

Data Dependencies

Not all loops can be parallelized. Before adding OpenMP
directives need to check for any dependencies:

We categorize three types of dependencies:

 Flow dependence: Read after Write (RAW)
 Anti dependence: Write after Read (WAR)
 Output dependence (Write after Write (WAW)

X = 21
PRINT *, X

PRINT *, X
X = 21

X = 21
X = 21

FLOW ANTI OUTPUT

Data Dependencies (2)
For our purpose (openMP parallel loops) we only care about loop carried
dependencies (dependencies between instructions in different iterations of the loop)

S1: DO I=1,10
S2: B(i) = temp
S3: A(i+1) = B(i+1)
S4: temp = A(i)
S5: ENDDO

Let's find the dependencies in the following loop?

Data Dependencies (2)
For our purpose (openMP parallel loops) we only care about loop carried
dependencies (dependencies between instructions in different iterations of the loop)

S1: DO I=1,10
S2: B(i) = temp
S3: A(i+1) = B(i+1)
S4: temp = A(i)
S5: ENDDO

What are the dependencies in the following loop?

1: S3 → S2 anti (B)

Data Dependencies (2)
For our purpose (openMP parallel loops) we only care about loop carried
dependencies (dependencies between instructions in different iterations of the loop)

S1: DO I=1,10
S2: B(i) = temp
S3: A(i+1) = B(i+1)
S4: temp = A(i)
S5: ENDDO

What are the dependencies in the following loop?

1: S3 → S2 anti (B)
2: S3 → S4 flow (A)

Data Dependencies (2)
For our purpose (openMP parallel loops) we only care about loop carried
dependencies (dependencies between instructions in different iterations of the loop)

S1: DO I=1,10
S2: B(i) = temp
S3: A(i+1) = B(i+1)
S4: temp = A(i)
S5: ENDDO

What are the dependencies in the following loop?

1: S3 → S2 anti (B)
2: S3 → S4 flow (A)
3: S4 → S2 flow (temp)

Data Dependencies (2)
For our purpose (openMP parallel loops) we only care about loop carried
dependencies (dependencies between instructions in different iterations of the loop)

S1: DO I=1,10
S2: B(i) = temp
S3: A(i+1) = B(i+1)
S4: temp = A(i)
S5: ENDDO

What are the dependencies in the following loop?

1: S3 → S2 anti (B)
2: S3 → S4 flow (A)
3: S4 → S2 flow (temp)
4: S4 → S4 output (temp)

Data Dependencies (2)
For our purpose (openMP parallel loops) we only care about loop carried
dependencies (dependencies between instructions in different iterations of the loop)

S1: DO I=1,10
S2: B(i) = temp
S3: A(i+1) = B(i+1)
S4: temp = A(i)
S5: ENDDO

S2: B(1) = temp
S3: A(2) = B(2)
S4: temp = A(1)

S2: B(2) = temp
S3: A(3) = B(3)
S4: temp = A(2)

What are the dependencies in the following loop?

1: S3 → S2 anti (B)
2: S3 → S4 flow (A)
3: S4 → S2 flow (temp)
4: S4 → S4 output (temp)

Sometimes it helps to ”unroll” part of the loop to
see loop carried dependencies more clear

Data Dependencies (2)
For our purpose (openMP parallel loops) we only care about loop carried
dependencies (dependencies between instructions in different iterations of the loop)

S1: DO I=1,10
S2: B(i) = temp
S3: A(i+1) = B(i+1)
S4: temp = A(i)
S5: ENDDO

S2: B(1) = temp
S3: A(2) = B(2)
S4: temp = A(1)

S2: B(2) = temp
S3: A(3) = B(3)
S4: temp = A(2)

What are the dependencies in the following loop?

1: S3 → S2 anti (B)
2: S3 → S4 flow (A)
3: S4 → S2 flow (temp)
4: S4 → S4 output (temp)

Sometimes it helps to ”unroll” part of the loop to
see loop carried dependencies more clear

4

12 3

Case Study: Jacobi

Implement a parallel version of the Jacobi algorithm using
OpenMP. A sequential version is provided.

Data Dependencies (3)

Loop carried anti- and output dependencies are not true
dependencies (re-use of the same name) and in many cases
can be resolved relatively easily.

Flow dependencies are true dependencies (there is a
flow from definition to its use) and in many cases
cannot be removed easily. Might require rewriting the
algorithm (if possible)

 Resolving Anti/Output Deps

Use PRIVATE clause:
Already saw this in example hello_threads

Rename variables (if possible):
Example: in-place left shift
 !$OMP PARALLEL DO
DO i=1,n-1 DO i=1,n-1 DO i=1,n-1
 A(i)=A(i+1) → ANEW(i) = A(i+1) → ANEW(i) = A(i+1)
ENDDO ENDDO ENDDO
 !$OMP END PARALLEL DO
If has to be in-place can do it in two steps:

!$OMP PARALLEL
!$OMP DO
 T(i) = A(i+1)
!$OMP END DO
!$OMP DO
 A(i) = T(i)
!$OMP END DO
!$OMP END PARALLEL

More about shared/private vars

 FIRSTPRIVATE (list):
 Same as PRIVATE but every private copy of variable 'x' will be
 initialized with the original value (before the omp region started) of 'x'
 LASTPRIVATE (list):
 Same as PRIVATE but the private copies of the variables in list
 from the last work sharing will be copied to shared version. To be used
 with !$OMP DO Directive.
 DEFAULT (SHARED | PRIVATE | FIRSTPRIVATE | LASTPRIVATE):
 Specifies the default scope for all variables in omp region.

Besides the clauses described before OpenMP provides
some additional datascope clauses that are very useful:

NOTE: example data scope

Case Study: Removing Flow Deps

Y[1] = X[1]
DO i=2,n,1
 Y[i] = Y[i-1] + X[i]
ENDDO

Y = prefix(X) → Y(1) = X(1); Y(i) = Y(i-1) + X(i)

1 1 1 1 1 2 3 4

X Y

SEQUENTIAL

Case Study: Removing Flow Deps

Y[1] = X[1]
DO i=2,n,1
 Y[i] = Y[i-1] + X[i]
ENDDO

Y = prefix(X) → Y(1) = X(1); Y(i) = Y(i-1) + X(i)

1 1 1 1 1 2 3 4

X Y

SEQUENTIAL

Y[1] = X[1]
!$OMP PARALLEL DO
DO i=2,n,1
 Y[i] = Y[i-1] + X[i]
ENDDO
!$OMP END PARALLEL DO

PARALLEL

Case Study: Removing Flow Deps

Y[1] = X[1]
DO i=2,n,1
 Y[i] = Y[i-1] + X[i]
ENDDO

Y = prefix(X) → Y(1) = X(1); Y(i) = Y(i-1) + X(i)

1 1 1 1 1 2 3 4

X Y

SEQUENTIAL

Y[1] = X[1]
!$OMP PARALLEL DO
DO i=2,n,1
 Y[i] = Y[i-1] + X[i]
ENDDO
!$OMP END PARALLEL DO

PARALLEL

WHY?

Case Study: Removing Flow Deps

REWRITE ALGORITHM

STEP 1: split X among threads; every thread computes its own (partial) prefix sum

STEP 2: create array T → T[1]=0, T[i] = X[(length/threads)*(i-1)], perform simple prefix sum on T
 (will collects last element from every thread (except last) and perform simple prefix sum)

4 4 4

STEP 3: every thread adds T[theadid] to all its element

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

 1 2 3 4

4 8 120 0

 5 6 7 8 9 10 11 12 13 14 15 16
+0 +4 +8 +12

STEP 4: Finished; we rewrote prefex sum by removing dependencies.

Prefix Sum Implementation

How to implement the algorithm on the previous slide?

 Three separate steps
 Steps 1 and 3 can be done in parallel
 Step 2 has to be done sequential
 Step 1 has to be performed before step 2
 Step 2 has to be performed before step 3

NOTE: exercise prefix

NOTE: For illustration purposes we can assume array length is multiple of #threads

Case Study: Removing Flow Deps

This Case study showed an example of an algorithm with real (flow)
dependencies

 Sometimes we can rewrite algorightm to run parallel
 Most of the time this is not trivial
 Speedup much less impressive (often)

