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Outline 

 Transistor Theory 

– Channel Formation and operation Regions 

– I-V Characteristics 

– C-V Characteristics 

• Gate and Diffusion Capacitance 

 Nonideal characteristics 

 DC Response 

– DC Response 

– Logic Levels and Noise Margins 
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Introduction 

 So far, we have treated transistors as ideal switches 

 An ON transistor passes a finite amount of current 

– Depends on terminal voltages 

– Derive current-voltage (I-V) relationships 

 Transistor gate, source, drain all have capacitance 

– I = C (DV/Dt) -> Dt = (C/I) DV 

– Capacitance and current determine speed 
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 Gate and body form MOS 

capacitor 

 Operating modes 

– Accumulation 

– Depletion 

– Inversion 
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Terminal Voltages 

 Mode of operation depends on Vg, Vd, Vs 

– Vgs = Vg – Vs 

– Vgd = Vg – Vd 

– Vds = Vd – Vs = Vgs - Vgd 

 Source and drain are symmetric diffusion terminals 

– By convention, source is terminal at lower voltage 

– Hence Vds  0 

 nMOS body is grounded.  First assume source is 0 too. 

 Three regions of operation 

– Cutoff 

– Linear 

– Saturation 
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nMOS Cutoff 

 No channel 

 Ids ≈ 0 
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nMOS Linear 

 Channel forms 

 Current flows from d to s  

– e- from s to d 

 Ids increases with Vds 

 Similar to linear resistor 
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nMOS Saturation 

 Channel pinches off 

 Ids independent of Vds 

 We say current saturates 

 Similar to current source 

+
-

V
gs

 > V
t

n+ n+

+
-

V
gd

 < V
t

V
ds

 > V
gs

-V
t

p-type body

b

g

s d I
ds



CMOS VLSI Design CMOS VLSI Design 4th Ed. 3: CMOS Transistor Theory 9 

I-V Characteristics 

 In Linear region, Ids depends on 

– How much charge is in the channel? 

– How fast is the charge moving? 



CMOS VLSI Design CMOS VLSI Design 4th Ed. 3: CMOS Transistor Theory 10 

Long Channel I-V 

 MOS structure looks like parallel plate capacitor 

while operating in inversions 

– Gate – oxide – channel 

 Qchannel = CV 

 C = Cg = eoxWL/tox = CoxWL 

 V = Vgc – Vt = (Vgs – Vds/2) – Vt 
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Long Channel I-V 

3: CMOS Transistor Theory 11 
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nMOS Saturation I-V 

 If Vgd < Vt, channel pinches off near drain 

– When Vds > Vdsat = Vgs – Vt 

 Now drain voltage no longer increases current 
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nMOS I-V Summary 
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 Shockley 1st order transistor models 
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Example 

 The following is a 0.6 mm process: 

– tox = 100 Å 

–  m = 350 cm2/V*s 

– Vt = 0.7 V 

 Plot Ids vs. Vds 

– Vgs = 0, 1, 2, 3, 4, 5 

– Use W/L = 4/2 l 
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Another Example 
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pMOS I-V 

 All dopings and voltages are inverted for pMOS 

– Source is the more positive terminal 

 Mobility mp is determined by holes 

– Typically 2-3x lower than that of electrons mn 

– 120 cm2/V•s in AMI 0.6 mm process 

 Thus pMOS must be wider to  

 provide same current 

– In this class, assume  

 mn / mp = 2 
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Reverse 

Voltages 

Terminals 

Change > to < 

Positives to negatives 
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Capacitance 

 Any two conductors separated by an insulator have 

capacitance 

 Gate to channel capacitor is very important 

– Creates channel charge necessary for operation 

 Source and drain have capacitance to body 

– Across reverse-biased diodes 

– Called diffusion capacitance because it is 

associated with source/drain diffusion 
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MOS Device Capacitances 
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Gate Capacitance 

 Approximate channel as connected to source 

 Cgs = eoxWL/tox = CoxWL = CpermicronW 

 Cpermicron is typically about 2 fF/mm  
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Gate Overlap Capacitance 

3: CMOS Transistor Theory 21 
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Approximation of Intrinsic Gate Capacitance 

3: CMOS Transistor Theory 22 
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Diffusion Capacitance 

 Csb, Cdb 

 Undesirable, called parasitic capacitance 

 Capacitance depends on area and perimeter 

– Use small diffusion nodes 

– Comparable to Cg  

 for contacted diff 

– ½ Cg for uncontacted 

– Varies with process 
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Diffusion Cap Calculations 

 Total source diff capacitance 

 

 

 

 

 

 

 

 

 

 Source area (AS) = W D 

 Source Perimeter (PS) = W + 2D 
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*  The side wall capacitance  

     abutting the channel is: 
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Diffusion Cap Example 

3: CMOS Transistor Theory 25 

l = 25 nm 

W = 4 l = 0.1mm 

D = 5 l = 0.125mm 
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Nonideal 

Transistor 

Theory 
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Outline 

 Nonideal Transistor Behavior 

– High Field Effects 

• Mobility Degradation 

• Velocity Saturation 

– Channel Length Modulation 

– Threshold Voltage Effects 

• Body Effect 

• Drain-Induced Barrier Lowering 

• Short Channel Effect 

– Leakage 

• Subthreshold Leakage 

• Gate Leakage 

• Junction Leakage 

 Process and Environmental Variations 
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Ideal vs. Simulated nMOS I-V Plot 

 65 nm IBM process, VDD = 1.0 V 

 This is due to: 

– Velocity Saturation 

– Mobility depredation 
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ON and OFF Current 

 Ion = Ids @ Vgs = Vds = VDD  

– Saturation 

 

 

 

 Ioff = Ids @ Vgs = 0, Vds = VDD 

– Cutoff 
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Nonideal Transistor Behavior: 

High Field Effects  

 The saturation current increases less than quadratically with 

increasing Vgs  because of:  

– velocity saturation  

– mobility degradation.  

 At high lateral field strengths (Vds /L), carrier velocity ceases to 

increase linearly with field strength. This is called velocity 

saturation and results in lower Ids than expected at high Vds .  

 At high vertical field strengths (Vgs /tox ), the carriers scatter off 

the oxide interface more often, slowing their progress. This 

mobility degradation effect also leads to less current than 

expected at high Vgs  
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Nonideal Transistor Behavior: Other 

Effects  

 The saturation current of the nonideal transistor increases 

somewhat with Vds . This is caused by channel length 

modulation, in which higher Vds increases the size of the 

depletion region around the drain and thus effectively shortens 

the channel. 

 There are other fields in the transistor have some effect on the 

channel, effectively modifying the threshold voltage.  

– Increasing the potential between the source and body 

raises the threshold through the body effect.  

– Increasing the drain voltage lowers the threshold through 

drain-induced barrier lowering.  

– Increasing the channel length raises the threshold through 

the short channel effect.  
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Nonideal Transistor Behavior: Leakage & 

Temperature 

 Sources of leakage result in current flow in nominally OFF transistors:  

– Subthreshold conduction: when Vgs < Vt , the current drops off exponentially 

rather than abruptly becoming zero.  

– Gate leakage: The current into the gate Ig is ideally 0. However, as the 

thickness of gate oxides reduces to only a small number of atomic layers, 

electrons tunnel through the gate, causing some gate leakage current.  

– Diffusion leakage: The source and drain diffusions are typically reverse-biased 

diodes and also experience junction leakage into the substrate or well. 

 Both mobility and threshold voltage decrease with rising temperature. The 

mobility effect tends to dominate for strongly ON transistors, resulting in 

lower Ids at high temperature. The threshold effect is most important for 

OFF transistors, resulting in higher leakage current at high temperature. In 

summary, MOS characteristics degrade with temperature. 

3: CMOS Transistor Theory 32 
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Temperature Sensitivity 

 Increasing temperature 

– Reduces mobility 

– Reduces Vt 

V
gs

dsI

increasing

temperature

The mobility effect tends to dominate for strongly ON transistors, resulting in lower 

Ids at high temperature. The threshold effect is most important for OFF transistors, 

resulting in higher leakage current at high temperature.  
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Electric Fields Effects 

 Vertical electric field: Evert = Vgs / tox 

– Attracts carriers into channel 

– Long channel: Qchannel  Evert 

 Lateral electric field: Elat = Vds / L 

– Accelerates carriers from drain to source 

– Long channel: v = mElat 
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Mobility Degradation 

 High Evert effectively reduces mobility 

– Collisions with oxide interface 
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Velocity Saturation 

 At high Elat, carrier velocity rolls off 

– Carriers scatter off atoms in silicon lattice 

– Velocity reaches vsat 

• Electrons: 107 cm/s 

• Holes: 8 x 106 cm/s 

– Better model 
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Vel Sat I-V Effects 

 Ideal transistor ON current increases with VDD
2 

 

 

 Velocity-saturated ON current increases with VDD 

 

 

 Real transistors are partially velocity saturated 

– Approximate with a-power law model 

– Ids  VDD
a  

– 1 < a < 2 determined empirically (≈ 1.3 for 65 nm) 
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Channel Length Modulation 

 Reverse-biased p-n junctions form a depletion region 

– Region between n and p with no carriers 

– Width of depletion Ld region grows with reverse bias 

– Leff = L – Ld 

 

 

 

 

 

l = channel length modulation coefficient 

– not feature size 

– Empirically fit to I-V characteristics 
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Threshold Voltage Effects 

 Vt is Vgs for which the channel starts to invert 

 Ideal models assumed Vt is constant 

 Really depends (weakly) on almost everything else: 

– Body voltage: Body Effect 

– Drain voltage: Drain-Induced Barrier Lowering 

– Channel length: Short Channel Effect 



CMOS VLSI Design CMOS VLSI Design 4th Ed. 4: Nonideal Transistor Theory 41 

Body Effect 

 Body is a fourth transistor terminal 

 Vsb affects the charge required to invert the channel 

–  Increasing Vs or decreasing Vb increases Vt 

 

 fs = surface potential at threshold 

 
– Depends on doping level NA 

– And intrinsic carrier concentration ni 

  g = body effect coefficient 
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Body Effect Cont. 

 For small source-to-body voltage, treat as linear 
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Body Effect Example 

3: CMOS Transistor Theory 43 



CMOS VLSI Design CMOS VLSI Design 4th Ed. 4: Nonideal Transistor Theory 44 

DIBL 

 Electric field from drain affects channel 

 More pronounced in small transistors where the drain is closer 

to the channel 

 Drain-Induced Barrier Lowering 

– Drain voltage also affect Vt 

 

 

 

 

 

 

 High drain voltage causes current to increase. 

ttdsVVV
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Short Channel Effect 

 In small transistors, source/drain depletion regions 

extend into the channel 

– Impacts the amount of charge required to invert 

the channel 

– And thus makes Vt a function of channel length 

 Short channel effect: Vt increases with L 

– Some processes exhibit a reverse short channel 

effect in which Vt decreases with L 
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Leakage 

 What about current in cutoff? 

 Simulated results 

 What differs? 

– Current doesn’t 

  go to 0 in cutoff 
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Leakage Sources 

 Subthreshold conduction 

– Transistors can’t abruptly turn ON or OFF 

– Dominant source in contemporary transistors 

 Gate leakage 

– Tunneling through ultrathin gate dielectric 

 Junction leakage 

– Reverse-biased PN junction diode current 
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Subthreshold Leakage 

 Subthreshold leakage exponential with Vgs 

 

 

 n is process dependent 

– typically 1.3-1.7 

 Rewrite relative to Ioff on log scale 

 

 

 

 

 

 S ≈ 100 mV/decade @ room temperature 
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Gate Leakage 

 Carriers tunnel thorough very thin gate oxides 

 Exponentially sensitive to tox and VDD 

 

 

 

– A and B are tech constants 

– Greater for electrons 

• So nMOS gates leak more 

 Negligible for older processes (tox > 20 Å) 

 Critically important at 65 nm and below (tox ≈ 10.5 Å) 

From 

[Song01] 
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Junction Leakage 

 Reverse-biased p-n junctions have some leakage 

– Band-to-band tunneling (BTBT) 

 

 

– Gate-induced drain leakage (GIDL) 

 

 

n well

n+n+ n+p+p+p+

p substrate
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Diode Leakage 

 Reverse-biased p-n junctions have some leakage 

 

 

 At any significant negative diode voltage, ID = -Is 

 Is depends on doping levels 

– And area and perimeter of diffusion regions 

– Typically < 1 fA/mm2 (negligible) 

e 1
D

T

V

v

D SI I
 

  
 
 



CMOS VLSI Design CMOS VLSI Design 4th Ed. 

DC 

Characteristics 

Dr. Bassam Jamil 

 

Adopted from slides of the 

textbook 



CMOS VLSI Design CMOS VLSI Design 4th Ed. 5: DC and Transient Response 53 

Outline 

 Pass Transistors 

 DC Response 

 Logic Levels and Noise Margins 

 Transient Response 

 RC Delay Models 

 Delay Estimation 
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Pass Transistors 

 We have assumed source is grounded 

 What if source > 0? 

– e.g. pass transistor passing VDD 

 Vg = VDD 

– If Vs > VDD-Vt, Vgs < Vt 

– Hence transistor would turn itself off 

 nMOS pass transistors pull no higher than VDD-Vtn 

– Called a degraded “1” 

– Approach degraded value slowly (low Ids) 

 pMOS pass transistors pull no lower than Vtp 

 Transmission gates are needed to pass both 0 and 1  

V
DD

V
DD



CMOS VLSI Design CMOS VLSI Design 4th Ed. 5: DC and Transient Response 55 

Pass Transistor Ckts 
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VDD
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DC Response 

 DC Response: Vout vs. Vin for a gate 

 Ex: Inverter 

– When Vin = 0   ->  Vout = VDD 

– When Vin = VDD   ->  Vout = 0 

– In between, Vout depends on 

 transistor size and current 

– By KCL, must settle such that 

 Idsn = |Idsp| 

– We could solve equations 

– But graphical solution gives more insight 

 

I
dsn

I
dsp

V
out

V
DD

V
in



CMOS VLSI Design CMOS VLSI Design 4th Ed. 5: DC and Transient Response 57 

pMOS Operation 

Idsn

Idsp
Vout

VDD

Vin

For PMOS:  Vtp < 0  

           Vgsp = Vin – VDD  , Vdsp = Vout – VDD 

For NMOS: Vgsp = Vin  , Vdsp =Vout – VDD 
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DC Characteristic 
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Operating Regions 

 Revisit transistor operating regions 

 Define input threshold (Vinv) as when 

   Vinv=Vin=Vout 
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Calculate Vinv 

4: Nonideal Transistor Theory 60 
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Beta Ratio 

 If p / n  1, switching point will move from VDD/2 

 Called skewed gate 

 Other gates: collapse into equivalent inverter 
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Noise Margins 

 How much noise can a gate input see before it does 

not recognize the input? 
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Logic Levels 

 To maximize noise margins, select logic levels at  

– unity gain point of DC transfer characteristic 


