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What is a robot!?

* Many different definitions for robots
exist.

* A robot is a reprogrammable,
multifunctional manipulator designed to
move material, parts, tools, or
specialized devices through variable
programmed motions for the
performance of a variety of tasks.”
(Robot Institute of America).



Automation vs. robots

Automation: Machinery designed to carry out a specific

task (PR E e
-Bottling machine !l‘s““»"ﬂ‘;' |

-Dishwasher

Robots: machinery designed to carry out a variety of
tasks

-Pick and place arms
-Mobile robots




Robots Classification

* Manipulators: robotic arms. These are most commonly found in industrial
settings.

* Mobile Robots: unmanned vehicles

* Hybrid Robots: mobile robots with manipulators

e Humanoid robot




Applications

Dangerous:

- -Space exploration

' -chemical spill cleanup
-disarming bombs
-disaster cleanup

Repetitive

-Welding car frames
-part pick and place
-manufacturing parts.

High precision or high speed
-Electronics chips

-Surgery

-precision machining




Measures of performance

* Work space

» The space within which the robot operates.

» Larger volume costs more but can increase the capabilities of
a robot

Cylinderical Robot I
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Measures of performance

* Speed and acceleration

> Faster speed often reduces resolution or
Increases cost

» Varies depending on position, load.

» Speed can be limited by the task the robot
performs (welding, cutting)



Measures of performance

* Accuracy

» The difference between
the actual position of the
robot and the

programmed position

* Repeatability
»Will the robot always
return to the same point

under the same conditions?



Body

End
Effectors
Actuators
Sensors
Controller
Software

~axis
— Teaches manipulators
Rotates axis movement
Moves axis Uﬁ!‘b = .I:alb
: Rotate the wrist Programming
' y \-) (l =

Laxs T B

Moves the robot 7/ ! J

bodyfobamrdﬁ B axis s - !
and forward Waves the robot wrist
upward or downward

Manipulators

1

Controller

Controls the
complex motion
of manipulators in
a comprehensive
manner

Saxis
Rotates the body

AC servomotor motors are used
in the six axes of manipulators.
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Robot: Body

Consists of links and joints

A link is a part, a shape with physical properties.

A joint is a constraint on the spatial relations of two or more
links.

These are just a few examples...

Ball joint Revolute (hinge) joint

Prismatic (slider) joint



Degrees of Freedom

* Joints constraint free movement, measured in
“Degrees of Freedom” (DOFs).

* Joints reduce the number of DOFs by
constraining some translations or rotations.

* Robots classified by total number of DOFs

shoulder
base elbow forearm

How many DOFs
can you identify in
your arm!

© 2002 HowStuffWorks




Degrees of Freedom

How many DOFs can you identify in your
arm?




Robot: End Effectors

* Component to accomplish
some desired physical function
* Examples:

v' Hands
v' Torch
v Wheels
v’ Legs

-




Robot: Actuators

e Actuators are the “muscles” of the
robot.

* These can be electric motors,
hydraulic systems, pneumatic
systems, or any other system that
can apply forces to the system.



Robot: Sensors

 Rotation encoders
e Cameras

* Pressure sensors
* Limit switches

* Optical sensors
e Sonar




Robot: Controller

Controllers direct a robot how to move.
There are two controller paradigms

» Open-loop controllers execute robot

movement without feedback.

» Closed-loop controllers

execute robot movement

and judge progress with ~ coreter  ctuater
sensors. They can thus O
compensate for errors.

sl
- e
S '\

Feedback|/Transducer
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Kinematics

Kinematics is the study of motion without
regard for the forces that cause it.

It refers to all time-based and geometrical
properties of motion.

It ignores concepts such as torque, force,
mass, energy, and inertia.



Forward Kinematics

For a robotic arm, this would mean
calculating the position and orientation of
the end effector given all the joint variables.




Inverse Kinematics

* Inverse Kinematics is the reverse of Forward Kinematics.

* It is the calculation of joint values given the positions,
orientations, and geometries of mechanism’s parts.

* It is useful for planning how to move a robot in a certain way.
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FIGURE 1.10:The relationship between the torques applied

by the actuators and the resulting motion of the
manipulator is embogiéd ifi'the dynaniic'equations:



Trajectory generating
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FIGURE 1.1 |:In order to move the end-effector through space from point

A to point B, we must compute a trajectory for each joint to follow.



Position Control

FIGURE [.13:In order to cause the manipulator to follow the desired
trajectory , a position-control system must be implemented. Such a system

uses feedback from joint sensors to keep the manipulator on course.



Force Control

o
/

/

\
== A\

FIGURE |.14:In order for a manipulator to slide across a surface while applying a
constant force , a hybrid position-force control system must be used.




New direction

* Nanobots

Reconfigurable Robot

Dr. Mohammed Abu Mallouh-Robotics
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Chapter 2
Spatial descriptions

2.2 DESCRIPTIONS :
POSITIONS,ORIENTATIONS,AND FRAMES

2.3 MAPPINGS :
CHANGING DESCRIPTION FROM FRAMETO FRAME

2.4 OPERATORS :
TRANSLATIONS ,ROTATIONS,AND
TRANSFORMATIONS




Introduction:

In the study of robotics, we are constantly concerned with the location of objects in
three-dimensional space.These objects are the links of the manipulator, the parts and
tools with which it deals, and other objects in the manipulator’s environment.

Z
Y Position and orientation
-X
Z
A
z A
X
Y Y
X

X

FIGURE 1.5: Coordinate systems or “frames” are attached to the
manipulator and to objects in the environment.



Introduction: cont.

In order to describe the position and orientation of a body in space, we will always
attach a coordinate system, or frame, rigidly to the object.We then proceed to
describe the position and orientation of this frame with respect to some reference
coordinate system. (See Fig. |.5.)

A description is used to specify attributes of various objects with which a
manipulation system deals. These objects are parts, tools, and the manipulator it

self. In this section, we discuss the description of positions, of orientations, and of
an entity that contains both of these descriptions: the frame.

k}f Position and orientation
X

z

X
Y Y
X Y

FIGURE 1.5: Coordinate systems or “frames” are attached to the
manipulator and to objects in the environment.




Description of a position
Once a coordinate system is established, we can locate any point in the
universe with a 3 X | position vector. Because we will often define many

coordinate systems.

x‘:l,
R (A}
Z4 y‘:].,
Ap . Z‘Z].,
> }‘}A i i
Px
A, =|P
X, P y
I:)z

FIGURE 2.1:Vector relative to frame (example).



Description of an orientation
Often, we will find it necessary not only to represent a point in space but also to
describe the orientation of a body in space .

Rotation matrix : {B} relative to {A}

r-11 r-12 r13

AN ~ A
:[ XBAYB ZB:|: o o T3

_r31 r-32 r33



We can give expressions for the scalars rij in (2.2) by nothing that the
components of any vector are simply the projections of that vector on to the unit
directions of its reference frame. Hence , each component of g R in (2.2) can be

written as the dot product of a pair of unit vectors :

XAB XAA YB XAA ZAB XAA
R=[ XN, =X, Y, Y, Y2 |29
X,.2,¥,.2, .7, .17,

?, Note: dot product for vector




Further inspection of (2.3) shows that the rows of the matrix are the unit vectors of
{A} expressed in {B} ;that is,

A
IR =[N, A2, =] T (2.4)

BT
ZA

Hence,g‘ R, the description of frame {A} relative to {B}, is given by the transpose of (2.3);
that is,

BR = /RT. (2.5)

This suggests that the inverse of a rotation matrix is equal to its transpose , a fact that can

be easily verified as oy T
A

RTIR =T [, 42, =1, (26)

BT
ZA

Where | , is the 3x3 identity matrix. Hence,

A Bp-1_ BpT
s R=,R7"=,R", (2.7) Note: example rotation
matrix




2.3 MAPPING: CHANGING DESCRIPTIONS FROM FRAMETO FRAME
In a great many of the problems in robotics , we are concerned with expressing the
same quantity in terms of various reference coordinate systems.The previous section
introduced descriptions of positions, orientations, and frames; we now consider the
mathematics of mapping in order to change descriptions from frame to frame.

FIGURE 2.4:Translational mapping



Mappings involving rotated frames

P = R EP.

FIGURE 2.5: Rotating the description of a vector.



Mappings involving rotated frames

EXAMPLE 2.1

Figure 2.6 shows a frame {B} that is rotated relative to frame {A} about /4 by 30
degrees. Here , 7 is pointing out of the page .

Bp

[B} A

FIGURE 2.6: {B} rotated 30 degrees about 7 .



Mappings involving rotated frames

EXAMPLE 2.1
Figure 2.6 shows a frame {B} that is rotated relative to frame {A} about 7 by
30 degrees. Here , 7 is pointing out of the page . 0.0
°P =|2.0
y P 0.0
Bp
—-1.000
{A} A A B
By \ & P=;R"P =|1732
Y s
4 0.000
X cos@ -sind 0
) R, (@) =|sind cosé O
" K 0 0 1

0.866 -0.500 0.000
2R =]0.500 0.866 0.000

FIGURE 2.6: {B} rotated 30 degrees about Z 0.000 0.000 1.000



APPENDIX A
Formulas for rotation about the principle axes by :

1 0 0
R, (@)=|0 cosé -siné (A1)
|0 sing cosd

(cos@® 0 sing |
R, (6)=|0 1 0 (A.2)
_—sinH 0 cosd |

cos@ -sind 0 |
R, (#)=|singd cosd O (A.3)
0 0 1




Mappings involving general frames
Very often, we know the description of a vector with respect to some frame {B},and

we would like to know its description with respect to another frame,{A}.We now
consider the general case of mapping. Here, the origin of frame {B} is not coincident
with that of frame {A} but has a general vector offset. The vector that locates {B}’s
origin is called AP o -Also {B} i is rotated with respect to {A}, as described by
Given P , we W|sh to compute *P, as in Fig. 2.7.

FIGURE 2.7 : General transform of a vector .
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EXAMPLE 2.2 A
Figure 2.8 shows a frame {B}, which is rotated relative to frame {A} about Z by 30
degree, translated 10 units in X ,,and translated 5 units in Y , . Find *P , where

5P =[3.07.00.0] .

The definition of frame {B} is

0.866 -0.500 0.000 10.0]

0.500 0.866 0.000 5.0
T = (2.21)
0.000 0.000 1.000 0.0

0 0 0 1

Given 30
5p = 7.0, (2.22)
0.0

We use the definition of {B} just given as a transformation:

9.098
AP = AT 8P = (12562 | , (2.23)
0.000



2.4 OPERATORS:TRANSLATIONS, ROTATIONS,AND TRANSFORMATIONS
The same mathematical forms used to map points between frames can also be
interpreted as Operators that translate points, rotate vectors, or do both .This
section illustrates this interpretation of the mathematics we have already developed.

Translational operators

AP, = AP, + AQ

AI:)2 = DQ (q)Apl'




Rotational operators

P, =R"P,
P, =R, (6)"P,

cos@ -sind 0 O]
sind cosd 0 0
0 0 10
0 0 O01]

R, (0) =

. fa

FIGURE 2.10: The vector Apl rotated 30 degrees about Z :



Rotational operators

Figure 2.10 shows a vector"P,. We wish to compute the vector obtained by
rotating this vector about7 by 30 degrees. Call the new vector”P,.

The rotation matrix that rotates vectors by 30 degrees about Z is the same
as the rotation matrix that describes a frame rotated 30 degrees about £
relative to the reference frame . Thus , the correct rotational operator is

0.866 -0.500 0.000
R, (30.0) =| 0.500 0.866 0.000 (2.30)
0.000 0.000 1.000

Given
0.0
AP =20, (2.31)
0.0
AP
We calculate "™ as
—1.000
*P, =R, (30.0)*P, =|1.732 |, (2.32)

0.000



Transformation operators

EXAMPLE 2.4 R X

Figure 2.11 shows a vector P:.We wish to rotate it about Z by 30 degrees and
: . L p g A

translate it 10 units in X yand5 unitsin Y, .Find "P,, where AP, :[3.0.7.00.O]T |

,;\(\
I,’/ 10.866 -0.500 0.000 10.0 |
T _ 0.500 0.866 0.000 5.0
~10.000 0.000 1.000 0.0
o o o 1
AP, =T “P,
9.098
AP, =T "P, =|12.562
0.000

A P A P
FIGURE 2.1 1:The vector Fjrotated and translated to form T >.




2.5 SUMMARY OF INTERPRETATIONS

We have introduced three interpretations of this homogeneous

transform:

. It is a descriptions of a frame. a7 describes the frame {B}
relative to the frame {A}. Specifically, the columns of +R are
unit vectors defining the directions of the principal axes of
{B},and "P, . locates the position of the origin of {B} .

2. Itis a transform mapping. sT maps °P — *P .

3. It is a transform operator. T operates on P, to create “P,.



2.6 TRANSFORMATION ARITHMETIC
Compound transformations

we have “P and wish to find “P. =c

FIGURE 2.12 : Compound frames: Each is known relative to previous one .



EXAMPLE 2.5

Figure 2.13 shows a frame {B} that is rotated relative to frame {A} about

30 degrees and translated four units in X yand three units in Y , .Thus, we
have a description of 5T .Find AT .

The frame defining {B} is

[0.866 -0.500 0.000 4.0°
0.500 0.866 0.000 3.0
T = (2.68)
0.000 0.000 1.000 0.0
0 0 0 1]
(B}
X
(A4} - _
s 0.866 0.500 0.000 -4.964

-0.500 0.866 0.000 -0.598
0.000 0.000 1.000 0.0
0 0 0 1

> }?A | _
FIGURE 2.13 : {B} relative to {A}.




2.7 TRANSFORM EQUATIONS

(D}

(A}

=] v _vra

{cl

DT = UT BT CT
AT =T ET T
SR

U
A
B__

\ C
Ut _ U -1

” cl =l [/iT gT

U
C

(i

28]

T =TT

FIGURE 2.14: Set of transforms forming a loop .



2.7 TRANSFORM EQUATIONS

(T}

T =T 70T T

PR
T
U

FIGURE 2.16 : Manipulator reaching for a bolt .




2.8 MORE ON REPRESENTATION OF ORIANTATION

Rotation matrix determinant is +|

o~ A A X|=1
R=|X Y Z| "
Z|=1

X .Y =0,

X .Z=0,

Y .Z =0.

Clearly, the nine elements of a rotation matrix are not all
independent . In fact, given a rotation matrix, R , it is easy to
write down the six dependencies between the elements.
Therefore, rotation matrix can be specified by just three
parameters.



2.8 MORE ON REPRESENTATION OF ORIANTATION

J

J

Rotation matrices are useful as operators. Their
matrix from is such that, when multiplied by a
vector , they perform the rotation operation.
Human operator at a computer terminal who
wishes to type in the specification of the desired
orientation of a robot’s hand would have a hard
time inputting a nine-element matrix with
orthonormal columns.A representation that
requires only three numbers would be simpler .



X-Y-Z fixed angles

One method of describing the orientation of frame {B} is as
follows:

Start with the frame coincident with a known reference frame
{A}. A A
Rotate {B}first about X , by an angle }/then aboutY , by
angle £ ,and \finally ,about 2Aby an angle ¢

Each of the three rotations takes place about an axis in the
fixed reference frame {A}.We will call this convention for
specifying an orientation X-Y-Z fixed angles .the word “fixed”
refers to the fact that the rotations are specified about the fixed
(i.e. nonmoving) reference frame (Fig 2.17).sometimes this
convention is referred to as roll, pitch, yaw angles, but care must
be used ,as this name is often given to other related but
different conventions.



FIGURE 2.17:X-Y-Z fixed angles. Rotations are performed in the
orderR, (1),R, (B).R, (@).

E/:vaz (7/’18105): R, (a),Ry (B)Ry (7)

ca —sa Ollcp 0 splf1 0 O |
={sa ca 0|0 1 0|0 cy -sy

0 0 1] -sB 0 cp|l0 sy cy




cacf casfsy —sacy casficy +sasy |
sRyz (7. 8.a)=|sacf sasfsy —cacy sasficy +casy |.

—sp  cpsy cpcy

STRLIPILEE
A
s Ryyz (7/1ﬂ’0‘): Vo1 Typ T |

_r31 r32 r33_

B=Atan2(—r, /IS +r.),
a=Atan2(r,,/cB,r,/cp),
y=Atan2(r,,/cB,r, /cp).

Note: use handout



Z-Y-X Euler angles

Another possible description of a frame {B} is as follows:

Start with the frame coincident with a known frame {A}. Rotate {B} first about 74 s by
an angle ¢hen about Y g by an angle M, and ,finally, about X gby an angle V.

In this representation ,each rotation is performed about an axis of the moving system
{B} rather than one of

The fixed reference {A}.Such sets of three rotations
Zy

WD«

B>

A
ot




BARZYX =R, (@),R, (B)Ry (¥)

ca —sa Ollcp 0 splfl1 0 0]
sa ca 0|0 1 0|0 cy -sy|,
0 0 1) -sf6 0 cp||0 sy cy
cacf casfsy —sacy casfey +sasy ]
sRoyy (@, B,7)=|sacf sasfsy —cacy sasfcy +casy |.
—SB cpsy chey

Note: use handout



EXAMPLE 2.7

Consider two rotations , one about 7 by 30 degrees and one about X by 30 degrees:

0.866 -0.500 0.000
R, (30) =| 0.500 0.866 0.000 (2.60)
0.000 0.000 1.000

1.000 0.000 0.000
R, (30) =| 0.000 0.866 -0.500 (2.61)
0.000 0.500 0.866

0.87 -0.43 0.25
R, (30)R, (30)=| 0.50 0.75 -0.43
0.00 0.50 0.87
0.87 -0.50 0.00
#R, (30)R, (30) =| 0.43 0.75 -0.50 (2.62)

0.25 0.43 0.87



Z-Y-Z Euler angles

Another possible description of a frame {B} is
Start with the frame coincident with a known frame {A}.rotate
{B} first about Z ; by an angle Catien aboutY 5 by an angle £,
and , finally , about Z, by an angle .

cacfcy—sasy —cac sy —sacy caspf ]
sRyyz (@, B,y)=|sacfcy +casy —sacfsy+cacy saspf |.

—spcy spsy cf |

N Iy rlBW
A

8 Rzvz (a’ﬂJ/): oy T Tog |-
| T3y T3y Ty

f=Atan2(\ry +15, 1),
a=Atan2(r,,/spB,r,1sp),
y=Atan2(r,,/s B,—r, IS f).



APPENDIX B
The 24 angle-set conventions

The |2 Euler angle sets

The |2 fixed angle sets



Equivalent angle-axis representation

Start with the frame coincident with a known frame {A}; then rotate {B}
about the vector “K by an angle @according to the right-hand rule.

k,k,00+c0 K.k, 00-k,50 k.k,00+k s6
Re (0) =]k, k,v0+k,s60 k k v0+co k,k,v0-k, sd
k.k,00-k, s8 k k,00+ks0 k,k,00+co

where cd=co0sd,s60 =sin8,v0 =1-cos,and AK = [kxkykZ T

STRLIPILIE
A
B RK (‘9) =y Mg |y

I‘31 r32 r33

9 — A COS( r11 + r22+r33 _1j
2

r32 - r23

K =

- r., —r
2sing| ©
r21 _r12



EXAMPLE 2.8

A frame {B} is descried as initially coincident with {A}.we then rotate {B}
about the vector *K =[0.7070 7070 0] (passing through the origin)by an
amount & = 30 degrees . Given the frame description of {B}.

Substituting in to (2.80) yields the rotation-matrix part of the frame
description.

: . . : T
There was no translation of the origin ,so the position vector is [0, 0,0] .
Hence,

10.933 0.067 0.354 0.0

‘T =|0.067 0.933 —0.354 0.0 (2.83)
0.354 0354 0.866 0.0




2.27 [15] Referring to Fig. 2.25,give the value of 5T
2.28 [15] Referring to Fig. 2.25,give the value ofé‘T
2.29 [15] Referring to Fig. 2.25,give the value of T

30 Ye 2
-~ o~ -
Y ﬁc
A A A 2’
A~ 0 Z.n‘i ZB
?, .
B !
| Xa N .
| B
| |
!‘ 3 ’! Note: use handout

FIGURE 2.25: Frames at the corners of a wedge.






Robotics

Kinematics

» Kinematics is the study of motion without
regard for the forces that cause it.

* It refers to time-based and geometrical
properties of motion.

e It ignores concepts such as torque, force, mass,
energy, and inertia.



Robotics

rEoOMe
el afufe e fe
0o0oDoa

L AEw e Y

Teach pendent




Robotics

* For a robotic arm, this would mean calculating the position and
orientation of the end effector given all the joint variables.




} Robotics
|

¢ Inverse Kinematics is the reverse of Forward Kinematics. (!)

» It is the calculation of joint values given the positions, orientations, and geometries
of mechanism’s parts.

* It is useful for planning how to move a robot in a certain way.




Robotics

e See notes



3.2 LINK DESCRIPTION
I

A manipulator may be thought of as a set of bodies connected in a chain by joints.
These bodies are called links. Joints form a connection between a neighboring pair
of links.

Axisi—1 Axisi
Linki—1

i

Revolute Prismatic
Cylindrical Planar

&
A\

/

Screw Spherical » %



Robotics

Axis i

mutual perpendicular
link length,

& -1

Denavit-Hartenberg notation
link twist.
This angle is measured from axis i — 1 to axis i in the right-hand sense about g, _;.



Robotics

Bearing “A” Bearing “B”
A [
| =
: ! I [
3in.| | | —t
I S
| o _J
I i
Y l i
<«—2in.—f«——5in.——><2in.—
(-4
O L
)
-
FIGURE 3.3: A simple link that supports two revolute axes.
link length is 7 inches.

Link twist is +45 degrees.



Robotics

3.3 LINK-CONNECTION DESCRIPTION

Axisi — 1 Axisi

link offset.

joint angle

FIGURE 3.4: The link offset, d, and the joint angle, 6, are two parameters that may be
used to describe the nature of the connection between neighboring links.

10



Robotics

Denavit—Hartenberg notation

a._,=the distance from Z;_; to Z; measured along X;
;= the angfe from Z:’—-—l o Zi measured about X;
d; = the distance from X;_, to X; measured along Z;; and

0; =the angle from ff,-_l to .il- measured about 21-.

11
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3.4 CONVENTION FOR AFFIXING FRAMES TO LINKS

Intermediate links in the chain

The convention we will use to locate frames on the links is as follows: The Z-axis
of frame {i}, called 21-, 1s coincident with the joint axis i, The origin of frame {i} is
located where the a; perpendicular intersects the joint i axis. )?!- points along a; in
the direction from joint i to joint i + 1.

In the case of a; = 0, X, is normal to the plane of Z; and Z, +1- We define ; as
being measured in the right-hand sense about X, and so we see that the freedom of
choosing the sign of «; in this case corresponds to two choices for the direction of

X,. Y, is formed by the right-hand rule to complete the ith frame. Figure 3.5 shows
the location of frames {i — 1} and {i} for a general manipulator.

12



Robotics

3.4 CONVENTION FOR AFFIXING FRAMES TO LINKS

First and last links in the chain

We attach a frame to the base of the robot, or link 0, called frame {0}. This
frame does not move; for the problem of arm kinematics, it can be considered the
reference frame. We may describe the position of all other link frames in terms of
this frame.

Frame {0} 1s arbitrary, so it always simplifies matters to choose 20 along axis 1
and to locate frame {0} so that it coincides with frame {1} when joint variable 1 is
zero. Using this convention, we will always have a; = 0.0, oy = 0.0. Additionally,
this ensures that d; = 0.0 if joint 1 is revolute, or §; = 0.0 if joint 1 is prismatic.

For joint n revolute, the direction of X, is chosen so that it aligns with X,
when 6, = 0.0, and the origin of frame {N} is chosen so that d, = 0.0. For joint n
prismatic, the direction of X n 1s chosen so that 6, = 0.0, and the origin of frame {N}
is chosen at the intersection of X,,_; and joint axis n when d, = 0.0.

13



Derivation of link transformations Robotics

Axisi— 1 Axis i

i-lq _i-1q R Qmq P
T = RTQTPTI.T.

i",}T = Ry(a;_1)Dx(a;_1)Rz(6;)D,(d;),

B co; —56; 0 a;_q N
S@lcalml CGlcal_l _Saf—l '_'Sai_ldi.
sGs0;_q cOiso;_q co;_y coy_qd;

0 0 0 1

T

|

010 2 N-1
| 1T2T3T... T.
Z—;I.Tz

14



Robotics

Summary of link-frame attachment procedure

The following is a summary of the procedure to follow when faced with a new
mechanism, in order to properly attach the link frames:

1.

Identify the joint axes and imagine (or draw) infinite lines along them. For
steps 2 through 5 below, consider two of these neighboring lines (at axes i and

i +1).

Identify the common perpendicular between them, or point of intersection.
At the point of intersection, or at the point where the common perpendicular
meets the ith axis, assign the link-frame origin.

Assign the 21- axis pointing along the ith joint axis.

Assign the f(,- axis pointing along the common perpendicular, or, if the axes
intersect, assign X ; to be normal to the plane containing the two axes.

Assign the f’l axis to complete a right-hand coordinate system.

Assign {0} to match {1} when the first joint variable is zero. For {N}, choose an
origin location and X, direction freely, but generally so as to cause as many
linkage parameters as possible to become zero.

15
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1 0 0 ] &
See notes

2 0 L 0 8,

3 0 L, 0 83




See notes
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FIGURE 3.29: The 3R nonplanar arm (Exercise 3.3).

See notes
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FIGURE 3.33: 3R nonorthogonal-axis robot (Exercise 3.11).
See notes
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T~
Ce
7

FIGURE 8.8: An orthogonal-axis wrist driven by remotely located actuators via three
concentric shafts.
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PUMA robot 6DOF

Dr.Mohammed Abu mallouh 22
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See notes
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r11 = ¢qlegs(eqescg — $485) — S2385¢5] + 51(S4¢5¢6 + €45¢),
ro1 = 81lca3(csC506 — 5486) — 59385C6 — €1(S4€5Cq + C456),

r31 = —8y3(C4C5C5 — 5486) — C3355C,

rig = C1lCo3(—C4C586 — 84C6) + 52385561 + 51(c4c6 — 54¢556),
rop = 811693 (—¢4Cs586 — $4C6) + 52385561 — €1(c4C6 — 54€55),

rap = —893(—Cy4C58¢ — 54C¢) + Cp38556,

ri3 = —C1(Cp3€455 + 533€5) — §15455, i1 Tz 13 Py
Toy Toy T

rag = —51(Cp3€4S5 + S23€5) + 15455, 0T =0T 1T = ;_21 r22 r23 1;3’
31 732 "33 Fz

33 = §23C455 — €305, 0 0 0 1_

Py = C1lay0y + a3cy3 — dysy3] — dysy,
Py = s1lay¢; + ascy3 — dysys] + dyey,

P, = —a3Sy3 — (ySy — dyCy3.
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w} The wrist frame,

{B} A

The base frame,

{7}

The tool frame,

»{G}

The station frame, Y

/ The goal frame,

25
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3.6 ACTUATOR SPACE, JOINT SPACE, AND CARTESIAN SPACE

P -~ Sy “ , e ™ ~
4 \‘ ¥ \‘
Actuator Joint Cartesian
space space space

NN

FIGURE 3.16: Mappings between kinematic description

26
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Chapter 4
Inverse Manipulator Kinematics
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4.1 INTRODUCTION

* Inverse Kinematics is the reverse of Forward Kinematics. (!)

« Itis the calculation of joint values given the positions, orientations, and
geometries of mechanism’s parts

Given the numerical value of ?v T, we att_empt to find values of 01,05,...,0,.
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4.2 SOLVABILITY

Existence of solutions

The question of whether any solution exists at all raises the question of the
manipulator’s workspace. Roughly speaking, workspace 1s that volume of space that
the end-effector of the manipulator can reach. For a solution to exist, the specified
goal point must lie within the workspace. Sometimes, 1t 13 useful to consider two
definitions of workspace: Dextrous workspace 1s that volume of space that the robot
end-effector can reach with all orientations. That is, at each point in the dextrous
workspace, the end-effector can be arbitrarily oriented. The reachable workspace 1s
that volume of space that the robot can reach in at least one orientation. Clearly,
the dextrous workspace is a subset of the reachable workspace.
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Il =1, If I, # I,

Consider the workspace of the two-link manipulator in Fig. 4.1. If [, = [,, then
the reachable workspace consists of a disc of radius 2/;. The dextrous workspace
consists of only a single point, the origin. If /; # I,, thenthere is no dextrous
workspace, and the reachable workspace becomes a ring of outer radius [; + [,
and inner radius |/; — /,|. Inside the reachable workspace there are two possible
orientations of the end-effector. On the boundaries of the workspace there is only
one possible orientation.

e See notes
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If Li>Lo

« Reachable Workspace
« Dextrous workspace
 No of solutions (inner and boundary)

0<6, <360, 0<6, <360

s

e See notes
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If Li>Lo

« Reachable Workspace
« Dextrous workspace
« No of solutions (inner and boundary)

0<6, <360, 0<8& <180

s

e See notes
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If L2>L1

« Reachable Workspace
« Dextrous workspace
 No of solutions (inner and boundary)

0<6, <360, 0<6, <360

s

e See notes
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Dashed lines indicate a second solution. C ZOSBS}.:S Olution,

. The presence of obstacles

moving smaller joints



PUMA 560 can reach certain goals with eight different solutions.

0, = 0, + 180°,
9; — —95,

6/ = B + 180°.

a; Number of solutions
al - a3 ped as E— O == 4
a3 = 5= S
{3 = 0 = 16
All a; # =16

FIGURE 4.5: Number of solutions vs. nonzero a;.

FIGURE 4.4: Four solutions of the PUMA 560.
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¥ Method of solution

closed-form solutions and numerical solutions.

We will restrict our attention to closed-form solution methods.

“closed form” means a solution method based on analytic expressions

Within the class of closed-form solutions, we distinguish two
methods of obtaining the solution: algebraic and geometric. These distinctions are
somewhat hazy: Any geometric methods brought to bear are applied by means of

algebraic expressions, so the two methods are similar. The methods differ perhaps
1n approach only.

[V
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A major recent result in kinematics is that, according to our definition of
solvability, all systems with revolute and prismatic joints having a total of six degrees
of freedom in a single series chain are solvable. However, this general solution 1is
a numerical one. Only in special cases can robots with six degrees of freedom be
solved analytically. These robots for which an analytic (or closed-form) solution
exists are characterized either by having several intersecting joint axes or by having
many «; equal to 0 or +90 degrees. Calculating numerical solutions is generally time
consuming relative to evaluating analytic expressions; hence, it is considered very
important to design a manipulator so that a closed-form solution exists. Manipulator
designers discovered this very soon, and now virtually all industrial manipulators
are designed sufficiently simply that a closed-form solution can be developed.

11



4.3 THE NOTION OF MANIPULATOR SUBSPACE WHENN <6 .

Give a description of the subspace of 2 T for the three-link manipulator

TA7

“The subspace of o T is given by

where x and y give the position of the wrist and ¢ describes the orientation of the
terminal link. As x, y, and ¢ are allowed to take on arbitrary values, the subspace

B _
WT_“

Coy —S4 00 x
S5 C¢p 0.0 y
0.0 0.0 1.0 0.0
¢ 0 0 1

is generated. Any wrist frame that does not have the structure of (4.2) lies outside \,/

the subspace (and therefore lies outside the workspace) of this manipulator. Link
lengths and joint limits restrict the workspace of the manipulator to be a subset of

this subspace.

e
——



Algebraic solution

S123 €123 0.0 I18) +Lhsyy
0.0 0.0 1.0 0.0
0 0 0 1
- Cp —Sg 0.0 =x
Sp  Co 0.0 y
0.0 0.0 1.0 0.0
0 0 0 1

Robotics

€123 —S193 0.0 Ly +Leqp

13
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Geometric solution

14
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ALGEBRAIC SOLUTION BY REDUCTION TO POLYNOMIAL

Transcendental equations are often difficult to solve because, even when there is only
one variable (say, #), it generally appears as sin 8 and cos 8. Making the following
substitutions, however, yields an expression in terms of a single variable, u:

= tan —,

2
1 — 2
cosf = n Zz, (4.35)
2u
ng = :
- 1+ u?

See notes

15
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EXAMPLE 4.3

Convert the transcendental equation
acosf +bsing =c¢

into a polynomial in the tangent of the half angle, and solve for 9.
Substituting from (4.35) and multiplying through by 1 + %, we have

a(l — uz) + 2bu = c(1 + uz).
Collecting powers of u yields
(a + c)u? — 2bu + (¢ — a) =0,

which is solved by the quadratic formula:

u_b:l:\/b2+a2—c2
- a-+c '

6 =2tan ! (b:,:\/bz_{_a2 _._CZ) )

Hence,

: a-+c
Appendix C another

solution 16



s~ "N

4.6 PIEPER’S SOLUTION WHEN THREE AXES INTERSECT =

NN B

As mentioned earlier, although a completely general robot with six degrees of
freedom does not have a closed-form solution, certain important special cases
can be solved. Pieper [3, 4] studied manipulators with six degrees of freedom in
which three consecutive axes intersect at a point.> In this section, we outline the
method he developed for the case of all six joints revolute, with the last three axes
intersecting. His method applies to other configurations, which include prismatic

17



*Given the below transformation matrix solve inverse kinematic problem
«Sketch the workspace

CC,, —CS,; S C(L+LGC,)
S1823 o S1823 Cl 81(L1 + chz)
S)s Coa 0 L,S,
0 0 0 1

bY

N\ [T [\




*solve inverse kinematic problem
*Sketch the workspace

AN

(b)




LT @I 0T = ST (6,)2T (03)3T 02T (65)2T (9). (4.55)

Inverting (I’T, we write (4.55) as

€1 & 8 8 —"11 Fi2 713 Py

5 ¢ Fo1 T22 T3 Py | _ 1

0 O 1 0 ?’31 ?'32 ?’33 pZ _6T’ (4.56)
0O 001 0O 0 0 1




\Pz

1?‘11 1"12 1"13 1Px
1y _lp3p | 721 T2 7oz " Py
6 8 tryy 'y g o,

0 0 0 1.
'ryy = caaleyCscs — 5456) — S235556
1”21 = 946506 — C46;

Ja = —Sp3lcqc5Cq — 54561 — C2355C6;
iy = —C3leaCsSe t+ 54C6] + 523555
1"22 = S4C556 — C4C¢s

T3y = Sp3lc4Cs86 + 84¢6] +

17'13 = T 0230455 — 53C

Fa3 = 5495,

"r33 = $33C485 40a0s,

"Dy = ay0 Ma3cy3 — dusag

Py = G383 — 055 — dyCy3.

Cy bm
k™ o
oL OO
_0 O O

F11 12 13 Py
21 T2 723 Py | _1ip

=T,
Y31 F3p I3z D,

o O

0 0 0 1_

—s1 P, + C1Py = ds.

¢—'

6y = Atan2(p,, p,) — Atan2 (d3, :i:\/p]% + pi — dg) :

p, = pcose,
p, =psing,

p =P+

¢ = Atan2(p,, p,).

SV

C1S¢, - S]_Cqb =

sin(¢ — 0;) =

d2
cos(p — 6;) = +,/1 — =,
p
dy [ dZ
0, = Atan2 | =, £, /1 - =
p p

1"

.
ds
.



Note that we have found two possible solutions for 8;, corresponding to the plus-
or-minus sign in (4.64). Now that 6; is known, the left-hand side of (4.56) is known.

If we equate both the (1,4) elements and the (3,4) elements from the two sides of
(4.56), we obtain

C1 Py + 51Dy = A3Cy3 — G893 + 050y,
Pz =Py = 353 + dyCy3 + a8, (4.65)

If we square equations (¢.65) and (4.57) and add the resulting equations, we obtain

(3C3 — d4S3 = K, (466)

where 2 2 2 2 2 2 2
mpx—l—py-!_px_aZ_a _dB_d4

3
K = . 4.6
e | (4.67)

Same method as before

f; = Atan2(as, d,) — Atan2(K, &+ a% + dg — K?).

22*



ST 61710 = 3T 0T 05)3T (05), (4.69)

C1Cp3  S§1Cp3 —S3 —ayC3 1 M2 "3 Px
—C1523 78183 —Cy3  ayS3 21 722 123 Py | _37p (4.70)
=81 €1 0 —d; ¥31 T3p T3z P; 6
0 0 0 I J]LO0 0 0 1 |
| C4C5Cq — S4Sg  —CaCsSg — S4Cq —CaSs
3p 34y — 55C6 —95% Cs
6 47 6 —84C5C — CySg  S4C585g — Cylg §485
i 0 0 0 i

where gT is given by equation (3.11) developed in Chapter 3. Equating both
the (1,4) elements and the (2,4) elements from the two sides of (4.70), we get

C1Co3Px + 81Co3 Py — Sp3 P, — tpC3 = a3,

—C1893Dy — $1893Py — C23D, 1 83 = dy. (4.71)

23*



These equations can be solved simultaneously for 5,4 and c¢,4, resulting in

(—as —aye3)p, + (c1p, + 510, )(ay53 — dy)
P+ (c1py +51p,)

S93 =

1

(ays3 —dy)p, — (a3 + ayc3)(c1p, + 51P,)
ey = 253 4P2 3 T Ualy 12l 1y.. (4.72)
p:+(c1p; + 510y)

The denominators are equal and positive, so we solve for the sum of 4, and 6, as
923 = A’[aI]Z[(—-a?, — azc?,)pz — (Clpx —[_ Slpy)(d4 — ﬂzSB),
(ays3 — dy)p, — (a3 + ayc3) (e py +519,)]- (4.73)

Equation (4.73) computes four values of 6,5, according to the four possible combina-
tions of solutions for §; and 6;; then, four possible solutions for 6, are computed as

24~



Now the entire left side of (4.70) is known. Equatiné both the (1,3) elements

and the (3,3) elements from the two sides of (4.70), we get

F13C€1Ca3 T 12381Cp3 — F33893 = —CySs,

71381 T T3C1 = 5495.

0, = Atan2(—ri381 + ry3Cy, —T13€1C3 — p3S1Cy3 + F33873)-

[T O (T = {T05).T (6),

where [2T(194)]"1 is given by

—893C4 —0yC3Cy + d3S4 — azcy
(l2C354 -+ d3C4 —+ 613,5'4

C1C23C4 T 5154 §1€93C4 — €154
—C1C3854 T 81C4 —51Co354 — €164 53384

—C1523 —51923 —C3 ayS3 — dy
i 0 0 0 1 ]
[ cscg —Cs5g —ss 0]
4 _4m5m_ | 6 ¢ 0 0
T =T .T= sss —sssg cs 0 |’ (3.10)
0 0 0 1

(4.75)
(4.76)

(4.77)

. (4.78)

25*



LT O] 2T =115

where [2T(9 4)17! is given by

—C1€2384 T 51€4 —S1€0354 — C1Cq4  Sx384

—C1893 —S51523 —Cy3
0 0 0

[ cscg —C55¢ —Ss 0
.5'6 Cﬁ 0 O
SsCg —SsS¢ €5 0
0 0 0 1

4 A S
GT_STGT_

r13(C1Cp3C4 + 5184) + 193(81Co3¢4 — €184) — r33(sp3€4) = —s5,

r13(—C1823) + 13 (—s1893) + raz(—cy3) = 5.

Hence, we can solve for 65 as

2T (B).

C1003C4 + 5154 §1C93C4 = €154 —533C4 —0yC3Cy +d3sy — azey

6126'3.5'4 -+ d364 —+ 6135'4
0283 — d4
1

95 = AtaDZ(S5, Cs),

(4.77)

. (4.78)

(3.10)

(4.79)

(4.80)



Applying the same method one more time, we compute (Q7)~! and write
(4.54) in the form
QT IT =2T (5. (4.81)

Equating both the (3,1) elements and the (1,1) elements from the two sides of (4.77)
as we have done before, we get

96 = Ataﬂz(Sﬁ, 06), (482)
where

Sg = —T11(C1C2354 — S1¢4) — 191 (516384 + €1¢4) + 131 (52354),
¢ = r11l(c1ea3cy + 5154)¢5 — 1593551 + a1 [(s1¢0364 — €154)C5 — 5159355]

—131(893€4C5 + Cp3585).

27*
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4.10 REPEATABILITY AND ACCURACY

« Accuracy

computed points.
—The difference between
the actual position of the

robot and the programmed I
position

* Repeatability

Will the robot always return
to the same point under the l
same control conditions?

tanght point

28
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4.10 REPEATABILITY AND ACCURACY

Many industrial robots today move to goal points that have been taught. A tanght

point is one that the manipulator is moved to physically, and then the joint position

sensors are read and the joint angles stored. When the robot is commanded to

return to that point in space, each joint is moved to the stored value. In simple

“teach and playback” manipulators such as these,dhe inverse kinematic problents
never arises, because goal points are never specified in Cartesi ' ~When

a manufacturer specifies how precisely a manipulator can return to a taught point,

he is specifying the repeatability of the manipulator.

29
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4.10 REPEATABILITY AND ACCURACY

Any time a poal position and orientation are specified in Cartesian terms,

@e mverse kinematics of tEeljevice must be computed in order to solve for the
reqm Ta¥ s that allow goals to be described in Cartesian terms
are capable of moving the manipulator to points that were never taught—points in
its workspace to which it has perhaps never gone before. We will call such points
computed points. Such a capability is necessary for many manipulation tasks. For
example, if a computer vision system is used to locate a part that the robot must
grasp, the robot must be able to move to the Cartesian coordinates supplied by the

vision sensor. The precision with which a computed point can be attained is called
the accuracy of the manipulator.

30
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4.10 REPEATABILITY AND ACCURACY

<__The accuracy of a manipulator is bounded by the repeatability. Clearly,
accuracy 1s affected by the precision of parameters appearing in the kinematic
equations of the robot. Errors in knowledge of the Denavit—Hartenberg parameters
will cause the inverse kinematic equations to calculate joint angle values that are
in error. Hence, although the repeatability of most industrial manipulators is quite
good, the accuracy is usually much worse and varies quite a bit from manipulator
to manipulator. Calibration techniques can be devised that allow the accuracy of
a manipulator to be improved through estimation of that particular manipulator’s
kinematic parameters [10].

31
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Chapter 5
Jacobians: velocities and static forces
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INTRODUCTION

In this chapter, we expand our consideration of robot manipulators beyond static-
positioning problems. We examine the notions of linear and angular velocity of a
rigid body and use these concepts to analyze the motion of a manipulator. We also
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" Differentiation of position vectors

B __ B
BVQ = ’ 0 = lim C¢+ 40 Q(t)-
At At—0 At
A /(B Ad B
V)= —
Vo) PR
B(BVQ) — BVQ
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(7}

o e s o | aoono (o | Py
7{ ! D\_I Zy

FIGURE 5.1: Example of some frames in linear motion.

Figure 5.1 shows a fixed universe frame, {U}, a frame attached to a train traveling at
100 mph, {T'}, and a frame attached to a car traveling at 30 mph, {C}. Both vehicles

are heading in the X direction of {U}. The rotation matrices, UR and UR are known
and constant.

4
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U

. Yd
What is :i}" UPCORG?

on.

Yd
U U X
7 ‘Tcore =" Vcorg = vc = 30X.

What 1s C(U VTORG)?
C(U VTORG) — CUT — g‘RUT :g R(]_OO}%) = gR—l 100)2
What is C(T VCORG)?

c.T C T Up—-1U O
( VCORG) — TR VC’ORG = mCR TR 70X.
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The angular velocity vector

A
i (B)
s {A}

Y

ST T T T TT T e s A aa A W A WAL AW

In Fig. 5.2, 4Q g describes the rotation of frame {B} relative to {A}. Physically,
at any instant, the direction of 4Qy indicates the instantaneous axis of rotation of
{B} relative to {A}, and the magnitude of 4 p indicates the speed of rotation. Again,
like any vector, an angular velocity vector may be expressed in any coordinate
system, and so another leading superscript may be added; for example, € (4 Q g) 1S
the angular velocity of frame {B} relative to {A} expressed in terms of frame {C}.

Bt
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5.3 LINEAR AND ROTATIONAL VELOCITY OF RIGID BODIES

(B) .
. AQ
(A}

A
P BORG

No rotation

A A Ap B
VQ: VBORG—I—BR VQ

Equation (5.7) is for only that case in which relative orientation of {B) and {A}
remains constant. :
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40y (B] (4

Y

No translation

FIGURE 5.4: Vector # 0, fixed in frame {B}, is rotating with respect to frame {A} with
angular velocity 42 ,. ‘
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IAQ| = (A Q|sin @) (|4 Q5] AL).

AV, =40y x 0.

0 (t+AD

the vector O could also be changing with respect to frame {B},

AV, =4CV) +4Qp x40, AV =4RPVy+t0y xR0,
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Simultaneous linear and rotational velocity

We can very simply expand (5.12) to the case where origins are not coincident by
adding on the linear velocity of the origin to (5.12) to derive the general formula for
velocity of a vector fixed in frame {B} as seen from frame {A}:

AVy =4Vpore + 4R Vo + 40 x 4R P 0 (5.13)

10
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5.6 VELOCITY “PROPAGATION" FROM LINK TO LINK

FIGURE 5.7: Velocity vectors of neighboring links.

11
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Rotational velocities can be added when both w vectors are written with
respect to the same frame. Therefore, the angular velocity of link i + 1 is the same

as that of link i plus a new component caused by rotational velocity at joint i + 1.
This can be written in terms of frame {i} as

_ . . A
Note that 0
by Z =" 0 . (5.44)
6i 41

i+, _iHlpi S il
oy =" R w40 T 2

Forward propagation

FIGURE 5.7: Velocity vectors of neighboring links.
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For revolute

FIGURE 5.7: Velocity vectors of neighboring links.

i i ] I

1 __ i+l pyi i i
T = ROy, + 0 X i+1)-

13
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The corresponding relationships for the case that joint i 4 1 is prismatic are

i+1 _it+lpi
Wi = ,jR w;

c+1 _o+l 13 i ] [ 0+1A
! 'Ui_i_l-——-l I.R(I'Ui—f“ Ct)i XI i—l-l)-'_df-l-ll Zi—[-l' (5.48)

Applying these equations successively from link to link, we can compute V¥ w, and
Nvyy, the rotational and linear velocities of the last link. Note that the resulting
velocities are expressed in terms of frame {N}. This turns out to be useful, as we will
see later. If the velocities are desired in terms of the base coordinate system, they
can be rotated into base coordinates by multiplication with ?VR.

14
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EXAMPLE 5.3
A two-link manipulator with rotational joints is shown in Fig. 5.8. Calculate the

velocity of the tip of the arm as a function of joint rates. Give the answer in two
forms—in terms of frame {3} and also in terms of frame {0}.

b é
—Cl —S100_
, OT"'- Sl Cl OO
0 =10 0 10
NoF ) 0 0 01
~ X’) /, : __
Y3 ) B d C'2 “‘SZOI]_
A YU : 1T_ SZ C2 00
Yl // 27 0 0 10 ,
e 0 0 01
XA?O 1001,
A 2
27 _ | 0100
310010
« See notes 0001
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5.7 JACOBIANS

e See notes

Robotics
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5.8 SINGULARITIES

Most manipulators have values of ® where the Jacobian becomes singular.
Such locations are called singularities of the mechanism or singularities for short. All
manipulators have singularities at the boundary of their workspace, and most have
loci of singularities inside their workspace. An in-depth study of the classification of

e See notes

. -1
has an inverse, denoted B

g1 1 [D—B
— AD-BC|l-C A

B — [A B] If AD - BC # 0, then B

19
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5.9 STATIC FORCES IN MANIPULATORS

The chainlike nature of a manipulator leads us quite naturally to consider how forces
and moments “propagate” from one link to the next. Typically, the robot is pushing
on something in the environment with the chain’s free end (the end-effector) or is
perhaps supporting a load at the hand. We wish to solve for the joint torques that
must be acting to keep the system in static equilibrium.

e See notes
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5.10 JACOBIANS IN THE FORCE DOMAIN

e See notes
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Chapter 6
Manipulator dynamics
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6.1 INTRODUCTION

Our study of manipulators so far has focused on kinematic considerations only.
We have studied static positions, static forces, and velocities; but we have never
considered the forces required to cause motion. In this chapter, we consider the
equations of motion for a manipulator—the way in which motion of the manipulator
arises from torques applied by the actuators or from external forces applied to the

manipulator.
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There are two problems related to the dynamics of a manipulator that we wish
to solve. In the first problem, we are given a trajectory point, ®, ®, and ®, and we
wish to find the required vector of joint torques, r. This formulation of dynamics
is useful for the problem of controlling the manipulator (Chapter 10). The second
problem is to calculate how the mechanism will move under application of a set of
joint torques. That is, given a torque vector, 7, calculate the resulting motion of the
manipulator, ®, ©, and ®. This is useful for simulating the manipulator.
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See notes
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Formulations
Newton-Euler

4
|

oF. -n +1

2 HI
. Lmk |

Newton: F,=myv
Euler:
Eliminate Internal
Forces and Moments

- (”r Z revolute
' ‘f Z_ prismatic

N.=%Ié, + o, x“Io,

Lagrange

/(_’7(

36 88

L(B,0) =k(0,®) — u(®).
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The force and torque acting on a link

Having computed the linear and angular accelerations of the mass center of each
link, we can apply the Newton-Euler equations (Section 6.4} to compute the inertial
force and torque acting at the center of mass of cach link. Thus we have

LFII - Fl‘l'l:":ll:.,

N =5l + o xSl (6.37)

I 'R

where [T} has 115 onigin at the center of mass of the link and has the same orientation
as the link frame, {1].

Dynamic forces on Link i

JI+]l —

C R I { \.\

[, +0o x"1o. e ~C .4
"-..\."r o . H“.
x;"&.frz‘__* Iﬂfvf'.
n.. //j / Link i !

i
- L . N
myv. = > forces N )
Cr - C N/
Lo, +o,x Lo, = Z moments | c,
Inertial forces/moments
‘Fr’ — m:'irt?.

Cr - C
N,="1o,+o,x Lo, 12
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Inward iterations to compute forces and torques

Having computed the forces and torques acting on each link, we now need to
calculate the joint torques that will result in these net forces and torques being
applied to each hink.

We can do this by wnting a force-balance and moment-balance equation based
on a free-body diagram of a typical link. (See Fig. 6.5.) Each link has forces and
torques exerled on it by its neighbors and in addition experiences an inertial force
and torque. In Chapter 5, we defined special symbols for the force and torque
cxerted by a neighbor link, which we repeat here:

f; = force exerted on link i by link i — 1,
i, = torque exerted on link § by link § — 1.

13



By summing the forces acting on link {, we arrive at the force-balance

relationship:

'- £y = ff;' - ::—1 RI.-l-l--'ru'—l-

(6.38)

By summing torques about the center of mass and setting them equal to zero,
we arrive at the torque-halance equation:

f:vf;_j;+l

= =, T (_pc‘f )% i+ (Pry — p-ﬂ‘f} (= Jim
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Finally, we can rearrange the force and torque equations so that they appear as
iterative reélationships from higher numbered neighbor to lower numbeéred neighbor:

' ::Hﬁjﬂﬂ.ﬂ +'F,, (6.41)
r'”:II — 'I.Hr _t_j'-l-lﬁl ,--j-lﬂr_+1 +E'FEI » ,'FI_ -I-'E-F'::_'_-_ " :+1E r.+1-fr'+1.' (ﬁ_q_:l.}

These equations are evaluated link by link, starting from link » and working
inward toward the base of the robot. These inward force iferations are analogous
to the static foree iterations introduced in Chapter 5, except that inertial forces and

terques are now considered at each link.
As in the static case, the required joint torgues are found by taking the £

component of the torgque applied by one link on its neighbor:
n="'n ‘Z. (6.43)
For joint { prismatic, we use
v ="f"Z, (6.44)

where we have used the symbaol T for a linear actuator foree.



See notes for gravity

Robotics
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The iterative Newton-Euler dynamics algorithm

The complete algorithm for computing joint forgues from the motion of the joints
is composed of two parts. First, link velocities and accelerations are iteratively
computed from link 1 out to link n and the Newton—Euler equations are applied
to each link. Second, forces and torques of interaction and joint actuator torques
are computed recursively from link n back to link 1. The equations are summarized
next for the case of all joints rotational:

17
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Chutward iterations: § 0 —» 3

o =R w + 6, M2, (6.45)
i+1 ':';Ja+i. l-l-'l R '|5I'J'|| + i1 R rm‘. - IE' r+1.é-l_+1 + éi"_+1 il i|'+1= {E-‘-‘l—ﬁ:]

f+1ﬁé+1=:+1.ﬁ.‘{"m- " Py ey e ey x TP+, (6.47)
Hlf"':.'ﬂ =J+1w'+1 * I-1-1F"::+t

ey % (Mo« P )+, (6.48)
41 Fiog=m., i+1 ﬁcr+l" (6,497
TNy = My + e, ox G Ty My (6.50)

Inward iterations: i 16 — 1

=R i U, (6.51)
‘n, =N, -|—;_|_1R g+ !P"-"r w ! F,

+H Py xR, (6.52)
="'nl'Z, (6.53)

18



Robotics

6.3 MASS DISTRIBUTION

In systems with a single degree of freedom, we often talk about the mass of a rigid
body. In the case of rotational motion about a single axis, the notion of the moment
of inertia is a familiar one. For a rigid body that is free to move in three dimensions,
there are inﬁnjtely many possible rotation axes. In the case of rotation about an
arbitrary axis, we need a complete way of charactenzmg the mass distribution of a
rigid body. Here, we introduce the inertia tensor -

19



Robotics

We shall now define a set of quantities that give information about the
distribution of mass of a rigid body relative to a reference frame. Figure 6.1 shows
a rigid body with an attached frame. Inertia tensors can be defined relative to any
frame, but we will always consider the case of an inertia tensor defined for a frame

attached to the rigid body. Where it is important, we will indicate, with a leading
superscript, the frame of reference of a given inertia tensor. The inertia tensor
relative to frame {A} is expressed in the matrix form as the 3 x 3 matrix

(4]

> N>

dv
A P

A

X

FIGURE 6.1: The inertia tensor of an object describes the object’s mass distribution. 20
Here, the vector 4 P locates the differential volume element, dv.



6.7 AN EXAMPLE OF CLOSED-FORM D¥YNAMIC EQUATIONS

Here we compute the closed-form dynamic equations for the two-link planar
manipulator shown in Fig. 6.6, For simplicity, we assume that the mass distribution
is extremely simple: All mass exists as a point mass at the distal end of each link.
‘These masses arc my and .

See notes
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First, we determine the values of the various quantities that will appear in the
recursive Newton—-Euler equations. The vectors that locate the center of mass for
gach link are

1 o
FCI —.iI|I]

Because of the point-mass assumplion, the inertia tensor written at the center of
mass for each link 1s the zero matrix:

na =10,

-
a

The base of the robot is not rotating; hence, we have

ap =0,
ap = 0.



To include gravity forces, we will use

The rotation between successive link frames is given by

0 -

'r-l'l-.l _jll: I !. n-l:l ,
Sit1 Gy U0

0.0 00 10

I:-I'—'| T g 0.0
—8is1 Ciyp U0

0o 00 1.0

Robotics
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We now apply equations (6.46) through (6.53).
The outward iterations for link 1 are as follows:

-0

Imlzﬁlli]; I;:: 5
-0 -

1 T

g =8 &= 01,
Ly

"oy o5 O 0 25
11:'1 _.5'1 fl D £ —_ E'-I:'l .
o 010 0
. |.e —h 6} g5y —hf} + gsy
ul:| |!].ﬁ']. + ﬂ + Edy = {Igl 'I—El:'l 1
D 0 0 0

[ —my 87 4+ mygs, }

1 e
Fi=1 mf +mgc

[0
Iy, =] 0|. (6.54)



The outward iterations for link 2 are as follows:

Robotics
|:] - |
2 —
wp=| 0 1,
|5'1 + E'g i
0 -
by = 0 ,
b+ 8 _
[ e % O —f1-§11 + B ] I!1'%‘?1 3 — J'.‘5:_'3"5';1_ + 8513
Ei:l - _'FE I!.'-'E D I[]-l_lﬂ.-l — IEr_‘:l = .I!llg-l ET 4 I]I'.:J?.'Fl -I- EE]? 1
001 0 0
1 C0 —la (8 + 853 ]
0 0 _
B8y — 'Elfj'f"f-‘z + B4z
)
2 [ mahy 615y — maply07c; + mygsyy — maly (8 + )
Fy = | mylyBycy + myl 6753 + mageyy -+ myly(6) + 65)
| 0
Ky
2
Ny=|0
D 25




The inward iterations for link 2 are as follows:

1.||r1 —_ IF]:
0
2, = ) 0 | 636

The inward iterations for link 1 are as follows:

1 ey —5p 07 | malysafy — malieyfF + mogsyy —maly (8) + 69)2
fl = 2 O3 0 -"i'iz-l!]_ I.'-'Eﬁrl - m;!lsgﬁf -+ HagCya + P:I'J-EIE_'[E"I -+ f"g}l
0 0 1 a
—min!lii"lz + i B
+ .ﬂ"i]jll'jl + HJIHEE i
0

0
tny = ) .0 S
i 0
+ 0
| mlifﬂl + myldy gy
0

0
! gl il — mglylysa (B + 6y)® + mylygsysyy |- (6.57)

L maly ey (8) + 85) + maly gegeyn

CS
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Extracting the s components of the f?lr1 we find the joint torques:
—2malylasyfs 8y + malygeyy + (my +mallygey,

Equations {E.SE:I give expressions for the torgue at the actuators as a funchion

of joint position, velocity, and acceleration. Note that these rather complex functions
arose from one of the simplest mantpulators imaginable. Obviously, the closed-form
equations for a manipulator with six degrees of freedom will be quite complex.
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THE STRUCTURE OF A MANIPULATOR'S DYNAMIC EQUATIONS

It is often convenient to express the dynamic equations of a manipulator in a single
equation that hides some of the details, but shows some of the structure of the
equations,

The state-space equation

When the Newton—Euler equations are evaluated symbolically for any manipulator,
they yield a dynamic equation that can be written in the form

T =M(@)B + V (O, ®) + G(O), (6.59)

where M (®) is the n x n mass matrix of the manipulator, V (@, ®) is an n x 1 vector
of centrifugal and Coriolis terms, and G(®) is an n x 1 vector of gravity terms. We
use the term state-space equation because the term V(®, @), appearing in (6.59),
has both position and velocity dependence [3].

Each element of M(®) and G(®) 1s a complex function that depends on @, the
position of all the joints of the manipulator. Each element of V(©, ®)is a complex
function of both ® and ©,

We may separate the various types of terms appearing in the dynamic equations
and form the mass matrix of the manipulator, the centrifugal and Coriolis vector,
and the gravity vector.
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.6
I%ml (6.60)

M(®) = {%m: 2 ymacy + 1 my +my) Bmy + lilmac ] |

Eémg + Lilhmyc,

Any manipulator mass matrix is symmetric and positive definite, and is, therefore,
always invertible.

The velocity term, V(®, @), contains all those terms that have any dependence
on joint velocity. Thus, we obtain

L -—'ﬁlzflfzﬁ'zﬂ _ZJHEIIEESEEIHE
V(0, 0) = [ ol Lysy6? . (6.61)

A term like —m,!/ 1.!2326“ is caused by a centrifugal force, and is recognized as such

because it depends on the square of a joint velocity. A term such as —2m,1;1,5,6,6,
15 caused by a Coriolis force and will always contain the product of two different
joint velocities.

The gravity term, G (@), contains all those terms in which the gravitational
constant, g, appears. Therefore, we have

G(®) = maylsgers + (my + madligey (6.62)
myls gy '

Note that the gravity term depends only on ® and not on its derivatives.



