



is negative (or perhaps 0).

(c) For fixed values of  , the function values ( ) appear to become constant (or nearly constant) as  increases, so the

corresponding rate of change is 0 or near 0 as  increases. This suggests that lim
→∞

() = 0.

4. (a)  represents the rate of change of  when we fix  and consider  as a function of , which describes how quickly the

wave heights change when the wind speed changes for a fixed time duration.  represents the rate of change of 

when we fix  and consider  as a function of , which describes how quickly the wave heights change when the duration

of time changes, but the wind speed is constant.

(b) By Definition 4, (40 15) = lim
→0

(40 +  15)− (40 15)


which we can approximate by considering

 = 10 and  = −10 and using the values given in the table: (40 15) ≈ (50 15)− (40 15)

10
=

36− 25

10
= 11,

(40 15) ≈ (30 15)− (40 15)

−10
=

16− 25

−10
= 09. Averaging these values, we have (40 15) ≈ 10. Thus, when

a 40-knot wind has been blowing for 15 hours, the wave heights should increase by about 1 foot for every knot that the

wind speed increases (with the same time duration). Similarly, (40 15) = lim
→0

(40 15 + )− (40 15)


which we

can approximate by considering  = 5 and  = −5: (40 15) ≈ (40 20)− (40 15)

5
=

28− 25

5
= 06,

(40 15) ≈ (40 10)− (40 15)

−5
=

21− 25

−5
= 08. Averaging these values, we have (40 15) ≈ 07. Thus, when a

40-knot wind has been blowing for 15 hours, the wave heights increase by about 07 feet for every additional hour that the

wind blows.

(c) For fixed values of , the function values ( ) appear to increase in smaller and smaller increments, becoming nearly

constant as  increases. Thus, the corresponding rate of change is nearly 0 as  increases, suggesting that

lim
→∞

() = 0.
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5. (a) If we start at (1 2) and move in the positive -direction, the graph of  increases. Thus (1 2) is positive.

(b) If we start at (1 2) and move in the positive -direction, the graph of  decreases. Thus (1 2) is negative.

6. (a) The graph of  decreases if we start at (−1 2) and move in the positive -direction, so (−1 2) is negative.

(b) The graph of  decreases if we start at (−1 2) and move in the positive -direction, so (−1 2) is negative.

7. (a)  = 


(), so  is the rate of change of  in the -direction.  is negative at (−1 2) and if we move in the

positive -direction, the surface becomes less steep. Thus the values of  are increasing and (−1 2) is positive.

(b)  is the rate of change of  in the -direction.  is negative at (−1 2) and if we move in the positive -direction, the

surface becomes steeper. Thus the values of  are decreasing, and (−1 2) is negative.

8. (a)  = 


(), so  is the rate of change of  in the -direction.  is positive at (1 2) and if we move in the positive

-direction, the surface becomes steeper, looking in the positive -direction. Thus the values of  are increasing and

(1 2) is positive.

(b)  is negative at (−1 2) and if we move in the positive -direction, the surface gets steeper (with negative slope), looking

in the positive -direction. This means that the values of  are decreasing as  increases, so (−1 2) is negative.

9. First of all, if we start at the point (3−3) and move in the positive -direction, we see that both  and  decrease, while 

increases. Both  and  have a low point at about (3−15), while  is 0 at this point. So  is definitely the graph of  , and

one of  and  is the graph of  . To see which is which, we start at the point (−3−15) and move in the positive -direction.

 traces out a line with negative slope, while  traces out a parabola opening downward. This tells us that  is the -derivative

of . So  is the graph of  ,  is the graph of , and  is the graph of  .

10. (2 1) is the rate of change of  at (2 1) in the -direction. If we start at (2 1), where (2 1) = 10, and move in the

positive -direction, we reach the next contour line [where ( ) = 12] after approximately 06 units. This represents an

average rate of change of about 2
06

. If we approach the point (2 1) from the left (moving in the positive -direction) the

output values increase from 8 to 10 with an increase in  of approximately 09 units, corresponding to an average rate of

change of 2
09

. A good estimate for (2 1) would be the average of these two, so (2 1) ≈ 28. Similarly, (2 1) is the

rate of change of  at (2 1) in the -direction. If we approach (2 1) from below, the output values decrease from 12 to 10 with

a change in  of approximately 1 unit, corresponding to an average rate of change of−2. If we start at (2 1) and move in the

positive -direction, the output values decrease from 10 to 8 after approximately 0.9 units, a rate of change of −2
09

. Averaging

these two results, we estimate (2 1) ≈ −21.

11. ( ) = 16− 42 − 2 ⇒ ( ) = −8 and ( ) = −2 ⇒ (1 2) = −8 and (1 2) = −4. The graph

of  is the paraboloid  = 16− 42 − 2 and the vertical plane  = 2 intersects it in the parabola  = 12− 42,  = 2
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406 ¤ CHAPTER 14 PARTIAL DERIVATIVES

(the curve 1 in the first figure). The slope of the tangent line

to this parabola at (1 2 8) is (1 2) = −8. Similarly the

plane  = 1 intersects the paraboloid in the parabola

 = 12− 2,  = 1 (the curve 2 in the second figure) and

the slope of the tangent line at (1 2 8) is (1 2) = −4.

12. ( ) = (4− 2 − 42)12 ⇒ ( ) = −(4− 2 − 42)−12 and ( ) = −4(4− 2 − 42)−12 ⇒

(1 0) = − 1√
3
, (1 0) = 0. The graph of  is the upper half of the ellipsoid 2 + 2 + 42 = 4 and the plane  = 0

intersects the graph in the semicircle 2 + 2 = 4,  ≥ 0 and the slope of the tangent line 1 to this semicircle

at

1 0

√
3

is (1 0) = − 1√

3
. Similarly the plane  = 1

intersects the graph in the semi-ellipse 2 + 42 = 3,  ≥ 0

and the slope of the tangent line 2 to this semi-ellipse at
1 0

√
3

is (1 0) = 0.

13. ( ) = 23 ⇒  = 23,  = 322

Note that traces of  in planes parallel to the -plane are parabolas which open downward for   0 and upward for   0,

and the traces of  in these planes are straight lines, which have negative slopes for   0 and positive slopes for   0. The

traces of  in planes parallel to the -plane are cubic curves, and the traces of  in these planes are parabolas.

14. ( ) =


1 + 22
⇒  =

(1 + 22)(0)− (22)

(1 + 22)2
= − 23

(1 + 22)2
,

 =
(1 + 22)(1)− (22)

(1 + 22)2
=

1− 22

(1 + 22)2
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Note that traces of  in planes parallel to the -plane have only one extreme value (a minimum for   0, a maximum for

  0), and the traces of  in these planes have only one zero (going from negative to positive if   0 and from positive to

negative if   0). The traces of  in planes parallel to the -plane have two extreme values, and the traces of  in these

planes have two zeros.

15. ( ) = 4 + 53 ⇒ ( ) = 43 + 53, ( ) = 0 + 5 · 32 = 152

16. ( ) = 2 − 34 ⇒ ( ) = 2 ·  − 0 = 2, ( ) = 2 · 1− 3 · 43 = 2 − 123

17. ( ) = 2− ⇒ ( ) = 2 · −(−1) = −2−, ( ) = 2−

18. ( ) =
√

3+ 4 ⇒ ( ) = 1
2
(3+ 4)−12(3) =

3

2
√

3+ 4
, ( ) = 1

2
(3 + 4)−12(4) =

2√
3+ 4

19.  = ln( + 2) ⇒ 


=

1

 + 2
,



=

2

+ 2

20.  =  sin() ⇒ 


=  · [cos()]() + [sin()] · 1 =  cos() + sin(),




=  [cos ()]() = 2 cos()

21. ( ) =  = −1 ⇒ ( ) = −1 = 1, ( ) = −−2 = −2

22. ( ) =


(+ )2
⇒ ( ) =

(+ )2(1)− ()(2)( + )

[(+ )2]2
=

 +  − 2

(+ )3
=

 − 

(+ )3
,

( ) =
(+ )2(0)− ()(2)(+ )

[(+ )2]2
= − 2

(+ )3

23. ( ) =
+ 

 + 
⇒ ( ) =

(+ )()− (+ )()

(+ )2
=

(− )

(+ )2
,

( ) =
(+ )()− (+ )()

(+ )2
=

(− )

(+ )2
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24.  =


+ 2
⇒ 


=

0(+ 2)− (1)

(+ 2)2
= − 

(+ 2)2
,




=

(+ 2)− (2)

(+ 2)2
=

(+ 2 − 2)

(+ 2)2

25. ( ) = (2 − 3)5 ⇒ ( ) = 5(2 − 3)4 · 2 = 10(2 − 3)4,

( ) = 5(2 − 3)4(2 − 32) = 5(2 − 32)(2 − 3)4

26. ( ) = sin( cos ) ⇒ ( ) = cos( cos ) · cos  = cos  cos( cos ),

( ) = cos( cos )(− sin ) = − sin  cos( cos )

27. ( ) = tan−1(2) ⇒ ( ) =
1

1 + (2)2
· 2 =

2

1 + 24
, ( ) =

1

1 + (2)2
· 2 =

2

1 + 24

28. ( ) =  ⇒ ( ) = −1, ( ) =  ln

29.  ( ) =

 



cos(

)  ⇒ ( ) =





 



cos




 = cos(


) by the Fundamental Theorem of Calculus, Part 1;

( ) =




 



cos




 =






−
 



cos







= − 



 



cos




 = − cos(


).

30.  ( ) =

 




3 + 1  ⇒

( ) =




 




3 + 1  =






−
 




3 + 1 


= − 



 




3 + 1  = −


3 + 1 by the Fundamental

Theorem of Calculus, Part 1; ( ) =




 




3 + 1  =


3 + 1.

31. (  ) = 32 + 2 ⇒ (  ) = 322, (  ) = 32 + 2, (  ) = 23 + 2

32. (  ) = 2− ⇒ (  ) = 2

 · −(−) + − · 1 = (1− )2− , (  ) = 2− ,

(  ) = 2−(−) = −22−

33.  = ln(+ 2 + 3) ⇒ 


=

1

+ 2 + 3
,



=

2

+ 2 + 3
,



=

3

+ 2 + 3

34.  =  tan( + 2) ⇒ 


=  [sec2( + 2)](1) =  sec2( + 2),




= tan( + 2),




=  [sec2(+ 2)](2) = 2 sec2(+ 2)

35.  =
√
4 + 2 cos  ⇒ 


= 1

2
(4 + 2 cos )−12(43) =

23√
4 + 2 cos 

,




= 1

2
(4 + 2 cos )−12(2 cos ) =

 cos √
4 + 2 cos 

,



= 1

2
(4 + 2 cos )−12[2(− sin )] = − 2 sin 

2
√
4 + 2 cos 

36.  =  ⇒  =



()−1,  =  ln · 1


=




ln,  =  ln · −

2
= −

2
ln
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37. (   ) = 2 cos() ⇒ (   ) = 2 cos(), (   ) = 2 cos(),

(   ) = −2 sin()(1) = (−2) sin(), (   ) = −2 sin()(−−2) = (22) sin()

38. (   ) =
 + 2

 + 2
⇒ (   ) =

1

 + 2
() =



 + 2
,

(   ) =
1

 + 2
(2) =

2

 + 2
, (   ) =

( + 2)(0)− (+ 2)()

( + 2)2
=
−( + 2)

( + 2)2
,

(   ) =
( + 2)(0)− (+ 2)(2)

( + 2)2
= −2(+ 2)

( + 2)2

39.  =

2

1 + 2
2 + · · ·+ 2

. For each  = 1,   , ,  = 1
2


2

1 + 2
2 + · · ·+ 2



−12
(2) =


2

1 + 2
2 + · · ·+ 2



.

40.  = sin(1 + 22 + · · ·+ ). For each  = 1,   , ,  =  cos(1 + 22 + · · ·+ ).

41. ( ) =  ⇒ ( ) =  · (−2) +  · 1 =

1− 




, so (0 1) =


1− 0

1


01 = 1.

42. ( ) =  sin−1() ⇒ ( ) =  · 1
1− ()2

() + sin−1() · 1 =


1− 22
+ sin−1(),

so 

1 1

2


=

1 · 1
2

1− 12


1
2

2 + sin−1

1 · 1

2


=

1
2
3
4

+ sin−1 1
2

= 1√
3

+ 
6
.

43. (  ) = ln
1−


2 + 2 + 2

1 +

2 + 2 + 2

⇒

(  ) =
1

1−

2 + 2 + 2

1 +

2 + 2 + 2

·


1 +


2 + 2 + 2


− 1

2
(2 + 2 + 2)−12 · 2


−

1−


2 + 2 + 2


1
2
(2 + 2 + 2)−12 · 2



1 +


2 + 2 + 2

2

=
1 +


2 + 2 + 2

1−

2 + 2 + 2

·
−(2 + 2 + 2)−12


1 +


2 + 2 + 2 + 1−


2 + 2 + 2



1 +


2 + 2 + 2

2

=
−(2 + 2 + 2)−12 (2)

1−

2 + 2 + 2


1 +


2 + 2 + 2

 =
−2

2 + 2 + 2 [1− (2 + 2 + 2)]

so (1 2 2) =
−2(2)√

12 + 22 + 22 [1− (12 + 22 + 22)]
=

−4√
9 (1− 9)

=
1

6
.

44. (  ) =  ⇒ (  ) = ( ln)() =  ln, so ( 1 0) = 1(1)(0) ln  = 1.
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45. ( ) = 2 − 3 ⇒

 ( ) = lim
→0

(+  )− ( )


= lim

→0

( + )2 − (+ )3 − (2 − 3)



= lim
→0

(2 − 32 − 3− 2)


= lim

→0
(2 − 32 − 3− 2) = 2 − 32

 ( ) = lim
→0

(  + )− ( )


= lim

→0

( + )2 − 3( + )− (2 − 3)


= lim

→0

(2 + − 3)



= lim
→0

(2 + − 3) = 2 − 3

46. ( ) =


 + 2
⇒

( ) = lim
→0

(+  )− ( )


= lim

→0

+
++2

− 

+2


· (+ + 2)(+ 2)

(+ + 2)(+ 2)

= lim
→0

(+ )(+ 2)− (+ + 2)

(+ + 2)(+ 2)
= lim

→0

2

(+ + 2)( + 2)

= lim
→0

2

(+ + 2)(+ 2)
=

2

(+ 2)2

( ) = lim
→0

(  + )− ( )


= lim

→0



+(+)2
− 

+2


·

+ ( + )

2
 
+ 2


+ ( + )

2

(+ 2)

= lim
→0

(+ 2)− 

+ ( + )2


[+ ( + )2]( + 2)

= lim
→0

(−2 − )

[+ ( + )2](+ 2)

= lim
→0

−2 − 

[+ ( + )
2
](+ 2)

=
−2

(+ 2)2

47. 2 + 22 + 32 = 1 ⇒ 


(2 + 22 + 32) =




(1) ⇒ 2 + 0 + 6




= 0 ⇒ 6




= −2 ⇒




=
−2

6
= − 

3
, and




(2 + 22 + 32) =




(1) ⇒ 0 + 4 + 6




= 0 ⇒ 6




= −4 ⇒




=
−4

6
= −2

3
.

48. 2 − 2 + 2 − 2 = 4 ⇒ 


(2 − 2 + 2 − 2) =




(4) ⇒ 2− 0 + 2




− 2




= 0 ⇒

(2 − 2)



= −2 ⇒ 


=

−2

2 − 2
=



1− 
, and




(2 − 2 + 2 − 2) =




(4) ⇒

0− 2 + 2



− 2




= 0 ⇒ (2 − 2)




= 2 ⇒ 


=

2

2 − 2
=



 − 1
.

49.  =  ⇒ 


() =




() ⇒ 




= 






+  · 1


⇒ 




− 




=  ⇒

( − )



= , so




=



 − 
.
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() =




() ⇒ 




= 






+  · 1


⇒ 




− 




=  ⇒ ( − )




= , so




=



 − 
.

50.  +  ln  = 2 ⇒ 


( +  ln ) =




(2) ⇒ 




+ ln  = 2




⇒ ln  = 2




− 




⇒

ln  = (2 − )



, so




=

ln 

2 − 
.




( +  ln ) =




(2) ⇒ 




+  · 1 +  · 1


= 2




⇒  +




= 2




− 




⇒

 +



= (2 − )




, so




=

 + ()

2 − 
=

 + 

(2 − )
.

51. (a)  = () + () ⇒ 


=  0(),




= 0()

(b)  = ( + ). Let  =  + . Then



=








=




(1) =  0() =  0( + ),




=








=




(1) =  0() =  0(+ ).

52. (a)  = ()() ⇒ 


=  0()(),




= ()0()

(b)  = (). Let  = . Then



=  and




= . Hence




=








=




·  =  0() =  0()

and



=








=




·  =  0() =  0().

(c)  = 







. Let  =




. Then




=

1


and




= − 

2
. Hence




=








=  0()

1


=

 0()


and



=








=  0()


− 

2


= − 0()

2
.

53. ( ) = 4 − 232 ⇒ ( ) = 43 − 622, ( ) = 4 − 43. Then ( ) = 122 − 122,

( ) = 43 − 122, ( ) = 43 − 122, and ( ) = −43.

54. ( ) = ln(+ ) ⇒ ( ) =


+ 
= (+ )−1, ( ) =



+ 
= (+ )−1. Then

( ) = −( + )−2() = − 2

(+ )2
, ( ) = −( + )−2() = − 

(+ )2
,

( ) = −(+ )−2() = − 

(+ )2
, and ( ) = −(+ )−2() = − 2

(+ )2
.
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55.  =


2+ 3
= (2 + 3)−1 ⇒  = (−1)(2 + 3)−2(2) = − 2

(2 + 3)2
,

 =
(2 + 3) · 1−  · 3

(2+ 3)2
=

2

(2+ 3)2
. Then  = −2(−2)(2 + 3)−3(2) =

8

(2+ 3)3
,

 = − (2 + 3)2 · 2− 2 · 2(2 + 3)(3)

[(2+ 3)2]
2

= − (2 + 3) (4+ 6 − 12)

(2+ 3)4
=

6 − 4

(2 + 3)3
,

 =
(2+ 3)2 · 2− 2 · 2(2+ 3)(2)

[(2+ 3)2]
2

=
6 − 4

(2+ 3)3
,  = 2(−2)(2+ 3)−3(3) = − 12

(2+ 3)3
.

56.  = −2 cos  ⇒  = −2−2 cos ,  = −−2 sin . Then  = −2−2(−2) cos  = 4−2 cos ,

 = 2−2 sin ,  = −−2(−2) sin  = 2−2 sin ,  = −−2 cos .

57.  = sin(2 − 2) ⇒  = cos(2 − 2) · 2 = 2 cos(2 − 2),  = cos(2 − 2) · (−2) = −2 cos(2 − 2). Then

 = 2
− sin(2 − 2) · 2 + cos(2 − 2) · 2 = 2 cos(2 − 2) − 42 sin(2 − 2),

 = 2
− sin(2 − 2) · (−2)


= 4 sin(2 − 2),  = −2

− sin(2 − 2) · 2 = 4 sin(2 − 2),

 = −2 · − sin(2 − 2) · (−2)

+ cos(2 − 2) · (−2) = −2 cos(2 − 2)− 42 sin(2 − 2).

58.  =
√

1 + 2 ⇒  = 1
2
(1 + 2)−12 · 2 =

2

2
√

1 + 2
,  = 1

2
(1 + 2)−12 · 2 =

√
1 + 2

.

Then  = 1
2
2
− 1

2


(1 + 2)−32(2) = − 4

4(1 + 2)32
,

 =
2
√

1 + 2 · 2 − 2 · 2  1
2


(1 + 2)−12(2)

2
√

1 + 2
2 =

4
√

1 + 2 − 23
√

1 + 2

4(1 + 2)

=
4(1 + 2)− 23

4 (1 + 2)
32

=
2 + 3

2 (1 + 2)
32

 =

√
1 + 2 ·  −  · 1

2
(1 + 2)−12(2)√

1 + 2
2 =


√

1 + 2 − 1
2
3

√
1 + 2

(1 + 2)

=
(1 + 2)− 1

2
3

(1 + 2)32
=

2 + 3

2 (1 + 2)
32

 =

√
1 + 2 · −  · 1

2
(1 + 2)−12(2)√

1 + 2
2 =


√

1 + 2 − 22
√

1 + 2

(1 + 2)

=
(1 + 2)− 22

(1 + 2)32
=



(1 + 2)
32

59.  = 43 − 4 ⇒  = 433,  = 1232 and  = 342 − 43,  = 1232.

Thus  = .
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SECTION 14.3 PARTIAL DERIVATIVES ¤ 413

60.  =  sin  ⇒  =  sin ,  =  cos  + (sin )( ·  +  · 1) = ( cos  +  sin  + sin ),

 =  cos  + (sin )() = (cos  +  sin ),

 =  · sin  + (cos  +  sin ) ·  = (sin  +  cos  +  sin ). Thus  = .

61.  = cos(2) ⇒  = − sin(2) · 2 = −2 sin(2),

 = −2 · cos(2) · 2 + sin(2) · (−2) = −23 cos(2) − 2 sin(2) and

 = − sin(2) ·2 = −2 sin(2),  = −2 · cos(2) · 2+sin(2) · (−2) = −23 cos(2)− 2 sin(2).

Thus  = .

62.  = ln( + 2) ⇒  =
1

 + 2
= ( + 2)−1,  = (−1)( + 2)−2(2) = − 2

(+ 2)
2
and

 =
1

+ 2
· 2 = 2(+ 2)−1,  = (−2)(+ 2)−2 = − 2

(+ 2)
2
. Thus  = .

63. ( ) = 42 − 3 ⇒  = 432 − 32,  = 1222 − 6,  = 242 − 6 and

 = 83 − 32,  = 242 − 6.

64. ( ) = sin(2+ 5) ⇒  = cos(2+ 5) · 5 = 5 cos(2+ 5),  = −5 sin(2+ 5) · 2 = −10 sin(2+ 5),

 = −10 cos(2 + 5) · 5 = −50 cos(2+ 5)

65. (  ) = 
2 ⇒  = 

2 · 2 = 2
2

,  = 2 · 2(2) + 
2 · 2 = (4 + 2)

2

,

 = (4 + 2) · 2(2) + 
2 · (43 + 2) = (2225 + 63 + 2)

2

.

66. (  ) =  sin() ⇒  =  sin(),  =  cos() ·  =  cos(),

 = (− sin() · ) + cos() ·  = [cos()−  sin()].

67.  =
√
+ 2 ⇒ 


= 1

2
( + 2)−12(2) = ( + 2)−12,

2


= 

− 1
2


(+ 2)−32(1) = − 1

2
(+ 2)−32,

3

2 
= − 1

2

−3

2


(+ 2)−52(1) = 3

4
(+ 2)−52.

68.  = ln( + 2 + 3) ⇒ 


=

32

 + 2 + 3
= 32( + 2 + 3)−1,

2

 
= 32(−1)( + 2 + 3)−2(2) = −62( + 2 + 3)−2,

3

  
= −62(−2)( + 2 + 3)−3(1) = 122( + 2 + 3)−3 =

122

( + 2 + 3)3
.

69.  =


 + 2
= ( + 2)−1 ⇒ 


= ( + 2)−1,

2

 
= −( + 2)−2(1) = −( + 2)−2,

3

  
= −(−2)( + 2)−3(2) = 4( + 2)−3 =

4

( + 2)3
and




= (−1)( + 2)−2(1) = −( + 2)−2,

2


= −( + 2)−2,

3

2 
= 0.
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414 ¤ CHAPTER 14 PARTIAL DERIVATIVES

70.  = . If  = 0, or if  = 0 or 1, or if  = 0, 1, or 2, then
6

2 3
= 0. Otherwise




= −1,

2

2
= (− 1)−2,

3

3
= (− 1)(− 2)−3,

4

 3
= (− 1)(− 2)−1−3,

5

2 3
= (− 1)(− 1)(− 2)−2−3, and

6

2 3
= (− 1)(− 1)(− 2)−1−2−3.

71. Assuming that the third partial derivatives of  are continuous (easily verified), we can write  =  . Then

(  ) = 23 + arcsin


√


⇒  = 23 + 0,  = 23, and  = 62 =  .

72. Let (  ) =
√

1 +  and (  ) =
√

1−  so that  =  + . Then  = 0 =  =  and

 = 0 =  =  . But (since the partial derivatives are continous on their domains)  =  and  =  , so

 =  +  = 0 + 0 = 0.

73. By Definition 4, (3 2) = lim
→0

(3 +  2)− (3 2)


which we can approximate by considering  = 05 and  = −05:

(3 2) ≈ (35 2)− (3 2)

05
=

224− 175

05
= 98, (3 2) ≈ (25 2)− (3 2)

−05
=

102− 175

−05
= 146. Averaging

these values, we estimate (3 2) to be approximately 122. Similarly, (3 22) = lim
→0

(3 +  22)− (3 22)


which

we can approximate by considering  = 05 and  = −05: (3 22) ≈ (35 22)− (3 22)

05
=

261− 159

05
= 204,

(3 22) ≈ (25 22)− (3 22)

−05
=

93− 159

−05
= 132. Averaging these values, we have (3 22) ≈ 168.

To estimate (3 2), we first need an estimate for (3 18):

(3 18) ≈ (35 18)− (3 18)

05
=

200− 181

05
= 38, (3 18) ≈ (25 18)− (3 18)

−05
=

125− 181

−05
= 112.

Averaging these values, we get (3 18) ≈ 75. Now ( ) =



[( )] and ( ) is itself a function of two

variables, so Definition 4 says that ( ) =



[( )] = lim

→0

(  + )− ( )


⇒

(3 2) = lim
→0

(3 2 + )− (3 2)


. We can estimate this value using our previous work with  = 02 and  = −02:

(3 2) ≈ (3 22)− (3 2)

02
=

168− 122

02
= 23, (3 2) ≈ (3 18)− (3 2)

−02
=

75− 122

−02
= 235.

Averaging these values, we estimate (3 2) to be approximately 2325.

74. (a) If we fix  and allow  to vary, the level curves indicate that the value of  decreases as we move through  in the positive

-direction, so  is negative at  .

(b) If we fix  and allow  to vary, the level curves indicate that the value of  increases as we move through  in the positive

-direction, so  is positive at  .
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SECTION 14.3 PARTIAL DERIVATIVES ¤ 415

(c)  =



(), so if we fix  and allow  to vary,  is the rate of change of  as  increases. Note that at points to the

right of  the level curves are spaced farther apart (in the -direction) than at points to the left of  , demonstrating that 

decreases less quickly with respect to  to the right of  So as we move through  in the positive -direction the

(negative) value of  increases, hence



() =  is positive at  .

(d)  =



()  so if we fix  and allow  to vary,  is the rate of change of  as  increases. The level curves are

closer together (in the -direction) at points above  than at those below  , demonstrating that  decreases more quickly

with respect to  for -values above  . So as we move through  in the positive -direction, the (negative) value of 

decreases, hence  is negative.

(e)  =



()  so if we fix  and allow  to vary,  is the rate of change of  as  increases. The level curves are

closer together (in the -direction) at points above  than at those below  , demonstrating that  increases more quickly

with respect to  above  . So as we move through  in the positive -direction the (positive) value of  increases, hence




() =  is positive at  .

75.  = −
22 sin  ⇒  = −

22 cos ,  = −2−
22 sin , and  = −22−

22 sin . Thus

2 = .

76. (a)  = 2 + 2 ⇒  = 2,  = 2;  = 2,  = 2. Thus  +  6= 0 and  = 2 + 2 does not satisfy

Laplace’s Equation.

(b)  = 2 − 2 is a solution:  = 2,  = −2 so  +  = 0.

(c)  = 3 + 32 is not a solution:  = 32 + 32,  = 6;  = 6,  = 6.

(d)  = ln

2 + 2 is a solution:  =

1
2 + 2


1

2


(2 + 2)−12(2) =



2 + 2
,

 =
(2 + 2)− (2)

(2 + 2)2
=

2 − 2

(2 + 2)2
. By symmetry,  =

2 − 2

(2 + 2)2
, so  +  = 0.

(e)  = sin cosh  + cos sinh  is a solution:  = cos cosh  − sin sinh   = − sin cosh  − cos sinh ,

and  = sin sinh  + cos cosh ,  = sin cosh  + cos sinh .

(f)  = − cos  − − cos is a solution:  = −− cos  + − sin,  = − cos  + − cos, and

 = −− sin  + − cos,  = −− cos  − − cos.

77.  =
1

2 + 2 + 2
⇒  =

− 1
2


(2 + 2 + 2)−32(2) = −(2 + 2 + 2)−32 and

 = −(2 + 2 + 2)−32 − 
− 3

2


(2 + 2 + 2)−52(2) =

22 − 2 − 2

(2 + 2 + 2)52
.
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416 ¤ CHAPTER 14 PARTIAL DERIVATIVES

By symmetry,  =
22 − 2 − 2

(2 + 2 + 2)52
and  =

22 − 2 − 2

(2 + 2 + 2)52
.

Thus  +  +  =
22 − 2 − 2 + 22 − 2 − 2 + 22 − 2 − 2

(2 + 2 + 2)52
= 0.

78. (a)  = sin() sin() ⇒  =  sin() cos(),  = −22 sin() sin(),  =  cos() sin(),

 = −2 sin() sin(). Thus  = 2.

(b)  =


22 − 2
⇒  =

(22 − 2)− (22)

(22 − 2)2
= − 22 + 2

(22 − 2)2
,

 =
−22(22 − 2)2 + (22 + 2)(2)(22 − 2)(22)

(22 − 2)4
=

243 + 622

(22 − 2)3
,

 = (−1)(22 − 2)−2(−2) =
2

(22 − 2)2
,

 =
2(22 − 2)2 − 2 (2)(22 − 2)(−2)

(22 − 2)4
=

223 − 22 + 82

(22 − 2)3
=

223 + 62

(22 − 2)3
.

Thus  = 2.

(c)  = (− )
6

+ (+ )
6 ⇒  = −6(− )

5
+ 6( + )

5,  = 302(− )
4

+ 302(+ )
4,

 = 6(− )
5
+ 6(+ )

5,  = 30(− )
4

+ 30(+ )
4. Thus  = 2.

(d)  = sin(− ) + ln(+ ) ⇒  = − cos(− ) +


+ 
,  = −2 sin(− )− 2

(+ )2
,

 = cos(− ) +
1

+ 
,  = − sin(− )− 1

(+ )2
. Thus  = 2.

79. Let  =  + ,  = − . Then  =
[() + ()]


=

()






+

()






=  0()− 0() and

 =
[ 0()− 0()]


= [ 00() + 00()] = 2[ 00() + 00()]. Similarly, by using the Chain Rule we have

 =  0() + 0() and  =  00() + 00(). Thus  = 2.

80. For each ,  = 1     ,  = 
11+22+···+ and 22

 = 2
 

11+22+···+ .

Then
2

2
1

+
2

2
2

+ · · ·+ 2

2


=

2
1 + 2

2 + · · ·+ 2



11+22+···+ = 11+22+···+ = 

since 2
1 + 2

2 + · · ·+ 2
 = 1.

81. ( ) =
1√

4
−

2(4) ⇒




=

1√
4

· −2(4) −2(−1)(4)−2(4)

+ −

2(4) · − 1
2


(4)

−32
(4)

= (4)
−32


4 · 2

42
− 2


−

2(4) =
2

(4)
32


2

2
− 1


−

2(4),




=

1√
4

−
2(4) · −2

4
=

−2

(4)
32

−
2(4), and
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SECTION 14.3 PARTIAL DERIVATIVES ¤ 417

2

2
=

−2

(4)
32


 · −2(4) · −2

4
+ −

2(4) · 1


=
−2

(4)
32


− 2

2
+ 1


−

2(4) =
2

(4)
32


2

2
− 1


−

2(4).

Thus



=

2

(4)
32


2

2
− 1


−

2(4) = 


2

(4)
32


2

2
− 1


−

2(4)


= 

2

2
.

82. (a)  = −60(2)(1 + 2 + 2)2, so at (2 1),  = −240(1 + 4 + 1)2 = −20
3
.

(b)  = −60(2)(1 + 2 + 2)2, so at (2 1),  = −12036 = −10
3
. Thus from the point (2 1) the temperature is

decreasing at a rate of 20
3
◦Cm in the -direction and is decreasing at a rate of 10

3
◦Cm in the -direction.

83. By the Chain Rule, taking the partial derivative of both sides with respect to 1 gives

−1





1

=
 [(11) + (12) + (13)]

1

or −−2 

1

= −−2
1 . Thus



1

=
2

2
1

.

84.  =  , so



= −1 and




= −1. Then





+




= (−1) +(−1) = 1+−1 + 1+−1 = (+ ) = (+ )

85. If we fix = 0  (0) is a function of a single variable , and



= 




is a separable differential equation. Then




= 




⇒





=






⇒ ln | | =  ln ||+  (0), where (0) can depend on0. Then

| | =  ln||+(0), and since   0 and   0, we have  =  ln(0) = (0)ln


= 1(0)
 where

1(0) = (0).

86. (a)  () = 101075025 ⇒ () = 101(075−025)025 = 07575−025025 and

() = 101075(025−075) = 02525075−075.

(b) The marginal productivity of labor in 1920 is (194 407) = 07575(194)−025(407)025 ≈ 0912. Recall that  , , and

 are expressed as percentages of the respective amounts in 1899, so this means that in 1920, if the amount of labor is

increased, production increases at a rate of about 0.912 percentage points per percentage point increase in labor. The

marginal productivity of capital in 1920 is (194 407) = 02525(194)075(407)−075 ≈ 0145, so an increase in capital

investment would cause production to increase at a rate of about 0.145 percentage points per percentage point increase in

capital.

(c) The value of (194 407) is greater than the value of (194 407), suggesting that increasing labor in 1920 would have

increased production more than increasing capital.
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418 ¤ CHAPTER 14 PARTIAL DERIVATIVES

87.


 +

2

 2


( − ) =  ⇒  =

1




 +

2

 2


( − ), so




=

1


(1)( − ) =

 − 


.

We can also write  +
2

 2
=



 − 
⇒  =



 − 
− 2

 2
=  ( − )−1 − 2 −2, so




= − ( − )−2(1) + 22 −3 =

22

 3
− 

( − )2
.

88.  =



so




=
−

 2
;  =




, so




=




;  =




, so




=




.

Thus











=
−

 2








=
−


= −1, since  =  .

89. By Exercise 88,  =  ⇒  =



, so




=




. Also,  =  ⇒  =




and




=




.

Since  =



, we have 








=




· 


· 


= .

90.



= 06215 + 03965016. When  = −15◦C and  = 30 kmh,




= 06215 + 03965(30)016 ≈ 13048, so we

would expect the apparent temperature to drop by approximately 13◦C if the actual temperature decreases by 1◦C.




= −1137(016)−084 + 03965 (016)−084 and when  = −15◦C and  = 30 kmh,




= −1137(016)(30)−084 + 03965(−15)(016)(30)−084 ≈ −01592, so we would expect the apparent temperature

to drop by approximately 016◦C if the wind speed increases by 1 kmh.

91. (a)  = ( ) = 0109104250725 ⇒ 


= 01091(0425)0425−10725 = 00463675−05750725, so




(160 70) = 00463675(160)−0575(70)0725 ≈ 00545. This means that for a person 70 inches tall who weighs 160

pounds, an increase in weight (while height remains constant) causes the surface area to increase at a rate of about 00545

square feet (about 7.85 square inches) per pound.

(b)



= 01091(0725)04250725−1 = 007909750425−0275, so




(160 70) = 00790975(160)0425(70)−0275 ≈ 0213. This means that for a person 70 inches tall who weighs 160

pounds, an increase in height (while weight remains unchanged at 160 pounds) causes the surface area to increase at a rate

of about 0213 square feet (about 30.7 square inches) per inch of height.

92.  = 


4
⇒ 


=



4
and




= 

−4−5


= −4


5
.

 is the rate at which the resistance of the flowing blood increases with respect to the length of the artery when the

radius stays constant.  is the rate of change of the resistance with respect to the radius of the artery when the length

remains unchanged. Because  is negative, the resistance decreases if the radius increases.
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SECTION 14.3 PARTIAL DERIVATIVES ¤ 419

93.  ( ) = 3 +
()2


= 3 +22−2−1.

 = 32 − ()2

2
is the rate of change of the power needed during flapping mode with respect to the bird’s

velocity when the mass and fraction of flapping time remain constant.  = −222−3−1 = −222

3
is the

rate at which the power changes with respect to the fraction of time spent in flapping mode when the mass and velocity are

held constant.  = 22−2−1 =
22

2
is the rate of change of the power with respect to mass when the

velocity and fraction of flapping time remain constant.

94. ( ) = 265066 +
35075


⇒

( ) = 265(066)066−1 +
35(075)075−1


= 1749−034 +

2625−025


,

( ) = 35075
−−2


= −35075

2
. Then (400 8) = 1749(400)−034 +

2625(400)−025

8
≈ 0301 which

means that the average energy needed for a lizard to walk or run 1 km increases at a rate of about 0301 kcal per gram of body

mass increase from 400 g if the speed is 8 km/h. (400 8) = −35(400)075

82
≈ −489, which means that the average

energy needed by a lizard with body mass 400 g decreases at a rate of about 4.89 kcal per km/h when the speed increases from

8 km/h.

95.



= 1

2
2,




= ,

2

2
= . Thus




· 

2

2
= 1

2
2 = .

96. The Law of Cosines says that 2 = 2 + 2 − 2 cos. Thus
(2)


=

(2 + 2 − 2 cos)


or

2 = −2 (− sin)



, implying that




=



 sin
. Taking the partial derivative of both sides with respect to  gives

0 = 2− 2(cos)− 2 (− sin)



. Thus




=

 cos− 

 sin
. By symmetry,




=

 cos− 

 sin
.

97. ( ) = + 4 ⇒ ( ) = 4 and ( ) = 3−  ⇒ ( ) = 3. Since  and  are continuous

everywhere but ( ) 6= ( ), Clairaut’s Theorem implies that such a function ( ) does not exist.

98. Setting  = 1, the equation of the parabola of intersection is

 = 6− 1− 1− 22 = 4− 22. The slope of the tangent is

 = −4, so at (1 2−4) the slope is −8. Parametric

equations for the line are therefore  = 1,  = 2 + ,

 = −4− 8.
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420 ¤ CHAPTER 14 PARTIAL DERIVATIVES

99. By the geometry of partial derivatives, the slope of the tangent line is (1 2). By implicit differentiation of

42 + 22 + 2 = 16, we get 8+ 2 () = 0 ⇒  = −4, so when  = 1 and  = 2 we have

 = −2. So the slope is (1 2) = −2. Thus the tangent line is given by  − 2 = −2(− 1),  = 2. Taking the

parameter to be  = − 1, we can write parametric equations for this line:  = 1 + ,  = 2,  = 2− 2.

100.  ( ) = 0 + 1
− sin(− )

(a)  = 1
− [cos(− )(−)] + 1(−−) sin(− ) = −1

− [sin(− ) + cos(− )].

This quantity represents the rate of change of temperature with respect to depth below the surface, at a given time .

(b)  = 1
− [cos(− )()] = 1

− cos(− ). This quantity represents the rate of change of

temperature with respect to time at a fixed depth .

(c)  =










= −1


− [cos(− )(−)− sin(− )(−)] + −(−) [sin(− ) + cos(− )]


= 221

− cos(− )

But from part (b),  = 1
− cos(− ) =



22
. So with  =



22
, the function  satisfies the heat equation.

(d) Note that near the surface (that is, for small ) the

temperature varies greatly as  changes, but deeper

(for large ) the temperature is more stable.

(e) The term − is a phase shift: it represents the fact that since heat diffuses slowly through soil, it takes time for changes
in the surface temperature to affect the temperature at deeper points. As  increases, the phase shift also increases. For

example, when  = 02, the highest temperature at the surface is reached when  ≈ 91, whereas at a depth of 5 feet the

peak temperature is attained at  ≈ 149, and at a depth of 10 feet, at  ≈ 207.

101. By Clairaut’s Theorem,  = () = () =  = () = () = .

102. (a) Since we are differentiating  times, with two choices of variable at each differentiation, there are 2 th-order partial

derivatives.

(b) If these partial derivatives are all continuous, then the order in which the partials are taken doesn’t affect the value of the

result, that is, all th-order partial derivatives with  partials with respect to  and −  partials with respect to  are

equal. Since the number of partials taken with respect to  for an th-order partial derivative can range from 0 to , a

function of two variables has + 1 distinct partial derivatives of order  if these partial derivatives are all continuous.
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SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS ¤ 421

(c) Since  differentiations are to be performed with three choices of variable at each differentiation, there are 3 th-order

partial derivatives of a function of three variables.

103. Let () = ( 0) = (2)−320 =  ||−3. But we are using the point (1 0), so near (1 0), () = −2. Then

0() = −2−3 and 0(1) = −2, so using (1) we have (1 0) = 0(1) = −2.

104. (0 0) = lim
→0

(0 +  0)− (0 0)


= lim

→0

(3 + 0)13 − 0


= lim

→0




= 1.

Or: Let () = ( 0) = 3
√
3 + 0 = . Then 0() = 1 and 0(0) = 1 so, by (1), (0 0) = 0(0) = 1.

105. (a) (b) For ( ) 6= (0 0),

( ) =
(32 − 3)(2 + 2)− (3 − 3)(2)

(2 + 2)2

=
4 + 423 − 5

(2 + 2)2

and by symmetry ( ) =
5 − 432 − 4

(2 + 2)2
.

(c) (0 0) = lim
→0

( 0)− (0 0)


= lim

→0

(02)− 0


= 0 and (0 0) = lim

→0

(0 )− (0 0)


= 0.

(d) By (3), (0 0) =



= lim

→0

(0 )− (0 0)


= lim

→0

(−5 − 0)4


= −1 while by (2),

(0 0) =



= lim

→0

( 0)− (0 0)


= lim

→0

54


= 1.

(e) For ( ) 6= (0 0), we use a CAS to compute

( ) =
6 + 942 − 924 − 6

(2 + 2)3

Now as ( )→ (0 0) along the -axis, ( )→ 1 while as

( )→ (0 0) along the -axis, ( )→−1. Thus  isn’t

continuous at (0 0) and Clairaut’s Theorem doesn’t apply, so there is

no contradiction. The graphs of  and  are identical except at the

origin, where we observe the discontinuity.

14.4 Tangent Planes and Linear Approximations

1.  = ( ) = 22 + 2 − 5 ⇒ ( ) = 4, ( ) = 2 − 5, so (1 2) = 4, (1 2) = −1.

By Equation 2, an equation of the tangent plane is  − (−4) = (1 2)(− 1) + (1 2)( − 2) ⇒

 + 4 = 4(− 1) + (−1)( − 2) or  = 4−  − 6.
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422 ¤ CHAPTER 14 PARTIAL DERIVATIVES

2.  = ( ) = ( + 2)2 − 2( − 1)2 − 5 ⇒ ( ) = 2( + 2), ( ) = −4( − 1), so (2 3) = 8 and

(2 3) = −8. By Equation 2, an equation of the tangent plane is  − 3 = (2 3)(− 2) + (2 3)( − 3) ⇒

 − 3 = 8(− 2) + (−8)( − 3) or  = 8− 8 + 11.

3.  = ( ) = − ⇒ ( ) = −(1) = −, ( ) = −(−1) = −− , so (2 2) = 1 and

(2 2) = −1. Thus an equation of the tangent plane is  − 1 = (2 2)(− 2) + (2 2)( − 2) ⇒

 − 1 = 1(− 2) + (−1)( − 2) or  = −  + 1.

4.  = ( ) = 2 = −2 ⇒ ( ) = 12, ( ) = −2−3 = −23, so (−4 2) = 1
4

and

(−4 2) = 1. Thus an equation of the tangent plane is  − (−1) = (−4 2) [− (−4)] + (−4 2)( − 2) ⇒

 + 1 = 1
4
(+ 4) + 1( − 2) or  = 1

4
+  − 2.

5.  = ( ) =  sin( + ) ⇒ ( ) =  · cos( + ) + sin( + ) · 1 =  cos( + ) + sin( + ),

( ) =  cos(+ ), so (−1 1) = (−1) cos 0 + sin 0 = −1, (−1 1) = (−1) cos 0 = −1 and an equation of the

tangent plane is  − 0 = (−1)(+ 1) + (−1)( − 1) or  +  +  = 0.

6.  = ( ) = ln(− 2) ⇒ ( ) = 1(− 2), ( ) = −2(− 2), so (3 1) = 1, (3 1) = −2, and

an equation of the tangent plane is  − 0 = (3 1)(− 3) + (3 1)( − 1) ⇒  = 1(− 3) + (−2)( − 1) or

 = − 2 − 1.

7.  = ( ) = 2 +  + 32, so ( ) = 2+  ⇒ (1 1) = 3, ( ) =  + 6 ⇒ (1 1) = 7 and an

equation of the tangent plane is  − 5 = 3(− 1) + 7( − 1) or  = 3 + 7 − 5. After zooming in, the surface and the

tangent plane become almost indistinguishable. (Here, the tangent plane is below the surface.) If we zoom in farther, the

surface and the tangent plane will appear to coincide.

8.  = ( ) =


9 + 22 ⇒ ( ) = 1
2


9 + 22

−12
(22) = 2


9 + 22,

( ) = 1
2


9 + 22

−12
(22) = 2


9 + 22, so (2 2) = 8

5
and (2 2) = 8

5
. Thus an equation of the

tangent plane is  − 5 = (2 2)(− 2) + (2 2)( − 2) ⇒  − 5 = 8
5
(− 2) + 8

5
( − 2) or  = 8

5
+ 8

5
 − 7

5
.

After zooming in, the surface and the tangent plane become almost indistinguishable. (Here the tangent plane is shown with
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SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS ¤ 423

fewer traces than the surface.) If we zoom in farther, the surface and the tangent plane will appear to coincide.

9. ( ) =
1 + cos2(− )

1 + cos2(+ )
. A CAS gives

( ) = −2 cos(− ) sin(− )

1 + cos2( + )
+

2

1 + cos2(− )


cos(+ ) sin(+ )

[1 + cos2( + )]
2

and

( ) =
2 cos(− ) sin(− )

1 + cos2(+ )
+

2

1 + cos2(− )


cos( + ) sin(+ )

[1 + cos2(+ )]
2

. We use the CAS to evaluate these at

(3 6), giving (3 6) = −√32 and (3 6) =
√

32. Substituting into Equation 2, an equation of the

tangent plane is  = −
√

3
2


− 

3


+
√

3
2


 − 

6


+ 7

4
. The surface and tangent plane are shown in the first graph below.

After zooming in, the surface and the tangent plane become almost indistinguishable, as shown in the second graph. (Here, the

tangent plane is above the surface.) If we zoom in farther, the surface and the tangent plane will appear to coincide.

10. ( ) = −10
√

+

 +




. A CAS gives

( ) = − 1
10
−10

√
+


 +





+ −10


1

2
√


+ 

2
√



and

( ) = − 1
10
−10

√
+


 +





+ −10


1

2
√


+ 

2
√



. We use the CAS to evaluate these at (1 1),

and then substitute the results into Equation 2 to get an equation of the tangent plane:  = 07−01+ 07−01 + 16−01.
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424 ¤ CHAPTER 14 PARTIAL DERIVATIVES

The surface and tangent plane are shown in the first graph below. After zooming in, the surface and the tangent plane become

almost indistinguishable, as shown in the second graph. (Here, the tangent plane is above the surface.) If we zoom in farther,

the surface and the tangent plane will appear to coincide.

11. ( ) = 1+ ln(− 5). The partial derivatives are ( ) =  · 1

 − 5
()+ ln(− 5) · 1 =



 − 5
+ ln(− 5)

and ( ) =  · 1

 − 5
() =

2

 − 5
, so (2 3) = 6 and (2 3) = 4. Both  and  are continuous functions for

  5, so by Theorem 8,  is differentiable at (2 3). By Equation 3, the linearization of  at (2 3) is given by

( ) = (2 3) + (2 3)(− 2) + (2 3)( − 3) = 1 + 6(− 2) + 4( − 3) = 6 + 4 − 23.

12. ( ) =
√
 = ()12. The partial derivatives are ( ) = 1

2
()−12() = 


2
√



and

( ) = 1
2
()−12() = 


2
√


, so (1 4) = 4


2
√

4


= 1 and (1 4) = 1

2
√

4


= 1
4
. Both  and  are

continuous functions for   0, so  is differentiable at (1 4) by Theorem 8. The linearization of  at (1 4) is

( ) = (1 4) + (1 4)(− 1) + (1 4)( − 4) = 2 + 1(− 1) + 1
4
( − 4) = + 1

4
.

13. ( ) = 2. The partial derivatives are ( ) = 2 and ( ) = 2 , so (1 0) = 2 and (1 0) = 1. Both

 and  are continuous functions, so by Theorem 8,  is differentiable at (1 0). By Equation 3, the linearization of  at

(1 0) is given by ( ) = (1 0) + (1 0)(− 1) + (1 0)( − 0) = 1 + 2(− 1) + 1( − 0) = 2 +  − 1.

14. ( ) =
1 + 

1 + 
= (1 + )(1 + )−1. The partial derivatives are ( ) = (1 + )(−1)(1 + )−2 = − 1 + 

(1 + )2
and

( ) = (1)(1 + )−1 =
1

1 + 
, so (1 3) = −1 and (1 3) = 1

2
. Both  and  are continuous functions for

 6= −1, so  is differentiable at (1 3) by Theorem 8. The linearization of  at (1 3) is

( ) = (1 3) + (1 3)(− 1) + (1 3)( − 3) = 2 + (−1)(− 1) + 1
2
( − 3) = −+ 1

2
 + 3

2
.

15. ( ) = 4 arctan(). The partial derivatives are ( ) = 4 · 1

1 + ()2
() =

4

1 + 22
, and

( ) =
4

1 + 22
, so (1 1) = 2 and (1 1) = 2. Both  and  are continuous

functions, so  is differentiable at (1 1) by Theorem 8. The linearization of  at (1 1) is

( ) = (1 1) + (1 1)(− 1) + (1 1)( − 1) = 4(4) + 2(− 1) + 2( − 1) = 2+ 2 +  − 4.
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SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS ¤ 425

16. ( ) =  + sin(). The partial derivatives are ( ) = (1) cos() and ( ) = 1 + (−2) cos(), so

(0 3) = 1
3
and (0 3) = 1. Both  and  are continuous functions for  6= 0, so  is differentiable at (0 3), and the

linearization of  at (0 3) is

( ) = (0 3) + (0 3)(− 0) + (0 3)( − 3) = 3 + 1
3
(− 0) + 1( − 3) = 1

3
+ .

17. Let ( ) =  cos(). Then ( ) = [− sin()]() +  cos() = [cos()−  sin()] and

( ) = [− sin()]() = − sin(). Both  and  are continuous functions, so by Theorem 8,  is differentiable

at (0 0). We have (0 0) = 0(cos 0− 0) = 1, (0 0) = 0 and the linear approximation of  at (0 0) is

( ) ≈ (0 0) + (0 0)(− 0) + (0 0)( − 0) = 1 + 1+ 0 = + 1.

18. Let ( ) =
 − 1

 + 1
. Then ( ) = ( − 1)(−1)( + 1)−2 =

1− 

(+ 1)2
and ( ) =

1

+ 1
. Both  and  are

continuous functions for  6= −1, so by Theorem 8,  is differentiable at (0 0). We have (0 0) = 1, (0 0) = 1 and the

linear approximation of  at (0 0) is ( ) ≈ (0 0) + (0 0)(− 0) + (0 0)( − 0) = −1 + 1+ 1 = +  − 1.

19. We can estimate (22 49) using a linear approximation of  at (2 5), given by

( ) ≈ (2 5) + (2 5)(− 2) + (2 5)( − 5) = 6 + 1(− 2) + (−1)( − 5) = −  + 9. Thus

(22 49) ≈ 22− 49 + 9 = 63.

20. ( ) = 1 −  cos ⇒ ( ) = − cos and

( ) = −[(− sin) + (cos)(1)] =  sin −  cos, so (1 1) = 1, (1 1) = 1. Then the linear

approximation of  at (1 1) is given by

( )≈ (1 1) + (1 1)(− 1) + (1 1)( − 1)

= 2 + (1)(− 1) + (1)( − 1) = + 

Thus (102 097) ≈ 102 + 097 = 199. We graph  and its

tangent plane near the point (1 1 2) below. Notice near  = 1 the

surfaces are almost identical.

21. (  ) =

2 + 2 + 2 ⇒ (  ) =


2 + 2 + 2

, (  ) =


2 + 2 + 2
, and

(  ) =


2 + 2 + 2
, so (3 2 6) = 3

7
, (3 2 6) = 2

7
, (3 2 6) = 6

7
. Then the linear approximation of 
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426 ¤ CHAPTER 14 PARTIAL DERIVATIVES

at (3 2 6) is given by

(  )≈ (3 2 6) + (3 2 6)(− 3) + (3 2 6)( − 2) + (3 2 6)( − 6)

= 7 + 3
7
(− 3) + 2

7
( − 2) + 6

7
( − 6) = 3

7
 + 2

7
 + 6

7


Thus


(302)2 + (197)2 + (599)2 = (302 197 599) ≈ 3
7
(302) + 2

7
(197) + 6

7
(599) ≈ 69914.

22. From the table, (40 20) = 28. To estimate (40 20) and (40 20) we follow the procedure used in Exercise 14.3.4. Since

(40 20) = lim
→0

(40 +  20)− (40 20)


, we approximate this quantity with  = ±10 and use the values given in the

table:

(40 20) ≈ (50 20)− (40 20)

10
=

40− 28

10
= 12, (40 20) ≈ (30 20)− (40 20)

−10
=

17− 28

−10
= 11

Averaging these values gives (40 20) ≈ 115. Similarly, (40 20) = lim
→0

(40 20 + )− (40 20)


, so we use  = 10

and  = −5:

(40 20) ≈ (40 30)− (40 20)

10
=

31− 28

10
= 03, (40 20) ≈ (40 15)− (40 20)

−5
=

25− 28

−5
= 06

Averaging these values gives (40 15) ≈ 045. The linear approximation, then, is

( ) ≈ (40 20) + (40 20)( − 40) + (40 20)(− 20) ≈ 28 + 115( − 40) + 045(− 20)

When  = 43 and  = 24, we estimate (43 24) ≈ 28 + 115(43− 40) + 045(24− 20) = 3325, so we would expect the

wave heights to be approximately 3325 ft.

23. From the table, (94 80) = 127. To estimate  (94 80) and (94 80) we follow the procedure used in Section 14.3. Since

 (94 80) = lim
→0

(94 +  80)− (94 80)


, we approximate this quantity with  = ±2 and use the values given in the

table:

 (94 80) ≈ (96 80)− (94 80)

2
=

135− 127

2
= 4,  (94 80) ≈ (92 80)− (94 80)

−2
=

119− 127

−2
= 4

Averaging these values gives  (94 80) ≈ 4. Similarly, (94 80) = lim
→0

(94 80 + )− (94 80)


, so we use  = ±5:

(94 80) ≈ (94 85)− (94 80)

5
=

132− 127

5
= 1, (94 80) ≈ (94 75)− (94 80)

−5
=

122− 127

−5
= 1

Averaging these values gives (94 80) ≈ 1. The linear approximation, then, is

()≈ (94 80) +  (94 80)( − 94) + (94 80)( − 80)

≈ 127 + 4( − 94) + 1( − 80) [or 4 + − 329]

Thus when  = 95 and = 78, (95 78) ≈ 127 + 4(95− 94) + 1(78− 80) = 129, so we estimate the heat index to be

approximately 129◦F.
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SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS ¤ 427

24. From the table, (−15 50) = −29. To estimate  (−15 50) and (−15 50) we follow the procedure used in Section 14.3.

Since  (−15 50) = lim
→0

(−15 +  50)− (−15 50)


, we approximate this quantity with  = ±5 and use the values

given in the table:

 (−15 50) ≈ (−10 50)− (−15 50)

5
=
−22− (−29)

5
= 14

 (−15 50) ≈ (−20 50)− (−15 50)

−5
=
−35− (−29)

−5
= 12

Averaging these values gives  (−15 50) ≈ 13. Similarly (−15 50) = lim
→0

(−15 50 + )− (−15 50)


,

so we use  = ±10:

(−15 50) ≈ (−15 60)− (−15 50)

10
=
−30− (−29)

10
= −01

(−15 50) ≈ (−15 40)− (−15 50)

−10
=
−27− (−29)

−10
= −02

Averaging these values gives (−15 50) ≈ −015. The linear approximation to the wind-chill index function, then, is

( ) ≈ (−15 50) +  (−15 50)( − (−15)) + (−15 50)( − 50) ≈ −29 + (13)( + 15)− (015)( − 50).

Thus when  = −17◦C and  = 55 kmh, (−17 55) ≈ −29 + (13)(−17 + 15)− (015)(55− 50) = −3235, so we

estimate the wind-chill index to be approximately−3235◦C.

25.  = −2 cos 2 ⇒

 =



+




 = −2(−2) cos 2 + −2(− sin 2)(2)  = −2−2 cos 2 − 2−2 sin 2 

26.  =

2 + 32 = (2 + 32)12 ⇒

 =



 +




 = 1

2
(2 + 32)−12(2) + 1

2
(2 + 32)−12(6)  =


2 + 32

+
3

2 + 32


27.  = 53 ⇒  =



+




 = 543 + 352 

28.  =


1 + 
⇒

 =



+




 +






= (−1)(1 + )−2() +
1(1 + )− ()

(1 + )2
 + (−1)(1 + )−2() 

= − 2

(1 + )2
+

1

(1 + )2
 − 2

(1 + )2


29.  = 2 cos  ⇒  =



+




 +




 = 2 cos  + 2 cos   − 2 sin  
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428 ¤ CHAPTER 14 PARTIAL DERIVATIVES

30.  = −
2−2 ⇒

 =



+




 +




 = −

2−2 + −
2−2(−2)  + [ · −2−2(−2) + −

2−2 · 1] 

= −
2−2 − 2−

2−2  + (1− 22)−
2−2 

31.  = ∆ = 005,  = ∆ = 01,  = 52 + 2,  = 10,  = 2. Thus when  = 1 and  = 2,

 = (1 2)  + (1 2)  = (10)(005) + (4)(01) = 09 while

∆ = (105 21)− (1 2) = 5(105)
2

+ (21)
2 − 5− 4 = 09225.

32.  = ∆ = −004,  = ∆ = 005,  = 2 −  + 32,  = 2− ,  = 6 − . Thus when  = 3 and  = −1,

 = (7)(−004) + (−9)(005) = −073 while∆ = (296)
2 − (296)(−095) + 3(−095)

2 − (9 + 3 + 3) = −07189.

33.  =



+




 =  +  and |∆| ≤ 01, |∆| ≤ 01. We use  = 01,  = 01 with  = 30,  = 24; then

the maximum error in the area is about  = 24(01) + 30(01) = 54 cm2.

34. Let  be the volume. Then  = 2 and∆ ≈  = 2 + 2  is an estimate of the amount of metal. With

 = 005 and  = 02 we get  = 2(2)(10)(005) + (2)2(02) = 280 ≈ 88 cm3.

35. The volume of a can is  = 2 and∆ ≈  is an estimate of the amount of tin. Here  = 2 + 2 , so put

 = 004,  = 008 (004 on top, 004 on bottom) and then∆ ≈  = 2(48)(004) + (16)(008) ≈ 1608 cm3.

Thus the amount of tin is about 16 cm3.

36.  = 1312 + 06215 − 1137016 + 03965016, so the differential of is

=



 +




 = (06215 + 03965016)  +

−1137(016)−084 + 03965 (016)−084



= (06215 + 03965016)  + (−18192 + 006344 )−084 

Here we have |∆ | ≤ 1, |∆| ≤ 2, so we take  = 1,  = 2 with  = −11,  = 26. The maximum error in the calculated

value of is about  = (06215 + 03965(26)016)(1) + (−18192 + 006344(−11))(26)−084(2) ≈ 096.

37.  =


22 +2
, so the differential of  is

 =



 +




 =

(22 +2)()−(2)

(22 +2)2
 +

(22 +2)(0)−(4)

(22 +2)2


=
(22 −2)

(22 +2)2
− 4

(22 +2)2


Here we have∆ = 01 and∆ = 01, so we take  = 01,  = 01 with  = 3,  = 07. Then the change in the

tension  is approximately

 =
[2(07)2 − (3)2]

[2(07)2 + (3)2]2
(01)− 4(3)(07)

[2(07)2 + (3)2]2
(01)

= −0802

(998)2
− 084

(998)2
= − 1642

996004
 ≈ −00165

Because the change is negative, tension decreases.
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SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS ¤ 429

38. Here  = ∆ = 03,  = ∆ = −5,  = 831



, so

 =


831




 − 831 · 

 2
 = 831


− 5

12
− 310

144
· 3

10


≈ −883. Thus the pressure will drop by about 883 kPa.

39. First we find


1

implicitly by taking partial derivatives of both sides with respect to 1:



1


1




=

 [(11) + (12) + (13)]

1

⇒ −−2 

1

= −−2
1 ⇒ 

1

=
2

2
1

. Then by symmetry,



2

=
2

2
2

,


3

=
2

2
3

. When 1 = 25, 2 = 40 and 3 = 50,
1


=

17

200
⇔  = 200

17
Ω. Since the possible error

for each  is 05%, the maximum error of  is attained by setting ∆ = 0005. So

∆ ≈  =


1

∆1 +


2

∆2 +


3

∆3 = (0005)2


1

1

+
1

2

+
1

3


= (0005) = 1

17
≈ 0059 Ω.

40. The errors in measurement are at most 2%, so

∆



 ≤ 002 and

∆



 ≤ 002. The relative error in the calculated surface

area is

∆


≈ 


=

01091(04250425−1)0725  + 010910425(07250725−1) 

0109104250725
= 0425




+ 0725





To estimate the maximum relative error, we use



=

∆



 = 002 and



=

∆



 = 002 ⇒




= 0425 (002) + 0725 (002) = 0023. Thus the maximum percentage error is approximately 23%.

41. (a) () = 2 ⇒ () = 12 and () = −23. Since

  0, both  and  are continuous functions, so  is differentiable at (23 110). We

have (23 110) = 23(110)2 ≈ 1901, (23 110) = 1(110)2 ≈ 08264, and

(23 110) = −2(23)(110)3 ≈ −3456, so the linear approximation of  at (23 110) is

 () ≈ (23 110)+(23 110)(−23)+(23 110)(−110) ≈ 1901+08264(−23)−3456(−110)

or () ≈ 08264− 3456+ 3802.

(b) From part (a), for values near = 23 and  = 110, () ≈ 08264− 3456 + 3802. If

increases by 1 kg to 24 kg and  increases by 003 m to 113 m, we estimate the BMI to be

(24 113) ≈ 08264(24)− 3456(113) + 3802 ≈ 18801. This is very close to the actual computed BMI:

(24 113) = 24(113)2 ≈ 18796.

42. r1() =

2 + 3 1− 2 3− 4 + 2

 ⇒ r01() = h3−2−4 + 2i, r2() =

1 + 2 23 − 1 2+ 1

 ⇒

r02() =

2 62 2


. Both curves pass through  since r1(0) = r2(1) = h2 1 3i, so the tangent vectors r01(0) = h3 0−4i

and r02(1) = h2 6 2i are both parallel to the tangent plane to  at  . A normal vector for the tangent plane is
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430 ¤ CHAPTER 14 PARTIAL DERIVATIVES

r01(0)× r02(1) = h3 0−4i × h2 6 2i = h24−14 18i, so an equation of the tangent plane is
24(− 2)− 14( − 1) + 18( − 3) = 0 or 12− 7 + 9 = 44.

43. ∆ = (+ ∆ +∆)− ( ) = (+∆)2 + (+ ∆)2 − (2 + 2)

= 2 + 2∆+ (∆)2 + 2 + 2∆ + (∆)2 − 2 − 2 = 2∆+ (∆)2 + 2∆ + (∆)2

But ( ) = 2 and ( ) = 2 and so∆ = ( )∆+ ( )∆ + ∆∆ + ∆∆, which is Definition 7

with 1 = ∆ and 2 = ∆. Hence  is differentiable.

44. ∆ = (+ ∆ +∆)− ( ) = (+∆)(+∆)− 5(+ ∆)2 − (− 52)

= + ∆ + ∆+ ∆∆ − 52 − 10∆ − 5(∆)2 − + 52

= (− 10)∆ + ∆+∆∆ − 5∆∆,

but ( ) =  and ( ) = − 10 and so∆ = ( )∆+ ( )∆+∆∆− 5∆∆, which is Definition 7

with 1 = ∆ and 2 = −5∆. Hence  is differentiable.

45. To show that  is continuous at ( ) we need to show that lim
()→()

( ) = ( ) or

equivalently lim
(∆∆)→(00)

( + ∆  + ∆) = ( ). Since  is differentiable at ( ),

(+ ∆  + ∆)− ( ) = ∆ = ( )∆ + ( )∆ + 1 ∆ + 2 ∆, where 1 and 2 → 0 as

(∆∆)→ (0 0). Thus (+∆ +∆) = ( ) + ( )∆+ ( )∆ + 1 ∆+ 2 ∆. Taking the limit of

both sides as (∆∆)→ (0 0) gives lim
(∆∆)→(00)

(+∆ + ∆) = ( ). Thus  is continuous at ( ).

46. (a) lim
→0

( 0)− (0 0)


= lim

→0

0− 0


= 0 and lim

→0

 (0 )− (0 0)


= lim

→0

0− 0


= 0. Thus (0 0) = (0 0) = 0.

To show that  isn’t differentiable at (0 0) we need only show that  is not continuous at (0 0) and apply Exercise 45. As

( )→ (0 0) along the -axis ( ) = 02 = 0 for  6= 0 so ( )→ 0 as ( )→ (0 0) along the -axis. But

as ( )→ (0 0) along the line  = , ( ) = 2

22


= 1

2
for  6= 0 so ( )→ 1

2
as ( )→ (0 0) along this

line. Thus lim
()→(00)

( ) doesn’t exist, so  is discontinuous at (0 0) and thus not differentiable there.

(b) For ( ) 6= (0 0), ( ) =
(2 + 2) − (2)

(2 + 2)2
=

(2 − 2)

(2 + 2)2
. If we approach (0 0) along the -axis, then

( ) = (0 ) =
3

4
=

1


, so ( )→ ±∞ as ( )→ (0 0). Thus lim

()→(00)
( ) does not exist and

( ) is not continuous at (0 0) Similarly, ( ) =
(2 + 2)− (2)

(2 + 2)2
=

(2 − 2)

(2 + 2)2
for ( ) 6= (0 0), and

if we approach (0 0) along the -axis, then ( ) = ( 0) =
3

4
=

1


. Thus lim

()→(00)
( ) does not exist and

( ) is not continuous at (0 0)
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APPLIED PROJECT The Speedo LZR Racer

1. () =


2



13

⇒

( ) =
( +  + )− ()

()
=

( +  + )

()
− ()

()
=


2( +  )

( + )

13


2



13
− 1

=


2 (1 + )

(1 + )
· 
2

13

− 1 =


1 + 

1 + 

13

− 1

Both power and drag cannot be reduced by more than 100%, but both could be increased by any percentage, so  ≥ −1 and

 ≥ −1. But  is undefined when  = −1, so the domain is {( ) |  ≥ −1   −1}.

2. If  and  are small, then we can say they are near zero and we can use a linear approximation to  at (0 0).

We have ( ) = (1 + )13(1 + )−13 − 1 so the partial derivatives are

( ) = 1
3
(1 + )−23(1 + )−13 =

1

3(1 + )23(1 + )13
and

( ) = − 1
3
(1 + )13(1 + )−43 = − (1 + )13

3(1 + )43
. Note that  and  are continuous functions for   −1,   −1

so  is differentiable at (0 0). Then (0 0) = 1
3
and (0 0) = −1

3
, and the linear approximation is

( ) ≈ (0 0) + (0 0)(− 0) + (0 0)( − 0) = 0 + 1
3
(− 0)− 1

3
( − 0) = 1

3
− 1

3
. According to the linear

approximation, a small fractional increase in power results in 1/3 that fractional increase in speed, and a small decrease in drag

has the same effect.

3. ( ) =
1

3(1 + )13
· − 2

3


(1 + )−53 = − 2

9(1 + )53(1 + )13
,

( ) = − 1
3
(1 + )13 · − 4

3


(1 + )−73 =

4(1 + )13

9(1 + )73
. Because ( ) is positive in the domain of  , an increase

in power results in an increase in speed, but ( ) is negative, so as the fractional power increases, the fractional speed

increases at a declining rate. (We can say that in the positive -direction,  is increasing and concave downward.) Thus the

linear approximation gives an overestimate for an increase in power. Since ( ) is negative, a decrease in drag increases

speed. But ( ) is positive, so  increases as  increases and  decreases ( becomes larger and larger negative) as 

decreases. (In the positive -direction,  is decreasing and concave upward.) Thus as the fractional drag decreases, the

fractional speed increases at an accelerating pace and the linear approximation gives an underestimate of the increase in power.

This explains why a decrease in drag is more effective than an increase in power: Reducing drag improves speed at an

increasing rate while adding power improves speed at a declining rate.
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4. The level curves of ( ) =


1 + 

1 + 

13

− 1 are


1 + 

1 + 

13

− 1 =  ⇒ 1 + 

1 + 
= (1 + )3 ⇒

 =
1 + 

(1 + )3
− 1.

From the level curves, we see that increasing  (from 0) by a small

amount has a similar effect on the value of  as decreasing  by a small

amount. However, for larger changes, a decrease in  gives greater

values of  than a similar increase in .

14.5 The Chain Rule

1.  = 3 − 2,  = 2 + 1,  = 2 − 1 ⇒



=








+








= (3 − 2)(2) + (32 − 2)(2) = 2(3 − 2 + 32 − 2)

2.  =
− 

+ 2
,  = ,  = − ⇒




=








+








=

( + 2)(1)− (− )(1)

( + 2)2
() +

( + 2)(−1)− (− )(2)

(+ 2)2
(−−)

=
3

(+ 2)2
() +

−3

(+ 2)2
(−−) =

3

(+ 2)2


 + −


3.  = sin cos ,  =

√
,  = 1 ⇒




=








+








= (cos cos )


1
2
−12


+ (− sin sin )

−−2


=
1

2
√

cos cos  +

1

2
sin sin 

4.  =
√

1 + ,  = tan ,  = arctan  ⇒




=








+








= 1

2
(1 + )−12() · sec2  + 1

2
(1 + )−12() · 1

1 + 2

=
1

2
√

1 + 


 sec2  +



1 + 2



5.  =  ,  = 2,  = 1− ,  = 1 + 2 ⇒



=








+








+








=  · 2 + 


1




· (−1) + 


− 

2


· 2 = 


2− 


− 2

2



6.  = ln

2 + 2 + 2 = 1

2
ln(2 + 2 + 2),  = sin ,  = cos ,  = tan  ⇒




=








+








+








=

1

2
· 2

2 + 2 + 2
· cos +

1

2
· 2

2 + 2 + 2
· (− sin ) +

1

2
· 2

2 + 2 + 2
· sec2 

=
 cos −  sin  +  sec2 

2 + 2 + 2
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SECTION 14.5 THE CHAIN RULE ¤ 433

7.  = (− )5,  = 2,  = 2 ⇒



=








+








= 5(− )4(1) · 2+ 5(− )4(−1) · 2 = 5(− )4


2− 2





=








+








= 5(− )4(1) · 2 + 5(− )4(−1) · 2 = 5(− )4


2 − 2


8.  = tan−1(2 + 2),  =  ln ,  =  ⇒




=








+








=

2

1 + (2 + 2)
2
· ln  +

2

1 + (2 + 2)
2
· 

=
2

1 + (2 + 2)
2

( ln  + )




=








+








=

2

1 + (2 + 2)
2
· 


+
2

1 + (2 + 2)
2
· 

=
2

1 + (2 + 2)
2




+ 


9.  = ln(3+ 2),  =  sin ,  =  cos  ⇒



=








+








=

3

3+ 2
(sin ) +

2

3+ 2
(− sin ) =

3 sin − 2 sin 

3+ 2




=








+








=

3

3+ 2
( cos ) +

2

3+ 2
(cos ) =

3 cos + 2cos 

3 + 2

10.  =
√
 ,  = 1 + ,  = 2 − 2 ⇒




=








+








=
√

 · () +  · 1
2
−12


() +

√
() (2) =



√
 +



2
√


+ 232







=








+








=
√

 · () +  · 1
2
−12


() +

√
() (−2) =



√
+



2
√

− 232




11.  =  cos ,  = ,  =
√
2 + 2 ⇒




=








+








=  cos  · + (− sin ) · 1

2
(2 + 2)−12(2) =  cos  −  sin  · √

2 + 2

= 

 cos  − √

2 + 2
sin 





=








+








=  cos  · + (− sin ) · 1

2
(2 + 2)−12(2) =  cos  −  sin  · √

2 + 2

= 

 cos  − √

2 + 2
sin 


12.  = tan(),  = 2+ 3,  = 3− 2 ⇒




=








+








= sec2()(1) · 2 + sec2()(−−2) · 3

=
2


sec2





− 3

2
sec2





=

2 − 3

2
sec2
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=








+








= sec2()(1) · 3 + sec2()(−−2) · (−2)

=
3


sec2





+

2

2
sec2





=

2+ 3

2
sec2






13. Let  = () and  = (). Then () = ( ) and the Chain Rule (2) gives



=








+








. When  = 2,

 = (2) = 4 and  = (2) = 5, so 0(2) = (4 5) 
0(2) + (4 5)

0(2) = (2)(−3) + (8)(6) = 42.

14. ( ) =  (( ) ( )) ⇒ 


=








+








and




=








+








by the

Chain Rule (3). When  = 1 and  = 2, (1 2) = 5 and (1 2) = 7.

Thus (1 2) = (5 7)(1 2) + (5 7) (1 2) = (9)(4) + (−2)(2) = 32 and

(1 2) = (5 7)(1 2) +(5 7) (1 2) = (9)(−3) + (−2)(6) = −39.

15. ( ) = (( ) ( )) where  =  + sin ,  =  + cos  ⇒




= ,




= cos ,




= ,




= − sin . By the Chain Rule (3),




=








+








. Then

(0 0) = ((0 0) (0 0))(0 0) + ((0 0) (0 0)) (0 0) = (1 2)(
0) + (1 2)(

0) = 2(1) + 5(1) = 7.

Similarly,



=








+








. Then

(0 0) = ((0 0) (0 0))(0 0) + ((0 0) (0 0)) (0 0) = (1 2)(cos 0) + (1 2)(− sin 0)

= 2(1) + 5(0) = 2

16. ( ) = (( ) ( )) where  = 2 − ,  = 2 − 4 ⇒ 


= 2,




= −1,




= −4,




= 2.

By the Chain Rule (3)



=








+








. Then

(1 2) = ((1 2) (1 2))(1 2) + ((1 2) (1 2)) (1 2) = (0 0)(2) + (0 0)(−4)

= 4(2) + 8(−4) = −24

Similarly,



=








+








. Then

(1 2) = ((1 2) (1 2))(1 2) + ((1 2) (1 2)) (1 2) = (0 0)(−1) + (0 0)(4)

= 4(−1) + 8(4) = 28

17.  = ( ),  = (  ),  = (  ) ⇒




=








+








,




=








+








,




=








+
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SECTION 14.5 THE CHAIN RULE ¤ 435

18.  = (  ),  = ( ),  = ( ),  = ( ) ⇒



=








+








+








,




=








+








+









19.  =  (  ),  = (  ),  = (  ),  = (  ) ⇒



=








+








+








,




=








+








+








,




=








+








+









20.  =  ( ),  = (   ),  = (   ) ⇒



=








+








,




=








+








,




=








+








,




=








+









21.  = 4 + 2,  = + 2− ,  = 2 ⇒



=








+








= (43 + 2)(1) + (2)(2),




=








+








= (43 + 2)(2) + (2)(2),




=








+








= (43 + 2)(−1) + (2)(2).

When  = 4,  = 2, and  = 1 we have  = 7 and  = 8,

so



= (1484)(1) + (49)(2) = 1582,




= (1484) (2) + (49)(4) = 3164,




= (1484)(−1) + (49)(16) = −700.

22.  = (2+ ) = (2+ )−1,  = 
√
,  = 

√
  ⇒




=








+








= [−(2+ )−2(2)](

√
) +

(2+ )(1)− (1)

(2+ )2
(
√
 )

=
−2

(2+ )2
(
√
) +

2

(2+ )2
(
√
 ),




=








+








=

−2

(2+ )2
(
√
) +

2

(2+ )2


2
√

,




=








+








=

−2

(2+ )2


2
√


+
2

(2+ )2
(
√
).

When  = 2,  = 1, and  = 4 we have  = 4 and  = 8,

so



=
− 1

16


(2) +


1
32


(4) = 0,




=
− 1

16


(4) +


1
32


(4) = − 1

8
,



=
− 1

16

 
1
2


+


1
32


(2) = 1

32
.
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23.  =  +  + ,  =  cos ,  =  sin ,  =  ⇒



=








+








+








= ( + )(cos ) + (+ )(sin ) + ( + )(),




=








+








+








= ( + )(− sin ) + (+ )( cos ) + ( + )().

When  = 2 and  = 2 we have  = 0,  = 2, and  = , so



= (2 + )(0) + (0 + )(1) + (2 + 0)(2) = 2 and




= (2 + )(−2) + (0 + )(0) + (2 + 0)(2) = −2.

24.  =
√
2 + 2 +2 = (2 + 2 +2)12,  =  ,  = ,  =  ⇒




=








+








+









= 1
2
(2 + 2 +2)−12(2)() + 1

2
(2 + 2 +2)−12(2)() + 1

2
(2 + 2 +2)−12(2)()

=
 +  +√

2 + 2 +2
,




=








+








+








=

√
2 + 2 +2

() +
√

2 + 2 +2
() +

√
2 + 2 +2

()

=
 +  +√

2 + 2 +2
.

When  = 0 and  = 2 we have  = 0,  = 2, and  = 1, so



=

0 + 4 + 2√
5

=
6√
5
and




=

0 + 2 + 0√
5

=
2√
5
.

25.  =
+ 

+ 
,  = + ,  =  + ,  =  +  ⇒




=








+








+









=
(+ )(1)− (+ )(1)

(+ )2
(1) +

(+ )(1)− (+ )(0)

(+ )2
() +

(+ )(0)− (+ )(1)

(+ )2
()

=
( − ) + (+ ) − ( + )

(+ )2
,




=








+








+








=

 − 

(+ )2
() +

+ 

(+ )2
(1) +

−( + )

( + )2
() =

( − ) + ( + )− (+ )

(+ )2
,




=








+








+








=

 − 

(+ )2
() +

 + 

(+ )2
() +

−(+ )

(+ )2
(1) =

( − ) + (+ )− (+ )

(+ )2
.

When  = 2,  = 3, and  = 4 we have  = 14,  = 11, and  = 10, so



=
−1 + (24)(4)− (25)(3)

(24)2
=

20

576
=

5

144
,




=

(−1)(4) + 24− (25)(2)

(24)2
=
−30

576
= − 5

96
, and




=

(−1)(3) + (24)(2)− 25

(24)2
=

20

576
=

5

144
.
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26.  =  ,  = 2,  = 2,  = 2 ⇒



=








+








+








= (2) + (0) + (2) = (2 + 2),




=








+








+








= (2) + (2) + (0) = (2 + 2),




=








+








+








= (0) + (2) + (2) = (2 + 2).

When  = −1,  = 2, and  = 1 we have  = 2,  = 4, and  = −1, so



= −4(−4 + 8) = 4−4,




= −4(1− 8) = −7−4, and




= −4(−8− 16) = −24−4.

27.  cos = 2 + 2, so let  ( ) =  cos− 2 − 2 = 0. Then by Equation 6




= −


= −− sin− 2

cos− 2
=

2+  sin

cos− 2
.

28. cos() = 1 + sin , so let  ( ) = cos()− 1− sin  = 0. Then by Equation 6




= −


= − − sin()()

− sin()()− cos 
= −  sin()

cos  +  sin()
.

29. tan−1(2) = + 2, so let  ( ) = tan−1(2)− − 2 = 0. Then

( ) =
1

1 + (2)2
(2)− 1− 2 =

2

1 + 42
− 1− 2 =

2 − (1 + 2)(1 + 42)

1 + 42
,

( ) =
1

1 + (2)2
(2)− 2 =

2

1 + 42
− 2 =

2 − 2(1 + 42)

1 + 42

and



= −


= − [2 − (1 + 2)(1 + 42)](1 + 42)

[2 − 2(1 + 42)](1 + 42)
=

(1 + 2)(1 + 42)− 2

2 − 2(1 + 42)

=
1 + 42 + 2 + 44 − 2

2 − 2 − 253

30.  sin = + , so let  ( ) =  sin− −  = 0. Then



= −


= − cos− 1− 

 sin− 
=

1 +  −  cos

 sin− 
.

31. 2 + 22 + 32 = 1, so let  (  ) = 2 + 22 + 32 − 1 = 0. Then by Equations 7




= −


= −2

6
= − 

3
and




= −


= −4

6
= −2

3
.

32. 2 − 2 + 2 − 2 = 4, so let  (  ) = 2 − 2 + 2 − 2 − 4 = 0. Then by Equations 7




= −


= − 2

2 − 2
=



1− 
and




= −


= − −2

2 − 2
=



 − 1
.
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438 ¤ CHAPTER 14 PARTIAL DERIVATIVES

33.  = , so let  (  ) =  −  = 0. Then



= −


= − −

 − 
=



 − 
and




= −


= − −

 − 
=



 − 
.

34.  +  ln  = 2, so let  (  ) =  +  ln  − 2 = 0. Then



= −


= − ln 

 − 2
=

ln 

2 − 
and




= −


= − + ()

 − 2
=

+ 

2 − 2
.

35. Since  and  are each functions of ,  ( ) is a function of , so by the Chain Rule,



=








+








. After

3 seconds,  =
√

1 +  =
√

1 + 3 = 2,  = 2 + 1
3
 = 2 + 1

3
(3) = 3,




=

1

2
√

1 + 
=

1

2
√

1 + 3
=

1

4
, and




=

1

3
.

Then



= (2 3)




+ (2 3)




= 4


1
4


+ 3


1
3


= 2. Thus the temperature is rising at a rate of 2◦Cs.

36. (a) Since  is negative, a rise in average temperature (while annual rainfall remains constant) causes a decrease in

wheat production at the current production levels. Since  is positive, an increase in annual rainfall (while the

average temperature remains constant) causes an increase in wheat production.

(b) Since the average temperature is rising at a rate of 015◦Cyear, we know that  = 015. Since rainfall is

decreasing at a rate of 01 cmyear, we know  = −01. Then, by the Chain Rule,




=








+








= (−2)(015) + (8)(−01) = −11. Thus we estimate that wheat production will decrease

at a rate of 11 unitsyear.

37.  = 14492 + 46 − 0055 2 + 000029 3 + 0016, so



= 46− 011 + 000087 2 and




= 0016.

According to the graph, the diver is experiencing a temperature of approximately 125◦C at  = 20 minutes, so




= 46− 011(125) + 000087(125)2 ≈ 336. By sketching tangent lines at  = 20 to the graphs given, we estimate




≈ 1

2
and




≈ − 1

10
. Then, by the Chain Rule,




=








+








≈ (336)

− 1
10


+ (0016)


1
2

 ≈ −033.

Thus the speed of sound experienced by the diver is decreasing at a rate of approximately 033 ms per minute.

38.  = 23, so



=








+








=

2

3
18 +

2

3
(−25) = 20,160 − 12,000 = 8160 in3s.

39. (a)  = , so by the Chain Rule,




=








+








+








= 




+ 




+ 




= 2 · 2 · 2 + 1 · 2 · 2 + 1 · 2 · (−3) = 6 m3s.
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SECTION 14.5 THE CHAIN RULE ¤ 439

(b)  = 2( + +), so by the Chain Rule,




=








+








+








= 2( + )




+ 2(+ )




+ 2( +)





= 2(2 + 2)2 + 2(1 + 2)2 + 2(1 + 2)(−3) = 10 m2s

(c) 2 = 2 + 2 + 2 ⇒ 2



= 2




+ 2




+ 2




= 2(1)(2) + 2(2)(2) + 2(2)(−3) = 0 ⇒

 = 0 ms.

40.  =



⇒




=








+








=

1






− 

2




=

1






− 






=

1

400
(−001)− 008

400
(003) = −0000031 As

41.



= 005,




= 015,  = 831




and




=

831






− 831



 2




. Thus when  = 20 and  = 320,




= 831


015

20
− (005)(320)

400


≈ −027 Ls.

42.  = 147065035 and considering  , , and  as functions of time  we have




=








+








= 147(065)−035035 


+ 147(035)065−065 


. We are given

that



= −2 and




= 05, so when  = 30 and  = 8, the rate of change of production




is

147(065)(30)−035(8)035(−2) + 147(035)(30)065(8)−065(05) ≈ −0596. Thus production at that time

is decreasing at a rate of about $596,000 per year.

43. Let  be the length of the first side of the triangle and  the length of the second side. The area  of the triangle is given by

 = 1
2
 sin  where  is the angle between the two sides. Thus  is a function of , , and , and , , and  are each in turn

functions of time . We are given that



= 3,




= −2, and because  is constant,




= 0. By the Chain Rule,




=








+








+








⇒ 


= 1

2
 sin  · 


+ 1

2
 sin  · 


+ 1

2
 cos  · 


. When  = 20,  = 30,

and  = 6 we have

0 = 1
2
(30)


sin 

6


(3) + 1

2
(20)


sin 

6


(−2) + 1

2
(20)(30)


cos 

6

 


= 45 · 1
2
− 20 · 1

2
+ 300 ·

√
3

2
· 


= 25
2

+ 150
√

3




Solving for



gives




=
−252

150
√

3
= − 1

12
√

3
, so the angle between the sides is decreasing at a rate of

1

12
√

3
 ≈ 0048 rads.
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440 ¤ CHAPTER 14 PARTIAL DERIVATIVES

44.  =


+ 

− 


 =


332+34
332−40


460 ≈ 5766 Hz.  and  are functions of time , so




=








+








=


1

− 


 · 


+

+ 

(− )
2
 · 



=


1
332−40


(460) (12) + 332+34

(332−40)2
(460) (14) ≈ 465 Hzs

45. (a) By the Chain Rule,



=




cos  +




sin ,




=




(− sin ) +




 cos .

(b)






2
=






2
cos2  + 2








cos  sin  +






2
sin2 ,






2
=






2
2 sin2  − 2








2 cos  sin  +






2
2 cos2 . Thus






2
+

1

2






2
=






2
+






2
(cos2  + sin2 ) =






2
+






2
.

46. By the Chain Rule,



=




 cos  +




 sin ,




=




(− sin ) +




 cos . Then






2
=






2
2 cos2  + 2








2 cos  sin  +






2
2 sin2  and






2
=






2
2 sin2  − 2








2 cos  sin  +






2
2 sin2 . Thus






2
+






2
−2 =






2
+






2
.

47. Let  = −  and  = + . Then  =
1


[() + ()] and




=

1











+










+ [() + ()]


− 1

2


=

1


[ 0()(1) + 0()(1)]− 1

2
[() + ()] =

1


[ 0() + 0()]− 1

2
[() + ()]




=

1











+










=

1


[ 0()(−1) + 0()(1)] =

1


[− 0() + 0()]

2

2
=

1







[− 0()]




+




[0()]






=

1


[− 00()(−1) + 00()(1)] =

1


[ 00() + 00()]

Thus






2 




=




( [ 0() + 0()]− [() + ()])

=  [ 00()(1) + 00()(1)] + [ 0() + 0()] (1)− [ 0()(1) + 0()(1)]

=  [ 00() + 00()] +  0() + 0()−  0()− 0() =  [ 00() + 00()]

= 2 · 1


[ 00() + 00()] = 2 

2

2
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SECTION 14.5 THE CHAIN RULE ¤ 441

48. Let  = +  and  = − . Then  =
1


[() + ()] and




=

1











+










=

1


[ 0()() + 0()()] =




[ 0() + 0()]

2

2
=









[ 0()]




+




[0()]






=




[ 00()() + 00()()] =

2


[ 00() + 00()]




=

1











+










+ [() + ()]


− 1

2


=

1


[ 0()(1) + 0()(−1)]− 1

2
[() + ()] =

1


[ 0()− 0()]− 1

2
[() + ()]






2 




=




( [ 0()− 0()]− [() + ()])

=  [ 00()(1)− 00()(−1)] + [ 0()− 0()] (1)− [ 0()(1) + 0()(−1)]

=  [ 00() + 00()] +  0()− 0()−  0() + 0() =  [ 00() + 00()]

Thus
2

2
=

2


[ 00() + 00()] =

2

2
·  [ 00() + 00()] =

2

2






2 




.

49. Let  = + ,  = − . Then  = () + (), so  =  0() and  = 0().

Thus



=








+








=  0()− 0() and

2

2
= 




[ 0()− 0()] = 


 0()






− 0()








= 2 00() + 200().

Similarly,



=  0() + 0() and

2

2
=  00() + 00(). Thus

2

2
= 2 2

2
.

50. By the Chain Rule,



=  cos 




+  sin 




and




= − sin 




+  cos 




.

Then
2

2
=  cos 




+  cos 











+  sin 




+  sin 











. But











=

2

2




+

2

 




=  cos 

2

2
+  sin 

2

 
and











=

2

2




+

2






=  sin 

2

2
+  cos 

2


.

Also, by continuity of the partials,
2


=

2

 
. Thus

2

2
=  cos 




+  cos 


 cos 

2

2
+  sin 

2




+  sin 




+  sin 


 sin 

2

2
+  cos 

2




=  cos 




+  sin 




+ 2 cos2 

2

2
+ 22 cos  sin 

2


+ 2 sin2 

2

2
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442 ¤ CHAPTER 14 PARTIAL DERIVATIVES

Similarly

2

2
= − cos 




−  sin 











−  sin 




+  cos 











= − cos 




−  sin 


− sin 

2

2
+  cos 

2




− sin 




+  cos 


 cos 

2

2
−  sin 

2




= − cos 




−  sin 




+ 2 sin2 

2

2
− 22 cos  sin 

2


+ 2 cos2 

2

2

Thus −2


2

2
+

2

2


= (cos2  + sin2 )


2

2
+

2

2


=

2

2
+

2

2
, as desired.

51.



=




2+




2. Then

2

 
=









2


+









2



=
2

2




2+














2+








2+

2

2




2 +














2 +




2

= 4
2

2
+

2

 
42 + 0 + 4

2

2
+

2

 
42 + 2





By the continuity of the partials,
2


= 4

2

2
+ 4

2

2
+ (42 + 42)

2


+ 2




.

52. By the Chain Rule,

(a)



=




cos  +




sin  (b)




= −


 sin  +




 cos 

(c)
2

 
=

2

 
=









cos  +




sin 


= − sin 




+ cos 











+ cos 




+ sin 












= − sin 



+ cos 


2

2




+

2

 






+ cos 




+ sin 

2

2




+

2

 





= − sin 



+ cos 


− sin 

2

2
+  cos 

2

 


+ cos 




+ sin 


 cos 

2

2
−  sin 

2

 



= − sin 



−  cos  sin 

2

2
+  cos2 

2

 
+ cos 




+  cos  sin 

2

2
−  sin2 

2

 

= cos 



− sin 




+  cos  sin 


2

2
− 2

2


+ (cos2  − sin2 )

2

 

53.



=




cos  +




sin  and




= −


 sin  +




 cos . Then

2

2
= cos 


2

2
cos  +

2

 
sin 


+ sin 


2

2
sin  +

2

 
cos 


= cos2 

2

2
+ 2cos  sin 

2

 
+ sin2 

2

2
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SECTION 14.5 THE CHAIN RULE ¤ 443

and

2

2
= − cos 




+ (− sin )


2

2
(− sin ) +

2

 
 cos 


− sin 




+  cos 


2

2
 cos  +

2

 
(− sin )


= − cos 




−  sin 




+ 2 sin2 

2

2
− 22 cos  sin 

2


+ 2 cos2 

2

2

Thus

2

2
+

1

2

2

2
+

1






= (cos2  + sin2 )

2

2
+

sin2  + cos2 

 2

2

−1


cos 




− 1


sin 




+

1




cos 




+ sin 






=

2

2
+

2

2
as desired.

54. (a)



=








+








. Then

2

2
=















+















=














+

2

2



+














+

2

2




=
2

2






2
+

2

 








+

2

2



+

2

2






2
+

2

 








+

2

2




=
2

2






2
+ 2

2

 








+

2

2






2
+

2

2



+

2

2




(b)
2

 
=













+











=


2

2




+

2

 









+





2

 
+


2

2




+

2

 









+





2

 

=
2

2








+

2

 









+










+





2

 
+





2

 
+

2

2









55. (a) Since  is a polynomial, it has continuous second-order partial derivatives, and

( ) = ()2() + 2()()2 + 5()3 = 32 + 232 + 533 = 3(2 + 22 + 53) = 3 ( ).

Thus,  is homogeneous of degree 3.

(b) Differentiating both sides of ( ) = ( ) with respect to  using the Chain Rule, we get




( ) =




[( )] ⇔



()
( ) · ()


+



()
( ) · ()


= 



()
( ) + 



()
( ) = −1( ).

Setting  = 1: 



( ) + 




( ) = ( ).
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444 ¤ CHAPTER 14 PARTIAL DERIVATIVES

56. Differentiating both sides of ( ) = ( ) with respect to  using the Chain Rule, we get



()
( ) · ()


+



()
( ) · ()


= 



()
( ) + 



()
( ) = −1( ) and

differentiating again with respect to  gives




2

 ()
2
( ) ·  ()


+

2

 ()  ()
( ) ·  ()





+ 


2

 ()  ()
( ) ·  ()


+

2

 ()
2
( ) ·  ()




= (− 1)−1( ).

Setting  = 1 and using the fact that  =  , we have 2 + 2 + 2 = (− 1)( ).

57. Differentiating both sides of ( ) = ( ) with respect to  using the Chain Rule, we get




( ) =




[( )] ⇔



 ()
( ) ·  ()


+



 ()
( ) ·  ()


= 




( ) ⇔ ( ) = ( ).

Thus ( ) = −1( ).

58.  (  ) = 0 is assumed to define  as a function of  and , that is,  = ( ). So by (7),



= −


since  6= 0.

Similarly, it is assumed that  (  ) = 0 defines  as a function of  and , that is  = ( ). Then  (( )  ) = 0

and by the Chain Rule, 



+ 




+ 




= 0. But




= 0 and




= 1, so 




+  = 0 ⇒ 


= −


.

A similar calculation shows that



= −


. Thus












=


−




−




−




= −1.

59. Given a function defined implicitly by  ( ) = 0, where  is differentiable and  6= 0, we know that



= −


. Let

( ) = −


so




= ( ). Differentiating both sides with respect to  and using the Chain Rule gives

2

2
=








+








where




=






−




= − − 

 2


,



=






−




= − − 

 2


.

Thus

2

2
=


− − 

 2



(1) +


− − 

 2



−




= −

2
 −  −  + 

2


 3


But  has continuous second derivatives, so by Clauraut’s Theorem,  =  and we have

2

2
= −

2
 − 2 + 

2


 3


as desired.
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR ¤ 445

14.6 Directional Derivatives and the Gradient Vector

1. We can approximate the directional derivative of the pressure function at in the direction of  by the average rate of change

of pressure between the points where the red line intersects the contour lines closest to (extend the red line slightly at the

left). In the direction of , the pressure changes from 1000 millibars to 996 millibars and we estimate the distance between

these two points to be approximately 50 km (using the fact that the distance from to  is 300 km). Then the rate of change

of pressure in the direction given is approximately 996− 1000
50

= −008 millibarkm.

2. First we draw a line passing through Dubbo and Sydney. We approximate the directional derivative at Dubbo in the direction

of Sydney by the average rate of change of temperature between the points where the line intersects the contour lines closest to

Dubbo. In the direction of Sydney, the temperature changes from 30◦C to 27◦C. We estimate the distance between these two

points to be approximately 120 km, so the rate of change of maximum temperature in the direction given is approximately

27− 30
120

= −0025◦Ckm.

3. u (−20 30) = ∇ (−20 30) · u =  (−20 30)


1√
2


+ (−20 30)


1√
2


.

 (−20 30) = lim
→0

(−20 +  30)− (−20 30)


, so we can approximate  (−20 30) by considering  = ±5 and

using the values given in the table:  (−20 30) ≈ (−15 30)− (−20 30)

5
=
−26− (−33)

5
= 14,

 (−20 30) ≈ (−25 30)− (−20 30)

−5
=
−39− (−33)

−5
= 12. Averaging these values gives  (−20 30) ≈ 13.

Similarly, (−20 30) = lim
→0

(−20 30 + )− (−20 30)


, so we can approximate (−20 30) with  = ±10:

(−20 30) ≈ (−20 40)− (−20 30)

10
=
−34− (−33)

10
= −01,

(−20 30) ≈ (−20 20)− (−20 30)

−10
=
−30− (−33)

−10
= −03. Averaging these values gives (−20 30) ≈ −02.

Thenu(−20 30) ≈ 13


1√
2


+ (−02)


1√
2


≈ 0778.

4. ( ) = 3 − 2 ⇒ ( ) = 3 − 2 and ( ) = 32. If u is a unit vector in the direction of  = 3, then

from Equation 6,u(1 2) = (1 2) cos


3


+ (1 2) sin



3


= 6 · 1

2
+ 12 ·

√
3

2
= 3 + 6

√
3.

5. ( ) =  cos() ⇒ ( ) = [− sin()]() = −2 sin() and

( ) = [− sin()]() + [cos()](1) = cos()−  sin(). If u is a unit vector in the direction of  = 4, then

from Equation 6,u(0 1) = (0 1) cos


4


+ (0 1) sin



4


= 0 ·

√
2

2
+ 1 ·

√
2

2
=
√

2
2
.

6. ( ) =
√

2 + 3 ⇒ ( ) = 1
2
(2 + 3)−12(2) = 1

√
2+ 3 and

( ) = 1
2
(2 + 3)−12(3) = 3


2
√

2+ 3

. If u is a unit vector in the direction of  = −6, then from Equation 6,

u(3 1) = (3 1) cos
−

6


+ (3 1) sin

−
6


= 1

3
·
√

3
2

+ 1
2
· − 1

2


=
√

3
6
− 1

4
.
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446 ¤ CHAPTER 14 PARTIAL DERIVATIVES

7. ( ) =  = −1

(a) ∇( ) =



i +




j = −1 i + (−−2) j =

1


i− 

2
j

(b) ∇(2 1) =
1

1
i− 2

12
j = i− 2 j

(c) By Equation 9,u (2 1) = ∇(2 1) · u = (i− 2 j) · 3
5
i + 4

5
j


= 3
5
− 8

5
= −1.

8. ( ) = 2 ln 

(a) ∇( ) =



i +




j = 2 ln  i + (2) j

(b) ∇(3 1) = 0 i + (91) j = 9 j

(c) By Equation 9,u (3 1) = ∇(3 1) · u = 9 j ·− 5
13

i + 12
13

j


= 0 + 108
13

= 108
13

.

9. (  ) = 2 − 3

(a) ∇(  ) = h(  ) (  ) (  )i =

2 − 3 2 − 3 2 − 32


(b) ∇(2−1 1) = h−4 + 1 4− 2−4 + 6i = h−3 2 2i

(c) By Equation 14,u(2−1 1) = ∇(2−1 1) · u = h−3 2 2i · 0 4
5
− 3

5


= 0 + 8

5
− 6

5
= 2

5
.

10. (  ) = 2

(a) ∇(  ) = h(  ) (  ) (  )i =

2() 2 · () +  · 2 2()


=

3 (2 + 2) 3


(b) ∇(0 1−1) = h−1 2 0i

(c) u(0 1−1) = ∇(0 1−1) · u = h−1 2 0i ·  3
13
 4

13
 12

13


= − 3

13
+ 8

13
+ 0 = 5

13

11. ( ) =  sin  ⇒ ∇( ) = h sin   cos i, ∇(0 3) =
√

3
2
 1

2


, and a

unit vector in the direction of v is u = 1√
(−6)2+82

h−6 8i = 1
10
h−6 8i =

− 3
5
 4

5


, so

u (0 3) = ∇(0 3) · u =
√

3
2
 1

2


· − 3

5
 4

5


= − 3

√
3

10
+ 4

10
= 4−3

√
3

10
.

12. ( ) =


2 + 2
⇒ ∇( ) =


(2 + 2)(1)− (2)

(2 + 2)2


0− (2)

(2 + 2)2


=


2 − 2

(2 + 2)2
− 2

(2 + 2)2


,

∇(1 2) =


3
25
− 4

25


, and a unit vector in the direction of v = h3 5i is u = 1√

9+25
h3 5i =


3√
34
 5√

34


, so

u (1 2) = ∇(1 2) · u =


3
25
− 4

25

 ·  3√
34
 5√

34


= 9

25
√

34
− 20

25
√

34
= − 11

25
√

34
.

13. ( ) = 
√
 ⇒ ∇( ) =

√


i +


(2

√
 )

j, ∇(2 4) = 2 i + 1

2
j, and a unit vector in the direction of v is

u = 1√
22+(−1)2

(2 i− j) = 1√
5
(2 i− j), sou (2 4) = ∇(2 4) · u = (2 i + 1

2
j) · 1√

5
(2 i− j) = 1√

5


4− 1

2


= 7

2
√

5
or

7
√

5
10

.
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14. ( ) = 2− ⇒ ∇( ) =

2−


i +

−2−

j, ∇(3 0) = 6 i− 9 j, and a unit vector in the direction of v

is u = 1√
32+42

(3 i + 4 j) = 1
5
(3 i + 4 j), sou (3 0) = ∇(3 0) · u = (6 i− 9 j) · 1

5
(3 i + 4 j) = 1

5
(18− 36) = −18

5
.

15. (  ) = 2 + 2 ⇒ ∇(  ) =

2 2 + 2 2


, ∇(1 2 3) = h4 13 4i, and a unit

vector in the direction of v is u = 1√
4+1+4

h2−1 2i = 1
3
h2−1 2i, so

u (1 2 3) = ∇(1 2 3) · u = h4 13 4i · 1
3
h2−1 2i = 1

3
(8− 13 + 8) = 3

3
= 1.

16. (  ) = 2 tan−1  ⇒ ∇(  ) =


2 tan−1  2 tan−1 

2

1 + 2


,

∇(2 1 1) =

1 · 

4
 4 · 

4
 2

1+1


=


4
  1


, and a unit vector in the direction of v is u = 1√

1+1+1
h1 1 1i = 1√

3
h1 1 1i,

sou (2 1 1) = ∇(2 1 1) · u =


4
  1

 · 1√
3
h1 1 1i = 1√

3



4

+  + 1


= 1√
3


5
4

+ 1

.

17. (  ) = ln(3 + 6 + 9) ⇒ ∇(  ) = h3(3 + 6+ 9) 6(3 + 6+ 9) 9(3 + 6+ 9)i,
∇(1 1 1) =


1
6
 1

3
 1

2


, and a unit vector in the direction of v = 4 i + 12 j + 6k

is u = 1√
16+144+36

(4 i + 12 j + 6k) = 2
7
i + 6

7
j + 3

7
k, so

u (1 1 1) = ∇(1 1 1) · u =


1
6
 1

3
 1

2

 ·  2
7
 6

7
 3

7


= 1

21
+ 2

7
+ 3

14
= 23

42
.

18. u(2 2) = ∇(2 2) · u, the scalar projection of∇(2 2) onto u, so we draw a

perpendicular from the tip of∇(2 2) to the line containing u. We can use the

point (2 2) to determine the scale of the axes, and we estimate the length of the

projection to be approximately 3.0 units. Since the angle between∇(2 2) and u

is greater than 90◦, the scalar projection is negative. Thusu (2 2) ≈ −3.

19. ( ) =

 ⇒ ∇( ) =


1
2
()−12() 1

2
()−12()


=




2






2




, so∇(2 8) =


1 1

4


.

The unit vector in the direction of
−−→
 = h5− 2 4− 8i = h3−4i is u =


3
5
− 4

5


, so

u (2 8) = ∇(2 8) · u =

1 1

4

 ·  3
5
− 4

5


= 2

5
.

20. (  ) = 23 ⇒ ∇(  ) =

23 23 322


, so∇(2 1 1) = h1 4 6i. The unit vector

in the direction of
−−→
 = h−2−4 4i is u = 1√

4+16+16
h−2−4 4i = 1

6
h−2−4 4i, so

u (2 1 1) = ∇(2 1 1) · u = h1 4 6i · 1
6
h−2−4 4i = 1

6
(−2− 16 + 24) = 1.

21. ( ) = 4
√
 ⇒ ∇( ) =


4 · 1

2
−12 4

√



= h2√ 4√ i.

∇(4 1) = h1 8i is the direction of maximum rate of change, and the maximum rate is |∇(4 1)| = √1 + 64 =
√

65.

22. ( ) =  ⇒ ∇( ) =

() () + (1)


=

2 (+ 1)


.

∇(0 2) = h4 1i is the direction of maximum rate of change, and the maximum rate is |∇(0 2)| = √16 + 1 =
√

17.
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448 ¤ CHAPTER 14 PARTIAL DERIVATIVES

23. ( ) = sin() ⇒ ∇( ) = h cos()  cos()i,∇(1 0) = h0 1i. Thus the maximum rate of change is

|∇(1 0)| = 1 in the direction h0 1i.

24. (  ) =  ln() ⇒ ∇(  ) =


ln()  · 


  · 




=


ln()










, ∇(1 2 1

2
) =


0 1

2
 2

. Thus

the maximum rate of change is
∇(1 2 1

2
)
 =


0 + 1

4
+ 4 =


17
4

=
√

17
2

in the direction

0 1

2
 2

or equivalently

h0 1 4i.

25. (  ) = ( + ) = ( + )−1 ⇒

∇(  ) =

1( + )−( + )−2(1)−( + )−2(1)


=


1

 + 
− 

( + )2
− 

( + )2


,

∇(8 1 3) =


1
4
− 8

42
− 8

42


=


1
4
− 1

2
− 1

2


. Thus the maximum rate of change is

|∇(8 1 3)| =


1
16

+ 1
4

+ 1
4

=


9
16

= 3
4
in the direction


1
4
− 1

2
− 1

2


or equivalently h1−2−2i.

26. (  ) = arctan() ⇒ ∇(  ) =




1 + ()2




1 + ()2




1 + ()2


,∇(1 2 1) =


2
5
 1

5
 2

5


. Thus

the maximum rate of change is |∇(1 2 1)| =


4
25

+ 1
25

+ 4
25

=


9
25

= 3
5
in the direction


2
5
 1

5
 2

5


or equivalently

h2 1 2i.

27. (a) As in the proof of Theorem 15,u  = |∇ | cos . Since the minimum value of cos  is −1 occurring when  = , the

minimum value ofu  is − |∇ | occurring when  = , that is when u is in the opposite direction of∇
(assuming∇ 6= 0).

(b) ( ) = 4 − 23 ⇒ ∇( ) =

43 − 23 4 − 322


, so  decreases fastest at the point (2−3) in the

direction −∇(2−3) = − h12−92i = h−12 92i.

28. ( ) = 2 + 3 ⇒ ∇( ) =

2+ 3 32


so∇(2 1) = h5 6i. If u = h i is a unit vector in the desired

direction thenu(2 1) = 2 ⇔ h5 6i · h i = 2 ⇔ 5+ 6 = 2 ⇔  = 1
3
− 5

6
. But 2 + 2 = 1 ⇔

2 +


1
3
− 5

6

2

= 1 ⇔ 61
36
2 − 5

9
+ 1

9
= 1 ⇔ 612 − 20− 32 = 0. By the quadratic formula, the solutions are

 =
−(−20)±


(−20)2 − 4(61)(−32)

2(61)
=

20±√8208

122
=

10± 6
√

57

61
. If  =

10 + 6
√

57

61
≈ 09065 then

 =
1

3
− 5

6


10 + 6

√
57

61


≈ −04221, and if  =

10− 6
√

57

61
≈ −05787 then  =

1

3
− 5

6


10− 6

√
57

61


≈ 08156.

Thus the two directions giving a directional derivative of 2 are approximately h09065−04221i and h−05787 08156i.

29. The direction of fastest change is∇( ) = (2− 2) i + (2 − 4) j, so we need to find all points ( ) where∇( ) is

parallel to i + j ⇔ (2− 2) i + (2 − 4) j =  (i + j) ⇔  = 2− 2 and  = 2 − 4. Then 2− 2 = 2 − 4 ⇒
 = + 1 so the direction of fastest change is i + j at all points on the line  =  + 1.
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR ¤ 449

30. The fisherman is traveling in the direction h−80−60i. A unit vector in this direction is u = 1
100

h−80−60i =
− 4

5
− 3

5


,

and if the depth of the lake is given by ( ) = 200 + 0022 − 00013, then∇( ) =

004−00032


.

u (80 60) = ∇(80 60) · u = h32−108i · − 4
5
− 3

5


= 392. Sinceu (80 60) is positive, the depth of the lake is

increasing near (80 60) in the direction toward the buoy.

31.  =


2 + 2 + 2
and 120 =  (1 2 2) =



3
so  = 360.

(a) u =
h1−1 1i√

3
,

u (1 2 2) = ∇ (1 2 2) ·u =

−360


2 + 2 + 2

−32h  i

(122)

·u = − 40
3
h1 2 2i · 1√

3
h1−1 1i = − 40

3
√

3

(b) From (a),∇ = −360

2 + 2 + 2

−32h  i, and since h  i is the position vector of the point (  ), the

vector − h  i, and thus∇ , always points toward the origin.

32. ∇ = −400−
2−32−92h 3 9i

(a) u = 1√
6
h1−2 1i,∇ (2−1 2) = −400−43h2−3 18i and

u  (2−1 2) =


−400−43

√
6


(26) = −5200

√
6

343
◦Cm.

(b) ∇ (2−1 2) = 400−43h−2 3−18i or equivalently h−2 3−18i.

(c) |∇ | = 400−
2− 32− 92


2 + 92 + 812 ◦Cm is the maximum rate of increase. At (2−1 2) the maximum rate

of increase is 400−43
√

337 ◦Cm.

33. ∇ (  ) = h10− 3 +   − 3 i, ∇ (3 4 5) = h38 6 12i

(a) u  (3 4 5) = h38 6 12i · 1√
3
h1 1−1i = 32√

3

(b) ∇ (3 4 5) = h38 6 12i, or equivalently, h19 3 6i.

(c) |∇ (3 4 5)| = √382 + 62 + 122 =
√

1624 = 2
√

406

34.  = ( ) = 1000− 00052 − 0012 ⇒ ∇( ) = h−001−002i and∇(60 40) = h−06−08i.

(a) Due south is in the direction of the unit vector u = −j and

u(60 40) = ∇ (60 40) · h0−1i = h−06−08i · h0−1i = 08. Thus, if you walk due south from (60 40 966)

you will ascend at a rate of 08 vertical meters per horizontal meter.

(b) Northwest is in the direction of the unit vector u = 1√
2
h−1 1i and

u(60 40) = ∇ (60 40) · 1√
2
h−1 1i = h−06−08i · 1√

2
h−1 1i = − 02√

2
≈ −014. Thus, if you walk northwest

from (60 40 966) you will descend at a rate of approximately 014 vertical meters per horizontal meter.
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450 ¤ CHAPTER 14 PARTIAL DERIVATIVES

(c) ∇(60 40) = h−06−08i is the direction of largest slope with a rate of ascent given by

|∇(60 40)| =


(−06)2 + (−08)2 = 1. The angle above the horizontal in which the path begins is given by

tan  = 1 ⇒  = 45◦.

35. A unit vector in the direction of
−→
 is i and a unit vector in the direction of

−→
 is j. Thus−−→


(1 3) = (1 3) = 3 and

−−→


(1 3) = (1 3) = 26. Therefore ∇(1 3) = h(1 3) (1 3)i = h3 26i, and by definition,

−−→


(1 3) = ∇ · u where u is a unit vector in the direction of
−−→
, which is


5
13
 12

13


. Therefore,

−−→


 (1 3) = h3 26i ·  5
13
 12

13


= 3 · 5

13
+ 26 · 12

13
= 327

13
.

36. The curves of steepest ascent or descent are perpendicular to all of the contour lines (see Figure 12) so we sketch curves

beginning at  and  that head toward lower elevations, crossing each contour line at a right angle.

37. (a) ∇(+ ) =


(+ )



(+ )




=






+ 




 




+ 






= 











+ 











= ∇+ ∇

(b) ∇() =






+ 




 




+ 






= 











+ 











= ∇+ ∇

(c) ∇




=






− 




2







− 





2


=













− 











2

=
∇− ∇

2

(d) ∇ =


()



()




=


−1 


 −1 




= −1∇
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR ¤ 451

38. If we place the initial point of the gradient vector∇(4 6) at (4 6), the vector is perpendicular to the level curve of  that

includes (4 6), so we sketch a portion of the level curve through (4 6) (using the nearby level curves as a guideline)

and draw a line perpendicular to the curve at (4 6). The gradient vector is

parallel to this line, pointing in the direction of increasing function values, and

with length equal to the maximum value of the directional derivative of  at

(4 6). We can estimate this length by finding the average rate of change in the

direction of the gradient. The line intersects the contour lines corresponding to

−2 and −3 with an estimated distance of 05 units. Thus the rate of change is

approximately
−2− (−3)

05
= 2, and we sketch the gradient vector with

length 2.

39. ( ) = 3 + 52 + 3 ⇒

u( ) = ∇( ) · u =

32 + 10 52 + 32

 ·  3
5
 4

5


= 9

5
2 + 6+ 42 + 12

5
2 = 29

5
2 + 6+ 12

5
2. Then

2
u( ) = u [u( )] = ∇ [u( )] · u =


58
5
+ 6 6+ 24

5

 ·  3

5
 4

5


= 174

25
+ 18

5
 + 24

5
 + 96

25
 = 294

25
+ 186

25


and2
u(2 1) = 294

25
(2) + 186

25
(1) = 774

25
.

40. (a) From Equation 9 we have u = ∇ · u = h i · h i =  +  and from Exercise 39 we have

2
u = u [u ] = ∇ [u ] · u = h+  + i · h i = 

2 + + + 
2.

But  =  by Clairaut’s Theorem, so2
u = 

2 + 2+ 
2.

(b) ( ) = 2 ⇒  = 2 ,  = 22 ,  = 0,  = 22 ,  = 42 and a

unit vector in the direction of v is u = 1√
42+62

h4 6i =


2√
13
 3√

13


= h i. Then

2
u = 

2 + 2+ 
2 = 0 ·


2√
13

2
+ 2 · 22


2√
13


3√
13


+ 42


3√
13

2
= 24

13
2 + 36

13
2 .

41. Let  (  ) = 2(− 2)2 + ( − 1)2 + ( − 3)2. Then 2(− 2)2 + ( − 1)2 + ( − 3)2 = 10 is a level surface of  .

(  ) = 4(− 2) ⇒ (3 3 5) = 4, (  ) = 2( − 1) ⇒ (3 3 5) = 4, and

(  ) = 2( − 3) ⇒ (3 3 5) = 4.

(a) Equation 19 gives an equation of the tangent plane at (3 3 5) as 4(− 3) + 4( − 3) + 4( − 5) = 0 ⇔
4+ 4 + 4 = 44 or equivalently +  +  = 11.

(b) By Equation 20, the normal line has symmetric equations
− 3

4
=

 − 3

4
=

 − 5

4
or equivalently

− 3 =  − 3 =  − 5. Corresponding parametric equations are  = 3 + ,  = 3 + ,  = 5 + .
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452 ¤ CHAPTER 14 PARTIAL DERIVATIVES

42. Let  (  ) = 2 + 2 − . Then  = 2 + 2 + 1 ⇔ 2 + 2 −  = −1 is a level surface of  .

(  ) = −1 ⇒ (3 1−1) = −1, (  ) = 2 ⇒ (3 1−1) = 2, and (  ) = 2 ⇒

(3 1−1) = −2.

(a) By Equation 19, an equation of the tangent plane at (3 1−1) is (−1)(− 3) + 2( − 1) + (−2)[ − (−1)] = 0 or

−+ 2 − 2 = 1 or − 2 + 2 = −1.

(b) By Equation 20, the normal line has symmetric equations
− 3

−1
=

 − 1

2
=

 − (−1)

−2
or equivalently

− 3 =
 − 1

−2
=

 + 1

2
and parametric equations  = 3− ,  = 1 + 2,  = −1− 2.

43. Let  (  ) = 23. Then 23 = 8 is a level surface of  and∇ (  ) =

23 23 322


.

(a) ∇ (2 2 1) = h4 8 24i is a normal vector for the tangent plane at (2 2 1), so an equation of the tangent plane is
4(− 2) + 8( − 2) + 24( − 1) = 0 or 4+ 8 + 24 = 48 or equivalently + 2 + 6 = 12.

(b) The normal line has direction∇ (2 2 1) = h4 8 24i or equivalently h1 2 6i, so parametric equations are  = 2 + ,

 = 2 + 2,  = 1 + 6, and symmetric equations are − 2 =
 − 2

2
=

 − 1

6
.

44. Let  (  ) =  +  + . Then  +  +  = 5 is a level surface of  and∇ (  ) = h +  +  + i.

(a) ∇ (1 2 1) = h3 2 3i is a normal vector for the tangent plane at (1 2 1), so an equation of the tangent plane
is 3(− 1) + 2( − 2) + 3( − 1) = 0 or 3+ 2 + 3 = 10.

(b) The normal line has direction h3 2 3i, so parametric equations are  = 1 + 3,  = 2 + 2,  = 1 + 3, and symmetric

equations are
− 1

2
=

 − 2

1
=

 − 1

3
.

45. Let  (  ) =  +  +  −  . Then  +  +  =  is the level surface  (  ) = 0,

and∇ (  ) = h1−  1−  1− i.

(a) ∇ (0 0 1) = h1 1 1i is a normal vector for the tangent plane at (0 0 1), so an equation of the tangent plane
is 1(− 0) + 1( − 0) + 1( − 1) = 0 or +  +  = 1.

(b) The normal line has direction h1 1 1i, so parametric equations are  = ,  = ,  = 1 + , and symmetric equations are

 =  =  − 1.

46. Let  (  ) = 4 + 4 + 4 − 3222. Then 4 + 4 + 4 = 3222 is the level surface  (  ) = 0,

and∇ (  ) =

43 − 622 43 − 622 43 − 622


.

(a) ∇ (1 1 1) = h−2−2−2i or equivalently h1 1 1i is a normal vector for the tangent plane at (1 1 1), so an equation
of the tangent plane is 1(− 1) + 1( − 1) + 1( − 1) = 0 or  +  +  = 3.

(b) The normal line has direction h1 1 1i, so parametric equations are  = 1 + ,  = 1 + ,  = 1 + , and symmetric

equations are − 1 =  − 1 =  − 1 or equivalently  =  = .
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR ¤ 453

47.  (  ) =  +  + ,

∇ (  ) = h +  +   + i,
∇ (1 1 1) = h2 2 2i, so an equation of the tangent
plane is 2+ 2 + 2 = 6 or +  +  = 3, and the

normal line is given by − 1 =  − 1 =  − 1 or

 =  = . To graph the surface we solve for :

 =
3− 

+ 
.

48.  (  ) = , ∇ (  ) = h  i,
∇ (1 2 3) = h6 3 2i, so an equation of the tangent
plane is 6+ 3 + 2 = 18, and the normal line is given

by
− 1

6
=

 − 2

3
=

 − 3

2
or  = 1 + 6,  = 2 + 3,

 = 3 + 2. To graph the surface we solve for :  =
6


.

49. ( ) =  ⇒ ∇( ) = h i,∇(3 2) = h2 3i. ∇(3 2)

is perpendicular to the tangent line, so the tangent line has equation

∇(3 2) · h− 3  − 2i = 0 ⇒ h2 3i · h− 3 − 2i = 0 ⇒

2(− 3) + 3( − 2) = 0 or 2 + 3 = 12.

50. ( ) = 2 + 2 − 4 ⇒ ∇( ) = h2− 4 2i,
∇(1 2) = h−2 4i. ∇(1 2) is perpendicular to the tangent line, so

the tangent line has equation∇(1 2) · h− 1  − 2i = 0 ⇒
h−2 4i · h− 1  − 2i = 0 ⇒ −2(− 1) + 4( − 2) = 0 ⇔
−2 + 4 = 6 or equivalently −+ 2 = 3.

51. ∇ (0 0 0) =


20

2

20

2

20

2


. Thus an equation of the tangent plane at (0 0 0) is

20

2
 +

20

2
 +

20

2
 = 2


2

0

2
+

2
0

2
+

2
0

2


= 2(1) = 2 since (0 0 0) is a point on the ellipsoid. Hence

0

2
+

0

2
 +

0

2
 = 1 is an equation of the tangent plane.
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454 ¤ CHAPTER 14 PARTIAL DERIVATIVES

52. ∇ (0 0 0) =


20

2

20

2

−20

2


, so an equation of the tangent plane at (0 0 0) is

20

2
+

20

2
 − 20

2
 = 2


2

0

2
+

2
0

2
− 2

0

2


= 2 or

0

2
+

0

2
 − 0

2
 = 1.

53. ∇ (0 0 0) =


20

2

20

2

−1




, so an equation of the tangent plane is

20

2
 +

20

2
 − 1


 =

22
0

2
+

22
0

2
− 0



or
20

2
 +

20

2
 =




+ 2


2

0

2
+

2
0

2


− 0


. But

0


=

2
0

2
+

2
0

2
, so the equation can be written as

20

2
+

20

2
 =

 + 0


.

54. Let  (  ) = 2 + 2 + 22; then the ellipsoid 2 + 2 + 22 = 1 is a level surface of  . ∇ (  ) = h2 2 4i is

a normal vector to the surface at (  ) and so it is a normal vector for the tangent plane there. The tangent plane is parallel

to the plane + 2 +  = 1 when the normal vectors of the planes are parallel, so we need a point (0 0 0) on the ellipsoid

where h20 20 40i =  h1 2 1i for some  6= 0. Comparing components we have 20 =  ⇒ 0 = 2,

20 = 2 ⇒ 0 = , 40 =  ⇒ 0 = 4. (0 0 0) = (2  4) lies on the ellipsoid, so

(2)2 + 2 + 2(4)2 = 1 ⇒ 11
8
2 = 1 ⇒ 2 = 8

11
⇒  = ±2


2
11
. Thus the tangent planes at the points

2
11
 2


2
11
 1

2


2
11


and


−


2
11
−2


2
11
− 1

2


2
11


are parallel to the given plane.

55. The hyperboloid 2 − 2 − 2 = 1 is a level surface of  (  ) = 2 − 2 − 2 and∇ (  ) = h2−2−2i is a

normal vector to the surface and hence a normal vector for the tangent plane at (  ). The tangent plane is parallel to the

plane  = +  or  +  −  = 0 if and only if the corresponding normal vectors are parallel, so we need a point (0 0 0)

on the hyperboloid where h20−20−20i =  h1 1−1i or equivalently h0−0−0i =  h1 1−1i for some  6= 0.

Then we must have 0 = , 0 = −, 0 =  and substituting into the equation of the hyperboloid gives

2 − (−)2 − 2 = 1 ⇔ −2 = 1, an impossibility. Thus there is no such point on the hyperboloid.

56. First note that the point (1 1 2) is on both surfaces. The ellipsoid is a level surface of  (  ) = 32 + 22 + 2 and

∇ (  ) = h6 4 2i. A normal vector to the surface at (1 1 2) is∇ (1 1 2) = h6 4 4i and an equation of the

tangent plane there is 6(− 1) + 4( − 1) + 4( − 2) = 0 or 6+ 4 + 4 = 18 or 3+ 2 + 2 = 9. The sphere is a

level surface of(  ) = 2 + 2 + 2 − 8− 6 − 8 + 24 and∇(  ) = h2− 8 2 − 6 2 − 8i. A normal

vector to the sphere at (1 1 2) is ∇(1 1 2) = h−6−4−4i and the tangent plane there is
−6(− 1)− 4( − 1)− 4( − 2) = 0 or 3+ 2 + 2 = 9. Since these tangent planes are identical, the surfaces are

tangent to each other at the point (1 1 2).

57. Let (0 0 0) be a point on the cone [other than (0 0 0)]. The cone is a level surface of  (  ) = 2 + 2 − 2 and

∇ (  ) = h2 2−2i, so∇ (0 0 0) = h20 20−20i is a normal vector to the cone at this point and an
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR ¤ 455

equation of the tangent plane there is 20 (− 0) + 20 ( − 0) − 20 ( − 0) = 0 or

0 + 0 − 0 = 2
0 + 2

0 − 2
0 . But 

2
0 + 2

0 = 2
0 so the tangent plane is given by 0+ 0 − 0 = 0, a plane which

always contains the origin.

58. Let (0 0 0) be a point on the sphere. Then the normal line is given by
− 0

20

=
 − 0

20

=
 − 0

20
. For the center

(0 0 0) to be on the line, we need− 0

20

= − 0

20

= − 0

20
or equivalently 1 = 1 = 1, which is true.

59. Let  (  ) = 2 + 2 − . Then the paraboloid is the level surface  (  ) = 0 and∇ (  ) = h2 2−1i, so
∇ (1 1 2) = h2 2−1i is a normal vector to the surface. Thus the normal line at (1 1 2) is given by  = 1 + 2,

 = 1 + 2,  = 2− . Substitution into the equation of the paraboloid  = 2 + 2 gives 2−  = (1 + 2)2 + (1 + 2)2 ⇔

2−  = 2 + 8 + 82 ⇔ 82 + 9 = 0 ⇔ (8 + 9) = 0. Thus the line intersects the paraboloid when  = 0,

corresponding to the given point (1 1 2), or when  = − 9
8
, corresponding to the point

−5
4
− 5

4
 25

8


.

60. The ellipsoid is a level surface of  (  ) = 42 + 2 + 42 and∇ (  ) = h8 2 8i, so∇ (1 2 1) = h8 4 8i
or equivalently h2 1 2i is a normal vector to the surface. Thus the normal line to the ellipsoid at (1 2 1) is given
by  = 1 + 2,  = 2 + ,  = 1 + 2. Substitution into the equation of the sphere gives

(1+2)2 +(2+)2 +(1+2)2 = 102 ⇔ 6+12+92 = 102 ⇔ 92 +12−96 = 0 ⇔ 3(+4)(3−8) = 0.

Thus the line intersects the sphere when  = −4, corresponding to the point (−7−2−7), and when  = 8
3
, corresponding to

the point


19
3
 14

3
 19

3


.

61. Let (0 0 0) be a point on the surface. Then an equation of the tangent plane at the point is



2
√
0

+


2
√
0

+


2
√
0

=

√
0 +

√
0 +

√
0

2
. But

√
0 +

√
0 +

√
0 =

√
, so the equation is

√
0

+
√
0

+
√
0

=
√
. The -, -, and -intercepts are

√
0,

√
0 and

√
0 respectively. (The -intercept is found by

setting  =  = 0 and solving the resulting equation for , and the - and -intercepts are found similarly.) So the sum of the

intercepts is
√

√

0 +
√
0 +

√
0


= , a constant.

62. The surface  = 1 is a level surface of  (  ) =  and∇ (  ) = h  i is normal to the surface, so a

normal vector for the tangent plane to the surface at (0 0 0) is h00 00 00i. An equation for the tangent plane there

is 00(− 0) + 00( − 0) + 00( − 0) = 0 ⇒ 00+ 00 + 00 = 3000 or


0

+


0

+


0
= 3.

If (0 0 0) is in the first octant, then the tangent plane cuts off a pyramid in the first octant with vertices (0 0 0),

(30 0 0), (0 30 0), (0 0 30). The base in the -plane is a triangle with area 1
2

(30) (30) and the height (along the

-axis) of the pyramid is 30. The volume of the pyramid for any point (0 0 0) on the surface  = 1 in the first octant is

1
3

(base) (height) = 1
3
· 1

2
(30) (30) · 30 = 9

2
000 = 9

2
since 000 = 1.
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456 ¤ CHAPTER 14 PARTIAL DERIVATIVES

63. If (  ) =  − 2 − 2 and (  ) = 42 + 2 + 2, then the tangent line is perpendicular to both∇ and∇

at (−1 1 2). The vector v = ∇ ×∇ will therefore be parallel to the tangent line.

We have∇(  ) = h−2−2 1i ⇒ ∇(−1 1 2) = h2−2 1i, and∇(  ) = h8 2 2i ⇒

∇(−1 1 2) = h−8 2 4i. Hence v = ∇ ×∇ =


i j k

2 −2 1

−8 2 4

 = −10 i− 16 j− 12k.

Parametric equations are:  = −1− 10,  = 1− 16,  = 2− 12.

64. (a) Let (  ) =  +  and (  ) = 2 + 2. Then the required tangent

line is perpendicular to both∇ and∇ at (1 2 1) and the vector
v = ∇ ×∇ is parallel to the tangent line. We have

∇(  ) = h0 1 1i ⇒ ∇(1 2 1) = h0 1 1i, and

∇(  ) = h2 2 0i ⇒ ∇(1 2 1) = h2 4 0i. Hence

v = ∇ ×∇ =


i j k

0 1 1

2 4 0

 = −4 i + 2 j− 2k. So parametric equations

of the desired tangent line are  = 1− 4,  = 2 + 2,  = 1− 2.

(b)

65. Parametric equations for the helix are  = cos,  = sin,  = , and substituting into the equation of the paraboloid

gives  = cos2 + sin2  ⇒  = 1. Thus the helix intersects the surface at the point (cos sin 1) = (−1 0 1). Here

r0() = h− sin  cos 1i, so the tangent vector to the helix at that point is r0(1) = h− sin  cos 1i = h0− 1i.

The paraboloid  = 2 + 2 ⇔ 2 + 2 −  = 0 is a level surface of  (  ) = 2 + 2 −  and

∇ (  ) = h2 2−1i, so a normal vector to the tangent plane at (−1 0 1) is∇ (−1 0 1) = h−2 0−1i. The angle

 between r0(1) and∇ (−1 0 1) is given by

cos  =
h0− 1i · h−2 0−1i
|h0− 1i| |h−2 0−1i| =

0 + 0− 1√
0 + 2 + 1

√
4 + 0 + 1

=
−1

5(2 + 1)
⇒

 = cos−1 −1
5(2 + 1)

≈ 978◦. Because∇ (−1 0 1) is perpendicular to the tangent plane, the angle of intersection

between the helix and the paraboloid is approximately 978◦ − 90◦ = 78◦.

66. Parametric equations for the helix are  = cos(2),  = sin(2),  = , and substituting into the equation of the

sphere gives cos2(2) + sin2(2) + 2 = 2 ⇒ 1 + 2 = 2 ⇒  = ±1. Thus the helix intersects the sphere at

two points: (cos(2) sin(2) 1) = (0 1 1), when  = 1, and (cos(−2) sin(−2)−1) = (0−1−1), when

 = −1. Here r0() =
−

2
sin(2) 

2
cos(2) 1


, so the tangent vector to the helix at (0 1 1) is r0(1) = h−2 0 1i.

The sphere 2 + 2 + 2 = 2 is a level surface of  (  ) = 2 + 2 + 2 and∇ (  ) = h2 2 2i, so a normal
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SECTION 14.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR ¤ 457

vector to the tangent plane at (0 1 1) is∇ (0 1 1) = h0 2 2i. As in Exercise 65, the angle of intersection between the helix
and the sphere is the angle between the tangent vector to the helix and the tangent plane to the sphere. The angle  between

r0(1) and∇ (0 1 1) is given by

cos  =
h−2 0 1i · h0 2 2i
|h−2 0 1i| |h0 2 2i| =

2
(24) + 1

√
8

=
2√

22 + 8
⇒  = cos−1 2√

22 + 8
≈ 677◦

Because∇ (0 1 1) is perpendicular to the tangent plane, the angle between r0(1) and the tangent plane is approximately

90◦ − 677◦ = 223◦.

At (0−1−1), r0(−1) = h2 0 1i and∇ (0−1−1) = h0−2−2i, and the angle  between these vectors is given

by cos =
h2 0 1i · h0−2−2i
|h2 0 1i| |h0−2−2i| =

−2√
22 + 8

⇒  = cos−1 −2√
22 + 8

≈ 1123◦. Thus the angle between the

helix and the sphere at (0−1−1) is approximately 1123◦ − 90◦ = 223◦. (By symmetry, we would expect the angles to be

identical.)

67. (a) The direction of the normal line of  is given by ∇ , and that of  by ∇. Assuming that
∇ 6= 0 6= ∇, the two normal lines are perpendicular at  if ∇ ·∇ = 0 at  ⇔

h  i · h  i = 0 at  ⇔  +  +  = 0 at  .

(b) Here  = 2 + 2 − 2 and  = 2 + 2 + 2 − 2, so

∇ ·∇ = h2 2−2i · h2 2 2i = 42 + 42 − 42 = 4 = 0, since the point (  ) lies on the graph of

 = 0. To see that this is true without using calculus, note that = 0 is the equation of a sphere centered at the origin and

 = 0 is the equation of a right circular cone with vertex at the origin (which is generated by lines through the origin). At

any point of intersection, the sphere’s normal line (which passes through the origin) lies on the cone, and thus is

perpendicular to the cone’s normal line. So the surfaces with equations  = 0 and = 0 are everywhere orthogonal.

68. (a) The function ( ) = ()13 is continuous on R2 since it is a composition of a polynomial and the cube root function,

both of which are continuous. (See the text just after Example 14.2.8.)

(0 0) = lim
→0

(0 +  0)− (0 0)


= lim

→0

( · 0)13 − 0


= 0,

(0 0) = lim
→0

(0 0 + )− (0 0)


= lim

→0

(0 · )
13 − 0


= 0.

Therefore, (0 0) and (0 0) do exist and are equal to 0. Now let u be any unit vector other than i and j (these

correspond to  and  respectively.) Then u =  i +  j where  6= 0 and  6= 0. Thus

u (0 0) = lim
→0

(0 +  0 + )− (0 0)


= lim

→0

3


()()


= lim

→0

3
√


13
and this limit does not exist, so

u (0 0) does not exist.
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458 ¤ CHAPTER 14 PARTIAL DERIVATIVES

(b) Notice that if we start at the origin and proceed in the direction of

the - or -axis, then the graph is flat. But if we proceed in any

other direction, then the graph is extremely steep.

69. Let u = h i and v = h i. Then we know that at the given point, u  = ∇ · u =  +  and

v  = ∇ · v =  +  . But these are just two linear equations in the two unknowns  and  , and since u and v are

not parallel, we can solve the equations to find ∇ = h i at the given point. In fact,

∇ =


u  − v 

− 

v  − u 

− 


.

70. Since  = ( ) is differentiable at x0 = (0 0), by Definition 14.4.7 we have

∆ = (0 0)∆ + (0 0)∆ + 1 ∆ + 2 ∆ where 1 2 → 0 as (∆∆) → (0 0). Now

∆ = (x)− (x0), h∆∆i = x− x0 so (∆∆)→ (0 0) is equivalent to x→ x0 and

h(0 0)  (0 0)i = ∇(x0). Substituting into 14.4.7 gives (x)− (x0) = ∇(x0) · (x−x0)+ h1 2i · h∆∆i
or h1 2i · (x− x0) = (x)− (x0)−∇(x0) · (x− x0),

and so
(x)− (x0)−∇(x0) · (x− x0)

|x− x0| =
h1 2i · (x− x0)

|x− x0| . But
x− x0

|x− x0| is a unit vector so

lim
x→x0

h1 2i · (x− x0)

|x− x0| = 0 since 1 2 → 0 as x→ x0. Hence lim
x→x0

(x)− (x0)−∇(x0) · (x− x0)

|x− x0| = 0.

14.7 Maximum and Minimum Values

1. (a) First we compute(1 1) = (1 1) (1 1)− [(1 1)]
2 = (4)(2)− (1)2 = 7. Since(1 1)  0 and

(1 1)  0,  has a local minimum at (1 1) by the Second Derivatives Test.

(b) (1 1) = (1 1) (1 1)− [(1 1)]
2 = (4)(2)− (3)2 = −1. Since(1 1)  0,  has a saddle point at (1 1) by

the Second Derivatives Test.

2. (a)  = (0 2) (0 2)− [(0 2)]
2 = (−1)(1)− (6)2 = −37. Since  0,  has a saddle point at (0 2) by the

Second Derivatives Test.

(b)  = (0 2) (0 2)− [(0 2)]
2 = (−1)(−8)− (2)2 = 4. Since  0 and (0 2)  0,  has a local

maximum at (0 2) by the Second Derivatives Test.

(c)  = (0 2) (0 2)− [(0 2)]
2 = (4)(9)− (6)2 = 0. In this case the Second Derivatives Test gives no

information about  at the point (0 2).
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3. In the figure, a point at approximately (1 1) is enclosed by level curves which are oval in shape and indicate that as we move

away from the point in any direction the values of  are increasing. Hence we would expect a local minimum at or near (1 1).

The level curves near (0 0) resemble hyperbolas, and as we move away from the origin, the values of  increase in some

directions and decrease in others, so we would expect to find a saddle point there.

To verify our predictions, we have ( ) = 4 + 3 + 3 − 3 ⇒ ( ) = 32 − 3, ( ) = 32 − 3. We

have critical points where these partial derivatives are equal to 0: 32 − 3 = 0, 32 − 3 = 0. Substituting  = 2 from the

first equation into the second equation gives 3(2)2 − 3 = 0 ⇒ 3(3 − 1) = 0 ⇒  = 0 or  = 1. Then we have

two critical points, (0 0) and (1 1). The second partial derivatives are ( ) = 6, ( ) = −3, and ( ) = 6,

so( ) = ( ) ( )− [( )]
2 = (6)(6)− (−3)

2
= 36 − 9. Then(0 0) = 36(0)(0)− 9 = −9,

and(1 1) = 36(1)(1)− 9 = 27. Since(0 0)  0,  has a saddle point at (0 0) by the Second Derivatives Test. Since

(1 1)  0 and (1 1)  0,  has a local minimum at (1 1).

4. In the figure, points at approximately (−1 1) and (−1−1) are enclosed by oval-shaped level curves which indicate that as we

move away from either point in any direction, the values of  are increasing. Hence we would expect local minima at or near

(−1±1). Similarly, the point (1 0) appears to be enclosed by oval-shaped level curves which indicate that as we move away

from the point in any direction the values of  are decreasing, so we should have a local maximum there. We also show

hyperbola-shaped level curves near the points (−1 0), (1 1), and (1−1). The values of  increase along some paths leaving

these points and decrease in others, so we should have a saddle point at each of these points.

To confirm our predictions, we have ( ) = 3− 3 − 22 + 4 ⇒ ( ) = 3− 32, ( ) = −4 + 43.

Setting these partial derivatives equal to 0, we have 3− 32 = 0 ⇒  = ±1 and −4 + 43 = 0 ⇒



2 − 1


= 0 ⇒  = 0±1. So our critical points are (±1 0), (±1 1), (±1−1).

The second partial derivatives are ( ) = −6, ( ) = 0, and ( ) = 122 − 4, so

( ) = ( ) ( )− [( )]
2 = (−6)(122 − 4)− (0)2 = −722 + 24.

We use the Second Derivatives Test to classify the 6 critical points:

Critical Point   Conclusion

(1 0) 24 −6   0,   0 ⇒  has a local maximum at (1 0)

(1 1) −48   0 ⇒  has a saddle point at (1 1)

(1−1) −48   0 ⇒  has a saddle point at (1−1)

(−1 0) −24   0 ⇒  has a saddle point at (−1 0)

(−1 1) 48 6   0,   0 ⇒  has a local minimum at (−1 1)

(−1−1) 48 6   0,   0 ⇒  has a local minimum at (−1−1)

5. ( ) = 2 +  + 2 +  ⇒  = 2+ ,  = + 2 + 1,  = 2,  = 1,  = 2. Then  = 0 implies

 = −2, and substitution into  = + 2 + 1 = 0 gives  + 2 (−2) + 1 = 0 ⇒ −3 = −1 ⇒  = 1
3
.
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460 ¤ CHAPTER 14 PARTIAL DERIVATIVES

Then  = − 2
3
and the only critical point is


1
3
− 2

3


.

( ) =  − ()
2 = (2)(2)− (1)2 = 3, and since




1
3
− 2

3


= 3  0 and 


1
3
− 2

3


= 2  0, 


1
3
− 2

3


= − 1

3
is a local

minimum by the Second Derivatives Test.

6. ( ) =  − 2− 2 − 2 − 2 ⇒  =  − 2− 2,

 = − 2− 2,  = −2,  = 1,  = −2. Then  = 0 implies

 = 2+ 2, and substitution into  = 0 gives − 2− 2(2+ 2) = 0 ⇒
−3 = 6 ⇒  = −2. Then  = −2 and the only critical point is

(−2−2). ( ) =  − ()
2

= (−2)(−2)− 12 = 3, and since

(−2−2) = 3  0 and (−2−2) = −2  0, (−2−2) = 4 is a

local maximum by the Second Derivatives Test.

7. ( ) = (− )(1− ) = −  − 2 + 2 ⇒  = 1− 2 + 2,  = −1− 2 + 2,  = −2,

 = −2+ 2,  = 2. Then  = 0 implies 1− 2 + 2 = 0 and  = 0 implies−1− 2 + 2 = 0. Adding the

two equations gives 1 + 2 − 1− 2 = 0 ⇒ 2 = 2 ⇒  = ±, but if  = − then  = 0 implies

1 + 22 + 2 = 0 ⇒ 32 = −1 which has no real solution. If  = 

then substitution into  = 0 gives 1− 22 + 2 = 0 ⇒ 2 = 1 ⇒
 = ±1, so the critical points are (1 1) and (−1−1). Now

(1 1) = (−2)(2)− 02 = −4  0 and

(−1−1) = (2)(−2)− 02 = −4  0, so (1 1) and (−1−1) are

saddle points.

8. ( ) = ( − 1) ⇒  = ,  =  − 1,  = ,

 = ,  = 0. Because  is never zero,  = 0 only when  = 0,

and  = 0 when  = 1 ⇒  = 0, so the only critical point is (0 0).

( ) =  − ()
2 = ()(0)− ()2 = −2, and since

(0 0) = −1  0, (0 0) is a saddle point.

9. ( ) = 2 + 4 + 2 ⇒  = 2+ 2,  = 43 + 2,  = 2,  = 2,  = 122. Then  = 0 implies

 = −, and substitution into  = 43 + 2 = 0 gives −43 + 2 = 0 ⇒ 2

1− 22


= 0 ⇒  = 0 or

 = ± 1√
2
. Thus the critical points are (0 0),


1√
2
− 1√

2


, and


− 1√

2
 1√

2


. Now
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( ) =  − ()
2 = (2)(122)− (2)2 = 242 − 4,

so(0 0) = −4  0 and (0 0) is a saddle point.




1√
2
− 1√

2


= 


− 1√

2
 1√

2


= 24


1
2

− 4 = 8  0 and




1√
2
− 1√

2


= 


− 1√

2
 1√

2


= 2  0, so 


1√
2
− 1√

2


= − 1

4

and 

− 1√

2
 1√

2


= − 1

4
are local minima.

10. ( ) = 2− 4 + 22 − 2 ⇒  = −43 + 4,  = −2,  = −122 + 4,  = 0,  = −2. Then  = 0

implies −4(2 − 1) = 0, so  = 0 or  = ±1, and  = 0 implies  = 0. Thus the critical points are (0 0), (±1 0).

(0 0) = (4)(−2)− 02 = −8  0, so (0 0) is a saddle point.

(1 0) = (−1 0) = (−8)(−2)− (0)2 = 16  0, and

(1 0) = (−1 0) = −8  0, so (1 0) = 3 and (−1 0) = 3

are local maxima.

11. ( ) = 3 − 3+ 32 ⇒  = 32 − 3 + 32,  = 6,  = 6,  = 6,  = 6. Then  = 0 implies

 = 0 or  = 0. If  = 0, substitution into  = 0 gives 32 = 3 ⇒  = ±1, and if  = 0, substitution into  = 0

gives  = ±1. Thus the critical points are (0±1) and (±1 0).

(0±1) = 0− 36  0, so (0±1) are saddle points.

(±1 0) = 36− 0  0, (1 0) = 6  0, and (−1 0) = −6  0,

so (1 0) = −2 is a local minimum and (−1 0) = 2 is a local maximum.

12. ( ) = 3 + 3 − 32 − 32 − 9 ⇒  = 32 − 6− 9,  = 32 − 6,  = 6− 6,  = 0,  = 6 − 6.

Then  = 0 implies 3( + 1)(− 3) = 0 ⇒  = −1 or  = 3, and  = 0 implies 3( − 2) = 0 ⇒  = 0 or

 = 2. Thus the critical points are (−1 0), (−1 2), (3 0), and (3 2). (−1 2) = (−12)(6)− (0)2 = −72  0 and

(3 0) = (12)(−6)− (0)2 = −72  0, so (−1 2) and (3 0) are

saddle points. (−1 0) = (−12)(−6)− (0)2 = 72  0 and

(−1 0) = −12  0, so (−1 0) = 5 is a local maximum.

(3 2) = (12)(6)− (0)2 = 72  0 and (3 2) = 12  0, so

(3 2) = −31 is a local minimum.
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13. ( ) = 4 − 22 + 3 − 3 ⇒  = 43 − 4,  = 32 − 3,  = 122 − 4,  = 0,  = 6.

Then  = 0 implies 4(2 − 1) = 0 ⇒  = 0 or  = ±1, and  = 0 implies 3(2 − 1) = 0 ⇒  = ±1.

Thus there are six critical points: (0±1), (±1 1), and (±1−1).

(0 1) = (−4)(6)− (0)2 = −24  0 and

(±1−1) = (8)(−6) = −48  0, so (0 1) and (±1−1) are saddle

points. (0−1) = (−4)(−6) = 24  0 and (0−1) = −4  0, so

(0−1) = 2 is a local maximum. (±1 1) = (8)(6) = 48  0 and

(±1 1) = 8  0, so (±1 1) = −3 are local minima.

14. ( ) =  cos ⇒  = − sin,  = cos,  = − cos,

 = − sin,  = 0. Then  = 0 if and only if  = 
2

+  for  an

integer. But sin


2

+ 
 6= 0, so  = 0 ⇒  = 0 and the critical

points are


2

+  0

,  an integer.




2

+  0


= (0)(0)− (±1)2 = −1  0, so each critical point is

a saddle point.

15. ( ) =  cos  ⇒  =  cos ,  = − sin .

Now  = 0 implies cos  = 0 or  = 
2

+  for  an integer.

But sin


2

+ 
 6= 0, so there are no critical points.

16. ( ) = −(2+2)2 ⇒  =  · −(2+2)2(−) + −(2+2)2 ·  = (1− 2)−(2+2)2,

 =  · −(2+2)2(−) + −(2+2)2 ·  = (1− 2)−(2+2)2,

 = 

(1− 2) · −(2+2)2(−) + −(2+2)2(−2)


= (2 − 3)−(2+2)2,

 = (1− 2)

 · −(2+2)2(−) + −(2+2)2(1)


= (1− 2)(1− 2)−(2+2)2,

 = 

(1− 2) · −(2+2)2(−) + −(2+2)2(−2)


= (2 − 3)−(2+2)2.

Then  = 0 implies (1− 2) = 0 ⇒  = 0 or  = ±1. Substituting  = 0 into  = 0 gives −
22 = 0 ⇒

 = 0, and substituting  = ±1 into  = 0 gives ±(1− 2)−(1+2)2 = 0 ⇒  = ±1, so the critical points are (0 0),

(1±1), and (−1±1). (0 0) = (0)(0)− (1)2 = −1  0, so (0 0) is a saddle point.

[continued]
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(1 1) = (−1−1) = (−2−1)(−2−1)− (0)2 = 4−2  0 and

(1 1) = (−1−1) = −2−1  0, so (1 1) = (−1−1) = −1

are local maxima.

(1−1) = (−1 1) = (2−1)(2−1)− (0)2 = 4−2  0 and

(1−1) = (−1 1) = 2−1  0, so (1−1) = (−1 1) = −−1

are local minima.

17. ( ) =  + − ⇒  =  − − ,  =  − − ,  = 2−,

 = 1− (−−) + −(1)


= 1 + ( − 1)− ,  = 2− . Then  = 0 implies (1− −) = 0 ⇒

 = 0 or − = 1 ⇒  = 0 or  = 0. If  = 0 then  = 0 for any -value, so all points of the form (0 0) are

critical points. If  = 0, then  = − 0 = 0 for any -value, so all points of the form (0 0) are critical points. We have

(0 0) = (0)(2
0)− (0)2 = 0 and (0 0) = (2

0)(0)− (0)2 = 0, so the Second Derivatives Test gives no information.

Notice that if we let  = , then ( ) = () = + − ⇒
0() = 1− −. Now 0() = 0 only for  = 0, and 0()  0 for   0,

0()  0 for   0. Thus (0) = 1 is a local and absolute minimum, so

( ) =  + − ≥ 1 for all ( ) with equality if and only if  = 0

or  = 0. Hence all points on the - and -axes are local (and absolute)

minima, where ( ) = 1.

18. ( ) = (2 + 2)− ⇒  = (2 + 2)(−−) + −(2) = (2− 2 − 2)−,  = 2−,

 = (2− 2 − 2)(−−) + −(2− 2) = (2 + 2 − 4+ 2)−,  = −2−,  = 2−. Then  = 0

implies  = 0 and substituting into  = 0 gives (2− 2)− = 0 ⇒
(2− ) = 0 ⇒  = 0 or  = 2, so the critical points are (0 0) and

(2 0). (0 0) = (2)(2)− (0)2 = 4  0 and (0 0) = 2  0, so

(0 0) = 0 is a local minimum.

(2 0) = (−2−2)(2−2)− (0)2 = −4−4  0 so (2 0) is a saddle

point.

19. ( ) = 2 − 2 cos ⇒  = 2 sin,  = 2 − 2 cos,

 = 2 cos,  = 2 sin,  = 2. Then  = 0 implies  = 0 or

sin = 0 ⇒  = 0, , or 2 for −1 ≤  ≤ 7. Substituting  = 0 into

 = 0 gives cos = 0 ⇒  = 
2
or 3

2
, substituting  = 0 or  = 2

into  = 0 gives  = 1, and substituting  =  into  = 0 gives  = −1.

Thus the critical points are (0 1),


2
 0

, (−1),


3
2
 0

, and (2 1).
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2
 0


= 


3
2
 0


= −4  0 so


2
 0

and


3
2
 0

are saddle points. (0 1) = (−1) = (2 1) = 4  0 and

(0 1) = (−1) = (2 1) = 2  0, so (0 1) = (−1) = (2 1) = −1 are local minima.

20. ( ) = sin sin  ⇒  = cos sin ,  = sin cos ,  = − sin sin ,  = cos cos ,

 = − sin sin . Here we have −     and −    , so  = 0 implies cos = 0 or sin  = 0. If cos = 0

then  = −
2
or 

2
, and if sin  = 0 then  = 0. Substituting  = ±

2
into  = 0 gives cos  = 0 ⇒  = −

2
or 

2
, and

substituting  = 0 into  = 0 gives sin = 0 ⇒  = 0. Thus the critical points are
−

2
±

2


,


2
±

2


, and (0 0).

(0 0) = −1  0 so (0 0) is a saddle point.


−

2
±

2


= 



2
±

2


= 1  0 and


−

2
−

2


= 



2
 

2


= −1  0 while


−

2
 

2


= 



2
−

2


= 1  0, so 

−
2
−

2


= 



2
 

2


= 1

are local maxima and 
−

2
 

2


= 



2
−

2


= 1 are local minima.

21. ( ) = 2 + 42 − 4 + 2 ⇒  = 2− 4,  = 8 − 4,  = 2,  = −4,  = 8. Then  = 0

and  = 0 each implies  = 1
2
, so all points of the form


0

1
2
0


are critical points and for each of these we have



0

1
2
0


= (2)(8)− (−4)2 = 0. The Second Derivatives Test gives no information, but

( ) = 2 + 42 − 4 + 2 = (− 2)2 + 2 ≥ 2 with equality if and only if  = 1
2
. Thus 


0

1
2
0


= 2 are all local

(and absolute) minima.

22. ( ) = 2−
2−2 ⇒

 = 2−
2−2(−2) + 2−

2−2 = 2(1− 2)−
2−2 ,

 = 2−
2−2(−2) + 2−

2−2 = 2(1− 22)−
2−2 ,

 = 2(24 − 52 + 1)−
2−2 ,

 = 2(1− 2)(1− 22)−
2−2 ,  = 22(22 − 3)−

2−2 .

 = 0 implies  = 0,  = 0, or  = ±1. If  = 0 then  = 0 for any -value, so all points of the form (0 ) are critical

points. If  = 0 then  = 0 ⇒ 2−
2

= 0 ⇒  = 0, so (0 0) (already included above) is a critical point. If  = ±1

then (1− 22)−1−2 = 0 ⇒  = ± 1√
2
, so


±1 1√

2


and


±1− 1√

2


are critical points. Now



±1 1√

2


= 8−3  0, 


±1 1√

2


= −2

√
2 −32  0 and


±1− 1√

2


= 8−3  0,




±1− 1√

2


= 2

√
2 −32  0, so 


±1 1√

2


= 1√

2
−32 are local maximum points while



±1− 1√

2


= − 1√

2
−32 are local minimum points. At all critical points (0 ) we have(0 ) = 0, so the Second

Derivatives Test gives no information. However, if   0 then 2−
2−2 ≥ 0 with equality only when  = 0, so we have

local minimum values (0 ) = 0,   0. Similarly, if   0 then 2−
2−2 ≤ 0 with equality when  = 0 so

(0 ) = 0,   0 are local maximum values, and (0 0) is a saddle point.
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES ¤ 465

23. ( ) = 2 + 2 + −2−2

From the graphs, there appear to be local minima of about (1±1) = (−1±1) ≈ 3 (and no local maxima or saddle

points).  = 2− 2−3−2,  = 2 − 2−2−3,  = 2 + 6−4−2,  = 4−3−3,  = 2 + 6−2−4. Then

 = 0 implies 242 − 2 = 0 or 42 = 1 or 2 = −4. Note that neither  nor  can be zero. Now  = 0 implies

224 − 2 = 0, and with 2 = −4 this implies 2−6 − 2 = 0 or 6 = 1. Thus  = ±1 and if  = 1,  = ±1; if  = −1,

 = ±1. So the critical points are (1 1), (1−1),(−1 1) and (−1−1). Now(1±1) = (−1±1) = 64− 16  0 and

  0 always, so (1±1) = (−1±1) = 3 are local minima.

24. ( ) = (− )−
2−2

From the graphs, there appears to be a local maximum of about (05−05) ≈ 06 and a local minimum of about

(−05 05) ≈ −06.

 = ( − )−
2−2(−2) + −

2−2(1) = −
2−2(1 − 22 + 2),

 = (− )−
2−2(−2) + −

2−2(−1) = −−2−2(1− 22 + 2),  = 2−
2−2(23 − 3+  − 22),

 = 2−
2−2(−  + 22 − 22),  = −2−

2−2(23 − 3 + − 22). Then  = 0 implies

1− 22 + 2 = 0 and  = 0 implies 1− 22 + 2 = 0. Subtracting these two equations gives

−22 + 22 = 0 ⇒  = ±. If  =  then substituting into  = 0 gives 1− 22 + 22 = 0, an impossibility.

Substituting  = − gives 1− 22 − 22 = 0 ⇒ 2 = 1
4
⇒  = ± 1

2
. Thus the critical points are


1
2
− 1

2


and− 1

2
 1

2


. Now


1
2
− 1

2


= (−3−12)(−3−12)− (−12)2 = 8−1  0 with 


1
2
− 1

2


= −3−12  0, so




1
2
− 1

2


= −12 ≈ 0607 is a local maximum, and

− 1
2
 1

2


= (3−12)(3−12)− (−−12)2 = 8−1  0 with


− 1

2
 1

2


= 3−12  0, so 

− 1
2
 1

2


= −−12 ≈ −0607 is a local minimum.
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466 ¤ CHAPTER 14 PARTIAL DERIVATIVES

25. ( ) = sin+ sin  + sin(+ ), 0 ≤  ≤ 2, 0 ≤  ≤ 2

From the graphs it appears that  has a local maximum at about (1 1) with value approximately 26, a local minimum

at about (5 5) with value approximately −26, and a saddle point at about (3 3).

 = cos + cos(+ ),  = cos  + cos(+ ),  = − sin− sin( + ),  = − sin  − sin(+ ),

 = − sin(+ ). Setting  = 0 and  = 0 and subtracting gives cos− cos  = 0 or cos = cos . Thus  = 

or  = 2 − . If  = ,  = 0 becomes cos + cos 2 = 0 or 2 cos2 + cos− 1 = 0, a quadratic in cos. Thus

cos = −1 or 1
2
and  = , 

3
, or 5

3
, giving the critical points ( ),



3
 

3


and


5
3
 5

3


. Similarly if

 = 2 − ,  = 0 becomes (cos) + 1 = 0 and the resulting critical point is ( ). Now

( ) = sin sin  + sin sin(+ ) + sin  sin(+ ). So( ) = 0 and the Second Derivatives Test doesn’t apply.

However, along the line  =  we have ( ) = 2 sin+ sin 2 = 2 sin+ 2 sin cos = 2 sin(1 + cos), and

( )  0 for 0     while ( )  0 for     2. Thus every disk with center ( ) contains points where  is

positive as well as points where  is negative, so the graph crosses its tangent plane ( = 0) there and ( ) is a saddle point.




3
 

3


= 9

4
 0 and 



3
 

3


 0 so 



3
 

3


= 3

√
3

2
is a local maximum while


5
3
 5

3


= 9

4
 0 and




5
3
 5

3


 0, so 


5
3
 5

3


= − 3

√
3

2
is a local minimum.

26. ( ) = sin+ sin  + cos(+ ), 0 ≤  ≤ 
4
, 0 ≤  ≤ 

4

[continued]
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From the graphs, it seems that  has a local maximum at about (05 05).

 = cos− sin( + ),  = cos  − sin( + ),  = − sin− cos( + ),  = − sin  − cos( + ),

 = − cos( + ). Setting  = 0 and  = 0 and subtracting gives cos = cos . Thus  = . Substituting  =  into

 = 0 gives cos− sin 2 = 0 or cos(1− 2 sin) = 0. But cos 6= 0 for 0 ≤  ≤ 
4
and 1− 2 sin = 0 implies

 = 
6
, so the only critical point is



6
 

6


. Here 



6
 

6


= −1  0 and



6
 

6


= (−1)2 − 1

4
 0. Thus 



6
 

6


= 3

2

is a local maximum.

27. ( ) = 4 + 4 − 42 + 2 ⇒ ( ) = 43 − 8 and ( ) = 43 − 42 + 2.  = 0 ⇒

4(2 − 2) = 0, so  = 0 or 2 = 2. If  = 0 then substitution into  = 0 gives 43 = −2 ⇒  = − 1
3√

2
, so

0− 1
3√

2


is a critical point. Substituting 2 = 2 into  = 0 gives 43 − 8 + 2 = 0. Using a graph, solutions are

approximately  = −1526, 0259, and 1267. (Alternatively, we could have used a calculator or a CAS to find these roots.)

We have 2 = 2 ⇒  = ±√2, so  = −1526 gives no real-valued solution for , but

 = 0259 ⇒  ≈ ±0720 and  = 1267 ⇒  ≈ ±1592. Thus to three decimal places, the critical points are
0− 1

3√
2


≈ (0−0794), (±0720 0259), and (±1592 1267). Now since  = 122 − 8,  = −8,  = 122,

and = (122 − 8)(122)− 642, we have(0−0794)  0, (0−0794)  0,(±0720 0259)  0,

(±1592 1267)  0, and (±1592 1267)  0. Therefore (0−0794) ≈ −1191 and (±1592 1267) ≈ −1310

are local minima, and (±0720 0259) are saddle points. There is no highest point on the graph, but the lowest points are

approximately (±1592 1267−1310).

28. ( ) = 6 − 24 + 2 − 2 +  ⇒ ( ) = 2 and ( ) = 65 − 83 − 2 + 1.  = 0 implies  = 0, and

the graph of  shows that the roots of  = 0 are approximately  = −1273, 0347, and 1211. (Alternatively, we could

have found the roots of  = 0 directly, using a calculator or CAS.) So to three decimal places, the critical points are

(0−1273), (0 0347), and (0 1211). Now since  = 2,  = 0,  = 304 − 242 − 2, and = 604 − 482 − 4,

we have(0−1273)  0, (0−1273)  0,(0 0347)  0,(0 1211)  0, and (0 1211)  0, so

(0−1273) ≈ −3890 and (0 1211) ≈ −1403 are local minima, and (0 0347) is a saddle point. The lowest point on
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468 ¤ CHAPTER 14 PARTIAL DERIVATIVES

the graph is approximately (0−1273−3890).

29. ( ) = 4 + 3 − 32 + 2 + − 2 + 1 ⇒ ( ) = 43 − 6 + 1 and ( ) = 32 + 2 − 2. From the

graphs, we see that to three decimal places,  = 0 when  ≈ −1301, 0170, or 1131, and  = 0 when  ≈ −1215 or x

0549. (Alternatively, we could have used a calculator or a CAS to find these roots. We could also use the quadratic formula to

find the solutions of  = 0.) So, to three decimal places,  has critical points at (−1301−1215), (−1301 0549),

(0170−1215), (0170 0549), (1131−1215), and (1131 0549). Now since  = 122 − 6,  = 0,  = 6 + 2,

and = (122 − 6)(6 + 2), we have(−1301−1215)  0,(−1301 0549)  0, (−1301 0549)  0,

(0170−1215)  0, (0170−1215)  0,(0170 0549)  0,(1131−1215)  0,(1131 0549)  0, and

(1131 0549)  0. Therefore, to three decimal places, (−1301 0549) ≈ −3145 and (1131 0549) ≈ −0701 are

local minima, (0170−1215) ≈ 3197 is a local maximum, and (−1301−1215), (0170 0549), and (1131−1215)

are saddle points. There is no highest or lowest point on the graph.

30. ( ) = 20−
2−2 sin 3 cos 3 ⇒

( ) = 20 cos 3

−

2−2(3 cos 3) + (sin 3)−
2−2(−2)


= 20−

2−2 cos 3 (3 cos 3− 2 sin 3)

( ) = 20 sin 3

−

2−2(−3 sin 3) + (cos 3)−
2−2(−2)


= −20−

2−2 sin 3 (3 sin 3 + 2 cos 3)

Now  = 0 implies cos 3 = 0 or 3 cos 3− 2 sin 3 = 0. For || ≤ 1, the solutions to cos 3 = 0 are

 = ±
6
≈ ±0524. Using a graph (or a calculator or CAS), we estimate the roots of 3 cos 3− 2 sin 3 for || ≤ 1 to be
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES ¤ 469

 ≈ ±0430.  = 0 implies sin 3 = 0, so  = 0, or 3 sin 3 + 2 cos 3 = 0. From a graph (or calculator or CAS), the

roots of 3 sin 3 + 2 cos 3 between −1 and 1 are approximately 0 and ±0872. So to three decimal places,  has critical

points at (±0430 0), (0430±0872), (−0430±0872), and (0±0524). Now

 = 20−
2−2 cos 3[(42 − 11) sin 3− 12 cos 3]

 = −20−
2−2(3 cos 3− 2 sin 3)(3 sin 3 + 2 cos 3)

 = 20−
2−2 sin 3[(42 − 11) cos 3 − 12 sin 3]

and =  − 2
 . Then(±0430 0)  0, (0430 0)  0, (−0430 0)  0,(0430±0872)  0,

(0430±0872)  0, (−0430±0872)  0, (−0430±0872)  0, and (0±0524)  0, so

(0430 0) ≈ 15973 and (−0430±0872) ≈ 6459 are local maxima, (−0430 0) ≈ −15973 and

(0430±0872) ≈ −6459 are local minima, and (0±0524) are saddle points. The highest point on the graph is

approximately (0430 0 15973) and the lowest point is approximately (−0430 0−15973).

31. Since  is a polynomial it is continuous on, so an absolute maximum and minimum exist. Here  = 2− 2,  = 2, and

setting  =  = 0 gives (1 0) as the only critical point (which is inside), where (1 0) = −1. Along 1:  = 0 and

(0 ) = 2 for −2 ≤  ≤ 2, a quadratic function which attains its minimum at  = 0, where (0 0) = 0, and its maximum

at  = ±2, where (0±2) = 4. Along 2:  = − 2 for 0 ≤  ≤ 2, and ( − 2) = 22 − 6+ 4 = 2

− 3

2

2 − 1
2
,

a quadratic which attains its minimum at  = 3
2
, where 


3
2
− 1

2


= − 1

2
, and its maximum at  = 0, where (0−2) = 4.

Along 3:  = 2−  for 0 ≤  ≤ 2, and

( 2− ) = 22 − 6+ 4 = 2

− 3

2

2 − 1
2
, a quadratic which attains

its minimum at  = 3
2
, where 


3
2
 1

2


= − 1

2
, and its maximum at  = 0,

where (0 2) = 4. Thus the absolute maximum of  on is (0±2) = 4

and the absolute minimum is (1 0) = −1.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



470 ¤ CHAPTER 14 PARTIAL DERIVATIVES

32. Since  is a polynomial it is continuous on, so an absolute maximum and minimum exist.  = 1− ,  = 1− , and

setting  =  = 0 gives (1 1) as the only critical point (which is inside), where (1 1) = 1. Along 1:  = 0 and

( 0) =  for 0 ≤  ≤ 4, an increasing function in , so the maximum value is (4 0) = 4 and the minimum value is

(0 0) = 0. Along 2:  = 2− 1
2
 and 


 2− 1

2



= 1
2
2 − 3

2
 + 2 = 1

2


− 3

2

2
+ 7

8
for 0 ≤  ≤ 4, a quadratic

function which has a minimum at  = 3
2
, where 


3
2
 5

4


= 7

8
, and a maximum at  = 4, where (4 0) = 4.

Along 3:  = 0 and (0 ) =  for 0 ≤  ≤ 2, an increasing function in

, so the maximum value is (0 2) = 2 and the minimum value is

(0 0) = 0. Thus the absolute maximum of  on is (4 0) = 4 and the

absolute minimum is (0 0) = 0.

33. ( ) = 2+ 2, ( ) = 2 + 2, and setting  =  = 0

gives (0 0) as the only critical point in, with (0 0) = 4.

On 1:  = −1, (−1) = 5, a constant.

On 2:  = 1, (1 ) = 2 +  + 5, a quadratic in  which attains its

maximum at (1 1), (1 1) = 7 and its minimum at

1−1

2


, 

1− 1

2


= 19

4
.

On 3: ( 1) = 22 + 5 which attains its maximum at (−1 1) and (1 1)

with (±1 1) = 7 and its minimum at (0 1), (0 1) = 5.

On 4: (−1 ) = 2 +  + 5 with maximum at (−1 1), (−1 1) = 7 and minimum at
−1− 1

2


, 
−1− 1

2


= 19

4
.

Thus the absolute maximum is attained at both (±1 1) with (±1 1) = 7 and the absolute minimum on is attained at

(0 0) with (0 0) = 4.

34. ( ) = 2 +  + 2 − 6 ⇒  = 2+ ,  = + 2 − 6. Then  = 0 implies  = −2, and substituting into

 = 0 gives − 4− 6 = 0 ⇒  = −2, so the only critical point is (−2 4) (which is in) where (−2 4) = −12.

Along 1:  = 0, so ( 0) = 2, −3 ≤  ≤ 3, which has a maximum value at  = ±3 where (±3 0) = 9 and a

minimum value at  = 0, where (0 0) = 0. Along 2:  = 3, so (3 ) = 9− 3 + 2 =

 − 3

2

2
+ 27

4
, 0 ≤  ≤ 5,

which has a maximum value at  = 5 where (3 5) = 19 and a minimum value at  = 3
2
where (3 3

2
) = 27

4
.

Along 3:  = 5, so ( 5) = 2 + 5− 5 =

 + 5

2

2 − 45
4
, −3 ≤  ≤ 3, which has a maximum value at  = 3

where (3 5) = 19 and a minimum value at  = − 5
2
, where 

−5
2
 5


= − 45
4
. Along 4:  = −3, so

(−3 ) = 9− 9 + 2 =

 − 9

2

2 − 45
4
, 0 ≤  ≤ 5, which has a

maximum value at  = 0 where (−3 0) = 9 and a minimum value at

 = 9
2
where 

−3 9
2


= − 45

4
. Thus the absolute maximum of  on is

(3 5) = 19 and the absolute minimum is (−2 4) = −12.
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35. ( ) = 2 + 22 − 2− 4 + 1 ⇒  = 2− 2,  = 4 − 4. Setting  = 0 and  = 0 gives (1 1) as the only

critical point (which is inside), where (1 1) = −2. Along 1:  = 0, so ( 0) = 2 − 2+ 1 = (− 1)2, 0 ≤  ≤ 2,

which has a maximum value both at  = 0 and  = 2 where (0 0) = (2 0) = 1 and a minimum value at  = 1, where

(1 0) = 0. Along 2:  = 2, so (2 ) = 22 − 4 + 1 = 2( − 1)2 − 1, 0 ≤  ≤ 3, which has a maximum value at

 = 3 where (2 3) = 7 and a minimum value at  = 1 where (2 1) = −1. Along 3:  = 3, so

( 3) = 2 − 2 + 7 = (− 1)2 + 6, 0 ≤  ≤ 2, which has a maximum value both at  = 0 and  = 2 where

(0 3) = (2 3) = 7 and a minimum value at  = 1, where (1 3) = 6. Along 4:  = 0, so

(0 ) = 22 − 4 + 1 = 2( − 1)2 − 1, 0 ≤  ≤ 3, which has a

maximum value at  = 3 where (0 3) = 7 and a minimum value at  = 1

where (0 1) = −1. Thus the absolute maximum is attained at both (0 3)

and (2 3), where (0 3) = (2 3) = 7, and the absolute minimum is

(1 1) = −2.

36.  = 2 and  = 2, and since  = 0 ⇔  = 0, there are no critical

points in the interior of. Along 1:  = 0 and ( 0) = 0.

Along 2:  = 0 and (0 ) = 0. Along 3:  =
√

3− 2, so let

() = 


√

3− 2


= 3− 3 for 0 ≤  ≤ √3. Then

0() = 3− 32 = 0 ⇔  = 1. The maximum value is 

1
√

2


= 2

and the minimum occurs both at  = 0 and  =
√

3 where



0
√

3


= 
√

3 0


= 0. Thus the absolute maximum of  on is 

1
√

2


= 2, and the absolute minimum is 0 which

occurs at all points along 1 and 2.

37. ( ) = 62 and ( ) = 43. And so  = 0 and  = 0 only occur when  =  = 0. Hence, the only critical point

inside the disk is at  =  = 0 where (0 0) = 0. Now on the circle 2 + 2 = 1, 2 = 1− 2 so let

() = ( ) = 23 + (1− 2)2 = 4 + 23 − 22 + 1, −1 ≤  ≤ 1. Then 0() = 43 + 62 − 4 = 0 ⇒  = 0,

−2, or 1
2
. (0±1) =  (0) = 1, 


1
2
±

√
3

2


= 


1
2


= 13

16
, and (−2−3) is not in. Checking the endpoints, we get

(−1 0) = (−1) = −2 and (1 0) = (1) = 2. Thus the absolute maximum and minimum of  on are (1 0) = 2 and

(−1 0) = −2.

Another method: On the boundary 2 + 2 = 1 we can write  = cos ,  = sin , so (cos  sin ) = 2 cos3  + sin4 ,

0 ≤  ≤ 2.

38. ( ) = 32 − 3 and ( ) = −32 + 12 and the critical points are (1 2), (1−2), (−1 2), and (−1−2). But only

(1 2) and (−1 2) are in and (1 2) = 14, (−1 2) = 18. Along 1:  = −2 and (−2 ) = −2− 3 + 12,
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472 ¤ CHAPTER 14 PARTIAL DERIVATIVES

−2 ≤  ≤ 3, which has a maximum at  = 2 where (−2 2) = 14 and a minimum at  = −2 where (−2−2) = −18.

Along 2:  = 2 and (2 ) = 2− 3 + 12, 2 ≤  ≤ 3, which has a maximum at  = 2 where (2 2) = 18 and a

minimum at  = 3 where (2 3) = 11. Along 3:  = 3 and ( 3) = 3 − 3+ 9, −2 ≤  ≤ 2, which has a maximum at

 = −1 and  = 2 where (−1 3) =  (2 3) = 11 and a

minimum at  = 1 and  = −2 where (1 3) = (−2 3) = 7.

Along 4:  =  and ( ) = 9, −2 ≤  ≤ 2, which has a

maximum at  = 2 where (2 2) = 18 and a minimum at  = −2

where (−2−2) = −18. So the absolute maximum value of  on

 is (2 2) = 18 and the minimum is (−2−2) = −18.

39. ( ) = −(2 − 1)2 − (2 − − 1)2 ⇒ ( ) = −2(2 − 1)(2)− 2(2 − − 1)(2 − 1) and

( ) = −2(2 − − 1)2. Setting ( ) = 0 gives either  = 0 or 2 − − 1 = 0.

There are no critical points for  = 0, since (0 ) = −2, so we set 2 − − 1 = 0 ⇔  =
+ 1

2
[ 6= 0],

so 




+ 1

2


= −2(2 − 1)(2)− 2


2  + 1

2
− − 1


2

+ 1

2
− 1


= −4(2 − 1). Therefore

( ) = ( ) = 0 at the points (1 2) and (−1 0). To classify these critical points, we calculate

( ) = −122 − 1222 + 12 + 4 + 2, ( ) = −24,

and ( ) = −83 + 62 + 4. In order to use the Second Derivatives

Test we calculate

(−1 0) = (−1 0) (−1 0)− [(−1 0)]2 = 16  0,

(−1 0) = −10  0,(1 2) = 16  0, and (1 2) = −26  0, so

both (−1 0) and (1 2) give local maxima.

40. ( ) = 3 − 3 − 3 is differentiable everywhere, so the requirement

for critical points is that  = 3 − 32 = 0 (1) and

 = 3 − 33 = 0 (2). From (1) we obtain  = 2, and then (2) gives

33 − 36 = 0 ⇒  = 1 or 0, but only  = 1 is valid, since  = 0

makes (1) impossible. So substituting  = 1 into (1) gives  = 0, and the

only critical point is (1 0).

The Second Derivatives Test shows that this gives a local maximum, since

(1 0) =
−6(3 − 93)− (3)2


(10)

= 27  0 and (1 0) = [−6](10) = −6  0. But (1 0) = 1 is not an

absolute maximum because, for instance, (−3 0) = 17. This can also be seen from the graph.

41. Let  be the distance from (2 0−3) to any point (  ) on the plane  +  +  = 1, so  =


(− 2)2 + 2 + ( + 3)2

where  = 1− − , and we minimize 2 = ( ) = (− 2)2 + 2 + (4− − )2. Then
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( ) = 2(− 2) + 2(4− − )(−1) = 4+ 2 − 12, ( ) = 2 + 2(4− − )(−1) = 2+ 4 − 8. Solving

4+ 2 − 12 = 0 and 2+ 4 − 8 = 0 simultaneously gives  = 8
3
,  = 2

3
, so the only critical point is


8
3
 2

3


. An absolute

minimum exists (since there is a minimum distance from the point to the plane) and it must occur at a critical point, so the

shortest distance occurs for  = 8
3
,  = 2

3
for which  =


8
3
− 2
2

+


2
3

2
+

4− 8

3
− 2

3

2
=


4
3

= 2√
3
.

42. Here the distance  from a point on the plane to the point (0 1 1) is  =

2 + ( − 1)2 + ( − 1)2,

where  = 2− 1
3
 + 2

3
. We can minimize 2 = ( ) = 2 + ( − 1)2 +


1− 1

3
+ 2

3

2
, so

( ) = 2 + 2

1− 1

3
+ 2

3

 − 1

3


= 20

9
 − 4

9
 − 2

3
and

( ) = 2( − 1) + 2

1− 1

3
+ 2

3

 

2
3


= − 4

9
 + 26

9
 − 2

3
. Solving 20

9
− 4

9
 − 2

3
= 0 and − 4

9
 + 26

9
 − 2

3
= 0

simultaneously gives  = 5
14

and  = 2
7
, so the only critical point is


5
14
 2

7


.

This point must correspond to the minimum distance, so the point on the plane closest to (0 1 1) is


5
14
 2

7
 29

14


.

43. Let  be the distance from the point (4 2 0) to any point (  ) on the cone, so  =


(− 4)2 + ( − 2)2 + 2 where

2 = 2 + 2, and we minimize 2 = (− 4)
2

+ ( − 2)
2

+ 2 + 2 = ( ). Then

( ) = 2 (− 4) + 2 = 4− 8, ( ) = 2 ( − 2) + 2 = 4 − 4, and the critical points occur when

 = 0 ⇒  = 2,  = 0 ⇒  = 1. Thus the only critical point is (2 1). An absolute minimum exists (since there is a

minimum distance from the cone to the point) which must occur at a critical point, so the points on the cone closest

to (4 2 0) are

2 1±√5


.

44. The distance from the origin to a point (  ) on the surface is  =

2 + 2 + 2 where 2 = 9 + , so we minimize

2 = 2 + 9 +  + 2 = ( ). Then  = 2+ ,  = + 2, and  = 0,  = 0 ⇒  = 0,  = 0, so the only

critical point is (0 0). (0 0) = (2)(2)− 1 = 3  0 with (0 0) = 2  0, so this is a minimum. Thus

2 = 9 + 0 ⇒  = ±3 and the points on the surface closest to the origin are (0±3 0).

45. Let , ,  be the positive numbers. Then  +  +  = 100 ⇒  = 100− − , and we want to maximize

 = (100− − ) = 100 − 2 − 2 = ( ) for 0      100.  = 100 − 2 − 2,

 = 100− 2 − 2,  = −2,  = −2,  = 100− 2− 2. Then  = 0 implies (100− 2− ) = 0 ⇒
 = 100− 2 (since   0). Substituting into  = 0 gives [100− − 2(100− 2)] = 0 ⇒ 3− 100 = 0

(since   0) ⇒  = 100
3
. Then  = 100− 2


100
3


= 100

3
, and the only critical point is

100
3
 100

3


. 


100
3
 100

3


=
−200

3

 − 200
3

− − 100
3

2
= 10,000

3
 0 and 


100
3
 100

3


= − 200

3
 0. Thus 


100
3
, 100

3


is a local maximum. It is also the absolute maximum (compare to the values of  as , , or  → 0 or 100), so the numbers are

 =  =  = 100
3
.

46. Let , , , be the positive numbers. Then  +  +  = 12 and we want to minimize

2 + 2 + 2 = 2 + 2 + (12− − )2 = ( ) for 0  ,   12.  = 2+ 2(12− − )(−1) = 4+ 2 − 24,
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474 ¤ CHAPTER 14 PARTIAL DERIVATIVES

 = 2 + 2(12− − )(−1) = 2 + 4 − 24,  = 4,  = 2,  = 4. Then  = 0 implies 4+ 2 = 24 or

 = 12− 2 and substituting into  = 0 gives 2+ 4(12− 2) = 24 ⇒ 6 = 24 ⇒  = 4 and then  = 4, so

the only critical point is (4 4). (4 4) = 16− 4  0 and (4 4) = 4  0, so (4 4) is a local minimum. (4 4) is also

the absolute minimum [compare to the values of  as   → 0 or 12] so the numbers are  =  =  = 4.

47. Center the sphere at the origin so that its equation is 2 + 2 + 2 = 2, and orient the inscribed rectangular box so that its

edges are parallel to the coordinate axes. Any vertex of the box satisfies 2 + 2 + 2 = 2, so take (  ) to be the vertex

in the first octant. Then the box has length 2, width 2, and height 2 = 2

2 − 2 − 2 with volume given by

 ( ) = (2)(2)

2

2 − 2 − 2


= 8


2 − 2 − 2 for 0    , 0    . Then

 = (8) · 1
2
(2 − 2 − 2)−12(−2) +


2 − 2 − 2 · 8 =

8(2 − 22 − 2)
2 − 2 − 2

and  =
8(2 − 2 − 22)

2 − 2 − 2
.

Setting  = 0 gives  = 0 or 22 + 2 = 2, but   0 so only the latter solution applies. Similarly,  = 0 with   0

implies 2 + 22 = 2. Substituting, we have 22 + 2 = 2 + 22 ⇒ 2 = 2 ⇒  = . Then 2 + 22 = 2 ⇒

32 = 2 ⇒  =

23 = 

√
3 = . Thus the only critical point is



√

3 
√

3

. There must be a maximum

volume and here it must occur at a critical point, so the maximum volume occurs when  =  = 
√

3 and the maximum

volume is 


√
3
 √

3


= 8


√
3


√
3


2 −


√
3

2
−


√
3

2
=

8

3
√

3
3.

48. Let , , and  be the dimensions of the box. We wish to minimize surface area = 2 + 2 + 2, but we have

volume =  = 1000 ⇒  =
1000


so we minimize

( ) = 2 + 2


1000




+ 2


1000




= 2 +

2000


+

2000


. Then  = 2 − 2000

2
and  = 2− 2000

2
. Setting

 = 0 implies  =
1000

2
and substituting into  = 0 gives − 4

1000
= 0 ⇒ 3 = 1000 [since  6= 0] ⇒  = 10.

The surface area has a minimum but no maximum and it must occur at a critical point, so the minimal surface area occurs for a

box with dimensions  = 10 cm,  = 1000102 = 10 cm,  = 1000102 = 10 cm.

49. Maximize ( ) =


3
(6− − 2), then the maximum volume is  = .

 = 1
3
(6 − 2 − 2) = 1

3
(6− 2− 2) and  = 1

3
 (6− − 4). Setting  = 0 and  = 0 gives the critical point

(2 1) which geometrically must give a maximum. Thus the volume of the largest such box is  = (2)(1)


2
3


= 4

3
.

50. Surface area = 2( +  + ) = 64 cm2, so  +  +  = 32 or  =
32− 

+ 
. Maximize the volume

( ) = 
32− 

+ 
. Then  =

322 − 23 − 22

(+ )2
= 2 32− 2 − 2

(+ )2
and  = 2 32− 2 − 2

(+ )2
. Setting
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SECTION 14.7 MAXIMUM AND MINIMUM VALUES ¤ 475

 = 0 implies  =
32− 2

2
and substituting into  = 0 gives 32(42)− (32− 2)(42)− (32− 2)2 = 0 or

34 + 642 − (32)2 = 0. Thus 2 = 64
6
or  = 8√

6
,  =

643

16
√

6
= 8√

6
and  = 8√

6
. Thus the box is a cube with edge

length 8√
6
cm.

51. Let the dimensions be , , and ; then 4 + 4 + 4 =  and the volume is

 =  = 


1
4
− − 


= 1

4
− 2− 2,   0,   0. Then  = 1

4
 − 2− 2 and  = 1

4
− 2 − 2,

so  = 0 =  when 2+  = 1
4
 and + 2 = 1

4
. Solving, we get  = 1

12
,  = 1

12
 and  = 1

4
− −  = 1

12
. From

the geometrical nature of the problem, this critical point must give an absolute maximum. Thus the box is a cube with edge

length 1
12
.

52. The cost equals 5 + 2( + ) and  =  , so ( ) = 5 + 2 ( + )() = 5 + 2 (−1 + −1). Then

 = 5 − 2 −2,  = 5− 2 −2,  = 0 implies  = 2(52),  = 0 implies  = 3


2
5
 = . Thus the

dimensions of the aquarium which minimize the cost are  =  = 3


2
5
 units,  =  13


5
2

23
.

53. Let the dimensions be ,  and , then minimize  + 2( + ) if  = 32,000 cm3. Then

( ) =  + [64,000(+ )] =  + 64,000(−1 + −1),  =  − 64,000−2,  = − 64,000−2.

And  = 0 implies  = 64,0002; substituting into  = 0 implies 3 = 64,000 or  = 40 and then  = 40. Now

( ) = [(2)(64,000)]2−3−3 − 1  0 for (40 40) and (40 40)  0 so this is indeed a minimum. Thus the

dimensions of the box are  =  = 40 cm,  = 20 cm.

54. Let  be the length of the north and south walls,  the length of the east and west walls, and  the height of the building. The

heat loss is given by  = 10(2) + 8(2) + 1() + 5() = 6 + 16 + 20 The volume is 4000 m3, so

 = 4000, and we substitute  = 4000


to obtain the heat loss function ( ) = 6 + 80,000+ 64,000.

(a) Since  = 4000


≥ 4,  ≤ 1000 ⇒  ≤ 1000. Also  ≥ 30 and

 ≥ 30, so the domain of  is = {( ) |  ≥ 30 30 ≤  ≤ 1000}.

(b) ( ) = 6 + 80,000−1 + 64,000−1 ⇒
 = 6 − 80,000−2,  = 6− 64,000−2.

 = 0 implies 62 = 80,000 ⇒  =
80,000
62

and substituting into

 = 0 gives 6 = 64,000


62

80,000

2

⇒ 3 =
80,0002

6 · 64,000
=

50,000
3

, so

 = 3


50,000

3
= 10 3


50

3
⇒  =

80
3
√

60
, and the only critical point of  is


10 3


50

3


80
3
√

60


≈ (2554 2043)

which is not in. Next we check the boundary of.
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476 ¤ CHAPTER 14 PARTIAL DERIVATIVES

On 1:  = 30, ( 30) = 180 + 80,000+ 64003, 30 ≤  ≤ 100
3
. Since 0( 30) = 180− 80,0002  0 for

30 ≤  ≤ 100
3
, ( 30) is an increasing function with minimum (30 30) = 10,200 and maximum




100
3
 30
 ≈ 10,533.

On 2:  = 1000, ( 1000) = 6000 + 64 + 80,000, 30 ≤  ≤ 100
3
.

Since 0( 1000) = 64− 80,0002  0 for 30 ≤  ≤ 100
3
, ( 1000) is a decreasing function with minimum




100
3
 30
 ≈ 10,533 and maximum 


30 100

3

 ≈ 10,587.

On 3:  = 30, (30 ) = 180 + 64,000 + 80003, 30 ≤  ≤ 100
3
. 0(30 ) = 180− 64,0002  0 for

30 ≤  ≤ 100
3
, so (30 ) is an increasing function of  with minimum (30 30) = 10,200 and maximum



30 100

3

 ≈ 10,587.

Thus the absolute minimum of  is (30 30) = 10,200, and the dimensions of the building that minimize heat loss are

walls 30 m in length and height 4000
302

= 40
9
≈ 444 m.

(c) From part (b), the only critical point of , which gives a local (and absolute) minimum, is approximately

(2554 2043) ≈ 9396. So a building of volume 4000 m2 with dimensions  ≈ 2554 m,  ≈ 2043 m,

 ≈ 4000
(2554)(2043)

≈ 767 m has the least amount of heat loss.

55. Let  ,  be the dimensions of the rectangular box. Then the volume of the box is  and

 =

2 + 2 + 2 ⇒ 2 = 2 + 2 + 2 ⇒  =


2 − 2 − 2.

Substituting, we have volume  ( ) = 

2 − 2 − 2 (   0).

 =  · 1
2
(2 − 2 − 2)−12(−2) + 


2 − 2 − 2 = 


2 − 2 − 2 − 2

2 − 2 − 2
,

 = 

2 − 2 − 2 − 2

2 − 2 − 2
.  = 0 implies (2 − 2 − 2) = 2 ⇒ (2 − 22 − 2) = 0 ⇒

22 + 2 = 2 (since   0), and  = 0 implies (2 − 2 − 2) = 2 ⇒ (2 − 2 − 22) = 0 ⇒

2 + 22 = 2 (since   0). Substituting 2 = 2 − 22 into 2 + 22 = 2 gives 2 + 22 − 42 = 2 ⇒

32 = 2 ⇒  = 
√

3 (since   0) and then  =


2 − 2



√

3
2

= 
√

3.

So the only critical point is


√

3 
√

3

which, from the geometrical nature of the problem, must give an absolute

maximum. Thus the maximum volume is 


√

3 
√

3


=


√

3
2

2 − √3
2 − √3

2
= 3


3
√

3


cubic units.

56.  ( ) = −− ⇒  = 


−−− + −− (1)


=  (1−)−− ,

 = 


−−− + −− (1)


= (1−  )−− . Here ≥ 0 and  ≥ 0, but if either = 0 or  = 0 then
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the yield is zero. Assuming that   0 and   0,  = 0 implies  = 1 and  = 0 implies

 = 1, so the only critical point in {( ) |   0   0} is (1 1) where  (1 1) = −2.

( ) =  − ( )2 =

 ( − 2)−−

 
( − 2)−−

− (1−)(1−  )−−
2 ⇒

(1 1) =
−−2

 −−2
− (0)

2
= 2−4  0 and  (1 1) = −−2  0, so  (1 1) = −2 is a local maximum.

 (1 1) is also the absolute maximum (we have only one critical point, and  → 0 as → 0 or  → 0 and  → 0 as or

 grow large) so the best yield is achieved when both the nitrogen and phosphorus levels are 1 (measured in appropriate units).

57. (a) We are given that 1 + 2 + 3 = 1 ⇒ 3 = 1 − 1 − 2, so

 = −1 ln 1 − 2 ln 2 − 3 ln 3 = −1 ln 1 − 2 ln 2 − (1− 1 − 2) ln (1− 1 − 2).

(b) Because  is a proportion we have 0 ≤  ≤ 1, but is undefined unless

1  0, 2  0, and 1− 1 − 2  0 ⇔ 1 + 2  1. This last

restriction forces 1  1 and 2  1, so the domain of is

{(1 2) | 0  1  1 2  1− 1}. It is the interior of the triangle
drawn in the figure.

(c) 1 = − [1 · (11) + (ln 1) · 1]− [(1− 1 − 2) · (−1) (1− 1 − 2) + ln (1− 1 − 2) · (−1)]

= −1− ln 1 + 1 + ln (1− 1 − 2) = ln (1− 1 − 2)− ln 1

Similarly 2 = ln (1− 1 − 2) − ln 2. Then 1 = 0 implies

ln (1− 1 − 2) = ln 1 ⇒ 1− 1 − 2 = 1 ⇒ 2 = 1− 21, and 2 = 0 implies

ln (1− 1 − 2) = ln 2 ⇒ 1 = 1− 22. Substituting, we have 1 = 1− 2 (1− 21) ⇒

31 = 1 ⇒ 1 = 1
3
, and then 2 = 1− 2


1
3


= 1

3
. Thus the only critical point is


1
3
 1

3


.

(1 2) = 1122 − (12)
2

=

 −1

1− 1 − 2

− 1

1

 −1

1− 1 − 2

− 1

2


−
 −1

1− 1 − 2

2

, so




1
3
 1

3


= (−6) (−6) − (−3)2 = 27  0 and 11


1
3
 1

3


= −6  0. Thus




1
3
 1

3


= − 1

3
ln 1

3
− 1

3
ln 1

3
− 1

3
ln 1

3
= − ln 1

3
= ln 3 is a local maximum. Here it is also the absolute maximum, so the

maximum value of is ln 3, which occurs for 1 = 2 = 3 = 1
3
(all three species have equal proportion in the

ecosystem).

58. Since  +  +  = 1 we can substitute  = 1 −  −  into  giving

 =  ( ) = 2(1−  − ) + 2(1−  − ) + 2 = 2 − 22 + 2 − 22 − 2. Since ,  and  represent proportions

and +  +  = 1, we know  ≥ 0,  ≥ 0, and  +  ≤ 1. Thus, we want to find the absolute maximum of the continuous

function  ( ) on the closed set enclosed by the lines  = 0,  = 0, and  +  = 1. To find any critical points, we set the
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478 ¤ CHAPTER 14 PARTIAL DERIVATIVES

partial derivatives equal to zero: ( ) = 2− 4 − 2 = 0 and ( ) = 2− 4 − 2 = 0. The first equation gives

 = 1− 2, and substituting into the second equation we have 2− 4(1− 2)− 2 = 0 ⇒  = 1
3
. Then we have one

critical point,


1
3
 1

3


, where 


1
3
 1

3


= 2

3
. Next we find the maximum values of  on the boundary of which consists of

three line segments. For the segment given by  = 0, 0 ≤  ≤ 1,  ( ) =  ( 0) = 2 − 22, 0 ≤  ≤ 1. This represents

a parabola with maximum value 


1
2
 0


= 1
2
. On the segment  = 0, 0 ≤  ≤ 1 we have  (0 ) = 2 − 22, 0 ≤  ≤ 1.

This represents a parabola with maximum value 

0 1

2


= 1

2
. Finally, on the segment  +  = 1, 0 ≤  ≤ 1,

 ( ) =  ( 1− ) = 2 − 22, 0 ≤  ≤ 1 which has a maximum value of 


1
2
 1

2


= 1

2
. Comparing these values with

the value of  at the critical point, we see that the absolute maximum value of  ( ) on is 2
3
.

59. Note that here the variables are and , and ( ) =


= 1

[ − ( + )]
2. Then  =


=1

−2[ − ( + )] = 0

implies


= 1


 −2

 − 


= 0 or


=1

 = 


=1

2
 + 


= 1

 and  =


=1

−2[ − ( + )] = 0 implies


=1

 = 


= 1

 +


= 1

 = 




=1




+ . Thus we have the two desired equations.

Now  =


=1

22
 ,  =


=1

2 = 2 and  =


= 1

2. And ( )  0 always and

( ) = 4




=1

2



− 4




=1



2

= 4







=1

2



−



= 1



2

 0 always so the solutions of these two

equations do indeed minimize


= 1

2
 .

60. Any such plane must cut out a tetrahedron in the first octant. We need to minimize the volume of the tetrahedron that passes

through the point (1 2 3). Writing the equation of the plane as



+




+




= 1, the volume of the tetrahedron is given by

 =


6
. But (1 2 3) must lie on the plane, so we need

1


+

2


+

3


= 1 () and thus can think of  as a function of  and .

Then  =


6


+ 






and  =



6


+ 






. Differentiating () with respect to  we get −−2 − 3−2 


= 0 ⇒




=
−2
32

, and differentiating () with respect to  gives −2−2 − 3−2 


= 0 ⇒ 


=
−22

32
. Then

 =


6


+ 

−2
32


= 0 ⇒  = 3, and  =



6


+ 

−22

32


= 0 ⇒  = 3

2
. Thus 3 = 3

2
 or  = 2. Putting

these into () gives 3


= 1 or  = 3 and then  = 6,  = 9. Thus the equation of the required plane is


3
+



6
+



9
= 1

or 6+ 3 + 2 = 18.
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APPLIED PROJECT DESIGNING A DUMPSTER ¤ 479

APPLIED PROJECT Designing a Dumpster

Note: The difficulty and results of this project vary widely with the type of container studied. In addition to the variation of basic

shapes of containers, dumpsters may include additional constructed parts such as supports, lift pockets, wheels, etc. Also, a CAS or

graphing utility may be needed to solve the resulting equations.

Here we present a typical solution for one particular trash Dumpster.

1. The basic shape and dimensions (in inches) of an

actual trash Dumpster are as shown in the figure.

The front and back, as well as both sides, have an extra one-inch-wide flap that is folded under and welded to the base. In

addition, the side panels each fold over one inch onto the front and back pieces where they are welded. Each side has a

rectangular lift pocket, with cross-section 5 by 8 inches, made of the same material. These are attached with an extra one-inch

width of steel on both top and bottom where each pocket is welded to the side sheet. All four sides have a “lip” at the top; the

front and back panels have an extra 5 inches of steel at the top which is folded outward in three creases to form a rectangular

tube. The edge is then welded back to the main sheet. The two sides form a top lip with separate sheets of steel 5 inches wide,

similarly bent into three sides and welded to the main sheets (requiring two welds each). These extend beyond the main side

sheets by 15 inches at each end in order to join with the lips on the front and back panels. The container has a hinged lid, extra

steel supports on the base at each corner, metal “fins” serving as extra support for the side lift pockets, and wheels underneath.

The volume of the container is  = 1
2
(40 + 49)× 42× 72 = 134,568 in3 or 77875 ft3.

2. First, we assume that some aspects of the construction do not change with different dimensions, so they may be considered

fixed costs. This includes the lid (with hinges), wheels, and extra steel supports. Also, the upper “lip” we previously described

extends beyond the side width to connect to the other pieces. We can safely assume that this extra portion, including any

associated welds, costs the same regardless of the container’s dimensions, so we will consider just the portion matching the

measurement of the side panels in our calculations. We will further assume that the angle of the top of the container should be

preserved. Then to compute the variable costs, let  be the width,  the length, and  the height of the front of the container.

The back of the container is 9 inches, or 3
4
ft, taller than the front, so using similar triangles we can say the back

panel has height  + 3
14
. Measuring in feet, we want the volume to remain constant, so

 = 1
2


 +  + 3

14


()() =  + 3

28
2 = 77875. To determine a function for the variable cost, we first find the area

of each sheet of metal needed. The base has area  ft2. The front panel has visible area  plus 1
12
 for the portion folded

onto the base and 5
12
 for the steel at the top used to form the lip, so


 + 1

2


ft2 in total. Similarly, the back sheet has area



 + 3

14



+ 1
12
 + 5

12
 =  + 3

14
 + 1

2
. Each side has visible area 1

2


 +


 + 3

14



(), and the sheet includes
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480 ¤ CHAPTER 14 PARTIAL DERIVATIVES

one-inch flaps folding onto the front and back panels, so with area 1
12
 and 1

12


 + 3

14


, and a one-inch flap to fold onto the

base with area 1
12
. The lift pocket is constructed of a piece of steel 20 inches by  ft (including the 2 extra inches used by the

welds). The additional metal used to make the lip at the top of the panel has width 5 inches and length that we can determine

using the Pythagorean Theorem: 2 +


3
14

2

= length2, so length =
√

205
14

 ≈ 10227. Thus the area of steel needed for

each side panel is approximately

1
2


 +


 + 3

14



() + 1
12
 + 1

12


 + 3

14



+ 1
12
 + 5

3
+ 5

12
(10227) ≈  + 3

28
2 + 1

6
 + 2194

We also have the following welds:

Weld Length

Front, back welded to base 2

Sides welded to base 2

Sides welded to front 2

Sides welded to back 2

 + 3

14



Weld on front and back lip 2

Two welds on each side lip 4(10227)

Two welds for each lift pocket 4

Thus the total length of welds needed is

2 + 2+ 2 + 2

 + 3

14



+ 2 + 4(10227) + 4 ≈ 10519+ 4 + 4

Finally, the total variable cost is approximately

090() + 070

 + 1

2



+

 + 3

14
 + 1

2



+ 2

 + 3

28
2 + 1

6
 + 2194


+ 018(10519+ 4 + 4)

≈ 105 + 14 + 142 + 14 + 0152 + 0953 + 4965

We would like to minimize this function while keeping volume constant, so since  + 3
28
2 = 77875

we can substitute  =
77875


− 3

28
 giving variable cost as a function of  and :

( ) ≈ 09 +
1090


+ 142 +

1090


+

742


+ 486

Using a CAS, we solve the system of equations ( ) = 0 and ( ) = 0; the only critical point within an appropriate

domain is approximately (358 529). From the nature of the function  (or from a graph) we can determine that  has an

absolute minimum at (358 529), and so the minimum cost is attained for  ≈ 358 ft (or 430 in),  ≈ 529 ft (or 635 in),

and  ≈ 77875
358(529)

− 3
28

(358) ≈ 373 ft (or 448 in).

3. The fixed cost aspects of the container which we did not include in our calculations, such as the wheels and lid, don’t affect the

validity of our results. Some of our other assumptions, however, may influence the accuracy of our findings. We simplified the

price of the steel sheets to include cuts and bends, and we simplified the price of welding to include the labor and materials.

This may not be accurate for areas of the container, such as the lip and lift pockets, that require several cuts, bends, and welds
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DISCOVERY PROJECT QUADRATIC APPROXIMATIONS AND CRITICAL POINTS ¤ 481

in a relatively small surface area. Consequently, increasing some dimensions of the container may not increase the cost in the

same manner as our computations predict. If we do not assume that the angle of the sloped top of the container must be

preserved, it is likely that we could further improve our cost. Finally, our results show that the length of the container should be

changed to minimize cost; this may not be possible if the two lift pockets must remain a fixed distance apart for handling by

machinery.

4. The minimum variable cost using our values found in Problem 2 is (358 529) ≈ $9695, while the current dimensions

give an estimated variable cost of (35 60) ≈ $9730. If we determine that our assumptions and simplifications are

acceptable, our work shows that a slight savings can be gained by adjusting the dimensions of the container. However, the

difference in cost is modest, and may not justify changes in the manufacturing process.

DISCOVERY PROJECT Quadratic Approximations and Critical Points

1. ( ) = ( ) + ( )(− ) + ( )( − ) + 1
2
( )(− )2

+ ( )(− )( − ) + 1
2
( )( − )2,

so

 ( ) = ( ) + 1
2
( )(2)(− ) + ( )( − ) = ( ) + ( )(− ) + ( )( − )

At ( ) we have ( ) = ( ) + ( ) (− ) + ( )(− ) = ( ).

Similarly, ( ) = ( ) + ( )( − ) + ( )( − ) ⇒
( ) = ( ) + ( )(− ) + ( )(− ) = ( ).

For the second-order partial derivatives we have

( ) =



[( ) + ( )(− ) + ( )( − )] = ( ) ⇒ ( ) = ( )

( ) =



[( ) + ( )(− ) + ( )( − )] = ( ) ⇒ ( ) = ( )

( ) =



[( ) + ( )(− ) + ( )( − )] = ( ) ⇒ ( ) = ( )

2. (a) First we find the partial derivatives and values that will be needed:

( ) = −
2−2 (0 0) = 1

( ) = −2−
2−2 (0 0) = 0

( ) = −2−
2−2 (0 0) = 0

( ) = (42 − 2)−
2−2 (0 0) = −2

( ) = 4−
2−2 (0 0) = 0

( ) = (42 − 2)−
2−2 (0 0) = −2
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482 ¤ CHAPTER 14 PARTIAL DERIVATIVES

Then the first-degree Taylor polynomial of  at (0 0) is

( ) = (0 0) + (0 0)(− 0) + (0 0)( − 0) = 1 + (0)(− 0) + (0)( − 0) = 1

The second-degree Taylor polynomial is given by

( ) = (0 0) + (0 0)(− 0) + (0 0)( − 0) + 1
2
(0 0)(− 0)2

+ (0 0)(− 0)( − 0) + 1
2
(0 0)( − 0)2

= 1− 2 − 2

(b) As we see from the graph,  approximates  well only for points

( ) extremely close to the origin.  is a much better

approximation; the shape of its graph looks similar to that of the

graph of  near the origin, and the values of appear to be good

estimates for the values of  within a significant radius of the origin.

3. (a) First we find the partial derivatives and values that will be needed:

( ) =  (1 0) = 1

( ) =  (1 0) = 1

( ) =  (1 0) = 1

( ) = 0 (1 0) = 0

( ) =  (1 0) = 1

( ) =  (1 0) = 1

Then the first-degree Taylor polynomial of  at (1 0) is

( ) = (1 0) + (1 0)(− 1) + (1 0)( − 0) = 1 + (1)(− 1) + (1)( − 0) =  + 

The second-degree Taylor polynomial is given by

( ) = (1 0) + (1 0)(− 1) + (1 0)( − 0) + 1
2
(1 0)(− 1)2

+ (1 0)(− 1)( − 0) + 1
2
(1 0)( − 0)2

= 1
2
2 + + 

(b) (09 01) = 09 + 01 = 10

(09 01) = 1
2
(01)2 + 09 + (09)(01) = 0995

(09 01) = 0901 ≈ 09947

(c) As we see from the graph,  and both

approximate  reasonably well near the point

(1 0). As we venture farther from the point,

the graph of follows the shape of the graph

of  more closely than .
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DISCOVERY PROJECT QUADRATIC APPROXIMATIONS AND CRITICAL POINTS ¤ 483

4. (a) ( ) = 2 +  + 2 = 


2 +




 +




2


= 


2 +




 +




2


2

−




2


2

+



2



= 


+



2


2

− 2

42
2 +




2


= 


+



2


2

+


4− 2

42


2



(b) For  = 4− 2, from part (a) we have  ( ) = 


+



2


2

+




42


2


. If   0,




42


2 ≥ 0 and


+



2


2

≥ 0, so


+



2


2

+




42


2


≥ 0. Here   0, thus

( ) = 


+



2


2

+




42


2


≥ 0. We know (0 0) = 0, so (0 0) ≤ ( ) for all ( ), and by

definition  has a local minimum at (0 0).

(c) As in part (b),


+



2


2

+




42


2


≥ 0, and since   0 we have

( ) = 


 +



2


2

+




42


2


≤ 0. Since (0 0) = 0, we must have (0 0) ≥ ( ) for all ( ), so by

definition  has a local maximum at (0 0).

(d) ( ) = 2 +  + 2, so ( ) = 2+  ⇒ (0 0) = 0 and ( ) = + 2 ⇒ (0 0) = 0.

Since (0 0) = 0 and  and its partial derivatives are continuous, we know from Equation 14.4.2 that the tangent plane to

the graph of  at (0 0) is the plane  = 0. Then  has a saddle point at (0 0) if the graph of  crosses the tangent plane at

(0 0), or equivalently, if some paths to the origin have positive function values while other paths have negative function

values. Suppose we approach the origin along the -axis; then we have  = 0 ⇒ ( 0) = 2 which has the same

sign as . We must now find at least one path to the origin where ( ) gives values with sign opposite that of . Since

( ) = 


+



2


2

+




42


2


, if we approach the origin along the line  = − 

2
, we have




− 

2
 


= 


− 

2
 +



2


2

+




42


2


=



4
2. Since  0, these values have signs opposite that

of . Thus,  has a saddle point at (0 0).

5. (a) Since the partial derivatives of  exist at (0 0) and (0 0) is a critical point, we know (0 0) = 0 and (0 0) = 0. Then

the second-degree Taylor polynomial of  at (0 0) can be expressed as

( ) = (0 0) + (0 0)(− 0) + (0 0)( − 0) + 1
2
(0 0)(− 0)2

+ (0 0)(− 0)( − 0) + 1
2
(0 0)( − 0)2

= 1
2
(0 0)

2 + (0 0) + 1
2
(0 0)

2
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484 ¤ CHAPTER 14 PARTIAL DERIVATIVES

(b) ( ) = 1
2
(0 0)

2 + (0 0) + 1
2
(0 0)

2 fits the form of the polynomial function in

Problem 4 with  = 1
2
(0 0),  = (0 0), and  = 1

2
(0 0). Then we know is a paraboloid, and

that  has a local maximum, local minimum, or saddle point at (0 0). Here,

 = 4− 2 = 4


1
2


(0 0)


1
2


(0 0)− [(0 0)]

2 = (0 0)(0 0)− [(0 0)]
2, and if  0 with

 = 1
2
(0 0)  0 ⇒ (0 0)  0, we know from Problem 4 that  has a local minimum at (0 0). Similarly, if

  0 and   0 ⇒ (0 0)  0,  has a local maximum at (0 0), and if  0,  has a saddle point at (0 0).

(c) Since ( ) ≈ ( ) near (0 0), part (b) suggests that for = (0 0)(0 0)− [(0 0)]
2, if  0 and

(0 0)  0,  has a local minimum at (0 0). If  0 and (0 0)  0,  has a local maximum at (0 0), and if

  0,  has a saddle point at (0 0). Together with the conditions given in part (a), this is precisely the Second

Derivatives Test from Section 14.7.

14.8 Lagrange Multipliers

1. At the extreme values of  , the level curves of  just touch the curve ( ) = 8 with a common tangent line. (See Figure 1

and the accompanying discussion.) We can observe several such occurrences on the contour map, but the level curve

( ) =  with the largest value of  which still intersects the curve ( ) = 8 is approximately  = 59, and the smallest

value of  corresponding to a level curve which intersects ( ) = 8 appears to be  = 30. Thus we estimate the maximum

value of  subject to the constraint ( ) = 8 to be about 59 and the minimum to be 30.

2. (a) The values  = ±1 and  = 125 seem to give curves which are

tangent to the circle. These values represent possible extreme values

of the function 2 +  subject to the constraint 2 + 2 = 1.

(b) ∇ = h2 1i, ∇ = h2 2i. So 2 = 2 ⇒ either

 = 1 or  = 0. If  = 1, then  = 1
2
and so  = ±

√
3

2
(from the

constraint). If  = 0, then  = ±1. Therefore  has possible extreme

values at the points (0±1) and

±
√

3
2
 1

2


. We calculate



±
√

3
2
 1

2


= 5

4
(the maximum value), (0 1) = 1, and (0−1) = −1 (the minimum value). These are our answers

from part (a).

3. We want to find the extreme values of ( ) = 2 − 2 subject to the constraint ( ) = 2 + 2 = 1. Then

∇ = ∇ ⇒ h2−2i =  h2 2i, so we solve the equations 2 = 2, −2 = 2, and 2 + 2 = 1. From the

first equation we have 2(− 1) = 0 ⇒  = 0 or  = 1. If  = 0 then substitution into the constraint gives
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SECTION 14.8 LAGRANGE MULTIPLIERS ¤ 485

2 = 1 ⇒  = ±1. If  = 1 then substitution into the second equation gives−2 = 2 ⇒  = 0, and from the

constraint we must have  = ±1. Thus the possible points for the extreme values of  are (0±1) and (±1 0). Evaluating 

at these points, we see that the maximum value of  is (±1 0) = 1 and the minimum is (0±1) = −1.

4. ( ) = 3 + , ( ) = 2 + 2 = 10, and∇ = ∇ ⇒ h3 1i = h2 2i, so 3 = 2, 1 = 2, and

2 + 2 = 10. From the first two equations we have
3

2
=  =

1

2
⇒  = 3 (note that the first two equations imply

 6= 0 and  6= 0) and substitution into the third equation gives 92 + 2 = 10 ⇒ 2 = 1 ⇒  = ±1. Then  has

possible extreme values at the points (3 1) and (−3−1). We compute (3 1) = 10 and (−3−1) = −10, so the

maximum value of  on 2 + 2 = 10 is (3 1) = 10 and the minimum value is (−3−1) = −10.

5. ( ) = , ( ) = 42 + 2 = 8, and∇ = ∇ ⇒ h i = h8 2i, so  = 8,  = 2, and

42 + 2 = 8. First note that if  = 0 then  = 0 by the first equation, and if  = 0 then  = 0 by the second equation. But

this contradicts the third equation, so  6= 0 and  6= 0. Then from the first two equations we have



8
=  =



2
⇒ 22 = 82 ⇒ 2 = 42, and substitution into the third equation gives

42 + 42 = 8 ⇒  = ±1. If  = ±1 then 2 = 4 ⇒  = ±2, so  has possible extreme values at (1±2) and

(−1±2). Evaluating  at these points, we see that the maximum value is (1 2) = (−1−2) = 2 and the minimum is

(1−2) = (−1 2) = −2.

6. ( ) =  , ( ) = 2 + 2 = 2, and∇ = ∇ ⇒ h i = h2 2i, so  = 2,  = 2, and

2 + 2 = 2. First note that from the first equation  6= 0. If  = 0, the second equation implies  = 0, so  6= 0. Then from

the first two equations we have


2
=  =



2
⇒ 2 = 22 ⇒  = 2, and substituting into the third

equation gives 2 + (2)2 = 2 ⇒ 4 + 2 − 2 = 0 ⇒ (2 + 2)(2 − 1) = 0 ⇒  = ±1. From  = 2 we

have  = 1, so  has possible extreme values at (±1 1). Evaluating  at these points, we see that the maximum value is

(1 1) =  and the minimum is (−1 1) = −.

7. (  ) = 2+ 2 + , (  ) = 2 + 2 + 2 = 9, and∇ = ∇ ⇒ h2 2 1i = h2 2 2i, so 2 = 2,

2 = 2, 2 = 1, and 2 + 2 + 2 = 9. The first three equations imply  =
1


,  =

1


, and  =

1

2
. But substitution into

the fourth equation gives


1



2

+


1



2

+


1

2

2

= 9 ⇒ 9

42
= 9 ⇒  = ±1

2
, so  has possible extreme values at

the points (2 2 1) and (−2−2−1). The maximum value of  on 2 + 2 + 2 = 9 is (2 2 1) = 9, and the minimum is

(−2−2−1) = −9.
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486 ¤ CHAPTER 14 PARTIAL DERIVATIVES

8. (  ) =  , (  ) = 22 + 2 + 2 = 24, and∇ = ∇ ⇒ h  i = h4 2 2i.

Then  = 4,  = 2,  = 2, and 22 + 2 + 2 = 24. If any of , , , or  is zero, then the first

three equations imply that two of the variables , ,  must be zero. If  =  =  = 0 it contradicts the fourth equation, so

exactly two are zero, and from the fourth equation the possibilities are
±2

√
3 0 0


,

0±2

√
6 0

,

0 0±2

√
6

,

all with an  -value of 0 = 1. If none of , , ,  is zero then from the first three equations we have

4


=  =

2


=

2


⇒ 2


=




=




. This gives 22 = 2 ⇒ 22 = 2 and 2 = 2 ⇒

2 = 2. Substituting into the fourth equation, we have 2 + 2 + 2 = 24 ⇒ 2 = 8 ⇒  = ±2
√

2, so

2 = 4 ⇒  = ±2 and 2 = 2 ⇒  = ±2
√

2, giving possible points
±2±2

√
2±2

√
2

(all combinations).

The value of  is 16 when all coordinates are positive or exactly two are negative, and the value is −16 when all are negative

or exactly one of the coordinates is negative. Thus the maximum of  subject to the constraint is 16 and the minimum is −16.

9. (  ) = 2, (  ) = 2 + 2 + 2 = 4, and∇ = ∇ ⇒ 
2 2 2


=  h2 2 2i. Then

2 = 2, 2 = 2, 2 = 2, and 2 + 2 + 2 = 4.

Case 1: If  = 0, then the first equation implies that  = 0 or  = 0. If  = 0, then any values of  and  satisfy the first three

equations, so from the fourth equation all points ( 0 ) such that 2 + 2 = 4 are possible points. If  = 0 then from the

third equation  = 0 or  = 0, and from the fourth equation, the possible points are (0±2 0), (±2 0 0). The  -value in all

these cases is 0.

Case 2: If  6= 0 but any one of , ,  is zero, the first three equations imply that all three coordinates must be zero,

contradicting the fourth equation. Thus if  6= 0, none of , ,  is zero and from the first three equations we have

2

2
=  =  =

2

2
. This gives 2 = 22 ⇒ 2 = 22 and 222 = 222 ⇒ 2 = 2. Substituting into the

fourth equation, we have 2 + 22 + 2 = 4 ⇒ 2 = 1 ⇒  = ±1, so  = ±√2 and  = ±1, giving possible points±1±√2±1

(all combinations). The value of  is 2 when  and  are the same sign and −2 when they are opposite.

Thus the maximum of  subject to the constraint is (1±√2 1) = (−1±√2−1) = 2 and the minimum is

(1±√2−1) = (−1±√2 1) = −2.

10. (  ) = ln(2 + 1) + ln(2 + 1) + ln(2 + 1), (  ) = 2 + 2 + 2 = 12. Then∇ = ∇ ⇒
2

2 + 1


2

2 + 1


2

2 + 1


=  h2 2 2i, so 2

2 + 1
= 2,

2

2 + 1
= 2,

2

2 + 1
= 2, and 2 + 2 + 2 = 12.

First, if  = 0 then  =  =  = 0 which contradicts the last equation, so we may assume that  6= 0.

Case 1: If  6= 0,  6= 0, and  6= 0, then from the first three equations we have
1

2 + 1
=  =

1

2 + 1
=

1

2 + 1
⇒
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SECTION 14.8 LAGRANGE MULTIPLIERS ¤ 487

2 = 2 = 2, and substitution into the last equation gives 32 = 12 ⇒  = ±2. Thus possible points are (±2±2±2)

(all combinations), all of which have an  -value of 3 ln 5.

Case 2: If exactly one of , ,  is zero, say  = 0, then from the second and third equations we have 2 = 2. Substitution

into the last equation gives 22 = 12 ⇒  = ±√6. The situation is similar for  = 0 or  = 0, giving possible points
0±√6±√6


,
±√6 0±√6


,
±√6±√6 0


(all combinations), all with an  -value of 2 ln 7.

Case 3: If exactly two of , ,  are zero, then the square of the nonzero variable is 12, giving possible points

0 0±2

√
3

,

0±2
√

3 0

,
±2

√
3 0 0


, all with an -value of ln 13.

Thus the maximum of  subject to the constraint is 3 ln 5 ≈ 483 and the minimum is ln 13 ≈ 256.

11. (  ) = 2 + 2 + 2, (  ) = 4 + 4 + 4 = 1 ⇒ ∇ = h2 2 2i, ∇ =

43 43 43


.

Case 1: If  6= 0,  6= 0, and  6= 0, then∇ = ∇ implies  = 1(22) = 1(22) = 1(22) or 2 = 2 = 2 and

34 = 1 or  = ± 1
4√

3
giving the points


± 1

4√
3
 1
4√

3
 1
4√

3


,

± 1

4√
3
− 1

4√
3
 1
4√

3


,

± 1

4√
3
 1
4√

3
− 1

4√
3


,

± 1

4√
3
− 1

4√
3
− 1

4√
3


all with an  -value of

√
3.

Case 2: If one of the variables equals zero and the other two are not zero, then the squares of the two nonzero coordinates are

equal with common value 1√
2
and corresponding  -value of

√
2.

Case 3: If exactly two of the variables are zero, then the third variable has value ±1 with the corresponding  -value of 1.

Thus on 4 + 4 + 4 = 1, the maximum value of  is
√

3 and the minimum value is 1.

12. (  ) = 4 + 4 + 4, (  ) = 2 + 2 + 2 = 1 ⇒ ∇ =

43 43 43


, ∇ = h2 2 2i.

Case 1: If  6= 0,  6= 0, and  6= 0 then∇ = ∇ implies  = 22 = 22 = 22 or 2 = 2 = 2 = 1
3
giving 8 points

each with an -value of 1
3
.

Case 2: If one of the variables is 0 and the other two are not, then the squares of the two nonzero coordinates are equal with

common value 1
2
and the corresponding  -value is 1

2
.

Case 3: If exactly two of the variables are 0, then the third variable has value±1 with corresponding  -value of 1.

Thus on 2 + 2 + 2 = 1, the maximum value of  is 1 and the minimum value is 1
3
.

13. (   ) =  +  +  + , (   ) = 2 + 2 + 2 + 2 = 1 ⇒ h1 1 1 1i = h2 2 2 2i, so

 = 1(2) = 1(2) = 1(2) = 1(2) and  =  =  = . But 2 + 2 + 2 + 2 = 1, so the possible points are± 1
2
± 1

2
± 1

2
± 1

2


. Thus the maximum value of  is 


1
2
 1

2
 1

2
 1

2


= 2 and the minimum value is


− 1

2
− 1

2
− 1

2
− 1

2


= −2.

14. (1 2     ) = 1 + 2 + · · ·+ , (1 2     ) = 2
1 + 2

2 + · · ·+ 2
 = 1 ⇒

h1 1     1i = h21 22     2i, so  = 1(21) = 1(22) = · · · = 1(2) and 1 = 2 = · · · = .

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



488 ¤ CHAPTER 14 PARTIAL DERIVATIVES

But 2
1 + 2

2 + · · ·+ 2
 = 1, so  = ±1

√
 for  = 1,   , . Thus the maximum value of  is

(1
√
 1

√
,    , 1

√
 ) =

√
 and the minimum value is (−1

√
−1

√
,    , − 1

√
 ) = −√.

15. ( ) = 2 + 2, ( ) =  = 1, and∇ = ∇ ⇒ h2 2i = h i, so 2 = , 2 = , and  = 1.

From the last equation,  6= 0 and  6= 0, so 2 =  ⇒  = 2. Substituting, we have 2 = (2) ⇒

2 = 2 ⇒  = ±. But  = 1, so  =  = ±1 and the possible points for the extreme values of  are (1 1) and

(−1−1). Here there is no maximum value, since the constraint  = 1 ⇔  = 1 allows  or  to become arbitrarily

large, and hence ( ) = 2 + 2 can be made arbitrarily large. The minimum value is (1 1) = (−1−1) = 2.

16. (  ) = 2 + 22 + 32, ( ) =  + 2 + 3 = 10, and∇ = ∇ ⇒ h2 4 6i = h 2 3i, so 2 = ,

4 = 2, 6 = 3, and + 2 + 3 = 10. From the first three equations we have 2 =  = 2 = 2 ⇒  =  = , and

substituting into the fourth equation gives  + 2+ 3 = 10 ⇒  = 5
3

=  = . Thus the only possible point for an

extreme value of  is


5
3
 5

3
 5

3


. Notice here that the constraint + 2 + 3 = 10 allows any of ||, ||, or || to be arbitrarily

large, and hence (  ) = 2 + 22 + 32 can be made arbitrarily large. So  has no maximum value subject to the

constraint. The minimum value is 


5
3
 5

3
 5

3


= 6


5
3

2
= 50

3
.

17. (  ) =  +  + , (  ) = 2 + 2 = 2, (  ) =  +  = 1, and∇ = ∇ + ∇ ⇒

h1 1 1i = h2 0 2i+ h  0i. Then 1 = 2+ , 1 = , 1 = 2, 2 + 2 = 2, and +  = 1. Substituting

 = 1 into the first equation gives  = 0 or  = 0. But  = 0 contradicts 1 = 2, so  = 0. Then +  = 1 ⇒  = 1

and 2 + 2 = 2 ⇒  = ±√2, so the possible points are

0 1±√2


. The maximum value of  subject to the

constraints is (0 1
√

2) = 1 +
√

2 ≈ 241 and the minimum is (0 1−√2) = 1−√2 ≈ −041.

Note: Since  +  = 1 is one of the constraints, we could have solved the problem by solving ( ) = 1 +  subject to

2 + 2 = 2.

18. (  ) = , (  ) = 2 + 2 − 2 = 0, (  ) =  +  +  = 24, and∇ = ∇ + ∇ ⇒

h0 0 1i = h2 2−2i+ h  i. Then 0 = 2 + , 0 = 2 + , 1 = −2 + , 2 + 2 − 2 = 0, and

+  +  = 24. From the first two equations we have −2 =  = −2 ⇒  = 0 or  = . But  = 0 ⇒  = 0

which contradicts the third equation, so  =  and substitution into the last equation gives  = 24− 2. From the fourth

equation we have 2 + 2 − (24− 2)2 = 0 ⇒ −22 + 96− 576 = 0 ⇒ 2 − 48 + 288 = 0 ⇒

 =
48±√1152

2
= 24± 12

√
2 = . Now  = 24− 2, so the possible points are


24 + 12

√
2 24 + 12

√
2−24− 24

√
2


and

24− 12

√
2 24− 12

√
2−24 + 24

√
2

. The maximum of  subject to the constraints is



24− 12

√
2 24− 12

√
2−24 + 24

√
2


= −24 + 24
√

2 ≈ 994 and the minimum is



24 + 12

√
2 24 + 12

√
2−24− 24

√
2


= −24− 24
√

2 ≈ −5794.
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SECTION 14.8 LAGRANGE MULTIPLIERS ¤ 489

19. (  ) =  + , (  ) =  = 1, (  ) = 2 + 2 = 1 ⇒ ∇ = h +  i, ∇ = h  0i,

∇ = h0 2 2i. Then  =  implies  = 1 [ 6= 0 since (  ) = 1],  +  = + 2 and  = 2. Thus

 = (2) = (2) or 2 = 2, and so 2 + 2 = 1 implies  = ± 1√
2
,  = ± 1√

2
. Then  = 1 implies  = ±√2 and

the possible points are

±√2± 1√

2
 1√

2


,

±√2± 1√

2
− 1√

2


. Hence the maximum of  subject to the constraints is



±√2± 1√

2
± 1√

2


= 3

2
and the minimum is 


±√2± 1√

2
∓ 1√

2


= 1

2
.

Note: Since  = 1 is one of the constraints we could have solved the problem by solving ( ) =  + 1 subject to

2 + 2 = 1.

20. (  ) = 2 + 2 + 2, (  ) = −  = 1, (  ) = 2 − 2 = 1 ⇒ ∇ = h2 2 2i,

∇ = h− 0i, and ∇ = h0 2−2i. Then 2 = , 2 = −+ 2, and 2 = −2 ⇒  = 0 or  = −1.

If  = 0 then 2 − 2 = 1 implies 2 = 1 ⇒  = ±1. If  = 1, −  = 1 implies  = 2, and if  = −1 we have

 = 0, so possible points are (2 1 0) and (0−1 0). If  = −1 then 2 = −+ 2 implies 4 = −, but  = 2 so

4 = −2 ⇒  = −2 and −  = 1 implies−3 = 1 ⇒  = − 1
3
. But then 2 − 2 = 1 implies 2 = − 8

9
, an

impossibility. Thus the maximum value of  subject to the constraints is (2 1 0) = 5 and the minimum is (0−1 0) = 1.

Note: Since −  = 1 ⇒  =  + 1 is one of the constraints we could have solved the problem by solving

( ) = ( + 1)2 + 2 + 2 subject to 2 − 2 = 1.

21. ( ) = 2 + 2 + 4− 4. For the interior of the region, we find the critical points:  = 2 + 4,  = 2 − 4, so the

only critical point is (−2 2) (which is inside the region) and (−2 2) = −8. For the boundary, we use Lagrange multipliers.

( ) = 2 + 2 = 9, so∇ = ∇ ⇒ h2+ 4 2 − 4i = h2 2i. Thus 2+ 4 = 2 and 2 − 4 = 2.

Adding the two equations gives 2 + 2 = 2 + 2 ⇒  +  = ( + ) ⇒ ( + )(− 1) = 0, so

+  = 0 ⇒  = − or − 1 = 0 ⇒  = 1. But  = 1 leads to a contradition in 2 + 4 = 2, so  = − and

2 + 2 = 9 implies 22 = 9 ⇒  = ± 3√
2
. We have 


3√
2
− 3√

2


= 9 + 12

√
2 ≈ 2597 and



− 3√

2
 3√

2


= 9− 12

√
2 ≈ −797, so the maximum value of  on the disk 2 + 2 ≤ 9 is 


3√
2
− 3√

2


= 9 + 12

√
2 and

the minimum is (−2 2) = −8.

22. ( ) = 22 + 32 − 4− 5 ⇒ ∇ = h4− 4 6i = h0 0i ⇒  = 1,  = 0. Thus (1 0) is the only critical point

of  , and it lies in the region 2 + 2  16. On the boundary, ( ) = 2 + 2 = 16 ⇒ ∇ = h2 2i, so

6 = 2 ⇒ either  = 0 or  = 3. If  = 0, then  = ±4; if  = 3, then 4− 4 = 2 ⇒  = −2 and

 = ±2
√

3. Now (1 0) = −7, (4 0) = 11, (−4 0) = 43, and 
−2±2

√
3


= 47. Thus the maximum value of

( ) on the disk 2 + 2 ≤ 16 is 
−2±2

√
3


= 47, and the minimum value is (1 0) = −7.
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490 ¤ CHAPTER 14 PARTIAL DERIVATIVES

23. ( ) = − . For the interior of the region, we find the critical points:  = −− ,  = −− , so the only

critical point is (0 0), and (0 0) = 1. For the boundary, we use Lagrange multipliers. ( ) = 2 + 42 = 1 ⇒

∇ = h2 8i, so setting∇ = ∇ we get −− = 2 and −− = 8. The first of these gives

− = −2, and then the second gives −(−2) = 8 ⇒ 2 = 42. Solving this last equation with the

constraint 2 + 42 = 1 gives  = ± 1√
2
and  = ± 1

2
√

2
. Now 


± 1√

2
∓ 1

2
√

2


= 14 ≈ 1284 and



± 1√

2
± 1

2
√

2


= −14 ≈ 0779. The former are the maxima on the region and the latter are the minima.

24. (a) ( ) = 2 + 3, ( ) =
√
+


 = 5 ⇒ ∇ = h2 3i = ∇ = 


1

2
√



1

2




. Then

2 =


2
√

and 3 =



2


so 4

√
 =  = 6


 ⇒


 = 2

3

√
. With

√
+


 = 5 we have

√
+ 2

3

√
 = 5 ⇒

√
 = 3 ⇒  = 9. Substituting into


 = 2

3

√
 gives


 = 2 or  = 4. Thus the only possible extreme value

subject to the constraint is (9 4) = 30. (The question remains whether this is indeed the maximum of  .)

(b) (25 0) = 50 which is larger than the result of part (a).

(c) We can see from the level curves of  that the maximum

occurs at the left endpoint (0 25) of the constraint curve .

The maximum value is (0 25) = 75.

(d) Here∇ does not exist if  = 0 or  = 0, so the method will not locate any associated points. Also, the method of

Lagrange multipliers identifies points where the level curves of  share a common tangent line with the constraint curve .

This normally does not occur at an endpoint, although an absolute maximum or minimum may occur there.

(e) Here (9 4) is the absolute minimum of  subject to .

25. (a) ( ) = , ( ) = 2 + 4 − 3 = 0 ⇒ ∇ = h1 0i = ∇ = 

43 − 32 2


. Then

1 = (43 − 32) (1) and 0 = 2 (2). We have  6= 0 from (1), so (2) gives  = 0. Then, from the constraint equation,

4 − 3 = 0 ⇒ 3(− 1) = 0 ⇒  = 0 or  = 1. But  = 0 contradicts (1), so the only possible extreme value

subject to the constraint is (1 0) = 1. (The question remains whether this is indeed the minimum of  .)
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SECTION 14.8 LAGRANGE MULTIPLIERS ¤ 491

(b) The constraint is 2 + 4 − 3 = 0 ⇔ 2 = 3 − 4. The left side is non-negative, so we must have 3 − 4 ≥ 0

which is true only for 0 ≤  ≤ 1. Therefore the minimum possible value for ( ) =  is 0 which occurs for  =  = 0.

However, ∇(0 0) =  h0− 0 0i = h0 0i and∇(0 0) = h1 0i, so∇(0 0) 6= ∇(0 0) for all values of .

(c) Here∇(0 0) = 0 but the method of Lagrange multipliers requires that∇ 6= 0 everywhere on the constraint curve.

26. (a) The graphs of ( ) = 37 and ( ) = 350 seem to be tangent to the circle,

and so 37 and 350 are the approximate minimum and maximum values of the

function ( ) subject to the constraint (− 3)2 + ( − 3)2 = 9.

(b) Let ( ) = (− 3)2 + ( − 3)2. We calculate ( ) = 32 + 3,

 ( ) = 32 + 3, ( ) = 2− 6, and ( ) = 2 − 6, and use a

CAS to search for solutions to the equations ( ) = (− 3)2 + ( − 3)2 = 9,

 = , and  = . The solutions are ( ) =

3− 3

2

√
2 3− 3

2

√
2
 ≈ (0879 0879) and

( ) =

3 + 3

2

√
2 3 + 3

2

√
2
 ≈ (5121 5121). These give 


3− 3

2

√
2 3− 3

2

√
2


= 351
2
− 243

2

√
2 ≈ 3673 and



3 + 3

2

√
2 3 + 3

2

√
2


= 351
2

+ 243
2

√
2 ≈ 34733, in accordance with part (a).

27.  () = 1−, () = +  =  ⇒ ∇ =

−11− (1− )−


, ∇ = hi.

Then ()1− =  and (1− )() =  and+  = , so ()1− = (1− )() or

[(1− )] = ()()1− or  = [(1− )]. Substituting into+  =  gives = (1− )

and  =  for the maximum production.

28. () = + , () = 1− =  ⇒ ∇ = hi, ∇ =

−11− (1− )−


.

Then









1−
=



(1− )







and 1− =  ⇒ 

(1− )
=






1−





⇒

 =


(1− )
and so 




(1− )


1− = . Hence =



 ([(1− )])
 =

(1− )



and  =
−1(1− )−1

−1−1
=

1−1−

1−(1− )1−
minimizes cost.

29. Let the sides of the rectangle be  and . Then ( ) = , ( ) = 2 + 2 =  ⇒ ∇( ) = h i,

∇ = h2 2i. Then  = 1
2
 = 1

2
 implies  =  and the rectangle with maximum area is a square with side length 1

4
.

30. Let (  ) = ( − )( − )( − ), (  ) =  +  + . Then

∇ = h−(− )(− )−(− )(− )−(− )(− )i, ∇ = h  i. Thus

(− )(− ) = (− )(− ) (1), and (− )(− ) = (− )(− ) (2). (1) implies  =  while (2) implies  = ,

so  =  =  = 3 and the triangle with maximum area is equilateral.
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492 ¤ CHAPTER 14 PARTIAL DERIVATIVES

31. The distance from (2 0−3) to a point (  ) on the plane is  =


(− 2)2 + 2 + ( + 3)2, so we seek to minimize

2 = (  ) = (− 2)2 + 2 + ( + 3)2 subject to the constraint that (  ) lies on the plane  +  +  = 1, that is,

that (  ) =  +  +  = 1. Then∇ = ∇ ⇒ h2(− 2) 2 2( + 3)i = h  i, so  = (+ 4)2,

 = 2,  = (− 6)2. Substituting into the constraint equation gives
+ 4

2
+



2
+

− 6

2
= 1 ⇒ 3− 2 = 2 ⇒

 = 4
3
, so  = 8

3
,  = 2

3
, and  = − 7

3
. This must correspond to a minimum, so the shortest distance is

 =


8
3
− 2
2

+


2
3

2
+
− 7

3
+ 3
2

=


4
3

= 2√
3
.

32. The distance from (0 1 1) to a point (  ) on the plane is  =

2 + ( − 1)2 + ( − 1)2, so we minimize

2 = (  ) = 2 + ( − 1)2 + ( − 1)2 subject to the constraint that (  ) lies on the plane − 2 + 3 = 6, that is,

(  ) = − 2 + 3 = 6. Then∇ = ∇ ⇒ h2 2( − 1) 2( − 1)i = h−2 3i, so  = 2,  = 1− ,

 = (3+ 2)2. Substituting into the constraint equation gives


2
− 2(1− ) + 3 · 3+ 2

2
= 6 ⇒  = 5

7
, so  = 5

14
,

 = 2
7
, and  = 29

14
. This must correspond to a minimum, so the point on the plane closest to the point (0 1 1) is


5
14
 2

7
 29

14


.

33. Let (  ) = 2 = (− 4)
2

+ ( − 2)
2

+ 2. Then we want to minimize  subject to the constraint

 (  ) = 2 + 2 − 2 = 0. ∇ = ∇ ⇒ h2 (− 4)  2 ( − 2)  2i = h2 2−2i, so − 4 = ,

− 2 = , and  = −. From the last equation we have  +  = 0 ⇒  (1 + ) = 0, so either  = 0 or  = −1. But

from the constraint equation we have  = 0 ⇒ 2 + 2 = 0 ⇒  =  = 0 which is not possible from the first two

equations. So  = −1 and − 4 =  ⇒  = 2,  − 2 =  ⇒  = 1, and 2 + 2 − 2 = 0 ⇒

4 + 1− 2 = 0 ⇒  = ±√5. This must correspond to a minimum, so the points on the cone closest to (4 2 0)

are

2 1±√5


.

34. Let (  ) = 2 = 2 + 2 + 2. Then we want to minimize  subject to the constraint  (  ) = 2 −  = 9.

∇ = ∇ ⇒ h2 2 2i = h− 2−i, so 2 = −,  = , and 2 = −. If  = 0 then the last equation

implies  = 0, and from the constraint 2 −  = 9 we have  = ±3. If  6= 0, then the first and third equations give

 = −2 = −2 ⇒ 2 = 2. From the second equation we have  = 0 or  = 1. If  = 0 then 2 −  = 9 ⇒

 = −9 and 2 = 2 ⇒ 2 = 812 ⇒  = ±3. Since  = −9,  = 3 ⇒  = −3 and  = −3 ⇒
 = 3. If  = 1, then 2 = − and 2 = − which implies  =  = 0, contradicting the assumption that  6= 0. Thus the

possible points are (0±3 0), (3 0−3), (−3 0 3). We have  (0±3 0) = 9 and  (3 0−3) =  (−3 0 3) = 18, so the

points on the surface that are closest to the origin are (0±3 0).

35. (  ) = , (  ) = +  +  = 100 ⇒ ∇ = h  i = ∇ = h  i. Then  =  =  = 

implies  =  =  = 100
3
.
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36. Minimize (  ) = 2 + 2 + 2 subject to (  ) = +  +  = 12 with   0,   0,   0. Then

∇ = ∇ ⇒ h2 2 2i =  h1 1 1i ⇒ 2 = , 2 = , 2 =  ⇒  =  = , so +  +  = 12 ⇒
3 = 12 ⇒  = 4 =  = . By comparing nearby values we can confirm that this gives a minimum and not a maximum.

Thus the three numbers are 4, 4, and 4.

37. If the dimensions are 2, 2, and 2, then maximize (  ) = (2)(2)(2) = 8 subject to

(  ) = 2 + 2 + 2 = 2 (  0,   0,   0). Then∇ = ∇ ⇒ h8 8 8i =  h2 2 2i ⇒

8 = 2, 8 = 2, and 8 = 2, so  =
4


=

4


=

4


. This gives 2 = 2 ⇒ 2 = 2 (since  6= 0)

and 2 = 2 ⇒ 2 = 2, so 2 = 2 = 2 ⇒  =  = , and substituting into the constraint

equation gives 32 = 2 ⇒  = 
√

3 =  = . Thus the largest volume of such a box is




√
3
 √

3
 √

3


= 8


√
3


√
3


√
3


=

8

3
√

3
3.

38. If the dimensions of the box are , , and  then minimize (  ) = 2 + 2 + 2 subject to (  ) =  = 1000

(  0,   0,   0). Then∇ = ∇ ⇒ h2 + 2 2+ 2 2+ 2i =  h  i ⇒ 2 + 2 = ,

2+ 2 = , 2+ 2 = . Solving for  in each equation gives  =
2


+

2


=

2


+

2


=

2


+

2


⇒  =  = .

From  = 1000 we have 3 = 1000 ⇒  = 10 and the dimensions of the box are  =  =  = 10 cm.

39. (  ) = , (  ) =  + 2 + 3 = 6 ⇒ ∇ = h  i = ∇ = h 2 3i.

Then  =  = 1
2
 = 1

3
 implies  = 2,  = 2

3
. But 2 + 2 + 2 = 6 so  = 1,  = 2,  = 2

3
and the volume

is  = 4
3
.

40. (  ) = , (  ) =  +  +  = 32 ⇒ ∇ = h  i = ∇ = h( + ) (+ ) (+ )i.

Then ( + ) =  (1), (+ ) =  (2), and (+ ) =  (3). And (1) minus (2) implies (− ) = (− )

so  =  or  = . If  = , then (1) implies ( + ) =  or  = 0 which is false. Thus  = . Similarly (2) minus (3)

implies ( − ) = ( − ) so  =  or  = . As above,  6= , so  =  =  and 32 = 32 or  =  =  = 8√
6
cm.

41. (  ) = , (  ) = 4( +  + ) =  ⇒ ∇ = h  i, ∇ = h4 4 4i. Thus

4 =  =  =  or  =  =  = 1
12
 are the dimensions giving the maximum volume.

42.  (  ) = 5 + 2 + 2,  (  ) =  =  ⇒

∇ = h5 + 2 5+ 2 2+ 2i = ∇ = h  i. Then  = 5 + 2 (1),  = 5 + 2 (2),

 = 2 (+ ) (3), and  =  (4). Now (1) − (2) implies ( − ) = 5( − ), so  =  or  = 5, but  can’t

be 0, so  = . Then twice (2) minus five times (3) together with  =  implies (2− 5) = 2(2 − 5) which gives
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494 ¤ CHAPTER 14 PARTIAL DERIVATIVES

 = 5
2
 [again  6= 2 or else (3) implies  = 0]. Hence 5

2
3 =  and the dimensions which minimize cost are

 =  = 3


2
5
 units,  =  13


5
2

23
units.

43. If the dimensions of the box are given by , , and , then we need to find the maximum value of (  ) = 

[    0] subject to the constraint  =

2 + 2 + 2 or (  ) = 2 + 2 + 2 = 2. ∇ = ∇ ⇒

h  i = h2 2 2i, so  = 2 ⇒  =


2
,  = 2 ⇒  =



2
, and  = 2 ⇒  =



2
.

Thus  =


2
=



2
⇒ 2 = 2 [since  6= 0] ⇒  =  and  =



2
=



2
⇒  =  [since  6= 0].

Substituting into the constraint equation gives 2 + 2 + 2 = 2 ⇒ 2 = 23 ⇒  = 
√

3 =  =  and the

maximum volume is


√

3
3

= 3

3
√

3

.

44. Let the dimensions of the box be , , and , so its volume is (  ) = , its surface area is 2 + 2 + 2 = 1500

and its total edge length is 4 + 4 + 4 = 200. We find the extreme values of (  ) subject to the

constraints (  ) =  +  +  = 750 and (  ) =  +  +  = 50. Then

∇ = h  i = ∇ + ∇ = h( + ) ( + ) ( + )i+ h  i. So  = ( + ) +  (1),

 = (+ ) +  (2), and  = (+ ) +  (3). Notice that the box can’t be a cube or else  =  =  = 50
3

but then  +  +  = 2500
3

6= 750. Assume  is the distinct side, that is,  6= ,  6= . Then (1) minus (2) implies

 ( − ) = (− ) or  = , and (1) minus (3) implies (− ) = (− ) or  = . So  =  =  and + +  = 50

implies  = 50− 2; also  +  +  = 750 implies (2) + 2 = 750. Hence 50− 2 =
750− 2

2
or

32 − 100+ 750 = 0 and  =
50± 5

√
10

3
, giving the points


1
3


50∓ 10

√
10

, 1

3


50± 5

√
10

, 1

3


50± 5

√
10

.

Thus the minimum of  is 


1
3


50− 10

√
3

, 1

3


50 + 5

√
10

, 1

3


50 + 5

√
10


= 1
27


87,500− 2500

√
10

, and its

maximum is 


1
3


50 + 10

√
10

, 1

3


50− 5

√
10

, 1

3


50− 5

√
10


= 1
27


87,500 + 2500

√
10

.

Note: If either  or  is the distinct side, then symmetry gives the same result.

45. We need to find the extreme values of (  ) = 2 + 2 + 2 subject to the two constraints (  ) =  +  + 2 = 2

and (  ) = 2 + 2 −  = 0. ∇ = h2 2 2i, ∇ = h  2i and ∇ = h2 2−i. Thus we need

2 = + 2 (1), 2 = + 2 (2), 2 = 2−  (3), +  + 2 = 2 (4), and 2 + 2 −  = 0 (5).

From (1) and (2), 2(− ) = 2(− ), so if  6= ,  = 1. Putting this in (3) gives 2 = 2− 1 or  =  + 1
2
, but putting

 = 1 into (1) says  = 0. Hence  + 1
2

= 0 or  = −1
2
. Then (4) and (5) become +  − 3 = 0 and 2 + 2 + 1

2
= 0. The

last equation cannot be true, so this case gives no solution. So we must have  = . Then (4) and (5) become 2+ 2 = 2 and

22 −  = 0 which imply  = 1−  and  = 22. Thus 22 = 1−  or 22 + − 1 = (2− 1)(+ 1) = 0 so  = 1
2
or
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 = −1. The two points to check are


1
2
 1

2
 1

2


and (−1−1 2): 


1
2
 1

2
 1

2


= 3

4
and (−1−1 2) = 6. Thus


1
2
 1

2
 1

2


is

the point on the ellipse nearest the origin and (−1−1 2) is the one farthest from the origin.

46. (a) After plotting  =

2 + 2, the top half of the cone, and the plane

 = (5− 4+ 3)8 we see the ellipse formed by the intersection of the

surfaces. The ellipse can be plotted explicitly using cylindrical coordinates

(see Section 15.7): The cone is given by  = , and the plane is

4 cos  − 3 sin  + 8 = 5. Substituting  =  into the plane equation

gives 4 cos  − 3 sin  + 8 = 5 ⇒  =
5

4 cos  − 3 sin  + 8
.

Since  =  on the ellipse, parametric equations (in cylindrical coordinates)

are  = ,  =  =
5

4 cos − 3 sin + 8
, 0 ≤  ≤ 2.

(b) We need to find the extreme values of (  ) =  subject to the two

constraints (  ) = 4− 3 + 8 = 5 and (  ) = 2 + 2 − 2 = 0.

∇ = ∇ + ∇ ⇒ h0 0 1i = h4−3 8i+ h2 2−2i, so we need 4+ 2 = 0 ⇒  = − 2


(1),

−3+ 2 = 0 ⇒  = 3
2

(2), 8− 2 = 1 ⇒  = 8−1
2

(3), 4− 3 + 8 = 5 (4), and

2 + 2 = 2 (5). [Note that  6= 0, else  = 0 from (1), but substitution into (3) gives a contradiction.]

Substituting (1), (2), and (3) into (4) gives 4

− 2




− 3


3
2


+ 8


8−1
2


= 5 ⇒  = 39−8

10
and into (5) gives


− 2



2

+


3
2

2

=


8−1
2

2

⇒ 162 + 92 = (8− 1)2 ⇒ 392 − 16+ 1 = 0 ⇒  = 1
13

or  = 1
3
.

If  = 1
13

then  = − 1
2
and  = 4

13
,  = − 3

13
,  = 5

13
. If  = 1

3
then  = 1

2
and  = − 4

3
,  = 1,  = 5

3
. Thus the

highest point on the ellipse is
− 4

3
 1 5

3


and the lowest point is


4
13
− 3

13
 5

13


.

47. (  ) = − , (  ) = 92 + 42 + 362 = 36, (  ) =  +  = 1. ∇ = ∇ + ∇ ⇒
− −−− = h18 8 72i+ h +  i, so − = 18 + , − = 8 + ( + ),

−− = 72 + , 92 + 42 + 362 = 36,  +  = 1. Using a CAS to solve these 5 equations simultaneously for ,

, , , and  (in Maple, use the allvalues command), we get 4 real-valued solutions:

 ≈ 0222444,  ≈ −2157012,  ≈ −0686049,  ≈ −0200401,  ≈ 2108584

 ≈ −1951921,  ≈ −0545867,  ≈ 0119973,  ≈ 0003141,  ≈ −0076238

 ≈ 0155142,  ≈ 0904622,  ≈ 0950293,  ≈ −0012447,  ≈ 0489938

 ≈ 1138731,  ≈ 1768057,  ≈ −0573138,  ≈ 0317141,  ≈ 1862675

Substituting these values into  gives (0222444−2157012−0686049) ≈ −53506,
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496 ¤ CHAPTER 14 PARTIAL DERIVATIVES

(−1951921−0545867 0119973) ≈ −00688, (0155142 0904622 0950293) ≈ 04084,

(1138731 1768057−0573138) ≈ 97938. Thus the maximum is approximately 97938, and the minimum is

approximately −53506.

48. (  ) = +  + , (  ) = 2 − 2 −  = 0, (  ) = 2 + 2 = 4.

∇ = ∇ + ∇ ⇒ h1 1 1i = h2−2−1i+ h2 0 2i, so 1 = 2 + 2, 1 = −2, 1 = −+ 2,

2 − 2 = , 2 + 2 = 4. Using a CAS to solve these 5 equations simultaneously for , , , , and , we get 4 real-valued

solutions:

 ≈ −1652878,  ≈ −1964194,  ≈ −1126052,  ≈ 0254557,  ≈ −0557060

 ≈ −1502800,  ≈ 0968872,  ≈ 1319694,  ≈ −0516064,  ≈ 0183352

 ≈ −0992513,  ≈ 1649677,  ≈ −1736352,  ≈ −0303090,  ≈ −0200682

 ≈ 1895178,  ≈ 1718347,  ≈ 0638984,  ≈ −0290977,  ≈ 0554805

Substituting these values into  gives (−1652878−1964194−1126052) ≈ −47431,

(−1502800 0968872 1319694) ≈ 07858, (−0992513 1649677−1736352) ≈ −10792,

(1895178 1718347 0638984) ≈ 42525. Thus the maximum is approximately 42525, and the minimum is

approximately −47431.

49. (a) We wish to maximize (1 2,    , ) = 
√
12 · · · subject to

(1 2,    , ) = 1 + 2 + · · ·+  =  and   0.

∇ =


1

(12 · · ·)

1

−1

(2 · · ·) , 1

(12 · · ·)

1

−1

(13 · · ·) ,    , 1

(12 · · ·)

1

−1

(1 · · ·−1)


and ∇ = h ,    , i, so we need to solve the system of equations

1

(12 · · ·)

1

−1

(2 · · ·) =  ⇒ 
1
1 

1
2 · · ·1

 = 1

1

(12 · · ·)

1

−1

(13 · · ·) =  ⇒ 
1
1 

1
2 · · ·1

 = 2

...

1

(12 · · ·)

1

−1

(1 · · ·−1) =  ⇒ 
1

1 
1

2 · · ·1
 = 

This implies 1 = 2 = · · · = . Note  6= 0, otherwise we can’t have all   0. Thus 1 = 2 = · · · = .

But 1 + 2 + · · ·+  =  ⇒ 1 =  ⇒ 1 =



= 2 = 3 = · · · = . Then the only point where  can

have an extreme value is
 





,    ,






. Since we can choose values for (1 2     ) that make  as close to

zero (but not equal) as we like,  has no minimum value. Thus the maximum value is


 





,    ,






= 





· 

· · · · · 


=




.
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(b) From part (a),



is the maximum value of  . Thus (1 2,    , ) = 

√
12 · · · ≤ 


. But

1 + 2 + · · ·+  = , so 
√
12 · · · ≤ 1 + 2 + · · ·+ 


. These two means are equal when  attains its

maximum value



, but this can occur only at the point

 





,    ,






we found in part (a). So the means are equal only

when 1 = 2 = 3 = · · · =  =



.

50. (a) Let (1      1     ) =


=1

, (1     ) =


=1

2
 , and (1     ) =


=1

2
 . Then

∇ = ∇


=1

 = h1 2      1 2     i,∇ = ∇


=1

2
 = h21 22     2 0 0     0i and

∇ = ∇


=1

2
 = h0 0     0 21 22     2i. So∇ = ∇ + ∇ ⇔  = 2 and  = 2,

1 ≤  ≤ . Then 1 =


=1

2
 =


= 1

422
 = 42


= 1

2
 = 42 ⇒  = ± 1

2
. If  = 1

2
then  = 2


1
2


 = ,

1 ≤  ≤ . Thus


=1

 =


=1

2
 = 1. Similarly if  = − 1

2
we get  = − and


=1

 = −1. Similarly we get

 = ± 1
2
giving  = ±, 1 ≤  ≤ , and


=1

 = ±1. Thus the maximum value of


=1

 is 1.

(b) Here we assume


=1

2
 6= 0 and


= 1

2 6= 0. (If


=1

2
 = 0, then each  = 0 and so the inequality is trivially true.)

 =

2


⇒ 
2
 =


2

2


= 1, and  =

2

⇒ 
2
 =


2
2

= 1. Therefore, from part (a),


 =

 
2



2

≤ 1 ⇔ 
 ≤


2



2 .

APPLIED PROJECT Rocket Science

1. Initially the rocket engine has mass = 1 and payload mass  = 2 +3 +. Then the change in velocity resulting

from the first stage is∆1 = − ln


1− (1− )1

2 +3 ++1


. After the first stage is jettisoned we can consider the

rocket engine to have mass = 2 and the payload to have mass  = 3 +. The resulting change in velocity from the

second stage is∆2 = − ln


1− (1− )2

3 ++2


. When only the third stage remains, we have = 3 and  = , so

the resulting change in velocity is∆3 = − ln


1− (1− )3

+3


. Since the rocket started from rest, the final velocity
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498 ¤ CHAPTER 14 PARTIAL DERIVATIVES

attained is

 = ∆1 + ∆2 +∆3

= − ln


1− (1− )1

2 +3 ++1


+ (−) ln


1− (1− )2

3 ++2


+ (−) ln


1− (1− )3

+3


= −


ln


1 +2 +3 +− (1− )1

1 +2 +3 +


+ ln


2 +3 +− (1− )2

2 +3 +


+ ln


3 +− (1− )3

3 +


= 


ln


1 +2 +3 +

1 +2 +3 +


+ ln


2 +3 +

2 +3 +


+ ln


3 +

3 +



2. Define1 =
1 +2 +3 +

1 +2 +3 +
,2 =

2 +3 +

2 +3 +
, and3 =

3 +

3 +
. Then

(1− )1

1− 1

=

(1− )
1 +2 +3 +

1 +2 +3 +

1− 
1 +2 +3 +

1 +2 +3 +

=
(1− )(1 +2 +3 +)

1 +2 +3 +− (1 +2 +3 +)

=
(1− )(1 +2 +3 +)

(1− )(2 +3 +)
=

1 +2 +3 +

2 +3 +

as desired.

Similarly,

(1− )2

1− 2

=
(1− )(2 +3 +)

2 +3 +− (2 +3 +)
=

(1− )(2 +3 +)

(1− )(3 +)
=

2 +3 +

3 +

and (1− )3

1− 3

=
(1− )(3 +)

3 +− (3 +)
=

(1− )(3 +)

(1− )()
=

3 +



Then

 +


=

1 +2 +3 +


=

1 +2 +3 +

2 +3 +
· 2 +3 +

3 +
· 3 +



=
(1− )1

1− 1

· (1− )2

1− 2

· (1− )3

1− 3

=
(1− )3123

(1− 1)(1− 2)(1− 3)

3. Since   0, + and consequently
 +


is minimized for the same values as . ln is a strictly increasing function,

so ln


 +




must give a minimum for the same values as

 +


and hence . We then wish to minimize

ln


 +




subject to the constraint  (ln1 + ln2 + ln3) =  . From Problem 2,

ln


 +




= ln


(1− )

3
123

(1− 1) (1− 2) (1− 3)


= 3 ln(1− ) + ln1 + ln2 + ln3 − ln(1− 1)− ln(1− 2)− ln(1− 3)

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



APPLIED PROJECT ROCKET SCIENCE ¤ 499

Using the method of Lagrange multipliers, we need to solve∇

ln


 +




= ∇[(ln1 + ln2 + ln3)] with

(ln1 + ln2 + ln3) =  in terms of1, 2, and3. The resulting system is

1

1

+


1− 1

= 


1

1

2

+


1− 2

= 


2

1

3

+


1− 3

= 


3

 (ln1 + ln2 + ln3) = 

One approach to solving the system is isolating  in the first three equations which gives

1 +
1

1− 1

=  = 1 +
2

1− 2

= 1 +
3

1− 3

⇒ 1

1− 1

=
2

1− 2

=
3

1− 3

⇒

1 = 2 = 3 (Verify!). This says the fourth equation can be expressed as (ln1 + ln1 + ln1) =  ⇒

3 ln1 =  ⇒ ln1 =


3
. Thus the minimum mass of the rocket engine is attained for

1 = 2 = 3 = (3).

4. Using the previous results,
 +


=

(1− )
3
123

(1− 1)(1− 2)(1− 3)
=

(1− )
3

(3)

3

1− (3)

3 =
(1− )

3


1− (3)
3 .

Then =
(1− )

3


1− (3)
3 −.

5. (a) From Problem 4, =
(1− 02)3(17,5006000)

(1− 02[17,500(3·6000)])3
− ≈ 904− = 894.

(b) First, 3 =
3 +

3 +
⇒ [17,500(3·6000)] =

3 +

023 +
⇒ 3 =

(1− 3536)

023536 − 1
≈ 349.

Then 2 =
2 +3 +

2 +3 +
=

2 + 349+

022 + 349+
⇒ 2 =

449(1− 3536)

023536 − 1
≈ 1567 and

3 =
1 +2 +3 +

1 +2 +3 +
=

1 + 1567+ 349+

021 + 1567+ 349+
⇒ 1 =

2016(1− 3536)

023536 − 1
≈ 7036.

6. As in Problem 5, 3 =
3 +

3 +
⇒ 24,700(3·6000) =

3 +

023 +
⇒ 3 =

(1− 247180)

02247180 − 1
≈ 139,

2 =
2 +3 +

2 +3 +
=

2 + 139+

022 + 139+
⇒ 2 =

149(1− 247180)

02247180 − 1
≈ 208, and

3 =
1 +2 +3 +

1 +2 +3 +
=

1 + 208+ 139+

021 + 208+ 139+
⇒ 1 =

2229(1− 247180)

02247180 − 1
≈ 3110.

Here  = 500, so the mass of each stage of the rocket engine is approximately1 = 3110(500) = 1,550,000 lb,

2 = 208(500) = 104,000 lb, and3 = 139(500) = 6950 lb.
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APPLIED PROJECT Hydro-Turbine Optimization

1. We wish to maximize the total energy production for a given total flow, so we can say  is fixed and we want to maximize

1 +2 +3. Notice each has a constant factor

170− 16 · 10−62




, so to simplify the computations we

can equivalently maximize

(1 2 3) =
1 +2 +3

170− 16 · 10−62


=
−1889 + 012771 − 408 · 10−52

1


+
−2451 + 013582 − 469 · 10−52

2


+
−2702 + 013803 − 384 · 10−52

3


subject to the constraint (1 2 3) = 1 +2 + 3 =  . So first we find the values of 1 2 3 where

∇(1 2 3) = ∇(1 2 3) and1 +2 +3 =  which is equivalent to solving the system

01277− 2(408 · 10−5)1 = 

01358− 2(469 · 10−5)2 = 

01380− 2(384 · 10−5)3 = 

1 +2 +3 = 

Comparing the first and third equations, we have 01277− 2(408 · 10−5)1 = 01380− 2(384 · 10−5)3 ⇒
1 = −1262255 + 094123. From the second and third equations,

01358− 2(469 · 10−5)2 = 01380− 2(384 · 10−5)3 ⇒ 2 = −234542 + 081883. Substituting

into1 +2 +3 =  gives (−1262255 + 094123) + (−234542 + 081883) +3 =  ⇒
2763 =  + 1496797 ⇒ 3 = 03623 + 5423. Then

1 = −1262255 + 094123 = −1262255 + 09412(03623 + 5423) = 03410 − 7518 and

2 = −234542 + 08188(03623 + 5423) = 02967 + 2095. As long as we maintain 250 ≤ 1 ≤ 1110,

250 ≤ 2 ≤ 1110, and 250 ≤ 3 ≤ 1225, we can reason from the nature of the functions that these values give a

maximum of  , and hence a maximum energy production, and not a minimum.

2. From Problem 1, the value of1 that maximizes energy production is 03410 − 7518, but since 250 ≤ 1 ≤ 1110,

we must have 250 ≤ 03410 − 7518 ≤ 1110 ⇒ 32518 ≤ 03410 ≤ 118518 ⇒ 9536 ≤  ≤ 34756.

Similarly, 250 ≤ 2 ≤ 1110 ⇒ 250 ≤ 02967 + 2095 ≤ 1110 ⇒ 7720 ≤  ≤ 36705, and

250 ≤ 3 ≤ 1225 ⇒ 250 ≤ 03623 + 5423 ≤ 1225 ⇒ 5404 ≤  ≤ 32315. Consolidating these results, we

see that the values from Problem 1 are applicable only for 9536 ≤  ≤ 32315.

3. If = 2500, the results from Problem 1 show that the maximum energy production occurs for

1 = 03410 − 7518 = 03410(2500)− 7518 = 7773

2 = 02967 + 2095 = 02967(2500) + 2095 = 7627

3 = 03623 + 5423 = 03623(2500) + 5423 = 9600
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APPLIED PROJECT HYDRO-TURBINE OPTIMIZATION ¤ 501

The energy produced for these values is1 +2 +3 ≈ 89152 + 82851 + 11,2113 ≈ 28,4116.

We compute the energy production for a nearby distribution, 1 = 770, 2 = 760, and 3 = 970:

1 +2 +3 ≈ 88398 + 82574 + 11,3135 = 28,4107. For another example, we take 1 = 780, 2 = 765,

and3 = 955: 1 +2 +3 ≈ 89429 + 83088 + 11,1597 = 28,4114. These distributions are both close to the

distribution from Problem 1 and both give slightly lower energy productions, suggesting that 1 = 7773, 2 = 7627, and

3 = 9600 is indeed the optimal distribution.

4. First we graph each power function in its domain if all of the

flow is directed to that turbine (so =  ). If we use only one

turbine, the graph indicates that for a water flow of 1000 ft3s,

Turbine 3 produces the most power, approximately 12,200 kW.

In comparison, if we use all three turbines, the results of

Problem 1 with = 1000 give1 = 2658, 2 = 3177,

and3 = 4165, resulting in a total energy production of

1 +2 +3 ≈ 83974 kW. Here, using only one turbine produces significantly more energy! If the flow is only

600 ft3s, we do not have the option of using all three turbines, as the domain restrictions require a minimum of 250 ft3s

in each turbine. We can use just one turbine, then, and from the graph Turbine 1 produces the most energy for a water flow

of 600 ft3.

5. If we examine the graph from Problem 4, we see that for water flows above approximately 450 ft3s, Turbine 2 produces the

least amount of power. Therefore it seems reasonable to assume that we should distribute the incoming flow of 1500 ft3s

between Turbines 1 and 3. (This can be verified by computing the power produced with the other pairs of turbines for

comparison.) So now we wish to maximize1 +3 subject to the constraint1 +3 =  where  = 1500.

As in Problem 1, we can equivalently maximize

(1 3) =
1 +3

170− 16 · 10−62


=
−1889 + 012771 − 408 · 10−52

1


+
−2702 + 013803 − 384 · 10−52

3


subject to the constraint (1 3) = 1 +3 =  .

Then we solve ∇(1 3) = ∇(1 3) ⇒ 01277 − 2

408 · 10−5


1 =  and

01380− 2(384 · 10−5)3 = , thus 01277− 2(408 · 10−5)1 = 01380− 2(384 · 10−5)3 ⇒
1 = −1262255 + 094123 Substituting into 1 +3 =  gives −1262255 + 094123 +3 = 1500 ⇒

3 ≈ 8377, and then 1 =  −3 ≈ 1500− 8377 = 6623. So we should apportion approximately 6623 ft3s to

Turbine 1 and the remaining 8377 ft3s to Turbine 3. The resulting energy production is

1 +3 ≈ 79521 + 10,2562 = 18,2083 kW. (We can verify that this is indeed a maximum energy production by
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502 ¤ CHAPTER 14 PARTIAL DERIVATIVES

checking nearby distributions.) In comparison, if we use all three turbines with = 1500 we get 1 = 4363, 2 = 4660,

and3 = 5977, resulting in a total energy production of1 +2 +3 ≈ 16,5387 kW. Clearly, for this flow level

it is beneficial to use only two turbines.

6. Note that an incoming flow of 3400 ft3s is not within the domain we established in Problem 2, so we cannot simply use our

previous work to give the optimal distribution. We will need to use all three turbines, due to the capacity limitations of each

individual turbine, but 3400 is less than the maximum combined capacity of 3445 ft3s, so we still must decide how to

distribute the flows. From the graph in Problem 4, Turbine 3 produces the most power for the higher flows, so it seems

reasonable to use Turbine 3 at its maximum capacity of 1225 and distribute the remaining 2175 ft3s flow between Turbines 1

and 2. We can again use the technique of Lagrange multipliers to determine the optimal distribution. Following the procedure

we used in Problem 5, we wish to maximize1 +2 subject to the constraint 1 +2 =  where  = 2175. We

can equivalently maximize

(1 2) =
1 +2

170− 16 · 10−62


=
−1889 + 012771 − 408 · 10−52

1


+
−2451 + 013582 − 469 · 10−52

2


subject to the constraint (1 2) = 1 + 2 =  . Then we solve ∇(1 2) = ∇(1 2) ⇒

01277 − 2(408 · 10−5)1 =  and 01358 − 2(469 · 10−5)2 =  , thus

01277− 2(408 · 10−5)1 = 01358− 2

469 · 10−5


2 ⇒ 1 = −992647 + 114952. Substituting

into1 +2 =  gives −992647 + 114952 +2 = 2175 ⇒ 2 ≈ 10580, and then1 ≈ 11170. This value for

1 is larger than the allowable maximum flow to Turbine 1, but the result indicates that the flow to Turbine 1 should be

maximized. Thus we should recommend that the company apportion the maximum allowable flows to Turbines 1 and 3, 1110

and 1225 ft3s, and the remaining 1065 ft3s to Turbine 2. Checking nearby distributions within the domain verifies that we

have indeed found the optimal distribution.

14 Review

1. True. ( ) = lim
→0

( + )− ( )


from Equation 14.3.3. Let  =  − . As → 0,  → . Then by substituting,

we get ( ) = lim
→

( )− ( )

 − 
.

2. False. If there were such a function, then  = 2 and  = 1. So  6= , which contradicts Clairaut’s Theorem.

3. False.  =
2

 
.

4. True. From Equation 14.6.14 we getk (  ) = ∇(  ) · h0 0 1i = (  ).
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CHAPTER 14 REVIEW ¤ 503

5. False. See Example 14.2.3.

6. False. See Exercise 14.4.46(a).

7. True. If  has a local minimum and  is differentiable at ( ) then by Theorem 14.7.2, ( ) = 0 and ( ) = 0, so

∇( ) = h( ) ( )i = h0 0i = 0.

8. False. If  is not continuous at (2 5), then we can have lim
()→(25)

( ) 6= (2 5). (See Example 14.2.7)

9. False. ∇( ) = h0 1i.

10. True. This is part (c) of the Second Derivatives Test (14.7.3).

11. True. ∇ = hcos cos i, so |∇ | =


cos2 + cos2 . But |cos | ≤ 1, so |∇ | ≤ √2. Now

u ( ) = ∇ · u = |∇ | |u| cos , but u is a unit vector, so |u ( )| ≤ √2 · 1 · 1 =
√

2.

12. False. See Exercise 14.7.39.

1. ln(+  + 1) is defined only when +  + 1  0 ⇔   −− 1,

so the domain of  is {( ) |   −− 1}, all those points above the
line  = −− 1.

2.


4− 2 − 2 is defined only when 4− 2 − 2 ≥ 0 ⇔ 2 + 2 ≤ 4, and
√

1− 2 is defined only when 1− 2 ≥ 0 ⇔ −1 ≤  ≤ 1, so the domain of

 is

( ) | −1 ≤  ≤ 1−√4− 2 ≤  ≤ √4− 2


, which consists of those

points on or inside the circle 2 + 2 = 4 for −1 ≤  ≤ 1.

3.  = ( ) = 1− 2, a parabolic cylinder 4.  = ( ) = 2 + ( − 2)
2, a circular paraboloid with

vertex (0 2 0) and axis parallel to the -axis
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504 ¤ CHAPTER 14 PARTIAL DERIVATIVES

5. The level curves are


42 + 2 =  or

42 + 2 = 2,  ≥ 0, a family of ellipses.

6. The level curves are  +  =  or  = − + , a

family of exponential curves.

7.

8. (a) The point (3 2) lies partway between the level curves with -values 50 and 60, and it appears that (3 2) is about the same

distance from either level curve. So we estimate that (3 2) ≈ 55.

(b) At the point (3 2), if we fix  at  = 2 and allow  to vary, the level curves indicate that the -values decrease as 

increases, so (3 2) is negative. In other words, if we start at (3 2) and move right (in the positive -direction), the

contours show that our path along the surface  = ( ) is descending.

(c) Both (2 1) and (2 2) are positive, because if we start from either point and move in the positive -direction, the

contour map indicates that the path is ascending. But the level curves are closer together in the -direction at (2 1) than at

(2 2), so the path is steeper (the -values increase more rapidly) at (2 1) and hence (2 1)  (2 2).

9.  is a rational function, so it is continuous on its domain. Since  is defined at (1 1), we use direct substitution to evaluate

the limit: lim
()→(11)

2

2 + 22
=

2(1)(1)

12 + 2(1)2
=

2

3
.

10. As ( ) → (0 0) along the -axis, ( 0) = 02 = 0 for  6= 0, so ( ) → 0 along this line. But

( ) = 22(32) = 2
3
, so as ( )→ (0 0) along the line  = , ( )→ 2

3
. Thus the limit doesn’t exist.

11. (a) (6 4) = lim
→0

 (6 +  4)−  (6 4)


, so we can approximate (6 4) by considering  = ±2 and using the values

given in the table: (6 4) ≈  (8 4)−  (6 4)

2
=

86− 80

2
= 3,
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CHAPTER 14 REVIEW ¤ 505

(6 4) ≈  (4 4)−  (6 4)

−2
=

72− 80

−2
= 4. Averaging these values, we estimate (6 4) to be approximately

35◦Cm. Similarly,  (6 4) = lim
→0

 (6 4 + )−  (6 4)


, which we can approximate with  = ±2:

(6 4) ≈  (6 6)−  (6 4)

2
=

75− 80

2
= −25, (6 4) ≈  (6 2)−  (6 4)

−2
=

87− 80

−2
= −35. Averaging these

values, we estimate (6 4) to be approximately−30◦Cm.

(b) Here u =


1√
2
 1√

2


, so by Equation 14.6.9,u  (6 4) = ∇ (6 4) · u = (6 4)

1√
2

+ (6 4)
1√
2
. Using our

estimates from part (a), we haveu  (6 4) ≈ (35) 1√
2

+ (−30) 1√
2

= 1

2
√

2
≈ 035. This means that as we move

through the point (6 4) in the direction of u, the temperature increases at a rate of approximately 035◦Cm.

Alternatively, we can use Definition 14.6.2: u  (6 4) = lim
→0



6 +  1√

2
 4 +  1√

2


−  (6 4)


,

which we can estimate with  = ±2
√

2. Thenu  (6 4) ≈  (8 6)−  (6 4)

2
√

2
=

80− 80

2
√

2
= 0,

u  (6 4) ≈  (4 2)−  (6 4)

−2
√

2
=

74− 80

−2
√

2
=

3√
2
. Averaging these values, we haveu  (6 4) ≈ 3

2
√

2
≈ 11◦Cm.

(c) ( ) =



[( )] = lim

→0

(  + )− ( )


, so (6 4) = lim

→0

(6 4 + )− (6 4)


which we can

estimate with  = ±2. We have (6 4) ≈ 35 from part (a), but we will also need values for (6 6) and (6 2). If we

use  = ±2 and the values given in the table, we have

(6 6) ≈  (8 6)−  (6 6)

2
=

80 − 75

2
= 25, (6 6) ≈  (4 6)−  (6 6)

−2
=

68 − 75

−2
= 35.

Averaging these values, we estimate (6 6) ≈ 30. Similarly,

(6 2) ≈  (8 2)− (6 2)

2
=

90 − 87

2
= 15, (6 2) ≈  (4 2)−  (6 2)

−2
=

74 − 87

−2
= 65.

Averaging these values, we estimate (6 2) ≈ 40. Finally, we estimate (6 4):

(6 4) ≈ (6 6)− (6 4)

2
=

30 − 35

2
= −025, (6 4) ≈ (6 2)− (6 4)

−2
=

40 − 35

−2
= −025.

Averaging these values, we have  (6 4) ≈ −025.

12. From the table,  (6 4) = 80, and from Exercise 11 we estimated (6 4) ≈ 35 and (6 4) ≈ −30. The linear

approximation then is

 ( ) ≈  (6 4) + (6 4)(− 6) + (6 4)( − 4) ≈ 80 + 35(− 6)− 3( − 4) = 35− 3 + 71

Thus at the point (5 38), we can use the linear approximation to estimate  (5 38) ≈ 35(5)− 3(38) + 71 ≈ 771◦C.

13. ( ) = (53 + 22)8 ⇒  = 8(53 + 22)7(4) = 32(53 + 22)7,

 = 8(53 + 22)7(152 + 22) = (162 + 1202)(53 + 22)7
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506 ¤ CHAPTER 14 PARTIAL DERIVATIVES

14. ( ) =
+ 2

2 + 2
⇒  =

(2 + 2)(1)− (+ 2)(2)

(2 + 2)2
=

2 − 2 − 4

(2 + 2)2
,

 =
(2 + 2)(2)− (+ 2)(2)

(2 + 2)2
=

22 − 22 − 2

(2 + 2)2

15.  ( ) = 2 ln(2 + 2) ⇒  = 2 · 1

2 + 2
(2) + ln(2 + 2) · 2 =

23

2 + 2
+ 2 ln(2 + 2),

 = 2 · 1

2 + 2
(2) =

22

2 + 2

16. (  ) =  sin() ⇒  =  sin(),  =  cos()(1) = () cos(),

 =  · cos()(−2) + sin() ·  = 

 sin()− (2) cos()


17. ( ) =  arctan(

√
) ⇒  = arctan(

√
),  =  · 1

1 + (
√
)

2
(
√
) =


√


1 + 2
,

 =  · 1

1 + (
√
)

2


 · 1

2
−12


=



2
√
 (1 + 2)

18.  = 14492 + 46 − 0055 2 + 000029 3 + (134− 001 )( − 35) + 0016 ⇒

 = 46− 011 + 000087 2 − 001( − 35),  = 134− 001 , and  = 0016. When  = 10,

 = 35, and = 100 we have  = 46− 011(10) + 000087(10)2 − 001(35− 35) ≈ 3587, thus in 10◦C water

with salinity 35 parts per thousand and a depth of 100 m, the speed of sound increases by about 359 ms for every degree

Celsius that the water temperature rises. Similarly,  = 134− 001(10) = 124, so the speed of sound increases by

about 124 ms for every part per thousand the salinity of the water increases.  = 0016, so the speed of sound

increases by about 0016 ms for every meter that the depth is increased.

19. ( ) = 43 − 2 ⇒  = 122 − 2,  = −2,  = 24,  = −2,  =  = −2

20.  = −2 ⇒  = −2 ,  = −2−2 ,  = 0,  = 4−2 ,  =  = −2−2

21. (  ) =  ⇒  = −1,  = −1,  = −1,  = ( − 1)−2,

 = ( − 1)−2,  = (− 1)−2,  =  = −1−1,  =  = −1−1,

 =  = −1−1

22.  =  cos(+ 2) ⇒  = cos(+ 2),  = − sin(+ 2),  = −2 sin(+ 2),  = 0,  = − cos(+ 2),

 = −4 cos(+ 2),  =  = − sin(+ 2),  =  = −2 sin(+ 2),  =  = −2 cos(+ 2)

23.  =  +  ⇒ 


=  − 


 + ,




= +  and





+




= 


 − 


 + 


+

+ 


= −+++ = ++ = +.
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24.  = sin ( + sin ) ⇒ 


= cos( + sin ),




= cos (+ sin ) cos 

2


= − sin (+ sin ) cos ,

2

2
= − sin (+ sin ) and





2


= cos(+ sin ) [− sin (+ sin ) cos ] = cos (+ sin ) (cos ) [− sin (+ sin )] =





2

2
.

25. (a)  = 6 + 2 ⇒ (1−2) = 8 and  = −2 ⇒ (1−2) = 4, so an equation of the tangent plane is

 − 1 = 8(− 1) + 4( + 2) or  = 8 + 4 + 1.

(b) A normal vector to the tangent plane (and the surface) at (1−2 1) is h8 4−1i. Then parametric equations for the normal

line there are  = 1 + 8,  = −2 + 4,  = 1− , and symmetric equations are
− 1

8
=

 + 2

4
=

 − 1

−1
.

26. (a)  =  cos  ⇒ (0 0) = 1 and  = − sin  ⇒ (0 0) = 0, so an equation of the tangent plane is

 − 1 = 1(− 0) + 0( − 0) or  = + 1.

(b) A normal vector to the tangent plane (and the surface) at (0 0 1) is h1 0−1i. Then parametric equations for the normal
line there are  = ,  = 0,  = 1− , and symmetric equations are  = 1− ,  = 0.

27. (a) Let  (  ) = 2 + 22 − 32. Then  = 2,  = 4,  = −6, so (2−1 1) = 4, (2−1 1) = −4,

(2−1 1) = −6. From Equation 14.6.19, an equation of the tangent plane is 4(− 2)− 4( + 1)− 6( − 1) = 0

or, equivalently, 2− 2 − 3 = 3.

(b) From Equations 14.6.20, symmetric equations for the normal line are
− 2

4
=

 + 1

−4
=

 − 1

−6
.

28. (a) Let  (  ) =  +  + . Then  =  + ,  =  + ,  =  + , so

(1 1 1) = (1 1 1) = (1 1 1) = 2. From Equation 14.6.19, an equation of the tangent plane is

2(− 1) + 2( − 1) + 2( − 1) = 0 or, equivalently,  +  +  = 3.

(b) From Equations 14.6.20, symmetric equations for the normal line are
− 1

2
=

 − 1

2
=

 − 1

2
or, equivalently,

 =  = .

29. (a) Let  (  ) = + 2 + 3− sin(). Then  = 1−  cos(),  = 2−  cos(),  = 3−  cos(),

so (2−1 0) = 1, (2−1 0) = 2, (2−1 0) = 5. From Equation 14.6.19, an equation of the tangent plane is

1(− 2) + 2( + 1) + 5( − 0) = 0 or + 2 + 5 = 0.

(b) From Equations 14.6.20, symmetric equations for the normal line are
− 2

1
=

 + 1

2
=



5
or − 2 =

 + 1

2
=



5
.

Parametric equations are  = 2 + ,  = −1 + 2,  = 5.
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508 ¤ CHAPTER 14 PARTIAL DERIVATIVES

30. Let ( ) = 2 + 4. Then ( ) = 2 and ( ) = 43, so (1 1) = 2,

(1 1) = 4 and an equation of the tangent plane is  − 2 = 2(− 1) + 4( − 1)

or 2+ 4 −  = 4. A normal vector to the tangent plane is h2 4−1i so the

normal line is given by
− 1

2
=

 − 1

4
=

 − 2

−1
or  = 1 + 2,  = 1 + 4,

 = 2− .

31. The hyperboloid is a level surface of the function  (  ) = 2 + 42 − 2, so a normal vector to the surface at (00 0)

is∇ (00 0) = h20 80−20i. A normal vector for the plane 2+ 2 +  = 5 is h2 2 1i. For the planes to be

parallel, we need the normal vectors to be parallel, so h20 80−20i =  h2 2 1i, or 0 =  , 0 = 1
4
, and 0 = − 1

2
.

But 2
0 + 42

0 − 2
0 = 4 ⇒ 2 + 1

4
2 − 1

4
2 = 4 ⇒ 2 = 4 ⇒  = ±2. So there are two such points:

2 1
2
−1


and

−2− 1
2
 1

.

32.  = ln(1 + 2) ⇒  =



+




 =

2

1 + 2
+

22

1 + 2


33. (  ) = 3

2 + 2 ⇒ (  ) = 32


2 + 2, (  ) =

3
2 + 2

, (  ) =
3
2 + 2

,

so (2 3 4) = 8(5) = 40, (2 3 4) = 3(4)
√

25 = 60, (2 3 4) =
3(8)√

25
= 24

5
, and (2 3 4) =

4(8)√
25

= 32
5
. Then the

linear approximation of  at (2 3 4) is

(  )≈ (2 3 4) + (2 3 4)(− 2) + (2 3 4)( − 3) + (2 3 4)( − 4)

= 40 + 60(− 2) + 24
5

( − 3) + 32
5

( − 4) = 60+ 24
5
 + 32

5
 − 120

Then (198)3


(301)2 + (397)2 = (198 301 397) ≈ 60(198) + 24
5

(301) + 32
5

(397)− 120 = 38656.

34. (a)  =



 +




 = 1

2
 + 1

2
 and |∆| ≤ 0002, |∆| ≤ 0002. Thus the maximum error in the calculated

area is about  = 6(0002) + 5
2
(0002) = 0017 m2 or 170 cm2.

(b)  =

2 + 2,  =


2 + 2

+


2 + 2
 and |∆| ≤ 0002, |∆| ≤ 0002. Thus the maximum error in the

calculated hypotenuse length is about  = 5
13

(0002) + 12
13

(0002) = 017
65
≈ 00026 m or 026 cm.

35.



=








+








+








= 23(1 + 6) + 322( + ) + 43( cos + sin )

36.



=








+








=

2 sin  + 2


(1) + (2 cos  +  + ) ().

 = 0,  = 1 ⇒  = 2,  = 0, so



= 0 + (4 + 1) (1) = 5.




=








+








=

2 sin  + 2


(2) + (2 cos  +  + ) () = 0 + 0 = 0.
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37. By the Chain Rule,



=








+








. When  = 1 and  = 2,  = (1 2) = 3 and  = (1 2) = 6, so




= (3 6)(1 2) +  (3 6)(1 2) = (7)(−1) + (8)(−5) = −47. Similarly,




=








+








, so




= (3 6)(1 2) +  (3 6)(1 2) = (7)(4) + (8)(10) = 108.

38. Using the tree diagram as a guide, we have




=








+








+












=








+








+












=








+








+












=








+








+









39.



= 2 0(2 − 2),




= 1 − 2 0(2 − 2)


where  0 =



(2 − 2)


. Then





+ 




= 2 0(2 − 2) + − 2 0(2 − 2) = .

40.  = 1
2
 sin ,  = 3,  = −2,  = 005, and




=

1

2


( sin )




+ ( sin )




+ ( cos )






.

So when  = 40,  = 50 and  = 
6
,



=

1

2


(25)(3) + (20)(−2) +


1000

√
3

(005)


=

35 + 50
√

3

2
≈ 608 in2s.

41.



=




 +





−
2

and

2

2
= 











+

2

3




+
−
2











=

2

3




+ 


2

2
 +

2

 

−
2


+
−
2


2

2

−
2

+
2

 




=
2

3




+ 2 2

2
− 22

2

2


+

2

4

2

2

Also



= 




+

1






and

2

2
= 











+

1













= 


2

2
 +

2

 

1




+

1




2

2

1


+

2





= 2 2

2
+ 2

2


+

1

2

2

2

Thus

2 2

2
− 2 2

2
=

2






+ 22 2

2
− 22 2


+

2

2

2

2
− 22 2

2
− 22 2

 
− 2

2

2

2

=
2






− 42 2


= 2




− 4

2



since  =  =



or 2 = .
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42. cos() = 1 + 22 + 2, so let  (  ) = 1 + 22 + 2 − cos() = 0. Then by

Equations 14.5.7 we have



= −


= −22 + sin() · 

2 + sin() ·  = −22 +  sin()

2 +  sin()
,




= −


= −22 + sin() · 

2 + sin() ·  = −22 +  sin()

2 +  sin()
.

43. (  ) = 2
2 ⇒ ∇ = h  i =


2

2

, 2
2 · 2, 2

2 · 2


=

2

2

, 22
2

, 22
2


44. (a) By Theorem 14.6.15, the maximum value of the directional derivative occurs when u has the same direction as the gradient

vector.

(b) It is a minimum when u is in the direction opposite to that of the gradient vector (that is, u is in the direction of −∇ ),
sinceu  = |∇ | cos  (see the proof of Theorem 14.6.15) has a minimum when  = .

(c) The directional derivative is 0 when u is perpendicular to the gradient vector, since thenu  = ∇ · u = 0.

(d) The directional derivative is half of its maximum value when u  = |∇ | cos  = 1
2
|∇ | ⇔ cos  = 1

2
⇔

 = 
3
.

45. ( ) = 2− ⇒ ∇ =

2−−2−


, ∇(−2 0) = h−4−4i. The direction is given by h4−3i, so

u = 1√
42+(−3)2

h4−3i = 1
5
h4−3i andu (−2 0) = ∇(−2 0) · u = h−4−4i · 1

5
h4−3i = 1

5
(−16 + 12) = − 4

5
.

46. ∇ =

2 +

√
1 +  2 


2
√

1 + 

, ∇(1 2 3) =


6 1 1

4


, u =


2
3
 1

3
− 2

3


. Thenu (1 2 3) = 25

6
.

47. ∇ =

2 2 + 1


2
√


, |∇(2 1)| =

4 9
2

. Thus the maximum rate of change of  at (2 1) is
√

145
2

in the

direction

4 9

2


.

48. ∇ = h  i,∇(0 1 2) = h2 0 1i is the direction of most rapid increase while the rate is |h2 0 1i| = √5.

49. First we draw a line passing through Homestead and the eye of the hurricane. We can approximate the directional derivative at

Homestead in the direction of the eye of the hurricane by the average rate of change of wind speed between the points where

this line intersects the contour lines closest to Homestead. In the direction of the eye of the hurricane, the wind speed changes

from 45 to 50 knots. We estimate the distance between these two points to be approximately 8 miles, so the rate of change of

wind speed in the direction given is approximately 50− 45
8

= 5
8

= 0625 knotmi.

50. The surfaces are (  ) =  − 22 + 2 = 0 and (  ) =  − 4 = 0. The tangent line is perpendicular to both∇

and∇ at (−2 2 4). The vector v = ∇ ×∇ is therefore parallel to the line. ∇(  ) = h−4 2 1i ⇒

∇(−2 2 4) = h8 4 1i, ∇(  ) = h0 0 1i ⇒ ∇h−2 2 4i = h0 0 1i. Hence

v = ∇ ×∇ =


i j k

8 4 1

0 0 1

 = 4 i− 8 j. Thus, parametric equations are:  = −2 + 4,  = 2− 8,  = 4.
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51. ( ) = 2 −  + 2 + 9− 6 + 10 ⇒  = 2−  + 9,

 = −+ 2 − 6,  = 2 =  ,  = −1. Then  = 0 and  = 0 imply

 = 1,  = −4. Thus the only critical point is (−4 1) and (−4 1)  0,

(−4 1) = 3  0, so (−4 1) = −11 is a local minimum.

52. ( ) = 3 − 6+ 83 ⇒  = 32 − 6,  = −6+ 242,  = 6,

 = 48,  = −6. Then  = 0 implies  = 22, substituting into  = 0

implies 6

3 − 1


= 0, so the critical points are (0 0),


1 1

2


.

(0 0) = −36  0 so (0 0) is a saddle point while 

1 1

2


= 6  0 and



1 1

2


= 108  0 so 


1 1

2


= −1 is a local minimum.

53. ( ) = 3 − 2 − 2 ⇒  = 3 − 2 − 2,  = 3− 2 − 2,

 = −2,  = −2,  = 3− 2− 2. Then  = 0 implies

(3− 2− ) = 0 so  = 0 or  = 3− 2. Substituting into  = 0 implies

(3− ) = 0 or 3(−1 + ) = 0. Hence the critical points are (0 0), (3 0),

(0 3) and (1 1). (0 0) = (3 0) = (0 3) = −9  0 so (0 0), (3 0), and

(0 3) are saddle points. (1 1) = 3  0 and (1 1) = −2  0, so

(1 1) = 1 is a local maximum.

54. ( ) = (2 + )2 ⇒  = 22,  = 2(2 + 2 + )2,

 = 22,  = 2(4 + 2 + )4,  = 2. Then  = 0 implies

 = 0, so  = 0 implies  = −2. But (0−2)  0,(0−2) = −2 − 0  0

so (0−2) = −2 is a local minimum.

55. First solve inside. Here  = 42 − 22 − 3,  = 8 − 22 − 32.

Then  = 0 implies  = 0 or  = 4− 2, but  = 0 isn’t inside. Substituting

 = 4− 2 into  = 0 implies  = 0,  = 2 or  = 1, but  = 0 isn’t inside,

and when  = 2,  = 0 but (2 0) isn’t inside. Thus the only critical point inside

 is (1 2) and (1 2) = 4. Secondly we consider the boundary of.

On 1: ( 0) = 0 and so  = 0 on 1. On 2:  = − + 6 and

(− + 6 ) = 2(6− )(−2) = −2(62 − 3) which has critical points

at  = 0 and  = 4. Then (6 0) = 0 while (2 4) = −64. On 3: (0 ) = 0, so  = 0 on 3. Thus on the absolute

maximum of  is (1 2) = 4 while the absolute minimum is (2 4) = −64.

56. Inside :  = 2−
2−2(1− 2 − 22) = 0 implies  = 0 or 2 + 22 = 1. Then if  = 0,

 = 2−
2−2(2− 2 − 22) = 0 implies  = 0 or 2− 22 = 0 giving the critical points (0 0), (0±1). If
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512 ¤ CHAPTER 14 PARTIAL DERIVATIVES

2 + 22 = 1, then  = 0 implies  = 0 giving the critical points (±1 0). Now (0 0) = 0, (±1 0) = −1 and

(0±1) = 2−1. On the boundary of: 2 + 2 = 4, so ( ) = −4(4 + 2) and  is smallest when  = 0 and largest

when 2 = 4. But (±2 0) = 4−4, (0±2) = 8−4. Thus on the absolute maximum of  is (0±1) = 2−1 and the

absolute minimum is (0 0) = 0.

57. ( ) = 3 − 3+ 4 − 22

 

From the graphs, it appears that  has a local maximum (−1 0) ≈ 2, local minima (1±1) ≈ −3, and saddle points at

(−1±1) and (1 0).

To find the exact quantities, we calculate  = 32 − 3 = 0 ⇔  = ±1 and  = 43 − 4 = 0 ⇔

 = 0, ±1, giving the critical points estimated above. Also  = 6,  = 0,  = 122 − 4, so using the Second

Derivatives Test, (−1 0) = 24  0 and (−1 0) = −6  0 indicating a local maximum (−1 0) = 2;

(1±1) = 48  0 and (1±1) = 6  0 indicating local minima (1±1) = −3; and(−1±1) = −48 and

(1 0) = −24, indicating saddle points.

58. ( ) = 12 + 10 − 22 − 8 − 4 ⇒ ( ) = −4− 8, ( ) = 10− 8− 43. Now ( ) = 0 ⇒

 = −2, and substituting this into ( ) = 0 gives 10 + 16 − 43 = 0 ⇔ 5 + 8 − 23 = 0.

From the first graph, we see that this is true when  ≈ −1542, −0717, or 2260. (Alternatively, we could have found the

solutions to  =  = 0 using a CAS.) So to three decimal places, the critical points are (3085−1542), (1434−0717),

and (−4519 2260). Now in order to use the Second Derivatives Test, we calculate  = −4,  = −8,  = −122, and

 = 482 − 64. So since(3085−1542)  0,(1434−0717)  0, and(−4519 2260)  0, and  is always

negative, ( ) has local maxima (−4519 2260) ≈ 49373 and (3085−1542) ≈ 9948, and a saddle point at

approximately (1434−0717). The highest point on the graph is approximately (−4519 2260 49373).
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59. ( ) = 2, ( ) = 2 + 2 = 1 ⇒ ∇ =

2 2


= ∇ = h2 2i. Then 2 = 2 implies  = 0 or

 = . If  = 0 then 2 + 2 = 1 gives  = ±1 and we have possible points (0±1) where  (0±1) = 0. If  =  then

2 = 2 implies 2 = 22 and substitution into 2 + 2 = 1 gives 32 = 1 ⇒  = ± 1√
3
and  = ±


2
3
. The

corresponding possible points are

±


2
3
± 1√

3


. The absolute maximum is 


±


2
3
 1√

3


= 2

3
√

3
while the absolute

minimum is 

±


2
3
− 1√

3


= − 2

3
√

3
.

60. ( ) = 1 + 1, ( ) = 12 + 12 = 1 ⇒ ∇ =
−−2−−2


= ∇ =

−2−3−2−3

. Then

−−2 = −23 or  = 2 and −−2 = −2−3 or  = 2. Thus  = , so 12 + 12 = 22 = 1 implies  = ±√2

and the possible points are
±√2±√2


. The absolute maximum of  subject to −2 + −2 = 1 is then 

√
2
√

2


=
√

2

and the absolute minimum is 
−√2−√2


= −√2.

61. (  ) = , (  ) = 2 + 2 + 2 = 3. ∇ = ∇ ⇒ h  i = h2 2 2i. If any of , , or  is

zero, then  =  =  = 0 which contradicts 2 + 2 + 2 = 3. Then  =


2
=



2
=



2
⇒ 22 = 22 ⇒

2 = 2, and similarly 22 = 22 ⇒ 2 = 2. Substituting into the constraint equation gives 2 + 2 + 2 = 3 ⇒

2 = 1 = 2 = 2. Thus the possible points are (1 1±1), (1−1±1), (−1 1±1), (−1−1±1). The absolute maximum

is (1 1 1) = (1−1−1) = (−1 1−1) = (−1−1 1) = 1 and the absolute

minimum is (1 1−1) = (1−1 1) = (−1 1 1) = (−1−1−1) = −1.

62. (  ) = 2 + 22 + 32, (  ) =  +  +  = 1, (  ) = −  + 2 = 2 ⇒

∇ = h2 4 6i = ∇ + ∇ = h+  −  + 2i and 2 = +  (1), 4 = −  (2), 6 = + 2 (3),

 +  +  = 1 (4), −  + 2 = 2 (5). Then six times (1) plus three times (2) plus two times (3) implies

12( +  + ) = 11+ 7, so (4) gives 11+ 7 = 12. Also six times (1) minus three times (2) plus four times (3) implies

12(−  + 2) = 7+ 17, so (5) gives 7+ 17 = 24. Solving 11+ 7 = 12, 7+ 17 = 24 simultaneously gives

 = 6
23
,  = 30

23
. Substituting into (1), (2), and (3) implies  = 18

23
,  = − 6

23
,  = 11

23
giving only one point. Then




18
23
− 6

23
 11

23


= 33

23
. Now since (0 0 1) satisfies both constraints and (0 0 1) = 3  33

23
, 


18
23
− 6

23
 11

23


= 33

23
is an

absolute minimum, and there is no absolute maximum.

63. (  ) = 2 + 2 + 2, (  ) = 23 = 2 ⇒ ∇ = h2 2 2i = ∇ =

23 23 322


.

Since 23 = 2,  6= 0,  6= 0 and  6= 0, so 2 = 23 (1), 1 = 3 (2), 2 = 32 (3). Then (2) and (3) imply

1

3
=

2

32
or 2 = 2

3
2 so  = ±


2
3
. Similarly (1) and (3) imply

2

23
=

2

32
or 32 = 2 so  = ± 1√

3
. But

23 = 2 so  and  must have the same sign, that is,  = 1√
3
. Thus (  ) = 2 implies 1√

3



2
3
2

3 = 2 or
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514 ¤ CHAPTER 14 PARTIAL DERIVATIVES

 = ±314 and the possible points are (±3−14 3−14
√

2±314), (±3−14−3−14
√

2±314). However at each of these

points  takes on the same value, 2
√

3. But (2 1 1) also satisfies (  ) = 2 and (2 1 1) = 6  2
√

3. Thus  has an

absolute minimum value of 2
√

3 and no absolute maximum subject to the constraint 23 = 2.

Alternate solution: (  ) = 23 = 2 implies 2 =
2

3
, so minimize ( ) = 2 +

2

3
+ 2. Then

 = 2− 2

23
,  = − 6

4
+ 2,  = 2 +

4

33
,  =

24

5
+ 2 and  =

6

24
. Now  = 0 implies

233 − 2 = 0 or  = 1. Substituting into  = 0 implies −63 + 2−1 = 0 or  = 1
4√

3
, so the two critical points are


± 1

4√
3
± 4
√

3

. Then


± 1

4√
3
± 4
√

3


= (2 + 4)

2 + 24

3

−  6√
3

2

 0 and 

± 1

4√
3
± 4
√

3


= 6  0, so each point

is a minimum. Finally, 2 =
2

3
, so the four points closest to the origin are


± 1

4√
3

√

2
4√

3
± 4
√

3

,

± 1

4√
3
−

√
2

4√
3
± 4
√

3

.

64.  = , say  is the length and + 2 + 2 ≤ 108,   0,   0,   0. First maximize  subject to + 2 + 2 = 108

with    all positive. Then h  i = h 2 2i implies 2 =  or  = 2 and  =  or  = . Thus

(  ) = 108 implies 6 = 108 or  = 18 = ,  = 36, so the volume is  = 11,664 cubic units. Since (104 1 1) also

satisfies (  ) = 108 and  (104 1 1) = 104 cubic units, (36 18 18) gives an absolute maximum of  subject to

(  ) = 108. But if  + 2 + 2  108, there exists   0 such that  + 2 + 2 = 108−  and as above

6 = 108−  implies  = (108− )6 = ,  = (108− )3 with  = (108− )3(62 · 3)  (108)3(62 · 3) = 11,664.

Hence we have shown that the maximum of  subject to (  ) ≤ 108 is the maximum of  subject to (  ) = 108

(an intuitively obvious fact).

65. The area of the triangle is 1
2
 sin  and the area of the rectangle is . Thus,

the area of the whole object is (  ) = 1
2
 sin  + . The perimeter of

the object is (  ) = 2+ 2+  =  . To simplify sin  in terms of , ,

and  notice that 2 sin2  +


1
2

2

= 2 ⇒ sin  =
1

2

√
42 − 2.

Thus (  ) =


4

√
42 − 2 + . (Instead of using , we could just have

used the Pythagorean Theorem.) As a result, by Lagrange’s method, we must find , , , and  by solving∇ = ∇ which

gives the following equations: (42 − 2)−12 = 2 (1),  = 2 (2), 1
4
(42 − 2)12 − 1

4
2(42 − 2)−12 +  = 

(3), and 2+ 2+  =  (4). From (2),  = 1
2
 and so (1) produces (42 − 2)−12 =  ⇒ (42 − 2)12 =  ⇒

42 − 2 = 2 ⇒  =
√

3  (5). Similarly, since

42 − 2

12
=  and  = 1

2
, (3) gives



4
− 2

4
+  =



2
, so from

(5),


4
− 3

4
+  =

√
3 

2
⇒ −

2
−
√

3

2
= − ⇒  =



2


1 +

√
3

(6). Substituting (5) and (6) into (4) we get:
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CHAPTER 14 REVIEW ¤ 515

2 + 

1 +

√
3


+
√

3  =  ⇒ 3 + 2
√

3 =  ⇒  =


3 + 2
√

3
=

2
√

3− 3

3
 and thus

 =


2
√

3− 3


1 +
√

3


6
 =

3−√3

6
 and  =


2−√3


 .
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PROBLEMS PLUS

1. The areas of the smaller rectangles are 1 = , 2 = (− ),

3 = (− )( − ), 4 = ( − ). For 0 ≤  ≤ , 0 ≤  ≤ , let

( ) = 2
1 +2

2 +2
3 +2

4

= 22 + (− )22 + (− )2( − )2 + 2( − )2

= [2 + (− )2][2 + ( − )2]

Then we need to find the maximum and minimum values of ( ). Here

( ) = [2− 2( − )][2 + ( − )2] = 0 ⇒ 4− 2 = 0 or  = 1
2
, and

( ) = [2 + (− )2][2 − 2( − )] = 0 ⇒ 4 − 2 = 0 or  = 2. Also

 = 4[2 + ( − )
2
],  = 4[2 + (− )2], and  = (4− 2)(4 − 2 ). Then

 = 16[2 + ( − )2][2 + (− )2]− (4− 2)2(4 − 2 )2. Thus when  = 1
2
 and  = 1

2
 ,  0 and

 = 2 2  0. Thus a minimum of  occurs at


1
2
 1

2


and this minimum value is 


1
2
 1

2



= 1
4
2 2.

There are no other critical points, so the maximum must occur on the boundary. Now along the width of the rectangle let

() = (0 ) = ( ) = 2[2 + ( − )2], 0 ≤  ≤ . Then 0() = 2[2 − 2( − )] = 0 ⇔  = 1
2
 .

And 


1
2


= 1

2
2 2. Checking the endpoints, we get (0) = ( ) = 2 2. Along the length of the rectangle let

() = ( 0) = ( ) =  2[2 + (− )2], 0 ≤  ≤ . By symmetry 0() = 0 ⇔  = 1
2
 and




1
2



= 1
2
2 2. At the endpoints we have (0) = () = 2 2. Therefore 2 2 is the maximum value of  .

This maximum value of  occurs when the “cutting” lines correspond to sides of the rectangle.

2. (a) The level curves of the function ( ) = −(2+22)104 are the

curves −(2+22)104 =  ( is a positive constant). This equation is

equivalent to 2 + 22 =  ⇒ 2√

2 +

2
2

2 = 1, where

 = −104 ln , a family of ellipses. We sketch level curves for = 1,

2, 3, and 4. If the shark always swims in the direction of maximum

increase of blood concentration, its direction at any point would coincide

with the gradient vector. Then we know the shark’s path is perpendicular

to the level curves it intersects. We sketch one example of such a path.
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518 ¤ CHAPTER 14 PROBLEMS PLUS

(b) ∇ = − 2
104

−(2+22)104( i + 2 j). And∇ points in the direction of most rapid increase in concentration; that is,

∇ is tangent to the most rapid increase curve. If () = () i + () j is a parametrization of the most rapid increase

curve, then
r


=




i +




j is tangent to the curve, so

r


= ∇ ⇒ 


= 


− 2

104
−(2+22)104


 and




= 


− 2

104
−(2+22)104


(2). Therefore




=




= 2




⇒ 


= 2




⇒ ln || = 2 ln || so that

 = 2 for some constant . But (0) = 0 ⇒ 0 = 2
0 ⇒  = 0

2
0 (0 = 0 ⇒ 0 = 0 ⇒ the

shark is already at the origin, so we can assume 0 6= 0.) Therefore the path the shark will follow is along the parabola

 = 0(0)
2.

3. (a) The area of a trapezoid is 1
2
(1 + 2), where  is the height (the distance between the two parallel sides) and 1, 2 are

the lengths of the bases (the parallel sides). From the figure in the text, we see that  =  sin , 1 =  − 2, and

2 =  − 2+ 2 cos . Therefore the cross-sectional area of the rain gutter is

( ) = 1
2
 sin  [( − 2) + ( − 2+ 2 cos )] = ( sin )( − 2+  cos )

=  sin  − 22 sin  + 2 sin  cos , 0   ≤ 1
2
, 0   ≤ 

2

We look for the critical points of :  =  sin  − 4 sin  + 2 sin  cos  and

 =  cos  − 22 cos  + 2(cos2  − sin2 ), so  = 0 ⇔ sin  ( − 4+ 2 cos ) = 0 ⇔

cos  =
4−

2
= 2− 

2
(0   ≤ 

2
⇒ sin   0). If, in addition,  = 0, then

0 =  cos  − 22 cos  + 2(2 cos2  − 1)

= 

2− 

2


− 22


2− 

2


+ 2


2

2− 

2

2

− 1



= 2− 1
2
2 − 42 ++ 2


8− 4


+

2

22
− 1


= −+ 32 = (3−)

Since   0, we must have  = 1
3
, in which case cos  = 1

2
, so  = 

3
, sin  =

√
3

2
,  =

√
3

6
, 1 = 1

3
, 2 = 2

3
,

and  =
√

3
12
2. As in Example 14.7.6, we can argue from the physical nature of this problem that we have found a local

maximum of . Now checking the boundary of , let

() = (2 ) = 1
2
2 sin  − 1

2
2 sin  + 1

4
2 sin  cos  = 1

8
2 sin 2, 0   ≤ 

2
. Clearly  is maximized when

sin 2 = 1 in which case  = 1
8
2. Also along the line  = 

2
, let () = 


 

2


= − 22, 0    1

2
 ⇒

0() =  − 4 = 0 ⇔  = 1
4
, and 


1
4



= 


1
4

− 2


1
4

2

= 1
8
2. Since 1

8
2 

√
3

12
2, we conclude that

the local maximum found earlier was an absolute maximum.
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CHAPTER 14 PROBLEMS PLUS ¤ 519

(b) If the metal were bent into a semi-circular gutter of radius , we would have  =  and  = 1
2
2 = 1

2




2

=
2

2
.

Since
2

2


√
32

12
, it would be better to bend the metal into a gutter with a semicircular cross-section.

4. Since ( +  + )(2 + 2 + 2) is a rational function with domain {(  ) | (  ) 6= (0 0 0)},  is continuous on

R3 if and only if lim
()→(000)

(  ) = (0 0 0) = 0. Recall that (+ )2 ≤ 22 + 22 and a double application

of this inequality to ( +  + )2 gives ( +  + )2 ≤ 42 + 42 + 22 ≤ 4(2 + 2 + 2). Now for each ,

|( +  + )| = |+  + |22 =

(+  + )2

2 ≤ 4(2 + 2 + 2)
2

= 2(2 + 2 + 2)2

for (  ) 6= (0 0 0). Thus

|(  )− 0| =
 (+  + )

2 + 2 + 2

 =
|(+  + )|
2 + 2 + 2

≤ 2
(2 + 2 + 2)2

2 + 2 + 2
= 2(2 + 2 + 2)(2)−1

for (  ) 6= (0 0 0). Thus if (2)− 1  0, that is   2, then 2(2 + 2 + 2)(2)−1 → 0 as (  )→ (0 0 0)

and so lim
()→(000)

(+  + )

(2 + 2 + 2) = 0. Hence for   2,  is continuous on R3. Now if  ≤ 2, then as

(  ) → (0 0 0) along the -axis, ( 0 0) = 2 = −2 for  6= 0. So when  = 2, (  ) → 1 6= 0 as

(  )→ (0 0 0) along the -axis and when   2 the limit of (  ) as (  )→ (0 0 0) along the -axis doesn’t

exist and thus can’t be zero. Hence for  ≤ 2  isn’t continuous at (0 0 0) and thus is not continuous on R3.

5. Let ( ) = 




. Then ( ) = 





+  0





− 

2


= 





− 


 0




and

( ) =  0



 1




=  0





. Thus the tangent plane at (0 0 0) on the surface has equation

 − 0


0

0


=





0

0


− 0

−1
0  0


0

0


(− 0) +  0


0

0


( − 0) ⇒





0

0


− 0

−1
0  0


0

0


+


 0

0

0


 −  = 0. But any plane whose equation is of the form +  +  = 0

passes through the origin. Thus the origin is the common point of intersection.

6. (a) At (1 1 0) the equations of the tangent planes to  = ( ) and  = ( ) are

1:  − (1 1) = (1 1)(− 1) + (1 1)( − 1)

and 2:  −  (1 1) = (1 1)(− 1) + (1 1)( − 1)

respectively. 1 intersects the -plane in the line given by (1 1)(− 1) + (1 1)( − 1) = −(1 1),

 = 0; and 2 intersects the -plane in the line given by (1 1)(− 1) + (1 1)( − 1) = −(1 1),

 = 0. The point (2 2 0) is the point of intersection of these two lines, since (2 2 0) is the point where the line of
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520 ¤ CHAPTER 14 PROBLEMS PLUS

intersection of the two tangent planes intersects the -plane. Thus (2 2) is the solution of the simultaneous equations

(1 1)(2 − 1) + (1 1)(2 − 1) = −(1 1)

and (1 1)(2 − 1) + (1 1)(2 − 1) = −(1 1)

For simplicity, rewrite (1 1) as  and similarly for  , , ,  and  and solve the equations

()(2 − 1) + ()(2 − 1) = − and ()(2 − 1) + ()(2 − 1) = − simultaneously for (2 − 1) and

(2 − 1). Then 2 − 1 =
 − 

 − 
or 2 = 1 −  − 

 − 
and ()(2 − 1) +

()( − )

 − 
= − so

2 − 1 =
− − [()( − )( − )]


=

 − 

 − 
. Hence 2 = 1 −  − 

 − 
.

(b) Let ( ) =  +  − 1000 and ( ) =  +  − 100. Then we wish to solve the system of equations ( ) = 0,

( ) = 0. Recall



[] = (1 + ln) (differentiate logarithmically), so ( ) = (1 + ln),

( ) = (1 + ln ), ( ) = −1 +  ln , and ( ) =  ln + −1. Looking at the graph, we

estimate the first point of intersection of the curves, and thus the solution to the system, to be approximately (25 45).

Then following the method of part (a), 1 = 25, 1 = 45 and

2 = 25− (25 45) (25 45)− (25 45) (25 45)

(25 45) (25 45)− (25 45) (25 45
≈ 2447674117

2 = 45− (25 45) (25 45)− (25 45) (25 45)

(25 45) (25 45)− (25 45) (25 45)
≈ 4555657467

Continuing this procedure, we arrive at the following values. (If you use a CAS, you may need to increase its

computational precision.)

1 = 25 1 = 45

2 = 2447674117 2 = 4555657467

3 = 2449614877 3 = 4551969333

4 = 2449624628 4 = 4551951420

5 = 2449624628 5 = 4551951420

Thus, to six decimal places, the point of intersection is (2449625 4551951). The second point of intersection can be

found similarly, or, by symmetry it is approximately (4551951 2449625).
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CHAPTER 14 PROBLEMS PLUS ¤ 521

7. Since we are minimizing the area of the ellipse, and the circle lies above the -axis,

the ellipse will intersect the circle for only one value of . This -value must

satisfy both the equation of the circle and the equation of the ellipse. Now

2

2
+

2

2
= 1 ⇒ 2 =

2

2


2 − 2


. Substituting into the equation of the

circle gives
2

2
(2 − 2) + 2 − 2 = 0 ⇒


2 − 2

2


2 − 2 + 2 = 0.

In order for there to be only one solution to this quadratic equation, the discriminant must be 0, so 4− 42 
2 − 2

2
= 0 ⇒

2 − 22 + 4 = 0. The area of the ellipse is ( ) = , and we minimize this function subject to the constraint

( ) = 2 − 22 + 4 = 0.

Now∇ = ∇ ⇔  = (43 − 22),  = (2− 22) ⇒  =


2(22 − 2)
(1),

 =


2(1− 2)
(2), 2 − 22 + 4 = 0 (3). Comparing (1) and (2) gives



2(22 − 2)
=



2(1− 2)
⇒

22 = 44 ⇔ 2 = 1√
2
. Substitute this into (3) to get  = 3√

2
⇒  =


3
2
.

8. Let u = h  i and v = h  1i, so |u| = √2 + 2 + 2, |v| =

2 + 2 + 1, and u · v = +  + . Then by the

Cauchy-Schwarz Inequality, |u · v| ≤ |u| |v| ⇒ |+  + | ≤ √2 + 2 + 2

2 + 2 + 1. Squaring both sides,

we have (+  + )
2 ≤ 2 + 2 + 2

 
2 + 2 + 1

 ⇒ (+  + )
2

2 + 2 + 1
≤ 2 + 2 + 2

(since 2 + 2 + 1  0). Thus ( ) =
(+  + )

2

2 + 2 + 1
≤ 2 + 2 + 2. We have

equality if (+  + )
2

=

2 + 2 + 2

 
2 + 2 + 1


or equivalently

2 [()+ () + 1]
2

= 2

()

2
+ ()

2
+ 1
 
2 + 2 + 1


which is true when  =  and  = . Thus the

maximum value of  is ( ) = 2 + 2 + 2.
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15 MULTIPLE INTEGRALS

15.1 Double Integrals over Rectangles

1. (a) The subrectangles are shown in the figure.

The surface is the graph of ( ) =  and∆ = 4, so we estimate

≈
3

=1

2
=1

( )∆

= (2 2)∆+ (2 4)∆+ (4 2)∆+ (4 4)∆+ (6 2)∆+ (6 4)∆

= 4(4) + 8(4) + 8(4) + 16(4) + 12(4) + 24(4) = 288

(b)  ≈
3

= 1

2
=1



 


∆ = (1 1)∆+ (1 3)∆+ (3 1)∆+ (3 3)∆+ (5 1)∆+ (5 3)∆

= 1(4) + 3(4) + 3(4) + 9(4) + 5(4) + 15(4) = 144

2. (a) The subrectangles are shown in the figure.

Here∆ = 2 and we estimate





1− 2


 ≈

2
=1

3
=1



∗  

∗



∆

= (2−1)∆+ (2 0)∆+ (2 1)∆+ (4−1)∆+ (4 0)∆+ (4 1)∆

= (−1)(2) + 1(2) + (−1)(2) + (−3)(2) + 1(2) + (−3)(2) = −12

(b)




1− 2


 ≈

2
=1

3
=1



∗  

∗



∆

= (0 0)∆+ (0 1)∆+ (0 2)∆+ (2 0)∆+ (2 1)∆+ (2 2)∆

= 1(2) + 1(2) + 1(2) + 1(2) + (−1)(2) + (−7)(2) = −8

3. (a) The subrectangles are shown in the figure. Since∆ = 1 · 1
2

= 1
2
, we estimate


−  ≈

2
=1

2
=1



∗  

∗



∆

= 

1 1

2


∆+ (1 1)∆+ 


2 1

2


∆+ (2 1)∆

= −12


1
2


+ −1


1
2


+ 2−1


1
2


+ 2−2


1
2

 ≈ 0990

(b)


−  ≈

2
=1

2
=1

( )∆

= 


1
2
 1

4


∆+ 


1
2
 3

4


∆+ 


3
2
 1

4


∆+ 


3
2
 3

4


∆

= 1
2
−18


1
2


+ 1

2
−38


1
2


+ 3

2
−38


1
2


+ 3

2
−98


1
2

 ≈ 1151
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524 ¤ CHAPTER 15 MULTIPLE INTEGRALS

4. (a) The subrectangles are shown in the figure.

The surface is the graph of ( ) = 1 + 2 + 3 and∆ = 1
2
· 3

2
= 3

4
,

so we estimate

 =


(1 + 2 + 3)  ≈

2
=1

2
=1



∗  

∗



∆

= (1 0)∆+ 

1 3

2


∆+ 


3
2
 0

∆+ 


3
2
 3

2


∆

= 2


3
4


+ 13

2


3
4


+ 13

4


3
4


+ 31

4


3
4


= 39

2


3
4


= 117

8
= 14625

(b)  =


(1 + 2 + 3)  ≈

2
=1

2
=1

( )∆

= 


5
4
 3

4


∆+ 


5
4
 9

4


∆+ 


7
4
 3

4


∆+ 


7
4
 9

4


∆

= 77
16


3
4


+ 149

16


3
4


+ 101

16


3
4


+ 173

16


3
4


= 375

16
= 234375

5. The values of ( ) =


52− 2 − 2 get smaller as we move farther from the origin, so on any of the subrectangles in the

problem, the function will have its largest value at the lower left corner of the subrectangle and its smallest value at the upper

right corner, and any other value will lie between these two. So using these subrectangles we have     . (Note that this

is true no matter how  is divided into subrectangles.)

6. To approximate the volume, let  be the planar region corresponding to the surface of the

water in the pool, and place  on coordinate axes so that  and  correspond to the

dimensions given. Then we define ( ) to be the depth of the water at ( ), so the

volume of water in the pool is the volume of the solid that lies above the rectangle

 = [0 20]× [0 30] and below the graph of ( ). We can estimate this volume using

the Midpoint Rule with = 2 and  = 3, so∆ = 100. Each subrectangle with its

midpoint is shown in the figure. Then

 ≈
2

=1

3
= 1



 


∆ = ∆[(5 5) + (5 15) + (5 25) + (15 5) + (15 15) + (15 25)]

= 100(3 + 7 + 10 + 3 + 5 + 8) = 3600

Thus, we estimate that the pool contains 3600 cubic feet of water.

Alternatively, we can approximate the volume with a Riemann sum where = 4,  = 6 and the sample points are taken to

be, for example, the upper right corner of each subrectangle. Then∆ = 25 and

 ≈
4

=1

6
=1

( )∆

= 25[3 + 4 + 7 + 8 + 10 + 8 + 4 + 6 + 8 + 10 + 12 + 10 + 3 + 4 + 5 + 6 + 8 + 7 + 2 + 2 + 2 + 3 + 4 + 4]

= 25(140) = 3500

So we estimate that the pool contains 3500 ft3 of water.
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SECTION 15.1 DOUBLE INTEGRALS OVER RECTANGLES ¤ 525

7. (a) With =  = 2, we have∆ = 4. Using the contour map to estimate the value of  at the center of each subrectangle,

we have

( )  ≈

2
=1

2
=1



 


∆ = ∆[(1 1) + (1 3) + (3 1) + (3 3)] ≈ 4(27 + 4 + 14 + 17) = 248

(b) ave = 1
()



( )  ≈ 1

16
(248) = 155

8. As in Example 9, we place the origin at the southwest corner of the state. Then  = [0 388]× [0 276] (in miles) is the

rectangle corresponding to Colorado and we define ( ) to be the temperature at the location ( ). The average

temperature is given by

ave =
1

()




( )  =
1

388 · 276




( ) 

To use the Midpoint Rule with =  = 4, we divide  into 16 regions of equal size, as shown in the figure, with the center

of each subrectangle indicated.

The area of each subrectangle is∆ = 388
4
· 276

4
= 6693, so using the contour map to estimate the function values at each

midpoint, we have

( )  ≈

4
=1

4
= 1



 


∆

≈ ∆ [31 + 28 + 52 + 43 + 43 + 25 + 57 + 46 + 36 + 20 + 42 + 45 + 30 + 23 + 43 + 41]

= 6693(605)

Therefore, ave ≈ 6693 · 605
388 · 276 ≈ 378, so the average temperature in Colorado at 4:00 PM on February 26, 2007, was

approximately 378◦F.

9.  =
√

2  0, so we can interpret the double integral as the volume of the solid  that lies below the plane  =
√

2 and above

the rectangle [2 6]× [−1 5].  is a rectangular solid, so



√
2  = 4 · 6 ·√2 = 24

√
2.
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526 ¤ CHAPTER 15 MULTIPLE INTEGRALS

10.  = 2+ 1 ≥ 0 for 0 ≤  ≤ 2, so we can interpret the integral as the

volume of the solid  that lies below the plane  = 2+ 1 and above

the rectangle [0 2]× [0 4]. We can picture  as a rectangular solid

(with height 1) surmounted by a triangular cylinder; thus

(2 + 1)  = (2)(4)(1) + 1

2
(2)(4)(4) = 24

11.  = 4− 2 ≥ 0 for 0 ≤  ≤ 1, so we can interpret the integral as the

volume of the solid  that lies below the plane  = 4− 2 and above

the square [0 1]× [0 1]. We can picture  as a rectangular solid (with

height 2) surmounted by a triangular cylinder; thus

(4− 2)  = (1)(1)(2) + 1

2
(1)(1)(2) = 3

12. Here  =


9− 2, so 2 + 2 = 9,  ≥ 0. Thus the integral

represents the volume of the top half of the part of the circular cylinder

2 + 2 = 9 that lies above the rectangle [0 4]× [0 2].

13.
 2

0
( + 322)  =


2

2
+ 3

3

3
2

=2

=0

=


1
2
2 + 32

=2

=0
=


1
2
(2)2 + (2)32

−  1
2
(0)2 + (0)32


= 2 + 82,

 3

0
( + 322)  =


 + 32 

3

3

=3

=0

=

 + 23

=3

=0
=

(3) + 2(3)3

− (0) + 2(0)3


= 3+ 272

14.
 2

0

√
+ 2  =


 · 2

3
( + 2)32

=2

=0
= 2

3
(4)32 − 2

3
(2)32 = 16

3
 − 4

3

√
2  = 4

3
(4−√2 ) ,

 3

0

√
+ 2  =


2

2

√
+ 2

=3

=0

= 1
2
(3)2

√
+ 2− 1

2
(0)2

√
+ 2 = 9

2

√
+ 2

15.
 4

1

 2

0
(62 − 2)   =

 4

1


322 − 2

=2

=0
 =

 4

1


122 − 4

− (0− 0)



=
 4

1
(122 − 4)  =


43 − 22

4
1

= (256− 32)− (4− 2) = 222

16.
 1

0

 1

0
(+ )2  =

 1

0

 1

0
(2 + 2 + 2)  =

 1

0


1
3
3 + 2 + 2

=1

=0


=
 1

0
( 1
3

+  + 2)  =


1
3
 + 1

2
2 + 1

3
3
1
0

= 1
3

+ 1
2

+ 1
3
− 0 = 7

6

17.
 1

0

 2

1
(+ −)   =

 1

0


1
2
2 + −

=2

=1
 =

 1

0


(2 + 2−)− ( 1

2
+ −)




=
 1

0
( 3
2

+ −)  =


3
2
 − −

1
0

=


3
2
− −1

− (0− 1) = 5
2
− −1
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SECTION 15.1 DOUBLE INTEGRALS OVER RECTANGLES ¤ 527

18.
 6
0

 2
0

(sin+ sin )   =
 6
0

[ sin− cos ]
=2

=0  =
 6
0



2

sin− 0
− (0− 1)




=
 6
0



2

sin+ 1

 =

−
2

cos+ 
6
0

=

−

2
·
√

3
2

+ 
6


− −

2
+ 0


=


2
3
−
√

3
4




19.
 3

−3

 2
0

( + 2 cos)   =
 3

−3


 + 2 sin

=2

=0
 =

 3

−3



2
 + 2




=


4
2 + 1

3
3
3
−3

=


9
4

+ 9
−  9

4
− 9


= 18

20.
 3

1

 5

1

ln 


  =

 3

1

1




 5

1

ln 


 [by Equation 11]

= [ln ||]31


1
2
(ln )2

5
1

[substitute  = ln  ⇒  = (1) ]

= (ln 3− 0) · 1
2
[(ln 5)2 − 0] = 1

2
(ln 3)(ln 5)2

21.
 4

1

 2

1





+






  =

 4

1


 ln ||+ 1


· 1

2

2

=2

=1

 =

 4

1


 ln 2 +

3

2


 =


1
2


2
ln 2 + 3

2
ln || 4

1

=

8 ln 2 + 3

2
ln 4
−  1

2
ln 2 + 0


= 15

2
ln 2 + 3

2
ln 4 or 15

2
ln 2 + 3 ln(412) = 21

2
ln 2

22.
 1

0

 2

0
−   =

 1

0

 2

0
−   =

 2

0
 

 1

0
−  [by Equation 11]

= []
2

0


(− − 1)−

1
0

[by integrating by parts]

=

2 − 0

−2−1 − −0 = (2 − 1)(1− 2−1) or 2 − 2+ 2−1 − 1

23.
 3

0

 2
0

2 sin3 =
 2
0

sin3
 3

0
2  [by Equation 11] =

 2
0

(1− cos2) sin
 3

0
2 

=


1
3

cos3− cos
2
0


1
3
3
3
0

=

(0− 0)−  1

3
− 1
· 1

3
(27− 0) = 2

3
(9) = 6

24.
 1

0

 1

0


2 + 2   =

 1

0



1
3
(2 + 2)32

=1

=0
 = 1

3

 1

0
[(2 + 1)32 − 3]  = 1

3

 1

0
[(2 + 1)32 − 4]

= 1
3


1
5
(2 + 1)52 − 1

5
5
1
0

= 1
15


(252 − 1)− (1− 0)


= 2

15


2
√

2− 1


25.
 1

0

 1

0
(+ 2)4  =

 1

0


1
5
(+ 2)5

=1

=0
 = 1

5

 1

0


(1 + 2)5 − (0 + 2)5




= 1
5

 1

0


(1 + 2)5 − 11


 = 1

5


1
2
· 1

6
(1 + 2)6 − 1

12
12
1
0

[substitute  = 1 + 2 ⇒  = 2  in the first term]

= 1
60


(26 − 1)− (1− 0)


= 1

60
(63− 1) = 31

30

26.
 1

0

 1

0

√
+    =

 1

0


2
3
(+ )32

=1

=0
 = 2

3

 1

0
[(1 + )32 − 32]  = 2

3


2
5
(1 + )52 − 2

5
52

1
0

= 4
15

[(252 − 1)− (1− 0)] = 4
15


252 − 2


or 8

15


2
√

2− 1


27.



 sec2   =

 2

0

 4
0

 sec2    =
 2

0


 4
0

sec2   =


1
2
2
2
0


tan 

4
0

= (2− 0) (tan 
4
− tan 0) = 2(1− 0) = 2
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528 ¤ CHAPTER 15 MULTIPLE INTEGRALS

28.



( + −2)  =

 2

1

 2

0
( + −2)   =

 2

1


 + 1

2
2−2

=2

=0
 =

 2

1


2 + 2−2




=

2 − 2−1

2
1

= (4− 1)− (1− 2) = 4

29.




2

2 + 1
 =

 1

0

 3

−3

2

2 + 1
  =

 1

0



2 + 1


 3

−3


2
 =


1
2

ln(
2

+ 1)
1
0


1
3

3
3
−3

= 1
2
(ln 2− ln 1) · 1

3
(27 + 27) = 9 ln 2

30.




tan √
1− 2

 =

 12

0

 3

0

tan √
1− 2

  =

 12

0

1√
1− 2



 3

0

tan   =

sin
−1


12
0


ln |sec |

3
0

=

sin−1 1

2
− sin−1 0

 
ln
sec 

3

− ln |sec 0| =


6
− 0

(ln 2− ln 1) = 

6
ln 2

31.
 6
0

 3
0

 sin(+ )  

=
 6
0

− cos( + )
=3

=0
 =

 6
0


 cos−  cos


+ 

3




= 

sin− sin


+ 

3

6
0

−  6
0


sin− sin


+ 

3


 [by integrating by parts separately for each term]

= 
6


1
2
− 1
− − cos+ cos


+ 

3

6
0

= − 
12
−

−
√

3
2

+ 0− −1 + 1
2


=
√

3−1
2

− 
12

32.






1 + 
 =

 1

0

 1

0



1 + 
  =

 1

0


ln(1 + )

=1

=0
 =

 1

0


ln(1 + )− ln 1




=
 1

0
ln(1 + )  =


(1 + ) ln(1 + )− 

1
0

[by integrating by parts]

= (2 ln 2− 1)− (ln 1− 0) = 2 ln 2− 1

33.



−  =

 3

0

 2

0
−   =

 3

0

−−=2

=0
 =

 3

0
(−−2 + 1)  =


1
2
−2 + 

3
0

= 1
2
−6 + 3−  1

2
+ 0


= 1
2
−6 + 5

2

34.




1

1 +  + 
 =

 3

1

 2

1

1

1 + + 
  =

 3

1
[ln(1 + + )]

=2

=1  =
 3

1
[ln(+ 3)− ln(+ 2)] 

=


( + 3) ln(+ 3)− (+ 3)
− ( + 2) ln(+ 2)− (+ 2)

 3
1

[by integrating by parts separately for each term]

= (6 ln 6− 6− 5 ln 5 + 5)− (4 ln 4− 4− 3 ln 3 + 3) = 6 ln 6− 5 ln 5− 4 ln 4 + 3 ln 3

35.  = ( ) = 4− − 2 ≥ 0 for 0 ≤  ≤ 1 and 0 ≤  ≤ 1. So the solid

is the region in the first octant which lies below the plane  = 4− − 2

and above [0 1]× [0 1].
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SECTION 15.1 DOUBLE INTEGRALS OVER RECTANGLES ¤ 529

36.  = 2− 2 − 2 ≥ 0 for 0 ≤  ≤ 1 and 0 ≤  ≤ 1. So the solid is the

region in the first octant which lies below the circular paraboloid

 = 2− 2 − 2 and above [0 1]× [0 1].

37. The solid lies under the plane 4+ 6 − 2 + 15 = 0 or  = 2 + 3 + 15
2
so

 =


(2+ 3 + 15

2
)  =

 1

−1

 2

−1
(2+ 3 + 15

2
)   =

 1

−1


2 + 3 + 15

2

=2

=−1


=
 1

−1


(19 + 6)− (− 13

2
− 3)


 =

 1

−1
( 51

2
+ 9)  =


51
2
 + 9

2
2
1
−1

= 30− (−21) = 51

38.  =


(32 − 2 + 2)  =

 1

−1

 2

1
(32 − 2 + 2)   =

 1

−1


3 − 2 + 2

=2

=1


=
 1

−1


(12− 22)− (3− 2)


 =

 1

−1


9− 2


=

9− 1

3
3
1
−1

= 26
3

+ 26
3

= 52
3

39.  =
 2

−2

 1

−1


1− 1

4
2 − 1

9
2

  = 4

 2

0

 1

0


1− 1

4
2 − 1

9
2



= 4
 2

0


− 1

12
3 − 1

9
2

= 1

= 0
 = 4

 2

0


11
12
− 1

9
2

 = 4


11
12
 − 1

27
3
2
0

= 4 · 83
54

= 166
27

40. The solid lies under the surface  = 2 + 2 and above the rectangle  = [0 5]× [−2 2], so its volume is

 =


(2 + 2)  =

 5

0

 2

−2
(2 + 2)   =

 5

0


2 + 1

3
3

=2

=−2


=
 5

0


22 + 8

3

− −22 − 8

3


 =

 5

0
(42 + 16

3
) 

=


4
3
3 + 8

3
2
5
0

= 500
3

+ 200
3
− 0 = 700

3

41. The solid lies under the surface  = 1 + 2 and above the rectangle  = [−1 1]× [0 1], so its volume is

 =


(1 + 2)  =

 1

0

 1

−1
(1 + 2)   =

 1

0


 + 1

3
3

=1

=−1


=
 1

0
(2 + 2

3
)  =


2 + 2

3
( − 1) 

1
0

[by integrating by parts in the second term]

= (2 + 0)− 0− 2
3
0


= 2 + 2
3

= 8
3

42. The cylinder intersects the -plane along the line  = 4, so in the first octant, the solid lies below the surface  = 16− 2

and above the rectangle  = [0 4]× [0 5] in the -plane.

 =
 5

0

 4

0
(16− 2)  =

 4

0
(16− 2) 

 5

0


=

16− 1

3
3
4
0



5
0

= (64− 64
3
− 0)(5− 0) = 640

3

43. The solid lies below the surface  = 2 + 2 + ( − 2)2 and above the plane  = 1 for −1 ≤  ≤ 1, 0 ≤  ≤ 4. The volume

of the solid is the difference in volumes between the solid that lies under  = 2 + 2 + ( − 2)2 over the rectangle
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530 ¤ CHAPTER 15 MULTIPLE INTEGRALS

 = [−1 1]× [0 4] and the solid that lies under  = 1 over .

 =
 4

0

 1

−1
[2 + 2 + ( − 2)2]   −  4

0

 1

−1
(1)  

=
 4

0


2+ 1

3
3 + ( − 2)2

= 1

=−1
 −  1

−1

 4

0


=
 4

0


(2 + 1

3
+ ( − 2)2)− (−2− 1

3
− ( − 2)2)


 − []

1

−1
[]

4

0

=
 4

0


14
3

+ 2( − 2)2

 − [1− (−1)][4− 0] =


14
3
 + 2

3
( − 2)3

4
0
− (2)(4)

=


56
3

+ 16
3

− 0− 16
3

− 8 = 88
3
− 8 = 64

3

44. The solid lies below the plane  = + 2 and above the surface

 =
2

2 + 1
for 0 ≤  ≤ 2, 0 ≤  ≤ 4. The volume of the solid is

the difference in volumes between the solid that lies under

 = + 2 over the rectangle  = [0 2]× [0 4] and the solid that

lies under  =
2

2 + 1
over .

 =

 2

0

 4

0

(+ 2) −
 2

0

 4

0

2

2 + 1
  =

 2

0


 + 

2
=4

=0
−

 2

0

2

2 + 1


 4

0

 

=
 2

0
[(4+ 16)− (0 + 0)] − ln 2 + 1

 2
0


1
2
2
4
0

=

22 + 16

2
0
− (ln 5− ln 1) (8− 0)

= (8 + 32− 0)− 8 ln 5 = 40− 8 ln 5

45. In Maple, we can calculate the integral by defining the integrand as f

and then using the command int(int(f,x=0..1),y=0..1);.

In Mathematica, we can use the command

Integrate[f,{x,0,1},{y,0,1}]

We find that



53  = 21− 57 ≈ 00839. We can use plot3d

(in Maple) or Plot3D (in Mathematica) to graph the function.

46. In Maple, we can calculate the integral by defining

f:=exp(-xˆ2)*cos(xˆ2+yˆ2); and g:=2-xˆ2-yˆ2;

and then [since 2− 2 − 2  −
2

cos(2 + 2) for

−1 ≤  ≤ 1, −1 ≤  ≤ 1] using the command

evalf(Int(Int(g-f,x=-1..1),y=-1..1));.

Using Int rather than int forces Maple to use purely

numerical techniques in evaluating the integral.

In Mathematica, we can use the command NIntegrate[g-f,{x,-1,1},{y,-1,1}]. We find that



(2− 

2 − 
2
)−



−2

cos(
2

+ 
2
)


 ≈ 30271. We can use the plot3d command (in Maple) or Plot3D

(in Mathematica) to graph both functions on the same screen.
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SECTION 15.1 DOUBLE INTEGRALS OVER RECTANGLES ¤ 531

47.  is the rectangle [−1 1] × [0 5]. Thus, () = 2 · 5 = 10 and

ave =
1

()



( )  = 1

10

 5

0

 1

−1
2   = 1

10

 5

0


1
3
3

= 1

=−1
 = 1

10

 5

0

2
3
  = 1

10


1
3
2
5
0

= 5
6
.

48. () = 4 · 1 = 4, so

ave =
1

()




( )  = 1
4

 4

0

 1

0



√
+    = 1

4

 4

0


2
3
(+ 


)
32
=1

=0


= 1
4
· 2

3

 4

0
[(+ )32 − (+ 1)32]  = 1

6


2
5
(+ )52 − 2

5
(+ 1)52

4
0

= 1
6
· 2

5
[(4 + )52 − 552 − 52 + 1] = 1

15
[(4 + )52 − 52 − 552 + 1] ≈ 3327

49.






1 + 4
 =

 1

−1

 1

0



1 + 4
  =

 1

−1



1 + 4


 1

0

  [by Equation 11] but () =


1 + 4
is an odd

function so
 1

−1

()  = 0 (by Theorem 4.5.6 [ET 5.5.7]). Thus






1 + 4
 = 0 ·

 1

0

  = 0.

50.



(1 + 2 sin  + 2 sin)  =




1 +



2 sin  +



2 sin

= () +
 
−
 
− 

2 sin   +
 
−
 
− 

2 sin 

= (2)(2) +
 
− 

2
 
− sin   +

 
− sin

 
− 

2 

But sin is an odd function, so
 
− sin =

 
− sin   = 0 (by Theorem 4.5.6 [ET 5.5.7]) and


(1 + 2 sin  + 2 sin)  = 42 + 0 + 0 = 42.

51. Let ( ) =
− 

(+ )3
. Then a CAS gives

 1

0

 1

0
( )   = 1

2
and

 1

0

 1

0
( )   = − 1

2
.

To explain the seeming violation of Fubini’s Theorem, note that  has an infinite discontinuity at (0 0) and thus does not

satisfy the conditions of Fubini’s Theorem. In fact, both iterated integrals involve improper integrals which diverge at their

lower limits of integration.

52. (a) Loosely speaking, Fubini’s Theorem says that the order of integration of a function of two variables does not affect the

value of the double integral, while Clairaut’s Theorem says that the order of differentiation of such a function does not

affect the value of the second-order derivative. Also, both theorems require continuity (though Fubini’s allows a finite

number of smooth curves to contain discontinuities).

(b) To find , we first hold  constant and use the single-variable Fundamental Theorem of Calculus, Part 1:

 =



( ) =





 



 



( ) 


 =

 



( ) . Now we use the Fundamental Theorem again:

 =




 



( )  = ( ).

To find , we first use Fubini’s Theorem to find that
 


 

( )   =

 


 

( )  , and then use the

Fundamental Theorem twice, as above, to get  = ( ). So  =  = ( ).
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532 ¤ CHAPTER 15 MULTIPLE INTEGRALS

15.2 Double Integrals over General Regions

1.
 5

1

 
0

(8− 2)   =
 5

1


8 − 2

=
=0

 =
 5

1
[8()− ()2 − 8(0) + (0)2]

=
 5

1
72  = 7

3
3
5
1

= 7
3
(125− 1) = 868

3

2.
 2

0

 2
0

2  =
 2

0


1
3
3

=2

=0
 =

 2

0

1
3


(2)3 − (0)3




=
 2

0

1
3
7  = 1

3


1
8
8
2
0

= 1
3
(32− 0) = 32

3

3.
 1

0

 
0


3

 =
 1

0


1
2
2

3
=
=0

 =
 1

0

1
2


3 
()2 − (0)2




= 1
2

 1

0
2

3

 = 1
2


1
3


3
1
0

= 1
2
· 1

3


1 − 0


= 1

6
(− 1)

4.
 2
0

 
0
 sin    =

 2
0

[(− cos )]
=

=0  =
 2
0

(− cos+ )  =
 2
0

(−  cos) 

=


1
2
2 − ( sin+ cos)

2
0

(by integrating by parts in the second term)

=


1
2
· 2

4
− 

2
− 0

− (0− 0− 1) = 2

8
− 

2
+ 1

5.
 1

0

 2
0

cos(3)   =
 1

0


 cos(3)

=2
=0

 =
 1

0
2 cos(3)  = 1

3
sin(3)

1
0

= 1
3

(sin 1− sin 0) = 1
3

sin 1

6.
 1

0

 
0

√
1 +    =

 1

0



√

1 + 
=

=0
 =

 1

0

√

1 +   = 2
3
(1 + )32

1
0

= 2
3
(1 + )32 − 2

3
(1 + 1)32 = 2

3
(1 + )32 − 4

3

√
2

7.






2 + 1
=

 4

0

 √


0



2 + 1
  =

 4

0


1

2 + 1
· 

2

2

=√
=0

 =
1

2

 4

0



2 + 1


= 1
2


1
2

ln
2 + 1

 4
0

= 1
4


ln

2 + 1

 4
0

= 1
4
(ln 17− ln 1) = 1

4
ln 17

8.



(2+ )  =

 2

1

 1

−1
(2+ )   =

 2

1


2 + 

=1

=−1
 =

 2

1


1 +  − ( − 1)2 − ( − 1)




=
 2

1
(−22 + 4)  =

− 2
3
3 + 22

2
1

=
− 16

3
+ 8
− −2

3
+ 2


= 4
3

9.



−

2

 =
 3

0

 
0
−

2

  =
 3

0


−

2
=
=0

 =
 3

0


−

2 − 0

 =

 3

0
−

2



= − 1
2
−

2
3
0

= − 1
2


−9 − 0


= 1

2


1− −9


10.





2 − 2  =

 2

0

 
0


2 − 2   =

 2

0


−1

3
(2 − 2)32

=
=0

 =
 2

0


0 + 1

3
(2)32




=
 2

0

1
3
3  = 1

3
· 1

4
4
2
0

= 1
12

(16− 0) = 4
3

11. (a) At the right we sketch an example of a region that can be described as lying

between the graphs of two continuous functions of  (a type I region) but not as

lying between graphs of two continuous functions of  (a type II region). The

regions shown in Figures 6 and 8 in the text are additional examples.
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SECTION 15.2 DOUBLE INTEGRALS OVER GENERAL REGIONS ¤ 533

(b) Now we sketch an example of a region that can be described as lying between

the graphs of two continuous functions of  but not as lying between graphs of two

continuous functions of . The first region shown in Figure 7 is another example.

12. (a) At the right we sketch an example of a region that can be described as lying

between the graphs of two continuous functions of  (a type I region) and also as

lying between graphs of two continuous functions of  (a type II region). For

additional examples see Figures 9, 11, 12, and 14–16 in the text.

(b) Now we sketch an example of a region that can’t be described as lying between

the graphs of two continuous functions of  or between graphs of two continuous

functions of . The region shown in Figure 18 is another example.

13. As a type I region, lies between the lower boundary  = 0 and the upper

boundary  =  for 0 ≤  ≤ 1, so = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ }. If we

describe as a type II region, lies between the left boundary  =  and the

right boundary  = 1 for 0 ≤  ≤ 1, so = {( ) | 0 ≤  ≤ 1,  ≤  ≤ 1}.

Thus



 =

 1

0

 
0
  =

 1

0



= 

= 0
 =

 1

0
2  = 1

3
3
1
0

= 1
3
(1 − 0) = 1

3
or


 =

 1

0

 1


 =

 1

0


1
2
2
=1

= 
 = 1

2

 1

0
(1− 2)  = 1

2


 − 1

3
3
1
0

= 1
2


1− 1

3

− 0


= 1
3
.

14.

 

The curves  = 2 and  = 3 intersect at points (0 0), (3 9). As a type I region,

 is enclosed by the lower boundary  = 2 and the upper boundary  = 3 for

0 ≤  ≤ 3, so =

( ) | 0 ≤  ≤ 3, 2 ≤  ≤ 3


. If we describe as a

type II region, is enclosed by the left boundary  = 3 and the right boundary

 =
√
 for 0 ≤  ≤ 9, so =


( ) | 0 ≤  ≤ 9, 3 ≤  ≤ √. Thus
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534 ¤ CHAPTER 15 MULTIPLE INTEGRALS

  =

 3

0

 3

2
   =

 3

0


 · 1

2
2
= 3

= 2
 = 1

2

 3

0
(92 − 4)  = 1

2

 3

0
(93 − 5) 

= 1
2


9 · 1

4
4 − 1

6
6
3
0

= 1
2


9
4
· 81− 1

6
· 729− 0


= 243

8

or



  =

 9

0

√
3

  =
 9

0


1
2
2

=
√


= 3
 = 1

2

 9

0


 − 1

9
2

  = 1

2

 9

0


2 − 1

9
3



= 1
2


1
3
3 − 1

9
· 1

4
4
9
0

= 1
2


1
3
· 729− 1

36
· 6561− 0


= 243

8

15. The curves  = − 2 or  =  + 2 and  = 2 intersect when  + 2 = 2 ⇔

2 −  − 2 = 0 ⇔ ( − 2)( + 1) = 0 ⇔  = −1,  = 2, so the points of

intersection are (1−1) and (4 2). If we describe as a type I region, the upper

boundary curve is  =
√
 but the lower boundary curve consists of two parts,

 = −√ for 0 ≤  ≤ 1 and  = − 2 for 1 ≤  ≤ 4.

Thus = {( ) | 0 ≤  ≤ 1, −√ ≤  ≤ √ } ∪ {( ) | 1 ≤  ≤ 4, − 2 ≤  ≤ √ } and

  =

 1

0

√
−√    +

 4

1

√
−2

  . If we describe as a type II region, is enclosed by the left boundary

 = 2 and the right boundary  =  + 2 for −1 ≤  ≤ 2, so =

( ) | −1 ≤  ≤ 2, 2 ≤  ≤  + 2


and


  =

 2

−1

 +2

2
  . In either case, the resulting iterated integrals are not difficult to evaluate but the region is

more simply described as a type II region, giving one iterated integral rather than a sum of two, so we evaluate the latter

integral: 

 =

 2

−1

 +2

2
   =

 2

−1



= +2

= 2
 =

 2

−1
( + 2− 2)  =

 2

−1
(2 + 2 − 3) 

=


1
3
3 + 2 − 1

4
4
2
−1

=


8
3

+ 4− 4
− − 1

3
+ 1− 1

4


= 9

4

16. As a type I region, = {( ) | 0 ≤  ≤ 4,  ≤  ≤ 4} and

2  =

 4

0

 4


2  . As a type II region,

 = {( ) | 0 ≤  ≤ 4, 0 ≤  ≤ } and 

2  =

 4

0

 
0
2  .

Evaluating

2  requires integration by parts whereas


2  does not, so

the iterated integral corresponding to as a type II region appears easier to evaluate.

2  =

 4

0

 
0
2   =

 4

0




=

=0
 =

 4

0




2 − 



=


1
2


2 − 1
2
2
4
0

=


1
2
16 − 8

−  1
2
− 0


= 1
2
16 − 17

2

17.
 1

0

 2
0

 cos   =
 1

0


 sin 

=2

=0
 =

 1

0
 sin2 

= − 1
2

cos2
1
0

= −1
2
(cos 1− cos 0) = 1

2
(1− cos 1)
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SECTION 15.2 DOUBLE INTEGRALS OVER GENERAL REGIONS ¤ 535

18.



(
2
+ 2)  =

 1

0

 
3

(2 + 2)   =
 1

0


2 + 2

=
=3



=
 1

0
(3 + 2 − 5 − 6)  =


1
4
4 + 1

3
3 − 1

6
6 − 1

7
7
1
0

= 1
4

+ 1
3
− 1

6
− 1

7
= 23

84

19.


2  =

 2

1

 7−3

−1
2   =

 2

1


2

=7−3

=−1


=
 2

1
[(7− 3)− ( − 1)] 2  =

 2

1
(82 − 43) 

=


8
3
3 − 4

2
1

= 64
3
− 16− 8

3
+ 1 = 11

3

20. 

  =

 1

0

√1−2
0

  

=
 1

0


1
2
2

=√1−2
=0

 =
 1

0
1
2
(1− 2) 

= 1
2

 1

0
(− 3)  = 1

2


1
2
2 − 1

4
4
1
0

= 1
2


1
2
− 1

4
− 0


= 1
8

21.  2

−2

 √4−2

−
√

4−2
(2− )  

=

 2

−2


2 − 1

2

2
=√4−2

=−
√

4−2


=
 2

−2


2
√

4− 2 − 1
2


4− 2


+ 2

√
4− 2 + 1

2


4− 2




=
 2

−2
4
√

4− 2  = − 4
3


4− 2

322
−2

= 0

[Or, note that 4
√

4− 2 is an odd function, so
 2

−2
4
√

4− 2  = 0.]

22.



  =

 1

0

 4−3


  

=
 1

0
[]

=4−3

=  =
 1

0
(4 − 32 − 2) 

=
 1

0
(4 − 42)  =


22 − 4

3
3
1
0

= 2− 4
3
− 0 = 2

3

23.

D

=
 1

0

√
2

(3+ 2)   =
 1

0


3 + 2

=√
=2



=
 1

0


(3
√
+ )− (33 + 4)


 =

 1

0
(332 + − 33 − 4) 

=

3 · 2

5
52 + 1

2
2 − 3

4
4 − 1

5
5
1
0

= 6
5

+ 1
2
− 3

4
− 1

5
− 0 = 3

4
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536 ¤ CHAPTER 15 MULTIPLE INTEGRALS

24. =
 2

−2

 4

2
(1 + 22)  

=
 2

−2


 + 1

3
32

=4

=2
 =

 2

−2
(4 + 61

3
2 − 1

3
8) 

=

4 + 61

9
3 − 1

27
9
2
−2

= 8 + 488
9
− 512

27
+ 8 + 488

9
− 512

27
= 2336

27

25. =
 2

1

 7− 3

1
   =

 2

1


1
2
2

= 7− 3

= 1


= 1
2

 2

1


(7− 3)2 − 1


 = 1

2

 2

1
(48 − 422 + 93) 

= 1
2


242 − 143 + 9

4
4
2
1

= 31
8

26.  =
 2

0

 2−
0

(2 + 2 + 1)   =
 2

0


2 + 1

3
3 + 

=2−
=0



=
 2

0


2(2− ) + 1

3
(2− )3 + (2− )− 0




=
 2

0

−4
3
3 + 42 − 5+ 14

3


 =

− 1
3
4 + 4

3
3 − 5

2
2 + 14

3

2
0

= − 16
3

+ 32
3
− 10 + 28

3
− 0 = 14

3

27.  =
 2

0

 4−2

0
(4− 2− )   =

 2

0


4 − 2 − 1

2
2
=4−2

=0


=
 2

0


4(4− 2)− 2(4− 2)− 1

2
(4− 2)2 − 0




=
 2

0


22 − 8 + 8


 =


2
3
3 − 42 + 8

2
0

= 16
3
− 16 + 16− 0 = 16

3

28. =
 1

0

 2−


 

=
 1

0



=2−
=

 =
 1

0
(2− 22) 

=

2 − 2

3
3
1
0

= 1
3

29.
=

 2

−2

 4

2
2  

=
 2

−2


2

=4

=2
 =

 2

−2
(42 − 4) 

=

4
3
3 − 1

5
5
2
−2

= 32
3
− 32

5
+ 32

3
− 32

5
= 128

15
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SECTION 15.2 DOUBLE INTEGRALS OVER GENERAL REGIONS ¤ 537

30.  =
 2

0

 2

0


4− 2   =

 2

0





4− 2

=2

=0


=
 2

0
2


4− 2  =

− 2

3


4− 2

322
0

= 0 + 16
3

= 16
3

31.

 =

 1

0

 √1−2

0

   =

 1

0


2

2

=
√

1−2

=0



=

 1

0

1− 2

2
 = 1

2


− 1

3


3
1
0

= 1
3

32. By symmetry, the desired volume  is 8 times the volume 1 in the first octant.

Now

1 =

 

0

 √2− 2

0


2 − 2   =

 

0




2 − 2

=
√
2− 2

= 0


=
 
0
(2 − 2)  =


2 − 1

3
3

0

= 2
3
3

Thus  = 16
3
3.

33. From the graph, it appears that the two curves intersect at  = 0 and

at  ≈ 1213. Thus the desired integral is

≈  1213

0

 3− 2

4
  =

 1213

0



=3−2

=4


=
 1213

0
(32 − 3 − 5)  =


3 − 1

4
4 − 1

6
6
1213
0

≈ 0713

34.

The desired solid is shown in the first graph. From the second graph, we estimate that  = cos intersects  =  at

 ≈ 07391. Therefore the volume of the solid is

 ≈  07391

0

 cos 


  =

 07391

0



= cos 

= 


=
 07391

0
( cos− 2)  =


cos+  sin− 1

3
3
07391
0

≈ 01024

Note: There is a different solid which can also be construed to satisfy the conditions stated in the exercise. This is the solid

bounded by all of the given surfaces, as well as the plane  = 0. In case you calculated the volume of this solid and want to

check your work, its volume is  ≈  07391

0

 
0
  +

 2
07391

 cos

0
  ≈ 04684.
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538 ¤ CHAPTER 15 MULTIPLE INTEGRALS

35. The region of integration is bounded by the curves  = 1− 2 and  = 2 − 1 which intersect at (±1 0) with

1− 2 ≥ 2 − 1 on [−1 1]. Within this region, the plane  = 2 + 2 + 10 is above the plane  = 2− − , so

 =
 1

−1

 1−2
2−1

(2+ 2 + 10)  −  1

−1

 1−2
2−1

(2− − )  

=
 1

−1

 1−2
2−1

(2+ 2 + 10− (2− − ))  

=
 1

−1

 1−2
2−1

(3+ 3 + 8)   =
 1

−1


3 + 3

2
2 + 8

=1−2

=2−1


=
 1

−1


3(1− 2) + 3

2
(1− 2)2 + 8(1− 2)− 3(2 − 1)− 3

2
(2 − 1)2 − 8(2 − 1)




=
 1

−1
(−63 − 162 + 6+ 16)  =

− 3
2
4 − 16

3
3 + 32 + 16

1
−1

= − 3
2
− 16

3
+ 3 + 16 + 3

2
− 16

3
− 3 + 16 = 64

3

36. The two planes intersect in the line  = 1,  = 3, so the region of

integration is the plane region enclosed by the parabola  = 2 and the

line  = 1. We have 2 +  ≥ 3 for 0 ≤  ≤ 1, so the solid region is

bounded above by  = 2 +  and bounded below by  = 3.

 =

 1

−1

 1

2
(2 + )  −

 1

−1

 1

2
(3)   =

 1

−1

 1

2
(2 +  − 3)  

=

 1

−1

 1

2
(2− 2)   =

 1

−1


2 − 2

=1

=2


=
 1

−1
(1− 22 + 4)  = − 2

3
3 + 1

5
5
1
−1

= 16
15

37. The region of integration is bounded by the curves  = 2 and

 = 1− 2 which intersect at

± 1√

2
 1

2


.

The solid lies under the graph of  = 3 and above the graph of  = ,

so its volume is

    

 =
 1

√
2

−1
√

2

 1−2
2

3  −  1
√

2

−1
√

2

 1−2
2

   =
 1

√
2

−1
√

2

 1−2
2

(3− )  

=
 1

√
2

−1
√

2


3 − 1

2
2
=1−2

=2
 =

 1
√

2

−1
√

2


3(1− 2)− 1

2
(1− 2)2

− 32 − 1
2
(2)2




=
 1

√
2

−1
√

2


5
2
− 52


 =


5
2
− 5

3
3
1√2

−1
√

2
=


5

2
√

2
− 5

6
√

2


−

− 5

2
√

2
+ 5

6
√

2


= 10

3
√

2
or 5

√
2

3
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SECTION 15.2 DOUBLE INTEGRALS OVER GENERAL REGIONS ¤ 539

38. The region of integration is the portion of the first quadrant bounded by the axes and the curve  =
√

4− 2. The solid lies

under the graph of  = +  and above the graph of  = , so its volume is

 =
 2

0

√4−2
0

( + )  −  2

0

√4−2
0

   =
 2

0

√4−2
0

(+  − )  

=
 2

0


 + 1

2
2 − 1

2
2

=√4−2

=0
 =

 2

0



√

4− 2 + 1
2
(4− 2)− 1

2
(4− 2)− 0




=
 2

0



√

4− 2 + 2− 1
2
2 − 2+ 1

2
3

 =


− 1

3
(4− 2)32 + 2− 1

6
3 − 2 + 1

8
4
2
0

=

4− 4

3
− 4 + 2

− − 1
3
· 432


= 2

3
+ 8

3
= 10

3

39. The solid lies below the plane  = 1− − 

or +  +  = 1 and above the region

 = {( ) | 0 ≤  ≤ 1 0 ≤  ≤ 1− }
in the -plane. The solid is a tetrahedron.

40. The solid lies below the plane  = 1− 

and above the region

 =

( ) | 0 ≤  ≤ 1 0 ≤  ≤ 1− 2


in the -plane.

41. The two bounding curves  = 3 −  and  = 2 +  intersect at the origin and at  = 2, with 2 +   3 −  on (0 2).

Using a CAS, we find that the volume of the solid is

 =

 2

0

 2 + 

3−

(
3

4

+ 
2
)   =

13,984,735,616
14,549,535

42. For || ≤ 1 and || ≤ 1, 22 + 2  8− 2 − 22. Also, the cylinder is described by the inequalities −1 ≤  ≤ 1,

−√1− 2 ≤  ≤ √1− 2. So the volume is given by

 =

 1

−1

 √1−2

−
√

1−2


(8− 

2 − 2
2
)− (2

2
+ 

2
)

  =

13

2
[using a CAS]

43. The two surfaces intersect in the circle 2 + 2 = 1,  = 0 and the region of integration is the disk: 2 + 2 ≤ 1.

Using a CAS, the volume is




(1− 
2 − 

2
)  =

 1

−1

 √1−2

−
√

1−2
(1− 

2 − 
2
)   =



2
.
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540 ¤ CHAPTER 15 MULTIPLE INTEGRALS

44. The projection onto the -plane of the intersection of the two surfaces is the circle 2 + 2 = 2 ⇒

2 + 2 − 2 = 0 ⇒ 2 + ( − 1)2 = 1, so the region of integration is given by −1 ≤  ≤ 1,

1−√1− 2 ≤  ≤ 1 +
√

1− 2. In this region, 2 ≥ 2 + 2 so, using a CAS, the volume is

 =

 1

−1

 1+
√

1−2

1−
√

1−2
[2 − (

2
+ 

2
)]   =



2

45. Because the region of integration is

 = {( ) | 0 ≤  ≤  0 ≤  ≤ 1} = {( ) |  ≤  ≤ 1 0 ≤  ≤ 1}

we have
 1

0

 
0
( )   =



( )  =

 1

0

 1


( )  .

46. Because the region of integration is

 =

( ) | 2 ≤  ≤ 4 0 ≤  ≤ 2


=

( ) | 0 ≤  ≤ √ 0 ≤  ≤ 4


we have

 2

0

 4

2
( )   =



( )  =

 4

0

√
0

( ) .

47. Because the region of integration is

 = {( ) | 0 ≤  ≤ cos 0 ≤  ≤ 2}
=

( ) | 0 ≤  ≤ cos−1  0 ≤  ≤ 1


we have 2
0

 cos

0
( )   =



( )  =

 1

0

 cos−1 
0

( )  .

48. Because the region of integration is

 =

( ) | 0 ≤  ≤


4− 2−2 ≤  ≤ 2


=

( ) | −√4− 2 ≤  ≤ √4− 2 0 ≤  ≤ 2


we have 2

−2

√4−2
0

( )   =


( )  =

 2

0

√4−2

−
√

4−2
( )  .

49. Because the region of integration is

 = {( ) | 0 ≤  ≤ ln, 1 ≤  ≤ 2} = {( ) |  ≤  ≤ 2, 0 ≤  ≤ ln 2}
we have 2

1

 ln

0

( )   =




( )  =

 ln 2

0

 2


( ) 
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SECTION 15.2 DOUBLE INTEGRALS OVER GENERAL REGIONS ¤ 541

50. Because the region of integration is

 =

( ) | arctan ≤  ≤ 

4
, 0 ≤  ≤ 1


=

( ) | 0 ≤  ≤ tan , 0 ≤  ≤ 

4


we have 1

0

 4

arctan 

( )   =




( )  =

 4

0

 tan 

0

( ) 

51.
 1

0

 3

3


2

  =

 3

0

 3

0


2

  =

 3

0



2

=3
=0



=

 3

0


3



2

 = 1
6

2
3
0

=
9 − 1

6

52.
 1

0

 1

2

√
 sin   =

 1

0

 √


0

√
 sin    =

 1

0

√
 sin  []

=
√


=0 

=

 1

0

(
√
 sin ) (

√
 − 0)  =

 1

0

 sin  

= − cos ]
1

0 +
 1

0
cos  

[by integrating by parts with  = ,  = sin  ]

= [− cos  + sin ]
1

0 = − cos 1 + sin 1− 0 = sin 1− cos 1

53.

 1

0

 1

√



3 + 1  =

 1

0

 2

0


3 + 1  =

 1

0


3 + 1 []

=2

=0 

=

 1

0


2

3 + 1  = 2

9



3
+ 1
321

0

= 2
9


232 − 132


= 2

9


2
√

2− 1


54.
 2

0

 1

2

 cos(
3 − 1)   =

 1

0

 2

0

 cos(
3 − 1)  

=

 1

0

cos(
3 − 1)


1
2

2
=2

=0


=

 1

0

2
2
cos(

3 − 1)  = 2
3

sin(
3 − 1)

1
0

= 2
3

[0− sin(−1)] = − 2
3

sin(−1) = 2
3

sin 1
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542 ¤ CHAPTER 15 MULTIPLE INTEGRALS

55.

 1

0

 2

arcsin 

cos


1 + cos2 

=
 2
0

 sin

0
cos

√
1 + cos2  

=
 2
0

cos
√

1 + cos2 


=sin

=0


=
 2
0

cos
√

1 + cos2  sin


Let  = cos,  = − sin ,

 = (− sin)


=
 0

1
−√1 + 2  = − 1

3


1 + 2

320
1

= 1
3

√
8− 1


= 1

3


2
√

2− 1


56.  8

0

 2

3√

4

 =

 2

0

 3

0


4

 

=

 2

0


4


=3
=0

 =

 2

0


3

4



= 1
4


4
2
0

= 1
4
(16 − 1)

57.  = {( ) | 0 ≤  ≤ 1, − + 1 ≤  ≤ 1} ∪ {( ) | −1 ≤  ≤ 0,  + 1 ≤  ≤ 1}
∪ {( ) | 0 ≤  ≤ 1, − 1 ≤  ≤ − 1} ∪ {( ) | −1 ≤  ≤ 0, − 1 ≤  ≤ −− 1}, all type I.





2
=

 1

0

 1

1−


2
 +

 0

−1

 1

+1


2
  +

 1

0

 − 1

−1


2
 +

 0

−1

 −− 1

−1


2
 

= 4

 1

0

 1

1−


2
  [by symmetry of the regions and because ( ) = 

2 ≥ 0]

= 4
 1

0
3  = 4


1
4
4
1
0

= 1

58.  =

( ) | −1 ≤  ≤ 0, − 1 ≤  ≤  − 3

 ∪ ( ) | 0 ≤  ≤ 1,
√
 − 1 ≤  ≤  − 3


, both type II.




 =

 0

−1

 −3

−1

   +

 1

0

 −3

√
−1

  =

 0

−1



= −3
=−1

 +

 1

0



=−3
=
√
−1



=
 0

−1
(2 − 4 + )  +

 1

0
(2 − 4 − 32 + ) 

=


1
3
3 − 1

5
5 + 1

2
2
0
−1

+


1
3
3 − 1

5
5 − 2

5
52 + 1

2
2
1
0

= (0− 11
30

) + ( 7
30
− 0) = − 2

15

59. Since 2 + 2 ≤ 1 on , we must have 0 ≤ 2 ≤ 1 and 0 ≤ 2 ≤ 1, so 0 ≤ 22 ≤ 1 ⇒ 3 ≤ 4− 22 ≤ 4 ⇒
√

3 ≤


4− 22 ≤ 2. Here we have () = 1
2
(1)2 = 

2
, so by Property 11,

√
3() ≤ 




4− 22  ≤ 2() ⇒

√
3

2
 ≤ 




4− 22  ≤  or we can say

2720 





4− 22   3142. (We have rounded the lower bound down and the upper bound up to preserve the

inequalities.)
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SECTION 15.2 DOUBLE INTEGRALS OVER GENERAL REGIONS ¤ 543

60.  is the triangle with vertices (0 0), (1 0), and (1 2) so ( ) = 1
2
(1)(2) = 1. We have 0 ≤ sin4( + ) ≤ 1 for all , ,

and Property 11 gives 0 ·( ) ≤ 


sin4(+ ) ≤ 1 ·( ) ⇒ 0 ≤ 


sin4(+ ) ≤ 1.

61. The average value of a function  of two variables defined on a rectangle  was

defined in Section 15.1 as ave = 1
()



( ). Extending this definition

to general regions, we have ave = 1
()



( ).

Here = {( ) | 0 ≤  ≤ 1 0 ≤  ≤ 3}, so () = 1
2
(1)(3) = 3

2
and

ave = 1
()



( ) = 1

32

 1

0

 3

0
  

= 2
3

 1

0


1
2
2

=3

=0
 = 1

3

 1

0
93  = 3

4
4
1
0

= 3
4

62. Here =

( ) | 0 ≤  ≤ 1 0 ≤  ≤ 2


, so

() =
 1

0
2  = 1

3
3
1
0

= 1
3
and

ave = 1
()



( ) = 1

13

 1

0

 2
0

 sin   

= 3
 1

0

− cos 
=2
=0



= 3
 1

0


−  cos(2)


 = 3


1
2
2 − 1

2
sin(2)

1
0

= 3


1
2
− 1

2
sin 1− 0


= 3

2
(1− sin 1)

63. Since ≤ ( ) ≤ ,


 ≤ 


( )  ≤ 


  by (8) ⇒





1  ≤ 


( )  ≤




1  by (7) ⇒ () ≤ 

( )  ≤() by (10).

64. 


( ) =

 1

0

 2

0

( )   +

 3

1

 3−

0

( )  

=

 2

0

 3−

2

( )  

65. First we can write



(+ 2)  =



+




2 . But ( ) =  is

an odd function with respect to  [that is, (− ) = −( )] and is

symmetric with respect to . Consequently, the volume above and below the

graph of  is the same as the volume below and above the graph of  , so

 = 0. Also,




2  = 2 ·() = 2 · 1
2
(3)2 = 9 since is a half

disk of radius 3. Thus



(+ 2)  = 0 + 9 = 9.

66. The graph of ( ) =

2 − 2 − 2 is the top half of the sphere 2 + 2 + 2 = 2, centered at the origin with radius

, and is the disk in the -plane also centered at the origin with radius . Thus





2 − 2 − 2  represents the

volume of a half ball of radius  which is 1
2
· 4

3
3 = 2

3
3.
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544 ¤ CHAPTER 15 MULTIPLE INTEGRALS

67. We can write



(2+ 3)  =




2+



3 .




2 represents the volume of the solid lying under the

plane  = 2 and above the rectangle. This solid region is a triangular cylinder with length  and whose cross-section is a

triangle with width  and height 2. (See the first figure.)

Thus its volume is 1
2
·  · 2 ·  = 2. Similarly,




3  represents the volume of a triangular cylinder with length ,

triangular cross-section with width  and height 3, and volume 1
2
·  · 3 ·  = 3

2
2. (See the second figure.) Thus




(2+ 3)  = 2+ 3
2
2

68. In the first quadrant,  and  are positive and the boundary of is +  = 1. But is

symmetric with respect to both axes because of the absolute values, so the region of

integration is the square shown at the left. To evaluate the double integral, we first write


(2 + 23 − 2 sin)  =



2 +



23 − 


2 sin.

Now ( ) = 23 is odd with respect to  [that is, (−) = −( )]

and is symmetric with respect to , so



23  = 0.

Similarly, ( ) = 2 sin is odd with respect to  [since (− ) = −( )] and is symmetric with respect to ,

so



2 sin = 0.  is a square with side length

√
2, so




2  = 2 · () = 2
√

2
2

= 4, and


(2 + 23 − 2 sin)  = 4 + 0 + 0 = 4.

69.





3 + 3 +

√
2 − 2


 =



3 +



3 +




√
2 − 2 . Now 3 is odd with respect

to  and 3 is odd with respect to , and the region of integration is symmetric with respect to both  and ,

so



3  =



3  = 0.



√
2 − 2  represents the volume of the solid region under the

graph of  =
√
2 − 2 and above the rectangle, namely a half circular

cylinder with radius  and length 2 (see the figure) whose volume is

1
2
· 2 = 1

2
2(2) = 2. Thus




3 + 3 +

√
2 − 2


 = 0 + 0 + 2 = 2.
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SECTION 15.3 DOUBLE INTEGRALS IN POLAR COORDINATES ¤ 545

70. To find the equations of the boundary curves, we require that the

-values of the two surfaces be the same. In Maple, we use the command

solve(4-xˆ2-yˆ2=1-x-y,y); and in Mathematica, we use

Solve[4-xˆ2-yˆ2==1-x-y,y]. We find that the curves have

equations  =
1±√13 + 4− 42

2
. To find the two points of intersection

of these curves, we use the CAS to solve 13 + 4− 42 = 0, finding that

 = 1±√14
2

. So, using the CAS to evaluate the integral, the volume of intersection is

 =

 (1 +
√

14 )2

(1−
√

14 )2

 
1 +
√

13 + 4− 42

2


1−
√

13 +4− 42

2

[(4− 
2 − 

2
)− (1− − )]   =

49

8

15.3 Double Integrals in Polar Coordinates

1. The region  is more easily described by polar coordinates:  = {( ) | 2 ≤  ≤ 5, 0 ≤  ≤ 2}.
Thus



( )  =

 2

0

 5

2
( cos   sin )   .

2. The region  is more easily described by rectangular coordinates:  = {( ) | −1 ≤  ≤ 1, −  ≤  ≤ 1}.
Thus



( )  =

 1

−1

 1

− ( )  .

3. The region  is more easily described by polar coordinates:  = {( ) | 0 ≤  ≤ 1,  ≤  ≤ 2}.
Thus



( )  =

 2



 1

0
( cos   sin )   .

4. The region  is more easily described by polar coordinates:  =

( ) | 0 ≤  ≤ 3, − 

4
≤  ≤ 3

4


.

Thus



( )  =

 34

−4
 3

0
( cos   sin )   .

5. The integral
 34

4

 2

1
   represents the area of the region

 = {( ) | 1 ≤  ≤ 2, 4 ≤  ≤ 34}, the top quarter portion of a
ring (annulus). 34

4

 2

1
   =

 34

4

 2

1
 


=


34
4


1
2
2
2
1

=


3
4
− 

4

 · 1
2

(4− 1) = 
2
· 3

2
= 3

4

6. The integral
 
2

 2 sin 

0
   represents the area of the region  = {( ) | 0 ≤  ≤ 2 sin , 2 ≤  ≤ }. Since

 = 2 sin  ⇒ 2 = 2 sin  ⇔ 2 + 2 = 2 ⇔
2 + ( − 1)2 = 1,  is the portion in the second quadrant of a disk of

radius 1 with center (0 1). 
2

 2 sin 

0
   =

 
2


1
2
2
=2 sin 

=0
 =

 
2

2 sin2  

=
 
2

2 · 1
2
(1− cos 2)  =


 − 1

2
sin 2


2

=  − 0− 
2

+ 0 = 
2
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546 ¤ CHAPTER 15 MULTIPLE INTEGRALS

7. The half disk can be described in polar coordinates as = {( ) | 0 ≤  ≤ 5, 0 ≤  ≤ }. Then

2  =

 
0

 5

0
( cos )2( sin )    =

 
0

cos2  sin  
 5

0
4 


=
− 1

3
cos3 


0


1
5
5
5
0

= − 1
3
(−1− 1) · 625 = 1250

3

8. The region  is 1
8
of a disk, as shown in the figure, and can be described by  = {( ) | 0 ≤  ≤ 2, 4 ≤  ≤ 2}. Thus


(2− )  =

 2
4

 2

0
(2 cos  −  sin )   

=
 2
4

(2 cos  − sin ) 
 2

0
2 

=

2 sin  + cos 

2
4


1
3
3
2
0

= (2 + 0−√2−
√

2
2

)


8
3


= 16

3
− 4
√

2

9.



sin(2 + 2) =
 2
0

 3

1
sin(2)    =

 2
0


 3

1
 sin(2)  =



2
0

− 1
2

cos(2)
3
1

=


2

 − 1
2
(cos 9− cos 1)


= 

4
(cos 1− cos 9)

10.




2

2 + 2
 =

 2

0

 



( sin )2

2
   =

 2

0

sin
2
 

 



  =

 2

0

1

2
(1− cos 2) 

 



 

= 1
2


 − 1

2
sin 2

2
0


1
2
2



= 1
2

(2 − 0− 0) · 1
2


2 − 2


= 

2
(2 − 2)

11.


−

2−2  =
 2
−2

 2

0
−

2

   =
 2
−2 

 2

0
−

2



=


2
−2


− 1

2
−

2
2
0

= 
− 1

2


(−4 − 0) = 

2
(1− −4)

12.



cos

2 + 2  =

 2

0

 2

0
cos
√
2    =

 2

0

 2

0
 cos  . For the second integral, integrate by parts with

 = ,  = cos  . Then



cos

2 + 2  =



2
0

[ sin  + cos ]
2

0 = 2(2 sin 2 + cos 2− 1).

13.  is the region shown in the figure, and can be described

by  = {( ) | 0 ≤  ≤ 4 1 ≤  ≤ 2}. Thus


arctan()  =
 4
0

 2

1
arctan(tan )    since  = tan .

Also, arctan(tan ) =  for 0 ≤  ≤ 4, so the integral becomes 4
0

 2

1
    =

 4
0

 
 2

1
  =


1
2
2
4
0


1
2
2
2
1

= 2

32
· 3

2
= 3

64
2.

14.




 =


2 + 2≤ 4

≥ 0,≥ 0

 −


(− 1)2 + 2≤ 1

≥ 0



=
 2
0

 2

0
2 cos    −  2

0

 2 cos 

0
2 cos   

=
 2
0

1
3
(8 cos )  −  2

0

1
3
(8 cos4 ) 

= 8
3
− 8

12


cos3  sin  + 3

2
( + sin  cos )

2
0

= 8
3
− 2

3


0 + 3

2



2


= 16− 3

6
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SECTION 15.3 DOUBLE INTEGRALS IN POLAR COORDINATES ¤ 547

15. One loop is given by the region

 = {( ) |−6 ≤  ≤ 6, 0 ≤  ≤ cos 3 }, so the area is


 =

 6

−6

 cos 3

0

   =

 6

−6


1

2

2

=cos 3

=0



=

 6

−6

1

2
cos

2
3  = 2

 6

0

1

2


1 + cos 6

2




=
1

2


 +

1

6
sin 6

6
0

=


12

16. By symmetry, the area of the region is 4 times the area of the region in the first quadrant enclosed by the cardiod

 = 1− cos  (see the figure). Here = {( ) | 0 ≤  ≤ 1− cos  0 ≤  ≤ 2}, so the total area is

4() = 4



 = 4

 2
0

 1−cos 

0
   = 4

 2
0


1
2
2
=1−cos 

=0


= 2
 2
0

(1− cos )2 = 2
 2
0

(1− 2 cos  + cos2 ) 

= 2
 2
0


1− 2 cos  + 1

2
(1 + cos 2)




= 2

 − 2 sin  + 1

2
 + 1

4
sin 2

2
0

= 2


2
− 2 + 

4


= 3

2
− 4

17. In polar coordinates the circle (− 1)2 + 2 = 1 ⇔ 2 + 2 = 2 is 2 = 2 cos  ⇒  = 2cos ,

and the circle 2 + 2 = 1 is  = 1. The curves intersect in the first quadrant when

2 cos  = 1 ⇒ cos  = 1
2

⇒  = 3, so the portion of the region in the first quadrant is given by

 = {( ) | 1 ≤  ≤ 2 cos  0 ≤  ≤ 3}. By symmetry, the total area
is twice the area of:

2() = 2



 = 2

 3
0

 2 cos 

1
   = 2

 3
0


1
2
2
=2 cos 

=1


=
 3
0


4 cos2  − 1


 =

 3
0


4 · 1

2
(1 + cos 2)− 1




=
 3
0

(1 + 2 cos 2)  = [ + sin 2]
3

0 = 
3

+
√

3
2

18. The region lies between the two polar curves in quadrants I and IV, but in

quadrants II and III the region is enclosed by the cardioid. In the first

quadrant, 1 + cos  = 3 cos  when cos  = 1
2

⇒  = 
3
, so the area

of the region inside the cardioid and outside the circle is

1 =
 2
3

 1+cos 

3 cos 
   =

 2
3


1
2
2
=1+cos 

=3 cos 


= 1
2

 2
3

(1 + 2 cos  − 8 cos2 ) = 1
2


 + 2 sin  − 8


1
2
 + 1

4
sin 2

2
3

=
− 3

2
 + sin  − sin 2

2
3

=
− 3

4
+ 1− 0

− −
2

+
√

3
2
−
√

3
2


= 1− 

4


[continued]
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548 ¤ CHAPTER 15 MULTIPLE INTEGRALS

The area of the region in the second quadrant is

2 =
 
2

 1+cos 

0
   =

 
2


1
2
2
=1+cos 

=0
 = 1

2

 
2

(1 + 2 cos  + cos2 )

= 1
2


 + 2 sin  + 1

2
 + 1

4
sin 2


2

= 1
2


3
4
− 2


= 3
8
− 1

By symmetry, the total area is  = 2(1 +2) = 2

1− 

4
+ 3

8
− 1


= 
4
.

19.  =


2 + 2≤25


2 + 2


 =

 2

0

 5

0
2 ·    =

 2

0

 5

0
3  =



2
0


1
4
4
5
0

= 2


625
4


= 625

2


20.  =


1≤2 + 2≤4


2 + 2  =

 2

0

 2

1

√
2    =

 2

0

 2

1
2  =



2
0


1
3
3
2
1

= 2


8
3
− 1

3


= 14

3


21. 2+  +  = 4 ⇔  = 4− 2− , so the volume of the solid is

 =


2 + 2≤1
(4− 2− )  =

 2

0

 1

0
(4− 2 cos  −  sin )   

=
 2

0

 1

0


4 − 2 (2 cos  + sin )


  =

 2

0


22 − 1

3
3 (2 cos  + sin )

=1

=0


=
 2

0


2− 1

3
(2 cos  + sin )


 =


2 − 1

3
(2 sin  − cos )

2
0

= 4 + 1
3
− 0− 1

3
= 4

22. The sphere 2 + 2 + 2 = 16 intersects the -plane in the circle 2 + 2 = 16, so

 = 2


4≤2+2≤16


16− 2 − 2  [by symmetry] = 2

 2

0

 4

2


16− 2    = 2

 2

0



 4

2

(16− 
2
)
12



= 2


2
0


− 1

3
(16− 2)32

4
2

= − 2
3
(2)(0− 1232) = 4

3


12
√

12


= 32
√

3

23. By symmetry,

 = 2


2 + 2≤ 2


2 − 2 − 2  = 2

 2

0

 

0


2 − 2    = 2

 2

0



 

0



2 − 2 

= 2


2
0


− 1

3
(2 − 2)32


0

= 2(2)

0 + 1

3
3


= 4
3
3

24. The paraboloid  = 1 + 22 + 22 intersects the plane  = 7 when 7 = 1 + 22 + 22 or 2 + 2 = 3 and we are restricted

to the first octant, so

 =


2+2≤ 3

≥0≥0


7− 1 + 2

2
+ 2

2

 =

 2

0

 √
3

0


7− (1 + 2

2
)

  

=
 2
0


√3

0


6 − 23


 =



2
0


32 − 1

2
4
√3

0
= 

2
· 9

2
= 9

4


25. The cone  =

2 + 2 intersects the sphere 2 + 2 + 2 = 1 when 2 + 2 +


2 + 2

2

= 1 or 2 + 2 = 1
2
. So

 =


2 + 2≤ 12


1− 2 − 2 −


2 + 2


 =

 2

0

 1
√

2

0


1− 2 − 


  

=
 2

0

 1

√
2

0



√

1− 2 − 2

 =



2
0


− 1

3
(1− 2)32 − 1

3
3
1√2

0
= 2

− 1
3


1√
2
− 1


= 
3


2−√2
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SECTION 15.3 DOUBLE INTEGRALS IN POLAR COORDINATES ¤ 549

26. The two paraboloids intersect when 6− 2 − 2 = 22 + 22 or 2 + 2 = 2. For 2 + 2 ≤ 2, the paraboloid

 = 6− 2 − 2 is above  = 22 + 22 so

 =


2 + 2≤ 2

[(6− 
2 − 

2
)− (2

2
+ 2

2
)]  =


2 + 2≤ 2

[6− 3(
2
+ 

2
)]  =

 2

0

 √
2

0

(6− 3
2
)   

=
 2

0

√2

0
(6 − 33)  =



2
0


32 − 3

4
4
√2

0
= 2 (6− 3) = 6

27. The given solid is the region inside the cylinder 2 + 2 = 4 between the surfaces  =


64− 42 − 42

and  = −


64− 42 − 42. So

 =


2 + 2≤ 4


64− 42 − 42 −


−


64− 42 − 42


 =


2+2≤ 4

2 · 2


16− 2 − 2 

= 4
 2

0

 2

0

√
16− 2    = 4

 2

0

 2

0

√

16− 2  = 4


2
0


−1

3
(16− 2)32

2
0

= 8
− 1

3


(1232 − 1623) = 8

3


64− 24

√
3


28. (a) Here the region in the -plane is the annular region 2
1 ≤ 2 + 2 ≤ 2

2 and the desired volume is twice that above the

-plane. Hence

 = 2


21 ≤2 + 2 ≤ 22


2
2 − 2 − 2  = 2

 2

0

 2

1


2
2 − 2    = 2

 2

0



 2

1


2
2 − 2  

= 2 (2)

− 1

3
(2

2 − 2)32
2
1

= 4
3

(2
2 − 2

1)
32

(b) A cross-sectional cut is shown in the figure. So 22 =


1
2

2

+ 2
1 or

1
4
2 = 2

2 − 21 .

Thus the volume in terms of  is  = 4
3


1
4
2
32

= 
6
3.

29.
 2

0

 √4−2

0


−2−2

  =

 2

0

 2

0


−2

  

=
 2
0


 2

0
−

2

 =


2
0


− 1

2
−

2
2
0

= 
2

− 1
2


−4 − 1


= 

4


1− −4



30.
 

0

 √2−2

−
√
2−2

(2+ )   =

 

0

 

0

(2 cos  +  sin )   

=
 
0

(2 cos  + sin ) 
 
0
2 

= [2 sin  − cos ]


0


1
3
3

0

= [(0 + 1)− (0− 1)] · 1
3
(3 − 0) = 2

3
3
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550 ¤ CHAPTER 15 MULTIPLE INTEGRALS

31. The region of integration is shown in the figure. In polar coordinates the line  =
√

3  is  = 6, so

  

 12

0

 √1−2

√
3 


2
  =

 6

0

 1

0

( cos )( sin )
2
  

=
 6
0

sin2  cos  
 1

0
4 

=


1
3

sin3 
6
0


1
5
5
1
0

=


1
3


1
2

3 − 0
 

1
5
− 0


= 1
120

32.
 2
0

 2 cos 

0
2   =

 2
0


1
3
3
=2 cos 

=0
 =

 2
0


8
3

cos3 



= 8
3

 2
0

(1− sin2 ) cos  

= 8
3


sin  − 1

3
sin3 

2
0

= 16
9

33.  = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ 2}, so

(

2+2)2  =
 2

0

 1

0
(

2)2    =
 2

0

 1

0


4

 = 2
 1

0


4

. Using a calculator, we estimate

2
 1

0


4

 ≈ 45951.

34.  = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ 2}, so




1 + 2 + 2  =
 2
0

 1

0
( cos )( sin )

√
1 + 2   

=
 2
0

sin  cos  
 1

0
3
√

1 + 2  =


1
2

sin2 
2
0

 1

0
3
√

1 + 2 

= 1
2

 1

0
3
√

1 + 2  ≈ 01609

35. The surface of the water in the pool is a circular disk with radius 20 ft. If we place on coordinate axes with the origin at

the center of and define ( ) to be the depth of the water at ( ), then the volume of water in the pool is the volume of

the solid that lies above =

( ) | 2 + 2 ≤ 400


and below the graph of ( ). We can associate north with the

positive -direction, so we are given that the depth is constant in the -direction and the depth increases linearly in the

-direction from (0−20) = 2 to (0 20) = 7. The trace in the -plane is a line segment from (0−20 2) to (0 20 7).

The slope of this line is 7− 2
20− (−20)

= 1
8
, so an equation of the line is  − 7 = 1

8
( − 20) ⇒  = 1

8
 + 9

2
. Since ( ) is

independent of , ( ) = 1
8
 + 9

2
. Thus the volume is given by



( ) , which is most conveniently evaluated

using polar coordinates. Then = {( ) | 0 ≤  ≤ 20, 0 ≤  ≤ 2} and substituting  =  cos ,  =  sin  the integral

becomes  2

0

 20

0


1
8
 sin  + 9

2


   =

 2

0


1
24
3 sin  + 9

4
2
= 20

= 0
 =

 2

0


1000

3
sin  + 900




=
− 1000

3
cos  + 900

2
0

= 1800

Thus the pool contains 1800 ≈ 5655 ft3 of water.
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SECTION 15.3 DOUBLE INTEGRALS IN POLAR COORDINATES ¤ 551

36. (a) If  ≤ 100, the total amount of water supplied each hour to the region within  feet of the sprinkler is

 =
 2

0

 
0
−   =

 2

0

 
0
−  =



2
0

−− − −

0

= 2[−− − − + 0 + 1] = 2(1−− − −) ft3

(b) The average amount of water per hour per square foot supplied to the region within  feet of the sprinkler is



area of region
=



2
=

2

1−− − −


2

ft3 (per hour per square foot). See the definition of the average value of a

function on page 1037 [ET 997].

37. As in Exercise 15.2.61, ave = 1
()



( ). Here  = {( ) |  ≤  ≤  0 ≤  ≤ 2},

so () =  2 − 2 = ( 2 − 2) and

ave =
1

()




1
2 + 2

 =
1

( 2 − 2)

 2

0

 



1√
2

   =
1

( 2 − 2)

 2

0



 





=
1

( 2 − 2)



2
0






=
1

( 2 − 2)
(2)(− ) =

2(− )

(+ )(− )
=

2

+ 

38. The distance from a point ( ) to the origin is ( ) =

2 + 2, so the average distance from points in to the origin is

ave = 1
()





2 + 2  = 1

2

 2

0

 
0

√
2   

= 1

2

 2

0

 
0
2  = 1

2
[]

2

0


1
3
3

0

= 1

2
· 2 · 1

3
3 = 2

3


39.
 1

1
√

2

 

√
1−2

  +

 √
2

1

 

0

  +

 2

√
2

 √4−2

0

  

=

 4

0

 2

1


3
cos  sin    =

 4

0


4

4
cos  sin 

= 2

= 1



=
15

4

 4

0

sin  cos   =
15

4


sin2 

2

4
0

=
15

16

40. (a)



−(2+2) =

 2

0

 
0
−

2

  = 2

−1

2
−

2

0

= 

1− −

2

for each . Then lim

→∞


1− −

2


= 

since −
2 → 0 as →∞. Hence

∞
−∞

∞
−∞ −(2+2)  = .

(b)



−(2+2)  =

 
−
 
− 

−2−
2

  =
 
− 

−2 
 

− 
−2 


for each .

Then, from (a),  =

R2 −(2 + 2) , so

 = lim
→∞




−(2+2)  = lim
→∞

 
− 

−2 
 

− 
−2 


=
∞
−∞ −

2


∞

−∞ −
2





To evaluate lim
→∞

 
− 

−2 
 

− 
−2 


, we are using the fact that these integrals are bounded. This is true since

on [−1 1], 0  −
2 ≤ 1 while on (−∞−1), 0  −

2 ≤  and on (1∞), 0  −
2

 −. Hence

0 ≤ ∞−∞ −
2

 ≤ −1

−∞   +
 1

−1
+

∞
1

−  = 2(−1 + 1).
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552 ¤ CHAPTER 15 MULTIPLE INTEGRALS

(c) Since
∞
−∞ −

2


∞

−∞ −
2




=  and  can be replaced by ,
∞
−∞ −

2


2

=  implies that

∞
−∞ −

2

 = ±√. But −2 ≥ 0 for all , so
∞
−∞ −

2

 =
√
.

(d) Letting  =
√

2,
∞
−∞ −

2

 =
∞
−∞

1√
2


−

22

, so that

√
 = 1√

2

∞
−∞ −

22  or
∞
−∞ −

22  =
√

2.

41. (a) We integrate by parts with  =  and  = −
2

. Then  =  and  = − 1
2
−

2

, so∞
0

2−
2

= lim
→∞

 
0
2−

2

 = lim
→∞


−1

2
−

2

0

+
 
0

1
2
−

2




= lim

→∞


− 1

2
−

2


+ 1
2

∞
0

−
2

 = 0 + 1
2

∞
0

−
2

 [by l’Hospital’s Rule]

= 1
4

∞
−∞ −

2

 [since −
2

is an even function]

= 1
4

√
 [by Exercise 40(c)]

(b) Let  =
√
. Then 2 =  ⇒  = 2 ⇒∞

0

√
 −  = lim

→∞

 
0

√
−  = lim

→∞

√
0

−
2

2 = 2
∞
0

2−
2

 = 2


1
4

√



[by part(a)] = 1
2

√
.

15.4 Applications of Double Integrals

1.  =


( )  =

 5

0

 5

2
(2 + 4)   =

 5

0


2 + 22

=5

=2


=
 5

0
(10+ 50− 4− 8)  =

 5

0
(6+ 42)  =


32 + 42

5
0

= 75 + 210 = 285 C

2.  =



( )  =





2 + 2  =

 2

0

 1

0

√
2   

=
 2

0


 1

0
2  = []

2

0


1
3
3
1
0

= 2 · 1
3

= 2
3
C

3.  =



( )  =

 3

1

 4

1
2   = 

 3

1

 4

1
2  =  []

3

1


1
3
3
4
1

= (2)(21) = 42,

 = 1




( )  = 1

42

 3

1

 4

1
2   = 1

42

 3

1


 4

1
2  = 1

42


1
2
2
3
1


1
3
3
4
1

= 1
42

(4)(21) = 2,

 = 1




( )  = 1

42

 3

1

 4

1
3   = 1

42

 3

1


 4

1
3  = 1

42
[]

3

1


1
4
4
4
1

= 1
42

(2)


255
4


= 85

28

Hence = 42, ( ) =

2 85

28


.

4.  =



( )  =

 
0

 
0
(1 + 2 + 2)   =

 
0


 + 2 + 1

3
3
=
=0

 =
 
0


+ 2 + 1

3
3



=

+ 1

3
3 + 1

3
3

0

= + 1
3
3+ 1

3
3 = 1

3
(3 + 2 + 2),

 =



( )  =

 
0

 
0
(+ 3 + 2)   =

 
0


 + 3 + 1

3
3

=
=0

 =
 
0


+ 3 + 1

3
3



=


1
2
2 + 1

4
4 + 1

6
32


0

= 1
2
2+ 1

4
4+ 1

6
23 = 1

12
2(6 + 32 + 22), and

 =



( )  =

 
0

 
0
( + 2 + 3)   =

 
0


1
2
2 + 1

2
22 + 1

4
4
=
=0

 =
 
0


1
2
2 + 1

2
22 + 1

4
4



=


1
2
2+ 1

6
23 + 1

4
4

0

= 1
2
2 + 1

6
32 + 1

4
4 = 1

12
2(6 + 22 + 32).
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SECTION 15.4 APPLICATIONS OF DOUBLE INTEGRALS ¤ 553

Hence, ( ) =











=


1
12
2(6 + 32 + 22)
1
3
(3 + 2 + 2)


1
12
2(6 + 22 + 32)
1
3
(3 + 2 + 2)



=


(6 + 32 + 22)

4(3 + 2 + 2)

(6 + 22 + 32)

4(3 + 2 + 2)


.

5.  =
 2

0

 3−
2

(+ )   =
 2

0


 + 1

2
2
=3−
=2

 =
 2

0


(3− ) + 1

2
(3− )2 − 1

2
2 − 1

8
2



=
 2

0

− 9
8
2 + 9

2


 =

− 9
8


1
3
3


+ 9
2

2
0

= 6,

 =
 2

0

 3−
2

(2 + )   =
 2

0


2 + 1

2
2

=3−
=2

 =
 2

0


9
2
− 9

8
3

 = 9

2
,

 =
 2

0

 3−
2

( + 2)   =
 2

0


1
2
2 + 1

3
3
=3−
=2

 =
 2

0


9− 9

2


 = 9.

Hence = 6, ( ) =











=


3

4

3

2


.

6. Here =

( ) | 0 ≤  ≤ 2

5
 2 ≤  ≤ 1− 2


.

 =
 25

0

 1−2

2
 =

 25

0


1
2
2
=1−2

=2
 = 1

2

 25

0


(1− 2)

2 −  1
2

2



= 1
2

 25

0


15
4
2 − 4 + 1


 = 1

2


5
4
3 − 22 + 

25
0

= 1
2


2
25
− 8

25
+ 2

5


= 2

25
,

 =
 25

0

 1−2

2
 ·  =

 25

0


1
3
3
=1−2

=2
 = 1

3

 25

0


(1− 2)

3 −  1
2

3



= 1
3

 25

0

− 65
8
3 + 122 − 6 + 1


 = 1

3

−65
32
4 + 43 − 32 + 

25
0

= 1
3

− 13
250

+ 32
125
− 12

25
+ 2

5


= 31

750
,

 =
 25

0

 1−2

2
 ·  =

 25

0



1
2
2
=1−2

=2
 = 1

2

 25

0



15
4
2 − 4 + 1




= 1
2

 25

0


15
4
3 − 42 + 


 = 1

2


15
16
4 − 4

3
3 + 1

2
2
25
0

= 1
2


3

125
− 32

375
+ 2

25


= 7

750
.

Hence = 2
25
, ( ) =


31750

225


7750

225


=


31
60
 7

60


.

7.  =
 1

−1

 1−2
0

   = 
 1

−1


1
2
2
=1−2
=0

 = 1
2

 1

−1
(1− 2)2  = 1

2

 1

−1
(1− 22 + 4) 

= 1
2


− 2

3
3 + 1

5
5
1
−1

= 1
2


1− 2

3
+ 1

5
+ 1− 2

3
+ 1

5


= 8

15
,

 =
 1

−1

 1−2
0

   = 
 1

−1


1
2
2

=1−2
=0

 = 1
2

 1

−1
 (1− 2)2  = 1

2

 1

−1
(− 23 + 5) 

= 1
2



1
2
2 − 1

2
4 + 1

6
6
1
−1

= 1
2



1
2
− 1

2
+ 1

6
− 1

2
+ 1

2
− 1

6


= 0,

 =
 1

−1

 1−2
0

2   = 
 1

−1


1
3
3
=1−2
=0

 = 1
3

 1

−1
(1− 2)3  = 1

3

 1

−1
(1− 32 + 34 − 6) 

= 1
3


− 3 + 3

5
5 − 1

7
7
1
−1

= 1
3


1− 1 + 3

5
− 1

7
+ 1− 1 + 3

5
− 1

7


= 32

105
.

Hence = 8
15
, ( ) =


0

32105

815


=

0 4

7


.

8. The boundary curves intersect when  + 2 = 2 ⇔ 2 − − 2 = 0 ⇔  = −1,  = 2. Thus here

 =

( ) | −1 ≤  ≤ 2 2 ≤  ≤ + 2


.

 =
 2

−1

 +2

2
2   = 

 2

−1
2


=+2

=2
 = 

 2

−1
(3 + 22 − 4) 

= 


1
4
4 + 2

3
3 − 1

5
5
2
−1

= 


44
15

+ 13
60


= 63

20
,
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554 ¤ CHAPTER 15 MULTIPLE INTEGRALS

 =
 2

−1

 +2

2
3   = 

 2

−1
3


=+2

=2
 = 

 2

−1
(4 + 23 − 5) 

= 


1
5
5 + 1

2
4 − 1

6
6
2
−1

= 


56
15
− 2

15


= 18

5
,

 =
 2

−1

 +2

2
2   = 

 2

−1
2


1
2
2
=+2

=2
 = 1

2

 2

−1
2 (2 + 4+ 4− 4) 

= 1
2

 2

−1
(4 + 43 + 42 − 6)  = 1

2



1
5
5 + 4 + 4

3
3 − 1

7
7
2
−1

= 1
2



1552
105

+ 41
105


= 531

70
.

Hence = 63
20
, ( ) =


185

6320


53170

6320


=


8
7
 118

49


.

9.  =
 1

0

 −
0

   =
 1

0



1
2
2
=−
=0

 = 1
2

 1

0


−

2
 = 1

2

 1

0
−2 


integrate by parts with
 =   = −2 


= 1

2

− 1
4
(2+ 1)−2

1
0

= − 1
8


3−2 − 1


= 1

8
− 3

8
−2,

 =
 1

0

 −
0

2   =
 1

0
2


1
2
2
=−
=0

 = 1
2

 1

0
2−2  [integrate by parts twice]

= 1
2

− 1
4


22 + 2+ 1


−2

1
0

= −1
8


5−2 − 1


= 1

8
− 5

8
−2,

 =
 1

0

 −
0

2   =
 1

0



1
3
3
=−
=0

 = 1
3

 1

0
−3 

= 1
3

− 1
9
(3+ 1)−3

1
0

= − 1
27


4−3 − 1


= 1

27
− 4

27
−3.

Hence = 1
8


1− 3−2


, ( ) =


1
8


1− 5−2


1
8

(1− 3−2)


1
27


1− 4−3


1
8

(1− 3−2)


=


2 − 5

2 − 3


8

3 − 4


27 (3 − 3)


.

10. Note that cos ≥ 0 for −2 ≤  ≤ 2.

 =
 2
−2

 cos 

0
   =

 2
−2


1
2
2
=cos 

=0
 = 1

2

 2
−2 cos2  = 1

2


1
2
+ 1

4
sin 2

2
−2 = 

4
,

 =
 2
−2

 cos 

0
   =

 2
−2 


1
2
2
=cos 

=0
 = 1

2

 2
−2  cos2


integrate by parts with

 =   = cos2  


= 1

2





1
2
+ 1

4
sin 2

2
−2 −

 2
−2


1
2
 + 1

4
sin 2





= 1
2


1
8
2 − 1

8
2 −  1

4
2 − 1

8
cos 2

2
−2


= 1

2


0−  1

16
2 + 1

8
− 1

16
2 − 1

8


= 0,

 =
 2
−2

 cos 

0
2   =

 2
−2


1
3
3
=cos 

=0
 = 1

3

 2
−2 cos3 = 1

3

 2
−2(1− sin2) cos

[substitute  = sin ⇒  = cos]

= 1
3


sin− 1

3
sin3

2
−2 = 1

3


1− 1

3
+ 1− 1

3


= 4

9
.

Hence = 
4
, ( ) =


0

49

4


=

0 16

9


.

11. ( ) = ,  =



  =

 2
0

 1

0
( sin )    = 

 2
0

sin  
 1

0
2 

= 
− cos 

2
0


1
3
3
1
0

= (1)


1
3


= 1

3
,

 =



 ·   =

 2
0

 1

0
( cos )( sin )    = 

 2
0

sin  cos  
 1

0
3 

= 


1
2

sin2 
2
0


1
4
4
1
0

= 


1
2

 
1
4


= 1

8
,
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SECTION 15.4 APPLICATIONS OF DOUBLE INTEGRALS ¤ 555

 =



 ·   =

 2
0

 1

0
( sin )2    = 

 2
0

sin2  
 1

0
3 

= 


1
2
 − 1

4
sin 2

2
0


1
4
4
1
0

= 


4

 
1
4


= 

16
.

Hence ( ) =

8

3

16

3


=


3
8
 3

16


.

12. ( ) = (2 + 2) = 2,  =
 2
0

 1

0
3   = 

8
,

 =
 2
0

 1

0
4 cos    = 1

5

 2
0

cos   = 1
5


sin 

2
0

= 1
5
,

 =
 2
0

 1

0
4 sin    = 1

5

 2
0

sin   = 1
5

− cos 

2
0

= 1
5
.

Hence ( ) =


8
5
 8

5


.

13. ( ) = 

2 + 2 = ,

=



( ) =

 
0

 2

1
 ·   

= 
 
0

 2

1
2  = ()


1
3
3
2
1

= 7
3
,

 =



( ) =

 
0

 2

1
( cos )()    = 

 
0

cos  
 2

1
3 

= 

sin 


0


1
4
4
2
1

= (0)


15
4


= 0

[this is to be expected as the region and density

function are symmetric about the y-axis]

 =



( ) =

 
0

 2

1
( sin )()    = 

 
0

sin  
 2

1
3 

= 
− cos 


0


1
4
4
2
1

= (1 + 1)


15
4


= 15

2


Hence ( ) =

0

152

73


=

0 45

14


.

14. Now ( ) =  

2 + 2 = , so

 =



( ) =

 
0

 2

1
()    = 

 
0

 2

1
 = ()(1) = ,

 =



( ) =

 
0

 2

1
( cos )()    = 

 
0

cos  
 2

1
 

= 

sin 


0


1
2
2
2
1

= (0)


3
2


= 0,

 =



( ) =

 
0

 2

1
( sin )()    = 

 
0

sin  
 2

1
 

= 
− cos 


0


1
2
2
2
1

= (1 + 1)


3
2


= 3.

Hence ( ) =

0 3




=

0 3




.

15. Placing the vertex opposite the hypotenuse at (0 0), ( ) = (2 + 2). Then

 =
 
0

 −

0


2 + 2


  = 

 
0


2 − 3 + 1

3
(− )

3

 = 


1
3
3 − 1

4
4 − 1

12
(− )

4

0

= 1
6
4.

[continued]
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556 ¤ CHAPTER 15 MULTIPLE INTEGRALS

By symmetry,  =  =
 
0

 −

0
(2 + 2)   = 

 
0


1
2
(− )22 + 1

4
(− )4




= 


1
6
23 − 1

4
4 + 1

10
5 − 1

20
(− )5


0

= 1
15
5

Hence ( ) =


2
5
 2

5


.

16. ( ) = 

2 + 2 = .

 =

 56

6

 2 sin 

1




   = 

 56

6

[(2 sin )− 1] 

= 
−2 cos  − 

56
6

= 2
√

3− 
3


By symmetry of and () = , = 0, and

 =
 56

6

 2 sin 

1
 sin    = 1

2

 56

6
(4 sin3  − sin ) 

= 1
2

−3 cos  + 4

3
cos3 

56
6

=
√

3 

Hence ( ) =


0 3

√
3

2(3
√

3−)


.

17.  =



2( ) =

 3

1

 4

1
2 · 2   = 

 3

1

 4

1
4  =  []

3

1


1
5
5
4
1

= (2)


1023
5


= 4092,

 =



2( )  =

 3

1

 4

1
2 · 2   = 

 3

1
2 

 4

1
2  = 


1
3
3
3
1


1
3
3
4
1

= 


26
3


(21) = 182,

and 0 =  +  = 4092 + 182 = 5912.

18.  =



2( ) =

 25

0

 1−2

2
2 ·  =

 25

0
2


1
2
2
=1−2

=2
 = 1

2

 25

0
2( 15

4
2 − 4 + 1) 

= 1
2

 25

0
( 15

4
4 − 43 + 2)  = 1

2


3
4
5 − 4 + 1

3
3
25
0

= 16
9375

,

 =



2( )  =

 25

0

 1−2

2
2 ·   =

 25

0


1
4
4
=1−2

=2
 = 1

4

 25

0


(1− 2)4 − 1

16
4



= 1
4

 25

0
( 255

16
4 − 323 + 242 − 8 + 1)  = 1

4


51
16
5 − 84 + 83 − 42 + 

25
0

= 78
3125

,

and 0 =  +  = 16
9375

+ 78
3125

= 2
75
.

19. As in Exercise 15, we place the vertex opposite the hypotenuse at (0 0) and the equal sides along the positive axes.

 =
 
0

 −
0

2(2 + 2)   = 
 
0

 −
0

(22 + 4)   = 
 
0


1
3
23 + 1

5
5
=−
=0



= 
 
0


1
3
2(− )3 + 1

5
(− )5


 = 


1
3


1
3
33 − 3

4
24 + 3

5
5 − 1

6
6
− 1

30
(− )6


0

= 7
180

6,

 =
 
0

 −
0

2(2 + 2)   = 
 
0

 −
0

(4 + 22)   = 
 
0


4 + 1

3
23

=−
=0



= 
 
0


4 (− ) + 1

3
2 (− )

3

 = 


1
5
5 − 1

6
6 + 1

3


1
3
33 − 3

4
24 + 3

5
5 − 1

6
6


0
= 7

180
6,

and 0 =  +  = 7
90
6.
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SECTION 15.4 APPLICATIONS OF DOUBLE INTEGRALS ¤ 557

20. If we find the moments of inertia about the - and -axes, we can determine in which direction rotation will be more difficult.

(See the explanation following Example 4.) The moment of inertia about the -axis is given by

 =



2( )  =

 2

0

 2

0
2(1 + 01)   =

 2

0
(1 + 01)


1
3
3
=2

=0


= 8
3

 2

0
(1 + 01)  = 8

3


 + 01 · 1

2
2
2
0

= 8
3
(22) ≈ 587

Similarly, the moment of inertia about the -axis is given by

 =



2( )  =

 2

0

 2

0
2(1 + 01)   =

 2

0
2(1 + 01)



=2

=0


= 2
 2

0
(2 + 013)  = 2


1
3
3 + 01 · 1

4
4
2
0

= 2


8
3

+ 04
 ≈ 613

Since   , more force is required to rotate the fan blade about the -axis.

21.  =



2( ) =

 
0

 
0
2   = 

 
0

 
0
2  = 




0


1
3
3

0

= 


1
3
3


= 1
3
3,

 =



2( ) =

 
0

 
0
2   = 

 
0
2 

 
0
 = 


1
3
3

0

[]


0 = 1
3
3,

and =  (area of rectangle) =  since the lamina is homogeneous. Hence 
2

=



=

1
3
3


=

2

3
⇒  =

√
3

and 
2

=



=

1
3
3


=

2

3
⇒  =

√
3
.

22. Here we assume   0,   0 but note that we arrive at the same results if   0 or   0. We have

 =

( ) | 0 ≤  ≤  0 ≤  ≤ − 




, so

 =
 
0

 −
0

2   = 
 
0


1
3
3
=−
=0

 = 1
3

 
0


− 



3


= 1
3


− 




1
4

 
− 



4

0
= − 

12
(0− 4) = 1

12
3,

 =
 
0

 −
0

2   = 
 
0
2

− 




 = 

 
0


2 − 


3



= 


3
3 − 

4
4

0

= (
3

3
− 3

4
) = 1

12
3,

and =
 
0

 −
0

   = 
 
0


− 




 = 


− 

2
2

0

= 1
2
. Hence 

2
=




=

1
12
3

1
2


=
2

6
⇒

 =
√
6
and 

2
=




=

1
12
3

1
2


=
2

6
⇒  =

√
6
.

23. In polar coordinates, the region is =

( ) | 0 ≤  ≤  0 ≤  ≤ 

2


, so

 =



2  =

 2
0

 
0
( sin )2    = 

 2
0

sin2 
 
0
3 

= 


1
2
 − 1

4
sin 2

2
0


1
4
4

0

= 


4

 
1
4
4


= 1
16
4,

 =



2  =

 2
0

 
0
( cos )2    = 

 2
0

cos2 
 
0
3 

= 


1
2
 + 1

4
sin 2

2
0


1
4
4

0

= 


4

 
1
4
4


= 1
16
4,

and =  ·() =  · 1
4
2 since the lamina is homogeneous. Hence 

2
= 

2
=

1
16
4

1
4
2

=
2

4
⇒  =  =



2
.
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558 ¤ CHAPTER 15 MULTIPLE INTEGRALS

24.  =
 
0

 sin

0
   = 

 
0

sin = 
− cos


0

= 2,

 =
 
0

 sin

0
2   = 1

3

 
0

sin3  = 1
3

 
0

(1− cos2 ) sin = 1
3

− cos+ 1

3
cos3 


0

= 4
9
,

 =
 
0

 sin

0
2   = 

 
0
2 sin = 

−2 cos+ 2 sin+ 2 cos

0

[by integrating by parts twice]

= (2 − 4).

Then 
2

=



=

2

9
, so  =

√
2

3
and 

2
=




=

2 − 4

2
, so  =


2 − 4

2
.

25. The right loop of the curve is given by = {( ) | 0 ≤  ≤ cos 2, −4 ≤  ≤ 4}. Using a CAS, we

find =



( )  =




(2 + 2)  =
 4
−4

 cos 2

0
2    =

3

64
. Then

 =
1






( )  =
64

3

 4

−4

 cos 2

0

( cos ) 
2
   =

64

3

 4

−4

 cos 2

0


4
cos    =

16384
√

2

10395
and

 =
1






( )  =
64

3

 4

−4

 cos 2

0

( sin ) 
2
   =

64

3

 4

−4

 cos 2

0


4
sin    = 0, so

( ) =


16384

√
2

10395
 0


.

The moments of inertia are

 =



2( )  =

 4
−4

 cos 2

0
( sin )2 2    =

 4
−4

 cos 2

0
5 sin2    =

5

384
− 4

105
,

 =



2( )  =

 4
−4

 cos 2

0
( cos )2 2    =

 4
−4

 cos 2

0
5 cos2    =

5

384
+

4

105
, and

0 =  +  =
5

192
.

26. Using a CAS, we find =



( )  =

 2

0

 −
0

22   = 8
729

(5− 899−6). Then

 =
1






( )  =
729

8(5− 899−6)

 2

0

 −

0


3

2
  =

2(56 − 1223)

56 − 899
and

 =
1






( )  =
729

8(5− 899−6)

 2

0

 −

0


2

3
  =

729(456 − 42037−2)

32768(56 − 899)
, so

( ) =


2(56 − 1223)

56 − 899

729(456 − 42037−2)

32768(56 − 899)


.

The moments of inertia are  =



2( )  =

 2

0

 −
0

24   = 16
390625

(63− 305593−10),

 =



2( )  =

 2

0

 −
0

42   = 80
2187

(7 − 2101−6), and

0 =  +  = 16
854296875

(13809656− 4103515625−6 − 668331891−10).

27. (a) ( ) is a joint density function, so we know

R2 ( )  = 1. Since ( ) = 0 outside the

rectangle [0 1]× [0 2], we can say
R2 ( ) =

∞
−∞

∞
−∞ ( )   =

 1

0

 2

0
(1 + )  

= 
 1

0


 + 1

2
2
=2

=0
 = 

 1

0
4 = 


22

1
0

= 2

Then 2 = 1 ⇒  = 1
2
.
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SECTION 15.4 APPLICATIONS OF DOUBLE INTEGRALS ¤ 559

(b)  ( ≤ 1  ≤ 1) =
 1

−∞
 1

−∞ ( )   =
 1

0

 1

0

1
2
(1 + )  

=
 1

0

1
2


 + 1

2
2
= 1

= 0
 =

 1

0

1
2



3
2


 = 3

4


1
2
2
1
0

= 3
8
or 0375

(c)  ( +  ≤ 1) =  (( ) ∈ ) where is the triangular region shown in

the figure. Thus

 ( +  ≤ 1) =



( )  =

 1

0

 1−

0

1
2
(1 + )  

=
 1

0

1
2


 + 1

2
2
=1−
=0

 =
 1

0

1
2



1
2
2 − 2+ 3

2




= 1
4

 1

0


3 − 42 + 3


 = 1

4


4

4
− 4

3

3
+ 3

2

2

1
0

= 5
48
≈ 01042

28. (a) ( ) ≥ 0, so  is a joint density function if

R2 ( )  = 1. Here, ( ) = 0 outside the square [0 1]× [0 1],

so


R2 ( )  =
 1

0

 1

0
4   =

 1

0


22

=1

=0
 =

 1

0
2 = 2

1
0

= 1.

Thus, ( ) is a joint density function.

(b) (i) No restriction is placed on  , so



 ≥ 1

2


=
∞
12

∞
−∞ ( )   =

 1

12

 1

0
4   =

 1

12


22

=1

=0
 =

 1

12
2 = 2

1
12

= 3
4
.

(ii) 

 ≥ 1

2
  ≤ 1

2


=
∞
12

 12

−∞ ( )   =
 1

12

 12

0
4  

=
 1

12


22

= 12

= 0
 =

 1

12
1
2
 = 1

2
· 1

2
2
1
12

= 3
16

(c) The expected value of is given by

1 =

R2  ( )  =

 1

0

 1

0
(4)   =

 1

0
22


2
=1

=0
 = 2

 1

0
2  = 2


1
3
3
1
0

= 2
3

The expected value of  is

2 =

R2  ( )  =

 1

0

 1

0
(4)   =

 1

0
4


1
3
3
= 1

= 0
 = 4

3

 1

0
 = 4

3


1
2
2
1
0

= 2
3

29. (a) ( ) ≥ 0, so  is a joint density function if

R2 ( )  = 1. Here, ( ) = 0 outside the first quadrant, so

R2 ( ) =
∞
0

∞
0

01−(05+02)   = 01
∞
0

∞
0

−05−02   = 01
∞
0

−05 
∞
0

−02 

= 01 lim
→∞

 
0
−05  lim

→∞

 
0
−02  = 01 lim

→∞

−2−05

0

lim
→∞

−5−02

0

= 01 lim
→∞

−2(−05 − 1)


lim
→∞

−5(−02 − 1)


= (01) · (−2)(0− 1) · (−5)(0− 1) = 1

Thus ( ) is a joint density function.

(b) (i) No restriction is placed on, so

 ( ≥ 1) =
∞
−∞

∞
1

( )   =
∞
0

∞
1

01−(05+02)  

= 01
∞
0

−05 
∞
1

−02  = 01 lim
→∞

 
0
−05  lim

→∞

 
1
−02 

= 01 lim
→∞

−2−05

0

lim
→∞

−5−02

1

= 01 lim
→∞

−2(−05 − 1)


lim
→∞

−5(−02 − −02)


(01) · (−2)(0− 1) · (−5)(0− −02) = −02 ≈ 08187
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560 ¤ CHAPTER 15 MULTIPLE INTEGRALS

(ii)  ( ≤ 2  ≤ 4) =
 2

−∞
 4

−∞ ( )   =
 2

0

 4

0
01−(05+02)  

= 01
 2

0
−05 

 4

0
−02  = 01

−2−05
2
0

−5−02
4
0

= (01) · (−2)(−1 − 1) · (−5)(−08 − 1)

= (−1 − 1)(−08 − 1) = 1 + −18 − −08 − −1 ≈ 03481

(c) The expected value of is given by

1 =

R2  ( )  =

∞
0

∞
0



01−(05+02)


 

= 01
∞
0

−05 
∞
0

−02  = 01 lim
→∞

 
0
−05  lim

→∞

 
0
−02 

To evaluate the first integral, we integrate by parts with  =  and  = −05  (or we can use Formula 96

in the Table of Integrals):

−05  = −2−05 −  −2−05  = −2−05 − 4−05 = −2(+ 2)−05.

Thus

1 = 01 lim
→∞

−2( + 2)−05

0

lim
→∞

−5−02

0

= 01 lim
→∞

(−2)

(+ 2)−05 − 2


lim
→∞

(−5)

−02 − 1


= 01(−2)


lim
→∞

+ 2

05
− 2


(−5)(−1) = 2 [by l’Hospital’s Rule]

The expected value of  is given by

2 =

R2  ( )  =

∞
0

∞
0



01−(05 +02)


 

= 01
∞
0

−05 
∞
0

−02  = 01 lim
→∞

 
0
−05  lim

→∞

 
0
−02 

To evaluate the second integral, we integrate by parts with  =  and  = −02  (or again we can use Formula 96 in

the Table of Integrals) which gives

−02  = −5−02 +


5−02  = −5( + 5)−02 . Then

2 = 01 lim
→∞

−2−05

0

lim
→∞

−5( + 5)−02

0

= 01 lim
→∞

−2(−05 − 1)


lim
→∞

−5

( + 5)−02 − 5


= 01(−2)(−1) · (−5)


lim
→∞

 + 5

02
− 5


= 5 [by l’Hospital’s Rule]

30. (a) The lifetime of each bulb has exponential density function

() =


0 if   0

1
1000

−1000 if  ≥ 0

If and  are the lifetimes of the individual bulbs, then and  are independent, so the joint density function is the

product of the individual density functions:

( ) =


10−6−(+)1000 if  ≥ 0,  ≥ 0

0 otherwise
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SECTION 15.4 APPLICATIONS OF DOUBLE INTEGRALS ¤ 561

The probability that both of the bulbs fail within 1000 hours is

 ( ≤ 1000  ≤ 1000) =
 1000

−∞
 1000

−∞ ( )   =
 1000

0

 1000

0
10−6−(+)1000  

= 10−6
 1000

0
−1000 

 1000

0
−1000 

= 10−6

−1000−1000

1000
0


−1000−1000

1000
0

=

−1 − 1

2 ≈ 03996

(b) Now we are asked for the probability that the combined lifetimes of both

bulbs is 1000 hours or less. Thus we want to find  ( +  ≤ 1000), or

equivalently  (( ) ∈ ) where is the triangular region shown in the

figure. Then

 ( +  ≤ 1000) =



 ( ) 

=
 1000

0

 1000−
0

10−6−(+)1000  

= 10−6
 1000

0


−1000−(+)1000

=1000−

=0
 = −10−3

 1000

0


−1 − −1000




= −10−3

−1 + 1000−1000

1000
0

= 1− 2−1 ≈ 02642

31. (a) The random variables and  are normally distributed with 1 = 45, 2 = 20, 1 = 05, and 2 = 01.

The individual density functions for  and  , then, are 1() =
1

05
√

2
−(−45)205 and

2 () =
1

01
√

2
−(−20)2002. Since and  are independent, the joint density function is the product

( ) = 1()2() =
1

05
√

2
−(−45)205 1

01
√

2
−(−20)2002 = 10


−2(−45)2−50(−20)2 

Then  (40 ≤  ≤ 50, 20 ≤  ≤ 25) =
 50

40

 25

20
( )   = 10



 50

40

 25

20
−2(−45)2−50(−20)2  .

Using a CAS or calculator to evaluate the integral, we get  (40 ≤  ≤ 50, 20 ≤  ≤ 25) ≈ 0500.

(b)  (4( − 45)2 + 100( − 20)2 ≤ 2) =




10

−2(−45)2−50(−20)2 , where is the region enclosed by the ellipse

4(− 45)2 + 100( − 20)2 = 2. Solving for  gives  = 20± 1
10


2− 4(− 45)2, the upper and lower halves of the

ellipse, and these two halves meet where  = 20 [since the ellipse is centered at (45 20)] ⇒ 4(− 45)2 = 2 ⇒

 = 45± 1√
2
. Thus




10


−2(−45)2−50(−20)2

 = 10


 45+1
√

2

45−1
√

2

 20+ 1
10

√
2− 4(−45)2

20− 1
10

√
2− 4(−45)2


−2(−45)2−50(−20)2

 .

Using a CAS or calculator to evaluate the integral, we get  (4( − 45)2 + 100( − 20)2 ≤ 2) ≈ 0632.
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562 ¤ CHAPTER 15 MULTIPLE INTEGRALS

32. Because and  are independent, the joint density function for Xavier’s and Yolanda’s arrival times is the product of the

individual density functions:

( ) = 1()2() =


1
50
− if  ≥ 0, 0 ≤  ≤ 10

0 otherwise

Since Xavier won’t wait for Yolanda, they won’t meet unless ≥  .

Additionally, Yolanda will wait up to half an hour but no longer, so they

won’t meet unless −  ≤ 30. Thus the probability that they meet is

 (( ) ∈ ) where is the parallelogram shown in the figure. The

integral is simpler to evaluate if we consider as a type II region, so

 (( ) ∈ ) =



( )  =

 10

0

 +30



1
50
−  

= 1
50

 10

0

−−= +30

= 
 = 1

50

 10

0
(−−(+30) + −) 

= 1
50

(1− −30)
 10

0
− 

By integration by parts (or Formula 96 in the Table of Integrals), this is

1
50

(1− −30)
−( + 1)−

10
0

= 1
50

(1− −30)(1− 11−10) ≈ 0020. Thus there is only about a 2% chance they will meet.

Such is student life!

33. (a) If () is the probability that an individual at  will be infected by an individual at  , and   is the number of

infected individuals in an element of area , then ()  is the number of infections that should result from

exposure of the individual at  to infected people in the element of area . Integration over gives the number of

infections of the person at  due to all the infected people in. In rectangular coordinates (with the origin at the city’s

center), the exposure of a person at  is

 =




()  = 




1
20

[20− ()]  = 





1− 1

20


(− 0)2 + ( − 0)2




(b) If  = (0 0), then

 = 





1− 1

20


2 + 2




= 

 2

0

 10

0


1− 1

20


   = 2


1
2

2 − 1

60

3
10
0

= 2

50− 50

3


= 200

3
 ≈ 209

For  at the edge of the city, it is convenient to use a polar coordinate system centered at . Then the polar equation for

the circular boundary of the city becomes  = 20 cos  instead of  = 10, and the distance from  to a point  in the city
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SECTION 15.5 SURFACE AREA ¤ 563

is again  (see the figure). So

 = 

 2

−2

 20 cos 

0


1− 1

20


   = 

 2

−2


1
2

2 − 1

60

3
=20 cos 

=0


= 
 2
−2


200 cos2  − 400

3
cos3 


 = 200

 2
−2


1
2

+ 1
2

cos 2 − 2
3


1− sin2 


cos 




= 200


1
2
 + 1

4
sin 2 − 2

3
sin  + 2

3
· 1

3
sin3 

2
−2 = 200



4

+ 0− 2
3

+ 2
9

+ 
4

+ 0− 2
3

+ 2
9


= 200



2
− 8

9

 ≈ 136

Therefore the risk of infection is much lower at the edge of the city than in the middle, so it is better to live at the edge.

15.5 Surface Area

1. Here  = ( ) = 5+ 3 + 6 and is the rectangle [1 4]× [2 6], so by Formula 2 the area of the surface is

() =





[( )]2 + [( )]2 + 1  =




√
52 + 32 + 1  =

√
35





=
√

35() =
√

35 (3)(4) = 12
√

35

2.  = ( ) = 1
2
− 3− 2 and is the disk 2 + 2 ≤ 25, so by Formula 2

() =





(−3)2 + (−2)2 + 1  =

√
14



 =

√
14() =

√
14 ( · 52) = 25

√
14

3. The surface  is given by  = ( ) = 6− 3− 2 which intersects the -plane in the line 3+ 2 = 6, so is the

triangular region given by

( )

 0 ≤  ≤ 2, 0 ≤  ≤ 3− 3
2


. By Formula 2, the surface area of  is

() =





(−3)2 + (−2)2 + 1  =

√
14



 =

√
14() =

√
14


1
2
· 2 · 3 = 3

√
14

4.  = ( ) = 1
4
2 − 1

2
 + 5

4
, and is the triangular region given by {( ) | 0 ≤  ≤ 2 0 ≤  ≤ 2}. By Formula 2,

() =





1
2

2

+
− 1

2

2
+ 1  =

 2

0

 2

0


1
4
2 + 5

4
  =

 2

0
1
2

√
2 + 5



=2

=0


= 1
2

 2

0
2
√
2 + 5  = 1

2
· 2

3
(2 + 5)32

2
0

= 1
3
(932 − 532) = 9− 5

3

√
5

5. The paraboloid intersects the plane  = −2 when 1− 2 − 2 = −2 ⇔ 2 + 2 = 3, so =

( ) | 2 + 2 ≤ 3


.

Here  = ( ) = 1− 2 − 2 ⇒  = −2,  = −2 and

() =





(−2)2 + (−2)2 + 1  =





4(2 + 2) + 1  =

 2

0

√3

0

√
42 + 1   

=
 2

0

√3

0

√

42 + 1  =


2
0


1
12

(42 + 1)32
√3

0
= 2 · 1

12


1332 − 1


= 

6


13
√

13− 1


6. 2 + 2 = 4 ⇒  =
√

4− 2 (since  ≥ 0), so  = −(4− 2)−12,  = 0 and

() =

 1

0

 1

0


[−(4− 2)−12]2 + 02 + 1   =

 1

0

 1

0


2

4− 2
+ 1  

=

 1

0

2√
4− 2



 1

0

 =

2 sin

−1 

2

1
0



1
0

=

2 · 

6
− 0

(1) = 

3

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



564 ¤ CHAPTER 15 MULTIPLE INTEGRALS

7.  = ( ) = 2 − 2 with 1 ≤ 2 + 2 ≤ 4. Then

() =





42 + 42 + 1  =

 2

0

 2

1

√
42 + 1    =

 2

0

 2

1

√

42 + 1 

=


2
0


1
12

(42 + 1)32
2
1

= 
6


17
√

17− 5
√

5


8.  = ( ) = 2
3
(32 + 32) and = {( ) | 0 ≤  ≤ 1 0 ≤  ≤ 1}. Then  = 12,  = 12 and

() =




√

2

+ (
√
 )

2
+ 1  =

 1

0

 1

0


+  + 1   =

 1

0


2
3
(+  + 1)

32
=1

=0


= 2
3

 1

0


(+ 2)

32 − (+ 1)
32

 = 2

3


2
5
( + 2)

52 − 2
5
(+ 1)

52
1
0

= 4
15

(352 − 252 − 252 + 1) = 4
15

(352 − 272 + 1)

9.  = ( ) =  with 2 + 2 ≤ 1, so  = ,  =  ⇒

() =





2 + 2 + 1  =

 2

0

 1

0

√
2 + 1    =

 2

0


1
3
(2 + 1)32

=1

=0


=
 2

0
1
3


2
√

2− 1

 = 2

3


2
√

2− 1


10. Given the sphere 2 + 2 + 2 = 4, when  = 1, we get 2 + 2 = 3 so  =

( ) | 2 + 2 ≤ 3


and

 = ( ) =


4− 2 − 2. Thus

() =





[(−)(4− 2 − 2)−12]2 + [(−)(4− 2 − 2)−12]2 + 1 

=

 2

0

 √
3

0


2

4− 2
+ 1    =

 2

0

 √
3

0


2 + 4− 2

4− 2
  

=

 2

0

 √
3

0

2√
4− 2

 

=
 2

0


−2(4− 2)12

=√3

=0
 =

 2

0
(−2 + 4)  = 2

2
0

= 4

11.  =

2 − 2 − 2,  = −(2 − 2 − 2)−12,  = −(2 − 2 − 2)−12,

 () =





2 + 2

2 − 2 − 2
+ 1 

=

 2

−2

  cos 

0


2

2 − 2
+ 1   

=

 2

−2

  cos 

0

√
2 − 2

 

=

 2

−2


−

2 − 2

= cos 

=0


=

 2

−2
−


2 − 2 cos2  − 

 = 2

2

 2

0


1−


1− cos2 




= 22

 2

0

 − 2
2

 2

0


sin2   = 

2
 − 2

2

 2

0

sin   = 
2
( − 2)
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SECTION 15.5 SURFACE AREA ¤ 565

12. To find the region:  = 2 + 2 implies  + 2 = 4 or 2 − 3 = 0. Thus  = 0 or  = 3 are the planes where the

surfaces intersect. But 2 + 2 + 2 = 4 implies 2 + 2 + ( − 2)2 = 4, so  = 3 intersects the upper hemisphere. Thus

( − 2)2 = 4− 2 − 2 or  = 2 +


4− 2 − 2. Therefore is the region inside the circle 2 + 2 + (3− 2)2 = 4, that

is, =

( ) | 2 + 2 ≤ 3


.

() =





[(−)(4− 2 − 2)−12]2 + [(−)(4− 2 − 2)−12]2 + 1 

=

 2

0

 √
3

0


2

4− 2
+ 1    =

 2

0

 √
3

0

2 √
4− 2

 =

 2

0


−2(4− 

2
)
12
=√3

=0


=
 2

0
(−2 + 4)  = 2

2
0

= 4

13.  = ( ) = (1 + 2 + 2)−1,  = −2(1 + 2 + 2)−2,  = −2(1 + 2 + 2)−2. Then

() =


2+2≤1


[−2(1 + 2 + 2)−2]

2
+ [−2(1 + 2 + 2)−2]

2
+ 1 

=


2+2≤1


4(2 + 2)(1 + 2 + 2)−4 + 1 

Converting to polar coordinates we have

() =
 2

0

 1

0


42(1 + 2)−4 + 1    =

 2

0

 1

0



42(1 + 2)−4 + 1 

= 2
 1

0



42(1 + 2)−4 + 1  ≈ 36258 using a calculator.

14.  = ( ) = cos(2 + 2),  = −2 sin(2 + 2),  = −2 sin(2 + 2).

() =


2+2≤1


42 sin2(2 + 2) + 42 sin2(2 + 2) + 1  =


2+2≤1


4(2 + 2) sin2(2 + 2) + 1 .

Converting to polar coordinates gives

() =
 2

0

 1

0


42 sin2(2) + 1    =

 2

0

 1

0



42 sin2(2) + 1 

= 2
 1

0



42 sin2(2) + 1  ≈ 41073 using a calculator.

15. (a) The midpoints of the four squares are


1
4
 1

4


,


1
4
 3

4


,


3
4
 1

4


, and


3
4
 3

4


. Here ( ) = 2 + 2, so the Midpoint Rule

gives

() =





[( )]2 + [( )]2 + 1  =





(2)2 + (2)2 + 1 

≈ 1
4


2


1
4

2
+

2


1
4

2
+ 1 +


2


1
4

2
+

2


3
4

2
+ 1

+


2


3
4

2
+

2


1
4

2
+ 1 +


2


3
4

2
+

2


3
4

2
+ 1


= 1

4


3
2

+ 2


7
2

+


11
2


≈ 18279

(b) A CAS estimates the integral to be () =





1 + (2)2 + (2)2  =

 1

0

 1

0


1 + 42 + 42   ≈ 18616.

This agrees with the Midpoint estimate only in the first decimal place.
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566 ¤ CHAPTER 15 MULTIPLE INTEGRALS

16. (a) With =  = 2 we have four squares with midpoints


1
2
 1

2


,


1
2
 3

2


,


3
2
 1

2


, and


3
2
 3

2


. Since  =  + 2 + 2, the

Midpoint Rule gives

() =





1 +






2

+






2

 =





1 + ( + 2)2 + (+ 2)2 

≈ 1


1 +


3
2

2
+


3
2

2
+


1 +


5
2

2
+


7
2

2
+


1 +


7
2

2
+


5
2

2
+


1 +


9
2

2
+


9
2

2
=
√

22
2

+
√

78
2

+
√

78
2

+
√

166
2
≈ 17.619

(b) Using a CAS, we have

() =





1 + ( + 2)2 + ( + 2)2  =

 2

0

 2

0


1 + ( + 2)2 + ( + 2)2   ≈ 177165. This is within

about 01 of the Midpoint Rule estimate.

17.  = 1 + 2+ 3 + 42, so

() =





1 +






2

+






2

 =

 4

1

 1

0


1 + 4 + (3 + 8)2   =

 4

1

 1

0


14 + 48 + 642  .

Using a CAS, we have
 4

1

 1

0


14 + 48 + 642   = 45

8

√
14 + 15

16
ln

11
√

5 + 3
√

14
√

5
− 15

16
ln

3
√

5 +
√

14
√

5


or 45
8

√
14 + 15

16
ln

11
√

5 + 3
√

70

3
√

5 +
√

70
.

18. ( ) = 1 + +  + 2 ⇒  = 1 + 2,  = 1. We use a

CAS to calculate the integral

() =
 1

−2

 1

−1


2
 + 2

 + 1  

=
 1

−2

 1

−1


(1 + 2)2 + 2   = 2

 1

−2

√
42 + 4+ 3 

and find that () = 3
√

11 + 2 sinh−1


3
√

2
2


or

 () = 3
√

11 + ln

10 + 3

√
11

.

19. ( ) = 1 + 22 ⇒  = 22,  = 22. We use a CAS (with precision reduced to five significant digits, to speed

up the calculation) to estimate the integral

() =

 1

−1

 √1−2

−
√

1−2


2
 + 2

 + 1   =

 1

−1

 √1−2

−
√

1−2


424 + 442 + 1  , and find that () ≈ 33213.

20. Let ( ) =
1 + 2

1 + 2
. Then  =

2

1 + 2
,

 =

1 + 2

− 2

(1 + 2)
2


= −2


1 + 2


(1 + 2)

2
. We use a CAS

to estimate
 1

−1

 1− ||
−(1− ||)


2
 + 2

 + 1   ≈ 26959. In

order to graph only the part of the surface above the square, we use

− (1− ||) ≤  ≤ 1− || as the -range in our plot command.
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SECTION 15.6 TRIPLE INTEGRALS ¤ 567

21. Here  = ( ) =  +  + , ( ) = , ( ) = , so

() =




√
2 + 2 + 1  =

√
2 + 2 + 1



 =

√
2 + 2 + 1().

22. Let  be the upper hemisphere. Then  = ( ) =

2 − 2 − 2, so

() =





[−(2 − 2 − 2)−12]2 + [−(2 − 2 − 2)−12]2 + 1 

=





2 + 2

2 − 2 − 2
+ 1  = lim

→−

 2

0

 

0


2

2 − 2
+ 1   

= lim
→−

 2

0

 

0

√
2 − 2

  = 2 lim
→−


−

2 − 2


0

= 2 lim
→−

−


2 − 2 − 


= 2(−)(−) = 22. Thus the surface area of the entire sphere is 42.

23. If we project the surface onto the -plane, then the surface lies “above” the disk 2 + 2 ≤ 25 in the -plane.

We have  = ( ) = 2 + 2 and, adapting Formula 2, the area of the surface is

() =


2+2≤25


[( )]2 + [( )]2 + 1  =


2+2≤25

√
42 + 42 + 1 

Converting to polar coordinates  =  cos ,  =  sin  we have

() =
 2

0

 5

0

√
42 + 1    =

 2

0

 5

0
(42 + 1)12  =



2
0


1
12

(42 + 1)32
5
0

= 
6


101

√
101− 1


24. First we find the area of the face of the surface that intersects the positive -axis. As in Exercise 23, we can project the face

onto the -plane, so the surface lies “above” the disk 2 + 2 ≤ 1. Then  = ( ) =
√

1− 2 and the area is

 () =


2+2≤1


[( )]2 + [( )]2 + 1  =


2+2≤1


0 +

 −√
1− 2

2

+ 1 

=


2+2≤1


2

1− 2
+ 1  =

 1

−1

 √1−2

−
√

1−2
1√

1− 2
 

= 4

 1

0

 √1−2

0

1√
1− 2

  [by the symmetry of the surface]

This integral is improper (when  = 1), so

 () = lim
→1−

4

 

0

 √1−2

0

1√
1− 2

 = lim
→1−

4

 

0

√
1− 2

√
1− 2

 = lim
→1−

4

 

0

 = lim
→1−

4 = 4.

Since the complete surface consists of four congruent faces, the total surface area is 4(4) = 16.

15.6 Triple Integrals

1.



2  =

 1

0

 3

0

 2

−1
2    =

 1

0

 3

0


1
2
22

=2

=−1
  =

 1

0

 3

0

3
2
2  

=
 1

0


1
2
3

=3

=0
 =

 1

0

27
2
 = 27

4
2
1
0

= 27
4
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568 ¤ CHAPTER 15 MULTIPLE INTEGRALS

2. There are six different possible orders of integration.




( + 2)  =
 2

0

 1

0

 3

0
( + 2)    =

 2

0

 1

0


 + 1

3
3
=3

=0
  =

 2

0

 1

0
(3 + 9)  

=
 2

0


3
2
2 + 9

=1

=0
 =

 2

0


3
2
+ 9


 =


3
4
2 + 9

2
0

= 21




( + 2)  =
 1

0

 2

0

 3

0
( + 2)    =

 1

0

 2

0


 + 1

3
3
=3

=0
 =

 1

0

 2

0
(3 + 9)  

=
 1

0


3
2
2 + 9

=2

=0
 =

 1

0
(6 + 18)  =


32 + 18

1
0

= 21




( + 2)  =
 2

0

 3

0

 1

0
( + 2)    =

 2

0

 3

0


1
2
2 + 2

=1

=0
  =

 2

0

 3

0


1
2
+ 2


 

=
 2

0


1
2
 + 1

3
3
=3

=0
 =

 2

0


3
2
+ 9


 =


3
4
2 + 9

2
0

= 21




( + 2)  =
 3

0

 2

0

 1

0
( + 2)    =

 3

0

 2

0


1
2
2 + 2

=1

=0
  =

 3

0

 2

0


1
2
+ 2


 

=
 3

0


1
4
2 + 2

=2

=0
 =

 3

0


1 + 22


 =


 + 2

3
3
3
0

= 21




( + 2)  =
 1

0

 3

0

 2

0
( + 2)    =

 1

0

 3

0


1
2
2 + 2

=2

=0
  =

 1

0

 3

0


2 + 22


 

=
 1

0


2 + 2

3
3
=3

=0
 =

 1

0
(6 + 18)  =


32 + 18

1
0

= 21




( + 2)  =
 3

0

 1

0

 2

0
( + 2)    =

 3

0

 1

0


1
2
2 + 2

=2

=0
  =

 3

0

 1

0


2 + 22


 

=
 3

0


2 + 22

=1

=0
 =

 3

0


1 + 22


 =


 + 2

3
3
3
0

= 21

3.
 2

0

 2
0

 −
0

(2− )    =
 2

0

 2
0


2 − 

=−
=0

  =
 2

0

 2
0


( − )2 − ( − )


 

=
 2

0

 2
0


2 − 


  =

 2

0


2 − 1

2
2
=2
=0

 =
 2

0


4 − 1

2
5



=


1
5
5 − 1

12
6
2
0

= 32
5
− 64

12
= 16

15

4.
 1

0

 2



 +

0
6    =

 1

0

 2




6

=+
=0

  =
 1

0

 2


6( + )   =

 1

0

 2


(62 + 62) 

=
 1

0


23 + 322

=2

=
 =

 1

0
234  = 23

5
5
1
0

= 23
5

5.
 2

1

 2

0

 ln 

0
−    =

 2

1

 2

0

−−=ln 

=0
 =

 2

1

 2

0

−− ln + 0

 

=
 2

1

 2

0
(−1 + )   =

 2

1

−+ 1
2
2
=2

=0


=
 2

1

−2 + 22

 =

−2 + 2
3
3
2
1

= −4 + 16
3

+ 1− 2
3

= 5
3

6.

 1

0

 1

0

 √1−2

0



 + 1
  =

 1

0

 1

0




 + 1
· 
=

√
1−2

=0

  =

 1

0

 1

0


√

1− 2

 + 1
 

=

 1

0


−1

3
(1− 2)32

 + 1

=1

=0

 =
1

3

 1

0

1

 + 1
 =

1

3
ln( + 1)

1
0

= 1
3
(ln 2− ln 1) = 1

3
ln 2
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SECTION 15.6 TRIPLE INTEGRALS ¤ 569

7.
 
0

 1

0

√1−2
0

 sin   =
 
0

 1

0


 sin

=√1−2
=0

  =
 
0

 1

0

√

1− 2 sin 

=
 
0

sin

− 1

3
(1− 2)32

=1

=0
 =

 
0

1
3

sin = − 1
3

cos

0

= − 1
3
(−1− 1) = 2

3

8.
 1

0

 1

0

 2−2−2
0

    =
 1

0

 1

0




=2−2−2
=0

  =
 1

0

 1

0
(2−

2−2 − )  

=
 1

0


− 1

2
2−

2−2 − 1
2
2

=1

=0
 =

 1

0


− 1

2
1−

2 − 1
2
 + 1

2
2−

2



=


1
4
1−

2 − 1
4
2 − 1

4
2−

2
1
0

= 1
4
− 1

4
− 1

4
− 1

4
+ 0 + 1

4
2 = 1

4
2 − 1

2


9.



  =

 3

0

 
0

 +
−     =

 3

0

 
0



=+

=−   =
 3

0

 
0

22  

=
 3

0


2
3
3
=
=0

 =
 3

0

2
3
3  = 1

6
4
3
0

= 81
6

= 27
2

10.



  =

 1

0

 1



 
0

   =
 1

0

 1






=
=0



=
 1

0

 1


( − )  =

 1

0


 − 

=1

=
 =

 1

0


 −  −  + 2




=


1
2
2 − 1

2
2 − ( − 1) + 1

3
3
1
0

[integrate by parts]

= 1
2
− 1

2
+ 1

3
− 1 = 1

2
− 7

6

11.






2 + 2
 =

 4

1

 4



 

0



2 + 2
  =

 4

1

 4




 · 1


tan

−1 



=

=0

 

=
 4

1

 4




tan−1(1)− tan−1(0)


  =

 4

1

 4





4
− 0

  = 

4

 4

1



=4

=


= 
4

 4

1
(4− )  = 

4


4 − 1

2
2
4
1

= 
4


16− 8− 4 + 1

2


= 9

8

12. Here  = {(  ) | 0 ≤  ≤  0 ≤  ≤  −  0 ≤  ≤ }, so



sin   =

 
0

 −
0

 
0

sin     =
 
0

 −
0


 sin 

=
=0

  =
 
0

 −
0

 sin   

=
 
0

− cos 
=−
=0

 =
 
0

[− cos( − ) + ] 

=

 sin( − )− cos( − ) + 1

2
2

0

[integrate by parts]

= 0− 1 + 1
2
2 − 0− 1− 0 = 1

2
2 − 2

13. Here  = {(  ) | 0 ≤  ≤ 1 0 ≤  ≤ √ 0 ≤  ≤ 1 + + }, so



6  =

 1

0

√
0

 1++

0
6    =

 1

0

√
0


6

=1++

=0
 

=
 1

0

√
0

6(1 + + )   =
 1

0


32 + 322 + 23

=√
=0



=
 1

0
(32 + 33 + 252)  =


3 + 3

4
4 + 4

7
72

1
0

= 65
28
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570 ¤ CHAPTER 15 MULTIPLE INTEGRALS

14. Here  =

(  ) | −1 ≤  ≤ 1 0 ≤  ≤ 2 2 − 1 ≤  ≤ 1− 2


.

Thus,


(− )  =
 1

−1

 2

0

 1−2
2−1

(− )   

=
 1

−1

 2

0
(− )(1− 2 − (2 − 1))  

=
 1

−1

 2

0
(2− 23 − 2 + 22)  

=
 1

−1


2 − 23 − 2 + 22

=2

=0


=
 1

−1
(4− 43 − 4 + 42) 

=

22 − 4 − 4+ 4

3
3
1
−1

= − 5
3
− 11

3
= −16

3

15. Here  = {(  ) | 0 ≤  ≤ 2 0 ≤  ≤ 2−  0 ≤  ≤ 2− − }.
Thus,


2  =

 2

0

 2−
0

 2−−
0

2   

=
 2

0

 2−
0

2(2− − )  

=
 2

0

 2−
0

[(2− )2 − 3]  

=
 2

0


(2− )


1
3
3
− 1

4
4
=2−
=0



=
 2

0


1
3
(2− )4 − 1

4
(2− )4


 =

 2

0
1
12

(2− )4 

=


1
12

− 1
5


(2− )5

2
0

= − 1
60

(0− 32) = 8
15

16. The projection of  onto the -plane is the triangle bounded by the lines

 = ,  = 0, and  = 1. Then

 = {(  ) | 0 ≤  ≤ 1  ≤  ≤ 1 0 ≤  ≤  − }, and

  =

 1

0

 1



 −
0

    =
 1

0

 1


( − )  

=
 1

0

 1


(2 − 2)   =

 1

0


1
3
3 − 1

2
22

=1

=


=
 1

0


1
3
− 1

2
2 − 1

3
4 + 1

2
4



=


1
6
2 − 1

6
3 + 1

30
5
1
0

= 1
6
− 1

6
+ 1

30
= 1

30

17. The projection of  onto the -plane is the disk 2 + 2 ≤ 1. Using polar

coordinates  =  cos  and  =  sin , we get

 =




 4

42 +42



 = 1

2





42 − (42 + 42)2




= 8
 2

0

 1

0
(1− 4)    = 8

 2

0

 1

0
( − 5) 

= 8(2)


1
2
2 − 1

6
6
1
0

= 16
3

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 15.6 TRIPLE INTEGRALS ¤ 571

18.  1

0

 3

3

√9− 2

0
    =

 1

0

 3

3

1
2
(9− 2)  

=
 1

0


9
2
 − 1

6
3
= 3

= 3


=
 1

0


9− 27

2
+ 9

2
3



=

9− 27

4
2 + 9

8
4
1
0

= 27
8

19. The plane 2+  +  = 4 intersects the -plane when

2+  + 0 = 4 ⇒  = 4− 2, so

 = {(  ) | 0 ≤  ≤ 2, 0 ≤  ≤ 4− 2, 0 ≤  ≤ 4− 2− } and

=
 2

0

 4−2

0

 4−2−
0

   =
 2

0

 4−2

0
(4− 2− )  

=
 2

0


4 − 2 − 1

2
2
=4−2

=0


=
 2

0


4(4− 2)− 2(4− 2)− 1

2
(4− 2)2




=
 2

0
(22 − 8 + 8)  =


2
3
3 − 42 + 8

2
0

= 16
3

20. The paraboloids intersect when 2 + 2 = 8− 2 − 2 ⇔ 2 + 2 = 4, thus the intersection is the circle 2 + 2 = 4,

 = 4. The projection of  onto the -plane is the disk 2 + 2 ≤ 4, so

 =

(  ) | 2 + 2 ≤  ≤ 8− 2 − 2 2 + 2 ≤ 4


. Let

 =

( ) | 2 + 2 ≤ 4


. Then using polar coordinates  =  cos 

and  =  sin , we have

 =



 =




 8−2−2
2+2



 =




(8− 22 − 22) 

=
 2

0

 2

0
(8− 22)    =

 2

0

 2

0
(8 − 23) 

=


2
0


42 − 1

2
4
2
0

= 2(16− 8) = 16

21. The plane  +  = 1 intersects the -plane in the line  = 1, so

 =

(  ) | −1 ≤  ≤ 1, 2 ≤  ≤ 1, 0 ≤  ≤ 1− 


and

 =



 =

 1

−1

 1

2

 1−
0

   =
 1

−1

 1

2
(1− )  

=
 1

−1


 − 1

2
2
=1

=2
 =

 1

−1


1
2
− 2 + 1

2
4



=


1
2
− 1

3
3 + 1

10
5
1
−1

= 1
2
− 1

3
+ 1

10
+ 1

2
− 1

3
+ 1

10
= 8

15
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572 ¤ CHAPTER 15 MULTIPLE INTEGRALS

22. Here  =

(  ) | −1 ≤  ≤ 4−  2 + 2 ≤ 4


, so

 =

 2

−2

 √4−2

−
√

4−2

 4−

−1

   =

 2

−2

 √4−2

−
√

4−2
(4−  + 1)  

=

 2

−2


5 − 1

2

2
=√4−2

=−
√

4−2
 =

 2

−2

10


4− 2 

= 10


2

√
4− 2 + 2 sin−1



2

2
−2


using trigonometric substitution or
Formula 30 in the Table of Integrals


= 10


2 sin−1(1)− 2 sin−1(−1)


= 20



2
− −

2


= 20

Alternatively, use polar coordinates to evaluate the double integral:

 2

−2

 √4−2

−
√

4−2
(5− )  =

 2

0

 2

0

(5−  sin )   

=
 2

0


5
2
2 − 1

3
3 sin 

=2

=0


=
 2

0


10− 8

3
sin 




= 10 + 8
3

cos 
2
0

= 20

23. (a) The wedge can be described as the region

 =

(  ) | 2 + 2 ≤ 1, 0 ≤  ≤ 1, 0 ≤  ≤ 


=

(  ) | 0 ≤  ≤ 1, 0 ≤  ≤ , 0 ≤  ≤


1− 2


So the integral expressing the volume of the wedge is


 =

 1

0

 
0

√1− 2

0
  .

(b) A CAS gives
 1

0

 
0

√1− 2

0
   = 

4
− 1

3
.

(Or use Formulas 30 and 87 from the Table of Integrals.)

24. (a) Divide  into 8 cubes of size∆ = 8. With (  ) =

2 + 2 + 2, the Midpoint Rule gives





2 + 2 + 2  ≈

2
=1

2
= 1

2
=1



   


∆

= 8[(1 1 1) + (1 1 3) + (1 3 1) + (1 3 3) + (3 1 1)

+ (3 1 3) + (3 3 1) + (3 3 3)]

≈ 23964

(b) Using a CAS we have





2 + 2 + 2  =

 4

0

 4

0

 4

0


2 + 2 + 2    ≈ 24591. This differs from the

estimate in part (a) by about 2.5%.
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SECTION 15.6 TRIPLE INTEGRALS ¤ 573

25. Here (  ) = cos() and∆ = 1
2
· 1

2
· 1

2
= 1

8
, so the Midpoint Rule gives



(  )  ≈


=1


=1


=1



   


∆

= 1
8





1
4
 1

4
 1

4


+ 


1
4
 1

4
 3

4


+ 


1
4
 3

4
 1

4


+ 


1
4
 3

4
 3

4


+ 


3
4
 1

4
 1

4


+ 


3
4
 1

4
 3

4


+ 


3
4
 3

4
 1

4


+ 


3
4
 3

4
 3

4


= 1

8


cos 1

64
+ cos 3

64
+ cos 3

64
+ cos 9

64
+ cos 3

64
+ cos 9

64
+ cos 9

64
+ cos 27

64

 ≈ 0985

26. Here (  ) =
√
  and∆ = 2 · 1

2
· 1 = 1, so the Midpoint Rule gives



(  )  ≈


=1


=1


=1



   


∆

= 1



1 1

4
 1

2


+ 


1 1

4
 3

2


+ 


1 3

4
 1

2


+ 


1 3

4
 3

2


+ 


3 1

4
 1

2


+ 


3 1

4
 3

2


+ 


3 3

4
 1

2


+ 


3 3

4
 3

2


= 18 + 38 + 38 + 98 +

√
338 +

√
398 +

√
398 +

√
3278 ≈ 70932

27.  = {(  ) | 0 ≤  ≤ 1, 0 ≤  ≤ 1− , 0 ≤  ≤ 2− 2},
the solid bounded by the three coordinate planes and the planes

 = 1− ,  = 2− 2.

28.  =

(  ) | 0 ≤  ≤ 2 0 ≤  ≤ 2−  0 ≤  ≤ 4− 2




the solid bounded by the three coordinate planes, the plane  = 2− ,

and the cylindrical surface  = 4− 2.

29.

[continued]
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574 ¤ CHAPTER 15 MULTIPLE INTEGRALS

If1,2,3 are the projections of  on the -, -, and -planes, then

1 =

( ) | −2 ≤  ≤ 2, 0 ≤  ≤ 4− 2


=

( ) | 0 ≤  ≤ 4, −√4−  ≤  ≤ √4− 


2 =


( ) | 0 ≤  ≤ 4, − 1

2

√
4−  ≤  ≤ 1

2

√
4− 


=

( ) | −1 ≤  ≤ 1, 0 ≤  ≤ 4− 42


3 =


( ) | 2 + 42 ≤ 4


Therefore

 =

(  ) | −2 ≤  ≤ 2, 0 ≤  ≤ 4− 2, − 1

2


4− 2 −  ≤  ≤ 1

2


4− 2 − 


=

(  ) | 0 ≤  ≤ 4, −√4−  ≤  ≤ √4− , − 1

2


4− 2 −  ≤  ≤ 1

2


4− 2 − 


=

(  ) | −1 ≤  ≤ 1, 0 ≤  ≤ 4− 42, −


4−  − 42 ≤  ≤


4−  − 42


=

(  ) | 0 ≤  ≤ 4, − 1

2

√
4−  ≤  ≤ 1

2

√
4− , −


4−  − 42 ≤  ≤


4−  − 42


=

(  ) | −2 ≤  ≤ 2, − 1

2

√
4− 2 ≤  ≤ 1

2

√
4− 2, 0 ≤  ≤ 4− 2 − 42


=

(  ) | −1 ≤  ≤ 1, −√4− 42 ≤  ≤ √4− 42, 0 ≤  ≤ 4− 2 − 42


Then


(  )  =

 2

−2

 4−2
0

√4−2−2
−
√

4−2−2
(  )    =

 4

0

√4−
−√4−

√4−2−2
−
√

4−2−2
(  )  

=
 1

−1

 4−42

0

√4−−42

−
√

4−−42
(  )    =

 4

0

√4−2
−√4−2

√4−−42

−
√

4−−42
(  )   

=
 2

−2

√4−22
−
√

4−22

 4−2−42

0
(  )    =

 1

−1

√4−42

−
√

4−42

 4−2−42

0
(  )  

30.
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SECTION 15.6 TRIPLE INTEGRALS ¤ 575

If1,2,3 are the projections of  on the -, -, and -planes, then

1 = {( ) | −2 ≤  ≤ 2, − 3 ≤  ≤ 3}
2 =


( ) | 2 + 2 ≤ 9


3 = {( ) | −2 ≤  ≤ 2, − 3 ≤  ≤ 3}

Therefore

 =

(  ) | −2 ≤  ≤ 2, − 3 ≤  ≤ 3, −


9− 2 ≤  ≤


9− 2


=

(  ) | −3 ≤  ≤ 3, −


9− 2 ≤  ≤


9− 2, − 2 ≤  ≤ 2


=

(  ) | −3 ≤  ≤ 3, −√9− 2 ≤  ≤ √9− 2, − 2 ≤  ≤ 2


=

(  ) | −2 ≤  ≤ 2, − 3 ≤  ≤ 3, −√9− 2 ≤  ≤ √9− 2


and 


(  )  =

 2

−2

 3

−3

√9−2

−
√

9−2
(  )    =

 3

−3

 2

−2

√9−2

−
√

9−2
(  )   

=
 3

−3

√9−2

−
√

9−2
 2

−2
(  )    =

 3

−3

√9−2

−
√

9−2
 2

−2
(  )   

=
 2

−2

 3

−3

√9−2

−
√

9−2
(  )    =

 3

−3

 2

−2

√9−2

−
√

9−2
(  )  

31.

If1,2, and3 are the projections of  on the -, -, and -planes, then

1 =

( ) | −2 ≤  ≤ 2 2 ≤  ≤ 4


=

( ) | 0 ≤  ≤ 4−


 ≤  ≤




,

2 =

( ) | 0 ≤  ≤ 4 0 ≤  ≤ 2− 1

2



=

( ) | 0 ≤  ≤ 2 0 ≤  ≤ 4− 2


, and

3 =

( ) | −2 ≤  ≤ 2 0 ≤  ≤ 2− 1

2
2


=

( ) | 0 ≤  ≤ 2−√4− 2 ≤  ≤ √4− 2


[continued]
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576 ¤ CHAPTER 15 MULTIPLE INTEGRALS

Therefore  =

(  ) | −2 ≤  ≤ 2, 2 ≤  ≤ 4, 0 ≤  ≤ 2− 1

2



=

(  ) | 0 ≤  ≤ 4, −


 ≤  ≤


, 0 ≤  ≤ 2− 1

2



=

(  ) | 0 ≤  ≤ 4, 0 ≤  ≤ 2− 1

2
, −


 ≤  ≤





=

(  ) | 0 ≤  ≤ 2, 0 ≤  ≤ 4− 2, −


 ≤  ≤





=

(  ) | −2 ≤  ≤ 2, 0 ≤  ≤ 2− 1

2
2, 2 ≤  ≤ 4− 2


=

(  ) | 0 ≤  ≤ 2, −√4− 2 ≤  ≤ √4− 2, 2 ≤  ≤ 4− 2


Then



(  )  =

 2

−2

 4

2

 2−2
0

(  )    =
 4

0

√
−√

 2−2
0

(  )   

=
 4

0

 2−2
0

√
−√ (  )   =

 2

0

 4−2

0

√
−√ (  )  

=
 2

−2

 2− 22

0

 4−2

2
(  )    =

 2

0

√4−2

−√4−2

 4−2

2
(  )   

32.

If1,2, and3 are the projections of  on the -, -, and -planes, then

1 = {( ) | 0 ≤  ≤ 2, 2−  ≤  ≤ 2} = {( ) | 0 ≤  ≤ 2, 2−  ≤  ≤ 2} ,
2 =


( ) | 0 ≤  ≤ 2, 0 ≤  ≤ 1

2



= {( ) | 0 ≤  ≤ 1, 2 ≤  ≤ 2} , and
3 =


( ) | 0 ≤  ≤ 2, 0 ≤  ≤ 1

2



= {( ) | 0 ≤  ≤ 1, 2 ≤  ≤ 2}

Therefore  =

(  ) | 0 ≤  ≤ 2, 2−  ≤  ≤ 2, 0 ≤  ≤ 1

2
(+  − 2)


=

(  ) | 0 ≤  ≤ 2, 2−  ≤  ≤ 2, 0 ≤  ≤ 1

2
(+  − 2)


=

(  ) | 0 ≤  ≤ 2, 0 ≤  ≤ 1

2
, 2−  + 2 ≤  ≤ 2


= {(  ) | 0 ≤  ≤ 1, 2 ≤  ≤ 2, 2−  + 2 ≤  ≤ 2}
=

(  ) | 0 ≤  ≤ 2, 0 ≤  ≤ 1

2
, 2−  + 2 ≤  ≤ 2


= {(  ) | 0 ≤  ≤ 1, 2 ≤  ≤ 2, 2− + 2 ≤  ≤ 2}
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SECTION 15.6 TRIPLE INTEGRALS ¤ 577

Then



(  )  =

 2

0

 2

2−
 (+−2)2

0
(  )    =

 2

0

 2

2−
 (+−2)2

0
(  )   

=
 2

0

 2
0

 2

2−+2
(  )    =

 1

0

 2

2

 2

2−+2
(  )   

=
 2

0

 2
0

 2

2−+2
(  )    =

 1

0

 2

2

 2

2−+2
(  )   

33.

The diagrams show the projections

of  onto the -, -, and -planes.

Therefore

 1

0

 1√


 1− 

0
(  )   =

 1

0

 2
0

 1−
0

(  )   =
 1

0

 1−
0

 2
0

(  )   

=
 1

0

 1−
0

 2
0

(  )   =
 1

0

 1−√
0

 1−√


(  )   

=
 1

0

 (1−)2
0

 1−√


(  )   

34.

The projections of  onto the

- and -planes are as in the

first two diagrams and so

 1

0

 1−2
0

 1−

0
(  )   =

 1

0

√1−
0

 1−
0

(  )   

=
 1

0

 1−
0

 1−2
0

(  )    =
 1

0

 1−
0

 1−2
0

(  )   

Now the surface  = 1− 2 intersects the plane  = 1−  in a curve whose projection in the -plane is  = 1− (1− )2

or  = 2 − 2. So we must split up the projection of  on the -plane into two regions as in the third diagram. For ( )

in 1, 0 ≤  ≤ 1−  and for ( ) in 2, 0 ≤  ≤ √1− , and so the given integral is also equal to 1

0

 1−√1−
0

√1−
0

(  )   +
 1

0

 1

1−√1−
 1−
0

(  )   

=
 1

0

 2−2
0

 1−
0

(  )    +
 1

0

 1

2−2
√1−
0

(  )   

35.

 1

0

 1



 
0
(  )    =



(  )  where  = {(  ) | 0 ≤  ≤ ,  ≤  ≤ 1, 0 ≤  ≤ 1}.

[continued]
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578 ¤ CHAPTER 15 MULTIPLE INTEGRALS

If1,2, and3 are the projections of  onto the -, - and -planes then

1 = {( ) | 0 ≤  ≤ 1,  ≤  ≤ 1} = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ },

2 = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ } = {( ) | 0 ≤  ≤ 1,  ≤  ≤ 1}, and
3 = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ } = {( ) | 0 ≤  ≤ 1,  ≤  ≤ 1}.

Thus we also have

 = {(  ) | 0 ≤  ≤ 1, 0 ≤  ≤ , 0 ≤  ≤ } = {(  ) | 0 ≤  ≤ 1, 0 ≤  ≤ ,  ≤  ≤ 1}
= {(  ) | 0 ≤  ≤ 1,  ≤  ≤ 1,  ≤  ≤ 1} = {(  ) | 0 ≤  ≤ 1, 0 ≤  ≤ ,  ≤  ≤ }
= {(  ) | 0 ≤  ≤ 1,  ≤  ≤ 1,  ≤  ≤ } .

Then  1

0

 1



 
0
(  )   =

 1

0

 
0

 
0
(  )    =

 1

0

 
0

 1


(  )  

=
 1

0

 1



 1


(  )    =

 1

0

 
0

 

(  )   

=
 1

0

 1



 

(  )   

36.

 1

0

 1



 
0
(  )   =



(  )  where  = {(  ) | 0 ≤  ≤ ,  ≤  ≤ 1, 0 ≤  ≤ 1}.

Notice that  is bounded below by two different surfaces, so we must split the projection of  onto the -plane into two

regions as in the second diagram. If1,2, and3 are the projections of  on the -, - and -planes then

1 = 1 ∪2 = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ } ∪ {( ) | 0 ≤  ≤ 1,  ≤  ≤ 1}
= {( ) | 0 ≤  ≤ 1,  ≤  ≤ 1} ∪ {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ },

2 = {( ) | 0 ≤  ≤ 1,  ≤  ≤ 1} = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ }, and
3 = {( ) | 0 ≤  ≤ 1,  ≤  ≤ 1} = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ }.

Thus we also have

 = {(  ) | 0 ≤  ≤ 1, 0 ≤  ≤ ,  ≤  ≤ 1} ∪ {(  ) | 0 ≤  ≤ 1,  ≤  ≤ 1,  ≤  ≤ 1}
= {(  ) | 0 ≤  ≤ 1,  ≤  ≤ 1,  ≤  ≤ 1} ∪ {(  ) | 0 ≤  ≤ 1, 0 ≤  ≤ ,  ≤  ≤ 1}
= {(  ) | 0 ≤  ≤ 1, 0 ≤  ≤ , 0 ≤  ≤ } = {(  ) | 0 ≤  ≤ 1,  ≤  ≤ 1, 0 ≤  ≤ }
= {(  ) | 0 ≤  ≤ 1, 0 ≤  ≤ , 0 ≤  ≤ } .

Then  1

0

 1



 
0
(  )    =

 1

0

 
0

 1


(  )   +

 1

0

 1



 1


(  )   

=
 1

0

 1



 1


(  )    +

 1

0

 
0

 1


(  )   

=
 1

0

 
0

 
0
(  )   =

 1

0

 1



 
0
(  )   

=
 1

0

 
0

 
0
(  )   
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SECTION 15.6 TRIPLE INTEGRALS ¤ 579

37. The region  is the solid bounded by a circular cylinder of radius 2 with axis the -axis for −2 ≤  ≤ 2. We can write

(4 + 522)  =




4  +



522  , but (  ) = 522 is an odd function with

respect to . Since  is symmetrical about the -plane, we have



522  = 0. Thus


(4 + 522)  =




4  = 4 ·  () = 4 · (2)2(4) = 64.

38. We can write



(3 + sin  + 3)  =



3  +




sin   +



3  . But 3 is an odd function with respect

to  and the region  is symmetric about the -plane, so



3  = 0. Similarly, sin  is an odd

function with respect to  and  is symmetric about the -plane, so



sin   = 0. Thus


(3 + sin  + 3)  =




3  = 3 ·  () = 3 · 4
3
(1)3 = 4.

39. The projection of  onto the -plane is the disk =

( ) | 2 + 2 ≤ 1


.

 =



(  )  =




 1−2−2
0

3 

 =




3(1− 2 − 2) 

= 3
 1

0

 2

0
(1− 2)    = 3

 2

0

 1

0
( − 3) 

= 3


2
0


1
2
2 − 1

4
4
1
0

= 3 (2)


1
2
− 1

4


= 3

2


 =



(  )  =




 1−2−2
0

3

 =




3(1− 2 − 2) 

= 3
 1

0

 2

0
( cos )(1− 2)    = 3

 2

0
cos  

 1

0
(2 − 4) 

= 3

sin 

2
0


1
3
3 − 1

5
5
1
0

= 3 (0)


1
3
− 1

5


= 0

 =



(  )  =




 1−2−2
0

3 

 =




3(1− 2 − 2) 

= 3
 1

0

 2

0
( sin )(1− 2)    = 3

 2

0
sin  

 1

0
(2 − 4) 

= 3
− cos 

2
0


1
3
3 − 1

5
5
1
0

= 3 (0)


1
3
− 1

5


= 0

 =



(  )  =




 1−2−2
0

3 

 =





3
2
2
=1−2−2
=0



= 3
2




(1− 2 − 2)2  = 3
2

 1

0

 2

0
(1− 2)2   

= 3
2

 2

0

 1

0
( − 23 + 5)  = 3

2



2
0


1
2
2 − 1

2
4 + 1

6
6
1
0

= 3
2

(2)


1
2
− 1

2
+ 1

6


= 1

2


Thus the mass is 3
2
 and the center of mass is (  ) =















=


0 0

1

3


.

40.  =
 1

−1

 1−2
0

 1−
0

4   = 4
 1

−1

 1−2
0

(1− )   = 4
 1

−1


 − 1

2
2
=1−2
=0

 = 2
 1

−1
(1− 4)  = 16

5
,

 =
 1

−1

 1−2
0

 1−
0

4  = 2
 1

−1

 1−2
0

(1− )2   = 2
 1

−1

− 1
3
(1− )3

=1−2
=0



= 2
3

 1

−1


1− 6


 =


4
3


6
7


= 24

21

[continued]
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580 ¤ CHAPTER 15 MULTIPLE INTEGRALS

 =
 1

−1

 1−2
0

 1−
0

4    =
 1

−1

 1−2
0

4(1− )  

=
 1

−1


4(1− 2)− 2(1− 2)2


 =

 1

−1
(2 − 25)  = 0 [the integrand is odd]

 =
 1

−1

 1−2
0

 1−
0

4    =
 1

−1

 1−2
0

(4 − 42)   = 2
 1

−1


(1− 2)2 − 2

3
(1− 2)3




= 2
 1

−1


1
3
− 4 + 2

3
6

 =


4
3
 − 4

5
5 + 8

21
7
1
0

= 96
105

= 32
35

Thus, (  ) =


5
14
 0 2

7


41.  =

 
0

 
0

 
0

(2 + 2 + 2)   =
 
0

 
0


1
3
3 + 2 + 2

=

=0
  =

 
0

 
0


1
3
3 + 2 + 2


 

=
 
0


1
3
3 + 1

3
3 + 2

=
=0

 =
 
0


2
3
4 + 22


 =


2
3
4 + 1

3
23


0

= 2
3
5 + 1

3
5 = 5

 =
 
0

 
0

 
0


3 + (2 + 2)


  =

 
0

 
0


1
4
4 + 1

2
2(2 + 2)


 

=
 
0


1
4
5 + 1

6
5 + 1

2
32


 = 1

4
6 + 1

3
6 = 7

12
6 =  =  by symmetry of  and (  )

Hence (  ) =


7
12
 7

12
 7

12


.

42.  =
 1

0

 1−
0

 1−−
0

    =
 1

0

 1−
0


(1− ) − 2


 

=
 1

0


1
2
(1− )3 − 1

3
(1− )3


 = 1

6

 1

0
(1− )3  = 1

24

 =
 1

0

 1−
0

 1−−
0

    =
 1

0

 1−
0


(− 2) − 2


 

=
 1

0


1
2
(1− )3 − 1

3
(1− )3


 = 1

6

 1

0


− 32 + 33 − 4


 = 1

6


1
2
− 1 + 3

4
− 1

5


= 1

120

 =
 1

0

 1−
0

 1−−
0

2    =
 1

0

 1−
0


(1− )2 − 3


 

=
 1

0


1
3
(1− )4 − 1

4
(1− )4


 = 1

12

−1
5
(1− )5

1
0

= 1
60

 =
 1

0

 1−
0

 1−−
0

    =
 1

0

 1−
0


1
2
(1− − )2


 

= 1
2

 1

0

 1−
0


(1− )2 − 2(1− )2 + 3


  = 1

2

 1

0


1
2
(1− )4 − 2

3
(1− )4 + 1

4
(1− )4




= 1
24

 1

0
(1− )4  = − 1

24


1
5
(1− )5

1
0

= 1
120

Hence (  ) =


1
5
 2

5
 1

5


.

43.  =
 
0

 
0

 
0
(2 + 2)    = 

 
0

 
0


2 + 1

3
3

  = 

 
0

2
3
4  = 2

3
5

By symmetry,  =  =  = 2
3
5.

44.  =
 2
−2

 2
−2

 2
−2 (

2 + 2)    = 
 2
−2

 2
−2(

2 + 2)  

= 
 2
−2


1
3
3 + 2

=2
=−2  = 

 2
−2


1
12
3 + 2


 = 


1
12
3 + 1

3
3
2
−2

= 


1
12
3+ 1

12
3


= 1
12
(2 + 2)

By symmetry,  = 1
12
(2 + 2) and  = 1

12
(2 + 2).
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SECTION 15.6 TRIPLE INTEGRALS ¤ 581

45.  =



(2 + 2) (  )  =


2+2≤2

 
0
(2 + 2) 


 =


2+2≤2

(2 + 2)

= 
 2

0

 
0

(2)    = 
 2

0

 
0
3  = (2)


1
4
4

0

= 2 · 1
4
4 = 1

2
4

46.  =



(2 + 2)(  )  =


2+2≤2

 √
2+2

(2 + 2) 



=


2+2≤2
(2 + 2)


−


2 + 2


 = 

 2

0

 
0
2(− )   

= 
 2

0

 
0


3− 4


 = (2)


1
4
4− 1

5
5

0

= 2


1
4
5 − 1

5
5


= 1
10
5

47. (a)  =
 1

−1

 1

2

 1−
0


2 + 2   

(b) (  ) where  = 1


 1

−1

 1

2

 1−
0



2 + 2   ,  = 1



 1

−1

 1

2

 1−
0



2 + 2   , and

 = 1


 1

−1

 1

2

 1−
0



2 + 2   .

(c)  =
 1

−1

 1

2

 1−
0

(2 + 2)

2 + 2    =

 1

−1

 1

2

 1−
0

(2 + 2)32   

48. (a)  =
 1

−1

√1−2

−
√

1−2
√1−2−2
0


2 + 2 + 2  

(b) (  ) where  = −1
 1

−1

√1−2

−
√

1− 2

√1−2−2
0



2 + 2 + 2  ,

 = −1
 1

−1

√1−2

−
√

1−2
√1−2−2
0



2 + 2 + 2  ,

 = −1
 1

−1

√1−2

−
√

1−2
√1−2−2
0



2 + 2 + 2   

(c)  =
 1

−1

√1−2

−
√

1−2
√1−2−2
0

(2 + 2)(1 + +  + )   

49. (a)  =
 1

0

√1−2
0

 
0

(1 +  +  + )    = 3
32

+ 11
24

(b) (  ) =


−1

 1

0

√1−2
0

 
0
(1 + +  + )   

−1
 1

0

√1−2
0

 
0
(1 +  +  + )   

−1
 1

0

√1−2
0

 
0
(1 + +  + )   



=


28

9 + 44

30 + 128

45 + 220


45 + 208

135 + 660



(c)  =

 1

0

 √1−2

0

 

0

(
2
+ 

2
)(1 + +  + )    =

68 + 15

240

50. (a)  =
 1

0

 3

3

√9−2
0

(2 + 2)    = 56
5

= 112
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582 ¤ CHAPTER 15 MULTIPLE INTEGRALS

(b) (  ) where  = −1
 1

0

 3

3

√9−2
0

(2 + 2)    ≈ 0375,

 = −1
 1

0

 3

3

√9−2
0

(2 + 2)    = 45
64
≈ 2209,

 = −1
 1

0

 3

3

√9−2
0

(2 + 2)    = 15
16

= 09375.

(c)  =
 1

0

 3

3

√9−2
0

(2 + 2)2    = 10,464
175

≈ 5979

51. (a) (  ) is a joint density function, so we know


R3 (  )  = 1. Here we have
R3 (  )  =

∞
−∞

∞
−∞

∞
−∞ (  )    =

 2

0

 2

0

 2

0
   

= 
 2

0


 2

0
 

 2

0
  = 


1
2
2
2
0


1
2
2
2
0


1
2
2
2
0

= 8

Then we must have 8 = 1 ⇒  = 1
8
.

(b)  ( ≤ 1  ≤ 1  ≤ 1) =
 1

−∞
 1

−∞
 1

−∞ (  )    =
 1

0

 1

0

 1

0

1
8
   

= 1
8

 1

0


 1

0
 

 1

0
  = 1

8


1
2
2
1
0


1
2
2
1
0


1
2
2
1
0

= 1
8


1
2

3
= 1

64

(c)  ( +  + ≤ 1) =  (() ∈ ) where  is the solid region in the first octant bounded by the coordinate planes

and the plane  +  +  = 1. The plane +  +  = 1 meets the -plane in the line +  = 1, so we have

 ( +  +  ≤ 1) =



(  )  =

 1

0

 1−
0

 1−−
0

1
8
   

= 1
8

 1

0

 1−
0




1
2
2
=1−−
=0

  = 1
16

 1

0

 1−
0

(1− − )2  

= 1
16

 1

0

 1−
0

[(3 − 22 + ) + (22 − 2)2 + 3]  

= 1
16

 1

0


(3 − 22 + ) 1

2
2 + (22 − 2) 1

3
3 + 


1
4
4
=1−
=0



= 1
192

 1

0
(− 42 + 63 − 44 + 5)  = 1

192


1
30


= 1

5760

52. (a) (  ) is a joint density function, so we know


R3 (  )  = 1. Here we have
R3 (  )  =

∞
−∞

∞
−∞

∞
−∞ (  )    =

∞
0

∞
0

∞
0

−(05+02+01)   

= 
∞
0

−05 
∞
0

−02 
∞
0

−01 

=  lim
→∞

 
0
−05  lim

→∞

 
0
−02  lim

→∞

 
0
−01 

=  lim
→∞

−2−05

0

lim
→∞

−5−02

0

lim
→∞

−10−01

0

=  lim
→∞

−2(−05 − 1)


lim
→∞

−5(−02 − 1)


lim
→∞

−10(−01 − 1)


=  · (−2)(0− 1) · (−5)(0− 1) · (−10)(0− 1) = 100

So we must have 100 = 1 ⇒  = 1
100

.

(b) We have no restriction on , so

 ( ≤ 1  ≤ 1) =
 1

−∞
 1

−∞
∞
−∞ (  )    =

 1

0

 1

0

∞
0

1
100

−(05+02+01)   

= 1
100

 1

0
−05 

 1

0
−02 

∞
0

−01 

= 1
100

−2−05
1
0

−5−02
1
0

lim
→∞

−10−01

0

[by part (a)]

= 1
100

(2− 2−05)(5− 5−02)(10) = (1− −05)(1− −02) ≈ 007132

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 15.6 TRIPLE INTEGRALS ¤ 583

(c)  ( ≤ 1  ≤ 1  ≤ 1) =
 1

−∞
 1

−∞
 1

−∞ (  )    =
 1

0

 1

0

 1

0

1
100

−(05+02+01)   

= 1
100

 1

0
−05 

 1

0
−02 

 1

0
−01 

= 1
100

−2−05
1
0

−5−02
1
0

−10−01
1
0

= (1− −05)(1− −02)(1− −01) ≈ 0006787

53.  () = 3 ⇒ ave =
1

3

 

0

 

0

 

0

   =
1

3

 

0



 

0

 

 

0

 

=
1

3


2

2


0


2

2


0


2

2


0

=
1

3

2

2

2

2

2

2
=

3

8

54. The height of each point is given by its -coordinate, so the average height of the points in

 =

(  ) | 2 + 2 + 2 ≤ 1  ≥ 0


is

1

 ()




 

Here  () = 1
2
· 4

3
(1)3 = 2

3
 [half the volume of a sphere], so

1
 ()



  = 1

23

 1

−1

√1−2

−
√

1−2
√1−2−2
0

    = 3
2

 1

−1

√1−2

−
√

1−2


1
2
2
=√1−2−2
=0

 

= 3
2
· 1

2

 1

−1

√1−2

−
√

1−2
(1− 2 − 2)   = 3

4

 2

0

 1

0
(1− 2)   

= 3
4

 2

0

 1

0
( − 3)  = 3

4
(2)


1
2
2 − 1

4
4
1
0

= 3
2


1
4


= 3

8

55. (a) The triple integral will attain its maximum when the integrand 1− 2 − 22 − 32 is positive in the region  and negative

everywhere else. For if  contains some region  where the integrand is negative, the integral could be increased by

excluding  from , and if  fails to contain some part  of the region where the integrand is positive, the integral could

be increased by including in . So we require that 2 + 22 + 32 ≤ 1. This describes the region bounded by the

ellipsoid 2 + 22 + 32 = 1.

(b) The maximum value of



(1− 2 − 22 − 32)  occurs when  is the solid region bounded by the ellipsoid

2 + 22 + 32 = 1. The projection of  on the -plane is the planar region bounded by the ellipse 2 + 22 = 1, so

=

(  ) | −1 ≤  ≤ 1−


1
2
(1− 2) ≤  ≤


1
2
(1− 2)−


1
3
(1− 2 − 22) ≤  ≤


1
3
(1− 2 − 22)


and



(1− 
2 − 2

2 − 3
2
)  =

 1

−1

 
1
2 (1−2)

−


1
2 (1−2)

 
1
3 (1−2−22)

−


1
3 (1−2−22)

(1− 
2 − 2

2 − 3
2
)    =

4
√

6

45


using a CAS.
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584 ¤ CHAPTER 15 MULTIPLE INTEGRALS

DISCOVERY PROJECT Volumes of Hyperspheres

In this project we use  to denote the -dimensional volume of an -dimensional hypersphere.

1. The interior of the circle is the set of points

( ) | − ≤  ≤ , −


2 − 2 ≤  ≤


2 − 2


. So, substituting

 =  sin  and then using Formula 64 to evaluate the integral, we get

2 =

 

−

 √2− 2

−
√
2− 2

  =

 

−
2

2 − 2  =

 2
−2 2


1− sin2  ( cos  )

= 22
 2

−2
cos

2
  = 2

2


1
2
 + 1

4
sin 2

2
−2 = 2

2


2


= 

2

2. The region of integration is
(  ) | − ≤  ≤ −√2 − 2 ≤  ≤ √2 − 2−


2 − 2 − 2 ≤  ≤


2 − 2 − 2


. Substituting

 =
√
2 − 2 sin  and using Formula 64 to integrate cos2 , we get

3 =

 

−

 √2−2

−
√
2− 2

 √2−2−2

−
√
2−2−2

   =

 

−

 √2−2

−
√
2−2

2

2 − 2 − 2  

=

 

−

 2

−2
2

2 − 2


1− sin2 


2 − 2 cos  




= 2

  

−
(

2 − 
2
) 

 2

−2
cos

2
 


= 2


43

3


2


=

43

3

3. Here we substitute  =
√
2 −2 − 2 sin  and, later,  =  sin. Because

 2
−2 cos   seems to occur frequently in

these calculations, it is useful to find a general formula for that integral. From Exercises 7.1.49-50, we have 2

0

sin
2
 =

1 · 3 · 5 · · · · · (2 − 1)

2 · 4 · 6 · · · · · 2


2
and

 2

0

sin
2+ 1

 =
2 · 4 · 6 · · · · · 2

1 · 3 · 5 · · · · · (2 + 1)

and from the symmetry of the sine and cosine functions, we can conclude that 2

−2
cos

2
 = 2

 2

0

sin
2
 =

1 · 3 · 5 · · · · · (2 − 1)

2 · 4 · 6 · · · · · 2 (1)

 2

−2
cos

2+1
 = 2

 2

0

sin
2+1

 =
2 · 2 · 4 · 6 · · · · · 2

1 · 3 · 5 · · · · · (2 + 1)
(2)

Thus 4 =

 

−

 √2−2

−
√
2−2

 √2−2−2

−
√
2−2−2

 √2−2−2−2

−
√
2−2−2−2

  

= 2

 

−

 √2−2

−
√
2−2

 √2−2−2

−
√
2−2−2


2 −2 − 2 − 2   

= 2

 

−

 √2−2

−
√
2−2

 2
−2(

2 −2 − 2) cos2    

= 2

 

−

 √2−2

−
√
2−2

(
2 −

2 − 
2
)  

 2

−2
cos

2
 



= 2


2

 

−
4
3
(

2 −
2
)
32




= 


4
3

  2
−2 

4 cos4  =
4

3
4 · 1 · 3 · 

2 · 4 =
24

2
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SECTION 15.7 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES ¤ 585

4. By using the substitutions  =

2 − 2

 − 2
− 1 − · · ·− 2

+ 1 cos  and then applying Formulas 1 and 2 from

Problem 3, we can write

 =

 

−

 √2−2

−
√
2−2

· · ·
 

2−2−2−1−···−23

−

2−2−2−1−···−23

 
2−2−2−1−···−23−22

−

2−2−2−1−···−23−22

1 2 · · · −1 

= 2

 2

−2
cos

2
2 2

 2

−2
cos

3
3 3


· · ·
 2

−2
cos

−1
−1 −1

 2

−2
cos


 




=



2 · 

2

2 · 2
1 · 3 ·

1 · 3
2 · 4


2 · 2 · 4
1 · 3 · 5 ·

1 · 3 · 5
2 · 4 · 6


· · ·

2 · · · · · (− 2)

1 · · · · · (− 1)
· 1 · · · · · (− 1)

2 · · · · · 

  even

2




2
· 2 · 2
1 · 3


1 · 3
2 · 4 · 2 · 2 · 4

1 · 3 · 5

· · ·

1 · · · · · (− 2)

2 · · · · · (− 1)
· 2 · · · · · (− 1)

1 · · · · · 

  odd

By canceling within each set of brackets, we find that

 =


2

2
· 2

4
· 2

6
· · · · · 2


 =

(2)2

2 · 4 · 6 · · · · · 
 =

2
1
2


!
  even

2 · 2

3
· 2

5
· 2

7
· · · · · 2


 =

2(2)(−1)2

3 · 5 · 7 · · · · · 
 =

2


1
2

(− 1)

!(−1)2

!
  odd

15.7 Triple Integrals in Cylindrical Coordinates

1. (a) From Equations 1,  =  cos  = 4cos


3
= 4 · 1

2
= 2,

 =  sin  = 4 sin


3
= 4 ·

√
3

2
= 2
√

3,  = −2, so the point is


2 2
√

3−2

in rectangular coordinates.

(b)  = 2cos
−

2


= 0,  = 2 sin

−
2


= −2,

and  = 1, so the point is (0−2 1) in rectangular coordinates.

2. (a)  =
√

2 cos
3

4
=
√

2

−
√

2
2


= −1,

 =
√

2 sin
3

4
=
√

2
√

2
2


= 1, and  = 2,

so the point is (−1 1 2) in rectangular coordinates.
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586 ¤ CHAPTER 15 MULTIPLE INTEGRALS

(b)  = 1cos 1 = cos 1,  = 1 sin 1 = sin 1, and  = 1,

so the point is (cos 1 sin 1 1) ≈ (054 084 1) in rectangular

coordinates.

3. (a) From Equations 2 we have 2 = (−1)2 + 12 = 2 so  =
√

2; tan  = 1
−1

= −1 and the point (−1 1 ) is in the second

quadrant of the -plane, so  = 3
4

+ 2;  = 1. Thus, one set of cylindrical coordinates is
√

2 3
4
 1

.

(b) 2 = (−2)
2

+

2
√

3
2

= 16 so  = 4; tan  = 2
√

3
−2

= −√3 and the point
−2 2

√
3

is in the second quadrant of the

-plane, so  = 2
3

+ 2;  = 3. Thus, one set of cylindrical coordinates is

4 2

3
 3

.

4. (a) 2 =
−√2

2
+
√

2
2

= 4 so  = 2; tan  =
√

2

−√2
= −1 and the point

−√2
√

2

is in the second quadrant of the

-plane, so  = 3
4

+ 2;  = 1. Thus, one set of cylindrical coordinates is

2 3

4
 1

.

(b) 2 = 22 + 22 = 8 so  =
√

8 = 2
√

2; tan  = 2
2

= 1 and the point (2 2) is in the first quadrant of the -plane, so

 = 
4

+ 2;  = 2. Thus, one set of cylindrical coordinates is

2
√

2 
4
 2

.

5. Since  = 2, the distance from any point to the -axis is 2. Because  and  may vary, the surface is a circular cylinder with

radius 2 and axis the -axis. (See Figure 4.)

Also, 2 + 2 = 2 = 4, which we recognize as an equation of this cylinder.

6. Since  = 
6
but  and  may vary, the surface is a vertical plane including the -axis and intersecting the -plane in the line

 = 1√
3
. (Here we are assuming that  can be negative; if we restrict  ≥ 0, then we get a half-plane.)

7. Since 2 + 2 = 4 and 2 = 2 + 2, we have 2 + 2 + 2 = 4, a sphere centered at the origin with radius 2.

8.  = 2 sin  ⇒ 2 = 2 sin  ⇒ 2 + 2 = 2 ⇔ 2 + ( − 1)2 = 1.  doesn’t appear in the equation, so any

horizontal trace in  =  is the circle 2 + ( − 1)2 = 1,  = , which has center (0 1 ) and radius 1. Thus the surface is a

circular cylinder with radius 1 and axis the vertical line  = 0,  = 1.

9. (a) Substituting 2 + 2 = 2 and  =  cos , the equation 2 − + 2 + 2 = 1 becomes 2 −  cos  + 2 = 1 or

2 = 1 +  cos  − 2.

(b) Substituting  =  cos  and  =  sin , the equation  = 2 − 2 becomes

 = ( cos )2 − ( sin )2 = 2(cos2  − sin2 ) or  = 2 cos 2.

10. (a) The equation 22 + 22 − 2 = 4 can be written as 2(2 + 2)− 2 = 4 which becomes 22 − 2 = 4 or 2 = 22 − 4

in cylindrical coordinates.

(b) Substituting  =  cos  and  =  sin , the equation 2−  +  = 1 becomes 2 cos  −  sin  +  = 1 or

 = 1 + (sin  − 2 cos ).
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SECTION 15.7 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES ¤ 587

11.  = 2 ⇔  = 2 + 2, a circular paraboloid opening upward with vertex the origin,

and  = 8− 2 ⇔  = 8− (2 + 2), a circular paraboloid opening downward with

vertex (0 0 8). The paraboloids intersect when 2 = 8− 2 ⇔ 2 = 4. Thus

2 ≤  ≤ 8− 2 describes the solid above the paraboloid  = 2 + 2 and below the

paraboloid  = 8− 2 − 2 for 2 + 2 ≤ 4.

12.  =  =

2 + 2 is a cone that opens upward. Thus  ≤  ≤ 2 is the region above

this cone and beneath the horizontal plane  = 2. 0 ≤  ≤ 
2
restricts the solid to that

part of this region in the first octant.

13. We can position the cylindrical shell vertically so that its axis coincides with the -axis and its base lies in the -plane. If we

use centimeters as the unit of measurement, then cylindrical coordinates conveniently describe the shell as 6 ≤  ≤ 7,

0 ≤  ≤ 2, 0 ≤  ≤ 20.

14. In cylindrical coordinates, the equations are  = 2 and  = 5− 2. The

curve of intersection is 2 = 5− 2 or  =


52. So we graph the surfaces

in cylindrical coordinates, with 0 ≤  ≤


52. In Maple, we can use the

coords=cylindrical option in a regular plot3d command. In

Mathematica, we can use RevolutionPlot3D or

ParametricPlot3D.

15. The region of integration is given in cylindrical coordinates by

 =

(  ) | −2 ≤  ≤ 2, 0 ≤  ≤ 2, 0 ≤  ≤ 2


. This

represents the solid region above quadrants I and IV of the -plane enclosed

by the circular cylinder  = 2, bounded above by the circular paraboloid

 = 2 ( = 2 + 2), and bounded below by the -plane ( = 0). 2
−2

 2

0

 2
0

    =
 2
−2

 2

0



=2
=0

  =
 2
−2

 2

0
3  

=
 2
−2 

 2

0
3  =



2
−2


1
4
4
2
0

=  (4− 0) = 4
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588 ¤ CHAPTER 15 MULTIPLE INTEGRALS

16. The region of integration is given in cylindrical coordinates by

 = {(  ) | 0 ≤  ≤ 2, 0 ≤  ≤ 2, 0 ≤  ≤ }. This represents the
solid region enclosed by the circular cylinder  = 2, bounded above by the

cone  = , and bounded below by the -plane. 2

0

 2

0

 
0
    =

 2

0

 2

0



=
=0

  =
 2

0

 2

0
2  

=
 2

0
2 

 2

0
 =


1
3
3
2
0



2
0

= 8
3
· 2 = 16

3


17. In cylindrical coordinates,  is given by {(  ) | 0 ≤  ≤ 2 0 ≤  ≤ 4−5 ≤  ≤ 4}. So



2 + 2  =

 2

0

 4

0

 4

−5

√
2     =

 2

0

 4

0
2 

 4

−5


=


2
0


1
3
3
4
0



4
−5

= (2)


64
3


(9) = 384

18. The paraboloid  = 2 + 2 = 2 intersects the plane  = 4 in the circle 2 + 2 = 4 or 2 = 4 ⇒  = 2, so in

cylindrical coordinates,  is given by

(  )

 0 ≤  ≤ 2 0 ≤  ≤ 2 2 ≤  ≤ 4

. Thus


  =

 2

0

 2

0

 4

2
()     =

 2

0

 2

0


1
2
2

=4

=2
 

=
 2

0

 2

0


8 − 1

2
5

  =

 2

0

 2

0


8 − 1

2
5

 = 2


42 − 1

12
6
2
0

= 2

16− 16

3


= 64

3


19. The paraboloid  = 4− 2 − 2 = 4− 2 intersects the -plane in the circle 2 + 2 = 4 or 2 = 4 ⇒  = 2, so in

cylindrical coordinates,  is given by

(  )

 0 ≤  ≤ 2 0 ≤  ≤ 2 0 ≤  ≤ 4− 2

. Thus


(+  + )  =

 2
0

 2

0

 4−2
0

( cos  +  sin  + )    

=
 2
0

 2

0


2(cos  + sin ) + 1

2
2
=4−2
=0

 

=
 2
0

 2

0


(42 − 4)(cos  + sin ) + 1

2
(4− 2)2


 

=
 2
0


4
3
3 − 1

5
5

(cos  + sin )− 1

12
(4− 2)3

=2

=0


=
 2
0


64
15

(cos  + sin ) + 16
3


 =


64
15

(sin  − cos ) + 16
3

2
0

= 64
15

(1− 0) + 16
3
· 

2
− 64

15
(0− 1)− 0 = 8

3
 + 128

15

20. In cylindrical coordinates  is bounded by the planes  = 0,  =  sin  + 4 and the cylinders  = 1 and  = 4, so  is given

by {(  ) | 0 ≤  ≤ 2 1 ≤  ≤ 4 0 ≤  ≤  sin  + 4}. Thus


(− )  =
 2

0

 4

1

  sin +4

0
( cos  −  sin )     =

 2

0

 4

1
(2 cos  − 2 sin )[  ]= sin +4

=0  

=
 2

0

 4

1
(2 cos  − 2 sin )( sin  + 4)  

=
 2

0

 4

1


3(sin  cos  − sin2 ) + 42(cos  − sin )


 

=
 2

0


1
4
4(sin  cos  − sin2 ) + 4

3
3(cos  − sin )

=4

=1


=
 2

0


64− 1

4


(sin  cos  − sin2 ) +


256
3
− 4

3


(cos  − sin )




=
 2

0


255
4

(sin  cos  − sin2 ) + 84(cos  − sin )



=


255
4


1
2

sin2  −  1
2
 − 1

4
sin 2


+ 84 (sin  + cos )

2
0

= 255
4

(−) + 84(1)− 0− 84(1) = − 255
4
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SECTION 15.7 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES ¤ 589

21. In cylindrical coordinates,  is bounded by the cylinder  = 1, the plane  = 0, and the cone  = 2. So

 = {(  ) | 0 ≤  ≤ 2 0 ≤  ≤ 1 0 ≤  ≤ 2} and

2  =

 2

0

 1

0

 2

0
2 cos2      =

 2

0

 1

0


3 cos2  

=2

=0
  =

 2

0

 1

0
24 cos2   

=
 2

0


2
5
5 cos2 

=1

=0
 = 2

5

 2

0
cos2   = 2

5

 2

0

1
2

(1 + cos 2)  = 1
5


 + 1

2
sin 2

2
0

= 2
5

22. In cylindrical coordinates  is the solid region within the cylinder  = 1 bounded above and below by the sphere 2 + 2 = 4,

so  =

(  ) | 0 ≤  ≤ 2 0 ≤  ≤ 1−√4− 2 ≤  ≤ √4− 2


. Thus the volume is



 =

 2

0

 1

0

√4−2

−
√

4−2
    =

 2

0

 1

0
2
√

4− 2  

=
 2

0

 1

0
2
√

4− 2  = 2

− 2

3
(4− 2)32

1
0

= 4
3
(8− 332)

23. In cylindrical coordinates,  is bounded below by the cone  =  and above by the sphere 2 + 2 = 2 or  =
√

2− 2. The

cone and the sphere intersect when 22 = 2 ⇒  = 1, so  =

(  ) | 0 ≤  ≤ 2 0 ≤  ≤ 1  ≤  ≤ √2− 2


and the volume is


 =

 2

0

 1

0

√2−2


    =
 2

0

 1

0
[]

=
√

2−2
=   =

 2

0

 1

0



√

2− 2 − 2

 

=
 2

0

 1

0



√

2− 2 − 2

 = 2


− 1

3
(2− 2)32 − 1

3
3
1
0

= 2
−1

3


(1 + 1− 232) = − 2

3


2− 2

√
2


= 4
3

√

2− 1


24. In cylindrical coordinates,  is bounded below by the paraboloid  = 2 and above by the sphere 2 + 2 = 2 or

 =
√

2− 2. The paraboloid and the sphere intersect when 2 + 4 = 2 ⇒ (2 + 2)(2 − 1) = 0 ⇒  = 1, so

 =

(  ) | 0 ≤  ≤ 2 0 ≤  ≤ 1 2 ≤  ≤ √2− 2


and the volume is



 =

 2

0

 1

0

√2−2
2

    =
 2

0

 1

0
[]

=
√

2−2
=2

  =
 2

0

 1

0



√

2− 2 − 3

 

=
 2

0

 1

0



√

2− 2 − 3

 = 2


− 1

3
(2− 2)32 − 1

4
4
1
0

= 2(− 1
3
− 1

4
+ 1

3
· 232 − 0) = 2

− 7
12

+ 2
3

√
2


=
− 7

6
+ 4

3

√
2



25. (a) In cylindrical coordinates,  is bounded above by the paraboloid  = 24− 2 and below by

the cone  = 2
√
2 or  = 2 ( ≥ 0). The surfaces intersect when

24− 2 = 2 ⇒ 2 + 2 − 24 = 0 ⇒ ( + 6)( − 4) = 0 ⇒  = 4, so

 =

(  ) | 2 ≤  ≤ 24− 2, 0 ≤  ≤ 4, 0 ≤  ≤ 2


and the volume is


 =

 2

0

 4

0

 24− 2

2
    =

 2

0

 4

0


24− 2 − 2


  =

 2

0

 4

0


24 − 3 − 22




= 2

122 − 1

4
4 − 2

3
3
4
0

= 2

192− 64− 128

3


= 512

3
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590 ¤ CHAPTER 15 MULTIPLE INTEGRALS

(b) For constant density, =  = 512
3
 from part (a). Since the region is homogeneous and symmetric,

 =  = 0 and

 =
 2

0

 4

0

 24− 2

2
()     = 

 2

0

 4

0



1
2
2
=24−2
=2

 

= 
2

 2

0

 4

0
[(24− 2)2 − 42]   = 

2

 2

0

 4

0
(576 − 523 + 5) 

= 
2

(2)

2882 − 134 + 1

6
6
4
0

= 

4608− 3328 + 2048

3


= 5888

3


Thus (  ) =















=

0 0

58883

5123


=

0 0 23

2


.

26. (a)  =
 2
−2

  cos 

0

√2−2

−
√
2−2

   

= 4
 2
0

  cos 

0

√2−2
0

   

= 4
 2
0

  cos 

0

√
2 − 2  

= − 4
3

 2
0


(2 − 2)32

= cos 

=0


= −4
3

 2
0


(2 − 2 cos2 )32 − 3




= −4
3

 2
0


(2 sin2 )32 − 3




= − 4
3

 2
0

(3 sin3  − 3) 

= −43

3

 2

0


sin  (1− cos

2
)− 1




= −43

3

− cos  + 1
3

cos3  − 
2
0

= −43

3

−
2

+ 2
3


= 2

9
3(3 − 4)

To plot the cylinder and the sphere on the same screen in Maple, we can use the sequence of commands

sphere:=plot3d(1,theta=0..2*Pi,phi=0..Pi,coords=spherical):

cylinder:=plot3d(cos(theta),theta=-Pi/2..Pi/2,z=-1..1,coords=cylindrical):

with(plots):

display3d({sphere,cylinder});

In Mathematica, we can use

sphere=SphericalPlot3D[1,{phi,0,Pi},{theta,0,2Pi}]

cylinder=ParametricPlot3D[{(Cos[theta])ˆ2,Cos[theta]*Sin[theta],z},

{theta,-Pi/2,Pi/2},{z,-1,1}]

Show[sphere,cylinder]

(b)

27. The paraboloid  = 42 + 42 intersects the plane  =  when  = 42 + 42 or 2 + 2 = 1
4
. So, in cylindrical

coordinates,  =

(  ) | 0 ≤  ≤ 1

2

√
 0 ≤  ≤ 2 42 ≤  ≤ 


. Thus

=

 2

0

 √
2

0

 

42
    = 

 2

0

 √
2

0

( − 4
3
)  

= 

 2

0


1
2


2 − 
4
=√2
=0

 = 

 2

0

1
16

2
 = 1

8

2
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SECTION 15.7 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES ¤ 591

Since the region is homogeneous and symmetric, =  = 0 and

 =

 2

0

 √
2

0

 

42
    = 

 2

0

 √
2

0


1
2

2
 − 8

5

 

= 

 2

0


1
4

2

2 − 4

3

6
=√2
=0

 = 

 2

0

1
24

3
 = 1

12

3


Hence (  ) =

0 0 2

3


.

28. Since density is proportional to the distance from the -axis, we can say (  ) = 

2 + 2. Then

 = 2
 2

0

 
0

√2−2
0

2    = 2
 2

0

 
0
2
√
2 − 2  

= 2
 2

0


1
8
(22 − 2)

√
2 − 2 + 1

8
4 sin−1()

=
=0

 = 2
 2

0


1
8
4



2


 = 1

4
42

29. The region of integration is the region above the cone  =

2 + 2, or  = , and below the plane  = 2. Also, we have

−2 ≤  ≤ 2 with −


4− 2 ≤  ≤


4− 2 which describes a circle of radius 2 in the -plane centered at (0 0). Thus, 2

−2

 √4−2

−
√

4−2

 2

√
2+2

    =

 2

0

 2

0

 2



( cos )      =

 2

0

 2

0

 2




2
(cos )    

=
 2

0

 2

0
2 (cos )


1
2
2
=2

=
  = 1

2

 2

0

 2

0
2 (cos )


4− 2


 

= 1
2

 2

0
cos  

 2

0


42 − 4


 = 1

2
[sin ]

2

0


4
3
3 − 1

5
5
2
0

= 0

30. The region of integration is the region above the plane  = 0 and below the paraboloid  = 9− 2 − 2. Also, we have

−3 ≤  ≤ 3 with 0 ≤  ≤ √9− 2 which describes the upper half of a circle of radius 3 in the -plane centered at (0 0).

Thus,  3

−3

 √9−2

0

 9−2−2

0


2 + 2   =

 

0

 3

0

 9−2

0

√
2     =

 

0

 3

0

 9−2

0


2
  

=
 
0

 3

0
2

9− 2


  =

 
0

 3

0


92 − 4




=



0


33 − 1

5
5
3
0

= 

81− 243

5


= 162

5


31. (a) The mountain comprises a solid conical region . The work done in lifting a small volume of material∆ with density

( ) to a height ( ) above sea level is ( )( )∆ . Summing over the whole mountain we get

 =



( )( )  .

(b) Here  is a solid right circular cone with radius  = 62,000 ft, height = 12,400 ft,

and density ( ) = 200 lbft3 at all points  in . We use cylindrical coordinates:

 =
 2

0


0

 (1−)

0
 · 200    = 2


0

200


1
2
2
=(1−)

=0


= 400

 

0


2

2


1− 



2

 = 200
2

 

0


 − 22


+

3

2




= 2002


2

2
− 23

3
+

4

42


0

= 2002


2

2
− 22

3
+

2

4


= 50

3
22 = 50

3
(62,000)2(12,400)2 ≈ 31× 1019 ft-lb




=

 − 


= 1− 
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592 ¤ CHAPTER 15 MULTIPLE INTEGRALS

DISCOVERY PROJECT The Intersection of Three Cylinders

1. The three cylinders in the illustration in the text can be

visualized as representing the surfaces 2 + 2 = 1,

2 + 2 = 1, and 2 + 2 = 1. Then we sketch the solid

of intersection with the coordinate axes and equations

indicated. To be more precise, we start by finding the

bounding curves of the solid (shown in the first graph

below) enclosed by the two cylinders 2 + 2 = 1 and

2 + 2 = 1:  = ± = ±√1− 2 are the symmetric

equations, and these can be expressed parametrically as  = ,  = ±  = ±√1− 2, −1 ≤  ≤ 1. Now the cylinder

2 + 2 = 1 intersects these curves at the eight points

± 1√

2
± 1√

2
± 1√

2


. The resulting solid has twelve curved faces

bounded by “edges” which are arcs of circles, as shown in the third diagram. Each cylinder defines four of the twelve faces.

2. To find the volume, we split the solid into sixteen congruent

pieces, one of which lies in the part of the first octant with

0 ≤  ≤ 
4
. (Naturally, we use cylindrical coordinates!)

This piece is described by
(  ) | 0 ≤  ≤ 1 0 ≤  ≤ 

4
, 0 ≤  ≤ √1− 2


,

and so, substituting  =  cos , the volume of the entire

solid is

 = 16
 4
0

 1

0

√1−2
0

   

= 16
 4
0

 1

0

√

1− 2 cos2   

= 16− 8
√

2 ≈ 46863
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DISCOVERY PROJECT THE INTERSECTION OF THREE CYLINDERS ¤ 593

3. To graph the edges of the solid, we use parametrized

curves similar to those found in Problem 1 for the

intersection of two cylinders. We must restrict the

parameter intervals so that each arc extends exactly to

the desired vertex. One possible set of parametric

equations (with all sign choices allowed) is

 = ,  = ±,  = ±√1− 2, − 1√
2
≤  ≤ 1√

2
;

 = ±,  = ±√1− 2,  = , − 1√
2
≤  ≤ 1√

2
;

 = ±√1− 2,  = ,  = ±, − 1√
2
≤  ≤ 1√

2
.

4. Let the three cylinders be 2 + 2 = 2, 2 + 2 = 1, and 2 + 2 = 1.

If   1, then the four faces defined by the cylinder 2 + 2 = 1 in Problem 1 collapse into a single face, as in the first

graph. If 1   
√

2, then each pair of vertically opposed faces, defined by one of the other two cylinders, collapse into a

single face, as in the second graph. If  ≥ √2, then the vertical cylinder encloses the solid of intersection of the other two

cylinders completely, so the solid of intersection coincides with the solid of intersection of the two cylinders 2 + 2 = 1 and

2 + 2 = 1, as illustrated in Problem 1.

If we were to vary  or  instead of , we would get solids with the same shape, but differently oriented.

 = 095,  =  = 1  = 11,  =  = 1

5. If   1, the solid looks similar to the first graph in Problem 4. As in Problem 2, we split the solid into sixteen congruent

pieces, one of which can be described as the solid above the polar region

( ) | 0 ≤  ≤ , 0 ≤  ≤ 

4


in the -plane

and below the surface  =
√

1− 2 =
√

1− 2 cos2 . Thus, the total volume is  = 16
 4
0

 
0

√
1− 2 cos2    .

If   1 and  
√

2, we have a solid similar to

the second graph in Problem 4. Its intersection

with the -plane is graphed at the right. Again we

split the solid into sixteen congruent pieces, one of

which is the solid above the region shown in the

second figure and below the surface  =
√

1− 2 =
√

1− 2 cos2 .
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594 ¤ CHAPTER 15 MULTIPLE INTEGRALS

We split the region of integration where the outside boundary changes from the vertical line  = 1 to the circle

2 + 2 = 2 or  = . 1 is a right triangle, so cos  = 1

. Thus, the boundary between 1 and 2 is  = cos−1


1



in

polar coordinates, or  =
√
2 − 1 in rectangular coordinates. Using rectangular coordinates for the region 1 and polar

coordinates for 2, we find the total volume of the solid to be

 = 16

 1

0

 √2−1

0


1− 2   +

 4

cos−1(1)

 

0


1− 2 cos2    



If  ≥ √2, the cylinder 2 + 2 = 1 completely encloses the intersection of the other two cylinders, so the solid of

intersection of the three cylinders coincides with the intersection of 2 + 2 = 1 and 2 + 2 = 1 as illustrated in

Exercise 15.5.24. Its volume is  = 16
 1

0

 
0

√
1− 2  .

15.8 Triple Integrals in Spherical Coordinates

1. (a) From Equations 1,  =  sin cos  = 6 sin 
6

cos 
3

= 6 · 1
2
· 1

2
= 3

2
,

 =  sin sin  = 6 sin 
6

sin 
3

= 6 · 1
2
·
√

3
2

= 3
√

3
2
, and

 =  cos = 6 cos 
6

= 6 ·
√

3
2

= 3
√

3, so the point is


3
2
 3
√

3
2
 3
√

3

in

rectangular coordinates.

(b)  = 3 sin 3
4

cos 
2

= 3 ·
√

2
2
· 0 = 0,

 = 3 sin 3
4

sin 
2

= 3 ·
√

2
2
· 1 = 3

√
2

2
, and

 = 3 cos 3
4

= 3

−
√

2
2


= − 3

√
2

2
, so the point is


0 3

√
2

2
− 3

√
2

2


in

rectangular coordinates.

2. (a)  = 2 sin 
2

cos 
2

= 2 · 1 · 0 = 0,  = 2 sin 
2

sin 
2

= 2 · 1 · 1 = 2,

 = 2 cos 
2

= 2 · 0 = 0 so the point is (0 2 0) in rectangular coordinates.

(b)  = 4 sin 
3

cos
−

4


= 4 ·

√
3

2
·
√

2
2

=
√

6,

 = 4 sin 
3

sin
−

4


= 4

√
3

2


−
√

2
2


= −√6,

 = 4cos 
3

= 4 · 1
2

= 2 so the point is
√

6−√6 2

in rectangular

coordinates.
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SECTION 15.8 TRIPLE INTEGRALS IN SPHERICAL COORDINATES ¤ 595

3. (a) From Equations 1 and 2,  =

2 + 2 + 2 =


02 + (−2)2 + 02 = 2, cos =




=

0

2
= 0 ⇒  =



2
, and

cos  =


 sin
=

0

2 sin(2)
= 0 ⇒  =

3

2
[since   0]. Thus spherical coordinates are


2

3

2



2


.

(b)  =
√

1 + 1 + 2 = 2, cos =



=
−√2

2
⇒  =

3

4
, and

cos  =


 sin
=

−1

2 sin(34)
=

−1

2
√

22
 = − 1√

2
⇒  =

3

4
[since   0]. Thus spherical coordinates

are


2

3

4

3

4


.

4. (a)  =

2 + 2 + 2 =

√
1 + 0 + 3 = 2, cos =




=

√
3

2
⇒  =



6
, and cos  =



 sin
=

1

2 sin(6)
= 1 ⇒

 = 0. Thus spherical coordinates are

2 0



6


.

(b)  =
√

3 + 1 + 12 = 4, cos =



=

2
√

3

4
=

√
3

2
⇒  =



6
, and cos  =



 sin
=

√
3

4 sin(6)
=

√
3

2
⇒

 =
11

6
[since   0]. Thus spherical coordinates are


4

11

6



6


.

5. Since  = 
3
but  and  can vary, the surface is the top half of a right circular cone with vertex at the origin and axis the

positive -axis. (See Figure 4.)

6. 2 − 3+ 2 = 0 ⇒ (− 1)(− 2) = 0 ⇒  = 1 or  = 2. Thus the equation represents two surfaces. In the case

 = 1, the distance from any point to the origin is 1. Because  and  can vary, the surface is a sphere centered at the origin

with radius 1. (See Figure 2.) Similarly,  = 2 is a sphere centered at the origin with radius 2.

Also,  = 1 ⇒ 2 = 1 ⇒ 2 + 2 + 2 = 1 which we recognize as the equation of the unit sphere, and similarly,

 = 2 ⇒ 2 = 4 ⇒ 2 + 2 + 2 = 4.

7. From Equations 1 we have  =  cos, so  cos = 1 ⇔  = 1, and the surface is the horizontal plane  = 1.

8.  = cos ⇒ 2 =  cos ⇔ 2 + 2 + 2 =  ⇔ 2 + 2 + 2 −  + 1
4

= 1
4
⇔ 2 + 2 + ( − 1

2
)2 = 1

4
.

Therefore, the surface is a sphere of radius 1
2
centered at


0 0 1

2


.

9. (a) From Equation 2 we have 2 = 2 + 2 + 2, so 2 + 2 + 2 = 9 ⇔ 2 = 9 ⇒  = 3 (since  ≥ 0).

(b) From Equations 1 we have  =  sin cos ,  =  sin sin , and  =  cos, so the equation 2 − 2 − 2 = 1

becomes ( sin cos )
2 − ( sin sin )

2 − ( cos)
2

= 1 ⇔ (2 sin2 )(cos2  − sin2 )− 2 cos2  = 1 ⇔

2(sin2  cos 2 − cos2 ) = 1.
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596 ¤ CHAPTER 15 MULTIPLE INTEGRALS

10. (a)  =  sin cos ,  =  sin sin , and  =  cos, so the equation  = 2 + 2 becomes

 cos = ( sin cos )
2
+ ( sin sin )

2 or  cos = 2 sin2 . If  6= 0, this becomes cos =  sin2 

or  = cos csc2  or  = cot csc. ( = 0 corresponds to the origin which is included in the surface.)

(b) The equation  = 2 − 2 becomes  cos = ( sin cos )
2 − ( sin sin )

2

or  cos = 2(sin2 )(cos2  − sin2 ) ⇔  cos = 2 sin2  cos 2. If  6= 0, this becomes

cos =  sin2  cos 2. ( = 0 corresponds to the origin which is included in the surface.)

11.  ≤ 1 represents the (solid) unit ball. 0 ≤  ≤ 
6
restricts the solid to that

portion on or above the cone  = 
6
, and 0 ≤  ≤  further restricts the

solid to that portion on or to the right of the -plane.

12. 1 ≤  ≤ 2 represents the solid region between and including the spheres of

radii 1 and 2, centered at the origin. 
2
≤  ≤  restricts the solid to that

portion on or below the -plane.

13. 2 ≤  ≤ 4 represents the solid region between and including the spheres of

radii 2 and 4, centered at the origin. 0 ≤  ≤ 
3
restricts the solid to that

portion on or above the cone  = 
3
, and 0 ≤  ≤  further restricts the

solid to that portion on or to the right of the -plane.

14.  ≤ 2 represents the solid sphere of radius 2 centered at the origin. Notice

that 2 + 2 = ( sin cos )
2

+ ( sin sin )
2

= 2 sin2 . Then

 = csc ⇒  sin = 1 ⇒ 2 sin2  = 2 + 2 = 1, so  ≤ csc

restricts the solid to that portion on or inside the circular cylinder

2 + 2 = 1.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 15.8 TRIPLE INTEGRALS IN SPHERICAL COORDINATES ¤ 597

15.  ≥

2 + 2 because the solid lies above the cone. Squaring both sides of this inequality gives 2 ≥ 2 + 2 ⇒

22 ≥ 2 + 2 + 2 = 2 ⇒ 2 = 2 cos2  ≥ 1
2
2 ⇒ cos2  ≥ 1

2
. The cone opens upward so that the inequality is

cos ≥ 1√
2
, or equivalently 0 ≤  ≤ 

4
. In spherical coordinates the sphere  = 2 + 2 + 2 is  cos = 2 ⇒

 = cos. 0 ≤  ≤ cos because the solid lies below the sphere. The solid can therefore be described as the region in

spherical coordinates satisfying 0 ≤  ≤ cos, 0 ≤  ≤ 
4
.

16. (a) The hollow ball is a spherical shell with outer radius 15 cm and inner radius 14.5 cm. If we center the ball at the origin of

the coordinate system and use centimeters as the unit of measurement, then spherical coordinates conveniently describe the

hollow ball as 145 ≤  ≤ 15, 0 ≤  ≤ 2, 0 ≤  ≤ .

(b) If we position the ball as in part (a), one possibility is to take the half of the ball that is above the -plane which is

described by 145 ≤  ≤ 15, 0 ≤  ≤ 2, 0 ≤  ≤ 2.

17. The region of integration is given in spherical coordinates by

 = {(  ) | 0 ≤  ≤ 3 0 ≤  ≤ 2 0 ≤  ≤ 6}. This represents the solid
region in the first octant bounded above by the sphere  = 3 and below by the cone

 = 6. 6
0

 2
0

 3

0
2 sin   =

 6
0

sin
 2
0


 3

0
2 

=
− cos

6
0



2
0


1
3
3
3
0

=


1−

√
3

2


2


(9) =

9

4


2−√3


18. The region of integration is given in spherical coordinates by

 = {(  ) | 0 ≤  ≤ sec 0 ≤  ≤ 2 0 ≤  ≤ 4}.
 = sec ⇔  cos = 1 ⇔  = 1, so  is the solid region above

the cone  = 4 and below the plane  = 1.

 4
0

 2

0

 sec

0
2 sin   =

 4
0

 2

0


1
3
3 sin

=sec

=0
 

=
 4
0

 2

0
1
3

sec3  sin  = 1
3

 4
0

sec3  sin
 2

0


= 1
3

 4
0

tan sec2 
 2

0
 = 1

3


1
2

tan2 
4
0



2
0

= 1
3


1
2
− 0

(2) = 

3

19. The solid  is most conveniently described if we use cylindrical coordinates:

 =

(  ) | 0 ≤  ≤ 

2
 0 ≤  ≤ 3 0 ≤  ≤ 2


. Then


(  )  =

 2
0

 3

0

 2

0
( cos   sin  )    .
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598 ¤ CHAPTER 15 MULTIPLE INTEGRALS

20. The solid  is most conveniently described if we use spherical coordinates:

 =

(  ) | 1 ≤  ≤ 2 

2
≤  ≤ 2 0 ≤  ≤ 

2


. Then


(  )  =

 2
0

 2

2

 2

1
( sin cos   sin sin   cos) 2 sin  .

21. In spherical coordinates,  is represented by {(  ) | 0 ≤  ≤ 5 0 ≤  ≤ 2 0 ≤  ≤  }. Thus


(2 + 2 + 2)2  =
 
0

 2

0

 5

0
(2)22 sin   =

 
0

sin
 2

0

 5

0
6 

=
− cos


0



2
0


1
7
7
5
0

= (2)(2)


78,125
7


= 312,500

7
 ≈ 140,2497

22. In spherical coordinates,  is represented by

(  )

 0 ≤  ≤ 1 0 ≤  ≤ 2 0 ≤  ≤ 
3


. Thus


22  =

 3
0

 2

0

 1

0
( sin sin )2( cos)2 2 sin 

=
 3
0

sin3  cos2 
 2

0
sin2  

 1

0
6 

=
 3
0

(1− cos2 ) cos2  sin
 2

0
1
2
(1− cos 2) 

 1

0
6 

=


1
5

cos5 − 1
3

cos3 
3
0


1
2
 − 1

4
sin 2

2
0


1
7
7
1
0

=


1
5


1
2

5 − 1
3


1
2

3 − 1
5

+ 1
3


( − 0)


1
7
− 0


= 47
480

·  · 1
7

= 47
3360



23. In spherical coordinates,  is represented by {(  ) | 2 ≤  ≤ 3 0 ≤  ≤ 2 0 ≤  ≤  } and
2 + 2 = 2 sin2  cos2  + 2 sin2  sin2  = 2 sin2 


cos2  + sin2 


= 2 sin2 . Thus


(2 + 2)  =

 
0

 2

0

 3

2
(2 sin2 ) 2 sin   =

 
0

sin3 
 2

0

 3

2
4 

=
 
0

(1− cos2 ) sin


2
0


1
5
5
3
2

=
− cos+ 1

3
cos3 


0

(2) · 1
5
(243− 32)

=

1− 1

3
+ 1− 1

3


(2)


211
5


= 1688

15

24. In spherical coordinates,  is represented by {(  ) | 0 ≤  ≤ 3 0 ≤  ≤  0 ≤  ≤  }. Thus

2  =

 
0

 
0

 3

0
( sin sin )2 2 sin   =

 
0

sin3 
 
0

sin2  
 3

0
4 

=
 
0

(1− cos2 ) sin
 
0

1
2
(1− cos 2) 

 3

0
4 

=
− cos+ 1

3
cos3 


0


1
2


 − 1

2
sin 2


0


1
5
5
3
0

=


2
3

+ 2
3

 
1
2

 

1
5
(243)


=


4
3

 

2

 
243
5


= 162

5

25. In spherical coordinates,  is represented by

(  )

 0 ≤  ≤ 1 0 ≤  ≤ 
2
 0 ≤  ≤ 

2


. Thus




2+2+2  =
 2
0

 2
0

 1

0
( sin cos )

2

2 sin  =
 2
0

sin2 
 2
0

cos  
 1

0
3

2



=
 2
0

1
2
(1− cos 2) 

 2
0

cos  


1
2
2

2
1
0
−  1

0


2





integrate by parts with  = 2,  = 

2




=


1
2
− 1

4
sin 2

2
0

[sin ]
2

0


1
2
2

2 − 1
2


2
1
0

=


4
− 0

(1− 0)


0 + 1

2


= 

8
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SECTION 15.8 TRIPLE INTEGRALS IN SPHERICAL COORDINATES ¤ 599

26. In spherical coordinates, the cone  =

2 + 2 is equivalent to  = 4 (as in Example 4) and  is represented by

{(  ) | 1 ≤  ≤ 2 0 ≤  ≤ 2 0 ≤  ≤ 4}. Also

2 + 2 + 2 =


2 = , so




2 + 2 + 2  =

 4
0

 2

0

 2

1
 · 2 sin   =

 4
0

sin
 2

0

 2

1
3 

= [− cos]
4

0



2
0


1
4
4
2
1

=

−
√

2
2

+ 1


(2) · 1
4
(16− 1) = 15

2


1−

√
2

2



27. The solid region is given by  =

(  ) | 0 ≤  ≤  0 ≤  ≤ 2 

6
≤  ≤ 

3


and its volume is

 =



 =

 3
6

 2

0

 
0
2 sin  =

 3
6

sin
 2

0

 
0
2 

= [− cos]
3

6
[]

2

0


1
3
3

0

=

− 1

2
+
√

3
2


(2)


1
3
3


=
√

3−1
3

3

28. If we center the ball at the origin, then the ball is given by

 = {(  ) | 0 ≤  ≤  0 ≤  ≤ 2 0 ≤  ≤ } and the distance from any point (  ) in the ball to the

center (0 0 0) is

2 + 2 + 2 = . Thus the average distance is

1

 ()




  =
1

4
3
3

 

0

 2

0

 

0

 · 2
sin   =

3

43

 

0

sin

 2

0



 

0


3


=
3

43

−cos

0



2
0


1
4
4

0

=
3

43
(2)(2)


1
4
4


= 3
4


29. (a) Since  = 4 cos implies 2 = 4 cos ⇔ 2 + 2 + 2 = 4 ⇔ 2 + 2 + (− 2)2 = 4, the equation is that of

a sphere of radius 2 with center at (0 0 2). Thus

 =
 2

0

 3
0

 4 cos

0
2 sin =

 2

0

 3
0


1
3
3
=4 cos

=0
sin =

 2

0

 3
0


64
3

cos3

sin

=
 2

0

−16
3

cos4
=3

=0
 =

 2

0
− 16

3


1
16
− 1

 = 5

2
0

= 10

(b) By the symmetry of the problem =  = 0. Then

 =
 2

0

 3
0

 4 cos

0
3 cos sin  =

 2

0

 3
0

cos sin

64 cos4




=
 2

0
64
− 1

6
cos6

=3

=0
 =

 2

0

21
2
 = 21

Hence (  ) = (0 0 21(10)) = (0 0 21).

30. In spherical coordinates, the sphere 2 + 2 + 2 = 4 is equivalent to  = 2 and the cone  =

2 + 2 is represented

by  = 
4
(as in Example 4). Thus, the solid is given by


(  )

 0 ≤  ≤ 2 0 ≤  ≤ 2 
4
≤  ≤ 

2


and

 =
 2
4

 2

0

 2

0
2 sin   =

 2
4

sin
 2

0

 2

0
2 

=
− cos

2
4



2
0


1
3
3
2
0

=
√

2
2


(2)


8
3


= 8

√
2

3
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600 ¤ CHAPTER 15 MULTIPLE INTEGRALS

31. (a) By the symmetry of the region, = 0 and = 0. Assuming constant density ,

 =



  = 



 = 

8
 (from Example 4). Then

 =



   = 

 2

0

 4
0

 cos

0
( cos) 2 sin = 

 2

0

 4
0

sin cos


1
4
4
=cos

=0


= 1
4

 2

0

 4
0

sin cos

cos4 


 = 1

4

 2

0

 4
0

cos5  sin

= 1
4



2
0

− 1
6

cos6 
4
0

= 1
4
(2)

− 1
6

 √
2

2

6

− 1


= − 

12

− 7

8


= 7

96


Thus the centroid is (  ) =















=


0 0

796

8


=

0 0 7

12


.

(b) As in Exercise 23, 2 + 2 = 2 sin2  and

 =



(2 + 2)  = 

 2

0

 4
0

 cos

0
(2 sin2 ) 2 sin  = 

 2

0

 4
0

sin3 


1
5
5
=cos

=0


= 1
5

 2

0

 4
0

sin3  cos5  = 1
5

 2

0

 4
0

cos5 

1− cos2 


sin

= 1
5



2
0

−1
6

cos6 + 1
8

cos8 
4
0

= 1
5
(2)


−1

6

√
2

2

6

+ 1
8

√
2

2

8

+ 1
6
− 1

8


= 2

5



11
384


= 11

960


32. (a) Placing the center of the base at (0 0 0), (  ) = 

2 + 2 + 2 is the density function. So

=
 2

0

 2
0

 
0
3 sin  = 

 2

0

 2
0

sin
 
0
3 

= 


2
0

− cos
2
0


1
4
4

0

= (2)(1)


1
4
4


= 1
2
4

(b) By the symmetry of the problem =  = 0. Then

 =
 2

0

 2
0

 
0
4 sin cos  = 

 2

0

 2
0

sin cos
 
0
4 

= 


2
0


1
2

sin2 
2
0


1
5
5

0

= (2)


1
2


1
5
5


= 1
5
5

Hence (  ) =

0 0 2

5


.

(c)  =
 2

0

 2
0

 
0

(3 sin)(2 sin2 )  = 
 2

0

 2
0

sin3 
 
0
5 

= 


2
0

− cos+ 1
3

cos3 
2
0


1
6
6

0

= (2)


2
3


1
6
6


= 2
9
6

33. (a) The density function is (  ) = , a constant, and by the symmetry of the problem =  = 0. Then

 =
 2

0

 2
0

 
0
3 sin cos  = 1

2
4

 2
0

sin cos = 1
8
4. But the mass is(volume of

the hemisphere) = 2
3
3, so the centroid is


0 0 3

8


.

(b) Place the center of the base at (0 0 0); the density function is (  ) = . By symmetry, the moments of inertia about

any two such diameters will be equal, so we just need to find :

 =
 2

0

 2
0

 
0

(2 sin) 2 (sin2  sin2  + cos2 )  

= 
 2

0

 2
0

(sin3  sin2  + sin cos2 )


1
5
5

 

= 1
5
5

 2

0


sin2 

− cos+ 1
3

cos3 


+
− 1

3
cos3 

=2

=0
 = 1

5
5

 2

0


2
3

sin2  + 1
3




= 1
5
5


2
3


1
2
 − 1

4
sin 2


+ 1

3

2
0

= 1
5
5


2
3
( − 0) + 1

3
(2 − 0)


= 4

15
5
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SECTION 15.8 TRIPLE INTEGRALS IN SPHERICAL COORDINATES ¤ 601

34. Place the center of the base at (0 0 0), then the density is (  ) = ,  a constant. Then

 =
 2

0

 2
0

 
0

( cos) 2 sin = 2
 2
0

cos sin · 1
4
4  = 1

2
4

− 1
4

cos 2
2
0

= 
4
4.

By the symmetry of the problem  =  = 0, and

 =
 2

0

 2
0

 
0
4 cos2  sin = 2

5
5

 2
0

cos2  sin = 2
5
5

−1
3

cos3 
2
0

= 2
15
5.

Hence (  ) =

0 0 8

15


.

35. In spherical coordinates  =

2 + 2 becomes  = 

4
(as in Example 4). Then

 =
 2

0

 4
0

 1

0
2 sin =

 2

0

 4
0

sin
 1

0
2  = 2


−
√

2
2

+ 1


1
3


= 1

3


2−√2


,

 =
 2

0

 4
0

 1

0
3 sin cos = 2

− 1
4

cos 2
4
0


1
4


= 

8
and by symmetry =  = 0.

Hence (  ) =


0 0

3

8

2−√2

.
36. Place the center of the sphere at (0 0 0), let the diameter of intersection be along the -axis, one of the planes be the -plane

and the other be the plane whose angle with the -plane is  = 
6
. Then in spherical coordinates the volume is given by

 =
 6
0

 
0

 
0
2 sin =

 6
0


 
0

sin
 
0
2  = 

6
(2)


1
3
3


= 1
9
3.

37. (a) If we orient the cylinder so that its axis is the -axis and its base lies in the -plane, then the cylinder is described, in

cylindrical coordinates, by  = {(  ) | 0 ≤  ≤  0 ≤  ≤ 2 0 ≤  ≤ }. Assuming constant density, the

moment of inertia about its axis (the -axis) is

 =



(2 + 2) (  )  =

 2

0

 
0

 
0
(2)     = 

 2

0

 
0
3 

 
0


= 


2
0


1
4
4

0




0

=  (2)


1
4
4

() = 1

2
4

(b) By symmetry, the moments of inertia about any two diameters of the base will be equal, and one of the diameters lies on

the -axis, so we compute:

 =



(2 + 2) (  )  =

 2

0

 
0

 
0
(2 sin2  + 2)    

= 
 2

0

 
0

 
0
3 sin2     +

 2

0

 
0

 
0
2   

= 
 2

0
sin2  

 
0
3 

 
0
 +

 2

0

 
0
 

 
0
2 

= 


1
2
 − 1

4
sin 2

2
0


1
4
4

0




0

+


2
0


1
2
2

0


1
3
3

0

=  ()


1
4
4

() + (2)


1
2
2
 

1
3
3


= 1
12
2(32 + 42)

38. Orient the cone so that its axis is the -axis and its base lies in the -plane, as shown

in the figure. (Then the -axis is the axis of the cone and the -axis contains a diameter

of the base.) A right circular cone with axis the -axis and vertex at the origin has

equation 2 = 2(2 + 2). Here we have the bottom frustum, shifted upward  units,

and with 2 = 22 so that the cone includes the point ( 0 0). Thus an equation of

the cone in rectangular coordinates is  = − 



2 + 2, 0 ≤  ≤ . In cylindrical
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602 ¤ CHAPTER 15 MULTIPLE INTEGRALS

coordinates, the cone is described by

 =

(  ) | 0 ≤  ≤  0 ≤  ≤ 2 0 ≤  ≤ 


1− 1





(a) Assuming constant density, the moment of inertia about its axis (the -axis) is

 =



(2 + 2) (  )  =

 2

0

 
0

 (1−)
0

(2)    

= 
 2

0

 
0


3
=(1−)
=0

  = 
 2

0

 
0
3

1− 1




 

= 
 2

0

 
0


3 − 1


4

 = 



2
0


1
4
4 − 1

5
5

0

=  (2)


1
4
4 − 1

5
4


= 1
10
4

(b) By symmetry, the moments of intertia about any two diameters of the base will be equal, and one of the diameters lies on

the -axis, so we compute:

 =



(2 + 2) (  )  =

 2

0

 
0

 (1−)
0

(2 sin2  + 2)    

= 
 2

0

 
0


(3 sin2 ) + 1

3
3
=(1−)
=0

 

= 
 2

0

 
0


(3 sin2 )




1− 1





+ 1
3




1− 1



3

 

= 
 2

0

 
0

(3 sin2 )

1− 1




  +3

 2

0

 
0

1
3


1− 1



3
 

= 
 2

0
sin2  

 
0


3 − 1


4

 + 1

3
3

 2

0

 
0

( − 3

2 + 3

2
3 − 1

3
4) 

= 


1
2
 − 1

4
sin 2

2
0


1
4
4 − 1

5
5

0

+ 1
3
3



2
0


1
2
2 − 1


3 + 3

42
4 − 1

53
5

0

=  ()


1
4
4 − 1

5
4


+ 1
3
3 (2)


1
2
2 − 2 + 3

4
2 − 1

5
2


= 


1
20
4


+ 2
3
3


1
20
2


= 2


1
20
2 + 1

30
2


39. In cylindrical coordinates the paraboloid is given by  = 2 and the plane by  = 2 sin  and the projection of the

intersection onto the -plane is the circle  = 2 sin . Then



  =

 
0

 2 sin 

0

 2 sin 

2
    = 5

6

[using a CAS].

40. (a) The region enclosed by the torus is {(  ) | 0 ≤  ≤ 2, 0 ≤  ≤ , 0 ≤  ≤ sin}, so its volume is

 =
 2

0

 
0

 sin

0
2 sin  = 2

 
0

1
3

sin4  = 2
3



3
8
− 1

4
sin 2+ 1

16
sin 4


0

= 1
4
2.

(b) In Maple, we can plot the torus using the command

plot3d(sin(phi),theta=0..2*Pi,

phi=0..Pi,coords=spherical);.

In Mathematica, use

SphericalPlot3D[Sin[phi],{phi,0,Pi},{theta,0,2Pi}].

41. The region  of integration is the region above the cone  =

2 + 2 and below the sphere 2 + 2 + 2 = 2 in the first

octant. Because  is in the first octant we have 0 ≤  ≤ 
2
. The cone has equation  = 

4
(as in Example 4), so 0 ≤  ≤ 

4
,
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SECTION 15.8 TRIPLE INTEGRALS IN SPHERICAL COORDINATES ¤ 603

and 0 ≤  ≤ √2. Then the integral becomes 4
0

 2
0

√2

0
( sin cos ) ( sin sin ) 2 sin 

=
 4
0

sin3 
 2
0

sin  cos  
√2

0
4  =

 4
0


1− cos2 


sin

 
1
2

sin2 
2
0


1
5
5
√2

0

=


1
3

cos3 − cos
4
0

· 1
2
· 1

5

√
2
5

=
√

2
12
−
√

2
2
−  1

3
− 1
 · 2

√
2

5
= 4

√
2−5
15

42. The region of integration is the solid sphere 2 + 2 + 2 ≤ 2, so 0 ≤  ≤ 2, 0 ≤  ≤ , and 0 ≤  ≤ . Also

2 + 2 + 3 = (2 + 2 + 2) = 2 = 3 cos, so the integral becomes

 
0

 2

0

 
0


3 cos


2 sin =

 
0

sin cos
 2

0

 
0
5  =


1
2

sin2 

0



2
0


1
6
6

0

= 0

43. The region of integration is the solid sphere 2 + 2 + ( − 2)2 ≤ 4 or equivalently

2 sin2 + ( cos− 2)
2

= 2 − 4 cos+ 4 ≤ 4 ⇒  ≤ 4 cos, so 0 ≤  ≤ 2, 0 ≤  ≤ 
2
, and

0 ≤  ≤ 4 cos. Also (2 + 2 + 2)32 = (2)32 = 3, so the integral becomes

 2
0

 2

0

 4 cos

0


3

2 sin =

 2
0

 2

0
sin


1
6
6
=4 cos

=0
 

= 1
6

 2
0

 2

0
sin


4096 cos6 


 

= 1
6
(4096)

 2
0

cos6  sin
 2

0
 = 2048

3

− 1
7

cos7 
2
0



2
0

= 2048
3


1
7


(2) = 4096

21

44. The solid region between the ground and an altitude of 5 km (5000 m) is given by

 =

(  ) | 6370× 106 ≤  ≤ 6375× 106 0 ≤  ≤ 2 0 ≤  ≤ 


.

Then the mass of the atmosphere in this region is

 =



  =

 2

0

 
0

 6375×106

6370×106
(61909− 0000097) 2 sin 

=
 2

0

 
0

sin
 6375×106

6370×106


619092 − 00000973




=


2
0

[− cos]


0


61909

3
3 − 0000097

4
4
6375×106

6370×106

= (2)(2)

61909

3


(6375× 106)3 − (6370× 106)3

− 0000097
4


(6375× 106)4 − (6370× 106)4


≈ 4


1944× 1017

 ≈ 244× 1018 kg

45. In cylindrical coordinates, the equation of the cylinder is  = 3, 0 ≤  ≤ 10.

The hemisphere is the upper part of the sphere radius 3, center (0 0 10), equation

2 + ( − 10)
2

= 32,  ≥ 10. In Maple, we can use the coords=cylindrical option

in a regular plot3d command. In Mathematica, we can use ParametricPlot3D.
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604 ¤ CHAPTER 15 MULTIPLE INTEGRALS

46. We begin by finding the positions of Los Angeles and Montréal in spherical coordinates, using the method described in the

exercise:

Montréal Los Angeles

 = 3960 mi  = 3960 mi

 = 360◦ − 7360◦ = 28640◦  = 360◦ − 11825◦ = 24175◦

 = 90◦ − 4550◦ = 4450◦  = 90◦ − 3406◦ = 5594◦

Now we change the above to Cartesian coordinates using  =  cos  sin,  =  sin  sin and  =  cos to get two

position vectors of length 3960 mi (since both cities must lie on the surface of the earth). In particular:

Montréal: h78367−266267 282447i Los Angeles: h−155280−288991 221784i

To find the angle  between these two vectors we use the dot product:

h78367−266267 282447i · h−155280−288991 221784i = (3960)
2
cos  ⇒ cos  ≈ 08126 ⇒

 ≈ 06223 rad. The great circle distance between the cities is  =   ≈ 3960(06223) ≈ 2464 mi.

47. If  is the solid enclosed by the surface  = 1 + 1
5

sin 6 sin 5, it can be described in spherical coordinates as

 =

(  ) | 0 ≤  ≤ 1 + 1

5
sin 6 sin 5 0 ≤  ≤ 2 0 ≤  ≤ 


. Its volume is given by

 () =



 =

 
0

 2

0

 1+ (sin 6 sin 5)5

0
2 sin  = 136

99
[using a CAS].

48. The given integral is equal to lim
→∞

 2

0

 
0

 
0
−

2

2 sin  = lim
→∞

 2

0

 
0

sin
 
0
3−

2

. Now use

integration by parts with  = 2,  = −
2

 to get

lim
→∞

2(2)


2
− 1

2


−

2

0
−  

0
2
− 1

2


−

2




= lim

→∞
4


− 1

2
2−

2

+

− 1

2
−

2

0


= 4 lim

→∞


− 1

2
2−

2 − 1
2
−

2

+ 1
2


= 4


1
2


= 2

(Note that 2−
2 → 0 as →∞ by l’Hospital’s Rule.)

49. (a) From the diagram,  =  cot0 to  =
√
2 − 2,  = 0

to  =  sin0 (or use 
2 − 2 = 2 cot2 0). Thus

 =
 2

0

  sin0
0

√2−2
 cot0

   

= 2
  sin0
0



√
2 − 2 − 2 cot0




= 2
3


−(2 − 2)32 − 3 cot0

 sin0

0

= 2
3


− 2 − 2 sin2 0

32 − 3 sin3 0 cot0 + 3


= 2
3
3


1− cos3 0 + sin2 0 cos0


= 2

3
3(1− cos0)
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APPLIED PROJECT ROLLER DERBY ¤ 605

(b) The wedge in question is the shaded area rotated from  = 1 to  = 2.

Letting

 = volume of the region bounded by the sphere of radius 

and the cone with angle  ( = 1 to 2)

and letting  be the volume of the wedge, we have

 = (22 − 21)− (12 − 11)

= 1
3
(2 − 1)


3
2(1− cos2)− 3

2(1− cos1)− 3
1(1− cos2) + 3

1(1− cos1)


= 1
3
(2 − 1)


3
2 − 3

1


(1− cos2)−


3
2 − 3

1


(1− cos1)


= 1

3
(2 − 1)


3
2 − 3

1


(cos1 − cos2)


Or: Show that  =

 2

1

 2 sin2

1 sin1

  cot1

 cot2

   .

(c) By the Mean Value Theorem with () = 3 there exists some ̃ with 1 ≤ ̃ ≤ 2 such that

(2)− (1) =  0(̃)(2 − 1) or 
3
1 − 3

2 = 3̃2∆. Similarly there exists  with 1 ≤ ̃ ≤ 2

such that cos2 − cos1 =

− sin ̃


∆. Substituting into the result from (b) gives

∆ = (̃2 ∆)(2 − 1)(sin ̃) ∆ = ̃2 sin ̃∆∆∆.

APPLIED PROJECT Roller Derby

1.  = 1
2
2 + 1

2
2 = 1

2
(+ 2)2, so 2 =

2

+ 2
=

2

1 + ∗
.

2. The vertical component of the speed is  sin, so




=


2

1 + ∗
sin =


2

1 + ∗
sin

√
.

3. Solving the separable differential equation, we get
√


=


2

1 + ∗
sin ⇒ 2

√
 =


2

1 + ∗
(sin) +.

But  = 0 when  = 0, so  = 0 and we have 2
√
 =


2

1 + ∗
(sin). Solving for  when  =  gives

 =
2
√


sin


1 + ∗

2
=


2(1 + ∗)
 sin2 

.

4. Assume that the length of each cylinder is . Then the density of the solid cylinder is


2
, and from Formulas 15.6.16, its

moment of inertia (using cylindrical coordinates) is

 =




2
(

2
+ 

2
)  =

 

0

 2

0

 

0



2


2
  =



2
2


1
4


4

0

=
2

2

and so ∗ =


2
=

1

2
. [continued]
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606 ¤ CHAPTER 15 MULTIPLE INTEGRALS

For the hollow cylinder, we consider its entire mass to lie a distance  from the axis of rotation, so 2 + 2 = 2 is a

constant. We express the density in terms of mass per unit area as  =


2
, and then the moment of inertia is calculated as a

double integral:  =


(

2
+ 

2
)



2
 =

2

2


 = 

2, so ∗ =


2
= 1.

5. The volume of such a ball is 4
3
(3 − 3) = 4

3
(1− 3), and so its density is


4
3
3(1− 3)

. Using Formula 15.8.3, we get

 =


(

2
+ 

2
)


4
3
3(1− 3)



=


4
3
3(1− 3)

 



 2

0

 

0

(
2
sin

2
)(

2
sin)  

=


4
3
3(1− 3)

· 2

− (2 + sin2 ) cos

3


0


5

5




[from the Table of Integrals]

=


4
3
3(1− 3)

· 2 · 4

3
· 

5 − 5

5
=

25(1− 5)

53(1− 3)
=

2(1− 5)2

5(1− 3)

Therefore ∗ =
2(1− 5)

5(1− 3)
. Since  represents the inner radius, → 0 corresponds to a solid ball, and →  corresponds to

a hollow ball.

6. For a solid ball, → 0 ⇒ → 0, so ∗ = lim
→0

2(1− 5)

5(1− 3)
=

2

5
. For a hollow ball, →  ⇒ → 1, so

∗ = lim
→1

2(1− 5)

5(1− 3)
=

2

5
lim
→1

−54

−32
=

2

5


5

3


=

2

3
[by l’Hospital’s Rule]

Note: We could instead have calculated ∗ = lim
→1

2(1− )(1 + + 2 + 3 + 4)

5(1− )(1 + + 2)
=

2 · 5
5 · 3 =

2

3
.

Thus the objects finish in the following order: solid ball

∗ = 2

5


, solid cylinder


∗ = 1

2


, hollow ball


∗ = 2

3


, hollow

cylinder (∗ = 1).

15.9 Change of Variables in Multiple Integrals

1.  = 2+ ,  = 4− .

The Jacobian is
( )

( )
=

  

 

 =

 2 1

4 −1

 = (2)(−1)− (1)(4) = −6.

2.  = 2 + ,  = 2.

( )

( )
=

  

 

 =
 2+  

2 2

 = (2+ )(2)− (2) = 42 + 22 − 2 = 42 + 2

3.  =  cos ,  =  sin .

( )

( )
=

  

 

 =

 cos  − sin 

sin   cos 

 =  cos2 − (− sin2 ) = (cos2 + sin2 ) = 

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 15.9 CHANGE OF VARIABLES IN MULTIPLE INTEGRALS ¤ 607

4.  =  ,  = .

( )

( )
=

  

 

 =

 
 

 

 =  −  ·  = + − + = (1− )+

5.  = ,  = ,  = .

(  )

( )
=


  

  

  

 =


  0

0  

 0 

 = 

 

0 

 − 

 0 

 

+ 0

 0 

 0


= ( − 0)− (0− ) + 0 =  +  = 2

6.  = + ,  =  +,  =  + .

(  )

( )
=


1  

 1 

  1

 = 1

 1 

 1

−

 

 1

+ 

 1

 

 = 1(1− 2)− ( − ) +  ( − )

= 1− 2 −2 +  +  − 2 = 1 + 2 − 2 − 2 −2

7. The transformation maps the boundary of  to the boundary of the image , so we first look at side 1 in the -plane. 1 is

described by  = 0, 0 ≤  ≤ 3, so  = 2+ 3 = 2 and  = −  = . Eliminating , we have  = 2, 0 ≤  ≤ 6. 2 is

the line segment  = 3, 0 ≤  ≤ 2, so  = 6 + 3 and  = 3− . Then  = 3−  ⇒  = 6 + 3(3− ) = 15− 3,

6 ≤  ≤ 12. 3 is the line segment  = 2, 0 ≤  ≤ 3, so  = 2+ 6 and  = − 2, giving  =  + 2 ⇒  = 2 + 10,

6 ≤  ≤ 12. Finally, 4 is the segment  = 0, 0 ≤  ≤ 2, so  = 3 and  = − ⇒  = −3, 0 ≤  ≤ 6.

The image of set  is the region  shown

in the -plane, a parallelogram bounded

by these four segments.

8. 1 is the line segment  = 0, 0 ≤  ≤ 1, so  =  = 0 and  = (1 + 2) = . Since 0 ≤  ≤ 1, the image is the line

segment  = 0, 0 ≤  ≤ 1. 2 is the segment  = 1, 0 ≤  ≤ 1, so  =  and  = (1 + 2) = 1 + 2. Thus the image is

the portion of the parabola  = 1 + 2 for 0 ≤  ≤ 1. 3 is the segment  = 1, 0 ≤  ≤ 1, so  = 1 and  = 2. The image

is the segment  = 1, 0 ≤  ≤ 2. 4 is described by  = 0, 0 ≤  ≤ 1, so 0 ≤  =  ≤ 1 and  = (1 + 2) = 0. The

image is the line segment  = 0, 0 ≤  ≤ 1. Thus, the image of  is the region  bounded by the parabola  = 1 + 2, the

-axis, and the lines  = 0,  = 1.
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608 ¤ CHAPTER 15 MULTIPLE INTEGRALS

9. 1 is the line segment  = , 0 ≤  ≤ 1, so  =  =  and  = 2 = 2. Since 0 ≤  ≤ 1, the image is the portion of the

parabola  = 2, 0 ≤  ≤ 1. 2 is the segment  = 1, 0 ≤  ≤ 1, thus  =  = 1 and  = 2, so 0 ≤  ≤ 1. The image is

the line segment  = 1, 0 ≤  ≤ 1. 3 is the segment  = 0, 0 ≤  ≤ 1, so  = 2 = 0 and  =  ⇒ 0 ≤  ≤ 1. The

image is the segment  = 0, 0 ≤  ≤ 1. Thus, the image of  is the region  in the first quadrant bounded by the parabola

 = 2, the -axis, and the line  = 1.

10. Substituting  =



,  =




into 2 + 2 ≤ 1 gives

2

2
+

2

2
≤ 1, so the image of 2 + 2 ≤ 1 is the

elliptical region
2

2
+

2

2
≤ 1.

11.  is a parallelogram enclosed by the parallel lines  = 2− 1,  = 2 + 1 and the parallel lines  = 1− ,  = 3− . The

first pair of equations can be written as  − 2 = −1,  − 2 = 1. If we let  =  − 2 then these lines are mapped to the

vertical lines  = −1,  = 1 in the -plane. Similarly, the second pair of equations can be written as  +  = 1, +  = 3,

and setting  = +  maps these lines to the horizontal lines  = 1,  = 3 in the -plane. Boundary curves are mapped to

boundary curves under a transformation, so here the equations  =  − 2,  = +  define a transformation −1 that

maps  in the -plane to the square  enclosed by the lines  = −1,  = 1,  = 1,  = 3 in the -plane. To find the

transformation  that maps  to  we solve  =  − 2,  = +  for , : Subtracting the first equation from the second

gives  −  = 3 ⇒  = 1
3
( − ) and adding twice the second equation to the first gives  + 2 = 3 ⇒

 = 1
3
(+ 2). Thus one possible transformation  (there are many) is given by  = 1

3
( − ),  = 1

3
(+ 2).

12. The boundaries of the parallelogram  are the lines  = 3
4
 or 4 − 3 = 0,  = 3

4
 + 5

2
or 4 − 3 = 10,  = − 1

2
 or

+ 2 = 0,  = − 1
2
+ 5 or + 2 = 10. Setting  = 4 − 3 and  = + 2 defines a transformation −1 that maps 
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SECTION 15.9 CHANGE OF VARIABLES IN MULTIPLE INTEGRALS ¤ 609

in the -plane to the square  enclosed by the lines  = 0,  = 10,  = 0,  = 10 in the -plane. Solving  = 4 − 3,

 = + 2 for  and  gives 2 −  = 5 ⇒  = 1
5
(2 − ), + 3 = 10 ⇒  = 1

10
(+ 3). Thus one possible

transformation  is given by  = 1
5
(2 − ),  = 1

10
(+ 3).

13.  is a portion of an annular region (see the figure) that is easily described in polar coordinates as

 =

( ) | 1 ≤  ≤ √2 0 ≤  ≤ 2


. If we converted a double integral over  to polar coordinates the resulting region

of integration is a rectangle (in the -plane), so we can create a transformation  here by letting  play the role of  and

 the role of . Thus  is defined by  =  cos ,  =  sin  and  maps the rectangle

 =

( ) | 1 ≤  ≤ √2 0 ≤  ≤ 2


in the -plane to  in the -plane.

14. The boundaries of the region  are the curves  = 1 or  = 1,  = 4 or  = 4,  =  or  = 1,  = 4 or

 = 4. Setting  =  and  =  defines a transformation −1 that maps  in the -plane to the square  enclosed by

the lines  = 1,  = 4,  = 1,  = 4 in the -plane. Solving  = ,  =  for  and  gives 2 =  ⇒

 =

 [since , , ,  are all positive], 2 =  ⇒  =

√
. Thus one possible transformation  is given by

 =

,  =

√
.
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610 ¤ CHAPTER 15 MULTIPLE INTEGRALS

15.
( )

( )
=

 2 1

1 2

 = 3 and − 3 = (2+ )− 3(+ 2) = −− 5. To find the region  in the -plane that

corresponds to we first find the corresponding boundary under the given transformation. The line through (0 0) and (2 1) is

 = 1
2
 which is the image of + 2 = 1

2
(2+ ) ⇒  = 0; the line through (2 1) and (1 2) is +  = 3 which is the

image of (2+ ) + (+ 2) = 3 ⇒ +  = 1; the line through (0 0) and (1 2) is  = 2 which is the image of

+ 2 = 2(2+ ) ⇒  = 0. Thus  is the triangle 0 ≤  ≤ 1− , 0 ≤  ≤ 1 in the -plane and


(− 3)  =
 1

0

 1−
0

(−− 5) |3|   = −3
 1

0


 + 5

2
2
=1−
=0



= −3
 1

0


− 2 + 5

2
(1− )2


 = −3


1
2
2 − 1

3
3 − 5

6
(1− )3

1
0

= −3


1
2
− 1

3
+ 5

6


= −3

16.
( )

( )
=

 14 14

−34 14

 =
1

4
, 4+ 8 = 4 · 1

4
(+ ) + 8 · 1

4
( − 3) = 3 − 5.  is a parallelogram bounded by the

lines −  = −4, −  = 4, 3 +  = 0, 3+  = 8. Since  = −  and  = 3 + ,  is the image of the rectangle

enclosed by the lines  = −4,  = 4,  = 0, and  = 8. Thus

(4 + 8)  =

 4

−4

 8

0
(3 − 5)

 1
4

   = 1
4

 4

−4


3
2
2 − 5

=8

=0


= 1
4

 4

−4
(96− 40)  = 1

4


96− 202

4
−4

= 192

17.
( )

( )
=

2 0

0 3

 = 6, 2 = 42 and the planar ellipse 92 + 42 ≤ 36 is the image of the disk 2 + 2 ≤ 1. Thus



2 =


2+2≤1

(42)(6)  =
 2

0

 1

0
(242 cos2 )    = 24

 2

0
cos2  

 1

0
3 

= 24


1
2
 + 1

4
sin 2

2
0


1
4
4
1
0

= 24()


1
4


= 6

18.
( )

( )
=


√

2 −


23
√

2


23

 =
4√
3
, 2 −  + 2 = 22 + 22 and the planar ellipse 2 −  + 2 ≤ 2

is the image of the disk 2 + 2 ≤ 1. Thus

(2 −  + 2)  =


2+2≤1

(22 + 22)


4√
3



=
 2

0

 1

0
8√
3
3   = 4√

3

19.
( )

( )
=

 1 −2

0 1

 =
1


,  = ,  =  is the image of the parabola 2 = ,  = 3 is the image of the parabola

2 = 3, and the hyperbolas  = 1,  = 3 are the images of the lines  = 1 and  = 3 respectively. Thus


  =

 3

1

 √
3

√





1




  =

 3

1



ln
√

3− ln
√


 =

 3

1
 ln

√
3  = 4 ln

√
3 = 2 ln 3.

20. Here  =



,  =

2


so

( )

( )
=

 2 −22

−2 1

 = 1


and  is the

image of the square with vertices (1 1), (2 1), (2 2), and (1 2). So



2
 =

 2

1

 2

1

2

2


1




 =

 2

1



2
 =

3

4
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SECTION 15.9 CHANGE OF VARIABLES IN MULTIPLE INTEGRALS ¤ 611

21. (a)
(  )

(  )
=


 0 0

0  0

0 0 

 =  and since  =



,  =




,  =




the solid enclosed by the ellipsoid is the image of the

ball 2 + 2 +2 ≤ 1. So

 =


2+2+2≤ 1

    = ()(volume of the ball) = 4
3


(b) If we approximate the surface of the earth by the ellipsoid
2

63782
+

2

63782
+

2

63562
= 1, then we can estimate

the volume of the earth by finding the volume of the solid  enclosed by the ellipsoid. From part (a), this is

 = 4

3
(6378)(6378)(6356) ≈ 1083× 1012 km3.

(c) The moment of intertia about the -axis is  =





2 + 2


(  )  , where  is the solid enclosed by

2

2
+

2

2
+

2

2
= 1. As in part (a), we use the transformation  = ,  = ,  = , so

 (  )

( )

 =  and

 =





2 + 2


  =


2+2+2≤ 1

(22 + 22)()  

= 
 
0

 2

0

 1

0
(22 sin2  cos2  + 22 sin2  sin2 ) 2 sin  

= 

2
 
0

 2

0

 1

0
(2 sin2  cos2 ) 2 sin  + 2

 
0

 2

0

 1

0
(2 sin2  sin2 ) 2 sin 


= 3

 
0

sin3 
 2

0
cos2  

 1

0
4  + 3

 
0

sin3 
 2

0
sin2  

 1

0
4 

= 3


1
3

cos3 − cos

0


1
2
 + 1

4
sin 2

2
0


1
5
5
1
0
+ 3


1
3

cos3 − cos

0


1
2
 − 1

4
sin 2

2
0


1
5
5
1
0

= 3


4
3


()


1
5


+ 3


4
3


()


1
5


= 4

15
(2 + 2)

22.  is the region enclosed by the curves  = ,  = , 14 = , and 14 = , so if we let  =  and  = 14 then 

is the image of the rectangle enclosed by the lines  = ,  =  (  ) and  = ,  =  (  ). Now

 =  ⇒  = ()14 = 04 ⇒ 04 = −1 ⇒  = (−1)104 = −2525 and

 = −1 = (−2525)−1 = 35−25, so

( )

( )
=

 3525−25 −2535−35

−25−3525 25−2515

 = 875−1 − 625−1 = 25−1. Thus the area of , and the work done by

the engine, is



 =

 


 


25−1
   = 25

 


 

(1)  = 25







ln || 


= 25(−)(ln −ln ) = 25(−) ln




.

23. Letting  = − 2 and  = 3− , we have  = 1
5
(2 − ) and  = 1

5
( − 3). Then

( )

( )
=

−15 25

−35 15

 =
1

5

and  is the image of the rectangle enclosed by the lines  = 0,  = 4,  = 1, and  = 8. Thus


− 2

3− 
 =

 4

0

 8

1





15
   =

1

5

 4

0



 8

1

1


 = 1

5


1
2


2
4
0


ln || 8

1
= 8

5
ln 8.
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612 ¤ CHAPTER 15 MULTIPLE INTEGRALS

24. Letting  = +  and  = − , we have  = 1
2
(+ ) and  = 1

2
(− ). Then

( )

( )
=

 12 12

12 −12

 = −1

2
and  is

the image of the rectangle enclosed by the lines  = 0,  = 3,  = 0, and  = 2. Thus

(+ ) 

2−2  =
 3

0

 2

0


− 1
2

   = 1
2

 3

0



=2

=0
 = 1

2

 3

0
(2 − 1) 

= 1
2


1
2
2 − 

3
0

= 1
2


1
2
6 − 3− 1

2


= 1

4
(6 − 7)

25. Letting  =  − ,  =  + , we have  = 1
2
(+ ),  = 1

2
( − ). Then

( )

( )
=

−12 12

12 12

 = −1

2
and  is the

image of the trapezoidal region with vertices (−1 1), (−2 2), (2 2), and (1 1). Thus


cos


 − 

 + 


 =

 2

1

 

−
cos





−1

2

  =
1

2

 2

1


 sin





= 

=−
 =

1

2

 2

1

2 sin(1)  = 3
2

sin 1

26. Letting  = 3,  = 2, we have 92 + 42 = 2 + 2,  = 1
3
, and  = 1

2
. Then

( )

( )
=

1

6
and  is the image of the

quarter-disk given by 2 + 2 ≤ 1,  ≥ 0,  ≥ 0. Thus


sin(92 + 42)  =




1
6

sin(2 + 2)  =
 2
0

 1

0
1
6

sin(2)    = 
12

−1
2

cos 2
1
0

= 
24

(1− cos 1)

27. Let  = +  and  = −+ . Then +  = 2 ⇒  = 1
2
(+ ) and −  = 2 ⇒  = 1

2
(− ).

( )

( )
=

 12 −12

12 12

 =
1

2
. Now || = |+ | ≤ ||+ || ≤ 1 ⇒ −1 ≤  ≤ 1,

and || = |− + | ≤ ||+ || ≤ 1 ⇒ −1 ≤  ≤ 1.  is the image of the square

region with vertices (1 1), (1−1), (−1−1), and (−1 1).

So



+  = 1

2

 1

−1

 1

−1
  = 1

2



1
−1



1
−1

= − −1.

28. Let  =  +  and  = , then  = − ,  = ,
( )

( )
= 1 and  is the image under  of the triangular region with

vertices (0 0), (1 0) and (1 1). Thus

(+ )  =

 1

0

 
0

(1) ()   =
 1

0
()



=
=0

 =
 1

0
()  as desired.

15 Review

1. This is true by Fubini’s Theorem.

2. False.
 1

0

 
0


+ 2   describes the region of integration as a Type I region. To reverse the order of integration, we

must consider the region as a Type II region:
 1

0

 1




+ 2  .

3. True by Equation 15.1.11.
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4.
 1

−1

 1

0


2 + 2 sin   =
 1

0


2


 1

−1


2

sin  


=
 1

0


2



(0) = 0, since 

2

sin  is an odd function.

Therefore the statement is true.

5. True. By Equation 15.1.11 we can write
 1

0

 1

0
() ()   =

 1

0
() 

 1

0
() . But

 1

0
()  =

 1

0
()  so

this becomes
 1

0
() 

 1

0
()  =

 1

0
() 

2
.

6. This statement is true because in the given region,

2 +

√


sin(22) ≤ (1 + 2)(1) = 3, so 4

1

 1

0


2 +

√


sin(22)   ≤  4

1

 1

0
3  = 3() = 3(3) = 9.

7. True:





4− 2 − 2  = the volume under the surface 2 + 2 + 2 = 4 and above the -plane

= 1
2


the volume of the sphere 2 + 2 + 2 = 4


= 1

2
· 4

3
(2)3 = 16

3


8. True. The moment of inertia about the -axis of a solid  with constant density  is

 =



(2 + 2)(  )  =




(2)     =



3   .

9. The volume enclosed by the cone  =

2 + 2 and the plane  = 2 is, in cylindrical coordinates,

 =
 2

0

 2

0

 2


    6=  2

0

 2

0

 2


  , so the assertion is false.

1. As shown in the contour map, we divide  into 9 equally sized subsquares, each with area∆ = 1. Then we approximate

( )  by a Riemann sum with =  = 3 and the sample points the upper right corners of each square, so



( ) ≈

3
= 1

3
= 1

( )∆

= ∆ [(1 1) + (1 2) + (1 3) + (2 1) + (2 2) + (2 3) + (3 1) + (3 2) + (3 3)]

Using the contour lines to estimate the function values, we have

( )  ≈ 1[27 + 47 + 80 + 47 + 67 + 100 + 67 + 86 + 119] ≈ 640

2. As in Exercise 1, we have =  = 3 and∆ = 1. Using the contour map to estimate the value of  at the center of each

subsquare, we have

( ) ≈

3
= 1

3
= 1



 


∆

= ∆ [(05 05) + (05 15) + (05 25) + (15 05) + (15 15)

+ (15 25) + (25 05) + (25 15) + (25 25)]

≈ 1[12 + 25 + 50 + 32 + 45 + 71 + 52 + 65 + 90] = 442

3.
 2

1

 2

0
( + 2)   =

 2

1


 + 2

=2

=0
 =

 2

1
(2 + 4)  =


2 + 4

2
1

= 4 + 42 − 1− 4 = 42 − 4+ 3
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4.
 1

0

 1

0
   =

 1

0



=1

=0
 =

 1

0
( − 1)  =


 − 

1
0

= − 2

5.
 1

0

 
0

cos(2)   =
 1

0


cos(2)

=
=0

 =
 1

0
 cos(2)  = 1

2
sin(2)

1
0

= 1
2

sin 1

6.
 1

0

 


32   =
 1

0


3

=
=

 =
 1

0
(3 − 4)  = 1

3
3

1
0
−  1

0

1
3
3 −  1

5
5
1
0


integrate by parts
in the first term


= 1

3
3 −  1

9
3
1
0
− 1

5
= 2

9
3 − 4

45

7.
 
0

 1

0

√1−2
0

 sin   =
 
0

 1

0


( sin)

=√1−2
=0

  =
 
0

 1

0



1− 2 sin 

=
 
0


− 1

3
(1− 2)32 sin

=1

=0
 =

 
0

1
3

sin = − 1
3

cos

0

= 2
3

8.
 1

0

 
0

 1


6    =

 1

0

 
0


32

=1

=
  =

 1

0

 
0

(3 − 33) 

=
 1

0


3
2
2 − 3

4
4

=

=0
 =

 1

0


3
2
3 − 3

4
5

 =


3
8
4 − 1

8
6
1
0

= 1
4

9. The region  is more easily described by polar coordinates:  = {( ) | 2 ≤  ≤ 4, 0 ≤  ≤ }. Thus

( )  =

 
0

 4

2
( cos   sin )   .

10. The region  is a type II region that can be described as the region enclosed by the lines  = 4− ,  = 4 + ,

and the -axis. So using rectangular coordinates, we can say  = {( ) | 0 ≤  ≤ 4,  − 4 ≤  ≤ 4− }

and



( )  =

 4

0

 4− 

− 4
( )  .

11.  =  cos  = 2
√

3 cos 
3

= 2
√

3 · 1
2

=
√

3,  =  sin  = 2
√

3 sin 
3

= 2
√

3 ·
√

3
2

= 3,  = 2, so in rectangular

coordinates the point is
√

3 3 2

.  =

√
2 + 2 =

√
12 + 4 = 4,  = 

3
, and cos =  = 1

2
, so  = 

3
and spherical

coordinates are

4 

3
 

3


.

12.  =
√

4 + 4 = 2
√

2;  = −1; tan  = 2
2

= 1 and the point (2 2) is in the first quadrant of the -plane, so  = 
4
. Thus in

cylindrical coordinates the point is

2
√

2 
4
−1


.  =

√
4 + 4 + 1 = 3, cos =  = − 1

3
, so the spherical coordinates

are

3 

4
 cos−1

− 1
3


.

13.  =  sin cos  = 8 sin 
6

cos 
4

= 8 · 1
2
·
√

2
2

= 2
√

2,  =  sin sin  = 8 sin 
6

sin 
4

= 2
√

2, and

 =  cos = 8 cos 
6

= 8 ·
√

3
2

= 4
√

3. Thus rectangular coordinates for the point are

2
√

2 2
√

2 4
√

3

.

2 = 2 + 2 = 8 + 8 = 16 ⇒  = 4,  = 
4
, and  = 4

√
3, so cylindrical coordinates are


4 

4
 4
√

3

.

14. (a)  = 
4
. In cylindrical coordinates (assuming that  can be negative), this is a vertical plane that includes the -axis and

intersects the -plane in the line  = . In spherical coordinates, because  ≥ 0 and 0 ≤  ≤ , we get a vertical

half-plane that includes the -axis and intersects the -plane in the half-line  = ,  ≥ 0.

(b)  = 
4
. In spherical coordinates, this is one frustum of a circular cone with vertex the origin and axis the positive -axis.
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CHAPTER 15 REVIEW ¤ 615

15. (a) 2 + 2 + 2 = 4. In cylindrical coordinates, this becomes 2 + 2 = 4. In spherical coordinates, it becomes 2 = 4

or  = 2.

(b) 2 + 2 = 4. In cylindrical coordinates: 2 = 4 or  = 2. In spherical coordinates: 2 − 2 = 4 or 2 − 2 cos2  = 4 or

2 sin2  = 4 or  sin = 2.

16.  = 2cos ⇒ 2 = 2 cos ⇒ 2 + 2 + 2 = 2 ⇒
2 + 2 + ( − 1)2 = 1. This is the equation of a sphere with radius 1,

centered at (0 0 1). Therefore, 0 ≤  ≤ 2 cos is the solid ball whose

boundary is this sphere. 0 ≤  ≤ 
2
and 0 ≤  ≤ 

6
restrict the solid to the

section of this ball that lies above the cone  = 
6
and is in the first octant.

17. The region whose area is given by
 2
0

 sin 2

0
   is

( ) | 0 ≤  ≤ 
2
 0 ≤  ≤ sin 2


, which is the region contained in the

loop in the first quadrant of the four-leaved rose  = sin 2.

18. The solid is

(  ) | 1 ≤  ≤ 2 0 ≤  ≤ 

2
 0 ≤  ≤ 

2


which is the region in the first octant on or between the two

spheres  = 1 and  = 2.

19.
 1

0

 1


cos(2)   =

 1

0

 
0

cos(2) 

=
 1

0
cos(2)



=
=0

 =
 1

0
 cos(2) 

=


1
2

sin(2)
1
0

= 1
2

sin 1

20.  1

0

 1

√



2

3
  =

 1

0

 2

0


2

3
  =

 1

0


2

3


1
2

2
=2
=0



=

 1

0

1
2


2
 = 1

4

2
1
0

= 1
4
(− 1)

21.



  =

 3

0

 2

0
  =

 3

0



=2

=0
 =

 3

0
(2 − 1)  =


1
2
2 − 

3
0

= 1
2
6 − 3− 1

2
= 1

2
6 − 7

2

22.



  =

 1

0

 +2

2
   =

 1

0



1
2
2
=+2

=2
 = 1

2

 1

0


( + 2)2 − 4




= 1
2

 1

0
(3 + 42 + 4 − 5)  = 1

2


1
4
4 + 4

3
3 + 22 − 1

6
6
1
0

= 41
24
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23. 




1 + 2
 =

 1

0

 √


0



1 + 2
  =

 1

0

1

1 + 2


1
2

2
=√
=0



= 1
2

 1

0



1 + 2
 =


1
4

ln(1 + 
2
)
1
0

= 1
4

ln 2

24.




1

1 + 2
 =

 1

0

 1



1

1 + 2
  =

 1

0

1

1 + 2



=1

=
 =

 1

0

1− 

1 + 2
 =

 1

0


1

1 + 2
− 

1 + 2




=

tan−1 − 1

2
ln(1 + 2)

1
0

= tan−1 1− 1
2

ln 2− tan−1 0− 1
2

ln 1


= 
4
− 1

2
ln 2

25.



  =

 2

0

 8−2
2

  

=
 2

0



=8−2
=2

 =
 2

0
(8− 2 − 2) 

=
 2

0
(8 − 23)  =


42 − 1

2
4
2
0

= 8

26. 


  =

 2

1

 

1

   =

 2

1




 − 1






=
 2

1


2 − 1


 =


1
3
3 − 

2
1

=


8
3
− 2
−  1

3
− 1


= 4
3

27. 





2
+ 

2
32

 =

 3

0

 3

0

(
2
)
32

  

=

 3

0



 3

0


4
 =



3
0


1
5

5
3
0

=


3

35

5
=

81

5

28.



 =

 2
0

√2

1
( cos )    =

 2
0

cos  
√2

1
2  =


sin 

2
0


1
3
3
√2

1

= 1 · 1
3
(232 − 1) = 1

3
(232 − 1)

29.



  =

 3

0

 
0

 +
0

    =
 3

0

 
0



=+
=0

  =
 3

0

 
0
(+ )  

=
 3

0

 
0

(2 + 2)   =
 3

0


1
2
22 + 1

3
3

=
=0

 =
 3

0


1
2
4 + 1

3
4



= 5
6

 3

0
4  =


1
6
5
3
0

= 81
2

= 405
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30.



  =

 13

0

 1−3

0

 1−3−
0

    =
 13

0

 1−3

0
(1− 3− )  

=
 13

0

 1−3

0
( − 32 − 2)  

=
 13

0


1
2
2 − 3

2
22 − 1

3
3

=1−3

=0


=
 13

0


1
2
(1− 3)2 − 3

2
2(1− 3)2 − 1

3
(1− 3)3




=
 13

0


1
6
− 3

2
2 + 9

2
3 − 9

2
4



= 1
12
2 − 1

2
3 + 9

8
4 − 9

10
5
13
0

= 1
1080

31.



22  =

 1

−1

√1−2

−
√

1−2
 1− 2− 2

0
22   =

 1

−1

√1−2

−
√

1−2
22(1− 2 − 2)  

=
 2

0

 1

0
(2 cos2 )(2 sin2 )(1− 2)    =

 2

0


1
2

sin 2
2

 1

0
(5 − 7) 

=
 2

0
1
4


1
2
(1− cos 4)



 1

0
(5 − 7)  = 1

8


 − 1

4
sin 4

2
0


1
6
6 − 1

8
8
1
0

= 1
8

(2)


1
6
− 1

8


= 

4
· 1

24
= 

96

32.



  =

 1

0

√1−2
0

 2−
0

    =
 1

0

√1−2
0

(2− )   =
 1

0
1
2
(2− )(1− 2) 

=
 1

0

1
2
(2−  − 22 + 3)  = 13

24

33.



  =

 2

−2

√4−2
0

 
0
    =

 2

−2

√4−2
0


1
2
2
=
=0

  = 1
2

 2

−2

√4−2
0

3 

= 1
2

 
0

 2

0
( sin )3    = 1

2

 
0

sin3  
 2

0
4  = 1

2

 
0

(1− cos2 ) sin  
 2

0
4 

= 1
2

− cos  + 1
3

cos3 

0


1
5
5
2
0

= 1
2


2
3

+ 2
3

 
32
5


= 64

15

34.



3

2 + 2 + 2  =

 2

0

 2
0

 1

0
(3 cos3 )(2 sin)  

=
 2

0

 2
0

cos3  sin
 1

0
6  = 2

−1
4

cos4 
2
0


1
7


= 

14

35.  =
 2

0

 4

1
(2 + 42)   =

 2

0


2 + 4

3
3
=4

=1
 =

 2

0
(32 + 84)  = 3 + 84

2
0

= 176

36.  =
 1

0

 4−2

+1

 2
0

   =
 1

0

 4−2

+1
2  

=
 1

0
1
3


(4− 2)3 − ( + 1)3




=
 1

0
3(−4 + 53 − 112 + 7)  = 3

− 1
5

+ 5
4
− 11

3
+ 7

2


= 53

20

37.
 =

 2

0

 
0

 (2−)2
0

   =
 2

0

 
0


1− 1

2


 

=
 2

0


 − 1

2
2

 = 1

2
2 − 1

6
3
2
0

= 2
3
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38.  =
 2

0

 2

0

 3− sin 

0
    =

 2

0

 2

0
(3 − 2 sin )   =

 2

0


6− 8

3
sin 


 = 6 + 8

3
cos 

2
0

= 12

39. Using the wedge above the plane  = 0 and below the plane  =  and noting that we have the same volume for  0 as

for  0 (so use  0), we have

 = 2
 3
0

√2−92

0
 = 2

 3
0

1
2
(2 − 92)  = 


2 − 33

3
0

= 


1
3
3 − 1

9
3


= 2
9
3.

40. The paraboloid and the half-cone intersect when 2 + 2 =

2 + 2, that is when 2 + 2 = 1 or 0. So

 =


2+2≤1

√2+2

2+2
  =

 2

0

 1

0

 
2
    =

 2

0

 1

0
(2 − 3)   =

 2

0


1
3
− 1

4


 = 1

12
(2) = 

6
.

41. (a)  =
 1

0

 1−2
0

   =
 1

0
( − 3)  = 1

2
− 1

4
= 1

4

(b)  =
 1

0

 1− 2

0
   =

 1

0
1
2
(1 − 2)2  = − 1

12
(1− 2)3

1
0

= 1
12
,

 =
 1

0

 1− 2

0
2   =

 1

0
(2 − 4)  = 2

15
. Hence ( ) =


1
3
 8

15


.

(c)  =
 1

0

 1−2
0

3   =
 1

0
(3 − 5)  = 1

12
,

 =
 1

0

 1−2
0

2  =
 1

0
1
3
(1− 2)3  = − 1

24
(1− 2)4

1
0

= 1
24
,


2

=  =
112

14
= 1

3
⇒  = 1√

3
, and 

2
=  =

124

14
= 1

6
⇒  = 1√

6
.

42. (a) In polar coordinates, the lamina occupies the region = {( ) | 0 ≤  ≤ , 0 ≤  ≤ 2}. Assuming constant density

, then = () =  · 1
4
2 = 1

4
2,

 =



 = 

 2
0

 
0

( cos )    = 
 2
0

cos  
 
0
2  =  [sin ]

2

0


1
3
3

0

= 1
3
3, and

 =



  = 

 2
0

sin  
 
0
2  =  [− cos ]

2

0


1
3
3

0

= 1
3
3 [by symmetry = ].

Thus the centroid is ( ) = () =


4
3
 4

3


.

(b)  =



( )  =



2  =

 2
0

 
0

( cos )( sin )2   

=
 2
0

sin2  cos  
 
0
4  =


1
3

sin3 
2
0


1
5
5

0

= 1
15
5,

 =
 2
0

 
0
5 cos2  sin2    = 1

8


 − 1

4
sin 4

2
0


1
6
6

0

= 1
96
6, and

 =
 2
0

 
0
5 cos  sin3    =


1
4

sin4 
2
0


1
6
6

0

= 1
24
6. Hence ( ) =


5
32
 5

8


.

43. (a) A right circular cone with axis the -axis and vertex at the origin has equation 2 = 2(2 + 2). Here we have the bottom

frustum, shifted upward  units, and with 2 = 22 so that the cone includes the point ( 0 0). Thus an equation of the

cone in rectangular coordinates is  = − 



2 + 2, 0 ≤  ≤ . In cylindrical coordinates, the cone is described by

 =

(  ) | 0 ≤  ≤  0 ≤  ≤ 2 0 ≤  ≤ 


1− 1




, and its volume is  = 1

3
2. By symmetry
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CHAPTER 15 REVIEW ¤ 619

 =  = 0, and

 =

 2

0

 

0

 (1−)

0

 ·     =

 2

0

 

0


1

2


2

=(1−)

=0

 

=
1

2

 2

0

 

0


2

1− 



2

  =
1

2


2

 2

0



 

0


 − 2



2
+

1

2

3




= 1
2
2


2
0


1
2
2 − 2

3
3 + 1

42
4

0

= 1
2
2 (2)


1
2
2 − 2

3
2 + 1

4
2


= 2


1
12
2


= 1
12
22

Hence the centroid is (  ) =

0 0 [2212][23]


=

0 0 1

4


.

(b) The density function is  =

2 + 2 =

√
2 = , so the moment of inertia about the cone’s axis (the -axis) is

 =



(2 + 2) (  )  =

 2

0

 
0

 (1−)
0

(2)()    

=
 2

0

 
0


4
=(1−)
=0

  =
 2

0

 
0
4


1− 1




 

= 
 2

0

 
0


4 − 1


5

 = 



2
0


1
5
5 − 1

6
6

0

=  (2)


1
5
5 − 1

6
5


= 1
15
5

44. 1 ≤ 2 ≤ 4 ⇒ 12 ≤ 2 + 2 ≤ 42. Let =

( ) | 12 ≤ 2 + 2 ≤ 42


.  = ( ) = 


2 + 2, so

( ) = (2 + 2)−12, ( ) = (2 + 2)−12, and

() =





22 + 22

2 + 2
+ 1  =





2 + 1  =


2 + 1()

=
√
2 + 1





2



2

− 


1



2


=
3

2

√
2 + 1

45. Let represent the given triangle; then can be described as the area enclosed by the - and -axes and the line  = 2− 2,

or equivalently = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ 2− 2}. We want to find the surface area of the part of the graph of

 = 2 +  that lies over, so using Equation 15.5.3 we have

() =





1 +






2

+






2

 =





1 + (2)2 + (1)2  =

 1

0

 2−2

0


2 + 42  

=
 1

0

√
2 + 42



=2−2

=0
 =

 1

0
(2− 2)

√
2 + 42  =

 1

0
2
√

2 + 42 −  1

0
2
√

2 + 42 

Using Formula 21 in the Table of Integrals with  =
√

2,  = 2, and  = 2 , we have
2
√

2 + 42  = 
√

2 + 42 + ln

2+

√
2 + 42


. If we substitute  = 2 + 42 in the second integral, then

 = 8 and


2
√

2 + 42  = 1
4

 √
 = 1

4
· 2

3
32 = 1

6
(2 + 42)32. Thus

() =


√

2 + 42 + ln

2+

√
2 + 42

− 1
6
(2 + 42)32

1
0

=
√

6 + ln

2 +

√
6
− 1

6
(6)32 − ln

√
2 +

√
2

3
= ln 2+

√
6√

2
+
√

2
3

= ln
√

2 +
√

3


+
√

2
3
≈ 1.6176
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620 ¤ CHAPTER 15 MULTIPLE INTEGRALS

46. Using Formula 15.5.3 with  = sin ,

 =  cos , we get

 =
 
−
 3

−3


1 + sin2  + 2 cos2    ≈ 629714.

47.  3

0

 √9−2

−
√

9−2
(

3
+ 

2
)   =

 3

0

 √9−2

−
√

9−2
(

2
+ 

2
)  

=
 2
−2

 3

0
( cos )(2)   

=
 2
−2 cos  

 3

0
4 

=

sin 

2
−2


1
5
5
3
0

= 2 · 1
5
(243) = 486

5
= 972

48. The region of integration is the solid hemisphere 2 + 2 + 2 ≤ 4,  ≥ 0. 2

−2

 √4−2

0

 √4−2−2

−
√

4−2−2

2

2 + 2 + 2  

=
 2
−2

 
0

 2

0
( sin sin )2


2


2 sin =

 2
−2 sin2  

 
0

sin3 
 2

0
5 

=


1
2
 − 1

4
sin 2

2
−2

− cos+ 1
3

cos3 

0


1
6
6
2
0

=


2


2
3

+ 2
3


32
3


= 64

9


49. From the graph, it appears that 1− 2 =  at  ≈ −071 and at

 = 0, with 1− 2   on (−071 0). So the desired integral is

2≈  0

−071

 1−2


2  

= 1
3

 0

−071
[(1− 2)3 − 3] 

= 1
3


− 3 + 3

5
5 − 1

7
7 − 1

3
3
0
−071

≈ 00512

50. Let the tetrahedron be called  . The front face of  is given by the plane  + 1
2
 + 1

3
 = 1, or  = 3− 3− 3

2
,

which intersects the -plane in the line  = 2− 2. So the total mass is

 =



(  )  =

 1

0

 2−2

0

 3−3−32

0
(2 + 2 + 2)    = 7

5
. The center of mass is

(  ) =

−1



(  ) −1



(  ) −1



(  ) 


=


4
21
 11

21
 8

7


.

51. (a) ( ) is a joint density function, so we know that


R2 ( )  = 1. Since ( ) = 0 outside the rectangle

[0 3]× [0 2], we can say
R2 ( ) =

∞
−∞

∞
−∞ ( )   =

 3

0

 2

0
(+ )  

= 
 3

0


 + 1

2
2
=2

=0
 = 

 3

0
(2+ 2)  = 


2 + 2

3
0

= 15

Then 15 = 1 ⇒  = 1
15
.
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CHAPTER 15 REVIEW ¤ 621

(b)  ( ≤ 2  ≥ 1) =
 2

−∞
∞
1

( )   =
 2

0

 2

1

1
15

( )   = 1
15

 2

0


 + 1

2
2
=2

=1


= 1
15

 2

0


+ 3

2


 = 1

15


1
2
2 + 3

2

2
0

= 1
3

(c)  ( +  ≤ 1) =  (( ) ∈ ) where is the triangular region shown in

the figure. Thus

 ( +  ≤ 1) =



( )  =

 1

0

 1−
0

1
15

(+ )  

= 1
15

 1

0


 + 1

2
2
=1−
=0



= 1
15

 1

0


(1− ) + 1

2
(1− )2




= 1
30

 1

0
(1− 2)  = 1

30


− 1

3
3
1
0

= 1
45

52. Each lamp has exponential density function

() =


0 if   0

1
800

−800 if  ≥ 0

If,  , and  are the lifetimes of the individual bulbs, then,  , and  are independent, so the joint density function is the

product of the individual density functions:

(  ) =

 1

8003
−(++)800 if  ≥ 0,  ≥ 0,  ≥ 0

0 otherwise

The probability that all three bulbs fail within a total of 1000 hours is  ( +  +  ≤ 1000), or equivalently

 (() ∈ ) where  is the solid region in the first octant bounded by the coordinate planes and the plane

+  +  = 1000. The plane +  +  = 1000 meets the -plane in the line +  = 1000, so we have

 ( +  +  ≤ 1000) =



(  )  =

 1000

0

 1000−
0

 1000−−
0

1

8003
−(++)800   

= 1

8003

 1000

0

 1000−
0

−800

−(++)800

=1000−−

=0
 

= −1

8002

 1000

0

 1000−
0

[−54 − −(+)800]  

= −1

8002

 1000

0


−54 + 800−(+)800

=1000−

=0


= −1

8002

 1000

0
[−54(1800− )− 800−800] 

= −1

8002


− 1

2
−54(1800− )2 + 8002−800

1000
0

= −1
8002


− 1

2
−54(800)2 + 8002−54 + 1

2
−54(1800)2 − 8002


= 1− 97

32
−54 ≈ 01315

53.
 1

−1

 1

2

 1−
0

(  )    =
 1

0

 1−
0

√
−√ (  )   
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622 ¤ CHAPTER 15 MULTIPLE INTEGRALS

54.

 2

0

 3
0

 2
0

(  )   =



(  )  where  =


(  ) | 0 ≤  ≤ 2, 0 ≤  ≤ 3, 0 ≤  ≤ 2


.

If 1, 2, and 3 are the projections of  onto the -, -, and -planes, then

1 =

( ) | 0 ≤  ≤ 2, 0 ≤  ≤ 3


= {( ) | 0 ≤  ≤ 8, 3

√
 ≤  ≤ 2},

2 = {( ) | 0 ≤  ≤ 4,
√
 ≤  ≤ 2} =


( ) | 0 ≤  ≤ 2, 0 ≤  ≤ 2


,3 = {( ) | 0 ≤  ≤ 8, 0 ≤  ≤ 4}.

Therefore we have 2

0

 3
0

 2
0

(  )    =
 8

0

 2
3√
 2
0

(  )    =
 4

0

 2√


 3
0

(  )   

=
 2

0

 2
0

 3
0

(  )   

=
 8

0

 23
0

 2
3√ (  )   +

 8

0

 4

23

 2√

(  )   

=
 4

0

 32
0

 2√

(  )    +

 4

0

 8

32

 2
3√ (  )  

55. Since  = −  and  = + ,  = 1
2
(+ ) and  = 1

2
( − ). Thus

( )

( )
=

 12 12

−12 12

 =
1

2
.

 is the image under this transformation of the square with vertices ( ) = (−2 2), (0 2), (0 4), and (−2 4). So


− 

 + 
 =

 4

2

 0

−2






1

2


 =

1

2

 4

2


2

2

=0

=−2

 =
1

2

 4

2


−2






= − ln ]
4

2 = − ln 4 + ln 2 = −2 ln 2 + ln 2 = − ln 2.

56.
(  )

( )
=


2 0 0

0 2 0

0 0 2

 = 8, so

 =



 =

 1

0

 1−
0

 1−−
0

8    =
 1

0

 1−
0

4(1− − )2 

=
 1

0

 1−
0


4(1− )2 − 8(1− )2 + 43


 

=
 1

0


2(1− )4 − 8

3
(1− )4 + (1− )4


 =

 1

0

1
3
(1− )4

=
 1

0
1
3


(1− )4 − (1− )5


 = 1

3

−1
5
(1− )5 + 1

6
(1− )6

1
0

= 1
3

− 1
6

+ 1
5


= 1

90

57. Let  =  −  and  =  +  so  =  −  = ( − )−  ⇒  = 1
2
( − ) and  =  − 1

2
( − ) = 1

2
( + ).( )

( )

 =

 


− 







 =
− 1

2


1
2

− 1
2


1
2

 =
− 1

2

 = 1
2
.  is the image under this transformation of the square
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CHAPTER 15 REVIEW ¤ 623

with vertices ( ) = (0 0), (−2 0), (0 2), and (−2 2). So


  =

 2

0

 0

−2

2 − 2

4


1

2


 = 1

8

 2

0


2− 1

3
3
=0

=−2
 = 1

8

 2

0


22 − 8

3


 = 1

8


2
3
3 − 8

3

2
0

= 0

This result could have been anticipated by symmetry, since the integrand is an odd function of  and  is symmetric about

the -axis.

58. By the Extreme Value Theorem (14.7.8),  has an absolute minimum value and an absolute maximum value in. Then

by Property 15.2.11,() ≤ 

( )  ≤(). Dividing through by the positive number (), we get

 ≤ 1

()




( )  ≤ . This says that the average value of  over lies between and . But  is continuous

on and takes on the values and , and so by the Intermediate Value Theorem must take on all values between and .

Specifically, there exists a point (0 0) in such that (0 0) =
1

()




( )  or equivalently



( )  = (0 0)().

59. For each  such that lies within the domain, () = 2, and by the Mean Value Theorem for Double Integrals there

exists ( ) in such that  ( ) =
1

2




( ) . But lim
→0+

( ) = ( ),

so lim
→0+

1

2




 ( )  = lim
→0+

( ) = ( ) by the continuity of  .

60. (a)




1

(2 + 2)2
 =

 2

0

 



1

(2)2
   = 2

 




1−



=


2

2− 
2−




=
2

2− 
(2− − 2−) if  6= 2

2 ln() if  = 2

(b) The integral in part (a) has a limit as → 0+ for all values of  such that 2−   0 ⇔   2.

(c)




1

(2 + 2 + 2)2
 =

 



 

0

 2

0

1

(2)2

2
sin  = 2

 


 
0
2− sin

=


4

3− 
3−




=
4

3− 
(3− − 3−) if  6= 3

4 ln() if  = 3

(d) As → 0+, the above integral has a limit, provided that 3−   0 ⇔   3.
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PROBLEMS PLUS
1. Let  =

5

=1
, where

 = {( ) | +  ≥ + 2 +   + 3 1 ≤  ≤ 3 2 ≤  ≤ 5}.



[[+ ]]  =

5
=1




[[+ ]]  =
5
=1

[[+ ]]



, since

[[+ ]] = constant = + 2 for ( ) ∈ . Therefore

[[+ ]] =

5

=1
(+ 2) [()]

= 3(1) + 4(2) + 5(3) + 6(4) + 7(5)

= 3


1
2


+ 4


3
2


+ 5(2) + 6


3
2


+ 7


1
2


= 30

2. Let  = {( ) | 0 ≤ ,  ≤ 1}. For   ∈ , max

2 2


= 2 if  ≥ ,

and max

2 2


= 2 if  ≤ . Therefore we divide  into two regions:

 = 1 ∪2, where 1 = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ } and
2 = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ }. Now max


2 2


= 2 for

( ) ∈ 1, and max

2 2


= 2 for ( ) ∈ 2 ⇒ 1

0

 1

0
max{22}  =



max{22}  =


1

max{22} +


2
max{22} 

=
 1

0

 
0


2

 +
 1

0

 
0


2

 =
 1

0


2

+
 1

0


2

 = 
2
1
0

= − 1

3. ave =
1

− 

 



()  =
1

1− 0

 1

0

 1



cos(
2
) 




=
 1

0

 1


cos(2)   =

 1

0

 
0

cos(2)   [changing the order of integration]

=
 1

0
 cos(2)  = 1

2
sin

2
1

0
= 1

2
sin 1

4. Let  = a · r,  = b · r,  = c · r, where a = h1 2 3i, b = h1 2 3i, c = h1 2 3i. Under this change of variables,
 corresponds to the rectangular box 0 ≤  ≤ , 0 ≤  ≤ , 0 ≤  ≤ . So, by Formula 15.9.13, 

0

 

0

 

0

   =




(a · r)(b · r)(c · r)
(  )

(  )

  . But
( )

(  )

 =



1 2 3

1 2 3

1 2 3


 = |a · (b× c)| ⇒




(a · r)(b · r)(c · r)  =
1

|a · (b× c)|
 

0

 

0

 

0

  

=
1

|a · (b× c)|

2

2


2

2


2

2


=

()2

8 |a · (b× c)|
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626 ¤ CHAPTER 15 PROBLEMS PLUS

5. Since ||  1, except at (1 1), the formula for the sum of a geometric series gives
1

1− 
=

∞
=0

(), so

 1

0

 1

0

1
1−  =

 1

0

 1

0

∞
=0

()  =
∞
=0

 1

0

 1

0
()  =

∞
=0

 1

0
 

 1

0
 


=

∞
=0

1
+1

· 1
+1

=
∞
=0

1

(+1)2
= 1

12
+ 1

22
+ 1

32
+ · · · =∞

=1
1

2

6. Let  =
− √

2
and  =

+ √
2

. We know the region of integration in the -plane, so to find its image in the -plane we get

 and  in terms of  and , and then use the methods of Section 15.9. +  =
− √

2
+

+ √
2

=
√

2, so  =
+ √

2
, and

similarly  =
 − √

2
. 1 is given by  = 0, 0 ≤  ≤ 1, so from the equations derived above, the image of 1 is 01:  = 1√

2
,

 = − 1√
2
, 0 ≤  ≤ 1, that is,  = −, 0 ≤  ≤ 1√

2
. Similarly, the image of 2 is 02:  = −√2, 1√

2
≤  ≤ √2, the

image of 3 is 03:  =
√

2− , 1√
2
≤  ≤ √2, and the image of 4 is 04:  − , 0 ≤  ≤ 1√

2
.

The Jacobian of the transformation is
( )

( )
=

 

 

 =


1√
2
− 1√

2

1√
2

1√
2

 = 1. From the diagram,

we see that we must evaluate two integrals: one over the region

( ) | 0 ≤  ≤ 1√

2
, −  ≤  ≤ 


and the other

over

( ) | 1√

2
≤  ≤ √2, −√2 +  ≤  ≤ √2− 


. So

 1

0

 1

0

 

1− 
=

 √
22

0

 

−

 

1−


1√
2

(+ )


1√
2

(− )
 +

 √
2

√
22

 √
2−

−√2+

 

1−


1√
2

(+ )


1√
2

(− )


=

 √
22

0

 

−

2  

2− 2 + 2
+

 √
2

√
22

 √
2−

−√2+

2  

2− 2 + 2

= 2

 √
22

0

1√
2− 2


arctan

√
2− 2


−

+

 √
2

√
22

1√
2− 2


arctan

√
2− 2

√2−

−√2+





= 4

 √
22

0

1√
2− 2

arctan
√

2− 2
+

 √
2

√
22

1√
2− 2

arctan

√
2− √
2− 2





Now let  =
√

2 sin , so  =
√

2 cos   and the limits change to 0 and 
6
(in the first integral) and 

6
and 

2
(in the
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CHAPTER 15 PROBLEMS PLUS ¤ 627

second integral). Continuing: 1

0

 1

0

 

1− 
= 4

 6

0

1
2− 2 sin2 

arctan

 √
2 sin 

2− 2 sin2 

√
2 cos  


+

 2

6

1
2− 2 sin2 

arctan

√
2−√2 sin 
2− 2 sin2 

√
2 cos  



= 4

 6

0

√
2 cos √
2 cos 

arctan

√
2 sin √
2 cos 


 +

 2

6

√
2 cos √
2 cos 

arctan

√
2 (1− sin )√

2 cos 






= 4

 6

0

arctan(tan )  +

 2

6

arctan


1− sin 

cos 






But (following the hint)

1− sin 

cos 
=

1− cos


2
− 


sin


2
− 
 =

1− 1− 2 sin2


1
2



2
− 


2 sin


1
2



2
− 


cos


1
2



2
− 
 [half-angle formulas]

=
2 sin2


1
2



2
− 


2 sin


1
2



2
− 


cos


1
2



2
− 
 = tan


1
2



2
− 


Continuing: 1

0

 1

0

 

1− 
= 4

 6

0

arctan(tan )  +

 2

6

arctan

tan


1
2



2
− 






= 4

 6

0

  +

 2

6


1

2


2
− 





= 4


2

2

6
0

+




4
− 2

4

2
6


= 4


32

72


=

2

6

7. (a) Since ||  1 except at (1 1 1), the formula for the sum of a geometric series gives
1

1− 
=

∞
=0

(), so 1

0

 1

0

 1

0

1

1− 
   =

 1

0

 1

0

 1

0

∞
=0

()

   =

∞
=0

 1

0

 1

0

 1

0

()

 

=
∞
=0

 1

0
 

 1

0
 

 1

0
 


=

∞
=0

1

+ 1
· 1

+ 1
· 1

+ 1

=
∞
=0

1

(+ 1)3
=

1

13
+

1

23
+

1

33
+ · · · =

∞
=1

1

3

(b) Since |−|  1, except at (1 1 1), the formula for the sum of a geometric series gives
1

1 + 
=

∞
=0

(−), so 1

0

 1

0

 1

0

1

1 + 
   =

 1

0

 1

0

 1

0

∞
=0

(−)    =
∞
=0

 1

0

 1

0

 1

0

(−)   

=
∞
=0

(−1)
 1

0
 

 1

0
 

 1

0
 


=

∞
=0

(−1)
1

+ 1
· 1

+ 1
· 1

+ 1

=
∞
=0

(−1)

(+ 1)3
=

1

13
− 1

23
+

1

33
− · · · =

∞
=0

(−1)−1

3

To evaluate this sum, we first write out a few terms:  = 1− 1

23
+

1

33
− 1

43
+

1

53
− 1

63
≈ 08998. Notice that

7 =
1

73
 0003. By the Alternating Series Estimation Theorem from Section 11.5, we have |− 6| ≤ 7  0003.

This error of 0003 will not affect the second decimal place, so we have  ≈ 090.
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628 ¤ CHAPTER 15 PROBLEMS PLUS

8.
 ∞

0

arctan− arctan


 =

 ∞

0


arctan 



=
=1

 =

 ∞

0

 

1

1

1 + 22
  =

 

1

 ∞

0

1

1 + 22
 

=

 

1

lim
→∞


arctan 



= 

=0

 =

 

1



2
 =



2


ln 


1

=


2
ln

9. (a)  =  cos ,  =  sin ,  = . Then



=








+








+








=




cos  +




sin  and

2

2
= cos 


2

2




+

2

 




+

2

 






+ sin 


2

2




+

2






+

2

 







=
2

2
cos2  +

2

2
sin2  + 2

2

 
cos  sin 

Similarly



= −


 sin  +




 cos  and

2

2
=

2

2
2 sin2  +

2

2
2 cos2  − 2

2

 
2 sin  cos  − 


 cos  − 


 sin . So

2

2
+

1






+

1

2

2

2
+

2

2
=

2

2
cos2  +

2

2
sin2  + 2

2

 
cos  sin  +





cos 


+





sin 



+
2

2
sin2  +

2

2
cos2  − 2

2

 
sin  cos 

−



cos 


− 



sin 


+

2

2

=
2

2
+

2

2
+

2

2

(b)  =  sin cos ,  =  sin sin ,  =  cos. Then




=








+








+








=




sin cos  +




sin sin  +




cos, and

2

2
= sin cos 


2

2




+

2

 




+

2

 






+ sin sin 


2

2




+

2






+

2

 






+ cos


2

2




+

2






+

2

 






= 2

2

 
sin2  sin  cos  + 2

2

 
sin cos cos  + 2

2

 
sin cos sin 

+
2

2
sin2  cos2  +

2

2
sin2  sin2  +

2

2
cos2 

Similarly



=




 cos cos  +




 cos sin  − 


 sin, and
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CHAPTER 15 PROBLEMS PLUS ¤ 629

2

2
= 2

2

 
2 cos2  sin  cos  − 2

2


2 sin cos cos 

− 2
2

 
2 sin cos sin  +

2

2
2 cos2  cos2  +

2

2
2 cos2  sin2 

+
2

2
2 sin2 − 


 sin cos  − 


 sin sin  − 


 cos

And



= −


 sin sin  +




 sin cos , while

2

2
= −2

2

 
2 sin2  cos  sin  +

2

2
2 sin2  sin2 

+
2

2
2 sin2  cos2  − 


 sin cos  − 


 sin sin 

Therefore

2

2
+

2






+

cot

2




+

1

2

2

2
+

1

2 sin2 

2

2

=
2

2


(sin2  cos2 ) + (cos2  cos2 ) + sin2 


+

2

2


(sin2  sin2 ) + (cos2  sin2 ) + cos2 


+

2

2


cos2 + sin2 


+






2 sin2  cos  + cos2  cos  − sin2  cos  − cos 

 sin


+






2 sin2  sin  + cos2  sin  − sin2  sin  − sin 

 sin


But 2 sin2  cos + cos2  cos − sin2  cos − cos  = (sin2 + cos2 − 1) cos  = 0 and similarly the coefficient of

 is 0. Also sin2  cos2  + cos2  cos2  + sin2  = cos2  (sin2 + cos2 ) + sin2  = 1, and similarly the

coefficient of 22 is 1. So Laplace’s Equation in spherical coordinates is as stated.

10. (a) Consider a polar division of the disk, similar to that in Figure 15.3.4, where 0 = 0  1  2  · · ·   = 2,

0 = 1  2  · · ·   = , and where the polar subrectangle  , as well as ∗ , 
∗
 ,∆ and∆ are the same as in that

figure. Thus∆ = ∗ ∆∆. The mass of  is ∆, and its distance from is  ≈


(∗ )2 + 
2. According to

Newton’s Law of Gravitation, the force of attraction experienced by due to this polar subrectangle is in the direction

from towards  and has magnitude
∆

2
. The symmetry of the lamina with respect to the - and -axes and the

position of are such that all horizontal components of the gravitational force cancel, so that the total force is simply in

the -direction. Thus, we need only be concerned with the components of this vertical force; that is,
∆

2
sin,

where  is the angle between the origin, ∗ and the mass. Thus sin =



and the previous result becomes
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630 ¤ CHAPTER 15 PROBLEMS PLUS

∆

3
. The total attractive force is just the Riemann sum


=1


=1

∆

3
=


= 1


=1

(∗ )∆∆
(∗ )2 + 

2
32

which becomes
 

0

 2

0



(2 + 
2
)32

   as→∞ and →∞. Therefore,

 = 2

 

0



(2 + 
2
)32

 = 2


− 1

2 + 
2


0

= 2


1


− 1

2 + 
2



(b) This is just the result of part (a) in the limit as →∞. In this case
1√

2 + 2
→ 0, and we are left with

 = 2


1


− 0


= 2.

11.
 
0

 
0

 
0
()    =



()  , where

 = {(  ) | 0 ≤  ≤ , 0 ≤  ≤ , 0 ≤  ≤ }.

If we let be the projection of  on the -plane then

 = {( ) | 0 ≤  ≤ ,  ≤  ≤ }. And we see from the diagram

that  = {(  ) |  ≤  ≤ ,  ≤  ≤ , 0 ≤  ≤ }. So 
0

 
0

 
0
()    =

 
0

 


 

()    =

 
0

 


( − ) () 



=
 
0


1
2
2 − 


()

= 

= 
 =

 
0


1
2
2 − − 1

2
2 + 2


() 

=
 
0


1
2
2 −  + 1

2
2

()  =

 
0


1
2
2 − 2 + 2


() 

= 1
2

 
0

(− )2 () 

12. −2

=1

2
=1

1
2 + + 

=

=1

2
=1

1
1



2 + + 

· 1

3
=


=1

2
=1

1
1 + 


+ 

2

· 1

3
can be considered a double

Riemann sum of the function ( ) =
1√

1 + + 
where the square region  = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ 1} is

divided into subrectangles by dividing the interval [0 1] on the -axis into  subintervals, each of width 1

, and [0 1] on the

-axis is divided into 2 subintervals, each of width 1

2
. Then the area of each subrectangle is∆ = 1

3
, and if we take the

upper right corners of the subrectangles as sample points, we have (∗  
∗
) =




 

2


. Finally, note that 2 →∞ as

→∞, so

lim
→∞

−2

=1

2
=1

1
2 + + 

= lim
2→∞


=1

2
=1

1
1 + 


+ 

2

· 1

3
= lim

2→∞


=1

2
=1

(∗  
∗
)∆
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CHAPTER 15 PROBLEMS PLUS ¤ 631

But by Definition 15.1.5 this is equal to




( ) , so

lim
→∞

−2

=1

2
=1

1
2 + + 

=




( )  =

 1

0

 1

0

1√
1 + + 

 

=
 1

0


2(1 + + )12

=1

=0
 = 2

 1

0

√
2 + −√1 + 




= 2


2
3
(2 + )32 − 2

3
(1 + )32

1
0

= 4
3
(332 − 232 − 232 + 1)

= 4
3
(3
√

3− 4
√

2 + 1) = 4
√

3− 16
3

√
2 + 4

3

13. The volume is  =



 where  is the solid region given. From Exercise 15.9.21(a), the transformation  = ,

 = ,  =  maps the unit ball 2 + 2 +2 ≤ 1 to the solid ellipsoid

2

2
+

2

 2
+

2

2
≤ 1 with

(  )

( )
= . The same transformation maps the

plane +  + = 1 to



+




+




= 1. Thus the region  in -space

corresponds to the region  in -space consisting of the smaller piece of the

unit ball cut off by the plane +  + = 1, a “cap of a sphere” (see the figure).

We will need to compute the volume of , but first consider the general case

where a horizontal plane slices the upper portion of a sphere of radius  to produce

a cap of height . We use spherical coordinates. From the figure, a line through the

origin at angle  from the -axis intersects the plane when cos = ( − ) ⇒

 = ( − ) cos, and the line passes through the outer rim of the cap when

 =  ⇒ cos = ( − ) ⇒  = cos−1 (( − )). Thus the cap

is described by

(  ) | ( − ) cos ≤  ≤  0 ≤  ≤ 2 0 ≤  ≤ cos−1 (( − ))


and its volume is

 =
 2

0

 cos−1((−))

0

 
(−) cos

2 sin

=
 2

0

 cos−1((−))

0


1
3
3 sin

=
=(−) cos



=
1

3

 2

0

 cos−1((−))

0



3
sin− ( − )3

cos3 
sin




= 1
3

 2

0

−3 cos− 1
2
( − )3 cos−2 

=cos−1((−))

=0


=
1

3

 2

0


−3


 − 




− 1

2
( − )

3


 − 



−2

+ 
3
+

1

2
( − )

3




= 1
3

 2

0
( 3
2
2 − 1

2
3)  = 1

3
( 3
2
2 − 1

2
3)(2) = 2( − 1

3
)
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632 ¤ CHAPTER 15 PROBLEMS PLUS

(This volume can also be computed by treating the cap as a solid of revolution and using the single variable disk method;

see Exercise 5.2.49 [ET 6.2.49].)

To determine the height  of the cap cut from the unit ball by the plane

+  + = 1, note that the line  =  =  passes through the origin with

direction vector h1 1 1i which is perpendicular to the plane. Therefore this line
coincides with a radius of the sphere that passes through the center of the cap and

 is measured along this line. The line intersects the plane at


1
3
 1

3
 1

3


and the

sphere at


1√
3
 1√

3
 1√

3


. (See the figure.)

The distance between these points is  =


3


1√
3
− 1

3

2
=
√

3


1√
3
− 1

3


= 1− 1√

3
. Thus the volume of  is

 =




 =




 (  )

(  )

  = 




 =   ()

=  · 2( − 1
3
) =  · 


1− 1√

3

2 
1− 1

3


1− 1√

3


= 


4
3
− 2√

3


2
3

+ 1

3
√

3


= 


2
3
− 8

9
√

3


≈ 0482
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16 VECTOR CALCULUS

16.1 Vector Fields

1. F( ) = 03 i− 04 j

All vectors in this field are identical, with length 05 and

parallel to h3−4i.

2. F( ) = 1
2
 i +  j

The length of the vector 1
2
 i +  j is


1
4
2 + 2.

Vectors point roughly away from the origin and vectors

farther from the origin are longer.

3. F( ) = − 1
2
i + ( − ) j

The length of the vector− 1
2
i + ( − ) j is

1
4

+ ( − )2. Vectors along the line  =  are

horizontal with length 1
2
.

4. F( ) =  i + (+ ) j

The length of the vector  i + (+ ) j is
2 + (+ )2. Vectors along the -axis are vertical,

and vectors along the line  = − are horizontal with
length ||.

5. F( ) =
 i +  j
2 + 2

The length of the vector
 i +  j
2 + 2

is 1.
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634 ¤ CHAPTER 16 VECTOR CALCULUS

6. F( ) =
 i−  j
2 + 2

All the vectors F( ) are unit vectors tangent to circles

centered at the origin with radius

2 + 2.

7. F( ) = i

All vectors in this field are identical, with length 1 and

pointing in the direction of the positive -axis.

8. F(  ) =  i

At each point (  ), F(  ) is a vector of length ||.
For   0, all point in the direction of the positive -axis,

while for   0, all are in the direction of the negative

-axis. In each plane  = , all the vectors are identical.

9. F(  ) = − i

At each point (  ), F(  ) is a vector of length ||.
For   0, all point in the direction of the negative -axis,

while for   0, all are in the direction of the positive

-axis. In each plane  = , all the vectors are identical.

10. F(  ) = i + k

All vectors in this field have length
√

2 and point in the

same direction, parallel to the -plane.

11. F( ) = h−i corresponds to graph IV. In the first quadrant all the vectors have positive -components and negative
-components, in the second quadrant all vectors have negative - and -components, in the third quadrant all vectors have

negative -components and positive -components, and in the fourth quadrant all vectors have positive - and -components.

In addition, the vectors get shorter as we approach the origin.
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SECTION 16.1 VECTOR FIELDS ¤ 635

12. F( ) = h − i corresponds to graph III. All vectors in quadrants I and II have positive -components while all vectors
in quadrants III and IV have negative -components. In addition, vectors along the line  =  are horizontal, and vectors get

shorter as we approach the origin.

13. F( ) = h  + 2i corresponds to graph I. As in Exercise 12, all vectors in quadrants I and II have positive -components
while all vectors in quadrants III and IV have negative -components. Vectors along the line  = −2 are horizontal, and the

vectors are independent of  (vectors along horizontal lines are identical).

14. F( ) = hcos(+ ) i corresponds to graph II. All vectors in quadrants I and IV have positive -components while all

vectors in quadrants II and III have negative -components. Also, the -components of vectors along any vertical line remain

constant while the -component oscillates.

15. F(  ) = i + 2 j + 3k corresponds to graph IV, since all vectors have identical length and direction.

16. F(  ) = i + 2 j +  k corresponds to graph I, since the horizontal vector components remain constant, but the vectors

above the -plane point generally upward while the vectors below the -plane point generally downward.

17. F(  ) =  i +  j + 3k corresponds to graph III; the projection of each vector onto the -plane is  i +  j, which points

away from the origin, and the vectors point generally upward because their -components are all 3.

18. F(  ) =  i +  j +  k corresponds to graph II; each vector F(  ) has the same length and direction as the position

vector of the point (  ), and therefore the vectors all point directly away from the origin.

19. The vector field seems to have very short vectors near the line  = 2.

For F( ) = h0 0i we must have 2 − 2 = 0 and 3 − 62 = 0.

The first equation holds if  = 0 or  = 2, and the second holds if

 = 0 or  = 2. So both equations hold [and thus F( ) = 0] along

the line  = 2.

20. From the graph, it appears that all of the vectors in the field lie on lines

through the origin, and that the vectors have very small magnitudes near

the circle |x| = 2 and near the origin. Note that F(x) = 0 ⇔
( − 2) = 0 ⇔  = 0 or 2, so as we suspected, F(x) = 0 for

|x| = 2 and for |x| = 0. Note that where 2 −   0, the vectors point

towards the origin, and where 2 −   0, they point away from the

origin.

21. ( ) =  sin() ⇒
∇( ) = ( ) i +  ( ) j = ( cos() · ) i + [ ·  cos() + sin() · 1] j

= 2 cos() i + [ cos() + sin()] j
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636 ¤ CHAPTER 16 VECTOR CALCULUS

22. ( ) =
√

2+ 3 ⇒

∇( ) = ( ) i + ( ) j =


1
2
(2+ 3)−12 · 2


i +


1
2
(2+ 3)−12 · 3


j =

1√
2+ 3

i +
3

2
√

2+ 3
j

23. (  ) =

2 + 2 + 2 ⇒

∇(  ) = (  ) i + (  ) j + (  )k

= 1
2
(2 + 2 + 2)−12(2) i + 1

2
(2 + 2 + 2)−12(2) j + 1

2
(2 + 2 + 2)−12(2)k

=


2 + 2 + 2
i +


2 + 2 + 2

j +


2 + 2 + 2
k

24. (  ) = 2 ⇒
∇(  ) = (  ) i + (  ) j + (  )k

= 2 i + 2

 · (1) +  · 1


j +


2(−2)


k

= 2 i + 2



+ 1

j− 22

2
 k

25. ( ) = 1
2
(− )2 ⇒

∇( ) = (− )(1) i + (− )(−1) j = (− ) i + ( − ) j.

The length of∇( ) is


(− )2 + ( − )2 =
√

2 |− |.
The vectors are 0 along the line  = . Elsewhere the vectors point

away from the line  =  with length that increases as the distance

from the line increases.

26. ( ) = 1
2
(2 − 2) ⇒ ∇( ) =  i−  j.

The length of∇( ) is

2 + 2. The lengths of the vectors

increase as the distance from the origin increases, and the terminal

point of each vector lies on the -axis.

27. We graph∇( ) =
2

1 + 2 + 22
i +

4

1 + 2 + 22
j along with

a contour map of  .

The graph shows that the gradient vectors are perpendicular to the

level curves. Also, the gradient vectors point in the direction in

which  is increasing and are longer where the level curves are closer

together.
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SECTION 16.1 VECTOR FIELDS ¤ 637

28. We graph∇( ) = − sin i− 2 cos  j along with a contour map

of  .

The graph shows that the gradient vectors are perpendicular to the

level curves. Also, the gradient vectors point in the direction in

which  is increasing and are longer where the level curves are closer

together.

29. ( ) = 2 + 2 ⇒ ∇( ) = 2 i + 2 j. Thus, each vector∇( ) has the same direction and twice the length of

the position vector of the point ( ), so the vectors all point directly away from the origin and their lengths increase as we

move away from the origin. Hence,∇ is graph III.

30. ( ) = (+ ) = 2 +  ⇒ ∇( ) = (2+ ) i +  j. The -component of each vector is , so the vectors

point upward in quadrants I and IV and downward in quadrants II and III. Also, the -component of each vector is 0 along the

line  = −2 so the vectors are vertical there. Thus,∇ is graph IV.

31. ( ) = ( + )2 ⇒ ∇( ) = 2( + ) i + 2(+ ) j. The - and -components of each vector are equal, so all

vectors are parallel to the line  = . The vectors are 0 along the line  = − and their length increases as the distance from
this line increases. Thus,∇ is graph II.

32. ( ) = sin

2 + 2 ⇒

∇( ) =

cos

2 + 2 · 1

2
(2 + 2)−12(2)


i +


cos

2 + 2 · 1

2
(2 + 2)−12(2)


j

=
cos

2 + 2

2 + 2
 i +

cos

2 + 2

2 + 2
 j or

cos

2 + 2

2 + 2
( i +  j)

Thus each vector is a scalar multiple of its position vector, so the vectors point toward or away from the origin with length that

changes in a periodic fashion as we move away from the origin. ∇ is graph I.

33. At  = 3 the particle is at (2 1) so its velocity is V(2 1) = h4 3i. After 0.01 units of time, the particle’s change in

location should be approximately 001V(2 1) = 001 h4 3i = h004 003i, so the particle should be approximately at the

point (204 103).

34. At  = 1 the particle is at (1 3) so its velocity is F(1 3) = h1−1i. After 0.05 units of time, the particle’s change in

location should be approximately 005F(1 3) = 005 h1−1i = h005−005i, so the particle should be approximately at

the point (105 295).
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638 ¤ CHAPTER 16 VECTOR CALCULUS

35. (a) We sketch the vector field F( ) =  i−  j along with

several approximate flow lines. The flow lines appear to

be hyperbolas with shape similar to the graph of

 = ±1, so we might guess that the flow lines have

equations  = .

(b) If  = () and  = () are parametric equations of a flow line, then the velocity vector of the flow line at the

point ( ) is 0() i + 0 () j. Since the velocity vectors coincide with the vectors in the vector field, we have

0() i + 0() j =  i−  j ⇒  = ,  = −. To solve these differential equations, we know

 =  ⇒  =  ⇒ ln || = +  ⇒  = ±+ =  for some constant , and

 = − ⇒  = − ⇒ ln || = −+ ⇒  = ±−+ = − for some constant . Therefore

 = − =  = constant. If the flow line passes through (1 1) then (1) (1) = constant = 1 ⇒  = 1 ⇒
 = 1,   0.

36. (a) We sketch the vector field F( ) = i +  j along with

several approximate flow lines. The flow lines appear to

be parabolas.

(b) If  = () and  = () are parametric equations of a flow line, then the velocity vector of the flow line at the

point ( ) is 0() i + 0() j. Since the velocity vectors coincide with the vectors in the vector field, we have

0() i + 0() j = i +  j ⇒ 


= 1,




= . Thus




=




=



1
= .

(c) From part (b),  = . Integrating, we have  = 1
2
2 + . Since the particle starts at the origin, we know (0 0) is on

the curve, so 0 = 0 +  ⇒  = 0 and the path the particle follows is  = 1
2
2.

16.2 Line Integrals

1.  = 2 and  = 2, 0 ≤  ≤ 3, so by Formula 3


 =

 3

0

2






2

+






2

 =

 3

0

2


(2)2 + (2)2  =

 3

0

2


42 + 4 

=
 3

0
4
√
2 + 1  = 2 · 2

3


2 + 1

323
0

= 4
3
(1032 − 1) or 4

3
(10
√

10− 1)
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SECTION 16.2 LINE INTEGRALS ¤ 639

2.  = 3 and  = 4, 1 ≤  ≤ 2, so by Formula 3

()  =

 2

1
(34)


(32)2 + (43)2  =

 2

1
(1) · 2√9 + 162  =

 2

1

√

9 + 162 

= 1
32
· 2

3


9 + 162

322
1

= 1
48

(7332 − 2532) or 1
48

(73
√

73− 125)

3. Parametric equations for  are  = 4cos ,  = 4 sin , −
2
≤  ≤ 

2
. Then


4 =

 2
−2(4 cos )(4 sin )4


(−4 sin )2 + (4 cos )2  =

 2
−2 45 cos  sin4 


16(sin2 + cos2 ) 

= 45
 2
−2(sin

4  cos )(4)  = (4)6


1
5

sin5 
2
−2 = 46 · 2

5
= 16384

4. Parametric equations for  are  = 2 + 3,  = 4, 0 ≤  ≤ 1. Then

  =

 1

0
(2 + 3) 4

√
32 + 42  = 5

 1

0
(2 + 3) 4 

Integrating by parts with  = 2 + 3 ⇒  = 3 ,  = 4  ⇒  = 1
4
4 gives


 = 5


1
4
(2 + 3)4 − 3

16
4
1
0

= 5


5
4
4 − 3

16
4 − 1

2
+ 3

16


= 85

16
4 − 25

16

5. If we choose  as the parameter, parametric equations for  are  = ,  = 2 for 0 ≤  ≤  and by Equations 7



2 + sin


 =

 
0


2(2) + sin

 · 2 = 2
 
0


5 +  sin




= 2


1
6
6 −  cos+ sin


0


where we integrated by parts

in the second term


= 2


1
6
6 +  + 0− 0


= 1

3
6 + 2

6. Choosing  as the parameter, we have  = 3,  = , −1 ≤  ≤ 1. Then

  =

 1

−1


3 · 32  = 
3
1
−1

= 1 − −1 = − 1

.

7.  = 1 + 2

On 1:  = ,  = 1
2
 ⇒  = 1

2
, 0 ≤  ≤ 2.

On 2:  = ,  = 3−  ⇒  = −, 2 ≤  ≤ 3.

Then 

(+ 2)  + 2  =


1

(+ 2)  + 2  +

2

(+ 2) + 2 

=
 2

0


+ 2


1
2



+ 2


1
2


+

 3

2


+ 2(3− ) + 2(−1)




=
 2

0


2 + 1

2
2

+

 3

2


6− − 2




=

2 + 1

6
3
2
0

+

6− 1

2
2 − 1

3
3
3
2

= 16
3
− 0 + 9

2
− 22

3
= 5

2
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640 ¤ CHAPTER 16 VECTOR CALCULUS

8.  = 1 + 2

On 1:  = 2 cos  ⇒  = −2 sin  ,  = 2 sin  ⇒
 = 2cos  , 0 ≤  ≤ 

2
.

On 2:  = 4 ⇒  = 4 ,  = 2 +  ⇒
 = , 0 ≤  ≤ 1.

Then

2  + 2  =


1

2 + 2  +

2

2 + 2 

=
 2
0

(2 cos )2(−2 sin  ) + (2 sin )2(2 cos  ) +
 1

0
(4)2(4 ) + (2 + )2 

= 8
 2
0

(− cos2  sin  + sin2  cos )  +
 1

0
(652 + 4 + 4) 

= 8


1
3

cos3 + 1
3

sin3 
2
0

+

65
3
3 + 22 + 4

1
0

= 8


1
3
− 1

3


+ 65

3
+ 2 + 4 = 83

3

9.  = cos ,  = sin ,  = , 0 ≤  ≤ 2. Then by Formula 9,



2  =

 2
0

(cos )2(sin )





2
+





2
+




2


=
 2
0

cos2  sin 


(− sin )2 + (cos )2 + (1)2  =
 2
0

cos2  sin 


sin2  + cos2 + 1 

=
√

2
 2
0

cos2  sin   =
√

2
− 1

3
cos3 

2
0

=
√

2

0 + 1

3


=
√

2
3

10. Parametric equations for  are  = 3− 2,  = 1 + ,  = 2 + 3, 0 ≤  ≤ 1. Then

2 =

 1

0
(1 + )2(2 + 3)


(−2)2 + 12 + 32  =

√
14
 1

0
(33 + 82 + 7 + 2) 

=
√

14


3
4
4 + 8

3
3 + 7

2
2 + 2

1
0

=
√

14


3
4

+ 8
3

+ 7
2

+ 2


= 107
12

√
14

11. Parametric equations for  are  = ,  = 2,  = 3, 0 ≤  ≤ 1. Then



  =

 1

0
(2)(3)

√
12 + 22 + 32  =

√
14
 1

0
6

2

 =
√

14


1
12
6

2
1
0

=
√

14
12

(6 − 1).

12.


()2 + ()2 + ()2 =


12 + (−2 sin 2)2 + (2 cos 2)2 =


1 + 4(sin2 2 + cos2 2) =
√

5. Then



(2 + 2 + 2)  =

 2

0
(2 + cos2 2+ sin2 2)

√
5  =

√
5
 2

0
(2 + 1) 

=
√

5


1
3
3 + 

2
0

=
√

5


1
3
(83) + 2


=
√

5


8
3
3 + 2


13.


  =

 1

0
()(2)(

2)(3) · 2  =
 1

0
24

5

 = 2
5

5
1
0

= 2
5
(1 − 0) = 2

5
(− 1)

14.


 +   +  =

 4

1
 · 1

2
−12  + 2 ·  +

√
 · 2  =

 4

1


1
2
12 + 2 + 232




=


1
3
32 + 1

3
3 + 4

5
52

4
1

= 8
3

+ 64
3

+ 128
5
− 1

3
− 1

3
− 4

5
= 722

15
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SECTION 16.2 LINE INTEGRALS ¤ 641

15. Parametric equations for  are  = 1 + 3,  = ,  = 2, 0 ≤  ≤ 1. Then

2 + 2  + 2  =

 1

0
(2)2 · 3 + (1 + 3)2  + 2 · 2  =

 1

0


232 + 6+ 1




=


23
3
3 + 32 + 

1
0

= 23
3

+ 3 + 1 = 35
3

16. On 1:  =  ⇒  =   = 0 ⇒
 = 0   =  ⇒  =  0 ≤  ≤ 1.

On 2:  = 1−  ⇒  = −  =  ⇒
 =   = 1 +  ⇒  =  0 ≤  ≤ 1.

Then


( + ) + (+ )  + (+ ) 

=

1

( + ) + (+ )  + (+ )  +

2

( + )  + (+ )  + (+ ) 

=
 1

0
(0 + ) + (+ ) · 0 + (+ 0) +

 1

0
( + 1 + )(−) + (1−  + 1 + )  + (1−  + ) 

=
 1

0
2 +

 1

0
(−2 + 2)  =


2
1
0

+
−2 + 2

1
0

= 1 + 1 = 2

17. (a) Along the line  = −3, the vectors of F have positive -components, so since the path goes upward, the integrand F ·T is

always positive. Therefore

1

F · r =

1

F ·T  is positive.

(b) All of the (nonzero) field vectors along the circle with radius 3 are pointed in the clockwise direction, that is, opposite the

direction to the path. So F ·T is negative, and therefore

2

F · r =

2

F ·T  is negative.

18. Vectors starting on 1 point in roughly the same direction as 1, so the tangential component F ·T is positive. Then
1

F · r =

1

F ·T is positive. On the other hand, no vectors starting on 2 point in the same direction as 2, while

some vectors point in roughly the opposite direction, so we would expect

2

F · r =

2

F ·T  to be negative.

19. r() = 3 i + 2 j, so F(r()) = (3)(2)2 i− (3)2 j = 7 i− 6 j and r0() = 32 i + 2 j. Then


F · r =
 1

0
F(r()) · r0()  =

 1

0
(7 · 32 − 6 · 2)  =

 1

0
(39 − 27)  =


3
10
10 − 1

4
8
1
0

= 3
10
− 1

4
= 1

20
.

20. F(r()) =

2 + (3)2


i + (2)(−2) j + (3 − 2)k = (2 + 6) i− 23 j + (3 − 2)k, r0() = 2 i + 32 j− 2k. Then


F · r =

 2

0
F(r()) · r0()  =

 2

0
(23 + 27 − 65 − 23 + 4)  =

 2

0
(27 − 65 + 4) 

=


1
4
8 − 6 + 22

2
0

= 64− 64 + 8 = 8

21.



F · r =
 1

0


sin 3 cos(−2) 4 · 32−2 1




=
 1

0
(32 sin 3 − 2 cos 2 + 4)  =

− cos 3 − sin 2 + 1
5
5
1
0

= 6
5
− cos 1− sin 1
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642 ¤ CHAPTER 16 VECTOR CALCULUS

22.



F · r =
 
0
hcos  sin  cos  sin i · h− sin  cos  1i  =

 
0

sin  cos   = 1
2

sin2 

0

= 0

23. F(r()) =


sin2  + sin  cos  i +

(sin  cos ) sin2 


j =


sin2  + sin  cos  i + cot  j,

r0() = 2 sin  cos  i + (cos2 − sin2 ) j. Then


F · r =
 3
6

F(r()) · r0()  =
 3
6


2 sin  cos 


sin2 + sin  cos  + (cot )(cos2 − sin2 )




≈ 05424

24. F(r()) = (cos  tan )sin  i + (tan  sin )cos  j + (sin  cos )tan  k

= (sin )sin  i + (tan  sin )cos  j + (sin  cos )tan  k,

r0() = cos  i− sin  j + sec2 k. Then


F · r =
 4
0

F(r()) · r0()  =
 4
0


(sin  cos )sin  − (tan  sin2 )cos  + (tan )tan 


 ≈ 08527

25.  = 2,  = 3,  =
√
 so by Formula 9,



 arctan  =

 2

1
(2)(3) arctan

√
 ·


(2)2 + (32)2 +

1(2

√
 )
2


=
 2

1
5


42 + 94 + 1(4) arctan
√
  ≈ 948231

26.  = 1 + 3,  = 2 + 2,  = 4 so by Formula 9,

 ln(+ ) =

 1

−1
4 ln(1 + 3 + 2 + 2) ·


(3)2 + (2)2 + (43)2 

=
 1

−1
4
√

9 + 42 + 166 ln(3 + 3+ 2)  ≈ 17260

27. We graph F( ) = (− ) i +  j and the curve . We see that most of the vectors starting on  point in roughly the same

direction as , so for these portions of  the tangential component F ·T is positive. Although some vectors in the third

quadrant which start on  point in roughly the opposite direction, and hence give negative tangential components, it seems

reasonable that the effect of these portions of  is outweighed by the positive tangential components. Thus, we would expect


F · r =



F ·T  to be positive.

To verify, we evaluate



F · r. The curve  can be represented by r() = 2 cos  i + 2 sin  j, 0 ≤  ≤ 3
2
,

so F(r()) = (2 cos − 2 sin ) i + 4 cos  sin  j and r0() = −2 sin  i + 2cos  j. Then


F · r =
 32

0
F(r()) · r0() 

=
 32

0
[−2 sin (2 cos − 2 sin ) + 2 cos (4 cos  sin )] 

= 4
 32

0
(sin2 − sin  cos + 2 sin  cos2 ) 

= 3 + 2
3

[using a CAS]
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SECTION 16.2 LINE INTEGRALS ¤ 643

28. We graph F( ) =


2 + 2
i +


2 + 2

j and the curve . In the

first quadrant, each vector starting on  points in roughly the same direction

as , so the tangential component F ·T is positive. In the second quadrant,

each vector starting on  points in roughly the direction opposite to , so

F ·T is negative. Here, it appears that the tangential components in the first

and second quadrants counteract each other, so it seems reasonable to guess

that



F · r =



F ·T is zero. To verify, we evaluate



F · r. The curve  can be represented by

r() =  i + (1 + 2) j, −1 ≤  ≤ 1, so F(r()) =


2 + (1 + 2)
2
i +

1 + 2
2 + (1 + 2)

2
j and r0() = i + 2 j. Then




F · r =
 1

−1
F(r()) · r0()  =

 1

−1

 
2 + (1 + 2)

2
+

2(1 + 2)
2 + (1 + 2)

2

 

=

 1

−1

(3 + 22)√
4 + 32 + 1

 = 0 [since the integrand is an odd function]

29. (a)



F · r =
 1

0



2−1 5


· 2 32  =

 1

0


2

2−1 + 37

 =



2−1 + 3

8
8
1
0

= 11
8
− 1

(b) r(0) = 0, F(r(0)) =

−1 0


;

r


1√
2


=


1
2
 1

2
√

2


, F


r


1√
2


=

−12 1

4
√

2


;

r(1) = h1 1i, F(r(1)) = h1 1i.
In order to generate the graph with Maple, we use the line command in

the plottools package to define each of the vectors. For example,

v1:=line([0,0],[exp(-1),0]):

generates the vector from the vector field at the point (0 0) (but without an arrowhead) and gives it the name v1. To show

everything on the same screen, we use the display command. In Mathematica, we use ListPlot (with the

PlotJoined -  True option) to generate the vectors, and then Show to show everything on the same screen.

30. (a)



F · r =
 1

−1


2 2 3

 · h2 3−2i  =
 1

−1
(4+ 32 − 62)  =


22 − 3

1
−1

= −2

(b) Now F(r()) =

2 2 3


, so F(r(−1)) = h−2 1−3i, Fr− 1

2


=
−1 1

4
− 3

2


, F

r


1
2


=

1 1

4
 3

2


,

and F(r(1)) = h2 1 3i.
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644 ¤ CHAPTER 16 VECTOR CALCULUS

31.  = − cos 4,  = − sin 4,  = −, 0 ≤  ≤ 2 .

Then



= −(− sin 4)(4) − − cos 4 = −−(4 sin 4 + cos 4),




= −(cos 4)(4)− − sin 4 = −−(−4 cos 4+ sin 4), and




= −−, so





2

+






2

+






2

=


(−−)2[(4 sin 4 + cos 4)2 + (−4 cos 4 + sin 4)2 + 1]

= −


16(sin2 4+ cos2 4) + sin2 4 + cos2 4 + 1 = 3
√

2 −

Therefore


32 =

 2

0
(− cos 4)3(− sin 4)2(−) (3

√
2 −) 

=
 2

0
3
√

2 −7 cos3 4 sin2 4  = 172,704
5,632,705

√
2 (1− −14)

32. (a) We parametrize the circle  as r() = 2 cos  i + 2 sin  j, 0 ≤  ≤ 2. So F(r()) =

4 cos2  4 cos  sin 


,

r0() = h−2 sin  2 cos i, and =



F · r =
 2

0
(−8 cos2  sin  + 8cos2  sin )  = 0.

(b) From the graph, we see that all of the vectors in the field are

perpendicular to the path. This indicates that the field does no work

on the particle, since the field never pulls the particle in the direction

in which it is going. In other words, at any point along , F ·T = 0,

and so certainly



F · r = 0 .

33. We use the parametrization  = 2 cos ,  = 2 sin , −
2
≤  ≤ 

2
. Then

 =





2
+





2
 =


(−2 sin )2 + (2 cos )2  = 2 , so =



  = 2

 2
−2  = 2(),

 = 1
2



  = 1

2

 2
−2(2 cos )2  = 1

2


4 sin 

2
−2 = 4


,  = 1

2



  = 1

2

 2
−2(2 sin )2  = 0.

Hence ( ) =


4

 0

.

34. We use the parametrization  =  cos ,  =  sin , 0 ≤  ≤ 
2
. Then

 =





2
+





2
 =


(− sin )2 + ( cos )2  =  , so

 =


( )  =



  =

 2
0

( cos )( sin )   = 3
 2
0

cos  sin   = 3

1
2

sin2 
2
0

= 1
2
3,

 =
1

32




()  =
2

3

 2

0

( cos )
2
( sin )  =

2

3
· 4

 2

0

cos
2
 sin  

= 2
− 1

3
cos3 

2
0

= 2

0 + 1

3


= 2

3
, and

 =
1

32



()  =

2

3

 2

0

( cos )( sin )
2
  =

2

3
· 4

 2

0

sin
2
 cos  

= 2


1
3

sin3 
2
0

= 2


1
3
− 0


= 2
3
.

Therefore the mass is 1
2
3 and the center of mass is ( ) =


2
3
 2

3


.
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SECTION 16.2 LINE INTEGRALS ¤ 645

35. (a)  =
1






(  )  ,  =
1






(  ) ,  =
1






(  )  where =


(  ) .

(b)  =


  = 

 2

0


4 sin2 + 4cos2 + 9  = 

√
13
 2

0
 = 2

√
13,

 =
1

2
√

13

 2

0

2
√

13 sin   = 0,  =
1

2
√

13

 2

0

2
√

13 cos   = 0,

 =
1

2
√

13

 2

0



√

13

(3)  =

3

2


2

2


= 3. Hence (  ) = (0 0 3).

36.  =


(2 + 2 + 2)  =

 2

0
(2 + 1)


(1)2 + (− sin )2 + (cos )2  =

 2

0
(2 + 1)

√
2  =

√
2


8
3
3 + 2


,

 =
1√

2


8
3
3 + 2

  2

0

√
2 (

3
+ )  =

44 + 22

8
3
3 + 2

=
3

22 + 1


42 + 3

,

 =
3

2
√

2(42 + 3)

 2

0

√
2 cos 


(

2
+ 1)  = 0, and

 =
3

2
√

2(42 + 3)

 2

0

√
2 sin 


(

2
+ 1)  = 0. Hence (  ) =


3(22 + 1)

42 + 3
 0 0


.

37. From Example 3, ( ) = (1− ),  = cos ,  = sin , and  = , 0 ≤  ≤  ⇒
 =



2( )  =

 
0

sin2  [(1− sin )]  = 
 
0

(sin2 − sin3 ) 

= 1
2

 
0

(1− cos 2) − 
 
0

(1− cos2 ) sin  


Let  = cos ,  = − sin  

in the second integral


= 



2

+
−1

1
(1− 2) 


= 



2
− 4

3


 =



2( )  = 

 
0

cos2  (1− sin )  = 
2

 
0

(1 + cos 2) − 
 
0

cos2  sin  

= 


2
− 2

3


, using the same substitution as above.

38. The wire is given as  = 2 sin ,  = 2 cos ,  = 3, 0 ≤  ≤ 2 with (  ) = . Then

 =


(2 cos )2 + (−2 sin )2 + 32  =


4(cos2 + sin2 ) + 9  =
√

13  and

 =


(2 + 2)(  )  =

 2

0
(4 cos2 + 92)()

√
13  =

√
13 


4


1
2
 + 1

4
sin 2


+ 33

2
0

=
√

13 (4 + 243) = 4
√

13(1 + 62)

 =


(2 + 2)(  )  =

 2

0


4 sin2  + 92


()
√

13  =
√

13 

4


1
2
− 1

4
sin 2


+ 33

2
0

=
√

13 (4 + 243) = 4
√

13(1 + 62)

 =


(2 + 2)(  )  =

 2

0
(4 sin2  + 4 cos2 )()

√
13  = 4

√
13 

 2

0
 = 8

√
13 

39.  =



F · r =
 2

0
h− sin  3− cos i · h1− cos  sin i 

=
 2

0
(−  cos − sin  + sin  cos  + 3 sin − sin  cos ) 

=
 2

0
(−  cos  + 2 sin )  =


1
2
2 − ( sin + cos )− 2 cos 

2
0


integrate by parts
in the second term


= 22
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646 ¤ CHAPTER 16 VECTOR CALCULUS

40. Choosing  as the parameter, the curve  is parametrized by  = 2 + 1,  = , 0 ≤  ≤ 1. Then

 =



F · r =
 1

0


2 + 1

2
 

2+1

· h2 1i  =

 1

0


2

2 + 1

2
+ 

2+1



=


1
3


2 + 1

3
+ 1

2


2+1
1
0

= 8
3

+ 1
2
2 − 1

3
− 1

2
 = 1

2
2 − 1

2
+ 7

3

41. r() = h2  1− i, 0 ≤  ≤ 1.

 =



F · r =
 1

0


2− 2 − (1− )2 1− − (2)2

 · h2 1−1i 

=
 1

0
(4− 22 + − 1 + 2− 2 − 1 +  + 42)  =

 1

0
(2 + 8− 2)  =


1
3
3 + 42 − 2

1
0

= 7
3

42. r() = 2 i +  j + 5k, 0 ≤  ≤ 1. Therefore

 =



F · r =

 1

0

h2  5i
(4 + 262)32

· h0 1 5i  = 

 1

0

26

(4 + 262)32
 = 


−(4 + 26

2
)
−12

1
0

= 


1
2
− 1√

30


.

43. (a) r() = 2 i + 3 j ⇒ v() = r0() = 2 i + 32 j ⇒ a() = v0() = 2 i + 6 j, and force is mass times

acceleration: F() = a() = 2 i + 6 j.

(b)  =



F · r =
 1

0
(2 i + 6 j) · (2 i + 32 j)  =

 1

0
(42 + 1823) 

=

222 + 9

2
24

1
0

= 22 + 9
2
2

44. r() =  sin  i+  cos  j+ k ⇒ v() = r0() =  cos  i−  sin  j+ k ⇒ a() = v0() = − sin  i−  cos  j

and F() = a() = − sin  i− cos  j. Thus

 =



F · r =
 2
0

(− sin  i− cos  j) · ( cos  i−  sin  j + k) 

=
 2
0

(−2 sin  cos  +2 sin  cos )  = (2 − 2)


1
2

sin2 
2
0

= 1
2
(2 − 2)

45. The combined weight of the man and the paint is 185 lb, so the force exerted (equal and opposite to that exerted by gravity) is

F = 185k. To parametrize the staircase, let  = 20 cos ,  = 20 sin ,  = 90
6
 = 15


, 0 ≤  ≤ 6. Then the work done

is

 =



F · r =
 6

0
h0 0 185i · −20 sin  20 cos  15




 = (185) 15



 6

0
 = (185)


15



(6) ≈ 167× 104 ft-lb

46. This time is a function of :  = 185− 9
6
 = 185− 3

2
. So let F =


185− 3

2


k. To parametrize the staircase,

let  = 20 cos ,  = 20 sin ,  = 90
6
 = 15


, 0 ≤  ≤ 6. Therefore

 =



F · r =
 6

0


0 0 185− 3

2

 · −20 sin  20 cos  15




 = 15



 6

0


185− 3

2




= 15



185− 3

4
2
6
0

= 90

185− 9

2

 ≈ 162× 104 ft-lb

47. (a) r() = hcos  sin i, 0 ≤  ≤ 2, and let F = h i. Then

 =



F ·  r =
 2

0
h i · h− sin  cos i  =

 2

0
(− sin  +  cos )  =


 cos +  sin 

2
0

= + 0− + 0 = 0

(b) Yes. F ( ) =  x = h i and

 =



F ·  r =
 2

0
h cos   sin i · h− sin  cos i  =

 2

0
(− sin  cos +  sin  cos )  =

 2

0
0  = 0.
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SECTION 16.2 LINE INTEGRALS ¤ 647

48. Consider the base of the fence in the -plane, centered at the origin, with the height given by  = ( ). To graph the

fence, observe that the fence is highest when  = 0 (where the height is 5 m) and lowest when  = 0 (a height of 3 m). When

 = ±, the height is 4 m.

Also, the fence can be graphed using parametric equations (see Section 16.6):  = 10 cos,  = 10 sin,

 = 

4 + 001((10 cos)2 − (10 sin)

2
)


= (4 + cos2 − sin2 )

= (4 + cos 2), 0 ≤  ≤ 2, 0 ≤  ≤ 1.

The area of the fence is


( )  where , the base of the fence, is given by  = 10 cos ,  = 10 sin , 0 ≤  ≤ 2.

Then 

( ) =

 2

0


4 + 001((10 cos )2 − (10 sin )2)


(−10 sin )2 + (10 cos )2 

=
 2

0
(4 + cos 2)

√
100  = 10


4 + 1

2
sin 2

2
0

= 10(8) = 80 m2

If we paint both sides of the fence, the total surface area to cover is 160 m2, and since 1 L of paint covers 100 m2, we require

160
100

= 16 ≈ 503 L of paint.

49. Let r() = h() () ()i and v = h1 2 3i. Then


v · r =
 

h1 2 3i · h0() 0() 0()i  =

 


[1 
0() + 2 

0() + 3 
0()] 

=

1 () + 2 () + 3 ()




= [1 () + 2 () + 3 ()]− [1 () + 2 () + 3 ()]

= 1 [()− ()] + 2 [()− ()] + 3 [()− ()]

= h1 2 3i · h()− () ()− () ()− ()i
= h1 2 3i · [h() () ()i− h() () ()i] = v · [r()− r()]

50. If r() = h() () ()i then


r · r =
 

h() () ()i · h0() 0() 0()i  =

 


[()0() + () 0() + () 0()] 

=


1
2
[()]2 + 1

2
[()]2 + 1

2
[()]2




= 1
2


[()]2 + [()]2 + [()]2

− [()]2 + [()]2 + [()]2


= 1
2

|r()|2 − |r()|2
51. The work done in moving the object is




F · r =



F ·T. We can approximate this integral by dividing  into

7 segments of equal length∆ = 2 and approximating F ·T, that is, the tangential component of force, at a point (∗  
∗
 ) on

each segment. Since  is composed of straight line segments, F ·T is the scalar projection of each force vector onto .

If we choose (∗  
∗
 ) to be the point on the segment closest to the origin, then the work done is
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648 ¤ CHAPTER 16 VECTOR CALCULUS




F ·T  ≈
7

= 1

[F(∗  
∗
 ) ·T(∗  

∗
 )]∆ = [2 + 2 + 2 + 2 + 1 + 1 + 1](2) = 22. Thus, we estimate the work done to

be approximately 22 J.

52. Use the orientation pictured in the figure. Then sinceB is tangent to any circle that lies in the plane perpendicular to the wire,

B = |B|T where T is the unit tangent to the circle :  =  cos ,  =  sin . Thus B = |B| h− sin  cos i. Then


B · r =
 2

0
|B| h− sin  cos i · h− sin   cos i  =

 2

0
|B|   = 2 |B|. (Note that |B| here is the magnitude

of the field at a distance  from the wire’s center.) But by Ampere’s Law



B · r = 0. Hence |B| = 0(2).

16.3 The Fundamental Theorem for Line Integrals

1.  appears to be a smooth curve, and since∇ is continuous, we know  is differentiable. Then Theorem 2 says that the value

of


∇ · r is simply the difference of the values of  at the terminal and initial points of . From the graph, this is

50− 10 = 40.

2.  is represented by the vector function r() = (2 + 1) i + (3 + ) j, 0 ≤  ≤ 1, so r0() = 2 i + (32 + 1) j. Since

32 + 1 6= 0, we have r0() 6= 0, thus  is a smooth curve. ∇ is continuous, and hence  is differentiable, so by Theorem 2

we have


∇ · r = (r(1))− (r(0)) = (2 2)− (1 0) = 9− 3 = 6.

3. Let  ( ) =  + 2 and( ) = 2 + 2. Then  = + 2 and  = 2+ 2. Since  6= ,

F( ) =  i + j is not conservative by Theorem 5.

4. (2 − 2) = 2 = (2) and the domain of F is R2 which is open and simply-connected, so F is conservative by

Theorem 6. Thus, there exists a function  such that∇ = F, that is, ( ) = 2 − 2 and ( ) = 2. But

( ) = 2 − 2 implies ( ) = 2 − 2 + () and differentiating both sides of this equation with respect to  gives

( ) = 2 + 0(). Thus 2 = 2 + 0() so 0() = 0 and () =  where is a constant. Hence

( ) = 2 − 2 + is a potential function for F.

5.





2


= 2 ·  + 2 = (2 + 2) ,




[(1 + )] = (1 + ) ·  +  =  + 2 +  = (2 + 2) .

Since these partial derivatives are equal and the domain of F is R2 which is open and simply-connected, F is conservative by

Theorem 6. Thus, there exists a function  such that∇ = F, that is, ( ) = 2 and ( ) = (1 + ) . But

( ) = 2 implies ( ) =  + () and differentiating both sides of this equation with respect to  gives

( ) = (1 + ) + 0(). Thus (1 + ) = (1 + ) + 0() so 0() = 0 and () =  where is a

constant. Hence ( ) =  + is a potential function for F.
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SECTION 16.3 THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS ¤ 649

6. () =  = ( + ) and the domain of F is R2 which is open and simply-connected, so F is conservative.

Hence there exists a function  such that∇ = F. Here ( ) =  implies ( ) =  + () and then

( ) =  + 0(). But ( ) =  +  so 0() =  ⇒ () =  + and ( ) =  +  + is a

potential function for F.

7. ( + sin ) =  + cos  = ( +  cos ) and the domain of F is R2. Hence F is conservative so there

exists a function  such that∇ = F. Then ( ) =  + sin  implies ( ) =  +  sin  + () and

( ) =  +  cos  + 0(). But ( ) =  +  cos  so () =  and ( ) =  +  sin  + is a potential

function for F.

8. (2 + −2) = 2− 2−3 = (2 − 2−3) and the domain of F is {( ) |   0} which is open and

simply-connected. Hence F is conservative, so there exists a function  such that∇ = F. Then ( ) = 2 + −2

implies ( ) = 2 + −2 + () and ( ) = 2 − 2−3 + 0(). But ( ) = 2 − 2−3 so

0() = 0 ⇒ () = . Then ( ) = 2 + −2 + is a potential function for F.

9. (2 cos+ cos ) = 2 cos− sin  = (2 sin−  sin ) and the domain of F is R2 which is open and simply

connected. Hence F is conservative so there exists a function  such that∇ = F. Then ( ) = 2 cos + cos  implies

( ) = 2 sin +  cos  + () and ( ) = 2 sin−  sin  + 0(). But ( ) = 2 sin−  sin  so

0() = 0 ⇒ () =  and ( ) = 2 sin+  cos  + is a potential function for F.

10. (ln  + ) = 1 + 1 = (ln + ) and the domain of F is {( ) |   0   0} which is open and

simply connected. Hence F is conservative so there exists a function  such that∇ = F. Then ( ) = ln  + 

implies ( ) =  ln  +  ln+ () and ( ) =  + ln+ 0(). But ( ) = ln+  so 0() = 0 ⇒

() =  and ( ) =  ln  +  ln+ is a potential function for F.

11. (a) F has continuous first-order partial derivatives and



(2) = 2 =




(2) on R2, which is open and

simply-connected. Thus, F is conservative by Theorem 6. Then we know that the line integral of F is independent of path;

in particular, the value of



F · r depends only on the endpoints of . Since all three curves have the same initial and

terminal points,



F · r will have the same value for each curve.

(b) We first find a potential function  , so that∇ = F. We know ( ) = 2 and ( ) = 2. Integrating

( ) with respect to , we have ( ) = 2 + (). Differentiating both sides with respect to  gives

( ) = 2 + 0(), so we must have 2 + 0() = 2 ⇒ 0() = 0 ⇒ () = , a constant.

Thus ( ) = 2 +, and we can take = 0. All three curves start at (1 2) and end at (3 2), so by Theorem 2,


F · r = (3 2)− (1 2) = 18− 2 = 16 for each curve.
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650 ¤ CHAPTER 16 VECTOR CALCULUS

12. (a) If F = ∇ then ( ) = 3 + 22 and ( ) = 22.

( ) = 3 + 22 implies ( ) = 3+ 22 + () and ( ) = 22 + 0(). But ( ) = 22 so

0() = 0 ⇒ () = . We can take = 0, so ( ) = 3+ 22.

(b)  is a smooth curve with initial point (1 1) and terminal point

4 1

4


, so by Theorem 2


F · r =



∇ · r = 


4 1

4

− (1 1) = (12 + 1)− (3 + 1) = 9.

13. (a) If F = ∇ then ( ) = 23 and ( ) = 32.

( ) = 23 implies ( ) = 1
3
33 + () and ( ) = 32 + 0(). But ( ) = 32 so 0() = 0 ⇒

() = , a constant. We can take = 0, so ( ) = 1
3
33.

(b)  is a smooth curve with initial point r(0) = (0 0) and terminal point r(1) = (−1 3), so by Theorem 2


F · r =


∇ · r = (−1 3)− (0 0) = −9− 0 = −9.

14. (a) ( ) = 2 implies ( ) =  + () ⇒ ( ) =  +  + 0() = (1 + ) + 0(). But

( ) = (1 + ) so 0() = 0 ⇒ () = . We can take = 0, so ( ) =  .

(b) The initial point of  is r(0) = (1 0) and the terminal point is r(2) = (0 2), so


F · r = (0 2)− (1 0) = 0− 0 = −1.

15. (a) (  ) =  implies (  ) =  + ( ) and so (  ) =  + ( ). But (  ) =  so

( ) = 0 ⇒ ( ) = (). Thus (  ) =  + () and (  ) =  + 0(). But

(  ) =  + 2, so 0() = 2 ⇒ () = 2 +. Hence (  ) =  + 2 (taking = 0).

(b)



F · r = (4 6 3)− (1 0−2) = 81− 4 = 77.

16. (a) (  ) = 2 + 22 implies (  ) = 2 + 22 + ( ) and so (  ) = 2 + ( ). But

(  ) = 2 so ( ) = 0 ⇒ ( ) = (). Thus (  ) = 2 + 22 + () and

(  ) = 2 + 22 + 0(). But (  ) = 2 + 22, so 0() = 0 ⇒ () = . Hence

(  ) = 2 + 22 (taking = 0).

(b)  = 0 corresponds to the point (0 1 0) and  = 1 corresponds to (1 2 1), so


F · r = (1 2 1)− (0 1 0) = 5− 0 = 5.

17. (a) (  ) =  implies (  ) =  + ( ) and so (  ) =  + ( ). But (  ) =  so

( ) = 0 ⇒ ( ) = (). Thus (  ) =  + () and (  ) =  + 0(). But

(  ) =  , so 0() = 0 ⇒ () = . Hence (  ) =  (taking = 0).

(b) r(0) = h1−1 0i, r(2) = h5 3 0i so 


F · r = (5 3 0)− (1−1 0) = 30 + 0 = 4.
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SECTION 16.3 THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS ¤ 651

18. (a) (  ) = sin  implies (  ) =  sin  + ( ) and so (  ) =  cos  + ( ). But

(  ) =  cos  + cos  so ( ) = cos  ⇒ ( ) =  cos  + (). Thus

(  ) =  sin  +  cos  + () and (  ) = − sin  + 0(). But (  ) = − sin , so 0() = 0 ⇒

() = . Hence (  ) =  sin  +  cos  (taking = 0).

(b) r(0) = h0 0 0i, r(2) = h1 2 i so 


F · r = (1 2 )− (0 0 0) = 1− 
2
− 0 = 1− 

2
.

19. The functions 2− and 2 − 2− have continuous first-order derivatives on R2 and






2−


= −2− =






2 − 2−


, so F( ) = 2− i +


2 − 2−


j is a conservative vector field by

Theorem 6 and hence the line integral is independent of path. Thus a potential function  exists, and ( ) = 2−

implies ( ) = 2− + () and ( ) = −2− + 0(). But ( ) = 2 − 2− so

0() = 2 ⇒ () = 2 + . We can take  = 0, so ( ) = 2− + 2. Then


2−  + (2 − 2−)  = (2 1)− (1 0) = 4−1 + 1− 1 = 4.

20. The functions sin  and  cos  − sin  have continuous first-order derivatives on R2 and




(sin ) = cos  =




( cos  − sin ), so F( ) = sin  i + ( cos  − sin ) j is a conservative vector field by

Theorem 6 and hence the line integral is independent of path. Thus a potential function  exists, and ( ) = sin  implies

( ) =  sin  + () and ( ) =  cos  + 0(). But ( ) =  cos  − sin  so

0() = − sin  ⇒ () = cos  + . We can take = 0, so ( ) =  sin  + cos . Then


sin   + ( cos  − sin )  = (1 )− (2 0) = −1− 1 = −2.

21. If F is conservative, then



F · r is independent of path. This means that the work done along all piecewise-smooth curves
that have the described initial and terminal points is the same. Your reply: It doesn’t matter which curve is chosen.

22. The curves 1 and 2 connect the same two points but

1

F · r 6= 
2

F · r. Thus F is not independent of path, and

therefore is not conservative.

23. F( ) = 3 i + 3 j,  =



F · r. Since (3) = 0 = (3), there exists a function  such that∇ = F. In

fact, ( ) = 3 ⇒ ( ) = 1
4
4 + () ⇒ ( ) = 0 + 0(). But ( ) = 3 so

0() = 3 ⇒ () = 1
4
4 + . We can take  = 0 ⇒ ( ) = 1

4
4 + 1

4
4. Thus

 =



F · r = (2 2)− (1 0) = (4 + 4)−  1
4

+ 0


= 31
4
.

24. F( ) = (2 + ) i +  j,  =



F · r. Since (2 + ) = 1 = (), there exists a function  such that

∇ = F. In fact, ( ) = 2 +  ⇒ ( ) = 2 +  + () ⇒ ( ) =  + 0(). But ( ) = 

so 0() = 0 ⇒ () = . We can take  = 0 ⇒ ( ) = 2 + . Thus

 =



F · r = (4 3)− (1 1) = (16 + 12)− (1 + 1) = 26.
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652 ¤ CHAPTER 16 VECTOR CALCULUS

25. We know that if the vector field (call it F) is conservative, then around any closed path ,



F · r = 0. But take  to be a

circle centered at the origin, oriented counterclockwise. All of the field vectors that start on  are roughly in the direction of

motion along , so the integral around  will be positive. Therefore the field is not conservative.

26. If a vector field F is conservative, then around any closed path ,



F · r = 0. For any closed path we draw in the field, it

appears that some vectors on the curve point in approximately the same direction as the curve and a similar number point in

roughly the opposite direction. (Some appear perpendicular to the curve as well.) Therefore it is plausible that



F · r = 0

for every closed curve  which means F is conservative.

27. From the graph, it appears that F is conservative, since around all closed

paths, the number and size of the field vectors pointing in directions similar

to that of the path seem to be roughly the same as the number and size of the

vectors pointing in the opposite direction. To check, we calculate




(sin ) = cos  =




(1 +  cos ). Thus F is conservative, by

Theorem 6.

28. ∇( ) = cos(− 2) i− 2 cos(− 2) j

(a) We use Theorem 2:

1

F · r =

1
∇ · r = (r())− (r()) where 1 starts at  =  and ends at  = . So

because (0 0) = sin 0 = 0 and ( ) = sin( − 2) = 0, one possible curve 1 is the straight line from (0 0) to

( ); that is, r() =  i +  j, 0 ≤  ≤ 1.

(b) From (a),

2

F · r = (r())− (r()). So because (0 0) = sin 0 = 0 and 


2
 0


= 1, one possible curve 2 is

r() = 
2
 i, 0 ≤  ≤ 1, the straight line from (0 0) to



2
 0

.

29. Since F is conservative, there exists a function  such that F = ∇ , that is,  = ,  =  , and  =  . Since  ,

, and  have continuous first order partial derivatives, Clairaut’s Theorem says that  =  =  = ,

 =  =  = , and  =  =  = .

30. Here F(  ) =  i +  j +  k. Then using the notation of Exercise 29,  = 0 while  = . Since these

aren’t equal, F is not conservative. Thus by Theorem 4, the line integral of F is not independent of path.

31.  = {( ) | 0    3} consists of those points between, but not
on, the horizontal lines  = 0 and  = 3.

(a) Since does not include any of its boundary points, it is open. More

formally, at any point in there is a disk centered at that point that

lies entirely in.

(b) Any two points chosen in can always be joined by a path that lies

entirely in, so is connected. ( consists of just one “piece.”)
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SECTION 16.3 THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS ¤ 653

(c)  is connected and it has no holes, so it’s simply-connected. (Every simple closed curve in encloses only points that are

in.)

32.  = {( ) | 1  ||  2} consists of those points between, but
not on, the vertical lines  = 1 and  = 2, together with the points

between the vertical lines  = −1 and  = −2.

(a) The region does not include any of its boundary points, so it is open.

(b)  consists of two separate pieces, so it is not connected. [For

instance, both the points (−15 0) and (15 0) lie in but they

cannot be joined by a path that lies entirely in.]

(c) Because is not connected, it’s not simply-connected.

33.  =

( ) | 1 ≤ 2 + 2 ≤ 4  ≥ 0


is the semiannular region

in the upper half-plane between circles centered at the origin of radii

1 and 2 (including all boundary points).

(a)  includes boundary points, so it is not open. [Note that at any

boundary point, (1 0) for instance, any disk centered there cannot lie

entirely in.]

(b) The region consists of one piece, so it’s connected.

(c)  is connected and has no holes, so it’s simply-connected.

34.  = {( ) | ( ) 6= (2 3)} consists of all points in the -plane

except for (2 3).

(a)  has only one boundary point, namely (2 3), which is not included,

so the region is open.

(b)  is connected, as it consists of only one piece.

(c)  is not simply-connected, as it has a hole at (2 3). Thus any simple

closed curve that encloses (2 3) lies in but includes a point that is

not in.

35. (a)  = − 

2 + 2
,



=

2 − 2

(2 + 2)
2
and  =



2 + 2
,



=

2 − 2

(2 + 2)
2
. Thus




=




.

(b) 1:  = cos ,  = sin , 0 ≤  ≤ , 2:  = cos ,  = sin ,  = 2 to  = . Then
1

F · r =

 

0

(− sin )(− sin ) + (cos )(cos )

cos2  + sin2 
 =

 

0

 =  and

2

F · r =

 

2

 = −

Since these aren’t equal, the line integral of F isn’t independent of path. (Or notice that

3

F · r =
 2

0
 = 2 where

3 is the circle 2 + 2 = 1, and apply the contrapositive of Theorem 3.) This doesn’t contradict Theorem 6, since the

domain of F, which is R2 except the origin, isn’t simply-connected.
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654 ¤ CHAPTER 16 VECTOR CALCULUS

36. (a) Here F(r) = r|r|3 and r =  i +  j +  k. Then (r) = −|r| is a potential function for F, that is,∇ = F.

(See the discussion of gradient fields in Section 16.1.) Hence F is conservative and its line integral is independent of path.

Let 1 = (1 1 1) and 2 = (2 2 2).

 =



F · r = (2)− (1) = − 

(2
2 + 2

2 + 2
2)

12
+



(2
1 + 2

1 + 2
1)

12
= 


1

1

− 1

2


.

(b) In this case,  = −() ⇒

 = −


1

152× 1011
− 1

147× 1011


= −(597× 1024)(199× 1030)(667× 10−11)(−22377× 10−13) ≈ 177× 1032 J

(c) In this case,  =  ⇒

 = 


1

10−12
− 1

5× 10−13


=

8985× 109


(1)
−16× 10−19

−1012
 ≈ 1400 J.

16.4 Green's Theorem

1. (a) 1:  =  ⇒  =   = 0 ⇒  = 0  0 ≤  ≤ 5.

2:  = 5 ⇒  = 0   =  ⇒  =  0 ≤  ≤ 4.

3:  = 5−  ⇒  = −  = 4 ⇒  = 0  0 ≤  ≤ 5.

4:  = 0 ⇒  = 0   = 4−  ⇒  = − 0 ≤  ≤ 4

Thus


2  + 2  =


1 +2 +3 +4

2 + 2  =
 5

0
0  +

 4

0
25 +

 5

0
(−16 + 0) +

 4

0
0 

= 0 +


25
2
2
4
0
+ [−16]

5

0 + 0 = 200 + (−80) = 120

(b) Note that  as given in part (a) is a positively oriented, piecewise-smooth, simple closed curve. Then by Green’s Theorem,

2 + 2  =








(2)− 


(2)

 =

 5

0

 4

0
(2 − 2)   =

 5

0


2 − 2

=4

=0


=
 5

0
(16− 16)  =


82 − 16

5
0

= 200− 80 = 120

2. (a) Parametric equations for  are  = 4cos ,  = 4 sin , 0 ≤  ≤ 2. Then  = −4 sin  ,  = 4cos   and

 −  =

 2

0
[(4 sin )(−4 sin )− (4 cos )(4 cos )] 

= −16
 2

0
(sin2 + cos2 )  = −16

 2

0
1  = −16(2) = −32

(b) Note that  as given in part (a) is a positively oriented, smooth, simple closed curve. Then by Green’s Theorem,

 −  =








(−)− 


()

 =




(−1− 1)  = −2





= −2(area of) = −2 · (4)2 = −32
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SECTION 16.4 GREEN’S THEOREM ¤ 655

3. (a) 1:  =  ⇒  = ,  = 0 ⇒  = 0 , 0 ≤  ≤ 1.

2:  = 1 ⇒  = 0 ,  =  ⇒  = , 0 ≤  ≤ 2.

3:  = 1−  ⇒  = −,  = 2− 2 ⇒  = −2 , 0 ≤  ≤ 1.

Thus 

 + 23  =


1 +2 +3

 + 23 

=
 1

0
0 +

 2

0
3 +

 1

0

−(1− )(2− 2)− 2(1− )2(2− 2)3



= 0 +


1
4
4
2
0

+
 1

0

−2(1− )2 − 16(1− )5



= 4 +


2
3
(1− )3 + 8

3
(1− )6

1
0

= 4 + 0− 10
3

= 2
3

(b)


 + 23  =








(23)− 


()

 =

 1

0

 2

0
(23 − )  

=
 1

0


1
2
4 − 

=2

=0
 =

 1

0
(85 − 22)  = 4

3
− 2

3
= 2

3

4. (a) 1:  =  ⇒  = ,  = 2 ⇒  = 2 , 0 ≤  ≤ 1

2:  = 1−  ⇒  = −,  = 1 ⇒  = 0 , 0 ≤  ≤ 1

3:  = 0 ⇒  = 0 ,  = 1−  ⇒  = −, 0 ≤  ≤ 1

Thus

22 +   =


1+2+3

22 +  

=
 1

0


2(2)2  + (2)(2 )


+
 1

0


(1− )2(1)2(−) + (1− )(1)(0 )


+
 1

0


(0)2(1− )2(0 ) + (0)(1− )(−)

=
 1

0


6 + 24


+

 1

0

−1 + 2− 2

 +

 1

0
0 

=


1
7
7 + 2

5
5
1
0
+
− + 2 − 1

3
3
1
0
+ 0 =


1
7

+ 2
5


+
−1 + 1− 1

3


= 22

105

(b)


22 +   =








()− 


(22)

 =

 1

0

 1

2
( − 22)  

=
 1

0


1
2
2 − 22

=1

=2
 =

 1

0


1
2
− 2 − 1

2
4 + 6




=


1
2
− 1

3
3 − 1

10
5 + 1

7
7
1
0

= 1
2
− 1

3
− 1

10
+ 1

7
= 22

105

5. The region enclosed by  is [0 3]× [0 4], so



 + 2  =








(2)− 


()

 =

 3

0

 4

0
(2 − )  

=
 3

0
 

 4

0
 =



3
0



4
0

= (3 − 0)(4− 0) = 4(3 − 1)
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656 ¤ CHAPTER 16 VECTOR CALCULUS

6. The region enclosed by  is given by {( ) | 0 ≤  ≤ 1 0 ≤  ≤ 2}, so

(2 + 2) + (2 − 2)  =








(2 − 2)− 


(2 + 2)



=
 1

0

 2

0
(2− 2)  

=
 1

0


2 − 2

=2

=0


=
 1

0
(42 − 42)  =

 1

0
0  = 0

7.




 + 

√


+ (2+ cos 2)  =








(2+ cos 2)− 



 + 

√





=
 1

0

√
2

(2− 1)   =
 1

0
(
√
− 2)  =


2
3
32 − 1

3
3
1
0

= 1
3

8.


4  + 23  =








(23)− 


(4)

 =




(23 − 43) 

= −2



3  = 0

because ( ) = 3 is an odd function with respect to  and is symmetric about the -axis.

9.


3 − 3  =








(−3)− 


(3)

 =




(−32 − 32)  =
 2

0

 2

0
(−32)   

= −3
 2

0

 2

0
3  = −3



2
0


1
4
4
2
0

= −3(2)(4) = −24

10.


(1− 3) + (3 + 

2

)  =








(3 + 
2

)− 


(1− 3)

 =




(32 + 32) 

=
 2

0

 3

2
(32)    = 3

 2

0

 3

2
3 

= 3


2
0


1
4
4
3
2

= 3(2) · 1
4
(81− 16) = 195

2


11. F( ) = h cos−  sin  +  cosi and the region  enclosed by  is given by

{( ) | 0 ≤  ≤ 2 0 ≤  ≤ 4− 2}.  is traversed clockwise, so − gives the positive orientation.


F · r = − −( cos−  sin) + ( +  cos)  = − 






( +  cos)− 


( cos−  sin)



= − 


( −  sin+ cos− cos+  sin)  = −  2

0

 4−2

0
  

= −  2

0


1
2
2
=4−2

=0
 = −  2

0

1
2
(4− 2)2  = −  2

0
(8− 8+ 22)  = − 8− 42 + 2

3
3
2
0

= − 16− 16 + 16
3
− 0


= − 16
3

12. F( ) =

− + 2 − + 2


and the region enclosed by  is given by {( ) | −2 ≤  ≤ 2 0 ≤  ≤ cos}.

 is traversed clockwise, so − gives the positive orientation.


F · r = − − − + 2

+


− + 2


 = − 








− + 2

− 



− + 2




= −  2−2
 cos 

0
(2− 2)   = −  2−2


2 − 2

=cos 

=0


= −  2−2(2 cos− cos2 )  = −  2−2

2 cos− 1

2
(1 + cos 2)




= − 2 sin+ 2cos− 1
2


+ 1

2
sin 2

2
−2 [integrate by parts in the first term]

= −  − 1
4
 −  − 1

4



= 1
2
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SECTION 16.4 GREEN’S THEOREM ¤ 657

13. F( ) = h − cos   sin i and the region enclosed by  is the disk with radius 2 centered at (3−4).

 is traversed clockwise, so − gives the positive orientation.


F · r = − −( − cos ) + ( sin )  = − 






( sin )− 


( − cos )



= − 


(sin  − 1− sin )  =



 = area of = (2)2 = 4

14. F( ) =
√

2 + 1 tan−1 

and the region enclosed by  is given by {( ) | 0 ≤  ≤ 1  ≤  ≤ 1}.

 is oriented positively, so




F · r =



√
2 + 1 + tan−1  =










tan

−1

− 


(

2 + 1)




=

 1

0

 1




1

1 + 2
− 0


  =

 1

0

1

1 + 2



=1

=
 =

 1

0

1

1 + 2
(1− ) 

=

 1

0


1

1 + 2
− 

1 + 2


 =


tan

−1
− 1

2
ln(1 + 

2
)

1
0

=


4
− 1

2
ln 2

15. Here  = 1 +2 where

1 can be parametrized as  = ,  = 0, −2 ≤  ≤ 2, and

2 is given by  = −,  = cos , −2 ≤  ≤ 2.

   
Then the line integral is
1+2

34 + 54  =
 2
−2(0 + 0)  +

 2
−2[(−)3(cos )4(−1) + (−)5(cos )4(− sin )] 

= 0 +
 2
−2(

3 cos4  + 5 cos4  sin )  = 1
15
4 − 4144

1125
2 + 7,578,368

253,125 ≈ 00779

according to a CAS. The double integral is






− 




 =

 2

−2

 cos 

0

(5
4

4 − 4

3

3
)   = 1

15


4 − 4144
1125


2
+ 7,578,368

253,125 ≈ 00779, verifying Green’s

Theorem in this case.

16. We can parametrize  as  = cos ,  = 2 sin , 0 ≤  ≤ 2. Then the line integral is

  + =

 2

0


2 cos  − (cos )3(2 sin )5


(− sin )  +

 2

0
(cos )3(2 sin )8 · 2 cos  

=
 2

0
(−2 cos  sin  + 32 cos3  sin6  + 512 cos4  sin8 )  = 7,

according to a CAS. The double integral is








− 




 =

 1

−1

 √4− 42

−
√

4− 42
(3

2

8
+ 5

3

4
)   = 7.

17. By Green’s Theorem, =



F · r =


(+ ) + 2  =




(2 − )  where  is the path described in the

question and is the triangle bounded by . So

 =
 1

0

 1−
0

(2 − )   =
 1

0


1
3
3 − 

= 1−
= 0

 =
 1

0


1
3
(1− )3 − (1− )




=
− 1

12
(1− )4 − 1

2
2 + 1

3
3
1
0

=
− 1

2
+ 1

3

− − 1
12


= − 1

12
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658 ¤ CHAPTER 16 VECTOR CALCULUS

18. By Green’s Theorem, =



F · r =



sin +

sin  + 2 + 1

3
3

 =




(2 + 2 − 0) , where

 is the region (a quarter-disk) bounded by . Converting to polar coordinates, we have

 =
 2
0

 5

0
2 ·    =



2
0


1
4
4
5
0

= 1
2



625
4


= 625

8
.

19. Let 1 be the arch of the cycloid from (0 0) to (2 0), which corresponds to 0 ≤  ≤ 2, and let 2 be the segment from

(2 0) to (0 0), so 2 is given by  = 2 − ,  = 0, 0 ≤  ≤ 2. Then  = 1 ∪ 2 is traversed clockwise, so − is

oriented positively. Thus − encloses the area under one arch of the cycloid and from (5) we have

 = − −   =

1

 +

2

  =
 2

0
(1− cos )(1− cos )  +

 2

0
0 (−)

=
 2

0
(1− 2 cos  + cos2 )  + 0 =


− 2 sin  + 1

2
 + 1

4
sin 2

2
0

= 3

20.  =


 =

 2

0
(5 cos − cos 5)(5 cos − 5 cos 5) 

=
 2

0
(25 cos2 − 30 cos  cos 5+ 5cos2 5) 

=

25


1
2
+ 1

4
sin 2

− 30


1
8

sin 4 + 1
12

sin 6


+ 5


1
2
+ 1

20
sin 10

2
0

[Use Formula 80 in the Table of Integrals]

= 30

21. (a) Using Equation 16.2.8, we write parametric equations of the line segment as  = (1− )1 + 2,  = (1− )1 + 2,

0 ≤  ≤ 1. Then  = (2 − 1)  and  = (2 − 1) , so

 −  =

 1

0
[(1− )1 + 2](2 − 1) + [(1− )1 + 2](2 − 1) 

=
 1

0
(1(2 − 1)− 1(2 − 1) + [(2 − 1)(2 − 1)− (2 − 1)(2 − 1)]) 

=
 1

0
(12 − 21)  = 12 − 21

(b) We apply Green’s Theorem to the path  = 1 ∪ 2 ∪ · · · ∪ , where  is the line segment that joins ( ) to

(+1 +1) for  = 1, 2,   , − 1, and  is the line segment that joins ( ) to (1 1). From (5),

1
2



 −   =



, where is the polygon bounded by . Therefore

area of polygon= () =



 = 1

2



 −  

= 1
2


1

 −  +

2

 −   + · · ·+ 
−1

 −  +



 −  


To evaluate these integrals we use the formula from (a) to get

() = 1
2
[(12 − 21) + (23 − 32) + · · ·+ (−1 − −1) + (1 − 1)].

(c)  = 1
2
[(0 · 1− 2 · 0) + (2 · 3− 1 · 1) + (1 · 2− 0 · 3) + (0 · 1− (−1) · 2) + (−1 · 0− 0 · 1)]

= 1
2
(0 + 5 + 2 + 2) = 9

2

22. By Green’s Theorem, 1
2



2  = 1

2




2 = 1




 =  and

− 1
2



2  = − 1

2




(−2)  = 1




  = .
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SECTION 16.4 GREEN’S THEOREM ¤ 659

23. We orient the quarter-circular region as shown in the figure.

 = 1
4
2 so  =

1

22




2  and  = − 1

22




2.

Here  = 1 +2 + 3 where 1:  = ,  = 0, 0 ≤  ≤ ;

2:  =  cos ,  =  sin , 0 ≤  ≤ 
2
; and

3:  = 0,  = − , 0 ≤  ≤ . Then

2  =


1

2  +

2

2  +

3

2  =
 
0

0  +
 2
0

( cos )2( cos )  +
 
0

0 

=
 2
0

3 cos3   = 3
 2
0

(1− sin2 ) cos   = 3

sin − 1

3
sin3 

2
0

= 2
3
3

so  =
1

22




2  =
4

3
.



2=


1

2 +

2

2 +

3

2  =
 
0

0  +
 2
0

( sin )2(− sin ) +
 
0

0 

=
 2
0

(−3 sin3 )  = −3
 2
0

(1− cos2 ) sin   = −3


1
3

cos3 − cos 
2
0

= −2
3
3,

so  = − 1

22




2 =
4

3
. Thus ( ) =


4

3

4

3


.

24. Here  = 1
2
 and  = 1 + 2 +3, where 1:  = ,  = 0, 0 ≤  ≤ ;

2:  = ,  = , 0 ≤  ≤ ; and 3:  = ,  = 

,  =  to  = 0. Then


2  =


1

2  +

2

2  +

3

2  = 0 +
 
0
2  +

 0


(2)







= 2+ 



1
3
3
0


= 2− 1
3
2 = 2

3
2

Similarly,


2  =


1

2 +

2

2  +

3

2  = 0 + 0 +
 0







2

 = 2

2
· 1

3
3
0


= − 1
3
2. Thus

 = 1
2



2  = 1


· 2

3
2 = 2

3
 and  = − 1

2



2  = − 1



− 1
3
2


= 1
3
, so ( ) =


2
3
 1

3


.

25. By Green’s Theorem, −1
3



3  = − 1

3




(−32)  =



2  =  and

1
3



3  = 1

3




(32)  =



2  =  .

26. By symmetry the moments of inertia about any two diameters are equal. Centering the disk at the origin, the moment of inertia

about a diameter equals

 = 1
3



3  = 1

3

 2

0
(4 cos4 )  = 1

3
4

 2

0


3
8

+ 1
2

cos 2 + 1
8

cos 4

 = 1

3
4 · 3(2)

8
= 1

4
4

27. As in Example 5, let 0 be a counterclockwise-oriented circle with center the origin and radius , where  is chosen to

be small enough so that 0 lies inside , and  the region bounded by  and 0. Here

 =
2

(2 + 2)2
⇒ 


=

2(2 + 2)2 − 2 · 2(2 + 2) · 2
(2 + 2)4

=
23 − 62

(2 + 2)
3
and

 =
2 − 2

(2 + 2)2
⇒ 


=
−2(2 + 2)2 − (2 − 2) · 2(2 + 2) · 2

(2 + 2)4
=

23 − 62

(2 + 2)
3
. Thus, as in the example,
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660 ¤ CHAPTER 16 VECTOR CALCULUS


 + +


−0

 + =








− 




 =




0  = 0

and



F · r =

0 F · r. We parametrize 0 as r() =  cos  i +  sin  j, 0 ≤  ≤ 2. Then



F · r =


0

F · r =

 2

0

2 ( cos ) ( sin ) i +

2 sin2 − 2 cos2 


j

2 cos2 + 2 sin2 
2 ·


−  sin  i +  cos  j




=
1



 2

0

− cos  sin
2
− cos

3


 =

1



 2

0

− cos  sin
2
− cos 


1− sin

2




= −1



 2

0

cos   = −1


sin 

2
0

= 0

28.  and have continuous partial derivatives on R2, so by Green’s Theorem we have


F · r =








− 




 =




(3− 1)  = 2




 = 2 ·() = 2 · 6 = 12

29. Since  is a simple closed path which doesn’t pass through or enclose the origin, there exists an open region that doesn’t

contain the origin but does contain. Thus  = −(2 + 2) and = (2 + 2) have continuous partial derivatives on

this open region containing and we can apply Green’s Theorem. But by Exercise 16.3.35(a),  = , so

F · r =




0  = 0.

30. We express as a type II region:  = {( ) | 1() ≤  ≤ 2(),  ≤  ≤ } where 1 and 2 are continuous functions.

Then







 =

 



 2()

1()




 =

 



[(2() )−(1() )]  by the Fundamental Theorem of

Calculus. But referring to the figure,


 =


1 +2 +3 +4

.

Then

1

 =
 

(1() ) ,


2

 =

4

 = 0,

and

3

 =
 

(2() ) . Hence


 =

 


[(2() )−(1() ) ]  =



() .

31. Using the first part of (5), we have that



  = () =




. But  = ( ), and  =



+




,

and we orient  by taking the positive direction to be that which corresponds, under the mapping, to the positive direction

along , so


 =




( )





+







=




( )



+ ( )






= ± 







( ) 



− 



( ) 




 [using Green’s Theorem in the -plane]

= ± 









+ ( ) 2
 

− 




− ( ) 2

 


 [using the Chain Rule]

= ± 









− 








 [by the equality of mixed partials] = ± 



()

()
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SECTION 16.5 CURL AND DIVERGENCE ¤ 661

The sign is chosen to be positive if the orientation that we gave to  corresponds to the usual positive orientation, and it is

negative otherwise. In either case, since () is positive, the sign chosen must be the same as the sign of
 ( )

( )
.

Therefore () =




  =




( )

( )

 .
16.5 Curl and Divergence

1. (a) curlF = ∇×F =


i j k

  

22 22 22


=





(22)− 


(22)


i−





(22)− 


(22)


j +





(22)− 


(22)


k

= (22 − 22) i− (22 − 22) j + (22 − 22)k = 0

(b) divF = ∇ · F =



(22) +




(22) +




(22) = 22 + 22 + 22

2. (a) curlF = ∇×F =


i j k

  

0 32 43


=





(43)− 


(32)


i−





(43)− 


(0)


j +





(32)− 


(0)


k

= (433 − 23) i− (0− 0) j + (322 − 0)k = (433 − 23) i + 322 k

(b) divF = ∇ · F =



(0) +




(32) +




(43) = 0 + 32 + 342 = 32 + 342

3. (a) curlF = ∇×F =


i j k

  

 0 

 = ( − 0) i− ( − ) j + (0− )k

=  i + ( − ) j−  k

(b) divF = ∇ · F =



() +




(0) +




() =  + 0 +  = ( + )

4. (a) curlF = ∇×F =


i j k

  

sin  sin  sin


= ( cos −  cos ) i− ( cos −  cos ) j + ( cos −  cos )k

= (cos − cos ) i + (cos  − cos) j + (cos − cos )k

(b) divF = ∇ · F =



(sin ) +




(sin ) +




(sin) = 0 + 0 + 0 = 0
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662 ¤ CHAPTER 16 VECTOR CALCULUS

5. (a) curlF = ∇×F =


i j k

  
√


1 + 

√


1 + 

√


1 + 


=
√

 (−1)(1 + )−2 − 0

i− 0−√(−1)(1 + )−2


j +

√
 (−1)(1 + )−2 − 0


k

= −
√


(1 + )2
i−

√


(1 + )2
j−

√


(1 + )2
k

(b) divF = ∇ · F =




 √


1 + 


+





 √


1 + 


+





 √


1 + 


=

1

2
√
 (1 + )

+
1

2
√
 (1 + )

+
1

2
√
 (1 + )

6. (a) curlF = ∇×F =


i j k

  

ln(2 + 3) ln( + 3) ln(+ 2)


=


2

+ 2
− 3

 + 3


i−


1

+ 2
− 3

2 + 3


j +


1

+ 3
− 2

2 + 3


k

=


2

+ 2
− 3

 + 3


i +


3

2 + 3
− 1

+ 2


j +


1

+ 3
− 2

2 + 3


k

(b) divF = ∇ · F =





ln(2 + 3)


+






ln(+ 3)


+






ln(+ 2)


= 0 + 0 + 0 = 0

7. (a) curlF = ∇×F =


i j k

  

 sin   sin   sin

 = (0−  cos ) i− ( cos− 0) j + (0−  cos )k

= h− cos − cos− cos i

(b) divF = ∇ · F =



( sin ) +




( sin ) +




( sin) =  sin  +  sin  +  sin

8. (a) curlF = ∇×F =


i j k

  

arctan() arctan() arctan()


=


0− 

1 + ()2


i−




1 + ()2
− 0


j +


0− 

1 + ()2


k

=


− 

1 + 22
− 

1 + 22
− 

1 + 22



(b) divF = ∇ · F =





arctan()


+






arctan()


+




[arctan()] =



1 + 22
+



1 + 22
+



1 + 22

9. If the vector field is F =  i + j +k, then we know  = 0. In addition, the -component of each vector of F is 0, so

 = 0, hence



=




=




=




=




=




= 0.  decreases as  increases, so




 0, but  doesn’t change
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SECTION 16.5 CURL AND DIVERGENCE ¤ 663

in the - or -directions, so



=




= 0.

(a) divF =



+




+




= 0 +




+ 0  0

(b) curlF =





− 




i +





− 




j +





− 




k = (0− 0) i + (0− 0) j + (0− 0)k = 0

10. If the vector field is F =  i +  j +k, then we know  = 0. In addition,  and  don’t vary in the -direction, so




=




=




=




=




= 0. As  increases, the -component of each vector of F increases while the -component

remains constant, so



 0 and




= 0. Similarly, as  increases, the -component of each vector increases while the

-component remains constant, so



 0 and




= 0.

(a) divF =



+




+




=




+




+ 0  0

(b) curlF =





− 




i +





− 




j +





− 




k = (0− 0) i + (0− 0) j + (0− 0)k = 0

11. If the vector field is F =  i + j +k, then we know  = 0. In addition, the -component of each vector of F is 0, so

 = 0, hence



=




=




=




=




=




= 0.  increases as  increases, so




 0, but  doesn’t change in

the - or -directions, so



=




= 0.

(a) divF =



+




+




= 0 + 0 + 0 = 0

(b) curlF =





− 




i +





− 




j +





− 




k = (0− 0) i + (0− 0) j +


0− 




k = −


k

Since



 0, −


k is a vector pointing in the negative -direction.

12. (a) curl  = ∇×  is meaningless because  is a scalar field.

(b) grad  is a vector field.

(c) divF is a scalar field.

(d) curl (grad ) is a vector field.

(e) gradF is meaningless because F is not a scalar field.

(f ) grad(divF) is a vector field.

(g) div(grad ) is a scalar field.

(h) grad(div ) is meaningless because  is a scalar field.

(i) curl(curlF) is a vector field.

(j) div(divF) is meaningless because div F is a scalar field.
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664 ¤ CHAPTER 16 VECTOR CALCULUS

(k) (grad )× (divF) is meaningless because divF is a scalar field.

(l) div(curl(grad )) is a scalar field.

13. curlF = ∇×F =


i j k

  

23 23 322

 = (62 − 62) i− (322 − 322) j + (23 − 23)k = 0

and F is defined on all of R3 with component functions which have continuous partial derivatives, so by Theorem 4,

F is conservative. Thus, there exists a function  such that F = ∇ . Then (  ) = 23 implies

(  ) = 23 + ( ) and (  ) = 23 + ( ). But (  ) = 23, so ( ) = () and

(  ) = 23 + (). Thus (  ) = 322 + 0() but (  ) = 322 so () = , a constant.

Hence a potential function for F is (  ) = 23 +.

14. curlF = ∇×F =


i j k

  

4 24 423

 = (423 − 423) i− (83 − 43) j + (24 − 4)k 6= 0,

so F is not conservative.

15. curlF = ∇×F =


i j k

  

 cos   sin   cos 


= (− sin  −  sin ) i− (cos  − cos ) j + [ sin  − (− sin )]k = −2 sin  i + 2 sin  k 6= 0,

so F is not conservative.

16. curlF = ∇×F =


i j k

  

1 sin   cos 

 = (cos  − cos ) i− (0− 0) j + (0− 0)k = 0, F is defined on all of R3,

and the partial derivatives of the component functions are continuous, so F is conservative. Thus there exists a function 

such that ∇ = F. Then (  ) = 1 implies (  ) =  + ( ) and (  ) = ( ). But

(  ) = sin , so ( ) =  sin  + () and (  ) = +  sin  + (). Thus (  ) =  cos  + 0() but

(  ) =  cos  so () =  and (  ) = +  sin  +.

17. curlF = ∇×F =


i j k

  

  


= [ +  − ( + )] i− ( − ) j + ( − )k = 0

F is defined on all of R3, and the partial derivatives of the component functions are continuous, so F is conservative. Thus

there exists a function  such that∇ = F. Then (  ) =  implies (  ) =  + ( ) ⇒
(  ) =  + ( ). But (  ) =  , so ( ) = () and (  ) =  + ().

Thus (  ) =  + 0() but (  ) =  so () =  and a potential function for F is

(  ) =  +.
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SECTION 16.5 CURL AND DIVERGENCE ¤ 665

18. curlF = ∇×F =


i j k

  

 sin   cos   cos 


= [− sin  +  cos  − (− sin  +  cos )] i− ( cos  −  cos ) j

+( cos  −  cos )k = 0

F is defined on all of R3, and the partial derivatives of the component functions are continuous, so F is conservative. Thus

there exists a function  such that∇ = F. Then (  ) =  sin  implies (  ) =  sin  + ( ) ⇒
(  ) =  cos  + ( ). But (  ) =  cos , so ( ) = () and (  ) =  sin  + ().

Thus (  ) =  cos  + 0() but (  ) =  cos  so () =  and a potential function for F is

(  ) =  sin  +.

19. No. Assume there is such a G. Then div(curlG) =



( sin ) +




(cos ) +




( − ) = sin  − sin  + 1 6= 0,

which contradicts Theorem 11.

20. No. Assume there is such a G. Then div(curlG) =



() +




() +




() = 1 + 1 + 1 6= 0 which contradicts

Theorem 11.

21. curlF =


i j k

  

() () ()

 = (0− 0) i + (0− 0) j + (0− 0)k = 0. Hence F = () i + () j + ()k

is irrotational.

22. divF =



(( )) +




(( )) +




(( )) = 0 so F is incompressible.

For Exercises 23–29, let F(  ) = 1 i +1 j +1 k and G(  ) = 2 i +2 j +2 k.

23. div(F + G) = divh1 + 2 1 +2 1 +2i =
(1 + 2)


+

(1 +2)


+

(1 +2)



=
1


+

2


+

1


+

2


+

1


+

2


=


1


+

1


+

1




+


2


+

2


+

2




= divh1 1 1i+ divh2 2 2i = divF + divG

24. curlF + curlG =


1


− 1




i +


1


− 1




j +


1


− 1




k


+


2


− 2




i +


2


− 2




j +


2


− 2




k



=


(1 +2)


− (1 +2)




i +


(1 + 2)


− (1 +2)




j

+


(1 +2)


− (1 + 2)




k = curl(F + G)
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666 ¤ CHAPTER 16 VECTOR CALCULUS

25. div(F) = div( h1 1 1i) = divh1 1 1i =
(1)


+

(1)


+

(1)



=



1


+ 1






+



1


+1






+



1


+1






= 


1


+

1


+

1




+ h1 1 1i ·















=  divF + F ·∇

26. curl(F) =


(1)


− (1)




i +


(1)


− (1)




j +


(1)


− (1)




k

=



1


+1




− 

1


−1






i +



1


+ 1




− 

1


−1






j

+



1


+1




− 

1


− 1






k

= 


1


− 1




i + 


1


− 1




j + 


1


− 1




k

+


1




−1






i +


1




−1






j +


1




− 1






k

=  curlF + (∇)×F

27. div(F×G) =∇ · (F×G) =


  

1 1 1

2 2 2

=




1 1

2 2

− 



 1 1

2 2

+ 



 1 1

2 2


=


1

2


+2

1


−2

1


−1

2




−

1

2


+2

1


− 2

1


−1

2





+


1

2


+2

1


− 2

1


−1

2





=


2


1


− 1




+2


1


− 1




+2


1


− 1





−

1


2


− 2




+1


2


− 2




+1


2


− 2




= G · curlF−F · curlG

28. div(∇ ×∇) = ∇ · curl (∇)−∇ · curl (∇) [by Exercise 27] = 0 [by Theorem 3]

29. curl(curlF) = ∇× (∇×F) =


i j k

  

1 − 1 1 − 1 1− 1


=


21


− 21

2
− 21

2
+

21




i +


21


− 21

2
− 21

2
+

21




j

+


21


− 21

2
− 21

2
+

21




k
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SECTION 16.5 CURL AND DIVERGENCE ¤ 667

Now let’s consider grad(divF)−∇2F and compare with the above.

(Note that∇2F is defined on page 1147 [ET 1107].)

grad(divF)−∇2F =


21

2
+

21


+

21




i +


21


+

21

2
+

21




j +


21


+

21


+

21

2


k



−


21

2
+

21

2
+

21

2


i +


21

2
+

21

2
+

21

2


j

+


21

2
+

21

2
+

21

2


k



=


21


+

21


− 21

2
− 21

2


i +


21


+

21


− 21

2
− 21

2


j

+


21


+

21


− 21

2
− 22

2


k

Then applying Clairaut’s Theorem to reverse the order of differentiation in the second partial derivatives as needed and

comparing, we have curl curlF = graddivF−∇2F as desired.

30. (a) ∇ · r =





i +




j +




k


· ( i +  j +  k) = 1 + 1 + 1 = 3

(b) ∇ · (r) = ∇ ·

2 + 2 + 2 ( i +  j +  k)

=


2

2 + 2 + 2
+

2 + 2 + 2


+


2

2 + 2 + 2
+

2 + 2 + 2



+


2

2 + 2 + 2
+

2 + 2 + 2



=
1

2 + 2 + 2
(42 + 42 + 42) = 4


2 + 2 + 2 = 4

Another method:

By Exercise 25,∇ · (r) = div(r) =  div r + r ·∇ = 3 + r · r


[see Exercise 31(a) below] = 4.

(c) ∇23 = ∇2

2 + 2 + 2

32
= 




3
2
(2 + 2 + 2)12(2)


+ 




3
2
(2 + 2 + 2)12(2)


+ 




3
2
(2 + 2 + 2)12(2)


= 3


1
2
(2 + 2 + 2)−12(2)() + (2 + 2 + 2)12


+ 3


1
2
(2 + 2 + 2)−12(2)() + (2 + 2 + 2)12


+ 3


1
2
(2 + 2 + 2)−12(2)() + (2 + 2 + 2)12


= 3(2 + 2 + 2)−12(42 + 42 + 42) = 12(2 + 2 + 2)12 = 12

Another method: 


(2 + 2 + 2)32 = 3

2 + 2 + 2 ⇒ ∇3 = 3( i +  j +  k) = 3 r,

so∇23 = ∇ ·∇3 = ∇ · (3 r) = 3(4) = 12 by part (b).
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668 ¤ CHAPTER 16 VECTOR CALCULUS

31. (a) ∇ = ∇

2 + 2 + 2 =


2 + 2 + 2

i +


2 + 2 + 2
j +


2 + 2 + 2

k =
 i +  j +  k
2 + 2 + 2

=
r



(b) ∇× r =


i j k













  


=





()− 


()


i +





()− 


()


j +





()− 


()


k = 0

(c) ∇


1




= ∇


1

2 + 2 + 2



=

− 1

2

2 + 2 + 2

(2)

2 + 2 + 2
i−

1

2

2 + 2 + 2

(2)

2 + 2 + 2
j−

1

2

2 + 2 + 2

(2)

2 + 2 + 2
k

= −  i +  j +  k

(2 + 2 + 2)32
= − r

3

(d) ∇ ln  = ∇ ln(2 + 2 + 2)12 = 1
2
∇ ln(2 + 2 + 2)

=


2 + 2 + 2
i +



2 + 2 + 2
j +



2 + 2 + 2
k =

 i +  j +  k

2 + 2 + 2
=

r

2

32. r =  i +  j +  k ⇒  = |r| =

2 + 2 + 2, so

F =
r


=



(2 + 2 + 2)2
i +



(2 + 2 + 2)2
j +



(2 + 2 + 2)2
k

Then






(2 + 2 + 2)2
=

(2 + 2 + 2)− 2

(2 + 2 + 2)1 + 2
=

2 − 2

+2
. Similarly,







(2 + 2 + 2)2
=

2 − 2

+2
and







(2 + 2 + 2)2
=

2 − 2

+2
. Thus

divF = ∇ · F =
2 − 2

+ 2
+

2 − 2

+2
+

2 − 2

+ 2
=

32 − 2 − 2 − 2

+ 2

=
32 − (2 + 2 + 2)

+2
=

32 − 2

+2
=

3− 



Consequently, if  = 3 we have divF = 0.

33. By (13),


(∇) · n  =




div(∇)  =



[ div(∇) +∇ ·∇ ]  by Exercise 25. But div(∇) = ∇2.

Hence



∇2  =



(∇) · n − 


∇ ·∇ .

34. By Exercise 33,



∇2  =



(∇) · n  − 


∇ ·∇  and


∇2  =



(∇) · n − 


∇ ·∇ . Hence




∇2 − ∇2


 =




[(∇) · n− (∇) · n] +



(∇ ·∇ −∇ ·∇)  =




[∇ − ∇ ] · n.

35. Let ( ) = 1. Then ∇ = 0 and Green’s first identity (see Exercise 33) says

∇2  =




(∇) · n − 


0 ·∇  ⇒ 

∇2  =



∇ · n . But  is harmonic on, so

∇2 = 0 ⇒ 

∇ · n  = 0 and



n  =



(∇ · n)  = 0.
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SECTION 16.5 CURL AND DIVERGENCE ¤ 669

36. Let  =  . Then Green’s first identity (see Exercise 33) says



 ∇2  =




()(∇) · n − 

∇ ·∇ .

But  is harmonic, so∇2 = 0, and∇ ·∇ = |∇ |2, so we have 0 =



() (∇) · n − 

|∇ |2  ⇒


|∇ |2  =




() (∇) · n = 0 since  ( ) = 0 on .

37. (a) We know that  = , and from the diagram sin  =  ⇒  =  = (sin ) = |w× r|. But v is perpendicular

to both w and r, so that v = w× r.

(b) From (a), v = w× r =


i j k

0 0 

  

 = (0 ·  − ) i + (− 0 · ) j + (0 ·  −  · 0)k = − i +  j

(c) curlv = ∇× v =


i j k

  

−  0


=





(0)− 


()


i +





(−)− 


(0)


j +





()− 


(−)


k

= [ − (−)]k = 2 k = 2w

38. Let H = h1 2 3i and E = h1 2 3i.

(a) ∇× (∇×E) = ∇× (curlE) = ∇×

−1



H




= −1




i j k

  

1 2 3


= −1




23

 
− 22

 


i +


21

 
− 23




j +


22


− 21

 


k



= −1








3


− 2




i +


1


− 3




j +


2


− 1




k

 [assuming that the partial derivatives

are continuous so that the order of

differentiation does not matter]

= −1






curlH = −1








1



E




= − 1

2
2E

2

(b) ∇× (∇×H) = ∇× (curlH) = ∇×


1



E




=

1




i j k

  

1 2 3


=

1




23

 
− 22

 


i +


21

 
− 23




j +


22


− 21

 


k



=
1








3


− 2




i +


1


− 3




j +


2


− 1




k

 [assuming that the partial derivatives

are continuous so that the order of

differentiation does not matter]

=
1






curlE =

1








−1



H




= − 1

2
2H

2
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670 ¤ CHAPTER 16 VECTOR CALCULUS

(c) Using Exercise 29, we have that curl curlE = graddivE −∇2E ⇒

∇2E = graddivE− curl curlE = grad 0 +
1

2
2E

2
[from part (a)] =

1

2
2E

2
.

(d) As in part (c),∇2H = graddivH− curl curlH = grad 0 +
1

2
2H

2
[using part (b)] =

1

2
2H

2
.

39. For any continuous function  on R3, define a vector field G(  ) = h(  ) 0 0i where (  ) =
 
0
 (  ) .

Then divG =



((  )) +




(0) +




(0) =





 
0
(  )  = (  ) by the Fundamental Theorem of

Calculus. Thus every continuous function  on R3 is the divergence of some vector field.

16.6 Parametric Surfaces and Their Areas

1.  (4−5 1) lies on the parametric surface r( ) = h+  − 2 3 + − i if and only if there are values for  and 
where +  = 4, − 2 = −5, and 3 + −  = 1. From the first equation we have  = 4−  and substituting into the

second equation gives 4−  − 2 = −5 ⇔  = 3. Then  = 1, and these values satisfy the third equation, so  does lie

on the surface.

(0 4 6) lies on r( ) if and only if +  = 0, − 2 = 4, and 3 + −  = 6, but solving the first two equations

simultaneoulsy gives  = 4
3
,  = −4

3
and these values do not satisfy the third equation, so does not lie on the surface.

2.  (1 2 1) lies on the parametric surface r( ) =

1 + −  + 2 2 − 2


if and only if there are values for  and 

where 1 + −  = 1, + 2 = 2, and 2 − 2 = 1. From the first equation we have  =  and substituting into the third

equation gives 0 = 1, an impossibility, so  does not lie on the surface.

(2 3 3) lies on r( ) if and only if 1 + −  = 2, + 2 = 3, and 2 − 2 = 3. From the first equation we have

 =  + 1 and substituting into the second equation gives  + 1 + 2 = 3 ⇔ 2 +  − 2 = 0 ⇔ ( + 2)( − 1) = 0,

so  = −2 ⇒  = −1 or  = 1 ⇒  = 2. The third equation is satisfied by  = 2,  = 1 so does lie on the

surface.

3. r( ) = (+ ) i + (3− ) j + (1 + 4+ 5)k = h0 3 1i+  h1 0 4i+  h1−1 5i. From Example 3, we recognize

this as a vector equation of a plane through the point (0 3 1) and containing vectors a = h1 0 4i and b = h1−1 5i. If we

wish to find a more conventional equation for the plane, a normal vector to the plane is a× b =


i j k

1 0 4

1−1 5

 = 4 i− j− k

and an equation of the plane is 4(− 0)− ( − 3)− ( − 1) = 0 or 4−  −  = −4.

4. r( ) = 2 i +  cos  j +  sin  k, so the corresponding parametric equations for the surface are  = 2,  =  cos ,

 =  sin . For any point (  ) on the surface, we have 2 + 2 = 2 cos2  + 2 sin2  = 2 = . Since no restrictions

are placed on the parameters, the surface is  = 2 + 2, which we recognize as a circular paraboloid whose axis is the -axis.
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS ¤ 671

5. r( ) = h cos   sin  i, so the corresponding parametric equations for the surface are  =  cos ,  =  sin ,  = .

For any point (  ) on the surface, we have 2 + 2 = 2 cos2  + 2 sin2  = 2 = 2. Since no restrictions are placed on

the parameters, the surface is 2 = 2 + 2, which we recognize as a circular cone with axis the -axis.

6. r( ) = h3 cos   sin i, so the corresponding parametric equations for the surface are  = 3cos ,  = ,  = sin . For

any point (  ) on the surface, we have (3)2 + 2 = cos2  + sin2  = 1, so vertical cross-sections parallel to the

-plane are all identical ellipses. Since  =  and −1 ≤  ≤ 1, the surface is the portion of the elliptic cylinder

1
9
2 + 2 = 1 corresponding to−1 ≤  ≤ 1.

7. r( ) =

2 2 + 


, −1 ≤  ≤ 1, −1 ≤  ≤ 1.

The surface has parametric equations  = 2,  = 2,  = + , −1 ≤  ≤ 1, −1 ≤  ≤ 1.

In Maple, the surface can be graphed by entering

plot3d([uˆ2,vˆ2,u+v],u=-1..1,v=-1..1);.

In Mathematica we use the ParametricPlot3D command.

If we keep  constant at 0,  = 2
0, a constant, so the

corresponding grid curves must be the curves parallel to the

-plane. If  is constant, we have  = 2
0 , a constant, so these

grid curves are the curves parallel to the -plane.

8. r( ) =

 3−, −2 ≤  ≤ 2, −2 ≤  ≤ 2.

The surface has parametric equations  = ,  = 3,  = −,
−2 ≤  ≤ 2, −2 ≤  ≤ 2. If  = 0 is constant,

 = 0 = constant, so the corresponding grid curves are the curves

parallel to the -plane. If  = 0 is constant,  = 3
0 = constant,

so the corresponding grid curves are the curves parallel to the

-plane.

9. r( ) =

3  sin   cos 


, −1 ≤  ≤ 1, 0 ≤  ≤ 2

The surface has parametric equations  = 3,  =  sin ,

 =  cos , −1 ≤  ≤ 1, 0 ≤  ≤ 2. Note that if  = 0 is

constant then  = 3
0 is constant and  = 0 sin ,  = 0 cos 

describe a circle in ,  of radius |0|, so the corresponding grid
curves are circles parallel to the -plane. If  = 0, a constant,

the parametric equations become  = 3,  =  sin 0,  =  cos 0. Then  = (tan 0), so these are the grid curves we see

that lie in planes  =  that pass through the -axis.
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672 ¤ CHAPTER 16 VECTOR CALCULUS

10. r( ) = h sin(+ ) sin i, − ≤  ≤ , − ≤  ≤ .

The surface has parametric equations  = ,  = sin(+ ),

 = sin , − ≤  ≤ , − ≤  ≤ . If  = 0 is constant,

 = 0 = constant, so the corresponding grid curves are the

curves parallel to the -plane. If  = 0 is constant,

 = sin 0 = constant, so the corresponding grid curves are the

curves parallel to the -plane.

11.  = sin ,  = cos sin 4,  = sin 2 sin 4, 0 ≤  ≤ 2, −
2
≤  ≤ 

2
.

Note that if  = 0 is constant, then  = sin 0 is constant, so the

corresponding grid curves must be parallel to the -plane. These

are the vertically oriented grid curves we see, each shaped like a

“figure-eight.” When  = 0 is held constant, the parametric

equations become  = sin ,  = cos0 sin 4,

 = sin 20 sin 4. Since  is a constant multiple of , the

corresponding grid curves are the curves contained in planes

 =  that pass through the -axis.

12.  = cos,  = sin sin ,  = cos , 0 ≤  ≤ 2, 0 ≤  ≤ 2.

If  = 0 is constant, then  = cos0 = constant, so the

corresponding grid curves are the curves parallel to the -plane. If

 = 0 is constant, then  = cos 0 = constant, so the

corresponding grid curves are the curves parallel to the -plane.

13. r( ) =  cos  i +  sin  j +  k. The parametric equations for the surface are  =  cos ,  =  sin ,  = . We look at

the grid curves first; if we fix , then  and  parametrize a straight line in the plane  =  which intersects the -axis. If  is

held constant, the projection onto the -plane is circular; with  = , each grid curve is a helix. The surface is a spiraling

ramp, graph IV.

14. r( ) = 2 i + 2 j + (2 − 2)k. The parametric equations for the surface are  = 2,  = 2,  = 2 − 2. If

 = 0 is held constant, then  = 0
2,  = 2

0 so  = 0(
2
0)

2 = (13
0)

2, and  = 2
0 − 2 = 2

0 − (10). Thus

each grid curve corresponding to  = 0 lies in the plane  = 2
0 − (10) and its projection onto the -plane is a parabola

 = 2 with axis the -axis. Similarly, if  = 0 is held constant, then  = 2
0 ,  = 20 ⇒
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS ¤ 673

 = (2
0)

20 = (13
0)

2, and  = 2 − 2
0 = (10) − 2

0 . Each grid curve lies in the plane  = (10) − 2
0 and its

projection onto the -plane is a parabola  = 2 with axis the -axis. The surface is graph VI.

15. r( ) = (3 − ) i + 2 j + 2 k. The parametric equations for the surface are  = 3 − ,  = 2,  = 2. If we fix 

then  and  are constant so each corresponding grid curve is contained in a line parallel to the -axis. (Since  = 2 ≥ 0, the

grid curves are half-lines.) If  is held constant, then  = 2 = constant, so each grid curve is contained in a plane parallel to

the -plane. Since  and  are functions of  only, the grid curves all have the same shape. The surface is the cylinder shown

in graph I.

16.  = (1− )(3 + cos ) cos 4,  = (1− )(3 + cos ) sin 4,  = 3+ (1− ) sin . These equations correspond to

graph V: when  = 0, then  = 3 + cos ,  = 0, and  = sin , which are equations of a circle with radius 1 in the -plane

centered at (3 0 0). When  = 1
2
, then  = 3

2
+ 1

2
cos ,  = 0, and  = 3

2
+ 1

2
sin , which are equations of a circle with

radius 1
2
in the -plane centered at


3
2
 0 3

2


. When  = 1, then  =  = 0 and  = 3, giving the topmost point shown in the

graph. This suggests that the grid curves with  constant are the vertically oriented circles visible on the surface. The spiralling

grid curves correspond to keeping  constant.

17.  = cos3  cos3 ,  = sin3  cos3 ,  = sin3 . If  = 0 is held constant then  = sin3 0 is constant, so the

corresponding grid curve lies in a horizontal plane. Several of the graphs exhibit horizontal grid curves, but the curves for this

surface are neither ellipses nor straight lines, so graph III is the only possibility. (In fact, the horizontal grid curves here are

members of the family  =  cos3 ,  =  sin3  and are called astroids.) The vertical grid curves we see on the surface

correspond to  = 0 held constant, as then we have  = cos3 0 cos3 ,  = sin3 0 cos3  so the corresponding grid curve

lies in the vertical plane  = (tan3 0) through the -axis.

18.  = sin,  = cos sin ,  = sin . If  = 0 is fixed, then  = sin 0 is constant, and  = sin,  = (sin 0) cos

describe an ellipse that is contained in the horizontal plane  = sin 0. If  = 0 is fixed, then  = sin0 is constant, and

 = (cos0) sin ,  = sin  ⇒  = (cos0), so the grid curves are portions of lines through the -axis contained in

the plane  = sin0 (parallel to the -plane). The surface is graph II.

19. From Example 3, parametric equations for the plane through the point (0 0 0) that contains the vectors a = h1−1 0i and
b = h0 1−1i are  = 0 + (1) + (0) = ,  = 0 + (−1) + (1) =  − ,  = 0 + (0) + (−1) = −.

20. From Example 3, parametric equations for the plane through the point (0−1 5) that contains the vectors a = h2 1 4i and
b = h−3 2 5i are  = 0 + (2) + (−3) = 2− 3,  = −1 + (1) + (2) = −1 +  + 2,

 = 5 + (4) + (5) = 5 + 4+ 5.

21. Solving the equation for  gives 2 = 1 + 2 + 1
4
2 ⇒  =


1 + 2 + 1

4
2. (We choose the positive root since we want

the part of the hyperboloid that corresponds to  ≥ 0.) If we let  and  be the parameters, parametric equations are  = ,

 = ,  =


1 + 2 + 1
4
2.
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674 ¤ CHAPTER 16 VECTOR CALCULUS

22. Solving the equation for  gives 2 = 1
2
(1− 2 − 32) ⇒  = −


1
2
(1− 2 − 32) (since we want the part of the

ellipsoid that corresponds to  ≤ 0). If we let  and  be the parameters, parametric equations are  = ,  = ,

 = −


1
2
(1− 2 − 32).

Alternate solution: The equation can be rewritten as 2 +
2

1
√

2
2 +

2

(1
√

3)2
= 1, and if we let  =  cos  and

 =
1√
3
 sin , then  = −


1
2
(1− 2 − 32) = −


1
2
(1− 2 cos2  − 2 sin2 ) = −


1
2
(1− 2), where 0 ≤  ≤ 1

and 0 ≤  ≤ 2.

Second alternate solution: We can adapt the formulas for converting from spherical to rectangular coordinates as follows.

We let  = sin cos ,  =
1√
2

sin sin ,  =
1√
3

cos; the surface is generated for 0 ≤  ≤ ,  ≤  ≤ 2.

23. Since the cone intersects the sphere in the circle 2 + 2 = 2,  =
√

2 and we want the portion of the sphere above this, we

can parametrize the surface as  = ,  = ,  =


4− 2 − 2 where 2 + 2 ≤ 2.

Alternate solution: Using spherical coordinates,  = 2 sin cos ,  = 2 sin sin ,  = 2 cos where 0 ≤  ≤ 
4
and

0 ≤  ≤ 2.

24. We can parametrize the cylinder as  = 3 cos ,  = ,  = 3 sin . To restrict the surface to that portion above the -plane

and between the planes  = −4 and  = 4 we require 0 ≤  ≤ , −4 ≤  ≤ 4.

25. In spherical coordinates, parametric equations are  = 6 sin cos ,  = 6 sin sin ,  = 6 cos. The intersection of the

sphere with the plane  = 3
√

3 corresponds to  = 6cos = 3
√

3 ⇒ cos =
√

3
2

⇒  = 
6
, and the plane  = 0

(the -plane) corresponds to  = 
2
. Thus the surface is described by 

6
≤  ≤ 

2
, 0 ≤  ≤ 2.

26. Using  and  as the parameters,  = ,  = ,  = + 3 where 0 ≤ 2 + 2 ≤ 1. Also, since the plane intersects the

cylinder in an ellipse, the surface is a planar ellipse in the plane  = + 3. Thus, parametrizing with respect to  and , we

have  =  cos ,  =  sin ,  = 3 +  cos  where 0 ≤  ≤ 1 and 0 ≤  ≤ 2.

27. The surface appears to be a portion of a circular cylinder of radius 3 with axis the -axis. An equation of the cylinder is

2 + 2 = 9, and we can impose the restrictions 0 ≤  ≤ 5,  ≤ 0 to obtain the portion shown. To graph the surface on a

CAS, we can use parametric equations  = ,  = 3cos ,  = 3 sin  with the parameter domain 0 ≤  ≤ 5, 
2
≤  ≤ 3

2
.

Alternatively, we can regard  and  as parameters. Then parametric equations are  = ,  = ,  = −√9− 2, where

0 ≤  ≤ 5 and −3 ≤  ≤ 3.

28. The surface appears to be a portion of a sphere of radius 1 centered at the origin. In spherical coordinates, the sphere has

equation  = 1, and imposing the restrictions 
2
≤  ≤ 2, 

4
≤  ≤  will give only the portion of the sphere shown. Thus,

to graph the surface on a CAS we can either use spherical coordinates with the stated restrictions, or we can use parametric

equations:  = sin cos ,  = sin sin ,  = cos, 
2
≤  ≤ 2, 

4
≤  ≤ .
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS ¤ 675

29. Using Equations 3, we have the parametrization  = ,

 =
1

1 + 2
cos ,  =

1

1 + 2
sin , −2 ≤  ≤ 2, 0 ≤  ≤ 2.

30. Letting  be the angle of rotation about the -axis (adapting

Equations 3), we have the parametrization  = (1) cos ,  = ,

 = (1) sin ,  ≥ 1, 0 ≤  ≤ 2.

31. (a) Replacing cos by sin and sin by cos gives parametric equations

 = (2 + sin ) sin,  = (2 + sin ) cos,  = + cos . From the graph, it

appears that the direction of the spiral is reversed. We can verify this observation by

noting that the projection of the spiral grid curves onto the -plane, given by

 = (2 + sin ) sin,  = (2 + sin ) cos,  = 0, draws a circle in the clockwise

direction for each value of . The original equations, on the other hand, give circular

projections drawn in the counterclockwise direction. The equation for  is identical in

both surfaces, so as  increases, these grid curves spiral up in opposite directions for

the two surfaces.

(b) Replacing cos by cos 2 and sin by sin 2 gives parametric equations

 = (2 + sin ) cos 2,  = (2 + sin ) sin 2,  = + cos . From the graph, it

appears that the number of coils in the surface doubles within the same parametric

domain. We can verify this observation by noting that the projection of the spiral grid

curves onto the -plane, given by  = (2 + sin ) cos 2,  = (2 + sin ) sin 2,

 = 0 (where  is constant), complete circular revolutions for 0 ≤  ≤  while the

original surface requires 0 ≤  ≤ 2 for a complete revolution. Thus, the new

surface winds around twice as fast as the original surface, and since the equation for 

is identical in both surfaces, we observe twice as many circular coils in the same

-interval.

32. First we graph the surface as viewed from the front, then from two additional viewpoints.

The surface appears as a twisted sheet, and is unusual because it has only one side. (The Möbius strip is discussed in more

detail in Section 16.7.)
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676 ¤ CHAPTER 16 VECTOR CALCULUS

33. r( ) = (+ ) i + 32 j + (− )k.

r = i + 6 j + k and r = i− k, so r × r = −6 i + 2 j− 6k. Since the point (2 3 0) corresponds to  = 1,  = 1, a

normal vector to the surface at (2 3 0) is −6 i + 2 j− 6k, and an equation of the tangent plane is−6 + 2 − 6 = −6 or

3−  + 3 = 3.

34. r( ) = (2 + 1) i + (3 + 1) j + (+ )k.

r = 2 i + k and r = 32 j + k, so r × r = −32 i− 2 j + 62 k. Since the point (5 2 3) corresponds to  = 2,

 = 1, a normal vector to the surface at (5 2 3) is −3 i− 4 j + 12k, and an equation of the tangent plane is

−3(− 5)− 4( − 2) + 12( − 3) = 0 or 3 + 4 − 12 = −13.

35. r( ) =  cos  i +  sin  j +  k ⇒ r

1 

3


=


1
2

√

3
2
 

3


.

r = cos  i + sin  j and r = − sin  i +  cos  j + k, so a normal vector to the surface at the point


1
2

√

3
2
 

3


is

r

1 

3

× r

1 

3


=


1
2
i +

√
3

2
j

×

−
√

3
2

i + 1
2
j + k


=
√

3
2

i− 1
2
j + k. Thus an equation of the tangent plane at

1
2

√

3
2
 

3


is
√

3
2


− 1

2

− 1
2


 −

√
3

2


+ 1

 − 

3


= 0 or

√
3

2
− 1

2
 +  = 

3
.

36. r( ) = sin i + cos sin  j + sin  k ⇒ r


6
 

6


=


1
2

√

3
4
 1

2


.

r = cos i− sin sin  j and r = cos cos  j + cos  k, so a normal vector to the surface at the point


1
2

√

3
4
 1

2


is

r


6
 

6

× r


6
 

6


=
√

3
2

i− 1
4
j

×


3
4
j +

√
3

2
k


= −
√

3
8

i− 3
4
j + 3

√
3

8
k.

Thus an equation of the tangent plane at


1
2

√

3
4
 1

2


is −

√
3

8


− 1

2

− 3
4


 −

√
3

4


+ 3

√
3

8


 − 1

2


= 0 or

√
3 + 6 − 3

√
3  =

√
3

2
or 2+ 4

√
3  − 6 = 1.

37. r( ) = 2 i + 2 sin  j +  cos  k ⇒ r(1 0) = (1 0 1).

r = 2 i + 2 sin  j + cos  k and r = 2 cos  j−  sin  k,

so a normal vector to the surface at the point (1 0 1) is

r(1 0)× r(1 0) = (2 i + k)× (2 j) = −2 i + 4k.

Thus an equation of the tangent plane at (1 0 1) is

−2(− 1) + 0( − 0) + 4( − 1) = 0 or − + 2 = 1.

38. r( ) = (1− 2 − 2) i−  j− k.

r = −2 i− k and r = −2 i− j. Since the point (−1−1−1)

corresponds to  = 1,  = 1, a normal vector to the surface at

(−1−1−1) is

r(1 1)× r(1 1) = (−2 i− k)× (−2 i− j) = −i + 2 j + 2k.

Thus an equation of the tangent plane is−1(+ 1) + 2( + 1) + 2( + 1) = 0 or −+ 2 + 2 = −3.
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS ¤ 677

39. The surface  is given by  = ( ) = 6− 3− 2 which intersects the -plane in the line 3+ 2 = 6, so is the

triangular region given by

( )

 0 ≤  ≤ 2 0 ≤  ≤ 3− 3
2


. By Formula 9, the surface area of  is

() =





1 +






2

+






2



=





1 + (−3)2 + (−2)2  =

√
14



 =

√
14() =

√
14


1
2
· 2 · 3 = 3

√
14

40. r( ) = h+  2− 3 1 + − i ⇒ r = h1−3 1i, r = h1 0−1i, and r × r = h3 2 3i. Then by
Definition 6,

() =



| r × r |  =

 2

0

 1

−1
| h3 2 3i |   =

√
22
 2

0

 1

−1
 =

√
22 (2)(2) = 4

√
22

41. Here we can write  = ( ) = 1
3
− 1

3
− 2

3
 and is the disk 2 + 2 ≤ 3, so by Formula 9 the area of the surface is

() =





1 +






2

+






2

 =





1 +

− 1
3

2
+
− 2

3

2
 =

√
14
3






=
√

14
3

() =
√

14
3
· √3

2
=
√

14

42.  = ( ) =

2 + 2 ⇒ 


=

1

2


2 + 2

−12 · 2 =


2 + 2
,



=


2 + 2

, and


1 +






2

+






2

=


1 +

2

2 + 2
+

2

2 + 2
=


1 +

2 + 2

2 + 2
=
√

2

Here is given by

( )

 0 ≤  ≤ 1 2 ≤  ≤ 

, so by Formula 9, the surface area of  is

() =




√
2  =

 1

0

 
2

√
2   =

√
2
 1

0


− 2


 =

√
2


1
2
2 − 1

3
3
1
0

=
√

2


1
2
− 1

3


=
√

2
6

43.  = ( ) = 2
3
(32 + 32) and = {( ) | 0 ≤  ≤ 1 0 ≤  ≤ 1}. Then  = 12,  = 12 and

() =





1 + (

√
 )

2
+
√


2
 =

 1

0

 1

0

√
1 + +   

=
 1

0


2
3
(+  + 1)32

=1

=0
 = 2

3

 1

0


(+ 2)32 − (+ 1)32




= 2
3


2
5
( + 2)52 − 2

5
(+ 1)52

1
0

= 4
15

(352 − 252 − 252 + 1) = 4
15

(352 − 272 + 1)

44.  = ( ) = 4− 22 +  and = {( ) | 0 ≤  ≤ 1 0 ≤  ≤ }. Thus, by Formula 9,

() =





1 + (−4)2 + (1)2  =

 1

0

 
0

√
162 + 2   =

 1

0

√

162 + 2 

= 1
32
· 2

3
(162 + 2)32

1
0

= 1
48

(1832 − 232) = 1
48

(54
√

2− 2
√

2 ) = 13
12

√
2

45.  = ( ) =  with 2 + 2 ≤ 1, so  = ,  =  ⇒

() =





1 + 2 + 2  =

 2

0

 1

0

√
2 + 1    =

 2

0


1
3

(2 + 1)32
=1

=0


=
 2

0

1
3


2
√

2− 1

 = 2

3


2
√

2− 1
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678 ¤ CHAPTER 16 VECTOR CALCULUS

46. A parametric representation of the surface is  = 2 + ,  = ,  =  with 0 ≤  ≤ 2, 0 ≤  ≤ 2.

Hence r × r = (i + j)× (2 i + k) = i− j− 2 k.

Then

() =



| r × r |  =

 2

0

 2

0

√
1 + 1 + 42   =

 2

0
2
√

2 + 42 

=

2 · 1

2



√

2 + 42 + ln

2 +

√
2 + 42

2
0


Use trigonometric substitution

or Formula 21 in the Table of Integrals


= 6
√

2 + ln

4 + 3

√
2
− ln

√
2 or 6

√
2 + ln

4 + 3
√

2√
2

= 6
√

2 + ln

2
√

2 + 3


Note: In general, if  = ( ) then r × r = i− 


j− 


k and  () =





1 +






2

+






2

.

47. A parametric representation of the surface is  = ,  = 2 + 2,  =  with 0 ≤ 2 + 2 ≤ 16.

Hence r × r = (i + 2 j)× (2 j + k) = 2 i− j + 2 k.

Note: In general, if  = ( ) then r × r =



i− j +




k, and () =





1 +






2

+






2

. Then

() =


0≤2 + 2≤ 16

√
1 + 42 + 42  =

 2

0

 4

0

√
1 + 42   

=
 2

0

 4

0

√

1 + 42  = 2


1
12

(1 + 42)32
4
0

= 
6


6532 − 1


48. r = hcos  sin  0i, r = h− sin   cos  1i, and r × r = hsin − cos  i. Then

() =
 
0

 1

0

√
1 + 2  =

 
0

 1

0

√
1 + 2 

= 


2

√
2 + 1 + 1

2
ln
+

√
2 + 1

1
0

= 
2

√
2 + ln


1 +

√
2


49. r = h2  0i, r = h0  i, and r × r =

2−2 22


. Then

() =



|r × r|  =

 1

0

 2

0

√
4 + 422 + 44   =

 1

0

 2

0


(2 + 22)2  

=
 1

0

 2

0
(2 + 22)   =

 1

0


1
3
3 + 22

=2

=0
 =

 1

0


8
3

+ 42

 =


8
3
+ 4

3
3
1
0

= 4

50. The cylinder encloses separate portions of the sphere in the upper and lower halves. The top half of the sphere is

 = ( ) =

 2 − 2 − 2 and is given by


( )

2 + 2 ≤ 2

. By Formula 9, the surface area of the upper

enclosed portion is

=




1 +


−

 2 − 2 − 2

2

+


−

 2 − 2 − 2

2

 =





1 +

2 + 2

 2 − 2 − 2


=





 2

 2 − 2 − 2
 =

 2

0

 

0

√
 2 − 2

   = 

 2

0



 

0

√
 2 − 2



= 


2
0

−√ 2 − 2

0

= 2
−√ 2 − 2 +

√
 2 − 0


= 2


−√ 2 − 2


The lower portion of the sphere enclosed by the cylinder has identical shape, so the total area is 2 = 4


−√ 2 − 2


.
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS ¤ 679

51. From Equation 9 we have () =





1 + ()2 + ()2 . But if || ≤ 1 and || ≤ 1 then 0 ≤ ()

2 ≤ 1,

0 ≤ ()
2 ≤ 1 ⇒ 1 ≤ 1 + ()

2 + ()
2 ≤ 3 ⇒ 1 ≤


1 + ()2 + ()2 ≤

√
3. By Property 15.2.11,


1  ≤ 




1 + ()2 + ()2  ≤




√
3  ⇒ () ≤ () ≤ √3() ⇒

2 ≤ () ≤ √32.

52.  = ( ) = cos(2 + 2) with 2 + 2 ≤ 1.

() =





1 + (−2 sin(2 + 2))2 + (−2 sin(2 + 2))2 

=





1 + 42 sin2(2 + 2) + 42 sin2(2 + 2)  =





1 + 4(2 + 2) sin2(2 + 2) 

=
 2

0

 1

0


1 + 42 sin2(2)    =

 2

0

 1

0



1 + 42 sin2(2) 

= 2
 1

0



1 + 42 sin2(2)  ≈ 41073

53.  = ( ) = ln(2 + 2 + 2) with 2 + 2 ≤ 1.

() =





1 +


2

2 + 2 + 2

2

+


2

2 + 2 + 2

2

 =





1 +

42 + 42

(2 + 2 + 2)2


=

 2

0

 1

0


1 +

42

(2 + 2)2
   =

 2

0



 1

0




(2 + 2)2 + 42

(2 + 2)2
 = 2

 1

0


√
4 + 82 + 4

2 + 2
 ≈ 35618

54. Let ( ) =
1 + 2

1 + 2
. Then  =

2

1 + 2
,

 = (1 + 2)


− 2

(1 + 2)
2


= −2(1 + 2)

(1 + 2)2
.

We use a CAS to estimate 1

−1

 1− ||
−(1− ||)


1 + 2

 + 2
   ≈ 26959.

In order to graph only the part of the surface above the square, we

use − (1− ||) ≤  ≤ 1− || as the -range in our plot command.

55. (a) () =





1 +






2

+






2

 =

 6

0

 4

0


1 +

42 + 42

(1 + 2 + 2)4
 .

Using the Midpoint Rule with ( ) =


1 +

42 + 42

(1 + 2 + 2)4
, = 3,  = 2 we have

() ≈
3

=1

2
= 1



 


∆ = 4 [(1 1) + (1 3) + (3 1) + (3 3) + (5 1) + (5 3)] ≈ 242055

(b) Using a CAS we have () =

 6

0

 4

0


1 +

42 + 42

(1 + 2 + 2)4
  ≈ 242476. This agrees with the estimate in part (a)

to the first decimal place.
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680 ¤ CHAPTER 16 VECTOR CALCULUS

56. r( ) =

cos3  cos3  sin3  cos3  sin3 


, so r =

−3 cos2  sin cos3  3 sin2  cos cos3  0

,

r =
−3 cos3  cos2  sin −3 sin3  cos2  sin  3 sin2  cos 


, and

r × r =

9 cos sin2  cos4  sin2  9 cos2  sin cos4  sin2  9 cos2  sin2  cos5  sin 


. Then

|r × r|= 9


cos2  sin4  cos8  sin4  + cos4  sin2  cos8  sin4  + cos4  sin4  cos10  sin2 

= 9


cos2  sin2  cos8  sin2  (sin2  + cos2  sin2  cos2 )

= 9 cos4  |cos sin sin |


sin2  + cos2  sin2  cos2 

Using a CAS, we have () =
 
0

 2

0
9 cos4  |cos sin sin |


sin2  + cos2  sin2  cos2    ≈ 44506.

57.  = 1 + 2+ 3 + 42, so

() =





1 +






2

+






2

 =

 4

1

 1

0


1 + 4 + (3 + 8)2   =

 4

1

 1

0


14 + 48 + 642  .

Using a CAS, we have 4

1

 1

0


14 + 48 + 642   = 45

8

√
14 + 15

16
ln

11
√

5 + 3
√

14
√

5
− 15

16
ln

3
√

5 +
√

14
√

5


or 45
8

√
14 + 15

16
ln 11

√
5+ 3

√
70

3
√

5 +
√

70
.

58. (a) r =  cos  i +  sin  j + 2k, r = − sin  i +  cos  j + 0k, and

r × r = −22 cos  i − 22 sin  j + k.

() =
 2

0

 2

0
|r × r|  =

 2

0

 2

0


424 cos2  + 424 sin2  + 222 

(b) 2 = 22 cos2 , 2 = 22 sin2 ,  = 2 ⇒ 22 + 22 = 2 =  which is an elliptic paraboloid. To find,

notice that 0 ≤  ≤ 2 ⇒ 0 ≤  ≤ 4 ⇒ 0 ≤ 22 + 22 ≤ 4. Therefore, using Formula 9, we have

() =

 2

−2

 
√

4− (22)

−
√

4− (22)


1 + (22)2 + (22)2  .

(c) (d) We substitute  = 2,  = 3 in the integral in part (a) to get

() =
 2

0

 2

0
2


92 cos2  + 42 sin2  + 9 . We use a CAS

to estimate the integral accurate to four decimal places. To speed up the

calculation, we can set Digits:=7; (in Maple) or use the approximation

command N (in Mathematica). We find that () ≈ 1156596.

59. (a)  =  sin cos ,  =  sin sin ,  =  cos ⇒

2

2
+

2

2
+

2

2
= (sin cos )2 + (sin sin )2 + (cos)2

= sin2 + cos2  = 1

and since the ranges of  and  are sufficient to generate the entire graph,

the parametric equations represent an ellipsoid.

(b)
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS ¤ 681

(c) From the parametric equations (with  = 1,  = 2, and  = 3),

we calculate r = cos cos  i + 2cos sin  j− 3 sink and

r = − sin sin  i + 2 sin cos  j. So r × r = 6 sin2  cos  i + 3 sin2  sin  j + 2 sin cosk, and the surface

area is given by () =
 2

0

 
0
|r × r| =

 2

0

 
0


36 sin4  cos2  + 9 sin4  sin2  + 4cos2  sin2 

60. (a)  =  cosh cos ,  =  cosh sin ,  =  sinh ⇒
2

2
+

2

2
− 2

2
= cosh2  cos2  + cosh2  sin2  − sinh2 

= cosh2 − sinh2  = 1

and the parametric equations represent a hyperboloid of

one sheet.

(b)

(c) r = sinh cos  i + 2 sinh sin  j + 3coshk and

r = − cosh sin  i + 2cosh cos  j, so r × r = −6 cosh2  cos  i− 3 cosh2  sin  j + 2cosh sinhk.

We integrate between  = sinh−1(−1) = − ln

1 +

√
2

and  = sinh−1 1 = ln


1 +

√
2

, since then  varies between

−3 and 3, as desired. So the surface area is

() =

 2

0

 ln(1 +
√

2)

− ln(1 +
√

2)
|r × r| 

=

 2

0

 ln(1 +
√

2)

− ln(1 +
√

2)


36 cosh4  cos2  + 9cosh4  sin2  + 4 cosh2  sinh2 

61. To find the region:  = 2 + 2 implies  + 2 = 4 or 2 − 3 = 0. Thus  = 0 or  = 3 are the planes where the

surfaces intersect. But 2 + 2 + 2 = 4 implies 2 + 2 + ( − 2)2 = 4, so  = 3 intersects the upper hemisphere.

Thus (− 2)2 = 4− 2 − 2 or  = 2 +


4− 2 − 2. Therefore is the region inside the circle 2 + 2 + (3− 2)2 = 4,

that is, =

( ) | 2 + 2 ≤ 3


.

() =





1 + [(−)(4− 2 − 2)−12]2 + [(−)(4− 2 − 2)−12]2 

=

 2

0

 √
3

0


1 +

2

4− 2
   =

 2

0

 √
3

0

2 √
4− 2

 =

 2

0


−2(4− 

2
)
12
=√3

=0


=
 2

0
(−2 + 4)  = 2

2
0

= 4

62. We first find the area of the face of the surface that intersects the positive -axis. A parametric representation of the surface is

 = ,  =
√

1− 2,  =  with 2 + 2 ≤ 1. Then r( ) =


√

1− 2 
 ⇒ r = h1 0 0i,

r =

0−√1− 2 1


and r × r =


0−1−√1− 2

 ⇒ | r × r | =


1 +
2

1− 2
=

1√
1− 2

.

() =


2+2≤1

| r × r |  =

 1

−1

 √1−2

−
√

1−2
1√

1− 2
  = 4

 1

0

 √1−2

0

1√
1− 2

 


by the symmetry
of the surface
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682 ¤ CHAPTER 16 VECTOR CALCULUS

This integral is improper [when  = 1], so

() = lim
→1−

4

 

0

 √1−2

0

1√
1− 2

  = lim
→1−

4

 

0

√
1− 2

√
1− 2

 = lim
→1−

4

 

0

 = lim
→1−

4 = 4

Since the complete surface consists of four congruent faces, the total surface area is 4(4) = 16.

Alternate solution: The face of the surface that intersects the positive -axis can also be parametrized as

r( ) = h cos  sin i for −
2
≤  ≤ 

2
and 2 + 2 ≤ 1 ⇔ 2 + sin2  ≤ 1 ⇔

−


1− sin2  ≤  ≤


1− sin2  ⇔ − cos  ≤  ≤ cos . Then r = h1 0 0i, r = h0− sin  cos i and
r × r = h0− cos − sin i ⇒ | r × r | = 1, so

() =
 2
−2

 cos 

− cos 
1   =

 2
−2 2 cos   = 2 sin 

2
−2 = 4. Again, the area of the complete surface

is 4(4) = 16.

63. Let (1) be the surface area of that portion of the surface which lies above the plane  = 0. Then () = 2(1).

Following Example 10, a parametric representation of 1 is  =  sin cos ,  =  sin sin ,

 =  cos and |r × r| = 2 sin. For, 0 ≤  ≤ 
2
and for each fixed ,


− 1

2

2

+ 2 ≤  1
2

2

or
 sin cos  − 1

2

2

+ 2 sin2  sin2  ≤ (2)2 implies 2 sin2 − 2 sin cos  ≤ 0 or

sin (sin− cos ) ≤ 0. But 0 ≤  ≤ 
2
, so cos  ≥ sin or sin



2

+ 
 ≥ sin or − 

2
≤  ≤ 

2
− .

Hence =

( ) | 0 ≤  ≤ 

2
, − 

2
≤  ≤ 

2
− 


. Then

(1) =
 2
0

 (2)−

− (2)
2 sin  = 2

 2
0

( − 2) sin

= 2 [(− cos)− 2(− cos+ sin)]
2

0 = 2( − 2)

Thus () = 22( − 2).

Alternate solution: Working on 1 we could parametrize the portion of the sphere by  = ,  = ,  =

2 − 2 − 2.

Then |r × r| =


1 +
2

2 − 2 − 2
+

2

2 − 2 − 2
=


2 − 2 − 2

and

(1) =


0≤ (− (2))2 + 2≤ (2)2


2 − 2 − 2

 =

 2

−2

  cos 

0

√
2 − 2

  

=
 2
−2 −(2 − 2)12

=  cos 

=0
 =

 2
−2 2[1− (1− cos2 )12] 

=
 2
−2 2(1− |sin |)  = 22

 2
0

(1− sin )  = 22


2
− 1


Thus () = 42


2
− 1


= 22( − 2).

Notes:

(1) Perhaps working in spherical coordinates is the most obvious approach here. However, you must be careful

in setting up.

(2) In the alternate solution, you can avoid having to use |sin | by working in the first octant and then
multiplying by 4. However, if you set up 1 as above and arrived at (1) = 2, you now see your error.
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SECTION 16.6 PARAMETRIC SURFACES AND THEIR AREAS ¤ 683

64. (a) Here  =  sin,  = ||, and  = ||. But

|| = ||+ || = +  cos and sin  =
||
|| so that

 = || sin  = (+  cos) sin . Similarly cos  =
||
|| so

 = (+  cos) cos . Hence a parametric representation for the

torus is  =  cos  +  cos cos ,  =  sin  +  cos sin ,

 =  sin, where 0 ≤  ≤ 2, 0 ≤  ≤ 2.

(b)

 = 1,  = 8  = 3,  = 8

 = 3,  = 4

(c)  =  cos  +  cos cos ,  =  sin  +  cos sin ,  =  sin, so r = h− sin cos − sin sin   cosi,

r = h−(+  cos) sin  (+  cos) cos  0i and

r × r =
− cos cos  − 2 cos cos2 


i +

− sin cos  − 2 sin cos2 

j

+
− cos2  sin  − 2 cos2  sin  cos  −  sin2  sin  − 2 sin2  sin  cos 


k

= − (+  cos) [(cos  cos) i + (sin  cos) j + (sin)k]

Then |r × r| = (+  cos)


cos2  cos2 + sin2  cos2 + sin2  = (+  cos).

Note:   , −1 ≤ cos ≤ 1 so |+  cos| =  +  cos. Hence

 () =
 2

0

 2

0
(+  cos)  = 2


+ 2 sin

2
0

= 42.
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684 ¤ CHAPTER 16 VECTOR CALCULUS

16.7 Surface Integrals

1. The box is a cube where each face has surface area 4. The centers of the faces are (±1 0 0), (0±1 0), (0 0±1). For each

face we take the point  ∗ to be the center of the face and (  ) = cos(+ 2 + 3), so by Definition 1,

(  )  ≈ [(1 0 0)](4) + [(−1 0 0)](4) + [(0 1 0)](4)

+ [(0−1 0)](4) + [(0 0 1)](4) + [(0 0−1)](4)

= 4 [cos 1 + cos(−1) + cos 2 + cos(−2) + cos 3 + cos(−3)] ≈ −693

2. Each quarter-cylinder has surface area 1
4
[2(1)(2)] =  and the top and bottom disks have surface area (1)2 = . We can

take (0 0 1) as a sample point in the top disk, (0 0−1) in the bottom disk, and (±1 0 0), (0±1 0) in the four

quarter-cylinders. Then



(  )  can be approximated by the Riemann sum

(1 0 0)() + (−1 0 0)() + (0 1 0) () + (0−1 0)() + (0 0 1)() + (0 0−1)()

= (2 + 2 + 3 + 3 + 4 + 4) = 18 ≈ 565.

3. We can use the - and -planes to divide into four patches of equal size, each with surface area equal to 1
8
the surface

area of a sphere with radius
√

50, so∆ = 1
8
(4)

√
50
2

= 25. Then (±3±4 5) are sample points in the four patches,

and using a Riemann sum as in Definition 1, we have

(  )  ≈ (3 4 5)∆ + (3−4 5)∆ + (−3 4 5)∆ + (−3−4 5)∆

= (7 + 8 + 9 + 12)(25) = 900 ≈ 2827

4. On the surface, (  ) = 


2 + 2 + 2


= (2) = −5. So since the area of a sphere is 42,


(  )  =



(2)  = −5



 = −5[4(2)2] = −80.

5. r( ) = ( + ) i + ( − ) j + (1 + 2 + )k, 0 ≤  ≤ 2, 0 ≤  ≤ 1 and

r × r = (i + j + 2k)× (i− j + k) = 3 i + j− 2k ⇒ |r × r| =


32 + 12 + (−2)2 =
√

14. Then by Formula 2,

( +  + )  =




(+  + −  + 1 + 2+ ) |r × r|  =
 1

0

 2

0
(4+  + 1) ·√14 

=
√

14
 1

0


22 +  + 

=2

=0
 =

√
14
 1

0
(2 + 10)  =

√
14

2 + 10

1
0

= 11
√

14

6. r( ) =  cos  i +  sin  j + k, 0 ≤  ≤ 1, 0 ≤  ≤ 2 and

r × r = (cos  i + sin  j + k)× (− sin  i +  cos  j) = − cos  i−  sin  j + k ⇒

|r × r| =

2 cos2  + 2 sin2  + 2 =

√
22 =

√
2 [since  ≥ 0]. Then by Formula 2,


  =




( cos )( sin )() |r × r|  =
 1

0

 2
0

(3 sin  cos ) ·√2 

=
√

2
 1

0
4 

 2
0

sin  cos   =
√

2


1
5
5
1
0


1
2

sin2 
2
0

=
√

2 · 1
5
· 1

2
= 1

10

√
2

7. r( ) = h cos   sin  i, 0 ≤  ≤ 1, 0 ≤  ≤  and

r × r = hcos  sin  0i × h− sin   cos  1i = hsin − cos  i ⇒
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SECTION 16.7 SURFACE INTEGRALS ¤ 685

|r × r| =


sin2  + cos2  + 2 =
√
2 + 1. Then


  =




( sin ) |r × r|  =
 1

0

 
0

( sin ) ·√2 + 1   =
 1

0

√
2 + 1 

 
0

sin  

=


1
3
(2 + 1)32

1
0

[− cos ]


0
= 1

3
(232 − 1) · 2 = 2

3
(2
√

2− 1)

8. r( ) =

2 2 − 2 2 + 2


, 2 + 2 ≤ 1 and

r × r = h2 2 2i × h2−2 2i =

8 42 − 42−42 − 42


, so

|r × r|=


(8)2 + (42 − 42)2 + (−42 − 42)2 =
√

6422 + 324 + 324

=


32(2 + 2)2 = 4
√

2 (2 + 2)

Then

(2 + 2)  =





(2)2 + (2 − 2)2

 |r × r|  =



(422 + 4 − 222 + 4) · 4√2 (2 + 2) 

= 4
√

2



(4 + 222 + 4) (2 + 2)  = 4

√
2



(2 + 2)3  = 4

√
2
 2

0

 1

0
(2)3   

= 4
√

2
 2

0

 1

0
7  = 4

√
2


2
0


1
8
8
1
0

= 4
√

2 · 2 · 1
8

=
√

2

9.  = 1 + 2+ 3 so



= 2 and




= 3. Then by Formula 4,



2  =





2







2
+






2
+ 1  =

 3

0

 2

0
2(1 + 2+ 3)

√
4 + 9 + 1  

=
√

14
 3

0

 2

0
(2 + 23 + 322)   =

√
14
 3

0


1
2
22 + 32 + 23

=2

=0


=
√

14
 3

0
(102 + 43)  =

√
14

10
3
3 + 4

3
0

= 171
√

14

10.  is the part of the plane  = 4− 2− 2 over the region = {( ) | 0 ≤  ≤ 2 0 ≤  ≤ 2− }. Thus

  =



(4− 2− 2)


(−2)2 + (−2)2 + 1  = 3

 2

0

 2−
0


4− 22 − 2


 

= 3
 2

0


4 − 22 − 2

=2−
=0

 = 3
 2

0


4(2− )− 22(2− )− (2− )2




= 3
 2

0


3 − 42 + 4


 = 3


1
4
4 − 4

3
3 + 22

2
0

= 3

4− 32

3
+ 8


= 4

11. An equation of the plane through the points (1 0 0), (0−2 0), and (0 0 4) is 4− 2 +  = 4, so  is the region in the

plane  = 4− 4+ 2 over = {( ) | 0 ≤  ≤ 1 2− 2 ≤  ≤ 0}. Thus by Formula 4,

 =






(−4)2 + (2)2 + 1  =
√

21
 1

0

 0

2−2
  =

√
21
 1

0
[]

=0

=2−2


=
√

21
 1

0
(−22 + 2)  =

√
21
− 2

3
3 + 2

1
0

=
√

21
− 2

3
+ 1


=
√

21
3

12.  = 2
3
(32 + 32) and



  =






(
√
 )

2
+
√


2

+ 1  =
 1

0

 1

0

√
 +  + 1 

=
 1

0



2
3
(+  + 1)32

=1

=0
 =

 1

0

2
3


( + 2)32 − ( + 1)32




[continued]

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



686 ¤ CHAPTER 16 VECTOR CALCULUS

Substituting  =  + 2 in the first term and  =  + 1 in the second, we have

  = 2

3

 3

2
(− 2)32 − 2

3

 2

1
(− 1)32  = 2

3


2
7
72 − 4

5
52

3
2
− 2

3


2
7
72 − 2

5
52

2
1

= 2
3


2
7
(372 − 272)− 4

5
(352 − 252)− 2

7
(272 − 1) + 2

5
(252 − 1)


= 2

3


18
35

√
3 + 8

35

√
2− 4

35


= 4

105


9
√

3 + 4
√

2− 2


13. Using  and  as parameters, we have r( ) = (2 + 2) i +  j +  k, 2 + 2 ≤ 1. Then

r × r = (2 i + j)× (2 i + k) = i− 2 j− 2 k and |r × r| =


1 + 42 + 42 =


1 + 4(2 + 2). Thus

2  =


2+2≤1

2


1 + 4(2 + 2)  =
 2

0

 1

0
( sin )2

√
1 + 42   

=
 2

0
sin2  

 1

0
3
√

1 + 42 

let  = 1 + 42 ⇒ 2 = 1

4
(− 1) and   = 1

8



=


1
2
 − 1

4
sin 2

2
0

 5

1
1
4
(− 1)

√
 · 1

8
 =  · 1

32

 5

1
(32 − 12)  = 1

32



2
5
52 − 2

3
32

5
1

= 1
32



2
5
(5)52 − 2

3
(5)32 − 2

5
+ 2

3


= 1

32



20
3

√
5 + 4

15


= 1

120


25
√

5 + 1


14. Using  and  as parameters, we have r( ) =  i +
√
2 + 2 j +  k, 2 + 2 ≤ 25. Then

r × r =


i +

√
2 + 2

j


×


√
2 + 2

j + k


=

√
2 + 2

i − j +
√

2 + 2
k and

|r × r| =


2

2 + 2
+ 1 +

2

2 + 2
=


2 + 2

2 + 2
+ 1 =

√
2. Thus



22  =


2+2≤25

(2 + 2)2
√

2  =
√

2
 2

0

 5

0
2( sin )2   

=
√

2
 2

0
sin2  

 5

0
5  =

√
2


1
2
 − 1

4
sin 2

2
0


1
6
6
5
0

=
√

2 () · 1
6
(15,625− 0) =

15,625
√

2

6


15. Using  and  as parameters, we have r( ) =  i + (2 + 4) j +  k, 0 ≤  ≤ 1, 0 ≤  ≤ 1. Then

r × r = (i + 2 j)× (4 j + k) = 2 i− j + 4k and |r × r| =
√

42 + 1 + 16 =
√

42 + 17. Thus



 =

 1

0

 1

0

√

42 + 17   =
 1

0

√

42 + 17  =


1
8
· 2

3
(42 + 17)32

1
0

= 1
12

(2132 − 1732) = 1
12


21
√

21− 17
√

17


= 7
4

√
21− 17

12

√
17

16. The sphere intersects the cone in the circle 2 + 2 = 1
2
,  = 1√

2
, so  is the portion of the sphere where  ≥ 1√

2
.

Using spherical coordinates to parametrize the sphere we have r( ) = sin cos  i + sin sin  j + cosk, and

|r × r| = sin (as in Example 1). The portion where  ≥ 1√
2
corresponds to 0 ≤  ≤ 

4
, 0 ≤  ≤ 2 so



2  =

 2

0

 4
0

(sin sin )2(sin)  =
 2

0
sin2  

 4
0

sin3  =
 2

0
sin2  

 4
0

(1− cos2 ) sin

=


1
2
 − 1

4
sin 2

2
0


1
3

cos3 − cos
4
0

= 
√

2
12
−
√

2
2
− 1

3
+ 1


=


2
3
− 5

√
2

12
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SECTION 16.7 SURFACE INTEGRALS ¤ 687

17. Using spherical coordinates to parametrize the sphere we have r( ) = 2 sin cos  i + 2 sin sin  j + 2cosk and

|r × r| = 4 sin (see Example 16.6.10). Here  is the portion of the sphere corresponding to 0 ≤  ≤ 2, so

(2 + 2)  =



(2 + 2)  =

 2

0

 2
0

(4 sin2 )(2 cos)(4 sin) 

= 32
 2

0

 2
0

sin3  cos = 32 (2)


1
4

sin4 
2
0

= 16(1− 0) = 16

18.  is given by r( ) = cos  i +  j + sin  k, 0 ≤  ≤ 2, 0 ≤  ≤ . Then

r × r = j× (− sin  i + cos  k) = cos  i + sin  k and |r × r| =


cos2  + sin2  = 1, so


(+  + )  =
 
0

 2

0
(cos  + + sin )(1)  =

 
0


(cos  + sin ) + 1

2
2
=2

=0


=
 
0

(2 cos  + 2 sin  + 2)  = [2 sin  − 2 cos  + 2]


0
= 2 + 2 + 2 = 4 + 2

19. Here  consists of three surfaces: 1, the lateral surface of the cylinder; 2, the front formed by the plane +  = 5;

and the back, 3, in the plane  = 0.

On 1: the surface is given by r( ) =  i + 3 cos  j + 3 sin  k, 0 ≤  ≤ 2, and 0 ≤  ≤ 5−  ⇒

0 ≤  ≤ 5− 3 cos . Then r × r = −3 cos  j− 3 sin  k and |r × r| =


9 cos2  + 9 sin2  = 3, so
1

  =
 2

0

 5− 3 cos 

0
(3 sin )(3)  = 9

 2

0


1
2
2
=5−3 cos 

=0
sin  

= 9
2

 2

0
(5− 3 cos )2 sin   = 9

2


1
9
(5− 3 cos )3

2
0

= 0

On 2: r( ) = (5− ) i +  j +  k and |r × r| = |i + j| = √2, where 2 + 2 ≤ 9 and
2

  =


2 + 2≤ 9

(5− )
√

2  =
√

2
 2

0

 3

0
(5−  cos )( sin )   

=
√

2
 2

0

 3

0
(52 − 3 cos )(sin )   =

√
2
 2

0


5
3
3 − 1

4
4 cos 

=3

=0
sin  

=
√

2
 2

0


45− 81

4
cos 


sin   =

√
2


4
81

 · 1
2


45− 81

4
cos 

22
0

= 0

On 3:  = 0 so


3
  = 0. Hence



  = 0 + 0 + 0 = 0.

20. Let 1 be the lateral surface, 2 the top disk, and 3 the bottom disk.

On 1: r( ) = 3 cos  i + 3 sin  j +  k, 0 ≤  ≤ 2, 0 ≤  ≤ 2, |r × r| = 3,
1

(2 + 2 + 2)  =
 2

0

 2

0
(9 + 2) 3   = 2(54 + 8) = 124.

On 2: r( ) =  cos  i +  sin  j + 2k, 0 ≤  ≤ 3, 0 ≤  ≤ 2, |r × r| = ,
2

(2 + 2 + 2)  =
 2

0

 3

0
(2 + 4)    = 2


81
4

+ 18


= 153
2
.

On 3: r( ) =  cos  i +  sin  j, 0 ≤  ≤ 3, 0 ≤  ≤ 2, |r × r| = ,
3

(2 + 2 + 2)  =
 2

0

 3

0
(2 + 0)    = 2


81
4


= 81

2
.

Hence





2 + 2 + 2


 = 124 + 153

2
 + 81

2
 = 241.
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688 ¤ CHAPTER 16 VECTOR CALCULUS

21. From Exercise 5, r( ) = (+ ) i + (− ) j + (1 + 2+ )k, 0 ≤  ≤ 2, 0 ≤  ≤ 1, and r × r = 3 i + j− 2k.

Then

F(r( )) = (1 + 2+ )(+)(−) i− 3(1 + 2+ )(+)(−) j + (+ )(− )k

= (1 + 2+ )
2−2 i− 3(1 + 2+ )

2−2 j + (2 − 2)k

Because the -component of r × r is negative we use −(r × r) in Formula 9 for the upward orientation:


F · S =



F · (−(r × r))  =

 1

0

 2

0


−3(1 + 2+ )

2−2 + 3(1 + 2+ )
2−2 + 2(2 − 2)




=
 1

0

 2

0
2(2 − 2)  = 2

 1

0


1
3
3 − 2

=2

=0
 = 2

 1

0


8
3
− 22




= 2


8
3
 − 2

3
3
1
0

= 2


8
3
− 2

3


= 4

22. r( ) = h cos   sin  i, 0 ≤  ≤ 1, 0 ≤  ≤  and

r × r = hcos  sin  0i × h− sin   cos  1i = hsin − cos  i. Here F(r( )) =  i +  sin  j +  cos  k and,

by Formula 9, 

F · S =




F · (r × r)  =
 1

0

 
0

( sin  −  sin  cos  + 2 cos )  

=
 1

0


sin  −  cos  − 1

2
 sin2  + 2 sin 

=
=0

 =
 1

0
  = ]

1

0 = 

23. F(  ) =  i +  j + k,  = ( ) = 4− 2 − 2, and is the square [0 1]× [0 1], so by Equation 10

F · S =




[−(−2)− (−2) + ]  =
 1

0

 1

0
[22 + 22(4− 2 − 2) + (4− 2 − 2)]  

=
 1

0


22 + 8

3
3 − 2

3
23 − 2

5
5 + 4 − 3 − 1

3
3

=1

=0


=
 1

0


1
3
2 + 11

3
− 3 + 34

15


 =


1
9
3 + 11

6
2 − 1

4
4 + 34

15

1
0

= 713
180

24. F(  ) = − i−  j + 3 k,  = ( ) =

2 + 2, and is the annular region


( ) | 1 ≤ 2 + 2 ≤ 9


. Since 

has downward orientation, we have


F · S = −





−(−)




2 + 2


− (−)




2 + 2


+ 

3




= −





2 + 2
2 + 2

+


2 + 2

3
 = −

 2

0

 3

1


2


+ 

3


  

= −  2

0

 3

1
(2 + 4)  = −   2

0


1
3
3 + 1

5
5
3
1

= −2

9 + 243

5
− 1

3
− 1

5


= − 1712

15


25. F(  ) =  i +  j + 2 k, and using spherical coordinates,  is given by  = sin cos ,  = sin sin ,  = cos,

0 ≤  ≤ 2, 0 ≤  ≤ . F(r( )) = (sin cos ) i + (sin sin ) j + (cos2 )k and, from Example 4,

r × r = sin2  cos  i + sin2  sin  j + sin cosk. Thus

F(r( )) · (r × r) = sin3  cos2  + sin3  sin2  + sin cos3  = sin3 + sin cos3 
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SECTION 16.7 SURFACE INTEGRALS ¤ 689

and 

F · S =




[F(r( )) · (r × r)]  =
 2

0

 
0

(sin3 + sin cos3 ) 

=
 2

0

 
0

(1− cos2 + cos3 ) sin = (2)
− cos+ 1

3
cos3 − 1

4
cos4 


0

= 2

1− 1

3
− 1

4
+ 1− 1

3
+ 1

4


= 8

3


26. F(  ) =  i−  j + 2 k,  = ( ) =


4− 2 − 2 and is the disk

( )

2 + 2 ≤ 4

.  has downward

orientation, so by Equation 10,

F · S = − 


[− · 1

2
(4− 2 − 2)−12(−2)− (−) · 1

2
(4− 2 − 2)−12(−2) + 2] 

= −







4− 2 − 2
− 

4− 2 − 2
+ 2


4− 2 − 2




= − 


2


4− 2 − 2  = −2
 2

0

 2

0

√
4− 2    = −2

 2

0

 2

0

√

4− 2 

= −2(2)

− 1

2
· 2

3
(4− 2)32

2
0

= −4

0 + 1

3
(4)32


= −4 · 8

3
= −32

3


27. Let 1 be the paraboloid  = 2 + 2, 0 ≤  ≤ 1 and 2 the disk 2 + 2 ≤ 1,  = 1. Since  is a closed

surface, we use the outward orientation.

On 1: F(r( )) = (2 + 2) j−  k and r × r = 2 i− j + 2 k (since the j-component must be negative on 1). Then
1

F · S =


2 + 2≤ 1

[−(2 + 2)− 22]  = −  2

0

 1

0
(2 + 22 sin2 )   

= −  2

0

 1

0
3(1 + 2 sin2 )   = −  2

0
(1 + 1− cos 2) 

 1

0
3 

= − 2 − 1
2

sin 2
2
0


1
4
4
1
0

= −4 · 1
4

= −
On 2: F(r( )) = j−  k and r × r = j. Then


2

F · S =


2 + 2≤ 1

(1)  = .

Hence



F · S = − +  = 0.

28. F(  ) =  i +  j +  k,  = ( ) =  sin , and is the rectangle [0 2]× [0 ], so by Equation 10

F · S =




[−(sin )− ( cos ) + ]  =
 
0

 2

0
(− sin2  − 3 sin  cos  + ) 

=
 
0

− 1
2
2 sin2  − 1

4
4 sin  cos  + 1

2
2

=2

=0


=
 
0

−2 sin2  − 4 sin  cos  + 2

 [integrate by parts in the first term]

=
− 1

2
2 + 1

2
 sin 2 + 1

4
cos 2

− 2 sin2  + 2

0

= −1
2
2 + 1

4
+ 2 − 1

4
= 1

2
2

29. Here  consists of the six faces of the cube as labeled in the figure. On 1:

F = i + 2 j + 3 k, r × r = i and


1
F · S =

 1

−1

 1

−1
  = 4;

2: F =  i + 2 j + 3 k, r × r = j and


2
F · S =

 1

−1

 1

−1
2  = 8;

3: F =  i + 2 j + 3k, r × r = k and


3
F · S =

 1

−1

 1

−1
3 = 12;

4: F = −i + 2 j + 3 k, r × r = −i and


4
F · S = 4;

5: F =  i− 2 j + 3 k, r × r = −j and


5
F · S = 8;
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690 ¤ CHAPTER 16 VECTOR CALCULUS

6: F =  i + 2 j − 3k, r × r = −k and


6
F · S =

 1

−1

 1

−1
3  = 12.

Hence



F · S =

6
=1




F · S = 48.

30. Here  consists of three surfaces: 1, the lateral surface of the cylinder; 2, the front formed by the plane +  = 2; and the

back, 3, in the plane  = 0.

On 1: F(r( )) = sin  i +  j + 5k and r × r = sin  i + cos  k ⇒
1

F · S =
 2

0

 2− sin 

0
(sin2  + 5cos )  

=
 2

0
(2 sin2  + 10 cos  − sin3  − 5 sin  cos )  = 2

On 2: F(r( )) =  i + (2− ) j + 5k and r × r = i + j.
2

F · S =


2 + 2≤ 1

[+ (2− )]  = 2

On 3: F(r( )) =  i + 5k and r × r = −j so


3
F · S = 0. Hence



F · S = 4.

31. Here  consists of four surfaces: 1, the top surface (a portion of the circular cylinder 2 + 2 = 1); 2, the bottom surface

(a portion of the -plane); 3, the front half-disk in the plane  = 2, and 4, the back half-disk in the plane  = 0.

On 1: The surface is  =


1− 2 for 0 ≤  ≤ 2, −1 ≤  ≤ 1 with upward orientation, so
1

F · S =

 2

0

 1

−1


−2

(0)− 
2


− 

1− 2


+ 

2


  =

 2

0

 1

−1


3

1− 2
+ 1− 

2


 

=
 2

0


−


1− 2 + 1
3
(1− 2)32 +  − 1

3
3
=1

=−1
 =

 2

0
4
3
 = 8

3

On 2: The surface is  = 0 with downward orientation, so
2

F · S =
 2

0

 1

−1

−2

  =

 2

0

 1

−1
(0)   = 0

On 3: The surface is  = 2 for −1 ≤  ≤ 1, 0 ≤  ≤


1− 2, oriented in the positive -direction. Regarding  and  as

parameters, we have r × r = i and
3

F · S =
 1

−1

√1−2
0

2   =
 1

−1

√1−2
0

4   = 4 (3) = 2

On 4: The surface is  = 0 for −1 ≤  ≤ 1, 0 ≤  ≤


1− 2, oriented in the negative -direction. Regarding  and  as

parameters, we use − (r × r) = −i and
4

F · S =
 1

−1

√1−2
0

2   =
 1

−1

√1−2
0

(0)   = 0

Thus



F · S = 8

3
+ 0 + 2 + 0 = 2 + 8

3
.

32. Here  consists of four surfaces: 1, the triangular face with vertices (1 0 0), (0 1 0), and (0 0 1); 2, the face of the

tetrahedron in the -plane; 3, the face in the -plane; and 4, the face in the -plane.

On 1: The face is the portion of the plane  = 1− −  for 0 ≤  ≤ 1, 0 ≤  ≤ 1−  with upward orientation, so
1

F · S =
 1

0

 1−
0

[− (−1)− ( − ) (−1) + ]   =
 1

0

 1−
0

( + )   =
 1

0

 1−
0

(1− )  

=
 1

0


 − 1

2
2
=1−
=0

 = 1
2

 1

0


1− 2


 = 1

2


− 1

3
3
1
0

= 1
3
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SECTION 16.7 SURFACE INTEGRALS ¤ 691

On 2: The surface is  = 0 with downward orientation, so
2

F · S =
 1

0

 1−
0

(−)   = −  1

0
 (1− )  = −  1

2
2 − 1

3
3
1
0

= − 1
6

On 3: The surface is  = 0 for 0 ≤  ≤ 1, 0 ≤  ≤ 1− , oriented in the negative -direction. Regarding  and  as

parameters, we have r × r = −j and
3

F · S =
 1

0

 1−
0

− ( − )   = −  1

0

 1−
0

   = −  1

0


1
2
2
=1−
=0



= − 1
2

 1

0
(1− )

2
 = 1

6


(1− )

3
1
0

= −1
6

On 4: The surface is  = 0 for 0 ≤  ≤ 1, 0 ≤  ≤ 1− , oriented in the negative -direction. Regarding  and  as

parameters, we have r × r = i so we use − (r × r) = −i and
4

F · S =
 1

0

 1−
0

(−)   = −  1

0
 (1− )  = −  1

2
2 − 1

3
3
1
0

= − 1
6

Thus



F · S = 1

3
− 1

6
− 1

6
− 1

6
= −1

6
.

33.  =  ⇒  =  ,  =  , so by Formula 4, a CAS gives

(2 + 2 + 2)  =

 1

0

 1

0
(2 + 2 + 22)

√
2 + 22 + 1   ≈ 45822.

34.  = 22 ⇒  = 22,  = 22, so by Formula 4, a CAS gives

  =

 2

0

 1

0
(22)


(22)2 + (22)2 + 1  

=
 2

0

 1

0
33


424 + 442 + 1   = −151

33
− 1

220

√
3 + 1977

176
ln 7− 9891

880
ln 3 + 3

440

√
3 tan−1 5√

3

35. We use Formula 4 with  = 3− 22 − 2 ⇒  = −4,  = −2. The boundaries of the region

3− 22 − 2 ≥ 0 are −


3
2
≤  ≤


3
2
and −√3− 22 ≤  ≤ √3− 22, so we use a CAS (with precision reduced to

seven or fewer digits; otherwise the calculation may take a long time) to calculate



2

2

2
 =

 √32

−
√

32

 √3− 22

−
√

3− 22


2

2
(3− 2

2 − 
2
)
2


162 + 42 + 1   ≈ 34895

36. The flux of F across  is given by



F · S =



F · n . Now on ,  = ( ) = 2


1− 2, so  = 0 and

 = −2(1− 2)−12. Therefore, by (10),



F · S =

 2

−2

 1

−1


−2


−2(1− 2)−12


+

2


1− 2

2
5


  = 1

3
(16 + 8025 − 80−25)

2

1

0
10_1 2 0 _2

y
x

z
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692 ¤ CHAPTER 16 VECTOR CALCULUS

37. If  is given by  = ( ), then  is also the level surface (  ) =  − ( ) = 0.

n =
∇(  )

|∇(  )| =
− i + j−  k√

2
 + 1 + 2



, and −n is the unit normal that points to the left. Now we proceed as in the

derivation of (10), using Formula 4 to evaluate




F · S =




F · n =




( i + j +k)




i− j +




k





2

+ 1 +






2






2

+ 1 +






2



where is the projection of  onto the -plane. Therefore




F · S =









−+






.

38. If  is given by  = ( ), then  is also the level surface (  ) = − ( ) = 0.

n =
∇(  )

|∇(  )| =
i−  j−  k

1 + 2
 + 2



, and since the -component is positive this is the unit normal that points forward.

Now we proceed as in the derivation of (10), using Formula 4 for




F · S =




F · n  =




( i + j +k)

i− 


j− 


k

1 +






2

+






2


1 +






2

+






2



where is the projection of  onto the -plane. Therefore




F · S =





 −




−






.

39.  =



  =  · 4 1

2
2


= 22; by symmetry =  = 0, and

 =



  = 

 2

0

 2
0

( cos)(2 sin)  = 23
−1

4
cos 2

2
0

= 3.

Hence (  ) =

0 0 1

2


.

40.  is given by r( ) =  i +  j +

2 + 2 k, |r × r| =


1 +

2 + 2

2 + 2
=
√

2 so

=





10−


2 + 2


 =


1≤2 + 2≤ 16


10−


2 + 2

√
2 

=
 2

0

 4

1

√
2 (10− )    = 2

√
2

52 − 1

3
3
4
1

= 108
√

2

41. (a)  =



(2 + 2)(  ) 

(b)  =


(2 + 2)


10−


2 + 2


 =


1≤ 2 + 2≤ 16

(2 + 2)

10−


2 + 2

√
2 

=
 2

0

 4

1

√
2 (103 − 4)   = 2

√
2


4329
10


= 4329

5

√
2

42. Using spherical coordinates to parametrize the sphere we have r( ) = 5 sin cos  i + 5 sin sin  j + 5cosk, and

|r × r| = 25 sin (see Example 16.6.10).  is the portion of the sphere where  ≥ 4, so 0 ≤  ≤ tan−1(34) and

0 ≤  ≤ 2.
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SECTION 16.7 SURFACE INTEGRALS ¤ 693

(a) =



(  ) =

 2

0

 tan−1(34)
0

(25 sin)  = 25
 2

0

 tan−1(34)
0

sin

= 25(2)
− cos


tan−1 3

4


+ 1


= 50
− 4

5
+ 1


= 10.

Because  has constant density,  =  = 0 by symmetry, and

 = 1




(  ) = 1

10

 2

0

 tan−1(34)
0

(5 cos)(25 sin)  

= 1
10

(125)
 2

0

 tan−1(34)
0

sin cos = 1
10

(125) (2)


1
2

sin2 
tan−1(34)
0

= 25 · 1
2


3
5

2
= 9

2
,

so the center of mass is (  ) =

0 0 9

2




(b)  =



(2 + 2)(  ) =

 2

0

 tan−1(34)
0

(25 sin2 )(25 sin) 

= 625
 2

0

 tan−1(34)
0

sin3  = 625(2)


1
3

cos3 − cos
tan−1(34)
0

= 1250


1
3


4
5

3 − 4
5
− 1

3
+ 1


= 1250


14
375


= 140

3


43. The rate of flow through the cylinder is the flux



v · n  =



v · S. We use the parametric representation

r( ) = 2 cos i + 2 sin j +  k for , where 0 ≤  ≤ 2, 0 ≤  ≤ 1, so r = −2 sin i + 2cos j, r = k, and the

outward orientation is given by r × r = 2cos i + 2 sin j. Then

v · S = 

 2

0

 1

0


 i + 4 sin2  j + 4 cos2 k

 · (2 cos i + 2 sin j)  

= 
 2

0

 1

0


2 cos+ 8 sin3 


  = 

 2

0


cos+ 8 sin3 




= 

sin+ 8

−1
3


(2 + sin2 ) cos

2
0

= 0 kgs

44. A parametric representation for the hemisphere  is r( ) = 3 sin cos  i + 3 sin sin  j + 3cosk, 0 ≤  ≤ 2,

0 ≤  ≤ 2. Then r = 3 cos cos  i + 3cos sin  j− 3 sink, r = −3 sin sin  i + 3 sin cos  j, and the outward

orientation is given by r × r = 9 sin2  cos  i + 9 sin2  sin  j + 9 sin cosk. The rate of flow through  is

v · S = 

 2
0

 2

0
(3 sin sin  i + 3 sin cos  j) · 9 sin2  cos  i + 9 sin2  sin  j + 9 sin cosk


 

= 27
 2
0

 2

0


sin3  sin  cos  + sin3  sin  cos 


  = 54

 2
0

sin3 
 2

0
sin  cos  

= 54
−1

3
(2 + sin2 ) cos

2
0


1
2

sin2 
2
0

= 0 kgs

45.  consists of the hemisphere 1 given by  =

2 − 2 − 2 and the disk 2 given by 0 ≤ 2 + 2 ≤ 2,  = 0.

On 1: E =  sin cos  i +  sin sin  j + 2 cosk,

T ×T = 2 sin2  cos  i + 2 sin2  sin  j + 2 sin cosk. Thus
1

E · S =
 2

0

 2
0

(3 sin3 + 23 sin cos2 ) 

=
 2

0

 2
0

(3 sin+ 3 sin cos2 )  = (2)3

1 + 1

3


= 8

3
3

On 2: E =  i +  j, and r × r = −k so


2
E · S = 0. Hence the total charge is  = 0



E · S = 8

3
30.
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694 ¤ CHAPTER 16 VECTOR CALCULUS

46. Referring to the figure, on

1: E = i +  j +  k, r × r = i and


1
E · S =

 1

−1

 1

−1
  = 4;

2: E =  i + j +  k, r × r = j and


2
E · S =

 1

−1

 1

−1
 = 4;

3: E =  i +  j + k, r × r = k and


3
E · S =

 1

−1

 1

−1
  = 4;

4: E = −i +  j +  k, r × r = −i and


4
E · S = 4.

Similarly


5
E · S =


6

E · S = 4. Hence  = 0



E · S = 0

6
= 1




E · S = 240.

47. ∇ = 65(4 j + 4 k).  is given by r( ) =  i +
√

6 cos  j +
√

6 sin  k and since we want the inward heat flow, we

use r × r = −√6 cos  j −√6 sin  k. Then the rate of heat flow inward is given by


(−∇) · S =
 2

0

 4

0
−(65)(−24)  = (2)(156)(4) = 1248.

48. (  ) = 

2 + 2 + 2,

F = −∇ = −

− 

(2 + 2 + 2)32
i− 

(2 + 2 + 2)32
j− 

(2 + 2 + 2)32
k


=



(2 + 2 + 2)32
( i +  j +  k)

and the outward unit normal is n =
1


( i +  j +  k).

Thus F · n =


(2 + 2 + 2)32
(2 + 2 + 2), but on , 2 + 2 + 2 = 2 so F · n =



2
. Hence the rate of heat flow

across  is




F · S =


2




 =


2
(4

2
) = 4.

49. Let  be a sphere of radius  centered at the origin. Then |r| =  and F(r) = r |r|3 =

3


( i +  j +  k). A

parametric representation for  is r( ) =  sin cos  i +  sin sin  j +  cosk, 0 ≤  ≤ , 0 ≤  ≤ 2. Then

r =  cos cos  i +  cos sin  j−  sink, r = − sin sin  i +  sin cos  j, and the outward orientation is given

by r × r = 2 sin2  cos  i + 2 sin2  sin  j + 2 sin cosk. The flux of F across  is

F · S =

 
0

 2

0



3
( sin cos  i +  sin sin  j +  cosk)

· 2 sin2  cos  i + 2 sin2  sin  j + 2 sin cosk

 

=


3

 
0

 2

0
3

sin3 + sin cos2 


  = 

 
0

 2

0
sin  = 4

Thus the flux does not depend on the radius .
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SECTION 16.8 STOKES’ THEOREM ¤ 695

16.8 Stokes' Theorem

1. Both and  are oriented piecewise-smooth surfaces that are bounded by the simple, closed, smooth curve 2 + 2 = 4,

 = 0 (which we can take to be oriented positively for both surfaces). Then and  satisfy the hypotheses of Stokes’

Theorem, so by (3) we know



curlF · S =




F · r =



curlF · S (where  is the boundary curve).

2. The paraboloid  = 1− 2 − 2 intersects the -plane in the circle 2 + 2 = 1,  = 0. This boundary curve  should be

oriented in the counterclockwise direction when viewed from above, so a vector equation of  is r() = cos  i + sin  j,

0 ≤  ≤ 2. Then r0() = − sin  i + cos  j,

F(r()) = (cos )2(sin 0) i + (sin )2 j + (cos )(sin )k = sin2  j + sin  cos k,

and by Stokes’ Theorem,


curlF · S =



F · r =
 2

0
F(r()) · r0()  =

 2

0
(sin2  j + sin  cos k) · (− sin  i + cos  j) 

=
 2

0
(0 + sin2  cos + 0)  =


1
3

sin3 
2
0

= 0

3. The boundary curve  is the circle 2 + 2 = 16,  = 0 where the hemisphere intersects the -plane. The curve should be

oriented in the counterclockwise direction when viewed from the right (from the positive -axis), so a vector equation of  is

r() = 4 cos(−) i + 4 sin(−)k = 4cos  i− 4 sin k, 0 ≤  ≤ 2. Then r0() = −4 sin  i− 4 cos k and

F(r()) = (−4 sin )0 i + (4 cos )(cos 0) j + (4 cos )(−4 sin )(sin 0)k = −4 sin  i + 4 cos  j, and by Stokes’ Theorem,


curlF · S =



F · r =
 2

0
F(r()) · r0()  =

 2

0
(−4 sin  i + 4cos  j) · (−4 sin  i− 4 cos k) 

=
 2

0
(16 sin2 + 0 + 0)  = 16


1
2
− 1

4
sin 2

2
0

= 16

4. The boundary curve  is the circle 2 + 2 = 4,  = 2 which should be oriented in the counterclockwise direction when

viewed from the front, so a vector equation of  is r() = 2 i + 2 cos  j + 2 sin k, 0 ≤  ≤ 2. Then

F(r()) = tan−1(32 cos  sin2 ) i + 8cos  j + 16 sin2 k, r0() = −2 sin  j + 2 cos k, and

F(r()) · r0() = −16 sin  cos  + 32 sin2  cos . Thus


curlF · S =



F · r =
 2

0
F(r()) · r0()  =

 2

0
(−16 sin  cos + 32 sin2  cos ) 

=
−8 sin2  + 32

3
sin3 

2
0

= 0

5.  is the square in the plane  = −1. Rather than evaluating a line integral around  we can use Equation 3:
1

curlF · S =



F · r =


2
curlF · S where 1 is the original cube without the bottom and 2 is the bottom face

of the cube. curlF = 2 i + ( − 2) j + ( − )k. For 2, we choose n = k so that  has the same orientation for

both surfaces. Then curlF · n = −  = +  on 2, where  = −1. Thus


2
curlF · S =

 1

−1

 1

−1
(+ )   = 0

so


1
curlF · S = 0.
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696 ¤ CHAPTER 16 VECTOR CALCULUS

6. The boundary curve  is the circle 2 + 2 = 1,  = 0 which should be oriented in the counterclockwise direction when

viewed from the right, so a vector equation of  is r() = cos(−) i + sin(−)k = cos  i− sin k, 0 ≤  ≤ 2. Then

F(r()) = i + − cos  sin  j− cos2  sin k, r0() = − sin  i− cos k, and F(r()) · r0() = − sin  + cos3  sin . Thus


curlF · S =



F · r =
 2

0
F(r()) · r0()  =

 2

0
(− sin  + cos3  sin ) 

=

cos − 1

4
cos4 

2
0

= 0

7. curl F = −2 i− 2 j− 2 k and we take the surface  to be the planar region enclosed by , so  is the portion of the plane

+  +  = 1 over = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ 1− }. Since  is oriented counterclockwise, we orient  upward.

Using Equation 16.7.10, we have  = ( ) = 1− − ,  = −2, = −2,  = −2, and


F · r =



curlF · S =




[−(−2)(−1)− (−2)(−1) + (−2)] 

=
 1

0

 1−
0

(−2)   = −2
 1

0
(1− )  = −1

8. curlF = (− ) i −  j + k and  is the portion of the plane 3 + 2 +  = 1 over

 =

( ) | 0 ≤  ≤ 1

3
 0 ≤  ≤ 1

2
(1− 3)


. We orient  upward and use Equation 16.7.10 with

 = ( ) = 1− 3− 2:


F · r =



curlF · S =




[−(− )(−3)− (−)(−2) + 1]  =
 13

0

 (1−3)2

0
(1 + 3− 5)  

=
 13

0


(1 + 3) − 5

2
2
=(1−3)2

=0
 =

 13

0


1
2
(1 + 3)(1− 3)− 5

2
· 1

4
(1− 3)2




=
 13

0

− 81
8
2 + 15

4
− 1

8


 =

− 27
8
3 + 15

8
2 − 1

8

13
0

= − 1
8

+ 5
24
− 1

24
= 1

24

9. curlF = − i−  j− k and we take  to be the part of the paraboloid  = 1− 2 − 2 in the first octant. Since  is

oriented counterclockwise (from above), we orient  upward. Then using Equation 16.7.10 with  = ( ) = 1− 2 − 2

we have


F · r =



curlF · S =




[−(−)(−2)− (−)(−2) + (−)]  =




−2 − 2(1− 2 − 2)− 



=
 2
0

 1

0

−2( cos )( sin )− 2( sin )(1− 2)−  cos 

  

=
 2
0

 1

0

−23 sin  cos  − 2(2 − 4) sin  − 2 cos 

 

=
 2
0

−1
2
4 sin  cos  − 2


1
3
3 − 1

5
5

sin  − 1

3
3 cos 

=1

=0


=
 2
0

−1
2

sin  cos  − 4
15

sin  − 1
3

cos 

 =

− 1
4

sin2  + 4
15

cos  − 1
3

sin 
2
0

= −1
4
− 4

15
− 1

3
= − 17

20

10. The curve of intersection is an ellipse in the plane  =  + 2. curlF = (1− ) i− j + ( − 2)k and we take the surface 

to be the planar region enclosed by  with upward orientation. From Equation 16.7.10 with  = ( ) =  + 2 we have


F · r =



curlF · S =


2+2≤1

[−(1− ) (0)− (−1)(1) + ( + 2− 2)] 

=


2+2≤1

( + 1)  =
 2

0

 1

0
( sin  + 1)    =

 2

0


1
3
3 sin  + 1

2
2
=1

=0


=
 2

0


1
3

sin  + 1
2


 =

−1
3

cos  + 1
2

2
0

= 
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SECTION 16.8 STOKES’ THEOREM ¤ 697

11. (a) The curve of intersection is an ellipse in the plane  +  +  = 1 with unit normal n = 1√
3

(i + j + k),

curlF = 2 j + 2 k, and curlF · n = 1√
3
(2 + 2). Then


F · r =




1√
3


2 + 2


 =


2 + 2≤ 9


2 + 2


  =

 2

0

 3

0
3   = 2


81
4


= 81

2

(b) (c) One possible parametrization is  = 3 cos ,  = 3 sin ,

 = 1− 3 cos − 3 sin , 0 ≤  ≤ 2.

12. (a)  is the part of the surface  = 2 − 2 that lies above the unit disk. curlF =  i−  j + (2 − 2)k =  i−  j.

Using Equation 16.7.10 with ( ) = 2 − 2,  = , = −, we have


F · r =



curlF · S =




[−(−2)− (−)(2)]  = 2



(2 + 2) 

= 2
 2

0

 1

0
2   = 2(2)


1
4
4
1
0

= 

(b) (c) One possible set of parametric equations is  = cos ,

 = sin ,  = sin2 − cos2 , 0 ≤  ≤ 2.

13. The boundary curve  is the circle 2 + 2 = 16,  = 4 oriented in the clockwise direction as viewed from above (since  is

oriented downward). We can parametrize  by r() = 4 cos  i− 4 sin  j + 4k, 0 ≤  ≤ 2, and then

r0() = −4 sin  i− 4 cos  j. Thus F(r()) = 4 sin  i + 4cos  j− 2k, F(r()) · r0() = −16 sin2 − 16 cos2  = −16, and

F · r =

 2

0
F(r()) · r0()  =

 2

0
(−16)  = −16 (2) = −32

Now curl F = 2k, and the projection of  on the -plane is the disk 2 + 2 ≤ 16, so by Equation 16.7.10 with

 = ( ) =

2 + 2 [and multiplying by −1 for the downward orientation] we have


curlF · S = − 


(−0− 0 + 2)  = −2 ·() = −2 · (42 ) = −32

14. The paraboloid intersects the plane  = 1 when 1 = 5− 2 − 2 ⇔ 2 + 2 = 4, so the boundary curve  is the circle

2 + 2 = 4,  = 1 oriented in the counterclockwise direction as viewed from above. We can parametrize  by

r() = 2 cos  i + 2 sin  j + k, 0 ≤  ≤ 2, and then r0() = −2 sin  i + 2cos  j. Thus

F(r()) = −4 sin  i + 2 sin  j + 6cos k, F(r()) · r0() = 8 sin2 + 4 sin  cos , and

F · r =

 2

0
(8 sin2  + 4 sin  cos )  = 8


1
2
− 1

4
sin 2


+ 2 sin2 

2
0

= 8
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698 ¤ CHAPTER 16 VECTOR CALCULUS

Now curl F = (−3− 2) j + 2 k, and the projection of  on the -plane is the disk 2 + 2 ≤ 4, so by Equation 16.7.10

with  = ( ) = 5− 2 − 2 we have


curlF · S =



[−0− (−3− 2)(−2) + 2]  =




[−6 − 42 + 2(5− 2 − 2)] 

=
 2

0

 2

0

−6 sin  − 42 sin2  + 2(5− 2)

   =

 2

0

−23 sin  − 4 sin2  + 52 − 1
2
4
=2

=0


=
 2

0

−16 sin  − 16 sin2  + 20− 8

 = 16 cos  − 16


1
2
 − 1

4
sin 2


+ 12

2
0

= 8

15. The boundary curve  is the circle 2 + 2 = 1,  = 0 oriented in the counterclockwise direction as viewed from the positive

-axis. Then  can be described by r() = cos  i− sin k, 0 ≤  ≤ 2, and r0() = − sin  i− cos k. Thus

F(r()) = − sin  j + cos k, F(r()) · r0 () = − cos2 , and



F · r =
 2

0
(− cos2 )  = − 1

2
− 1

4
sin 2

2
0

= −.
Now curlF = −i − j − k, and  can be parametrized (see Example 16.6.10) by

r( ) = sin cos  i + sin sin  j + cosk, 0 ≤  ≤ , 0 ≤  ≤ . Then

r × r = sin2  cos  i + sin2  sin  j + sin cosk and


curlF · S =


2+2≤1

curlF · (r × r)  =
 
0

 
0

(− sin2  cos  − sin2  sin  − sin cos)  

=
 
0

(−2 sin2 −  sin cos)  =


1
2

sin 2− − 
2

sin2 

0

= −

16. Let  be the surface in the plane  +  +  = 1 with upward orientation enclosed by . Then an upward unit normal vector

for  is n = 1√
3

(i + j + k). Orient  in the counterclockwise direction, as viewed from above.


 − 2 + 3  is

equivalent to



F · r for F(  ) =  i− 2 j + 3 k, and the components of F are polynomials, which have continuous

partial derivatives throughout R3. We have curl F = 3 i + j− 2k, so by Stokes’ Theorem,

 − 2 + 3  =




F · r =



curlF · n  =




(3 i + j− 2k) · 1√
3

(i + j + k) 

= 2√
3



 = 2√

3
(surface area of )

Thus the value of


 − 2 + 3  is always 2√

3
times the area of the region enclosed by , regardless of its shape or

location. [Notice that because n is normal to a plane, it is constant. But curl F is also constant, so the dot product curlF · n is

constant and we could have simply argued that



curlF · n  is a constant multple of



, the surface area of .]

17. It is easier to use Stokes’ Theorem than to compute the work directly. Let  be the planar region enclosed by the path of the

particle, so  is the portion of the plane  = 1
2
 for 0 ≤  ≤ 1, 0 ≤  ≤ 2, with upward orientation.

curl F = 8 i + 2 j + 2 k and

F · r =




curlF · S =




−8 (0)− 2


1
2


+ 2


 =

 1

0

 2

0


2 − 1

2


 

=
 1

0

 2

0

3
2
   =

 1

0


3
4
2
=2

=0
 =

 1

0
3  = 3

18.


( + sin) + (2 + cos )  + 3  =




F · r, where F(  ) = ( + sin) i + (2 + cos ) j + 3 k ⇒

curlF = −2 i− 32 j− k. Since sin 2 = 2 sin  cos ,  lies on the surface  = 2. Let  be the part of this surface that

is bounded by . Then the projection of  onto the -plane is the unit disk [2 + 2 ≤ 1].  is traversed clockwise

(when viewed from above) so  is oriented downward. Using Equation 16.7.10 with ( ) = 2,
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SECTION 16.9 THE DIVERGENCE THEOREM ¤ 699

 = −2 = −2(2) = −4,  = −32,  = −1 and multiplying by −1 for the downward orientation, we have


F · r = − 


curlF · S = − 


−(−4)(2)− (−32)(2)− 1



= − 


(82 + 63 − 1)  = −  2

0

 1

0
(83 cos  sin2  + 63 cos3  − 1)   

= −  2

0


8
5

cos  sin2  + 6
5

cos3  − 1
2


 = −  8

15
sin3  + 6

5


sin  − 1

3
sin3 

− 1
2

2
0

= 

19. Assume  is centered at the origin with radius  and let1 and2 be the upper and lower hemispheres, respectively, of .

Then



curlF · S =


1

curlF · S +


2
curlF · S =


1

F · r +

2

F · r by Stokes’ Theorem. But 1 is the

circle 2 + 2 = 2 oriented in the counterclockwise direction while 2 is the same circle oriented in the clockwise direction.

Hence

2

F · r = −
1

F · r so 


curlF · S = 0 as desired.

20. (a) By Exercise 16.5.26, curl(∇) =  curl(∇) +∇ ×∇ = ∇ ×∇ since curl(∇) = 0. Hence by Stokes’

Theorem


(∇) · r =



(∇ ×∇) · S.

(b) As in (a), curl(∇) = ∇ ×∇ = 0, so by Stokes’ Theorem,


(∇) · r =




[curl(∇)] · S = 0.

(c) As in part (a),
curl(∇ + ∇) = curl(∇) + curl(∇) [by Exercise 16.5.24]

= (∇ ×∇) + (∇ ×∇) = 0 [since u× v = −(v× u)]

Hence by Stokes’ Theorem,


(∇ + ∇) · r =




curl(∇ + ∇) · S = 0.

16.9 The Divergence Theorem

1. divF = 3 + + 2 = 3 + 3, so


divF =
 1

0

 1

0

 1

0
(3+ 3)    = 9

2
(notice the triple integral is

three times the volume of the cube plus three times ).

To compute


F · S, on

1: n = i, F = 3 i +  j + 2 k, and


1
F · S =


1

3  = 3;

2: F = 3 i +  j + 2 k, n = j and


2
F · S =


2

 = 1
2
;

3: F = 3 i +  j + 2k, n = k and


3
F · S =


3

2 = 1;

4: F = 0,


4
F · S = 0; 5: F = 3 i + 2k, n = −j and


5

F · S =

5

0  = 0;

6: F = 3 i +  j, n = −k and


6
F · S =


6

0  = 0. Thus



F · S = 9

2
.

2. divF = 0 + 2 + 8 = 10 so, using cylindrical coordinates,


divF =



10  =

 2

0

 3

0

 9

2
(10)    

=
 2

0

 3

0


52

=9

=2
  =

 2

0

 3

0
(405 − 55)  

=
 2

0

 3

0
(405 − 55)  =



2
0


405
2
2 − 5

6
6
3
0

= 2


3645
2
− 1215

2


= 2430

[continued]
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700 ¤ CHAPTER 16 VECTOR CALCULUS

On 1: The surface is  = 2 + 2, 2 + 2 ≤ 9, with downward orientation, and F(  ) = 23 i + 2 j + 42 k.

Then 
1

F · S = − 


[−(23)(2)− (2)(2) + (42)] 

=





22(2 + 2)3 + 42(2 + 2)− 4(2 + 2)2




=
 2

0

 3

0
(23 cos  sin2  · 6 + 42 sin2  · 2 − 44)   

=
 2

0

 3

0
(210 sin2  cos  + 45 sin2  − 45)  

=
 2

0


2
11
11 sin2  cos  + 2

3
6 sin2  − 2

3
6
=3

=0


=
 2

0


354,294

11
sin2  cos  + 486 sin2  − 486




=


354,294
11

· 1
3

sin3  + 486


1
2
 − 1

4
sin 2

− 486
2
0

= 0 + 486( − 0)− 486(2) = −486

On 2: The surface is  = 9, 2 + 2 ≤ 9, with upward orientation, so F(  ) = 23 i + 2 j + 42 k and
2

F · S =



[−(23)(0)− (2)(0) + (42)]  =




4(9)2 

= 324() = 324 · (3)2 = 2916

Thus



F · S =


1

F · S +


2
F · S = −486 + 2916 = 2430.

3. divF = 0 + 1 + 0 = 1, so



divF =




1  =  () = 4
3
 · 43 = 256

3
.

 is a sphere of radius 4 centered at the origin which can be parametrized by r( ) = h4 sin cos  4 sin sin  4 cosi,
0 ≤  ≤ , 0 ≤  ≤ 2 (similar to Example 16.6.10). Then

r × r = h4 cos cos  4 cos sin −4 sini × h−4 sin sin  4 sin cos  0i
=

16 sin2  cos  16 sin2  sin  16 cos sin


and F(r( )) = h4 cos 4 sin sin  4 sin cos i. Thus

F · (r × r) = 64 cos sin2  cos  + 64 sin3  sin2  + 64 cos sin2  cos  = 128 cos sin2  cos  + 64 sin3  sin2 

and 

F · S =




F · (r × r)  =
 2

0

 
0

(128 cos sin2  cos  + 64 sin3  sin2 ) 

=
 2

0


128
3

sin3  cos  + 64


1
3

cos3 − cos

sin2 

=

=0


=
 2

0
256
3

sin2   = 256
3


1
2
 − 1

4
sin 2

2
0

= 256
3


4. divF = 2− 1 + 1 = 2, so


divF =


2+2≤9

 2

0

2


 =


2+2≤9

4  = 4(area of circle) = 4( · 32
) = 36

Let 1 be the front of the cylinder (in the plane  = 2), 2 the back (in the -plane), and 3 the lateral surface of the cylinder.

1 is the disk  = 2, 2 + 2 ≤ 9. A unit normal vector is n = h1 0 0i and F = h4− i on 1, so
1

F · S =


1
F · n =


1

4  = 4(surface area of 1) = 4( · 32) = 36. 2 is the disk  = 0, 2 + 2 ≤ 9.
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SECTION 16.9 THE DIVERGENCE THEOREM ¤ 701

Here n = h−1 0 0i and F = h0− i, so 
2

F · S =


2
F · n  =


2

0  = 0.

3 can be parametrized by r( ) = h 3 cos  3 sin i, 0 ≤  ≤ 2, 0 ≤  ≤ 2. Then

r × r = h1 0 0i × h0−3 sin  3 cos i = h0−3 cos −3 sin i. For the outward (positive) orientation we use

−(r × r) and F(r( )) =

2−3 cos  3 sin 


, so

3
F · S =




F · (−(r × r))  =
 2

0

 2

0
(0− 9 cos2  + 9 sin2 )  

= −9
 2

0

 2

0
cos 2  = −9 (2)


1
2

sin 2
2
0

= 0

Thus



F · S = 36 + 0 + 0 = 36.

5. divF = 


() + 


(23) + 


(−) =  + 23 −  = 23, so by the Divergence Theorem,

F · S =




divF  =
 3

0

 2

0

 1

0
23    = 2

 3

0


 2

0
 

 1

0
3 

= 2


1
2
2
3
0


1
2
2
2
0


1
4
4
1
0

= 2


9
2


(2)


1
4


= 9

2

6. divF = 


(2) + 


(2) + 


(2) = 2 + 2 + 2 = 6, so by the Divergence Theorem,

F · S =




divF  =
 
0

 
0

 
0

6    = 6
 
0


 
0
 

 
0
 

= 6


1
2
2

0


1
2
2

0


1
2
2

0

= 6


1
2
2
 

1
2
2
 

1
2
2


= 3
4
222

7. divF = 32 + 0 + 32, so using cylindrical coordinates with  =  cos ,  =  sin ,  =  we have

F · S =



(32 + 32)  =

 2

0

 1

0

 2

−1
(32 cos2  + 32 sin2 )   

= 3
 2

0

 1

0
3 

 2

−1
 = 3



2
0


1
4
4
1
0



2
−1

= 3(2)


1
4


(3) = 9

2

8. divF = 32 + 32 + 32, so by the Divergence Theorem,

F · S =




3(2 + 2 + 2)  =
 
0

 2

0

 2

0
32 · 2 sin  = 3

 
0

sin
 2

0

 2

0
4 

= 3 [− cos]


0



2
0


1
5
5
2
0

= 3 (2) (2)


32
5


= 384

5


9. divF =  + (−) + 0 = 0, so by the Divergence Theorem,



F · S =




0  = 0.

10. The tetrahedron has vertices (0 0 0), ( 0 0), (0  0), (0 0 ) and is described by

 =

(  ) | 0 ≤  ≤ , 0 ≤  ≤ 


1− 




, 0 ≤  ≤ 


1− 


− 




. Here we have divF = 0 + 1 +  = + 1, so



F · S =



(+ 1)  =

 
0

 (1−
 )

0

 (1−

− 
 )

0 (+ 1)   

=
 
0

 (1−
 )

0 (+ 1)



1− 


− 




  = 

 
0

(+ 1)


1− 



 − 1

2
2
=(1−

 )
=0



= 
 
0

(+ 1)


1− 


 ·  1− 


− 1
2
· 2 1− 



2
 = 1

2

 
0

(+ 1)

1− 



2


= 1
2

 
0


1

2
3 + 1

2
2 − 2


2 + − 2


+ 1




= 1
2



1
42

4 + 1
32

3 − 2
3
3 + 1

2
2 − 1


2 + 


0

= 1
2



1
4
2 + 1

3
− 2

3
2 + 1

2
2 − + 


= 1

2



1
12
2 + 1

3



= 1
24
(+ 4)
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702 ¤ CHAPTER 16 VECTOR CALCULUS

11. div F = 62 + 32 + 32 = 62 + 62 so

F · S =




6(2 + 2)  =
 2

0

 1

0

 1−2
0

62 ·     =
 2

0

 1

0
63(1− 2)  

=
 2

0

 1

0
(63 − 65)  =



2
0


3
2
4 − 6

1
0

= 2


3
2
− 1


= 

12. For 2 + 2 ≤ 4 the plane  =  − 2 is below the -plane, so the solid  bounded by  is

 =

(  ) | 2 + 2 ≤ 4  − 2 ≤  ≤ 0


. Here div F =  + 2 + 2 − 2 = 3 so


F · S =




3  =
 2

0

 2

0

 0

 sin −2
(3 sin )    

=
 2

0

 2

0
(32 sin )(0−  sin  + 2)   =

 2

0

 2

0

−33 sin2  + 62 sin 

 

=
 2

0

−3
4
4 sin2  + 23 sin 

=2

=0
 =

 2

0

−12 sin2  + 16 sin 



=
−12


1
2
 − 1

4
sin 2

− 16 cos 
2
0

= −12 − 16 + 16 = −12

13. F(  ) = 

2 + 2 + 2 i + 


2 + 2 + 2 j + 


2 + 2 + 2 k, so

divF =  · 1
2
(2 + 2 + 2)−12(2) + (2 + 2 + 2)12 +  · 1

2
(2 + 2 + 2)−12(2) + (2 + 2 + 2)12

+  · 1
2
(2 + 2 + 2)−12(2) + (2 + 2 + 2)12

= (2 + 2 + 2)−12

2 + (2 + 2 + 2) + 2 + (2 + 2 + 2) + 2 + (2 + 2 + 2)


=

4(2 + 2 + 2)
2 + 2 + 2

= 4

2 + 2 + 2.

Then




F · S =




4

2 + 2 + 2  =

 2

0

 2

0

 1

0

4

2 · 2

sin  

=
 2
0

sin
 2

0

 1

0
43  = [− cos]

2

0 []
2

0


4
1
0

= (1) (2) (1) = 2

14. F(  ) = (2 + 2 + 2) i + (2 + 2 + 2) j + (2 + 2 + 2)k, so

divF =  · 2+ (2 + 2 + 2) +  · 2 + (2 + 2 + 2) +  · 2 + (2 + 2 + 2) = 5(2 + 2 + 2). Then


F · S =




5(
2
+ 

2
+ 

2
)  =

 

0

 2

0

 

0

5
2 · 2

sin  

= 5
 
0

sin
 2

0

 
0
4  = 5 [− cos]



0 []
2

0


1
5
5

0

= 5 (2) (2)


1
5
5


= 45

15.



F · S =




√
3− 2  =

 1

−1

 1

−1

 2−4− 4

0

√
3− 2    = 341

60

√
2 + 81

20
sin−1

√
3

3


16.

By the Divergence Theorem, the flux of F across the surface of the cube is

F · S =

 2
0

 2
0

 2
0


cos cos2  + 3 sin2  cos  cos4  + 5 sin4  cos  cos6 


   = 19

64
2.
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SECTION 16.9 THE DIVERGENCE THEOREM ¤ 703

17. For 1 we have n = −k, so F · n = F · (−k) = −2 − 2 = −2 (since  = 0 on 1). So if is the unit disk, we get
1

F · S =


1
F · n  =




(−2)  = −  2

0

 1

0
2 (sin2 )    = −1

4
. Now since 2 is closed, we can use

the Divergence Theorem. Since divF = 


(2) + 



1
3
3 + tan 


+ 


(2 + 2) = 2 + 2 + 2, we use spherical

coordinates to get


2
F · S =




divF  =
 2

0

 2
0

 1

0
2 · 2 sin  = 2

5
. Finally


F · S =


2

F · S− 
1

F · S = 2
5
 − − 1

4



= 13
20
.

18. As in the hint to Exercise 17, we create a closed surface 2 =  ∪ 1, where  is the part of the paraboloid 2 + 2 +  = 2

that lies above the plane  = 1, and 1 is the disk 2 + 2 = 1 on the plane  = 1 oriented downward, and we then apply the

Divergence Theorem. Since the disk 1 is oriented downward, its unit normal vector is n = −k and F · (−k) = − = −1 on

1. So


1
F · S =


1

F · n  =


1
(−1)  = −(1) = −. Let  be the region bounded by 2. Then

2
F · S =




divF  =



1  =

 1

0

 2

0

 2−2
1

    =
 1

0

 2

0
( − 3)   = (2) 1

4
= 

2
. Thus the

flux of F across  is



F · S =


2

F · S− 
1

F · S = 
2
− (−) = 3

2
.

19. The vectors that end near 1 are longer than the vectors that start near 1, so the net flow is inward near 1 and divF(1) is

negative. The vectors that end near 2 are shorter than the vectors that start near 2, so the net flow is outward near 2 and

divF(2) is positive.

20. (a) The vectors that end near 1 are shorter than the vectors that start near 1, so the net flow is outward and 1 is a source.

The vectors that end near 2 are longer than the vectors that start near 2, so the net flow is inward and 2 is a sink.

(b) F( ) =

 2

 ⇒ divF = ∇ · F = 1 + 2. The -value at 1 is positive, so divF = 1 + 2 is positive, thus 1

is a source. At 2,   −1, so divF = 1 + 2 is negative, and 2 is a sink.

21. From the graph it appears that for points above the -axis, vectors starting near a

particular point are longer than vectors ending there, so divergence is positive.

The opposite is true at points below the -axis, where divergence is negative.

F ( ) =

  + 2

 ⇒ divF = 


() + 



+ 2


=  + 2 = 3.

Thus divF  0 for   0, and divF  0 for   0.

22. From the graph it appears that for points above the line  = −, vectors starting
near a particular point are longer than vectors ending there, so divergence is

positive. The opposite is true at points below the line  = −, where divergence
is negative.

F ( ) =

2 2

 ⇒ divF = 


(2) + 


(2) = 2+ 2. Then

div F  0 for 2+ 2  0 ⇒   −, and divF  0 for   −.
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704 ¤ CHAPTER 16 VECTOR CALCULUS

23. Since
x

|x|3 =
 i +  j +  k

(2 + 2 + 2)32
and








(2 + 2 + 2)32


=

(2 + 2 + 2)− 32

(2 + 2 + 2)52
with similar expressions

for







(2 + 2 + 2)32


and








(2 + 2 + 2)32


, we have

div


x

|x|3


=
3(2 + 2 + 2)− 3(2 + 2 + 2)

(2 + 2 + 2)
52

= 0, except at (0 0 0) where it is undefined.

24. We first need to find F so that



F · n  =



(2+ 2 + 2) , so F · n = 2+ 2 + 2. But for ,

n =
 i +  j +  k
2 + 2 + 2

=  i +  j +  k. Thus F = 2 i + 2 j +  k and divF = 1.

If  =

(  ) | 2 + 2 + 2 ≤ 1


, then



(2+ 2 + 2)  =



 =  () = 4

3
(1)3 = 4

3
.

25.



a · n  =




div a  = 0 since div a = 0.

26. 1
3



F · S = 1

3




divF  = 1
3



3  =  ()

27.



curlF · S =




div(curlF)  = 0 by Theorem 16.5.11.

28.



n   =



(∇ · n)  =




div(∇)  =



∇2 

29.



(∇) · n  =




div(∇)  =



(∇2 +∇ ·∇)  by Exercise 16.5.25.

30.



(∇ − ∇) · n  =





(∇2 +∇ ·∇)− (∇2 +∇ ·∇)


 [by Exercise 29].

But∇ ·∇ = ∇ ·∇, so that 

(∇ − ∇) · n  =



(∇2 − ∇2)  .

31. If c = 1 i + 2 j + 3 k is an arbitrary constant vector, we define F = c = 1 i + 2 j + 3 k. Then

divF = div c =



1 +




2 +




3 = ∇ · c and the Divergence Theorem says



F · S =




divF  ⇒



F · n  =



∇ · c  . In particular, if c = i then



 i · n  =



∇ · i  ⇒



1  =







 (where n = 1 i + 2 j + 3 k). Similarly, if c = j we have




2  =







 ,

and c = k gives




3  =







 . Then



n  =



1 


i +



2 


j +



3 


k

=










i +










j +










k =








i +




j +




k




=



∇  as desired.
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CHAPTER 16 REVIEW ¤ 705

32. By Exercise 31,



n  =



∇  , so

F = − 

n  = −


∇  = −


∇()  = −


( k)  = −




k = − ()k.

But the weight of the displaced liquid is volume× density×  =  (), thus F = −k as desired.

16 Review

1. False; divF is a scalar field.

2. True. (See Definition 16.5.1.)

3. True, by Theorem 16.5.3 and the fact that div 0 = 0.

4. True, by Theorem 16.3.2.

5. False. See Exercise 16.3.35. (But the assertion is true if is simply-connected; see Theorem 16.3.6.)

6. False. See the discussion accompanying Figure 8 on page 1120 [ET 1080].

7. False. For example, div( i) = 0 = div( j) but  i 6=  j.

8. True. Line integrals of conservative vector fields are independent of path, and by Theorem 16.3.3, work =



F · r = 0 for

any closed path .

9. True. See Exercise 16.5.24.

10. False. F ·G is a scalar field, so curl(F ·G) has no meaning.

11. True. Apply the Divergence Theorem and use the fact that divF = 0.

12. False by Theorem 16.5.11, because if it were true, then div curlF = 3 6= 0.

13. False. By Equations 16.4.5, the area is given by −

  or



.

1. (a) Vectors starting on  point in roughly the direction opposite to , so the tangential component F ·T is negative.

Thus



F · r =



F ·T is negative.

(b) The vectors that end near  are shorter than the vectors that start near  , so the net flow is outward near  and

divF( ) is positive.

2. We can parametrize  by  = ,  = 2, 0 ≤  ≤ 1 so

 =

 1

0



1 + (2)2  = 1
12

(1 + 42)32
1
0

= 1
12


5
√

5− 1

.

3.


 cos =

 
0

(3 cos ) (3 sin ) cos 


(1)2 + (−3 sin )2 + (3 cos )2  =
 
0

(9 cos2  sin )
√

10 

= 9
√

10
− 1

3
cos3 


0

= −3
√

10 (−2) = 6
√

10

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



706 ¤ CHAPTER 16 VECTOR CALCULUS

4.  = 3cos  ⇒  = −3 sin  ,  = 2 sin  ⇒  = 2cos  , 0 ≤  ≤ 2, so

  +


+ 2


 =

 2

0


(2 sin )(−3 sin ) + (3 cos + 4 sin2 )(2 cos )




=
 2

0
(−6 sin2 + 6cos2 + 8 sin2  cos )  =

 2

0


6(cos2 − sin2 ) + 8 sin2  cos 




=
 2

0
(6 cos 2+ 8 sin2  cos )  = 3 sin 2 + 8

3
sin3 

2
0

= 0

Or: Notice that 


() = 1 = 



 + 2


, so F ( ) =


 + 2


is a conservative vector field. Since  is a closed

curve,



F · r =


 + (+ 2)  = 0.

5.


3  + 2  =

 1

−1


3(−2) + (1− 2)2


 =

 1

−1
(−4 − 22 + 1) 

=
−1

5
5 − 2

3
3 + 

1
−1

= − 1
5
− 2

3
+ 1− 1

5
− 2

3
+ 1 = 4

15

6.




 +   +   =

 1

0

√
4 · 2 · 43 + 

2 · 2 + 4 · 3 · 32

 =

 1

0
(46 + 2

2

+ 39) 

=


4
7
7 + 

2

+ 3
10
10
1
0

= − 9
70

7. :  = 1 + 2 ⇒  = 2 ,  = 4 ⇒  = 4 ,  = −1 + 3 ⇒  = 3 , 0 ≤  ≤ 1.



 + 2  +   =

 1

0
[(1 + 2)(4)(2) + (4)2(4) + (4)(−1 + 3)(3)] 

=
 1

0
(1162 − 4)  =


116
3
3 − 22

1
0

= 116
3
− 2 = 110

3

8. F(r()) = (sin )(1 + ) i + (sin2 ) j, r0() = cos  i + j and


F · r =
 
0

((1 + ) sin  cos + sin2 )  =
 
0


1
2
(1 + ) sin 2 + sin2 




=


1
2


(1 + )

− 1
2

cos 2


+ 1
4

sin 2


+ 1
2
− 1

4
sin 2


0

= 
4

9. F(r()) = − i + 2(−) j + (2 + 3)k, r0() = 2 i + 32 j− k and


F · r =
 1

0
(2− − 35 − (2 + 3))  =

−2− − 2− − 1
2
6 − 1

3
3 − 1

4
4
1
0

= 11
12
− 4


.

10. (a) :  = 3− 3,  = 
2
,  = 3, 0 ≤  ≤ 1. Then

 =



F · r =
 1

0


3 i + (3− 3) j + 

2
k
 · −3 i + 

2
j + 3k


 =

 1

0

−9 + 3
2


 = 1

2
(3 − 9).

(b)  =



F · r =
 2
0

(3 sin  i + 3cos  j + k) · (−3 sin  i + j + 3cos k) 

=
 2
0

(−9 sin2 + 3cos  + 3 cos )  =
−9


1
2
− 1

4
sin 2


+ 3 sin  + 3( sin  + cos )

2
0

= − 9
4

+ 3 + 3
2
− 3 = −3

4

11. 


[(1 + )] = 2 + 2 = 



 + 2


and the domain of F is R2, so F is conservative. Thus there

exists a function  such that F = ∇ . Then ( ) =  + 2 implies ( ) =  +  + () and then
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CHAPTER 16 REVIEW ¤ 707

( ) =  +  + 0() = (1 + ) + 0(). But ( ) = (1 + ) , so 0() = 0 ⇒ () = .

Thus ( ) =  +  + is a potential function for F.

12. F is defined on all of R3, its components have continuous partial derivatives, and

curl F = (0− 0) i− (0− 0) j + (cos  − cos )k = 0, so F is conservative by Theorem 16.5.4. Thus there exists a function

 such that ∇ = F. Then (  ) = sin  implies (  ) =  sin  + ( ) and then

(  ) =  cos  + ( ). But (  ) =  cos , so ( ) = 0 ⇒  ( ) = (). Then

(  ) =  sin  + () implies (  ) = 0(). But (  ) = − sin , so () = cos  +. Thus a potential

function for F is (  ) =  sin  + cos  +.

13. Since 


(432 − 23) = 83 − 62 = 


(24 − 322 + 43) and the domain of F is R2, F is conservative.

Furthermore ( ) = 42 − 23 + 4 is a potential function for F.  = 0 corresponds to the point (0 1) and  = 1

corresponds to (1 1), so



F · r = (1 1)− (0 1) = 1− 1 = 0.

14. Here curl F = 0, the domain of F is R3, and the components of F have continuous partial derivatives, so F is conservative.

Furthermore (  ) =  +  is a potential function for F. Then



F · r = (4 0 3)− (0 2 0) = 4− 2 = 2.

15. 1: r() =  i + 2 j, −1 ≤  ≤ 1;

2: r() = − i + j, −1 ≤  ≤ 1.

Then 

2 − 2  =

 1

−1
(5 − 25)  +

 1

−1
 

=
− 1

6
6
1
−1

+


1
2
2
1
−1

= 0

Using Green’s Theorem, we have



2
− 

2
  =








(−2

)− 


(

2
)


 =




(−2 − 2)  =

 1

−1

 1

2
−4  

=
 1

−1

−22
=1

=2
 =

 1

−1
(25 − 2)  =


1
3
6 − 2

1
−1

= 0

16.



√
1 + 3  + 2  =








(2)− 


√
1 + 3


 =

 1

0

 3

0
(2 − 0)   =

 1

0
92  = 33

1
0

= 3

17.


2 − 2  =


2 + 2≤ 4





(−2)− 


(2)

 =


2 + 2≤ 4

(−2 − 2)  = −  2

0

 2

0
3   = −8

18. curlF = (0− − cos ) i− (− cos− 0) j + (0− − cos )k = −− cos  i− − cos j− − cos  k,

divF = −− sin  − − sin  − − sin

19. If we assume there is such a vector field G, then div(curlG) = 2 + 3 − 2. But div(curlF) = 0 for all vector fields F.

Thus such aG cannot exist.
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708 ¤ CHAPTER 16 VECTOR CALCULUS

20. Let F = 1 i +1 j +1 k andG = 2 i +2 j +2 k be vector fields whose first partials exist and are continuous. Then

FdivG−GdivF =


1


2


+

2


+

2




i +1


2


+

2


+

2




j +1


2


+

2


+

2




k


−

2


1


+

1


+

1




i +2


1


+

1


+

1




j

+2


1


+




+

1




k


and

(G ·∇)F− (F ·∇)G =


2

1


+2

1


+2

1




i +


2

1


+2

1


+2

1




j

+


2

1


+2

1


+2

1




k


−


1
2


+1

2


+1

2




i +


1

2


+1

2


+1

2




j

+


1

2


+1

2


+1

2




k


Hence

FdivG−GdivF + (G ·∇)F− (F ·∇)G

=


1

2


+2

1




−

2

1


+1

2




−

2

1


+1

2




+


1

2


+2

1




i

+


1

2


+2

1




−

2

1


+1

2




−

1

2


+2

1




+


2

1


+1

2




j

+


2

1


+1

2




−

1

2


+2

1




−

1

2


+2

1




+


2

1


+1

2




k

=





(12 − 21)− 


(21 − 12)


i

+





(12 −21)− 


(12 − 21)


j

+





(21 − 12)− 


(12 −21)


k

= curl (F×G)

21. For any piecewise-smooth simple closed plane curve  bounding a region , we can apply Green’s Theorem to

F( ) = () i + () j to get


() + ()  =








()− 


()

 =




0  = 0.
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CHAPTER 16 REVIEW ¤ 709

22. ∇2() =
2()

2
+

2()

2
+

2()

2

=








 + 






+









 + 






+









 + 






[Product Rule]

=
2

2
 + 2








+ 

2

2
+

2

2
 + 2









+ 
2

2
+

2

2
 + 2








+ 

2

2
[Product Rule]

= 


2

2
+

2

2
+

2

2


+ 


2

2
+

2

2
+

2

2


+ 2















·














= ∇2 + ∇2 + 2∇ ·∇

Another method: Using the rules in Exercises 14.6.37(b) and 16.5.25, we have

∇2() = ∇ ·∇() = ∇ · (∇ +  ∇) = ∇ ·∇ + ∇ ·∇ +∇ ·∇ + ∇ ·∇
= ∇2 +  ∇2 + 2∇ ·∇

23. ∇2 = 0 means that
2

2
+

2

2
= 0. Now if F =  i−  j and  is any closed path in, then applying Green’s

Theorem, we get 


F · r =


 −   =








(−)− 


()



= − 


( + )  = − 


0  = 0

Therefore the line integral is independent of path, by Theorem 16.3.3.

24. (a) 2 + 2 = cos2 + sin2  = 1, so  lies on the circular cylinder 2 + 2 = 1.

But also  = , so  lies on the plane  = . Thus  is contained in the

intersection of the plane  =  and the cylinder 2 + 2 = 1; with 0 ≤  ≤ 2 we

get the entire intersection (an ellipse).

(b) Apply Stokes’ Theorem,



F · r =



curlF · S:

curlF =


i j k

  

22 222 + 2 cot  −2 csc2 

 =
−2 csc2  − (−2 csc2 ) 0 42 − 42


= 0

Therefore



F · r =



0 · S = 0.

25.  =  ( ) = 2 + 2 with 0 ≤  ≤ 1, 0 ≤  ≤ 2. Thus

() =




√
1 + 42 + 4  =

 1

0

 2

0

√
5 + 42   =

 1

0
2
√

5 + 42  = 1
6
(5 + 42)32

1
0

= 1
6


27− 5

√
5

.
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710 ¤ CHAPTER 16 VECTOR CALCULUS

26. (a) r = − j + 2k, r = 2 i−  j and

r × r = 22 i + 4 j + 22 k. Since the point (4−2 1)

corresponds to  = 1,  = 2 (or  = −1,  = −2 but r × r

is the same for both), a normal vector to the surface at (4−2 1)

is 2 i + 8 j + 8k and an equation of the tangent plane is

2+ 8 + 8 = 0 or + 4 + 4 = 0.

(b)

(c) By Definition 16.6.6, the area of  is given by

() =



| r × r |  =

 3

0

 3

−3


(22)2 + (4)2 + (22)2   = 2

 3

0

 3

−3

√
4 + 422 + 4  .

(d) By Equation 16.7.9, the surface integral is


F · S =




F · ( r × r )  =

 3

0

 3

−3


(2)2

1 + (2)2


(2)2

1 + (−)2 
(−)2

1 + (2)2


· 22

 4 2
2

 

=

 3

0

 3

−3


26

1 + 4
+

45

1 + 22
+

224

1 + 4


  ≈ 15240190

27.  = ( ) = 2 + 2 with 0 ≤ 2 + 2 ≤ 4 so r × r = −2 i− 2 j + k. Then

  =


2 + 2≤ 4

(2 + 2)


42 + 42 + 1 

=
 2

0

 2

0
3
√

1 + 42   = 1
60


391

√
17 + 1


(Substitute  = 1 + 42 and use tables.)

28.  = ( ) = 4 + +  with 0 ≤ 2 + 2 ≤ 4 so r × r = −i− j + k. Then

(2 + 2)  =


2 + 2≤ 4

(2 + 2)(4 + + )
√

3 

=
 2

0

 2

0

√
3 3(4 +  cos  +  sin )   =

 2

0
8
√

3 3  = 32
√

3

29. Since the sphere bounds a simple solid region, the Divergence Theorem applies and

F · S =




divF  =



( − 2)  =



  − 2





= 0


odd function in 
and is symmetric


− 2 ·  () = −2 · 4

3
(2)3 = −64

3


Alternate solution: F(r( )) = 4 sin cos  cos i − 4 sin sin  j + 6 sin cos  k,

r × r = 4 sin2  cos  i + 4 sin2  sin  j + 4 sin cosk, and

F · (r × r) = 16 sin3  cos2  cos− 16 sin3  sin2  + 24 sin2  cos cos . Then

F · S =

 2

0

 
0

(16 sin3  cos cos2  − 16 sin3  sin2  + 24 sin2  cos cos ) 

=
 2

0
4
3
(−16 sin2 )  = − 64

3
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CHAPTER 16 REVIEW ¤ 711

30.  = ( ) = 2 + 2, r × r = −2 i − 2 j + k (because of upward orientation) and

F(r( )) · (r × r) = −23 − 22 + 2 + 2. Then

F · S =


2 + 2≤ 1

(−23 − 22 + 2 + 2) 

=
 1

0

 2

0
(−23 cos3  − 23 cos  sin2  + 2)    =

 1

0
3(2)  = 

2

31. Since curlF = 0,



(curlF) · S = 0. We parametrize : r() = cos  i + sin  j, 0 ≤  ≤ 2 and


F · r =

 2

0
(− cos2  sin + sin2  cos )  = 1

3
cos3 + 1

3
sin3 

2
0

= 0.

32.



curlF · S =



F · r where : r() = 2 cos  i + 2 sin  j + k, 0 ≤  ≤ 2, so r0() = −2 sin  i + 2 cos  j,

F(r()) = 8 cos2  sin  i + 2 sin  j + 4 cos  sin  k, and F(r()) · r0() = −16 cos2  sin2 + 4 sin  cos . Thus

F · r =

 2

0
(−16 cos2  sin2 + 4 sin  cos )  =

−16
− 1

4
sin  cos3  + 1

16
sin 2+ 1

8



+ 2 sin2 
2
0

= −4.

33. The surface is given by  +  +  = 1 or  = 1− − , 0 ≤  ≤ 1, 0 ≤  ≤ 1−  and r × r = i + j + k. Then

F · r =




curlF · S =



(− i−  j− k) · (i + j + k)  =




(−1)  = −(area of) = − 1
2
.

34.



F · S =



3(2 + 2 + 2)  =

 2

0

 1

0

 2

0
(32 + 32)     = 2

 1

0
(63 + 8)  = 11

35.



divF  =


2 + 2 + 2≤ 1

3  = 3(volume of sphere) = 4. Then

F(r( )) · (r × r) = sin3  cos2  + sin3  sin2  + sin cos2  = sin and

F · S =

 2

0

 
0

sin = (2)(2) = 4.

36. Here we must use Equation 16.9.7 since F is not defined at the origin. Let 1 be the sphere of radius 1 with center at the origin

and outer unit normal n1. Let 2 be the surface of the ellipsoid with outer unit normal n2 and let  be the solid region

between 1 and 2. Then the outward flux of F through the ellipsoid is given by
2

F · n2  = − 
1

F · (−n1)  +



divF . But F = r |r|3, so

divF = ∇ · |r|−3
r


= |r|−3
(∇ · r) + r · ∇ |r|−3


= |r|−3

(3) + r · −3 |r|−4


r |r|−1


= 0. [Here we have

used Exercises 16.5.30(a) and 16.5.31(a).] And F · n1 =
r

|r|3 ·
r

|r| = |r|−2
= 1 on 1.

Thus


2
F · n2  =


1

 +



0  = (surface area of the unit sphere) = 4(1)2 = 4.

37. Because curlF = 0, F is conservative, so there exists a function  such that∇ = F. Then (  ) = 32 − 3

implies (  ) = 3 − 3 + ( ) ⇒ (  ) = 3 − 3 + ( ). But (  ) = 3 − 3, so

( ) = () and (  ) = 3 − 3 + (). Then (  ) = 3 + 0() but (  ) = 3 + 2,

so () = 2 + and a potential function for F is (  ) = 3 − 3 + 2. Hence


F · r =


∇ · r = (0 3 0)− (0 0 2) = 0− 4 = −4.
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712 ¤ CHAPTER 16 VECTOR CALCULUS

38. Let 0 be the circle with center at the origin and radius  as in the figure.

Let be the region bounded by  and 0. Then’s positively oriented

boundary is  ∪ (−0). Hence by Green’s Theorem


F · r +


−0

F · r =








− 




 = 0, so




F · r = − −0 F · r =

0 F ·  =

 2

0
F(r()) · r0() 

=

 2

0


23 cos3  + 23 cos  sin2 − 2 sin 

2
(− sin ) +

23 sin3  + 23 cos2  sin + 2 cos 

2
( cos )




=

 2

0

22

2
 = 4

39. By the Divergence Theorem,



F · n  =




divF = 3(volume of ) = 3(8− 1) = 21.

40. The stated conditions allow us to use the Divergence Theorem. Hence



curlF · S =




div(curlF)  = 0

since div(curlF) = 0.

41. Let F = a× r = h1 2 3i × h  i = h2 − 3 3− 1 1 − 2i. Then curl F = h21 22 23i = 2a,

and



2a · S =




curlF · S =



F · r =


(a× r) · r by Stokes’ Theorem.
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PROBLEMS PLUS

1. Let 1 be the portion of Ω() between () and , and let 1 be its boundary. Also let  be the lateral surface of 1 [that

is, the surface of 1 except  and ()]. Applying the Divergence Theorem we have


1

r · n
3

 =


1

∇ · r

3
 .

But
∇ · r

3
=















·




(2 + 2 + 2)
32




(2 + 2 + 2)
32




(2 + 2 + 2)
32



=
(2 + 2 + 2 − 32) + (2 + 2 + 2 − 32) + (2 + 2 + 2 − 32)

(2 + 2 + 2)52
= 0

⇒


1

r · n
3

 =


1

0  = 0. On the other hand, notice that for the surfaces of 1 other than () and ,

r · n = 0 ⇒

0 =


1

r · n
3

 =




r · n
3

 +


()

r · n
3

 +




r · n
3

 =




r · n
3

 +


()

r · n
3

 ⇒




r · n
3

 = −


()

r · n
3

. Notice that on (),  =  ⇒ n = −r


= − r


and r · r = 2 = 2, so

that −


()

r · n
3

 =


()

r · r
4

 =


()

2

4
 =

1

2


()

 =
area of  ()

2
= |Ω()|.

Therefore |Ω()| =




r · n
3

.

2. By Green’s Theorem


(
3 − ) − 2

3
 =





(−23)


− (3 − )




 =




(1− 6
2 − 3

2
) 

Notice that for 62 + 32  1, the integrand is negative. The integral has maximum value if it is evaluated only in the region

where the integrand is positive, which is within the ellipse 62 + 32 = 1. So the simple closed curve that gives a maximum

value for the line integral is the ellipse 62 + 32 = 1.

3. The given line integral 1
2



(− ) + (− ) + (− )  can be expressed as




F · r if we define the vector

field F by F(  ) =  i + j +k = 1
2
( − ) i + 1

2
(− ) j + 1

2
( − )k. Then define  to be the planar

interior of , so  is an oriented, smooth surface. Stokes’ Theorem says



F · r =



curlF · S =




curlF · n .

Now

curlF =





− 




i +





− 




j +





− 




k

=


1
2
+ 1

2


i +


1
2
+ 1

2


j +


1
2
+ 1

2


k =  i +  j + k = n

so curlF · n = n · n = |n|2 = 1, hence



curlF · n  =


 which is simply the surface area of  Thus,


F · r = 1

2



( − )  + (− )  + ( − )  is the plane area enclosed by .
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714 ¤ CHAPTER 16 PROBLEMS PLUS

4. The surface given by  = sin,  = sin ,  = sin (+ ) is difficult to visualize, so we first graph the surface from three

different points of view.

The trace in the horizontal plane  = 0 is given by  = sin(+ ) = 0 ⇒ +  =  [ an integer]. Then

we can write  =  − , and the trace is given by the parametric equations  = sin,

 = sin  = sin( − ) = sin  cos− cos  sin = ± sin, and since sin = , the trace consists of the two lines

 = ±.
If  = 1,  = sin(+ ) = 1 ⇒ +  = 

2
+ 2. So  =



2

+ 2
−  and the trace in  = 1 is given by the

parametric equations  = sin,  = sin  = sin



2

+ 2
− 


= sin



2

+ 2

cos− cos



2

+ 2

sin = cos.

This curve is equivalent to 2 + 2 = 1,  = 1, a circle of radius 1. Similarly, in  = −1 we have  = sin(+ ) = −1 ⇒
 +  = 3

2
+ 2 ⇒  =


3
2

+ 2
− , so the trace is given by the parametric equations  = sin,

 = sin  = sin


3
2

+ 2
− 


= sin


3
2

+ 2

cos− cos


3
2

+ 2

sin = − cos, which again is a circle,

2 + 2 = 1,  = −1.

If  = 1
2
,  = sin(+ ) = 1

2
⇒ +  = + 2 where  = 

6
or 5

6
. Then  = (+ 2)−  and the trace in

 = 1
2
is given by the parametric equations  = sin,

 = sin  = sin[(+ 2)− ] = sin(+ 2) cos− cos(+ 2) sin = 1
2

cos±
√

3
2

sin. In rectangular

coordinates,  = sin so  = 1
2

cos±
√

3
2
 ⇒  ±

√
3

2
 = 1

2
cos ⇒ 2 ±√3 = cos But then

2 +

2 ±√3

2
= sin2 + cos2  = 1 ⇒ 2 + 42 ± 4

√
3 + 32 = 1 ⇒ 42 ± 4

√
3 + 42 = 1, which

may be recognized as a conic section. In particular, each equation is an ellipse rotated ±45◦ from the standard orientation (see

the following graph). The trace in  = − 1
2
is similar:  = sin(+ ) = −1

2
⇒ +  =  + 2 where  = 7

6
or 11

6
.

Then  = ( + 2)−  and the trace is given by the parametric equations  = sin,

 = sin  = sin[( + 2)− ] = sin( + 2) cos− cos( + 2) sin = − 1
2

cos±
√

3
2

sin. If we convert to

rectangular coordinates, we arrive at the same pair of equations, 42 ± 4
√

3 + 42 = 1, so the trace is identical to the trace

in  = 1
2
.

Graphing each of these, we have the following 5 traces.
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CHAPTER 16 PROBLEMS PLUS ¤ 715

 = −1  = − 1
2

 = 0

 = 1
2

 = 1

Visualizing these traces on the surface reveals that horizontal cross sections are pairs of intersecting ellipses whose major axes

are perpendicular to each other. At the bottom of the surface,  = −1, the ellipses coincide as circles of radius 1. As we move

up the surface, the ellipses become narrower until at  = 0 they collapse into line segments, after which the process is

reversed, and the ellipses widen to again coincide as circles at  = 1.

5. (F ·∇)G =


1




+1




+1






(2 i +2 j+2 k)

=


1

2


+1

2


+1

2




i +


1

2


+1

2


+1

2




j

+


1

2


+1

2


+1

2




k

= (F ·∇2) i +(F ·∇2) j + (F ·∇2)k.

Similarly, (G ·∇)F = (G ·∇1) i +(G ·∇1) j +(G ·∇1)k. Then

F× curlG =


i

1

2 − 2

j

1

2 − 2

k

1

2− 2


=


1

2


−1

2


−1

2


+1

2




i +


1

2


−1

2


− 1

2


+ 1

2




j

+


1

2


− 1

2


−1

2


+1

2




k

[continued]
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716 ¤ CHAPTER 16 PROBLEMS PLUS

and

G× curlF =


2

1


−2

1


−2

1


+2

1




i +


2

1


−2

1


− 2

1


+ 2

1




j

+


2

1


− 2

1


−2

1


+2

1




k.

Then

(F ·∇)G + F× curlG =


1

2


+1

2


+1

2




i +


1

2


+1

2


+1

2




j

+


1

2


+1

2


+1

2




k

and

(G ·∇)F + G× curlF =


2

1


+2

1


+2

1




i +


2

1


+2

1


+2

1




j

+


2

1


+2

1


+2

1




k.

Hence

(F ·∇)G + F× curlG +(G ·∇)F + G× curlF

=


1

2


+ 2

1




+


1

2


+2

1




+


1

2


+2

1




i

+


1

2


+ 2

1




+


1

2


+2

1




+


1

2


+2

1




j

+


1

2


+ 2

1




+


1

2


+2

1




+


1

2


+2

1




k

= ∇(12 +12 +12) = ∇(F ·G).

6. (a) First we place the piston on coordinate axes so the top of the cylinder is at the origin and () ≥ 0 is the distance from the

top of the cylinder to the piston at time . Let 1 be the curve traced out by the piston during one four-stroke cycle, so 1

is given by r() = () i,  ≤  ≤ . (Thus, the curve lies on the positive -axis and reverses direction several times.) The

force on the piston is  () i, where  is the area of the top of the piston and  () is the pressure in the cylinder at time .

As in Section 16.2, the work done on the piston is

1

F · r =
 

 () i · 0() i  =

 

 ()0() . Here, the

volume of the cylinder at time  is  () = () ⇒  0() = 0() ⇒  

 ()0()  =

 

 () 0() .

Since the curve  in the  -plane corresponds to the values of  and  at time ,  ≤  ≤ , we have

 =
 

 ()0()  =

 

 () 0()  =



 

Another method: If we divide the time interval [ ] into  subintervals of equal length∆, the amount of work done on

the piston in the th time interval is approximately  ()[()− (−1)]. Thus we estimate the total work done during
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CHAPTER 16 PROBLEMS PLUS ¤ 717

one cycle to be


= 1

 ()[()− (−1)]. If we allow →∞, we have

 = lim
→∞


=1

 ()[()− (−1)] = lim
→∞


= 1

 ()[()−(−1)] = lim
→∞


=1

 ()[ ()−  (−1)]

=


 

(b) Let  be the lower loop of the curve  and  the upper loop. Then  =  ∪  .  is positively oriented, so from

Formula 16.4.5 we know the area of the lower loop in the  -plane is given by −


  .  is negatively oriented, so

the area of the upper loop is given by−

−


 


=



  . From part (a),

 =


  =


 ∪   =




  +



  =



  −

−


 


,

the difference of the areas enclosed by the two loops of .
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17 SECOND-ORDER DIFFERENTIAL EQUATIONS

17.1 Second-Order Linear Equations

1. The auxiliary equation is 2 −  − 6 = 0 ⇒ ( − 3)( + 2) = 0 ⇒  = 3,  = −2. Then by (8) the general solution

is  = 1
3 + 2

−2.

2. The auxiliary equation is 2 − 6 + 9 = 0 ⇒ ( − 3)2 = 0 ⇒  = 3. Then by (10), the general solution is

 = 1
3 + 2

3.

3. The auxiliary equation is 2 + 2 = 0 ⇒  = ±√2 . Then by (11) the general solution is

 = 0

1 cos

√
2


+ 2 sin
√

2


= 1 cos
√

2


+ 2 sin
√

2

.

4. The auxiliary equation is 2 +  − 12 = 0 ⇒ ( − 3)( + 4) = 0 ⇒  = 3,  = −4. Then by (8) the general

solution is  = 1
3 + 2

−4.

5. The auxiliary equation is 42 + 4 + 1 = 0 ⇒ (2 + 1)2 = 0 ⇒  = − 1
2
. Then by (10), the general solution is

 = 1
−2 + 2

−2.

6. The auxiliary equation is 92 + 4 = 0 ⇒ 2 = − 4
9

⇒  = ±2
3
, so the general solution is

 = 0

1 cos


2
3



+ 2 sin


2
3



= 1 cos


2
3



+ 2 sin


2
3


.

7. The auxiliary equation is 32 − 4 = (3 − 4) = 0 ⇒  = 0,  = 4
3
, so  = 1

0 + 2
43 = 1 + 2

43.

8. The auxiliary equation is 2 − 1 = ( − 1)( + 1) = 0 ⇒  = 1,  = −1. Then the general solution is

 = 1
 + 2

−.

9. The auxiliary equation is 2 − 4 + 13 = 0 ⇒  =
4±√−36

2
= 2± 3, so  = 2(1 cos 3+ 2 sin 3).

10. The auxiliary equation is 32 + 4 − 3 = 0 ⇒  =
−4±√52

6
=
−2±√13

3
, so

 = 1
(−2+

√
13 )3 + 2

(−2−√13 )3.

11. The auxiliary equation is 22 + 2 − 1 = 0 ⇒  =
−2±√12

4
=
−1±√3

2
, so  = 1

(−1+
√

3)2 + 2
(−1−√3)2.

12. The auxiliary equation is 2 + 6 + 34 = 0 ⇒  =
−6±√−100

2
= −3± 5, so  = −3(1 cos 5+ 2 sin 5).
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720 ¤ CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

13. The auxiliary equation is 32 + 4 + 3 = 0 ⇒  =
−4±√−20

6
= − 2

3
±
√

5
3
, so

 = −23

1 cos

√
5

3



+ 2 sin
√

5
3


.

14. The auxiliary equation is 42 − 4 + 1 = (2 − 1)2 = 0 ⇒  = 1
2
, so

the general solution is  = 1
2 + 2

2. We graph the basic solutions

() = 2, () = 2 as well as  = 22 + 32,

 = −2 − 32, and  = 42 − 22. The graphs are all

asymptotic to the -axis as → −∞, and as →∞ the solutions

approach ±∞.

15. The auxiliary equation is 2 + 2 + 2 = 0 ⇒

 =
−2±√−4

2
= −1± , so the general solution is

 = − (1 cos+ 2 sin). We graph the basic solutions

() = − cos, () = − sin as well as

 = − (− cos− 2 sin) and  = − (2 cos+ 3 sin). All the solutions oscillate with amplitudes that become

arbitrarily large as →−∞ and the solutions are asymptotic to the -axis as →∞.

16. The auxiliary equation is 22 +  − 1 = (2 − 1)( + 1) = 0 ⇒

 = 1
2
,  = −1, so the general solution is  = 1

2 + 2
−. We graph

the basic solutions () = 2, () = − as well as  = 22 + −,

 = −2 − 2−, and  = 2 − −. Each solution consists of a single

continuous curve that approaches either 0 or ±∞ as → ±∞.

17. 2 + 3 = 0 ⇒  = ±√3  and the general solution is

 = 0

1 cos

√
3


+ 2 sin
√

3


= 1 cos
√

3


+ 2 sin
√

3

. Then (0) = 1 ⇒ 1 = 1 and, since

0 = −√3 1 sin
√

3


+
√

3 2 cos
√

3

, 0(0) = 3 ⇒ √

3 2 = 3 ⇒ 2 = 3√
3

=
√

3, so the solution to the

initial-value problem is  = cos
√

3


+
√

3 sin
√

3

.

18. 2 − 2 − 3 = ( − 3)( + 1) = 0, so  = 3,  = −1 and the general solution is  = 1
3 + 2

−. Then

0 = 31
3 − 2

−, so (0) = 2 ⇒ 1 + 2 = 2 and 0(0) = 2 ⇒ 31 − 2 = 2, giving 1 = 1 and 2 = 1. Thus

the solution to the initial-value problem is  = 3 + −.

19. 92 + 12 + 4 = (3 + 2)2 = 0 ⇒  = −2
3
and the general solution is  = 1

−23 + 2
−23. Then (0) = 1 ⇒

1 = 1 and, since 0 = −2
3
1

−23 + 2

1− 2

3


−23, 0(0) = 0 ⇒ − 2

3
1 + 2 = 0, so 2 = 2

3
and the solution to

the initial-value problem is  = −23 + 2
3
−23.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



SECTION 17.1 SECOND-ORDER LINEAR EQUATIONS ¤ 721

20. 32 − 2 − 1 = (3 + 1)( − 1) = 0 ⇒  = − 1
3
,  = 1 and the general solution is  = 1

−3 + 2
. Then

0 = − 1
3
1

−3 + 2
, so (0) = 0 ⇒ 1 + 2 = 0 and 0(0) = −4 ⇒ − 1

3
1 + 2 = −4, giving 1 = 3 and

2 = −3. Thus the solution to the initial-value problem is  = 3−3 − 3.

21. 2 − 6 + 10 = 0 ⇒  = 3±  and the general solution is  = 3(1 cos+ 2 sin). Then 2 = (0) = 1 and

3 = 0(0) = 2 + 31 ⇒ 2 = −3 and the solution to the initial-value problem is  = 3(2 cos− 3 sin).

22. 42 − 20+ 25 = (2− 5)2 = 0 ⇒  = 5
2
and the general solution is  = 1

52 + 2
52. Then 2 = (0) = 1 and

−3 = 0(0) = 5
2
1 + 2 ⇒ 2 = −8. The solution to the initial-value problem is  = 252 − 852.

23. 2 −  − 12 = ( − 4)( + 3) = 0 ⇒  = 4,  = −3 and the general solution is  = 1
4 + 2

−3. Then

0 = (1) = 1
4 + 2

−3 and 1 = 0(1) = 41
4 − 32

−3 so 1 = 1
7
−4, 2 = − 1

7
3 and the solution to the initial-value

problem is  = 1
7
−44 − 1

7
3−3 = 1

7
4−4 − 1

7
3−3.

24. 42 + 4 + 3 = 0 ⇒  = − 1
2
±
√

2
2
 and the general solution is  = −2


1 cos

√
2

2
+ 2 sin

√
2

2


. Then

0 = (0) = 1 and 1 = 0(0) =
√

2
2
2 − 1

2
1 ⇒ 2 =

√
2 and the solution to the initial-value problem is

 = −2

0 +

√
2 sin

√
2

2



=
√

2 −2 sin
√

2
2
.

25. 2 + 16 = 0 ⇒  = ±4 and the general solution is  = 1 cos 4 + 2 sin 4. Then −3 = (0) = 1 and

2 = (8) = 2, so the solution of the boundary-value problem is  = −3 cos 4+ 2 sin 4.

26. 2 + 6 = ( + 6) = 0 ⇒  = 0,  = −6 and the general solution is  = 1 + 2
−6. Then 1 = (0) = 1 + 2

and 0 = (1) = 1 + 2
−6 so 1 =

1

1− 6
, 2 = − 6

1− 6
. The solution of the boundary-value problem is

 =
1

1− 6
− 6

1− 6
· −6 =

1

1− 6
− 6−6

1− 6
.

27. 2 + 4 + 4 = ( + 2)2 = 0 ⇒  = −2 and the general solution is  = 1
−2 + 2

−2. Then 2 = (0) = 1 and

0 = (1) = 1
−2 + 2

−2 so 2 = −2, and the solution of the boundary-value problem is  = 2−2 − 2−2.

28. 2 − 8 + 17 = 0 ⇒  = 4±  and the general solution is  = 4(1 cos + 2 sin). But 3 = (0) = 1 and

2 = () = −14 ⇒ 1 = −24, so there is no solution.

29. 2 −  = ( − 1) = 0 ⇒  = 0,  = 1 and the general solution is  = 1 + 2
. Then 1 = (0) = 1 + 2

and 2 = (1) = 1 + 2 so 1 =
− 2

− 1
, 2 =

1

− 1
. The solution of the boundary-value problem is  =

− 2

− 1
+



− 1
.

30. 42 − 4 + 1 = (2 − 1)2 = 0 ⇒  = 1
2
and the general solution is  = 1

2 + 2
2. Then 4 = (0) = 1 and

0 = (2) = 1+ 22 ⇒ 2 = −2. The solution of the boundary-value problem is  = 42 − 22.
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722 ¤ CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

31. 2 + 4 + 20 = 0 ⇒  = −2± 4 and the general solution is  = −2(1 cos 4+ 2 sin 4). But 1 = (0) = 1 and

2 = () = 1
−2 ⇒ 1 = 22 , so there is no solution.

32. 2 + 4 + 20 = 0 ⇒  = −2± 4 and the general solution is  = −2(1 cos 4+ 2 sin 4). But 1 = (0) = 1 and

−2 = () = 1
−2 ⇒ 1 = 1, so 2 can vary and the solution of the boundary-value problem is

 = −2(cos 4+  sin 4), where  is any constant.

33. (a) Case 1 ( = 0): 00 +  = 0 ⇒ 00 = 0 which has an auxiliary equation 2 = 0 ⇒  = 0 ⇒  = 1 + 2

where (0) = 0 and () = 0. Thus, 0 = (0) = 1 and 0 = () = 2 ⇒ 1 = 2 = 0. Thus  = 0.

Case 2 (  0): 00 +  = 0 has auxiliary equation 2 = − ⇒  = ±√− [distinct and real since   0] ⇒

 = 1
√− + 2

−√− where (0) = 0 and () = 0. Thus 0 = (0) = 1 + 2 (∗) and

0 = () = 1
√− + 2

−√− (†).

Multiplying (∗) by 
√− and subtracting (†) gives 2



√− − −

√−


= 0 ⇒ 2 = 0 and thus 1 = 0 from (∗).

Thus  = 0 for the cases  = 0 and   0.

(b) 00 +  = 0 has an auxiliary equation 2 +  = 0 ⇒  = ±
√
 ⇒  = 1 cos

√
+ 2 sin

√
 where

(0) = 0 and () = 0. Thus, 0 = (0) = 1 and 0 = () = 2 sin
√
 since 1 = 0. Since we cannot have a trivial

solution, 2 6= 0 and thus sin
√
 = 0 ⇒

√
 =  where  is an integer ⇒  = 222 and

 = 2 sin() where  is an integer.

34. The auxiliary equation is 2 +  +  = 0. If 2 − 4  0, then any solution is of the form () = 1
1 + 2

2 where

1 =
−+

√
2 − 4

2
and 2 =

−−√2 − 4

2
. But , , and  are all positive so both 1 and 2 are negative and

lim→∞ () = 0. If 2 − 4 = 0, then any solution is of the form () = 1
 + 2

 where  = − (2)  0

since ,  are positive. Hence lim→∞ () = 0. Finally if 2 − 4  0, then any solution is of the form

() = (1 cos + 2 sin) where  = −(2)  0 since  and  are positive. Thus lim→∞ () = 0.

35. (a) 2 − 2 + 2 = 0 ⇒  = 1±  and the general solution is  =  (1 cos+ 2 sin). If () =  and () =  then

 (1 cos + 2 sin ) =  ⇒ 1 cos  + 2 sin  = − and  (1 cos + 2 sin ) =  ⇒

1 cos + 2 sin  = −. This gives a linear system in 1 and 2 which has a unique solution if the lines are not parallel.

If the lines are not vertical or horizontal, we have parallel lines if cos  =  cos  and sin =  sin  for some nonzero

constant  or
cos 

cos 
=  =

sin 

sin 
⇒ sin 

cos 
=

sin 

cos 
⇒ tan  = tan  ⇒ −  = ,  any integer. (Note that

none of cos , cos , sin , sin  are zero.) If the lines are both horizontal then cos  = cos  = 0 ⇒ −  = , and

similarly vertical lines means sin  = sin  = 0 ⇒ −  = . Thus the system has a unique solution if −  6= .
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SECTION 17.2 NONHOMOGENEOUS LINEAR EQUATIONS ¤ 723

(b) The linear system has no solution if the lines are parallel but not identical. From part (a) the lines are parallel if

−  = . If the lines are not horizontal, they are identical if − = − ⇒ −

−
=  =

cos 

cos 
⇒




= −

cos 

cos 
. (If  = 0 then  = 0 also.) If they are horizontal then cos  = 0, but  =

sin 

sin 
also (and sin  6= 0) so

we require



= −

sin

sin 
. Thus the system has no solution if −  =  and




6= −

cos 

cos 
unless cos  = 0, in

which case



6= −

sin 

sin 
.

(c) The linear system has infinitely many solution if the lines are identical (and necessarily parallel). From part (b) this occurs

when −  =  and



= −

cos 

cos 
unless cos  = 0, in which case




= −

sin 

sin 
.

17.2 Nonhomogeneous Linear Equations

1. The auxiliary equation is 2 + 2 − 8 = ( − 2)( + 4) = 0 ⇒  = 2,  = −4, so the complementary solution is

() = 1
2 + 2

−4. We try the particular solution () = 2 +  + , so 0 = 2+ and 00 = 2.

Substituting into the differential equation, we have (2) + 2(2 +)− 8(2 +  + ) = 1− 22 or

−82 + (4− 8) + (2 + 2 − 8) = −22 + 1. Comparing coefficients gives −8 = −2 ⇒

 = 1
4
, 4− 8 = 0 ⇒  = 1

8
, and 2+ 2 − 8 = 1 ⇒  = − 1

32
, so the general solution is

() = () + () = 1
2 + 2

−4 + 1
4
2 + 1

8
− 1

32
.

2. The auxiliary equation is 2 − 3 = ( − 3) = 0 ⇒  = 0,  = 3, so the complementary solution

is () = 1 + 2
3. We try the particular solution () =  cos 2 +  sin 2, so

0 = −2 sin 2 + 2 cos 2 and 00 = −4 cos 2− 4 sin 2. Substitution into the differential

equation gives (−4 cos 2− 4 sin 2)− 3(−2 sin 2 + 2 cos 2) = sin 2 ⇒

(−4− 6) cos 2+ (6− 4) sin 2 = sin 2. Then −4− 6 = 0 and 6− 4 = 1 ⇒  = 3
26

and  = − 1
13
.

Thus the general solution is () = () + () = 1 + 2
3 + 3

26
cos 2− 1

13
sin 2.

3. The auxiliary equation is 92 + 1 = 0 with roots  = ±1
3
, so the complementary solution is

() = 1 cos(3) + 2 sin(3). Try the particular solution () = 2, so 0 = 22 and 00 = 42.

Substitution into the differential equation gives 9

42


+

2


= 2 or 372 = 2. Thus 37 = 1 ⇒  = 1

37

and the general solution is () = () + () = 1 cos(3) + 2 sin(3) + 1
37
2.

4. The auxiliary equation is 2 − 2 + 2 = 0 with roots  = 1± , so the complementary solution is

() = (1 cos + 2 sin). Try the particular solution () = + +, so 0 = +  and 00 = .

Substitution into the differential equation gives ()− 2(+) + 2(+ +) = +  ⇒
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724 ¤ CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

2+ (−2+ 2) +  = + . Comparing coefficients, we have 2 = 1 ⇒  = 1
2
, −2+ 2 = 0 ⇒

 = 1
2
, and  = 1, so the general solution is () = () + () = (1 cos+ 2 sin) + 1

2
 + 1

2
+ .

5. The auxiliary equation is 2 − 4 + 5 = 0 with roots  = 2± , so the complementary solution is

() = 2(1 cos + 2 sin). Try  () = −, so 0 = −− and 00 = −. Substitution gives

− − 4(−−) + 5(−) = − ⇒ 10− = − ⇒  = 1
10
. Thus the general solution is

() = 2(1 cos+ 2 sin) + 1
10
−.

6. The auxiliary equation is 2 − 4 + 4 = ( − 2)2 = 0 ⇒  = 2, so the complementary solution is

() = 1
2 + 2

2. For 00 − 40 + 4 =  try 1() = +. Then 01 =  and 001 = 0, and substitution into

the differential equation gives 0− 4+ 4(+) =  or 4+ (4 − 4) = , so 4 = 1 ⇒  = 1
4
and

4 − 4 = 0 ⇒  = 1
4
. Thus 1() = 1

4
 + 1

4
. For 00 − 40 + 4 = − sin try 2() =  cos + sin.

Then 02 = − sin +  cos and 002 = − cos−  sin. Substituting, we have

(− cos−  sin) − 4(− sin +  cos) + 4( cos +  sin) = − sin ⇒
(3− 4) cos + (4 + 3) sin = − sin. Thus 3− 4 = 0 and 4 + 3 = −1,

giving  = − 4
25

and  = − 3
25
, so 2() = − 4

25
cos− 3

25
sin. The general solution is

() = () + 1() + 2() = 1
2 + 2

2 + 1
4
+ 1

4
− 4

25
cos− 3

25
sin.

7. The auxiliary equation is 2 − 2 + 5 = 0 with roots  = 1± 2, so the complementary solution is

() = (1 cos 2 + 2 sin 2). Try the particular solution () =  cos + sin, so 0 = − sin+ cos

and 00 = − cos− sin. Substituting, we have

(− cos−  sin) − 2(− sin +  cos) + 5( cos +  sin) = sin ⇒

(4− 2) cos+ (2+ 4) sin = sin. Then 4− 2 = 0, 2+ 4 = 1 ⇒  = 1
10
,  = 1

5
and the general

solution is () = () + () = (1 cos 2+ 2 sin 2) + 1
10

cos+ 1
5

sin. But 1 = (0) = 1 + 1
10

⇒ 1 = 9
10

and 1 = 0(0) = 22 + 1 + 1
5
⇒ 2 = − 1

20
. Thus the solution to the initial-value problem is

() = 


9
10

cos 2− 1
20

sin 2


+ 1
10

cos + 1
5

sin.

8. The auxiliary equation is 2 − 1 = 0 with roots  = ±1, so the complementary solution is () = 1
 + 2

−. Try the

particular solution () = (+)2, so 0 = (2++ 2)2 and 00 = (4+ 4+ 4)2. Substituting, we

have (4+ 4+ 4)2 − (+)2 = 2 ⇒ (3+ 4+ 3)2 = 2. Then 3 = 1 ⇒  = 1
3
and

4+ 3 = 0 ⇒  = − 4
9
, and the general solution is () = () + () = 1

 + 2
− +


1
3
− 4

9


2. But

0 = (0) = 1 + 2 − 4
9
and 1 = 0(0) = 1 − 2 − 5

9
⇒ 1 = 1, 2 = − 5

9
. Thus the solution to the initial-value

problem is () =  − 5
9
− +


1
3
− 4

9


2.
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SECTION 17.2 NONHOMOGENEOUS LINEAR EQUATIONS ¤ 725

9. The auxiliary equation is 2 −  = 0 with roots  = 0,  = 1 so the complementary solution is () = 1 + 2
.

Try () = ( + ) so that no term in  is a solution of the complementary equation. Then

0 = (2 + (2+)+) and 00 = (2 + (4+)+ (2+ 2)). Substitution into the differential equation

gives (2 + (4+)+ (2+ 2)) − (2 + (2+)+) =  ⇒ (2+ (2+)) =  ⇒

 = 1
2
,  = −1. Thus () =


1
2
2 − 


 and the general solution is () = 1 + 2

 +


1
2
2 − 


. But

2 = (0) = 1 + 2 and 1 = 0(0) = 2 − 1, so 2 = 2 and 1 = 0. The solution to the initial-value problem is

() = 2 +


1
2
2 − 


 = 


1
2
2 − + 2


.

10. () = 1
 + 2

−2. For 00 + 0 − 2 =  try 1() = +. Then 01 = , 001 = 0, and substitution gives

0 + − 2(+ ) =  ⇒  = − 1
2
,  = − 1

4
, so 1() = −1

2
− 1

4
. For 00 + 0 − 2 = sin 2 try

2() =  cos 2+ sin 2. Then 02 = −2 sin 2+ 2 cos 2 002 = −4 cos 2− 4 sin 2, and substitution

gives (−4 cos 2− 4 sin 2) + (−2 sin 2+ 2 cos 2)− 2( cos 2+  sin 2) = sin 2 ⇒  = − 1
20
,

 = − 3
20
. Thus 2() = − 1

20
cos 2+− 3

20
sin 2 and the general solution is

() = 1
 + 2

−2 − 1
2
− 1

4
− 1

20
cos 2− 3

20
sin 2. But 1 = (0) = 1 + 2 − 1

4
− 1

20
and

0 = 0(0) = 1 − 22 − 1
2
− 3

10
⇒ 1 = 17

15
and 2 = 1

6
. Thus the solution to the initial-value problem is

() = 17
15
 + 1

6
−2 − 1

2
− 1

4
− 1

20
cos 2− 3

20
sin 2.

11. The auxiliary equation is 2 + 3 + 2 = ( + 1)( + 2) = 0, so  = −1,  = −2 and () = 1
− + 2

−2.

Try  =  cos+ sin ⇒ 0 = − sin+ cos, 00 = − cos− sin. Substituting into the differential

equation gives (− cos− sin) + 3(− sin+ cos) + 2( cos+ sin) = cos or

(+ 3) cos+ (−3+) sin = cos. Then solving the equations

+ 3 = 1, −3+ = 0 gives  = 1
10
,  = 3

10
and the general

solution is () = 1
− + 2

−2 + 1
10

cos+ 3
10

sin. The graph

shows  and several other solutions. Notice that all solutions are

asymptotic to  as →∞. Except for , all solutions approach either∞
or −∞ as →−∞.

12. The auxiliary equation is 2 + 4 = 0 ⇒  = ±2, so () = 1 cos 2 + 2 sin 2. Try  = − ⇒

0 = −−, 00 = −. Substituting into the differential equation gives − + 4− = − ⇒

5 = 1 ⇒  = 1
5
, so  = 1

5
− and the general solution is

() = 1 cos 2+ 2 sin 2+ 1
5
−. We graph  along with several

other solutions. All of the solutions except  oscillate around  = 1
5
−,

and all solutions approach∞ as →−∞.
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726 ¤ CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

13. Here () = 1
2 + 2

−, and a trial solution is () = (+) cos+ (+) sin.

14. Here () = 1 cos 2 + 2 sin 2. For 00 + 4 = cos 4 try 1() =  cos 4+ sin 4 and for 00 + 4 = cos 2 try

2() =  ( cos 2+ sin 2) (so that no term of 2 is a solution of the complementary equation). Thus a trial solution

is () = 1() + 2() =  cos 4+ sin 4+  cos 2+ sin 2.

15. Here () = 1
2 + 2

. For 00 − 30 + 2 =  try 1() =  (since  =  is a solution of the complementary

equation) and for 00 − 30 + 2 = sin try 2() =  cos +  sin. Thus a trial solution is

() = 1() + 2() =  + cos+  sin.

16. Since () = 1
 + 2

−4 try () = (3 +2 ++) so that no term of () satisfies the complementary

equation.

17. Since () = −(1 cos 3+ 2 sin 3) we try () = (2 + + )− cos 3 + (2 ++  )− sin 3

(so that no term of  is a solution of the complementary equation).

18. Here () = 1 cos 2 + 2 sin 2. For 00 + 4 = 3 try 1() = 3 and for 00 + 4 =  sin 2 try

2() = (+) cos 2+ ( +) sin 2 (so that no term of 2 is a solution of the complementary equation).

Note: Solving Equations (7) and (9) in The Method of Variation of Parameters gives

01 = − 2

 (102 − 201)
and 02 =

1

 (102 − 201)

We will use these equations rather than resolving the system in each of the remaining exercises in this section.

19. (a) Here 42 + 1 = 0 ⇒  = ± 1
2
 and () = 1 cos


1
2



+ 2 sin


1
2


. We try a particular solution of the form

() =  cos +  sin ⇒ 0 = − sin + cos and 00 = − cos− sin. Then the equation

400 +  = cos becomes 4(− cos−  sin) + ( cos +  sin) = cos or

−3 cos− 3 sin = cos ⇒  = − 1
3
,  = 0. Thus, () = − 1

3
cos and the general solution is

() = () + () = 1 cos


1
2



+ 2 sin


1
2

− 1

3
cos.

(b) From (a) we know that () = 1 cos 
2

+ 2 sin 
2
. Setting 1 = cos 

2
, 2 = sin 

2
, we have

1
0
2 − 2

0
1 = 1

2
cos2 

2
+ 1

2
sin2 

2
= 1

2
. Thus 01 = −cos sin 

2

4 · 1
2

= − 1
2

cos

2 · 

2


sin 

2
= − 1

2


2 cos2 

2
− 1

sin 

2

and 02 =
cos cos 

2

4 · 1
2

= 1
2

cos

2 · 

2


cos 

2
= 1

2


1− 2 sin2 

2


cos 

2
. Then

1() =
 

1
2

sin 
2
− cos2 

2
sin 

2


 = − cos 

2
+ 2

3
cos3 

2
and

2() =
 

1
2

cos 
2
− sin2 

2
cos 

2


 = sin 

2
− 2

3
sin3 

2
. Thus

() =
− cos 

2
+ 2

3
cos3 

2


cos 

2
+

sin 

2
− 2

3
sin3 

2


sin 

2
= − cos2 

2
− sin2 

2


+ 2

3


cos4 

2
− sin4 

2


= − cos


2 · 

2


+ 2

3


cos2 

2
+ sin2 

2

 
cos2 

2
− sin2 

2


= − cos+ 2

3
cos = − 1

3
cos

and the general solution is () = () + () = 1 cos 
2

+ 2 sin 
2
− 1

3
cos.
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SECTION 17.2 NONHOMOGENEOUS LINEAR EQUATIONS ¤ 727

20. (a) Here 2 − 2 − 3 = ( − 3) ( + 1) = 0 ⇒  = 3,  = −1 and the complementary solution is

() = 1
3 + 2

−. A particular solution is of the form () = + ⇒ 0 = , 00 = 0, and

substituting into the differential equation gives 0− 2− 3 (+) = + 2 or −3+ (−2− 3) = + 2,

so  = −1
3
and −2− 3 = 2 ⇒  = −4

9
. Thus () = − 1

3
− 4

9
and the general solution is

() = () + () = 1
3 + 2

− − 1
3
− 4

9
.

(b) In (a), () = 1
3 + 2

−, so set 1 = 3, 2 = −. Then 1
0
2 − 2

0
1 = −3− − 33− = −42 so

01 = − (+ 2)−

−42
= 1

4
( + 2)−3 ⇒ 1() = 1

4


( + 2)−3  = 1

4

−1
3
(+ 2)−3 − 1

9
−3


[by parts]

and 02 =
( + 2)3

−42
= − 1

4
( + 2) ⇒ 2() = − 1

4


(+ 2)  = −1

4
[( + 2) − ] [by parts].

Hence () = 1
4

− 1
3
− 7

9


−3


3 − 1

4
[( + 1)] − = −1

3
 − 4

9
and

() = () + () = 1
3 + 2

− − 1
3
− 4

9
.

21. (a) 2 − 2 + 1 = (− 1)2 = 0 ⇒  = 1, so the complementary solution is () = 1
 + 2

. A particular solution

is of the form () = 2. Thus 42 − 42 +2 = 2 ⇒ 2 = 2 ⇒  = 1 ⇒ () = 2.

So a general solution is () = () + () = 1
 + 2

 + 2.

(b) From (a), () = 1
 + 2

, so set 1 = , 2 = . Then, 1
0
2 − 2

0
1 = 2(1 + )− 2 = 2 and so

01 = − ⇒ 1 () = −    = −(− 1) [by parts] and 02 =  ⇒ 2() =

  = . Hence

 () = (1− )2 + 2 = 2 and the general solution is () = () + () = 1
 + 2

 + 2.

22. (a) Here 2 −  = ( − 1) = 0 ⇒  = 0, 1 and () = 1 + 2
 and so we try a particular solution of the form

() = . Thus, after calculating the necessary derivatives, we get 00 − 0 =  ⇒

(2 + )−(1 + ) =  ⇒  = 1. Thus () =  and the general solution is () = 1 + 2
 + .

(b) From (a) we know that () = 1 + 2
, so setting 1 = 1, 2 = , then 1

0
2 − 2

0
1 =  − 0 = . Thus

01 = −2 = − and 02 =  = 1. Then 1() = −   = − and 2() = . Thus

() = − +  and the general solution is () = 1 + 2
 −  +  = 1 + 3

 + .

23. As in Example 5, () = 1 sin+ 2 cos, so set 1 = sin, 2 = cos. Then 1
0
2 − 2

0
1 = − sin2 − cos2  = −1,

so 01 = −sec2  cos

−1
= sec ⇒ 1() =


sec = ln (sec+ tan) for 0    

2
,

and 02 =
sec2  sin

−1
= − sec tan ⇒ 2() = − sec. Hence

() = ln(sec + tan) · sin− sec · cos = sin ln(sec + tan)− 1 and the general solution is

() = 1 sin+ 2 cos+ sin ln(sec+ tan)− 1.
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728 ¤ CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

24. As in Exercise 23, () = 1 sin + 2 cos, 1 = sin, 2 = cos, and 1
0
2 − 2

0
1 = −1. Then

01 = −sec3  cos

−1
= sec2  ⇒ 1() = tan and 02 =

sec3  sin

−1
= − sec2  tan ⇒

2() = −  tan sec2  = −1
2

tan2 . Hence

() = tan sin− 1
2

tan2  cos = tan sin− 1
2

tan sin = 1
2

tan sin and the general solution

is () = 1 sin+ 2 cos+ 1
2

tan sin.

25. 1 = , 2 = 2 and 1
0
2 − 2

0
1 = 3. So 01 =

−2
(1 + −)3

= − −

1 + −
and

1() =


− −

1 + −
 = ln(1 + 

−
). 02 =



(1 + −)3
=



3 + 2
so

2() =




3 + 2
 = ln


 + 1




− 

−
= ln(1 + 

−
) − 

−. Hence

() =  ln(1 + −) + 2[ln(1 + −) − −] and the general solution is

() = [1 + ln(1 + −)] + [2 − − + ln(1 + −)]2.

26. 1 = −, 2 = −2 and 1
0
2 − 2

0
1 = −−3. So 01 = − (sin )−2

−−3
=  sin 

and 02 =
(sin )−

−−3
= −2 sin . Hence 1 () =


 sin  = − cos  and

2() =
 −2 sin  =  cos  − sin . Then () = −− cos  − −2[sin  −  cos ]

and the general solution is () = (1 − cos )− + [2 − sin  +  cos ]−2.

27. 2 − 2 + 1 = ( − 1)2 = 0 ⇒  = 1 so () = 1
 + 2

. Thus 1 = , 2 =  and

1
0
2 − 2

0
1 = (+ 1) −  = 2. So 01 = − · (1 + 2)

2
= − 

1 + 2
⇒

1 = −




1 + 2
 = −1

2
ln

1 + 

2

, 02 =

 · (1 + 2)

2
=

1

1 + 2
⇒ 2 =


1

1 + 2
 = tan

−1
 and

() = − 1
2
 ln(1 + 2) +  tan−1 . Hence the general solution is () = 


1 + 2− 1

2
ln(1 + 2) +  tan−1 


.

28. 1 = −2, 2 = −2 and 1
0
2 − 2

0
1 = −4. Then 01 =

−−2−2

3−4
= − 1

2
so 1() = −1 and

02 =
−2−2

3−4
=

1

3
so 2() = − 1

22
. Thus () =

−2


− −2

22
=

−2

2
and the general solution is

() = −2[1 + 2+ 1(2)].
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SECTION 17.3 APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS ¤ 729

17.3 Applications of Second-Order Differential Equations

1. By Hooke’s Law (025) = 25 so  = 100 is the spring constant and the differential equation is 500 + 100 = 0.

The auxiliary equation is 52 + 100 = 0 with roots  = ±2
√

5 , so the general solution to the differential equation is

() = 1 cos

2
√

5 


+ 2 sin

2
√

5 

. We are given that (0) = 035 ⇒ 1 = 035 and 0(0) = 0 ⇒

2
√

5 2 = 0 ⇒ 2 = 0, so the position of the mass after  seconds is () = 035 cos

2
√

5 

.

2. By Hooke’s Law (04) = 32 so  = 32
04

= 80 is the spring constant and the differential equation is 800 + 80 = 0.

The general solution is () = 1 cos
√

10 


+ 2 sin
√

10 

. But 0 = (0) = 1 and 1 = 0(0) =

√
10 2 ⇒

2 = 1√
10
, so the position of the mass after  seconds is () = 1√

10
sin
√

10 

.

3. (05) = 6 or  = 12 is the spring constant, so the initial-value problem is 200 + 140 + 12 = 0, (0) = 1, 0(0) = 0.

The general solution is () = 1
−6 + 2

−. But 1 = (0) = 1 + 2 and 0 = 0(0) = −61 − 2. Thus the position is

given by () = − 1
5
−6 + 6

5
−.

4. (a) (025) = 13 ⇒  = 52, so the differential equation is

200 + 80 + 52 = 0 with general solution

() = −2

1 cos

√
22 


+ 2 sin

√
22 


. Then 0 = (0) = 1

and 05 = 0(0) =
√

22 2 ⇒ 2 = 1

2
√

22
, so the position is

given by () = 1

2
√

22
−2 sin

√
22 


.

(b)

5. For critical damping we need 2 − 4 = 0 or = 2(4) = 142(4 · 12) = 49
12

kg.

6. For critical damping we need 2 = 4 or  = 2
√
 = 2

√
2 · 52 = 4

√
26.

7. We are given = 1,  = 100, (0) = −01 and 0(0) = 0. From (3), the differential equation is

2


2
+ 




+ 100 = 0

with auxiliary equation 2 +  + 100 = 0.

If  = 10, we have two complex roots  = −5± 5
√

3 , so the motion is underdamped and the solution is

 = −5

1 cos


5
√

3 


+ 2 sin

5
√

3 

. Then −01 = (0) = 1 and 0 = 0(0) = 5

√
3 2 − 51 ⇒ 2 = − 1

10
√

3
,

so  = −5

−01 cos


5
√

3 
− 1

10
√

3
sin

5
√

3 

.

If  = 15, we again have underdamping since the auxiliary equation has roots  = − 15
2
± 5

√
7

2
. The general solution is

 = −152

1 cos


5
√

7
2




+ 2 sin


5
√

7
2



, so−01 =  (0) = 1 and 0 = 0(0) = 5

√
7

2
2 − 15

2
1 ⇒ 2 = − 3

10
√

7
.

Thus  = −152

−01 cos


5
√

7
2



− 3

10
√

7
sin


5
√

7
2



.
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730 ¤ CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

For  = 20, we have equal roots 1 = 2 = −10, so the oscillation is critically damped and the solution is

 = (1 + 2)
−10. Then −01 = (0) = 1 and 0 = 0(0) = −101 + 2 ⇒ 2 = −1, so  = (−01− )−10.

If  = 25 the auxiliary equation has roots 1 = −5, 2 = −20, so we have overdamping and the solution is

 = 1
−5 + 2

−20. Then −01 = (0) = 1 + 2 and 0 = 0(0) = −51 − 202 ⇒ 1 = − 2
15

and 2 = 1
30
,

so  = − 2
15
−5 + 1

30
−20.

If  = 30 we have roots  = −15± 5
√

5, so the motion is

overdamped and the solution is  = 1
(−15 + 5

√
5 ) + 2

(−15− 5
√

5 ).

Then −01 = (0) = 1 + 2 and

0 = 0(0) =
−15 + 5

√
5

1 +

−15− 5
√

5

2 ⇒

1 = −5− 3
√

5
100

and 2 = −5+ 3
√

5
100

, so

 =

−5− 3

√
5

100


(−15 +5

√
5) +


−5 +3

√
5

100


(−15− 5

√
5).

8. We are given = 1,  = 10, (0) = 0 and 0(0) = 1. The differential equation is
2

2
+ 10




+  = 0 with auxiliary

equation 2 + 10 +  = 0.  = 10: the auxiliary equation has roots  = −5±√15 so we have overdamping and the

solution is  = 1
(−5 +

√
15 ) + 2

(−5−√15 ). Entering the initial conditions gives 1 = 1

2
√

15
and 2 = − 1

2
√

15
, so

 = 1

2
√

15
(−5 +

√
15 ) − 1

2
√

15
(−5−√15 ).

 = 20:  = −5±√5 and the solution is  = 1
(−5 +

√
5 ) + 2

(−5−√5 ) so again the motion is overdamped.

The initial conditions give 1 = 1

2
√

5
and 2 = − 1

2
√

5
, so  = 1

2
√

5
(−5 +

√
5 ) − 1

2
√

5
(−5−√5 ).

 = 25: we have equal roots 1 = 2 = −5, so the motion is critically damped and the solution is  = (1 + 2)
−5.

The initial conditions give 1 = 0 and 2 = 1, so  = −5.

 = 30:  = −5±√5  so the motion is underdamped and the solution is  = −5

1 cos

√
5 


+ 2 sin
√

5 

.

The initial conditions give 1 = 0 and 2 = 1√
5
, so  = 1√

5
−5 sin

√
5 

.

 = 40:  = −5±√15  so we again have underdamping.

The solution is  = −5

1 cos

√
15 


+ 2 sin

√
15 


,

and the initial conditions give 1 = 0 and 2 = 1√
15
.

Thus  = 1√
15
−5 sin

√
15 


.

9. The differential equation is00 +  = 0 cos0 and 0 6=  =

. Here the auxiliary equation is2 +  = 0

with roots ±

 = ± so () = 1 cos+ 2 sin. Since 0 6= , try () =  cos0+ sin0.

Then we need ()
−2

0


( cos0+ sin0) + ( cos0 + sin0) = 0 cos0 or 


 −2

0


= 0 and
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SECTION 17.3 APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS ¤ 731



 −2

0


= 0. Hence  = 0 and  =

0

 −2
0

=
0

(2 − 2
0)

since 2 =



. Thus the motion of the mass is given

by () = 1 cos + 2 sin+
0

(2 − 2
0)

cos0.

10. As in Exercise 9, () = 1 cos + 2 sin. But the natural frequency of the system equals the frequency of the

external force, so try () = ( cos + sin). Then we need

(2 − 2) cos−(2+ 2) sin +  cos +  sin = 0 cos or 2 = 0 and

−2 = 0 [noting −2+  = 0 and −2 +  = 0 since 2 = ]. Hence the general solution is

() = 1 cos + 2 sin+ [0(2)] sin.

11. From Equation 6, () = () + () where () = 1 cos + 2 sin and () =
0

(2 − 2
0)

cos0. Then 

is periodic, with period 2

, and if  6= 0,  is periodic with period 2

0
. If 

0
is a rational number, then we can say


0

= 

⇒  = 

0
where  and  are non-zero integers. Then



+  · 2




= 


 +  · 2




+ 

 +  · 2




= () + 


+ 

0
· 2



= () + 


+  · 2

0


= () + () = ()

so () is periodic.

12. (a) The graph of  = 1
 + 2

 has a -intercept when 1 + 2
 = 0 ⇔ (1 + 2) = 0 ⇔ 1 = −2.

Since   0,  has a -intercept if and only if 1 and 2 have opposite signs.

(b) For   0, the graph of  crosses the -axis when 11 + 2
2 = 0 ⇔ 2

2 = −11 ⇔

2 = −1 
1

2
= −1(1−2). But 1  2 ⇒ 1 − 2  0 and since   0, (1−2)  1. Thus

|2| = |1| (1−2)  |1|, and the graph of  can cross the -axis only if |2|  |1|.

13. Here the initial-value problem for the charge is 00 + 200 + 500 = 12, (0) = 0(0) = 0. Then

() = −10(1 cos 20+ 2 sin 20) and try () =  ⇒ 500 = 12 or  = 3
125

.

The general solution is () = −10(1 cos 20+ 2 sin 20) + 3
125

. But 0 = (0) = 1 + 3
125

and

0() = () = −10[(−101 + 202) cos 20 + (−102 − 201) sin 20] but 0 = 0(0) = −101 + 202. Thus the charge

is() = − 1
250

−10(6 cos 20+ 3 sin 20) + 3
125

and the current is () = −10


3
5


sin 20.

14. (a) Here the initial-value problem for the charge is 200 + 240 + 200 = 12 with (0) = 0001 and 0(0) = 0.

Then () = −6(1 cos 8 + 2 sin 8) and try () =  ⇒  = 3
50

and the general solution is

() = −6(1 cos 8 + 2 sin 8) + 3
50
. But 0001 = (0) =  + 3

50
so 1 = −0059. Also

0() =  () = −6[(−61 + 82) cos 8+ (−62 − 81) sin 8] and 0 = 0(0) = −61 + 82 so

2 = −004425. Hence the charge is () = −−6(0059 cos 8 + 004425 sin 8) + 3
50

and the current is

() = −6(07375) sin 8.
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732 ¤ CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

(b)

15. As in Exercise 13, () = −10(1 cos 20 + 2 sin 20) but () = 12 sin 10 so try

() =  cos 10 +  sin 10. Substituting into the differential equation gives

(−100 + 200 + 500) cos 10 + (−100 − 200 + 500) sin 10 = 12 sin 10 ⇒

400 + 200 = 0 and 400 − 200 = 12. Thus  = − 3
250

,  = 3
125

and the general solution is

() = −10(1 cos 20 + 2 sin 20)− 3
250

cos 10 + 3
125

sin 10. But 0 = (0) = 1 − 3
250

so 1 = 3
250

.

Also 0() = 3
25

sin 10 + 6
25

cos 10 + −10[(−101 + 202) cos 20 + (−102 − 201) sin 20] and

0 = 0(0) = 6
25
− 101 + 202 so 2 = − 3

500
. Hence the charge is given by

() = −10


3
250

cos 20− 3
500

sin 20
− 3

250
cos 10+ 3

125
sin 10.

16. (a) As in Exercise 14, () = −6(1 cos 8 + 2 sin 8) but try() =  cos 10 + sin 10. Substituting into the

differential equation gives (−200+ 240 + 200) cos 10+ (−200 − 240+ 200) sin 10 = 12 sin 10,

so  = 0 and  = − 1
20
. Hence, the general solution is () = −6(1 cos 8 + 2 sin 8)− 1

20
cos 10. But

0001 = (0) = 1 − 1
20
, 0() = −6[(−61 + 82) cos 8+ (−62 − 81) sin 8]− 1

2
sin 10 and

0 = 0(0) = −61 + 82, so 1 = 0051 and 2 = 003825. Thus the charge is given by

() = −6(0051 cos 8 + 003825 sin 8)− 1
20

cos 10.

(b)

17. () =  cos( + ) ⇔ () = [cos cos  − sin sin  ] ⇔ () = 
1


cos+
2


sin


where

cos  = 1 and sin  = −2 ⇔ () = 1 cos + 2 sin. [Note that cos2  + sin2  = 1 ⇒ 21 + 22 = 2.]

18. (a) We approximate sin  by  and, with  = 1 and  = 98, the differential equation becomes
2

2
+ 98 = 0. The auxiliary

equation is 2 + 98 = 0 ⇒  = ±√98 , so the general solution is () = 1 cos
√

98 


+ 2 sin
√

98 

.
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SECTION 17.4 SERIES SOLUTIONS ¤ 733

Then 02 = (0) = 1 and 1 = 0(0) =
√

98 2 ⇒ 2 = 1√
98

, so the equation is

() = 02 cos
√

98 


+ 1√
98

sin
√

98 

.

(b) 0() = −02
√

98 sin
√

98 


+ cos
√

98 


= 0 or tan
√

98 


= 5√
98

, so the critical numbers are

 = 1√
98

tan−1


5√
98


+ √

98
 ( any integer). The maximum angle from the vertical is




1√
98

tan−1


5√
98


≈ 0377 radians (or about 217◦).

(c) From part (b), the critical numbers of () are spaced √
98

apart, and the time between successive maximum values

is 2


√
98


. Thus the period of the pendulum is 2√

98
≈ 2007 seconds.

(d) () = 0 ⇒ 02 cos
√

98 


+ 1√
98

sin
√

98 


= 0 ⇒ tan
√

98 


= −02
√

98 ⇒

 = 1√
98


tan−1

−02
√

98


+ 
 ≈ 0825 seconds.

(e) 0(0825) ≈ −1180 rads.

17.4 Series Solutions

1. Let () =
∞
=0


. Then 0() =

∞
=1


−1 and the given equation, 0 −  = 0, becomes

∞
=1


−1 −

∞
=0


 = 0. Replacing  by + 1 in the first sum gives

∞
=0

( + 1)+1
 −

∞
=0


 = 0, so

∞
=0

[(+ 1)+1 − ] = 0. Equating coefficients gives (+ 1)+1 −  = 0, so the recursion relation is

+1 =


+ 1
,  = 0 1 2   . Then 1 = 0, 2 =

1

2
1 =

0

2
, 3 =

1

3
2 =

1

3
· 1

2
0 =

0

3!
, 4 =

1

4
3 =

0

4!
, and

in general,  =
0

!
. Thus, the solution is () =

∞
=0


 =

∞
=0

0

!
 = 0

∞
=0



!
= 0

.

2. Let () =
∞

=0


. Then 0 =  ⇒ 0 −  = 0 ⇒

∞
= 1


−1 − 

∞
=0


 = 0 or

∞
=1


−1 −

∞
= 0


+1 = 0. Replacing  with + 1 in the first sum and  with − 1 in the second

gives
∞

=0

(+ 1)+1
 −

∞
=1

−1
 = 0 or 1 +

∞
= 1

(+ 1) +1
 −

∞
= 1

−1
 = 0. Thus,

1 +
∞

=1

[(+ 1)+1 − −1]
 = 0. Equating coefficients gives 1 = 0 and (+ 1) +1 − −1 = 0. Thus, the

recursion relation is +1 =
−1

+ 1
,  = 1 2,   . But 1 = 0, so 3 = 0 and 5 = 0 and in general 2+1 = 0. Also,
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734 ¤ CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

2 =
0

2
, 4 =

2

4
=

0

4 · 2 =
0

22 · 2! , 6 =
4

6
=

0

6 · 4 · 2 =
0

23 · 3! and in general 2 =
0

2 · !
. Thus, the solution

is () =
∞

= 0


 =

∞
= 0

2
2 =

∞
= 0

0

2 · !
2 = 0

∞
= 0


22


!

= 0
22.

3. Assuming () =
∞

=0


, we have 0() =

∞
=1


−1 =

∞
=0

( + 1)+1
 and

−2 = −
∞

=0


+2 = −

∞
=2

−2
. Hence, the equation 0 = 2 becomes

∞
=0

(+ 1)+1
 −

∞
=2

−2
 = 0

or 1 + 22+
∞

= 2

[(+ 1)+1 − −2]
 = 0. Equating coefficients gives 1 = 2 = 0 and +1 =

−2

+ 1

for  = 2 3,    . But 1 = 0, so 4 = 0 and 7 = 0 and in general 3+1 = 0. Similarly 2 = 0 so 3+2 = 0. Finally

3 =
0

3
, 6 =

3

6
=

0

6 · 3 =
0

32 · 2! , 9 =
6

9
=

0

9 · 6 · 3 =
0

33 · 3! ,   , and 3 =
0

3 · !
. Thus, the solution

is  () =
∞

=0


 =

∞
=0

3
3 =

∞
=0

0

3 · !
3 = 0

∞
= 0

3

3!
= 0

∞
= 0


33


!

= 0
33.

4. Let  () =
∞
=0


 ⇒ 0 () =

∞
=1


−1 =

∞
=0

( + 1)+1
. Then the differential equation becomes

(− 3)
∞
=0

(+ 1)+1
 + 2

∞
=0


 = 0 ⇒

∞
=0

(+ 1)+1
+1 − 3

∞
=0

(+ 1)+1
 + 2

∞
=0


 = 0 ⇒

∞
=1


 −

∞
=0

3( + 1)+1
 +

∞
=0

2
 = 0 ⇒

∞
=0

[( + 2) − 3( + 1)+1]
 = 0


since

∞
=1


 =

∞
=0





. Equating coefficients gives (+ 2) − 3(+ 1)+1 = 0, thus the recursion relation is

+1 =
(+ 2)

3(+ 1)
,  = 0 1 2    . Then 1 =

20

3
, 2 =

31

3(2)
=

30

32
, 3 =

42

3(3)
=

40

33
, 4 =

53

3(4)
=

50

34
, and

in general,  =
(+ 1)0

3
. Thus the solution is () =

∞
=0


 = 0

∞
=0

+ 1

3
.


Note that 0

∞
=0

+ 1

3
 =

90

(3− )2
for ||  3.



5. Let  () =
∞
=0


 ⇒ 0 () =

∞
=1


−1 and 00 () =

∞
=0

(+ 2)(+ 1)+2
. The differential equation

becomes
∞
=0

(+ 2)(+ 1)+2
 + 

∞
=1


−1 +

∞
=0


 = 0 or

∞
=0

[(+ 2)(+ 1)+2 +  + ] = 0


since

∞
=1


 =

∞
=0





. Equating coefficients gives ( + 2)(+ 1)+2 + (+ 1) = 0, thus the recursion

relation is +2 =
−(+ 1)

(+ 2)(+ 1)
= − 

+ 2
,  = 0 1 2    . Then the even

coefficients are given by 2 = −0

2
, 4 = −2

4
=

0

2 · 4 , 6 = −4

6
= − 0

2 · 4 · 6 , and in general,
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SECTION 17.4 SERIES SOLUTIONS ¤ 735

2 = (−1)
0

2 · 4 · · · · · 2 =
(−1)0

2 !
. The odd coefficients are 3 = −1

3
, 5 = −3

5
=

1

3 · 5 , 7 = −5

7
= − 1

3 · 5 · 7 ,

and in general, 2+1 = (−1)
1

3 · 5 · 7 · · · · · (2+ 1)
=

(−2) ! 1

(2+ 1)!
. The solution is

 () = 0
∞
=0

(−1)

2 !
2 + 1

∞
=0

(−2) !

(2+ 1)!
2+1.

6. Let () =
∞

= 0


. Then 00() =

∞
=2

(− 1)
−2 =

∞
=0

(+ 2)(+ 1)+2
. Hence, the equation 00 = 

becomes
∞

= 0

(+ 2)(+ 1)+2
 −

∞
= 0


 = 0 or

∞
=0

[(+ 2)(+ 1)+2 − ] = 0. So the recursion relation

is +2 =


(+ 2)(+ 1)
,  = 0 1    . Given 0 and 1, 2 =

0

2 · 1 , 4 =
2

4 · 3 =
0

4!
, 6 =

4

6 · 5 =
0

6!
,    ,

2 =
0

(2)!
and 3 =

1

3 · 2 , 5 =
3

5 · 4 =
1

5 · 4 · 3 · 2 =
1

5!
, 7 =

5

7 · 6 =
1

7!
,   , 2+1 =

1

(2+ 1)!
. Thus, the solution

is () =
∞

=0


 =

∞
=0

2
2 +

∞
=0

2+1
2+1 = 0

∞
=0

2

(2)!
+ 1

∞
=0

2+1

(2+ 1)!
. The solution can be written

as () = 0 cosh+ 1 sinh


or () = 0

 + −

2
+ 1

 − −

2
=

0 + 1

2
 +

0 − 1

2
−


.

7. Let  () =
∞
=0


 ⇒ 0 () =

∞
=1


−1 =

∞
=0

(+ 1)+1
 and 00 () =

∞
=0

(+ 2)(+ 1)+2
. Then

(−1)00() =
∞
=0

(+2)(+1)+2
+1−

∞
=0

(+2)(+1)+2
 =

∞
=1

(+1)+1
−

∞
=0

(+2)(+1)+2
.

Since
∞
=1

( + 1)+1
 =

∞
=0

( + 1)+1
, the differential equation becomes

∞
=0

(+ 1)+1
 −

∞
=0

(+ 2)(+ 1)+2
 +

∞
=0

(+ 1)+1
 = 0 ⇒

∞
=0

[(+ 1)+1 − (+ 2)(+ 1)+2 + (+ 1)+1]
 = 0 or

∞
=0

[(+ 1)2+1 − (+ 2)(+ 1)+2]
 = 0.

Equating coefficients gives (+ 1)2+1 − ( + 2)(+ 1)+2 = 0 for  = 0 1 2,    . Then the recursion relation is

+2 =
(+ 1)2

(+ 2)(+ 1)
+1 =

+ 1

+ 2
+1, so given 0 and 1, we have 2 = 1

2
1, 3 = 2

3
2 = 1

3
1, 4 = 3

4
3 = 1

4
1, and

in general  =
1


,  = 1 2 3,    . Thus the solution is () = 0 + 1

∞
=1




. Note that the solution can be expressed as

0 − 1 ln(1− ) for ||  1.

8. Assuming () =
∞

=0


, 00() =

∞
=2

(− 1)
−2 =

∞
=0

( + 2)( + 1)+2
 and

−() = −
∞

=0


+1 = −

∞
=1

−1
. The equation 00 =  becomes
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736 ¤ CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

∞
=0

(+ 2)(+ 1)+2
 −

∞
=1

−1
 = 0 or 22 +

∞
=1

[(+ 2)(+ 1)+2 − −1]
 = 0. Equating coefficients

gives 2 = 0 and +2 =
−1

(+ 2)(+ 1)
for  = 1 2,    . Since 2 = 0, 3+2 = 0 for  = 0 1 2    . Given 0,

3 =
0

3 · 2 , 6 =
3

6 · 5 =
0

6 · 5 · 3 · 2 ,    , 3 =
0

3(3− 1)(3− 3)(3− 4) · · · · · 6 · 5 · 3 · 2 . Given 1, 4 =
1

4 · 3 ,

7 =
4

7 · 6 =
1

7 · 6 · 4 · 3 ,    , 3+1 =
1

(3+ 1)3(3− 2)(3− 3)    7 · 6 · 4 · 3 . The solution can be written

as () = 0
∞

= 0

(3− 2)(3− 5) · · · · · 7 · 4 · 1
(3)!

3 + 1
∞

=0

(3− 1)(3− 4) · · · · · 8 · 5 · 2
(3+ 1)!

3+1.

9. Let () =
∞

=0


. Then −0() = −

∞
=1


−1 = −

∞
= 1


 = −

∞
= 0


,

00() =
∞

= 0

( + 2)( + 1)+2
, and the equation 00 − 0 −  = 0 becomes

∞
=0

[(+ 2)(+ 1)+2 −  − ] = 0. Thus, the recursion relation is

+2 =
 + 

(+ 2)(+ 1)
=

(+ 1)

(+ 2)(+ 1)
=



+ 2
for  = 0 1 2,    . One of the given conditions is (0) = 1. But

(0) =
∞
=0

(0) = 0 + 0 + 0 + · · · = 0, so 0 = 1. Hence, 2 =
0

2
=

1

2
, 4 =

2

4
=

1

2 · 4 , 6 =
4

6
=

1

2 · 4 · 6 ,    ,

2 =
1

2!
. The other given condition is 0(0) = 0. But 0(0) =

∞
=1

(0)−1 = 1 + 0 + 0 + · · · = 1, so 1 = 0.

By the recursion relation, 3 =
1

3
= 0, 5 = 0,    , 2+1 = 0 for  = 0, 1, 2,    . Thus, the solution to the initial-value

problem is () =
∞

=0


 =

∞
=0

2
2 =

∞
=0

2

2!
=

∞
= 0

(22)

!
= 

22.

10. Assuming that () =
∞

= 0


, we have 2 =

∞
= 0


+2 and

00() =
∞

= 2

(− 1)
−2 =

∞
=−2

(+ 4)(+ 3)+4
+2 = 22 + 63+

∞
= 0

(+ 4)(+ 3)+4
+2.

Thus, the equation 00 + 2 = 0 becomes 22 + 63+
∞

=0

[(+ 4)(+ 3)+4 + ]+2 = 0. So 2 = 3 = 0 and

the recursion relation is +4 = − 

(+ 4)(+ 3)
,  = 0 1 2,    . But 1 = 0(0) = 0 = 2 = 3 and by the recursion

relation, 4+1 = 4+2 = 4+3 = 0 for  = 0 1 2,    . Also, 0 = (0) = 1, so 4 = − 0

4 · 3 = − 1

4 · 3 ,

8 = − 4

8 · 7 =
(−1)

2

8 · 7 · 4 · 3 ,    , 4 =
(−1)



4(4− 1)(4− 4)(4− 5) · · · · · 4 · 3 . Thus, the solution to the initial-value

problem is () =
∞

=0


 = 0 +

∞
= 0

4
4 = 1 +

∞
=1

(−1)
4

4(4− 1)(4− 4)(4− 5) · · · · · 4 · 3 .
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SECTION 17.4 SERIES SOLUTIONS ¤ 737

11. Assuming that () =
∞

= 0


, we have  = 

∞
=0


 =

∞
=0


+1, 20 = 2

∞
= 1


−1 =

∞
=0


+1,

00() =
∞

= 2

(− 1)
−2 =

∞
=−1

(+ 3)(+ 2)+3
+1 [replace  with + 3]

= 22 +
∞

=0

(+ 3)(+ 2)+3
+1,

and the equation 00 + 20 +  = 0 becomes 22 +
∞

=0

[(+ 3)(+ 2)+3 +  + ]+1 = 0. So 2 = 0 and the

recursion relation is +3 =
− − 

(+ 3)(+ 2)
= − (+ 1)

(+ 3)(+ 2)
,  = 0 1 2,    . But 0 = (0) = 0 = 2 and by the

recursion relation, 3 = 3+2 = 0 for  = 0, 1, 2,    . Also, 1 = 0(0) = 1, so 4 = − 21

4 · 3 = − 2

4 · 3 ,

7 = − 54

7 · 6 = (−1)2
2 · 5

7 · 6 · 4 · 3 = (−1)2
2252

7!
,    , 3+1 = (−1)

2252 · · · · · (3− 1)2

(3+ 1)!
. Thus, the solution is

() =
∞

= 0


 =  +

∞
=1


(−1)

2252 · · · · · (3− 1)23+1

(3+ 1)!


.

12. (a) Let () =
∞

= 0


. Then 200() =

∞
=2

(− 1)
 =

∞
=0

( + 2)( + 1)+2
+2,

0() =
∞

= 1


 =

∞
=−1

(+ 2)+2
+2 = 1 +

∞
=0

(+ 2)+2
+2, and the equation

200 + 0 + 2 = 0 becomes 1 +
∞

= 0

{[(+ 2)(+ 1) + (+ 2)]+2 + }+2 = 0. So 1 = 0 and the

recursion relation is +2 = − 

(+ 2)2
,  = 0 1 2,    . But 1 = 0(0) = 0 so 2+1 = 0 for  = 0 1 2    .

Also, 0 = (0) = 1, so 2 = − 1

22
, 4 = − 2

42
= (−1)2

1

4222
= (−1)

2 1

24 (2!)2
, 6 = − 4

62
= (−1)3

1

26 (3!)2
,    ,

2 = (−1)
1

22 (!)2
. The solution is () =

∞
=0


 =

∞
=0

(−1)
2

22 (!)2
.

(b) The Taylor polynomials 0 to 12 are shown in the graph.

Because 10 and 12 are close together throughout the

interval [−5 5], it is reasonable to assume that 12 is a good

approximation to the Bessel function on that interval.
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738 ¤ CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

17 Review

1. True. See Theorem 17.1.3.

2. False. The differential equation is not homogeneous.

3. True. cosh and sinh are linearly independent solutions of this linear homogeneous equation.

4. False.  =  is a solution of the complementary equation, so we have to take () = .

1. The auxiliary equation is 42 − 1 = 0 ⇒ (2 + 1)(2 − 1) = 0 ⇒  = ±1
2
. Then the general solution

is  = 1
2 + 2

−2.

2. The auxiliary equation is 2 − 2 + 10 = 0 ⇒  = 1± 3, so  = (1 cos 3+ 2 sin 3).

3. The auxiliary equation is 2 + 3 = 0 ⇒  = ±√3 . Then the general solution is  = 1 cos
√

3


+ 2 sin
√

3

.

4. The auxiliary equation is 2 + 8 + 16 = 0 ⇒ ( + 4)2 = 0 ⇒  = −4, so the general solution is

 = 1
−4 + 2

−4.

5. 2 − 4 + 5 = 0 ⇒  = 2± , so  () = 2(1 cos+ 2 sin). Try  () = 2 ⇒ 0 = 22

and 00 = 42. Substitution into the differential equation gives 42 − 82 + 52 = 2 ⇒  = 1 and

the general solution is () = 2(1 cos+ 2 sin) + 2.

6. 2 +  − 2 = 0 ⇒  = 1,  = −2 and () = 1
 + 2

−2. Try () = 2 ++ ⇒ 0 = 2+

and 00 = 2. Substitution gives 2+ 2+ − 22 − 2− 2 = 2 ⇒  =  = − 1
2
,  = − 3

4
so the

general solution is () = 1
 + 2

−2 − 1
2
2 − 1

2
− 3

4
.

7. 2 − 2 + 1 = 0 ⇒  = 1 and () = 1
 + 2

. Try () = ( +) cos + ( + ) sin ⇒

0 = ( −−) sin+ (++) cos and 00 = (2 − −) cos+ (−2− −) sin. Substitution

gives (−2+ 2 − 2− 2) cos+ (2− 2+ 2 − 2) sin =  cos ⇒  = 0,  =  =  = − 1
2
.

The general solution is () = 1
 + 2

 − 1
2

cos− 1
2
( + 1) sin.

8. 2 + 4 = 0 ⇒  = ±2 and () = 1 cos 2 + 2 sin 2. Try () =  cos 2+ sin 2 so that no term

of  is a solution of the complementary equation. Then 0 = (+ 2) cos 2 + ( − 2) sin 2 and

00 = (4 − 4) cos 2 + (−4− 4) sin 2. Substitution gives 4 cos 2− 4 sin 2 = sin 2 ⇒

 = −1
4
and  = 0. The general solution is () = 1 cos 2+ 2 sin 2− 1

4
 cos 2.
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CHAPTER 17 REVIEW ¤ 739

9. 2 −  − 6 = 0 ⇒  = −2,  = 3 and () = 1
−2 + 2

3. For 00 − 0 − 6 = 1, try 1() = . Then

01() = 001 () = 0 and substitution into the differential equation gives  = − 1
6
. For 00 − 0 − 6 = −2 try

2() = −2 [since  = −2 satisfies the complementary equation]. Then 02 = ( − 2)−2 and

002 = (4− 4)−2, and substitution gives −5−2 = −2 ⇒  = −1
5
. The general solution then is

() = 1
−2 + 2

3 + 1() + 2() = 1
−2 + 2

3 − 1
6
− 1

5
−2.

10. Using variation of parameters, () = 1 cos + 2 sin, 01() = − csc sin = −1 ⇒ 1() = −, and

02() =
csc cos


= cot ⇒ 2() = ln |sin| ⇒  = − cos + sin ln |sin|. The solution is

() = (1 − ) cos+ (2 + ln |sin|) sin.

11. The auxiliary equation is 2 + 6 = 0 and the general solution is () = 1 + 2
−6 = 1 + 2

−6(−1). But

3 = (1) = 1 + 2 and 12 = 0(1) = −62. Thus 2 = −2, 1 = 5 and the solution is () = 5− 2−6(−1).

12. The auxiliary equation is 2 − 6 + 25 = 0 and the general solution is () = 3(1 cos 4 + 2 sin 4). But

2 = (0) = 1 and 1 = 0(0) = 31 + 42. Thus the solution is () = 3

2 cos 4− 5

4
sin 4


.

13. The auxiliary equation is 2 − 5 + 4 = 0 and the general solution is () = 1
 + 2

4. But 0 = (0) = 1 + 2

and 1 = 0(0) = 1 + 42, so the solution is () = 1
3
(4 − ).

14. () = 1 cos(3) + 2 sin(3). For 900 +  = 3, try 1() = +. Then 1() = 3. For 900 +  = −,

try 2() = −. Then 9− + − = − or 2() = 1
10
−. Thus the general solution is

() = 1 cos(3) + 2 sin(3) + 3+ 1
10
−. But 1 = (0) = 1 + 1

10
and 2 = 0(0) = 1

3
2 + 3− 1

10
, so

1 = 9
10

and 2 = −27
10
. Hence the solution is () = 1

10
[9 cos(3)− 27 sin(3)] + 3 + 1

10
−.

15. 2 + 4 + 29 = 0 ⇒  = −2± 5 and the general solution is  = −2(1 cos 5+ 2 sin 5). But 1 = (0) = 1 and

−1 = () = −1−2 ⇒ 1 = 2 , so there is no solution.

16. 2 + 4 + 29 = 0 ⇒  = −2± 5 and the general solution is  = −2(1 cos 5+ 2 sin 5). But 1 = (0) = 1 and

−−2 = () = −1−2 ⇒ 1 = 1, so 2 can vary and the solution of the boundary-value problem is

 = −2(cos 5+  sin 5), where  is any constant.

17. Let () =
∞
=0


. Then 00 () =

∞
=0

(− 1)
−2 =

∞
=0

( + 2)(+ 1)+2
 and the differential equation

becomes
∞
=0

[(+ 2)(+ 1)+2 + (+ 1)] = 0. Thus the recursion relation is +2 = −(+ 2)

for  = 0 1 2,    . But 0 = (0) = 0, so 2 = 0 for  = 0 1 2,    . Also 1 = 0(0) = 1, so 3 = −1

3
, 5 =

(−1)2

3 · 5 ,
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740 ¤ CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

7 =
(−1)3

3 · 5 · 7 =
(−1)3233!

7!
,    , 2+1 =

(−1) 2 !

(2+ 1)!
for  = 0 1 2    . Thus the solution to the initial-value problem

is () =
∞
=0


 =

∞
=0

(−1) 2 !

(2+ 1)!
2+1.

18. Let () =
∞
=0


. Then 00 () =

∞
=0

 (− 1) 
−2 =

∞
=0

(+ 2)(+ 1)+2
 and the differential equation

becomes
∞
=0

[(+ 2)(+ 1)+2 − (+ 2)] = 0. Thus the recursion relation is +2 =


+ 1
for

 = 0, 1, 2,    . Given 0 and 1, we have 2 =
0

1
, 4 =

2

3
=

0

1 · 3 , 6 =
4

5
=

0

1 · 3 · 5 ,    ,

2 =
0

1 · 3 · 5 · · · · · (2− 1)
= 0

2−1(− 1)!

(2− 1)!
. Similarly 3 =

1

2
, 5 =

3

4
=

1

2 · 4 ,

7 =
5

6
=

1

2 · 4 · 6 ,    , 2+1 =
1

2 · 4 · 6 · · · · · 2 =
1

2 !
. Thus the general solution is

() =
∞
=0


 = 0 + 0

∞
=1

2−1(− 1)!2

(2− 1)!
+ 

∞
=0

2+1

2 !
. But

∞
=0

2+1

2 !
= 

∞
=0


1
2
2


!
= 

22,

so () = 1
22 + 0 + 0

∞
=1

2−1(− 1)!2

(2− 1)!
.

19. Here the initial-value problem is 200 + 400 + 400 = 12,  (0) = 001, 0(0) = 0. Then

() = −10(1 cos 10 + 2 sin 10) and we try () = . Thus the general solution is

() = −10(1 cos 10 + 2 sin 10) + 3
100

. But 001 = 0(0) = 1 + 003 and 0 = 00(0) = −101 + 102,

so 1 = −002 = 2. Hence the charge is given by() = −002−10(cos 10 + sin 10) + 003.

20. By Hooke’s Law the spring constant is  = 64 and the initial-value problem is 200 + 160 + 64 = 0, (0) = 0,

0(0) = 24. Thus the general solution is () = −4(1 cos 4 + 2 sin 4). But 0 = (0) = 1 and

24 = 0(0) = −41 + 42 ⇒ 1 = 0, 2 = 06. Thus the position of the mass is given by () = 06−4 sin 4.

21. (a) Since we are assuming that the earth is a solid sphere of uniform density, we can calculate the density  as follows:

 =
mass of earth
volume of earth

=


4
3
3

. If  is the volume of the portion of the earth which lies within a distance  of the

center, then  = 4
3
3 and =  =

3

3
. Thus  = −

2
= −

3
.

(b) The particle is acted upon by a varying gravitational force during its motion. By Newton’s Second Law of Motion,


2

2
=  = −

3
, so 00() = −2 () where 2 =



3
. At the surface, − =  = −

2
, so

 =


2
. Therefore 2 =




.
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CHAPTER 17 REVIEW ¤ 741

(c) The differential equation 00 + 2 = 0 has auxiliary equation 2 + 2 = 0. (This is the  of Section 17.1,

not the  measuring distance from the earth’s center.) The roots of the auxiliary equation are ±, so by (11) in

Section 17.1, the general solution of our differential equation for  is () = 1 cos  + 2 sin. It follows that

0() = −1 sin + 2 cos . Now  (0) =  and 0(0) = 0, so 1 =  and 2 = 0. Thus () =  cos  and

0() = − sin . This is simple harmonic motion (see Section 17.3) with amplitude, frequency , and phase angle 0.

The period is  = 2.  ≈ 3960 mi = 3960 · 5280 ft and  = 32 fts2, so  =

 ≈ 124× 10−3 s−1 and

 = 2 ≈ 5079 s ≈ 85 min.

(d) () = 0 ⇔ cos  = 0 ⇔  = 
2

+  for some integer  ⇒ 0() = − sin


2

+ 


= ±. Thus the

particle passes through the center of the earth with speed  ≈ 4899 mis ≈ 17,600 mih.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



NOT FOR SALE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSTRUCTOR USE ONLY 
© Cengage Learning. All Rights Reserved. 



APPENDIXES

A Numbers, Inequalities, and Absolute Values

1. |5− 23| = |−18| = 18

2. |5|− |−23| = 5− 23 = −18

3. |−| =  because   0.

4. | − 2| =  − 2 because  − 2  0.

5.
√5− 5

 = − √5− 5


= 5−√5 because
√

5− 5  0.

6.
 |−2|− |−3|

 = |2− 3| = |−1| = 1

7. If   2, − 2  0, so |− 2| = −(− 2) = 2− .

8. If   2, − 2  0, so |− 2| = − 2.

9. |+ 1| =


+ 1 if + 1 ≥ 0

−(+ 1) if + 1  0
=


+ 1 if  ≥ −1

−− 1 if   −1

10. |2− 1| =

2− 1 if 2− 1 ≥ 0

−(2− 1) if 2− 1  0
=


2− 1 if  ≥ 1

2

1− 2 if   1
2

11.
2 + 1

 = 2 + 1 [since 2 + 1 ≥ 0 for all ].

12. Determine when 1− 22  0 ⇔ 1  22 ⇔ 2  1
2
⇔

√
2 


1
2
⇔ || 


1
2
⇔

  − 1√
2
or   1√

2
. Thus,

1− 22
 =


1− 22 if − 1√

2
≤  ≤ 1√

2

22 − 1 if   − 1√
2
or   1√

2

13. 2+ 7  3 ⇔ 2  −4 ⇔   −2, so  ∈ (−2∞).

14. 3− 11  4 ⇔ 3  15 ⇔   5, so  ∈ (−∞ 5).

15. 1−  ≤ 2 ⇔ − ≤ 1 ⇔  ≥ −1, so  ∈ [−1∞).

16. 4− 3 ≥ 6 ⇔ −3 ≥ 2 ⇔  ≤ − 2
3
, so  ∈ −∞− 2

3


.

17. 2+ 1  5− 8 ⇔ 9  3 ⇔ 3  , so  ∈ (3∞).

18. 1 + 5  5− 3 ⇔ 8  4 ⇔   1
2
, so  ∈  1

2
∞.

19. −1  2− 5  7 ⇔ 4  2  12 ⇔ 2    6, so  ∈ (2 6).
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1098 ¤ APPENDIX A NUMBERS, INEQUALITIES, AND ABSOLUTE VALUES

20. 1  3 + 4 ≤ 16 ⇔ −3  3 ≤ 12 ⇔ −1   ≤ 4, so  ∈ (−1 4].

21. 0 ≤ 1−   1 ⇔ −1 ≤ −  0 ⇔ 1 ≥   0, so  ∈ (0 1].

22. −5 ≤ 3− 2 ≤ 9 ⇔ −8 ≤ −2 ≤ 6 ⇔ 4 ≥  ≥ −3, so  ∈ [−3 4].

23. 4  2+ 1 ≤ 3+ 2. So 4  2+ 1 ⇔ 2  1 ⇔   1
2
, and

2+ 1 ≤ 3+ 2 ⇔ −1 ≤ . Thus,  ∈ −1 1
2


.

24. 2− 3  + 4  3− 2. So 2− 3  + 4 ⇔   7, and

+ 4  3− 2 ⇔ 6  2 ⇔ 3  , so  ∈ (3 7).

25. (− 1)(− 2)  0.

Case 1: (both factors are positive, so their product is positive) − 1  0 ⇔   1,

and − 2  0 ⇔   2, so  ∈ (2∞).

Case 2: (both factors are negative, so their product is positive) − 1  0 ⇔   1,

and − 2  0 ⇔   2, so  ∈ (−∞ 1).

Thus, the solution set is (−∞ 1) ∪ (2∞).

26. (2+ 3) (− 1) ≥ 0.

Case 1: 2+ 3 ≥ 0 ⇔  ≥ − 3
2
, and − 1 ≥ 0 ⇔  ≥ 1, so  ∈ [1∞).

Case 2: 2+ 3 ≤ 0 ⇔  ≤ − 3
2
, and − 1 ≤ 0 ⇔  ≤ 1, so  ∈ −∞− 3

2


.

Thus, the solution set is
−∞− 3

2

 ∪ [1∞).

27. 22 +  ≤ 1 ⇔ 22 + − 1 ≤ 0 ⇔ (2− 1) ( + 1) ≤ 0.

Case 1: 2− 1 ≥ 0 ⇔  ≥ 1
2
, and  + 1 ≤ 0 ⇔  ≤ −1,

which is an impossible combination.

Case 2: 2− 1 ≤ 0 ⇔  ≤ 1
2
, and  + 1 ≥ 0 ⇔  ≥ −1, so  ∈ −1 1

2


.

Thus, the solution set is
−1 1

2


.

28. 2  2+ 8 ⇔ 2 − 2− 8  0 ⇔ (− 4)(+ 2)  0.

Case 1:   4 and   −2, which is impossible.

Case 2:   4 and   −2.

Thus, the solution set is (−2 4).

29. 2 + + 1  0 ⇔ 2 + + 1
4

+ 3
4
 0 ⇔ 

+ 1
2

2
+ 3

4
 0. But since

 + 1
2

2 ≥ 0 for every real , the original inequality will be true for all real  as well.

Thus, the solution set is (−∞∞).
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30. 2 +   1 ⇔ 2 +  − 1  0. Using the quadratic formula, we obtain

2 + − 1 =

− −1−√5

2


− −1 +

√
5

2


 0.

Case 1: − −1−√5
2

 0 and − −1 +
√

5
2

 0, so that   −1 +
√

5
2

.

Case 2: − −1−√5
2

 0 and − −1 +
√

5
2

 0, so that   −1−√5
2

.

Thus, the solution set is

−∞ −1−√5

2


∪

−1 +

√
5

2
∞

.

31. 2  3 ⇔ 2 − 3  0 ⇔ 
−√3


+

√
3

 0.

Case 1:  
√

3 and   −√3, which is impossible.

Case 2:  
√

3 and   −√3.

Thus, the solution set is
−√3

√
3

.

Another method: 2  3 ⇔ ||  √3 ⇔ −√3   
√

3.

32. 2 ≥ 5 ⇔ 2 − 5 ≥ 0 ⇔ 
−√5


+

√
5
 ≥ 0.

Case 1:  ≥ √5 and  ≥ −√5, so  ∈ √5∞.
Case 2:  ≤ √5 and  ≤ −√5, so  ∈ −∞−√5


.

Thus, the solution set is
−∞−√5

 ∪ √5∞.
Another method: 2 ≥ 5 ⇔ || ≥ √5 ⇔  ≥ √5 or  ≤ −√5.

33. 3 − 2 ≤ 0 ⇔ 2(− 1) ≤ 0. Since 2 ≥ 0 for all , the inequality is satisfied when − 1 ≤ 0 ⇔  ≤ 1.

Thus, the solution set is (−∞ 1].

34. (+ 1)(− 2)(+ 3) = 0 ⇔  = −1, 2, or −3. Construct a chart:

Interval + 1 − 2 + 3 (+ 1)(− 2)(+ 3)

  −3 − − − −
−3    −1 − − + +

−1    2 + − + −
  2 + + + +

Thus, ( + 1)(− 2)( + 3) ≥ 0 on [−3−1] and [2∞), and the solution set

is [−3−1] ∪ [2∞).

35. 3   ⇔ 3 −   0 ⇔ 

2 − 1


 0 ⇔ (− 1)(+ 1)  0. Construct a chart:

Interval  − 1 + 1 (− 1)( + 1)

  −1 − − − −
−1    0 − − + +

0    1 + − + −
  1 + + + +

Since 3   when the last column is positive, the solution set is (−1 0) ∪ (1∞).

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



1100 ¤ APPENDIX A NUMBERS, INEQUALITIES, AND ABSOLUTE VALUES

36. 3 + 3  42 ⇔ 3 − 42 + 3  0 ⇔ 

2 − 4+ 3


 0 ⇔ (− 1)(− 3)  0.

Interval  − 1 − 3 (− 1)(− 3)

  0 − − − −
0    1 + − − +

1    3 + + − −
  3 + + + +

Thus, the solution set is (−∞ 0) ∪ (1 3).

37. 1  4. This is clearly true for   0. So suppose   0. then 1  4 ⇔
1  4 ⇔ 1

4
 . Thus, the solution set is (−∞ 0) ∪  1

4
∞.

38. −3  1 ≤ 1. We solve the two inequalities separately and take the intersection of the solution sets. First, −3  1 is

clearly true for   0. So suppose   0. Then −3  1 ⇔ −3  1 ⇔   − 1
3
, so for this inequality, the solution

set is
−∞− 1

3

 ∪ (0∞). Now 1 ≤ 1 is clearly true if   0. So suppose   0. Then 1 ≤ 1 ⇔ 1 ≤ , and the

solution set here is (−∞ 0) ∪ [1∞).

Taking the intersection of the two solution sets gives the final solution set:−∞−1
3

 ∪ [1∞).

39.  = 5
9
( − 32) ⇒  = 9

5
 + 32. So 50 ≤  ≤ 95 ⇒ 50 ≤ 9

5
 + 32 ≤ 95 ⇒ 18 ≤ 9

5
 ≤ 63 ⇒

10 ≤  ≤ 35. So the interval is [10 35].

40. Since 20 ≤  ≤ 30 and  = 5
9
( − 32), we have 20 ≤ 5

9
( − 32) ≤ 30 ⇒ 36 ≤  − 32 ≤ 54 ⇒ 68 ≤  ≤ 86.

So the interval is [68 86].

41. (a) Let  represent the temperature in degrees Celsius and  the height in km.  = 20 when  = 0 and  decreases by 10◦C

for every km (1◦C for each 100-m rise). Thus,  = 20− 10 when 0 ≤  ≤ 12.

(b) From part (a),  = 20− 10 ⇒ 10 = 20−  ⇒  = 2− 10. So 0 ≤  ≤ 5 ⇒ 0 ≤ 2− 10 ≤ 5 ⇒
−2 ≤ −10 ≤ 3 ⇒ −20 ≤ − ≤ 30 ⇒ 20 ≥  ≥ −30 ⇒ −30 ≤  ≤ 20. Thus, the range of

temperatures (in ◦C) to be expected is [−30 20].

42. The ball will be at least 32 ft above the ground if  ≥ 32 ⇔ 128 + 16− 162 ≥ 32 ⇔ 162 − 16− 96 ≤ 0 ⇔
16(− 3)( + 2) ≤ 0.  = 3 and  = −2 are endpoints of the interval we’re looking for, and constructing a table gives

−2 ≤  ≤ 3. But  ≥ 0, so the ball will be at least 32 ft above the ground in the time interval [0 3].

43. |2| = 3 ⇔ either 2 = 3 or 2 = −3 ⇔  = 3
2
or  = − 3

2
.

44. |3+ 5| = 1 ⇔ either 3+ 5 = 1 or −1. In the first case, 3 = −4 ⇔  = − 4
3
, and in the second case,

3 = −6 ⇔  = −2. So the solutions are−2 and − 4
3
.
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45. |+ 3| = |2+ 1| ⇔ either + 3 = 2 + 1 or + 3 = − (2+ 1). In the first case,  = 2, and in the second case,

+ 3 = −2− 1 ⇔ 3 = −4 ⇔  = − 4
3
. So the solutions are − 4

3
and 2.

46.

2− 1

+ 1

 = 3 ⇔ either
2− 1

+ 1
= 3 or

2− 1

+ 1
= −3. In the first case, 2− 1 = 3+ 3 ⇔  = −4, and

in the second case, 2− 1 = −3− 3 ⇔  = − 2
5
.

47. By Property 5 of absolute values, ||  3 ⇔ −3    3, so  ∈ (−3 3).

48. By Properties 4 and 6 of absolute values, || ≥ 3 ⇔  ≤ −3 or  ≥ 3, so  ∈ (−∞−3] ∪ [3∞).

49. |− 4|  1 ⇔ −1  − 4  1 ⇔ 3    5, so  ∈ (3 5).

50. |− 6|  01 ⇔ −01  − 6  01 ⇔ 59    61, so  ∈ (59 61).

51. |+ 5| ≥ 2 ⇔ + 5 ≥ 2 or  + 5 ≤ −2 ⇔  ≥ −3 or  ≤ −7, so  ∈ (−∞−7] ∪ [−3∞).

52. |+ 1| ≥ 3 ⇔ + 1 ≥ 3 or  + 1 ≤ −3 ⇔  ≥ 2 or  ≤ −4, so  ∈ (−∞−4] ∪ [2∞).

53. |2− 3| ≤ 04 ⇔ −04 ≤ 2− 3 ≤ 04 ⇔ 26 ≤ 2 ≤ 34 ⇔ 13 ≤  ≤ 17, so  ∈ [13 17].

54. |5− 2|  6 ⇔ −6  5− 2  6 ⇔ −4  5  8 ⇔ − 4
5
   8

5
, so  ∈ − 4

5
 8

5


.

55. 1 ≤ || ≤ 4. So either 1 ≤  ≤ 4 or 1 ≤ − ≤ 4 ⇔ −1 ≥  ≥ −4. Thus,  ∈ [−4−1] ∪ [1 4].

56. 0  |− 5|  1
2
. Clearly 0  |− 5| for  6= 5. Now |− 5|  1

2
⇔ −1

2
 − 5  1

2
⇔ 45    55. So the

solution set is (45 5) ∪ (5 55).

57. (− ) ≥  ⇔ −  ≥ 


⇔  ≥ 


+  =

+ 


⇔  ≥ + 



58.  ≤ +   2 ⇔ −  ≤   2−  ⇔ − 


≤  

2− 


(since   0)

59.  +    ⇔   −  ⇔  
− 


[since   0]

60.
 + 


≤  ⇔  +  ≥  [since   0] ⇔  ≥ −  ⇔  ≤  (− 1)


[since   0]

61. |( + )− 5| = |(− 2) + ( − 3)| ≤ |− 2|+ | − 3|  001 + 004 = 005

62. Use the Triangle Inequality: |+ 3|  1
2
⇒

|4+ 13| = |4 (+ 3) + 1| ≤ |4 (+ 3)|+ |1| = 4 |+ 3|+ 1  4


1
2


+ 1 = 3

Another method: |+ 3|  1
2
⇒ − 1

2
  + 3  1

2
⇒ −2  4 + 12  2 ⇒ −1  4 + 13  3 ⇒

|4+ 13|  3

63. If    then +   +  and +   + . So 2  +   2. Dividing by 2, we get   1
2

(+ )  .
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64. If 0    , then
1


 0. So    ⇒ 1


·   1


·  ⇔ 1




1


.

65. || =


()2 =
√
22 =

√
2
√
2 = || ||

66.



 || = 

· 
 = || [using the result of Exercise 65]. Dividing the equation through by || gives




 =
||
|| .

67. If 0    , then  ·    ·  and  ·    ·  [using Rule 3 of Inequalities]. So 2    2 and hence 2  2.

68. Following the hint, the Triangle Inequality becomes |(− ) + | ≤ |− |+ || ⇔ || ≤ |− |+ || ⇔
|− | ≥ ||− ||.

69. Observe that the sum, difference and product of two integers is always an integer. Let the rational numbers be represented

by  =  and  =  (where, ,  and  are integers with  6= 0,  6= 0). Now  +  =



+




=

 + 


,

but +  and  are both integers, so
 + 


=  +  is a rational number by definition. Similarly,

 −  =



− 


=

 − 


is a rational number. Finally,  ·  =




· 


=



but and  are both integers, so




=  ·  is a rational number by definition.

70. (a) No. Consider the case of
√

2 and −√2. Both are irrational numbers, yet
√

2 +
−√2


= 0 and 0,

being an integer, is not irrational.

(b) No. Consider the case of
√

2 and
√

2. Both are irrational numbers, yet
√

2 ·√2 = 2 is not irrational.

B Coordinate Geometry and Lines

1. Use the distance formula with 1(1 1) = (1 1) and 2(2 2) = (4 5) to get

|12| =


(4− 1)2 + (5− 1)2 =
√

32 + 42 =
√

25 = 5

2. The distance from (1−3) to (5 7) is


(5− 1)2 + [7− (−3)]2 =
√

42 + 102 =
√

116 = 2
√

29.

3. The distance from (6−2) to (−1 3) is

−1− 6)2 + [3− (−2)]2 =


(−7)2 + 52 =

√
74.

4. The distance from (1−6) to (−1−3) is


(−1− 1)2 + [−3− (−6)]2 =


(−2)2 + 32 =
√

13.

5. The distance from (2 5) to (4−7) is


(4− 2)2 + (−7− 5)2 =


22 + (−12)2 =
√

148 = 2
√

37.

6. The distance from ( ) to ( ) is


(− )2 + (− )2 =


(− )2 + (− )2 =


2(− )2 =
√

2 |− |.

7. The slope of the line through  (1 5) and(4 11) is =
11− 5

4− 1
=

6

3
= 2.

8. The slope of the line through  (−1 6) and (4−3) is =
−3− 6

4− (−1)
= −9

5
.
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9. The slope of the line through  (−3 3) and (−1−6) is =
−6− 3

−1− (−3)
= −9

2
.

10. The slope of the line through  (−1−4) and(6 0) is =
0− (−4)

6− (−1)
=

4

7
.

11. Using (0 2), (−3−1), and (−4 3), we have || =


(−4− 0)2 + (3− 2)2 =


(−4)2 + 12 =
√

17 and

|| =


[−4− (−3)]2 + [3− (−1)]2 =


(−1)2 + 42 =
√

17, so the triangle has two sides of equal length, and is

isosceles.

12. (a) Using (6−7), (11−3), and (2−2), we have

|| =


(11− 6)2 + [−3− (−7)]2 =
√

52 + 42 =
√

41,

|| =


(2− 6)2 + [−2− (−7)]2 =


(−4)2 + 52 =
√

41, and

|| =


(2− 11)2 + [−2− (−3)]2 =


(−9)2 + 12 =
√

82.

Thus, ||2 + ||2 = 41 + 41 = 82 = ||2 and so4 is a right triangle.

(b)  =
−3− (−7)

11− 6
=

4

5
and =

−2− (−7)

2− 6
= −5

4
. Thus · = −1 and so  is perpendicular to 

and4 must be a right triangle.

(c) Taking lengths from part (a), the base is
√

41 and the height is
√

41. Thus the area is 1
2
 = 1

2

√
41
√

41 = 41
2
.

13. Using (−2 9), (4 6), (1 0), and (−5 3), we have

|| =


[4− (−2)]2 + (6− 9)2 =


62 + (−3)2 =
√

45 =
√

9
√

5 = 3
√

5,

|| =


(1− 4)2 + (0− 6)2 =


(−3)2 + (−6)2 =
√

45 =
√

9
√

5 = 3
√

5,

|| =


(−5− 1)2 + (3− 0)2 =


(−6)2 + 32 =
√

45 =
√

9
√

5 = 3
√

5, and

|| =


[−2− (−5)]2 + (9− 3)2 =
√

32 + 62 =
√

45 =
√

9
√

5 = 3
√

5. So all sides are of equal length and we have a

rhombus. Moreover, =
6− 9

4− (−2)
= −1

2
, =

0− 6

1− 4
= 2, =

3− 0

−5− 1
= −1

2
, and

 =
9− 3

−2− (−5)
= 2, so the sides are perpendicular. Thus, , , , and are vertices of a square.

14. (a) Using (−1 3), (3 11), and (5 15), we have

|| =


[3− (−1)]2 + (11− 3)2 =
√

42 + 82 =
√

80 = 4
√

5,

|| =


(5− 3)2 + (15− 11)2 =
√

22 + 42 =
√

20 = 2
√

5, and

|| =


[5− (−1)]2 + (15− 3)2 =
√

62 + 122 =
√

180 = 6
√

5. Thus, || = ||+ ||.

(b)  =
11− 3

3− (−1)
=

8

4
= 2 and =

15− 3

5− (−1)
=

12

6
= 2. Since the segments  and  have the same slope, ,

 and  must be collinear.
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15. For the vertices (1 1), (7 4), (5 10), and(−1 7), the slope of the line segment  is
4− 1

7− 1
=

1

2
, the slope of 

is
7− 10

−1− 5
=

1

2
, the slope of  is

10− 4

5− 7
= −3, and the slope of is

1− 7

1− (−1)
= −3. So  is parallel to  and

 is parallel to. Hence  is a parallelogram.

16. For the vertices (1 1), (11 3), (10 8), and(0 6), the slopes of the four sides are =
3− 1

11− 1
=

1

5
,

 =
8− 3

10− 11
= −5, =

6− 8

0− 10
=

1

5
, and =

1− 6

1− 0
= −5. Hence  k ,  k ,  ⊥ ,

 ⊥ ,  ⊥ , and ⊥ , and so  is a rectangle.

17. The graph of the equation  = 3 is a vertical line with

-intercept 3. The line does not have a slope.

18. The graph of the equation  = −2 is a horizontal line

with -intercept −2. The line has slope 0.

19.  = 0 ⇔  = 0 or  = 0. The graph consists

of the coordinate axes.

20. || = 1 ⇔  = 1 or  = −1

21. By the point-slope form of the equation of a line, an equation of the line through (2−3) with slope 6 is

 − (−3) = 6(− 2) or  = 6− 15.

22.  − 4 = −3[− (−1)] or  = −3+ 1

23.  − 7 = 2
3
(− 1) or  = 2

3
+ 19

3

24.  − (−5) = − 7
2
[− (−3)] or  = − 7

2
− 31

2

25. The slope of the line through (2 1) and (1 6) is =
6− 1

1− 2
= −5, so an equation of the line is

 − 1 = −5(− 2) or  = −5+ 11.
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26. For (−1−2) and (4 3), =
3− (−2)

4− (−1)
= 1. An equation of the line is  − 3 = 1(− 4) or  = − 1.

27. By the slope-intercept form of the equation of a line, an equation of the line is  = 3− 2.

28. By the slope-intercept form of the equation of a line, an equation of the line is  = 2
5
+ 4.

29. Since the line passes through (1 0) and (0−3), its slope is =
−3− 0

0− 1
= 3, so an equation is  = 3− 3.

Another method: From Exercise 61,


1
+



−3
= 1 ⇒ −3+  = −3 ⇒  = 3− 3.

30. For (−8 0) and (0 6), =
6− 0

0− (−8)
=

3

4
. So an equation is  = 3

4
+ 6.

Another method: From Exercise 61,


−8
+



6
= 1 ⇒ −3+ 4 = 24 ⇒  = 3

4
+ 6.

31. The line is parallel to the -axis, so it is horizontal and must have the form  = . Since it goes through the point

( ) = (4 5), the equation is  = 5.

32. The line is parallel to the -axis, so it is vertical and must have the form  = . Since it goes through the point ( ) = (4 5),

the equation is  = 4.

33. Putting the line  + 2 = 6 into its slope-intercept form gives us  = − 1
2
+ 3, so we see that this line has slope− 1

2
. Thus,

we want the line of slope − 1
2
that passes through the point (1−6):  − (−6) = − 1

2
(− 1) ⇔  = − 1

2
− 11

2
.

34. 2+ 3 + 4 = 0 ⇔  = − 2
3
− 4

3
, so = − 2

3
and the required line is  = − 2

3
+ 6.

35. 2+ 5 + 8 = 0 ⇔  = − 2
5
− 8

5
. Since this line has slope − 2

5
, a line perpendicular to it would have slope 5

2
, so the

required line is  − (−2) = 5
2
[− (−1)] ⇔  = 5

2
+ 1

2
.

36. 4− 8 = 1 ⇔  = 1
2
− 1

8
. Since this line has slope 1

2
, a line perpendicular to it would have slope−2, so the required

line is  − − 2
3


= −2


− 1

2

 ⇔  = −2+ 1
3
.

37. + 3 = 0 ⇔  = − 1
3
,

so the slope is− 1
3
and the

-intercept is 0.

38. 2− 5 = 0 ⇔  = 2
5
, so

the slope is 2
5
and the -intercept

is 0.

39.  = −2 is a horizontal line with

slope 0 and -intercept −2.
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40. 2− 3 + 6 = 0 ⇔
 = 2

3
+ 2, so the slope is 2

3

and the -intercept is 2.

41. 3− 4 = 12 ⇔
 = 3

4
− 3, so the slope is 3

4

and the -intercept is −3.

42. 4+ 5 = 10 ⇔
 = − 4

5
+ 2, so the slope is

− 4
5
and the -intercept is 2.

43. {( ) |   0} 44. {( ) |   0} 45. {( ) |   0} =

{( ) |   0 and   0}
∪ {( ) |   0 and   0}

46. {( ) |  ≥ 1 and   3} 47.

( )

 || ≤ 2


=

{( ) | −2 ≤  ≤ 2}
48.

( )

 ||  3 and ||  2


49. {( ) | 0 ≤  ≤ 4  ≤ 2} 50. {( ) |   2− 1} 51. {( ) | 1 +  ≤  ≤ 1− 2}
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52.

( ) | − ≤   1

2
(+ 3)


53. Let  (0 ) be a point on the -axis. The distance from  to (5−5) is

(5− 0)2 + (−5− )2 =


52 + ( + 5)2. The distance from  to (1 1) is
(1− 0)2 + (1− )2 =


12 + ( − 1)2. We want these distances to be equal:

52 + ( + 5)2 =


12 + ( − 1)2 ⇔ 52 + (+ 5)2 = 12 + (− 1)2 ⇔
25 + (2 + 10 + 25) = 1 + (2 − 2 + 1) ⇔ 12 = −48 ⇔  = −4.

So the desired point is (0−4).

54. Let be the point
1 + 2

2

1 + 2

2


. Then

|1|2 =

1 − 1 + 2

2

2
+

1 − 1 + 2

2

2
=
1 − 2

2

2
+
1 − 2

2

2
|2|2 =


2 − 1 + 2

2

2
+

2 − 1 + 2

2

2
=
2 − 1

2

2
+
2 − 1

2

2
Hence, |1| = |2|; that is, is equidistant from 1 and 2.

55. (a) Using the midpoint formula from Exercise 54 with (1 3) and (7 15), we get


1 + 7
2

 3+ 15
2


= (4 9).

(b) Using the midpoint formula from Exercise 54 with (−1 6) and (8−12), we get

−1 + 8

2


6+ (−12)

2


=


7
2
−3


.

56. With (1 0), (3 6), and (8 2), the midpoint1 of  is


1 + 3
2

 0+ 6
2


= (2 3), the midpoint2 of  is

3 + 8
2

 6+ 2
2


=


11
2
 4

, and the midpoint3 of  is


8+ 1

2
 2 + 0

2


=


9
2
 1

. The lengths of the medians are

|2| =


11
2
− 1
2

+ (4− 0)2 =


9
2

2
+ 42 =


145
4

=
√

145
2

|3|=


9
2
− 3
2

+ (1− 6)2 =


3
2

2
+ (−5)

2
=


109
4

=
√

109
2

|1|=


(2− 8)2 + (3− 2)2 =


(−6)2 + 12 =
√

37

57. 2−  = 4 ⇔  = 2− 4 ⇒ 1 = 2 and 6− 2 = 10 ⇔ 2 = 6− 10 ⇔  = 3− 5 ⇒ 2 = 3.

Since1 6= 2, the two lines are not parallel. To find the point of intersection: 2− 4 = 3− 5 ⇔  = 1 ⇒
 = −2. Thus, the point of intersection is (1−2).

58. 3− 5 + 19 = 0 ⇔ 5 = 3 + 19 ⇔  = 3
5
 + 19

5
⇒ 1 = 3

5
and 10 + 6 − 50 = 0 ⇔

6 = −10+ 50 ⇔  = − 5
3
+ 25

3
⇒ 2 = − 5

3
. Since12 = 3

5

− 5
3


= −1, the two lines are perpendicular.

To find the point of intersection: 3
5
+ 19

5
= − 5

3
+ 25

3
⇔ 9+ 57 = −25+ 125 ⇔ 34 = 68 ⇔  = 2 ⇒

 = 3
5
· 2 + 19

5
= 25

5
= 5. Thus, the point of intersection is (2 5).

59. With (1 4) and (7−2), the slope of segment  is −2− 4
7−1

= −1, so its perpendicular bisector has slope 1. The midpoint

of  is


1+ 7
2


4 + (−2)

2


= (4 1), so an equation of the perpendicular bisector is  − 1 = 1(− 4) or  = − 3.
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60. (a) Side  has slope 4− 0
3− 1

= 2, so its equation is − 0 = 2(− 1) ⇔  = 2− 2. Side has slope 6− 4
−1− 3

= − 1
2
, so

its equation is  − 4 = − 1
2
(− 3) ⇔  = − 1

2
 + 11

2
. Side  has slope 0− 6

1− (−1)
= −3, so its equation is

 − 0 = −3(− 1) ⇔  = −3 + 3.

(b) 1 (the midpoint of ) has coordinates


1 +3
2

 0+ 4
2


= (2 2). 2 (the midpoint of ) has coordinates

3− 1
2

 4+ 6
2


= (1 5). 3 (the midpoint of  ) has coordinates


1− 1

2
 0 + 6

2


= (0 3). 1 has slope 2− 6

2− (−1)
= − 4

3

and hence equation  − 2 = − 4
3

(− 2) ⇔  = − 4
3
 + 14

3
. 2 is a vertical line with equation  = 1. 3 has

slope 3− 4
0− 3

= 1
3
and hence equation  − 3 = 1

3
(− 0) ⇔  = 1

3
+ 3. 2 and 1 intersect where  = 1 and

 = − 4
3
(1) + 14

3
= 10

3
, or at


1 10

3


. 2 and 3 intersect where  = 1 and  = 1

3
(1) + 3 = 10

3
, or at


1 10

3


, so

this is the point where all three medians intersect.

61. (a) Since the -intercept is , the point ( 0) is on the line, and similarly since the -intercept is , (0 ) is on the line. Hence,

the slope of the line is =
− 0

0− 
= − 


. Substituting into  =  +  gives  = − 


 +  ⇔ 


+  =  ⇔




+




= 1.

(b) Letting  = 6 and  = −8 gives


6
+



−8
= 1 ⇔ −8 + 6 = −48 [multiply by −48] ⇔ 6 = 8− 48 ⇔

3 = 4− 24 ⇔  = 4
3
− 8.

62. (a) Let  = distance traveled (in miles) and  = time elapsed (in hours). At  = 0,

 = 0 and at  = 50 minutes = 50 · 1
60

= 5
6
h,  = 40. Thus, we have two

points: (0 0) and


5
6
 40

, so =

40− 0

56− 0
= 48 and  = 48.

(b)

(c) The slope is 48 and represents the car’s speed in mih.

C Graphs of Second-Degree Equations

1. An equation of the circle with center (3−1) and radius 5 is (− 3)2 + ( + 1)2 = 52 = 25.

2. An equation of the circle with center (−2−8) and radius 10 is (+ 2)2 + ( + 8)2 = 102 = 100.

3. The equation has the form 2 + 2 = 2. Since (4 7) lies on the circle, we have 42 + 72 = 2 ⇒ 2 = 65. So the

required equation is 2 + 2 = 65.

4. The equation has the form ( + 1)2 + ( − 5)2 = 2. Since (−4−6) lies on the circle, we have

2 = (−4 + 1)2 + (−6− 5)2 = 130. So an equation is ( + 1)2 + ( − 5)2 = 130.

5. 2 + 2 − 4 + 10 + 13 = 0 ⇔ 2 − 4 + 2 + 10 = −13 ⇔
(2 − 4 + 4) + (2 + 10 + 25) = −13 + 4 + 25 = 16 ⇔ (− 2)2 + ( + 5)2 = 42. Thus, we have a circle with

center (2−5) and radius 4.

6. 2 + 2 + 6 + 2 = 0 ⇔ 2 + (2 + 6 + 9) = −2 + 9 ⇔ 2 + ( + 3)2 = 7. Thus, we have a circle with center

(0−3) and radius
√

7.
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7. 2 + 2 +  = 0 ⇔ 
2 + + 1

4


+ 2 = 1

4
⇔ 

+ 1
2

2
+ 2 =


1
2

2
. Thus, we have a circle with center

− 1
2
 0


and radius 1
2
.

8. 162 + 162 + 8 + 32 + 1 = 0 ⇔ 16

2 + 1

2
 + 1

16


+ 16(2 + 2 + 1) = −1 + 1 + 16 ⇔

16

+ 1

4

2
+ 16( + 1)2 = 16 ⇔ 

+ 1
4

2
+ ( + 1)2 = 1. Thus, we have a circle with center

− 1
4
−1


and radius 1.

9. 22 + 22 − +  = 1 ⇔ 2

2 − 1

2
+ 1

16


+ 2

2 + 1

2
 + 1

16


= 1 + 1

8
+ 1

8
⇔

2

− 1

4

2
+ 2

 + 1

4

2
= 5

4
⇔ 

− 1
4

2
+

 + 1

4

2
= 5

8
. Thus, we have a circle with center


1
4
− 1

4


and

radius
√

5

2
√

2
=
√

10
4
.

10. 2 + 2 +  +  +  = 0 ⇔ 
2 + + 1

4
2


+

2 +  + 1

4
2


= − + 1
4
2 + 1

4
2 ⇔

 + 1
2

2

+

 + 1

2

2

= 1
4
(2 + 2 − 4). For this to represent a nondegenerate circle, 1

4
(2 + 2 − 4)  0 or

2 + 2  4. If this condition is satisfied, the circle has center
− 1

2
− 1

2


and radius 1

2

√
2 + 2 − 4.

11.  = −2. Parabola 12. 2 − 2 = 1. Hyperbola

13. 2 + 42 = 16 ⇔ 2

16
+

2

4
= 1. Ellipse 14.  = −22. Parabola

15. 162 − 252 = 400 ⇔ 2

25
− 2

16
= 1. Hyperbola 16. 252 + 42 = 100 ⇔ 2

4
+

2

25
= 1. Ellipse

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



1110 ¤ APPENDIX C GRAPHS OF SECOND-DEGREE EQUATIONS

17. 42 + 2 = 1 ⇔ 2

14
+ 2 = 1. Ellipse 18.  = 2 + 2. Parabola with vertex at (0 2)

19.  = 2 − 1. Parabola with vertex at (−1 0) 20. 92 − 252 = 225 ⇔ 2

25
− 2

9
= 1. Hyperbola

21. 92 − 2 = 9 ⇔ 2 − 2

9
= 1. Hyperbola 22. 22 + 52 = 10 ⇔ 2

5
+

2

2
= 1. Ellipse

23.  = 4. Hyperbola 24.  = 2 + 2 =

2 + 2+ 1

− 1 = (+ 1)
2 − 1.

Parabola with vertex at (−1−1)

25. 9(− 1)2 + 4( − 2)2 = 36 ⇔
(− 1)2

4
+

( − 2)2

9
= 1. Ellipse centered at (1 2)

26. 162 + 92 − 36 = 108 ⇔
162 + 9(2 − 4 + 4) = 108 + 36 = 144 ⇔
2

9
+

( − 2)2

16
= 1. Ellipse centered at (0 2)

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



APPENDIX C GRAPHS OF SECOND-DEGREE EQUATIONS ¤ 1111

27.  = 2−6+13 =

2 − 6+ 9


+4 = (− 3)

2
+4.

Parabola with vertex at (3 4)

28. 2 − 2 − 4+ 3 = 0 ⇔
2 − 4+ 4

− 2 = −3 + 4 = 1 ⇔
(− 2)

2 − 2 = 1. Hyperbola centered at (2 0)

29.  = 4− 2 = −2 + 4. Parabola with vertex at (4 0) 30. 2 − 2+ 6 + 5 = 0 ⇔ 2 + 6 + 9 = 2+ 4 ⇔
( + 3)

2
= 2 (+ 2). Parabola with vertex (−2−3)

31. 2 + 42 − 6+ 5 = 0 ⇔
(2 − 6+ 9) + 42 = −5 + 9 = 4 ⇔
(− 3)2

4
+ 2 = 1. Ellipse centered at (3 0)

32. 42 + 92 − 16+ 54 + 61 = 0 ⇔
4(2 − 4+ 4) + 9(2 + 6 + 9) = −61 + 16 + 81 = 36

⇔ (− 2)2

9
+

( + 3)2

4
= 1. Ellipse centered at (2−3)

33.  = 3 and  = 2 intersect where 3 = 2 ⇔
0 = 2 − 3 = (− 3), that is, at (0 0) and (3 9).

34.  = 4− 2, − 2 = 2. Substitute  from the first

equation into the second: − 2(4− 2) = 2 ⇔
22 + − 10 = 0 ⇔ (2 + 5)(− 2) = 0 ⇔
 = − 5

2
or 2. So the points of intersection are

− 5
2
− 9

4


and (2 0).

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



1112 ¤ APPENDIX C GRAPHS OF SECOND-DEGREE EQUATIONS

35. The parabola must have an equation of the form  = (− 1)2 − 1. Substituting  = 3 and  = 3 into the equation gives

3 = (3− 1)2 − 1, so  = 1, and the equation is  = (− 1)2 − 1 = 2 − 2. Note that using the other point (−1 3) would

have given the same value for , and hence the same equation.

36. The ellipse has an equation of the form
2

2
+

2

2
= 1. Substituting  = 1 and  = −10

√
2

3
gives

12

2
+

−10
√

23
2

2
=

1

2
+

200

92
= 1. Substituting  = −2 and  =

5
√

5

3
gives

(−2)
2

2
+


5
√

53
2

2
=

4

2
+

125

92
= 1.

From the first equation,
1

2
= 1− 200

92
. Putting this into the second equation gives 4


1− 200

92


+

125

92
= 1 ⇔

3 =
675

92
⇔ 2 =

675

27
= 25, so  = 5. Hence

1

2
= 1− 200

9(5)2
=

1

9
and so  = 3. The equation of the ellipse

is
2

9
+

2

25
= 1.

37.

( ) | 2 + 2 ≤ 1


38.

( ) | 2 + 2  4



39.

( ) |  ≥ 2 − 1


40.

( ) | 2 + 42 ≤ 4



D Trigonometry

1. 210◦ = 210◦



180◦


= 7

6
rad 2. 300◦ = 300◦




180◦


= 5
3
rad

3. 9◦ = 9◦



180◦


= 

20
rad 4. −315◦ = −315◦




180◦


= − 7
4
rad

5. 900◦ = 900◦



180◦


= 5 rad 6. 36◦ = 36◦




180◦


= 
5
rad

7. 4 rad = 4


180◦



= 720◦ 8. − 7

2
rad = − 7

2


180◦



= −630◦

9. 5
12

rad = 5
12


180◦



= 75◦ 10. 8

3
rad = 8

3


180◦



= 480◦
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11. − 3
8
rad = − 3

8


180◦



= −675◦ 12. 5 rad = 5


180◦



=


900


◦
13. Using Formula 3,  =  = 36 · 

12
= 3 cm. 14. Using Formula 3,  =  = 10 · 72◦ 

180◦


= 4 cm.

15. Using Formula 3,  =  = 1
15

= 2
3
rad = 2

3


180◦



=


120


◦ ≈ 382◦.

16.  =  ⇒  = 


= 6
34

= 8

cm

17. 18. 19.

20. 21. 22.

23. From the diagram we see that a point on the terminal side is  (−1 1).

Therefore, taking  = −1,  = 1,  =
√

2 in the definitions of the

trigonometric ratios, we have sin 3
4

= 1√
2
, cos 3

4
= − 1√

2
,

tan 3
4

= −1, csc 3
4

=
√

2, sec 3
4

= −√2, and cot 3
4

= −1.

24. From the diagram and Figure 8, we see that a point on the terminal side is


−1−√3


. Therefore, taking  = −1,  = −√3,  = 2 in the

definitions of the trigonometric ratios, we have sin 4
3

= −
√

3
2
,

cos 4
3

= − 1
2
, tan 4

3
=
√

3, csc 4
3

= − 2√
3
, sec 4

3
= −2, and

cot 4
3

= 1√
3
.

25. From the diagram we see that a point on the terminal side is  (0 1).

Therefore taking  = 0,  = 1,  = 1 in the definitions of the

trigonometric ratios, we have sin 9
2

= 1, cos 9
2

= 0, tan 9
2

=  is

undefined since  = 0, csc 9
2

= 1, sec 9
2

=  is undefined since

 = 0, and cot 9
2

= 0.
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26. From the diagram, we see that a point on the terminal side is  (−1 0).

Therefore taking  = −1,  = 0,  = 1 in the definitions of the

trigonometric ratios we have sin(−5) = 0, cos(−5) = −1,

tan(−5) = 0, csc(−5) is undefined, sec(−5) = −1, and cot(−5)

is undefined.

27. Using Figure 8 we see that a point on the terminal side is 
−√3 1


.

Therefore taking  = −√3,  = 1,  = 2 in the definitions of the

trigonometric ratios, we have sin 5
6

= 1
2
, cos 5

6
= −

√
3

2
,

tan 5
6

= − 1√
3
, csc 5

6
= 2, sec 5

6
= − 2√

3
, and cot 5

6
= −√3.

28. From the diagram, we see that a point on the terminal side is  (−1 1).

Therefore taking  = −1,  = 1,  =
√

2 in the definitions of the

trigonometric ratios we have sin 11
4

= 1√
2
, cos 11

4
= − 1√

2
,

tan 11
4

= −1, csc 11
4

=
√

2, sec 11
4

= −√2, and cot 11
4

= −1.

29. sin  =  = 3
5
⇒  = 3,  = 5, and  =


2 − 2 = 4 (since 0    

2
). Therefore taking  = 4,  = 3,  = 5 in

the definitions of the trigonometric ratios, we have cos  = 4
5
, tan  = 3

4
, csc  = 5

3
, sec  = 5

4
, and cot  = 4

3
.

30. Since 0    
2
,  is in the first quadrant where  and  are both positive. Therefore, tan =  = 2

1
⇒  = 2,

 = 1, and  =

2 + 2 =

√
5. Taking  = 1,  = 2,  =

√
5 in the definitions of the trigonometric ratios, we have

sin = 2√
5
, cos = 1√

5
, csc =

√
5

2
, sec =

√
5, and cot = 1

2
.

31. 
2
    ⇒  is in the second quadrant, where  is negative and  is positive. Therefore

sec =  = −15 = − 3
2
⇒  = 3,  = −2, and  =

√
2 − 2 =

√
5. Taking  = −2,  =

√
5, and  = 3 in the

definitions of the trigonometric ratios, we have sin =
√

5
3
, cos = − 2

3
, tan = −

√
5

2
, csc = 3√

5
, and cot  = − 2√

5
.

32. Since     3
2
,  is in the third quadrant where  and  are both negative. Therefore cos =  = − 1

3
⇒  = −1,

 = 3, and  = −√2 − 2 = −√8 = −2
√

2. Taking  = −1,  = 3,  = −2
√

2 in the definitions of the trigonometric

ratios, we have sin = − 2
√

2
3
, tan = 2

√
2, csc = − 3

2
√

2
, sec = −3, and cot = 1

2
√

2
.

33.     2 means that  is in the third or fourth quadrant where  is negative. Also since cot =  = 3 which is

positive,  must also be negative. Therefore cot =  = 3
1
⇒  = −3,  = −1, and  =


2 + 2 =

√
10. Taking

 = −3,  = −1 and  =
√

10 in the definitions of the trigonometric ratios, we have sin = − 1√
10
, cos = − 3√

10
,

tan = 1
3
, csc = −√10, and sec = −

√
10
3
.
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34. Since 3
2
   2,  is in the fourth quadrant where  is positive and  is negative. Therefore csc  =  = − 4

3
⇒

 = 4,  = −3, and  =

2 − 2 =

√
7. Taking  =

√
7,  = −3, and  = 4 in the definitions of the trigonometric ratios,

we have sin  = − 3
4
, cos  =

√
7

4
, tan  = − 3√

7
, sec  = 4√

7
, and cot  = −

√
7

3
.

35. sin 35◦ =


10
⇒  = 10 sin 35◦ ≈ 573576 cm 36. cos 40◦ =



25
⇒  = 25 cos 40◦ ≈ 1915111 cm

37. tan 2
5

=


8
⇒  = 8 tan 2

5
≈ 2462147 cm 38. cos

3

8
=

22


⇒  =

22

cos
3

8

≈ 5748877 cm

39. (a) From the diagram we see that sin  =



=




, and sin(−) =

−


= −


= − sin .

(b) Again from the diagram we see that cos  =



=




= cos(−).

40. (a) Using (12a) and (12b), we have

tan(+ ) =
sin(+ )

cos(+ )
=

sin cos  + cos sin 

cos cos  − sin sin 
=

sin cos 

cos cos 
+

cos sin 

cos cos 
cos cos 

cos cos 
− sin sin 

cos cos 

=
tan + tan 

1− tan tan 

(b) From (10a) and (10b), we have tan(−) = − tan , so (14a) implies that

tan(− ) = tan(+ (−)) =
tan+ tan(−)

1− tan tan(−) =
tan− tan 

1 + tan tan 

41. (a) Using (12a) and (13a), we have

1
2
[sin(+ ) + sin(− )] = 1

2
[sin cos  + cos sin  + sin cos − cos sin ] = 1

2
(2 sin cos ) = sin cos .

(b) This time, using (12b) and (13b), we have

1
2
[cos(+)+cos(−)] = 1

2
[cos cos − sin sin +cos cos +sin sin ] = 1

2
(2 cos cos ) = cos cos .

(c) Again using (12b) and (13b), we have

1
2
[cos(− )− cos(+ )] = 1

2
[cos cos  + sin sin  − cos cos  + sin sin ]

= 1
2
(2 sin sin ) = sin sin 

42. Using (13b), cos


2
− 


= cos 

2
cos+ sin 

2
sin = 0 · cos+ 1 · sin = sin.

43. Using (12a), we have sin


2

+ 


= sin 
2

cos+ cos 
2

sin = 1 · cos + 0 · sin = cos.

44. Using (13a), we have sin( − ) = sin cos− cos sin = 0 · cos− (−1) sin = sin.

45. Using (6), we have sin  cot  = sin  · cos 

sin 
= cos .

46. (sin+ cos)2 = sin2 + 2 sin cos+ cos2  = (sin2 + cos2 ) + sin 2 [by (15a)] = 1 + sin 2 [by (7)]
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47. sec  − cos  =
1

cos 
− cos  [by (6)] =

1− cos2 

cos 
=

sin2 

cos 
[by (7)] =

sin 

cos 
sin  = tan  sin  [by (6)]

48. tan2 − sin2  =
sin2 

cos2 
− sin2  =

sin2 − sin2  cos2 

cos2 
=

sin2  (1− cos2 )

cos2 
= tan2  sin2  [by (6), (7)]

49. cot2  + sec2  =
cos2 

sin2 
+

1

cos2 
[by (6)] =

cos2  cos2  + sin2 

sin2  cos2 

=
(1− sin2 )(1− sin2 ) + sin2 

sin2  cos2 
[by (7)] =

1− sin2  + sin4 

sin2  cos2 

=
cos2  + sin4 

sin2  cos2 
[ (7)] =

1

sin2 
+

sin2 

cos2 
= csc2  + tan2  [by (6)]

50. 2 csc 2 =
2

sin 2
=

2

2 sin  cos 
[by (15a)] =

1

sin  cos 
= sec  csc 

51. Using (14a), we have tan 2 = tan( + ) =
tan  + tan 

1− tan  tan 
=

2 tan 

1− tan2 
.

52.
1

1− sin 
+

1

1 + sin 
=

1 + sin  + 1− sin 

(1− sin )(1 + sin )
=

2

1− sin2 
=

2

cos2 
[by (7)] = 2 sec2 

53. Using (15a) and (16a),

sin sin 2+ cos cos 2= sin (2 sin cos) + cos (2 cos2 − 1) = 2 sin2  cos+ 2cos3 − cos

= 2(1− cos2 ) cos+ 2cos3 − cos [by (7)]

= 2cos− 2 cos3 + 2cos3 − cos = cos

Or: sin sin 2 + cos cos 2 = cos (2− ) [by 13(b)] = cos

54. We start with the right side using equations (12a) and (13a):

sin( + ) sin(− ) = (sin cos  + cos sin )(sin cos  − cos sin )

= sin2  cos2  − sin cos  cos sin  + cos sin  sin cos  − cos2  sin2 

= sin2  (1− sin2 )− (1− sin2 ) sin2  [by (7)]

= sin2 − sin2  sin2  − sin2  + sin2  sin2  = sin2 − sin2 

55.
sin

1− cos
=

sin

1− cos
· 1 + cos

1 + cos
=

sin (1 + cos)

1− cos2 
=

sin (1 + cos)

sin2 
[by (7)]

=
1 + cos

sin
=

1

sin
+

cos

sin
= csc+ cot [by (6)]

56. tan+ tan  =
sin

cos
+

sin 

cos 
=

sin cos  + cos sin 

cos cos 
=

sin(+ )

cos cos 
[by (12a)]

57. Using (12a),

sin 3 + sin  = sin(2 + ) + sin  = sin 2 cos  + cos 2 sin  + sin 

= sin 2 cos  + (2 cos2  − 1) sin  + sin  [by (16a)]

= sin 2 cos  + 2cos2  sin  − sin  + sin  = sin 2 cos  + sin 2 cos  [by (15a)]

= 2 sin 2 cos 
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58. We use (12b) with  = 2,  =  to get

cos 3 = cos (2 + ) = cos 2 cos  − sin 2 sin 

= (2 cos2  − 1) cos  − 2 sin2  cos  [by (16a) and (15a)]

= (2 cos2  − 1) cos  − 2(1− cos2 ) cos  [by (7)]

= 2cos3  − cos  − 2 cos  + 2cos3  = 4cos3  − 3 cos 

59. Since sin = 1
3
we can label the opposite side as having length 1,

the hypotenuse as having length 3, and use the Pythagorean Theorem

to get that the adjacent side has length
√

8. Then, from the diagram,

cos =
√

8
3
. Similarly we have that sin  = 3

5
. Now use (12a):

sin( + ) = sin cos  + cos sin  = 1
3
· 4

5
+
√

8
3
· 3

5
= 4

15
+ 3

√
8

15
= 4+ 6

√
2

15
.

60. Use (12b) and the values for sin  and cos obtained in Exercise 59 to get

cos( + ) = cos cos  − sin sin  =
√

8
3
· 4

5
− 1

3
· 3

5
= 8

√
2− 3
15

61. Using (13b) and the values for cos and sin  obtained in Exercise 59, we have

cos(− ) = cos cos  + sin sin  =
√

8
3
· 4

5
+ 1

3
· 3

5
= 8

√
2 + 3
15

62. Using (13a) and the values for sin  and cos obtained in Exercise 59, we get

sin(− ) = sin cos  − cos sin  = 1
3
· 4

5
−
√

8
3
· 3

5
= 4− 6

√
2

15

63. Using (15a) and the values for sin  and cos  obtained in Exercise 59, we have sin 2 = 2 sin  cos  = 2 · 3
5
· 4

5
= 24

25
.

64. Using (16a) with cos  = 4
5
, we have cos 2 = 2 cos2  − 1 = 2


4
5

2 − 1 = 32
25
− 1 = 7

25
.

65. 2 cos− 1 = 0 ⇔ cos = 1
2
⇒  = 

3
, 5

3
for  ∈ [0 2].

66. 3 cot2  = 1 ⇔ 3 = 1cot2  ⇔ tan2  = 3 ⇔ tan = ±√3 ⇒  = 
3
, 2

3
, 4

3
, and 5

3
.

67. 2 sin2  = 1 ⇔ sin2  = 1
2
⇔ sin = ± 1√

2
⇒  = 

4
, 3

4
, 5

4
, 7

4
.

68. |tan| = 1 ⇔ tan = −1 or tan = 1 ⇔  = 3
4
, 7

4
or  = 

4
, 5

4
.

69. Using (15a), we have sin 2 = cos ⇔ 2 sin cos− cos = 0 ⇔ cos(2 sin− 1) = 0 ⇔ cos = 0 or

2 sin− 1 = 0 ⇒  = 
2
, 3

2
or sin = 1

2
⇒  = 

6
or 5

6
. Therefore, the solutions are  = 

6
, 

2
, 5

6
, 3

2
.

70. By (15a), 2 cos + sin 2 = 0 ⇔ 2 cos + 2 sin cos = 0 ⇔ 2 cos (1 + sin) = 0 ⇔ cos = 0 or

1 + sin = 0 ⇔  = 
2
, 3

2
or sin = −1 ⇒  = 3

2
. So the solutions are  = 

2
, 3

2
.

71. sin = tan ⇔ sin− tan = 0 ⇔ sin− sin

cos
= 0 ⇔ sin


1− 1

cos


= 0 ⇔ sin = 0 or

1− 1

cos
= 0 ⇒  = 0, , 2 or 1 =

1

cos
⇒ cos = 1 ⇒  = 0, 2. Therefore the solutions

are  = 0, , 2.
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72. By (16a), 2 + cos 2 = 3cos ⇔ 2 + 2 cos2 − 1 = 3 cos ⇔ 2 cos2 − 3 cos + 1 = 0 ⇔
(2 cos− 1)(cos− 1) = 0 ⇔ cos = 1 or cos = 1

2
⇒  = 0, 2 or  = 

3
, 5

3
.

73. We know that sin = 1
2
when  = 

6
or 5

6
, and from Figure 13(a), we see that sin ≤ 1

2
⇒ 0 ≤  ≤ 

6
or

5
6
≤  ≤ 2 for  ∈ [0 2].

74. 2 cos+ 1  0 ⇒ 2 cos  −1 ⇒ cos  − 1
2
. cos = − 1

2
when  = 2

3
, 4

3
and from Figure 13(b), we see that

cos   − 1
2
when 0 ≤   2

3
, 4

3
  ≤ 2.

75. tan = −1 when  = 3
4
, 7

4
, and tan = 1 when  = 

4
or 5

4
. From Figure 14(a) we see that −1  tan  1 ⇒

0 ≤   
4
, 3

4
   5

4
, and 7

4
  ≤ 2.

76. We know that sin = cos when  = 
4
, 5

4
, and from the diagram we see that sin  cos when 

4
   5

4
.

77.  = cos

− 

3


. We start with the graph of  = cos

and shift it 
3
units to the right.

78.  = tan 2. Start with the graph of  = tan with

period  and compress it to a period of 
2
.

79.  = 1
3

tan

− 

2


. We start with the graph of

 = tan, shift it 
2
units to the right and compress it to

1
3
of its original vertical size.

80.  = 1 + sec. Start with the graph of  = sec and raise

it by one unit.
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81.  = |sin|. We start with the graph of  = sin and

reflect the parts below the -axis about the -axis.

82.  = 2 + sin

 + 

4


. Start with the graph of  = sin,

and shift it 
4
units to the left and 2 units up.

83. From the figure in the text, we see that  =  cos ,  =  sin , and from the distance formula we have that the

distance  from ( ) to ( 0) is  =


(− )2 + ( − 0)2 ⇒
2 = ( cos  − )2 + ( sin )2 = 2 cos2  − 2 cos  + 2 + 2 sin2 

= 2 + 2(cos2  + sin2 )− 2 cos  = 2 + 2 − 2 cos  [by (7)]

84. ||2 = ||2 + ||2 − 2 || || cos∠ = (820)2 + (910)2 − 2(820)(910) cos 103◦ ≈ 1,836,217 ⇒
|| ≈ 1355 m

85. Using the Law of Cosines, we have 2 = 12 + 12 − 2(1)(1) cos (− ) = 2 [1− cos(− )]. Now, using the distance

formula, 2 = ||2 = (cos− cos)2 + (sin− sin)2. Equating these two expressions for 2, we get

2[1− cos(− )] = cos2  + sin2  + cos2  + sin2  − 2 cos cos − 2 sin sin ⇒
1− cos(− ) = 1− cos cos − sin sin ⇒ cos(− ) = cos cos + sin sin.

86. cos( + ) = cos(− (−)) = cos cos(−) + sin sin(−)
= cos cos  − sin sin  [using Equations (10a) and (10b)]

87. In Exercise 86 we used the subtraction formula for cosine to prove the addition formula for cosine. Using that formula with

 = 
2
− ,  = , we get cos



2
− 


+ 


= cos



2
− 


cos − sin



2
− 


sin ⇒

cos


2
− (− )


= cos



2
− 


cos − sin



2
− 


sin. Now we use the identities given in the problem,

cos


2
− 


= sin  and sin


2
− 


= cos , to get sin(− ) = sin cos − cos sin.

88. If 0    
2
, we have the case depicted in the first diagram. In this case, we see that the height of the triangle

is  =  sin . If 
2
≤   , we have the case depicted in the second diagram. In this case, the height of the triangle is

 =  sin( − ) =  sin  (by the identity proved in Exercise 44). So in either case, the area of the triangle is

1
2
 = 1

2
 sin .

89. Using the formula from Exercise 88, the area of the triangle is 1
2
(10)(3) sin 107◦ ≈ 1434457 cm2.
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E Sigma Notation

1.
5

=1

√
 =

√
1 +

√
2 +

√
3 +

√
4 +

√
5 2.

6
=1

1

+ 1
=

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7

3.
6

=4

3 = 34 + 35 + 36 4.
6

=4

3 = 43 + 53 + 63

5.
4

=0

2 − 1

2 + 1
= −1 +

1

3
+

3

5
+

5

7
+

7

9
6.

8
=5

 = 5 + 6 + 7 + 8

7.

=1

10 = 110 + 210 + 310 + · · ·+ 10 8.
+3
=

2 = 2 + (+ 1)2 + (+ 2)2 + (+ 3)2

9.
−1
=0

(−1) = 1− 1 + 1− 1 + · · ·+ (−1)
−1

10.

=1

()∆ = (1)∆1 + (2)∆2 + (3)∆3 + · · ·+ ()∆

11. 1 + 2 + 3 + 4 + · · ·+ 10 =
10
=1

 12.
√

3 +
√

4 +
√

5 +
√

6 +
√

7 =
7
=3

√


13.
1

2
+

2

3
+

3

4
+

4

5
+ · · ·+ 19

20
=

19
=1



 + 1
14.

3

7
+

4

8
+

5

9
+

6

10
+ · · ·+ 23

27
=

23
=3



+ 4

15. 2 + 4 + 6 + 8 + · · ·+ 2 =

=1

2 16. 1 + 3 + 5 + 7 + · · ·+ (2− 1) =

=1

(2− 1)

17. 1 + 2 + 4 + 8 + 16 + 32 =
5

=0

2 18.
1

1
+

1

4
+

1

9
+

1

16
+

1

25
+

1

36
=

6
=1

1

2

19. + 2 + 3 + · · ·+  =

=1

 20. 1− + 2 − 3 + · · ·+ (−1)

 =


=0

(−1)

21.
8

=4

(3− 2) = [3(4)− 2] + [3(5)− 2] + [3(6)− 2] + [3(7)− 2] + [3(8)− 2] = 10 + 13 + 16 + 19 + 22 = 80

22.
6

=3

(+ 2) = 3 · 5 + 4 · 6 + 5 · 7 + 6 · 8 = 15 + 24 + 35 + 48 = 122

23.
6

=1

3+1 = 32 + 33 + 34 + 35 + 36 + 37 = 9 + 27 + 81 + 243 + 729 + 2187 = 3276

(For a more general method, see Exercise 47.)

24.
8

=0

cos  = cos 0 + cos + cos 2 + cos 3 + cos 4 + cos 5 + cos 6 + cos 7 + cos 8

= 1− 1 + 1− 1 + 1− 1 + 1− 1 + 1 = 1

25.
20
=1

(−1) = −1 + 1− 1 + 1− 1 + 1− 1 + 1− 1 + 1− 1 + 1− 1 + 1− 1 + 1− 1 + 1− 1 + 1 = 0

26.
100
=1

4 = 4 + 4 + 4 + · · ·+ 4  
(100 summands)

= 100 · 4 = 400
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27.
4

=0

(2 + 2) = (1 + 0) + (2 + 1) + (4 + 4) + (8 + 9) + (16 + 16) = 61

28.
4

=−2

23− = 25 + 24 + 23 + 22 + 21 + 20 + 2−1 = 635

29.

=1

2 = 2

=1

 = 2 · (+ 1)

2
[by Theorem 3(c)] = (+ 1)

30.

=1

(2− 5) =

=1

2−

=1

5 = 2− 5

=1

 = 2− 5(+ 1)

2
=

4

2
− 52 + 5

2
= −(5+ 1)

2

31.

=1

(2 + 3+ 4) =

=1

2 + 3

=1

+

=1

4 =
(+ 1)(2+ 1)

6
+

3(+ 1)

2
+ 4

= 1
6
[(23 + 32 + ) + (92 + 9) + 24] = 1

6
(23 + 122 + 34) = 1

3
(2 + 6+ 17)

32.

=1

(3 + 2)2 =

=1

(9 + 12+ 42) =

=1

9 + 12

=1

+ 4

=1

2 = 9+ 6(+ 1) +
2(+ 1)(2+ 1)

3

=
27+ 182 + 18+ 43 + 62 + 2

3
= 1

3
(43 + 242 + 47) = 1

3
(42 + 24+ 47)

33.

=1

(+ 1)(+ 2) =

=1

(2 + 3+ 2) =

=1

2 + 3

=1

+

=1

2 =
(+ 1)(2+ 1)

6
+

3(+ 1)

2
+ 2

=
(+ 1)

6
[(2+ 1) + 9] + 2 =

(+ 1)

3
(+ 5) + 2

=


3
[(+ 1)(+ 5) + 6] =



3
(2 + 6+ 11)

34.

=1

(+ 1)(+ 2) =

=1

(3 + 32 + 2) =

=1

3 + 3

=1

2 + 2

=1



=


(+ 1)

2

2
+

3(+ 1)(2+ 1)

6
+

2(+ 1)

2

= (+ 1)


(+ 1)

4
+

2+ 1

2
+ 1


=

(+ 1)

4
(2 + + 4+ 2 + 4)

=
(+ 1)

4
(2 + 5+ 6) =

(+ 1)(+ 2)(+ 3)

4

35.

=1

(3 − − 2) =

=1

3 −

=1

−

=1

2 =


(+ 1)

2

2
− (+ 1)

2
− 2

= 1
4
(+ 1)[(+ 1)− 2]− 2 = 1

4
(+ 1)(+ 2)(− 1)− 2

= 1
4
[(+ 1)(− 1)(+ 2)− 8] = 1

4
[(2 − 1)(+ 2)− 8] = 1

4
(3 + 22 − − 10)

36. By Theorem 3(c) we have that

=1

 =
(+ 1)

2
= 78 ⇔ ( + 1) = 156 ⇔ 2 + − 156 = 0 ⇔

(+ 13)(− 12) = 0 ⇔  = 12 or −13. But  = −13 produces a negative answer for the sum, so  = 12.

37. By Theorem 2(a) and Example 3,

=1

 = 

=1

1 = .
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38. Let  be the statement that

=1

3 =


(+ 1)

2

2
.

1. 1 is true because 13 =


1 · 2
2

2

.

2. Assume  is true. Then

=1

3 =


( + 1)

2

2
, so

+1
=1

3 =


( + 1)

2

2
+ ( + 1)3 =

( + 1)2

4


2 + 4( + 1)


=

( + 1)2

4
( + 2)2 =


( + 1)[( + 1) + 1]

2

2

showing that +1 is true.

Therefore,  is true for all  by mathematical induction.

39.

=1

[(+ 1)4 − 4] = (24 − 14) + (34 − 24) + (44 − 34) + · · ·+ (+ 1)4 − 4


= (+ 1)4 − 14 = 4 + 43 + 62 + 4

On the other hand,

=1

[(+ 1)4 − 4] =

=1

(43 + 62 + 4+ 1) = 4

=1

3 + 6

=1

2 + 4

=1

+

=1

1

= 4 + (+ 1)(2+ 1) + 2(+ 1) + 


where  =


=1

3


= 4 + 23 + 32 + + 22 + 2+  = 4 + 23 + 52 + 4

Thus, 4 + 43 + 62 + 4 = 4 + 23 + 52 + 4, from which it follows that

4 = 4 + 23 + 2 = 2(2 + 2+ 1) = 2(+ 1)2 and  =


(+ 1)

2

2
.

40. The area of  is 


=1



2

−

−1
=1



2

=


(+ 1)

2

2
−

(− 1)

2

2
=

2

4


(+ 1)2 − (− 1)2


=

2

4


(2 + 2+ 1)− (2 − 2+ 1)


=

2

4
(4) = 3

Thus, the area of  is

=1

3 =


(+ 1)

2

2
.

41. (a)

=1


4 − (− 1)

4


=

14 − 04


+

24 − 14


+

34 − 24


+ · · ·+ 4 − (− 1)4


= 4 − 0 = 4

(b)
100
=1


5 − 5−1


=

51 − 50


+

52 − 51


+

53 − 52


+ · · ·+ 5100 − 599


= 5100 − 50 = 5100 − 1

(c)
99
=3


1


− 1

+ 1


=


1

3
− 1

4


+


1

4
− 1

5


+


1

5
− 1

6


+ · · ·+


1

99
− 1

100


=

1

3
− 1

100
=

97

300

(d)

=1

( − −1) = (1 − 0) + (2 − 1) + (3 − 2) + · · ·+ ( − −1) =  − 0

42. Summing the inequalities − || ≤  ≤ || for  = 1 2     , we get −

=1

|| ≤

=1

 ≤

=1

||. Since || ≤  ⇔

− ≤  ≤ , we have

 
=1



 ≤ 
=1

||. Another method: Use mathematical induction.
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43. lim
→∞


=1

1








2

= lim
→∞

1

3


=1

2 = lim
→∞

1

3

(+ 1)(2+ 1)

6
= lim

→∞
1

6


1 +

1




2 +

1




= 1

6
(1)(2) = 1

3

44. lim
→∞


=1

1








3

+ 1


= lim

→∞


=1


3

4
+

1




= lim

→∞


1

4


=1

3 +
1




=1

1


= lim

→∞


1

4


(+ 1)

2

2

+
1


()



= lim
→∞

1

4


1 +

1



2

+ 1 = 1
4

+ 1 = 5
4

45. lim
→∞


=1

2




2



3

+ 5


2




= lim

→∞


=1


16

4
3 +

20

2



= lim

→∞


16

4


=1

3 +
20

2


=1





= lim
→∞


16

4

2(+ 1)2

4
+

20

2

(+ 1)

2


= lim

→∞


4(+ 1)2

2
+

10(+ 1)

2



= lim
→∞


4


1 +

1



2

+ 10


1 +

1




= 4 · 1 + 10 · 1 = 14

46. lim
→∞


=1

3




1 +

3



3

− 2


1 +

3




= lim

→∞


=1

3




1 +

9


+

272

2
+

273

3
− 2− 6





= lim
→∞


=1


81

4
3 +

81

3
2 +

9

2
− 3





= lim
→∞


81

4

2(+ 1)2

4
+

81

3

(+ 1)(2+ 1)

6
+

9

2

(+ 1)

2
− 3






= lim
→∞


81

4


1 +

1



2

+
27

2


1 +

1




2 +

1




+

9

2


1 +

1




− 3


= 81

4
+ 54

2
+ 9

2
− 3 = 195

4

47. Let  =

=1

−1 =  +  + 2 + · · ·+ −1. Multiplying both sides by  gives us

 =  + 2 + · · ·+ −1 + . Subtracting the first equation from the second, we find

( − 1) =  −  = ( − 1), so  =
( − 1)

 − 1
[since  6= 1].

48.

=1

3

2−1
= 3


=1


1

2

−1

=
3


1
2

 − 1


1
2
− 1

[using Exercise 47 with  = 3 and  = 1
2
] = 6


1−  1

2



49.

=1

(2+ 2) = 2

=1

+

=1

2 · 2−1 = 2
(+ 1)

2
+

2(2 − 1)

2− 1
= 2+1 + 2 + − 2.

For the first sum we have used Theorems 2(a) and 3(c), and for the second, Exercise 47 with  =  = 2.

50.

=1



=1

(+ )


=


=1



=1

+

=1




[Theorem 2(b)] =


=1


+

(+ 1)

2


[Theorem 3(b) and 3(c)]

=

=1

+

=1

(+ 1)

2
=

(+ 1)

2
+

(+ 1)

2
=



2
(+ + 2)
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G The Logarithm Defined as an Integral

1. (a) We interpret ln 15 as the area under the curve  = 1 from  = 1 to

 = 15. The area of the rectangle  is 1
2
· 2

3
= 1

3
. The area of the

trapezoid  is 1
2
· 1

2


1 + 2

3


= 5

12
. Thus, by comparing areas, we

observe that 1
3
 ln 15  5

12
.

(b) ln =
 
1

(1) , so ln 15 =
 15

1
(1) . With () = 1,  = 10, and∆ = 15− 1

10
= 005, we have

ln 15 =
 15

1
(1)  ≈ (005)[(1025) + (1075) + · · ·+ (1475)] = (005)


1

1025
+ 1

1075
+ · · ·+ 1

1475


≈ 04054

2. (a)  =
1


, 0 = − 1

2
. The slope of the line through (1 1) and


2 1

2


is

12− 1

2− 1
= −1

2
. Let  be the -coordinate of the

point on  =
1


with slope−1

2
. Then − 1

2
= −1

2
⇒ 2 = 2 ⇒  =

√
2 since   0. Therefore, the tangent line is

given by  − 1√
2

= − 1
2


−√2


, or  = − 1

2
 +

√
2.

(b) Since the graph of  = 1 is concave upward, the graph lies above the

tangent line, that is, above the line segment . Now || = − 1
2

+
√

2

and || = −1 +
√

2. The area of the trapezoid  is

1
2

− 1
2

+
√

2


+
−1 +

√
2


1 = − 3
4

+
√

2 ≈ 06642. So

ln 2  area of trapezoid   066.

3. The area of  is
1

+ 1
and so

1

2
+

1

3
+ · · ·+ 1




 

1

1


 = ln.

The area of  is
1


and so 1 +

1

2
+ · · ·+ 1

− 1


 

1

1


 = ln.

Thus,
1

2
+

1

3
+ · · ·+ 1


 ln  1 +

1

2
+ · · ·+ 1

− 1
.

4. (a) From the diagram, we see that the area under the graph of  = 1

between  = 1 and  = 2 is less than the area of the square, which is 1. So

ln 2 =
 2

1
(1)   1. To show the other side of the inequality, we must

find an area larger than 1 which lies under the graph of  = 1 between

 = 1 and  = 3. One way to do this is to partition the interval [1 3] into
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8 intervals of equal length and calculate the resulting Riemann sum, using the right endpoints:

1

4


1

54
+

1

32
+

1

74
+

1

2
+

1

94
+

1

52
+

1

114
+

1

3


=

28,271
27,720

 1

and therefore 1 
 3

1
(1)  = ln 3.

A slightly easier method uses the fact that since  = 1 is concave upward, it lies above all its tangent lines. Drawing

two such tangent lines at the points


3
2
 2

3


and


5
2
 2

5


, we see that the area under the curve from  = 1 to  = 3 is more

than the sum of the areas of the two trapezoids, that is, 2
3

+ 2
5

= 16
15
. Thus, 1  16

15

 3

1
(1)  = ln 3.

(b) By part (a), ln 2  1  ln 3. But  is defined such that ln  = 1, and because the natural logarithm function is increasing,

we have ln 2  ln   ln 3 ⇔ 2    3.

5. If () = ln(), then  0() = (1) (−1) = . But if () =  ln, then 0() = . So  and  must differ by a

constant: ln() =  ln +. Put  = 1: ln(1) =  ln 1 +  ⇒  = 0, so ln() =  ln.

6. Using the second law of logarithms and Equation 10, we have ln() = ln  − ln  = −  = ln(−).

Since ln is a one-to-one function, it follows that  = − .

7. Using the third law of logarithms and Equation 10, we have ln  =  =  ln  = ln() . Since ln is a one-to-one

function, it follows that  = () .

8. Using Definition 13 and the second law of exponents for , we have − = (−) ln  =  ln − ln  =
 ln 

 ln 
=




.

9. Using Definition 13, the first law of logarithms, and the first law of exponents for , we have

() =  ln() = (ln +ln ) =  ln + ln  =  ln  ln  = .

10. Let log  =  and log  = . Then  =  and  = .

(a)  =  = + ⇒ log() =  +  = log  + log 

(b)



=




= − ⇒ log




=  −  = log − log 

(c)  = () =  ⇒ log(
) =  =  log 

H Complex Numbers

1. (5− 6) + (3 + 2) = (5 + 3) + (−6 + 2) = 8 + (−4) = 8− 4

2.

4− 1

2

− 9 + 5

2



= (4− 9) +
− 1

2
− 5

2


 = −5 + (−3) = −5− 3

3. (2 + 5)(4− ) = 2(4) + 2(−) + (5)(4) + (5)(−) = 8− 2+ 20− 52 = 8 + 18− 5(−1)

= 8 + 18+ 5 = 13 + 18

4. (1− 2)(8− 3) = 8− 3− 16+ 6(−1) = 2− 19

5. 12 + 7 = 12− 7
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6. 2


1
2
− 


= − 2(−1) = 2 +  ⇒ 2


1
2
− 


= 2 +  = 2− 

7.
1 + 4

3 + 2
=

1 + 4

3 + 2
· 3− 2

3− 2
=

3− 2+ 12− 8(−1)

32 + 22
=

11 + 10

13
=

11

13
+

10

13


8.
3 + 2

1− 4
=

3 + 2

1− 4
· 1 + 4

1 + 4
=

3 + 12+ 2+ 8(−1)

12 + 42
=
−5 + 14

17
= − 5

17
+

14

17


9.
1

1 + 
=

1

1 + 
· 1− 

1− 
=

1− 

1− (−1)
=

1− 

2
=

1

2
− 1

2


10.
3

4− 3
=

3

4− 3
· 4 + 3

4 + 3
=

12 + 9

16− 9(−1)
=

12

25
+

9

25


11. 3 = 2 ·  = (−1) = −

12. 100 = (2)50 = (−1)50 = 1

13.
√−25 =

√
25  = 5

14.
√−3

√−12 =
√

3 
√

12  =
√

3 · 12 2 =
√

36 (−1) = −6

15. 12− 5 = 12 + 15 and |12− 15| =


122 + (−5)2 =
√

144 + 25 =
√

169 = 13

16. −1 + 2
√

2  = −1− 2
√

2  and
−1 + 2

√
2 
 =


(−1)2 +


2
√

2
2

=
√

1 + 8 =
√

9 = 3

17. −4 = 0− 4 = 0 + 4 = 4 and |−4| =


02 + (−4)2 =
√

16 = 4

18. Let  = +  and  = + .

(a)  + = (+ ) + (+ ) = (+ ) + (+ ) = (+ )− (+ ) = (− ) + (− ) =  +

(b)  = (+ )(+ ) = (− ) + (+ ) = (− )− (+ ).

On the other hand,   = (− )(− ) = (− )− (+ ) = .

(c) Use mathematical induction and part (b): Let  be the statement that  =  . 1 is true because 1 =  =  1.

Assume  is true, that is  =  . Then +1 = 1+ =  =  [part (b) with  = ] = 1 = 1+ = +1,

which shows that +1 is true. Therefore, by mathematical induction,  =  for every positive integer .

Another proof: Use part (b) with  = , and mathematical induction.

19. 42 + 9 = 0 ⇔ 42 = −9 ⇔ 2 = − 9
4
⇔  = ±


− 9

4
= ±


9
4
 = ± 3

2
.

20. 4 = 1 ⇔ 4 − 1 = 0 ⇔ (2 − 1)(2 + 1) = 0 ⇔ 2 − 1 = 0 or 2 + 1 = 0 ⇔  = ±1 or  = ±.

21. By the quadratic formula, 2 + 2+ 5 = 0 ⇔  =
−2±


22 − 4(1)(5)

2(1)
=
−2±√−16

2
=
−2± 4

2
= −1± 2.

22. 22 − 2+ 1 = 0 ⇔  =
−(−2)±


(−2)2 − 4(2)(1)

2(2)
=

2±√−4

4
=

2± 2

4
=

1

2
± 1

2
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23. By the quadratic formula, 2 +  + 2 = 0 ⇔  =
−1±


12 − 4(1)(2)

2(1)
=
−1±√−7

2
= −1

2
±
√

7

2
.

24. 2 + 1
2
 + 1

4
= 0 ⇔ 42 + 2 + 1 = 0 ⇔

 =
−2±


22 − 4(4)(1)

2(4)
=
−2±√−12

8
=
−2± 2

√
3 

8
= −1

4
±
√

3

4


25. For  = −3 + 3,  =


(−3)2 + 32 = 3
√

2 and tan  = 3
−3

= −1 ⇒  = 3
4
(since  lies in the second quadrant).

Therefore, −3 + 3 = 3
√

2

cos 3

4
+  sin 3

4


.

26. For  = 1−√3 ,  =


12 +

−√3
2

= 2 and tan  = −√3
1

= −√3 ⇒  = 5
3
(since  lies in the fourth quadrant).

Therefore, 1−√3  = 2

cos 5

3
+  sin 5

3


.

27. For  = 3 + 4,  =
√

32 + 42 = 5 and tan  = 4
3
⇒  = tan−1


4
3


(since  lies in the first quadrant). Therefore,

3 + 4 = 5

cos

tan−1 4

3


+  sin


tan−1 4

3


.

28. For  = 8,  =
√

02 + 82 = 8 and tan  = 8
0
is undefined, so  = 

2
(since  lies on the positive imaginary axis). Therefore,

8 = 8

cos 

2
+  sin 

2


.

29. For  =
√

3 + ,  =

√
3
2

+ 12 = 2 and tan  = 1√
3
⇒  = 

6
⇒  = 2


cos 

6
+  sin 

6


.

For  = 1 +
√

3 ,  = 2 and tan  =
√

3 ⇒  = 
3
⇒  = 2


cos 

3
+  sin 

3


.

Therefore,  = 2 · 2cos
6

+ 
3


+  sin



6

+ 
3


= 4


cos 

2
+  sin 

2


,

 = 2
2


cos


6
− 

3


+  sin



6
− 

3


= cos

−
6


+  sin

−
6


, and 1 = 1 + 0 = 1(cos 0 +  sin 0) ⇒

1 = 1
2


cos

0− 

6


+  sin


0− 

6


= 1

2


cos
−

6


+  sin

−
6


. For 1, we could also use the formula that precedes

Example 5 to obtain 1 = 1
2


cos 

6
−  sin 

6


.

30. For  = 4
√

3− 4,  =


4
√

3
2

+ (−4)
2

=
√

64 = 8 and tan  = −4

4
√

3
= − 1√

3
⇒  = 11

6
⇒

 = 8

cos 11

6
+  sin 11

6


. For  = 8,  =

√
02 + 82 = 8 and tan  = 8

0
is undefined, so  = 

2
⇒

 = 8

cos 

2
+  sin 

2


. Therefore,  = 8 · 8cos 11

6
+ 

2


+  sin


11
6

+ 
2


= 64


cos 

3
+  sin 

3


,

 = 8
8


cos


11
6
− 

2


+  sin


11
6
− 

2


= cos 4

3
+  sin 4

3
, and

1 = 1 + 0 = 1(cos 0 +  sin 0) ⇒ 1 = 1
8


cos

0− 11

6


+  sin


0− 11

6


= 1

8


cos


6


+  sin



6


.

For 1, we could also use the formula that precedes Example 5 to obtain 1 = 1
8


cos 11

6
−  sin 11

6


.

31. For  = 2
√

3− 2,  =


2
√

3
2

+ (−2)
2

= 4 and tan  = −2

2
√

3
= − 1√

3
⇒  = −

6
⇒

 = 4

cos
−

6


+  sin

−
6


. For  = −1 + ,  =

√
2, tan  = 1

−1
= −1 ⇒  = 3

4
⇒

 =
√

2

cos 3

4
+  sin 3

4


. Therefore,  = 4

√
2

cos
−

6
+ 3

4


+  sin

−
6

+ 3
4


= 4

√
2

cos 7

12
+  sin 7

12


,

 = 4√
2


cos
−

6
− 3

4


+  sin

−
6
− 3

4


= 4√

2


cos
− 11

12


+  sin

− 11
12


= 2

√
2

cos 13

12
+  sin 13

12


, and

1 = 1
4


cos
−

6

−  sin
−

6


= 1

4


cos 

6
+  sin 

6


.
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32. For  = 4
√

3 + 


= 4
√

3 + 4,  =


4
√

3
2

+ 42 =
√

64 = 8 and tan  = 4

4
√

3
= 1√

3
⇒  = 

6
⇒

 = 8

cos 

6
+  sin 

6


. For  = −3− 3,  =


(−3)2 + (−3)2 =

√
18 = 3

√
2 and tan  = −3

−3
= 1 ⇒  = 5

4
⇒

 = 3
√

2

cos 5

4
+  sin 5

4


. Therefore,  = 8 · 3√2


cos


6

+ 5
4


+  sin



6

+ 5
4


= 24

√
2

cos 17

12
+  sin 17

12


,

 = 8

3
√

2


cos


6
− 5

4


+  sin



6
− 5

4


= 4

√
2

3


cos
− 13

12


+  sin

− 13
12


, and 1 = 1

8


cos 

6
−  sin 

6


.

33. For  = 1 + ,  =
√

2 and tan  = 1
1

= 1 ⇒  = 
4
⇒  =

√
2

cos 

4
+  sin 

4


. So by De Moivre’s Theorem,

(1 + )
20

=
√

2

cos 

4
+  sin 

4

20
= (212)20


cos 20 ·

4
+  sin 20 ·

4


= 210(cos 5 +  sin 5)

= 210[−1 + (0)] = −210 = −1024

34. For  = 1−√3 ,  =


12 +

−√3
2

= 2 and tan  = −√3
1

= −√3 ⇒  = 5
3

⇒  = 2

cos 5

3
+  sin 5

3


.

So by De Moivre’s Theorem,
1−√3 

5
=

2

cos 5

3
+  sin 5

3

5
= 25


cos 5 · 5

3
+  sin 5 · 5

3


= 25


cos 

3
+  sin 

3


= 32


1
2

+
√

3
2



= 16 + 16
√

3 

35. For  = 2
√

3 + 2,  =


2
√

3
2

+ 22 =
√

16 = 4 and tan  = 2

2
√

3
= 1√

3
⇒  = 

6
⇒  = 4


cos 

6
+  sin 

6


.

So by De Moivre’s Theorem,
2
√

3 + 2
5

=

4

cos 

6
+  sin 

6

5
= 45


cos 5

6
+  sin 5

6


= 1024


−
√

3
2

+ 1
2



= −512
√

3 + 512.

36. For  = 1− ,  =
√

2 and tan  = −1
1

= −1 ⇒  = 7
4

⇒  =
√

2

cos 7

4
+  sin 7

4

 ⇒

(1− )8 =
√

2

cos 7

4
+  sin 7

4

8
= 24


cos 8·7

4
+  sin 8·7

4


= 16(cos 14 +  sin 14) = 16(1 + 0) = 16.

37. 1 = 1 + 0 = 1 (cos 0 +  sin 0). Using Equation 3 with  = 1,  = 8, and  = 0, we have

 = 118


cos


0 + 2

8


+  sin


0 + 2

8


= cos



4
+  sin



4
, where  = 0 1 2     7.

0 = 1(cos 0 +  sin 0) = 1, 1 = 1

cos 

4
+  sin 

4


= 1√

2
+ 1√

2
,

2 = 1

cos 

2
+  sin 

2


= , 3 = 1


cos 3

4
+  sin 3

4


= − 1√

2
+ 1√

2
,

4 = 1(cos +  sin) = −1, 5 = 1

cos 5

4
+  sin 5

4


= − 1√

2
− 1√

2
,

6 = 1

cos 3

2
+  sin 3

2


= −, 7 = 1


cos 7

4
+  sin 7

4


= 1√

2
− 1√

2


38. 32 = 32 + 0 = 32(cos 0 +  sin 0). Using Equation 3 with  = 32,  = 5, and  = 0, we have

 = 3215


cos


0 + 2

5


+  sin


0 + 2

5


= 2


cos 2

5
 +  sin 2

5


, where  = 0 1 2 3 4.

0 = 2(cos 0 +  sin 0) = 2

1 = 2

cos 2

5
+  sin 2

5


2 = 2


cos 4

5
+  sin 4

5


3 = 2


cos 6

5
+  sin 6

5


4 = 2


cos 8

5
+  sin 8

5
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APPENDIX H COMPLEX NUMBERS ¤ 1129

39.  = 0 +  = 1

cos 

2
+  sin 

2


. Using Equation 3 with  = 1,  = 3, and  = 

2
, we have

 = 113


cos

 
2

+ 2

3


+  sin

 
2

+ 2

3


, where  = 0 1 2.

0 =

cos 

6
+  sin 

6


=
√

3
2

+ 1
2


1 =

cos 5

6
+  sin 5

6


= −

√
3

2
+ 1

2


2 =

cos 9

6
+  sin 9

6


= −

40. 1 +  =
√

2

cos 

4
+  sin 

4


. Using Equation 3 with  =

√
2,  = 3, and  = 

4
, we have

 =
√

2
13

cos

 
4

+ 2

3


+  sin

 
4

+ 2

3


, where  = 0 1 2.

0 = 216

cos 

12
+  sin 

12


1 = 216


cos 3

4
+  sin 3

4


= 216


− 1√

2
+ 1√

2



= −2−13 + 2−13

2 = 216

cos 17

12
+  sin 17

12


41. Using Euler’s formula (6) with  = 

2
, we have 2 = cos 

2
+  sin 

2
= 0 + 1 = .

42. Using Euler’s formula (6) with  = 2, we have 2 = cos 2 +  sin 2 = 1.

43. Using Euler’s formula (6) with  =


3
, we have 3 = cos



3
+  sin



3
=

1

2
+

√
3

2
.

44. Using Euler’s formula (6) with  = −, we have − = cos(−) +  sin(−) = −1.

45. Using Equation 7 with  = 2 and  = , we have 2+ = 2 = 2(cos +  sin) = 2(−1 + 0) = −2.

46. Using Equation 7 with  =  and  = 1, we have + =  · 1 = (cos 1 +  sin 1) =  cos 1 + ( sin 1).

47. Take  = 1 and  = 3 in De Moivre’s Theorem to get

[1(cos  +  sin )]
3
= 13(cos 3 +  sin 3)

(cos  +  sin )
3
= cos 3 +  sin 3

cos3  + 3(cos2 )( sin ) + 3(cos )( sin )2 + ( sin )
3
= cos 3 +  sin 3

cos3  + (3 cos2  sin )− 3 cos  sin2  − (sin3 )= cos 3 +  sin 3

(cos3  − 3 sin2  cos ) + (3 sin  cos2  − sin3 )= cos 3 +  sin 3

Equating real and imaginary parts gives cos 3 = cos3  − 3 sin2  cos  and sin 3 = 3 sin  cos2  − sin3 .

48. Using Formula 6,

 + − = (cos+  sin) + [cos(−) +  sin(−)] = cos+  sin+ cos−  sin = 2cos

Thus, cos =
 + −

2
. Similarly,

 − − = (cos+  sin)− [cos(−) +  sin(−)] = cos+  sin− cos− (− sin) = 2 sin

Therefore, sin =
 − −

2
.
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1130 ¤ APPENDIX H COMPLEX NUMBERS

49.  () =  = (+) = + = (cos +  sin ) =  cos + ( sin ) ⇒

 0() = ( cos )0 + ( sin )0

= ( cos −  sin ) + ( sin  +  cos )

= [(cos +  sin )] + [(− sin  +  cos )]

=  + [(2 sin +  cos )]

=  + [(cos +  sin )] =  +  = (+ ) = 

50. (a) From Exercise 49,  () = (1+) ⇒  0() = (1 + )(1+). So

(1+)

 =
1

1 + 



0
()  =

1

1 + 
 () + =

1− 

2
 () + =

1− 

2

(1+)

+

(b)

(1+)  =


  =


(cos+  sin)  =


 cos+ 


 sin (1).

Also,

1− 

2
(1+) = 1

2
(1+) − 1

2
(1+) = 1

2
+ − 1

2
+

= 1
2
(cos+  sin)− 1

2
(cos+  sin)

= 1
2
 cos+ 1

2
 sin + 1

2
 sin− 1

2
 cos

= 1
2
(cos+ sin) + 


1
2
(sin− cos)


(2)

Equating the real and imaginary parts in (1) and (2), we see that

 cos = 1

2
(cos + sin) +  and

 sin = 1
2
(sin− cos) + .
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DIAGNOSTIC TESTS

Test A Algebra

1. (a) (−3)4 = (−3)(−3)(−3)(−3) = 81 (b) −34 = −(3)(3)(3)(3) = −81

(c) 3−4 =
1

34
=

1

81
(d)

523

521
= 523−21 = 52 = 25

(e)


2
3

−2
=


3
2

2
= 9

4
(f ) 16−34 =

1

1634
=

1
4
√

16
3 =

1

23
=

1

8

2. (a) Note that
√

200 =
√

100 · 2 = 10
√

2 and
√

32 =
√

16 · 2 = 4
√

2. Thus
√

200−√32 = 10
√

2− 4
√

2 = 6
√

2.

(b) (333)(42)2 = 3331624 = 4857

(c)


3323

2−12

−2

=


2−12

3323

2

=
(2−12)2

(3323)2
=

4−1

936
=

4

936
=



97

3. (a) 3(+ 6) + 4(2− 5) = 3+ 18 + 8− 20 = 11− 2

(b) (+ 3)(4− 5) = 42 − 5 + 12− 15 = 42 + 7− 15

(c)
√

+
√

√

−
√



=
√


2

−
√

√
+

√

√
−

√

2

= − 

Or: Use the formula for the difference of two squares to see that
√

+
√

√

−
√



=
√


2

−
√


2

= − .

(d) (2+ 3)2 = (2+ 3)(2 + 3) = 42 + 6+ 6+ 9 = 42 + 12+ 9.

Note: A quicker way to expand this binomial is to use the formula (+ )2 = 2 + 2+ 2 with  = 2 and  = 3:

(2+ 3)2 = (2)2 + 2(2)(3) + 32 = 42 + 12 + 9

(e) See Reference Page 1 for the binomial formula (+ )3 = 3 + 32+ 32 + 3. Using it, we get

(+ 2)3 = 3 + 32(2) + 3(22) + 23 = 3 + 62 + 12+ 8.

4. (a) Using the difference of two squares formula, 2 − 2 = ( + )( − ), we have

42 − 25 = (2)2 − 52 = (2+ 5)(2− 5).

(b) Factoring by trial and error, we get 22 + 5− 12 = (2− 3)(+ 4).

(c) Using factoring by grouping and the difference of two squares formula, we have

3 − 32 − 4+ 12 = 2(− 3)− 4(− 3) = (2 − 4)(− 3) = (− 2)(+ 2)(− 3).

(d) 4 + 27 = (3 + 27) = (+ 3)(2 − 3+ 9)

This last expression was obtained using the sum of two cubes formula, 3 + 3 = (+ )(2 −  + 2) with  = 

and  = 3. [See Reference Page 1 in the textbook.]

(e) The smallest exponent on  is − 1
2
, so we will factor out −12.

332 − 912 + 6−12 = 3−12(2 − 3+ 2) = 3−12(− 1)(− 2)

(f ) 3 − 4 = (2 − 4) = (− 2)(+ 2)
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2 ¤ DIAGNOSTIC TESTS

5. (a)
2 + 3+ 2

2 − − 2
=

(+ 1)(+ 2)

(+ 1)(− 2)
=

+ 2

− 2

(b)
22 − − 1

2 − 9
· + 3

2+ 1
=

(2+ 1)(− 1)

(− 3)( + 3)
· + 3

2+ 1
=

− 1

− 3

(c)
2

2 − 4
− + 1

+ 2
=

2

(− 2)(+ 2)
−  + 1

 + 2
=

2

(− 2)( + 2)
−  + 1

 + 2
· − 2

− 2
=

2 − (+ 1)(− 2)

(− 2)(+ 2)

=
2 − (2 − − 2)

(+ 2)(− 2)
=

+ 2

(+ 2)(− 2)
=

1

− 2

(d)




− 


1


− 1



=




− 


1


− 1



· 


=
2 − 2

− 
=

( − )( + )

−( − )
=

 + 

−1
= −(+ )

6. (a)

√
10√

5− 2
=

√
10√

5− 2
·
√

5 + 2√
5 + 2

=

√
50 + 2

√
10√

5
2 − 22

=
5
√

2 + 2
√

10

5− 4
= 5

√
2 + 2

√
10

(b)

√
4 + − 2


=

√
4 + − 2


·
√

4 + + 2√
4 + + 2

=
4 + − 4


√

4 + + 2
 =




√

4 + + 2
 =

1√
4 + + 2

7. (a) 2 + + 1 =

2 + + 1

4


+ 1− 1

4
=

+ 1

2

2
+ 3

4

(b) 22 − 12+ 11 = 2(2 − 6) + 11 = 2(2 − 6+ 9− 9) + 11 = 2(2 − 6 + 9)− 18 + 11 = 2(− 3)2 − 7

8. (a) + 5 = 14− 1
2
 ⇔ + 1

2
 = 14− 5 ⇔ 3

2
 = 9 ⇔  = 2

3
· 9 ⇔  = 6

(b)
2

+ 1
=

2− 1


⇒ 22 = (2− 1)(+ 1) ⇔ 22 = 22 + − 1 ⇔  = 1

(c) 2 − − 12 = 0 ⇔ ( + 3)(− 4) = 0 ⇔ + 3 = 0 or − 4 = 0 ⇔  = −3 or  = 4

(d) By the quadratic formula, 22 + 4+ 1 = 0 ⇔

 =
−4±


42 − 4(2)(1)

2(2)
=
−4±√8

4
=
−4± 2

√
2

4
=

2
−2±√2


4

=
−2± √

2

2
= −1± 1

2

√
2.

(e) 4 − 32 + 2 = 0 ⇔ (2 − 1)(2 − 2) = 0 ⇔ 2 − 1 = 0 or 2 − 2 = 0 ⇔ 2 = 1 or 2 = 2 ⇔
 = ±1 or  = ±√2

(f ) 3 |− 4| = 10 ⇔ |− 4| = 10
3

⇔ − 4 = − 10
3
or − 4 = 10

3
⇔  = 2

3
or  = 22

3

(g) Multiplying through 2(4− )−12 − 3
√

4−  = 0 by (4− )12 gives 2− 3(4− ) = 0 ⇔
2− 12 + 3 = 0 ⇔ 5− 12 = 0 ⇔ 5 = 12 ⇔  = 12

5
.

9. (a) −4  5− 3 ≤ 17 ⇔ −9  −3 ≤ 12 ⇔ 3   ≥ −4 or −4 ≤   3.

In interval notation, the answer is [−4 3).

(b) 2  2 + 8 ⇔ 2 − 2− 8  0 ⇔ (+ 2)(− 4)  0. Now, (+ 2)(− 4) will change sign at the critical

values  = −2 and  = 4. Thus the possible intervals of solution are (−∞−2), (−2 4), and (4∞). By choosing a

single test value from each interval, we see that (−2 4) is the only interval that satisfies the inequality.
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TEST B ANALYTIC GEOMETRY ¤ 3

(c) The inequality (− 1)(+ 2)  0 has critical values of −2 0 and 1. The corresponding possible intervals of solution

are (−∞−2), (−2 0), (0 1) and (1∞). By choosing a single test value from each interval, we see that both intervals

(−2 0) and (1∞) satisfy the inequality. Thus, the solution is the union of these two intervals: (−2 0) ∪ (1∞).

(d) |− 4|  3 ⇔ −3  − 4  3 ⇔ 1    7. In interval notation, the answer is (1 7).

(e)
2− 3

+ 1
≤ 1 ⇔ 2− 3

+ 1
− 1 ≤ 0 ⇔ 2− 3

+ 1
− + 1

+ 1
≤ 0 ⇔ 2− 3− − 1

+ 1
≤ 0 ⇔ − 4

+ 1
≤ 0.

Now, the expression
− 4

+ 1
may change signs at the critical values  = −1 and  = 4, so the possible intervals of solution

are (−∞−1), (−1 4], and [4∞). By choosing a single test value from each interval, we see that (−1 4] is the only

interval that satisfies the inequality.

10. (a) False. In order for the statement to be true, it must hold for all real numbers, so, to show that the statement is false, pick

 = 1 and  = 2 and observe that (1 + 2)2 6= 12 + 22. In general, (+ )2 = 2 + 2 + 2.

(b) True as long as  and  are nonnegative real numbers. To see this, think in terms of the laws of exponents:
√
 = ()12 = 1212 =

√

√
.

(c) False. To see this, let  = 1 and  = 2, then
√

12 + 22 6= 1 + 2.

(d) False. To see this, let  = 1 and  = 2, then
1 + 1(2)

2
6= 1 + 1.

(e) False. To see this, let  = 2 and  = 3, then
1

2− 3
6= 1

2
− 1

3
.

(f ) True since
1

− 
· 


=
1

− 
, as long as  6= 0 and −  6= 0.

Test B Analytic Geometry

1. (a) Using the point (2−5) and = −3 in the point-slope equation of a line,  − 1 = (− 1), we get

 − (−5) = −3(− 2) ⇒  + 5 = −3+ 6 ⇒  = −3+ 1.

(b) A line parallel to the -axis must be horizontal and thus have a slope of 0. Since the line passes through the point (2−5),

the -coordinate of every point on the line is−5, so the equation is  = −5.

(c) A line parallel to the -axis is vertical with undefined slope. So the -coordinate of every point on the line is 2 and so the

equation is  = 2.

(d) Note that 2− 4 = 3 ⇒ −4 = −2+ 3 ⇒  = 1
2
− 3

4
. Thus the slope of the given line is = 1

2
. Hence, the

slope of the line we’re looking for is also 1
2
(since the line we’re looking for is required to be parallel to the given line).

So the equation of the line is  − (−5) = 1
2
(− 2) ⇒  + 5 = 1

2
− 1 ⇒  = 1

2
− 6.

2. First we’ll find the distance between the two given points in order to obtain the radius, , of the circle:

 =


[3− (−1)]2 + (−2− 4)2 =


42 + (−6)2 =
√

52. Next use the standard equation of a circle,

(− )2 + ( − )2 = 2, where ( ) is the center, to get (+ 1)2 + ( − 4)2 = 52.
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3. We must rewrite the equation in standard form in order to identify the center and radius. Note that

2 + 2 − 6+ 10 + 9 = 0 ⇒ 2 − 6 + 9 + 2 + 10 = 0. For the left-hand side of the latter equation, we

factor the first three terms and complete the square on the last two terms as follows: 2 − 6 + 9 + 2 + 10 = 0 ⇒
(− 3)2 + 2 + 10+ 25 = 25 ⇒ (− 3)2 + (+ 5)2 = 25. Thus, the center of the circle is (3−5) and the radius is 5.

4. (a) (−7 4) and (5−12) ⇒  =
−12− 4

5− (−7)
=
−16

12
= −4

3

(b) − 4 = − 4
3
[− (−7)] ⇒ − 4 = − 4

3
− 28

3
⇒ 3− 12 = −4− 28 ⇒ 4+ 3 + 16 = 0. Putting  = 0,

we get 4+ 16 = 0, so the -intercept is −4, and substituting 0 for  results in a -intercept of − 16
3
.

(c) The midpoint is obtained by averaging the corresponding coordinates of both points:

−7+5

2


4+(−12)

2


= (−1−4).

(d)  =


[5− (−7)]2 + (−12− 4)2 =


122 + (−16)2 =
√

144 + 256 =
√

400 = 20

(e) The perpendicular bisector is the line that intersects the line segment  at a right angle through its midpoint. Thus the

perpendicular bisector passes through (−1−4) and has slope 3
4
[the slope is obtained by taking the negative reciprocal of

the answer from part (a)]. So the perpendicular bisector is given by  + 4 = 3
4
[− (−1)] or 3− 4 = 13.

(f ) The center of the required circle is the midpoint of , and the radius is half the length of , which is 10. Thus, the

equation is (+ 1)2 + ( + 4)2 = 100.

5. (a) Graph the corresponding horizontal lines (given by the equations  = −1 and

 = 3) as solid lines. The inequality  ≥ −1 describes the points ( ) that lie

on or above the line  = −1. The inequality  ≤ 3 describes the points ( )

that lie on or below the line  = 3. So the pair of inequalities−1 ≤  ≤ 3

describes the points that lie on or between the lines  = −1 and  = 3.

(b) Note that the given inequalities can be written as−4    4 and −2    2,

respectively. So the region lies between the vertical lines  = −4 and  = 4 and

between the horizontal lines  = −2 and  = 2. As shown in the graph, the

region common to both graphs is a rectangle (minus its edges) centered at the

origin.

(c) We first graph  = 1− 1
2
 as a dotted line. Since   1− 1

2
, the points in the

region lie below this line.
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(d) We first graph the parabola  = 2 − 1 using a solid curve. Since  ≥ 2 − 1,

the points in the region lie on or above the parabola.

(e) We graph the circle 2 + 2 = 4 using a dotted curve. Since

2 + 2  2, the

region consists of points whose distance from the origin is less than 2, that is,

the points that lie inside the circle.

(f ) The equation 92 + 162 = 144 is an ellipse centered at (0 0). We put it in

standard form by dividing by 144 and get
2

16
+

2

9
= 1. The -intercepts are

located at a distance of
√

16 = 4 from the center while the -intercepts are a

distance of
√

9 = 3 from the center (see the graph).

Test C Functions

1. (a) Locate −1 on the -axis and then go down to the point on the graph with an -coordinate of −1. The corresponding

-coordinate is the value of the function at  = −1, which is −2. So, (−1) = −2.

(b) Using the same technique as in part (a), we get (2) ≈ 28.

(c) Locate 2 on the -axis and then go left and right to find all points on the graph with a -coordinate of 2. The corresponding

-coordinates are the -values we are searching for. So  = −3 and  = 1.

(d) Using the same technique as in part (c), we get  ≈ −25 and  ≈ 03.

(e) The domain is all the -values for which the graph exists, and the range is all the -values for which the graph exists.

Thus, the domain is [−3 3], and the range is [−2 3].

2. Note that (2 + ) = (2 + )3 and (2) = 23 = 8. So the difference quotient becomes

(2 + )− (2)


=

(2 + )3 − 8


=

8 + 12+ 62 + 3 − 8


=

12+ 62 + 3


=

(12 + 6+ 2)


= 12 + 6+ 2.

3. (a) Set the denominator equal to 0 and solve to find restrictions on the domain: 2 + − 2 = 0 ⇒
(− 1)(+ 2) = 0 ⇒  = 1 or  = −2. Thus, the domain is all real numbers except 1 or −2 or, in interval

notation, (−∞−2) ∪ (−2 1) ∪ (1∞).

(b) Note that the denominator is always greater than or equal to 1, and the numerator is defined for all real numbers. Thus, the

domain is (−∞∞).

(c) Note that the function  is the sum of two root functions. So  is defined on the intersection of the domains of these two

root functions. The domain of a square root function is found by setting its radicand greater than or equal to 0. Now,
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4−  ≥ 0 ⇒  ≤ 4 and 2 − 1 ≥ 0 ⇒ (− 1)( + 1) ≥ 0 ⇒  ≤ −1 or  ≥ 1. Thus, the domain of

 is (−∞−1] ∪ [1 4].

4. (a) Reflect the graph of  about the -axis.

(b) Stretch the graph of  vertically by a factor of 2, then shift 1 unit downward.

(c) Shift the graph of  right 3 units, then up 2 units.

5. (a) Make a table and then connect the points with a smooth curve:

 −2 −1 0 1 2

 −8 −1 0 1 8

(b) Shift the graph from part (a) left 1 unit.

(c) Shift the graph from part (a) right 2 units and up 3 units.

(d) First plot  = 2. Next, to get the graph of () = 4− 2,

reflect  about the x-axis and then shift it upward 4 units.

(e) Make a table and then connect the points with a smooth curve:

 0 1 4 9

 0 1 2 3

(f ) Stretch the graph from part (e) vertically by a factor of two.
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TEST D TRIGONOMETRY ¤ 7

(g) First plot  = 2. Next, get the graph of  = −2 by reflecting the graph of

 = 2 about the x-axis.

(h) Note that  = 1 + −1 = 1 + 1. So first plot  = 1 and then shift it

upward 1 unit.

6. (a) (−2) = 1− (−2)2 = −3 and (1) = 2(1) + 1 = 3

(b) For  ≤ 0 plot () = 1− 2 and, on the same plane, for   0 plot the graph

of () = 2+ 1.

7. (a) ( ◦ )() = (()) = (2− 3) = (2− 3)2 + 2(2− 3)− 1 = 42 − 12+ 9 + 4− 6− 1 = 42 − 8+ 2

(b) ( ◦ )() = (()) = (2 + 2− 1) = 2(2 + 2− 1)− 3 = 22 + 4− 2− 3 = 22 + 4− 5

(c) ( ◦  ◦ )() = ((())) = ((2− 3)) = (2(2− 3)− 3) = (4− 9) = 2(4− 9)− 3

= 8− 18− 3 = 8− 21

Test D Trigonometry

1. (a) 300◦ = 300◦
 

180◦


=

300

180
=

5

3
(b) −18◦ = −18◦

 

180◦


= −18

180
= − 

10

2. (a)
5

6
=

5

6


180



◦
= 150◦ (b) 2 = 2


180



◦
=


360



◦
≈ 1146◦

3. We will use the arc length formula,  = , where  is arc length,  is the radius of the circle, and  is the measure of the

central angle in radians. First, note that 30◦ = 30◦
 

180◦


=



6
. So  = (12)


6


= 2 cm.

4. (a) tan(3) =
√

3

You can read the value from a right triangle with sides 1, 2, and

√
3.


(b) Note that 76 can be thought of as an angle in the third quadrant with reference angle 6. Thus, sin(76) = − 1
2
,

since the sine function is negative in the third quadrant.

(c) Note that 53 can be thought of as an angle in the fourth quadrant with reference angle 3. Thus,

sec(53) =
1

cos(53)
=

1

12
= 2, since the cosine function is positive in the fourth quadrant.
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8 ¤ DIAGNOSTIC TESTS

5. sin  = 24 ⇒  = 24 sin  and cos  = 24 ⇒  = 24 cos 

6. sin = 1
3
and sin2 + cos2  = 1 ⇒ cos =


1− 1

9
=

2
√

2

3
. Also, cos  = 4

5
⇒ sin  =


1− 16

25
= 3

5
.

So, using the sum identity for the sine, we have

sin(+ ) = sin cos  + cos sin  =
1

3
· 4

5
+

2
√

2

3
· 3

5
=

4 + 6
√

2

15
=

1

15


4 + 6

√
2


7. (a) tan  sin  + cos  =
sin 

cos 
sin  + cos  =

sin2 

cos 
+

cos2 

cos 
=

1

cos 
= sec 

(b)
2 tan

1 + tan2 
=

2 sin(cos)

sec2 
= 2

sin

cos
cos2  = 2 sin cos = sin 2

8. sin 2 = sin ⇔ 2 sin cos = sin ⇔ 2 sin cos− sin = 0 ⇔ sin (2 cos− 1) = 0 ⇔
sin = 0 or cos = 1

2
⇒  = 0, 

3
, , 5

3
, 2.

9. We first graph  = sin 2 (by compressing the graph of sin

by a factor of 2) and then shift it upward 1 unit.
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