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Introduction 

 Chips are mostly made of wires called interconnect 

– In stick diagram, wires set size 

– Transistors are little things under the wires 

– Many layers of wires 

 Wires are as important as transistors 

– Speed 

– Power 

– Noise 

 Alternating layers run orthogonally 
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Wire Geometry 

 Pitch = w + s 

 Aspect ratio: AR = t/w 

– Old processes had AR << 1 

– Modern processes have AR  2 

• Pack in many skinny wires 
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Layer Stack 

 Example of old process: AMI 0.6 mm process has 3 metal 

layers  

– M1 for within-cell routing 

– M2 for vertical routing between cells 

– M3 for horizontal routing between cells 

 Modern processes use 6-10+ metal layers 

– M1: thin, narrow (< 3l) 

• High density cells 

– Mid layers 

• Thicker and wider, (density vs. speed) 

– Top layers: thickest 

• For VDD, GND, clk 
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Example 

Intel 90 nm Stack Intel 45 nm Stack 
[Thompson02] [Moon08] 
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Lumped Element Models 

 Wires are a distributed system 

– Approximate with lumped element models 

 

 

 

 

 

 

 3-segment p-model is accurate to 3% in simulation 

 L-model needs 100 segments for same accuracy! 

 Use single segment p-model for Elmore delay 
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Wire Resistance 

 r = resistivity (W*m) 

 

 

 R


 = sheet resistance (W/) 

–  is a dimensionless unit(!) 

 Count number of squares 

– R = R


 * (# of squares) 
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Choice of Metals 

 Until 180 nm generation, most wires were aluminum 

 Contemporary processes normally use copper 

– Cu atoms diffuse into silicon and damage FETs 

– Must be surrounded by a diffusion barrier 

Metal Bulk resistivity (mW • cm) 

Silver (Ag) 1.6 

Copper (Cu) 1.7 

Gold (Au) 2.2 

Aluminum (Al) 2.8 

Tungsten (W) 5.3 

Titanium (Ti) 43.0 
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Contacts Resistance 

 Contacts and vias also have 2-20 W 

 Use many contacts for lower R 

– Many small contacts for current crowding around 

periphery 



CMOS VLSI Design CMOS VLSI Design 4th Ed. 14: Wires 11 

Copper Issues 

 Copper must be surrounded by a lower-conductivity 

diffusion barrier which effectively reduces the wire 

cross-sectional area and increases resistance. 

 Copper is also prone to dishing during polishing 

 Effective resistance is higher 

   dish barrier barrier2
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Cu Wire Example 

 Compute the sheet resistance of a 0.22 mm thick Cu 

wire in a 65 nm process. The resistivity of thin film 

Cu is 2.2 x 10-8 W•m. Ignore dishing.  

 

 

 

 Find the total resistance if the wire is 0.125 mm wide 

and 1 mm long.  Ignore the barrier layer. 
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Wire Capacitance 

 Wire has capacitance per unit length 

– To neighbors 

– To layers above and below 

 Ctotal = Ctop + Cbot + 2Cadj 

layer n+1
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Capacitance Trends 

 Parallel plate equation:  C = eoxA/d 

– Wires are not parallel plates, but obey trends 

– Increasing area (W, t) increases capacitance 

– Increasing distance (s, h) decreases capacitance 

 Dielectric constant 

–  eox = ke0 

•  e0 = 8.85 x 10-14 F/cm 

•  k = 3.9 for SiO2 

 Processes are starting to use low-k dielectrics 

– k  3 (or less) as dielectrics use air pockets 
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Capacitance Formula 

 Capacitance of a line without neighbors can be 

approximated as 

 

 

 

 This empirical formula is accurate to 6% for AR < 3.3 
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M2 Capacitance Data 

 Typical dense wires have ~ 0.2 fF/mm 

– Compare to 1-2 fF/mm for gate capacitance 
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Diffusion & Polysilicon 

 Diffusion capacitance is very high (1-2 fF/mm) 

– Comparable to gate capacitance 

– Diffusion also has high resistance 

– Avoid using diffusion runners for wires! 

 Polysilicon has lower C but high R 

– Use for transistor gates 

– Occasionally for very short wires between gates 
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Wire RC Delay Example 

 Estimate the delay of a 10x inverter driving a 2x inverter at the 

end of the 1 mm wire.  Assume : 

– Wire capacitance is 0.2 fF/mm and resistance of the Cu 

Wire example (in earlier slide) 

– A unit-sized inverter has R = 10 KW and C = 0.1 fF.  
 

tpd = (1000 W)(100 fF) + (1000 + 800 W)(100 + 0.6 fF) = 281 ps 

Intrinsic delay 

(due to diffusion cap) 

is ignored. 
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Wire Delay Example (2) 

14: Wires 19 
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Lumped RC Network/Tree 

R44= R1 + R3 + R4 

Ri4= R1 + R3 

Ri2= R1 

Di =   r1 (c1 + c2 ) 

             + ( r1 + r3 ) (c3 + c4 ) 

             + ( r1 + r3 + ri ) ci 
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Wire Delay Example (3) 

14: Wires 21 
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Wire Energy 

 Estimate the energy per unit length to send a bit of 

information (one rising and one falling transition) in a 

CMOS process. 

 

 E     = EC(rising) + EC(falling) +  

           = ½ C V2 + ½ C V2  

 E    = (0.2 pF/mm)(1.0 V)2  = 0.2 pJ/bit/mm 

      = 0.2 mW/Gbps/mm 
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Crosstalk 

 A capacitor does not like to change its voltage 

instantaneously. 

 A wire has high capacitance to its neighbor. 

– When the neighbor switches from 1-> 0 or 0->1, 

the wire tends to switch too. 

– Called capacitive coupling or crosstalk. 

 Crosstalk effects 

– Noise on nonswitching wires 

– Increased delay on switching wires 
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Crosstalk Delay 

 Assume layers above and below on average are quiet 

– Second terminal of capacitor can be ignored 

– Model as Cgnd = Ctop + Cbot 

 Effective Cadj depends on behavior of neighbors 

– Miller effect A B
C

adjC
gnd

C
gnd

B DV Ceff(A) MCF 

Constant VDD Cgnd + Cadj 1 

Switching with A 0 Cgnd 0 

Switching opposite A 2VDD Cgnd + 2 Cadj 2 
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Crosstalk Noise 

 Crosstalk causes noise on nonswitching wires 

 If victim is floating: 

– model as capacitive voltage divider 
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Driven Victims 

 Usually victim is driven by a gate that fights noise 

– Noise depends on relative resistances 

– Victim driver is in linear region, agg. in saturation 

– If sizes are same, Raggressor = 2-4 x Rvictim 
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Coupling Waveforms 

 Simulated coupling for Cadj = Cvictim 
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Noise Implications 

 So what if we have noise? 

 If the noise is less than the noise margin, nothing 

happens 

 Static CMOS logic will eventually settle to correct 

output even if disturbed by large noise spikes 

– But glitches cause extra delay 

– Also cause extra power from false transitions 

 Dynamic logic never recovers from glitches 

 Memories and other sensitive circuits also can 

produce the wrong answer 
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Repeaters 

 R and C are proportional to l 

 RC delay is proportional to l2 

– Unacceptably great for long wires 

 Break long wires into N shorter segments 

– Drive each one with an inverter or buffer 
Wire Length: l

Driver Receiver

l/N

Driver

Segment

Repeater

l/N

Repeater

l/N

ReceiverRepeater

N Segments



CMOS VLSI Design CMOS VLSI Design 4th Ed. 14: Wires 30 

Repeater Design 

 How many repeaters should we use? 

 How large should each one be? 

 Equivalent Circuit 

– Wire length l/N 

• Wire Capacitance Cw*l/N, Resistance Rw*l/N 

– Inverter width W (nMOS = W, pMOS = 2W) 

• Gate Capacitance C’*W, Resistance R/W 

R/W
C'WC

w
l/2N C

w
l/2N

R
w
lN
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Repeater Results 

 

 

 

 Differentiate with respect to  

        W and N. Set equal to 0, solve 
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Repeater Energy 

 Energy / length ≈ 1.87CwVDD
2 

– 87% premium over unrepeated wires 

– The extra power is consumed in the large 

repeaters 

 If the repeaters are downsized for minimum EDP: 

– Energy premium is only 30% 

– Delay increases by 14% from min delay 
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Repeater Example 

14: Wires 33 

Energy / length ≈ 1.87CwVDD
2 
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Skin Effect 

 At high frequency, current tends to flow near the surface of the 

conductor, and thus reducing the effective cross-sectional area of the 

thick conductor and raising resistance. 

 Skin depth (δ) is the depth where the current falls off e-1 of its nominal 

value. (e-1 = 0.37) 

 

 

14: Wires 34 
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Skin Depth Example 

14: Wires 35 


