
An Overview of OpenMP

1

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

IWOMP 2010
CCS, University of Tsukuba

Tsukuba, Japan
June 14-16, 2010

Ruud van der Pas

Senior Staff Engineer
Oracle Solaris Studio

Oracle
Menlo Park, CA, USA

An Overview of OpenMP

An Overview of OpenMP

2

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Outline
❑ Getting Started with OpenMP

❑ Using OpenMP

❑ Tasking in OpenMP

❑ Oracle Solaris Studio support for OpenMP

An Overview of OpenMP

3

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Getting Started with OpenMP

An Overview of OpenMP

4

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

http://www.openmp.org

http://www.compunity.org

An Overview of OpenMP

5

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

http://www.openmp.org

An Overview of OpenMP

6

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Shameless Plug - “Using OpenMP”

“Using OpenMP”
Portable Shared Memory
Parallel Programming

Chapman, Jost, van der Pas

MIT Press, 2008

ISBN-10: 0-262-53302-2
ISBN-13: 978-0-262-53302-7

List price: 35 $US

An Overview of OpenMP

7

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

All 41 examples are available NOW!

As well as a forum on http://www.openmp.org

Download the examples and discuss in forum:
http://www.openmp.org/wp/2009/04/
download-book-examples-and-discuss

An Overview of OpenMP

8

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

What is OpenMP?
❑ De-facto standard Application Programming Interface

(API) to write shared memory parallel applications in
C, C++, and Fortran

❑ Consists of:

● Compiler directives
● Run time routines
● Environment variables

❑ Specifi cation maintained by the OpenMP
Architecture Review Board (http://www.openmp.org)

❑ Version 3.0 has been released May 2008

http://www.openmp.org/

An Overview of OpenMP

9

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

When to consider OpenMP?
❑ Using an automatically parallelizing compiler:

● It can not fi nd the parallelism
✔ The data dependence analysis is not able to

determine whether it is safe to parallelize or not
● The granularity is not high enough

✔ The compiler lacks information to parallelize at the
highest possible level

❑ Not using an automatically parallelizing compiler:

● No choice than doing it yourself

An Overview of OpenMP

10

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Advantages of OpenMP
❑ Good performance and scalability

● If you do it right
❑ De-facto and mature standard

❑ An OpenMP program is portable

● Supported by a large number of compilers
❑ Requires little programming effort

❑ Allows the program to be parallelized incrementally

An Overview of OpenMP

11

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

OpenMP and Multicore

OpenMP is ideally suited for multicore
architectures

Memory and threading model map naturally

Lightweight

Mature

Widely available and used

An Overview of OpenMP

12

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The OpenMP Memory Model

T
private

T
private

T
private

T
private

T

private

Shared
Memory

✔ All threads have access to the
same, globally shared, memory

✔ Data can be shared or private

✔ Shared data is accessible by all
threads

✔ Private data can only be
accessed by the thread that
owns it

✔ Data transfer is transparent to
the programmer

✔ Synchronization takes place,
but it is mostly implicit

An Overview of OpenMP

13

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The OpenMP Execution Model

Fork and Join Model
Master
Thread

Worker
ThreadsParallel region

Synchronization

Parallel region Worker
Threads

Synchronization

An Overview of OpenMP

14

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Data-sharing Attributes
❑ In an OpenMP program, data needs to be “labeled”

❑ Essentially there are two basic types:

● Shared - There is only one instance of the data
✔ All threads can read and write the data simultaneously,

unless protected through a specifi c OpenMP construct
✔ All changes made are visible to all threads

But not necessarily immediately, unless enforced
● Private - Each thread has a copy of the data

✔ No other thread can access this data
✔ Changes only visible to the thread owning the data

An Overview of OpenMP

15

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The private and shared clauses

✔ No storage association with original object

✔ All references are to the local object

✔ Values are undefi ned on entry and exit

✔ Data is accessible by all threads in the team

✔ All threads access the same address space

private (list)

shared (list)

An Overview of OpenMP

16

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

An OpenMP example

 for (int i=0; i<n; i++)
 c[i] = a[i] + b[i];

For-loop with independent
iterations

$ cc -xopenmp source.c
$ export OMP_NUM_THREADS=5
$./a.out

#pragma omp parallel for
for (int i=0; i<n; i++)
 c[i] = a[i] + b[i];

For-loop parallelized using
an OpenMP pragma

An Overview of OpenMP

17

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Example Parallel Execution

Thread 0

i=0-199

+

=

Thread 1

i=200-399

Thread 2

i=400-599

Thread 3

i=600-799

Thread 4

i=800-999

a[i]

b[i]

c[i]

+

=

a[i]

b[i]

c[i]

+

=

a[i]

b[i]

c[i]

+

=

a[i]

b[i]

c[i]

+

=

a[i]

b[i]

c[i]

An Overview of OpenMP

18

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Defi ning Parallelism in OpenMP
❑ OpenMP Team := Master + Workers

❑ A Parallel Region is a block of code executed by all
threads simultaneously

☞ The master thread always has thread ID 0

☞ Thread adjustment (if enabled) is only done before entering a
parallel region

☞ Parallel regions can be nested, but support for this is
implementation dependent

☞ An "if" clause can be used to guard the parallel region; in case
the condition evaluates to "false", the code is executed serially

❑ A work-sharing construct divides the execution of the
enclosed code region among the members of the team;
in other words: they split the work

An Overview of OpenMP

19

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Directive format

❑ Fortran: directives are case insensitive
● Syntax: sentinel directive [clause [[,] clause]...]

● The sentinel is one of the following:

✔ !$OMP or C$OMP or *$OMP (fi xed format)
✔ !$OMP (free format)

❑ Continuation: follows the language syntax

❑ Conditional compilation: !$ or C$ -> 2 spaces

❑ C: directives are case sensitive

● Syntax: #pragma omp directive [clause [clause] ...]
❑ Continuation: use \ in pragma

❑ Conditional compilation: _OPENMP macro is set

An Overview of OpenMP

20

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

OpenMP clauses
❑ Many OpenMP directives support clauses

● These clauses are used to provide additional
information with the directive

❑ For example, private(a) is a clause to the “for” directive:

● #pragma omp for private(a)
❑ The specifi c clause(s) that can be used, depend on the

directive

An Overview of OpenMP

21

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

TID = 0
for (i=0,1,2,3,4)

TID = 1
for (i=5,6,7,8,9)

Example 2 - Matrix times vector

i = 0 i = 5

a[0] = sum a[5] = sum
sum = � b[i=0][j]*c[j] sum = � b[i=5][j]*c[j]

i = 1 i = 6

a[1] = sum a[6] = sum
sum = � b[i=1][j]*c[j] sum = � b[i=6][j]*c[j]

... etc ...

for (i=0; i<m; i++)
{
 sum = 0.0;
 for (j=0; j<n; j++)
 sum += b[i][j]*c[j];
 a[i] = sum;

 }

 #pragma omp parallel for default(none) \
 private(i,j,sum) shared(m,n,a,b,c)

= *

j

i

An Overview of OpenMP

22

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

1 10 100 1000 10000 100000 1000000
0

500

1000

1500

2000

2500
1 Thread
2 Threads
4 Threads

OpenMP Performance Example

Memory Footprint (KByte)

P
er

fo
rm

an
ce

 (
M

fl
o

p
/s

)

Matrix too
small *

*) With the IF-clause in OpenMP this performance degradation can be avoided

scales

An Overview of OpenMP

23

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The if clause

✔ Only execute in parallel if expression evaluates to true

✔ Otherwise, execute serially

if (scalar expression)

#pragma omp parallel if (n > some_threshold) \
 shared(n,x,y) private(i)
 {
 #pragma omp for
 for (i=0; i<n; i++)
 x[i] += y[i];
 } /*-- End of parallel region --*/

An Overview of OpenMP

24

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Barrier/1

Suppose we run each of these two loops in parallel over i:

This may give us a wrong answer (one day)

Why ?

for (i=0; i < N; i++)
 a[i] = b[i] + c[i];

for (i=0; i < N; i++)
 d[i] = a[i] + b[i];

An Overview of OpenMP

25

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Barrier/2

We need to have updated all of a[] fi rst, before using a[] *

for (i=0; i < N; i++)
 a[i] = b[i] + c[i];

All threads wait at the barrier point and only continue
when all threads have reached the barrier point

wait !

barrier
for (i=0; i < N; i++)
 d[i] = a[i] + b[i];

*) If there is the guarantee that the mapping of iterations onto threads
is identical for both loops, there will not be a data race in this case

An Overview of OpenMP

26

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Barrier/3

time

Barrier Region

idle

idle

idle

!$omp barrier#pragma omp barrier

Barrier syntax in OpenMP:

An Overview of OpenMP

27

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

When to use barriers ?
❑ If data is updated asynchronously and data integrity is

at risk

❑ Examples:

● Between parts in the code that read and write the
same section of memory

● After one timestep/iteration in a solver
❑ Unfortunately, barriers tend to be expensive and also

may not scale to a large number of processors

❑ Therefore, use them with care

An Overview of OpenMP

28

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The nowait clause
❑ To minimize synchronization, some OpenMP

directives/pragmas support the optional nowait clause

❑ If present, threads do not synchronize/wait at the end
of that particular construct

❑ In Fortran the nowait clause is appended at the closing
part of the construct

❑ In C, it is one of the clauses on the pragma

!$omp do
 :
 :
!$omp end do nowait

#pragma omp for nowait
{
 :
}

An Overview of OpenMP

29

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

A more elaborate example

for (i=0; i<n; i++)
 z[i] = x[i] + y[i];

scale = sum(a,0,n) + sum(z,0,n) + f;

#pragma omp barrier synchronization

#pragma omp for nowait

parallel loop
(work is distributed)

Statement is executed
by all threads

f = 1.0; Statement is executed
by all threads

#pragma omp for nowait

parallel loop
(work is distributed)

#pragma omp parallel if (n>limit) default(none) \
 shared(n,a,b,c,x,y,z) private(f,i,scale)
{

} /*-- End of parallel region --*/

p
aralle l reg

io
n

for (i=0; i<n; i++)
 a[i] = b[i] + c[i];

An Overview of OpenMP

30

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Components of OpenMP
Directives Runtime

environment
Environment

variables
 Number of threads

 Scheduling type

 Dynamic thread
adjustment

 Nested parallelism

 Stacksize

 Idle threads

 Active levels

 Thread limit

 Number of threads

 Scheduling type

 Dynamic thread
adjustment

 Nested parallelism

 Stacksize

 Idle threads

 Active levels

 Thread limit

 Parallel region

 Worksharing
constructs

 Tasking

 Synchronization

 Data-sharing
attributes

 Parallel region

 Worksharing
constructs

 Tasking

 Synchronization

 Data-sharing
attributes

 Number of threads
 Thread ID
 Dynamic thread

adjustment
 Nested parallelism
 Schedule
 Active levels
 Thread limit
 Nesting level
 Ancestor thread
 Team size
 Wallclock timer
 Locking

 Number of threads
 Thread ID
 Dynamic thread

adjustment
 Nested parallelism
 Schedule
 Active levels
 Thread limit
 Nesting level
 Ancestor thread
 Team size
 Wallclock timer
 Locking

An Overview of OpenMP

31

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The Parallel Region

!$omp parallel [clause[[,] clause] ...]

 "this code is executed in parallel"

!$omp end parallel (implied barrier)

#pragma omp parallel [clause[[,] clause] ...]
{
 "this code is executed in parallel"

} (implied barrier)

A parallel region is a block of code executed by
multiple threads simultaneously

An Overview of OpenMP

32

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The Worksharing Constructs
The OpenMP worksharing constructs

☞ The work is distributed over the threads
☞ Must be enclosed in a parallel region
☞ Must be encountered by all threads in the team, or none at all
☞ No implied barrier on entry; implied barrier on exit (unless

nowait is specifi ed)
☞ A work-sharing construct does not launch any new threads

#pragma omp for
{

}

!$OMP DO

!$OMP END DO

#pragma omp for
{

}

!$OMP DO

!$OMP END DO

#pragma omp sections
{

}

!$OMP SECTIONS

!$OMP END SECTIONS

#pragma omp sections
{

}

!$OMP SECTIONS

!$OMP END SECTIONS

#pragma omp single
{

}

!$OMP SINGLE

!$OMP END SINGLE

#pragma omp single
{

}

!$OMP SINGLE

!$OMP END SINGLE

An Overview of OpenMP

33

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The Workshare construct

Fortran has a fourth worksharing construct:

!$OMP WORKSHARE

 <array syntax>

!$OMP END WORKSHARE [NOWAIT]

!$OMP WORKSHARE

 <array syntax>

!$OMP END WORKSHARE [NOWAIT]

Example:

!$OMP WORKSHARE
 A(1:M) = A(1:M) + B(1:M)
!$OMP END WORKSHARE NOWAIT

!$OMP WORKSHARE
 A(1:M) = A(1:M) + B(1:M)
!$OMP END WORKSHARE NOWAIT

An Overview of OpenMP

34

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The omp for directive - Example

#pragma omp parallel default(none)\
 shared(n,a,b,c,d) private(i)
 {
 #pragma omp for nowait

 #pragma omp for nowait

 } /*-- End of parallel region --*/
(implied barrier)

for (i=0; i<n; i++)
 d[i] = 1.0/c[i];

for (i=0; i<n-1; i++)
 b[i] = (a[i] + a[i+1])/2;

An Overview of OpenMP

35

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

C++: Random Access Iterator Loops

void iterator_example()
{
 std::vector vec(23);
 std::vector::iterator it;

 #pragma omp for default(none)shared(vec)
 for (it = vec.begin(); it < vec.end(); it++)
 {
 // do work with *it //
 }
}

Parallelization of random access iterator loops is supported

An Overview of OpenMP

36

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Loop Collapse
❑ Allows parallelization of perfectly nested loops without

using nested parallelism

❑ collapse clause on for/do loop indicates how many loops
should be collapsed

❑ Compiler forms a single loop and then parallelizes this

!$omp parallel do collapse(2) ...
 do i = il, iu, is
 do j = jl. ju. js
 do k = kl, ku, ks

 end do
 end do
 end do
!$omp end parallel do

An Overview of OpenMP

37

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The sections directive - Example
#pragma omp parallel default(none)\
 shared(n,a,b,c,d) private(i)
 {
 #pragma omp sections nowait
 {
 #pragma omp section

 #pragma omp section

 } /*-- End of sections --*/

 } /*-- End of parallel region --*/

for (i=0; i<n; i++)
 d[i] = 1.0/c[i];

for (i=0; i<n-1; i++)
 b[i] = (a[i] + a[i+1])/2;

An Overview of OpenMP

38

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Overlap I/O and Processing/1

Input Thread Output Thread

0
1 0
2 1 0
3 2 1
4 3 2
5 4 3

5 4
5

Processing Thread(s)
Ti

m
e

An Overview of OpenMP

39

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Overlap I/O and Processing/2
#pragma omp parallel sections
{
 #pragma omp section
 {
 for (int i=0; i<N; i++) {
 (void) read_input(i);
 (void) signal_read(i);
 }
 }
 #pragma omp section
 {
 for (int i=0; i<N; i++) {
 (void) wait_read(i);
 (void) process_data(i);
 (void) signal_processed(i);
 }
 }
 #pragma omp section
 {
 for (int i=0; i<N; i++) {
 (void) wait_processed(i);
 (void) write_output(i);
 }
 }
} /*-- End of parallel sections --*/

Processing Thread(s)

Input Thread

Output Thread

An Overview of OpenMP

40

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

#pragma omp parallel
{

 "read a[0..N-1]";

}

 "read a[0..N-1]";

Single processor region/1

This construct is ideally suited for I/O or initializations

Original Code

one volunteer requested

thanks, we're done

"declare A to be be shared"

Parallel Version

May have to insert a
barrier here

An Overview of OpenMP

41

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Single processor region/2

time

single processor
region

Threads wait
in the barrier

An Overview of OpenMP

42

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The Single Directive

!$omp single [private][firstprivate]
<code-block>

!$omp end single [copyprivate][nowait]

Only one thread in the team executes the code enclosed
#pragma omp single [private][firstprivate] \
 [copyprivate][nowait]
{

<code-block>
}

An Overview of OpenMP

43

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Combined work-sharing constructs
#pragma omp parallel
#pragma omp for
 for (...)

!$omp parallel do
 ...
!$omp end parallel do

#pragma omp parallel for
for (....)

!$omp parallel
!$omp sections
 ...
!$omp end sections
!$omp end parallel

#pragma omp parallel
#pragma omp sections
{ ...}

!$omp parallel sections
 ...
!$omp end parallel sections

#pragma omp parallel sections
{ ... }

Single PARALLEL sections

!$omp parallel
!$omp workshare
 ...
!$omp end workshare
!$omp end parallel

!$omp parallel workshare
 ...
!$omp end parallel workshare

Single WORKSHARE loop

!$omp parallel
!$omp do
 ...
!$omp end do
!$omp end parallel

Single PARALLEL loop

An Overview of OpenMP

44

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Orphaning

♦ The OpenMP specifi cation does not restrict worksharing
and synchronization directives (omp for, omp single,
critical, barrier, etc.) to be within the lexical extent of a
parallel region. These directives can be orphaned

♦ That is, they can appear outside the lexical extent of a
parallel region

 :
#pragma omp parallel
{
 :
 (void) dowork();
 :
}
 :

void dowork()
{
 :
 #pragma omp for
 for (int i=0;i<n;i++)
 {
 :
 }
 :
}

orphaned
work-sharing

directive

An Overview of OpenMP

45

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

More on orphaning

♦ When an orphaned worksharing or synchronization directive is
encountered in the sequential part of the program (outside the
dynamic extent of any parallel region), it is executed by the
master thread only. In effect, the directive will be ignored

 (void) dowork(); !- Sequential FOR

 #pragma omp parallel
 {
 (void) dowork(); !- Parallel FOR
 }

void dowork()
{
#pragma omp for
 for (i=0;....)
 {
 :
 }
}

An Overview of OpenMP

46

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Parallelizing bulky loops

for (i=0; i<n; i++) /* Parallel loop */
{
 a = ...
 b = ... a ..
 c[i] =

 for (j=0; j<m; j++)
 {
 <a lot more code in this loop>
 }

}

An Overview of OpenMP

47

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Step 1: “Outlining”

for (i=0; i<n; i++) /* Parallel loop */
{
 (void) FuncPar(i,m,c,...)
}

void FuncPar(i,m,c,....)
{
 float a, b; /* Private data */
 int j;
 a = ...
 b = ... a ..
 c[i] =

 for (j=0; j<m; j++)
 {
 <a lot more code in this loop>
 }

}

Still a sequential program

Should behave identically

Easy to test for correctness

But, parallel by design

An Overview of OpenMP

48

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Step 2: Parallelize

for (i=0; i<n; i++) /* Parallel loop */
{
 (void) FuncPar(i,m,c,...)
} /*-- End of parallel for --*/

Minimal scoping required

Less error prone

#pragma omp parallel for private(i) shared(m,c,..)

void FuncPar(i,m,c,....)
{
 float a, b; /* Private data */
 int j;
 a = ...
 b = ... a ..
 c[i] =

 for (j=0; j<m; j++)
 {
 <a lot more code in this loop>
 }

}

An Overview of OpenMP

49

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

OpenMP Runtime Routines

An Overview of OpenMP

50

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

OpenMP Runtime Functions/1
Name Functionality
omp_set_num_threads Set number of threads
omp_get_num_threads Number of threads in team
omp_get_max_threads Max num of threads for parallel region
omp_get_thread_num Get thread ID
omp_get_num_procs Maximum number of processors
omp_in_parallel Check whether in parallel region
omp_set_dynamic Activate dynamic thread adjustment

(but implementation is free to ignore this)
omp_get_dynamic Check for dynamic thread adjustment
omp_set_nested Activate nested parallelism

(but implementation is free to ignore this)
omp_get_nested Check for nested parallelism
omp_get_wtime Returns wall clock time
omp_get_wtick Number of seconds between clock ticks

C/C++ : Need to include fi le <omp.h>
Fortran : Add “use omp_lib” or include fi le “omp_lib.h”

An Overview of OpenMP

51

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

OpenMP Runtime Functions/2
Name Functionality
omp_set_schedule Set schedule (if “runtime” is used)
omp_get_schedule Returns the schedule in use
omp_get_thread_limit Max number of threads for program
omp_set_max_active_levels Set number of active parallel regions
omp_get_max_active_levels Number of active parallel regions
omp_get_level Number of nested parallel regions
omp_get_active_level Number of nested active par. regions
omp_get_ancestor_thread_num Thread id of ancestor thread
omp_get_team_size (level) Size of the thread team at this level

C/C++ : Need to include file <omp.h>
Fortran : Add “use omp_lib” or include file “omp_lib.h”

An Overview of OpenMP

52

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

OpenMP locking routines
❑ Locks provide greater fl exibility over critical sections and

atomic updates:

● Possible to implement asynchronous behavior
● Not block structured

❑ The so-called lock variable, is a special variable:

● Fortran: type INTEGER and of a KIND large enough to
hold an address

● C/C++: type omp_lock_t and omp_nest_lock_t for nested
locks

❑ Lock variables should be manipulated through the API only

❑ It is illegal, and behavior is undefi ned, in case a lock variable
is used without the appropriate initialization

An Overview of OpenMP

53

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Nested locking
❑ Simple locks: may not be locked if already in a locked state

❑ Nestable locks: may be locked multiple times by the same
thread before being unlocked

❑ In the remainder, we discuss simple locks only

❑ The interface for functions dealing with nested locks is
similar (but using nestable lock variables):

Simple locks Nestable locks

omp_init_lock omp_init_nest_lock
omp_destroy_lock omp_destroy_nest_lock
omp_set_lock omp_set_nest_lock
omp_unset_lock omp_unset_nest_lock
omp_test_lock omp_test_nest_lock

An Overview of OpenMP

54

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

OpenMP locking example

Other Work

parallel region - begin
TID = 0 TID = 1

Protected
Region

acquire lock

release lock

Protected
Region

acquire lock

release lock

Other Work

parallel region - end

♦ The protected region
contains the update of a
shared variable

♦ One thread acquires the
lock and performs the
update

♦ Meanwhile, the other
thread performs some
other work

♦ When the lock is released
again, the other thread
performs the update

An Overview of OpenMP

55

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Locking Example - The Code

 Program Locks

 Call omp_init_lock (LCK)

!$omp parallel shared(LCK)

 Do While (omp_test_lock (LCK) .EQV. .FALSE.)
 Call Do_Something_Else()
 End Do

 Call Do_Work()

 Call omp_unset_lock (LCK)

!$omp end parallel

 Call omp_destroy_lock (LCK)

 Stop
 End

Initialize lock variable

Check availability of lock
(also sets the lock)

Release lock again

Remove lock association

An Overview of OpenMP

56

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Example output for 2 threads

 TID: 1 at 09:07:27 => entered parallel region
 TID: 1 at 09:07:27 => done with WAIT loop and has the lock
 TID: 1 at 09:07:27 => ready to do the parallel work
 TID: 1 at 09:07:27 => this will take about 18 seconds
 TID: 0 at 09:07:27 => entered parallel region
 TID: 0 at 09:07:27 => WAIT for lock - will do something else for 5 seconds
 TID: 0 at 09:07:32 => WAIT for lock - will do something else for 5 seconds
 TID: 0 at 09:07:37 => WAIT for lock - will do something else for 5 seconds
 TID: 0 at 09:07:42 => WAIT for lock - will do something else for 5 seconds
 TID: 1 at 09:07:45 => done with my work
 TID: 1 at 09:07:45 => done with work loop - released the lock
 TID: 1 at 09:07:45 => ready to leave the parallel region
 TID: 0 at 09:07:47 => done with WAIT loop and has the lock
 TID: 0 at 09:07:47 => ready to do the parallel work
 TID: 0 at 09:07:47 => this will take about 18 seconds
 TID: 0 at 09:08:05 => done with my work
 TID: 0 at 09:08:05 => done with work loop - released the lock
 TID: 0 at 09:08:05 => ready to leave the parallel region
Done at 09:08:05 - value of SUM is 1100

Note: program has been instrumented to get this information

Used to check the answer

An Overview of OpenMP

57

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

OpenMP Environment Variables

An Overview of OpenMP

58

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

OpenMP Environment Variables

Note:
The names are in uppercase, the values are case insensitive

OpenMP environment variable Default for Oracle Solaris Studio

1

static, “N/P”

OMP_DYNAMIC { TRUE | FALSE } TRUE

OMP_NESTED { TRUE | FALSE } FALSE

OMP_STACKSIZE size [B|K|M|G] 4 MB (32 bit) / 8 MB (64-bit)

OMP_WAIT_POLICY [ACTIVE | PASSIVE] PASSIVE

OMP_MAX_ACTIVE_LEVELS 4

OMP_THREAD_LIMIT 1024

OMP_NUM_THREADS n

OMP_SCHEDULE “schedule,[chunk]”

An Overview of OpenMP

59

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Implementing the Fork-Join Model

parallel region

parallel region

barrier

barrier

master

workersworkers

workersworkers

master

Use OMP_WAIT_POLICY
to control behaviour of

idle threads
? ?

An Overview of OpenMP

60

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

About the stack

void myfunc(float *Aglobal)
{
 int Alocal;

}

Alocal

Alocal

Alocal

Aglobal

Alocal

#omp parallel shared(Aglobal)
{
 (void) myfunc(&Aglobal);
}

Variable Alocal is in private memory,
managed by the thread owning it, and

stored on the so-called stack

Thread

Thread

Thread Thread

An Overview of OpenMP

61

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Setting the size of the stack

☞ Each thread has its own private stack space

☞ If a thread runs out of this stack space, the behavior is
undefi ned

☞ Note there are two stack sizes involved:

✔ Master Thread - Use the appropriate OS command (e.g. in
Unix "limit/ulimit") to its stack size

✔ Worker Threads - Use the OMP_STACKSIZE environment
variable to increase the stack size for each of the worker
threads

☞ The default value for OMP_STACKSIZE is implementation
dependent

OMP_STACKSIZE n [B,K,M,G]
Set thread stack size in n Byte, KB, MB, or GB

Default is KByte

An Overview of OpenMP

62

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Example OMP_STACKSIZE
#define N 2000000

void myFunc(int TID, double *check);

void main()
{
 double check, a[N];

#pragma omp parallel private(check)
 {
 myFunc(&check);

 } /*-- End of parallel region --*/

}

#define MYSTACK 1000000

void myFunc(double *check)
{
 double mystack[MYSTACK];
 int i;

 for (i=0; i<MYSTACK; i++)
 mystack[i] = TID + 1;

 *check = mystack[MYSTACK-1];

}

Main requires about 16
MByte stack space to run

Function requires about ~8
MByte stack space to run

An Overview of OpenMP

63

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Run-time Behaviour
% setenv OMP_NUM_THREADS 1
% limit stack 10k
% ./stack.exe
Segmentation Fault (core dumped)
% limit stack 16m
% ./stack.exe
Thread 0 has initialized local data

Not enough stack space
for master thread

Now runs fi ne on 1 thread

But crashes on 2

Increase thread stacksize
and all is well again

% setenv OMP_NUM_THREADS 2
% ./stack.exe
Segmentation Fault (core dumped)
% setenv OMP_STACKSIZE 8192
% setenv OMP_NUM_THREADS 1
% ./stack.exe
Thread 0 has initialized local data
% setenv OMP_NUM_THREADS 2
% ./stack.exe
Thread 0 has initialized local data
Thread 1 has initialized local data
% setenv OMP_NUM_THREADS 4
% ./stack.exe
Thread 0 has initialized local data
Thread 2 has initialized local data
Thread 3 has initialized local data
Thread 1 has initialized local data

An Overview of OpenMP

64

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Using OpenMP

An Overview of OpenMP

65

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Using OpenMP
❑ We have already seen many features of OpenMP

❑ We will now cover

● Additional language constructs
● Features that may be useful or needed when running

an OpenMP application
❑ The tasking concept is covered in separate section

An Overview of OpenMP

66

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

About storage association
❑ Private variables are undefi ned on entry and exit of the

parallel region

❑ A private variable within a parallel region has no
storage association with the same variable outside of
the region

❑ Use the fi rst/last private clause to override this
behavior

❑ We illustrate these concepts with an example

An Overview of OpenMP

67

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Example private variables
main()
{
 A = 10;

 for (i=0; i<n; i++)
 {

 B = A + i;

 }

 C = B;

}

#pragma omp for private(i,A,B) ...

/*-- A undefined, unless declared
 firstprivate --*/

/*-- B undefined, unless declared
 lastprivate --*/

#pragma omp parallel
{

} /*-- End of OpenMP parallel region --*/

#pragma omp for private(i,B) firstprivate(A) ...#pragma omp for private(i) firstprivate(A) lastprivate(B)...

Disclaimer: This code fragment is not very meaningful and only serves to
demonstrate the clauses

An Overview of OpenMP

68

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The fi rst/last private clauses

fi rstprivate (list)

✔ All variables in the list are initialized with the
value the original object had before entering
the parallel construct

✔ The thread that executes the sequentially last
iteration or section updates the value of the
objects in the list

lastprivate (list)

An Overview of OpenMP

69

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The default clause

default (none | shared | private | threadprivate)

✔ No implicit defaults; have to scope all variables explicitly

none

✔ All variables are shared

✔ The default in absence of an explicit "default" clause

✔ All variables are private to the thread

✔ Includes common block data, unless THREADPRIVATE

Fortran

C/C++default (none | shared)

shared

private

✔ All variables are private to the thread; pre-initialized

fi rstprivate

An Overview of OpenMP

70

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

 sum = 0.0
!$omp parallel default(none) &
!$omp shared(n,x) private(i)
!$omp do reduction (+:sum)
 do i = 1, n
 sum = sum + x(i)
 end do
!$omp end do
!$omp end parallel
 print *,sum

The reduction clause - Example

Variable SUM is a
shared variable

☞ Care needs to be taken when updating shared variable SUM
☞ With the reduction clause, the OpenMP compiler generates

code such that a race condition is avoided

An Overview of OpenMP

71

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The reduction clause

reduction ([operator | intrinsic]) : list)

✔ Reduction variable(s) must be shared variables

✔ A reduction is defi ned as:

Fortran

C/C++

x = x operator expr
x = expr operator x
x = intrinsic (x, expr_list)
x = intrinsic (expr_list, x)

x = x operator expr
x = expr operator x
x++, ++x, x--, --x
x <binop> = expr

Fortran C/C++

✔ Note that the value of a reduction variable is undefi ned
from the moment the fi rst thread reaches the clause till
the operation has completed

✔ The reduction can be hidden in a function call

Check the docs
for details

reduction (operator : list)

An Overview of OpenMP

72

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Fortran - Allocatable Arrays
❑ Fortran allocatable arrays whose status is

“currently allocated” are allowed to be specifi ed as
private, lastprivate, fi rstprivate, reduction, or copyprivate

integer, allocatable,dimension (:) :: A
integer i

allocate (A(n))

!$omp parallel private (A)
 do i = 1, n
 A(i) = i
 end do
 ...
!$omp end parallel

An Overview of OpenMP

73

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The schedule clause/1

schedule (static | dynamic | guided | auto [, chunk])
schedule (runtime)

✔ Distribute iterations in blocks of size "chunk" over the
threads in a round-robin fashion

✔ In absence of "chunk", each thread executes approx. N/P
chunks for a loop of length N and P threads

● Details are implementation defi ned
✔ Under certain conditions, the assignment of iterations to

threads is the same across multiple loops in the same
parallel region

static [, chunk]

An Overview of OpenMP

74

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The schedule clause/2

Thread 0 1 2 3
no chunk* 1-4 5-8 9-12 13-16

chunk = 2 1-2 3-4 5-6 7-8
9-10 11-12 13-14 15-16

Example static schedule
Loop of length 16, 4 threads:

*) The precise distribution is implementation defi ned

An Overview of OpenMP

75

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The schedule clause/3

✔ Fixed portions of work; size is controlled by the value of
chunk

✔ When a thread fi nishes, it starts on the next portion of
work

✔ Same dynamic behavior as "dynamic", but size of the
portion of work decreases exponentially

✔ Iteration scheduling scheme is set at runtime through
environment variable OMP_SCHEDULE

dynamic [, chunk]

guided [, chunk]

runtime

✔ The compiler (or runtime system) decides what is best
to use; choice could be implementation dependent

auto

An Overview of OpenMP

76

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The Experiment

0 50 100 150 200 250 300 350 400 450 500

3

2

1

0

3

2

1

0

3

2

1

0

static

dynamic, 5

guided, 5

Iteration Number

T
h

re
ad

 ID
500 iterations using 4 threads

An Overview of OpenMP

77

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Schedule Kinds Functions
❑ Makes schedule(runtime) more general

❑ Can set/get schedule it with library routines:

omp_set_schedule()
omp_get_schedule()

❑ Also allows implementations to add their own schedule
kinds

An Overview of OpenMP

78

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Nested Parallelism
Master
Thread

Outer parallel region

Nested parallel region

Note: nesting level can
be arbitrarily deep

3-way parallel

9-way parallel

3-way parallel
Outer parallel region

An Overview of OpenMP

79

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Nested Parallelism Support/1
❑ Environment variable and runtime routines to set/get

the maximum number of nested active parallel regions
OMP_MAX_ACTIVE_LEVELS

omp_set_max_active_levels()
omp_get_max_active_levels()

❑ Environment variable and runtime routine to set/get the
maximum number of OpenMP threads available to the
program

OMP_THREAD_LIMIT
omp_get_thread_limit()

An Overview of OpenMP

80

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Nested Parallelism Support/2
❑ Per-task internal control variables

● Allow, for example, calling
omp_set_num_threads() inside a parallel region to
control the team size for next level of parallelism

❑ Library routines to determine
● Depth of nesting

omp_get_level()
omp_get_active_level()

● IDs of parent/grandparent etc. threads
omp_get_ancestor_thread_num(level)

● Team sizes of parent/grandparent etc. teams
omp_get_team_size(level)

An Overview of OpenMP

81

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Additional Directives/1

!$omp master
<code-block>

!$omp end master

#pragma omp master
{<code-block>}

!$omp critical [(name)]
<code-block>

!$omp end critical [(name)]

#pragma omp critical [(name)]
{<code-block>}

!$omp atomic

#pragma omp atomic

An Overview of OpenMP

82

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Additional Directives/2

!$omp ordered
<code-block>

!$omp end ordered

#pragma omp ordered
{<code-block>}

!$omp flush [(list)]

#pragma omp flush [(list)]

An Overview of OpenMP

83

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The Master Directive

!$omp master
<code-block>

!$omp end master

Only the master thread executes the code block:

#pragma omp master
{<code-block>} There is no implied

barrier on entry or
exit !

An Overview of OpenMP

84

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

for (i=0; i < n; i++){

 sum += a[i];

}

Critical Region/1

If sum is a shared variable, this loop can not run in parallel

We can use a critical region for this:

one at a time can proceed

next in line, please

for (i=0; i < n; i++){

 sum += a[i];

}

An Overview of OpenMP

85

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Critical Region/2
❑ Useful to avoid a race condition, or to perform I/O (but

that still has random order)

❑ Be aware that there is a cost associated with a critical
region

time

critical region

An Overview of OpenMP

86

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Critical and Atomic constructs

!$omp critical [(name)]
<code-block>

!$omp end critical [(name)]

Critical: All threads execute the code, but only one at a time:

#pragma omp critical [(name)]
{<code-block>}

There is no implied
barrier on entry or

exit !

!$omp atomic
<statement>

#pragma omp atomic
<statement>

Atomic: only the loads and store are atomic

This is a lightweight, special
form of a critical section

#pragma omp atomic
 a[indx[i]] += b[i];

An Overview of OpenMP

87

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

More synchronization constructs
The enclosed block of code is executed in the order in
which iterations would be executed sequentially:

May introduce
serialization

(could be expensive)
!$omp ordered

<code-block>
!$omp end ordered

#pragma omp ordered
{<code-block>}

Ensure that all threads in a team have a consistent view
of certain objects in memory:

In the absence of a
list, all visible

variables are fl ushed
!$omp flush [(list)]

#pragma omp flush [(list)]

An Overview of OpenMP

88

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Implied fl ush regions
❑ During a barrier region

❑ At exit from worksharing regions, unless a nowait is present

❑ At entry to and exit from parallel, critical, ordered and parallel
worksharing regions

❑ During omp_set_lock and omp_unset_lock regions

❑ During omp_test_lock, omp_set_nest_lock, omp_unset
_nest_lock and omp_test_nest_lock regions, if the region
causes the lock to be set or unset

❑ Immediately before and after every task scheduling point

❑ At entry to and exit from atomic regions, where the list
contains only the variable updated in the atomic construct

❑ A fl ush region is not implied at the following locations:

● At entry to a worksharing region
● At entry to or exit from a master region

An Overview of OpenMP

89

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

OpenMP and Global Data

An Overview of OpenMP

90

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

 program global_data

 include "global.h"

!$omp parallel do private(j)
 do j = 1, n
 call suba(j)
 end do
!$omp end parallel do

Global data - An example

subroutine suba(j)

include "global.h"

do i = 1, m
 b(i) = j
end do

do i = 1, m
 a(i,j) = func_call(b(i))
end do

return
end

Data Race !

common /work/a(m,n),b(m)

fi le global.h

An Overview of OpenMP

91

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Global data - A Data Race!

call suba(1)

Thread 1

call suba(2)

Thread 2
S

h
ar

ed

subroutine suba(j=1)

do i = 1, m
 a(i,1)=func_call(b(i))
end do

do i = 1, m
 b(i) = 1
end do

subroutine suba(j=2)

do i = 1, m
 a(i,2)=func_call(b(i))
end do

do i = 1, m
 b(i) = 2
end do

An Overview of OpenMP

92

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

integer, parameter:: nthreads=4
common /work/a(m,n)
common /tprivate/b(m,nthreads)

Example - Solution

subroutine suba(j)

include "global_ok.h"

TID = omp_get_thread_num()+1
do i = 1, m
 b(i,TID) = j
end do

do i = 1, m
 a(i,j)=func_call(b(i,TID))
end do

return
end

fi le global_ok.h

☞ By expanding array B, we can
give each thread unique access
to it's storage area

☞ Note that this can also be done
using dynamic memory
(allocatable, malloc,)

 program global_data

 include "global_ok.h"

!$omp parallel do private(j)
 do j = 1, n
 call suba(j)
 end do
!$omp end parallel do

An Overview of OpenMP

93

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

About global data
❑ Global data is shared and requires special care

❑ A problem may arise in case multiple threads access the
same memory section simultaneously:

● Read-only data is no problem

● Updates have to be checked for race conditions

❑ It is your responsibility to deal with this situation

❑ In general one can do the following:
● Split the global data into a part that is accessed in serial parts

only and a part that is accessed in parallel

● Manually create thread private copies of the latter

● Use the thread ID to access these private copies

❑ Alternative: Use OpenMP's threadprivate directive

An Overview of OpenMP

94

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The threadprivate directive

❑ Thread private copies of the designated global
variables and common blocks are created

❑ Several restrictions and rules apply when doing this:

● The number of threads has to remain the same for all the
parallel regions (i.e. no dynamic threads)

✔ Sun implementation supports changing the number of threads

● Initial data is undefi ned, unless copyin is used
●

❑ Check the documentation when using threadprivate !

❑ OpenMP's threadprivate directive

!$omp threadprivate (/cb/ [,/cb/] ...)

#pragma omp threadprivate (list)

An Overview of OpenMP

95

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

common /work/a(m,n)
common /tprivate/b(m)
!$omp threadprivate(/tprivate/)

Example - Solution 2

subroutine suba(j)

include "global_ok2.h"

do i = 1, m
 b(i) = j
end do

do i = 1, m
 a(i,j) = func_call(b(i))
end do

return
end

fi le global_ok2.h

☞ The compiler creates thread private
copies of array B, to give each thread
unique access to it's storage area

☞ Note that the number of copies is
automatically adjusted to the number
of threads

 program global_data

 include "global_ok2.h"

!$omp parallel do private(j)
 do j = 1, n
 call suba(j)
 end do
!$omp end parallel do

 stop
 end

An Overview of OpenMP

96

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The copyin clause

copyin (list)

✔ Applies to THREADPRIVATE common blocks only

✔ At the start of the parallel region, data of the master
thread is copied to the thread private copies

 common /cblock/velocity
 common /fields/xfield, yfield, zfield

! create thread private common blocks

!$omp threadprivate (/cblock/, /fields/)

!$omp parallel &
!$omp default (private) &
!$omp copyin (/cblock/, zfield)

Example:

An Overview of OpenMP

97

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

C++ and Threadprivate
❑ As of OpenMP 3.0, it was clarifi ed where/how

threadprivate objects are constructed and destructed
❑ Allow C++ static class members to be threadprivate

class T {
 public:
 static int i;
 #pragma omp threadprivate(i)
 ...
};

An Overview of OpenMP

98

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Tasking in OpenMP

An Overview of OpenMP

99

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

What Is A Task?
A TASK

“A specific instance of executable code and its data
environment, generated when a thread encounters a task
construct or a parallel construct”
COMMENT: When a thread executes a task, it produces a
task region

TASK REGION
“A region consisting of all code encountered during the
execution of a task”
COMMENT: A parallel region consists of one or more
implicit task regions

EXPLICIT TASK
“A task generated when a task construct is encountered
during execution”

An Overview of OpenMP

100

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Tasking Directives

!$omp flush taskwait

#pragma omp taskwait

!$omp task

#pragma omp task

An Overview of OpenMP

101

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

“Hello World/1”

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {

 printf("Hello ");
 printf("World ");

 printf("\n");
 return(0);
}

$ cc hello.c
$./a.out
Hello World
$

What will this program print ?

An Overview of OpenMP

102

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

“Hello World/2”

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {

 #pragma omp parallel
 {
 printf("Hello ");
 printf("World ");

 } // End of parallel region

 printf("\n");
 return(0);
}

$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out

What will this program print
using 2 threads ?

An Overview of OpenMP

103

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

“Hello World/3”

$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out
Hello World Hello World

Note that this program could also print “Hello Hello
World World”, although I have not observed it (yet)

An Overview of OpenMP

104

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

“Hello World/4”

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {

 #pragma omp parallel
 {
 #pragma omp single

 {
 printf("Hello ");
 printf("World ");
 }
 } // End of parallel region

 printf("\n");
 return(0);
}

$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out

What will this program print
using 2 threads ?

An Overview of OpenMP

105

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

“Hello World/5”

$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out
Hello World

But now only 1 thread
executes

An Overview of OpenMP

106

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

“Hello World/6”

int main(int argc, char *argv[]) {

 #pragma omp parallel
 {
 #pragma omp single

 {
 #pragma omp task
 {printf("Hello ");}

 #pragma omp task
 {printf("World ");}
 }
 } // End of parallel region

 printf("\n");
 return(0);
}

$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out

What will this program print
using 2 threads ?

An Overview of OpenMP

107

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

“Hello World/7”

$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out
Hello World
$./a.out
Hello World
$./a.out
World Hello
$

Tasks can be executed in
arbitrary order

An Overview of OpenMP

108

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

“Hello World/8”

int main(int argc, char *argv[]) {

 #pragma omp parallel
 {
 #pragma omp single

 {
 #pragma omp task
 {printf("Hello ");}

 #pragma omp task
 {printf("World ");}
 printf(“\nThank You “);
 }
 } // End of parallel region

 printf("\n");
 return(0);
}

$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out

What will this program print
using 2 threads ?

An Overview of OpenMP

109

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

“Hello World/9”

$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out

Thank You World Hello
$./a.out

Thank You Hello World
$./a.out

Thank You World Hello
$

Tasks are executed at a task
execution point

An Overview of OpenMP

110

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

“Hello World/10”

int main(int argc, char *argv[]) {

 #pragma omp parallel
 {
 #pragma omp single

 {
 #pragma omp task
 {printf("Hello ");}

 #pragma omp task
 {printf("World ");}
 #pragma omp taskwait
 printf(“\nThank You “);
 }
 } // End of parallel region

 printf("\n");return(0);
}

$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out

What will this program print
using 2 threads ?

An Overview of OpenMP

111

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

“Hello World/11”

$ cc -xopenmp -fast hello.c
$ export OMP_NUM_THREADS=2
$./a.out
$
World Hello
Thank You
$./a.out
World Hello
Thank You
$./a.out
Hello World
Thank You
$

Tasks are executed first now

An Overview of OpenMP

112

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Task Construct Syntax

C/C++:

#pragma omp task [clause [[,]clause] ...]
 structured-block

Fortran:

!$omp task[clause [[,]clause] ...]
 structured-block

!$omp end task

An Overview of OpenMP

113

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Task Synchronization
❑ Syntax:

● C/C++: #pragma omp taskwait

● Fortran: !$omp taskwait

❑ Current task suspends execution until all children
tasks, generated within the current task up to this
point, have completed execution

An Overview of OpenMP

114

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

When are Tasks Complete?
❑ At implicit thread barrier

❑ At explicit thread barrier

● C/C++: #pragma omp barrier

● Fortran: !$omp barrier

❑ At task barrier

● C/C++: #pragma omp taskwait

● Fortran: !$omp taskwait

An Overview of OpenMP

115

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Tasking Examples

An Overview of OpenMP

116

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Example - A Linked List

 while(my_pointer) {

 (void) do_independent_work (my_pointer);

 my_pointer = my_pointer->next ;

 } // End of while loop

Hard to do before OpenMP 3.0:
First count number of iterations, then
convert while loop to for loop

An Overview of OpenMP

117

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The Tasking Example

Developer specifies tasks in application
Run-time system executes tasks

Encountering
thread adds

task(s) to pool

Threads execute
tasks in the pool

An Overview of OpenMP

118

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Example - A Linked List With Tasking

 my_pointer = listhead;

 #pragma omp parallel
 {
 #pragma omp single nowait
 {
 while(my_pointer) {
 #pragma omp task firstprivate(my_pointer)
 {
 (void) do_independent_work (my_pointer);
 }
 my_pointer = my_pointer->next ;
 }
 } // End of single - no implied barrier (nowait)
 } // End of parallel region - implied barrier

OpenMP Task is specifi ed here
(executed in parallel)

An Overview of OpenMP

119

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Example – Fibonacci Numbers

F(0) = 1
F(1) = 1

F(n) = F(n-1) + F(n-2) (n=2,3,4,.....)

Sequence:
1, 1, 2, 3, 5, 8, 13, 21, 34,

The Fibonacci Numbers are defined as follows:

An Overview of OpenMP

120

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Recursive Algorithm*
long comp_fib_numbers(int n){

 // Basic algorithm: f(n) = f(n-1) + f(n-2)

 long fnm1, fnm2, fn;

 if (n == 0 || n == 1) return(n);

 fnm1 = comp_fib_numbers(n-1);

 fnm2 = comp_fib_numbers(n-2);

 fn = fnm1 + fnm2;

 return(fn);
}

*) Not very efficient, used for demo purposes only

An Overview of OpenMP

121

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Parallel Recursive Algorithm
long comp_fib_numbers(int n){

 // Basic algorithm: f(n) = f(n-1) + f(n-2)

 long fnm1, fnm2, fn;

 if (n == 0 || n == 1) return(n);

#pragma omp task shared(fnm1)
 {fnm1 = comp_fib_numbers(n-1);}

#pragma omp task shared(fnm2)
 {fnm2 = comp_fib_numbers(n-2);}

#pragma omp taskwait
 fn = fnm1 + fnm2;

 return(fn);
}

An Overview of OpenMP

122

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Driver Program

 #pragma omp parallel shared(nthreads)
 {
 #pragma omp single nowait
 {

 result = comp_fib_numbers(n);

 } // End of single
 } // End of parallel region

An Overview of OpenMP

123

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Parallel Recursive Algorithm - V2
long comp_fib_numbers(int n){

 // Basic algorithm: f(n) = f(n-1) + f(n-2)

 long fnm1, fnm2, fn;

 if (n == 0 || n == 1) return(n);
 if (n < 20) return(comp_fib_numbers(n-1) +
 comp_fib_numbers(n-2));

#pragma omp task shared(fnm1)
 {fnm1 = comp_fib_numbers(n-1);}

#pragma omp task shared(fnm2)
 {fnm2 = comp_fib_numbers(n-2);}

#pragma omp taskwait
 fn = fnm1 + fnm2;

 return(fn);
}

An Overview of OpenMP

124

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Performance Example*
$ export OMP_NUM_THREADS=1
$./fibonacci-omp.exe 40
Parallel result for n = 40: 102334155 (1 threads
 needed 5.63 seconds)
$ export OMP_NUM_THREADS=2
$./fibonacci-omp.exe 40
Parallel result for n = 40: 102334155 (2 threads
 needed 3.03 seconds)
$

*) MacBook Pro Core 2 Duo

An Overview of OpenMP

125

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Oracle Solaris Studio Support for
OpenMP Development

An Overview of OpenMP

126

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

OpenMP Compiler Options

Option Description

-xopenmp Equivalent to -xopenmp=parallel

-xopenmp=parallel Enables recognition of OpenMP pragmas

Requires at least optimization level -xO3

-xopenmp=noopt Enables recognition of OpenMP pragmas

The program is parallelized accordingly, but no

optimization is done *

-xopenmp=none Disables recognition of OpenMP pragmas (default)

*) The compiler does not raise the optimization level if it is lower than -xO3

An Overview of OpenMP

127

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Related Compiler Options
Option Description

-xloopinfo Display parallelization messages on screen

-stackvar Allocate local data on the stack (Fortran only)

Use this when calling functions in parallel

Included with -xopenmp=parallel | noopt

-vpara/-xvpara Reports OpenMP scoping errors in case of incorrect

parallelization (Fortran and C compiler only)

Also reports OpenMP scoping errors and race

conditions statically detected by the compiler

-XlistMP Reports warnings about possible errors in

OpenMP parallelization (Fortran only)

An Overview of OpenMP

128

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Support for Threadprivate
❑ It can be tedious to implement THREADPRIVATE

❑ The Oracle Solaris Studio Fortran compiler supports
the -xcommonchk option to report upon inconsistent
usage of threadprivate

● Common block declared THREADPRIVATE in one program
unit, but not in another

● Does not check for consistency on the size of the common
block

❑ Syntax: -xcommonchk [={yes|no}]

❑ Run-time checks are inserted, causing performance to
degrade

❑ This is therefore a debugging option

An Overview of OpenMP

129

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Run-time warnings

SUNW_MP_WARN TRUE | FALSE Control printing of warnings

☞ The OpenMP run-time library does not print warning messages
by default

☞ Strongly recommended to set this environment variable to
TRUE to activate the warnings

☞ This helps to diagnose run-time problems

● Also reports (some) non-conforming program errors

☞ Note there is a slight performance penalty associated with
setting this environment variable to TRUE

● Cost depends on the operation - Explicit locking is more
expensive for example

An Overview of OpenMP

130

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Example SUNW_MP_WARN/1

SUNW_MP_WARN=TRUE; export SUNW_MP_WARN
OMP_NUM_THREADS=3; export OMP_NUM_THREADS
./omp.exe
WARNING (libmtsk): Dynamic adjustment of threads is enabled. The
number of threads is adjusted to 2.
Thread ID 0 updates i = 0
Thread ID 0 updates i = 1
Thread ID 0 updates i = 2
Thread ID 1 updates i = 3
Thread ID 1 updates i = 4
Thread ID 1 updates i = 5

OMP_DYNAMIC=FALSE; export OMP_DYNAMIC
./omp.exe
Thread ID 0 updates i = 0
Thread ID 0 updates i = 1
Thread ID 1 updates i = 2
Thread ID 1 updates i = 3
Thread ID 2 updates i = 4
Thread ID 2 updates i = 5

Now we get 3
threads

Using more threads than processors:

An Overview of OpenMP

131

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Example SUNW_MP_WARN/2

20 void foo()
21 {
22 #pragma omp barrier
23 whatever();
24 }
25
26 void bar(int n)
27 {
28 printf("In bar: n = %d\n",n);
29 #pragma omp parallel for
30 for (int i=0; i<n; i++)
31 foo();
32 }
33
34 void whatever()
35 {
36 int TID = omp_get_thread_num();
37 printf("Thread %d does do nothing\n",TID);
38 }

An Overview of OpenMP

132

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Example SUNW_MP_WARN/3
% cc -fast -xopenmp -xloopinfo -xvpara main.c
"main.c", line 30: PARALLELIZED, user pragma used
% setenv OMP_NUM_THREADS 4
% setenv SUNW_MP_WARN TRUE
% ./a.out
In bar: n = 5
WARNING (libmtsk): at main.c:22. Barrier is not permitted in
dynamic extent of for / DO.
Thread 0 does do nothing
Thread 3 does do nothing
Thread 2 does do nothing
Thread 1 does do nothing
WARNING (libmtsk): Threads at barrier from different
directives.
 Thread at barrier from main.c:22.
 Thread at barrier from main.c:29.
 Possible Reasons:
 Worksharing constructs not encountered by all threads in
 the team in the same order.
 Incorrect placement of barrier directives.
Thread 0 does do nothing

Application
hangs

An Overview of OpenMP

133

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Thread Affi nity (experimental)

SUNW_MP_THR_AFFINITY TRUE | FALSE

Improve thread affi nity

If set to TRUE, the master thread no longer returns worker
threads to the pool

An Overview of OpenMP

134

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Processor binding

☞ Processor binding, when used along with static scheduling,
benefi ts applications that exhibit a certain data reuse pattern where
data accessed by a thread in a parallel region is in the local cache
from a previous invocation of a parallel region

☞ One can use the psrinfo and prtdiag (in /usr/sbin) commands to
find out how processors are configured

☞ Note that the binding is to the logical processor ID, not the physical
ID (order is dictated by output of psrinfo)

☞ In case of syntax error, an error message is emitted and execution
of the program is terminated.

SUNW_MP_PROCBIND TRUE | FALSE
SUNW_MP_PROCBIND Logical ID, or Range of logical IDs,

or list of logical IDs (separated by
spaces)

Control binding of threads to “processors”

An Overview of OpenMP

135

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Default Stack Traceback
% ./stack.exe
Segmentation Fault (core dumped)
% pstack core
core 'core' of 10043: ./stack.exe
----------------- lwp# 2 / thread# 2 --------------------
 00010850 myFunc (1, fe3ffda0, 0, 1, 0, 0) + 10
 0001082c _$p1A19.main (0, fe793380, 80, 10820, feb68260, 0) + c
 feb6834c run_job_invoke_mfunc_once (fe793380, 0, ffbff9a8, 1, 0, 0) + ac
 feb686b4 run_my_job (fe793380, 0, ffbff9a8, 2, 1, 27395000) + 20
 feb736a4 slave_startup_function (feb97290, fe7933d0, fe7933a8, 1, 2,
 feb97284) + 7dc
 feb457b4 _lwp_start (0, 0, 0, 0, 0, 0)
----------------- lwp# 1 / thread# 1 --------------------
 000108ac myFunc (f4238, ffbff698, 0, ffbff698, 1438, ff4685f0) + 6c
 0001082c _$p1A19.main (0, fe782100, 80, 10820, feb68260, 0) + c
 feb6834c run_job_invoke_mfunc_once (fe782100, 0, ffbff9a8, 1, ffbff768,
 ffbff879) + ac
 feb67914 __mt_MasterFunction_rtc_ (107a0, fe782180, 0, 13, fe782334, 0) +
 51c
 0001080c main (1, 13, 702, 107a0, 10400, 10820) + 4c
 00010788 _start (0, 0, 0, 0, 0, 0) + 108

pstack is a very useful
Solaris command !

An Overview of OpenMP

136

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Compiler option: -xcheck=stkovf
% cc -o stack_stkovf.exe -fast -g -xopenmp -xcheck=stkovf *.c
% ./stack_stkovf.exe
Segmentation Fault (core dumped)
% pstack core
core 'core' of 10077: ./stack_stkovf.exe

----------------- lwp# 2 / thread# 2 --------------------
 feb45bb4 _stack_grow (1, fe3ffda0, 0, 1, 0, 0) + 48
 00010890 _$p1A19.main (0, fe793380, 80, 10880, feb68260, 0) + 10
 feb6834c run_job_invoke_mfunc_once (fe793380, 0, ffbff988, 1, 0, 0) + ac
 feb686b4 run_my_job (fe793380, 0, ffbff988, 2, 1, 27395000) + 20
 feb736a4 slave_startup_function (feb97290, fe7933d0, fe7933a8, 1, 2,
 feb97284) + 7dc
 feb457b4 _lwp_start (0, 0, 0, 0, 0, 0)
----------------- lwp# 1 / thread# 1 --------------------
 00010904 myFunc (f4238, ffbff678, 0, ffbff678, 1340, ff467e10) + 64
 00010890 _$p1A19.main (0, fe782100, 80, 10880, feb68260, 0) + 10
 feb6834c run_job_invoke_mfunc_once (fe782100, 0, ffbff988, 1, ffbff748,
 ffbff859) + ac
 feb67914 __mt_MasterFunction_rtc_ (10800, fe782180, 0, 13, fe782334, 0) +
 51c
 00010870 main (1, 13, 702, 10800, 10800, 10880) + 50
 000107e8 _start (0, 0, 0, 0, 0, 0) + 108

Currently only

supported on

SPARC

An Overview of OpenMP

137

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The behavior of idle threads

 Default is to have idle threads go to sleep after a spinning for a
short while

 Spin: threads keep the CPU busy (but don't do useful work)

 Sleep: threads are put to sleep; awakened when new work arrives

 Sleep ('time'): spin for 'n' seconds (or milli/micro seconds), then
go into sleep mode

● Examples: setenv SUNW_MP_THR_IDLE “sleep(5 ms)”
setenv SUNW_MP_THR_IDLE spin

SUNW_MP_THR_IDLE
 [spin | sleep [('n's) , ('n'ms) , ('n'mc)]]

Environment variable to control the behavior:

An Overview of OpenMP

138

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Autoscoping

An Overview of OpenMP

139

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Autoscoping example

!$OMP PARALLEL DEFAULT (__AUTO)

!$OMP SINGLE
 T = N*N
!$OMP END SINGLE

!$OMP DO
 DO I = 1, N
 A(I) = T + I
 END DO
!$OMP END DO

!$OMP END PARALLEL

Autoscoping is a unique feature available in the Oracle Solaris
Studio compilers only

An Overview of OpenMP

140

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Autoscoping results

 Shared variables in OpenMP construct below: a, i, t, n
 Variables autoscoped as SHARED in OpenMP construct below: i, t, n, a

 10. !$OMP PARALLEL DEFAULT (__AUTO)
 11.
 12. !$OMP SINGLE
 13. T = N*N
 14. !$OMP END SINGLE
 15.

 Private variables in OpenMP construct below: i
 16. !$OMP DO

 Loop below parallelized by explicit user directive
 17. DO I = 1, N
 <Function: _$d1A16.auto_>
 18. A(I) = T + I
 19. END DO
 20. !$OMP END DO
 21.
 22. !$OMP END PARALLEL

Variable 'i' re-scoped

An Overview of OpenMP

141

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Example Autoscoping in C

 1. void m1_mxv(int m, int n, double *a, double **b, double *c)
 2. {
 <Function: m1_mxv>

 Source OpenMP region below has tag R1
 Variables autoscoped as SHARED in R1: b, c, a, m, n
 Variables autoscoped as PRIVATE in R1: sum, j
 Private variables in R1: j, sum, i
 Shared variables in R1: n, b, c, a, m

 3. #pragma omp parallel for default(__auto)

 L1 parallelized by explicit user directive
 L1 parallel loop-body code placed in function _$d1A3.m1_mxv along
 with 1 inner loops
 4. for (int i=0; i<m; i++)
 5. {
 6. double sum = 0.0;

 L2 not parallelized because it is inside OpenMP region R1
 7. for (int j=0; j<n; j++)
 8. sum += b[i][j]*c[j];
 9. a[i] = sum;
 10. } // End of parallel for
 11. }

$ suncc -c -fast -xrestrict -g -xopenmp -xloopinfo auto.c
"auto.c", line 4: PARALLELIZED, user pragma used
"auto.c", line 7: not parallelized, loop inside OpenMP region
$ er_src -scc parallel auto.o

An Overview of OpenMP

142

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The Thread Analyzer

An Overview of OpenMP

143

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

An example of a data race/1
#pragma omp parallel default(none) private(i,k,s) \
 shared(n,m,a,b,c,d,dr)
{
 #pragma omp for
 for (i=0; i<m; i++)
 {
 int max_val = 0;

 s = 0 ;
 for (k=0; k<i; k++)
 s += a[k]*b[k];
 c[i] = s;

 dr = c[i];
 c[i] = 3*s - c[i];
 if (max_val < c[i]) max_val = c[i];
 d[i] = c[i] - dr;
 }
} /*-- End of parallel region --*/

Where is the
data race ?

An Overview of OpenMP

144

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

An example of a data race/2
#pragma omp parallel default(none) private(i,k,s) \
 shared(n,m,a,b,c,d,dr)
{
 #pragma omp for
 for (i=0; i<m; i++)
 {
 int max_val = 0;

 s = 0 ;
 for (k=0; k<i; k++)
 s += a[k]*b[k];
 c[i] = s;

 dr = c[i];
 c[i] = 3*s - c[i];
 if (max_val < c[i]) max_val = c[i];
 d[i] = c[i] - dr;
 }
} /*-- End of parallel region --*/

Here is the data
race !

% cc -xopenmp -fast -xvpara -xloopinfo -c data-race.c
"data-race.c", line 9: Warning: inappropriate scoping
 variable 'dr' may be scoped inappropriately
 as 'shared'
 . read at line 24 and write at line 21 may
 cause data race

An Overview of OpenMP

145

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

A True Story
❑ SPECOMP Benchmark fma3d

❑ 101 source fi les; 61,000 lines of Fortran code

❑ Data race in platq.f90 caused sporadic core dumps

❑ It took several engineers and 6 weeks of work to fi nd the
data race manually

An Overview of OpenMP

146

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Subroutine executed in parallel

 < 1927 lines omitted >
 SUBROUTINE PLATQ_STRESS_INTEGRATION (NEL,SecID,MatID)
 < 45 lines omitted >
!!OMP THREADPRIVATE (/PLATQ_COMMON/)
!!
 < 7 lines omitted >
 LOGICAL, SAVE :: FIRST = .TRUE.
 < 17 lines omitted >
!! Define constants.
!!
 IF (FIRST) THEN
 SQRT6o1 = SQRT (6.0D+0/1.0D+0)
 SQRT5o6 = SQRT (5.0D+0/6.0D+0)
 FIRST = .FALSE.
 ENDIF
!!
!! Compute current element thickness based on constant volume.
!! Thickness = SECTION_2D(SecID)%Thickness *
 & PLATQ(NEL)%PAR%Area / PLATQ(NEL)%RES%Area
 < 425 lines omitted >

An Overview of OpenMP

147

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Subroutine executed in parallel

 < 1927 lines omitted >
 SUBROUTINE PLATQ_STRESS_INTEGRATION (NEL,SecID,MatID)
 < 45 lines omitted >
!!OMP THREADPRIVATE (/PLATQ_COMMON/)
!!
 < 7 lines omitted >
 LOGICAL, SAVE :: FIRST = .TRUE.
 < 17 lines omitted >
!! Define constants.
!!
 IF (FIRST) THEN
 SQRT6o1 = SQRT (6.0D+0/1.0D+0)
 SQRT5o6 = SQRT (5.0D+0/6.0D+0)
 FIRST = .FALSE.
 ENDIF
!!
!! Compute current element thickness based on constant volume.
!! Thickness = SECTION_2D(SecID)%Thickness *
 & PLATQ(NEL)%PAR%Area / PLATQ(NEL)%RES%Area
 < 425 lines omitted >

Data
Race!

shared

C
o

m
p

ile
r

R
e-

o
rd

er
s

An Overview of OpenMP

148

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Run-time behavior

FIRST = .FALSE

.

 SQRT6o1 = SQRT (6.0D+0/1.0D+0)
 SQRT5o6 = SQRT (5.0D+0/6.0D+0)

 <use SQRT6o1 and SQRT5o6>

 IF (FIRST) THEN
 FIRST = .FALSE.
 SQRT6o1 = SQRT (6.0D+0/1.0D+0)
 SQRT5o6 = SQRT (5.0D+0/6.0D+0)
 ENDIF

<use SQRT6o1 and SQRT5o6>

<Context Switch>

Thread 1 Thread 2
T

im
e

Quiz: Possible
Solution ?

An Overview of OpenMP

149

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

A possible effi cient solution

 < 1927 lines omitted >
 SUBROUTINE PLATQ_STRESS_INTEGRATION (NEL,SecID,MatID)
 < 45 lines omitted >
!!OMP THREADPRIVATE (/PLATQ_COMMON/)
!!
 < 7 lines omitted >
 LOGICAL, SAVE :: FIRST = .TRUE.
 < 17 lines omitted >
!! Define constants.
!!
!$omp single
 IF (FIRST) THEN
 SQRT6o1 = SQRT (6.0D+0/1.0D+0)
 SQRT5o6 = SQRT (5.0D+0/6.0D+0)
 FIRST = .FALSE.
 ENDIF
!$omp end single
!!
!! Compute current element thickness based on constant volume.
!! Thickness = SECTION_2D(SecID)%Thickness *
 & PLATQ(NEL)%PAR%Area / PLATQ(NEL)%RES%Area
 < 425 lines omitted >

barrier included

An Overview of OpenMP

150

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Bottom line about Data Races

Data Races Are Easy To Put In
But

Very Hard To Find

That is why a special tool to find
data races is a “must have”

An Overview of OpenMP

151

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The Thread Analyzer
❑ Detects threading errors in a multi-threaded program:

● Data race and/or deadlock detection
❑ Parallel Programming Models supported*:

● OpenMP
● POSIX Threads
● Solaris Threads

❑ Platforms: Solaris on SPARC, Solaris/Linux on x86/x64

❑ Languages: C, C++, Fortran

❑ API provided to inform Thread Analyzer of user-defi ned
synchronizations

● Reduce the number of false positive data races
reported

*) Legacy Sun and Cray parallel directives are supported too

An Overview of OpenMP

152

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

About The Thread Analyzer
❑ Getting Started:

http://developers.sun.com/sunstudio/downloads/
ssx/tha/tha_getting_started.html

❑ Provide feedback and ask questions on the
Oracle Solaris Studio Tools Forum

http://developers.sun.com/sunstudio/community/
forums/index.jsp

An Overview of OpenMP

153

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Using The Thread Analyzer
1. Instrument the code

 % cc -xinstrument=datarace source.c

2. Run the resulting executable under the collect
command*. At runtime, memory accesses and thread
synchronizations will be monitored. Any data races
found will be recorded into a log fi le

 % collect -r [race | deadlock] a.out

2. Display the results:

% er_print [-races | -deadlock] tha.1.er
(Command-line interface)

% tha tha.1.er
(Customized Analyzer GUI)

*) Executable will run slower because of instrumentation

An Overview of OpenMP

154

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Support for deadlock detection
❑ The Thread Analyzer can detect both potential deadlocks

and actual deadlocks

❑ A potential deadlock is a deadlock that did not occur in a
given run, but can occur in different runs of the program
depending on the timings of the requests for the locks by
the threads

❑ An actual deadlock is one that actually occurred in a
given run of the program

● An actual deadlock causes the threads involved to
hang, but may or may not cause the whole process to
hang

An Overview of OpenMP

155

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Example of a Data Race
#pragma omp parallel shared(n)
 {
#pragma omp single
 {printf("Number of threads: %d\n",omp_get_num_threads());}

 n = omp_get_thread_num();

 printf("Hello Data Race World n = %d\n",n);
 } /*-- End of parallel region --*/

Number of threads: 4
Hello Data Race World n = 3
Hello Data Race World n = 2
Hello Data Race World n = 1
Hello Data Race World n = 0

The output is correct:

Let's see what the Thread Analyzer says:

An Overview of OpenMP

156

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Example command line output
Total Races: 1 Experiment: race.er

Race #1, Vaddr: 0x8046a4c
 Access 1: Write, main -- OMP parallel region from
 line 9 [_$p1A9.main] + 0x000000B9,
 line 14 in "hello-race.c"
 Access 2: Write, main -- OMP parallel region from
 line 9 [_$p1A9.main] + 0x000000B9,
 line 14 in "hello-race.c"
 Total Traces: 1

The Thread Analyzer detects the multiple
writes to the same shared variable

An Overview of OpenMP

157

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Thread Analyzer GUI - Races

The Thread Analyzer detects
the multiple writes to the

same shared variable

An Overview of OpenMP

158

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Thread Analyzer GUI - Sources

The source lines of the conflicting writes
are shown in the “Dual Source” tab

An Overview of OpenMP

159

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Revisiting the True Story
❑ SPECOMP Benchmark fma3d

❑ 101 source fi les; 61,000 lines of Fortran code

❑ Data race in platq.f90 caused sporadic core dumps

❑ It took several engineers and 6 weeks of work
to fi nd the data race manually

With the Oracle Solaris Studio Thread
Analyzer, the data race was detected in

just a few hours!

An Overview of OpenMP

160

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Avoiding Data Races
❑ Rule #1 - Avoid a simultaneous update of shared data

❑ Rule #2 - Make sure the data sharing attributes (e.g.
private, shared, etc) are correct

● Consider using Sun's autoscoping to assist you
❑ Rule #3 - Use the Oracle Solaris Studio Thread Analyzer

❑ OpenMP provides several constructs to help:

● Critical Section - Only one thread at a time
● Explicit Barrier - All threads wait for the last one
● Atomic Construct - Lightweight critical section
● Single Region - Only one thread; has implied barrier

An Overview of OpenMP

161

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Summary OpenMP
❑ OpenMP provides for a small, but yet powerful,

programming model

❑ It can be used on a shared memory system of any size

● This includes a single socket multicore system
❑ Compilers with OpenMP support are widely available

❑ The tasking concept opens up opportunities to
parallelize a wider range of applications

❑ Oracle Solaris Studio has extensive support for OpenMP
developers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161

