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Introduction

Spatial descriptions and
transformations

Manipulator kinematics

Inverse manipulator kinematics
Jacobians: Velocities and static
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Manipulator dynamics



What is a robot?

» Many different definitions for robots
exist.

* Arobot Is a reprogrammable,
multifunctional manipulator designed
to move material, parts, tools, or
specialized devices through variable
programmed motions for the
performance of a variety of tasks.”
(Robot Institute of America).



Automation vs. robots

Automation: Machinery designed to carry out a
specific task lll“" R TIREC
-Bottling machine !“s“'* l,,;!- 4
-Dishwasher i S

Robots: machinery designed to carry out a variety
of tasks

-Pick and place arms
-Mobile robots




Robots Classification

« Manipulators: robotic arms. These are most commonly found in
industrial settings.

 Mobile Robots: unmanned vehicles

 Hybrid Robots: mobile robots with manipulators

« Humanoid robot



https://www.jabil.com/blog/ten-popular-industrial-robot-applications.html
https://www.bostondynamics.com/atlas

Applications

Dangerous:

~-Space exploration
-chemical spill cleanup
-disarming bombs
-disaster cleanup

Repetitive

-Welding car frames
-part pick and place
-manufacturing parts.

High precision or high speed
-Electronics chips

-Surgery

-precision machining




Body
End
Effectors
Actuators
Sensors
Controller
Software

Moves the robot

bodybackadt ~axis

and forward Waves the robot wrist
upward or downward

|
g JA

m— Teaches manipulators
movement

Uaxis

Moves axis

' " Ro i Programmin
upward or d d Rotate the wrist g g

... |
Controls the
complex motion
Saxls of manipulators in

: ﬁ | Rotates the body 4 a comprehensive
manner
AC servomotor motors are used

in the six axes of manipulators.
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Robot: Body

Consists of links and joints
Alink is a part, a shape with physical properties.

A joint is a constraint on the spatial relations of two or
more links.

These are just a few examples...

W el

Ball joint Revolute (hinge) joint

\

e

Prismatic (slider) joint




Degrees of Freedom

 Joints constraint free movement, measured
In “Degrees of Freedom” (DOFs).

 Joints reduce the number of DOFs by
constraining some translations or rotations.

* Robots classified by total number of DOFs

shoulder
base elbow forearm

How many DOFs
can you identify
In your arm?




Robot: End Effectors

 Component to accomplish
some desired physical
function

« Examples:

v' Hands

v Torch

v Wheels™

v Legs |




Robot: Actuators

 Actuators are the "muscles” of
the robot.

* These can be electric motors,
hydraulic systems, pneumatic
systems, or any other system
that can apply forces to the
system.



Robot: Sensors

* Rotation
encoders
« Cameras
» Pressure sensoiy e
e Limit switches 2 BAM
* Optical sensors
e Sonar




Kinematics

Kinematics Is the study of motion without
regard for the forces that cause It.

It refers to all time-based and geometrical
properties of motion.

It ignores concepts such as torque, force,
mass, energy, and inertia.



Forward Kinematics

For a robotic arm, this would mean
calculating the position and orientation
of the end effector given all the joint

variables.




Inverse Kinematics

* |nverse Kinematics is the reverse of Forward

Kinematics.

« Itis the calculation of joint values given the positions,
orientations, and geometries of mechanism’s parts.

* It is useful for planning how to move a robot in a certain

way.
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FIGURE 1.10:The relationship between the torques
applied by the actuators and the resulting motion of
the manipulator is'embaodied-in the'dynamic



Trajectory generating

.Q:.f('r) N

Trajectory 0,(1) _ Control T
generator [EHO) system

)

A

Robot
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FIGURE 1.11:In order to move the end-effector through space from
point A to point B , we must compute a trajectory for each joint to

follow.



FIGURE 1.13: In order to cause the manipulator to follow the desired
trajectory , a position-control system must be implemented. Such a
system uses feedback from joint sensors to keep the manipulator on

course.



Force Control
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FIGURE 1.14: In order for a manipulator to slide across a surface while
applying a constant force , a hybrid position-force control system must be used.




Reconfigurable Robot

Powered exoskeleton Dr. Mohammed Abu Mallouh-Robotics 20



& Powered exoskeleton (Robotic suit)
~and robotics prosthetic limb

i

hybrid assistive limb


https://www.weforum.org/agenda/2018/12/a-new-prosthetic-arm-takes-the-place-of-a-phantom-limb
https://youtu.be/RCWw6LSuRCo?t=17

 Nanobots



https://edition.cnn.com/videos/tv/2015/01/29/spc-make-create-innovate-nanobots.cnn

 Reconfigurable Robot

https://www.wevolver.com/wevolver.staff/su

perbot/
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Chapter 2
Spatial descriptions

2.2 DESCRIPTIONS : POSITIONS,ORIENTATIONS,AND
FRAMES

2.3 MAPPINGS :
CHANGING DESCRIPTION FROM FRAME TO FRAME

2.4 OPERATORS :
TRANSLATIONS ,ROTATIONS, AND
TRANSFORMATIONS




Introduction:

We are constantly concerned with the location of objects in three-dimensional
space. These objects are the links of the manipulator, the parts and tools with
which it deals, and other objects in the manipulator’s environment.

Position and orientation

>N

A

FIGURE 1.5: Coordinate systems or “frames” are attached to
the manipulator and to objects in the environment.

https://youtu.be/vXEU97BKHbk



https://youtu.be/vxEU97BKHbk

Introduction: cont.

In order to describe the position and orientation of a body in space, we will
always attach a coordinate system, or frame, rigidly to the object. We then
proceed to describe the position and orientation of this frame with respect to

some reference coordinate system. (See Fig. 1.5.)

X
z Position and orientation
Z
Z
X
P
X Y

FIGURE 1.5: Coordinate systems or “frames” are attached
to the manipulator and to objects in the environment!




Description of a position

Once a coordinate system is established, we can locate any point in
the universe with a 3 x 1 position vector. Because we will often define
many coordinate systems, the vector will have the name of the

coordinate

1] =1,

A A [A} |y| = ’

Zy 2] =1,
Ap °

> }'}A Px

Ap = | By

P,

X4

FIGURE 2.1: Vector relative to frame (example).



Description of an orientation
Often, we will find it necessary not only to represent a point in space but also
to describe the orientation of a body in space .

(B} (4}

Zy Za P 11 712 113
AR = [AXB Ay, AZB] = |21 722 T23
731 732 133

Rotation matrix : {B} relative to { A}

p<>

A

" Rotation matrix : {B} with respect to (w.r.t) A}



We can give expressions for the scalars r;; in (2.2) by nothing that the
components of any vector are simply the projections of that vector on to the
unit directions of its reference frame. Hence , each component of 4R in
(2.2) can be written as the dot product of a pair of unit vectors :

%Ry Te R 2%,
BR=["Xs My AZp|=|Rp. 0 V5. W4 Zp.Tu| 23)

e 2, V5.2, 25.2,

P, Note: dot product for vector




Find ZR given 4R ?
AR = lBXA Yy BZA]
Or

Hence, 2R, the description of frame {A} relative to {B}, is given by the

transpose of 4R; that is,
Bp _ ApRT
A .

This suggests that the inverse of a rotation matrix is equal to its transpose:

flR — ART — AR—l

AXT

B
ApT Ap _ | ADT AL APV A5 T _
gk pR= Ya [XB Yp A2y | =1L,

AT
ZB



EXAMPLE 2.1

Figure 2.6 shows a frame {B} that is rotated relative to frame {A} about Z by

8 =30 degrees. Here , Zz is pointing out of the page

(B} w.r.t {A}

(B}
éR = Rz(0) =

IR =

L

Xp

> ¥ Bp _ ApT _
Xa BR =4RT =

0.866 —0.500 0.000
0.500 0.866 0.000
0.000 0.000 1.000

. Find the rotation matrix

cos@ —sinf O
sinf cosf O
0 0 1

|

0.866 0.500 0.000
—0.500 0.866 0.000
0.000 0.000 1.000

|

FIGURE 2.6: {B} rotated 30 degrees about 2 .



APPENDIX A
Formulas for rotation about the principle axes by

1 0 0
Ry(@) =] 0 cosf —sind
_O sinf coséf

" cosf 0O sinf |
—sinf 0O cosf |

[ cosfd —sinf 0 |
R,(@)=| snf cosf O
0 0 1




Mappings involving general frames

Very often, we know the description of a vector with respect to some frame
{B},and we would like to know its description with respect to another
frame,{A}.

We now consider the general case of mapping. Here, the origin of frame {B} is
not coincident with that of frame {A} but has a general vector offset. The
vector that locates {B}'s origin is called “Pgr; . Also {B} is rotated with
respect to {A}, as described by 4R .

Given 2P, we wish to compute #P | as in Fig. 3.7.
(B) x°

(4]

X,
FIGURE 2.7 : General transform of a vector .



4P = 4R PP + “Pgope

Homogeneous transform

=000 el
Ap _ A7 Bp 11 looo 1 Il1



EXAMPLE 2.2

Figure shows a frame {B}, which is rotated relative to frame {A} about Z
by 30 degree, and translated 10 units in X, , and translated 5 units in ¥, .
Find 4P , where 2P =1[3.0 7.0 0.0]".

cosf —sinf 0 0.866 —0.500 0.000
4R = R;(0) = |sin® cos® 0 |=10.500 0.866 0.000
0 0 1 0.000 0.000 1.000

0.866 —0.5 0 [10]
AT:[g‘R APBORG]= 05 0866 0|5
" looo 1 0 0 1 \0
0 0 0 T1J
9.098
Ap = AT Bp — 12.562‘
0.000

>4



EXAMPLE 2.5
Figure 2.13 shows a frame {B} that is rotated relative to frame {A} about

Z by 30 degrees and translated four units in X, and three units in ¥, .
Thus, we have a description of 4T.Find £T?

0.866 —0.5 0 [ 4]

a _ |05 0.866 0|3

sl = 0 0 1 \o (2.68)
0 0 0

Using (2.42) and (2.44), we can write the form of 27 as

A 0 0 O 1
(B} , .
Note that, with our notation,
?s AT =5T"
A

{A} ] _

b 0.866 0.500 0 —4.964
Y, BT — _1AT= —0.5 0.866 0 —0.598

A B 0 0 1 0

L 0 0 0 1

> }?A
FIGURE 2.13 : {B} relative to {A}.



2.6 Compound transformations

we have ¢P and wish to find 4P.

FIGURE 2.12 : Compound frames: Each is known relative to previous one .



2.7 TRANSFORM EQUATIONS

(D}

(A}

(c| 5T = UTAT, or Z}T%T.
(v
- uT = Yrgrer = YrgTsT
or

ot = UrBT.

\/
O

FIGURE 2.14: Set of transforms forming a loop,.



2.7 TRANSFORM EQUATIONS

(T}

IT = LTBT2T = Br-1BT T,

(6]
(B} %ﬂ
U

FIGURE 2.16 : Manipulator reaching for a bolt .




2.8 MORE ON REPRESENTATION OF
ORIANTATION

Rotation matrix determinant is +1

%=1

11 T12 713 I;’ B 1
R=|[XYZ]=|r21722723 27— 0
31 132 733 %.72=0,
Y.Z=o.

« Clearly, the nine elements of a rotation matrix are not all
iIndependent .

 In fact, given a rotation matrix, R, it is easy to write
down the six dependencies between the elements.

« Therefore, rotation matrix can be specified by just three
parameters.



2.8 MORE ON REPRESENTATION OF
ORIANTATION

. Rotation matrices are useful as operators
(computer). Their matrix from is such that,
when multiplied by a vector , they perform the
rotation operation.

d Human operator at a computer terminal who
wishes to type In the specification of the
desired orientation of a robot's hand would
have a hard time inputting a nine-element
matrix  with  orthonormal columns. A
representation that requires only three
numbers would be simpler .



Fixed angles Orientation representation Robotics

- X~Y-Z fixed angles

One method of describing the orientation of a frame {B} is as follows:

Start with the frame coincident with a known reference frame {A}.
Rotate {B} first about X 4 by an angle v, then about ¥ 4 by an angle 8,

and, finally, about Z 4 by an angle «.

Each of the three rotations takes place about an axis in the fixed reference
frame {A}. We will call this convention for specifying an orientation X-Y-2Z fixed
angles. The word “fixed” refers to the fact that the rotations are specified about
the fixed (i.e., nonmoving) reference frame (Fig. 2.17). Sometimes this convention
is referred to as roll, pitch, yaw angles, but care must be used, as this name is often
given to other related but different conventions. '

VA

L

zZ

z
z A
X
Y Y
X Y
19




FIGURE 2.17:X-Y-Z fixed angles. Rotations are performed in the
order

<

gRXYZ (v, B, a) = Rz(a)Ry(B)Rx(¥)

sa ca 0 [|0 1 01]]0 ¢cy —sy

ca—saO] cf 0 sp [1 0 O ]
0O 0 11|—=sB 0 cf|LO sy cy




Robotics

ngyz(% B,a) =

CRyyz (v, B o) =

" cacB casBsy —sacy casfcy +sasy |
sacB sasBsy + cacy sasBecy —casy

- —sp cBsy cBcy

11 12 713
P21 T22 123
31 T3 733 _

B = Atan2(—rs, \[r2 +12),
x = Atan2(1‘21/cﬁ, }"ll/Cﬁ),
Yy = AtanZ(r32/ cB, r33/ch),

Note: use handout

21
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Z-Y-X Euler angles (current angles)

Another possible description of a frame {B} is as follows:
Start with the frame coincident with a known frame {A}. Rotate {B} first about

Zz by an angle a ,then about ¥z by an angle £, and , finally , about Xz by an
angle y.

In this representation ,each rotation is performed about an axis of the moving

system {B} rather than one of the fixed reference {A}.Such sets of three
rotations

2,
ﬁ

AT

Zp

WD«

P

A
ot

XB .XJ\_ L XB .(‘{B



e
8Rzvx(@, B,y ) = Rz (), Ry (B)Rx (¥)

ca —sa 0 cﬁ 0 sﬁ 10 0 Z-Y-X Euler angles
sa ca 0 ‘ 0 cy —Sl"
—sp O C,B O sy cy

Equivalent ....so same solution for .8,y

Ruyz (v, B,0) = Ry Ry (R () X-Y-Z Fixed angles

ca —sa 01]cB O sg |1 0 O
=|sa ca 0 0 1 0|0 ¢y —sy

0O 0 11|—=sB 0 cpf|LO sy cy
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EXAMPLE 2.7

Consider two rotations , one about Z by 30 degrees and one aboutX by 30 degrees

0.866 —0.500 0.000
(2.60)

R,(30) = lo.soo 0.866 0.000
0.000 0.000 1.000

1.000 0.000 0.000
(2.61)

Ry (30) = [0.000 0.866 —0.500
0.000 0.500 0.866

0.87 —0.43 0.25
R,(30)Rx(30) = |0.50 0.75 —0.43
0.00 0.50 0.87



APPENDIX B
The 24 angle-set conventions

The 12 Euler angle sets

The 12 fixed angle sets



2.27 [15] Referring to Fig. 2.25,give the valu&lof
2.28 [15] Referring to Fig. 2.25,give the valugr of
2.29 [15] Referring to Fig. 2.25,give the valuérof

(AW

| >
< 3 i

FIGURE 2.25: Frames at the corners of a wedge.
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Ryzx (fixed)=Rx(0) Rz(30)

Ry(90) A

Rxzy (Euler)=Rx(0) Rz(30)

RY(90bther solutions?? = i

Euler: Ry(90) Rx(-30)



Other solutions??
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Robotics

Kinematics

» Kinematics Is the study of motion without
regard for the forces that cause It.

» It refers to time-based and geometrical
properties of motion.

* It Ignores concepts such as torque, force,
mass, energy, and inertia.




Robotics

BEOEE3a
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Robotics

» For a robotic arm, this would mean calculating the
position and orientation of the end effector given all the

joint variables,
Position and orientation endeffector (x,y,z) w.r.t {base}=f(61, 62, 63.... ©n)

Note: assuming that all joints are revolute.
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3.2 LINK DESCRIPTION

]
A manipulator may be thought of as a set of bodies connected in a chain by joints.
These bodies are called links. Joints form a connection between a neighboring pair
of links.
g Axisi—1 AX_ISI
V Link i — 1
Revolute Prismatic
g / /
Cylindrical Planar

&
~

/
/
/ .

Screw Spherical A %
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(b) Modified form

joint i1

Standard Form

c8 -sbca,

stai

s6,

cOca,

0
0

cl
sOca,
sOsa,
0

sa,
0

-cOsa,;
ca,
0

Modified Form

—56.

{
clca,
c HIS ai |

0

0
-sa,
Cq;
0

Robotics

a.co.
asa;

d,

a;
— S0,
ca, d




Robotics

Axis i
Linki —1

mutual perpendicular
link length,

& -1

Modified
Denavit-Hartenberg Notation

twist.
This angle is measured from axis i — 1 to axis i in the right-hand sense about g, _;.



Robotics

3.3 LINK-CONNECTION DESCRIPTION

Axisi — 1 Axisi

Linki—1 . ,
D\

Link i

link offset.

s
/
i

A * R -
N joint angle
N

/
/
/

FIGURE 3.4: The link offset, d, and the joint angle, 6, are two parameters that may be
used to describe the nature of the connection between neighboring links.



3.4 CONVENTION FOR AFFIXING FRAMES TO LINKS Robotics

Modified
‘Denavit-Hartenberg Notation

4 N

a._,=the distance from Z;_; 10 Z; measured along X;

Ll

a; = the angle from Z;_; to 25 measured about X;—1

Cad

d. = the distance from i‘i—l to|X; measured along 2;'3 and

0; =the angle from }2:'—1 to ﬁf Tsured about 21-.

20 10




\ Robotics
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3.4 CONVENTION FOR AFFIXING FRAMES TO LINKS

Intermediate links in the chain

The convention we will use to locate frames on the links is as follows: The Z-axis
of frame {i}, called 21-, 1s coincident with the joint axis i, The origin of frame {i} is
located where the a; perpendicular intersects the joint i axis. )?!- points along a; in
the direction from joint i to joint i + 1.

In the case of a; = 0, X, is normal to the plane of Z; and Z, +1- We define ; as
being measured in the right-hand sense about X, and so we see that the freedom of
choosing the sign of «; in this case corresponds to two choices for the direction of

X,. Y, is formed by the right-hand rule to complete the ith frame. Figure 3.5 shows
the location of frames {i — 1} and {i} for a general manipulator.

11



Robotics

3.4 CONVENTION FOR AFFIXING FRAMES TO LINKS

First and last links in the chain

We attach a frame to the base of the robot, or link 0, called frame {0}. This
frame does not move; for the problem of arm kinematics, it can be considered the
reference frame. We may describe the position of all other link frames in terms of
this frame.

Frame {0} 1s arbitrary, so it always simplifies matters to choose 20 along axis 1
and to locate frame {0} so that it coincides with frame {1} when joint variable 1 is
zero. Using this convention, we will always have a; = 0.0, oy = 0.0. Additionally,
this ensures that d; = 0.0 if joint 1 is revolute, or §; = 0.0 if joint 1 is prismatic.

For joint n revolute, the direction of X, is chosen so that it aligns with X,
when 6, = 0.0, and the origin of frame {N} is chosen so that d, = 0.0. For joint n
prismatic, the direction of X n 1s chosen so that 6, = 0.0, and the origin of frame {N}
is chosen at the intersection of X,,_; and joint axis n when d, = 0.0.

12



@\_ Derivation of link transformations Robotics

AXISil— 1 Axisi

il _i-1qm R QP
T = RTQTPTI.T.

i",}T = Ry(a;_1)Dx(a;_1)Rz(6;)D,(d;),

B Cgl "““‘;5'91 0 ai__l ]
sGca; 1 cbco;_q —so;_y —S&i_ldi_

0 0 0 1

i_.lT =
I

13



Robotics

Summary of link-frame attachment procedure

The following is a summary of the procedure to follow when faced with a new
mechanism, in order to properly attach the link frames:

1.

Identify the joint axes and imagine (or draw) infinite lines along them. For
steps 2 through 5 below, consider two of these neighboring lines (at axes i and

i +1).

Identify the common perpendicular between them, or point of intersection.
At the point of intersection, or at the point where the common perpendicular
meets the ith axis, assign the link-frame origin.

Assign the 21- axis pointing along the ith joint axis.

Assign the f(,- axis pointing along the common perpendicular, or, if the axes
intersect, assign X ; to be normal to the plane containing the two axes.

Assign the f’l axis to complete a right-hand coordinate system.

Assign {0} to match {1} when the first joint variable is zero. For {N}, choose an
origin location and X, direction freely, but generally so as to cause as many
linkage parameters as possible to become zero.

14
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zero conf.>>>all joint =zero
if you assigned frams correctly>>all Xs in same i

direction. ORZ 01+ 62+ 63

1-Assign frames on robot
based on Modified DH
convention

2-fill in the Modified DH
parameters table

3-find 3T = o1iT2T?7?

Inpage Q&

/

a2

RRR (01' 3R) mEChaI]l:Slll general configration all joints 3 zero

y
Outofpage O 15- o501+ 02)# C1C2 £C1+C2

@1 a1 d; 0 -1
1 0 0 0 & 0
2 0 L 0 6 | 1
3 0 L, 0 A3
Dr.Nlohammed Abu mallouh 2020-202] 15




RPR mechanism Robotics

general configration all joints 3 zero

1-Assign frames on robot
Joint 2 Joint 3 | based on Modified DH
convention
IS
2-fill in the Modified DH
> Joint 1 Eﬂ parameters table

/ 3-find 9T

vy

Ueneral configration all joints =}zer0
Mi ool
0] O] ©

I
219 9 Jolypy
3 |9] 9

L\E | ]

zero conf.>>>all joint =zero
if you assigned frams correctly>>all Xs in same 3
direction. e \




RPR mechanism

Robotics

Jomt 2 Joint 3
B e
> Joint 1

general configration all joints 3 zero

ABA

1-Assign frames on robot
based on Modified DH
convention

2-fill in the Modified DH
parameters table

zero conf.>>>all joint =zero
if you assigned frams correctly>>all Xs in same
direction.



RPR mechanism Robotics

1-Assign frames on robot
Toint 2 Toint 3 | based on Modified DH
~ convention
IV -
I A VU b 2illin the Modified DH
> Joint 1 j parameters table
3-find 977
general configration all joints 5 zero zero conf/>>>all joint =zero

if you assigned frams correctly>>all Xs in same
direction.
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1-Assign frames on robot
based on Modified DH
convention

2-fill in the Modified DH
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1-Assign frames on robot
based on Modified DH
convention

2-fill in the Modified DH
parameters table

s
(I) G

3-find 977

N aY

see not
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AN

FIGURE 3.29: The 3R nonplanar arm (Exercise 3.3).

See notes
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8
Yo, B/ Tr
‘/v/&\ l'u"\
K_, *u ‘."’ ™y

See notes
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See notes

FIGURE 3.33: 3R nonorthogonal-axis robot (Exercise 3.11).

24
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Ro!l axfs

S o  — . — . S

You axis
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T~
Ce
7

FIGURE 8.8: An orthogonal-axis wrist driven by remotely located actuators via three
concentric shafts.
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PUMA robot 6DOF

Dr.Mohammed Abu mallouh 2020-2021 27
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See notes
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r11 = ¢qlegs(eqescg — $485) — S2385¢5] + 51(S4¢5¢6 + €45¢),
ro1 = 81lca3(csC506 — 5486) — 59385C6 — €1(S4€5Cq + C456),

ry) = —S93(c4C5C6 — S456) — €2355C,

rig = €11€93(—C4C586 — 54C6) + 52355561 + 51(c4¢6 — 54¢556),

rop = 811693 (—¢4Cs586 — $4C6) + 52385561 — €1(c4C6 — 54€55),

ray = —853(—C4C556 — S4C) + C3555g,

11 12 113 Py
Op _O0p 1y _ | 721 722 723 Py
o0 16 T3 T3 T33Py
33 = 5230455 — 7305, = ~

ri3 = —€1(€33€485 + 553¢5) — §18455,

ry3 = —81(C3€485 + Sp3¢5) + €15455,

Py = cilapcy + ascy3 — dysy3] — dasy,
Py = s1lay¢; + ascy3 — dysys] + dyey,

P, = —a3Sy3 — (ySy — dyCy3.

29
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W}

The wrist frame,

{B} A

{7}

The tool frame,

/ The goal frame,

»{G}

The station frame,

30
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3.6 ACTUATOR SPACE, JOINT SPACE, AND CARTESIAN SPACE

— T T
'
Re N .
Y AS
¥ \ \

Actuator Joint Cartesian
space space space

NN

FIGURE 3.16: Mappings between kinematic description
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Joint 17 Joint 7 +1

Choose axis z; along the axis of Joint 7 + 1.

Locate the origin O; at the intersection of axis 2; with the common normal”
to axes z;_, and z;. Also, locate O; at the intersection of the common
normal with axis z;_;.

Choose axis z; along the common normal to axes z;_, and z; with positive
direction from Joint i to Joint i + 1.

Choose axis y; so as to complete a right-handed frame.

33
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Joint i -1 Joint Joint i +1

For Frame 0, only the direction of axis zq is specified; then Oy and z; can
be arbitrarily chosen.

For Frame n, since there is no Joint n+ 1, 2z, is not uniquely defined while
T, has to be normal to axis z,,_;. Typically, Joint n is revolute, and thus
z, can be aligned with the direction of z,_,.

34
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Joint 17 Joint 7 +1

Frame i with respect to Frame i — 1 are completel}-: specified by the following
parameters:

a; distance between O; and O,

d; coordinate of O, along z;_,,

a; angle between axes z;_; and z; about axis z; to be taken positive when
rotation is made counter-clockwise,

g, angle between axes »; ; and z; about axis 2; ; to be taken positive when
rotation is made counter-clockwise.

35



Joint 7

Standard Form

-sBca, sOsa,

cOca, —cOsa,
sa, ca,
0 0

Joint 12

Robotics
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Link i, ¥, i, 1,
1 a1 0 0 6
2 as 0 0 b2
3 as 0 0 B3

cos(6,+6,+0,) -sin(6,+6,+06;) 0 r,

oT. = sin(0, +0,+0;) cos(0,+6,+6;) 0 ry
i 0 0 1 0

0 0 0 1

ry = |,005(6,) + l,cos(6, + 0,) + I;cos(B, + 6, + 6,)
rs = 1,5in(0,) + 1,5in(6, + 0,) + 1;5in(6, + 6, + 6,)
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Chapter 4
Inverse Manipulator Kinematics

Dr. Mohammed Abu mallouh
2020-2021



Robotics
|

4.1 INTRODUCTION

* Inverse Kinematics is the reverse of Forward Kinematics. (!)

« Itis the calculation of joint values given the positions, orientations, and
geometries of mechanism’s parts

Given the numerical value of ?v T, we attémpt to find values of 01,05,...,0,.

Dr. Mohammed Abu mallouh 2
2020-2021
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4.2 SOLVABILITY

Existence of solutions

lon—of Whether anysolution exists at all raises the question of the
, speaking, workspace 18 that volume of space that
the end-effector of themmamipulator can reach. For a solution to exist, the specified
goal point must lie wit' ¢ = metimes it 13 useful to consider two

that Volume of space that the robot can reach in at 1east ome-erientation. Clearly,
the dextrous workspace is a subset of the reachable workspace.

Dr. Mohammed Abu mallouh
2020-2021
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It =1, It [y # I,

Consider the workspace of the two-link manipulator in Fig. 4.1. If [, = [,, then
the reachable workspace consists of a disc of radius 2/;. The dextrous workspace
consists of only a single point, the origin. If /; # I,, then-there is no dextrous
workspace, and the reachable workspace becomes a ring of outer radius [y + [,
and inner radius |l; — /,|. Inside the reachable workspace there are two possible
orientations of the end-effector. On the boundaries of the workspace there is only
one possible orientation.

0<6, <360, 0<8, <360

e See notes

Dr. Mohammed Abu mallouh 4
2020-2021
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If Li>Lo

« Reachable Workspace / \
« Dextrous workspace
« No of solutions (inner and boundary)

0<6, <360, 0<8, <360

s

e See notes

Dr. Mohammed Abu mallouh
2020-2021
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If Li>Lo

« Reachable Workspace
« Dextrous workspace
« No of solutions (inner and boundary)

0<6, <360, 0 <& <180

s

e See notes

Dr. Mohammed Abu mallouh
2020-2021
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If L2>L1

« Reachable Workspace
« Dextrous workspace
« No of solutions (inner and boundary)

0<6, <360, 0<6, <360

s

e See notes

Dr. Mohammed Abu mallouh
2020-2021
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Dashed lines indicate @ second solution. closest solution.

. The presence of obstacles

moving smaller joints

Dr. Mohammed Abu mallouh 8
2020-2021



PUMA 560 can reach certain goals with eight different solutions.

0, = 0, + 180°,
9; — —95,

6/ = B + 180°.

a; Number of solutions
ag=a3=as=10 =4
= 5= = S
3= 0 =16
All ; #= (} =16

FIGURE 4.5: Number of solutions vs. nonzero a;.

_ Dr. Mohammed Abu mallouh 9
FIGURE 4.4: Four solutions of the PUMA 560. 2020-2021
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¥ Method of solution

closed-form solutions and numerical solutions.

We will restrict our attention to closed-form solution methods.

“closed form” means a solution method based on analytic expressions

Within the class of closed-form solutions, we distinguish two
methods of obtaining the solution: algebraic and geometric. These distinctions are
somewhat hazy: Any geometric methods brought to bear are applied by means of

algebraic expressions, so the two methods are similar. The methods differ perhaps

in approach only.
1n app y Dr. Mohammed Abu mallouh

2020-2021

[V



Robotics

A major recent result in kinematics is that, according to our definition of
solvability, all systems with revolute and prismatic joints having a total of six degrees
of freedom in a single series chain are solvable. However, this general solution is
a numerical one. Only in special cases can robots with six degrees of freedom be
solved analytically. These robots for which an analytic (or closed-form) solution
exists are characterized either by having several intersecting joint axes or by having
many «; equal to 0 or +90 degrees. Calculating numerical solutions is generally time
consuming relative to evaluating analytic expressions; hence, it is considered very
important to design a manipulator so that a closed-form solution exists. Manipulator
designers discovered this very soon, and now virtually all industrial manipulators
are designed sufficiently simply that a closed-form solution can be developed.

Dr. Mohammed Abu mallouh 11
2020-2021



4.3 THE NOTION OF MANIPULATOR SUBSPACE WHENN <6 .

Give a description of the subspace of Z T for the three-link manipulator

A7

“The subspace of o T is given by

B _
WT_“

where x and y give the position of the wrist and ¢ describes the orientation of the -
terminal link. As x, y, and ¢ are allowed to take on arbitrary values, the subspace
is generated. Any wrist frame that does not have the structure of (4.2) lies outside
the subspace (and therefore lies outside the workspace) of this manipulator. Link
lengths and joint limits restrict the workspace of the manipulator to be a subset of />\

this subspace.

Dr. Mohammed Abu mallouh 2020-2021

Coy —Sg 00 x
Ss ¢y 0.0 v

0.0 0.0 1.0 0.0
0 0 0 1

e
——
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Algebraic solution

NI s

C1p3 8123 0.0 ljcy + Loy
0 | S123 o3 00 Iysy +1Dsyp

3 0.0 00 1.0 0.0
0 0 0 1
giver\
Tcy —s4 0.0 x ]
3 0.0 0.0 1.0/ 0.0
0 0 0 1 _

Dr. Mohammed Abu mallouh 13
2020-2021



Algebraic solution

Dr. Mohammed Abu mallouh 202C

Robotics
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Algebraic sol
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Geometric solution

i\ v
8

Dr. Mohammed Abu mallouh 2020-2021
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ALGEBRAIC SOLUTION BY REDUCTION TO POLYNOMIAL

Robotics

Transcendental equations are often difficult to solve because, even when there is only
one variable (say, ), it generally appears as sin & and cos 8. Making the following
substitutions, however, yields an expression in terms of a single variable, u:

See notes

U =tan —,

2
1 — u?
6 = .
COS 1+u2
2u
ng = :
S 1+ u?

Dr. Mohammed Abu mallouh
2020-2021

(4.35)
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EXAMPLE 4.3

Convert the transcendental equation
acosf +bsing =c¢

into a polynomial in the tangent of the half angle, and solve for 9.
Substituting from (4.35) and multiplying through by 1 + 2, we have

a(l — uz) + 2bu = c(1 + u?‘).
Collecting powers of u yields
(a + c)u? — 2bu + (¢ — a) =0,

which is solved by the quadratic formula:

u_b:l:\/b2+a2—c2
- a-—+c '

A =2tan"! b:;:\/bZ_[_az__CZ
N a+c '

Hence,

Appendix C another

solution Dr. Mohammed Abu mallouh 20
2020-2021



*Given the below transformation matrix solve inverse kinematic problem
«Sketch the workspace

_C1C23 N C1823 Sl Cl(Ll + chz)—
S:5, =555 G Si(L+LGC,)
Sy Cus 0 L,S,
0 0 0 1

e

Ly ———
Dr. Mohammé'd Abu mallouh |
2020-2021 I
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*solve inverse kinematic problem
«Sketch the workspace

AN

(b)

Dr. Mohammed Abu mallouh 24*
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(b)

Dr. Mohammed Abu mallouh 2020-2021
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RTODI ™ 2T = 2T (0,)3T (65)3T (02T (65)2T (9).-

Inverting (1)T, we write (4.55) as

1

St

—8 €

0
0

0
0

QORLr OO

01 [ ry r2 13 Py
O || 721 T2 T23 Py
0 F31 733 733 Py
1 0O 0 0 1

Dr. Mohammed Abu mallouh

2020-2021

(4.55)

(4.56)

ef*



. 1. 1 1
1 ¥ I
1T ].T 3T 21 22 23 p}! '—Sl Cl

=~
—
—
I

1

~
(y=]
Pt

~
w
p—

~

a?

N
I

|

~
.
2

I

i
o

=1, 1. 1. 1. -

! ¥ ! - . .

1 11 12 13 Px c{ S r11 T19 13 Py
21 722 723 Py | _1p

F3) F3p I3z Pq
0 0 0 1

ot

6 1"31 1?'32 1”33 1Pz 0 O
0 0 0 1 0 0

ORR OO
= O O O

Cy3lCsC5Ce — $456] — 5235556,
—84C5Cg — CySg,

—53lc4C5C6 — 54561 — C2385C6;
—Ca3lC4Cs586 1 54¢6] + 5238556
§4C585¢ — C4Cgq, |
Sp3le4Cs5S6 + $4C6] + 235556,

= TCp3CyI5 — S93C5,

—
G2

ey
2
Il

L]

Sk

|

W
W

|
&

e S e
St

e
N

S4S5’

§93C485 — C3C5;

QyCy + a3C3 — dySy3,
ds,

—a3873 — Gp8y — dyCh3.

Dr. Mohammed Abu mallouh 28*
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lp 1737 =

e T e T e T e S S e o S S S
B I B P L T O P P
o G W W RN N R e
S T . It n

o
N
|

-1. 1. 1. 1
1?11 1’12 1’13 Ipx
1?'21 1"22 1”23 1Py
F31 "Fap "3z " P;

0

0 0 1

Cy3lcsCsce — $456] — 5235556,
—84C5Cg — CySg,

= —8y3lcqC5C6 — 54561 — C385C;
= —Cp3l4C586 + 54C6] + 5335556,
= 340556 — C4Cﬁ’
ShalC4C5856 + S4C6] + €
= 7230455 — 52305,

= Q3833 — ay8) — dyC3.

Cl A

ot
ORR OO
= O O O

—5 €

0 0
0 0

11 T2 13 Py
o1 122 a3 Py
¥31 32 T33 Py

0 0 0 1

—S1Px + 0Py = ds.

Dr. Mohammed Abu mallouh

2020-2021
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1T=

S S Sl b ] S S
W' t\? = u? R = W [\‘; i
DWW LN N R s

S SN St Uy S Gy O U ST O T T Y S
ot

c; s¢ 00 11 T2 13 Py
"11-11 1:-12 1:-13 1px_ —s1 ¢; 00 o1 122 a3 Py _1p
173 Yrgy tryy 1rs p 00 L0 ry ryy r33 p, | 6
3T6T=1. 1717 070 0 001 0 0 0 1
T31 "F3p "z P = - = ~
0 0 0 1

Il

|

|

|

|

~ —S1P; tC1py = ds.

CyzlcsCsce — S4561 — 5235556
—8qC5Ce — CySq,

—Sp3leacscg — 54561 — Cp385C6,
—C3lc4Cs586 + 54€6] + 523558

—a3873 — Gp8y — dyCh3.

Dr. Mohammed Abu mallouh 30*
2020-2021



17

y . ~ e —~—
.F’ ' t\? [y Lp NC RS It [\31 —
D W W RN RN N R R

e e e e e e
-

o
N

c; 51 00 F11 T2 T3 Py

L Ly by 1p —sy ¢ 00 || 7y rp 723 Py

1, 1.7 1,1 * 0 010 r31 T3y Taz Dy

=lrdr= (2 "2 ™3 Py 0 0010 0 01

Il

I

|

|

= 9330455 — €23€5;,

=6

1., 1. 1. 1
¥31 T3y Tz P
0 0 0 1

Co3lcyCscs — 54861 — 5235556
—8y4C5C — CySg,

—S3[€4¢5C6 — $456] — C355C6,
—Ca3lc4Cs6 + 54661 + 5235556
S4C585g — CyCg, |
Sp31€4¢556 + S4C6] + 235556
—€23C455 — 523C5:

S4SS,

= 0202 + 03623 — d4S2n

—a38y3 — dy8y — dyCo3.

Dr. Mohammed Abu mallouh
2020-2021

31*

C1 Py + 1Py = A3Cp3 — dySy3 + a5Cy,

- PZ = {13893 + dEICZE + 612.5'2.



Note that we have found two possible solutions for 8;, corresponding to the plus-
or-minus sign in (4.64). Now that 6; is known, the left-hand side of (4.56) is known.
If we equate both the (1,4) elements and the (3,4) elements from the two sides of
(4.56), we obtain

C1Pyx + S1Py = A3C3 — dySy3 + 0,09,
—Pg = 3533+ dyCo3 + 035, (4.65)
If we square equations (4.65) and (4.57) and add the resulting equations, we obtain
a3C3 — d4S3 - K, (466)

where

2 240 2 _ 2 _ .2 g2 g2
mpz+py+px—a2—a3—d3—d4

K

4.6
e (4.67)

Same method as before

03 = Atan2(as, d;) — Atan2(K, £,/a2 + d2 — K?).

Dr. Mohammed Abu mallouh 32*
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0 —
BT O 9T =T 0T 6:);T (65), (4.69)
€123 S1C23  —83 —dxC3 11 712 713 Px
—C1523 TS1523 TC3 0253 21 722 723 Py | 37 (4.70)
=5 ¢ 0 —d 31 I;p T P | O
0 0 0 1 JL0 0 0 1 |
i CpC5Cqe — Sy8g —CyC55g — S4Cg —CyS5
3p 34y — 556 —55%6 Cs
60 46 —S54C5C6 — CaSg  S4C556 — CaCe 5455
i 0 0 0 i

where gT is given by equation (3.11) developed in Chapter 3. Equating both
the (1,4) elements and the (2,4) elements from the two sides of (4.70), we get

C1Cy3Py + §1C3P, — Sp3P, — pCy = d3,

—C1893Dy — S1593Py — 23D, T (p83 = dy.

Dr. Mohammed Abu mallouh

2020-2021

(4.71)
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These equations can be solved simultaneously for s,5 and c,4, resulting in

(—as — ayc3)p, + (¢ py + 510y ) (ays3 — dy)
P? + (Clpx + Slpy)z

S93 =

?

(ags3 —dg)p, — (a3 + azc3)(cp, + S]_py)
P>+ (c1px +51Py)?

o

The denominators are equal and positive, so we solve for the sum of 6, and 85 as
Oy = Atan2[(—as; — ayc3)p, — (¢1 P, +51py)(dy — a,53),
(aysy — dy)p, — (a3 + azc3)(cr py +510)] (4.73)

Equation (4.73) computes four values of 6,5, according to the four possible combina-
tions of solutions for ¢; and 5; then, four possible solutions for 6, are computed as

Dr. Mohammed Abu mallouh 34*
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Now the entire left side of (4.70) is known. Equatiné both the (1,3) elements

and the (3,3) elements from the two sides of (4.70), we get

F13€1Cg3 + 19381 Cp3 — F338y3 = —CySs,

—T1351 T T30 = 5455,

0y = Atan2(—ri38y + ro3Cy, —F13€1Cp3 — Fp381Co3 + T33873).

[T 61" {T = $T05).T (6),

where [ST @417 is given by

—823C4 —AyC3C4 +d38y — azcy
(l20354 + d3C4 —+ 61334

C1€p3C4 T 5184 §1Cp3C4 — €154
—C1C384 T §1C4 —51€9354 — C1C4  Sx354

—C€1523 51923 —C23 y53 — dy
i 0 0 0 1
[ cscg —cssg —ss 0]
S C 0 0O
dr =477 =| "6 %6 , (3.10)
6 57 6 SsCe —8s85 €5 0
- O DQ Mohapmeli Abu mallouh

2020-2021

(4.75)
(4.76)

(4.77)

. (478)

35*



DT O] 2T =115

where [2T(9 4)17! is given by

—C1€2384 T 51C4 8160354 — C1C4  Sx38y

—C1893 —381523 —Cy3
0 0 0

[ cscg —C55¢ —Ss5 0
36 6'6 0 O
SsCs —SsS¢ €5 0
0 0 0 1

4 A S
GT_STGT_

r13(€1Ca3C4 + 5184) + ro3(81C93¢4 — €184) — Fa3(s34) = —ss,

r13(—¢1893) + 193 (—5183) + rag(—cy3) = cs.

Hence, we can solve for 05 as

2T (B).

C1Cp3C4 + 5184 $1Cp3C4 — €184 —8x3C4 —0GyC3C4 + dasy — asey

CI2C3S4 + d364 —+ 61384
(1283 — d4
1

95 == AtaIJZ(SS, Cs),

Dr. Mohammed Ab

u mallouh

2020-2021

(4.77)

. (4.78)

(3.10)

(4.79)

(4.80)

36*



Applying the same method one more time, we compute (G7)~! and write
(4.54) in the form
Q7)™ 0T =T (8. (4.81)

Equating both the (3,1) elements and the (1,1) elements from the two sides of (4.77)
as we have done before, we get

96 = AtaI]_Z(SG, 06), (482)
where
S¢ = —T11(C1C2384 — $1¢4) — 191 (51€2384 + €1¢4) + 31 (52354),
¢6 = r11[(c103¢4 + $154)c5 — 1523551 + 191 [(S1€93€4 — €154)C5 — 5159355]

—31(893€4C5 + €p3585).

Dr. Mohammed Abu mallouh 37*
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4.10 REPEATABILITY AND ACCURACY

- Accuracy (ex:+-1 mm) computed points.
—The difference between
the actual position of the
robot and the programmed 1 ‘
position

* Repeatability (ex:+-0.5 mm)

Will the robot always return
to the same point under the l

same control conditions?

tanght point

Dr. Mohammed Abu mallouh
2020-2021
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4.10 REPEATABILITY AND ACCURACY

Many industrial robots today move to goal points that have been taught. A tanght

point is one that the manipulator is moved to physically, and then the joint position

sensors are read and the joint angles stored. When the robot is commanded to

return to that point in space, each joint is moved to the stored value. In simple

“teach and playback’ manipulators such as these, ¢lie inverse kinematic problenr
never arises, because goal points are never specified in Cartesi ' ~When

a manufacturer specifies how precisely a manipulator can return to a taught point,

he is specifying the repeatability of the manipulaior.

Dr. Mohammed Abu mallouh 39
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4.10 REPEATABILITY AND ACCURACY

Any time a goal position and orientation are specified in Cartesian terms,

@e mverse kinematics of tEeljevice must be computed in order to solve for the
requm Ta¥! s that allow goals to be described in Cartesian terms
are capable of moving the manipulator to points that were never taught—points in
its workspace to which it has perhaps never gone before. We will call such points
computed points. Such a capability is necessary for many manipulation tasks. For
example, if a computer vision system is used to locate a part that the robot must
grasp, the robot must be able to move to the Cartesian coordinates supplied by the

vision sensor. The precision with which a computed point can be attained is called
the accuracy of the manipulator.

Dr. Mohammed Abu mallouh 40
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4.10 REPEATABILITY AND ACCURACY

<—__The accuracy of a manipulator is bounded by the repeatabifity. Clearly,
accuracy 1s affected by the precision of parameters appearing in the kinematic
equations of the robot. Errors in knowledge of the Denavit—Hartenberg parameters
will cause the inverse kinematic equations to calculate joint angle values that are
in error. Hence, although the repeatability of most industrial manipulators is quite
good, the accuracy is usually much worse and varies quite a bit from manipulator
to manipulator. Calibration techniques can be devised that allow the accuracy of
a manipulator to be improved through estimation of that particular manipulator’s
kinematic parameters [10].

Dr. Mohammed Abu mallouh 41
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Fig 1: 3 DOF
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JACOBIANS: VELOCITIES
AND STATIC FORCES




INTRODUCTION

In this chapter ,we expand our
consideration of robot manipulators beyond
static-positioning Problems.

We examine the notions of linear and
angular velocity of a rigid body and use
these Concepts to analyze the motion of a
manipulator.



Differentiation of position vectors

d PO H1)-"0@)
by o =—"0=_1
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(*,)= 1R, N

1
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FIGURE 5.1: Example of some frames in linear motion.

FIGURE 5.1 shows a fixed universe frame,{U},a frame attached to a train
traveling at 100 mph, {T},and a frame attached to a car traveling at 30
mph,{C}. Both vehicles are heading in the X direction of {U} .the rotation
matrices, YR and YR ,are known and constant.




FIGURE 5.1: Example of some frames in linear
motion

U

What 1s 76;1 o

“d U .
Z Feore = Veorg =0c =30X.
Whatis “(“V,pe)?

“Voppe) = 0, = SRu, = SR100X) = YR™100.X.

Whatis “("V.pe)?
' corG) = TCRTVCORG :_5R_1 ?R 70X.



The angular velocity vector

e ()
A {4}

Y

In Fig. 5.2, “Q describes the rotation of frame {B} relative to {A}.Physically ,
at any instant, the direction of “Qj indicates the instantaneous axis of rotation
of {B} relative {A} , and the magnitude of “Q; indicates the speed of rotation
Again |like any vector , an angular velocity vector may be expressed in any

coordinate system, and so anther leading superscript may be added; for
example , ¢ (4qp) is the angular velocity of frame {B} relative to {A} expressed

In terms of frame {C}.




Linear and rotational velocity of
rigid bodies  “s =zer

(B] o —

Equation (5.7) is for only that case in which relative orientation of {B}
and {A} remains constant. {B} dose not rotate w.r.t {A}




Figure 5.4 : Vector °Q , fixed in frame {B}, is
rotating with respect to frame {A} with angular
velocity 4Qp.




{B rotating w.r.t {A} with angular
velocity

Bo fixed w.r.t {B)

1A Q| = (]4Q[-sin6)(| “Qz|.A ¢).

|A Q]

A A A
Vh=—= “(Qp X :
Q At B Q

/

Wo=A4 (Vo) + “Qpx 4Q. 4V, =4R"V,+ %0z x £R °Q.




Simultaneous linear and
rotational velocity :

i}

h

« {B} rotate w.r.t {A}

« Q changing w.r.t {B}.

¢ APBOTg is changing

» the general formula for velocity of a vector in
frame {B} as seen from frame {A} is :

Wo = “Vgore + B8R "V + 405 x 4R Q. (5.13)




5.6 Velocity “propagation” from
link to link

h 4

Velocity forward
propogation




5.6 Velocity “propagation” from
link to link

FIGURE 5.7 : Velocity vectors of neighboring links.




Velocity “propagation” for revolute
joints

» the angular velocity of link i+1 is the same as that of link i plus a new
component caused by rotational velocity at joint i+1 .

« Rotational velocities can be added when both vectors are written w.r.t
the same frame .

This can be written in terms of frame {i} as

For revolute i i i+1
z+1 (0 T z+1R‘9z+1 Z
i+l -
0
Y i+l
(9i+1 Zz’+1 — O
_Hi+1_

i+1 il pi Y i+l
a)i+1 _ z‘R a)i +6’z‘+1 Zi+1




Velocity “propagation” for revolute
joints

For revolute




Velocity “propagation” for prismatic joints

The corresponding relationships for the case that i+1 is prismatic
are
l+1wi+1 — l+1iR lwi, R
Tl = IR+ X Pyy) +di Tz (548)
Applying these equations successively from link to link, we can
compute Ywy and "uy the rotational and linear velocities of the
last link.
Ywy= IR Nwy
V= AR Ny

Note that the resulting velocities are expressed in terms of frame
{N}.this turns out to be useful ,as we will see later. If the velocities
are desired in terms of the base coordinate system, they can be
rotated in to base coordinates by multiplication with JR.




» EXAMPLE 1

A two-link manipulator with rotational joints is shown below,
Calculate the velocity of the tip of the arm (end effector) as
a function of joint rates (joint velocity). Give the answer in
two forms- in terms of frame {3} 3v and also in terms of

0
frame {0} 3V. ¢, —5, 0 0
A op _|S1 ¢ 00
A3 iI=10 0 1 0
0 0 011
] . cg —s1 0 1
i 1 s; ¢4 00
7/ T=
3 N, 2 =10 0 1 0
P, NN 0 001
0
. 2. (0100
N P sT=1g010]|
\3 000 1.

v/
e See notes
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5.7 Jacobians

oF
0Y = —8X
Y1 = fl(x13x23x3:x4:x53x6): 0X
Yo = Jo(%q: X%y, X3, X4, X5, X6), §Y = J(X)8X.
Y =J(X)X.
Yo = Je(x1, X9, X3, Xy, X5, X¢)- :
% =210,
a1 df1 afq |
Sy = —Lox; + Ly Y
Y1 Ix X X1 -+ axz 2+ -+ axﬁ 5)66,
3fo /7 dfy
& L5 R B
Yo = P 1 X1+ — 3%, Xy 400 9 0xg,
3f6 afg 0fg
0 ——4 8% oo+ =858
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EXAMPLE 1 (another method)

A two-link manipulator with rotational joints is shown below,
Calculate the velocity of the tip of the arm (end effector) as
a function of joint rates (joint velocity). Give the answer in
two forms- in terms of frame {3} 3v and also in terms of

0
frame {0} 3V. ¢, —5, 0 0
A op _|S1 ¢ 00
A3 F=1g o 10|
o 0 0 1|
6 /r C1 _51011
i 1 s; ¢4 00
Vs T= )
3 N, 22 =10 0 10
P, NN 0 0 0 1 |
A 1001,
A 0 0100
Y | 2T = .
. 7y . 3= loo10
\3 000 1.
>X0
77/
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Example 1 (another method)
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Changing a Jacobian’s frame of reference

B -
5y
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16x1 _ _
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A
BR3><3

! 03><3

A]6><n(®) —

A
BR3><3

! 03><3

O3x3

A
BR3x3]|
O3X3

A
BR3><3_

B

" Joxn(0).

W




Changing a Jacobian’s frame of reference
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5.8 Singularities

 Most manipulators have values of joints where the
Jacobian becomes singular (det(J)=0)

« Such locations are called singularities of the
mechanism or singularities for short .

« All manipulators have singularities at the boundary of
their workspace.

[ = A B] If AD — BC # 0O,then] has an inverse,denoted ] 2
[ D — B

-1 _
/ ~ AD - BC

6 = ]~V — oo when det(])=0 (singular configration)



Singularities: Example 4

"\L \'L
A ™
' R S8,-8)-5 2G5y

B
X

5{5,-}-9;-5,) = S G =S')_
é ~ls, ‘L‘Lg\")_ -L?_Sh_
J= |
LI C'i .i'Li(‘nL L‘J,Cn_

VK\ = QL\S‘ i L’LSnJ(L‘LCl'l—) - ('—L?.Sf‘l)( LG+ Cl?.)

5 v L A
K-—Lj [15‘(;1 - L%’L i L‘L‘l Sn_cl * %1 Ciﬂ)_

L ((,5,-5.G) =lhlaS, =0

fh“& @d—@ng'{g'&/ Kﬁ\/‘; p@{deb'( bacle ©n Usels
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o ) Singularities: Example 4

5 v ="7(©0,
A o :
/7 . 0 =]—1V
5, — £12 . o
1= I g’ At singular configuration:
1°2 1- 6 = oo problem... det(J)=0
C c 2- the robot may loose one or more
0y = -1 12 DOF
bsy 18y

 When joint value © is close to 0 or 180 , S2 is very
close to zero, thus 8 = o




5.9 Static forces in manipulators

The robot is pushing on something in the environment with the end-
effector or is perhaps supporting a load at the hand . We wish to solve
for the joint torques that must be acting to keep the system in static
equilibrium.

3
A F A
Y3 X 3

N

111777
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Static forces

o\
7

fi = in+1fi+1=

I 41

I, _— Ipi+l i i

End effector dose not

Jx
7ol apply any moment on the
Oy object 3N=zero,

SF=[fx fy 0]7

0 | bbfy _
-62 —57 0] f,x “Cfo—Sny
A %) 0 fy = Szfx +C2fy
0 0 1]] 0 0

0 0
| b Jy sy fe theofy +hf,

T =hsyf + U+ 1)y,

TZ = lzfy
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5.10 Jacobians in the force

domain
T =hsf + G+ 46)f,
Tzzlzfy
_ Lsy L+l | £
I 0 I | _fy_
T = 3]T 3F

in general :t = T °F







Robotics

6.1 INTRODUCTION

Our study of manipulators so far has focused on kinematic considerations only.
We have studied static positions, static forces, and velocities; but we have never
considered the forces required to cause motion. In this chapter, we consider the
equations of motion for a manipulator—the way in which motion of the manipulator
arises from torques applied by the actuators or from external forces applied to the

manipulator.



Direct dynamic model Robotics

There are two problems related to the dynamics of a manipulator that we wish
to solve. In the first problem, we are given a trajectory point, @, ®, and ®, and we
wish to find the required vector of joint torques, 7. this is called Direct Dynamics

Direct
dynamics




Direct dynamic model Robotics

This formulation of dynamics
is useful for the problem of controlling the manipulator

Of 0’
9': : Dynamic T Eeil t
(0] 0]0
5, — | Model + - -+ .
K, K,
>é)E<
E + -




Inverse dynamic model Robotics

The second

problem is to calculate how the mechanism will move under application of a set of
joint torques. That is, given a torque vector, 7, calculate the resulting motion of the
manipulator, ®, ©, and ©. This is useful for simulating the manipulator.

Robot Simulator

9 . 8
d PD T Robot
controller Model ]




Manipulator position control Robotics




Joint 1

k.

k-

Joint 2

* Joint n

. Inverse Kin.
Xgq = -

controller
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N Two methods for Dynamics modeling

Robotics
Formulations
Newton-Euler Lagrange
| e S

il F - nf‘*l

" Link i

Newton: F,=myv,
Euler: N.=“Io,+w x“Io,
Eliminate Internal
Forces and Moments
n'.Z revolute

* _1'. T , i
" ff.Z prismatic

-fi+1

o2

n
i = E iU,.
i=1

d oL 9L

: =T,
di 68 00

L8, 0) =k(®, ) — u(®).

11



‘Two methods for Dynamics modeling

Robotics
Formulations
fﬁ LR R, NewT‘on-Euler
. . =N,
=N, +. R4 "Fp x'F, » 1
H F+l "‘ Rr-I-[JPH- ' ‘ f
m - o A &
r ='.r:|;' Z, Link i

]

| n'.Z revolute
|

\ T — Euler: N,=%Io, +o,x 10,
S, .Z. prismatic

12



Robotics

a Newton Euler method

« Apply Newton’s force equation and Euler moment equation for each
link

« To do so, one needs linear and angular acceleration for each link
« this is done by forward propagation of acceleration

« Then apply force and moment balance for each I|nk in the backward
direction (backward).

Acceleration
and Velocity forward
propogation

Force backward
propogation



Robotics

-, Newton Euler method

For revolute joint

i+1 _itlpi s i+l s
w1 =, Rw+0 "2
i+l e itlpie o itlpi s iHl3 x+1"“
Wiy =; Roj+ "R w; X072y +01" " 2.

14



Robotics

Newton Euler method

For revolute joint

i+1 i+l i i i
U= "R+ '0.X'P,).

i+1

i1 ="MRw; x 'Pyy + w; x (o x Pyy) + ;)

15



Robotics

Newton Euler method

For prismatic joint

i+1 i+l pi
i+1 - i+l pi.
W11 = ; R w; -

16



Robotics

“Newton Euler method

For prismatic joint

i+1 i+l i i i z+1A
., =""R(v +'wx'P.)+d. "z

l

e il . S -

Vipg =, RCw; X "Pyyy +7ap x Coy X TPy y) +71;)
i++1 ;i3 Y

T2 0 X diy T2ty T 2

17



Robotics

Newton Euler method

fi+n

For prismatic and revolute joint

We also will need the linear acceleration of the center of mass of each link, which
also can be found by applying (6.12):

li)c.‘:Id)iX!PCi'l"la)iX(Ia)i"["lpcf)—i“l'l.)i, (636)

{

Here, we 1magine a frame, {C;}, attached to each link, having its origin located at
the center of mass of the link and having the same orientation as the link frame,

18



i +1]}

' % ;. Robotics
F Newton Euler method
{i] Ci fi-!-l
o Inertia tensor for
ae’ , link i in {Ci}
IPC'. Nf
1; !
Ji

F, = ml}ci,
N, =%1Id; +w; x Silw, (6.37)

where {C;} has its origin at the center of mass of the link and has the same orientation
as the link frame, {i}.

f; = force exerted on link i by ink i —1,
n; = torque exerted on link i by link i — 1.

19



Robotics

(i+1)

iy

(X Newton Euler method

f::\

Force and Moment balance F,

at {Ci}
(i \g

fi+1

Ti

By summing torques about the center of mass and setting them equal to zero,
we arrive at the torque-balance equation:

'N;="n; =g+ (TP X i = (P —TPe) x iy (6.39)

i _ 1 i i+4+1
Fi="fi— (R

i i i+1 i
i = iR i T

i i p i+l j ip i p i+l
ng =N+, R+ Po, X i+ Py X R

20



Robotics

These equations are evaluated link by link, starting from link » and working
mmward toward the base of the robot. These inward force iterations are analogous
to the static force iterations introduced in Chapter 5, except that inertial forces and
torques are now considered at each link.

As in the static case, the required joint torques are found by taking the Z
component of the torque applied by one link on its neighbor:

. . i T i5
For revolute joint T ="n; 'Z;. (6.43)
For joint i prismatic, we use

(6.44)
For prismatic joint

21



i+1}

Robotics

where we have used the symbol t for a linear actuator force.

Note that, for a robot moving in free space, V1 £ and ¥, are set
equal to zero, and so the first application of the equations for link n is very simple.
If the robot is in contact with the environment, the forces and torques due to

this contact can be included in the force balance by having nonzero ¥*! f,_; and

N+1
N1

22



Robotics

Inward iterations to compute forces and torques

Having computed the forces and torques acting on each link, we now need to
calculate the joint torques that will result in these net foress and torques being
apphied to each link.

We can do this by writing a force-balance and moment-balance equation based
on & free-body diagram of a typical link. (See Fig. 6.5.) Each link has forces and
torques exerted on it by its neighbors and in addition experiences an inertial force
and torque. In Chapter 5, we defined special symbols for the force and torque
cxerted by a neighbor link, which we repeat here:

{; = force exerted on link ¢ by link ¢ — 1,
i, = lorque exerted on link i by link § — 1.

23



Robotics

Inclusion of gravity forces in the dynamics algorithm

The effect of gravity loading on the links can be included quite simply by setting
U9y = G, where G has the magnitude of the gravity vector but points in the opposite
direction. This is equivalent to saying that the base of the robot is accelerating
upward with 1 g acceleration. This fictitious upward acceleration causes exactly the
same effect on the links as gravity would. So, with no extra computational expense,
the gravity effect is calculated.

=
F—mj: "M Q

"y F=m@sy)

24



The iterative Newton-Euler dynamics algorithm

The complete algorithm for computing joint torgues from the motion of the joints
is composed of two parts. First, link wvelocities and accelerations are iteratively
computed from link 1 out to link # and the Newton—-Euler equations are applied
to each link. Second, forces and torques of interaction and joint actuator torques
are computed recarsively from link n back to ink 1. The equations are summarnized
next for the case of all joints rotational:

25



—

@g m Outward iterations: ¢ 0 —» 3

141
':'JJ-I-]

i+1 :
':"JJ+I.

i+l .-
i
Cri1

r+1Ff+1 -

E-|-]:'£1|'rr+1

Inward ilerations: i

Robotics
I+1R w; + dlr+I i+1 % 2, (6.45)
.+1R & + r+1E by % r+1;;rl_+1 + i 2L, (6.46)
+1 g = PRC Dy s TP ey x (e x TR 450, (6.47)
=iy x TFg,
F ) x (Hla % H Pe.) G (6.48)
" f+1ﬁﬂ'f+| . (6.49)
— Creq IJ-H +ri|‘+1 0. J"'lml-__l x Tis Ié+1 i+lm1+1_ Eﬁ_ﬁﬂ}
6—+1
=R i+ F, 31
=N R g 1 P U
+ Py x ,+1Ri+lf+1- (6.52)
L= r.r:lfT J.'E-'r-, (6-33)

Dr. Mohammed Abu mallouh
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Robotics

6.3 MASS DISTRIBUTION

In systems with a single degree of freedom, we often talk about the mass of a rigid
body. In the case of rotational motion about a single axis, the notion of the moment
of inertia is a familiar one. For a rigid body that is free to move in three dimensions,
there are infinitely many possible rotation axes. In the case of rotation about an
arbitrary axis, we need a complete way of charactenzmg the mass distribution of a
rigid body. Here, we introduce the inertia tensor -~

27



Robotics

We shall now define a set of quantities that give information about the
distribution of mass of a rigid body relative to a reference frame. Figure 6.1 shows
a rigid body with an attached frame. Inertia tensors can be defined relative to any
frame, but we will always consider the case of an inertia tensor defined for a frame

attached to the rigid body. Where it is important, we will indicate, with a leading
superscript, the frame of reference of a given inertia tensor. The inertia tensor
relative to frame {A} is expressed in the matrix form as the 3 x 3 matrix

4] Z
A

dv
A P

A

X

FIGURE 6.1: The inertia tensor of an object describes the object’s mass distribution.

Here, the vector 4 P locates the differential volume element; dv) 28



Robotics

A Ixx _I:cy _Ixz l.. = f[ V()’2+22)PdU,
I'=1 -5y 1L, —1, o
B 7 _I}’Z Iy, _ Iy, = ff V(x + 2%) pdv,
I, = f f (x* + y*)pdv,
The elements I, I, and I, are 4

called the mass moments of inertia.
| I, = § xypdv,

_ [, = //f xzpdv,
The elements with mixed 1%

indices are called the mass products of inertia.
I, = f f f yzpdv,
|4

(]

A
iy
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EXAMPLE 6.1 Robotics

Find the inertia tensor for the rectangular body of uniform density o with respect to T ———=,

the coordinate system shown in Fig. 6.2.
First, we compute [ . Using volume element dv = dx dy dz, we get

i i
I.':::.: = j f f [1"2 + EE hodx d:'" dz
0 4 W

h i
=f f (¥* + 2 wpdy dz (6.18)

0 il

H {3
= f — + 2% | wpdz

o {3
B Bl N eI
“173 o

- %{F + k4,
2 where m is the total mass of the body. Permuting the terms, we can get 1, and I
[4) by inspection;
Iy = 5w + k%) (6.19)
} h and m ,
J/ ,)I' B : I, = ?{E + ). (6.20)
!

FIGURE 6.2: A body of uniform density.
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Robotics

We next compute [,

i o prw
:f le‘ xvpdxdvdz
ff-}'ﬂ.:i_:.ﬂ'z (6.21)
il

wt
—,-:.r:ii'
- EII'J!.
Permuting the terms, we get
I = Tho (6.22)
and .
I, = i hi. (6.23)
Hence, the inertia tensor for this object is
IH [!1 I .i'i::l _ %ﬂh! i hl:l.:'
A= —%wl 2@’+i YK . (6.24)
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Robotics

As noted, the inertia tensor is a function of the location and orientation of
the reference frame. A well-known resull, the parallel-axis theorem, is one way
of computing how the inertia tensor changes under rranslations of the reference
coordinate system. The parallel-axis theorem relates the inertia tensor in a frame
with origin at the cenler of mass to the mmertia tensor with respect to another
reference frame. Where {C) is located at the center of mass of the body, and {A} is
an arbitrarily translated frame, the theorem can be stated [1] as

A _C 2 .
I I +mix” + ¥,

2
A =CI  —mx.y,. (6.25)

Iy iy

where P, = [x,, ¥, z,]" locates the center of mass relative to [A]. The remaining
moments and products of inertia are computed from permutations of x,y, and z in
(6.25). The theorem may be stated in vector—matrix form as

A =%1+mP'P L - PPT], (6.26)

where [ is the 3 x 3 identity matrix.
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EXAMPLE 6.2

Find the inertia tensor for the same solid body described for Example 6.1 when it is
deseribed in a coordinate system with onigin at the body's center of mass,

We can apply the parallel-axis theorem, (6.25), where

Next, we find
|
“I, = ﬁcm? + 14,
“I,, =0 (6.27)

The other elements are found by symmetry. The resulting inertia tensor writlen in
the frame at the center of mass is

frh? +1%) 0 0
Cf= 0 {w® + i) 0 i (6.28)
0 0 U 2 4 w®)

The result is diagonal, so frame {C) must represent the principal axes of this body.
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Exa m I e 1 Robotics

Here we compute the closed-form dynamic equations for the two-link planar

mampulator shown in Fig. 6.0, For simplicity, we assume that the mass distribution
is extremely simple: All mass exists as a point mass at the distal end of each link.

‘These masses are my and w,.

- JHI
I! _ﬂﬂ ..'r
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First, we delermine the values of the vanous quantities that will appear in the
recursive Newton—Euler equations. The vectors that locate the center of mass for
each link are

1 . *
Pe =1X,
il L

Becanse of the point-mass assumplion, the inertia tensor written at the center of
mass for each link is the zero matrix:

1, =0,

G, =0
There are no forces acting on the end-effector, so0 we have

=0,
J‘!_:| =ﬂ

‘The base of the robot 15 not rotating; hence, we have

e = 0,
ap = 0.
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To include gravity forces, we will use

The rotation between successive link frames is given by

Siv1 G U0

0.0 00 10

I:-I'—ll T 5] 0.0
—8is1 Ciyp UU

00 00 1.0

Robotics
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We now apply equations (6.46) through (6.53).
The outward iterations for link 1 are as follows:

N [0
: Ly =6, 12, = I;].] ,
-0 -
1. 7 15
dy =8 2= 01,
Ly |
Ty w5 O 0 25
Yy =1 —5 ¢ 0 g | = go |.
o0 0 0
L0 [hET [en] [+
ul:'| = |!].EII]. + n + Edy = {Iﬁl 'I—El:'l 1
| 0 0 i i
1 [ —my ]y 87 + my g5
F = Myl +mygep |-
| 0
[0
Iyy=10]. (6.54)
0
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The outward iterations for link 2 are as follows:

0 -
.
wp=| 0 1,
51'+ ﬁi i
0 -
Liny = 0 ,
& + 8, |
[ £ & 0 —H-ﬁf + 85 ] I!1'%‘?1 i3 — '[:‘5:_'3"5';1_ + Bz
_'FE I!.'-'E D £1|§1 - Er_’:l .I!|l§-| Ly + j']lgiz.'l'-l + Flyn "
i 0 01 () )
[ B i . —fg{ﬁ:"l - ﬁi'g_}l ]
L+ | + 0
0 0 _

Iy 8y — '!15'{'"5‘1 + Bz
+ 'Ell-;ilﬂl-l_'!lﬁ;l-z‘sﬂ_'_EElE
()
[ nglllj:ljl - FFTEJ]ELJEL'E + FFE:#ILE _— i'i'Tll!-z |:£Il|_ I EI|1:|1

malyByey + mal 6753 + magers -+ mala (6 + 65)

0

Robotics
N

(6.35)
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The inward iterations for link 2 are as follows; Ccs

|
1f1 _ :!le
(0
Errl = ~ A o . (6,56)
. . . . R R i+1
The inward iterations for link 1 are as follows: hi = 11 J
£q =4y 0 Mgl 556 — mzjlﬂzéll + Mg 88y — iyl (6 + 6y ) fn,- = ’..l"l."l; - :+l
1 " . - u
.i'rl = f fa gy 0 -"i'iz-l!]_ I.'-'EH']_ -+ mEIligﬁf' -+ Ml @ Cq -+ mgfg{f"l + E"g}l ;
o 0 1 0 + Fiq
—’”1'!15'12 + iy g5 — r":T J‘ér"
+ .ﬂ"i]jll'jl + m IHEE i
0
0
tny = ) .0 .
i 1]
+ L
| mlifﬁll + mqdy gy
0
0 f
+ iy — gl by s (fy + By)® + migly g8a5yy | (6:57)
+malylhey () 4 8) + mglypeepy
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Extracting the s components of the f?lr1 we find the joint torques:
T, = J:'!Ef% (4 &) + maly 15028, + 85) + (my + mi]ffé'] — ”“EI]IE-"Iéal
—2malylasyfs 8y + mylygeyy + (my +mallygey,

Equations {E.SE:I give expressions for the torgue at the actuators as a function

of joint position, velocity, and acceleration. Note that these rather complex functions
arose from one of the simplest mantpulators imaginable. Obviously, the closed-form
equations for a manipulator with six degrees of freedom will be quite complex.
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THE STRUCTURE OF A MANIPULATOR’S DYNAMIC EQUATIONS

It is often convenient to express the dynamic equations of a manipulator in a single
equation that hides some of the details, but shows some of the structure of the
equations.

The state-space equation

When the Newton—Euler equations are evaluated symbolically for any manipulator,
they yield a dynamic equation that can be written in the form

T =M(@)B + V(O, ®) + G(O), (6.59)

where M (®) is the n x n mass matrix of the manipulator, V (0, ®) is an nn x 1 vector
of centrifugal and Coriolis terms, and G(®) is an n x 1 vector of gravity terms. We
use the term state-space equation because the term V(®, @), appearing in (6.59),
has both position and velocity dependence [3].

Each element of M(®) and G(®) 1s a complex function that depends on @, the
position of all the joints of the manipulator. Each element of V(©, ®)is a complex
function of both ® and ©,

We may separate the various types of terms appearing in the dynamic equations
and form the mass matrix of the manipulator, the centrifugal and Coriolis vector,
and the gravity vector.
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.6
I%m; (6.60)

M(©) — [Egmz + 2lylymocy + If(ml + 1my) Egmz + lylymycy ] ,

E%lﬂz + Iilymyc,

Any manipulator mass matrix is symmetric and positive definite, and is, therefore,
always invertible. _

The velocity term, V(®, @), contains all those terms that have any dependence
on joint velocity. Thus, we obtain
'_'HTEIIEESE& — 2??12.{1!2335131 ]

(6.61)

V(E}, E'J - [ HI:IIIESEH

A term like —m,l 152325‘ is caused by a centrifugal force, and is recognized as such

because it depends on the square of a joint velocity. A term such as —2m,1;1,5,6,6,
1s caused by a Coriolis force and will always contain the product of two different
joint velocities.

The gravity term, G(@®), contains all those terms in which the gravitational
constant, g, appears. Therefore, we have

G(®) = malygeqy + (my + my)ligey (6.62)
Myl 819 '

Note that the gravity term depends only on ® and not og its derivatives.
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EXANPLE 0.5

The links of an RP manipulator, shown in Fig. 6.7, have inertia tensors Robotics
14 0 0 7
Cl I]. == 0 ‘r”-l [}
L 0 0 jrzzl .
) Ixxl 0 0 ]
0 0 I,

and total mass m, and ?”2 As shuwn in Fig. 6.7, the center of mass of link 1 1s
located at a distance /; from tha joint-1 axis, and the center of mass of link 2 is at the
variable dlsta]lce d, frowr n{-1 axis. Use Lagrangian dynamics to determine

Z2
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Tl = (mlff + IE?.]. + [-*.“.."'2 '{‘ fﬂzdzz}gl + 2”1’2662&]&2
T, = myd, — mzdzélz + m, g sin(8,).

From (6.89), we can see that

B 2
M©) — {mlif +La+1,,+ mzdz} 0 :I |
i 0 Nty
. " 2modo6. d
V@, ) 2 21_21:[,
—iydy By
[ (1 + m-d,) g cos(@
G(O) — (myl; 2‘2)3 (61) |
i nyg sin(6,)
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JOINT-SPACE SCHEMES Robotics

» the user specify the desired goal position and orientation of the
end-effector, and leave it to the system to decide on the exact
shape of the path to get there, the duration, the velocity profile, and
other details.

« Each path point is usually specified in terms of a desired position
and orientation of the tool frame, {T }, relative to the station frame,
{S}.

« Each of these via points is “converted” into a set of desired joint
angles by application of the inverse kinematics.

* Then, a smooth function is found for each of the n joints.

ai(»)

Q| ~ 2
B § O\
— A - 4 h“'a
» \
/ p(s) N
/ \ \ VAR
' | N’
& o/
— /-
S - ()
e i_____-.-"‘_“ﬁi-._
o
A B c °

Cartesian space joint space



JOINT-SPACE SCHEMES Robotics

The time required for each segment is the same for each joint so
that all joints will reach the via point at the same time, thus resulting
in the desired Cartesian position of {T } at each via point.

« Joint-space schemes are usually the easiest to compute, and,
because we make no continuous correspondence between joint
space and Cartesian space, there is essentially no problem with
singularities of the mechanism.

 smooth function is continuous and has continuous first derivative,
sometimes a continuous second derivative is also desirable.

 Rough, jerky motions tend to cause increased wear on the

mechanism, and cause vibrations by exciting resonances in the

manipulator.
q qs(»)
1 o e
e B ./ \\. - ~
. A - .
Vg N
/ p(s) Ng
/ \ \ VAN O
l ‘ N
& o/
6_/\/] / q3
- W - o J,%(f)
S IR e
i
A B c °
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JOINT-SPACE : Cubic Polynomials SCHEMES Robotics

« Given the initial and goal position of the end effector and the travel time.

» Using Inverse kinematics to find set of joint angles that correspond to the goal
and initial position of the manipulator.

 What is required is a function for each joint whose value at fis the initial
position of the joint 6, and whose value at tr is the desired goal position 6, of

that joint. As shown in Fig. 7.2.

FIGURE 7.2: Several possible path shapes for a single joint.



JOINT-SPACE : Cubic Polynomials SCHEMES Robotics

« there are many smooth functions, 6(t), that might be used to interpolate the
joint value.

* In making a single smooth motion, at least four constraints on 6(t) are evident.

» Two constraints on the function’s value come from the selection of initial and

« final values:

8(0) = &y,

B(ts) = 0y.

 An additional two constraints are that the function be continuous in
velocity, which in this case means that the initial and final velocity are
Zero:

a(0y = 0.

fju_ir ) =0



JOINT-SPACE : Cubic Polynomials SCHEMES Robotics

* These four constraints can be satisfied by a polynomial of at least third degree.
(A cubic polynomial has four coefficients, so it can be made to satisfy the four
constraints

cubic. A cubic has the form
A(t) = ap + ayt —I—ﬂzf2 - EI}'.I:‘:, (7.3)
s0 the joint velocity and acceleration along this path are clearly
B(t) = a; + 2ast + 3:}3!1.
f(t) = 2az + 6ast. (7.4)

Combining (7.3) and (7.4) with the four desired constraints yields four equations in
four unknowns:

th = an,
E'Jr = an + ayty + EIEI_E- + uf}
0=ay, (7.5)

0 =ai 4+ 2axty + 3&3!}.



JOINT-SPACE : Cubic Polynomials SCHEMES

Robotics

Solving these equations for the a;, we obtain

ap = by,
ay; =0,
3
ay = — (65 —6n),
15

2 ]
—T[-F_-"_I-' — ).
Iy

a3



JOINT-SPACE : Cubic Polynomials SCHEMES Robotics

EXAMPLE 7.1

A single-link robot with a rotary joint is motionless at & = 15 degrees. It is desired to

move the joint in a smooth manner to & = 75 degrees in 3 seconds. Find the coeffi-

cients of a cubic that accomplishes this motion and brings the manipulator to rest at

the goal. Plot the position, velocity, and acceleration of the joint as a function of time.
Substituting into (7.6), we find that

ap = 13.0,

ap = 0.0,

az = 20.0, (7.7)
ay = —4.44,

Using (7.3) and (7.4), we obtain
a(t) = 15.0 + 20.0¢F — 4.44¢°,
d(t) = 40.0f — 13.33¢2, (7.8)
dit) = 40.0 — 26.66¢.



JOINT-SPACE : Cubic Polynomials SCHEMES Robotics

Deprecs

Bt)

A(t)

th
FITTTTTTTTTTI

[ 1.2 18 24 30
Position

T Dep'sec
15 |

15—

0 ] | | I Seconds

b 12 18 24 30
Velocity

Seconds
[ 1.2 18 24 30

Acceleration

FIGURE 7.3: Position, velocity, and acceleration profiles for a single cubic segment that
starts and ends at rest.

15.0 4+ 20.0% — 4.441°.
40.0f — 13.33¢2,

ity = 40.0 — 26.661.
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